/. Al, . Vacnts, and . Zno, 450°C)/Pérovskite/Spiro à droite ainsi que des images MEB correspondantes, qui ne montrent pas d'aspect jauni

, Figure V-45 Photos et Images MEB associées des échantillons Al/VACNTs/Pérovskite (à gauche) et

/. Al, . Vacnts, and . Zno, 450°C)/Pérovskite (à droite) après déposition de Spiro-OMeTAD. Les clichés (a) et (b) correspondent à des vues en coupe, (c), (d) et (e) à des vues de surfaces

L. Macroscopiquement and . Dépôt-de-spiro-ometad, On remarque que les sillons sont toujours visibles sur l'échantillon Al/VACNTs/Pérovskite/Spiro tandis que l'échantillon Al/VACNTs/ZnO(450°C)/Pérovskite/Spiro

, Si l'on s'intéresse à la surface du premier échantillon on voit également ces sillons (image (c)), mais d'autres zones plus denses sont aussi présentes (image (d)). Lorsque l'on parcourt la surface de l'échantillon, on se rend compte que le dépôt est inhomogène et constitué de grandes zones représentées par les images (c) et (d)

/. Al and . Vacnts, Un potentiel de -1,1V a été imposé pendant 10 minutes. La Figure A22 (a) montre l'aspect de l'échantillon avant et après électrodépôt. Après l'essai, on remarque la présence d'un dépôt blanc sur une partie de l'échantillon, ainsi qu'une prise de masse d'environ 1 mg

, La Figure A22 (c) présente la courbe de chronoampérométrie associée

, ZnO (b) masse des différents échantillons (c) Courbe de chronoampérométrie associée, obtenue à -1,1V/ECS pendant 10 minutes La présence de ZnO a été confirmée par spectroscopie Raman (cf. Figure A23), puisque les pics caractéristiques de la présence de ZnO ont été détectés à 408 cm -1 , 434 cm -1 et 574 cm -1 285, Figure A22 (a) photo (vue du dessus) d'un échantillon Si/VACNTs et Si/VACNTs après électrodépôt de

, Ce spectre est très proche de celui observé sur Al/VACNTs/ZnO, bien que le rapport des intensités varie, notamment entre le pic à 408 cm -1 et celui à 434 cm -1 (cf, vol.217

, BP. Statistical Review of World Energy, vol.1, p.56, 2018.

, International Energy Agency (IEA). Solar energy perspectives. Renew. Energy Technol. 9789264124, 2011.

A. Jaeger-valdau, Joint Research Centre (JRC) of European Commission, 2017.

, International Renewable Energy Agency (IRENA), 2016.

. Rte--bilan, , 2017.

, Intergouvernemental Panel on Climate Change (IPCC). IPCC Special Report on, vol.1, 2018.

S. B. Uk, Impacts of 1.5°C of Global Warming on Natural and Human Systems, IPCC Spec. Rep. 1.5°C, 2018.

, Intergouvernemental Panel on Climate Change (IPCC), IPCC Spec. Rep, vol.1, p.5

, Service de la donnée et des études statistiques (SDES), Europe et Monde. DATALAB, 2019.

. Joint-research-centre, JRC) of European Commission. EDGAR -Emissions Database for Global Atmospheric Research

A. B. Carbone, Documentation des facteurs d'émissions de la Base Carbone, 2014.

. Nrel-chart, Available at, 2019.

W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys, vol.32, pp.510-519, 1961.

, Solar Bag GCell Graetzel. Available

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic, J. AM. Chem. Soc, vol.131, pp.6050-6051, 2009.

, Microquanta Semiconductor. 17,9 % Microquanta set a new world record for perovskite solar mini-module Available at

Z. Yang, S. Zhang, L. Li, and W. Chen, Research progress on large-area perovskite thin films and solar modules, J. Mater, vol.3, pp.231-244, 2017.

, Saule Technologies. Available at

Z. Li, Scalable fabrication of perovskite solar cells, vol.1, 2018.

J. Wei, Potentials and challenges towards application of perovskite solar cells, Sci. China Mater, vol.59, pp.769-778, 2016.

L. Qiu, L. K. Ono, and Y. Qi, Advances and challenges to the commercialization of organic -inorganic halide perovskite solar cell technology, Mater. Today Energy, 2017.

, Solliance -Thin Film Solar Research

Y. Galagan, Roll-to-Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells, Adv. Energy Mater, vol.8, p.1801935, 2018.

A. Gheno, Toward Highly Efficient Inkjet-Printed Perovskite Solar Cells Fully Processed Under Ambient Conditions and at Low Temperature, Sol. RRL, vol.2, p.1800191, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01891660

W. Zi, Z. Jin, S. Liu, and B. Xu, Flexible perovskite solar cells based on green, continuous roll-to-roll printing technology, J. Energy Chem, vol.27, pp.971-989, 2018.

K. P. Bhandari, J. M. Collier, R. J. Ellingson, and D. S. Apul, Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis, Renew. Sustain. Energy Rev, vol.47, pp.133-141, 2015.

T. Ibn-mohammed, Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies, Renew. Sustain. Energy Rev, vol.80, pp.1321-1344, 2017.

R. H. Koppelaar, Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization, Renew. Sustain. Energy Rev, vol.72, pp.1241-1255, 2017.

Y. Rong, Challenges for commercializing perovskite solar cells, Science, vol.361, 2018.

E. W. Diau, P. C. Chen, and .. , Perovskite Solar Cells: Principle, Materials and Devices

D. Wang, M. Wright, N. K. Elumalai, and A. Uddin, Stability of perovskite solar cells, Sol. Energy Mater. Sol. Cells, vol.147, pp.255-275, 2016.

I. Celik, Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab, Sol. Energy Mater. Sol. Cells, vol.156, pp.157-169, 2016.

J. Gong, S. B. Darling, and F. You, Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts, Energy Environ. Sci, vol.8, pp.1953-1968, 2015.

J. M. Kadro and A. Hagfeldt, The End-of-Life of, Perovskite PV. Joule, vol.1, pp.1-18, 2017.

L. Huang, Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices, Sol. Energy Mater. Sol. Cells, vol.152, pp.118-124, 2016.

A. Binek, Recycling Perovskite Solar Cells to Avoid Lead Waste, ACS Appl. Mater. Interfaces, vol.8, pp.12881-12886, 2016.

B. J. Kim, Selective dissolution of halide perovskites as a step towards recycling solar cells, Nat. Commun, vol.7, pp.1-9, 2016.

J. M. Kadro, Proof-of-concept for facile perovskite solar cell recycling, Energy Environ. Sci, vol.9, pp.3172-3179, 2016.

C. G. Poll, Electrochemical recycling of lead from hybrid organic-inorganic perovskites using deep eutectic solvents, Green Chem, vol.18, pp.2946-2955, 2016.

M. Tableau-de,

F. Sani, S. Shafie, H. N. Lim, and A. O. Musa, Advancement on lead-free organicinorganic halide perovskite solar cells: A review, Materials, vol.11, pp.1-17, 2018.

J. Zhang, X. Gao, Y. Deng, Y. Zha, and C. Yuan, Comparison of life cycle environmental impacts of different perovskite solar cell systems, Sol. Energy Mater. Sol. Cells, vol.166, pp.9-17, 2017.

M. Hauck, T. Ligthart, M. Schaap, E. Boukris, and D. Brouwer, Environmental benefits of reduced electricity use exceed impacts from lead use for perovskite based tandem solar cell, Renew. Energy, vol.111, pp.906-913, 2017.

. Recyclex,

, World Health Organization. Recycling used lead-acid batteries: health considerations, 2016.

P. Y. Chen, Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries, Energy Environ. Sci, vol.7, pp.3659-3665, 2014.

S. Zhang, Cyclic Utilization of Lead in Carbon-Based Perovskite Solar Cells, ACS Sustain. Chem. Eng, vol.6, pp.7558-7564, 2018.

P. Löper, Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells, Phys. Chem. Chem. Phys, vol.17, pp.1619-1629, 2015.

F. Sahli, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nat. Mater, vol.17, pp.820-826, 2018.

K. A. Bush, 6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells With Improved Stability, Nat. Energy, vol.23, pp.1-7, 2017.

S. Albrecht, Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature, Energy Environ. Sci, vol.9, pp.81-88, 2016.

J. Werner, B. Niesen, and C. Ballif, Perovskite/Silicon Tandem Solar Cells: Marriage of Convenience or True Love Story? -An Overview, Adv. Mater. Interfaces, vol.5, pp.1-19, 2018.

J. Werner, Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2, J. Phys. Chem. Lett, vol.7, pp.161-166, 2016.

N. N. Lal, Perovskite Tandem Solar Cells, Adv. Energy Mater, vol.1602761, pp.1-18, 2017.

K. Corp,

. Solar-tectic,

P. V. Oxford,

H. J. Snaith, Present status and future prospects of perovskite photovoltaics, Nat. Mater, vol.17, pp.372-376, 2018.

, Oxford PV -28 % Efficiency

R. Itten and M. Stucki, Highly efficient 3rd generation multi-junction solar cells using silicon heterojunction and perovskite tandem: Prospective life cycle environmental impacts, Energies, vol.10, 2017.

, Life Cycle Analysis of CHEOPS technologies and benchmarking : Screening, 2017.

T. Vangerven, Organic and perovskite solar cells for space applications, Sol. Energy Mater. Sol. Cells, vol.182, pp.121-127, 2018.

H. J. Snaith and . Perovskites, The emergence of a new era for low-cost, high-efficiency solar cells, J. Phys. Chem. Lett, vol.4, pp.3623-3630, 2013.

J. P. Correa-baena, The rapid evolution of highly efficient perovskite solar cells, Energy Environ. Sci, vol.10, pp.710-727, 2017.

Q. Chen, Under the spotlight : The organic -inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, vol.10, pp.355-396, 2015.

N. Park, Organic-Inorganic Halide Perovskite Photovoltaics

S. D. Stranks, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, vol.342, pp.341-344, 2013.

F. X. Xie, H. Su, J. Mao, K. S. Wong, and W. C. Choy, Evolution of diffusion length and trap state induced by chloride in perovskite solar cell, J. Phys. Chem. C, vol.120, pp.21248-21253, 2016.

. Goldschmidt, Ber. Dtsch. Chem, vol.60, pp.1263-1268, 1927.

M. Bouchard, Direct Evidence of Chlorine Induced Preferential Crystalline Orientation in Methylammonium Lead Iodide Perovskites Grown on TiO2, J. Phys. Chem, vol.121, pp.7596-7602, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01975253

L. K. Ono, E. J. Juarez-perez, and Y. Qi, Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions, ACS Appl. Mater. Interfaces, vol.9, pp.30197-30246, 2017.

I. Mesquita, L. Andrade, and A. Mendes, Perovskite solar cells: Materials, configurations and stability, Renew. Sustain. Energy Rev, vol.82, pp.2471-2489, 2018.

M. I. Asghar, J. Zhang, H. Wang, and P. D. Lund, Device stability of perovskite solar cells -A review, Renew. Sustain. Energy Rev, vol.77, pp.131-146, 2017.

M. Grätzel, The light and shade of perovskite solar cells, Nat. Mater, vol.13, pp.838-842, 2014.

J. Chen, Recent progress in stabilizing hybrid perovskites for solar cell applications, J. Power Sources, vol.355, pp.98-133, 2017.

A. Miyata, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites, Nat. Phys, vol.11, pp.582-588, 2015.

P. Tonui, S. O. Oseni, G. Sharma, Q. Yan, and G. Tessema-mola, Perovskites photovoltaic solar cells: An overview of current status, Renew. Sustain. Energy Rev, vol.91, pp.1025-1044, 2018.

M. Habibi, F. Zabihi, M. R. Ahmadian-yazdi, and M. Eslamian, Progress in emerging solution-processed thin film solar cells -Part II: Perovskite solar cells, Renew. Sustain. Energy Rev, vol.62, pp.1012-1031, 2016.

N. Aristidou, Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells, Nat. Commun, vol.8, pp.1-10, 2017.

N. Aristidou, The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers, Angew. Chemie -Int. Ed, vol.54, pp.8208-8212, 2015.

L. Chen and Z. Tseng, ZnO-Based Electron Transporting Layer for Perovskite Solar Cells, Nanostructured Sol. Cells, 2017.

Y. Chen, SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress, J. Energy Chem, 2018.

J. Luo, Y. Wang, and Q. Zhang, Progress in perovskite solar cells based on ZnO nanostructures, Sol. Energy, vol.163, pp.289-306, 2018.

L. Xiong, Review on the Application of SnO2 in Perovskite Solar Cells, Adv. Funct. Mater, vol.28, p.1802757, 2018.

P. Zhang, Perovskite Solar Cells with ZnO Electron-Transporting Materials, Adv. Mater, vol.30, pp.1-20, 2018.

M. F. Noh, The architecture of the electron transport layer for a perovskite solar cell, J. Mater. Chem. C, vol.6, pp.682-712, 2018.

S. Sun, T. Buonassisi, and J. P. Correa-baena, State-of-the-Art Electron-Selective Contacts in Perovskite Solar Cells, Adv. Mater. Interfaces, vol.5, p.1800408, 2018.

E. Gaffet and . Nanomatériaux, Une revue des définitions, des applications et des effets sur la santé. Comment implémenter un développement sûr, Comptes Rendus Phys, vol.12, pp.648-658, 2011.

. Sigma-aldrich, Next Generation Nanomaterials for Energy and Electronics Nanomaterials -Making Big Advances. Mater. Matters, vol.11, pp.15-19, 2016.

Y. Bai, Titanium Dioxide Nanomaterials for Photovoltaic Applications, Chem. Rev, vol.114, pp.10095-10130, 2014.

J. Nowotny, Oxide semiconductors for solar energy conversion: titanium dioxide, Green Chemistry and Chemical Engineering, vol.37, 2012.

A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.238, pp.226-229, 1972.

N. Rahimi, R. A. Pax, and E. M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications, Prog. Solid State Chem, vol.44, pp.86-105, 2016.

X. P. Wu, A Review -The Properties and Applications of Nano-Structured Titanium Oxide Materials, Key Eng. Mater, vol.727, pp.314-321, 2017.

S. Cassaignon and O. Durupthy, Nanomaterials: A Danger or a Promise ? Chapter 6 : Titanium Dioxide in Photocatalysis

K. Spektor, D. Trung, K. Leinenweber, and U. Häussermann, Transformation of rutile to TiO2-II in a high pressure hydrothermal environment, J. Solid State Chem, vol.206, pp.209-216, 2013.

T. Zhu and S. P. Gao, The stability, electronic structure, and optical property of TiO2 polymorphs, J. Phys. Chem. C, vol.118, pp.11385-11396, 2014.

S. Wu, Premixed Stagnation Flame Synthesized TiO2 Nanoparticles with Mixed Phases for Efficient Photocatalytic Hydrogen Generation, ACS Sustain. Chem. Eng, vol.6, pp.14470-14479, 2018.

K. Mukai and I. Yamada, Columbite-Type TiO2 as a Negative Electrode Material for Lithium-Ion Batteries, J. Electrochem. Soc, vol.164, pp.3590-3594, 2017.

M. R. Ranade, Energetics of nanocrystalline TiO2, Proc. Natl. Acad. Sci, vol.99, pp.6476-6481, 2002.

K. Sohlberg, X. Nie, S. Zhuo, G. Maeng, and K. Sohlberg, Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties, Int. J. Photoenergy, pp.1-22, 2009.

D. A. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci, vol.46, pp.855-874, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02308408

H. Zhang and J. F. Banfield, Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates : Insights from TiO2, J. Phys. Chem. B, vol.104, pp.3481-3487, 2000.

H. Zhang and J. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem, vol.8, pp.2073-2076, 1998.

K. Sabyrov, N. D. Burrows, and R. L. Penn, Size-Dependent Anatase to Rutile Phase Transformation and Particle Growth, Chem. Mater, vol.25, pp.1408-1415, 2013.

W. Ma, Z. Lu, and M. Zhang, Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy, Appl. Phys. A Mater. Sci. Process, vol.66, pp.621-627, 1998.

S. G. Ullattil and P. Periyat, Advances in Sol-Gel Derived Materials and Technologies, Sol-gel synthesis of Titanium Dioxide, vol.9

, Electron. Appl, pp.271-283, 2017.

T. Sugimoto, X. Zhou, and A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel -sol method 3. Formation process and size control ?, J. Colloid Interface Sci, vol.259, pp.43-52, 2003.

T. Sugimoto, X. Zhou, and A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel -sol method 4. Shape Control, J. Colloid Interface Sci, vol.259, pp.53-61, 2003.

S. Cassaignon, M. Koelsch, and J. P. Jolivet, Selective synthesis of brookite, anatase and rutile nanoparticles: Thermolysis of TiCl4in aqueous nitric acid, J. Mater. Sci, vol.42, pp.6689-6695, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00334743

A. Kumar and G. Pandey, Different Methods Used for the Synthesis of TiO2 Based Nanomaterials : A Review, Am. J. Nano Res. Appl, vol.6, pp.1-10, 2018.

S. Vemury, S. E. Pratsinis, and L. Kibbey, Electrically controlled flame synthesis of nanophase TiO2, SiO2, and SnO2 powders, J. Mater. Res, vol.12, pp.1031-1042, 1997.

K. Wegner, W. J. Stark, and S. E. Pratsinis, Flame-nozzle synthesis of nanoparticles with closely controlled size , morphology and crystallinity, Mater. Lett, vol.55, pp.318-321, 2002.

W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. A. Marra, Sinterable Ceramic Powders from Laser-Driven Reactions: I, Process Description and Modeling, J. Am. Ceram. Soc, vol.65, pp.324-330, 1982.

M. Cauchetier, Laser Synthesis of Ultrafine Powders, Ceram. Int, vol.13, pp.13-17, 1987.

J. Erven and . Van, The Improvement and Upscaling of a Laser Chemical Vapor Pyrolysis Reactor, KONA POwder Part. J, vol.27, pp.157-173, 2009.

. Nanomakers,

J. Wang, Single-step preparation of TiO2/MWCNT nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion, ACS Appl. Mater. Interfaces, vol.7, pp.51-56, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134058

S. Bouhadoun, One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: Application in photocatalysis, Appl. Catal. B Environ, pp.367-375, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140868

S. K. Pradhan, P. J. Reucroft, F. Yang, and A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition, J. Cryst. Growth, vol.256, pp.83-88, 2003.

S. Seifried, M. Winterer, and H. Hahn, Nanocrystalline titania films and particles by chemical vapor synthesis, Chem. Vap. Depos, vol.6, pp.239-244, 2000.

M. Shakeel-ahmad, A. K. Pandey, and N. Abd-rahim, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renew. Sustain. Energy Rev, vol.77, pp.89-108, 2017.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, pp.56-58, 1991.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, pp.603-605, 1993.

A. K. Geim and K. S. Novoselov, The rise of Graphene, Nat. Mater, vol.6, pp.183-191, 2017.

Z. Zhang, L. Wei, X. Qin, and Y. Li, Carbon nanomaterials for photovoltaic process, Nano Energy, vol.15, pp.490-522, 2015.

K. D. Benkstein, N. Kopidakis, J. Van-de-lagemaat, and A. J. Frank, Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells, J. Phys. Chem. B, vol.107, pp.7759-7767, 2003.

J. Chen, B. Li, J. Zheng, J. Zhao, and Z. Zhu, Role of carbon nanotubes in dye-sensitized TiO2-based solar cells, J. Phys. Chem. C, vol.116, pp.14848-14856, 2012.

K. T. Dembele, G. S. Selopal, C. Soldano, R. Nechache, and A. Vomiero, Hybrid Carbon Nanotubes ? TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.117, pp.14510-14517, 2013.

J. Chen, B. Li, J. Zheng, J. Zhao, and Z. Zhu, Role of Carbon Nanotubes in Dye-Sensitized TiO 2 -Based Solar Cells, 2012.

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells, ACS Nano, vol.4, pp.887-894, 2010.

S. C. Ray, Applications of graphene and graphene-oxide based nanomaterials, 2015.

B. Partoens and F. M. Peeters, From graphene to graphite: Electronic structure around the K point, Phys. Rev. B, vol.74, pp.75404-75405, 2006.

R. Yusoff, Graphene Optoelectronics -Synthesis, Chracterization, Properties and Applications, 2014.

D. P. Hansora, N. G. Shimpi, and S. Mishra, Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications, Jom, vol.67, pp.2855-2868, 2015.

S. S. Shams, R. Zhang, and J. Zhu, Graphene synthesis: A Review, Mater. Sci. Pol, vol.33, pp.566-578, 2015.

P. Avouris, C. Dimitrakopoulos, and . Graphene, Synthesis and applications. Mater. Today, vol.15, pp.86-97, 2012.

Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges, Nanomaterials, vol.8, p.942, 2018.

P. Yu, S. E. Lowe, G. P. Simon, and Y. L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene, Curr. Opin. Colloid Interface Sci, vol.20, pp.329-338, 2015.

W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc, vol.80, p.1339, 1958.

Y. Yang, Graphene-based materials with tailored nanostructures for energy conversion and storage, Mater. Sci. Eng. R, vol.102, pp.1-72, 2016.

E. Liang, A Mini Review: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications ?, Nano-Micro Lett, 2018.

J. V. Mili?, N. Arora, M. I. Dar, S. M. Zakeeruddin, and M. Grätzel, Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells, Adv. Mater. Interfaces, vol.1800416, pp.1-8, 2018.

J. Bouclé and N. Herlin-boime, The benefits of graphene for hybrid perovskite solar cells, Synth. Met, vol.222, pp.3-16, 2016.

N. N. Rosli, M. A. Ibrahim, N. Ahmad-ludin, M. A. Mat-teridi, and K. Sopian, A review of graphene based transparent conducting films for use in solar photovoltaic applications, Renew. Sustain. Energy Rev, vol.99, pp.83-99, 2019.

A. L. Palma, Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells, Nano Energy, vol.22, pp.349-360, 2016.

Y. Jiao, Graphene-covered perovskites: an effective strategy to enhance light absorption and resist moisture degradation, RSC Adv, vol.5, pp.82346-82350, 2015.

S. Morales-torres, L. M. Pastrana-martínez, J. L. Figueiredo, J. L. Faria, and A. M. Silva, Design of graphene-based TiO2 photocatalysts -a review, Env. Sci Pollut Res, vol.19, pp.3676-3687, 2012.

A. Tayel, A. R. Ramadan, and O. A. El-seoud, Titanium Dioxide/Graphene and Titanium Dioxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Photocatalytic Applications for Water Decontamination, Catalysts, vol.8, pp.491-492, 2018.

H. Atout, Enhanced photocatalytic degradation of methylene blue: Preparation of TiO2/reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods, Mater. Res. Bull, vol.95, pp.578-587, 2017.

H. M. Yadav and J. S. Kim, Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance, J. Alloys Compd, vol.688, pp.123-129, 2016.

Y. Chen, H. Gao, J. Xiang, X. Dong, and Y. Cao, Enhanced photocatalytic activities of TiO2-reduced graphene oxide nanocomposites controlled by Ti-O-C interfacial chemical bond, Mater. Res. Bull, vol.99, pp.29-36, 2018.

H. Saleem and A. Habib, Study of band gap reduction of TiO2 thin films with variation in GO contents and use of TiO2/Graphene composite in hybrid solar cell, J. Alloys Compd, vol.679, pp.177-183, 2016.

M. Shi, Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and its photocatalytic properties, Colloids Surfaces A Physicochem. Eng. Asp, vol.405, pp.30-37, 2012.

E. Nouri, M. R. Mohammadi, and P. Lianos, Impact of preparation method of TiO2-RGO nanocomposite photoanodes on the performance of dye-sensitized solar cells, Electrochim. Acta, vol.219, pp.38-48, 2016.

Q. Huang, Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C-Ti bond, ACS Catal, vol.3, pp.1477-1485, 2013.

N. T. Ha, P. D. Long, N. T. Trung, L. Hong, and . Van, Graphene Effect on Efficiency of TiO2-based Dye Sensitized Solar Cells (DSSC), Commun. Phys, vol.26, pp.43-49, 2016.

G. Cheng, M. S. Akhtar, O. B. Yang, and F. J. Stadler, Novel preparation of anatase TiO2@reduced graphene oxide hybrids for high-performance dye-sensitized solar cells, ACS Appl. Mater. Interfaces, vol.5, pp.6635-6642, 2013.

M. Zhu, X. Li, W. Liu, and Y. Cui, An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene-TiO2 composite photoanodes, J. Power Sources, vol.262, pp.349-355, 2014.

L. Chen, Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene-TiO2 photoanode prepared by a novel in situ simultaneous reductionhydrolysis technique, Nanoscale, vol.5, pp.3481-3485, 2013.

S. A. Kazmi, S. Hameed, A. S. Ahmed, M. Arshad, and A. Azam, Electrical and optical properties of graphene-TiO2 nanocomposite and its applications in dye sensitized solar cells (DSSC), J. Alloys Compd, vol.691, pp.659-665, 2017.

Y. Kusumawati, M. A. Martoprawiro, and T. Pauporté, Effects of Graphene in Graphene/TiO2 Composite Films Applied to Solar Cell Photoelectrode, J. Phys. Chem. C, vol.118, pp.9974-9981, 2014.

H. Ma, Porous activated graphene nanoplatelets incorporated in TiO2 photoanodes for high-efficiency dye-sensitized solar cells, J. Mater. Chem. A, vol.3, pp.8890-8895, 2015.

J. Liu, Stacked graphene-TiO2 photoanode via electrospray deposition for highly efficient dye-sensitized solar cells, Org. Electron. physics, Mater. Appl, vol.23, pp.158-163, 2015.

U. Mehmood, K. Harrabi, I. A. Hussein, and S. Ahmed, Enhanced photovoltaic performance of dye-sensitized solar cells using TiO2-graphene microplatelets hybrid photoanode, IEEE J. Photovoltaics, vol.6, pp.196-201, 2016.

K. T. Dembele, Graphene below the percolation threshold in TiO2 for dyesensitized solar cells, J. Mater. Chem. A, vol.3, pp.2580-2588, 2015.

U. Mehmood, S. Ahmed, I. A. Hussein, and K. Harrabi, Improving the efficiency of dye sensitized solar cells by TiO2-graphene nanocomposite photoanode, Photonics Nanostructures -Fundam. Appl, vol.16, pp.34-42, 2015.

Y. C. Wang and C. P. Cho, Application of TiO2-graphene nanocomposites to photoanode of dye-sensitized solar cell, J. Photochem. Photobiol. A Chem, vol.332, pp.1-9, 2017.

J. T. Wang and .. , Low-Temperature Processed Electron Collection Layers of Graphene/ TiO2 Nanocomposites in Thin Film Perovskite Solar Cells, Nano Lett, vol.14, pp.724-730, 2014.

T. Umeyama, Boosting of the Performance of Perovskite Solar Cells through Systematic Introduction of Reduced Graphene Oxide in TiO2 Layers, Chem. Lett, vol.44, pp.1410-1412, 2015.

G. S. Han, Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells, ACS Appl. Mater. Interfaces, vol.7, pp.23521-23526, 2015.

A. Agresti, S. Pescetelli, B. Taheri, E. Del, and R. Castillo, Graphene -Perovskite Solar Cells Exceed 18 % Efficiency : A Stability Study, 2016.

A. Agresti, Graphene Interface Engineering for Perovskite Solar Modules: 12, p.6

, Power Conversion Efficiency over 50 cm 2 Active Area, ACS Energy Lett, vol.2, pp.279-287, 2017.

S. Sidhik, Interfacial Engineering of TiO2 by Graphene Nanoplatelets for High-Efficiency Hysteresis-free Perovskite Solar Cells, ACS Sustain. Chem. Eng, vol.6, pp.15391-15401, 2018.

P. Yang, Cesium-Containing Perovskite Solar Cell Based on Graphene/TiO2 Electron Transport Layer, Chem. Sel. Commun, vol.2, pp.9433-9437, 2017.

M. Khenfouch, Artemisia herba-alba Asso eco-friendly reduced few-layered graphene oxide nanosheets: Structural investigations and physical properties, Green Chem. Lett. Rev, vol.9, pp.122-131, 2016.

D. R. Dreyer, S. Park, W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, 2010.

J. D. Casey and J. S. Haggerty, Laser-induced vapour-phase synthesis of titanium dioxide, J. Mater. Sci, vol.22, pp.4307-4312, 1987.

F. Curcio, M. Musci, N. Notaro, G. Michele, and . De, Synthesis of ultrafine TiO2 powders by a CW CO2 laser, Appl. Surf. Sci, vol.46, pp.225-229, 1990.

B. Fei, Multi-functional microcapsules produced by aerosol reaction, J. Aerosol Sci, vol.39, pp.1089-1098, 2008.

B. Pignon, Versatility of laser pyrolysis applied to the synthesis of TiO2 nanoparticles -Application to UV attenuation, Eur. J. Inorg. Chem, pp.883-889, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00179674

A. G. Ilie, Study of phase development and thermal stability in as synthesized TiO2 nanoparticles by laser pyrolysis: ethylene uptake and oxygen enrichment, Appl. Surf. Sci, vol.427, pp.798-806, 2018.

M. Scarisoreanu, Effects of some synthesis parameters on the structure of titania nanoparticles obtained by laser pyrolysis, Appl. Surf. Sci, vol.253, pp.7908-7911, 2007.

H. Melhem, TiO2 Nanocrystals Synthesized by Laser Pyrolysis for the Up-Scaling of Efficient Solid-State Dye-Sensitized Solar Cells, Adv. Energy Mater, vol.1, pp.908-916, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643218

H. Melhem, Direct photocurrent generation from nitrogen doped TiO2 electrodes in solid-state dye-sensitized solar cells: Towards optically-active metal oxides for photovoltaic applications, Sol. Energy Mater. Sol. Cells, vol.117, pp.624-631, 2013.

E. Wirth, F. Guitteny, E. Wirth, and . Thermogravimétrie, Tech. l'ingénieur P1260 V3, 2014.

J. Park and M. Lee, Performance Enhancement of Dye-Sensitized Solar Cell with a TiCl4-Treated TiO2 Compact Layer, Electron. Mater. Lett, vol.11, pp.271-275, 2015.

F. J. Knorr, D. Zhang, and J. L. Mchale, Influence of TiCl4 Treatment on Surface Defect Photoluminescence in Pure and Mixed-Phase Nanocrystalline TiO2, Langmuir, vol.23, pp.8686-8690, 2007.

Y. Xu, Comprehensive understanding of TiCl4 treatment on the compact TiO2 layer in planar perovskite solar cells with efficiencies over 20%, J. Alloys Compd, 2019.

T. N. Murakami, Adjustment of Conduction Band Edge of Compact TiO2 Layer in Perovskite Solar Cells Through TiCl4 Treatment, ACS Appl. Mater. Interfaces, vol.9, pp.36708-36714, 2017.

S. K. Dhungel and J. G. Park, Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells, Renew. Energy, vol.35, pp.2776-2780, 2010.

K. Fan, M. Liu, T. Peng, L. Ma, and K. Dai, Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells, Renew. Energy, vol.35, pp.555-561, 2010.

S. Ito, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 %, Thin Solid Films, vol.516, pp.4613-4619, 2008.

M. Abdi-jalebi, Impact of Mesoporous Titania-Perovskite Interface on the Performance of Hybrid Organic-Inorganic Perovskite Solar Cells, J. Phys. Chem. Lett, vol.7, pp.3264-3269, 2016.

A. Marchioro, A. Dualeh, A. Punzi, M. Grätzel, and J. Moser, Effect of post-treatment of titania mesoscopic films by TiCl4 in solid-state dye-sensitized solar cells : A timeresolved spectroscopy study, J. Phys. Chem. C, 2012.

V. Ostapchenko, Q. Huang, Q. Zhang, and C. Zhao, Effect of TiCl4 treatment on different TiO2 blocking layer deposition methods, Int. J. Electrochem. Sci, vol.12, pp.2262-2271, 2017.

H. .. Adli, T. Harada, S. Nakanishi, and S. Ikeda, Effects of TiCl4 Treatment on Structural and Electrochemical Properties of a Porous TiO2 Layer in CH3NH3PbI3 Perovskite Solar Cells, Phys. Chem. Chem. Phys, 2017.

J. Lee and N. Park, Two-step deposition method for high-efficiency perovskite solar cells, MRS Bull, vol.40, pp.654-659, 2015.

S. Chen, L. Lei, S. Yang, Y. Liu, and Z. Wang, Characterizations of Perovskite Obtained from Two-Step Deposition on Mesoporous Titania, ACS Appl. Mater. Interfaces, 2015.

M. Wang, Y. Feng, J. Bian, H. Liu, and Y. Shi, A comparative study of one-step and two-step approaches for MAPbI3perovskite layer and its influence on the performance of mesoscopic perovskite solar cell, Chem. Phys. Lett, vol.692, pp.44-49, 2018.

J. Im, H. Kim, and N. Park, Morphology-photovoltaic property correlation in perovskite solar cells : One-step versus two-step deposition of CH3NH3PbI3, APL Mater, vol.2, p.81510, 2014.

S. Colella, MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties, Chem. Mater, vol.25, pp.4613-4618, 2013.

Q. Chen, The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells, Nat. Commun, vol.6, p.7269, 2015.

M. Bouchard, Direct Evidence of Chlorine-Induced Preferential Crystalline Orientation in Methylammonium Lead Iodide Perovskites Grown on TiO2, J. Phys. Chem. C, vol.121, pp.7596-7602, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01975253

S. Luo and W. A. Daoud, Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite, Materials (Basel), vol.9, p.123, 2016.

A. Gheno, Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability, Sol. Energy Mater. Sol. Cells, vol.161, pp.347-354, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01415225

U. Bach, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photonto-electron conversion efficiencies, Nature, vol.395, pp.583-585, 1998.

Z. Hawash, L. K. Ono, and Y. Qi, Recent Advances in Spiro-MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells, Adv. Mater. Interfaces, vol.5, pp.1-22, 2018.

E. J. Juarez-perez, Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer, Chem. Mater, vol.28, pp.5702-5709, 2016.

R. A. Spurr and H. Myers, Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer, Anal. Chem, vol.29, pp.760-762, 1957.

H. P. Klug and L. E. Alexandre, X-Ray Diffraction Procedures, 1974.

L. A. Kernazhitsky, Laser-excited excitonic luminescence of nanocrystalline TiO2 powder, Ukr. J. Phys, vol.59, pp.246-253, 2014.

T. Ohsaka, F. Izumi, and Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc, vol.7, pp.321-324, 1978.

S. P. Porto, P. A. Fleury, and T. C. Damen, Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2, Phys. Rev, vol.154, pp.522-526, 1967.

A. C. Ferrari and D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol, vol.8, pp.235-246, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00844853

A. C. Ferrari, Raman spectroscopy of graphene and graphite : Disorder, electronphonon coupling, doping and nonadiabatic effects, Solid State Commun, vol.143, pp.47-57, 2007.

D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide, J. Colloid Interface Sci, vol.430, pp.108-112, 2014.

, EM Resolutions -Supporting Electronic Microscopy. Lacey carbon film. Available

B. Chen, M. Yang, S. Priya, and K. Zhu, Origin of J-V Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett, vol.7, pp.905-917, 2016.

N. K. Elumalai and A. Uddin, Hysteresis in organic-inorganic hybrid perovskite solar cells, Sol. Energy Mater. Sol. Cells, vol.157, pp.476-509, 2016.

C. Eames, Ionic transport in hybrid lead iodide perovskite solar cells, Nat. Commun, 2015.

H. J. Snaith, Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett, vol.5, pp.1511-1515, 2014.

A. Gheno, Printable and printed perovskites photovoltaic solar cells for autonomous sensors network, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01960416

B. Yea-sze-chang, Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite, Int. J. Nanomedicine, vol.7, pp.3379-3387, 2012.

G. Xie, Fluorescent graphene oxide composites synthesis and its biocompatibility, J. Mater. Chem, vol.22, pp.9308-9314, 2012.

D. Cai and M. Song, Recent advance in functionalized graphene/polymer nanocomposites, J. Mater. Chem, vol.20, pp.7906-7915, 2010.

L. Xiong, J. Li, B. Yang, and Y. Yu, Ti3+ in the Surface of Titanium Dioxide : Generation, Properties and Photocatalytic Application, J. Nanomater, 2012.

C. Xiao-quan, L. Huan-bin, and G. Guo-bang, Preparation of nanometer crystalline TiO2 with high photo-catalytic activity by pyrolysis of titanyl organic compounds and photocatalytic mechanism, Mater. Chem. Phys, vol.91, pp.317-324, 2005.

Z. Tan, Shock synthesis and characterization of titanium dioxide with ?-PbO2 structure, J. Phys. Condens. Matter, vol.30, p.264006, 2018.

M. Nicol and M. Y. Fong, Raman Spectrum and Polymorphism of Titanium Dioxide at High Pressures, J. Chem. Phys, vol.54, pp.3167-3170, 1971.

P. Y. Simons and F. Dachille, The structure of TiO2 II, a high-pressure phase of TiO2, Acta Cryst, vol.23, pp.334-336, 1967.

R. Ren, Z. Yang, and L. L. Shaw, Polymorphic transformation and powder characteristics of TiO2 during high energy milling, J. Mater. Sci, vol.35, pp.6015-6026, 2000.

A. C. Withers, A. E. Essene, A. Y. Zhang, and R. Tio, Rutile/TiO 2 II phase equilibria, pp.199-204, 2003.

M. Y. Manuputty, Polymorphism of nanocrystalline TiO2 prepared in a stagnation flame: formation of the TiO2-II phase, Chem. Sci, vol.10, pp.1342-1350, 2019.

W. Zhao, S. Zhu, Y. Li, and Z. Liu, Three-phase junction for modulating electron-hole migration in anatase-rutile photocatalysts, Chem. Sci, vol.6, pp.3483-3494, 2015.

B. Bukowski and N. A. Deskins, The interactions between TiO2 and graphene with surface inhomogeneity determined using density functional theory, Phys. Chem. Chem. Phys, vol.17, pp.29734-29746, 2015.

D. G. Lee, Effect of TiO2 Particle Size and Layer Thickness on Mesoscopic Perovskite Solar Cells, Appl. Surf. Sci, vol.477, pp.131-136, 2019.

Y. Yang, The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell, J. Mater. Chem. A, vol.3, pp.9103-9107, 2015.

E. H. Jo, Pore size-controlled synthesis of PEG-derived porous TiO2 particles and photovoltaic performance of dye-sensitized solar cells, Mater. Lett, vol.131, pp.244-247, 2014.

M. Shahiduzzaman, Compact TiO2/Anatase TiO2 Single-Crystalline Nanoparticle Electron-Transport Bilayer for Efficient Planar Perovskite Solar Cells, ACS Sustain. Chem. Eng, vol.6, pp.12070-12078, 2018.

C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3?xClx, J. Phys. Chem. Lett, vol.5, pp.1300-1306, 2014.

V. Roiati, Stark Effect in Perovskite/TiO2 Solar Cells: Evidence of Local Interfacial Order, Nano Lett, vol.14, pp.2168-2174, 2014.

V. Roiati, Investigating charge dynamics in halide perovskite sensitized mesostructured solar cells, Energy Environ. Sci, vol.7, pp.1889-1894, 2014.

F. Biccari, Graphene-Based Electron Transport Layers in Perovskite Solar Cells: A Step-Up for an Efficient Carrier Collection, Adv. Energy Mater, vol.7, pp.1701349-1701350, 2017.

M. Saliba, How to Make over 20% Efficient Perovskite Solar Cells in Regular (n?i?p) and Inverted (p?i?n) Architectures, Chem. Mater, vol.30, pp.4193-4201, 2018.

G. E. Eperon, The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication, ACS Nano, vol.9, pp.9380-9393, 2015.

J. Nelson, The physics of solar cells, 2003.

R. S. Sanchez, Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis, J. Phys. Chem. Lett, vol.5, pp.2357-2363, 2014.

A. Agresti, Graphene-Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study, ChemSusChem, vol.9, pp.2609-2619, 2016.

A. Agresti, Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithium-Neutralized Graphene Oxide as Electron Transporting Layer, Adv. Funct. Mater, vol.26, pp.2686-2694, 2016.

S. Reenen, . Van, M. Kemerink, and H. J. Snaith, Modeling Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett, vol.6, pp.3808-3814, 2015.

F. Zhang, Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells, Chem. Mater, vol.28, pp.802-812, 2016.

M. Bag, Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers, Chem. Phys. Lett, vol.662, pp.35-41, 2016.

S. N. Habisreutinger, R. J. Nicholas, and H. J. Snaith, Carbon Nanotubes in Perovskite Solar Cells, Adv. Sci. News, vol.7, p.1601839, 2017.

N. Ahn, Carbon-sandwiched perovskite solar cell, J. Mater. Chem. A, vol.6, pp.1382-1389, 2018.

I. Jeon, Perovskite solar cells using carbon nanotubes both as cathode and as anode, J. Phys. Chem. C, vol.121, pp.25743-25749, 2017.

P. Schulz, Charge Transfer Dynamics between Carbon Nanotubes and Hybrid Organic Metal Halide Perovskite Films, J. Phys. Chem. Lett, vol.7, pp.418-425, 2016.

R. Ihly, Efficient charge extraction and slow recombination in organic -inorganic perovskites capped with semiconducting single-walled carbon nanotubes, Energy Environ. Sci, vol.9, pp.1439-1449, 2016.

H. Anwar, A. E. George, and I. G. Hill, Vertically-aligned carbon nanotube counter electrodes for dye-sensitized solar cells, Sol. Energy, vol.88, pp.129-136, 2013.

P. Dong, Vertically Aligned Single-Walled Carbon Nanotubes as Low-cost and High Electrocatalytic Counter Electrode for Dye-Sensitized Solar Cells, ACS Appl. Mater. Interfaces, vol.3, pp.3157-3161, 2011.

J. Chen, A quantum dot sensitized solar cell based on vertically aligned carbon nanotube templated ZnO arrays, Electrochem. commun, vol.12, pp.1432-1435, 2010.

G. Y. Zeng, K. S. Nian, and K. Y. Lee, Characteristics of a dye-sensitized solar cell based on an anode combining ZnO nanostructures with vertically aligned carbon nanotubes, Diam. Relat. Mater, vol.19, pp.1457-1460, 2010.

M. Porcher, Matériaux nanostructurés Polymères Conjugués/Nanotubes de Carbone Verticalement Alignés pour la réalisation de supercondensateurs, 2016.

M. Delmas, Growth of long and aligned multi-walled carbon nanotubes on carbon and metal substrates, Nanotechnology, vol.23, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00724248

M. Pinault, Carbon nanotubes produced by aerosol pyrolysis : growth mechanisms and post-annealing effects, Diam. Relat. Mater, vol.13, pp.1266-1269, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00085009

F. Nassoy, Développement et étude de la synthèse par CVD à basse température de nanotubes de carbone alignés sur substrat d'aluminium, 2018.

C. Castro, M. Pinault, D. Porterat, C. Reynaud, and M. Mayne-l'hermite, The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes, Carbon N. Y, vol.61, pp.585-594, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00955747

P. Landois, In situ time resolved wide angle X-ray diffraction study of nanotube carpet growth : Nature of catalyst particles and progressive nanotube alignment, Carbon N. Y, vol.87, pp.246-256, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339084

B. Pibaleau, Elaboration et caractérisation d'électrodes VACNTs/MnO2 pour application aux supercondensateurs hybrides, 2018.

Y. Yang, W. Yu, S. Wang, and L. Zhang, Crystallization process of PbI2 solution in twostep deposition of CH3NH3PbI3 for high-performance perovskite solar cells, Sol. Energy Mater. Sol. Cells, vol.161, pp.444-448, 2017.

X. Yu, Solvent-Tunable Microstructures of Aligned Carbon Nanotube Films, Adv. Mater. Interfaces, vol.3, p.1600352, 2016.

K. Zhang, Facile synthesis of high density carbon nanotube array by a depositiongrowth-densification process, Carbon N. Y, vol.114, pp.435-440, 2017.

Q. Li, Drying induced upright sliding and reorganization of carbon nanotube arrays, Nanotechnology, vol.17, pp.4533-4536, 2006.

N. Chakrapani, B. Wei, A. Carrillo, P. M. Ajayan, and R. S. Kane, Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.4009-4012, 2004.

S. Parveen, Decoration of zinc oxide nanoparticles on vertically aligned single wall carbon nanotubes: An efficient field emitter, Mater. Res. Bull, vol.83, pp.12-18, 2016.

M. Izaki and O. Takashi, Transparent zinc oxide films prepared by electrochemical reaction, Appl. Phys. Lett, vol.68, p.2439, 1996.

T. Mahalingam, V. S. John, M. Raja, Y. K. Su, and P. J. Sebastian, Electrodeposition and characterization of transparent ZnO thin films, Sol. Energy Mater. Sol. Cells, vol.88, pp.227-235, 2005.

S. Jiao, Morphological control of ZnO Nanostructures by Electrodeposition, J. Phys. Chem. B, vol.109, pp.13519-13522, 2005.

M. Kumar and C. Sasikumar, Electrodeposition of Nanostructured ZnO Thin Film : A Review, Am. J. Mater. Sci. Eng, vol.2, pp.18-23, 2014.

S. Dai, Y. Li, Z. Du, and K. R. Carter, Electrochemical Deposition of ZnO Hierarchical Nanostructures from Hydrogel Coated Electrodes, J. Electrochem. Soc, vol.160, pp.156-162, 2013.

V. A. Nikitenko, V. G. Plekhanov, S. Mukhin, and M. V. Tkachev, Raman Spectra of Oxide Zinc Powders and Single Crystals, J. Appl. Spectrosc, vol.63, pp.290-292, 1996.

J. Bouclé, H. J. Snaith, and N. C. Greenham, Simple approach to hybrid polymer/porous metal oxide solar cells from solution-processed ZnO nanocrystals, J. Phys. Chem. C, vol.114, pp.3664-3674, 2010.

T. C. Damen, S. P. Porto, and B. Tell, Raman Effect in Zinc Oxide, Phys. Rev, vol.142, p.570, 1966.

C. Li, Raman and excitonic photoluminescence characterizations of ZnO starshaped nanocrystals, J. Lumin, vol.122, issue.123, pp.415-417, 2007.

G. Grancini, CH3NH3PbI3 Perovskite Single Crystals : Surface Photophysics and their interaction with the environment, Chem. Sci, vol.6, pp.7305-7310, 2015.

K. K. Bass, Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites, Chem. Comm, pp.15819-15822, 2014.

V. D. Innocenzo, Tuning the Light Emission Properties by Band Gap Engineering in Hybrid Lead Halide Perovskite, J. Am. Chem. Soc, vol.136, pp.17730-17733, 2014.

Y. Cheng, Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles, ACS Appl. Mater. Interfaces, vol.7, pp.19986-19993, 2015.

J. Yang, B. D. Siempelkamp, E. Mosconi, F. Angelis, and T. L. De-&-kelly, Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO, Chem. Mater, vol.27, pp.4229-4236, 2015.

T. J. Jacobsson, Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells, J. Am. Chem. Soc, vol.138, pp.10331-10343, 2016.

H. Wang, Adverse Effects of Excess Residual PbI2 on Photovoltaic Performance, Charge Separation, and Trap-State Properties in Mesoporous Structured Perovskite Solar Cells, Chem. Eur. J, vol.23, pp.3986-3992, 2017.

L. I. Junwei, L. I. Zhifeng, E. Lei, and Z. H. Zhichen, Effects of Potential and Temperature on the Electrodeposited Porous Zinc Oxide Films, J. Wuhan Univ. Technol, vol.26, pp.47-51, 2011.

F. Shao, A Modified two-step sequential deposition method for preparing perovskite CH3NH3PbI3 solar cells, RSC Adv, vol.6, pp.42377-42381, 2016.

F. Guo, High-performance semitransparent perovskite solar cells with solutionprocessed silver nanowires as top electrodes, Nanoscale, vol.7, pp.1642-1649, 2015.

M. Chalh, S. Vedraine, B. Lucas, and B. Ratier, Plasmonic Ag nanowire network embedded in zinc oxide nanoparticles for inverted organic solar cells electrode, Sol. Energy Mater. &Solar Cells, vol.152, pp.34-41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01652371

M. Zhang, Strong, Transparent, Multifunctional Carbon Nanotube Sheets. Science (80-. ), vol.309, pp.1215-1220, 2005.

P. Boulanger, Towards large scale aligned carbon nanotube composites: An industrial safe-by-design and sustainable approach, J. Phys. Conf. Ser, vol.429, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854425

. Nawatechnologies,

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc, vol.60, pp.309-319, 1938.

B. V. Shrotriya, Accurate Measurement and Characterization of Organic Solar Cells, Adv. Funct. Mater, vol.16, pp.2016-2023, 2016.

H. J. Snaith, How should you measure your excitonic solar cells ?, Energy Environ. Sci, vol.5, pp.6513-6520, 2012.

E. Zimmermann, Erroneous efficiency reports harm organic solar cell research, Nat. Photonics, vol.8, pp.669-672, 2014.

M. Madian, A. Eychmüller, and L. Giebeler, Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries, Batteries, vol.4, p.7, 2018.

X. Yan, TiO2 Nanomaterials as Anode Materials for Lithium-Ion Rechargeable Batteries, Energy Technol, vol.3, pp.801-814, 2015.

Y. Liu and Y. Yang, Recent progress of TiO2-based anodes for Li ion batteries, J. Nanomater, 2016.

D. Bresser, Carbon-Coated Anatase TiO2 Nanotubes for Li-and Na-Ion Anodes, J. Electrochem. Soc, vol.162, pp.3013-3020, 2015.

Y. Zhao, Super-long aligned TiO2/carbon nanotube arrays, Nanotechnology, vol.21, 2010.

A. Goux, T. Pauporté, J. Chivot, and D. Lincot, Temperature effects on ZnO electrodeposition, Electrochim. Acta, vol.50, pp.2239-2248, 2005.