N

N

Interactive mapping specification and repairing in the
presence of policy views

Ugo Comignani

» To cite this version:

Ugo Comignani. Interactive mapping specification and repairing in the presence of policy views.
Databases [cs.DB]. Université de Lyon, 2019. English. NNT': 2019LYSE1127 . tel-02400646

HAL Id: tel-02400646
https://theses.hal.science/tel-02400646
Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-02400646
https://hal.archives-ouvertes.fr

UNIVERSITE
LYON

Gt

N° d’ordre NNT : 2019LYSE1127

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de
I’Université Claude Bernard Lyon 1

Ecole Doctorale 512
Ecole Doctorale en Informatique et Mathématiques de Lyon

Spécialité de doctorat :
Informatique

Soutenue publiquement le 19/09/2019, par :
Ugo Comignani

Interactive mapping specification and
repairing in the presence of policy views

Devant le jury composé de :

PICHLER, Reinhard Professeur, Technische Universitat Wien Rapporteur
SENELLART, Pierre Professeur, Ecole normale supérieure Rapporteur
BERTI—EQUILLE, Laure Directrice de recherche, Aix-Marseille Université Examinatrice
MUGNIER, Marie-Laure Professeure, Université de Montpellier Examinatrice
KHEDDOUCI, Hamamache Professeur, Université, Lyon 1 Examinateur
BONIFATI, Angela Professeure, Université Lyon 1 Directrice de these
COQUERY, Emmanuel Maitre de conférence, Université Lyon 1 Co-directeur de these

THION, Romuald Maitre de conférence, Université Lyon 1 Co-directeur de these

Abstract

Data exchange between sources over heterogeneous schemas is an ever-growing
field of study with the increased availability of data, oftentimes available in
open access, and the pooling of such data for data mining or learning purposes.
However, the description of the data exchange process from a source to a target
instance defined over a different schema is a cumbersome task, even for users
acquainted with data exchange.

In this thesis, we address the problem of allowing a non-expert user to spec-
ify a source-to-target mapping, and the problem of ensuring that the specified
mapping does not leak information forbidden by the security policies defined
over the source. To do so, we first provide an interactive process in which users
provide small examples of their data, and answer simple boolean questions in
order to specify their intended mapping. Then, we provide another process to
rewrite this mapping in order to ensure its safety with respect to the source
policy views.

As such, the first main contribution of this thesis is to provide a formal
definition of the problem of interactive mapping specification, as well as a
formal resolution process for which desirable properties are proved. Then,
based on this formal resolution process, practical algorithms are provided.
The approach behind these algorithms aims at reducing the number of boolean
questions users have to answers by making use of quasi-lattice structures to
order the set of possible mappings to explore, allowing an efficient pruning of
the space of explored mappings. In order to improve this pruning, an extension
of this approach to the use of integrity constraints is also provided. The second
main contribution is a repairing process allowing to ensure that a mapping is
“safe” with respect to a set of policy views defined on its source schema, i.e.,
that it does not leak sensitive information. A privacy-preservation protocol is
provided to visualize the information leaks of a mapping, as well as a process
to rewrite an input mapping into a safe one with respect to a set of policy
views. As in the first contribution, this process comes with proofs of desirable
properties. In order to reduce the number of interactions needed with the
user, the interactive part of the repairing process is also enriched with the

possibility of learning which rewriting is preferred by users, in order to obtain
a completely automatic process.

Last but not least, we present extensive experiments over the open source
prototypes built from two contributions of this thesis.

Résumé

La migration de données entre des sources aux schémas hétérogenes est un
domaine en pleine croissance avec I’augmentation de la quantité de données en
acces libre, et le regroupement des données a des fins d’apprentissage automa-
tisé et de fouilles. Cependant, la description du processus de transformation
des données d’une instance source vers une instance définie sur un schéma
différent est un processus complexe méme pour un utilisateur expert dans ce
domaine.

Cette these aborde le probleme de la définition de mapping par un util-
isateur non expert dans le domaine de la migration de données, ainsi que la
vérification du respect par ce mapping des contraintes d’acces ayant été définies
sur les données sources. Pour cela, dans un premier temps nous proposons un
systeme dans lequel 'utilisateur fournit un ensemble de petits exemples de ses
données, et est amené a répondre a des questions booléennes simples afin de
générer un mapping correspondant a ses besoins. Dans un second temps, nous
proposons un systeme permettant de réécrire le mapping produit de maniere
a assurer qu’il respecte un ensemble de vues de controle d’acces définis sur le
schéma source du mapping.

Plus précisément, le premier grand axe de cette these est la formalisation
du probleme de la définition interactive de mappings, ainsi que la descrip-
tion d’un cadre formel pour la résolution de celui-ci. Cette approche formelle
pour la résolution du probleme de définition interactive de mappings est ac-
compagnée de preuves de bonnes propriétés. A la suite de cela, basés sur
le cadre formel défini précédemment, nous proposons des algorithmes per-
mettant de résoudre efficacement ce probleme en pratique. Ces algorithmes
visent a réduire le nombre de questions auxquelles 1'utilisateur doit répondre
afin d’obtenir un mapping correspondant a ces besoins. Pour cela, les map-
pings possibles sont ordonnés dans des structures de treillis imbriqués, afin de
permettre un élagage efficace de I'espace des mappings a explorer. Nous pro-
posons également une extension de cette approche a 1'utilisation de contraintes
d’intégrité afin d’améliorer 'efficacité de 1'élagage.

Le second axe majeur vise a proposer un processus de réécriture de mapping
qui, étant donné un ensemble de vues de controle d’acces de référence, permet

d’assurer que le mapping réécrit ne laisse ’acces a aucune information n’étant
pas accessible via les vues de controle d’acces. Pour cela, nous définissons
un protocole de controle d’acces permettant de visualiser les informations ac-
cessibles ou non a travers un ensemble de vues de controle d’acces. Ensuite,
nous décrivons un ensemble d’algorithmes permettant la réécriture d’un map-
ping en un mapping sur vis-a-vis d'un ensemble de vues de controle d’acces.
Comme précédemment, cette approche est complétée de preuves de bonnes pro-
priétés. Afin de réduire le nombre d’interactions nécessaires avec 'utilisateur
lors de la réécriture d’'un mapping, une approche permettant I'apprentissage
des préférences de l'utilisateur est proposée, cela afin de permettre le choix
entre un processus interactif ou automatique.

L’ensemble des algorithmes décrit dans cette these ont fait I'objet d'un
prototypage et les expériences réalisées sur ceux-ci sont présentées dans cette
these.

Acknowledgements

I want to express my deepest thank to my thesis advisor, Professor Angela
Bonifati. Her patience, support and thoughtful guidance have been invaluable
all along my Ph.D study. I couldn’t have expected a better mentor to grow as
a research scientist.

I thank my co-advisors, Doctor Emmanuel Coquery and Doctor Romuald
Thion, for their support and advice during these three years.

I also thank Doctor Efthymia Tsamoura for our collaboration, for all her
advice and to have allowed me to come to Oxford for an enlightening research
stay.

I would also thank Professor Reinhard Pichler and Professor Pierre Senel-
lart for accepting to be my thesis referees, and Professor Laure Berti—Equille,
Professor Marie-Laure Mugnier and Professor Hamamache Kheddouci for ac-
cepting to be my thesis examiners.

I thank my parents and friends for their constant support during these
three years.

Finally, I want to thank my spouse Charlotte Turpin for her love, her
indefectible support and the countless sacrifices she has made to help me get
to this point.

Contents

Abstract 3
Résumé 5
Acknowledgements 7
Introduction 13
1 The Interactive Mapping Specification problem 19
1.1 Basic Notions 19
1.2 Formal definitionso 28
1.2.1 Exemplar tuples.o 28
1.2.2 Interactive Mapping Specification 32
1.3 Guarantees of the process 35
1.3.1 Correctness 35
1.3.2 Convergence to a unique mapping 38

1.3.3 Completeness in the presence of fully informative exem-
plar tuples sets 39
1.3.4 Cardinality of the set of candidates M qngidates - - - - - - 43
1.4 Related Work 44
1.4.1 Design and refinement of mappings. 44

1.4.2 Theoretical limitations in the use of data examples to
characterise a mapping 46
1.4.3 Learning mappings 46
1.4.4 Learning queries 48
1.5 Conclusion 48

2 A practical framework for Interactive Mapping Specification 51

2.1 Basic Notions o1
2.2 Overview of the process and running example 53
2.3 Atom refinement step 59

2.3.1 Partition of ¢-equivalent tgds 60

2.3.2 Quasi-lattice of atom conjunctions. 61

2.3.3 Exploring the quasi-lattice 65

2.3.4 Questioning about atoms set validity 68

2.3.5 Formal guarantees of the atom refinement algorithm . . . 69
2.3.6 Complexity of the quasi-lattice exploration in terms of

the number of asked questions 72

2.4 Join refinement stepo oL 72

2.4.1 Join partitions oL 73

2.4.2 Join refinement algorithm 7

2.4.3 Formal guarantees 81
2.4.4 Complexity of the quasi-lattice exploration in terms of

the number of asked questions 82

2.5 Output mapping properties 84

2.6 Introducing integrity constraints in the process 85

2.6.1 Applicable integrity constraints 86

2.6.2 Using source foreign keys L. 86

2.6.3 Using target primary keys 92

2.7 Conclusion 93

Mapping under policy views 95

3.1 Basicnotions 96

3.2 Problem overview and running example 100

3.3 Privacy preservation oo 104

3.3.1 A formal privacy-preservation protocol 104

3.3.2 Preserving the privacy of policy views 113

3.4 Repairing mappings oo 117

3.4.1 Computing partially safe mappings 118

3.4.2 Computing safe mappings 127

3.5 Learning user preferences 137

3.6 Related work 139

3.7 Conclusion 141

Experimental assessment 143

4.1 Efficiency of the interactive specification process 143

4.1.1 Experimental setting 144
4.1.2 Number of questions asked during the process and ben-

efit of using quasi-lattices 146

4.1.3 Benefit of (non-universal) exemplar tuples 155

4.1.4 Relative benefit of interactivity 157

4.2 Efficiency of the repairing process 159

10

CONTENTS

4.2.1 Experimental setting 159

4.2.2 Running time of repair 160

4.2.3 Time breakdown between frepair and srepair 162

4.2.4 Evaluating learning accuracy and efficiency 163

4.3 Conclusion 165
Conclusions 167
Bibliography 169

11

12

Introduction

The problem of data exchange is the problem of moving data from an in-
stance under a source schema into another instance defined under a different
target schema. This problem is an ever-growing field of study (Mottin et al.
[MLVP17], Kolaitis et al. [Koll8], Paton [Pat19]) particularly in recent years
with the increasing availability of large amount of data defined over hetero-
geneous schemas, and the development of large scale analytics dedicated to
explore such high amount of information. Data exchange finds applications
in various domains such as business applications, for example the aggregation
of multiple customer databases after companies merges and acquisitions, or in
the field of healthcare data with, for example, the regrouping of the isolated
information from multiple hospitals into large databases shared between health
professionals.

The modalities of exchange of the data are usually described through a so-
called schema mapping from the source schema to the target schema, taking
the form of first-order logical formulas. However, while the specification of
such a mapping is a cumbersome task for data curation specialists, it becomes
unfeasible for non-expert users, who are unacquainted with the semantics and
languages of the involved transformations.

In this thesis, we address the problem of mapping specification by non-
expert users. To this extent, we propose the framework illustrated in Figure 1
which focuses on the resolution of two problems induced by the specification
of schema mappings by non-expert users:

(i) the specification of a mapping by using a few simple exemplar tuples
to infer the underlying set of tuple-generating dependencies; and iterat-
ing the inference process via simple user interactions under the form of
boolean queries on the validity of the initial exemplar tuples;

(i) the rewriting of specified mappings with respect to sets of reference policy
views in order to prevent any undesired information leakage. In other
words, we want to rewrite mappings such that they only expose the
information that is safe to expose over all instances of the source schema.

13

14 Introduction

Input: Input:
set of input pairs policy views

(Eg, ET). .. (E§, EY)

Pre-processing

/ Question
&

Answer:
Yes or No

Specification

Question

o
P~
\

Answer:
Yes or No

My Y

Reparation

M final

|

Output:
refined and
repaired mapping
Mfinal

Figure 1: Interactive mapping specification and repairing process.

Introduction

In order to solve the first problem, we present a quasi-lattice based explo-
ration of the space of all possible mappings that satisfy arbitrary user exemplar
tuples. As illustrated in Figure 1, the specification part of our approach uses
three steps:

— the first pre-processing step extracts and normalizes M., Which is the
most specific mapping valid with respect to the input exemplar tuples;

— the second step explores the possibly valid atom conjunctions in the
tuple-generating dependencies in M,,,,,,, in order to produce a partially
refined mapping M ger;

— the third step explores the possibly valid joins between variable occur-
rences in the tuple-generating dependencies in Mg in order to obtain
the final refined mapping M,.s.

Along the exploration, we challenge users to retain the mappings that fit their
requirements best and to dynamically prune the exploration space, thus re-
ducing the number of interactions needed with users. We prove that after the
refinement process, the obtained mappings are correct. We also formally define
the notion of fully informative exemplar tuples sets, which are sets of exemplar
tuples exemplifying every dependency expected in the output mapping. Then
we prove the completeness of the refinement process if such fully informative
exemplar tuples sets are provided as input of our framework. Additionally, we
provide the worst-case complexity of our framework in terms of the maximal
number of interactions with the users. We present an extensive experimen-
tal analysis devoted to measuring the feasibility of our interactive mapping
specification strategies and the inherent quality of the obtained mappings.

In order to solve the second problem, we propose a protocol that provides
formal privacy guarantees and is data-independent, i.e., if certain criteria are
met, then the protocol guarantees that the mappings leak no sensitive infor-
mation independently of the data that lies in the source. We also propose
an algorithm for repairing the input mapping M,.; with respect to a set of
policy views V), in cases where the input mapping leaks sensitive information.
Finally, we present an extensive experimental analysis devoted to measuring
the efficiency of our repairing process in various settings, as well as an evalua-
tion of a learning approach used to simulate the user’s preferences during the
interactive part of our repairing process.

15

Outline

The outline of this thesis is as follows:

Chapter 1 presents the interactive mapping specification problem from a
formal point of view. First, we propose a framework to solve this problem as
well as the definition of a data example allowing to obtain an output mapping
logically equivalent to an expected mapping. Then, we provide proofs of good
properties of our framework, including its completeness and correctness.

Chapter 2 presents a practical framework to solve the interactive mapping
specification problem formalized in the preceding chapter. At first, we provide
a detailed description of the steps of the practical framework presented in this
chapter, as well as proofs of good properties of the mapping output. Next, we
show how the introduction of integrity constraints in the IMS problem allows
to solve this problem more efficiently, i.e., to reduce the number of candidates
mappings to explore.

Chapter 3 presents a privacy-aware variant of the data exchange problem.
In this setting, the source comes with a set of constraints, representing the data
that is safe to expose to the target over all instances of the source. Under
these assumptions, we provide a definition of the safety of mapping under our
privacy restrictions and a way to assess a mapping safety with respect to the
privacy restrictions defined over its source schema. Then, in case of privacy
violations, we provide repairing methods allowing to rewrite an input mapping
in a mapping which is safe with respect to the privacy restrictions.

Chapter 4 presents the experimental study conducted to assess the effi-
ciency of the approaches developed in the previous chapters. These experi-
mentations use the two implemented prototypes MapSpec and MapRepair.

Finally, we conclude our work by presenting possible directions of future
research.

Publications

The work carried out in this thesis has been published in the following venues:

— Chapter 1 (The Interactive Mapping Specification problem) is based on
our article published in the ACM Transactions on Database Systems
journal [BCCT19].

— Chapter 2 (A practical framework for Interactive Mapping Specifica-
tion) is based on our full paper in the proceedings of the ACM SIG-
MOD’17 Conference [BCCT17] and its journal version published in the
ACM Transactions on Database Systems journal [BCCT19].

16

Introduction

— Chapter 3 (Mapping under policy views) is based on our demo pa-
per presented in the proceedings of the ACM SIGMOD’19 Conference
[BCT19a|, and an article currently under submission and available on
the arXiv repository [BCT19b].

— Chapter 4 (Ezperimental assessment) is based on the prototypes and
experiments presented in the previously enumerated papers [BCCT17,
BCCT19, BCT19a, BCT19b].

17

18

Chapter 1

The Interactive Mapping
Specification problem

In this chapter, we describe the interactive mapping specification problem from
a formal viewpoint. First, we propose a framework to solve this problem as
well as the definition of a class of ezemplar tuples allowing to obtain an out-
put mapping logically equivalent to an expected mapping. Then, we provide
proofs of good properties of our framework, including its completeness and
correctness.

Chapter organization In Section 1.1, we introduce some basic notions on
data exchange. In Section 1.2, we define the Interactive Mapping Specification
problem (IMS), and we propose a formal model targeting its resolution. In
Section 1.3, we provide proofs of the good properties of our formal model. In
Section 1.4, we discuss related work on mapping specification.

1.1 Basic Notions

In this section, we give some basic notions from the database literature (Abite-
boul et al. [AHV95]) and more specifically from the data exchange literature
(Fagin et al. [FKMPO5], Kolaitis et al. [Kol05], Arenas et al. [ABLM14]), as
well as notations that will be used in the following sections.

Tuple-generating dependencies To formally define a tuple-generating de-
pendency, we first recall some basic definitions in the relational model (Codd
[Cod70]). In this model, a schema S is a nonempty finite set of relation
symbols {Ry,..., R,} with each R; having an arity n, > 0. For the sake
of readability, to each n-ary relation symbol R, we associate a set of attributes

19

Chapter 1

{Attry, ..., Attr,} of cardinality n. We use the notation R(Attr,..., Attr,)
to denote a relation symbol and its corresponding set of attributes. We also
recall that a relational atom R(tq,...,t,) is an atomic formula where R is an
n-ary relation symbol and {t;;...;t,} are terms (i.e., constants, variables or
labelled nulls). In the following, a relational atom will be simply called an
atom whenever it is clear from the context.

A tuple-generating dependency (tgd for short) is an embedded dependency
(Fagin [Fag80]) in which the right and left-hand sides are conjunctions of re-
lational atoms. This is formally defined as follows:

DEFINITION 1.1 (Tuple-generating dependency).

Let S and T be two schemas.

Then a tuple-generating dependency from S to T is a first-order logical for-
mula of the form:

VT, ¢(T) — T, ¥(T,7)
such that :

— T and ¥y are vectors of variables;
— ¢ is a conjunction of relational atoms over relation symbols in S;
— 1 is a conjunction of relational atoms over relation symbols in T.

In this thesis, we focus on a particular class of tuple-generating dependen-
cies, the source-to-target tuple-generating dependencies (s-t tgds for short), in
which schemas S and T are disjoint schemas.

Given a tgd, we define the notions of connected atoms and connected com-
ponents as follows:

DEFINITION 1.2 (Connected atoms).

Let 0 :VZ,(T) — Jy,¥(T,7) be a tgd.

Two atoms ay,as € ¥(T,y) are connected if they have at least one variable
from 3 in common.

DEFINITION 1.3 (Connected components).

Let 0 : VT, ¢(T) — Jy, ¥ (T,7) be a tgd.

Let atoms(¢(Z, 7)) be the set of atoms in the conjunction (T,7).

Then a connected component of o is a set of atoms € C atoms((Z,7)) such
that:

— the connections between atoms in £ form a path between every pair of
atoms in E;

20

The Interactive Mapping Specification problem

— there is no atom a € Y(T,y) such that a € € and a is connected to an
atom in E.

The two previous notions are illustrated in the following example:

Ezxample 1.1. Given a tgd o : S(z,y) — 32,T(z,2) ANU(z,y) A V(x), the two
connected components of its right-hand side are: {T'(z, 2);U(z y)} as these two
atoms are connected by the existential variable z, and the second connected
component {V (x)} containing only V(z) due to the fact that this atom is not
connected with another atom.

Schema mappings A (schema) mapping (Popa et al. [PVHT02], Barcelo
[Bar09], Fagin et al. [FKMPO5], Bonifati et al. [BMPV11]) between two
databases schemas is a specification of relations between these two schemas.
The specification of such mappings is at the core of the resolution of data
exchange and data integration problems. While the relation described by a
schema mapping can be defined with diverse logical formalisms, here we focus
on mappings containing only source-to-target tgds.

Thus, the schema mappings used in this thesis are formally described as
follows:

DEFINITION 1.4 (Schema mapping).

Let S be a source schema.

Let T be a target schema.

Let 3 be a set of s-t tgds from S to T.

Then a schema mapping from S to T is a triple M = (S, T, Y).

It should be noted that this triple can be extended to include sets of source
constraints (Xg) and target constraints (X7). However, the interactive speci-
fication of such constraints falls beyond the scope of this thesis.

In the Interactive Mapping Specification problem, we consider the class of
GLAV schema mappings, i.e., Global-Local-As-View schema mappings (first
introduced in Friedman et al. [FLM199]), which is the class of mappings
composed by tgds without limitation in their number of atoms neither in their
left-hand side ¢ nor in their right-hand side .

However, it should be noted that two other classes of schema mappings, the
GAV schema mappings (Chawathe et al. [CGMH7'94], Lenzerini et al. [Len02],
Garcia-Molina et al. [GMUWOS8]) and LAV schema mappings’ (Levy et al.
[LRO96], Lenzerini et al. [Len02], Garcia-Molina et al. [GMUWOS8]), have
been described:

!These two classes are compared in details in Levy [Lev00] and Lenzerini et al. [Len02].

21

Chapter 1

DEFINITION 1.5 (Global-As-View (GAV) schema mapping).
Let M = (S, T,X) be a schema mapping.
M is a Global-As-View schema mapping if for all s-t tgd 0 € ¥, o has the
form:
o VT, 0(T) = U(T)

where U 1s a relation symbol in T.

DEFINITION 1.6 (Local-As-View (LAV) schema mapping).
Let M = (S, T,X) be a schema mapping.
M is a Local-As-View schema mapping if for all s-t tgd o € X, o has the
form:
o vz, U(T) — Jy,v(T,7)

where U s a relation symbol in T.

The tgds contained in the GAV schema mappings and LAV schema map-
pings are called GAV tuple-generating dependencies and LAV tuple-generating
dependencies, respectively.

Solutions and mapping equivalence A solution to a mapping for a given
source instance (i.e., an instance that is not allowed to contain labelled nulls)
is a target instance (i.e., an instance allowed to contain labelled nulls) which
is formally defined as follows:

DEFINITION 1.7 (Solution).

Let M = (S, T,X) be a schema mapping.

Let I be a source instance over the source schema S.

Let J be a target instance over the target schema T.

Then J is a solution for I under M if, and only if, (I, J) satisfies the s-t tgds
in3 (i.e., if (I,J) is a model of 3, denoted by the notation (I,J) | 3).

We also define the notions of logical entailment and logical equivalence
(Chang et al. [CK90]) between mappings as follows:

DEFINITION 1.8 (Logical entailment between two mappings).
Let M = (S, T,%) and M' = (S, T,%¥) be two schema mappings.
Then M logically entails M' if, and only if, for every pair of instances (I, J):

(I,J) E X implies that (I,J) E Y

We denote that a mapping M logically entails a mapping M’ by the no-
tation M = M’. When we compare two mappings, we say that M is more
general than M" if M logically entails M’. Informally, this expresses the fact

22

The Interactive Mapping Specification problem

that on a given instance the tgds in M can be applied more often than the
ones in M’, but never less often.

From the definition of logical entailment of mappings, we derive the defi-
nitions of logical equivalence between two mappings:

DEFINITION 1.9 (Logical equivalence between two mappings).
Let M and M’ be two schema mappings.
Then M and M’ are logically equivalent if, and only if:

MEM and M' =M

In the following, the notation M = M’ denotes the logical equivalence
between two mappings M and M’.

Universal solutions and chase procedure In a data exchange problem,
if the source instance I has a solution under the mapping M, then there might
exists an infinity of solutions to I under M. This is illustrated in the following
example:

Ezample 1.2. Given a mapping M = (S, T,X) such that:
N={S(zy) = 32 T(z.2) NT(zy)}

Given a source instance I = {S(a,b)} over S. Then we can construct an
infinity of solutions J;, including:

Ji ={T(a,b); T(b,b)} Jo ={T(a,a);T(a,b)}
Js ={T(a,n);T(n,b)} Jy ={T(a,n;); T (ny,b); T'(ny,ny)}
Js ={T(a,n;); T'(n4,b); T(a,ny); T'(ny, b) }

It is also worth noting that in our configuration where we consider mappings
consisting of source-to-target tgds only, the source instance always have a
solution (Fagin et al. [FKMPO05]).

In this thesis, we rely on the notion of universal solution as described by
Fagin et al. [FKMPO5]. Such wuniversal solutions are solutions that describe
all other solutions for a source instance under a given mapping. To give a
formal definition of a universal solution, we first need to define the notion of
homomorphism between two instances as follows:

DEFINITION 1.10 (Homomorphism between instances).
Let I and I' be two instances.
Let C and L be two disjoint countably infinite sets of constants and labelled

23

Chapter 1

nulls, respectively.
Let {eq;...;ea} be the set of elements of C U L occurring in 1.
Let {e};...;el} be the set of elements of C U L occurring in I'.

A homomorphism from I to I' is a function h from {ey,... e } to{e};...;el}
such that for any tuple R(ey,...,ey) in I, the tuple R(h(e1),...,h(ey)) is in
I

Such a homomorphism is illustrated in the following example:

Example 1.3. Borrowing instances from Example 1.2, as follows:
Js ={T(a,n);T(n,b)} Jy ={T(a,n;); T(n4,b); T'(ny,ny) }
we can exhibit a homomorphism h : J3 — Jy such that:
h(a) =a h(b) =D h(n) = ny

We can verify that for the tuple T'(a,n) in J3, the tuple T'(h(a), h(n)) =
T(a,ny) belongs to Jy. Analogously, for the tuple T(n,b) in Js, the tuple
T(h(n), (b)) = T(ny,b) belongs to Jy.

Using Definition 1.10, we describe a universal solution for an instance under
a mapping M as a solution having a homomorphism into any other solutions.
More formally:

DEFINITION 1.11 (Universal solution).

Let I and J be two instances.

Let M be a schema mapping.

Then J is a universal solution for I under M if:

~ J is a solution for I under M

— for every instance J' which is a solution for I under M, there exists a
homomorphism h : J — J'

In order to produce such a universal solution as result of a data exchange
problem, we use the chase procedure (Onet [Onel3]). Precisely, we focus on
the oblivious chase procedure (Fagin et al. [FKMPO05], Maier et al. [MMST79]).
As we focus only on tgds in this chapter, this procedure is defined as follows:

DEFINITION 1.12 (Chase procedure over tgds).

Let M = (S, T,X) be a mapping.

Let I be a source instance over S.

Then, to produce an output instance J over T, the chase procedure is ap-
plied by repeatedly applying the following operation until no new tuples are

24

The Interactive Mapping Specification problem

produced (modulo a renaming of the fresh constants): for each tgd ¢(T,y) —
3zZ,0(T,Z) € 3, if there exists a substitution u of T Uy such that all atoms in
o(T,7) can be mapped to tuples in I, then u is extended to a substitution '
by picking a new fresh constant for each variable in Z and finally all atoms of
W(T, Z) instantiated to tuples with p' are added to J.

In the following, we denote by CHASE(X, I) the result of applying the chase
procedure over a set of tgds X and on an instance /. In our setting with
mappings containing only s-t tgds, the chase procedure has been shown to
always terminate (the conditions of the termination have been studied in de-
tails in the works of Fagin et al. [FKMPO5], Fagin [Fag83] and Deutsch et al.
[DT03, DNROS]).

In this chapter, we will also make use of the chase procedure to test the
logical implication of mappings. To this extent, we use the left-hand side and
right-hand side of tgds as instances, and use the following property:

THEOREM 1.1 (Logical implication test with the chase procedure, Maier et
al. [MMST79]).

Let M = (S, T,%) and M' = (S, T,Y) be two schema mappings.

Then M = M if, and only if:

V(o' : por — Vo) € X 1hyr C CHASE(D, ¢y)

This theorem will find its use in the proof we provide about the desirable
properties of our approach.

Normalization of mappings In order to define a normal form of a map-
ping, we borrow two notions from Gottlob et al. [GPS11]: the split-reduction
and the o-redundancy suppression.

The split-reduction focuses on breaking an initial tgd into a logically equiv-
alent set of tgds such that there is no overlapping over existentially quantified
variables. We formally define the split-reduction as follows:

DEFINITION 1.13 (split-reduction).
Let o : ¢(T) — Ty, (T, 7) be a tgd.
Then o is split-reduced if there is no pair of tgds:

o1 ¢1(T) = Yy, 01 (T, 7,) and o3 1 G2(T) — Ty, (T, 7s)

such that oy # o9 and {0} ={01;02}.
A mapping M = (S, T,X) is split-reduced if, for all tgd o € X2, o is split-
reduced.

25

Chapter 1

According to Gottlob et al. [GPS11], given a mapping M, it is always
possible to find a split-reduced mapping M’ that is equivalent to M.
The split-reduction is illustrated in the following example:

Ezxample 1.4. We consider a tgd:
o:S(z,y) = 32, T(x,2) NU(z,y) ANV (z)

The split-reduction of o will lead to separate its connected components into
the tgds:

o1:5(z,y) = 32, T(x,2) NU(z,y) and o9 :S(z,y) = V()

It should be noticed that we have the logical equivalence {o}={01;02}, and
that the joins between occurrences of the existential variable z have not been
broken by the split-reduction.

The second normalization rule, the o-redundancy suppression, works at
eliminating the o-redundancy in the mappings. The notion of o-redundancy is
defined as follows:

DEFINITION 1.14 (o-redundancy).
Let M = (S, T, %) be a schema mapping and o € ¥ a tgd.
Then M is o-redundant, with respect to logical equivalence, if and only if

Y\ {o}=X.

In order to check if a tgd o € ¥ is o-redundant with other tgds in 3, we can
rely on the chase procedure as a proof procedure for the implication problem
by checking whether ¥\ {o} = ¢ (Theorem 1.1 on page 25).

In the following, a mapping will be said in normal form if it is both split-
reduced and does not contain any o-redundant tgds.

We do not borrow the other normalization rules from Gottlob et al. [GPS11],
the core computation, as it would not lead to improvement of our approach
and comes with a non-negligible cost. Indeed, Gottlob et al. [GPS11] show in
their paper that if we let o denote the maximum arity of the relation symbols
in the source and target schemas, and if we let b denote the maximum number
of atoms in the tgds to normalize, then the cost of an application of a core
rule is O(ab®). For the sake of comparison, the cost of an application of the
split-reduction rule is O(ab?).

Canonical mappings In order to specify a mapping from a set of pairs of in-
stances, our approach relies on producing the most specific mapping from these
pairs, and then refine this over-constrained mapping into a less constrained one
that better corresponds to users’ needs. Tho this extent, we borrow the notion

26

The Interactive Mapping Specification problem

of canonical mapping from Alexe et al. [AtCKT11al, such a mapping being
the most specific mapping for a set of pairs of instances.

To formally define such a canonical mapping, we need to be able to switch
between the tuples used in the instances and the atoms of the canonical map-
ping’s tgds. To this extent, we first define a bijection # from constants to
variables:

DEFINITION 1.15 (Bijection 6).

Let C and V be two disjoint countably infinite sets of constants and variables,
respectively.

Then we define a bijection 6 : C — V from constants to variables.

Then, we extend this bijection to the following bijection § from tuples to
atoms:

DEFINITION 1.16 (bijection).
Let R(cy,...,c,) over R be a tuple.
Then:

O(R(c1,-..,¢cn)) = R(6(c1),...,0(cpn))

This bijection naturally extends to a bijection from a set of tuples to a
conjunction of atoms.

From the bijection 6, we define the notion of canonical tgd for a pair of
instances as follows:

DEFINITION 1.17 (canonical tgd).

Let (I,J) be a pair of instances.)
Then a canonical tgd for (I,J) is a tgd ¢ — 1 such that ¢ = 0(I) and
v =0(J).

A canonical tgd for a pair of instances is illustrated in the following example:

Ezxample 1.5. Given a source instance I = {R(a,b);S(b,c)} and a target in-
stance J = {T(a,d); U(d,e)}, the following tgd is a canonical tgd for the pair
(1,J):

R(a,b) A S(b,¢) — 3d, e, T(a,d) AN U(d, e)

Finally, we define a canonical mapping for a set of pairs of instances:

DEFINITION 1.18 (canonical mapping).

Let S = {(L,J1);...;(In, Jn)} be a set of pairs of instances such that each
instance I; is defined over S and each instance J; is defined over T.

Then a canonical mapping M., = (S, T, Yeen) for S is a mapping such that:

Sean ={0(1) = 0(J) | (1,7) € S}

27

Chapter 1

For the sake of illustration, we give the following example of a canonical
mapping:
Example 1.6. Given a set of pairs of instances S containing the two following
pairs of instances:

(i, J1) = ({R(a,b); S(b, ¢)}, {T'(a,d); U(d, e)})
(L2, 2) = ({V(a,0)},{T(a, c)})

then the mapping M = (S, T,X) such that:
Y ={R(a,b) NS(b,c) — 3d, e, T(a,d) N U(d,e), V(a,b)— e, T(a,c)}

s a canonical mapping for S.

In the next section, we provide a formal definition of the Interactive Map-
ping Specification problem as well as a model for its resolution.

1.2 Formal definitions

In this section we give a formal definition of the Interactive Mapping Specifi-
cation problem (IMS), and we provide a model for its resolution. In order to
be able to formally define the IMS problem, we will first introduce the notion
of exemplar tuples, which are pairs of instances used in the input of the IMS
problem. We also introduce a particular class of exemplar tuples sets allowing
the retrieval of a mapping logically equivalent to the mapping expected by
the users. Then, we provide the formal definition of the IMS problem and
a characterization of the set of candidate tgds which is explored during the
resolution of the IMS problem.

1.2.1 Exemplar tuples

In order to specify a mapping with our approach, users are intended to provide
examples of the behavior that they expect from this mapping. These provided
examples take the form of a set of exemplar tuples. An exemplar tuple for
a mapping M is a pair (Eg, Er) formed by a source and a target instance.
In order to produce an exemplar tuple for the mapping M they expect, it
is not mandatory for the users to provide a target instance Er which is a
universal solution for Fs under M. Instead, given a source instance FEyg, users
can populate E; with tuples from a subset of the universal solution to Eg
under their expected mapping M. This is captured by the following formal
definition of an exemplar tuple:

28

The Interactive Mapping Specification problem

DEFINITION 1.19 (Exemplar tuple).
Let M = (S, T,X) be a mapping.
Then an exemplar tuple for M is a pair of instances (Eg, E7) such that:

Er # 0 and p(E7) C CHASE(Y, Ey)

with p being an homomorphism from the labelled nulls in Er to the labelled
nulls in CHASE(Y, Eg).

Henceforth, an exemplar tuple for a mapping M will be simply called an
exemplar tuple whenever the mapping M is clear from the context. We also
introduce the notation £ which will be used to denote a set of exemplar tuples.
The notion of exemplar tuple for a mapping is illustrated in the following
example:

Ezxample 1.7. Given a mapping M = (S, T, %) such that:

Y ={S(z,y) — Iz T(z, 2);
Sz, y) — F2, T(x,2) AN T'(2,9)}

and given the following source instance over S:
Es = {S(a,b); S(c,b); S'(d,e)}

Then the following pairs of instances are some of the possible exemplar tuples

for M:
(ESv {T(a7n1); T(CvnQ); T(dvnS); T/(n37 e)}>
(ES> {T(a7n1); T(C>n2))
({S<a’ b); S <, b)}v {T(a7 nl)})

It should be noted that the exemplar tuples (1.2) and (1.3) only exemplify the
tgd of >i:
S(SE’, y) - 327 T(L Z)

By opposite, the pair of instances:
(ES/7 ET/) - ({S(a7 b)7 S(Ca b)}a {T(a7 nl); T(C’ n2); T/(n?:? e)}) (14)

is not an exemplar tuple for M. Indeed, the result of chasing Es" under M is
an instance:
CHASE(Y, E5') = {T(a,ny); T(c,ny)}

for which we see that E1' ¢ CHASE(X, Eg') due to tuple T'(ns, e) that cannot
be deduced from Eg'.

29

Chapter 1

However, despite providing good properties to approximate the mapping
expected by the users, we will show in the Section 1.3.1 that the notion of ez-
emplar tuple is not sufficient to ensure that the mapping we output is logically
equivalent to the mapping expected by the users. To ensure this property, the
provided set of exemplar tuples needs to allow the retrieval of all tgds of the
expected mapping. Consequently, the exemplar tuples set provided as input
by the users’ needs to exemplify every tgd in the expected mapping.

This is formally captured by the following definition of a fully informative
exemplar tuples set:

DEFINITION 1.20 (Fully informative exemplar tuples set).

Let M = (S, T,X) be a mapping in normal form.

Then o fully informative exemplar tuples set for M is a set of exemplar tuples
E such that each tgd in X is exemplified at least once, i.e.:

Vo € Ea H(ES7ET) € 57 EIE,/S - ES)(CHASE(O-ﬂ E,/S') # Q)
A (u(CHASE(0, EY)) C Er)

with p being an homomorphism from the labelled nulls in CHASE(o, EY) to the
labelled nulls in Ep.

It should be noted that there is no need for the tgds of the expected map-
ping to be exemplified in separate exemplar tuples. This is illustrated in the
following example:

Example 1.8. In this ezample, we reuse from Example 1.7 the mapping M =
(S, T,X) such that:

Y ={S(z,y) — 3z T(z, 2);
Sz, y) = 3z, T(x,2) AN T'(2,9)}

and the exemplar tuple (1.3):
(Es, Er) = ({S(a,b); S(c,0)},{T(a,n1)})

As stated in Example 1.7, (Es, E7) is an exemplar tuple for ¥. However, the
tgd:
S'(z,y) = 3z T(z,2) A T'(2 y)

1s not exemplified by this exemplar tuple. Thus, the singleton containing this
exemplar tuple is not a fully informative exemplar tuple set as defined in Def-
wnation 1.20.

30

The Interactive Mapping Specification problem

A fully informative exemplar tuple set for X can be obtained by either
adding a new exemplar tuple as in the following set:

{ ({5(a,b); 5(c, b))}, {T(a,n1) });
({$'(a,;p)} {T(a;n1); T'(n1,b)}) } (1.5)

or by adding new tuples in the initial exemplar tuple:
({S(a,p); S(c,b); 5'(d, e)}; { T'(a,n1); T'(d,m2); T'(ma,e)}) (1.6)
At the opposite, the singleton containing the exemplar tuple:
({$(a,b); 5(c,b); 5'(d, &)}, { T'(a,m1); T(d, mz)) (1.7)

is not a fully informative exemplar tuples set as it lacks a tuple T'(ny,b) in
order to exemplify the connected component in the tgd:

S (x,y) — 32, T(z,2) AN T'(2,y)

In the definition of a fully informative exemplar tuples set (Definition 1.20
on page 30), the set Eg’ captures the fact that in an exemplar tuple (Eg, Er)
in a fully informative exemplar tuples set for a mapping M = (S,T,¥%), Er
does not need to be equal to the chased instance CHASE(X, Eg). We illustrate
this in the following example:

Ezxample 1.9. Given the mapping M = (S, T,X) such that ¥ is a singleton
containing the tgd o : S(z) — T(x). Given the pair of instances:

(Es, Er) = ({5(a); S(b)},{T(a)})

which is an exemplar tuple for 3.
The result of chasing Es under M leads to the following instance:

CHASE(Y, Ey) = { T(a); T(b)}

Thus, we have CHASE(X, Eg) € Er.
However, we can exhibit the subset Es" = {S(a)} such that:

CHASE(0, Es') = {T(a)} C Es and CHASE(o, E5') # 0

Hence, according to the definition of a fully informative exemplar tuples set
(Definition 1.20 on page 30), the exemplar tuple (Es, Er) exemplifies the tgd
o, despite the fact that CHASE(X, Es) € Er.

31

Chapter 1

Moreover, the definition of a fully informative exemplar tuples set ensures
that every connected component in the tgds of the exemplified mapping is
illustrated at least once, as shown by the following example:

Ezample 1.10. Given a mapping M = (S, T,X) such that ¥ is a singleton
containing the tgd o : S(z,y) — 3z, T(z,2) N T' (2, y).
Given two exemplar tuples for M:

(Es1, Eri) = ({9(a,0)},{T(a,n); T(n,b)})
(Es2, Er2) = ({5(2,0)},{T(a,n)})

The result of chasing Es, under M leads to the following instance:
CHASE(XY, Eg,) = {T(a,n); T'(n,b)}

Thus, we have CHASE(o, Eg) # () and CHASE(o, Eg,) C E7,. As o is the only
tgd in X3, this means that an exemplar-tuple set containing (Eg,, E7,) is fully
informative for M.
Analogously, the result of chasing Egy under M leads to the following in-
stance:
CHASE(0, Egy) = {T(a,n); T'(n,b)}

However, in this case we have CHASE(0, Egy) € Ery. This is due to the fact
that the exemplar tuple (Egq, E7o) does not exemplify the entire connected
component in o but only one of its atoms (i.e. T(xz, z)). Consequently, an
exemplar-tuple set containing only (Egq, E1s) is not fully informative for M.

These two notions of exemplar tuples and fully informative exemplar tuples
set constitute the input of the Interactive Mapping Specification problem that
we will describe in detail in next section.

1.2.2 Interactive Mapping Specification

The Interactive Mapping Specification problem (IMS) is formally defined as
follows:

DEFINITION 1.21 (IMS).

Let Meyp be a mapping expected by the users.

Let € be a set of exemplar tuples for Mgy.

Then, the Interactive Mapping Specification problem is to discover, by means
of boolean interactions (i.e., questions about the validity of exemplar tuples),
a mapping M’ such that:

- V(Es,Er) € &, (Es, Er) EM

32

The Interactive Mapping Specification problem

- Mgy = M

The choice of using exemplar tuples both as input of the IMS and basis
of the asked questions comes from the intuition that non-expert users will not
be able to express a mapping using a logical language. At the opposite, they
can easily rely on their domain knowledge to answer about the validity of an
exemplar tuple (Eg, Er), i.e., to tell whether the information contained in the
source instance Fyg is sufficient to infer the tuples in the target instance Fr.
Thus, the question asked to the users about the validity of an exemplar tuple
(Eg, Er) will take the following form:

“Are the tuples Eg enough to produce Er?”

Albeit important in practice, handling errors that can be done by users
when they answer the questions does not fall under the scope of this thesis.
Consequently, we will consider that our questions are answered by an oracle
using the following procedure:

DEFINITION 1.22 (oracle answering procedure).

Let Mgy, = (S, T, Xesp) be the mapping expected by the oracle.
Let Eg and Er be two instances over S and T, respectively.
Then, the oracle answers true to the question:

“Are the tuples Es enough to produce Er?”

Ep C CHASE(Xsp, Es)

From the definition of the IMS problem, we derive the definition of the set
of the candidate tgds which is explored by our framework in order to solve
the IMS problem. Intuitively, this set is composed by the tgds that do not
lead to break the conditions over the mapping M’ in the definition of the IMS
problem. This set is formally defined as follows:

DEFINITION 1.23 (Explored set of candidate tgds).

Let € be a set of exemplar tuples.

Let Megn = (S, T, 3can) be the canonical mapping computed from .
Then the set of candidate tgds is defined as follows:

Ecandidates - U {(b, — wl | (b/ ?é (Z) A wl ?é @
(6—v)EXcan
A (3p a morphism such that u(¢') C ¢ A pu(y") C)}

From this set, we also define the set Q of questions that can be asked by
our framework during the resolution of the IMS problem:

33

Chapter 1

DEFINITION 1.24 (Set of asked questions).

Let € be a set of exemplar tuples.

Let Ycandidates be the set of tgds explored by our framework for £.

Let =1 be the inverse of the bijection 6 from tuples to atoms (Definition 1.16
on page 27).

Then the set Q of questions that can be asked by our framework is the set:

Q = { “Are the tuples 0 (¢) enough to produce 0~ *(1))?”
| (¢ — 7/)) € anndidates}

This set will be explored in order to obtain the desired output mapping.
This exploration is done by producing a new mapping given a question, the
oracle’s answer to this question and the previously inferred mapping. This is
expressed by the following transition rule:

DEFINITION 1.25 (Transition rule).

Let M be a mapping.

Let g be a question about the validity of the tgd ¢ — 1 from the set of candidates
explored by our framework.

Let answer(q, u) be the function asking a question q to a user u and returning
her/his answer.

Then we have:

M E M such that: if answer(q, Oracle)
then M' = MU (¢ — ¢)
else M' = M

REMARK 1.1.
The process is non-deterministic as, for a given mapping M, any unexplored
tgd can be picked up from the the set of candidates to generate a question.

In order to obtain a solution to an IMS problem, our framework begins with
the canonical mapping computed from the set of exemplar tuples provided
by the users. Then, this mapping is rewritten iteratively by applying the
transition rule from Definition 1.25 over the questions from the set Q from
Definition 1.24. More formally, we define this succession of the application of
the transition rule as follows:

DEFINITION 1.26 (Exploration).
Let € be a set of exemplar tuples.
Let M, be the canonical mapping computed from &.

34

The Interactive Mapping Specification problem

Given a mapping M., expected by a user :

Mean Mins E Mean s proved in Theorem 1.2
g E Mezp = My is proved in Theorem 1.3
Confluence to a mapping M ipa
Mg e is proved in Theorem 1.4
T Convergence is proved in Theorem 1.5
Me:):p
g If a fully informative exemplar tuples set is

provided :
Minat = Mgy is proved in Theorem 1.6

Figure 1.1: Summary of the main theorems about our framework
(Section 1.3).

Let Q be the set of questions that can be asked over M q,.
Then, an exploration of the set Q is a series of applications of the transition
rule:

Mg 22 Mins such that {q1;...;¢,} € Q

The mapping M,,s obtained at the end of an exploration is called an
inferred mapping.

In the next section, we will prove good properties that are provided by the
inferred mapping.

1.3 Guarantees of the process

In this section, we will prove the correctness of the exploration of a set of
questions. We also prove the convergence and confluence properties of an
exploration of a set of questions. Finally, we will prove that the completeness
of our approach is obtained if the users provide a set of exemplar tuples which
is fully informative. These properties are summarized in Figure 1.1.

1.3.1 Correctness

In this section, we show that, given a mapping M.,,, expected by the users
and a canonical mapping M., derived from an input set £ for M,,,, the

35

Chapter 1

exploration of the set of questions Q always leads to an inferred mapping
Mg such that M,,r = Mg, and M., = My

First, we show that the inferred mapping M,,,; always imply the canonical
mapping M ,n:

THEOREM 1.2 (Inferred mapping imply the canonical mapping).

Let Moy, 2 ... 2 M, be an exploration.
Then:

Minf): Mcan

Proof. This theorem follows from the definition of the transition rule (Defi-
nition 1.25 on page 34). By induction over the steps of the exploration we
have:

— for Mean 25 M, either :

— if answer(qy, Oracle) = false we have My = M

— if answer(q, Oracle) = true, given o,, the tgd associated with ¢,
we have M = Mo, U 0y, .

Thus, in both cases we have M; O M 4, and consequently My = M.

— for each step of the exploration M; % M,.,, analogously to the
previous induction step, we find that M;,; O M;, and consequently

MZ‘+1 |: MZ
Thus, by transitivity, we have M;,; = M.ap. O

Intuitively, Theorem 1.2 shows that our framework will never output map-
pings that are less general than the canonical mapping.

In addition, we also show that our framework only produces mappings that
are implied by the mapping expected by the users :

THEOREM 1.3 (Expected mapping is a model of the inferred mapping).
Let Mgy = (S, T, Xeyp) be the mapping expected by Oracle.

Let € be a set of exemplar tuples for Mgy.

Let Mion = (S, T, Xean) be the canonical mapping computed from E.
Let My, 2 ... I Mins be an exploration.

Then:

Mexp |: Mznf

Proof. The proof is done by induction over the length of an exploration:

36

The Interactive Mapping Specification problem

— At first, we show that M.,, = M.4,. Using the definition of the canoni-
cal mappings (Definition 1.18 on page 27), we define the set of tgds X..,
of M, as follows:

Yean = {é(ES) — é(ET) | <E57ET) € g}

Moreover, according to the definition of the exemplar tuples (Defini-
tion 1.19 on page 29), we have:

\V/(E‘g? ET) S g, Er C CHASE(E&M,7 Es)
As 0 is an isomorphism, we can do the following substitution:
V(0(Es) — 0(E7)) € Yean, 0(E1) C CHASE(Z 0p, 0(Es))

which means, by the property of the mapping implication from Theo-
rem 1.1 on page 25, that M.,, = M a.

— We now show that, given an exploration: Mg, —5 ... 2% M y,s such
that M., = M,s, then any application of the transition rule over M,
leads to a mapping M, such that M., = M, ;.

Given M,,r, the application of a new rewriting rule leads to the following
exploration:
n dn
Mean &5 0 My =5 M
with ¢,.1 being a question over a tgd ¢ — 1. By induction over oracle’s
answer to question ¢, we have :

— if answer(qn11, Oracle) = false then, using the definition of the
transition rule (Definition 1.25 on page 34), we have M, . = M.
Thus, by the induction hypothesis we have : M., = ;nf.

— if answer(q,41, Oracle) = true then, using the definition of the
transition rule, we have Mj, . = My, U{¢ — ¢}. Also, by defini-
tion of the oracle’s answering procedure (Definition 1.22 on page 33),
if the oracle answer true to g,+1 then ¢ C CHASE(¢p, M,yp), i€,
My E {0 — ¢} Since we have M., = M,y by induc-
tion hypothesis, we obtain M.y, = (M;y U{¢ — 9}) and thus
Moy = M.

From above, we obtain that M.,, = M, for any mapping M, inferred
by our framework.

]

37

Chapter 1

This result shows that for an expected mapping M.,,, for any instance /
and for any mapping M, produced by our framework, we have

CHASE(Mf, I) € CHASE(M ey, 1)

In other words, the mapping produced by our framework will never produce
tuples that would not be produced by the expected mapping.

1.3.2 Convergence to a unique mapping

In this section, we show that there exists a mapping to which our framework
converges, regardless of the order used to ask the questions, and we build a
definition of a complete exploration from this.

We first show the confluence of our framework :

THEOREM 1.4 (Confluence).
Let M be a mapping.

Let M2 . 2% M, and M NN M., be two explorations from M.
Then there exists a mapping M’ such that we can find two explorations:

’
dn+1 dn+k q/+1 941!
M, — ... =S M and M,, —— ... = M’

Proof. When a question is asked, the tgd corresponding to this question will
be added or not to the inferred mapping, depending on the oracle answer.
This process is completely independent from the previously asked questions
and does not modify the set of questions that are asked. Therefore, the order
in which questions are asked does not influence the result. Thus, it is easy to
construct the two sets of questions {gui1;...;¢nsx} and {q), 1153}t a8
follows:

{@ns1s i qnint = {ai - \{a; -5 qn}
{dhiti it = {aus ;) \{ds - 54}

]

We will now show that our framework always converges to a unique map-
ping :
THEOREM 1.5 (Convergence to a unique mapping).

Let Mean 2 ... &5 M, By be an infinite exploration.
Then:
Jk € N such that VE' > k, My = M,

38

The Interactive Mapping Specification problem

Proof. This follows from the definition of the set Q of all questions that can
be asked (Definition 1.24 on page 34), and from our theorem of confluence
(Theorem 1.4). If the whole set of questions is explored, then asking one of
these questions one more time, or asking a question isomorphic to a question
of set Q, will only lead to an equivalent mapping. O

This last theorem allows us to define the notion of a complete exploration
for our framework :

DEFINITION 1.27 (Complete exploration).

Let M q, be a canonical mapping.

Let Q be the set of questions that can be asked over M u,.
Then, a complete exploration of the set Q is an exploration :

Mo 25 02 Mina where {q1;...;q,} € Q

such that:
vq € Q7 Mfinal i> Mfinal

It has been seen that many different explorations can be done to solve
the IMS problem, and consequently many mappings can serve as output of
our framework. However, intuitively the mapping My;,, obtained after a
complete exploration is the mapping for which asking a new question to the
users does not help to learn more information about the expected mapping,
and thus this mapping seems to be the most relevant mapping to return to the
users. Consequently, this mapping will be the one that will be computed by
the algorithms we propose in the next chapter to solve the IMS problem.

1.3.3 Completeness in the presence of fully informative
exemplar tuples sets

In this section, we show that, if the users provide a fully informative exemplar
tuples set for their expected mapping, then a complete exploration of the set
of questions will always lead to a mapping logically-equivalent to the expected
mapping. To prove this, we first show that there always exists an ideal ezemplar
tuples set that allows to retrieve a mapping logically equivalent to the expected
mapping. Then, we show that a fully informative exemplar tuples set always
leads to ask the questions asked for the ideal exemplar tuples set. Finally, we
use these results to prove the completeness of our approach in the presence of
fully informative exemplar tuples sets.
We first define an ideal set of exemplar tuples as follows :

39

Chapter 1

DEFINITION 1.28 (Ideal exemplar tuples set).

Let M be a mapping.

Let € be a set of exemplar tuples for M.

Then & is an ideal exemplar tuples set if the canonical mapping Mu, ex-
tracted from & is such that M., = M.

Such an ideal exemplar tuples set can be produced for any GLAV mapping,
as shown in the following lemma :

LEMMA 1.1 (Mapping with ideal exemplar tuples set).
For all GLAV mapping M = (S, T,X), there exists an ideal ezemplar tuples
set g’ideal'

Proof. From M we can construct a set:

E={(07""(¢).0"(¥))I(¢ —¢) €5}

As each exemplar tuple (Fg, E7) € & comes directly from a tgd o € X, it
follows that Er C CHASE(o, Eg). It follows that £ is an exemplar tuples set
for M.

Also, as the canonical mapping M., = (S, T, X.4,) is obtained by applying
the morphism @ from tuples to atoms to each exemplar tuple in £. By definition
of the exemplar tuples (Definition 1.19 on page 29), we obtain:

Sean = {007 (¢)) = 00~ () (¢ — ¥) € T}
={(¢ > V)¢ 2 v) €}
=3
So Mo = M, and thus the set £ is an ideal exemplar tuples set for M. [

From the definition of an ideal ezemplar tuples set (Definition 1.28) we
derive the notion of ideal questions set:

DEFINITION 1.29 (Ideal questions set).
Let Egeqr be an ideal exemplar tuples set.
Then an ideal questions set for Egea s a set of questions :

Qideat = { “Are the tuples Es enough to produce E1-?” | (Eg, E1) € Eidear }

Thus, every possible expected mapping for the IMS problem can be repre-
sented with the use of an ideal set of exemplar tuples. Now, we show that the
questions asked about an ideal set of exemplar tuples for an expected map-
ping always leads to retrieve this expected mapping at the end of a complete
exploration :

40

The Interactive Mapping Specification problem

LEMMA 1.2 (An ideal exemplar tuples set leading to the expected mapping).
Let Mgy = (S, T, X.,) be the mapping expected by Oracle.

Let € be a set of exemplar tuples for Megy.

Let Mean = (S, T, 3ean) be the canonical mapping computed from E.

Let Eigear be the ideal exemplar tuples set for M.y,.

Let Qiqear be an ideal questions set for E;gear-

Then for any complete exploration M .4, 4008 Mina over the set
of questions Q;gear -

Mfinal = Meacp

Proof. By construction of Egeq (cf. proof of Lemma 1.1), the Oracle will
always answer true to each question in Q. We also know by the construction of
Eidear that each tgd in M., corresponds to one, and only one, pair (Eg, Er) €
5ideal~
Thus, each application of the transition rule M; M1 over a question
q € Q will add a tgd from M., to M;. At the end of the exploration over Q,
we obtain the mapping Myina = (S, T, Xfinar) such that Xpna = Xean U Zegp.
Thus, Efina 2 Xesp and consequently Mying = Megp.
From Theorem 1.3, we also have that M., = Mfinai, 50 Mfina = Megp.
O

Now, in the following lemma we show that a fully informative exemplar
tuples set always leads to the questions asked for the ideal ezemplar tuples set:

LEMMA 1.3 (A fully informative exemplar tuples set leading to the ideal ex-
emplar tuples set).

Let M., be the mapping expected by Oracle (supposed normalized).

Let Epr be a fully informative exemplar tuples set for M.,,.

Let M qn be a canonical mapping for Ep;.

Let Q be the set of questions asked from M q,.

Let Eigear be the ideal exemplar tuples set for M.,,.

Let Qigear be an ideal questions set for Eigear-

Then we have:

Qideal g Q

i.e., our framework leads to explore the ideal exemplar tuples set Eigear-

Proof. For each tgd 0 = (¢ — 1) € M.y, there exists an exemplar tuple
(Es, Er) such that:

JEs' C Eg s.t. (CHASE(0, Es') # 0) A (CHASE(0, Es') C Er)

41

Chapter 1

By construction of Mg, for each tgd o = (¢ — 1) € M,,, there exists a tgd
(¢f —) € M_ay such that:

3¢ C ¢ s.t. (CHASE(0,67"(¢")) # 0) A (CHASE(0, 6 (¢")) C 67 (¢))

Thus, there exists a substitution p such that all atoms in ¢ can be mapped
to atoms in ¢" and an extension ' of p mapping all atoms of ¢ to atoms in
Y = 0(CHASE(0,07(¢"))). This leads to:

pu(¢) € ¢" C ¢" and p/(v) C " C o

By construction of &geq, for each tgd (¢ —) € M.y, there exists
(Es, E7) € Eigew such that ¢ = 0(Eg) and v = §(Ey). Thus, we can find
a tgd (¢ — ¢') € My, such that there is a morphism p and its extension '
such that u(6(Eg)) C ¢’ and i/ (0(Er)) C 1.

From this, from the definition of the explored set of candidate tgds (Defini-
tion 1.23 on page 33) and from the definition of the set of asked questions (Defi-
nition 1.24 on page 34), it follows that for all exemplar tuples (Eg, E1) € Eigear
the question about the validity of tgd (Eg) — 0(Er) is in the set Q. Equiv-
alently, this is expressed by Q;iear C Q. O

From these lemmas we can show that, if a fully informative exemplar tuples
set is provided, our framework will output a mapping logically equivalent to
the expected one:

THEOREM 1.6 (logical equivalence between output mapping and expected
mapping).

Let My, be the mapping expected by Oracle.

Let Epr be a fully informative exemplar tuples set for M yp,.

Let M., be the canonical mapping computed from Epy.

Let Mogn 2 .. 2 Minar be a complete exploration performed by our frame-
work.

Then:

Mfinal = Mexp

Proof. In Lemma 1.2 we show that if our framework asks all the questions of
the ideal exemplar tuples set for the expected mapping M.,,, then the output
mapping M will be such that M = M,,,. In Lemma 1.3 we show that,
given a fully informative exemplar tuples set for M,,,, then our framework
will ask all questions of the ideal exemplar tuples set for M,,,. This proves
our theorem.]

42

The Interactive Mapping Specification problem

1.3.4 Cardinality of the set of candidates M. .., qidates

In this section, we give the cardinality of the set M undidates described in Defi-
nition 1.23. This cardinality gives an upper bound of the number of questions
that can be asked by our framework without introducing optimisation during
exploration of the search space. Thus, it corresponds to a case where every
possible conjunction (both in left and right-hand sides) and every possible join
(with or without creation of existential variables) are explored.

As M andidates considers every possible join refinement, including the ones
producing new existential variables, then for a given variable the whole lattice
of partitions of the variable occurrences is explored. We recall that the number
of partitions of a set with n elements is given by the Bell number:

5-3{}]

k=0

with { Z } being the Stirling number of the second kind, i.e. the number of

ways to partition a set of n elements into k blocks (Knuth [Knu97]).

Thus, given a variable v with n occurrences in a tgd, we use the Bell number
B,, to compute the number of candidate join partitions explored for v. This
exploration should be done for every possible conjunction in the tgds of the
refined mapping.

Thus, to compute the cardinality of M ondidates, given a canonical mapping
M an, given var(o) the set of variables in a tgd o, and given n,, the number
of occurrences of a variable v in a tgd o, we obtain the following formula of
the upper bound the number of questions in the worst-case scenario:

’Mcandidates | -

Z Z Z Z B”v,w—w’

V(¢—=9)EMean Vo' ¢’ #D V! ' £ Vvevar(¢' =)
A9) S NN ! (97) S

Despite the high complexity of this worst-case scenario, the experiments
in Chapter 4 will show that the number of asked questions stays reasonable
for real-world scenarios, as detailed in Chapter 2. It is worth noting that the
worst-case complexity is provided for each step of our practical framework in
the respective sections in Chapter 2.

43

Chapter 1

1.4 Related Work

In this section, we examine the literature related to mapping specification in
data exchange.At first, we examine the pioneer data exchange works in the
design of mappings. Finally, we provide some connections of our work with
mapping learning.

1.4.1 Design and refinement of mappings.

The proposed approaches to define mappings are numerous. A frequent but
cumbersome way to solve such a problem is to use procedural approaches.
To do so, a developer will have the choice to either write dedicated pieces of
code to transform her /his data, or rely on commercial systems such as Altova
MapForce [Alt], Talend Data Integration [Tal] and Pentaho [Hit|. However,
even if such commercial systems rely on graphical user interface to simplify the
most trivial mapping definitions, most complex tasks will lead to express the
relation between data with the use of programming languages that are hard
to use for non expert users.

In the following, we examine in more details the research works that have
proposed more user-friendly solutions to solve data exchange problems.

Graphical design and refinement of mapping: Clio and Muse. One
of the pioneering work to address the problem of helping the specification of
mappings in an interactive way is Clio (Fagin et al. [FHHT09], Miller et al.
[MHH"01], Popa et al. [PVH'02]. In these works, users where intended to
specify the schema correspondences with the use of arrows in a graphical user
interface. As this formalism exhibits limited expressiveness, multiple mapping
can be valid with respect to a unique schema correspondence. To address this
problem, Clio provides a ranked set of alternative mappings. Meanwhile, the
choice between these alternatives must be made by users knowledgeable in the
syntax and semantics of the output mappings.

Extending the functionalities of C1lio, the framework of Yan et al. [YMHEF01]
is particularly close to our approach as it is one of the first works to consider
the usage of data examples in order to help the understanding and refinement
of mappings. Precisely, Yan et al. [YMHFO01] leverage on the schema corre-
spondences defined in Clio to propose alternative data associations among
relevant source instances. At each iteration, the mapping designer is intended
to choose one of the proposed data associations, leading to construct the out-
put mapping in an incremental fashion.

Thus, unlike Clio, our approach does not assume the existence of an initial
mapping or knowledge on the syntax and semantics of the languages used to

44

The Interactive Mapping Specification problem

describe a mapping, as we only rely on simple boolean questions about data
examples to specify the user’s intended mapping.

A more recent work from Alexe et al. [ACMTO08] proposes Muse, a mapping
design tool built on the top of Clio. Muse allows to use data examples to
differentiate between the alternative mappings like the ones provided by Clio
with the use of an iterative process. When this can seem similar to the work
of Yan et al. [YMHFO01], the methods proposed by Alexe et al. [ACMTOS]
in Muse are more sophisticated than the ones in Alexe et al. [YMHFO1]. A
major difference is that Muse is able to infer desired grouping semantics instead
of using default grouping functions. For instance, Muse can infer if the user
desires to group flights by airline name and type of plane or only by airline
name. Muse also poses a number of yes/no questions to the designer to clarify
the grouping semantics. However, the number of questions is driven by the
schema elements along with schema constraints that are used to reduce the
number of questions. In our approach, we do not assume prior knowledge of
the schema constraints. Recently, the work from Atzeni et al. [ABPT19] has
proposed another approach to help users to define their mapping by building
on the creation of a repository of meta-mappings. These meta-mappings are
created by generalizing existing mappings. Consequently, to be efficient this
approach assumes the availability of a pool of well-defined mappings. Then,
given a source and target schemas, the repository of meta-mappings is explored
to return the most relevant meta-mapping for these schemas.

Debugging systems: TRAMP and Vagabond. The dichotomy between the
target instance expected by a user, and the solution that is output through the
mapping has also been addressed from the angle of the debugging of mappings
by Chiticariu et al. [CT06] with their debugger Routes on top of Clio. With
Routes, the user is intended to provide a mapping to debug a source instance.
From this, the user can build test cases for the mapping by probing values
in the target instance, and then visualise the provenance trace of these values
to interpret how and why these values are computed. This approach closely
resembles testing as done for software development. By opposite, our method
requires as input source and target exemplar tuples, without any prior mapping
connecting them.

The suite of tools TRAMP (Glavic et al. [GAMH10]) and Vagabond (Glavic et
al. [GDMT11]), which is built on top of TRAMP, focuses on the understandability
of user errors in mappings by using provenance. However, both TRAMP and
Vagabond expect existing mappings as input and the explanations provided by
these systems are to be interpreted by users who are familiar with the mapping
language and its underlying semantics.

45

Chapter 1

It should be noted that a recent study from Singh et al. [SMET17] addresses
the problem of finding the best Entity Matching (EM) rules under the form
a GBF (General Boolean Formula), thus including disjunctions, conjunctions
and negation starting from negative and positive examples. They assume as
input two relations of the same arity whose alignment is already known and
output the best GBF that takes into account the actual values of the instances
and the similarities between them. Their problem is orthogonal to ours, since
we work on a different fragment of logic and on data exchange rather than on
entity matching.

1.4.2 Theoretical limitations in the use of data examples
to characterise a mapping

The use of data examples as a tool to describe mappings has begun in ten
Cate et al. [TCKT10] and Alexe et al. [ACKT11]. In these works, the authors
have investigated the possibility of uniquely characterizing a schema mapping
by means of a set of data examples.

Hence, such characterization using a finite set of universal data exam-
ples was shown to be possible only in the case of LAV dependencies and for
fragments of GAV dependencies [ACKT11, TCKT10]. As a negative result,
Alexe et al. [ACKT11] have shown that even simple s-t tgds, such as a copy
E(z,y) — F(z,y), cannot be characterized by a finite set of universal data
examples under the class of GLAV mappings.

Given this impossibility of a unique characterization of GLAV mappings,
for a given schema ten Cate et al. [TCKT10] and Alexe et al. [ACKT11]
made the choice of being less specific by characterizing the set of valid “non-
equivalent” mappings with respect to the class of GLAV. They also rely on the
notion of “most general mapping” for which it was shown that, given a schema
mapping problem, such a most general mapping always exists in the class of
GLAV mappings if there exists at least one valid mapping for the considered
problem (Alexe et al. [AtCKT11al).

1.4.3 Learning mappings

In EIRENE [AtCKT11b], the authors show how the user can generate a map-
ping that fits universal data examples given as input. Whereas EIRENE expects
a set of universal data examples, we lift the universality assumption arguing
that universal data examples are hard to be produced by a non-expert user.
Moreover, as we will show in our experiments in Chapter 4, universal target in-
stances tend to be significantly larger than our exemplar tuples. One previous

46

The Interactive Mapping Specification problem

work targeting non-expert users is MWeaver [QCJ12], where the user is asked
to toss tuples in the target instance by fetching constants within the available
complete source instance. However, this work has different assumptions with
respect to ours: it aims at searching a source sample among all possible samples
satisfying the provided target tuples, focusing on GAV mappings only. Our
system inspects a few input tuples, on which interactive refinement is enabled,
and expressive GLAV mappings can be inferred via simple user feedback.

ten Cate et al. [CDK13] show how computational learning (i.e., the eract
learning model introduced by D. Angluin [Ang87] and the Probably Approx-
imately Correct model introduced by L. Valiant [Val84, Vall3]) can be used
to infer mappings from data examples. Their analysis is restricted to GAV
schema mappings. Recently, ten Cate et al. [tCKQT18] have employed active
learning to learn GAV mappings and proved its utility in practice, by propos-
ing the first practical tool for learning schema mappings. Previous work from
Gottlob et al. [GS10] and ten Cate et al. [CKQT17] has focused on a theoret-
ical framework for understanding the relationship between a source instance
and a target instance and to provide through a series of repairs the mapping
that describes this relationship. They focus on the complexity of the problem
for various logical languages and also on the optimality notion. Their setting
is quite different from ours as we do not assume complete instances as input
and also we do not aim at refining an approximate mapping given as input via
reparation operations.

Other approaches handle the specification of mappings as an optimization
problem as in the repair frameworks from Gottlob et al. [GS10] and ten Cate et
al. [CKQT17], as a rule selection problem as in Kolaitis et al. [KPQ19], or as
a learning problem as in the learning and fitting frameworks such as Beaver
[JBCJ18] or the frameworks proposed in ten Cate et al. [CDK13, tCKQT18],
Jin et al. [JBCT18] and Alexe et al. [AtCKT11a, AtCKT11b]. Another similar
approach is proposed in the work of Mandreoli et al. [Manl7] in which the
mapping is learned through user queries.

As such, our IMS framework can be considered as a hybrid between the
learning-based frameworks and the repair-based frameworks. On one hand,
the IMS framework hardcodes mapping optimization and normalization rules
such as those adopted in the pre-processing step and consequent atom and
join refinement operations that lead to compact and human-understandable
mappings. These operations can be considered as optimization choices with a
pre-defined and implicit cost model (sigma-redundancy, split-reduction, atom
refinement and join refinement). In a sense, a lattice or semi-lattice is an
instantiation of the black-box used in the learning framework, in which the user
is allowed to navigate the space of possibilities by focusing on two operations,

47

Chapter 1

that correspond to atom and join modifications.

1.4.4 Learning queries

Besides mapping specification and learning, researchers have investigated the
problem of inferring relational queries (Abouzied et al. [AHS12, AAPT13],
Bonifati et al. [BCS16], Mottin et al. [MLVP14]). The works from Abouzied et
al. [AHS12, AAP*13] focus on learning quantified Boolean queries by lever-
aging schema information under the form of primary-foreign key relationships
between attributes. Their goal is to disambiguate a natural language specifi-
cation of the query, whereas we use raw tuples to guess the unknown mapping
that the user has in mind. In Bonifati et al. [BCS16], the problem of in-
ferring join predicates in relational queries is addressed. Consistent equi-join
predicates are inferred by questioning the user on a unique denormalized rela-
tion. We differ from their work as follows: we focus on mapping specification
and consider the broad class of GLAV mappings whereas they focus on query
specification for a limited fragment of (equi-join) queries. Finally, Mottin et
al. [MLVP14] presents the exemplar query evaluation paradigm, which rely on
exemplar queries to identify a user sample of the desired result of the query
and a similarity function to identify database structures that are similar to the
user sample. For the latter, the input database is assumed to be known, which
is not an assumption in our framework. Since exemplar queries are answered
upon an input database, they are considered as unambiguous, whereas this is
not necessarily the case in our framework, whose goal is to refine and disam-
biguate exemplar tuples to derive the unknown mapping that the user has in
mind.

1.5 Conclusion

In this section, we have provided basic notions in data exchange as well as
fundamental definition of our problem. Among these definitions, in order to
ensure good properties of our framework output, we have provided the defi-
nitions of particular types of data-examples : the exemplar tuples and their
restriction the fully informative exemplar tuples set.

Then, we have proved that if such exemplar tuples are provided as input
of our framework, then our framework will converge to a unique mapping
in the universe of the possible inferred mappings. We have also shown that
this mapping entails the canonical mapping and is entailed by the expected
mapping.

48

The Interactive Mapping Specification problem

Additionally, we have proved that if a fully informative exemplar tuples
set is provided, then the output mapping will be logically equivalent to the
expected mapping.

49

Chapter 1

20

Chapter 2

A practical framework for
Interactive Mapping
Specification

In this chapter, we present a practical framework to solve the interactive map-
ping specification problem. This framework is built upon the theoretical frame-
work from the previous chapter. At first, we provide a detailed description of
the steps of the practical framework presented in this chapter, as well as proofs
of good properties of the mapping output. Next, we show how the introduction
of integrity constraints in the IMS problem allows to solve this problem more
efficiently, i.e., to reduce the number of candidate mappings to explore.

Chapter organization In Section 2.1, we introduce some complementary
notions used in this chapter. In Section 2.2, we provide an overview of our
practical approach and we introduce the running example that will be used
along this chapter. In Section 2.3, and Section 2.4 we present the two main
steps of our approach. In Section 2.5, we provide proofs of good properties
of the mapping output by our practical approach. In Section 2.6, we show
how integrity constraints can be used with our approach in order to reduce the
number of interactions needed during the specification of a mapping.

2.1 Basic Notions

In this section, we give some basic notions from the data exchange literature
as well as notation that will be used in the following sections. We only provide
notions that have not been presented in Section 1.1 and Section 1.2 of the
previous chapter.

o1

Chapter 2

Y-equivalence and ¢-equivalence In order to avoid redundant questions
during the resolution of the IMS problem, we need to identify redundancies
in the right-hand sides of the tgds of the canonical mapping obtained from
the exemplar tuples in input of our framework. To this extent, we define the
notion of ¥-equivalence as follows:

DEFINITION 2.1 (3-equivalence).

Let o1 : ¢1(f1) — 3?171/11(51@1) and oy ¢2(TQ> — 3@27w2(52,y2) be two tgdS
If there exists an isomorphism:

2 (T2, Yo) = Y1(T1, Yy
such that:
= Y1 = p(y)
— i matches existential variables in Y, only with existential variables in v,

— 1 matches universal variables in To only with universal variables in T,
then o1 and o9 are Y-equivalent.

We denote the 1-equivalence between two tgds o1 and oo by the following
notation: oy = 0.

The notion of -equivalence is illustrated in the following example:

Example 2.1. Given two tgds:
S(z,y) — 32, T(x,2) NV (z,y) and U(u,v) — Jw, T'(u,w) A V(w,v)
There exists an isomorphism:
p:T(x,2) ANV(z,y) = T(u,w) ANV (w,v)
between their right-hand side atom conjunctions, matching the universal vari-

ables x and y to the universal variables v and v, and the existential variable z
with to the existential variable w. Thus, these two tgds are V-equivalent.

Analogously, we define the ¢-equivalent between two tgds as follows:

DEFINITION 2.2 (¢-equivalence).

Let o1 : ¢1(T1) — Ty, 01(T1,7,) and o3 : ¢o(Te) — Yy, e(Ta,TYsy) be two tgds.
If there exists an isomorphism:

1 $2(T2) = ¢1(T1)

then o1 and oo are ¢-equivalent.

We denote the ¢-equivalence between two tgds oy and o9 by the following
notation: oy =4 0.

52

A practical framework for Interactive Mapping Specification

Quasi-lattices and partitions We define a quasi-lattice as a restriction of
a complete lattice to a subset of its nodes, included between an upper and a
lower bound sets of nodes. This is formally defined as follows:

DEFINITION 2.3 (Quasi-lattice).
Let L = (L, <) be a lattice.
Then a quasi-lattice for L is a 4-tuples L = (L', <, Ejow, Eup) such that:

- L'CL

Ve e L', 3eion € Elow, Fewp € Eup, such that e, < e < ey
— Yeiow € Eow, A€,y € Eiow such that €], < €ow

— Veuy € Eup, Ae,,, € Eup such that e,y <€,

We also recall a few notions on partitions (Gratzer [Gréa02]). A partition
of a set W is a set P of disjoint and non-empty subsets called blocks, such
that J,cp b = W. The set of all partitions of W is denoted by Part(W). The
fact that two objects of WV are in the same block of a partition P is denoted
by a =p b. The set of all partitions of VW forms a complete lattice under the
partial order:

Po < PreVr,yeW, (z=p,y=z=p, y)

In the next section, we give an overview of the practical framework we
propose to solve the IMS problem.

2.2 Overview of the process and running ex-
ample

The process used to solve the IMS problem is illustrated in Figure 2.1 on
page H4. Intuitively, the process goes through the following steps:

— A first normalization step which begins with the generation of a canon-
ical mapping from the input exemplar tuples set. Next, this canonical
mapping is normalized as described in Section 1.1.

— A second step focuses on the refinement of the atom conjunctions in the
tgds of the produced mapping. To do that, the framework attempts to
get rid of the extraneous atoms in the tgds of the mapping produced
during the initial normalization step.

93

A practical framework for Interactive Mapping Specification

Input:
set, of input pairs

(EL.EL)..(EZ,ED)

Pre-processing

Snorm

° Question

. /—\ Atom
T—— —|refinement

Answer:
Yes or No J/ZatRef (normalized)

° Question :
- /—\ Join
T—— —|refinement

Answer:
Yes or No J/Zfinal
Output:
refined mapping
Zfinal

Figure 2.1: Interactive mapping specification process.

A practical framework for Interactive Mapping Specification

— Finally, the framework explores the possible breaking of joins between
variable occurrences in the tgds, in order to suppress the irrelevant con-
straints they convey.

As the mechanisms involved during the pre-processing step have already
been detailed in the previous chapter, in the current section we only give
a quick illustration of them during the introduction of the running example
which is used along this chapter. We also give a quick overview of the atom
refinement and join refinement steps that are described in detail in the next
two sections.

Pre-processing step Our running example is illustrated in Figure 2.2. In
this example, for the ease of exposition, we suppose that there are only two
exemplar tuples (Eg,, E7,) and (Egq, E75) in the provided input set. However,
in practice, users are likely to provide larger sets of exemplar tuples.

The application of the pre-processing step over the exemplar tuple (Egq, E71)
and (Fgo, E75) produces a canonical mapping containing the canonical tgds
illustrated in Figure 2.2(ii) and 2.2(v) on page 57. Next, the split-reduction
(Definition 1.13) is applied as illustrated in the following example:

Ezample 2.2. The split-reduction of the canonical mappings in Figures 2.2(ii)
and (v) leads to a set of tgds Xspiitreduced- As the normalization does not affect
the left-hand side of the tgds, XspiitReduced 5 populated with tgds whose left-hand
sides remain identical with the left-hand sides in the canonical mapping:

¢1 = Flight(1dFy, townsy, towny , idAiry) A Flight(idFy, towny, towns, idAir)
A Airl(idAirg, namey, towny) A Airl(idAiry, namey, townsy)
N TA(idAg, names, town,)

¢o = Flight(1dFy, towny, towny, idAirg) A Flight(idFy, towny, towng, idAiry)
A Airl(idAirg, namey, towny) A Airp(idAp, names, towns)
N TA(idAg, names, town,)

95

Chapter 2

Thus, the split-reduction leads to the following mapping:

Esplit Reduced = {
¢1 — FidCy, Co(1dCy, names, towny); (2.1)
¢1 — FidCo, 1dFy, Dpt(towny, idFy, idCy)
N Arr(towny, idFy, idCy) A Co(idCy, namey, towny);
(2.2)
¢1 — FidCy, idFs, Dpt(towny, idFs, idCy)
A Arr(towny, idFs, idCy) A Co(idCy, namesy, towns);
(2.3)
¢o — F1dCy, 1dFy, Dpt(towny, idFy, idCy)
N Arr(towny, idFy, idCy) A Co(idCoy, namey, towny) }
(2.4)

Thus, the split-reduction allows us to manipulate tgds with small right-
hand sides during the refinement of the mapping. Next to the split-reduction,
the o-redundancy suppression is applied to the mapping gpitreducea in order
to suppress redundant tgds. We illustrate this step in the following example:

Ezxample 2.3. The o-redundancy suppression on MsplitReduced Allows to suppress
the redundancy induced by tgds (2.2) and (2.3), which are logically equivalent.
As the tgd to suppress is chosen arbitrarily, in the following we suppose that
the suppressed tgd is tgd (2.3).

Moreover, it should be noted that, despite their similar right-hand sides, the

o-redundancy suppression cannot be applied to tgds (2.2) and (2.4) as their
left-hand sides are different.

This leads to the normalized mapping Xorm -

Enorm - {
¢1 — FidCy, Co(idCy, names, town,); (2.1)
d)l — E'ZdCO, ZdFQ, Dpt(toumg, idFQ, ZdCO)

A Arr(towny, idFy, idCy) A Co(idCy, namey, towny);
(2.2)

¢2 — HZdCO, ZdFQ, Dpt(tOUJTLQ, ZdFQ, ZdCO)

A Arr(towny, idFy, idCy) A Co(idCoy, namey, towny) }
(2.4)

After this step, the mapping refinement is executed over ¥,,,..,.

26

2.2. OVERVIEW OF THE PROCESS AND RUNNING EXAMPLE

(i) Source instance Fg; :

Airl (Airline):

IdAirline | Name | Town

airlineO | AAir L.A.

airlinel | MAI | Miami
Flight (Flight):

IdFlight | From To IdAirline
flightO | Miami | L.A. | airlineO
flightl | L.A. | Miami | airlinel

TA (TravelAgency):
‘ IdAgency ‘ Name ‘ Town ‘
| ag0 | TC | LA |

(iv) Source instance Eg; :

Airl (Airline):
[IdAirline | Name | Town |
| airline0 | AirF | Paris |

Flight (Flight):
1dFlight | From To IdAirline
flightO | Lyon | Paris | airline0
flightl | Paris | Lyon | airlinel

TA (TravelAgency):
‘ IdAgency ‘ Name ‘ Town ‘
‘ ag0 ‘ DT ‘ Paris ‘

Airp (Airport):
‘ IdAirport ‘ Name ‘ Town ‘
‘ ap0 ‘ SE ‘ Lyon ‘

(ii) Canonical tgd:

Flight(idF g, towns, towny, idAirg)
A Flight (idFy, towny, town,, idAir;)
A Airl(idAirg, namey, town;)
A Airl(idAiry, namey, town,)
A TA(idAg, names, town;)

— 3dCy, idCy, idCy, idFy, idFs,
Co(idCy, name, town,)
A Co(idCy, namey, town;)
A Co(idCy, name,, towns)
A Dpt(towny, idFs, idCo)
A Arr(towny, idF5, idCy)
A Dpt(towny,idF3,idCy)
A Arr(towns, idF3, idCy)

(v) Canonical tgd:

Flight(idF g, towns, towny, idAirg)
A Flight (idFy, towny, towny, idAir;)
A Airl(idAirg, namey, town;)
A TA(idAg, names, town;)
A Airp(idAp, name,, towny)

— JidCy, idFy,
Co(idCy, namey, town,)
A Dpt(towny, idFs, idCy)
A Arr(towny, idF,, idCy)

(vii) Final mapping after refinement:

Efinal = {

(iii) Target instance E7; :

Co (Company):

IdCompany | Name Town
comp0 Adir | LA
compl MAI Miami
comp2 TC L.A.

Dpt (Departure):
Town | IdFlight | IdCompany
Miami | flight2 compO
LA | flight3 compl
Arr (Arrival):
Town | IdFlight | IdCompany
L.A. | flight2 compO
Miami | flight3 | compl

(vi) Target instance Ery :

Co (Company):
IdCompany ‘ Name
comp0 | AirF

Town ‘
Paris‘

Dpt (Departure):
Town | IdFlight | IdCompany
Lyon | flight2

comp0

Arr (Arrival):
[Town | IdFlight | TdCompany |
‘ Paris ‘ flight3 ‘ compO ‘

TA(idAg, names, town;) — FidCy, Co(idCy, names, town,);

Flight(idF g, towny, town;’, idAirg) A Airl(idAirg, name;, town;"”)

— ElldCO, idF27

Dpt(townsy, idFq,1dCq) A Arr(town;’, idFs,1dCq) A Co(idCop, namey, town;”)

}

Figure 2.2: Running example: exemplar tuples (Eg;, Er;) and (Esg, E12) (1),

(iii), (iv) and (vi), resp.; tgds in the canonical mapping (ii) and (v), and

Final mapping (vii).

Chapter 2

Refinement overview For a given set of exemplar tuples, we have seen in
the previous chapter that the number of mappings satisfying it may be large,
leading to a big set of questions to ask to the user. Therefore, it is important
to provide efficient exploration strategies of the space of mappings in order to
reduce the number of questions we need to ask to our users. An important
method used here relies on the fact that we can partition the normalized canon-
ical mapping in blocks of 1-equivalent tgds. All tgds in a block of y-equivalent
tgds are handled together to find morphisms between subsets of their left-hand
sides. Such morphisms correspond to equivalent tgds that can be extracted
from different exemplar tuples, so we need to avoid exploring them more than
once in order to reduce the size of the explored space. This is illustrated in
the following example:

Example 2.4. During the refinement of our running example, the framework
run over the following tgds:

o1 — FidCy, 1dFy, Dpt(towny, idFy, idCy)

A Arr(towny, idFy, idCy) N\ Co(idCy, namey, towny) (2.2)
o — F1dCo, 1dFy, Dpt(towny, idFy, idCy)

N Arr(towny, idFy, idCy) A Co(idCy, namey, towny) (2.4)

And, during the atom refinement step, the conjunction:
Flight (idFy, towns, towny , idAirg) N Airl(idAiry, namey, towny)

18 used as a possible left-hand side conjunction refinement for both of the tgds
(2.2) and (2.4), leading to only one tgd:

Flight(idFy, towng, towny , idAirg) A Airl(idAiry, namey, towny)
— E'ZdCO, ZdFQ, Dpt(towng, ing, ’LdCO) (25)
N Arr(towny, idFy, idCy) A Co(idCy, namey, town,)

Thus, during refinement steps, we want to efficiently spot such logically
equivalent tgds in order to ask a question about their validity only once.

Two successive steps are applied during refinement: the atom refinement
step and the join refinement step. We illustrate such steps in Figure 2.1 on
page 54, along with the corresponding user interactions required to obtain the
final result, i.e., the refined tgds that meets the user’s requirements. The atom
refinement step aims at removing unnecessary atoms in the left-hand side of
the tgds within the normalized mapping obtained in the pre-processing. The
join refinement step applies the removal of unnecessary joins between variable

o8

A practical framework for Interactive Mapping Specification

occurrences in each tgd belonging to the mapping output by the atom refine-
ment step. During both steps, the user is challenged with specific questions
devoted to address ambiguities of the provided exemplar tuples and refine the
normalized canonical mapping obtained in the pre-processing step. We focus
on the atom refinement step in Section 2.3 and we postpone the description of
the join refinement step to Section 2.4.

In this chapter, unlike the formal framework presented in Chapter 1 that
serves as foundation of our approach, we focus on universally quantified vari-
ables as the targets of the refinement algorithms and assume that the existential
variables in the right-hand side of the tgds are unambiguous (and appear as
such in the input exemplar tuples). In other words, value invention (e.g., the
production of labelled nulls in SQL) in the target exemplar tuples is supposed to
be correct and the user is not inquired about them. This also implies that our
algorithms do not create fresh existential variables in the tgds, as illustrated
in the following example:

Example 2.5. Given a tgd:
S(z,y) NU(y,z) = T(x, 2)
our framework does not consider refinements like:
S(z,y) — 32, T(x,2) or Uly,z) — Iz, T(x, 2)

as they lead to transform universally quantified variables into existentially
quantified variables.

This choice comes from the fact that the introduction of such variables
would drastically increase the number of mappings to explore, and their cov-
erage would entail non-trivial extensions of our algorithms which are beyond
the scope of this work.

2.3 Atom refinement step

In this section, we focus on the atom refinement step. As seen in Section 2.2,
the normalization produces a split-reduced mapping from the canonical map-
ping in which each tgd has a large left-hand side ¢. However, some atoms in
¢ may be irrelevant for the users’ expected mapping, preventing the triggering
of a tgd and consequently preventing the exportation of desirable tuples. To
alleviate these ambiguities, we present Algorithm 1 on page 60. This algo-
rithm first groups the refined tgds into a partition of ¢-equivalent tgds, and
then refines the blocks of this partition.

29

Chapter 2

In the following, we first describe the partition of -equivalent tgds which
is used as baseline structure for the creation of the quasi-lattices explored
by our algorithm. Next, we describe these quasi-lattices and the way they are
explored. Finally, we provide formal guarantees for the mapping output by our
algorithm as well as an evaluation of the maximum number of asked questions
in the worst case.

Algorithm 1 TgdsAtomRefinement(X)

Input: A set of tgds ¥ to be atom refined.
Output: A set of tgds ¥’ where each tgd is atom refined.

1: Ps < generate partition of y-equivalent tgds from X
2: X« ()

3: for all b € Px, do

4: let b be Y-equivalent over v,

5: Ceana < generate set of possible left-hand side candidates from b
6: Coatia < generate the upper bound of the quasi-lattice over b
7: Cinvatia < 0

8: while C.q,q # () do

9: e < SELECTATOMSET(Ceand, Coatid)

10: if ASKATOMSETVALIDITY (e, 1)) then

11: add e to Cypalid

12: remove supersets of e from C, g

13: remove e and its supersets from C.ung

14: else

15: add e to Cippatid

16: remove e and its subsets from C.gng

17: end if

18: end while
19: for all e € Cpyiq do

20: add the tgd (e —) to ¥’
21: end for
22: end for

23: return X’

2.3.1 Partition of v-equivalent tgds

The first step of atom refinement aims at grouping ¥-equivalent tgds together.
Grouping these tgds together allows to efficiently avoid exploration of redun-
dant questions in the search space. To this end, given ¥, = {01 ...0,} the

60

A practical framework for Interactive Mapping Specification

set of tgds generated during by the pre-processing step, we create a partition
Prorm of Xpomm in which each block is constituted by i-equivalent tgds.
Formally, we define a partition of i-equivalent tgds as follows:

DEFINITION 2.4 (Partition of iy-equivalent tgds).
Let ¥ = {0y ...0,} be a set of tgds.
A partition P of X is a partition of ¢-equivalent tgds for X if:

VO'Z‘,O'j €X,0;=p Oj < 0; =y 0

Such a partition is illustrated in the following example:

Example 2.6. Continuing our running example, we borrow the set of tgds ¥yorm
from Example 2.3:

Shorm = {01 ¢1 — FidCy, Co(idCy, names, town,); (2.1)
o9 : 1 — FidCy, idFs, Dpt(towny, idFy, idCy)
N Arr(towny, idFy, idCy) A Co(idCy, namey, towny);
(2.2)
03 : ¢y — JidCy, idFy, Dpt(towny, idFy, idCp)
N Arr(towny, idFy, idCy) A Co(idCy, namey, town,)
(2.4)

}

In these tgds, it can be seen that oo and o3 are W-equivalent, contrary to oy.
Thus, the partition of 1-equivalent tgds for Xpomm 18:

7Dnorm = {{01}7 {02; 03}}

Such a partition serves as baseline structure to create the quasi-lattices
that are explored and pruned by our framework, as it will be illustrated in the
next section.

2.3.2 Quasi-lattice of atom conjunctions

In our framework, given P,.., the partition of 1-equivalent tgds for X,,.m,
we explore each block B € P (Algorithm 1 line 3) using a quasi-lattice as
baseline structure.

For each block, B € P,orm we first define the complete lattice of conjunc-
tions upon which we build our quasi-lattice:

DEFINITION 2.5 (Complete lattice of left-hand side conjunctions).
Let B be a block of a partition of 1-equivalent tgds.

61

Chapter 2

Let {¢1;...; 0.} be the set of the left-hand parts of the tgds in B.

Let Pow({J!_, ¢i) be the powerset of the set of all atoms in the left-hand sides
of the tgds in B.

Let Cy, be the inclusion relation with variable renaming through a homomor-
phism.

Then, the complete lattice of left-hand side conjunctions for B is:

L= (POW(U i), Sh)

For all elements e, and e, of Pow(|J;_, ¢;) the least-upper bound of the set
{€4, ey} is their union.

Moreover, as atom refinement does not add new constraints in the tgds, it
does not create conjunctions which are not subsets of the left-hand side of at
least one tgd in B. Hence, we can define the upper bound of the quasi-lattice
as follows:

DEFINITION 2.6 (Upper bound of a quasi-lattice of conjunctions).
Let B be a block of a partition of 1-equivalent tgds.

Let {¢1;...;0,} be the set of the left-hand parts of the tgds in B.
Let At(¢;) be the set of atoms in the conjunction ¢;.

Then the upper bound of the explored quasi-lattice is the set:

{At(d1); ... At(dn)}

Thus, during the atom refinement, the explored conjunctions will always
be subsets of one of the sets in the upper bound. This restriction takes effect
in line 5 and line 6 of Algorithm 1. In particular, at line 6 of Algorithm 1,
the whole set of atom conjunctions in the upper bound of the quasi-lattice
is placed in the set of valid candidates. This comes from the fact that these
atom conjunctions are the most constrained conjunctions that can be explored.
Indeed, these conjunctions correspond to the information conveyed by the
users’ exemplar tuples and, consequently, by the canonical mapping. So, if
the users answer 'No’ when asked about the validity of these conjunctions,
this means that at least one of the pairs of instances provided as input of our
process is not a proper exemplar tuples (Definition 1.19 on 29).

We illustrate the upper bound of the quasi-lattices of our running example
in the following:

FExample 2.7. Considering the tgds in the partition:
Pnorm = {{01}7 {02; 03}}

62

A practical framework for Interactive Mapping Specification

of Example 2.6 on page 61, the left-hand sides are made of conjunctions ¢,
and ¢s.

The elements of the quasi-lattices for oo and o3 are the subsets of the two
following sets of atoms (the sets of atoms in ¢y for oo, and in ¢y for o3):

At(¢1) = { Flight(idFy, towny, towny, idAiry); Flight (idFy, towny, townsy, idAiry);
Airl(idAiry, namey, towny); Airl(idAiry, names, towns);
TA(idAg, names, towny)}

At(po) = { Flight (idFy, towny, towny , idAiry); Flight (idFy, towny, townsy, idAiry);
Airl(idAiry, namey , towny); Airp(idAp, names, towns);
TA(idAg, names, towny)}

It is worth noting that many of the subsets of these two sets are homomorphi-
cally equivalent. Such equivalences can be used to leverage common parts of
the tgds.

For the tgd in the singleton {o1} the upper bound of the quasi-lattice is
the set of atoms At(¢y), leading to an upper semi-lattice of conjunctions if we
consider the lower bound described in the following definition.

Moreover we recall that, as stated in Section 2.2, our framework does not
create new existentially quantified variables in the tgds, we need to prune each
set of atoms leading to violate this rule. Recalling that an existential variable
in a tgd corresponds to a variable occurring only in the right-hand side (i.e., a
variable leading to the creation of new value in the target instance), thus each
candidate left-hand side conjunction that does not contain the whole set of
right-hand side universal variables will be excluded from the set of candidates.
Consequently, we can define the lower bound of our quasi-lattices as the set
of smallest left-hand side conjunctions containing, at least, all the universal
variables of the right-hand side conjunction. More formally:

DEFINITION 2.7 (Lower bound of a quasi-lattice of conjunctions).

Let B ={oy;...;0,} be a block of a partition of 1-equivalent tgds.

Let body(o) be the left-hand part of a tgds o.

Let var(¢) be the set of variables in the conjunction ¢.

Let frontier(o) be the set of variables occurring in both sides of the tgd o.

Let Cp, be the inclusion relation with variable renaming through a homomor-
phism.

Then the lower bound of the explored quasi-lattice is the set:

{¢ | Jo € B, ¢ C body(c) A frontier(c) C var(¢)
A (Vo' € B, A¢' C body(d’) such that ¢’ Cj, ¢ A frontier(o”) C var(¢'))}

63

Chapter 2

The restriction conveyed by this lower bound takes effect in line 5 of Algo-
rithm 1 where each set which is not a superset of a set in the lower bound is
pruned.

The lower bound of our running example is illustrated in the following
example:

Example 2.8. We illustrate the atom refinement on the set of tgds Xorm from
Example 2.2 on page 55. As the process stays analogous for each tgd in ¥orm,
we focus on the tgds (2.2) and (2.4) whose right-hand side is:

Y1 =h Yo
=, 3idCy, idFy, Dpt(towny, idFy, idCp)
A Arr(towny, idFs, idCy) A Co(1dCy, namey, towny)

The set of universally quantified variables in this conjunction is:
{towny, towny, name, }

In order to prevent the creation of new existential variables, a refined tgd needs
to contain at least one occurrence of each of these variables in its left-hand side.
Consequently, for tgd (2.2) the smallest subsets of the set of atoms At(¢) given
in Example 2.7 on page 62 for which this assumption is valid are:

{Flight(idFy, towns, towny , idAiry); Airl(idAiry, namey, towny) },
{Flight(idFy, towny, towny, idAiry); Airl(idAiry, namey, towny)}
and { Airl(idAirg, namey, towny); Airl(idAiry, namey, towny)}

Analogously, for tgd (2.4), the smallest subsets of the set of atoms At(¢s) given
mn Example 2.7 for which this assumption is valid are:

{Flight(idFy, towns, towny , idAiry); Airl(idAiry, namey, towny) },
{Flight(idFy, towny, towny, idAiry); Airl(idAiry, namey, towny)}

and { Airl(idAirg, namey, town,); Airp(idAp, namey, towns)}

The set containing all of these smallest subsets constitutes the lower bound of
our quasi-lattice. It should be noted that this set will contain four elements, as
two of the smallest subsets are common between tgd (2.2) and (2.4).

From these previous definitions, we can now provide an example of the
quasi-lattices that are explored during atom refinement of our running exam-
ple.

64

A practical framework for Interactive Mapping Specification

CARATTAY (Ao Ar o} [l AL L) {%n%%% Hﬁ?ﬂ%} (o B TA} %ﬁéxp} o B Ap} (s AnTA)

{Ag; Ay} [/{AU;FI} ! {Ay; Ap}

Figure 2.3: Atom sets quasi-lattice on examples 2.9 and 2.10. With atoms:
Ap = Airl(idAirg, namey, town;), Fo = Flight(idFg, towny, towny, idAirg),
Ay = Airl(idAiry, namey, towny), Fy = Flight(idFy, towny, towns, idAiry),

TA = TA(idAg, names, town;) and Ap = Airp(idAp, name,, towns).

Example 2.9. We recall that we do not allow the creation of new constraints,
leading to consider left-hand sides of the tgds (2.2) and (2.4) as the upper
bound of our exploration space as shown in FExample 2.7 on page 62.

We also recall that we do not create existential variables, so each set which
s not a superset of a set in the lower bound shown in Example 2.8 is pruned.

Thus, the search space resulting of this pruning forms the quasi-lattice
shown in Figure 2.3 on page 65 with the left side corresponding to sets of atoms
specific to tgd (2.2), the right side corresponding to sets of atoms specific to tgd
(2.4) and the central part corresponding to common atom sets between (2.2)

and (2.4).

In the next section, we will show how the quasi-lattices can be explored,
and especially how the search space can be pruned in order to reduce the
number of interactions with the users.

2.3.3 Exploring the quasi-lattice

During the exploration of the space of possible candidates for a given quasi-
lattice at line 8 of Algorithm 1 on page 60, the user is challenged upon one
element of the quasi-lattice at a time. At each iteration, the choice of an
element is done using a given exploration strategy, corresponding to the call
of SELECTATOMSET in line 9 of Algorithm 1. This allows our algorithm to
be independent of the chosen strategy, and thus to adapt this strategy to the
exemplar tuples or to the kinds of users (e.g., by using a strategy assuming an
important number of superfluous tuples in the initial exemplar tuples sets if
the system is used by non-expert users).

During the exploration, the user is challenged at line 10 of Algorithm 1 by

65

Chapter 2

being asked a question about the validity of the evaluated element of the quasi-
lattice. An important property of the quasi-lattice of atom refinement implies
that, once the user validates one of the candidates, then all the supersets
of such candidate can be excluded from further exploration, thus effectively
pruning the search space. Analogously, once the user invalidates one of the
candidates, then all the subsets of such candidate can be excluded from further
exploration.

The pruning of the quasi-lattices during their exploration is illustrated in
the following example:
Ezample 2.10. Following previous Example 2.9, we are refining the tgds (2.2)
and (2.4) by exploring the quasi-lattice shown in Figure 2.3 on page 65.

Assume, for the sake of the example, that we employ a breadth-first bottom-
up strateqy, starting the exploration of the upper quasi-lattice in Figure 2.3 at
its bottom-up level with the set of atoms:

{Airl(idAiry, namey, towny); Airl(idAiry, namey, towns) },
{Airl(idAiry, namey, towny); Flight (idFy, towns, towny , idAiry) },
{Airl(idAiry, namey, towny); Flight (idFy, towny , towns, idAir)}
and { Airl(idAirg, namey, town,); Airp(idAp, namey, towny)}

The user is asked about the validity of the set corresponding to the bottom left
light gray box of Figure 2.5:

{Airl(idAiry, namey, towny); Airl(idAiry, names, towns) }

with the following question:

“Are the tuples:
Airl(airline0, AAir,L.A.) and Airl(airlinel, MAT, Miami)
enough to produce:
Dpt(Miami, f1ight2, comp0), Arr(L.A.,f1ight2, compO)
and Co(compO, AAir,L.A.)7"

We can observe that a positive answer implies an inconsistency with respect
to the application domain, namely that the second flight company is based in
the same town as the departure of the flight, which is not the case in real-world
examples. Hence, the user will be likely to answer ‘No’ to the above question.

Next, now assume that Algorithm 1 proceeds with:

{Airl(idAiry, namey, town,); Flight(idFy, towng, towny, idAirgy) }

This atom set is common between the tgds (2.2) and (2.4), consequently we
can use tuples from (E%, EL) or (E%, E%) to generate the question. Here we
take tuples from (EL, EL.), leading to the following question:

66

A practical framework for Interactive Mapping Specification

“Are the tuples:
Flight(£1ightO,Miami, L.A.,airline0) and Airl(airline0, AAir,L.A.)
enough to produce:
Dpt(Miami, f1ight2, comp0), Arr(L.A.,f1ight2, compO)
and Co(compO, AAir,L.A.)7”

Assuming that the user will answer ‘Yes’ to this question, the supersets of:
{Airl(idAiry, namey, towny); Flight(idFy, towny, town, , idAirg) }

will be pruned (crossed out boxes of Figure 2.3) and the following tgd will be
output by the algorithm:

Flight (idFy, towns, towny , idAirg) N Airl(idAiry, namey, towny)
— HZdCO, ZdFQ, Dpt(towng, ZdFQ, ZdCO) (26)
N Arr(towny, idFs, idCy) A Co(idCy, namey, town,)

We continue the exploration of the current level with sets:

{Airl(idAiry, namey, towny); Flight (idFy, towny , towny, idAir)}
and { Airl(idAiry, namey, town,); Airp(idAp, namey, towny)}

Assuming that the user does not validate these sets, they will be finally chal-
lenged about the last available sets on the next level of the quasi-lattice, namely
on the sets:

{Airl(idAiry, namey, towny); Airl(idAiry, namey, towns);

TA(idAg, names, towny)},
{ Airl(idAiry, namey, towny); Airl(idAiry, namesy, towns);

Flight(idFy, towny, towny, idAiry) },
{Airl(idAiry, namey, towny); Flight (idFy, town, , towny, idAir);

TA(idAg, names, towny) },
{Airl(idAiry, namey, towny); Flight (idFy, towny , towny, idAir);

Airp(idAp, namesy, towns) }
and

{Airl(idAiry, namey, towny); Airp(idAp, namesy, townsy); TA(idAg, names, town,) }

which are also labelled as invalid. In the end, for the combination of tgds (2.2)
and (2.4), Algorithm 1 will output the single tgd (2.6).
Analogously, the tgd:

1 — FidCsy, Co(idCy, names, town,); (2.1)

67

Chapter 2

which is exemplified in the exemplar tuple (E%, EY.) of our scenario (but not
in (E%, E%)) will lead to the following tgd after refinement:

TA(idAg, names, town,) — JidCy, Co(idCy, names, town,)

Thus, the application of Algorithm 1 over the normalized mapping >porm
will result in the following mapping Yaipes:

Yatref = TGDSATOMREFINEMENT (2,617,
={
Flight(idFy, towns, towny , idAirg) A Airl(idAiry, namey, towny)
— 3idCy, idFy, Dpt(townsy, idFy, idCy) N Arr(towny, idFy, idCy)
A Co(idCy, namey, town,); (2.6)

TA(idAg, names, towny) — FidCy, Co(idCy, names, towny) — (2.7)
}

2.3.4 Questioning about atoms set validity

In the atom refinement algorithm, the user is challenged on the validity of the
left-hand side atoms of the canonical mapping at line 10 of Algorithm 1 on
page 60 with the use of questions as those shown in Example 2.10 on page 66.

We recall that the questions asked have been formally defined in the Defi-
nition 1.24 on page 34. In order to evaluate the validity of a given conjunction
¢ during the exploration of a quasi-lattice, we build on the correspondence be-
tween atoms in ¢ and the tuples that appear in the sources Eg’. To apply this
correspondence, the ASKATOMSETVALIDITY (e, ¥) procedure of Algorithm 1
constructs a pair (Eg®%, Ep*") by transforming the candidate subset e into
an instance Eg¢“Y*. Recalling that the bijection # has been defined in Defini-
tion 1.16 on page 27, Es®%" is formally defined as follows:

Es" ={07"(a)]a € e}
Then the chase procedure is used to compute E7%%¢, formally:
Er©Y" = CHASE(e — 1y, Es®"")

We illustrate the construction of such a data example in the following example:

Example 2.11. This example focuses on the generation of the exemplar tuples
underlying the questions of Example 2.10 while refining the tgds (2.2) and
(2.4). We are challenging the user about the validity of the set of atoms:

e = { Flight(idFy, towny, towny, idAiry); Airl(idAiry, name,, towny)}

68

A practical framework for Interactive Mapping Specification

which is a subset of the left-hand side of the tgds (2.2) and (2.4). For each
tgd, these atoms are built from the sets:

EY = {Flight(f1ight0, Miami,L.A., airline0); Airl(airline0, AAir,L.A.)}
EZ = {Flight(£1ight0, Lyon, Paris, airline0); Airl(airline0, AirF, Paris)}

which are subset of the instances E§ and E%, respectively. We want to chal-
lenge the user whether the following generalization of the tgds (2.2) and (2.4)
is sufficient:

o =Flight(idFy, towny, towny, idAirg) N Airl(idAiry, namey, towny)
— ElZdCO, ZdFQ, Dpt(towm, ZdFQ, ZdOO)
A Arr(towny, idFy, idCy) A Co(idCy, namey, town,)

The chase procedure applies o on Eé’ (ng, resp.) to obtain the following
instance E%p' (E?p/, resp.), from which the first question appearing in Exam-
ple 2.10 is derwved:

EY = {Dpt(Miami, f1ight2, comp0); Arr(L.A., £1ight2, comp0);
Co(comp0, AAir,L.A.)}

EZ = { Dpt(Lyon, f1ight2, comp0); Arr(Paris, f1ight2, comp0);
Co(comp0, AirF,Paris)}

2.3.5 Formal guarantees of the atom refinement algo-
rithm

In this section, we first show that when shifting from the initial canonical
mapping to its refined form as given by Algorithm 1, we obtain a more general
set of tgds. Then, we show that the mapping output by the atom refinement
step is always split-reduced and does not contain o-redundant tgds.

LEMMA 2.1.

Let M = (S, T,X) be a canonical mapping.

Let M’ = (S, T,) be a mapping obtained from atom refinement of M.
Then, for all source instances Eg, there exists a morphism p such that:

w(CHASE(X, Es)) C cHASE(Y, E)

By the correctness of the chase procedure, the logical entailment M’ = M
holds.

69

Chapter 2

Proof. For each tgd 0 = ¢ — ¢ € M there exists at least one tgd 0/ = ¢ —
1 € M’ that is an atom refinement of o. Then, ¢’ must correspond to a node
in the quasi-lattice, such that ¢’ C ¢. We introduce a function ref: M — M’
that associates to each o in M one of its refinements (that may be arbitrarily
chosen if there are several such tgds in M’).

Let v be an instantiation mapping to compute CHASE(M, Fg). That is,
there exists a tgd 0 = ¢ — v € M such that v(¢) C Eg and v(¢p) C
CHASE(M, Eg). Moreover each existential variable in ¢ is mapped by v to
a fresh labelled null, which means that v~! is defined for such values. Since
¢ C ¢, v(¢) C Eg. Therefore, there exists an instantiation mapping v’ such
that (1) v/(¢') C Es (2) V(") C CHASE(M’, Eg) and (3) for all variables x in
¢, V' (x) = v(x). However, v/ and v can differ in two ways: the domain of v/
can be smaller than the domain of v and the labelled nulls that are assigned
to existential variables in ¢ can be different because the chase generates fresh
null values at each tgd application. By construction of C.q,q in Algorithm 1,
any variable x in) is either an existential variable or a universal variable
in ¢'. Thus, every variable x in v is either mapped to fresh null values by
v and v/ or, alternatively, v(x) = v/(x). We introduce u, a morphism from
v(¢) C CHASE(M, Eg) to /() C CHASE(M', Ey), defined as p,(c) = c if
there exists x in ¢ such that v(x) = ¢ and p,(c) = v/(v"!(c)) otherwise (that
if ¢ is a fresh value generated by CHASE(M, Ey)).

Let us consider two instantiation mappings v; and v, used in CHASE(M, Ey)
and their associated morphisms p,, and p,,. Let ¢ be a value in dom(pu,,) N
dom(fuy,). 1f ¢ is fresh and in dom(p,,), it means that it is the image of an exis-
tential variable by v, which means that it cannot be the image of any variable
by vs, and thus ¢ & dom(u,,) which contradicts ¢ € dom(fu,,) Ndom(p,,). Thus
c is not fresh, thus 1, (c) = ¢ = p,(c). We define pigy, 1,1 as gy, 0,1 (c) = i, (¢)
if ¢ € dom(p,) and jigy, 1)(c) = pi,(c) otherwise. One can remark that
Hofur,vo} |dom(uu1): oy and figy,; v,y |dom(uu2): Iy, By iterating this construction
on the finite set A of all instantiation mappings v used in CHASE(M, Eg), we
can build a morphism g = py.

Let ¢t be a tuple in CHASE(M, Eg). There exists an instantiation mor-
phism v used in CHASE(M, Es) and a tgd ¢ — ¢ such that t € v(v).
Since 1, (v(¢¥))) € CHASE(M', Eg) and it |gom(u,)= tv we deduce pu(t) €
CHASE(M', Eg). O

This lemma comes from the assumption on our practical framework that
no new existentially quantified variable is created. However, it should be noted
that this lemma does not hold if the framework is allowed to create new existen-
tial variables, which is feasible as shown in Chapter 1 on the formal framework
for the resolution of the IMS problem.

70

A practical framework for Interactive Mapping Specification

In the following example, we illustrate that this lemma does not hold if the
creation of existentially quantified variables is allowed:

Ezample 2.12. Given a pair (Eg, E7) such that:
Es ={R(x,y);5(z)} and Ex ={T(x)}
then the canonical mapping corresponding to (Eg, Er) is:
Y ={R(z,y) NS(2) = T(x)}

Suppose that atom refinement allows the creation of existentially quantified
variables. By applying this refinement on ¥, we may obtain the mapping:

Y ={S(z) = Iz T(x)}
and thus, chasing Es under ¥ and X' will lead to following results:
CHASE(Es, X)) = {T'(x)} CHASE(FEs,Y) = {T(x1)}

for which there is no morphism p such that u(CHASE(FEs, X)) € CHASE(Eg,Y),
because the constant x has to be preserved.

Moreover, we show in following Lemma 2.2 that the mapping output by
the atom refinement step is always split-reduced and has no o-redundant tgds:

LEMMA 2.2.

Given a normalized canonical mapping M = (S, T,X), application of atom
refinement on the tgds in 3 always produces a mapping which is split-reduced
and without o-redundancy.

Proof. As M is already normalized, it is split-reduced. During the refinement
step, only atoms in the left-hand side are suppressed, so there is no way to
break joins between existentially quantified variables as they are located only
in the right-hand side. This means that M’ is split-reduced.

Also, the refinement uses one quasi-lattice for each block of 1-equivalent
tgds. So the only way to create equivalent tgds is to validate two equivalent
left-hand side conjunctions in a same quasi-lattice, and there is no equivalent
nodes in such quasi-lattice. This means that M’ has no o-redundant tgds. [

Thus, no additional normalization is required after the atom refinement
step, prior to the launch of the join refinement step.

In the next section, we will provide the worst case complexity of the atom
refinement step, in terms of the number of asked questions.

71

Chapter 2

2.3.6 Complexity of the quasi-lattice exploration in terms
of the number of asked questions

Depending on the mapping provided as input of Algorithm 1, the size of the
explored quasi-lattices will fluctuate noticeably.

In the worst-case scenario, all blocks in the partition of i-equivalent tgds
are singletons, and all sets in the lower bounds are singletons too. This leads
to explore the complete quasi-lattices of all possible atom conjunctions on the
left-hand side for every tgd in the pre-processed mapping.

Thus, given a mapping M = (S, T, Y), for each tgd ¢ in the set of tgds
>} the complete quasi-lattice of atom sets for o is explored. Thus, if n, is
the number of atoms in the left-hand side of a tgd ¢ € 3, the size of the
explored lattice will be 2" elements. Since the empty set is not considered as
a solution, and the upper bound is always valid with respect to the expected
mapping under our assumption, we can subtract two questions to the previous
results. Thus, the maximum number of questions that can be asked for a tgd o
is (2" —2). Finally, we can define an upper bound of the number of questions
that can be asked during execution of TGDSATOMREFINEMENT() as:

> @ -2

VO’GEin

It should be noted that this worst-case where no pruning can be performed
serves as an upper bound of the number of questions but is not likely to occur
in practice. An experimental study of the number of questions asked during
the specification of realistic mappings is provided in the Section 4.1.

In the next section, we will describe the join refinement step that follows
the atom refinement step in our mapping specification framework (Figure 2.1).

2.4 Join refinement step

In this section, we describe the join refinement step that follows the atom
refinement step in our framework (Figure 2.1 on page 54). The intuition behind
this step is that, in relational data, multiple occurrences of a same value do
not necessarily imply a semantic relationship between the attributes containing
such value. An example from our running example (Figure 2.2 (i) and (iii) on
page 57) is the occurrence of the constant L.A. to represent both the city where
the headquarters of AAir company is located, and the arrival and departure
city of two flights.

In such a case, the canonical mapping imposes co-occurrences that may
be due to spurious use of the same variable. Thus, the canonical mapping

72

A practical framework for Interactive Mapping Specification

may introduce irrelevant joins in the left-hand side of the tgds, preventing the
triggering of tgds as illustrated in the following example:

Example 2.13. We recall the tgd (2.6) from the mapping Xaires output by the
atom refinement step, as illustrated in Example 2.10 on page 66:

Flight(idFy, towny, towny , idAiry) A Airl(idAirg, namey, town,)
— E'Zde idFQ, Dpt(towng, idFQ, ZdCQ) (26)
N Arr(towny, idFy, idCy) A Co(idCy, namey, town,)

The ambiguity conveyed by the initial exemplar tuples leads to only trigger
the tgds for source instances with a structure similar to the following instance:

Eg = {Flight(f1ight0, Lyon, London, airline0);
Airl(airline0, BritAir, London)}

where the headquarters of the company and the town of arrival of the flight are
identical.

At the opposite, if the same company provides a flight from Lyon to another
town than London, which is likely to arrive, such as in the following source
mstance:

Es' = {Flight(f1ight0, Lyon, Berlin, airline0);
Airl(airline0,BritAir, London)}

then, despite the fact that the instance is perfectly valid in a real-world context,
the tgd will not be triggered and consequently the information about this flight
will not be exported to the target instance.

Consequently, in order to produce the mapping the users have in their
minds, we primarily need to distinguish relevant joins from irrelevant ones. To
do so, this section presents the join refinement step and details a join refinement
algorithm that explores the candidate joins in each tgd by inquiring the user
about the validity of such joins.

2.4.1 Join partitions

As joins in tgds are encoded by multiple occurrences of a variable, we refer
to these variables as join wvariables. Refining a join corresponds to replace
some occurrences of these join variables with fresh variables, in order to break
the join. In order to represent the possible breaking of the joins between the
occurrences of a variable, we use the notion of join partition which is defined
as follows:

73

74 A practical framework for Interactive Mapping Specification

Algorithm 2 TgdsJoinRefinement(X)

Input: A set of tgds 3 to be join refined.
Output: A set of tgds ¥’ where each tgd is join refined.

1. Y @
2: for all o € ¥ do
3 let 0 = ¢(T) — 37, (T, 7)

4: Y — {U}

5: for all x € 7 do

6: if variable x occurs more than once in ¢ then

T ZJez*plored — Zt

8: Y — 0

9: for all 0’ € X.4pi0reqa dO

10: ¥t « Xy U VARJOINSREFINEMENT (X, 0/, x)
11: end for

12: end if

13: end for

14: Y YU,
15: end for

16: return X’

A practical framework for Interactive Mapping Specification

DEFINITION 2.8 (Join partition for a variable).

Let o be a tgd.

Let x be a variable of o.

Let {x1;...;2,} be the set of the n occurrences of x in o.

Then, a join partition for x in o is a partition P of the set {x1;...;z,} such
that each block in P represents the variables to be unified together.

In the following, for ease of exposition we assimilate initial variable occur-
rences with their fresh variable counterpart.
The notion of join partition is exemplified in the following example:

Ezxample 2.14. Recall tgd (2.6) from Ezxample 2.10 obtained after the atom-
refined mapping below:

Flight(idFy, towng, towny , idAirg) N Airl(idAiry, namey, towny)
— ElZdCO, ZdFQ, Dpt(towng, Z‘dF27 Zd00> (26)
A Arr(towny, idFs, idCy) A Co(idCy, namey, towny)

There is an ambiguity on the use of the same town as the town of arrival
and departure of flights and the town where a travel agency’s headquarters
is located, as shown by the multiple occurrences of the join variable town, at
four different positions. Thus, if we replace the occurrences of town, by the

fresh variables town,’, town,”, town,"”" and town,"", a possible join partition
for town; can be the partition:

{{town,"}; {town,"}; {town, ™' }; {town,""' } }

for which no unification is done between variable occurrences, yielding the fol-
lowing candidate tgd:

Flight (idFy, towny, towny”, idAiry) A Airl(idAirg, namey, town,")
— HldC(), ZdFQ, Dpt(tOZU’fLQ, ZdFQ, ZdCO) (28)
N Arr(towny”, idFy, idCy) A Co(idCh, namey, town,"")

Another example is the partition in which occurrences town,’, town,” and
town,"" are unified:

{H{town,"; town,"; town,""}; { town," } }
yielding the following candidate tgd:

Flight (idFy, towny, towny’, idAirg) A Airl(idAirg, namey, town,”)
— E'cho, idFQ, Dpt(towng, ZdFQ, ZdCo) (29)
A Arr(towny', idFy, idCy) A Co(idCy, namey, town,")

75

Chapter 2

Since we do not wish to introduce new existentially quantified variables,
we define a particular class of join partitions called well-formed join partitions
that do not lead to introduce such variables. Thus, a well-formed join partition
is defined as follows:

DEFINITION 2.9 (Well-formed join partition).

Let 0 = ¢ — 1 be a tgd.

Let x be a variable occurring in ¢.

Let £2 and EY be the set of occurrences of v in ¢ and), respectively.

Then a join partition P for x is well-formed uf:
Yz, € EY, dz; € E? such that x; =p x;

We illustrate the notion of well-formed partition in the following example:

Example 2.15. In the first partition from Example 2.14:

{H{town,"}; {towny" }; {towny™ }; { town,"" } }

! "

we see that the occurrences town,” and town,"" of town, belong to the right-
hand side of the considered tgd. However they are not unified with occurrences
belonging to the left-hand side of this tgd (i.e., in a same block). Consequently,
this partition is not well-formed for the variable towny in tgd (2.6).

At the opposite, in the second partition from Example 2.1/:

{H{town,"; town™; towny""}; { town, "} }

we see that town,” and town,”" are unified with the occurrence town,’ of town,

which belong to the left-hand side of the tgd. Thus, this partition is well-formed
for the variable town, in tgd (2.6).

Well-formed partitions are equipped with a quasi-lattice structure: given
two partitions P and P’, if P < P’ and P is well-formed, then P’ is well-
formed as well. In particular, if P < P’ then all unification encoded by P is
also encoded in P’. This means that if P is acceptable for the user, then it
is also the case for P’. Conversely, if P’ is not acceptable for the user (i.e.,
some joins are missing), then neither is P. We employ these criteria to prune
the search space during the exploration of the quasi-lattice of occurrences of
x. This quasi-lattice structure allows us to avoid challenging our users about
partitions leading to redundant tgds.

In the next section, we will show how the quasi-lattices of partitions are
explored by Algorithm 2.

76

A practical framework for Interactive Mapping Specification

2.4.2 Join refinement algorithm

In this section, we detail the exploration of the quasi-lattices of partitions
performed by Algorithm 2 on page 74.

Using these join partitions, for each tgd in X,ger Algorithm 2 iterates over
the possible join partitions for each variable with multiple occurrences. More
precisely, for each evaluated variable the validity of its possible join partitions is
conducted by the procedure VARJOINSREFINEMENT which is detailed in Algo-
rithm 3 on page 78. As we do not consider the possibility of creating new joins,
but only the suppression of joins which already exists, each original variable
is considered separately. However, since each call to VARJOINSREFINEMENT
may generate multiple refined tgds for each refined variable, we need to com-
bine these refinements.

In line 1 of Algorithm 3, VARJOINSREFINEMENT first generates a new
tgd in which occurrences of the considered variable x are replaced with fresh
variables yielding a tgd ¢’. Then it generates the set of possible candidate
partitions for the considered variable (line 4 of Algorithm 3). Next to that,
the partitions in the upper bound of the quasi-lattice formed by the set of can-
didate partitions is added to the set of valid partitions. This step comes from
the fact that the partitions in the upper bound should be valid to suit to our
assumptions, otherwise this would mean that the exemplar tuples provided as
input of the framework are ill-defined. Then the SELECTPARTITION procedure
selects a partition in the set of partitions and encodes the specific exploration
strategy on top of the quasi-lattice. Any suitable exploration strategy can
be plugged in here. Function UNIFYVARIABLES(o, P) (lines 8 and 19 of Al-
gorithm 3) returns a tgd corresponding to o, where variables from the same
block of partition P are unified. Before asking the user about the validity of
the tgd generated by UNIFYVARIABLES, the procedure verifies if this newly
generated tgd is not prunable or redundant with a previously evaluated tgd.
This verification is done in line 9 of Algorithm 3, by checking if there exist
another tgd o, € ¥; which logically entails the currently evaluated tgd (i.e., the
procedure check if o is logically equivalent or more general than the evaluated
tgd).

Then, if the evaluated tgd is neither prunable nor redundant, the user is
asked about the validity of this unification in line 9 of Algorithm 3 and the
search space and results are pruned according to the answer in lines 11, 12
and 14 of Algorithm 3.

In the following example, we illustrate the join refinement step over our
running example:

7

Chapter 2

Algorithm 3 procedure VARJOINSREFINEMENT(Y;, 0, X)

Input: A set of previously join refined tgds ;.

Input: A tgd o.

Input: A variable x € ¢ on which the refinement is made.
Output: A set of tgds ¥, of join refinements of ¢ for variable x.

—_

[R R R e e e e
229 P2 Sg ke wy eQ

. 0/ < generate from o a tgd where occurrences of z are renamed

with fresh variables
Uorig <— generate a morphism p such that p(o’) = o
let o' =¢' — '
Jeana generate set of possible candidates join partitions from o’
J, < generate upper bound of the join lattice from o’
while J...q # 0 do
P < SELECTPARTITION(and; Jo)
0" < UNIFYVARIABLES(0”, P)
if (Ao, € ¥y, 00 = 0”) AN ASKJOINSVALIDITY (0”) then
add P to J,
remove upper partitions of P from 7,
remove P and its upper partitions from J.qnq
else
remove P and its lower partitions from J.qna
end if

: end while
: 2omf — Q)
: for all P € J, do

0" <= UNIFYVARIABLES(0’, P)
add 0" to X,us

: end for
. return X,

Ezample 2.16. We recall the tgd (2.6) from Example 2.10:
Flight(idFy, towng, towny , idAirg) A Airl(idAiry, namey, towny)

— FidCy, idFy, Dpt(towny, idFs, idCp) (2.6)
N Arr(towny, idFs, idCy) N\ Co(idCy, namey, towny)
The set of universally quantified variables in this tgd is the set:
T = {idFy, towny, towny , idAiry, name; }

Moreover, as we do not create joins between variables but only break joins

between occurrences of a same variable, our algorithm only needs to consider

78

A practical framework for Interactive Mapping Specification

variables with more than one occurrence (which is ensured in Algorithm 2 at
line 6). Consequently, for the join refinement of tgd (2.6) we only consider the
variables town, and idAiry of T.

Considering first the idAiry variable, a renaming of each of its occurrences
into the fresh variables idAiry’ and idAiry” leads to the following tgd:

Flight (idFy, towny, towny , idAiry") A Airl(idAiry”, namey, town,)
— E'cho, ZdFQ, Dpt(tOU)’I’Lg, isz, ZdCo)) (210)
N Arr(towny, idFy, idCy A Co(idCy, namey, town,)

The quasi-lattice for this tgd only contains two partitions:
{{idAiry'} ; {idAing"}} and {{idAiry'; idAiry"}}

Recalling that the upper bound is always valid, the user will not be asked about
the validity of the supremum {{idAiry’; idAiry"}}. Then, the user is only asked
about the validity of the tgd produced from the partition {{idAiry'} ; {idAiry"}},
i.e., the tgd in which occurrences idAiry' and idAiry” are not unified, meaning
that the identifier of an airline company is unrelated to the company identifier

of its flight.

The user will likely answer ‘No’ to the above question, thus leading to keep
the upper bound {{idAiry’; idAiry"}} of the quasi-lattice as the best valid par-
tition. Since this partition corresponds to the case where every occurrence of
idAiry is kept joined, the tgd (2.6) is not modified after the join refinement
over variable 1dAiry.

Next, we consider the town; variable. A renaming of each of its occur-
rences with the fresh variables towny’, town,”, town,"”" and town,"" leads to the
following tgd (2.8) previously shown in Example 2.1/:

Flight (idFy, towny, towny’, idAirg) A Airl(idAirg, namey, town,”)
— idCy, 1dFy, Dpt(towns, idFs, idCy) N Arr(towny” | idFy, idCy) (2.8)

A Co(idCqy, namey, town,™")

For this tgd, there exist five partitions that are well-formed (i.e., that do
not create new existential variables), namely:

P1 = {{towny'; town,"'} ; {towny"; town,""} }
Py = {{towny"; town,"} ; {town,”; town," } } |
Py = {{towny"; town,""; town,"" } ; {town," } }
Py = {{town,"} ; {town,”; town™; town,""} }

and Py = {{towny"; towny"; town,""; town,"" } } .

79

Chapter 2

The user is asked about the wvalidity of the candidate partition Py with the
following question:

“Are the tuples:
Flight(£1ightO,Miami,L.A./,airline0) and Aérl(airline0, AAir ,L.A.")
enough to produce:
Dpt(Miami, f1ight2, comp0), Arr(L.A/, £1ight2, compO)
and Co(compO, AAir,L.A.")?”
Since this partition is acceptable for the user, they will probably answer

‘Yes’. Therefore, the upper bound Ps of the quasi-lattice is pruned and the
following tgd is added to the output:

Flight(idFy, towny, towny’, idAirg) A Airl(idAiry, namey, town,”)
— E'ZdCO, ’idFQ, Dpt(toumz, idFQ, ZdCQ)
A Arr(town,', idFy, idCy) A Co(idCy, namey, town,")

The exploration continues with the remaining candidate partitions. However,
as the remaining partitions either relate an airline’s headquarters to an arrival
or a flight to a company’s headquarters, the user will consistently answer ‘No’
to these questions.

In the join refinement step, the suppression of joins can generate additional
tuples in the target instance. For such reason, similarly to the generation of
questions in the atom refinement step (Section 2.3.4), the source instance is
chased to generate the target instance of the question !. Similarly to the proce-
dure described in Section 2.3.4 for atom refinement, the ASKJOINSVALIDITY
procedure that appears in Algorithm 2 constructs a pair (Es?, E1?) by instan-
tiating the left-hand side of a candidate tgd ¢ to obtain a source instance F¢°
and then chasing it to build E°.

Example 2.17. We illustrate the questions asked to the user in Example 2.16.
We challenge the user on the validity of the partition:

P1 = {{towny"; town,"'} ; {towny”; towny"" } }
in the following tgd:

o = Flight(idFy, towny, town,’, idAirg) A Airl(idAirg, namey, town,”)
— E'cho, isz, Dpt(towng, ing, ZdCo)
A Arr(towny’, idFy, 1dCy) A Co(idCy, namey, town,")

"'We recall that the chase is polynomial for ¥ consisting of only s-t tgds. Thus, repeating
it several times, as additional tuples come, is appropriate.

80

A practical framework for Interactive Mapping Specification

The instance Es° obtained from the left-hand side of o through the bijection
0~ is the following:

Es = {Flight(f1ight0,Miami, L.A." airline0); Airl(airline0, AAir ,L.A.")}
Chasing FEs® with o leads to:

Er% = {Dpt(Miami, flight2, comp0); Arr(L.A./, £1ight2, compO);
Co(compO, AAir,L.A.")}

Those exemplar tuples are finally rewritten into questions as shown in Exam-
ple 2.16.

At the end of this step, the mapping My;,q is returned to the user as the
result of the framework execution.

2.4.3 Formal guarantees

In this section we give some formal guarantees about the mapping output by
our framework.

At first, we provide the counterpart lemma of Lemma 2.1 for join refine-
ment, in which we establish the logical entailment of the join-refined mapping:

LEMMA 2.3.

Let M = (S, T,X) be a mapping (typically output by the atom refinement
step).

Let M" = (S, T,%') be a mapping obtained from M after join refinement.
Then M’ = M.

Proof. Let 0 = ¢ — 1 be a tgd and x be a universal variable in ¢. First, we
prove that for all 0” € VARJOINSREFINEMENT(0,x), 0" = 0.

Let ¢/ = ¢/ — 9’ be the tgd obtained from o by replacing occurrences of
x with a fresh variable, and fi,r, be the morphism such that jig.4(0’) = 0.
Let ¢ = ¢/ — ¢'. As ¢” results from the unification of fresh variables in o’,
there is a morphism fiy,;¢ such that fu,,;r(0’) = o”. Let p,» be the morphism
defined by: p(y) = x if y results from the unification of fresh variables in o,
tor(y) =y otherwise. By construction, p,~(c”) = 0. One can remark that
existential variables in ¢” are the same as the ones in ¢, thus p,~ is injective
for these variables.

In Algorithm 2, 3, contains tgds that are either element of 3 or obtained
by applying VARREFINEMENT to previous elements of ;. Because of line 9,
VARREFINEMENT always returns at least one tgd. Thus, for each initial tgd o

81

Chapter 2

in X, there is a tgd ¢’ in ¥’ coming from successive calls of VARREFINEMENT
starting with o. By transitivity of | we deduce that ¢’ = . Thus, ¥ = 0.
Since this holds for all tgds in X, we conclude that >’ = ¥ and, by extension,
M =M. O

We also prove in the following lemma that the join refinement step preserves
the split-reduction property of mappings and does not introduce o-redundant
tgds:

LEMMA 2.4.
Given a normalized mapping M = (S, T, %), the application of join refinement
on the tgds in Y always produces a mapping which is normalized.

Proof. By definition, if a tgd o is split-reduced and contains more than one atom
in its right-hand side, these atoms (at least two) are joined using existentially
quantified variables. Since join refinement only focuses on universal variables,
existential variables are preserved. Thus, all atoms in the right-hand side of
join refined tgds are joined together using these existential variables, which
means that join refined tgds are also split-reduced.

As ¥ is normalized, each of its tgd is split-reduced. Since for each tgd in
Y., the application of the join refinement step results in new tgds that are
also split-reduced. Thus, the set >’ of all these refined tgds is a split-reduced
mapping.

As each tgd is produced only if there is no logically equivalent tgd previously
produced (Algorithm 3 at line 9), then no additional step of o-redundancy
suppression is needed.

As the mapping produced is split-reduced and does not contain o-redundancy,
then it is normalized. [

Hence, similarly to the atom refinement step and its associated Lemma 2.2,
a normalization step following join refinement is not necessary.

2.4.4 Complexity of the quasi-lattice exploration in terms
of the number of asked questions

For Algorithm 2, the worst case scenario for the join refinement occurs when the
user has provided exemplar tuples using the same constant for every attribute.
In such a case, the input mapping of Algorithm 2 will contain tgds in which
each attribute corresponds to the same variable, as illustrated in the following
example:

82

A practical framework for Interactive Mapping Specification

FExample 2.18. Suppose an expected mapping with a set of constraints:

Yewp = {S(x) NU(y,2) = T(2,y,2)}
An exemplar tuple for X, can be:

(Es, Er) = ({5(2);U(a,2)},{T'(a,2,2)})

leading to the canonical mapping:

Yean ={S@)ANU(z,2) > T(x,z,2)}
The atom refinement step does not lead to a modification of this mapping, thus:

{S(x)NU(z,z) = T(z,z,2)}

is used as input of the join refinement step.

In the following, we employ this worst case scenario to compute the max-
imum number of questions that can be asked during the join refinement of a
mapping.

However, even in such a scenario, during the join refinement of a variable
v of a tgd o we can still prune partitions with a number of blocks greater
than the number of occurrences of v in the left-hand side of ¢. This is due to
the fact that we will not produce new existential variables, which will occur
if the number of blocks is greater than the number of occurrences of v in the
left-hand side.

We recall that the Stirling number of the second kind {Z} corresponds to
the number of ways to partition a set of n elements into & blocks (Knuth [Knu97]).
Thus, given o € ¥;, a mapping, given n, the total number of occurrences of
variables in the tgd o, given n4, the number of variable occurrences in the
left-hand side of ¢ and knowing that the number of blocks of the partitions
we consider cannot be greater than n,,, we can define an upper bound of the
number of questions asked during execution of TGDSJOINREFINEMENT(;;,)

> ((E))

In the above formula, we have subtracted one question in order to consider
the fact that the partition with only one block is always valid.

As for the worst-case complexity of the quasi-lattice exploration during the
atom refinement step, this worst-case scenario serves as an upper bound of the
number of questions but is not likely to occur in practice. An experimental
study of the number of questions asked during the specification of realistic
mappings is provided in the Section 4.1.

83

Chapter 2

2.5 Output mapping properties

In this section, we provide proofs of good properties of the mapping output by
our framework (Figure 2.1 on page 54).

Conservation of the formal guarantees with our practical approach.
First, we show that the Theorem 1.2 on page 36 over the theoretical framework
of Chapter 1 still holds with the optimizations presented in the current chapter:

THEOREM 2.1.

Let Mo, be a canonical mapping.

Let Myina be a refinement of M.a, output by our framework.
Then Mfinal): ./\/lcan.

Proof. This directly follows from the lemmas proved for the atom and join
refinement steps.

From Lemma 2.1 on page 69, we have that the atom refinement of M.,
will output a mapping M rer such that Mager = Mean.

From Lemma 2.3 on page 81, we have that the join refinement of M per
will output a mapping M yine such that Myia = Matges-

Consequently, the refinement of M., (i.e., the application of an atom
refinement step followed by a join refinement step) produces a mapping M i,q

such that Myina = Mean 0

Next we show that if the user provides fully informative exemplar tuples,
the pruning performed by our refinement steps does not break the completeness
proved in Section 1.3.3 as stated by the following theorem:

THEOREM 2.2.
Let M.y, be the mapping expected by the users.
Let Epr be a fully informative exemplar tuples set for M y,.
Let M, be the canonical mapping computed from Epy.
Let Minai be a refinement of M.a, output by our framework, with the use of
PrunIng.
Then:
Mfinal = Mezp

Proof. Theorem 1.6 state that if no pruning is performed, then our framework
leads to a mapping MY, such that M}, , = M.y To complete the proof,
in the following, we show that the introduction of the pruning only suppress
irrelevant candidates.

84

A practical framework for Interactive Mapping Specification

Considered schema ‘ Primary keys Foreign keys
Source Not applicable Section 2.6.2
Target Section 2.6.3 Beyond scope

Figure 2.4: Applicable integrity constraints.

Given a candidate tgd o; during the execution of our framework, the prun-
ing works in two ways:

— if M.,, = o, then we prune each question about a tgd ¢’ such that
o | o’. Trivially, there is no need to explore implied tgds of an already
validated tgd as they can be validated by transitivity. Also, there is no
need to add them to the final mapping, as they can only create redundant
tuples.

— if My, = o, trivially we can prune each question about a tgd ¢ such
that o’ |=o.

Consequently, the pruning performed only leads to suppress irrelevant tgds,
and thus Mina = My, = Mep. O

Thus, the output mapping of our framework is always logically equivalent
to the expected mapping M., if users provide a fully informative exemplar
tuples set for M,,, and if they give correct answers to our questions.

2.6 Introducing integrity constraints in the pro-
cess

In the previous sections, we have described the core of our approach. We
now describe how a user can introduce integrity constraints to help the quasi-
lattice pruning. Integrity constraints provide a way to define guidelines over a
database schema, and ensure that the instances over this schema will comply
with these guidelines. In practice, the most commonly used integrity con-
straints are primary keys and foreign keys. Such constraints are classic tools
of database schema design, and therefore might be available in real world in-
tegration scenarios.

The introduction of integrity constraints constitutes an extension of the
(IMS) problem stated in Definition 1.21 on page 32. This Interactive Mapping
Specification with Integrity Constraints approach (IMSjc) can be stated as
follows:

85

Chapter 2

DEFINITION 2.10 (IMSi¢).

Let Mgy be a mapping expected by the user.

Let € be a set of exemplar tuples for Myy.

Let X1¢ be a (possibly empty) set of integrity constraints composed of source
constraints (Xrc.s) and target constraints (Xic.).

Then, the Interactive Mapping Specification with Integrity Constraints prob-
lem is to discover, by means of boolean interactions, a mapping M’ such that:

a V(E'SaET) S g?(ESaET) |: M
M M

— M’ is valid with respect to ¥j¢, i.e., for each tgd (¢ —) € M’ we have
¢ = Xies and Y = Yo,

2.6.1 Applicable integrity constraints

The studied cases of integrity constraints are summarized in Figure 2.4. We
address source foreign keys and target primary keys in Section 2.6.2 and Sec-
tion 2.6.3, respectively. Notice that we disregard source primary keys that
are not pertinent in our framework due to the fact that the user-provided
source instances should already satisfy them and that these constraints can-
not be violated during the execution of our framework, at the opposite of the
source foreign keys. Moreover, we do not consider target foreign keys that,
albeit meaningful, would lead to non-trivial extensions beyond the scope of
this work.

2.6.2 Using source foreign keys

The introduction of foreign key constraints informs us about which tuple (con-
taining a foreign key) can only occur in the presence of another tuple (refer-
enced by the foreign key). These constraints are defined as follows:

DEFINITION 2.11 (Foreign key constraint).

Let R be a database schema.

Let S and T be two relation symbols such that S, T € R.

Let X andY be two distinct sequences of attributes over S and T, respectively.
Then a foreign key constraint is a constraint such that:

SIX]CT[Y] and Y is a key of T

In our algorithm, we use dependency graphs to represent the constraints
conveyed by the provided foreign keys over a conjunction of atoms. In such a

86

A practical framework for Interactive Mapping Specification

graph, given each pair of atoms in the conjunction, there exists a directed edge
between these atoms if they satisfy a provided foreign key. More formally:

DEFINITION 2.12 (Dependency graph).

Let ¢ be a conjunction of atoms over a schema S.
Let Y105 be a set of integrity constraints over S.
The dependency graph over ¢ is the directed graph:

Gy = (atoms(¢), E)
with:
E = {(a1,a2) | a1 € 6,03 € $,30 € Tycs, (07 (a1),0 (az)) = 0}
We make use of this graph during the atom refinement step as illustrated

in the following example:

FExample 2.19. Given two schemas:

S = {S(,); Ular,y, 2): V(2 2); W (2, 2)}
T = {T(x)}

Given an exemplar tuple (Es, E1) over S and T such that:

E¢={S(a,b),U(a,b,c),V(c,a), W(c,a),S(d,e)}
Er ={T(a)}

Given the corresponding conjunctions:

drs = S(a,b) NU(a, b,¢) NV (c,a) N\W(e,a) ANS(d,e)
77Z}ET = T(a)

and the set of source foreign keys S:
Yp ={Ux,Uy C S, Sy; Ve CUz Wz CU.z}

Then we can draw the dependency graph of the atoms in ¢p, shown in
Figure 2.5 (for the sake of clarity, edges are labelled with the corresponding
foreign key even if not used in our algorithm,).

We can see that S(d,e) is not linked to any other atom. At the opposite,
atom V (c,a) is linked to atom Ul(a,b,c), and this atom U(a,b,c) is linked to
atom S(a,b). Therefore, we are sure that a tuple triggering atom V(c,a) will
always occur with tuples corresponding to atoms Ul(a,b,c) and S(a,b). As a
consequence, we can skip exploring conjunctions like V(c,a) and U(a,b,c) A
V(e,a) during the atom refinement step.

87

Chapter 2

UaxUyCS.xS.y V.zCU.z

S(a,b) < U(a,b,c) < V(c,a)

S(d,e) W(c,a)

Figure 2.5: Dependency graph of the atoms in ¢g, (Example 2.19).

To make use of this, we propose Algorithm 4 in order to apply this opti-
mization during atom refinement. In this algorithm, for the sake of clarity, we
abuse the notation of G4 = (atoms(¢), E') by simply writing G when it is clear
from the context. To use it in Algorithm 1 (page 60), the line:

Ceand < SOURCEFK_PRUNEUSELESSCONJUNCTION(Ceand, Coatids LsourceFk)

needs to be inserted just after line 6 of this algorithm.

This algorithm takes the set of candidate conjunctions that can be explored
and prunes it with respect to foreign keys. To achieve that, the algorithm be-
gins with the construction of a dependency graph for each upper bound of
the quasi-lattices. Then, for each dependency graph over an upper bound,
the algorithm checks if the candidates that are subsets of this upper bound
respect all the dependencies of the graph. If such a candidate does not respect
every dependency, it is pruned from the set of candidates output by the algo-
rithm. In the following, we provide an example that substantiates the informal
description of the algorithm.

Ezample 2.20 (Pruning of quasi-lattice: the need of evaluating each supremum
separately). Given two schemas:

S = {S([L’,y); S,(CC,Z); U(ZE, z)}
T = (7))

Given two exemplar tuples over S and T such that:

(Eg, Er) = ({S(a,b),U(a, ¢)}, {T(a)})
(ng, E%“) = ({S/(av b)? U(a’ C)}7 {T(a)})

and the set of foreign keys over schema S:
Y ={Ux C Sa;Ux C Sz}

During atom refinement, as these tgds are -equivalent, we will explore the
atom sets quasi-lattice shown in Figure 2.6a. If we do not produce a separate

88

2.6. INTRODUCING INTEGRITY CONSTRAINTS IN THE PROCESS 89

Algorithm 4 SourceFk_pruneUselessConjunction(Ceand, 2 fx)

Input: A set C.una of candidate conjunctions to evaluate (as produced by
Algorithm 1 on page 60, line 5)
Input: A set C,, of the upper bound of the quasi lattice over Cqna (as pro-
duced by Algorithm 1, line 6)
Input: A set of source foreign keys 3.
Output: A set C,,,, of the pruned set of candidates.
> Generation of dependency graphs for each upper bound
fg +— 0
for all ¢, € C,;, do
Eg,, 0
for all (R[X] C S[Y]) € X4 do
E; < extract the pairs of atoms (ay, as) such that ay,as € ¢, and
071 (a1)[X] € 07" (az)[Y]

6: E¢up — E¢up U E;

7 end for

8: Let G = (atoms(dup), Es,,)
9: Fg+— Fg U {Q}

10: end for

> Pruning of candidates
11: Cé(md < Ceand
12: for all G € F; do
13: Let G = (atoms(duy), Es,,)
14: for all c € C,,,, such that ¢ C ¢ do

can

15: if 3(a1,a2) € Ey,, such that a; € cAay € c then
16: Cézmd A Céand \ c

17: end if

18: end for

19: end for

20: return C.,,

Chapter 2

dependency graph for each element in the upper bound, we will obtain the graph
in Figure 2.6b (for the sake of clarity, edges are labelled with the corresponding
foreign key even if not used in our algorithm). This graph will lead to the
pruning of each congunction except S(a, b) and S'(a, ¢). This is due to the fact
that the perfectly acceptable atom conjunctions S(a, b) AU(a, ¢) and S'(a, c) A
U(a, c) do not contain the whole set of dependencies expressed in the graph,
and will be pruned by the condition line 15. In other words, this graph is only
usable if the conjunction S N S" AU can be accessed during atom refinement.

To avoid such a case, our algorithm constructs a dependency graph for each
element in the upper bound of the quasi-lattice. This allows to check, for each
dependency graph of an element in the upper bound, if a candidate subset of
this element does not express each of its dependencies. In our example, this
leads to generate the two small dependency graphs shown in Figure 2.6c.

These graphs lead to prune conjunction U(a, c¢) but not the conjunction
S(a, b)) NU(a, c) as it respects the dependency of the graph at the left and is not
included in the other upper bound element S’(a, c) A U(a, c) (this prevents to
evaluate this conjunction with the dependency graph at the right, which should
have led to its pruning). The exact same principle leads to avoid the pruning
of the conjunction S’(a, c) AU (a, c).

In the following lemma, we show that the introduction of our optimization
over source foreign keys only prunes invalid candidates:

LEMMA 2.5.

Let Cyaiq be the upper bound of a quasi-lattice of atom conjunctions as produced
by our atom refinement step.

Let G, be the dependency graphs that are generated separately for each element
e of Cyatid-

If each graph G, is checked on a subset of e (lines 1219 of Algorithm 4), then
Algorithm 4 will only suppress candidates that either violates a foreign key or
are triggered as often as another candidates in the output set.

Proof. Given an element e and its corresponding graph G., then our algorithm
will suppress only candidates that are subsets of e and that violate at least
one foreign key represented in G..

Moreover, given an atom € e such that e \ § violates a foreign key in G.,
this means that there is an atom 7 € e such that there is a foreign key from
v to ¢, i.e., v will always occur with the corresponding atom ¢. Thus, there
is no need to explore conjunction e\ ¢ as this conjunction will be triggered as
often as conjunctions e.

O

90

2.6. INTRODUCING INTEGRITY CONSTRAINTS IN THE PROCESS 91

{s;uy {50}

UaxCS.x

sON AN S(a,b) Ufa,c)
TS (s SR =
T I - UxCS' .z
N (a0
(a) Explored atoms sets (b) Dependency graph without
quasi-lattice. separate upper bound elements
S(a,b) ocse U(a,c) and S'(a, c) Urtsn U(a,c)

(c) Dependency graphs in the presence of separate upper bound elements

Figure 2.6: Explored quasi-lattice and dependency graphs of Example 2.20

Algorithm 5 TargetPk invalidTgd(o, X, {EL;...; E2})

Input: A tgd o to evaluate.

Input: A set of target primary keys Y py.

Input: A set of source instance {El;...; E%} provided by the user (sources
of the exemplar tuples and/or other sources).

Output: return true if the conjunction can be pruned, else return false.

: for all £ € {E;...; E%} do
let B = CHASE(o, EY)
thoor < evaluate if E% violates a primary key in Xpy,
res <— res V tpool

end for

return res

Chapter 2

2.6.3 Using target primary keys

During the steps of our framework, exploration can lead to evaluate tgds which
are inconsistent with respect to the primary key constraints on the target
schema. Such a case is illustrated in the following example:

Example 2.21. Given exemplar tuples:

A | Att1 Au2 Aut3

a b a B | Aty Att5 Att6
%

a b C ‘ a b a

C b C

The join refinement of variable a will explore the following possibilities:
o:A(a,b,a) = B(a, b, a) CHASE(0, Es) = {B(a,b,a); B(c,b,c)}
oy : A(a, b,d) — B(a,b,d) | CHASE(01, Eg) = {B(a,b,a); B(a,b, c);

B(c,b,c)}

o9 : A(a, b,d) — B(d,b,a) | CHASE(02, Es) = {B(a,b,a); B(c,b, a);
B(c,b,c)}

o3: A(a, b, d) — B(a,b,a) | CHASE(o3, Fg) = {B(a,b,a); B(c,b,c)}

o4: Ala,b,d) — B(d,b,d) | CHASE(04, Es) = {B(a,b,a); B(c,b,c)}
Knowing that the pair of attributes (B.Att4, B.Att5) is a target primary
key allows us to prune oy and o9 as the result of chasing the source instance A
with o1 and oo will lead to instances:

CHASE(01, Es) ={B(a,b,a); B(a,b,c); B(c,b,c)}
CHASE(09, Es) ={B(a,b,a); B(c,b,a); B(c,b,c)}

which violate the primary key constraint.

To handle this problem, we propose Algorithm 5 which, given a set of target
primary key constraints provided by a user, allows to avoid exploration of
candidates which can lead to break these constraints. To use it in Algorithm 3
(page 78), the condition line 9 needs to be changed with:

(Ao, € 54,04 = 0") A ASKJOINSVALIDITY (0”)
A ~TARGETPK_INVALIDTGD(0”, %, {ES; .. .; E4})

In the following lemma, we show that the introduction of our optimization
over target primary keys only prunes invalid candidates:

LEMMA 2.6.

Let o : ¢ — 1 be a candidate tgd during join refinement steps.
Let Xpy, be a set of target primary keys.

Let {EL;...; EZ} a set of source instances.

92

A practical framework for Interactive Mapping Specification

Then Algorithm &5 will prune o only if it leads to the violation of a target
primary key, i.e., if o is such that:

3Es € {Fg;...; B¢}, CHASE(0, Eg) [~ Xpi

Proof. Our optimization leads to pruning candidate tgds which will lead to
violate the user’s constraint if such tgds are applied to the user’s examples.
Thus, the invalidity of such candidates is trivially seen. O]

2.7 Conclusion

In this section, we have provided a practical framework to solve the interactive
mapping specification problem described in Chapter 1 in an efficient way. Dur-
ing the resolution of such a problem, our approach organizes the possible valid
mappings into imbricated quasi-lattices in order to allow an efficient pruning
of the space of explored mappings, and thus the reduction of the number of
interactions with the users.

Then, we have provided an optimization of our approach through the use
of integrity constraints in order to reduce the number of interactions with our
users.

Along with the description of our algorithms, we have proved that the good
properties proved for our formal framework in Chapter 1 still hold with the
introduction of the optimizations presented in this chapter.

93

Chapter 2

94

Chapter 3
Mapping under policy views

In this chapter, we consider the privacy-aware variant of the data exchange
problem. In this setting, the source comes with a set of constraints called
policy views, representing the data that is safe to expose to the target over all
instances of the source. We also assume that all users, both the malicious and
the non-malicious ones, might know the source schema, the target schema and
the s-t tgds in the mapping.

Under these assumptions, we propose the following contributions:

— given privacy restrictions on the source schemas under form of policy
views, we provide a definition of mapping safety under these privacy
restrictions,

— we provide a way to assess mapping safety with respect to the privacy
restrictions defined over its source schema,

— finally, in case of privacy violations, we provide repairing methods allow-
ing to rewrite an input mapping in a mapping which is safe with respect
to the privacy restrictions.

To the best of our knowledge, our work is the first to provide practical al-
gorithms for a logical privacy-preservation paradigm, a subject which is de-
scribed as an open research challenge in Nash et al. [ND07| and Benedikt et
al. [BGK17]. The actual version of our repairing process is focused on the
rewriting of GAV schema mappings (Definition 1.5 page 22), thus only a sub-
set of the mappings that can be output by our specification process can be
rewritten!.

Tt should be noted that it is easy to force the mapping specification process described
in Chapters 1 and 2 to output GAV schema mappings instead of GLAV schema mappings
by using exemplar tuples without labelled nulls, which will lead to an output mapping with
atomic right-hand sides and without existentially quantified variables.

95

Chapter 3

Mapping (Possibly) unsafe
M= (S, T,Y) instance J

over
schema T

Source instance [
over
schema S

Policy views

MV = (S7V7V) (S./\fl:[: ;/)

(repair of M)

+
Policy views
schema V

Safe instance J’
over
schema T

Figure 3.1: A data exchange setting with mappings and policy views.

Chapter organization In Section 3.1, we introduce notions used in this
chapter that have not been exposed in previous chapters. In Section 3.2, we
provide an overview of our approach and the running example used through
this chapter. In Section 3.3, we provide formal definition and properties of
the privacy preservation ensured by a set of policy views. In Section 3.4,
we provide algorithms to repair a mapping in order to ensure that it only
exposes information allowed by a reference set of policy views. In Section 3.5,
we provide a simple approach to learn the preference function used by our
repairing algorithms according to the users’ previous choices. In Section 3.6,
we discuss related work on the privacy preservation in data exchange problems.

3.1 Basic notions

In this section, we provide some additional definitions about notions that have
not been already exposed and will be useful throughout this chapter.

Equality generating dependencies In order to define the notion of equal-
ity generating dependency (egd for short), we previously define the notion of
equality atom as follows:

DEFINITION 3.1 (Equality atom).
Let t and t' be two terms, where a term can be a constant, a variable or a
labelled null. Then an equality atom is an atom of the form t =t'.

96

Mapping under policy views

From this definition, we define an egd as follows:

DEFINITION 3.2 (Equality generating dependency).
Let S be a relational schema.
Then an equality-generating dependency over S is a first-order logical formula:

such that :
— ¢ is an atom conjunction over relations in S

- N\ ti=t; is a conjunction of equality atoms.
1,7EN

Chase procedure with tuple and equality generating dependencies
With the introduction of egds, we extend our previous definition of the chase
procedure to handle such dependencies (Fagin et al. [FKMPO05], Benedikt et
al. [BKM™17]). To this extent, we first define two separate chase steps for the
tgds and the egds as follows:

DEFINITION 3.3 (Chase step, adapted from Fagin et al. [FKMPO05]).
Let I be a source instance over a schema S.

- tgd chase step.
Let o be a tgd of the form VT, o(T) — Iy, ¥ (T, 7).
Let 1 be a homomorphism from ¢(T) into I, such that there does not
exist an extension of u to a homomorphism y' from (T, y) into I. Such
a homomorphism is called an active trigger.

Applying the tgd chase step for o and p to I results in a new instance I’
obtained by:

— extending the homomorphism p to a homomorphism u' such that:
(a) for each variable x; € T, then p'(x;) = p(x;),
(b) for each variable y; € y, then (/' (y;) is a fresh labelled null

— taking the image of the atoms of 1 under 1.

This application of o to I with the homomorphism u is denoted by the
notation I 25 I’

- egd chase step.
Let o be an egd of the form ¥z, ¢(T) — N\ ti =t;.

1,JEN

97

Chapter 3

Let o be a homomorphism from ¢(T) into I such that there exists an
equality atom t; = t; in the right-hand side of o such that p(t;) # p(t;).
Such a homomorphism is called an active trigger.

This leads to two cases:

— if there exists an equality atom t; = t; in the right-hand side of o
both p(t;) and p(t;) are constants, then the application of o to I

with p results in “failure”, denoted by the notation I =% 1.

— otherwise, instance I' is the instance 1 in which the following re-
placement has been made for all equality atoms t; = t; in the right-
hand side of o: (a) if u(t;) or u(t;) is a constant, then it replaces
the other everywhere, else (b) as both u(t;) and u(t;) are labelled
nulls, then one replaces the other everywhere. This application of o
to I with the homomorphism 1 is denoted by the notation I =% I'.

Using these steps, the chase procedure can be defined as follows:

DEFINITION 3.4 (Chase procedure, adapted from Fagin et al. [FKMPO05]).
Let M = (S, T,X) be a mapping.
Let Xe4q be a set of egds over S.
Let I be a source instance over S.
Then, to produce an output instance J over T, the chase procedure will execute
a chase sequence defined as follows:
A chase sequence of I with the set of dependencies ¥ U Xegq 15 a sequence of
chase steps:

L2 Iy (120)
with I = Iy and 0; € XU Xegq.
DEFINITION 3.5 (Finite chase procedure, adapted from Fagin et al. [FKMPO05]).
Let M = (S, T, %) be a mapping.
Let Yeqq be a set of egds over S.

Let I be a source instance over S.
Then the chase procedure ends if there is a chase sequence:

L L, (0<i<m)
such that either:
~ I 2 | (failing finite chase)

— or there 1s no dependency o,, € XU Xegq such that there exists a homo-

morphism (i, for which we can apply o; to L, with w,, (successful finite
chase)

98

Mapping under policy views

In case of a finite chase sequence, the result output by the chase procedure
18 the instance 1,,,.

Inverse of a set of tgds In the following, the inverse of a set of s-t tgds is
defined as follows:

DEFINITION 3.6 (Inverse of a set of s-t tgds).
Let 33 be a set of s-t tgds from S to T.
Then the inverse X~ of ¥ is the set :

7 ={07 VI, VZ,9(T) - T, 6T, 7)l(0 : VIV, $(T,7) — FZ,¢(T, 7)) € T}
with T the vector of variable shared between ¢ and 1.

Notice that this definition is different from the definitions of inverse from
Fagin [Fag07],Fagin et al. [FKPTO08] and Arenas et al. [APRR09].

Conjunctive query and certain answers We rely on the notion of con-
Junctive queries, whose definition is as follows:

DEFINITION 3.7 (Conjunctive query).
A conjunctive query s a first order formula of the form:

37, ¢(z.7)

where ¢(T,Y) is a conjunction of relational atoms and is a vector of free
variables.

We use the notation p(I) to denote the answers to a conjunctive query p
over an instance I. We also define a subclass of the conjunctive queries:

DEFINITION 3.8 (Boolean conjunctive queries).
A boolean conjunctive queries is a conjunctive query without free variables
(i.e., a conjunctive query of the form 3%, ¢(T)).

As we have already illustrated in Example 1.2 on page 23, if there exists a
solution of an instance under a given mapping M then there exists an infinity
of solutions of this instance under M. If there exists an infinity of solutions,
this raises the problem of answering a query over the target schema of these
solutions. To solve this problem we rely on the notion of certain answers,
which correspond to answers that are true in every possible solution. More
formally, we define the notion of certain answer as follows:

99

Chapter 3

DEFINITION 3.9 (Certain answer).

Let M = (S, T,X) be a mapping.

Let I be a source instance over S.

Let sol(M, I) be the set of all solutions for instance I under M.
Let p be a conjunctive query over T.

Then the certain answer of p with respect to I under M 1s:

certain(M, p, I m{p)| J € sol(M,I)}

It should be noted that the certain answer of a conjunctive query p with
respect to a source instance I under a mapping M can be obtained by com-
puting the solution of p over a universal solution for I under M (Fagin et al.
[FFET05]).

Critical instance In the following, the critical instance (Marnette et al.
[MG10], Grau et al. [GHK*13]) of a source schema is used to propagate
the information about the visibility of attributes through mappings. In our
context, critical instances are defined as follows:

DEFINITION 3.10 (Critical instance).

Let' S be a database schema.

Let % be a special constant called the critical constant.

Then the critical instance of S is the instance Crtg such that:

— for each n-ary relation R € S, there exists a tuple R (x,...,*) € Crtg
——

n

— there is no tuple R'(t1,...,t,) € Crts such that R' ¢ S or 3t;,t; # *

3.2 Problem overview and running example

In this section, we provide an overview of our problem setting as well as the
running example that is used through the rest of the chapter. The notions
of privacy preservation and the repairing algorithms that are exposed in this
chapter are based on the setting illustrated in Figure 3.1 on page 96. In this
setting, we consider a set of policy views V defined over a source schema S. This
set of views takes the form of a GAV tuples generating dependencies (Garcia-
Molina et al. [GMUWO08]), forming the GAV mapping My = (S, V,V) where
the target schema V is the schema of the views occurring in V' (we recall that
the definition of a GAV mapping is given in Definition 1.5 on page 22).
These policy views are a representation of the information that is considered
safe to expose in the source instance I over S. When a mapping M = (S, T, %)

100

Mapping under policy views

is provided by a user, there is no guarantee that this mapping does not provide
information that is hidden by the set of policy views V.

We first need to identify what is an information leakage, and how to detect
it. Inspired by prior work on privacy-preservation from Nash et al. [NDO07]
and Benedikt et al. [BGK17], we define a set of s-t tgds to be safe with respect
to the policy views if every positive information that is kept secret by the
policy views is also kept secret by the s-t tgds. We also build upon these
works to propose our approach to detect information leaks. One should note
that the privacy-preservation protocol proposed in this chapter relies only on
the schema and consequently is data-independent. This allows our privacy-
preservation guarantees to be valid over all instances over the source schema,
and to remain valid when updates are performed over these instances.

In a second time, if the mapping M exposes forbidden information (i.e., if
this mapping is unsafe), then we need to rewrite M into a new mapping M’
that is safe with respect to the set of policy views V.

In the rest of this chapter, we will illustrate our approach by means of the
following running example which has been inspired by a real world scenario
from a hospital in the UK:

FExample 3.1. We consider a source schema S containing the following relation
symbols:

S = {Patient; NorthHospital; SouthHospital; Oncology; Student }
The relation symbol Patient 1s associated with attributes:
Patient(idIns, name, ethnicity, county)

and stores for each person registered with the NHS: her/his insurance number
(idIns), her/his name (name), her/his ethnicity group (ethnicity), and her/his
county (county).

The relation symbols NorthHospital and SouthHospital are associated with
attributes:

NorthHospital(idIns, disease) and SouthHospital(idIns, disease)
and store for each patient who has been admitted to some hospital in the north
(NorthHospital) or the south (SouthHospital) of the UK: her/his insurance

number (idIns) and the reason for being admitted to the hospital (disAtt).
The relation symbol Oncology is associated with attributes:

Oncology(idIns, treat, progr)

101

Chapter 3

and stores for each patient in oncology departments: her/his insurance number
(idIns), her/his treatment (treat), and their progress (progr).
Finally, relation Student is associated with attributes:

Student(idIns, name, ethnicity, county)

and stores for each student in the UK: her/his insurance number (idIns),
her/his name (name), her/his ethnicity group (ethnicity), and her/his county
(county).

In order to serve as reference policy views in our running example, we
consider the following set of policy views V:

V={
ov, =Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)
— Vi(ethn, disease); (3.1)
ov, =Patient(idIns, name, ethn, county) A\ SouthHospital(idIns, disease)
— Va(county, disease); (3.2)
oy, =0ncology(idins, treat, progr)
— Vs(treat, progr); (3.3)
oy, =Student(idIns, name, ethn, county)
— Va(ethn) (3.4)

}

These policy views define the information that is safe to make available
to public. View oy, projects the ethnicity groups and the hospital admittance
reasons for patients in the north of the UK; oy, projects the counties and the
hospital admittance reasons for patients in the north of the UK, oy, projects the
treatments and the progress of patients of oncology departments; oy, projects
the ethnicity groups of the school students.

These policy views are safe with respect to the NHS privacy preservation
protocol. Indeed, the NHS privacy preservation protocol considers as unsafe
any non-evident piece of information that can potentially de-anonymize an
individual.

For example, views Vi and V5 give access to results concerning patients
from a very large geographical area and, thus, do not leak any sensitive in-
formation as the probability of de-anonymizing a patient is significantly small.
Analogously, in views Vi there is no way to link a patient to her/his treat-
ment or her/his progress, thus the view is considered to be safe with respect to
the NHS privacy preservation protocol. The last view V4 projects an attribute
which is not considered sensitive in the NHS privacy preservation protocol.

102

Mapping under policy views

Considering the target schema:
V = {Vi; Va3 Vs; Vi)
of the set of views V, we define the GAV mapping:
My = (S, V,V)

that will serve as reference for our privacy-preservation protocol (Figure 3.1).
Finally, we consider the set of s-t tgds X such that:

¥=A
o. =Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)
— EthnicityDisease(ethn, disease); (3.5)
0. =Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)
— CountyDisease(county, disease); (3.6)

os =Student(idIns, name, ethn, county) A Oncology(idIns, treat, progr)
— StudentOncology(ethn) (3.7)

}

The tgds o. and o. project information that is similar to the information
projected by the views oy, and ovy,, respectively. However, both of these views
focus on patients admitted in hospitals in the north of the UK, when view oy,
focuses on patients admitted in hospitals in the south of the UK. Finally, the
tgd o projects the ethnicity groups of students who have been in some oncology
department. Considering the target schema:

T = {EthnicityDisease; CountyDisease; StudentOncology }
of the set of tgds X, we define the GAV mapping:
M= (S,T,%)

that will serve as mapping whose safety we want to assess with respect to the
mapping My, (Figure 3.1 on page 90).

In the rest of this chapter, we will address the following questions over our
running example:

— Are the s-t tgds in X safe with respect to the policy views in V¢

— Are there any formal guarantees for privacy preservation in the context
of policy views?

— If the s-t tgds in 3 are not safe with respect to the policy views in'V, how
could we repair them and provide formal privacy preservation guarantees?

In the next section, we will define our notions of safety and we will provide
a method to assess a mapping safety with respect to a set of policy views.

103

Chapter 3

3.3 Privacy preservation

In this section, we introduce our notion of privacy preservation based on the
setting illustrated in Figure 3.1 (page 96). Our goal in this section is to verify
if a mapping M = (S, T,) provided by a user is safe with respect to a set of
policy views V over the same source schema S. In other words, our goal is to
check if the mapping M does not expose more information than the mapping
My =(S,V, V).

At first, we will provide a formal privacy-preservation protocol. Next, we
provide a simple way to check whether a mapping preserves the privacy (i.e.,
is safe) with respect to a set of policy views.

3.3.1 A formal privacy-preservation protocol

We build our privacy preservation protocol upon the protocol introduced in
Benedikt et al. [BGK17]. However, their privacy preservation protocol is lim-
ited to boolean conjunctive queries, whereas in the following we formalize and
extend the notion of privacy preservation to non-boolean conjunctive queries.

Indistinguishability of instances. First, we want to express the condition
for which source instances cannot be distinguished through a mapping M.
Informally, this is the case if, for all of these instances, every conjunctive query
has the same certain answers over the mapping M. This is done through the
notion of indistinguishability of two source instances which is formally defined
as follows:

DEFINITION 3.11 (Indistinguishability of instances, adapted from Benedikt et
al. [BGK17]).

Let I and I' be two instances over a schema S.

Let M = (S, T,X) be a mapping.

Then I and I’ are indistinguishable with respect to M if, for every conjunctive
query p over T:

certain(p, I, M) = certain(p, ', M)

We use the notation I =, I’ to denote that two instances I and I’ are
indistinguishable with respect to a mapping M. It should be noted that this
notion of indistinguishability is not sufficient to guarantee any information
privacy, as the indistinguishable source instances can expose the same sensi-
tive information. We formalize our notion of information privacy in the next
paragraph.

104

Mapping under policy views

Non-disclosure of information. By leveraging the notion of indistinguisha-
bility of instances, we now provide the notion of non-disclosure of information
by a mapping. Informally, we represent the information that is unsafe to ex-
pose with the use of a conjunctive query p. A mapping is considered safe if,
for every source instance, there exists an indistinguishable source instance over
which p returns an empty result. This is formally defined as follows:

DEFINITION 3.12 (Non disclosure of information by a mapping, adapted from
Benedikt et al. [BGK17]).

Let p be a conjunctive query over the source schema S.

Let M = (S, T, %) be a mapping.

Then we say that M does not disclose the query p over S on any instance of
S if, for each instance I over S, there exists an instance I' over S such that:

0

I=m I and p(I')

Benedikt et al. [BGK17] have shown that the problem of checking whether
a mapping M over S does not disclose a boolean and constant-free conjunctive
query p on any source instance of S is decidable for GAV mappings, i.e., map-
pings with a set of source-to-target tgds consisting of CQ views (Definition 1.5
on page 22).

Foundations of the visible chase with bags. In order to obtain the
information exposed by a given mapping M = (S, T, X), we rely on the visible
chase procedure visChase(M) which outputs an instance based on the critical
instance Crtg for S. In this output instance, the only constant occurring is the
critical constant x corresponding to the tuples’ positions that are visible, i.e.,
the positions for which constants are exported into the target instances. In
this same instance, the non-exported variables are represented using labelled
nulls. We illustrate such an instance output by the wisible chase procedure in
the following example:

Ezample 3.2. Given a mapping M = (S, T, %) such that:
Y ={S(x,y) NU(y,z) = T(x,z)}
and the corresponding critical instance:
Crtg = {S(x,*); U(*, %)}
then the instance output by the visible chase will be an instance:
visChase(M) = {S(x,n1); U(ny,*)}

105

Chapter 3

In this instance, it can be seen that the values of variables x and z, which are
exported through M, are represented using the critical constant x. Moreover,
the exported information about the join between the occurences of variable y
are represented through the null value n;.

The principle of the visible chase procedure has been described in Benedikt et
al. [BGK17]. However, for the purpose of efficiently repairing mappings, we
propose a new variant of the wvisible chase procedure in which the produced
tuples are organized into subinstances called bags that are defined as follows:

DEFINITION 3.13 (Bags over a chase result).

Let I 25 I' be a chase step (Definition 3.3 on page 97).

Then the bag corresponding to this chase step is the set of tuples 3, containing
each tuple generated by the chase step I 25 T'.

The steps of our proposed variant of the wvisible chase procedure are given
in Algorithm 6.

Before explaining in details the steps of Algorithm 6, we introduce some
additional notions. At first, in order to explain our algorithm, we also need to
define the notion of derived egds as follows:

DEFINITION 3.14 (Derived egds from a tgd).

Let S and T be a source and a target schema, respectively.

Let I be an instance over the schema S.

Let o be a source-to-target tgd from S to T.

Let exported (o) be the set of variables occurring in both the left-hand side and
the right-hand side of o.

Let h be a homomorphism from body (o) into I such that h(x) € Nulls for some
x € exported(c).

Then, the derived egd from o in I is the egd:

body(c) — /\{x = x|z € exported(o) and h(z) € Nulls} (3.8)

We use the notation tgd(cgeiy) to denote the s-t tgd from which an egd
Ogeriv 1s derived, and the notation egd(c, I) to denote the egd derived from the
s-t tgd o for an instance I.

Example 3.3. Given an instance:
I'={S5(ny, %)}
where ny is a labelled null and * the critical constant. Then, if we have a tgd:
o:S(x,y) = T(x,y)

106

3.3. PRIVACY PRESERVATION 107

Algorithm 6 ViISCHASE(M)

Input: A mapping M = (S, T,).
Output: A set of bags B illustrating the information exposed by M.

I: Let M = (S, T,Y)
2: By < bagChaseTGDs(X, Crtg)
3: By + bagChaseTGDs(Z7!, |J)

BEBo

4: Yy« {egd(o, U B)lo € X}

BeBy

5: return bagChaseEGDs(X., By U By)

6: procedure BAGCHASETGDsS(X, [)

7 B+«

8: for each tgd o € ¥ do

9: for each active trigger h : body(c) — I do
10: create a fresh bag 8 with tuples h’(head(o))
11: add f to B

12: end for

13: end for

14: return B

15: end procedure

16: procedure BAGCHASEEGDs(X., B)

17: 1< 0
18: L+~ U2pB
peB
19: do
20: 11+ 1
21: for each egd 0 € X do
22: for each active trigger h : body(c) — I;_; do
23: if Jo € exported(o) such that h(z) # x then
24: Let 8 be the derived bag for ¢ and h in I; 4
25: add § to B
26: I+ I;U B
27: end if
28: end for
20: end for
30: while 12;1 # I,L
31: return B

32: end procedure

Chapter 3

we can find a homomorphism:
h: {S(Slf,y) = S(n17 *)}

such that h(z) € Nulls and x occurs in both left and right-hand sides of o. This
leads to the following derived egd from o in I:

e:S(z,y) = o =x

We now define the set of derived egds for a mapping M in an instance I:

DEFINITION 3.15 (Set of derived egds from a mapping).
Let M = (S, T, %) be a mapping.
Let I be an instance over S.
Then the set of derived egds from the set of s-t tgds 3 for an instance I is the
set of egds Y~ such that:
Y0 = U egd(o, I)

oey

From this notion of derived egds, in order to formalize the provenance of
the tuples generated during an execution of the wisible chase procedure, we
define the notion of relevance of a bag. Intuitively, a bag is said relevant for a
derived egd o in an instance [if this bag contains some tuples that can lead
to trigger o and to replace a labelled null with a constant. More formally, this
is defined as follows:

DEFINITION 3.16 (Relevance of a bag).

Let I be an instance resulting from a chase sequence.

Let B = {B1;...;Pm} be the set of bags generated during the chase sequence
that leads to 1.

Let o be the egd derived from an s-t tgd o' for I.

Let h be an active trigger® for o in 1.

Then, a bag B; € B is relevant for the eqd o and the homomorphism h if:

— there exist some tuple t € h(body(c)) such that t € B;

— there exist some variables x € body(co) such that:
(a) x occurs in an equality atom of the right-hand side of o,
(b) h(zx) is a labelled null occurring in f3;.

From this notion of relevance of a bag, we can define the notions of derived
bag and predecessors of a bag as follows:

2We recall that the notion of active trigger is defined in the Definition 3.3 of chase step
on page 97.

108

Mapping under policy views

DEFINITION 3.17 (Derived and predecessors bags).

Let I be an instance resulting from a chase sequence.

Let B = {p1;...;Bm} be the set of bags generated during the chase sequence
that leads to 1.

Let o be the egd derived from an s-t tgd o’ for I.

Let h be an active trigger for o in 1.

Let By, ..., Bixn C B be the set of bags that are relevant for o and h in B.
Let pv be a morphism such that, for any equality atom x; = x; in head(o):

= p={h(z;) = hx;)} if hz;) = *
— = {h(x;) = h(z;)} if h(z;) & Const.
Then, the derived bag B for o and h in I is the set:

B=Jus)

j=i

The bags B;, . .., Bixn are called the predecessors of (.
We use B; < B to denote that B; is a predecessor of 3, fori < j <i4n.

Execution of the visible chase with bags and universal source in-
stance. We are now ready to proceed with the description of Algorithm 6
on page 107. Given an input mapping M = (S, T,), Algorithm 6 computes
an instance whose tuples are organized into bags.

The first step, at line 2 of Algorithm 6, computes the set of bags By by
chasing Crtg using the set of s-t tgds X of M. This chase sequence is done
through the call to procedure BAGCHASETGDSs. During this chase sequence,
for each s-t tgd o in ¥ (Algorithm 6 line 8) and for each active trigger h
from body(o) into Crtg (Algorithm 6 line 9), we compute a bag 5 containing
the tuples in h'(head(o)). It should be noted that the computation of the
homomorphism h and its extension A’ is done as described in Definition 3.3 on
page 97 (tgd chase step paragraph).

Analogously, the procedure BAGCHASETGDS is called in the second step
of our chase, at line 3. At this step, we chase the set of tuples produced during

the first step Iy = |J B with the inverse 7! of the set of s-t tgds ¥, leading
BEDBy
to a new set of bags B;.

Finally, the set of all tuples generated during the two previous steps:

L=(UnpucU»n

BeBo BEB1

109

Chapter 3

is chased with the set ¥ = |J egd(o, ;) of all egds derived from ¥ in [
oEeY
(Algorithm 6 line 5). During each chase step i, for each egd o € X, the

derived bag for ¢ and h in the instance I; is added to the output set of bags
(line 24).

It should be noted that, > aims at “disambiguating” as many labelled
nulls occurring in I; as possible, by unifying them with the critical constant
*. Since the critical constant * represents the information that is “visible” to
a third-party, chasing with ¥ computes the maximal information which can
be retrieved by a third-party from the source instance.

It also should be noted that the visible chase algorithm has been shown to
always terminate by Benedikt et al. [BGK17].

In the following, given the set of bags B = visChase(M) output by the vis-
ible chase, we will denote by univSourcelnst(M) the instance (Jzez 8. This
instance univSourcelnst(M) is called a universal source instance, and is for-
mally defined as follows:

DEFINITION 3.18 (Universal source instance).

Let M = (S, T, %) be a mapping.

Then a universal source instance I is an instance such that the visible part
of any instance of S (i.e., the subinstance that becomes available through the
mappings) has an homomorphism into it.

It should be noted that the universal source instance for a given mapping
is unique (modulo constant renaming).

Informally, relying on Definition 3.12; to check if a mapping M over a
schema S does not disclose the boolean and constant-free conjunctive query
p, we verify that there is no homomorphism from p into its universal source
instance. This is formalized in the following theorem:

THEOREM 3.1 (Relation between query disclosure and universal instance).
Let p be a conjunctive query over the source schema S.

Let M = (S, T,X) be a GAV mapping.

Let I be the universal source instance for M.

Then, M does not disclose the query p over S on any instance of S if and only
if there does not exist a homomorphism h :p — I.

In the following example, we illustrate on the running example the gener-
ation of a universal source instance with the visible chase algorithm:

Example 3.4. In this example, we use the policy views and the mapping of our
running example provided in FExample 3.1 on page 101.

110

Mapping under policy views

We first present the computation of:
univSourcelnst(My,) = U B

BéevisChase(My,))

At first, we consider the critical instance Crtg of the source schema S as
defined in Definition 3.10 on page 100. This critical instance contains the
following tuples:

Patient(x,*,*,%) NorthHospital(x,*) SouthHospital(x,*) (Crtg)
Oncology (x, *, *) Student (x, *, %, *)

where x is the critical constant. The first step, at line 2 of Algorithm 6, leads
to the set of bags By containing the following elements:

{Vi(x, %)} {Va(*, %)} (Bo)
{Va(x, %)} {Va()}
Then, the set of bags By is computed by chasing the instance Iy = |J B

BEBgy
using V=1, leading to the set of bags B, containing the following elements:

{Patient(nidlnsa Nname *, ncounty)' NOTthHOSpital(nid[nsa *)}
) SOUthHOSpZtal(Midmss)} (Bl)

/ /
{Patzent(Tdrnss T Nethns

name?

{OTLCOZOgy(zd[ns?* *)}
{StUdent(TdIns: T ” *,’I”LH)}

name’ county

where the constants prefived by n are labelled nulls created while chasing Crtg
with the inverse mappings. Since there exists no homomorphism from the body
of any s-t tgd into I, mapping an exported variable into a labelled null, then
Y~ will be empty (see Definition 3.14). Thus, we obtain:

univSourcelnst(My,)) = U Ié]

BEB;
We next present the computation of:
univSourcelnst(M) = U B
BéevisChase(M)

The instance I, computed by chasing the output of line 2 by X' will consist
of the tuples:

Pa,tient(NidIns, Mname; *, ncounty) NOTthHOSpital(NidIns, *)
/ / /
Patzent(zd[ns7 Npames Nethns *) NOT'thHOSpZtGl(drns) (Il)
" " "
StUdent(Midmns) Mnames * ncounty) Oncology(Midrnss ntreat? nprogr)

111

Chapter 3

Since there ezists a homomorphism from the body of o. into I} mapping the
exported variable e into the labelled null nl,,,, and since there exists another
homomorphism from the body of o. into I} mapping the exported variable c
into the labelled null neounty, then Y will contains the egds €, and ey shown
below:

Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)
— ethn ~ * (€1)
Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)

— county & * (e2)

The last step of the visible chase involves chasing I using the derived tgds in
Y.

Without loss of generality, we can assume that the chase will first consider
the egd €1 and then €. During the first step of the chase, there exists a ho-
momorphism from body(e;) into 1. Hence, 1, = *. During the second step
of the chase, there exists a homomorphism from body(ey) into I} and, hence,
Neounty = *. Thus, the instance computed at the end of the second round of the

chase contains the tuples:

Patient(niams, Nname, *, *) NorthHospital(n;qpms, *)

. / / . / /
Patlent(nz’dlns’ Mpamer *5 *) NOTthHOSpZtal(nz’dlns’ *) (I2>
" 1" " i 1" 1"

StUdent<nidIns7 Npames *s ncounty) On00l09y<nid1ns7 TNireats nprogr)

Since there ezists no active trigger for €, or €y in the instance I, the chase
terminate and we have: univSourcelnst(M) = 1.

We summarize the construction of the bags B, ..., 35 in visChase(M) by
providing, for each bag, the dependency (tgd or egd), the homomorphism and
the instance from which this bag derive:

— the bag:

o 1" " 1" . " i i
ﬁl - {StUdent(nidInm Npames * ncounty)) Oncozogy<nid[ns7 Nireats nprogr) }

derives from the tgd o;*

and the homomorphism:
hy = {ethn — x}
in instance {StudentOncology(*)}
— the bag:

62 = {Patient(n;dlny n/namev n/ethm *)7 NorthHOSpital(n,idlnsv *)}

112

Mapping under policy views

1

derives from the tgd o_" and the homomorphism:

hy = {county — *, disease — *}
in instance { CountyDisease(x*, *)}
— the bag:
B3 = { Patient(Niams, Mnames *, Neounty), NorthHospital(nigms, *) }

1

derives from the tgd o and the homomorphism:

hs = {ethn — x, disease — x}
in instance { EthnicityDisease(x, *)}
— the bag:
B1 = { Patient(nl ., W, 4oy %, %), NorthHospital(nl;. .,)}

derives from the egd €, and the homomorphism:

!/

hy = {idIns — ny;, ., name — n, . ethn — 1, = county — *, disease — *}

in instance { Patient(N,y;, . Mames Moty *); NoTthHospital(n)y,, ., %)}
— the bag:
Bs = { Patient(Nigms, Mnames *, *), NorthHospital(nqpms, *) }
derives from the eqd €5 and the homomorphism:
hs = {idIns — Niams, name — Npame, €hn — s, county — Neounty, disease — *}

in instance { Patient(Nigmms, Mname, *; Neounty); NoTthHospital(Nigms, *) }

3.3.2 Preserving the privacy of policy views

Recalling that the notion of non-disclosure of information has been defined in
Definition 3.12 on page 105, we consider that a GAV mapping M = (S, T, X)) is
safe with respect to a GAV mapping consisting of policy views My = (S, V,V)
if M does not disclose more information than Mx;.

The following Definition 3.19 formalizes our notion of privacy preservation:

113

Chapter 3

DEFINITION 3.19 (Privacy preservation).

Let My = (S, T1,%1) and My = (S, Ty, 3) be two mappings over the same
source schema S.

Then M,y preserves the privacy of M; on all instances of S if, for each
constant-free CQ p over S: if My does not disclose p over S, then My does
not disclose p over S.

Now, we will show in Theorem 3.2 that checking whether a mapping M,
is safe with respect to a reference mapping M; can be done by checking if a
homomorphism exists between their universal source instances. The proof of
our theorem will rely on the two following lemmas:

LEMMA 3.1.

Let M = (S, T, %) be a mapping.

Then M does not disclose a constant-free CQ) p over S on any instance of S,
if and only if (*,...,x) & p(univSourcelnst(M)).

Proof. By adapting the proof technique of Theorem 16 from Benedikt et al.
[BGK17], we can show that the universal source instance univSourcelnst(M)
has the following property: for each set £ of indistinguishable instances with
respect to the mapping M, for each source instance I € &£, there exists a ho-
momorphism A from I into univSourcelnst(M) mapping each schema constant
into the critical constant *x. Due to the existence of a homomorphism A from
I into univSourcelnst(M), for each source instance I € £, we can see that
if (*,...,%) & p(univSourcelnst(M)) for a constant-free CQ p, then p(I) = 0.
Due to the above and due to Definition 3.12 on page 105, it follows that M
does not disclose a constant-free CQ p over S on any instance of S. O

Lemma 3.1 states that, in order to check if a constant-free CQ is safe
according to Definition 3.12 on page 105, we need to check if the critical tuple
is among the answers to p over the instance computed by visChase(M).

Next, we prove the following equivalence:

LEMMA 3.2.
Given two instances Iy and Iy, the following are equivalent

1. for each CQ p, if © € p(Iy), then u € p(ly), where U is a vector of con-
stants

2. there exists a homomorphism from Iy to Iy preserving the constants of I

Proof of Lemma 3.2. (2)=(1). Suppose that there exists a homomorphism h
from I; to Iy preserving the constants of I;. Suppose also that @ € p(I;), with

114

Mapping under policy views

p being a CQ. This means that there exists a homomorphism h; from p into
I; mapping each free variable z; of p into u;, for each 1 <1 < n, where n is
the number of free variables of p.

Since the composition of two homomorphisms is a homomorphism and since
h preserves the constants of I; due to the base assumptions, this means that
h o hy is a homomorphism from p into I mapping each free variable x; of p
into t;, for each 1 < i < n. This completes this part of the proof.

(1)=(2). Let p; be a CQ formed by creating a non-ground atom R(yi, ..., Yn)
for each ground atom R(us,...,u,) € I, by taking the conjunction of these
non-ground atoms and by converting into an existentially quantified variable
every variable created out of some labelled null. Let # denote the free variables
of p; and let n = |Z|. From the above, it follows that there exists a homomor-
phism h; from p; into I; mapping each z; € ¥ into some constant occurring
in I;. Let @€ py([;). From (1), it follows that @ € p;(Iy) and, hence, there
exists a homomorphism hy from p; into I, mapping each x; € ¥ into wu;, for
cach 1 <7 <n.

Since h; ranges over all constants of I; and since hy(z;) = ho(x;) holds
for each 1 < i < n, it follows that there exists a homomorphism from I; to Iy
preserving the constants of I;. This completes the second part of the proof. [J

Now we can state our theorem:

THEOREM 3.2 (Privacy preservation checking).

Let My = (S, T1,%1) and Mgy = (S, Ts,3s) be two mappings over the same
source schema S.

Then M, preserves the privacy of M on all instances of S, if and only if there
exists a homomorphism h from univSourcelnst(My) into univSourcelnst(M,),
such that h(x) = .

Proof. Given a CQ p over a source schema S, and a mapping M = (S, T, %),
we know from Lemma 3.1 that if M discloses p on some instance of S, then
there exists a homomorphism of p into visChase(M) mapping the free variables
of p into the critical constant *.

From the contrapositive of Lemma 3.2, we know that My does not preserve
the privacy of M if there exists a CQ p over S, such that:

(*,...,%) & univSourcelnst(M;) and (x,...,*) € univSourcelnst(M)
We will now prove that My preserves the privacy of M if and only if there

exists a homomorphism from univSourcelnst(Ms) into univSourcelnst(M;) that
preserves the critical constant x. This will be referred to as Claim C.

115

Chapter 3

(=) If My preserves the privacy of M; then, for all CQ p:
(%,...,%) & p(univSourcelnst(M;)) = (%, ..., *) & p(univSourcelnst(M,))

From the above and from Lemma 3.2, it follows that there exists a homomor-
phism:

h : univSourcelnst(Ms) — univSourcelnst(M;) such that h(x) = *

(«=) The proof proceeds by contradiction. Assume that there exists a ho-
momorphism A from univSourcelnst(My) into univSourcelnst(M) preserving *,
but My does not preserve the privacy of M;. We will refer to this assumption
as assumption (A;).

From assumption (A;) and the discussion above it follows that there exists
a CQ p over S such that:

(%,...,%) & p(univSourcelnst(M;)) and (x,...,*) € p(univSourcelnst(My))

Let hy be the homomorphism from p into univSourcelnst(Ms) mapping its free
variables into *. Since the composition of two homomorphisms is a homomor-
phism, this means that hohs is a homomorphism from p into univSourcelnst(M;)
mapping its free variables into x, i.e., (x,...,*) € p(univSourcelnst(M;)). This
contradicts our original assumption and hence concludes the proof of Claim
C. Claim C' witnesses the decidability of the instance-independent privacy
preservation problem: in order to verify whether My preserves the privacy of
M we only need to check if there exists a homomorphism:

h : univSourcelnst(M3) — univSourcelnst(M) such that h(x) = *
]

According to Theorem 3.2, in order to verify that a mapping M, is safe
with respect to a mapping M, we need to check if there exists a homomor-
phism from univSourcelnst(M3) into univSourcelnst(M;) that maps the criti-
cal constant = into itself. If there exists such a homomorphism, we say that
univSourcelnst(Ms) is safe with respect to univSourcelnst(M;), and we say
that univSourcelnst(Ms) is unsafe otherwise.

We illustrate this safety checking in the following example:

Example 3.5. Continuing from Ezxample 3.4 on page 110, we want to verify
if the mapping M is safe with respect to the mapping My. We recall that
instance univSourcelnst(M) contains the tuples:

Patient(Nigms, Tnames *, *) NorthHospital(ngms, *)
. / / ; !
Patient(nyy, ., %, %) NorthHospital (17, *)
/! 1 " /! 1 1
Student (Nidrmss Mnamer *5 ncounty) Oncology (Midins> ireats angT)

116

Mapping under policy views

and that instance univSourcelnst(My,) contains the tuples:

Patient (NidIns, Mname; *, ncounty) NOTthHOSpital (Nidins, *)
. / / / . /
Patient (17,5, Toames Tothns *) SouthHospital (17,4, *)
1" " " "
Student (Mdns: Mnames *5 ncounty) Oncology (Nigins) *> *)

According to Theorem 3.2, since there does not exist a homomorphism from
the instance univSourcelnst(M) into the instance univSourcelnst(My,), then M
18 not safe with respect to the policy views in mapping M. In other words,
for some instances over schema S, the mapping M will disclose information
that is not disclosed by M,,.

For example, the tuples:

" " " " Vi "
StUdent(nidlns’ Nypames * ncounty) OnCOZOQy(nidInm Nireats npmgr)

in instance univSourcelnst(M) show that we can potentially identify a student

who has been admitted to the oncology department. Such an information leak

can occur, for example, if there exists only one student in the school coming

from a specific ethnicity group, and this ethnicity group is returned by o,. At

the opposite, this information is not disclosed by the policy views Vi and V,

since it is impossible to link a tuple in Student to a tuple in Oncology.
Moreover, the tuples:

Patient(niams, Mname, *, *) NorthHospital(nqpms, *)

in instance univSourcelnst(M) show that the identity of a patient admitted to
a hospital from the north of UK and the disease that has led to this admission
can leak from the mapping M, if there exists only one patient who relates to
the county and the ethnicity group returned by o. and o.. At the opposite, this
information is not disclosed by the policy views Vy and Vy since it is impossible
to obtain the county and the ethnicity group of an NHS patient at the same
time.

3.4 Repairing mappings

In Section 3.3 we have presented our privacy preservation protocol and a tech-
nique for verifying whether a mapping is safe with respect to another one over
all possible source instances. This section presents an algorithm for repairing
an unsafe mapping (with respect to the policy views of a mapping My,) into a
safe mapping, i.e. a mapping that preserves the privacy of My, (Definition 3.19
on page 114).

The steps of our algorithm are summarized in Algorithm 7 on page 119. It
is seen that our algorithm takes as input:

117

Chapter 3

the mapping to rewrite M,

the mapping My, containing the policy views that serves as reference for
the rewriting;

a preference function prf used to select the best repair among the possible
repairs explored during the process;

— a positive integer n which is used during the last step of our repairing
process to limit the depth of the explored rewriting tree.

It should be noted that the mechanisms behind the preference function can
range from choices made using basic metrics or a direct questioning of the users,
to more complex approaches such as the supervised learning of the preference
function based on the user’s prior decisions. In Section 3.5 on page 137, we
will illustrate such a learning approach using the k-NN classification algorithm
(Friedman et al. [FHTO1]).

Our algorithm is built upon the property we have proved in Theorem 3.2 on
page 115. We recall that in this theorem we have shown that a mapping M =
(S, T,) is safe with respect to a mapping My, = (S, V,V) if the instance
univSourcelnst(M) has a homomorphism into the instance univSourcelnst(M,,).
Thus, if the input mapping is unsafe with respect to the reference mapping
My, then the goal of Algorithm 7 is to rewrite the tgds in M such that
the derived instance has a homomorphism in univSourcelnst(My,). During
the first step of our rewriting, the mapping M is rewritten into a partially
safe mapping Mgrisafe. As we will explain later on, partial safety ensures
that each tgd in M,s4fe taken independently are safe with respect to My.
However, partial safety does not guarantee that the whole mapping Martsafe
is safe with respect to M. This last point is ensured by the second step of
Algorithm 7, during which the partially safe mapping Mparisare is rewritten
into a mapping which is safe with respect to My,. The benefit of this two-step
approach is that it allows repairing one or a small set of tgds at a time.

In the next section, we will focus on the notion of partial safety and on the
first step of our algorithm.

3.4.1 Computing partially safe mappings

In this section, we define the notion of partial safety and we describe how our
algorithm ensures that a mapping is partially safe with respect to a reference
mapping.

118

Mapping under policy views

Algorithm 7 repair(M, My, prf, n)

Input: A mapping to rewrite M = (S, T,), a reference mapping
My, = (S, T, Xy), a preference function prf, a positive integer n.
Output: A rewriting M’ of M such that M’ is safe with respect to M.

1: Mpartsafe < frepair(M, My, prf)
2: Msafe — Srepair(MpartSafea My, prf, n)
3: return M.

Partial safety. The intuition behind partial safety is the following: the prob-
lem of the safety of a mapping M with respect to a mapping M,, is reduced
to the problem of checking for a homomorphism from univSourcelnst(M) into
univSourcelnst(My,), a first step towards checking for such a homomorphism
is to look if the tgds in M considered independently would lead to such a
homomorphism or not.

For instance, by looking at o, in Example 3.1 on page 101 it is easy to see
that it leaks sensitive information, since it involves a join between students
and oncology departments, which does not occur in univSourcelnst(M,,).

We formally define the partial safety as follows:

DEFINITION 3.20 (Partial safety).

Let M = (S, T,X) be a mapping.

Let My, = (S, V., V) be a reference mapping with V being a set of policy views.
Then M is partially safe with respect to My on all instances of S, if there
exists a homomorphism from CHASE(X ™!, Crty) into univSourcelnst(My,).

From Algorithm 6 on page 107, it follows that ¥ is partially safe iff the

intermediate instance I; = |J computed by visChase(M) is safe, i.e., has a
BeB
homomorphism into univSourcelnst(My,). This leads to the following lemma:

LEMMA 3.3.

Let M = (S, T,X) be a mapping.

Let My, = (S, V, V) be a reference mapping with V being a set of policy views.
Then M s partially safe with respect to M, on all instances of S, if for each
o € %, there exists a homomorphism from body(c) into univSourcelnst(My)
mapping each x € exported(o) into the critical constant .

Proof. This follows from the construction of Algorithm 6 on page 107. O]

We illustrate this lemma in the following example:

119

Chapter 3

Ezample 3.6. We recall the set of tgds X in mapping M = (S, T,X) from
Example 3.1 on page 101:

n=A
0. =Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)
— EthnicityDisease(ethn, disease)
0. =Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)
— CountyDisease(county, disease)
os =Student(idIns, name, ethn, county) A Oncology(idIns, treat, progr)
— StudentOncology(ethn)

We have seen in Example 3.5 on page 116 that M is unsafe with respect to
the reference mapping My. We also see that, according to Lemma 3.3, the
set of tgds ¥ is not partially safe with respect to My, due to the fact that
there is no homomorphism from the left-hand side of os into the instance
univSourcelnst(My,) that contains the tuples:

Patéent (nid]n57 nnamea *7 ncounty) NOTthHOSpit(IZ (TidIns, *)
. / / / ; /
Patient (Nidmmss Mname> Tethn *) SOUthHOSpZtal (Midns *)
Z " " "
Student (Midins) names *5 ncounty) ONCOZOQy (Nigns) * *)

However, we also see that the set of tgds ¥ would be partially safe if we remowve
the tgd o, from Y. Indeed, since there exist homomorphisms from the bodies
of 0. and o, into univSourcelnst(My,), mapping their exported variables into ,
the mapping formed by the triple (S, T,{oe;0.}) is partially safe with respect
to Mv.

From Lemma 3.3 we also derive the following lemma:

LEMMA 3.4.

Let M = (S, T,X) be a mapping.

Let My = (S, V, V) be a reference mapping with V being a set of policy views.
Then M s safe with respect to My, on all instances of S, if and only if it is
partially safe with respect to My, on all instances of S.

From Lemma 3.3 we can see that in order to obtain a partially safe mapping
from an initial mapping M, we need to rewrite each tgd in M independently of
the others. Furthermore, the repair of each o € ¥ involves breaking joins and
hiding exported variables, such that the repaired tgd o, satisfies the criterion
in Lemma 3.3.

120

Mapping under policy views

Computing partially safe mappings. The computation of a partially safe
mapping is detailed in Algorithm 8 on page 123. The initialization procedure
used by Algorithm 8 is detailed in Algorithm 9 on page 126. It should be noted
that, for performance reasons, we do not examine rewritings that introduce
atoms in the bodies of the rules. However, not considering the introduction of
atoms does not affect the completeness of Algorithm 7 as it will be shown in
the theorems at the end of this section.

The principle used by Algorithm 8 is built on Lemma 3.3. Indeed, for each
o € Y, Algorithm 8 computes a set of rewritings R, out of which the best
rewriting is chosen according to the preference function prf.

We will now detail the different steps of Algorithm 8 before illustrating it
on an example.

At first, for each s-t tgd o, Algorithm 8 calls the procedure in Algorithm 9.
In this procedure, for each atom B € body(c), the procedure constructs a fresh
atom C and adds this atom to a set C. The set of atoms C provides us with the
means to identify all repairs of ¢ that involve breaking joins between variable
occurrences and hiding exported variables. Additionally, a homomorphism v
is constructed, linking each atom B with its counterpart in the set of atoms
C. At the end of this procedure, the pair (C,v) is returned to Algorithm 8.

Then, for each homomorphism ¢ from C into univSourcelnst(M,,) (which
corresponds to one repair of), lines 8-26 of Algorithm 8 modify each atom
B € body(c) in order to obtain a conjunction with a homomorphism into
univSourcelnst(My). It should be noted that given a homomorphism &, each
iteration over an atom in body(c) takes into account the prior modifications
performed during previous iterations. To this extent, these prior modifications
are accumulated in the relation p and the mapping p. Given a homomorphism
¢ (line 5 of Algorithm 8), the relation p keeps for each variable x occurring
in body(o), the fresh variables that were used to replace z during iterations
of the repairing process over £. To this extent, p is updated in line 18 of
Algorithm 8. The relation p is used to keep a morphism from the variables
of the partially repaired body into instance univSourcelnst(My) (lines 19 and
23 of Algorithm 8). In particular, at the end of the iterations of the loop
from line 826 of Algorithm 8, p holds the substitution from body(c) into
univSourcelnst(My,).

One can note that an apparently simpler approach is to always replace a
variables x in position p by a fresh variable. However, our approach allows
to minimize the number of broken joins between variable occurrences, and
consequently to preserve the information conveyed by these joins when this
information does not lead to an unsafe mapping.

We will now describe how the body atoms of a tgd ¢ are modified by

121

Chapter 3

Algorithm 8 in order to obtain a rewriting of ¢ which is partially safe with
respect to the reference mapping My. To this extent, given a tgd o, for
each homomorphism ¢ in the loop at lines 5-30 of Algorithm 8, one candidate
rewriting o, of o might be computed. To obtain such a rewriting, for each atom
B € body(o) and for each variable position p € pos(B) in atom B, Algorithm 8
detects if the variable in position p of atom B should be hidden.

More precisely, if the variable y in position p of atom v(B) is not mapped
to the critical constant * via homomorphism ¢, and if the variable B|, is
an exported variable, this means that the variable occuring in position p of
atom B should not be exported (this corresponds to the condition in line 12 of
Algorithm 8). Similarly, if the variable y in position p of atom v(B) is mapped
to a different constant £(y) than the constant p(B],) then this means that
the variable occuring in position p of atom B introduces an unsafe join (this
corresponds to the condition in line 13 of Algorithm 8).

In the presence of these violations, we must replace variable x in position
p of atom B, either by a variable that was used in a prior step of the repairing
process, as it is done in lines 14-15 of Algorithm 8, or by a fresh variable, as
done in lines 1621 of Algorithm 8. Otherwise, in the case where there is no
violation detected, the morphism {z — &(y)} is added to p if this morphism
is not already in g, this is done at lines 22-23 of Algorithm 8.

Finally, the best repair for the evaluated tgd is chosen using the preference
function at lines 31-34 of Algorithm 8.

We will now illustrate an execution of Algorithm 8 in the following example:

Example 3.7. In this ezample, we demonstrate an execution of Algorithm 8 in
order to repair a mapping M = (S, T,X) such that 3 is the singleton:

Y= {01 . Rl(x,y,Z) A Sl(ya 2, Z) — Tl('xa Z)}

In order to repair M with respect to a mapping My = (S, V,V), Al-
gorithm 8 only needs to use the instance univSourcelnst(My,) as reference.
Therefore, instead of providing the set of policy views V we provide the in-
stance univSourcelnst(My,) such that:

univSourcelnst(My,) = { Ry (*, ny, n2); S1(ny, ng, no); Si(ng, ng, x); S1(ng, *, %)}

where nq—ns are labelled nulls.

In order to rewrite M into a partially safe mapping with respect to M,,,
Algorithm 8 will compute two possible repairs for the tgd o1 as described below.
At first, Algorithm 8 calls the procedure shown in Algorithm 9. This procedure

122

3.4. REPAIRING MAPPINGS 123

Algorithm 8 frepair(M, My, prf)

Input: A mapping to rewrite M = (S, T, X)

Input: A reference mapping My = (S, T, %y).

Input: A preference function prf.

Output: A rewriting M’ of M s.t. M is partially safe with respect to My,.
1Y« X
2: for each 0 € ¥ do

3: (C,v) < INITFREPAIRTGD(0)

4 Ry« 0

5: for each homomorphism ¢ : C — univSourcelnst(My,) do
6: p 0, u+10

T O < O

8: for each B € body(c,) do

9: for each p € pos(B) do

10: x < B|,

11: y « v(B)|,

12: if (x € exported(c) and * # £(y))

13: or (z € dom(u) and pu(z) # £(y)) then
14: if 32’ s.t. (x,2') € p and p(2') = £(y) then
15: Bl, «+ '

16: else

17: create a fresh variable 2

18: add (z,2’) to p

19: add {2/ — &(y)} to p
20: B|, < 2/
21: end if
22: else if = ¢ dom p then
23: add {z — £(y)} to p
24: end if
25: end for
26: end for
27: if 0, # o then
28: add o, to R,
29: end if
30: end for
31: if R, 7é () then
32: choose the best repair o, of ¢ from R, based on prf
33: replace o with o, in Y/
34: end if
35: end for

36: return (S,T,>)

Chapter 3

computes the pair (C,v) such that:

C = {Ri(x1, 22, 23); S1 (24, x5, 76) }
v={Ri(x,y,z) — Ri(z1,22,23); S1(y, 2, 2) — S1(x4, x5,26)}

Then, Algorithm 8 identifies the following three homomorphisms from the set
of atoms C into instance univSourcelnst(My,):

& ={I1 = k] To > N T3 > N Ty > N1 Ty > N Tg > TLQ}
& = {1 = %19 — My X3 > Moy Ty > My T > Mg Tg > k)

&3 = {x1 > %9 > Ny Ty > No; Ty > Ny Xy > K T > Kk)

From homomorphism &, we see that the joins in the body of oy are safe. For
example, the variables in C corresponding to variable y in oy, i.e., variables xso
and x4 through v, are mapped to the same labelled null ny through & . Anal-
ogously, the variables x3, x5 and xg correspond to all occurrences of variable
z 1 oy, and are mapped to the same labelled null ny through & . From homo-
morphism &, we also see that, with the previous joins, the variable x is safe to
expose as its corresponding variable x1 in C is mapped to the critical constant
x through & . However, y and z are unsafe to expose as they are not mapped
to the critical constant through the homomorphisms v and &;.

From homomorphism &, we can see that it is safe to reveal the third position
of Sy as & (x¢) = *. However, if we reveal this position then it is unsafe to
join the third position of Ry (corresponding to variable x3), and the second
and third positions of Sy (corresponding to variables x5 and xg, respectively)
as they are mapped to different values through & (no, ns and *, respectively).

Analogously to &, we can see from &3 that it is safe to reveal the second
and third positions of Sy as & (x5) = &1(xg) = *. However, if we reveal these
positions then it is unsafe to join them third position (x3) of Ry as & maps x3
to a labelled null instead of the critical constant .

At line 5, Algorithm 8 iterates over the homomorphisms &, & and &s.
At first, Algorithm 8 considers atom Ry(x,vy, z), for the two first positions of
Ri(x,y, z) Algorithm 8 generate the mapping:

p=Ax—*xy—m}

since there is no wviolation according to lines 12 and 13. However, arrived to
the third position of Ri(x,y, z), a violation is detected. This is due to the fact
that the variable in third position of Ry(x,y,z) (the variable = = v="(x3)) is
an exported variable and that we have £(x3) = ny. To tackles this violation, at
lines 16-21 Algorithm 8 creates a fresh variable zy, adds the relation (z, z1) to
p, replaces z in Ri(x,y,z) by z1 and adds the mapping {z — na} to p.

124

Mapping under policy views

Then, Algorithm 8 considers atom Si(y, z,z). At the first position of S
(corresponding to variable x4 in C), no violation is detected. Since & (x4) = mq,
the mapping y — ny already exists into . However, at the second position of
S1, a homomorphism violation is detected since z is an exported variable and is
mapped to a labelled null ny through & . Since (z,z1) € p and p(z) = & (x5),
at line 15 Algorithm 8 replaces z in the second position of Si(y,z,z) by z.
Similarly, the variable z siting at the third podition of S1(y, z, z) is also replaced
by 2.

Hence, the first repair of o is:

Ri(x,y,21) N Si(y, z1,21) = Ti(2) (71)

Algorithm 8 then proceeds by repairing o1 based on &. At first, Algorithm 8
considers atom Ry (z,y, z) and proceeds as described above, leading to the com-
putation of an atom Ry(x,y, z1), where z has been renamed into z,, and of the
morphism:

p=Ax—*y—n,z — na}

Then, Algorithm 8 considers the first position in atom S(y, z,z) and no vio-
lation is encountered since p(y) = & (xy). However, for the second position of
Si(y, z,2) a violation is encountered since z = v~ (x5) is an exported variable
and since &o(x5) # *, violating the condition at line 12 of Algorithm 8. To
handle this, since the condition in line 14 is not met, Algorithm 8 creates a
fresh variable zo and adds the mapping {zs — ng} to p.

Then, at the third position of Si, no violation is met since for z = v~ (xg)
we have &(xg) = *. Hence, the second repair of oy is the tgd:

Rl(xhya Zl) A Sl(yu 2272) - TI(I7Z) (TQ)

Finally, with the same reasoning as above, we see that the repair for oy
with respect to &3 is:

Rl(x,y,zl)/\sl(y,z,z) - Tl(.CU,Z) (T3)

We now show that our Algorithm 8 always returns a mapping which is par-
tially safe with respect to the mapping containing the reference policy views:

LEMMA 3.5.

For any mapping to rewrite M = (S,T,%), any mapping My = (S, V,V)
and any preference function prf, Algorithm frepair always returns a mapping
M' = (S, T,Y) that is partially safe with respect to My, on all instances of S.

125

Chapter 3

Algorithm 9 procedure INITFREPAIRTGD(0)

Input: A tgd o.
Output: A pair (C,v) with C being a set of atoms and v a homomorphism
from atom in body(o) to atom in C.

v 0,C<+ 0

for each B € body(c), where B = R(Z) do
create a vector of fresh variables g/
create the atom C' = R(¥)
add (B,C) to v
add C to C

end for

return (C,v)

Proof. From Lemma 3.3, a mapping M = (S, T, Y) is partially safe with re-
spect to My = (S, V, V) on all instances of S, if for each o € X, there exists a
homomorphism from body(o) into univSourcelnst(M,,) mapping each variable
x € exported(o) into the critical constant .

Since for each o € X the procedure frepair computes a set of repaired tgds
R, it follows that Lemma 3.5 holds if such a homomorphism exists for each
repaired tgd in R, .

The proof proceeds as follows. Let o’ and p’ denote the repaired s-t tgd and
the homomorphism g computed at the end of each iteration i of the steps in
lines 8-26 of Algorithm 8. Let also B® denote the i-th atom in body(c,.). Since
each C' € C is an atom of distinct fresh variables, since £ is a homomorphism
from C to univSourcelnst(My) and since p(B?) = o,|;, it follows that in order
to prove Lemma 3.3, we have to show that the following claim C; holds, for
each 7 > O:

e Ci: u' is a homomorphism from the first i atoms in the body of o,
into univSourcelnst(My) mapping each exported variable occurring in
B ..., B'into the critical constant x.

For ¢ = 0, C; trivially holds. For ¢ + 1 and assuming that C; holds for 7 let
C™ = y(B™1), which is calculated at line 11 of Algorithm 8. The proof of
claim C depends upon the proof of the following claim, for each iteration
p > 0 of the steps in lines 9-25:

o Cy: p*H(B™1,) = &(y), where y = C™Y,.

The claim C trivially holds for p = 0, while for p > 0, it directly follows from
the steps in lines 12-24. Since] holds for 7, since the steps in lines 12-24 do

126

Mapping under policy views

not modify the variable mappings in ;‘ and due to Cy, it follows that C; holds
for 7 + 1, concluding the proof of Lemma 3.3. O]

In the next section, we will show how to compute a safe mapping from a
partially safe mapping.

3.4.2 Computing safe mappings

We have shown in the previous section that given a mapping M, we are able to
rewrite this mapping into a mapping M’ that is partially safe with respect to
a reference mapping My, i.e., the output mapping M’ is such that each tgd in
M’ taken independently is safe with respect to the reference mapping My,. In
this section, we will first address the limitation of the notion of partial safety by
illustrating the information leakage occurrence when the tgds of a partially safe
mapping are considered altogether. Then, we describe an algorithm allowing
to rewrite a partially safe mapping with respect to a reference mapping My,
into a safe mapping with respect to My,.

Limitations of partial safety. We recall that partial safety of a mapping
M with respect to a mapping M, only ensures that, given B; the set of bags

computed by visChase(M) at line 3 of Algorithm 6, the instance I; = |J
BEB
has a homomorphism into univSourcelnst(My,). However, the last step of the

visible chase over M (line 5 of Algorithm 6) can lead to the unification of one
or more labelled nulls occurring in the bags of By with the critical constant x,
potentially leading to unsafe instances, as illustrated in the following example:

Ezxample 3.8. We consider a mapping M’ = (S, T, %) which is a simplified
variant of mapping M from Ezample 3.1 (page 101) where ¥’ comprises only
the tgds o. and o. such that:

0. =Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)
— EthnicityDisease(ethn, disease) (3.5)
0. =Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)
— CountyDisease(county, disease) (3.6)
We also reuse the mapping My, from Example 3.1 as our reference mapping.
We have seen in Example 3.6 on page 119 that both o. and o, are partially safe.
However, the computation of the visible chase over the tgds o. and o. leads to

the unification of the labelled nulls nyame and nNeounty with the critical constant,

127

Chapter 3

Algorithm 10 srepair(M, My, prf, n)

Input: A mapping M = (S, T, X)) which is partially safe with respect to M.
Input: A reference mapping My = (S, T, X%y).
Input: A preference function prf.
Input: A positive integer n.
Output: A rewriting M’ of M such that M’ is safe with respect to M.
1: Yo+ X2
2: By < visChase(M)
3: 140
4: do
5: EHl — >
6: cont < false
7: if J unsafe § € B; s.t. V unsafe 5’ € B;,depth(/3) < depth(3’) then
8: cont < true
9: if © < n then
10: <0
11: o <— hideExported(3, My, prf)
12: if 351, B2 € 57, s.t. B, B2 are candidates for modifyBody then
13: r1 <— modifyBody(tgd(5:), tgd(52), prf)
14: end if
15: if 7y # 0 and it is preferred over r, with respect to prf then
16: remove tgd((;) from ;4
17: add r to ;14
18: else
19: remove tgd(() from ;4
20: add 7y to ;4
21: end if
22: else
23: if Af', s.t., 8 <P € B; then
24: add hideExported(5, My, prf) to ¥;1;
25: else remove tgd(/) from 3,
26: end if
27: end if
28: end if
20: compute J; 1 from ¥;, ¥, and B;
30: 14—1+1

31: while cont and 7 < n
32: return (S, T,%,)

128

Mapping under policy views

as illustrated in Example 3.4 on page 110. This can be seen in Fxample 3.4
with the computation of bags By and Bs5 using the eqds € and €, respectively.

Finally we obtain, as output of the visible chase, a set of bags B leading to
an instance univSourcelnst(M) such that:

univSourcelnst(M) = { Patient(nigms, Mname, *, *); NorthHospital(ngms, *);
Patient(n ! *,%); NorthHospital(n)y;,., *)}

idInss Tname

As this instance univSourcelnst(M) does not possess a homomorphism into
univSourcelnst(My), then M’ in unsafe with respect to My, despite the fact
that M’ is partially safe with respect to M.

Thus, in order to avoid information leakage, we need to rewrite our partially
safe mappings into a mapping such that no unsafe unification of a labelled null
with * takes place during the last step of the visible chase. In the next section,
we will describe such a rewriting approach.

Computing safe mappings. We first illustrate two approaches to compute
a safe mapping out of a partially safe mapping.

The prevention of the unwanted exportation of values is illustrated in the
following example:

Ezample 3.9. We consider again the simplified variant M’ = (S, T,%') of M
from Ezxample 3.8 (page 127).

Since X' is partially safe, it suffices to look for homomorphism wviolations
in I;, fori>1. A first observation is that the homomorphism violations are
“sitting” within the bags. This is due to the fact that each bag stores all the
tuples associated with the bodies of one or more s-t tgds from Y. A second ob-
servation is that one way for preventing unsafe unifications is to hide exported
variables.

For example, let us focus on the unsafe unification of n.,,, with x. This
unification takes place due to €, which in turn has been created due to the
tuple that ethn is an exported variable in o,.

By hiding the exported variable ethn from o., we actually prevent the cre-
ation of €, and hence, we block the unsafe unification of ethn with .

Hiding exported variables is one way for preventing unsafe unifications with
the critical constant. Another way for preventing unsafe unifications is to break
joins in the bodies of the rules as illustrated in the following example:

Example 3.10. Consider a set of policy views V leading to the following in-
stance:

univSourcelnst(My,) = { Ry (nq, n1, %), Ri (%, %, n2), S1(*) }

129

Chapter 3

where ny and ny are labelled nulls. Consider also the mapping M consisting
of the following s-t tgds:

oy :Ry(x,z,y) A Si(y) — Ti(y)
o3 :Ry(x,2,y) = Ts(x)

It is easy to see that M is partially safe with respect to My, but unsafe in
general. Indeed, univSourcelnst(M) will consist of the following bags (for pre-
sentation purposes, we adopt the notation from FEzample 3.4):

(05,01

Tl(*> —>> Rl(n3> ng, *)7 Sl(*)

To(x) M Ry (*, %, ny)
Ry (s, ns, %), S (¥) <255 Ry (4, %, %), S (%)
where €3 is the egd Ry(x,x,y) — x = % and:
01 = {y — *} Oy = {x > *} O3 = {x — ng,y — *}

Note that €3 has been created out of o3, since there exists a homomorphism
from body(o3) into Ry(ns, ng, *) mapping the exported variable x into ng.

For preventing the unsafe unification of ny with *, the approach presented
in the previous example would have led to hide the exported variable x from 3.
By doing this, the creation of €3 is blocked, and hence the unsafe unification
did not occur.

In the approach presented in this example, x is kept as an exported variable
in o3, but the body of oo is modified by breaking the join between the first and
the second positions of Ry:

Ry(z,z,y) A Si(y) = Ti(y) (03)

By doing this, we prevent the creation of €3, since the instance computed at
line 3 of Algorithm 6 on page 107 would consist of the tuples Ri(ns,ns,*),
Ry (x,%,ng) and Si(x), hence, there would be no homomorphism from body(os)
into this instance. Note that the modification from oy to o} is safe. Intuitively,
this holds, since we break joins, and thus, we export less information.

Before presenting Algorithm 10 and its use of our previous rewriting ap-
proaches, we introduce some new definitions. The depth of a bag is defined as
follows:

DEFINITION 3.21 (Depth of a bag).
The depth of a bag [is the highest derivation depth of the tuples in .

130

Mapping under policy views

We denote the depth of a bag 5 with the notation depth(/5).
We also define the support of a bag as follows:

DEFINITION 3.22 (Support of a bag).
The support 5~ of a bag 3 is inductively defined as follows:

— if depth(B) = 1, then 8= = 3

— else depth(3) > 1, and then 5~ = |J B~
B'=<B

We define the notion of candidates bags for algorithm modifyBody as follows:

DEFINITION 3.23 (Candidates for modifyBody).
Two bags By and By are candidates for modifyBody if:

— [y is the predecessor (Definition 3.17) of Po
— depth(f1) = 1 and depth(fs) = 2
— there exists at least one repeated variable in the body of tgd(5)

Considering an active trigger h for a tgd ¢ in an instance I leading to the
creation of a bag 3, we also use the following notations: dependency(/3) = 0,
trigger(3) = h and premise(/3) = h(body(J)).

Algorithm 10 presents an iterative process for repairing a partially safe
mapping, by employing the three ideas we described above:

— checking for homomorphism violations within each bag;
— preventing unsafe unifications by hiding exported variables of an s-t tgd;
— preventing unsafe unifications by modifying the bodies of s-t tgds.

During the execution of Algorithm 10, given a mapping M = (S, T,) to
repair, the algorithm starts by initializing the set of tgds »g to X at line 1.
Then, at each iteration ¢ of the main while loop (lines 4-31 of Algorithm 10),
an unsafe bag with the lowest depth is identified at line 7 of Algorithm 10.
When S has been identified, the algorithm repair the tgd from ¥J; that has
lead to its creation (lines 7-28 of Algorithm 10). If the number of iterations
did not exceeded the maximum depth of the rewriting tree n, i.e., if i < n,
then lines 9-21 of Algorithm 10 will use the two repairing methods we have
exposed below: the function hideExported (called line 11 of Algorithm 10)
based on hiding exported variables and detailed in Algorithm 11 on page 133;
and the second function modifyBody (called line 13 of Algorithm 10) based on

131

Chapter 3

eliminating joins between variable occurrences and detailed in Algorithm 12
on page 134.

It should be noted that Algorithm 10 can try to apply function modifyBody
only if there exist at least two bags in the support of 5 that are candidates for
modifyBody.

Informally, Algorithm 10 tries to apply Algorithm 12 with the deepest
possible bags and when there are one or more repeated variables in the body
of tgd(f;1) (Example 3.10 on page 129).

Finally, if the maximum allowed depth of the rewriting tree is reached, i.e.,
if i = n, then Algorithm 10 either applies the function hideExported (line 24), or
it eliminates the s-t tgds that are responsible for unsafe unifications (line 25).
Example 3.11. To demonstrate Algorithm 10 we reuse the simplified version of
the running example from Ezample 3.8 on page 127 in which the set of tgds >
from mapping M’ = (S, T, %) comprises only the tgds o. and o. such that:

= Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)

— EthnicityDisease(ethn, disease) (3.5)
=Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)
(

— CountyDisease(county, disease) 3.6)

From Ezxample 3.4 on page 110 it is seen that:

ViSChase(M/) - {ﬁ% ﬁ37 /847 55}
where P, ..., Bs are the bags (illustrated in Example 3.4) such that:

51 = {Student Nidms) T name’ *, n(‘ounty) OnCOZOQy(Nidrns ntrmﬁ ”ngr)}
Po = { Patient *); NorthHospital(n),., %) }

(2,
(7,
Bs = { Patient(nigpms, nname, , Neounty), NorthHospital(niams, *) }
(7,
(

Tdrms name7 nethm

By = { Patient(n,,,, ., n x), NorthHospital(nl ., %)}
Bs = { Patient(nigms, Mmame, *, *), NorthHospital (nigms, *) }

name7 7

We also assume a mazimum rewriting tree depth n such that n = oo.

During the first iteration of Algorithm 10, the lowest depth bag for
which there exists a homomorphism violation is By. Since 1 < n, the algo-
rithm tries to repair X' by calling functions hideExported (S5, My, prf) and
modifyBody(s, 54, My, prf).

At lines 3-5, Algorithm 11 (procedure hideExported) first computes the ho-
momorphism:

/
V= {nzdlnsth Hx??”ethonZ‘E}

name

132

Mapping under policy views

Algorithm 11 hideExported(5, My, prf)

Input: A bag .

Input: A reference mapping My, = (S, T, Xy).

Input: A preference function prf.

Output: A tgd o, in which sensible frontier variables are hidden and selected
among the possible rewritings using prf.

J < premise(/3)
v 10
for each n € Nulls occurring into J do
add {n — x} to v, where z is a fresh variable
end for
R+« 0
for each ¢ : v(J) — univSourcelnst(My,) do

o« tgd(p)
for each = € dom¢ do

1 if {(z) # * then

11: for each y € exported(c) do

12: if 7(y) = v~!(x), where 7 = trigger(3) then
13: remove y from exported(o)

14: end if

15: end for

16: end if

17: end for

18: if o # tgd(5) then

@

19: add 0 to R
20: end if
21: end for

22: choose the best repair o, of ¢ from R based on prf
23: return o,

and then computes all homomorphisms from the instance:
v(J) = { Patient(x1, x, x3, *), NorthHospital (x1, %)}

into the instance containing the tuples in univSourcelnst(My,).
We can see that there exists only one such homomorphism:

5 = {1'1 = n;'dfnwx? = n/name? X3 > n/ethn}
Recalling that tgd(B4) = 0. and that:

/

hy = {idIns — iy, name — n, . ethn— n., = county — *, disease — *}

133

Chapter 3

Algorithm 12 modifyBody(o1, 03, prf)

Input: A tgd o;.

Input: A tgd o, with at least one homomorphism from its left-hand side into
the left-hand side of ;.

Input: A preference function prf.

Output: A rewriting o, of oy in which some joins have been removed and
selected among the possible rewritings using prf.

1 R« 0

2: if 3 one or more repeated variables in body(c) then

3: for each ¢ : body(oy) — body(cy) mapping some x; € exported(o)
into some x5 ¢ exported(os) do
Let B C body(oy), s.t. £(body(cs)) = B

5: Let V be the set of repeated variables from B
6: Let P be the set of positions from B,
where all variables from V' occur
7: for each non-empty S C P do
8: O < 04
9: replace the variables in positions S of ¢ by fresh variables
10: add o to R
11: end for
12: end for
13: end if

14: choose the best repair o, of ¢ from R based on prf
15: return o,

the first two iterations of the loop in lines 9-17 of Algorithm 11 have no ef-
fect. Indeed, despite that {(xy1) = nly,, and £(x2) = 1,4, the variables idIns
and name from o, that are mapped to n,,,,. and n, via the homomorphism
trigger(54) = hy are not exported variables.

During the last iteration, since &(xs) = nl,,., since hy(ethn) =nl,, —and
since ethn is an exported variable, Algorithm 11 removes variable ethn from

the exported variables of 0. and returns a tgd ol:

name

Patient(idIns, name, ethn, county) A NorthHospital(idIns, disease)

— EthnicityDisease(disease) (02)

Algorithm 10 then calls Algorithm 12 (function modifyBody). The function
does mot return any repair, since there does not exist any variable repetition
in the body of o.. Hence, Algorithm 10 computes the set of tgds X1 = {0}, 0.}

134

Mapping under policy views

and proceeds in the next iteration. The computed instance univSourcelnst(M)
for the current repaired mapping will consist of the following bags 55 and (4:

By = { Patient (0] 1,s Mames Tothns *) NorthHospital (1), ., %)}

5:13 - {Patient(nidlns’a Npame n/ethna ncounty)a NorthHOSPital(nidln37 *)}

such that:

oo L)
CountyDisease(county, disease) ﬁ B4
with hly = {county — x, disease — *}

oo thy
FEthnicityDisease(disease) M B,
with hy = {disease — x}

Finally, Algorithm 10 terminates, since all bags are safe.

Note that when we reach the maximum number of iterations, we do not
apply modifyBody. This is due to the fact that modifyBody might lead to unsafe
unification of labelled nulls to the critical constant % that were not present
before the modification of the s-t tgd through modifyBody. In contrast, the
modification performed by hideExported is a safe modification, since it does
not introduce new unsafe unifications. In particular, if hideExported modifies
an s-t tgd o that leads to the unsafe bag 3, and if in § the labelled nulls
ni,...,n, were unified with %, then the modified s-t tgd o, would lead to the
derivation of a new bag where no such unification takes place. Furthermore,
by construction of Algorithm 10 it is seen that at each depth 4, the number of
bags that are derived for this depth after the repair is lower or equal to the
number of bags of this depth before the repair, and a lower or equal number of
labelled null unifications takes place in these bags. Using the above, we show
the correctness of Algorithm 10:

LEMMA 3.6.

Let My = (S, V,V) be a mapping with a set of policy views V.

Let M = (S, T, %) be a partially safe mapping with respect to My,.

Let prf be a preference function.

Let n be an integer greater than 0.

Then srepair(M, My, prf, n) returns a mapping M’ = (S, T, Y') that preserves
the privacy of My, on all instances of S.

Proof. First note that since srepair takes as input a partially safe mapping
M = (S, T,), it follows from Definition 3.20 (page 119) that there exists a

135

Chapter 3

homomorphism from CHASE(X ™!, Crt) \ Crty into univSourcelnst(My,). Fur-
thermore, from Lemma 3.3 (page 119), we know that for each o € X, there
exists a homomorphism from body(o) into univSourcelnst(My) mapping each
x € exported(o) into the critical constant .

Due to the above, since the steps in lines 21-25 of Algorithm 6 (page 107)
do not introduce new labelled nulls and since srepair applies the procedure
hideExported to each unsafe bag § in B, if there does not exist a bag g’ € B,,,
such that [is the predecessor of ' (Definition 3.17), it follows that M’
preserves the privacy of My, on all instances of S, if hideExported prevents
dangerous unifications of labelled nulls with the critical constant in line 5 of
Algorithm 6.

In particular, assume that we are in the n-th iteration of the steps in
lines 4-31 of Algorithm 10 (page 128). Let £°,..., 3 be the unsafe bags
in B,. Assume also that for each 1 <1< M, 8!, was derived due to some
active trigger h!, for some derived egd €' € X in [;, where j > 0, line 22 of
Algorithm 6. Let o! = tgd(e'), for each 0 <1 < M and let ¢! be the repaired
s-t tgd. Finally, let 89, ..., 85, be the bags in B, 11, line 29 of Algorithm 10.

Based on the above, in order to show that Lemma 3.6 holds, we need to
show that:

(i) the number of bags in B, is lower or equal to the number of bags in
By;

(i) the s-t tgds in the set (Z \ Ul]\io al> U Uf\io ol are safe.

In order to show (i) and (ii), we consider the steps in Algorithm 11 (page 133):
for each 1 <1 < M, each exported variable y occurring in ¢!, which leads to
an unsafe unification, line 12 of Algorithm 11, is turned into a non-exported
variable. [

The correctness of procedure repair (Algorithm 7 on page 119) derives from
the combination of Lemma 3.5 (page 125) and Lemma 3.6. This is stated in
the following theorem:

THEOREM 3.3.

Let My = (S, V,V) be a mapping with a set of policy views V.

Let M = (S, T,X) be a mapping to rewrite.

Let prf be a preference function.

Let n be an integer greater than 0.

Then repair(M, My, prf, n) returns a mapping M’ = (S, T, ') that preserves
the privacy of My, on all instances of S.

136

Mapping under policy views

Proof. This theorem directly follows from the combination of Lemma 3.5 and
Lemma 3.6.]

Furthermore, if the preference function always prefers the repairs computed
by hideExported from the repairs computed by modifyBody, we can show the
following:

LEMMA 3.7.

Let My, = (S, V, V) be a mapping with a set of policy views V.

Let M = (S, T, %) be a partially safe mapping with respect to M.

Let prf be a preference function that always prefers the repairs computed by
hideExported rather than the repairs computed by modifyBody.

Then Algorithm 7 returns a non-empty mapping that is safe with respect to
My, if such a mapping exists.

Proof. From Algorithm 8, we can see that frepair always computes a non-empty
partially safe mapping, if such a mapping exists. Note that a mapping where
no variable is exported and no repeated variables occur in the body of the s-t
tgds is always partially safe as long as, the predicates in the bodies of the s-t
tgds are the same with the ones occurring in the policy views. Please also note
that such a mapping is always considered by frepair.

The above argument, along with the tuple that a partially safe mapping
can be transformed into a safe one by turning exported variables into non-
exported ones by means of the function hideExported, show that Lemma 3.7
holds. O

3.5 Learning user preferences

In the above presentation of the repairing algorithm, we have assumed that
the preference function prf is fixed. Such an assumption is reasonable if the
preference mechanism is hardcoded, i.e., if we know that the s-t tgd with
highest number of exported variables is chosen at each iteration. In this section,
we explain how this function can be learned by relying on off-the-shelf machine
learning algorithms and on training sets in which former user choices have been
recorded.

In order to be able to rank the possible repairs and employ inference on
previously specified user’s choices, we first need to define suitable metrics for
comparing each pair of repairs pu,, and pu,, for a given s-t tgd p. In case the
number of possible repairs for p is greater than two, the metrics will compare
the repairs pair by pair. For instance, Example 3.7 on page 122 presents three
different repairs for the s-t tgd py. Since our algorithm modifies the exported

137

Chapter 3

and the repeated variables in the bodies of the s-t tgds, we ground our metrics
on the following two parameters:

— Apy amounting to the difference between the number of exported vari-
ables in p,, and fi,,;

— A corresponding to the difference between the number of joins in the
bodies of p,, and p,.,.

The key intuition behind applying statistical learning to rank possible safe
rewritings of s-t tgds is to leverage an available training set of correctly iden-
tified observations. Each observation consists of the two metrics Apy and A
defined above along with the s-t tgd that better fits the values Apy and Aj.
More formally, we define a vector of variables X = (Agy, A;) and we use it as
input to train the learning model. We define a qualitative output G embodying
the s-t tgds p,, and p,., chosen by the preference function prf. We next denote
by (0ry,07) the observed values of the vector X and by ¢ the actual value of
the qualitative output G. Let G be the prediction associated to G obtained
by the learning model. The goal of the learning model is to obtain, for each
observation (0py,d;) of X, a predicted value ¢ of G that fits the ground-truth
value g corresponding to (dgy,d;).

We employ the k-NN classification algorithm (Cover et al. [CHO6], Fried-
man et al. [FHTO01]) as the supervised learning method for learning the pref-
erence function prf. This algorithm has been chosen due to its flexibility in
comparing a new item to classify with the existing items in the training set,
which are the k-nearest to the former in terms of their similarity, for which
few structural assumptions are made.

In our setting, a training set consists of measurements:

{({(6pvs,004),9:)i =1,...,N}

such that (dpy,,d,;) are values of X on the i-th measurement, and g; is the
value of G on the i-th measurement.

Intuitively, measurements have been built by choosing the repair that cor-
responds to the s-t tgd that best fits the ground truth.

Example 3.12. Consider, for example, the s-t tgd py from Example 3.7 and its
three possible repairs r1-—rs. In order to compare the possibles pairs of repairs,
suppose that the preference goes to the repair with the mazimum number of
exported variables and, in case of equality (i.e., dpy = 0), the preference goes
to the repair with the mazimum number of joins. The above leads to a training
set with three measurements (1,—1,79), (1,0,73) and (0,1, r3) such that:

138

Mapping under policy views

— the first observation, which corresponds to the comparison between ri and
ro leads to computation of values 1 and -1, choosing, thus, ro;

— the second observation, which corresponds to the comparison between rq
and ry, leads to computation of values 1 and 0, choosing, thus, r3;

— the third observation, which corresponds to the comparison between 1o
and r3, leads to computation of values 0 and 1, choosing, thus, 3.

Intuitively, as shown in the previous example, the measurements are built
by choosing the repair that corresponds to the s-t tgds that are the closest to
the golden standard one. Using this training set and given an input (dgy, d,),
a predicted value ¢ is computed with the use of the k-NN method. More
precisely, the k-NN method finds the k-nearest measurements to (dpy , ;)
among the measurements of the training set. The adopted similarity function is
the Euclidean distance. The principles exposed in this section can be adapted
to consider other similarity functions as well as other learning methods to learn
the preference function prf, however such an extension falls beyond the scope
of this work.

3.6 Related work

In this section, we examine the literature related to our approach.

At first, we examine papers relating to privacy preservation in data in-
tegration and data publishing. Then we discuss papers on controlled query
evaluation. Finally, we situate our work within the setting of data privacy.

Privacy in data integration The work of Nash et al. [NDO7| has ad-
dressed the problem of checking the safety of secret queries over a global schema
from a theoretical standpoint. At first they define the optimal set of queries of
an attack, corresponding to a set of queries for which the introduction of any
new query does not lead to infer more information. Then, Nash et al. [ND07]
define the privacy guarantees against the optimal attack by considering the
static and the dynamic case. The dynamic case corresponds to modifications
of the schemas or of the GLAV tgds of the considered mapping.

The work of Benedikt et al. [BGK17] adopts the same definition of secret
queries as in Nash et al. [NDO7]. However, their work focuses on the notion of
safety with respect to a given mapping, and uses boolean conjunctive queries
as policy views. Their setting takes place in an ontology-based integration
scenario in which the target instance is produced via a set of tgds starting from
an underlying data source. Whereas they study the complexity of the view
compliance problem in both data-dependent and data-independent setting, in

139

Chapter 3

our work we focus on the latter and extend it to non-boolean conjunctive
queries as policy views. Compared to the work of Benedikt et al. [BGK17],
we further consider multiple policy views altogether in the design of practical
algorithms for checking the safety of schema mappings and for repairing the
mappings in order to resume safety in case of violations.

Privacy in data publishing In data publishing, a view allows to ex-
port the information of an underlying data source. Thus, privacy concerns
about data disclosure linger over the problem of avoiding the disclosure of the
content of the view under a confidential query. To handle privacy in such a
setting, Miklau et al. [MSO7] propose a theoretical study of the query-view
security model built both on logic and probability theory, where they offer a
complete treatment of the multi-party collusion and the use of external adver-
sarial knowledge. The work of Miklau et al. [MS07] also explores the use of
access control policies using cryptography to enforce the authorization to an
XML document. Our work differs from the work of Miklau et al. [MS07] on
both the considered setting, as well as the adopted techniques and the adopted
privacy protocol.

Controlled Query Evaluation Controlled Query Evaluation is a confi-
dentiality enforcement framework in which a policy declaratively specifies the
sensitive information and where the confidentiality is enforced by a censor.
This framework has been introduced in Sicherman et al. [SDJVdRS83|, and
then refined in the works from Bonatti et al. [BKS95], Biskup et al. [BB04]
and Biskup et al. [BWO0S].

In the setting of the Controlled Query Evaluation, the censor takes as input
the queries executed over the database. When an input query is executed, the
censor proceeds by checking if this query leads to a violation of the security
policy it ensures and, if this policy is compromised by the query, it returns
a distorted answer which does not violate the security policy. This approach
has been adapted in the work of Grau et al. [GKKZ15] to handle ontolo-
gies expressed in the Datalog language or in the lightweight Description Logic
language OWL2.

In these approaches, the policy views are not supposed to be known by
any users except the database administrators, and the queried data has a
protected access through a query interface. Our assumptions and setting are
quite different, since our multiple policy views are accessible to every user and
our goal is to render the s-t mappings safe with respect to a set of policies via
repairing and rewriting.

Data privacy Previous work has addressed access control to protect database
instances at different levels of granularity (Sarfraz et al. [SNCB15]), in order
to combine encrypted query processing and authorization rules. Our work

140

Mapping under policy views

does not deal with these authorization methods, as well as does not con-
sider any concrete privacy or anonymization algorithms operating on data
instances, such as differential privacy (Dwork et al. [DR14]) and k-anonymity
(Sweeney[Swe02]).

3.7 Conclusion

In this chapter, we have provided formal definitions of the safety of a GAV
mapping under privacy restrictions taking the form of policy views. Then
we have provided a process to easily assess if such a mapping is safe with
respect to these policy views. Finally, we have provided a two-step framework
to rewrite an unsafe mapping into a safe one with respect to the policy views
used as references, as well as a simple approach to learn the preference function
according to user’s previous choices.

Along with the description of our algorithms, we have provided proofs that
the mappings returned by our framework are always safe with respect to the
reference policy views, and that our framework always returns a non empty
mapping if such a mapping exists.

141

Chapter 3

142

Chapter 4

Experimental assessment

In this section, we present our experimentations on the framework described
in this thesis. As the repairing part of our framework is limited to the class
of GAV mapping, contrarily to the mapping specification part, we split our
experimentations between these two blocks of our framework.

Chapter organization In Section 4.1, we focus on the mapping specifica-
tion. At first, in Section 4.1.1, we detail our experimental setting. In Sec-
tion 4.1.2, we study the number of asked questions during the specification
of a mapping, with an emphasis on the influence of the use of quasi-lattices
structures during this process. In Section 4.1.3, we study the benefit of using
non-universal exemplar tuples. Finally, in Section 4.1.4, we study the benefit
of using an interactive process compared to the approach used in the EIRENE
system.

Then, in Section 4.2, we focus on the repairing process. In Section 4.2.1, we
detail our experimental setting. In Section 4.2.2, we provide experiments over
the running time of our repairing algorithms. In Section 4.2.3, we compare
the time breakdown between the two steps of our repairing process. Finally,
in Section 4.2.4, we evaluate the efficiency of our learning approach of the
preference function.

4.1 Efficiency of the interactive specification
process
In this section, we investigate the efficiency of the steps of our specification

framework in terms of the number of interactions needed with users. We also
provide a comparison with the EIRENE system (Alexe et al. [AtCKT11b]).

143

Chapter 4

Number of s-t tgds | Max. left-hand Number of operators used
Operator generated by side atoms in for scenarios with:
the operator the generated tgds | 15 tgds 30 tgds 45 tgds 60 tgds 75 tgds 90 tgds

copy 1 1 1 2 3 4 5 6
vertical partitioning 1 1 2 4 6 8 10 12
merging 1 2 1 2 3 4 5 6
fusion 3 2 1 2 3 4 5 6
self-joins 2 2 2 4 6 8 10 12
add attribute 1 1 1 2 3 4 5 6
del attribute 1 1 1 2 3 4 5 6
add-+del attribute 1 1 1 2 3 4 5 6
merge and add attribute 1 2 1 2 3 4 5 6

Table 4.1: iBench operators used for the generated scenarios.

The source code of the prototype is publicly available at https://github.
com/ucomignani/MapSpec.

4.1.1 Experimental setting

We have implemented the specification part of our framework using OCaml
4.03, and tested it on a 2.6GHz 4-core, 16Gb laptop running Debian 9. We
have borrowed mappings from seven real integration scenarios of the iBench
benchmark (Arocena et al. [AGCM15]), as well as generated scenarios using
the same benchmark. The generated scenarios range from 15 to 90 tgds by
steps of 15 tgds using the configurations of operators listed in Table 4.1. In
this table, the first column represent the iBench operators used, the second
column represent the number of tgds generated by the use of these operators,
the third column represent maximum size of the left-hand sides generated by
these operators, and the last column represent the number of times each of
these operators are applied in order to generate a particular scenario. For
each of these configurations, we generate ten mapping scenarios with iBench
in order to run our experiments.

The left part of Table 4.2 reports the size of each considered mapping
scenario as the total number of tgds (|X|), as well as the number of relations in
the source schema and the target schema of the considered mapping scenario.

Methodology. In all experiments, we consider the iBench mapping scenar-
ios (both fixed and generated) as the ideal mappings that the user has in mind.
Starting from these mapping scenarios, we construct exemplar tuples as fol-
lows. Each tgd o € ¥ of the form ¢ — 1 is transformed into a pair of instances
(19,J7), with instance I (J7, resp.) being generated by replacing each atom
in conjunction ¢ (v, resp.) by its tuple counterpart with freshly picked con-
stants for each variable in the tgd. Thus, for each scenario ¥ = {o1,...,0,},

144

Experimental assessment

we obtain a set of exemplar tuples Ey = {(I7, J),..., (I, J7)}.

These exemplar tuples are used as a baseline in our experimental study,
as we expect that an “ideal” user, who does not make any mistakes, would
actually produce such examples. In order to introduce user ambiguities in
the above tuples, we have built alternative test cases, in which the exemplar
tuples Ey are degraded. The degradation procedure is meant to reproduce
users’ common mistakes while specifying exemplar tuples.

It should be noted that, in order to provide a fair evaluation of the quasi-
lattices efficiency, we explicitly avoided to artificially introduce overlapping
atoms to favor the use of quasi-lattices over the setting with separate semi-
lattices.

The atom degradation procedure is parametrized by the total number of
extraneous tuples added to Fy. In this first degradation procedure, an extra-
neous tuple is generated by randomly choosing a source instance 17¢, picking
a tuple at random within it, copying it and then replacing one constant of the
tuple with a fresh one.

The second degradation affects join paths. The join degradation procedure
is parametrized by the total number of unifications between constants in the
set Ey, with the constraint that at most one unification is applied within
each individual example (I, J%). An extraneous unification is produced by
choosing at random two constants that appear in /7%, and replacing one with
the other in all its occurrences in /7% and in J%.

Example 4.1. By applying the degradation procedure on the tgd o from Exam-
ple 2.17 on page 80, the following exemplar tuples may be yielded (1'%, J'7).
An extraneous Flight atom is added (atom degradation) and constants Miami
and L.A." are unified (join degradation), the degradation being underlined:

I'" = {Flight(£f1ight0,Miami, L.A. airline0);
Flight(flight1,Miami, L.A." airline0);

Airl(airline0, AAirline, Miami)}

J'7 = {Dpt(L.A/ £1ight2, compO);
Arr(L.A/, f1ight2, comp0);
Co(comp0, AAirline, Miami)}

In our experimental study, we have deteriorated each initial set of examples
Ey5; by adding 0, 2, 5, 8, 10, 20 or 30 tuples or by joining 0, 2, 5, 8, 10, 20 or 30
variables. For each of the above configurations, we repeated the degradation
procedure 30 times in order to obtain an equivalent number of degraded test
cases.

145

Chapter 4

Moreover, we simulate the user’s answers during the interactive part of our
approach with the following assumption: the user always replies correctly to
a given challenge (i.e., an input pair (Fg, Er)) w.r.t. the original mapping X
from the scenario. In order to simulate the user’s answer, I is chased to obtain
J'. "Yes’ is returned as an answer if there exists a substitution p from J into
J' such that u(J) C J', otherwise 'No’ is returned.

4.1.2 Number of questions asked during the process and
benefit of using quasi-lattices

Influence of number of atom degradations over the number of asked
questions. In the first experiment, we gauge the effectiveness of using quasi-
lattice structures compared to the case where the Y-equivalent tgds are not
grouped together. In these experiments, we use a Breadth-First exploration
strategy, both in Top-Down and Bottom-Up versions. The use of quasi-lattices
is shown to have a statistically significant correlation with the number of ques-
tions asked during atom refinement (p-value = 4.45 x 1078, tested with the
use of a MANOVA (Everitt et al. [ES02])). In the following, we analyze the
results of our experiments presented in Table 4.2 and Table 4.3. These re-
sults are also illustrated by Figure 4.1 showing the boxplots of the differ-

ence between the number of asked questions with and without quasi-lattices.
We recall that, in a boxplot:

— the central black point corresponds to the median;

— the lower and upper edges are the first quartile (); and the third quartile
(3, respectively;

— the lower and upper whisker are the minimum and maximum values
excluding outliers, respectively;

— the isolated points are the outliers.
We also recall that a data item is considered as an outlier if its value v is such

that:
V< Q= 15X (Qs— Q1) orv>Qs+1.5x(Q3 — Q)

Table 4.2 presents the results of experiments over the real scenarios. It shows
the average number of questions asked with the use of quasi-lattices (Rguasi),
the average number of additional questions asked without the use of quasi-
lattices (Afpon_quasi), the maximum number of questions asked with quasi-
lattices (Mawguesi), and the maximum number of additional questions asked
without quasi-lattices (Amaz,on_quasi)-

146

4.1. EFFICIENCY OF THE INTERACTIVE SPECIFICATION PROCESS147

. Number of asked questions with and without
Scenarios . .
the use of quasi-lattices
Name || r(?lzl;f(fis Iiiilg:; Degradations || guasi ATnon quasi | MOZquasi AMALyon_quasi
0 7 +0 7 +0
2 11.7 + 0.9 13 + 2
5 19.3 + 2.7 22 +6
al-to-a2 8 15 27 8 28.3 + 7.7 38 + 17
10 36.1 + 184 43 + 34
20 80.5 + 67.5 175 + 179
30 186.7 + 247 269 + 428
0 14 +0 14 +0
2 18 + 04 20 +2
5 23.3 + 0.7 26 + 2
amalgam2 71 15 27 8 29.1 + 04 37 + 3
10 32.7 + 0.9 36 +4
20 51.9 + 3.3 65 + 14
30 64.3 + 2.6 71 +7
0 2 +0 2 +0
2 5.3 + 0.1 7 +1
5 10.1 + 1.7 14 + 10
dblp-amalgam 10 7 9 8 13.4 + 1.1 17 + 5
10 19.3 +4.1 37 + 15
20 31.6 + 8.9 50 + 23
30 66.7 + 38.3 118 + 84
0 6 +0 6 +0
2 9.8 + 0.5 12 + 2
5 16.9 + 1.3 21 +3
GUS-to-BIOSQL | 8 7 6 8 23.1 + 3.2 28 + 11
10 26.8 + 35 36 + 12
20 67.6 +28.3 111 + 72
30 146.3 + 100.2 270 + 261
0 9 +0 9 +0
2 13.2 0.6 16 +3
5 19.6 + 3.1 24 +38
SDBI-to-SDB2 | 10 6 11 8 22.3 + 2.3 25 +9
10 27.2 + 5.7 40 + 14
20 66.6 + 36.7 136 + 95
30 86.7 + 56.9 127 + 165
0 24 +4 24 +4
2 29.8 + 5.8 34 + 10
5 39.6 + 104 46 + 14
SDB1-to-SDB3 | 11 6 11 8 50.6 + 155 70 + 26
10 59.6 + 179 79 + 33
20 102.4 + 65 166 + 113
30 181.3 4+ 119.1 293 + 191
0 3 +0 3 +0
2 5.7 + 0.1 8 +1
5 10 + 0.3 12 + 2
SDB2-to-SDB3 | 9 11 11 8 12.4 + 0.8 17 + 2
10 18.4 + 2.5 50 + 21
20 33.2 + 7.9 55 + 24
30 88.7 + 59.5 195 + 167

Table 4.2: Experimental results for the real scenarios : average number of
asked questions with use of quasi-lattices (N4uqsi), average number of
additional questions asked without quasi-lattices (Afon_quasi), maximum
number of asked questions with use of quasi-lattices (maxyqs) and maximum
number of additional questions asked without quasi-lattices (Amaz,on_quasi)-

148 Experimental assessment

. Number of asked questions with and without
Scenarios . .
the use of quasi-lattices
Number of tgds |X| rSl(; 1::;; It}izfc(ifrtm Degradations || figuasi Afinon_guasi | MZquasi AMAZnon_quasi
0 0 +0 0 +0
2 2.8 + 0.1 5 +1
5 6.9 + 0.1 11 +2
15 tgds 16 12 8 10.9 +0.3 25 +5
10 11.97 + 0.8 48 + 22
20 31 +4.4 38 + 22
30 60.9 + 17 327 + 225
0 0 +0 0 + 0
2 2.7 + 0.1 4 +1
5 6.8 + 0.1 9 +1
30 teds 32 24 8 11 + 0.2 15 +1
10 14.1 + 0.5 38 + 22
20 27.8 + 1.7 56 + 16
30 45.4 + 5.2 147 + 62
0 0 +0 0 +0
2 2.9 +0 5 +0
5 7 + 0.1 11 +1
45 tgds 48 36 8 11.1 + 0.1 17 +3
10 14 +0.2 39 +6
20 27 +1 68 + 25
30 41.3 + 2.2 64 + 20
0 0 +0 0 +0
2 2.8 +0 4 +0
5 7.1 +0 11 +1
60 tgds 64 48 8 11 +0 15 +1
10 13.8 + 0.1 22 + 2
20 27.7 + 0.6 46 +9
30 41.6 + 1.6 95 + 20
0 0 +0 0 + 0
2 2.8 +0 4 + 0
5 7.1 +0 10 +1
75 tgds 80 60 8 11.1 + 0 15 +2
10 14.1 + 0.1 23 +3
20 27.5 + 0.5 50 +6
30 41.5 + 1.3 89 + 20
0 0 +0 0 +0
2 2.8 +0 4 +0
5 7.2 +0 10 +0
90 teds 96 72 8 114 +0 16 +1
10 14 +0 19 +1
20 27.4 + 0.4 35 +6
30 41.4 + 0.8 56 +7

Table 4.3: Experimental results for the scenarios generated with iBench :
average number of asked questions with use of quasi-lattices (fguqsi), average
number of additional questions asked without quasi-lattices (Afyon_quasi)
maximum number of asked questions with use of quasi-lattices (maxuqsi)
and maximum number of additional questions asked without quasi-lattices
(Amaxnon,quasi) .

4.1. EFFICIENCY OF THE INTERACTIVE SPECIFICATION PROCESS149

al-to-a2 (8 tgds)

=]

8

L
[

0A++=oaﬁij¢

0 2 5 8 10 20 30

GUS-t0-BIOSQL (8 tgds) SDB2-to-SDB3 (9 tgds) SDB1-t0-SDB2 (10 tgds)
250 © . ©
150 ;| 150 ~
200 | 1

100 M
. 50 | 50 |
50 | ! B

Number of additional questions asked without quasi-lattices

[ﬂ i o o
' P T L - . L.
0] o o o & B — - 0o o & o o & 0] e % @ @ ®
0o 2 5 8 10 20 30 0o 2 5 8 10 20 30 0 2 5 8 10 20 30
dblp-amalgam (10 tgds) 200 SDB1-to-SDBS3 (11 tgds) amalgam?2 (71 tgds)
80 o o °
:
1150
60 | ! 10 o
100 v
40 7 o -
_L 5 i
[_ o
20 oo 50 R o o
o [g T L E o D i E
0] o & o = & & 0 e e T T T 04 o -o o L T T
0o 2 5 8 10 20 30 0o 2 5 8 10 20 30 0o 2 5 8 10 20 30

Number of atoms added during degradation

(a) real scenarios

Number of tgds : 15 Number of tgds : 30 Number of tgds : 45
o 60 - o 25 o o
200 - o
20 —+ o
150 40
o o g 15 o]
100 10 d ‘é
°.

@
o
1
'
- @pano
n
S3
1
o
@
-1@00 O
o
!
o
10000
'

Q -
I o
o -Q -
OAf*{lijif[g OAfiii@EﬁfE@ 0«**%33$E
0o 2 8 0o 2 8 2 5 8

Number of additional questions asked without quasi-lattices

5 10 20 30 5 10 20 30 0 10 20 30
Number of tgds : 60 Number of tgds : 75 Number of tgds : 90
20 — o 20 o o
6 o o
15 15 o o
o
4 4 o
10 . § 10 .
o o °o ©
e} o
o o o 2 IR
5 o -r- 5 o o | |
o i o Q 1 i
o ' o o o o o
s o 8 [o 8§ o AEN
0 & - - -o -e]i 0 o - -& -e -e $ m 04 o - - -e -e
0o 2 5 8 10 20 30 0o 2 5 8 10 20 30 0o 2 5 8 10 20 30

Number of atoms added during degradation

(b) generated scenarios

Figure 4.1: Benefit of quasi-lattices during mapping specification

Chapter 4

It can be seen that the reduction of the average number of questions by
the use of quasi-lattices ranges from 0 questions for the simplest scenarios to
a reduction of 247 questions for the scenario al-to-a2 with 30 degradations.
In this last scenario, it could be noticed that the average number of questions
asked with the use of quasi-lattices is 186.7 questions, thus if quasi-lattices are
not used the number of questions is more than doubled. Also, the reduction
of the maximal number of questions by the use of quasi-lattices ranges from
0 to 428 questions in the most complex scenario. This is illustrated in Fig-
ure 4.1a where it can be seen that, when the number of degradation increases,
the reduction of the number of questions increases as well. Moreover, when
the median number of additional asked questions increases, the first quartile
comparably grows as well.

The efficiency of the optimization is not directly correlated with the num-
ber of tgds in a scenario. This is illustrated with scenarios amalgam2 and
SDB1-to-SDB3, where the biggest one (amalgam?2) leads to a small ameliora-
tion, when the other one leads to high reductions of the number of questions
asked. This can be explained by the structure of the tgds contained by the
scenarios. When scenarios contain numerous but non-overlapping tgds (i.e.,
our degraded exemplar tuples sets lead to few t-equivalent tgds), most of
the quasi-lattices cover one tgd at a time and consequently are equivalent
to the case without use of semi-lattices. In the other case, even with fewer
tgds than in amalgam?2, the use of quasi-lattices during refinement of scenario
SDB1-t0-SDB3 leads to an important reduction of the number of asked ques-
tions. Indeed, such a scenario contains tgds which are differentiated by more
subtle differences than those in amalgam2. We can thus conclude that such
scenarios with numerous -equivalent tgds lead to exemplar tuples sets which
are efficiently handled by the use of quasi-lattices.

Table 4.3 presents the results of the experiments over the generated sce-
narios with the same information as in Table 4.2.

This table shows that the number of asked questions decreases with the size
of the mapping. Indeed, during degradation of a mapping, extraneous atoms
are more prone to be added in a same tgd if the mapping size is low, thus
leading to an increased complexity of the atom refinement. Moreover, the tgds
generated with iBench are typically small with only one atom in the left-hand
side. Hence, for many of them our framework does not ask any questions as the
supremum of the quasi-lattice is the only possible choice. This can also be seen
in all cases where no degradations are applied over the generated scenarios,
for which our system does not ask any questions in order to infer the correct
mapping.

However, in the scenario with 15 tgds and 30 degradations, the use of quasi-

150

Experimental assessment

lattices leads to ask an average number of 60.9 questions, which corresponds to
an average reduction of 17 questions in comparison with the case without quasi-
lattices. For the same scenario,the use of quasi-lattices leads to a reduction up
to 112 questions compared to the case without quasi-lattices.

Figure 4.1b illustrates these results while showing that, although the overall
reduction is low as discussed previously, the high number of outliers leads to
an important reduction of the number of asked questions. This confirms that
the use of quasi-lattices is effective for numerous particular cases.

QOwerall, these results show that the use of quasi-lattices leads to a noticeable
reduction of the number of asked questions. This is especially the case with the
most complex scenarios (i.e., the scenarios leading to the greatest number of
questions).

Influence of join degradation number over the number of asked ques-
tions. In this experiment, we evaluate the influence of the number of join
degradations on the number of asked questions. As in our previous exper-
iment, we use a Breadth-First exploration strategy, both in Top-Down and
Bottom-Up versions.

The use of quasi-lattices does not show to have a statistically signifi-
cant correlation with the number of questions asked during join refinement
(p-value > 0.05, tested with the use of a MANOVA (Everitt et al. [ES02])) thus,
contrarily to the previous section, we do not provide a comparative analysis
with the case without the use of quasi-lattices.

Table 4.4 presents the results of experiments over the real scenarios. It
shows the average number of questions asked (7guqes;) and the maximum num-
ber of questions asked (Maz juasi)-

This table shows that with the real scenarios, the number of questions
ranges from 5 questions in average for the scenario dblp-amalgam to 313.25
questions in average for scenario SDB1-to-SDB3 with 30 degradations. This
last scenario also comes with the maximal highest number of questions (3206
questions), which can be explained by a fewer number of variables occurrences
than in the other scenarios, leading to bigger quasi-lattices to explore after the
join degradation phase. However, as illustrated in Figure 4.2a, the cases where
more than 40 questions are asked per tgds corresponds to outlier values, and
in most of the cases less than 40 questions per tgds are asked, regardless of
the scenario.

As for the experiments on atom degradations, it can be seen that the
number of asked questions is not directly correlated with the number of tgds in
a scenario. This is illustrated with scenarios dblp-amalgam and SDB1-to-SDB3,
where the biggest one (dblp-amalgam) leads to a small amelioration, when

151

152 Experimental assessment

Scenarios Number of asked questions
Name 1% rSl(le‘;fgfls releEigoertls Degradations || fguqsi AT quasi
0 14 14
2 21.55 26
5 33.625 39
al-to-a2 8 15 27 8 46.4 56
10 49.375 68
20 81.225 110
30 101.8 134
0 21 21
2 24 25
5 27.7 29
amalgam?2 71 15 27 8 31.1 33
10 35.15 41
20 47.825 60
30 60.3 80
0 5 5
2 10.725 15
5 18.1 31
dblp-amalgam 10 7 9 8 27.075 36
10 30.425 42
20 43.8 50
30 63.4 81
0 16 16
2 21.2 27
5 26.925 34
GUS-to-BIOSQL | 8 7 6 8 37 120
10 38.65 56
20 54.825 75
30 73.15 159
0 27.75 33
2 34.275 61
5 41.625 71
SDB1-to-SDB2 10 6 11 8 52.2 128
10 64.25 136
20 85.15 250
30 93.125 207
0 54.25 61
2 58.625 81
5 69.875 112
SDB1-to-SDB3 11 6 11 8 79.55 116
10 135.75 1645
20 111.125 207
30 313.35 3206
0 13 13
2 21.05 36
5 41.05 76
SDB2-to-SDB3 9 11 11 8 91.8 315
10 108.9 332
20 75.2 108
30 158.95 444

Table 4.4: Experimental results on join degradations for the real scenarios :
average number of asked questions with use of quasi-lattices (N4uqsi) and
maximum number of asked questions with use of quasi-lattices (maz uqsi)-

4.1. EFFICIENCY OF THE INTERACTIVE SPECIFICATION PROCESS153

Scenarios Number of asked questions
Number of tgds |X| rz:ggzs reTlZI‘f(frtls Degradations Nguasi MAL quasi
0 65 65
2 81 113
5 115.95 225
15 tgds 16 12 8 141.275 264
10 146.775 263
20 200.95 316
30 254.325 383
0 130 130
2 143.4 164
5 177.4 264
30 tgds 32 24 8 204.65 306
10 220.4 326
20 297.3 485
30 330.75 443
0 195 195
2 214.2 311
5 246.1 347
45 tgds 48 36 8 270.65 447
10 278.25 449
20 374.3 537
30 446.2 649
0 260 260
2 280.725 382
5 308.25 406
60 tgds 64 48 8 325.175 438
10 358.15 520
20 449.8 611
30 505.45 712
0 325 325
2 340.3 371
5 373.4 483
75 tgds 80 60 8 403.9167 531
10 418.9333 562
20 513.9 662
30 588.8 798
0 390 390
2 405.5 422
5 435.55 522
90 tgds 96 72 8 457.4 540
10 490.45 588
20 576.6 732
30 636.55 810

Table 4.5: Experimental results on join degradations for the scenarios
generated with iBench : average number of asked questions with use of
quasi-lattices (Nquqs;) and maximum number of asked questions with use of
quasi-lattices (Maxjuqasi)-

154

Experimental assessment

al-to-a2 (8 tgds)
o]
15 - “.
.
10 o
.
5 & o
Eg:,
0 4
2 5 8 10 20 30
9 GUS-to-BIOSQL (8 tgds) SDB2-to-SDB3 (9 tgds) SDB1-to-SDB2 (10 tgds)
e o o 25 - o
3 15 40
o b [
2 : o o8 o |
« ' 8
2 10 ; 15 o o I
Eel . o |
e BEAIE o pa. D
5 54 EEJ E‘;I - o o E g ° ; [g B]
“6 e e — -r- 5 - 8 2 - -L.
° a @ * PRI IR PR
3 PR
E 04 04 * 0
z 2 5 8 10 20 30 0o 2 5 8 10 20 30 0o 2 5 8 10 20 30
dblp-amalgam (10 tgds) SDB1-to-SDBS3 (11 tgds) amalgam?2 (71 tgds)
o o 1.0 - o
- | 250
6 7
m 200 0.8 o [ﬂ
4 o E "7 | 180 A R o | %8 . Efj
o ﬁ B] - 100 - 0.4 —+ s [= =] T
2 TS -« &
;@; Ei' 50 | 0.2 -
[0] e e e o O
2 5 8 10 20 30 0o 2 5 8 10 20 30 o 2 5 8 10 20 30
Number of joins added during degradation
(a) real scenarios
Number of tgds : 15 Number of tgds : 30 - Number of tgds : 45
w | o o - o
& - |24
& o ° g |
: T[] |2 o T
o 8 o | [o|e] 7 0 [o) oo [l
- S 8 ! e e} - 8 o 7 D:‘ Lo
35 - v e . Eil ﬁ -L- ° 7 E:j W
] emdBT L ew®TT o cwwd
T ©] e o
L
3 o o o
§ 2 5 8 10 20 30 0o 2 5 8 10 20 30 0o 2 5 8 10 20 30
k7 Number of tgds : 60 Number of tgds : 75 Number of tgds : 90
Q
S N o o o
o o S .
S o -5 T I
5] ° i © - ! o ‘ D:‘
32 i pE -] N
2 © o © E, Y “ i 3] o -t - o & ™ o -
<+ 4 - i E‘;‘ ;E B o <+ . Egi o o 7
[N T
© o - o -

Number of joins added during degradation

30

(b) generated scenarios

Figure 4.2: Number of questions asked during mapping specification i

function of join degradations number

Experimental assessment

SDB1-to-SDB3 leads to high reductions of the number of questions asked. As
in the previous experiments, this can be explained by the structure of the tgds
contained by the scenarios. A first factor is the number of ambiguous joins in a
scenario before the application of join degradations. For example, this can be
seen on the scenarios SDB1-to-SDB3 and amalgam?2: without join degradations
scenario SDB1-to-SDB3 (11 tgds) leads to ask 54.25 questions in average, when
in the same setting scenario amalgam2 (71 tgds) leads to ask 21 questions in
average. The other factor is directly imputable to the degradation procedure.
Indeed, during degradation of a mapping, extraneous joins are more prone to
be added in a same tgd if the mapping size is low, thus leading to an increased
complexity of the join refinement.

The effect of the mapping size over the influence of the join degradation
procedure is more visible on our experiments with the generated scenarios as we
will illustrate now. The results over these scenarios are presented in Table 4.5
with the same information as in Table 4.4. It is seen that the total number
of asked questions increases both with the number of tgds in the mappings
and with the number of join degradations. However, Figure 4.2b illustrates
that the number of questions asked to specify one tgd in a mapping decrease
with the size of this mapping. For example, it is seen that scenarios with 15
tgds and 30 degradations lead to ask at least 11 questions to specify a tgd,
when scenarios with 90 tgds and 30 degradations lead to ask a maximum of 9
questions to specify a tgd.

Owverall, these results show that despite rare cases where a high number of
questions needs to be asked in order to retrieve the expected mapping, in average
the number of questions 1s kept low despite the introduction of numerous join
degradations.

4.1.3 Benefit of (non-universal) exemplar tuples

Our second experiment aims to evaluate the benefit of using exemplar tuples
as opposed to universal examples adopted in Alexe et al. [AtCKT11b] for
the mapping inference process. For each scenario, we apply the chase to all
the source instances FY% to obtain CHASE(M, E%). This lets us compute the
number of tuples in the target instance of the universal solution produced,
which we compare with the number of tuples in the target instances used in
our approach. Concretely, for exemplar tuples {(E%, EL);...; (E%, E%)} and

155

Chapter 4

al-to-a2 (8 tgds)

60
1

20 40
1 1

0
1

T T T
5 10 15 21
GUS-t0-BIOSQL (8 tgds) SDB2-t0-SDB3 (9 tgds) SDB1-t0-SDB2 (10 tgds)

o4
n

150

100
1
50

1

0
1

0
1

0
1

T T T T T T T T T T
5 10 15 2 5 10 15 20 0 5 10 15 20

dblp-amalgam (10 tgds) SDB1-to-SDB3 (11 tgds) amalgam2 (71 tgds)
M’

o -
S
o -

Ratio between total size of chased and original target instance (%)
200 300
Il Il
100
Il
00 400
Il Il Il

100
I

50 100
1 1
200 300 400
1 1 1
200 400 600 800 1000
1 1 1

0
1

0
1

0
1

T T T T T T T T T
5 10 15 20 0 5 10 15 20

04
o
3
&
8
o

Number of added degradations

(a) Real scenarios

Number of tgds : 15 Number of tgds : 30 Number of tgds : 45

i ——

150
1

100
I
20 40 60 80 100 120
I
60 80 100
I I

1
40

20
1

0
1
0
1
0
1

T T T T T T T T T T T T
5 10 15 2 5 10 15 20 0 5 10 15 20

Number of tgds : 60 Number of tgds : 75 Number of tgds : 90

/'— //M

04
o

100
1
00

1

0 80 100
1 1 1
1

40 60
1

40
4

2
20

Ratio between total size of chased and original target instance (%)
o

T T T T T T T T T T T T T T
5 10 15 20 0 5 10 15 20

04
@
3
@
5
o

Number of added degradations

(b) Scenarios generated with iBench

Figure 4.3: Growth of the ratio r» with respect to number of degradations.

156

Experimental assessment

the corresponding expected mapping M, we calculate the ratio:

> | CHASE(M, L)

1
r=>=2 —1

2 Byl

n

In order to get a comprehensive view of the effects of atom and join degra-
dations, both degradations occur together in this experiment. Precisely, in
Figure 4.3a and Figure 4.3b we present the results where an equal number
of atoms and joins degradations are used for, respectively, the real and the
generated mapping scenarios. The x axis corresponds to the total number of
degradations (e.g., the value 20 corresponds to the case with 10 atoms and 10
join degradations), while the y axis corresponds to the aforementioned ratio r.

In all the employed scenarios, we can observe the effectiveness and prac-
ticality of using exemplar tuples as opposed to the universal data examples
of EIRENE: universal exemplar tuples are from 8% to 962% larger than the
non-universal ones used in our approach. Moreover, in all scenarios, we can
observe a strong linear correlation between the number of degradations and
the number of additional target tuples needed by universal examples. Hence,
the more degradations the exemplar tuples have, the larger is the benefit of
using our approach. Notice that the scenario that is the least sensitive to the
variation of the number of degradations is amalgam2, which is also the real
scenario with the greatest number of tgds.

Such a scenario is also among those that exhibited the maximum benefit
of using fewer exemplar tuples rather. Although the precise amount of gain
is clearly dependent on the dataset and on the number of degradations, we
can observe that, in all scenarios, the advantage of using non-universal exem-
plar tuples is non-negligible, thus making our approach a practical solution for
mapping specification.

4.1.4 Relative benefit of interactivity

A key contribution of our mapping specification method is that it helps the user
to interactively correct errors (e.g., unnecessary atoms during atom refinement,
collisions of constants during join refinement) that may appear in the exemplar
tuples. In this section, we aim at quantifying this benefit via a comparison with
a baseline approach, i.e., the one in which refinement steps are disabled. As
a baseline, we adopted the canonical GLAV generation performed in EIRENE!

!For the sake of fairness, EIRENE’s canonical GLAV mappings are split-reduced and o-
redundant tgds are suppressed.

157

Chapter 4

Scenarios Number of extraneous atoms added
0o 2 5 8 10 20 30
al-to-a2 0 83 185 26.2 31 445 529
amalgam? 0 21 5.1 8 9.8 17.8 24.6
dblp-amalgam | 0 11.1 239 321 37 53.6 61.3
GUS-to-BIOSQL | 0 11.7 24.6 34.5 40 55.2 65.3
SDB1-to-SDB2 | 0 11.1 23.8 33.3 37.9 54.9 63.8
SDB1-to-SDB3 | 0 6.7 149 22 26.3 414 50.9
SDB2-to-SDB3 | 0 11.8 24.2 344 40 544 64.8

Average [0 89 192 272 317 459 54.8

(a) Real scenarios

Scenarios Number of extraneous atoms added
2 5 8 10 20 30

0
15 tgds |0 7.7 171 249 29.1 447 545
30 tgds |0 4 94 142 171 29.1 38
45 tgds |0 2.7 6.5 10 122 215 29
60 tgds |0 2 49 77 94 171 236
75 tgds |0 1.6 4 6.2 7.7 142 1938
90 tgds |0 14 33 52 6.5 121 171

0

Average |0 32 7.5 113 136 23.1 30.3

(b) Scenarios generated with iBench

Table 4.6: Relative difference (in percent) between
EIRENE and our framework.

(Alexe et al. [AtCKT11b]). As EIRENE is not intended to handle errors in its
input data examples, we had to make sure that exemplar tuples in our case
are an acceptable input for EIRENE, in particular that they pass the so-called
“homomorphism extension test”. In other words, we bootstraps our algorithms
on universal exemplar tuples (Eg, E7) in order to warrant such comparison.

We use the sum of the number of left-hand side atoms of the tgds as the
comparison criterion: the larger it is, the more “complex” is the mapping for
the end user. This optimality criterion is inspired by a compound measure
proposed in Gottlob et al. [GPS11]. Notice that this comparison only deals
with extraneous atoms during atom refinement and does not consider collision
of values, which is done during join refinement. For such reason, and also
due to the fact that here we are compelled to use universal data examples
instead of few arbitrary exemplar tuples in order to compare with EIRENE, this
comparison should be taken with a grain of salt.

The obtained results are presented in Table 4.6a and Table 4.6b for real and

158

Experimental assessment

min | max | step
s-t tgds per scenario (n4ep) 100 | 300 | 50
body atom per s-t tgds (Natoms) 1 13(3)| —
exported variables per s-t tgds (nyers) | 5 8 —

Table 4.7: Properties of the generated iBench scenarios.

generated scenarios, respectively. If no extraneous atom is added to the left-
hand sides of mappings, then there is no qualitative difference between the two
approaches. However, when extraneous atoms are introduced, a remarkable
difference can be observed: across real scenarios, EIRENE’s canonical mapping
is about 27% larger on average when 8 such atoms are introduced, and goes up
to 54% on average with 30 atoms. For the generated scenarios, which lead to
fewer asked questions during refinement, EIRENE’s canonical mapping is still
about 11% larger on average when 8 such atoms are introduced, and goes up
to 30% on average with 30 atoms. Hence, our mappings are noticeably simpler
than EIRENE’s ones. Such improvement is both beneficial for the readability of
mappings as well as for their efficiency because spurious atoms are eliminated.

4.2 Efficiency of the repairing process

In this section, we investigate the efficiency of our repairing framework both
with the use of hard-coded preference function and with a preference function
based on a simple learning approach. The source code is publicly available at
https://github.com/ucomignani/MapRepair.git.

4.2.1 Experimental setting

We evaluated our algorithm using a set of 3,600 scenarios with each scenario
consisting of a set of policy views and a set of s-t tgds. The source schemas
and the policy views have been synthetically generated using iBench. We
considered relations of up to five attributes and we created GAV mappings
using the iBench configuration recommended by Arocena et al. [AGCM15].
We generated policy views by applying the iBench operators copy, merging,
deletion of attributes and self-join ten times each. The characteristics of the
scenarios are summarized in Table 4.7. In each scenario, we used a different
number of s-t tgds ngep, a different number of body atoms 74¢0ms and a different
number of exported variables 1m,q;.

We implemented our algorithm in Java and we used the Weka library
[EHW16] that provides an off-the-shelf implementation of the k-NN algorithm.

159

Chapter 4

Max body size : 3 Max body size : 5
--o-- o
15 - ,E,, 0
n --0--
o Ce
E ””” 40 o
s 104
= = °
g o » g
w = b E o
05 -4 --o.-] B ‘
FE;' 0 o 8 ;%;. e @

100 150 200 250 300 100 150 200 250 300
Number of s-t tgds

Figure 4.4: Repairing times.

We ran our experiments on a 2.6GHz 4-core, 16Gb laptop running Debian 9.
In the remainder, all data points have been computed as an average on five
runs preceded by one discarded cold run.

4.2.2 Running time of repair

First, we study the impact of the number of s-t tgds and of the number of body
atoms on the running time of repair. We adopt a fixed preference function that
chooses the repair with the maximum number of exported variables, while, in
case of ties, it chooses the repair with the maximum number of joins. We range
the number of s-t tgds from 100 to 300 by steps of 50 and the number of body
atoms from three to five. The results are shown in Figure 4.4. Figure 4.4 shows
that the performance of our algorithm is pretty high; the median repairing time
is less than 1.5s, while for the most complex scenario containing up to five body
atoms per s-t tgd, the median running time is less than 8s with 71s being the
maximum.

Figure 4.5 shows the time breakdown for repair. The first column shows
the average running time to run the visible chase over the input s-t mappings,
the second one shows the average running time for checking the safety of the
computed bags and the third one shows the average running time for repairing
the s-t tgds. The results show that the repairing time is 32 times greater than
tine to compute the visible chase and 40 times greater than the time to check
the safety of the chase bags for scenarios with 300 s-t tgds. In the simplest
scenarios, these numbers are reduced to five and nine, respectively. Overall,
the absolute values of the rewriting times are kept low for these scenarios and
gracefully scale while increasing the number of s-t tgds and the number of atoms

160

4.2. EFFICIENCY OF THE REPAIRING PROCESS

Average execution time (s)

Average execution time (s)

0.5

0.0 +

0.5

0.0

161

Max body size : 3

Max body size : 5

Chasing critical instance

Safety check of output schema

Running repairing algorithm

| J
100 150 200 250

100 150 200 250 300 300
Number of s-t tgds
Figure 4.5: Time comparisons.
Max body size : 3 Max body size : 5
frepair EI
srepair
6 —
4 -
2 -
0 -
100 150 200 250 300 100 150 200 250 300

Number of s-t tgds

Figure 4.6: Time breakdown between frepair and srepair.

Chapter 4

4 o}
o) (o]
o} o)
» 3 - o o o o
[0}
E
c
ie)
5 2
o
0}
x
L
1 4
T T T T T T
0 20000 40000 60000 80000 100000

Number of active triggers explored in srepair

Figure 4.7: Running time of srepair over 100 s-t tgds.

n their bodies.

4.2.3 Time breakdown between frepair and srepair

Figure 4.6 shows the average running time for frepair and srepair for the con-
sidered scenarios. We can see that srepair is the most time-consuming step of
our algorithm. We can also see that the running time of srepair increases more
in comparison to the running time of frepair when increasing the number of the
s-t tgds and the number of atoms in their bodies. This is due to the overhead
that is incurred during the incremental computation of the visual chase after
repairing an s-t tgd (line 29 of Algorithm 10). Figure 4.7 shows the correlation
between the number of active triggers detected while incrementally computing
the visual chase and the running time of srepair for scenarios with 100 s-t tgds
using the ANOVA method (p-value < 2.2¢710). Figure 4.7 shows that the most
complex scenarios lead to the detection of more than 45,000 active triggers.
Despite the high number of the detected active triggers, the running time of
srepair is kept low thus validating its efficiency.

162

Experimental assessment

4.2.4 Evaluating learning accuracy and efficiency

We adopted the following steps in order to evaluate the performance of our
learning approach. First, we recall that, given two possible repairs p,, and f,,
Apy corresponds to the difference between the number of exported variables
in ., and p,,, and that A corresponds to the difference between the number
of joins in the bodies of u,, and pu,.,. We defined the following two golden
standard preference functions that we try to learn:

— Pz, which chooses the repair with the maximum number of exported
variables (i.e., the first repair if Apy < 0, else the other repair) and in
case of ties, it chooses the repair with the maximum number of joins (i.e.,
the first repair if A; < 0, else the second repair).

— Py, which computes the average value A = A—FQDAI and chooses the
first repair, if A < 0; otherwise, it chooses the second repair.

For both preference functions, we created a training set of 10,000 measure-
ments for the k-NN classifier by running the repairing algorithm on fresh sce-
narios of 50 s-t tgds and five body atoms per s-t tgd. For each input vector
(0py, 07) whose repair we wanted to predict, we computed the Euclidean dis-
tance between (d0py,0;) and the vectors of the training set. We also set the
value of parameter k£ to 1. This parameter controls the number of neigh-
bors used to predict the output. It should be noted that higher values of
this parameter led to comparable predictions. Finally, we used the trained
k-NN classifier as a preference function in srepair, rerun the scenarios from
Section 4.2.2 and compared the returned repairs with the ones returned when
applying the golden standards P, and F,,, as preference functions.

Learning P,,... Table 4.8a shows the confusion matrix associated to learn-
ing P... The confusion matrix outlines the choices undertaken during the
iterations of the k-NN algorithm. In our case, Table 4.8a shows that p; has
been selected 230 times, while s has been chosen 395,680 times. We can thus
see that ps is chosen in the vast majority of the cases. Notice that s is also
the default value in cases where the preference function weights equally pq and
H2-

Apart from the confusion matrix, we also measured the accuracy of learning
the preference function, by weighing the closeness of the learned mapping to
the golden standard mapping.

We used the Matthews Correlation Coefficient metric (MCC) [BBC*00]
to compare the repairs returned by the trained k-NN classifier and the ones
returned when applied P,,,,. This is a classical measure that allows to evaluate

163

Chapter 4

the quality of ML classifiers when ranking is computed between two possible
values (in our case, the choice between 1 and ps). Given the values:

— Np, the number of predictions of p; when p; is expected
— N3 the number of predictions of 1o when ps is expected
— Nj 2 the number of predictions of ji; when ps is expected
— N3 the number of predictions of ;1o when p; is expected

this measure is calculated as follows:

Nl,l X N2,2 - N1,2 X N2,1

MCC =
\/(Nl,l + N12)(Nig+ Nap)(Noo + Nio)(Noo+ Najy)

The results of MCC range from —1 for the cases where the model perfectly
predicts the inverse of the expected values, to 1 for the cases where the model
predicts the expected values. The value M C'C' = (0 means that there is no cor-
relation between the predicted value and the expected one. By applying MCC
to the learning of P,,.., we observed that the data are clearly discriminated,
thus leading to a perfect fit of our prediction in this case (MCC = 1).

Learning F,,,. Table 4.8b shows the confusion matrix associated to learning
P,,4. We can see that the predictions are less accurate in this case. The data
is not as clearly discriminated as before, leading to a fairly negligible error rate
(< 0.02%). This error is still acceptable for the learning, since only < 0.02%
of the predictions are erroneous. This is corroborated by a M CC' value equal
to 0.93. Thus, the learning approach still leads to an acceptable fit of our
preference function in the case of the learning of Py, .

Running time of repair with a learned preference function In the last
experiment, we want to measure the impact of learning on the performance
of our algorithm. To this end, we compare the running time of repair when
adopting a hard-coded preference function (as in the results reported in Fig-
ure 4.4) and when adopting a learned preference function. Figure 4.8 shows
the running times for the same scenarios used in Figure 4.4. We can easily
observe that the runtimes are rather similar with and without learning and the
difference amounts to a few milliseconds. This further corroborates the utility
of learning the preference function and shows that the learning is robust and
does not deteriorate the performance of our algorithm.

164

Experimental assessment

Max body size : 3 Max body size : 5
__o-- o
i
15 Cel |60
i
@ -
o e
._g . 40 — o
c
s 104 e
] [] o
[} cTo-
3 0
5 __o__ 20 ©
0.5] ~E~ ﬁ
***** 04 —e— —8- 5§5 = = =i
100 150 200 250 300 100 150 200 250 300

Number of s-t tgds

Figure 4.8: Repairing times with ML.

golden standard golden standard

prediction | ju 1o prediction | ju fho
i 230 0 i 290 1
o 0 395680 2 42 395577
(a) Ppae confusion matrix. (b) Pyyg confusion matrix.

Table 4.8: Confusion matrix for the golden standards.

4.3 Conclusion

In this section, we have provided the results of our experiments over the two
prototypes implemented from the framework exposed in the previous chapters.
At first, we have exposed the results over the interactive mapping specifica-
tion part of our framework by showing its efficiency at keeping reasonably low
the number of interactions needed to specify a mapping. We have also shown
that the use of quasi-lattices structures to prevent the exploration of equivalent
tgds is an important factor of reduction of the number of interactions during
the atom refinement step. Next, we have shown that the use of exemplar tuples
instead of universal data examples allows users to provide smaller examples
and, coupled with the interactivity, leads to produce mappings allowing to
retrieve a higher number of tuples of interest than the EIRENE system.

In a second time, we have shown that our rewriting approach maintains
short rewriting times even for complex mappings with a high number of tgds
and numerous active triggers explored. We have also shown that simple pref-
erence functions can be efficiently learned, even with a minimal amount of
metrics.

165

Chapter 4

166

Conclusions

In this thesis, we have presented a novel framework allowing non-expert users
to handle data exchange tasks.

At first, we have studied the problem of specifying mappings in an inter-
active way with inputs that are easy to produce for non-expert users, as well
as simple interactions.

To do so, we have formally defined the Interactive Mapping Specification
problem and the exemplar tuples sets it takes as input in order to allows the
specification of mappings. Then, we have studied a formal approach to the
resolution of this problem, as well as a class of fully informative exemplar tuples
sets allowing to retrieve a mapping logically equivalent to the one expected by
users. Next, we have proved the correctness of this formal approach, as well as
its convergence to a unique output mapping given a set of users interactions.
We have also proved the completeness of our approach when a fully informative
exemplar tuples set is provided as input of the framework. Finally, we have
provided the worst-case complexity of our formal framework in terms of the
maximal number of interactions with the users.

Then, built over our formal framework, we have studied a practical frame-
work for the resolution of the Interactive Mapping Specification problem. In this
approach, we have provided algorithms allowing to explore efficiently the set
of candidates output mapping by ordering them into interleaved quasi-lattices
structure. We have shown that these structures can be used to efficiently prune
large sets of candidate mappings, in order to reduce the number of interactions
with our users. Next, we have provided algorithms allowing to improve the
pruning with the use of integrity constraints. Finally, we have provided the
worst-case complexity of the two steps of our approach, as well as proofs that
the optimizations introduced by our practical framework do not break the good
properties proved over our formal framework.

Furthermore, we have shown the efficiency of our approach in an extensive
set of experiments.

In the second part of this thesis, we have studied the problem of rewriting
a mapping with respect to a set of policy views defined over its source schema

167

Chapter 4

in order to prevent forbidden information leakage.

To do so, we have provided a definition of the safety of a mapping given
privacy restrictions taking the form of policy views, and a simple way to assess
this safety. Next, we have provided a rewriting algorithm allowing to rewrite
an unsafe mapping to obtain a mapping which is safe with respect to a set
of policy views. We have proved that this rewriting algorithm will always
output a mapping that is safe with respect to the set of policy views that has
served as reference. We have also proved that our rewriting algorithm always
return a non-empty mapping if such a mapping exists. Finally, as our rewriting
algorithm can lead to multiple rewritings, we have provided a simple approach
to learn the user’s preference in order to automatize this choice.

We have shown the efficiency of our approach in an extensive set of ex-
periments in which we have evaluated the rewriting time needed in various
configurations as well as the efficiency of our learning approach.

Future directions of investigation

Regarding the mapping specification part of our work, an interesting direction
to explore would be to introduce a provenance tracking of user’s interactions
in order to spot incoherent answers, and being able to handle errors both in
their answers or in the exemplar tuples sets they provide.

Another interesting direction would be to introduce new optimizations dur-
ing the mapping specification such as the use of additional integrity constraints
during the pruning (e.g., the inclusion dependencies over the target schema of
the specified mapping).

We also want to extend the use of learning approaches in our approach.
During the specification of mapping, we think that such approaches could be
fruitfully introduced in order to improve the quasi-lattices exploration strate-
gies and to completely or partially replace users answering. During the repa-
ration of mappings, we want to extend the exploratory work done to more
complex metrics to learn users’ preferences functions and provide a compara-
tive work over multiple learning methods.

Finally, recalling that the reparation framework works with GAV mappings,
its extension to other classes of mappings is also an important direction of
investigation.

168

Bibliography

[AAP+13]

[ABLM14]

[ABPT19)

[ACKT11]

[ACMTOS]

[AGCM15]

[AHS12]

[AHV95]

[Alt]

Azza Abouzied, Dana Angluin, Christos H. Papadimitriou,
Joseph M. Hellerstein, and Avi Silberschatz. Learning and ver-
ifying quantified boolean queries by example. In Proceedings of
PODS, pages 49-60, 2013.

Marcelo Arenas, Pablo Barceld, Leonid Libkin, and Filip Murlak.
Foundations of data exchange. Cambridge University Press, 2014.

Paolo Atzeni, Luigi Bellomarini, Paolo Papotti, and Riccardo
Torlone. Meta-mappings for schema mapping reuse. Proceedings
of the VLDB Endowment, 12(5):557-569, 2019.

Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang-
Chiew Tan. Characterizing schema mappings via data examples.
ACM Trans. Database Syst., 36(4):23:1-23:48, 2011.

Bogdan Alexe, Laura Chiticariu, Renée J. Miller, and
Wang Chiew Tan. Muse: Mapping understanding and design
by example. In Proceedings of ICDE, pages 10-19, 2008.

Patricia C Arocena, Boris Glavic, Radu Ciucanu, and Renée J
Miller. The iBench integration metadata generator. Proceedings
of the VLDB Endowment, 9(3):108-119, 2015.

Azza Abouzied, Joseph M. Hellerstein, and Avi Silberschatz.
Playful query specification with dataplay. Proceedings of the
VLDB Endowment, 5(12):1938-1941, 2012.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
databases: the logical level. Addison-Wesley Longman Publishing
Co., Inc., 1995.

Altova. Mapforce v.2019. https://www.altova.com/mapforce.

169

Chapter 4

[Ang87]

[APRROY]

[AtCKT11a]

[AtCKT11b]

[Bar09]

[BBO4|

[BBC*00]

[BCCT17]

[BCCT19]

[BCS16]

[BCT19a]

Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319-342, 1987.

Marcelo Arenas, Jorge Pérez, Juan Reutter, and Cristian Riveros.
Composition and inversion of schema mappings. arXiv preprint
arXiw:0910.3372, 2009.

Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and
Wang Chiew Tan. Designing and refining schema mappings via
data examples. In Proceedings of SIGMOD, pages 133-144, 2011.

Bogdan Alexe, Balder ten Cate, Phokion G Kolaitis, and Wang-
Chiew Tan. Eirene: Interactive design and refinement of schema
mappings via data examples. Proceedings of VLDB, 2011.

Pablo Barcelé. Logical foundations of relational data exchange.
SIGMOD Record, 38(1):49-58, 2009.

Joachim Biskup and Piero Bonatti. Controlled query evaluation
for enforcing confidentiality in complete information systems. In-
ternational Journal of Information Security, 3(1), 2004.

Pierre Baldi, Sgren Brunak, Yves Chauvin, Claus AF Ander-
sen, and Henrik Nielsen. Assessing the accuracy of prediction
algorithms for classification: an overview. Bioinformatics, 16(5),
2000.

Angela Bonifati, Ugo Comignani, Emmanuel Coquery, and Ro-
muald Thion. Interactive mapping specification with exemplar
tuples. In Proceedings of SIGMOD, pages 667-682, New York,
NY, USA, 2017. ACM.

Angela Bonifati, Ugo Comignani, Emmanuel Coquery, and Ro-

muald Thion. Interactive mapping specification with exemplar
tuples. ACM Trans. Database Syst., 44(3):10:1-10:44, 2019.

Angela Bonifati, Radu Ciucanu, and Slawek Staworko. Learning

join queries from user examples. ACM Trans. Database Syst.,
40(4):24:1-24:38, 2016.

Angela Bonifati, Ugo Comignani, and Efthymia Tsamoura.
Maprepair: Mapping and repairing under policy views. In Pro-
ceedings of SIGMOD, pages 1873-1876, New York, NY, USA,
2019. ACM.

170

BIBLIOGRAPHY

[BCT19b)

[BGK17]

[BKM+17]

[BKS95]

[BMPV11]

[BWO0S]

[CDK13]

[CGMH*94]

[CHOG]

[CK90]

[CKQT17]

Angela Bonifati, Ugo Comignani, and Efthymia Tsamoura. Re-
pairing mappings under policy views. arXiv e-prints, page
arXiv:1903.09242, 2019.

M. Benedikt, B. Cuenca Grau, and E. Kostylev. Source Informa-
tion Disclosure in Ontology-Based Data Integration. In Proceed-
ings of AAAIL 2017.

Michael Benedikt, George Konstantinidis, Giansalvatore Mecca,
Boris Motik, Paolo Papotti, Donatello Santoro, and Efthymia
Tsamoura. Benchmarking the Chase. In Proceedings of PODS,
2017.

Piero A. Bonatti, Sarit Kraus, and VS Subrahmanian. Founda-
tions of secure deductive databases. IEEE Trans. Knowl. Data
Eng., 7(3):406-422, 1995.

Angela Bonifati, Giansalvatore Mecca, Paolo Papotti, and Yannis
Velegrakis. Discovery and correctness of schema mapping trans-
formations. In Schema matching and mapping, pages 111-147.
Springer, 2011.

Joachim Biskup and Torben Weibert. Keeping secrets in incom-

plete databases. International Journal of Information Security,
7(3):199-217, 2008.

Balder Ten Cate, Victor Dalmau, and Phokion G. Kolaitis.
Learning schema mappings. ACM Trans. Database Syst.,
38(4):28:1-28:31, 2013.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Pa-
pakonstantinou, J. Ullman, and J. Widom. The tsimmis project:
Integration of heterogenous information sources. In Information
Processing Society of Japan, 1994.

T. Cover and P. Hart. Nearest neighbor pattern classification.
IEEFE Trans. Inf. Theor., 13(1):21-27, 2006.

Chen Chung Chang and H Jerome Keisler. Model theory, vol-
ume 73. Elsevier, 1990.

Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-
Chiew Tan. Approximation Algorithms for Schema-Mapping
Discovery from Data Examples. ACM Trans. Database Syst.,
42(2):12:1-12:41, 2017.

171

Chapter 4

[Cod70]

[CT06]

[DNROS]

[DR14]

[DT03]

[EHW16]

[ES02]

[Fag80]

[Fag83]

[Fag07]

[FFET05]

Edgar F Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377-387, 1970.

Laura Chiticariu and Wang-Chiew Tan. Debugging schema map-
pings with routes. In Proceedings of the 32" international confer-
ence on Very large data bases, pages 79-90. VLDB Endowment,
2006.

Alin Deutsch, Alan Nash, and Jeff Remmel. The chase revisited.
In Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages
149-158. ACM, 2008,

Cynthia Dwork and Aaron Roth. The algorithmic foundations
of differential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3-4):211-407, 2014.

Alin Deutsch and Val Tannen. Reformulation of xml queries and
constraints. In Proceedings of ICDT, pages 225-241. Springer,
2003.

Frank Eibe, MA Hall, and ITH Witten. The weka workbench.
online appendix for” data mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2016.

Brian Everitt and Anders Skrondal. The Cambridge dictionary
of statistics, volume 106. Cambridge University Press, 2002.

Ronald Fagin. Horn clauses and database dependencies. In Pro-
ceedings of STOC, pages 123-134. ACM, 1980.

Ronald Fagin. Degrees of acyclicity for hypergraphs and rela-
tional database schemes. Journal of the ACM, 30(3):514-550,
1983.

Ronald Fagin. Inverting schema mappings. ACM Trans. Database
Syst., 32(4), 2007.

Ronald Fagin, Ronald Fagin, Ronald Fagin, Phokion G. Kolaitis,
and Lucian Popa. Data exchange: Getting to the core. ACM
Trans. Database Syst., 30(1):174-210, 2005.

172

BIBLIOGRAPHY

[FHH*09]

[FHTO1]

[FKMPO5]

[FKPTOS]

[FLM*99]

[GAMH10]

[GDM*11]

[GHK*13]

[GKKZ15]

[GMUWOS]

Ronald Fagin, Laura M Haas, Mauricio Hernandez, Renée J
Miller, Lucian Popa, and Yannis Velegrakis. Clio: Schema map-
ping creation and data exchange. In Conceptual Modeling: Foun-
dations and Applications, pages 198-236. Springer, 2009.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The el-
ements of statistical learning, volume 1. Springer series in statis-
tics, 2001.

Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian
Popa. Data exchange: semantics and query answering. Theoret-
ical Computer Science, 336(1):89-124, 2005.

Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-
Chiew Tan. Quasi-inverses of schema mappings. ACM Trans.
Database Syst., 33(2):11:1-11:52, 2008.

Marc Friedman, Alon Y Levy, Todd D Millstein, et al. Naviga-
tional plans for data integration. Proceedings of AAAI 1999:67—
73, 1999.

Boris Glavic, Gustavo Alonso, Renée J. Miller, and Laura M.
Haas. Tramp: Understanding the behavior of schema mappings
through provenance. Proceedings of the VLDB Endowment, 3(1-
2):1314-1325, 2010.

Boris Glavic, Jiang Du, Renée J. Miller, Gustavo Alonso, and
Laura M. Haas. Debugging data exchange with vagabond. Pro-
ceedings of the VLDB Endowment, 4(12):1383-1386, 2011.

B Cuenca Grau, lan Horrocks, Markus Krotzsch, Clemens
Kupke, Despoina Magka, Boris Motik, and Zhe Wang. Acyclicity
notions for existential rules and their application to query an-

swering in ontologies. Journal of Artificial Intelligence Research,
47:741-808, 2013.

Bernardo Cuenca Grau, Evgeny Kharlamov, Egor V. Kostylev,
and Dmitriy Zheleznyakov. Controlled Query Evaluation for Dat-
alog and OWL 2 Profile Ontologies. In IJCAI 2015.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database Systems: The Complete Book. Prentice Hall Press, Up-
per Saddle River, NJ, USA, second edition, 2008.

173

Chapter 4

[GPS11]

[Gri02]

[GS10]

[Hit]

[JBC*18]

[JBCJ18]

[Knu97]

[Kol05]

[Kol18]

[KPQ19)

[Len02]

[Lev00]

Georg Gottlob, Reinhard Pichler, and Vadim Savenkov. Nor-
malization and optimization of schema mappings. The VLDB
Journal, 20(2):277-302, 2011.

George Gratzer. General lattice theory. Springer Science & Busi-
ness Media, 2002.

Georg Gottlob and Pierre Senellart. Schema mapping discovery
from data instances. J. ACM, 57(2):6:1-6:37, 2010.

Hitachi. Pentaho data integration. https://www.pentaho.com/.

Zhongjun Jin, Christopher Baik, Michael Cafarella, HV Jagadish,
and Yuze Lou. Demonstration of a multiresolution schema map-
ping system. arXiv preprint arXiw:1812.07658, 2018.

Zhongjun Jin, Christopher Baik, Michael Cafarella, and H. V.
Jagadish. Beaver: Towards a declarative schema mapping. In
Proceedings of the Workshop on Human-In-the-Loop Data Ana-
Iytics, pages 10:1-10:4, New York, NY, USA, 2018. ACM, ACM.

Donald E. Knuth. The Art of Computer Programming, Volume 1
(8rd Ed.): Fundamental Algorithms. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1997.

Phokion G Kolaitis. Schema mappings, data exchange, and
metadata management. In Proceedings of the twenty-fourth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 61-75. ACM, 2005.

Phokion G Kolaitis. Reflections on schema mappings, data ex-
change, and metadata management. In Proceedings of PODS,
pages 107-109. ACM, 2018.

Phokion G Kolaitis, Lucian Popa, and Kun Qian. Knowledge
refinement via rule selection. arXiv preprint arXiv:1901.10051,
2019.

Maurizio Lenzerini. Data integration: A theoretical perspective.
In Proceedings of PODS, pages 233-246. ACM, 2002.

Alon Y Levy. Logic-based techniques in data integration. In
Logic-based artificial intelligence, pages 575-595. Springer, 2000.

174

BIBLIOGRAPHY

[LROYG]

[Man17]

[MG10]

[MHH"01]

[MLVP14]

[MLVP17]

[MMST79]

[MS07]

[NDO7]

[Onel3]

[Pat19]

Alon Y Levy, Anand Rajaraman, and Joann J Ordille. The world
wide web as a collection of views: Query processing in the infor-
mation manifold. In VIEWS, pages 43-55, 1996.

Federica Mandreoli. A framework for user-driven mapping discov-
ery in rich spaces of heterogeneous data. In OTM Confederated
International Conferences, pages 399-417. Springer, 2017.

Bruno Marnette and Floris Geerts. Static analysis of schema-

mappings ensuring oblivious termination. In Proceedings of
ICDT, pages 183-195. ACM, 2010.

Renée J Miller, Mauricio A Hernédndez, Laura M Haas, Ling-Ling
Yan, CT Howard Ho, Ronald Fagin, and Lucian Popa. The clio
project: managing heterogeneity. SIGMOD Record, 30(1):78-83,
2001.

Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and
Themis Palpanas. Exemplar queries: Give me an example of
what you need. Proceedings of the VLDB Endowment, 7(5):365—
376, 2014.

Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and
Themis Palpanas. New trends on exploratory methods for data
analytics. Proceedings of the VLDB Endowment, 10(12):1977—
1980, 2017.

David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Test-
ing implications of data dependencies. ACM Trans. Database
Syst., 4(4):455-469, 1979.

Gerome Miklau and Dan Suciu. A formal analysis of information
disclosure in data exchange. Journal of Computer and System
Sciences, 73(3), 2007.

Alan Nash and Alin Deutsch. Privacy in GLAV information in-
tegration. In Proceedings of ICDT, 2007.

Adrian Onet. The chase procedure and its applications in data
exchange. In Dagstuhl Follow-Ups, volume 5. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2013.

Norman W Paton. Automating data preparation: Can we?
should we? must we? Workshop Proceedings of the
EDBT/ICDT, 2019.

175

Chapter 4

[PVH*02]

[QCJ12]

[SDJVARS3]

[SME*17]

[SNCB15]

[Swe02]

[Tal]

[tCKQT18]

[TCKT10]

[Val84]

Lucian Popa, Yannis Velegrakis, Mauricio A. Hernandez,
Renée J. Miller, and Ronald Fagin. Translating web data. In
Proceedings of VLDB, pages 598-609, 2002.

Li Qian, Michael J Cafarella, and HV Jagadish. Sample-driven
schema mapping. In Proceedings of SIGMOD, pages 73-84. ACM,
2012.

George L. Sicherman, Wiebren De Jonge, and Reind P. Van de
Riet. Answering queries without revealing secrets. ACM Trans.
Database Syst., 8(1):41-59, 1983.

Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed Elma-
garmid, Samuel Madden, Paolo Papotti, Jorge-Arnulfo Quiané-
Ruiz, Armando Solar-Lezama, and Nan Tang. Synthesizing entity

matching rules by examples. Proceedings of the VLDB Endow-
ment, 11(2):189-202, 2017.

Muhammad 1. Sarfraz, Mohamed Nabeel, Jianneng Cao, and
Elisa Bertino. Dbmask: Fine-grained access control on encrypted
relational databases. In Proceedings of CODASPY, pages 1-11,
2015.

Latanya Sweeney. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 10(5):557-570, 2002.

Talend. Talend data integration. https://www.talend.com/
products/data-integration/.

Balder ten Cate, Phokion G. Kolaitis, Kun Qian, and Wang-
Chiew Tan. Active learning of gav schema mappings. In Proceed-
ings of PODS, SIGMOD/PODS ’18, pages 355-368, New York,
NY, USA, 2018. ACM.

Balder Ten Cate, Phokion G Kolaitis, and Wang-Chiew Tan.
Database constraints and homomorphism dualities. In Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming, pages 475-490. Springer, 2010.

Leslie Valiant. A theory of the learnable. Commun. ACM,
27(11):1134-1142, 1984.

176

BIBLIOGRAPHY

[Vall3]

[YMHF01]

Leslie Valiant. Probably Approzximately Correct: Nature’s Algo-
rithms for Learning and Prospering in a Complex World. Basic
Books, Inc., 2013.

Ling-Ling Yan, Renée J. Miller, Laura M. Haas, and Ronald Fa-
gin. Data-driven understanding and refinement of schema map-
pings. In Proceedings of SIGMOD, pages 485-496, 2001.

177

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

