
HAL Id: tel-02400328
https://theses.hal.science/tel-02400328v2

Submitted on 11 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hidden Structures and Quantum Cryptanalysis
Xavier Bonnetain

To cite this version:
Xavier Bonnetain. Hidden Structures and Quantum Cryptanalysis. Cryptography and Security
[cs.CR]. Sorbonne Université, 2019. English. �NNT : 2019SORUS181�. �tel-02400328v2�

https://theses.hal.science/tel-02400328v2
https://hal.archives-ouvertes.fr

Sorbonne Université

École doctorale Informatique, Télécommunications et Électronique (Paris)

Inria de Paris / Équipe-projet SECRET

Hidden Structures and Quantum Cryptanalysis

Thèse de doctorat d’informatique

présentée par

Xavier Bonnetain

dirigée par María Naya-Plasencia

soutenue publiquement le 15 novembre 2019

devant un jury composé de :

María Naya-Plasencia Inria Directrice
Gilles Van Assche STMicroelectronics, Belgique Rapporteur
André Chailloux Inria Examinateur
Luca De Feo IBM Research, Suisse Examinateur
Henri Gilbert ANSSI Examinateur
Gregor Leander Ruhr-Universität Bochum, Examinateur

Allemagne
Damien Vergnaud Sorbonne Université Examinateur
Yu Sasaki NTT, Japon Examinateur

rapportée par :

Bart Preneel Katholieke Universiteit Leuven, Belgique
Gilles Van Assche STMicroelectronics, Belgique

Illustration de couverture : Elizabeth Fearne Bonsall, frontispice de The Fireside Sphinx,
1901.

Version 28112019, 2nde édition.

À Paul, Maxence, Ghislain. Aux autres.

Remerciements

En premier lieu, je souhaiterais remercier María Naya-Plasencia, ma directrice de thèse,
qui fin 2015 me proposa de travailler sur des attaques quantiques, alors que je savais à
peine ce qu’était un qubit. Merci pour cette chance que tu m’as donnée, pour ce temps
que tu n’avais pas et que tu m’as tout même consacré, pour m’avoir accompagné et
guidé, pour ton indéfectible optimisme. Pour ces années, merci.

Je tiens à remercier Bart Preneel et Gilles Van Assche, qui ont accepté la lourde
tâche de rapporter les pages qui vont suivre.

Je remercie du même coup Gilles Van Assche, André Chailloux, Henri Gilbert, Gre-
gor Leander, Damien Vergnaud, Luca De Feo et Yu Sasaki pour avoir accepté de faire
partie de mon jury.

De plus, Henri, avec Ludovic Perret, a assuré mon suivi doctoral, et je les en remercie.
Je remercie mon école doctorale et plus largement les services administratifs univer-

sitaires ainsi que le royaume des Pays-Bas, sans qui cette thèse aurait probablement été
significativement plus morne.

Je souhaite remercier ceux grâce à qui j’ai pris le chemin de la thèse, et en particulier
Hugues Randriam, dont les cours à Télécom m’ont redonné le goût des mathématiques,
et Anne Canteaut, qui par une conférence à l’X m’a donné l’envie de faire de la cryp-
tographie.

Ces années auraient été bien différentes sans l’ambiance extraordinaire de l’équipe
SECRET (qui dit-on, rejoindra bientôt les étoiles), et je souhaite remercier, par ordre
lexicographique et en espérant n’oublier personne : Adrien, Anais, André (l’Ancien),
André (le Jeune), Andrea, Anirudh, Anne, Anthony, Antoine, Antonio, Augustin, Chris-
telle, Christina, Daniel, Ferdinand, Florian, Gaëtan, Ghazal, Ivan, Jean-Pierre, Kaushik,
Kévin, Léo, María, Mariem, Mathilde, Matthieu, Matthieu, Nicky, Nicolas, Nicolas, Pas-
cale, Pierre, Rémi, Rocco, Rodolfo, Sébastien, Simon, Shizhu, Shouvik, Sristy, Thomas,
Tim, Valentin, Virginie, Vivien et Yann.

La recherche, ça se ne fait pas seul, et je voudrais remercier ceux avec qui j’ai eu
l’occasion de collaborer, bien évidemment María, mais aussi Akinori, André, Gaëtan,
Jean-Francois, Léo, Rémi, Shizhu, Yixin et Yu.

Plus généralement, je souhaiterais remercier ceux qui m’ont montré que tout le
monde pouvait être membre de la communauté des cryptographes, et je n’oublie pas
ceux qui m’ont montré que n’importe qui pouvait en faire partie.

J’ai une pensée particulière pour les membres du bureau C201 : tout d’abord, à ceux
qui m’ont précédé, Virginie (ton bureau est super), Sébastien (le tableau est quand
même plus vide, depuis que tu n’es plus là) et Yann (dont on ne peut que regreter

i

l’immense verve), et qui m’ont accueilli chaleureusement. Puis à ceux qui ont suivi,
Antonio, Daniel et Nicolas. Je vous laisse juge de mon accueil, et j’espère que vous
porterez haut les couleurs de ce fier bureau1.

Je ne t’oublie pas, Thomas, cher camarade. On a été en stage ensemble, puis en
thèse ensemble, on a rempli des formulaires de mots de passe ensemble, on a donné
cours ensemble. J’espère que tout ira bien en perfide Albion, et que tu n’oublieras pas
l’essentiel : L’important, c’est les valeurs.

Léo, ce fut un plaisir, que ce soit pour affronter les audaces culinaires des marchands
d’opium ou les audaces statistiques de la Loubianka. J’espère qu’on aura l’occasion de
remettre ça, et que tu ne finiras pas par faire de la plongée pour baliser le passage du
Nord-Est.

Merci Jean-Pierre, futur grand sachem2 qui se comprend très bien, pour toutes ces
discussions, et pour le babyfoot3. Je sais que ta porte restera toujours ouverte.

Enfin, au sein de l’équipe, je voudrais remercier André (le Jeune), qui m’a emmerdé
durant tout son stage avec ses foutues question s’est tout de suite montré très curieux, et
se révéla être un collègue d’une redoutable efficacité, qui sût se dépasser, et sans aucun
angle mort. Cette thèse, finalement, elle est aussi un peu à toi, et j’espère vraiment
qu’on continuera à collaborer après mon départ.

Merci, pêle-mèle, à la clique faërixienne, à #doctorat, aux rustacées parisiennes, qui
m’ont accompagnés durant ces années.

Je remercie ma famille, qui m’a toujours soutenu et accompagné, malgré ma fatigue,
malgré les deadlines qui tombent mal, malgré les emplois du temps compliqués.

Finalement, je te remercie, toi qui prends la peine de lire ces mots, et j’espère que
tu trouveras quelque intérêt dans la prose qui suit.

1Je vous souhaite notamment d’en maintenir le ratio de prix de thèse.
2Ou peut-être grand groumpf ?
3N’oublions pas que 0–8, ça se remonte.

Contents

Contents 1

Présentation des travaux 7

Main publications 11

1 Introduction to Cryptography 13
1.1 History . 13
1.2 Constructions in symmetric cryptography 16

1.2.1 Block ciphers . 16
1.2.2 Hash functions & MACs . 17
1.2.3 Authenticated encryption . 18
1.2.4 Sponges . 19

1.3 Cryptanalysis . 19
1.3.1 Generic attacks . 19
1.3.2 Attack models . 20
1.3.3 Cost models . 21

2 Quantum Computing 23
2.1 History . 23
2.2 Differences with classical computations 24
2.3 Qubits . 24
2.4 Quantum gates . 26

2.4.1 Notable gates . 27
2.4.2 Tensor product of quantum operators 30
2.4.3 Computing classical functions . 30

I Hide and Seek 33

3 Quantum Search 35
3.1 Unstructured search . 35

3.1.1 Classical resolution . 36
3.1.2 Grover’s algorithm . 36
3.1.3 Amplitude amplification . 38

1

3.1.4 Approximate test functions . 39
3.2 Nested search . 40

3.2.1 Classical nested search . 40
3.2.2 Quantum nested search . 42

3.3 Collision search . 43
3.3.1 Classical resolution . 44
3.3.2 Quantum resolution . 45
3.3.3 Structured collisions . 46

4 Simon’s Algorithm 49
4.1 Algorithm description . 49
4.2 Weakening the promise . 52

4.2.1 Partial period . 52
4.2.2 Non-injective functions . 53
4.2.3 Families of functions . 56

5 Abelian Hidden Shift Algorithms 57
5.1 The problem . 58
5.2 Preliminaries: subset-sum and k-list . 58

5.2.1 Subset-sum algorithms . 58
5.2.2 k-list algorithms . 61

5.3 The easy instances . 62
5.3.1 Case of pZ{ p2qqn . 62
5.3.2 Case f “ g . 63

5.4 The generation algorithm . 65
5.5 Quantum query complexity . 66
5.6 Hidden shift modulo a power of 2 . 67

5.6.1 Recovering the shift . 68
5.6.2 Kuperberg’s first algorithm: ˘ 68
5.6.3 Regev’s subset-sum variant . 70
5.6.4 Kuperberg’s second algorithm: k-list 73

5.7 General hidden shift algorithms . 77
5.7.1 Optimizing Algorithm 5.3 . 77
5.7.2 Hidden shift in Z{ pNq . 79
5.7.3 Hidden shift in abelian groups 81
5.7.4 Combining the different algorithms 82
5.7.5 Variants on the promise . 83
5.7.6 Hidden shift in nonabelian groups 84

6 Searching for a Hidden Structure 87
6.1 Combining Grover’s and Simon’s algorithms 88
6.2 The offline Simon’s algorithm . 90

6.2.1 A more structured problem . 90
6.2.2 The offline Simon’s algorithm . 91

6.3 Simon’s algorithm with classical queries 93

6.4 Implications . 95

II Quantum Cryptanalysis 97

7 Hidden Structures in Symmetric Cryptography 99
7.1 Claims in symmetric cryptography . 100
7.2 General method . 100
7.3 Quantum distinguishers . 101

7.3.1 One-time pad . 101
7.3.2 Feistel networks . 103

7.4 The case of quantum-related key attacks 106
7.4.1 With classical queries . 107

7.5 Even-Mansour . 107
7.6 FX Construction . 108

7.6.1 Multiple-FX . 109
7.7 MACs . 110

7.7.1 CBC-MAC . 110
7.7.2 Chaskey . 110
7.7.3 Poly1305 . 111

7.8 Sponges . 114
7.9 Protecting symmetric constructions . 115

8 Cryptanalysis of AEZ 117
8.1 Description of AEZ . 118

8.1.1 Associated data . 118
8.1.2 Function Ei,j

K . 119
8.1.3 AEZ-hash . 120
8.1.4 AEZ-prf . 120
8.1.5 AEZ-core . 120
8.1.6 Encrypt . 121

8.2 Classical cryptanalysis . 121
8.2.1 The fault in AEZv4 . 121
8.2.2 The collision analysis of AEZv4 122

8.3 Quantum cryptanalysis . 123
8.3.1 Quantum existential forgery . 124
8.3.2 Stronger quantum attacks . 124

8.4 Conclusion . 126

9 Quantum Slide Attacks 129
9.1 Classical slide attacks . 130
9.2 Slide-shift attacks . 131

9.2.1 Key-alternating cipher . 132
9.2.2 Feistel schemes with one round self-similarity 133
9.2.3 The quantum complementation slide attack 134

9.2.4 Sliding with a twist . 136
9.3 Advanced slide-shift attacks on self-similar Feistels 137

9.3.1 General attack . 137
9.3.2 With the same branch and key addition 139

9.4 Slide attacks against 4-round self-similar Feistels 141
9.4.1 Twist and complementation slide attack 141
9.4.2 Enhanced reflection attack . 144

9.5 Cycle-based slide attacks . 145
9.5.1 Definition of a cycle slide attack 145
9.5.2 Quantization of a cycle-based slide attack 146
9.5.3 Examples . 146

9.6 Attacks on Feistels with weak key schedules 148
9.6.1 Classical attacks on MiMC and GMiMC 148

9.7 Conclusion . 150

10 Computing Isogenies 153
10.1 Key exchange from hard homogeneous spaces 153
10.2 Group action with isogenies . 154
10.3 Isogeny evaluation . 156

10.3.1 For a key exchange . 156
10.3.2 For a key recovery . 157

10.4 Concrete cost estimates for CSIDH . 161
10.5 Conclusion . 163

11 Quantum security analysis of AES 165
11.1 Description of AES . 166
11.2 Classical cryptanalysis of AES . 169
11.3 Generic quantum attacks on AES . 170
11.4 Quantum square attack . 172

11.4.1 The distinguisher . 172
11.4.2 The original square attack on 6-round AES 174
11.4.3 Improved square attack . 175
11.4.4 Partial sums technique . 176
11.4.5 Extension to 7 rounds. 177

11.5 Quantum Demirci-Selçuk meet-in-the-middle 179
11.5.1 S-box differential property . 179
11.5.2 Distinguishing properties . 182
11.5.3 The attack . 185
11.5.4 Complexity analysis . 191
11.5.5 Removing the superposition queries 193
11.5.6 Quantum-inspired classical attacks 194

11.6 Conclusion . 195

Conclusions 197

Bibliography 199

A Values to test for the AES S-box equation 215

Présentation des travaux

Les travaux de cette thèse portent sur la cryptanalyse quantique, c’est à dire les
attaques de systèmes cryptographiques utilisant des moyens quantiques. Après des pré-
liminaires de cryptographie au Chapitre 1 et de calcul quantique au Chapitre 2, cette
thèse s’organise en deux parties : des algorithmes quantiques sont présentés dans la
Partie I, et de nombreuses applications sont présentées dans la Partie II.

Chapitre 3. Ce chapitre présente les algorithmes quantiques de recherche non struc-
turée (l’algorithme de Grover) et de recherche de collisions (l’algorithme de Brassard,
Høyer et Tapp). Ma contribution dans ce chapitre est la proposition d’un framework
algorithmique permettant de décrire de façon unifiée les recherches imbriquées tant clas-
siques que quantiques, afin d’aider la création et la description d’attaques quantiques,
qui est appliqué dans le Chapitre 11. Ce framework fait partie de l’article « Quantum
security analysis of AES », qui est un travail commun avec María Naya-Plasencia et
André Schrottenloher, et a été accepté au journal ToSC en 2019 [BNS19b].

Chapitre 4. Ce chapitre présente l’algorithme quantique de Simon, qui résout le
problème suivant :

Problème 1 (Problème de Simon). Soit n un entier, s P t0, 1un et X un ensemble.
Soit f : t0, 1un Ñ X une fonction, avec la promesse que pour tout px, yq P pt0, 1unq2,
rfpxq “ fpyq ô x‘ y P t0, sus. Étant donné un accès en boite noire à f , trouver s.

L’algorithme de Simon résout ce problème en temps polynomial, et est le premier
exemple de problème pour lequel l’ordinateur quantique est exponentiellement plus ra-
pide que l’ordinateur classique, sous réserve d’avoir accès à un oracle quantique implé-
mentant f , ce qui est le modèle de requêtes quantiques, ou requêtes en superposition. Cet
algorithme est à la base de nombreuses cryptanalyses, présentées dans les Chapitres 7,
8 et 9.

Chapitre 5. Ce chapitre est lui consacré à un problème plus général, et souvent plus
difficile :

Problème 2 (Décalage caché abélien). Soit n un entier, G un groupe abelien, X un
ensemble, f, g : G Ñ X deux fonctions injectives et s P G, avec la promesse que pour
tout x, fpxq “ gps` xq. Étant donné un accès en boite noire à f et g, trouver s.

7

8 Présentation des travaux

Dans le cas général, les algorithmes pour résoudre ce problème sont sous-exponentiels.
Trois algorithmes sous-exponentiels ont été proposés dans la littérature, deux par Ku-
perberg, et un par Regev. Mes contributions à ce chapitre sont multiples. Tout d’abord,
j’ai étudié le premier algorithme de Kuperberg, je l’ai optimisé et je l’ai simulé, ce qui
m’a permis d’en estimer le coût à 5 ˆ 21.8

?
n si G est de taille environ 2n. J’ai aussi

étudié le comportement de ces algorithmes lorsque la promesse du problème est rela-
chée, ce qui est souvent nécessaire pour les applications en cryptanalyse, et pour le
groupe pZ{ p2wqq

p, pour lequel le problème est plutôt plus facile. Cela fait partie de
l’article « Hidden Shift Quantum Cryptanalysis and Applications », coécrit avec María
Naya-Plasencia et accepté à Asiacrypt 2018 [BN18].

Ensuite, j’ai étudié la variante de Regev, et j’ai pu montrer que ses exposants connus
dans la littérature n’étaient pas optimaux, et que celui-ci dépend directement du coût
d’algorithmes de subset-sum. De plus, j’ai pu présenter de nombreux compromis entre
temps classique, temps quantique, mémoire classique et nombre de requêtes à f et g, ce
qui rend cet algorithme extrèmement versatile, et adaptable selon les ressources dispo-
nibles. Les différents compromis de l’algorithme de Regev sont décrits dans le manuscrit
« Improved Low-qubit Hidden Shift Algorithms », qui n’est pas encore publié [Bon19b].
Des compromis à faible coût quantique, temps classique important et mémoire classique
polynomiale sont utilisés dans « Trade-off between classical and quantum circuit size of
the attack against CSIDH », article coécrit avec Jean-François Biasse, Benjamin Pring,
André Schrottenloher et William Youmans et accepté au Journal of Mathematical Cryp-
tology en 2019 [Bia+19].

Enfin, j’ai étudié le second algorithme de Kuperberg, qui est le plus efficace en
temps, mais nécessite une mémoire classique exponentielle. J’ai pu proposer de nouveaux
compromis entre temps classique, temps quantique, mémoire classique et nombre de
requêtes, qui permettent de proposer des compromis plus intéressant que le précédent
algorithme quand la mémoire classique peut être importante. Ces nouveaux compromis
sont présentés dans « Quantum Security Analysis of CSIDH and Ordinary Isogeny-based
Schemes », coécrit avec André Schrottenloher et actuellement en soumission [BS18].

Ces algorithmes sont utilisés pour différentes cryptanalyses dans les Chapitres 7, 9
et 10.

Chapitre 6. Ce chapitre présente une méthode générale pour appliquer les algo-
rithmes de Simon et de Kuperberg y compris lorsque l’on a seulement un accès en
boite noire classique à la fonction vérifiant fpxq “ fpx‘ sq (ou aux fonctions vérifiant
fpxq “ gpx` sq). Le coût des algorithmes devient alors exponentiel (2n{3 si la taille du
domaine de f est de n bits), avec une faible mémoire. Si son coût est plus important,
l’algorithme reste meilleur que les autres approches pour résoudre le même problème
avec un accès classique à la fonction. De plus, cet algorithme est le premier exemple
d’utilisation de l’algorithme de Simon dans lequel on ne fait pas directement l’hypo-
thèse d’avoir un accès quantique à une fonction périodique, ce qui était un problème
ouvert en informatique quantique. Cet algorithme provient de l’article « Quantum At-
tacks without Superposition Queries : the Offline Simon’s Algorithm », coécrit avec
Akinori Hosoyamada, María Naya-Plasencia, Yu Sasaki et André Schrottenloher, et ac-

Présentation des travaux 9

cepté à Asiacrypt 2019 [Bon+19]. Il est utilisé pour différentes cryptanalyses dans les
Chapitres 7 et 9.

Chapitre 7. Ce chapitre recense les différentes attaques basées sur une période ou
un décalage caché en cryptographie symétrique, depuis leur introduction par Kuwaka-
do et Morii en 2010. J’ai pu étendre les attaques basées sur une période cachée aux
constructions équivalentes, mais utilisant des additions au lieu de ou exclusifs, et étu-
dier leur efficacité dans [BN18]. L’estimation du coût de l’attaque permet de déduire
les tailles de paramètres requises pour obtenir une construction sûre. Dans ce cas, les
tailles nécessaires sont largement supérieures aux tailles des designs de constructions
symétriques qui ont été proposés à l’heure actuelle. J’ai aussi pu étendre bon nombre de
ces attaques au cas où l’on n’a qu’un accès classique à la construction cryptographique,
avec la méthode du Chapitre 6 dans [Bon+19].

Chapitre 8. Ce chapitre présente les différentes cryptanalyses du chiffrement authen-
tifié AEZ depuis sa version 4. AEZv4 a été analysé classiquement par Chaigneau et
Gilbert, qui ont montré qu’une recherche de collisions permettait d’en recouvrer les clés.
Néanmoins, le coût de cette attaque est supérieur aux allégations de sécurité d’AEZ. De
plus, j’ai montré avec Patrick Derbez, Sébastien Duval, Jérémy Jean, Gaëtan Leurent,
Brice Minaud et Valentin Suder qu’une erreur de conception permettait trivialement
de briser l’authentification d’AEZv4, ce qui a mené à AEZv5. Enfin, j’ai pu réécrire
l’analyse en collision de Chaigneau et Gilbert sous la forme d’une période cachée, et
la généraliser à AEZv5 et sa variante renforcée AEZ10, qui sont donc vulnérables à
une attaque quantique polynomiale utilisant des requêtes en superposition, et à une at-
taque classique en collision. Le contenu de ce chapitre correspond à l’article « Quantum
Key-Recovery on Full AEZ », que j’ai présenté à SAC 2017 [Bon17].

Chapitre 9. Ce chapitre présente les slide attacks quantiques, qui sont une variante
des slide attacks classiques. Ces attaques quantiques se répartissent en deux catégories :
celles qui peuvent s’écrire sous la forme d’un décalage caché, et sont drastiquement
améliorées, et les autres, pour lesquelles le gain est bien plus maigre. Tout comme leur
parent classique, les slide attacks quantiques utilisent des propriétés d’auto-similarité
de constructions itérées pour les attaquer indépendamment de leur nombre de tours,
ce qui les rend particulièrement dévastatrices. Les slide attacks classiques n’étant pas
particulièrement récentes, la plupart des constructions modernes s’en prémunissent, ce
qui les protège aussi des slide attacks quantiques. De façon surprenante, ce n’est pas le
cas du chiffrement MiMC-2n{n et de certaines versions de sa généralisation GMiMC,
pour lesquels j’ai pu montrer qu’une slide attack quantique était applicable, qui était
aussi applicable avec des requêtes classiques au chiffrement, et qui correspondait à une
attaque classique en collision permettant de contredire les allégations de sécurité de
MiMC-2n{n et des versions concernées de GMiMC. Le contenu de ce chapitre correspond
à l’article « On Quantum Slide Attacks », coécrit avec María Naya-Plasencia et André
Schrottenloher, et présenté à SAC 2019 [BNS19a], ainsi qu’à la note « Collisions on
Feistel-MiMC and univariate GMiMC », non publiée à ce jour [Bon19a].

10 Présentation des travaux

Chapitre 10. Ce chapitre s’éloigne de la cryptographie symétrique, et présente des
schémas d’échanges de clé à base d’isogénies. Ceux-ci ont la particularité de corres-
pondre à un décalage caché, et donc d’être vulnérables à une attaque quantique sous-
exponentielle. J’ai en particulier étudié la sécurité asymptotique et concrète de l’instance
la plus prometteuse, CSIDH, et montré que les jeux de paramètres proposés n’offrent
pas la sécurité annoncée. L’étude asymptotique provient de [Bia+19], et l’étude concrète
de [BS18].

Chapitre 11. Ce chapitre étudie la sécurité quantique du chiffrement par bloc le plus
utilisé de nos jours, AES. Celui-ci ne dispose pas de structure permettant d’appliquer un
algorithme de période ou de décalage caché, et les attaques proposées sur des versions
réduites d’AES se basent sur des adaptations des cryptanalyses classiques d’AES, en
utilisant le framework de recherche structurée du Chapitre 3. Les attaques quantiques
proposées sont plus efficaces que la recherche quantique, là où les attaques classiques de
la littérature ne doivent battre que la recherche classique. Cela a pour conséquence que
ces attaques quantiques concernent des versions d’AES avec un tour de moins que les
meilleures attaques classiques, et suggère donc que la marge de sécurité quantique d’AES,
qui estime le nombre de tours restant avant une attaque sur la version complête, est plus
importante que la marge de sécurité classique. Le contenu de ce chapitre correspond à
l’article « Quantum Security Analysis of AES », coécrit avec María Naya-Plasencia et
André Schrottenloher, et accepté à ToSC 2019 [BNS19b].

Autres travaux. Enfin, j’ai eu la chance de travailler avec Léo Perrin et Shizhu Tian
sur l’étude de propriétés théoriques des Boîte-S, avec une application intéressante à la
boite-S de la fonction de hachage Streebog et du chiffrement par bloc Kuznyechik, ce
qui a mené à l’article « Anomalies and Vector Space Search : Tools for S-Box Analysis »,
accepté à Asiacrypt 2019 [BPT19]. Ce travail étant très éloigné des autres, il n’est pas
détaillé dans ce manuscrit.

Main publications

[Bon+19] Xavier Bonnetain, Akinori Hosoyamada, María Naya-Plasencia, Yu Sasaki,
and André Schrottenloher. “Quantum Attacks without Superposition Queries:
the Offline Simon’s Algorithm”. In: ASIACRYPT 2019. Ed. by Steven Gal-
braith and Shiho Moriai. LNCS. Springer, Heidelberg, Dec. 2019 (cit. on
pp. 9, 87, 90, 99).

[BPT19] Xavier Bonnetain, Léo Perrin, and Shizhu Tian. “Anomalies and Vector
Space Search: Tools for S-Box Analysis”. In: ASIACRYPT 2019. Ed. by
Steven Galbraith and Shiho Moriai. LNCS. Springer, Heidelberg, Dec. 2019
(cit. on p. 10).

[BNS19a] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. “Quan-
tum Security Analysis of AES”. In: IACR Trans. Symm. Cryptol. 2019.2
(2019), pp. 55–93. issn: 2519-173X (cit. on pp. 7, 10, 35, 40, 165).

[BNS19b] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. “On
Quantum Slide Attacks”. In: SAC 2019. Ed. by Kenneth G. Paterson and
Douglas Stebila: LNCS. Springer, Heidelberg, Aug. 2019 (cit. on pp. 9, 99,
129).

[Bia+19] Jean-François Biasse, Xavier Bonnetain, Benjamin Pring, André Schrot-
tenloher, and William Youmans. “Trade-off between classical and quantum
circuit size of the attack against CSIDH”. In: J. Mathematical Cryptology
(2019) (cit. on pp. 8, 10, 153).

[BN18] Xavier Bonnetain and María Naya-Plasencia. “Hidden Shift Quantum Crypt-
analysis and Implications”. In: ASIACRYPT 2018, Part I. Ed. by Thomas
Peyrin and Steven Galbraith. Vol. 11272. LNCS. Springer, Heidelberg, Dec.
2018, pp. 560–592 (cit. on pp. 8, 9, 57, 77–79, 81, 82, 99, 110, 112).

[Bon17] Xavier Bonnetain. “Quantum Key-Recovery on Full AEZ”. In: SAC 2017.
Ed. by Carlisle Adams and Jan Camenisch. Vol. 10719. LNCS. Springer,
Heidelberg, Aug. 2017, pp. 394–406 (cit. on pp. 9, 99, 117, 124).

11

12 Preprints

Preprints

[Bon19a] Xavier Bonnetain. Improved Low-qubit Hidden Shift Algorithms. 2019. arXiv:
1901.11428 (cit. on pp. 8, 57, 70, 72).

[Bon19b] Xavier Bonnetain. Collisions on Feistel-MiMC and univariate GMiMC.
2019 (cit. on pp. 9, 129).

[BS18] Xavier Bonnetain and André Schrottenloher. Quantum Security Analysis
of CSIDH and Ordinary Isogeny-based Schemes. 2018 (cit. on pp. 8, 10, 57,
77, 80, 153, 159).

http://arxiv.org/abs/1901.11428

Chapter1Introduction to Cryptography

Cryptography is the science that studies the protection of information. Protection
has multiple meanings. The most natural notion is to prevent an illegitimate person
(or adversary) to have access to a message, which is confidentiality. The other main
classical notions of security are integrity: ensuring that nobody has tampered with an
encrypted message and authenticity: ensuring that the emitter of the message is the
expected one.

Contents
1.1 History . 13
1.2 Constructions in symmetric cryptography 16

1.2.1 Block ciphers . 16
1.2.2 Hash functions & MACs . 17
1.2.3 Authenticated encryption . 18
1.2.4 Sponges . 19

1.3 Cryptanalysis . 19
1.3.1 Generic attacks . 19
1.3.2 Attack models . 20
1.3.3 Cost models . 21

1.1 History
Protecting communications is not a recent need, and encryption techniques have been
used for a long time, in particular to secure military communications or to protect
craft recipes from competitors. The ancient Greeks are known to have used the scytale,
which is a wooden stick whose dimensions are only known from the sender and the
receiver of the message. The message was written on a strip of parchment rolled around
the stick. An attacker who would like to read the message would then have to guess
the stick’s dimensions. Another notable early encryption method was Caesar’s cipher.
Julius Caesar is said to have encrypted his correspondence by shifting each one of
the 26 letters of the alphabet by a fixed value [Sue21]. There are 25 possible secret
values, or keys, to encrypt the message. Many other encryption methods that rely on
the same principle, but with more complex operations and larger keys have later been

13

14 Chapter 1. Introduction to Cryptography

proposed. We can cite for example the Vigenere cipher [Vig86], proposed in 1586, in
which multiple shifts are performed, which makes that a given letter can be encrypted
by different letters. More generally, this is an example of a substitution cipher, where a
symbol in a message (or plaintext) is replaced by another in the encrypted message (or
ciphertext), depending on the key. Today’s block ciphers are similar, with an alphabet
which is the set of n-bit strings (in practice, n is often 128) and a complex relation
between the plaintext, the ciphertext and the key.

The use of these ciphers had led to the development of methods to break them, that
is, to obtain the message without the prior knowledge of the key. This is cryptanalysis.
Its first recorded occurrence is the description of frequency analysis to attack the Caesar
cipher by Al-Kindi in the IXth century [Kin09]. This method relies on the fact that
each letter is always encrypted by the same letter. Hence, the most common letter in
the ciphertext corresponds to the most common letter in the plaintext. For example, in
English, the most common letter is e, and it is likely to correspond to the most common
letter in the ciphertext. A generalization of this approach to break the Vigenere cipher
has been proposed by Kasiski in 1863 [Kas63].

Mechanization introduced in modern era has reshaped the landscape of cryptography,
and the main principles and ideas of today’s cryptography date from this period.

Kerckhoffs’s principle. Kerckhoffs stated in 1863 [Ker83] what would become the
first design principle of a cryptographic system: its security shall not rely on the secrecy
of its design, and it shall not be an issue if it falls into enemies hands. This principle is
the opposite of the concept of security through obscurity. The rationale in the XIXth
century was that the capture of a soldier shall not threaten the cryptographic system as a
whole, and the security of the military communications shall be restored after a change
of an easy-to-update key. Nowadays, this approach allows third-party cryptanalysis,
that is, the analysis of a design by the cryptographic community beyond the designers.
This is at the core of the trust we have in the security of a design: we only trust a design
after a deep and continuous public scrutiny has not exhibited any weakness. Such trust
is by definition temporary: new ideas arise and the attacks are improved with time. The
scenario we try to avoid at all cost is the one where an attack exists, has been found, is
used in practice, but is not publicly known.

One-time-pad. The one-time-pad, or Vernam’s cipher, has been proposed in 1882
by Miller [Mil82] and was rediscovered in a simpler version and patented by Vernam
in 1919 [Ver19]. In Vernam’s form, it takes an n-bit plaintext and an n-bit key, and
outputs the XOR of them. A given key shall only be used once. Another way to see
it is like Caesar’s cipher limited to one letter of a huge alphabet. This encryption
method is not very practical, as it requires the knowledge of a shared secret key as long
as the message. Nevertheless, as was proven by Shannon in 1949 [Sha49] this cipher
is unconditionally (or perfectly, or information-theoretically) secure, that is, given the
knowledge of the ciphertext, it is impossible to recover the plaintext without some
information on the secret key. Today’s stream ciphers can be seen as a more practical
version of the one-time-pad, where a long keystream of arbitrary length is derived from

1.1. History 15

a shorter, fixed-length key. These ciphers are not unconditionally secure, but some are
used in practice, for example in mobile phone protocols.

Computational security. In the same article, Shannon proposed the weaker notion
of computational security, that is, for a given cipher, it shall be hard enough to recover
the secret. This is the security notion used by almost all of today’s cryptographic
constructions. This leads to the notion of generic attacks: some attacks can be applied
regardless of the design of a construction, and their cost only depends on some general
parameters, such as the number of different keys. In order to estimate how hard it is
to break a cipher, we must model what an attacker can do (this is the attacker model)
and how much an action costs (this is the cost model). These models allow to compare
different analyses and for the designers to make refutable claims on the security of their
construction. These claims often correspond to the cost of the best known generic attack
(that is, the construction is as secure as we can hope it to be), but this is not always
the case.

Public-key cryptography. The encryption methods previously presented required
the knowledge of a shared secret. In 1976, Diffie and Hellman [DH76] have proposed a
protocol which allows for two parties to obtain a shared secret key only by exchanging
some public messages, and without any prior common knowledge of a secret. The
security of this protocol relies on the hardness of computing discrete logarithms. This is
the inception of public-key cryptography (or asymmetric cryptography), which, contrary
to symmetric cryptography, does not need the prior knowledge of a secret. This adds
more constraints, which makes the public-key cryptosystems less efficient. In practice,
hybrid approaches are used, with public-key cryptography establishing a shared secret
key to be used to encrypt the messages with a symmetric algorithm.

RSA. RSA, from the name of its authors Rivest, Shamir and Adleman [RSA78] is
the first and one of the most widely used signature algorithms, which allows to check
integrity and authenticity. Each party can sign a message with his private key, and
anyone can check using the corresponding public key if a message has been emitted
by the private key holder. The security of RSA relies in practice on the hardness of
factoring.

Quantum-safe cryptography. Shor’s algorithm [Sho94] is a quantum algorithm
that happens to solve in polynomial time the problems of factoring and computing dis-
crete logarithms. This would effectively break almost all the public key cryptosystems
used in practice nowadays, once a quantum computer is built. This existential threat
on most protocols has led to a quick response of the cryptographic community, with
a call for candidates for new standards of key exchange and signatures that resist a
quantum computer issued by the NIST only 22 years later [NIST16].

16 Chapter 1. Introduction to Cryptography

1.2 Constructions in symmetric cryptography
This section presents the general designs in symmetric cryptography which will be stud-
ied in Part II. Symmetric encryption constructions contain two families: block ciphers,
which are permutations on a fixed-size state (the block size), and stream ciphers, which
generate a keystream, a pseudo-random stream of arbitrary length which can be xored to
the message. Block ciphers can encrypt messages of fixed size, and need to be combined
with a mode of operation to be able to encrypt messages of variable length.

Hash functions are generally considered to be symmetric primitives. They are func-
tions that map an arbitrary-length message to a value (or hash) of fixed size. They do
not contain any secret material, and can be used to check integrity. A key-dependent
hash function is called a Message Authentication Code, or MAC. It can be used to check
authenticity and integrity.

More recently, some designs with a more integrated approach have been proposed.
This is the case of authenticated encryption ciphers, which combine the functionality
of a symmetric cipher and a MAC, or the versatile sponge construction, which can be
used to make an encryption function, a hash function or a MAC.

1.2.1 Block ciphers
Definition 1.1. A block cipher is a family of permutations on n bits parametrized by
its key K on κ bits: tEK : t0, 1un Ñ t0, 1un|K P t0, 1uκu.

In practice, we cannot consider a set of 2κ random permutations, and the block cipher
is structured. It is often an iterated construction, whose form is described in Figure 1.1.
It consists of r iterations of a round function Fk. Each round uses a different round key
ki which is derived from the master key K with a key schedule algorithm. The existence
of this key schedule is critical for the security of the construction. This is developed in
Chapter 9. As a message is not always a single block of n bits, a block cipher has to be
combined with a mode of operation, which defines how to handle messages of arbitrary
length.

P Fk1 Fk2
. . . Fkr EKpP q

Key scheduleK

k1 k2 kr

Figure 1.1: Iterated block cipher with r rounds

There are generally two approaches to construct the round function, which are
described below.

1.2. Constructions in symmetric cryptography 17

1.2.1.1 Feistel Network
The first proposed construction for a round function was the Feistel network, introduced
by Horst Feistel for the early block cipher Lucifer. This construction has become popular
after its use in DES [DES], which was a 64-bit block, 56-bit key block cipher and was
the first encryption standard in the United States. In a Feistel network, the state is
split in two halves (or branches) and the round function operates as in Figure 1.2. The
same principle can be used with more branches, which gives the generalized Feistel
construction. The Feistel construction allows to construct a permutation which is easy
to invert (given the knowledge of the key), even if fki

is not a permutation. A common
special case is the Key-alternating Feistel, where the round function if of the form
fki
pxq “ fpx ‘ kiq. Some results on the generic security of the Feistel and generalized

Feistel constructions in a classical and a quantum setting are presented in Chapter 7,
and many attacks on Feistel ciphers with a weak key schedule are presented in Chapter 9.

fki

Figure 1.2: Feistel round function.

1.2.1.2 Substitution-permutation network (SPN)
The other main approach for block cipher designs is to use substitution-permutation
networks. Its round function is described in Figure 1.3. It alternates between a substi-
tution layer that consists in the parallel application of a small non-linear function, or
S-Box, which has to make the mathematical relation between the bits of the plaintext
and the bits of the ciphertext more complex, a permutation or linear layer which has
to end up creating a dependency between each bit of the plaintext and each bit of the
ciphertext, and a key addition, which prevents the inversion of the function. In practice,
the substitution and linear layers are invertible even without the knowledge of the key,
and they are omitted if they are not between to round keys. Hence, the first and last
operation of an SPN is always the key addition. The most notable example of SPN
is AES [AES], which became the current standard block cipher after DES had become
obsolete due to its too short key size. The resistance of AES against quantum attacks
is studied in Chapter 11.

1.2.2 Hash functions & MACs
Hash functions are mappings from messages of arbitrary length to pseudo-random mes-
sages of fixed length, and can be used to check integrity. Contrary to block ciphers,
they do not have a key parameter.

18 Chapter 1. Introduction to Cryptography

S S S S

L

ki

Figure 1.3: SPN round function with a layer of 4 S-Boxes.

MACs, for message authentication code, are constructions which allow to compute
a fixed-length value (the tag) from an arbitrary-length message and a secret key. Any
other holder of the secret key can then check if the value associated to the message
is correct. They are meant to ensure authenticity, and can be seen as a symmetric
equivalent of a signature, with the main difference that any person able to verify the
message is also able to produce a valid tag.

A standard way to make MACs is the Wegman-Carter-Shoup construction [WC81;
Sho96] which authenticates a message m associated with a nonce n and using the keys
k1, k2:

MACpm,nq “ Hk1pmq ` Ek2pnq

with H a family of universal hash functions, and E a block cipher. This construction
is used by GMAC [GCM07] and Poly1305 [Ber05], which are the two MACs available
in TLS [Res18] to authenticate the communications on the web. The quantum security
of Poly1305 is discussed in Section 7.7.3.

1.2.3 Authenticated encryption
To ensure the confidentiality and authenticity of a communication, one can combine a
block cipher with a mode and a MAC. Another approach is to define a scheme which does
everything at once. This is what does an authenticated encryption scheme. Integrating
everything in one construction may allow for a lighter design or for a better-understood
security than with a combination of independent constructions.

The CAESAR competition, which began in 2014, aimed at selecting a portfolio of
such algorithms. Fifty-six candidates were submitted, including AEZ [HKR15], which
is analyzed in Chapter 8. Five years later, the competition has finally ended, and
two candidates were selected for each of the three uses cases: Ascon [Dob+19] and
ACORN [Wu16] for constrained environment, AEGIS-128 [WP16] and OCB [KR16]
for high-performance applications, and Deoxys-II [Jea+16] and COLM [And+16] for
defense in depth.

In 2018, the NIST launched a competition to standardize some lightweight authenti-
cated encryption scheme. Fifty-six candidates were also submitted, and the competition
is still ongoing.

1.3. Cryptanalysis 19

1.2.4 Sponges
Sponges [Ber+07] are a way of constructing symmetric primitives from a permutation.
They are typically used to make hash functions, the most prominent example is [SHA3],
or authenticated ciphers. The construction is described in Figure 1.4. It has two
parts: in the absorption part, an arbitrary-length input is processed by the sponge,
and symmetrically, in the squeezing part, an arbitrary-length output is produced. The
speed depends on r, which is the rate, or outer part of the sponge, as one iteration of
P absorbs or squeezes r bits. The security depends on c, the capacity, or inner part of
the sponge. The quantum security of some sponge-based constructions is discussed in
Section 7.8.

m1

P
0

IV

m2

P

z1

P

z2

c

r

absorption squeezing

Figure 1.4: Sponge construction

1.3 Cryptanalysis
Cryptanalysis aims at estimating the security of a design, that is, how much does it
cost to attack it. An attack can mean different things. For ciphers, it often refers to
key recovery, and most of the attacks presented in this manuscript are key recovery
attacks. Weaker attacks are also possible, such as the recovery of a partial information
of a plaintext from the ciphertext. For hash functions, we generally consider collisions
(finding two inputs with the same output) and preimage (finding one input correspond-
ing to a fixed output). For MACs, we can consider key recovery or forgeries, that is,
the ability to produce a valid tag for a message whose tag has not been queried. The
message can be chosen beforehand (this is a universal forgery), or constrained by the
attack (this is an existential forgery). The reference points for the attack cost are the
generic attacks, which can always be applied. To compare different attacks, we need
an attack model, which defines what an attacker can do, and a cost model, which will
define the resources required.

1.3.1 Generic attacks
For almost all cryptographic systems, there are always applicable attacks. Such attacks
depend on the type of primitive, but not on the concrete instance. In general, we
want a design to be as secure as possible, and if an attack that beats the best generic
attack is found, then the construction is considered broken, and no further analysis on

20 Chapter 1. Introduction to Cryptography

it is required. Even non-practical attacks may qualify as a break: indeed, they show a
weakness of the design, which may lead to a more practical attack.

Exhaustive search on block ciphers. The attack generally considered for block
ciphers is the exhaustive search of the key of size κ, at a cost of 2κ encryptions. There
are other less naive ways of performing the exhaustive search, as for example bicliques,
that have a cost marginally below the naive way.

Security margin. While no attack beating the best generic attack has been found,
an important measure is the security margin, that is, for an iterated construction, the
number of rounds that separate the full cipher from the longest round-reduced version
known to be broken. This margin allows to estimate how likely is that the full con-
struction is broken in the future, as improvements of existing attacks are expected to
be incremental.

Quantum generic attacks. Quantum search, developed in Chapter 3, allows to
reduce the cost of an exhaustive search by a square root, that is, a key of size κ only offers
κ{2 bits of quantum security. Hence, the baseline for classical and quantum security is
not the same, and a relevant quantum attack has to use less resource, which also means
that the security margin is different. Moreover, the relative cost of the different attacks
is not the same quantumly. In particular, collision search, also presented in Chapter 3,
is less improved than exhaustive search.

Quantum security margin. In a long-term future, we can presume that the ex-
pected security of a primitive will be given by its best generic attack (i.e. quantum
search), and that the security margin of this primitive will be determined by the high-
est number of rounds cryptanalyzed with any attack more efficient than this exhaustive
search. Therefore, the logical evolution is that the classical or quantum epithet for at-
tacks would become irrelevant, and the most efficient attacks, possibly using quantum
tools, will be the most important information regarding how far a primitive is from
being broken.

1.3.2 Attack models
The attack model defines what we consider the attacker can do. In particular, it defines
how the attacker can access (or query) a primitive (or oracle) parametrized with an
unknown key, when applicable. We list below a few standard attack models.

Known plaintext. In this model, the attacker can obtain a list of couples of plaintexts
and ciphertexts, but cannot choose them.

Chosen plaintext/ciphertext. In this model, the attacker can choose the plaintext
to be encrypted, or the ciphertext to be decrypted. The attack can be non-adaptative,

1.3. Cryptanalysis 21

if all the queries can be chosen before the attack, or adaptative, if some queries depend
on an intermediate computation of the attack.

Related-key. This model assumes that the attacker is allowed to query the primitive
with a key that depends on the secret key (for example, to query the cipher Ek‘δ, with
δ a chosen value).

Classical computations (Q0). Up to now, the most frequent models consider that
the attacker performs classical computations only. With quantum computers, two other
models can also be considered.

Classical queries (Q1). The first quantum model is the most restrictive: it allows
for local quantum computation, but considers that the queries the attacker can do
are classical. This model is the closest to classical ones, and is often considered more
realistic, as it models a threat against today’s communications: indeed, one may obtain
today some queries, and wait until a quantum computer is available to break them.

Quantum queries (Q2). The second model considers that the adversary can query
a keyed function in quantum superposition, that is, instead of having an oracle that
produces fkpxq given x, she has access to an oracle that produces

ř

x |xy |fkpxqy given
ř

x |xy |0y for a secret key k. This is strictly more powerful, as for example, Simon’s
problem is exponentially easier with a quantum oracle than with a classical oracle.

Even if this last model might appear too strong, it has multiple advantages, and has
been studied theoretically in [Gag17]. First, it is a simple model, which encompasses
any intermediate model of access to primitives. In particular, it does not force to
distinguish between queries to a secret function and queries to a public function, which
can help in some security proofs. Moreover, this model is applicable in some white-box
scenarios, where an attacker has access to an obfuscated program that implements the
secret function. Such program can be reimplemented on a quantum computer, which
gives access to the quantum oracle. Next, a primitive secure in this model can be used
for more applications, for example to be used in a quantum protocol. As the scope of
primitives secure in the Q1 model is more restricted, considering the Q2 model also
limits the issues when the users do not respect the cryptographic recommendations.
Finally, as shown in Chapter 6, there are links between the quantum attacks with
quantum queries and quantum attacks with classical queries.

It is to be noted that the model of quantum queries can be degenerate when associ-
ated with related keys, as shown in Section 7.4 and Section 9.2.1.

1.3.3 Cost models
A cost model is a metric for the cost of an attack. It corresponds to the computational
cost of the attack and includes the number of queries. In general, we consider a time
cost which consists in the number of operations in the attack, a memory cost, which
correspond to the minimal amount of memory required to run the attack, and a data

22 Chapter 1. Introduction to Cryptography

cost, which corresponds to the number of queries required. With parallelism, some
other cost can be considered, such as the number of processors, and the time cost may
take into account some communication cost between the processors. As the natural cost
unit of exhaustive search is a given number of encryptions, the cost of one encryption
is generally taken as a unit for the time cost.

With quantum attacks, the time, memory and data can be either classical or quan-
tum. We separate the two costs in the description of the attacks. In some cases, the
time cost mainly consists in doing queries, and in that case, we consider that the time
cost is the query cost.

Chapter2Quantum Computing

This chapter presents the basic notions of quantum computing required for the following
chapters. It first presents the main differences with classical computing, then introduces
the quantum circuit model, and finally presents some general techniques we will use in
the next chapters.The reader interested in a more comprehensive introduction may read
the Nielsen and Chuang [NC10].

Contents
2.1 History . 23
2.2 Differences with classical computations 24
2.3 Qubits . 24
2.4 Quantum gates . 26

2.4.1 Notable gates . 27
2.4.2 Tensor product of quantum operators 30
2.4.3 Computing classical functions 30

2.1 History
Quantum physics provides a model explaining very well a lot of previously unexplained
physics experiments, but left physicists with many difficulties: quantum behaviour gen-
erally arise at a very small scale, and quantum physics inherently restrict the amount of
information we can obtain from a quantum system. These constraints have been seen
as a problem to overcome, but also as a useful tool. For example, Wiesner proposed in
the 70s to use the no-cloning property (see Theorem 2.1) of quantum states to create
unforgeable materials, which may be used for banknotes [Wie83]. Principles very similar
to this quantum money were used for quantum key distribution [BB84], an analogous
to a classical key exchange that uses quantum communications and relies on physical
hypothesis instead of computational ones. This wave of new applications came with
some novel ideas to study quantum systems: some of them cannot be studied directly
in a laboratory, and are too complex to be simulated efficiently with classical computers.
However, we may create a simpler to analyze quantum system, in a controlled environ-
ment, and make it evolve according to the same rules as the original system. This is
the idea of a quantum simulator, formalized by Feynman in 1982 [Fey82]. A quantum

23

24 Chapter 2. Quantum Computing

computer is the same idea, but instead of computing the evolution of a quantum system,
it is used to perform any computation.

2.2 Differences with classical computations
Classically, we can see a computation as a sequence of instructions that computes inter-
mediate values, until a final result is produced. In practice, these intermediate values
are encoded in some ways, being a position in a abacus, a voltage in a circuit or an
atom spin in a hard drive. Quantum physics states that there is more than fixed values:
a quantum state can be in a superposition of values.

Quantum computing uses this additional degree of freedom to perform some op-
erations a classical computer cannot do, and gain in efficiency. However, this added
freedom disappears when we measure the state (that is, check a position, measure a
voltage,…). A measure produces a classical value, and makes the quantum state col-
lapse to the measured value. This imposes the constraint for the quantum operations
that make our quantum state evolve to be reversible.

Moreover, we cannot make a copy of an unknown quantum state. If we want to do
so, we need to have access to the quantum circuit that produced the quantum state,
and reuse it. The reversibility constraint poses also a problem if we want to erase some
information (for example, erase some intermediate values): we need to reapply the
quantum circuit that has produced these values, in reverse, to make them disappear.
This is called uncomputing.

2.3 Qubits
Qubits (for quantum bits) are the quantum equivalent of the classical bits.

Definition 2.1 (Finite-dimensional Hilbert Space). A finite-dimensional Hilbert space
H is a vector space over C equipped with an inner product x¨|¨y : H ˆ H Ñ C, that
satisfies:

• Linearity: xx|
ř

i αiyiy “
ř

i αi xx|yiy

• Conjugate symmetry: xx|yy “ xy|xy

• definite-positivity: x ‰ 0 ùñ xx|xy ą 0

In practice, in quantum computing, we consider the vector space C2n with the
canonical inner product xx|yy “

ř2n´1
i“0 xiyi.

Definition 2.2 (Norm). We define the norm | ¨ | of a vector as |x| “
a

xx|xy.

Definition 2.3 (Dirac notation). A vector x “ px1, . . . , xnq is noted |xy “
ř

i xi |iy.
This notations comes from the inner product xx|yy, which can be seen as a linear form
xx| applied to a vector |yy. As x|y is a “bracket”, x| is a “bra” and |y is a “ket”.

2.3. Qubits 25

Definition 2.4 (Qubit). A qubit is an element of the Hilbert space C2, that we note
|ϕy “ α0 |0y ` α1 |1y. αi is the amplitude of |iy in |ϕy.

Definition 2.5 (Bases). The set p|0y , |1yq is a basis of C2,and is called the canonical
basis, or the computational basis. There are other bases, such as the Hadamard basis
´

|`y “ 1?
2 p|0y ` |1yq , |´y “

1?
2 p|0y ´ |1yq

¯

.

Property 2.1 (Normalization). Qubits are invariant by multiplication by a global con-
stant. We can define a canonical form |xy “ α0 |0y ` eiθα1 |1y, with α0, α1 P r0; 1s2, θ P
r0; 2πq and | |xy | “ α2

0 ` α
2
1 “ 1.

Remark 2.1 (Qubit notations). In practice, the normalization factor can often be omit-
ted to lighten the notation.

This normalization is justified by the following property, which links qubits with the
classical world.

Property 2.2 (Measure). A qubit can be measured, which produce a classical bit as an
outcome. The probability of measuring 0 is α2

0, and a 1 is measured with probability α2
1.

This measurement effectively destroys the qubit: if a 0 is measured, it is transformed in
|0y, and conversely an outcome of 1 transforms the qubit into |1y.

Intuitively, a measurement projects the qubit, and transform it into what we have
measured. This implies that even if the amplitude can be continuous (and encode
any amount of information), a given qubit can only give one bit of information before
being destroyed. The whole idea of quantum computing is to ensure that these bits of
information are meaningful.

The properties of one qubit generalize to states with multiple qubits. The resulting
space is the tensor product of the Hilbert spaces.

Definition 2.6 (Qubits). A state of n qubits is an element of the Hilbert space C2n ,
denoted |ϕy “

ř2n´1
i“0 αi |iy.

As before, we can normalize the qubits state with
ř

i |αi|
2 “ 1.

Remark 2.2 (Tensor products). If n “ n1 ` n2, C2n
» C2n1

b C2n2 . In some cases, this
tensor product can be reflected on the vectors. For example, the state 1?

2 |00y` 1?
2 |10y

is
´

1?
2 |0y `

1?
2 |1y

¯

b |0y, that we note
´

1?
2 |0y `

1?
2 |1y

¯

|0y, or |`y |0y. This tensor
product reflects an independence of the two qubits, and we say that the state is separable,
or unentangled. Conversely a state that is not separable is entangled.

Property 2.3 (Partial measure). Let |ϕy “ α0 |ϕ0y |0y ` α1 |ϕ1y |1y. A measure of the
last qubit of |ϕy will have outcome 0 with probability |α0|

2, and project |ϕy into |ϕ0y |0y.
Otherwise, with probability |α1|

2, the outcome will be 1 and |ϕy will be projected into
|ϕ1y |1y. In general, a partial measurement on an entangled state will project thee
non-measured part to the subset of values compatible with the outcome of the measure.

Example 2.1 (Qubits and measure).

26 Chapter 2. Quantum Computing

• A measure of |0010y has outcome 0010 with probability 1 and does not change
the qubit.

• A measure of 1
2 |00y ` 1

2 |10y ` 1?
2 |11y has outcome 10 with probability 1

4 . A
measure of the first qubit has outcome 0 and projects to |00y with probability 1

4 ,
and has outcome 1 and projects to |1y

´

1?
3 |0y `

b

2
3 |1y

¯

with probability 3
4 .

2.4 Quantum gates
Now that we have defined our quantum states, we need some tools to modify them.
This is the role of quantum gates, which are small operators that transform a quantum
state. For more complex transformations, we use the term quantum operator.

There are many ways to represent these transformations: we can cite mathematical
descriptions with matrices (or, equivalently, linear functions), more algorithmic repre-
sentations with circuits or pseudocode or a categorical representation with a graph in
the ZX-calculus. We present here the matrices, linear functions and circuits for the
quantum gates, and will use the circuit, linear function and pseudocode representations
of quantum operators in the next chapters.

From the previous section, it may seem peculiar that we consider complex amplitude,
as the complex phase has no impact on the probability of a measurement outcome, and
does not change the actual information we can get from a qubit. This becomes useful
here, with some transformations for which the phase matters.

Definition 2.7 (Unitary operators). Unitary operators are invertible linear functions
that preserve the inner product.

Definition 2.8 (Quantum operator). A quantum operator on n qubits is a unitary
operator in C2n .

Definition 2.9 (Inverse operator). Any quantum operator O has an inverse, noted
O:. Applying an inverse operator after the operator is called uncomputing. Contrary to
classical computations, we cannot drop some intermediate values of a computations. Un-
computing allows us to erase these intermediate values by reverting the transformation,
at the same cost as O.

Remark 2.3 (Matrix Notation). As qubits are unitary vectors, quantum operators are
unitary matrices.

Remark 2.4 (Linear function Notation). One of the way to describe a linear function is
to use the ketbra notation f “

ř

i |xiy xyi|. This can be read as f |yiy “ |xiy.

Theorem 2.1 (No cloning [WZ82]). There is no quantum operator that, given an
arbitrary state |ψy and an auxiliary state |ay as input, can produce αpψq |ψy |ψy, with
αpψq an arbitrary function.

2.4. Quantum gates 27

Proof. Consider a U such that Up|ψy |ayq “ αpψq |ψy |ψy. As U is unitary, |αpψq| “ 1.
Let’s consider |ϕy and |ψy two orthogonal states, and a linear combination a |ϕy ` b |ψy.
We note β “ αpaψ ` bϕq.

Upa |ψy ` b |ϕyq |0y “ aU |ψy |0y ` bU |ϕy |0y
ô βpa |ψy ` b |ϕyqpa |ψy ` b |ϕyq “ aαpψq |ψy |ψy ` bαpϕq |ϕy |ϕy
ô β

`

a2 |ψy |ψy ` b2 |ϕy |ϕy ` ab p|ψy |ϕy ` |ϕy |ψyq
˘

“ aαpψq |ψy |ψy ` bαpϕq |ϕy |ϕy

ô

$

&

%

βa2 “ aαpψq
βb2 “ bαpϕq
βab “ 0

ñ |a| “ 0 or |b| “ 0

Hence, if we can clone two orthogonal states, then we cannot clone their linear combi-
nations.

Remark 2.5 (Cloning Classical Information). The classical values |iy are orthogonal to
each other, hence it is possible to clone them. This can be done with the CNOT gate
(see Section 2.4.1.7). Moreover, an alternative procedure would be to measure (which
does not modify these states) and then to construct the same state.

Remark 2.6 (Making Clones). We can make copies of a quantum state if we know the
quantum operator that has made it: in that case, we can reapply it to obtain a copy.
However, the cost of the copy is at least the cost of creation of the original state. It can
be much higher if the process involves measurements, as we would need to obtain the
same outcomes.

2.4.1 Notable gates
This section presents the main gates used in the next chapters.

2.4.1.1 Identity Gate
The identity gate is noted I, and leaves any qubit invariant.

2.4.1.2 NOT Gate
The not gate is the equivalent of a classical not: it maps |0y to |1y, and conversely, and
is noted X or NOT .

X “

ˆ

0 1
1 0

˙

|by X |b‘ 1y

Figure 2.1: NOT gate

28 Chapter 2. Quantum Computing

2.4.1.3 Z gate
The Z gate leaves |0y invariant, and negates the phase of |1y.

Z “

ˆ

1 0
0 ´1

˙

|by Z p´1qb |by

Figure 2.2: Z gate

2.4.1.4 Y gate
The Y gate does both a negation and a phase shift.

Y “

ˆ

0 ´i
i 0

˙

|by Y ip´1qb |b‘ 1y

Figure 2.3: Y gate

Definition 2.10 (Pauli gates). The gates X,Y, Z are called the Pauli gates.

2.4.1.5 Phase shift gate
The phase shift gate is a generalisation of the Z gate: it leaves |0y invariant, and rotates
the phase of |1y by a given angle θ.

Definition 2.11 (T gate). The gate Rπ
4
is called the T gate.

Rθ “

ˆ

1 0
0 e2iπθ

˙

|by Rθ exp p2iπθbq |by

Figure 2.4: Rθ gate

2.4.1.6 Hadamard Gate
The Hadamard Gate is a very useful gate that has no classical equivalent. It maps a
qubit in the computational basis to a phase difference. We can also see it as a change
of basis operator, between the computational basis and the Hadamard basis. Hence, we
have H “ |`y x0| ` |´y x1|

Hadamard gates are often useful to initialize a superposed state. Applying the
gate on each qubit of the n-qubit register |0y produces the uniform superposition

1?
2n

ř2n´1
i“0 |iy.

Remark 2.7. The Hadamard gate is involutory: applying it twice leaves a qubit invariant.

2.4. Quantum gates 29

H “ 1?
2

ˆ

1 1
1 ´1

˙

|by H
1?
2

`

|0y ` p´1qb |1y
˘

Figure 2.5: Hadamard gate

2.4.1.7 CNOT gate

The CNOT (for controlled NOT) gate is the quantum analogue of the XOR. It maps
|ay |by to |ay |a‘ by.

CNOT “

¨

˚

˚

˝

1 0
0 1 0

0 0 1
1 0

˛

‹

‹

‚

“

ˆ

I 0
0 X

˙

|ay |ay

|by |a‘ by

Figure 2.6: CNOT gate

Definition 2.12 (Clifford gates). The Clifford gates are the gates obtainables by any
combination of H,Rπ

2
and CNOT.

Clifford gates are the “simple” gates, that is, we know how to efficiently implement
them with the current quantum computing architecture. Moreover, a circuit composed
with only Clifford gates can be simulated easily. This correspond to a small subset of
all quantum circuits.

2.4.1.8 Toffoli gate

The Toffoli gate [Tof80] (or CCNOT, for controlled controlled NOT) is the quantum
analogue of the logical and.

Tof “
ˆ

I 0
0 CNOT

˙

|ay

|by

|ay

|by

|cy |c‘ pa^ bqy

Figure 2.7: Toffoli gate

30 Chapter 2. Quantum Computing

2.4.1.9 Quantum Fourier Transform
The Quantum Fourier Transform (QFT) is another gate without a classical equivalent,
and is at the core of Shor’s algorithm [Sho94]. We note ω “ e

2iπ
N an Nth-root of the

unity. It maps a qubit |xy to the superposition
řN´1

ℓ“0 ωxℓ |ℓy.

QFTN “

1?
N

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1 ¨ ¨ ¨ 1 ¨ ¨ ¨ 1
1 ω ¨ ¨ ¨ ωi ¨ ¨ ¨ ωN´1

...
...

1 ωj ¨ ¨ ¨ ωij ¨ ¨ ¨ ωjpN´1q

...
...

1 ωN´1 ¨ ¨ ¨ ωipN´1q ¨ ¨ ¨ ωpN´1q2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

|xy QFTN
1?
N

N´1
ř

ℓ“0
ωxℓ |ℓy

Figure 2.8: Quantum Fourier Transform

Inverse Quantum Fourier Transform. The inverse operator is the same, except
that x is replaced by ´x or, equivalently, that ω is replaced by ω´1.

Implementations. We know how to make the Quantum Fourier Transform modulo
2n exactly. Kitaev proposed a way to compute approximately the Quantum Fourier
Transform modulo N [Kit96], and an exact version has been proposed by Mosca and
Zalka [MZ04].

2.4.2 Tensor product of quantum operators
If we have two quantum registers |xy |yy, note O1 bO2 the operator that applies O1 to
|xy and O2 to |yy.

We denote the application of O on n consecutive registers Obn.

2.4.3 Computing classical functions
Any classical function can be computed in a quantum way. The general principle to
compute a function f in a quantum way is to use NOT, CNOT and Toffoli gates to
implement a reversible equivalent of f , that will output a tuple px, fpxqq given the
input px, 0q. In general, we implement |xy |yy ÞÑ |xy |y ‘ fpxqy. An efficient systematic
approach to do so has been proposed by Bennett [Ben89].

Truncated functions. As noted in [HS18], we can compute in superposition the
truncated version of a classical function f from the circuit that computes f .

Let’s consider a boolean function b, implemented in a quantum circuit as |xy |yy ÞÑ
|xy |y ‘ bpxqy. The state |xy |`y is not affected by the application of b, as |`y “ |0y `
|1y “ |0‘ bpxqy ` |1‘ bpxqy.

2.4. Quantum gates 31

This principle can be applied to functions with larger outputs: any qubit correspond-
ing to a bit to be kept should be initialized to |0y, and qubits corresponding to a bit to
be dropped to |`y.

PartIHide and Seek

Chapters

3 Quantum Search 35

4 Simon’s Algorithm 49

5 Abelian Hidden Shift Algorithms 57

6 Searching for a Hidden Structure 87

Chapter3Quantum Search

This chapter first presents Grover’s algorithm [Gro96], a generic quantum search al-
gorithm and its generalization, amplitude amplification [Bra+02]. These algorithms
are then used to introduce the algorithmic framework for nested search we developed
in [BNS19b], which is used in Chapter 11. Finally, classical and quantum algorithms
for collision search are discussed.

Contents
3.1 Unstructured search . 35

3.1.1 Classical resolution . 36
3.1.2 Grover’s algorithm . 36
3.1.3 Amplitude amplification . 38
3.1.4 Approximate test functions 39

3.2 Nested search . 40
3.2.1 Classical nested search . 40
3.2.2 Quantum nested search . 42

3.3 Collision search . 43
3.3.1 Classical resolution . 44
3.3.2 Quantum resolution . 45
3.3.3 Structured collisions . 46

3.1 Unstructured search
This section presents some algorithms for unstructured search, defined as:

Problem 3.1 (Unstructured search). Let f : X Ñ t0, 1u be a test function. Given
oracle access to f , find x P X such that fpxq “ 1.

We note Y the set we’re interested in:

Definition 3.1 (Good elements). We note Y “ tx P X|fpxq “ 1u the set of good ele-
ments, that is, the elements that satisfy f .

35

36 Chapter 3. Quantum Search

3.1.1 Classical resolution
Classically, the best we can do is exhaustive search: testing some values x until we find
a good element. We need, on average, |X|{|Y | trials to obtain one random element in
Y .

If we note csearchpX,P q the cost of finding a value in X that fulfills P , csamplepXq
the cost of producing an element in X, ctestpP q the cost of checking if an x fulfills P
and ctrialspX,P q the expected number of trials we have to perform in order to find a
good x, then we have

csearchpX,P q
loooooomoooooon

Total cost

“ ctrialspX,P q
looooomooooon

Number of x to test

¨

˚

˝

csamplepXq
looooomooooon

Cost to produce an x

` ctestpP q
looomooon

Cost to test x

˛

‹

‚

.

Moreover, we have ctrialspX,P q “ |X|{|Y |.

3.1.2 Grover’s algorithm
Grover’s algorithm allows to solve Problem 3.1 at roughly the square root of the classical
cost. It uses 3 operators: Hadamard gates, an oracle Of : |xy ÞÑ p´1qfpxq |xy and the
inversion around 0: O0 : |xy ÞÑ p´1qx‰0 |xy.

Initial state. The initial state of the algorithm is Hbn |0y “
ř2n´1

i“0 |iy “ |ψ0y.

Grover’s operator. From H and O0, we can compute HbnO0H
bn. This operator is

called the inversion around average. Let’s consider a state |xy “
ř

iă2n
xi |iy. If we note

A “ 1
2n

ř

i
xi the average amplitude, HbnO0H

bn |xy “
ř

ip2A ´ xiq |iy. This operator

changes each amplitude (xi) into the value opposite of the average (2A´ xi).
Another way to see this operator is that O0 “ 2 |0y x0| ´ I. Hence, HO0H “

2H |0y x0|H ´HIH “ 2 |ψ0y xψ0| ´ I. This means this operator is a reflection around
the state |ψ0y. As |ψ0y is the uniform superposition of all elements, this is another way
to state the inversion around average.

Similarly, if we note |Goody “
ř

fpxq“1 |xy the state containing the values we want
and |Bady “

ř

fpxq“0 |xy the state containing the superposition of the other values,
Of “ 2 |Bady xBad| ´ I is a reflection around the state |Bady.

Grover’s operator is the composition of HO0HOf . As proven in Lemma 3.1, this
operator is a small rotation, which allows to turn away from the superposition of all
elements and get closer to the superposition of good elements. This is described in
Figure 3.1.

Iteration. Grover’s algorithm simply consists in the iterations of Grover’s operator
(HO0HOf) from the initial state (Hbn |0y). We note |ψky the state after k iterations.
When |ψky is close enough to |Goody, which occurs if k »

b

|X|

|Y |
, a measurement of |ψky

will have an outcome in Y with a good probability.

3.1. Unstructured search 37

|Goody

|Bady

|ψ0y

|ψny

Of |ψny

|ψn`1y

OfHO0H

θ

2θ

Figure 3.1: One iteration of the Grover operator HO0HOf , which transforms |ψny in
|ψn`1y. Of and HO0H are both reflections, hence their combination is a rotation.

Theorem 3.1 (Grover’s complexity). Let Y “ tx|fpxq “ 1u. A measurement of the
state after t “

Y

π{
´

4 arcsin
´
b

|Y |

|X|

¯¯]

iterations has an outcome x P Y with a probability

greater than 1´ |Y |

|X|
.

Remark 3.1. In practice, we generally have |X| " |Y |, hence we take t “
Y

π
4

b

|X|

|Y |

]

.

Lemma 3.1 (Grover’s rotation). The sequence HO0HOf is a rotation of angle 2θ “
2 arcsin

´
b

|Y |

|X|

¯

in the plane spanned by |Goody and |Bady

Proof.

|ψ0y “

d

|Y |

|X|
|Goody `

d

|X| ´ |Y |

|X|
|Bady

Hence, both reflections are in the plane spanned by |Goody and |Bady.
The angle θ between |ψ0y and |Bady satisfies cospθq “ xψ0|Bady “

b

|X|´|Y |

|X|
, hence

sinpθq “
b

|Y |

|X|
. As the two reflection axes have an angular difference of θ, the composi-

tion of the two reflections has angle 2θ.

Proof of Theorem 3.1. The initial state 1?
|X|

ř

xPX |xy is the state |Bady after a rotation
of angle θ in the plane p|Goody , |Badyq. Hence, after t iterations, the state is

sinpp2t` 1qθq |Goody ` cospp2t` 1qθq |Bady .

38 Chapter 3. Quantum Search

Hence, the probability of measuring a value not in Y is cospp2t ` 1qθq2. We have
π
4 ´θ ď tθ ă π

4 . Hence,
π
2 ´θ ď p2t`1qθ ă π

2 `θ. Hence, cospp2t`1qθq2 ď cospπ
2 ´θq

2 “

sinpθq2 “ |Y |

|X|
.

Remark 3.2 (Soufflé property). Any additional iteration will increase the rotation angle
and make the state turn back from the superposition of good elements to the uniform
superposition.

Lower bound. This algorithm allows to perform an exhaustive search in roughly the
square root of the classical time. One could ask if we can do better. Bennett, Bernstein,
Brassard and Vazirani [Ben+97] proved that the number of queries needed to be in
Ω
`?
N
˘

, with a search space of size N and a unique solution. This has been later
improved by Boyer, Brassard, Høyer and Tapp [Boy+98] with a proof of optimality up
to a factor 2. Finally, Zalka settled the problem and showed that Grover’s algorithm is
exactly optimal [Zal99].

3.1.3 Amplitude amplification
Grover’s algorithm assumes that the search space is t0, 1un. Amplitude amplifica-
tion [Bra+02] generalizes it to any search space, and only assumes that we are given a
test function f and a quantum circuit C such that C |0y is a superposition of values in
the search space. From this circuit and f , the amplitude amplification procedure will
produce a state very close to the part of the superposition in C |0y that satisfies f .

In Grover’s algorithm, the Hadamard gates Hbn fulfill this role, as

Hbn |0y “
2n´1
ÿ

i“0
|iy .

Amplitude amplification simply replaces the two application of Hbn in Grover’s
algorithm by the application of C and C:. As in Grover’s algorithm, we can split the
state C |0y in

?
a |Goody`

?
1´ a |Bady. The behaviour of the algorithm is then exactly

the same: begin with C |0y, and then iterate C:O0COf .

Theorem 3.2 (Amplitude amplification [Bra+02]). Let S be a set, f : S Ñ t0, 1u be a
test function, C be a quantum circuit such that C |0y “

?
α |Goody`

?
1´ α |Bady, with

f equal to 1 when restricted to the values in |Goody and 0 when restricted to the values
in |Bady.

After t “ tπ{ p4 arcsin p
?
αqqu iterations of C:O0COf from C |0y, a measure of the

state produces a value x such that fpxq “ 1 with probability greater than 1´ α.

Remark 3.3 (Explicit cost). If we consider that f is implemented with a circuit Tf that
needs to be uncomputed, then the cost of amplitude amplification is

X

π{
`

4 arcsin
`?
α
˘˘\

loooooooooooomoooooooooooon

Number of iterations

¨

˚

˝

2costpCq
looomooon

Sampling cost

`2 costpTf q
looomooon

Test cost

˛

‹

‚

` costpCq.
looomooon

Initialization cost

3.1. Unstructured search 39

Classical and quantum sampling. Classically, if the fraction of good values is p,
it will cost 1{p iterations of the test to obtain one random good value. Quantumly, the
cost will be roughly 1{?p, but the output of the procedure is not one random good
value, but the superposition of all good values (and if we measure it, we obtain one
random good value).

3.1.4 Approximate test functions
The hypothesis of Grover’s algorithm is that we have access to a function f , implemented
as a quantum circuit, which will output deterministically 0 or 1 depending on the input.
However, in practice, a test may be probabilistic (and depend on some randomness,
for example). As long as there is no dependency in some external value, this case is
encompassed by amplitude amplification: the search space can be enlarged with all the
additional values required for the test. The set of amplified values will contain the
correct values minus the false negatives and plus the false positives, in the same relative
proportion as before the amplification, and we can apply Theorem 3.2. We can see it
as having an always-trivial test function (that tests if a given register is 0 or 1), with
all the complexity coming from the search space (which also contains the intermediate
values we need to obtain the value in the test register).

We however cannot do this if our test function depends on some external quantum
state that we cannot afford to compute at each call of f . This case will occur in
Chapter 6. As developed in it, we will have to bound the degradation of the computation
induced by the imperfect implementation of f .

Definition 3.2 (Approximate test circuit). If f is a test function, Tf is an approximate
test circuit of f if given as input |xy |ψy |0y, Tf computes p´1qfpxq |xy |ϕy ` |δy, with |δy
an arbitrary vector.

Theorem 3.3 (Amplitude amplification with approximate test). Let S, f , C and α be
defined as in Theorem 3.2, let Tf be an approximate test circuit of f with noise |δy and
ϵ be such that ||δ|| ă ϵ. Then after t “ tπ{ p4 arcsin p

?
αqqu iterations, a measure of the

state produces a value x such that fpxq “ 1 with probability greater than p1´αq p1´ tϵq2.

Proof. In the amplitude amplification procedure, a call to the inversion around f is
replaced by a call to Tf . Hence, each call adds a noise vector |δy to the state, and
after k iterations, as the operators are linear, the total noise is of amplitude at most kϵ.
Without any noise, after k iterations we would be in the state |ψky, but due to it, we
are in the state |ψky ` |ψerry. We have

| xψk|ψerry | ď | |ψky | ˆ | |ψerry | ď kϵ.

Hence, measuring |ψky ` |ψerry, the probability of obtaining a value in |ψky is greater
than

p1´ | xψk|ψerry |q
2
ě p1´ kϵq2 .

From Theorem 3.2, we have that the probability of measuring a value such that
fpxq “ 1 from |ψty is greater than 1´ α.

40 Chapter 3. Quantum Search

Remark 3.4 (Precision of Tf). A Tf with an ϵ “ Op1{tq is sufficient to obtain a constant
success probability. As ϵ is an amplitude norm, this means that the measurement of
Tf |xy |ϕy shall fail to produce the correct value fpxq with a probability in Op1{t2q. As
the gain of quantum search against classical search is quadratic, it means that quantum
search works when the equivalent classical search (assuming that it has access to an
equivalently imperfect test procedure) is not expected to yield any incorrect value.

3.2 Nested search
The previous algorithms solved the problem of unstructured search, that is, given a
search space X and a predicate P , find x P X such that P pxq. In this section, we
propose an algorithmic framework for nested quantum search which can be used to
express both classical and quantum search strategies. This framework was introduced
in [BNS19b] and is used in Chapter 11 to present the cryptanalyses of AES.

3.2.1 Classical nested search
Classical nested search combines multiple searches to find a good element. This section
presents the cases where the test function has a structure that allows to nest the search.

3.2.1.1 Conjunction of tests.
In practice, the test function can be a complicated formula, and may be expressed as
the conjunction of smaller test functions, P “ P1 ^ P2. In that case, performing the
complete test for all the values is likely to be suboptimal: if P1 fails, we do not need to
compute further. This approach is often called early abort, or lazy evaluation, and can
be seen as a nested search: first, we search for values that fulfill P1, and then, among
those values, we look for one that fulfills P2.

The naive approach has a cost of

csearchpX,P1 ^ P2q “ ctrialspX,P1 ^ P2q

¨

˚

˝

csamplepXq ` ctestpP1q ` ctestpP2q
looooooooooomooooooooooon

cost to test P1^P2.

˛

‹

‚

.

If we note X|P1 “ tx P X|P1pxqu the subset of X that satisfies P1, then the cost of
the lazy evaluation is

csearchpX,P1 ^ P2q “ ctrialspX,P1 ^ P2q pcsamplepXq ` ctestpP1qq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Test of P1 for all values

` ctrialspX|P1 , P2qctestpP2q
loooooooooooooomoooooooooooooon

Test of P2, only for values that satisfy P1

.

We can remark that ctrialspX,P1^P2q “ ctrialspX,P1qctrialspX|P1 , P2q. Moreover, the
cost of sampling a value in X|P1 is exactly the cost of finding a value in X which satisfies

3.2. Nested search 41

P1, that is, csamplepX|P1q “ csearchpX,P1q. Hence, we can rewrite the previous equation
as

csearchpX,P1 ^ P2q “

ctrialspX|P1 , P2q

¨

˚

˚

˝

ctrialspX,P1q pcsamplepXq ` ctestpP1qq
looooooooooooooooooooooomooooooooooooooooooooooon

csamplepX|P1 q

`ctestpP2q

˛

‹

‹

‚

.

Definition 3.3 (Filter). Let X be a set, P be a predicate. A filter is an algorithm
that samples in X and uses the evaluation of P to produce a sampling in the subset
X|P “ tx P X|P pxqu.

3.2.1.2 The case of product spaces.
Another particular case is when we have independent predicates, that is, X “ X1ˆX2,
and we have a predicate P1 on X1, and P2 on X2. In that case, we can sample easily
on X|P1^P2 “ X1|P1 ˆX2|P2 , with

csearchpX,P1 ^ P2q “ ctrialspX1, P1q pcsamplepX1q ` ctestpP1qq
loooooooooooooooooooooooomoooooooooooooooooooooooon

csearchpX1,P1q

` ctrialspX2, P2q pcsamplepX2q ` ctestpP2qq
loooooooooooooooooooooooomoooooooooooooooooooooooon

csearchpX2,P2q

However, this approach is suboptimal if we want to sample multiple times in X1|P1ˆ

X2|P2 , as we redo the tests for both values each time, and we could afford to only change
one of them. In practice, we’re interested in the case where only one solution remains
in the end, so this may be an issue.

Let’s say that we also have a predicate P3 that only accepts 1 solution px, yq, that
X1, X2, X1|P1 , X2|P2 have respectively N1, N2,M1,M2 elements, and that sampling in
X1 and X2 is free.

The direct search in X1|P1 ˆX2|P2 would have a cost of

M1M2

ˆ

N1
M1

ctestpP1q `
N2
M2

ctestpP2q

˙

looooooooooooooooooomooooooooooooooooooon

Sampling in X1|P1 ˆ X2|P2

` M1M2ctestpP3q
loooooooomoooooooon

Test of P3 in X1|P1 ˆ X2|P2

This direct approach samples for each pair in X1 and X2, which is suboptimal. We
can do better if instead of searching in X1|P1ˆX2|P2 for the predicate P3, we can search
in X1|P1 for the predicate

P 1pxq “ Dy P X2|P2 : P3px, yq

Such a predicate is fairly easy to check: it is a search in X2|P2 . Hence,

ctestpP
1q “ csearchpX2|P2 , P3px, ¨qq

42 Chapter 3. Quantum Search

In our example, ctestpP 1q “ M2

´

N2
M2
` ctestpP3q

¯

. Hence, as we need to perform it
M1 times, the final cost is

N1ctestpP1q
looooomooooon

Test all values in X1

` M1N2ctestpP2q
looooooomooooooon

For each value of X1|P1 , test all values of X2

` M1M2ctestpP3q
loooooooomoooooooon

Test P3 only if we are in X1|P1 ˆ X2|P2

Remark 3.5. Here, the predicate depends on the previous value x, and the number of
solutions depends on x. If we expect at most one solution, then this is not an issue :
we exhaust all X2|P2 for each possible x. If we can have many solutions, then it can be
cumbersome, as we may want to abort a search on X2|P2 if, after a test on a fraction of
the values, we have failed to find a good one.

3.2.2 Quantum nested search
In quantum computing, we cannot save time by branching, as we need to compute all
the possible cases. This makes the notion of lazy evaluation less intuitive. Amplitude
amplification with the notion of filters allows us to achieve roughly the same kind of
costs than with classical nested searches, but with a square root applied on the terms
corresponding to a search. These terms were denoted ctrialspX,P q previously, and are
denoted camplifypX,P q in this section to reflect the use of amplitude amplification.

Amplitude amplification. Amplitude amplification can be seen as a filter: it takes
as input a circuit that samples elements in a search space, a test circuit that checks
for a predicate, and samples the set filtered by the predicate. Using the notations of
Theorem 3.2 we have

csearchpX,P q “

camplifypX,P q
looooooomooooooon

2 π
4

1?
α

¨

˚

˝

csamplepXq
looooomooooon

Cost of C

` ctestpP q
looomooon

Cost of computing f

˛

‹

‚

` csamplepXq
looooomooooon

Initialization cost

.

The number of iterations is π
4

1?
α
if the classical number of iterations was 1

α . The
factor 2 comes from the fact that we have to apply C twice, and we need to uncompute
the application of f . The initialization cost comes from the fact that the initial state
of amplitude amplification is the superposition of values in X. We will neglect this
term, as we consider amplifications with a large number of iterations. This would not
be negligible if we performed an asymptotic nesting of quantum searches of fixed size.
We can apply directly our method of nested search, with the camplify terms that cost
almost the square root of the classical ctrials.

3.3. Collision search 43

Nesting overhead. This small constant factor has some repercussions on the ef-
ficiency of quantum search: the quantum search has a multiplicative overhead that
depends on the number of nested searches. This overhead can change the best search
layout. For the previous example with product spaces, classically, nesting was always
an improvement, from

N1M2ctestpP1q `N2M1ctestpP2q `M1M2ctestpP3q
to N1ctestpP1q `N2M1ctestpP2q `M1M2ctestpP3q

With amplitude amplification, the two approaches have respectively a cost of

π2

4
?
N1M2ctestpP1q `

π2

4
?
N2M1ctestpP2q `

π
2
?
M1M2ctestpP3q

and π2

4
?
N1ctestpP1q `π3

8
?
N2M1ctestpP2q `

π2

4
?
M1M2ctestpP3q

The additional nesting divides the number of iterations of ctestpP1q by
?
M2, but

multiplies the other terms by π
2 . Hence, depending on their relative cost, nesting can

be a bad strategy in a quantum search.

Writing algorithms. In order to write algorithms in this framework, we use the
following notation:

1: Filter x P X
2: If not P1pxq: Abort Ź Produce X|P1

3: If P2pxq then Ź Can assume P1pxq
4: y Ð fpxq Ź y P fpX|P1^P2q

5: Filter y
6: If not Q3pyq: Abort Ź Checks P3pxq “ Q3pfpxqq
7: End Filter
8: Return x Ź Sample in X|P1^P2^P3

9: End Filter
This example algorithm is a nested search for x in X|P1^P2 , where we search in X|P1

before testing for P2. It can be implemented classically or quantumly. This formalism
and these notations are used in Chapter 11 to describe a cryptanalysis of AES.

3.3 Collision search
The previous section presented one of the most versatile quantum algorithms, which
can be applied, notably, to any problem where we can test the correct solution. This is
generally the case in cryptography: as some operations can only be done with a secret,
it is generally easy to check if we know it. We present here some algorithms for a slightly
more structured problem which is also pervasive in cryptography: collision search.

Problem 3.2 (Collision Search). Let f : t0, 1un Ñ t0, 1un be a function. Find x ‰ y
such that fpxq “ fpyq.

44 Chapter 3. Quantum Search

In some cases, we are interested in a collision between two functions, that is given
two functions f and g, finding x and y such that fpxq “ gpyq. We can reduce this
problem to the previous one by considering

F : b, x ÞÑ

#

fpxq if b “ 0,
gpxq if b “ 1.

A collision on F will correspond to a collision between f and g 50% of the time.

3.3.1 Classical resolution
Multiple classical algorithms have proposed to search for collisions, and two of them are
presented below. A survey of collision algorithms can be found in [Jou09].

3.3.1.1 Naive algorithm
We can expect to find a collision on n bits among little more than 2n{2 values. Indeed,
2n{2 values make for 2n´1´2n{2´1 pairs, and we can expect that one of then will satisfy
the n-bit constraint. This is often referred to as the birthday paradox. This leads to a
simple collision algorithm: query around 2n{2 values to f , sort the values according to
fpxq, and then look sequentially for a collision in the sorted list. The time, memory
and query cost is in O

`

2n{2˘.

3.3.1.2 Low-memory algorithm
There is an improved method, which allows to avoid the memory usage with a compara-
ble time cost: Pollard’s rho algorithm [Pol75]. Its idea is to use the sequence of iterates
of f from a given base point x0. This sequence is ultimately periodic, as the domain of
f is finite. The periodic sequence has length c and begins after t steps. This gives the
graph of the sequence its ρ shape, described in Figure 3.2. The graph contains exactly
one collision if t ‰ 0, with fpxt´1q “ fpxt`c´1q.

x0

t

c

xt “ xt`c

x1 “ fpx0q

Figure 3.2: ρ-shaped graph of the iterates of x0 under the function f : xi`1 “ fpxiq.
The collision happens with fpxt´1q “ xt “ xt`c “ fpxt`c´1q.

The collision in the graph can be found using the simple Algorithm 3.1. The algo-
rithm first looks for an index k such that xk “ x2k. From the structure of the graph,

3.3. Collision search 45

this implies that the difference between k and 2k is a multiple of c. Hence, c divides k.
Once the value of xk is known, the collision can be easily found, as it corresponds to
xt “ xt`k. It is sufficient to walk from x0 and xk until a collision is found.

Algorithm 3.1 Pollard ρ algorithm for collisions.
Input: A function f , a starting value x0
Output: xi, xj such that xi ‰ xj and fpxiq “ fpxjq

1: aÐ fpx0q
2: bÐ fpfpx0qq
3: While a ‰ b do Ź Cycle detection: a “ f piqpx0q, b “ f p2iqpx0q
4: aÐ fpaq
5: bÐ fpfpbqq

Ź f pkqpx0q “ a “ b “ f p2kqpx0q
6: aÐ x0
7: While fpaq ‰ fpbq do Ź Collision finding: f ptqpx0q “ f pt`kqpx0q
8: aÐ fpaq
9: bÐ fpbq

Return pa, bq

Complexity. The complexity of this approach depends on the structure of the graph.
It turns out that for random functions and a random x0, t “ O

`

2n{2˘, c “ O
`

2n{2˘.
For a function with a distinct domain and codomain, or if a function is considered
too structured, the same algorithm can be applied by composing f with a random
permutation g that maps the codomain to the domain of f . Overall, this low-memory
algorithm has a time and query cost in O

`

2n{2˘. Moreover, it can also be efficiently
parallelized using distinguished points, with a method proposed by van Oorschot and
Wiener [vW99].

3.3.2 Quantum resolution
The quantum algorithm of Brassard, Høyer and Tapp [BHT98] reduces the collision
problem to a search problem, on which we can apply Grover’s algorithm. It can be
seen as a quantum version of the naive classical algorithm. This algorithm has a query
complexity in Op2n{3q, which matches the quantum lower bound of [AS04].

They consider a list of 2n{3 inputs pxiqiă2n{3 , and compute (classically) the list

L “
!

fpxiq|i ă 2n{3
)

Now, the search can be done with the test function hpxq “ Di : fpxq “ Lris ^ x ‰ xi.
If f is a random function, we can expect that any x R pxiqiă2n{3 has fpxq P L with
probability 2´2n{3. Hence, we can expect that roughly 2n{3 values satisfy hpxq is true.
A Grover search on h will then produce an x with hpxq true in Op2n{3q application of
h.

As h only needs L and one application of f , a collision on f can be found in Op2n{3q
queries to f .

46 Chapter 3. Quantum Search

Complexity. This algorithm has a quantum time, quantum memory and query cost
in Op2n{3q, and can be seen as a variant of the classical naive algorithm. Unfortunately,
the classical low-memory variants cannot be improved: indeed, they depend on the
structure of the graph of the function, and a quantum algorithm would still need to
compute its iterates. In the general case, there is no way to compute an iterate more
efficiently than the sequential computation, which annihilates any quantum gain. A
similar issue occurs with cycle-based slide attacks, which are presented in Section 9.5.
It is possible to avoid the large quantum memory requirement at the expense of a worse
time and query cost, in O

`

22n{5˘ and using O
`

2n{5˘ classical memory [CNS17], using
distinguished points. Overall, the gain for collisions is worse than the gain for generic
search, as the time gain is smaller, and some memory is required.

In fact, the Brassard-Høyer-Tapp algorithm solves a harder problem than collision:
indeed, the set of values on which we want to collide is fixed beforehand. This problem
corresponds to multi-target preimage search: given a set S of L images of f , find a
preimage for one of them. Classically, the best we can do is the classical version of the
Brassard-Høyer-Tapp algorithm: have S in memory, and sample some x until we find
a matching fpxq in S. If the size of S is fixed, we recover the quadratic gain of generic
search: classically, the time is 2n{L with L memory, quantumly it becomes

a

2n{L with
L memory.

3.3.3 Structured collisions
The state of quantum algorithms for collision makes this problem comparatively less
appealing than generic search for an application in cryptanalysis. This does not mean
that a problem that can be reduced classically to collision is hard to solve with a
quantum computer. Indeed, factoring [Pol75] and discrete logarithm [Pol78] can be
reduced to collision search. Moreover, this is the best known generic approach for the
discrete logarithm over an elliptic curve.

This section presents some problems which can be seen as a structured collision
search problem. Classically, they reduce to standard collision search, but quantumly,
some much more efficient algorithms, presented in the next chapters, can be used.

Problem 3.3 (Hidden Subgroup Problem (HSP)). Let G be a group, H ď G a subgroup
of G and X a set. Let f : G Ñ X be a function with the promise that for all px, yq P G2,
rfpxq “ fpyq ô Dh P H : x “ yhs. Given oracle access to f , find a basis of H.

Remark 3.6 (Hidden Period). If H is a cyclic subgroup, we say that f is periodic, and
its period is a generator of H.

The most notable examples of the Hidden Subgroup algorithms are Simon’s algo-
rithm [Sim94], which is presented in Chapter 4 and Shor’s algorithm [Sho94], which
is presented in Section 5.3.2, which can be used to solve the factoring and discrete
logarithm problems. In general, in the instances we will consider, we have a hidden
period, but in some cases the hidden subgroup is larger, as for example in the AEZ
cryptanalysis of Chapter 8.

3.3. Collision search 47

Theorem 3.4 (General query bound [EHK04, Theorem 1]). The quantum query com-
plexity of the hidden subgroup problem in any group G is in O

`

log4 |G|
˘

.

Problem 3.4 (Hidden Shift Problem). Let G be a group, X a set, f, g : G Ñ X two
injective functions, s P G, with the promise that for all x, fpxq “ gps ¨ xq. Given oracle
access to f and g, find s.

Several algorithms for solving the hidden shift problem are presented in Chapter 5.
Remark 3.7 (Shifts and subgroups). If G is abelian, the hidden shift problem in G is
a hidden subgroup problem in the semi-direct product G ¸ Z{ p2q. If G is not abelian,
then the hidden shift problem is a hidden subgroup problem in the wreath product
G ≀ Z{ p2q.

Chapter4Simon’s Algorithm

This chapter presents Simon’s hidden subgroup algorithm [Sim94], some results on its
applicability in situations where the structure of the hiding function is not exactly
as expected which are derived from [Kap+16] and the natural generalization of the
algorithm to larger subgroups we will use to attack AEZ in Chapter 8. The usage of
Simon’s algorithm as a test function is presented in Chapter 6, and multiple attacks
leveraging it are presented in Chapter 7.

Contents
4.1 Algorithm description . 49
4.2 Weakening the promise . 52

4.2.1 Partial period . 52
4.2.2 Non-injective functions . 53
4.2.3 Families of functions . 56

Simon’s algorithm [Sim94] tackles the Hidden Subgroup problem when the group is
pZ{ p2qqn, and has originally been stated as a Hidden Period problem.

We can formulate the problem as follows:

Problem 4.1 (Simon’s Problem). Let n be an integer, s P t0, 1un and X a set. Let
f : t0, 1un Ñ X be a function with the promise that for all px, yq P pt0, 1unq2, rfpxq “
fpyq ô x‘ y P t0, sus. Given oracle access to f , find s.

4.1 Algorithm description
While classically this problem is as hard as collision search, Simon’s quantum algorithm
solves it in polynomial time by using Circuit 4.1. It can be described as Algorithm 4.1,
which produces a random value orthogonal to s. This routine constructs the superposi-
tion of all input-output pairs of f (step 3). Then, the output is measured and discarded
(step 4). This projects the input to a superposition of two values whose xor is s, and
the following steps extract some information on s.

The result is a measure of the state
2n´1
ÿ

j“0
p´1qx0¨j

`

1` p´1qs¨j
˘

|jy .

49

50 Chapter 4. Simon’s Algorithm

t0, 1un : |0y

t0, 1un : |0y

H

Of

H "Õ : y

"Õ : fpx0q “ fpx0 ‘ sq

Circuit 4.1: Simon’s circuit

If s ¨ j ‰ 0, the amplitude of a value j is 0. Hence, this routine samples uniformly a
value j orthogonal to s.

Algorithm 4.1 Simon’s routine
Input: n, Of : |xy |0y ÞÑ |xy |fpxqy with f : t0, 1un Ñ X of period s
Output: y with y ¨ s “ 0

1: Initialize two n-bits registers : |0y |0y

2: Apply H gates on the first register, to compute
2n´1
ř

x“0
|xy |0y

3: Apply Of , to compute
2n´1
ř

x“0
|xy |fpxqy

4: Measure an fpx0q in the second register, to get |x0y ` |x0 ‘ sy in the first
5: Reapply H gates on the register, to compute

2n´1
ÿ

j“0
p´1qx0¨j |jy `

2n´1
ÿ

j“0
p´1qpx0‘sq¨j |jy

6: The register is in the state
2n´1
ř

j“0
p´1qx0¨j

`

1` p´1qs¨j
˘

|jy

7: Measure j in the first register, return it.

The complete algorithm calls the routine until the values span a space of maximal
rank or, if the rank is unknown, a fixed T times. In practice, T “ n`Op1q is sufficient
to succeed.

Proposition 4.1 (Simon’s algorithm complexity). If T “ n ` α, Simon’s algorithm
fails with a probability lower than 2´α.

Proof. Let α ě 0, y1, . . . , yT be the T “ n ` α outputs of Simon’s routine. The yi are
sampled uniformly in the set ty|y ¨ s “ 0u. Let

M “

»

–

y1
. . .
yT

fi

fl

be the matrix whose rows are the yi. Then, the rank of the yi is the rank of M .
If s “ 0, the maximal rank is n, and M is of maximal rank if and only if its columns

form a free family, as T ě n. The first column is non-zero with probability 1 ´ 1
2T . If

4.1. Algorithm description 51

Algorithm 4.2 Simon’s algorithm [Sim94]
Input: n, Of : |xy |0y ÞÑ |xy |fpxqy with f : t0, 1un Ñ X of period s, T
Output: s

1: V “ H
2: For i from 1 to T do
3: Get y from Algorithm 4.1
4: Add y to V
5: If rankpV q “ n then
6: Return 0
7: Else
8: If rankpV q “ n´ 1 then
9: Return The unique s ‰ 0 orthogonal to V .

10: Else
11: Return Failure

y1, . . . , yi´1 form a free family, yi is linearly independent from them with probability
1 ´ 1

2T ´i´1 , as |xy1, . . . , yi´1y| “ 2i´1. Hence, the columns form a free family with
probability

n´1
ź

i“0

ˆ

1´ 1
2T ´i

˙

.

Taking the log, we obtain

n´1
ÿ

i“0
log

ˆ

1´ 1
2T ´i

˙

.

Developing in power series produces

n´1
ÿ

i“0
´

8
ÿ

j“1

1
j2pT ´iqj

Interchanging the sums produces

´

8
ÿ

j“1

1
j2T j

n´1
ÿ

i“0
2ji

As
řn´1

i“0 2ji ď 2jn, the sum is greater than

´

8
ÿ

j“1

1
j2pT ´nqj

Factoring the power series and using T “ n` α produces

log
ˆ

1´ 1
2α

˙

52 Chapter 4. Simon’s Algorithm

Hence, the success probability is greater than 1´ 1
2α .

If s ‰ 0, the maximal rank is n ´ 1. The yi are of maximal rank if the n ´ 1 first
columns of M forms a free family, which occurs with probability 1´ 1

2α`1 .

Simon’s algorithm is generally presented with a hidden period, but as remarked by
Brassard and Høyer [BH97], it also works for larger hidden subgroups.

Proposition 4.2 (Simon’s Algorithm for Hidden subgroups). If f hides any subgroup
H of Z{ p2qn, Algorithm 4.2 can produce a basis of H in n` α queries with probability
greater than 1´ 1

2α .

Proof. If the function f hides the subgroup H “ xs1, . . . , sdy, then the preimages are no
longer tx0, x0‘su, but tx0‘h|h P Hu. In that case, the state at step 4 of Algorithm 4.1
is

ÿ

hPH

|x0 ‘ hy .

Hence, the Hadamard application produces

ÿ

hPH

2n´1
ÿ

j“0
p´1qj¨px0‘hq |jy .

This can be rewritten as
2n´1
ÿ

j“0
p´1qj¨x0

ÿ

hPH

p´1qj¨h |jy .

As ps1, . . . , sdq is a basis of h,
ř

hPHp´1qj¨h “
śd

k“1
`

1` p´1qj¨sk
˘

. Hence, the ampli-
tude of j is non-zero if and only if, for all sk, j ¨sk “ 0. This means we sample uniformly
values orthogonal to H. The algorithm is still correct, and will produce a basis of H.

4.2 Weakening the promise
The promise of Simon’s problem is that the function needs to be identical on each
coset of the hidden subgroup, and that it is injective between each coset. However, in
practice, one might want to apply the algorithm on functions that partially fulfil the
promise. This section studies the behaviour of Simon’s algorithm when the constraints
in each direction of the equivalence rfpxq “ fpyqs ô x‘ y P t0, su are relaxed.

4.2.1 Partial period
If some bad inputs do not satisfy the periodicity condition (fpxq ‰ fpx ‘ sq), then
Algorithm 4.1 will fail if at step 4, the x0 from the measured fpx0q is bad, as the
random vector in the end will not necessarily be orthogonal to the period. Hence, the
algorithm will succeed if all the x0 are good.

4.2. Weakening the promise 53

Proposition 4.3 (Partial period for Simon’s algorithm). Let n be an integer, s P t0, 1un,
G P t0, 1un, p “ |G|{2n and X a set. Let f : t0, 1un Ñ X be a function with the promise
that for all px, yq P pt0, 1unq2, rfpxq “ fpyq ñ x‘y P t0, sus, rx‘y P t0, su and x P Gñ
fpxq “ fpyqs. Simon’s algorithm applied on f retrieves s on T steps with a probability
lower than

`1
2p1` pq

˘T `

1´ 1
2T ´n

˘

Proof. For each query, if the promise is fulfilled, then the algorithm behaves correctly.
If it is not, then we sample a value orthogonal to s with probability one half. G is the
set of inputs on which the promise is fulfilled, hence p is the probability that one query
corresponds to an input with a fulfilled promise. Hence, the probability to sample only
values orthogonal to s is

T
ÿ

i“0

ˆ

T

i

˙

pT ´ip1´ pqi2´i “

ˆ

1
2
p1` pq

˙T

.

We can retrieve s only if the values are both all orthogonal and of maximal rank, which
add the term

`

1´ 1
2T ´n

˘

.

For example, if only half of the inputs satisfy the condition, then the success proba-
bility will be lower than

`3
4
˘n, which quickly becomes negligible.

Remark 4.1. If the number of bad inputs is a fixed fraction of the input, the success
probability decreases exponentially in n, and the quantum gain of the algorithm disap-
pears. In order to have a fixed success probability, we need to have 1´p “ 2´Ωpnq, that
is, the number of bad inputs shall not be greater than 2αn, with α ă 1.

4.2.2 Non-injective functions
Now, we can consider functions that break the other part of the promise: there exists
px, yq s.t fpxq “ fpyq and x ‘ y “ t R t0, su. As in the previous section, such t
corresponds to a partial period. However, here, they are mere artifacts that we want to
rule out, and not the value we want to compute. Hence, from Proposition 4.3, we know
that we cannot expect to find a partial period if it does not occur for almost all x. As
it cannot identify t, this additional partial period shall not disrupt the computation.

However, we cannot expect to have a functioning algorithm in all cases. Indeed,
let’s consider

fs :
t0, 1un Ñ t0, 1u

x ÞÑ

"

1 if x P t0, su
0 otherwise

.

The function fs is periodic, of period s. This is also a test function for Grover’s
algorithm, which is optimal given only an oracle access to the function. Hence, we
cannot hope to be polynomial, or even subexponential, in that case.

To quantify how suitable the function is for Simon’s algorithm, we define p0 as
proposed in [Kap+16]

54 Chapter 4. Simon’s Algorithm

p0 “ max
tRt0,su

Prxrfpx‘ tq “ fpxqs.

This value estimates the probability that any given t is present as an additional period for
some of the output vectors of Algorithm 4.1. It allows to bound the success probability
of Simon’s algorithm.

Proposition 4.4 (Success probability with more preimages [Kap+16, Theorem 1]). Let
f be a periodic function, p0 be defined as above. After cn steps, Simon’s algorithm on
f succeeds with probability greater than 1 ´

´

2
´

1`p0
2

¯c¯n
. If c ą 1{p1 ´ log2p1 ` p0qq,

Simon’s algorithm returns the period with probability exponentially close to 1.

Proof. We need to estimate the probability that a given output of Algorithm 4.1 is
orthogonal to t ‰ s. There are two cases: if at step 4, the x0 satisfies fpx0q “ fpx0‘ tq,
then the output will be orthogonal to t with certainty. If not, then it is orthogonal
with probability one half. The first case occur with probability lower than p0, and the
second with probability greater than 1 ´ p0. Hence, the probability that the output
is orthogonal to t is lower than 1`p0

2 . Hence, the probability that all the outputs are
orthogonal to t is lower than p1`p0

2 qcn.
As there are less than 2n false periods, the outputs will all be orthogonal to a

t R t0, su with probability lower than 2np
1`p0

2 qcn “

´

2
´

1`p0
2

¯c¯n
. This is exponentially

close to zero if

2
´

1`p0
2

¯c
ă 1

ô c log2

´

1`p0
2

¯

ă ´1

ô c ą ´1
log2p1`p0q´1

ô c ą 1
1´log2p1`p0q

In that case, as we have a vector orthogonal to each non-period, we have a family
of maximal rank, hence the period can be extracted.

Remark 4.2. If p0 ă 1{ log2peq, we can take c “ 1{p1´ log2peqp0q.

Proposition 4.5 (Simon’s complexity with more preimages). Let f be a periodic func-
tion, p0 be defined as above. Simon’s algorithm on f fails with probability lower than
2´α after 1

1´log2p1`p0q
pn` αq queries.

Proof. From Proposition 4.4, after cn queries, the failure probability is at most
´

2
´

1`p0
2

¯c¯n
.

Hence, we have

4.2. Weakening the promise 55

1
2α “

´

2
´

1`p0
2

¯c¯n

ô ´α “ n
´

1` c log2

´

1`p0
2

¯¯

ô n` α “ ´cn log2

´

1`p0
2

¯

ô cn “ 1
log2

´

2
1`p0

¯ pn` αq

As cn is the total number of queries, the lemma holds.

Random functions. The previous propositions allow to estimate the number of
queries given a function, but it requires a specific study of the function. We show
here that in the typical case, the overhead is negligible. To do so, we need a notion of
random periodic functions.

Definition 4.1 (Random periodic function). Let f : t0, 1un Ñ t0, 1un be a function of
period s. We say that f is a random periodic function if f restricted to t0, 1un{psq is a
random function.

The distribution of p0 is linked to the number of solutions of the equation fpx‘ tq‘
fpxq “ 0. This corresponds to some coefficients of the Differential Distribution Table
of f . The distribution of these coefficients for a random function has been studied by
Daemen and Rijmen [DR07], who heuristically obtained that for f from n to m bits,
they are independent, and follow a Poisson distribution of parameter λ “ 2n´m´1. This
is of course an approximation, as the sum of the values in the DDT is fixed.

Heuristic 4.1 (Overhead for random functions). For random periodic functions, p0
converges to 0 and c converges to 1 when n grows.

Justification. In our case, if s ‰ 0 the random function has n´1 bits of input and n bits
of output, and if s “ 0 it has n bits of input and n bits of output, hence the parameter
of the Poisson distribution is either λ “ 2´1 or 2´2. As we have a Poisson distribution,
by the Chernoff bound, we have, for all t,

PrrXt ě as ď e´λ

ˆ

eλ

a

˙a

The value p0 is the maximum of all Xt, divided by 2n´2. Hence, for all c,

Prrp0 ă cs “ Prrmax
t
Xt ă c2n´2s “

`

PrrXt ă c2n´2s
˘2n´1

“
`

1´ PrrXt ě c2n´2s
˘2n´1

ě

˜

1´ e´λ

ˆ

eλ

c2n´2

˙c2n´2¸2n´1

Prrp0 ă cs ě 1´ 2n´1e´λ

ˆ

eλ

c2n´2

˙c2n´2

56 Chapter 4. Simon’s Algorithm

Hence, taking c “ n{2n´2, we have

Prrp0 ě
n

2n´2 s ă 2n´1e´λ

ˆ

eλ

n

˙n

“
e´λ

2

ˆ

2eλ
n

˙n

.

Remark 4.3 (Rate of convergence). The previous heuristic estimate shows a convergence
that is quite fast: for example, for n “ 32, we have p0 ě 2´25 with a probability smaller
than 2´78.

Heuristic 4.1 suggests that except in some degenerate cases, Simon’s algorithm be-
haves perfectly with functions that can have more than 2 preimages per image.

4.2.3 Families of functions
Simon’s problem is generally stated with one function f that has a period. However, if
each query calls a different function, but all of them have the same hidden period, then
Simon’s routine will still output a y orthogonal to the period, and Simon’s algorithm
will also succeed, as we sample values in a set that only depends on the period, and not
on the specific function we query.

Chapter5Abelian Hidden Shift Algorithms

This chapter will present the three known approaches to tackle the hidden shift problem
in cyclic groups as well as an algorithm from Ettinger and Høyer [EH99] that shows
that the quantum query complexity of the problem is linear in the size of the group.
Kuperberg [Kup05] proposed the first subexponential algorithm to solve the dihedral
hidden subgroup problem, which is another way to present the cyclic hidden shift prob-
lem. This article has been quickly followed by a note by Regev [Reg04], who proposed
a polynomial-memory variant of the algorithm, and showed some links with subset-sum
algorithms. This method was later generalized by Childs, Jao and Soukharev [CJS14]
to attack ordinary isogenies in subexponential time. Finally, Kuperberg proposed an-
other variant [Kup13], polynomial in quantum memory and more time-efficient than the
two previous ones, which turned out to be very similar to a k-list algorithm. We have
proposed some improvements over Kuperberg’s first algorithm in [BN18], some improve-
ments over the Childs, Jao and Soukharev algorithm in [Bon19b] and we have proposed
different tradeoffs of Kuperberg’s second algorithm in [BS18]. The generalizations to
the group pZ{ p2pqqw and nonabelian groups have been proposed in [BN18].

Contents
5.1 The problem . 58
5.2 Preliminaries: subset-sum and k-list 58

5.2.1 Subset-sum algorithms . 58
5.2.2 k-list algorithms . 61

5.3 The easy instances . 62
5.3.1 Case of pZ{ p2qqn . 62
5.3.2 Case f “ g . 63

5.4 The generation algorithm . 65
5.5 Quantum query complexity . 66
5.6 Hidden shift modulo a power of 2 . 67

5.6.1 Recovering the shift . 68
5.6.2 Kuperberg’s first algorithm: ˘ 68
5.6.3 Regev’s subset-sum variant 70
5.6.4 Kuperberg’s second algorithm: k-list 73

5.7 General hidden shift algorithms . 77
5.7.1 Optimizing Algorithm 5.3 . 77

57

58 Chapter 5. Abelian Hidden Shift Algorithms

5.7.2 Hidden shift in Z{ pNq . 79
5.7.3 Hidden shift in abelian groups 81
5.7.4 Combining the different algorithms 82
5.7.5 Variants on the promise . 83
5.7.6 Hidden shift in nonabelian groups 84

5.1 The problem
The algorithms of this chapter aim at solving the following problem:

Problem 5.1 (Abelian Hidden Shift Problem). Let n be an integer, G an abelian group,
X a set, f, g : G Ñ X two injective functions, s P G, with the promise that for all x,
fpxq “ gps` xq. Given oracle access to f and g, find s.

The following algorithms all follow the same structure: first, a generation algorithm
uses the oracle functions to produce some random phase elements. Then, the shift is
extracted from them. The most query-efficient algorithm (Section 5.5) directly uses the
phase elements, while the more time-efficient algorithms use a combination algorithm
recursively to produce some specific phase elements. Finally, given a target set of
phase elements, the shift value is extracted. The only difference between the three
time-efficient algorithms is the combination part.

5.2 Preliminaries: subset-sum and k-list
The hidden shift algorithms of Section 5.6.3 and Section 5.6.4 rely respectively on some
algorithms for the subset-sum and k-list problems. This section recalls the relevant
classical litterature.

5.2.1 Subset-sum algorithms
The subset-sum problem can be stated as follows:

Definition 5.1 (Subset-sum Problem in Z). Let px1, . . . , xkq P Zn, s P Z.
Find I Ă r1;ns such that

ř

iPI xi “ s.

This problem is NP-complete [MD79], that is, any NP problem can be reduced to
an instance of subset-sum. It can be instanciated with any group, but we’re mostly
interested in the case of the group Z{ p2rq with r » n, and xi uniform in Z{ p2rq. In
this regime, we expect to have around 1 solution, and this is often denoted as “hard
instances”, for which the best known algorithms are the slowest. Multiple algorithms
have been proposed, both quantum and classical [SS81; BCJ11; Ber+13], all of them
with an exponential complexity, in rOp2cnq, for a given constant c ă 1.

These algorithms rely on list-merging techniques: the complete solution is contructed
from lists of candidate for partial solutions. A summary of these algorithm is proposed
in Table 5.1, and some of them are detailed below.

5.2. Preliminaries: subset-sum and k-list 59

Table 5.1: Algorithms for the subset-sum problem

Algorithm Type Time Memory
Exhaustive search

Classical

2n Opnq
Claw-finding 2n{2 2n{2

[SS81] 2n{2 2n{4

[BCJ11] Op20.291nq Op20.291nq

Cycle-finding Op20.75nq Opnq
[BCJ11] Op20.72nq Opnq

Quantum search
Quantum

2n{2 Opnq
[Ber+13] Op20.241nq Op20.241nq

[HM18] Op20.226nq Op20.226nq

L1 L2

s

Figure 5.1: Claw finding

5.2.1.1 Claw-finding
A first solution for this problem is to split the inputs in half, and compute the sorted lists
L1 and L2 of all the subset-sums over respectively px1, . . . , xtk{2uq and pxtk{2u`1, . . . , xkq.
Then, one can easily find the solution by iterating over L1, and for each value, checking
if there is a matching value in L2.

The cost of this algorithm corresponds to the size of the two lists, in rOp2n{2q time
and memory.

Remark 5.1. Only one list needs to be effectively stored in memory, as the other can be
computed on-the-fly.

5.2.1.2 Schroppel-Shamir algorithm [SS81]
The previous algorithm can be refined, and use a lower memory. The space of possible
solutions of

řn
i“1 εixi “ V is split into 4 parts represented as 4 lists L1, L2, L3, L4, with

L1 “
ř

iďn{4 εixi, and so on.
The lists L1 to L4 contain all possible partial sums on a fourth of the variables. The

intermediate lists L12 and L34 contain respectively the partial sums on the first and
second half of the variables.

60 Chapter 5. Abelian Hidden Shift Algorithms

Without any other technique, the splitting would not gain anything, as the two
intermediate lists would be of size 2n{2. The Schroeppel-Shamir algorithm gains by
guessing L12 mod 2n{4. With that guess, the list is expected to be of size 2n{4. Con-
versely, L12 mod 2n{4 imposes the value s´ L12 mod 2n{4 for L34. Hence all the lists
are expected to be of size rOp2n{4q. The solution will only be found for the correct guess
of the intermediate value, requiring 2n{4 guesses overall, for a total cost of rOp2n{2q time,
but only rOp2n{4q memory.

2n{4

L1 L2 L3 L4

Guess sum mod 2n{4

L12

2n{4

L34

s

Figure 5.2: Schroeppel-Shamir merging. The subset of variables involved in each list
is in grey

Finally, the merging in itself is the efficient generation of the intermediate lists (and
of the complete solution) from the previous lists. As we want to produce a list of values
with a constrained sum, we can sort the first list, and then check for each element of
the second list if there is an element leading to a correct sum in the first list. The cost
of the merging is the cost of sorting the input list and constructing the output list, here
rOp2n{4q.

The algorithm from [BCJ11] uses similar techniques, but with a different splitting.
Instead of considering a subset of the variables, they considered a partial sum with a
smaller number of terms in it. They also allowed the ϵi in the intermediate step to lie
in t´1, 0, 1u. With this approach, the merging has also to check for the consistency of
the solutions, as the variables may overlap.

By splitting the sum in 8 and carefully choosing the size of the intermediate con-
straint and the ratio of -1, the authors of [BCJ11] obtained an asymptotic complexity
of rOp20.291nq classical time and memory.

5.2.1.3 Polynomial-memory algorithms [BCJ11].
It is also possible to devise polynomial-memory algorithms for this problem. In [BCJ11],
two polynomial-memory subset-sum algorithms are proposed, with a very similar time
complexity.

5.2. Preliminaries: subset-sum and k-list 61

The idea of the first algorithm is to rely on collision-finding. If we define

f1 :

#

t0, 1utn{2u Ñ t0, 1un

pδ1, . . . , δtn{2uq ÞÑ
řtn{2u

i“1 δixi
,

f2 :
"

t0, 1urn{2s Ñ t0, 1un
pδtn{2u`1, . . . , δnq ÞÑ s´

řn
i“tn{2u`1 δixi

,

then a collision between f1 and f2 would lead to a subset-sum solution. If the two
functions had the same domain and codomain size, we could apply a collision-finding
algorithm to find the wanted values. Nevertheless, we can still apply the algorithm
on truncated versions f 1

1pxq “ f1pxq mod 2n{2 and f 1
2pxq “ f2pxq mod 2n{2 to find

px, x1q such that f 1
1pxq “ f 1

2px
1q in time Op2n{4q. The pair px, x1q is a correct subset-sum

solution modulo 2n{2. Hence, it is correct modulo 2n with probability 2´n{2.
We can hence expect to find the correct solution in 2n{2 trials, by randomizing the f1

and f2 used. The complexity is then in Op23n{4q time, with only a polynomial memory.
The second algorithm uses the same method, but instead of splitting the variables,

it splits between sums containing n{4 elements. This allows to slightly reduce the cost,
to Op20.72nq.

5.2.2 k-list algorithms
The k-list problem is a generalization of the subset-sum problem. It can be stated as:

Definition 5.2 (k-list in Z{p2nq). Let pL1, . . . , Lkq P pZ{p2nqqN qk be k lists of size N ,
s P Z{p2nq.

Find px1, . . . xkq P r1;N sk such that
řk

i“1 Lrxis “ s.

The subset-sum problem is the particular case of lists of size 2. The generic problem
has been introduced by Wagner [Wag02], who proposed a general algorithm based on 2-
list merging. This has been extended with various works [MS12; NS15; Din18], in which
many tradeoffs between time and memory are proposed, with various applications in
cryptography.

Merging algorithms for subset-sum, like Figure 5.1 and 5.2 work if the constraints
are strong enough to have only one solution, but also for weaker constraints, as they
efficiently enumerate all the possible solutions. In that case, the output will be a list
of solutions of the weak constraint. It has only an impact on the memory if the final
number of solutions is too large.

5.2.2.1 Merging trees.
The general approach for k-list algorithm is to use recursively these algorithms to pro-
duce lists with increasingly constrained values, until we find the one we want. This
recursive structure leads to a tree shape (as one list at a given level is produced from
multiple lists of the previous level). Its parameters are for each level, the size of the
lists and the used merging algorithm. The total constraint correspond to the sum of
the number of constrained bits at each level.

62 Chapter 5. Abelian Hidden Shift Algorithms

L2
1

. . .

. . .

L1
1 Lm

1

L0
1 ¨ ¨ ¨L

0
m L0

m2´m ¨ ¨ ¨L
0
m2

n0 bits

n1 bits

Figure 5.3: Merging tree structure. Each merging constrains ni bits.

2-list merging. Wagner’s algorithm [Wag02] uses 2-list merging. Hence, at each level,
it merges two lists of size 2ℓi into one list of size 2ℓi`1 , at a cost of 2ℓi time and memory.
At each level, the constraint is on 2ℓi ´ ℓi`1 bits. The final list can be of size 1. Hence,
with q levels, one can constrain ℓ0 `

řq´1
i“0 ℓi bits. The total number of lists is 2q. The

memory cost is
ř

i 2ℓi , as the lists have to be stored (we consider here that the initial
lists are put in memory only when they are needed). The time cost is in O

`
ř

i 2ℓi2q´i
˘

,
as a merging at level i has to be done twice per list at level i` 1.

Hence, to minimize the memory cost, the list size shall be fixed, and to minimize
the time cost, the list size shall double between each level. All in all, if we begin by
doubling the list sizes from 2ℓ0 until we reach a maximal size of 2m, in e steps, the time
cost will be 2t “ 2ℓ0`q, and we can constrain n bits, with

t´ q ´
1
2
pt´m´ qq2 `mq “ n.

4-list merging. The previous approach can be adapted if we see 2 levels of 2-list
merging as one level of 4-list merging. In that case, we can use the Schroeppel-Shamir
algorithm. The time cost is squared, the memory cost and the number of lists is not
affected, and the constraint is now on 4ℓi ´ ℓi`1 instead of 2ℓi ` ℓi`1 ´ ℓi`2.

Hence, with the same approach as before (that is, doubling the list size at each step),
we obtain

t´ q

3
´

1
2

ˆ

t

2
´m´

q

2

˙2
`mq “

2n
3

5.3 The easy instances
There are two cases where the hidden shift problem is especially simple, and can be
solved in polynomial time.

5.3.1 Case of pZ{ p2qq
n

If the group is Z{ p2q, then the hidden shift is in fact a hidden period, and Simon’s
algorithm can be used. Indeed, we can consider the function

F pb, xq “

"

fpxq if b “ 0
gpxq if b “ 1 .

5.3. The easy instances 63

This function satisfies F p0, xq “ fpxq “ gpx‘ sq “ F p1, x‘ sq and F p1, xq “ gpxq “
fpx ‘ sq “ F p0, x ‘ sq. Hence, F is periodic, of period p1, sq, and Simon’s algorithm
can be applied.

5.3.2 Case f “ g

If the two functions are the same, then this is also a hidden period problem. This case is
tackled with Shor’s algorithm [Sho94], which is extremely similar to Simon’s algorithm.

We suppose to have access to a function f : Z Ñ X, such that fpx ` sq “ fpxq.
Moreover, we suppose that we know a bound on s, that is, s ď 2b. The period can be
easily found with Circuit 5.1.

t0, 1u2b : |0y

X : |0y

H

Of

QFT22b "Õ : ℓ

"Õ : fpx0q “ fpx0 ` sq

Circuit 5.1: Shor’s circuit

This circuit corresponds to Algorithm 5.1. The amplitude of each value is variable.
With a high probability, we will measure an ℓ such that ℓ s

2n is very close to an integer,
as shown in Lemma 5.1. Assuming we have measured such an ℓ, we can obtain the
value of s with a good probability, from Proposition 5.1.

Lemma 5.1 (Shor’s measurement, from [Sho94]). A measurement of a state of the form

1
?

2nα

2n´1
ÿ

ℓ“0

α´1
ÿ

r“0
exp p2iπrℓθq |ℓy

with α ď 2n has an outcome ℓ0 such that |θℓ0 mod 1| ď 1
2α with probability greater than

4α
π22n , assuming such ℓ0 exists.

Proof. The probability of an outcome ℓ0 is
ˇ

ˇ

ˇ

ˇ

ˇ

1
?

2nα

α´1
ÿ

r“0
exp p2iπrℓθq

ˇ

ˇ

ˇ

ˇ

ˇ

2

As this is a geometric sum, it reduces to
ˇ

ˇ

ˇ

ˇ

1
?

2nα

1´ exp p2iπαℓθq
1´ exp p2iπℓθq

ˇ

ˇ

ˇ

ˇ

2
“

ˇ

ˇ

ˇ

ˇ

1
?

2nα

sin pπαℓθq
sin pπℓθq

ˇ

ˇ

ˇ

ˇ

2

The expression is decreasing while 0 ď αℓθ ď 1
2 , from α

2n at the limit of θ at 0 to
1

2nα sinp π
2αq

2 when |αθℓ0| “ 1
2 . As sin x ď x when x ě 0, this latter term is greater than

1
2nαp π

2αq
2 , which gives the expected bound. The situation is symmetric for ´1

2 ď αℓθ ď 0,
hence the lemma holds.

64 Chapter 5. Abelian Hidden Shift Algorithms

Algorithm 5.1 Quantum state evolution in Circuit 5.1
Input: OF : |xy |0y ÞÑ |xy |fpxqy with fpxq “ fpx` sq, b
Output: ℓ

1: Initialize two registers : |0y |0y
2: Apply H gates on the first register, to compute

1
?

22b

22b´1
ÿ

x“0
|xy |0y

3: Apply Of , to compute
1

?
22b

22b´1
ÿ

x“0
|xy |fpxqy

4: Measure an fpx0q in the last register, to get a

1
?
α

α´1
ÿ

j“0
|x0 ` jsy α “

Z

22b ´ x0
s

^

5: Apply a QFT on the first register, to compute

1
?
α22b

α´1
ÿ

j“0

22b´1
ÿ

ℓ“0
exp

ˆ

2iπ px` jsqℓ
22b

˙

|ℓy

6: The state is
1

?
α22b

22b´1
ÿ

y“0
exp

´

2iπ xy
22b

¯
α´1
ÿ

ℓ“0
exp

ˆ

2iπ jsℓ
22b

˙

|ℓy

7: Measure the state, return ℓ.

Proposition 5.1 (Shor’s period finding [Sho94]). The knowledge of an ℓ such that | ℓs
22b

mod 1| ď 1
2α allows to recover s with probability Ωp1{ log log sq.

Proof. There exist an integer c such that
ˇ

ˇ

ˇ

ˇ

ℓs

22b
´ c

ˇ

ˇ

ˇ

ˇ

ď
1

2α

ô

ˇ

ˇ

ˇ

ˇ

ℓ

22b
´
c

s

ˇ

ˇ

ˇ

ˇ

ď
1

2αs

We have that α ě 22b´s
s ´ 1, hence αs ą 22b ´ 2s ą p2b ´ 1q2. Hence, there is at most

one fraction of the form c
s with s ă 2b that can satisfy the constraint. Such fraction

can be found by computing the continued fraction expansion of ℓ
22b . This will allow to

recover s if c^ s “ 1. This occurs with a probability in Ω p1{ log log sq.

Theorem 5.1 (Period finding success probability). Circuit 5.1 allows to recover s with
probability Ω p1{ log log sq.

5.4. The generation algorithm 65

Proof. From Lemma 5.1, we measure a given ℓ such that | ℓs
22b mod 1| ď 1

2α with a
probability greater than 4α

π222b . There are 22b values for ℓ, among which one over α will
satisfy the condition. Hence, there are 22b

α compatible ℓ. Overall, the probability to
measure any ℓ that satisfy the condition is greater than 4

π2 . From such an ℓ, we can
recover s with a probability in Ω p1{ log log sq, with Proposition 5.1.

Proposition 5.2 (General case [ME98]). Let f : Zk Ñ X be a function such that
fpxq “ fpx` sq for s P L. A basis of the lattice L can be recovered in polynomial time.

Remark 5.2. This algorithm allows to recover the group structure of the domain of a
function, which can for example be used for a hidden shift problem in which the exact
domain of the shifted functions is not given.

5.4 The generation algorithm
The hidden shift algorithms all work with qubits of a specific form, produced from the
oracle by the generation algorithm (Circuit 5.3). It uses the function F : t0, 1uˆG Ñ X,
defined as F p0, xq “ fpxq, and F p1, xq “ gpxq. From oracles to f and g, we can construct
an oracle to F , as presented in Circuit 5.2. For clarity, we detail the algorithm in the
case G “ Z{ pNq, but it can be naturally generalized to a product of cyclic groups, and
therefore to any finite abelian group.

t0, 1u : |by

G : |xy

X : |0y

X : |yy

X X |by

|xy

|0y

|y ‘ F pb, xqy

Of Of Og Og

Circuit 5.2: Quantum oracle to F from oracles to f and g

The generation circuit (Circuit 5.3) is very close to Simon’s circuit (Circuit 4.1), the
two differences are that a Quantum Fourier Transform is used instead of a Hadamard
gate after the oracle, and that the output is not a tuple of classical values but a qubit
plus some classical values. The different steps are detailed in Algorithm 5.2.

t0, 1u : |0y

Z{ pNq : |0y

Z{ pNq : |0y

H

H

OF QFTN

|0y ` exp
`

2iπ sℓ
N

˘

|1y

"Õ : ℓ

"Õ

Circuit 5.3: Generation circuit

66 Chapter 5. Abelian Hidden Shift Algorithms

Algorithm 5.2 Quantum state evolution in Circuit 5.3
Input: N , OF : |by |xy |0y ÞÑ |by |xy |F pb, xqy with F p0, xq “ F p1, x` sq
Output: ℓ, |ψℓy “ |0y ` exp

`

2iπ sℓ
N

˘

|1y
1: Initialize a 1-bit register and two n-bit registers : |0y |0y |0y

2: Apply H gates on the two first registers, to compute
1
ř

b“0

2n´1
ř

x“0
|by |xy |0y

3: Apply OF , to compute
1
ř

b“0

2n´1
ř

x“0
|by |xy |F pb, xqy

4: Measure an F p0, x0q “ F p1, x1q in the last register, to get |0y |x0y ` |1y |x0 ` sy
5: Apply a QFT on the second register, to compute

N´1
ÿ

ℓ“0
exp

ˆ

2iπx0ℓ

N

˙

|0y |ℓy `
N´1
ÿ

ℓ“0
exp

ˆ

2iπ px0 ` sqℓ

N

˙

|1y |ℓy

6: The state is
N´1
ÿ

ℓ“0
exp

ˆ

2iπx0ℓ

N

˙ˆ

|0y ` exp
ˆ

2iπ sℓ
N

˙

|1y
˙

|ℓy

7: Measure ℓ in the second register, return it and the qubit |0y ` exp
`

2iπ sℓ
N

˘

|1y.

At step 6, the amplitude of a given ℓ is

ˇ

ˇ

ˇ

ˇ

|0y ` exp
ˆ

2iπ sℓ
N

˙

|1y
ˇ

ˇ

ˇ

ˇ

g

f

f

e

N´1
ÿ

y“0

ˇ

ˇ

ˇ

ˇ

|0y ` exp
ˆ

2iπ sℓ
N

˙

|1y
ˇ

ˇ

ˇ

ˇ

2
´1

“
1
?
N
.

Hence, the measured ℓ is a uniformly random integer between 0 and N ´ 1.
The circuit of Circuit 5.3 produces a phase element |ψℓy “ |0y`exp

`

2iπ sℓ
N

˘

|1y, with
a classically known, uniformly random label ℓ.

Complexity. As the generation algorithm contains only simple operations beyond the
quantum oracle to F , we consider that its cost is the cost of one query to F . The memory
is at least 2 log2pNq` 1 qubits, but it can be more depending on the implementation of
the quantum oracle.

5.5 Quantum query complexity
One of the firsts results on hidden shift problems is due to Ettinger and Høyer [EH99].
It states that, in the cyclic case, its quantum query complexity is in Opnq.

Theorem 5.2 (Quantum query complexity). The quantum query complexity of the
cyclic hidden shift is in Opnq.

5.6. Hidden shift modulo a power of 2 67

Lemma 5.2 (Hoeffding’s inequality [Hoe63]). Let X1, . . . , Xn be n independent random
variables and a, b, such that, for all i, Prra ď Xi ď bs “ 1. Let S “

řn
i“1Xi. Then

PrrS ´ ErSs ě ks ď exp
ˆ

´2k2

npb´ aq2

˙

Proof of Theorem 5.2, derived from [EH99]. We consider the qubits produced by the
circuit of Circuit 5.3, |0y ` ωsℓ |1y. If we apply a Hadamard gate on them, we obtain

ω
sℓ
2 cos

ˆ

iπ
sℓ

N

˙

|0y ´ ω´ sℓ
2 sin

ˆ

iπ
sℓ

N

˙

|1y

Hence, given a particular ℓ, the probability of measuring a 0 is cos2 `iπ sℓ
N

˘

, and 1 is
measured with probability sin2 `iπ sℓ

N

˘

.
This means we can sample a tuple pb, ℓq according to the distribution X

Pr rX “ pb, ℓqs “

" 1
N cos2 `iπ sℓ

N

˘

if b “ 0
1
N sin2 `iπ sℓ

N

˘

if b “ 1

Now, let

ftpb, xq “

"

cos
`

2iπ xt
N

˘

if b “ 0
´ cos

`

2iπ xt
N

˘

if b “ 1

Then,

ErftpXqs “

$

&

%

1 if t “ s “ 0
0.5 if t “ s or t “ N ´ s
0 otherwise

We can now estimate the probability that
řn

i“1 ftpXiq ě
n
4 . From Lemma 5.2, if

t R t0, s,N ´ su, this probability is lower than expp´m{32q.
Hence, we can distinguish fs and fN´s from the other ft, and identify s (or N ´ s)

by computing ft for all the possible t P r0;N{2s.
In order to distinguish, we need that all the sums satisfy the inequality. By the

union bound, this happens with a probability greater than 1 ´N{2 expp´m{32q. The
algorithm succeeds with probability greater than 1´ ϵ if m ě 32 logpN{p2ϵqq.

Remark 5.3 (Tighter bound). The explicit bound is made tigher in [BCD06], with a
number of queries in log2pNq `Op1q and a matching lower bound.

These results show that fairly few queries are required to be able to uniquely identify
the shift. Unfortunately, the corresponding algorithms to effectively recover the shift
are not efficient. The next sections present algorithms which need more queries, but
cost much less time.

5.6 Hidden shift modulo a power of 2
The simplest case to describe the hidden shift algorithms is when the group is Z{ p2nq.
This section presents the three known approaches applicable in this case.

68 Chapter 5. Abelian Hidden Shift Algorithms

5.6.1 Recovering the shift
A simple approach to recover the shift is proposed in [Kup05], which uses the fact that
the phase element with label 2n´1 is

|ψ2n´1y “ |0y ` p´1qs |1y

Hence, the least significant bit of s, s0, can be recovered from this element if we
measure it in the basis t|`y , |´yu. Once s0 is known, we can reapply the same algorithm
on a smaller instance: if we had fpxq “ gpx`sq in Z{ p2nq, we can consider f 1pxq “ fp2xq
and g1pxq “ gp2x` s0q. These two functions fulfill f 1pxq “ g1px` s1q in Z{

`

2n´1˘, with
s “ 2s1 ` s0, and allow to recover s1. We can recover the complete shift s by solving
smaller and smaller instances of the problem. The algorithms of this section offer
different approaches to construct |ψ2n´1y from some random |ψℓy.

5.6.2 Kuperberg’s first algorithm: ˘

5.6.2.1 Combination
Kuperberg’s first algorithm [Kup05] uses the very simple combination circuit of Cir-
cuit 5.4. This circuit takes two phase elements |ψℓ1y , |ψℓ2y and produces
|ψℓy and b, with ℓ “ ℓ1 ˘ ℓ2, that is, the output phase element label is either the

sum or the difference of the input labels. Both outcomes are equiprobable.

|ψℓ1y |ψℓy

|ψℓ2y "Õ : b

Circuit 5.4: First combination circuit

5.6.2.2 Algorithm
This ability to produce either the sum or the difference of two chosen labels can be
leveraged to obtain a subexponential algorithm, by converging to a given value. The
idea is that given a large amount Lu of labels that are multiples of 2u, we can find
many pairs of labels such that either their sum or difference will satisfy a constraint on
log2pLuq bits: it will be a multiple 2u`tlog2pLuqu). If we apply recursively this idea to
converge to |ψ2n´1y, we obtain Algorithm 5.3.

5.6.2.3 Complexity analysis
Theorem 5.3 (Complexity of Algorithm 5.3 [Kup05, Theorem 5.1]). Algorithm 5.3 can
recover s in rO

´

2
?

2 log2p3qn
¯

quantum queries, classical and quantum time, and classical
and quantum memory.

5.6. Hidden shift modulo a power of 2 69

Algorithm 5.3 A first hidden shift algorithm, from [Kup05, Proof of Theorem 5.1]

1: Generate rO
´

2
?

2 log2p3qn
¯

phase elements in L Ź Queries
2: eÐ

a

2n{ log2p3q
3: k Ð

a

2n log2p3q
4: For i :“ 1 to res do
5: L1 “ H

6: While L contains two phase elements |ψay , |ψby such that 2tku|pa´ bq do
7: Pop p|ψay , |ψbyq from L
8: Combine |ψay , |ψby into |ψcy Ź Combination
9: If c “ a´ b then

10: Insert |ψcy into L1

11: Else
12: Insert |ψcy back into L Ź c “ a` b

13: LÐ L1

14: k Ð k `
a

2n log2p3q ´ i log2p3q
15: If |ψ2n´1y P L then
16: Perform a measurement on |ψ2n´1y

17: Return s0
18: Else
19: Return Failure

Lemma 5.3 (Iterative combination). Let Lu be a set of e2k phase elements whose labels
are all multiples of 2u. By using the combination of Circuit 5.4, one can construct a
set Lu`k of phase elements of size pe´ 1q2k{3 whose labels are all multiples of 2u`k.

Proof. We consider the subsets Li of Lu, with Li “ tx P Lu|x mod 2u`k “ i2uu. Any
two elements px, yq Ă Li are such that x´ y “ 0 mod 2u`k. Hence, we can obtain an
element of Lu`k by taking any two element that belong to the same Li, and combine
them, with probability one half. If the combination failed, we obtain a new phase
element that belongs to L, as 2a|x and 2a|y implies 2a|px` yq.

We can combine any two elements if they belong to the same Li, which means that
at most 2k elements cannot be combined, and will be lost.

Hence, from e2k elements in L, we can obtain pe2k ´ 2kq{4 elements in L1 and
pe2k ´ 2kq{4 ` 2k elements still in L. The total number of elements in L1 is then
ř

ipe2k ´ 2kq{4i » pe´ 1q2k{3.

Proof of Theorem 5.3. Let L be a set of size pe`1q2e log2p3q phase elements. By Lemma 5.3,
we can obtain a set of size e2pe´1q log2p3q that are multiples of 2te log2p3qu.

Hence, by induction, we can obtain multiples of 2n´1 if we have
ře

i“1ti log2p3qu ě
n´ 1.

This implies e »
b

2n
log2p3q

. Hence, the query cost is in rO
´

2
?

2 log2p3qn
¯

. The quantum
time cost consists only in the combination, which reduces the total number of phase
elements by 1. Hence, it is also in rO

´

2
?

2 log2p3qn
¯

. The classical part of the algorithm

70 Chapter 5. Abelian Hidden Shift Algorithms

have to split the labels in subsets according to their value modulo a power of 2, which
can be done in classical time and memory linear in the number of elements to split,
which are also in rO

´

2
?

2 log2p3qn
¯

.

5.6.3 Regev’s subset-sum variant
The previous algorithm had the notable drawback that it needs a large amount of quan-
tum memory, and all its algorithmic efficiency comes from the fact that we can choose
interesting pairs of values among the ones we have. Regev [Reg04] has proposed to use
a different combination mechanism to use only a polynomial amount of phase element
at a time. The method was later generalized by Childs, Jao and Soukharev [CJS14],
and we were able to improve the algorithm in [Bon19b].

This algorithm is slightly slower than the previous one. For its complexity estimates,
we define Lpα, cq and Lpcq as

Lpα, cq “ 2pc`op1qqnα logpnq1´α
Lpcq “ Lp1{2, cq.

5.6.3.1 Combination routine
The idea is to take a certain amount of phase elements (k), and use them to produce one
better phase element (here, a multiple of a larger power of 2). Recall that the elements
are of the form |0y ` exp

´

2iπ sℓi
N

¯

|1y. If we tensor them, we obtain

â

i

|ψℓi
y “

ÿ

jPt0,1uk

exp
ˆ

2iπ j ¨ pℓ1, . . . , ℓkq
2n

˙

|jy .

From this superposition, one can compute the function

|jy |0y ÞÑ |jy |j ¨ pℓ1, . . . , ℓkq mod 2ry

and measure the second register. By definition, the remaining j have a phase identical
modulo 2r. Hence, if we can retain exactly two different values j1 and j2, we have a
superposition with a phase difference which will be a multiple of 2r. Next, the only
remaining step is to change the superposition of |j1y and |j2y to a superposition of |0y
and |1y. The complete routine is Algorithm 5.4.

The projection (Algorithm 5.4, step 5) can be implemented by Algorithm 5.5, which
either projects successfully on a superposition of two given values j1 and j2, or projects
on the superposition of all the other possible values. With an even number of possible
values, this method is guaranteed to succeed, while with an odd number we may fail to
obtain a pair.

Success probability. In order to succeed, we need that at least two j are solutions
of the equation j ¨ pℓ1, . . . , ℓkq mod 2r`a “ V and that the projection succeeded. As
there are 2k possible values for J and 2r possible values for V , there are at most 2r

values of j that correspond to a unique solution. When there are at least 2 solutions,

5.6. Hidden shift modulo a power of 2 71

Algorithm 5.4 Regev’s combination routine [Reg04]
Input: p|ψℓ1y , . . . , |ψℓk

yq : @i, 2a|ℓi, r
Output: |ψℓ1y, 2r`a|ℓ1

1: Tensor
Â

i |ψℓi
y “

ř

jPt0,1uk exp
´

2iπ j¨pℓ1,...,ℓkq

2n

¯

|jy

2: Add an ancilla register, apply |xy |0y ÞÑ |xy |x ¨ pℓ1, . . . , ℓkq mod 2r`ay

3: Measure the ancilla register, leaving with

V and
ÿ

j¨pℓ1,...,ℓkq mod 2r`a“V

exp
ˆ

2iπ j ¨ pℓ1, . . . , ℓkq
2n

˙

|jy

4: Compute the corresponding j
5: Pair them, project to a pair pj1, j2q.

The register is now exp
´

2iπ j1¨pℓ1,...,ℓkq

2n

¯

|j1y ` exp
´

2iπ j2¨pℓ1,...,ℓkq

2n

¯

|j2y

6: Map |j1y to |0y, |j2y to |1y
7: Return |0y ` exp

´

2iπ pj2´j1q¨pℓ1,...,ℓkq

2n

¯

|1y

Algorithm 5.5 Projection routine
Input:

ř

xPJ ϕpxq |xy, pj1, j2q Ă J .
Output: ϕpj1q |j1y ` ϕpj2q |j2y or

ř

xPJztj1,j2u ϕpxq |xy
1: Add an ancilla qubit:

ř

xPJ ϕpxq |xy |0y
2: Apply the operator |xy |0y ÞÑ |xy |x “ j1 _ x “ j2y
3: Measure the ancilla qubit

the projection fails if there is an odd number of solutions and we fail to project on a
pair. This occurs with probability at most 1{3. Overall the success probability of the
combination routine is at least of 1´ 2

3
`

1´ 2r´k
˘

.
Remark 5.4. This success probability depends on the values of r and k. In [Reg04],
k “ r ` 4 is used. In [CJS14], k “ r ` 1 is used.

5.6.3.2 Complete algorithm
The complete algorithm uses Algorithm 5.4 multiple times, with a pipeline structure:
one routine takes as input a given number of phase elements, and produces one element,
which will be given as input to the next routine, as in Figure 5.4. This approach has the
advantage of allowing an on-the fly computation: if at any point a routine has access
to its inputs, it can process them and produce a refined phase element. This allows to
never have more than n phase elements at any given point in the algorithm.

Childs-Jao-Soukharev algorithm [CJS14, Appendix A]. If we want each rou-
tine in the pipeline to be the same, we will havem routines, and we needmr » n in order
to succeed. If each routine combines k elements and succeed with probability p, the
total cost is then of pk{pqm queries, km qubits (excluding the quantum oracle overhead),

72 Chapter 5. Abelian Hidden Shift Algorithms

Oracle Algorithm 5.4 ... Algorithm 5.4

Random ℓ 2k1 |ℓ 2ke |ℓ 2n´1|ℓ

|ψ2n´1y

Figure 5.4: Pipeline of combinations

a classical time in rOp
ř

iămpk{pq
i2kq “ rOppk{pqm2kq and a polynomial classical memory.

If k “ α
a

n log2pnq, the query cost is L p1{p2αqq, and the time cost is Lp1{p2αq ` αq.
The classical cost is minimized for α “ 1{

?
2, which implies k “

a

n log2pnq{p2q, which
leads to a quantum query and time cost of Lp1{

?
2q and a classical time cost of Lp

?
2q.

Remark 5.5. The quantum query exponent of [CJS14, Theorem 5.2] corresponds to the
quantum time exponent, and is not tight.

We now present the multiple tradeoffs we proposed in [Bon19b].

A better tradeoff. Each combination has the same cost in the previous algorithm.
This means that most of the cost is concentrated in the first level, as this is the level we’re
iterating the most. We can improve the algorithm by increasing k for the later levels.
The level i is performed k{p times more than the level i` 1, which means we can afford
to have the level i ` 1 to cost k{p times more than the level i. As k “ Op

a

n logpnqq,
we can increase k by logpnq{2 at each level without changing the time exponent.

Theorem 5.4 (Classical/quantum tradeoff). The hidden shift problem can be solved
in Lp

a

β2 ` 1q classical time and Lp´β `
a

β2 ` 1q quantum queries and time for any
β ě 0.

Proof. We can take ki “ β
a

n logpnq ` i logpnq{2. In that case, we have

n “
m´1
ÿ

i“0
ki » mβ

a

n logpnq ` m2

4
logpnq

ñ m » 2
´

´β `
a

β2 ` 1
¯

a

n{ logpnq

The classical time cost correspond to the cost of the last level, as each level has the
same cost. Its logarithm is in km »

a

β2 ` 1
a

n logpnq. The query cost corresponds
to the number of time we’re doing the first level. As each level has the same cost, its
logarithm is km´1 ´ k0 » m logpnq{2 »

´

´β `
a

β2 ` 1
¯

a

n logpnq.

Example 5.1. The minimum cost is achieved with β “ 0, which leads to a cost in
Lp1q quantum queries, quantum and classical time. If we want to have a quadratic gap
between the classical and quantum time, we can take β “ 1?

3 , and obtain a classical

time cost in L
´

2?
3

¯

and a quantum query and time cost in L
´

1?
3

¯

.

5.6. Hidden shift modulo a power of 2 73

Tradeoffs for lower quantum cost. Lower quantum cost can be achieved if we
reduce the number of steps. In that case, the gains obtained by increasing the size for
later steps become negligible.

Theorem 5.5 (Classical/quantum tradeoff with low quantum cost). The hidden shift
problem can be solved in Lpα, βq classical time and Lp1´ α, α{βq quantum queries and
time for any α P p1{2; 1sq.

Proof. We can take k “ βnα logpnq1´α. In this case, we have m » 1{βn1´α logpnqα´1,
and m log k » α{βn1´α logpnqα. This leads to a quantum query and time cost in
Lp1´ α, α{βq and a classical time cost in Lpα, βq.

At the limit, if we consider a fixed number of combination steps, then the number
of queries required is polynomial, while the processing time has to be exponential.

Theorem 5.6 (Classical/quantum tradeoff with polynomial quantum cost). The hidden
shift problem can be solved in O

`

2n{α
˘

classical time and Opnαq quantum queries and
time for any α ě 1.

Proof. Use α combination steps, each of size n{α.

5.6.3.3 Subset-sum algorithms
The combination routine requires (Algorithm 5.4, step 4) to compute efficiently all the
solutions of the equation j ¨ pℓ1, . . . , ℓkq “ V . This corresponds to a subset-sum problem,
and algorithms better than brute-force can be used. A summary of these algorithms is
presented in Table 5.1.

All these algorithms have a cost in Op2cnq, with c ď 1. We can use any of them to
replace the exhaustive search in Algorithm 5.4, step 4. This leads to a direct improve-
ment of all the previous complexities, but the most time-efficient algorithm add a cost
in memory. In particular, memory-heavy algorithm for the subset-sum are less likely to
be relevant here, as Kuperberg’s algorithms have a better asymptotic complexity. More-
over, the improvement of Theorem 5.4 induces a larger memory cost than the original
tradeoff, as the final instances are bigger. The tradeoffs are summarized in Table 5.2.

5.6.4 Kuperberg’s second algorithm: k-list
Kuperberg’s second algorithm [Kup13] is the most time-efficient algorithm to date. It
can be seen as a generalization of Regev’s variant, with a less strict definition of what
we consider to be elements.

5.6.4.1 Phase vectors
The previous algorithms used elements of the form

|ψℓy “ |0y ` exp
ˆ

2iπ sℓ
N

˙

|1y .

74 Chapter 5. Abelian Hidden Shift Algorithms

Table 5.2: Summary of the tradeoffs for Regev’s variant. c is the exponent of the
subset-sum algorithm used as a subroutine.

Classical Classical Quantum Quantum subset-sum AlgorithmTime Memory query/time Memory

Lp
?

2q Opnq Lp1{
?

2q Opnq Ex. search [CJS14]

Lp
a

β2 ` cq Variable Lp´β `
a

β2 ` cq Variable Variable Theorem 5.4
Lpα, cβq Variable Lp1´ α, α{βq Variable Variable Theorem 5.5
O
`

2cn{α
˘

Variable Opnαq Variable Variable Theorem 5.6
L p1q Opnq L p1q Opnq Ex. search Theorem 5.4

L
`

2{
?

3
˘

Opnq L
`

1{
?

3
˘

Opnq Ex. search Theorem 5.4
Lp0.763q Lp0.381q Lp0.381q Opnq [BCJ11] [CJS14]
Lp0.539q Lp0.539q Lp0.539q Opnq [BCJ11] Theorem 5.4
Lp0.312q Lp0.623q Lp0.623q Opnq [BCJ11] Theorem 5.4
Lp0.849q Lp0.849q Opnq Opnq [BCJ11] Theorem 5.4
Lp0.490q Lp0.980q Opnq Opnq [BCJ11] Theorem 5.4

We can see them as a particular case of

ˇ

ˇψpℓ0,...,ℓM q

D

“

M
ÿ

i“0
exp

ˆ

2iπ sℓi
N

˙

|iy ,

which contains rlogpMqs qubits, and is indexed by the M values pℓ0, . . . , ℓM q.
In that case, the vector is defined up to the termwise addition of any value, as only

the phase difference is meaningful (in other words, we can impose that ℓ0 “ 0).

5.6.4.2 Combination routine
Regev’s combination routine can be naturally adapted to phase vectors. From

ˇ

ˇ

ˇ
ψpℓ0,...,ℓM q

E ˇ

ˇ

ˇ
ψpℓ1

0,...,ℓ1
M q

E

“

M
ÿ

i,j“0
exp

ˆ

2iπ
spℓi ` ℓ

1
jq

N

˙

|iy |jy ,

we can compute
M
ÿ

i,j“1
exp

ˆ

2iπ
spℓi ` ℓ

1
jq

N

˙

|iy |jy
ˇ

ˇ

ˇ
ℓi ` ℓ

1
j mod 2k

E

,

and, as before, measure the sum to get a value V . We will obtain a state containining
the qubits |iy |jy for ℓi ` ℓ1

j mod 2k “ V . In practice, we take k » logpMq, to obtain a
vector whose termwise differences will always be a multiple of 2k, and which will contain
roughly M elements. This is called collimation. Now, if we want to have a compact
phase vector that uses only logpMq qubits, we need to relabel the |iy |jy, that is, choose
a mapping f :

␣

pi, jq|ℓi ` ℓ
1
j mod 2k “ V

(

Ñ r0;M s and transform the state
ÿ

i,j:ℓi`ℓ1
j“V

exp
ˆ

2iπ
spℓi ` ℓ

1
jq

N

˙

|iy |jy

5.6. Hidden shift modulo a power of 2 75

into
ÿ

i,j:ℓi`ℓ1
j“V

exp
ˆ

2iπ
spℓi ` ℓ

1
jq

N

˙

|fpi, jqy .

This state is also a phase vector, associated to the vector containing the value pℓi`ℓ1
jq at

index fpi, jq. Moreover, the difference between all the values will always be a multiple
of 2k.

Algorithm 5.6 Kuperberg’s second combination routine [Kup13]

Input:
´ˇ

ˇ

ˇ
ψpℓ0,...,ℓM q

E

,
ˇ

ˇ

ˇ
ψpℓ1

0,...,ℓ1
M q

E¯

: @i, 2a|ℓi, 2a|ℓ1
i, r

Output:
ˇ

ˇ

ˇ
ψpv0,...,vM 1 q

E

: @i, 2r`a|vi

1: Tensor
ˇ

ˇ

ˇ
ψpℓ0,...,ℓM q

E ˇ

ˇ

ˇ
ψpℓ1

0,...,ℓ1
M q

E

“
řM

i,j“0 exp
´

2iπ spℓi`ℓ1
jq

N

¯

|iy |jy

2: Add an ancilla register, apply |iy |jy |0y ÞÑ |iy |jy
ˇ

ˇℓi ` ℓ
1
j mod 2r`a

D

3: Measure the ancilla register, leaving with

V and
ÿ

i,j:ℓi`ℓ1
j mod 2r`a“V

exp
ˆ

2iπ
spℓi ` ℓ

1
jq

N

˙

|iy |jy

4: Compute the M 1 ` 1 corresponding i, j
5: Apply to the state a transformation f from pi, jq to r0;M 1s.
6: Return the state and the vector v with vfpi,jq “ ℓi ` ℓ

1
j .

Combination cost. We consider here that M 1 » M . The classical time cost comes
from the computation of the labels i, j such that ℓi ` ℓ1

j mod 2r`a “ V . This can be
done efficiently by sorting the two lists, hence the cost is in OpM logpMqq. The classical
memory cost is only the storage cost of the lists, in OpMq. The quantum time cost
is the cost of computing the sum in superposition, and then relabeling. The sum can
be computed in OpMq operations, by adding each classically-known vector component,
one at a time. The relabeling can be done by computing, for each pi, jq, fpi, jq, and
then, for each fpi, jq, erasing the corresponding pi, jq. Overall, this is in OpMq.

While the previous algorithm used the number of phase elements to obtain a bet-
ter element, it is here the size of the vectors which allows to obtain a better vector.
Moreover, we have an additional quantum time cost which was not in the previous
approach.

5.6.4.3 Complete algorithm
The algorithm, as Regev’s variant, applies recursively the combination routine. The
combination of a vector of 2a elements allows to gain b bits, and produces a vector of
size 2a´b. As with Regev’s variant, the combination routine for level i ` 1 can cost
more than the combination routine for level i. As each combination takes 2 elements
and produces 1, it can cost twice more. However, this induces a higher memory cost, as

76 Chapter 5. Abelian Hidden Shift Algorithms

0 tree level

list size

t´ q “ ℓ0

m

t

q

n

Figure 5.5: Size of the lists in function of the tree level, in log2 scale, annotated with
the different parameters.

larger elements require to have a larger list in classical memory. Finally, in the end, we
only need to have a vector of size 2. Hence, the algorithm will have 3 parts: while some
classical memory is available, increase the length of the vectors, once it is saturated, use
a fixed length, and in the end, project the vector on a pair. This final step allows to
gain b´ 1 bits if the vector is of size 2b.

Initial vectors. We can take directly the phase elements as phase vectors of size two
to begin. However, we can also take b phase elements, and produce a phase vector of
size 2b, simply by tensoring them. Indeed,

â

i

|ψℓi
y “

ÿ

jPt0,1uk

exp
ˆ

2iπ j ¨ pℓ1, . . . , ℓkq
2n

˙

|jy ,

and the index j has the label j ¨ pℓ1, . . . , ℓkq.

Complexity. We consider that the algorithm has e levels, and the initial phase vectors
are of size 2b. The time cost will be in rO

`

2b`e
˘

, as the first step is performed 2e times,
the second 2e´1 times, and so on.

If we omit polynomial factors, we can denote the classical and quantum time as 2t,
the available memory as 2m memory and the number of quantum queries as 2q. With
these notations, the list size for each level is distributed as in Figure 5.5. We have q
equal the number of levels, and t equal the number of levels plus ℓ0. As each level
constrains as many bits as the log of its list size, the total amount of bits constrained
by the algorithm corresponds to the hatched area.

Hence, with maxpm, qq ď t ď m` q, we can solve the hidden shift problem with

´
1
2
pt´m´ qq2 `mq “ n

Kuperberg’s algorithm [Kup13]. If we consider t “ m “ q, we directly obtain the
cost of rO

´

2
?

2n
¯

from [Kup13].

5.7. General hidden shift algorithms 77

Table 5.3: Summary of the tradeoffs for Kuperberg’s second algorithm

Classical Classical Quantum Quantum NoteTime Memory query Time
O
`

2t
˘

O p2mq O p2qq O
`

2t
˘

´1
2pt´m´ qq

2 `mq “ n

O
´

2
?

2n
¯

O
´

2
?

2n
¯

O
´

2
?

2n
¯

O
´

2
?

2n
¯

O
´

22
?

n
¯

O
´

2
?

n
¯

O
´

2
?

n
¯

O
´

22
?

n
¯

O
`

22t
˘

O p2mq O p2qq O
`

2t
˘

´1
2pt´m´ qq

2 `mq “ 2n
3

O
´

24
?

n
3

¯

O
´

22
?

n
3

¯

O
´

22
?

n
3

¯

O
´

22
?

n
3

¯

O
ˆ

24
b

2n
3

˙

O
ˆ

2
b

2n
3

˙

O
ˆ

2
b

2n
3

˙

O
ˆ

22
b

2n
3

˙

Classical/Quantum Tradeoffs. The previous approach had the inconvenient of us-
ing equal classical and quantum times, up to polynomial factors. In practice, we can
expect to be allowed more classical operations than quantum gates. We can obtain
different tradeoffs by reusing the previous 2-list merging tree, and seeing it as a 2k-list
merging tree. That is, we see k levels as one, and merge the 2k lists at once. This allows
to use the Schroeppel-Shamir algorithm for merging, with a classical time of 22k{2 and
a classical memory of 22k{4. This operation is purely classical, as we are computing lists
of labels, and it does not impact the quantum cost. Moreover, while we used to have a
constraint on logpkqm bits, we now have a constraint on pk ´ 1qm bits.

For k “ 2, omitting polynomial factors, with a classical time of 22t and quantum time
of 2t, a memory of 2m, a number of quantum queries of 2q and maxpm, qq ď t ď m` q,
we can solve the hidden shift problem with

´
1
2
pt´m´ qq2 `mq “ 2n{3 .

The general tradeoffs for k “ 1 and k “ 2 are presented in Table 5.3.

5.7 General hidden shift algorithms
This section shows how to generalize the previous algorithms in different cases. The op-
timization of Algorithm 5.3, its simulation, the variant for pZ{ p2pqq

w, the discussion on
the variants of the promise and the extension to nonabelian groups have been proposed
in [BN18]. The simulation of Algorithm 5.8 for Z{ pNq have been proposed in [BS18].

5.7.1 Optimizing Algorithm 5.3
It is possible to relax the constraints on the set of labels we want, as we can associate,
in this case, a bit of s to a given label that allows to recover that bit.

For example, the phase element |ψ2n´1y “ |0y ` p´1qs |1y can be associated with s0,
the parity bit of s, as a measure of |ψ2n´1y in the Hadamard basis has outcome s0. The

78 Chapter 5. Abelian Hidden Shift Algorithms

phase element |ψ2n´2y “ |0y` p´1qps´s0q{2 exp
`

iπ s0
2
˘

|1y can be associated with s1, as if
s0 is known the term exp

`

iπ s0
2
˘

can be erased by applying a phase shift gate of angle
´π s0

2 . We have the same property with |ψ2n´1`2n´2y, which is associated with s1, and
has to be corrected by a phase shift of ´π 3s0

2 .
In general, the phase element |ψα2n´i`1`2n´iy can be associated with si´1, and re-

quires a phase correction of angle ´π p2α`1qs
2i´1 , which only depends on the bits s0 . . . si´2

of s. Hence, we do not need to have a specific set of n labels to recover s, but only one
odd label, one label multiple of 2, one multiple of 4, and so on.

Algorithm 5.3 wastes many phase elements at each step, that we cannot combine,
and only seeks for specific collisions. A simpler and slightly more efficient approach
is, given a set of elements multiple of 2a, to look for the pair that may lead to a
multiple of the largest possible multiple of 2. This opportunistic variant of the algorithm
corresponds to Algorithm 5.7.

Algorithm 5.7 Opportunistic variant, in base 2 [Kup05, Algorithm 3]
1: Generate a sufficiently large number N of phase elements Ź Queries
2: Separate them in pools Pi of elements whose label is divisible by 2i and not 2i`1

3: For i :“ 0 to n´ 2 do
4: While |Pi| ě 2 do
5: Pop two elements p|ψay , |ψbyq of Pi such that a` b or a´ b has the highest

possible divisibility by 2 (and is not 0)
6: Combine |ψay , |ψby Ź Combination
7: Insert the resulting |ψcy in the corresponding pool Pj

8: If Pn´1 ‰ H then Ź Found |ψ2n´1y?
9: Perform a measurement on |ψ2n´1y

10: Return s0
11: Return Failure

The previous algorithm focuses on s0, but it turns out that any phase element in
Pi can be associated with the bit sn´i´1. Hence, as we’ve shown in [BN18], we can
recover all the bits of s if we ensure that all the Pi are non-empty. This is done in
Algorithm 5.8.

Other variants. The two other hidden shift algorithms compute on-the-fly, and do
not waste anything after producing |ψ2n´1y, which makes this optimization less appeal-
ing for them.

5.7.1.1 Concrete cost estimates of Algorithm 5.8
Algorithm 5.8 is a quantum algorithm that can easily be simulated classically, as all the
logic is classical computations on the labels. As the initial phase elements have a label
uniform in Z{ p2nq, we can replace them with a uniformly random value in Z{ p2nq, and
as the outcome of the combination routine is either the sum or the difference of the two
input labels, the combination can be replaced with an unbiaised coin flip.

5.7. General hidden shift algorithms 79

Algorithm 5.8 Variant to obtain all the needed elements at once [BN18]
1: Generate a sufficiently large number N of phase elements Ź Queries
2: Separate them in pools Pi of elements whose label is divisible by 2i and not 2i`1

3: For i :“ 0 to n´ 2 do
4: While |Pi| ě 3 do
5: Pop two elements p|ψay , |ψbyq of Pi such that a` b or a´ b has the highest

possible divisibility by 2 (and is not 0)
6: Combine |ψay , |ψby Ź Combination
7: Insert the resulting |ψcy in the corresponding pool Pj

8: If @i P r0, n´ 1s, Pi ‰ H then
9: Perform a measurement on a qubit in each pool

10: Return s

11: Return Failure

Table 5.4: Simulation results for Algorithm 5.8 for 90% success probability [BN18]

n queries log2pqueriesq 1.8
?
n´ 0.5 trials

16 118 6.9 6.7 106

32 826 9.7 9.7 106

64 14975 13.9 13.9 5ˆ 105

80 49200 15.6 15.6 105

128 9.8ˆ 105 19.9 19.9 5ˆ 104

We used a radix tree structure to efficiently find the elements such that their sum or
differences have the highest possible divisibility by 2. Table 5.4 summarizes the results
of our simulations. We obtained that Algorithm 5.8 requires roughly 21.8

?
n´0.5 queries.

As
a

2 log2p3q » 1.8, this matches the asymptotic complexity estimation of Theorem 5.3,
with a small constant instead of a polynomial overhead.

5.7.2 Hidden shift in Z{ pNq

If we are not working modulo a power of 2, we need slightly more work to recover the
shift. The general idea is the same, that is, recovering qubits whose label is a power of
2.

Proposition 5.3. Let n “ rlog2pNqs. From the phase elements labeled 2j, for 0 ď j ă n,
it is possible to recover s with a probability greater than 4

π2 .

Proof. Let’s consider the tensored state of the phase elements

1
2n{2

n´1
â

j“0
|0y ` exp

ˆ

2iπ2is

N

˙

|1y “ 1
2n{2

2n´1
ÿ

x“0
exp

´

2iπxs
N

¯

|xy

If N “ 2n, this is exactly the QFT of s, hence applying the inverse QFT produces s
with probability 1.

80 Chapter 5. Abelian Hidden Shift Algorithms

Table 5.5: Simulation results for Algorithm 5.8 modulo N , for 90% success

log2pNq log2pQq 1.8
a

log2pNq ` 2.3

20 10.1 10.3
32 12.4 12.5
50 15.1 15.0
64 16.7 16.7
80 18.4 18.4
100 20.3 20.3

Otherwise, if we apply an inverse QFT modulo 2n on this state, we obtain

1
2n

2n´1
ÿ

y“0

2n´1
ÿ

x“0
exp

´

2iπx
´ s

N
´

y

2n

¯¯

|yy

From Lemma 5.1, a measurement of this state will produce a value y such that 2n
`

s
N ´

y
2n

˘

ă
1
2 with a probability greater than 4

π2 . Such a y always exists and uniquely defines s if
n ą log2pNq.

Hence, we still want to produce labels corresponding to powers of 2. However, there
is no longer an incentive to produce multiples of powers of 2, as this does not correspond
to a subgroup. There are two approaches to produce a given label:

• Focusing on the label 1 [Kup05]. Using the same combination techniques,
be can seek smaller values instead of multiples of a power of 2. For Kuperberg’s
first algorithm, the combination circuit is the same. For Regev’s variant and
Kuperberg’s second algorithm, we only need to measure tj ¨ pℓ1, . . . , ℓkq{2ru instead
of j ¨ pℓ1, . . . , ℓkq mod 2r.

• Applying the previous method [BS18]. If we apply the previous method, we
will obtain a label ℓ “ 2n´1 mod 2n. There is a chance that the equality holds
in Z, that is, ℓ “ 2n´1. In that case, the produced label can be used to recover s.
We have simulated this approach for Algorithm 5.8, the results are presented in
Table 5.5.

Recovering the other powers of 2 [Kup05]. The approach to get a small label
allows in fact to obtain any power of 2. Indeed, if we want to recover the value v for
v invertible, we can multiply all the labels by v´1 and compute the label 1, which will
correspond to v. If N “ 2eN 1, then we need to mix the two approaches: using the first
approach to produce labels multiples of 2e, and then the second approach to produce
any given multiple of 2e.

5.7. General hidden shift algorithms 81

5.7.3 Hidden shift in abelian groups
The general method for abelians group is the same, except that the addition used in
the computation is the one of the group. If the group is not cyclic, then there are
multiple independent components, but the same approaches can be used, at a cost
roughly corresponding to the cost of the algorithm for a cyclic group of the same size.

5.7.3.1 Case of pZ{ p2wqq
p

As we’ve shown in [BN18], the case of parallel additions modulo a power of 2 is in fact
easier. We can see it as an intermediate problem between Simon’s problem (w “ 1) and
the cyclic hidden shift problem (p “ 1).

Target labels. The elements whose label satisfies ℓj P
␣

0, 2w´1(are of the form
ˇ

ˇψℓ1,...,ℓp

D

“ |0y` exp piπ
ř

sjℓjq |1y, so measuring them in the t|´y , |`yu basis will give
us the parity of

ř

sjℓj , that is, a linear equation in the parity bits of the sj . In the case
w “ 1, we get a variant of Simon’s algorithm for hidden shifts.

Recovering the complete shift. Once all the parity bits are known, we can recover
the next bits if we have a set of p elements whose labels are multiple of 2w´2 and that
form a full-rank system of equations, and so on.

New approach. We can use the parallel structure of the hidden subgroup: given p`1
random labels, we can find a subset whose sum (or difference) will always be even on
all the components: if we look at the parity vector of the elements, this corresponds to
a linearly dependent subset of the vectors. This approach can be useful if p is big with
respect to the size of the pools: with on average p{2` 1 vectors, we can zero p bits. We
can then iterate the technique to set to zero the next row of bits, and so on. This is
described in Algorithm 5.9.

Lemma 5.4 (Equation cost). An iteration of the outer for loop of Algorithm 5.9 pro-
duces one element with p zeroed bits using on average pp{2` 1q elements, and needs p
qubits.

Proof. A step of Algorithm 5.9 uses random equations to produce a zeroed element. If
we have p elements that form a basis of Z{ p2qp, any other element is a linear combination
of p{2 elements, on average, in this basis. If we have a basis, we can hence get an equation
that has, on average p{2 ` 1 elements, and that sums to zero on the p bits. We can
then construct such a basis by choosing p random elements : if they form a free family,
we have a basis, if not, we then have some elements that sum to zero.

Theorem 5.7. Algorithm 5.9 has a complexity in quantum queries and time of around
2pp{2 ` 1qw, and a classical time in Oppp{2 ` 1qw`3). It needs 2ppw ´ 1q quantum
memory, plus the oracle cost.

82 Chapter 5. Abelian Hidden Shift Algorithms

Algorithm 5.9 Algorithm for parallel additions [BN18]
System = rH;ws
While System[w ´ 1] has not full rank do

Query
ˇ

ˇψℓ1...,ℓp

D

.
v Ð pℓ1 . . . , ℓpq
iÐ 0
While v ‰ p0, . . . , 0q and i ă w ´ 1 do

If v is in the span of System[i] then
There exists S Ă System[i] such that v “

À

wPS w
Apply Circuit 5.4 on v and the elements of S
Compute the corresponding label pℓ1

1 . . . , ℓ
1
pq

v Ð pℓ1
1 . . . , ℓ

1
pq

Else
Add v to System[i]
v Ð p0, . . . , 0q

From the values in System[w ´ 1], recover the parity bits of each component of the
shift.

Proof. We want p elements in System[w ´ 1] (with only p elements, as they would be
random, the success probability is only of 1{e, but we can get arbitrarily close to 1 with
a fixed overhead). We can obtain 1 element in System[i` 1] from pp{2` 1q elements in
System[i]. The total cost is then of

ppp{2` 1qw´1 ` ppp{2` 1qw´2 ` ¨ ¨ ¨ ` p,

which reduces to 2pp{2`1qw. The total cost in quantum memory is then ppw´1q qubits,
for the w ´ 1 steps. One combination requires to solve a linear system of equations in
dimension p, which costs Opp3q “ Oppp{2` 1q3q classical time.

Comparison with the generic approaches. This algorithm can be seen as a par-
ticular case of Regev’s variant. Indeed, the subset-sum problem modulo 2 is easy, and
corresponds to solving a system of linear equations. Its scaling in function of p and w
is different, as the cost of the generic approach depends on ?pw while the cost of this
algorithm depends on w logppq.
Remark 5.6 (Case of interest). Algorithm 5.9 is more efficient than Kuperberg’s second
algorithm when w ă p

2 logpp{2`1q2 .

5.7.4 Combining the different algorithms
All the hidden shift algorithms presented in this chapter work with phase elements,
and the time-efficient algorithms combine them to obtain new elements with a more
interesting label. This means we can mix the different approaches in the same algo-
rithm. In particular, Algorithm 5.9 can be used to reduce the cost of solving the hidden
shift in pZ{ p2wqq

p even for large w. Even if this does not allow to reduce the best

5.7. General hidden shift algorithms 83

asymptotic exponents, the different approaches have a different classical and quantum
time/memory/query tradeoffs, and a combined algorithm may be more interesting, de-
pending on the set of resources available.

5.7.5 Variants on the promise
This section studies different situations, when the promise of the hidden shift is not
exactly fullfilled, as we did with Simon’s algorithm in Section 4.2.

Lemma 5.5 (Unwanted collisions). Let f : Z{ pNq Ñ Z{ pNq be a random function,
s P Z{ pNq, g such that gpxq “ fpx` sq. Given a quantum oracle access to f and g, we
can retrieve s in Q quantum queries if we can solve the hidden shift problem in Z{ pNq
with a permutation using Q{e quantum queries.

Proof. We need to decompose the steps of the generation algorithm (Algorithm 5.2) .
The measurement of the third register of

ÿ

x

|0y |xy |fpxqy ` |1y |xy |gpxqy

produces

|0y
c
ÿ

j“1
|xjy ` |1y

c
ÿ

j“1
|xj ` sy

and the measurement yields fpxjq with probability c{2n. After the QFT, the measure-
ment will give us a label ℓ and a qubit

˜

c
ÿ

j“1
exp

ˆ

2iπxjℓ

2n

˙

¸˜

|0y ` exp
ˆ

2iπ sℓ
2n

˙

|1y

¸

As a qubit is invariant by a global phase shift, we still get a valid element. However, it
is not uniformly sampled, and the probability of getting a given ℓ is

p “
1
c2n

ˇ

ˇ

ˇ

ˇ

ˇ

c
ÿ

j“1
exp

ˆ

2iπxjℓ

2n

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Notably, the case ℓ “ 0, which is useless for us, is the most probable.
It is known [FO90] that for a random function, the expected number of images

with r preimages is 2n{e{r!. The first measurement samples on the images, uniformly
if it is a bijection, and proportionally to the number of preimages in the general case.
That means we’ll have a probability of r{e{r! “ 1{e{pr ´ 1q! of getting an image with
r preimages. We’ll get a unique preimage with probability 1{e, so that means with e
times the number of samples, we’ll get enough elements with only one preimage. This
is a very rough approximation, as the multiple preimages induces only a bias on the
generated elements.

Remark 5.7. Alternatively, we can consider the function F pxq “ pfpxq, fpx ` 1q, . . . q,
that has the same shifts as f , but has a smaller probability of unwanted collisions, at
the cost of having to query f multiple times for one query of F .

84 Chapter 5. Abelian Hidden Shift Algorithms

Multiple shifts. If we have multiple shifts, that is, fpxq “ gpx` sq “ gpx` tq, then
t´ s is a hidden period of f (and g), which can be recovered with Shor’s algorithm.

The following lemma addresses the problem of functions which respect the shift
promise only for a subset of their inputs, and shows this is still resolvable if the number
of wrong inputs is small enough.

Lemma 5.6 (Partial shift). Let f , g two permutations of Z{ pNq, s P Z{ pNq, X Ă

Z{ pNq such that, for all x P X, fpxq “ gpx` sq. Then if the hidden subgroup problem
in Z{ pNq costs Q queries, we can retrieve s given quantum oracle access to f and g in
Q queries, with probability p|X|{NqQ.

Proof. If we measure an fpxq whose x is in X, then we have a valid element. This
happens with probability |X|{N . If this is not the case, we get a malformed qubit. We
can expect the algorithm to succeed only if all the Q queried elements are valid, which
happens with probability p|X|{NqQ.

The following lemma is used to attack Poly1305 with quantum queries in Sec-
tion 7.7.3.

Lemma 5.7 (Input restriction). Let f, g be two permutations of Z{ pNq, s P Z{ pNq
such that, for all x, fpxq “ gpx`sq. Given a quantum oracle access to f and g restricted
to the inputs 0 ď x ă 2n, if 0 ď s ă 2n´1 and the hidden subgroup problem in Z{

`

2n´1˘

can be solved in Q queries, s can be retrieved in eQ2 queries.

Proof. We are only given access to the interval r0; 2nq. We cannot see the hidden shift
in Z{ pNq as a hidden shift in Z{ p2nq. However, if s is small enough, we have an instance
of a partial hidden shift, the valid elements being the ones such that 0 ď x ă 2n and
0 ď x ` s ă 2n. The probability to get a bad element is less than s{2n in this case. If
we need Q queries, and s{2n » 1{Q, then the success probability will be greater than
p1´ 1{QqQ » 1{e. This fails for greater s.

However, we can query a subinterval of r0; 2nq for f and g. For A P r0; 2n´1q,
if we query r0; 2n´1q to fpxq and gpx ` Aq, we will retrieve s with probability 1{e if
0 ď s ´ A ă 2n´1{Q1, if we need Q1 queries to solve the hidden subgroup problem in
Z{

`

2n´1˘.
To retrieve s, we can sequentially test for all A multiples of 2n´1{Q1, until we reach

2n´1. We then have Q1 intervals to test, and each test costs Q1 queries. Moreover, the
algorithm will succeed if the test with the right guess of A succeeds, and can be verified
with a few classical queries. As the right guess has a success probability greater than
1{e, we expect to find the shift in eQ12 queries.

5.7.6 Hidden shift in nonabelian groups
The algorithms presented in this chapter can’t be used with non-abelian groups. How-
ever, these groups contain some abelian subgroups (as for example the iterated powers
of an element). We can apply the algorithm on such a subgroup, and it will succeed if
the hidden shift lies in this subgroup. The idea is then to look for this situation. It can

5.7. General hidden shift algorithms 85

be done by considering the right cosets of the abelian subgroup A. Indeed, all group
elements can be uniquely written as ar, with a P A and r a fixed representative of a
right coset. The hidden shift can be decomposed as s “ sasr, and with fpxsq “ gpxq,
the relation fpxsasrq “ gpxq can be seen as f 1pxsaq “ gpxq, which is an instance of the
hidden subgroup problem in A. The complete algorithm is then to do a Grover search on
the right coset, and then try to solve the problem in A, as presented in Algorithm 5.10.

As the hidden shift is a joint property of the two functions, we cannot do a collision
search as in the generic case, and need an exhaustive search. This procedure can also
be used to solve the hidden period problem, as this is the case f “ g. Hence, we can
upper bound the hardness of the generic hidden shift problem in function of the size of
the group (around 2n) and the size of its maximal abelian subgroup (around 2a), which
would be around 2pn´aq{2`

?
2a. Such bound is not always interesting, as the generic

quantum collision in 2n{3 can also be applied.

Algorithm 5.10 Generic resolution of a hidden shift problem in a nonabelian group
A Ð A commutative subgroup of G
C Ð tA representative of each right cosetu
procedure GroverSearch(c P C) Ź c is assigned in quantum superposition

sÐ Kuperberg’s algorithm result in A for fpxcq and gpxq
If fpxscq “ gpxq for a few random x then

Mark c
Ź c is now the representative of the coset of the shift

sÐ Kuperberg’s algorithm result in A for fpxcq and gpxq
Return sc

Examples. GL2pqq contains pq2 ´ qqpq2 ´ 1q elements, some of which of order q2 ´ 1.
If we consider the group generated by such an element, we’ll have A of size around q2 »

2n{2. This means the complexity of the HSP in GL2pqq is at most around q22
?

log2pqq “

2n{4`
?

n. For Sn, we can consider the subgroup generated by the 2-cycles tp2i´1, 2iq|1 ď
i ď n{2u. As all the cycles are disjoint, this is an abelian group of size 2n{2, isomorphic
to pZ{ p2qqn{2. This allows the use of Simon’s algorithm to find the hidden shift, with a
total cost of around n2´n{4?n!, for a group of size n!. This is however asymptotically
worse than 3

?
n!.

Chapter6Searching for a Hidden Structure

This chapter is devoted to quantum algorithms for problems more applied than mere
hidden subgroup problems, where there exists a function that fulfills the property among
many possible functions, and we want to identify both the function and the subgroup.
This kind of problems are recurrent in cryptanalysis. A first algorithm that combined
Grover and Simon’s algorithm was proposed by Leander and May [LM17], with an
application to attack the FX construction with superposition queries. With Akinori
Hosoyamada, María Naya-Plasencia, Yu Sasaki and André Schrottenloher [Bon+19],
we proposed a new version of the algorithm that only needs a polynomial number of
queries (while the original algorithm was exponential in query), and showed that in some
cases, it can be applied even if we only have access to a classical oracle. Our algorithm is
the building block for the first example of quantum attacks that use Simon’s algorithm
but do not require a quantum oracle. In that sense, it also provides a partial answer
to a question in quantum computing: “Is Simon’s algorithm useful?”. It can be seen
either as an improved collision algorithm, or as a hidden period algorithm that does not
need superposition queries. This chapter focuses on a search with Simon’s algorithm
(Chapter 4), but it can be applied with any quantum algorithm that needs to call a
function on a fixed quantum superposition. Some applications of these algorithms are
presented in Chapter 7 and in Chapter 9.

Contents
6.1 Combining Grover’s and Simon’s algorithms 88
6.2 The offline Simon’s algorithm . 90

6.2.1 A more structured problem 90
6.2.2 The offline Simon’s algorithm 91

6.3 Simon’s algorithm with classical queries 93
6.4 Implications . 95

The general problem we want to tackle is the following:

Problem 6.1 (Search for a periodic function). Let f P t0, 1uk ˆ t0, 1un Ñ t0, 1uℓ be a
function, such that there exists a unique i0 P t0, 1uk such that fpi0, ¨q fulfills the promise
of Simon’s algorithm. Given oracle access to f , find i0 and the period of fpi0, ¨q.

We will focus on algorithms that retrieve i0, as once i0 is known, the period of fpi0, ¨q
can be found in one application of Simon’s algorithm.

87

88 Chapter 6. Searching for a Hidden Structure

6.1 Combining Grover’s and Simon’s algorithms
The algorithm proposed in [LM17] to solve Problem 6.1 is quite simple: do a quantum
search on i with the test function “is fpi, ¨q periodic?”. In order to do so, we need a
measurement-free version of Simon’s algorithm. This is not an issue, but it requires to
solve a linear system of equations in quantum superposition. The only thing we need
to define is the quantum circuit used in the amplitude amplification, and we need to
estimate its success probability.

To simplify the analysis, we suppose that fpi0, xq is a 2-to-1 function, and that
fpi, xq for i ‰ i0 is a permutation. The analysis can be extended to any function using
the methods of Section 4.2.2, that is, we only need to multiply the number of queries
used by Simon’s algorithm by a small constant.

Simon’s algorithm as a test function. What we really want is to be able to
distinguish between a periodic function and a random function. Simon’s algorithm
samples values orthogonal to the period. Hence, we first need to assume that the period
is not 0. This is generally not an issue, as we can test separately this case, or simply
dismiss it, as this edge case should occur with a negligible probability.

Algorithm 6.1 Grover-meets-Simon algorithm [LM17]
Input: An oracle to fpi, xq, such that fpi0, ¨q has a period s ‰ 0.
Output: i0

1: Filter i
2: Apply Simon’s algorithm to fpi, ¨q.
3: Get the period s.
4: If s “ 0: Abort
5: End Filter

Theorem 6.1 (Cost of Algorithm 6.1). Let f P t0, 1ukˆt0, 1un Ñ t0, 1uℓ be a function,
i0 P t0, 1uk such that:

• There exists a unique s ‰ 0 such that rfpi0, xq “ fpi0, yq ô x‘ y P t0, sus.

• For all i ‰ i0, fpi0, ¨q is injective.

Algorithm 6.1 finds i0 with probability greater than 1´2´α´2´k´2α´k using at most
π
2 2k{2 applications of Simon’s algorithm if each application uses n`α` k superposition
queries to f .

Proof. We use Simon’s algorithm to sample values orthogonal to the period. If the
period exists, the rank of these values will be at most n ´ 1, and if there is no period,
we are sampling random values, which can be of rank n. This is our distinguisher
between the two cases. The probability that a set m of random values is of rank less
than n is lower than 2n´m (Proposition 4.1). Hence, each of the 2k ´ 1 wrong values
passes our test with probability 2n´m, while the value we want passes it with probability

6.1. Combining Grover’s and Simon’s algorithms 89

1. Amplitude amplification will produce the superposition of all the values that pass
the test. Hence, we will measure the value we want with probability greater than

1
1`p2k´1q2n´m ě 1´ 2k`n´m. The more false positives we have, the fewer amplification
amplitude iterations we need to do, hence we have at most π

2 2k{2 iterations.
The test circuit of amplitude amplification has a success probability of 2´k ˆ 1 `

p2k ´ 1q2´k ˆ 2n´m » 2´k ` 2n´m. Hence, it succeeds with probability greater than
1´ 2´k ´ 2n´m in less than π

2 2k{2 applications of Simon’s algorithm.
Overall, we obtain the value we want with a probability greater than

´

1´ 2´k ´ 2n´m
¯´

1´ 2k`n´m
¯

ě 1´ 2´k ´ 2n´m ´ 2k`n´m.

Remark 6.1 (Non-injective functions.). For non-injective functions, we can bound the
number of queries using Proposition 4.5, and taking the maximal p0 over all the fpi, ¨q,
which will only multiply the number of queries by a constant that depends on f .

Using an external test function. In some cases, we may be able to check directly if
the index and the period are correct. This would allow us to check if the value found to
have a period is correct or not. It allows to very efficiently remove the problem of false
positives, and reduces the necessary number of queries in Simon’s algorithm. Moreover,
it does not require a special treatment of the case s “ 0. We suppose that the cost of
the test is comparable to a call to f , which allows to neglect it compared to the cost of
Simon’s algorithm.

Algorithm 6.2 Grover-meets-Simon with external test
Input: An oracle to fpi, xq, such that fpi0, ¨q has a period s ‰ 0, a test function
for pi, sq.
Output: i0

1: Filter i
2: Apply Simon’s algorithm to fpi, ¨q.
3: Get the period s. Ź If the rank is n´ 1, take the non-zero period
4: If pi, sq passes the external test then
5: Return i

6: End Filter

The algorithm is the same as before, except that:

• We need to have a maximal rank for the correct guess (or to check all the values
in the vector space),

• We can suppress any false positive with the external test.

In practice, this allows to directly use Simon’s algorithm (and in particular Propo-
sition 4.1 and 4.5) within an amplitude amplification (Theorem 3.2), as the probability
that Simon’s algorithm, given a uniformly random i, passes the test will be 2´k p1´ 2´αq.
As we do not have any false positive, we only need to amplify slightly more than in the

90 Chapter 6. Searching for a Hidden Structure

case of a deterministic test (
?

1´ 2´α times more), to obtain the correct i with a prob-
ability greater than 1 ´ 2´k. Hence, the number of queries we need is unaffected by k.
Overall, the total number of queries is pn` αqπ

2 2k{2 1?
1´2´α .

Theorem 6.2 (Optimal number of queries for Algorithm 6.2). The total number of
queries is minimized when α » log

´

lnp2q

2 pn` logpnqq
¯

, with a total number of queries
around pn` logpnqqπ

2 2k{2.

Proof. The total number of queries is minimized when n`α?
1´2´α is minimized. Deriving

it, we obtain that the cost is minimal if 2α ´ 1 “ lnp2q

2 pn` αq.

6.2 The offline Simon’s algorithm
We devised the following algorithms, which are presented in [Bon+19].

6.2.1 A more structured problem
In cryptographic applications, the family of functions fpi, ¨q is often fairly structured:
it depends on a unique secret keyed function Ek, that we query, and some additional
computations. Moreover, the input space on which we query Ek is generally fixed: it
is the uniform superposition of its inputs. Hence, the problem is more structured: we
do not have a black-box access to a family of functions, we have a black-box access to
a unique function, from which we construct the family of functions. This section shows
how to reduce drastically the number of queries if we have a family of functions that can
all be computed given the same superposition of inputs, that is, given

ř

i,x |iy |xy |Ekpxqy,
we can compute

ř

i,x |iy |xy |fpi, xqy.

Problem 6.2 (Constructing and Finding a Hidden Period). Let Ek : t0, 1un Ñ t0, 1uℓ
be a function, f : t0, 1un ˆ t0, 1uk Ñ t0, 1uℓ be a family of functions such that for
all i, there exists a reversible mapping between the set tpx,Ekpxqq|x P t0, 1uℓu and
tpx, fpi, xqq|x P t0, 1uℓu. Assume that there exists a unique i0 P t0, 1uk such that fpi0, ¨q
satisfies Simon’s promise. Given oracle access to Ek, find i0 and the period of fpi0, ¨q.

This notion of reversible mappings corresponds to any superposition computable
reversibly given the superposition

ř

x |xy |Ekpxqy, which means we need to be able to
compute reversibly, from i, x, Ekpxq, and i, x1, fpi, x1q, with a bijection between x and
x1.

This problem catches a notion of constructibility of a family of functions given a
fixed superposition of values. In practice, we can often state the instance we want to
solve as a simpler problem:

Problem 6.3 (Asymmetric Search of a Period). Let F : t0, 1umˆt0, 1un Ñ t0, 1uℓ and
Ek : t0, 1un Ñ t0, 1uℓ be two functions. We consider F as a family of functions indexed
by t0, 1um and write F pi, ¨q “ fip¨q. Assume that there exists a unique i0 P t0, 1um such
that fi0 ‘ Ek satisfies Simon’s promise. Given oracle access to F and Ek, find i0.

6.2. The offline Simon’s algorithm 91

This simpler version makes more explicit the kind of functions we are interested in:
each function can be separated in two parts, Ek, which is fixed, and expected to be
costly, and fi, which depends on a parameter and cheaper to compute.

6.2.2 The offline Simon’s algorithm
The idea to solve Problem 6.2 is to see Simon’s algorithm slightly differently than
usual. Instead of querying an oracle to a function, we suppose that the algorithm
is given as input a database of Ek, a set of superpositions

ř

x |xy |Ekpxqy. It then
computes the periodic function from this set, and finally extracts the period. We note
ˇ

ˇψm
Ek

D

“
Âm

j“1
ř

x |xy |Ekpxqy, a state which contains m copies of the superpositions of
input/outputs of Ek.

Hence, the algorithm is very similar to Algorithm 6.1, but the test function fetches
ˇ

ˇψm
Ek

D

, uses it to check if the function is periodic, and finally uncomputes everything, to
get back

ˇ

ˇψm
Ek

D

.
We want a circuit that tests if i “ i0. If the test function computed exactly that,

as we would have a result independent from the database, we could get back exactly
the original superposition, and apply the amplitude amplification theorems. This is
unfortunately not the case, and each iteration will degrade the state

ˇ

ˇψm
Ek

D

. In order to
make it work, we need to bound the error at each iteration.

As before, we suppose that fpi0, xq is a 2-to-1 function, and that fpi, xq for i ‰ i0
is a permutation in the analysis.

Algorithm 6.3 The offline Simon’s algorithm
Input: |iy, a database

ˇ

ˇψm
Ek

D

Output: |by telling if fpi, ¨q is periodic, a quantum state close to the database
1: For each superposition in the database, compute

ř

x |xy |fpi, xqy.
2: Apply a Hadamard gate on the first register of each superposition.
3: Compute in superposition the rank r of the values in each first register.
4: bÐ r ‰ n
5: Uncompute everything but the value of b.
6: Return b and the database.

Proposition 6.1 (Precision of Algorithm 6.3). Algorithm 6.3 tests if i “ i0 and adds
a noise of amplitude smaller than 2pn´mq{2`1.

Proof. The ideal circuit we want takes
ř

i |iy
ˇ

ˇψm
Ek

D

|0y as input, and produces the output
ř

i |iy
ˇ

ˇψm
Ek

D

|i “ i0y. This is however not exactly what we have. If i “ i0, then the
answer is correct with probability 1, as the periodicity reduces the maximal rank, and
it behaves like the ideal circuit.

For i ‰ i0, the circuit first constructs

|iy

˜

m
â

j“1

ÿ

xj

|xjy |fpi, xjqy

¸

|0y .

92 Chapter 6. Searching for a Hidden Structure

It then applies a Hadamard gate on |xy, to obtain

|iy

˜

m
â

j“1

ÿ

xj

ÿ

yj

p´1qxj ¨yj |yjy |fpi, xjqy

¸

|0y .

Once this is done, we can compute the rank of the m values yj , and obtain

|iy

¨

˚

˚

˝

m
â

j“1

ÿ

py1,...,ymq
of maximal rank

ÿ

xj

p´1qxj ¨yj |yjy |fpi, xjqy

˛

‹

‹

‚

|0y

` |iy

¨

˚

˚

˝

m
â

j“1

ÿ

py1,...,ymq
of lower rank

ÿ

xj

p´1qxj ¨yj |yjy |fpi, xjqy

˛

‹

‹

‚

|1y .

The second term is the annoying one. The state deviates from the state we want by
2 times the amplitude of the second term, as the terms with the correct results are
missing, and the terms with the wrong result have been added. Hence, the norm of the
noise is 2 times the amplitude of this term. As the probability for m words of n bits to
be of a lower rank than n is bounded by 2n´m (Proposition 4.1), the amplitude of the
second term is bounded by 2pn´mq{2. With the factor 2, we obtain 2pn´mq{2`1.

We can directly plug this test algorithm into a quantum search, as in Algorithm 6.4.

Algorithm 6.4 Quantum search with offline Simon
Input: m, an oracle to Ek.
Output: i0

1: Call m times the oracle on the uniform superposition, to make
ˇ

ˇψm
Ek

D

2: Filter i
3: Call Algorithm 6.3 on |iy

ˇ

ˇψm
Ek

D

4: If a period is found then
5: Return i

6: End Filter

Theorem 6.3 (Complexity of Algorithm 6.4). Algorithm 6.4 finds i0 in π
4 2k{2 applica-

tions of Algorithm 6.3, with probability greater than 1´ 2´k ´ 2pk`n´mq{2`2.

Proof. From Proposition 6.1, the amplitude of the noise is smaller than 2pn´mq{2`1. We
need to perform π

4 2k{2 iterations of the test function, hence, by Theorem 3.3, the final
result will be correct with a probability greater than

´

1´ 2´k
¯´

1´ 2k{22pn´mq{2`1
¯2
ě 1´ 2´k ´ 2pk`n´mq{2`2.

6.3. Simon’s algorithm with classical queries 93

With an external test function Previously, if we had access to an external test
function, we could suppress the dependency in k in the required number of queries.
With the offline variant, this is no longer the case, as a noise is added at each iteration.
Hence, this alternative approach does not gain much here, and has essentially the same
cost as Algorithm 6.4.

Non-injective functions. As with the direct application of Simon’s algorithm, we
can apply the same algorithm to distinguish between periodic and non-periodic func-
tions, even if such functions are not respectively 2-to-1 and injective. We only need
to multiply the number of queries by a small constant that depends on the functions.
Details on how to estimate the constant are presented in Section 4.2.2.

6.3 Simon’s algorithm with classical queries
The previous section showed how to reduce the query cost of a quantum search with
Simon’s algorithm by an exponential factor. If this reduction can offer significant gains
when the oracle costs more than Simon’s algorithm, it does not change the nature of
the attack, which only works if a quantum oracle to the primitive is accessible. This
section shows how to extend the attack when the oracle is only accessible classically.
The core technique is quite simple: the database

ˇ

ˇψm
Ek

D

can be constructed from 2n

classical queries and m2n quantum operations. With this approach, we can solve the
search for a period when restricted to classical queries, and this allows in some cases to
solve Simon’s problem with classical queries.

Generating the database The database
ˇ

ˇψm
Ek

D

is generated sequentially, one query
at a time, as described in Algorithm 6.5. Interestingly, this algorithm can use each
query on-the-fly, and does not need to store anything classically, as all the information
is encoded in the database.

Algorithm 6.5 Generation of
ˇ

ˇψm
Ek

D

from classical queries
Input: A classical oracle to Ek, m
Output:

ˇ

ˇψm
Ek

D

1: |ϕy Ð
Â

m

ř

x |xy |0y
2: For 0 ď i ă 2n do
3: Query Ekpiq
4: Apply to each register in |ϕy the operator

|xy |yy ÞÑ

"

|xy |y ‘ Ekpiqy if x “ i
|xy |yy otherwise

5: Return |ϕy

94 Chapter 6. Searching for a Hidden Structure

f

k1

k2

2n
3

n
3

c

n

Grover search space

Apply Simon’s algorithm

Figure 6.1: Decomposition of Ek for period domain reduction

Restrictions. The use of classical queries adds some restrictions to the instances we
can solve. Notably, to construct the database, we need to query 2n times the same
function, and we lose the ability to use Simon’s algorithm with a function that changes
at each query.

Search for a period with classical queries. We can directly plug the database
generation (Algorithm 6.5) into the offline search (Algorithm 6.4), to obtain our algo-
rithm.

Theorem 6.4 (Complexity of Algorithm 6.4 with classical queries). Algorithm 6.4
finds i0 in π

4 2k{2 iterations of Algorithm 6.3, with probability greater than 1 ´ 2´k ´

2pk`n´mq{2`2. It uses 2n classical queries and m2n simple quantum operations to produce
ˇ

ˇψm
Ek

D

.

Domain Reduction. In cases where we have a small search space (and in the extreme
case of Simon’s problem), Theorem 6.4 is less than ideal, as it imposes to query classically
all the entries to the secret function. We can overcome this limitation by artificially
reducing the size of the periodic function. Indeed, Consider the case Ekpxq “ fpx‘kq‘c.
The function Ekpxq ‘ fpxq has the period k. Furthermore, we can restrict the size of
the period by considering the family of functions

F : t0, 1u2n{3 ˆ t0, 1un{3 Ñ t0, 1un

i, x ÞÑ fpi||xq

If we split k into k1 and k2 as in Figure 6.1, then we have that the function Ekpxq ‘
F pk1, xq has the period k2. We can also apply this approach when we need to search
for a periodic function. Such domain reduction allows to reduce the amount of classical
queries, at the expense of a larger search space.

Theorem 6.5 (Complexity of Algorithm 6.4 with domain reduction). Let Ek1,k2 :
t0, 1un Ñ t0, 1un be a function of the form Ek1,k2pxq “ fpk1, x ‘ k2q ‘ c, with f a
publicly computable function and k1 a k-bit key. For all u P r0;ns, Algorithm 6.4 can
find k2 in π

4 2pn´u`kq{2 applications of Algorithm 6.3, m2u{3 simple quantum operations

6.4. Implications 95

and 2u{3 classical queries with a probability greater than 1´2´pn´u`kq{2´2pk`n´u´mq{2`2.
It uses O pnmq quantum memory and O pnq classical memory.

f

k
p1q
2

k
p2q
2

n´ u

u

c

n

Grover search space

Apply Simon’s algorithm

k1

k

Figure 6.2: Domain reduction with an initial search space.

Proof. Define the function

F : t0, 1uk ˆ t0, 1un´u ˆ t0, 1uu Ñ t0, 1un

i, j, x ÞÑ fpi, j||xq

and k1, k2 “ k
p1q
2 ||k

p2q
2 as in Figure 6.2. As Ek1,k2pxq ‘F pk1, k

p1q
2 , xq has period kp2q

2 , we
can directly apply Theorem 6.4 to obtain the wanted result.

Corollary 6.1 (Simon’s algorithm with classical queries). Let Ek : t0, 1un Ñ t0, 1un
be a function of the form Ekpxq “ fpx‘ kq ‘ c, with f a publicly computable function.
Algorithm 6.4 finds k in π

4 2n{3 applications of Algorithm 6.3, m2n{3 simple quantum
operations and 2n{3 classical queries with a probability greater than 1´2´n{3´2n{3´m{2`2.
It uses O pnmq quantum memory and O pnq classical memory.

When domain reduction is applicable, the best we can achieve is a time and query
cost of 2n{3. This happens to match the query cost of the Brassard-Høyer-Tapp algo-
rithm for collision (Section 3.3.2). The two problems are slightly different, as on the
one hand we need a period on n bits, which is a stronger constraint than a collision,
and on the other hand, we can perform an additional search on k bits and balance the
costs, which is weaker than having a simple function on which we look for a collision.
Moreover, this algorithm is memoryless, while BHT needs a huge amount of quantum
RAM.

6.4 Implications
This section shows that even with only a classical access to a secret function, Simon’s
algorithm can be useful. This is, to our knowledge, the first utilization of Simon’s

96 Chapter 6. Searching for a Hidden Structure

algorithm which does not require a quantum access to a secret function. This also
makes a bridge between quantum algorithms that require a quantum oracle, like the
various quantum algorithms for the hidden subgroup problem, and the ones that do not,
like the search algorithms. In terms of improvements, the offline algorithm proposes 3
gains: a gain in queries with quantum oracles, a broader scope of applications, as it is
applicable with classical queries, and a gain in memory if we compare with the Brassard-
Høyer-Tapp algorithm for collisions from Section 3.3.2.

PartIIQuantum Cryptanalysis

Chapters

7 Hidden Structures in Symmetric Cryptography 99

8 Cryptanalysis of AEZ 117

9 Quantum Slide Attacks 129

10 Computing Isogenies 153

11 Quantum security analysis of AES 165

Chapter7Hidden Structures in Symmetric
Cryptography

The previous part proposed multiple quantum algorithms to solve problems of the form
“given f and g such that fpxq “ gpx`sq, find s”. This kind of structure appears often in
symmetric cryptography. The first cryptanalysis of this kind was proposed by Kuwakado
and Morii in 2010. It allowed to distinguish between 3 rounds of a Feistel cipher and
a random function [KM10], and was later improved to 4 rounds when a decryption
oracle is available [Ito+19]. They also proposed in 2012 an attack on the widespread
and classically proven secure Even-Mansour construction [KM12]. In 2013, Roetteler
and Steinwandt proposed a model of quantum related-key attacks, and showed that we
cannot have secure constructions in this model [RS15]. These early results have been
largely extended by Marc Kaplan, Gaëtan Leurent, Anthony Leverrier and María Naya-
Plasencia [Kap+16], who attacked multiple concrete ciphers and modes of operations,
and introduced the quantum slide attacks, which are presented in Chapter 9. Leander
and May then proposed to attack the FX construction by combining a quantum search
with Simon’s algorithm [LM17].

All the aforementioned attacks require quantum queries. With Akinori Hosoyamada,
María Naya-Plasencia, Yu Sasaki and André Schrottenloher, we showed that some of
the attacks can also be applied when only classical queries are available [Bon+19], using
the algorithms of Chapter 6.

This chapter proposes a survey of the currently known quantum distinguishers and
quantum hidden structure attacks in symmetric cryptography. They come
from [KM10; KM12; RS15; Kap+16; SS17; LM17; BN18; DLW19; ND19; II19; Ito+19;
Bon+19]. We also present the classical-query variant when applicable. We developed
some more advanced attacks that rely on the same principles. They are presented in
their own chapters: a cryptanalysis of AEZ [Bon17] is proposed in Chapter 8 and
quantum slide attacks [Kap+16; BNS19a] are developed in Chapter 9.

Contents
7.1 Claims in symmetric cryptography . 100
7.2 General method . 100
7.3 Quantum distinguishers . 101

7.3.1 One-time pad . 101
7.3.2 Feistel networks . 103

7.4 The case of quantum-related key attacks 106
7.4.1 With classical queries . 107

99

100 Chapter 7. Hidden Structures in Symmetric Cryptography

7.5 Even-Mansour . 107
7.6 FX Construction . 108

7.6.1 Multiple-FX . 109
7.7 MACs . 110

7.7.1 CBC-MAC . 110
7.7.2 Chaskey . 110
7.7.3 Poly1305 . 111

7.8 Sponges . 114
7.9 Protecting symmetric constructions 115

7.1 Claims in symmetric cryptography
Until recently, most of the primitives in symmetric cryptography did not consider these
models, and did not make any claim against quantum attackers. This is starting to
change, as for example the instances of the Farfalle construction Kravatte [Ber+17] and
Xoofff [Dae+18] have a security claim against quantum attacks, but explicitly restrict to
classical queries, and the lightweight authenticated scheme Saturnin [Can+19], which
aims to be secure even if quantum queries are accessible. Finally, Bernstein and Lange
have proposed in Nature [BL17, Table 1] some ”conjectured security levels“ against a
quantum attacker for multiple symmetric primitives, including Poly1305.

A quantum analysis of Kravatte and Xoofff (which do not violate their security
claims) is presented in Section 7.5, and two quantum superposition attacks against
Poly1305 are presented in Section 7.7.3.

7.2 General method
The idea underlying all the attacks presented here is to construct a periodic function
(to be used with Simon’s algorithm), or for 2 functions that are identical up to a shift of
their input (to be used with Simon’s or Kuperberg’s algorithm, depending on the shift).
For key-recovery attacks, we also want the period or shift to provide some information
on the sought key material.

A typical pattern for the functions is gpfpx ‘ aq ‘ fpx1 ‘ bqq, which, if we impose
that x “ x1, has a period a‘ b. Another typical pattern is gpfpxq ‘ yq, from which we
can compute the function

F : b, y ÞÑ

#

gpfpx0q ‘ yq if b “ 0,
gpfpx1q ‘ yq if b “ 1.

The function F has the period p1||fpx0q ‘ fpx1qq.
In general, the functions we will consider won’t be 2-to-1 periodic functions. As

shown in Proposition 4.4 and Lemma 5.5, this is not an issue.

7.3. Quantum distinguishers 101

Targets. All the attacks presented here target constructions that contain some se-
cret material. Indeed, to obtain an attack, we would need to have a public function
that embeds a secret or unknown shift, which is more to be expected in asymmetric
constructions. In practice, no quantum attacks that target hash functions have been
proposed beside some generic exponential-time algorithms, and the Davies-Meyer and
Merkle-Damgård constructions, used in particular by SHA-2 [SHA2], are proven in a
quantum setting [HY18].

7.3 Quantum distinguishers
This section presents 3 quantum distinguishers on cryptographic constructs, that is,
quantum algorithms that take as input a quantum oracle to either the stated construc-
tion or a random function, and have to decide which one it is. These distinguishers
do not have a classical equivalent, and show that access to a quantum oracle is very
powerful.

7.3.1 One-time pad
The one-time pad is a very simple cipher which has been proven unconditionally secure
by Shannon in 1949 [Sha49]. It uses a key taken uniformly at random of the same size
than the message, and simply xors them. A given key shall only be used once. As the
confidentiality of the plaintext is information-theoretical, it is also impossible from a
quantum computer to recover it from a ciphertext. However, the classical security is
stronger than this: given a plaintext and its associated ciphertext, it is not possible to
state if the ciphertext has been produced with a one-time-pad. This is what becomes
possible with a quantum oracle: it is possible, in one query, to distinguish between a
one-time pad and a random function, by using the possibility to query a superposition
of inputs.

The idea of Algorithm 7.1 is that for a one-time pad, P pxq ‘ x does not depend on
its input, while it does for a random function. Hence, at step 4, the two registers are
entangled only if P is not a one-time pad. This allows for a very efficient distinguisher,
as entanglement can be observed:

Proposition 7.1 (Quantum distinguisher for the one-time pad). Algorithm 7.1 uses
one quantum query to P , and returns:

• ”P is a one-time pad“ with probability 1 if P is a one-time pad,

• ”P is a random function“ with probability 1´ 1
2n´1 if P is a random function.

Proof. If P is a one-time pad, then the state before step 4 is

1
?

2n

2n´1
ÿ

x“0
|xy |ky .

Hence, after step 4, the state is |0y |ky.

102 Chapter 7. Hidden Structures in Symmetric Cryptography

Algorithm 7.1 Quantum distinguisher of the one-time pad
Input: An oracle to the n-bit function P
Output: Either ”P is a one-time pad“ or ”P is a random function“

1: Construct with Hadamard gates the state

1
?

2n

2n´1
ÿ

x“0
|xy |0y

2: Call the oracle, to produce
1
?

2n

2n´1
ÿ

x“0
|xy |P pxqy

3: Add the input to the output, to produce

1
?

2n

2n´1
ÿ

x“0
|xy |P pxq ‘ xy

4: Apply Hadamard gates on the first register, to produce

1
2n

2n´1
ÿ

y“0

2n´1
ÿ

x“0
p´1qx¨y |yy |P pxq ‘ xy

5: Measure the value y0 in the first register
6: If y0 “ 0 then
7: Return ”P is a one-time pad“
8: Else
9: Return ”P is a random function“

If P is a random function, then the state after step 4 is

1
2n

2n´1
ÿ

y“0

2n´1
ÿ

x“0
p´1qx¨y |yy |P pxq ‘ xy .

The amplitude of |0y in the first register depends on the number of preimages of
P pxq‘x. Indeed, each value of P pxq‘x adds a contribution of

´

1
2n

ř

x:P pxq‘x“αp´1qx¨y
¯2

to the amplitude squared of each y, and in particular, for y “ 0, the contribution is
`

r
2n

˘2 if P pxq ‘ x has r preimages. For a random function, the fraction of image points
with r preimages is 1

r!e [FO90]. Hence, the expected amplitude squared of y “ 0 is

8
ÿ

r“0

2n

r!e

´ r

2n

¯2
“

1
2ne

8
ÿ

r“0

r2

r!
“

1
2ne

˜

8
ÿ

r“0

rpr ´ 1q
r!

`

8
ÿ

r“0

r

r!

¸

“
2
2n

7.3. Quantum distinguishers 103

Other group laws. This distinguisher does not require a key xoring to be efficient,
it only needs to be able to transform P pxq into a value independent from the input. In
particular, this is achievable if the key is inserted using a group law. This fails if the
relation between the plaintext and the ciphertext is more complex, which is typically
what a block cipher aims to achieve.

Applications. This distinguisher may look frightening, as for example stream ciphers
are very close to a one-time-pad, and can be distinguished from a random permutation.
It requires one chosen-plaintext (superposition) query. Classically, the xored key can be
recovered from one known-plaintext query. The main difference is that the distinguisher
proves that a constant value has indeed been xored to the plaintext. Classically, the same
could be achieved from two known queries with the same key. Hence, this distinguisher is
only relevant for functions with some randomness that change for each query (typically,
a nonce). For example, it can be used to attack Poly1305, as presented in Section 7.7.3.
It also shows that some classical proof techniques, which rely on the indistinguishability
of some functions from a random function may be hard to translate to a quantum setting
in some cases.

7.3.2 Feistel networks
Feistel networks are a popular construction of block ciphers, their most notable repre-
sentative is DES [DES], which was the standard block cipher before being obsoleted by
AES [AES].

Feistel networks iterate on an n-bit state a round function of the form pL,Rq ÞÑ
pR ‘ F pLq, Lq. Half of the state is passed through a round function and added to the
other half and then the two halves are swapped, as in Figure 7.1.

Li

Fi

Ri

Li`1

Ri`1

Figure 7.1: Feistel round function

Classical security. The security of Feistel networks has been studied by Luby and
Rackoff [LR88]. They showed that if the round functions are pseudorandom functions,
then with access to an encryption oracle, one needs Ω

`

2n{4˘ queries to distinguish
between 3 rounds of a Feistel network and a random permutation. If a decryption
oracle is also available, then 3 rounds is not enough, and you need 4 rounds to have a
safe construction, that still requires Ω

`

2n{4˘ queries to be distinguished from a random
permutation. This proof is optimal, as some attacks matching the bound have been
proposed [Pat92].

104 Chapter 7. Hidden Structures in Symmetric Cryptography

x

F1

y

F2 F3

l

r

Figure 7.2: 3-round Feistel network P px, yq “ pl, rq

Generalizations. Feistel networks can be naturally generalized by increasing their
number of branches This leaves more freedom in the branch addition patterns. 3
constructions are generally considered, called type-1, type-2 and type-3 Feistel net-
works [ZMI90], which differ on the number of branches added to their neighbour at
each round.

7.3.2.1 Quantum Distinguisher on 3 rounds
The quantum distinguisher of Kuwakado and Morii [KM10] is the first known application
of Simon’s algorithm in cryptography. Its aim is to distinguish between a 3-round
Feistel cipher and a random permutation, that is, given a quantum query access to an
unknown permutation, identify with a good probability whether or not it is a 3-round
Feistel network. This is achieved by constructing from the unknown permutation P a
function that will always be periodic if it is a Feistel cipher, and, with an overwhelming
probability, won’t be for a random function.

From Figure 7.2, we can see that r “ y ‘ F2px ‘ F1pyqq. Hence, if we choose two
distinct values α and β, we can define

f :
t0, 1u ˆ t0, 1un{2 Ñ t0, 1un{2

b, x ÞÑ

#

TruncRpP px, αqq ‘ α if b “ 0,
TruncRpP px, βqq ‘ β if b “ 1.

We have that for a Feistel cipher, fp0, xq “ F2px‘F1pαqq, and fp1, xq “ F2px‘F1pβqq.
Hence, in that case, for all x, fp0, xq “ fp1, x‘ F1pβq ‘ F1pαqq.

Algorithm 7.2 Quantum distinguisher of a 3-round Feistel
Input: m, A quantum oracle to the n-bit function P
Output: Either ”P is 3-round Feistel“ or ”P is a random function“

1: Call m times Simon’s routine on the function f .
2: If The m values have a maximal rank then
3: Return ”P is a random function“
4: Else
5: Return ”P is a 3-round Feistel“

Theorem 7.1 (Quantum distinguisher for 3-round Feistels [KM10]). With m “ Opnq
queries to P , Algorithm 7.2 returns:

• ”P is a 3-round Feistel“ with probability 1 if P is a 3-round Feistel,

7.3. Quantum distinguishers 105

• ”P is a random permutation“ with probability in 1 ´ O p2´nq if P is a random
permutation.

Proof. If P is a 3-Round Feistel, then f is periodic. If P is a random permutation, f
is a random function, then the n{2-bit values sampled by Simon’s routine are random
and from Section 4.2.2, with c ˆ n{2 queries, with c a small constant, we obtain a set
of values of maximal rank.

Generalizations. A very similar distinguisher can be applied against a 3d´ 3-round
d-branches Type-1 generalized Feistel network [ND19; II19] and a d`1-round d-branches
Type-2 generalized Feistel network [DLW19]. With access to the decryption function
only, the same approach can distinguish a d2´d`1-round d-branches Type-1 generalized
Feistel network [II19].

Safe constructions. One could ask if this attack can be performed on a higher num-
ber of rounds, and what is the minimal number of round to obtain a secure primitive.
This question has been studied by Akinori Hosoyamada and Tetsu Iwata [HI19]. They
showed that 4 rounds are enough, that is, if only P is accessible one needs Ω

`

2n{12˘

quantum queries to distinguish between a 4-round Feistel and a random permutation.
They also proposed a distinguisher that requires O

`

2n{6˘ queries, which leaves a gap
between the current proof and the best known distinguisher to date. The case where
P´1 is also accessible is treated in the next section.

7.3.2.2 Quantum Distinguisher on 4 rounds
The previous distinguisher identifies a 3-round Feistel network using only a quantum
access to the function P . This section presents the quantum distinguisher on a 4-round
Feistel proposed by Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki,
and Tetsu Iwata [Ito+19], which requires quantum access to both P and P´1.

x

F1

y

F2 F3 F4

l

r

Figure 7.3: 4 rounds Feistel network P px, yq “ pl, rq

From Figure 7.3, we can see that l “ y‘F2px‘F1pyqq‘F3py‘F2px‘F1pyqqq‘F4prq.
We can remark that every x involved in this equality has the value F1pyq added to it.
We however do not have directly a shift between to functions if we take two distinct
values for y, due to the term F3py ‘ F2px ‘ F1pyqqq, which changes when y change.
However, we can add a difference to the value fed into F3 if we encrypt, add a constant
to l, and then decrypt. If we fix two values for y, this allows to construct two functions
whose components in F3 will be equal. For example, we can construct the function f of
Figure 7.4.

106 Chapter 7. Hidden Structures in Symmetric Cryptography

x

F1

αb

F2 F3 F4

α0 ‘ α1

F4 F3 F2 F1

αb

fpb, xq

P P´1

Figure 7.4: Periodic function for the 4-round Feistel quantum distinguisher

We have, if we note F 1
bpxq “ F3pαb ‘ F2pxqq

fpb, xq “ αb ‘ F2px‘ F1pαbqq ‘ α0 ‘ α1 ‘ F2px‘ F1pαbq‘

F3pαb ‘ F2px‘ F1pαbqqq ‘ F3pαb ‘ α0 ‘ α1 ‘ F2px‘ F1pαbqqqq ‘ αb

“ F2px‘ F1pαbqq ‘ α0 ‘ α1 ‘ F2px‘ F1pαbq ‘ F
1
bpx‘ F1pαbqq ‘ F

1
1´bpx‘ F1pαbqqq

Hence, we can see that fpb, xq is periodic, of period p1, F pα0q ‘ F pα1qq.
The distinguisher used is exactly the same as Algorithm 7.2, but with a slightly

different function f , and has the same efficiency.

Safe constructions. While the 4-round distinguisher cannot be naturally extended
to 5 rounds, the quantum security of 5-round Feistels is not currently known.

7.4 The case of quantum-related key attacks
Related-keys attacks [Bih94; BDK08] are a class of attacks on symmetric ciphers where
the attacker is not only allowed to query some messages encrypted with an unknown
fixed key, but also to add an offset on the secret key. If this kind of attack can lead to
a better understanding of the primitive, it is generally considered less realistic. In most
practical applications, we either have a cipher with a unique fixed key, or ciphers with
multiple independent keys, a notable exception being hash functions constructed from
a block cipher.

Moreover, Roetteler and Steinwandt have shown that this model can be degenerate
with superposition queries [RS15]. Using Simon’s algorithm, one can break any cipher
with a polynomial amount of quantum queries and computations if, given a block cipher
Ek, we have access to a quantum oracle able to compute |δy |Xy |0y ÞÑ |δy |Xy |Ek‘δpXqy.
We can remark that this function is the same as the publicly available function Eδ, with
a fixed offset in the key. There are many periodic functions constructible from this. For
example, it is possible construct a circuit that computes, for any given plaintext P ,

fP pδq “ Ek‘δpP q ‘ EδpP q.

The function fP is periodic, of period k. However, the input is in the key space, of
size 2k, and the output is in the message space, of size 2n. This can be an issue if k

7.5. Even-Mansour 107

is larger than n, as Simon’s algorithm works best with 2-to-1 functions. This is easily
solved if we consider multiple fX with distinct X, with for example

F pxq “ fP1pxq, . . . , fPrpxq

The function F also has the period k, and its output length can be made as large as we
want.

As this attack is completely generic, we can interpret it as a warning on models
of quantum attacks, as with some of them, any construction can be easily broken. A
different example, with a different model of related-key, is presented in Section 9.2.1.

7.4.1 With classical queries
The offline Simon’s algorithm leads to a more interesting result: the function fP fits
into the canvas of Problem 6.3. In order to have a relevant attack, we need to reduce
the domain of the period, and to increase the (previously empty) domain of the search
space. We can consider the function

f 1
P : t0, 1u

2n{3 ˆ t0, 1un{3 Ñ t0, 1un
pi, xq ÞÑ Ek‘p0||xqpP q ‘ Epi||xqpP q

If we note k “ k1||k2, with |k1| “ 2n{3, then f 1
P pk1, ¨q is periodic of period k2. Hence,

we can apply Theorem 6.4, to obtain a key recovery in O
`

2n{3˘ classical queries and
quantum time.

Application. This new generic attack uses a model of quantum attacks with classi-
cally related keys that was not considered before. As it provides a bound in this new
model, it may be used to extend the security claims of the NIST lightweight competition
candidate SATURNIN, which aims to be secure against quantum queries, and whose
variant SATURNIN16 is claimed to be secure against classical related-keys.

7.5 Even-Mansour
The Even-Mansour construction [EM97], presented in Figure 7.5, is often referred as
the minimal block cipher. It uses two n-bit keys kin, kout, and a publicly known random
permutation P . It was later shown that the cipher can be made even simpler without a
security loss by having kin “ kout [DKS12]. This construction is often used as a building
block in more complex designs.

x P

kin kout

Ekin,koutpxq

Figure 7.5: The Even-Mansour construction.

108 Chapter 7. Hidden Structures in Symmetric Cryptography

Classical security. The original paper proved that any attack that uses D queries to
Ek and T queries to P must satisfy DT “ Ω p2nq. This proof is information-theoretical,
that is, only the queries to either Ekin,kout or P allow to recover some information. Hence,
one needs O

`

2n{2˘ queries to Ek or P to break it, and multiple matching attacks have
been proposed [Dae93; BW00; DKS12].

Quantum security. As shown by Kuwakado and Morii [KM12], it turns out that
this classically proven construction is completely broken if one is allowed an access in
quantum superposition to Ekin,kout and P . Indeed, the function Ekin,koutpxq ‘P pxq has
the period kin. Hence, roughly n queries are enough to recover kin. Once kin is known,
kout is trivial to recover. This result might appear quite surprising, as the proof was
information-theoretical. The issue is that the proof assumed that a query corresponds
to a pair x, fpxq, with f equal to Ekin,kout or P . This is no longer the case if we allow
a quantum access.

With classical queries. If we restrict to classical access to both P and Ekin,koutpxq,
then the proof holds, and quantum computing offers no advantage. However, P is a
public permutation. Hence, an insteresting scenario is to study what happens if we are
restricted to classical queries to Ekin,koutpxq, and allow quantum queries to P , which is
something we can always do if a circuit of P is publicly given. In that case, Theorem 6.5
is applicable, and kin can be recovered in O

`

2n{3˘ classical queries to Ekin,kout , quantum
queries to P , classical and quantum time.

Concrete instances. The Farfalle construction [Ber+17] is an Even-Mansour con-
struction if the input message is only 1 block long, hence with quantum queries, the
construction is broken. With a restriction to classical queries, then it depends on the
instance, as the state keys are derived from a smaller secret key. The Kravatte in-
stance [Ber+17] has a state size of 1600 bits, and a key size between 256 and 320 bits,
which leads to a key recovery at a whopping cost of 2533 data and time, while the direct
key search would cost at most 2160. Xoofff [Dae+18] has a state size of 384 bits and
a key size between 192 and 384 bits. Our attack needs 2128 data, which is exactly the
data limit of Xoofff, and 2128 time. Hence, it performs better than the exhaustive key
search if the key is longer than 256 bits. This is however not enough to contradict its
security claim against quantum adversaries, who are always restricted to a search of at
most 192 secret bits.

7.6 FX Construction
The FX construction [KR96] is a simple way to increase the key length of a block cipher.
It is similar to the Even-Mansour construction, except that the public permutation is
replaced with a keyed block cipher, as presented in Figure 7.6.

Quantum security. As it is very similar to the Even-Mansour construction, it has
the same issues if a quantum oracle is available. As shown in [LM17], this construction

7.6. FX Construction 109

x Ek

kin kout

FXk,kin,koutpxq

Figure 7.6: The FX construction.

can be attacked at roughly the cost of an exhaustive search on k, by doing a search
for a periodic function (Algorithm 6.1), as the function FXk,kin,koutpxq ‘Ekpxq has the
period kin. We improved this result by showing that the number of quantum queries
to FXk,kin,koutpxq can be restricted to a polynomial amount with the offline Simon’s
algorithm (Algorithm 6.4).

With classical queries. The FX construction fits into the canvas of Theorem 6.5,
hence we can directly apply it. If Ek uses an m-bit key and m ď 2n, then the best we
can achieve is a cost of O

`

2pn`mq{3˘, classical queries and quantum time, with a period
of size pn`mq{3 and a search space of size p2n´mq{3`m.

Concrete instances. Multiple instances of the FX construction have been proposed.
The original proposal is an improvement on DES called DESX, which adds two 64-bit
whitening keys to the 56-bit DES key. With quantum access to DESX, the keys can be
recovered with around 120 quantum queries and 228 computations of Simon’s algorithm.
If only classical queries to DESX are allowed, then this increases to 240 classical queries
and 240 computations of Simon’s algorithm. In both cases, only a small amount of
classical and quantum memory is used.

PRINCE [Bor+12] and PRIDE [Alb+14] are two ciphers using the FX construction
with a 64-bit state, a 64-bit inner key and two 64-bit whitening keys. Hence, the keys
can be recovered with around 128 quantum queries and 232 computations of Simon’s
algorithm if quantum queries are allowed, and 242 classical queries and computations of
Simon’s algorithm if only classical queries are allowed.

7.6.1 Multiple-FX
In some constructions, we do not have access to only one FX construction, but multiple
ones, with a fixed block cipher key k, but varying whitening keys kin, kout. In that
case, we can construct a periodic function computable from quantum queries without
the knowledge of k. Indeed, from Ekpx ‘ k1

inq ‘ k1
out and Ekpx ‘ k2

inq ‘ k2
out, we can

construct
fpxq “ Ekpx‘ k

1
inq ‘ k

1
out ‘ Ekpx‘ k

2
inq ‘ k

2
out

which has the period k1
in ‘ k2

in. This is weaker than a complete key recovery, but as
shown in [Kap+16], in many cases, the knowledge of this value either allows to recover
a key or allows to break the integrity of a scheme.

110 Chapter 7. Hidden Structures in Symmetric Cryptography

With classical queries. The function f does not have a publicly computable part,
hence this attack does not appear to be applicable with classical queries, and we need
to fall back to the attack on the single FX construction.

Concrete instances. The LRW construction [LRW02] of tweakable block ciphers
and the disk encryption mode XTS [Mar10] can be seen as instances of the Multiple-FX
construction. PMAC [Rog04] contains internally the same block cipher with different
offsets, and as such is broken with quantum queries. A variant of PMAC is also used
in AEZ [HKR15], which is presented in Chapter 8.

7.7 MACs
This section presents the attacks on various MAC constructions that were first intro-
duced in [Kap+16; SS17; BN18]. Most of these attacks require quantum queries, with
the notable exception of Chaskey [Mou+14].

7.7.1 CBC-MAC
CBC-MAC [BKR00; BR00; IK03] is an early MAC construction inspired by the CBC
block cipher mode of operation. The message m is split into fixed-size blocks mi, and
iteratively injected into a state, as in Figure 7.7.

0

m1

Ek

m2

Ek

m3

Ek Ek1 CBC-MACpm1||m2||m3q

Figure 7.7: CBC-MAC, from [BKR00]

CBC-MAC can be attacked if we consider two distinct values α0, α1 and the function

fpb, xq “ CBC-MACpαb||xq

This function has the period p1, Ekpα0q ‘ Ekpα1qq. Hence, Simon’s algorithm retrieves
∆ “ Ekpα0q ‘ Ekpα1q. This allows to forge some messages, as the messages α0||x||m
and α1||x‘∆||m will have the same tag.

7.7.2 Chaskey
Chaskey [Mou+14] is a lightweight MAC that can be seen as a combination of Even-
Mansour and CBC-MAC (Figure 7.8). Hence, it is vulnerable to the same attack as
CBC-MAC. However, the specific structure of Chaskey (in particular, the lack of π
between the xoring of the last message block and first xoring of K1) allows to attack it
with classical queries. Indeed, with a message that vary only in its last block, Chaskey
is of the form πpx‘K1 ‘ cq ‘K1, which is an Even-Mansour construction.

7.7. MACs 111

The Chaskey round function is applied on 128 bits. It contains 16 rounds with 4
modular additions on 32 bits, 4 XORs on 32 bits and some rotations. With a data
limit of 248 blocks, as advocated in the specification, the attack can make use of 248

queries for Simon’s algorithm. Hence, we can attack Chaskey with 248 classical queries,
and roughly 2p128´48q{2 “ 240 computations of Simon’s algorithm. Interestingly, as π
is extremely cheap to compute, we can expect that the dominant cost of the Simon
computation will be the resolution of the 48-dimensional linear system.

K π π

m1 m2 K1 K1

Trunkt Tag
128

Figure 7.8: Two-block Chaskey example.

7.7.3 Poly1305
Poly1305 is a widely used MAC designed by Bernstein [Ber05]. Poly1305 associated with
Chacha20 has been standardized for TLS 1.2 [Lan+16], is in one of the recommended
cipher suites of TLS 1.3 [Res18], and is notably supported by OpenSSH, Firefox and
Chrome.

7.7.3.1 Description
We describe here the original construction Poly1305-AES from [Ber05], which uses AES
as a block cipher in the Wegman-Carter-Shoup construction [WC81; Sho96]. Our anal-
ysis focuses only on the hash part, hence it can also be applied to different instances
with different block ciphers. Concretely, Poly1305-AES uses two 128-bit keys pr, kq and
a 128-bit nonce n, takes as input a variable-length message m considered as an array of
128-bit blocks, and outputs a 128-bit tag. For efficiency purposes, 22 bits of r are fixed
to 0, which means it can only take 2106 different values. The function is

Poly1305-AESpr,k,nqppmiqiďqq “
˜

q
ÿ

i“1
pmq´i`1 ` 2128qri mod 2130 ´ 5

¸

`AESkpnq.

Security. Poly1305-AES has a classical security proof that, if an adversary knows
up to 264 valid message/tag tuples and do not leverage a weakness of AES, the success
probability of a forgery is less than 2´106. The best known classical attack is a universal
forgery by Leurent and Sibleyras [LS18] that costs around 283 time and queries. The
designer described in [BL17] a conjectured classical and quantum security of Poly1305
of 128 bits.

112 Chapter 7. Hidden Structures in Symmetric Cryptography

Quantum attacks For our quantum attacks, we suppose that we have access to a
quantum oracle that implements

Poly1305 : |m1y |m2y |0y ÞÑ |m1y |m2y |Poly1305-AESpr,k,nqpm1,m2q ⟩ ,

with two unknown fixed classical keys r, k and a classical nonce n that will differ for
each call.

We proposed two superposition attacks in [BN18]. The first attack uses the fact
that this MAC can be split as the sum of two independent functions. The second attack
relies on the polynomial structure of the hash function.

7.7.3.2 Distinguisher-based attack
It is possible to see Poly1305-AES as a one-time pad, with the message

řq
i“1pmq´i`1`

2128qri mod 2130 ´ 5 and the key AESkpnq. Hence, we can guess the value of r, and
then check if what we obtain corresponds to a one-time-pad, or to a random function,
using the distinguisher of Section 7.3.1.

Concretely, we consider

Apx, sq “ Poly1305pxq ´
`

px` 2128qs mod 2130 ´ 5
˘

mod 2128,

where Poly1305pxq is the tag of the one-block message x, with an unspecified nonce. If
s “ r, then Apx, rq “ AESkpnq (which is a fixed value for each query), and if not, it
will be Apx, sq “

`

px` 2128qr mod 2130 ´ 5
˘

´
`

px` 2128qs mod 2130 ´ 5
˘

`AESkpnq
mod 2128. As the function x ÞÑ xs in Z{

`

2130 ´ 5
˘

is, with an overwhelming probability,
a permutation, we will measure a 0 for a wrong guess with a probability of around 2´126.

This distinguisher can then be used in a Grover search on r that calls Poly1305:
at each step, we compute

ř

x |xy |Apx, rqy, apply a Hadamard gate on the first register,
and mark r if the first register is 0. As the test function is not perfect, the success
probability of the algorithm will be smaller than 1, but the error of the test function is
small enough to have a negligible final error.

There is still one problem: to perform a Grover search, we need to uncompute our
computations. And as our oracle generates a fresh nonce at each query, we cannot
uncompute the function. This is however not a problem, as a nonce difference in the
uncomputation will produce a fixed difference in the output (AESkpnq´AESkpn

1q). This
means that the uncomputation would leave the register in a non-zero but non-entangled
state, which allows to safely erase and reset it. We can hence apply a Grover search on
r. As it has 106 variable bits, it would cost around 253`1 queries and time to retrieve r.
Remark 7.1. This attack leverages the fact that Poly1305 can be written as the sum of
two functions that act on independent variables. This simple relation between the two
functions allows us to attack only one of them.

7.7.3.3 Hidden Shift Attack
We proposed a second attack that uses the polynomial structure of the universal hash
function to obtain the key r. The commutative algebra Z{

`

2130 ´ 5
˘

rXs contains many

7.7. MACs 113

possible shift structures, both in Z{
`

2130 ´ 5
˘

(with addition) and in Z{
`

2130 ´ 6
˘

(with
multiplication). For example, one can consider the two functions fpxq “ xr ` r2 `
2128pr ` r2q and gpxq “ xr ` 2128pr ` r2q, that satisfy fpxq “ gpx ` rq. There is
no way to access them directly, but we can call F pxq “ Poly1305-AESpr,k,nqp1, xq and
Gpxq “ Poly1305-AESpr,k,nqp0, xq, which also satisfy F pxq “ Gpx` rq if the nonce is the
same.

There are two issues that do not allow the direct application of a hidden shift
algorithm on F and G. First, the nonce changes at each query, which means that
in order to have F pxq “ Gpx ` rq, we must be able compute F and G in only one
query to Poly1305. This can be circumvented by using the fact that both are of the
form Poly1305papxqq, with apxq a function of x: one can compute aF pxq “ p1, xq and
aGpxq “ p0, xq in superposition in an auxiliary register, and then call the oracle to
Poly1305 on it. Second, and more annoyingly, the inputs of Poly1305 are restrained to
be between 0 and 2128 ´ 1, which means we cannot sample all group elements.

This can still be solved by using Lemma 5.7, as we can query r0; 2128q. Indeed, if r
is very small, then the functions

f :
"

t0, 1u127 Ñ t0, 1u128

x ÞÑ Poly1305-AESpr,k,nqp0, xq
,

g :
"

t0, 1u127 Ñ t0, 1u128

x ÞÑ Poly1305-AESpr,k,nqp1, xq

satisfy for most of their inputs that fpx` rq “ gpxq. For a larger r, we would need
to shift one of the inputs to have a smaller shift.

Solving the hidden shift in Z{
`

2127˘, using Kuperberg’s second algorithm will cost
around 216 queries and 247 classical time and 240 memory. We can thus set the interval
size at 2110. As the domain of the functions is t0, 1u127, r can be retrieved if it is below
2127. This is the case, as the bit constraints on r implies r ă 2124, we need only to test
214 intervals. The total cost is then 216 ˆ 214 “ 230 queries, 261 classical time and 240

classical memory, for a success probability close to 1. We can check if the found r is
the right one by trying to forge some valid messages, or we can use the distinguisher
presented above.

7.7.3.4 Grover acceleration.

As the previous attack involves an exhaustive search on the correct interval among the
214 ones, one might want to use Grover’s algorithm, in order to gain up to 27 on the
attack. We automatically lose a factor 2 because of the uncomputation of the algorithm.
Moreover, we would need to compute all the qubit choices quantumly, and we must have
a success probability of the inner function very close to one. All these factors make the
attack more efficient in queries (around 231), but require a lot of quantum memory.

114 Chapter 7. Hidden Structures in Symmetric Cryptography

7.8 Sponges
We recall the design of a sponge in Figure 7.9. A collision in the c bits of the inner
part allows to obtain a collision on the complete state, as the other part is controlled
by the input. If P is a random permutation, the sponge construction is classically
indistinguishable from a random oracle up to 2c{2 queries to P [Ber+08], which makes
the previous attack optimal. More recently, it has been shown that a similar result holds
with quantum access to the sponge [CHS19], up to 2c{3 queries to P , which corresponds
to the quantum query cost of collisions.

m1

P
0

0

m2

P

z1

P

z2

c

r

absorbtion squeezing

Figure 7.9: Sponge construction

Sponge Variants. Multiple variants of the sponge construction have been proposed.
In particular, the duplex construction [Ber+12b] is quite popular for authenticated en-
cryption, and is used by multiple candidates to the NIST lightweight competition [Aag+19;
Dob+19; GMO19; Ber+19a; PM19; SMS19; Dae+19; Pen19]. Another change is the
self-explanatory full-state absorption [Ber+12a], for keyed sponges. Both are described
in Figure 7.10. Duplexing alternates between absorption and squeezing, which allows to
encrypt, but also, as the state is modified by the messages, to authenticate with some
additional squeezing. Duplex with full-state absorption is used by the NIST lightweight
competition candidates SNEIK [Saa19] and Xoodyak [Dae+19]. Among the cited can-
didates, ACE, ASCON, Gimli and Xoodyak have been selected for the second round.

Quantum security. The inner part is especially annoying to mount a quantum attack
on a sponge, as collision is still a hard problem with quantum computers. Moreover,

K P P

a1 a2
m1 z1

P

m2 z2

P

T

c

r

Full-state absorbtion Duplexing

Figure 7.10: Duplex Sponge with full-state absorption

7.9. Protecting symmetric constructions 115

f
K1 ‘N

K2

r

c

Figure 7.11: Beetle state initialization.

the period-based attacks would need to guess these c hidden bits of the state, which
has a cost of 2c{2. As this is often the classical security claim, these constructions are
often immune to this kind of attacks. However, this is no longer the case with full-state
absorption, which is directly broken with quantum queries, as the function is of the form
fpx‘kq. With classical queries, the cost of the attack is at least of 2pr`cq{3 if the whole
state needs to be determined, but it can be lower if some parts are known. Moreover,
we need to make all the queries to the same function, which can be prevented by a
nonce change. However, in some cases, the nonce can be the variable of the function
we query. We only need the encryptions of identical messages, with a set of nonces that
fills an affine space. Nonce-respecting adversaries are generally allowed to choose the
nonce, but here, the mere assumption that the nonce is incremented for each message
(which is the standard way nonces are processed in practice) is sufficient: a set of 2k

consecutive values contains an affine space of pZ{p2qqk´1.

Beetle. The Beetle sponge mode for lightweight authenticated encryption [Cha+18] is
very similar to the duplex mode, with only a tweak in how the plaintexts are injected
in the state of the sponge. It is used by some candidates to the NIST lightweight
competition [Bao+19; Bei+19]. Its expected classical security is slightly below 2c, which
leaves some margin for a quantum attack. It has the initialization phase described in
Figure 7.11. The nonce is directly injected on the key K1, hence with quantum queries,
we can recover K1 and K2 with around 2c{2 queries.

With classical queries, we can mount the same attack. Here, the nonce is directly
added to the key K1, but as the key has the same length as the state, the attack would
still work if the nonce was added after. In Beetle[Light+], the rate is r “ 64 bits and
the capacity c “ 80 bits. The rate is sufficiently large to embed 48 varying bits for the
nonce; in that case, by making 248 classical queries and 248 Grover iterations, we can
recover the secret K1||K2. In Beetle[Secure+], r “ c “ 128 bits. We can recover K1||K2
with 285 messages and Grover iterations. This attack does not translate to the instances
proposed in the NIST lightweight competition, which have a key smaller than the state,
and whose initial state is pN ||Kq.

7.9 Protecting symmetric constructions
There are multiple approaches to thwart this kind of attacks.

116 Chapter 7. Hidden Structures in Symmetric Cryptography

Increasing the quantum cost. Simon’s and Kuperberg’s algorithm need the func-
tion to be close enough to a random function, and in particular, to not have some
additional partial period that occurs with a high probability to be able to identify the
secret. Hence, one way to prevent their application would be to make sure that such
partial period exists. Unfortunately, this means that there exists a t such that, with a
high probability fpx‘ tq “ fpxq (or fpx` tq “ gpxq) with f (and g) that depend on the
primitive. This exhibits a weak differential property which may be used in a classical
cryptanalysis.

Using a different group law. Another approach, which is proposed in [AR17], it to
remark that the hidden shift attacks are subexponential at best. Hence, if the primitive
has a large enough state, the attack will become impracticable. Their proposed patch is
to change the group law involved in the hidden period. Using modular addition instead
is the cheapest fix, but this will transform the corresponding hidden period problem into
an abelian hidden shift problem, and the quantum algorithm would be in 2

?
2n, at best.

Hence, if we only focus on the asymptotic exponent, we can obtain 64 bits of quantum
security with a state of roughly 2048 bits, and 128 bits of quantum security with 8192
bits of state. This is much larger than the common state size in symmetric cryptography,
and even larger than the 1600 bits of the state of SHA3 [SHA3]. Designing primitives
with such a large state would be a work in itself, and may not be the most efficient
approach.

In [AR17], it is also proposed to use a nonabelian group law in the primitive, and
suggest the symmetric group, Sn. This raises two issues: first, the cardinality of the
group. Indeed, if the original design worked with a power of 2, a drop-in replacement
would need to respect this cardinality, and this is not the case of the symmetric group.
Second, such group laws are much more expensive to implement. If the operation is
expensive to implement, one might ask if there is really a need to use a group law. The
operation has only to be a key-dependent permutation, which is what a block cipher
does. This leads to the final option to prevent this kind of attacks.

Using unaffected designs. If some classically safe designs become vulnerable with
a quantum computer, this is not the case of all known constructions. In particular, well
built iterated designs do not appear to be affected (except if their key schedules are
weak, which is developed in Chapter 9), and multiple proven constructions can be used
as-is. This is the approach chosen by the Saturnin team [Can+19], which is to date
the only symmetric scheme designed with the aim to resist to this kind of attacks.

Chapter8Cryptanalysis of AEZ

AEZ [HKR15] is an authenticated encryption scheme designed by Hoang, Krovetz and
Rogaway, and was a candidate of the CAESAR authenticated encryption competition.
It aimed for fast and parallelizable encryption. Its security claims are in a very strong
model: the cipher shall still be secure under nonce misuse and release of unverified
plaintext, that is, if a fixed nonce is used or if the plaintext corresponding to an invalid
tuple (ciphertext, tag) is known. AEZ has also an unusually low constraint on the
amount of data to be processed with the same key: 248 bytes.

This chapter presents AEZ [HKR15], the problem in AEZ version 4 we found with
Patrick Derbez, Sébastien Duval, Jérémy Jean, Brice Minaud and Valentin Suder [Bon+17],
a classical key-recovery cryptanalysis proposed by Colin Chaigneau and Henri Gilbert
at FSE’17 [CG16], a generic quantum existential forgery attack proposed by Marc Ka-
plan, Gaëtan Leurent, Anthony Leverrier and María Naya-Plasencia [Kap+16] and the
quantum key recovery that builds upon Chaigneau and Gilbert’s attack we proposed at
SAC’17 [Bon17]. Table 8.5 summarizes the known attacks on the different versions of
AEZ.

Contents
8.1 Description of AEZ . 118

8.1.1 Associated data . 118
8.1.2 Function Ei,j

K . 119
8.1.3 AEZ-hash . 120
8.1.4 AEZ-prf . 120
8.1.5 AEZ-core . 120
8.1.6 Encrypt . 121

8.2 Classical cryptanalysis . 121
8.2.1 The fault in AEZv4 . 121
8.2.2 The collision analysis of AEZv4 122

8.3 Quantum cryptanalysis . 123
8.3.1 Quantum existential forgery 124
8.3.2 Stronger quantum attacks . 124

8.4 Conclusion . 126

117

118 Chapter 8. Cryptanalysis of AEZ

8.1 Description of AEZ
AEZ [HKR15] is a tweakable block cipher for authenticated encryption, and its compo-
nents have been tweaked in the different versions of the algorithm. It uses a master key
K of 384 bits, decomposed in 3 subkeys (I,J ,L) of 128 bits each. AEZ has at its core
a tweakable function Ei,j

K used in the intermediate function AEZ-hash. The user calls
the external function Encrypt, that calls, depending on the message length, AEZ-prf,
AEZ-tiny or AEZ-core. AEZ-tiny and AEZ-core are block ciphers, AEZ-tiny is used
for messages of less than 32 bytes (one block), AEZ-core is used for longer messages.
AEZ-prf is a pseudo-random function (PRF) called when the message is empty that
takes some associated data and a length τ as arguments, and outputs a tag of the de-
sired length that can be used to authentify the associated data. This is summarized
in Figure 8.1.

Multiple versions of AEZ have been issued during the course of the CAESAR com-
petitions, with some significant differences:

• AEZv2 changed the encryption mode to be faster and proposed the stronger mode
AEZ10.

• AEZv3 introduced the definitive naming conventions, simplified the expression of
some subkeys and changed the way the message was split for encryption.

– AEZv3 is vulnerable to a collision attack by Fuhr, Leurent and Suder, at a
cost beyond the security claim of 255 blocks of data [FLS15].

• AEZv4 introduced the 384-bit key and the use of BLAKE2, added some offsets
and changed their definitions to prevent the previous attack.

– AEZv4 is vulnerable to a collision attack by Chaigneau and Gilbert, at a cost
beyond the security claim of 255 blocks of data [CG16].

– An issue in the definition of the offsets allows for some trivial forgeries.

• AEZv5 patched the definition of the offsets, and overall simplified the design.

In the following part, we will describe AEZ versions 4 and 5. Our attacks will mainly
use AEZ-prf, but we also need AEZ-core to retrieve one of the subkeys of AEZv4. Both
are described below.

8.1.1 Associated data
The associated data is seen as a bidimensional vector of 128-bit blocks. An example for
7 blocks can be represented as:

A1
1

A1
2

A1
3A

2
3A

3
3

A1
4A

2
4

that we note pA1
1, A

1
2, pA

1
3, A

2
3, A

3
3q, pA

1
4, A

2
4qq.

8.1. Description of AEZ 119

Ei,j
K

AEZ-hash

AEZ-prf AEZ-tiny
AEZ-core

PRF Encryption

Encrypt

Figure 8.1: High-level view of the components of AEZ

Table 8.1: Ei,j
K in AEZv4

i j Ei,j
K pXq

-1 N AES10pX ‘ jJq
0 N AES4pX ‘ jIq
1 N AES4pX ‘ αjIq
2 N AES4pX ‘ αjIq (This AES uses a different key schedule)
ě 3 0 AES4pX ‘ βiLq ‘ βiL
ě 3 ě 1 AES4pX ‘ βiL‘ αjJq ‘ βiL‘ αjJ

The associated data can contain any number of lines, and each line can have any length.
In practice, we have two constraints. The first line A1 contains the output length τ of
the PRF, in bits. As we’ll only have output lengths smaller than 2128 bits, the first line
will only contain one block. The second line contains the nonce N . The specification
recommends a nonce smaller than 128 bits, which also limits this line to one block.

8.1.2 Function Ei,j
K

The core of the algorithm is the function Ei,j
K , which is a permutation on 128 bits. It is

concretely a tweaked version of 4 or 10 rounds of AES [DR02] (AES4 and AES10). The
exact function depends on the version of the algorithm and the values of i and j. These
versions of AES don’t use the normal key schedule but one of the subkeys (I, J, L) at
each round.

Table 8.1 shows the value of Ei,j
K in AEZv4, depending on the parameters i and j,

with αj “ 23`tpj´1q{8u ‘ ppj ´ 1q mod 8q and βi “ 2i´3. The multiplication is done in
the finite field F2128 , seen as F2rXs{pX

128 `X7 `X2 `X ` 1q.
The function is simpler in AEZv5:

• E´1,j
K pXq “ AES10pX ‘ jLq

• Ei,j
K pXq “ AES4pX ‘ iJ ‘ 2rj{8sI ‘ pj mod 8qLq

120 Chapter 8. Cryptanalysis of AEZ

A1
1 “ τ

E3,1
K

A1
2 “ N

E4,1
K

A1
3

E5,1
K

A2
3

E5,2
K

… Aj
i

Ei`2,j
K

∆

Figure 8.2: AEZ-hash scheme

For the variant AEZ10, the master key K has 128 bits and is directly used as an
AES key to derive the subkeys.

I “ AESKp0q, J “ AESKp1q, Ei,j
K “ AESKpX ‘ jI ‘ iJq

8.1.3 AEZ-hash
This function takes as input the associated data A and the key K and outputs the
128-bit value ∆.

As presented in Figure 8.2, AEZ-hashpK,Aq “ ∆ “
À

i,j
Ei`2,j

K pAj
i q in both v4 and

v5.

8.1.4 AEZ-prf
This function is a pseudo-random function (PRF) of arbitrary output length which can
be used to authentify the associated data. It takes as input an output length τ , some
associated data A and the key K, and outputs τ bits.

It computes ∆ “ AEZ-hashpK,Aq, and outputs the first τ bits of the sequence
E´1,3

K p∆q, E´1,3
K p∆‘1q, E´1,3

K p∆‘2q . . . The most interesting property of this function
is that its value (for τ fixed) depends only on the value of AEZ-hash, and in particular,
that a collision in AEZ-hash implies a collision in AEZ-prf.

8.1.5 AEZ-core
This function takes as input the hash ∆ and a plaintext P of length greater than 256 bits.
The plaintext is split in pairs of blocks of 128 bits P ||0τ “ P1||P

1
1||P2||P

1
2...Pu||Pv||Px||Py.

All the blocks are 128-bit long, except the second-to last pair Pu, Pv.
Then, a Feistel network that uses Ei,j

K as a round function is applied. Each pair of
plaintext blocks is encrypted almost independently: an intermediate value from each
pair (Xi) is xored into the last pair’s encryption intermediate state, then a mask S is
computed from it, which is added to all the other intermediate states. Finally, another
value (Yi) is extracted from each encryption state and xored in the last pair. Following
the notations of Figure 8.3, we have

X “
à

i

Xi Y “
à

i

Yi.

8.2. Classical cryptanalysis 121

P1 P 1
1 Pm P 1

m Pu Pv Px Py

E1,1
K E1,m

K E0,1
K

E0,0
K E0,0

K E0,4
K E0,5

K E´1,1
K

S S

E2,1
K

… E2,m
K E´1,4

K E´1,5
K S

E0,0
K E0,0

K E´1,2
K

E1,1
K E1,m

K E0,4
K E0,5

K E0,2
K

C1 C 1
1 Cm C 1

m Cu Cv Cx Cy

X1

Y1

Xm

Ym

Xu

S

Yu

Xv

S

Yv

X

∆

∆

Y

Figure 8.3: AEZ-core. Drawing based on the work of Colin Chaigneau [Jea16]

8.1.6 Encrypt
This function takes as input the key K, the associated data A and a variable-length
message M . For empty messages, it is a direct call to AEZ-prfpK,A, τq. If 0 ă |M | ă
256 ´ τ , it calls AEZ-tiny. For longer messages, it calls AEZ-corep∆,M ||0τ q, with
∆ “ AEZ-hashpK,Aq.

8.2 Classical cryptanalysis
This section presents the two works of (classical) cryptanalysis on AEZv4, namely a
problem in the definition of its offsets, and the collision analysis proposed by Chaigneau
and Gilbert.

8.2.1 The fault in AEZv4
The additional data is authenticated with the value ∆ “

À

i,j
Ei`2,j

K pAj
i q. Here, Ei,j

K is

the same primitive, with a block-dependent offset xored at the input and the output. In
order to be secure, we need those offsets to be distinct, or else both positions would be
equivalent: if we swap the input of two positions with the same offset, we would obtain
the same ∆.

In AEZv4, the offset is 2i´3L‘p23`tpj´1q{8u‘ppj´1q mod 8qqJ . In particular, what
interests us is the value αj “ 23`tpj´1q{8u‘ppj´1q mod 8q. While j is small, 23`tpj´1q{8u

is a multiple of 8, hence there is no collision. The problem arises when 3 ` tpj ´ 1q{8u

reaches 128. In that case, the value resulting of the finite field modulo will not be a
multiple of 8, and we can expect to use pj ´ 1q mod 8 to cancel a difference.

122 Chapter 8. Cryptanalysis of AEZ

Table 8.2: Collision functions in [CG16]. lb() Outputs the last block of its input.

subkey function property

I fIpxq“lbpAEZ-corepK, pτ,Nq, p0, x, 0, x, 0, 0qqq fIpxq“fIpx‘ Iq
J fJpxq“AEZ-prfpK, pτ,N, px, xqq, τq fJpxq“fJpx‘ Jq
L fLpxq“AEZ-prfpK, pτ, x, xq, τq fLpxq“fLpx‘ 6Lq

The first problematic offset is j “ 1001, with α1001 “ 27 ` 4 ` 2 ` 1. This turns
out to be the same value as α40. Hence, we have an existential forgery: one can swap
on any string in the authenticated data the value of the blocks 40 and 1001 without
altering ∆. A similar problem arises with higher values of j. The minimal cost for this
attack is one query of roughly 1000 blocks.

The issue came from the fact that despite what the 3 might suggest, there is an
overlap between the bits affected by 23`tpj´1q{8u and pj ´ 1q mod 8. This was easy to
patch and led to AEZv5, which does not have such a problem.

8.2.2 The collision analysis of AEZv4
Chaigneau and Gilbert presented at FSE’17 a key-recovery attack on AEZv4 [CG16].
The attacker can query the functions of AEZ with a fixed unknown key, and chosen
authenticated data and plaintexts. The attack is done in two parts: first, they ap-
ply 3 independent birthday sub-attacks that retrieve one of the 3 subkeys, and next
they perform a differential attack that retrieves the 2 remaining subkeys once one is
known. The first part needs a quantity of data at the birthday bound (264 blocks),
which is beyond the security claimed by AEZs designers, who limited the data to 244

blocks for a given key. We’ll describe here only that part, as it can be converted to
an extremely efficient attack, while the differential attack does not gain as much, and
becomes noncompetitive.

For each of the 3 attacks, they seek a collision in a specific function they construct
from AEZ, and such a collision, with a high probability, will provide the value of a
subkey if they xor the colliding inputs. The functions are described in table 8.2. The
functions fI and fJ need a fixed nonce N for each input, but not fL, as for this function
the nonce is set at the input value x.

For example, for fL, the value of AEZ-hashpK, pτ, x, xqq is ∆ “ E3,1
K pτq ‘ E4,1

K pxq ‘

E5,1
K pxq, which gives us, when we expand:

∆ “ E3,1
K pτq ‘ AES4px‘ 2L‘ 8Jq ‘ AES4px‘ 4L‘ 8Jq.

For x “ x1 ‘ 6L, we get

∆ “ E3,1
K pτq ‘ AES4px1 ‘ 6L‘ 2L‘ 8Jq ‘ AES4px1 ‘ 6L‘ 4L‘ 8Jq.

As we are in F2128 , it reduces to

∆ “ E3,1
K pτq ‘ AES4px1 ‘ 4L‘ 8Jq ‘ AES4px1 ‘ 2L‘ 8Jq.

8.3. Quantum cryptanalysis 123

Hence, we get the same ∆ (which implies the same value of fLpxq) if x ‘ x1 “ 6L,
that is, fLpxq “ fLpx‘ 6Lq.

The case of fJ is the same as fL, but instead of considering two one-block strings,
we consider one two-block string, and we have fJpxq “ fJpx‘ Jq.

The case of fI is slightly different, as it uses AEZ-core. The message p0, x, 0, x, 0, 0q
is split as pP1, P

1
1, P2, P

1
2, Px, Pyq. Here, the only variable values are P 1

1 and P 1
2.

The intermediate value X is

AES4pAES4px‘ 8Iqq ‘ AES4pAES4px‘ 9Iqq

As before, if we find two values x, x1 with x “ x1 ‘ I, then we obtain a collision on
X.

It turns out that such a collision can be detected, as the value of the last block,
Cy, depends only of ∆, X, Px, Py, and ∆, Px, Py are fixed here. Hence, we have fIpxq “
fIpx‘ Iq.

Then, for fL (and similarly for fI and fJ), Chaigneau and Gilbert’s attack is:

• Query fLpxq for 264 different values of x.

• Search for a collision fLpxq “ fLpx
1q

• With high probability, x‘ x1 “ 6L.

All of these key recoveries have a cost at the birthday bound, which is above the
security claim of the designers, who limited the total amount of bytes to be processed
with the same key to 248.

8.3 Quantum cryptanalysis
The functions of Table 8.2 are of the form fpxq “ a ‘ gpx ‘ bq ‘ gpx ‘ b ‘ sq, with
g a xor of AES4 with various inputs. Hence, Simon’s algorithm (Algorithm 4.2) is
applicable and can retrieve s, except if s “ 0. In this case, f is a constant function, and
Simon’s routine (Algorithm 4.1) will always produce the value 0. Hence, it can easily
be detected. Moreover, this is also easy to detect classically, as we can query classically
these functions. It hence corresponds to a weak key. For the previous functions, it
corresponds to the case where one subkey key is all 0. We can also craft some functions
where s depends on multiple subkeys. An s “ 0 would correspond to a case where two
offsets are identical, which would also break the security of the scheme.

Simon’s algorithm. As the block in AEZ are 128-bit long, we will only have to
consider Simon’s algorithm on functions on 128 bits. In order to obtain concrete values
for the cost of Simon’s algorithm, from Proposition 4.4 we need to bound the value

p0 “ max
tRt0,su

Prxrfpx‘ tq “ fpxqs.

Here, f is based on 4 rounds of AES, and these additional periods correspond to a
high differential on 4 rounds of AES. Hence, we can expect it to be fairly low. For

124 Chapter 8. Cryptanalysis of AEZ

numeric applications, we considered that p0 ă 1{8. From Proposition 4.4, we obtain
that after 192 queries, the failure probability is smaller than 2´30. We based our numeric
applications on this number of queries.

8.3.1 Quantum existential forgery
In [Kap+16], a quantum existential forgery is proposed: it simply consists in remarking
that ∆ is of the form

∆ “
à

i

EKpAi ‘Oiq.

Hence, if one queries quantumly AEZ-prfpK, pτ,N, x, xqq, the resulting function will
have the period p “ O3 ‘ O4, and can be retrieved with Simon’s algorithm. From the
value of p, one can easily make some forgeries, as the authenticated data pτ,N,A,Bq
and pτ,N,A‘ p,B ‘ pq produces the same ∆.

8.3.2 Stronger quantum attacks
We presented the following attacks at SAC’17 [Bon17]. They build upon the classical
analysis of Chaigneau and Gilbert to obtain a full key recovery on AEZv4 and AEZv5
and a universal forgery on AEZ10 at essentially the cost of the quantum existential
forgery. Moreover, we adapted the classical attack to AEZv5 and the stronger variant
AEZ10.

8.3.2.1 Key Recovery on AEZv4
We can directly use the functions of [CG16], described in table 8.2, in Simon’s algorithm.
There is however a slight difference for fI , as the period is not on the full AEZ-core but
only on the last block. This is not a problem, as we can compute truncated functions
for free (see Section 2.4.3).

The complete attack is:

• For k P tI, J, Lu:

– Query 192 times Simon’s routine with fk.
– Solve classically the boolean equation system, get the period of fk (I, J or

6L).
– If this period was a multiple of k, invert to retrieve k.

In the classical setting, fJpxq “ AEZ-prfpK, pτ,N, px, xqq, τq needed a nonce reuse.
In the quantum setting, as the period is always J and does not depend on the nonce,
Simon’s algorithm can still be applied (see Section 4.2.3). The only constraint for the
nonce is to be non-entangled with the input value. The situation is the same for fI . For
fLpxq “ AEZ-prfpK, pτ, x, xq, τq, the nonce was chosen by the attacker as part of the
input. Hence, the quantum query would require a call with a nonce in superposition.

8.3. Quantum cryptanalysis 125

Table 8.3: Collision functions for AEZv5

subkey function Period

I fIpxq“AEZ-prfpK, pτ,N, px,A,B,C,D,E, F,G, xq, τq 6I
J fJpxq“AEZ-prfpK, pτ,N, x, xq, τq 3J
L fLpxq“AEZ-prfpK, pτ,N, px, xqq, τq 3L

If we want to only allow classical nonces, we can use f 1
L “ AEZ-prfpK, pτ,N, x, xq, τq,

which satisfies f 1
Lpxq “ f 1

Lpx‘ 12Lq, and processes one more block than fL per query.
Overall this costs 576 “ 29.2 queries, for a total of 3456 “ 211.8 blocks.
But we can go even further, if we look at

fJLpxq “ AEZ-prfpK, pτ,N, px, xq, px, xqq, τq.

The associated ∆ is
A ‘ AES4px‘ 4L‘ 8Jq ‘ AES4px‘ 4L‘ 9Jq
‘ AES4px‘ 8L‘ 8Jq ‘ AES4px‘ 8L‘ 9Jq.

This function has a hidden period of J and 12L. Hence, from Proposition 4.2, we can
apply Simon’s Algorithm to retrieve the vector space ⟨J, 12L⟩. J and 12L need to be
independent for the function to be non-constant.

In that case, we can retrieve the value of J and L with an exhaustive search, as
there are only 3 non-zero values in a 2-dimensional vector space. Hence, there is only 6
possible values for J and L.

This diminishes even more the query complexity to 384 “ 28.6 and the number of
blocks processed to 2880 “ 211.5.

8.3.2.2 Key Recovery on AEZv5
The functions in table 8.3 allow to perform the same attack on AEZv5, with a quantum
query complexity of 29.2, and a data complexity of 4224 “ 212.0 blocks.

We can even be more efficient in queries and recover the vector space ⟨6I, 3J, 3L⟩ in
one go, with the function

fIJLpxq “ AEZ-prfpK, pτ,N, px, x,B,C,D,E, F,G, x, xq,
px, x,B1, C 1, D1, E1, F 1, G1, x, xq q, τq.

Here, any non-x value in argument can be anything as long as it is not entangled with
x. This f has the 3 periods of fI , fJ and fL, and allows us to recover the vector space
⟨6I, 3J, 3L⟩ in 192 queries, and the same data complexity as before.

Once we know ⟨6I, 3J, 3L⟩, we can simply perform an exhaustive search on all of its
basis. There is only 7 ˆ 6 ˆ 4 “ 168 possible basis, and we can classically check them
from a few classical queries.

Using the same principle, we can also define and use fIJ , fJL or fIL, which all have
comparable costs,

fILpxq “ AEZ-prfpK, pτ,N, px, x,B,C,D,E, F,G, x, xq, τq

126 Chapter 8. Cryptanalysis of AEZ

and fJpxq giving the best data complexity of 3264 “ 211.7 blocks.

8.3.2.3 Universal forgery on AEZ10
The core function is even simpler in this variant: Ei,j

K pXq “ AES(X ‘ iJ ‘ jIq. Hence,
we can do the attack with the functions in table 8.4. With two functions, we can recover

Table 8.4: Collision functions for AEZ10

subkey function period

I fIpxq“AEZ-prfpK, pτ,N, px, xqq, τq 3I
J fJpxq“AEZ-prfpK, pτ,N, x, xq, τq 3J
I, J fIJpxq“AEZ-prfpK, pτ,N, px, xq, px, xqq, τq 3I, 3J, 3I ‘ 3J

I and J in 384 quantum queries and 1920 blocks of quantum data. If we choose to get
the vector space spawned by I and J , we only need 192 queries and 1344 “ 210.4 blocks
of data. In this case, we don’t get a full key recovery, but the knowledge of the tweaks
I and J allows to make forgeries for any non-empty authenticated data.

Classical queries. As the previous attacks use Simon’s algorithm, it would be in-
teresting to use the methods of Chapter 6 to obtain an attack with classical queries,
which would be closer to the security model considered by the designers. This however
does not appear to be possible, as the periodic functions of AEZ do not have a publicly
computable part.

8.3.2.4 Classical Versions of the attacks
All the attacks proposed in this section have a classical variant close to the attack
from [CG16].

Their cost will be at the birthday bound (264 queries). We can use the multiple
periods to reduce the number of queries, but as the multi-periodic functions requires
more blocks than the single-period functions, it doesn’t change much on the overall
complexity. For AEZv5, we need a total of 16 blocks per queries, hence the total data,
time and memory cost is 268. We only need 6 blocks per queries for AEZ10, hence the
total cost is 266.6.

As remarked in [CG16], within the limits in data, the success probability of the
classical attacks is around 2´45. Hence, if we consider that a key is changed every 244

blocks, we can expect to have one successful attack after a grand total of around 290

block processed over all the users of AEZ.

8.4 Conclusion
This chapter presented the known attacks on AEZ from version 4, which are summarized
in Table 8.5. If AEZv4 had a problem that made it trivially broken, the known attacks

8.4. Conclusion 127

Table 8.5: Summary of the cryptanalyses on AEZ since version 3. The cost corresponds
to the time, memory and number of blocks of data.

Version Cost model Type Ref

AEZv3 266.6 Key Recovery [FLS15]
AEZv4 266.6 Key Recovery [CG16]
AEZv4 210 Classical Existential Forgery Section 8.2.1
AEZv5 268 Key Recovery Section 8.3.2.4
AEZ10 266.6 Universal Forgery Section 8.3.2.4

All » 29.6

Quantum query

Existential Forgery [Kap+16]
AEZv4 211.5 Key Recovery Section 8.3.2.1
AEZv5 211.7 Key Recovery Section 8.3.2.2
AEZ10 210.4 Universal Forgery Section 8.3.2.3

on AEZv5 and AEZ10 do not contradict their security claims. Indeed, either the data
complexity is too high (» 264 blocks, with a limit at 244), or it is extremely small,
but with a different security model. The designers considered classical adversaries and
queries, and the quantum attacks require a quantum oracle.

For quantum cryptanalysis, AEZ shows that some instances of Simon’s problem
have a hidden subgroup, and not only a hidden period. Moreover, AEZ demonstrates
that some classical properties can be transferred quantumly. Indeed, as AEZ was not
designed to be beyond-the-birthday-bound secure, some forgeries at the birthday bound
were to be expected. It turned out that at the birthday bound, the cipher is totally
broken, as there is a full key recovery. Something similar happened with the quantum
attacks, with a simple existential forgery attack and a full key recovery that both use
Simon’s algorithm, and have a very similar cost, in polynomial time.

AEZ aimed at offering some extremely strong security guarantees (remaining secure
even with the release of some unauthenticated plaintexts), while still being fast. This
came with some drawbacks. First, AEZ has a complex design that has evolved with
its multiple iterations. This has made it hard to analyze and has turned out to be
error-prone, as seen with AEZv4. Second, the strong guarantees completely collapses if
we reach the bounds of the security proof, at 264 blocks. These two issues may explain
why AEZ was not selected to be a finalist in the CAESAR competition.

Chapter9Quantum Slide Attacks

Slide attacks [BW99] are a cryptanalysis family proposed by Biryukov and Wagner
aiming to analyze self-similar iterated block ciphers. Multiple classical variants aiming
to analyze different constructions have been proposed since [BW00; BDK07; DKS15;
Din+15; Bar+18]. These attacks have the peculiar property that their cost does not
depend on the number of rounds of the iterated cipher. They showed the importance
of having distinct rounds in a cipher (by using round constants or a key schedule, for
example) and avoiding a periodic structure between the rounds of an iterated construc-
tion.

Quantum slide attacks are much more recent. The first one has been proposed
by Marc Kaplan, Gaëtan Leurent, Anthony Leverrier and María Naya-Plasencia at
CRYPTO 2016 [Kap+16], where a particular case of a construction considered in [BW99]
is broken with Simon’s algorithm. This was the first example of an exponential quantum
speedup of a cryptanalysis technique.

The contents of this chapter mainly consist in the results I obtained with María
Naya-Plasencia and André Schrottenloher [BNS19a], which were presented at SAC 2019.
These quantum slide attacks are inspired from the classical ones from [BW00; DKS15;
Din+15; Bar+18]. It also presents the original quantum slide attack from [Kap+16] and
its generalization to arbitrary key-alternating ciphers in a related-key model proposed
by Hosoyamada and Aoki [HA17]. Some of the results from [BNS19a] were also inde-
pendently obtained by Dong, Dong and Wang [DDW18]. The classical and quantum
attacks on some versions of MiMC and GMiMC described in Section 9.6 come from the
note [Bon19a]. The attacks are summarized in Table 9.2.

All the attacks presented in this chapter require quantum queries, except for two
attacks on self-similar Feistel ciphers in Section 9.3.2 which are generalized and applied
to some versions of MiMC and GMiMC in Section 9.6.

Contents
9.1 Classical slide attacks . 130
9.2 Slide-shift attacks . 131

9.2.1 Key-alternating cipher . 132
9.2.2 Feistel schemes with one round self-similarity 133
9.2.3 The quantum complementation slide attack 134
9.2.4 Sliding with a twist . 136

9.3 Advanced slide-shift attacks on self-similar Feistels 137

129

130 Chapter 9. Quantum Slide Attacks

9.3.1 General attack . 137
9.3.2 With the same branch and key addition 139

9.4 Slide attacks against 4-round self-similar Feistels 141
9.4.1 Twist and complementation slide attack 141
9.4.2 Enhanced reflection attack . 144

9.5 Cycle-based slide attacks . 145
9.5.1 Definition of a cycle slide attack 145
9.5.2 Quantization of a cycle-based slide attack 146
9.5.3 Examples . 146

9.6 Attacks on Feistels with weak key schedules 148
9.6.1 Classical attacks on MiMC and GMiMC 148

9.7 Conclusion . 150

9.1 Classical slide attacks
Slide attacks consider a cipher Ek : t0, 1un Ñ t0, 1un, constructed from a family of
round functions Fki

pxq : t0, 1un Ñ t0, 1un applied r times. Each round uses a subkey
k1, . . . kr derived from the master key k of the cipher.

Assumption. We assume that Fk is a weak function, in the sense that given a a few
equations of the form Fkpxiq “ yi for a given key k, it is computationally easy to retrieve
k. This notion of weakness is broader in a quantum setting, as presented in Section 9.3.

Basic slide property. Suppose that all the round subkeys are equal: k1 “ k, . . . kr “

k; i.e the scheme is one-round self-similar. From the structure of the cipher, which is
r similar applications of the same permutation Fk, we may write a simple equality, the
slide property:

EkpFkpxqq “ FkpEkpxqq (9.1)

Basic slide attack. The goal of the attacker is to find two pairs x, y satisfying Fkpxq “
y. The birthday paradox implies that, among O

`

2n{2˘ plaintext-ciphertext couples P,C,
there exists a slid pair: P0, C0 and P1, C1 such that F pP0, kq “ P1. In that case, we also
have: F pC0, kq “ C1. If the round function is weak, the two equations are sufficient to
retrieve k. In order to have an efficient attack, we also need to be able to identify the
correct pair among the 2n possible ones faster than exhaustive search.

Example of weak round function. One can consider a keyed permutation from a
public permution Π: Fkpxq “ k ‘ Πpxq. This is shown in Figure 9.1. The useless first
application of Π is omitted, but we can consider P 1

i “ ΠpPiq
´1 to obtain a strict self-

similar cipher. In that case, a slid pair pP0, C0q, pP1, C1q satisfies P 1
1 “ FkpP

1
0q, which

corresponds to P1 “ Πpk‘P0q. This is equivalent to C1 “ k‘ΠpC0q. Hence it suffices

9.2. Slide-shift attacks 131

to check if ΠpP1q
´1 ‘C1 “ P0 ‘ΠpC0q. The secret key can be trivially recovered from

the slid pair, as k “ C1 ‘ΠpC0q.

P0

k

Π

k

Π …

k

C0

P1

k

Π …

k

Π

k

C1

P1

C0

Figure 9.1: Example of slide attack on a cipher with a weak round function. The first
application of Π is omitted.

In [BW99], slide attacks were applied to the TREYFER cipher, variants of DES and
Blowfish, and some Feistel constructions. In all cases, these attacks have a cost at the
square root of the exhaustive search of the recovered secret.

9.2 Slide-shift attacks
Classical slide attacks rely on a collision to break the cipher. It turns out that in many
(but not all) cases, this collision can be written as a hidden shift, that we call the
slide-shift property. This additional property can be leveraged with the corresponding
quantum algorithm (from Chapter 4 or Chapter 5), with quantum queries to the primi-
tive. This adds some constraints on the targets: the quantum attack depends on some
parameters that were of little importance in the classical case, such as the way the key
is added. In general, we describe the attack on the variant that uses modular additions,
as XORs are a special case.

Cost estimates. Slide-shift attacks use a hidden shift algorithm to gain in efficiency.
From Chapter 4, we estimate a cost of n queries and time for n-bit XOR-based slide-
shift equations. For addition-based equations, many tradeoffs are available; we consider
here a cost of 2

?
2n quantum queries, quantum time and classical memory, for n-bit

addition-based slide-shift equations, from Chapter 5. If we need a reversible variant of
the algorithm, to be used by another quantum algorithm, we consider that the query
cost is quadrupled (doubled to take into account the uncomputing, and doubled to have
a failure probability exponentially small).

In this section, we first present the original quantum slide attack against 1-round self
similar key-alternating cipher proposed in [Kap+16], and its multiple generalizations: to
modular key additions, to arbitrary key schedules in a specific related-key model [HA17]
and to 2-round self-similarity. Next, we present new advanced quantum slide attacks
on Feistel networks, with slide attacks based on one-round self-similarity and advanced
sliding techniques from [BW00], applied to Feistel variants.

132 Chapter 9. Quantum Slide Attacks

9.2.1 Key-alternating cipher
The 1-round self-similar key-alternating cipher is presented in Figure 9.1, with a pub-
lic permutation Π and a repeated secret key k. We can define the function G as in
[Kap+16]:

G : t0, 1u ˆ t0, 1un Ñ t0, 1un

b, x ÞÑ

#

g0pxq “ ΠpEkpxqq ‘ x if b “ 0,
g1pxq “ EkpΠpxqq ‘ x if b “ 1.

As in the previous attack, we know that all x satisfy ΠpEkpxqq ‘ k “ EkpΠpx ‘ kqq
because of the sliding property. Then we can see that G verifies the conditions of the
hidden shift problem as g0pxq “ g1px‘ kq:

Gp0, xq “ ΠpEkpxqq ‘ x “ EkpΠpx‘ kqq ‘ k ‘ x “ Gp1, x‘ kq.

Hence, k can be recovered in n quantum queries and time.

With modular additions. Modular key additions do not change fundamentally the
slide-shift property, and in that case, we have ΠpEkpxqq ` k “ EkpΠpx ` kqq, which
allows to define:

G : t0, 1u ˆ t0, 1un Ñ t0, 1un

b, x ÞÑ

#

g0pxq “ ΠpEkpxqq ´ x if b “ 0,
g1pxq “ EkpΠpxqq ´ x if b “ 1.

We can see that G verifies the conditions of the hidden shift problem as g0pxq “ g1px`kq:
Gp0, xq “ ΠpEkpxqq ´ x “ EkpΠpx` kqq ´ k ´ x “ Gp1, x` kq.

In that case, k can be recovered in around 2
?

2n quantum queries, time and classical
memory. Alagic and Russel [AR17, Appendix B.2] have proposed this as an efficient
counter-measure to the Simon’s attack: as it is not polynomial-time, a primitive with
large enough state will be hard to break. This is discussed in Section 7.9.

Arbitrary key schedule, in a related-key setting [HA17]. Hosoyamada and
Aoki have remarked that the previous attack can also be applied to an arbitrary key-
alternating cipher with quantum access to a pair of ciphers Ek1,...,kr and Ek2,...,kr`1 , as
presented in Figure 9.2.

In that case, we have a very similar slide property:
ΠpEk1,...,krpxqq ‘ kr`1 “ Ek2,...,kr`1pΠpx‘ k1qq .

Hence, we can define the function:
fpxq “ ΠpEk1,...,krpxqq ‘ Ek2,...,kr`1pΠpxqq.

This function has the period k1. From k1, the slide property allows to compute kr`1 “
ΠpEk1,...,krpxq‘Ek2,...,kr`1pΠpx‘ k1qq. The other keys can be recovered if the functions
Ek1`i,...,kr`i

are also accessible. In that case, it is not possible to have a secure key-
alternating cipher.

9.2. Slide-shift attacks 133

P0

k1

Π

k2

Π …

kr

C0

P1

k2

Π …

kr

Π

kr`1

C1

P1

C0

Figure 9.2: Quantum related-key slide attack [HA17].

2 rounds self-similarity. A similar attack can be made if only two keys k1, k2 are
used alternatively. We can see this construction as a 1-round self-similar cipher with
the permutation Π1pxq “ Πpk2 ‘ Πpxqq. As this is not a public permutation, we need
to combine the attack with a quantum search on k2. We can use the offline Simon’s
algorithm to reduce the number of queries, and the total cost is then roughly 2n quantum
queries and n2n{2 quantum time.

9.2.2 Feistel schemes with one round self-similarity
We consider from now on Feistel schemes, like the one represented in Figure 9.3. We
denote by Ek the encryption function, and by TruncL and TruncR the functions that
truncate a Feistel state to its left or right part respectively. These functions are free to
compute quantumly, as shown in Section 2.4.3.

For a Feistel construction, if we consider a slide attack over one round, the right part
of the first plaintext R (left side in Figure 9.3) will be the same as the left part of the
second plaintext, L1. Classical adversaries could use a fixed right part, and take random
plaintexts for the left part. For our quantum attack, we fix a known value R0 “ R “ L1.
We can consider the variable k1 “ fkpR0q, represented on Figure 9.3, as an equivalent
key, and this will be the value retrieved by the hidden shift algorithm.

We use the following function:

G : t0, 1u ˆ t0, 1un{2 Ñ t0, 1un{2

b, x ÞÑ

#

g0pxq “ TruncRpEkpx,R0qq if b “ 0,
g1pxq “ TruncLpEkpR0, xqq if b “ 1.

From Figure 9.3 we can verify the slide shift equation g0pxq “ g1px` k
1q. By applying

a hidden shift algorithm we will recover the value of k1 “ fkpR0q for the value of R0
that we fixed in the beginning. Since we know R0, we can retrieve the actual value of k
when f is weak. The cost of this attack with modular additions is 21.2

?
n. With XORs,

the analysis is quite similar, and the time complexity is reduced to n plus a constant.
This basic attack is generalized to quantumly weak functions in Section 9.3.

134 Chapter 9. Quantum Slide Attacks

L

fk

R

fk

fk

NM

k1

R1L1

L1

fk

R1

fk

fk

N 1M 1

NM

R “ L1

R1 “ L` k1

M 1 “ N
M ` fkpNq “M 1

Figure 9.3: Slide attack on Feistel scheme with one round self-similarity

9.2.3 The quantum complementation slide attack
We illustrate the quantum complementation slide attack, that was originally proposed in
a classical setting [BW00], on a Feistel cipher with 2-round self-similarity and a round
function of the form fpx`kq. The main idea of this attack, described in Figure 9.4, is to
slide by one round only. Though this implies that the round-keys of the middle rounds
are not the same, this can be compensated by adding a relative difference between the
complemented slide pairs. As can be seen on the figure, if we denote by ∆ “ k0´k1 and if
the following equations implying a slid pair are verified: R “ L1´∆ and L`fpR`k0q “
R1 `∆, then, the outputs of both plaintexts, pM,Nq and pM 1, N 1q verify N “M 1 ´∆
and N 1 “M ` fpk1 `N `∆q ´∆. With such inputs, all the transformations through
the f functions will be the same pairwise through all the rounds for a slid pair. The
combination of both halves ensures that the input round difference stays as wanted.

We perform an exhaustive search on ∆. The size of a block and of the whole key is
n, while the size of ∆ is n{2. Considering the value of R fixed to a chosen and known
value, we can define an equivalent round-key k1

0 “ fpR`k0q and when we recover k1
0 we

can deduce k0 if f is weak. The exhaustive search can be combined with Kuperberg’s
algorithm applied to the following function (keeping in mind that R and ∆ are therefore
known):

G : t0, 1u ˆ t0, 1un{2 Ñ t0, 1un{2

b, x ÞÑ

#

g0pxq “ TruncRpEkpx,Rqq `∆ if b “ 0,
g1pxq “ TruncLpEkpR´∆, x`∆qq if b “ 1.

From Figure 9.4 we can verify that g0pxq “ g1px` k
1
0q. For each of the tested values for

9.2. Slide-shift attacks 135

L

f
k0

R

f
k1

f
k0

f
k1

NM

R1 `∆L1 ´∆

Encryption

L1

f
k0

R1

f
k1

f
k0

f
k1

N 1M 1

M ´∆ N `∆

Encryption

Figure 9.4: Complementation slide attack

∆, by applying Kuperberg’s algorithm we will recover the value of k1
0 for the fixed value

of R that we fixed in the beginning, R0. From k1
0 and R0 we directly recover k0 because

f is weak, and with ∆, this implies the value of k1. When the tested value for ∆ is the
correct one, we should also obtain a collision given by N 1 “ M ` fpk1 `N `∆q ´∆,
which happens with a random probability 2´n{2. When this is the case, this implies
that we have recovered the correct values of k0 and k1.

The cost for this if all the transformations were XORs would be of n2n{4 quantum
time and superposition queries, compared to 2n{2 from the quantum accelerated exhaus-
tive search of the key. If we have modular additions instead, the cost becomes 2

?
n`n{4

quantum time and superposition queries, which is still better than generic exhaustive
search in 2n{2. We show in Section 9.3 how to do better if the key and branch addition
are identical.

Whitened Feistel. A variant of the attack can be performed if the Feistel is whitened
with an additional input key kpre and an output key kpost. We split the whitening key
in they left and right part: kpre “ kL

pre||k
R
pre. This whitening simply transforms the

equations we had:

g0pxq “ TruncRpEkpx´ k
L
pre, R´ k

R
preqq `∆´ kR

post

g1pxq “ TruncLpEkpR´∆´ kL
pre, x`∆´ kR

preqq ´ k
L
post

136 Chapter 9. Quantum Slide Attacks

If we define ∆1 “ ∆`kL
pre´k

R
pre, subtract kL

pre from x and kR
pre from R, the two functions

become

g0pxq “ TruncRpEkpx,Rqq `∆1 ´ kL
pre ` k

R
pre ´ k

R
post

g1pxq “ TruncLpEkpR´∆1, x`∆1qq ´ kL
post

Given ∆1, we cannot directly compute these two functions. However, we can circumvent
this issue by adding an independent variable y to the output, that is, consider

g0px, yq “ TruncRpEkpx,Rqq `∆1 ` y

g1px, yq “ TruncLpEkpR´∆1, x`∆1qq ` y

This pair of function satisfy g0px, yq “ g1px ` k1
0, y ` kL

pre ´ kR
pre ` kR

post ´ kL
postq.

Hence, we can perform as before a quantum search on ∆1 with these functions. From
k1

0 “ fpR ` k0q, k0 can be extracted, in at worst 2n{4 operations. Once k0 is known,
k1 can be recovered by applying the attack against the FX construction of Chapter 7.
Overall, the cost is essentially the same as without any whitening.

9.2.4 Sliding with a twist
A further improved variant of the slide attacks is the sliding with a twist technique,
also introduced in [BW00], that can be applied against some Feistel constructions (Fig-
ure 9.5). The quantum version works as long as the two branches are added with a
XOR. We will describe the attack considering key insertions and round combinations
by XOR, the addition of the key being irrelevant for the complexity.

The key idea is that encryption of a two-round self similarity Feistel cipher is a slid
version of its decryption, modulo the final twists, that are easily taken into account. If
we consider the inputs and outputs of the encryption pL,Rq, pM,Nq and the inputs
and outputs of the decryption pM 1N 1q, pL1, R1q, we have that if R “ N 1 and M 1 “

L‘ fpR‘ k0q, then R1 “ N and L1 “M ‘ fpN ‘ k0q.
We can consider now R “ N 1 as a fixed chosen value. Like the previous attack, if

we consider an equivalent key k1
0 “ fpR‘ k0q, we can apply Simon’s algorithm. Let us

denote the decryption function Dk.

G : t0, 1u ˆ t0, 1un{2 Ñ t0, 1un{2

b, x ÞÑ

#

g0pxq “ TruncRpEkpx,Rqq “ N if b “ 0,
g1pxq “ TruncRpDkpx,Rqq “ R1 if b “ 1.

From Figure 9.5 we can verify the slide shift equation g0pxq “ g1px ‘ k1
0q. Simon’s

algorithm recovers the value of k1
0, and from it, also the one of k0 with negligible

complexity because f is easy to invert. Once k0 is known, we can repeat a similar
attack peeling off one layer in order to recover also k1 with comparable complexity.

The cost when all the transformations are XORs is n, compared to 2n{2 for the quan-
tum accelerated exhaustive search. If we have modular additions between branches, this
attack does not apply, as the decryption scheme has subtractions instead of additions.

9.3. Advanced slide-shift attacks on self-similar Feistels 137

L

M 1
f

k0

N 1

R

f
k1

f
k0

f
k1

NM

Encryption

f
k1

N 1M 1

f
k0

f
k1

f
k0

R1L1

M N

Decryption

Figure 9.5: Representation of the sliding with a twist technique

9.3 Advanced slide-shift attacks on self-similar Feis-
tels

In this section, we propose efficient key-recovery attacks on self-similar Feistel construc-
tions with a classically strong round function.

In what follows, we show how to construct a quantum oracle to the round function
given access to a quantum oracle to the full primitive, which allows to break it when the
round function is only quantumly weak. Next, we show a more efficient attack when the
round function has the form fpx ` kq and the branch and key additions are the same,
without any weakness assumption on f .

9.3.1 General attack
In the attacks presented in the previous section, the round function was supposed to be
weak. Indeed, the quantum Hidden Shift algorithm recovers the equivalent round key
k1 “ fkpR0q. We are left with the task of finding k. Classical exhaustive search requires
time 2n{2, Grover’s algorithm requires time 2n{4. But there are some common cases in
which we can quantumly attack the round function. In the previous attacks, the value
of R0 was fixed to a random chosen value. This means that we can repeat the same
operation for several values Ri.

Case f(x+k). We consider here that the round function is a key addition composed
with a public function f , as this is a fairly common design. We use the attack of
Section 9.2.2, which, given a value R0, produces fpR0`kq. This attack can be considered
as a circuit that takes an input x, and produces fpx ` kq. Hence, this effectively
implements a quantum oracle to the function H : x ÞÑ fpx ` kq. Given this function,

138 Chapter 9. Quantum Slide Attacks

L

fk

R0

fk

fk

NM

R1L1

L1

fk

R1

fk

fk

N 1M 1

NM

R0 “ L1

L “ R1 ´ fkpRq

M 1 “ N
M ` fkpNq “ N 1

Figure 9.6: Slide attack on a generic one-round self-similar Feistel

we can construct the following function G, whose hidden shift is k:

G : t0, 1u ˆ t0, 1un{2 Ñ t0, 1un{2

b, x ÞÑ

#

g0pxq “ Hpxq “ fpx` kq if b “ 0,
g1pxq “ fpxq if b “ 1.

Indeed, we have Gp0, xq “ Gp1, x ` kq. Each call to G requires to solve a hidden shift
instance reversibly. Hence, the cost is multiplicative. With xors only, it will be around
n2 queries. The cost of these attacks is summarized in Table 9.1.

Generalization. We described the attack for a Feistel round function of the form
F px, kq “ fpx` kq, but we can use this for any keyed function vulnerable to quantum
key recovery, like the Even-Mansour construction in Figure 9.7. The total cost of the
attack is the cost to attack the round function multiplied by the cost of the slide attack.
Hence, the Feistel structure does little to increase the security compared to the round
function.

For the example in Figure 9.7, the exhaustive search is classically in 2n{2, quantumly
in 2n{4. The classical slide attack can find a pair px, fkpxqq in 2n{4 queries. Once this is
done, we can easily retrieve some other slide pairs using the slide pairs at the output of
the cipher, and do the classical slide attack to break Even-Mansour in 2n{4 more queries
and time. In comparison, the quantum slide attack performs in around n2

?
n queries.

9.3. Advanced slide-shift attacks on self-similar Feistels 139

L

k

f

k

R

k

f

k

k

f

k

k

f

k

N

M

Figure 9.7: Example of a vulnerable Feistel

L

f
k

R

f
k

f
k

f
k

NM

f
0
R` kL` k

f
0

f
0

f
0

N ` kM ` k

Figure 9.8: Slide attack with identical key and branch addition.

9.3.2 With the same branch and key addition
If the round function is fpx ` kq and the branch and the key addition both use the
same law, the attack can be made more efficient. We can consider a Feistel construct
Ek composed of a certain number of iterations of the function fkpx, yq “ y, x` fpy`kq.
In that case, we have fkpx, yq ` pk, kq “ f0px ` k, y ` kq, hence Ekpx, yq ` pk, kq “
E0px ` k, y ` kq, as described in Figure 9.8. We can then consider this function, with
hidden shift k:

G : t0, 1u ˆ t0, 1un{2 Ñ t0, 1un

b, x ÞÑ

#

g0pxq “ Ekpx, xq ´ px, xq if b “ 0,
g1pxq “ E0px, xq ´ px, xq if b “ 1.

Indeed, Gp0, xq “ Ekpx, xq ´ px, xq “ E0px` k, y ` kq ´ pk, kq ´ px, xq “ E0px` k, y `
kq ´ px` k, x` kq “ Gp1, x` kq.

Hence, with XORs, this attack costs n{2 quantum queries and quantum time, with-
out any assumption on f , while classically 2n{4 queries would be required. Interestingly,
the function G can be split into a secret part (g0), and a publicly computable part (g1).
Hence, we can apply the offline Simon’s algorithm to retrieve k in 2n{6 classical queries
and quantum time.

140 Chapter 9. Quantum Slide Attacks

Case f(x+k), 2-rounds self-similarity. If the Feistel has two alternating keys
pk0, k1q, we can use

G : t0, 1u ˆ
´

t0, 1un{2
¯2
Ñ t0, 1un

b, x, y ÞÑ

#

g0pxq “ Ek0,k1px, yq ´ px, yq if b “ 0,
g1pxq “ E0,0px, yq ´ px, yq if b “ 1.

As we have the same property Ek0,k1px, yq ` pk0, k1q “ E0px ` k0, y ` k1q, the hidden
shift is pk0, k1q. As before, this attack can be performed with only classical queries.
It requires 2n{3 classical queries and quantum time, while classically 2n{2 queries are
needed.

Table 9.1: Summary of the slide attack costs, n is the block size.

Branch and key Round query Remark
addition function cost
‘, any Weak n{2
‘,‘ fpx‘ kq n{2
‘,‘ fkpxq n2

‘,` fkpxq n2
?

n

`, any Weak 2
?

n

`,` fpx` kq 2
?

n Need the exact same addition
`,‘ fkpxq n2

?
n

`,` fkpxq 22
?

n

‘,‘ fpx‘ kq n 2-Round self-similarity

`,` fpx` kq 2
?

2n 2-Round self-similarity
Need the exact same addition

`,` fpx` kq 2n{6 Classical queries,
Need the exact same addition

`,` fpx` kq 2n{3
Classical queries

2-Round self-similarity
Need the exact same addition

Table 9.1 presents a summary of the costs of this attack, depending on the group
operation for the branch addition, and the key addition. It can be different for the
branch and the key, except when stated otherwise. As the variants with classical queries
have an exponential cost in time and queries, there is little difference between them and
they are not separated in the table.

9.4. Slide attacks against 4-round self-similar Feistels 141

9.4 Slide attacks against 4-round self-similar Feis-
tels

In this section, we present some attacks on 4-round self-similar Feistel schemes and
their whitened variants. Contrary to the previous sections, these attacks require the
key additions to be XORs.

9.4.1 Twist and complementation slide attack
Combining twist and complementation slides enables the authors in [BW00] to attack
a 4-round self-similar Feistel. In this section we show how to efficiently quantize this
attack and extend it to the whitened variant. The main idea is that the sequence of keys
for encryption is k0k1k2k3 . . . and for decryption, k3k2k1k0 . . . (see Figure 9.9). If we
slide by one round, we make the keys k0 and k2 coincide, whereas the keys in the other
rounds always have a constant difference ∆ “ k1‘k3, similarly to the complementation
slide technique. Let Ek and Dk be the encryption and decryption oracles.

We gather from [BW00] that a slide pair pP,Cq “ pL,Rq, pM,Nq (in input to Ek),
pP 1, C 1q “ pL1, R1q, pM 1, N 1q (in input to Dk) satisfies the following properties:

L1, R1 “M ‘∆‘ fpk0 ‘Nq, N

M 1, N 1 “ L‘ fpR‘ k0q ‘∆, R

For all plaintexts P “ px,Rq we writeDkpM
1, N 1q “ pL1, R1q andM “ TruncLpEkpx,Rqq,

N “ TruncRpEkpx,Rqq, which gives:

Dkpx‘ fpR‘ k0q ‘∆, Rq “M ‘∆‘ fpk0 ‘Nq, N

ùñ TruncRpDkpx‘ fpR‘ k0q ‘∆, Rqq “ TruncRpEkpx,Rqq

Hence, for a fixed R, we have the following function G:

G : t0, 1u ˆ t0, 1un{2 Ñ t0, 1un{2

b, x ÞÑ

#

g0pxq “ TruncRpDkpx,Rqq if b “ 0,
g1pxq “ TruncRpEkpx,Rqq if b “ 1.

The hidden shift between g0 and g1 is fpR‘ k0q ‘∆. As in Section 9.3, we remark
that the function R ÞÑ fpR ‘ k0q ‘ ∆ ‘ fpRq has k0 as hidden period, which can be
recovered with Simon’s algorithm. Contrary to [DDW18], we do not need to assume
that f is weak.

The total cost is around n2 queries, as we need to combine two Simon’s algorithms
to recover k0. Once k0 is known, we can directly use the first attack to get ∆ “ k1‘ k3,
at a negligible cost of n{2.

Moreover, we can “shift” the cipher, that is, suppress the first round of encryption,
and add it at the last round, in order to simulate access to the same cipher, but with
the encryption keys pk1, k2, k3, k0q instead of pk0, k1, k2, k3q. Hence, we can repeat the
same attack, to get k1, and ∆1 “ k2 ‘ k0. With k1 and ∆, we obtain k3, and with k0
and ∆1, we obtain k2. The total cost is around n2, for a total key size of 2n bits.

142 Chapter 9. Quantum Slide Attacks

L

f
k0

R

M 1 ‘∆ N 1

f
k1

f
k2

f
k3

f
k0

f
k1

f
k2

f
k3

M N

M 1 N 1

f
k3

f
k2

f
k1

f
k0

f
k3

f
k2

f
k1

M ‘∆ N
f

k0

L1 R1

Figure 9.9: Complementation and twist combined on a 4k-Feistel scheme

Attacking 4k-WFeistel. Building on the previous 4k-Feistel attack, we can further
extend it to 4k-WFeistel, with key whitenings kpre and kpost. Indeed, if we rewrite the
slide shift equation:

TruncRpDkpx‘ fpR‘ k0q ‘∆, Rqq “ TruncRpEkpx,Rqq

using the whole primitive Ep¨q “ kpost ‘ Ekpkpre ‘ ¨q, we obtain:

TruncRpDpx‘ k
L
post ‘ fpR‘ k0q ‘∆, R‘ kR

postqq ‘ k
R
pre “

TruncRpEpx‘ k
L
pre, R‘ k

R
preqq ‘ k

R
post

which we rewrite:

TruncRpDpx‘ δL ‘ fpR‘ k0 ‘ k
R
postq, Rqq “ TruncRpEpx,R‘ δRqq ‘ δR

where δR “ kR
pre ‘ k

R
post and δL “ kL

pre ‘ k
L
post ‘ k1 ‘ k3.

Now, we can use the function

G : t0, 1u ˆ
´

t0, 1un{2
¯2
Ñ t0, 1un{2

b, x, y ÞÑ

#

g0px, yq “ TruncRpDpx‘ fpy ‘ pk
R
post ‘ k0qq, yq ‘ y if b “ 0,

g1px, yq “ TruncRpEpx, yqq if b “ 1.

9.4. Slide attacks against 4-round self-similar Feistels 143

We have g0px, yq “ g1px ‘ δL, y ‘ δRq. However, to implement g0, we need to know
the value pkR

post ‘ k0q. Hence, we first guess the value of pkR
post ‘ k0q using Grover’s

algorithm, and combine it with Simon’s algorithm. In time and queries 2n2n{4, this
attack recovers δL, δR and pkR

post ‘ k0q. Now, we can perform the analogue of the
classical attack: swapping the encryption and the decryption, we obtain kL

pre‘k
L
post and

kR
pre‘ k

R
post‘ k0‘ k2, which allows to obtain k0‘ k2, k1‘ k3 and kpre‘ kpost. This step

costs n2n{4.

But we can also move differently δR in the slide shift property:

TruncRpDpx‘ δL ‘ fpR‘ k0 ‘ k
R
preq, R‘ δRqq “ TruncRpEpx,Rqq ‘ δR .

We now interpret this as a hidden shift equation on x only and, given an arbitrary R,
we can recover fpR‘ k0 ‘ k

R
preq. In turn, this gives us the value k0 ‘ k

R
pre for a total of

n2 queries.
Since we have already guessed pkR

post ‘ k0q, we deduce k0, k
R
pre, k

R
post, and k2 from

k0‘k2. Only n{2 bits of key material remain unknown in the Feistel scheme, as k1‘k3
has been previously obtained. We can finish the attack by seeing the cipher as an
instance of the FX construction, at a cost of n2n{4 queries.

As this attack uses the sliding with a twist technique, it does not transpose well to
modular additions.

A variant of 4k-WFeistel. We consider a variant of the 4k-WFeistel studied in [DKS15,
Section 7.4]. It has two whitening keys kpre and kpost and four alternating keys k0, k1, k2, k3
scheduled in 4m` 1 rounds as: pk0, k1, k2, k3q

m, k0.
Slide pairs pP,Cq, pP 1, C 1q have the properties:

P ‘ C 1 “ kpre ‘ kpost ‘ pk1 ‘ k3||0q
EkpP ‘ kpreq “ E´1

k pC 1 ‘ kpostq ‘ pk1 ‘ k3||0q

Where the term ∆ “ k1 ‘ k3 intervenes as in the complementation slide to correct
the inversion of Ek. We can rewrite this as a slide shift equation holding for all input
x:

Ekpxq “ E´1
k px‘ p∆||0qq ‘ p∆||0q

ùñ Epx‘ kpreq ‘ kpost “ E´1px‘ kpost ‘ p∆||0qq ‘ kpre ‘ p∆||0q
ùñ Epxq ‘ x “ E´1px‘∆1q ‘ x‘∆1

where ∆1 “ kpre‘kpost‘p∆||0q, a slide shift equation holding for all x. We can retrieve
∆1 in only n queries, achieving a very efficient distinguisher. Obtaining the rest of the
key seems more difficult.

144 Chapter 9. Quantum Slide Attacks

9.4.2 Enhanced reflection attack
The enhanced reflection attack was introduced in [Din+15] for ciphers of the form E “
E2˝E1˝E0 where E1 is an involution. It requires to find P such that E0pP q is a fixpoint
of E1. This happens with probability 2´n{2 for 1 round of Feistel ciphers. In this case
we get directly C “ E2pE0pP qq.

Enhanced reflection attack on 4k-Feistel. In [Din+15], the authors use a reflec-
tion attack on 4k-Feistel, where the four alternating subkeys are denoted k0, k1, k2, k3.
The core idea of the enhanced reflection attack ([Din+15, Property 3]) is that if at round
2m (which will use either k0 or k2 as a round key) the round function adds ∆ “ k1‘k3,
then the remaining rounds will behave as if k1 and k3 were swapped. This means that
all the following rounds will effectively decrypt, the only difference being an offset of
∆ on one branch. All the rounds would be decrypted at round 4m ` 1, and the value
would correspond to the original plaintext swapped with ∆ added on the right branch.
Hence, for the ciphertexts, we have PR “ CR and PL “ CL ‘∆‘ fpCR ‘ k0q.

Reflection points, that satisfy these properties can be detected as PL “ CL. Only
O
`

2n{2˘ known plaintexts are required. Given at least three of them, the adversary
guesses ∆, then tries to obtain k3 from the equation: if ∆ is good, this works and both
k1 and k3 can be obtained.

To complete the attack, the authors note that a similar reflection property holds with
the equation PL “ CL to detect reflection points, and PR “ CR‘fpCL‘k3q‘pk0‘k2q
(this corresponds to the same property, but with the decryption, which swaps the two
branches and inverts the key schedule).

In a quantum setting, only O
`

2n{4˘ superposition queries are enough to retrieve the
reflection points, using Grover search over all plaintexts P . Again, trying all values of
∆ requires O

`

2n{4˘ work. All subkeys are recovered in time O
`

2n{4˘.

Enhanced reflection attack on 4k-WFeistel. The reflection attack on 4k-Feistel
can be classically turned into an attack for 4k-WFeistel. We note kpre and kpost the two
whitening keys. The adversary first has to guess kL

pre ‘ kL
post. To do this, remark that

reflection points for E1 of the form P 1, C 1 turn into reflection points for E that satisfy
PL ‘ CL “ kL

pre ‘ k
L
post.

In this, the correct value of kL
pre ‘ k

L
post appears with probability 2 ¨ 2´n{2, whereas

all incorrect values have a probability 2´n{2 of appearance. This allows to retrieve
kL

pre ‘ k
L
post using O

`

n2n{2˘ memory and time, the bottleneck of the attack.
We leave a quantization of this attack as an open problem. Indeed, we do not

know of a quantum algorithm that would solve this problem (among n2n{2 arbitrary
values, finding the one that appears twice more often than the others) with more than
a constant speedup.

9.5. Cycle-based slide attacks 145

9.5 Cycle-based slide attacks
A generic framework of cycle-based slide attacks is presented in [Bar+18, Section 4.1].
The authors suggest that it could be accelerated in a similar way as the slide attacks
from [Kap+16], expecting for instance exponential speedups. In this section we study
these attacks. As they do not seem to have an exploitable slide-shift structure, we find
smaller improvements than expected.

9.5.1 Definition of a cycle slide attack
We suppose that Ek “ f ℓ

k for some function fk, which happens to be immune to simpler
slide attacks such as those presented above for 1k-, 2k- and 4k-Feistel schemes. Consider
a message P and the cycle built from P by iterating Ek: P,EkpP q, E

2
kpP q, . . . Let m2 be

the period of this cycle. Let also m1 be the period of the fk-cycle, that is, the smallest
integer such that fm1

k pP q “ P . Then one has m2 “ m1{gcdpm1, ℓq. Moreover, suppose
that gcdpm1, ℓq “ 1, then m1 “ m2 “ m. This condition cannot be checked directly by
the attacker, since he does not have access to fk.

By Bezout’s theorem, there exists d1, d2 such that d1m´ d2ℓ “ 1. This gives:

fd1m´d2ℓ`1
k pP q “ P

fd1m`1
k “ fd2ℓ

k pP q “ Ed2
k pP q

fkpP q “ Ed2
k pP q

Hence pP,Ed2
k pP qq is a slide pair. Moreover, pEt

kpP q, E
d2`t
k pP qq is one for every t. This

gives a certain number of slide pairs “for free”, up to the length of the cycle. Once they
have been obtained, we can use them to perform an attack on fk and try to recover the
key material.

General cycle size. We assume that Ek is a random permutation. In that case,
the i-th largest cycle has size e´i`1 p1´ 1{eq 2n (on average), the largest having size
p1´ 1{eq 2n. In particular, on average, half of the points lie on the largest cycle. Finding
a cycle of Ek then requires c2n chosen plaintext queries for some c ă 1, which is a little
less than the entire codebook.

The main interest is the time complexity: suppose that the attack on fk needs time
O ptq, then the total time complexity is O pt` 2nq and not O pt2nq as would require a
standard slide attack (see [Bar+18, Section 4.1]).

Combining cycles. It is important to note that the probability of success (i.e, m1
is prime with ℓ) is strictly smaller than one, exactly ϕpℓq{ℓ where ϕ is Euler’s totient
function. The only way to check that the slide pairs obtained were good is to try to
attack fk. Hence, it may be difficult to combine (when needed) the data obtained from
multiple cycles.

In particular, if one is not able to tell if a given cycle is a good one (i.e, m1 is prime
with ℓ), the complexity can increase dramatically, since we would require all cycles to

146 Chapter 9. Quantum Slide Attacks

be good at the same time: it happens only with probability pϕpℓq{ℓqt if there are t of
them.

9.5.2 Quantization of a cycle-based slide attack
At the end of [Bar+18, Section 4.1], the authors suggest that a quantum period-finding
algorithm could be applied to cycle-based slide attacks. The issue that we found when
trying to do this is that, given a point P , the period of interest is the one of the function
G : d P Z ÞÑ Ed

kpP q. If G is implemented using a quantum circuit, we can indeed use
Shor’s period-finding algorithm to retrieve the cycle length. However, computing G is
costly: to compute Ed

k , there is no more efficient way than performing d successive calls
to Ek. To identify a cycle, we need to compute a d which is at least the size of the cycle:
there is no quantum speedup.

Quantization. What is quantumly easier is to find a fixpoint of Ek using Grover
search; or a point lying on a small cycle. In a random permutation, there are on
average 1{d cycles of length d; and d points of period less than or equal to d (among
2n). Finding if a point lies on such a cycle can be done with d queries to Ek. So using
Grover’s algorithm, one can find a superposition of points that lie on a cycle of length
less than d in O

´

d
a

2n{d
¯

“ O
`
?
d2n

˘

queries to Ek (and time).
In the classical case, we do not have much choice: the cycle slide pairs found will fall

on a large cycle, with high probability. On the contrary, in the quantum setting, we can
specifically look for points lying on a short cycle. Surprisingly, finding fixed points (or
points on very short cycles) costs less than finding points on bigger cycles, due to the
cost of iterating Ek. But the smaller the cycle, the less slide pairs we can get from it.
Consequently, cycle-based slide attacks seem to be eligible to an interesting quantum
speedup when the cipher Ek “ f r

k does not enjoy a slide-shift property as before, but
has a sufficiently weak round function fk, so that a small number of slide pairs suffice
to get the subkey material.

9.5.3 Examples
We are inspired by [Bar+18] and the attacks against the SA construction. In the classical
as in the quantum versions, most of the computation time required is due to finding the
actual slide pairs (via the cycle).

Two keys and two permutations. Consider a cipher with alternating keys k0, k1,
xored or modularly added, and two permutations Π1,Π2 (Figure 9.10). In the case of a
SPN, Π1 “ Π2 “ Π are the same.

This scheme resists to the basic slide attack, but we can write Ek ˝ Π2 “ f r
k pxq

where fkpxq “ Π2pk1 ‘Π1pk0 ‘ xqq, and apply the cycle-finding technique. In O
`

2n{2˘

superposition queries to Ek and computations, we can recover a small number of slide
pairs, say two, from small cycles of Ek ˝ Π2. Recall that n is the block size here; the

9.5. Cycle-based slide attacks 147

P

k0

Π1

k1

Π2

k0

Π1 …

k1

C

P 1

k0

Π1 …

k1

Π2

k0

Π1

k1

C 1

Figure 9.10: Slide attack against a key- and permutation-alternating cipher

key length is 2n. Therefore we obtain two equations:

y “ Π2pk1 ‘Π1pk0 ‘ xqq

y1 “ Π2pk1 ‘Π1pk0 ‘ x
1qq

Since the permutations can be inverted, we find:

Π´1
2 pyq ‘Π´1

2 py1q “ Π1pk0 ‘ xq ‘Π1pk0 ‘ x
1q

Solving this equation on k0, if Π1 has no specific property, can be done in O
`

2n{2˘ time
using Grover’s algorithm, the same complexity as the first stage. This improves on the
attack of Section 9.2, as the test is simpler than applying Simon’s algorithm, but it
cannot benefit from the query reduction method of Chapter 6.

Attacking 3k-SPN. Cycle-finding can further be applied on a 3k-SPN construction,
where there is a unique permutation Π “ A˝S, with A a linear layer and S a non-linear
layer of S-Boxes. Still using O

`

2n{2˘ queries, we now write the slide equations as:

y “ Πpk2 ‘Πpk1 ‘Πpk0 ‘ xqqq

y1 “ Πpk2 ‘Πpk1 ‘Πpk0 ‘ x
1qqq

ùñ Π´1pyq ‘Π´1py1q “ Πpk1 ‘Πpk0 ‘ xqq ‘Πpk1 ‘Πpk0 ‘ x
1qq

To solve efficiently this equation in k0 and k1, we first guess k0 using Grover’s algorithm.
The equation on k1 becomes:

A´1pΠ´1pyq ‘Π´1py1qq “ Spk1 ‘Πpk0 ‘ xqq ‘ Spk1 ‘Πpk0 ‘ x
1qq

Furthermore, we may consider each S-Box separately and solve the equation on k1, S-
Box by S-Box. If s is the bit size of an S-Box, the final complexity of this attack is
O
`

2pn`sq{2˘ computations, with O
`

2n{2˘ oracle queries.

Against 3k-Feistel. A Feistel scheme with a mixing function f , alternating three
keys k0, k1, k2, xored or modularly added, is immune to the complementation slide and
sliding with a twist techniques. It seems difficult to write a slide shift property for this
cipher. Let us write the round function g as:

L,R ÞÑ R` fpk1 ` L` fpk0 `Rqq,

L` fpk0 `Rq ` fpk2 ` fpk1 ` L` fpk0 `Rqqq

148 Chapter 9. Quantum Slide Attacks

and suppose that we can invert f . In O
`

2n{2˘ queries, we can find two slide equations
gpL,Rq “ L1, R1, which imply fpk1 ` L ` fpk0 ` Rqq “ L1 ´ R. Regardless of the
function f , we can invert it in time O

`

2n{4˘ using Grover and recover two equations
k1 ` L ` fpk0 ` Rq “ X. We take the difference (or sum if we replace ` by ‘) to
eliminate k1, and we can solve the remaining equation on k0 using Grover in O

`

2n{4˘

time. Once this is done, k1 can be found via the relation k1 “ f´1pL1´Rq´L´fpk0`Rq
and k2 via L` fpk0 `Rq ` fpk2 ` fpk1 ` L` fpk0 `Rqqq “ R1.

The whole attack requires O
`

2n{2˘ time and queries due to the cycle finding, with
any function f .

Against 4k-Feistel. If we append one more round key k3, the round function g
becomes:

L,R ÞÑ L` fpk0 `Rq ` fpk2 ` fpk1 ` L` fpk0 `Rqqq,

R` fpk1 ` L` fpk0 `Rqq ` fpk3 ` L` fpk0 `Rq ` fpk2 ` fpk1 ` L` fpk0 `Rqqqq

Again, we can find some slide equations gpL,Rq “ L1, R1 from a cycle in O
`

2n{2˘

queries. We guess the subkey k0. For each guess, we can rewrite the equations as if there
were only 3 subkeys, and solve them in time O

`

2n{4˘ using multiple Grover instances,
as seen above, regardless of the properties of f . The whole attack requires O

`

2n{2˘

time and queries, the two steps (cycle finding and solving equations) are now balanced.
The time complexity is greater than the other 4k-Feistel attacks seen above, but there
is no restriction on the function f and the operations used; furthermore, we only use
encryption queries, not decryption queries (which is the case of the twist).

9.6 Attacks on Feistels with weak key schedules
The attack of Section 9.3.2 is slightly different from the other slide attacks presented
in this chapter, as the similarity is not between one round and the next of the same
function, but between one round and the same round, with a different key. It only
relies on the complementation property of key-alternating Feistels, which is described
in Figure 9.11. This round property can be extended to the whole cipher, that is, we
have Ekpx, yq ` pk, kq “ E0px ` k, y ` kq. This holds for any type of addition, as long
as the key and branch addition are the same. Moreover, this property does not require
to have an identical round function, but only to have an identical key for each round.
In particular, if the round function is of the form fpx ` k ` ciq, that is, only round
constants are used for the key schedule, we have this property. As in Section 9.3.2, this
attack can also be generalized when two keys k0, k1 are used alternatively.

9.6.1 Classical attacks on MiMC and GMiMC
MiMC [Alb+16] and GMiMC [Alb+19] are families of block ciphers and hash functions
designed for multipartite computation. They are defined in a finite field, which may be
F2n for a large n (in which case the addition is a xoring) or Fp for a large prime number
p (in which case the addition is done modulo p).

9.6. Attacks on Feistels with weak key schedules 149

x

fi

k ‘ ci

y

z t

fi

ci

y ‘ kx‘ k

z ‘ k t‘ k

Figure 9.11: Complementation property

MiMC. Two block ciphers are proposed in [Alb+16], an SPN named MiMC-n{n (n-
bit block size, n-bit key size) and a Feistel named MiMC-2n{n (2n-bit block size, n-bit
key and branch size). Their round function is of the form px` k ` ciq

3.

GMiMC. GMiMC [Alb+19] is a family of generalizations of MiMC-2n{n that use
a generalized Feistel structure. Two key schedules are proposed: the univariate key
schedule, in which only round constants are used from a fixed key, and the multivariate
key schedule, which uses a matrix multiplication to produce t new round keys from the
t previous ones. It turns out that with the univariate key schedule, we have in most
cases the same property, but with more branches, that is, Ekpx1, . . . , xtq ` pk, . . . , kq “
E0px1 ` k, . . . , xt ` kq. The different cases proposed are detailed below.

GMiMC-crf. GMiMC-crf has t branches and adds a function of t ´ 1 branches on
one branch. The round function is

Ri
kpx1, . . . , xtq “ x2, . . . , xt, x1 `

˜

t
ÿ

j“2
xj ` k ` ci

¸3

.

In order to have the round property, we must have
˜

t
ÿ

j“2
xj

¸

` k “
t
ÿ

j“2
pxj ` kq

Hence, it only works if pt´ 2qk “ 0, which either imposes t “ 2 (which corresponds to
MiMC-2n{n) or t ´ 2 is a multiple of the field caracteristic, which occurs if we have a
xoring and an even number of branches.

GMiMC-erf. GMiMC-erf has t branches, and adds a function of one branch on all
the other. The round function is

Ri
kpx1, . . . , xtq “ x2 ` px1 ` k ` ciq

3 , . . . , xt ` px1 ` k ` ciq
3 , x1 .

Hence, we have that Ri
kpx1, . . . , xtq “ Ri

0px1` k, . . . , xt` kq, and the same property on
the full cipher.

150 Chapter 9. Quantum Slide Attacks

GMiMC-Nyb. GMiMC-Nyb has 2t branches, and adds a function of each odd branch
to the next branch. The round function is

Ri
kpx1, . . . , x2tq “ x2 ` px1 ` k ` ctiq

3 ,

x3, x4 ` px3 ` k ` cti`1q
3 , . . . , x2t ` px2t´1 ` k ` cti`t´1q

3 , x1.

Hence, we have that Ri
kpx1, . . . , x2tq “ Ri

0px1 ` k, . . . , x2t ` kq, and the same property
on the full cipher.

GMiMC-mrf. GMiMC-mrf is a generalization of the previous construction with a
permutation of the branches that change for each round, which maintains the property.

Attack. The attack can be performed as before: if we define f and g as

fpxq “ Ekpx, . . . , xq ´ px, . . . , xq , gpxq “ E0px, . . . , xq ´ px, . . . , xq

then we have fpxq “ gpx` kq. Moreover, g only depends on public parameters, which
allows to use the offline approach of Chapter 6. Hence, for MiMC-2n{n and all univariate
versions of GMiMC except some versions of GMiMC-crf:

• with quantum queries, key recovery can be done in polynomial (in F2n) or subex-
ponential (in Fp) time,

• with a quantum computer and classical queries, key recovery can be done in around
2n{3 classical queries and quantum time,

• with classical resources only, a collision recovers the key and requires around 2n{2

queries.

If the designers did not make any quantum security claim, the classical security claim
was of 2n operations, which makes this attack a break of all the affected ciphers. The
attack is independent of the round function and the number of rounds, but relies on
the weak key schedule of the construction. Hence, using a stronger key schedule would
suffice to thwart the attack.

9.7 Conclusion
This chapter presented the quantization of many classical slide attacks, which are sum-
marized in Table 9.2. The attacks that could be described with a slide-shift property
have benefited of pretty significant speedup, often exponential or subexponential. The
slide on Feistel cipher is also the first example of a quantum cryptanalysis that constructs
a periodic function from another quantum period finding algorithm, which demonstrates
that the relevant notion of security for a round function can be its quantum security.

Classical slide attacks have shown the importance of a good key schedule, as self-
similarity in a cipher allows for powerful breaks. In the quantum setting, these results
seem to put even more weight on this design principle, as the attacks become much

9.7. Conclusion 151

more efficient. This incentive to express the slide property as a functional equality has
also helped us to find a classical attack against MiMC-2n{n and univariate GMiMC.

As the cost of quantum slide-shift attacks is very small, a possible future direction
for improvement would be to consider new attack patterns, intrinsically unfeasible in
a classical setting, with stronger functions relating the slide pairs. Another direction
would be to find new applications that do not require quantum queries. Indeed, if the
quantum slide attacks generally require quantum queries, this is not the case of some
attacks in Section 9.3.2 and Section 9.6, which are the first example of a quantum hidden
period attack with classical queries on an iterated construction.

152 Chapter 9. Quantum Slide Attacks

Table 9.2: Quantum slide attacks. n is the block size. The attacks are a complete
key-recovery, except for the three distinguishing attacks.

Cipher Attack Queries Dec. Source
details oracle

1k-Feistel (XOR) Basic slide n{2 [DDW18]
1k-Feistel (additions) Basic slide 2

?
n Section 9.2.2

1k-Feistel (any) Composed slide n{2 to 22
?

n Section 9.3

1k-Feistel (any) Composed slide,
classical queries

2n{6 Section 9.3

2k-Feistel (XOR) Complementation n2n{4 Section 9.2.3
2k-Feistel (XOR) Slide with a twist n{2 Yes [DDW18]
2k-Feistel (XOR) Composed slide n Section 9.3
2k-Feistel (additions) Complementation 2

?
n`n{4 Section 9.2.3

2k-Feistel (additions) Composed slide 2
?

2n Section 9.3
2k-Whitened Feistel Complementation n2n{4 Section 9.2.3

2k-Feistel (any) Composed slide,
classical queries

2n{3 Section 9.3

3k-Feistel (any) Cycle finding 2n{2 Section 9.5
4k-Feistel (XOR) Complementation,

slide with a twist
n (Dist.) Yes [DDW18]

4k-Feistel (XOR) Complementation,
slide with a twist

4n2 Yes Section 9.4.1

4k-Feistel (XOR) Enhanced reflec-
tion

2n{4 Section 9.4.2

4k-Feistel (any) Cycle finding 2n{2 Section 9.5
4k-Whitened Feistel
(XOR)

Complementation,
slide with a twist

n22n{4

n2n{4 (Dist.)
Yes Section 9.4.1

4k-Whitened Feistel
(variant) (XOR)

Mirror slidex n (Dist.) Yes Section 9.4.1

1k-SPN (XOR) Basic slide n [Kap+16]
1k-SPN (additions) Basic slide 2

?
2n Section 9.2

2k-SPN (any) Grover-meet-
Simon

n2n{2 Section 9.2

2k-SPN (any) Cycle finding 2n{2 Section 9.5
*k-SPN (XOR) Related-key n [HA17]

Chapter10Computing Isogenies

The use of isogenies in cryptography is fairly recent. A first key exchange mechanism
was proposed by Couveignes [Cou06] and independently discovered by Rostostev and
Stolbunov [RS06]. These early designs were mostly of theoretical interest, due to their
poor performance. A first quantum attack against them in subexponential time was
proposed by Childs, Jao and Soukharev [CJS14]. Two improved variants on these
designs have been proposed recently, by De Feo, Kieffer and Smith [DKS18], and CSIDH,
by Castryck, Lange, Martindale, Panny and Renes [Cas+18]. This last scheme has
proven itself quite popular, with a signature based on the same structure [DG19] and
multiple improvements proposed since [MR18; Jal+19; MCR19; DPV19]. Another
approach for key exchange, which does not suffer from any subexponential quantum
attack has been proposed by De Feo, Jao and Plût [JD11]: SIDH. The only NIST
candidate using isogenies, SIKE [SIKE], is based on SIDH. We studied the asymptotic
security of CSIDH with Jean-François Biasse, Benjamin Pring, André Schrottenloher
and William Youmans in [Bia+19], and its concrete security, with André Schrottenloher,
in [BS18].

Contents
10.1 Key exchange from hard homogeneous spaces 153
10.2 Group action with isogenies . 154
10.3 Isogeny evaluation . 156

10.3.1 For a key exchange . 156
10.3.2 For a key recovery . 157

10.4 Concrete cost estimates for CSIDH 161
10.5 Conclusion . 163

10.1 Key exchange from hard homogeneous spaces
Couveignes [Cou06] proposed the following notion:

Definition 10.1 (Hard homogeneous space). Let G be a group, X a set, with a free
and transitive action ¨ of G on X, that is, for any x1, x2 P X, there exists a unique g P G
such that x2 “ g ¨ x1. X is a hard homogeneous space for G if it is easy to compute the
group action, but, given x1, x2, it is hard to find the unique g such that x2 “ g ¨ x1.

153

154 Chapter 10. Computing Isogenies

If G is abelian, we can easily make a key exchange protocol from a hard homogeneous
space, as decribed in Algorithm 10.1. In fact, if X is the set of elements of maximal
order of a cyclic group of order N and G is pZ{ pNqq˚, this is the Diffie-Hellman key
exchange.

Algorithm 10.1 Key exchange from an abelian hard homogeneous space
1: Initialization: choose a public x0 P X
2: Alice: chooses a secret value gA P G, and sends gA ¨ x0.
3: Bob: chooses a secret value gB P G, and sends gB ¨ x0.
4: Outcome: the shared secret is gB ¨ gA ¨ x0 “ gA ¨ gB ¨ x0.

Quantum security. In the case of a Diffie-Hellman key exchange, we can apply Shor’s
algorithm, which breaks the key exchange. In the general case, as G is abelian, we have
a hidden shift property. Indeed, from x and x1 “ g ¨x, we have, for all h, h ¨x1 “ ph ¨gq¨x.
Hence, we can consider f0phq “ h ¨ x1 and f1phq “ h ¨ x, which satisfies f0phq “ f1ph ¨ gq.
Then, from f0 and f1, we can recover g in subexponential time, using the algorithms of
Chapter 5.

Instances. To date, the only known instances of hard homogeneous spaces, besides
Diffie-Hellman, are ordinary isogeny-based schemes and CSIDH. If the principles of
SIDH are quite similar, its underlying structure is different, as there is no group, which
prevents this formalism and the quantum subexponential attacks to be applied.

10.2 Group action with isogenies
The aim of this section is to present how we can construct hard homogeneous spaces
from ordinary curves (for [Cou06; RS06; DKS18]) and from supersingular curves defined
over Fp (for [Cas+18]). A more detailed explanation of the mathematical background
behind elliptic curve can be found in [Sil86]. At their core, these protocols use elliptic
curves over a finite field of large characteristic.

Definition 10.2 (Elliptic curve). An elliptic curve over a field K when charpKq ‰ 2, 3
is the set of points solution of an equation of the form y2 “ x3 ` ax` b.

It is well known that if we add the point at infinity, O, to the set of points on an
elliptic curve, we obtain an abelian group. We note, for a point P , rmsP “ P ` ¨ ¨ ¨ ` P

loooooomoooooon

m times

.

Definition 10.3 (Points of m-torsion). We note Erms “ tP P E|rmsP “ Ou the set of
points of m-torsion.

Definition 10.4 (j-invariant). The j-invariant of an elliptic curve E is the quantity

jpEq “ 1728 4a3

4a3 ` 27b2

10.2. Group action with isogenies 155

Definition 10.5 (Isogeny). Let E1, E2 be two elliptic curves over K. An isogeny ϕ :
E1 Ñ E2 is an algebraic morphism that satisfies ϕ pOE1q “ OE2 . The degree of an
isogeny is its degree as an algebraic map.

Definition 10.6 (Isogenous curves). Two elliptic curves are isogenous if there is a
non-zero isogeny between them.

Proposition 10.1 (Isogenous curves over Fq [Tat66]). Two curves defined over a finite
field are isogenous if and only if they have the same number of points.

The previous proposition allows to define the graph of isogenous curves, which is
the structure in which the key exchange will take place.

Proposition 10.2 (Isomorphic curves). Two isogenous curves are isomorphic if and
only if they have the same j-invariant.

As we are interested in isogenies up to isomorphism, this property allows to use the
j-invariant to represent a curve in the isogeny graph.

Definition 10.7 (Endomorphism ring). The endomorphism ring EndpEq over a field
K of an elliptic curve E is the set of isogenies from E to E defined over K. It forms a
ring under addition and composition.

Definition 10.8 (Order). Let A be a finitely generated Q-algebra. An order O Ă A
is a subring which is also a Z-lattice of maximal dimension, that is, there exists a set
tb1, . . . , bdu such that: O “ b1Z` ¨ ¨ ¨ ` bdZ and A “ b1Q` ¨ ¨ ¨ ` bdQ.

Definition 10.9 (Quaternion algebra). A quaternion algebra is an algebra of the form

A “ Q` αQ` βQ` αβQ

with the constraints

α2, β2 P Q, α2, β2 ă 0, αβ “ ´βα.

Proposition 10.3 (Endomorphism ring structure). When K is a finite field, the endo-
morphism ring of an elliptic curve over K is either:

• An order in a quadratic imaginary field (Qr
?
Ds, with the discriminant D ă 0),

in which case EndpEq has dimension 2 and E is said to be ordinary,

• An order in a quaternion algebra in which case EndpEq has dimension 4 and E
is said to be supersingular.

Proposition 10.4 (Supersingular curves). Any supersingular curve is defined over an
Fp2. If it is defined over Fp, then its endomorphism ring over Fp is an order in a
quadratic imaginary field.

Proposition 10.5 (Number of points). An elliptic curve over Fq has a number of points
N which satisfies |N ´ pq ` 1q| ď 2?q. A supersingular curve has q ` 1 points.

156 Chapter 10. Computing Isogenies

Definition 10.10 (Integral ideal). An integral ideal (or ideal) I over an abelian ring
R is a subgroup of R which is absorbing, that is, RI “ IR “ I. An ideal is principal if
it is of the form iR, with i P R.

Definition 10.11 (Fractional ideal). A fractional ideal of an order O is a module of
K of the form αI, with α P K˚ and I an integral ideal of O. A fractional ideal I is
invertible if there exists a fractional ideal J such that IJ “ JI “ O.

Definition 10.12 (Class group). The set of invertible fractional ideals of O, IpOq forms
a group, which has the set of principal fractional ideals P pOq as a normal subgroup. The
class group of O is the quotient

CℓpOq “ IpOq{P pOq.

Remark 10.1 (Supersingular curves). A quaternion algebra is not commutative, which
restricts the ideals to either left or right ideals, and prevents to define a class group.

Proposition 10.6 (Class group size). On average, CℓpOq „ ?q.

Proposition 10.7 (Class group and isogenies). An element ras P CℓpOq corresponds to
the kernel of an isogeny, unique up to isomorphism, that we note ϕa : E Ñ E{a. We
have EndpEq “ EndpE{aq.

Moreover, the group law of the class group corresponds to the composition of isoge-
nies (even if their domains are different elliptic curves, their endomorphism ring is the
same, which allows to define the same isogeny with a different domain by considering
the corresponding class group element).

Proposition 10.8 (Class group action). Let E0 be an elliptic curve over Fq with a class
group CℓpEndpE0qq. The class group acts freely and transitively over the set EllpE0,Fqq

of curves isogenous to E0 with the same class group, with the action

CℓpEndpE0qq ˆ EllpE0,Fqq Ñ EllpE0,Fqq

pras, Eq ÞÑ E{a

10.3 Isogeny evaluation
10.3.1 For a key exchange
In order to make a key exchange, we need an efficient method to compute an isogeny
given an element of the class group, that is, a subgroup of an elliptic curve. Unfor-
tunately, this is hard to do in general: an isogeny of degree m over Fq costs Opmq
operations in Fq to be evaluated. Hence, to be efficient, we cannot evaluate in one step
an isogeny of large degree, and we need to evaluate a sequence of isogenies of small
degree. The curve has to be chosen such that it has many isogenies of small degree.
This means the curve has many small subgroups, which implies that its cardinality is
smooth. In the key exchange, the set of small isogenies is a public parameter, and the
secret key is a vector that states how many times each small isogeny is applied.

10.3. Isogeny evaluation 157

Ordinary curves. This approach has been used with ordinary curves by De Feo,
Kieffer and Smith [DKS18]. Unfortunately, with the curve they found, they did not
have enough isogenies of small degree defined over the base field, and had to take
some isogenies over an extension, up to degree 9. Overall, this makes the protocol
uncompetitive.

Supersingular curves. CSIDH [Cas+18] benefits from a much more favorable sit-
uation, with everything defined over Fp. The designers chose a prime p of the form
4ℓ1 . . . ℓu´ 1, with the ℓi some small distinct primes. Each ℓi will correspond to a small
isogeny rlis. An additional parameter m is chosen, and the secret isogeny is of the form
rl1s

e1 . . . rlus
eu , with |ei| ď m. They take m such that p2m` 1qu » ?p, and expect that

as the set of secret isogenies is roughly the same size as the class group, secret isogenies
should almost cover the whole class group.

The proposed parameters are presented in Table 10.1, with their expected security,
which is aligned on the odd levels of security proposed by the NIST for its call for new
key exchanges and signatures [NIST16]. The rationale behind the size of p is that ?p
should be the size of the hard homogeneous space, which makes the best classical attack
in

a?
p “ p1{4. For quantum attacks, in the first version of [Cas+18], they considered

the query complexity, and relied on the estimate of Lp
?

2q queries from [CJS14, Theorem
5.2]. As shown in Chapter 5, this was a loose estimate for an unoptimized version of
the least time-efficient subexponential algorithm. The final version relied on a weaker
notion of security, that considers the explicit cost of the attack (taking into account
the polynomial factors and the evaluation cost, for the attacker, of an isogeny), and
interprets the NIST levels as the cost to break AES, and not as a number of allowed
queries.

Table 10.1: Approximate parameters for the three security levels of CSIDH.

Level Expected quantum security log2 p u m

NIST 1 As hard as AES-128 key-recovery 512 74 5
NIST 3 As hard as AES-192 key-recovery 1024 132˚ 7˚

NIST 5 As hard as AES-256 key-recovery 1792 209˚ 10˚

*In [Cas+18], a prime p is given only for the first instance. The value of u given for
the other instances is an upper bound.

10.3.2 For a key recovery
For key recovery, we want to apply a hidden shift algorithm. This imposes to have a
quantum circuit that, given any element of the class group ras and an elliptic curve E,
computes E{a. As for the key exchange, the direct computation is extremely expensive,
and we need an efficient approach.

158 Chapter 10. Computing Isogenies

Group structure. First, we need to know the structure of the class group. This is
easy to do with a quantum computer, using the polynomial-time algorithm of [ME98].
Alternatively, we can use the subexponential classical algorithm from [HM89].

10.3.2.1 Efficient isogeny evaluation
Once this is known, the approach is simple: take a set of small elements of the class
group, and try to write ras as a small combination of elements in the set, using methods
from lattice reduction. This approach is standard for isogeny evaluation, and has been
proposed in multiple works [Cou06; GHS02; BCL08]. We can describe it as follows:

Let p1, . . . , pu be prime ideals generating CℓpOq. Let L be the lattice of relations
between p1, . . . , pu, i.e. the lattice of all the vectors pf1, . . . , fuq P Zu such that

ś

i p
fi
i is

principal. In other words, the ideal class
”

ś

i p
fi
i

ı

is the neutral element of CℓpOq. The
strategy for computing the action of ras P CℓpOq on a curve E is the following:

1. Compute a basis B for L,

2. Reduce B to B1 using the BKZ algorithm [SE94],

3. Find ph1, . . . , huq P Zu such that ras “
”

ś

i p
hi
i

ı

,

4. Use Babai’s nearest plane method on B1 to find short ph1
1, . . . , h

1
uq P Zu such that

ras “
”

ś

i p
h1

i
i

ı

,

5. Evaluate the action of
”

ś

i p
h1

i
i

ı

on E by applying repeatedly the action of the pi

for i “ 1, . . . , u.

Step 1 is the previous precomputation. Step 2 can be performed as a precomputation
requiring only classical gates. Step 3 is Shor’s algorithm. Step 4 is cheap. The cost of
Step 5 depends on the norm of the h1

i, which depends on the quality of B1.

Classical/quantum tradeoff. Step 2 is purely classical, and impacts the quantum
Step 5. Hence, there is a natural classical/quantum tradeoff on this algorithm. This
can be combined with the hidden shift algorithms which also have a classical/quantum
tradeoff (see Theorem 5.5).

Asymptotic complexity. Asymptotically, we need to have enough small primes to
perform the reduction. We rely on the following heuristic:

Heuristic 10.1 (Number of small primes). Let 0 ă α ă 1{2 and O be an imaginary
quadratic order of discriminant D. There are ppiqiďk for k “ log1´αp|D|q prime ideals
of norm in Polyplogp|D|qq whose classes generate CℓpOq. Furthermore, each class of
CℓpOq has a representative of the form

ś

i p
ni
i for |ni| ď elogα |D|.

Assuming we have enough primes, we can estimate the cost of BKZ:

10.3. Isogeny evaluation 159

Lemma 10.1 ([BIJ18]). Let L be an n-dimensional lattice with input basis B P

Znˆn, and let β ă n be a block size. Then the BKZ variant of [HPS11] used with
Kannan’s enumeration technique [Kan83] returns a basis b⃗1

1, . . . , b⃗
1
n such that }⃗b1

1} ď

e
n
β

lnpβqp1`op1qq
λ1 pLq , using time Polypn,SizepBqqββp 1

2e
`op1qq and polynomial space.

From this lemma, we can take n “ log1´αp|D|q and β “ log1´2αp|D|q, to obtain the
following corollary:

Corollary 10.1. Assuming Heuristic 10.1 for α, the precomputation, runs in time
Lp1 ´ 2α, α

ep1´2αq
q and has polynomial space complexity. It returns a basis of L whose

first vector b⃗1
1 satisfies }b⃗1

1} ď Lpα, 1´2α
1´α q.

We rely on another heuristic to estimate the quality of the outcome of Babai’s
algorithm:

Heuristic 10.2 (GSA). The precomputed basis B1 satisfies the Geometric Series As-

sumption (GSA): there exists 0 ă q ă 1 such that } p⃗b1
i} „ qi´1}b⃗1} where

ˆ

p⃗b1
i

˙

iďn

is the

Gram-Schmidt basis corresponding to B1.

Proposition 10.9. Assuming Heuristic 10.1 for 0 ă α ă 1{2 and Heuristic 10.2, the
quantum evaluation of any isogeny runs in quantum time L

´

α, 1´2α
1´α

¯

with polynomial
space.

Proof. Each computation of a rpis has a cost polynomial in logppq and in the norm of
rpis. Moreover, Babai’s algorithm runs in polynomial time and returns a vector b⃗ such
that

}⃗h´ v⃗} ď
1
2

d

ÿ

i

} p⃗b1
i}

2 ď
1
2
?
n}b⃗11} P L

ˆ

α,
1´ 2α
1´ α

˙

.

Therefore, each hi´vi is in L
´

α, 1´2α
1´α

¯

, which is the cost of evaluating the isogenies.

This classical/quantum tradeoff is in fact more favorable than Theorem 5.5, hence
the asymptotic cost is the one of Theorem 5.5, in Lp1 ´ α, 0.72βq classical time and
Lpα, p1´ αq{βq quantum time for any 0 ă α ă 1{2.

10.3.2.2 Case of CSIDH
CSIDH comes with a large set of small isogenies. This set reduces the cost of the key
exchange, and can also be used to reduce the cost of isogeny evaluation in the attack.
We are given the set prlisqiďu, and we assume that the class group is contained in
ś

iďu,|j|ďmrlis
j . We analyzed the cost for the concrete parameters of CSIDH in [BS18].

To efficiently compute the isogeny, we still do a lattice reduction. As a large basis
of small primes is provided by CSIDH, we rely on them.

160 Chapter 10. Computing Isogenies

Basis Quality. We want to have a concrete estimate, and not only some asymptotics
for the quality of the basis. The quality of the basis is related to the Hermite factor.
The first vector of the basis B in output, b1, is such that

||b1||2 ď cupVolpLqq1{u

where cu is the Hermite factor, and c a constant which depends on the algorithm used.
For our purposes, it is better to work with the approximation factor, which relates ||b1||2
and λ1pLq, the euclidean norm of the smallest vector in L. An approximation factor
of c2u is guaranteed, but in practice, it is equal to (and sometimes better than) the
Hermite factor. So we consider:

||b1||2 ď cuλ1pLq .

BKZ-20 gives a heuristic constant c of approximately 1.0128 [GN08]. Furthermore,
in [GN08, Fig. 12], the authors give a running time for BKZ-20 of the order 1000 CPU
seconds for a dimension of 200.

We assume that the whole group is contained in the set of secret isogenies of CSIDH,
which means that there exists at least one vector e⃗ “ pe1 . . . euq with ei P t´m, . . . ,mu
such that

ś

irlis
ei “ 1. This only assumption suffices to write that λ1pLq ď 2m

?
u,

hence ||b1||2 ď 2cum
?
u.

Effect on the L1 Norm. We are interested on the L1 norm of the difference v⃗ ´ h⃗.
Indeed, the L1 norm counts the number of successive isogenies to be applied. We can
count (roughly) the action of

ś

irlis
hi´vi as

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
v⃗ ´ h⃗

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
{pumq equivalent “legitimate” class

group actions. The closest we are to the lattice L, the smallest the representation (via
v⃗ ´ h⃗) of class group elements becomes. Naturally, if we manage to obtain a reduced
basis of mathcalL which allows to obtain always the closest vector to h⃗, any class group
action evaluation will have exponents in t´m, . . . ,mu and cost exactly the same as a
“legitimate” one. We have:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
v⃗ ´ h⃗

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
ď
?
u
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
v⃗ ´ h⃗

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ď u3{2mcu .

The multiplicative factor w.r.t the classical group action (mu) is u1{2cu.

Better bound. If the Shortest Vector Problem is solvable exactly for lattices from the
CSIDH parameters, the cost overhead of the group action with respect to a legitimate
key exchange computation becomes

?
u (with c “ 1 as approximation factor), which is

smaller than 24 for all the proposed instances of CSIDH.

Quantum Circuits for the CSIDH Group Action. The number of quantum gates
required to evaluate a CSIDH group action, with exponents in the range ´m. . .m, has
been estimated in full detail in [Ber+19b]. The authors give 765325228976 nonlinear
bit operations for the CSIDH-512 instance, in order to reach a success probability of
the order 2´32, necessary since we require that many queries. This cost comes mainly

10.4. Concrete cost estimates for CSIDH 161

Table 10.2: Number of Clifford + T gates required to compute rxs ¨E in superposition
over the class group CℓpOq.

Targeted level in [Cas+18] log2 p Number of gates (log2)
NIST 1 512 48
NIST 3 1024 57
NIST 5 1792 60

from the 221.4 multiplications in Fp needed, each one costing 218.7 Toffoli gates, with
log2 p “ 512. The number of T gates is 243.3. The total number of gates (Clifford +
T) is of the order 245.3. Furthermore, in order to keep the number of ancilla qubits
sufficiently low, some inner levels of uncomputation are needed, possibly increasing the
computation by some factor (at least 4). In the end, the quantum CSIDH group action
oracle for a prime of 512 bits should cost, in our setting, approx. 248 Clifford+T gates.

This cost is not given in [Ber+19b] for other values of p, but we can roughly esti-
mate the increasing number of multiplications to be performed (counting the increasing
dimension, the increasing value of the little primes and the increasing precision needed).
Furthermore, when p is doubled, the cost of a multiplication at most quadruples. For
CSIDH-1024, we can take 253 gates and 256 for CSIDH-1792. Notice that from the point
of view of depth, the oracle contains almost all the depth of the whole circuit (due to
the structure of the hidden shift algorithms).

By combining these costs with the approximation factors of 24 that we estimated
above, we are now able to give an estimation of the number of Clifford + T gates
required for an evaluation of rxs ¨ E in superposition over the whole class group CℓpOq,
for a given bit-size of p. Moreover, recently, the structure of the class group of CSIDH-
512 has been computed [BKV19], with its reduced basis. Hence, there is overhead for
CSIDH-512. This is Table 10.2.

10.4 Concrete cost estimates for CSIDH
This section estimates the cost of different approaches to attack CSIDH, using the
estimates of the previous section and the different algorithms presented in Chapter 5.

The security claims of CSIDH are aligned on the NIST security levels. There are
multiple ways to interpret them. A simple approach is to consider that the minimal
number of evaluations of the key exchange required to break it shall match the number
of AES computations in the exhaustive search. In this model, CSIDH does not offer
its claimed security, as the parameters have not been based on the most time-efficient
algorithms.

Another approach is to consider that the costs have to correspond to a number of
quantum gates that any attack needs to match. From Section 11.3, we estimate the
time complexity of a key recovery on AES-128, 192 and 256 to respectively 283.7, 2115.9

and 2148.7 quantum gates.

162 Chapter 10. Computing Isogenies

We can use Algorithm 5.8. From Table 5.5, we can estimate that it costs 21.8
?

n`2.3

quantum queries, time and memory to recover the labels. The shift is then recovered
with probability greater than 4{π2. This leads to the estimates of Table 10.3.

Table 10.3: CSIDH attack cost with Algorithm 5.8 in log2 scale, compared with the
corresponding Grover key-recovery on AES.

Level Reference Grover Attack quantum Attack quantum
AES instance Cost time cost memory cost

NIST 1 AES-128 83.7 80.5 31
NIST 3 AES-192 115.9 101.5 43
NIST 5 AES-256 148.7 115.5 56

Minimal quantum cost. As the quantum queries are very costly in the case of
CSIDH, we can use the variant of Theorem 5.6. The quantum time complexity now
falls far below the expected level, but the dominating complexity is the cost of the
classical subset-sum instance. We estimate that each instance costs 20.291 log2 N , dismiss
the subset-sum polynomial factor, and compare this cost to the classical cost of the
AES exhaustive search. We also take into account a factor 8 log2N due to the number
of subset-sum instances that have to be solved (one for each label produced before the
final QFT, and a success probability of 1

8 in total). We also count as 8plog2Nq
2 the

number of quantum queries to the oracle, where N is the cardinality of the class group.
This is presented in Table 10.4.

These attacks have a quantum cost that falls far below the limit, with an additional
classical cost. Hence, if we consider that the NIST levels allows for both a quantum time
below the quantum exhaustive search and a classical time below the classical exhaustive
search, the levels NIST 1 and NIST 3 are broken.

Classical/Quantum tradeoffs. We can use the classical/quantum tradeoffs pro-
posed in Table 5.3. We summarize in Table 10.5 the cost with 4-list merging, minimal
and equal quantum query and classical memory (excluding polynomial factors). Hence,
we considered that we had lists of size 2

?
2 log2pNq{3 everywhere and

a

log2pNq{6 steps,
and computed the costs accordingly.

Table 10.4: CSIDH quantum attack with minimal quantum cost, in log2 scale.

Level Expected Grover log2 p in Attack Attack Class.
in [Cas+18] classical time cost [Cas+18] Q. time time/mem
NIST 1 128 83.7 512 19` 48 “ 67 86
NIST 3 192 115.9 1024 21` 57 “ 78 161
NIST 5 256 148.7 1792 22` 60 “ 82 274

10.5. Conclusion 163

Table 10.5: A possible tradeoff with Kuperberg’s algorithm, in log2 scale.

Level Expected Grover Attack Attack Attack
classical time time Quantum time Class. time Class. mem

NIST 1 128 85.9 73 51 18
NIST 3 192 119.1 88 69 25
NIST 5 256 151.3 97 87 31

10.5 Conclusion
Ordinary isogeny-based schemes and CSIDH are peculiar designs for quantum security:
indeed, they are the only known example of key-exchange protocols for which we can
have safe instances and for which the gap between the classical and quantum security
is more than quadratic. As the quantum cost is subexponential in the size, the choice
of a safe set of parameters is arduous. Indeed, a small change in how we estimate the
quantum cost can have a high impact in the safe sizes. For CSIDH, if we only consider
the asymptotic exponent, then NIST level 1 requires a prime of at least 4096 bits, and
6144 if we allow for more classical than quantum resources, which would represent a
drastic increase from the current 512 bits. If the cost of the oracle is taken into account,
then smaller instances can be considered safe, but this means that any improvement on
the evaluation of the isogenies in the scheme can improve the attack. In particular, a
new technique that would make CSIDH fast may also allow to break an otherwise safe
instance. How memory is counted can also drastically change the possible tradeoffs for
the hidden shift algorithms. While the proposed parameters appear to be too small, in
particular in light of Table 10.5, between the many tradeoffs of hidden shift algorithms
and the choices in how we count an attack, the size of a safe set of parameters is unclear.

Chapter11Quantum security analysis of AES

AES [AES], designed by Daemen and Rijmen, is nowadays the most widely used block
cipher. It was the winner of the competition issued by the NIST in 1997 to replace
DES [DES], and has been a standard since 2001.

Since its creation, AES has been the subject of an extensive analysis in the classical
setting as for instance [DKR97; Fer+01; GM00; KW02; DS08; BA08; Lu+08; BK09;
BKN09; Mal+10; DKS10; DFJ13; FJP13; Bou+18]. It is this neverending strong effort
that allows us to have trust in its security. However, the capabilities of a quantum
adversary against AES have been far less studied. To date, the only work in this
direction was the cost estimate of a quantum search on an AES key [Gra+16]. This
work allows to assess the cost of the generic attack on AES, but says nothing on the
efficiency of dedicated attacks.

In this chapter, we present the firsts quantum cryptanalyses on AES, which mostly
come from a paper co-written with María Naya-Plasencia and André Schrottenloher
published in the journal ToSC in 2019 [BNS19b]. The description of the algorithms
uses the formalism of nested search presented in Chapter 3. Namely, we present a
quantum version of the square attack [DKR97] and the Demirci-Selçuk meet-in-the-
middle [DS08]. This latter attack has allowed us to find some improved time-memory
tradeoffs for the classical meet-in-the-middle attacks. We also introduced for this attack
a quantum circuit to solve the AES S-Box differential equation, which may be used in
quantum attacks against ciphers that use a similar S-Box.

We can see the attacks of this chapter as an assessment of the quantum security
of AES, but also, for long-term security, as the first estimate of the security margin of
AES in a world where quantum computers are available, in which any attack have to
be compared with what had become the standard generic search, quantum search. In
such a world, most of the classical cryptanalyses of AES are obsolete, and its security
have to be assessed by studying quantum attacks.

Contents
11.1 Description of AES . 166
11.2 Classical cryptanalysis of AES . 169
11.3 Generic quantum attacks on AES . 170
11.4 Quantum square attack . 172

11.4.1 The distinguisher . 172
11.4.2 The original square attack on 6-round AES 174

165

166 Chapter 11. Quantum security analysis of AES

11.4.3 Improved square attack . 175
11.4.4 Partial sums technique . 176
11.4.5 Extension to 7 rounds. 177

11.5 Quantum Demirci-Selçuk meet-in-the-middle 179
11.5.1 S-box differential property . 179
11.5.2 Distinguishing properties . 182
11.5.3 The attack . 185
11.5.4 Complexity analysis . 191
11.5.5 Removing the superposition queries 193
11.5.6 Quantum-inspired classical attacks 194

11.6 Conclusion . 195

11.1 Description of AES
AES [AES] is a Substitution-Permutation Network alternating between a linear layer,
a non-linear layer and round key additions. It has three possible key sizes: 128, 192
and 256. The only differences between the 3 versions are the key schedules and their
number of rounds, respectively 10, 12 and 14.

0

1

2
3

4
5

6

7

8

9

10

11

12
13

14
15

Figure 11.1: AES state byte ordering. The figures of this chapter use the work of
Jérémy Jean [Jea16].

AES State and Round Function. The cipher encrypts message blocks of 128 bits.
The state can be seen as a 16-byte matrix n as an array numbered as in Figure 11.1. The
state is then modified by the successive application of a round function, which contains
four operations:

• AddRoundKey (ARK) xors the round key in the current state,

• SubBytes (SB) applies the AES S-Box to each state byte,

• ShiftRows (SR), rotates the i-th state row by i bytes to the left,

• MixColumn (MC) multiplies each column by the AES MDS matrix.

In the last round, the MixColumn is omitted. When considering round-reduced ver-
sions, we may either keep it or leave it, but this has little incidence on the cryptanalyses
presented in this chapter.

11.1. Description of AES 167

AES finite field. The byte-oriented operations of AES are defined in the finite field
F28 seen as F2rXs{pX

8 `X4 `X3 `X ` 1q.

AES S-Box . The AES S-Box is the only non-linear operation in AES. It is a bijection
in t0, 1u8. It can be written as Spxq “ Lpx´1q ‘ c, with L a linear function and x´1

the inversion in the AES finite field (with 0 mapped to 0). It has some very good
cryptographic properties. In particular, its differential uniformity is 4, that is, for any
pair pa, bq ‰ p0, 0q, the number of solutions of the equation Spxq ‘ Spx ‘ aq “ b is at
most 4. This is the best we know to be achievable for an 8-bit permutation, and finding
if we can have a better permutation is an open problem.

MixColumn. The MixColumn operation multiplies each column of the state, seen as
a 4-byte vector, by the following 4ˆ 4 matrix defined in the AES finite field:

MC “

¨

˚

˚

˝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

˛

‹

‹

‚

.

This matrix is Maximum Distance Separable (MDS), which means that for any pair
of distinct elements x, x1 the sum of the number of bytes that differ between x and x1

and the number of bytes that differ between MCpxq and MCpx1q is at least 5, which
is optimal. The name comes from the fact that pI|MCq is the generating matrix of an
MDS code.

Key schedule. AES uses one more round key than its number of rounds as there is
one final key addition after the last round. As the original secret K is not long enough,
it is expanded with the key schedule. It takes the key K “ K0, and produces a derived
key K1 which is as long, and iterates until we have enough key bits. While the size of
the keys Ki vary, the round keys ki are always 128-bit long. Hence, for AES-128, the
derived keys correspond exactly to the round-keys, for AES-256, one derived key is used
for 2 consecutive rounds, and for AES-192, 2 consecutive derived keys are used for 3
consecutive round-keys. The key schedule is drawn in Figure 11.2.

Notations. We write xi, yi, zi, wi the successive AES states. We note Ki the variable-
length keys derived by the key-schedule, and ki the successive 128-bit round keys and
ui “MC´1pkiq the “equivalent” round keys, such that adding ki after the MC operation
is equivalent to adding ui before this step. The encryption steps are represented in
Figure 11.3. We note xr0, 1, . . . s when selecting some bytes from these states. We
use the usual AES byte numbering of Figure 11.1. When we consider a pair, the
states are denoted xi, x

1
i. We also note ∆xi “ xi ‘ x1

i. Furthermore, equalities such as
x1r1, 2, 3s “ x1

1r1, 2, 3s are to be understood byte per byte.

Key-schedule properties. While the round function has a strong design (for exam-
ple, it ensures total diffusion after two rounds), the key schedule is often considered

168 Chapter 11. Quantum security analysis of AES

ÒS

(a) AES-128 key schedule

ÒS

(b) AES-192 key schedule

Ki

Ki`1

ÒS

S

(c) AES-256 key schedule

Figure 11.2: AES key schedules. The Ò denotes a rotation by one byte of the column.

to be the weakest point of AES [DKS10]. In particular, the key-schedule relations can
be used to speed up cryptanalysis of reduced-round AES-192 and 256, thanks to the
following properties:

Lemma 11.1 (Key schedule relations). The following properties hold:

1. Except for the first column (and column 5 in AES-256), any byte of Ki is equal
to the xor of the byte of Ki`1 at the same position and the byte on its left.

2. Each byte of the column 5 of Ki in AES-256 is equal to the xor of the byte of Ki`1
at the same position and the image through the S-Box of the byte on its left.

3. Except for the first two columns (and column 5 and 6 in AES-256), any byte of
Ki is equal to the xor of the byte of Ki`2 at the same position and the byte two
cases on its left.

Proof.

1. From Figure 11.2, except for the first column (and column 5 in AES-256), we
have Kirxs “ Ki`1rxs ‘Ki`1rx´ 4s.

2. From Figure 11.2, for column 5 in AES-256, we have Kirxs “ Ki`1rxs ‘
SpKi`1rx´ 4sq.

3. Apply the case 1 for 2 successive keys.

For AES-256, this lemma shows a simple relation between round keys that are 4
rounds apart.

11.2. Classical cryptanalysis of AES 169

P

Plaintext

MC

u0

ARK

k0

SB

x0

SR

y0

MC

z0 w0

Round 0

MC

u1

ARK

k1

SB

x1

SR

y1

MC

z1 w1

Round 1

¨ ¨ ¨

MC

u9

ARK

k9

SB

x9

SR

y9 z9

Round 9

ARK

k10 C

Ciphertext

Figure 11.3: Template for the AES state, modified by the AES operations through
10 rounds. Each successive state of the AES round i is noted xi, yi, zi, wi, and the
associated round key is ki. We note ui “ MC´1pkiq the equivalent round key of ki if it
were added before the MC operation and not after. The MixColumn is omitted for the
last round.

11.2 Classical cryptanalysis of AES
This section presents the main classical attacks on AES in the secret key model, which
are summarized in Table 11.1. It includes some new time-memory tradeoffs we found
when we made the quantum attacks presented in this chapter.

Square attack. The square or integral attack have been proposed by Daemen, Knud-
sen and Rijmen [DKR97]. It relies on the so-called integral distinguisher on 3 rounds
of AES, which leverages some properties of the diffusion layer. It targeted 6 rounds,
and was extended later to 7 rounds when considering AES-192 and 256 [Fer+01]. It is
presented in details in Section 11.4, along with its quantum version.

Demirci-Selçuk meet-in-the-middle. The meet-in-the-middle attack proposed by
Demirci and Selçuk [DS08] uses a different distinguisher, based on the fact that the set
of differences of some sets of plaintexts encrypted through 4 rounds of AES can only
take a restricted amount of values. This attack originally targeted 7 rounds of AES-192

170 Chapter 11. Quantum security analysis of AES

and 8 rounds of AES-256 [DS08], and was later improved to 7 rounds of AES-128, 8
rounds of AES-192 and 9 rounds of AES-256 [DKS10; DFJ13]. A variant of this attack
is presented in Section 11.5.

Impossible Differentials. Impossible differential attacks use the fact that some
events cannot occur in the cipher (in particular, a differential transition that implies an
impossibility through some rounds). This provides a distinguisher for several middle
rounds, which is extended a few rounds backwards and forwards, involving some key
bits in the path. For good key guesses, the event will not occur by definition, and for
bad guesses, it may occur. Hence, the attacker sieves the key space by removing the
wrong key guesses, and the right one will be the only one left. The best impossible
differential attack on AES-128 targets 7 rounds [Bou+18], and provides a comparable
tradeoff to the best meet-in-the-middle attacks.

At least with superposition queries, one could hope for an efficient quantum version
of an impossible differential, as for a key guess, we can do a quantum search on the
pairs that will prove it is a wrong key. However, this simple approach is generally
not enough to beat the generic attacks. The most efficient way of building impossible
differential attacks is to first obtain a set of pairs that might lead to the impossible
middle differential, and next discard the possible keys associated to each pair in a quite
efficient way. The good key will be among the ones that have not been discarded. This
approach generally uses a large amount of memory, which makes it less interesting for a
quantum attack. We took several attempts at quantizing them, but we did not manage
to obtain an interesting quantum attack.

Bicliques. Bicliques [BKR11; KRS12] are a generic generic improvement of meet-in-
the-middle attacks and have often been used as a generic way to reduce the cost of
an exhaustive search by slightly reducing the cost of testing each canditate key. Using
bicliques to improve an exhaustive search allows a small gain: for AES it is around
a factor 4 [BKR11; Bog+15]. This make the best gain we can expect compared to a
simple quantum search around a factor 2, without taking into account the memory and
data requirements, which only reduce the efficiency of this approach. Hence, we did not
considered bicliques in a quantum setting.

11.3 Generic quantum attacks on AES
We need a cost model and a reference point for generic attacks to assess the efficiency
of a quantum attack. The cost of quantum search on AES-128, 192 and 256 has been
estimated by Grassl, Langenberg, Roetteler and Steinwandt [Gra+16]. The circuit for
AES-128 has been further optimized by Almazrooie, Samsudin, Abdullah and Mut-
ter [Alm+18]. They reduced the required number of qubits by roughly 8%, and the
number of Toffoli gates by 0.7%.

These results give a reference point only for the full versions of AES. We only
managed to target round-reduced versions, so we need an estimate for quantum search
on these smaller AES, which will by definition be cheaper than the search on the full

11.3. Generic quantum attacks on AES 171

Table 11.1: Summary of classical cryptanalyses on AES in the single secret key setting.
Time is given in equivalent trial encryptions and memory in 128-bit blocks.

Version Rounds Data Time Mem. Technique Reference

Any

6 232 244 232 Square [Fer+01]
7 2113 2113 ` 280 280 DS MITM [DFJ13]
7 2105 2105 ` 299 290 DS MITM [DFJ13]
7 297 299 298 DS MITM [DFJ13]
7 2113 2113 ` 284 274 DS MITM Section 11.5.6
7 2105 2105 ` 295 281 DS MITM Section 11.5.6
7 2113.1 2113.1 ` 2105.1 274.1 ID [Bou+18]
7 2105 2106.88 274 ID [Bou+18]

192

7 234 2155 232 Square [Fer+01]
7 299 299 296 DS MITM [DFJ13]
8 2113 2172 282 DS MITM [DFJ13]
8 2107 2172 296 DS MITM [DFJ13]

256

7 299 298 296 DS MITM [DFJ13]
7 234 2172 232 Square [Fer+01]
8 2113 2196 282 DS MITM [DFJ13]
8 2107 2196 296 DS MITM [DFJ13]
9 2113`x 2210´x ` 2196`x 2210´x DS MITM [DFJ13]
9 2113`x{2 2210´x ` 2194`x 2194`x DS MITM Section 11.5.6

versions. Reducing everything to a number of gates can be quite tedious. In order to
simplify the estimates, our reference cost unit is the cost to compute 1 S-Box. This
corresponds to most of the cost of the quantum circuits for AES, and multiple parts of
our attack compute some parts of AES, which makes it a natural cost unit.

The cost estimates we will use are summarized in Table 11.2. The costs come from
the estimates of [Gra+16; Alm+18]. For the reduced versions, we estimated the cost of a
reduced version of the circuits of [Gra+16]. The quantum search on an AES key is quite
simple: one only needs a few plaintext-ciphertext pairs, and for a given key, check if the
encryption of the plaintexts matches the ciphertexts. The number of plaintexts needed
to ensure that only the correct key passes the test depends on its size, as the plaintexts
are always 128-bit long. As the keys are respectively 128, 192 and 256-bit long, we need
respectively 2,2 and 3 plaintexts to ensure that with an overwhelming probability, only
the correct key will pass the test. As the search space is of size 2k, we estimated a time
cost of π

2 2k{2 ˆ CostpAESq ˆ pairs, with pairs “ 2, 2 and 3 for respectively AES-128,
192 and 256. For the memory cost, the encryptions of the plaintexts are computed
in parallel, except for the key schedule, which is common to all the encryptions. This
differs slightly from [Gra+16; Alm+18], which uses respectively 3, 4 and 5 pairs and a
separate key schedule for each encryption.

172 Chapter 11. Quantum security analysis of AES

Table 11.2: Cost benchmarks for AES quantum circuits. Complete versions contains
the cost of the key and the key schedule.

Component Number Qubits Reference
of S-Boxes

Reference S-Box 1 40 [Gra+16]
Alternative S-Box 0.88 48 [Alm+18]
128-bit full key schedule 40 320 [Gra+16]
192-bit full key schedule 32 256 [Gra+16]
256-bit full key schedule 52 416 [Gra+16]
6-round AES 144 408
7-round AES 160 536
8-round AES 192 536
10-round AES 256 536 [Gra+16]
12-round AES 304 664 [Gra+16]
14-round AES 368 664 [Gra+16]
Complete 6-round AES-128 168 856
Complete 7-round AES-192 180 984
Complete 8-round AES-256 224 1208
Complete 10-round AES-128 294 928 [Alm+18]
Complete 12-round AES-192 336 1112 [Gra+16]
Complete 14-round AES-256 420 1336 [Gra+16]
Quantum search on 6-round AES-128 273 1265
Quantum search on 7-round AES-192 2105.1 1521
Quantum search on 8-round AES-256 2137.9 2281
Quantum search on 10-round AES-128 273.8 1521
Quantum search on 12-round AES-192 2106 1777
Quantum search on 14-round AES-256 2138.8 2665

11.4 Quantum square attack
In this section, we present the variants of the square attack on AES that have been
proposed since its introduction by Daemen, Knudsen and Rijmen [DKR97], and study
their quantum counterparts. Classically, it targets 6 rounds, and can be extended to
7 rounds when considering AES-192 and 256 [Fer+01]. This is also the case with our
quantum attacks.

11.4.1 The distinguisher
The square attack relies on a distinguisher on 3 rounds of AES (Figure 11.4) which
leverages how diffusion is achieved in AES, and is independent of the S-Box. It relies

11.4. Quantum square attack 173

‹

δ-set

ARK

SB
‹

SR
‹

MC
‹ ‹

‹
‹
‹

ARK

SB
‹
‹
‹
‹

SR
‹
‹
‹
‹

MC
‹

‹
‹
‹

‹
‹
‹
‹

‹
‹
‹
‹

‹
‹
‹
‹

‹
‹
‹
‹

ARK

SB
‹
‹
‹
‹

‹
‹
‹
‹

‹
‹
‹
‹

‹
‹
‹
‹

SR
‹
‹
‹
‹

‹
‹
‹
‹

‹
‹
‹
‹

‹
‹
‹
‹

MC
‹
‹
‹
‹

‹
‹
‹
‹

‹
‹
‹
‹

‹
‹
‹
‹

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

ARK

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

16 balanced bytes

Figure 11.4: Integral distinguisher on 3 rounds of AES. A byte marked by 0 is balanced.
Starred bytes take all 256 values in the encryption of the 256 plaintexts. Unmarked bytes
are fixed.

on the fact that a 1-byte difference impacts the full AES state after 2 rounds, and until
then, the intermediate byte differences do not interfere with each other. Hence, if we
consider a δ-set, that is, 28 ciphertexts that take all values on one byte but are constant
on the other bytes, each byte of the state after two rounds will take all 256 values. This
property is kept by the byte-oriented operations SubBytes and ShiftRows. It breaks
with MixColumn, but as it is linear, the image of any linear combination of its input
will be the linear combination of its output. In particular, the XOR of all 256 values is
0, hence the XOR of all values in each byte after the MixColumn is also 0. This is the
distinguisher: this property always happens for 3 rounds of AES, independently of the
key. On the contrary, for a random function, the probability that this event happens is
2´8 for each byte.

This property holds because as the S-Box is a bijective function, it maps a δ-set
to another one. Besides, each byte in the active column at the end of the first round
takes 256 values. Finally, the sum of all 256 byte values in any byte position of the last
state is equal to the linear combination of some sums of some bytes that each assume
all values, and hence is zero.

174 Chapter 11. Quantum security analysis of AES

P
■■■■

Plaintexts

ARK

k0
‚
‚
‚
‚

SB SR MC
Round 0

3 rounds distinguisher (Figure 11.4)

SB

x4
‚

SR

y4
‚

MC

z4
‚

w4

Round 4

MC

u5
‚

ARK

k5

SB

x5
■■■■

SR

y5
■■■■

MC

z5
■

■■
■

w5

Round 5

MC

u6
‚

‚
‚
‚

ARK

k6

Ciphertexts

Figure 11.5: Square attack on 6 rounds of AES. ‚ bytes are guessed, and allow to deduce
■ bytes. Unmarked bytes before the distinguisher are fixed. Byte w0r0s is expected to
take all 256 values, and byte x4r0s is expected to be balanced.

11.4.2 The original square attack on 6-round AES
The original square attack from [DKR97] uses the path of Figure 11.5 and is described
in Algorithm 11.1. It guesses some key bytes to obtain the values in 1 byte of the input
of the distinguisher and 1 byte of the output, which is enough to check if the 3 inner
rounds correspond to an AES. This distinguishes the correct guesses from the wrong
ones. As we only check 1 byte of the output of the distinguisher, it keeps a wrong key
with probability 2´8. As we guess 9 bytes, we need to repeat the test 10 times, in order
to suppress any false positive.

If the guesses are chosen on-the-fly, the classical cost is 10ˆ28ˆ9ˆ28 » 284 adaptative
chosen-plaintext encryptions. Each test costs 5 S-Boxes, which are needed for the
decryption, for a time cost of around 286 S-Boxes.

Quantumly, we use the framework of Section 3.2. The guess cost is reduced, and we
obtain a cost of π

2 236ˆ28ˆ10 » 248 superposition queries and 250 S-Boxes computations.
This approach wastes a lot of queries, as at each iterations we query more than 211

encryptions.

11.4. Quantum square attack 175

Algorithm 11.1 Square attack on 6-round AES
Input: An oracle to a 6-round AES
Output: The key bytes k0r0, 5, 10, 15s, u5r0s, u6r0, 7, 10, 13s

1: Filter k0r0, 5, 10, 15s, u5r0s, u6r0, 7, 10, 13s
2: loop10 times
3: From the guess of k0r0, 5, 10, 15s, choose a set of 256 plaintexts that take all

the possible values in w0r0s and are equal in w0r1´ 15s.
4: Compute the encryption of these values
5: From the guess of u5r0s, u6r0, 7, 10, 13s, compute x4r0s.
6: If the sum of all the x4r0s is not 0: Abort
7: End Filter

Precomputing the queries. The queries needed for the attack are always fixed
on the whole state, except for the diagonal (bytes p0, 5, 10, 15q). Hence, a set of 232

plaintexts that are identical, except on bytes p0, 5, 10, 15q where they take all the possible
values always contains 224 sets of 256 states suitable for the distinguisher. Hence, we
can precompute the queries, that is, choose beforehand the values of the state outside
of the diagonal, and query the 232 encryptions. Each test will no longer do any query,
but peek among the precomputed set the values it needs. As we only need 10 sets for
the test, the 224 available sets are more than enough.

With this precomputation, the classical cost drops to 232 chosen-plaintext queries,
and stays at 284 computations. The only overhead is that the queries need to be stocked,
which costs 237 bytes of memory.

Quantumly, this will allow to only use classical chosen-plaintext queries instead of
superposition queries. In that case, we can either store the 232 values in quantum
memory, to remain at 250 quantum computations, or, if we want to avoid quantum
memory, we need to sequentially select, at each iterations, the plaintext/ciphertext
couples we need, which adds a time overhead, for a total cost of 5 ˆ π

2 236 ˆ 232 » 271

quantum computations. This is barely below the cost of exhaustive search on AES-128
from Table 11.2, at 273 computations.

The next sections present the improvements on the square attack from [Fer+01],
which can also be applied quantumly.

11.4.3 Improved square attack
The previous precomputation uses the fact that a set of 232 plaintexts with identical
bytes except on the diagonal always contains exactly 224 distinct δ-sets. The first key
observation from [Fer+01] is that this set is also balanced on each byte of x4, regardless
of the guesses of k0r0, 5, 10, 15s. Hence, the distinguisher can be used without any guess
in k0, at the expense of a larger amount of queries (which can also be precomputed, as
they do not depend on any key byte). This allows to reduce the key search space by 32
bits, at the expense of having to compute the sum of 232 values instead of 28. This is
described in Algorithm 11.2.

176 Chapter 11. Quantum security analysis of AES

The distinguisher still keeps a wrong key with probability 2´8. As we guess 5 bytes,
we need 6 sets of 232 plaintexts to uniquely identify the correct key guess. Hence, the
classical attack will cost 5ˆ6ˆ25ˆ8ˆ232 » 277 computations, and 6ˆ232 » 235 chosen-
plaintext queries. The quantum version has a total cost of 5ˆ π

2 ˆ 220 ˆ 6ˆ 232 » 258

quantum computations, with the same set of 235 chosen-plaintext queries.
In a classical setting, this version is always an improvement, as it needs only 6 times

more chosen-plaintext queries but divides the cost by 400. In a quantum setting, the
reduction of the key guesses is smaller compared to the overhead of the computation of
the sum. Hence, this is not always an improvement compared to the previous algorithm,
and only improves the variant with precomputation. Overall, this variant is only relevant
if we have access to chosen-plaintext queries and not superposition queries.

Algorithm 11.2 improved square attack on 6-round AES
Output: The key bytes u5r0s, u6r0, 7, 10, 13s

1: Choose a 6 sets of 232 plaintexts that vary only on the diagonal p0, 5, 10, 15q
2: Compute the encryption of these values
3: Filter u5r0s, u6r0, 7, 10, 13s
4: For each set do
5: From the guess of u5r0s, u6r0, 7, 10, 13s, compute x4r0s.
6: If the sum of all the x4r0s is not 0: Abort
7: End Filter

11.4.4 Partial sums technique
Another improvement from [Fer+01] consists in remarking that most of the computa-
tions are highly redundant, as many intermediate values depend on only a part of the
key guesses. Moreover, we have a very limited number of possible values (256 per bytes),
which means that a direct computation is highly redundant, and will compute the ex-
act same thing multiple times. Hence, another improvement is to count the number of
occurrences of each value at each intermediate step and to store it in a table. With
this approach, we only need to compute each step of the partial decryption once per
possible input.

We want to compute the number of occurrences of each possible value in x4r0s. We
have x4r0s “ S´1 py4r0sq. We can rewrite it in function of x5, and obtain

x4r0s “ S´1 pa0x5r0s ` a1x5r1s ` a2x5r2s ` a3x5r3s ` u5r0sq ,
where the ai are the coefficients of the inverse of the MixColumn. With c the ciphertext
passed through the inverse of the MixColumn, we have:

x4r0s “ S´1 `a0S
´1pcr0s ` u6r0sq ` a1S

´1pcr13s ` u6r13sq
`a2S

´1pcr10s ` u6r10sq ` a3S
´1pcr7s ` u6r7sq ` u5r0s

˘

.

The computation of x4r0s is split in 4 steps:

11.4. Quantum square attack 177

• From pu6r0s, u6r13sq, compute the list of
`

a0S
´1pcr0s ` u6r0sq ` a1S

´1pcr13s ` u6r13sq, cr10s, cr7s
˘

,

• From the previous list and u6r10s, compute the list of

a0S
´1pcr0s ` u6r0sq ` a1S

´1pcr13s ` u6r13sq
` a2S

´1pcr10s ` u6r10sq, cr7s,

• From the previous list and u6r7s, compute the list of

a0S
´1pcr0s ` u6r0sq ` a1S

´1pcr13s ` u6r13sq
` a2S

´1pcr10s ` u6r10sq ` a3S
´1pcr7s ` u6r7sq,

• From the previous list and u5r0s, compute x4r0s.

Remark 11.1. As we only want to compute the xor of all x4r0s, we only need to know
the number of occurrences modulo 2.

Classical cost. The classical time complexity of this procedure (in S-Boxes and in-
verse S-Boxes) is:

22ˆ8
loomoon

Over u6r0,13s

¨

˚

˝

6ˆ2ˆ232` 28
loomoon

Over u6r10s

¨

˚

˝

224ˆ6` 28
loomoon

Over u6r7s

¨

˚

˝

216ˆ6` 28
loomoon

Over u5r0s

¨28ˆ6

˛

‹

‚

˛

‹

‚

˛

‹

‚

.

We can bound it by less than 253 S-Boxes. Furthermore, this procedure needs 235

classical queries, 6ˆ224 bits of classical RAM and a memory containing the 235 plaintext-
ciphertext pairs.

Quantum equivalent. The quantum equivalent of Algorithm 11.3 performs a nested
search, which is detailed in Section 3.2. As its classical counterpart, it uses random-
accessible memory. The memory amounts are the same classically and quantumly. The
algorithm requires 8ˆ 224 qubits and 235 256-bit registers of classical memory to store
the chosen-plaintext queries.

The time complexity, adapted from the classical one, is:
Yπ

2
28
] ´

6ˆ 2ˆ 232 `
Yπ

2
24
] ´

224 `ˆ
Yπ

2
24
] ´

216 `
Yπ

2
24
]

ˆ 28
¯¯¯

.

We obtain a quantum time equivalent of roughly 244 reversible S-Boxes.

11.4.5 Extension to 7 rounds.
The extension to 7 rounds is quite straightforward: we guess the complete round-key
k7. Of course, 7 rounds of AES-128 can no longer be attacked with this approach. As
we guess more key bytes, we need to add one structure to check per additional byte to
guess.

178 Chapter 11. Quantum security analysis of AES

Algorithm 11.3 Square attack on 6-round AES with the partial sums technique
Input: 6 structures of 232 classical chosen-plaintext queries such that the main
diagonal x0r0, 5, 10, 15s takes all values
Output: The key bytes u5r0s, u6r0, 13, 10, 7s

1: Filter u6r0s, u6r13s
2: For i P r1; 6s do
3: T i

1 “ H
4: For all ciphertext c in structure i do
5: Compute px, y, zq “

`

a0S
´1pcr0s ` u6r0sq ` a1S

´1pcr13s ` u6r13sq, cr10s, cr7s
˘

6: T i
1rpx, y, zqs^=1

7: Filter u6r10s
8: For i P r1; 6s do
9: T i

2 “ H
10: For all px, y, zq P T i

1 do
11: Compute x1 “ x` a2S

´1py ` u6r10sq
12: T i

2rpx
1, zqs^=T i

1rpx, y, zqs

13: Filter u6r7s
14: For i P r1; 6s do
15: T i

3 “ H
16: For all px, zq P T i

2 do
17: Compute x1 “ x` a2S

´1pz ` u6r10sq
18: T i

3rpx
1qs^=T i

2rpx, zqs

19: Filter u5r0s
20: For i P r1; 6s do
21: x4 “ 0
22: For all x P T i

3 do
23: If T i

3rxs “ 1 then
24: x4^=S´1px` u5r0sq
25: If x4 ‰ 0: Abort
26: Return u5r0s, u6r0, 13, 10, 7s
27: End Filter
28: End Filter
29: End Filter
30: End Filter

11.5. Quantum Demirci-Selçuk meet-in-the-middle 179

AES-256. For AES-256, a direct guess will lead to a key recovery with a cost of around
2183 S-Boxes classically, and 2110 S-Boxes quantumly. This can however be improved
with Lemma 11.1: the round-key k7 corresponds to the right part of the 256-bit key K4,
hence we can obtain any value in the last 3 columns of K3 for free. This corresponds to
k5r4–15s. We can perform the attack with any of the 15 bytes of x4, hence we obtain
the guess in u5 for free. Overall, the cost is 2175 S-Boxes classically, and 2106 S-Boxes
quantumly.

AES-192. We’re much closer to the limit with AES-192. Fortunately, the key-schedule
allows us to save 2 bytes, as k5 is the right part of the 192-bit key K3, k6 is the left part
of K4, and k7 is the last two columns of K4 plus the first two of K5. With Lemma 11.1,
from the two columns of K5 we can deduce one column of K4, which corresponds to
k6r4–7s. Hence, there is one byte that does not need to be guessed from u6. The last
two columns of K4 allows to compute the last column of K3, which corresponds to
k5r12–15s. Hence, we can deduce the key guess in u5 for x4r12, 2, 6, 10s.

With two free bytes in the key guesses, we obtain a cost of 2167 S-Boxes classically,
and 2103 S-Boxes quantumly. This last cost is marginally below the cost of a Grover
search, at 2105.1.

11.5 Quantum Demirci-Selçuk meet-in-the-middle
This section presents a Demirci-Selçuk meet-in-the-middle attack on AES [DS08; DKS10]
which can be implemented classically or quantumly. It builds mostly upon the improved
version proposed by Derbez, Fouque and Jean [DFJ13].

We first present a technical lemma that shows how to efficiently compute the solu-
tions of the AES S-Box differential equation on a quantum computer. Then, we present
the distinguishing properties, that we use in the next section to attack 8 rounds of AES-
256. Next, we estimate the cost of the attack, in a classical and in a quantum setting.
Interestingly, the quantum attack do not require quantum queries. We finally discuss
the interest of the classical implementations of the attack.

11.5.1 S-box differential property
In this section we present an efficient (in time and memory) way to solve the differential
equation of the AES S-Box. This operation is classically neglected, as it can be solved
with a 28 ˆ 28 lookup table. To make such a table quantum-accessible would mean,
however, to use a few kilobytes of quantum RAM. As the cost of using that much
memory is still unclear, we have chosen to avoid it, and rely on an efficient low-memory
quantum circuit. When counting quantum gates, we rely on the Clifford+T family (see
Chapter 2), which we will then translate in an equivalent cost in a number of S-Boxes
from [Gra+16].

Lemma 11.2 (S-Box differential property). Given ∆x and ∆y such that ∆x∆y ‰ 0,
there exists either zero, two or four pairs x, y, x1, y1 such that Spxq “ y, Spx1q “ y1,
x‘ x1 “ ∆x, y ‘ y1 “ ∆y.

180 Chapter 11. Quantum security analysis of AES

There exists a quantum unitary that, given such ∆x and ∆y, finds a solution x if
it exists and output (x, OK) in this case, and outputs (0, none) otherwise. Its time
complexity is around 2 S-Box computations and it uses 22 ancilla qubits. If we only
want to know if a solution exists and not an explicit solution, the cost drops to 1 S-Box
computation and 15 ancilla qubits.

Proof. The AES S-Box can be written Spxq “ Lpx´1q‘c, with L a linear operation and
x´1 the inversion in F28 seen as F2rXs{pX

8`X4`X3`X ` 1q (where 0 is mapped to
0). The main cost of the function is the inversion, which costs around 8 multiplications
in the finite field [Gra+16]. Using the same source, we consider that a multiplication
costs 981 gates with the multiplier of [Che+08], and L costs 30 gates.

We want to solve the equation

Spxq ‘ Spx‘∆xq “ ∆y. (11.1)

It can be rewritten as x´1‘px‘∆xq
´1 “ L´1p∆yq. We note L´1p∆yq as ∆1

y. There
are two cases here. If ∆x∆1

y “ 1, then 0 and ∆x are solutions. As there will also be
another couple of solutions for the same differences below, it corresponds to the case
where the differential equation has 4 solutions.

For every other x, we can multiply the equation by xpx‘∆xq, and it becomes

∆1
yx

2 ‘∆x∆1
yx‘∆x “ 0. (11.2)

To solve this quadratic equation, as we are in characteristic 2, we put it in the canonical
form

px{∆xq
2 ‘ px{∆xq ‘ p∆x∆1

yq
´1 “ 0. (11.3)

We then only need to find a root Rpdq of the polynomial X2`X ` d. The solutions
will be ∆xRpdq and ∆xpRpdq ` 1q.

We do this using the unitary of Lemma 11.3, presented below. The total cost is
7312 gates (or 6864 if we only need to know if a solution exists).

If we only want to know if a solution exists, the complete circuit is:

• Compute ∆xL
´1p∆yq (uses 8 ancilla qubits and costs 1011 gates).

• Check if a solution exists (6864 gates and 7 ancilla qubits), copy to the output.

• Uncompute ∆xL
´1p∆yq (costs 1011 gates).

The complete circuit for existence performs on 32 qubits : 16 inputs, 1 output, 15
ancilla qubits, and costs 8886 gates, which is around 1 S-Box computation.

If we want an explicit solution, then the circuit is:

• Compute ∆xL
´1p∆yq (uses 8 ancilla qubits and costs 1011 gates).

• Check for an explicit solution (costs 7312 gates and uses 14 ancilla qubits).

• Compute ∆x times the found solution (costs 861 gates) to the output.

• Uncompute the explicit solution (costs 7312 gates).

11.5. Quantum Demirci-Selçuk meet-in-the-middle 181

• Uncompute ∆xL
´1p∆yq (costs 1011 gates).

The complete circuit to get an explicit solution performs on 47 qubits : 16 inputs, 9
outputs, 22 ancilla qubits, and costs 17507 gates (around 2 S-Box computations).

Remark 11.2. The cost for the explicit solution can be reduced if we output x∆´1
x

instead of the real solution x, as we would not need the uncomputation.
Remark 11.3. If we are in a case where 4 solutions exist, the routine will miss 2 solutions.
This slightly reduces the success probability (as we fail to find 1 pair in 128), but allows
to greatly simplify the generation of a superposition of solutions.

Lemma 11.3 (Solving quadratic equations in characteristic 2). There exists a quantum
unitary that, given d´1 P F˚

28, outputs a solution of the equation x2 ‘ x ‘ d “ 0 in the
field F28 “ F2rXs{pX

8`X4`X3`X`1q and a flag indicating if such a solution exists,
using 7312 gates and 7 ancilla qubits. If we only need to know if there is a solution,
then the cost is reduced by 448 gates.

Proof. The principle of the circuit is quite simple: it has to check if the input corresponds
to one of the precomputed inputs that have a solution, and in that case, write the
corresponding solution and set a flag. All of this can be done with a boolean circuit, in
2 steps:

• Check the equality between the register and the precomputed value.

• Copy the precomputed solution if the two values are equal.

We first precompute the 127 d that accept a solution (as the input is d´1, d “ 0 cannot
occur) and their corresponding root Rpdq, and next check if the corresponding dmatches.
For the first part, we do a zero test of the xor of the two values. As we check against
precomputed values, we can do the check against d´1 instead of d, which allows us
to avoid doing an inversion. The second part is easy to do once we have computed a
control bit that checks if the two values are equal: we only need CNOTs.

We first put the input in the register d, and negate its bits. Next, the equality test
consists in the and of the seven bits in d : d1^d2 ¨ ¨ ¨^d7. We compute it iteratively, with
a first ancilla qubit that contains d7 ^ d6, a second one that contains d7 ^ d6 ^ d5, and
so on. In order to save on the equality test, we make use of the fact that between two
values that we check, we only changed a few bits, hence we do not need to recompute
all the partial and.

At each step, we xor a fixed value to the d register (which is done with NOT gates)
and recompute the and from the first affected bit. It is to be noted that the first change
can be computed with a CNOT gate (as a^␣b “ pa^bq‘a), while the other ones need
two Toffoli (one to uncompute the preceding computation, one to compute). We then
have a bit that checks for equality in our circuit. We CNOT it to an output qubit (that
will carry the OK/none information), and do a control-write of the solution associated
to the given d to an external register. This can be done with one CNOT per bit at 1 in
the solution, as they are precomputed.

182 Chapter 11. Quantum security analysis of AES

We chose the order corresponding to sorting the possible values of d´1 in increasing
order. The sequence is presented in Appendix 11.6. As two consecutive values are close,
the total cost is reduced. In order to compute consecutively all the values for d´1, we
need 273 NOT. To check for equality, we need 127 CNOT plus 408 Toffoli (this may be
lowered by using another ordering, but we did not investigate further). The writing of
the solution needs 448 CNOT. The OK qubit can be updated with one CNOT per step.
We also need 14 Toffoli for the initialization and finalization of the equality testing, plus
7 NOT to initialize the first value to be tested. As we do a sequential test, and as the
last value we test is 0xff, the input value will be restored at the end. The total number
of gates is then 7` 273 “ 280 NOT, 127` 127` 448 “ 702 CNOT and 14` 408 “ 422
Toffoli. As one Toffoli costs 15 (Clifford+T) gates, the total cost is then of 7312 gates.

As we only write x when we find a match, it will be 0 if there is no solution. If we
only need existence check and not an explicit solution, we can reduce the cost by the
448 gates that write the solution.

Remark 11.4. The sequential test uses a ^ ␣b “ pa ^ bq ‘ a to compute one ^ using
one CNOT instead of two Toffoli gates. This saves 127p2ˆ 15´ 1q “ 3683 gates overall,
which is more than half the number of gates in this circuit.

Remark 11.5. For each d, we have chosen the even solution of the equation. Hence, we
only need 7 qubits to output the solution. If we want the odd solution, we only need to
xor 1 to the even solution.

Other approaches. We also considered different ways to solve this problem. We can
test sequentially all the couples p∆x,∆yq. There are 215 of them, so we can estimate
that it would cost 100 times more. We could also do a quantum search on the solutions
of the equation. As it has 2 S-Boxes, it would cost around 25 times more.

Further applications. This analysis can be used for any attack on AES that relies
on the S-Box differential equation. Moreover, it can be generalized to other S-Boxes
based on the inverse (a complete survey on the use of such S-Boxes can be found in Léo
Perrin’s PhD thesis [Per17, Section 8.3.1.1]).

11.5.2 Distinguishing properties
Derbez, Fouque and Jean proved the following lemma to attack 7 rounds of AES-128
and 8 rounds of AES-192 and 256, which uses the differential path of Figure 11.6.

Lemma 11.4 (4-round property [DFJ13, Proposition 2]). Suppose that we are given a
plaintext-ciphertext pair pP, P 1q, pC,C 1q active in one byte i before and one byte j after
4 AES rounds. Consider the plaintexts P0 “ P, . . . P255 obtained from P by making
the difference in byte i assume all values, that is, P1 corresponds to adding 1 in byte i,
etc. Collect the corresponding ciphertexts C0 “ C, . . . C255 and the unordered multiset of
differences with C in byte j. There are only 280 possibilities, among the

`28`28´1
28

˘

» 2506

256-byte multisets.

11.5. Quantum Demirci-Selçuk meet-in-the-middle 183

w0

Round 0

MC

u1

ARK

k1

SB

x1

SR

y1

MC

z1 w1

Round 1

MC

u2

ARK

k2

SB

x2

SR

y2

MC

z2 w2

Round 2

MC

u3

ARK

k3

SB

x3

SR

y3

MC

z3 w3

Round 3

MC

u4

ARK

k4

SB

x4

SR

y4

MC

z4 w4

Round 4

MC

u5

ARK

k5 x5

Round 5

Figure 11.6: 4-round differential path for Lemma 11.4. Active bytes are hatched. The
position of the active byte in w0 and x5 do not matter.

This property comes from the fact that only 10 bytes (namely, ∆z1r7s, x2r4–7s, z4r4–7s,
∆w4r5s) determine entirely the multiset when the set of plaintexts-ciphertexts satisfy
the path of Figure 11.6.

This distinguisher has been extended to 5 rounds to tackle 9 rounds of AES-256, as
represented in Figure 11.7. Its property is given by the following lemma:

Lemma 11.5 (5-round property [DFJ13, Section 4.2]). Suppose that we are given a
plaintext-ciphertext pair active in one byte before and after 5 AES rounds. If we make
the difference in the input take all 28 values and collect the multiset of output differences
in the output, there are only 226ˆ8 “ 2208 possibilities among the 2506 multisets.

The differential path is the same, with the exception of an additional round in the
middle with all the bytes active. As the state has only 128 bits, adding a round adds
only 2128 possibilities, hence there are only 2128`80 “ 2208 possibilities.

Using the property in a quantum attack. The attacks in [DFJ13] use the two
previous lemmas by precomputing all the possible values and storing them in a large
table. Then, some key guesses allow to perform a partial decryption to check if the

184 Chapter 11. Quantum security analysis of AES

w0

Round 0

MC

u1

ARK

k1

‚

SB

x1

SR

y1

MC

z1 w1

Round 1

MC

u2

ARK

k2

SB

x2

SR

y2

MC

z2 w2

Round 2

MC

u3

ARK

k3

SB

x3

SR

y3

MC

z3 w3

Round 3

MC

u4

ARK

k4

SB

x4

SR

y4

MC

z4 w4

Round 4

MC

u5

ARK

k5

SB

x5

SR

y5

MC

z5 w5

Round 5

MC

u6

ARK

k6 x6

Round 6

Figure 11.7: 5-round differential path for Lemma 11.6. Active bytes are hatched. The
‚ byte is guessed. The position of the active byte in w0 and x5 do not matter.

multiset is possible, which allows to identify the correct key guess. This approach
is classically interesting, but its very large memory requirements make it much less
appealing for a quantum computer. Hence, instead of using a large array, we would
rather compute and check the expected value on-the-fly. This has led us to use a
slightly different property, that came back from the multisets introduced in [DKS10]
to the original approach from [DS08]: ordered sequences, that we called a δ-sequence,
as opposed to a δ-set. The quantum attack uses the 5-round distinguisher to attack 8
rounds of AES-256, while classically it is used for 9 rounds. Finally, we only use a part
of the whole sequence, as we do not need the 255 values to distinguish 5 rounds of AES.
This forces to guess one additional byte of key (k1r3s, as presented in Figure 11.7), but
allows to reduce the cost of checking if a sequence passes the test.

Definition 11.1 (δ-sequence). Consider a pair P,C which satisfies the full differential
path of Figure 11.8. Make the single-byte difference ∆x1r3s assume the sequence of val-

11.5. Quantum Demirci-Selçuk meet-in-the-middle 185

ues 1, . . . 32. We name δ-sequence the corresponding sequence of single-byte differences
∆x6r5s.

Lemma 11.6 (5-round property for sequences). Suppose that we are given a plaintext-
ciphertext pair pP, P 1q, pC,C 1q active in one byte i before and one byte j after 5 AES
rounds. Suppose also that the input and output differences in these bytes are given.
Consider the plaintexts P0 “ P, . . . P32 obtained from P by making the difference in byte
i assume all values from 1 to 32. Collect the corresponding ciphertexts C0 “ C, . . . C32
and the ordered sequence of differences with C in byte j. Then there are only 2192

possibilities among 2256.

Proof. The proof follows that of Lemma 11.5, except that, since the input and output
differences of the pair are known, the whole space of δ-sequences is reduced by 216 (two
bytes) in size.

11.5.3 The attack
The attack extends the previous distinguisher by adding one round before and 2 rounds
after it. It requires to guess 9 additional key bytes to gain access to the values of
interest for the distinguisher. It is summarized in Figure 11.8 and Algorithm 11.6. It
uses Lemma 11.6 to identify the correct key guesses. From Lemma 11.6, we obtain that
a random key can pass the test with probability 2´64, and we test 80 bits. As this is
not precise enough, we will use key schedule relations of Lemma 11.10 to reduce the
number of possibilities.

In the attack, we will first compute enough plaintext-ciphertext pairs so that, given
a guess for the outer key bytes (denoted by ‚ in Figure 11.8), we find one that satisfies
the middle round differential (y1 to x6). After that, we compute the corresponding δ-
sequence, by making the difference in x1r3s assume the values 1, . . . 32. This δ-sequence
is of length 256 bits. With Lemma 11.6, we ensure that the sequence takes one out of
2192 possibilities, as it is determined by 24 state and key bytes.

If the guess of the key bytes ‚ is correct, then the computed δ-sequence can be
obtained by some choice of these 24 inner byte-conditions. To verify this, we will do
another Grover search. If the guess of the bytes ‚ is not the good one, then with high
probability, the δ-sequence that we computed will not appear.

Overall, the attack works in 5 steps, for each key guess:

• Find a pair that matches the differential path of Figure 11.6,

• Compute the corresponding δ-sequence,

• Guess the inner state bytes,

• Filter out the guesses that do not match the key schedule constraints,

• Check if the state guesses match the δ-sequence.

186 Chapter 11. Quantum security analysis of AES

P

Plaintexts

MC

u0

ARK

k0
‚
‚
‚
‚

SB

x0

SR

y0

MC

z0 w0

Round 0

MC

u1

ARK

k1

‚

SB

x1

SR

y1

MC

z1 w1

Round 1

MC

u2

ARK

k2

SB

x2

SR

y2

MC

z2 w2

Round 2

MC

u3

ARK

k3

SB

x3

SR

y3

MC

z3 w3

Round 3

MC

u4

ARK

k4

SB

x4

SR

y4

MC

z4 w4

Round 4

MC

u5

ARK

k5

SB

x5

SR

y5

MC

z5 w5

Round 5

MC

u6

ARK

k6

SB

x6

SR

y6

MC

z6 w6

Round 6

MC

u7

‚

ARK

k7

SB

x7

SR

y7

MC

z7 w7

Round 7

MC

u8
‚

‚
‚
‚

ARK

k8 C

Ciphertexts

Figure 11.8: Full differential path used in the quantum attack. Key bytes guessed in
the outer Grover procedure are denoted by ‚. Colored bytes are constrained by the
corresponding equation described in Figure 11.9.

11.5. Quantum Demirci-Selçuk meet-in-the-middle 187

11.5.3.1 Finding the pairs.
We use the same method as in [DFJ13] to obtain the pairs. This part is classical, as it is
a precomputation whose running time is below what we expect of the quantum search.

Lemma 11.7 (Finding pairs). Algorithm 11.4, with 2113 encryption queries, returns
248 plaintext-ciphertext pairs P,C, P 1, C 1 such that:

• The difference ∆P “ P ‘ P 1 is active only in bytes 0, 5, 10, 15,

• The difference MC´1p∆Cq “ MC´1pC ‘ C 1q is active only in bytes 0, 7, 10, 13.

Proof. Each set of 232 plaintexts that varies on the diagonal contains 232p232´1q{2 pairs,
and the output difference is correct with probability 2´96. Hence, each set contains one
pair with probability 2´33. We will obtain 248 pairs after 248`33 “ 281 sets, which
corresponds to 2113 encryption.

Algorithm 11.4 Pair generation
1: LÐH

2: loop 281 times
3: Choose a plaintext P .
4: Encrypt the 232 values that correspond to P plus a difference in bytes 0, 5, 10, 15.
5: For all 263 pairs pP,Cq, pP 1, C 1q of plaintexts/ciphertexts do
6: If MC´1pC ‘ C 1q is active only in bytes 0, 7, 10, 13 then
7: Add pP, P 1q to L
8: Return L

Algorithm 11.5 Finding a matching pair
Input: The list of 248 pairs of Lemma 11.7, the key guesses of k0r0, 5, 10, 15s and
u8r0, 7, 10, 13s.
Output: A pair that fulfills the path of Figure 11.6.

1: For all Pairs in the list do
2: Use the guesses to compute ∆w0r0–3s and ∆z6r0–3s
3: If ∆w0r0–2s “ 0 and ∆z6r0, 2, 3s “ 0 then
4: Return the pair

Lemma 11.8 (The Good Pair). Algorithm 11.5 finds a matching pair for the differential
of Figure 11.6 in approximately 253 S-Box computations.

Proof. We test sequentially each of the 248 possible pairs, and expect that one pair
will pass the test. As this is a sequential test, we do the same thing classically and
quantumly. There are 16 S-Box computations to do for each pair (4 in round 0 and
round 8 for both members of the pair), to check if it is the good one. When we compute
quantumly, we need to uncompute each test, which adds a factor 2.

188 Chapter 11. Quantum security analysis of AES

11.5.3.2 Computing the δ-sequence.
From the pair, we need to compute the δ-sequence. The associated plaintexts are
computed thanks to k1r3s and k0r0, 5, 10, 15s. We encrypt these 25 plaintexts, and
partially decrypt the ciphertexts thanks to our guesses of u8 and u7 in order to obtain
the sequence of differences in x6r5s. This list contains 25 byte values, hence 256 bits are
sufficient to store it.

Lemma 11.9 (Computing the δ-sequence). Given the subkey guesses in k0, k1, u7, u8,
and a pair satisfying the inner differential, we can compute the corresponding δ-sequence
using 213 S-Box computations.

Proof. Each of the 25 elements of the δ-sequence requires a call to the secret-key oracle,
which costs 28 S-Boxes. The other computations are negligible.

11.5.3.3 Number of possible δ-sequences.
There are 10 key bytes p‚q to guess. For each of these key bytes, Lemma 11.6 gives
24 more byte-degrees of freedom to go through, in order to test all δ-sequences. So
there would be a total number of 34 bytes to sieve, which is higher than the 32 bytes
of exhaustive search of the key. We reduce this crucially by making use of the key
schedule relations (Lemma 11.10), which are translated to 4 one-byte state equations
(11.4), (11.5), (11.6) and (11.7). This reduces the total search space to 30 bytes, and
allows the success of our approach on 8 rounds of AES-256.

Key-schedule relations. We use the following relations to obtain some state equa-
tions which allow to reduce the search space.

Lemma 11.10 (AES-256 key schedule properties). Let k0, . . . k8 be the 8-round expan-
sion of the key-schedule of AES-256. The following relations hold:

1. k0r10s “ k4r2s ‘ k4r10s

2. k0r15s “ k4r7s ‘ k4r15s

3. k2r4–7s “ k4r0–3s ‘ k4r4–7s

4. k5r3s “ k1r3s ‘ Spk4r15sq ‘ Spk4r11s ‘ k4r15sq

Proof. Relations 1,2 and 3 are direct applications of Lemma 11.1. For relation 4,
Lemma 11.1 tells us that k3r3s “ Spk4r15sq ‘ k5r3s, k1r3s “ Spk2r15sq ‘ k3r3s, and
k2r15s “ k4r11s ‘ k4r15s. Combining the 3 equations produces the wanted equality.

State equations. Equations (11.4), (11.5), (11.6) and (11.7) below are respectively
derived from the four key-schedule relations given in Lemma 11.10. We replace some
key bytes by the sum of known state bytes, up to linear transformations.

11.5. Quantum Demirci-Selçuk meet-in-the-middle 189

k0r10s “ k4r2s ‘ k4r10s
ùñ k0r10s “ x4r2s ‘ x4r10s ‘ ℓ2py3r0, 5, 10, 15sq ‘ ℓ2py3r8, 13, 2, 7sq (11.4)

k0r15s “ k4r7s ‘ k4r15s
ùñ k0r15s “ x4r7s ‘ x4r15s ‘ ℓ3py3r3, 4, 9, 14sq ‘ ℓ3py3r1, 6, 11, 12sq (11.5)

k5r3s “ k1r3s ‘ Spk4r15sq ‘ Spk4r11s ‘ k4r15sq

ùñ x5r3s ‘ ℓ3py4r0, 5, 10, 15sq “ k1r3s ‘ S
´

x4r15s ‘ ℓ3py3r1, 6, 11, 12sq
¯

‘ S
´

x4r15s ‘ ℓ3py3r1, 6, 11, 12sq ‘ x4r11s ‘ ℓ3py3r8, 13, 2, 7sq
¯

(11.6)

k2r4–7s “ k4r0–3s ‘ k4r4–7s
x2r4–7s ‘MCpy1r3, 4, 9, 14sq “

x4r0–3s ‘MCpy3r0, 5, 10, 15sq ‘ x4r4–7s ‘MCpy3r3, 4, 9, 14sq
ùñ ℓpx2r4–7sq ‘ y1r3s “ ℓpx4r0–3sq ‘ y3r0s ‘ ℓpx4r4–7sq ‘ y3r3s (11.7)

where ℓ2 and ℓ3 are the linear functions that, on input a column, give the third (resp.
fourth) byte of this mixed column, and ℓ is the linear function which, on input a column
C, gives the first byte of MC´1pCq.

Sieving with the state equations. At some point in our attack, we have two choices
for each byte of x2r0–3s (one column of x2), each byte of x3, each byte of x4 and each
byte of x5r3, 4, 9, 14s. We then sieve these possible choices with the 4 key relations
obtained above, translated into relations between the bytes of these states. As there
are 40 bit-degrees of freedom and 4 byte constraints, we expect 28 possibilities to pass.
These relations are expected to constrain completely 32 of the byte values and leave the
8 others free. This is represented in Figure 11.9, with the bytes of x2, x3, x4 and x5
concerned. For each relation, (11.4) to (11.7), we represent the bytes of the states that
appear in it. These values are always either mixed or passed through an S-Box, so we
may consider the relations to be independent. In the end, 8 bytes appear in none of the
relations: these are exactly the 8 free choices remaining.

11.5.3.4 Final matching

From the guesses that pass all the previous tests, we can compute the expected δ-
sequence and match it against the one computed in the previous step.

190 Chapter 11. Quantum security analysis of AES

Algorithm 11.6 The attack on 8-round AES-256
Input: The 248 pairs of Lemma 11.7
Output: The key bytes k0r0, 5, 10, 15s, k1r3s, u7r1s, u8r0, 7, 10, 13s

1: Filter k0r0, 5, 10, 15s, k1r3s, u7r1s, u8r0, 7, 10, 13s
2: Find a matching pair with Algorithm 11.5 Ź 253 S-Boxes
3: Compute the δ-sequence in x6r5s by making x1r3s vary
4: Compute x1r3s, x1

1r3s and deduce ∆x2r4–7s
5: Compute x6r5s, x1

6r5s and deduce ∆y5r3, 4, 9, 14s
6: Filter ∆y2r4–7s, ∆x5r3, 4, 9, 14s, ∆x4
7: If ∆y2r4–7s and ∆x2r4–7s do not match: Abort Ź prob. 2´4

8: If ∆x5r3, 4, 9, 14s and ∆y5r3, 4, 9, 14s do not match: Abort
Ź prob. 2´4

9: Compute the possible values of x2r4–7s, x5r3, 4, 9, 14s with Lemma 11.2
10: From ∆y2r4–7s, compute ∆x3
11: From ∆x5r3, 4, 9, 14s, compute ∆y4
12: If ∆x3 and ∆y4 do not match: Abort Ź prob. 2´32

Ź At this point, one guess over 240 has passed the S-Box differential equations
13: Compute the possible values of x3, x4 with Lemma 11.2
14: Match x4r2, 10s, x3r0, 5, 10, 15, 8, 13, 2, 7s with Equation 11.4

Ź 4 solutions expected
15: Match x4r7, 15s, x3r3, 4, 9, 14, 1, 6, 11, 12s with Equation 11.5

Ź 4 solutions expected
16: Match x5r3s, x4r0, 5, 11s with the remaining x3r1, 6, 11, 12, 2, 7, 8, 13s and

Equation 11.6 Ź 1 solution expected
17: Match x2r4–7s, x4r1, 3, 4, 6s with the remaining x4r0, 5, 2, 7s, x3r0, 3s and

Equation 11.7 Ź 1 solution expected
18: For all Choices for x4r8, 9, 12, 13, 14s and x5r4, 9, 14s do
19: Compute the expected δ-sequence in x6r5s
20: If it matches the computed δ-sequence then
21: Return k0r0, 5, 10, 15s, k1r3s, u7r1s, u8r0, 7, 10, 13s
22: End Filter
23: End Filter

11.5. Quantum Demirci-Selçuk meet-in-the-middle 191

x2 x3 x4 x5
0 1 2 3 0 1 2 3 4 5 6 7 8 9 101112131415 0 1 2 3 4 5 6 7 8 9 101112131415 3 4 9 14

(11.4)
x3r0, 5, 10, 15s and x3r2, 7, 8, 13s x4r2, 10s

(11.5)
x3r3, 4, 9, 14s and x3r1, 6, 11, 12s x4r7, 15s

(11.6)
x3r1, 6, 11, 12s and x3r2, 7, 8, 13s x4r0, 5, 10, 11, 15s x5r3s

x2
(11.7)

x3r0, 3s x4r0, 1, 2, 3, 4, 5, 6, 7s

Figure 11.9: All state relations (11.4), (11.5), (11.6), (11.7) and the 8 remaining un-
constrained bytes, in black.

11.5.4 Complexity analysis
11.5.4.1 Classical complexity
There are three levels of filtering. We go from the outermost to the inner one:

1. Filtering on key byte guesses: there are 210ˆ8 guesses to look at, among which we
expect exactly one solution. Given these byte guesses, we find a good pair and
start computing the states in the middle. The cost is in total:

280 `253 ` f
˘

where f is the next filter. The 253 term comes from Lemma 11.8.

2. Filtering on the 16 ` 8 differences: there are 40 S-Box differential equations
to solve in total. In the middle, we can match x4 and y4 column by column:
this is more efficient than solving all 32 equations at once. At this point, we
have obtained 2 possibilities for the full sequence of states, as each state byte of
x2r4–7s, x3, x4, x5r3, 4, 9, 14s has two possibilities. We then pass the key-conditions.

a) Equations 11.4 and 11.5 each need 210 computations, without S-Boxes in-
volved. This is negligible.

b) To check Equation 11.6 for all possibilities, one needs to compute some S-Box
evaluations. Indeed, due to the constrained choices, x4r15s‘ℓ3py3r1, 6, 11, 12sq
can take on average only 4 values and there are only 8 possible values for
x4r11s ‘ ℓ3py3r8, 13, 2, 7sq. So in total we need not more than 4` 8 S-Boxes
evaluations, which is negligible.

c) Again, to check Equation 11.7, we need only linear computations, without
any S-Boxes.

So the full cost of the filter is:

2p16`8qˆ8´40 `16` 4ˆ p28 ˆ 8q ` f 1
˘

192 Chapter 11. Quantum security analysis of AES

where 16 stems from the outer S-Box equations, 4 ˆ p28 ˆ 8q is the term for the
inner columns equations, and f ’ is the next filter, and 2´40 is the probability of
one guess of verifying the differential equations.

3. Filter on the state sequences: there are 8 remaining bit-degrees of freedom, that
is, bytes that can take two values. For each possibility, we compute the δ-sequence
using 25 ˆ 40 “ 1280 S-Box evaluations and match against the wanted one. We
expect one or zero solution. The cost is 28 ˆ 1280 .

In total we obtain

280 `253 ` 2152 ``4ˆ p28 ˆ 8q
˘

` 28 ˆ 1280
˘˘

,

where we have highlighted the search terms.
A direct computation gives a classical complexity of 2250.3 S-Boxes, which is actually

the optimal cost for our algorithm. Indeed, the differential path we use contains in total
30 byte-degrees of freedom (including key byte guesses), when discounting the key-
schedule relations. The best expected complexity is then 2240 times the computation of
a δ-sequence, which is exactly what we get (δ-sequences are the dominant term). We
now turn ourselves towards the quantum time complexity of this procedure.

11.5.4.2 Quantum complexity
The main difference with the classical analysis is that we need to estimate the number
of solutions at each step, and cannot afford a rare event in which we have much more
or much fewer solutions, while classically all balances out. While the classical analysis
uses the average number of solutions and allows us to choose the number of iterations
we perform, the actual number of solutions at each step for the correct answer may
differ from the average value.

A simplified estimation of nested search would lead to a time cost of

π

2
240

´π

2
276

´

25π

2
24 `

π

2
24 ˆ 1280

¯¯

» 2132.3 S-Boxes.

As this estimate is fairly close to the cost of the exhaustive search (at 2137.9 S-Boxes),
we propose below a more precise estimate, in order to show that we indeed beat it, and
the attack on 8 rounds of AES-256 works.

S-Box property. The differential property can yield 4 solutions, and if we only
consider two solutions, as we go through 40 S-Boxes, we succeed with probability
`127

128
˘40

» 2´0.45. If we want to be more precise in the analysis, we can remark that the
differential property is not fulfilled for half of the differentials, but for 127

255 of the non-zero
differentials. Moreover, we can restrict our search space over non-zero differentials.

Hence, we do not have 2192 differentials, but 2191.86, and the 40 differential equations
filter 240.23 values, for a total space size in the second filter of 2151.64.

11.5. Quantum Demirci-Selçuk meet-in-the-middle 193

Precision. For each filter, we estimate how much it can deviate from the average
number of solutions:

1. Filtering of k0r0, 5, 10, 15s, k1r3s, u7r1s, u8r0, 7, 10, 13s: the test function is ex-
pected to accept only the good key guesses, the space search is trivial, so no
deviation here.

2. Filtering of ∆y2r4–7s, ∆x5r3, 4, 9, 14s, ∆x4: we filter ∆y2r4–7s and ∆x5r4, 9, 14s
by comparing with ∆x2 and ∆y5, and there are exactly 127 solutions per byte.
Hence, there is no deviation here. However, for ∆x4, there are two independent
constraints: one from ∆y2 and one from ∆x5. This can make the actual number
of solutions vary.

3. Sequential test of the 4 key conditions: here, the number of solutions can also
vary. As we do a sequential test, we only have to care about the maximal number
of solutions that will occur for the correct guess.

4. Last filter: there are exactly 28 tuples to iterate on. This has to be done once
for each solution that might arise from the previous step. As we know the list of
these solutions, we can also perform a quantum search on them.

For the variations of the differences, we have been able to simulate them column by
column, and found that the number of solutions when fixing ∆x3 (deduced from ∆y2)
and ∆y4 (deduced from ∆x5) were in 98% of the cases in the interval 227.95p1 ˘ 2´9q.
As we have 4 columns, we can estimate that in more than 90% cases we will have a
number of solutions that varies of a factor less than 2´7 around the mean. Hence, the
output of the circuit that produces ∆y2r4–7s, ∆x5r3, 4, 9, 14s, ∆x4 will not pass the
outer test with probability 2´151.6, but with a probability between 2´151.6p1´ 2´7q and
2´151.6p1 ` 2´7q. If we do π

4 276 iterations, we obtain a value that passes the test with
probability greater than 1 ´ 2´14, which will force a negligible increase in the number
of outer iterations and reduce marginally the final success probability.

Regarding the key conditions, we consider that overall, the 4 equations for the good
path (there is only one, corresponding to a good guess of all subkey bytes and state
differences) might have 4 solutions. As the candidates (and their number) are known, we
can generate the superposition of all of them, to be used in the final test. The overhead
to generate this superposition is negligible, but this adds a factor 2 to the number of
iterations. Hence, the final complexity, taking into account the success probability is

10
9

20.45π

2
240

´π

2
275.8

´

27 ˆ 2
Yπ

4
24
]

` 2
Yπ

2
24`1

]

ˆ 1280
¯¯

“ 2134.7 S-Boxes.

The dominating term is the computation of δ-sequences. The cost is below exhaus-
tive search, at 2137.9 S-Boxes.

11.5.5 Removing the superposition queries
The previous attack computed the queries to the cipher on-the fly, which forced us to
have access to superposition queries. It is possible to replace them by classical ones.

194 Chapter 11. Quantum security analysis of AES

Suppose that we are given a guess of 9 key bytes in k0, k1, u8 and a corresponding
good pair. To produce the expected δ-sequence, there are encryption queries to perform,
making the difference in y1 vary. These chosen-plaintext queries depend on the 4 guessed
bytes of k0 and the guessed byte of k1. But this represents only 240 values. This means
that the whole procedure needs only 248 ˆ 240 “ 288 distinct queries, grouped by their
corresponding pairs.

We now perform all these queries beforehand. Instead of computing the δ-sequence
on the fly, we go through the set of stored queries and find the ones that interest us
(those which correspond to the current pair). This is done with a sequential lookup of
the 288 values, for a grand total of 2128 lookups. This will not be the dominant term, as it
does not involve any S-Box. It only forces us to store classically 288 plaintext/ciphertext
pairs, instead of 248.

11.5.6 Quantum-inspired classical attacks
Managing to make the attacks work quantumly was non-trivial. The memory was
especially an issue, there is no generic gain on memory as there is on time. This has
forced us to seek lower-memory approaches, which can also be applied classically. We
propose in this section new classical attacks, which are summarized in Table 11.1.

Re-ordering the steps. The main idea that helps reducing the memory needs is to
first store the results from the previous online phase (key guesses, corresponding pairs
and multisets computed from the queried messages), and next perform an exhaustive
search over the middle values (what was before a precomputed table), and look for a
collision. When the first term is smaller, the memory is reduced, while keeping similar
complexities of data and time (as we are basically doing the same computations in a
different order).

Further possible improvements. Using multiple differentials in the middle and
storing the transitions will allow to provide attacks with reduced data, while partially
increasing the previously reduced memory. We believe new interesting trade-offs might
result from these combination.

11.5.6.1 Improved attack on 9-rounds AES-256

We consider the 9-round AES-256 attack of [DFJ13, Fig.6]. In this attack, after having
obtained 2144 plaintext-ciphertext pairs verifying the input differential with 2113 queries,
we sieve the outer key bytes. Each pair gives 248 possible values for k´1r0, 5, 10, 15s, k8,
u7, that can be enumerated in time 248, such that it verifies the whole differential pattern.
Then, for each of these values, we encrypt a δ-set and compare the associated multiset to
the table of precomputed possibilities: as there are 26 byte parameters that determine
the middle rounds, the precomputed table has size 2210. This can be reduced by a factor
27, if we replay the attack 27 times (increasing the data and time complexity).

11.6. Conclusion 195

New attacks with reduced memory. By reordering the steps, we obtain a new
attack based on this previous one that still needs 2113 data, 2210 in time and now only
2194 in memory. We can propose a trade-off with different factors as they did, by
considering a factor of 2x less states to try in the middle if we store 2x times more
possible pairs. For this we need a data complexity increased by a factor 2x{2 (that
generates 2x times more pairs), and a time complexity that will be the max between
2210´x and 2194´x. All in all, we are able to propose better trade offs: indeed, in
order to reach a memory of 2194 with the attack from [DFJ13], they would need a time
complexity of 2212 and a data complexity of 2124.5.

11.5.6.2 New trade-offs on 7-rounds AES-128
In this case, the new trade-offs are not always interesting, in particular when compared
to the best impossible differential attacks, but they improve upon previous DS-MITM
attacks at least with respect to memory needs. The same way as before, we consider the
DS-MITM 7-round AES-128 attack ([DFJ13, Fig.4]). When applying our improvements,
we obtain for instance 2113 data, 2113 ` 284 time and 274 memory. When considering
the multiple differentials idea, we are able to reach 2105 data, 2105 ` 295 time and 281

memory.

11.6 Conclusion
This chapter has presented the firsts quantum attacks on round-reduced AES, in the
single-key setting. They are summarized in Table 11.3. Overall, the quantum attacks
manage to break one less round than the classical attacks, for each version. This is
only the first work of quantum cryptanalysis on AES, but it suggests that, at least for
classically-inspired quantum attacks, it is harder for a quantum algorithm to beat the
quantum search cost than for a classical algorithm to beat the classical search cost. This
is mostly due to the fact that the quantization of a search algorithm reduces only the
search cost, which makes for less favourable time/memory tradeoffs. Moreover, contrary
to the situation in Chapter 7, having access to quantum queries does not improve that
much the attacks. This still leaves some room for new quantum attacks without any
classical equivalent, but to date, none of the approaches that are known to be much
more efficient quantumly (such as Simon’s algorithm) have been applied successfully
to AES. On the contrary, some classical attacks, such as the impossible differentials,
appear to be much less competitive when translated quantumly.

If we consider long-term security, this work allows to show that the best known
attack on AES-256 only threatens 8 rounds, which leaves a large security margin. This
suggests that AES is a strong primitive even against a quantum computer, and that
AES-256 can be safely used for very long-term applications.

196 Chapter 11. Quantum security analysis of AES

Table 11.3: Summary of the quantum cryptanalyses on AES we proposed, with the
reference quantum search cost. Time is given in amount of computed S-Box.

Version Rounds Data Time C. mem. Q. mem. Model Technique

128

6 2 273 None small Q1 Ex. search
6 248 250 None small Q2 Square
6 232 250 None 232 Q1 Square
6 232 271 232 small Q1 Square
6 235 258 235 small Q1 Improved square
6 235 244 235 227 Q1 Partial sum square

192 7 2 2105.1 None small Q1 Ex. search
7 237 2103 237 227 Q1 Partial sum square

256

7 3 2137.7 None small Q1 Ex. search
7 237 2106 237 227 Q1 Partial sum square
8 3 2137.9 None small Q1 Ex. search
8 2124 2134.7 248 small Q2 DS MITM
8 2113 2134.7 288 small Q1 DS MITM

Conclusions

The aim of this thesis was to provide some new tools for the quantum cryptanalysis of
symmetric primitives, and to apply them to existing designs. My work turned out to
be mainly focused on cryptanalysis based on the hidden period and the hidden shift
problems, as the quantum algorithms that solve them are superpolynomially faster
than the best classical algorithms. The study of these quantum algorithms has allowed
me to improve hidden shift algorithms and to propose some new cost tradeoffs, in
Chapter 5, and to extend their scope of application, in Chapter 6. These algorithms
allowed many quantum cryptanalyses of symmetric schemes, presented in Chapters 7, 8
and 9, with quantum queries, but also with classical queries and quantum computation.
Rewriting some classical attacks in the formalism of hidden periods also allowed me
to generalize the classical attack of Chaigneau and Gilbert on AEZv4 to AEZv5 and
AEZ10, and to propose a classical attack on MiMC-2n{n and multiple instances of
GMiMC. Moreover, hidden shift algorithms can be applied in different contexts, and I
studied their application to attack some isogeny-based schemes, in Chapter 10. Finally,
I studied some cryptanalysis in cases where we do not have a structure that permits to
use these algorithms. A framework to write search algorithms is proposed in Chapter 3,
and is applied in the cryptanalyses of reduced-round AES of Chapter 11.

This last work is the first step towards the understanding of AES’s security margin
in a world where we only consider attacks better than the best generic attack (quantum
search), and do not separate between classical and quantum attacks anymore. The
quantum algorithms of Part I are tools for cryptanalysis, and we can also hope that
they will contribute to the design of safe primitives, as the most efficient quantum
algorithms require some specific structure.

There is still a lot to discover on hidden shift algorithms. In particular, only the
asymptotic exponent is known for some variants. The problem is easier for parallel
additions modulo a power of 2, and it would be interesting to know if something similar
happens for a different moduli, and, in particular, if the problem is as hard modulo a
smooth integer as modulo a prime number.

Quantum cryptanalysis is a fairly recent and rapidly-changing field, and we can
expect that many improvements will be discovered, For instance, we could find new
generic algorithms, that could either manage to make some classical ideas work in a
quantum setting or use some new cryptanalysis techniques that could not be applied
classically, as for many constructions, only the classical attacks have been studied, lead-
ing to a quantum security merely estimated from the classical one. I plan to explore
these directions in the next years, studying some other families of quantum algorithms,
and looking for new applications, in particular in public-key cryptography.

197

Bibliography

[Aag+19] Mark Aagaard, Riham AlTawy, Guang Gong, Kalikinkar Mandal, and Ragh-
vendra Rohit. ACE: An Authenticated Encryption and Hash Algorithm. NIST
lightweight competition round 1 candidate. Mar. 2019 (cit. on p. 114).

[AES] “Advanced Encryption Standard (AES)”. In: National Institute of Standards and
Technology (NIST), FIPS PUB 197, U.S. Department of Commerce (Nov. 2001)
(cit. on pp. 17, 103, 165, 166).

[Alb+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander, Christof
Paar, and Tolga Yalçin. “Block Ciphers - Focus on the Linear Layer (feat. PRIDE)”.
In: CRYPTO 2014, Part I. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8616.
LNCS. Springer, Heidelberg, Aug. 2014, pp. 57–76 (cit. on p. 109).

[Alb+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. “MiMC: Efficient Encryption and Cryptographic Hashing with Minimal
Multiplicative Complexity”. In: ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon
and Tsuyoshi Takagi. Vol. 10031. LNCS. Springer, Heidelberg, Dec. 2016, pp. 191–
219 (cit. on pp. 148, 149).

[Alb+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian
Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. “Feistel Struc-
tures for MPC, and More”. In: ESORICS 2019. 2019 (cit. on pp. 148, 149).

[Alm+18] Mishal Almazrooie, Azman Samsudin, Rosni Abdullah, and Kussay N. Mutter.
“Quantum reversible circuit of AES-128”. In: Quantum Information Processing
17.5 (2018), p. 112 (cit. on pp. 170–172).

[And+16] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Mennink,
Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. COLM v1. CAESAR compe-
tition round 3 candidate. Sept. 2016 (cit. on p. 18).

[AR17] Gorjan Alagic and Alexander Russell. “Quantum-Secure Symmetric-Key Cryptog-
raphy Based on Hidden Shifts”. In: EUROCRYPT 2017, Part III. Ed. by Jean-
Sébastien Coron and Jesper Buus Nielsen. Vol. 10212. LNCS. Springer, Heidelberg,
Apr. 2017, pp. 65–93 (cit. on pp. 116, 132).

[AS04] Scott Aaronson and Yaoyun Shi. “Quantum lower bounds for the collision and
the element distinctness problems”. In: J. ACM 51.4 (2004), pp. 595–605 (cit. on
p. 45).

[BA08] Behnam Bahrak and Mohammad Reza Aref. “Impossible differential attack on
seven-round AES-128”. In: IET Information Security 2.2 (2008), pp. 28–32 (cit.
on p. 165).

[Bao+19] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo, Mridul Nandi, Thomas
Peyrin, and Kan Yasuda. PHOTON-Beetle Authenticated Encryption and Hash
Family. NIST lightweight competition round 1 candidate. Mar. 2019 (cit. on p. 115).

199

200 Bibliography

[Bar+18] Achiya Bar-On, Eli Biham, Orr Dunkelman, and Nathan Keller. “Efficient Slide
Attacks”. In: Journal of Cryptology 31.3 (July 2018), pp. 641–670 (cit. on pp. 129,
145, 146).

[BB84] C. H. Bennett and G. Brassard. “Quantum cryptography: Public key distribution
and coin tossing”. In: Proceedings of IEEE International Conference on Computers,
Systems, and Signal Processing. Bangalore,India, 1984, p. 175 (cit. on p. 23).

[BCD06] Dave Bacon, Andrew M. Childs, and Wim van Dam. “Optimal measurements for
the dihedral hidden subgroup problem”. In: Chicago J. Theor. Comput. Sci. 2006
(2006) (cit. on p. 67).

[BCJ11] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. “Improved Generic Algo-
rithms for Hard Knapsacks”. In: EUROCRYPT 2011. Ed. by Kenneth G. Paterson.
Vol. 6632. LNCS. Springer, Heidelberg, May 2011, pp. 364–385 (cit. on pp. 58–60,
74).

[BCL08] Reinier Bröker, Denis Charles, and Kristin Lauter. “Evaluating Large Degree Iso-
genies and Applications to Pairing Based Cryptography”. In: PAIRING 2008. Ed.
by Steven D. Galbraith and Kenneth G. Paterson. Vol. 5209. LNCS. Springer,
Heidelberg, Sept. 2008, pp. 100–112 (cit. on p. 158).

[BDK07] Eli Biham, Orr Dunkelman, and Nathan Keller. “Improved Slide Attacks”. In:
FSE 2007. Ed. by Alex Biryukov. Vol. 4593. LNCS. Springer, Heidelberg, Mar.
2007, pp. 153–166 (cit. on p. 129).

[BDK08] Eli Biham, Orr Dunkelman, and Nathan Keller. “A Unified Approach to Related-
Key Attacks”. In: FSE 2008. Ed. by Kaisa Nyberg. Vol. 5086. LNCS. Springer,
Heidelberg, Feb. 2008, pp. 73–96 (cit. on p. 106).

[Bei+19] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang. Schwa-emm
and Esch: Lightweight Authenticated Encryption and Hashing using the Sparkle
Permutation Family. NIST lightweight competition round 1 candidate. Mar. 2019
(cit. on p. 115).

[Ben+97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani.
“Strengths and Weaknesses of Quantum Computing”. In: SIAM J. Comput. 26.5
(1997), pp. 1510–1523 (cit. on p. 38).

[Ben89] Charles H. Bennett. “Time/Space Trade-Offs for Reversible Computation”. In:
SIAM J. Comput. 18.4 (1989), pp. 766–776 (cit. on p. 30).

[Ber+07] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. “Sponge
functions”. In: ECRYPT hash workshop (2007) (cit. on p. 19).

[Ber+08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “On the
Indifferentiability of the Sponge Construction”. In: EUROCRYPT 2008. Ed. by
Nigel P. Smart. Vol. 4965. LNCS. Springer, Heidelberg, Apr. 2008, pp. 181–197
(cit. on p. 114).

[Ber+12a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Permuta-
tion Based Encryption, Authentication and Authenticated Encryption”. In: Work-
shop Records of DIAC 2012. 2012, pp. 159–170 (cit. on p. 114).

[Ber+12b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Duplex-
ing the Sponge: Single-Pass Authenticated Encryption and Other Applications”.
In: SAC 2011. Ed. by Ali Miri and Serge Vaudenay. Vol. 7118. LNCS. Springer,
Heidelberg, Aug. 2012, pp. 320–337 (cit. on p. 114).

Bibliography 201

[Ber+13] Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer. “Quan-
tum Algorithms for the Subset-Sum Problem”. In: Post-Quantum Cryptography -
5th International Workshop, PQCrypto 2013. Ed. by Philippe Gaborit. Springer,
Heidelberg, June 2013, pp. 16–33 (cit. on pp. 58, 59).

[Ber+17] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. “Farfalle: parallel permutation-based cryptography”. In:
IACR Trans. Symm. Cryptol. 2017.4 (2017), pp. 1–38. issn: 2519-173X (cit. on
pp. 100, 108).

[Ber+19a] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-Xavier
Standaert, Yosuke Todo, and Benoît Viguier. Gimli. NIST lightweight competition
round 1 candidate. Mar. 2019 (cit. on p. 114).

[Ber+19b] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny. “Quan-
tum Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies”. In:
EUROCRYPT 2019, Part II. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11477.
LNCS. Springer, Heidelberg, May 2019, pp. 409–441 (cit. on pp. 160, 161).

[Ber05] Daniel J. Bernstein. “The Poly1305-AES Message-Authentication Code”. In: FSE
2005. Ed. by Henri Gilbert and Helena Handschuh. Vol. 3557. LNCS. Springer,
Heidelberg, Feb. 2005, pp. 32–49 (cit. on pp. 18, 111).

[BH97] Gilles Brassard and Peter Høyer. “An Exact Quantum Polynomial-Time Algorithm
for Simon’s Problem”. In: Fifth Israel Symposium on Theory of Computing and
Systems, ISTCS 1997, Ramat-Gan, Israel, June 17-19, 1997, Proceedings. IEEE
Computer Society, 1997, pp. 12–23. isbn: 0-8186-8037-7 (cit. on p. 52).

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum Cryptanalysis of Hash
and Claw-Free Functions”. In: LATIN ’98: Theoretical Informatics, Third Latin
American Symposium, Campinas, Brazil, April, 20-24, 1998, Proceedings. Ed. by
Claudio L. Lucchesi and Arnaldo V. Moura. Vol. 1380. Springer, Heidelberg, 1998,
pp. 163–169 (cit. on p. 45).

[Bia+19] Jean-François Biasse, Xavier Bonnetain, Benjamin Pring, André Schrottenloher,
and William Youmans. “Trade-off between classical and quantum circuit size of
the attack against CSIDH”. In: J. Mathematical Cryptology (2019) (cit. on pp. 8,
10, 153).

[Bih94] Eli Biham. “New Types of Cryptanalytic Attacks Using related Keys (Extended
Abstract)”. In: EUROCRYPT’93. Ed. by Tor Helleseth. Vol. 765. LNCS. Springer,
Heidelberg, May 1994, pp. 398–409 (cit. on p. 106).

[BIJ18] Jean-François Biasse, Annamaria Iezzi, and Michael J. Jacobson Jr. “A Note on
the Security of CSIDH”. In: INDOCRYPT 2018. Ed. by Debrup Chakraborty and
Tetsu Iwata. Vol. 11356. LNCS. Springer, Heidelberg, Dec. 2018, pp. 153–168 (cit.
on p. 159).

[BK09] Alex Biryukov and Dmitry Khovratovich. “Related-Key Cryptanalysis of the Full
AES-192 and AES-256”. In: ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912.
LNCS. Springer, Heidelberg, Dec. 2009, pp. 1–18 (cit. on p. 165).

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. “Distinguisher and Related-
Key Attack on the Full AES-256”. In: CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677.
LNCS. Springer, Heidelberg, Aug. 2009, pp. 231–249 (cit. on p. 165).

202 Bibliography

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. “The Security of the Cipher Block
Chaining Message Authentication Code”. In: Journal of Computer and System
Sciences 61.3 (2000), pp. 362–399 (cit. on p. 110).

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. “Biclique
Cryptanalysis of the Full AES”. In: ASIACRYPT 2011. Ed. by Dong Hoon Lee
and Xiaoyun Wang. Vol. 7073. LNCS. Springer, Heidelberg, Dec. 2011, pp. 344–
371 (cit. on p. 170).

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. “CSI-FiSh: Effi-
cient Isogeny based Signatures through Class Group Computations”. In: IACR
Cryptology ePrint Archive 2019 (2019), p. 498 (cit. on p. 161).

[BL17] Daniel J. Bernstein and Tanja Lange. “Post-quantum cryptography”. In: Nature
549.7671 (Sept. 2017), pp. 188–194. issn: 0028-0836 (cit. on pp. 100, 111).

[BN18] Xavier Bonnetain and María Naya-Plasencia. “Hidden Shift Quantum Cryptanal-
ysis and Implications”. In: ASIACRYPT 2018, Part I. Ed. by Thomas Peyrin and
Steven Galbraith. Vol. 11272. LNCS. Springer, Heidelberg, Dec. 2018, pp. 560–592
(cit. on pp. 8, 9, 57, 77–79, 81, 82, 99, 110, 112).

[BNS19a] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. “On Quan-
tum Slide Attacks”. In: SAC 2019. Ed. by Kenneth G. Paterson and Douglas
Stebila: LNCS. Springer, Heidelberg, Aug. 2019 (cit. on pp. 9, 99, 129).

[BNS19b] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. “Quantum
Security Analysis of AES”. In: IACR Trans. Symm. Cryptol. 2019.2 (2019), pp. 55–
93. issn: 2519-173X (cit. on pp. 7, 10, 35, 40, 165).

[Bog+15] Andrey Bogdanov, Donghoon Chang, Mohona Ghosh, and Somitra Kumar Sanad-
hya. “Bicliques with Minimal Data and Time Complexity for AES”. In: ICISC 14.
Ed. by Jooyoung Lee and Jongsung Kim. Vol. 8949. LNCS. Springer, Heidelberg,
Dec. 2015, pp. 160–174 (cit. on p. 170).

[Bon+17] Xavier Bonnetain, Patrick Derbez, Sébastien Duval, Jérémy Jean, Gaëtan Leurent,
Brice Minaud, and Valentin Suder. “An easy attack on AEZ”. In: FSE 2017 rump
session (Mar. 2017) (cit. on p. 117).

[Bon+19] Xavier Bonnetain, Akinori Hosoyamada, María Naya-Plasencia, Yu Sasaki, and
André Schrottenloher. “Quantum Attacks without Superposition Queries: the Of-
fline Simon’s Algorithm”. In: ASIACRYPT 2019. Ed. by Steven Galbraith and
Shiho Moriai. LNCS. Springer, Heidelberg, Dec. 2019 (cit. on pp. 9, 87, 90, 99).

[Bon17] Xavier Bonnetain. “Quantum Key-Recovery on Full AEZ”. In: SAC 2017. Ed. by
Carlisle Adams and Jan Camenisch. Vol. 10719. LNCS. Springer, Heidelberg, Aug.
2017, pp. 394–406 (cit. on pp. 9, 99, 117, 124).

[Bon19a] Xavier Bonnetain. Collisions on Feistel-MiMC and univariate GMiMC. 2019 (cit.
on pp. 9, 129).

[Bon19b] Xavier Bonnetain. Improved Low-qubit Hidden Shift Algorithms. 2019. arXiv: 1901.
11428 (cit. on pp. 8, 57, 70, 72).

[Bor+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneže-
vić, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. “PRINCE - A
Low-Latency Block Cipher for Pervasive Computing Applications - Extended Ab-
stract”. In: ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658.
LNCS. Springer, Heidelberg, Dec. 2012, pp. 208–225 (cit. on p. 109).

http://arxiv.org/abs/1901.11428
http://arxiv.org/abs/1901.11428

Bibliography 203

[Bou+18] Christina Boura, Virginie Lallemand, Marı́a Naya-Plasencia, and Valentin Suder.
“Making the Impossible Possible”. In: Journal of Cryptology 31.1 (Jan. 2018),
pp. 101–133 (cit. on pp. 165, 170, 171).

[Boy+98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. “Tight Bounds on
Quantum Searching”. In: Fortschritte der Physik 46.4‐5 (1998), pp. 493–505 (cit.
on p. 38).

[BPT19] Xavier Bonnetain, Léo Perrin, and Shizhu Tian. “Anomalies and Vector Space
Search: Tools for S-Box Analysis”. In: ASIACRYPT 2019. Ed. by Steven Galbraith
and Shiho Moriai. LNCS. Springer, Heidelberg, Dec. 2019 (cit. on p. 10).

[BR00] John Black and Phillip Rogaway. “CBC MACs for Arbitrary-Length Messages:
The Three-Key Constructions”. In: CRYPTO 2000. Ed. by Mihir Bellare. Vol. 1880.
LNCS. Springer, Heidelberg, Aug. 2000, pp. 197–215 (cit. on p. 110).

[Bra+02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. “Quantum Ampli-
tude Amplification and Estimation”. In: Quantum Computation and Information,
AMS Contemporary Mathematics 305. Ed. by Samuel J. Lomo-naco and Howard
E. Brandt. 2002 (cit. on pp. 35, 38).

[BS18] Xavier Bonnetain and André Schrottenloher. Quantum Security Analysis of CSIDH
and Ordinary Isogeny-based Schemes. 2018 (cit. on pp. 8, 10, 57, 77, 80, 153, 159).

[BW00] Alex Biryukov and DavidWagner. “Advanced Slide Attacks”. In: EUROCRYPT 2000.
Ed. by Bart Preneel. Vol. 1807. LNCS. Springer, Heidelberg, May 2000, pp. 589–
606 (cit. on pp. 108, 129, 131, 134, 136, 141).

[BW99] Alex Biryukov and David Wagner. “Slide Attacks”. In: FSE’99. Ed. by Lars R.
Knudsen. Vol. 1636. LNCS. Springer, Heidelberg, Mar. 1999, pp. 245–259 (cit. on
pp. 129, 131).

[Can+19] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María Naya-Plasencia, Léo Per-
rin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of lightweight
symmetric algorithms for post-quantum security. NIST lightweight competition
round 1 candidate. Mar. 2019 (cit. on pp. 100, 116).

[Cas+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
“CSIDH: An Efficient Post-Quantum Commutative Group Action”. In: ASIACRYPT
2018, Part III. Ed. by Thomas Peyrin and Steven Galbraith. Vol. 11274. LNCS.
Springer, Heidelberg, Dec. 2018, pp. 395–427 (cit. on pp. 153, 154, 157, 161, 162).

[CG16] Colin Chaigneau and Henri Gilbert. “Is AEZ v4.1 Sufficiently Resilient Against
Key-Recovery Attacks?” In: IACR Trans. Symm. Cryptol. 2016.1 (2016). http:
//tosc.iacr.org/index.php/ToSC/article/view/538, pp. 114–133. issn:
2519-173X (cit. on pp. 117, 118, 122, 124, 126, 127).

[Cha+18] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. “Beetle Family
of Lightweight and Secure Authenticated Encryption Ciphers”. In: IACR TCHES
2018.2 (2018). https://tches.iacr.org/index.php/TCHES/article/view/881,
pp. 218–241. issn: 2569-2925 (cit. on p. 115).

[Che+08] Donny Cheung, Dmitri Maslov, Jimson Mathew, and Dhiraj K. Pradhan. “The-
ory of Quantum Computation, Communication, and Cryptography”. In: ed. by
Yasuhito Kawano and Michele Mosca. Berlin, Heidelberg: Springer-Verlag, 2008.
Chap. On the Design and Optimization of a Quantum Polynomial-Time Attack on
Elliptic Curve Cryptography, pp. 96–104. isbn: 978-3-540-89303-5 (cit. on p. 180).

http://tosc.iacr.org/index.php/ToSC/article/view/538
http://tosc.iacr.org/index.php/ToSC/article/view/538
https://tches.iacr.org/index.php/TCHES/article/view/881

204 Bibliography

[CHS19] Jan Czajkowski, Andreas Hülsing, and Christian Schaffner. “Quantum Indistin-
guishability of Random Sponges”. In: IACR Cryptology ePrint Archive 2019 (2019),
p. 69 (cit. on p. 114).

[CJS14] Andrew M. Childs, David Jao, and Vladimir Soukharev. “Constructing elliptic
curve isogenies in quantum subexponential time”. In: J. Mathematical Cryptology
8.1 (2014), pp. 1–29 (cit. on pp. 57, 70–72, 74, 153, 157).

[CNS17] André Chailloux, Marı́a Naya-Plasencia, and André Schrottenloher. “An Efficient
Quantum Collision Search Algorithm and Implications on Symmetric Cryptogra-
phy”. In: ASIACRYPT 2017, Part II. Ed. by Tsuyoshi Takagi and Thomas Peyrin.
Vol. 10625. LNCS. Springer, Heidelberg, Dec. 2017, pp. 211–240 (cit. on p. 46).

[Cou06] Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, Re-
port 2006/291. http://eprint.iacr.org/2006/291. 2006 (cit. on pp. 153, 154,
158).

[Dae+18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. “The design
of Xoodoo and Xoofff”. In: IACR Trans. Symm. Cryptol. 2018.4 (2018), pp. 1–38.
issn: 2519-173X (cit. on pp. 100, 108).

[Dae+19] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van
Keer. Xoodyak, a lightweight cryptographic scheme. NIST lightweight competition
round 1 candidate. Mar. 2019 (cit. on p. 114).

[Dae93] Joan Daemen. “Limitations of the Even-Mansour Construction (Rump Session)”.
In: ASIACRYPT’91. Ed. by Hideki Imai, Ronald L. Rivest, and Tsutomu Mat-
sumoto. Vol. 739. LNCS. Springer, Heidelberg, Nov. 1993, pp. 495–498 (cit. on
p. 108).

[DDW18] Xiaoyang Dong, Bingyou Dong, and Xiaoyun Wang. Quantum Attacks on Some
Feistel Block Ciphers. Cryptology ePrint Archive, Report 2018/504. https://
eprint.iacr.org/2018/504. 2018 (cit. on pp. 129, 141, 152).

[DES] “Data Encryption Standard”. In: National Bureau of Standards, NBS FIPS PUB
46, U.S. Department of Commerce (Jan. 1977) (cit. on pp. 17, 103, 165).

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. “Improved Key Recovery
Attacks on Reduced-Round AES in the Single-Key Setting”. In: EUROCRYPT 2013.
Ed. by Thomas Johansson and Phong Q. Nguyen. Vol. 7881. LNCS. Springer, Hei-
delberg, May 2013, pp. 371–387 (cit. on pp. 165, 170, 171, 179, 182, 183, 187, 194,
195).

[DG19] Luca De Feo and Steven D. Galbraith. “SeaSign: Compact Isogeny Signatures from
Class Group Actions”. In: EUROCRYPT 2019, Part III. Ed. by Yuval Ishai and
Vincent Rijmen. Vol. 11478. LNCS. Springer, Heidelberg, May 2019, pp. 759–789
(cit. on p. 153).

[DH76] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptography”. In:
IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654 (cit. on p. 15).

[Din+15] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. “Reflections on slide
with a twist attacks”. In: Des. Codes Cryptography 77.2-3 (2015), pp. 633–651 (cit.
on pp. 129, 144).

[Din18] Itai Dinur. An Algorithmic Framework for the Generalized Birthday Problem. Cryp-
tology ePrint Archive, Report 2018/575. https://eprint.iacr.org/2018/575.
2018 (cit. on p. 61).

http://eprint.iacr.org/2006/291
https://eprint.iacr.org/2018/504
https://eprint.iacr.org/2018/504
https://eprint.iacr.org/2018/575

Bibliography 205

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block Cipher Square”.
In: FSE’97. Ed. by Eli Biham. Vol. 1267. LNCS. Springer, Heidelberg, Jan. 1997,
pp. 149–165 (cit. on pp. 165, 169, 172, 174).

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. “Improved Single-Key Attacks
on 8-Round AES-192 and AES-256”. In: ASIACRYPT 2010. Ed. by Masayuki Abe.
Vol. 6477. LNCS. Springer, Heidelberg, Dec. 2010, pp. 158–176 (cit. on pp. 165,
168, 170, 179, 184).

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. “Minimalism in Cryptography:
The Even-Mansour Scheme Revisited”. In: EUROCRYPT 2012. Ed. by David
Pointcheval and Thomas Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr.
2012, pp. 336–354 (cit. on pp. 107, 108).

[DKS15] Orr Dunkelman, Nathan Keller, and Adi Shamir. “Slidex Attacks on the Even-
Mansour Encryption Scheme”. In: Journal of Cryptology 28.1 (Jan. 2015), pp. 1–
28 (cit. on pp. 129, 143).

[DKS18] Luca De Feo, Jean Kieffer, and Benjamin Smith. “Towards Practical Key Exchange
from Ordinary Isogeny Graphs”. In: ASIACRYPT 2018, Part III. Ed. by Thomas
Peyrin and Steven Galbraith. Vol. 11274. LNCS. Springer, Heidelberg, Dec. 2018,
pp. 365–394 (cit. on pp. 153, 154, 157).

[DLW19] Xiaoyang Dong, Zheng Li, and Xiaoyun Wang. “Quantum cryptanalysis on some
generalized Feistel schemes”. In: SCIENCE CHINA Information Sciences 62.2
(2019), 22501:1–22501:12 (cit. on pp. 99, 105).

[Dob+19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. NIST lightweight competition round 1 candidate. Mar. 2019 (cit. on
pp. 18, 114).

[DPV19] Thomas Decru, Lorenz Panny, and Frederik Vercauteren. “Faster SeaSign Signa-
tures Through Improved Rejection Sampling”. In: Post-Quantum Cryptography -
10th International Conference, PQCrypto 2019. Ed. by Jintai Ding and Rainer
Steinwandt. Springer, Heidelberg, 2019, pp. 271–285 (cit. on p. 153).

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002. isbn: 3-540-42580-2 (cit. on p. 119).

[DR07] Joan Daemen and Vincent Rijmen. “Probability distributions of correlation and
differentials in block ciphers”. In: J. Mathematical Cryptology 1.3 (2007), pp. 221–
242 (cit. on p. 55).

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. “A Meet-in-the-Middle Attack on 8-Round
AES”. In: FSE 2008. Ed. by Kaisa Nyberg. Vol. 5086. LNCS. Springer, Heidelberg,
Feb. 2008, pp. 116–126 (cit. on pp. 165, 169, 170, 179, 184).

[EH99] Mark Ettinger and Peter Høyer. “On Quantum Algorithms for Noncommutative
Hidden Subgroups”. In: STACS 99, 16th Annual Symposium on Theoretical As-
pects of Computer Science, Trier, Germany, March 4-6, 1999, Proceedings. Ed. by
Christoph Meinel and Sophie Tison. Vol. 1563. Springer, 1999, pp. 478–487 (cit. on
pp. 57, 66, 67).

[EHK04] Mark Ettinger, Peter Høyer, and Emanuel Knill. “The quantum query complexity
of the hidden subgroup problem is polynomial”. In: Information Processing Letters
91.1 (2004), pp. 43–48 (cit. on p. 47).

206 Bibliography

[EM97] Shimon Even and Yishay Mansour. “A Construction of a Cipher from a Single
Pseudorandom Permutation”. In: Journal of Cryptology 10.3 (June 1997), pp. 151–
162 (cit. on p. 107).

[Fer+01] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. “Improved Cryptanalysis of Rijndael”. In: FSE 2000.
Ed. by Bruce Schneier. Vol. 1978. LNCS. Springer, Heidelberg, Apr. 2001, pp. 213–
230 (cit. on pp. 165, 169, 171, 172, 175, 176).

[Fey82] R. P. Feynman. “Simulating Physics with Computers”. In: International Journal
of Theoretical Physics 21 (June 1982), pp. 467–488 (cit. on p. 23).

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. “Structural Evaluation
of AES and Chosen-Key Distinguisher of 9-Round AES-128”. In: CRYPTO 2013,
Part I. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042. LNCS. Springer, Hei-
delberg, Aug. 2013, pp. 183–203 (cit. on p. 165).

[FLS15] Thomas Fuhr, Gaëtan Leurent, and Valentin Suder. “Collision Attacks Against
CAESAR Candidates - Forgery and Key-Recovery Against AEZ and Marble”. In:
ASIACRYPT 2015, Part II. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9453.
LNCS. Springer, Heidelberg, Nov. 2015, pp. 510–532 (cit. on pp. 118, 127).

[FO90] Philippe Flajolet and Andrew M. Odlyzko. “Random Mapping Statistics”. In:
EUROCRYPT’89. Ed. by Jean-Jacques Quisquater and Joos Vandewalle. Vol. 434.
LNCS. Springer, Heidelberg, Apr. 1990, pp. 329–354 (cit. on pp. 83, 102).

[Gag17] Tommaso Gagliardoni. “Quantum Security of Cryptographic Primitives”. PhD the-
sis. Darmstadt University of Technology, Germany, 2017 (cit. on p. 21).

[GCM07] Morris Dworkin. “Recommendation for Block Cipher Modes of Operation: Ga-
lois/Counter Mode (GCM) and GMAC”. In: National Institute of Standards and
Technology (NIST), Special Publication 800-38D, U.S. Department of Commerce
(Nov. 2007) (cit. on p. 18).

[GHS02] Steven D. Galbraith, Florian Hess, and Nigel P. Smart. “Extending the GHS Weil
Descent Attack”. In: EUROCRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332.
LNCS. Springer, Heidelberg, Apr. 2002, pp. 29–44 (cit. on p. 158).

[GM00] Henri Gilbert and Marine Minier. “A Collision Attack on 7 Rounds of Rijndael”.
In: AES Candidate Conference. 2000, pp. 230–241 (cit. on p. 165).

[GMO19] Danilo Gligoroski, Hristina Mihajloska, and Daniel Otte. GAGE and InGAGE
v1.0. NIST lightweight competition round 1 candidate. Mar. 2019 (cit. on p. 114).

[GN08] Nicolas Gama and Phong Q. Nguyen. “Predicting Lattice Reduction”. In: EURO-
CRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965. LNCS. Springer, Heidelberg, Apr.
2008, pp. 31–51 (cit. on p. 160).

[Gra+16] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt.
“Applying Grover’s Algorithm to AES: Quantum Resource Estimates”. In: Post-
Quantum Cryptography - 7th International Workshop, PQCrypto 2016. Ed. by
Tsuyoshi Takagi. Springer, Heidelberg, 2016, pp. 29–43 (cit. on pp. 165, 170–172,
179, 180).

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
28th ACM STOC. ACM Press, May 1996, pp. 212–219 (cit. on p. 35).

Bibliography 207

[HA17] Akinori Hosoyamada and Kazumaro Aoki. “On Quantum Related-Key Attacks
on Iterated Even-Mansour Ciphers”. In: IWSEC 17. Ed. by Satoshi Obana and
Koji Chida. Vol. 10418. LNCS. Springer, Heidelberg, Aug. 2017, pp. 3–18 (cit. on
pp. 129, 131–133, 152).

[HI19] Akinori Hosoyamada and Tetsu Iwata. “4-Round Luby-Rackoff Construction is a
qPRP”. In: ASIACRYPT 2019. Ed. by Steven Galbraith and Shiho Moriai. LNCS.
Springer, Heidelberg, Dec. 2019 (cit. on p. 105).

[HKR15] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. “Robust Authenticated-
Encryption AEZ and the Problem That It Solves”. In: EUROCRYPT 2015, Part I.
Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056. LNCS. Springer, Heidel-
berg, Apr. 2015, pp. 15–44 (cit. on pp. 18, 110, 117, 118).

[HM18] Alexander Helm and Alexander May. “Subset Sum Quantumly in 1.17n”. In: 13th
Conference on the Theory of Quantum Computation, Communication and Cryp-
tography, TQC 2018, July 16-18, 2018, Sydney, Australia. Ed. by Stacey Jeffery.
Vol. 111. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 5:1–
5:15. isbn: 978-3-95977-080-4 (cit. on p. 59).

[HM89] James L Hafner and Kevin S McCurley. “A rigorous subexponential algorithm for
computation of class groups”. In: Journal of the American mathematical society
2.4 (1989), pp. 837–850 (cit. on p. 158).

[Hoe63] Wassily Hoeffding. “Probability Inequalities for Sums of Bounded Random Vari-
ables”. In: Journal of the American Statistical Association 58.301 (1963), pp. 13–
30. issn: 01621459 (cit. on p. 67).

[HPS11] G. Hanrot, X. Pujol, and D. Stehlé. “Terminating BKZ”. In: IACR Cryptology
ePrint Archive 2011 (2011), p. 198 (cit. on p. 159).

[HS18] Akinori Hosoyamada and Yu Sasaki. “Quantum Demiric-Selçuk Meet-in-the-Middle
Attacks: Applications to 6-Round Generic Feistel Constructions”. In: SCN 18. Ed.
by Dario Catalano and Roberto De Prisco. Vol. 11035. LNCS. Springer, Heidelberg,
Sept. 2018, pp. 386–403 (cit. on p. 30).

[HY18] Akinori Hosoyamada and Kan Yasuda. “Building Quantum-One-Way Functions
from Block Ciphers: Davies-Meyer and Merkle-Damgård Constructions”. In: ASIA-
CRYPT 2018, Part I. Ed. by Thomas Peyrin and Steven Galbraith. Vol. 11272.
LNCS. Springer, Heidelberg, Dec. 2018, pp. 275–304 (cit. on p. 101).

[II19] Gembu Ito and Tetsu Iwata. “Quantum Distinguishing Attacks against Type-1
Generalized Feistel Ciphers”. In: IACR Cryptology ePrint Archive 2019 (2019),
p. 327 (cit. on pp. 99, 105).

[IK03] Tetsu Iwata and Kaoru Kurosawa. “OMAC: One-Key CBC MAC”. In: FSE 2003.
Ed. by Thomas Johansson. Vol. 2887. LNCS. Springer, Heidelberg, Feb. 2003,
pp. 129–153 (cit. on p. 110).

[Ito+19] Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and Tetsu
Iwata. “Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers”. In: CT-
RSA 2019. Ed. by Mitsuru Matsui. Vol. 11405. LNCS. Springer, Heidelberg, Mar.
2019, pp. 391–411 (cit. on pp. 99, 105).

[Jal+19] Amir Jalali, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David Jao. “To-
wards Optimized and Constant-Time CSIDH on Embedded Devices”. In: COSADE.
Vol. 11421. Lecture Notes in Computer Science. Springer, 2019, pp. 215–231 (cit.
on p. 153).

208 Bibliography

[JD11] David Jao and Luca De Feo. “Towards Quantum-Resistant Cryptosystems from
Supersingular Elliptic Curve Isogenies”. In: Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011. Ed. by Bo-Yin Yang. Springer, Heidelberg,
Nov. 2011, pp. 19–34 (cit. on p. 153).

[Jea+16] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Deoxys v1.41.
CAESAR competition round 3 candidate. Sept. 2016 (cit. on p. 18).

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/.
2016 (cit. on pp. 121, 166).

[Jou09] Antoine Joux. Algorithmic Cryptanalysis. CRC press, 2009. isbn: 978-1-4200-7002-
6 (cit. on p. 44).

[Kan83] R. Kannan. “Improved Algorithms for Integer Programming and Related Lattice
Problems”. In: Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, 25-27 April, 1983, Boston, Massachusetts, USA. 1983, pp. 193–206
(cit. on p. 159).

[Kap+16] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Marı́a Naya-Plasencia.
“Breaking Symmetric Cryptosystems Using Quantum Period Finding”. In: CRYPTO
2016, Part II. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9815. LNCS.
Springer, Heidelberg, Aug. 2016, pp. 207–237 (cit. on pp. 49, 53, 54, 99, 109, 110,
117, 124, 127, 129, 131, 132, 145, 152).

[Kas63] Friedrich Wilhelm Kasiski. Die Geheimschriften und die Dechiffrir-Kunst. Berlin:
E. S. Mittler und Sohn, 1863 (cit. on p. 14).

[Ker83] Auguste Kerckhoffs. “La cryptographie militaire”. In: Journal des sciences mili-
taires 9 (Jan. 1883), pp. 5–38 (cit. on p. 14).

[Kin09] الـكندي الصباّح إسحاق بن يعقوب يوسف .أبو “ المعماة الـكتب استخراج في .”رسالة IXth century (cit.
on p. 14).

[Kit96] Alexei Y. Kitaev. “Quantum measurements and the Abelian Stabilizer Problem”.
In: Electronic Colloquium on Computational Complexity (ECCC) 3.3 (1996) (cit.
on p. 30).

[KM10] Hidenori Kuwakado and Masakatu Morii. “Quantum distinguisher between the
3-round Feistel cipher and the random permutation”. In: IEEE International Sym-
posium on Information Theory, ISIT 2010, June 13-18, 2010, Austin, Texas, USA,
Proceedings. IEEE, 2010, pp. 2682–2685 (cit. on pp. 99, 104).

[KM12] Hidenori Kuwakado and Masakatu Morii. “Security on the quantum-type Even-
Mansour cipher”. In: Proceedings of the International Symposium on Information
Theory and its Applications, ISITA 2012, Honolulu, HI, USA, October 28-31, 2012.
IEEE, 2012, pp. 312–316. isbn: 978-1-4673-2521-9 (cit. on pp. 99, 108).

[KR16] Ted Krovetz and Philip Rogaway. OCB v1.1. CAESAR competition round 3 can-
didate. 2016 (cit. on p. 18).

[KR96] Joe Kilian and Phillip Rogaway. “How to Protect DES Against Exhaustive Key
Search”. In: CRYPTO’96. Ed. by Neal Koblitz. Vol. 1109. LNCS. Springer, Heidel-
berg, Aug. 1996, pp. 252–267 (cit. on p. 108).

[KRS12] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. “Bicliques
for Preimages: Attacks on Skein-512 and the SHA-2 Family”. In: FSE 2012. Ed. by
Anne Canteaut. Vol. 7549. LNCS. Springer, Heidelberg, Mar. 2012, pp. 244–263
(cit. on p. 170).

https://www.iacr.org/authors/tikz/

Bibliography 209

[Kup05] Greg Kuperberg. “A Subexponential-Time Quantum Algorithm for the Dihedral
Hidden Subgroup Problem”. In: SIAM Journal on Computing 35.1 (2005), pp. 170–
188 (cit. on pp. 57, 68, 69, 78, 80).

[Kup13] Greg Kuperberg. “Another Subexponential-time Quantum Algorithm for the Di-
hedral Hidden Subgroup Problem”. In: 8th Conference on the Theory of Quantum
Computation, Communication and Cryptography. Ed. by Simone Severini and Fer-
nando G. S. L. Brandão. Vol. 22. LIPIcs. Guelph, Canada: Schloss Dagstuhl, 2013,
pp. 20–34 (cit. on pp. 57, 73, 75, 76).

[KW02] Lars R. Knudsen and David Wagner. “Integral Cryptanalysis”. In: FSE 2002. Ed.
by Joan Daemen and Vincent Rijmen. Vol. 2365. LNCS. Springer, Heidelberg, Feb.
2002, pp. 112–127 (cit. on p. 165).

[Lan+16] Adam Langley, Wan-Teh Chang, Nikos Mavrogiannopoulos, Joachim Strömberg-
son, and Simon Josefsson. “ChaCha20-Poly1305 Cipher Suites for Transport Layer
Security (TLS)”. In: RFC 7905 (2016), pp. 1–8 (cit. on p. 111).

[Lem10] Alexis Lemaire. “Application de l’hypercalculie et de l’informatique quantique
gravifique à l’intelligence artificielle générale”. PhD thesis. Université de Reims,
2010 (cit. on pp. 1–217).

[LM17] Gregor Leander and Alexander May. “Grover Meets Simon - Quantumly Attacking
the FX-construction”. In: ASIACRYPT 2017, Part II. Ed. by Tsuyoshi Takagi and
Thomas Peyrin. Vol. 10625. LNCS. Springer, Heidelberg, Dec. 2017, pp. 161–178
(cit. on pp. 87, 88, 99, 108).

[LR88] Michael Luby and Charles Rackoff. “How to construct pseudorandom permutations
from pseudorandom functions”. In: SIAM Journal on Computing 17.2 (1988) (cit.
on p. 103).

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. “Tweakable Block Ciphers”.
In: CRYPTO 2002. Ed. by Moti Yung. Vol. 2442. LNCS. Springer, Heidelberg,
Aug. 2002, pp. 31–46 (cit. on p. 110).

[LS18] Gaëtan Leurent and Ferdinand Sibleyras. “The Missing Difference Problem, and
Its Applications to Counter Mode Encryption”. In: EUROCRYPT 2018, Part II.
Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10821. LNCS. Springer,
Heidelberg, Apr. 2018, pp. 745–770 (cit. on p. 111).

[Lu+08] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. “New Impossi-
ble Differential Attacks on AES”. In: INDOCRYPT 2008. Ed. by Dipanwita Roy
Chowdhury, Vincent Rijmen, and Abhijit Das. Vol. 5365. LNCS. Springer, Heidel-
berg, Dec. 2008, pp. 279–293 (cit. on p. 165).

[Mal+10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud Modarres-
Hashemi. “Improved Impossible Differential Cryptanalysis of 7-Round AES-128”.
In: INDOCRYPT 2010. Ed. by Guang Gong and Kishan Chand Gupta. Vol. 6498.
LNCS. Springer, Heidelberg, Dec. 2010, pp. 282–291 (cit. on p. 165).

[Mar10] Luther Martin. “XTS: A Mode of AES for Encrypting Hard Disks”. In: IEEE
Security & Privacy 8.3 (2010), pp. 68–69 (cit. on p. 110).

[MCR19] Michael Meyer, Fabio Campos, and Steffen Reith. “On Lions and Elligators: An
Efficient Constant-Time Implementation of CSIDH”. In: Post-Quantum Cryptog-
raphy - 10th International Conference, PQCrypto 2019. Ed. by Jintai Ding and
Rainer Steinwandt. Springer, Heidelberg, 2019, pp. 307–325 (cit. on p. 153).

210 Bibliography

[MD79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: Freeman, 1979 (cit. on p. 58).

[ME98] Michele Mosca and Artur Ekert. “The Hidden Subgroup Problem and Eigenvalue
Estimation on a Quantum Computer”. In: Quantum Computing and Quantum
Communications, First NASA International Conference, QCQC’98, Palm Springs,
California, USA, February 17-20, 1998, Selected Papers. Ed. by Colin P. Williams.
Vol. 1509. Lecture Notes in Computer Science. Springer, 1998, pp. 174–188. isbn:
3-540-65514-X (cit. on pp. 65, 158).

[Mil82] Frank Miller. Telegraphic Code to Insure Privacy and Secrecy in the Transmission
of Telegrams. New York: Charles M. Cornwell, 1882 (cit. on p. 14).

[Mou+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Pre-
neel, and Ingrid Verbauwhede. “Chaskey: An Efficient MAC Algorithm for 32-
bit Microcontrollers”. In: SAC 2014. Ed. by Antoine Joux and Amr M. Youssef.
Vol. 8781. LNCS. Springer, Heidelberg, Aug. 2014, pp. 306–323 (cit. on p. 110).

[MR18] Michael Meyer and Steffen Reith. “A Faster Way to the CSIDH”. In: INDOCRYPT
2018. Ed. by Debrup Chakraborty and Tetsu Iwata. Vol. 11356. LNCS. Springer,
Heidelberg, Dec. 2018, pp. 137–152 (cit. on p. 153).

[MS12] Lorenz Minder and Alistair Sinclair. “The Extended k-tree Algorithm”. In: Journal
of Cryptology 25.2 (Apr. 2012), pp. 349–382 (cit. on p. 61).

[MZ04] Michele Mosca and Christof Zalka. “Exact quantum Fourier transforms and dis-
crete logarithm algorithms”. In: International Journal of Quantum Information
02.01 (2004), pp. 91–100 (cit. on p. 30).

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010 (cit. on
p. 23).

[ND19] Boyu Ni and Xiaoyang Dong. “Improved quantum attack on Type-1 Generalized
Feistel Schemes and Its application to CAST-256”. In: IACR Cryptology ePrint
Archive 2019 (2019), p. 318 (cit. on pp. 99, 105).

[NIST16] National, Institute, of Standards, and Technology (NIST). Submission Require-
ments and Evaluation Criteria for the Post-Quantum Cryptography Standardiza-
tion Process. Dec. 2016 (cit. on pp. 15, 157).

[NS15] Ivica Nikolic and Yu Sasaki. “Refinements of the k-tree Algorithm for the General-
ized Birthday Problem”. In: ASIACRYPT 2015, Part II. Ed. by Tetsu Iwata and
Jung Hee Cheon. Vol. 9453. LNCS. Springer, Heidelberg, Nov. 2015, pp. 683–703
(cit. on p. 61).

[Pat92] Jacques Patarin. “New Results on Pseudorandom Permutation Generators Based
on the DES Scheme”. In: CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576. LNCS.
Springer, Heidelberg, Aug. 1992, pp. 301–312 (cit. on p. 103).

[Pen19] Daniel Penazzi. Yarará and Coral v1. NIST lightweight competition round 1 can-
didate. Mar. 2019 (cit. on p. 114).

[Per17] Лео Перрин. “Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryp-
tographic Algorithms”. PhD thesis. University of Luxembourg, 2017 (cit. on p. 182).

[PM19] Daniel Penazzi and Miguel Montes. Shamash (and Shamashash) (version 1). NIST
lightweight competition round 1 candidate. Mar. 2019 (cit. on p. 114).

Bibliography 211

[Pol75] John M. Pollard. “A monte carlo method for factorization”. In: BIT Numerical
Mathematics 15.3 (Sept. 1975), pp. 331–334. issn: 1572-9125 (cit. on pp. 44, 46).

[Pol78] John M. Pollard. “Monte Carlo Methods for Index Computation pmod pq”. In:
Mathematics of Computation 32.143 (1978), pp. 918–924. issn: 00255718, 10886842
(cit. on p. 46).

[Reg04] Oded Regev. A Subexponential Time Algorithm for the Dihedral Hidden Subgroup
Problem with Polynomial Space. 2004. eprint: arXiv:quant-ph/0406151 (cit. on
pp. 57, 70, 71).

[Res18] Eric Rescorla. “The Transport Layer Security (TLS) Protocol Version 1.3”. In:
RFC 8446 (2018), pp. 1–160 (cit. on pp. 18, 111).

[Rog04] Phillip Rogaway. “Efficient Instantiations of Tweakable Blockciphers and Refine-
ments to Modes OCB and PMAC”. In: ASIACRYPT 2004. Ed. by Pil Joong Lee.
Vol. 3329. LNCS. Springer, Heidelberg, Dec. 2004, pp. 16–31 (cit. on p. 110).

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On
Isogenies. Cryptology ePrint Archive, Report 2006/145. http://eprint.iacr.
org/2006/145. 2006 (cit. on pp. 153, 154).

[RS15] Martin Roetteler and Rainer Steinwandt. “A note on quantum related-key attacks”.
In: Inf. Process. Lett. 115.1 (2015), pp. 40–44 (cit. on pp. 99, 106).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”. In: Communications of the
Association for Computing Machinery 21.2 (1978), pp. 120–126 (cit. on p. 15).

[Saa19] Markku-Juhani O. Saarinen. SNEIKEN and SNEIKHA. NIST lightweight compe-
tition round 1 candidate. Mar. 2019 (cit. on p. 114).

[SE94] Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: Improved practi-
cal algorithms and solving subset sum problems”. In: Math. Program. 66 (1994),
pp. 181–199 (cit. on p. 158).

[SHA2] “Secure Hash Standard”. In: National Institute of Standards and Technology (NIST),
NIST FIPS PUB 180-2, U.S. Department of Commerce (Aug. 2001) (cit. on
p. 101).

[SHA3] “SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions”.
In: National Institute of Standards and Technology (NIST), NIST FIPS PUB 202,
U.S. Department of Commerce (Aug. 2015) (cit. on pp. 19, 116).

[Sha49] Claude E. Shannon. “Communication theory of secrecy systems”. In: Bell Systems
Technical Journal 28.4 (1949), pp. 656–715 (cit. on pp. 14, 101).

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and
Factoring”. In: 35th FOCS. IEEE Computer Society Press, Nov. 1994, pp. 124–134
(cit. on pp. 15, 30, 46, 63, 64).

[Sho96] Victor Shoup. “On Fast and Provably Secure Message Authentication Based on
Universal Hashing”. In: CRYPTO’96. Ed. by Neal Koblitz. Vol. 1109. LNCS. Sprin-
ger, Heidelberg, Aug. 1996, pp. 313–328 (cit. on pp. 18, 111).

[SIKE] Reza Azarderakhsh, Brian Koziel, Matt Campagna, Brian LaMacchia, Craig Costello,
Patrick Longa, Luca De Feo, Michael Naehrig, Basil Hess, Joost Renes, Amir Jalali,
Vladimir Soukharev, David Jao, and David Urbanik. Supersingular Isogeny Key
Encapsulation. Nov. 30, 2017. url: http://sike.org (cit. on p. 153).

arXiv:quant-ph/0406151
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145
http://sike.org

212 Bibliography

[Sil86] Joseph H. Silverman. The arithmetic of elliptic curves. Vol. 106. Graduate Texts
in Mathematics. Springer-Verlag, 1986 (cit. on p. 154).

[Sim94] Daniel R. Simon. “On the Power of Quantum Computation”. In: 35th FOCS. IEEE
Computer Society Press, Nov. 1994, pp. 116–123 (cit. on pp. 46, 49, 51).

[SMS19] Sumanta Sarkar, Kalikinkar Mandal, and Dhiman Saha. Sycon v1.0. NIST light-
weight competition round 1 candidate. Mar. 2019 (cit. on p. 114).

[SS17] Thomas Santoli and Christian Schaffner. “Using Simon’s algorithm to attack
symmetric-key cryptographic primitives”. In: Quantum Information & Computa-
tion 17.1&2 (2017), pp. 65–78 (cit. on pp. 99, 110).

[SS81] Richard Schroeppel and Adi Shamir. “A T=O(2n/2), S=O(2n/4) Algorithm for
Certain NP-Complete Problems”. In: SIAM J. Comput. 10.3 (1981), pp. 456–464
(cit. on pp. 58, 59).

[Sue21] Caius Suetonius Tranquillus. In: Vita divi Iuli. Vol. I. De Vita Caesarum. 121 (cit.
on p. 13).

[Tat66] John Tate. “Endomorphisms of abelian varieties over finite fields”. In: Inventiones
mathematicae 2.2 (Apr. 1966), pp. 134–144. issn: 1432-1297 (cit. on p. 155).

[Tof80] Tommaso Toffoli. “Reversible Computing”. In: ICALP 80. Ed. by J. W. de Bakker
and Jan van Leeuwen. Vol. 85. LNCS. Springer, Heidelberg, July 1980, pp. 632–
644 (cit. on p. 29).

[Ver19] Gilbert Sandford Vernam. “Secret signaling system”. US 1310719A. June 1919 (cit.
on p. 14).

[Vig86] Blaise de Vigenère. Traicté des chiffres, ou Secrètes manières d’escrire. Premier
pillier de la grand’ Salle du Palais, Paris: Abel l’Angelier, 1586 (cit. on p. 14).

[vW99] Paul C. van Oorschot and Michael J. Wiener. “Parallel Collision Search with Crypt-
analytic Applications”. In: Journal of Cryptology 12.1 (Jan. 1999), pp. 1–28 (cit. on
p. 45).

[Wag02] David Wagner. “A Generalized Birthday Problem”. In: CRYPTO 2002. Ed. by
Moti Yung. Vol. 2442. LNCS. Springer, Heidelberg, Aug. 2002, pp. 288–303 (cit.
on pp. 61, 62).

[WC81] Mark N. Wegman and Larry Carter. “New Hash Functions and Their Use in
Authentication and Set Equality”. In: Journal of Computer and System Sciences
22 (1981), pp. 265–279 (cit. on pp. 18, 111).

[Wie83] Stephen Wiesner. “Conjugate Coding”. In: SIGACT News 15.1 (Jan. 1983), pp. 78–
88. issn: 0163-5700 (cit. on p. 23).

[WP16] Hongjun Wu and Bart Preneel. AEGIS. CAESAR competition round 3 candidate.
Sept. 2016 (cit. on p. 18).

[Wu16] Hongjun Wu. ACORN. CAESAR competition round 3 candidate. Sept. 2016 (cit.
on p. 18).

[WZ82] W. K. Wootters and W. H. Zurek. “A single quantum cannot be cloned”. In: Nature
299 (Oct. 1982), p. 802 (cit. on p. 26).

[Zal99] Christof Zalka. “Grover’s quantum searching algorithm is optimal”. In: Physical
Review A 60.4 (1999), p. 2746 (cit. on p. 38).

Bibliography 213

[ZMI90] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. “On the Construction of
Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses”.
In: CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. LNCS. Springer, Heidelberg,
Aug. 1990, pp. 461–480 (cit. on p. 104).

AppendixASequence of values to test to solve
the quadratic equation of the AES

S-Box
(d´1,x) (d´1,x) (d´1,x) (d´1,x) (d´1,x) (d´1,x)

(0x1, 0xbc) (0x3, 0x7e) (0x5, 0x88) (0x8, 0xd6) (0x9, 0xb6) (0xc, 0xf2)
(0xd, 0xec) (0xe, 0xc4) (0x11, 0xda) (0x12, 0x72) (0x13, 0x9e) (0x17, 0x9a)
(0x18, 0x24) (0x1a, 0x6e) (0x1c, 0x44) (0x1d, 0x8e) (0x1e, 0xd4) (0x1f, 0xd8)
(0x22, 0xe) (0x23, 0xc0) (0x24, 0x36) (0x25, 0x9c) (0x26, 0x58) (0x29, 0xac)
(0x2b, 0xb8) (0x2d, 0xa6) (0x2e, 0xf4) (0x31, 0x1a) (0x34, 0xea) (0x37, 0xa4)
(0x38, 0x56) (0x3d, 0xe2) (0x3e, 0x98) (0x3f, 0x16) (0x40, 0x3e) (0x41, 0xf8)
(0x46, 0xe8) (0x48, 0x60) (0x4a, 0xce) (0x4b, 0xba) (0x4c, 0x8a) (0x4e, 0x6a)
(0x4f, 0x3a) (0x50, 0x42) (0x51, 0xc) (0x52, 0x94) (0x54, 0x20) (0x57, 0xca)
(0x58, 0xaa) (0x5b, 0x7c) (0x5c, 0x1e) (0x5d, 0xfe) (0x5f, 0x92) (0x60, 0x2e)
(0x61, 0x26) (0x62, 0xe6) (0x64, 0xb4) (0x65, 0xdc) (0x67, 0x18) (0x68, 0x54)
(0x69, 0x30) (0x71, 0x4c) (0x74, 0x2c) (0x75, 0x66) (0x76, 0x5e) (0x78, 0xf0)
(0x7b, 0x2) (0x7c, 0x62) (0x7d, 0xd0) (0x86, 0x76) (0x87, 0xa0) (0x8c, 0xc2)
(0x8d, 0x2a) (0x8e, 0xc8) (0x8f, 0xf6) (0x99, 0x4) (0x9c, 0x46) (0xa0, 0x6c)
(0xa5, 0x74) (0xa7, 0x8) (0xaa, 0x6) (0xab, 0x22) (0xad, 0xee) (0xb0, 0xae)
(0xb1, 0x50) (0xb2, 0x14) (0xb3, 0x68) (0xb4, 0x90) (0xb8, 0x4a) (0xbc, 0xe0)
(0xbd, 0x5c) (0xbf, 0x1c) (0xc0, 0x10) (0xc3, 0x48) (0xc6, 0x78) (0xc7, 0x38)
(0xc8, 0xe4) (0xca, 0x34) (0xcb, 0x28) (0xcc, 0x3c) (0xcd, 0xd2) (0xce, 0x70)
(0xcf, 0x52) (0xd1, 0xbe) (0xd2, 0x5a) (0xd6, 0x7a) (0xd7, 0xfc) (0xdd, 0xfa)
(0xe0, 0x4e) (0xe1, 0x12) (0xe3, 0x40) (0xe5, 0x84) (0xe7, 0xcc) (0xe8, 0x86)
(0xe9, 0xa) (0xeb, 0xc6) (0xec, 0xb0) (0xed, 0xa2) (0xee, 0xa8) (0xef, 0x64)
(0xf0, 0xb2) (0xf5, 0x8c) (0xf6, 0x96) (0xfb, 0xde) (0xfd, 0x80) (0xfe, 0x32)
(0xff, 0x82)

Table A.4: sequence of values to test, associated with the solution to write, from left
to right and top to bottom.

215

Dans la même collection
Au sein de l’équipe SECRET :

– Mathématiques discrètes appliquées à la cryptographie symétrique. Yann Rotella,
2018

– Constructions pour la cryptographie à bas coût. Sébastien Duval, 2018

Au sein de l’équipe COSMIQ :

– Cryptographie fondée sur les codes : nouvelles approches pour constructions et
preuves ; contribution en cryptanalyse. Thomas Debris-Alazard, 2019

	Contents
	Présentation des travaux
	Main publications
	Introduction to Cryptography
	History
	Constructions in symmetric cryptography
	Block ciphers
	Hash functions & MACs
	Authenticated encryption
	Sponges

	Cryptanalysis
	Generic attacks
	Attack models
	Cost models

	Quantum Computing
	History
	Differences with classical computations
	Qubits
	Quantum gates
	Notable gates
	Tensor product of quantum operators
	Computing classical functions

	Hide and Seek
	Quantum Search
	Unstructured search
	Classical resolution
	Grover's algorithm
	Amplitude amplification
	Approximate test functions

	Nested search
	Classical nested search
	Quantum nested search

	Collision search
	Classical resolution
	Quantum resolution
	Structured collisions

	Simon's Algorithm
	Algorithm description
	Weakening the promise
	Partial period
	Non-injective functions
	Families of functions

	Abelian Hidden Shift Algorithms
	The problem
	Preliminaries: subset-sum and k-list
	Subset-sum algorithms
	k-list algorithms

	The easy instances
	Case of ([2])n
	Case f = g

	The generation algorithm
	Quantum query complexity
	Hidden shift modulo a power of 2
	Recovering the shift
	Kuperberg's first algorithm:
	Regev's subset-sum variant
	Kuperberg's second algorithm: k-list

	General hidden shift algorithms
	Optimizing Algorithm 5.3
	Hidden shift in [N]
	Hidden shift in abelian groups
	Combining the different algorithms
	Variants on the promise
	Hidden shift in nonabelian groups

	Searching for a Hidden Structure
	Combining Grover's and Simon's algorithms
	The offline Simon's algorithm
	A more structured problem
	The offline Simon's algorithm

	Simon's algorithm with classical queries
	Implications

	Quantum Cryptanalysis
	Hidden Structures in Symmetric Cryptography
	Claims in symmetric cryptography
	General method
	Quantum distinguishers
	One-time pad
	Feistel networks

	The case of quantum-related key attacks
	With classical queries

	Even-Mansour
	FX Construction
	Multiple-FX

	MACs
	CBC-MAC
	Chaskey
	Poly1305

	Sponges
	Protecting symmetric constructions

	Cryptanalysis of AEZ
	Description of AEZ
	Associated data
	Function EKi,j
	AEZ-hash
	AEZ-prf
	AEZ-core
	Encrypt

	Classical cryptanalysis
	The fault in AEZv4
	The collision analysis of AEZv4

	Quantum cryptanalysis
	Quantum existential forgery
	Stronger quantum attacks

	Conclusion

	Quantum Slide Attacks
	Classical slide attacks
	Slide-shift attacks
	Key-alternating cipher
	Feistel schemes with one round self-similarity
	The quantum complementation slide attack
	Sliding with a twist

	Advanced slide-shift attacks on self-similar Feistels
	General attack
	With the same branch and key addition

	Slide attacks against 4-round self-similar Feistels
	Twist and complementation slide attack
	Enhanced reflection attack

	Cycle-based slide attacks
	Definition of a cycle slide attack
	Quantization of a cycle-based slide attack
	Examples

	Attacks on Feistels with weak key schedules
	Classical attacks on MiMC and GMiMC

	Conclusion

	Computing Isogenies
	Key exchange from hard homogeneous spaces
	Group action with isogenies
	Isogeny evaluation
	For a key exchange
	For a key recovery

	Concrete cost estimates for CSIDH
	Conclusion

	Quantum security analysis of AES
	Description of AES
	Classical cryptanalysis of AES
	Generic quantum attacks on AES
	Quantum square attack
	The distinguisher
	The original square attack on 6-round AES
	Improved square attack
	Partial sums technique
	Extension to 7 rounds.

	Quantum Demirci-Selçuk meet-in-the-middle
	S-box differential property
	Distinguishing properties
	The attack
	Complexity analysis
	Removing the superposition queries
	Quantum-inspired classical attacks

	Conclusion

	Conclusions
	Bibliography
	Values to test for the AES S-box equation

