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Abstract

Understanding the functioning of the brain under normal and pathological conditions is one of the challenges of the 21 st century. In the last decades, neuroimaging has radically affected clinical and cognitive neurosciences. Amongst neuroimaging techniques, magneto-and electroencephalography (M/EEG) stand out for two reasons: their noninvasiveness, and their excellent time resolution. Reconstructing the neural activity from the recordings of magnetic field and electric potentials is the so-called bio-magnetic inverse problem.

Because of the limited number of sensors, this inverse problem is severely ill-posed, and additional constraints must be imposed in order to solve it. A popular approach, considered in this manuscript, is to assume spatial sparsity of the solution: only a few brain regions are involved in a short and specific cognitive task. Solutions exhibiting such a neurophysiologically plausible sparsity pattern can be obtained through 2,1 -penalized regression approaches. However, this regularization requires to solve time-consuming high-dimensional and non-smooth optimization problems, with iterative (block) proximal gradients solvers.

Additionally, M/EEG recordings are usually corrupted by strong non-white noise, which breaks the classical statistical assumptions of inverse problems. To circumvent this, it is customary to whiten the data as a preprocessing step, and to average multiple repetitions of the same experiment to increase the signal-to-noise ratio. Averaging measurements has the drawback of removing brain responses which are not phaselocked, i.e., do not happen at a fixed latency after the stimuli presentation onset.

In this work, we first propose speed improvements of iterative solvers used for the 2,1regularized bio-magnetic inverse problem. Typical improvements, screening and working sets, exploit the sparsity of the solution: by identifying inactive brain sources, they reduce the dimensionality of the optimization problem. We introduce a new working set policy, derived from the state-of-the-art Gap safe screening rules. In this framework, we also propose duality improvements, yielding a tighter control of optimality and improving feature identification techniques. This dual construction extrapolates on an asymptotic Vector AutoRegressive regularity of the dual iterates, which we connect to manifold identification of proximal algorithms. Beyond the 2,1 -regularized bio-magnetic inverse problem, the proposed methods apply to the whole class of sparse Generalized Linear Models.

Second, we introduce new concomitant estimators for multitask regression. Along with the neural sources estimation, concomitant estimators jointly estimate the noise covariance matrix. We design them to handle non-white Gaussian noise, and to exploit the multiple repetitions nature of M/EEG experiments. Instead of averaging the observations, our proposed method, CLaR, uses them all for a better estimation of the noise.

The underlying optimization problem is jointly convex in the regression coefficients and the noise variable, with a "smooth + proximable" composite structure. It is therefore solvable via standard alternate minimization, for which we apply the improvements detailed in the first part. We provide a theoretical analysis of our objective function, linking it to the smoothing of Schatten norms. We demonstrate the benefits of the proposed approach for source localization on real M/EEG datasets.

Our improved solvers and refined modeling of the noise pave the way for a faster and more statistically efficient processing of M/EEG recordings, allowing for interactive data analysis and scaling approaches to larger and larger M/EEG datasets.

Notation

Equal by definition 

Statistical learning

Let Z be a random variable in a domain Z. A statistical learning task is to find, in a certain set of models H called hypothesis class, the most suitable one. Formally, for a loss function : H × Z → R + , the best model minimizes the expected loss:

arg min φ∈H E[ (φ, Z)] .
(1.1)

This framework encompasses tasks such as dimensionality reduction, classification, regression, clustering or feature selection (Shalev-Shwartz and Ben-David, 2014). In this thesis, we are interested in the prediction learning task: we wish to infer the relationship between a random variable X and a target random variable Y, taking values in sets X and Y respectively. In that case, Z = (X, Y), Z = X × Y and the set of models H is a subset of Y X , reflecting a priori knowledge about this dependency [START_REF] Hastie | The Elements of Statistical Learning[END_REF]. As a loss function, we use (φ, (x, y)) = L(φ(x), y) where L : Y × Y → R + measures the discrepancy between two values in Y. Problem (1.1) then becomes:

arg min φ∈H E[L(φ(X), Y)] . (1.2) CHAPTER 1.
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Unfortunately, this expectation is generally impossible to compute since the joint distribution of X and Y is unknown. A most common setting is when a dataset D = {(x i , y i )} i∈[n] ∈ (X × Y) n is available, comprising n independent samples drawn from the joint distribution of X and Y. The unavailable E[L(φ(X), Y)] can be approximated by the empirical mean 1 n n i=1 L(φ(x i ), y i ), and a proxy for the best model can be obtained in the Empirical Risk Minimization (ERM) framework, by solving:

arg min φ∈H 1 n n i=1 L(φ(x i ), y i ) .
(1.3)

We refer to the case where H = {x → h(x; β) : β ∈ R d }, with h : X × R d → Y fixed, as the (finite dimensional) parametric case. In this case, learning the optimal function φ reduces to learning the optimal parameter vector β.

We will focus on a particular class of parametric statistical models, called Generalized Linear Models (GLMs, introduced in McCullagh and Nelder 1989). For simplicity of the presentation, we now assume that X = R p and Y ⊂ R (the later used multitask framework, Y = R q , can be addressed easily at the price of heavier notation). First, let us introduce an exponential family, that is, a family of parametric probability densities (or mass functions), taking the form:

{f (υ; θ) = c(υ) exp(η(θ) T (υ) -κ(θ)) : θ ∈ Θ} , (1.4) 
and such that the support of f (•; θ) does not depend on θ. The function η is called the natural parameter of the family, T is the sufficient statistic, κ the cumulant function, Θ the parameter space and c reflects the integrating measure. Exponential families provide a convenient unifying framework to analyze a variety of commonly used distributions: Gaussian, Poisson, Bernoulli, multinomial, exponential, etc.

Example 1.1 (Real Gaussian). If Υ ∼ N (µ, σ 2 ), its density at υ ∈ R is:

1 √ 2πσ 2 exp - (υ -µ) 2 2σ 2 = 1 √ 2π exp µ σ 2 υ - 1 2σ 2 υ 2 - 1 2σ 2 µ 2 -log σ , (1.5) 
and it is easy to check that with:

                         c(υ) = 1/ √ 2π , θ = (θ 1 , θ 2 ) = µ σ 2 , -1 2σ 2 , η(θ) = θ , T (υ) = (υ, υ 2 ) , κ(θ) = - θ 2 1 4θ 2 -1 2 log(-2θ 2 ) = 1 2σ 2 µ 2 + log σ , Θ = R × -∞, 0 , (1.6)
Equation (1.5) fits the form of (1.4). Moreover, notice that:

∇κ(θ) = - θ 1 2θ 2 , θ 2 1 4θ 2 2 - 1 2θ 2 = µ, µ 2 + σ 2 = E[T (Υ)] .
(1.7)
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Now consider that σ is known; we can change the parametrization to:

                       c(υ) = 1 √ 2πσ 2 exp -1 2σ 2 υ 2 , θ = µ σ 2 , η(θ) = θ , T (υ) = υ , κ(θ) = σ 2 2 θ 2 , Θ = R .
(1.8)

In that case, T is the identity, i.e., Υ itself is a sufficient statistic, and one can easily check that κ (θ) = E [Υ].

From now on, we restrict ourselves to distributions for which T is the identity. It turns out that we always have1 ∇κ(θ) = κ (θ) = E[Υ], and κ (θ) = Var[Υ] > 0. This means that the mapping θ → µ E[Υ] is one-one, which allows to parametrize the distribution not with θ, but with µ (moment parametrization). In this situation, to postulate that (X, Y) follows a GLM is to assume that for every x ∈ R p the distributions of Y|X = x (emphasis: not of Y) belong to a common exponential family, and that the parameter µ E[Y|X = x] is equal to ψ -1 (β x) (or θ = (κ ) -1 • ψ -1 (x β)), for a fixed parameter β and a response function ψ.

The hypotheses of a GLM are summarized by:

f Y|X=x (y; β) = c(y) exp η (κ ) -1 • ψ -1 (x β) y -κ (κ ) -1 • ψ -1 (x β)
. (1.9)

Equation (1.9) evidences the two choices which characterize a GLM: the exponential family via c, η, and κ, and the response function ψ. To model the data, the choice of the exponential family usually depends on the nature of Y: continuous unbounded data can be modeled by a Gaussian, count data by a Poisson distribution, intervals by an exponential distribution, etc. The response function ψ is usually chosen so that it matches the constraints on the exponential family's mean, but different choices can be made for the same Y. Note that there exists a canonical choice of ψ: ψ = (κ ) -1 , resulting in θ = x β.

Performing parameter inference in this setting leads to a variety of popular losses for ERM, with the key property that the Maximum Likelihood Estimator (MLE) problem is a convex one [START_REF] Pitman | Sufficient statistics and intrinsic accuracy[END_REF], and therefore the corresponding ERM also is. For the previously introduced dataset D, denoting by θ (i) the parameters of the distributions of Y|X = x i , independence of the samples leads to a log-likelihood equal to:

(θ (1) , . . . , θ (n) |D) = n i=1 log c(y i ) + n i=1
η(θ (i) )y iκ(θ (i) ) .

(1.10)

We can write this as a function of β only, and the parameter β leading to the MLE ( θ(1) , . . . , θ(n) ), is:

arg min β∈R p n i=1 κ • (κ ) -1 • ψ -1 (x i β) -η • (κ ) -1 • ψ -1 (x i β)y i , (1.11)
which is a finite dimensional, parametric instance of the ERM Problem (1.3) for L(ŷ, y) = κ • (κ ) -1 (ŷ)η • (κ ) -1 (ŷ)y, and H = {x → ψ -1 (β x) : β ∈ R p }.
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Example 1.2 (Bernoulli variable). In this example, X = R p and Y = {0, 1}. The probability mass function of a Bernoulli variable of mean µ ∈]0, 1[ is:

p(y; µ) = µ y + (1µ) 1-y = exp y log µ 1µ + log(1µ) , (1.12) which belongs to an exponential family, with: The examples derived above explain the ubiquity of problems of the form:

                       c(y) = 1 , θ = log µ 1-µ , η(θ) = θ , T ( 
arg min n i=1 f i (x i β) , (1.16) 
that we consider in Part I. Finally, the following example is of primary importance for the multitask case which arises in our application.

Example 1.3 (Multivariate Gaussian). Let X = R p , let Y = R q . Consider the density of a multivariate Gaussian of mean µ ∈ R q and covariance Σ ∈ S q ++ , evaluated at z ∈ R q : 1 (2π) q/2 (det Σ) 1/2 exp -

1 2 (z -µ) Σ -1 (z -µ) = 1 (2π) p/2 exp z Σ -1 µ - 1 2 z Σ -1 z - 1 2 µ Σ -1 µ - 1 2 log det Σ = 1 (2π) p/2 exp z Σ -1 µ - 1 2 Tr Σ -1 zz - 1 2 µ Σ -1 µ - 1 2 log det Σ . (1.17)
It belongs to an exponential family, with θ = (Σ -1 µ, -1 2 Vec Σ -1 ), T (z) = (z, Vec zz ) where Vec is the column-wise vectorization operator.
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Y = X β * + E , (1.18)
where E is a real-valued Gaussian of law N (0, σ2 ), independent from X, and β * ∈ R p is the true parameter vector. Then following Example 1.1, we have a GLM with:

             θ = x β , η(θ) = θ σ 2 , κ(θ) = θ 2 2σ 2 , ψ(u) = u ,
(1. [START_REF] Plackett | Studies in the History of Probability and Statistics. XXIX: The discovery of the method of least squares[END_REF] and the MLE derived in Problem (1.11) reads:

arg min β∈R p n i=1 κ(β x i ) -η(β x i )y i = arg min β∈R p 1 σ 2 n i=1 1 2 (x i β) 2 -x i βy i = arg min β∈R p n i=1 (y i -x i β) 2 = arg min β∈R p 1 2 y -Xβ 2 ,
(1.20)

where we have introduced the design matrix X (x 1 , . . . , x n ) ∈ R n×p , and the observation vector y (y 1 , . . . , y n ) ∈ R n . Dating back to Legendre and Gauss [START_REF] Legendre | Nouvelles méthodes pour la détermination des orbites des comètes[END_REF]; [START_REF] Gauss | Theoria motus corporum coelestium in sectionibus conicis solem ambientium[END_REF], see also [START_REF] Plackett | Studies in the History of Probability and Statistics. XXIX: The discovery of the method of least squares[END_REF] for a discussion on this discovery), least squares are extremely popular, and optimal amongst linear unbiased estimators (they have the lowest variance in this class 2 ), but they also suffer from defects in certain settings which we detail in the following.

Regularization and sparsity

Consider n realizations of the linear model Y = Xβ * + E, written in vector form as above: y = Xβ * + ε (ε ∈ R n with entries i.i.d. N (0, σ 2 ), and σ known). Assuming that p ≤ n and rank X = p, the OLS estimator is uniquely defined and reads: βOLS = (X X) -1 X y = β * + (X X) -1 X ε .

(1.21)

The expected (averaged) prediction error is:

E[ 1 n X βOLS -Xβ * 2 ] = E[ 1 n X(X X) -1 X ε 2 ] = σ 2 p n , (1.22) 
which does not go to 0 when n → +∞, unless p = o(n). This is problematic, as we may want to consider cases where p and n go to infinity together and at the same speed.

Other issues arise for MLE, when the number of parameters p outgrows the number of samples n: the solution of Problem (1.20) is not unique, meaning that multiple models exist, all of them perfectly fitting the training data when rank X = n. In
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that case, which model must be chosen? In addition, perfectly fitting the data is not necessarily a desirable property, as it may lead to poor generalization performance on new data -recent analysis [START_REF] Hastie | Surprises in highdimensional ridgeless least squares interpolation[END_REF] may qualify this interpretation. When data is scarce, empirical risk minimization turns out to be insufficient, and we turn to regularization: instead of looking for the model minimizing the sole datafitting criterion, some constraint is added to the optimization problem, this constraint reflecting prior belief about the desired model.

In the case of least squares, with R : R p → R, this takes the form:

min β∈R p 1 2 y -Xβ 2 s.t. R(β) ≤ 0 .
(1.23)

A seminal choice for R is •τ , with τ > 0. It is noteworthy that the three following problems are equivalent: [START_REF] Tikhonov | On the stability of inverse problems[END_REF][START_REF] Ivanov | The theory of approximate methods and their applications to the numerical solution of singular integral equations[END_REF][START_REF] Morozov | Methods for solving incorrectly posed problems[END_REF], and also as Ridge regression [START_REF] Hoerl | Ridge regression: Biased estimation for nonorthogonal problems[END_REF]. They are equivalent in the sense that for each (positive) value of one parameter amongst λ, τ or , there exist values of the remaining two such that the three problems share the same solution. Each of these provides a different view on 2 regularization: formulation (1.26) looks for the approximate solution to a linear system with the minimum 2 norm. Formulation (1.25) looks for least squares solutions, with constrained 2 norm. Formulation (1. 24) is the most widely employed, but perhaps the less explicit one: while it is clear that in the other formulations, norms can be squared or not in the objective functions, or squared in the constraints provided τ or are squared, it is not easy to see that, up to another choice of λ, Problem (1.24) retains the same solution if one of the squared norms is replaced by a plain norm. In this sense, it is somehow misleading to talk about squared 2 regularization: up to a change of value for λ, plain 2 regularization has the same effect. It is only the geometry of the level lines of the regularizer which matter, and those are not affected by squaring. The square in Tikhonov regularization is only used for practical reasons, as it makes the regularizer smooth.

min β∈R p 1 2 y -Xβ 2 + λ 2 β 2 , ( 1 
Tikhonov regularization limits the magnitude of the estimate. The type of regularization considered in this work is different: for reasons detailed in Section 1.2, we want to favor simple and interpretable solutions. Generally speaking, the idea that this kind of models should be preferred can be dated back to Ockham's Razor [START_REF] Ockham | Quaestiones et decisiones in quatuor libros Sententiarum cum centilogio theologico[END_REF], and in a modern paradigm to Wrinch and Jeffreys' simplicity principle: "It is justifiable to prefer a simple law to a more complex one that fits our observations slightly better." [START_REF] Wrinch | On certain fundamental principles of scientific inquiry[END_REF])

In the context of GLMs, an application of this principle is to perform variable (or feature) selection: search for models which do not include all the potential p variables, but only a small subset of them. In mathematical terms, the estimator β should be sparse: β 0 p. Sparse solutions provide more interpretable models, since it is clear that variables whose coefficients are 0 have no effect on the target variable.
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The idea to favor sparse models has been applied in various fields: finance (portfolio selection, Markowitz 1952), image processing (wavelet thresholding, Donoho and Johnstone 1994) or statistics (under the name best subset selection, see [START_REF] Miller | Subset selection in regression[END_REF] for a review). In geophysics, the work of [START_REF] Santosa | Linear inversion of band-limited reflection seismograms[END_REF] stands out as the first case of 1 penalized least-squares, central to this manuscript (earlier, [START_REF] Claerbout | Robust modeling with erratic data[END_REF]; [START_REF] Taylor | Deconvolution with the 1 norm[END_REF] had used the 1 norm both as datafitting term and regularizer).

However desirable sparse models may be, solving the underlying optimization problems is non trivial. For example, instead of looking for the minimum 2 norm approximate solution to a linear system as in Problem (1.26), one may seek the sparsest one by solving:

min β∈R p β 0 s.t. y -Xβ ≤ . (1.27)
Unfortunately, [START_REF] Natarajan | Sparse approximate solutions to linear systems[END_REF] showed that this problem is NP-hard and hardly tractable when p is large, because the objective function • 0 is not convex. Approximate solutions can nevertheless be computed. Forward and backward feature selection approaches exist [START_REF] Efroymson | Multiple regression analysis[END_REF], either starting from a null vector and iteratively adding the feature improving the datafit the most, or starting with an OLS solution and progressively removing the features less contributing to the model; bidirectional approaches can both add and remove features [START_REF] Zhang | Adaptive forward-backward greedy algorithm for learning sparse representations[END_REF]). This is for example the spirit of the Matching Pursuit [START_REF] Mallat | Matching pursuit with time-frequency dictionaries[END_REF] and Orthogonal Matching Pursuit [START_REF] Pati | Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[END_REF][START_REF] Tropp | Just relax: convex programming methods for identifying sparse signals in noise[END_REF] algorithms. Still, stepwise selection suffers from issues: small changes in the data can result in large differences in models and the estimator is not guaranteed to be sparse [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF], Section 2.3.2).

Another massively followed route to sparsity has been the use of convex surrogates for the 0 pseudo-norm, amongst which the 1 norm holds a place of choice. Indeed, as Figure 1.1 illustrates in dimension 2, the 1 norm is the largest convex minorant of the 0 pseudo-norm on the unit ball of the ∞ norm. The seminal sparse convex estimator, CHAPTER 1. MOTIVATION AND CONTRIBUTIONS the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] (independently proposed by [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] as Basis Pursuit Denoising), solves, for τ ≥ 0:

arg min β∈R p 1 2 y -Xβ 2 s.t. β 1 ≤ τ .
(1.28)

A more employed equivalent form of Problem (1.28) is, for a regularization parameter λ ≥ 0:

arg min β∈R p 1 2 y -Xβ 2 + λ β 1 . (1.29)
As for Tikhonov regularization, Problems (1.28) and (1.29) are equivalent 3 in the sense that for any value of λ, there exist a value of τ such that the two solutions coincide, and vice versa. This (data dependent) mapping is again not explicit in general, and we will therefore focus on the form (1.29), which is easier to solve in practice.

The respective impacts of 1 and (squared) 2 are well-illustrated on the so-called orthogonal design case, i.e., when X X = Id p . In that case, the OLS solution is X y, the Lasso solution is ST(X y, λ) (sign(X :j y)

• (|X :j y| -λ) + ) j∈[p]
, and the Tikhonov solution is 1 1+λ X y. It is clear that Tikhonov regularization produces a downscaled version of the OLS estimate, but does not set coefficients to 0, while the Lasso sets OLS coefficients below λ in absolute value to 0, and shrinks others by λ.

The Lasso gave birth to numerous approaches, such as Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], sparse logistic regression [START_REF] Koh | An interior-point method for large-scale l1-regularized logistic regression[END_REF], group Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], sparse-group Lasso [START_REF] Simon | A sparse-group lasso[END_REF], graphical Lasso [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF], multitask Lasso [START_REF] Obozinski | Joint covariate selection and joint subspace selection for multiple classification problems[END_REF], square-root Lasso [START_REF] Belloni | Square-root Lasso: pivotal recovery of sparse signals via conic programming[END_REF] or nuclear norm penalization for matrices [START_REF] Fazel | Matrix rank minimization with applications[END_REF][START_REF] Argyriou | Multi-task feature learning[END_REF]. These Lasso-type problems all have a convex formulation, and can be solved via a multitude of well-studied optimization algorithms: primal-dual [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], forward-backward (Beck and Teboulle, 2010; Combettes and Pesquet, 2011), Alternating Direction Method of Multipliers [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], accelerated proximal gradient descent [START_REF] Nesterov | A method for solving a convex programming problem with rate of convergence O(1/k 2 )[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], or proximal block coordinate descent [START_REF] Wu | Coordinate descent algorithms for lasso penalized regression[END_REF][START_REF] Tseng | Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization[END_REF].

The convex approach has two benefits: it leads to fast algorithms with global convergence guarantees, and allows for an analysis of estimation consistency, prediction performance [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF][START_REF] Negahban | A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers[END_REF] and model consistency [START_REF] Zhao | On model selection consistency of Lasso[END_REF]. In Compressed Sensing, under some conditions, the 1 relaxation allows to recover perfectly the 0 solution [START_REF] Candès | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Donoho | Compressed sensing[END_REF].

On the other hand, a notorious drawback is that the resulting estimates are biased in amplitude [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], a bias which is easy to see on an orthogonal design. Alternative substitutes to the 0 penalty were proposed, for instance Smoothly Clipped Absolute Deviation (SCAD, Fan and Li 2001), Minimax Concave Penalty (MCP, Zhang 2010), p pseudo-norms with 0 < p < 1 [START_REF] Frank | A statistical view of some chemometrics regression tools[END_REF]Friedman 1993, Chartrand 2007 in Compressed Sensing), log penalty [START_REF] Candès | Enhancing sparsity by reweighted l 1 minimization[END_REF] or CEL0 [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF]. This type of penalties are usually called folded concave penalties, because coordinatewise they are concave on R + and symmetric w.r.t. origin. The interested reader may refer to [START_REF] Huang | A selective review of group selection in highdimensional models[END_REF] for a review of convex and non-convex approaches for feature selection. An appealing property of SCAD and MCP is that, although not convex, their proximal operator can be computed in closed-form. Solving other non-convex penalties As indicated by theory, the Lasso's optimal λ grows linearly with the noise level, while it remains constant for the Concomitant Lasso.

(log, square root) can be done by iterative reweighted 1 approaches [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF][START_REF] Candès | Enhancing sparsity by reweighted l 1 minimization[END_REF][START_REF] Gasso | Recovering sparse signals with a certain family of nonconvex penalties and DC programming[END_REF][START_REF] Ochs | On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision[END_REF], hence it remains of high interest, even in the non-convex setting, to have fast solvers for 1 -type regularized problems. Finally, although they perform well theoretically and in practice, the non-convexity of these approaches often makes it difficult or impossible to find the exact solution in practice: algorithms are sensitive to initialization, multiple local minima exist, and a global convergence criterion is lacking.

In addition to interpretability, sparsity comes with statistical benefits. In the OLS example, let us assume that β * is sparse, that its support S * of size s is known, and that a sparse model is obtained by setting entries of βOLS outside S * to 0. Then, Equation (1.22) can be greatly improved:

E[ 1 n X :S * βOLS S * -X :S * β * S * 2 ] = σ 2 s n , (1.30) 
which goes to 0 if s = o(n), without constraint on p. Of course, in practice S * is not known, but [START_REF] Lounici | Estimation statistique en grande dimension, parcimonie et inégalités d'oracle[END_REF] showed that under sufficient conditions and for λ = Aσ (log p)/n with A > 2 √ 2, the Lasso estimator satisfies:

E[ 1 n X β -Xβ * 2 ] = σ 2 s n log s , (1.31) 
i.e., that it only suffers a factor log s from the non-knowledge of S, which is a very appealing statistical guarantee.

Yet this approach requires σ to be known and the noise to be homoscedastic, a situation seldom happening in practice. Since this bound is valid for λ = Aσ (log p)/n, it also suggests that the optimal λ depends linearly on the unknown noise level. This is visible on Figure 1.2, where for a fixed design X (10 000 first columns of the climate dataset), we simulate y = Xβ * + σε for various σ, and for each σ we compute the optimal λ by cross-validation. The dependency indeed appears to be linear in practice. It is worth mentioning that [START_REF] Meinshausen | High-dimensional graphs and variable selection with the lasso[END_REF] showed that prediction and variable selection conflict for the Lasso: the statistically optimal λ for prediction gives inconsistent variable selection results (see also [START_REF] Leng | A note on the lasso and related procedures in model selection[END_REF] in the orthogonal design).

The Concomitant Lasso, the square-root or the Scaled Lasso estimators [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF][START_REF] Belloni | Square-root Lasso: pivotal recovery of sparse signals via conic programming[END_REF][START_REF] Sun | Scaled sparse linear regression[END_REF] achieve the same bound as Equation (1.31), with a regularization parameter independent of σ: in this thesis, we aim at generalizing CHAPTER 1. MOTIVATION AND CONTRIBUTIONS this approach to correlated Gaussian noise in the multitask framework.

The statistical and practical benefits of sparsity have led to it being used in many applications: audio processing [START_REF] Zibulevsky | Blind source separation by sparse decomposition in a signal dictionary[END_REF], astrophysics, sparse coding [START_REF] Olshausen | Sparse coding with an overcomplete basis set: A strategy employed by V1?[END_REF], medical imaging through compressed sensing [START_REF] Donoho | Compressed sensing[END_REF][START_REF] Candès | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF], genomics (Bleakley and Vert, 2011), time series analysis [START_REF] Nardi | Autoregressive process modeling via the lasso procedure[END_REF], etc.

We now introduce optimization tools involved in the study of Lasso-type problems.

Convex optimization tools

Throughout this manuscript, we will make extensive use of a convenient class of functions, based on the framework of [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF].

Definition 1.4 (Proper, lower semicontinuous convex functions). We denote by Γ 0 (R d ) the set of functions f : R d → -∞, +∞ which are:

• proper: dom f {x ∈ R d : f (x) < +∞} = ∅ , • lower semicontinuous: ∀x ∈ R d , lim y→x f (y) ≥ f (x) , • convex: ∀x, y ∈ R d , ∀α ∈ [0, 1], f (αx + (1 -α)y) ≤ αf (x) + (1 -α)f (y) .
Since non proper functions are of limited interest, in the sequel functions are assumed to be proper even if not explicitly stated.

Strong convexity and smoothness are two function properties, used to derive convergence guarantees and rates for algorithms minimizing functions:

Definition 1.5 (Strong convexity and smoothness). Let f be a differentiable function 4 from R d to -∞, +∞ . For µ, M > 0, we say that f is µ-strongly convex if:

∀x, y ∈ R d , f (x) ≥ f (y) + ∇f (y) (x -y) + µ 2 x -y 2 , (1.32)
and that f is M -smooth if: ∀x, y ∈ R d , f (x) ≤ f (y) + ∇f (y) (x -y) + M 2 x -y 2 . (1.33)
If f is both µ-strongly convex and M -smooth, we have µ ≤ M and the condition number 

ι C : R d → -∞, +∞ x →    0 , if x ∈ C , +∞ , otherwise .
(1.34)

4 a more general definition exists for strong convexity, not requiring differentiability The infimal convolution of f and g is:

h * h, ∀h ∈ Γ 0 (R d ) (1.37) g h g * + h * (1.38) ah ah * • a , ∀a > 0 (1.39) • p ι B p * , where 1 p + 1 p * = 1 (1.40) (h + δ) h * -δ, ∀δ ∈ R (1.41) 1 2 • 2 1 2 • 2 (1.42) We have that ι C ∈ Γ 0 (R d ) if
f g : R d → [-∞, +∞] x → inf u∈R d f (x -u) + g(u) . (1.35) Definition 1.8 (Fenchel-Legendre transform). Let f : R d → [-∞, +∞].
Its Fenchel-Legendre transform or conjugate, f * is defined as: 

f * : R d → -∞, +∞ u → sup x∈R d u x -f (x
(R d ). Then, for γ > 0, f is γ-smooth if and only if f * is 1/γ-strongly convex.
Proposition 1.9 provides a way to transform a function into a smooth one, that we will use in Chapter 4. Given a non-smooth function f ∈ Γ 0 (R d ), we can add a strongly convex function ω to f * , thus making it strongly convex, then take the Fenchel transform again to obtain a smooth function. Formally, the smooth approximation of f is (f * +ω) * , which is also equal to f ω * by Equation (1.38). As illustrated on Figure 1.3, this technique is a possible construction for the famous Huber function, a smooth approximation to the absolute value function.

Definition 1.10 (Proximal operator). Let f ∈ Γ 0 (R d ). The proximal operator of f , introduced in the seminal work of [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF], is: 

prox f : R d → R d x → arg min y∈R d 1 2 x -y 2 + f (y) . (1.43) CHAPTER 1. MOTIVATION AND CONTRIBUTIONS -2 0 2 0.0 0.5 1.0 1.5 2.0 f (x) = |x| -2 0 2 -1.0 0.0 1.0 ∞ g 0.5 h 0.5 g 1.5 h 1.5 -2 0 
ρ : u → f * (u) + ρu 2 /2 and h ρ : u → f * (u) + ρ(u 2 /2 -1/2)
prox τ • 1 (x) = ST(x, τ ) sign(x j )(|x j | -τ ) + j∈[d]
,

(1.44)

prox τ • (A) = BST(x, τ ) (1 -τ / A ) + • A . (1.45) Definition 1.12 (Subdifferential). Let f : R d → -∞, +∞ . The subdifferential of f at x ∈ dom(f ) is: ∂f (x) {u ∈ R d : ∀y ∈ R d , f (y) ≥ f (x) + u (y -x)} , (1.46) 
i.e., the set of slopes of all affine minorants of f which are exact at x.

Elements of the subdifferential are called subgradients, and for a convex function f , its subdifferential is non empty at every point of the relative interior of dom f . In some sense, subgradients are a generalization of gradients: for a convex differentiable function, the subdifferential at x ∈ dom f has only one element: ∇f (x). Subdifferentiability allows to generalize first order optimality conditions to non differentiable convex functions.

Proposition 1.13 (Fermat's rule). Let f be a proper convex function. Then, for all x ∈ R d :

x ∈ arg min

x∈R d f (x) ⇔ 0 d ∈ ∂f (x) . (1.47)
The notion of strong duality is extensively used in both Part I and Part II.

Proposition 1.14 (Fenchel duality, Rockafellar 1997, Thm. 31.3). Let f ∈ Γ 0 (R n ) and g ∈ Γ 0 (R p ). Let X ∈ R n×p and λ > 0. The following problems are called respectively primal and dual problems:

β ∈ arg min β∈R p f (Xβ) + λg(β) P(β)
, (1.48)

1.1. THESIS MOTIVATION 29 θ ∈ arg max θ∈R n -f * (-λθ) -λg * (X θ) D(θ)
.

(1.49)

Given β ∈ R p and θ ∈ R n , the duality gap is P(β) -D(θ) ≥ 0.

Strong duality, i.e., P( β) = D( θ) holds if and only if:

-λ θ ∈ ∂f (X β) , (1.50) X θ ∈ ∂g( β) , (1.51) 
or equivalently:

-X β ∈ ∂f * (-λ θ) , (1.52) β ∈ ∂g * (X θ) .
(1.53)

These conditions are called Kuhn-Tucker conditions. It is worth mentioning that a sufficient condition for strong duality to hold is that the relative interiors of the domains of f and g intersect, which happens for example if neither f nor g take the value +∞. Definition 1.17 ("Smooth + proximable" composite problem). Let f ∈ Γ 0 (R d ) be L-smooth, and g ∈ Γ 0 (R d ) be such that prox g can be computed exactly. We call the optimization problem:

min f (x) + g(x) , (1.54) 
a "smooth + proximable" composite problem.

In general, non-smooth convex optimization is harder than smooth convex optimization, in the sense that the worst case convergence rate for first order (subgradient) methods is O(k -1/2 ) [START_REF] Goffin | On convergence rates of subgradient optimization methods[END_REF], in opposition to O(k -1 ) and O(k -2 ) for (eventually accelerated) first order methods in the smooth case [START_REF] Nesterov | A method for solving a convex programming problem with rate of convergence O(1/k 2 )[END_REF]. But for problems presenting a smooth + proximable structure, which are legion in Machine Learning, one needs not worry: they can be solved with proximal gradient methods, with same optimal rates as gradient methods -up to linear when f is strongly convex [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. In this thesis, we will have a particular interest in solving instances of Problem (1.54), using two algorithms: proximal gradient descent and proximal block coordinate descent [START_REF] Combettes | Fixed-point algorithms for inverse problems in science and engineering[END_REF]. We recall them in Algorithms 1. 

β (0) for t = 1, . . . , T do 
β (t) = prox λ L g β (t-1) -1 L ∇f (β (t-1) ) return β (T )
Algorithm 1.2 Cyclic proximal block coordinate descent for Problem (1.54) input : {L I } I∈I , T init : β (0) for t = 1, . . . , T do

β (t) = β (t-1) for I ∈ I do β (t) I = prox λ L I g I β (t) I -1 L I ∇ I f (β (t) ) return β (T )
explaining this disparity, the algorithms may take different times to identify the support (and they enjoy a linear convergence rate after support identification), or different constant values in the O. This motivates our preference for coordinate descent in the whole manuscript.

Equipped with this mathematical background, we now move to our application focus: the bio-magnetic inverse problem.

1.2 The bio-magnetic inverse problem

Basis of M/EEG

Brain imaging modalities can be divided into two categories: indirect and direct approaches. Indirect approaches, such as near infrared spectroscopy or positron emission tomography, detect brain activity by measuring a correlated physical quantity, Figure 1.5 -Schematic view of a pyramidal neuron by the author. The name pyramidal comes from the shape of the soma.

e.g., metabolic activity. The best-known indirect brain imaging modality is functional magnetic resonance imaging (fMRI), which measures the hemodynamic response, i.e., the delivery of blood to active neuronal tissues. The main feature of fMRI analysis is its excellent spatial resolution, ranging from 4 mm to 0.5 mm for the most recent MRI scanners [START_REF] Duyn | The future of ultra-high field MRI and fMRI for study of the human brain[END_REF][START_REF] Huber | High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1[END_REF]. However, because the hemodynamic response is slow and lagging in time, the time resolution of fMRI is only around 1 s, making it impractical for the study of dynamic brain processes.

On the contrary, electroencephalography (EEG), magnetoencephalography (MEG), intracranial electroencephalography (iEEG, also known as electrocortigraphy) and stereotaxic electroencephalography (sEEG) are direct approaches, which record electrical potentials or magnetic fields generated by the activity of the brain. Because they directly measure the quantity of interest, their temporal resolution is excellent: around 1 ms. For this reason, they are widely used to localize foci of epilepsy, or to map brain areas to be excluded from surgical removal, e.g., associated to speech or movement. Very accurate techniques, iEEG and sEEG are also highly invasive: iEEG requires craniotomy in order to insert a grid of electrodes inside the brain, and small openings must be drilled in the skull to insert sEEG electrodes in the brain. In this manuscript, we focus on magneto-and electroencephalography, which in contrast stand out by their low invasiveness.

What do M/EEG measure? A neuron consists of a cell (the soma), and dendrites; neurons can be connected to other neurons via axons. As visible on Figure 1.5, a pyramidal neuron possesses an apical dendrite. Each neuron maintains a varying electrical potential at its soma's membrane, due to ionic concentration differences within the cell. This potential can trigger an action potential, traveling in the axon to connected neighbors, with excitatory or inhibitory effect on the receiving cell.

When a neuron receives such a pulse, Excitatory Post-Synaptic Potentials (EPSPs) are generated at its apical dendritic tree [START_REF] Gloor | Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography[END_REF]. The resulting potential difference between the apical dendritic tree on one side, and the membrane of the soma and basal dendrites on the other causes primary electrical currents to travel intracellularly in the dendrite, from the former to the latter. As a consequence, secondary (or volume) currents travel extracellularly in the head tissue, closing the current loop. These currents can be modeled by a current dipole, oriented along the dendrite. The typical moment of such a dipole is very small: 20 fA.m, and neural activity is only made measurable because of two phenomena. First, as shown on Figure 1.6, the columnar functional organization of the cortex causes large groups of pyramidal neurons to have parallel alignment of apical dendrites, and thus EPSPs associated currents traveling in the same direction. Second, the long duration of the post-synaptic potentials makes them likely to overlap over a synchronized group of neurons. The axonal action potentials, on the other hand, are not detected by M/EEG: the current flows are in opposite directions and are too brief to interfere constructively [START_REF] Nunez | Electric fields of the brain: the neurophysics of EEG[END_REF]. The spatio-temporal superposition allow primary and secondary currents to interact constructively, adding up to 50 nA.m, a threshold high enough to be measured extracranially by M/EEG [START_REF] Murakami | Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging[END_REF] estimate that the critical population comprises at least 10 000 neurons, corresponding to a cortical patch of 25 mm 2 ). The currents in such a neuron population can be modeled at the macroscopic scale by an Equivalent Current Dipole (ECD), which is the sum of all the current dipoles in the patch of synchronized neurons.

EEG measures the difference of potentials between electrodes and a reference: around 60 electrodes are used, positioned at standard locations on the scalp to allow for reproducibility of recordings.

The acquired potentials are of the order of 10 µV. MEG is a somehow more refined technique than EEG: the measured magnetic fields are of the order of 10 fT, seven or eight orders of magnitude smaller than the Earth's magnetic field. Recording such small values is only made possible by the use of magnetic shielding and superconductivityexploiting magnetometers (superconductivity quantum interference device, SQUIDs). Along with magnetometers, gradiometers measuring the spatial gradient of the magnetic field are used to reduce the sensibility to interferences. There usually are around 200 magnetometers and 100 gradiometers, isolated in a liquid helium cooled vacuum flask, which makes MEG sensors further away from the neural sources than EEG sensors. [START_REF] Cohen | Magnetoencephalography: evidence of magnetic fields produced by alpharhythm currents[END_REF]) and it is only in the nineties that the first full head MEG devices were used for the first time. To this day, MEG is still more expensive to operate than EEG, because of magnetic shielding and the liquid helium needed for superconductivity in the sensors. The two techniques are complementary: EEG is sensitive to radial and tangential dipoles, whereas MEG is insensitive to radial sources, but has a higher signal-to-noise ratio, and can use more sensors. Instead of using only MEG or EEG, pooling electrodes, magnetometers and gradiometers allows to locate more accurately the origin of brain activity, for example in the case of epilepsy [START_REF] Aydin | Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis[END_REF].

In our experimental setup, the patient undergoes repetitions of the same simple stimulation (sensory, cognitive or motor) for a short period of time. Neuronal activity can then be divided in two categories: spontaneous and event-related activity. Event-related activity is triggered by the stimuli, and is either evoked if the response is phase-locked with respect to the stimuli, or induced otherwise. Apart from averaging data, another critical preprocessing step is spatial noise whitening (Engemann et al., 2015). For the raw measurements, the noise is far from being white, for example because there exist brain noise correlation between neighboring sensors, as shown in Figure 1.9. To decorrelate the noise, a spatial whitening step is applied during the preprocessing, based on an estimate of the noise covariance matrix. This covariance can be estimated in multiple ways: empty room measurements if only MEG is used or empirically using pre-stimulus data, considered as raw noise. When analysis is performed over both EEG and MEG, spatial whitening also allows to harmonize the different units (µV, fT and fT.m -1 ). Empirical estimation being imperfect, various regularization techniques such as shrinkage [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF]) have been proposed.

In their extensive review, Engemann and Gramfort (2015b) showed that there is no single best approach, and devised an automatic way to select the best method on a case-by-case basis.

The non-invasiveness of M/EEG comes at a price: the electrical activity is not measured directly at its location in the brain, but outside the scalp, and is thus transformed by the head tissues. Determining the causal factors (brain activity) from a set of observations they produced (the electromagnetic measurements outside the head) is an inverse problem, which can be solved in many ways.

Solving the inverse problem

Historically, three kind of methods have emerged: parametric, scanning and imaging ones. They share the same goal: to determine which areas of the brain are involved in a cognitive task, and how these areas interact together. produces dense neural estimates, with activity smeared over all sources, making it unfit to identify clearly localized brain activity. Other notable dense methods are dSPM [START_REF] Dale | Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity[END_REF] and sLORETA [START_REF] Pascual-Marqui | Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details[END_REF]. All of these are linear: in various ways, each computes a kernel K ∈ R p×q , and the estimate is KY .

Parametric methods

On the contrary, sparse methods are usually non linear. Sparse Bayesian Learning is a notable sparse approach [START_REF] Wipf | Estimating the location and orientation of complex, correlated neural activity using MEG[END_REF][START_REF] Haufe | Combining sparsity and rotational invariance in EEG/MEG source reconstruction[END_REF], with algorithms such as γ-MAP (Wipf and Nagarajan, 2009) and full MAP [START_REF] Lucka | Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents[END_REF]. They rely heavily on covariance estimation and are therefore not really "parameter free" as one could think.

Straightforwardly applying the Lasso to the multitask framework (i.e., penalizing the sum of the absolute values of the coefficients of B) yields a sparse estimate, known in neuroscience as Selective Minimum Norm or Minimum Current Estimate [START_REF] Matsuura | Selective minimum-norm solution of the biomagnetic inverse problem[END_REF][START_REF] Uutela | Visualization of magnetoencephalographic data using minimum current estimates[END_REF]. It is easy to show that this approach amounts to solving q Lasso problems independently; as visible on Figure 1.10, the support of the estimate varies from one time instant to the next, which is not plausible. To produce a consistent set of active sources over time, it has been proposed to use group penalties [START_REF] Ou | A distributed spatio-temporal EEG/MEG inverse solver[END_REF] imposing joint sparsity over time, yielding the Mixed Norm Estimate (MxNE) [START_REF] Gramfort | Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods[END_REF]: We simulate the activity of two dipoles in the left and right auditory cortex; the real topographic maps exhibits dipolar patterns similar to the simulated one, justifying the dipolar assumption.

B ∈ arg min B∈R p×q 1 2 Y -XB 2 + λ B 2,1 , (1 
vectors. In this setting, X ∈ R n×3p , and B ∈ R 3p×q . Using a mixed 2,1 penalty would bias the estimates towards the axes of the orthogonal basis used, which is arbitrary. A formulation leading to an orientation-unbiased solution is:

B ∈ arg min B∈R 3p×q 1 2 Y -XB 2 + λ p g=1 B Gg: , (1.58) 
where G g = {3g, 3g + 1, 3g + 2}, and thus B Gg: ∈ R 3×q contains the 3g th , 3g + 1 th and 3g + 2 th lines of B. This penalty encourages B Gg: to be zero, but is isotropic as a change of orthonormal basis does not affect B Gg: .

Contributions

The organization of this manuscript is as follows. Each chapter can be read independently, and thus features a small introduction which can be redundant with this introductory chapter: the reader may feel free to skip them.

Part I is devoted to the design of faster solvers for 1 -type regularized ERM:

In Chapter 2, we design an efficient solver for the seminal Lasso estimator. We first describe the two main techniques used to speed-up proximal gradient and coordinate descent solvers for sparse GLMs: screening rules and working set policies. Both ignore non-significant variables from the optimization problem, making it smaller, hence faster to solve. In a backward fashion, screening rules prune the set of features, progressively reducing the number of variables. On the contrary, working sets are forward techniques which solve a sequence of growing subproblems, including more and more variables. We show that screening rules can be used aggressively to design working set policies, and introduce aggressive screening, a working set policy based on the state-of-the-art Gap Safe screening rules. Screening and working sets both rely on duality. We exhibit the Vector AutoRegressive (VAR) behavior of the Lasso dual iterates, when the primal problem is solved with proximal coordinate descent or proximal gradient descent. We exploit CHAPTER 1. MOTIVATION AND CONTRIBUTIONS this structure to construct a dual point with extrapolation, which improves the efficiency of Gap Safe screening rules and working sets. The combination of aggressive screening and dual extrapolation is coined Celer (Constraint Elimination for the Lasso with Extrapolated Residuals).

In Chapter 3, we generalize the approach of the previous chapter to other datafitting terms and penalties, making it applicable to sparse logistic regression or Multitask Lasso. We adapt the previously introduced dual extrapolation procedure to asymptotic Vector AutoRegressive sequences of dual iterates. We extensively benchmark our approach against state-of-the-art solvers, and highlight the improvements that dual extrapolation brings to Gap Safe screening and working sets. For non quadratic datafitting terms, taking into account the second order information is known to provide a great speedup: we show how to adapt dual extrapolation to the popular prox-Newton solver. We contribute to the reproducibility of our findings by presenting a detailed explanation of the algorithms used. We release Celer as a high-level open source Python package, with a detailed documentation and examples to reproduce the benchmarks presented.

In Part II, we focus on Concomitant noise structure estimation for the bio-magnetic inverse problem.

In Chapter 4, we introduce new concomitant estimators for the bio-magnetic inverse problem. Along with the optimal regression parameters, concomitant estimators estimate noise variables. The proposed estimators, the Smoothed Generalized Concomitant Lasso (SGCL) and Concomitant Lasso with Repetitions (CLaR) jointly compute the square-root of the noise covariance matrix. They are designed to handle non-white Gaussian noise, with correlation and varying noise levels in the model. The main estimator, CLaR, takes advantage of the multiple repetitions which compose a M/EEG experiment to build a better estimate of the noise covariance. The connections between CLaR's optimization problem and the smoothing of Schatten norms is highlighted: we show how our formulation amounts to solving the previously introduced Multivariate square root Lasso. This result paves the way for an easier use of non-smooth Schatten norms as datafitting terms.

In Chapter 5, we detail several alternative estimators for multitask regression problems with non-white Gaussian noise. We benchmark the proposed approaches against Concomitant and non Concomitant multi-task estimators. The source recovery performance is evaluated on real M/EEG measurements. The benchmarks are made available in a public, open source implementation.
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• M. Massias, A. Gramfort, and J. Salmon. From safe screening rules to working sets for faster lasso-type solvers. In NIPS-OPT workshop, 2017
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• M. Massias, O. Fercoq, A. Gramfort, and J. Salmon. Generalized concomitant multi-task Lasso for sparse multimodal regression. In AISTATS, pages 998-1007, 2018a

• M. Massias, A. Gramfort, and J. Salmon. Celer: a fast solver for the Lasso with dual extrapolation. In ICML, pages 3321-3330, 2018b In this chapter, we address the need for faster Lasso solvers to handle high dimensional modern datasets. To accelerate solvers, state-of-the-art approaches consist in reducing the size of the optimization problem. In a regression context, this is achieved either by discarding irrelevant features (screening techniques) or by prioritizing features likely to be included in the support of the solution (working set techniques). The performances of both of these approaches critically depends on the construction of a dual point, as close as possible to optimum. To construct a dual point tighter than the one classically used, we use an extrapolation procedure, which exploits the Vector AutoRegressive structure of the sequence of residuals. We also use Gap Safe rules in an aggressive fashion, to design a working set policy. The resulting method is coined Celer: Constraint Elimination for the Lasso with Extrapolated Residuals. Thanks to our new dual point construction, we show significant computational speedups on multiple real-world Lasso problems.

Introduction

Following the seminal work on the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] and Basis Pursuit [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF], convex sparsity-inducing regularizations have had a major impact on machine learning (see [START_REF] Bach | Convex optimization with sparsityinducing norms[END_REF] for a review of practical applications). Now thoroughly analyzed in terms of statistical efficiency [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF], the Lasso yields a sparse solution, hence both a more interpretable model and reduced time for prediction. In machine learning applications, the default algorithm to solve the Lasso is (proximal) coordinate descent [START_REF] Fu | Penalized regressions: the bridge versus the lasso[END_REF][START_REF] Tseng | Convergence of a block coordinate descent method for nondifferentiable minimization[END_REF][START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF].

Since by design only a fraction of features are included in the optimal solution (what we refer to as the solution's support), state-of-the-art solver speed-ups rely on limiting the size of the problems to consider. To do so, various approaches can be distinguished: Alternatively, working sets (WS) techniques (Fan et al., 2008;[START_REF] Boisbunon | Active set strategy for highdimensional non-convex sparse optimization problems[END_REF][START_REF] Johnson | Blitz: A principled meta-algorithm for scaling sparse optimization[END_REF] select a subset of important features according to a particular criterion, and approximately solve the subproblem restricted to these features. A new subset is then defined, and the procedure is repeated. While screening techniques start from full problems and prune the feature set, working set techniques rather start with small problems and include more and more features if needed. Working sets are also called active sets in the literature, for example in the domain of Linear Programming where they originated [START_REF] Thompson | Techniques for removing nonbinding constraints and extraneous variables from linear programming problems[END_REF][START_REF] Palacios-Gomez | Nonlinear optimization by successive linear programming[END_REF][START_REF] Myers | A constraint selection technique for a class of linear programs[END_REF]; we choose working because in the screening literature, "active set" refers to the non discarded features. For these techniques, duality can also come into play, both in the stopping criterion of the subproblem solver, as well as in the working set definition.

The organization of the chapter is as follows: in Section 2.2, we remind the practical importance of duality for Lasso solvers and present a technique coined dual extrapolation to obtain better dual points. We also shed some light on the success of our approach when combined with cyclic coordinate descent by interpreting the latter as Dykstra's algorithm in the Lasso dual. In Section 2.3, we show how dual extrapolation is wellsuited to improve Gap Safe screening. We present in Section 2.4 a working set strategy based on an aggressive relaxation of the Gap Safe rules. Experiments in Section 2.5 show significant computational speedups on multiple real-world Lasso problems.

Duality for the Lasso

The Lasso estimator is defined as a solution of:

β ∈ arg min β∈R p 1 2 y -Xβ 2 + λ β 1 P(β) , (2.1)
where λ is a positive scalar parameter controlling the trade-off between data-fitting and regularization.

A dual formulation of the Lasso reads (see Proposition 1.14 or [START_REF] Kim | An interior-point method for large-scale 1 -regularized least squares[END_REF] for a precise derivation):

θ = arg max θ∈∆ X 1 2 y 2 - λ 2 2 θ -y λ 2 D(θ) , (2.2)
where

∆ X {θ ∈ R n : X θ ∞ ≤ 1} is the (rescaled) dual feasible set. The associated duality gap is defined by G(β, θ) P(β) -D(θ), for any primal-dual pair (β, θ) ∈ R p × ∆ X .
In particular, as illustrated in Figure 2.2a, the dual problem is equivalent to computing Π ∆ X (y/λ), and θ is unique even if the primal has more than one solution.

Remark 2.1. To fit the framework of Proposition 1.14 rigorously, the dual problem should be unconstrained, and D(θ) should include a -ι ∆ X (θ) term, so that non-feasible points have an objective value of -∞. We sacrifice this rigor to the benefit of lighter notation, and only apply D to feasible dual points.

Proposition 2.2. Strong duality holds for Problems (2.1) and (2.2):

G( β, θ) = 0 , (2.3)
and primal and dual solutions are linked by:

θ = 1 λ (y -X β) . (2.4)
Proof The primal problem is unconstrained and convex. The results follow from Proposition 1.14. A key practical question for iterative algorithms is the stopping criterion: when should the algorithm be stopped? For any pair (β, θ) ∈ R p × ∆ X , we have P(β) -P( β) ≤ G(β, θ), which means that the duality gap provides an upper bound for the suboptimality gap. Therefore, given a tolerance > 0, if at iteration t of the algorithm we can construct θ ∈ ∆ X such that G(β (t) , θ) ≤ , then the current primal iterate β (t) is guaranteed to be an -optimal solution of Problem (2.1) -meaning that it is at a distance less than of the optimum, in terms of objective function value. For this reason, the corresponding θ is sometimes called a dual certificate.

Stopping iterative solvers

Algorithm 2.1 Cyclic coordinate descent for the Lasso, with dual extrapolation input :

X = [X :1 | . . . |X :p ], y, λ, β (0) , param: T, K = 5, f dual = 10 init : r = r (0) = y -Xβ (0) , θ (0) = r/ max(λ, X r ∞ ) for t = 1, . . . , T do if t = 0 mod f dual then // θ every f dual epoch only s = t/f dual // dual point indexing r (s) = r compute θ (s)
res and θ (s) accel with eqs. (2.5), (2.25) and (2.26)

θ (s) = arg max θ∈{θ (s-1) ,θ (s) 
accel ,θ

(s) res } D(θ) // Equation (2.38) if G(β (t) , θ (s) ) < then break for j = 1, . . . , p do β (t+1) j = ST β (t) j + X :j r X :j 2 , λ X :j 2 if β (t+1) j = β (t) j then r += (β (t) j -β (t+1) j )X :j return β (t) , θ (s) 
Since Equation (2.4) holds at optimality, a canonical choice of dual point is called residuals rescaling [START_REF]Sparse coding for machine learning, image processing and computer vision[END_REF]. It consists in choosing, at iteration t where the gap is to be computed, a dual feasible point proportional to the residuals r (t) y -Xβ (t) :

θ (t) res r (t) / max(λ, X r (t) ∞ ) . (2.5) It is clear that if β (t) converges to β, θ (t) 
res converges to θ, hence the duality gap for the pair (β (t) , θ (t) res ) goes to 0. Additionally, the cost of computing θ (t) res is moderate: O(np), the same as a single proximal gradient descent step or an epoch of coordinate descent.

However, using rescaled residuals has two noticeable drawbacks: it ignores information from previous iterates, and rescaling the residuals r (t) makes an "unbalanced" use of computations in the sense that most of the burden is spent on improving β while θ is obtained by solving a crude 1D optimization problem, i.e., min {α ∈ [λ, +∞] : r (t) /α ∈ ∆ X }. In practice (see Section 2.5), it turns out that, while safe and simple, such a construction massively overestimates the suboptimality gap, leading to slow safe feature identification and to numerical solvers running for more steps than actually needed. The new dual point construction we propose aims at improving upon this default strategy.

Before we focus on duality, let us mention that other criteria than suboptimality are also often considered. For instance, the solver can be stopped when the 2 or ∞ norm of β (t)β (t-1) goes below a threshold , or when the objective function stops decreasing fast enough (P(β (t-1) ) -P(β (t) ) < ). However, contrary to duality gap based stopping criteria, such heuristic rules do not offer a control on suboptimality. They are also tightly coupled with the value of the step size, making the use of a general difficult.

Dual extrapolation

Building on the work on nonlinear regularized acceleration by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF], we propose a new construction to obtain a better dual point. Instead of relying only on the last residuals r (t) , the dual point is improved by extrapolating previous residuals, i.e., using r (t) , r (t-1) , r (t-2) , etc. We explain what is meant by "structure", and how to exploit it, in the following.

Definition 2.3 (Vector AutoRegressive sequence). We say that (r

(t) ) t∈N ∈ (R n ) N is a Vector AutoRegressive (VAR) sequence if there exists A ∈ R n×n and b ∈ R n such that for t ∈ N: r (t+1) = Ar (t) + b . (2.6) Proposition 2.4 (Extrapolation for VAR sequences (Scieur, 2018, Thm 3.2.2)). Let (r (t) ) t∈N be a VAR sequence in R n , satisfying r (t+1) = Ar (t) + b with A ∈ R n×n a symmetric positive definite matrix such that A 2 < 1, b ∈ R n and K < n.
Assume that for t ≥ K, the family {r (t-K)r (t-K+1) , . . . , r (t-1)r (t) } is linearly independent and define:

U (t) [r (t-K) -r (t-K+1) , . . . , r (t-1) -r (t) ] ∈ R n×K , (2.7) (c 1 , . . . , c K ) (U (t) U (t) ) -1 1 K 1 K (U (t) U (t) ) -1 1 K ∈ R K , (2.8) 
r extr K k=1 c k r (t-K-1+k) ∈ R n .
(2.9)

Then, r extr satisfies:

Ar extr -b -r extr ≤ O(ρ K ) , (2.10)
where ρ

1- √ 1-A 2 1+ √ 1-A 2 < 1.
The justification for this extrapolation procedure is the following: since A 2 < 1, (r (t) ) t∈N converges: let us call its limit r. For t ∈ N, we have r (t+1)r = A(r (t)r).

Let (a 0 , . . . , a n ) ∈ R n+1 be the coefficients of A's characteristic polynomial. By Cayley-Hamilton's theorem, n k=0 a k A k = 0. Given that A 2 < 1, 1 is not an eigenvalue of A and n k=0 a k = 0, so we can normalize these coefficients to have n k=0 a k = 1. For t ≥ n, we have:

n k=0 a k r (t-n+k) -r = n k=0 a k A k (r (t-n) -r) = 0 , (2.11)
and so

n k=0 a k r (t-n+k) = n k=0 a k r = r .
(2.12)

Hence, r ∈ Span(r (t-n) , . . . , r (t) ).

Therefore, it is natural to seek to approximate r as an affine combination of the (n + 1) last iterates (r (t-n) , . . . , r (t) ). Using (n + 1) iterates might be costly for large values of n, so one might rather consider only a smaller number K, i.e., find

(c 1 , . . . , c K ) ∈ R K such that K k=1 c k r (t-K-1+k) approximates r. Since r is a fixed point of r → Ar + b, CHAPTER 2. FASTER SOLVERS FOR THE LASSO: SCREENING, WORKING SETS AND DUAL EXTRAPOLATION K k=1 c k r (t-K-1+k
) should be one too. Under the normalizing condition K k=1 c k = 1, this means that the quantity

K k=1 c k r (t-K-1+k) -A K k=1 c k r (t-K-1+k) -b = K k=1 c k r (t-K-1+k) - K k=1 c k r (t-K+k) -b -b = K k=1 c k r (t-K-1+k) -r (t-K+k)
(2.13) should be as close to 0 n as possible; this leads to solving:

ĉ = arg min c∈R K c 1 K =1 K k=1 c k r (t-K+k) -r (t-K-1+k) , (2.14)
which admits a closed-form solution:

ĉ = (U (t) U (t) ) -1 1 K 1 K (U (t) U (t) ) -1 1 K , (2.15)
where

U (t) = [r (t-K+1) -r (t-K) , . . . , r (t) -r (t-1) ] ∈ R n×K .
In practice, the next proposition shows that when U (t) does not have full column rank, it is theoretically sound to use a lower value for the number of extrapolation coefficients K.

Proposition 2.5. If U (t) U (t) is not invertible, then r ∈ Span(r (t-1) , . . . , r (t-K) ). Proof Let x ∈ R K \ {0 K } be such that U (t) U (t) x = 0 K , with x K = 0 (the proof is similar if x K = 0, x K-1 = 0, etc.). Then U (t) x = K k=1 x k (r (t-K+k) -r (t-K+k-1) ) = 0 n and, setting x 0 0, r (t) = 1 x K K k=1 (x k -x k-1 )r (t-K+k-1) ∈ Span(r (t-1) , . . . , r (t-K) ). Since 1 x K K k=1 (x k -x k-1 ) = 1, it follows that: r (t+1) = Ar (t) + b = 1 x K K k=1 (x k -x k-1 )(Ar (t-K+k-1) + b) = 1 x K K k=1 (x k -x k+1 )r (t-K+k) ∈ Span(r (t-1) , . . . , r (t-K) ) , (2.16) 
and subsequently r (s) ∈ Span(r (t-1) , . . . , r (t-K) ) for all s ≥ t. By going to the limit, r ∈ Span(r (t-1) , . . . , r (t-K) ).

Using the identification property of coordinate descent and proximal gradient descent (proved in Theorem 3.7 for a wider class of problems), we can formalize the VAR behavior of dual iterates:

Theorem 2.6. When (β (t) ) t∈N is obtained by a cyclic coordinate descent or proximal gradient descent applied to the Lasso problem, (Xβ (t) ) t∈N is a VAR sequence after sign identification.

Proof Let t ∈ N denote an epoch after sign identification.

DUALITY FOR THE LASSO

Coordinate descent: Let j 1 , . . . , j S be the indices of the support of β, in increasing order. As the sign is identified, coefficients outside the support are 0 and remain 0. We decompose the t-th epoch of coordinate descent into individual coordinate updates.

Let β(0) ∈ R p denote the initialization (i.e., the beginning of the epoch,

β(0) = β (t) ), β (1 
) ∈ R p the iterate after coordinate j 1 has been updated, etc., up to β(S) after coordinate j S has been updated, i.e., at the end of the epoch ( β(S) = β (t+1) ).

Let s ∈ [S], then β(s) and β(s-1) are equal everywhere, except at coordinate j s :

β(s) js = ST β(s-1) js + 1 X :js 2 X :js y -X β(s-1) , λ X :js 2 = β(s-1) js + 1 X :js 2 X :js y -X β(s-1) - λ sign( βjs ) X :js 2 , (2.17)
where we have used sign identification: sign( β(s) js ) = sign( βjs ). Therefore:

X β(s) -X β(s-1) = X :js β(s) js - β(s-1) js = X :js X :js (y -X β(s-1) ) -λ sign( βjs ) X :js 2 = 1 X :js 2 X :js X :js y -X β(s-1) - λ sign( βjs ) X :js 2 X :js . (2.18)
This leads to the following linear recurrent equation:

X β(s) = Id n - 1 X :js 2 X :js X :js As∈R n×n X β(s-1) + X :js y -λ sign( βjs ) X :js 2 X :js bs∈R n . (2.19)
Hence, one gets recursively:

X β(S) = A S X β(S-1) + b S = A S A S-1 X β(S-2) + A S b S-1 + b S = A S . . . A 1 A X β(0) + A S . . . A 2 b 1 + • • • + A S b S-1 + b S b .
(2.20)

We can thus write the following VAR equations for Xβ at the end of each coordinate descent epoch:

Xβ (t+1) = AXβ (t) + b , (2.21 
)

Xβ (t+1) -X β = A(Xβ (t) -X β) . (2.22)
Proximal gradient: Recall that β

(t)
S , βS and X :S denote respectively β (t) , β and X restricted to features in the support S = supp( β). Notice that since we are in the identified sign regime, Xβ (t) = X :S β (t) S . With L = X X 2 , a proximal gradient descent update reads:

β (t+1) S = ST β (t) S -1 L X :S (X :S β (t) S -y), λ L = β (t) S -1 L X :S X :S β (t) S -y -λ L sign( βS ) = Id S -1 L X :S X :S β (t) S + 1 L X :S y -λ L sign( βS ) . (2.23)
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y λ 0 ∆ X θ y λ ∆ X Figure 2
.1 -Illustration of the VAR nature of the dual iterates of the Lasso, on a toy dataset with n = 2 and p = 3. Left: dual of the Lasso problem; the dual optimum θ is the projection of y/λ onto ∆ X . Right: sequence of residuals after each update of coordinate descent (first iterates in blue, last in yellow). After four updates, the iterates alternate geometrically between the same two constraint hyperplanes.

Hence the equivalent of Equation (2.21) for proximal gradient descent is:

Xβ (t+1) = Id n -1 L X :S X :S Xβ (t) + 1 L X :S X :S y -λ L X :S sign( βS ) .
(2.24)

Figure 2.1 represents the Lasso dual for a toy problem and illustrates the VAR nature of r (t) /λ. As recently highlighted again by Tibshirani (2017) (see Section 2.2.3), the iterates r (t) /λ correspond to the iterates of Dykstra's algorithm to project y/λ onto ∆ X .

During the first updates, the dual iterates do not have a regular trajectory. However, after a certain number of updates (after the sign identification epoch is reached), they alternate in a geometric fashion between the same two hyperplanes. In this regime, it becomes beneficial to use extrapolation to obtain a point closer to θ. We recall the correspondence between cyclic coordinate descent for the Lasso and Dykstra's algorithm more extensively in Section 2.2.3.

Remark 2.7. Equation (2.20) shows why we combine extrapolation with cyclic coordinate descent: if the coefficients are not always updated in the same order (see Figures 2.2c and 2.2d), the matrix A depends on the epoch, and the VAR structure may no longer hold.

Having highlighted the VAR behavior of (Xβ (t) ) t∈N , we can introduce our proposed dual extrapolation.

Definition 2.8 (Extrapolated dual point for the Lasso). For a fixed number K of proximal gradient descent or coordinate descent epochs, let r (t) denote the residuals y -Xβ (t) at epoch t of the algorithm. We define the extrapolated residuals:

r (t) accel =          r (t) , if t ≤ K , K k=1 c k r (t+1-k) , if t > K .
(2.25)

where c = (c 1 , . . . , c K ) ∈ R K is defined as in (2.15) with U (t) = [r (t+1-K) -r (t-K) , . . . , r (t) - r (t-1) ] ∈ R n×K .
Then, we define the extrapolated dual point as:

θ (t) accel r (t) accel / max(λ, X r (t) accel ∞ ) .
(2.26)
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In practice, we use K = 5 and do not compute θ (t) accel if U (t) U (t) cannot be inverted. Additionally, to impose monotonicity of the dual objective, and guarantee an objective function at least as high as with rescaled residuals, we use as dual point at iteration t:

θ (t) = arg max θ∈{θ (t-1) ,θ (t) accel ,θ (t) 
res } D(θ) .

(2.27)

There are two reasons why the results of Proposition 2.4 cannot be straightforwardly applied to Equation (2.26):

1. the theoretical analysis by Scieur et al. ( 2016) requires A to be symmetrical, which is the case for proximal gradient descent but not for cyclic coordinate descent (as Id n -X :js X :js / X :js 2 and Id n -X :j s X :j s / X :j s 2 only commute if X :js and X :j s are collinear). To circumvent this issue, we can make A symmetrical: instead of considering cyclic updates, we could consider that iterates β (t) are produced by a cyclic pass over the coordinates, followed by a cyclic pass over the coordinates in reverse order. The matrix of the VAR in this case is no longer [START_REF] Bollapragada | Nonlinear acceleration of momentum and primal-dual algorithms[END_REF] indicates that the bound still holds for a non-symmetric A (coherent with the practical results from Section 3.5), at the price of a much more complex analysis. Therefore, we still use regular cyclic passes over the features.

A = A S . . . A 1 , but A 1 . . . A S A S . . . A 1 = A 1 . . . A S A S . . . A 1 = A A (the A s 's are symmetrical). A result from
2. for both proximal gradient and coordinate descent we have A 2 = 1 instead of A 2 < 1 as soon as S < n: if the support of β is of size smaller than n (S < n), 1 is an eigenvalue of A. Indeed, for coordinate descent, if S < n, there exists a vector u ∈ R n , orthogonal to the S vectors X :j 1 , . . . , X :js . The matrix A s = Id n -1 X :js 2 X :js X :js corresponding the orthogonal projection onto Span(X :js ) ⊥ , we therefore have A s u = u for every s ∈ [S], hence Au = u. For proximal gradient descent, 1 L X :S X :S is not invertible when S < n, hence 1 is an eigenvalue of Id n -1 L X :S X :S . This seems to contradict the convergence of the VAR sequence, but is addressed in Lemmas 2.9 and 2.10. Lemma 2.9. For coordinate descent, if an eigenvalue of A = A S . . . A 1 has modulus 1, it is equal to 1.

Proof The matrix A s = Id n -1 X :js 2 X :js X :js corresponds to the orthogonal projection onto Span(X :js ) ⊥ . Hence,

∀x ∈ R n , A s x = x =⇒ A s x = x .
(2.28) 

Let (µ, x) ∈ C × R n s.t. |µ| = 1, x = 1 and Ax = µx. This means Ax = 1. Because A 1 x < 1 =⇒ A S . . . A 1 x ≤ A S . . . A 2 A 1 x < 1 =⇒ Ax < 1, we must have A 1 x ≥ 1. Since it holds that A 1 x ≤ x = 1, we have A 1 x = x , thus A 1 x = x because A 1 is an orthogonal projection.
= A S . . . A 2 b 1 + • • • + A S b S-1 + b S
in this case, with b s = X :js yλ sign( βjs )X :js / X :js 2 . Let v ∈ Ker(Id n -A). Following the proof of Lemma 2.9, we have

A 1 v = • • • = A S v = v. For s ∈ [S], since A s is the projection on Span(X :js ) ⊥ , this means that v is orthogonal to X :js . Additionally, v A S . . . A s+1 b s = (A s+1 . . . A S v) b s = v b s = 0 since b s
is collinear to X :js . Thus, v is orthogonal to the S terms which compose b, and b ⊥ Ker(Id n -A).

Proximal gradient descent case:

Let v ∈ Ker(Id n -A) = Ker(X :S X :S ). We have v X :S X :S v = 0 = X :S v 2 , hence X :S v = 0. It is now clear that v b = v (-X :S X :S y + λX :S sign β)/L = 0, hence b ⊥ Ker(Id n -A).
Proposition 2.11. Proposition 2.4 holds for the residuals r (t) (produced either by proximal gradient descent or coordinate descent) even though A 2 = 1 in both cases.

Proof Let us write A = Ā + A with Ā the orthogonal projection on Ker(Id n -A). By Lemma 2.9, A 2 < 1.

Then, one can check that AA = A 2 and A Ā = Ā2 = Ā and Ab = Ab.

Let T be the epoch when support identification is achieved. For t ≥ T , we have:

r (t+1) = Ar (t) + b + Ār (T ) .
(2.29) Indeed, it is trivially true for t = T and if it holds for t,

r (t+2) = Ar (t+1) + b = A(Ar (t) + b + Ār (T ) ) + b = A 2 r (t) + Ab + Ār (T ) + b = A(Ar (t) + b) + Ār (T ) + b = Ar (t+1) + Ār (T ) + b .
(2.30) Therefore, on Ker(Id n -A), the sequence (r (t) ) t∈N is constant, and on the orthogonal of Ker(Id n -A) it is a VAR sequence with associated matrix A, whose spectral norm is strictly less than 1. Therefore, the results of Proposition 2.4 still hold.

Although until now we have proven results for both coordinate descent and proximal gradient descent for the sake of generality, we observed that coordinate descent consistently converges faster (see Figure 1.4, page 30). Hence from now on, we will only consider coordinate descent.

Dual perspective on coordinate descent

Algorithm 2.2 Dykstra's alternating projections L input : Π C 1 , . . . , Π Cp , z init : θ = z, q 1 = 0, . . . , q p = 0 for t = 1, . . . do for j = 1, . . . , p do

θ ← θ + q j θ ← Π C j ( θ) q j ← θ -θ return θ
Algorithm 2.3 Dykstra for the Lasso dual input : X = [X :1 | . . . |X :p ], y, λ init : r = y, β1 = 0, . . . , βp = 0

1 for t = 1, . . . do 2 for j = 1, . . . , p do 3 r ← r + X :j βj 4 r ← r -ST X :j r X :j 2 , 1 X :j 2 • X :j 5 βj ← ST X :j r X :j 2 , 1 X :j 2 6 return r/λ
In this section, we provide some insights on the efficiency of extrapolation for cyclic coordinate descent, described in Algorithm 2.1, by studying its connections with Dykstra's algorithm [START_REF] Dykstra | An algorithm for restricted least squares regression[END_REF]). As a reminder, note that the points extrapolated are only the residuals r (t) obtained every f dual epochs: performing extrapolation and gap computation at every coordinate descent update would be time consuming.

Dykstra's algorithm aims at solving problems of the form:

θ = arg min θ∈∩ p j=1 C j z -θ 2 , (2.31) 
where C 1 , . . . , C p are p closed convex sets, with associated projections Π C 1 , . . . , Π Cp . The iterates of the (cyclic1 ) Dykstra algorithm are defined in Algorithm 2.2 (see Bauschke and Combettes (2011, Th. 29.2) for a convergence proof in the cyclic case).

The connection with coordinate descent for the Lasso has already been noticed (Tibshirani, 2017). In the Lasso dual, the closed convex sets are the p slabs C j = {θ ∈ R n :

-1 ≤ X :j θ ≤ 1}, and the point to be projected is z = y/λ. In this context, Dykstra's algorithm produces (non-necessarily feasible) iterates converging to θ.

The connection with coordinate descent can be made noticing that:

(Id n -Π C j )(θ) = ST(X :j θ/ X :j 2 , 1/ X :j 2 ) • X :j . (2.32)
Using the change of variable r = λθ, r = λ θ and q j = X :j β j /λ and the previous expression, Algorithm 2.2 is equivalent to Algorithm 2.3. It is to be noted that this is exactly cyclic coordinate descent for the Lasso, where the output r of the algorithm corresponds to the residuals (and not the primal estimate β).

On and the trajectory tends to be less regular and harder to extrapolate. In what follows, we only consider cyclic orders due to their appealing interplay with extrapolation.
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Gap Safe screening

The Lasso gives sparse solutions, meaning that β 0 p. Hence, if it were possible to discard features whose associated final coefficients vanish, the problem would become much smaller while having the same solutions. Discarding such features is called screening, and a key proposition for screening rules is the following:

∀j ∈ [p], |X :j θ| < 1 ⇒ βj = 0 .
(2.33)

Hence, the knowledge of θ allows to identify the equicorrelation set {j ∈ [p] : |X :j θ| = 1}. The problem restricted to the equicorrelation set has the same solutions as Problem (2.1), while being simpler: it typically has far less features. However, θ is unknown so Equation (2.33) is not practical. To address this issue, Fercoq et al. ( 2015) have introduced the Gap Safe rules to remove the j-th feature:

|X :j θ| < 1 -X :j 2 λ 2 G(β, θ) ⇒ βj = 0 , (2.34) 
which for any primal-dual feasible pair (β, θ) ∈ R p × ∆ X , is safe, meaning that it will not wrongly discard a feature.

The Gap Safe rules have the appealing property of being convergent: at optimality, features not in the equicorrelation set have all been discarded. Additionally, they can be applied in a safe way in a sequential setting (Ndiaye et al., 2017b) when only an approximate solution of Problem (2.1) is available for a λ close to λ (e.g., when testing multiple regularization parameters in a cross-validation setting). Dynamic screening [START_REF] Bonnefoy | A dynamic screening principle for the lasso[END_REF][START_REF] Bonnefoy | Dynamic screening: accelerating first-order algorithms for the Lasso and Group-Lasso[END_REF] is also possible using an iterate β (t) for a solver converging to β: more and more features can be discarded along iterations.

Gap Safe rules performance depends strongly on how well θ approximates θ. Hence, θ acts as a certificate to discard irrelevant features: if the duality gap is large, the upper bound in Equation (2.34) is crude, resulting in fewer (possibly) discarded features. Section 2.5.3 shows that θ accel helps discarding more features than θ res , thus accelerating coordinate descent solvers and achieving safe feature identification in fewer epochs.

A potential drawback of screening rules is that, if the first duality gaps are large, coordinate descent computations are wasted on useless features during the first iterations (note that this is not the case when an approximation is available, e.g., when performing cross-validation; see Section 2.5.4). In the next section, we design a WS strategy to address this issue.

Working sets with aggressive gap screening

Working set (WS) approaches involve two nested iteration loops: in the outer one, a set of features W (t) ⊂ [p] is defined. In the inner one, an iterative algorithm is launched to solve the problem restricted to X :W (t) (i.e., considering only the features in W (t) ). In this section, we propose a working set construction based on an aggressive use of Gap Safe rules.

As it appears in Equation (2.34), the critical quantity measuring the importance of the j-th feature is:

d j (θ) 1 -|X :j θ| X :j , (2.35) 
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d j (θ) > 2 λ 2 G(β, θ) ⇒ βj = 0 . (2.36)
Rather than discarding feature j from the problem if d j (θ) is too large, the working set is composed of the coordinates achieving the lowest d j (θ)'s values. To do so, a first approach would consist in introducing a parameter ρ ∈]0, 1[ and creating a working set with features such that d j (θ) < ρ 2G(β, θ)/λ 2 . However, a pitfall for this strategy is that the working set size is not explicitly under control: an inaccurate choice of ρ could lead to extremely large working sets, and would limit their benefits. Instead, to achieve a good control on the working set growth, we reorder the d j (θ)'s in a non-decreasing way:

d jp (θ) ≥ • • • ≥ d j 1 (θ).
Then, for a given working set size p (t) , we choose:

W (t) = {j 1 , . . . , j p (t) } . (2.37)
This notation is clearly ambiguous, as j 1 also depends on t. To avoid the heavy notation j

(t)
1 , we warn the reader at this point: the value of j 1 changes from one working set definition to the next.

When θ = θ (t)
res and the features are normalized (a common, but not systematic preprocessing step), this working set construction simply consists in finding the X :j 's achieving the largest correlation with the residual, i.e., finding the features leading to the largest |X :j r (t) |. Writing the data-fitting term F (β) = y -Xβ 2 /2, and checking 

that ∇ j F (β (t) ) = -X :j r (t
1 -d j (θ (t) res ) = |X :j r (t) |/ max(λ, X r (t) ∞ ) ∝ |X :j r (t) | = |∇ j F (β (t) )| .
However, the advantage of Equation (2.35) is that there is no restriction on the choice of the dual feasible point θ ∈ ∆ X . If a better candidate than rescaled residuals is available, it should be used instead. Considering the (ideal) case where the dual point constructed is θ, then the working set rule (2.37) yields the equicorrelation set (if p (t) has the proper value), which is the best performance to expect in general for a working set construction.

When subproblems are solved with the same precision as considered for stopping the outer-loop and if the working set W (t) grows geometrically (e.g., p (t+1) = 2p (t) ) and monotonically (i.e., W (t) ⊂ W (t+1) ), then convergence is guaranteed provided the inner solver converges. Indeed, this growth strategy guarantees that as long as the problem has not been solved up to precision , more features are added, eventually starting the inner solver on the full problem until it reaches an -solution. The initial working set size is set to p (1) = 100, except when an initialization β (0) = 0 p is provided (e.g., for path or sequential computations, see Section 2.5.4), in which case we set p (1) = β (0) 0 . This working set construction has many advantages: as it only requires a dual point, it is flexible and can be adapted to other objective functions (contrary to approaches such as Kim and Park (2010) which need to rewrite the Lasso as a Quadratic Program). Moreover, exact resolution of the subproblems is not required for convergence. Our policy to choose p (t) avoids two common working set drawbacks: working sets growing one feature at a time, and cyclic behaviors, i.e., features entering and leaving the working set repeatedly.
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Algorithm 2.4 Celer input : X, y, λ, β (0) param: p init = 100, , = 0.3, T, prune = True init : 

θ (0) = θ (0) inner = y/ X y ∞ 1 if β (0) = 0 p then // warm start 2 p (1) = β (0) 0 3 else 4 p (1) = p init 5 for t = 1, . . . , T do 6 compute θ (t) res 7 θ (t) = arg max θ∈{θ (t-1) ,θ (t-1) inner ,θ (t) res } D(θ) // Equation (2.5) 8 g (t) = G(β (t-1) , θ (t) ) // global gap 9 if g (t) ≤ then break for j = 1, . . . , p do compute d (t) j = (1 -|X :j θ (t) |)/ X :j if prune then t = g (t) set (d (t) ) supp(β (t-1) ) = -1 // monotonicity if t ≥ 2 then p (t) = min(2 β (t-1) 0 , p) //
get β(t) , θ (t) 
inner with Algorithm 2.1 applied to (y, X :W (t) , λ, (

β (t-1) ) W (t) , t ) set β (t) = 0 p and (β (t) ) W (t) = β(t) θ (t) inner = θ (t) inner / max(λ, X θ (t) inner ∞ ) return β (t) , θ (t)
We have coined our proposed algorithm implementing this working set strategy with dual extrapolation Celer (Constraint Elimination for the Lasso with Extrapolated Residuals).

Experiments

Practical implementation

The implementation is done in Python and Cython [START_REF] Behnel | Cython: The best of both worlds[END_REF]. It is available at https://github.com/mathurinm/celer, and made available as a pip-installable Python package which also contains the further developments of Chapter 3.
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Linear system If the linear system (U (t) ) U (t) z = 1 K is ill-conditioned, rather than using Tikhonov regularization and solve ((U (t) ) U (t) + γI)z = 1 K as proposed in Scieur et al. (2016), we stop the computation for θ accel and set D(θ accel ) = -∞ for this iteration. In practice, this does not prevent the proposed methodology from computing significantly lower gaps than the standard approach.

Practical cost of dual extrapolation The storage cost of dual extrapolation is O(nK) (storing r (t) , . . . , r (t-K) ). The main computation cost lies in the dual rescaling of the extrapolated residuals, which is O(np), and corresponds to the same cost as an epoch of CD/ISTA. The cost of computing c is small, since the matrix (U (t) ) U (t) is only K × K. One should notice that there is no additional cost to compute the residuals: in reasonable coordinate descent implementations, they have to be maintained at all iterations to avoid costly partial gradients computation (see Algorithm 2.1); for ISTA their computation is also required at each epoch to evaluate the gradients X r (t) . As usual for iterative algorithms, we do not compute the duality gap (nor the dual points) at every update of β, but rather after every f dual = 10 CD/ISTA epochs 2 . This makes the cost of dual extrapolation small compared to the iterations in the primal. The influence of f dual and K in practice is illustrated in additional experiments in Appendix A.1.1.

Robustifying dual extrapolation Even if in practice we have observed fast convergence of θ

accel towards θ, we cannot provide guarantees about the behavior of θ

(t)
accel when the residuals are constructed from iterates of coordinate descent or other algorithms. Hence, for a cost of O(np), in Algorithm 2.1 we also compute θ (t) res and use as dual point:

θ (t) = arg max θ∈{θ (t-1) ,θ (t) 
accel ,θ

res } D(θ) .

(2.38)

Taking into account the previous dual point θ (t-1) ensures monotonic improvements on the dual objective. The total computation cost of the dual is only doubled, which remains small compared to the cost of f dual epochs of ISTA/CD, while guaranteeing monotonicity of the dual objective, and a behavior at least as good as θ (t) res .

Pruning While the monotonic geometric growth detailed in Section 2.4 guarantees convergence, if p (1) is chosen too large, the working sets will never decrease. To remediate this, we introduce a variant called pruning:

p (t) = min(2 β (t-1) 0 , p) , (2.39) 
in which W (t) approximately doubles its size at each iteration. This still guarantees that, even if p (1) was set too small, p (t) will grow quickly to reach the correct value. On the other hand, if p (1) is too big, many useless features are included at the first iteration, but is is likely that their coefficients will be 0, and hence β (1) 0 will be small, making p (2) small. This is illustrated by an experiment in Appendix A.1.2.

Higher dual objective

We start by investigating the efficiency of our dual point in a case where λ is fixed. Figure 2.3 shows, for the coordinate descent solver given in Algorithm 2.1, the duality gaps evaluated with the standard approach P(β (t) ) -D(θ accel ), as well as the exact suboptimality P(β (t) )-P( β) (note that the latter is not available to the practitioner before convergence). The experiment is performed on the leukemia dataset (n = 72, p = 7129), with the design matrix columns set to unit 2 -norm, and y centered and set to unit 2 -norm so that the first primal objective is P(0 p ) = 0.5. The algorithm is run without warm start (β (0) = 0 p ) for λ = λ max /20, and the values of θ (t) accel and θ (t) res are monitored3 . P( β) is obtained by running the solver up to machine precision.

For a better analysis of the impact of dual extrapolation, in this experiment (and here only), we have not imposed monotonicity of the various dual objectives, nor have we used the best of both points as proposed in Equation (2.38).

As claimed in Section 2.2, we can observe that θ res massively overestimates the suboptimality gap: while a true suboptimality gap of 10 -6 is reached around epoch 200, the classical upper bound achieves this value at epoch 400 only. This means that if the duality gap were used as stopping criterion, the solver would run for twice too long. On the contrary, after a number of iterations where it behaves like the canonical approach, the proposed choice θ accel accelerates and provides a duality gap much closer to the true suboptimality. After a sufficient number of epochs, the two are even almost equal, meaning that θ (t) accel is extremely close to θ. The difference between the two approaches is particularly striking for low values of . We also see, that, although more bumpy than the standard approach, our proposed duality gap does not behave erratically. Hence, stabilizing it as stated in Equation (2.38) does not seem mandatory (but since it is cheap, we still do it for other experiments). Practical choices of f and K are discussed in Appendix A.1.1. The same behavior is visible in the following chapter (Figure 3.1a, 80). 10 -6 10 -3 P(β t ) -D(θ t res ) P(β t ) -D(θ t accel ) P(β t ) -P( β)

Figure 2.3 -Duality gaps evaluated with the canonical dual point θ res and the proposed construction θ accel , along with the true suboptimality gap. Performance is measured for Algorithm 2.1 on the leukemia dataset, for λ = λ max /20. Our duality gap quickly gets close to the true suboptimality, while the canonical approach constantly overestimates it.

Better Gap Safe screening performance

Figure 2.3 shows that extrapolated residuals yield tighter estimates of the suboptimality gap than rescaled residuals. However, one may argue either that using the duality gap as stopping criterion is infrequent (let us nevertheless mention that this criterion is for example the one implemented in the popular package scikit-learn (Pedregosa et al., CHAPTER 2. FASTER SOLVERS FOR THE LASSO: SCREENING, WORKING SETS AND DUAL EXTRAPOLATION 2011)), or that vanilla coordinate descent is seldom implemented alone, but rather combined with screening or working set techniques. Here we demonstrate the benefit of the proposed extrapolation when combined with screening: the number of screened features grows more quickly when our new dual construction is used. This leads to faster coordinate descent solvers, and quicker safe feature identification.

The dataset for this experiment is the Finance/E2006-log1p dataset (publicly available from LIBSVM4 ), preprocessed as follows: features with strictly less than 3 non-zero entries are removed, features are set to unit 2 -norm, y is centred and set to unit 2norm, and an unregularized intercept feature is added. After preprocessing, n = 16 087 and p = 1 668 738. Figure 2.4 shows the number of screened variables as a function of the number of epochs in Algorithm 2.1, when using either standard residual rescaling or dual extrapolation to get the dual point θ (t) in Equation (2.34). The solver stops once a duality gap of 10 -6 is reached. We can see that the faster convergence of θ (t) accel towards θ observed in Figure 2.3 translates into a better Gap Safe screening: features are discarded in fewer epochs than when θ (t) res is used. The gain in number of screened variables is directly reflected in terms of computation time: 70 s for the proposed approach, compared to 290 s for Gap Safe rule with rescaled residuals.

Working sets application to Lasso path

In practice, it rarely happens that the solution of Problem (2.1) must be computed for a single λ: the ideal value of the regularization parameter is not known, and β is computed for several λ's, before the best is selected (e.g., by cross-validation). The values of λ are commonly5 chosen on a logarithmic grid of 100 values between λ max and λ max /10 2 or λ max /10 3 . For the Finance dataset, we considered λ max /10 2 , leading to a support of size 15 000. In such sequential context, warm start is standard and we implement it for all algorithms. It means that all solvers computing β are initialized with the approximate solution obtained for the previous λ on the grid (starting from λ max ).

We refer to the PhD work Johnson (2018, Section 3.7) for a very extensive comparison which shows that Blitz outperforms Lasso solvers such as L1_LS [START_REF] Kim | An interior-point method for large-scale 1 -regularized least squares[END_REF], APPROX [START_REF] Fercoq | Accelerated, parallel and proximal coordinate descent[END_REF] or GLMNET [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]) on a large collections of datasets and settings. In our experiments, we use Blitz's C++ open source implementation, available at https://github.com/tbjohns/BlitzL1/.

Path computation For a fine (resp. coarse) grid of 100 (resp. 10) values of λ geometrically distributed between λ max and λ max /100, the competing algorithms solve the Lasso on various real world datasets from LIBLINEAR (Fan et al., 2008). Warm start is used for all algorithms: except for the first value of λ, the algorithms are initialized with the solution obtained for the previous value of λ on the path. Note that paths are computed following a decreasing sequence of λ (from high value to low). Computing Lasso solutions for various values of λ is a classical task, in cross-validation for example. The values we choose for the grid are the default ones in scikit-learn or GLMNET. For Gap Safe Rules (GSR), we use the strong warm start variant which was shown by Ndiaye et al. (2017b, Section 4.6.4) to have the best performance. We refer to "GSR + extr." when, on top of this, our proposed dual extrapolation technique is used to create the dual points for screening. To evaluate separately the performance of working sets and extrapolation, we also implement "Celer w/o extr.", i.e., Algorithm 2.4 without using an extrapolated dual point. Doing this, GSR can be compared to GSR + extrapolation, and Celer without extrapolation to Celer.

On Figures 2.5 to 2.7, one can see that using acceleration systematically improves the performance of Gap Safe rules, up to a factor 3. Similarly, dual extrapolation makes Celer more efficient than a working set approach without extrapolation (Blitz or Celer w/o extr.) This improvement is more visible for low values of stopping criterion , as dual extrapolation is beneficial once the support is identified. Generally, working set approaches tend to perform better on coarse grids, while screening is beneficial on fine grids -a finding corroborating Lasso experiments in Ndiaye et 

GLMNET comparison

Another popular solver for the Lasso is GLMNET, which uses working sets heuristics based on KKT conditions. However, the resulting solutions are not safe in terms of feature identification. Figure 2.8 shows that for the same value of stopping criterion6 , the supports identified by GLMNET contain much more features outside of the equicorrelation set (determined with Gap Safe rules after running Celer with = 10 -14 ). Single λ To demonstrate that the performance observed in Figures 2.5 to 2.7 is not only due to the sequential setting, we also perform an experiment for a single value of λ = λ max /20. The Lasso estimator is computed up to a desired precision which is varied between 10 -2 and 10 -6 (all solvers use duality gap). Celer is orders of magnitude faster than scikit-learn, which uses vanilla coordinate descent. The working set approach of Blitz is also outperformed, especially for low values.

Conclusion

The working set approach of Blitz, analogous to that of Celer, is based on a geometric interpretation of the dual. The criterion to build W (t) can be reformulated to match (2.37) (with the notable difference that p (t) is determined at runtime by solving an auxiliary optimization problem). However, for the analysis to hold, the dual point θ (t) used in the outer loop must be a barycenter of the previous dual point θ (t-1) and the current residuals, rescaled on the subproblem r (t-1) / max(λ, X :W (t-1) r (t-1) ∞ ). This prevents Blitz from using extrapolation. The flexibility of Celer w.r.t. the choice of dual point enables it to benefit from the extrapolated dual point returned by the inner solver. The experiments confirm that this dual point is key to outperform Blitz.

In this chapter, we have illustrated the importance of improving duality gap computations for practical Lasso solvers. Using an extrapolation technique to create more accurate dual candidates, we were able to accelerate standard solvers relying on screening and working set techniques. Our experiments on popular (sparse or dense) datasets showed the importance of dedicating some effort to the improvement of dual solutions: the combined benefits obtained both from improved stopping time and from screening accuracy has led to improved state-of-the-art solvers at little coding effort. The goal of the next chapter is to generalize the proposed approach to other datafitting terms and penalties.

Duality improvements for sparse GLMs

Il est de retour. Il -est -de -retour. In this chapter, we generalize the dual extrapolation procedure for the Lasso (Celer) of Chapter 2 to any 1 -regularized GLM, in particular sparse Logistic regression. Theoretical guarantees based on sign identification of coordinate descent are provided. Experiments show that dual extrapolation yields more efficient Gap Safe screening rules and working sets solvers. Finally, we adapt Celer to make it compatible with prox-Newton solvers, and empirically demonstrate its applicability to the Multi-task Lasso, for which the proof is left to future work. This chapter is based on the following work, currently under review for the Journal of Machine Learning Research:

• M. Massias, S. Vaiter, A. Gramfort, and J. Salmon. Dual extrapolation for sparse Generalized Linear Models. arXiv preprint arXiv:1907.05830, 2019

Generalized Linear Models (GLM) form a wide class of regression and classification models, where prediction is a function of a linear combination of the input variables. For statistical inference in high dimension, sparsity inducing regularizations have proven to be useful while offering statistical guarantees. However, solving the resulting optimization problems can be challenging: even for popular iterative algorithms such as coordinate descent, one needs to loop over a large number of variables. To mitigate this, techniques known as screening rules and working sets diminish the size of the optimization problem at hand, either by progressively removing variables, or by solving a growing sequence of smaller problems. For both techniques, significant variables are identified thanks to convex duality arguments. In this paper, we show that the dual iterates of a GLM exhibit an asymptotic Vector AutoRegressive (VAR) behavior after sign identification, when the primal problem is solved with proximal gradient descent or cyclic coordinate descent. Exploiting this regularity, one can construct dual points that offer tighter certificates of optimality, enhancing the performance of screening rules and helping to design competitive working set algorithms. Since only a fraction of the coefficients are non-zero in the optimal parameter vector, a recurring idea to speed up solvers is to limit the size of the optimization problem by ignoring features which are not included in the solution. To do so, two approaches can be distinguished: although a lot of attention has been devoted to creating a sequence of primal iterates that converges fast to the optimum [START_REF] Fercoq | Accelerated, parallel and proximal coordinate descent[END_REF], the construction of dual iterates has not been scrutinized, and the standard approach to obtain dual iterates from primal ones [START_REF]Sparse coding for machine learning, image processing and computer vision[END_REF], although converging, is crude.

Introduction

•
In this chapter, we propose a principled way to construct a sequence of dual points that converges faster than the standard approach proposed by [START_REF]Sparse coding for machine learning, image processing and computer vision[END_REF]. Based on an extrapolation procedure inspired by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF], it comes with no significant extra computational costs, while retaining convergence guarantees of the standard approach. We first introduced this construction for non-smooth optimization in Chapter 2 for the Lasso case only: here, we generalize it here to any Generalized Linear Model (GLM). We properly define, quantify and prove the asymptotic Vector AutoRegressive (VAR) behavior of dual iterates for sparse GLMs solved with proximal gradient descent or cyclic coordinate descent. As for the Lasso, the resulting new construction:

• provides a tighter control of optimality through duality gap evaluation,

• improves the performance of Gap Safe rules,

• improves the aggressive use of Gap Safe screening rules proposed in Chapter 2, thanks to better feature identification,

• is easy to implement and combine with other solvers.

The chapter proceeds as follows. We introduce the framework of 1 -regularized GLMs and duality in Section 3.2. We generalize the techniques of the previous chatper to a variety of problems in Sections 3.3 and 3.4. Results of Section 3.5 demonstrate a systematic improvement in computing time when dual extrapolation is used together with Gap Safe rules or working set policies.

Notation The design matrix X ∈ R n×p is composed of observations x i ∈ R p stored row-wise, and whose j-th column is X :j ∈ R n ; the vector y ∈ R n (resp. {-1, 1} n ) is the response vector for regression (resp. binary classification).

The sigmoid function is σ : x → 1/(1 + e -x ). Applied to vectors, sign, σ and ST(•, ν) (for ν ∈ R + ) act element-wise.

GLMs, Vector AutoRegressive sequences and sign identification

We consider the following optimization problem: Definition 3.1 (Sparse Generalized Linear Model).

β ∈ arg min

β∈R p n i=1 f i (β x i ) + λ β 1 P(β) , (3.1) 
where all f i belong to Γ 0 (R) (see Definition 1.4), and are differentiable with 1/γ-Lipschitz gradients. The parameter λ is a non-negative scalar, controlling the trade-off between data fidelity and regularization. For any (β, θ) ∈ R p × ∆ X , one has D(θ) ≤ P(β), and D( θ) = P( β). The duality gap P(β)-D(θ) can thus be used as an upper bound for the sub-optimality of a primal vector β: for any > 0, any β ∈ R p , and any feasible θ ∈ ∆ X : P(β) -D(θ) ≤ ⇒ P(β) -P( β) ≤ .

(3.5)

These results hold because Problem (3.1) is unconstrained; and the convex objective function has domain R p (Boyd and Vandenberghe, 2004, §5.2.3); see Proposition 1.14 for the general framework of duality.

Remark 3.3. Equation (3.5) shows that even though β is unknown in practice and the sub-optimality gap cannot be evaluated, creating a dual feasible point θ ∈ ∆ X allows to construct an upper bound which can be used as a tractable stopping criterion.

In high dimension, solvers such as proximal gradient descent (PG) and coordinate descent (CD) are slowed down due to the large number of features. However, by design of the 1 penalty, β is expected to be sparse, especially for large values of λ. Thus, a key idea to speed up these solvers is to identify the support of β so that features outside of it can be safely ignored. Doing this leads to a smaller problem that is faster to solve.

Removing features when it is guaranteed that they are not in the support of the solution is at the heart of the so-called Gap Safe Screening rules (Fercoq et 

∀j ∈ [p], ∀(β, θ) ∈ R p × ∆ X , |X :j θ| < 1 -X :j 2 γλ 2 (P(β) -D(θ)) =⇒ βj = 0 . (3.6)
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Therefore, while running an iterative solver and computing the duality gap at iteration t, the criterion (3.6) can be tested for all features j, and the features guaranteed to be inactive at optimum can be ignored in the subsequent iterations.

Equations (3.5) and (3.6) do not require a specific choice of θ, provided it is in ∆ X . It is up to the user and so far it has not attracted much attention in the literature. Thanks to the link equation θ = -∇F (X β)/λ, a natural way to construct a dual feasible point θ (t) ∈ ∆ X at iteration t, when only a primal vector β (t) is available, is:

θ (t) res -∇F (Xβ (t) )/ max(λ, X ∇F (Xβ (t) ) ∞ ) . (3.7)
As detailed in Chapter 2, this was coined residuals rescaling (Mairal, 2010) following the terminology used for the Lasso case where -∇F (Xβ) is equal to the residuals, y -Xβ.

To improve the control of sub-optimality, and to better identify useful features, the aim of our proposed dual extrapolation is to obtain a better dual point (closer to the optimum θ). The idea is to do it at a low computational cost by exploiting the structure of the sequence of dual iterates (Xβ (t) ) t∈N (and not the residuals as for the Lasso). Since the gradient of F is not linear in general, the structure is not exactly a VAR as in Definition 2.3.

Definition 3.5 (Asymptotic Vector AutoRegressive sequence). We say that the sequence (r (t) ) t∈N , converging to r, is an asymptotic VAR sequence if there exist A ∈ R n×n and b ∈ R n such that for t ∈ N:

r (t+1) -Ar (t) -b = o(r (t) -r) . (3.8)
Finally, we state the results on sign identification, which implies support identification. For these results, which connect sparse GLMs to VAR sequences and extrapolation, we need to make the following assumption.

Assumption 3.6. Proof For lighter notation in this proof, we denote l j = X :j 2 /γ and h j (β) = β j -1 l j X :j ∇F (Xβ). For j ∈ [p], the subdifferential inclusion (3.4) reads:

- X :j ∇F (X β) λ ∈        {1} , if βj > 0 , {-1} , if βj < 0 , [-1, 1] , if βj = 0 .
(3.9) Motivated by these conditions, the equicorrelation set introduced by Tibshirani (2013) is:

E {j ∈ [p] : |X :j ∇F (X β)| = λ} = {j ∈ [p] : |X :j θ| = 1} . (3.10)
We introduce the saturation gap associated to Problem (3.1):

δ min    λ l j 1 - |X :j ∇F (X β)| λ : j / ∈ E    = min λ l j 1 -|X :j θ| : j / ∈ E > 0 .
(3.11)

As θ is unique, δ is well-defined, and strictly positive by definition of E. By Equation (3.9), the support of any solution is included in the equicorrelation set and we have equality for almost every λ since we assumed that the solution is unique (Tibshirani, 2013, Lemma 13) -the non equality holding only at the kinks of the Lasso path, which we exclude from our analysis.

Because of Assumption 3.6, we only need to show that the coefficients outside the equicorrelation eventually vanish. The proof requires to study the primal iterates after each update (instead of after each epoch), hence we use the notation β(s) for the primal iterate after the s-th update of coordinate descent. This update only modifies the j-th coordinate, with s ≡ j -1 mod p :

β(s+1) j = ST h j ( β(s) ), λ l j .
(3.12) Note that at optimality, for every j ∈ [p], one has:

βj = ST h j ( β), λ l j . (3.13)
Let us consider an update s ∈ N of coordinate descent such that the updated coordinate j verifies β(s+1) j = 0 and j / ∈ E, hence, βj = 0. Then:

| β(s+1) j -βj | = ST h j ( β(s) ), λ l j -ST h j ( β), λ l j ≤ h j ( β(s) ) -h j ( β) -λ l j -|h j ( β)| , (3.14) 
where we used the following inequality (Hale et al., 2008, Lemma 3.2):

ST(x, ν) = 0, ST(y, ν) = 0 =⇒ | ST(x, ν) -ST(y, ν)| ≤ |x -y| -(ν -|y|) . (3.15)
Now notice that by definition of the saturation gap (3.11), and since j / ∈ E : 

λ l j 1 - |X :j ∇F (X β)| λ ≥ δ , that is, λ l j -|h j ( β)| ≥ δ (using βj = 0) . ( 3 
Xβ = Xβ (0) , θ (0) = -∇F (Xβ (0) )/ max(λ, X ∇F (Xβ (0) ) ∞ ) for t =
Xβ = Xβ (t) 10 β (t+1) = ST β (t) - γ X X 2 X ∇F (Xβ), λγ X X 2 11 else if CD then // cyclic coordinate descent: 12 for j = 1, . . . , p do 13 β (t+1) j = ST β (t) j - γX :j ∇F (Xβ) X :j 2
), γλ X :j 2

14

Xβ += (β

(t+1) j -β (t) j )X :j 15 return β (t) , θ (t )
Combining Equations (3.14) and (3.16) yields

| β(s+1) j -βj | ≤ |h j ( β(s) ) -h j ( β)| -δ . (3.17)
This can only be true for a finite number of updates, since otherwise taking the limit would give 0 ≤ -δ, and δ > 0 (Equation (3.11)). Therefore, after a finite number of updates, β(s) j = 0 for j / ∈ E.

For j ∈ E, βj = 0 by Assumption 3.6, so β Equipped with these definitions, we can highlight and exploit the regularity of the dual iterates.

Generalized linear models

Coordinate descent for 1 regularization

Theorem 3.8 (VAR for coordinate descent and Sparse GLM). When Problem (3.1) is solved by cyclic coordinate descent, the dual iterates (Xβ (t) ) t∈N form an asymptotical VAR sequence.

Proof As in the proof of Theorem 2.6, we place ourselves in the identified sign regime, and consider only one epoch t of CD: let β(0) denote the value of the primal iterate at the beginning of the epoch ( β(0) = β (t) ), and for s ∈ [S], β(s) ∈ R p denotes its value after the j s coordinate has been updated ( β(S) = β (t+1) ). Recall that in the framework of Problem (3.1), the data-fitting functions f i have 1/γ-Lipschitz gradients, and ∇F (u) = (f 1 (u 1 ), . . . , f n (u n )).

For s ∈ [S], β(s) and β(s-1) are equal everywhere except at entry j s , for which the coordinate descent update with fixed step size γ X :js 2 is:

β(s) js = ST β(s-1) js -γ X :js 2 X :js ∇F (X β(s-1) ), γ X :js 2 λ = β(s-1)
js -γ X :js 2 X :js ∇F (X β(s-1) ) -γ X :js 2 λ sign( βjs ) .

(3.18) Therefore,

X β(s) -X β(s-1) = X :js β(s) js - β(s-1) js = X :js -γ X :js 2 X :js ∇F (X β(s-1) ) -γ X :js 2 λ sign( βjs ) . (3.19)
Using point-wise linearization of the function ∇F around X β, we have:

∇F (Xβ) = ∇F (X β) + D(Xβ -X β) + o(Xβ -X β) , (3.20) 
where D diag(f 1 ( β x 1 ), . . . , f n ( β x n )) ∈ R n×n . Therefore: X β(s) = Id n -γ X :js 2 X :js X :js D X β(s-1) + γ X :js 2 X :js (DX β -∇F (X β))λ sign( βjs )

X :js + o(X β(s) -X β) . D 1/2 X β(s) = Id n -γ X :js 2 D 1/2 X :js X :js D 1/2 As D 1/2 X β(s-1) + γ X :js 2 X :js (DX β)D 1/2 X :js bs + o(X β(s) -X β) , (3.21) 
since the subdifferential inclusion (3.4) gives -X :js ∇F (X β)λ sign( βjs ) = 0. Thus (D 1/2 Xβ (t) ) t∈N is an asymptotical VAR sequence:

D 1/2 Xβ (t+1) = A S . . . A 1 D 1/2 Xβ (t) + b S + . . . + A S . . . A 2 b 1 + o(Xβ (t) -X β) , (3.22)
and so is (Xβ (t) ) t∈N :

Xβ (t+1) = D -1 2 A S . . . A 1 D 1 2 A Xβ (t) + D -1 2 (b S + . . . + A S . . . A 2 b 1 ) b +o(Xβ (t) -X β) .
(3.23)
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Proposition 3.9. As in Lemmas 2.9 and 2.10, for the VAR parameters A and b defined in Equation (3.23), 1 is the only eigenvalue of A whose modulus is 1 and b ⊥ Ker(Id n -A).

Proof First, notice that as in the Lasso case, we have Id n A s 0. Indeed, because f i takes values in ]0, 1/γ[, D 1/2 exists and 1

√ γ Id n D 1/2 0. For any u ∈ R n , u D 1/2 X :js X :js D 1/2 u = (X :js D 1/2 u) 2 ≥ 0, (3.24) 
and

X :js D 1/2 u ≤ X :js D 1/2 u ≤ X :js D 1/2 u ≤ 1 √ γ X :js u , (3.25) 
thus

X :js 2 γ
Id n D 1/2 X :js X :js D 1/2 0 and Id n A s 0.

However, contrary to the Lasso case, because D 1/2 X :js = √ γ X :js , A s is not the orthogonal projection on (Span D 1/2 X :js ) ⊥ . Nevertheless, we still have A s = A s , A s ≤ 1, and for v ∈ R n , A s v = v means that v D 1/2 X :js = 0, so the proof of Lemma 2.9 can be applied to show that the only eigenvalue of A S . . . A 1 which has modulus 1 is 1. Then, observing that A = D -1/2 A S . . . A 1 D 1/2 has the same spectrum as A S . . . A 1 concludes the first part of the proof.

For the second result, let v ∈ Ker(Id n -A), i.e., Av = v, hence A S . . b s = γ X :js 2 X :js (DX β -∇F (X β))λ sign( βjs ) D 1/2 X :js = γ X :js 2 (X :js DX β)D 1/2 X :js .

. A 1 D 1/2 v = D 1/2 Av = D 1/2 v. Therefore D 1/2 v is a fixed point of A S . . . A 1 ,
(3.27)

Additionally, v D -1/2 A S . . . A s+1 b s = (A s+1 . . . A S D -1/2 v) b s = (D -1/2 v) b s = 0.
Hence v is orthogonal to all the terms which compose b, hence v b = 0.

Theorem 3.8 and Proposition 3.9 show that we can construct an extrapolated dual point for any sparse GLM, by extrapolating the sequence (r (t) = Xβ (t) ) t∈N with the construction of Equation (2.25), and creating a feasible point with:

θ (t) accel -∇F (r (t) accel )/ max(λ, X ∇F (r (t) accel ) ∞ ) .
(3.28)

Multitask Lasso

Let q ∈ N be a number of tasks, and consider an observation matrix Y ∈ R n×q , whose i-th row is the target in R q for the i-th sample.

Definition 3.10. The multitask Lasso estimator is defined as the solution of:

B ∈ arg min B∈R n×q 1 2 Y -XB 2 F + λ B 2,1 . (3.29)
Let j 1 < • • • < j S denote the (row-wise) support of B, and let t denote an iteration after support identification. Note that the guarantees of support identification for multitask Lasso requires more assumptions than the case of the standard Lasso. In particular it requires a source condition which depends on the design matrix X. This was investigated for instance by [START_REF] Vaiter | Model consistency of partly smooth regularizers[END_REF] when considering a proximal gradient descent algorithm.

Let B (0) = B (t) , and for s ∈ [S], let B (s) denote the primal iterate after coordinate j s has been updated. Let s ∈ [S], with B (s) and B (s-1) being equal everywhere, except for their j s row for which one iteration of proximal block coordinate descent gives φ(B)

B js + 1 X :js 2 X :js (Y -XB) ∈ R 1×q : B (s) js: = 1 - λ/ X :js 2 φ(B (s-1) ) φ(B (s-1) ) . (3.30) Hence XB (s) -XB (s-1) = X :js (B (s) js: -B (s-1) js: ) = X :js 1 X :js 2 X :js (Y -XB (s-1) ) - λ/ X :js 2 φ(B (s-1) )
φ(B (s-1) ) .

(3.31)

We are unable to show that (Xβ (t) ) t∈N is an asymptotic VAR sequence, because the term φ(B)/ φ(B) cannot be linearized with respect to XB directly. Introducing Ψ e js -1 X :js 2 X :js X, so that φ(B) = φ( B) + Ψ(B -B), one has the following linearization though:

φ(B) φ(B) = φ( B) φ( B) + 1 φ( B) Ψ(B -B) - Ψ(B -B)φ( B) φ( B) φ( B) 2 + o(B -B) , (3.32) 
which does not allow to exhibit a VAR structure, as B should appear only on the right.

Despite the latter negative result, empirical results of Section 3.5 show that dual extrapolation still provides a tighter dual point in the identified support regime. Celer empirical adaptation to multitask Lasso consists in using d

(t) j = (1 -X :j Θ (t)
)/ X :j with the dual iterate Θ (t) ∈ R n×q . The inner solver is cyclic block coordinate descent (BCD), and the extrapolation coefficients are obtained by solving Equation (2.14), which is an easy to solve matrix least-squares problem.

Working sets

Being able to construct a better dual point leads to a tighter gap and a smaller upper bound in Equation (3.6), hence to more features being discarded and a greater speedup for Gap Safe screening rules. As we detail in this section, it also helps to better prioritize features, and to design an efficient working set policy.

Improved working sets policy

In the context of this manuscript, a working set approach starts by solving Problem (3.1) restricted to a small set of features W (0) ⊂ [p] (the working set), then defines iteratively new working sets W (t) and solves a sequence of growing problems [START_REF] Kowalski | Accelerating ISTA with an active set strategy[END_REF] 3.4. WORKING SETS 75 [START_REF] Boisbunon | Active set strategy for highdimensional non-convex sparse optimization problems[END_REF][START_REF] Santis | A fast active set block coordinate descent algorithm for 1 -regularized least squares[END_REF]. It is easy to see that when W (t) W (t+1) and when the subproblems are solved up to the precision required for the whole problem, then working sets techniques converge.

It is easy to see that every screening rule which writes:

∀j ∈ [p], d j > τ ⇒ βj = 0 , (3.33)
allows to define a working set policy. For example for Gap Safe rules,

d j = d j (θ) 1 -|X :j θ| X :j , (3.34)
is defined as a function of a dual point θ ∈ ∆ X . The value d j can be seen as measuring the importance of feature j, and so given an initial size p (1) the first working set can be defined as: 0) , i.e., the indices of the p (1) smallest values of d(θ). As in Figure 1.7, this is an abuse of notation, as j 1 should be j

W (1) = {j 1 , . . . , j p (1) } , (3.35) with d j 1 (θ) ≤ • • • ≤ d j p (1) (θ) < d j (θ), ∀j / ∈ W (
(1) 1

to highlight the dependency on the iteration. The latter notation unfortunately leads to the rather inelegant notation d j (1)

p (1)
, therefore we take the liberty of omitting the exponent notation in j 1 , . . . , j p (1) . The reader should keep in mind that j 1 , etc. are overwritten at each iteration.

Once the working set has been defined, the subproblem solver is launched on X W (1) . New primal and dual iterates are returned, which allow to recompute d j 's and define iteratively:

W (t+1) = {j 1 , . . . , j p (t+1) } , (3.36)
where we impose d j (θ) = -1 when β (t) j = 0 to keep the active features in the next working set. As in Chapter 2, we choose p (t) = min(p, 2 β (t) 0 ) to ensure a fast initial growth of the working set, and avoid growing too much when the support is nearly identified. The stopping criterion for the inner solver on W (t) is to reach a gap lower than a fraction ρ = 0.3 of the duality gap for the whole problem, P(β (t) )-D(θ (t) ). These adaptive working set policies are commonly used in practice (Johnson andGuestrin, 2015, 2018).

The results of Section 3.3 justify the use of dual extrapolation for any sparse GLM, thus enabling us to generalize Celer to the whole class of models (Algorithm 3.2).

Newton-Celer

When using a squared 2 loss, the curvature of the loss is constant: for the Lasso and multitask Lasso, the Hessian does not depend on the current iterate. This is however not true for other GLM data fitting terms, e.g., Logistic regression, for which taking into account the second order information proves to be very useful for fast convergence [START_REF] Hsieh | QUIC: Quadratic approximation for sparse inverse covariance estimation[END_REF]. To leverage this information, we can use a prox-Newton method (Lee et al., 2012;[START_REF] Scheinberg | Complexity of inexact proximal Newton methods[END_REF] as inner solver; an advantage of dual extrapolation is that it can be combined with any inner solver, as we detail below. For reproducibility and completeness, we first briefly detail the Prox-Newton procedure used. In the following and in Algorithms 3.4 to 3.6 we focus on a single subproblem Algorithm 3.4 Prox-Newton subproblem solver (illustrated on logistic regression)

input : X = [X :1 | . . . |X :p ] ∈ R n×p , y ∈ R n , λ, β (0) ∈ R p , param: MAX_CD = 20, MAX_BACKTRACK = 10, K = 5 init : ∆β = 0 p , X∆β = 0 n , θ (0) = 0 n , D = 0 n×n , L = 0 p , for t = 1, . . . , T do for i = 1, . . . , n do D ii = f i (β x i ) = exp(y i β x i )/(1 + exp(y i β x i )) 2 for j = 1, . . . , p do L j = X :j , X :j D = n i=1 x 2 ij exp(y i β x i )/(1 + exp(y i β x i )) 2 if t = 1 then MAX_CD = 1
else MAX_CD = 20 ∆β = newton_direction(X, y, β (t-1) , D, L = (L 1 , . . . , L p ), MAX_CD)

α (t) = backtracking(∆β, X∆β, y, λ, MAX_BACKTRACK)
β (t) = β (t-1) + α (t) × ∆β θ (t) res = -∇F (Xβ (t) )/λ = -y/(λ1 n + λ exp(y Xβ (t) )) 10 θ (t) res = θ (t) res / max(1, X θ (t) res ∞ ) 11 θ (t) = arg max θ∈{θ (t-1) ,θres} D(θ) 12 if P(β (t) ) -D(θ (t) ) < then 13 break 14 return β (t) , θ (t)
Algorithm 3.5 newton_direction (illustrated on logistic regression) input : 

X = [X :1 | . . . |X :p ] ∈ R n×p , y ∈ R n , β ∈ R p , D ∈ R n×n , L ∈ R p , MAX_CD param 
u j = β j + (∆β) j ũj = ST β j + (∆β) j -1 L j X :j ∇F (Xβ (t) ) -X :j , X∆β D , λ L j // see (3.41) (∆β) j = ũj -β j X∆β += (ũ j -u j )X :j τ += (ũ j -u j ) 2 × L 2 j if τ ≤ and k ≥ MIN_CD then break 10 return ∆β
Minimizing this approximation yields the direction ∆ (t) for the proximal Newton step:

∆ (t) + β (t) = arg min β 1 2 β -β (t) + H -1 ∇f (β (t) ) 2 H + λ β 1 . (3.38)
Then, a step size α (t) is found by backtracking line search (Algorithm 3.6), and:

β (t+1) = β (t) + α (t) ∆ (t) .
(3.39) CHAPTER 3. DUALITY IMPROVEMENTS FOR SPARSE GLMS Solving (3.38) amounts to solving the following Lasso problem:

u = arg min u 1 2 ỹ -Xu 2 2 + λ u 1 , (3.40) where X = D 1/2 X, ỹ = D 1/2 Xβ (t) -D -1/2 X † X ∇F (Xβ (t)
) and X † is the pseudoinverse of X. While this may seem costly computationally, it turns out that the terms X † , ỹ and X are not needed to solve (3.40) with coordinate descent. A coordinate descent update for (3.40) reads:

u j ← ST u j + 1 l j X :j ỹ -Xu , λ l j , (3.41)
where

X :j (ỹ -Xu) = X :j DXβ (t) -X :j ∇F (Xβ (t)
) -X :j DXu , (3.42)

l j = X :j DX :j . (3.43)
Indeed, the update only involves X, y and inner products weighted by D. The algorithm is summarized in Algorithm 3.5.

Contrary to coordinate descent, Newton steps do not lead to an asymptotic VAR, which is required to guarantee the success of dual extrapolation. To address this issue, we compute K passes of cyclic coordinate descent restricted to the support of the current estimate β before defining a working set (Algorithm 3.2, line 5). The K values of Xβ obtained allow for the computation of both θ accel and θ res . The motivation for restricting the coordinate descent to the support of the current estimate β comes from the observation that dual extrapolation proves particularly useful once the support is identified. The Prox-Newton solver we use is detailed in Algorithm 3.4. When Algorithm 3.2 is used with Algorithm 3.4 as inner solver, we refer to it as the Newton-Celer variant.

Values of parameters and implementation details

In practice, Prox-Newton implementations such as GLMNET [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], newGLMNET [START_REF] Yuan | An improved GLMNET for l1-regularized logistic regression[END_REF] or QUIC [START_REF] Hsieh | QUIC: Quadratic approximation for sparse inverse covariance estimation[END_REF] only solve the direction approximately in Equation (3.38). How inexactly the problem is solved depends on some heuristic values.

For reproducibility, we expose the default values of these parameters as inputs to the algorithms. Importantly, the variable MAX_CD is set to 1 for the computation of the first Prox-Newton direction. Experiments have indeed revealed that a rough Newton direction for the first update was sufficient and resulted in a substantial speed-up. Other parameters are set based on existing Prox-Newton implementations such as Blitz.

Experiments

In this section, we numerically illustrate the benefits of dual extrapolation on various data sets. Implementation is done in Python, Cython [START_REF] Behnel | Cython: The best of both worlds[END_REF] and numba [START_REF] Lam | Numba: A LLVM-based Python JIT Compiler[END_REF] for the low-level critical parts. The solvers exactly follow the scikit-learn API [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF][START_REF] Buitinck | API design for machine learning software: experiences from the scikit-learn project[END_REF], so that Celer can be used as a drop-in replacement in existing code. The package is available under BSD3 Algorithm 3.6 backtracking (illustrated on logistic regression) input : ∆β, X∆β, λ param: MAX_BACKTRACK = 20 init : α = 1 for k = 1, . . . , MAX_BACKTRACK do δ = 0 In all this section, the estimator-specific λ max refers to the smallest value giving a null solution (for instance λ max = X y ∞ in the Lasso case). 

for j = 1, . . . , p do if β j + α × (∆β) j < 0 then δ -= λ(∆β) j else if β j + α × (∆β) j > 0 then δ += λ(∆β) j else if β j + α × (∆β) j = 0 then δ -= λ (∆β) j θ = ∇F (Xβ + α × X∆β) = -y σ(-y (Xβ + α × X∆β)) δ += (X∆β) θ if δ < 0 then break 10 else α = α/

Illustration of dual extrapolation

For the Lasso (Figure 3.1a), Logistic regression (Figure 3.1b) and Multitask Lasso (Figure 3.1c), we illustrate the applicability of dual extrapolation. For all problems, the figures show that θ accel gives a better dual objective after sign identification. They also show that the behavior is stable before identification. The peaks correspond to numerical errors. We choose to present the bare result of extrapolation, but peaks would not appear if we applied the robustifying procedure (2.27), as it forces the dual objective to be monotonic.

In particular, Figure 3.1c shows that dual extrapolation works in practice for the Multitask Lasso, even though there is no such result as sign identification, and we are not able to exhibit a VAR behavior for (XB (t) ) t∈N . 

Improved screening and working set policy

In order to have a stopping criterion scaling with n, the solvers are stopped when the duality gap goes below × F (0 n ).

Logistic regression

In this section, we evaluate separately the first order solvers (Gap Safe, Gap Safe with extrapolation, Celer with coordinate descent as inner solver), and the Prox-Newton solvers: Blitz, Newton-Celer with working set but without using dual extrapolation (PN WS), and Newton-Celer. Figure 3.2 shows that when cyclic coordinate descent is used, extrapolation improves the performance of screening rules, and that using a dual-based working set policy further reduces the computational burden.

Figure 3.3 shows the limitation of dual extrapolation when second order information is taken into account with a Prox-Newton: because the Prox-Newton iterations do not create a VAR sequence, it is necessary to perform some passes of coordinate descent to create θ accel , as detailed in Section 3.4.2. This particular experiment reveals that this additional time unfortunately mitigates the gains observed in better working sets and stopping criterion.

Multitask Lasso

The data for this experiment uses magnetoencephalography (MEG) recordings which are collected for neuroscience studies. Here we use data from the sample dataset of the MNE software [START_REF] Gramfort | MNE software for processing MEG and EEG data[END_REF]. Data were obtained using auditory stimulation. There are n = 305 sensors, p = 7498 source locations in the brain, and the measurements are time series of length q = 49. Using a Multitask Lasso formulation allows to reconstruct brain activitiy exhibiting a stable sparsity pattern across time [START_REF] Gramfort | Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods[END_REF]. The inner solver for Celer is block coordinate descent, which is also used for the Gap Safe solver [START_REF] Ndiaye | Gap safe screening rules for sparse multi-task and multi-class models[END_REF]. While Figure 3.1c showed that for the Multitask Lasso the dual extrapolation performance also gives an improved duality gap, here Figure 3.4 shows that the working set policy of Celer performs better than Gap Safes rules with strong active warm start. We could not include Blitz in the benchmark as there is no standard public implementation for this problem. Lasso-type estimators help to fight the statistical curses of high dimension by performing variable selection. When the noise variance is constant, the regularization parameter for which statistical analysis of the Lasso holds is a linear function of the noise standard deviation, which is often unknown in practice. A way to address this dependency is to consider estimators such as the Concomitant Lasso, which jointly optimize over the regression coefficients and the noise level. In applications such as magneto-electroencephalography (M/EEG) where the observations are pooled from different sources to increase sample size, noise levels differ and the homoscedastic assumption of concomitant estimators no longer holds. More complex model are then needed, but the averaging step performed to reduce the noise variance dramatically reduces sample sizes, preventing finer modeling of the noise structure.

In this chapter, we provide new statistical and computational solutions to perform regression with correlated Gaussian noise, in the multitask, multirepetition context of M/EEG. We derive two joint estimators of the regression coefficients and the square root of the noise covariance matrix, computable via a jointly convex optimization problem. Joint convexity allows the estimators to be approximately computed easily with off-theshelf optimization techniques, a notable asset compared to existing non-convex or hard to solve approaches. In particular, the block-coordinate descent techniques used in the alternate minimization are amenable to the improvements introduced in Part I. As a theoretical analysis, we connect our optimization problem to the use of nuclear norm as a datafitting term, through the theory of smoothing. This chapter covers the following publications:

• M. Massias, O. Fercoq, A. Gramfort, and J. Salmon. Generalized concomitant multi-task Lasso for sparse multimodal regression. In AISTATS, pages 998-1007, 2018a

• Q. Bertrand * , M. Massias * , A. Gramfort, and J. Salmon. Handling correlated and repeated measurements with the smoothed Multivariate square-root Lasso.

In NeurIPS, 2019

Introduction

In many statistical applications, the number of parameters p is much larger than the number of observations n. A popular approach to tackle regression problems in such conditions is to consider convex 1 -type penalties, as popularized by [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. The use of these penalties relies on a regularization parameter λ trading data fidelity versus sparsity, which requires careful tuning. Unfortunately, [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] showed that, in the case of homoscedastic Gaussian noise, the optimal λ linearly depends on the standard deviation of the noise -the noise level. Because the latter is rarely known in practice, one can jointly estimate the noise level and the regression coefficients, following pioneering work on concomitant estimation [START_REF] Huber | Numerical solution of robust regression problems[END_REF][START_REF] Huber | Robust Statistics[END_REF]. Adaptations to sparse regression have been analyzed under the names of square-root Lasso [START_REF] Belloni | Square-root Lasso: pivotal recovery of sparse signals via conic programming[END_REF] or Scaled Lasso [START_REF] Sun | Scaled sparse linear regression[END_REF]. Alternatively, Städler et al. (2010) considered a joint penalized maximum likelihood approach, using a change of variable to avoid minimization of a non-convex function.

The Concomitant Lasso [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] is jointly convex and admits a "smooth + proximable" structure for the minimization over the regression coefficients. This makes it easy to solve in practice, even in high dimension: while solvers for the "non-smooth + non-smooth" square-root Lasso relied on second order cone programming [START_REF] Becker | Templates for convex cone problems with applications to sparse signal recovery[END_REF], the concomitant solver of Ndiaye et al. (2017a) relies on coordinate descent. It scales gracefully with the dimension p thanks to the use of screening rules (El [START_REF] Ghaoui | Safe feature elimination in sparse supervised learning[END_REF]Fercoq et al., 2015), making it as fast as a pure Lasso solver.

In the aforementioned contributions, the noise parameter is a single scalar, the variance. Yet, in M/EEG and other applied settings, data of different natures or from different sources must be aggregated to increase the number of observations and improve performance. This often leads to correlation and magnitude variation in the noise: the data may be contaminated with non-white noise (see the statistical analysis of In our application, the (far from scalar!) structure of the noise covariance of M/EEG data is illustrated in Figure 1.9 (page 34), where we can also see that EEG noise has a standard deviation of the order of a few µV, while gradiometers have a noise standard deviation of a few fT/cm. When pooling such signals together, the absolute value of the noise therefore differs by several orders of magnitude.

To address the correlated noise problem, estimators based on non-convex optimization problems were proposed (Lee and Liu, 2012) and analyzed for sub-Gaussian covariance matrices (Chen and Banerjee, 2017) through penalized Maximum Likelihood Estimation (MLE). Other estimators [START_REF] Rothman | Sparse multivariate regression with covariance estimation[END_REF][START_REF] Rai | Simultaneously leveraging output and task structures for multiple-output regression[END_REF] assume that the inverse of the covariance (the precision matrix ) is sparse, but the underlying optimization problems remain non-convex.

Our goal in this chapter is to propose a convex and numerically easy to solve approach to heteroscedastic regression, as the noise covariance matrix estimation is a notorious challenge for M/EEG data (Engemann and Gramfort, 2015a).

We first introduce the Smooth Generalized Concomitant Lasso (SGCL), the most general extension of the Concomitant Lasso to the multitask case. This approach estimates the full square root of the covariance, a statistical challenge when the number of tasks does not dwarf the number of observation. As a proof of concept, we first introduce the block model, where the noise is assumed to be homoscedastic per type of sensor.

In a more refined approach, we then exploit the multiple repetitions structure of M/EEG data: because the SNR is too low, M/EEG measurements are commonly repeated and averaged. Indeed, under the assumption that the signal of interest is corrupted by additive independent realizations of noise, averaging measurements reduces the noise variance by the number of repetitions. Popular estimators for M/EEG usually discard the individual observations, therefore relying on homoscedastic noise models [START_REF] Ou | A distributed spatio-temporal EEG/MEG inverse solver[END_REF][START_REF] Gramfort | Timefrequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations[END_REF].

We propose the Concomitant Lasso with Repetitions (CLaR), an estimator that is:

• designed to exploit all available measurements collected during repetitions of experiments, • defined as the solution of a convex minimization problem, handled efficiently by proximal block coordinate descent techniques, • built thanks to an explicit connection with nuclear norm smoothing, • shown (through extensive benchmarks w.r.t. existing estimators) to leverage experimental repetitions to improve support identification

We first introduce briefly the seminal Concomitant Lasso estimator and its cousins. In Section 4.2, we recall the framework of concomitant estimation, and introduce the SGCL and its refinement, CLaR. In Section 4.3, we study the properties of CLaR from the optimizer's point of view, and derive an algorithm to solve it. In Section 4.4, we justify the for through the use of a smoothed nuclear norm as a datafitting term.

The (homoscedastic) Concomitant Lasso

We start by considering the single task setting (y ∈ R n , β ∈ R p ), with an homoscedastic model y = Xβ * +ε, ε ∈ R n having i.i.d. entries N (0, σ 2 * ). To estimate β * with an optimal regularization strength independent σ * , the seminal estimator is the Concomitant Lasso, proposed under different forms in Owen (2007); Sun and Zhang (2012). Definition 4.1. For λ > 0, the Concomitant Lasso regression coefficients and standard deviation estimators are defined as solutions of the optimization problem arg min

β∈R p ,σ>0 y -Xβ 2 2nσ + σ 2 + λ β 1 . (4.1)
This estimator is closely connected to the square-root Lasso [START_REF] Belloni | Square-root Lasso: pivotal recovery of sparse signals via conic programming[END_REF].

Definition 4.2. For λ > 0, the square-root Lasso is defined as the solution of:

arg min β∈R p y -Xβ √ n + λ β 1 . (4.2)
The "close connexion" is the following: for a given λ > 0, any solution of the square-root Lasso β√ such that y -X β√ = 0 n is also a solution of the Concomitant Lasso with same regularization parameter, and associated noise level estimate σ = y -X β√ / √ n.

As mentioned in the introduction in the case of Tikhonov regression, the square-root Lasso and the Lasso have the same solution paths: the interest of the square-root Lasso resides in an easier study of its regularization parameter.

Finally, notice that the data-fitting term of the square-root Lasso is not smooth (a norm is never differentiable at the origin), making it a challenging "non-smooth + non-smooth" optimization problem, while the Concomitant Lasso has a jointly convex objective function ((a, b) → a 2 /b is convex on (R * + ) 2 : its Hessian is 2/b • vv with v = (1, -a/b) ). Additionally, the objective's dependency in β is amenable to proximal coordinate descent. Nevertheless, numerical issues can arise for the Concomitant Lasso when σ approaches 0; in Ndiaye et al. (2017a) it was proposed to add a constraint on σ in the objective function. Following the terminology introduced in Nesterov (2005), this was coined the Smoothed Concomitant Lasso. Definition 4.3. For σ > 0 and λ > 0, the Smoothed Concomitant Lasso estimator and its associated standard deviation estimator are defined as:

arg min β∈R p ,σ≥σ y -Xβ 2 2nσ + σ 2 + λ β 1 . (4.3) 
In these concomitant models, the assumption is that the noise is Gaussian homoscedastic. We aim at generalizing them to the more complex M/EEG noise structure.

Heteroscedastic concomitant estimation

Notation and probabilistic model For more compact notation, for σ > 0 we denote S = σ Id n . Let r be the number of repetitions of the experiment (trials in M/EEG vocabulary). The r observation matrices are denoted Y 1 , . . . , Y r ∈ R n×q with n the number of samples (sensors) and q the number of tasks (time samples). The mean over the repetitions of the observation matrices is written Ȳ 1 r r l=1 Y l . Let X ∈ R n×p be the design (or gain) matrix, with p features stored column-wise: X = [X :1 | . . . |X :p ]. The matrix B * ∈ R p×q contains the coefficients of the linear regression model. The residuals are defined as R l Y l -XB ∈ R n×q .
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We assume that each measurement follows the common model:

∀l ∈ [r], Y l = XB * + S * E l , (4.4) 
where the entries of E l are i.i.d. samples from standard normal distributions, the E l 's are independent, and S * ∈ S n ++ is the co-standard deviation matrix. Note that even if the observations Y 1 , . . . , Y r differ because of the noise E 1 , . . . , E r , both B * and the noise structure S * are shared across repetitions. This is a natural assumption for stable physical systems observed with sensor or background noise.

In low signal-to-noise ratio (SNR) situations, a standard way to deal with strong noise is to use the averaged observation Ȳ ∈ R n×q instead of the raw observations. The associated model reads:

Ȳ = XB * + S * Ẽ , (4.5) 
with S * S * / √ r and Ẽ has i.i.d. entries drawn from a standard normal distribution.

The SNR (see the rescaled definition we consider in Equation (5.13)) is multiplied by √ r, yet the number of samples goes from rnq to nq, making it statistically challenging to estimate correctly the O(n 2 ) parameters of S * .

We originally considered Model (4.5) and designed an heteroscedastic estimator on averaged data.

SGCL: Working on averaged data

Contrary to the Concomitant Lasso, the Smooth Generalized Concomitant Lasso estimates the full square root of the covariance of the noise. ( BSGCL , ŜSGCL ) ∈ arg min

B∈R p×q S σ/ √ r Idn Ȳ -XB 2 S-1 2nq + Tr( S) 2n + λ B 2,1 . (4.6) 
As for σ in the Smoothed Concomitant Lasso, the constraint S σ/ √ r Id n acts as a regularizer in the dual, and is introduced for numerical stability. To set the value of σ, one can use a proportion of the initial estimation of the noise standard deviation: σ = 10 -α Y / √ nq, with for example α ∈ {2, 3}. The SGCL corresponds to the most general framework to adapt the Concomitant Lasso to multi-task and non scalar covariances. However, in its general formulation it has an obvious drawback: in practice estimating S * requires to fit n(n -1)/2 parameters with only nq observations, which is problematic if q is not large enough. Hence, additional regularization might be needed to provide an accurate estimator of S * . For example, the shrinking approach of [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF] estimates the covariance as a weighted average of the identity and the sample covariance matrix, in order to improve its conditioning; the resulting estimator is proven to be well-conditioned and more asymptotically more accurate than the sample covariance (when both p and n got to infinity).

Our first direction of research was to assume a more regular structure for S * , motivated by the specificities of the M/EEG inverse problem. More generally, in supervised learning problems where data come from an identified, finite set of sources, we proposed a specification of Model (4.5), when the observations come from K different sources or K types of sensors (in the M/EEG case: magnetometers, gradiometers and electrodes). In that case, the variant of Model (4.5) called the block homoscedastic model constrains S * to be diagonal, the diagonal being constant over known blocks. For the sake of completeness, this block model and proofs of concept experiments are presented in Appendix B. However, this is a somehow simplistic model, and a better solution is to estimate a full covariance by exploiting all repetitions instead of averaging them.

CLaR: Exploiting all epochs

To leverage the multiple repetitions while taking into account the noise structure, we introduced the Concomitant Lasso with Repetitions (CLaR). ( BCLaR , ŜCLaR ) ∈ arg min

B∈R p×q S σ Idn 1 2nqr r l=1 Y l -XB 2 S -1 + Tr(S) 2n f (B,S) + λ B 2,1 , (4.7) 
where λ > 0 controls the sparsity of BCLaR and σ > 0 controls the smallest eigenvalue of ŜCLaR .

It is clear that CLaR is a generalization the SGCL, in the case of a single repetition with lower noise.

Remark 4.6. CLaR and SGCL are the same when r = 1 and Y 1 = Ȳ . In the case r > 1, note that ŜCLaR estimates S * , while ŜSGCL estimates S * = S * / √ r. Since we impose the constraint ŜCLaR σ Id n , we rescale the constraint so that ŜSGCL σ/ √ r Id n in (4.6) for future comparisons.

The justification for CLaR is the following: if the quadratic loss Y -XB 2 were used, the parameters of Model (4.4) could be estimated by using either Ȳ -XB 2 or 1 r Y l -XB 2 as a data-fitting term. Yet, both alternatives yield the same solutions as the two terms are equal up to constants. Hence, the quadratic loss does not leverage the multiple repetitions and ignores the noise structure. On the contrary, the more refined data-fitting term of CLaR allows to take into account the individual repetitions, leading to improved performance in applications.

Optimization properties of CLaR and SGCL

We detail the principal results needed to solve Problem (4.7) numerically, leading to the implementation proposed in Algorithm 4.1. We first recall useful results for alternate minimization of convex composite problems.

Alternate minimization

Proposition 4.7. CLaR is jointly convex in (B, S). Moreover, f is convex and smooth on the feasible set, and • 2,1 is convex and separable in B j: 's, thus minimizing the objective alternatively in S and in B j: 's (see Algorithm 4.1) converges to a global minimum.

Proof The expression of f is:

f (B, S) = 1 2nqr r 1 Y l -XB 2 S -1 + 1 2n Tr(S) = 1 2n Tr(Z S -1 Z) + 1 2n Tr(S) , (4.8) 
with

Z = 1 √ qr [Y 1 -XB| . . . |Y r -XB] .
First note that the function (Z, S) → Tr Z S -1 Z is jointly convex over R n×q × S n ++ (Boyd and Vandenberghe, 2004, Example 3.4). This means that f as a function of

(Z, S) is jointly convex. Moreover B → [Y 1 -XB| . . . |Y r -XB] is linear in B, thus f is jointly convex in (B, S), meaning that (B, S) → f + λ • 2,1 is jointly convex in (B, S).
Finally, the constraint set is convex and thus Problem (4.7) is convex.

The function f is convex and smooth on the feasible set and • 2,1 is convex in B and separable in B j: 's, thus f + λ • 2,1 can be minimized through coordinate descent in S and the B j: 's [START_REF] Tseng | Convergence of a block coordinate descent method for nondifferentiable minimization[END_REF][START_REF] Tseng | Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization[END_REF].

By virtue of Proposition 4.7, to solve Problem (4.7) we only need to consider solving problems with B or S fixed, which we detail in the next propositions.

Definition 4.8 (Clipped Square Root). For S ∈ S n + with spectral decomposition S = U diag(γ 1 , . . . , γ n )U (U is orthogonal and the γ i 's are positive), let us define the Clipped Square Root operator:

ClSqrt(S, σ) U diag( √ γ 1 ∨ σ, . . . , √ γ n ∨ σ)U . (4.9) 
Proposition 4.9. Let B ∈ R n×q be fixed. The minimization of f (B, S) with respect to S with the constraint S σ Id n admits the closed-form solution:

S = ClSqrt 1 qr r l=1 (Y l -XB)(Y l -XB) , σ . (4.10) 
Proof Minimizing f (B, •) amounts to solving:

arg min S σ Idn Tr Z S -1 Z + Tr(S) , with Z = 1 √ qr [Y 1 -XB| . . . |Y r -XB] , (4.11) 
a problem for which strong duality holds since the objective function is convex and the feasible set has non-empty interior. The associated Lagrangian formulation is:

min S∈S n + max Λ∈S n + Tr Z S -1 Z + Tr(S) + Tr(Λ (S -S)) L(S,Λ)
.

(4.12)

Recall that the gradient of S → Tr Z S -1 Z is -S -1 ZZ S -1 (on S n ++ ), and that ZZ = 1 qr r l=1 (Y l -XB)(Y l -XB) . The first order optimality conditions read:

             ∂L(•, Λ) ∂S ( Ŝ) = -Ŝ-1 ZZ Ŝ-1 + Id n -Λ = 0 n,n , Λ (S -Ŝ) = 0 n,n , Λ ∈ S n + , Ŝ S . (4.13) CHAPTER 4. CONCOMITANT ESTIMATION Let U diag(λ 1 , . . . , λ d , 0, . . . , 0)U be an eigenvalue decomposition of ZZ , with d the rank of ZZ , λ 1 ≥ • • • ≥ λ d > 0 and U U = Id n . For i ∈ [d], let us define µ i √ λ i ∨ σ, S = U diag(µ 1 , .
. . , µ d , σ, . . . , σ)U , and Λ = Id n -S -1 ZZ S -1 . It is clear by construction that S S. We also have:

Λ = U diag(1, . . . , 1)U -U diag( λ 1 µ 2 1 , . . . , λ d µ 2 d , 0, . . . , 0)U = U diag(1 -λ 1 µ 2 1 , . . . , 1 -λ 1 µ 2 1 , 1, . . . , 1)U 0 n,n , (4.14) 
where the later holds by definition of the µ i 's. Moreover: This shows that the pair (S, Λ) satisfies all the first order conditions on the Lagrangian, hence that S is solution of Problem (4.11).

Λ (S -S) = U diag (1-λ 1 µ 2 1 )(µ 1 -σ), . . . , (1-λ d µ 2 d )(µ d -σ), 0, . . . , 0 U = 0 n,n , (4.15) since ∀i ∈ [r], (1 -λ i µ 2 i )(µ i -σ) = 0 (
Proposition 4.10. For a fixed S ∈ S n ++ , each step of the block minimization of f (•, S)+ λ • 2,1 in the j th line of B admits a closed-form solution:

B j: = BST B j: + X :j S -1 ( Ȳ -XB) X :j 2 S -1 , λnq X :j 2 S -1 . (4.16)
Proof The function to minimize is the sum of a smooth term f (•, S) and a non-smooth but row-wise separable term, • 2,1 , whose proximal operator can be computed:

• f is X :j 2 S -1 /nq-smooth with respect to B j: , with partial gradient ∇ j f (•, S) = -1 nq X :j S -1 ( Ȳ -XB),
• B 2,1 = p j=1 B j: is row-wise separable over B, with:

prox λnq/ X :j 2 S -1 , • (•) = BST •, λnq X :j 2 S -1 . (4.17)
Hence, proximal block-coordinate descent converges [START_REF] Tseng | Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization[END_REF], and the updates are given by Equation (4.16). The closed-form formula arises since the smooth part of the objective is quadratic and isotropic w.r.t. B j: .

As for the Lasso, there exists λ max ≥ 0 such that whenever λ ≥ λ max , the estimated coefficients vanish. This critical value helps to roughly calibrate λ in practice, by choosing it as a fraction of λ max .

Proposition 4.11 (Critical regularization parameter). For the CLaR estimator we have, with 

S max ClSqrt 1 qr r l=1 Y l Y l , σ : ∀λ ≥ λ max 1 nq X S -1 max Ȳ 2,∞ , BCLaR = 0 p,q . ( 4 
B = 0 p,q , S -1 = σ -1 Id n , R = Ȳ , cov Y = 1 r r l=1 Y l Y l // precomputed for t = 1, . . . , T do if t = 1 (mod f dual ) then // noise update RR = RRT(cov Y , Y, X, B) // eq. (4.20) S = ClSqrt( 1
qr RR , σ) // eq. (4.10)

for j = 1, . . . , p do L j = X :j S -1 X :j for j = 1, . . . , p do // coef. update R = R + X :j B j: // partial residual update B j: = BST

X :j S -1 R L j , λnq L j R = R -X :j B j: // residual update 10 return B, S Proof First notice that if B = 0, then Ŝ = ClSqrt 1 qr r l=1 Y l Y l , σ S max .
Then, according to Fermat's rule:

B = 0 p,q ⇐⇒ 0 p,q ∈ ∂ f (•, S max ) + λ • 2,1 (0 p,q ) ⇐⇒ -∇f (0 p,q , S max ) ∈ λB • 2,∞ ⇐⇒ 1 nq X S -1 max Ȳ 2,∞ λ max ≤ λ . (4.19) 
Remark 4.12. Once cov Y 1 r r 1 Y l Y l is pre-computed, the cost of updating S does not depend on r, i.e., is the same as working with averaged data. Indeed, with R = [Y 1 -XB| . . . |Y r -XB], the following computation can be done in O(qn 2 ): 

RR = RRT(cov Y , Y, X, B) rcov Y + r(XB)(XB) -r Ȳ (XB) -r(XB) Ȳ . (4.20) Proof RR = r l=1 R l R l = r l=1 (Y l -XB)(Y l -XB) = r l=1 Y l Y l - r 1 Y l (XB) - r 1 XBY l + rXB(XB) = rcov Y -r Ȳ XB -

Duality results

Proposition 4.13. With Θ = ( Θ1 , . . . , Θr ), a dual formulation of Problem (4.7) is:

Θ = arg max (Θ 1 ,...,Θ r )∈∆ X,λ σ 2 1 - qnλ 2 r r l=1 Tr Θ l Θ l + λ r r l=1 Θ l , Y l , (4.22) 
with

Θ = 1 r r 1 Θ l (4.23) ∆ X,λ = (Θ 1 , . . . , Θ r ) ∈ (R n×q ) r : X Θ 2,∞ ≤ 1, r l=1 Θ l Θ l 2 ≤ r λ 2 n 2 q , (4.24)
Proof The primal optimum is:

p * min B∈R p×q S σ Idn 1 2nqr r l=1 Y l -XB 2 S -1 + 1 2n Tr(S) + λ B 2,1 = min B∈R p×q R l =Y l -XB, ∀l∈[r] S σ Idn 1 2nqr r l=1 R l 2 S -1 + 1 2n Tr(S) + λ B 2,1 = min B∈R p×q R 1 ,...,R r ∈R n×q S σ Idn max Θ 1 ,...,Θ r ∈R n×q 1 2nqr r l=1 R l 2 S -1 + 1 2n Tr(S) + λ B 2,1 + λ r r l=1 Θ l , Y l -XB -R l .
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p * = max Θ 1 ,...,Θ r ∈R n×q min B∈R p×q R 1 ,...,R r ∈R n×q S σ Idn 1 2nqr r l=1 R l 2 S -1 + 1 2n Tr(S) + λ B 2,1 + λ r r l=1 Θ l , Y l -XB -R l = max Θ 1 ,...,Θ r ∈R n×q min S σ Idn 1 r r l=1 min R l ∈R n×q R l 2 S -1 2nq -Θ l , R l + 1 2n Tr(S) + λ min B∈R p×q B 2,1 -Θ, XB + λ r r l=1 Θ l , Y l . (4.25)
Moreover we have:

min R l ∈R n×q R l 2 S -1 2nq -Θ l , R l = - nqλ 2 2 Θ l Θ l , S (4.26) 
min

B∈R p×q B 2,1 -Θ, XB = -max X Θ, B -B 2,1 = -ι B 2,∞ (X Θ) . (4.27) 
This leads to: 

d * = max Θ 1 ,...,Θ r ∈R n×q min S σ Idn - 1 r r l=1 nqλ 2 2 Θ l Θ l , S -λι B 2,∞ (X Θ) + Tr(S) 2n + λ r r l=1 Θ l , Y l = max Θ 1 ,...,Θ r ∈R n×q 1 2n min S σ Idn Id n , S - qn 2 λ 2 r r l=1 Θ l Θ l , S -λι B 2,∞ (X Θ) + λ r r l=1 Θ l , Y l = max Θ 1 ,...,Θ r ∈R n×q 1 2n min S σ Idn Id n -qn 2 λ 2 r r l=1 Θ l Θ l , S -λι B 2,∞ (X Θ) + λ r r l=1 Θ l , Y l . (4.28) min S σ Idn Id n -qn 2 λ 2 r r l=1 Θ l Θ l , S =    Id n -qn 2 λ 2 r r l=1 Θ l Θ l , σ Id n , if Id n qn 2 λ 2 r r l=1 Θ l Θ l , -∞ ,
max (Θ 1 ,...,Θ r )∈∆ X,λ σ 2 1 - qnλ 2 r r l=1 Tr Θ l Θ l + λ r r l=1 Θ l , Y l , (4.30)
where

∆ X,λ (Θ 1 , . . . , Θ r ) ∈ R n×q×r : X Θ 2,∞ ≤ 1, r l=1 Θ l Θ l ≤ r λ 2 n 2 q .
The link equation provides a natural way to construct a dual feasible point from any pair (B, S) in the iterations of Algorithm 4.1. The dual point Θ at iteration t is obtained through a residual rescaling similar to the "naive" procedure detailed in Part I, i.e., Θ l = 1 nqλ (Y l -XB) (with B the current primal iterate); then the dual point is rescaled to lie in ∆ X,λ . This strategy would be amenable to the extrapolation improvements of Chapter 3.

Remark 4.14. Equations (4.9) and (4.10) make it straightforward to compute S -1 and Tr S, which we rather store than S for computational efficiency in Algorithm 4.1. At every update of S, it is also beneficial to precompute S -1 X and S -1 R: maintaining S -1 R rather than R avoids multiplication by S -1 at every BCD step. 

An analysis of CLaR through smoothing

The purpose of this section is to shed some light on the origin of the data-fitting term Y -XB S -1 used in CLaR and SGCL. This datafitting term was introduced empirically, as a way to generalize concomitant estimation to noise covariance estimation. However, after publication of our works, we became aware of closely related estimators. Definition 4.16 (Multivariate square-root Lasso). van de Geer (2016) introduced the Multivariate square-root Lasso estimator, a solution of:

arg min B∈R p×q 1 √ n Y -XB S ,1 + λ i,j |B i,j | . (4.31)
The penalty used on B is not crucial to this estimator, and can be replaced by B 2,1 to fit our framework without loss of interest.

As noted by van de Geer (2016, Lemma 3.4), this estimator is also a solution of:

arg min B∈R p×q ,Σ∈S n ++ 1 n Y -XB Σ -1/2 + Tr Σ 1/2 + λ i,j |B i,j | , (4.32)
provided that the minimum is indeed attained at some Σ ∈ S n ++ . The statistical analysis of this estimator, also pursued by [START_REF] Molstad | Insights and algorithms for the multivariate square-root lasso[END_REF]; [START_REF] Stucky | Asymptotic confidence regions and sharp oracle results under structured sparsity[END_REF], is based on this assumption. It suffers from two drawbacks:
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• the optimization problem is difficult to solve. Recently, [START_REF] Molstad | Insights and algorithms for the multivariate square-root lasso[END_REF] proposed two algorithms to solve it: a prox-linear ADMM, and accelerated proximal gradient descent, the latter lacking convergence guarantees since the composite objective has two non-smooth terms. Before that, van de Geer and Stucky (2016) devised a fixed point method, lacking descent guarantees.

• the noise covariance estimate Σ is never full rank when q < n, and even in cases where q ≥ n, most likely because of the trace penalty, Σ quickly becomes rank deficient as λ decreases.

As it turns out, our approach can be interpreted as a smoothing (recall Proposition 1.9 and Figure 1.3 page 28) technique to replace the non-smooth datafitting term of Problem (4.31) by a smooth approximation.

We start by introducing some elements of smoothing theory [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF]; Beck and Teboulle, 2012) for generic Schatten norms, then focus on the nuclear norm.

Smoothing of Schatten norms

In all this section, the variable is a matrix Z ∈ R n×q unless in the multiple repetition case. To smooth a function, a standard approach is to convolve it with a smooth function (which, as in Figure 1.3, amounts to adding a strongly convex term to its Fenchel transform, then taking the Fenchel conjugate again). Here, the smoothing function we use is an isotropic parabola, and the function we smooth is a generic Schatten norm.

Proposition 4.17. Let ω : R d → R be a convex function with Lipschitz gradient. Let σ > 0 and ω σ σω • σ . Then:

ω(•) = 1 2 • 2 + 1 2 =⇒ ω * σ = σ 2 • 2 -σ 2 . (4.33)
Proof The proof is a direct application of the results on frequently used Fenchel transforms introduced in Equations (1.39), (1.41) and (1.42).

Lemma 4.18. Let c ∈ R, p ∈ 1, +∞ . Let p * ∈ 1, +∞ be the Hölder conjugate of p, satisfying 1 p + 1 p * = 1. For the choice ω = 1 2 • 2 + c: We can now compute the last Fenchel transform remaining:

• S ,p ω σ (Z) = 1 2σ Z 2 + cσ - σ 2 Π B S ,p * Z σ -Z σ 2 . Proof • S ,p ω σ (Z) = • S ,p ω σ * * ( 
σ 2 • 2 + ι B S ,p * * (Z) = sup U ∈R n×q U, Z -σ 2 U 2 -ι B S ,p * (U ) = sup U ∈B S ,p * U, Z -σ 2 U 2 = -σ • inf U ∈B S ,p * 1 2 U 2 -U, Z σ = -σ • inf U ∈B S ,p * 1 2 U -Z σ 2 -1 2σ 2 Z 2 = 1 2σ Z 2 -σ 2 • inf U ∈B S ,p * ( U -Z σ 2 = 1 2σ Z 2 -σ 2 Π B S ,p * Z σ -Z σ 2 . (4.35)
The result follows by combining Equations (4.34) and (4.35).

We detail the result of Lemma 4.18 for peculiar values of p in the next propositions.

Proposition 4.19 (Schatten 2-norm (Frobenius norm)). For the choice ω = 1 2 • 2 + 1 2 , and for Z ∈ R n×q then:

• ω σ (Z) = min σ≥σ 1 2σ Z 2 + σ 2 =      Z 2 2σ + σ 2 , if Z ≤ σ , Z , if Z > σ .
(4.36)

Notice that this is simply the Huber function (with parameter σ) applied to Z .

Proof Let us recall that • = • S ,2 . Therefore:

Π B S ,2 Z σ =      Z σ , if Z ≤ σ , Z Z , if Z > σ .
(4.37)

By combining Equation (4.37) and lemma 4.18 with p = p * = 2, and c = 1 2 , the later yields:

• ω σ (Z) =    1 2σ Z 2 + σ 2 , if Z ≤ σ , Z , if Z > σ .
Proposition 4.20 (Schatten infinity-norm (spectral norm)). For the choice ω = 1 2 • 2 + 1 2 and for Z ∈ R n×q with singular value decomposition V diag(γ 1 , . . . , γ n∨q )W , then:

• S ,∞ ω σ (Z) =      1 2σ Z 2 + σ 2 , if Z S ,1 ≤ 1 , σ 2 n∧q i=1 γ 2 i σ 2 -ν 2 + + σ 2 , if Z S ,1 > 1 ,
where ν ≥ 0 is defined by the implicit equation:

ST γ 1 σ , ν , . . . , ST γn∧q σ , ν 1 = 1 . (4.38)
Proof The Hölder conjugate of p = +∞ is p * = 1. We remind that Π B S ,1 , the projection over B S ,1 , is given by (Beck, 2017, Example 7.31):

Π B S ,1 Z σ =      Z σ , if Z S ,1 ≤ σ , V diag ST( γ i σ , γ) W , if Z S ,1 > σ , (4.39) 
the scalar γ being defined by the implicit equation:

ST( γ 1 σ , γ), . . . , ST( γn∧q σ , γ) 1 = 1 . (4.40)
By combining Equation (4.37) and Lemma 4.18 (with p * = ∞, c = 1 2 ) it follows that:

( • ω σ )(Z) =        1 2σ Z 2 + σ 2 , if Z S ,1 ≤ σ , 1 2σ Z 2 + σ 2 -σ 2 Π B S ,1 Z σ -Z σ 2 , if Z S ,1 > σ . (4.41) Let us compute Π B S ,1 Z σ -Z σ 2
. If Z S ,1 > σ we have:

Π B S ,1 Z σ -Z σ 2 = 1 σ 2 V diag (γ i -νσ) + -γ i W 2 (using Equation (4.39)) = 1 σ 2 n∧q i=1 (γ i -νσ) + -γ i 2 = 1 σ 2 γ i ≥νσ γ 2 σ 2 + γ i <νσ γ 2 i . (4.42)
By plugging Equation (4.42) into Equation (4.41) it follows that if Z S ,1 > σ, is decreasing and piecewise linear, the solution of Equation (4.38) can be computed exactly in O(n ∧ q log(n ∧ q)) operations.

• ω σ (Z) = 1 2σ i=1 γ 2 i + σ 2 - 1 2σ γ i ≥νσ ν 2 σ 2 - 1 2σ γ i <νσ γ 2 i = 1 2σ γ i ≥νσ γ 2 i -ν 2 σ 2 + σ 2 = σ 2 n∧q i=1 γ 2 i σ 2 -ν 2 + + σ 2 . ( 4 
We have a particular interest in the Schatten 1-norm.

Smoothing of the nuclear norm

The next propositions are key to our framework and show the connection between the SGCL, CLaR and the Schatten 1-norm used in the Multivariate square-root Lasso. First, we derive a formula for the smoothing of this norm. Let us define the following smoothing function:

ω σ 1 2 • 2 + n ∧ q σ . (4.44)
Proposition 4.22. The ω σ -smoothing of the Schatten 1-norm, i.e., • S ,1 ω σ , is the solution of the following smooth optimization problem:

( • S ,1 ω σ )(Z) = min S σ Idn 1 2 Z 2 S -1 + 1 2 Tr(S) . (4.45)
Proof Let V diag(γ 1 , . . . , γ n∧q )W be the singular value decomposition of Z. We remind that Π B S ,∞ , the projection over the unit ball of the Schatten ∞-norm B S ,∞ , is given by (see Beck 2017, Example 7.31):

Π B S ,∞ Z σ = V diag Π B∞ γ 1 σ , . . . , γn∧q σ W = V diag γ 1 σ ∧ 1, . . . , γn∧q σ ∧ 1 W , (4.46) 
where we used that γ i /σ ≥ 0. Then we have:

Π B S ,∞ Z σ -Z σ 2 (4.46) = V diag γ 1 σ ∧ 1 -γ 1 σ , . . . , γn∧q σ ∧ 1 - γn∧q σ W 2 = n∧q i=1 γ i σ ∧ 1 -γ i σ 2 = 1 σ 2 n∧q i=1 γ i ∧ σ -γ i 2 . (4.47)
By combining Equation (4.47) and lemma 4.18 with p * = ∞, c = n∧q 2 , the later yields: 

• S ,1 ω σ (Z) = (n ∧ q) σ 2 + 1 2σ γ i ≤σ γ 2 i - 1 2 γ i ≥σ σ + γ i ≥σ γ i . (4.48) Moreover: min S σ Idn 1 2 Tr[Z S -1 Z] + 1 2 Tr(S) = 1 2 n∧q i=1 γ 2 i γ i ∨ σ + 1 2 n∧q i=1 γ i ∨ σ = 1 2σ γ i ≤σ γ 2 i + 1 2 γ i ≥σ γ i + 1 2 γ i ≤σ σ + 1 2 γ i ≥σ γ i = 1 2σ γ i ≤σ γ 2 i + γ i ≥σ γ i + 1 2 γ i ≤σ σ + (n ∧ q) σ 2 -(n ∧ q) σ 2 = 1 2σ γ i ≤σ γ 2 i + γ i ≥σ γ i + (n ∧ q) σ 2 - 1 2 γ i ≥σ σ , ( 
B = arg min B∈R p×q • S ,1 ω σ (Z) + λn B 2,1 Ŝ = ClSqrt 1 rq ZZ , σ , where Z = [Y 1 -XB| . . . |Y r -XB].
Proof Proposition 4.24 follows from Proposition 4.23 by choosing:

Z = 1 √ rq [Y 1 -XB| . . . |Y r -XB] , (4.51) 
and by taking the arg min over B.

As mentioned above, properties similar to Proposition 4.24 can be traced back to van de Geer (2016, Lemma 3.4), where the following variational formulation was used to prove oracle inequalities for the multivariate square-root Lasso: if ZZ 0 n,n ,

Z S ,1 = min S∈S n ++ 1 2 Z 2 S -1 + 1 2 Tr(S) . (4.52)
In other words Proposition 4.24 generalizes van de Geer (2016, Lemma 3.4) for all matrices Z, getting rid of the condition ZZ 0 n,n . Our formulation in Proposition 4.22 is motivated by computational aspects, as it helps to address the combined non-differentiability of the data-fitting term • S ,1 and the penalty • 2,1 term. Other alternatives to exploit the multiple repetitions without simply averaging them, could consist in investigating other Schatten p-norms: 

arg min B∈R p×q 1 √ rq [Y 1 -XB| . . . |Y r -XB]

Conclusion

In this chapter, we have proposed the SGCL and CLaR, two new sparse regression estimators designed to deal with heterogeneous observations coming from different origins and corrupted by different levels of noise -in the context of repeated observations for CLaR. Despite the joint estimation of the regression coefficients as well as the noise level, the problem considered is jointly convex, thus guaranteeing global convergence which one can check by duality gap certificates. The resulting optimization problem can be solved efficiently with state-of-the-art convex solvers, and the algorithmic cost is the same as for single repetition data. The theory of smoothing connects CLaR to the Schatten 1-Lasso in a principled manner, which opens the way to the use of more sophisticated datafitting terms.

In the next chapter, we evaluate the benefits of CLaR for support recovery in heteroscedastic context against a large number of competitors, both on simulations and on empirical MEG data.

Experimental validation of smoothed concomitant estimation

Tous les fleuves se jettent dans la mer et la mer ne regorge pas. In this chapter, the practical benefits of convex and smooth concomitant estimation for multitask regression are demonstrated on toy datasets, realistic simulated data and real neuroimaging data. Section 5.1 presents the alternative approaches to heteroscedastic multitask regression. Empirical properties of CLaR are highlighted in Section 5.2, where the estimators performance on real data is also evaluated.

Alternative estimators

We compare CLaR [START_REF] Bertrand | Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso[END_REF] Theorem 5.2. Let Σ emp = U diag(σ 2 i )U be an eigenvalue decomposition of Σ emp , a solution to Problem (5.6) is given by:

Σ-1 = U diag 1 σ 2 i ∨ σ 2 U .
(5.7) Theorem 5.2 is intuitive: the solution of the smoothed optimization problem (5.6) is the solution of the non-smoothed problem, where the eigenvalues of the solution have been lifted to satisfy the constraint.

Proof The KKT conditions of Problem (5.6) for conic programming (see Boyd and Vandenberghe 2004, p. 267) state that the optimum in the primal Σ-1 and the optimum in the dual Γ should satisfy:

Σ emp -Σ + Γ = 0 n,n , Γ ( Σ-1 - 1 σ 2 Id n ) = 0 n,n , Γ ∈ S n + , 0 n,n ≺ Σ-1 1 σ 2 .
Since Problem (5.6) is convex these conditions are also sufficient. We exhibit a primaldual pair ( Σ-1 , Γ) satisfying the KKT conditions. Let Σ emp = U diag(σ 2 i )U be an eigenvalue decomposition of Σ emp , one can check that:

Σ-1 = U diag( 1 σ 2 i ∨ σ 2 )U , Γ = U diag(σ 2 i ∨ σ 2 -σ 2 i )U .
verify the KKT conditions, leading to the desired result.

Multivariate Regression with Covariance Estimation (MRCE)

Introduced by [START_REF] Rothman | Sparse multivariate regression with covariance estimation[END_REF], this estimator jointly estimates the regression coefficients (assumed to be sparse) and the precision matrix (i.e., the inverse of the covariance matrix), which is also assumed to be sparse. Originally in Rothman et al.

(2010) the sparsity enforcing term on the regression coefficients is a matrix 1 -norm, also denoted as • 1 in this section:

( BMRCE , ΣMRCE ) ∈ arg min B∈R p×q Σ -1 0n,n Ȳ -XB 2 Σ -1 -log det(Σ -1 ) + λ B 1 + µ Σ -1 1 .
(5.8) Problem (5.8) is not convex, but can be solved heuristically (see [START_REF] Rothman | Sparse multivariate regression with covariance estimation[END_REF] for details) by coordinate descent for the udpdates in B and solving a Graphical Lasso problem [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] for the update in Σ -1 . The 1 -norm being not well suited for our problem, we introduce an 2,1 version of MRCE:

( B 2,1 MRCE , Σ 2,1 MRCE ) ∈ arg min B∈R p×q Σ -1 0n,n Ȳ -XB 2 Σ -1 -log det(Σ -1 )+λ B 2,1 +µ Σ -1 1 .
(5.9) CHAPTER 5. EXPERIMENTAL VALIDATION

In order to combine 2,1 -MRCE to take take advantage of all the repetitions, one can think of the following estimator:

( B 2,1 MRCER , Σ 2,1 MRCER ) ∈ arg min B∈R p×q Σ -1 0n,n r 1 Y l -XB 2 Σ -1 -log det(Σ -1 )+λ B 2,1 +µ Σ -1 1 .
(5.10) As for Problem (5.8), Problems (5.9) and (5.10) can be heuristically solved with alternated block coordinate descent and Graphical Lasso steps.

Update in B j: The minimization is the same as for 2,1 -MLE and 2,1 -MLER:

B j: = BST   B j: + X :j Σ -1 (Y -XB) X :j 2 Σ -1 , λnq X :j 2 Σ -1   .
(5.11)

Update in Σ -1 Solving Problem (5.9) in Σ -1 amounts to solving: glasso(Σ, µ) arg min

Σ -1 0n,n Σ emp , Σ -1 -log det(Σ -1 ) + µ Σ -1 1 .
(5.12) This is a well known and well studied problem [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] that can be solved through coordinate descent. For our implementation we used the scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] version of the Graphical Lasso. Note that solving the Graphical Lasso on very ill-conditioned empirical covariance matrices such as Σ emp is very long: we thus only considered 2,1 -MRCER were the Graphical Lasso is applied on Σ emp,r .

Algorithms summary

Each optimization problem is solved with block coordinate descent, whether there is theoretical guarantees for it to converge toward a global minimum (for convex formulations, CLaR, SGCL and MTL), or not (for non-convex formulations, 2,1 -MLE, 2,1 -MLER, 2,1 -MRCER). The cost for the updates for each algorithm can be found in Table 5.1. The formula for the updates in B j: 's and S or Σ for each algorithm can be found in Table 5.2.

Let f dual be the number of updates of B for one update of S or Σ. Influence of SNR. On Figure 5.2 we can see that when the SNR is high (left), all estimators (except 2,1 -MLE) reach the (0, 1) point. This means that for each algorithm (except 2,1 -MLE), there exists a value of λ such that the estimated support is exactly the true one. However, when the SNR decreases (middle), the performance of SGCL and MTL starts to drop, while that of CLaR, 2,1 -MLER and 2,1 -MRCER remains stable (CLaR performing better), highlighting their capacity to leverage multiple repetitions of measurements to handle the noise structure. Finally, when the SNR is too low (right), all algorithms perform poorly, but CLaR, 2,1 -MLER and 2,1 -MRCER still performs better.

Influence of the number of repetitions. 

Realistic data

We now evaluate the estimators on realistic magneto-and electroencephalography (M/EEG) data. We recall (see Section 1.2) that the M/EEG recordings measure the electrical potential and magnetic fields induced by the active neurons. Data are time series of length q with n sensors and p sources mapping to locations in the brain.

Because the propagation of the electromagnetic fields is driven by the linear Maxwell equations, one can assume that the relation between the measurements Y 1 , . . . , Y r and the amplitudes of sources in the brain B * is linear.

The M/EEG inverse problem consists in identifying B * . Because of the limited number of sensors (a few hundreds in practice), as well as the physics of the problem, the M/EEG inverse problem is severely ill-posed and needs to be regularized. Moreover, the experiments being usually short (less than 1 s.) and focused on specific cognitive functions, the number of active sources is expected to be small, i.e., B * is assumed to be row-sparse. This plausible biological assumption motivates the framework of Part II.

Dataset. We use the sample dataset from the MNE software [START_REF] Gramfort | MNE software for processing MEG and EEG data[END_REF]. The experimental conditions are here auditory stimulations in the right or left ears, leading to two main foci of activations in bilateral auditory cortices (i.e., 2 non-zeros rows for B * ). For this experiment, we keep only the gradiometer magnetic channels.

After removing one channel corrupted by artifacts, this leads to n = 203 signals. The length of the temporal series is q = 100, and the data contains r = 50 repetitions. We choose a source space of size p = 1281 which corresponds to about 1 cm distance between neighboring sources. The orientation is fixed, and normal to the cortical mantle.

Realistic MEG data simulations. We use here true empirical values for X and S by solving Maxwell equations and computing an empirical co-standard deviation matrix on pre-stimulus data. The signals being contaminated with correlated noise, if one wants to use homoscedastic solvers it is necessary to whiten the data first (and thus to have an estimation of the covariance matrix, the later often being unknown). In this experiment we demonstrate that without this whitening process, the homoscedastic solver MTL fails, as well as solvers which does not take in account the repetitions: SGCL and 2,1 -MLE. In this scenario CLaR, 2,1 -MLER and 2,1 -MRCER do succeed in recovering the sources, CLaR leading to the best results. As for the synthetic data, Figures 5.4 and 5.5 are obtained by varying the estimator-specific regularization parameter λ from λ max to λ min on a geometric grid.

Influence of the number of repetitions. Figure 5.4 shows ROC curves for different number of repetitions r. When the number of repetitions is high (right, r = 50), the algorithms taking into account all the repetitions (CLaR, 2,1 -MLER, 2,1 -MRCER) perform best, almost hitting the (0, 1) corner, whereas the algorithms which do not take into account all the repetitions ( 2,1 -MLE, MTL, SGCL) perform poorly. As soon as the number of repetitions decreases (middle and left) the performances of all the algorithms except CLaR start dropping severely. CLaR is once again the algorithm taking the most advantage of the number of repetitions.

Amplitude influence. Figure 5.5 shows ROC curves for different values of the amplitude of the signal. When the amplitude is high (right), all the algorithms perform well, however when the amplitude decreases (middle) only CLaR leads to good results, almost hitting the (0, 1) corner. When the amplitude gets lower (left) all algorithms perform worse, CLaR still yielding the best results.

Real data

As above, we use the sample dataset from MNE, keeping only the magnetometer magnetic channels (n = 102 signals). We choose a source space of size p = 7498 (about 5 mm between neighboring sources). The orientation is fixed, and normal to the cortical mantle. As for realistic data, X is the empirical design matrix, but this time we use the empirical measurements Y 1 , . . . , Y r . The experiment are left or right auditory or visual stimulations. As two sources are expected (one in each hemisphere, in bilateral auditory cortices), we vary λ by dichotomy between λ max (returning 0 sources) and a λ min (returning more than 2 sources), until finding a value of λ giving exactly 2 sources. Results are provided in Figures 5.6 and 5.7. Running times of each algorithm are of the same order of magnitude and can be found in Section 5.4.

Comments on Figure 5.6, left auditory stimulations. Sources found by the algorithms are represented by red spheres. SGCL, 2,1 -MLE and 2,1 -MRCER completely fail, finding sources that are not in the auditory cortices at all (SGCL sources are deep, thus not in the auditory cortices, and cannot be seen). MTL and 2,1 -MLER do find sources in auditory cortices, but only in one hemisphere (left for MTL and right for 2,1 -MLER).

CLaR is the only one that finds one source in each hemisphere in the auditory cortices as expected.

Comments on Figure 5.7, right auditory stimulations. In this experiment we only keep r = 33 repetitions (out of 63 available) and it can be seen that only CLaR finds correct sources, MTL finds sources only in one hemisphere and all the other algorithms do find sources that are not in the auditory cortices. This highlights the robustness of CLaR, even with a limited number of repetitions, confirming previous experiments (see Figure 5.3). Figures 5.8 and 5.9 show the solution given by each algorithm on real data after right auditory stimulations. As two sources are again expected (one in each hemisphere, in bilateral auditory cortices), we repeat the procedure detailed in the previous experiment to find a suitable value of λ per estimator. Figure 5.8 (resp. Figure 5.9) shows the solution given by the algorithms taking in account all the repetitions (resp. only half of the repetitions). When the number of repetitions is high (Figure 5.8) only CLaR and 2,1 -MLER find one source in each auditory cortices, MTL does find sources only in one hemisphere, all the other algorithms fail by finding sources not in the auditory cortices at all. Moreover when the number of repetitions is decreasing (Figure 5.9) 2,1 -MLER fails and only CLaR does find 2 sources, one in each hemisphere. Once again CLaR is more robust and performs better, even when the number of repetitions is lower. As one source is expected (in the left hemisphere), we vary λ by dichotomy between λ max (returning 0 sources) and a λ min (returning more than 1 source), until finding a lambda giving exactly 1 source. When the number of repetitions is high (Figure 5.12) only CLaR, 2,1 -MLER and MTL do find a source in the visual cortex. When the number of repetitions decreases (Figure 5.13), only CLaR finds one source in the visual cortex, other algorithms fail. This highlights once again the robustness of CLaR, even with a limited number of repetitions. Finally, we describe the preprocessing pipeline used for the realistic and real data (see Section 5.3). We then propose time comparison for all the algorithms (see Section 5.4).

Right auditory stimulations

Left visual stimulations

Right visual stimulations

Preprocessing steps for realistic and real data

When using multi-modal data without whitening, one has to rescale properly data, indeed data needs to have the same order of magnitude, otherwise some mode (for example EEG data) could be (almost) completely ignored by the optimization algorithm. The preprocessing pipeline used to rescale realistic data (Figures 5.4 and 5.5) and real data (Figures 5.6, 5.8, 5.10 and 5.12) is described in Algorithm 5.1.

Algorithm 5.1 Preprocessing steps for realistic and real data input : X, Y 1 , . . . , Y r // rescale each line of X for i = 1, . . . , n do for l = 1, . . . , r do

Y l i: ← Y l i: / X i: X i: ← X i: / X i:
// rescale each column of X for j = 1, . . . , q do X :j ← X :j / X :j return X, Y 1 , . . . , Y r 5.4. TIME COMPARISON 115

Time comparison

The goal of this small experiment is to show that our algorithm (CLaR) is as costly as a Multi-Task Lasso or other competitors (in the M/EEG context, i.e., n not too large). The time taken by each algorithm to produce Figure 5.6 (real data, left auditory stimulations) is given in Figure 5.14. In this experiment the stoppping tolerance is set to = 10 -3 , the safe stopping criterion is duality gap < (only available for convex optimization problems). The heuristic stopping criterion is to stop when the objective no longer decrease steeply enough, i.e., we stop when P(B (t) , Σ (t) ) -P(B (t+1) , Σ (t+1) ) < /10. The safe stopping criterion is only available for CLaR, SGCL and MTL (it takes too much time -more than 10 min -for SGCL to get to a duality gap inferior to ). Comment on Figure 5.14 Figure 5.14 shows that if we use the heuristic stopping criterion, CLaR is as fast the other algorithm. In addition CLaR has a safe stopping criterion which only take 2 to 3 more time than the heuristic one (less than 10 sec).

Conclusion and perspectives

Winter does not last forever. Spring comes, snows melt.

In this thesis, we have introduced better numerical solutions to the 2,1 -regularized bio-magnetic inverse problem. First, we designed a better dual point construction for coordinate descent solvers used in 1 -type optimization. This point helps to identify active features faster than previous approaches. Celer, the solver based on this construction, shows improvements of Gap Safe screening rules and working set algorithms in an extended benchmark. It is available as an easy to use Python package, for reproducibility and practical impact. Initially designed for the Lasso, we then applied this method to popular problems such as sparse Logistic regression and Multitask Lasso, whose range of application go far beyond the field of brain imaging.

Then, we introduced concomitant noise estimators, to address the complex structure of magneto-electroencephalographic measurements. We handle the multiple repetition setting of M/EEG experiments for a better estimation of the noise matrix. Contrary to existing "noise aware" estimators, they are jointly convex, and the smoothing of the nuclear norm makes the underlying optimization problem easy to solve. The smoothing analysis we provide for CLaR paves the way for a simplified use of Schatten norms as datafitting term in sparse problems.

The performance obtained for dual extrapolation is visible after support identification. In our Machine Learning setting, we have empirically observed that this identification usually happens quickly. However, it may not be the case in other situations, and modifying our extrapolation procedure for it to perform well before support identification is a perspective to make it more efficient. We devoted our efforts to the construction of a better dual point, as we had previously observed that the duality gap provided a massive overestimation of the suboptimality. Now that this bottleneck has been removed, a promising perspective is to apply extrapolation in the primal, and to generalize to more schemes than cyclic coordinate descent.

Working set methods start with a small number of features. In homotopy methods, the solvers start with a high value of λ, giving a very sparse solution, then decrease it gradually. Connections between these techniques (parallel between geometric grid of regularizers and the popular geometric growth of the working set size) may help us to justify the multiple heuristics upon which efficient working set algorithms are based.

CLaR depends on a noise parameter controlling the smallest eigenvalue of the noise covariance. Unfortunately, compared to its minimal noise level interpretation in the Concomitant Lasso, this parameter has no simple explanation in the matrix case. We are currently working on a statistical analysis of CLaR, shedding some light on the optimal way to set its value.

Combination of the two parts, i.e., dual extrapolation for CLaR, as been implemented as a proof of concept; however the preliminary step is to better understand the putative VAR nature of Multitask Lasso iterates. 

A

Choice of parameters in Celer

B

Concomitant estimation

B.1 Block homosecedastic model

Formally, if the k-th group of sensors is composed of n k sensors ( K 1 n k = n), with design matrix X k ∈ R n k ×p , observation matrix Y k ∈ R n k ×q and noise level σ * k > 0, the block homoscedastic model is a combination of K homoscedastic models:

∀k ∈ [K], Y k = X k B * + σ * k E k , (B.1)
with the entries of E k independently sampled from N (0, 1). In the following we denote

X =     X 1 . . . X K     , Y =     Y 1 . . . Y K     , E =     E 1 . . . E K     , and S * =     σ * 1 Id n 1 0 . . . 0 σ * K Id n K     ∈ S n ++ .
Following this model, we call multi-task Smoothed Block Homoscedastic Concomitant Lasso (multi-task SBHCL) the estimator similar to the one of Problem (4.6) with the additional constraint that S is a diagonal matrix diag(σ 1 Id n 1 , . . . , σ K Id n K ), with K constraints σ k ≥ σ k :

arg min B∈R p×q , σ 1 ,...,σ K ∈R K ++ σ k ≥σ k ,∀k∈[K] K k=1 Y k -X k B 2 2nqσ k + n k σ k 2n + λ B 2,1 . (B.2)
Since Problem (B.2) does not admit a closed-form solution, we also propose an iterative solver, along with a stopping condition based on the duality gap, which is derived for this problem in Theorem B.1.

• When the constraints on the σ k 's are not saturated at optimality, formulation Problem (B.2) has an equivalent square-root Lasso [START_REF] Belloni | Square-root Lasso: pivotal recovery of sparse signals via conic programming[END_REF] formulation:

arg min B∈R p×q 1 nq K k=1 √ n k Y k -X k B + λ B 2,1 . (B.3)
• To fix the values of the lower bounds on the noise levels σ k , we use an arbitrary proportion of the initial estimation of the noise variances per block i.e., S = 10 -α diag( Y 1 / √ n 1 q Id n 1 , . . . , Y K / √ n K q Id n K ). α = 3 is used in the experiments. While the 3 normalized RMSE have similar behaviors on the test set for the SCL, for low values of λ, the multi-task SBHCL overfits more on the least noisy block. However this does not result in degraded prediction performance on the test set, neither for this block nor for others, and the prediction is even better on the noisiest block. Indeed, the SCL overfits more on the the noisiest block, which has a greater impact on prediction (as overfitting on noiseless data would lead to perfect parameter inference). When the regularization parameter becomes too low, taking into account different noise levels allows our estimator to limit the impact of overfitting by favoring the most reliable source. This experiments shows that our formulation is appealing for parameter selection, as the best left-out prediction is obtained for similar values of λ.

B.2.3 Support recovery

In this experiment, we demonstrate the superior performance of the multi-task SBHCL for support recovery, i.e., its ability to correctly identify the predictive features. The experimental setup is the same as in Appendix B.2.2, except that the support of B * is of size 50. We also vary ρ ∈ {0.1, 0. the false positive rate. The curve is obtained by varying the value of λ (lower values leading to larger predicted support and therefore potentially more false positives).

We can see that when the SNR is sufficiently high (top graph with SN R = 5), the multi-task SBHCL, the SCL and the MTL successfully recover the true support, while the MTL or SCL trained on the least noisy block with only one third of the data fails. However, when the SNR is lower (middle graph with SNR = 1), the multi-task SBHCL still achieves almost perfect support identification, while the performance of the MTL and SCL decreases. The performance is naturally even worse when using only one block of samples. Finally, when the features are more correlated (ρ = 0.9) and the conditioning of X is degraded, the multi-task SBHCL, despite not perfectly recovering Table B.1 -Mean values of pAUC for the main estimators, across ten simulations of X and Y .

SNR 1 1 5 ρ 0.1 0.9 0.1 SBHCL 0.92 ± 0.12 0.86 ± 0.05 0.98 ± 0.02 MTL 0.79 ± 0.08 0.71 ± 0.07 0.99 ± 0.00 MTL (block 1) 0.44 ± 0.04 0.48 ± 0.05 0.48 ± 0.04 the true support, still has superior performance. Note also that unsurprisingly the MTL and the SCL lead to almost perfectly the same ROC curves as both estimators (if σ is small enough) have the same solution path. Any difference between SCL and MTL in our graph is due to the choice of a discrete set of λ values.

To study the stability of Figure B.2, we repeat the simulation 10 times. Since the curves are not guaranteed to reach TPR = 1, it is not possible to use AUC as a scalar figure of merit. As we are usually interested in sparse estimators when the recovered support is small, we follow Bühlmann and Mandozzi (2014, Fig. 1234), and limit the study to estimated supports of size inferior to 0.9n (i.e., the part to the left of the black curve). This leads to the use of pAUC or "0.9-performance": the area under the ROC curve, but restricted to the left of the black line, and normalized by its maximal value. The mean pAUCs for 10 repetitions, for all estimators in the different settings are in Table B.1.

B.2.4 Results on joint M/EEG real data

We now evaluate our estimator on magneto-and electroencephalography (M/EEG) data. The data consists of M/EEG recordings, which measure the electric potential and magnetic field induced by active neurons. Data are time-series so that n corresponds to the number of sensors and q to the number of consecutive time instants in the data. Thanks to their high temporal resolution, M/EEG help to elucidate where and precisely when cognitive processes happen in the brain. The so-called M/EEG inverse problem, which consists in identifying active brain regions, can be cast as a high-dimensional sparse regression problem. Because of the limited number of sensors, as well as the physics of the problem, this problem is severely ill-posed, and regularization is needed to provide solutions which are both biologically plausible and robust to measurement noise [START_REF] Wipf | Estimating the location and orientation of complex, correlated neural activity using MEG[END_REF][START_REF] Haufe | Combining sparsity and rotational invariance in EEG/MEG source reconstruction[END_REF][START_REF] Gramfort | Timefrequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations[END_REF]. As foci of neural activity are observed from a distance by M/EEG and since only a small number of brain regions are involved in a cognitive task during a short time interval, it is common to employ sparsity-promoting regularizations. Amongst these, the 1 / 2 penalty has been successfully applied to the M/EEG inverse problem in either time [START_REF] Ou | A distributed spatio-temporal EEG/MEG inverse solver[END_REF] or frequency domain [START_REF] Gramfort | Timefrequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations[END_REF].

The experimental condition considered is a monaural auditory stimulation in the right ear of the subject. The same subject undergoes the same stimulation 61 times, and the M/EEG measurements are recorded from 0.2 s before to 0.5 s after the stimulus. The data (from the MNE software [START_REF] Gramfort | MNE software for processing MEG and EEG data[END_REF]) thus contains 61 repetitions (trials) of this stimulation. 3 -Noise standard deviation estimated on auditory data for q = 1, q = 20 and q = 34 time instants using the SBHCL estimator. Data consist of combined MEG gradiometers (n 1 = 203 sensors) and magnetometers (n 2 = 102 sensors), as well as EEG (n 3 = 59 sensors). We used λ = 0.03λ max .

In the experimental setup we have 204 gradiometers, 102 magnetometers and 60 EEG electrodes. We have discarded one magnetometer and one electrode corrupted by strong artifacts. We therefore have K = 3 sensor types with n 1 = 203, n 2 = 102 and n 3 = 59 (so n = 364). X is obtained by numerically solving the M/EEG forward problem using p = 1884 candidate sources distributed over the cortical surface (X ∈ R 364×1884 ). The orientations of the dipoles are assumed known and normal to the cortical mantle.

The measurements for q = 1 (single time measurements) are selected 75 ms after the stimulus onset, and between 60 and 115 ms (resp. 70 and 102 ms) after the stimulus for q = 34 (resp q = 20). This time interval corresponds to the main cortical response to the auditory stimulation.

For a number t of repetitions of experiment (t ranging from 2 to 56), we create an observation matrix Y t by averaging the first t trials. By doing so, the noise standard deviations of each block should be proportional to 1/ √ t. We then run the multi-task SBHCL with fixed λ, equal to 3% of λ max . We can see that the estimated values are plausible: they have the correct orders of magnitude, as well as the expected 1/ √ t decrease. We also see that taking more tasks into account leads to more stable noise estimation: for magnetometers, the curve is smoother for q = 34 than for q = 20 and q = 1. Indeed, using more tasks reduces the variance of the estimation. On the other hand:

ΣCLaR = 1 qr r l=1
S * E l (S * E l ) .

Since the E l 's are independent it follows that: 

cov( ΣCLaR ) = 1 r 2 q 2 r l=1 cov S * E l (S * E l ) = 1 r 2 q 2

Abstract :

Amongst neuroimaging techniques, magneto-and electroencephalography (M/EEG) stand out for their non-invasiveness and their excellent time resolution. Reconstructing the neural activity from the recordings of magnetic field and electric potentials is a severely ill-posed inverse problem, for which it is popular to assume spatial sparsity of the solution, obtained through 2,1 -penalized regression approaches. However, this regularization requires to solve time-consuming high-dimensional optimization problems. Additionally, M/EEG recordings are usually corrupted by strong non-white noise, which breaks the classical statistical assumptions of inverse problems. In this thesis, we first propose speed improvements of iterative solvers used for the 2,1 -regularized biomagnetic inverse problem. Typical improvements, screening and working sets, exploit the sparsity of the solution: by identifying inactive brain sources, they reduce the dimensionality of the optimization problem. We introduce a new working set policy, derived from the state-of-the-art Gap safe screening rules, and propose duality improvements, yielding a tighter control of optimality and improving feature identification techniques. Our dual construction extrapolates on an asymptotic Vector AutoRegressive regularity of the dual iterates, which we connect to manifold identification of proximal algorithms. Beyond the 2,1regularized bio-magnetic inverse problem, the proposed methods apply to the whole class of sparse Generalized Linear Models. Second, we introduce new concomitant estimators for multitask regression. We design them to handle nonwhite Gaussian noise, and to exploit the multiple repetitions nature of M/EEG experiments. The underlying optimization problem is jointly convex in the regression coefficients and the noise variable, with a "smooth + proximable" composite structure. It is therefore solvable via standard alternate minimization, for which we apply the improvements detailed in the first part. We provide a theoretical analysis of our objective function, linking it to the smoothing of Schatten norms.
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  y) = y , κ(θ) = log(1 + e θ ) =log(1µ) , Θ =]0, +∞[ . (1.13) So if we postulate that Y|X = x is a Bernoulli random variable of mean µ = κ (x β) = 1/(1e -x β), we have a GLM with canonical response function, and Problem (1.11) can be written as:x i )η(β x i )y i = arg min β∈R p n i=1 log(1 + exp(x i β))y i x i β , (1.14)which is the logistic regression ERM. Alternatively, we could postulate that Y|X = x is a Bernoulli random variable of mean µ = Φ(x β), with Φ the cumulative distribution function of a standard Gaussian. This is the probit model, with MLE accessible via: log(Φ(x i β)) -(1y i ) log(1 -Φ(x i β)) .(1.15)

Figure 1 . 2 -

 12 Figure1.2 -Optimal value of the Lasso (left) and Concomitant Lasso (right) regularization parameters λ determined by cross validation on prediction error (blue), for a logarithmic grid of 100 values of λ between λ max and λ max /100, as a function of the noise level on simulated values of y. As indicated by theory, the Lasso's optimal λ grows linearly with the noise level, while it remains constant for the Concomitant Lasso.

M µ ≥ 1

 1 is a useful quantity, appearing in the convergence rate of many algorithms. Convex indicators, infimal convolution, Fenchel-Legendre transform and proximal operators are the workhorses of continuous convex optimization. Definition 1.6 (Indicator function). Let C be a subset of R d . The indicator function of C is:
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 13 Figure 1.3 -Various ways to smooth the absolute value function f , by adding a strongly convex term to f* = ι [-1,1] .Taking the Fenchel transform of the strongly convex functions g ρ : u → f * (u) + ρu 2 /2 and h ρ : u → f * (u) + ρ(u 2 /2 -1/2) yields smooth approximations of f . As ρ increases, the approximations get smoother, but further away from f .

  Definition 1.15 (Block indexing). Let β ∈ R p , B ∈ R p×q and X ∈ R n×p . Let I denote a partition of [p] and let I ∈ I. The vector β I ∈ R |I| is obtained by keeping only entries of β whose indices are in I. In the multitask setting, B I: ∈ R |I|×q (resp. X :I ∈ R n×|I| ) is the matrix obtained by keeping only rows of B (resp. columns of X) whose indices are in I. For a L-smooth function f ∈ Γ 0 (R d ), ∇ I f ∈ R |I| is the gradient of f when only coordinates in I vary, and L I is the Lipschitz constant of this gradient (which exists because f is itself L-smooth). Proposition 1.16 (Proximal operator of separable function, Parikh et al. 2013, Sec. 2.1). Let I be a partition of [d] and g ∈ Γ 0 (R d ) be a function admitting a block decomposable structure: g(x) = I∈I g I (x I ). Then, prox g (x) is equal to the vector obtained by concatenation of the vectors prox g I (x I ) ∈ R |I| , for I ∈ I.

Figure 1

 1 Figure 1.6 -Left: sagittal MRI view of the brain. Right: pyramidal cells as drawn by Ramon y Cajal (1899), with dipoles modeling currents from apical dendrites to somas (orange). The parallel alignment of the dipoles results in constructive interference, modeled as an Equivalent Current Dipole of larger moment (red).

Figure 1

 1 Figure 1.7 -Patient undergoing a cognitive experiment in a MEG scanner. Courtesy of National Institute of Mental Health.
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 18 Figure 1.8 -Amplitude of 59 EEG signals, averaged across 5 (top), 10 (middle), and 50 (bottom) trials. As the number of averaged repetitions increases, the noise is reduced and the measurements become smoother, revealing the brain response to the stimuli around 0.1 s after it occurred. The stimuli is an auditory stimulation in the left ear.

Figure 1

 1 Figure 1.9 -Covariance of the three types of sensors (left: magnetometers, middle: gradiometers, right: electrodes). The covariance matrices are clearly not scalar: EEG covariance has a band diagonal structure, and magnetometers covariance has a block structure.

Figure 1

 1 Figure 1.11 -Real (top) and simulated (bottom) magnetometers topographic maps.We simulate the activity of two dipoles in the left and right auditory cortex; the real topographic maps exhibits dipolar patterns similar to the simulated one, justifying the dipolar assumption.

  screening techniques (Wang et al., 2013; Ogawa et al., 2013; Fercoq et al., 2015), following the seminal work of El Ghaoui et al. (2012), strong rules (Tibshirani et al., 2012), or correlation screening (Xiang and Ramadge, 2012). Similar techniques have also been considered to discard samples in stochastic gradient descent or Support Vector Machines applications (Vainsencher et al., 2015; Shibagaki et al., 2016; Hong et al., 2019). When a screening rule guarantees that all discarded features cannot be in the solution, it is called safe. The current state-of-the-art safe screening rules are the so-called Gap Safe rules (Ndiaye et al., 2017b), relying on duality gap evaluation and the knowledge of a suitable dual point.

  In general, Problem (2.1) does not admit a closed-form solution. Iterative optimization procedures such as (block) coordinate descent (BCD/CD, Tseng 2001; Friedman et al. 2007) (resp. FISTA, Beck and Teboulle 2009) are amongst the most popular algorithms when dealing with high dimensional applications in machine learning (resp. in image processing).

  By a similar reasoning, A 2 x = x, etc. up to A S x = x, hence Ax = x and µ = 1. Lemma 2.10. For coordinate descent (resp. proximal gradient descent) applied to solve the Lasso, the VAR parameters A ∈ R n×n and b ∈ R n defined in (2.20) (resp. (2.24)) satisfy b ∈ Ker(Id n -A) ⊥ . CHAPTER 2. FASTER SOLVERS FOR THE LASSO: SCREENING, WORKING SETS AND DUAL EXTRAPOLATION Proof Coordinate descent case: Let us remind that b

  Figure 2.2, we illustrate Problem (2.2) for n = 2, p = 3 (Figure 2.2a).

  Figure 2.2b (resp.Figure 2.2c) shows the iterates at the end of each epoch, produced by the cyclic (resp. shuffle) Dykstra algorithm, and their extrapolated version for K = 4. This corresponds to Algorithm 2.1 with f dual = 1. On Figure 2.2b, the iterates eventually always lie on the same hyperplane, and exhibit a VAR structure while converging to θ: using only the last K = 4 points, extrapolation finds the true solution up to machine precision at the 5th iteration (Figure 2.2d). On the contrary, when the projection order on C 1 and C 2 is shuffled (Figure 2.2c), the iterates might not lie on the same hyperplane, CHAPTER 2. FASTER SOLVERS FOR THE LASSO: SCREENING, WORKING SETS AND DUAL EXTRAPOLATION y λ 0 ∆ X θ (a) Lasso dual problem with X ∈ R 2×3 . A close-up on the dashed rectangle around θ is given in Figure 2.2b and Figure 2.2c. ∆ X Dykstra (cyclic) Dykstra (cyclic) -Extrapolated (b) Close up for cyclic Dykstra in the dual (end of each epoch) ∆ X Dykstra (shuffle) Dykstra (shuffle) -Extrapolated (c) Close up for shuffle Dykstra in the dual (end of each epoch) Dual suboptimality with and without extrapolation
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 22 Figure2.2 -In the Lasso case, the dual solution θ is the projection of y/λ onto the convex set ∆ X (the intersection of the three slabs).

  (t) res ) and our proposed dual 2 This explains why the indices for β and θ differ in Algorithm 2.1 2.5. EXPERIMENTS 59 extrapolation P(β (t) )-D(θ (t)

θ t = θ t res θ t = θ t accel Figure 2 . 4 -

 accel24 Figure 2.4 -Number of variables discarded by the (dynamic) Gap Safe rule as a function of epochs of Algorithm 2.1, depending on the dual point used, for λ = λ max /5 (Finance dataset).
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 28 Figure 2.8 -Number of false positives for GLMNET and Celer on a Lasso path on the leukemia dataset, depending on the stopping criterion .
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 16 Algorithm 3.1 PG/cyclic CD for Problem (3.1) with dual extrapolation input : X = [x 1 | . . . |x p ], y, λ, β (0) , param: T, K = 5, f dual = 10 init :

j

  has the same sign eventually since it converges to βj . The proof for proximal gradient descent is a result of Hale et al. (2008, Theorem 4.5), who provide the bound T ≤ β(s) -β 2 2 / δ2 .

  and as in the Lasso case this means that for all s ∈ [S], A s D 1/2 v = D 1/2 v and (D 1/2 v) D 1/2 X :js = 0. Now recall that b = D -1/2 (b S + . . . + A S . . . A 2 b 1 ) , (3.26)

  : , MIN_CD = 2 init : ∆β = 0 p , X∆β = 0 n for k = 1, . . . , MAX_CD do τ = 0 // stopping condition for j = 1, . . . , p do

  Lasso, on leukemia for λ = λ max /5. Log. reg., on leukemia for λ = λ max /10. Multitask Lasso, on MEG data for λ = λ max /20.
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 31 Figure3.1 -Dual objectives with classical and proposed approach, for Lasso (top), Logistic regression (middle), Multitask Lasso (bottom). The dashed line marks sign identification (support identification for Multitask Lasso).
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 32 Figure 3.2 -Time to compute a Logistic regression path from λ max to λ max /100 on the news20 dataset (left: coarse grid of 10 values, right: fine grid of 100 values). λ max /100 gives 5319 non-zero coefficients.
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 33 Figure 3.3 -Time to solve a Logistic regression problem for different values of λ, on the rcv1 dataset ( = 10 -6 ).
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 34 Figure 3.4 -Time to compute a Multitask Lasso path from λ max to λ max /100 on MEG data (left: coarse grid of 10 values, right: fine grid of 100 values). λ max /100 gives 254 non-zero rows for B.

  Definition 4.4 (SGCL, Massias et al. (2018a)). The SGCL estimates the parameters of Model (4.5), by solving:

Definition 4. 5 (

 5 CLaR, Bertrand, Massias, Gramfort, and Salmon (2019)). CLaR estimates the parameters of Model (4.4) by solving:

  either the left term or the right term of the LHS is 0 by construction).

  Remark 4.15. Similarly to the Concomitant Lasso, and contrary to the Lasso, CLaR is equivariant under scaling of the response, in the following sense. Consider the transformation: Y = αY, B = αB, S = αS, (α > 0) , which leaves Models (4.4) and (4.5) invariant. Then one can check that the solutions of Problem (4.7) are multiplied by the same factor: B = α B and Ŝ = α Ŝ.

  (1.38)) = ι B S ,p * + σ 2 • 2cσ * (Z) (usingEquations (1.40) and (4.33)) = σ 2 • 2 + ι B S ,p * * (Z) + cσ (using Equation (1.41)) .
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 5455 Figure 5.4 -Influence of the number of repetitions. ROC curves with empirical X and S and simulated B * (amp = 2 nA.m), for different number of repetitions.

  Figure 5.3 shows ROC curves of all compared approaches for different r, starting from r = 1 (left) to 100 (right). Even with r = 20 (middle) CLaR outperforms the other estimators, and when r = 100, CLaR can better leverage the large number of repetitions.

  Figure 5.6 -Real data, left auditory stimulations (n = 102, p = 7498, q = 76, r = 63) Sources found in the left hemisphere (top) and the right hemisphere (bottom) after left auditory stimulations .

  Figure 5.7 -Real data, right auditory stimulations (n = 102, p = 7498, q = 76, r = 33) Sources found in the left hemisphere (top) and the right hemisphere (bottom) after right auditory stimulations.

  Figure 5.8 -Real data (n = 102, p = 7498, q = 76, r = 65): sources found in the left hemisphere (top) and the right hemisphere (bottom) after right auditory stimulations.

  Figure 5.9 -Real data (n = 102, p = 7498, q = 76, r = 33) Sources found in the left hemisphere (top) and the right hemisphere (bottom) after right auditory stimulations.

  Figure 5.10 -Real data (n = 102, p = 7498, q = 48, r = 71) Sources found in the left hemisphere (top) and the right hemisphere (bottom) after left visual stimulations.

  Figure 5.11 -Real data (n = 102, p = 7498, q = 48, r = 36) Sources found in the left hemisphere (top) and the right hemisphere (bottom) after left visual stimulations.

  Figure5.12 -Real data (n = 102, q = 7498, q = 48, r = 61) Sources found in the left hemisphere (top) and the right hemisphere (bottom) after right visual stimulations.

Figures 5 .

 5 Figures 5.12 and 5.13 show the results for each algorithm after right visual stimulations. As one source is expected (in the left hemisphere), we vary λ by dichotomy between λ max (returning 0 sources) and a λ min (returning more than 1 source), until finding a lambda giving exactly 1 source. When the number of repetitions is high (Figure5.12) only CLaR, 2,1 -MLER and MTL do find a source in the visual cortex. When the number of repetitions decreases (Figure5.13), only CLaR finds one source in the visual cortex, other algorithms fail. This highlights once again the robustness of CLaR, even with a limited number of repetitions.

  Figure 5.13 -Real data (n = 102, q = 7498, q = 48, r = 31) Sources found in the left hemisphere (top) and the right hemisphere (bottom) after right visual stimulations.
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 514 Figure 5.14 -Time comparison, real data, n = 102, p = 7498, q = 54, r = 56. Time for each algorithm to produce Figure 5.6.
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 1 Figure A.1 -Duality gap evaluated with θ accel as a function of the parameter f , for K = 5.

Figure A. 1

 1 Figure A.1 shows that if the residuals used to extrapolate are too close (small f ), the performance of acceleration is too noisy (though the duality gap still converges to the true suboptimality gap). For residuals too far apart (large f ), the convergence towards θ is slower and the duality gap does not reach the true suboptimality gap as it should ideally. f dual = 10 provides the best performance.

P

  Figure A.2 -Duality gap evaluated with θ accel as a function of the parameter K, for f dual = 10.

Figure A. 2

 2 Figure A.2 shows that the choice of K is not critical: all performances are nearly equivalent. Hence, we keep the default choice K = 5 proposed in Scieur et al. (2016).
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 11 Figure B.1 -RMSE normalized by oracle RMSE, per block, for the multi-task SBHCL and Smooth Concomitant Lasso (SCL), on training (top) and testing (bottom) set, for various values of λ. The flexibility of the block homoscedastic model enables the multitask Smoothed Block Homoscedastic Concomitant Lasso to reach a lower RMSE on every block of the test set.

Figure

  Figure B.2 -ROC curves of true support recovery for the SBHCL, the MTL and SCL on all blocks, and the MTL and SCL on the least noisy block. The black curve marks the limit of supports of size 0.9n. Top: SNR = 5, ρ = 0.1, middle: SNR=1, ρ = 0.1, bottom: SNR = 1, ρ = 0.9.

  Figure B.3 -Noise standard deviation estimated on auditory data for q = 1, q = 20 and q = 34 time instants using the SBHCL estimator. Data consist of combined MEG gradiometers (n 1 = 203 sensors) and magnetometers (n 2 = 102 sensors), as well as EEG (n 3 = 59 sensors). We used λ = 0.03λ max .

  Figure B.3 shows the noise standard deviation estimated by the multi-task SBHCL, when ran on a single time instant (single task), 20 and 34 time instants.

  (S * E(S * E) ) .

  r l=1 cov S * E(S * E) = 1 rq 2 cov S * E(S * E) = 1 r cov ΣSGCL . Titre : R égression parcimonieuse en grande dimension en pr ésence de bruit color é h ét érosc édastique: application à la localisation de sources M/EEG Mots cl és : Optimisation convexe, parcimonie, h ét érosc édasticit é, lissage, extrapolation R ésum é : Parmi les techniques d'imagerie c ér ébrale, la magn étoet l' électro-enc éphalographie se distinguent pour leur faible degr é d'invasivit é et leur excellente r ésolution temporelle. La reconstruction de l'activit é neuronale à partir de l'enregistrements des champs électriques et magn étiques constitue un probl ème inverse extr êmement mal pos é, auquel il est n écessaire d'ajouter des contraintes pour le r ésoudre. Une approche populaire, emprunt ée dans ce manuscript, est de postuler que la solution est parcimonieuse spatialement, ce qui peut s'obtenir par une p énalisation L2/1. Cependant, ce type de r égularisation n écessite de r ésoudre des probl èmes d'optimisation non-lisses en grande dimension, avec des m éthodes it ératives dont la performance se d égrade avec la dimension. De plus, les enregistrements M/EEG sont typiquement corrompus par un fort bruit color é, allant à l'encontre des hypoth èses classiques de r ésolution des probl èmes inverses. Dans cette th èse, nous proposons d'abord une acc él ération des algorithmes it ératifs utilis és pour r ésoudre le probl ème bio-magnetique avec r égularisation L2/1. Les am éliorations classiques (r ègles de filtrage et ensemble actifs), tirent parti de la parcimonie de la solution: elles ignorent les sources c ér ébrales inactives, et r éduisent ainsi la dimension du probl ème. Nous introduisons une nouvelle technique d'ensemble actifs, reposant sur les r ègles de filtrage les plus performantes actuellement. Nous proposons des techniques duales avanc ées, qui permettent un contr ôle plus fin de l'optimalit é et am éliorent les techniques d'identification de pr édicteurs. Notre construction duale extrapole la structure Vectorielle Autoregressive des it ér és duaux, r égularit é que nous relions aux propri ét és d'identification de support des algorithmes proximaux. En plus du probl ème inverse bio-magn étique, l'approche propos ée est appliqu ée à l'ensemble des mod èles lin éaires g én éralis és r égularis és L1. Deuxi èmement, nous introduisons de nouveaux estimateurs concomitants pour la r égression multit âche, conc ¸us pour traiter du bruit gaussien corr él é. Le probl ème d'optimisation sous-jacent est convexe, et pr ésente une structure "lisse + proximable" attrayante ; nous lions la formulation de ce probl ème au lissage des normes de Schatten. Title : Sparse high dimensional regression in the presence of colored heteroscedastic noise: application to M/EEG source imaging Keywords : Convex optimization, sparsity, heteroscedasticity, smoothing, extrapolation; magnetoelectroencephalography

  

Table 1

 1 

		.1 -Useful Fenchel transforms
	Function	Fenchel transform

  Convergence speed of proximal gradient descent and proximal coordinate descent on a Lasso problem (subsampled climate dataset (n = 857, p = 10 000), λ = λ max /20, resulting in β 0 = 220). Although both algorithm have the same convergence rates, proximal coordinate descent outperforms gradient descent by several order of magnitude.
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1 and 1.2. Although both algorithms have worst case convergence rates of O(1/k), Figure 1.4 illustrates that practical results can be very different. Amongst the reasons CHAPTER 1. MOTIVATION AND CONTRIBUTIONS Algorithm 1.1 Proximal gradient descent for Problem (1.54) input : L, T init :

  al. (2017b). Time to compute a Lasso path from λ max to λ max /100 on the leukemia dataset (left: coarse grid of 10 values, right: fine grid of 100 values). λ max /100 gives a solution with 60 nonzero coefficients. Time to compute a Lasso path from λ max to λ max /100 on the rcv1 dataset (left: coarse grid of 10 values, right: fine grid of 100 values). λ max /100 gives a solution with 4610 nonzero coefficients.Table2.1 -Computation time (in seconds) for Celer, Blitz and scikit-learn to reach a given precision on the Finance dataset with λ = λ max /20 (without warm start: β (0) = 0 p ).
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Figure

2

.6 -Time to compute a Lasso path from λ max to λ max /100 on the news20 dataset (left: coarse grid of 10 values, right: fine grid of 100 values). λ max /100 gives a solution with 14 817 nonzero coefficients.

  1, . . . , T do if t = 0 mod f dual then // compute θ and gap every f epoch only

	t = t/f dual // dual point indexing
	r (t ) = Xβ		
	compute θ	(t ) res and θ	(t ) accel with Equations (2.25), (2.26) and (3.7)
	θ (t ) = arg max D(θ) : θ ∈ {θ (t -1) , θ accel , θ (t ) res } (t )	// robust dual extr. with
	(2.27)		

if P(β (t) ) -D(θ (t ) ) < then break if PG then // proximal gradient descent:

Table 3
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	.1 -Characteristics of datasets used	
	name	n	p	q	density
	leukemia	72	7129	-	1
	news20	19 996	632 983	-	6.1 10 -4
	rcv1_train	20 242	19 960	-	3.7 10 -3
	Finance	16 087 1 668 738	-	3.4 10 -3
	Magnetoencephalography (MEG)	305	7498	49	1
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  Alternate minimization for CLaR input : X, Ȳ , σ, λ, f dual , T init :

	4.3. OPTIMIZATION PROPERTIES OF CLAR AND SGCL	93
	Algorithm 4.1	
	.18)	

  Thanks to the convex formulation, convergence of Algorithm 4.1 can be ensured using the duality gap as a stopping criterion (as it guarantees a targeted sub-optimality level). To compute the duality gap, we derive the dual of Problem (4.7) in Proposition 4.13. In addition, convexity allows to leverage acceleration methods such as working sets strategies[START_REF] Fan | Sure independence screening for ultrahigh dimensional feature space[END_REF]; Tibshirani et al., 2012; Johnson and Guestrin, 2015) or safe screening rules (El Ghaoui et al., 2012; Ndiaye et al., 2017b), and their improvements detailed in Part I, while retaining theoretical guarantees of convergence. Such techniques are trickier to adapt in the non-convex case, as they could change the local minima reached.

	r(XB) Ȳ + rXB(XB) .	(4.21)
	Additionally, statistical properties showing the advantages of using CLaR over SGCL
	can be found in Appendix B.3.1.	

  It is now easy to generalize this result to a matrix Z containing stacked residuals. Proposition 4.23 (Schatten 1-norm (nuclear norm) with repetitions). Let Z 1 , . . . , Z r be matrices in R n×q , then we defineZ ∈ R n×qr by Z [Z 1 | . . . |Z r ].Proof The result is a direct application of Proposition 4.22, with Z = [Z (1) | . . . |Z(r) ].It suffices to notice that Tr Z S -1 Z = r l=1 Tr Z l S -1 Z l .

	4.4. AN ANALYSIS OF CLAR THROUGH SMOOTHING			101
	and identifying Equations (4.48) and (4.49) leads to the result.		
							For the choice
	ω(Z) = 1 2 Z	2 + n∧qr 2 , then:					
		• S ,1 ω σ (Z) = min S σ Idn	1 2	r l=1	Tr Z l S -1 Z l +	1 2	Tr(S) .	(4.50)
	Proposition 4.24. Any solution of Problem (4.7), ( B, Ŝ) = ( BCLaR , ŜCLaR ) is also a
	solution of:						
							4.49)

  Even if the non-smooth Schatten 1norm is replaced by the formula in (4.52), numerical challenges remain: S can approach 0 arbitrarily, hence, the gradient w.r.t. S of the data-fitting term is not Lipschitz over the optimization domain. A similar problem was raised for the concomitant Lasso byNdiaye et al. (2017a) who used smoothing techniques to address it. Here we replaced the nuclear norm by its smoothed version • S ,1 ω σ .

	S ,p	+ λn B 2,1 .	(4.53)
	Without smoothing, problems of the form given in Equation (4.53) have the drawback of
	having two non-differentiable terms, and calling for primal-dual algorithms (Chambolle
	and Pock, 2011) with costly proximal operators.		

  to several estimators: SGCL(Massias et al., 2018a), the (smoothed) 2,1 -Maximum Likelihood ( 2,1 -MLE) and a version of the 2,1 -MLE with multiple repetitions ( 2,1 -MLER), an 2,1 penalized version of the Multivariate Regression with Covariance Estimation (Rothman et al. 2010, 2,1 -MRCE), a version of 2,1 -MRCE with repetitions ( 2,1 -MRCER) and the Multi-Task Lasso (Obozinski et al. 2010, MTL). The cost of an epoch of block coordinate descent and the cost of computing the duality gap for each algorithm are summarized in Table 5.1. The updates of each algorithms are summarized in Table 5.2.

Table 5
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	.1 -Algorithms cost in time summary
	CD epoch cost	convex dual gap cost
	CLaR SGCL 2,1 -MLER 2,1 -MLE 2,1 -MRCER O( O(glasso) O( n 3 +qn 2 f dual + pn 2 + pnq) O( n 3 +qn 2 f dual + pn 2 + pnq) O( n 3 +qn 2 f dual + pn 2 + pnq) f dual + pn 2 + pnq) O( n 3 +qn 2 f dual + pn 2 + pnq) MTL O(npq)	O(rnq + p) O(nq + p) not convex not convex not convex O(nq + p)

  To generate realistic MEG data we simulate neural responses B * with 2 non-zeros rows corresponding to areas known to be related to auditory processing (Brodmann area 22). Each non-zero row of B * is chosen as a sinusoidal signal with realistic frequency (5 Hz) and amplitude (amp ∼ 1 -10 nA.m). We finally simulate r MEG signals following the model Y l = XB * +S * E l , E l being matrices with i.i.d. normal entries.

the general formula is ∇κ(θ) = Jacη(θ) E[T (Υ)] where Jacη(θ) is the Jacobian matrix of η at θ

even when the noise is not Gaussian, provided the noise variance is constant across observations

in the shuffle variant, the order is shuffled after each epoch

λmax X y ∞ is the smallest λ s.t. β = 0p

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

this is the default grid in GLMNET or scikit-learn

on primal decrease for GLMNET, on duality gap for Celer

throughout the chapter, this means cyclic and proximal coordinate descent unless specified otherwise

H and D should read H (t) and D (t) as they depend on β (t) ; we omit the exponent for brevity.

& 1.0 5 & 2.0 10 &

3.4 50 & 13.1 100 & 18.5 λ max /λ & Blitz time (s)

http://cancergenome.nih.gov/

Note that λmax is model specific

In that case we plug B = BCLaR (resp. B = BCLaR ) in Proposition B.4.

Remerciements

CHAPTER 3. DUALITY IMPROVEMENTS FOR SPARSE GLMS

Two popular instances of Problem (3.1) are the Lasso (f i (t) = 1 2 (y it) 2 , γ = 1) and Sparse Logistic regression (f i (t) = log(1 + exp(-y i t)), γ = 4).

Note that Problem (3.1) could be called " 1 -regularized ERM" rather than GLM, since all instances of ERM do not come from the Maximum Likelihood Estimator of a GLM (see Problem (1.11) in Section 1.1.1). This is a misuse of language, originating from our focus on Lasso and Sparse Logistic regression.

We could use a more complex regularizer in Problem (3.1), to handle group penalties for example. For the sake of clarity we rather remain specific, and generalize to other penalties when needed in Section 3.3.2. Proposition 3.2 (Strong duality for sparse GLMs). A dual formulation of Problem (3.1) reads:

where ∆ X = {θ ∈ R n : X θ ∞ ≤ 1}. The dual solution θ is unique because the f * i 's are γ-strongly convex (see Proposition 1.9) and the KKT conditions read:

If for u ∈ R n we write F (u) input : X, y, λ, β (0) , θ (0) param: K = 5, p (1) = 100, , MAX_WS init : 

res } D(θ) 

inner with subproblem solver applied to (X W (t) , y, λ, (

Algorithm 3.3 create_WS input : X, y, λ, β (t-1) , θ (t) , W (t-1) , g (t) param:

optimization, so for lighter notation we assume that the design matrix X is already restricted to features in the working set. The reader should be aware that in the rest of this section, β, X and p in fact refers to β W (t) , X :W (t) , and p (t) .

Writing the data-fitting term f (β) = F (Xβ), we have ∇ 2 f (β) = X DX, where D ∈ R n×n is diagonal with f i (β x i ) as its i-th diagonal entry. Using H = ∇ 2 f (β (t) ) we can approximate the primal objective by 2 :

Conclusion

In this chapter, we have generalized the dual extrapolation procedure for the Lasso (Celer) to any 1 -regularized GLM, in particular sparse Logistic regression. We have provided theoretical guarantees based on sign identification of coordinate descent. Experiments show that dual extrapolation yields more efficient Gap Safe screening rules and working sets solver. Finally, we have adapted Celer to make it compatible with prox-Newton solvers, and empirically demonstrated its applicability to the Multi-task Lasso.

These speed improvements are applicable tp the state-of-the-art MxNE approach used for the bio-magnetic inverse problem. We now consider potentially more refined modeling of the noise structure in this problem.

Part II

Concomitant noise estimation for the M/EEG inverse problem CHAPTER 5. EXPERIMENTAL VALIDATION CLaR and SGCL were introduced in the previous chapter. Let us first introduce the definitions of the alternative estimation procedures.

Multi-Task Lasso (MTL)

The Multitask Lasso [START_REF] Obozinski | Joint covariate selection and joint subspace selection for multiple classification problems[END_REF] is the classical sparse multitask estimator used when the additive noise is supposed to be homoscedastic (without correlation). It is obtained by solving:

(5.1)

Remark 5.1. It can be seen that trying to use all the repetitions in the MTL leads to MTL itself because

Here we study a penalized Maximum Likelihood Estimator (Chen and Banerjee, 2017) ( 2,1 -MLE). When minimizing 2,1 -Maximum Likelihood the natural parameters of the problem are the regression coefficients B and the precision matrix Σ -1 . Since real M/EEG covariance matrices are not full rank, one has to be algorithmically careful when Σ becomes singular. To avoid such numerical errors and to be consistent with the smoothed estimator proposed in Chapter 4, let us define the (smoothed) 2,1 -MLE as:

and its repetitions version ( 2,1 -MLER):

Problems (5.2) and (5.3) are not convex because the objective functions are not convex in (B, Σ -1 ), however they are biconvex, i.e., convex in B and convex in Σ -1 . Alternate minimization can be used to solve Problems (5.2) and (5.3), but without guarantees to converge toward a global minimum.

Minimization in B j: As for CLaR and SGCL the updates in B j: 's for 2,1 -MLE and 2,1 -MLER read:

(5.4)

Let us prove the last result. Minimizing Problem (5.2) in Σ -1 amounts to solving:

(5.6)

, a summary of the updates in S or Σ and B j: 's for each algorithm is given in Table 5.2.

Comments on Table 5.2

The updates in S/Σ and B j: 's are given in Table 5.2. Although the updates may look similar, all the algorithms can lead to very different results, as Figures 5.6, 5.8, 5.10 and 5.12 will illustrate. 

no update in S/Σ

CLaR

The Python code, with Numba compilation (Lam et 5.1 in Section 5.1.4 for each algorithm, along with the duality gap cost when available. All competitors are detailed in Section 5.1.

Synthetic data Here we demonstrate the ability of our estimator to recover the support i.e., the ability to identify the predictive features. There are n = 150 observations, p = 500 features, q = 100 tasks. The design X is random with Toeplitz-correlated features with parameter ρ X = 0.6 (correlation between X :i and X :j is ρ For Figures 5.1 to 5.3, the figure of merit is the ROC curve, i.e., the true positive rate (TPR) against the false positive rate (FPR). For each estimator, the ROC curve is obtained by varying the value of the regularization parameter λ on a geometric grid of 160 points, from λ max (the smallest regularization strength leading to 0 p,q being solution), estimator-specific) to λ min , the latter also being estimator-specific and chosen to obtain a FPR larger than 0.4.

Influence of noise structure. Figure 5.1 represents the ROC curves for different values of ρ S . As ρ S increases, the noise becomes more and more heteroscedastic. From left to right, the performance of heteroscedastic solvers (CLaR, SGCL, 2,1 -MRCER, 2,1 -MRCE, 2,1 -MLER) increases as they are designed to exploit correlations in the noise, while the performance of MTL decreases, as its homoscedastic model becomes less and less valid.

CLAR APPENDIX A. CHOICE OF PARAMETERS IN CELER

A.1.2 Working set size policy

In this section, we demonstrate how the growth policy we chose in Equation (2.39) behaves better than others. We consider two types of growth: geometric of factor γ:

and linear of factor γ:

We implement these two strategies with factor 2 and 4 for the geometric, and 10 and 50 for the linear. We consider two scenarios:

• undershooting, with p (1) = 10 much smaller than the true support size β 0 = 983 (obtained with λ = λ max /20),

• overshooting, with p (1) = 500 much larger than the true support size β 0 = 63 (obtained with λ = λ max /5).

Figure A.3 shows that, when the first working set is too small (choice of p (1) = 10), the approximate solutions are dense and the subsequent W (t) grow in size. Amongst the four strategies considered, the geometric growth with factor 2 quickly reaches the targeted support size (contrary to the linear strategies), and does not create way too large WS like the geometric strategy with factor 4 does.

Figure A.4 shows that, if the initial guess is too large, using β (t-1) 0 instead of |W (t-1) | immediately decreases the size of W (1) , thus correcting the initial mistake and avoiding solving too large subproblems. Note that for the lowest precision the Blitz solver stops running due to internal stopping criterion measuring primal decrease and time spent on working set, but the evaluated duality gap when the solver stops is not always lower than along the path.

A.1.3 Path on other dataset

Algorithm B.1 Alternate min. for the block model input :

for t = 1, . . . , T do for j = 1, . . . , p do for k = 1, . . . , K do

Proposition B.2. When optimizing Problem (B.2) with B fixed, then

Proposition B.3. For the multi-task SBHCL the critical parameter is

where

The strategy of Algorithm 4.1 can also be applied to the multi-task SBHCL. Because of the special form of S, the computations are lighter and the standard deviations σ k 's can be updated at each coordinate descent update. Indeed, updating all the σ k 's may seem costly, since a naive implementation requires to recompute all the residual norms R k , where

However, it is possible to store the values of R k 2 and update them at each B j update with a O(kq) cost. Indeed, if we denote Bj and Rk the values before the update, we have:

and all the quantities Rk X k j are already computed for the soft-thresholding step. As k ≤ n, this makes the cost of one B j update of Algorithm B.1 O(nq), the same cost as for the 2,1 regularized Lasso, a.k.a. multi-task Lasso (MTL) [START_REF] Obozinski | Joint covariate selection and joint subspace selection for multiple classification problems[END_REF].
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B.2 Experiments

B.2.1 Block homoscedastic model illustration

To demonstrate the benefits of handling non-homoscedastic noise, we now present experiments using both simulations and real M/EEG data. First, we show that taking into account multiple noise levels improves both prediction performance and support identification. We then illustrate on M/EEG data that the estimates of the noise standard deviations using multi-task SBHCL match the expected behavior when increasing the SNR of the data. We also demonstrate empirically the benefit of our proposed multi-task SBHCL to reduce the variance of the estimation. The implementation is done in Python/Cython and is available at https://github.com/mathurinm/SHCL.

We consider the case where the block structure of the noise is known by the practitioner. Therefore, all experiments use the block homoscedastic setting. Note that this is relevant with the M/EEG framework where the variability of the noise is due to different data acquisitions sensors that are known.

B.2.2 Prediction performance

We first study the impact of the multi-task SBHCL on prediction performance, evaluated on left-out data.

The experiment setup is as follows. There are n = 300 observations, p = 1000 features and q = 100 tasks. The design X is random with Toeplitz-correlated features with parameter ρ = 0.7 (correlation between features i and j is ρ |i-j| ). The true coefficient matrix B * has 20 non-zero rows, whose entries are independently and normally (centered and reduced) distributed. We simulate data coming from K = 3 sources (each one containing 100 observations) whose respective noise levels are σ * , 2σ and 5σ . The standard deviation σ is chosen so that the signal-to-noise ratio

SNR

Y / XB * = 1 .

The two estimators are trained for λ varying on a logarithmic grid of 15 values between the critical parameter 1 λ max and λ max /10. As it can be observed, the RMSE for the multi-task SBHCL is lower on every block of the test set, meaning that it has better prediction performance. By attributing a higher noise standard deviation to the noisiest block (block 3), the multi-task SBHCL is able to down-weight the impact of these samples on the estimation, while still benefiting from it.

APPENDIX B. CONCOMITANT ESTIMATION

B.3 Statistical properties

B.3.1 Statistical comparison

In this subsection, we show the statistical interest of using all repetitions of the experiments instead of using a mere averaging as SGCL would do (recall that the later is equivalent to CLaR with r = 1 and Y 1 = Ȳ , see Remark 4.6).

Let us introduce Σ * , the true covariance matrix of the noise (i.e., Σ * = S * 2 with our notation). In SGCL and CLaR alternate minimization consists in a succession of estimations of B * and Σ * (more precisely S = ClSqrt(Σ, σ) is estimated along the process). In this section we explain why the estimation of Σ * provided by CLaR has better statistical properties than that of SGCL. For that, we can compare the estimates of Σ * one would obtain provided that the true parameter B * is known by both SGCL and CLaR. In such "ideal" scenario, the associated estimators of Σ * could be written: Empirically 2 , we have also observed that ΣCLaR has larger eigenvalues than ΣSGCL , leading to a less biased estimation of S * after clipping the singular values.

Let us recall that: S * E l .