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Recent advances in the last decade in the field of neural networks have made
it possible to reach new milestones in machine learning. The availability of
large databases on the Web as well as the improvement of parallel computing
performances, notably by means of efficient GPU implementations, have enabled
the learning and deployment of large neural networks able to provide current
state of the art performance on a multitude of problems. These advances are
brought together in the field of Deep Learning, based on a simple modelling
of an artificial neuron called perceptron, and on the method of learning using
error back-propagation.

Although these methods have allowed a major breakthrough in the field of
machine learning, several obstacles to the possibility of industrializing these
methods persist. Firstly, it is necessary to collect and label a very large amount
of data in order to obtain the expected performance on a given issue. In addition
to being a time-consuming step, it also makes these methods difficult to apply
when little data is available. Secondly, the computational power required to
carry out learning and inference with this type of neural network makes these
methods costly in time, material and energy consumption.

In the computational neuroscience literature, the study of biological neurons has
led to the development of models of spiking neural networks. This type of neu-
ral network, whose objective is the realistic simulation of the neural circuits of
the brain, shows in fact interesting capacities to solve the problems mentioned
above. Since spiking neural networks transmit information through discrete
events over time, quantization of information transmitted between neurons is
then possible. In addition, further research on the mechanisms of learning in
biological neural networks has led to the emergence of new models of unsu-
pervised Hebbian learning, able to extract relevant features even with limited
amounts of data.

The objectives of this work are to solve the problems of machine learning
described above by taking inspiration from advances in computational neuro-
science, more particularly in spiking neural networks and Hebbian learning. To
this end, we propose three contributions, two aimed at the study of algorithm-
architecture adequacy for the parallel implementation of spiking neural networks
(SNN), and a third studying the capacities of a Hebbian biological learning rule
to accelerate the learning phase in a neural network.

The first contribution consists in adapting the BCVision software kernel of
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Brainchip SAS for implementation on GPU architectures. BCVision is a soft-
ware library based on researches dating from 1998 that use spiking neural net-
works to detect visual patterns in video streams. Using this library as a basis,
we first realized a parallel implementation on GPU to quantify the acceleration
of processing times. This implementation allowed an average acceleration of
the processing times by a factor of 10. We also studied the influence of adding
complex cells on temporal and detection performance. The addition of complex
cells allowed an acceleration factor of the order of one thousand at the expense
of detection performance.

We then developed a hierarchical detection model based on several spiking neu-
ral circuits with different levels of subsampling through complex cells. The
image is first processed in a circuit equipped with complex cells with large re-
ceptive fields in order to subsample the neural activity maps and perform a
coarse pattern detection. Subsequent circuits perform fine detection on the pre-
vious coarse results using of complex cells with smaller receptive fields. We
have thus obtained an acceleration factor of the order of one thousand without
seriously impacting the detection performance.

In our second axis of work, we compared different algorithmic strategies for
spike propagation on GPUs. This comparative study focuses on three imple-
mentations adapted to different levels of sparsity in synaptic inputs and weights.
The first implementation is called naïve (or dense) and computes all the corre-
lations between the synaptic inputs and weights of a neuron layer. The second
implementation subdivides the input space into subpackages of spikes so that
correlations are only made on part of the input space and synaptic weights.
The third implementation stores synaptic weights in memory in the form of
connection lists, one list per input, concatenated according to the input spikes
presented at a given time. Propagation then involves in counting the number
of occurrences of each output neuron to obtain its potential. We compare these
three approaches in terms of processing time according to the input and output
dimensions of a neuron layer as well as the sparsity of the inputs and synaptic
weights. In this way, we show that the dense approach works best when spar-
sity is low, while the list approach works best when sparsity is high. We also
propose a computational model of processing times for each of these approaches
as a function of the layer parameters as well as properties of the hardware on
which the implementation has been done. We show our model is able to predict
the performances of these implementations given hardware features such as the
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number of Arithmetic Logic Units (ALU) for each operation, the core and mem-
ory frequencies, the memory bandwidth and the memory bus size. This model
allows prospective studies of hardware implementation according to the param-
eters of a neural network based machine learning problem before committing
development costs.

The third axis is to adapt the Hebbian rule of Spikes-Timing-Dependent-Plasticity
(STDP) for the application to image data. We propose an unsupervised early
visual cortex learning model that allows us to learn visual features relevant for
application to recognition tasks using a much smaller number of training im-
ages than in conventional Deep Learning methods. This model includes several
mechanisms to stabilize learning with STDP, such as competition (Winner-
Takes-All) and heterosynaptic homeostasis. By applying the methods on four
common image databases in machine learning (MNIST, ETH80, CIFAR10 and
STL10), we show that our model achieves state-of-the-art classification perfor-
mances using unsupervised learning of features that needs ten times less data
than conventional approaches, while remaining adapted to an implementation
on massively parallel architecture.
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Chapter 1

Context and state-of-the-art

Deep learning methods have recently shown ground-breaking performance levels
on many tasks in machine learning. However, these methods have intrinsic con-
straints which limits their industrialization. Such drawbacks are a direct conse-
quence of the deep nature of the neural network used, which requires enormous
amount of computations, memory resources and energy consumption. Several
research projects attempt to solve this issue by finding ways to accelerate learn-
ing and inference at software and hardware levels. One of the main advances
that allowed allowed Deep Learning to become efficient and popular was the
development of Graphical Processing units (GPU).

On the other hand, Brainchip Inc has used spiking neural network (SNN) based
technology in order to perform fast visual pattern detection. Such networks,
whose first purpose is the development of more realistic biological simulations,
show interesting features for energy consumption reduction. As a matter of fact,
BCVision, a software library for visual pattern detection developed in 2004
(under the name SNVision back then), is able to perform one-shot learning
of novel patterns and detect objects by propagating information in the form
of spikes. While BCVision is not as ubiquitous as Deep Learning methods,
its principles are all biologically plausible, requires a low amount of data and
require fewer resources.

This thesis proposes to explore the adequation of spiking neural networks and
biological priors to parallel computing devices such as GPU. In this section we
present the context of our research. We first show that the success of Deep
Learning methods relies on processes similar to those seen in biological brains.
We present next computational neuroscience models that are relevant for ex-
plaining the energy-efficiency of the brain, and are marginally considered in the
machine learning community. We also present research on GPU optimizations
of both deep neural networks and spiking neural networks, as well as the GPU
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programming model which will be of primary importance for the content of
this thesis. We finally explore the current research trends in Deep Learning,
in neural network hardware optimization and the relationship between machine
learning and neuroscience.

1.1 Deep Learning methods and their links to
Biology

The fundamentals of Deep Learning

In the last decade, the machine learning community adopted massively Deep
Learning methods, a set of algorithms based on neural networks architectures
that can involve hundreds of layers. These methods have shown outstanding
performances on many tasks in computer vision (Krizhevsky et al., 2012; He
et al., 2016), speech recognition (Hannun et al., 2014; Amodei et al., 2016;
Zhang et al., 2017), natural language processing (Mikolov et al., 2013b,a) and
reinforcement learning (Mnih et al., 2013; Gu et al., 2016; Mnih et al., 2016).

Deep learning architectures use as a basis formal neurons (McCulloch and Pitts,
1943), derived from the perceptron model (Rosenblatt, 1958), a simple unit
which performs a linear combination of inputs and their synaptic weights, fol-
lowed by a non-linear function in order to compute its activation. Perceptron
units are organized in layers, each layer receiving as inputs the activation from
its previous layer(s). A network with multiple layers of perceptrons in called
a Multi-Layer Perceptron (MLP). The Universal Approximator Theorem Cy-
benko (1989) states that a two-layer MLP (with one hidden layer and an output
layer) with a large enough number of neurons with sigmoid activation function
can approximate any continuous function. It was also shown that only the
non-linear behaviour of the activation function matters in order for an MLP to
approximate any continuous function (Hornik, 1991).

Learning with a MLP is performed with the backpropagation algorithm in a
supervised manner. The original article on perceptrons (Rosenblatt, 1958) pro-
posed a first learning algorithm which allowed the last layer of an MLP to learn
a mapping between its inputs and a reference output (called labels or targets
in the literature). However, this method did not provide a way to perform
learning in multi-layer architectures. The backpropagation algorithm (Linnain-
maa, 1970; Werbos, 1982; Rumelhart et al., 1986; LeCun et al., 1988) allows a
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multi-layer neural network to learn its internal representations from the error
of prediction. Backpropagation is a gradient descent method, where for each
input a feedforward pass through the neural network is performed in order to
obtain a prediction. As each input is associated to a label (or target), the error
of prediction is computed between the neural network prediction and the target.
This error is then backpropagated through the network by the computation of
each layer’s gradients from top to bottom, respectively to its inputs. Gradi-
ent computations are based on the chain-rule (Dreyfus, 1962), which allows the
computation of the partial derivative of composition function. In other words,
for a given parameter in the network (an activation or a synaptic weight), the
chain-rule can approximate the error induced by this specific parameter given
its inputs values and its output gradients. The main requirements for using
backpropagation are the labelling of every input in the training dataset and the
differentiability of every operation in the neural network. Note that this the last
condition is violated with formal neurons (Rosenblatt, 1958), where activation
function is a threshold (or Heavyside) function, which is non-derivable.

The development of such neural networks methods faced several obstacles be-
fore. First, MLPs suffers a lot from the curse of dimensionality (Bellman, 1961),
meaning that with more input dimensions more neurons and samples are needed
in order to avoid overfitting. Also before the extensive use of GPUs (Graphi-
cal Processing Units) for Deep Learning, computation times were a significant
issue, since a single training of a single feedforward neural network could take
several days to weeks. As of today, such obstacles have been largely overcome
as we shall see in the next section.

From MLPs to Deep Learning: biologically plausible priors

Multi-Layer Perceptrons suffer from operational drawbacks which hinder its
ability to effectively approximate universally any continuous function as theo-
rized by Cybenko (1989). We will see in this section how regularization tech-
niques allowed artificial neural networks to overcome those drawbacks and to
become the main method in machine learning. We show that many of these
regularizations take inspiration from biological models of the brain, or at least
have similarities to what can be found in biological neural networks.
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Data availability It has been a common philosophy concern that the avail-
ability of diverse observations helps humans to gain accuracy in their percep-
tion of reality. Plato’s Allegory of the Cave states the impossibility for people
with constrained observation scope to perceive correctly reality. Saint Thomas
d’Aquin also proposed the concept of passive intelligence, the idea that human
intelligence builds itself through experience of their environment. The more
observation, the more a human or an animal is able to approximate reality,
then take good decisions for its survival. This idea is supported by experi-
ments in kittens showing that directional sensitivity (Daw and Wyatt, 1976)
and orientation sensitivity (Tieman and Hirsch, 1982) can be modified during
critical phases of their brain development by changing the environment. The
fundamental laws of statistics and the curse of dimensionality both draw to the
conclusion that an insufficient amount of data leads to variance problems, hence
increasing the amount of data allows theoretically better generalization.

With the presence of huge amounts of data available via the Web, it has been
possible to gather and annotate large datasets. For instance the ImageNet
dataset (Deng et al., 2009), a famous dataset in computer vision, contains mil-
lions of labelled images available for training. With the addition of random
transformations and Drop Out (Srivastava et al., 2014) in order to artificially
increase the number of samples, models are now able to generalize better. We
should notice that even millions of samples are not sufficient in order to avoid
the Curse of Dimensionality. Deep Learning systems may simply overfit the
training dataset, but since they contain a huge number of configurations for
each label, then it is able to generalize.

Convolutions Hubel and Wiesel (Hubel and Wiesel, 1962) proposed a model
of hierarchical visual processing based on simple and complex cells. Simple
cells are neurons with a restricted receptive field corresponding to a subregion
of the field of view. Complex cells pool together visual information relative
to an orientation over a patch, allowing robustness to translations, scaling and
rotations of visual patterns. The HMAXmodel (Riesenhuber and Poggio, 1999)
implements a model on these principles that attempts to simulate processing
in the ventral and dorsal visual streams. In the HMAX model, V1 simple cells
are sensitive to oriented bars (Poggio and Bizzi, 2004), while subsequent simple
layers encodes all combination of inputs (for V2 all the possible orientation
combination). Complex cells in HMAX apply a softmax operation in order
to perform their pooling operation. However, this model has no ability to
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learn novel visual representations in its intermediate layers, relying instead on
a SVM classifier (Vapnik, 1999). The HMAX model is also slow in terms of
processing times due to the number of potential combinations in all the simple
layers from V2. Nevertheless, Serre et al. (2007) proposed a comparison of the
HMAX model with a simple unsupervised learning scheme (synaptic weights of
a randomly chosen unit are mapped to a random afferent vector) and human
during an animal/non-animal classification task, and showed that such model
behaviour is very closed to human’s one. It has also been shown that complex
cells may not perform softmax operation for pooling, but rather a simple max
operation (Rousselet et al., 2003; Finn and Ferster, 2007).

Artificial neural networks using simple cells with restricted receptive fields in-
clude LeNet (LeCun et al., 1998), which performs handwritten digit classifica-
tion on the MNIST dataset with high accuracy. LeNet relies on the convolution
operator in order to compute neural activations of simple cells, with one neu-
ron’s receptive field being applied across all the spatial dimensions of the image.
Convolutional Neural Networks (CNN) then uses weight sharing, the assump-
tion that for a given output activity map, all the neurons associated to this
activity map have the same synaptic weights over their receptive field. This as-
sumption is wrong with respect to biology, but this approximation leads to two
advantageous features for machine learning. Such constrained receptive fields
allow the model to be more compact in memory, and also reduce the degree of
freedom during learning since only a few synapses can be altered contrary to the
fully-connected scheme typically used in MLPs. CNNs also have complex cells
after each simple cell layer that performs max-pooling and subsampling neural
activity over the spatial dimension further reducing both the computations and
memory requirements for subsequent layers. Finally, in order to avoid runaway
dynamics of the synaptic weights during learning, a weight decay (Krogh and
Hertz, 1992) term is usually added to the update equation. The weight decay
is a constraint on the norm of the synaptic weights. The most popular weight
decay term is the L2-norm, and is also named Lasso in the statistics literature
(Tibshirani, 1996).

Activations Non-spiking neural models (McCulloch and Pitts, 1943; Rosen-
blatt, 1958) have been equipped with diverse non-linearity functions like thresh-
old, sigmoid and hyperbolic tangent (tanh) in order to approximate the rate of
spiking in a non-linear regime. However, such non-linear functions, when dif-
ferentiable, suffer a lot from the vanishing gradients problem when applying
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Figure 1.1: Standard architecture of a convolutional neural
network. (Image from https://commons.wikimedia.org/ un-

der the Creative Commons 4 license)

backpropagation rule (Hochreiter et al., 2001), resulting in infinitesimal ampli-
tudes of weight updates for the bottom layers in a hierarchy.

A biologically plausible non-linear behaviour relying on a simple piecewise-
defined linear function was proposed by Hahnloser et al. (2000). This func-
tion has been shown to correlate with physiological activity in MT cells (Rust
et al., 2006) along with divisive normalization. The function assumes that if
the activity of a neuron before the non-linearity is lower than zero, then the
non-linear function outputs zero, else it outputs the given activity. Such acti-
vation function have been later named Rectified Linear Unit (ReLU) (Nair and
Hinton, 2010) and was successfully applied in Restricted Boltzmann Machines
and Convolutional Neural Networks (Krizhevsky et al., 2012). The ReLU acti-
vation function bypasses the vanishing gradient problem since its derivative for
input values greater than zero is one, hence preserving the gradients amplitude.

Normalization Neural feedback inhibitions seem to play a role in contrast
invariance in many sensory circuits. Carandini and Heeger (1994) showed that
excitatory-inhibitory circuits may implement a divisive normalization scheme
(also known as shunting inhibition) in order to limit the effect of input variation
in amplitude. The presence of such context-dependent normalization have been
shown to occur in V1 cortcical circuits (Reynaud et al., 2012). As we have
seen in the previous paragraph, shunting inhibition with a rectifier function
correlates with biological recording of MT cells (Rust et al., 2006).

In the machine learning domain, special cases of normalizations are known as
whitening processes. Whitening prior to propagation has been shown to help
convergence during learning with back-propagation (Wiesler et al., 2011). In
order to facilitate convergence in deep CNNs, the Batch Normalization method
(Ioffe and Szegedy, 2015) mean-centers and scales by the inverse variance to

https://commons.wikimedia.org/
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apply such whitening process. In Batch Normalization, the mean and variance
statistics of each neuron is learnt over all the dataset and fixed for inference
phase. Hence, statistics learnt with a given dataset may not be generalizable to
another dataset. This issue was addressed by the proposal of Layer Normaliza-
tion (Li et al., 2016) and Instance Normalization (Huang and Belongie, 2017)
where the mean and the variance are computed online (thus not learnt) over
the current batch or the current sample respectively. These different normal-
ization schemes, while coarsely approximating biological neural normalization,
effectively reduce the number of iteration required for convergence.

Recurrent neural networks The Long-Short-Term-Memory (LSTM) unit
(Hochreiter and Schmidhuber, 1997) is a recurrent neural model equipped with
gates, inspired from the ion channels in biological networks, which is able to
learn long-term dependencies in temporal data. It is often used for natural
language and audio processing. The Gated Recurrent Unit (GRU) (Cho et al.,
2014) is a simpler model of recurrent neuron which has been shown to perform
equivalently to an LSTM unit.

Figure 1.2: Architecture of an LSTM neuron (Image from
https://commons.wikimedia.org/ under the Creative Com-

mons 4 license)

https://commons.wikimedia.org/
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1.2 Toward further biological priors for neural
network acceleration

In this section we consider several biological neural mechanisms which have
emerged from neuroscience research and are rarely considered in the deep learn-
ing literature.

A first mechanism is the spiking behavior of neural networks used in compu-
tational neuroscience. The complete behaviour of spiking neurons have been
described by Hodgkin and Huxley (1952) using electrical stimulation of squid
nerves. Spiking neurons shows temporal dynamics according to their dendritic
inputs. Input spikes are modulated by synapses’ conductance, and potentiation
occurs at the soma. When the potential reaches a certain threshold, the neuron
is depolarized and emits a spike along its axon, which is connected to other neu-
rons dendrites. The Hodgkin-Huxley model of the neuron, while complete, is
based on differential equations which computes the internal state of the neuron,
thus resulting in a complex model. Simpler models are often used for simula-
tion purposes, such as the Lapicque model (Abbott, 1999), also known as the
leaky-integrate and fire (LIF) neuron. The LIF model captures the dot product
behaviour between inputs and synapses, the thresold function and incorporate a
leakage parameter. Izhikevich neurons (Izhikevich, 2003) also incorporate such
behaviour in a very parametrizable manner and have been shown to reproduce
many of the biological neural dynamics observed experimentally. The inter-
esting factor of such neural models from a computational point of view is the
nature of spikes, mathematically expressed as a Dirac distribution, or in the
discrete case as a Kronecker of unit amplitude. We can assume that biological
neurons output a binary information at each timestep, whether the threshold
has been reached or not. This shows a fundamental difference between spik-
ing neurons and LSTMs that encode information after the non-linearity as a
floating-point real number. Spiking neurons also reset their potential right af-
ter firing, where LSTMs only reset their activity given their internal states and
learnt gates weights. We can reasonably assume that spiking neurons may help
in simplification of existing recurrent neural models.

Another interesting function of the brain is its ability to perform ultra-rapid
visual categorization (Thorpe et al., 1996). Humans and primates are able to
detect visual patterns in under 100 ms, leading to information being propagated
during at most 10 ms in a single visual layer. The first wave of spikes is then
probably sufficient for rapid visual categorization (Thorpe et al., 2001), since at
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most one spike per neuron can occur in this 10ms frame. Rate coding is not able
to explain such processing, since it cannot be measured with only one spike per
neuron, thus spikes-timing coding is privileged for such task. As absolute timing
differences are small, it was hypothesized through the rank order coding theory
(Van Rullen et al., 1998; Thorpe et al., 2004) that a single spike per neuron is
enough to perform rapid categorization of visual stimuli. In such framework,
the absolute timing of spikes may be ignored, the relative order of the spikes
being able to help discriminate different visual patterns. The adequacy of fully
feedforward neural processing is also supported by the architectures of CNNs for
computer vision tasks, where information in only propagated in a feedforward
manner during inference. While CNNs typically compute neural activity as
floating-points rates instead of binary spikes, we argue that rank order coding
may provide useful constraints for accelerating deep learning methods applied
to vision.

Figure 1.3: Latencies observed in each layer during a rapid
visual categorisation task. (Image reproduced with permission

from Thorpe et al. (2001))

For spiking neural networks to learn representations, the backpropagation al-
gorithm may not be applied since spiking behaviour are the result of a non-
derivable threshold based non-linearity. Further more, it is biologically implau-
sible that supervised learning schemes such as backpropagation could be the
main learning mechanisms. Many representation appear to be learned in a un-
supervised way, either by determined developmental functions (Ullman et al.,
2012; Gao et al., 2014), innate social learning behaviours (Skerry and Spelke,
2014; Hamlin, 2015) or physiological unsupervised mechanisms (Markram et al.,
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1997; Bi and Poo, 1998). One of the main unsupervised learning mechanisms
occurring in the brain is called Spike-Timing-Dependent-Plasticity (STDP).
STDP is a Hebbian learning rule based on the timing differences between pre
and post-synaptic spikes. In machine learning terms, STDP acts as a spike-
based coincidence detector and has been shown to allow neurons to rapidly learn
novel representations and capture input statistics (Delorme et al., 2001; Perrinet
and Samuelides, 2002; Guyonneau et al., 2005; Masquelier and Thorpe, 2007;
Masquelier, 2017). The adaptation of STDP to machine learning paradigm
may serve the purposes of learning phase acceleration and bringing biological
plausibility to deep networks.

Figure 1.4: Synaptic changes as a function of the spike timing
difference of a pre and a post-synaptic neurone ((Image from
http://www.scholarpedia.org/ under the Creative Commons

3 license)

1.3 Hardware dedicated to parallel computing
are suitable for neural networks accelera-
tion

We have seen in the previous section that regularization techniques allow arti-
ficial neural network models to overcome their intrinsic issues. Regularization
is generally implemented as model-based (or software-based) enhancement. In

http://www.scholarpedia.org/
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this section we describe hardware-based enhancement brought by the algorithm-
architecture adequacy of neural networks models on diverse devices, in partic-
ular on Graphical Processing Units (GPU).

GPU acceleration of deep learning methods From the machine learning
perspective, the major breakthrough was the publication by Krizhevsky et al.
(2012), showing that is was possible to implement a deep convolutional neural
network on a GPU: the famous AlexNet. The AlexNet architectures contains
seven convolutional layers for a total number of 650 thousand neurons and 630
millions synapses. Such network on CPU would take far too long to train. The
shift to GPU hardware allowed a drastic acceleration of processing times, and
allowed the authors to train this network on two consumer-grade NVidia GTX
580 in less than a week for a hundred epoch on the whole ImageNet dataset.
This represents an acceleration of an order of magnitude of ten. Since then,
GPU have been massively adopted for deep learning. The different enhancement
brought by NVidia to their GPU hardware and software library CUDA as well as
the massive share of open-source code between academic and industrial actors
in the field led to the rapid development and improvements of many Deep
Learning framework like Caffe (Jia et al., 2014), Theano (Theano Development
Team, 2016), Tensorflow (Abadi et al., 2015), MXNet (Chen et al., 2015) and
many others as well as convenience wrappers.

GPU acceleration of biological neural networks On the computational
neuroscience side, different tools have been proposed in order to accelerate sim-
ulations of biological neural networks. Frameworks like Brian (Goodman and
Brette, 2009) and CarlSim (Beyeler et al., 2015) propose a unified design ar-
chitecture of neural networks which can then be run on several devices such
as CPU, GPU and dedicated hardware like IBM’s TrueNorth (Merolla et al.,
2014) and recently Intel’s LoiHi chip (Davies et al., 2018). The latter dedi-
cated hardware pieces, while very energy-efficient, are research oriented, with a
focus on biologically accurate simulations. Such simulations rely on very com-
plex models, hence the possibility of deploying deep architectures on dedicated
hardware and GPUs remain limited and does not fit operational requirements
for applications. Finally, GPUs are far more accessible than dedicated hard-
ware for both purposes, since they are basic components of computers and serve
other purposes like other scientific and graphical computations for a lower price
(considering consumer-grade GPUs).
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CUDA programming model GPU technology has drastically improved
over the last years, in terms of both computational efficiency and ease of de-
velopment of such platforms. NVidia Corporation made several improvements
in order to shift from their initial specialization on graphical processing toward
scientific computations, and more particularly on neural network acceleration.
With the addition of tensor cores (dedicated matricial computation units) on
GPUs and convenient programming tools such as the CuDNN library for deep
learning, Nvidia has taken the lead on the neural network accelerator market.
AMD on the other hand was not as successful in this initiative, but strategi-
cal shifts in their programming language from OpenCL to HIPs, which takes
inspiration from the NVidia CUDA programming language and tries to unify
programming on both platforms, make it possible for previously NVidia-only
projects to be run on AMD platforms. Thanks to HIPs implementation of deep
learning framework, recent benchmarks have shown that the recent AMD Vega
architecture may perform better than NVidia GTX Titan X GPU in deep neural
networks training (GPUEater, 2018). In this part we will describe the CUDA
programming model in order to highlight the constraints inherent to parallel
computing, since the new HIPs framework follows the same model.

NVidia GPUs require computations to be split between several parallel com-
putation units called Streaming-Multiprocessors (SM). Each SM contains thou-
sands of registers partitioned dynamically across threads, several memory caches
to reduce memory access latencies (which will be detailed later in this section),
a warp scheduler which quickly switches context between threads and issues
instructions and many dedicated execution cores for different operations at var-
ious resolutions (mainly using 32-bits integers and floating -points numbers).

SMs are designed to perform computations in a Single-Process-Multiple-Data
(SPMD) manner, i.e. a single instruction is performed by the SM on each
clock cycle on multiple different data points at the same time. In hardware,
threads are organized in warps, a warp being a set of 32 threads performing
the same computation. Instructions are issued to dedicated units, which can
vary in terms of performances depending on the bit resolution and the nature
of the operation. For instance, 32-bits integer additions can be performed on
a single SM in four clock cycles, but the compute-units can pipeline processing
and process four warps at the same time. The efficiency of an operation is given
by its throughput, which is roughly the amount of data on which the operation
can be performed on one clock cycle. In our example, the throughput of the
integer addition is 128, since four warps can be pipelined at the same time on
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the dedicated compute unit.

Data transfer between the host memory (the RAM module) and the SM is
divided between several memory-cache layers.

• The global device memory is the largest but slowest memory space em-
bedded on the GPU. As of today its capacity can reach dozens of gigabits
of data. Data transfers are done through PCI-Express port (where PCI
stands for Peripheral Component Interconnect), hence the data rate trans-
fer between the host and the global memory is limited to 20 Gbits/s. Also,
this memory currently relies on GDDR5 (Graphical Double Data Rate)
or HBM2 (High Bandwidth Memory) technologies, on which read and
write instructions from SM have longer latencies than on classical CPU
architectures. From the GPU perspective, data are accessed through large
memory buses (256 to 384 bits for GDDR5, 2048 to 4096 bits for HBM2)
by loading large chunks of aligned and coalesced memory spaces. This is
a major constraint of the parallel programming model as the violation of
memory access patterns induces long latencies. Much care should also be
taken regarding concurrent writes in global memory, which can result in
data inconsistency. Atomic operations, i.e. writing in a memory location
in a thread-safe manner, are supported but also increase latency. Such
operations should not be used extensively in order to keep the advantage
of parallel processing on computation times.

• When data chunks have to be accessed in a read-only fashion, the texture
cache memory allows those chunks to be accessed more rapidly and reduces
the latencies induced by uncoalesced accesses. Such texture cache is highly
optimized for 2D and 3D memory reading and can be very useful for
algorithms where data is read from neighbouring spatial locations.

• The constant memory is able to store a few dozen Kilobytes of data and
is able to rapidly transfer its content to SM. Transferring data to constant
memory is however slow. This memory is then useful for global parameters
shared between threads.

• The shared memory is a block of dozens of kilobytes (typically 64kB) em-
bedded in each SM. This memory is accessible by all the threads running
on a given SM. As shared memory is highly optimized for low latency
data transfer between threads, this memory is practical for reduction al-
gorithms (summing, max, sorting) and local atomic operations. Data in
shared memory is organized in 32-bit memory banks. There are 32 banks
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per SM, allowing each bank to store multiple 32-bits values. Accessing
different values in the same bank is inefficient since it leads to bank con-
flicts. Shared memory is nevertheless efficient for coalesced accesses or for
broadcasting values over multiple threads.

• There are also thousands of registers per SM on which computations are
directly applied. For recent architectures the number of registers can reach
65536 per SM, and 255 registers can be assigned to each thread. Registers
are 32-bits in size.

On the software side, functions are implemented from a thread perspective and
are named kernels. A kernel describes all the computations done by a single
thread. Kernels are launched on the GPU following a launch-configuration
given by the developer. The launch-configuration informs the GPU on how
the computations are organized across threads, blocks and grid. Blocks are a
group of at most 1024 threads which are run on a SM and can hence access the
same shared memory chunk. Threads can be organized over three dimensions
x, y, and z, with the product of the three dimensions being the total number of
threads in that block. The grid informs the GPU on the number of blocks that
must be launched, and is also organized in three dimension. The division into
three dimensions is useful for multi-dimensional algorithms. This organization
is important since data transfers between threads and synchronizations can
only occur within the same block. Indeed, it is impossible to have a global
synchronization barrier between blocks., i.e. for a single kernel launch, threads
belonging to one block are unable to communicate any data with the threads
from other blocks. If such global synchronization is required, the kernel have
to be launched multiple times, inducing launch overheads.

From these considerations, a few golden rules can be raised. First, data transfers
between the different GPU memory layers have to be limited. Access patterns
should be performed in an aligned and coalesced fashion. Also, high throughput
computations must be privileged. This is often reduced in a single rule of parallel
computing: hide the latencies.
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Figure 1.5: The CUDA threads organization across the three
levels (single thread, block and grid) with their respective mem-
ory caches. ((Image from http://www.training.prace-ri.
eu/uploads/tx_pracetmo/introGPUProg.pdf under the Cre-

ative Commons 3 license)

1.4 State-Of-The-Art

Recent advances in Deep Learning

Generative adversarial networks Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) have been said the most interesting idea in machine
learning in the last decade according to Yann LeCun. GANs are a method
for learning a generative model with an adversarial process, a mini-max game
between two networks: a generator and a discriminator. The discriminator is
trained for a classification task between real and fake data distribution. The
generator’s purpose is to generate samples which belong to the real data distri-
bution by using the discriminator gradients. The metaphor of two networks try-
ing to fool (or beat) each other illustrate the adversarial nature of such method.
This method has become popular for its ability to produce very realistic samples
from different image datasets.

Since GANs were first proposed in 2014, research on GANs have become nu-
merous (hindupuravinash, 2018). Many researchers focus on stability problems
of GAN. In original research, the generator or the discriminator can become
better at its specific task than the other, leading to a point where the whole
network does not learn anything else. Also, GANs suffer from the mode-collapse
issue, where generated images can lack in variation or worse, the generator may

http://www.training.prace-ri.eu/uploads/tx_pracetmo/introGPUProg.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/introGPUProg.pdf
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learn some specific samples from the training dataset. This was adressed first
with DC-GAN (Radford et al., 2015), which proposed a very stable architec-
ture for image generation, as well as showing that features learnt by GANs
are relevant for unsupervised pre-training. It was able to generate faces and
house interiors realistically. Improvements in GAN training (Salimans et al.,
2016) have leveraged stability and generated image sizes from 64 pixels to 256
by proposing feature matching, minibatch normalization and avoiding sparse
gradients in their models. WGAN (Arjovsky et al., 2017), Improved-WGAN
(Gulrajani et al., 2017) and DRAGAN (Kodali et al., 2018) propose other vari-
ation of the loss function based on the Wasserstein Distance (Vaserstein, 1969).
Experimental results have shown improved stability and reduced mode-collapse.

By mixing GANs and auto-encoders architectures, applications involving arti-
ficial data generation have been widely explored. For instance:

• Faces generation (VAE-GAN (Larsen et al., 2015), DC-GAN (Radford
et al., 2015))

• Super Resolution (SR-GAN (Ledig et al., 2016), 512 pixels faces (Karras
et al., 2017))

• Image to Image translation (CycleGan (Zhu et al., 2017), StarGan (Choi
et al., 2017))

• Realistic drawing from pixels(Pix2pix (Isola et al., 2017))

• Text to image (Reed et al., 2016)

• Music and voice generation (WaveNet (Van Den Oord et al., 2016))

Deep reinforcement learning Training AI as an agent in a complex en-
vironment is one of the most difficult tasks. Indeed, the greedy state-space
exploration (with backtrack algorithm for instance) is out of question in such
environments since the number of possible states needed to achieve human-like
performances can rapidly explode. While greedy exploration has been shown to
be efficient for some games, for instance with IBM DeeperBlue beating Garry
Kasparov at chess, games like Go or current video-games face an explosion
in the number of configurations and thus backtrack algorithm would take far
too much time to take any decision. Instead, methods trying to approximate
good solutions by learning over many iterations can overcome this issue. Such
methods try to infer an action using the environment state as the input.
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Evolutionary algorithms are methods based on parameters combining between
the most successful agents in a population tested with a given environment.
These methods are designed to mimic hereditary transmission of successful
behaviours through generations. Sub-classes of evolutionary algorithms in-
clude evolution strategies (Rechenberg, 1965), evolutionary programming (Fogel
et al., 1966), genetic algorithms (Fogel, 1998) and memetic algorithms (Moscato
et al., 1989). Such approaches have been shown to be fairly efficient for many
tasks, including autonomous car driving (Togelius et al., 2007), mobile robots
(Valsalam et al., 2012) and gaming (Togelius et al., 2011). However until re-
cently, the performance of such methods was not high enough for operational
deployment.

On the other hand, back-propagation methods allow training of a single model
agent through Reinforcement Learning (RL). RL is designed to mimic Pavlovian-
like training. Such training uses reward and punishment signals in order to
learn through experience. With the breakthrough of deep learning, Deep Re-
inforcement Learning (Mnih et al., 2015) (DRL) have been able to leverage
current AI research in a range of tasks. Deep Q-Learning research (Mnih et al.,
2013) showed near human performances on several Atari games with a single
AI architecture. Deep reinforcement learning techniques also allowed the AI
AlphaGo to beat the world champion of Go, Lee Sedol (Silver et al., 2016).
This achievement is remarkable since the game of Go is a board game with
250150 possible combinations and so considered to be a very difficult game. Au-
tonomous car-driving is also currently in the spotlight of applicative research in
deep reinforcement learning (Kisačanin, 2017). While deep Q-learning can only
be trained on one environment at a time, the Asynchronous Advantage Actor
Critic (A3C) method (Mnih et al., 2016) recently allowed a single agent to be
trained with multiple agents asynchronously, allowing scaling of the training-
phase for multiple devices.

While DRL techniques seem to outperform evolutionary algorithms, recent pub-
lications show that efficient parallel implementations of evolutionary strategies
can reach equivalent performance levels faster (Salimans et al., 2017). Even
gradient-less approaches like genetic algorithms can be competitive with such
parallelization (Such et al., 2017). We can see here that algorithm-architecture
adequacy can be the main factor for optimizing performance.

One should note that autonomous agent research is currently easily accessi-
ble. OpenAI, a non-profit AI research company, developed a publicly available
toolkit for reinforcement algorithms called Gym (Brockman et al., 2016). Gym
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can emulate environments for Atari games, autonomous driving cars and ad-
vanced video games such as Doom and Grand Theft Auto 5. Such open-source
initiatives mean that we can expect research in autonomous agents to progress
rapidly.

Neural network quantization Inference with deep neural networks can be
energy-consuming as computations rely on 32-bit floating-points values. The
consequences are high-memory usage for data and models. In order to reduce
such storage problems, a lot of research on deep neural network has looked at
the impact of quantization. For example, a 32-bit value may encode up to 32
binary values, thus potentially compressing models by a factor 32. Also, in a
binary framework, the dot product operation is equivalent to a bitwise XNOR
and a population count operation on 32 values at the same time, resulting
theoretically in sixteen times fewer computations. Finally, as shown by Seide
et al. (2014), gradients quantization down to 1-bits can also be advantageous for
reducing network transfers between different devices during learning, allowing
better scaling during this phase.

One way to perform parameter quantization is by reformulating deep learning
in a probabilist framework. By doing so, Expectation backpropagation (Soudry
et al., 2014; Cheng et al., 2015) can be applied instead of the usual gradient-
descent error backpropagation, allowing the training of multi-layer perceptron
networks with binary weights. Networks trained with expectation backpropa-
gation show performances equivalent to full-precision networks on the MNIST
dataset. However, Expectation Backpropagation has not been applied on deep
convolutional architectures. Whether it is possible or not is still an open ques-
tion.

Many recent publications show that training quantized neural networks with
backpropagation is possible. The BinaryConnect method (Courbariaux et al.,
2015) proposes to train neural networks with binary networks by using the
binary projection of real-value weights during the feedforward and backward
steps. The binary projection is performed by applying the hard-sigmoid func-
tion, which is linear between -1 and 1, equal to 0 for input values lower than
-1 and equal to 1 elsewhere. Once the gradients with respect to the binary
weights have been computed, the real-value weights are updated with respect
to the partial derivative of the hard-sigmoid function. With such methods,
BinaryConnect networks show equivalent performance levels to networks with
real-valued weights.
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BinaryNet (Courbariaux et al., 2016) is an extension of BinaryConnect in which
the same principle of binary projection is applied to activations. A neural net-
work trained this way has all its activations and weights binarized. The ar-
chitectures rely on successive layers of convolution, batch normalization and
hard-sigmoid (or hard-tanh in some cases). However, quantization of both ac-
tivations and weights induce a substantial performance loss on classification
tasks such as MNIST, SVHN and CIFAR-10. For operational deployment, only
the binary weights and batch normalization learnt mean and variance values
need to be kept, hence resulting in effective compression of the model. Also,
this article reported an acceleration factor of 7 with an unoptimized GPU ker-
nel. Since batch normalization parameters are constant at inference, this step
as well as binarization can be theoretically performed within the same kernel
as the convolution, hence resulting in further acceleration factor due to the
reduced memory overhead. Also, this architecture has been implented on dif-
ferent architectures (CPU, GPU, FPGA and ASIC) in order to evaluate the
potential acceleration factor on these different architectures (Nurvitadhi et al.,
2016). Not surprisingly, ASICs deliver four orders of magnitude acceleration
factor, FPGAs three orders of magnitude and GPUs two orders of magnitude.
The paper discusses whether better fabrication processes for FPGA as well as
hardened parts and Digital Signal Processor (DSP) may close the gap with
ASIC in terms of acceleration and energy-efficiency.

In order to extend quantization to different resolutions, the DoReFaNet frame-
work (Zhou et al., 2016) proposed different projection functions for weights,
activations and gradients which allows any resolution, which is defined prior
to training as a hyper-parameter. The article shows that performance levels
equivalent to full precision networks can be achieved with the AlexNet archi-
tecture (Krizhevsky et al., 2012) using 1-bit weights, 2-bit activations and 6-bit
gradients on the ImageNet classification taks. It also shows that different tasks
require different resolutions, since further quantization was achieved on the
SVHN dataset.

The XNOR-Net method (Rastegari et al., 2016) allows deep neural networks
to be trained using binary activations, weights and gradients. It approximates
float-based convolutions with a binary convolution and an element-wise product
busing a scalar α (the average of absolute weight values) and a 2D matrixK (the
spatial mean of the input over the kernel fan-in). Gradients are computed during
the backward step with a hard-tanh projection. With an additional floating-
point overhead compared to BinaryNet, performances are almost equivalent to
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full-resolution networks. The authors also report an effective 32 fold memory
saving and 58 times faster convolutional operations.

Ternary networks training (Zhu et al., 2016; Deng et al., 2017) has also been
studied. Compared to binary networks, ternary networks reach the same level
of performances as their floating-point equivalent networks. Ternary networks
are less difficult to train and perform better than binary networks in general.

The state-of-the-art in neural networks quantization shows that binary networks
can drastically accelerate processing times although this is at the expense of
performance. Keeping some information as floating-point values or having a
ternary quantization instead can reduce the performance loss. In any case, the
quantization parameters have to be chosen considering a trade-off between ac-
celeration and performance. One should note that in all the previous research,
only classical feedforward architectures have been benchmarked. Advanced ar-
chitectures such as Residual networks (He et al., 2016), Inception networks
(Szegedy et al., 2017), recurrent architectures (GRU and LSTM) and GANs
have not been trained with such quantization for now. Since these advanced
architectures reach the state-of-the-art, current quantization-schemes also suffer
from architectural limitations impeding the best models to be accelerated this
way.

Advances on large-scale simulation technologies

Available software for Deep Learning The first efficient and modular
implementation of convolutional neural networks with GPU support, cuda-
convnet, came from Alex Khrizhevsky prior to his victory in the ImageNet
competition (Krizhevsky et al., 2012). The software architecture adopted re-
lied on a list of layers defined in a configuration file, which processes batches
of images and updates their parameters iteratively. This architectural design
only allowed a single input and output per layer, but the development of the
Caffe framework (Jia et al., 2014) allowed the definition of a global graph of
layers. Caffe became very popular thanks to the abstract classes it proposed,
allowing much more modularity and custom implementations. Caffe is writ-
ten in C/C++ with CUDA support and different high-level wrappers (Python,
MatLab), hence demanding advanced development skills if used in the context
of research at the level of layers. Nevertheless, the attained trade-off between
modularity and computational efficiency of Caffe made the framework popular
in both academic and industrial communities.
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Before this neural networks revival in 2012, libraries such as Theano1 (Bergstra
et al., 2010) and Torch (Collobert et al., 2002) had been developed for machine
learning purpose. Theano is presented as a mathematical expression compiler
for Python language. It can perform efficient vector-based computations in the
same way as the Numpy library and Matlab, and perform code compilation
and optimization at run-time in order to maximize the speed of processing.
Compilation is performed when creating functions, which take as parameters a
set of input and output place-holders as well as an optional parameters update
expression (typically used for updating weights in neural networks at each step).
Development with Theano is oriented toward functional-programming, where
a function is a graph of transformations given one or several input tensors.
Theano targets researchers more than Caffe since the first one allows tensor
programming while the second allows layers programming. One should note
that the Torch library also allows such tensor-based programming but does not
perform run-time compilation yet.

The functional design of Theano and Torch with convenient layer-based classes
inspired the many industrially-developed frameworks for machine learning. Among
these libraries we can mention TensorFlow (Abadi et al., 2016) , Pytorch (Ketkar,
2017), Nervana, MXNet (Chen et al., 2015), CNTK (Seide and Agarwal, 2016)
and Caffe2 (Goyal et al., 2017). As of today, Tensorflow is the framework with
the most active community. Keras (Chollet et al., 2015) is also worth a mention
since it provides a high-level abstraction for training deep neural networks us-
ing Theano and Tensorflow back-ends, allowing both code portability between
the two frameworks and fast-development. We can also note that a major part
of these frameworks are backed by industrial groups and released with a free
and open-source license on Github, allowing for fast improvements with active
participation from the community.

NVidia also provides active support for their GPU-devices. As AlexNet popular-
ized NVidia GPUs with cuda-convnet (Krizhevsky et al., 2012), the company
released in 2014 the cuDNN library, which provides optimized functions for
standard deep learning. CuDNN is extensively integrated in almost every deep
learning framework. NVidia also developed TensorRT, a C++ library which
quantizes floating-point networks trained with Caffe to 8-bit integer versions
that accelerate inference by a factor of up to 48.

Since deep learning literature has grown rapidly, proposing several methods,
1The Theano framework’s develoment has been discontinued in 2017
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software development for machine learning is essentially focused on the im-
plementation of these novel methods, as well as convenient abstractions and
distributed computing to facilitate learning and inference.

Dedicated hardware for Deep Learning As NVidia GPUs are the main
hardware for deep neural networks , the company proposed in the latest Volta
architecture (Tesla V100) dedicated computation units for 4 × 4 × 4 matrix
multiply-add operations using 16 to 32-bit floating-point values. This results
in 64 floating-point multiply-add per clock cycle per core, with eight cores per
SM. NVidia claims this dedicated units achieve an acceleration of 8 per SM
compared to the earlier Pascal GP100 architecture. Considering V100 GPU
has more SM and more cores per SM, the achieved increase in throughput is
twelve times compared to the previous generation.

Google has also developed its Tensor Processing Unit (TPU) technology (Jouppi
et al., 2017) to accelerate deep learning inference for its cloud offers. Like GPUs,
TPUs are PCI-E boards with an ASIC specialized for TensorFlow routines,
particularly for neural network processing. The board includes a DDR3 RAM
memory for weight storages as well as local buffers for storing activations and
accumulations. The dedicated units are specialized for matrix-multiplication,
activation functions, normalizations and pooling. Google reports the device can
perform 21.4 TFLOP/s (averaged over diverse neural architectures) for 40W
power-consumption.

NVidia has also proposed solutions for embedded GPU architectures, the first
generation being the Tegra K1 (TK1) with 256 CUDA cores connected to an
ARMv15 processor. The second generation, the Tegra X1 (TX1), features 512
cores embedded on the device delivering up to 313 GFLOP/s for a maximum
power consumption of 15W. It is possible to combine TensorRT models on TX1
to run computer vision applications in real-time in an embedded system. An
alternative way to embed deep learning based applications are provided by In-
tel (with its Movidius chips) and GyrFalcon Technology. The two companies
propose specialized USB devices which contains dedicated compute units. For
instance, the Intel Movidius (Myriad 2) device embed 2Gb of RAM memory
with twelve vector-processors (sixteen for their latest product, the Myriad X),
which are units specialized in 128-bit based computations (able to process four
floats or integers, eight half-float or sixteen 8-bit words in parallel). USB de-
vices consumes 1W of memory for 100 GFLOP/s and are fully compatible with
nanocomputers like Raspberry Pi and Odroid. In terms of performance per
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watt and prices, the USB-device solution for embedded deep learning applica-
tions seems the best as of today.

Available solutions for SNN simulation Several frameworks are available
for simulating large-scale spiking neural networks. Software frameworks exam-
ples: NEURON (Carnevale and Hines, 2006), GENESIS (Wilson et al., 1989),
NEST (Hoang et al., 2013) and BRIAN (Goodman and Brette, 2009). These
frameworks are designed and maintained with modularity and scalability pur-
poses. They are able to handle simple neural models such as LIF and Izhikevich
Neurons, complex ion-channels dynamics and synaptic plasticity. The database
ModelDB (Hines et al., 2004) proposes a collection of models shared between
researchers, using such frameworks.

Because spiking neural networks simulations are directed toward biological plau-
sibility, models tend to be far more complex than those in Deep Learning. Hence
processing times are critical for research efficiency, mainly because of the dif-
ficulty to tune SNN dynamics parameters. For such work, methods based on
genetic algorithm or Runge-Kutta optimizations are used, but require several
simulation run before convergence.

Many efforts were deployed in order to accelerate processing for such simula-
tions. NeMo (Fidjeland and Shanahan, 2010), BRIAN, Nengo (Bekolay et al.,
2014), GeNN (Yavuz et al., 2014) and CarlSim (Beyeler et al., 2015) have GPU-
processing capabilities. Brian, Nengo and NEST also have distributed comput-
ing options, allowing large simulations to be run on clusters. Given the different
features of the all these simulation frameworks, PyNN library (Davison et al.,
2009) allows a unified approach of SNN model definition and makes it possible
to run models on different frameworks (currently wih Brian, Nengo and NEST),
but also on neuromorphic devices and specialized clusters.

Neuromorphic hardware While the brain process information through bil-
lions of computation units in parallel, nowadays computers rely on the Von
Neumann architectures, where computations are performed sequentially with
an externalized memory accessed from a bus. The difficulty of running large-
scale simulations of biological neural networks comes from this drastic difference
between the brain and the Von Neumann architectures. In this sense, a lot of
research is directed toward neuromorphic architectures in order to reach the
speed and energy efficiency observed in the brain.
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One system, developed in 2014 in the context of the European Human Brain
Project (Markram, 2012) is SpiNNAker. The Spinnaker hardware (Furber et al.,
2014) is based on digital ARM-cores organized in clusters in order to simulate
very large-scale neural networks. A SpiNNAker system can be scaled from 1 to
600 chips, each being able to simulate 16000 neurons and eight million synapses
in real time using a single watt per chip. A single SpiNNAker chip contains
18 ARM cores at 200 MHz clock frequency with 32KiB for instructions and
64 KiB for data TCM memory modules. A core connects all its embedded
neurons in an all-to-all fashion. Each chip also has 128MiB of SDRAM for
synaptic storage, as well as a multicast Network-On-Chip which allows spikes
to be transmitted to all cores and chips connected using Adress Event Rep-
resentation (AER) encoding (each neuron is addressed using a unique 32-bit
identifier). Each chip can be connected in a 2D fashion to six other chips,
hence chips are organized in a grid where each chip communicates with its six
neighbours. For connections between non-neighbouring chips, spikes have to
cross multiple multicast units in order to reach the target neurons. SpiNNaker
was designed with two principles in mind, scalability through the multi-chip
grid architecture, and energy-efficiency with the use of ARM cores, resulting in
a single watt consumption per chip. SpiNNaker applications remain scattered
across literature. Some successful studies have managed to provide test applica-
tions or simulations running on SpiNNaker devices. Sugiarto et al. (2016) show
an example of image processing on SpiNNaker, having a Sobel edge detector
module running at 697 FPS on 1600× 1200 images. Mikaitis et al. (2018) pro-
poses a pavliovian conditionning neural simulation inspired from Izhikevich’s
research (Izhikevich, 2007). In this research, the neural plasticity model could
be run in real time. While the real time constraint is achieved in all condi-
tions (regarding the number of synapses), the SpiNNaker system with less than
7 million synapses performs not better than an NVidia TX1, an embeddable
GPU chip with 512 CUDA cores. The SpiNNaker chip is the first large-scale
attempt at running huge neural simulations in silico with particular attention
toward scalability, but more applicative research is required in order to figure
out in which domains this chip can be relevant.

Another hardware project developed as part of the Human Brain Project hard-
ware is BrainScaleS (Kunkel et al., 2012). The BrainScaleS hardware simu-
lates AdEx neurons (Brette and Gerstner, 2005) and features dynamic 4-bit
synapses. Based on wafer-blocks containing High Input Count Analog Neural
Network chips (HICANNs). Each wafer can simulate 44 millions synapses and
192608 neurons and can be connected to up to 20 other wafers. BrainScaleS
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Figure 1.6: On the left, the architecture inside a single SpiN-
Naker core. On the right, the mesh organization of several SpiN-
Naker on board ((Image from Lagorce et al. (2015) under the

Creative Commons 4 license)

allows processing times from 10e3 to 10e5 faster than real-time. However, the
literature lacks any applications related to machine learning using this device,
hence no conclusion about its use-cases can be drawn.

IBM’s TrueNorth chip (Merolla et al., 2014) is a CMOS integrated circuit
containing 4096 cores. Each core can process 256 neurons linked in a fully-
connected manner with a crossbar array, for a total of million simulated neu-
rons and 256 million synapses on the chip. Every neuron can be configured, and
receives its input from an axonal pool common to every neuron in the circuit.
When a spike is emitted, it is added to the axonal pool of spikes, which are
sorted at the core-level. All the cores are connected in a 2D array of 64-by-
64 cores, and spikes are propagated first through the x-axis of the mesh, then
through the y-axis. A local-router and an axonal look-up table is embedded
within each core in order to send spikes efficiently and asynchrounously. The
TrueNorth hardware has received more attention from an applicative point-of-
view compared to the previously cited hardware (866 citations for TrueNorth,
245 for SpiNNaker and 106 for BrainScaleS). Example applications concern
mainly deep learning acceleration Esser et al. (2016); Diehl et al. (2016b,a).
For instance, Esser et al. (2016) managed to adapt classical CNN architectures
for a cluster of TrueNorth chips in order to reach near state-of-the-art perfor-
mances for an energy consumption reduced by a factor 100. However, using a
single chip degrades performances, and the quantization scheme still induces a
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reduction of performances on the cluster. Also, the input dimensions are rela-
tively low, with 32× 32× 3 pixels for images and up to 32× 16× 3 for audio,
compared to Deep Learning tasks with dimensions (256× 256× 3× 32). For the
TrueNorth architecture, energy efficiency seems to be the main design criterion,
sacrificing some performances and memory resources. Since this project is as-
sumed by IBM to be a first attempt at building efficient neuromorphic devices
(IBM, 2015), improvements on such architectures can reasonably be expected
from the firm. For instance, TrueNorth’s fabrication process is 28nm while
GPUs arenow using 14nm technology (7nm achievable in 2019) and synaptic
plasticity on-chip has been announced.

Finally, Intel announced recently (end of 2017) the release of the LoiHi chip,
a wafer-based hardware device able to simulate 130 thousand neurons and 130
million synapses. The LoiHi architecture uses a 128 neuromorphic cores mesh,
each core being able to simulate 1024 neurons with an embedded self-learning
module. The LoiHi chip supports essentially any communication scheme, i.e.
unicast, multicast, and broadcast, as well as sparse network, any synaptic reso-
lution from 1 to 9 bits and hierarchical connectivity. The latest feature promises
to be efficient to avoid the need for global synchronization of spikes packets. The
LoiHi chip will also be fabricated with a 14nm process. As the LoiHi chip has
not been released yet, any announced performance remains speculative.

Bridging the gap between Machine Learning and Neuroscience

As shown in (Esser et al., 2016), converting CNNs trained with backpropagation
to SNNs can be done to take advantage of the hardware energy-efficiency of the
latter technology. Recurrent neural networks are also convertible in such way
(Diehl et al., 2016b) (Diehl et al., 2016a). These studies show that, for inference
at least, SNNs can extend the formalism of CNNs and process information
equally.

Yet, reaching current CNNs performances on machine learning tasks with pure
SNN learning mechanisms remains a challenge as of today. Research in biolog-
ical networks is mainly focused on the question "How does the brain learn?",
while machine learning researches targets at understanding intelligence inde-
pendently of the physical medium. Some research however tries to understand
learning by the combination of both literatures.

The STDP mechanism often used in SNN acts as a coincidence detector be-
tween input events (Guyonneau et al., 2005; Bender et al., 2006; Karmarkar
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and Buonomano, 2002). Further research show that in the context of vision,
STDP allows feedforward spiking neural networks to learn early visual features
and representations (Masquelier and Thorpe, 2007). Kheradpisheh et al. (2016)
also show that a two-layers SNN with STDP and pooling-like Winner-Takes-All
mechanism can learn visual features relevant for image classification. By apply-
ing STDP to feedforward connections and anti-STDP on feedback connections,
spiking neural network are able to minimize an autoencoder loss function (Bur-
bank, 2015). By using STDP, spiking neural networks are thus able to perform
unsupervised learning. How SNNs perform supervised learning is however an
active question. Indeed, backpropagation seems non-biologically plausible since
there is no strong biological evidence of such global error-signalling in the brain.

Izhikevich proposed a spiking network model in which the credit assignment
problem is tackled through interactions between STDP eligibility traced in
synapses and error-dependent dopamine releases (Izhikevich, 2007). While this
type of model has not been tested on complex machine learning tasks, it is able
to generate spike patterns learnt in a supervised manner (Farries and Fairhall,
2007). Further experiments with a four-layer SNN with conditioning signals
have achieved state-of-the-art performances on simple yet non-trivial visual
classification tasks (Mozafari et al., 2017). Such results were obtained apply-
ing STDP learning rule in the first three layers while the last benefits from
reward and punishment information. As the error-signal is not backpropagated
through the whole architecture, neuromodulator-based supervised learning does
not constitute evidence for the existence of a separate error pathway.

Nevertheless, STDP has captured the interest of the machine learning com-
munity. Bengio et al. (2015) showed that STDP occurring in a single layer
is equivalent to gradient descent method and to a biologically plausible im-
plementation of Expectation-Maximization algorithm. The main requirement
for biological networks to support backpropagation is the existence of feedback
connections between neurons in the hierarchy which could support error back-
propagation. Lillicrap et al. (2016) shows that if the existence of a feedback
connection for each feedforward one is mandatory to support such hypothesis,
the weight-symmetry condition of these two connections is not. Hence a neural
network with reciprocal but not symmetric feedforward-feedback connections is
able to support backpropagation. Such reciprocal connections could potentially
be supported by a segregated dendritic pathway (Guerguiev et al., 2017), with
basal dendrites for feedforward connections and apical dendrites for feedback
connections (Spratling, 2002; Budd, 1998).
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Finally, recent interactions between microglia and neurons through neurotrans-
mitters (Glebov et al., 2015) show that the microglia intervene in the regulation
of synaptic changes in function of the activity. The role of microglia has long
been attributed to immune functions only, thus not affecting the activity of neu-
rons themselves. However, such novel interactions in activity regulation may
revive the debates on the non-plausibility of backpropagation since it might be
consistent with the separate error pathway hypothesis.

1.5 Aim and contributions

Deep Learning methods have been able to become successful at many tasks in
machine learning thanks to two main factors: the addition of constraints which
find equivalent mechanisms in biology and an adequacy algorithm architectures
for GPU hardware. All the proposed priors can easily be implemented on such
platforms. Moreover deep neural networks use simple computations compared
to those used to simulate biological neural networks. We argue that current
parallel implementation are focused on fairly complex models of spiking neu-
ral networks, hence such implementation does not allow competitive processing
times for industrial applications. We emit the hypothesis that parallel imple-
mentation of slightly simpler models of spiking neural networks can be shown
to be efficient for such purposes. We have also seen that the neuroscience lit-
erature contains many mechanisms in biological neural networks that remain
barely explored by the machine learning community. We emit a second hy-
pothesis that these mechanisms can accelerate further inference and learning in
application-oriented neural networks, CNNs or spiking neural networks (SNNs).

We propose three contribution in this thesis to address these hypotheses.

• The first contribution consists in the study of the algorithm-architecture
adequacy of BCVision, an industrial grade visual pattern detection model
based on spiking neural networks and rank order coding, for GPU ar-
chitectures. We also study the effect of the addition of a hierarchical
coarse-to-fine processing scheme on processing times. Our main question
in this contribution is: how much can we accelerate rank-order coding
neural networks with parallel hardware implementations and coarse-to-
fine processing.

• The second contribution aims at comparing different spike propagation al-
gorithms on GPU architectures. We show that considering a neural layer
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hyper-parameters and hardware specifications, we are able to predict pro-
cessing times for three algorithms, then compare the algorithms in order
to spot cases where each of them is the most efficient. The computational
models deduced from this work can be used to predict the efficiency of a
dedicated hardware device for a given neural network architecture.

• In the third contribution we adapted the STDP learning rule for single
feedforward based learning of visual features. We propose a model of
early visual feature learning based on a binary version of STDP with
stabilization mechanisms using only one spike per neuron per sample. We
show that qualitatively the features learnt match the preferred receptive
field of V1 layer neurons. We also show that such features, which are
learnt from ten to hundred times less data than classical Deep Learning
approach, reach state-of-the-art performances in four classification tasks.
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Chapter 2

Algorithm / Architecture
Adequacy for fast visual pattern
recognition with rank order
coding network

2.1 Algorithm / Architecture Adequacy of BCVi-
sion, an industrial ultra-rapid categoriza-
tion model

2.1.1 BCVision : an industrialized model of Rapid Vi-
sual Categorization

The speed of processing in rapid visual categorization tasks is very high as
shown by Thorpe et al. (1996). The main conclusion of this article is that the
neural latencies observed in visual cortex of primates during such tasks allow
a single feedforward neural propagation phase in order to perform fast but ac-
curate visual categorization. Such observed reaction times also allow only one
spike per neuron to be fired during a single categorization. These conclusions
led to research that demonstrated successful face recognition using only one
spike per neuron (Van Rullen et al., 1998; Delorme and Thorpe, 2001). The
SpikeNet simulator was designed with the hypothesis of a single feedforward
propagation exploiting the intensity-latency equivalence that only needs one
spike per neuron to be fired for each image. This simulator was improved for
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development of industrial application (Thorpe et al., 2004), with the improve-
ment of BCVision, a software library developed in 1999 by SpikeNet Technology
1 based on SpikeNet simulator (Delorme and Thorpe, 2001).

BCVision can perform one-shot learning of visual patterns. To learn a new
model, the user must select an image patch containing the reference pattern to
the application. Learnt patterns are also called models in the following section.
Once one or more patterns have been learned, BCVision can perform online
visual pattern detection in order to retrieve the position of the learnt patterns.
The different BCVision use cases are presented in Fig. 2.1.

Figure 2.1: Principle of BCVision use cases

Learning a new model is first performed by rescaling the reference image in such
way the rescaled image has an area of 900 pixels, i.e. for a input image with
an aspect ratio of 1 this will result in a 30x30 rescaled image. Spike generation
is then done by filtering the rescaled image with oriented gabor like filters and
sorted by rank of magnitude. Finally, a few percent (which can be adjusted
depending on the use case) of the first spikes are kept to define the model.

The recognition phase, also called pattern detection process can be divided in
four main steps:

• First, the input image is resized multiple times in order to detect the
learnt models at different scales.

1SpikeNet Technology is now BrainChip SAS, a BrainChip Holding LTD Company.
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• Secondly, each scale (with size W ×H) is used to generate spikes as in
the learning phase and the resulting map is thresholded in order to obtain
binary spike-maps of size W ×H × 8.

• Thirdly, for each model, the corresponding neuron model layers are stim-
ulated to generate a potential map.

• Finally, each potential map is then thresholded. Every position contain-
ing a one on the thresholded potential map is considered as a detection
of its respective model. A bounding box is returned for each detection,
computed from the coordinated in the map and the scale on which the
model was detected. Note that the choice of the threshold directly affect
the detection performances of BCVision, since a lower threshold will pro-
mote recall over precision will a high threshold will return accurate results
but with a low recall.

The third step, called spike propagagtion, is done mainly comparing the model
selected spikes with the current scaled image spikes. To do so, for each spike
in a spike-map, the potential map is incremented according to the translation
coordinates in the model for the given spike orientation. Once all the spikes
have been processed, we obtain a potential map of size W ×H for each model.

The different processing steps performed by BCVision during recognition are
presented in Fig. 2.2.

Figure 2.2: Architecture of BCVision kernel process for a sin-
gle image scale.

Because the models are 900 pixels in size (30x30), the application takes advan-
tages of the multiple scales to quickly detect objects. However, searching for
small objects in large images (e.g. 1920x1080 full HD images) is costly in pro-
cessing time. For instance on a 2GHz x86 core, detecting a single 30x30 pixel
object in a HD image takes 120ms in order to perform the BCVision recogni-
tion step. Furthermore, seeking to identify a large number of models increases
the processing time, since the propagation step is repeated for each model. As
GPU architectures are specialized in parallel processing on large matrices, we
wanted to study the suitability of an implementation dedicated to GPU-type
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processors in order to speed up processing and push the technical limits of the
application. Our goal at the end of this study was to process as many models
as possible on a 1080p HD image in real time.

2.2 An efficient GPU implementation of fast
recognition process

2.2.1 BCVision enhancement with GPU architectures

Adapting BCVision individual steps for GPU processing

The first part of this study was to study for each step of the recognition process,
the adequacy of GPU and then get an efficient implementation with CUDA.

The first step being a simple scaling algorithm (bilinear filtering), where each
output pixel is processed independently, GPU are well-known to efficiently par-
allelize the processing per output pixel. The second step (generation of spikes
maps), relying on filtering, also processes output pixels independently. More-
over, since the eight filters are fixed, they can be stored in the constant memory
of the device in order to optimize further the memory accesses. The CUDA
implementation of these two steps was thus straightforward.

The difficulty of optimization was the parallelization of the third step (spike
propagation through neuron model). In the CPU version, this step is done
iteratively. Thus, given the constraints explained in 1.3, such iterative algo-
rithms has to be modified to suit the GPU architecture and to get parallelized
efficiently. This step is all the more critical as it is repeated for each model
learned.

Finally, the last step (thresholding) consists in loading a single input value per
thread, comparing it to the threshold, and storing the result of the comparison
at the corresponding pixel in the output map. This type of operation is also
simple to optimize.

Optimizations of the spikes propagation

The propagation stage in the original software (on CPU) proceeds as follows for
each model. A potential map of size W, H is initialized to 0. For each spike, the
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list of synaptic connections corresponding to its feature map index is browsed.
For each synapse in this list, the corresponding weight is added to the potential
map at the coordinates of the post-synaptic neuron.

In order to parallelize efficiently this propagation phase, we studied the algorith-
mic modifications necessary to fit with the GPU architecture. GPU program-
ming is SPMD (Single Process Multiple Data) based. This involves studying
and selecting the data for which the division into processing blocks leads to
the fastest processing times. We first present a range of possible parallelization
schemes. We envisaged three paralellization schemes :

• Threading with respects to input pixels. This parallelization schemes
associate one thread on the GPU to a single input spike. Each thread has
access to its affected input spike and the model matrix S. It then incre-
ments several values in the output matrix given the models. At first sight,
this can be a relevant choice since considering the number of input spikes
to process, parallelization on this data can benefits from the GPU. Also,
accesses to input and models matrices can be done in a coalescent manner.
Adding several weights to the potentials map is possible in parallel with
the use of global atomic ADD operations. It is also the parallelization
scheme which is the closest to the original sequential algorithm.

• Threading with respect to the models. Each thread is responsible
here to the propagation of one pixel of a model across all its output poten-
tial map. This scheme has no advantage here since the number of model
values is low compared to the number of values in the other matrices.
Moreover, memory accesses remain performed in a concurrent manner
with this implementation

• Threading with respect to the output potential map values. Each
thread updates a single output potential by accessing the input and mod-
els. All the threads in a block keep a counter for the potential value they
handle, and read the input spikes in their receptive field and their respec-
tive model in order to check how many spikes are matching the ones in
the model. Input spikes may be read in a shifted manner respective to the
model or in a sequential way reading all the input values in their recep-
tive field. The first reading scheme can imply unaligned memory accesses
but performs only relevant computations, avoiding processing zero spikes
values in the model. The second reading scheme read the memory in a
aligned and coalesced manner, but performs many computations on zeros
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in the model. This last reading scheme is equivalent to the filtering or
convolution operation.

We also applied the following optimization. Since network spikes are binary,
they can therefore be stored using 1 bit on the pixel of the corresponding im-
age. The spikes are extracted according to eight orientations so all the spikes
extracted from a pixel can be gathered on a byte (char type). The weights of the
models are also binary values with for each pixel bytes with 1 at the positions
of the activated orientations. Potential propagation can be assimilated to the
scalar product of spikes by synaptic weights: Potx,y =

∑
c∈C

Sc.xc, where C is
the receptive field of the neuron, xc belongs to XC the vector of spikes and S
is the matrix of binary synapses of the model. Since XC and S contain binary
values, the scalar product is calculated by:

Potx,y = PopCount(XC ∧ S) (2.1)

. where ∧ is the bitwise AND operator, and where PopCount is the bit counting
operator. An illustration of this binary propagation step is shown in Fig. 2.3.

Figure 2.3: Binary propagation optimization in BCVision

Moreover, in order to encourage coalescent and aligned memory access, each
CUDA core in the same processing block processes its neighbour’s input spike
to the left, logically offset by 1 byte. This way, spikes are accessed in memory
as often as possible, limiting the bandwidth between processing and GPU mem-
ory. On GPU implementations, we also modify the model sizes to fit a 32-bits
alignment, going from 30x30x8 models on the CPU version to 32x32x8 models.
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2.2.2 Experiments and results

Comparison between threading strategies

We benchmarked the processing times of the three implementations described
in the previous section on a 10 models recognition phase on a HD image.

• The first implementation is parallelized across input spikes and perform
updates with global atomic addition.

• The second implementation is parallelized across output spikes and read
only the input values requires by the model.

• The third implementation also parallelizes the processing across output
values by performing a convolution.

We found that the first implementation accelerated the processing times com-
pared to the original CPU implementation by a factor 2. The second imple-
mentation shown a acceleration factor of 4, while the third implementation
accelerated this use-case by a factor 6.

The modest acceleration of the first method can be explained by the use of
global atomic additions, which involve competing write access in a parallel
implementation. In addition, the index shifts of synaptic connections imply
non-coalescent memory accesses. These two implications strongly penalize the
speed of processing. While caching the output potentials into shared memory
can be envisaged since atomic operation on shared memory have been drasti-
cally optimized starting with the NVidia Maxwell architecture, we argue that
this would results in poor performance. If the output potentials are stored
in char type (8-bits words) or half type (16-bits words), accesses to different
elements in the shared memory would trigger some bank conflicts, which will
penalize every individual update. If the output potentials are stored in int types
(32-bits integers), since a single spike can update 32x32 positions, instantiating
a 256 thread block (which is one quarter of the maximum thread capacity of a
block) for a 16x16 input region would require 72Kib of shared memory, which
is limited to 64Kib. Caching output potentials into shared memory exhibits
penalizing behaviours affecting performance with every storage type.

The acceleration difference between the second and the third method can be
explained by the read access memory pattern. It seems the misalignment in-
duced by the second method implies an important timing overhead, while in the
third implementation this overhead is completely hidden by the computations
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in the third implementation. Since GPU architectures rely on the principle of
SPMD (Single Process Multiple Data), bottlenecks often emerge from mem-
ory latencies, which are exacerbated when the accesses are misaligned and /
or uncoalescent such as in the first two methods. Hence parallelization of the
computations across output potentials in a convolutional fashion seems the best
choice in terms of processing times.

Through these optimizations, we have reduced the non-parallelizable GPU prop-
agation algorithm to a simplified convolution problem, essentially based on logi-
cal operations and additions, all of which use the GPU’s most powerful comput-
ing units. Multiplication, being between a value and a binary, can be performed
using only logical operators.

After this first computational study, we experimented with the detection perfor-
mance and acceleration obtained by massive parallelization. Three experiments
were conducted to compare the initial and parallelized versions of BCVision.

Material and methods

Detection performances dataset The objective of the first experiment was
to compare the detection performance of the two versions (CPU and GPU with
convolutions) of BCVision in order to ensure there was no regression.

To do this, we used a generated dataset of images of patterns with distractor
backgrounds. The pattern dataset used is a subset of Caltech-101 (Li et al.,
2003) (classification dataset of 101 classes). the dynamic backgrounds came
from the Google Backgrounds dataset (Fergus et al., 2005). Examples of the
generated images are presented in Fig. 2.4.

Figure 2.4: Example of images in the detection performance
dataset. Left : control image without transformations. Center :

rotated image. Right : image with white noise.

Each image of the non-regression test set has been generated pasting one pattern
from Caltech101, scaled to 30x30, on one background. The generated image
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may be altered with the application of an image transformation which helped
us evaluate performance. Each transformation is associated to a generated
subset, leading to the six following subsets. A hundred images were generated
for each pattern and transformation parameter, resulting in a 600 images for
our non-regression evaluation, split into six subsets.

• "Raw" subset : A control dataset without transformation of the pattern.
Images are pasted with coordinated which are a multiple of the CUDA
memory alignment of 128 bits, thus the top left coordinates modulus 16
must be equal to zero (given we have eights orientations). The previous
point explain the distinction with the "Translation" subset described be-
low, since the difference between these two subsets is important for the
experiments in section 2.3. It gives us a performance baseline since not
having a one hundred percent detection rate on this subset indicates the
implementation is not even capable of matching an exact pattern.

• "Translation" subset : images are randomly pasted in the background
image without any constraints on alignment.

• "Rotation" subset : images are randomly rotated in a range -30 to + 30
degrees.

• "Noise" subset : a white noise is applied on all the image. This white
noise have a variance ranging from 0 to 90 percent of the considered image
luminance values.

• "Contrast" subset : contrast reduction is performed in such way that the
variance histogram of the pixel values is squashed between 100 percent to
ten percent of its original value.

• "Scale" subset : the pattern is first rescaled by a factor ranging from 0.8
to 1.2 before being pasted in the background.

For each algorithm studied, all the patterns inserted in the images are learned.
Detection is carried out several times on each image with different thresholds.
The detections are then compared to the ground truth of the position of the
pattern in the images. We then calculate the F-measure (more precisely the
F1-score) of the detections. This score combines precision and recall rates and
allow a good visualization of the overall performances of the method. For each
version, we show the results obtained with the threshold which have the best
F-measure. Equations for the different detction metrics are given in Eqs. 2.2,
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2.3 and 2.4, where tp stands for the number of true positives, fn the number
of false negative and fp the number of false positive.

Recall =
tp

tp+ fn
(2.2)

Precision =
tp

tp+ fp
(2.3)

F −measure = 2
1

Recall +
1

P recision

(2.4)

Time performances dataset With the second experiment, we wanted to
observe the evolution of processing times through CUDA optimization. Using
1080p HD images, we have recorded processing times to detect N models, N
ranging from 1 to 100. We also noted the number of models from which the
processing times are greater than 33 ms, i. e. the real-time constraint for a 30
frames per second video. We used for this experiment an Intel i7-3770k for the
CPU version with multi-thread processing enabled and a NVidia GTX 970 for
the GPU version.

Results

We ran both versions of BCVision recognition (CPU and GPU) on both datasets.
The following section describes the results in terms of detection performances
for the first dataset and in terms of processing times for the second.

Detection performances The results of the experiment indicate a decrease
in F-measure with the CUDA version on rotations (from 0.25 detection rate with
CPU version to 0.2 for GPU), noise (0.83 for CPU, 0.72 for GPU) and scaling
(0.18 for CPU, 0.12 for GPU) compared to the initial version of the algorithm.
This affects the overall F-Measure with a drop of 5% in absolute performances,
7% relative to the CPU version. Decomposing the F-measure shown this drop of
performances was due to a reduction of recall when the input image is heavily
rotated, scaled or noised. We conclude that the modification of models size
from 30x30 to 32x32 pixels affected the performances of BCVision, having the
GPU version to learn more specialized models than in the CPU version. Hence
on GPU in order to get the same recall as in the CPU version, the detection
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threshold must be set lower, hence generating more false alarms an lowering
consequently the F-measure. The results of this experiment are presented in
details in Fig. 2.5.

Figure 2.5: Detection performances of the CPU and GPU ver-
sions of BCVision on the Caltech-101 pasted images dataset. In
red : the original CPU version. In blue : the GPU version with-
out max-pooling. In green : the GPU version equipped with
complex cells with stride s = 2. In purple : the GPU version

with max-pooling with stride s = 4

Time performances The acceleration factor in this scenario is 6.39, allowing
15 models to be processed in real time (at 30 frames per second), while the CPU
version requires 227.3 ms to process the same number of models. Note that
with HD images, the CPU version is unable to reach real time performances
whatever the number of models, since a single model takes 101.6 ms to be
processed. Details on processing times as a function of the number of models
processed along with linear regression of processing times for both conditions
are available in the Fig. 2.6. Other tests have led us to delineate the advantages
of GPU optimization over the standard version. For applications with low-
resolution images and few models, the standard version is still more efficient,
due to memory transfers and synchronizations not compensated by the number
of calculations in the CUDA version. On small images (less than 128x128), the
GPU version becomes faster from about a hundred models. From 512x512, the
GPU version is faster from two models.
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Figure 2.6: Acceleration factor in seconds given the number
of models on a single scale 1080p image. The linear regression
of processing times shows as the number of models grows the
acceleration factor converges toward 6.39. When the number of

models is low, this acceleration is

Conclusion

Our algorithm-architecture adequacy study of BCVision for GPU showed that
the formalism of spike propagation was not adapted to a parallel implementation
as such. The convolutional formalism method has proved to be more suitable
for this architecture. Also the convolutional formalism allowed us to express
the matching step between spikes and models as fast binary operations. All
the remaining steps of the recognition phase (including rescaling, filtering and
thresholding) being classical image processing operations, their implementation
on GPU was straightforward. These steps have been implemented in a near-
to-optimal way regarding their theoretical algorithmic complexity and profiling
results

The adaptation of BCVision on GPU allowed us to benchmark this novel im-
plementation. We tested the non-regression of the adaptation with a detection
performance experiment, and recorded the processing times of both version
(CPU and GPU) of the recognition phase on HD images as a function of the
number of models. The proposed adaptation allowed us to accelerate processing
times by a factor 6.39 although there was a drop in detection performance of 7%
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due to the model size difference which lead to the learning of models requiring
a lower threshold to reach the same recall as the CPU version.

While the obtained acceleration factor of 6.39 is in the order of what can be ex-
pected with a GPU implementation, further acceleration could only be achieved
by more significant changes to the initial algorithm. The following section
presents studies that aim to modify the algorithm to allow hierarchical detec-
tion of visual patterns, allowing greater acceleration factors while guaranteeing
the non-regression of BCVision.

2.3 Coarse-to-fine approach for rapid visual cat-
egorization

In this section we propose to adapt the algorithm of BCVision to take advantage
of the GPU architectures acceleration potential. We will first present different
subsampling methods which allow dimensionality reduction. Next, we propose a
coarse-to-fine architecture for BCVision. This novel architecture combines two
networks which perform the spike propagation phase at different resolutions, in
order to accelerate drastically the processing times.

2.3.1 Subsampling in the brain and neural networks

Complex cells

In the early visual cortex two main types of cells sensitive to orientation can
be found (Hubel and Wiesel, 1962). Simple cells have distinct excitatory and
inhibition regions within their receptive fields, and perform mathematical op-
erations equivalent to signal filtering. They correspond to the neurons found in
BCVision, and also to the perceptron neural model widely used in Deep Learn-
ing. Complex cells are fully excitatory cells which shows spatial and rotation (in
a limited range) invariance characteristics due to their larger receptive fields.
Complex cells are fed with spikes from simple cells, and were first modelized in
the Neocognitron model (Fukushima and Miyake, 1982; Fukushima, 1989) as
subsampling operators. Such complex cells can be seen as a biological means to
reduce the dimensionality of inputs and to bring local invariance to translation
and rotation.
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Complex cells are nowadays widely used in simulation of visual processing in the
brain (Riesenhuber and Poggio, 1999; Masquelier and Thorpe, 2007; Kherad-
pisheh et al., 2016; Mozafari et al., 2017) and in Deep Learning models (LeCun
et al., 1998; Krizhevsky, 2009,?; Szegedy et al., 2015). In the latest literature,
complex cells are often performed with a pooling operation. The basis of such
operation is as follows. The pooling operation is determined by three hyper-
parameters : the size of its receptive field k, its stride s(the offset between two
neighbouring complex neurons in the spatial dimension) and a reduction oper-
ator, basically the average or the maximum. An example of max-pooling pro-
cessing is shown in Fig. 2.7. Given an input matrix X of dimension (W ,H,C),
where W and H are spatial dimensions and C the number of feature maps
extracted by C weight-sharing simple neurons (also called convolution layer in
Deep Learning), the pooling operator will apply its reduction operator on ev-
ery region of size k × k × 1 offset by its stride s and output a single value for
each region. Note that pooling is applied on every feature map independently.
Output dimensions after pooling are (W−k

2
s , H−k

2
s ,C). The choice between max-

pooling and average is dependent on the task and the layers’ depth in which
the operation takes place, as max-pooling seems more suitable to add invari-
ance at feature levels (Scherer et al., 2010) while average pooling is often used
as the last subsampling layer before the classification layer in fully convolutional
architectures (He et al., 2016).

Figure 2.7: Max-pooling operation example.
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Hierarchical visual processing

Evidences for coarse-to-fine neural circuits have been found in the early visual
cortex (Watt, 1987; Bullier, 2001; Goffaux et al., 2010). Particularly, Bullier
(2001) show that magnocellular LGN cells (large receptive field ganglion cell
in visual cortex) are poorly selective compared to parvocellular cells. Magno-
cellular cells transmit rapidly visual information to the parietal cortex and are
known to process visual information at a coarse resolution level. The parietal
cortex neurons then send back top-down informations in order to inhibit neu-
rons in area V1 and V2, which process visual stimuli at a finer resolution than
the precedent circuit. Since the parietal cortex is implied in the dorsal stream
visual processing (Mishkin et al., 1983), in visual attention (Behrmann et al.,
2004) and in occular saccades control (Bisley and Goldberg, 2003), informa-
tion retro-injected from this area may modulate V1 neural activity in order to
reinforce salient regions and inhibit non-relevant ones in the sense of current
attentional target.

From this evidence on coarse-to-fine visual processing in the brain, Brilhault
(2014) proposed a model of such interaction based on BCVision. This model
used several BCVision-like networks applying learning and recognition at dif-
ferent scales. Networks acting on the lowest resolution also have low resolution
version of a pattern stored as a model. For instance, the coarsest network has
models with 9x9 pixels size and processes images downsampled by a factor 3.
If a model is found at coarse resolution, it is then processed at finer resolution.
Brilhault (2014) showed that coarse resolution networks allow more invariance
to transformations but at the cost of selectivity. The coarse-to-fine scheme
proposed showed that the invariances of coarse network are transfered to the
finer-resolution network. It also allows an acceleration of 5 compared with the
original single network BCVision version.

2.3.2 Proposed models

To compensate for the previously observed losses in performances in our GPU
implementation of BCVision and further increase processing acceleration, we
propose to study the influence of the addition of complex cells schemes in
BCVision. First, we present a version of BCVision in which we added a layer
of complex cells after the gabor-like filtering. Next we present a coarse-to-fine
architecture similar to (Brilhault, 2014) proposal which takes advantage of two
networks working at different resolutions.
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BCVision with complex cells

The first model we propose in this section involves adding a complex cells layer
to BCVision. To do so, after the spikes extraction layer, we add a layer which
perform pooling on the extracted spike map. It consists in applying a sub-
sampling function, averaging or pooling every region k × k with an offset s in
the spike map. Since spikes are extracted from the binarization of intensities
obtained after the filtering step, we simply apply our subsampling step right
before binarization. Also, models are learnt from the subsampled spike maps,
hence reducing their size by a factor 32

s ×
32
s

The interest of using complex cells here is twofold. First, pooling is known in the
literature to add a bit of invariance to transformations while reducing the spatial
precision of information transmitted to subsequent layers. In deep architectures,
this can be a problem for object detection. But since the current architecture
has only one layer of neurons (two if we consider the filtering phase as a neural
process), the loss in spatial information is very limited. Secondly, the reason
why spatial information is lost during pooling is because this operation reduces
each spatial dimension by a factor equal to the stride s. Since the most critical
phase in BCVision in terms of processing time is the spike propagation for each
model, a prior dimensionality reduction can reduce the computation times by
a factor of s2. Experiments have shown that the best compromise is obtained
with s = 4, hence reducing the sizes of both spikes maps and models by a factor
16. Since the propagation is convolution based, the theoretical complexity of
this algorithm is in O(W ×H × C × C), where W ,H,C are respectively the
width, height and feature number of the spike maps. Since both the models and
the input maps are pooled by a factor 4, this results in a theoretical complexity
reduction of 44 = 256.

As we mentioned in section 2.3.1, the choice of pooling function had to be
benchmarked in order to select the most efficient one between averaging or
maximum. A rapid evaluation with the benchmarks described in section 2.2.2
showed that the best performance was reached by using max-pooling instead
of average pooling. This results makes sense in the light of literature (Scherer
et al., 2010), since the max-pooling operation is best suited for feature-level
layers. Also, BCVision relies on the principles of rank order coding, hence the
earlier spikes to occur, so it makes sense to extract only the spike for which the
activity was maximal for each region.

An illustration of the proposed model is given in Fig. 2.8.
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Figure 2.8: The proposed BCVision architecture equipped
with complex cells

Coarse-to-fine BCVision

Considering the results in terms of performances and processing times obtained
by the BCVision coarse-to-fine approach in Brilhault (2014) described in section
2.3.1), the adaptation of such method seemed a good way to compensate the
losses of performance observed in the previous Results section and to accelerate
further BCVision.

The proposed coarse-to-fine architecture proposed here requires two BCVision
networks, one which first detects learnt patterns at a low resolution, and the
second which performs full resolution detection only in spatial areas where a
detection occurred at low resolution scale. It is expected that the low resolution
(coarse) network will have a high recall and raise many false alarms, while the
full resolution (fine) network filters increase the overall accuracy.

We propose a variant in the use of subsampling in such coarse-to-fine framework.
In the previous work from Brilhault (2014) bilinear subsampling is performed
prior to filtering in order to reduce the dimensionality on which computations
are performed. We argue that applying bilinear filtering before spike extraction
implies a loss in high-frequency information, thus a loss in performances. More-
over since the spikes extraction optimized for GPU architecture has negligible
processing time (less than a millisecond for an HD image), we also propose
to apply max-pooling operation after the gabor-like filtering step. This allows
us to compute the responses to gabor-like just once for both the coarse and
the fine network, thus reusing the same map, and to keep the high-frequency
information despite the dimensionality reduction.

An experiment to show the difference in performance between a single BCVi-
sion performing scaling prior to spikes generation and another single BCVision
network using max-pooling after gabor-like filtering is presented in section 2.3.3.

The organization of the different steps is as follows. First, the input image is
rescaled with respect to the desired model size to be detected. Next gabor-like
filtering is performed. In the coarse network branch, max-pooling is applied to
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the gabor responses, followed by the binarization and the spikes extracted this
way are propagated with respect to the low-resolution models (learnt from a
pooled spike map obtained from the reference image pattern). Following the
thresholding a low-resolution detection map is obtained. With the application of
a dilatation operation, we obtain a binary mask which is applied to the activity
maps (those obtained with the gabor-like filtering step). The fine network can
then propagate the masked spikes in order to detect models at full resolution.
Note that in order to avoid computations on areas not marked as detections by
the coarse network, the fine propagation first checks whether there is a sufficient
number of spikes in its input region or not before propagating any model. Since
the coarse network generates a mask where only a minor part is marked as a
potential detection, the reduction of the number of computations during the
fine network propagation step is significant.

The architecture of the coarse-to-fine BCVision is presented in Fig. 2.9.

Figure 2.9: The proposed coarse-to-fine detection architecture

2.3.3 Experiments and results

In order to evaluate the hypothesis proposed in this section, we used the eval-
uation datasets already described in 2.2.2.

Firstly we compared the detection performances of our dimensionality reduction
method against the one used previously Brilhault (2014). This allows us to de-
termine the best subsampling strategy for the further acceleration of BCVision.
Both architecture apply a downsampling factor of 2.

Secondly, we ran the detection performances evaluation on an individual BCVi-
sion model with complex cells and on the coarse-to-fine BCVision architecture.
Here all the max-pooling operation are performed with a stride of 4 (even if
experiments have been done on several downsampling factors).
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Finally, the timing evaluation on propagation was run on both the previous
architectures.

Every model evaluated in this section was run using a GPU implementation
(except for the CPU one). Again, we used for this experiment an Intel i7-3770k
for the CPU version and a NVidia GTX 970 for the GPU versions.

Results

Scaling before versus pooling after spikes extraction Fig. 2.10 shows
the results obtained running the detection evaluation on a BCVision network
applying rescale before spikes extraction and another version where max-pooling
is performed after. In almost every condition, the bilinear downsampling prior
to the spike map generation shows worst performances than the proposed ap-
proach. Both architecture only had equivalent performance level for the scale
condition.

The best performance is obtained by the model using complex cells. It goes
along with our assumption that applying bilinear interpolation implies loss of
high-frequency information, since only the scale condition, where those frequen-
cies are lost by design, shows equivalent performances. The proposed 4approach
using max-pooling operation is therefore to be privileged.

Figure 2.10: Detection performances of a coarse subsam-
pled architectures given two subsampling methods, model image
rescaling prior to spikes generation versus spike-maps pooling
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Detection performance Using the same experimental framework as in the
previous section, we studied the performance of the BCVision network with
complex cells and the coarse-to-fine architecture. Fig. 2.5 shows different re-
sults on the experiments (BCVision software, BCVision Cuda, BCVision with
pooling), without the coarse to fine approach. We can observe an overall de-
crease in F-measure on most transformations as the stride is increased. In more
details the drop in performance when applying max-pooling is due to a decrease
in precision. Recall is more important in all cases at equivalent thresholds. The
decrease in translation performance is explained by the application of max-
pooling after the filtering stage. Since only the maximum single pixel activities
are retained, translations can lead to sub-sampling different maximums of the
model for the same pattern. In the case s = 2, the network shows equivalent
performances for rotations, contrast and noise conditions whencompared with
the GPU version of BCVision without pooling. When s = 4, performances are
worse in all the conditions except for the images with varying scales. In the
latest condition, the use of pooling seems to increase both precision and recall,
since the F-Measure is globally greater than with the versions without pooling.

In Fig. 2.11, a comparison of F-Measure performance between high-resolution,
low-resolution and coarse-to-fine architectures is presented.

From an overall point of view, the best performance was seen with the coarse-
to-fine architecture, the worst being obtained with the single BCVision net-
work with complex cells. Coarse-to-fine architecture outperforms the original
BCVision architecture in almost every condition except for the translation and
contrast conditions where the loss is low.

The BCVision network equipped with complex cells has the worst performance
in every scenario except in the scaling one, which is consistent with the previous
section results.

The combination of low and high resolution networks seems to compensate for
the inherent drawbacks of both architectures. The high recall of the coarse
network allows the fine one to propagate activity to a much lower number of
locations. Hence the activity threshold of the fine architecture can be lowered,
this network acting as a false alarms filter.

Time performances Using the same experimental framework as before, we
studied processing times for low-resolution networks and coarse to fine networks.
As before, we recorded the number of models detectable in real time on an HD
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Figure 2.11: Detection performances of the base GPU imple-
mentation of BCVision, the fully pooled models version and the
coarse to fine version. The higher the score in each category, the

most robust to the transformation the model.

image at a frame rate of 30 frames per second. Figure 2.12 shows the absolute
processing times of the pooling and the coarse-to-fine methods ias a function of
the number of models tested (from 1 to 3000).

When the number of models tends towards infinity, i.e. considering only the
slopes of the linear regression, the single network with pooling reaches an ac-
celeration factor of 151 when compared to BCVision on GPU, while it reaches
a factor of 965 when compared to the CPU version. The same way, the coarse-
to-fine method reaches acceleration factors of 143 and 913 compared with GPU
version without pooling and the CPU version respectively.

Considering the 30 frames per second real time constraints, the low resolution
network can process 3500 models in 30 ms, the coarse to fine method 2100. As
a reminder, the CPU version process one model in 101.6 ms, thus 0.3 models in
real-time conditions, while the GPU version can process 15 models at 30 frames
per second. Hence the coarse-to-fine accelerates the process by a factor 140
compared with GPU version without pooling, and by a factor 7000 compared
to the CPU version.

The ratio between the number of models processed in real time by the BCVision
architecture with max-pooling and the BCVision architecture without pooling,
both on GPU, is equal to 233.33, which is in the order of the theoretical gain
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hypothesized in section 2.3.2. However this gain decreases toward 151 when
the number of models increases. Although this number is a lower bound of
this acceleration factor, our assumption on this decline is a mixed influence of
the limitation of computation units for the population count operation, which
are four times fewer than most common operations units, and the limitation of
memory bandwidth between the devices global memory and the shared mem-
ory, which is reached rapidly with the GPU version without pooling and reached
later with the version with pooling. Indeed, our theoretical complexity estima-
tion only takes into account the computations, not the memory bandwidth limit,
which is often a critical resource on massively parallel hardware optimization.

Figure 2.12: Acceleration factor in millisecond given the num-
ber of models on a single scale 1080p image with a fully pooled
architecture version and the coarse-to-fine version of BCVision

2.4 Conclusions

We first propose an algorithm-architecture adequacy study on the implemen-
tation of the BCVision visual pattern recognition software on GPU hardware.
The different steps of the algorithm were straightforward to port on GPU except
for the spike propagation phase which generates the output map of detections.
We determined that a threading strategy across output potentials during spikes
propagation was the most efficient, converting the iterative sparse list-based
propagation of the original model into a convolution problem. We evaluated
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performance of this portage in terms of detection performances and processing
times. We found that some minor details brought by our optimizations such
as the change in the resolution of the models led to a drop in recall, while
accelerating the overall process by a factor 6.89.

We proposed to add complex cells, using the max-pooling operation after the
spike generation stage led to an overall drop of detection performances, mainly
due to a loss in precision as expected. However, this implementation allows an
acceleration of the order of one thousand compared with CPU and GPU versions
without complex cells. Also we identified during our detection evaluation that
this approach can still have a high recall rate.

We finally proposed to combine two networks detecting models at different
resolutions. A low-resolution network, which makes use of pooling to detect
coarsely the learnt models, allows the masking of the higher-resolution spikes
map, which allows a higher-resolution network to focus on fewer spatial loca-
tion, and thus have its detection threshold lowered to increase its recall. This
novel architecture makes it possible to accelerate processing by a factor of one
thousand faster than the standard BCVision CPU implementation. Although
the networks composing this method are less performing individually than the
standard implementation, the hierarchical combination of neural networks in-
creases performance at their initial level.

During the course of this work, we studied possible architectural and algorith-
mic optimizations to remove technological barriers to BCVision, particularly in
terms of processing times. We also made sure that the system did not regress
in terms of detection performances.

From a theoretical point of view, the implementation of coarse to fine and the
results obtained confirm the results of Brilhault (2014), the multi-resolution ap-
proach does not reduce recognition performance while speeding up processing.
The differences in our approach lie in the use of complex cells instead of dif-
ferent frequency bands for increase the robustness to the inaccuracies inherent
in subsampling algorithms, and in the suitability of our model for massively
parallel GPU-like architectures.
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Chapter 3

Algorithmic strategies for spike
propagation on GPUs

3.1 Introduction

Advances in GPU technology in term of hardware performances and programma-
bility, notably with the improvement of programming languages and SDK like
NVidia CUDA, have allowed researchers and engineers to optimize the execution
times of neural network computational models.

Some of the first studies proving the efficiency of GPU hardware for neural
network optimizations were done in the neuroscience litterature by Brette and
Goodman (2012) and in the machine learning community by Krizhevsky (2009).
Since then, GPUs have been the hardware of choice for deep neural network
training. This reflects the fact that these networks involve many GPU-friendly
operations such as matrix dot products, convolutions and global or local reduc-
tions.

In the field of neuroscience, the diversity of neuron models has prevented such
a consensus. Nevertheless, thanks to the availability of runtime compilation
for GPU source code, many research libraries such as BRIAN (Goodman and
Brette, 2009) and CarlSim (Beyeler et al., 2015) allowed the use of GPUs to
lower the execution times of biological neural network simulations.

Through all the literature in both fields, the majority of the papers related to
GPU optimization tends to focus on implementation of neural networks fixing
some hyper-parameters1 while varying others. For instance, Ardakani et al.

1Hyper-parameters are variables related to a neural network structure. This naming con-
vention allows these parameters to be separated from those which are optimized during learn-
ing.
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(2016) studied the ASIC implementation of a single neuron with 1024 inputs
with the sparsity variation in the connection matrix. In (Brette and Goodman,
2012), different GPU implementations are tested as a function of the number
of neurons in the network in a fully connected manner with fixed sparsity. We
observe that the computational complexity is explored only for task or network
specific parameters. Different strategies may apply to compute the potentials
of neurons in a layer. A first study by Brette and Goodman (2012) used a
benchmark of different algorithms for spikes propagation in the context of an
overall GPU optimization of the Brian simulator. However, the authors openly
admit that the proposed implementations are quite naive and the study of their
parameters remains incomplete. Hence no exhaustive computational model is
available to know, a priori, the fastest algorithm to use in a given situation.

3.2 Contribution

3.2.1 Aim and hypothesis

The goal of the work presented in this chapter is to design a model of compu-
tational efficiency of activity propagation in neural networks, which is the most
critical part in the overall inference of such models. We aim to build a model
which is able to give an estimate of the computations time for a neural layer.
The model parameters includes hardware features like the number of processing
cores, the cores clock speed, memory clocks, memory bus size, and layer wise
parameters such as the input and output dimensions, input vector sparsity and
synaptic matrix sparsity.

In order to focus on the dimensions parameters for this benchmark, we made
some simplifications in the neural network model studied. Indeed, we only
studied a single layer neural network with only binary activations and synapses,
in order to set aside discussions about activations and weight resolution. Also,
we focus the study on the computation times of a single feedforward step.

These simplifications allow us to focus on parameters such as :

1. M and P the input and output dimensions of a neural layer,

2. N the number of spikes processed per time step. This parameter encodes
the input spike sparsity: the lower N, the higher is the input sparsity.



3.2. Contribution 57

3. W the number of connections per output neuron. This parameter encodes
the sparsity of neurons weights: the lower W, the higher the sparsity is
for weights.

We present in this chapter three implementations of spikes propagation on GPU
which are compared in terms of computation times. We believe these three
implementations generalizes to a full range of methods for spike propagation on
synchronous hardware including CPUs, GPUs and FPGAs.

3.2.2 Dense binary propagation

Full resolution dense propagation

The first implementation presented here is a naive implementation, also called
dense propagation. It is based on matrix dot product, which is the fundamental
building block of many kind of neural networks implementations. Mathemati-
cally, it is expressed as follows : given X an input matrix of size (n,M), n being
the number of samples (also called batch size in deep learning literature) and
M the input dimension, a synaptic kernel K of size (M ,P ) with P the number
of output neuron, and Y : (n,P ) the output potential matrix :

Yi,j =
M∑

k=1
Xi,k.Kk,j (3.1)

The single thread sequential implementation and the parallel implementation
of such algorithm on GPU are given in 1 and 2 respectively. S is the number
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of samples to process in parallel.

Algorithm 1: Sequential dense propagation algorithm with generic resolu-
tion
Data: X : input vector (S,M), K : weights matrix (M ,P )
Result: Y : output potentials (S,P )

1 for s ∈ [0,S[ do
2 for p ∈ [0,P [ do
3 cnt = 0;
4 for i ∈ [0,M ] do
5 cnt = cnt+X [s, i].K[i, p];
6 end
7 Y [s, p] = cnt;
8 end
9 end

Algorithm 2: Parallel dense propagation algorithm with generic resolution
Data: X : input vector (S,M), K : weights matrix (M ,P ),

tid ∈ [0,max_threads_per_block] : current thread id, bid : block
index, B : the number of thread blocks

Result: Y : output potentials (S,P )
1 for s ∈ [0,S] do
2 for b = bid; b < P ; b+ = B do
3 cnt = 0;
4 p = b+ tid;
5 for i ∈ [0,M ] do
6 cnt = cnt+X [s, i].K[i, p];
7 end
8 Y [s, p] = cnt;
9 end

10 end

The naive implementation of such algorithm is very efficiently parallelizable on
GPU, as shown in a number of studies (Goodman and Brette, 2009; Krizhevsky,
2009; Jia et al., 2014). Indeed, this dot product based implementation can
access the global device memory efficiently with coalesced and aligned accesses,
avoiding cache faults on the GPU which are a huge performance penalty as
shown in 1.3. However, since each neuron potential is computed from all the
input and synaptic values, this implementation is also greedy in terms of both
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memory and computations.

For instance, a neural layer with inputs and weights at 32-bits resolution with
M = P = 10000 needs to store the synaptic weights in a memory block of size
100002 × 32 = 400× 106 bytes (400MB). This can be highly inefficient when
the synaptic kernel has most of its values set to zero.

In terms of computations, this implementation has a theoretical complexity in
O(M .P ). Ignoring the memory latencies induced by the load and store oper-
ations, M × P MAD (multiply-add) operations must be performed each time
the propagation function is called. Following the NVidia CUDA documenta-
tion (NVIDIA Corporation, 2010), MAD operation on floating-points or integers
have a throughput of 128, meaning that 32 MAD operation can be performed
in one clock (considering a warp size of 32 threads).

Binary dense propagation

We now show that binary quantization of neural activations and weights is
beneficial in terms of memory transfers and computations.

From a memory point of view, dividing the number of bits necessary to encode
an activation or a weight by 32 reduces the memory transfers required between
each memory layer by the same factor. Given the same example as the previous
section with M = P = 10000, the size of the weight matrix in memory can be
reduced from 400MB to 12.5 MB.

In terms of computations, dot-products can be implemented with bit-wise logic
operation and population count (POPC), the latter counting the number of bits
in a given integer or float and available in most GPU systems. As binary values
may be interpreted in two ways, bit-wise operations may differ. If zero encodes
the real value 0, the bitwise AND between inputs and weights can be used in
order to perform the element-wise multiplications part of the dot-product, as in
BCVision. Else if zero encodes the value -1 as in Rastegari et al. (2016), bitwise
XOR and NOT are equivalent to the element-wise multiplication.

The sequential and parallel implementations of binary dense propagation are
respectively given in Algorithm 3 and 4. S is the number of samples to process
in parallel. We express X and K as integer-typed matrix, where one integer
value is seen as a vector of 32 binary values. Hence, activations and weights are
accessed using 32-bit packets in memory. Also, memory ordering matters a lot
in order to ensure alignment of memory accesses. The X matrix is stored as S
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rows of M/32 columns, where the column dimension is coalesced in memory.
The matrix K is stored on M/32 rows with P columns, hence threads in the
same processing block read aligned values. A more rigorous notation would
be that K is organized as (M/32,P , 32) bit matrices. We will keep our first
notation for simplicity. Such a propagation scheme is also illustrated in Fig. 3.1.

Algorithm 3: Sequential binary dense propagation algorithm
Data: X : input vector (S,M/32), K : weights matrix (M/32,P )
Result: Y : output potentials (S,P )

1 for s ∈ [0,S[ do
2 for p ∈ [0,P [ do
3 cnt = 0; for i ∈ [0,M/32[ do
4 cnt = cnt+ POPC(X [s, i] AND K[i, p]);
5 end
6 Y [s, p] = cnt;
7 end
8 end

Algorithm 4: Binary dense propagation algorithm
Data: X : input vector (S,M/32), K : weights matrix (M/32,P ),

tid ∈ [0,max_threads_per_block] : current thread id, bid : block
index, B : the number of thread blocks

Result: Y : output potentials (S,P )
1 for s ∈ [0,S] do
2 for b = bid; b < P ; b+ = B do
3 cnt = 0;
4 p = b+ tid;
5 for i ∈ [0,M/32] do
6 cnt = cnt+ POPC(X [s, i] AND K[i, p]);
7 end
8 Y [s, p] = cnt;
9 end

10 end

Theoretical processing times for binary dense propagation

As shown in algorithm 4, the number of operations required for one instance of
the function is only dependent on parametersM and P . Thus, a computational
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Figure 3.1: Binary dense propagation algorithm illustration

model which predicts the processing times given the parameters is straightfor-
ward to design.

Let us define the different parameters of the computational model for a generic
hardware implementation.

First we define the hardware parameters.

• SM is the number of parallel blocks which can be run concurrently (known
as Multi-Processors on CUDA)

• Fcl is the frequency in MHz of the processing cores.

• TAND,TP OP C and TADD are the theoretical throughputs of the bitwise-
AND, POPC and integer ADD functions respectively. Theoretical through-
put is directly linked to the number of dedicated compute-units on each
multi-processor for a given operation, or whether an operation is trans-
lated into multiple instructions at compile-time. Note that we do not take
into account the total number of processing cores on the device, since the
number of multi-processors with the throughput of each operation are
more precise for our model and already contains this information. For
instance, a NVidia GTX Titan X Maxwell has 3072 total CUDA cores
distributed over 24 multi-processors, or 128 CUDA cores per SM, which
is also the theoretical throughput of the most optimized operations units.

• Fmem is the memory frequency

• B is the transfer bus size
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• Ca,Ra and Wa are the column access latency, the row access latency and
the write access latency respectively. Note that Ra must be interpreted
as a row-access overhead, hence when an access to a different row is com-
manded by the device, the total latency to the memory space is equal to
Ca+Ra.

For a given algorithm, we can estimate the number of core clocks Ccl required
to perform the computations, the number of aligned read Accr, aligned writes
Accw and cache faults Accf induced by the algorithm. In addition, one must
define the number of threads Nth launched on each multi-processor. On CUDA,
the number of threads ranges between 32 and 1024. In the binary dense case:

Ccl =
M .P
32 .( 1

TAND
+

1
TP OP C

+
1

TADD
) (3.2)

Accr = M .(1 + P ) (3.3)

Accw = P (3.4)

Accf =
M .P

32.Nth
(3.5)

Having defined these metrics from algorithm 4, we are now able to compute the
processing times given the parameters. We note Tm the memory transfer times,
Tcr the core computations time and Ttot the total processing time for one step
of propagation. We also define Ok an eventual overhead due to function call or
synchronization between the device and the host.

Tcr =
Ccl

Fcl.SM
(3.6)

Tm =
1

Fmem.B .(Ca.Accr +Ra.Accf +Wa.Accw) (3.7)

Ttot = Tcr + Tm +Ok (3.8)
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3.2.3 Sparse binary propagation

While the implementation on GPU of the dense dot-product for spikes prop-
agation allows a great acceleration in light of the literature, this algorithm
computes all the correlations between synaptic weights and input spaces in or-
der to get the potential of output neurons. In the case of sparsity, when a lot
of values (inputs or weights) are zeros, this implementation obviously computes
many unrelevant spikes and weights since these values does not carry any useful
information to propagate.

We propose here an approach for propagation of sparse input spikes across a
layer. We define the notion of subpackets of spikes, a subpart of the input
space indexed by its relative position in it. A subpacket is first defined by
its size Sp. We choose this size according to the lowest resolution for which a
given hardware is optimized. For instance, consumer-grade NVidia GPUs are
optimized for computations on 32-bit data, so a subpacket can be implemented
on an integer value. Next, the subpacket is referenced in memory as an element
of a matrix I which contains the addresses of X where a subpacket contains at
least one spike. Note that if the input space is of size M , the elements of I will
be defined on the interval (0, M

Sp
).

In order to apply the sparse binary propagation, we start from a input spikes
vectorX and a synaptic kernelK in the same format as in the dense format. The
first step of this algorithm is the construction of the array I givenX. This can be
performed by counting the bits of each subpacket in X and appending the index
to I if the result is greater than zero. The number of subpackets Ns ∈ [0; M

32 ]

generated this way depends both on the number of spikes N in X, and the
distribution of the input spikes. For instance if input spikes tend to be spatially
correlated, it is more likely that two spikes belong to the same subpacket, hence
reducing Ns. In contrast, if spikes tend to be uniformly distributed across all
the input space, Ns may increase rapidly as the number of spikes N increases.
An illustration of the proposed method is shown in Fig. 3.4.

The uniform distribution of spikes being a worst-case scenario, it is worth study-
ing the behaviour of the algorithm with such distribution in order to estimate
a upper bound of the processing times. We first determine P (Xi = 0), the
probability that no spike is present at location i in the input space X. Given
N the number of distinct non-zero spikes in X and M the size of X, we have :

P (Xi = 0) = 1− N

M
(3.9)
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The probability that no spikes among the N belongs to a subpacket J of size
Sp is then given by :

P (XJ empty) =
∏
i∈J

P (Xi = 0) = (1− N

M
)Sp (3.10)

Fig. 3.2 shows the distribution of such probability in function of the parameters
M and N .

As the number of subpackets is equal to M
Sp
, the average number of subpacket

which contains at least one spike (hence have to be processed) can be estimated
by the following equation :

Ns =
M

Sp
.P (XJ empty) =

M

Sp
.(1− N

M
)Sp (3.11)

Figure 3.2: Probability for a subpacket of size Sp = 32 to
contain at least one spike, as a function of M and N .

Once the two lists have been constructed, the propagation is performed as in
Algorithm 5. The parallel version is also shown in Algorithm 6.
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Algorithm 5: Sequential binary sparse propagation algorithm
Data: X : input vector (S,M/32), I : input indexes (S,Ns) , K :

weights matrix (M/32,P )
Result: Y : output potentials (S,P )

1 for S ∈ [0,S[ do
2 for p ∈ [0,P [ do
3 cnt = 0;
4 for i ∈ [0,Ns[ do
5 cnt = cnt+ POPC(X [s, I [s, i]] AND K[i, I [s, i]]);
6 end
7 Y [s, p] = cnt;
8 end
9 end

Algorithm 6: Parallel binary sparse propagation algorithm
Data: X : input vector (S,M), I : input indexes (S,Ns) , K : weights

matrix (M/32,P ), tid ∈ [0,max_threads_per_block] : current
thread id, bid : block index, B : the number of thread blocks

Result: Y : output potentials (S,P )
1 for s ∈ [0,S] do
2 for b = bid; b < P ; b+ = B do
3 cnt = 0;
4 p = b+ tid;
5 for i ∈ [0,Ns[ do
6 cnt = cnt+ POPC(X [s, I [s, i]] AND K[i, I [s, i]]);
7 end
8 Y [s, p] = cnt;
9 end

10 end

Theoretical processing times for binary sparse propagation

Having defined the hardware parameters in section 10, we propose now a com-
putational model for the binary sparse algorithm. Equations from 3.6 to 3.8
remain the same as before. Only equations from 3.2 to 3.5 are modified accord-
ingly to algorithm 6.

Ccl =
Ns.P

32 .( 1
TAND

+
1

TP OP C
+

1
TADD

) +
M

32.TP OP C
(3.12)

Accr = 32.Ns.(2 + P ) +
M

32 (3.13)
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Figure 3.3: Binary sparse propagation algorithm illustration

Accw = 32.P +NS (3.14)

Accf = 3.N .P/SM (3.15)

3.2.4 Output index histogram

The last algorithm we propose, based on an original idea of Jacob G. Martin2,
also aims to reduce the computations of non-informative values such as zeros.
If a network shows high sparsity in the input or the weight space, the previous
two approaches still perform computations over zeros, which do not influence
the result of the potential in this binary scheme.

We present a third algorithm which performs fast propagation of binary activity
in very sparse neural networks. In this algorithm, connections are stored as
multiple lists of indexes instead of a dense description (with MxP elements).
Each input is associated to the list of the output neurons it is connected to.
Inputs are stored as a list of indexes instead of a full vector with zeros and ones.
In both inputs and weights, indexes are only kept in memory if the connection
actually exists, in other words where a one would be used in a dense format. We
note KL the connection matrix, which stores for each row in the range [0,M [

2Jacob G. Martin is post-doc in MAOS team at CNRS CerCo
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a connection list containing the addresses of all the output neurons an input
neuron is connected to.

When a spike packet is presented, a propagation index list PL is built by con-
catenating the connection lists referenced in the input packet. The propagation
list PL contains the indexes of the output neurons whose potentials must be
incremented, each index can be present multiple times in this list. When the
propagation list is built, a histogram kernel with P bins is run on this list. The
resulting histogram contains the potentials of all the output neurons.

Starting with an input index list I of size N , the first function presented in
algorithm 7 in its sequential version gathers the connection lists indexed by
I from the input-to-output matrix KL. This results in a propagation list PL

which contains all the outputs to update. We consider here every connection
list in the weight matrix KL as a variable size list kn.

Algorithm 7: Sequential construction of the propagation list
Data: I : input indexes (S,N), KL : weights matrix (M , kn)

Result: PL : propagation list (S, kmax.N)

1 PL = EmptyList();
2 for s ∈ [0,S[ do
3 slist = EmptyList();
4 for n ∈ [0,N [ do
5 slist.Append(KL[n, i]);
6 end
7 PL.Append(slist);
8 end

In order to implement in a parallel fashion this algorithm, we must, for each
thread, read a selected value and copying it in PL at a globally shared index.
This global index is incremented concurrently through the atomic ADD in-
struction, which implies a locked access to this variable. This may cause large
latencies while waiting for synchronizations and unlocking on the global index
variable. As the use of atomic global operations is suboptimal, we propose
another strategy in order to build the propagation list.

Since we want to avoid misaligned data during reading of the connection lists, we
now store all the input-to-output connections in a matrix KL of size (M , kmax),
where kmax is the maximum list length across every input-to-output list. Ev-
ery row is filled with the input-to-output indexes of a given input index, and
if the list is shorter than kmax, a filling value (for instance -1) is padded on
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the remaining values. Note that in practice, kmax should ensure 256-bits data
alignment in order to avoid memory access overheads while reading the device
memory. Hence, kmax may be replaced by the closest integer greater than kmax

that can be divided by 256 over the index resolution. In our case, the resolution
being 32-bits, kmax := ((kmax/8) + 1)× 8 with / operation being the integer
division.

The second approach to implement the propagation list construction starts with
the allocation of PL as a (N , kmax)) matrix filled with an impossible index value
(i.e. -1). Basically, a first kernel simply copies the selected lists sequentially
into PL. In order to discard all the impossible index values, a second kernel
performs a selection algorithm on all the propagation list values, giving a filtered
PL matrix of size klist. Basically, the selection algorithm has each block of
threads read a row in PL, and performs an atomic global operation only to get
its offset. Once the offset has been obtained by the block, selected values are
stores sequentially. We observed this second approach, avoiding the use of the
global atomic ADD for each value, was three times faster than the first one.
Algorithm 8 presents the first kernel of this approach. The second kernel has
been implemented with the DeviceSelect function from the CUB NVlabs library
3.

Once the propagation list have been built, we may now proceed to the propa-
gation phase shown in algorithm 9. Basically, this kernel counts the number of
occurrences of each output in the propagation list, resulting in the final poten-
tial vector. In algorithm 9, threads are organized in blocks to perform counting.
A count vector is stored in the shared memory for a block of thread. The size
of this vector is constrained by the physical hardware memory size of shared
memory, which is 48 kb by default on CUDA devices since the introduction of
the Maxwell architecture. Hence each thread block computes the potential of
the output neurons between Pi and Pj , where i− j equals the shared memory
size divided by the resolution of the output values. Let us call this interval SH .
Each thread reads all the values in the propagation list PL with index equals to
its id modulo the block size. If an input index value is in the considered output
indexes range, the thread will perform an atomic ADD in shared memory for
this output neuron. Atomic ADDs in shared memory are significantly faster
than its equivalent in device memory. When all the propagation list have been
entirely read, output potentials are written in the device memory and the block
terminates.

3https://nvlabs.github.io/cub/index.html
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The choice for launch configuration, in other words the number of thread blocks
and the number of threads per block, is hardware specific here. The larger the
number of threads per block, the better the memory caching will be. Hence we
can choose in our case 1024 which is the maximum number of threads per blocks
on a Maxwell GPU. In algo. 8, the number of blocks can be the number of input
spikes, hence each block is responsible for the copy of one row. A more efficient
global loop scheme can also be implemented, hence setting the number of blocks
to the number of multi-processors on the device is a simple and efficient choice.
In algo. 9, we also set the number of threads to the maximum. The number of
blocks can be either P

SH
if each block is responsible for updating SH , or to the

number of streaming multi-processors if the CUDA kernel is implemented with
a global loop scheme.
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A summary of this algorithm is shown in Fig. 3.4.

Algorithm 8: Construction of the propagation list
Data: I : input indexes (S,N), KL : weights matrix (M , kmax),

tid ∈ [0,max_threads_per_block] : current thread id, bid : block
index, B : the number of thread blocks

Result: PL : propagation list (S, kmax.N)

1 for s ∈ [0,S] do
2 for b = bid; b < N ; b+ = B do
3 for t = tid; t < kmax; t+ = max_threads_per_block do
4 PL[s, b× kmax + t] = KL[I [s, b], t];
5 end
6 end
7 end

Algorithm 9: Histogram propagation algorithm
Data: PL : filtered propagation list (S, klist), SH : the block processing

interval, tid ∈ [0,max_threads_per_block] : current thread id, bid
: block index, B : the number of thread blocks

Result: Y : output potentials (S,P )
1 sharedCnt = shared_array[SH ];
2 for s ∈ [0,S] do
3 for b = bid; b < N ; b+ = B do
4 low = b× SH ;
5 high = (b+ 1)× SH ;
6 for t = tid; t < klist; t+ = max_threads_per_block do
7 if low ≤ PL[s, t] ≤ high then
8 id = PL − low;
9 atomicAdd(sharedCnt[id], 1);

10 end
11 end
12 for t = tid; t < SH ; t+ = max_threads_per_block do
13 Y [s, low+ t] = sharedCnt[t];
14 end
15 end
16 end
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Figure 3.4: Binary histogram propagation algorithm illustra-
tion

Theoretical processing times of binary sparse propagation

Taking the same hardware parameters as in section 10, the computational model
for the histogram algorithm we propose is as follows. This computational model
combines both algo. 8 and 9. We ignore here the selection phase since the precise
implementation is unknown to us, and it appears in simulations to be negligible.
We consider that the weight matrix is filled following a uniform distribution of
P ×W ones overM ×P slots. Each input is then connected on average to P×W

M

outputs. We also introduce TCOMP the throughput for integer comparison and
TAT OMICADD the throughput for a shared atomic add.

Ccl = N × P ×W
M

(
1

TADD
+ 2.

P
SH

TCOMP
+

P
SH

TAT OMICADD
) (3.16)

Accr = N .P ×W
M

.(1 + 32× ceil(P − 1
SH

+ 1) (3.17)

Accw = 32.(P +N) (3.18)

Accf = N (3.19)
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3.3 Experiments and results

3.3.1 Material and methods

We want to model deterministically the behaviour of the three defined algo-
rithms given their parameters M , P , N and W . In order to reduce the ex-
ploration space, we first set for the benchmark phase : M = P . The equality
between these two parameters allows us to simplify the parameter fitting during
our benchmarking and facilitates the interpretation of data.

We run a benchmark on a range of parameters value in order to output the
CUDA kernel processing times, which will help in the prediction of the most
efficient algorithm given task specific parameters. It will also allow us to confirm
the computational model we presented for each of the proposed algorithm.

We also compare the efficiency of the three proposed methods. To do so, we
define a spike throughput metric (i.e. the number of input spikes processed
per second), basically obtained by dividing N by the kernel processing time
in seconds. This metric is relevant as both binary dense and sparse methods
perform computations over zeros, which are wasted computations. Hence this
last experiment will help us determine, given the layer parameters, whether
performing computations on zeros anyway is more efficient or not.

We chose the following ranges for the different parameters.

• Input / output size M : 1024 to 65536 with multiplicative step of 2

• Number of spike per packet N : 1 to 4096 (with N < M) with multiplica-
tive steps of 2

• Connections per output neuron W : 1 to 4096 (with N < M) with mul-
tiplicative steps of 2

All the implementations were done for a single sample per propagation such as
S = 1. Evaluations were made in order to match the worst case scenario for
each implementation. Since the dense algorithm is agnostic to parameters N
and W , any set of parameters or spikes distribution in the input space can be
considered best and worst cases. For the sparse algorithm, its efficiency relies
on the spatial correlation between input spikes. Hence having spikes to follow
a uniform distribution with probability N

M leads to the worst case scenario. In
practice, indexes from 0 toM are randomly shuffled and the first N elements in
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this list are sent for propagation. For the histogram algorithm, the worst cases
emerge directly from the parameter tuning as shown in the Results section.

We run our experiments on an overclocked NVidia GTX Titan X Maxwell GPU.
For such device, we can determine the hardware parameters of our model as
follows:

• Fcl = 1.4× 109

• SM = 24

• B = 384

• Fmem = 7.9× 109

However, we found no information about CAS, RAS and write latencies (resp.
Ca, Ra, Wa) for any NVidia device. Moreover, while we explicitly avoided
any memory caching effect as much as possible, specifically by declaring inputs
as volatile, we were not able to completely annihilate them. In this sense, we
chose to estimate them with least-square parametric optimization with respect
to all the timings obtained with the three proposed methods. We found for such
device the following parameters:

• Ca = 1.7947

• Ra = 0.6137

• Wa = 22.5326

• Ok = 14.4593

Considering the memory-caches influences, the different values obtained this
way are consistent. For instance, memory-write accesses are far more slower
than read access of a order of magnitude of 10, and the kernel overhead Ok is
perfectly in the order of magnitudes of the kernel launch overheads.

3.3.2 Kernel times analysis

In this section we show how the processing times obtained by each algorithm
vary as a function of the network parameters.
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Binary dense method

Fig. 3.5 show the timings obtained with our benchmark varying the different
parameters M , N and W , along with a surface showing the estimated kernel
time processing with our computational value.

We first observe that, in line with our computational model, kernel processing
times only depends on the variation of parameterM . As show in two dimensions
in Fig. 3.6, the behaviour of this method is quadratic in function of the input
and ouput dimensions of the layer. The difference between the real data points
and the estimated surface directly emerges from the error of optimization due
to the complex estimation with the remaining caching mechanisms.

Figure 3.5: Processing times of the binary dense algorithm in
function of M and N . In blue, real data point, in green the

computational model estimation

Binary sparse method

For this method kernel processing times can be estimated by the product be-
tween the computational model of binary dense method (Fig. 3.5) and the
probability distribution that a subpacket contains a spikes (Fig. 3.2) under
our worst-case hypothesis of a uniform distribution of spikes in the input space.
To be exact, and as we will demonstrate later, an additional term including the
access overhead to both X and I (instead of X only in the previous method)
must be taken into account. Fig. 3.7 presents the obtained kernel times and the
estimated computational times as a function of M and N .
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Figure 3.6: Processing times of the binary dense algorithm in
function of M . In red, real data point, in blue the computational

model estimation

Fig. 3.8 shows the same data but slicing the surface across the dimension M .
Here we can see more precisely on this graph the effect of N on the processing
times, which follows the negative power function described by the subpackets
distribution. In Fig. 3.9, slicing is performed over the N dimension, showing
the same quadratic behaviour as the binary dense method. As expected, W has
no influence on processing times with this method.

Output index histogram method

Fig. 3.10 shows the processing times as a function of W following different
values for N . We can clearly see that processing times follow a linear behaviour
in function of W . Looking at Fig. 3.11, processing times are also linear as a
function of N .

We can also notice that for relatively large values of W and N (8192 on the
figures), the data points begin to spread, indicating a slight influence of M on
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Figure 3.7: Processing times of the binary sparse algorithm as
a function of M and N . In blue, real data point, in green the

computational model estimation

Figure 3.8: Processing times of the binary sparse algorithm
as a function of N . The different sets of points represent real
data points, while the curves represent the computational model
estimation. The colorbar maps the colors of the different curves

to the corresponding value of M .

the processing times. Indeed as M increases, the number of computations re-
quired to build the propagation list also increases, resulting in a small overhead
function of M .



3.3. Experiments and results 77

Figure 3.9: Processing times of the binary sparse algorithm
as a function of M . The different sets of points represent real
data point, while the curves represent the computational model
estimation. The colorbar maps the colors of the different curves

to the corresponding value of N .

Figure 3.10: Processing times of the output indexes histogram
algorithm as a function of W . The different sets of points rep-
resent real data point, while the curves represent the computa-
tional model estimation. The colorbar maps the colors of the

different curves to the corresponding value of N .

3.3.3 Spikes throughput analysis

We now analyse the spike throughput of each proposed method and then identify
their range of efficiency given the parameters. Fig. 3.13 shows the input spike
throughput in log10 scale for the three methods given parameter M , N , and
W . A first general observation is that each method has effectively a range of
parameters where it performs better than the others.
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Figure 3.11: Processing times of the output indexes histogram
algorithm as a function of N . The different sets of points rep-
resent real data point, while the curves represent the computa-
tional model estimation. The colorbar maps the colors of the

different curves to the corresponding value of W .

Figure 3.12: Processing times of the output indexes histogram
algorithm as a function of W and N . In blue, real data point,

in green the computational model estimation

The binary dense method is the most efficient when N is high, while perform-
ing poorly when N is low. Indeed as the sparsity in input and weight spaces
increases, the number of wasted computations involving zeros also increases.

The binary sparse method outperforms the dense approach when the sparsity
in the input space is high. It also performs better than the output indexes
histogram method as the sparsity in the weight space is reduced.
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Finally, performance of the output indexes histogram method decays rapidly as
N and W increase. However its quasi-independence to the input and output
space sizesM makes it really efficient for cases where these dimensions are high
and parameters N and W are low.

3.4 Conclusions

In this chapter we have studied three models of spike propagation (namely
dense, sparse and histogram), and give a explicit complexity formula. We have
experimented and explored according to 3 parameters: M,N, and W. Such a
study allowed us to obtain a computational model of the processing time given
these parameters for each method. We are now able to analyse the range of
parameters for which each method is the most efficient.

3.4.1 When to use a given approach?

The binary dense method is sparsity agnostic. While this feature is penaliz-
ing in the case of layers with high sparsity, this naive approach remains easily
predictable through its quadratic behaviour over input and output sizes. This
approach is best suited for many neural networks in the machine learning lit-
erature, since the efforts to reduce sparsity through learning (Liu et al., 2015;
Wen et al., 2016) or with pruning methods (Molchanov et al., 2016) are not the
priority of this domain. Also, except when there is a classification loss function
(for instance softmax), fully-connected layers rarely have large input and output
sizes. Indeed, AlexNet (Krizhevsky, 2009) is a model with one of the largest
fully-connected layers with 4096 neurons with low sparsity, hence in the perfect
range of efficiency of the dense approach.

The binary sparse approach depends on both the input and output dimensions
of the layer and the sparsity over the input space. Since it shares its behaviour
regarding the layers dimensions with the binary dense method, its relative ef-
ficiency compared to this latter method depends only on the sparsity of the
input space and on the size of the subpackets Sp. Fig. 3.14 shows the probabil-
ity that a subpacket contains at least one spike as a function of the ratio N

M and
the subpacket size Sp in the worst-case hypothesis of a uniform distribution of
spikes over the input space. We can notice that the larger the packet size, the
higher must be the sparsity to be more efficient than the binary dense method.
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Figure 3.13: Spike throughput comparisons between the three
proposed methods. In red, the binary dense method, in blue the
binary sparse method and in green the output indexes histogram
method are shown. Each graph in a row corresponds to a single
value of M , while each graph in a column corresponds to a single
value of N . For each graph, the parameter W is represented on
the x-axis, the spike throughput is represented on the y-axis.
Note the spike throughput is represented using a log 10 scale.
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Note also the case Sp = 1, where we can retrieve the same linear behaviour
regarding the input sparsity. For our experimental value of Sp = 32, the sparse
approach performs best for a ratio M

N ≤ 0.2, so a corresponding sparsity of 0.8.
As neural networks compression techniques (Han et al., 2015; Molchanov et al.,
2016) allow the sparsity to reach 0.9 with almost no accuracy loss, our sparse
method can be relevant to optimize such compressed / pruned networks. More-
over, reducing the subpacket size Sp lowers the sparsity requirement to reach
better performances than with naive methods. While the absence of bit count-
ing ALUs for lower precision than 32-bits on GPUs makes it difficult to lower
the subpacket size, it is still perfectly practicable on more specialized hardware
such as FPGAs (as it has already be done in Thorpe et al. (2017)) and ASICs.

Figure 3.14: Probability that a subpacket of varying size Sp

contains at least one spike, in function of the ration between N
and M .

The output indexes histogram method being only dependent on the sparsity in
input and weight spaces, this approach is best suited for neural networks with a
very high number of neurons with high activations and weights sparsity. How-
ever the performances get rapidly worse as the sparsity is lowered in either space.
While this implementation can be efficient simulating spiking neural networks
for biological processes, where this method requirements are met for large scale
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networks, machine-learning neural-layers remain relatively low-dimensional in
comparison to these requirements. Examples of accurate deep learning model
with a very high number of neurons per layer and brain-like sparsity remain to
be designed in order to find a computational interest for such methods. Also,
changing the synaptic connections in the context of learning may be computa-
tionally heavy, due to the list-format of synaptic storage in this method and
the need for two distinct representations of the same list. For instance, if we
consider four billion neurons in order to simulate the whole visual system, with
one thousand inputs each, such network would take 16TB of memory, which
is currently impossible to store on current GPU devices. However, this format
allows a drastic reduction of synaptic storage with very sparse weights.

3.4.2 Discussion

We benchmarked three spike propagation algorithms on a minimalistic neural
network to analyse the effect of a few parameters on processing times. Param-
eters studied were the input / output dimension, the input activations sparsity
and the sparsity of the connections in the synaptic matrix. The main criti-
cism which can be formulated about the simplifications we have done is the
lack of complexity of our neural network compared to the other models used in
neuroscience or deep learning. We argue first that such quantization can still
be relevant considering the binary activation nature of spiking neural netwroks
and recent advances in deep learning networks quantization (Courbariaux et al.,
2016; Rastegari et al., 2016; Zhu et al., 2016; Deng et al., 2017). Also, in order to
obtain the processing times function for a more complex network or on different
hardware, one should apply some additional factors in the given equations. For
instance, if we consider instead 32-bit floating point activations and synaptic
weights, we should take into account that 32 times more memory loads and
stores will occur, and AND-POPC operation would be replaced by 32 multiply-
add operations. This would still give an estimate of the most useful algorithm
for a given use-case.

One can argue with the relevance of our use of parametric optimization in
order to obtain the memory access parameters values. Since it is obtained
directly from the kernel processing time data, we are aware this introduces
a bias in our study. For instance we found a column-read access latency of
1.7947 clocks (which should normally be an integer value) and a very low row-
access latency compared to what is shown in GDDR5 constructors datasheets
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(Micron Technology, 2014). While we tried to avoid the use of caching in
our implementation, the CUDA compiler and the internal scheduler of GPU
seemed to optimize such accesses anyway, leading to these low access latencies.
However, the last parameter estimated, the kernel launch overhead of 14µs,
is perfectly in the ranges of what is seen for any CUDA implemented kernel
launch. More transparency about NVidia technology would have allowed us to
refine our approach. Anyway, the order of complexity obtained are consistent
with what we have estimated.

While in this study we focused our attention on CUDA devices, we invite other
researchers interested in estimating spike propagation times on various hard-
ware to implement the proposed methods on many different parallel devices
(such as FPGAs and AMD GPUs), preferably with more knowledge a priori on
the memory latency parameters, in order to criticize and enrich the proposed
computational models.

Given the growing interest in neuromorphic architectures, whether in the con-
text of simulations of neural models or the deployment of neural networks
learned with Deep Learning methods, it seems to us that our study is relevant
in order to choose the best implementation for spike propagation according to
the parameters of the network. Indeed, we hope that this benchmark will serve
as a first guideline for people who wish to implement large-scale neural networks
on massively parallel architectures.
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Chapter 4

Unsupervised feature learning
with Winner-Takes-All based
STDP

Article presentation

In this chapter we explore how the STDP, the main learning mechanism in the
brain, can be used to learn visual features while being compatible with GPUs
architectures. We have seen in the state-of-the-art section 1 that biological
learning rules are able to learn rapidly representations, which is a lacking fea-
ture in deep learning. This study follows research from Laurent Perrinet and
Timothée Masquelier, who studied how visual representations may be learned
in a biologically plausible manner.

Laurent Perrinet explored the learning of sparse codes with rank-order spiking
neural networks (Perrinet et al., 2004; Perrinet, 2004). The approach proposed
in these studies rely on the matching pursuit algorithm, which process input
spikes sequentially to detect the maximum activity acrross all neurons. A net-
work with lateral connections can learn V1 gabor-like features with this method
(Perrinet, 2010). Masquelier and Thorpe (2007) proposed to learn unsupervis-
edly pattern in V2 specific to different classes with STDP. The network used
in this study have two layers of simple cells, each with a complex cells layer on
top of them. Having a Winner-Take-All mechanism based on the first neuron
to spike, neurons converge rapidly toward discriminant parts of visual objects.

These studies, while showing how early visual features may emerge from expe-
rience, lacks of compatibility with parallel processing. Indeed, both matching
pursuit and STDP need spike times to be iteratively processed one by one in
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order to apply their respective competition mechanism. It is thus difficult to
perform learning with a single feedforward propagation step as well as process
multiple images in parallel.

We propose a method inspired from STDP that is able to learn rapidly visual
features from batches of images which is compliant with GPUs architectures.
We show that this method requires far less samples than deep learning methods
to converge, and still reach state-of-the-art performance levels in classification
tasks.
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We present a novel strategy for unsupervised feature learning in image applications

inspired by the Spike-Timing-Dependent-Plasticity (STDP) biological learning rule. We

show equivalence between rank order coding Leaky-Integrate-and-Fire neurons and

ReLU artificial neurons when applied to non-temporal data. We apply this to images

using rank-order coding, which allows us to perform a full network simulation with a

single feed-forward pass using GPU hardware. Next we introduce a binary STDP learning

rule compatible with training on batches of images. Two mechanisms to stabilize the

training are also presented : a Winner-Takes-All (WTA) framework which selects the most

relevant patches to learn from along the spatial dimensions, and a simple feature-wise

normalization as homeostatic process. This learning process allows us to train multi-layer

architectures of convolutional sparse features. We apply our method to extract features

from the MNIST, ETH80, CIFAR-10, and STL-10 datasets and show that these features

are relevant for classification. We finally compare these results with several other state of

the art unsupervised learning methods.

Keywords: Spike-Timing-Dependent-Pasticity, neural network, unsupervised learning, winner-takes-all, vision

1. INTRODUCTION

Unsupervised pre-training methods help to overcome difficulties encountered with current neural
network based supervised algorithms. Such difficulties include : the requirement for a large
amount of labeled data, vanishing gradients during back-propagation and the hyper-parameters
tuning phase. Unsupervised feature learning may be used to provide initialized weights to the
final supervised network, often more relevant than random ones (Bengio et al., 2007). Using
pre-trained weights tends to speed up network convergence, and may also increase slightly the
overall classification performance of the supervised network, especially when the amount of labeled
examples is small (Rasmus et al., 2015).

Unsupervised learning methods have recently regained interest due to new methods such as
Generative Adverserial Networks (Goodfellow et al., 2014; Salimans et al., 2016), Ladder networks
(Rasmus et al., 2015), and Variational Autoencoders (Kingma and Welling, 2013). These methods
reach state of the art performances, either using top layer features as inputs for a classifier or
within a semi-supervised learning framework. As they rely on gradient descent methods to learn
the representations for their respective tasks, computations are done with 32-bits floating point
values. Even with dedicated hardware such as GPUs and the use of 16-bits half-floats type (Gupta
et al., 2015), floating point arithmetic remains time and power consuming for large datasets. Several
works are addressing this problem by reducing the resolution of weights, activations and gradients
during inference and learning phases (Stromatias et al., 2015; Esser et al., 2016; Deng et al., 2017)
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and have shown small to zero loss of accuracy with such
supervised methods. Nevertheless, learning features both with
unsupervised methods and lower precision remains a challenge.

On the other hand, Spiking Neural Networks (SNNs)
propagate information between neurons using spikes, which
can be encoded as binary values. Moreover, SNNs often
use an unsupervised Hebbian learning scheme, Spike-Timing-
Dependent-Plasticity (STDP), to capture representations from
data. STDP uses differences of spikes times between pre and post-
synaptic neurons to update the synaptic weights. This learning
rule is able to capture repetitive patterns in the temporal input
data (Masquelier and Thorpe, 2007). SNNs with STDP may only
require fully feed-forward propagation to learn, making them
good candidates to perform learning faster than backpropagation
methods.

Our contribution is three-fold. First, we demonstrate that
Leaky Integrate and Fire neurons act as artificial neurons
(perceptrons) for temporally-static data such as images. This
allows the model to infer temporal information while none
were given as input. Secondly, we develop a winner-takes-
all (WTA) framework which ensure a balanced competition
between our excitatory neuron population. Third, we develop
a computationally-efficient and nearly parameter-less STDP
learning rule for temporally static-data with binary weight
updates.

2. RELATED WORK

2.1. Spiking Neural Networks
2.1.1. Leaky-Integrate-and-Fire Model
Spiking neural networks are widely used in the neuroscience
community to build biologically plausible models of neuron
populations in the brain. These models have been designed
to reproduce information propagation and temporal dynamics
observable in cortical layers. As many models exists, from the
most simple to the most realistic, we will focus on the Leaky-
Integrate-and-Fire model (LIF), a simple and fast model of a
spiking neuron.

LIF neurons are asynchronous units receiving input signals
called spikes from pre-synaptic cells. Each spike xi is modulated
by the weight wi of the corresponding synapse and added to
the membrane potential u. In a synchronous formalism, at each
time step, the update of the membrane potential at time t can be
expressed as follow:

T δu(t)

δt
= −(u(t)− ures)+

n
∑

i=1

wixi,t (1)

Where T is the time constant of the neuron, n the number of
afferent cells and ures is the reset potential (which we also consider
as the initial potential at t0 = 0).

When u reaches a certain threshold T, the neuron emits a
spike to its axons and resets its potential to its initial value ures.

This type of network has proven to be energy-efficient Gamrat
et al. (2015) on analog devices due to its asynchronous and sparse
characteristics. Even on digital synchronous devices, spikes can

be encoded as binary variables, therefore carrying maximum
information over the minimum memory unit.

2.1.2. Rank Order Coding Network
Amodel which fits the criteria of processing speed and adaptation
to images data is the rank order coding SNN (Thorpe et al.,
2001). This type of network processes the information with
single-step feed-forward information propagation by means
of the spike latencies. One strong hypothesis for this type
of network is the possibility to compute information with
only one spike per neuron, which has been demonstrated
in rapid visual categorization tasks (Thorpe et al., 1996).
Implementations of such networks have proven to be efficient for
simple categorization tasks like frontal-face detection on images
(Van Rullen et al., 1998; Delorme and Thorpe, 2001).

The visual-detection software engine SpikeNet Thorpe et al.
(2004) is based on rank order coding networks and is used
in industrial applications including face processing for interior
security, intrusion detection in airports and casino games
monitoring. Also, it is able to learn new objects with a single
image, encoding objects with only the first firing spikes.

The rank order model SpikeNet is based on a several layers
architecture of LIF neurons, all sharing the time constant T , the
reset potential ures and the spiking threshold T. During learning,
only the first time of spike of each neuron is used to learn a
new object. During inference, the network only needs to know
if a neuron has spiked or not, hence allowing the use of a binary
representation.

2.2. Learning With Spiking Neural Networks
2.2.1. Deep Neural Networks Conversion
The computational advantages of SNNs led some researchers
to convert fully learned deep neural networks into SNNs
(Diehl et al., 2015, 2016), in order to give SNNs the inference
performance of back-propagation trained neural networks.

However, deep neural networks use the back-propagation
algorithm to learn the parameters, which remains a
computationally heavy algorithm, and requires enormous
amounts of labeled data. Also, while some researches hypothesize
that the brain could implement back-propagation (Bengio et al.,
2015), the biological structures which could support such
error transmission process remain to be discovered. Finally,
unsupervised learning within DNNs remains a challenge,
whereas the brain may learn most of its representations through
unsupervised learning (Turk-Browne et al., 2009). Suffering from
both its computational cost and its lack of biological plausibility,
back-propagation may not be the best learning algorithm to take
advantage of SNNs capabilities.

On the other hand, researches in neuroscience have developed
models of unsupervised learning in the brain based on SNNs.
One of the most popular model is the STDP.

2.2.2. Spike Timing Dependent Plasticity
Spike-Timing-Dependent-Plasticity is a biological learning rule
which uses the spike timing of pre and post-synaptic neurons
to update the values of the synapses. This learning rule is
said to be Hebbian (“What fires together wires together”).
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Synaptic weights between two neurons updated as a function
of the timing difference between a pair or a triplet of pre and
post-synaptic spikes. Long-Term Potentiation (LTP) or a Long-
Term Depression (LTD) are triggered depending on whether a
presynaptic spike occurs before or after a post-synaptic spike,
respectively.

Formulated two decades ago by Markram et al. (1997), STDP
has gained interest in the neurocomputation community as it
allows SNN to be used for unsupervised representation learning
(Kempter et al., 2001; Rao and Sejnowski, 2001; Masquelier and
Thorpe, 2007; Nessler et al., 2009). The features learnt in low-
level layers have also been shown to be relevant for classification
tasks combined with additional supervision processes in the top
layers (Beyeler et al., 2013; Mozafari et al., 2017). As such STDP
may be themain unsupervised learningmechanisms in biological
neural networks, and shows nearly equivalent mathematical
properties to machine learning approaches such as auto-encoders
(Burbank, 2015) and non-negative matrix factorization (Carlson
et al., 2013; Beyeler et al., in review).

We first consider the basic STDP pair-based rule from
Kempter et al. (2001). Each time a post synaptic neuron spikes,
one computes the timing difference 1t = tpre − tpost (relative to
each presynaptic spike) and updates each synapse w as follows:

1w =







A+.e
1t
T+ if 1t < 0

A−.e
1t
T− otherwise

(2)

where A+ > 0,A− < 0, and T+, T− > 0. The top and bottom
terms in this equation are respectively the LTP and LTD terms.

This update rule can be made highly computationally efficient

by removing the exponential terms e
1t
T , resulting in a simple

linear time-dependent update rule.
Parameters A+ and A− must be tuned on order to regularize

weight updates during the learning process. However in
practice, tuning these parameters is a tedious task. In order
to avoid weight divergences, networks trained with STDP
learning rule should also implement stability processes such
as refractory periods, homoeostasis with weight normalization
or inhibition. Weight regularization may also be implemented
directly by reformulating the learning rule equations. For
instance in Masquelier and Thorpe (2007), the exponential term
in Equation (2) is replaced by a process which guaranties that the
weights remain in the range [0...1] :

1w =

{

A+.w.(1− w) if 1t < 0

A−.w.(1− w) otherwise
(3)

Note that in Equation (3), the amplitude of the update is
independent from the absolute time difference between pre
and post-synaptic spikes, which only works if pairs of spikes
belongs to the same finite time window. In Masquelier and
Thorpe (2007) this is guaranteed by the whole propagation
schemes, which is applied on image data and rely on a single
feedforward propagation step taking into account only one spike
per neuron. Thus the maximum time difference between pre and
post-synaptic spikes is bounded in this case.

2.3. Regulation Mechanisms in Neural
Networks
2.3.1. WTA as Sparsity Constrain in Deep Neural

Networks
Winner-takes-all (WTA) mechanisms are an interesting property
of biological neural networks which allow a fast analysis of objects
in exploration tasks. Following de Almeida et al. (2009), gamma
inhibitory oscillations perform a WTA mechanism independent
from the absolute activation level. They may select the principle
neurons firing during a stimulation, thus allowing, e.g., the
tuning of narrow orientation filters in V1.

WTA has been used in deep neural networks in Makhzani and
Frey (2015) as a sparsity constraint in autoencoders. Instead of
using noise or specific loss functions in order to impose activity
sparsity in autoencodermethods, the authors propose an activity-
driven regularization technique based on a WTA operator, as
defined by Equation (4).

WTA(X, d) =

{

Xj if |Xj| = max
k∈d

(|Xk|)

0 otherwise
(4)

where X is a multidimensional matrix and d is a set of given
dimensions of X.

After definition of a convolutional architecture, each layer is
trained in a greedy layer-wise manner with representation from
the previous layer as input. To train a convolutional layer, aWTA
layer and a deconvolution layer are placed on top of it. The
WTA layer applies the WTA operator on the spatial dimensions
of the convolutional output batch and retains only the np%
first activities of each neuron. This way for a given layer with
N representations map per batch and C output channels, only
N.np.C activities are kept at their initial values, all the others
activation values being zeroed. Then the deconvolutional layer
attempts to reconstruct the input batch.

While this method demonstrates the potential usefulness
of WTA mechanisms in neural networks, it still relies on
computationally heavy backpropagation methods to update the
weights of the network.

2.3.2. Homosynaptic and Heterosynaptic

Homeostasis
In their original formulation, Hebbian-type learning rule (STDP,
Oja rule , BCM rule) does not have any regulation process. The
absence of regulation in synaptic weights may impact negatively
the way a network learns. Hebbian learning allows the synaptic
weights to grow indefinitely, which can lead to abnormally high
spiking activity and neurons to always win the competitions
induced by inhibitory circuits.

To avoid such issues, two types of homeostasis have been
formulated.

Homosynaptic homeostasis acts on a single synapse and is
depends on its respective inputs and outputs activity only. This
homeostatic process can be modeled with a self-regulatory term
in the Hebbian rule as in Masquelier and Thorpe (2007) or as
a synaptic scaling rule depending on the activity driven by the
synapse as in Carlson et al. (2013).
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Heterosynaptic homeostasis is a convenient way to regulate
the synaptic strength of a network. The model of such
homeostasis takes into account all the synapses connected to
a given neuron, all the synapses in a layer (like the L2 loss
weight decay in deep learning) or at the network scale. Biological
plausibility of such process is still discussed. Nevertheless, some
evidences of heterosynaptic homeostasis have been observed
in the brain to compensate runaway dynamics of synaptic
strength introduced by Hebbian learning (Royer and Paré, 2003;
Chistiakova et al., 2014). It then plays an important role in the
regulation of spiking activity in the brain and is complementary
to homosynaptic plasticity.

2.4. Neural Networks and Image
Processing
Image processing with neural networks is performed with
multiple layers of spatial operations (like convolutions, pooling,
and non-linearities), giving the nameDeep Convolutional Neural
Networks to these methods. Their layer architecture is directly
inspired from the biological processes of the visual cortex, in
particular from the well known HMAX model (Riesenhuber and
Poggio, 1999), except that the layers’ weights are learnt with
back-propagation. Deep CNN models use a single-step forward
propagation to perform a given task. Even if convolutions on
large maps may be computationally heavy, all the computations
are done through only one pass in each layer. One remaining
advantage of CNNs is their ability to learn from raw data, such
as pixels for images or waveforms for audio.

On the other hand, since SNNs use spikes to transmit
information to the upper layers, they need to perform neuron
potential updates at each time step. Hence, applying such
networks with a convolutional architecture requires heavy
computations once for each time step. However, spikes and
synaptic weights may be set to a very low bit-resolution (down to
1 bit) to reduce this computational cost Thorpe et al. (2004). Also,
STDP is known to learn new representations with a few iterations
Masquelier et al. (2009), theoretically reducing the number of
epochs required to converge.

3. CONTRIBUTION

Our goal here is to apply STDP in a single-step feed-forward
formalism directly from raw data, which should be beneficial in
the cases where training times and data labeling are issues. Thus
we may select a neural model which combines the advantages of
each formalism in order to reduce the computational cost during
both training and inference.

3.1. Feedforward Network Architecture
3.1.1. Neural Dynamics
Here, we will consider the neural dynamics of a spiking LIF
network in presence of image data. Neural updates in the
temporal domain in such neural architecture are as defined by
Equation (1).

Since a single image is a static snapshot of visual information,
all the xi,t are considered constant over time. Hence

∑n
i=1 wi.xi,t

is also constant over time under the assumption of static synaptic
weights during the processing of the current image.

Let us define vin =
∑n

i=1 wi.xi,t ,∀t the total input signal to
the neuron. Let us also determine u(t0 = 0) = ures as an
initial condition. As vin is constant over time, we can solve the
differential equation of the LIF neuron, which gives:

T δu(t)

δt
= −(u(t)− ures)+ vin

⇒ u(t) = −vin.e
−t
T + ures + vin ∀t > 0

(5)

The precise first spike-time of a neuron given its spiking
threshold T is given by :

ts = −T .log(1+
ures − T

vin
) (6)

Since Equation (6) decreases monotonically wrt. vin, we can
recover the intensity-latency equivalence. The relative order of
spike-times is also known since vin,1 > vin,2 → ts,1 < ts,2.

3.1.2. Equivalence With Artificial Neuron With ReLU

Activation
Thus from Equation (6), for each neuron we can determine the
existence of a first spike, along with its precise timing. Hence,
since we are only concerned with the relative times of first
spikes across neurons, one can replace the computation at each
time-step by a single-step forward propagation given the input
intensity of each neuron.

The single-step forward propagation correspond to LIF
integration when t → ∞. As we are first looking for the existence
of any ts such that u(ts) > T:

lim
t→∞

u(t)− T = lim
t→∞

−vin.e
−ts
T + ures + vin − T

= ures + vin − T
(7)

Having vin =
∑n

i=1 wi.xi and b = ures − T,

lim
t→∞

u(t)− T = b+

n
∑

i=1

wi.xi (8)

which is the basic expression of the weighted sum of a perceptron
with bias.Also, ts exists if and only if b +

∑n
i=1 wi.xi > 0,

which shows the equivalence between LIF neurons with constant
input at infinity and the artificial neuron with rectifier activation
function (ReLU).

This demonstration can be generalized to local receptive fields
with weight sharing, and thus we propose to replace the time-
step computation of LIF neurons, by common GPU optimized
routines of deep learning such as 2D convolutions and ReLU
non-linearity. This allows us to obtain in a single-step all the
first times of spikes -inversely ordered by their activation level-
and nullified if no spike would be emitted in an infinite time.
Moreover, these different operations are compatible with mini-
batch learning. Hence, our model is also capable of processing
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several images in parallel, which is an uncommon feature in
STDP-based networks.

3.1.3. Winner-Takes-All Mechanisms
Following the biological evidence of the existence of WTA
mechanisms in visual search tasks (de Almeida et al., 2009)
and the code sparsity learned with such processes (Makhzani
and Frey, 2015), we may take advantage of WTA to match
the most repetitive patterns in a given set of images. Also,
having to learn only these selected regions should drastically
decrease the number of computations required for the learning
phase (compared to dense approaches in deep learning and SNN
simulations). Inspired by this biological mechanism, we propose
to use three WTA steps as sparsifying layers in our convolutional
SNN architecture.

The first WTA step is performed on feature neighborhood
with a max-pooling layer on the convolution matrix with kernel
size kpool >= kconv and stride spool = kconv. This acts as a lateral
inhibition, avoiding the selection of two spikes from different
kernels in the same region.

Next we perform a WTA step with the WTA operation
(Equation 4) on the channel axis for each image (keeping at each
pooled pixel, the neuron that spikes first). This forces each kernel
to learn from different input patches.

The third WTA step is performed with WTA operation on
spatial axes as in Makhzani and Frey (2015). This forces the
neuron to learn from the most correlated patch value in the input
image.

The WTA operation (Equation 4) is not to be confused with
the Maxout operation from Goodfellow et al. (2013) and the
max pooling operation, since these latter squeeze the dimensions
on which they are applied, while the WTA operation preserves
them.

Then we extract the indexes of the selected outputs along with
their sign and their corresponding input patch. Extracted input
patches are organized in k subsets, each subset corresponding
to one output channel. These matrices will be refered to
as follow :

• Yk : matrices of selected outputs, of dimension (mk, cout)
• Xk : matrices of selected patches, of dimension (mk, cin×hin×

win)
• W : matrices of filters, of dimension (cin × hin × win, cout)

with mk the number of selected indexes and patches for neuron
k ∈ [1...cout], cout the number of channels (or neurons) of the
output layer, and cin, hin,win are the receptive field size (resp.
channel, height and width). Note that at most one output is
selected per channel and per image,mk ≤ N.

The WTA in our model has two main advantages. First, it
allows the network to learn faster on only a few regions of the
input image. Second, classical learning frameworks use the mean
of weights gradient matrix to update the synaptic parameters.
By limiting the influence of averaging on the gradient matrix,
synaptic weights are updated according to the most extreme
values of the input, which allow the network to learn sparse
features.

Note that the network is able to propagate relative temporal
information through multiple layer, even though presented
inputs lack this type of data. It is also able to extract regions
which are relevant to learn in terms of informationmaximization.
The full processing chain for propagation and WTA is shown in
Figure 1.

3.2. Binary Hebbian Learning
3.2.1. Simplifying the STDP Rule
Taking inspiration from the STDP learning rule, we propose a
Hebbian correlation rule which follows the relative activations of
input and output vectors.

Considering the input patch value xn,i ∈ Xn, n ∈ [1...mk], i ∈
[1...cin × hin × win], the corresponding weight value wk,i, the
selected output value yk ∈ Yk and a heuristically defined
threshold Tl, the learning rule is described in Equation (9).

1wk,i =

{

sign(xn,i).sign(yk) if |xn,i| > Tl

−sign(wk,i) otherwise
(9)

The learning rule is effectively Hebbian as shown in the next
paragraph and can be implemented with lightweight operations
such as thresholding and bit-wise arithmetic.

Also, considering our starting hypotheses, where we limit to
one the number of spikes per neuron during a full propagation
phase for each image, it is guaranteed that, for any pair of pre
and post-synaptic neuron, the choice of LTP or LTD exist and
is unique for each image presentation. These hypotheses are
similar to the ones in Masquelier and Thorpe (2007), where these
conditions simulates a single wave of spikes within a range of 30
ms.

3.2.2. Equivalence to Hebbian Learning in Spiking

Networks
In this section we show the Hebbian behavior of this learning
rule. For this, we first focus on the “all positive case” (x, y,w ∈

R+) and will explain in the next section the extension to
symmetrical neurons.

In the case of “all positive,” the Equation (9) can be rewritten
as Equation (10).

1wk,i =

{

1 if xk,i > u(tpost)

−1 otherwise
(10)

This rule tends to increase the weights when the input activity
is greater than a threshold (here the post-synaptic neuron firing
threshold), and decreases it otherwise.

Equation (10) is equivalent to the pair-based STDP rule
presented in Equation (2) removing the exponential term and
using A+ = 1 and A− = −1.

3.2.3. Extension to Symmetric Neurons
We have demonstrated that the proposed learning rule is
effectively Hebbian in the case where x,w, y ∈ R+. Our learning
rule also takes into account negative values of x,w, y. In biological
networks models, negative values do not seem to make much
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FIGURE 1 | Processing chain for the region WTA.

TABLE 1 | Weight update given x, y, and w following the proposed learning rule

(Equation 9).

x < −T −T < x < T x > T

y > 0 −1 −sign(w) +1

y < 0 +1 −sign(w) −1

sense since firing rates and synaptic conductance are expressed
in units defined only in R+.

Nevertheless, negative values are used in many spiking
networks models in the very first layer of visual features. For
instance, ON-centered-OFF-surround and OFF-centered-ON-
surround filters (also known as Mexican hat filters) are often
used to pre-process an image in order to simulate retinal cells
extracting gradients. These two filters are symmetric with respect
to the origin. Hence a common computational optimization is
to apply only one of the two filters over the image, separating
negative and positive resulting values as OFF and ON activities,
respectively.

We extend this computational trick to neurons in any
neural layer under the hypothesis that negative values for x,w, y
corresponds to activities and weights of synaptically symmetric
neurons. For a neuronwith constant input activityX and synaptic
weights W of size n, we can express its output activity y =
∑n

i=1 Xi × Wi. If y < 0, we can convert it to a positive value
using the synaptically opposite weights

∑n
i=1 Xi ×−Wi = −y.

Under the hypothesis of the existence of a pair-wise
competition between neurons with symmetric weights (for
instance with inhibition), this computational trick remains
biologically plausible.

Considering now the proposed learning rule, the weights
update given x, y, and w is shown in Table 1. In this table, the
first spikes (|x| > T) will induce an update of the weight to
increase the |y| (1w = sign(y).sign(x)). Meanwhile, the weights
corresponding to the last spike will be reduced (1w = −sign(w)).

With this framework the choice of the parameter Tl is critical.
Thanks to the WTA mechanism developed, the selection of a
neuron for learning is performed disregarding its firing threshold
T, set to zero in practice. Hence contrary to Masquelier and

Thorpe (2007), we cannot rely on the precise firing threshold
of the neuron. In order to approximate this threshold, we
developed two strategies described in the next paragraphs. These
strategies are made adaptative such that the learning rule can
be invariant to contrast variation. Also the adaptative behavior
of this threshold avoids to tune an additional parameter in
the model.

3.2.4. Hard Percentile Threshold
The first strategy applied follows the STDP learning rule, which
fixes a time constant for LTP and LTD. In our framework this
is implemented as a percentile of the input activity to map their
influence in the spike. For each input vector xn ∈ Xk∀k , we
compute the patch threshold Tl as theminimum value in the local
pn% percentile. pn% is manually set and global for all the patches.

1wk,i =

{

−sign(wk,i) if |xn,i| ≤ pn%

sign(xn,i).sign(yk) otherwise
(11)

However, we have seen experimentally that the threshold
tuning may be cumbersome. As it regulates the sparsity of the
synaptic weight matrix, fixing the sparsity manually may lead
to unsatisfying results. Also, getting the percentiles uses the
index-sorting operation which is time consuming.

3.2.5. Average Correlation Threshold
We propose a second strategy which relies on the computation
of an adaptative threshold between LTP and LTD. For each
input vector xn ∈ Xk∀k we compute the sign correlated input
activation as ˆxn,i = xn,i.sign(wk).sign(yk). Next we compute the
threshold Tl as the mean of x̂n. Then we apply the learning rule
in Equation (9).

With this strategy, the learning rule is also equivalent to
Equation (12), which is straightforward to implement since it
avoids conditional branching.

1wk,i = sign(xn,i.sign(yk).sign(wk,i)− Tl).sign(wk,i) (12)

Using the mean sign corrected input activation as a threshold, the
model is able to be invariant to local contrasts. It also requires the
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calculation of the mean and a thresholding, two operations that
are much faster than sorting. Finally, the adaptative behavior of
such a threshold automate the sparsity of synaptic weights.

3.2.6. Computing Updates From a Batch of Images
Since our method allows the propagation of several images at the
same time through mini-batch, we can also adapt our learning
rule when batches of images are presented. Since biological visual
systems never deal with batches of dozen images at once, the
following proposal is a computational trick to accelerate the
learning times, not a model of any existing biological feature.

When all the update vectors have been computed, the
weight update vector for the current batch is obtained through
the binarization of the sum of all the update vector for the
corresponding kernel. We finally modulate the update vector
with a learning rate λ.

Un,i =

mk
∑

k=1

1wk,i (13)

1Wk,i =

{

−1 if Un,i ≤ 0

1 otherwise
(14)

Wk,i = Wk,i + λ.1Wk,i (15)

3.2.7. Weight Normalization Through Simple Statistics
Since each update step adds +λ or −λ to the weights, a
regularization mechanism is required to avoid the weights
growing indefinitely. Also we want to maintain a fair competition
between neurons of the same layer, thus the total energy of the
weights should be the same for all the neurons.

We propose a simple model of heterosynaptic homeostasis
in order to regulate the weights of each neuron.We chose to
normalize the weights of each neuron k by mean centering and
standardization by variance. Hence, after each update phase, the
normalization is done as follows :

Wk =
Wk − µ(Wk)

σ 2(Wk)
(16)

This way, even neurons which did not learn a lot during the
previous epochs can win a competition against the others. In
practice, we set λ in an order of magnitude of 10−1 and halved it
after each epoch. Given the order of magnitude of λ and the unit
variance of Wk, we know that ninety-five percent of the weights
belongs to the interval [−1.5...1.5]. In fact, only a few batches of
images are necessary to modify the influence of a given afferent.
Two neurons responding to a similar pattern can thus diverge
and specialize on different patterns in less than a dozen training
batches.

As a detail, if the WTA region selected is small, some neurons
may learn parts of patterns already learned by an other one. Since
σ 2(Wk) = 1 and most of the weights are equal to zero, the values
of the remaining weights would grow very large. This can end up
in multiple neurons learning almost identical patterns. We have
observed that clipping weights after normalization between the
range [−2...2] prevents this situation.

3.3. Multi-layer Architectures With Binary
STDP
This proposed approach is able to learn a multi-layer
convolutional architecture as defined by the user. It does
not require a greedy layer-wise training, all the convolutional
layers can be trained in parallel. We can optionally apply a
non-linearity, a downsampling operation or a normalization
after each convolution layer.

Once all the features layers have learned, the whole features
architecture can process images as a classical convolutional
neural network in order to obtain the new representations.

4. EXPERIMENTS AND RESULTS

4.1. Method
The proposed method learns, unsupervised, convolutional
features from image data. In order to validate our approach,
we evaluated the learnt features on four different classification
datasets : MNIST, ETH80, CIFAR10, and STL10. Architectures
and hyper-parameters were tuned separately for each dataset,
details being given in the relevant sections.

The overall evaluation method remains the same for each
dataset. The proposed framework will be used to learn one or
several convolutional layer with the simplified STDP. In order to
show the faster convergence of features with our method, we will
only train these layer with a subset of the full training dataset with
very few epochs.

Once the features are learnt, we show qualitatively the learnt
features for each dataset. To quantitatively demonstrate their
relevance, we use the extracted features as input to a supervised
classifier. Although as state of the art classification are deep
learning systems, we use a simple Multi-Layer Perceptron (MLP)
with zero, one, or two hidden layers (depending on the dataset)
taking as inputs the learnt features with the proposed solution.

For all the experiments, we started with a lightweight network
architecture (the simplest available in the literature if available),
and incrementally added complexity until further additions
stopped improving performance. The classifier on top of the
network starts as linear dense layer with as many neurons as the
number of classes, and is complexified with intermediate layers
as the architectural-tuning goes on.

We compare our results with other state of the art
unsupervised feature learning methods specific for each dataset.

4.2. MNIST
The MNIST dataset contains 60,000 training images and 10,000
testing images of size 28× 28 containing handwritten digits from
0 to 9. MNIST digits are written in white on a black background,
hence pixel values are distributed across two modes. Considering
the data distribution and the limited number of classes, MNIST
may be considered as an easy classification task for current state-
of-the-art methods. As a matter of fact, neural based methods
do not need deep architectures in order to perform well on this
dataset. Light-weight architectures can be defined in order to
explore issues with the developed method. Once the method
has satisfying results on MNIST, more complex datasets may be
tackled.
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FIGURE 2 | Architecture of the network in the MNIST experiment.

FIGURE 3 | Eight 5 × 5 features learned from MNIST dataset on raw images.

To perform classification on this dataset, we defined a
lightweight convolutional architecture of features close to LeNet
LeCun et al. (1998), presented in Figure 2. Since achieving high
classification accuracy on MNIST is easy with a high number of
neurons per layer, the number of neurons per layer was kept as
low as possible in order to actually verify the relevance of the
features.

Unsupervised learning was performed over only 5,000
random images from the dataset for 5 epochs, which only
represents 25,000 image presentations. A visualization of the
learnt features is shown in Figure 3.

Once the features were learnt, we used a two-hidden layers
MLP to perform classification over the whole transformed
training set. The learnt features and classifier were then run on
all the testing set images in order to get the test error rate.

Classification performances are reported in Table 2. While the
best methods in the state-of-the-art reach up to 99.77% accuracy,
we did not report these results since these approaches use
supervised learning with data augmentation, which is outwith the

TABLE 2 | MNIST accuracy.

Method Accuracy (%)

SDNN (Kheradpisheh et al., 2016) 98.40

Two layer SNN (Diehl and Cook, 2015) 95.00

PCA-Net (Chan et al., 2014) 98.94

Our method 98.49

scope of this paper. All the reported results were obtainedwithout
data augmentation and using unsupervised feature learning.

Our approach performs as well as SDNN since they are
structurally close, reaching state-of-the-art performance without
fine-tuning and data-augmentation. While PCA-Net has better
performance, learning was done on twice the number of samples
we used. Doubling the number of samples to match the
same number used for PCA-Net (10,000) did not improve the
performance of our method.

4.3. ETH80
The ETH80 (Leibe and Schiele, 2003) contains 3,280 color images
of eight different object categories (apple, car, cow, cup,dog,
horse, pear, tomato). Each category contains 10 different object
instances taken from 41 points of view. This dataset is interesting
since the number of available images is limited and contains a
lot of variability in 3D rotations. It allows us to evaluate the
generalization potential of the features and their robustness to
changes in viewpoint.

As the number of samples is restrained here, we performed
both unsupervised and supervised learning on half the dataset
(1,640 images chosen randomly). The other half was used as the
test set.

We compare our approach to the classical HMAX model and
to Kheradpisheh et al. (2016). The architectures for unsupervised
and supervised part are shown in Figure 4. Learning visual
features becomes more and more difficult with the proposed
method as we add convolutional layers on top of the network.
Since ETH80 images are large (96 × 96), we apply pooling with
a stride of 4 in order to quickly reduce the dimensions over the
hierarchy.

Results are reported in Table 3. While our approach does not
reach the same performance as Kheradpisheh et al. (2016), it
is able to learn features relevant for a classification task with
multiple points of view of different objects.

4.4. CIFAR-10
The CIFAR-10 dataset (Krizhevsky, 2009) is a dataset for
classification of natural images from 10 classes (airplane,
automobile, bird, cat,deer, dog, frog, horse, ship, and truck). The
dataset is split into three with 60,000 training, 10,000 validation,
and 10,000 testing images. Images are a subset of the 80 million
tiny images dataset (Torralba et al., 2008). All the images are 32
× 32 pixels size with three color channels (RGB).

This dataset is quite challenging, since it contains many
variations of objects with natural backgrounds, in low resolution.
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FIGURE 4 | Architecture of the network in the ETH80 experiment.

TABLE 3 | ETH80 results.

Method Accuracy (%)

HMAX (Riesenhuber and Poggio, 1999) 69.0

SDNN (Kheradpisheh et al., 2016) 82.8

Our method 75.2

Hence in order to tackle this dataset, algorithms must be able to
find relevant information in noisy data.

The architecture used for this dataset is given in Figure 5.
Learnt features are shown in Figure 6A. We observe that
the features are similar to oriented-gabor features, which is
consistent with the results of other unsupervised methods such
as k-means and RBM. Also the weights distribution displayed in
Figure 6B contains a majority of values close to zero, showing
the sparsity of the features. Performances obtained on CIFAR-10,
along with other methods evaluation, are shown in Table 4.

As a performance baseline, we also trained the MLP with
the same architecture but keeping the convolutional layer’s
weights randomly initialized and frozen. The increase of 17% of
classification rate proves the usefulness of the features learnt with
our method in the classification process.

Only a few works related to SNNs have been benchmarked
on CIFAR-10. Cao et al. (2015) and Hunsberger and Eliasmith
(2015) rely on convolutional to SNN conversion to perform
supervised learning on the dataset. Panda and Roy (2016) built a
convolutional feature hierarchy on the principle of auto-encoders
with SNNs, and classified the top level representations with an
MLP.

Also, some works unrelated to SNNs are worth comparing
here. Coates et al. (2011) benchmarked four unsupervised feature
learning methods (k-means, triangle k-means, RBM, and sparse
auto-encoders) with only one layer. Results from the PCA-Net
approach are also included.

FIGURE 5 | Architecture of the network in the CIFAR-10 experiment.

Our approach reached good performance given the
lightweight architectures and the limited number of samples.
It outperforms the CNN with 64 random filters, confirming
the relevance of the learnt features for classification, and also
the Triangle K-means approach with 100 features. Empirically
however, training with more samples without increasing the
number of features does not improve the performance.

Also, due to the low resolution of CIFAR-10 images, we
tried to add a second convolutional layer. The learnt filters
in this new layer were very redundant and led to the same
performance observed with only one layer. Further investigations
might explore ways to force layers above the first to learn more
sparse features.

4.5. STL-10
STL-10 is a dataset dedicated to unsupervised feature learning.
Images were taken from the ImageNet dataset. The training set
contains 5,000 images labeled over the same ten classes as CIFAR-
10. An unlabeled training set of 100,000 images is also provided.
Unlabeled images may contain objects from other classes of
ImageNet (like bear, monkeys, trains...). The testing set contains
8,000 images (800 per class). All images are in RGB format with a
resolution of 96× 96.

We applied the same architecture as for the CIFAR-10
dataset, except the average pooling layer was done over 24 ×

24 sized windows (in order to have the same 4 × 4 output
dimension). As before, we limited the number of samples during
the unsupervised learning step to 5,000.

While some works related to SNNs or STDP have been
benchmarked on CIFAR-10, we were not able to find any
using the STL-10 dataset. Hence our approach may be the first
biologically inspired method trying to tackle this dataset.

Our approach reaches 60.1% accuracy on STL-10, which
is above the lower-bound performance on this dataset.
Performances obtained by other unsupervised methods
range between 58 and 74%.
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FIGURE 6 | (A) Sixty-four filters of size 7 × 7 learned with our method on the CIFAR-10 dataset. (B) The weights distribution of the network’s first layer trained on

CIFAR-10.

TABLE 4 | CIFAR-10 results.

Method Unsupervised Training

samples

Accuracy

(%)

Triangle k-means (1,600 features)

(Coates et al., 2011)

Yes 50,000 79.6

Triangle k-means (100 features)

(Coates et al., 2011)

Yes 50,000 55.5

PCA-Net (Chan et al., 2014) Yes 50,000 78.67

LIF CNN (Hunsberger and Eliasmith,

2015)

No 50,000 82.95

Regenerative Learning (Panda and

Roy, 2016)

Yes 20,000 70.6

Our method (64 features) Yes 5,000 71.2

CNN random frozen filters No 50,000 55.3

5. DISCUSSION

The proposed approach is able to train lightweight convolutional
architectures based on LIF neurons which can be used as a
feature extractor prior to a supervised classification method.
These networks achieve average levels of performance on
four image classification datasets. While the performances are
not as impressive as the ones obtained with fully supervised
learning methods, where features are learnt specifically for the
classification task, interesting characteristics emerge from this
model.

By showing the equivalence between rank-order LIF neurons
and perceptrons with ReLU activation, we were able to borrow
computationally efficient concepts from both neuroscience
and machine learning literature while remaining biologically
plausible enough to allow the conversion of network trained this
way to be converted into SNN.

Binary STDP along with WTA and synaptic normalization
reduces drastically the process of parameters tuning compared to
other STDP approaches. LIF neurons require the tuning of their
respective time constant. STDP also requires four parameters to
be tuned : the time constants T+ and T− as well as the LTP and
LTD factorsA+ andA− for each layer. Ourmodel of binary STDP
on the other hand only needs to set its learning rate λ, set globally
for the whole architecture.

Another advantage over other STDP approaches is the ability
to train the network with multiple images in parallel. While this
ability is biologically implausible, it can become handy in order
to accelerate the training phase thanks to the intrinsic parallel
optimization provided by GPU. Also, the equivalence between
LIF neurons and perceptrons with ReLU activation in presence
of images allows us to perform the full propagation phase of a
SNN in one shot, and to apply our STDP rule without the need of
interpolation precise timing information from the image. Other
approaches using SNNs with STDP requires the interpolation of
temporal information from the image (Masquelier and Thorpe,
2007; Kheradpisheh et al., 2016), with gabor filters for instance,
in order to generate spike trains. This way, STDP can be applied
to learn the correlations between spike timings.

From a deep learning point of view, the main interest
of our model resides in the proposal of a backpropagation-
free training procedure for the first layers. As the backward
pass in deep neural networks implies computationally heavy
deconvolutions to compute the gradients of the parameters, any
prior on visual modelization which can avoid a backpropagation
over the whole network may help to reduce the computational
overhead of this step. The LIF-ReLU equivalence demonstrated
allows a convolutional network to take advantage of the inherent
characteristic of STDP to quickly find repeating pattern in an
input signal (Masquelier and Thorpe, 2007; Masquelier et al.,
2009; Nessler et al., 2009).

With the WTA scheme proposed, we made the assumption
that relevant visual information resides in the most contrasted
patches. It also imposes the neurons to learn a sparse code with
the combination of neighburhood and channel-wise inhibition.
Such hard-coded WTA led to first layers features very similar to
the gabor-like receptive-fields of LGN and V1. Quantitatively,
the performances obtained on classification tasks allows us to
conclude on the relevance of this learning process on such task.
However it is still far from optimality considering the supervised
learning methods (Graham, 2014; Hunsberger and Eliasmith,
2015) and human-level performances. The main drawback of
our method is the difficulty to train more than one or two
convolutional layers with. Since spatial inhibitions are critical in
our WTA scheme to achieve feature sparseness, we suspect that
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the input width and height of one layer must be large enough
to make the competition between neurons effective. Other
competition schemes less dependent on the spatial dimension
have to be explored in order to train deeper architectures with
the proposed framework.

Also our binary variant of STDP rule shows the ability to train
neurons with very low precision updates. Gradients used to be
coded on floating-point variables ranging from 32 bits as these
encoding schemes had the better trade-off between numerical
precision and efficiency on CPU and GPU hardware. Gupta et al.
(2015) showed the possibility to perform gradient descent with
only 16-bits floating-point resolution, a feature implemented
since then in NVidia Pascal and AMD RX Vega GPUs. Studies
on gradient quantization (Zhou et al., 2016; Deng et al., 2017)
showed promising results reducing the precision down to 2
bits without penalizing significantly the performances. The main
advantage of such reduction in resolution is two-fold : the lowest
the resolution, the fastest the computations (under the condition
hardware has sufficient dedicated compute units) and the fastest
the memory transfers. Seide et al. (2014) accelerated learning
speed by a factor 50 quantizing the weight updates gradients on
1 bit, enabling a very fast transfer between the 8 GPU of the
considered cluster. The binary STDP learning rule proposed here
may fit this goal. Further quantization on activations and weights
(even if the distributions obtained on MNIST and CIFAR-10
seem to converge to three modes) are to be studied in such
framework in order to bring massive acceleration thanks to this
biologically inspired method.

In order to better understand the implication of the binary
STDP learning rule from a machine learning point of view,
studies on the equivalence to state-of-the art methods should be
performed as in Hyvärinen et al. (2004) and Carlson et al. (2013).
Further mathematical analysis may help us understanding better
the limits and potentials of our approach in order to combine
it with other approaches. The literature in machine learning
and neuroscience (accurately summarized in Marblestone et al.,
2016) shows that it is unlikely that only one objective function or
algorithm may be responsible for all the learning capabilities of

the brain. Considered combinations include supervised approach
with backpropagation compatible models such as Esser et al.
(2015), reinforcement learning methods (Mnih et al., 2013;
Mozafari et al., 2017), as well as other unsupervised strategies
such as auto-encoders and GANs.

Finally, the binary STDP along with WTA and normalization
has been shown to be successful at learning in an unsupervised
manner low level visual features from image data. Extension
of this learning framework on temporal data is envisaged.
The roles of neural oscillations in the brain are still studied,
and their place in attention-demanding tasks (Dugué et al.,
2015; McLelland and VanRullen, 2016) is still under debate.
Nevertheless, oscillation processes like the theta-gamma model
(McLelland and VanRullen, 2016) shows interesting information
segmentation abilities, and may be incorporated in a network of
spiking or recurrent artificial neurons (such as GRU and LTSM)
as a more hard-coded WTA scheme to evaluate their impact
during learning.

AUTHOR CONTRIBUTIONS

PF, FM, and ST: Designed the study; PF and FM: Analyzed
the data; PF: Wrote the manuscript; PF, FM, and ST: Revised
the manuscript, approved the final version, and agreed to be
accountable for all aspects of the work.

FUNDING

This work was supported by the Centre National de la
Recherche Scientifique (CNRS), the Agence Nationale Recherche
Technologie (ANRT) and Brainchip SAS, a Brainchip Holdings
Ltd company.

ACKNOWLEDGMENTS

We would like to thank Timothée Masquelier, Saeed Reza
Kheradpisheh, Douglas McLelland, Christophe Garcia, and
Stefan Dufner for their advice on themethod and themanuscript.

REFERENCES

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). “Greedy layer-

wise training of deep networks,” in Advances in Neural Information Processing

Systems 19, eds B. Schölkopf, J. C. Platt, T. Hoffman (Montreal, QC:MIT Press),

153–160.

Bengio, Y., Lee, D., Bornschein, J., and Lin, Z. (2015). Towards biologically

plausible deep learning. arXiv:1502.04156.

Beyeler, M., Dutt, N. D., and Krichmar, J. L. (2013). Categorization and

decision-making in a neurobiologically plausible spiking network

using a STDP-like learning rule. Neural Netw. 48(Suppl. C), 109–124.

doi: 10.1016/j.neunet.2013.07.012

Burbank, K. S. (2015). Mirrored STDP implements autoencoder learning

in a network of spiking neurons. PLoS Comput. Biol. 11:e1004566.

doi: 10.1371/journal.pcbi.1004566

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comp. Vis. 113, 54–66.

doi: 10.1007/s11263-014-0788-3

Carlson, K. D., Richert, M., Dutt, N., and Krichmar, J. L. (2013). “Biologically

plausible models of homeostasis and stdp: stability and learning in spiking

neural networks,” in Neural Networks (IJCNN), The 2013 International Joint

Conference on IEEE (Dallas, TX), 1–8.

Chan, T. H. , Jia, K., Gao, S., Lu, J., Zeng, Z., and Ma, Y. (2014). PCANet: A simple

deep learning baseline for image classification. arXiv:1404.3606.

Chistiakova, M., Bannon, N. M., Bazhenov, M., and Volgushev, M. (2014).

Heterosynaptic plasticity: multiple mechanisms and multiple roles.

Neuroscientist 20, 483–498. doi: 10.1177/1073858414529829

Coates, A., Lee, H., and Ng, A. (2011). “An analysis of single-layer networks in

unsupervised feature learning,” in Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics, Vol 15, JMLR Workshop and

Conference Proceedings (JMLRW&CP) (Fort Lauderdale, FL), 215–223.

de Almeida, L., Idiart, M., and Lisman, J. E. (2009). A second function of gamma

frequency oscillations: an E%-max winner-take-all mechanism selects which

cells fire. J. Neurosci. 29, 7497–7503. doi: 10.1523/JNEUROSCI.6044-08.2009

Delorme, A., and Thorpe, S. J. (2001). Face identification using one spike

per neuron: resistance to image degradations. Neural Netw. 14, 795–803.

doi: 10.1016/S0893-6080(01)00049-1

Deng, L., Jiao, P., Pei, J., Wu, Z., and Li, G. (2017). Gated XNOR networks:

deep neural networks with ternary weights and activations under a Unified

Discretization Framework. arXiv:1705.09283.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 April 2018 | Volume 12 | Article 24



Ferré et al. Unsupervised Feature Learning With WTA-STDP

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

IEEE, 1–8.

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. (2016).

Conversion of artificial recurrent neural networks to spiking neural networks

for low-power neuromorphic hardware. arXiv:1601.04187.

Dugué, L., McLelland, D., Lajous, M., and VanRullen, R. (2015). Attention searches

nonuniformly in space and in time. Proc. Natl. Acad. Sci. U.S.A. 112, 15214–

15219. doi: 10.1073/pnas.1511331112

Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S. (2015).

“Backpropagation for energy-efficient neuromorphic computing,” in Advances

in Neural Information Processing Systems 28, eds C. Cortes, N. D. Lawrence, D.

D. Lee, M. Sugiyama, and R. Garnett (Montreal, QC: Curran Associates, Inc.),

1117–1125.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. arXiv:1603.08270.

Gamrat, C., Bichler, O., and Roclin, D. (2015). “Memristive based device arrays

combined with spike based coding can enable efficient implementations of

embedded neuromorphic circuits,” in IEEE International Electron Devices

Meeting (IEDM) (Washington, DC), 4.5.1–4.5.7.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

et al. (2014). Generative adversarial nets. in Advances in Neural Information

Processing Systems, 2672–2680.

Goodfellow, I. J., Warde-farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).

“Maxout Networks,” in ICML, (Atlanta, GA).

Graham, B. (2014). Fractional max-pooling. arXiv:1412.6071.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). Deep

learning with Limited Numerical Precision. arXiv:1502.02551.

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with LIF neurons.

arXiv:1510.08829.

Hyvärinen, A., Karhunen, J., and Oja, E. (2004). “Independent component

analysis,” Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning,

Communications and Control, ed John Wiley & Sons (Wiley-Blackwell).

Kempter, R., Gerstner, W., and van Hemmen, J. L. (2001). Intrinsic stabilization of

output rates by spike-based hebbian learning. Neural Comput. 13, 2709–2741.

doi: 10.1162/089976601317098501

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T.

(2016). STDP-based spiking deep neural networks for object recognition.

arXiv:1611.01421.

Kingma, D. P., and Welling, M. (2013). Auto-encoding variational bayes.

arXiv:1312.6114.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.

Computer Science Department, University of Toronto, Technical Report.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). “Gradient-based

learning applied to document recognition,” Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Leibe, B., and Schiele, B. (2003). “Analyzing appearance and con tour based

methods for object categorization,” in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (Madison, WI), 409–415.

Makhzani, A., and Frey, B. J. (2015). “Winner-take-all autoencoders,” in Advances

in Neural Information Processing Systems 28, eds C. Cortes, N. D. Lawrence, D.

D. Lee, M. Sugiyama, and R. Garnett (Montreal, QC: MIT Press), 2791–2799.

Marblestone, A. H., Wayne, G., and Kording, K. P. (2016). Towards an integration

of deep learning and neuroscience. arXiv:1606.03813.

Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic aps and EPSPs. Science 275,

213–215.

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2009). Competitive

STDP-based spike pattern learning. Neural Comput. 21, 1259–1276.

doi: 10.1162/neco.2008.06-08-804

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual

features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.

doi: 10.1371/journal.pcbi.0030031

McLelland, D., and VanRullen, R. (2016). Theta-gamma coding

meets communication-through-coherence: neuronal oscillatory

multiplexing theories reconciled. PLoS Comput. Biol. 12:e1005162.

doi: 10.1371/journal.pcbi.1005162

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

and Riedmiller, M. A. (2013). Playing atari with deep reinforcement learning.

arXiv:1312.5602.

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and

Ganjtabesh, M. (2017). First-spike based visual categorization using reward-

modulated STDP. arXiv:1705.09132.

Nessler, B., Pfeiffer, M., and Maass, W. (2009). “STDP enables spiking neurons

to detect hidden causes of their inputs,” in Advances in Neural Information

Processing Systems 22, eds Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.

Williams, and A. Culotta (Curran Associates, Inc.), 1357–1365. Available online

at: http://papers.nips.cc/paper/3744-stdp-enables-spiking-neurons-to-detect-

hidden-causes-of-their-inputs.pdf

Panda, P., and Roy, K. (2016). Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition. arXiv:1602.01510.

Rao, R. P., and Sejnowski, T. J. (2001). Spike-timing-dependent hebbian

plasticity as temporal difference learning. Neural Comput. 13, 2221–2237.

doi: 10.1162/089976601750541787

Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. (2015). Semi-

supervised learning with ladder network. arXiv:1507.02672.

Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition

in cortex. Nat. Neurosci. 2, 1019–1025.

Royer, S., and Paré, D. (2003). Conservation of total synaptic weight through

balanced synaptic depression and potentiation. Nature 422, 518–522.

doi: 10.1038/nature01530

Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., and Chen,

X. (2016). Improved techniques for training gans. arXiv:1606.03498.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). “1-bit stochastic gradient

descent and its application to data-parallel distributed training of speech

DNNs,” in INTERSPEECH, (Singapore).

Stromatias, E., Neil, D., Pfeiffer, M., Galluppi, F., Furber, S. B., and Liu, S.-C.

(2015). Robustness of spiking Deep Belief Networks to noise and reduced

bit precision of neuro-inspired hardware platforms. Front. Neurosci. 9:222.

doi: 10.3389/fnins.2015.00222

Thorpe, S., Delorme, A., and Van Rullen, R. (2001). Spike-based strategies for rapid

processing. Neural Netw. 14, 715–725. doi: 10.1016/S0893-6080(01)00083-1

Thorpe, S., Fize, D., andMarlot, C. (1996). Speed of processing in the human visual

system. Nature 381:520.

Thorpe, S. J., Guyonneau, R., Guilbaud, N., Allegraud, J.-M., and VanRullen,

R. (2004). Spikenet: real-time visual processing with one spike per neuron.

Neurocomputing 58–60, 857–864. doi: 10.1016/j.neucom.2004.01.138

Torralba, A., Fergus, R., and Freeman, W. T. (2008). 80 million tiny images: a large

data set for nonparametric object and scene recognition. IEEE Trans. Pattern

Anal. Mach. Intell. 30, 1958–1970. doi: 10.1109/TPAMI.2008.128

Turk-Browne, N. B., Scholl, B. J., Chun, M. M., and Johnson, M. K. (2009).

Neural evidence of statistical learning: efficient detection of visual regularities

without awareness. J. Cogn. Neurosci. 21, 1934–1945. doi: 10.1162/jocn.2009.

21131

Van Rullen, R., Gautrais, J., Delorme, A., and Thorpe, S. (1998). Face processing

using one spike per neurone. Biosystems 48, 229–239.

Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., and Zou, Y. (2016). Dorefa-

net: Training low bitwidth convolutional neural networks with low bitwidth

gradients. arXiv:1606.06160.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Ferré, Mamalet and Thorpe. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2018 | Volume 12 | Article 24



99

Chapter 5

Final discussion

In the state-of-the-art section 1, we have seen that both neuroscience and ma-
chine learning communities have made spectacular advances. Neuroscience has
discovered many details on several brain mechanisms from cognition to physiol-
ogy through extensive psychophysics and modelling studies. Machine learning,
with the rapid development of Deep Learning this last decade, successfully elab-
orated models which are able to perform tasks with human-like accuracy, setting
a new milestone in the development of artificial general intelligence. Both do-
mains extensively use neural models which rely on heavy computations that
require important hardware resources. Adapting neural networks algorithms
for efficient parallel architectures is thus a critical step for accelerating the sim-
ulation of neuroscience models, as well as training deep neural networks and
inference for industrial applications. The different contributions in this thesis
propose several methods that can reduce the inherent costs of neural networks
in terms of time and hardware resources.

In Chapter 2, the contribution is twofold. Firstly, an algorithm-architecture
adequation study for the fast visual pattern detection engine BCVision, a
BrainChip technology, is proposed. We have seen that the transition from a
propagation scheme, which induces memory accesses penalizing performances
on GPU, to a convolution scheme allows the spike-based propagation step to
be ported to GPU hardware. This paradigm shift allows an overall acceleration
of propagation times by a factor 6.9, although a few model changes induced a
small accuracy loss. Secondly, we added complex cells to the original BCVision
model both in a single network and using a coarse-to-fine hierarchy. The addi-
tion of only complex-cells reduces overall detection performance due to the loss
of information by sub-sampling. However by coupling a coarse-network (which
perform detection with complex cells) with a fine-network (without complex-
cells) which performs detection only on pre-filtered locations, we could both
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recover original performances and obtain a drastic acceleration on GPU by a
factor 7000 compared to the original CPU implementation and by 233 compared
to the GPU implementation.

In Chapter 3, we studied computational models of three spike-propagation algo-
rithms for fully-connected layers with binary activations and weights on GPUs.
The first algorithm processes all the positions in input and weight spaces,
the second discards empty sub-packets to restrict computation to the relevant
weight-matrix rows and the third references spikes and connections as lists to
perform computations with an histogram algorithm. By varying the layer and
hardware-specific parameters such as input-output dimensions and the sparsity
in input and weight spaces, measurements of the throughputs allowed us to
refine the proposed computational models through least-square optimization.
With these we were able to provide ranges of parameters where each algorithm
performs best, we hope this may help people interested in optimizing spike-
propagation for a given network architecture and sparsity to choose the most
relevant hardware design for optimal acceleration.

Finally in Chapter 4, we proposed a novel method for applying STDP to image
data compliant with GPU architectures. We first showed that for non-temporal
data such as images, the relative spike-time orders can be inferred with a single
step convolution followed by a rectifier function. Given the intensity-latency
equivalence, this rectified activation can be used with the STDP learning rule
to learn low-level visual features with an unsupervised mechanism. Due to
the weight-sharing in our network, and more generally in convolutional archi-
tectures, a Winner-Takes-All process based on pooling and max-filtering op-
erations allows the selection of the most relevant regions to learn from, thus
avoiding averaging biases during the computation of the update signal. Also
a homeostatic process relying on post-update normalization prevents neurons
from having synaptic runaway dynamics. All the proposed mechanisms are ef-
ficient on GPU. We evaluated the relevance of visual features learnt with the
proposed method on four classification datasets. Performance levels were at
the state-of-the-art level for unsupervised-features based classification. Thus
we have shown that STDP can be integrated in convolutional neural networks
while remaining biologically plausible and adapted to parallel hardware.

The different conclusions about the proposed works are now discussed along
with several research perspectives.
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Limits and perspectives

Rank-coding parallel implementation

Computational model of spikes propagation

We have shown in Chapter 3 three algorithms for which we proposed fine
computational models. These models take into account parameters that are
network-related, in particular the layer’s dimensions and sparsity, as well as
hardware specific. The hardware used in the benchmark, a NVidia GTX Ti-
tan X Maxwell, are proprietary and such parameters like RAS, CAS and WAS
clocks are not public. We inferred a valid range for these parameters based
on GDDR5 data-sheet from Micron (Micron Technology, 2014), and fine-tuned
such parameters with least-square estimation. However such methods have two
main flaws. First, the automatic caching effects of CUDA-compilation biases
our data, while our model is based on pure memory latencies and bandwidth
without cache. Second, we relied on data from a single GPU. To tackle such
flaws in our study, further data should be obtained for other devices, such as
other GPUs and FPGAs in order to refine our model. Nevertheless, the main
aim of the study resides mainly on computational-speed trends, and our com-
putational models should be used with this in mind before we extend it with
more data.

Speed and accuracy of rank order coding networks

We managed to accelerate the spiking neural network based detection engine
BCVision by adapting it for GPU architectures. Since BCVision only simulates
a network with 2 layers (equivalent to V1 and V2 cells), it is able to detect
visual patterns, not high-level classes of objects, since such layers can only
integrate purely geometrical information. While it is theoretically possible to
gather clusters involving multiple neurons (up to thousands) to discriminate ob-
jects, it is likely that having more layers will be necessary to reach the accuracy
of deep learning networks while keeping reasonable processing times. Indeed
without complex cells, the amount of computations per model can grow rapidly
since receptive fields of about 30× 30 pixels implies a local dense dot-product at
each position. Choosing smaller receptive fields with sub-sampling (convolution
striding or pooling) could lead to better generalization while keeping process-
ing times low due to the intrinsic binary quantization. However such network
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deepness may not be mandatory for certain visual tasks. For instance, face
detection can be performed very quickly by humans (Crouzet et al., 2010) with
strong hypothesis that such processes may be carried out by innate specializa-
tion (Johnson et al., 1991; Johnson and Mareschal, 2001; Ullman et al., 2012)
prior to fine environmental training. Hence for certain simple tasks, relying on
shallower rank-coding networks could be more relevant than deep networks if
the objective is to minimize time (Perrinet and Bednar, 2015).

We produced in our first two contributions several computational studies for
propagating binary spikes, both with convolution and dot-product methods.
Computational efficiency of rank order coding results from two main features
of such encoding : sparsity and quantized information. Developing more learn-
ing methods for rank-order networks to close gaps in performances with deep
learning methods would allow to take fully advantage of their inherent sparsity
and quantized information scheme. In this sense, we already mentioned in the
state-of-the-art section 1.4 that many recent studies applying quantization to
deep neural networks have allowed drastic acceleration with small performance
loss. While these methods have only shown advantages for feedforward CNN
so far, it can be expected that application to more complex architectures such
as residual networks, recurrent architectures, GANs and NTM will follow in
the coming years. The remaining big gap between biological and deep spike
propagation is more about sparsity. Pruning and compression methods, while
currently capped at 40 percent sparsity ratio (hence sixty percent of zeros in
weights) without loss in accuracy and 10 percent with loss, seems a promising
avenue of research in this sense. Since there is evidence that the brain may
perform sparse coding for sensory information encoding (Wen et al., 2016) and
associative memory (Palm, 2013), getting closer to such level of sparsity in deep
neural networks could make such models far more efficient. From a computa-
tional point of view, increasing sparsity and using implementations that avoid
computations with zeros can lead to very high spike throughput, as shown by
our study in chapter 3. Finally, the role of spike-timing is critical in neural
processes with such level of sparsity (Kloppenburg and Nawrot, 2014). Con-
ception of neural models, such as hybrids between spiking neurons and LSTM
units (Hong, 2017; Pozzi, 2018), using quantized learning and which can have
high sparsity could be very efficiently implemented on parallel devices, could be
trained with back-propagation. They thus may serve as a basis to understand
better differences and resemblances between neuroscience and machine learning
models.
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Remarks on currently available hardware

While it is possible to optimize spiking neural networks propagation on syn-
chronous devices such as CPUs, GPUs, FPGAs and ASICs, several bottlenecks
and limits have been identified.

The main bottleneck identified is caused by limits in memory bandwidth and
very sparse accesses to particular memory locations. As a matter of fact, during
the adaptation of propagation in chapter 2 with sparse convolution and during
chapter 3 with the sparse method, the sparse access pattern involved a lot of
row changes, hence penalizing performance. For all the approaches, and more
generally when using neural networks, reading from device memory is done
extensively. The development of novel RAM memory modules such as HBM2
and GDDR6 technologies may help overcome this problem. More particularly,
special modules are being developed for neuromorphic devices, including RRAM
for synapse simulations and spintronics technologies for nano-scale neuron-like
behaviour (Torrejon et al., 2017; Grollier et al., 2016).

The other bottleneck identified comes from operation throughputs. GPU de-
vices (mainly NVidia) have four times less POPC units than integer and float-
ing points additions. While the current focus on deep learning have led to
optimizations for 16-bit half-floats and 8-bit integers, the novel literature on
network quantization could benefit from 1 and 2-bit dedicated computational
units, which may accelerate further such already fast network.

IBM’s TrueNorth architecture is an example of neuromorphic architecture that
tackles both problems by using distributed memory across several modules and
crossbar arrays for computations. Having both quantization and management
of sparse connections shows how such process can lead to fast and energy effi-
cient neural computing. However without learning methods which can directly
be applied to sparse and quantized networks, such devices are restricted to infer-
ence, while the most critical phase when using neural networks is the learning.
In the case of Deep Learning, backpropagation requires an order of magni-
tude more complexity due to the deconvolution-like processing during backward
pass. Such backpropagating signals need to be sent across all the network in
a dense manner. In this sense, synthetic gradients (Jaderberg et al., 2016),
which consists in learning locally the gradients to be backpropagated, could be
an optimization-based response to such problems, which limit the need for the
signal to be propagated across all the hierarchy. Also, better knowledge of bio-
logical learning mechanisms may help finding novel priors, like convolutions and
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regularizations in the past years, in order to limit the need for backpropagation,
hence keeping most of learning local to local hardware modules.

Exploring and simplifying biological priors

Influence of feedback for speed and accuracy

We proposed with our work on coarse-to-fine detection an application of fast
feedback inhibition that filters information prior to its feedforward propagation
to upper layers. This effectively increases sparsity, thus allowing an effective
reduction in terms of number of computations, and implying acceleration by
several order of magnitudes. Our coarse-to-fine detection method is currently
limited to visual patterns in V2. The application of coarse-to-fine in further
layer remain to be explored, both in terms of evidence in the brain and usefulness
in machine learning.

More generally, oscillatory regimes of cortical circuits and feedback inhibition
effects on neural processing remain to be explored. Such oscillation-based mech-
anisms are mostly linked to attention, synchronization, memory and learning.
While the latest is well-known in machine learning as backpropagation can be
seen as a feedback of reward signal (although its precise implementation in
spiking circuits is still actively debated in the literature), other functions of
oscillations could be integrated differently in deep neural networks.

One of the best performing architecture in computer vision, the Residual Net-
work (ResNet), makes extensive use of residual modules, basically application of
convolution and summation with previous inputs. Residual modules can be seen
as a form of local feedback since the dimensionality of the inputs and outputs re-
main the same. Many residual modules can be applied subsequently for a given
dimension, each with a different set of weights. Sharing the weights between
all the residual modules at a given layer however does not harm performance,
and directly makes a connection between residual networks and recurrent ones
(Liao and Poggio, 2016), where time-steps are integrated explicitly by the num-
ber of modules. In addition to the ease of gradient flows in such networks, it
makes perfect sense that the implementation of local excitatory and inhibitory
circuits with residual modules improves the performances compared to fully
feedforward architectures such as AlexNet and VGG. Nevertheless, this kind of
local attention mechanism does not take into account top-down influences and
yet still performs well for classification tasks. As it seems, looking at reaction
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times, that humans have little need for top-down influences during more or
less difficult classification tasks (only the amount of feedforward information to
process may be important) (Poncet et al., 2012), the effectiveness of residual-
based networks can be justified from a neuroscience view. Further studies of
ResNet depth along with difficulty of classification tasks may confirm this last
assumption.

Another way to implement attention in deep recurrent neural networks con-
sists in a selection by application of a product between the activity at a given
level and the softmax filtered response of this same activity (Xu et al., 2015).
This attention mechanism is applied at every time-step processed by an LSTM
neural network. Along with memory capacity of LSTM cells, attention mech-
anisms allows selection of certain features to be propagated at each time-step,
hence allowing deep networks to process information sequentially. This type of
attention module has been shown to beefficient for image captioning (Xu et al.,
2015), neural machine translation (Luong et al., 2015) and image generation
(Gregor et al., 2015). Still, such attention mechanisms are purely bottom-up
since this do not make use of any information from upper layers. Looking at
activities at each time step after the attention module in the context of vision,
such method can effectively focus on segregated objects within the scene. This
behaviour looks like what can be extracted with Theta-Gamma models of neu-
ral information filtering (McLelland and VanRullen, 2016), where local cortical
inhibitory circuits and global inhibition allows extraction of salient objects.

Recent deep networks feature architectures with externalized memory modules
controlled with an LSTM network. These include Neural Turing Machines
(Graves et al., 2014) and Differentiable Neural Computers (Graves et al., 2016).
In such architectures, softmax-controlled read and write heads allow access to
an external memory space. Read-head memory in fed back into the network
along with the input signal. Write-head can access and replace content of a
single memory row at each time step. What is stored is however barely known.
Similar processes can be observed in the medio-temporal lobe, where neurons
can respond to a single concept (Quiroga et al., 2005) based on association
between features. In such areas, rapid association can also be created between
two or more concepts with only one presentation (Ison et al., 2015). However
making a direct connection between neural networks with externalized memory
and medio-temporal circuits needs to be done with caution, since there is no
strong evidence that medio-temporal to V1 connections may exists to support
such an hypothesis.
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Local brain optimization functions

With our work on STDP with Winner-Takes-All selection, we were able to ob-
tain biologically plausible receptive fields for V1 and V2-level cells. We have
also shown the features learnt are able to reach state-of-the-art results, quanti-
tatively and qualitatively. The method is also able to learn such features with
far less examples than other methods. It have been possible to reproduce such
results in a deep learning formalism by expressing STDP as a post-WTA ac-
tivity maximization problem. However, there seem to be a two-layers barrier
above which layer-wise training are unable too learn meaningful representation.

As proposed by Marblestone et al. (2016), studying the different brain pro-
cesses in order to express them as loss functions for optimization process may
help both machine learning and neuroscience communities understanding neu-
ral mechanisms. For neuroscience, bringing more mathematical background to
computational neural models may help understanding the role of given corti-
cal structures, bringing forward a normalized model of cognitive functions from
which deviations can be more easily spotted and studied (in a non-prescriptive
sense). From a machine learning perspective, bringing novel priors from the
most advanced structure of intelligence known today to current architectures
may improve drastically the proposed models. For instance, we have seen that
STDP can accelerate learning by reducing the number of samples required. We
hypothesize that bypassing the need to send a reward signal back to bottom lay-
ers causes this acceleration. Also, innate developmental schemes and pre-natal
concepts could also guide learning in order to be faster and more efficient.
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