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Chapter 1

Introduction

The problem of classification is one of the most popular and the most classical problems of
statistics and pattern recognition [Devroye et al., 1996, Vapnik, 1998]. In this manuscript,
it is assumed that two data samples are provided – a labeled one DL

n = {(Xi, Yi)}ni=1 and
an unlabeled one DU

N = {Xi}n+N
i=n+1 with some n ∈ N and N ∈ N ∪ {0}. In classification

framework, for each i ∈ {1, . . . , n + N} the element Xi belongs to some feature space X
and for each i ∈ {1, . . . , n} the element Yi belongs to some finite space Y of labels or classes.
Typically, each pair (Xi, Yi) ∈ DL

n is called a labeled (supervised) observation and each vector
Xi ∈ DU

N is called an unlabeled (unsupervised) observation. The high level objective is to
construct an algorithm ĝ, using the data samples DL

n ,DU
N , which for a new observation X ∈ X

outputs its label Y . At this point several questions can be asked about this formulation:

• What is the nature of our data DL
n ,DU

N?

• What is a new observation X and what does it mean to predict its label Y ? In
particular, what does it mean that X has a label Y ?

• What is an algorithm ĝ and what do we mean by saying that it is based on the data?
How do we know that ĝ is “good”?

A possible way to address all of the above questions is provided by the theory of statistics,
which poses certain assumptions on the data generating process, furthermore, it gives a
precise way to define the notion of an algorithm ĝ and its goodness. Concerning the nature
of the data, it is assumed that the data generating process is probabilistic. That is, we assume
that there exists a random pair (X, Y ) ∼ P such that X ∼ PX and Y |X ∼ PY |X and the
observed samples DL

n ,DU
N are i.i.d. from P (i.e., DL

n
i.i.d.∼ P) and from PX (i.e., DU

N
i.i.d.∼ PX)

respectively.

Remark. In this context there are two types of methods that can be constructed – supervised
ones and semi-supervised ones. While the former methods are based only on the labeled
dataset DL

n, the later can also leverage the information provided by the unlabeled dataset
DU
N . Let us point out that most of the classical settings do not assume the availability of the

unlabeled dataset DU
N . However, in some setups one can rigorously justify the introduction of

the unlabeled set and in several contributions of the present manuscript this dataset is used
to build semi-supervised algorithms.
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Under the above probabilistic assumptions, a generic classification problem can be de-
scribed by a tuple (X ,Y ,A,R,Gθ,P) where1

• X is a measurable space of features (typically Rd with Borel sigma-algebra);

• Y is the label space, such that |Y| < +∞, where |Y| denotes the cardinal of the set Y ;

• A is a set of possible predicted values;

• G := G(X ,A) is the set of all measurable functions from X to A, which are called
prediction rules or classifiers;

• R : G → R+ is a risk function, that describes the performance of any prediction rule;

• Gθ ⊂ G(X ,A) is a subset of measurable functions (predictions with certain properties),
parametrized by some known parameter θ belonging to some topological space Θ;

• P is a family of possible joint distributions on X × Y .

In several standard formulations of classification problems A = Y and Gθ = G(X ,Y). For
instance, in standard binary classification settings we have A = Y = {0, 1} and Gθ = G(X ,Y)
is the set of all binary valued functions from X . However, such a formulation does not allow
to model more complex situations that emerge from applications. For example, in binary
classification with reject option [Chow, 1957, 1970, Herbei and Wegkamp, 2006], the set of
predicted outcomes is given by A = {0, 1,r} where the symbol r is interpreted as reject,
that is, a definitive prediction is not provided.

The set Gθ carries all the properties that are expected by a statistician from an optimal
classifier. Such properties might actually depend on the unknown distribution P and thus the
main difficulty is arising from the fact that the class Gθ is unknown beforehand. For instance,
returning to the binary classification setup with Y = {0, 1} and G = {g : X → {0, 1}} we
can define Gθ as

Gθ = {g ∈ G : PX(g(X) = 1) = θ} (toy example) , (1.1)

for some θ ∈ Θ = [0, 1]. For each fixed marginal distribution PX , this set consists of those
predictions g whose probability to predict 1 is equal to some predefined parameter θ. Clearly,
different marginal distributions PX yield different sets Gθ (sometimes Gθ can be empty and we
discuss this issue later in the introduction). Moreover, since the marginal distribution PX is
unknown beforehand, the whole set Gθ of predictions with prescribed properties is unknown.
This toy example reveals the main difficulty connected with the introduction of the set Gθ.
We will further use this example to explain several notions that are arising in the constrained
estimation framework.

In this probabilistic framework, there is at least one classifier g∗ which is seen superior
to others. We call this classifier g∗ as Bayes optimal predictor: it minimizes the risk R(·)
over the set of classifiers with prescribed properties. Formally, a Bayes optimal predictor g∗
satisfies

g∗ ∈ arg min {R(g) : g ∈ Gθ} (Bayes rule) .

1Here and later it is assumed that all spaces are (linear) topological and are equipped with their Borel
sigma-algebra. All measures are assumed to be Borel measures.
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This Bayes rule is seen as a theoretical benchmark in the sense that there is no other classifier
g ∈ Gθ with lower risk. If we consider, the standard setup of binary classification, the most
common choice of the risk R(·) is given by the probability of misclassification as

R(g) = P(Y 6= g(X)) .

Importantly, in the context of the present manuscript, the set Gθ should not be confused
with the family of concepts typically considered in (agnostic) PAC-learning literature. Unlike
(agnostic) PAC settings, we shall consider classes Gθ which are potentially much larger than
standard classes considered in the learning community [Vapnik, 1998]. For instance, typical
classes studied in the learning literature are half-spaces (linear classifiers) or some Boolean
forms of classes with finite VC-dimension [Vapnik and Chervonenkis, 1971, Blumer et al.,
1989].

One of the goals of a practitioner is to mimic the Bayes rule. To this end, we need to
build an algorithm or an estimator ĝ which is a measurable mapping defined as

ĝ :
⋃

n,N∈N
(X × Y)n ×XN → G(X ,A) (estimator) .

In other words, an estimator maps each possible combination of the input data to a prediction
rule. A proper way of writing ĝ evaluated at some point x ∈ X would be (ĝ(DL

n ,DU
N))(x),

however, in this manuscript we omit the dependence on DL
n ,DU

N and write ĝ(x) instead.
Once the notion of an estimator is defined, it remains to understand how to compare

different algorithms, that is, how to evaluate their performances. One of the possible ways
to assert the performance of an algorithm ĝ is to introduce the notion of excess risk defined
as

E(DL
n,DU

N )[E(ĝ)] := E(DL
n,DU

N )

∣∣∣∣R(ĝ)− inf
g∈Gθ
R(g)

∣∣∣∣ (excess risk) ,

where the expectation is taken w.r.t. the distribution of data DL
n ,DU

N . For a good algorithm
ĝ, the sequence E(DL

n,DU
N )[E(ĝ)] should decrease with the growth of n,N as fast as possible.

Besides, since our original Bayes rule lies in some space Gθ, a constructed estimator ĝ should
not deviate from this set too much. In other words, for a good algorithm ĝ there exists g ∈ Gθ
such that

ĝ −→ g ∈ Gθ as n,N →∞ (prescribed property) ,

where the convergence will be specified depending on the considered context.
Note that the notion of the excess risk has the absolute value in its definition, this is due

to the fact that in some scenarios one can not guarantee the inclusion of the algorithm ĝ in
the set Gθ. Indeed, recall the toy example of binary classification with Gθ defined in Eq. (1.1)
as

Gθ = {g ∈ G : PX(g(X) = 1) = θ} .

Since Gθ is distribution dependent in this setup, our goal is to build an algorithm ĝ which
converges to some member of Gθ. Note that in this case, as well as in various other settings,
the set Gθ is described by a system of constraints (inequalities or equalities). Therefore, a
possible strategy is to construct an algorithm which does not violate these constraints “too
much” in finite sample regime or satisfies these constraints asymptotically as n and N grow.
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For example, returning to the above set Gθ (introduced in Eq. (1.1)), a good algorithm ĝ
would satisfy

E(DL
n,DU

N ) |PX(ĝ(X) = 1)− θ| → 0 .

This thesis is mostly concerned with minimax settings of the above problem, that is, given
some family of joint distributions P on X × Y we study the following minimax risks

inf
ĝ

max
P∈P

E(DL
n,DU

N ) [E(ĝ)] (minimax excess risk) ,

where the infimum is taken over all possible estimators and the excess risk is based on R(·).
As we shall see, in some situations we can show that the Bayes optimal rule g∗ is a minimizer
of some other θ-risk Rθ(·) over all possible predictions. Formally, for some problems we can
show that the Bayes optimal prediction satisfies

g∗ ∈ (arg min {Rθ(g) : g ∈ G})
⋂

(arg min {R(g) : g ∈ Gθ}) 6= ∅ .

In particular, under certain assumptions on the distribution P and for specific choices of Gθ,
we can show that

• the Bayes rule g∗ satisfies the property prescribed by Gθ, that is, g∗ ∈ Gθ;

• if g satisfies the property prescribed by Gθ (i.e., g ∈ Gθ), then we have R(g∗) ≤ R(g);

• for all predictions g ∈ G, we have Rθ(g∗) ≤ Rθ(g).

Let us provide a simple example when such Rθ is available. For some θ ∈ (0, 1), consider the
set Gθ defined in Eq. (1.1) and the following Bayes rule

g∗ ∈ arg min {R(g) : P(g(X) = 1) = θ} ,

with the misclassification risk R(g) := P(Y 6= g(X)). We also assume that the Cumulative
Distribution Function (CDF) of η(X) := E[Y |X] defined as Gη(X)(t) := P(η(X) ≤ t) is
continuous on (0, 1) and we denote by Ḡη(X)(·) = 1−Gη(X)(·) its complement. Then, we can
show that the following statement hold true

Statement. Under the above assumptions we have

• the set Gθ is not empty and there exists a Bayes rule g∗ ∈ Gθ;

• a Bayes rule g∗ can be written for all x ∈ Rd as

g∗(x) = 1{η(x)≥ 1+λ∗
2 } , (1.2)

where λ∗ = 2Ḡ−1
η(X)(θ)− 1 with Ḡ−1

η(X)(·) being the (generalized) inverse of Ḡη(X)(·);

• the classifier g∗ in Eq. (1.2) satisfies

g∗ ∈ arg min

P(Y 6= g(X)) + λ∗P(g(X) = 1)︸ ︷︷ ︸
θ-risk Rθ(·)

: g ∈ G

 ,

g∗ ∈ arg min

P(Y 6= g(X))︸ ︷︷ ︸
risk R(·)

: P(g(X) = 1) = θ

 .
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Proof. The proof goes by application of the general constrained classification framework
described in Section 1.1.3.

Notice that in this case the θ-risk Rθ is given as

Rθ(g) = P(Y 6= g(X)) + λ∗P(g(X) = 1) .

Thus, we have seen that the problem of constrained classification can be reduced to a study of
the cost-sensitive riskRθ. However, it is important to note that, unlike classical cost-sensitive
risks, here the value of λ∗ is unknown beforehand.

If we can show that g∗ minimizes some Rθ over all classifiers, then we rather focus on
another excess risk given as

E(DL
n,DU

N )[Eθ(ĝ)] := E(DL
n,DU

N )[Rθ(ĝ)]− inf
g∈G
Rθ(g) (excess θ-risk) ,

and study the minimax version of E(DL
n,DU

N )[Eθ(ĝ)]. This notion of the excess risk reflects the
common wisdom that the Bayes optimal classifier is minimizing the risk (θ-risk in this case)
over all possible classifiers in G. Finally, we can incorporate both constraints and risk errors
into a one excess risk combining both E(·) and the constraint violations. Returning again to
our example Gθ from Eq. (1.1) we can consider the following discrepancy of an algorithm ĝ

E(DL
n,DU

N )[ED(ĝ)] = E(DL
n,DU

N )[E(ĝ)] + E(DL
n,DU

N ) |PX(ĝ(X) = 1)− θ| (discrepancy) .

The first term of the above discrepancy controls the deviation of ĝ from the Bayes rule g∗ in
terms of the risk R(·), while the second term controls the violation of the constraints.

1.0.1 Examples of settings
In this part we mainly focus on possible properties that might be required from the Bayes
optimal classifier. Most of the examples below will be discussed in details later in this chapter.
What follows is a brief description of popular (constrained) classification frameworks. Yet,
by no means this list should be regarded as exhaustive since more and more (constrained)
classification frameworks are emerging with time. The list below is separated into three parts:
Binary classification; Multi-class classification; Multi-label classification.

• Binary classification, Y = {0, 1}:

– Standard setup:
Classifier: g : Rd → {0, 1}
Risk: P(Y 6= g(X))
Property: no properties required

– F-score setup:
Classifier: g : Rd → {0, 1}
Risk: 1− 2P(Y=1,g(X)=1)

P(Y=1)+P(g(X)=1)
Property: no properties required

– Reject option [Chow, 1957]: r stands for reject
Classifier: g : Rd → {0, 1,r}
Risk: P (Y 6= g(X) | g(X) 6=r)
Property: P(g(X) =r) ≤ α

8



– Fairness with equal opportunity [Hardt et al., 2016]: S ∈ {0, 1} is a sensitive
attribute
Classifier: g : Rd × {0, 1} → {0, 1}
Risk: P (Y 6= g(X,S))
Property: P (g(X,S) = 1 |Y = 1, S = 1) = P (g(X,S) = 1 |Y = 1, S = 0)

• Multi-class classification: Y = [K] := {1, . . . , K}

– Standard setup:
Classifier: g : Rd → [K]
Risk: P(Y 6= g(X))
Property: no properties required

– Confidence set setup: 2[K] is the set of all subsets of [K]
Classifier: Γ : Rd → 2[K]

Risk: P(Y 6∈ Γ(X))
Property: E |Γ(X)| ≤ β

• Multi-label classification: Y = {0, 1}L

– Standard Hamming setup:
Classifier: g : Rd → {0, 1}L
Risk: ∑L

l=1 P(Y l 6= gl(X))
Property: no properties required

– Standard 0/1 setup:
Classifier: g : Rd → {0, 1}L
Risk: P(Y 6= g(X))
Property: no properties required

– Controlled false positive:
Classifier: g : Rd → {0, 1}L
Risk: ∑L

l=1 P(Y l = 1, gl(X) = 0)
Property: ∑L

l=1 P
(
Y l = 0, gl(X) = 1 |X

)
≤ β, a.s.

The rest of the chapter aims at providing a brief overview of these examples with an emphasis
on the contributions of the author.

1.0.2 Empirical Risk Minimization
For this discussion let us disregard the constraints, that is, in this section we shall talk only
about unconstrained classification problems. In other words, using notation of Chapter 1 we
have Gθ = G. Moreover, we limit this discussion to standard settings of binary classification,
yet, the same arguments can be extended to other classification problems.

Clearly, our ultimate goal as statisticians and practitioners is to build a classification
procedure which enjoys strong theoretical guarantees and demonstrates superior practical
performance. However, achieving both goals is a notoriously difficult task from both the-
oretical and applied perspectives. Indeed, on the one hand, some modern state-of-the-art
methods are extremely involved and their analysis is notably difficult when possible; on the
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other hand, theoretically well understood methods might perform inferior to their more mod-
ern versions. Nevertheless, there are at least two well established approaches to construct
classifiers: Empirical Risk Minimization (ERM) methods and plug-in methods.

Both approaches enjoy strong theoretical guarantees and have been studied in various
settings. It was pointed out by Audibert and Tsybakov [2007] and later by Rigollet and Vert
[2009] that ERM and plug-in methods should not be directly compared in theory, since the
analysis of both have been carried under different sets of assumptions. The author of the
thesis does not advocate for either of those methods. This section should be seen as a short
overview of theoretical results available for ERM algorithms. Apart from this section, this
thesis is mainly addressing plug-in approaches.

Let us first put some context for concreteness. Consider the setting of standard binary
classification (X, Y ) ∈ Rd×{0, 1} with (X, Y ) ∼ P and assume that we observe n i.i.d. points
from P denoted by DL

n = {(Xi, Yi)}ni=1. Using DL
n , the goal is to construct ĝ which approxi-

mates the following rule

g∗ ∈ arg min
g∈G

R(g) ,

where for all classifiers g : Rd → {0, 1} its risk is defined as R(g) := P(Y 6= g(X)). We
additionally would like this rule to satisfy

lim
n→∞

sup
P∈P

EDL
n
[R(ĝ)−R(g∗)] = 0 , (1.3)

where P is some family of joint distributions on Rd×{0, 1}. There is a deep reason to restrict
the family P of distributions, due to the following negative result.

Theorem 1 ([Devroye, 1982, Audibert, 2009]). Let (X, Y ) ∈ Rd×{0, 1} and P be the set of
all joint distributions on Rd × {0, 1}, then there is no ĝ which satisfies Equation (1.3).

After this negative result it becomes apparent that if we want to further develop theory
for classification we need to restrict the possible family of distributions P or find other
workarounds.

One can always propose an algorithm ĝ which seems intuitive (thanks to the law of large
numbers): as we do not have an access to the real distribution P but only to some realization
DL
n we replace the risk by its empirical version

ĝ ∈ arg min
g∈G

R̂(g) , (1.4)

where the empirical risk is defined as R̂(g) := 1
n

∑n
i=1 1{Yi 6=g(Xi)}. Clearly, for each fixed

classifier g thanks to the strong law of large numbers we have

R̂(g)→ R(g) ,

where the converges holds almost surely. Besides, the central limit theorem gives us an idea
of the rate of this convergence. Yet, the strong law of large numbers works only for a fixed
classifier g and a more desirable result would be its uniform variant which would state that

a.s.
lim
n→∞

sup
g∈G

∣∣∣R̂(g)−R(g)
∣∣∣ = 0 , (1.5)
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where lima.s.
n→∞ means that the convergence is almost sure. This type of results would at least

allow us to obtain for the algorithm ĝ from Eq. (1.4)
a.s.
lim
n→∞

∣∣∣R̂(ĝ)−R(ĝ)
∣∣∣ = 0 .

Non-asymptotic versions of such result, often called generalization bounds, suggests that
whenever the empirical risk R̂(ĝ) is small, the real risk R(ĝ) is also small. Importantly, the
value of the empirical risk R̂(ĝ) is known in principle as it is based on the data. It is apparent
that the result in Eq. (1.5) is impossible for G being defined as all binary classifiers from Rd.
A possible workaround is to study the following decomposition

R(ĝF)−R(g∗) = (R(ĝF)−R(g∗F))︸ ︷︷ ︸
Stochastic error

+ (R(g∗F)−R(g∗))︸ ︷︷ ︸
Systematic error

,

where ĝF , g∗F are defined for some F ⊂ G as

ĝF ∈ arg min
g∈F

R̂(g) , g∗F ∈ arg min
g∈F

R(g) ,

respectively and the infimum is taken over some fixed subset F of G. The size of the subset
F gives the bias-variance trade-off – a central notion of statistics.

The systematic error is purely deterministic and can be studied with the means of ap-
proximation theory, meanwhile statistical theory can control the stochastic part of the de-
composition. Additionally notice that if we restrict our attention to the distributions P for
which the Bayes optimal classifier g∗ belongs to the class F , the systematic term is zero and
our sole goal is to control the stochastic term. This road is typically, yet not always, taken
by researchers and the focus is skewed towards the stochastic term.

For this term, a lot of results are available in the literature, the most famous being due
to Vapnik and Chervonenkis [1971] who showed that if F is not “too big” then the stochastic
error converges to zero with rate O(

√
log n/n). The key point of this result relies on the

description of the complexity of F using purely combinatorial notion, which is typically
called the VC-dimension (VC-dim) of F . The work by Vapnik and Chervonenkis was highly
influential in statistics and in discrete and computational geometry [Matoušek, 2002]. An
interesting point of their result is that there is no curse of dimensionality in the rate of
convergence of the stochastic term – a typical phenomenon in non-parametric statistics. Yet,
it should be noted that the VC-dim is hidden in O(

√
log n/n) and in most of the situations it

does depend on the dimension of the feature space X , but only polynomially or even linearly
for half spaces or its Boolean forms [Blumer et al., 1989, Eisenstat and Angluin, 2007].

Later, this rate was sharpened to O(
√

1/n) with means of chaining [Sudakov, 1976, Dud-
ley, 1967, Ledoux and Talagrand, 1991] and the famous packing lemma of Haussler for VC-
classes [Haussler, 1995]. Further development showed that under extra low noise assumption,
Tsybakov’s margin assumption or Bernstein’s type condition, this rate can be even further
improved to O(1/n) [Mammen and Tsybakov, 1999, Tsybakov, 2004, Bartlett et al., 2005,
Tsybakov and van de Geer, 2005, Massart and Nédélec, 2006].

Practically, however, these results have little impact – the minimization problem in
Eq. (1.4) is non-convex and non-differentiable, thus leads to algorithms very difficult to
implement in practice. A possible direction to alleviate this issue is to convexify each indi-
cator in the sum of the empirical risk and to convexify the class of predictions. Both can be
achieved if we consider classifiers g of the form g(·) = 1{f(·)≥0} for some real-valued function
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f . That is, we associate each classifier g with some real valued score function f and in this
case the misclassification can be written2 as 1{Y 6=g(X)} = 1{(2Y−1)f(X)≤0}. Since the mapping
x 7→ 1{x≤0} is univariate, one can build its convexification in several ways. Various type
of convexifications lead to different algorithms, such as logistic regression, support vector
machines (SVM) or boosting among others. This approach was theoretically justified in the
work3 of Zhang [2004] and later generalized by Bartlett et al. [2006]. In the later, the authors
showed that for appropriately chosen convexification, the excess risk of any classifier g can be
upper-bounded by the “convexified” excess risk of the corresponding score function f . Thus,
they reduced the study of ERM to the study of convexified ERM, to which the theory of
Vapnik and Chervonenkis can also be applied.

Based on the convex risks, a related way to construct an algorithm ĝ is based on Penalized
Empirical Risk Minimization (PERM), where we add a convex (typically Tikhonov) penal-
ization term to the empirical risk. Several learning guarantees can be proven for such type of
estimators using the notion of stability [Bousquet and Elisseeff, 2002, Shalev-Shwartz et al.,
2010]. In a nutshell, an algorithm ĝ is uniformly stable4 if an arbitrary perturbation of one
data point cannot change this algorithm drastically. This approach bears some similarities
with the bounded differences concentration inequality of McDiarmid [1989], which is widely
used to demonstrate theoretical properties in the ERM context.

1.0.3 Plug-in classifiers
Consider the general settings of the beginning of Chapter 1 with Y = {0, 1}. A central
object in the analysis of binary classification problems is the regression function defined as
η(·) = E[Y |X = ·] since it describes how likely Y = 1. Another important object is the
marginal distribution PX of the feature vector X ∈ Rd, which carries the information about
the most typical observations X ∈ Rd. In a large variety of settings we can show that the
optimal classifier g∗ is given for all x ∈ Rd by

g∗(x) =
1, if A (η(x),PX , τ(η,PX)) ≥ 0

0, otherwise
,

for some known real valued function A and some known real-valued function τ . In this
general description of the Bayes rule, we point out that the function A depends on η point-
wise through the first argument and on the marginal distribution PX through the second
argument. Whereas, the function τ might depend on the whole regression function η through
the first argument and likewise on the marginal distribution PX through the second argument.
Let us provide several classical examples where the description of the optimal classifier above
is available.
Example 1.0.1 (Standard case). In the standard settings of binary classification without
constraints, the Bayes optimal classifier [Devroye et al., 1996] is given as

g∗(x) =
1, if η(x)− 1

2 ≥ 0
0, otherwise

. (1.6)

Notice that in this case the marginal distribution of the feature vector X ∈ Rd does not affect
the Bayes optimal classifier

2One additionally should take care of the event 1{(2Y−1)f(X)=0}.
3This result is typically called Zhang’s Lemma.
4At this moment there are a lot of different ways to define stability of an algorithm.
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Example 1.0.2 (F-score case). In this settings we define a Bayes optimal classifier as

g∗ ∈ arg min
g∈G

{
1− 2P(Y = 1, g(X) = 1)

P(Y = 1) + P(g(X) = 1)

}
.

And one can establish [Zhao et al., 2013] that

g∗(x) =
1, if η(x)− θ∗ ≥ 0

0, otherwise
,

with θ∗ being a solution in θ of

θEPX [η(X)] = EPX max {η(X)− θ, 0} .

Notice that in this case θ∗ plays a role of the function τ(·, ·), since it depends on the whole
regression function η and on the marginal distribution PX . For more details on classification
with F-score see Section 1.1.2 of this introduction or Section 2.1 for the results that can be
obtained in this setup.

Example 1.0.3 (Classification with reject option). Another setup is given by the problem of
binary classification with reject option. In this setting our classifiers are such that g : Rd →
{0, 1,r} and we define a Bayes optimal classifier for some β ∈ [0, 1] as

g∗ ∈ arg min {P (Y 6= g(X) | g(X) 6=r) : P(g(X) =r) ≤ β} .

In words, the Bayes optimal classifier has controlled rate of rejection. Under continu-
ity assumptions on the cumulative distribution function (CDF) of η(X) one can demon-
strate [Chow, 1957, 1970] that

g∗(x) =
1{η(x)≥ 1

2}, if max {η(x), 1− η(x)} − θ∗ ≥ 0
r, otherwise

.

In this case to define θ∗ we need to introduce the following CDF

G(t) = P(max {η(X), 1− η(X)} ≤ t) ,

and θ∗ is given by G−1(1 − β). Again, the threshold θ∗ plays the role of the function τ(·, ·).
This expression for the optimal classifier can be traced back to the work of Chow [1957] in
the context of Information Retrieval. We refer an interested reader to the work of Denis and
Hebiri [2015b], who analyzed plug-in approach to this problem.

In all these cases a simple procedure to mimic g∗ is based on the plug-in approach which
uses two samples DL

n (labeled) and DU
N (unlabeled). Using the labeled part we can solve

the regression problem by constructing η̂“≈”η and using the unlabeled data we can approx-
imate the marginal distribution of PX by its empirical version P̂X“≈”PX . Thus, the plug-in
approach boils down to an algorithm ĝ which is defined for all x ∈ Rd by

ĝ(x) =
1, if A

(
η̂(x), P̂X , τ(η̂, P̂X)

)
≥ 0

0, otherwise
, (1.7)
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where we replaced all the unknown quantities by their approximations based on data. For
this plug-in rule we build η̂ using DL

n and use the empirical marginal distribution P̂X defined
as P̂X = 1

N

∑
X∈DU

N
δX . Recall that the function A and τ are assumed to be known, thus we do

not need to estimate them. The knowledge of A and τ can hardly be called an assumption, it
should rather be viewed as a result which establishes the form of a Bayes optimal classifier. In
Section 6 we provide this form of the Bayes rule for a rather general framework of constrained
classification.

One can immediately notice when we could expect an improvement introducing the un-
labeled data. On the one hand, the Bayes classifier in Example 1.0.1 does not depend on the
marginal distribution PX , thus, without extra structural assumptions (e.g., cluster assump-
tion [Rigollet, 2007]) on the regression function η we should not expect that the unlabeled
sample can help. On the other hand, Bayes classifiers in Examples 1.0.2 and 1.0.3 do depend
on the marginal distribution PX and the unlabeled sample might improve the approximation
accuracy of PX . Yet, the dependence of the Bayes classifier on the marginal distribution does
not guarantee that any improvement of semi-supervised approaches over supervised ones can
be shown5. For instance, in case of F-scores, it is shown in Section 2.1 that semi-supervised
techniques cannot outperform supervised ones.

Besides, it is clear that the performance of the plug-in algorithm ĝ is at least governed
by the goodness of η̂. Without going deeper into the details on the approximation of the
marginal distribution and as a starting point, it is interesting to understand what kind of
guarantees we can obtain for η̂ and under what kind of assumptions.

From classification to regression

Non-parametric regression gives one of the possible approaches to address the question of
estimation of the regression function η. Typically, results of this field of statistics are used
as some sort of black box which guarantees existence of “optimal” estimators. Importantly,
these existence results are constructive and can be realized in polynomial time. This section
serves as a compact collection of some results which were extensively used by the author in
various classification frameworks. For much more profound development and introduction
we refer to [Giné and Nickl, 2015] and [Tsybakov, 2009].

Non-parametric statistics studies problems in which the unknown parameter belongs to
an infinite dimensional space. In our case, the unknown parameter is the regression function
η on which we have restrictions due to the nature of the problem, namely for all x ∈ Rd we
have

0 ≤ η(x) ≤ 1 .

Unfortunately, even if we put ourselves in a space of all measurable bounded functions, this
is not enough to guarantee existence of a uniformly good estimator η̂. This is because, the
space of all measurable bounded functions on Rd is too large6 and further assumptions are
required. At least, we would like to work in a totally bounded space in order to be able to
construct ε-nets and execute standard arguments of the theory of empirical processes and
make use of concentration inequalities.

A natural notion that allows to restrict ourselves to a totally bounded space is to assume
that the regression function η is smooth. Smoothness can be described in different ways,

5The notion of semi-supervised and supervised estimator is introduced rigorously in Chapter 3
6For instance, this space is not totally bounded with respect to the sup norm.
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such as Hölder, Sobolev, Nikolskii or Besov smoothness among others [Adams, 1975, Rudin,
1987, Simon, 1990, Sobolev, 1991, Besov et al., 1996]. As it is not the main concern of the
present manuscript and to ease the presentation, we stick to the most basic notion of smooth
functions. Namely, we are interested in Hölder smooth functions [Rudin, 1987], which says
that η : Rd → [0, 1] is (L, β)-Hölder smooth for some β ∈ (0, 1] and L > 0 if and only if for
all x, x′ ∈ Rd we have

|η(x)− η(x′)| ≤ L ‖x− x′‖β2 .

Now denote by Σ(L, β,Rd) the set of all (L, β)-Hölder smooth functions on Rd which are
valued in [0, 1]. Note that this definition gives something non-trivial7 only in the case of
0 < β ≤ 1. The set Σ(L, β,Rd) is in some sense simultaneously small and large. Indeed,
smooth functions seem to be rather common which is an argument for the largeness of
this space; yet, this class admits a finite ε-net [Kolmogorov and Tikhomirov, 1961] which
significantly simplifies theoretical analysis in this space. Besides, it appears that the notion
of smoothness perfectly fits in the idea of non-parametric statistics and various results can be
derived in this context [Ibragimov and Khasminskii, 1981, Tsybakov, 2009, Giné and Nickl,
2015].

In our settings, the feature vector X ∈ Rd is random and follows some marginal distri-
bution PX . For simplicity we only consider those distributions which admit uniformly lower-
and upper-bounded densities µ w.r.t. the Lebesgue measure and are supported on the unit
cube [0, 1]d. This is referred to as the “very strong density” assumption.

We define a family of joint distributions P(L, β) on Rd × {0, 1} such that for all P ∈
P(L, β) the regression function η ∈ Σ(L, β,Rd) and PX satisfies the very strong density
assumption. Finally, once the family of distributions is defined we can start asking questions
about guarantees; assume that we have an estimator η̂ based on DL

n
i.i.d.∼ P and some 0 <

q <∞, 1 ≤ p <∞ then its8 maximal `p risk is given as

Ψp,q
n (η̂,P(L, β)) := sup

P∈P(L,β)
EDL

n

(∫
Rd
|η(x)− η̂(x)|p dµ(x)

) q
p

,

and we want this sequence to be as small as possible. For the case p =∞ we define this risk
as

Ψ∞,qn (η̂,P(L, β)) := sup
P∈P(L,β)

EDL
n
‖η − η̂‖q∞ ,

where the infinity norm is interpreted as an essential supremum with respect to the distribu-
tion PX of the vector X ∈ Rd. In this context for all q ∈ (0,∞), p ∈ [1,∞] the minimax rate
of convergence over the class P(L, β) is a sequence ψp,qn for which there exist two positive
constants 0 < c ≤ C <∞ such that for all n ∈ N it holds that

cψp,qn ≤ inf
η̂

Ψp,q
n (η̂,P(L, β)) ≤ Cψp,qn .

Here the infimum is taken over all estimator η̂, that is, over all measurable functions of DL
n .

The next result is a major one in non-parametric statistics. It is also available for other
notions of smoothness and in a lot of situations it formally boils down to the replacement of
β by some other effective smoothness β′.

7It is possible to extend this notion to β > 1, see [Tsybakov, 2009].
8Or its qth moment.
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Theorem 2 (Stone [1982], Tsybakov [1986], Korostelëv and Tsybakov [1993]). There exists
an estimator η̂ based on DL

n such that for all 0 < q <∞ and 1 ≤ p <∞ we have

sup
P∈P(L,β)

EDL
n

(∫
Rd
|η(x)− η̂(x)|p dµ(x)

) q
p

. n−
qβ

2β+d ,

and if p =∞, then it holds that for all 0 < q <∞

sup
P∈P(L,β)

EDL
n
‖η − η̂‖q∞ .

(
n

log n

)− qβ
2β+d

.

Moreover, these rates are minimax, that is, the best possible estimator η̂ also achieves these
rates.

Note how the dimension d is included in the rate of convergence, that is, the larger the
dimension the worse the rate is. This phenomena is known as the curse of dimensionality and
is intrinsic to the non-parametric regression. More restrictive models such as single/multi-
index, composite functions [Hristache et al., 2001b,a, Juditsky et al., 2009], or recent work
on neural nets [Schmidt-Hieber, 2017] allow to improve the dependence on the dimension.

In any case, Theorem 2 already allows to obtain several non-trivial results concerning the
rates of convergence of plug-in method in binary classification [Yang, 1999]. However, it might
give an over-pessimistic convergence rate as discovered by [Audibert and Tsybakov, 2007].
Namely, these authors showed that the rate can be specified and the curse of dimensionality
might be alleviated in classification settings; Section 1.1 gives a review on this line of work.
The core argument of Audibert and Tsybakov [2007] is based on the use of another type of
guarantees, namely, instead of the bound in expectation, they showed that an exponential
deviation inequality can be obtained.

Theorem 3 (Audibert and Tsybakov [2007]). There exists an estimator η̂ based on DL
n and

constants C1, C2 such that for any δ > 0 and n ≥ 1 it holds that

sup
P∈P

P⊗n (|η̂(x)− η(x)| ≥ δ) ≤ C1 exp
(
−C2n

− 2β
2β+d δ2

)
,

for almost all x ∈ Rd w.r.t. PX .

Similar results are available in the context of density estimation [Rigollet and Vert, 2009,
Jiang, 2017]. Theorem 3 allows to perform very sharp analysis for the binary classification
using the peeling technique popularized by Audibert and Tsybakov [2007], and obtain mini-
max optimal rates of convergence. In this thesis this inequality will be used many times in
various contexts.

1.1 Binary classification
In binary classification each instance X ∈ Rd is associated with a binary label Y ∈ {0, 1}.
Additionally, it is assumed that (X, Y ) follows some distribution P on Rd × {0, 1}. This
framework has been successfully used in various applied scenarios such as medicine [Güvenir
et al., 1998, Gil et al., 2012], spam detection [Sahami et al., 1998], and credit scoring [Louzada
et al., 2016] among others.
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1.1.1 Standard setup
The most basic and well-studied setting is the one we call standard binary classification.
Recall, that the risk in this setup is given by the probability of misclassification

R(g) = P(Y 6= g(X)) (misclassification) .

In this case we do not want to assign any properties to our estimator and our only goal is
to classify a point X as accurately as possible in the sense of minimizing the probability of
misclassification.

Example 1.0.1 states that the Bayes rule in this setup is tightly related to the regression
function η(x) := P(Y = 1|X = x) = E[Y |X = x] [Devroye et al., 1996], that is, for all x ∈ Rd

g∗(x) = 1{η(x)≥1/2} (Bayes rule) .

Hence, the Bayes classifier compares the regression function to 1/2 and makes the prediction
accordingly. As discussed in the previous section, a natural attempt to construct an algorithm
ĝ is to estimate the regression function η by some estimator η̂ and use the following plug-in
strategy for all x ∈ Rd

ĝ(x) = 1{η̂(x)≥1/2} (plug-in estimator) ,

which tries to mimic the Bayes rule by thresholding some estimate η̂ of the regression function
η. The theoretical justification of this approach can be obtained from the following upper
bound on the excess risk [Devroye et al., 1996]

EDL
n
[E(ĝ)] := EDL

n
[R(ĝ)]−R(g∗) ≤ 2EDL

n

∫
X
|η̂(x)− η(x)| dPX(x) ,

which suggests that the problem of classification can be linked to the regression problem. A
drawback of such an approach is the resulting rate of convergence, which is directly linked
to the rate of estimation of η. Recall Theorem 2, which states that if η is a β-Hölder smooth
functions, then the rate of convergence [Stone, 1982, Tsybakov, 2009] is given by

EDL
n
[E(ĝ)] ≤ 2EDL

n

∫
X
|η̂(x)− η(x)| dPX(x) . n−

β
2β+d = n−

1
2+d/β ,

uniformly over this class. Again notice, that this rate is always slower than n−1/2 and the
bound degrades drastically with the growth of the dimension d. One might hope that the
upper bound on the excess risk via the regression risk is loose and a better rate could be
obtained with a more sophisticated technique. Unfortunately, it was shown in [Yang, 1999]
that these rates are minimax optimal which resulted in a criticism of the plug-in approach
and a more favorable opinion on Empirical Risk Minimization (ERM) type methods.

The situation has changed after the work [Audibert and Tsybakov, 2007], where the
authors showed that the results of Yang [1999] are too pessimistic, or in some sense “too
minimax” in a lot of situations. The key property that allowed to improve the rate of
convergence is a precise description of how the regression function η behaves around the
decision threshold 1/2. That is, Audibert and Tsybakov [2007] discriminated the regression
functions η not only by their smoothness but also by their concentration around 1/2. This
strategy was originally explored by Polonik [1995], Tsybakov [1997] in the context of density
level set estimation and later in the context of classification by [Mammen and Tsybakov,
1999]. In the case of the binary classification, this assumption is known as the margin, low
noise, or Mammen-Tsybakov assumption

17



Assumption 1 (Margin assumption). The regression function η is such that there exist
constants α ≥ 0 and c > 0 such that for all δ > 0

PX
(

0 <
∣∣∣∣η(X)− 1

2

∣∣∣∣ ≤ δ
)
≤ cδα .

The value of α = 0 corresponds to the case of no assumption, in this case the regression
function η(x) can be concentrated around 1/2 and the result of [Yang, 1999] is rather focused
on this scenario. In contrast, the larger value of α we have, the simpler the classification
problem is. The “simplest” case being “α = ∞”, it describes a situation when there is
a “corridor” between η(X) and the threshold 1/2. In other words a regression function η
satisfies the margin assumption with α =∞ if there exists h > 0 such that∣∣∣∣η(X)− 1

2

∣∣∣∣ ≥ h almost surely .

This case is often referred as Massart’s low noise condition due to the work [Massart and
Nédélec, 2006], where the authors provided an extensive analysis of ERM algorithm over
VC-classes under this assumption.

Importantly, Audibert and Tsybakov [2007] have shown that there exists a plug-in algo-
rithm ĝ whose rate of convergence under the margin assumption satisfies

EDL
n
[E(ĝ)] . n−

(1+α)β
2β+d ,

and this rate is minimax optimal over a typical non-parametric family of distributions.
Clearly, unlike the previous rate n−

β
2β+d provided by Yang [1999], under the margin as-

sumption the rate can be significantly improved. In the same work Audibert and Tsybakov
[2007] showed that depending on the interplay between α, β, d the rate can be slow (slower
than n−1/2), fast (in between n−1/2 and n−1) and even super-fast (faster than n−1)9. These
results also suggest that the plug-in methods should not be considered inferior to the ERM
methods. It also emphasizes the intrinsic role of the margin type assumption in the analysis
of classification methods.

Remark. Let us emphasize that essentially the study of non-parametric settings of standard
binary setup is reduced to a study of an efficient estimation of the regression function η.
Indeed, as the Bayes optimal classifier is given by thresholding of the regression function
on the level 1/2, which is known beforehand, it is expected that a good approximation of η
thresholded by 1/2 would allow to obtain a good approximation in classification framework.
Yet, most of the contributions of this manuscript are concerned with situations when this
threshold is distribution dependent, and it ought to be estimated using data.

1.1.2 F-score setup (Section 2.1)
The probability of misclassification is still widely used in practice to evaluate performance of
an algorithm. Practically, this risk is suitable in the situation of class-balanced distributions,
that is, in the case when P(Y = 1) ≈ P(Y = 0). Such a distribution would typically yield
a well-balanced dataset, thanks to the law of large numbers, a situation where algorithms
tailored to optimize the misclassification risk shine the most. Once the condition P(Y =

9In the same work these authors showed that the family of distributions for which the rate can be super-fast
is very poor.
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1) ≈ P(Y = 0) fails to be satisfied, the resulting dataset might be highly unbalanced and a
method which optimizes misclassification risk yields an unsatisfying performance. In practical
applications, a popular way to assess the performance of an algorithm in the unbalanced
setup is to use the F-score, whose roots can be traced back to the Information Retrieval (IR)
literature [van Rijsbergen, 1974, Lewis, 1995]. The F-score of a classifier g is defined as

F1(g) := 2P(Y = 1, g(X) = 1)
P(Y = 1) + P(g(X) = 1) (F-score) . (1.8)

Intuitively, the numerator, in the definition of the F-score, is big for those classifiers max-
imizing true positives (i.e., P(Y = 1, g(X) = 1)). Clearly, a naive classifier g ≡ 1 does
maximize this value, at this moment the denominator in the F-score kicks in. Indeed, the
F-score, defined in Eq. (1.8), decreases with the growth of the denominator and thus, an
optimal classifier for the F-score gives a trade-off between the probability of true positive
and the probability of predicting one.

Besides, the F-score can be linked to Precision and Recall – two basic notions in the IR
community. Formally, Precision and Recall of a binary classifier g : Rd → {0, 1} are defined
as

Precision(g) := P(Y = 1, g(X) = 1)
P(g(X) = 1) , Recall(g) := P(Y = 1, g(X) = 1)

P(Y = 1) .

In classification framework high Precision of g means that instances X ∈ Rd classified as
g(X) = 1 are likely to have the real labels being Y = 1. Whereas, high Recall of g means
that instances X ∈ Rd with real label Y = 1 are likely to be classified correctly by g. In
contrast, the high Precision of g says nothing about instances X ∈ Rd with Y = 1 that were
not classified correctly and, likewise, the high Recall of g says nothing about the instances
X ∈ Rd which were classified as g(X) = 0. Typically, neither Precision nor Recall are
considered separately. Instead, classifiers are compared in terms of one measure with a fixed
budget for the other or both measures are blended into a single one. One of the most popular
examples of such a measure, which combines both Precision and Recall, is the aforementioned
F-score which is seen as their harmonic average

F1(g) =
(

Precision−1(g) + Recall−1(g)
2

)−1

.

Let us mention that the F-score is not a risk measure but rather a score measure, that is,
our goal is to maximize it.

In this setup natural statistical questions emerge.

Q.1: What is the form of the Bayes optimal classifier g∗ in this context?

Q.2: How to construct a consistent algorithm for this problem and under which assumptions?

Q.3: What is the minimax rate for the problem of classification with the F-score?

The first question was already answered in [Zhao et al., 2013] who showed that the Bayes
classifier g∗ can be defined for all x ∈ Rd as

g∗(x) = 1{η(x)>θ∗} , (1.9)
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with θ∗ ∈ [0, 1] being a threshold which satisfies

θ∗P(Y = 1) = E(η(X)− θ∗)+ .

This results will be extended to a more general definition of the F-score in Section 2.1 (see
Theorem 4). Here for all a ∈ R we denote by (a)+ its positive part, that is, (a)+ = max{a, 0}.
The result of Zhao et al. [2013] demonstrates that in order to transition from the standard
setting of binary classification with misclassification risk to the F-score setup it is sufficient
to have an access to the threshold θ∗ or to its estimate. Unfortunately, these authors did
not study the statistical side of this problem and did not provide any procedure to estimate
neither g∗ nor θ∗.

In Section 2.1 of Chapter 2 we address these statistical questions in details. In particular,
we propose a semi-supervised algorithm ĝ, which under assumptions similar to the ones used
by Audibert and Tsybakov [2007] satisfies

F1(g∗)− E(DL
n,DU

N ) [F1(ĝ)] . n−
(1+α)β
2β+d .

It is additionally shown that the above rate is minimax optimal. The rate above is obtained
under a modified version of the margin assumption, which in this setup reads for all δ > 0 as

PX(0 < |η(X)− θ∗| ≤ δ) ≤ cδα ,

for some c, α > 0. On the first glance it might be surprising to consider semi-supervised
procedures, since the algorithm of Audibert and Tsybakov [2007] is supervised. However, it
becomes more evident if we rewrite the condition on θ∗ in the following form

θ∗EX∼PX [η(X)] = EX∼PX (η(X)− θ∗)+ .

On the one hand, would the regression function η be available for a statistician, a natural
approach to estimate θ∗ is to replace EX∼PX by its empirical version on some unlabeled
dataset DU

N , which leads to a fully unsupervised “algorithm”. On the other hand, if we had
an access to the distribution PX of the feature vector X ∈ R, then a logical estimator of g∗
is thresholding of η̂ on a level θ̃ satisfying

θ̃EX∼PX [η̂(X)] = EX∼PX (η̂(X)− θ̃)+ ,

which leads to a fully supervised “algorithm”. Obviously, neither η nor PX are available in
reality, yet, having a labeled sample DL

n and an unlabeled sample DU
N would allow to estimate

these quantities efficiently. Section 2.1 of Chapter 2 describes this classification algorithm
and establishes its optimality in the minimax sense.

1.1.3 Constrained classification: general framework
This section is an attempt to put forward a class of constrained binary classification problems
in which the plug-in approach is expected to work well. The goal here is to define a family
of problems with easily accessible Bayes optimal classifier and also to provide a general
machinery that may be useful in similar contexts

We consider the following settings of binary classification: given (Z, Y ) ∈ Z × {0, 1}
distributed according to P, a classifier is a measurable mapping g : Z → {0, 1}. Let us
denote the marginal distribution of Z by PZ . In this part, we use the notation Z ∈ Z
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instead of X ∈ Rd to account for more complex setups such as fair binary classification of
equal opportunity (see Section 1.1.4), where the variable Z ∈ Z is represented by a tuple
(X,S) ∈ Rd × {0, 1}. This fairness setup is discussed in details in Section 1.1.4 and in
Section 2.2 where we provide theoretical and experimental analyses of this problem.

For a given classifier g we assign its risk R(g) and we assume that R(g) can be expressed
as

R(g) = EZ∼PZ
[
AP(Z) +BP(Z)1{g(Z)=1}

]
(risk) , (1.10)

for some bounded measurable functions AP : Z → R and BP : Z → R which are allowed to
depend on the unknown distribution P. Additionally, we assume that the constraint on the
classifier can be expressed by one equality of the form10:

EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}] = 0 (constraints) , (1.11)

for some bounded measurable functions ĀP : Z → R and B̄P : Z → R. We can now define a
Bayes optimal classifier in this context as

g∗ ∈ arg min
{
R(g) : EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}] = 0

}
.

The next proposition shows that the proposed framework admits a large family of classi-
fication problems and can be used in various settings.

Proposition 1. Let LP : {0, 1}×{0, 1} → R be a measurable loss function and CP : {0, 1}×
{0, 1} → R a measurable constraint function, and consider the following problem

min
{
E(Z,Y )∼P[LP(g(Z), Y )] : E(Z,Y )∼P[CP(g(Z), Y )] = 0

}
,

then this constrained binary classification formulation admits the representation from Equa-
tions (1.10), (1.11), with

AP(Z) = LP(0, 1)P(Y = 1|Z) + LP(0, 0)P(Y = 0|Z) ,

BP(Z) = (LP(1, 1)− LP(0, 1))P(Y = 1|Z) + (LP(1, 0)− LP(0, 0))P(Y = 0|Z) ,

ĀP(Z) = CP(0, 1)P(Y = 1|Z) + CP(0, 0)P(Y = 0|Z) ,

B̄P(Z) = (CP(0, 1)− CP(1, 1))P(Y = 1|Z) + (CP(0, 0)− CP(1, 0))P(Y = 0|Z) .

In general the set
{
g : EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}] = 0

}
might be empty and thus the

Bayes classifier is ill-defined in such a case. The next assumption gives a sufficient condition
under which this issue can be bypassed and this assumption is at the core of this section.
Let us also mention that in some scenarios one can get rid of it, which we shall discuss later
in this section.

Assumption 2. The random variable B̄P(Z)−BP(Z) is bounded PZ-almost surely. Moreover,
the mapping

t 7→ PZ
(
λB̄P(Z)−BP(Z) ≤ t

)
,

is continuous for all λ ∈ R. Which is the same as to say that the random variable B̄P(Z)−
BP(Z) does not have atoms.

10The minus sign in the expression for the constraints is simply for convenience.
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One possible way to relax this assumption is to consider randomized classifiers, which
instead of a definitive prediction 0 or 1 can output a distribution on {0, 1}. We leave the
extension to randomized classifiers for future work.

Lemma 1 (Bayes rule). Under Assumption 2 a Bayes optimal classifier g∗ can be obtained
for all z ∈ Z as

gλ∗(z) = 1{λ∗B̄P(z)−BP(z)>0} ,

where λ∗ is determined as a root of

λ 7→ EZ∼PZ
[
B̄P(Z)1{λB̄P(Z)−BP(Z)>0}

]
− EZ∼PZ [ĀP(Z)] .

Moreover, for every classifier g we can write

R(g)−R(g∗) = EZ∼PZ
∣∣∣BP(Z)− λ∗B̄P(Z)

∣∣∣1{g(Z)6=g∗(Z)} − λ∗(EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}]) .

The proof of this result is given in Appendix and it relies on weak duality, which combined
with the continuity Assumption 2 can be turned into strong duality.

Remark 1. Assumption 2 can be relaxed significantly if one can guarantee the existence of
a root of

λ 7→ EZ∼PZ
[
B̄P(Z)1{λ∗B̄P(Z)−BP(Z)>0}

]
− EZ∼PZ [ĀP(Z)] .

This existence is ensured due to the fact that the equation

EZ∼PZ
[
B̄P(Z)1{λB̄P(Z)−BP(Z)>0}

]
− EZ∼PZ [ĀP(Z)] = 0 ,

is the first order optimality condition11 of a concave maximization problem under Assump-
tion 2. Besides, notice that if a classifier g satisfies constraints of Equation (1.11) we have

R(g)−R(g∗) = EZ∼PZ
∣∣∣BP(Z)− λ∗B̄P(Z)

∣∣∣1{g(Z) 6=g∗(Z)} ,

which resembles classical expression for the excess risk in the standard settings of Binary clas-
sification. However, sometimes it is difficult or even impossible to guarantee that g satisfies
constraints of Equation (1.11).

The most straightforward application of this framework is the standard setup of binary
classification. In this settings, typically the space Z = Rd and the elements of this space
are seen as feature vector and denoted by X. Recall that in the context of standard binary
classification the standard choice of the risk is the probability of misclassification defined for
every classifier g : Rd → {0, 1} as

R(g) = P(Y 6= g(X)) .

The constraints in this case can be formally written as 0 = 0, that is, no-constraints are forced
on the classifiers and ĀP(X) ≡ B̄P(X) ≡ 0. Let us demonstrate, that the classical results are
easily recovered with the introduced framework. Using Proposition 1 with LP(·, ·) = 1{·6=·}

11Condition on λ∗
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we get , AP(X) = η(X) and BP(X) = 1 − 2η(X), where η(X) = E[Y |X] is the regression
function. Finally, thanks to Lemma 1, the Bayes optimal classifier is given for all x ∈ Rd by

gλ∗(x) = 1{λ∗B̄P(x)−BP(x)>0} = 1{−(1−2η(x))>0} = 1{η(x)>1/2} ,

which recovers the expression of the Bayes classifier in Example 1.0.1. Finally, for any binary
classifier g we have in this context the following familiar expression for the excess risk

R(g)−R(g∗) = EX∼PX |BP(X)|1{g(X)6=g∗(X)} = EX∼PX |1− 2η(X)|1{g(X)6=g∗(X)} .

This is a starting point of the theoretical assessment in case of the binary classification. Let
us mention that the arguments above do not require Assumption 2 to be satisfied, which is
posed in the proposed framework. Though, following Remark 1 it is obvious that in this case
any λ satisfies

EX∼PX

B̄P(X)︸ ︷︷ ︸
≡0

1{λB̄P(X)−BP(X)>0}

− EX∼PX [ĀP(X)︸ ︷︷ ︸
≡0

] = 0 ,

thus Assumption 2 can be alleviated. Clearly, this reasoning can be effortlessly generalized
to cost-sensitive settings. More involved examples are possible, one of them being the fair
binary classification discussed in details in Section 2.2.

A nice thing about this framework is that the derivation of the Bayes rule is very robust
with respect to the classification problem. In other words, it can be easily extended to
multi-class and multi-label framework as well as to other type of constraints. Moreover, it
immediately suggests to use the plug-in approach described in Section 1.0.3 as the Bayes
classifier obtained in Lemma 1 is of the form given in Eq. (1.6). The main restriction in this
framework is the fact that the risk and the constraints are required to be “linear” functionals
of classifier g. In Chapter 4 we shall see an example of constraints that cannot be written
as a linear functional of the classifier. One of these examples is concerned with multi-label
classification with an almost sure control over false positive errors (see Chapter 4 for a precise
definition).

Once the expression for the excess risk is derived it is tempting to understand whether
the analysis of Audibert and Tsybakov [2007] can be extended to this general setting.
Open question: are the fast rates of convergence achievable under the following margin
assumption?

Assumption 3. The distribution PZ of Z is such that there exists α > 0 and c > 0 for which
we have for all δ > 0

PZ
(
0 <

∣∣∣BP(Z)− λ∗B̄P(Z)
∣∣∣ ≤ δ

)
≤ cδα .

We conjecture that the answer to this question is negative in general, yet, in some cases
the fast rates of convergence are possible. We leave this line of research for the future.

1.1.4 Constrained classification: fairness (Section 2.2)
Another prominent setup of binary classification, where plug-in approaches can lead to state-
of-the-art performance is the so called fair binary classification of equal opportunity [Hardt
et al., 2016]. In this setup we slightly modify the observed data. Instead of plain (X, Y ) ∈
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Rd × {0, 1} we additionally observe one more binary feature S ∈ {0, 1}. This feature S is
often referred as a sensitive feature or a protected attribute [Hardt et al., 2016, Barocas
et al., 2018], with gender or race being typical interpretations. This observation model is
motivated by the idea that historically the data that we collect are actually biased towards
a more favorable decisions in either S = 0 or S = 1. In this manuscript we prefer to avoid
extra discussion on legal, ethical, and sociological points of view and stick to the statistical
side of the question, an interested reader can learn more from the excellent book [Barocas
and Selbst, 2016] and references therein.

Our goal as statisticians has been formally stated by Hardt et al. [2016], where the authors
proposed a way to measure the level of fairness of any given classifier g : Rd×{0, 1} → {0, 1}.
Namely, Hardt et al. [2016] introduce the following definition of equal opportunity

Definition 1 (Equal Opportunity [Hardt et al., 2016]). A classifier g : Rd × {0, 1} → {0, 1}
is called fair in terms of the equal opportunity if

P (g(X,S) = 1 |S = 1, Y = 1) = P (g(X,S) = 1 |S = 0, Y = 1) ,

where P is the distribution of the random tuple (X,S, Y ).

A nice intuitive explanation of this definition is given in Hardt et al. [2016]: “... people
who pay back [Y = 1]12 their loan, have an equal opportunity of getting [g(X,S) = 1]13

the loan in the first place (without specifying any requirement for those that will ultimately
default)”. Luckily, this setup perfectly fits the idea of constrained binary classification.

Using this definition of fair classifiers our goal is to approximate the following fair optimal
(fair Bayes) classifier

g∗ ∈ arg min
g∈G

{R(g) : P (g(X,S) = 1 |Y = 1, S = 1) = P (g(X,S) = 1 |Y = 1, S = 0)} ,

where the risk is given by R(g) = P(Y 6= g(X,S)). This is another example of a prob-
lem, where the constraints on the classifier are distribution dependent. Dependency on the
unknown distribution does not allow in principle to construct an estimator ĝ which would
satisfy

P (ĝ(X,S) = 1 |Y = 1, S = 1) = P (ĝ(X,S) = 1 |Y = 1, S = 0) ,

almost surely. Thus, apart from the classical excess risk, we additionally would like to control
the magnitude of how this constraint is violated, that is, our goal is to control the unfairness
of ĝ defined as

E |P (ĝ(X,S) = 1 |Y = 1, S = 1)− P (ĝ(X,S) = 1 |Y = 1, S = 0)| .

This question is discussed in details in Section 2.2, where a semi-supervised plug-in procedure
is proposed and its consistency is established. Besides, numerical results of Section 2.2 suggest
that with properly chosen estimator of P (Y = 1 |X, s) for s ∈ {0, 1}, the proposed procedure
achieves state-of-the-art performance.

12Inserted by the author.
13Inserted by the author.

24



Other measures of fairness

Equal Opportunity is not the only possible way to define the set of fair classifiers and other
notions have been recently introduced in the literature. It seems that at this moment14

the agreement on which notion of fairness to use and in which domains is still missing.
Consequently, in this part we want to provide other possible ways to define the notion of
fairness. All the following examples are formulated as particular instances of the constrained
classification framework with different sets of desired properties Gθ.

Definition 2 (Demographic Parity [Calders et al., 2009]). A classifier g : Rd×{0, 1} → {0, 1}
is called fair in terms of the demographic parity if

P (g(X,S) = 1 |S = 1) = P (g(X,S) = 1 |S = 0) ,

where P is the distribution of the random tuple (X,S, Y ).

The notion of demographic parity implies that the probability of assigning an instance
X ∈ Rd to the positive class (i.e., g(X,S) = 1) is the same for both values of the protected
attribute S ∈ {0, 1}.

Definition 3 (Equal Odds [Hardt et al., 2016]). A classifier g : Rd×{0, 1} → {0, 1} is called
fair in terms of the equal odds if

P (g(X,S) = 1 |S = 1, Y = y) = P (g(X,S) = 1 |S = 0, Y = y) for all y ∈ {0, 1} ,

where P is the distribution of the random tuple (X,S, Y ).

The notion of equal odds implies that the prediction g(X,S) and the protected attribute
S ∈ {0, 1} are independent conditional on the true label Y ∈ {0, 1}.

Definition 4 (Disparate Treatment [Zafar et al., 2017]). A classifier g : Rd×{0, 1} → {0, 1}
is called fair in terms of the disparate treatment if

P (g(X,S) = y |X = x, S = s) = P (g(X,S) = y |X = x) for all y, s ∈ {0, 1}, x ∈ Rd ,

where P is the distribution of the random tuple (X,S, Y ).

The notion of disparate treatment implies that the probability of prediction g(X,S) to
assign a feature x ∈ Rd to the positive class (i.e., g(X,S) = 1), is the same for both values
of the protected attribute S ∈ {0, 1}.

Again, we would like to avoid extra discussion on the sociological and ethical impact
of these definitions as this is not the subject of the present manuscript. However, these
examples are interesting from the point of view of the constrained classification framework
and, in particular, in view of Section 1.1.3.

Let us also mention that sometimes in applications of fairness, the dependency of a
classifier g on the protected attribute is forbidden. In other words, the set of classifiers is
defined as x 7→ g(x), that is, these classifiers do not take into account the protected feature
S ∈ {0, 1} for prediction. For example, in the case of the equal opportunity, the Bayes
classifier g∗ would be given as a solution of the following optimization problem

min {P(Y 6= g(X)) : P (g(X) = 1 |Y = 1, S = 1) = P (g(X) = 1 |Y = 1, S = 0)} .

14At the moment of writing this manuscript.
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In Section 2.2 we also derive the expression of the Bayes classifier in this case and propose a
semi-supervised procedure to mimic this Bayes rule. Importantly, for this setup we assume
that the constructed algorithm ĝ has an access to labeled data DL

n = {(Xi, Si, Yi)}ni=1 which
includes the protected attribute. This does not contradict the requirement of independence
from S ∈ {0, 1} for the algorithm ĝ. Indeed, the proposed algorithm ĝ uses the protected
attribute only at the training phase but not at the prediction phase.

1.2 Multi-class classification
In multi-class classification each instance X ∈ Rd is associated with a class Y that takes
values in [K] := {1, . . . , K}. Additionally, it is assumed that (X, Y ) follows some distri-
bution P on Rd × [K]. Typical examples of applications of this framework include image
classification [LeCun et al., 1998], web advertising [Beygelzimer et al., 2009], and document
categorization [Dekel and Shamir, 2010] to name few.

1.2.1 Standard setup
Similarly, to the binary case described in Section 1.1.1, for the standard settings of multi-class
classification we would like to study the misclassification risk defined for all classifiers g as

R(g) = P(Y 6= g(X)) .

By analogy with the binary case we can define K different regression functions ηk(x) = P(Y =
k|X = x) for all k ∈ [K] and all x ∈ Rd. Besides, one can easily show that a Bayes optimal
classifier g∗ can be defined for all x ∈ Rd as

g∗(x) = arg max
k∈[K]

ηk(x) ,

which in case K = 2 reduces to the well-known binary rule. Logically, one would expect that
the minimax analysis of Audibert and Tsybakov [2007] can be carried out to these settings.
However, in order to extend their analysis to the multi-class case one also needs to understand
how to adapt the notion of margin assumption in this setting. A possible extension was given
by Dinh et al. [2015], where the authors assumed that the regression functions are such that

P(0 < η(1)(X)− η(2)(X) ≤ δ) ≤ cδα ,

where η(1)(·) and η(2)(·) are the largest and the second largest regression functions. Dinh
et al. [2015] showed that there exists an algorithm ĝ which achieves

E[R(ĝ)]−R(g∗) . n−
(1+α)β
2β+d ,

where β is the common smoothness parameter of the ηk’s. Even though they did not provide
a lower bound on the excess risk, it is expected that their rate is optimal as one can always
construct η1, . . . , ηK such that η3 ≡ . . . ≡ ηK ≡ 0 and execute the classical arguments using
only η1, η2 to obtain the lower-bound.
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1.2.2 Confidence set setup (Chapter 3)
Another prominent approach to the problem of multi-class classification is through confidence
sets. The goal in this setup is very different from its standard counterpart. In the confidence
set approach our intention is to find a measurable mapping Γ : Rd → 2[K], where 2[K] is the
set of all subsets of [K], which is in some sense optimal. Any measurable mapping Γ of this
type is called a confidence set and for each x ∈ Rd we denote by |Γ(x)| the cardinal of the
set Γ(x).

A logical way to generalize the misclassification risk considered in the standard setup is
to define the following quantity for each Γ

P(Γ) := P(Y /∈ Γ(X)) ,

which is viewed as an error of the confidence set Γ. It becomes apparent that minimization
of P(·) is useless without any constraints. Indeed, the set Γall ≡ [K] would minimize this
quantity for any possible distributions P. The main reason why the confidence set Γall is
unsuitable is its size, that is, the number of classes that it outputs. This discussion gives a
motivation to introduce another property of a set Γ which is related to its size. It can be
done in at least two straightforward ways – for each confidence set Γ we can define its size as

Isup(Γ) = sup
x∈Rd
|Γ(x)| , (largest size) ,

IE(Γ) = E |Γ(X)| , (expected size) .

Using any of these two notions for the size we can define a Bayes confidence set as

Γ∗β ∈ arg min {P(Γ) : I�(Γ) ≤ β} ,

where β ∈ [K] is a parameter that controls the size of the optimal set and � stands for sup or
E. Interestingly, under some mild assumptions which are discussed in details in Section 3.1,
one can demonstrate that the Bayes confidence set actually satisfies I�(Γ∗β) = β.

This problem with expected size was first considered by Denis and Hebiri [2017] who
provided an ERM type algorithm to mimic Γ∗β. Later, some non-trivial consequences were
made in [Chzhen et al., 2019a] concerning the performance of semi-supervised algorithms in
this context. Namely, it is shown that properly defined supervised methods cannot achieve
rates which are faster than 1/

√
n even under a suitable margin assumption. Whereas, some

semi-supervised approaches allow to bypass this issue and allow to recover typical minimax
rates of convergence, provided that the size of unlabeled set is sufficiently large.

In Section 3.1 the problem of confidence set classification with controlled expected size is
considered and semi-supervised algorithms are studied from the minimax point of view.

1.3 Multi-label classification (Chapter 4)
In the setup of multi-label classification, unlike binary or multi-class case, each instance
X ∈ Rd is associated with a binary vector Y ∈ {0, 1}L. This framework encompasses a
number of applications such as text categorization [Gao et al., 2004, Tsoumakas et al., 2009,
Partalas et al., 2015], functional genomics [Barutcuoglu et al., 2006], image classification [Li
et al., 2014], and recommendation systems [Agrawal et al., 2013, Prabhu et al., 2018] among
others.
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Statistical framework of this problem assumes that the couple (X, Y ) is random and it
follows some distribution P on Rd×{0, 1}L. A standard notion of a classifier g in this context
is then given as g : Rd → {0, 1}L, that is, a classifier is a vector valued binary function defined
on Rd. In this context there are two straightforward ways to generalize the misclassification
risk, both of which lead to different Bayes optimal classifiers, see [Dembczyński et al., 2012]
and references therein. The first one is the 0/1-risk, which is defined for all classifiers g as

R0/1(g) = P(Y 6= g(X)) (0/1 risk) .

Note that this risk compares the whole vector Y to the prediction g(X). The 0/1-risk does
not take into account the idea that g(X) can be “approximately” correct in the sense that
it makes mistakes only on few coordinates of Y ∈ {0, 1}L. This observation motivates to
consider a modified version of this risk, which is often referred as the Hamming risk, defined
for all classifiers g as

RH(g) = 1
L

L∑
l=1

P(Y l 6= gl(X)) (Hamming risk) .

Contrary to the 0/1-risk the later takes into account mistakes on each coordinate of the
vector Y ∈ {0, 1}L separately.

It is interesting to point out that modern applications of multi-label classification are
typically asymmetric in their treatment of the labels, see [Prabhu and Varma, 2014] and
references therein. To illustrate this, consider the following example connected to the image
recognition – for some l ∈ [L] the outcome Y l = 1 means that the object assigned to lth

coordinate is present on a picture X ∈ Rd. In this setup it is unreasonable to expect that
there are pictures with all possible objects, that is, the label vector Y ∈ {0, 1}L is actually
sparse. Apart from that, in many practical applications, it is much more beneficial to correctly
predict the occurrence of Y l = 1, than Y l = 0. This idea motivated the community to consider
the following risk

Rfn(g) = 1
L

L∑
l=1

P(Y l = 1, gl(X) = 0) ,

which only considers the false negative errors of a classifier g.
Clearly, minimization of Rfn without any constraints does not make any sense, since

g(X) ≡ (1, . . . , 1)> is optimal in this case. Thus, some restrictions are necessary on the set of
possible classifiers. Again, as in previous sections the constrained classification framework is
well suited in this case. Namely, we consider some set of multi-label classifiers Gθ and target
the following Bayes rule

g∗ ∈ arg min
{
Rfn(g) : g ∈ Gθ

}
.

The main question now is what kind of classes Gθ we can consider and what kind of algorithms
we can construct.

The first possible constraint is motivated by recommendation systems, where we can
recommend only a fixed number of possible objects. For this situation, a reasonable approach
is given by the following sparse Bayes rule

g∗ ∈ arg min
{
Rfn(g) :

L∑
l=1

1{gl(X)=1} = K, a.s.
}

,
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for some K ∈ [L] chosen by a practitioner. Note, that unlike all previous examples, here the
constraint is almost surely and not in expectation.

A possible drawback of this approach is the fact that the almost sure control on the
sparsity of g does not give any control on the false positive mistakes. That is, in some
situation the value K ∈ [L] might be over optimistic, and lower values can deliver comparable
predictions. In such a case we might consider the setting with an almost sure control over
false positive discoveries and target the following Bayes rule

g∗ ∈ arg min
{
Rfn(g) :

L∑
l=1

P(Y l = 0, gl(X) = 1|X) ≤ β, a.s.
}

,

for some β > 0 to be specified. In Chapter 4 we consider these constrained settings in details
and provide rates of convergence in both cases. Interestingly, it is shown in Chapter 4 that
the problem with almost sure control over false negative discoveries is in some sense hopeless
if we do not impose additional, rather restrictive, assumptions on the distribution of (X, Y ).

1.4 Organization of the manuscript
This manuscript is partitioned into three interconnected parts: binary classification (Chap-
ter 2); multi-class classification (Chapter 3); multi-label classification (Chapter 4). Each
chapter is self-contained, that is, notation and the proofs are provided with a broad discus-
sion on the relevance of the contribution. The following works are at the core of the present
manuscript.

• Chapter 2
– E. Chzhen. “Optimal rates for F-score binary classification”. Submitted, 2019;
[Chzhen, 2019a].
– E. Chzhen, C. Denis, M. Hebiri, L. Oneto, and M. Pontil. “Leveraging Labeled and
Unlabeled Data for Consistent Fair Binary Classification”. NeurIPS, 2019; [Chzhen
et al., 2019b].

• Chapter 3
– E. Chzhen, C. Denis, and M. Hebiri. “Minimax semi-supervised confidence sets for
multi-class classification”. Submitted, 2019; [Chzhen et al., 2019a].

• Chapter 4
– E. Chzhen. “Classification of sparse binary vectors”. Submitted, 2019; [Chzhen,
2019b].

• Not included in the manuscript
– E. Chzhen, M. Hebiri, and J. Salmon. “On Lasso refitting strategies”. Bernoulli,
2019; [Chzhen et al., 2019c].
– E. Chzhen, C. Denis, M. Hebiri, and J. Salmon. “On the benefits of output sparsity
for multi-label classification”. Technical report, 2017; [Chzhen et al., 2017].
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1.5 Resumé en français
La contribution de ce manuscrit consiste en quatre parties distinctes interconnectées. Plus
précisément, nous considérons quatre problèmes de classification différents, que nous abor-
dons d’un point de vue théorique. Le point commun entre les divers cadres d’études est le
type d’approche que nous utilisons pour résoudre le problème. En effet, nous proposons des
algorithmes de type plug-in pour chacun problème étudié.

Rappelons brièvement la cadre générale du problème de classification. Nous considérons
un couple (X, Y ) ∈ Rd × Y lorsque Y est un ensemble fini. Le vecteur X ∈ Rd est appelé
vecteur des caractéristiques et Y ∈ Y est l’étiquette (ou label) associée à X ∈ Rd. De plus,
on suppose que le couple (X, Y ) est distribué selon une loi inconnue P sur Rd×Y , et on note
PX la distribution marginale de X ∈ Rd. En outre, on suppose que pour des entiers n,N ≥ 0,
deux jeux de données sont observés – DL

n = {(Xi, Yi)}ni=1 i.i.d. de P et DU
N = {Xi}Ni=1 i.i.d. de

PX . L’ensemble DL
n est appelé jeu de données étiquetées. On parler alors d’apprentissage

supervisé alors que l’ensemble DU
N est appelé jeu de données non-étiquetées et on parle alors

d’apprentissage non-supervisées.
Dans ce contexte, notre objectif est de construire un algorithme capable, en utilisant

les ensembles de données étiquetées et non étiquetées, d’inférer l’étiquette Y ∈ Y pour une
nouvelle observation X ∈ Rd. Ainsi, pour chacun des quatre cadres d’étude, nous spécifions
en premier lieu une notion de classification adaptée au problème considéré. Deuxièmement,
nous introduisons une notion de risque, qui traduit la qualité de la règle envisagée.

Dans ce qui suit, nous décrivons les quatre problèmes considérés dans ce manuscrit et
présentons les principaux résultats obtenus pour chaque problème.

1.5.1 F-score
Dans le contexte de la classification avec F-score, l’ensemble Y = {0, 1}, l’ensemble des règles
de classification est défini comme G = {g : Rd → {0, 1}}, et la fonction de score est définie
pour chaque g ∈ G comme

F1(g) := 2P(Y = 1, g(X) = 1)
P(Y = 1) + P(g(X) = 1) (F-score) .

La meilleure règle de classification est celle qui maximise le F-score, c’est-à-dire

g∗ ∈ arg max {F1(g) : g ∈ G} .

Concernant ce problème, on considère les questions suivantes.

• Est-ce que g∗ admet une écriture explicite ?

• Qu’est-ce qu’un algorithme optimal dans ce contexte ?

• Quelle est la vitesse de convergence minimax ?

La première question a déjà été abordée dans [Zhao et al., 2013] où il est démontré que le
classifieur de Bayes g∗ peut être défini pour tout x ∈ Rd par

g∗(x) = 1{η(x)>θ∗} , (1.12)
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où η(·) = P (Y = 1 |X = ·) et θ∗ ∈ [0, 1] est un seuil qui satisfait l’équation

θ∗P(Y = 1) = E(η(X)− θ∗)+ .

En Section 2.1 du Chapitre 2 nous abordons ce problème statistique plus en profondeur.
En particulier, nous proposons un algorithme semi-supervisé ĝ qui, sous des hypothèses
similaires à celles utilisées par Audibert and Tsybakov [2007], satisfait

F1(g∗)− E(DL
n,DU

N ) [F1(ĝ)] . n−
(1+α)β
2β+d .

Il est en outre démontré que la vitesse de convergence ci-dessus est optimale au sens minimax.
Cette vitesse est obtenue en supposant qu’une version modifiée de l’hypothèse de marge est
vérifiée. Avec les notations que nous avons introduites, celle-ci s’écrit de la façon suivante:
pour tout δ > 0

PX(0 < |η(X)− θ∗| ≤ δ) ≤ cδα ,

pour certaines constantes c, α > 0.

1.5.2 Classification équitable
Comme dans la partie précédente, nous avons Y = {0, 1}, mais le vecteur des caractéristiques
est défini ici comme un couple (X,S) ∈ Rd × {0, 1}. L’ensemble des règles de classification
est donné par G = {g : Rd×{0, 1} → {0, 1}}. Dans ce contexte, la variable binaire S est vue
comme un attribut sensible et l’objectif est de construire une règle de classification équitable,
c’est-à-dire, qui ne discrimine pas par rapport à S au sens de la définition suivante:

Definition 5 (Equal Opportunity [Hardt et al., 2016]). Une règle de classification g : Rd ×
{0, 1} → {0, 1} est dite équitable en termes d’opportunité ou equal opportunity, si

P (g(X,S) = 1 |S = 1, Y = 1) = P (g(X,S) = 1 |S = 0, Y = 1) ,

où P est la distribution de (X,S, Y ).

En utilisant cette notion de classifieur équitable, notre objectif est d’imiter au mieux la
règle de classification équitable optimale définie par

g∗ ∈ arg min {R(g) : P (g(X,S) = 1 |Y = 1, S = 1) = P (g(X,S) = 1 |Y = 1, S = 0)} ,

où le risque est donné par R(g) = P(Y 6= g(X,S)). Ceci est un exemple de problème où les
contraintes sur les règles de classification dépendent de la distribution. La dépendance en la
distribution inconnue ne permet pas en principe de construire un estimateur ĝ qui satisferait

P (ĝ(X,S) = 1 |Y = 1, S = 1) = P (ĝ(X,S) = 1 |Y = 1, S = 0) ,

presque sûrement. Ainsi, outre l’excès de risque classique, nous voudrions également contrôler
l’ampleur de la violation de cette contrainte, c’est-à-dire que notre objectif est de contrôler
la différence suivante :

E |P (ĝ(X,S) = 1 |Y = 1, S = 1)− P (ĝ(X,S) = 1 |Y = 1, S = 0)| .

Cette question est discutée en détail dans la Section 2.2, où une procédure de type plug-in
semi-supervisée est proposée de même que sa consistance est établie. En outre, les résultats
numériques de la Section 2.2 suggèrent qu’avec un estimateur de P (Y = 1 |X, s) bien choisi,
la procédure proposée permet d’atteindre des performances satisfaisantes.
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1.5.3 Ensembles des confiances
Dans cette partie, nous examinons le problème de la classification multi-classes. C’est-à-dire
que l’ensemble des étiquettes Y ∈ Y = {1, . . . , K} pour K ∈ N \ {0, 1}. Contrairement aux
approches standard, nous considérons une approche par ensembles de confiance. Un ensemble
de confiance Γ est défini comme Γ : Rd → 2Y . Nous introduisons deux caractéristiques de Γ
– l’erreur et l’information définies respectivement par

P(Γ) = P(Y /∈ Γ(X)), I(Γ) = E |Γ(X)| .

Notre point de départ est l’ensemble de confiance oracle défini pour β ∈ {1, . . . , K} comme

Γ∗ ∈ arg min {P(Γ) : I(Γ) = β} .

Comme d’habitude, nous aimerions construire un algorithme Γ̂ et contrôler son excès de
risque. Ce problème a été examiné pour la première fois par Denis and Hebiri [2017] qui
ont fourni un algorithme de type minimisation du risque empirique pour imiter Γ∗β. Dans
l’article [Chzhen et al., 2019a], nous apportons une analyse plus fine de ces ensembles de
confiance et fournissons des conséquences non triviales sur les performances d’algorithmes
semi-supervisés de type plug-in dans ce contexte. En particulier, il est démontré qu’aucune
méthode supervisée ne peut atteindre des vitesses plus rapides que 1/

√
n, même sous une

hypothèse de marge favorable. Au contraire, certaines approches semi-supervisées permettent
de contourner cette limite et de récupérer des vitesses de convergence minimax typiques, à
condition que la taille de l’ensemble non étiqueté soit suffisamment grande.

Dans la section 3.1, le problème de la classification des ensembles de confiance avec une
taille contrôlée en espérance est considéré et les algorithmes semi-supervisés sont étudiés du
point de vue minimax.

1.5.4 Multi-label
Enfin, dans la dernière partie de ce manuscrit, nous considérons Y = {0, 1}L pour L ∈
N \ {0, 1} et les règles de classification sont définies par g : Rd → {0, 1}L. Ce problème
s’appelle la classification multi-label.

Il est intéressant de noter que les applications modernes de la classification multi-label
sont généralement asymétriques dans le traitement des étiquettes, voir [Prabhu and Varma,
2014] et les références qui y figurent. Pour illustrer ce fait, considérons l’exemple suivant lié
à la reconnaissance d’image - pour certains l ∈ [L], le résultat Y l = 1 signifie que l’objet
assigné à la lieme coordonnée est présent dans une image X ∈ Rd. Dans ce contexte, il n’est
pas raisonnable de s’attendre à ce qu’il y ait des images avec tous les objets possibles, c’est-
à-dire que le vecteur des étiquettes Y ∈ {0, 1}L est parcimonieux. En dehors de cela, dans de
nombreuses applications pratiques, il est beaucoup plus avantageux de prédire correctement
l’occurrence de Y l = 1, que Y l = 0. Cette idée a motivé la communauté à étudier le risque
suivant

Rfn(g) = 1
L

L∑
l=1

P(Y l = 1, gl(X) = 0) ,

qui ne considère que le taux de faux négatifs d’une règle de classification g donnée. Nous
étudions deux types de problèmes dans ce contexte. Dans le premier, nous définissons la
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règle de classification optimale comme

g∗ ∈ arg min
{
Rfn(g) :

L∑
l=1

1{gl(X)=1} = K, p.s.
}

,

pour un nombre d’étiquettes positives K ∈ [L] préalablement choisi par un statisticien. Pour
le second problème, nous définissons la règle de classification optimale comme

g∗ ∈ arg min
{
Rfn(g) :

L∑
l=1

P(Y l = 0, gl(X) = 1|X) ≤ β, p.s.
}

,

qui contrôle le taux de faux positifs par le biais du paramètre réel β > 0 également
préalablement choisi par un statisticien.

Dans le chapitre 4, nous examinons ces problèmes en détail et fournissons des vitesses de
convergence dans les deux cas. Un point notable distingue les deux cadres considérés : il est
prouvé au chapitre 4 que le problème du contrôle presque sûr du taux de faux négatifs est
en quelque sorte désespéré si nous n’imposons pas une hypothèse supplémentaire, et plutôt
restrictive, sur la distribution de (X, Y ).
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Chapter 2

Binary classification

In this chapter we study two problems of binary classification and provide semi-supervised
algorithms for each of them. Section 2.1 considers the problem of binary classification with
F-score, briefly discussed in Section 1.1.2. Section 2.2 studies the problem of fair binary
classification of equal opportunity mentioned in Section 1.1.4.

2.1 F-score
Section overview. We study the minimax settings of binary classification with F-score under
the β-smoothness assumptions on the regression function η(x) = P(Y = 1|X = x) for x ∈ Rd.
We propose a classification procedure which under the α-margin assumption achieves the rate
O(n−(1+α)β/(2β+d)) for the excess F-score. It is known that the Bayes optimal classifier for the
F-score can be obtained by thresholding the aforementioned regression function η on some
level θ∗ to be estimated. The proposed procedure is performed in a semi-supervised manner,
that is, for the estimation of the regression function we use a labeled dataset of size n ∈ N
and for the estimation of the optimal threshold θ∗ we use an unlabeled dataset of size N ∈ N.
Interestingly, the value of N ∈ N does not affect the rate of convergence, which indicates
that it is ”harder” to estimate the regression function η than the optimal threshold θ∗. This
further implies that the binary classification with F-score behaves similarly to the standard
settings of binary classification. Finally, we show that the rates achieved by the proposed
procedure are optimal in the minimax sense up to a constant factor.

2.1.1 Introduction
The problem of binary classification is among the most basic and well-studied problems in
statistics and machine learning [Vapnik, 1998, Yang, 1999, Bartlett and Mendelson, 2002,
Audibert, 2004, Massart and Nédélec, 2006, Audibert and Tsybakov, 2007]. Until very re-
cently, theoretical guarantees were almost exclusively formulated in terms of the probability
of misclassification (a.k.a accuracy) as the measure of the risk. This way of measuring the
risk is well suited in the case of “well-balanced” distributions and datasets, that is, when the
occurrence of both classes are similar.

Once this assumption fails to be satisfied, classifiers based on the accuracy might perform
poorly in practice and fail to be relevant. A possible approach to treat such an unbalanced
situation is to modify the measure to be optimized in an appropriate way. A popular choice
for such a measure is the F-score, whose roots can be traced back to the information retrieval
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literature van Rijsbergen [1974], Lewis [1995]. From the statistical point of view there are two
alternative approaches [Ye et al., 2012, Dembczynski et al., 2017] to the theoretical treatment
of the F-score: Population Utility (PU) and Expected Test Utility (ETU). In this chapter
we follow the PU approach which, as noted in [Dembczynski et al., 2017], has stronger roots
in classical statistics. In contrast, the ETU framework favors classifiers which optimize the
expected prediction error over test sets of predefined size and this framework is more related
to the statistical machine learning.

Our goal is to provide minimax analysis of the binary classification with F-score under
non-parametric assumptions.

2.1.2 The problem formulation
For any two real numbers a, b ∈ R we denote by a ∧ b (resp. a ∨ b) the minimum (resp the
maximum) between a and b. The standard Euclidean norm in Rd is denoted by ‖·‖2 and a
ball centered at x ∈ Rd of radius r is denoted by B(x, r). For positive real valued sequences
an, bn : N 7→ R+ we say that an = O(bn) if there exists some positive constantM > 0 such that
for all n ∈ N it holds that an/bn ≤M . We consider a random couple (X, Y ) taking values in
Rd×{0, 1} with joint distribution P. The vector X ∈ Rd is the feature vector and the binary
variable Y ∈ {0, 1} is the label. As a technical assumption we assume that P(Y = 1) 6= 0
in what follows. We denote by PX the marginal distribution of the feature vector X ∈ Rd

and by η(X) := P(Y = 1|X) the regression function. A classifier is any measurable function
g : Rd 7→ {0, 1} and the set of all such functions is denoted by G. We assume that we have
access to two datasets: the first dataset DL

n = {(Xi, Yi)}ni=1 consists of n ∈ N i.i.d. copies of
(X, Y ) ∼ P; and the second dataset DU

N = {Xi}n+N
i=n+1 consists of N ∈ N independent copies

of X ∼ PX . Denote by P⊗n and P⊗NX the distributions of DL
n and DU

N respectively. Moreover,
we denote by E(DL

n,DU
N ) the expectation with respect to the distribution of (DL

n ,DU
N), that is,

with respect to P⊗n ⊗ P⊗NX on the space
(
Rd × {0, 1}

)n
×
(
Rd
)N

. We additionally assume
that the size of the unlabeled dataset is not smaller that the size of the labeled dataset, that
is, N ≥ n1. For a given classifier g : Rd 7→ {0, 1} we define its Fb-score2 for any b > 0 by

Fb(g) := P(Y = 1, g(X) = 1)
b2P(Y = 1) + P(g(X) = 1) .

A Bayes-optimal classifier g∗ : Rd 7→ {0, 1} is any classifier that maximizes the F-score over
G, that is,

g∗ ∈ arg max
g∈G

Fb(g) .

As we have already mentioned in Section 1.1.2, it has been established by Zhao et al. [2013]
that a maximizer of the F1-score can be obtained by comparing the regression function η(X)
with a threshold θ∗ ∈ [0, 1]. Recall that this threshold depends explicitly on the distribution
P and can be obtained as a unique root of

θ 7→ θP(Y = 1)− E(η(X)− θ)+ .

1Note that one can always satisfy this assumption by augmenting DU
N using a portion of DL

n and erasing
labels. Typically, in practice it is easier to gather the unlabeled data then labeled, that is why this assumption
is rather a formality.

2We decided to divide the classical definition of the Fb-score by the factor 1 + b2 to simplify the notation,
thus, it is sufficient to multiply the obtained results by 1+ b2, to recover the results on the classical definition
of the Fb-score.
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In this chapter we generalize the result of [Zhao et al., 2013, Section 6] for an arbitrary value
of b > 0, the proof can be found in Section 2.1.6.

Theorem 4. A Bayes-optimal classifier g∗ can be obtained point-wise for all x ∈ Rd as

g∗(x) = 1{η(x)>θ∗} , (2.1)

where θ∗ ∈ [0, 1] is a threshold which is obtained as a unique solution of

b2θ∗P(Y = 1) = E(η(X)− θ∗)+ .

Moreover, the classifier g∗ satisfies Fb(g∗) = θ∗.

Notice that if the optimal threshold θ∗ ∈ [0, 1] is known a priori, the problem of binary
classification with the F-score is no harder than the standard settings of binary classification
with the accuracy as a performance measure. Though, in general the threshold θ∗ ∈ [0, 1]
should be estimated using the data as it depends on the distribution P. Theorem 4 also
implies an upper bound on the threshold θ∗, indeed, since θ∗ = Fb(g∗) and for any classifier
g ∈ G the F-score is upper-bounded by 1/(1 + b2) we have θ∗ ∈ [0, 1/(1 + b2)].

For any classifier g : Rd 7→ {0, 1} we define its excess score as

Eb(g) := Fb(g∗)− Fb(g), (excess score) .

the excess score is the central object of our analysis and one of our goals here is to provide
an estimator whose excess score is as small as possible. Using Theorem 4 we can show that
the excess score of any classifier g : Rd 7→ {0, 1} can be written in a simple form.

Lemma 2. Let g : Rd 7→ {0, 1} be any classifier and assume that P(Y = 1) 6= 0, then

Eb(g) =
E
[
|η(X)− θ∗|1{g∗(X)6=g(X)}

]
b2P(Y = 1) + P(g(X) = 1) .

Let us mention that in general the Bayes optimal rule is not unique and Theorem 4
only states that one of the optimal classifiers has the form described by Theorem 4. The
function θ 7→ b2θP(Y = 1)−E(η(X)−θ)+ has a unique root (see Section 2.1.6 for the proof),
however, other thresholds may result in the same Bayes rule. Indeed, consider a simple
example η(x) ≡ 1/2, b = 1, then it is easy to see that the solution θ∗ of θ/2 = (1/2 − θ)+
is exactly 1/3, and every Bayes optimal classifier predicts one almost surely. Clearly, any
threshold θ ∈ [0, 1/2) of the regression function η results in the same classifier. Importantly,
Lemma 2 and the equality arg maxg∈G F1(g) = θ∗ are valid only for the threshold θ∗ = 1/3.
In this chapter, we shall always refer to θ∗ being the solution of b2θP(Y = 1) = E(η(X)−θ)+
and we refer to this threshold as the optimal threshold.

Remark 2. For the rest of this section of Chapter 2, we focus only on the value b = 1 to
simplify the presentation. It will be clear from our arguments that the generalization of our
theoretical results to an arbitrary value b > 0 follows straightforwardly from our analysis.

Interestingly, the results above demonstrate that the problem of binary classification with
F-score has a lot in common with the standard settings. Indeed, in both cases the Bayes
optimal classifier is obtained via thresholding the regression function and the expression for
the excess risk is also similar. Consequently, following Section 1.1.2 in this chapter we address
the following questions
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Q1.: Is the problem of binary classification with F-score harder than its more known coun-
terpart? In particular, can the minimax analysis of Audibert and Tsybakov [2007] be
extended to these settings and what is an optimal algorithm?

Q2.: We wonder whether the introduction of unlabeled dataset can improve classification
algorithms in the context of F-score.

Lemma 2 is crucial for our analysis as it allows to use the scheme provided by Audibert
and Tsybakov [2007] for the standard setting of the binary classification. However, as the
threshold θ∗ ∈ [0, 1] is unknown beforehand, this machinery cannot be applied in a straight-
forward way and some effort is required. In this chapter, we pose similar assumptions on the
distribution P to the ones used in [Audibert and Tsybakov, 2007].

Assumption 4 (α-margin assumption). We say that the distribution P of the pair (X, Y ) ∈
Rd × {0, 1} satisfies the α-margin assumption if there exist constants C0 > 0, δ0 ∈ (0, 1/12]
and α > 0 such that for every positive δ ≤ δ0 we have

PX(0 < |η(X)− θ∗| ≤ δ) ≤ C0δ
α .

Remark 3. The case of “α = ∞” is understood in the following manner [Massart and
Nédélec, 2006]: there exists a constant δ0 ∈ (0, 1] such that

PX(0 < |η(X)− θ∗| ≤ δ0) = 0 ,

typically this is the most advantageous situation for the binary classification, as the regression
function η is separated from the optimal threshold θ∗. Assumption 4 specifies the concentration
rate of the regression function η around the optimal threshold θ∗. In order to prove the upper
bounds for the proposed method we actually need to have the margin assumption for all δ > 0
and not only for δ ≤ δ0 However, notice that if Assumption 4 is satisfied, it holds that for all
δ > 0

PX(0 < |η(X)− θ∗| ≤ δ) ≤ c0δ
α ,

where c0 = C0 ∨ δ−α0 .

As already discussed in Section 1.1, this assumption is tightly related to the rate of
convergence in the case of the binary classification [Audibert and Tsybakov, 2007, Massart
and Nédélec, 2006]. The classification algorithm that is proposed in this chapter is based
on a direct estimation of the regression function η and the optimal threshold θ∗. Here,
we consider the case of non-parametric estimation, that is, we assume that the regression
function η : Rd 7→ {0, 1} lies in some class of β-smooth functions and the marginal density
PX of X ∈ Rd admits a density w.r.t. to the Lebesgue measure supported on a well-behaved
compact set and uniformly lower- and upper-bounded. The precise description of these
assumptions is given in Section 2.1.4, where we prove optimality of our rates. As for now, it
is sufficient to assume that there exists a good estimator η̂ based on the labeled set DL

n of
the regression function η.

Assumption 5 (Existence of estimator). There exists an estimator η̂ based on DL
n which

satisfies for all t > 0

P⊗n(|η̂(x)− η(x)| ≥ t) ≤ C1 exp(−C2ant
2) a.s. PX ,

for some universal constants C1, C2 > 0 and an increasing sequence an : N 7→ R+.
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Recall that in the case of β-smooth regression function η : Rd 7→ [0, 1], a typical non-
parametric rate is an = n2β/(2β+d) and it can be achieved by the local polynomial estimator,
see Theorem 3. Finally, in this chapter we assume that the probability P(Y = 1) is lower
bounded by some constant which can be arbitrary small but fixed.

Assumption 6 (Lower bounded P(Y = 1)). We assume that there exists a positive constant
p such that p ≤ P(Y = 1).

It is assumed that the constants C0, C1, C2, p are independent of both n,N ∈ N, however
these constants can depend on the dimension of the problem d, on the value of α > 0 as well
as on each other. The values of the constants p, C0, C1, C2 are not going to impact the rates
of convergence, though they might and will enter as numerical constants in front of the rate.
In contrast, the value of α in the margin assumption will explicitly appear in the obtained
rates.

2.1.3 Related works and contributions
Literature on the binary classification with F-score is rather broad, it spans both applied and
theoretical studies of the problem. It should be noted that the contribution of this part of the
manuscript falls into the Population Utility (PU) approach [Dembczynski et al., 2017], that is,
the expectation is taken in the numerator and the denominator of the F-score simultaneously.
This approach should not be confused with the Expected Test Utility (ETU) approach, for
which a non-asymptotic behavior can differ vastly. We refer the reader to [Dembczynski et al.,
2017, Ye et al., 2012] where the PU and ETU approaches are discussed in depth and their
asymptotic equivalence is established. Since it is not the subject of the present manuscript
we omit this discussion here. The asymptotic statistical theory of the binary classification
with F-score has been studied in the prior literature [Koyejo et al., 2014, Narasimhan et al.,
2014, Menon et al., 2013, Ye et al., 2012]. Let us summarize contributions of this work
and highlight the improvements with respect to the previous results on the non-asymptotic
analysis of the binary classification with F-score.

• We propose a two-step estimator, which first estimates the regression function η and
then the optimal threshold θ∗. Such two-step estimators, which involve an explicit
thresholds tuning, are well-known in the literature and demonstrate promising empir-
ical performance [Koyejo et al., 2014] [Keerthi et al., 2007]. An important novelty
introduced here is the semi-supervised nature of the procedure which can exploit the
unlabeled data. It is already a well established fact that the semi-supervised methods
might [Singh et al., 2009] or might not [Rigollet, 2007] improve supervised estimation
from a statistical point of view. However, from a practical point of view, the most ex-
pensive part of the data gathering process is typically the (correct) labeling. Thus, one
may assume that the unlabeled dataset DU

N is always available in reality and N � n
holds. Our analysis implies that in the setting of binary classification with F-score
the semi-supervised techniques are not superior to the supervised ones. In contrast,
in [Chzhen et al., 2019a] the authors showed that in the context of confidence set clas-
sification semi-supervised classifiers might outperform their supervised counterparts.

• From a theoretical point of view, the most relevant reference is a recent work by Yan
et al. [2018], where the authors have studied a rather broad class of performance mea-
sures for the problem of binary classification, namely Karmic measures whose definition
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relies on the confusion matrix. This class includes the F-score, considered in the present
manuscript. Under similar, though stronger assumptions on the distribution3 of the pair
(X, Y ) ∈ Rd × {0, 1} they proposed an algorithm whose rate of convergence is at most
O(a−(1+1∧α)/2

n ). This rate is rather counter intuitive, since it suggests that if the con-
stant α in the margin assumption is large it does not affect the rate of convergence. In
contrast, here we show that the minimax rate of convergence is of order O(a−(1+α)/2

n ).
That is, it strictly improves upon the results in [Yan et al., 2018] whenever the constant
α > 1. However, it should be noted, that the authors of [Yan et al., 2018] have studied a
much more general family of score functions and the sub-optimal rate is a consequence
of such a generality.

• We show that the constructed estimator is optimal in the minimax sense over the class
of Hölder smooth regression functions. Let us mention that the optimality of the bound
is expected, as in Section 1.1 it is shown that the minimax risk in the standard binary
classification settings is of order a−(1+α)/2

n , and it is achieved by a plug-in rule classifier.
Clearly, it is hard to expect that the rate in a more difficult situation can be improved.
Nevertheless, to the best of our knowledge, the minimax optimality in the context of
binary classification with F-score has not been considered before.

Organization of the section

This contribution is organized as follows: in Section 2.1.4 we present the semi-supervised clas-
sification algorithm; in Section 2.1.4 we establish an upper bound on the excess F-score under
the margin assumption; in Section 2.1.4 we introduce the class of distributions considered in
this chapter and establish a minimax lower bound on the excess F-score.

2.1.4 Main results
In this section we describe the proposed procedure ĝ to estimate the Bayes optimal classifier
g∗ in case of the F-score. This procedure is performed in two steps: on the first step we
estimate the regression function η : Rd 7→ {0, 1} using the labeled data DL

n while on the
second step we estimate the optimal threshold θ∗ based on the unlabeled data DU

N and the
estimator η̂ provided by the first step. To summarize, the classifier ĝ is defined as

ĝ(x) = 1{η̂(x)>θ̂} ,

where η̂ is any estimator satisfying Assumption 5 and θ̂ is the unique solution of

θ

 1
N

∑
Xi∈DU

N

η̂(Xi)

 = 1
N

∑
Xi∈DU

N

(η̂(Xi)− θ)+ . (2.2)

In practice one can use a simple bisection algorithm [Conte and Boor, 1980, Algorithm 3.1] or
its more sophisticated modifications (e.g., regula falsi or the secant method) to approximate
θ̂ with any given precision. For our theoretical analysis we assume that Equation (2.2) is
solved exactly. However a simple modification of our arguments can handle the situation
where the threshold θ̂ is known up to an additive factor εn = O(a−1/2

n ).
3The authors additionally require that the random variable η(X) on [0, 1] admits bounded density.
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Upper bound

The main result of this part of Section 2.1 is an upper bound on the excess-score of our
proposed procedure. Here we provide two theorems, the first one provides an upper bound
on the expected difference between the optimal threshold θ∗ and its estimate θ̂. The second
one gives an upper bound on the excess F-score.

Theorem 5. If there exists an estimator η̂ of the regression function η which satisfies As-
sumption 5, then there exists a constant C > 0 which depends on C0, C1, C2, p such that, the
threshold θ̂ defined in Eq. (2.2) satisfies

E(DL
n,DU

N )|θ∗ − θ̂| ≤ C
(
a−1/2
n +N−1/2

)
.

Theorem 6. If the distribution P of (X, Y ) satisfies the α-margin assumption for some
C0 > 0 and α ≥ 0 and there exists an estimator η̂ of the regression function η which satisfies
Assumption 5, then there exists a constant C > 0 which depends on α,C0, C1, C2, p such that

E(DL
n,DU

N )E(ĝ) ≤ C

(
a
−1+α

2
n +N−

1+α
2

)
,

where ĝ(x) = 1{η̂(x)>θ̂} with the threshold θ̂ defined in Equation (2.2).

Before proceeding to the proofs let us discuss the implications of these results. First of
all, there are two regimes in the bound of Theorems 6, the first one is N ≥ an, in this regime,
the dominant term is a−(1+α)/2

n which is the classical rate of convergence in the standard
settings of binary classification with the α-margin assumption. The second regime is when
N < an, then the dominating term of the bound is N−(1+α)/2. However, let us recall that one
can always augment the second unlabeled dataset DU

N by dividing DL
n into two independent

parts. It implies that the second regime never occurs in our theoretical analysis of the excess
score and the upper bound is actually independent of N . Similar reasoning holds for the case
of the optimal threshold estimation in Theorem 5. Once it is clear that the obtained upper-
bounds are actually independent of the size of the unlabeled dataset DU

N it is interesting to
notice that the dependence on n is the same as in standard binary classification [Audibert and
Tsybakov, 2007]. That is, similarly to the standard settings, binary classification with F-score
can achieve fast (faster than 1/

√
n) and even super-fast (faster than 1/n) rate depending on

the value α and the rate an.
Proofs of both theorems relies on the following lemma, whose proof can be found in

Section 2.1.6, which relates the difference of the threshold to the difference of the empirical
cumulative distribution function (CDF) of η̂ and the CDF of η.

Lemma 3. Let θ̂ ∈ [0, 1] be the threshold which satisfies Equation 2.2, then

∣∣∣θ̂ − θ∗∣∣∣P(Y = 1) ≤
∫ 1

0

∣∣∣∣∣∣∣PX(η(X) ≤ t)− 1
N

∑
Xi∈DU

N

1{η̂(Xi)≤t}

∣∣∣∣∣∣∣ dt .
This result is the main reason why our conclusions on the semi-supervised estimation in

the context of classification with F-score is different from the ones in [Chzhen et al., 2019a,
Singh et al., 2009]. For instance, in [Chzhen et al., 2019a] we also obtain a final decision rule by
thresholding on some estimated level in the contex of confidence set classification. However,
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in the present contribution of this chapter the difference between θ∗ and θ̂ is controlled via
`1-norm of difference of CDF’s, whereas in [Chzhen et al., 2019a] (see Chapter 3 for details)
we control a similar quantity through Wassertstein infinity distance.

The complete proof of Theorems 5 and 6 can be found in Section 2.1.6, and here, we
only sketch the steps which are different from the analysis of Audibert and Tsybakov [2007].
Recall, that due to Lemma 2 we have the following expression for the excess-score E

E(DL
n,DU

N )
E |η(X)− θ∗|1{g∗(X) 6=ĝ(X)}

P(Y = 1) + P(ĝ(X) = 1) ≤
1
p
E(DL

n,DU
N )E |η(X)− θ∗|1{g∗(X) 6=ĝ(X)} .

First of all, notice that if for some x ∈ Rd the event g∗(x) 6= ĝ(x) occurs, than we have

|η(x)− θ∗| ≤ |η(x)− η̂(x)|+ |θ∗ − θ̂| ,

which further implies that at least one of the following inequalities hold for this x ∈ Rd

|η(x)− θ∗| ≤ 2 |η(x)− η̂(x)| ,
≤ 2|θ∗ − θ̂| .

Thus, we can upper bound the excess risk as

E(ĝ) ≤ 1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η(X)−η̂(X)|}︸ ︷︷ ︸

T1

+ 1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|θ∗−θ̂|}︸ ︷︷ ︸

T2

.

The first term on the right hand side (T1) of the inequality can be handled by the peeling
technique used in [Audibert and Tsybakov, 2007, Lemma 3.1.], which implies that, there
exists a constant C ′ = C ′(p, α, C0, C1, C2) > 0 such that

E(DL
n,DU

N )T1 ≤ C ′a
−1+α

2
n .

Hence, it remains to upper bound the second term on the right hand side (T2) of the inequality.
Using Lemma 3 we can upper bound T2 as

T2 ≤
1
p
E |η(X)− θ∗|1{E} ,

with E =
{
p |η(X)− θ∗| ≤ 2

∫ 1
0

∣∣∣PX(η(X) ≤ t)− 1
N

∑
Xi∈DU

N
1{η̂(Xi)≤t}

∣∣∣ dt}. Finally, we upper
bound the indicator 1{E} by the indicators of two events E1 and E2 which are defined as

E1 =

p |η(X)− θ∗| ≤ 4 sup
t∈[0,1]

∣∣∣∣∣∣∣PX(η̂(X) ≤ t)− 1
N

∑
Xi∈DU

N

1{η̂(Xi)≤t}

∣∣∣∣∣∣∣ dt
 ,

E2 =
{
p |η(X)− θ∗| ≤ 4

∫ 1

0
|PX(η̂(X) ≤ t)− PX(η(X) ≤ t)| dt

}
.

Thus, we have the following upper bound on T2

T2 ≤
1
p
E |η(X)− θ∗|1{E1}︸ ︷︷ ︸

T 1
2

+ 1
p
E |η(X)− θ∗|1{E2}︸ ︷︷ ︸

T 2
2

,
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Notice that thanks to the Dvoretzky-Kiefer-Wolfowitz inequality [Dvoretzky et al., 1956,
Massart, 1990] the term

sup
t∈[0,1]

∣∣∣∣∣∣∣PX(η̂(X) ≤ t)− 1
N

∑
Xi∈DU

N

1{η̂(Xi)≤t}

∣∣∣∣∣∣∣ ,
conditionally on DL

n admits an exponential concentration with the rate N−1/2. Hence, using
the margin assumption, one can effortlessly show there exists a constant C ′′ = C ′′(p, α, C0) >
0 such that

E(DL
n,DU

N )T
1
2 ≤ C ′′N−

1+α
2 .

For the second term T 2
2 we proceed as follows

T 2
2 ≤

4
p2E

∫ 1

0
|PX(η̂(X) ≤ t)− PX(η(X) ≤ t)| dt1{E2} ,

thus, using the α-margin assumption we get

T 2
2 ≤

C041+α

p2+α

(∫ 1

0
|PX(η̂(X) ≤ t)− PX(η(X) ≤ t)| dt

)1+α
,

the integral on the right hand side of the bound corresponds to the 1-Wasserstein distance on
the real line, see for instance [Bobkov and Ledoux, 2016, Theorem 2.9] or [Vallender, 1974]
for the proof, and can be further upper-bounded by the L1 norm between η̂ and η, that is

T 2
2 ≤

C041+α

p2+α (EPX |η(X)− η̂(X)|)1+α .

Since the estimator η̂ satisfies Assumption 5, one can show that there exists a constant
C ′′′ = C ′′′(p, α, C0, C1, C2) > 0 such that

E(DL
n,DU

N )T
2
2 ≤ C ′′′a

−1+α
2

n .

Combination of all the inequalities yields the result of Theorem 6. Notice that the same
reasoning starting from Lemma 3 implies the upper bound on the threshold estimation, that
is, Theorem 5.

Lower bound

In the beginning of this part of Section 2.1 by stating the class of joint distribution PΣ of
the random pair (X, Y ) ∈ Rd × {0, 1} that is considered. The first assumption is made on
smoothness of the regression function η : Rd 7→ [0, 1].

Definition 6 (Hölder smoothness). Let L > 0 and β > 0. The class of function Σ(β, L,Rd)
consists of all functions h : Rd 7→ [0, 1] such that for all x, x′ ∈ Rd, we have

|h(x)− hx(x′)| ≤ L ‖x− x′‖β2 ,

where hx(·) is the Taylor expansion of h at point x of degree bβc.
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Assumption 7 ((β, L)-Hölder regression function). The distribution P of the pair (X, Y ) ∈
Rd × {0, 1} is such that η ∈ Σ(β, L,Rd) for some positive β, L.

Assumption 7 is usually not sufficient to guarantee the existence of an estimator η̂ satis-
fying Assumption 5: extra assumptions are required on the marginal distribution PX of the
vector X ∈ Rd.

Definition 7. A Lebesgue measurable set A ⊂ Rd is said to be (c0, r0)-regular for some
constants c0 > 0, r0 > 0 if for every x ∈ A and every r ∈ (0, r0] we have

Leb (A ∩ B(x, r)) ≥ c0 Leb (B(x, r)) ,

where Leb is the Lebesgue measure and B(x, r) is the Euclidean ball of radius r centered at
x.

Assumption 8 (Strong density assumption). We say that the marginal distribution PX of
the vector X ∈ Rd satisfies the strong density assumption if

• PX is supported on a compact (c0, r0)-regular set A ⊂ Rd,

• PX admits a density µ w.r.t. to the Lebesgue measure uniformly lower- and upper-
bounded by µmin > 0 and µmax > 0 respectively.

If the regression function η : Rd 7→ [0, 1] is (β, L)-Hölder and the marginal distribution
satisfies the strong density assumption, one can specify Theorem 3 for a bit more general
case.

Theorem 7 (Audibert and Tsybakov [2007]). Let P be a class of distributions on Rd×{0, 1}
such that the regression function η ∈ Σ(β, L,Rd) and the marginal distribution PX satisfies
the strong density assumption. Then, there exists an estimator η̂ of the regression function
satisfying

sup
P∈P

P⊗n(|η̂(x)− η(x)| ≥ t) ≤ C1 exp
(
−C2n

2β
2β+d t2

)
a.s. PX ,

for come constants C1, C2 depending on β, d, L, c0, r0.

Consider a class of distribution PΣ for which Assumptions 4, 7, 8, 6 are satisfied, then
Theorem 7 and Theorems 5, 6 imply the following corollary.

Corollary 1. There exist constants C,B > 0 which depend only on α, p, d, C0, C1, C2 such
that for any n > 1, N > 1 we have

inf
ĝ

sup
P∈PΣ

E(DL
n,DU

N )E1(ĝ) ≤ Cn−
(1+α)β
2β+d , (2.3)

inf
θ̂

sup
P∈PΣ

E(DL
n,DU

N )

∣∣∣θ∗ − θ̂∣∣∣ ≤ Bn−
β

2β+d . (2.4)

where the infima are taken over all estimators ĝ and θ̂ respectively.

The next theorem states the upper bounds of the previous corollary are optimal up to a
constant multiplicative factor.
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Theorem 8. If αβ ≤ d, there exists constants c > 0 such that for any n > 1, N > 1 we have
the following lower-bound on the minimax risk

inf
ĝ

sup
P∈PΣ

E(DL
n,DU

N )E1(ĝ) ≥ cn−
(1+α)β
2β+d , (2.5)

where the infimum is taken over all estimators ĝ.

The proof of the lower bound can be found in Section 2.1.6, it follows standard
information-theoretic arguments using reduction of the minimax risk to a Bayes risk. The
construction of the distributions is inspired by both [Rigollet and Vert, 2009] and [Audibert
and Tsybakov, 2007], and the actual proof relies precisely on [Audibert, 2004, Lemma 5.1.],
which is based on the Assouad’s lemma, see for instance [Tsybakov, 2009, Lemma 2.12].

2.1.5 Conclusion
In this chapter we proposed a semi-supervised plug-in type algorithm for the problem of
binary classification with F-score. The proposed algorithm can leverage an unlabeled dataset
for the estimation of the optimal threshold. Under the margin assumption it is shown that the
proposed algorithm is optimal in the minimax sense and can achieve fast rates of convergence.
Further development of the binary classification with F-score will be devoted to empirical
risk minimization rules.

2.1.6 Proofs
Bayes classifier and Lemma 2

For the rest of this part the parameter b > 0 is assumed to be fixed and known. Let us first
recall the definition of the Fb-score

Fb(g) = P(Y = 1, g(X) = 1)
b2P(Y = 1) + P(g(X) = 1) ,

and an optimal classifier is defined as

g∗ ∈ arg max
g∈G

Fb(g) .

In this part we would like to show that a classifier defined for all x ∈ Rd as

g∗(x) = 1{η(x)≥θ∗} ,

with θ∗ being a root of

θ 7→ b2P(Y = 1)θ − E(η(X)− θ)+ ,

is an optimal classifier.
Let us first show that θ∗ is well-defined, that is, it exists and is unique for every distribution

with P(Y = 1) 6= 0. Hence, we would like to study solutions of the following equation

b2P(Y = 1)θ = E(η(X)− θ)+ .
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Clearly, the mapping θ 7→ b2P(Y = 1)θ is continuous and strictly increasing on [0, 1] with the
range [0, b2P(Y = 1)] and the mapping θ 7→ E(η(X)− θ)+ is non-increasing on [0, 1] with the
range [0,P(Y = 1)]. Thus, it is sufficient to demonstrate that the mapping θ 7→ E(η(X)−θ)+
is continuous, indeed, let θ, θ′ ∈ [0, 1], then, due to the Lipschitz continuity of (·)+ we can
write

|E(η(X)− θ)+ − E(η(X)− θ′)+| ≤ E |(η(X)− θ)+ − (η(X)− θ′)+| ≤ |θ − θ′| .

This implies that the mapping θ 7→ E(η(X) − θ)+ is a contraction and thus is continuous.
Hence, the threshold θ∗ is well-defined, that is, it exists and is unique. Consequently, the
classifier x 7→ 1{η(x)≥θ∗} is well-defined.

Now, we are interested in the value Fb(g∗), we can write

Fb(g∗) = P(Y = 1, g∗(X) = 1)
b2P(Y = 1) + P(g∗(X) = 1)

= E[η(X)1{η(X)≥θ∗}]
b2P(Y = 1) + P(η(X) ≥ θ∗)

= E[(η(X)− θ∗)1{η(X)≥θ∗}] + θ∗E1{η(X)≥θ∗}

b2P(Y = 1) + P(η(X) ≥ θ∗)

= E(η(X)− θ∗)+ + θ∗P(η(X) ≥ θ∗)
b2P(Y = 1) + P(η(X) ≥ θ∗) ,

using the definition of θ∗ we continue as

Fb(g∗) = E(η(X)− θ∗)+ + θ∗P(η(X) ≥ θ∗)
b2P(Y = 1) + P(η(X) ≥ θ∗)

= θ∗b2P(Y = 1) + θ∗P(η(X) ≥ θ∗)
b2P(Y = 1) + P(η(X) ≥ θ∗) = θ∗ .

To conclude the optimality of g∗ we prove Lemma 2.

Proof. Fix an arbitrary measurable function g : Rd 7→ {0, 1}, then by the definition of the
excess score we have

Eb(g) := P(Y = 1, g∗(X) = 1)
b2P(Y = 1) + P(g∗(X) = 1) −

P(Y = 1, g(X) = 1)
b2P(Y = 1) + P(g(X) = 1)

= Eη(X)1{η(X)>θ∗}

b2P(Y = 1) + P(g∗(X) = 1) −
Eη(X)1{g(X)=1}

b2P(Y = 1) + P(g(X) = 1) .

Now adding and subtracting Eη(X)1{g(X)=1}
b2P(Y=1)+P(g∗(X)=1) on the right hand side of the equality above
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we get

Eb(g) = Eη(X)1{η(X)>θ∗} − Eη(X)1{g(X)=1}

b2P(Y = 1) + P(g∗(X) = 1)

+ Eη(X)1{g(X)=1}

b2P(Y = 1) + P(g(X) = 1)︸ ︷︷ ︸
=Fb(g)

(
P(g(X) = 1)− P(g∗(X) = 1)
b2P(Y = 1) + P(g∗(X) = 1)

)

= E(η(X)− θ∗)(1{η(X)>θ∗} − 1{g(X)=1}) + θ∗(P(g∗(X) = 1)− P(g(X) = 1))
b2P(Y = 1) + P(g∗(X) = 1)

+ Fb(g)
(
P(g(X) = 1)− P(g∗(X) = 1)
b2P(Y = 1) + P(g∗(X) = 1)

)

= E |η(X)− θ∗|1{g∗(X) 6=g(X)}

b2P(Y = 1) + P(g∗(X) = 1) + (θ∗ − Fb(g))P(g∗(X) = 1)− P(g(X) = 1)
b2P(Y = 1) + P(g∗(X) = 1) .

Using Theorem 4 we know that θ∗ = Fb(g∗), therefore θ∗ − Fb(g) = Fb(g∗) − Fb(g) = Eb(g)
and we get

Eb(g) = E |η(X)− θ∗|1{g∗(X)6=g(X)}

b2P(Y = 1) + P(g∗(X) = 1) + Eb(g)P(g∗(X) = 1)− P(g(X) = 1)
b2P(Y = 1) + P(g∗(X) = 1) .

We conclude by solving the previous equality for Eb(g). Thus, g∗ is a Bayes optimal classifier
and hence can be denoted by g∗.

Proof of Lemma 3

Proof. To prove this lemma, it is convenient to rewrite Equation 2.2 in terms of CDF. Let µ
be an arbitrary probability measure on Rd and p : Rd 7→ [0, 1] be any measurable function,
then using Fubini’s theorem we can write∫

p(x)dµ(x) =
∫ ∫ 1

0
1{p(x)>t}dtdµ(x)

=
∫ 1

0
µ(p(X) > t)dt ,

and for any θ ∈ [0, 1], since (p(x)− θ)+ ∈ [0, 1] we have∫
(p(x)− θ)+dµ(x) =

∫ ∫ 1

0
1{p(x)−θ>t}dtdµ(x)

=
∫ ∫ 1+θ

θ
1{p(x)>t}dtdµ(x)

=
∫ ∫ 1

θ
1{p(x)>t}dtdµ(x)

=
∫ 1

θ
µ(p(X) > t)dt .

Let us denote by PX,N = 1
N

∑
Xi∈DU

N
δXi the empirical measure of the unlabeled dataset DU

N .
Using these equalities, the thresholds θ∗, θ̂ ∈ [0, 1] satisfy

θ̂ =
∫ 1
θ̂ PX,N(η̂(X) > t)dt∫ 1
0 PX,N(η̂(X) > t)dt

, θ∗ =
∫ 1
θ∗ PX(η(X) > t)dt∫ 1
0 PX(η(X) > t)dt

.
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Now, we are in position to bound the difference |θ̂ − θ∗|. First, assume that θ∗ ≥ θ̂, then

θ∗ − θ̂ =
∫ 1
θ∗ PX(η(X) > t)dt∫ 1
0 PX(η(X) > t)dt

−
∫ 1
θ̂ PX,N(η̂(X) > t)dt∫ 1
0 PX,N(η̂(X) > t)dt

≤
∫ 1
θ̂ PX(η(X) > t)dt∫ 1
0 PX(η(X) > t)dt

−
∫ 1
θ̂ PX,N(η̂(X) > t)dt∫ 1
0 PX,N(η̂(X) > t)dt

Adding and subtracting
∫ 1
θ̂
PX,N (η̂(X)>t)dt∫ 1

0 PX(η(X)>t)dt
on the right hand side of the above inequality we get

θ∗ − θ̂ ≤
∫ 1
θ̂ (PX(η(X) > t)− PX,N(η̂(X) > t))dt∫ 1

0 PX(η(X) > t)dt

+
∫ 1
θ̂ PX,N(η̂(X) > t)dt∫ 1
0 PX,N(η̂(X) > t)dt︸ ︷︷ ︸

=θ̂

∫ 1
0 (PX,N(η̂(X) > t)− PX(η(X) > t))dt∫ 1

0 PX(η(X) > t)dt

=
∫ 1
θ̂ (PX(η(X) > t)− PX,N(η̂(X) > t))dt− θ̂

∫ 1
0 (PX(η(X) > t)− PX,N(η̂(X) > t))dt∫ 1

0 PX(η(X) > t)dt

≤ 1
P(Y = 1)

∫ 1

0
|PX(η(X) > t)− PX,N(η̂(X) > t)| dt .

Further, if θ̂ > θ∗ we proceed in similarly and write

θ̂ − θ∗ =
∫ 1
θ̂ PX,N(η̂(X) > t)dt∫ 1
0 PX,N(η̂(X) > t)dt

−
∫ 1
θ∗ PX(η(X) > t)dt∫ 1
0 PX(η(X) > t)dt

≤
∫ 1
θ∗ PX,N(η̂(X) > t)dt∫ 1
0 PX,N(η̂(X) > t)dt

−
∫ 1
θ∗ PX(η(X) > t)dt∫ 1
0 PX(η(X) > t)dt

=
∫ 1
θ∗(PX,N(η̂(X) > t)− PX(η(X) > t))dt∫ 1

0 PX(η(X) > t)dt

+
∫ 1
θ∗ PX,N(η̂(X) > t)dt∫ 1
0 PX,N(η̂(X) > t)dt

∫ 1
0 (PX(η(X) > t)− PX,N(η̂(X) > t))dt∫ 1

0 PX(η(X) > t)dt

≤ 1
P(Y = 1)

∫ 1

0
|PX(η(X) > t)− PX,N(η̂(X) > t)| dt ,

where the last inequality follows the same lines as for the case θ̂ ≤ θ∗.

Proof of the upper bound

Let η̂ be an estimator of the regression function based on the labeled dataset DL
n which

satisfies Assumption 5. Recall, that the estimator ĝ is defined for every x ∈ Rd as

ĝ(x) = 1{η̂(x)>θ̂} ,

with θ̂ being the unique solution of Eq. (2.2). Unless stated otherwise, we work conditionally
on (DL

n ,DU
N). Using Lemma 2 we can express the excess score of ĝ as

E1(ĝ) = E |η(X)− θ∗|1{g∗(X)6=ĝ(X)}

P(Y = 1) + P(ĝ(X) = 1) ≤
1
p
E |η(X)− θ∗|1{g∗(X) 6=ĝ(X)} .
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On the event {g∗(X) 6= ĝ(X)} it holds that
{
|η(X)− θ∗| ≤ |η̂(X)− η(X)|+

∣∣∣θ̂ − θ∗∣∣∣}, thus

E1(ĝ) ≤ 1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤|η̂(X)−η(X)|+|θ̂−θ∗|}

≤ 1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|θ̂−θ∗|} + 1

p
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|} .

Using, Lemma 3 the excess risk can be further upper-bounded as

E1(ĝ) ≤1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}

+ 1
p
E |η(X)− θ∗|1{

|η(X)−θ∗|≤ 2
p

∫ 1
0

∣∣∣PX(η(X)≤t)− 1
N

∑
Xi∈DU

N
1{η̂(Xi)≤t}

∣∣∣dt}
≤1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}

+ 1
p
E |η(X)− θ∗|1{

|η(X)−θ∗|≤ 2
p

∫ 1
0 |PX(η(X)≤t)−PX(η̂(X)≤t)|dt

}
+ 1
p
E |η(X)− θ∗|1{

|η(X)−θ∗|≤ 2
p

∫ 1
0

∣∣∣ 1
N

∑
Xi∈DU

N
1{η̂(Xi)≤t}−PX(η̂(X)≤t)

∣∣∣dt} .

Notice that
∫ 1

0 |PX(η(X) ≤ t)− PX(η̂(X) ≤ t)| dt = ‖Fη − Fη̂‖1, with Fη, Fη̂ being the cumu-
lative distribution functions of η, η̂ respectively, corresponds to the 1-Wasserstein distance,
see [Bobkov and Ledoux, 2016] for an in-depth discussion. Therefore, we have∫ 1

0
|PX(η(X) ≤ t)− PX(η̂(X) ≤ t)| dt ≤ EX∼PX |η(X)− η̂(X)| := ‖η − η̂‖1 ,

and introducing notation P̂X := 1
N

∑
Xi∈DU

N
δXi for the empirical measure of the feature vector

X we can write

E1(ĝ) ≤1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}

+ 1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤ 2

p
‖η−η̂‖1}

+ 1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤ 2

p
supt∈[0,1]|P̂X(η̂(X)≤t)−PX(η̂(X)≤t)|} .

Finally, using the margin Assumption 4 we can write

E1(ĝ) ≤1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}

+ 2
p2 ‖η − η̂‖1 P

(
|η(X)− θ∗| ≤ 2

p
‖η − η̂‖1

)

+ 1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤ 2

p
supt∈[0,1]|P̂X(η̂(X)≤t)−PX(η̂(X)≤t)|}

≤1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|} + 2α+1c0

p2+α ‖η − η̂‖
1+α
1

+ 1
p
E |η(X)− θ∗|1{|η(X)−θ∗|≤ 2

p
supt∈[0,1]|P̂X(η̂(X)≤t)−PX(η̂(X)≤t)|} . (2.6)
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Taking expectation on both sides w.r.t. the distribution of (DL
n ,DU

N) we follow [Audibert and
Tsybakov, 2007, Lemma 3.1] to bound the first term on the right hand side. Though this
arguments became classical in statistics, we demonstrate how to performs it for convenience
of the reader. Recall, that our goal is to bound

(?) := EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|} .

For some fixed δ > 0 introduce the following peeling of the space Rd

A0 =
{
x ∈ Rd : 0 < |η(x)− θ∗| ≤ δ

}
,

Aj =
{
x ∈ Rd : 2j−1δ < |η(x)− θ∗| ≤ 2jδ

}
j ∈ N .

Using this partition we can write the following expression for (?)

(?) =
∑
j≥0

EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}1{X∈Aj}

= EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}1{X∈A0}

+
∑
j≥1

EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}1{X∈Aj} .

The first term on the right hand side of this equality is bounded in a straightforward way as

EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}1{X∈A0} ≤ δPX(0 < |η(x)− θ∗| ≤ δ) ≤ c0δ

1+α ,

where in the last inequality the margin assumption is used. The rest of the bound goes in
the following way. Fix some j ∈ N and consider the jth term in the sum appearing in the
expression for (?). For any such term we can write

EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}1{X∈Aj}

= EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}1{2j−1δ<|η(X)−θ∗|≤2jδ}

≤ E |η(X)− θ∗|P⊗n
(
|η̂(X)− η(X)| ≥ 2j−2δ

)
1{0<|η(X)−θ∗|≤2jδ}

≤ 2jδEP⊗n
(
|η̂(X)− η(X)| ≥ 2j−2δ

)
1{0<|η(X)−θ∗|≤2jδ} .

Using the assumption on the estimator η̂, we get for almost all x ∈ Rd w.r.t. PX

P⊗n
(
|η̂(x)− η(x)| ≥ 2j−2δ

)
≤ C1 exp

(
−C2an22j−4δ2

)
.

This implies that for any j ∈ N we have

EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}1{X∈Aj}

≤ C1 exp
(
−C2an22j−4δ2

)
2jδPX

(
0 < |η(X)− θ∗| ≤ 2jδ

)
.

Using the margin assumption again we get for all j ∈ N

EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|}1{X∈Aj} ≤ C1c0 exp

(
−C2an22j−4δ2

)
2(1+α)jδ1+α .

Therefore, we arrived at the following bound on (?)

(?) ≤ c0δ
1+α + C1c0δ

1+α∑
j≥1

exp
(
−C2an22j−4δ2

)
2(1+α)j .
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Fixing δ = a−1/2
n we conclude that for some C > 0

EDL
n
E |η(X)− θ∗|1{|η(X)−θ∗|≤2|η̂(X)−η(X)|} ≤ Ca

1+α
2

n .

Let us come back to Eq. (2.6), using Assumption 5 the term ‖η − η̂‖1+α
1 can be bounded

with the same rate as the previous term. These arguments would imply that there exists
C ≥ 0 such that for all n,N ≥ 1 it holds that

E(DL
n,DU

N )E1(ĝ) ≤ Ca
− 1+α

2
n

+ 1
p
E(DL

n,DU
N )E |η(X)− θ∗|1{|η(X)−θ∗|≤ 2

p
supt∈[0,1]|P̂X(η̂(X)≤t)−PX(η̂(X)≤t)|}

≤ Ca
− 1+α

2
n + 2α+1c0

p2+α E(DL
n,DU

N )

(
sup
t∈[0,1]

∣∣∣P̂X(η̂(X) ≤ t)− PX(η̂(X) ≤ t)
∣∣∣)1+α

.

It remains to upper bound the second term in the bound above, to this end we recall the
classical Dvoretzky-Kiefer-Wolfowitz inequality [Massart, 1990]

Lemma 4 (Dvoretzky-Kiefer-Wolfowitz inequality). Given N ≥ 0, let Z1, . . . , ZN be
i.i.d. real-valued random variables with cumulative distribution function FZ, denote by F̂Z
the cumulative distribution function with respect to the empirical measure, that is, with re-
spect to 1

N

∑N
i=1 δZi, then for every t > 0 we have

P
(

sup
z∈R

∣∣∣F̂Z(z)− FZ(z)
∣∣∣ ≥ t

)
≤ 2 exp

(
−2Nt2

)
.

Let us apply this lemma to Zi := η̂(Xi), conditionally on DL
n these random variables are

i.i.d. real-valued, thus for all t > 0

P
(

sup
z∈[0,1]

∣∣∣P̂X(η̂(X) ≤ z)− PX(η̂(X) ≤ z)
∣∣∣ ≥ t

∣∣∣∣DL
n

)
≤ 2 exp

(
−2Nt2

)
, DL

n-a.s. .

Finally, to conclude the upper bound we apply this exponential concentration to upper bound
the expectation. Introduce the following notation for the supremum of the empirical process

∆(DU
N ,DL

n) := sup
t∈[0,1]

∣∣∣P̂X(η̂(X) ≤ t)− PX(η̂(X) ≤ t
∣∣∣ .

Using this notation we can upper bound the expected supremum as

EDL
n
EDU

N

[(
∆(DU

N ,DL
n)

)1+α
∣∣∣∣DL

n

]
= EDL

n

∫ ∞
0

P
(

∆(DU
N ,DL

n) ≥ t
1

1+α

∣∣∣∣DL
n

)
dt

≤
∫ ∞

0
2 exp

(
−2Nt

2
1+α
)
dt

= N−
1+α

2 2
∫ ∞

0
exp

(
−2t

2
1+α
)
dt

≤ CN−
1+α

2 ,

Combining all the bounds we conclude.
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Proof of the lower bound

Proof. The proof is similar to the one used in [Audibert and Tsybakov, 2007] and in [Rigollet
and Vert, 2009] and is based on Assouad lemma. Similarly, we define the regular grid on Rd

as

Gq :=

(

2k1 + 1
2q , . . . ,

2kd + 1
2q

)>
: ki ∈ {0, . . . , q − 1}, i = 1, . . . , d

 ,

and denote by nq(x) ∈ Gq as the closest point to of the grid Gq to the point x ∈ Rd. Such a
grid defines a partition of the unit cube [0, 1]d ⊂ Rd denoted by X ′1, . . . ,X ′qd . Besides, denote
by X ′−j := {x ∈ Rd : −x ∈ X ′j} for all j = 1, . . . , qd. For a fixed integer m ≤ qd and for any
j ∈ {1, . . . ,m} define Xi := X ′i , X−i := X ′−i. For every σ ∈ {−1, 1}m we define a regression
function ησ as

ησ(x) =



1
4 + σjϕ(x), if x ∈ Xi
1
4 − σjϕ(x), if x ∈ X−i
1
4 , if x ∈ B(0,

√
d) \

(
∪mi=−m,i 6=0Xi

)
τ, if x ∈ Rd \ B(0,

√
d+ ρ)

ξ(x), if x ∈ B(0,
√
d+ ρ) \ B(0,

√
d)

,

where ρ, ϕ, ξ, τ are to be specified and B(0,
√
d+ρ),B(0,

√
d) are Euclidean balls of radius

√
d+

ρ and
√
d respectively. The definition of the function ϕ is exactly the same as in Audibert and

Tsybakov [2007]. That is, ϕ := Cϕq
−βu(q ‖x− nq(x)‖2) with some non-increasing infinitely

differentiable function such that u(x) = 1 for x ∈ [0, 1/4] and u(x) = 0 for x ≥ 1/2. The
function ξ is defined as ξ(x) = (τ − 1/4)v([‖x‖2 −

√
d]/ρ) + 1/4, where v is non-decreasing

infinitely differentiable function such that v(x) = 0 for x ≤ 0 and v(x) = 1 for x ≥ 1. The
constant ρ is chosen big enough to ensure that |ξ(x)−ξx(x′)| ≤ L ‖x− x′‖β2 for any x, x′ ∈ Rd.

For any σ ∈ {−1, 1}m we construct a marginal distribution PX which is independent of
σ and has a density µ w.r.t. to the Lebesgue measure on Rd. Fix some 0 < w ≤ m−1 and
set A0 a Euclidean ball in Rd that has an empty intersection with B(0,

√
d + ρ) and whose

Lebesgue measure is Leb(A0) = 1−mq−d. The density µ is constructed as

• µ(x) = w
Leb(B(0,(4q)−1)) for every z ∈ Gq and every x ∈ B(z, (4q)−1)) or x ∈

B(−z, (4q)−1)),

• µ(x) = 1−2mw
Leb(A0) for every x ∈ A0,

• µ(x) = 0 for every other x ∈ Rd.

To complete the construction it remains to specify the value of τ ∈ [0, 1]. The idea here is to
force the optimal threshold θ∗ to be equal to some predefined constant using the additional
degree of freedom provided by the parameter τ . To achieve this we would like to set θ∗ = 1/4
and we would like to demonstrate that there exists an appropriate choice of τ which ensures
that θ∗ = 1/4. First, recall that the optimal threshold θ∗ for the classification with the
F-score must satisfy the equation

θ∗Eη(X) = E(η(X)− θ∗)+ .
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Define b′ =
∫
X1
ϕ(x)µ(x)dx/

∫
X1
µ(x)dx and put θ∗ = 1/4, notice that the left hand side of

the last equality for every σ ∈ {−1, 1}m is given by

Eµησ(X) =
∫
Rd
η(x)dµ(x)

=
m∑
j=1

∫
Xj

(1/4 + σjξ(x))dµ(x) +
m∑
j=1

∫
X−j

(1/4− σjξ(x))dµ(x) +
∫
A0
τdµ(x)

= mw

2 + τ(1− 2mw) .

For the right hand side Eµ(ησ(X) − 1/4)+, there are two cases τ > 1/4 and 0 < τ ≤ 1/4,
one can easily show that as long as b′ ≤ 1/8 no value of τ ∈ (1, 1/4] allows to fix θ∗ = 1/4.
Therefore, τ > 1/4 and we can write for every σ ∈ {−1, 1}m

Eµ(ησ(X)− 1/4)+ =
m∑
j=1

∫
Xj

(σjξ(x))+dµ(x) +
m∑
j=1

∫
X−j

(−σjξ(x))+dµ(x) +
∫
A0

(τ − 1/4)dµ(x)

= mwb′ + (τ − 1/4)(1− 2mw) .

Finally, the parameter τ must satisfy the following equality
1
4

(
mw

2 + τ(1− 2mw)
)

= mwb′ + (τ − 1/4)(1− 2mw) ,

solving for τ we get

τ = 1
3 +

(
1
12 −

2b′
3

)( 2mw
1− 2mw

)
.

Notice that this choice of τ implies that for all σ ∈ {−1, 1}m the optimal threshold is given
by θ∗ = 1/4. Moreover, if mw ≤ 1/2 we can ensure that the value of τ ∈ [0, 1], that is, it is a
valid choice for the regression function. Let us demonstrate that (the margin) Assumption 4
holds for an appropriate choice of m and w. Define x0 = (1/2q, . . . , 1/2q)>, then for every
σ ∈ {−1, 1} we have

PX(0 < |ησ(X)− 1/4| ≤ δ) = 2mw
Leb(B(0, (4q)−1))

∫
B(x0,(4q)−1)

1{Cϕq−βu(q‖x−nq(x)‖2)≤δ}dx

+ 1− 2mw
Leb(A0)

∫
A0
1{ 1

3 +( 1
12−

2b′
3 )( 2mw

1−2mw)− 1
4≤δ}dx

= 2mw1{δ≥Cϕq−β} + 1− 2mw
Leb(A0)

∫
A0
1{ 1

12 +( 1
12−

2b′
3 )( 2mw

1−2mw)≤δ}dx ,

as long as b′ ≤ 3/24 we can continue as

PX(0 < |ησ(X)− 1/4| ≤ δ) ≤ 2mw1{δ≥Cϕq−β} + 1{δ≥ 1
12}

≤ 2mw1{δ≥Cϕq−β} + 12αδα .

Therefore, if mw is of order q−αβ the margin assumption is satisfied with δ0 = 1/12. The
strong density assumption can be checked similarly to [Audibert and Tsybakov, 2007]. To
finish the proof, for every σ ∈ {−1, 1}m we denote by P σ the distribution of (X, Y ) with the
marginal PX and the regression function ησ. Thus, one can write for any ĝ

sup
P∈PΣ

E(DL
n,DU

N )E(ĝ) ≥ sup
σ∈{−1,1}m

1
2E

σ
(DL

n,DU
N )

m∑
i=−m,i 6=0

EPX |ϕ(X)|1{(1+sign(i)σi)/26=ĝ(X)}1{X∈Xi} ,
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where Eσ(DL
n,DU

N ) is the expectation taken w.r.t. to the i.i.d. realizations of DL
n and DU

N from
P σ and PX respectively, and sign(i) = 1 if i > 0 and sign(i) = −1 if i < 0.

The rest of the proof can be obtained in various ways. First of all we can follow line by
line the proof of [Audibert, 2004, Lemma 5.1.] and in particular the chain of inequalities
in [Audibert, 2004, Eq. (6.26)]. As noted by Audibert this machinery gives the best known
constants in the lower bound. Though this proof is relatively simple, it also requires to
introduce a lot of notation. That is why we follow another path, namely, we shall apply
Fano’s inequality in the form obtained by Birgé [2005]. Let us recall this inequality and
other notions that are required, we also provide these definitions in Appendix.
Definition 8. Given any two probability measures P1,P2 on some space measurable space
(X ,A) the Kullback–Leibler divergence between P1 and P2 is defined as

KL(P1,P2) :=

∫
X log

(
dP1
dP2

)
dP1, supp(P1) ⊂ supp(P2)

+∞, otherwise
, (2.7)

Fano’s inequality in the form proved by [Birgé, 2005] is then stated as.
Lemma 5. Let {Pi}mi=0 be a finite family of probability measures on (X ,A) and let {Ai}mi=0
be a finite family of disjoint events such that Ai ∈ A for each i = 0, . . . ,m. Then,

min
i∈{0,1,...,m}

Pi(Ai) ≤
(

0.71
∨ 1

m

∑m
i=1 KL(Pi,P0)

log(m+ 1)

)
.

To apply this inequality we need to simplify our problem. To this end, for any algorithm
ĝ we write

sup
P∈PΣ

E(DL
n,DU

N )E(ĝ) ≥ sup
σ∈{−1,1}m

1
2E

σ
(DL

n,DU
N )

m∑
i=1

EPX |ϕ(X)|1{ 1+σi
2 6=ĝ(X)}1{X∈Xi} ,

where we have dropped the summation over negative indices i ∈ {−m, . . . ,−1}. Now, for
some set W ⊂ {−1, 1}m to be specified define the following test statistics

σ̂ ∈ arg min
{

m∑
i=1

EPX |ϕ(X)|1{ 1+σi
2 6=ĝ(X)}1{X∈Xi} : σ ∈ W

}
.

Now, for any estimator ĝ and each σ ∈ W such that σ 6= σ̂ we can write thanks to the
definition of σ̂ and the triangle inequality

2
m∑
i=1

EPX |ϕ(X)|1{ 1+σi
2 6=ĝ(X)}1{X∈Xi} =

m∑
i=1

EPX |ϕ(X)|1{ 1+σi
2 6=ĝ(X)}1{X∈Xi}

+
m∑
i=1

EPX |ϕ(X)|1{ 1+σi
2 6=ĝ(X)}1{X∈Xi}

≥
m∑
i=1

EPX |ϕ(X)|1{ 1+σi
2 6=ĝ(X)}1{X∈Xi}

+
m∑
i=1

EPX |ϕ(X)|1{ 1+σ̂i
2 6=ĝ(X)}1{X∈Xi}

≥
m∑
i=1

EPX |ϕ(X)|1{σi 6=σ̂i}1{X∈Xi}

= EPX
[
|ϕ(X)|1{X∈X1}

] m∑
i=1

1{σi 6=σ̂i}
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Now let us define the set W , this set is provided by classical result in information theory,
typically called Varshamov-Gilbert lemma [Gilbert, 1952, Varshamov, 1957].
Lemma 6. Let δ(σ, σ′) denote the Hamming distance between σ, σ′ ∈ {−1, 1}m given by

δ(σ, σ′) :=
m∑
i=1

1{σi 6=σ′i} .

There exists W ⊂ {−1, 1}m such that for all σ 6= σ′ ∈ W we have

δ(σ, σ′) ≥ m

4 ,

and log |W| ≥ m
8 .

Using the set W provided by the previous result we can state that for any method ĝ and
any σ ∈ W such that σ 6= σ̂ we have
m∑
i=1

EPX |ϕ(X)|1{ 1+σi
2 6=ĝ(X)}1{X∈Xi} ≥ EPX [|ϕ(X)| |X ∈ X1]PX(X ∈ X1)m8 = Cϕq

−βwm

8 .

Thus, we demonstrated that for every ĝ we have

sup
P∈PΣ

E(DL
n,DU

N )E(ĝ) ≥ Cϕq
−βwm

16 max
σ∈W

E(DL
n,DU

N )1{σ 6=σ̂}

= Cϕq
−βwm

16

(
1−min

σ∈W
E(DL

n,DU
N )1{σ=σ̂}

)
Notice that the event Aσ = {σ = σ̂} are disjoint, thus, we can apply Fano’s inequality and
obtain

sup
P∈PΣ

E(DL
n,DU

N )E(ĝ) ≥ Cϕq
−βwm

16

1−

0.71
∨ 1
|W|

∑
σ∈W KL

(
P⊗NX ⊗ (Pσ)⊗n,P⊗NX ⊗ (Pσ̄)⊗n

)
log(|W|+ 1)

 ,

where σ̄ is an arbitrary element of W . Therefore, it remains to upper-bound the KL-
divergence between any two fixed σ, σ̄ ∈ W . We can write for product measures

KL
(
P⊗NX ⊗ (Pσ)⊗n,P⊗NX ⊗ (Pσ̄)⊗n

)
≤ nKL(Pσ,Pσ̄) ,

and for some C > 0 we have

KL(Pσ,Pσ̄) ≤ 2
m∑

i=−m,i 6=0
µ

(
ϕ(X) log

(
1/4 + ϕ(X)
1/4− ϕ(X)

)
, X ∈ Xi

)
≤ Cq−2βwm .

We arrived at the following bound for any ĝ

sup
P∈PΣ

E(DL
n,DU

N )E(ĝ) ≥ Cϕq
−βwm

16

(
1−

(
0.71

∨ Cq−2βwmn

log(|W |+ 1)

))
.

Recall that thanks to Varshamov-Gilbert lemma we know that

log |W| ≥ m

8 .
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Therefore, we get for some C > 0 and every estimator ĝ

sup
P∈PΣ

E(DL
n,DU

N )E(ĝ) ≥ Cϕq
−βwm

16
(
1−

(
0.71

∨
Cq−2βwn

))
.

Finally, we conclude by setting the parameters m,w, q as

q = bC̄n
1

2β+d c, w = C ′q−d, m = bC ′′qd−αβc .

Note that thanks to the condition αβ ≤ d such a choice is always valid for appropriately
chosen constants C̄, C ′, C ′′.

2.2 Fair binary classification
Section overview. We study the problem of fair binary classification using the notion of Equal
Opportunity that requires the true positive rate to distribute equally across the sensitive
groups. Within this setting we show that the fair optimal classifier is obtained by recalibrating
the Bayes classifier by a group-dependent threshold, and we provide a constructive expression
for the thresholds. This motivates us to devise a plug-in classification procedure based on
both unlabeled and labeled datasets. While the latter is used to learn the output conditional
probability, the former is used for calibration. The overall procedure can be computed in
polynomial time and it is shown to be statistically consistent both in terms of the classification
error and fairness measure. Finally, we present numerical experiments which indicate that
our method is often superior or competitive with the state-of-the-art methods on benchmark
datasets.

2.2.1 Introduction
As machine learning is spreading more and more in our society, the potential risk of using
algorithms that behave unfairly is rising. As a result there is growing interest to design
learning methods that meet “fairness” requirements, see, e.g., [Barocas et al., 2018, Donini
et al., 2018, Dwork et al., 2018, Hardt et al., 2016, Zafar et al., 2017, Zemel et al., 2013,
Kilbertus et al., 2017, Kusner et al., 2017, Calmon et al., 2017, Joseph et al., 2016, Chierichetti
et al., 2017, Jabbari et al., 2016, Yao and Huang, 2017, Lum and Johndrow, 2016, Zliobaite,
2015] and references therein. A central goal is to make sure that sensitive information does
not “unfairly” influence the outcomes of learning methods. For instance, if we wish to predict
whether a university student applicant should be offered a scholarship based on curriculum,
we would like our model to not unfairly use additional sensitive information such as gender
or race.

Several measures of fairness of a classifier have been studied in the literature [Zafar et al.,
2019], ranging from Demographic Parity [Calders et al., 2009], Equal Odds and Equal Op-
portunity [Hardt et al., 2016], Disparate Treatment, Impact, and Mistreatment [Zafar et al.,
2017], which were introduced in Section 1.1.4. In this part of Section 2.2, we study the prob-
lem of learning a binary classifier which satisfies the Equal Opportunity fairness constraint.
It requires that the true positive rate of the classifier is the same across the sensitive groups.
This notion has been used extensively in the literature either as a postprocessing step [Hardt
et al., 2016] on a learned classifier or directly during training, see for example [Donini et al.,
2018] and references therein.
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We address the important problem of devising statistically consistent and computation-
ally efficient learning procedures that meet the fairness constraint. Specifically, we make
four contributions. First, we derive in Proposition 2 the expression for the optimal equal
opportunity classifier, obtained via thresholding of the Bayes classifier. Second, inspired by
the above result we propose a semi-supervised plug-in type method, which first estimates the
regression function on labeled data and then estimates the unknown threshold using unla-
beled data. Third, we establish in Theorem 9 that the proposed procedure is consistent, that
is, it asymptotically satisfies the equal opportunity constraint and its risk converges to the
risk of the optimal equal opportunity classifier. Finally, we present numerical experiments
which indicate that our method is often superior or competitive with the state-of-the-art on
benchmark datasets.

We highlight that the proposed learning algorithm can be applied on top of any off-the
shelf method which consistently estimates the regression function (class condition proba-
bility), under mild additional assumptions which we discuss later on. Furthermore, our
calibration procedure is based on solving a simple univariate problem. Hence the generality,
statistical consistency and computational efficiency are strengths of our approach.

Organization of the section

This contribution is organized in the following manner. In Section 2.2.2, we introduce the
problem and we derive a form of the optimal equal opportunity classifier. Section 2.2.3 is
devoted to the description of our method. In Section 2.2.4 we introduce assumptions used
throughout this chapter and establish that the proposed learning algorithm is consistent.
Finally, Section 2.2.5 presents numerical experiments with our method.

Related work

In this part we review previous contributions on the subject of fair classification of equall
opportunity. Works on algorithmic fairness can be divided in three families. Our algorithm
falls within the first family, which modifies a pre-trained classifier in order to increase its
fairness properties while maintaining as much as possible the classification performance,
see [Pleiss et al., 2017, Beutel et al., 2017, Hardt et al., 2016, Feldman et al., 2015] and
references therein. Importantly, for our approach the post-processing step requires only
unlabeled data, which is often easier to collect than its labeled counterpart. Methods in the
second family enforce fairness directly during the training step, e.g. [Oneto et al., 2019b,
Donini et al., 2018, Agarwal et al., 2018, Cotter et al., 2018]. The third family of methods
implements fairness by modifying the data representation and then employs standard machine
learning methods, see e.g. [Donini et al., 2018, Adebayo and Kagal, 2016, Calmon et al.,
2017, Kamiran and Calders, 2009, Zemel et al., 2013, Kamiran and Calders, 2012, 2010] as
representative examples.

To the best of our knowledge the formula for the optimal fair classifier presented here
is novel. In [Hardt et al., 2016] the authors note that the optimal equalized odds or equal
opportunity classifier can be derived from the Bayes optimal classifier, however, no explicit
expression for this threshold is provided. The idea of recalibrating the Bayes classifier is also
discussed in a number of papers, see for example [Pleiss et al., 2017, Menon and Williamson,
2018] and references therein. More importantly, the problem of deriving efficient and con-
sistent estimators under fairness constraints has received limited attention in the literature.
In [Donini et al., 2018], the authors present consistency results under restrictive assumptions
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on the model class. Furthermore, they only consider convex approximations of the risk and
fairness constraint and it is not clear how to relate their results to the original problem with
the misclassification risk. In [Agarwal et al., 2018], the authors reduce the problem of fair
classification to a sequence of cost-sensitive problems by leveraging a saddle point formu-
lation. They show that their algorithm is consistent in both risk and fairness constraints.
However, similarly to [Donini et al., 2018], the authors of [Agarwal et al., 2018] assume that
the family of possible classifiers admits a bounded Rademacher complexity.

Plug-in methods in classification problems are well established and are well studied from
statistical perspective, see [Yang, 1999, Audibert and Tsybakov, 2007, Devroye, 1978] and
references therein. In particular, let us recall Section 1.1 where we reviewed the works
of [Yang, 1999, Audibert and Tsybakov, 2007] who showed that one can build a plug-in
type classifier which is optimal in minimax sense. Until very recently, theoretical studies of
plug-in methods were reduced to an efficient estimation of the regression function. Indeed,
as it is shown Section 1.1, for standard settings of classification the threshold is always
known beforehand, thus, all the information about the optimal classifier is wrapped into the
distribution of the label conditionally on the feature.

More recently, classification problems with a distribution dependent threshold have
emerged, constrained classification considered in this manuscript being a particular example
of such a problem. Other prominent examples include classification with non-decomposable
measures [Yan et al., 2018, Koyejo et al., 2015, Zhao et al., 2013] (e.g., the F-score setup
in Section 2.1), classification with reject option [Denis and Hebiri, 2015a, Lei, 2014], and
confidence set setup (a particular instance of the constrained classification frameowork, see
Chapter 3) of multi-class classification [Chzhen et al., 2019a, Sadinle et al., 2018, Denis
and Hebiri, 2017], among others. A typical estimation algorithm in these scenarios is based
on plug-in strategies, which use extra data to estimate the unknown threshold as noted in
Section 1.0.3.

2.2.2 Optimal Equal Opportunity classifier
Let (X,S, Y ) be a tuple on Rd×{0, 1}×{0, 1} having a joint distribution P. Here the vector
X ∈ Rd is seen as the vector of features, S ∈ {0, 1} a binary sensitive variable and Y ∈ {0, 1}
a binary output label that we wish to predict from the pair (X,S). We also assume that the
distribution is non-degenerate in Y and S that is P(S = 1) ∈ (0, 1) and P(Y = 1) ∈ (0, 1).
A classifier g is a measurable function from Rd × {0, 1} to {0, 1}, and the set of all such
functions is denoted by G. In words, each classifier receives a pair (x, s) ∈ Rd × {0, 1} and
outputs a binary prediction g(x, s) ∈ {0, 1}. For any classifier g we introduce its associated
misclassification risk as

R(g) := P (g(X,S) 6= Y ) . (2.8)

In the context of fair classification the ultimate goal is to recover a fair optimal classifier
which is formally defined as a Bayes classifier of a constrained problem as

g∗ ∈ arg min
g∈G

{R(g) : g is fair} .

There are various definitions of fairness available in the literature, each having its critics
and its supporters. In Section 2.2, we employ the following definition introduced in [Hardt
et al., 2016]. We refer the reader to that work as well as [Donini et al., 2018, Agarwal et al.,
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2018, Menon and Williamson, 2018] for a discussion, motivation of this definition, and a
comparison to other fairness definitions. For the convenience of the reader let us again recall
the definition of Equall Opportunity discussed in Section 1.1.4.

Definition 9 (Equal Opportunity [Hardt et al., 2016]). A classifier (x, s) 7→ g(x, s) ∈ {0, 1}
is called fair if

P (g(X,S) = 1 |S = 1, Y = 1) = P (g(X,S) = 1 |S = 0, Y = 1) .

The set of all fair classifiers is denoted by F(P).

Again note, that as in general constrained classification framework, the definition of
fairness depends on the underlying distribution P and hence the whole class F(P) of the fair
classifiers should be estimated. Interestingly, in this case the class F(P) is non-empty for any
distribution P as it always contains the classifier which always outputs the zero label.

Using this notion of fairness and following the idea of the constrained classification we
define an optimal equal opportunity classifier as a solution of the optimization problem

min
g∈G
{R(g) : P (g(X,S) = 1 |Y = 1, S = 1) = P (g(X,S) = 1 |Y = 1, S = 0)} . (2.9)

We now introduce an assumption on the regression function that plays an important role in
establishing the form of the optimal fair classifier. This assumption was already discussed in
Section 1.1.3, where we introduced general framework for constrained classification.

Assumption 9. For each s ∈ {0, 1} we require the mapping t 7→ P (η(X,S) ≤ t |S = s) to
be continuous on (0, 1), where for all (x, s) ∈ Rd × {0, 1}, we let the regression function

η(x, s) := P (Y = 1 |X = x, S = s) = E [Y |X = x, S = s] .

Moreover, for every s ∈ {0, 1}, we assume that P (η(X, s) ≥ 1/2 |S = s) > 0.

Let us mention, that the first part of Assumption 9 is achieved by many distributions and
has been already introduced in various contexts, see e.g., [Chzhen et al., 2019a, Yan et al.,
2018, Sadinle et al., 2018, Denis and Hebiri, 2015a, Lei, 2014] (most of them are examples
of constrained classifications). It says that, for every s ∈ {0, 1} the random variable η(X, s)
does not have atoms, that is, the event {η(X, s) = t} has probability zero. The second part
of the assumption is specific to the problem of fair classification. It states that the regression
function η(X, s) must surpass the level 1/2 on a set of non-zero measure. Informally, returning
to the scholarship example mentioned in the introduction, this assumption means that there
are individuals from both groups who are more likely to be offered a scholarship based on
their curriculum.

In the following result we establish that the optimal equal opportunity classifier is obtained
by recalibrating the Bayes classifier. Let us mention, that one can obtain this result using
the general framework of Section 1.1.3, however, for convenience we include the direct proof
in Section 2.2.8.

Proposition 2 (Optimal Rule). Under Assumption 9 an optimal classifier g∗ can be obtained
for all (x, s) ∈ Rd × {0, 1} as

g∗(x, 1) = 1{1≤η(x,1)(2− θ∗
P(Y=1,S=1))}, g∗(x, 0) = 1{1≤η(x,0)(2+ θ∗

P(Y=1,S=0))} (2.10)
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where θ∗ ∈ R is determined from the equation

EX|S=1

[
η(X, 1)1{1≤η(X,1)(2− θ∗

P(Y=1,S=1))}
]

P (Y = 1 |S = 1) =
EX|S=0

[
η(X, 0)1{1≤η(X,0)(2+ θ∗

P(Y=1,S=0))}
]

P (Y = 1 |S = 0) .

Furthermore it holds that |θ∗| ≤ 2.

Proof sketch. The proof relies on weak duality. The first step of the proof is to write the
minimization problem for g∗ using a “min-max” problem formulation. We consider the cor-
responding dual “max-min” problem and show that it can be analytically solved. Then, the
continuity part of Assumption 9 allows to demonstrate that the solution of the “max-min”
problem gives a solution of the “min-max” problem. The second part of Assumption 9 is
used to prove that |θ∗| ≤ 2.

It is interesting to point out that in case of the F-score classification discussed in Sec-
tion 2.1 we did not require the continuity assumption introduced here. The reason for such
a discrepancy was already partially addressed by Remark 1, where we showed a way to re-
lax the continuity assumption in general constrained framework. In particular, recall the
condition on the threshold θ∗ in case of the F-score reads as

θ∗P(Y = 1) = E(η(X)− θ∗)+.

As it is shown in Section 2.1.6, such value θ∗ always exists, thus, the continuity assumption
in case of the F-score is not required.

Before proceeding further, let us define a measure of unfairness, which plays a key role in
our statistical analysis, it is seen as the violation of constraints discussed in Chapter 1; the
following notion is sometimes referred to as the Difference of Equal Opportunity (DEO) in
the literature; see e.g., [Donini et al., 2018].

Definition 10 (Unfairness). For any classifier g we define its unfairness as

∆(g,P) = |P (g(X,S) = 1 |S = 1, Y = 1)− P (g(X,S) = 1 |S = 0, Y = 1)| .

Recall that in constrained classification, a principal goal is to construct a classification
algorithm ĝ which satisfies

E[∆(ĝ,P)]→ 0︸ ︷︷ ︸
asymptotically fair

, and E[R(ĝ)]→ R(g∗)︸ ︷︷ ︸
asymptotically optimal

,

where the expectations are taken with respect to the distribution of data samples. As we
shall see our estimator is built from independent sets of labeled and unlabeled samples, that
is, it is semi-supervised. Hence the convergence above is meant to hold as both samples grow
to infinity.

2.2.3 Proposed procedure
In this part of Section 2.2, we present the proposed plug-in procedure. We assume that we
have at our disposal two datasets, labeled DL

n and unlabeled DU
N defined as

DL
n = {(Xi, Si, Yi)}ni=1

i.i.d.∼ P, and DU
N = {(Xi, Si)}n+N

i=n+1
i.i.d.∼ P(X,S) ,
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where P(X,S) is the marginal distribution of the vector (X,S). We additionally assume that
the estimator η̂ of the regression function is constructed from DL

n , independently of DU
N .

Let us denote by ÊX|S=1 and ÊX|S=0 the expectation taken w.r.t. the conditional empirical
distributions induced by DU

N , that is,

P̂X|S=s = 1
|{(X,S) ∈ DU

N : S = s}|
∑

{(X,S)∈DU
N :S=s}

δX ,

for all s ∈ {0, 1}, and by ÊS the expectation taken w.r.t. the empirical measure of S, that is,
P̂S = 1

N

∑
(X,S)∈DU

N
δS.

Remark 4. In theory, the empirical distributions might not be well defined, since they are
only valid if the unlabeled dataset DU

N is composed of features from both groups. We show
how to bypass this problem theoretically in Section 2.2.8. Nevertheless, this remark has little
to no impact in practice and in most situations these quantities are well defined.

Based on the estimator η̂ and the unlabeled sample DU
N , let us introduce the following

estimators for each s ∈ {0, 1}

P̂(Y = 1, S = s) := ÊX|S=s[η̂(X, s)]P̂S(S = s) .

Using the above estimators, as suggested in Section 1.0.3, a straightforward procedure
to mimic the optimal classifier g∗ provided by Proposition 2 is to employ a plug-in rule ĝ,
obtained by replacing all the unknown quantities by either their empirical versions or their
estimates. Specifically, we define ĝ at (x, s) ∈ Rd × {0, 1} by

ĝ(x, 1) = 1{
1≤η̂(x,1)

(
2− θ̂

P̂(Y=1,S=1)

)}, ĝ(x, 0) = 1{
1≤η̂(x,0)

(
2+ θ̂

P̂(Y=1,S=0)

)} . (2.11)

It remains now to define the value of θ̂. Clearly it is desirable to mimic the condition that is
satisfied by θ∗ in Proposition 2. To this end, we make use of the unlabeled dataset DU

N and
of the estimator η̂ previously built from the labeled dataset DL

n . Consequently, we define a
data-driven version of unfairness ∆(g,P), which allows to construct an approximation θ̂ of
the true value θ∗.

Definition 11 (Empirical unfairness). For any classifier g, an estimator η̂ based on DL
n, and

unlabeled sample DU
N the empirical unfairness is defined as

∆̂(g,P) =
∣∣∣∣∣∣ ÊX|S=1η̂(X, 1)g(X, 1)

ÊX|S=1η̂(X, 1)
−

ÊX|S=0η̂(X, 0)g(X, 0)
ÊX|S=0η̂(X, 0)

∣∣∣∣∣∣ .
Notice that the empirical unfairness ∆̂(g,P) is data-driven, that is, it does not involve

unknown quantities. One might wonder why it is an empirical version of the quantity ∆(g,P)
in Definition 10 and what is the reason to introduce it. The definition reveals itself when we
rewrite the population of unfairness ∆(g,P) using4 the identity

P (g(X,S) = 1 |S = s, Y = 1) = P (g(X,S) = 1, Y = 1 |S = s)
P (Y = 1 |S = s) = EX|S=s[η(X, s)g(X, s)]

EX|S=s[η(X, s)] .

4Note additionally that for all s ∈ {0, 1} we can write 1{Y =1,g(X,s)=1} ≡ Y g(X, s), since both Y and g
are binary.
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Using the above expression we can rewrite

∆(g,P) =
∣∣∣∣∣EX|S=1[η(X, 1)g(X, 1)]

EX|S=1[η(X, 1)] −
EX|S=0[η(X, 0)g(X, 0)]

EX|S=0[η(X, 0)]

∣∣∣∣∣ .
Hence, the passage from the population unfairness to its empirical version in Definition 11
formally reduces to substituting “hats” to all the unknown quantities.

Using Definition 11, a logical estimator θ̂ of θ∗ can be obtained as

θ̂ ∈ arg min
θ∈[−2,2]

∆̂(ĝθ,P) ,

where, for all θ ∈ [−2, 2], ĝθ is defined at (x, s) ∈ Rd × {0, 1} as

ĝθ(x, 1) = 1{
1≤η̂(x,1)

(
2− θ

P̂(Y=1,S=1)

)}, ĝθ(x, 0) = 1{
1≤η̂(x,0)

(
2+ θ

P̂(Y=1,S=0)

)} . (2.12)

The proposed estimator ĝ is then given by ĝ ≡ ĝθ̂. Notice that since the quantity ∆̂(ĝθ,P) is
empirical, then there might be no θ which delivers zero for the empirical unfairness. This is
exactly the reason we perform a minimization of this quantity.

Remark 5. Even though we believe that the introduction of the unlabeled sample is one of
the strong points of this manuscript, this sample may not be available on some benchmark
datasets. In this case, we can simply randomly split the data into two parts disregarding
labels in one of them, or alternatively we can use the same sample twice. The second path
is not directly justified by our theoretical results, yet, let us suggest the following intuitive
explanation for this approach. On the first and the second steps, our procedure approximates
two independent parts of the distribution P of the random tuple (X,S, Y ). Indeed, following
the factorization P = PY |X,S ⊗ P(X,S), the first step of our procedure approximates PY |X,S,
whereas the second step is aimed at P(X,S) which is independent from PY |X,S. In our experi-
ments, reported in Section 2.2.5, we exploited the same set of data for both Dn and DN , since
no unlabelled sample were available and splitting the dataset would have reduced the quality
of the trained model because the datasets have a small sample size.

Besides, notice that this procedure shares the same spirit with the procedure introduced
in Section 2.1 in the context of binary classification with the F-score. Indeed, the first steps
of both procedure is identical, whereas the second step relies on similar ideas of the threshold
estimation.

2.2.4 Consistency
In this part we establish that the proposed procedure is consistent in terms of both risk and
constraint. To present our theoretical results we impose two assumptions on the estimator η̂
and demonstrate how to satisfy them in practice.

Assumption 10. The estimator η̂ which is constructed from DL
n satisfies for all s ∈ {0, 1}

(i) EDL
n
EX|S=s |η(X,S)− η̂(X,S)| → 0 as n→∞;

(ii) There exists a sequence cn,N > 0 satisfying 1
cn,N

√
N

= on,N (1) and cn,N = on,N (1) such
that EX|S=s[η̂(X,S)] ≥ cn,N almost surely.
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(ii) η̂(x) ≥ 0 almost surely for almost all x ∈ Rd

Remark 6. There are two parts in Assumption 10, the first one requires a consistent estima-
tor in `1 norm. This first assumption is rather weak, since there are many different available
consistent estimators for the regression function in the literature, including the Maximum
likelihood estimator [Yan et al., 2018] for Gaussian Generative Model, local polynomial esti-
mator [Audibert and Tsybakov, 2007] for β-Hölder smooth regression function η(·, s), regular-
ized logistic regression [van de Geer, 2008] for Generalized Linear Model, k-Nearest Neighbors
estimator [Devroye, 1978] for Lipschitz regression function η(·, s), and random forest type es-
timators in various settings [Breiman, 2004, Genuer, 2012, Arlot and Genuer, 2014, Scornet
et al., 2015].
The second part of Assumption 10 means that EX|S=s[η̂(X, s)] is lower bounded by a posi-
tive term vanishing as N, n grow to infinity. This condition can be introduced artificially
to any predefined estimator. Indeed, assume that we have a consistent estimator η̃ and let
η̂(x, s) = max{η̃(x, s), cn,N}, then the second item of the assumption is satisfied in even a
stronger form. Moreover, this estimator η̂ remains consistent, since using the triangle in-
equality and the fact that |η̂(x, s)− η̃(x, s)| ≤ cn,N for all x ∈ Rd, we have

EDL
n
EX|S=s |η(X, s)− η̂(X, s)| ≤ EDL

n
EX|S=s |η(X, s)− η̃(X, s)|+ cn,N → 0 .

Additionally, we impose one more condition on the estimator η̂ which will also be used
in the context of confidence set classification described in Chapter 3.

Assumption 11. The estimator η̂ is such that for all s ∈ {0, 1} the mapping

t 7→ P (η̂(X, s) ≤ t |S = s) ,

is continuous on (0, 1) almost surely.

In the fairness setup this assumption allows us to show that the value of ∆̂(ĝ,P) cannot
be large, that is, the empirical unfairness of the proposed procedure is small or zero. As we
shall see, a control on the empirical unfairness ∆̂(ĝ,P) in Definition 11 is crucial in proving
that the proposed procedure ĝ achieves both asymptotic fairness and risk consistency.

Remark 7. Assumption 11 is equivalent to say that there are no atoms in the estimated
regression function. It can be fulfilled by a simple modification of any preliminary estimator,
by adding a small deterministic “noise”, the amplitude of which must be decreasing with n,N
in order to preserve statistical consistency.

Our remarks suggest that both Assumptions 10 and 11 can be easily satisfied in a variety
of practical settings and the most demanding part of these assumptions is the consistency of
η̂.

The next result establishes the statistical consistency of the proposed algorithm.

Theorem 9 (Asymptotic properties). Under Assumptions 9, 10, and 11 the proposed algo-
rithm satisfies

lim
n,N→∞

E(DL
n,DU

N )[∆(ĝ,P)] = 0 and lim
n,N→∞

E(DL
n,DU

N )[R(ĝ)] ≤ R(g∗) .
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Proof sketch. In order to establish statistical consistency of the proposed procedure, we first
introduce an intermediate pseudo-estimator g̃ as follows

g̃(x, 1) = 1{
1≤η̂(x,1)

(
2− θ̃

EX|S=1[η̂(X,1)]P(S=1)

)} , g̃(x, 0) = 1{
1≤η̂(x,0)

(
2+ θ̃

EX|S=0[η̂(X,0)]P(S=0)

)} ,

(2.13)

where θ̃ is chosen such that

EX|S=1 [η̂(X, 1)g̃(X, 1)]
EX|S=1[η̂(X, 1)] =EX|S=0 [η̂(X, 0)g̃(X, 0)]

EX|S=0[η̂(X, 0)] . (2.14)

Note that by Assumption 11 such a value θ̃ always exists. Intuitively, the classifier g̃ “knows”
the marginal distribution of (X,S), that is, it knows both PX|s and PS. It is seen as an
idealized version of ĝ, where the uncertainty is only induced by the lack of knowledge of the
regression function η.

We express the excess risk as a sum of two terms, EDL
n
[R(g̃)]−R(g∗) +

E(DL
n,DU

N )[R(ĝ)−R(g̃)]. We show that the first can be bounded by the `1 distance between
η̂ and η, and thanks to the consistency of η̂ it converges to zero. The handling of the second
term is more involved, but we are able to show that it reduces to a study of suprema of
empirical processes conditionally on the labeled sample DL

n . Same strategy will be used in
Chapter 3 in the context of confidence set classification.

To demonstrate that the proposed algorithm is asymptotically fair, we first show that

E(DL
n,DU

N )[∆(ĝ,P)] ≤ E(DL
n,DU

N )[∆̂(ĝ,P)] + on,N(1) .

At last, the continuity Assumption 11 and the theory of empirical processes allow us to show
that the term E(DL

n,DU
N )[∆̂(ĝ,P)] converges to zero when N grows to infinity. See Section 2.2.8

for complete proof of this result.

Remark 8. Let us mention that it is possible to present our result in a finite sample regime,
since our proof of consistency is based on non-asymptotic theory of empirical processes. How-
ever, the actual rate of convergence depends on the rate of `1-norm estimation of the regression
function η, which can vary significantly from one setup to another. That is why we decided
to present our result in the asymptotic sense.

2.2.5 Experimental results
Here we present numerical experiments with the proposed method.

We follow the protocol outlined in [Donini et al., 2018]. We consider the following datasets:
Arrhythmia, COMPAS, Adult, German, and Drug5 and compare the following algorithms:
Linear Support Vector Machines (Lin.SVM), Support Vector Machines with the Gaussian
kernel (SVM), Linear Logistic Regression (Lin.LR), Logistic Regression with the Gaussian
kernel (LR), Hardt method [Hardt et al., 2016] to all approaches (Hardt), Zafar method [Zafar
et al., 2017] implemented with the code provided by the authors for the linear case6, the
Linear (Lin.Donini) and the Non Linear methods (Donini) proposed in [Donini et al., 2018]

5For more information about these datasets please refer to [Donini et al., 2018].
6Python code for [Zafar et al., 2017]: https://github.com/mbilalzafar/fair-classification
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Arrhythmia COMPAS Adult German Drug
Method ACC DEO ACC DEO ACC DEO ACC DEO ACC DEO
Lin.SVM 0.78±0.07 0.13±0.04 0.75±0.01 0.15±0.02 0.80 0.13 0.69±0.04 0.11±0.10 0.81±0.02 0.41±0.06
Lin.LR 0.79±0.06 0.13±0.05 0.76±0.02 0.16±0.02 0.81 0.12 0.67±0.05 0.12±0.11 0.80±0.01 0.42±0.05
Lin.SVM+Hardt 0.74±0.06 0.07±0.04 0.67±0.03 0.21±0.09 0.80 0.10 0.61±0.15 0.15±0.13 0.77±0.02 0.22±0.09
Lin.LR+Hardt 0.75±0.04 0.08±0.05 0.67±0.02 0.18±0.07 0.81 0.09 0.62±0.05 0.13±0.09 0.76±0.01 0.18±0.04
Zafar 0.71±0.03 0.03±0.02 0.69±0.02 0.10±0.06 0.78 0.05 0.62±0.09 0.13±0.11 0.69±0.03 0.02±0.07
Lin.Donini 0.79±0.07 0.04±0.03 0.76±0.01 0.04±0.03 0.77 0.01 0.69±0.04 0.05±0.03 0.79±0.02 0.05±0.03
Lin.SVM+Ours 0.75±0.08 0.04±0.04 0.73±0.01 0.05±0.02 0.79 0.03 0.68±0.04 0.04±0.03 0.78±0.02 0.01±0.02
Lin.LR+Ours 0.75±0.06 0.04±0.05 0.74±0.02 0.06±0.02 0.80 0.03 0.67±0.05 0.04±0.03 0.77±0.03 0.02±0.02
SVM 0.78±0.06 0.13±0.04 0.73±0.01 0.14±0.02 0.82 0.14 0.74±0.03 0.10±0.06 0.81±0.04 0.38±0.03
LR 0.79±0.05 0.12±0.04 0.74±0.01 0.14±0.02 0.81 0.15 0.75±0.03 0.11±0.06 0.82±0.01 0.37±0.03
RF 0.83±0.03 0.09±0.02 0.77±0.02 0.11±0.02 0.86 0.12 0.78±0.02 0.09±0.04 0.86±0.01 0.29±0.02
SVM+Hardt 0.74±0.06 0.07±0.04 0.71±0.02 0.08±0.02 0.82 0.11 0.71±0.03 0.11±0.18 0.75±0.11 0.14±0.08
LR+Hardt 0.73±0.05 0.10±0.04 0.70±0.02 0.09±0.02 0.80 0.12 0.72±0.04 0.09±0.06 0.77±0.03 0.11±0.04
RF+Hardt 0.79±0.03 0.07±0.01 0.76±0.01 0.07±0.02 0.83 0.05 0.76±0.02 0.06±0.04 0.82±0.01 0.09±0.02
Donini 0.79±0.09 0.03±0.02 0.73±0.01 0.05±0.03 0.81 0.01 0.73±0.04 0.05±0.03 0.80±0.03 0.07±0.05
SVM+Ours 0.77±0.07 0.04±0.02 0.72±0.02 0.06±0.02 0.80 0.02 0.73±0.03 0.04±0.06 0.79±0.02 0.05±0.01
LR+Ours 0.77±0.06 0.04±0.02 0.73±0.01 0.06±0.02 0.80 0.02 0.73±0.02 0.04±0.06 0.80±0.01 0.05±0.02
RF+Ours 0.81±0.04 0.03±0.01 0.76±0.02 0.04±0.02 0.85 0.03 0.77±0.02 0.02±0.02 0.83±0.01 0.04±0.02

Table 2.1: Results (average ± standard deviation, when a fixed test set is not provided) for
all the datasets, concerning ACC and DEO.

Figure 2.1: Results of Table 2.1 of linear (left) and nonlinear (right) methods when the error
and the DEO are normalized in [0, 1] column-wise. Different colors and symbols refer to
different datasets and method respectively. The closer a point is to the origin, the better the
result is.

and freely available7, and also Random Forests (RF). Then, since Lin.SVM, SVM, Lin.LR,
LR, and RF have also the possibility to output a probability together with the classification,
we applied our method in all these cases.

In all experiments, we collect statistics concerning the classification accuracy (ACC),
namely probability to correctly classify a sample, and the Difference of Equal Opportunity
(DEO) in Definition 9. For Arrhythmia, COMPAS, German and Drug datasets we split the
data in two parts (70% train and 30% test), this procedure is repeated 30 times, and we
reported the average performance on the test set alongside its standard deviation. For the
Adult dataset, we used the provided split of train and test sets. Unless otherwise stated,
we employ two steps in the 10-fold CV procedure proposed in [Donini et al., 2018] to select
the best hyperparameters with the training set8. In the first step, the value of the hyper-

7Python code for [Donini et al., 2018]: https://github.com/jmikko/fair_ERM
8The regularization parameter (for all method) and the RBF kernel with 30 values, equally spaced in loga-
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parameters with the highest accuracy is identified. In the second step, we shortlist all the
hyperparameters with accuracy close to the best one (in our case, above 90% of the best
accuracy). Finally, from this list, we select the hyperparameters with the lowest DEO.

We also present in Figure 2.1 the results of Table 2.1 for linear (left) and nonlinear (right)
methods, when the error (one minus ACC) and the DEO are normalized in [0, 1] column-
wise. In the figure, different colors and symbols refer to different datasets and methods,
respectively. The closer a point is to the origin, the better the result is.

From Table 2.1 and Figure 2.1 it is possible to observe that the proposed method out-
performs all methods except the one of [Donini et al., 2018] for which we obtain comparable
performance. Nevertheless, note that our method is more general than the one of [Donini
et al., 2018], since it can be applied to any algorithms which return a probability estimator
(better if consistent since this will allow us to have a full consistent approach also from the
fairness point of view). In fact, on these datasets, RF, which cannot be made trivially fair
with the approach proposed in [Donini et al., 2018], outperforms all the available methods.

Note that the results reported in Table 2.1 differ from the one reported in [Donini et al.,
2018] since the proposed method requires the knowledge of the sensitive variable at classi-
fication time, so Table 2.1 reports just this case. That is, the functional form of the model
explicitly depends on the sensitive variable s ∈ {0, 1}. Many authors, point out that this
may not be permitted in several practical scenarios (see e.g. [Dwork et al., 2018, Roemer
and Trannoy, 2015] and reference therein). Yet, removing the sensitive variable from the
functional form of the model does not ensure that the sensitive variable is not considered
by the model itself. We refer to [Oneto et al., 2019a] for the in-depth discussion on this
issue. Further, the method in [Hardt et al., 2016] explicitly requires the knowledge of the
sensitive variable for their thresholding procedure. In Section 2.2.6 we show how to modify
our method in order to derive a fair optimal classifier without the sensitive variable s in the
functional form of the model. Moreover, we propose a modification of our approach which
does not use s at decision time and perform additional numerical comparison in this context.
We arrive to similar conclusions about the performance of our method as in this part. Yet,
the consistency results are not available for this methods and are left for future investigation.

2.2.6 Optimal classifier independent of sensitive feature
In this part we provide guidelines to construct a plug-in algorithm which can use the sensitive
feature only at training time but cannot use it for future decision making. It is clear that
the first step would be to derive fair optimal classifier g∗ : Rd → {0, 1} which is defined as

g∗ ∈ arg min {R(g) : P (g(X) = 1 |S = 1, Y = 1) = P (g(X) = 1 |S = 0, Y = 1)} ,

with R(g) := P(Y 6= g(X)). Next result establishes this expression.

Proposition 3 (Optimal rule). Under Assumption 9 an optimal classifier g∗ can be obtained
for all x ∈ Rd as

g∗(x) = 1{
1≤2η(x)+θ∗

(
η(x,0)

EX [η(X,0)]−
η(x,1)

EX [η(X,1)]

)} ,

rithmic scale between 10−4 and 104. For RF the number of trees has been set to 1000 and the size of the subset
of features optimized at each node has been search in {d, dd15/16e, dd7/8e, dd3/4e, dd1/2e, dd1/4e, dd1/8e, dd1/16e, 1}
where d is the number of features in the dataset.
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Arrhythmia COMPAS Adult German Drug
Method ACC DEO ACC DEO ACC DEO ACC DEO ACC DEO
Lin.SVM 0.71±0.05 0.10±0.03 0.72±0.01 0.12±0.02 0.78 0.09 0.69±0.04 0.11±0.10 0.79±0.02 0.25±0.04
Lin.LR 0.71±0.04 0.11±0.04 0.73±0.02 0.10±0.03 0.80 0.08 0.68±0.05 0.12±0.09 0.80±0.03 0.23±0.03
Lin.SVM+Hardt - - - - - - - - - -
Lin.LR+Hardt - - - - - - - - - -
Zafar 0.67±0.03 0.05±0.02 0.69±0.01 0.10±0.08 0.76 0.05 0.62±0.09 0.13±0.10 0.66±0.03 0.06±0.06
Lin.Donini 0.75±0.05 0.05±0.02 0.73±0.01 0.07±0.02 0.75 0.01 0.69±0.04 0.06±0.03 0.79±0.02 0.10±0.06
Lin.SVM+Ours 0.72±0.05 0.03±0.01 0.72±0.01 0.06±0.02 0.74 0.02 0.68±0.04 0.06±0.04 0.78±0.02 0.12±0.02
Lin.LR+Ours 0.71±0.04 0.04±0.02 0.71±0.02 0.06±0.02 0.76 0.02 0.67±0.05 0.05±0.03 0.79±0.03 0.10±0.01
SVM 0.71±0.05 0.10±0.03 0.73±0.01 0.11±0.02 0.79 0.08 0.74±0.03 0.10±0.06 0.81±0.02 0.22±0.03
LR 0.70±0.06 0.10±0.03 0.74±0.01 0.10±0.02 0.78 0.10 0.75±0.03 0.09±0.05 0.81±0.03 0.21±0.02
RF 0.81±0.02 0.08±0.02 0.76±0.03 0.10±0.02 0.84 0.11 0.77±0.03 0.07±0.04 0.85±0.02 0.19±0.02
SVM+Hardt - - - - - - - - - -
LR+Hardt - - - - - - - - - -
RF+Hardt - - - - - - - - - -
Donini 0.75±0.05 0.05±0.02 0.72±0.01 0.08±0.02 0.77 0.01 0.73±0.04 0.05±0.03 0.79±0.03 0.10±0.05
SVM+Ours 0.71±0.02 0.06±0.02 0.72±0.01 0.05±0.02 0.78 0.02 0.73±0.01 0.06±0.03 0.78±0.02 0.11±0.02
LR+Ours 0.70±0.04 0.06±0.03 0.72±0.01 0.06±0.02 0.77 0.02 0.73±0.02 0.06±0.02 0.77±0.02 0.11±0.02
RF+Ours 0.80±0.03 0.02±0.01 0.76±0.02 0.04±0.02 0.84 0.02 0.76±0.03 0.04±0.02 0.83±0.01 0.06±0.02

Table 2.2: Results (average ± standard deviation, when a fixed test set is not provided) for
all the datasets, concerning ACC and DEO. In this case the sensitive feature is not in the
functional form of the model.

where θ∗ is such that the equality

EX [η(X, 1)g∗(X)]
EX [η(X, 1)] =EX [η(X, 0)g∗(X)]

EX [η(X, 0)] ,

is satisfied and η(·) := P (Y = 1 |X = ·).

Observe that to efficiently compute the optimal classifier in this case we need to have
access to η(x), η(x, s) and marginal distribution PX .

This observation motivates us to propose a plug-in algorithm based on two datasets
DL
n = {(Xi, Si, Yi)}ni=1 and DU

N = {Xi}Ni=1. The labeled data DL
n allow to estimate η(x), η(x, s)

and the unlabeled data DU
N allow to estimate the marginal distribution PX . Interestingly, we

do not need to observe sensitive features in the unlabeled dataset DU
N .

Formally, our procedure ĝ in this case can be defined for all x ∈ Rd as

ĝ(x) = 1{
1≤2η̂(x)+θ̂

(
η̂(x,0)

ÊX [η̂(X,0)]
− η̂(x,1)

ÊX [η(X,1)]

)} ,

where η̂(x), η̂(x, s) for all s ∈ {0, 1} are the estimates of regression functions constructed
from DL

n , and ÊX is the empirical expectation based on DU
N .

Finally, similarly to the previous case the threshold θ̂ is defined as

θ̂ ∈ arg min
θ

∣∣∣∣∣ ÊX [η̂(X, 1)ĝθ(X)]
ÊX [η̂(X, 1)]

− ÊX [η̂(X, 0)ĝθ(X)]
ÊX [η̂(X, 0)]

∣∣∣∣∣ ,
with ĝθ defined for all x ∈ Rd as

ĝθ(x) = 1{
1≤2η̂(x)+θ

(
η̂(x,0)

ÊX [η̂(X,0)]
− η̂(x,1)

ÊX [η(X,1)]

)} .

66



Figure 2.2: Results of Table 2.2 of linear (left) and nonlinear (right) methods when the error
and the DEO are normalized in [0, 1] column-wise. Different colors and symbols refer to
different datasets and method respectively. The closer a point is to the origin, the better the
result is. In this case the sensitive feature is not in the functional form of the model.

Experiments without the sensitive feature

Here we report the equivalent results to those in Table 2.1 and Figure 2.1 into Table 2.2 and
Figure 2.2 when the sensitive feature is not in the functional form of the model. Note that
the method of Hardt [Hardt et al., 2016] is not able to deal with this setting then there are
no results for this case.

From Table 2.2 and Figure 2.2 we can observe analogous results to those in Section 2.2.5.
Nevertheless, note that, without the sensitive feature in the functional form of the models,
the results are generally less accurate and more fair w.r.t. to the case that the sensitive
feature in the functional form of the models. This results is similar to the one reported
in [Donini et al., 2018].

2.2.7 Conclusion
Using the notion of equal opportunity we have derived a form of the fair optimal classi-
fier based on group-dependent threshold. Relying on this result we have proposed a semi-
supervised plug-in method which enjoys strong theoretical guarantees under mild assump-
tions. Importantly, our algorithm can be implemented on top of any base classifier which has
conditional probabilities as outputs. We have conducted an extensive numerical evaluation
comparing our procedure against the state-of-the-art approaches and have demonstrated that
our procedure performs well in practice. In future works we would like to extend our analy-
sis to other fairness measures as well as provide consistency results for the algorithm which
does not use the sensitive feature at the decision time. Finally, we note that our consistency
result is constructive and could be used to derive non-asymptotic rates of convergence for
the proposed method, relying upon available rates for the regression function estimator.

2.2.8 Proofs
In this part of Section 2.2, we provide proofs of the results stated in the main body of
Section 2.2 and collect some auxiliary results. Specifically, this part contains the proof of
Proposition 2, results (with proofs) needed for the proof of Theorem 9.
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Optimal classifier

Proof of Proposition 2. Let us study the following minimization problem

(∗) := min
g∈G
{R(g) : P (g(X,S)=1 |Y=1, S=1) = P (g(X,S)=1 |Y=1, S=0)} .

Using the weak duality we can write

(∗) = min
g∈G

max
λ∈R
{R(g) + λ (P (g(X,S)=1 |Y=1, S=1)− P (g(X,S)=1 |Y=1, S=0))}

≥ max
λ∈R

min
g∈G
{R(g) + λ (P (g(X,S)=1 |Y=1, S=1)− P (g(X,S)=1 |Y=1, S=0))} =: (∗∗) .

We first study the objective function of the max min problem (∗∗), which is equal to

P(g(X,S) 6= Y ) + λ (P (g(X,S)=1 |Y=1, S=1)− P (g(X,S)=1 |Y=1, S=0)) .

The first step of the proof is to simplify the expression above to linear functional of the
classifier g. Notice that we can write for the first term

P(g(X,S) 6= Y ) = P(g(X,S)=0, Y=1) + P(g(X,S)=1, Y=0)
= P(g(X,S)=1) + P(Y=1)− P(g(X,S)=1, Y=1)− P(g(X,S)=1, Y=1)
= P(g(X,S)=1) + P(Y=1)− 2P(g(X,S)=1, Y=1)
= P(Y=1) + E[g(X,S)]− 2E

[
1{g(X,S)=1,Y=1} |S=1

]
P(S=1)

− 2E
[
1{g(X,S)=1,Y=1} |S=0

]
P(S=0)

= P(Y=1) + E[g(X,S)]− 2EX|S=1[g(X, 1)η(X, 1)]P(S=1)
− 2EX|S=0[g(X, 0)η(X, 0)]P(S=0)

= P(Y=1)− EX|S=1[g(X, 1)(2η(X, 1)− 1)]P(S=1)
− EX|S=0[g(X, 0)(2η(X, 0)− 1)]P(S=0) .

Moreover, we can write for the rest

P (g(X,S) = 1 |Y = 1, S = 1) = P (g(X,S) = 1, Y = 1 |S = 1)
P (Y = 1 |S = 1) = EX|S=1[g(X, 1)η(X, 1)]

P (Y = 1 |S = 1) ,

P (g(X,S) = 1 |Y = 1, S = 0) = P (g(X,S) = 1, Y = 1 |S = 0)
P (Y = 1 |S = 0) = EX|S=0[g(X, 0)η(X, 0)]

P (Y = 1 |S = 0) .

Using these, the objective of (∗∗) can be simplified as

P(Y = 1) + EX|S=1

[
g(X, 1)

(
η(X, 1)

(
λ

P (Y = 1 |S = 1) − 2P(S = 1)
)

+ P(S = 1)
)]

+ EX|S=0

[
g(X, 0)

(
η(X, 0)

(
− λ

P (Y = 1 |S = 0) − 2P(S = 0)
)

+ P(S = 0)
)]

.

Clearly, for every λ ∈ R a minimizer g∗λ of the problem (∗∗) can be written for all x ∈ Rd as

g∗λ(x, 1) = 1{η(X,1)( λ
P(Y=1 |S=1)−2P(S=1))+P(S=1)≤0} = 1{1−η(X,1)(2− λ

P(Y=1,S=1))≤0}
g∗λ(x, 0) = 1{η(X,0)(− λ

P(Y=1 |S=0)−2P(S=0))+P(S=0)≤0} = 1{1−η(X,0)(2+ λ
P(Y=1,S=0))≤0} .
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At this moment it is interesting to reflect on this result. Indeed, for λ = 0 we recover the
classical optimal predictor in the context of binary classification. Substituting this classifier
into the objective of (∗∗) we arrive at

(∗∗) = P(Y = 1)−min
λ∈R

EX|S=1

(
η(X, 1)

(
2P(S = 1)− λ

P (Y = 1 |S = 1)

)
− P(S = 1)

)
+

+ EX|S=0

(
η(X, 0)

(
2P(S = 0) + λ

P (Y = 1 |S = 0)

)
− P(S = 0)

)
+

 .

It is important to observe that the mappings

λ 7→ EX|S=1

(
η(X, 1)

(
2P(S = 1)− λ

P (Y = 1 |S = 1)

)
− P(S = 1)

)
+

λ 7→ EX|S=0

(
η(X, 0)

(
2P(S = 0) + λ

P (Y = 1 |S = 0)

)
− P(S = 0)

)
+
,

are convex, therefore we can write the first order optimality conditions as

0 ∈∂λEX|S=1

(
η(X, 1)

(
2P(S = 1)− λ

P (Y = 1 |S = 1)

)
− P(S = 1)

)
+

+ ∂λEX|S=0

(
η(X, 0)

(
2P(S = 0) + λ

P (Y = 1 |S = 0)

)
− P(S = 0)

)
+
.

Clearly, under Assumption 9 this subgradient is reduced to the gradient almost surely, thus
we have the following condition on the optimal value of λ∗

EX|S=1 [η(X, 1)g∗λ∗(X, 1)]
P (Y = 1 |S = 1) =EX|S=0 [η(X, 0)g∗λ∗(X, 0)]

P (Y = 1 |S = 0) ,

and the pair (λ∗, g∗λ∗) is a solution of the dual problem (∗∗). Notice that the previous condition
can be written as

P (g∗λ∗(X,S) = 1 |Y = 1, S = 1) = P (g∗λ∗(X,S) = 1 |Y = 1, S = 0) .

This implies that the classifier g∗λ∗ is fair, that is, it satisfies Definition 9. Finally, it remains
to show that g∗λ∗ is actually an optimal classifier, indeed, since g∗λ∗ is fair we can write on the
one hand

R(g∗λ∗)≥min
g∈G
{R(g) : P (g(X,S) = 1 |Y = 1, S = 1) =P (g(X,S) = 1 |Y = 1, S = 0)}=(∗).

On the other hand the pair (λ∗, g∗λ∗) is a solution of the dual problem (∗∗), thus we have

(∗) ≥R(g∗λ∗) + λ∗ (P (g∗λ∗(X,S) = 1 |Y = 1, S = 1)− P (g∗λ∗(X,S) = 1 |Y = 1, S = 0))
= R(g∗λ∗) .

It implies that the classifier g∗λ∗ is optimal, hence g∗ ≡ g∗λ∗ .
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Finally, assume that (2 − θ∗/P(Y = 1, S = 1)) ≤ 0, then, clearly (2 + θ∗/P(Y = 1, S =
0)) > 0, therefore, the condition on θ∗ reads as

0 = EX|S=0

[
η(X, 0)1{1≤η(X,0)(2+ θ∗

P(Y=1,S=0))}
]
≥

P
(
η(X, 0) ≥ 1

(2+ θ∗
P(Y=1,S=0))

|S = 0
)

(
2 + θ∗

P(Y=1,S=0)

)
≥ P (η(X, 0) ≥ 1/2 |S = 0)(

2 + θ∗

P(Y=1,S=0)

) > 0 ,

where the last inequality is due to Assumption 9. We arrive to contradiction, therefore
(2 − θ∗/P(Y = 1, S = 1)) > 0. Similarly, we show that (2 + θ∗/P(Y = 1, S = 0)) > 0.
Combination of both inequalities and the fact that for all s ∈ {0, 1} we have P(Y = 1, S =
s) ≤ 1 implies that |θ∗| ≤ 2.

Auxiliary results

Before proceeding to the proof of our main result in Theorem 9, let us first introduce several
auxiliary results. We suggest the reader to first understand these results omitting its proofs
before proceeding further. We will use C > 0 as a generic constant which actually could be
different from line to line, yet, this constant is always independent from n,N .

Remark 9. In this part of the manuscript it is assumed that the unlabeled dataset is sampled
i.i.d. from P(X,S), it implies that in theory this dataset could be composed of only features
belonging to either of the group. Clearly, since P(S = 1) > 0 and P(S = 0) > 0 then a
situation has an extremely small probability of appearing, in terms of N . There are various
ways to alleviate this issue. The first one is conditioning on the event that we have at
least one sample from each group, however, we have found that this approach unnecessarily
over complicates our derivations and does not bring any insights. That is why, we follows
another path, which is much simpler, though, might look a little strange at first sight. We
actually augment DU

N by four points (X1, 1), (X2, 1), (X3, 0), (X4, 0) which are sampled as
X1, X2

i.i.d.∼ PX|S=1 and X3, X4
i.i.d.∼ PX|S=0. Once it is done we can safely assume that DU

N

consists of at least two features from each group. The above is simply a technicality which
allows to present our result in a correct way.

The next lemma can be found in [Cribari-Neto et al., 2000].

Lemma 7. Let Z be a binomial random variable with parameters N, p, then for every α ∈ R

E[(1 + Z)α] = O ((Np)α) .

Lemma 8. For any classifier g we have

R(g) = E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)g(X,S)] .

Proof. We can write

R(g) := P(Y 6= g(X,S)) = E[Y (1− g(X,S))] + E[(1− Y )g(X,S)]
= E(X,S)η(X,S)(1− g(X,S)) + E(X,S)(1− η(X,S))g(X,S)
= E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)g(X,S)] .
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In what follows we shall often use the relations:

P(Y = 1, S = s) = P (Y = 1 |S = s)P(S = s) ,

P (Y = 1 |S = s) = EX|S=s[η(X, s)] .

which holds for all s ∈ {0, 1}.

Proof of Theorem 9

Below we gather extra tools which are directly related to the proof of our main result, proof
are provided later in this section. First lemma gives an upper on the quantity of unfairness
∆(g,P) in terms of its empirical version in Definition 11.

Lemma 9. Let g be any classifier (data depended or not) and η̂ be an estimator of the
regression function η constructed from DL

n. Then, almost surely we have

∆(g,P) ≤ ∆̂(g,P) + 2EX|S=1 |η(X, 1)− η̂(X, 1)|
P (Y = 1 |S = 1)︸ ︷︷ ︸

how good is η̂

+ 2EX|S=0 |η(X, 0)− η̂(X, 0)|
P (Y = 1 |S = 0)︸ ︷︷ ︸

how good is η̂

+

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)g(X, 1)
∣∣∣

EX|S=1η̂(X, 1)︸ ︷︷ ︸
empirical process

+

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)g(X, 0)
∣∣∣

EX|S=0η̂(X, 0)︸ ︷︷ ︸
empirical process

+

∣∣∣ÊX|S=1η̂(X, 1)− EX|S=1η̂(X, 1)
∣∣∣

EX|S=1η̂(X, 1) +

∣∣∣ÊX|S=0η̂(X, 0)− EX|S=0η̂(X, 0)
∣∣∣

EX|S=0η̂(X, 0) .

The next lemma gives an upper bound on the empirical processes of Lemma 9.

Lemma 10. There exists a constant C > 0 that depends only on P(S = 0) and P(S = 1)
such that almost surely for all s ∈ {0, 1} we have

EDU
N

sup
t∈[0,1]

∣∣∣(EX|S=s − ÊX|S=s)η̂(X, s)1{t≤η̂(X,s)}

∣∣∣ ≤ C

√
1
N

.

The next result is obvious, yet, is used several times in our proof.

Lemma 11. For any function h1, h0 : Rd → [0, 1], any θ ∈ R, any a1, a0, b1, b0 ∈ (0, 1) we
have

EX|S=1

θh1(X)
a1

1{
b1(2h1(X)−1)− θh1(X)

a1
≥0
} = EX|S=1

(2h1(X)− 1)1{
b1(2h1(X)−1)− θh1(X)

a1
≥0
} b1

− EX|S=1

(
b1(2h1(X)− 1)− θh1(X)

a1

)
+
,

EX|S=0

θh0(X)
a0

1{
b0(2h0(X)−1)+ θh0(X)

a0
≥0
} = −EX|S=0

(2h0(X)− 1)1{
b0(2h0(X)−1)+ θh0(X)

a0
≥0
} b0

+ EX|S=0

(
b0(2h0(X)− 1) + θh0(X)

a0

)
+
,

moreover, the expectation EX|S=s can be replaced by ÊX|S=s for all s ∈ {0, 1}.
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Proof of asymptotic fairness (Part I of Theorem 9)

Proof. The first step is to show that under Assumption 11 the term ∆̂(ĝ,P) cannot be too
big. Indeed, notice that for every θ ∈ [−2, 2], thanks to the triangle inequality we can write
almost surely

∆̂(ĝθ,P) ≤
∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)ĝθ(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣
+
∣∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)ĝθ(X, 1)

ÊX|S=1η̂(X, 1)

∣∣∣∣∣∣ (2.15)

+
∣∣∣∣∣∣EX|S=0η̂(X, 0)ĝθ(X, 0)

EX|S=0η̂(X, 0) −
ÊX|S=0η̂(X, 0)ĝθ(X, 0)

ÊX|S=0η̂(X, 0)

∣∣∣∣∣∣ .
Our goal is to take care of each of the three terms appearing on the right hand side of the
inequality. The technique used for the second and the third term is identical, whereas the
first term is a bit more involved. Let us start with the second term on the right hand side of
Eq. (2.15). For this term we can write almost surely∣∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)ĝθ(X, 1)

ÊX|S=1η̂(X, 1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)
EX|S=1η̂(X, 1) −

ÊX|S=1η̂(X, 1)ĝθ(X, 1)
EX|S=1η̂(X, 1)

∣∣∣∣∣∣
+
∣∣∣∣∣∣ÊX|S=1η̂(X, 1)ĝθ(X, 1)

ÊX|S=1η̂(X, 1)
−

ÊX|S=1η̂(X, 1)ĝθ(X, 1)
EX|S=1η̂(X, 1)

∣∣∣∣∣∣
=

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)ĝθ(X, 1)
∣∣∣

EX|S=1η̂(X, 1)

+ ÊX|S=1η̂(X, 1)ĝθ(X, 1)
ÊX|S=1η̂(X, 1)︸ ︷︷ ︸

≤1

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{0≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1)

≤ 2
supt∈[0,1]

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{t≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1) ,

where the last inequality follows from the fact that ĝθ is a thresholding rule. Similarly, we
show that the third term in Eq. (2.15) admits the following bound almost surely∣∣∣∣∣∣EX|S=0η̂(X, 0)ĝθ(X, 0)

EX|S=0η̂(X, 0) −
ÊX|S=0η̂(X, 0)ĝθ(X, 0)

ÊX|S=0η̂(X, 0)

∣∣∣∣∣∣
≤ 2

supt∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
EX|S=0η̂(X, 0) .
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Therefore, we arrive at the following bound on ∆̂(ĝθ,P) which holds almost surely

∆̂(ĝθ,P) ≤
∣∣∣∣∣EX|S=1η̂(X, 1)ĝθ(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)ĝθ(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣ (2.16)

+ 2
supt∈[0,1]

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{t≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1)

+ 2
supt∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
EX|S=0η̂(X, 0) .

This is one of the moments when we make use of Assumption 11. Thanks to the continuity
we can be sure that for every possible unlabeled sample DU

N , there exists θ′(DU
N) such that

EX|S=1η̂(X, 1)ĝθ′(DU
N )(X, 1)

EX|S=1η̂(X, 1) =
EX|S=0η̂(X, 0)ĝθ′(DU

N )(X, 0)
EX|S=0η̂(X, 0) .

Indeed, for every possible unlabeled sample DU
N on the left hand side we have a continuous

decreasing of θ function and on the right hand side we have a continuous increasing function
of θ. Therefore, such a value θ′(DU

N) exists.
Taking infimum over θ ∈ [−2, 2] on both sides of Equation (2.16) we obtain

∆̂(ĝ,P) = ∆̂(ĝθ̂,P) ≤ 2
supt∈[0,1]

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{t≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1) (2.17)

+ 2
supt∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
EX|S=0η̂(X, 0) .

Using Lemma 9 and applying it to ĝ we immediately obtain almost surely

∆(ĝ,P) ≤4
supt∈[0,1]

∣∣∣(EX|S=1 − ÊX|S=1)η̂(X, 1)1{t≤η̂(X,1)}

∣∣∣
EX|S=1η̂(X, 1)

+ 4
supt∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
EX|S=0η̂(X, 0)

+ 2EX|S=1 |η(X, 1)− η̂(X, 1)|
P (Y = 1 |S = 1) + 2EX|S=0 |η(X, 0)− η̂(X, 0)|

P (Y = 1 |S = 0) .

Clearly, if η̂ is a consistent estimator of η then the last two terms on the right hand side
are converging to zero in expectation as n → ∞. Therefore, it remain to provide an upper
bound for the two empirical processes. Recall, that our goal is to obtain consistency in
expectation, thus we take expectation w.r.t. DL

n ,DU
N from both sides of the inequality. Thanks

to Lemma 10 we have for each s ∈ {0, 1}

EDU
N

sup
t∈[0,1]

∣∣∣(EX|S=s − ÊX|S=s)η̂(X, s)1{t≤η̂(X,s)}

∣∣∣ ≤ C

√
1
N

.

The arguments above imply that there exists an absolute constant C > 0 such that

E(DL
n,DU

N )[∆(ĝ,P)] ≤ 2
EDL

n
EX|S=1 |η(X, 1)− η̂(X, 1)|

P (Y = 1 |S = 1) + 2
EDL

n
EX|S=0 |η(X, 0)− η̂(X, 0)|

P (Y = 1 |S = 0)

+ C

√
1
N
EDL

n

1
min{EX|S=1η̂(X, 1),EX|S=0η̂(X, 0)} .
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Using the second item of Assumption 10, which states that
min{EX|S=1η̂(X, 1),EX|S=0η̂(X, 0)} ≥ cn,N almost surely we conclude.

Proof of asymptotic optimality (Part II of Theorem 9)

In order to show that the risk of the proposed algorithm converges to the risk of the optimal
classifier, we follow the similar strategy to the one that we shall use in Chapter 3, that is, we
first introduce an intermediate pseudo-estimator g̃ as follows

g̃(x, 1) = 1{
P(S=1)≤η̂(x,1)

(
2P(S=1)− θ̃

EX|S=1[η̂(X,1)]

)} , (2.18)

g̃(x, 0) = 1{
P(S=0)≤η̂(x,0)

(
2P(S=0)+ θ̃

EX|S=0[η̂(X,0)]

)} , (2.19)

where θ̃ is a solution of
EX|S=1 [η̂(X, 1)g̃θ(X, 1)]

EX|S=1[η̂(X, 1)] =EX|S=0 [η̂(X, 0)g̃θ(X, 0)]
EX|S=0[η̂(X, 0)] , (2.20)

with g̃θ being defined as for all x ∈ Rd as
g̃θ(x, 1) = 1{

1≤η̂(X,1)
(

2− θ
EX|S=1[η̂(X,1)]P(S=1)

)} ,

g̃θ(x, 0) = 1{
1≤η̂(X,0)

(
2+ θ

EX|S=0[η̂(X,0)]P(S=0)

)} .

Note that thanks to Assumption 11 such a value θ̃ always exists.
Intuitively, the classifier g̃ knows the marginal distribution of (X,S), that is, it knows

both PX|s and PS. It is seen as an idealized version of ĝ, where the uncertainty is only induced
by the lack of knowledge of the regression function η. We upper bound the excess risk in two
steps. In the first step we upper bound R(g̃)−R(g∗) and on the second we upper bound
the difference R(ĝ)−R(g̃).
Theorem 10 (Bound on the pseudo oracle). Let g̃ be the pseudo oracle classifier defined in
Eq. 2.18 with η̂ satisfying Assumptions 10 and 11, then

lim
n→∞

EDL
n
[R(g̃)]−R(g∗) ≤ 0 .

Proof of Theorem 10. First of all, let us rewrite the equation for θ∗ in the following form

EX|S=1

 θ∗η(X, 1)
EX|S=1[η(X, 1)]1

{
P(S=1)(2η(X,1)−1)− θ∗η(X,1)

EX|S=1[η(X,1)]≥0
}

= EX|S=0

 θ∗η(X, 0)
EX|S=0[η(X, 0)]1

{
P(S=0)(2η(X,0)−1)+ θ∗η(X,0)

EX|S=0[η(X,0)]≥0
} .

Using Lemma 11 with hs(·) ≡ η(·, s), as = EX|S=1[hs(·)], bs = P(S = s) for s ∈ {0, 1} we get
P(S = 1)EX|S=1[(2η(X, 1)− 1)g∗(X, 1)]

− EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

= −P(S = 0)EX|S=0[(2η(X, 0)− 1)g∗(X, 0)]

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+
.
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Rearranging the terms we can arrive at

P(S = 1)EX|S=1[(2η(X, 1)− 1)g∗(X, 1)] + P(S = 0)EX|S=0[(2η(X, 0)− 1)g∗(X, 0)]

= EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+
.

Notice that the left hand side of the above equality can be written as

E(X,S)[(2η(X,S)− 1)g∗(X,S)] = EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

(2.21)

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+
.

Thus, combining the previous equality with the expression of the risk from Lemma 8 we get

R(g∗) = E(X,S)[η(X,S)]− EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

(2.22)

− EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+
.

Step-wise similar argument yields that for the pseudo-oracle g̃ we can write

E(X,S)[(2η̂(X,S)− 1)g̃(X,S)]

= EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

(2.23)

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+
.

Moreover, its risk satisfies

R(g̃) = E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)g̃(X,S)] (2.24)
≤ E(X,S)[η(X,S)]− E(X,S)[(2η̂(X,S)− 1)g̃(X,S)] + 2E(X,S) |η̂(X,S)− η(X,S)| .

Therefore, combining Eq. (2.22) with Eq. (2.24), we can write for the excess risk

R(g̃)−R(g∗) ≤2E(X,S) |η̂(X,S)− η(X,S)|

+ EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ∗η(X, 1)

EX|S=1[η(X, 1)]

)
+

− EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ∗η(X, 0)

EX|S=0[η(X, 0)]

)
+

− EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+
.
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Recall that θ∗ is a minimizer of

EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θη(X, 1)

EX|S=1[η(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θη(X, 0)

EX|S=0[η(X, 0)]

)
+
,

thus we can replace θ∗ by θ̃ and obtain the following upper bound

R(g̃)−R(g∗) ≤2E(X,S) |η̂(X,S)− η(X,S)|

+ EX|S=1

(
P(S = 1)(2η(X, 1)− 1)− θ̃η(X, 1)

EX|S=1[η(X, 1)]

)
+

− EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η(X, 0)− 1) + θ̃η(X, 0)

EX|S=0[η(X, 0)]

)
+

− EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+
.

Since, for all x, y ∈ R we have (x)+ − (y)+ ≤ (x− y)+ ≤ |x− y| we get

R(g̃)−R(g∗) ≤4E(X,S) |η̂(X,S)− η(X,S)|

+ EX|S=1|θ̃|
∣∣∣∣∣ η̂(X, 1)
EX|S=1[η̂(X, 1)] −

η(X, 1)
EX|S=1[η(X, 1)]

∣∣∣∣∣
+ EX|S=0|θ̃|

∣∣∣∣∣ η̂(X, 0)
EX|S=0[η̂(X, 0)] −

η(X, 0)
EX|S=0[η(X, 0)]

∣∣∣∣∣ .
For the same reason why |θ∗| ≤ 2 we have |θ̃| ≤ 2, thus for all s ∈ {0, 1} we have

EX|S=s|θ̃|
∣∣∣∣∣ η̂(X, s)
EX|S=s[η̂(X, s)] −

η(X, s)
EX|S=s[η(X, s)]

∣∣∣∣∣
≤ 2EX|S=s

∣∣∣∣∣ η̂(X, s)
EX|S=s[η̂(X, s)] −

η(X, s)
EX|S=s[η(X, s)]

∣∣∣∣∣
≤ 2EX|S=s

∣∣∣∣∣ η̂(X, s)
EX|S=s[η(X, s)] −

η(X, s)
EX|S=s[η(X, s)]

∣∣∣∣∣
+ 2EX|S=s

∣∣∣∣∣ η̂(X, s)
EX|S=s[η̂(X, s)] −

η̂(X, s)
EX|S=s[η(X, s)]

∣∣∣∣∣
≤ 4EX|S=s |η(X, s)− η̂(X, s)|

EX|S=s[η(X, s)] .

Thanks to Assumption 10, these terms converge to zero in expectation.

Theorem 11. Let ĝ be the proposed classifier with η̂ satisfying Assumptions 10 and 11, then

lim
n→∞

E(DL
n,DU

N )[R(ĝ)−R(g̃)] ≤ 0 .
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Proof. Our goal is to upper bound the quantity E(DL
n,DU

N )R(ĝ)−R(g̃). We start by providing
a bound on R(ĝ)−R(g̃) which holds almost surely. Recall the equality of Equation (2.23)

E(X,S)[(2η̂(X,S)− 1)g̃(X,S)]

= EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+
.

Using this and the expression of the risk given in Lemma 8 we can obtain the following lower
bound on the risk of g̃

R(g̃) = E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)g̃(X,S)]
≥ E(X,S)[η(X,S)]− E(X,S)[(2η̂(X,S)− 1)g̃(X,S)]− 2E(X,S) |η̂(X,S)− η(X,S)|
= E(X,S)[η(X,S)]− 2E(X,S) |η̂(X,S)− η(X,S)| (2.25)

− EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+
.

We have thanks to Lemma 11 used with hs(·) = η̂(·, s), as = ÊX|S=s[hs(X)], bs = P̂(S = s)
for all s ∈ {0, 1}

ÊX|S=1θ̂η̂(X, 1)ĝ(X, 1)
ÊX|S=1η̂(X, 1)

= ÊX|S=1[(2η̂(X, 1)− 1)ĝ(X, 1)]P̂(S = 1) (2.26)

− ÊX|S=1

P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
ÊX|S=1[η̂(X, 1)]


+

,

and

ÊX|S=0θ̂η̂(X, 0)ĝ(X, 0)
ÊX|S=0η̂(X, 0)

= −ÊX|S=0[(2η̂(X, 0)− 1)ĝ(X, 0)]P̂(S = 0) (2.27)

+ ÊX|S=0

P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)
ÊX|S=0[η̂(X, 0)]


+

.

Recall, that thanks to Definition 11 of the empirical unfairness we have

|θ̂|∆̂(ĝ,P) =
∣∣∣∣∣∣ÊX|S=0θ̂η̂(X, 0)ĝ(X, 0)

ÊX|S=0η̂(X, 0)
−

ÊX|S=1θ̂η̂(X, 1)ĝ(X, 1)
ÊX|S=1η̂(X, 1)

∣∣∣∣∣∣ .
Since, |θ̂| ≤ 2, subtracting Eq. (2.27) from Eq. (2.26) and taking absolute value combined
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with the triangle inequality we get

Ê(X,S)(2η̂(X,S)− 1)ĝ(X,S)
= ÊX|S=0[(2η̂(X, 0)− 1)ĝ(X, 0)]P̂(S = 0) + ÊX|S=1[(2η̂(x, 1)− 1)ĝ(X, 1)]P̂(S = 1) (2.28)

≥ −2∆̂(ĝ,P) + ÊX|S=0

P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)
ÊX|S=0[η̂(X, 0)]


+

+ ÊX|S=1

P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
ÊX|S=1[η̂(X, 1)]


+

.

Note that using the bound above we can get the following upper bound on the risk of the
proposed classifier

R(ĝ) = E(X,S)[η(X,S)]− E(X,S)[(2η(X,S)− 1)ĝ(X,S)]
≤ E(X,S)[η(X,S)]− E(X,S)[(2η̂(X,S)− 1)ĝ(X,S)]

+ 2E(X,S) |η(X,S)− η̂(X,S)| (replaced η by η̂)
≤ E(X,S)[η(X,S)]− Ê(X,S)[(2η̂(X,S)− 1)ĝ(X,S)] + 2E(X,S) |η(X,S)− η̂(X,S)|

+
∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)ĝ(X,S)]

∣∣∣ (replaced E(X,S) by Ê(X,S))

≤ E(X,S)[η(X,S)]− Ê(X,S)[(2η̂(X,S)− 1)ĝ(X,S)] + 2E(X,S) |η(X,S)− η̂(X,S)|
+ sup

t∈[0,1]

∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)1{t≤η̂(X,S)}]
∣∣∣ (since ĝ is thresholding)

≤ E(X,S)[η(X,S)] + 2E(X,S) |η(X,S)− η̂(X,S)|
+ 2∆̂(ĝ,P) + sup

t∈[0,1]

∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)1{t≤η̂(X,S)}]
∣∣∣

− ÊX|S=0

P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)
ÊX|S=0[η̂(X, 0)]


+

− ÊX|S=1

P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
ÊX|S=1[η̂(X, 1)]


+

(after Eq. (2.28)) .

Thus, combining this upper bound on R(ĝ) with the lower bound on R(g̃) given in Eq. (2.25)
we arrive at

R(ĝ)−R(g̃) ≤ 4E(X,S) |η(X,S)− η̂(X,S)|+ 2∆̂(ĝ,P)
+ sup

t∈[0,1]

∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)1{t≤η̂(X,S)}]
∣∣∣

+ EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− ÊX|S=1

P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
ÊX|S=1[η̂(X, 1)]


+

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

− ÊX|S=0

P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)
ÊX|S=0[η̂(X, 0)]


+

.
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Thanks to Lemma 10 the term supt∈[0,1]

∣∣∣(E(X,S) − Ê(X,S))[(2η̂(X,S)− 1)1{t≤η̂(X,S)}]
∣∣∣ con-

verges to zero in expectation9. Equation (2.17) with Lemma 10 gives the convergence to zero
of ∆̂(ĝ,P) in expectation. Assumption 10 tells us that the term E(X,S) |η(X,S)− η̂(X,S)|
goes to zero in expectation. Thus it only remains to bound the term

(∗) =EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θ̃η̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

− ÊX|S=1

P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
ÊX|S=1[η̂(X, 1)]


+

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θ̃η̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+

− ÊX|S=0

P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)
ÊX|S=0[η̂(X, 0)]


+

.

Notice that (similarly to the case of θ∗) the condition in Eq. (2.20) on θ̃ is the first order
optimality condition for the minimum of the following function

EX|S=1

(
P(S = 1)(2η̂(X, 1)− 1)− θη̂(X, 1)

EX|S=1[η̂(X, 1)]

)
+

+ EX|S=0

(
P(S = 0)(2η̂(X, 0)− 1) + θη̂(X, 0)

EX|S=0[η̂(X, 0)]

)
+
,

thus, the objective evaluated at minimum, that is, at θ̃ is less or equal than the one evaluated
at θ̂. Which implies that in order to upper bound (∗) it is sufficient to provide an upper
bound on

(∗∗) =EX|S=1

P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
EX|S=1[η̂(X, 1)]


+

− ÊX|S=1

P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
ÊX|S=1[η̂(X, 1)]


+

+ EX|S=0

P(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)
EX|S=0[η̂(X, 0)]


+

− ÊX|S=0

P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)
ÊX|S=0[η̂(X, 0)]


+

,

9Actually Lemma 10 is stated with η̂(X,S), whereas here it is (2η̂(X,S)− 1). A straightforward modifi-
cation of the argument used in Lemma 10 yields the desired result.
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where we replaced θ̃ by θ̂ thanks to the optimality of θ̃. Let us define

(4) =EX|S=1

P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
EX|S=1[η̂(X, 1)]


+

− ÊX|S=1

P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
ÊX|S=1[η̂(X, 1)]


+

,

(44) =EX|S=0

P(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)
EX|S=0[η̂(X, 0)]


+

− ÊX|S=0

P̂(S = 0)(2η̂(X, 0)− 1) + θ̂η̂(X, 0)
ÊX|S=0[η̂(X, 0)]


+

.

Both bounds are following similar arguments, we demonstrate it for (4), clearly we have

(4) ≤ÊX|S=1

P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
EX|S=1[η̂(X, 1)]


+

− ÊX|S=1

P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
ÊX|S=1[η̂(X, 1)]


+

+
∣∣∣∣∣∣(EX|S=1 − ÊX|S=1)

P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
EX|S=1[η̂(X, 1)]


+

∣∣∣∣∣∣ .
For the first difference on the right hand side of this inequality we can write using the fact
that (x)+ − (y)+ ≤ |x− y| for all x, y ∈ R and |2η̂(X, 1)− 1| ≤ 1 almost surely

ÊX|S=1

P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
EX|S=1[η̂(X, 1)]


+

− ÊX|S=1

P̂(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
ÊX|S=1[η̂(X, 1)]


+

≤
∣∣∣P(S = 1)− P̂(S = 1)

∣∣∣+ |θ̂|
∣∣∣∣∣∣ ÊX|S=1[η̂(X, 1)]
EX|S=1[η̂(X, 1)] − 1

∣∣∣∣∣∣
Clearly

∣∣∣P(S = 1)− P̂(S = 1)
∣∣∣ goes to zero in expectation thanks to the law of large num-

bers or its finite sample variants. Besides, the term
∣∣∣∣ ÊX|S=0[η̂(X,0)]
EX|S=0[η(X,0)] − 1

∣∣∣∣ can be seen in the
following manner: let Z ∈ [0, 1] be a random variable with law PZ and Z1, . . . , ZM be its
i.i.d. realization, then sequentially our question is about∣∣∣∣∣1− Z̄

E[Z]

∣∣∣∣∣ ,
with Z̄ = 1

M

∑M
i=1 Zi. This term converges to zero in expectation thanks to the multiplicative

Chernoff inequality, which is an exponential concentration inequality that allows to obtain
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even a rate. Actually, even without the multiplicative Chernoff bound this term goes to zero
thanks to the law of large numbers. Therefore, for convergence it remains to study the term

(?) =
∣∣∣∣∣∣(EX|S=1 − ÊX|S=1)

P(S = 1)(2η̂(X, 1)− 1)− θ̂η̂(X, 1)
EX|S=1[η̂(X, 1)]


+

∣∣∣∣∣∣ .
Notice that thanks to the second part of Assumption 10 and the fact that θ̂ ∈ [−2, 2] we have∣∣∣∣∣∣ θ̂η̂(X, 1)

EX|S=1[η̂(X, 1)]

∣∣∣∣∣∣ ≤ 2
cn,N

.

Therefore, we can upper bound (?) as

(?) ≤ sup
t∈[−2/cn,N ,2/cn,N ]

∣∣∣(EX|S=1 − ÊX|S=1) (P(S = 1)(2η̂(X, 1)− 1) + t)+

∣∣∣ ,
where the random quantity has been “supped-out”. Introduce,

DN1 =
{
Xi ∈ DU

N : Si = 1
}

DN0 =
{
Xi ∈ DU

N : Si = 0
}
,

of size N1 and N0 respectively, such that N1 +N0 = N . Clearly we have DNs
i.i.d.∼ PX|S=s for

each s ∈ {0, 1}. Also recall that Remark 9 implies that neither N0 nor N1 are equal to zero,
however, both are still random. Besides, denote by DSN =

{
Si : (Xi, Si) ∈ DU

N

}
the which is

obtained from DU
N by removing features. Thus,

E(DU
N )(?) ≤ EDSNEDN1

sup
t∈[−2/cn,N ,2/cn,N ]

∣∣∣(EX|S=1 − ÊX|S=1) ((2η̂(X, 1)− 1)P(S = 1) + t)+

∣∣∣ .
Conditionally on DSN we can view N0 and N1 as fixed strictly positive integers, moreover,
conditionally on DL

n the estimator η̂ is not random as it is built only on DL
n . Thus, we would

like to control the following process

EDN1
sup

t∈[−2/cn,N ,2/cn,N ]

∣∣∣(EX|S=1 − ÊX|S=1) ((2η̂(X, 1)− 1)P(S = 1) + t)+

∣∣∣ ,
conditionally on DSN ,DL

n . First of all we rewrite this process as

1
cn,N

EDN1
sup
|t|≤1

∣∣∣(EX|S=1 − ÊX|S=1) ((2η̂(X, 1)− 1)P(S = 1)cn,N + 2t)+

∣∣∣ .
Thanks to the standard symmetrization argument, which we recall in Theorem 19 of Ap-
pendix, we can write

EDN1
sup
|t|≤1

∣∣∣(EX|S=1 − ÊX|S=1) ((2η̂(X, 1)− 1)P(S = 1)cn,N + 2t)+

∣∣∣
≤ 2EDN1

Eε sup
|t|≤1

∣∣∣∣∣∣ 1
N1

∑
X∈DN1

εift(X)
∣∣∣∣∣∣ ,
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where ft(·) = ((2η̂(·, 1)− 1)P(S = 1)cn,N + 2t)+. Notice that for each t, t′ ∈ [−1, 1] we have
for each x ∈ Rd

|ft(x)− ft′(x)| ≤ 2 |t− t′| ,

that is, the parametrization is 2-Lipschitz. Therefore, standard results in empirical processes
(combine [Wellner, 2005, Lemma 6.2] with [Koltchinskii, 2011, Theorem 3.1]) tells us that
there exists C > 0 such that

Eε sup
|t|≤1

∣∣∣∣∣∣ 1
N1

N1∑
i=1

εift(Xi)
∣∣∣∣∣∣ ≤ C

√
1
N1

.

Let us briefly sketch the strategy to get the above bound, this result relies on the Dudley’s
entropy integral. First of all, we need to define a notion of covering number.
Definition 12 (Covering number). An ε-cover of a subset W of a pseudo-metric space (S, d)
is a set Ŵ ⊂ W such that for every w ∈ W there is ŵ ∈ Ŵ such that d(w, ŵ) ≤ ε. The
ε-covering number of W is

N (ε,W, d) := min
{∣∣∣Ŵ ∣∣∣ : Ŵ is an ε-cover of W

}
,

where
∣∣∣Ŵ ∣∣∣ is the cardinal of the set Ŵ .

Definition 13 (sub-Gaussian process). A stochastic process w 7→ Zw with indexing set W is
sub-Gaussian with respect to a pseudo-metric d on W , if for all w,w′ ∈ W and all λ ∈ R it
holds that

E exp (λ(Zw − Zw′)) ≤ exp
(
λ2d2(w,w′)

2

)
.

Now, we are ready to state the Dudley’s entropy integral bound.
Theorem 12 (Dudley’s entropy integral). Let w 7→ Zw be zero-mean stochastic process that
is sub-Gaussian w.r.t. a pseudo-metric d on the indexing set W . Then,

E sup
w∈W

Zw ≤ 8
√

2
∫ ∞

0

√
logN (ε,W, d) dε .

Let us also point out that the integral can be taken until the diameter of W instead of ∞.
We would like to apply the result10 above to the process

f(t,DN1) 7→ 〈ε, f(t,DN1)〉 =
N1∑
i=1

εift(Xi) ,

with

f(t,DN1) = (ft(X1), . . . , ft(XN1))> ∈ RN1 ,

W =
{
f(t,DN1) ∈ RN1 : t ∈ [−1, 1]

}
,

10Same argument works for f(t,DN1) 7→ −〈ε, f(t,DN1)
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conditionally on DN1 . We can write

sup
t∈[−1,1]

N1∑
i=1

εift(Xi) = sup
f(t,DN1 )∈W

〈ε, f(t,DN1)〉 .

Conditionally on DN1 , the process f(t,DN1) 7→ 〈ε, f(t,DN1)〉 is centered and sub-Gaussian
w.r.t. the Euclidian distance on RN1 , since εi’s are the Rademacher variables. Moreover,
since, as already established, the parametrization is 2-Lipschitz we have for all t, t′ ∈ [−1, 1]∑

X∈DN1

|ft(X)− ft′(X)|2 ≤ 4N1 |t− t′|2 .

Which implies that for all ε > 0 we have

N (ε,W, ‖·‖2) ≤ N
(
ε/
(

2
√
N1

)
, [−1, 1], ‖·‖2

)
≤
(

1 + 4
√
N1/ε

)
.

The Dudley’s entropy integral applied to f(t,DN1) 7→ 〈ε, f(t,DN1)〉 gives us the desired
result with W =

{
f(t,DN1) ∈ RN1 : t ∈ [−1, 1]

}
and the above bound on the entropy11.

This argument reads as

Eε sup
f(t,DN1 )∈W

〈ε, f(t,DN1)〉 ≤ 8
√

2
∫ ∞

0

√
logN (ε/

(
2
√
N1

)
, [−1, 1], ‖·‖2)dε

≤ 16
√

2
√
N1

∫ 2

0

√
logN (ε, [−1, 1], ‖·‖2)dε

≤ 16
√

2
√
N1

∫ 2

0

√
log

(
1 + 2

ε

)
dε︸ ︷︷ ︸

finite

.

Finally, division by N1 on both sides of the inequality yields the desired result.
Now, taking expectation w.r.t. DsN from (?) we get

E(DU
N )(?) ≤

C

cn,N
EDsN

√
1
N1

,

applying Lemma 7 we get for some C > 0 that depends on P(S = 1) that

E(DU
N )(?) ≤

C

cn,N

√
1
N

.

Thanks to Assumption 10 we have

1
cn,N
√
N

= o (1) ,

thus, the term E(DU
N )(?) converges to zero. Repeating the same argument for (44) we

conclude.
11We also replaced the integral until ∞ by the integral until 2 as suggested in the formulation of the

theorem.
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Proofs of auxiliary results

Proof of Lemma 9. We start from the level of unfairness of g, that is, we would like to find
an upper bound on

|P (g(X,S) = 1 |S = 1, Y = 1)− P (g(X,S) = 1 |S = 0, Y = 1)| ,

rewriting the expression above, our goal can be written as∣∣∣∣∣EX|S=1η(X, 1)g(X, 1)
EX|S=1η(X, 1) −

EX|S=0η(X, 0)g(X, 0)
EX|S=0η(X, 0)

∣∣∣∣∣ .
Now, we start working with the expression above∣∣∣∣∣EX|S=1η(X, 1)g(X, 1)

EX|S=1η(X, 1) −
EX|S=0η(X, 0)g(X, 0)

EX|S=0η(X, 0)

∣∣∣∣∣
≤
∣∣∣∣∣EX|S=1η(X, 1)g(X, 1)

EX|S=1η(X, 1) −
EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1)

∣∣∣∣∣
+
∣∣∣∣∣EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0) −
EX|S=0η(X, 0)g(X, 0)

EX|S=0η(X, 0)

∣∣∣∣∣
+
∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣ .
The first two terms on the right hand side of the inequality can be upper-bounded in a similar
way. That is why we only show the bound for the first term, that is, for S = 1. We have for
(∗) =

∣∣∣∣EX|S=1η(X,1)g(X,1)
EX|S=1η(X,1) − EX|S=1η̂(X,1)g(X,1)

EX|S=1η̂(X,1)

∣∣∣∣
(∗) ≤ EX|S=1 |η(X, 1)− η̂(X, 1)|

P (Y = 1 |S = 1) +
∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η(X, 1) −
EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1)

∣∣∣∣∣
≤

EX|S=1 |η(X, 1)− η̂(X, 1)|
P (Y = 1 |S = 1)

+EX|S=1η̂(X, 1)g(X, 1)
∣∣∣∣∣ EX|S=1η̂(X, 1)
EX|S=1η(X, 1)EX|S=1η̂(X, 1)−

EX|S=1η(X, 1)
EX|S=1η̂(X, 1)EX|S=1η(X, 1)

∣∣∣∣∣
≤

EX|S=1 |η(X, 1)− η̂(X, 1)|
P (Y = 1 |S = 1) + EX|S=1η̂(X, 1)g(X, 1) EX|S=1 |η̂(X, 1)− η̂(X, 1)|

EX|S=1η(X, 1)EX|S=1η̂(X, 1)

≤ 2EX|S=1 |η(X, 1)− η̂(X, 1)|
P (Y = 1 |S = 1) ,

thus, we have

|P (g(X,S) = 1 |S = 1, Y = 1)− P (g(X,S) = 1 |S = 0, Y = 1)|

≤ 2EX|S=1 |η(X, 1)− η̂(X, 1)|
P (Y = 1 |S = 1)

+ 2EX|S=0 |η(X, 0)− η̂(X, 0)|
P (Y = 1 |S = 0)

+
∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣ .
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Finally, it remains to upper bound

(∗∗) =
∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0)

∣∣∣∣∣ .
Recall that ÊX|S=1 and ÊX|S=0 stands for the expectations taken w.r.t. empirical measure
induced by DU

N , and that DU
N is independent from DL

n . Therefore, we can write

(∗∗) ≤
∣∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)g(X, 1)

ÊX|S=1η̂(X, 1)

∣∣∣∣∣∣
+
∣∣∣∣∣∣EX|S=0η̂(X, 0)g(X, 0)

EX|S=0η̂(X, 0) −
ÊX|S=0η̂(X, 0)g(X, 0)

ÊX|S=0η̂(X, 0)

∣∣∣∣∣∣
+
∣∣∣∣∣∣ÊX|S=1η̂(X, 1)g(X, 1)

ÊX|S=1η̂(X, 1)
−

ÊX|S=0η̂(X, 0)g(X, 0)
ÊX|S=0η̂(X, 0)

∣∣∣∣∣∣ .
Clearly, the last term on the right hand side of the previous inequality corresponds to our
empirical criteria since everything can be easily evaluated using data. The first two terms on
the right hand side of the inequality can be upper-bounded in a similar fashion, again, we
only demonstrate the bound for S = 1. We can write∣∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)g(X, 1)

ÊX|S=1η̂(X, 1)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)
EX|S=1η̂(X, 1) −

ÊX|S=1η̂(X, 1)g(X, 1)
EX|S=1η̂(X, 1)

∣∣∣∣∣∣
+
∣∣∣∣∣∣ÊX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)g(X, 1)

ÊX|S=1η̂(X, 1)

∣∣∣∣∣∣ .
Notice that for the first term on the right hand side of the inequality we have∣∣∣∣∣∣EX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1) −
ÊX|S=1η̂(X, 1)g(X, 1)

EX|S=1η̂(X, 1)

∣∣∣∣∣∣ ≤
∣∣∣EX|S=1η̂(X, 1)g(X, 1)− ÊX|S=1η̂(X, 1)g(X, 1)

∣∣∣
EX|S=1η̂(X, 1) ,

whereas for the second term we can write∣∣∣∣∣∣ ÊX|S=1η̂(X, 1)g(X, 1)
EX|S=1η̂(X, 1) −

ÊX|S=1η̂(X, 1)g(X, 1)
ÊX|S=1η̂(X, 1)

∣∣∣∣∣∣ ≤
∣∣∣ÊX|S=1η̂(X, 1)− EX|S=1η̂(X, 1)

∣∣∣
EX|S=1η̂(X, 1) .

Proof of Lemma 10. Let us first introduce two slices of DU
N as

DN1 =
{
Xi ∈ DU

N : Si = 1
}
, DN0 =

{
Xi ∈ DU

N : Si = 0
}

of size N1 and N0 respectively, such that N1 +N0 = N . Clearly we have DNs
i.i.d.∼ PX|S=s for

each s ∈ {0, 1}. Besides, denote by DSN =
{
Si : (Xi, Si) ∈ DU

N

}
the which is obtained from

DU
N by removing features. Recalling Remark 9, we have

N1 − 2 ∼ Bin(N,P(S = 1)), N0 − 2 ∼ Bin(N,P(S = 0)) .
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Clearly, since the proposed algorithm is a thresholding of η̂ we have

E(DL
n,DU

N )

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)ĝ(X, 0)
∣∣∣

≤ E(DL
n,DU

N ) sup
t∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣ .
Further we work conditionally onDL

n . Using the classical symmetrization technique [Koltchin-
skii, 2011, Theorem 2.1.] we get

EDU
N

sup
t∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
= EDSNEDN0

sup
t∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣
≤ 2EDSNEDN0

Eε sup
t∈[0,1]

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εiη̂(Xi, 0)1{t≤η̂(Xi,0)}

∣∣∣∣∣∣ ,
where εi i.i.d.∼ Rademacher variables. Note that the function class x 7→ 1{t≤η̂(x,0)} has VC-
dimension [Vapnik and Chervonenkis, 1971] equal to one. At this moment we will work
with

Eε sup
t∈[0,1]

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εiη̂(Xi, 0)1{t≤η̂(Xi,0)}

∣∣∣∣∣∣ ,
conditionally on all the data. First of all let us introduce F ={
f : ∃t ∈ [0, 1], f(x) = 1{t≤η̂(x,0)}

}
Thus, our process can be written as

Eε sup
f∈F

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εiϕi(f(Xi))
∣∣∣∣∣∣ ,

where ϕi(·) = η(Xi, 0)× ·. Clearly, we have ϕi(0) = 0 and for every u, v

|ϕi(u)− ϕi(v)| ≤ |u− v| .

That is, ϕi are contractions, and the contraction theorem [Koltchinskii, 2011, Theorem 2.2.],
recalled in Theorem 20 of Appendix, gives

Eε sup
f∈F

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εiϕi(f(Xi))
∣∣∣∣∣∣ ≤ Eε sup

f∈F

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εif(Xi)
∣∣∣∣∣∣ .

Recall, that the class F is a VC-class with VC-dimension equal to one. Therefore, it is a
known fact [Dvoretzky et al., 1956, Massart, 1990] that there exists C > 0 such that

Eε sup
f∈F

∣∣∣∣∣∣ 1
N0

∑
Xi∈DN0

εif(Xi)
∣∣∣∣∣∣ ≤ C

√
1
N0

,

almost surely. The above implies that

EDU
N

sup
t∈[0,1]

∣∣∣(EX|S=0 − ÊX|S=0)η̂(X, 0)1{t≤η̂(X,0)}

∣∣∣ ≤ CEDSN

√
1
N0

.
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The result above is in some sense a non-asymptotic version of the Glivenko-Cantelli theorem
for the supremum of the deviation of empirical cumulative distribution function from its true
value.

It remains to provide an upper bound on EDSN
√

1
N0

, to this end we recall that this expec-
tation can be written as

E
√

1
2 + Z

,

where Z is the binomial random variable with parameters N and P(S = 0). Thus, thanks to
Lemma 7 there exists a constant C > 0 that depends on P(S = 0) such that

E
√

1
2 + Z

≤ C

√
1
N

.

Similarly we get the bound for the case S = 1.

Optimal classifier without sensitive feature

Proof of Proposition 3. Let us study the following minimization problem

(∗) := min
g∈G
{R(g) : P (g(X) = 1 |Y = 1, S = 1) = P (g(X) = 1 |Y = 1, S = 0)} .

Using the weak duality we can write

(∗) = min
g∈G

max
λ∈R
{R(g) + λ (P (g(X) = 1 |Y = 1, S = 1)− P (g(X) = 1 |Y = 1, S = 0))}

≥ max
λ∈R

min
g∈G
{R(g) + λ (P (g(X) = 1 |Y = 1, S = 1)− P (g(X) = 1 |Y = 1, S = 0))}

=: (∗∗) .

We first study the objective function of the max min problem (∗∗), which is equal to

P(g(X) 6= Y ) + λ (P (g(X) = 1 |Y = 1, S = 1)− P (g(X) = 1 |Y = 1, S = 0)) .

Using arguments of Lemma 8 we can write

P(g(X) 6= Y ) = P(Y = 1)− EX [(2η(X)− 1)g(X)] ,

where η(·) := P(Y = 1|X = ·). Moreover, since

E[Y S] = ES[SE[Y |S]] = ES[SEX [E[Y |X,S]]] = ES[SEX [η(X,S)]] = P(S = 1)EX [η(X, 1)] ,

we can write for the rest

P (g(X) = 1 |Y = 1, S = 1) = P (g(X) = 1, Y = 1, S = 1)
P (Y = 1, S = 1) = E[g(X)Y S]

E[Y S]

= P(S = 1)EX [g(X)η(X, 1)]
P(S = 1)EX [η(X, 1)] = EX [g(X)η(X, 1)]

EX [η(X, 1)]

P (g(X) = 1 |Y = 1, S = 0) = P (g(X) = 1, Y = 1, S = 0)
P (Y = 1, S = 0) = E[g(X)Y (1− S)]

E[Y (1− S)]

= EX [g(X)η(X, 0)]
EX [η(X, 0)] .
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Using these, the objective of (∗∗) can be simplified as

P(Y = 1)− EX
[
g(X)

(
2η(X)− 1 + λ

(
η(X, 0)

EX [η(X, 0)] −
η(X, 1)

EX [η(X, 1)]

))]
.

Clearly, for every λ ∈ R a minimizer g∗λ of the problem (∗∗) can be written for all x ∈ Rd as

g∗λ(x) = 1{
2η(x)−1+λ

(
η(x,0)

EX [η(X,0)]−
η(x,1)

EX [η(X,1)]

)
≥0
} .

Similarly to Proposition 2, for λ = 0 we recover the classical optimal predictor in the context
of binary classification. Substituting this classifier into the objective of (∗∗) we arrive at

(∗∗) = P(Y = 1)−min
λ∈R

EX
(

2η(X)− 1 + λ

(
η(X, 0)

EX [η(X, 0)] −
η(X, 1)

EX [η(X, 1)]

))
+

 .

The mapping

λ 7→ EX
(

2η(X)− 1 + λ

(
η(X, 0)

EX [η(X, 0)] −
η(X, 1)

EX [η(X, 1)]

))
+
,

is convex, therefore we can write the first order optimality conditions as

0 ∈∂λEX
(

2η(X)− 1 + λ

(
η(X, 0)

EX [η(X, 0)] −
η(X, 1)

EX [η(X, 1)]

))
+
.

Clearly, under continuity assumption this subgradient is reduced to the gradient almost
surely, thus we have the following condition on the optimal value of λ∗

EX [η(X, 1)g∗λ∗(X)]
EX [η(X, 1)] =EX [η(X, 0)g∗λ∗(X)]

EX [η(X, 0)] ,

and the pair (λ∗, g∗λ∗) is a solution of the dual problem (∗∗). Notice that the previous condition
can be written as

P (g∗λ∗(X) = 1 |Y = 1, S = 1) = P (g∗λ∗(X) = 1 |Y = 1, S = 0) .

This implies that the classifier g∗λ∗ is fair. Finally, it remains to show that g∗λ∗ is actually an
optimal classifier, indeed, since g∗λ∗ is fair we can write on the one hand

R(g∗λ∗)≥min
g∈G
{R(g) : P (g(X) = 1 |Y = 1, S = 1) =P (g(X) = 1 |Y = 1, S = 0)}=(∗).

On the other hand the pair (λ∗, g∗λ∗) is a solution of the dual problem (∗∗), thus we have

(∗) ≥R(g∗λ∗) + λ∗ (P (g∗λ∗(X) = 1 |Y = 1, S = 1)− P (g∗λ∗(X) = 1 |Y = 1, S = 0))
= R(g∗λ∗) .

It implies that the classifier g∗λ∗ is optimal, hence g∗ ≡ g∗λ∗ .
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Chapter 3

Multi-class classification

3.1 Confidence set approach
Chapter overview. In this chapter we study the semi-supervised framework of confidence set
classification with controlled expected size in minimax settings. We obtain semi-supervised
minimax rates of convergence under the margin assumption and a Hölder condition on the
regression function. Besides, we show that if no further assumptions are made, there is no
supervised method that outperforms the semi-supervised estimator proposed in this chapter.
We establish that the best achievable rate for any supervised method is n−1/2, even if the
margin assumption is extremely favorable. On the contrary, semi-supervised estimators can
achieve faster rates of convergence provided that sufficiently many unlabeled samples are
available. We additionally perform numerical evaluation of the proposed algorithms empiri-
cally confirming our theoretical findings.

3.1.1 Introduction
Let K ≥ 2 be an integer and (X, Y ) ∈ Rd×[K] := Rd×{1, . . . , K} be a random pair following
some distribution P on Rd × [K], where X ∈ Rd is seen as the feature vector and Y ∈ [K]
as the class. This problem falls within the scope of the multi-class setting where the goal is
to predict the label Y for a given feature. Commonly, prediction is performed by a classifier
that outputs a single label. However, in the confidence set framework, the objective differs:
we aim at predicting a set of labels instead of a single one. This problem has been studied in
a few works, and we consider in this contribution the setup put forward by Denis and Hebiri
[2017]. The essential feature of their perspective is the control of the size of confidence sets
in expectation. While they provided a procedure to build confidence sets based on Empirical
Risk Minimization (ERM) and established upper bounds, the present work aims at giving a
general analysis of the confidence problem in the minimax sense.

Problem statement

All along the chapter, we denote by PX the marginal distribution of X ∈ Rd and by p(·) :=
(p1(·), . . . , pK(·))> the regression function defined for all k ∈ [K] and all x ∈ Rd as pk(x) :=
P(Y = k|X = x). For any sets A,A′ ⊂ [K] we denote by A4A′ their symmetric difference.
We assume that two data samples DL

n ,DU
N are available. The first sample DL

n = {(Xi, Yi)}ni=1
consists of n ∈ N i.i.d. copies of (X, Y ) ∈ Rd × [K] and the second sample DU

N = {Xi}n+N
i=n+1

consist of N ∈ N i.i.d. copies of X ∈ Rd.
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A confidence set classifier Γ is a measurable function from Rd to 2[K] := {A : A ⊂ [K]},
that is, Γ : Rd → 2[K] and we denote by Υ the set of all such functions. For any confidence
set Γ : Rd → 2[K] we define its error and its information as

P (Γ) = P (Y /∈ Γ(X))︸ ︷︷ ︸
error

, I (Γ) = EPX |Γ(X)|︸ ︷︷ ︸
information

,

respectively, where EPX stands for the expectation w.r.t. the marginal distribution of X ∈ Rd

and |Γ(x)| is the cardinal of Γ at x ∈ Rd. In this part we write P (·) instead of R (·) in order
to stress that the quantity P (·) is not viewed as a risk. Let us recall that, as discussed in
Section 1.2.2, the information I(·) of a confidence set Γ is one of possible ways to measure
the size of the confidence set.

In this chapter we study the following instance of the constrained classification framework.
For a fixed integer β ∈ [K] a β-Oracle confidence set Γ∗β is defined as

Γ∗β ∈ arg min {P (Γ) : Γ ∈ Υ s.t. I(Γ) = β} .

The set {Γ ∈ Υ : I(Γ) = β} is always non-empty, as it always contains those confidence sets
whose cardinal is equal to β for every x ∈ Rd.

The description of β-Oracle confidence set in general situation might be complicated.
Hence, we introduce the following mild assumption, which allows to obtain an explicit ex-
pression.

Assumption 3.1.1 (Continuity of CDF). For all k ∈ [K] the cumulative distribution func-
tion (CDF) Fpk(·) := PX(pk(X) ≤ ·) of pk(X) is continuous on (0, 1).

Recall that similar continuity assumptions were introduced in Sections 2.2 and 1.1.3 in
the contexts of fairness and general constrained binary classification. The next result is a
confidence set analogue of Lemma 1, which gave an explicit expression for the Bayes classifier
in general constrained binary classification framework.

Proposition 3.1.2 (β-Oracle confidence set). Fix β ∈ [K − 1], and let the function G :
[0, 1]→ [0, K] be defined for all t ∈ [0, 1] as

G(t) :=
K∑
k=1

(1− Fpk(t)) =
K∑
k=1

PX(pk(X) > t) ,

then under Assumption 3.1.1 a β-Oracle confidence set Γ∗β can be obtained as

Γ∗β(x) =
{
k ∈ [K] : pk(x) ≥ G−1(β)

}
, (3.1)

where we denote by G−1 the generalized inverse of G defined for all β ∈ [0, K] as

G−1(β) := inf {t ∈ [0, 1] : G(t) ≤ β} .

Proposition 3.1.3. Assume that Assumption 3.1.1 is fulfilled, then the β-Oracle defined in
Eq. (3.1) is a minimizer of the following risk

Rβ(Γ) = P(Γ) +G−1(β) I(Γ) . (3.2)
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These propositions have been proven in [Denis and Hebiri, 2017, Proposition 4 and Propo-
sition 7], this type of results were already discussed in Chapter 1 (see example from of Eq. (1.1)
and the discussion after) where we introduced the problem of constrained classification. Con-
sequently, the accuracy of a confidence set Γ can be for instance quantified according to its
excess risk

Rβ(Γ)−Rβ(Γ∗β) =
K∑
k=1

EPX

[
|pk(X)−G−1(β)|1{{k∈Γ(X)4Γ∗

β
(X)}}

]
.

The statistical learning problem is then to estimate Γ∗β given the data sample DL
n and DU

N .
The formulation in Eq. (3.1) of the β-Oracle appears to be closely related to the level set
estimation problem [Hartigan, 1987, Polonik, 1995, Tsybakov, 1997, Rigollet and Vert, 2009].
In this setup the estimation of the β-Oracle does not only rely on the regression function but
also on the threshold G−1(β) which is, as usual, unknown beforehand and can be estimated
in a semi-supervised way [Denis and Hebiri, 2017]. To better explain these ideas, we give
some examples of possible estimation procedures of Γ∗β.

Confidence set estimators

A confidence set estimator Γ̂ is a measurable function that maps any given data samples
into a confidence set classifier. We shall distinguish two types of estimators: supervised and
semi-supervised whose formal definitions are provided below.

Definition 14 (Supervised and semi-supervised estimators). A measurable mapping

Γ̂ :
⋃

n,N∈N

(
Rd × [K]

)n
×
(
Rd
)N
→ Υ ,

is called a supervised estimator if for any n,N ∈ N and any data samples DL
n = {(Xi, Yi)}ni=1,

DU
N = {Xi}n+N

i=n+1, and DU′
N = {X ′i}n+N

i=n+1 it holds that

Γ̂(x;DL
n ,DU

N) = Γ̂(x;DL
n ,DU′

N ), a.e. x ∈ Rd w.r.t. the Lebesgue measure .

Otherwise the estimator is called semi-supervised. In the sequel, similarly to Chapter 1, for
the simplicity of notation we write Γ̂(x) instead of Γ̂(x;DL

n ,DU
N) if no ambiguity is present.

Intuitively, the supervised estimators do not take into account the information that is
provided by the unlabeled sample. Besides, if we denote by Υ̂ the set of all estimators, Defi-
nition 14 generates a natural partition of Υ̂ into two disjoint sets: the supervised estimators
Υ̂SE and the semi-supervised estimators Υ̂SSE.

Hereafter, we provide three different examples of estimation procedures which are the
core of our study. All these methods rely on plug-in principle.

• Top-β procedure. This is the most intuitive estimator in the considered context. It is a
supervised procedure, that is, based only on DL

n . Let us consider an estimator p̂ of the
regression function p. Let

(
p̂σk(X)

)
k∈[K]

be the order statistic associated to p̂(X), such
that for all x ∈ Rd we have p̂σ1(x)(x) ≥ . . . ≥ p̂σK(x)(x). A top-β confidence set is then
defined as

Γ̂top(x) = {σ1(x), . . . , σβ(x)} , ∀x ∈ Rd . (3.3)
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• Supervised procedure. Formally, in this type of methods, we only care about DL
n

(we forget about DU
N). We split DL

n into two independent samples such that DL
n =

DL
bn/2c

⋃DL
dn/2e. Consequently, we artificially forget about labels in DL

dn/2e and con-
struct DU

dn/2e which only consists of feature vectors from DL
dn/2e. Based on the first

sample DL
bn/2c, we consider an estimator p̂ of the regression function p. Furthermore,

we define
Ĝ(·) = 1

dn/2e
∑

i∈DU
dn/2e

K∑
k=1

1{{p̂k(Xi)≥·}} ,

and one type of supervised estimator is then defined as follows

Γ̂SE(x) =
{
k ∈ [K] : p̂k(x) ≥ Ĝ−1(β)

}
, ∀x ∈ Rd . (3.4)

Interestingly, conditional on the data sample DL
bn/2c, the definition of the estimator Ĝ

does not involves the labels associated to DU
dn/2e. As a consequence, we can naturally

consider a semi-supervised version of this estimator.

• Semi-supervised procedure. Based on DL
n , we consider an estimator p̂ of the regression

function p. Furthermore, we define

Ĝ(·) = 1
N

∑
i∈DU

N

K∑
k=1

1{{p̂k(Xi)≥·}} ,

and one type of semi-supervised estimator is then defined as follows

Γ̂SSE(x) =
{
k ∈ [K] : p̂k(x) ≥ Ĝ−1(β)

}
, ∀x ∈ Rd . (3.5)

One can note that these procedures are based on a preliminary estimator of p built from
DL
n , that is, all of them are plug-in type procedures. However, these procedures differ by

the construction of the output set. Supervised procedures, including the top-β algorithm,
rely only on the labeled data. Meanwhile, the semi-supervised estimator takes advantage of
the information provided by the unlabeled data. The top-β procedure is the simplest among
them, it naturally satisfies |Γ̂(x)| = β for all x ∈ Rd. At the same time, the others are more
involved and can have different cardinals for different values of x ∈ Rd. Nevertheless, for the
other two procedures one can guarantee I(Γ̂) ≈ β.

These examples give a rise to natural statistical questions which form the core our theo-
retical study and which are summarized below.

Q.1: The first question is the statistical performance of these plug-in procedures which is
assessed through rates of convergence and their optimality in the minimax sense.

Q.2: The second question focuses on the benefit of the semi-supervised approach. Roughly
speaking, are there situations where the semi-supervised approach outperforms the
supervised one and how can it be quantified?

Q.3: The third question concentrates on the reason why it is more relevant for this problem
to consider more involved estimators than the simple top-β method.
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Minimax estimation

As discussed in the introduction of Chapter 1 there is no unique way to address performance
of an estimator Γ̂, in this part we consider three notions of excess risks defined below. For a
given family P of joint distributions on Rd× [K], a given estimator Γ̂ ∈ Υ̂, and fixed integers
K ≥ 2, β ∈ [K], n,N ∈ N we are interested in the following maximal risks of Γ̂

EH
n,N(Γ̂;P) := sup

P∈P
E(DL

n,DU
N )EPX

∣∣∣Γ̂(X)4Γ∗β(X)
∣∣∣ (Hamming risk) ,

EE
n,N(Γ̂;P) := sup

P∈P
E(DL

n,DU
N )Rβ(Γ̂)−Rβ(Γ∗β) (excess risk) ,

ED
n,N(Γ̂;P) := sup

P∈P
E(DL

n,DU
N )

[∣∣∣P(Γ̂)− P(Γ∗β)
∣∣∣+ ∣∣∣β − I(Γ̂)

∣∣∣] (discrepancy) ,

where E(DL
n,DU

N ) denotes the expectation w.r.t. P⊗n⊗P⊗NX . These maximal risks are arising in
a natural way in the context of confidence set estimation with controlled expected size. The
risk EH

n,N(Γ̂;P) corresponds to the estimation of the β-Oracle through the Hamming distance.
The second risks is directly connected with Proposition 3.1.2, which gives a description of the
β-Oracle as a minimizer of Rβ(·). An intuitive goal in this setup is to construct a procedure
Γ̂ that exhibits low error |P(Γ̂)− P(Γ∗β)| and low cardinal |β − I(Γ̂)| discrepancies. Thus, it
is natural to consider ED

n,N(Γ̂;P) which is composed of both.
Finally, we are in position to define the notion of the minimax rate. Notably, the minimax

rate in this context is determined not only by the family of distributions P but also by the
family of estimators Γ̂ ⊂ Υ̂ that we consider.

Definition 15 (Minimax rate of convergence). For a given family P of joint distributions
on Rd × [K] and a given family of estimators Γ̂ ⊂ Υ̂ the minimax rates are defined as

E�n,N(Γ̂;P) := inf
Γ̂∈Γ̂
E�n,N(Γ̂;P) ,

where � is H, E, or D.

The main families of estimators that we study are the supervised Υ̂SE and the semi-
supervised Υ̂SSE estimators. Obviously, since Υ̂ = Υ̂SE

⋃ Υ̂SSE and Υ̂SE
⋂ Υ̂SSE = ∅, we have

the following relation

E�n,N(Υ̂;P) = min
{
E�n,N(Υ̂SE;P) , E�n,N(Υ̂SSE;P)

}
.

As a consequence, bounds on both E�n,N(Υ̂SE;P) and E�n,N(Υ̂SSE;P) yield the bounds on the
minimax rate over all estimators.

Related work

Confidence set approach for classification was pioneered by Vovk [2002b,a], Vovk et al. [2005]
by the means of conformal prediction theory. These authors rely on non-conformity measures
which are based on some pattern recognition methods, and develop an asymptotic theory. In
this chapter, we consider a statistical perspective of confidence set classification and put our
focus on non-asymptotic minimax theory.

The problem of confidence set multi-class classification has strong ties with the binary
classification with reject option (see Example 1.0.3), also known as binary classification with

93



abstention in machine learning literature. In the binary classification with rejection, a clas-
sifier is allowed to output some special symbol, which indicates the rejection. Such type of
classifiers can be seen as confidence sets, which are allowed to output ∅ or {0, 1} and are
interpreted as reject. This line of research was initiated by Chow [1957, 1970] in the context
of information retrieval, where a predefined cost of rejection was considered. An extensive
statistical study of this framework was carried in [Herbei and Wegkamp, 2006, Bartlett and
Wegkamp, 2008, Wegkamp and Yuan, 2011]. Instead of considering a fixed cost for rejec-
tion, which might be too restrictive, one may define two entities: probability of rejection
and the probability of misclassification. In the spirit of conformal prediction, Lei [2014] aims
at minimizing the probability rejection provided a fixed upper bound on the probability of
misclassification. In contrast, Denis and Hebiri [2015a] consider a reversed problem of min-
imizing the probability of misclassification given a fixed upper bound on the probability of
rejection.

Once the multi-class classification is considered, there are several possible ways to extend
the binary case: the confidence set approach and the rejection approach. The reject coun-
terpart is a more studied and known version, though it lacks statistical analysis. To the best
of our knowledge the only work which provides statistical guarantees is [Ramaswamy et al.,
2018].

As for the confidence set approach there are again two possibilities, similar to the binary
case. The one that is considered in this chapter was proposed by Denis and Hebiri [2017],
where the authors analyse an ERM algorithm and derive oracle inequalities under the margin
assumption [Tsybakov, 2004]. More specifically, they consider a convex surrogate of the error
P(·) which relies on a convex real valued loss function φ. For a suitable choice of the convex
function φ they show that, under Assumption 3.1.1, their β-Oracle satisfies

Γ∗β(·) =
{
k ∈ [K] : f ∗k (·) ≥ G−1

f∗ (β)
}
,

where the vector score function f ∗ depends on φ and the threshold G−1
f∗ (β) is defined similarly

to the present manuscript. They propose a two-step estimation procedure of the β-Oracle set
based on the ERM algorithm. They first estimate f ∗ and in the second step they estimate the
threshold G−1

f∗ (β) with an unlabeled sample. This procedure is in the same spirit as the semi-
supervised procedure (3.5). Furthermore, under mild assumptions, they provide an upper
bound on the excess risk and obtain a rate of convergence of order (n/log n)−α/(α+s) +N−1/2,
with s being a parameter that depends on the function φ and α being the margin parameter.
Note that this rate is slower than the rate obtained in the standard classification framework.

Another point of view is rising from the conformal prediction theory [Vovk et al., 2005]
which suggests to minimize the information level with a fixed budget on the error level.
Statistical properties of this framework were considered in the work of Sadinle et al. [2018].
Their objective is formulated for some a ∈ (0, 1) as

Γ∗a ∈ arg min {I(Γ) : Γ ∈ Υ s.t. P(Γ) ≤ a} ,

and such a confidence set is called a least ambiguous confidence set with bounded error
rate. The authors show that under Assumption 3.1.1 this oracle set can be described as a
thresholding of the regression function

Γ∗a(·) = {k ∈ [K] : pk(·) ≥ ta} ,

where the threshold ta is defined as

ta = sup
{
t ∈ [0, 1] :

L∑
k=1

P(pk(X) ≥ t |Y = k)P(Y = k) ≥ 1− a
}

.
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Notice that this framework is very similar to [Denis and Hebiri, 2017] in the treatment of
the Bayes optimal confidence set, as in both cases they are obtained via thresholding of the
posterior distribution of the labels. Sadinle et al. [2018] also proceed in two steps as here,
that is, they first estimate the posterior distribution pk(·) for all k ∈ [K] and estimate the
threshold ta after. However, they require the second dataset for the estimation of ta to be
labeled, due to the presence of P(Y = k), the marginal distribution of the labels. Besides, their
theoretical analysis is carried out under a different set of assumptions on the joint distribution
P. Apart from the standard margin assumption, they require a so-called detectability, that
is, the upper bound in the margin assumption has to be tight. Under these assumptions
they provide an upper bound on the Hamming excess risk and obtain a rate of convergence
of order O((n/ log n)−1/2).

Interestingly, both approaches can be encompassed into the constrained estimation frame-
work [Anbar, 1977, Lepskii, 1990, Brown and Low, 1996], where one would like to construct
an estimator with some prescribed properties. These properties are typically reflected by
the form of the risk which in our case is the discrepancy measure, that is, the sum of error
and information discrepancies. Thus, both frameworks of Sadinle et al. [2018], Denis and
Hebiri [2017] can be seen as an extension of the constrained estimation to the classification
problems. From the modeling point of view, we believe that the two frameworks can co-exist
nicely and a particular choice depends on the considered application. The major difference
between the present work and those by Denis and Hebiri [2017] and Sadinle et al. [2018] is the
minimax analysis which we provide here and our treatment of semi-supervised techniques.

As already pointed out, the confidence set estimation problem is closely related to the
level set estimation setup [Hartigan, 1987, Polonik, 1995, Tsybakov, 1997, Rigollet and Vert,
2009]. This problem focuses on the estimation of a level set defined as

Γp(λ) = {x ∈ Rd : p(x) ≥ λ},

where p is the density of the observations and λ > 0 is some fixed value. Given a sample
X1, . . . , Xn distributed according to the density p the goal is to estimate Γp(λ). In [Rigollet
and Vert, 2009], the authors study plug-in density level set estimators through the measure
of symmetric differences and the excess mass. In confidence set estimation the measure of
symmetric differences is the Hamming risk whereas the excess mass is the excess risk. They
show that kernel based estimators are optimal in the minimax sense over a Hölder class of
densities and under a margin type assumption [Polonik, 1995, Tsybakov, 2004]. In particular,
they derive fast rates of convergence, that is faster than n−1/2, for the excess mass. In the
level set estimation problem, the threshold λ is chosen beforehand; whereas in our work, the
threshold G−1(β) depends on the distribution of the data which makes the statistical analysis
more difficult.

This discussion would not be complete without classical results on binary classification,
as it is directly related to our confidence set setup. As it is mentioned in Section 1.1, non-
parametric setting of this problem has been widely studied in literature, with first minimax
analysis provided by Yang [1999] and later specified by Audibert and Tsybakov [2007]. Recall,
that Audibert and Tsybakov [2007] derive fast rates of convergence for plug-in classifiers based
on local polynomial estimators [Stone, 1977, Tsybakov, 1986, Audibert and Tsybakov, 2007]
and show their optimality in the minimax sense. One of the aim of present work is to extend
these results to the confidence set classification framework.

Another part of our work is to provide a comparison between supervised and semi-
supervised procedures. Semi-supervised methods are studied in several papers [Vapnik, 1998,
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Rigollet, 2007, Singh et al., 2009, Bellec et al., 2018] and references therein. A simple in-
tuition can be provided on whether one should or not expect a superior performance of the
semi-supervised approach. Imagine a situation when the unlabeled sample DU

N is so large
that one can approximate PX up to any desired precision, then, if the optimal decision is
independent of PX , the semi-supervised estimators are not to be considered superior over the
supervised estimation. This is the case in a lot of classical problems of statistics, where the
inference is solely governed by the behavior of the conditional distribution PY |X (for instance
regression or binary classification). The situation might be different once the optimal deci-
sion relies on the marginal distribution PX . In this case, as suggested by our findings, the
semi-supervised approach might or not outperform the supervised one even in the context of
the same problem. Similar conclusions were stated by Singh et al. [2009] in the context of
learning under the cluster assumption [Rigollet, 2007].

3.1.2 Main contributions
Bellow we summarize main contributions of this chapter.

• Results of this chapter focus on the case where the regression function p belongs to a
Hölder class and satisfy the margin condition. Under these assumptions, we establish
lower bounds on the minimax rates, defined in Section 3.1.1 in the confidence set
framework.

• As important case study, we first show that top-β type procedures are in general in-
consistent. Furthermore, by providing a rigorous definition of the semi-supervised and
supervised estimators, we describe the situations when the semi-supervised estimation
should be considered superior to its supervised counterpart. Interestingly, analysis in-
troduced in this chapter suggests that these regimes are governed by the interplay of
the family of distributions and by the considered measure of performance. Besides,
we show that in our settings supervised procedures cannot achieve fast rates, that is,
their rates cannot be faster than n−1/2. In contrast, recall that, as mentioned in Chap-
ter 1, some other classical settings [Audibert and Tsybakov, 2007, Rigollet and Vert,
2009, Herbei and Wegkamp, 2006] allow to achieve faster rates for supervised methods.
Moreover, as we have already seen in Section 2.1 in the setup of binary classification
with F-score supervised methods can achieve fast rates.

• We provide supervised and semi-supervised estimation procedures, which are optimal
or optimal up to an extra logarithmic factor. Importantly, our results show that semi-
supervised a plug-in procedure based on local polynomial estimators can achieve fast
rates, provided that the size of the unlabeled samples is large enough.

• Finally, we perform a numerical evaluation of the proposed plug-in algorithms against
the top-β counterparts. This part supports our theoretical results and empirically
demonstrates the reason to consider more involved procedures.

Organization of the chapter

The chapter is organized as follow. In Section 3.1.3, we put some additional notation and
introduce the family of distributions P that we consider. Section 3.1.4 is devoted to the
lower bounds on the minimax rates and their implications. In Section 3.1.5 we introduce the
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proposed algorithm, establish upper bounds for it, and evaluate its numerical performance.
We conclude this chapter by Sections 3.1.6 and 3.1.7 where we discuss and sum-up our results.

3.1.3 Class of confidence sets
First let us introduce some generic notation that is used throughout this chapter. For two
numbers a, a′ ∈ R we denote by a∨ a′ (resp. a∧ a′) the maximum (resp. minimum) between
a and a′. For a positive real number a we denote by bac (resp. dae) the largest (resp. the
smallest) non-negative integer that is less than or equal (resp. greater than or equal) to
a. The standard Euclidean norm of a vector x ∈ Rd is denoted by ‖x‖ and the standard
Lebesgue measure is denoted by Leb(·). A Euclidean ball centered at x ∈ Rd of radius
r > 0 is denoted by Ball(x, r). For an arbitrary Borel measure µ on Rd that is absolutely
continuous w.r.t. the Lebesgue measure we denote by supp(µ) its support, that is, the set
where the Radon-Nikodym derivative of µ w.r.t. Leb is strictly positive. For a vector function
p : Rd 7→ RK and a Borel measure µ on Rd we define the infinity norm of p as

‖p‖∞,µ := inf
{
C ≥ 0 : max

k∈[K]
|pk(x)| ≤ C, a.e. x ∈ Rd w.r.t. µ

}
.

In this chapter the constant C > 0 or its lower-cased versions always refer to some constant
which might differ from line to line. Importantly, all these constants are independent of
n,N but could depend on K, d and other parameters which are assumed to be fixed. Before
introducing the families of distributions P that are considered in this chapter we need the
following definitions.

Assumption 3.1.4 (α-margin assumption). We say that the distribution P of the pair
(X, Y ) ∈ Rd × [K] satisfies α-margin assumption if there exists C1 > 0 and t0 ∈ (0, 1)
such that for every positive t ≤ t0

PX
(
0 <

∣∣∣pk(X)−G−1(β)
∣∣∣ ≤ t

)
≤ C1t

α .

Let us point out an important consequence of Assumption 3.1.1. We have that the
condition

PX
(∣∣∣pk(X)−G−1(β)

∣∣∣ ≤ t
)
≤ C1t

α ,

for all t ∈ [0, t0] is equivalent to Assumption 3.1.4. Indeed, the random variables pk(X)’s
cannot concentrate at a constant level and in particular at G−1(β). Moreover, again due to
the continuity Assumption 3.1.1 we have

lim
t→+0

PX
(∣∣∣pk(X)−G−1(β)

∣∣∣ ≤ t
)

= 0 ,

thus the α-margin Assumption 3.1.4 specifies the rate of this convergence. Finally, similarly
to the F-score setup discussed in Section 2.1, the restriction of the range of t to [0, t0] in
α-margin Assumption 3.1.4 does not affect its global behavior as for all t ∈ [0, 1]

PX
(
0 <

∣∣∣pk(X)−G−1(β)
∣∣∣ ≤ t

)
≤ c1t

α, with c1 = C1 ∨ t−α0 .

For convenience of the reader, here we recall standard non-parametric assumptions which we
have already used in Section 2.1. Let c0 and r0 be two positive constants. We say that a
Borel set A ⊂ Rd is a (c0, r0)-regular set if

Leb (A ∩ Ball(x, r)) ≥ c0 Leb (Ball(x, r)) , ∀r ∈ (0, r0], ∀x ∈ A .
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Definition 16 (Strong density). We say that the probability measure PX on Rd satisfies the
(µmin, µmax, c0, r0)-strong density assumption if it is supported on a compact (c0, r0)-regular
set A ⊂ Rd and has a density µ w.r.t. the Lebesgue measure such that µ(x) = 0 for all
x ∈ Rd \ A and

0 < µmin ≤ µ(x) ≤ µmax <∞, ∀x ∈ A .

Definition 17 (Hölder class, Tsybakov [2009]). We say that a function h : Rd → R is (γ, L)-
Hölder for γ > 0 and L > 0 if h is bγc times continuously differentiable and ∀x, x′ ∈ Rd we
have

|h(x′)− hx(x′)| ≤ L ‖x− x′‖γ ,

where hx(·) is the Taylor polynomial of degree bγc of h(·) at the point x ∈ Rd. Consequently,
the set of all functions from Rd to R satisfying the above conditions is called (γ, L,Rd)-Hölder
and is denoted by H(γ, L,Rd).

Definition 18. We denote by P(L, γ, α) a set of joint distributions on Rd×[K] which satisfies
the following conditions

• the marginal PX satisfies the (µmin, µmax, c0, r0)-strong density;

• for all k ∈ [K] the kth regression function pk(·) = P(Y = k|X = ·) belongs to the
(γ, L,Rd)-Hölder class, that is pk ∈ H(γ, L,Rd) for all k ∈ [K];

• for all k ∈ [K] the regression function pk satisfy the (C1, α, β)-Margin assumption;

• for all k ∈ [K], the cumulative distribution function Fpk of pk(X) is continuous.

The family of distributions P(L, γ, α) is also similar to the one considered in [Audibert
and Tsybakov, 2007] in the context of binary classification. The major difference is the
continuity Assumption 3.1.1, which does not allow to re-use in a straightforward way their
construction for lower bounds.

3.1.4 Lower bounds
The main results in the present chapter are the lower bounds which we provide in this
section. In particular, we establish in Section 3.1.4 the inconsistency of top-β procedures (see
Eq. (3.3) for a definition of the method). Therefore more elaborate methods are required in
this framework. As pointed out in the introduction, we distinguish two types of estimators:
supervised and semi-supervised ones for which we provide lower bounds in Section 3.1.4. The
obtained rates highlight the benefit of the semi-supervised approach in the context of the
confidence set classification.

Before proceeding to our main result, let us first display connections between the different
minimax risks. These links are used in the proofs of the lower bounds.

Proposition 3.1.5. Let Γ be a measurable function from Rd to 2[K], β ∈ [K] and assume
that Assumption 3.1.1 is fulfilled, then

P(Γ)− P(Γ∗β) = Rβ(Γ)−Rβ(Γ∗β) +G−1(β) (β − I(Γ)) ,

Rβ(Γ)−Rβ(Γ∗β) =
K∑
k=1

EPX

[
|pk(X)−G−1(β)|1{{k∈Γ(X)4Γ∗

β
(X)}}

]
.
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Furthermore, if additionally Assumption 3.1.4 is satisfied with α > 0, then there exist C > 0
which depends only on K,α,C1 such that for any pair of confidence set classifiers Γ,Γ′ it
holds that

EPX

∣∣∣Γ(X)4Γ′(X)
∣∣∣ ≤ C (Rβ(Γ)−Rβ(Γ′))α/(α+1)

. (3.6)

Proposition 3.1.6. For any K ≥ 2, β ∈ [K] and n,N ∈ N the following relation between
minimax rates holds:

EH
n,N(Γ̂;P) ≥ ED

n,N(Γ̂;P) ≥ EE
n,N(Γ̂;P) .

Proposition 3.1.5, and in particular Eq. (3.6) gives an easy way to establish a lower bound
on EE

n,N(Γ̂;P) via a lower bound on the Hamming distance EH
n,N(Γ̂;P). This approach allows

us to cover the classical non-parametric part of the rate, however, it does not capture the
semi-supervised nature of the problem. As we shall see, a different strategy is required to get
the correct dependency on the unlabeled sample size. Besides, Proposition 3.1.6 allows to
prove a lower bound on the discrepancy ED

n,N(Γ̂;P) with the correct rate via the lower bound
on the excess risk EE

n,N(Γ̂;P).

Inconsistency of the top-β procedure

Before stating our results on the supervised and the semi-supervised estimators, we discuss
another interesting class of confidence sets, which might be a natural choice at the first
sight. We consider estimators which consists of β classes at every point x ∈ Rd since such
estimators naturally satisfy I (Γ̂) = β. Let us denote by Υ̂β the set of all estimators Γ̂ such
that |Γ̂(x)| = β for all x ∈ Rd, that is,

Υ̂β =
{

Γ̂ ∈ Υ̂ : |Γ̂(x)| = β, a.e. x ∈ Rd w.r.t. Leb
}
.

Despite an obvious restriction on the cardinal of the confidence sets, the family of estimators
Υ̂β is rather broad. Indeed, every procedure which estimates the regression functions pk(·)’s
and includes the top β scores as the output are included in Υ̂β. The nature of the estimator
can also be different, that is, the estimates could be based on ERM, non-parametric or
parametric approaches. Besides, the family Υ̂β is neither included in Υ̂SE nor in Υ̂SSE and
has a non-trivial intersection with both. The next result states that there is no uniformly
consistent estimator Γ̂ ∈ Υ̂β over the family of distributions P(L, γ, α).

Proposition 3.1.7. Assume that K ≥ 4, β ∈ [bK/2c − 1] and β ≥ 2, then for all n,N ∈ N
we have

EE
n,N

(
Υ̂β;P(L, γ, α)

)
≥ β − 1

4K .

The proof builds an explicit construction of a distribution P whose β-Oracle in the sense
of Eq. (3.1) satisfies |Γ∗β(x)| > β for all x in some A ⊂ Rd with PX(A) > 0. Indeed, if such
a distribution exists then there is no estimator in Υ̂β that would consistently estimate this
β-Oracle. The negative result established in Proposition 3.1.7 is rather instructive by itself
as it advocates that a more involved estimation procedure ought to be constructed.
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Supervised vs semi-supervised

This section is dedicated to the lower bounds on the supervised and the semi-supervised
methods. As already mentioned, estimators which achieve the infimum in the minimax rates
are either supervised or semi-supervised. However, a lower bound on E�n,N(Υ̂;P) does not
discriminate between the supervised and the semi-supervised estimators. For this reason, we
consider both of these families of algorithms separately.

Theorem 13 (Supervised estimation). Let K ≥ 3, β ∈ [bK/2c − 1]. If 2αdγ2e ≤ d, then
there exist constants c, c′, c′′ > 0 such that for all n,N ∈ N

EH
n,N(Υ̂SE;P(L, γ, α)) ≥ c

(
n−

αγ
2γ+d

∨
n−1/2

)
,

EE
n,N(Υ̂SE;P(L, γ, α)) ≥ c′

(
n−

(1+α)γ
2γ+d

∨
n−1/2

)
,

ED
n,N(Υ̂SE;P(L, γ, α)) ≥ c′′

(
n−

(1+α)γ
2γ+d

∨
n−1/2

)
.

Based on this results we observe that the lower bound for the Hamming risk EH
n,N is slower

than those for the other risks. It is even more significant that the best rate that a supervised
estimator can achieve for all of the risks is n−1/2 even if the margin assumption holds. This is
the major difference with the classical settings where the value of threshold is known (such as
classification and level set estimation). Indeed, under the same assumptions on the family of
distributions, besides the continuity Assumption 3.1.1, the minimax rate in those frameworks
is n−(1+α)γ/(2γ+d) as proved for instance in [Audibert and Tsybakov, 2007, Rigollet and Vert,
2009]. Next theorem deals with semi-supervised procedures and displays another behavior.

Theorem 14 (Semi-supervised estimation). Let K ≥ 3, β ∈ [bK/2c − 1]. If 2αdγ2e ≤ d,
then there exist constants c, c′, c′′ > 0 such that for all n,N ∈ N

EH
n,N(Υ̂SSE;P(L, γ, α)) ≥ c

(
n−

αγ
2γ+d

∨
(n+N)−1/2

)
,

EE
n,N(Υ̂SSE;P(L, γ, α)) ≥ c′

(
n−

(1+α)γ
2γ+d

∨
(n+N)−1/2

)
,

ED
n,N(Υ̂SSE;P(L, γ, α)) ≥ c′′

(
n−

(1+α)γ
2γ+d

∨
(n+N)−1/2

)
.

First, observe that the lower bound for the Hamming distance is, as in the supervised
setting, worse than for the other measures of performance. However there is a major difference
with the supervised case: as compared to Theorem 13, it is possible for a semi-supervised
estimator to achieve rates that are faster than n−1/2 if the size of the unlabeled dataset
N ∈ N is large enough. In particular, when we consider EE

n,N or ED
n,N the following relations

are necessary to get fast rates

(n+N)−1/2 = o
(
n−(1+α)γ/(2γ+d)

)
, n−(1+α)γ/(2γ+d) = o(n−1/2) .

In this case, we recover the same fast rates as in the classical settings of classification and
level set estimation. It suggests that the lack of knowledge of the threshold G−1(β) does
not alter the quality of estimation for the semi-supervised procedure, provided that N is
sufficiently large. We summarize our observations related to the interplay of N and n in the
following corollary.
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(1+α)γ
2γ+d N, n SE rate SSE rate SSE > SE

≤ 1
2 N ∈ N, n ∈ N n−

(1+α)γ
2γ+d n−

(1+α)γ
2γ+d NO

> 1
2 N = O(n) n−

1
2 n−

1
2 NO

> 1
2 n = o(N) n−

1
2 N−

1
2
∨
n−

(1+α)γ
2γ+d YES

> 1
2 N = Ω

(
n

2(1+α)γ
2γ+d

)
n−

1
2 n−

(1+α)γ
2γ+d YES

Table 3.1: This table summarizes observations of Corollary 2 for EE
n,N and ED

n,N . Depending on
the relations between α, γ, d and N, n the semi-supervised approach can significantly improve
the rates of convergence.

Corollary 2. Assume that the rates in Theorem 14 (resp. Theorem 13) are minimax, that
is, there exist a confidence set Γ̂SSE (resp. Γ̂SE) that achieves these rates. Regarding EE

n,N and
ED
n,N the following conclusions hold

• There is no semi-supervised estimator that achieves faster rate than Γ̂SE if:
(1+α)γ
2γ+d ≤ 1/2
N ∈ N

or


(1+α)γ
2γ+d > 1/2
N = O(n)

.

• The rate of Γ̂SSE is faster than the rate of any supervised estimator if:

(1 + α)γ
2γ + d

> 1/2 and n = o(N) .

Moreover, if there exists ρ > 0 such that n1+ρ = o(N), then the rate of Γ̂SSE is polyno-
mially faster than n−1/2.

• The rate of Γ̂SSE is fast, similarly to the classical frameworks, if

(1 + α)γ
2γ + d

> 1/2 and N = Ω
(
n

2(1+α)γ
2γ+d

)
.

Clearly, similar observation is true for the Hamming risk EH
n,N ; however the regime

when improvement is possible thanks to semi-supervised approaches is narrowed as
n−(1+α)γ/(2γ+d) = o

(
n−αγ/(2γ+d)

)
. Table 3.1.4 gathers the conclusions of Corollary 2 in a

compact form.

Essentially, the above results suggest that the advantage of the semi-supervised approaches
over the supervised ones depends not only on the underlying family of distributions P but
also on the metric that is considered. Yet, necessary and sufficient conditions that must be
imposed in general on the problem and the metric so that the semi-supervised estimation
provably improve upon the supervised one remain an open problem.

A final remark we could make before going further concerns the assumption on the pa-
rameters α and γ. The condition 2αdγ2e ≤ d in the lower bounds is slightly more restrictive
than the conditions given in [Audibert and Tsybakov, 2007] (they have αγ ≤ d). We believe

101



that this is an artifact of our proof and could be avoided with a finer choice of hypotheses.
Simple modifications of the lower bound of Audibert and Tsybakov [2007] do not work in
our settings because their hypotheses are not satisfying Assumption 3.1.1. In contrast, the
construction of Rigollet and Vert [2009] satisfies1 Assumption 3.1.1 but their lower bound
is limited by the condition αγ ≤ 1, that is, it does not cover the fast rates as long as the
dimension d > 2.

Sketch of the proof

In order to prove the lower bounds of Theorems 13 and 14 we actually prove two separate
lower bounds on the minimax rates. The two lower bounds that we prove are naturally
connected with the proposed two-step estimator in Eq. (3.5). That is, the first lower bound
is connected with the problem of non-parametric estimation of pk for all k ∈ [K] and the
second describes the estimation of the unknown threshold G−1(β).

Specifically, the first lower bound is closely related to the one provided in [Audibert and
Tsybakov, 2007, Rigollet and Vert, 2009], however, the continuity Assumption 3.1.1 makes the
proof more involved and results in a final construction of hypotheses that differs significantly.
This part of our lower bound relies on Fano’s inequality in the form of Birgé [2005]. The
second lower bound is based on two hypotheses testing and is derived by constructing two
different marginal distributions of X ∈ Rd which are sufficiently close and a fixed regression
function p(·). Crucially, these marginal distributions admit two different values of threshold
G−1(β) and thus two different β-Oracle. In this part we make use of Pinsker’s inequality, see
for instance [Tsybakov, 2009].

In order to discriminate the supervised and the semi-supervised procedures we make use
of Definition 14. Notice that every supervised procedure thanks to Definition 14 is not “sen-
sitive” to the expectation taken w.r.t. the unlabeled dataset DU

N , that is, randomness is only
induced by the labeled dataset DL

n . This strategy allows to eliminate the dependence of the
lower bound on the size of the unlabeled dataset DU

N for supervised procedures. Informally,
the lower bound on E�n,N(Υ̂SE;P) is obtained from the lower bound on E�n,N(Υ̂SSE;P) by
setting N = 0.

3.1.5 Upper bounds
In this section, we show that we can build confidence set estimators that achieve, up to
a logarithmic factor, the lower bounds stated in Theorems 13-14. In other words, those
estimators are nearly optimal in the minimax sense. To come straight to the point, we delay
the construction of the estimators to Section 3.1.5 and their properties to Section 3.1.5, and
focus right now on their upper bounds.

Theorem 15 (Supervised estimation). Let K ∈ N, β ∈ [K−1], then there exists a supervised
1Modified properly to fit the classification framework.
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estimator Γ̂SE ∈ Υ̂SE and constants C,C ′, C ′′ > 0 such that for all n,N ∈ N we have

EH
n,N(Γ̂SE;P(L, γ, α)) ≤ C

(
n−

αγ
2γ+d

∨
n−1/2

)
,

EE
n,N(Γ̂SE;P(L, γ, α)) ≤ C ′

( n

log n

)− (1+α)γ
2γ+d ∨

n−1/2

 ,

ED
n,N(Γ̂SE;P(L, γ, α)) ≤ C ′′

( n

log n

)− (1+α)γ
2γ+d ∨

n−1/2

 .

Theorem 16 (Semi-supervised estimation). Let K ∈ N, β ∈ [K − 1], then there exists a
semi-supervised estimator Γ̂SSE ∈ Υ̂SSE and constants C,C ′, C ′′ > 0 such that for all n,N ∈ N
we have

EH
n,N(Γ̂SSE;P(L, γ, α)) ≤ C

(
n−

αγ
2γ+d

∨
(n+N)−1/2

)
,

EE
n,N(Γ̂SSE;P(L, γ, α)) ≤ C ′

( n

log n

)− (1+α)γ
2γ+d ∨

(n+N)−1/2

 ,

ED
n,N(Γ̂SSE;P(L, γ, α)) ≤ C ′′

( n

log n

)− (1+α)γ
2γ+d ∨

(n+N)−1/2

 .

First of all, the above upper bounds imply that the lower bounds of Theorems 13-14
are achievable. In particular, in the case of Hamming risk, the upper bounds are optimal;
whereas for the excess risk and the discrepancy, the upper bounds fit the lower bounds up
to a logarithmic factor. Additionally, these upper bounds support the discussion on the
semi-supervised and the supervised estimators provided in Corollary 2. Finally, notice that
the upper bounds for the excess risk and for the discrepancy exhibit an extra logarithmic
factor. This disagreement with the lower bounds is due to the connection with the `∞-norm
estimation established in Lemma 12. A more detailed discussion on this logarithmic factor
is provided in Section 3.1.6.

Construction of the estimators

Building estimators Γ̂SE and Γ̂SSE that reach the rates in the former upper bounds involves
preliminary estimators p̂k of the regression functions pk, k ∈ [K]. These estimators are
constructed using an arbitrary half Dbn/2c of the labeled dataset DL

n and they satisfy the
following assumptions.

Assumption 3.1.8 (Exponential concentration). There exist estimators p̂k for all k ∈ [K]
based on Dbn/2c and positive constants C ′1, C ′2 such that for all k ∈ [K] and all n ≥ 2 we have
for all δ > 0

sup
P∈P(L,γ,α)

P⊗bn/2c (|p̂k(x)− pk(x)| ≥ δ) ≤ C ′1 exp
(
−C ′2n

2γ
2γ+d δ2

)
,

for almost all x ∈ Rd w.r.t. PX .

Assumption 3.1.9 (Continuity of CDF). For all k ∈ [K] the cumulative distribution func-
tion Fp̂k(t) := PX(p̂k(X) ≤ t) of p̂k(X) is almost surely P⊗bn/2c continuous on (0, 1).
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First let us point out that Assumption 3.1.8 induces that there exists a constant C > 0
such that for all n ≥ 2 and all α > 0

sup
P∈P(L,γ,α)

EDbn/2c ‖p− p̂‖
1+α
∞,PX ≤ C

(
n

log n

)− (1+α)γ
2γ+d

.

Assumption 3.1.8 is commonly used in the statistical community when we deal with rates of
convergence in the classification settings [Audibert and Tsybakov, 2007, Lei, 2014, Sadinle
et al., 2018]. It is for instance satisfied by the locally polynomial estimator [Stone, 1977,
Tsybakov, 1986, Audibert and Tsybakov, 2007]. Assumption 3.1.9 can always be satisfied by
slightly processing any estimator p̂. Indeed, assume Assumption 3.1.9 fails to be satisfied by
some estimator p̂. It means that there exists a subset of Rd of non-zero measure such that at
least one p̂k, with k ∈ [K], is constant on this set. Then, if we add a deterministic continuous
function with a sufficiently small amplitude2 to p̂ such regions can no longer exist.

Since, the threshold level G−1(β) is not known beforehand, it ought to be estimated using
data. A straightforward estimator of this threshold can be constructed using the unlabeled
dataset DU

N . To make our presentation mathematically correct we introduce the following
notation DL

n = DL
bn/2c

⋃DL
dn/2e, where DL

bn/2c is the dataset used to build the estimators p̂k for
k ∈ [K]. Consequently, we erase labels from DL

dn/2e and obtain DU
dn/2e which is only composed

of feature vectors from DL
dn/2e. Now, all the labels are removed from DU

dn/2e, that is, DU
dn/2e

consists of dn/2e i.i.d. samples from PX . The supervised and the semi-supervised estimators
of G(·) are defined as

ĜSE(·) = 1
dn/2e

∑
X∈DU

dn/2e

K∑
k=1

1{p̂k(X)>·} ,

ĜSSE(·) = 1
dn/2e+N

∑
X∈DU

N

⋃
DU
dn/2e

K∑
k=1

1{p̂k(X)>·} ,

respectively. Finally, we are in position to define Γ̂SE and Γ̂SSE as

Γ̂SE(x) =
{
k ∈ [K] : p̂k(x) ≥ Ĝ−1

SE(β)
}
, (supervised) ,

Γ̂SSE(x) =
{
k ∈ [K] : p̂k(x) ≥ Ĝ−1

SSE(β)
}
, (semi-supervised) ,

for all x ∈ Rd. Note that Γ̂SE is clearly supervised in the sense of Definition 14, as it is
independent of the unlabeled sample DU

N . In contrast, Γ̂SSE is semi-supervised, since we can
find two samples DU

N and DU′
N which induce different confidence sets.

Properties of the plug-in confidence sets

To show that the estimators introduced in the previous section satisfy the statements of
Theorems 15-16 we refine the proof technique used in [Denis and Hebiri, 2017]. That is, we
introduce an intermediate quantity

G̃(·) :=
K∑
k=1

PX (p̂k(X) > ·) ,

2It is sufficient to make sure that adding the function preserves its statistical properties, that is, Assump-
tion 3.1.8.
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and the associated confidence set, which we refer to as the pseudo Oracle confidence set given
for all x ∈ Rd by

Γ̃(x) :=
{
k ∈ [K] : p̂k(x) ≥ G̃−1(β)

}
, (pseudo Oracle) .

The confidence set Γ̃ assumes knowledge of the marginal distribution PX and is seen as an
idealized version of both Γ̂SE and Γ̂SSE. For the pseudo Oracle the uncertainty is induced only
by the lack of knowledge of the regression function. Note however, that the pseudo Oracle Γ̃
is not an estimator, since it is not data driven.

An important step of our analysis is the following lemma, that bounds the difference
between G̃−1(β) and G−1(β).

Lemma 12 (Upper bound on the thresholds). Let Assumption 3.1.1 be satisfied, then for all
β ∈ [K] ∣∣∣G−1(β)− G̃−1(β)

∣∣∣ ≤ ‖p− p̂‖∞,PX , almost surely P⊗n ⊗ P⊗NX .

The proof of Lemma 12 uses elementary properties of the generalized inverse functions
which are provided in Section 3.1.8. Besides, let us mention, that the difference |G−1(β) −
G̃−1(β)| resembles the Wasserstein infinity distance which gives an alternative approach to
prove Lemma 12, see [Bobkov and Ledoux, 2016]. Importantly, Lemma 12 explains the
extra log n factor that appears in the upper bound, as the minimax estimation rate in sup
norm involves this logarithm, see for instance [Stone, 1982, Tsybakov, 2009]. Another crucial
property of the introduced estimators Γ̂SE and Γ̂SSE is obtained via Assumption 3.1.9. It
describes the deviation of the information of Γ̂SE and Γ̂SSE from the desired level β.

Proposition 3.1.10 (Denis and Hebiri [2017]). Let p̂k for all k ∈ [K] be arbitrary estimators
of the regression functions constructed using DL

bn/2c that satisfies Assumption 3.1.9, then there
exist constants C,C ′ > 0 such that for all n,N ∈ N it holds that

E(DL
n,DU

N )

∣∣∣β − I
(
Γ̂SE

)∣∣∣ ≤ Cn−1/2 ,

E(DL
n,DU

N )

∣∣∣β − I
(
Γ̂SSE

)∣∣∣ ≤ C ′(N + n)−1/2 .

Note that if p̂k satisfies Assumption 3.1.9 for all k ∈ [K], then the information of pseudo
Oracle Γ̃ satisfies I(Γ̃) = β. This simple fact is an important step in the proof of Proposi-
tion 3.1.10.

Finally, combination of Lemma 12, Proposition 3.1.10, Assumption 3.1.8 with the peeling
argument used in [Audibert and Tsybakov, 2007, Lemma 3.1] yields the results of Theo-
rems 15-16.

Simulation study

The goal of this part is to numerically address the following points.

1) Is it more advantageous to go outside of the classical multi-class classification settings
and consider the confidence set framework? To respond to this question we compute
the Bayes optimal multi-class classifier and view it as a confidence set with one label.
We compare this Bayes rule with the β-Oracle in terms of the error P(·) using various
values of β ∈ [K] and K ∈ N.
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K = 10
β β-Oracle top-β Oracle
2 0.05 (0.01) 0.09 (0.01)
5 0.00 (0.00) 0.01 (0.00)

K = 100
β β-Oracle top-β Oracle

2 0.39 (0.01) 0.42 (0.01)
5 0.20 (0.01) 0.22 (0.01)
10 0.09 (0.01) 0.11 (0.01)
20 0.03 (0.01) 0.04 (0.01)

Table 3.2: For each of the B = 100 repetitions and each model, we derive the estimated
errors PM of the β-Oracle and of the top-β Oracle w.r.t. β. We compute the means and
standard deviations (between parentheses) over the B = 100 repetitions. Top: the data are
generated according to K = 10 – Bottom: the data are generated according to K = 100.

2) How does the β-Oracle confidence set compares to another “Oracle” (top-β Oracle)
which simply includes classes corresponding to the largest values of pk(·)’s?

3) Does the proposed plug-in approach indeed gives a good approximation of the β-Oracle
through the error P(·) and the information I(·)?

4) Despite demonstrating the minimax inconsistency of the top-β approach, we wonder
whether in some scenarios it can achieve a comparable performance against our semi-
supervised plug-in procedure.

Here, we consider two simulation schemes depending on the parameter K ∈ {10, 100}. For
each K, we generate (X, Y ) according to a mixture model. More precisely,

i) the label Y is distributed uniformly on [K];

ii) conditional on Y = k, the feature X is generated according to a multivariate Gaussian
distribution with mean µk ∈ R10 and identity covariance matrix.

For each k ∈ [K], the means µk are i.i.d. realizations of uniform distribution on [0, 4]10. For
this data generating setup we have the following expression for the regression functions

pk(X) = ϕµk(X)∑K
j=1 ϕµj(X)

,

where for each k ∈ [K], ϕµk(X) is the density function of a multivariate Gaussian distribution
with mean µk and identity covariance matrix.

For each K, the misclassification error of the classical multi-class classification Bayes rule
is evaluated based on a sufficiently large dataset. It is valued at 0.22 and at 0.60 for K = 10
and for K = 100 respectively. These values are relatively high, which suggests that it is
reasonable to apply the confidence set approach to this problem.

In the sequel, we aim at reporting estimated errors and information levels of the β-Oracle
defined in Eq. (3.1). To this end, for β ∈ {2, 5, 10, 20} and each K, we repeat B = 100 times
the following steps.
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β K = 10 K = 100
2 2.00 (0.03) 2.00 (0.03)
5 5.00 (0.08) 5.00 (0.06)
10 · 10.00 (0.13)
20 · 20.02 (0.31)

Table 3.3: For each of the B = 100 repetitions and each model, we derive the estimated
information levels IM of the β-Oracle set w.r.t. β. We compute the means and standard
deviations (in parentheses) over the B = 100 repetitions. Left: the data are generated
according to K = 10 – Right: the data are generated according to K = 100.

K = 10
Γ̂SSE top-β

β rforest softmax reg deep learn rforest softmax reg deep learn

2 0.09 (0.01) 0.06 (0.01) 0.09 (0.01) 0.13 (0.01) 0.10 (0.01) 0.13 (0.02)
5 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) 0.02 (0.00) 0.01 (0.00) 0.02 (0.00)

K = 100
Γ̂SSE top-β

β rforest softmax reg deep learn rforest softmax reg deep learn

2 0.48 (0.02) 0.93 (0.01) 0.46 (0.02) 0.51 (0.01) 0.96 (0.01) 0.48 (0.02)
5 0.30 (0.02) 0.85 (0.02) 0.25 (0.02) 0.31 (0.01) 0.90 (0.01) 0.27 (0.01)
10 0.17 (0.01) 0.75 (0.02) 0.12 (0.01) 0.18 (0.01) 0.80 (0.01) 0.14 (0.01)
20 0.07 (0.01) 0.59 (0.02) 0.04 (0.01) 0.09 (0.01) 0.61 (0.02) 0.06 (0.01)

Table 3.4: For each of the B = 100 repetitions and for each model, we derive the estimated
errors P of three different Γ̂SSE’s w.r.t. β. We compute the means and standard deviations
(in parentheses) over the B = 100 repetitions. For each β and for each N , the Γ̂SSE’s,
as well as the top procedures are based on, from left to right, rforest, softmax reg and
deep learn, which are respectively the random forest, the softmax regression and the deep
learning methods. Top: the data are generated according to K = 10 – Bottom: the data are
generated according to K = 100.

i) simulate two datasets DU
N and DL

M with N = 10000 and M = 1000;

ii) based on DU
N , we compute the empirical counterpart of G and provide an approximation

of the β-Oracle Γ∗β given in Eq. (3.1) (we recall that this step requires a dataset which
contains only unlabeled features);

iii) finally, over DM , we compute the empirical counterparts PM (of P(Γ∗β)) and IM (of
I(Γ∗β)).

From this estimates, we compute the mean and the standard deviation of PM and IM . Ta-
bles 3.2 and 3.3 present values of the error and of the information which are achieved by the
β-Oracle and by the top-β Oracle. Turning to Table 3.2 we confirm the intuition that the
error of the β-Oracle decreases as the value of the parameter β increases. Notably, we obtain
a satisfactory improvement over the standard multi-class classification Bayes rule even for
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K = 10
N = 100 N = 10000

β rforest softmax reg deep learn rforest softmax reg deep learn

2 2.01 (0.09) 2.01 (0.10) 2.02 (0.11) 2.00 (0.02) 2.00 (0.03) 2.00 (0.03)
5 5.02 (0.18) 4.99 (0.20) 5.00 (0.21) 5.00 (0.06) 5.00 (0.08) 5.00 (0.07)

K = 100
N = 100 N = 10000

β rforest softmax reg deep learn rforest softmax reg deep learn

2 2.02 (0.10) 2.09 (0.43) 2.01 (0.09) 2.00 (0.03) 2.02 (0.15) 2.00 (0.02)
5 4.97 (0.15) 5.27 (0.70) 5.01 (0.24) 5.00 (0.04) 5.01 (0.27) 5.00 (0.07)
10 9.98 (0.24) 10.02 (1.00) 10.02 (0.42) 10.01 (0.09) 10.05 (0.32) 10.00 (0.16)
20 20.08 (0.48) 19.74 (0.98) 20.11 (0.85) 20.00 (0.16) 20.01 (0.36) 20.01 (0.28)

Table 3.5: For each of the B = 100 repetitions and for each model, we derive the estimated
information levels I of three different Γ̂SSE’s w.r.t. β and the sample size N . We compute
the means and standard deviations (in parentheses) over the B = 100 repetitions. For
each β and each N , the Γ̂SSE’s are based on, from left to right, rforest, softmax reg and
deep learn, which are respectively the random forest, the softmax regression and the deep
learning procedures. Top: the data are generated according to K = 10 – Bottom: the data
are generated according to K = 100.

moderate values of β compared to K. For instance, when K = 10 and β = 2 the error of the
2-Oracle confidence set is 0.05, whereas the Bayes classifier has 0.22; likewise, when K = 100
and β = 5 the classification error decreases from 0.60 to 0.20. These observations argue in
favor of the confidence set framework. Let us finally point out that Table 3.2 shows that
the top-β Oracle is outperformed by the β-Oracle in terms of the error. Nevertheless, top-β
Oracle still performs reasonably well.

We now move towards the construction of our semi-supervised plug-in estimators Γ̂SSE
defined in Eq. (3.5). For each K and each β, we evaluate the performance of Γ̂SSE according
to three different estimations of the regression function: the p̂k’s that are based on random
forests, softmax regression and deep learning3 procedures. Let us point out, that for random
forests and softmax regression algorithms, the random variables p̂k(X) appear to be not
continuous, that is, Assumption 3.1.9 is violated. To alleviate this issue, we add to p̂k(X) an
independent small perturbation |N (0, e−10)| for simplicity. The evaluation of the performance
of Γ̂SSE relies on the following steps

i) simulate three datasets DL
n , DU

N and DL
M ;

ii) based on DL
n , we compute the estimators p̂k of pk according to the considered procedure;

iii) based on DU
N and p̂k we compute the function Ĝ and the estimator Γ̂SSE as in Eq. (3.5)

(we recall that this step requires a dataset which contains only unlabeled features);

iv) finally, we compute over DL
M the empirical counterpart of P and of I for the considered

Γ̂SSE.
3We used H2O package for the implementation of deep learning algorithm available at https://cran.

r-project.org/web/packages/h2o/index.html.
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Again, during these experiments, we compute means and standard deviations. The pa-
rameters K,n,N are fixed as follows: for K = 10, we fix n = 1000 and N ∈ {100, 10000};
for K = 100 we fix n = 10000 and N ∈ {100, 10000}. Finally, the size of DL

M is fixed to
M = 1000. The results are illustrated in Tables 3.4 and 3.5.

As benchmark for the continuation of our experiments, the classical misclassification
errors of the multi-class classifiers based on random forests, softmax regression and deep
learning methods are valued respectively at 0.28, 0.24, 0.29 for K = 10, and at 0.65, 0.98
0.63 for K = 100.

From Tables 3.3 and 3.5, we observe that the approximation of the information is rea-
sonably good and it gets better with N the number of unlabeled data. Besides, Tables 3.2
and 3.4 demonstrate that our algorithm is sensitive to the choice of the underlying estimator
p̂k. Indeed, when p̂k is estimated via the softmax regression, our algorithm fails to give a
good approximation to the error of the β-Oracle.

Table 3.4 provides similar conclusions regarding Γ̂SSE, though, unlike the theoretical quan-
tities, there are more scenarios where our method is better than its top-β counterpart. Let
us point out, that for K = 100 methods that are based on the softmax regression perform
poorly in this setup.

3.1.6 Discussion
Around continuity Assumption 3.1.1

The bedrock of this contribution is Assumption 3.1.1. Based on it, we ensure that the β-
Oracle confidence set given by Eq. (3.1) is indeed of information β. On top of that, the
explicit formulation of excess risk in Proposition 3.1.5 relies on the continuity of function
G(·). Should Assumption 3.1.1 fail to be satisfied, then there might be no β-Oracle given by
thresholding on some level θ ∈ (0, 1). Indeed, assume Assumption 3.1.1 is not satisfied but
one can build a β-Oracle having the form Γ∗β(·) = {k ∈ [K] : pk(·) > θ} with some θ, then

β = I(Γ∗β) = G(θ) .

However, without the continuity, the function G(·) is not surjective and therefore, the equa-
tion G(θ) = β may have no solutions, which contradicts the fact that I(Γ∗β) = β. Therefore,
the settings without the continuity of G(·) deserve a separate study. Let us also point out
that the continuity assumption implies that the β-Oracle also satisfies

Γ∗β ∈ arg min {P (Γ) : Γ ∈ Υ s.t. I(Γ) ≤ β} ,

where the inequality is used in place of the equality. Indeed, under the continuity assumption
and thanks to Propositions 3.1.3 and 3.1.5, we have for all confidence sets Γ such that I(Γ) ≤ β

P(Γ)− P(Γ∗β) = Rβ(Γ)−Rβ(Γ∗β)︸ ︷︷ ︸
≥0

+G−1(β) (β − I(Γ))︸ ︷︷ ︸
≥0

.

This implies that the β-Oracle Γ∗β defined in Eq. (3.1) is a minimizer of the above constrained
problem.

Around Lipschitz continuity of G−1(·)

Under the assumptions needed in this chapter, and in particular the continuity assumption
we showed two important facts: i) no supervised approach can achieve fast rates, that is,
faster than n−1/2; ii) semi-supervised approaches can achieve fast rate.
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One might wonder whether extra assumptions on the problem allow a supervised method
to get faster rates than n−1/2. We give to this question a partial answer following the recent
work of Bobkov and Ledoux [2016] and more precisely their Theorem 5.11. Applying this
result to our framework, we can state that there exists a positive constant c such that

EDN
∣∣∣G−1(β)−G−1

N (β)
∣∣∣ ≤ c Lip(G−1)N−1/2 ,

where Lip(G−1) is the Lipschitz constant of G−1(·) and G−1
N (·) is the generalized inverse of

GN(·) = 1
N

∑
X∈DU

N

K∑
k=1

1{pk(X)>·} .

If, on top of the above, one can show that for any α > 0 and for some positive constant c′

EDN
∣∣∣G−1(β)−G−1

N (β)
∣∣∣1+α
≤ c′ Lip1+α(G−1)N−(1+α)/2 ,

then under Lipschitz continuity of G−1(·), we can prove that

EE
n,N(Γ̂�;P(L, γ, α)) .

(
n

log n

)− (1+α)γ
2γ+d

,

where � stands for SE or SSE. This would illustrate that both Γ̂SE and Γ̂SSE are statistically
equivalent under Lipschitz condition on G−1(·), that is, both reach the same rate and the
impact of the unlabeled data DU

N is negligible. We plan to further investigate the influence
of this Lipschitz condition on the minimax rates of convergence in future work. Since in the
present contribution we do not impose this assumption on G−1(·), the upper bound of Bobkov
and Ledoux [2016] is not applicable and we had to rely on a different approach.

Around extra logarithm

Theorems 14 and 16 demonstrate that for the excess risk and the discrepancy, the upper
and the lower bounds differ by a logarithmic factor. As we have already pointed out, this
factor appears in the upper bounds due to Lemma 12 which relates the difference between
two thresholds to the infinity norm. One might hope that if we manage to replace the
infinity norm by any other `q-norm on the right hand side of the inequality in Lemma 12
this logarithm can be eliminated. Unfortunately, it appears that this bound is actually tight,
in a sense that one can construct a distribution P and an estimator p̂k for all k ∈ [K] such
that an equality is achieved in Lemma 12. These arguments suggest that the obtained upper
bound should be optimal. They also imply that the lower bounds could be further refined to
get an extra logarithmic factor. Let us also mention that the continuity Assumption 3.1.1 in
combination with the margin Assumption 3.1.4 are main obstacles that did not allow us to
further refine the lower bounds. In any case, our conclusions shall remain unchanged with or
without this log factor in either the lower or the upper bounds.

3.1.7 Conclusion
In this chapter we have studied the minimax settings of confidence set multi-class classifica-
tion. First of all, we have shown that a top-β type procedures are inconsistent in our settings
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and more involved estimators should be proposed. Besides, we have demonstrated that no
supervised estimator can achieve rates that are faster than n−1/2, which stays in contrast
with other classical settings. Additionally, we have shown that fast rates are achievable by
semi-supervised methods provided that the size of the unlabeled sample is large enough. Con-
secutively, we have established that our lower bounds are either optimal or nearly optimal by
providing a supervised and a semi-supervised estimators which are tractable in practice. Our
future works shall be focused on the Lipschitz condition of G−1(·) discussed in Section 3.1.6,
in particular, we want to understand how this extra assumption affects our lower bounds.

3.1.8 Proofs
This section is composed of the following parts: first of all we introduce some technical results
used for our proofs; then we provide the proofs of the upper bounds; later we establish main
lower bounds; finally, in the end of this section we prove the inconsistency of top-β approaches.

Technical results

In this section we gather several technical results which are used to derive the contributions
of this chapter.

Given any two probability measures P1,P2 on some space measurable space (X ,A) total
variation distance is defined as

TV(P1,P2) := sup
A∈A
|P1(A)− P2(A)| . (3.7)

Lemma 13 (Pinsker’s inequality). Given any two probability measures P1,P2 on some mea-
surable space (X ,A) we have

TV(P1,P2) ≤
√

1
2 KL(P1,P2) .

Lemma 14 (Hoeffding’s inequality [Hoeffding, 1963]). Let b > 0 be a real number, and N
be a positive integer. Let X1, . . . , XN be N random variables having values in [0, b], then

P
(∣∣∣∣∣ 1
N

N∑
i=1

(Xi − E [Xi])
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2Nt2

b2

)
, ∀t > 0 .

Proposition 3.1.11 (Properties of the generalized inverse). Let X ∈ Rd and PX be a Borel
measure on Rd, let p : Rd → [0, 1]K be a vector function, we define for all t ∈ [0, 1] and all
β ∈ (0, K)

G(t) :=
K∑
k=1

PX(pk(X) > t), G−1(β) := inf {t ∈ [0, 1] : G(t) ≤ β} .

Then,

• for all t ∈ (0, 1) and β ∈ (0, K) we have G−1(β) ≤ t ⇐⇒ G(t) ≤ β.

• if for all k ∈ [K] the mappings t 7→ PX(pk(X) > t) are continuous on (0, 1), then

– for all β ∈ (0, K) we have G(G−1(β)) = β .
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The next result is an analogue of the classical inverse transform theorem [van der Vaart,
1998, Lemma 21.1] and was already established by Denis and Hebiri [2017].

Lemma 15. Let ε distributed from a uniform distribution on [K] and Z1, . . . , ZK, K real
valued random variables independent from ε, such that the function t 7→ H(t) defined as

H(t) := 1
K

K∑
k=1

P(Zk ≤ t) ,

is continuous. Consider random variable Z = ∑K
k=1 Zk1{{ε=k}} and let U be distributed

according to the uniform distribution on [0, 1]. Then

H(Z) L= U and H−1(U) L= Z ,

where H−1 denotes the generalized inverse of H.

Proof. First we note that for every t ∈ [0, 1], P (H(Z) ≤ t) = P (Z ≤ H−1(t)). Moreover, we
have

P (H(Z) ≤ t) =
K∑
k=1

P(Z ≤ H−1(t), ε = k)

= 1
K

K∑
k=1

P(Zk ≤ H−1(t)) (with ε independent of Z)

= H(H−1(t))
= t (with H continuous) .

To conclude the proof, we observe that

P
(
H−1(U) ≤ t

)
= P (U ≥ H(t)) = 1

K

K∑
k=1

P(Zk ≤ t)

=
K∑
k=1

P (Zk ≤ t, ε = k) = P(Z ≤ t) .

Upper bounds

In this section we prove Theorems 15 and 16. It will be clear from our analysis that the
proof of Theorem 15 follows directly from Theorem 16 by setting N = 0 in the statement
of Theorem 16. Thus, in this section for simplicity we omit the subscript SSE from Γ̂SSE.
Recall that our dataset consists of three parts DL

bn/2c,DU
dn/2e,DU

N . The set DL
bn/2c is used to

construct an estimator p̂ of the regression function p, that is, p̂ is independent from both
DU
dn/2e,DU

N . The other two sets DU
dn/2e,DU

N are used in a semi-supervised manner to estimate
the threshold, that is, we erase the labels from DU

dn/2e. Let β ∈ [K − 1], and also recall the
definition of the proposed semi-supervised estimator for a given x ∈ Rd

Γ̂(x) =
{
k ∈ [K] : p̂k(x) ≥ Ĝ−1(β)

}
,
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with p̂k(x) satisfying Assumptions 3.1.9, 3.1.8 for all k ∈ [K]. Moreover, Ĝ−1(β) defined as
the generalized inverse of

Ĝ(t) = 1
dn/2e+N

∑
X∈DU

N

⋃
DU
dn/2e

K∑
k=1

1{p̂k(X)>t} ,

where t ∈ [0, 1]. Additionally, recall that the β-Oracle is given as

Γ∗β(x) =
{
k ∈ [K] : pk(x) ≥ G−1(β)

}
, (3.8)

where G−1(·) is the generalized inverse of

G(t) :=
K∑
k=1

P(pk(X) ≥ t) .

Lastly, let us re-introduce an idealized version Γ̃ of the proposed estimator Γ̂ which ’knows’
the marginal distribution PX of the feature vector X ∈ Rd as

Γ̃(x) =
{
k ∈ [K] : p̂k(x) ≥ G̃−1(β)

}
,

with G̃ := ∑K
k=1 PX(p̂k(X) > t), conditionally on the data. The following result is needed to

relate the threshold G̃−1(β) of Γ̃ to the true value of the threshold G−1(β).

Lemma 16 (Upper-bound on the thresholds). Let X ∈ Rd and PX be a Borel measure on
Rd. For two vector functions p, p̂ : Rd → [0, 1]K, we define

G(·) :=
K∑
k=1

PX(pk(X) > ·), G̃(·) :=
K∑
k=1

PX(p̂k(X) > ·) .

If for all k ∈ [K] the mapping t 7→ PX(pk(X) > t) is continuous on (0, 1), then for every
β ∈ (0, K) ∣∣∣G−1(β)− G̃−1(β)

∣∣∣ ≤ ‖p̂− p‖∞,PX .

Proof. The proof of this result is very similar to the proof of [Bobkov and Ledoux, 2016,
Theorem 2.12]. We start by defining the following quantity

h∗ = inf
{
h ≥ 0 : ∀t ∈ [0, 1] G̃(t+ h) ≤ G(t) ≤ G̃(t− h)

}
.

Due to the definition of h∗ we have that for all t ∈ [0, 1]

G̃(t+ h∗) ≤ G(t) ≤ G̃(t− h∗) ,

that is, applying Proposition 3.1.11 to the second inequality we get for all t ∈ [0, 1]

t− h∗ ≤ G̃−1(G(t)) ,

thus, for t = G−1(β) with β ∈ (0, K) thanks to Proposition 3.1.11 we get

G−1(β)− G̃−1(β) ≤ h∗ .
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The inequality G̃−1(β) − G−1(β) ≤ h∗ is obtained in the same way. Thus, we have proved
that ∣∣∣G−1(β)− G̃−1(β)

∣∣∣ ≤ h∗ .

Finally, notice that for all t ∈ [0, 1]

K∑
k=1

PX
(
p̂k(X) > t+ ‖p̂− p‖∞,PX

)
︸ ︷︷ ︸

G̃(t+‖p̂−p‖∞,PX )

≤
K∑
k=1

PX(pk(X) > t)︸ ︷︷ ︸
G(t)

≤
K∑
k=1

PX
(
p̂k(X) > t− ‖p̂− p‖∞,PX

)
︸ ︷︷ ︸

G̃(t−‖p̂−p‖∞,PX )

,

where we used the fact that for all k ∈ [K]

PX(p̂k(X) > t+ |p̂k(X)− pk(X)|) ≤ PX(pk(X) > t)
≤ PX(p̂k(X) > t− |p̂k(X)− pk(X)|) ,

and PX
(
|p̂k(X)− pk(X)| ≤ ‖p̂− p‖∞,PX

)
= 1. Therefore by definition of h∗, we can write

h∗ ≤ ‖p̂− p‖∞,PX and we conclude.

We are in position to prove Theorem 16, let us point out that the most difficult part in
Theorem 16 is the upper-bound on the excess risk. The upper-bound on the discrepancy
follows the same arguments as the ones we use for the excess-risk.

Excess risk and discrepancy: to upper-bound the excess risk we first separate it into
two parts as

Rβ(Γ̂)−Rβ(Γ∗β) =
(
Rβ(Γ̃)−Rβ(Γ∗β)

)
︸ ︷︷ ︸

R1

+
(
Rβ(Γ̂)−Rβ(Γ̃)

)
︸ ︷︷ ︸

R2

.

Recall that thanks to Proposition 3.1.5 we have

R1 =
K∑
k=1

E
[
|pk(X)−G−1(β)|1{{k∈Γ̃(X)4Γ∗

β
(X)}}

]
.

Moreover, let us point out that if some k ∈ Γ̃(X)4Γ∗β(X) then eitherpk(X)−G−1(β) ≥ 0
p̂k(X)− G̃−1(β) < 0

or
pk(X)−G−1(β) < 0
p̂k(X)− G̃−1(β) ≥ 0

,

holds. Thus on the event k ∈ Γ̃(X)4Γ∗β(X) we have∣∣∣pk(X)−G−1(β)
∣∣∣ ≤ ∣∣∣p̂k(X)− pk(X) +G−1(β)− G̃−1(β)

∣∣∣
≤ |p̂k(X)− pk(X)|+

∣∣∣G−1(β)− G̃−1(β)
∣∣∣ .
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Therefore, for R1 using Lemma 16 and the observations above we can write

R1 ≤
K∑
k=1

E
[
|pk(X)−G−1(β)|1{|pk(X)−G−1(β)|≤|p̂k(X)−pk(X)|+|G−1(β)−G̃−1(β)|}

]

≤
K∑
k=1

E
[
|pk(X)−G−1(β)|1{|pk(X)−G−1(β)|≤2‖p̂−p‖∞,PX}

]

≤
K∑
k=1

E
[
2 ‖p̂− p‖∞,PX 1{|pk(X)−G−1(β)|≤2‖p̂−p‖∞,PX}

]

= 2 ‖p̂− p‖∞,PX
K∑
k=1

PX
(∣∣∣pk(X)−G−1(β)

∣∣∣ ≤ 2 ‖p̂− p‖∞,PX
)
,

finally, using the margin Assumption 3.1.4 we get almost surely data

R1 ≤ c121+αK ‖p̂− p‖1+α
∞,PX .

Integrating over the data from both sides and using Assumption 3.1.8 we get for some C > 0

E(DL
n,DU

N )R1 ≤ C

(
n

log n

)− (1+α)γ
2γ+d

.

For R2 the following trivial upper-bound holds

R2 =
(
P(Γ̂)− P(Γ̃)

)
+G−1(β)

(
I(Γ̂)− I(Γ̃)

)
=

K∑
k=1

E
(
pk(X)−G−1(β)

) (
1{k∈Γ̃(X)} − 1{k∈Γ̂(X)}

)

≤
K∑
k=1

E
∣∣∣∣1{k∈Γ̃(X)} − 1{k∈Γ̂(X)}

∣∣∣∣︸ ︷︷ ︸
E|Γ̃(X)4Γ̂(X)|

(3.9)

=
K∑
k=1

E
∣∣∣∣1{p̂k(X)≥Ĝ−1(β)} − 1{p̂k(X)≥G̃−1(β)}

∣∣∣∣ ,
now, thanks to the first property of Proposition 3.1.11 we can write

R2 ≤
K∑
k=1

E
∣∣∣∣1{Ĝ(p̂k(X))≤β} − 1{G̃(p̂k(X))≤β}

∣∣∣∣
≤

K∑
k=1

PX
(∣∣∣Ĝ(p̂k(X))− G̃(p̂k(X))

∣∣∣ ≥ ∣∣∣G̃(p̂k(X))− β
∣∣∣)

To finish our proof we make use of the peeling technique of [Audibert and Tsybakov, 2007,
Lemma 3.1]. That is, we define for δ > 0 and k ∈ [K]

Ak0 =
{∣∣∣G̃(p̂k(X))− β

∣∣∣ ≤ δ
}

Akj =
{

2j−1δ <
∣∣∣G̃(p̂k(X))− β

∣∣∣ ≤ 2jδ
}
, j ≥ 1.
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Since, for every k ∈ [K], the events (Akj )j≥0 are mutually exclusive, we deduce

K∑
k=1

PX
(∣∣∣Ĝ(p̂k(X))− G̃(p̂k(X))

∣∣∣ ≥ ∣∣∣G̃(p̂k(X))− β
∣∣∣) = (3.10)

K∑
k=1

∑
j≥0

PX
(∣∣∣Ĝ(p̂k(X))− G̃(p̂k(X))

∣∣∣ ≥ ∣∣∣G̃(p̂k(X))− β
∣∣∣ , Akj) .

Now, we consider ε uniformly distributed on [K] independent of the data and X. Conditional
on the data and under Assumption 3.1.9, we apply Lemma 15 with Zk = p̂k(X), Z =∑K
k=1 Zk1{{ε=k}} and then obtain that G̃(Z) is uniformly distributed on [0, K]. Therefore, for

all j ≥ 0 and δ > 0, we deduce

1
K

K∑
k=1

PX
(
|G̃(p̂k(X))− β| ≤ 2jδ

)
= PX

(
|G̃(Z)− β| ≤ 2jδ

)
≤ 2j+1δ

K
.

Hence, for all j ≥ 0, we obtain

K∑
k=1

PX(Akj ) ≤
K∑
k=1

PX
(
|G̃(p̂k(X))− β| ≤ 2jδ

)
≤ 2j+1δ . (3.11)

Next, we observe that for all j ≥ 1

K∑
k=1

PX
(
|Ĝ(p̂k(X))− G̃(p̂k(X))| ≥ |G̃(p̂k(X))− β|, Akj

)
≤ (3.12)

K∑
k=1

PX
(
|Ĝ(p̂k(X))− G̃(p̂k(X))| ≥ 2j−1δ, Akj

)
.

Thus, we obtain that

R2 ≤
K∑
k=1

∑
j≥0

PX
(
|Ĝ(p̂k(X))− G̃(p̂k(X))| ≥ 2j−1δ, Akj

)
,

almost surely data. Integrating from both sides with respect to the data we get

E(DL
n,DU

N )R2 ≤
K∑
k=1

∑
j≥0

E(DL
n,DU

N )PX
(
|Ĝ(p̂k(X))− G̃(p̂k(X))| ≥ 2j−1δ, Akj

)

=
K∑
k=1

∑
j≥0

E(DL
bn/2c,D

U
dn/2e,D

U
N ,X∼PX)1{|Ĝ(p̂k(X))−G̃(p̂k(X))|≥2j−1δ}1{Akj} .

recall that the function 1{Akj} for all j ≥ 0 and k ∈ [K] is independent from DU
dn/2e,DU

N , thus
we can write

E(DL
bn/2c,D

U
dn/2e,D

U
N ,X∼PX)1{|Ĝ(p̂k(X))−G̃(p̂k(X))|≥2j−1δ}1{Akj} =

E(DL
bn/2c,X∼PX)E(DU

dn/2e,D
U
N )

[
1{|Ĝ(p̂k(X))−G̃(p̂k(X))|≥2j−1δ}

∣∣∣∣DL
bn/2c, X

]
1{Akj}]
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Now, since conditional on (DL
bn/2c, X), Ĝ(p̂k(X)) is an empirical mean of i.i.d. random

variables of common mean G̃(p̂k(X)) ∈ [0, K], we deduce from Hoeffding’s inequality that

E(DU
dn/2e,D

U
N )

[
1{|Ĝ(p̂k(X))−G̃(p̂k(X))|≥2j−1δ}

∣∣∣∣DL
bn/2c, X

]
≤ 2e

−
(N + dn/2e)δ222j−1

K2 .

Therefore, treating Ak0 separately, we get from inequalities of Eqs. (3.10), (3.11), and (3.12)

E(DL
n,DU

N )R2 ≤ 2δ + δ
∑
j≥1

2j+2 exp
(
−(N + dn/2e)δ222j−1

K2

)
.

Finally, choosing δ = K√
N + dn/2e

in the above inequality, we finish the proof.

Hamming risk: here we provide an upper bound on the Hamming risk. First, by the
triangle inequality we can write for the proposed estimator Γ̂ and the pseudo Oracle β set Γ̃

E(DL
n,DU

N )EX∼PX
∣∣∣Γ̂(X)4Γ∗β(X)

∣∣∣ ≤E(DL
n,DU

N )EX∼PX
∣∣∣Γ̃(X)4Γ∗β(X)

∣∣∣
+ E(DL

n,DU
N )EX∼PX

∣∣∣Γ̂(X)4Γ̃(X)
∣∣∣ .

Notice that for the term E(DL
n,DU

N )EX∼PX
∣∣∣Γ̂(X)4Γ̃(X)

∣∣∣ we can re-use the proof tech-
nique used for the term R2 in Eq. (3.9). Thus, it remain to upper-bound the term
E(DL

n,DU
N )EX∼PX

∣∣∣Γ̃(X)4Γ∗β(X)
∣∣∣. The proof on this part closely follows the machinery used

in Denis and Hebiri [2017], however, let us mention that they used this method to obtain a
bound on the discrepancy which leads to a sub-optimal rate. Nevertheless, their approach
gives a correct rate if instead of the discrepancy we bound the Hamming distance. For the
sake of completeness we write the principal parts of the proof here.

First of all, by the definition of sets Γ∗β and Γ̃ we can write for (∗) = EX∼PX
∣∣∣Γ̃(X)4Γ∗β(X)

∣∣∣
(∗) =

K∑
k=1

EX∼PX
∣∣∣∣1{p̂k(X)≥G̃−1(β)} − 1{pk(X)≥G−1(β)}

∣∣∣∣ ,
Now if p̂k(X) ≥ G̃−1(β) and pk(X) < G−1(β) we can have the following situations

• if G̃−1(β) > G−1(β), then |pk(X)−G−1(β)| ≤ |p̂k(X)− pk(X)|;

• if G̃−1(β) ≤ G−1(β), then either |pk(X)−G−1(β)| ≤ |p̂k(X)− pk(X)| or p̂k(X) ∈(
G̃−1(β), G−1(β)

)
;

Similar conditions are satisfied if p̂k(X) < G̃−1(β) and pk(X) ≥ G−1(β). Using the above
arguments we can upper-bound (∗) as

(∗) ≤
K∑
k=1

PX
(∣∣∣pk(X)−G−1(β)

∣∣∣ ≤ |p̂k(X)− pk(X)|
)

+ 1{G̃−1(β)≤G−1(β)}
K∑
k=1

PX
(
G̃−1(β) < p̂k(X) < G−1(β)

)

+ 1{G−1(β)<G̃−1(β)}
K∑
k=1

PX
(
G−1(β) < p̂k(X) < G̃−1(β)

)

=
K∑
k=1

PX
(∣∣∣pk(X)−G−1(β)

∣∣∣ ≤ |p̂k(X)− pk(X)|
)

+
∣∣∣G̃ (G̃−1(β)

)
− G̃

(
G−1(β)

)∣∣∣ .
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Thanks to the continuity Assumption 3.1.9 on the estimator and the continuity Assump-
tion 3.1.1 on the distribution we clearly have G̃

(
G̃−1(β)

)
= β = G (G−1(β)). Moreover, we

can write

|G̃
(
G̃−1(β)

)
−G̃

(
G−1(β)

)
| =

∣∣∣G (G−1(β)
)
− G̃

(
G−1(β)

)∣∣∣
≤

K∑
k=1

EX∼PX
∣∣∣1{p̂k(X)≥G−1(β)} − 1{pk(X)≥G−1(β)}

∣∣∣
≤

K∑
k=1

PX
(∣∣∣pk(X)−G−1(β)

∣∣∣ ≤ |p̂k(X)− pk(X)|
)
.

Thus, our bound reads as

(∗) ≤ 2
K∑
k=1

PX
(∣∣∣pk(X)−G−1(β)

∣∣∣ ≤ |p̂k(X)− pk(X)|
)
.

Finally, in order to upper-bound the term above one can use the peeling argument of Au-
dibert and Tsybakov [2007] applied with the exponential concentration inequality provided
by Assumption 3.1.8. This part of the proof we omit here and refer the reader to Denis and
Hebiri [2017] or to Audibert and Tsybakov [2007] for a complete result.

Let us emphasize that the argument above is only possible due to the continuity Assump-
tions 3.1.1, 3.1.9 on the distribution and the estimator respectively.

Proof of the lower bounds

This section is devoted to the proof of the lower bounds provided by Theorems 13-14. Before
proceeding to the proofs let us briefly sketch the high-level strategy used to prove the lower
bounds. In order to prove the lower bounds of Theorems 13-14 we actually prove to separate
lower bounds on the minimax risk. Clearly, if some non-negative quantity is lower-bounded
by two different values, it is lower-bounded by the maximum between the two. The two lower
bounds that we prove are naturally connected with the proposed two-steps estimator, that
is, the first lower bound is connected with the problem of non-parametric estimation of pk
for all k ∈ [K] and the second describes the estimation of the unknown threshold G−1(β).

The first lower bound is closely related to the one provided in [Audibert and Tsybakov,
2007, Rigollet and Vert, 2009], though, crucially the continuity Assumption 3.1.1 makes the
proof more involved. In particular, the second lower bound is based on two hypotheses testing
and is derived by constructing two different distributions P0,P1 sharing the same regression
vector p(·) and having different marginal distributions of X ∈ Rd. In this part we make use
of Pinsker’s inequality recalled in Lemma 13.

In order to discriminate the supervised and the semi-supervised procedures we invoke
Definition 14. Based on this definition, notice that every supervised procedure is not ’sensi-
tive’ to the expectation taken w.r.t. the unlabeled dataset DU

N , that is, randomness is only
induced by the labeled dataset DL

n . This strategy allows to eliminate the dependence of the
lower bound on the size of the unlabeled dataset DU

N for supervised procedures. Indeed, let
Γ̂ be any supervised estimator in the sense of Definition 14, then for any real valued function
of confidence sets h we have

E(DL
n,DU

N )[EPXh(Γ̂(X;DL
n ,DU

N))] = EDL
n
[EPXh(Γ̂(X;DL

n ,DU′
N ))] ,

with DU′
N being an arbitrary set of N points in Rd.
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Figure 3.1: Bump function: x 7→ ψa,b(x). Importantly, this function is supported on (a, b)
and is infinitely smooth.

Part I: (N + n)−1/2

Here we prove that the rate (N + n)−1/2 is optimal for semi-supervised methods, as already
mentioned the rate for the supervised methods can be obtained by formally setting N = 0.
The constant c, C, C ′ are always assumed to be independent of N, n and can differ from line
to line. Let us fix β ∈ {1, . . . , bK/2c − 1} and K ≥ 5. For a positive constant C < 1/2 we
define the following sequence

κN,n = C(N + n)− 1
2 < 0.1 .

To prove the lower bound we construct two distribution P0 and P1 on Rd sharing the same
regression function p(·) = (p1(·), . . . , pK(·)) and with different marginals admitting densities
µ0, µ1. First, for a fixed parameter 0 < ρ < 1 and fixed constants 0 < r0 < r1 < r2 < r3 < r4
to be specified, we define the following sets

X0 =
{
x ∈ Rd : ‖x‖ ≤ r0

}
,

X1 =

x ∈ Rd :

∥∥∥∥∥∥∥x− (r1 + ρ, 0, . . . , 0︸ ︷︷ ︸
∈Rd

)>
∥∥∥∥∥∥∥ ≤ ρ/2

 ,

X2 =

x ∈ Rd :

∥∥∥∥∥∥∥x− (r2 + ρ, 0, . . . , 0︸ ︷︷ ︸
∈Rd

)>
∥∥∥∥∥∥∥ ≤ ρ)

 ,

X3 =

x ∈ Rd :

∥∥∥∥∥∥∥x− (r3 + ρ, 0, . . . , 0︸ ︷︷ ︸
∈Rd

)>
∥∥∥∥∥∥∥ ≤ ρ/2

 ,

X4 =
{
x ∈ Rd : r4 ≤ ‖x‖ ≤ 2r4

}
.

Let us denote by oi = (ri + ρ, 0, . . . , 0)> for i = 1, 2, 3 the centers of X1, X2 and X3. Since
β < K/2, one can consider a grid of equidistant points between 0 and 1/K

0 < 1
4K <

2K − 4β
4K(K − 2β) <

3K − 6β
4K(K − 2β) <

1
K

,
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and a grid of equidistant points between 1/K and 1/2β

1
K

<
K + 6β

8Kβ <
2K + 4β

8Kβ <
3K + 2β

8Kβ <
1

2β .

Next, we aim at building a regression vector and two marginal distributions of X so that
we obtain two different thresholds K+6β

8Kβ and 3K+2β
8Kβ sufficiently separated. The regression

vector is given by

p1(x) = . . . = p2β(x) =



1
2β −

ϕ0(x)
2β , x ∈ X0

3K+2β
8Kβ −

ϕ1(x)
2β , x ∈ X1

2K+4β
8Kβ −

ϕ2(x)
2β , x ∈ X2

K+6β
8Kβ −

ϕ3(x)
2β , x ∈ X3

1
K
− ϕ4(x)

2β , x ∈ X4

p2β+1(x) = . . . = pK(x) =



ϕ0(x)
K−2β , x ∈ X0
1

4K + ϕ1(x)
K−2β , x ∈ X1

2K−4β
4K(K−2β) + ϕ2(x)

K−2β , x ∈ X2
3K−6β

4K(K−2β) + ϕ3(x)
K−2β , x ∈ X3

1
K

+ ϕ4(x)
K−2β , x ∈ X4

,

In order to define the functions ϕi for i = 0, . . . , 4 we first define a one dimensional function
of two real-valued parameters a < b

ψa,b(x) =
exp

(
− 1

(b−x)(x−a)

)
, x ∈ (a, b)

0, otherwise
.

Figure 3.1 illustrates the behavior of ψa,b function in one dimension. Note that for every
a, b ∈ R the function above is infinitely smooth. Using the definition of ψa,b we define the
functions ϕi for i = 0, . . . , 4 as

ϕ0(x) = C ′

2

(
K − 2β

8Kβ
∧ 1

4K

)
ψ−1,r0(‖x‖) ,

ϕi(x) = C ′

2 ρ
γ

(
K − 2β

8Kβ
∧ 1

4K

)(
‖x− oi‖

ρ

)2d γ2 e

ψ−1,1

(
‖x− oi‖

ρ

)
, i = 1, 3 ,

ϕ2(x) = C ′

2 ρ
γ

(
K − 2β

8Kβ
∧ 1

4K

)
ψ−1,1

(
‖x− o2‖

ρ

)
,

ϕ4(x) = C ′

2

(
K − 2β

8Kβ
∧ 1

4K

)
ψr4,2r4(‖x‖) ,

and the constant C ′ ≤ 1 is chosen small enough so that each function ϕi for i = 0, . . . , 4 is
(γ, L)-Hölder. Let us point out that such value C ′ exists and is independent of n,N , indeed,
the mapping

x 7→ C ′ ‖x‖2d γ2 e ψ−1,1(‖x‖) ,

120



a (a+ b)/2 b

0

Figure 3.2: Dumped bump function: x 7→
(
x− a+b

2

)2d γ2 e ψa,b(x). Importantly, this function
behaves as polynomial of even degree 2dγ2e in the affinity of a+b

2 , while being infinitely smooth
and supported on (a, b). It means that if we select a measure which is supported in the affinity
of a+b

2 (light-blue hatched region) the function on the plot is essentially polynomial w.r.t. such
a measure.

is infinitely smooth, thus it is (γ, L)-Hölder for a properly chosen C ′. Figure 3.2 demonstrates
the behavior of the considered construction in one dimension. Note that ϕi(x) for i = 1, 3
are obtained from the previous mapping by re-scaling which preserves the Hölder constant
L. Same reasoning applies to ϕi for i = 0, 2, 4.

Now, we define two marginal distributions µ0, µ1 by their densities as

µ0(x) =



1/2
Leb(X0) , x ∈ X0
κN,n

Leb(X1) , x ∈ X1
κN,n

Leb(X2) , x ∈ X2
κN,n

Leb(X3) , x ∈ X3
1/2−3κN,n

Leb(X4) , x ∈ X4

, µ1(x) =



1/2−3κN,n
Leb(X0) , x ∈ X0
κN,n

Leb(X1) , x ∈ X1
κN,n

Leb(X2) , x ∈ X2
κN,n

Leb(X3) , x ∈ X3
1/2

Leb(X4) , x ∈ X4

,

and both µ0, µ1 are equal to zero in unspecified regions. Clearly, the strong density assump-
tion is satisfied on X0 and X4 since the density is lower and upper-bounded by a constant
independent of both N, n. The parameter ρ is chosen such that the strong density assumption
on Xi for i = 1, 2, 3 is satisfied. Notice that

Leb(Xi) = cρd ,

for some constant c > 0 independent of N, n, thus we set ρ = C(N + n)−1/2d. For these
hypotheses one can easily check that the thresholds G−1

0 (β), G−1
1 (β) and the optimal β-Oracle
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sets Γ∗0,Γ∗1 are given as

G−1
0 (β) =3K + 2β

8Kβ , G−1
1 (β) = K + 6β

8Kβ ,

Γ∗0(x) =
{1, . . . , 2β}, x ∈ X0

∅, otherwise
,

Γ∗1(x) =
{1, . . . , 2β}, x ∈ X0

⋃X1
⋃X2,

∅, otherwise
.

The α-margin assumption: we are in position to check the margin Assumption 3.1.4. Let
t0 = 1

2

(
K−2β
8Kβ

∧ 1
4K

)
, thus for every k ∈ {2β + 1, . . . , K} and every t ≤ t0 we have

P0
(∣∣∣pk(X)−G−1

0 (β)
∣∣∣ ≤ t

)
= 0, P1

(∣∣∣pk(X)−G−1
1 (β)

∣∣∣ ≤ t
)

= 0 ,

moreover for every k ∈ {1, . . . , 2β} and every t ≤ t0 we can write

P0

( ∣∣∣pk(X)−G−1
0 (β)

∣∣∣ ≤ t)

=P0

(
C ′

2 ρ
γ
(
K − 2β

8Kβ
∧ 1

4K

)(‖X − o1‖
ρ

)2d γ2 e
ψ−1,1

(‖X − o1‖
ρ

)
≤ 2βt,X ∈ X1

)
,

P1

( ∣∣∣pk(X)−G−1
1 (β)

∣∣∣ ≤ t)

=P1

(
C ′

2 ρ
γ
(
K − 2β

8Kβ
∧ 1

4K

)(‖X − o3‖
ρ

)2d γ2 e
ψ−1,1

(‖X − o3‖
ρ

)
≤ 2βt,X ∈ X3

)
.

Hence, for the 0 hypothesis there exists c independent of N, n such that

P0
(∣∣∣pk(X)−G−1

0 (β)
∣∣∣ ≤ t) ≤ P0

((‖X − o1‖
ρ

)2d γ2 e
ψ−1,1

(‖X − o1‖
ρ

)
≤ cρ−γt,X ∈ X1

)

Therefore we can write using the strong density assumption

P0
(∣∣∣pk(X)−G−1

0 (β)
∣∣∣ ≤ t) ≤ ∫

‖x−o1‖≤ρ/2
1{(

‖x−o1‖
ρ

)2d γ2 e
ψ−1,1

(
‖x−o1‖

ρ

)
≤cρ−γt

}dµ0(x)

≤ C
∫
‖x−o1‖≤ρ/2

1{(
‖x−o1‖

ρ

)2d γ2 e
ψ−1,1

(
‖x−o1‖

ρ

)
≤cρ−γt

}dx
= C

∫
‖x‖≤ρ/2

1{( ‖x‖
ρ

)2d γ2 eψ−1,1
( ‖x‖
ρ

)
≤cρ−γt

}dx
= Cρd

∫
‖x‖≤1/2

1{
‖x‖2d

γ
2 eψ−1,1(‖x‖)≤cρ−γt

}dx ,

Finally notice that for every x ∈ Rd such that ‖x‖ ≤ 1/2 we have for some C > 0

ψ−1,1 (‖x‖) ≥ ψ−1,1 (1/2) ≥ C ,
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which implies that for some positive C,C ′ independent of N, n we can write

P0
(∣∣∣pk(X)−G−1

0 (β)
∣∣∣ ≤ t) ≤ Cρd ∫

‖x‖≤1/2
1{
‖x‖2d

γ
2 e≤C′ρ−γt

}dx
= Cρd

∫
‖x‖≤1/2

1{
‖x‖≤C′1/(2d

γ
2 e)ρ−γ/(2d

γ
2 e)t1/(2d

γ
2 e)
}dx

≤ Cρd(1−γ/(2d γ2 e)td/(2d
γ
2 e) .

This implies that for as long as α ≤ d/(2dγ2e) (and since we have γ ≤ 2dγ2e) the margin
assumption is satisfied. Moreover, these conditions imply that αγ ≤ d, which we will also
require while proving the supervised part of the rate. Same reasoning can be carried out for
the case of the first hypothesis P1 on the set X3.

Finally, the parameters r0, r1, r2, r3 are chosen as constants independent of n,N such that
there exists a smooth connection between the parts of the regression functions pk(·) which
are defined on X0,X1,X2,X3,X4. Notice that such a choice is possible since by construction,
the functions ϕi for i = 0, 1, 2, 3, 4 are zeroed-out on the boundaries of X0,X1,X2,X3,X4.
Thus in the region Rd \ ⋃4

i=0Xi it is sufficient to construct a function which connects four
different constants smoothly. We avoid this over complication on this part and hope that the
guidelines provided above are sufficient for the understanding.

Notice that the constructed distributions are satisfying Assumption 3.1.1 since the mea-
sures are only defined on X0,X1,X2,X3,X4 and the regression functions on these sets are not
concentrated around any constant.

Before proceeding to the final stage of the proof let us mention that in what follows we
use the de Finetti [de Finetti, 1972, 1974] notation which is common in probability. That is,
given a probability measure P on some measurable space (Ω0,A0) and a measurable function
X : (Ω0,A0)→ (R,Borel(R)) we write

P[X] := E[X] .

Bound on the KL-divergence: we start by computing the KL-divergence between µ0
and µ0

KL(µ0, µ1) :=
∫
Rd
µ0(x) log

(
µ0(x)
µ1(x)

)
dx =

4∑
i=0

∫
x∈Xi

µ0(x) log
(
µ0(x)
µ1(x)

)
dx

= 1
Leb(X0)

∫
x∈X0

1
2 log

(
1/2

1/2− 3κN,n

)
dx

+ 1
Leb(X4)

∫
x∈X4

(1
2 − 3κN,n

)
log

(
1/2− 3κN,n

1/2

)
dx

= 1
2 log

(
1/2

1/2− 3κN,n

)

+
(1

2 − 3κN,n
)

log
(

1/2− 3κN,n
1/2

)
= −3κN,n log (1− 6κN,n) ≤ 36κ2

N,n .

Lower bound for the Hamming risk: first of all let us introduce the following notation
for i = 0, 1

H(Γ̂,Γ∗i ) := µi
∣∣∣Γ̂(X)4Γ∗i (X)

∣∣∣ .
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Recall that we are interested in the following quantity

inf
Γ̂

sup
P∈P

E(DL
n,DU

N )EX∼PX
∣∣∣Γ̂(X)4Γ∗β(X)

∣∣∣ ,
since the hypotheses P0,P1 ∈ P we can write

2 sup
P∈P

E(DL
n,DU

N )EX∼PX
∣∣∣Γ̂(X)4Γ∗β(X)

∣∣∣ ≥ (∗) ,

where (∗) is defined as

(∗) = µ
⊗(n+N)
0 ⊗ P⊗nY |X H(Γ̂,Γ∗0) + µ

⊗(n+N)
1 ⊗ P⊗nY |X H(Γ̂,Γ∗1) ,

thus, for the Hamming risk we can write

(∗) ≥ µ
⊗(n+N)
0 ⊗ P⊗nY |X

dµ⊗(n+N)
1 ⊗ P⊗nY |X

dµ
⊗(n+N)
0 ⊗ P⊗nY |X

∧
1
(H(Γ̂,Γ∗0) + H(Γ̂,Γ∗1)

)
.

Now we focus our attention on the sum of two Hamming differences which appears on the
right hand side of the above inequality. Since µ0(x) = µ1(x) for all x ∈ X1

H(Γ̂,Γ∗0)+ H(Γ̂,Γ∗1) = µ0

K∑
k=1

1{k∈Γ̂(X)4Γ∗0(X)} + µ1

K∑
k=1

1{k∈Γ̂(X)4Γ∗1(X)}

≥ µ0

(
dµ1

dµ0

∧
1
)

K∑
k=1

1{k∈Γ̂(X)4Γ∗0(X)}

+ µ0

(
dµ1

dµ0

∧
1
)

K∑
k=1

1{k∈Γ̂(X)4Γ∗1(X)}

≥ µ0

(
dµ1

dµ0

∧
1
)

K∑
k=1

1{k∈Γ∗1(X)4Γ∗0(X)} (Triangle inequality)

= 2βµ0

(
dµ1

dµ0

∧
1
)(

1{X1}(X) + 1{X2}(X)
)

= 2β
∫
Rd

(
dµ1

dµ0

∧
1
)(

1{X1}(x) + 1{X2}(x)
)
dµ0(x)

= 2β
∫
X1

(
dµ1

dµ0

∧
1
)
dµ0(x) + 2β

∫
X2

(
dµ1

dµ0

∧
1
)
dµ0(x)

= 2βP0(X1 ∪ X2) ≥ 2βκn,N .

Substituting this lower bound into the initial inequality we arrive at

(∗) ≥ 2βκn,Nµ⊗(n+N)
0 ⊗ P⊗nY |X

dµ⊗(n+N)
1 ⊗ P⊗nY |X

dµ
⊗(n+N)
0 ⊗ P⊗nY |X

∧
1


= 2βκn,N
(
1− TV

(
µ
⊗(n+N)
0 ⊗ P⊗nY |X , µ

⊗(n+N)
1 ⊗ P⊗nY |X

))
= 2βκn,N

(
1− TV

(
µ
⊗(n+N)
0 , µ

⊗(n+N)
1

))
≥ 2βκn,N

1−
√

1
2KL

(
µ
⊗(n+N)
0 , µ

⊗(n+N)
1

) (Pinsker’s inequality)

≥ 2βκn,N
(
1− 6κn,N

√
n+N

)
,
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which implies the desired lower bound on the Hamming risk.
Lower bound for the β excess risk: this part is analogues to the case of the Hamming

distance. Let us recall that for every Γ̂ we have the following expression for i = 0, 1

D(Γ̂,Γ∗i ) := Rβ(Γ̂)−Rβ(Γ∗i ) = µi
K∑
k=1

∣∣∣pk(X)−G−1(β)
∣∣∣1{k∈Γ̂(X)4Γ∗i (X)} .

Again, recall that we are interested in

inf
Γ̂

sup
P∈P

E(DL
n,DU

N )[Rβ(Γ̂)]−R(Γ∗β) .

Similarly to the previous case, since the hypotheses P0,P1 ∈ P we can write

2 sup
P∈P

E(DL
n,DU

N )[Rβ(Γ̂)]−R(Γ∗β) ≥ (∗∗) ,

where (∗∗) is defined as

(∗∗) = µ
⊗(n+N)
0 ⊗ P⊗nY |X D(Γ̂,Γ∗0) + µ

⊗(n+N)
1 ⊗ P⊗nY |X D(Γ̂,Γ∗1) ,

we can write

(∗∗) ≥ µ⊗(n+N)
0 ⊗ P⊗nY |X

dµ⊗(n+N)
1 ⊗ P⊗nY |X

dµ
⊗(n+N)
0 ⊗ P⊗nY |X

∧
1

(D(Γ̂,Γ∗0) + D(Γ̂,Γ∗1)
)

and we continue in the same manner as for H(Γ̂,Γ∗0) + H(Γ̂,Γ∗1)

D(Γ̂,Γ∗0) + D(Γ̂,Γ∗1) = µ0

K∑
k=1

∣∣∣∣pk(X)− 3K + 2β
8Kβ

∣∣∣∣1{k∈Γ̂(X)4Γ∗0(X)}

+ µ1

K∑
k=1

∣∣∣∣pk(X)− K + 6β
8Kβ

∣∣∣∣1{k∈Γ̂(X)4Γ∗1(X)}

≥ µ0

2β∑
k=1

∣∣∣∣pk(X)− 3K + 2β
8Kβ

∣∣∣∣1{k∈Γ̂(X)4Γ∗0(X)}1{X∈X2}

+ µ1

2β∑
k=1

∣∣∣∣pk(X)− K + 6β
8Kβ

∣∣∣∣1{k∈Γ̂(X)4Γ∗1(X)}1{X∈X2} .
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Since µ0(x) = µ1(x) for all x ∈ X2 we obtain

D(Γ̂,Γ∗0) + D(Γ̂,Γ∗1)

≥ µ0

( 2β∑
k=1

∣∣∣∣pk(X)− 3K + 2β
8Kβ

∣∣∣∣1{k∈Γ̂(X)4Γ∗0(X)}1{X∈X2}

+
2β∑
k=1

∣∣∣∣pk(X)− K + 6β
8Kβ

∣∣∣∣1{k∈Γ̂(X)4Γ∗1(X)}1{X∈X2}

)

≥ µ0

 2β∑
k=1

(∣∣∣∣pk(X)− 3K + 2β
8Kβ

∣∣∣∣∧ ∣∣∣∣pk(X)− K + 6β
8Kβ

∣∣∣∣)1{k∈Γ∗1(X)4Γ∗0(X)}1{X∈X2}


= µ0

 2β∑
k=1

(∣∣∣∣pk(X)− 3K + 2β
8Kβ

∣∣∣∣∧ ∣∣∣∣pk(X)− K + 6β
8Kβ

∣∣∣∣)1{X∈X2}


= µ0

(
2β
(∣∣∣∣2K + 4β

8Kβ − ϕ2(X)
2β − 3K + 2β

8Kβ

∣∣∣∣∧ ∣∣∣∣2K + 4β
8Kβ − ϕ2(X)

2β − K + 6β
8Kβ

∣∣∣∣)1{X∈X2}

)
= µ0

(
2β
(∣∣∣∣K − 2β

8Kβ + ϕ2(X)
2β

∣∣∣∣∧ ∣∣∣∣K − 2β
8Kβ − ϕ2(X)

2β

∣∣∣∣)1{X∈X2}

)
= µ0

(
2β
∣∣∣∣K − 2β

8Kβ − ϕ2(X)
2β

∣∣∣∣1{X∈X2}

)
,

then, since ϕ2(x)
β ≤ K−2β

8Kβ for all x ∈ X2, we have

D(Γ̂,Γ∗0) + D(Γ̂,Γ∗1) ≥ 2β(K − 2β)
16Kβ µ0(X2) = K − 2β

8K κn,N .

Thus,

(∗∗) ≥ K − 2β
8K κn,N

(
1− TV

(
µ
⊗(n+N)
0 ⊗ P⊗nY |X , µ

⊗(n+N)
1 ⊗ P⊗nY |X

))
≥ K − 2β

8K κn,N

(
1−

√
1
2KL

(
µ
⊗(n+N)
0 ⊗ P⊗nY |X , µ

⊗(n+N)
1 ⊗ P⊗nY |X

))

≥ K − 2β
8K κn,N

(
1− 6κn,N

√
n+N

)
,

which concludes the first part of the lower bounds.

Part II: n−αγ/(2γ+d)

In this section we prove that in case of the Hamming risk EH the rate n−αγ/(2γ+d) is minimax
optimal. Notice, that thanks to Proposition 3.1.5 a lower bound of order n−αγ/(2γ+d) on the
Hamming risk EH immediately implies a lower bound of order n−(α+1)γ/(2γ+d) on both EE and
ED.

The proof is based on the reduction of the Hamming risk to a multiple hypotheses testing
problem and an application of Fano’s inequality provided by Birgé [2005] recalled in Lemma 5.

Assume that K ≥ 5 and fix some β ∈ {2, . . . , (K − 2) ∧ bK/2c}, define the regular grid
on [0, 1]d as

Gq :=

(

2k1 + 1
2q , . . . ,

2kd + 1
2q

)>
: ki ∈ {0, . . . , q − 1}, i = 1, . . . , d

 ,
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a b

0

1

Figure 3.3: Integrated bump: x 7→
∫∞
x

ψa,b(t)dt∫ b
a
ψa,b(t)dt

. Importantly, this function is infinitely smooth
and is equal to one or zero only outside of the interval (a, b).

and denote by nq(x) ∈ Gq as the closest point of the grid Gq to the point x ∈ Rd. We consider
the partition of the unit cube [0, 1]d ⊂ Rd defined such that x and y belongs to the same
subset if and only if nq(x) = nq(y)4. This partition is denoted by X ′0,X ′1, . . . ,X ′qd−1 such that
X ′0 = {x ∈ [0, 1]d : nq(x) = (1/2q, . . . , 1/2q)>}. Besides, denote by X ′−j := {x ∈ Rd : −x ∈
X ′j} for all j = 1, . . . , qd − 1. For a fixed integer m ≤ qd and for any i ∈ {1, . . . ,m} define5

Xi := X ′i , X−i := X ′−i. Moreover, we introduce the set X0 = Ball(0, (4q)−1). As we shall see,
the set X0 is crucial since it allows to fix the threshold. The set ⋃mi=−mXi will be used to
define the support of the marginal distribution of X.

For every w ∈ W := {−1, 1}m we build the distribution Pw ∈ PW , such that, the
marginal distribution Pw,X does not dependent on w ∈ {−1, 1}m and the regression vector
(pw1 (x), . . . , pwK(x)) is constructed as

4If nq(x) is not a singleton, then assign one of them arbitrary.
5Note that we dropped X ′0 from the partition.
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pw1 (x) = . . . = pwβ−1(x) = v + c′

β − 1 + g(x)
β − 1 ,

pwβ (x) =



v + φ(x), if x ∈ 2X0

v + wiϕ(x− nq(x)), if x ∈ Xi
v − wiϕ(x− nq(x)), if x ∈ X−i
v, if x ∈ Ball(0,

√
d) \

(⋃m
i=−m,i 6=0Xi

⋃ 2X0
)

v + ξ(x), if x ∈ Ball(0,
√
d+ ρ) \ Ball(0,

√
d)

3v
2 + g(x), if x ∈ Rd \ Ball(0,

√
d+ ρ)

,

pwβ+1(x) =



v − φ(x), if x ∈ 2X0

v − wiϕ(x− nq(x)), if x ∈ Xi
v + wiϕ(x− nq(x)), if x ∈ X−i
v, if x ∈ Ball(0,

√
d) \

(⋃m
i=−m,i 6=0Xi

⋃ 2X0
)

v − ξ(x), if x ∈ Ball(0,
√
d+ ρ) \ Ball(0,

√
d)

v
2 − g(x), if x ∈ Rd \ Ball(0,

√
d+ ρ)

,

pwβ+2(x) = . . . = pwK(x) = v − c′

K − β − 1 −
g(x)

K − β − 1 ,

where v ∈ [0, 1], ϕ : Rd 7→ R+, ξ : Rd 7→ R+, and g : Rd 7→ R+ are to be specified. The
constants v, c′ are set as

v = 1
K
, c′ = (β − 1)(K − β − 1)

K2 .

The function g is any (γ, L)-Hölder function with sufficiently bounded variation which is not
concentrated around any constant, for example

g(x) = Cgū
(
‖x‖ −

√
d− ρ

)
cos

(
‖x‖ −

√
d− ρ

)
,

for some constant Cg chosen small enough to ensure that it is (γ, L)-Hölder and has a bounded
variation by c′/2 ∧ v/4. Moreover, the function ξ is constructed as

ξ(x) = v

2 ū
(
‖x‖2 −

√
d

ρ

)
, ū(x) = 1−

∫∞
x ψ0,1(t)dt∫ 1
0 ψ0,1(t)dt

,

the function ū is infinitely many times differentiable, is equal to zero on (−∞, 0] and to one
on [1,+∞). Figure 3.3 shows the behavior of 1 − ū. Taking the constant ρ > 0 big enough
independently of N, n we can ensure that the function ξ is (γ, L)-Hölder.

The function φ is constructed similarly to the previous part of the rate, that is, we choose

φ(x) = Cφ(2q)−γ
(
‖x‖

(2q)−1

)2d γ2 e

ψ−1,1

(
‖x‖

(2q)−1

)
,

with Cφ being sufficiently small such that φ(·) is (γ, L)-Hölder and also upper-bounded by
c′/2 ∧ v/4. Finally for the function ϕ we consider the following construction

ϕ(x) = Cϕq
−γ
(
u2

(
‖x‖
q−1

)
+ ψ− 1

4 ,
1
4

(
‖x‖
q−1

))
,
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−1/2 −1/4 1/4 1/2

0

1

Figure 3.4: The function x 7→ u2(|x|) + ψ− 1
4 ,

1
4
(x). Importantly, this function is infinitely

smooth and nowhere concentrates at any constant on (−1/4, 1/4). If the marginal measure
is supported on the light-blue hatched region the function is lower- and upper-bounded almost
surely.

where u2(·) is defined as

u2(x) =
∫∞
x ψ 1

4 ,
1
2
(t)dt∫ 1/2

1/4 ψ 1
4 ,

1
2
(t)dt

.

Figure 3.4 explains the behavior of this function and helps for better understanding of our
results. The constant Cϕ is chosen in such a way that the constructed function ϕ(·) is
(γ, L)-Hölder and and upper-bounded by c′/2 ∧ v/4. Notice that the function ϕ(x) for all
x ∈ Ball(0, (4q)−1) satisfies

Cϕq
−γ ≤ ϕ(x) ≤ Cϕq

−γ
(
1 + ψ− 1

4 ,
1
4
(0)
)
≤ 2Cϕq−γ . (3.13)

It remains to define the marginal distribution of the vector X ∈ Rd. We select a Euclidean
ball in Rd denoted by A0 that has an empty intersection with Ball(0,

√
d + ρ) and whose

Lebesgue measure is Leb(A0) = 1 − mq−d. The density µ of the marginal distribution of
X ∈ Rd is constructed as

• µ(x) = τ
Leb(Ball(0,(4q)−1)) for every x ∈ Ball(z, (4q)−1)) or x ∈ Ball(−z, (4q)−1)), with

z ∈ Gq ∪ {0},

• µ(x) = 1−(2m+1)τ
Leb(A0) for every x ∈ A0,

• µ(x) = 0 for every other x ∈ Rd,

for some τ to be specified. Now, we check that the distributions constructed above belong
to the set P for every w ∈ W . Namely, we check the following list of assumptions

• The functions pw1 , . . . , pwK are defining some regression function for every w ∈ W . That
is, for each x ∈ Rd we have ∑K

k=1 p
w
k (x) = 1 and 0 ≤ pwk (x) ≤ 1,

• the functions pw1 , . . . , pwK are (γ, L)-Hölder,
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• the function Gw(t) := ∑K
k=1

∫
Rd 1{{pwk (x)≥t}}µ(x)dx is continuous,

• the threshold G−1(β) is equal to v for every w ∈ W ,

• the marginal distribution satisfies the strong density assumption,

• the regression function satisfies α-margin assumption.

The regression function is well defined: to see this, notice that for every w ∈ W and
every x ∈ Rd we have by construction

pwβ+1(x) + pwβ (x) = 2v ,

β−1∑
k=1

pwk (x) +
K∑

k=β+2
pwk (x) = (K − 2)v ,

and the combination of both with v = 1/K implies that ∑K
k=1 p

w
k (x) = 1. Moreover, as long

as supx∈Xi ϕ(x) ≤ v/2 for every i = −m, . . . ,−1, 1, . . . ,m we have for every x ∈ Rd

0 < v/4 ≤ pwβ+1(x) ≤ 3v/2 ≤ 1, 0 < v/2 ≤ pwβ (x) ≤ 7v/4 ≤ 1 ,

and by construction of the function g we have for every k = 1, . . . , β − 1, every x ∈ Rd and
every w ∈ W

0 ≤ pwk (x) ≤ v + 3c′
2(β − 1) ,

due to the choice of c′, v we have

v + 3c′
2(β − 1) = 1

K
+ 3(K − β − 2)

2K2 ≤ 2
K
≤ 1 .

Similarly, for every k = β + 2, . . . , K, every x ∈ Rd and every w ∈ W

v − 3c′
2(K − β − 1) ∧ (β − 1) ≤ pwk (x) ≤ 1 ,

and with the choice of v, c′ specified above and the constraint β ≤ bK/2c we have

v − 3c′
2(K − β − 1) = 1

K
− 3(β − 1)

2K2 ≥ 1
K
− 3(K/2− 1)

2K2 = 1
4K + 3

2K2 ≥ 0 .

Thus, the construction above defines some regression function for every w ∈ W .
The regression function is (γ, L)-Hölder: this implication follows immediately from

the construction of ϕ, ξ, g.
Continuity of G(t): first let us show that

∫
Rd 1{pwk (x)≥t}µ(x)dx is continuous for every

k ∈ [K]. For k = 1, . . . , β − 1, β + 2, . . . , K the continuity follows from the fact that g is
never constant. For k = β, β + 1 we first write∫

Rd
1{pwk (x)≥t}µ(x)dx =

m∑
c∈Gq∪−Gq

τ

Leb (Ball(c, (4q)−1))

∫
Ball(c,(4q)−1)

1{pwk (x)≥t}dx

+ τ

Leb (Ball(0, (4q)−1))

∫
Ball(0,(4q)−1)

1{pwk (x)≥t}dx

+ 1− 2(m+ 1)τ
Leb(A0)

∫
A0
1{pwk (x)≥t}dx ,
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thus for this choice of k the continuity follows from the fact that ϕ and g are never constant.
Threshold G−1(β) = v: to see this notice that for every w ∈ W ,

K∑
k=1

1{pwk (x)≥v} = β, a.e. µ ,

whereas for any v′ < v, we have ∑K
k=1 1{pwk (x)≥v′} > β on X0. Besides, the corresponding

β-Oracle sets Γ∗w are given for every w ∈ W as

Γ∗w(x) =



{1, . . . , β − 1, β}, x ∈ Xi, wi = 1,
{1, . . . , β − 1, β + 1}, x ∈ Xi, wi = −1,
{1, . . . , β − 1, β}, x ∈ X−i, wi = −1,
{1, . . . , β − 1, β + 1}, x ∈ X−i, wi = 1,
{1, . . . , β − 1, β}, x ∈ Rd \ (⋃mi=−m,i 6=0Xi) .

The strong density assumption: the strong density assumption can be checked follow-
ing the proof of [Audibert and Tsybakov, 2007, Theorem 3.5] where an analogous construction
of the marginal distribution was considered.

The α-margin assumption: for all t ≤ t0 := v/4, all k ∈ [K]\{β, β+1} and all w ∈ W
we have

µ (|pwk (X)− v| ≤ t) = 0 ,

thus for k ∈ [K] \ {β, β + 1} the margin assumption is satisfied. It remains to check the
margin assumption k ∈ {β, β + 1}. Fix an arbitrary w ∈ W and k = β, then for all t ≤ t0
we can write

µ

 |pwk (X)− v| ≤ t

 =
m∑

i=−m
µ (|pwk (X)− v| ≤ t,X ∈ Xi)

=
m∑

i=−m,i 6=0
µ (ϕ(X − nq(X)) ≤ t,X ∈ Xi) + µ (φ(X) ≤ t,X ∈ X0) .

We separately upper-bound both terms which appear on the right hand side of the equality.

µ (φ(X) ≤ t,X ∈ X0) = τ

Leb(Ball(0, (4q)−1))

∫
Ball(0,(4q)−1)

1{φ(X)≤t}dx

= τ

Leb(Ball(0, (4q)−1))

∫
Ball(0,(4q)−1)

1{
Cφ(2q)−γ

(
‖x‖

(2q)−1

)2d γ2 e
ψ−1,1

(
‖x‖

(2q)−1

)
≤t
}dx

= Cτq−d

Leb(Ball(0, (4q)−1))

∫
Ball(0,1/2)

1{
(‖x‖)2d γ2 eψ−1,1(‖x‖)≤C−1

φ
(2q)γt

}dx ,

clearly there exists a constant C such that for all x ∈ Ball(0, 1/2) we have

ψ−1,1 (‖x‖) ≥ C ,

Therefore for some constant C > 0 we can write

µ (φ(X) ≤ t,X ∈ X0) ≤ Cτq−d

Leb(Ball(0, (4q)−1))

∫
Ball(0,1/2)

1{
‖x‖≤C(q)γ/2d

γ
2 et1/2d

γ
2 e
}dx

≤ Cτq−d(1−γ/2d γ2 e)
Leb(Ball(0, (4q)−1))t

d/2d γ2 e ,
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thanks to the strong density assumption we can write for some C > 0

µ (φ(X) ≤ t,X ∈ X0) ≤ Cq−d(1−γ/2d γ2 e)td/2d
γ
2 e .

Thus since 1− γ/2dγ2e ≥ 0 and d/2dγ2e ≥ α we can write for some C > 0
µ (φ(X) ≤ t,X ∈ X0) ≤ Ctα .

To finish this part it remains to upper-bound the other term in the margin assumption
m∑

i=−m,i 6=0
µ (ϕ(X − nq(X)) ≤ t,X ∈ Xi) = 2mτ

Leb(Ball(0, (4q)−1))

∫
Ball(0,(4q)−1)

1{ϕ(X)≤t}dx .

Recall Eq. (3.13) that gives a bound for the function ϕ(x) for all x ∈ Ball(0, (4q)−1)
Cϕq

−γ ≤ ϕ(x) ≤ 2Cϕq−γ .

We then can write for all t ≤ Cϕq
−γ

m∑
i=−m,i 6=0

µ (ϕ(X − nq(X)) ≤ t,X ∈ Xi) = 0 ,

moreover, for all t ≥ 2Cϕq−γ we can write
m∑

i=−m,i 6=0
µ (ϕ(X − nq(X)) ≤ t,X ∈ Xi) ≤ 2mτ ,

and finally for t ∈ (Cϕq−γ, 2Cϕq−γ) we can write
m∑

i=−m,i 6=0
µ (ϕ(X − nq(X)) ≤ t,X ∈ Xi) = 2mτ

Leb(Ball(0, (4q)−1))

∫
Ball(0,(4q)−1)

1{ϕ(X)≤t}dx

≤ 2mτ
Leb(Ball(0, (4q)−1))

∫
Ball(0,(4q)−1)

1{Cϕq−γ≤t}dx

= 2mτ .

The above implies that for some constant C > 0 we have for all t ≤ t0
m∑

i=−m,i 6=0
µ (ϕ(X − nq(X)) ≤ t,X ∈ Xi) ≤ 2τm1{t≤2Cϕq−γ}

≤ Cτmqγαtα .

Thus the margin assumption is satisfied as long as
• τm = O(q−γα);

• 2dγ2eα ≤ d.
Similarly one can check that the margin assumption is satisfied for k = β + 1. Bound on
the KL-divergence: we are in position to upper-bound the KL divergence between any
two hypotheses. Fix some w,w′ ∈ W , then using the upper bound on ϕ(·) and the convex
inequality x log(1 + x) ≤ 2x2 for sufficiently small x, we can write for some C > 0

KL(Pw,Pw′) ≤ 2
m∑

i=−m,i 6=0
µ

(
ϕ(X − nq(X)) log

(
v + ϕ(X − nq(X))
v − ϕ(X − nq(X))

)
, X ∈ Xi

)
≤ Cmτq−2γ .

How many hypotheses to take: let us recall the following result that we already used
in the context of the F-score which is a version of Varshamov-Gilbert bound.
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Lemma 6. Let δ(σ, σ′) denote the Hamming distance between σ, σ′ ∈ {−1, 1}m given by

δ(σ, σ′) :=
m∑
i=1

1{σi 6=σ′i} .

There exists W ⊂ {−1, 1}m such that for all σ 6= σ′ ∈ W we have

δ(σ, σ′) ≥ m

4 ,

and log |W| ≥ m
8 .

DenoteW ⊂ W the set provided by Lemma 6 and by PW the set of distributions Pw with
w ∈ W . Taking into account all the above we conclude that PW satisfies the assumptions of
our result.

Lower bound on the Hamming risk (applying Birgé’s Lemma 5): finally, we are
in position to lower bound the Hamming risk. Recall that we are interested in the following
quantity

inf
Γ̂

sup
P∈P

E(DL
n,DU

N )EPX

∣∣∣Γ̂(X)4Γ∗β(X)
∣∣∣ .

The rest of the proof follows standard arguments, which again using the de Finetti notation
reads as

inf
Γ̂

sup
P∈P

E(DL
n,DU

N )EPX

∣∣∣Γ̂(X)4Γ∗β(X)
∣∣∣ ≥ inf

Γ̂
sup
w∈W

µ⊗N ⊗ P⊗nw µ
(∣∣∣Γ̂(X)4Γ∗w(X)

∣∣∣) .

Denote by ŵ the following minimizer
ŵ ∈ arg min

w∈W
µ
(∣∣∣Γ̂(X)4Γ∗w(X)

∣∣∣) ,

thus if w 6= ŵ we can write using the definition of ŵ and the triangle inequality
2µ
(∣∣∣Γ̂(X)4Γ∗w(X)

∣∣∣) ≥ µ
(∣∣∣Γ̂(X)4Γ∗w(X)

∣∣∣)+ µ
(∣∣∣Γ̂(X)4Γ∗ŵ(X)

∣∣∣)
≥ µ (|Γ∗ŵ(X)4Γ∗w(X)|) ≥ 2δ(w, ŵ)µ(X1)

= 2δ(w, ŵ)τ ≥ mτ

2 .

These arguments and Birge’s lemma 5 imply that

sup
P∈P

E(DL
n,DU

N )EPX

∣∣∣Γ̂(X)4Γ∗β(X)
∣∣∣ ≥ mτ

4 sup
w∈W

µ⊗N ⊗ P⊗nw (w 6= ŵ)

≥ mτ

4

(
0.29

∨
1−

∑
w∈W\{w′}KL(µ⊗N ⊗ P⊗nw , µ⊗N ⊗ P⊗nw′ )

(|W| − 1) log |W|

)
.

Since the marginal distribution of the vector X ∈ Rd is shared among the hypotheses, using
the upper-bound on the KL-divergence and the conditions on W we get for some C > 0

sup
P∈P

E(DL
n,DU

N )EPX

∣∣∣Γ̂(X)4Γ∗β(X)
∣∣∣ ≥ mτ

4
(
1− Cnτq−2γ

)
.

Finally, let q = bC̄n1/(2γ+d)c, τ = bC ′q−dc and m = bC ′′qd−αγc for some C̄, C ′, C ′′ > 0 small
enough we get for some C > 0 and c < 1

sup
P∈P

E(DL
n,DU

N )EPX

∣∣∣Γ̂(X)4Γ∗β(X)
∣∣∣ ≥ Cn−αγ/(2γ+d) (1− c) .

One can easily verify that this choice of parameters τ,m, q is possible as long as 2dγ2eα ≤ d
and clearly with our choice we have τm = O(q−αγ). As already mentioned the lower bound
for the excess risk and the discrepancy follows from Propositions 3.1.5 and 3.1.6.
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Inconsistency of top-β approach

In this section we prove Proposition 3.1.7. The proof builds an explicit construction of a
distribution P whose β-Oracle satisfies |Γ∗β(x)| > β for all x in some A ⊂ Rd with PX(A) > 0.
Clearly, if such a distribution exists then there is no estimator in Υ̂β that would consistently
estimate this β-Oracle. Let β ∈ [0, . . . , bK/2c − 1] be a fixed integer and K ≥ 3. For the
proof of the theorem we shall construct one distribution P for which none of the estimators
with a fixed information can perform well. We start by specifying the marginal distribution
of X ∈ Rd. We start the construction by specifying the density µ of the marginal distribution
PX . Define a disk in Rd for some positive r ≤ r′ as Disk(r, r′) =

{
x ∈ Rd : r ≤ ‖x‖ ≤ r′

}
.

First of all fix some parameters r1 < r2 < 2r2 < r3 < 2r3 which are independent from n,N .
The density µ is supported on Ball(0, r1) ∪Disk(r2, 2r2) ∪Disk(r3, 2r3).

Moreover,

• µ(x) =
β
β+1−Leb(Ball(0,r1))

Leb(Disk(r2,2r2)) for all x ∈ Disk(r2, 2r2),

• µ(x) = 1
(β+1) Leb(Disk(r3,2r3)) for all x ∈ Disk(r3, 2r3),

• µ(x) = 1, for all x ∈ Ball(0, r1),

• µ(x) = 0 otherwise,

where r1 > 0 is chosen small enough to ensure that β
β+1−Leb(Ball(0, r1)) > 0. The regression

function p(·) = (p1(·), . . . , pK(·))> are defined as

p1(x) = . . . = pβ+1(x) =



1
2(β+1) + CL

1−cos
(

2π
r1
‖x‖
)

β+1 , x ∈ Ball(0, r1)
1

2(β+1) + g(x)
β+1 , x ∈ Disk(r1, r2)

1
β+1 − CL

1−cos
(

2π
r2
‖x‖
)

β+1 , x ∈ Disk(r2, 2r2)
1

β+1 −
ξ(x)
β+1 , x ∈ Disk(2r2, r3)

1
4(β+1) − CL

1−cos
(

2π
r3
‖x‖
)

β+1 , x ∈ Rd \ Ball(0, r3)

,

pβ+2(x) = . . . = pK(x) =



1
2(K−β−1) − CL

1−cos
(

2π
r1
‖x‖
)

β+1 , x ∈ Ball(0, r1)
1

2(K−β−1) −
g(x)

K−β−1 , x ∈ Disk(r1, r2)

CL
1−cos

(
2π
r2
‖x‖
)

K−β−1 , x ∈ Disk(r2, 2r2)
ξ(x)

K−β−1 , x ∈ Disk(2r2, r3)

3
4(K−β−1) + CL

1−cos
(

2π
r3
‖x‖
)

β+1 , x ∈ Rd \ Ball(0, r3)

,

where the constant CL is chosen small enough to ensure that these functions are (γ, L)-
Hölder and have sufficiently small variation. Consider an arbitrary infinitely many times
differentiable function v : R 7→ [0, 1] which satisfies v(x) = 0 for all x ≤ 0 and v(x) = 1
for all x ≥ 1. Then, the functions g(·) and ξ(·) are defined as g(x) = 1

2v
(
‖x‖−r1
r2−r1

)
, ξ(x) =
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3
4v
(
‖x‖−2r2
r3−2r2

)
. The above construction defines a distribution P for which we have

G−1(β) = 1
2(β + 1)

Γ∗β(x) =
{1, . . . , β + 1}, x ∈ Ball(0, r1)⋃Disk(r2, 2r2)
∅, otherwise

.

Indeed, let us evaluate the following quantity under the assumption that β ≤ bK/2c − 1

K∑
k=1

∫
1{pk(x)≥G−1(β)}µ(x)dx = (β + 1)

(∫
Ball(0,r1)

µ(x)dx+
∫

Disk(r2,2r2)
µ(x)dx

)

= (β + 1)
(
Leb (Ball(0, r1)) +

(
β
β+1 − Leb(Ball(0, r1))

))
= β .

Thus, using this distribution we can write for any classifier Γ̂ ∈ Υ̂β with fixed cardinal

P(Γ̂)−P(Γ∗β) =
∫
Rd

K∑
k=1

∣∣∣pk(x)−G−1(β)
∣∣∣1{k∈Γ̂(x)4Γ∗(x)}µ(x)dx

≥
∫

Disk(r2,2r2)

∣∣∣∣∣∣ 1
(β + 1) − CL

1− cos
(

2π
r2
‖x‖

)
β + 1 − 1

2(β + 1)

∣∣∣∣∣∣µ(x)dx

=
∫

Disk(r2,2r2)

∣∣∣∣∣∣ 1
2(β + 1) − CL

1− cos
(

2π
r2
‖x‖

)
β + 1

∣∣∣∣∣∣
β
β+1 − Leb(Ball(0, r1))

Leb (Disk(r2, 2r2)) dx ,

where the first inequality follows from the observation that for x ∈ Disk(r2, 2r2) there is
always at least one label k such that k ∈ Γ̂(x)4Γ∗(x). Thus, since the constant CL is chosen
to satisfy 2CL/(β + 1) ≤ 1/4(β + 1) we have for any Γ̂ ∈ Υ̂β

P(Γ̂)− P(Γ∗β) ≥
β
β+1 − Leb(Ball(0, r1))

4(β + 1) ,

If r1 is such that Leb(Ball(0, r1)) ≤ β
2(β+1) we get

P(Γ̂)− P(Γ∗β) ≥ β

8(β + 1)2 , almost surely .

By construction, the regression vector is (γ, L)-Hölder and the density is lower- and upper-
bounded by some positive constants. Hence, it remains to check that the constructed dis-
tribution satisfies the α-margin assumption. This can be achieved by an appropriate choice
of r1. Indeed, on the sets Disk(r2, 2r2) ∪ Disk(r3, 2r3) there is a “corridor” of constant size
between the regression functions and the threshold G−1(β). The threshold G−1(β) is only
approached by the regression function on the set Ball(0, r1). As all the parameters in our
construction are independent from n,N ∈ N we can find a value r1 being small enough so
that the α-margin assumption is verified for a fixed α > 0.
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Chapter 4

Multi-label classification

4.1 Constrained approach
Chapter overview. In this chapter we consider a problem of multi-label classification, where
each instance is associated with some binary vector. Our focus is to find a classifier which
minimizes false negative discoveries under constraints. Depending on the considered set of
constraints we propose plug-in methods and provide non-asymptotic analysis under mar-
gin type assumptions. Specifically, we analyze two particular examples of constraints that
promote sparse predictions: in the first one, we focus on classifiers with `0-type constraints
and in the second one, we address classifiers with bounded false positive discoveries. Both
formulations lead to different Bayes rules and, thus, different plug-in approaches. The first
considered scenario is the popular multi-label top-K procedure: a label is predicted to be
relevant if its score is among the K largest ones. For this case, we provide an excess risk
bound that achieves so called “fast” rates of convergence under a generalization of the margin
assumption to this settings. The second scenario differs significantly from the top-K settings,
as the constraints are distribution dependent. We demonstrate that in this scenario the al-
most sure control of false positive discoveries is impossible without extra assumptions. To
alleviate this issue we propose a sufficient condition for the consistent estimation and provide
non-asymptotic upper bound.

4.1.1 Introduction
The goal of the multi-label classification is to annotate an observed object with a set of
relevant labels. Several sophisticated algorithms have been recently developed, including
tree based algorithms [Jain et al., 2016] and embedding based algorithms [Yu et al., 2014,
Bhatia et al., 2015] which are considered to be state-of-the-art. Other contributions have
rather focused on efficient implementations of existing multi-label strategies: for instance
in [Babbar and Schölkopf, 2017] the authors developed a large-scale distributed framework
relying on one-versus-rest strategy applied to linear classifiers, plug-in type classifiers were
considered in [Dembczynski et al., 2013].

A consensus on the choice of the performance measure is still missing. Yet, most recent
works have pointed out that it is more rewarding to correctly predict a relevant1 label than to
give a correct prediction on irrelevant labels, see [Jain et al., 2016] for a thorough discussion
on this topic. Such asymmetry is usually explained by the label space sparsity, that is, there

1A label is called relevant for an instance if this instance is tagged with this label.
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is only a small set of relevant labels compared to the set of irrelevant ones. It also suggests
that the classical Hamming loss is not well tailored for sparse multi-label problems as it
treats both false positives and false negatives equally; thus, some modifications ought to be
proposed.

To introduce this asymmetric information in a learning algorithm, one can modify the
objective loss function to be minimized. For instance, in [Jain et al., 2016] the authors have
weighted each label, according to their observed frequency over a dataset. These weights are
motivated by the propensity model, which introduces a possibility of non-observing a relevant
label. To be more precise, Jain et al. [2016] propose to down-weight the reward for correctly
predicting a frequent label, which is motivated by the observation that the frequent labels
can be easily predicted by a human. In [Chzhen et al., 2017], the authors proposed to weight
false positive (irrelevant labels predicted to be relevant) and false negative (relevant labels
predicted to be irrelevant) discoveries separately. The empirical risk minimization procedure
was then analyzed thanks to Rademacher’s complexity techniques.

Another possible direction is to consider a more complex family of loss functions, which
are called non-decomposable, such as F1-score (see Section 2.1) or AUC among others. A
general class of loss functions which can be represented as a ratio of false discoveries is studied
in [Koyejo et al., 2015]. Koyejo et al. [2015] showed that the oracle (Bayes optimal) classifier
can be obtained by thresholding the regression functions associated with each label, that is,
the probability of a label to be relevant. Additionally, the authors proved that algorithms
based on plug-in are consistent and have a good empirical performance. In a similar direction,
Dembczynski et al. [2013] empirically showed that plug-in algorithms outperform the ones
based on the structured loss minimization, in the context of multi-label classification with F1-
score performance measure. Dembczynski et al. [2013] additionally established a statistical
consistency of the considered algorithms. Finally, convex empirical risk minimization was
studied in [Gao and Zhou, 2011], where authors proved an infinite sample size consistency
for convexified Hamming loss and ranking loss. Consistency results are common in the
multi-label classification literature. Though, results of non-asymptotic nature, e.g., excess
risk bounds, have not received much attention in these settings.

Due to the sparse nature of the problem we propose to focus on classifiers that minimize
false negative discoveries and exhibit desirable structural properties. This can be seen as a
problem constrained estimation, mainly considered in the settings of regression or parametric
estimation [Lepskii, 1990]. In the constrained estimation, similarly to this case, the goal is
to find an estimation which inherit some properties desired by a statistician. In this chapter
we consider two particular choices of structural constraints. The first type of constraints
describes classifiers with a bounded number of predicted labels: for instance, this approach
appears naturally in recommendation systems. Bayes optimal classifier in this context is given
by the top-K procedure, popular among practitioners: a label is predicted to be relevant if its
associated score is among the top-K values. The popularity of this approach is reflected by
several recent works [Lapin et al., 2015, Li et al., 2017], where top-K procedures are studied
both from applied and asymptotic points of view. In contrast, for this scenario, we establish
a non-asymptotic excess risk bound for plug-in based classifiers. The obtained bound can
attain “fast” and “super-fast” (faster than 1/n) rates under a multi-label version margin
assumption, similarly to the standard binary classification setup discussed in Section 1.1.

For the second scenario, we consider a set of classifiers with a control over false positive
discoveries. This can be relevant when one can tolerate a few false positive discoveries, but
needs a parameter which quantifies the level of tolerance. To provide guarantees for this
instance, we introduce a different set of assumptions which reflects the label sparsity of a
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typical multi-label problem. Under these assumptions, we prove an excess risk bound similar
(in terms of rates) to the bound obtained by Denis and Hebiri [2015a], where the authors
analyzed a binary classification framework with a control over the probability of rejection.

Organization of the chapter

This chapter is organized in the following way: in Section 4.1.2, we introduce notation used
throughout this chapter, formally state the considered framework and lay down important
results that we use. Further, Sections 4.1.3 and 4.1.4 are devoted to the theoretical analysis of
plug-in rules in the two scenarios mentioned above. We conclude the chapter by a discussion
on possible extensions in Section 4.1.5. All the proofs are gathered in Section 4.1.7.

4.1.2 Framework and notation
In this section, we introduce the notation used in this chapter and present the proposed
constrained framework. For any positive integer number n we denote by [n] = {1, . . . , n} the
set of integers between 1 and n. For any vector a in a Euclidean space Rn and for all i ∈ [n]
we denote by ai the ith component of the vector a. We denote by ‖·‖0 the `0 norm of a vector,
which in case of binary vectors reduces to the number of ones. For every real numbers a, b
we denote by a ∧ b the minimum between a and b. Let (X, Y ) ∼ P, where X ∈ X = Rd

and Y = (Y 1, . . . , Y L)> ∈ Y = {0, 1}L. Denote by PX the marginal distribution of X. In
this chapter, a classifier g = (g1, . . . , gL)> is a measurable function from X to Y , that is
g : X 7→ Y , and we write G(X ,Y) for the set of all classifiers (measurable functions). Let
η(x) = (η1(x), . . . , ηL(x))> : X 7→ [0, 1]L be the component wise regression function, meaning
that for all l ∈ [L] the lth component of η(x) is given by ηl(x) = P(Y l = 1|X = x). We
denote by σ = (σ1, . . . , σL) a permutation2 of [L] such that the regression functions is ranked
as

ησ1(x) ≥ . . . ≥ ησL(x) ,

for all x ∈ Rd. The average false negative risk of a classifier g ∈ G(X ,Y) is denoted by

R(g) = 1
L

L∑
l=1

P
(
gl(X) = 0, Y l = 1

)
. (4.1)

Let us first recall the general setting of constrained classification presented in Chapter 1.
For a fixed subset of classifiers Gθ ⊂ G(X ,Y) parametrized by some abstract θ and specified
according to the context, we define a Gθ-Bayes classifier as

g∗ ∈ arg min {R(g) : Gθ} . (4.2)

Importantly, unlike all previous examples in this section we consider those sets Gθ which are
not written as equalities (inequalities) in expectation. Here we would focus on almost sure
type constraints, for which plug-in type methods can still be applied.

Again, let us recall that the Gθ-Bayes rule g∗ depends both on the distribution of (X, Y )
and on the set of predictors Gθ. We assume that the minimum is achieved by a classifier
g∗ ∈ Gθ, though we do not assume that this classifier is unique.

Intuitively, this framework aims at minimization of the total number of mistakes on Y l = 1
(relevant labels), over a class of prediction rules Gθ. For example, the case Gθ = G(X ,Y)

2we omit the dependence on x and write σ instead of σ(x).
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leads to an G(X ,Y)-oracle g∗ ≡ (1, . . . , 1)>, which reflects a complete tolerance over false
positive discoveries. This simple example shows, that the choice of Gθ is a crucial modeling
part of the proposed framework.

Given a data sample DL
n = {(Xi, Yi)}ni=1, which consists of i.i.d. copies of (X, Y ), the goal

here is to construct an estimator ĝ, based on DL
n , of the Gθ-Bayes g∗. Estimator ĝ is a function

that assigns a classifier to every learning sample DL
n , that is, ĝ : ∪∞n=1(X × Y)n 7→ G(X ,Y).

We denote by P⊗n the product probability measure according to which the data sample DL
n

is distributed, and by EP⊗n the expectation with respect to P⊗n. The goal is to provide non-
asymptotic bounds on the excess risk EP⊗n

[
R(ĝ)

]
− R(g∗). Recall that in the constrained

classification framework, we want our estimate ĝ to satisfy one of the following conditions:

ĝ ∈ Gθ, ∀n ∈ N; or ĝ −−−→
n→∞

g ∈ Gθ , (4.3)

where the kind of convergence is to be specified later. Since, the Gθ-Bayes g∗ is typically
available in a closed form and depends on an unknown, in practice, regression vector η(x), we
consider the plug-in type methods. As discussed in Section 1.0.3, a vast amount of literature
is focused on the estimation of the regression function η(x), that is why this part is not a
central object of this particular study. In other words, we are rather interested in describing
the performance of a classifier based on an arbitrary estimator η̂(x) of the regression function
η(x) which satisfies for all l ∈ [L] the following assumption:

Assumption 12 (Exponential bound). For some positive constants C1, C2 > 0 and γ > 0,
for all δ > 0 and for all l ∈ [L] we have:

P⊗n
(
|ηl(x)− η̂l(x)| ≥ δ

)
≤ C1 exp(−C2n

γδ2) a.e. x ∈ Rd w.r.t. PX . (4.4)

Such a bound holds for various type of estimators and distributions in both parametric [Li
et al., 2015] and non-parametric settings [Audibert and Tsybakov, 2007]. In non-parametric
settings, typically, the parameter γ depends on the smoothness of η and on the dimension d.
Let us notice, that empirical evidences [Dembczynski et al., 2013] suggest to use multinomial
logistic regression as an effective estimator for the regression function, though, this estimator
might not have the exponential concentration. The rest of the chapter is devoted to theo-
retical analysis of two specific families Gθ. In both cases we derive the Gθ-Bayes classifier g∗,
defined in Eq. (4.2). Typically, the Gθ-Bayes g∗ depends on the regression function η, due to
the form of the risk considered in Eq. (4.1). Explicit expression for the Gθ-Bayes, provides
with a natural motivation to consider plug-in type rules for the construction of ĝ. We es-
tablish one of the properties in Eq. (4.3) and introduce the set of additional assumptions in
order to upper-bound the excess risk.

Let us finish this section with one generic notation used in this chapter. For the estimator
η̂(x) we denote by σ̂ = σ̂(x) a permutation of [L] such that the following holds for all x ∈ Rd

η̂σ̂1(x) ≥ . . . ≥ η̂σ̂L(x) ,

we again omit the dependence on x and write σ̂ instead of σ̂(x). We reserve σ and τ for a
non-decreasing permutations of η(x) and η̂(x) respectively.

4.1.3 Control over sparsity
In this section, we consider, the set of K-sparse classifiers, defined for a fixed K ∈ [L] as:

Gsp
K := {g ∈ G(X ,Y) : ∀x ∈ Rd, ‖g(x)‖0 ≤ K} , (4.5)
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and put Gθ = Gsp
K (in this case θ = K). Hence, we are interested in a K-sparse classifier,

which minimize the total number of mistakes on relevant labels. It is not hard to see that, a
Gsp
K -oracle g∗ is given by the top-K procedure, this is stated formally in the following lemma:

Lemma 17 (Gsp
K -oracle classifier). An Gsp

K -oracle g∗ can be obtained for all x ∈ Rd as:
gσ1
∗ (x) = . . . = gσK∗ (x) = 1 ,

gσK+1
∗ (x) = . . . = gσL∗ (x) = 0 .

Remark 10. Observe, that in order to recover the Gsp
K -oracle g∗ the only information that is

needed is {σ1(x), . . . , σK(x)}. In particular, any additional information about the regression
vector η(x) is not relevant.

A plug-in strategy ĝ in this case can be defined in a straightforward way for all x ∈ Rd

as:
ĝσ̂1(x) = . . . = ĝσ̂K (x) = 1 , (4.6)

ĝσ̂K+1(x) = . . . = ĝσ̂L(x) = 0 . (4.7)
Obviously, the plug-in estimator defined above is exactly a K-sparse classifier, that is ĝ ∈ Gsp

K

for every choice of the data sample DL
n , as required in Eq. (4.3). Since our goal is to predict

as relevant the labels with the top-K probabilities, it is natural to restrict our attention to
the distributions for which such top-K labels are well separated. In this context, we use a
top-K margin assumption in the following form:
Assumption 13 (top-K margin assumption). We say that the regression vector η(x) satisfies
top-K margin assumption, if there exist positive constants C, α such that for all δ > 0:

PX{0 < ησK (X)− ησK+1(X) ≤ δ} ≤ Cδα .

This assumption is similar to the classical margin assumption used in the context of
binary classification. Under Assumption 13 we can obtain the following bound on the excess
risk of ĝ:
Theorem 17. Under Assumptions 12 and 13, the excess risk of the plug-in classifier in
Eq. (4.6) can be bounded as follows:

EP⊗n
[
R(ĝ)

]
−R(g∗) ≤ C̃K

L−K
L

n−
γ(α+1)

2 ,

for some universal constant C̃.
The proof of Theorem 17 is based on the following upper bound on the excess risk:

R(ĝ)−R(g∗) ≤ EPX
1
L

K∑
l=1

L∑
j=K+1

(ησl(X)− ησj(X))1{ĝσl (X)=0,ĝσj (X)=1} , (4.8)

which in the case L = 2 and K = 1 reduces to the classical excess risk in binary classification.
We notice that there are two interesting consequences of this bound: first, the bound can
attain “fast” (1/n) and “super-fast” (faster than 1/n) rates of convergence in terms of n,
depending on γ and α; second, the value of the parameter K (chosen by the practitioner) is
often small in applications compared to the total amount of labels L. Hence, the obtained
bound illustrates the good performance of the proposed method as it behaves proportionally
to K rather than to L. This is crucial when one tries to address scenarios where the total
amount of observations n is of the same order as L. Moreover, we expect that the dependence
on K and L can be improved or even avoided, since the upper bound on the excess risk in
Eq. (4.8) is rather rough.
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4.1.4 Control over false positives
In this section, we consider the set of classifiers with controlled false positive discoveries,
defined for a fixed β ∈ [L] as:

Gfp
β :=

{
g ∈ G(X ,Y) :

L∑
l=1

P
(
gl(X) = 1, Y l = 0|X

)
≤ β, PX-a.s.

}
, (4.9)

and put Gθ = Gfp
β (in this case θ = β).

Remark 11. One should note that the following inclusion holds for all β ∈ [L]:

Gsp
β ⊂ G

fp
β ,

which indicates that the top-β strategy controls the false positive discoveries. This is intuitive,
as the top-β procedure is not making more than β false positive discoveries. However, this
control is not optimal in a situation when a larger (compared to β) set of labels could be
relevant. In such a scenario, the Gfp

β -oracle classifier is more advantageous as it is able
to output a larger set of potentially relevant labels and still has a controlled false positive
discoveries.

As in the previous section, the Gfp
β -oracle classifier is given by thresholding the top com-

ponents of the regression function. However, unlike the previous sparse strategy, in this case
the amount of positive components can be different for every x ∈ Rd.

Lemma 18 (Oracle classifier). An Gfp
β -oracle g∗ can be obtained for every x ∈ Rd as

gσ1
∗ (x) = . . . = gσK∗ (x) = 1 ,

gσK+1
∗ (x) = . . . = gσL∗ (x) = 0 ,

where K = K(x) is defined as

K(x) = max
{
m ∈ [L] :

m∑
l=1

(1− ησl(x)) ≤ β
}
. (4.10)

In this case the optimal strategy can be characterized as top-K(X), where K(X) is
a random variable defined in Eq. (4.10). Intuitively, for each feature vector x ∈ Rd the
threshold K(x) selects labels with high probability to be relevant, the larger the value β
(which indicates the higher level of tolerance), the more labels are predicted to be relevant.

Remark 12. Notice, that unlike the previous scenario, it is not sufficient to recover the
ordering of the regression function η(x) to obtain the Gfp

β -oracle. Indeed, due to the definition
of K(X), even the knowledge of the whole non-decreasing permutation σ is not sufficient
without additional information about the components of the regression vector η(x).

Similarly to the previous section, a natural plug-in strategy ĝ reads for all x ∈ Rd:

ĝσ̂1(x) = . . . = ĝσ̂K̂ (x) = 1 , (4.11)
ĝσ̂K̂+1(x) = . . . = ĝσ̂L(x) = 0 , (4.12)
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where K̂ = K̂(x) is defined as

K̂(x) = max
{
m ∈ [L] :

m∑
l=1

(1− η̂σ̂l(x)) ≤ β
}
.

Ultimately, to recover the Gfp
β -oracle g∗ we need to estimate both: the non-decreasing per-

mutation σ and the regression vector η. Since, we do not have an access to either of those
quantities, we use an estimator η̂ and its own non-decreasing permutation τ . We define
Ĝfp
β , replacing (ηl(x))Ll=1 by (η̂l(x))Ll=1 in the definition of Gfp

β , in order to prove one of the
properties in Eq. (4.3)

Definition 19 (Plug-in Gfp
β -set). For every β ∈ [L] we denote the plug-in β-set as

Ĝfp
β :=

{
g ∈ G(X ,Y) :

L∑
l=1

1{gl(X)=1}(1− η̂
l(X)) ≤ β, PX-a.s.

}
.

Due to the approximation error of η̂ the plug-in rule ĝ does not necessary belong to the
set Gfp

β (hence is not comparable to the Gfp
β -oracle g∗). However, if the estimator η̂ of η is

consistent, then every classifier g ∈ Ĝfp
β has asymptotically bounded false positive discoveries

on the level β.

Lemma 19 (Embedding of the plug-in set). There exists β̄ which satisfies β̄ ≤ β +∑L
l=1

∥∥∥ηl − η̂l∥∥∥
∞

such that for every g ∈ Ĝfp
β , we have

g ∈ Gfp
β̄
.

Moreover, under Assumption 12, with probability at least 1 − ε over the dataset DL
n it holds

that
Ĝfp
β ⊂ G

fp
β̄
,

where β̄ = β +O(Ln−γ/2
√

ln(C1/ε)).

Since, clearly, ĝ ∈ Ĝfp
β by construction, we establish the second requirement in Eq. (4.3),

which is a desired property as we want to restrict our attention to the collection of classifiers
Gfp
β .

Assumption 14 (Local margin assumption). We say that the regression vector η(x) satisfies
local margin assumption, if there exist constants C0 > 0, α1 > 0 such that for all δ > 0, we
have

PX (ησk(X)− ησk+1(X) ≤ δ,K(X) = k) ≤ C0δ
α1 .

This assumption states that in the optimal thresholding K(X) = k there is a gap between
the kth and (k + 1)th regression function, which is similar to Assumption 13. This is needed
in order to recover the permutation σ, at least partially until its Kth element. However, since
the amount of labels is not fixed a priori and is itself a random variable, the form of this
assumption slightly differs from Assumption 13. Additionally one should observe that unlike
Assumption 13, the later restricts the possibility of ησk(X) and ησk+1(X) to coincide on a set
of large measure, which is similar to [Tsybakov, 2004].
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Assumption 15 (Sparsity). We say that the regression vector η(x) satisfies sparsity assump-
tion, if for a positive integer S smaller than L, we have

L∑
l=1

P
(
Y l = 1|X

)
≤ S, PX-a.s.

This assumption is similar to the one used in [Chzhen et al., 2017], and aims at leveraging
sparsity of most real datasets. It is natural to expect that the value of the sparsity S is smaller
than the total amount of labels L. Even though, our analysis does not explicitly assume this
relation between S and L, bounds that we obtain are more advantageous for such a scenario.
We finally introduce the assumption that is more structural and states that the sum of top
regression functions is not too concentrated around β.

Assumption 16 (Global margin assumption). We say that the regression vector η(x) satisfies
global margin assumption if, there exists α2 > 0, such that for all k ≥ β, for all l ∈ [k], and
for all δ > 0, we have

PX

1
l
|

k∑
j=k−l+1

(1− ησj(X))− β| ≤ δ,K(X) = k

 ≤ βα2δα2h(|k − l|) ,

where h : R+ 7→ R+ such that h(0) = 1 and
L∑
k=β

L∑
l=1

h(|k − l|) ≤ C̃(L− β) ,

for some C̃ > 0.

The multiplier βα2 is due to the fact that the following inequality must always be satisfied
for δ = 1

k
and l = k:
L∑
k=β

PX
(1
k
|
k∑
j=1

(1− ησj(X))− β| ≤ 1
k
,K(X) = k

)
=

L∑
k=β

PX
(
K(X) = k

)

= 1 ≤
L∑
k=β

βα2
1
kα2

h(0) ,

where the first equality holds since on the event K(X) = k the quantity |∑k
j=1(1−ησj(X))−β|

is always upper bounded by one. The definition of the function h states that the matrix Hk,l =
h(|k− l|) is a diagonally dominant matrix such that for all k ≥ β we have AHk,k ≥

∑
l 6=kHk,l

for some positive constant A independent from L.
Let us provide a simple intuition for the necessity of Assumption 16. Consider the follow-

ing multi-label classification problem: L ≥ 2, S = 2, β = 1, X ∈ [0, 1]. And let us define two
probability measures P−1,P+1 which have the marginal distribution P±1,X ≡ Leb, where Leb
is the Lebesgue measure on [0, 1]. Under both P−1,P+1 the labels Y 1, . . . , Y L are independent,
Y l ≡ 0 for all l = 3, . . . , L, Pρ(Y 1 = 1|X) ≡ 3/4, and Pρ(Y 2 = 1|X) = η2

ρ(X) = 1/4 − ρφ−1
n

for ρ ∈ {−1, 1} and some strictly increasing sequence φn of n ∈ N. Assume also that φn is
chosen in such a way that φ−1

1 ≤ 1/8. One can see, thanks to Lemma 18, that the Oracle
classifiers under P−1 and P+1 are given by

g−1
∗ (x) = (1, 1, 0, . . . , 0)> ,

g+1
∗ (x) = (1, 0, 0, . . . , 0)> ,
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respectively and the optimal thresholds are K−1(x) ≡ 2, K+1(x) ≡ 1. Now, let us consider
minimax risk3 over P = {P+1,P−1} defined as

inf
ĝ

sup
P∈P

EP⊗n |R(ĝ)−R(g∗)| = inf
ĝ

sup
ρ∈{−1,1}

EP⊗nρ

∣∣∣RPρ(ĝ)−RPρ(gρ∗)
∣∣∣ .

Then, for the excess risk Eρ(ĝ) =
∣∣∣RPρ(ĝ)−RPρ(gρ∗)

∣∣∣ we can write

Eρ(ĝ) = 1
L

∣∣∣∣34
∫ 1

0
1{ĝ1(x)=0}dx+

∫ 1

0
η2
ρ(x)

(
1{ĝ2(x)=0} − 1{(gρ∗)2(x)=0}

)
dx

∣∣∣∣ ,
moreover, using the triangle inequality we can lower bound E+1(ĝ) + E−1(ĝ) by

1
L

∣∣∣∣−2φ−1
n

∫ 1

0
1{ĝ2(x)=0}dx−

∫ 1

0
η2

+1(x)1{(g+1
∗ )2(x)=0}dx+

∫ 1

0
η2
−1(x)1{(g−1

∗ )2(x)=0}dx
∣∣∣∣ .

Recall that {x ∈ [0, 1] : (g+1
∗ )2(x) = 0} = [0, 1] and {x ∈ [0, 1] : (g−1

∗ )2(x) = 0} = ∅, thus

E+1(ĝ) + E−1(ĝ) ≥ 1
L

∣∣∣∣−2φ−1
n

∫ 1

0
1{ĝ2(x)=0}dx−

1
4 + φ−1

n

∣∣∣∣
≥ 1

4L −
1
L

∣∣∣∣−2φ−1
n

∫ 1

0
1{ĝ2(x)=0}dx+ φ−1

n

∣∣∣∣
≥ 1

4L −
φ−1
n

L

∫ 1

0

∣∣∣1{ĝ2(x)=0} − 1{ĝ2(x)=1}

∣∣∣ dx
= 1

4L −
φ−1
n

L
≥ 1

8L .

where the last inequality is due to our choice of φn. Now, let us define another proba-
bility measure P0 on [0, 1] × {0, 1}L, such that P0,X ≡ Leb on [0, 1], Y 1, . . . , Y L are in-
dependent, Y l ≡ 0 for l = 3, . . . , L and P0(Y 1 = 1|X) ≡ 3/4, P0(Y 2 = 1|X) ≡ 1/4.
Importantly, both P−1 and P+1 are absolutely continuous w.r.t. to P0. Let us write
(∗) = inf ĝ supρ∈{−1,1} EP⊗nρ

∣∣∣RPρ(ĝ)−RPρ(gρ∗)
∣∣∣, thus

(∗) ≥ inf
ĝ

∑
ρ∈{−1,1} EP⊗n+1

∣∣∣RPρ(ĝ)−RPρ(gρ∗)
∣∣∣

2

= inf
ĝ

EP⊗n0

[
dP⊗n+1
dP⊗n0
E+1(ĝ)

]
+ EP⊗n0

[
dP⊗n−1
dP⊗n0
E−1(ĝ)

]
2

≥ inf
ĝ

EP⊗n0

[
min

{
dP⊗n+1
dP⊗n0

,
dP⊗n−1
dP⊗n0

}
(E+1(ĝ) + E−1(ĝ))

]
2

≥ 1
16L

(
1− TV(P⊗n+1 ,P⊗n−1 )

)
where TV(·, ·) is the total variation distance between probability measures. Note, however,
that for a sufficiently fast decaying4 φn we can guarantee that TV(P⊗n+1 ,P⊗n−1 ) ≤ 1/2, which
implies that

inf
ĝ

sup
P∈P

EP⊗n |R(ĝ)−R(g∗)| ≥
1

16L .

3We are forced to put an absolute value in this discussion, since an ”estimator” that always outputs the
vector (1, . . . , 1)> achieves zero risk and the minimax risk without the absolute value is always non-positive.

4One can upper bound the total variation using Pinsker’s inequality and observe that the problem reduces
to the Kullback-Leibler divergence between two Bernoulli variables.
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First of all, observe that the distributions constructed above satisfy Assumptions 14, 15
and the corresponding regression functions are constant. In particular, these regression
functions are infinitely many times differentiable, the marginal distribution admits density
w.r.t. Lebesgue measure supported on [0, 1], and an estimator achieving Assumption 12 exists.
However, since the minimax risk is of constant order, it suggests that an extra assumption
is necessary for consistency of any estimator. This phenomena occurs due to the behavior of
the regression function around the parameter β. The discussion above highlights the funda-
mental difference between the two frameworks considered in this chapter and motivates the
extra Assumption 16, which might seem to be unnatural at the first sight.

Using the assumptions introduced for this model we can state the following result.

Theorem 18. Assume that the estimator η̂ satisfies Assumption 12. Therefore, under As-
sumptions 14–16, the plug-in rule in Eq. (4.11) satisfies

EP⊗n
[
R(ĝ)

]
−R(g∗) ≤ C̃(βα2 + S)(L− β)n−γ(α2∧α1)/2 ,

for some universal constant C̃.

The proof of the previous theorem relies on the following Lemma:

Lemma 20 (Partial order). On the event {2 ‖η(X)− η̂(X)‖∞ < ησk(X) − ησk+1(X)}, we
have for all l ∈ [L] and all m ∈ [L] such that l ≤ k < m:

l′ ≤ k < m′ ,

where l′ and m′ are such that σ̂l′ = σl and σ̂m′ = σm.

From the previous result we can conclude that the condition of the lemma yields
{σ̂1, . . . , σ̂k} = {σ1, . . . , σk}. To see this it is sufficient to apply Lemma 20 to each l = 1, . . . , k
and m = k + 1 and use the fact that l′ defined in Lemma 20 is unique and is different for all
l. Similarly we can show that {σ̂k+1, . . . , σ̂L} = {σk+1, . . . , σL}. Hence, the previous lemma
gives an intuitive result: if the estimation η̂ is accurate enough, then it partially preserves
the ordering of η. We point out that the dependence of the obtained bound on the total
amount of labels L deteriorates compared to the previous case.

4.1.5 Discussion
The proposed framework is flexible and could be further analyzed. In particular, it is inter-
esting to find other strategies, i.e., other sets Gθ that can be of practical interest. In general,
we suggest to incorporate any quantity of interest in the set Gθ and consider the plug-in
approach if the oracle is available explicitly. Notice, that the Gsp

K -oracle does not allow to
have an optimal control over false positive discoveries, whereas the Gfp

β -oracle does not allow
to control sparsity. For instance, one might be interested in both sparsity and false positive
discoveries simultaneously, to this end a natural extension is the following set Gβ,K :

Gβ,K = Gsp
K ∩ G

fp
β .

Each classifier in this set has a controlled number of false positive errors as well as bounded
sparsity. Moreover, Remark 11 suggests to choose the value β as ρK, where ρ ∈ (0, 1). This
choice of parameters bounds the output sparsity from below on the level ρK and from above
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on the level K, moreover the false positives discoveries are upper-bounded by ρK. It is not
hard to show, that an Gβ,K-oracle over such set can be obtained in a similar fashion, that is:

gσ1
∗ (x) = . . . = gσK?∗ (x) = 1 ,

gσK?+1
∗ (x) = . . . = gσL∗ (x) = 0 ,

where K? = K?(x) is defined as

K?(x) = max
{
m ∈ [L] :

m∑
l=1

(1− ησl(x)) ≤ β
}
∧K .

The explicit expression of the Gβ,K-oracle allows to use plug-in approach as before, and we
plan to investigate this strategy in future works.

4.1.6 Conclusion
The bound in Theorem 17 is similar to the bound obtained by Audibert and Tsybakov [2007]
in the binary classification settings (see Section 1.1) and is known to be minimax optimal in
this case. It is important to notice that this bound is independent from the total amount of
labels L and only depends on the parameter K. However, we expect that this dependency
can be improved, and rates proportional to K/L can be achieved. This intuition is explained
by the first step of the proof of Theorem 17, where a rather loose inequality is used.

Theorem 18 is proven under three different assumptions, which are reflecting the structure
of the regression vector η. The obtained bound does not have a classical γ(α + 1)/2 rate
but γα/2 is obtained instead. A simple explanation for this phenomena can be provided:
in case the constant α2 from Assumption 16 is equal to zero, the upper-bound becomes
trivial, it is not surprising in view of the discussion provided after Assumption 16. Indeed,
the distributions satisfying Assumption 16 with α2 = 0 are the same as the distributions
satisfying only Assumptions 14, 15 which is not sufficient for upper-bounding the minimax
risk. Bound of a similar type can be found in [Denis and Hebiri, 2015a] in the case of binary
classification with reject option, where the authors are proposing to control the probability
of rejection. We expect that the control over a random quantity, that is the false positive
discovery in our case, or the probability of reject in case of [Denis and Hebiri, 2015a], might
lead to such rates. We plan to further investigate the behavior obtained in this case and
provide minimax lower bounds to show their optimality.

4.1.7 Proofs

Technical lemmas
The following lemma is used throughout this chapter. It ensures that if the estimate η̂
satisfies the exponential bound in Assumption 12, hence the same bound holds if we replace
l ∈ [L] by σj for every j ∈ [L]:

Lemma 21. Assume that η̂ satisfies the conditions in Assumption 12, hence for all j ∈ [L]
we have

P⊗n (|ησj(x)− η̂σj(x)| ≥ δ) ≤ C1 exp(−C2n
γδ2) for almost every x ∈ Rd w.r.t. PX .
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Proof. A standard disjunction yields:

P⊗n (|ησj(x)− η̂σj(x)| ≥ δ) =
L∑
l=1

P⊗n
(
|ησj(x)(x)− η̂σj(x)(x)| ≥ δ

)
1{σj(x)=l}

=
L∑
l=1

P⊗n
(
|ηl(x)− η̂l(x)| ≥ δ

)
1{σj(x)=l}

≤
L∑
l=1

C1 exp(−C2n
γδ2)1{σj(x)=l} = C1 exp(−C2n

γδ2) ,

and the inequality in Lemma 21 holds for almost every x ∈ Rd with respect to PX .

Similarly, we can obtain the following bound on the infinity norm of the regression func-
tion:

Lemma 22. Assume that η̂ satisfies the conditions in Assumption 12, hence we have

P⊗n
(

max
l∈[L]
{|ηl(x)− η̂l(x)|} ≥ δ

)
≤ C1L exp(−C2n

γδ2) for almost every x ∈ Rd w.r.t. PX .

Proof of Theorem 17
Proof. We start with the following decomposition of the excess risk:

E(ĝ) = 1
L
EP⊗nEPX

[ L∑
l=1

ησl(X)
(
1{ĝσl (X)=0} − 1{gσl∗ (X)=0}

)]

= 1
L
EP⊗nEPX

[ L∑
l=1

ησl(X)1{ĝσl (X)=0,gσl∗ (X)=1} −
L∑
l=1

ησl(X)1{ĝσl (X)=1,gσl∗ (X)=0}
]

= 1
L
EP⊗nEPX

[ K∑
l=1

ησl(X)1{ĝσl (X)=0} −
L∑

l=K+1
ησl(X)1{ĝσl (X)=1}

]
,

where in the last equality we have used the explicit expression for the oracle from Lemma 17.
Now notice that since ĝ is exactly K-sparse, hence if in the first sum there are m ∈ {1, . . . , K}
non-zero terms, hence there are exactly m non-zero terms in the second sum. Since all the
non-zero terms in the first sum are greater than all the non-zero terms in the second sum,
we can bound the excess risk by all possible pair-wise differences:

E(ĝ) ≤ EP⊗nEPX
1
L

K∑
l=1

L∑
j=K+1

(ησl(X)− ησj(X))1{ĝσl (X)=0,ĝσj (X)=1} .

On the one hand, according to the plug-in rule definition, on the event {ĝσl(X) = 0, ĝσj(X) =
1} we have η̂σj(X) ≥ η̂σl(X). On the other hand, due to the definition of σ we have ησl(X) ≥
ησj(X) for all j > l. Therefore, on the event {ĝσl(X) = 0, ĝσj(X) = 1} we have ησl(X) −
ησj(X) ≤ |∆̂l|+ |∆̂j|, where ∆̂k = η̂σk(X)− ησk(X) for any k ∈ [L]. We can write:

E(ĝ) ≤ 1
L
EP⊗nEPX

K∑
l=1

L∑
j=K+1

(ησl(X)− ησj(X))1{ησl (X)−ησj (X)≤|∆̂k|+|∆̂j |} .
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Denote by Tl,j(X) for all l ∈ {1, . . . , K} and j ∈ {K + 1, . . . , L} the (l, j)-term in the above
sum, that is:

E(ĝ) ≤ 1
L

K∑
l=1

L∑
j=K+1

EP⊗nEPXTl,j(X) .

Now we restrict our attention on an arbitrary Tl,j(X), we can write

EP⊗nEPXTl,j(X) = EP⊗nEPX (ησl(X)− ησj(X))1{ησl (X)−ησj (X)≤|∆̂l|+|∆̂j |}
=
∑
p≥0

EP⊗nEPX (ησl(X)− ησj(X))1{ησl (X)−ησj (X)≤|∆̂l|+|∆̂j |}1{X∈Ap} ,

where Ap are defined similar to [Audibert and Tsybakov, 2007], that is

A0 = {x ∈ Rd : 0 < ησl(x)− ησj(x) ≤ δ} ,
Ap = {x ∈ Rd : 2p−1δ < ησl(x)− ησj(X) ≤ 2pδ} for all p > 0 .

We continue as:

EP⊗nEPXTl,j(X) = EP⊗nEPX (ησl(X)− ησj(X))1{ησl (X)−ησj (X)≤|∆̂l|+|∆̂j |}1{X∈A0}

+
∑
p≥1

EP⊗nEPX (ησl(X)− ησj(X))1{ησl (X)−ησj (X)≤|∆̂l|+|∆̂j |}1{X∈Ap}

≤EP⊗nEPX (ησl(X)− ησj(X))1{0<ησl (X)−ησj (X)≤δ}}
+
∑
p≥1

EP⊗nEPX (ησl(X)− ησj(X))1{2p−1δ≤|∆̂l|+|∆̂j |}1{0<ησl (X)−ησj (X)≤2pδ}

≤δEPX1{0<ησl (X)−ησj (X)≤δ}
+
∑
p≥1

2pδEPXP
⊗n
(
2p−1δ ≤ |∆̂l|+ |∆̂j|

)
1{0<ησl (X)−ησj (X)≤2pδ}

≤δEPX1{0<ησK (X)−ησK+1 (X)≤δ}

+
∑
p≥1

2pδEPXP
⊗n
(
2p−1δ ≤ |∆̂l|+ |∆̂j|

)
1{0<ησK (X)−ησK+1 (X)≤2pδ}

≤Cδ1+α + 2
∑
p≥1

2pδC1 exp(−C2an22p−2δ2)EPX1{0<ησK (X)−ησK+1 (X)≤2pδ}

≤Cδ1+α + 2CC1δ
α+1 ∑

p≥1
2p(α+1) exp(−C2an22p−2δ2) ,

setting δ = (an)
1
2 we obtain:

EP⊗nEPXTl,j(X) ≤ C̃(an)
1+α

2 .

We conclude by substituting the obtained bound into the excess risk bound.

Proof of Lemma 18
The next lemma states that the risk of any classifier g ∈ Gfp

β can be improved if the classifier
is altered pointwise according to the order of the regression vector σ1, . . . , σL. This result
allows to prove Lemma 18.
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Lemma 23. Assume that g ∈ Gβ. Let pos(g(x)) = {l ∈ [L] : gl(x) = 1} and denote by
m(x) = | pos(g(x))| the cardinality of pos(g(x)). For all x ∈ Rd define gm as

gσ1
m (x) = . . . = gσmm (x) = 1 ,

gσm+1
m (x) = . . . = gσLm (x) = 0 ,

Hence, gm ∈ Gfp
β and R(gm) ≤ R(g).

Proof. First, we show that gm ∈ Gfp
β , since g ∈ Gβ it holds that∑

l∈pos(g(X))
(1− ηl(X)) ≤ β, PX-a.s. ,

due to the definition of σ = σ(x) we have∑
l∈pos(gm(x))

(1− ηl(x)) ≤
∑

l∈pos(g(x))
(1− ηl(x)), for all x ∈ RD ,

indeed, ∑L
l∈pos(gm(x))(1− ηl(x)) consists of a sum of m smallest values of (1− ηl(x))Ll=1, which

concludes the first part of the statement. The second part is proven similarly: for all x ∈ RD

it obviously holds thanks to the definition of σ that

E
[ L∑
l=1

1{glm(x)=0,Y l=1}|X = x
]

=
∑

l∈[L]\pos(gm(x))
ηl(x) ≤

∑
l∈[L]\pos(g(x))

ηl(x)

= E
[ L∑
l=1

1{gl(x)=0,Y l=1}|X = x
]
,

which concludes the proof.

Lemma 18. Let g ∈ Gfp
β be an oracle. Due to Lemma 23, we can get gm ∈ Gfp

β such that
R(gm) ≤ R(g), so gm is also an oracle. On the event {x ∈ Rd : ∑L

l=1 1{glm(x)=1}(1−η
l(x)) ≤ β}

(whose measure is one), it holds that pos(gm(x)) ⊂ pos(g∗(x)) by the construction of g∗(x)
and in particular K(x) therefore on this set

E
[ L∑
l=1

1{glm(x)=0,Y l=1}|X = x
]
≤ E

[ L∑
l=1

1{gl∗(x)=0,Y l=1}|X = x
]
.

Since the previous inequality holds almost surely PX , we conclude.

Proof of Theorem 18
Lemma 19. Let us fix g ∈ Ĝfp

β . Hence, by the definition of Ĝfp
β we have

L∑
l=1

1{gl(X)=1}(1− η̂
l(X)) ≤ β, PX-a.s. .

We introduce the following notation

B(z) =
L∑
l=1

1{gl(X)=1}(1− z
l) .
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Therefore B(η̂(X)) ≤ β, PX-a.s.. The following sequence of inequalities holds

|B(η̂(X))−B(η(X))| =
∣∣∣∣∣
L∑
l=1

1{gl(X)=1}(η̂
l(X)− ηl(X))

∣∣∣∣∣
≤

L∑
l=1

∣∣∣(η̂l(X)− ηl(X))
∣∣∣ , PX-a.s. ,

and this concludes the proof.

Lemma 20. Let l ∈ [L] and m ∈ [L] be such that l ≤ k < m, hence by of σ we have

ησl(X) ≥ ησk(X) ≥ ησk+1(X) ≥ ησm(X) ,

therefore
ησl(X)− ησm(X) ≥ ησk(X)− ησk+1(X) .

We can write

ησl(X)−ησm(X)−η̂σ̂l′ (X)+η̂σ̂l′ (X)−η̂σ̂m′ (X)+η̂σ̂m′ (x) = ησl(X)−ησm(x) ≥ ησk(X)−ησk+1(X) ,

which implies

η̂σ̂l′ (X)− η̂σ̂m′ (X) + 2 ‖η̂(X)− η(X)‖∞ ≥ ησk(X)− ησk+1(X) ,

and therefore on the event {2 ‖η(X)− η̂(X)‖∞ < ησk(X)− ησk+1(X)} we have

η̂σ̂l′ (X) ≥ η̂σ̂m′ (X) ,

meaning that l′ < m′. To conclude that m′ > k it is sufficient to notice that the inequality
l′ < m′ holds for at least k different values of l′. Similarly we conclude that l′ ≤ k.

Theorem 18. Here we denote by E the expectation EP⊗nEX for the sake of simplicity.

ER(ĝ)−R(g∗) = 1
L
E
[ L∑
l=1

ησl(X)1{ĝσl (X)=0,gσl∗ (X)=1} −
L∑
l=1

ησl(X)1{ĝσl (X)=1,gσl∗ (X)=0}
]

≤ 1
L
E
[ L∑
l=1

ησl(X)1{ĝσl (X)=0,gσl∗ (X)=1}
L∑
k=β

1{K(X)=k}
]

= 1
L
E
[ L∑
k=β

[ k∑
l=1

ησl(X)1{ĝσl (X)=0}1{K(X)=k}
]
1{2‖η(X)−η̂(X)‖∞≥ησk (X)−ησk+1(X)}

]
︸ ︷︷ ︸

U1

+ 1
L
E
[ L∑
k=β

[ k∑
l=1

ησl(X)1{ĝσl (X)=0}1{K(X)=k}
]
1{2‖η(X)−η̂(X)‖∞<ησk (X)−ησk+1(X)}

]
︸ ︷︷ ︸

U2

=U1 + U2 .
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For U1, due to Assumption 15 we can write

U1 ≤
1
L
E
[ L∑
k=β

[ k∑
l=1

ησl(X)1{K(X)=k}1{2‖η(X)−η̂(X)‖∞≥ησk (X)−ησk+1(X)}
]]

= 1
L
E
[ L∑
k=β

1{K(X)=k}1{2‖η(X)−η̂(X)‖∞≥ησk (X)−ησk+1(X)}
k∑
l=1

ησl(X)
]

≤S
L

L∑
k=β

E
[
1{K(X)=k}1{2‖η(X)−η̂(X)‖∞≥ησk (X)−ησk+1(X)}

]
︸ ︷︷ ︸

Uk1

= S

L

L∑
k=β

Uk
1 .

define the following sets, similar to the analysis of Audibert and Tsybakov [2007] for binary
classification, for all L ≤ k ≤ β

Ak0 = {X ∈ Rd : ησk(X)− ησk+1(X) ≤ δ} ,
Akj = {X ∈ Rd : 2j−1δ < ησk(X)− ησk+1(X) ≤ 2jδ} .

Therefore, using Assumption 14 for each k such that L ≤ k ≤ β we have
Uk

1 =E
∑
j≥0

1{K(X)=k}1{2‖η(X)−η̂(X)‖∞≥ησk (X)−ησk+1(X)}1{X∈Akj}

=E1{K(X)=k}1{2‖η(X)−η̂(X)‖∞≥ησk (X)−ησk+1(X)}1{X∈Ak0}
+ E

∑
j≥1

1{K(X)=k}1{2‖η(X)−η̂(X)‖∞≥ησk (X)−ησk+1(X)}1{X∈Akj}

≤E1{K(X)=k}1{X∈Ak0}
+ E

∑
j≥1

1{K(X)=k}1{2‖η(X)−η̂(X)‖∞≥2j−1δ}1{X∈Akj}

≤P
(
0 < ησk(X)− ησk+1(X) ≤ δ,K(X) = k

)
+ E

∑
j≥1

1{ησk (X)−ησk+1 (X)≤2jδ,K(X)=k}P⊗n
(
2 ‖η(X)− η̂(X)‖∞ ≥ 2j−1δ

)
≤P

(
0 < ησk(X)− ησk+1(X) ≤ δ,K(X) = k

)
+
∑
j≥1

P
(
ησk(X)− ησk+1(X) ≤ 2jδ,K(X) = k

)
C2L exp(−C3n

γ22j−2δ2)

≤C1δ
α1 +

∑
j≥1

C1C2δ
α2α1jL exp(−C3n

γ22j−2δ2) ,

let δ = n−γ/2, hence
Uk

1 ≤ C1n
−γα1/2 + C1C2n

−γα1/2
∑
j≥1

2αjL exp(−C322j−2) ≤ C̃1Ln
−γα1/2 .

Therefore,
U1 ≤ C̃

S

L
(L− β)La−α/2n = C̃S(L− β)n−γα1/2 .

For U2 we can write

U2 = 1
L
E
[ L∑
k=β

[ k∑
l=1

ησl(X)1{ĝσl (X)=0}
]
1{K(X)=k}1{2‖η(X)−η̂(X)‖∞<ησk (X)−ησk+1(X)}

]

= 1
L

L∑
k=β

Uk
2 ,
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where Uk
2 is given as

Uk
2 = E

[ k∑
l=1

ησl(X)1{ĝσl (X)=0}1{K(X)=k}1{2‖η(X)−η̂(X)‖∞<ησk (X)−ησk+1(X)}
]
.

For each Uk
2 we can write

Uk
2 ≤ E

[ k∑
l=1

1{ĝσl (X)=0}1{K(X)=k}1{2‖η(X)−η̂(X)‖∞<ησk (X)−ησk+1(X)}
]
.

If ĝσl(X) = 0 for some l ≤ k, hence by the definition of the plug-in rule we have
l′∑
j=1

(1− η̂σ̂j(X)) > β ,

where l′ is such that σ̂l′ = σl. Additionally, on the event {2 ‖η(X)− η̂(X)‖∞ < ησk(X) −
ησk+1(X)} according to Lemma 20 we have {σ̂1, . . . , σ̂l′} ⊂ {σ1, . . . , σk} and hence, on the
event {K(X) = k} we can write

l′∑
j=1

(1− ησ̂j(X))
︸ ︷︷ ︸

Sum of l′ elements

≤
k∑

j=k−l′+1
(1− ησj(X))

︸ ︷︷ ︸
Sum of the largest l′ elements

≤ β .

Therefore on the intersection of the three events
{ĝσl(X) = 0} ∩

{
2 ‖η(X)− η̂(X)‖∞ < ησk(X)− ησk+1(X)

}
∩ {K(X) = k}

we have

l′ ‖η(X)− η̂(X)‖∞ ≥
∣∣∣∣∣∣
l′∑
j=1

η̂σ̂j(X)− ησ̂j(X)
∣∣∣∣∣∣ ≥ |

k∑
j=k−l′+1

(1− ησj(X))− β| .

Hence,

Uk2 ≤ E
[ k∑
l=1

1{
l‖η(X)−η̂(X)‖∞≥|

k∑
j=k−l+1

(1−ησj (X))−β|
}1{K(X)=k}1{2‖η(X)−η̂(X)‖∞<ησk (X)−ησk+1 (X)}

]

≤ E
[ k∑
l=1

1{
l‖η(X)−η̂(X)‖∞≥|

k∑
j=k−l+1

(1−ησj (X))−β|
}1{K(X)=k} .

where the first inequality is obtained by reordering thanks to Lemma 20. With Assump-
tion 16, we can show the following bound, using the same technique as for Uk

1 :

Uk
2 ≤ C̃βα2n−γα2/2

L∑
l=1

h(|k − l|) ,

therefore
U2 ≤ C̃βα2n−γα2/2 1

L

L∑
k=β

L∑
l=1

h(|k − l|) ≤ C̃βα2(L− β)n−γα2/2 .

Therefore, we have
ER(ĝ) ≤ R(g∗) + C̃(L− β)(βα2n−γα2/2 + Sn−γα1/2)

≤ R(g∗) + 2C̃(βα2 + S)(L− β)n−γ(α2∧α1)/2 ,

and the conclusion holds.
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Chapter 5

Concluding remarks

This manuscript presents several results on the plug-in approach to constrained classification.
In future it is interesting to further investigate the general settings of constrained classification
and provide statistical analysis for this case. In particular, we would like to address the
question of minimax rates for this general case and understand whether fast rates are always
achievable. Another research direction is the study of semi-supervised methods in the context
of the constrained classification, similar to the one perfomed in Section 2.1 and Chapter 3.
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Chapter 6

Appendix

General constrained framework

Proposition 1. Let LP : {0, 1}×{0, 1} → R be a measurable loss function and CP : {0, 1}×
{0, 1} → R a measurable constraint function, and consider the following problem

min
{
E(Z,Y )∼P[LP(g(Z), Y )] : E(Z,Y )∼P[CP(g(Z), Y )] = 0

}
,

then this constrained binary classification formulation admits the representation from Equa-
tions (1.10), (1.11), with

AP(Z) = LP(0, 1)P(Y = 1|Z) + LP(0, 0)P(Y = 0|Z) ,

BP(Z) = (LP(1, 1)− LP(0, 1))P(Y = 1|Z) + (LP(1, 0)− LP(0, 0))P(Y = 0|Z) ,

ĀP(Z) = CP(0, 1)P(Y = 1|Z) + CP(0, 0)P(Y = 0|Z) ,

B̄P(Z) = (CP(0, 1)− CP(1, 1))P(Y = 1|Z) + (CP(0, 0)− CP(1, 0))P(Y = 0|Z) .

Proof of Proposition 1. For simplicity we omit the index P from both FP, F̄P. Using the
properties of conditional expectations and the notation η(Z) := P(Y = 1|Z) we can write

E(Z,Y )∼P[LP(g(Z), Y )] = E(Z,Y )∼P[LP(g(Z), 1)1{Y=1} + LP(g(Z), 0)1{Y=0}]
= EZ∼PZ [LP(g(Z), 1)η(Z) + LP(g(Z), 0)(1− η(Z))]
= EZ∼PZ [LP(1, 1)1{g(Z)=1}η(Z) + LP(1, 0)1{g(Z)=1}(1− η(Z))]

+ EZ∼PZ [LP(0, 1)η(Z)(1− 1{g(Z)=1}) + LP(0, 0)(1− 1{g(Z)=1})(1− η(Z))]
= LP(0, 1)P(Y = 1) + LP(0, 0)P(Y = 0)

+ EZ∼PZ
[
((LP(1, 1)− LP(0, 1))η(Z) + (LP(1, 0)− LP(0, 0))(1− η(Z)))1{g(Z)=1}

]
.

Same derivations hold for CP.
Lemma 1 (Bayes rule). Under Assumption 2 a Bayes optimal classifier g∗ can be obtained
for all z ∈ Z as

gλ∗(z) = 1{λ∗B̄P(z)−BP(z)>0} ,

where λ∗ is determined as a root of

λ 7→ EZ∼PZ
[
B̄P(Z)1{λB̄P(Z)−BP(Z)>0}

]
− EZ∼PZ [ĀP(Z)] .

Moreover, for every classifier g we can write

R(g)−R(g∗) = EZ∼PZ
∣∣∣BP(Z)− λ∗B̄P(Z)

∣∣∣1{g(Z)6=g∗(Z)} − λ∗(EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}]) .
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Proof of Lemma 1. To prove this result we demonstrate that the minmax theorem holds in
this case by direct computation. Let us study the minimization problem

(∗) := min
{
R(g) : EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}] = 0

}
.

Using the weak duality argument we can write

(∗) ≥ max
λ∈R

min
g

{
EZ∼PZ

[
AP(Z) +BP(Z)1{g(Z)=1}

]
+ λEZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}]

}
= max

λ∈R
min
g

{
EZ∼PZ

[
(AP(Z) + λĀP(Z)) + (BP(Z)− λB̄P(Z))1{g(Z)=1}

]}
.

For every λ ∈ R we denote by gλ a minimizer of the problem

min
g

{
EZ∼PZ

[
(AP(Z) + λĀP(Z)) + (BP(Z)− λB̄P(Z))1{g(Z)=1}

]}
.

Clearly, for every fixed λ ∈ R a minimizer gλ can be given for all z ∈ Z as

gλ(z) = 1{BP(z)−λB̄P(z)<0} .

Note that this choice of gλ minimizes the expression under the expectation point-wise and
the measurability of both BP(z), B̄P(z) ensures that this choice is measurable, that is, gλ is
a classifier. Therefore, we can write

(∗) ≥ max
λ∈R

{
EZ∼PZ [AP(Z) + λĀP(Z)]− EZ∼PZ (λB̄P(Z)−BP(Z))+

}
= −min

λ∈R

{
EZ∼PZ (λB̄P(Z)−BP(Z))+ − EZ∼PZ [AP(Z) + λĀP(Z)]

}
.

It is important to observe that the mapping

λ 7→ EZ∼PZ (λB̄P(Z)−BP(Z))+ − EZ∼PZ [AP(Z) + λĀP(Z)] ,

is convex. Indeed, the function λB̄P(z) − BP(z) is affine in λ for every z ∈ Z and hence is
convex in λ for every z ∈ Z. Moreover, (λB̄P(z)−BP(z))+ is convex as a maximum between
two convex functions for every z ∈ Z, besides, EZ∼PZ (λB̄P(Z) − BP(Z))+ is convex as the
convexity is closed under weighted addition. Finally, −EZ∼PZ [AP(Z) + λĀP(Z)] is affine in
λ, thus we established the convexity of the objective. Therefore, we can write necessary and
sufficient conditions for the optimality in λ for non-differentiable functions

0 ∈ ∂λ
(
EZ∼PZ (λB̄P(Z)−BP(Z))+ − EZ∼PZ [AP(Z) + λĀP(Z)]

)
.

0 ∈ ∂λ
(
EZ∼PZ (λB̄P(Z)−BP(Z))+

)
− EZ∼PZ [ĀP(Z)] .

Under Assumption 2 and using the dominant convergence theorem we have at the optimum
λ∗ we have

0 = EZ∼PZ
[
B̄P(Z)1{λ∗B̄P(Z)−BP(Z)>0}

]
− EZ∼PZ [ĀP(Z)] .

Let us denote by gλ∗ a classifier given for all z ∈ Z by

gλ∗(z) = 1{λ∗B̄P(z)−BP(z)>0} .
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Note that by the definition of λ∗ we have

EZ∼PZ
[
B̄P(Z)1{gλ∗ (Z)=1}

]
− EZ∼PZ [ĀP(Z)] = 0 , (6.1)

thus this classifier gλ∗ satisfies the desired constraints, which means that

R(gλ∗) ≥ (∗) ≥ max
λ∈R

min
g

{
EZ∼PZ

[
(AP(Z) + λĀP(Z)) + (BP(Z)− λB̄P(Z))1{g(Z)=1}

]}
= EZ∼PZ

[
(AP(Z) +BP(Z)1{gλ∗ (Z)=1)}) + λ∗(ĀP(Z)− B̄P(Z)1{gλ∗ (Z)=1)}

]
= EZ∼PZ

[
AP(Z) +BP(Z)1{gλ∗ (Z)=1)}

]
= R(gλ∗) ,

where the last equality is due to the definition of the risk and the one before is thanks
Eq. (6.1). All this implies that

R(gλ∗) = min
{
R(g) : EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}] = 0

}
,

thus,

gλ∗ ∈ arg min
{
R(g) : EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}] = 0

}
.

Now, let us derive the excess risk for any classifier g satisfying the constraints in Equa-
tion (1.11). Fix an arbitrary classifier g satisfying the constraints in Equation (1.11), clearly
since EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}] = 0 we have

R(g)−R(g∗) = EZ∼PZ
[
BP(Z)1{g(Z)=1} −BP(Z)1{g∗(Z)=1}

]
= EZ∼PZ

[
BP(Z)1{g(Z)=1} −BP(Z)1{g∗(Z)=1}

]
+ λ∗(EZ∼PZ [ĀP(Z)− B̄P(Z)1{g(Z)=1}])− λ∗(EZ∼PZ [ĀP(Z)− B̄P(Z)1{g∗(Z)=1}])

= EZ∼PZ
[
(BP(Z)− λ∗B̄P(Z))1{g(Z)=1} − (BP(Z)− λ∗B̄P(Z))1{g∗(Z)=1}

]
= EZ∼PZ

∣∣∣BP(Z)− λ∗B̄P(Z)
∣∣∣1{g(Z) 6=g∗(Z)} ,

where the last equality holds thanks to the form of the Bayes optimal classifier g∗.

Some technical results

Let us first introduce the notion of Kullback–Leibler divergence of two probability measures.

Definition 8. Given any two probability measures P1,P2 on some space measurable space
(X ,A) the Kullback–Leibler divergence between P1 and P2 is defined as

KL(P1,P2) :=

∫
X log

(
dP1
dP2

)
dP1, supp(P1) ⊂ supp(P2)

+∞, otherwise
, (2.7)

The next result is used in the context of the F-score and in the context of confidence
set classification. It typically allows to fix the size of the hypothesis set when proving lower
bounds and describes how reach the Hamming hypercube is.

Lemma 6. Let δ(σ, σ′) denote the Hamming distance between σ, σ′ ∈ {−1, 1}m given by

δ(σ, σ′) :=
m∑
i=1

1{σi 6=σ′i} .
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There exists W ⊂ {−1, 1}m such that for all σ 6= σ′ ∈ W we have

δ(σ, σ′) ≥ m

4 ,

and log |W| ≥ m
8 .

The next lemma is a version of Fano’s inequality derived by Birgé [2005], it is often used
to derive lower bounds for a variety of statistical problems.

Lemma 5. Let {Pi}mi=0 be a finite family of probability measures on (X ,A) and let {Ai}mi=0
be a finite family of disjoint events such that Ai ∈ A for each i = 0, . . . ,m. Then,

min
i∈{0,1,...,m}

Pi(Ai) ≤
(

0.71
∨ 1

m

∑m
i=1 KL(Pi,P0)

log(m+ 1)

)
.

The next two theorems became classical tools in the theory of empirical processes. In the
context of the present manuscript, these results are used in Section 2.2 when we discuss the
setup of fair binary classification.

Theorem 19 (Symmetrization (see also Theorem 2.1 in [Koltchinskii, 2011])). Let Z1, . . . , Zn
be i.i.d. copies of a real valued random variable Z ∼ P and F = {f : R→ R} be a class of
P-integrable functions. Denote by ε1, . . . , εn i.i.d. Rademacher variables independent from
Z,Z1, . . . , Zn, that is, for each i ∈ [n] we have P(ε = −1) = P(ε = +1) = 1/2, then

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− E[f(Z)]
∣∣∣∣∣ ≤ 2E sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Zi)
∣∣∣∣∣ ,

where on the left hand side the expectation is take w.r.t. the distribution of Z1, . . . , Zn and
on the right hand side w.r.t. the distribution of Z1, . . . , Zn, ε1, . . . , εn.

Theorem 20 (Contraction theorem (see also Theorem 2.2 in [Koltchinskii, 2011])). Let
T ⊂ Rn and let ϕi : R→ R for i ∈ [n] be functions satisfying ϕi(0) = 0 and

|ϕi(u)− ϕi(v)| ≤ |u− v| for all u, v ∈ R ,

that is, each ϕi is a contraction. Denote by ε1, . . . , εn i.i.d. Rademacher variables, then we
have

E sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

εiϕi(ti)
∣∣∣∣∣ ≤ E sup

t∈T

∣∣∣∣∣ 1n
n∑
i=1

εiti

∣∣∣∣∣ ,
where for all i ∈ [n] we denote by ti the ith coordinate of the vector t ∈ T and the expectation
is taken w.r.t. the Rademacher variables ε1, . . . , εn.
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Title: Méthodes de type plug-in en classification.
Key words: classification contrainte, classification supervisée, classification semi-
supervisée, classification par plug-in, ensembles de confiance, F-score, analyse minimax,
classification équitable, classification multi-label.
Abstract. Ce manuscrit étudie plusieurs problèmes de classification sous contraintes. Dans
ce cadre de classification, notre objectif est de construire un algorithme qui a des perfor-
mances aussi bonnes que la meilleure règle de classification ayant une propriété souhaitée.
Fait intéressant, les méthodes de classification de type plug-in sont bien appropriées à cet
effet. De plus, il est montré que, dans plusieurs configurations, ces règles de classification
peuvent exploiter des données non étiquetées, c’est-à-dire qu’elles sont construites de manière
semi-supervisée.
Le Chapitre 2 décrit deux cas particuliers de la classification binaire - la classification où
la mesure de performance est reliée au F-score, et la classification équitable. A ces deux
problèmes, des procédures semi-supervisées sont proposées. En particulier, dans le cas du
F-score, il s’avère que cette méthode est optimale au sens minimax sur une classe usuelle de
distributions non-paramétriques. Aussi, dans le cas de la classification équitable, la méthode
proposée est consistante en terme de risque de classification, tout en satisfaisant asympto-
tiquement la contrainte dégalité des chances. De plus, la procédure proposée dans ce cadre
d’étude surpasse en pratique les algorithmes de pointe.
Le Chapitre 3 décrit le cadre de la classification multi-classes par le biais d’ensembles de
confiance. Là encore, une procédure semi-supervisée est proposée et son optimalité presque
minimax est établie. Il est en outre établi qu’aucun algorithme supervisé ne peut atteindre
une vitesse de convergence dite rapide.
Le Chapitre 4 décrit un cas de classification multi-labels dans lequel on cherche à minimiser
le taux de faux-négatifs sous réserve de contraintes de type presque sûres sur les règles de
classification. Dans cette partie, deux contraintes spécifiques sont prises en compte : les
classifieurs parcimonieux et ceux soumis à un contrôle des erreurs négatives à tort. Pour
les premiers, un algorithme supervisé est fourni et il est montré que cet algorithme peut
atteindre une vitesse de convergence rapide. Enfin, pour la seconde famille, il est montré
que des hypothèses supplémentaires sont nécessaires pour obtenir des garanties théoriques
sur le risque de classification.



Title: Plug-in methods in classification.
Key words: constrained classification, supervised classification, semi-supervised classifica-
tion, plug-in classifiers, confidence sets, F-score, minimax analysis, fairness in classification,
multi-label classification.
Abstract. This manuscript studies several problems of constrained classification. In this
frameworks of classification our goal is to construct an algorithm which performs as good as
the best classifier that obeys some desired property. Plug-in type classifiers are well suited
to achieve this goal. Interestingly, it is shown that in several setups these classifiers can
leverage unlabeled data, that is, they are constructed in a semi-supervised manner.
Chapter 2 describes two particular settings of binary classification – classification with F-
score and classification of equal opportunity. For both problems semi-supervised procedures
are proposed and their theoretical properties are established. In the case of the F-score, the
proposed procedure is shown to be optimal in minimax sense over a standard non-parametric
class of distributions. In the case of the classification of equal opportunity the proposed
algorithm is shown to be consistent in terms of the misclassification risk and its asymptotic
fairness is established. Moreover, for this problem, the proposed procedure outperforms
state-of-the-art algorithms in the field.
Chapter 3 describes the setup of confidence set multi-class classification. Again, a semi-
supervised procedure is proposed and its nearly minimax optimality is established. It is
additionally shown that no supervised algorithm can achieve a so-called fast rate of conver-
gence. In contrast, the proposed semi-supervised procedure can achieve fast rates provided
that the size of the unlabeled data is sufficiently large.
Chapter 4 describes a setup of multi-label classification where one aims at minimizing false
negative error subject to almost sure type constraints. In this part two specific constraints
are considered – sparse predictions and predictions with the control over false negative errors.
For the former, a supervised algorithm is provided and it is shown that this algorithm can
achieve fast rates of convergence. For the later, it is shown that extra assumptions are
necessary in order to obtain theoretical guarantees in this case.
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