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Résumé étendu en français

Les techniques de vérification déductive fournissent des méthodes puissantes pour la vérification
formelle des propriétés exprimées dans la Logique de Hoare. Dans cette formalisation, égale-
ment connue sous le nom de sémantique axiomatique, un programme est considéré comme un
transformateur de prédicat, où chaque programme c exécuté sur un état vérifiant une propriété
P conduit à un état vérifiant une autre propriété Q.

Cependant, il est fréquent qu’on veuille parler d’une propriété mettant en jeu l’exécution de
plusieurs fonctions, ou comparer les résultats d’une même fonction sur différents paramètres.
Des groupes de fonctions sont fréquemment liés par des spécifications algébriques précisant
leurs relations. On parle dans ce cas de propriétés relationnelles, liant un ensemble de pro-
grammes à deux propriétés. Plus précisément, une propriété relationnelle est une propriété con-
cernant n programmes c1, ...., cn, indiquant que si chaque programme ci commence dans un
état si et termine dans un état s′i tel que P (s1, ...., sn) soit vérifié, alors Q(s′1, ..., s

′
n) est véri-

fié. Ainsi, les propriétés relationnelles invoquent un nombre fini d’exécutions de programmes
éventuellement dissemblables.

Il en résulte que les méthodes déductives classiques se prêtent mal à la spécification et à la
vérification de telles propriétés. On retrouve dans la littérature différentes méthodes qui per-
mettent de répondre au problème de la vérification de propriétés relationnelles. Les méthodes
les plus classiques de vérification déductive de propriétés relationnelles sont : la Logique de
Hoare Relationnelles qui est une extension de la sémantique axiomatique traditionnel et per-
met de vérifier des propriétés concernant 2 programmes. L’approche par Self-Composition et
par Produit de Programme, des approches consistantes à réduire le problème de vérification des
propriétés relationnelles portant sur n programmes à un problème de vérification standard de
programme. L’approche est fondée sur la construction d’un nouveau programme simulant les
appels des programmes reliés par la propriété. Ces méthodes présentent la limitation de ne pas
supporter les appels de procédures et de ne pas permettre d’utiliser les propriétés relationnelles
comme hypothèses. Cette thèse apporte deux solutions à cette problématique. Les deux ap-
proches permettent de prouver une propriété relationnelle et de l’utiliser comme hypothèse dans
des vérifications ultérieures.

La première solution proposée consiste à étendre la méthode de Self-Composition afin de
pouvoir vérifier et utiliser les propriétés relationnelles dans le contexte d’appels de procédures.
L’utilisation des propriétés relationnelles est basée sur une axiomatisation en logique du premier
ordre des propriétés. Cette solution est implémentée dans le contexte du langage de program-
mation C, du langage de spécification ACSL et du plugin de vérification déductive WP, dans la

v



vi RÉSUMÉ ÉTENDU EN FRANÇAIS

plate-forme FRAMA-C. Nous avons étendu le langage de spécification ACSL afin de pouvoir
exprimer les propriétés et ainsi pouvoir implémenter notre méthode de vérification dans un plu-
gin Frama-C nommé RPP. L’outil permet de spécifier une propriété relationnelle, de la prouver
et de l’utiliser comme hypothèse dans la preuve d’autres propriétés en utilisant la vérification
déductive classique. Afin de tester notre démonstrateur, nous avons créé un ensemble de bench-
marks afin de valider l’outil. L’outil nous permet de traiter un large ensemble de propriétés
relationnelles de manière automatique, et permet de réutiliser les propriétés dans le contexte
d’autres preuves.

Cependant un certain nombre de point ont pu être remarqués lors du développement et
de l’évaluation de l’outil : l’approche de Self-Composition nécessite un ensemble de renom-
mage fastidieux à réaliser et impose des restrictions sur les pointeurs. Ces limitations nous ont
poussés à élaborer une seconde approche pour la vérification de propriété relationnelle utilisant
les caractéristiques d’un générateur d’obligation de preuves. Cette nouvelle méthode permet
de s’affranchir des contraintes imposées par les méthodes basées sur une approche de Self-
Composition, et tolère des axiomatisations de propriétés relationnelles alternatives. Une implé-
mentation partielle de cette nouvelle méthode est proposée dans l’outil RPP.



Contents

Remerciements iii

Résumé étendu en français v

1 Introduction 1
1.1 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Deductive Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Relational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Verification of Relational Properties . . . . . . . . . . . . . . . . . . . 7

1.4 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Frama-C 11
2.1 The ACSL specification language . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The WP plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Advanced Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Context 23
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Set notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Syntax and Semantics notations . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Monomorphic First-Order Logic . . . . . . . . . . . . . . . . . . . . . 25

3.2 While Language with Procedure calls . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Program Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Program Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Hoare Triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



viii CONTENTS

4 Background on Relational Property Verification 41
4.1 Relational Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Relational Hoare Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Minimal Relational Hoare Logic . . . . . . . . . . . . . . . . . . . . . 45
4.2.2 Extended Minimal Relational Hoare Logic . . . . . . . . . . . . . . . 47
4.2.3 Relational Hoare Logic and Procedures . . . . . . . . . . . . . . . . . 48

4.3 Self-Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Product Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Minimal Product Program . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Extended Minimal Product Program . . . . . . . . . . . . . . . . . . . 53
4.4.3 Product Program and Procedures . . . . . . . . . . . . . . . . . . . . . 55

5 Extension 57
5.1 Extended R-WHILE Language . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Extension of Arithmetic Expressions . . . . . . . . . . . . . . . . . . . 58
5.1.2 Extension of Boolean Expressions . . . . . . . . . . . . . . . . . . . . 59
5.1.3 Extension of Commands . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.4 Well Defined Program . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Hoare Triple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Verification Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Translation of Ea and Eb . . . . . . . . . . . . . . . . . . . . . . . . . 69
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Chapter 1

Introduction

Today’s software is characterized by increasing complexity and ever greater expansion over all
areas of society. Traditionally, software is known to be found in desktops, laptops, smartphones.
With the development of the Internet of Things, it also appears in everyday objects, like door
locks, smart speakers, ... In addition, software, which is increasingly complex, tends to contain
errors. Thus, everyone has experienced situations when software crashes or shows unwanted
behaviour. The presence of those bugs can have several explanations.

The same program is often run on different architectures with different specifications, and
in collaboration with other programs. For example, the Linux kernel runs on most architectures
available on the market, without losing the support of previous platforms (except for some really
obsolete architectures). It is possible to run the latest version of the Kernel on a twenty-year-old
computer [K+14]. Since it is usually not possible in practice to test all architectures, it is difficult
for developers to guarantee that their programs will run flawlessly on any possible machine. At
best, the program is available with the guarantee that it was thoroughly tested and should work
on a sensible set of architectures.

Moreover, depending on the context, bugs may be acceptable. The developers are mainly
focused on the functional part. The task to find and report non-critical issues might be left to
users. In the case of Open-Source software, bugs might also be fixed by contributors. However,
this may result in inconsistent code quality or new bugs. Even worse, programs are sometimes
written as quickly as possible to lower development costs or to save time. This implies that
programs are released in a poor state where bugs are inevitable.

On the other hand, the use of software in critical domains such as energy, transportation,
health, defense, etc., requires different development strategies. Indeed, in such systems, bugs
can have extremely severe consequences for costly equipments or human lives. One of the most
well-known examples is the first flight of Ariane 5 which ended in the loss of the launcher
[Lio96]. Thus, critical embedded software often needs to be assessed against a certain number
of criteria, depending on criticality level and application domain. Those criteria include safety
and security, and result in a strong need for analysis and verification, in particular, for powerful
and expressive theories, capable to express and treat ever more complex properties of software.

1



2 CHAPTER 1. INTRODUCTION

1.1 Formal Verification

Formal verification is devoted to provide strong mathematical grounds for reasoning on pro-
grams. Since programs are written in a programming language with a well defined semantics
(at least theoretically), it is possible to consider a mathematical model of the program. Thus,
mathematical analysis can contribute to reliability and robustness. For example, properties such
as the absence of runtime errors or absence of dead-code can be verified. One of the specificities
of formal verification is that the program is not executed with a given input, but a static analysis
is performed on the program code. Different theoretical foundations exist to provide a formal
analysis. The following list mentions only the most notable ones:

• Model checking [CES86]: Verification of temporal properties by an exhaustive space ex-
ploration on an abstract model of the program’s semantics.

• Symbolic execution [Kin76]: Verification of properties on symbolic execution of a pro-
gram i.e. the execution proceeds as in a normal execution except that variables are mapped
to symbolic expressions based on fresh symbols representing arbitrary input values.

• Abstract interpretation [CC77]: Verification of properties on an abstract execution of a
program i.e. variables are mapped to an abstraction (domain) that over-approximates the
set of concrete values that they can take during any possible concrete execution (in case
of integers, a variable can for instance be abstracted by a sign or an interval).

• Deductive verification [Hoa69]: Verification of the adequacy between a specification and
an implementation by transforming the program and specification into formulas that need
to be verified.

Deductive verification, model-checking and symbolic execution are methods where the ex-
pected properties can be precisely specified and proven. Abstract interpretation supports a lim-
ited set of properties: the properties that can be defined in the context of the chosen abstract
domain(s).

All those methods require some manual work. Abstract interpretation requires the choice of
the right domain and the interpretation of the results. Model checking and symbolic execution
require the definition of bounds (how many times loops are unrolled, maximum size of arrays,
....). Deductive verification requires the addition of specifications inside the source code (notably
to model the behaviour of loops and functions). Using those additional pieces of information
makes it possible to abstract the complex parts (functions and loops) which are often a pitfall
for techniques like model checking and symbolic execution due to state space explosion. Thus,
deductive verification is a modular and scalable verification approach and has similarities with
verification of properties using proof assistants [BC04] like Coq [Tea17], where intermediate
properties can be defined and proven separately.

Thus, deductive verification, as introduced above, will be the basis of the work described in
this thesis.
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1.2 Deductive Verification

Deductive verification techniques provide powerful methods for formal verification of proper-
ties expressed in Hoare Logic [Flo67, Hoa69]. In this formalization, also known as axiomatic
semantics, a program is seen as a predicate transformer, where a program c executed on a state
verifying a property P leads to a state verifying another property Q. This is summarized in the
form of a Hoare triple:

{P}c{Q}

In this setting, P and Q refer to states before and after a single execution of a program c. Prop-
erties P and Q are commonly called precondition and postcondition respectively. For example,
we can consider the following triple:

{x1 = 10}x1 := x1 + 1{x1 = 11}

This triple states that for an initial state where location x1 contains value 10, executing a program
that increases the value of location x1 by one ends in a state where location x1 contains value 11.
This triple is clearly valid and can be proven using the Hoare proof system [Hoa69] the weakest
precondition calculus [Dij68] or verification condition generation [Gor88].

Deductive verification can of course handle more complex cases, and it has been extensively
studied. Different tools exist for performing verification on different programming languages.
This includes for instance Spec# [BLS05] for C#, Dafny [LW14] for Dafny, OpenJML [Cok14],
Verifast [JSP10], KeY [ABB+16], and Krakatoa [FM07] for Java, Why3 [FP13] for WhyML,
WP plugin of Frama-C [KKP+15] and Verifast [JSP10] for C, Spark2014 [KCC+14] for Ada.

On Figure 1.1, we show an example of a function computing the factorial of an integer n,
written in C. The function is equipped with annotations written in the ACSL specification lan-
guage [BCF+13]. We recognize the pre- and post-condition on lines 7–8. The function requires
that integer n is non-negative in the state before the execution (line 7). If the precondition is
satisfied, we specify that the execution ends in a state where location \result (the return of the
function) contains the factorial of n by stating what n and location \result satisfy the predicate
isFact (post-condition line 8). This predicate is defined in an axiomatic definition lines 1–5 and
is a copy of the usual mathematical definition of factorial. Moreover, loop invariants, i.e. proper-
ties that are true after each loop iteration and at loop entry, are used to summarize the behaviour
of the loop, lines 12–13. Here, we state that variable x is between 0 and n and that factorial of x
times y is equal to factorial of n. In addition, a frame rule is specified line 14, defining the loop
side effects. Finally, for the proof of termination, a loop variant is defined line 15. Note that
for now we ignore issues arising from potential arithmetic overflows, as they can be dealt with
separately.

As shown on Figure 1.1, functions are specified and verified separately, following the con-
cept of design-by-contract [Mey97] and generally using verification condition generation [Gor88].
For a given function f , any individual call to f can be proven to respect the contract of f , that is,
basically an implication: if the given precondition is true before the call, the given postcondition
is true after its execution. As mentioned earlier, the success of deductive verification is due to
the fact that those contracts are used to summarize the behavior of some parts of the programs.
This approach is commonly called modular deductive verification.
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1 /*@ axiomatic Fact {
2 predicate isFact(integer n, integer fact);
3 axiom Fact_1: isFact(0,1);
4 axiom Fact_2: ∀ integer n,r1; n > 0 ==> isFact(n-1,r1) ==> isFact(n,n*r1);
5 }*/
6

7 /*@ requires n >= 0;
8 @ ensures isFact(n,\result);*/
9 int fact (int n) {

10 int y = 1;
11 int x = n;
12 /*@ loop invariant 0 <= x <= n;
13 @ loop invariant ∀ integer r1; isFact(x,r1) ==> isFact(n,y*r1);
14 @ loop assigns x,y;
15 @ loop variant x;*/
16 while (x > 1) {
17 y = y * x;
18 x = x - 1;
19 };
20 return y;
21 }

Figure 1.1 – C function computing factorial and equipped with ACSL annotation

Figure 1.2a and Figure 1.2b show two C functions, abs computing the absolute value of x

and max computing the maximum between two values x and y. Both functions have their own
specification, written in ACSL, which refers to the lexical scope of the function. Notice that
the specification of abs uses a more advanced contract style based on the notion of behavior to
distinguish the contexts of use of the function (a deeper explanation is provided in Chapter 2).

However, we may want to be able to say more about those functions. For example, we might
want to state a property like:

∀ integer x,y; max(x,y) == (x+y+abs(x - y))/2.

But in the context of classical deductive verification we cannot express such properties as one
cannot express properties that refer to two distinct executions of a program c, or properties
relating executions of different programs c1 and c2 (in the present case max and abs).

1 /*@ requires x > INT_MIN;
2 assigns \nothing;
3 behavior pos:
4 assumes x >= 0;
5 ensures \result == x;
6 behavior neg:
7 assumes x < 0;
8 ensures \result == -x;*/
9 int abs (int x){

10 return (x >= 0) ? x : (-x);
11 }

(a) C function computing the absolute value

1 /*@ assigns \nothing;
2 ensures \result >= y && \result >= x;
3 ensures \result == y || \result == x;*/
4 int max(int x,int y){
5 return (x >= y) ? x : y;
6 }

(b) C function computing the maximum between
two values

Figure 1.2 – Two annotated functions
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As we will see in the next sections, such properties, that are generically called relational
properties, occur quite regularly in practice. Hence, it is desirable to provide an easy way to
specify them and to verify that implementations are conforming to such properties.

1.3 Relational Properties

Relational properties can be seen as an extension of axiomatic semantics. But, instead of linking
one program to two properties, relational properties link n programs to two properties. More
precisely, a relational property is a property about n programs c1, ..., cn, stating that if each pro-
gram ci starts in a state si and ends in a state s′i such that P (s1, ..., sn) holds, then Q(s′1, ..., s

′
n)

holds. Thus, relational properties invoke any finite number of executions of possibly dissimilar
programs.

1.3.1 Notations

Different notations exist for relational properties. The most common, proposed by Benton in
[Ben04], describes relational properties linking two programs by {P}c1 ∼ c2{Q}. As Benton’s
work focuses on comparing equivalent programs, using symbol ∼ to denote a relation of simi-
larity between two programs is quite natural. As multiple states are combined, tags are used to
make distinctions. For example, let us consider the following quadruple:


x2〈1〉= x2〈2〉

∧
x3〈1〉= x3〈2〉


x1:= −x2;
x3:= x3 − x1;
x1:= −x1

〈1〉 ∼ x1:= x2;
x3:= x3 + x1

〈2〉


x1〈1〉= x1〈2〉

∧
x2〈1〉= x2〈2〉

∧
x3〈1〉= x3〈2〉

 (1.1)

The quadruple links an optimized version of a program (right of∼) to its original version (left of
∼). It states that both programs (with tag 〈1〉 on the left and tag 〈2〉 on the right) executed from
two states named 〈1〉 and 〈2〉 verifying x2〈1〉 = x2〈2〉 ∧ x3〈1〉 = x3〈2〉 (the value of x2 is the
same in both states and the value of x3 is the same in both states), lead to two states verifying
x1〈1〉 = x1〈2〉 ∧ x2〈1〉 = x2〈2〉 ∧ x3〈1〉 = x3〈2〉 (the value of x1 is the same in both states, the
value of x2 is the same in both states and the value x3 is the same in both states).

An alternative, but equivalent, notation has been proposed in [Yan07]:

{P}
(
c1

c2

)
{Q}

Although the benefit of this notation is the absence of symbol ∼ that can be confusing for
properties that do not express program similarity and link more than two programs, we prefer
the first notation. Most relational properties in this thesis do not exceed two programs and
ambiguity about the meaning of a property is resolved by an appropriate explanation.
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1.3.2 Examples

Relational properties are not uncommon in practice. Using Benton’s notation, we can present a
few more examples taken from case studies:

1. Verification of monotonic functions [BBC13] in an industrial case study on smart sensor
software.

Suppose we have a program c implementing a monotonic functions f (∀ x, y. x < y ⇒
f(x) < f(y)). We call xparam the program entry and xres the result.{

xparam〈1〉< xparam〈2〉
}
c〈1〉 ∼ c〈2〉{ xres〈1〉< xres〈2〉 }

Executing two instances of c on two states 〈1〉 and 〈2〉 satisfying xparam〈1〉 < xparam〈2〉,
ends in two states satisfying xres〈1〉 < xres〈2〉.

2. Verification of properties on voting rules [BBK+16].

Suppose we have a program voting implementing a voting rule f . We call xparam the
program entry, corresponding to a sequence of ballots, and xres the program result, corre-
sponding to the result of applying the voting rule f to the sequences of ballots in xparam
(the winner according to rule f ). We can define the following relational property, called
anonymity, assuming the existence of a predicate permut(a, b) being true if a and b are
sequences of ballots and b is a permutation of a:{

permut(xparam〈1〉, xparam〈2〉)
}
voting〈1〉 ∼ voting〈2〉{ xres〈1〉= xres〈2〉 }

Applying the voting rule to a sequence of ballots and a permutation of the same sequence
of ballots ends in the same result, i.e regardless of the order in which the ballots are passed
to the voting function, the result is the same.

3. Verification of properties on comparator functions [SD16].

Suppose we have a comparator function f , comparing x and y and returning −1 if x < y,
1 if x > y and 0 if x = y. Three typical properties can be defined on f :

• anti-symmetry (∀ x, y. f(x, y) = −f(y, x)),

• transitivity (∀ x, y, z. f(x, y) > 0 ∧ f(y, z) > 0⇒ f(x, z) > 0),

• extensionality ∀ x, y, z. f(x, y) = 0⇒ f(x, z) = f(y, z).

Suppose we have a comparator program compare, implementing a compare function f .
We call xparam1 and xparam2 the program entries, and xres the programs result. Anti-
symmetry can for instance be defined as follows:

xparam1〈1〉= xparam2〈2〉
∧

xparam2〈1〉= xparam1〈2〉

 compare〈1〉 ∼ compare〈2〉{ xres〈1〉= −xres〈2〉 }

More details about those three properties can be found in Chapter 7.
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4. Verification of secure information flow [BDR11] properties.

In case of secure information flow, the main relational property of interest is known as
non-interference. As program variables can be composed of high security variables H =
{xh1 , ..., xhn} and low security variables L = {xl1 , ..., xlm}, a program can be said non-
interferent if and only if any execution in which the low security variables have the same
initial values will result in the same values for the low security variables at the end of the
execution, regardless of what the high level inputs are. This definition of non-interference
can be expressed by a relational property (for a given program c):

xl1〈1〉= xl1〈2〉
∧

...
xln〈1〉= xln〈2〉

 c〈1〉 ∼ c〈2〉


xl1〈1〉= xl1〈2〉

∧
...
xln〈1〉= xln〈2〉


Although these properties are relational, some of them are called k-safety properties in the

literature [SD16]. A k-safety property is a relational property linking k instances of the same
program and mostly states a safety property. Example 4 above is a 2-safety property.

1.3.3 Verification of Relational Properties

Different deductive verification methods exist for proving valid relational properties. Most no-
table, based on proof systems, are Relational Hoare Logic [Ben04] (used for Example 1.1),
Relational Separation Logic [Yan07], and Cartesian Hoare Logic [SD16] supporting specifically
k-safety properties (used for Example 3). As Cartesian Hoare Logic and Relational Separation
Logic are similar to Relational Hoare Logic, we will focus in the sequel on Relational Hoare
Logic.

Alternative approaches relying on the existing Hoare Logic are Self-Composition [BDR11]
(used for Examples 1, 2 and 4) and Product Programs [BCK16, BCK11]. Those methods pro-
pose an approach to prove relational properties by reducing the verification of relational proper-
ties to a standard deductive verification problem. The benefit of such an approach is that existing
tools can be used for the verification. We propose in Chapter 4 a more thorough presentation of
Relational Hoare Logic, Self-Composition and Product Program.

Beyond deductive verification, relational properties and more precisely k-safety properties
are used as an oracle [ZS13] in testing. However, in this context, k-safety properties are called
metamorphic relations. A method using abstract interpretation is presented in [AGH+17] for
verification of k-safety properties and a Relational Symbolic Execution is proposed in [FCG17].
Finally, a method using model checking, proposed in [YVS+18], is one example showing that
Self-composition is not limited to deductive verification.

1.4 Motivations

Although all methods presented in Section 1.3 propose a verification approach for relational
properties, none has an efficient support for function or procedure calls or provides a way to use
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proven properties. Works described in [EMH18] (for k-safety properties) and [KKU18] propose
some solutions for supporting function calls, but with limited modularity. In other words, there
is no support for a modular verification of relational properties.

Lack of support for relational properties in verification tools is discussed in [BBC13]. It
is often required to perform Self-Composition techniques manually, which is relatively tedious,
error-prone, and does not provide a completely automated link between three key components:

(i) the specification of the property,

(ii) the proof that the implementation satisfies the property,

(iii) the ability to use the property as hypothesis in other proofs of relational as well as non-
relational properties.

1.5 Contribution

This thesis brings a solution to the modular verification of relational properties. Like most papers
mentioned in Section 1.3, we focus on imperative languages. Thus, we propose to model our
approach using a simple imperative while language borrowed from [Win93]. However, this sim-
ple language from [Win93] does not have program calls. Thus, we propose our own extension,
called R-WHILE language (Recursive While language), where function calls are without explicit
parameters and return value, similar to what is proposed in [AdO09]. Moreover, our contribution
requires some expressiveness concerning the specification language. The R-WHILE language is
therefore equipped with labels and predicates, as we will see in Chapter 5.

In the context of the R-WHILE language, we design two techniques for proving and us-
ing relational properties in deductive verification. One approach is based on Self-Composition,
which provides a powerful theoretical approach to prove relational properties, while remaining
extremely simple and relying on existing verification approaches (Chapter 4). The other ap-
proach uses the properties of verification condition generators for proving relational properties,
and require no code transformation, in oposition to Self-Composition.

To address the absence of tools supporting relational properties, we propose an implementa-
tion of our approaches. Our implementation is performed in the context of the C programming
language, the FRAMA-C [KKP+15] platform, the ACSL specification language [BCF+13] and
the deductive verification plugin WP. The new tool takes the form of a Frama-C plug-in called
RPP (Relational Property Prover) and allows the user to specify a relational property, to prove
it using classic deductive verification, and to use it as hypothesis in the proof of other properties
that may rely on it.

More specifically, RPP provides an extension to ACSL for expressing relational proper-
ties. In the case of the Self-Composition approach, the extended annotations are translated into
standard ACSL annotations and C code such that the WP plugin can be used. This is a typical
approach in the FRAMA-C collaborative framework.

In the case of the second verification approach, RPP communicates directly with the WP

plugin without going through a code transformation.
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RPP is evaluated over a set of illustrative examples. We have performed experiments with
runtime checking of relational properties and counterexample generation when a property cannot
be proved.

1.6 Outline

This thesis is structured as follows.

Chapter 2 presents in more detail FRAMA-C, ACSL and WP. We also provide a more
detailed example of how to prove a program using the WP proof system. This chapter sets all
required components for the next chapters.

Chapter 3 introduces notations that are used in this thesis and the R-WHILE language. We
present the language syntax and semantics using denotational semantics. We also provide a basic
axiomatic semantic for the language.

In Chapter 4, we present in more detail the concepts of Relational Hoare Logic, Self-
Composition and Product Program and discuss their benefits and limitations. As in the liter-
ature those methods are typically presented using a basic while language, we use the R-WHILE

language introduced in Chapter 3.

Chapter 5 introduces extensions added to the R-WHILE, language introduced in Chapter 3.
These extensions consist in adding labels and predicates in order to improve expressiveness and
write more interesting properties. We also present a verification condition generator for proving
validity of Hoare Triples based on the extended syntax.

In Chapter 6, we present our method for proving relational properties in a modular way, using
basic self-composition, as presented in Chapter 4. We explain the method by using the language
shown in Chapters 3 and 5 and examples of proofs using verification approaches presented in
Chapters 3 and 5.

Chapter 7 describes the implementation of the approach described in Chapter 6 in the context
of the C language and the FRAMA-C platform. First we present the extension we added to the
original ACSL language presented in Chapter 2. We then review the code transformation of
Chapter 6 in the context of FRAMA-C (the C programming language and ACSL). Finally, we
present different case studies of relational property verification using the method of Chapter 6.
Part of this work has been published in [BKGP17, BKG+18]. The tool 1 and case studies 2 are
available online.

Chapter 8 presents an alternative to self-composition for the deductive verification of rela-
tional properties. We also present a refinement of the method for using relational properties
shown in Chapter 6.

Chapter 9 concludes and presents some perspectives.

1https://github.com/lyonel2017/Frama-C-RPP
2https://github.com/lyonel2017/RPP-Examples-TAP-2018

https://github.com/lyonel2017/Frama-C-RPP
https://github.com/lyonel2017/RPP-Examples-TAP-2018
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Chapter 2

Frama-C

In this chapter, we present FRAMA-C, a tool that allows users to machine-check formally ex-
pressed properties of programs. As we mention in Section 1.5, we chose to implement our ap-
proach in the context of the C programming language and the FRAMA-C [KKP+15] platform.
Thus, the chapter is devoted to this language and tool.

The C programming language is a well-known, old language, still widely used, powerful,
and well-adapted for a significant number of applications (notably operating systems, embedded
systems). The fact that it is difficult to write code without bugs in C and that the language is
widely used in critical areas makes it an interesting target language for verification tools.

FRAMA-C 1 is one of these tools. It is an open-source platform dedicated to the analysis of
source code written in the C programming language. The FRAMA-C platform combines sev-
eral analysis techniques in the form of interconnected plug-ins. A list of available techniques
can be found on the web page. We focus in this thesis on the deductive part of the tool, and
more precisely on the WP plugin that verifies that an implementation complies with a set of for-
mal specifications written in a dedicated language, ACSL, described in Section 2.1. A detailed
example of use of the WP plugin is shown in Section 2.2.

As the C language exposes many notoriously awkward constructs, we consider in this thesis
only a small part of the C language syntax, mostly equivalent to the R-WHILE language pre-
sented in Chapter 3. We assume in the following that the reader has a minimal knowledge of the
C programming language.

2.1 The ACSL specification language

The ANSI/ISO C Specification Language (ACSL) [BCF+13] is a formal specification language
for the C programming language. It aims at specifying behavioral properties of C source code (a
Behavioral Interface Specification Language) and is agnostic towards the underlying verification
techniques, i.e. tries to remain purely at the specification level.

1https://frama-c.com/

11

https://frama-c.com/
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ACSL is similar to the general design-by-contract [Mey97] principle implemented in the
Eiffel language. Other specification languages were also used as inspiration. For example,
the specification language of the Caduceus tool [FM07] for C programs, or the Java Modeling
Language (JML) [LRL+00] for Java source code.

In the following section we introduce all the concepts of ACSL we need in the manuscript.
For a complete presentation of ACSL, the reader is invited to consult the manual [BCF+13].

1 #include <limits.h>
2 /*@ requires x > INT_MIN;
3 assigns \nothing;
4 ensures (\old(x) >= 0 ==> \result == \old(x));
5 ensures (\old(x) < 0 ==> \result == -\old(x));
6 */
7 int abs ( int x ) {
8 if ( x >=0 ){
9 return x;

10 }
11 return -x ;
12 }

Figure 2.1 – Annotated C function

ACSL specifications are written inside comments to guarantee no interference with the original
C code and begin with the symbol @. A classical function contract is composed of three parts:

• A list of preconditions stating that the caller must call the function in a state where the
preconditions hold. Preconditions are written using the clause requires as shown in Fig-
ure 2.1 line 2. Each precondition can be specified in a separate clause or grouped with the
other preconditions in a single clause using conjunction.

• A frame clause, stating that the function does not modify any non-local memory location
except those specified in the clause assigns as shown in Figure 2.1 line 3. We show later
a more formal definition of the frame clause.

• A list of postconditions stating that the function returns a state where the postconditions
hold. Postconditions are written using the clause ensures as shown in Figure 2.1 line 4-5.
As for the case of precondition, each postcondition can be specified in a separate clause
or grouped with the other postconditions in a single clause using conjunction.

Figure 2.1 shows function abs, computing the absolute value of x, and the attached ACSL
contract on lines 2-5. Line 2 shows the precondition stating that variable x must be greater than
INT_MIN to avoid overflow. Line 3 shows the frame clause stating that the function leaves the
global memory entirely unchanged. Finally, line 4-5 shows the postconditions stating that the
result of function abs is the absolute value of parameter x.

We use the construct \old in the postcondition to refer to the value of x in the state before the
execution of the program. As described in the manual [BCF+13], formal parameters in function
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contracts are defined such that they always refer implicitly to their values interpreted in the pre-
state. Thus, the postcondition can also be written without construct \old. Construct \result is
used to refer to the result of the function.

Named Behaviors can be used to make function annotations more structured: pre- and post-
conditions associated to a named behavior must only be ensured if the associated assumption is
verified at the beginning of the function.

1 #include <limits.h>
2 /*@ behavior pos:
3 assumes x >= 0;
4 requires \true;
5 assigns \nothing;
6 ensures \result == x;
7 behavior neg:
8 assumes x < 0;
9 requires x > INT_MIN;

10 assigns \nothing;
11 ensures \result == -x;
12 complete behaviors;
13 disjoint behaviors;
14 */
15 int abs ( int x ) {
16 if ( x >=0 ){
17 return x;
18 }
19 return -x ;
20 }

Figure 2.2 – Annotated C function with behaviors in ACSL

Figure 2.2 shows function abs and the contracts written using named behaviors. We recog-
nize two named behaviors: pos for x ≥ 0 and neg for x < 0. Each behavior is composed of four
clauses; requires, ensures and assigns building the function contract for the behavior, and a
new clause assumes. This new clause sets the condition for which the behavior must be ensured.
Default behavior (without assumes clause, i.e. that must always hold) can also be defined in
parallel to named behaviors. In the case of the example on Figure 2.2, no default behavior is
specified.

The semantics of named behavior is as follows:

• The caller must ensure that if the assumption of the behavior holds, the precondition of
the behavior holds. Moreover the default precondition must hold. In case of the example
of Figure 2.2, the caller must ensure that the call is performed in a state where the property
(x >= 0 ==> \true) && (x < 0 ==> x > INT_MIN) holds.

• The called function returns a state where the postcondition of each behavior holds, as-
suming the associated assumption holds. Moreover the function returns a state where the
default postcondition holds. In case of the example of Figure 2.2, we have the postcondi-
tions (x >= 0 ==> \result == x) && (x < 0 ==> \result == -x).
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• If the assumption of the behavior holds, the function does not modify any non-local mem-
ory location except those specified in the clause assigns of the behavior or of the default
behavior.

ACSL accepts contracts that are not complete or disjoint; partial specifications, or behaviors
that are partially or completely overlapping are authorized. To ensure that we have complete
and disjoint behaviors, we can use clause complete behaviors and disjoint behaviors. These
clauses actually verify properties on the function contract itself, and not on the implementation.

For a default precondition R and a list of behavior conditions A_1, A_2, ... ,A_n, the se-
mantics of clause complete behaviors is:

R ==> (A_1 || A_2 || ... || A_n).

That is, we never have the case where the default precondition holds, but no behavior condition
holds

!(R && !A_1 && !A_2 && ... & !A_n).

The semantics of clause disjoint behaviors is:

R ==> !(A_1 && A_2) && ... && !(A_1 && A_n) && !(A_2 && A_3) && ... && !(A_n-1 && A_n).

That is, we never have the case where the default precondition holds and two (or more) behavior
conditions holds.

!(R && ((A_1 && A_2) || ... || (A_1 && A_n) || (A_2 && A_3) || ... || (A_n-1 && A_n))).

Statement annotations allow writing annotations directly on a statement. The assert P clause
is an example of a statement annotation that ensures that a condition P holds at a given program
point.

Loop annotations are statement annotations used specifically for loops. They are written before
the loop and are divided into three clauses:

• Loop invariants are written using the clause loop invariant I and have the same semantic
as loop invariants in Hoare logic (Section 3.3): I holds in state before the loop, and for
any iteration, if I holds at the beginning of the iteration, then it also holds after executing
another loop step. The proof of invariances is done by induction; we assume that the
invariant holds at the beginning of an arbitrary iteration and prove that the invariant holds
after the execution of the loop body.

• Loop variants are written using the clause loop variant V and have the same semantic as
loop variants in Hoare logic [CPR11]: for any iteration, after the execution of the loop
body, the value of V must be smaller than at the beginning of the iteration, and the value
of V must be positive at the beginning of any iteration.
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• Frame clauses for loops are written using the clause loop assigns M and are similar to
assigns M (the loop does not modify any memory location except those specified in the
clause loop assigns).

Figure 2.3 shows a function loop always returning 10. The case where x ≥ 10 is easy as we
directly return 10. However, the case where x < 10 is more complicated since we have a loop.
We have to prove that at loop exit, the value of n is 10. To do so, we use the invariant 10 ≥ n.
We also specify that the loop only changes the memory location n and that the expression 10−n
is a variant of the loop to guarantee termination.

1 /*@ requires x >= 0;
2 assigns \nothing;
3 ensures \result == 10;
4 */
5 int loop(int x){
6 int n=x;
7 if (n>=10)
8 return 10;
9 else {

10 /*@ loop invariant 10 >= n ;
11 loop assigns n ;
12 loop variant 10 - n;
13 */
14 while (n<10) n++;
15 return n;
16 }
17 }

Figure 2.3 – Loop annotations

Memory locations can be constrained through specific built-in predicates. The predicate

\valid{L}(s)

applies to a set of terms of some pointer type and holds if and only if dereferencing any pointer
p ∈ s is safe at memory state L, both for reading and writing. The predicate

\separated(s1,s2)

applies to two sets of terms of some pointer type and holds if and only if ∀p ∈ s1 and ∀q ∈ s2,
p and q are segregated:

∀i, j ∈ integer, 0 <= i < sizeof(∗p), 0 <= j < sizeof(∗q) ==> (char∗)p+ i 6= (char∗)q + j

Figure 2.4 shows function swap that swaps the values in locations indexed by x and y. To
ensure that both read and write accesses to *x and *y are safe, we add the precondition at line 1.
If we want to ensure that swap is not called for the same location (swap(x,x)) or for overlapping
locations, we can add the precondition at line 2. This precondition ensures that the function
is called with two pointers indexing two different memory locations. Finally on line 3, the
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1 /*@ requires \valid(x) && \valid(y);
2 requires \separated(x,y);
3 ensures *x == \old(*y) && *y == \old(*x);
4 assigns *x,*y;
5 */
6 void swap(int *x, int *y){
7 int t = *x;
8 *x=*y;
9 *y=t;

10 }

Figure 2.4 – Annotated C function with pointers

postcondition ensures that the value stored in memory indexed by x is the initial value stored in
memory indexed by y and vice versa.

Frame rule, introduced earlier in case of ACSL specifications, indicates the set of non-local
memory locations that may be modified by a function.

For a clause /*@ assigns l;*/, we have location l that may be modified. That is, using the
semantics of \separated and assuming locations represents the set of allocated locations of the
memory, we have:

\forall loc ∈ locations, \separated(loc, &l) ==> ∗loc == \old(∗loc)

Functional dependencies is an extended syntax of clauses assigns adding a \from part. It
indicates that the assigned value of a potentially modified location, can only depend upon the
mentioned locations.

For a clause /*@ assigns l \from l1,...lk;*/, the assigned values, to location l, does not
depend on any locations which is separated from l1,...lk. That is, the assigned value to location
l can be expressed in function of location l1,...lk;

l = f(l1,...,lk)

If the \from part is absent, all the locations are supposed to be used.

Memory state referring can be done using the built-in construct \at(e,id) to refer to the value
of an expression e at specific program point id. The \old(e) construct, shown previously, is just
syntatic sugar for \at(e,Pre). There exist different predefined program points we can refer to.
The most common are:

• Pre for the state before the function execution,

• Post for the state after the function execution,

• Here for the current state.
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It is also possible to use C labels in construct \at.

Global annotations are used to add expressiveness to the language used in annotations by dec-
larations of new logic types, logic constants, logic functions and predicates.

For example, consider function find_min on Figure 2.5 for finding the index corresponding
to the smallest value in an array between indices a and b. We use in the contract of this function
predicate is_min to denote the fact that an integer min is the index of an element that is smaller
or equal to all elements in an array tab between indices a and b.

1 /*@ predicate is_min(int* tab, integer a, integer b, integer min) =
2 \forall integer k; a <= k <= b ==> tab[min] <= tab[k];*/
3

4 /*@ requires 0 <= a <= b;
5 requires \valid(tab+(a..b));
6 assigns \nothing;
7 ensures is_min(tab,a,b,\result);
8 ensures a <= \result <= b;
9 */

10 int find_min(int tab[], int a, int b){
11 int min = a, i;
12 /*@ loop invariant a <= i <= b+1;
13 loop invariant a <= min <= b;
14 loop invariant is_min(tab,a,i-1,min);
15 loop assigns min, i;
16 loop variant b - i;
17 */
18 for(i = a; i <= b; i++){
19 if(tab[i] < tab[min]) min = i;
20 }
21 return min;
22 }

Figure 2.5 – Usage of global annotation in ACSL: predicates

On Figure 1.1, we have shown the use of axiomatic definitions to axiomatize the behaviour
of factorial.

2.2 The WP plugin

The FRAMA-C/WP plugin is a verification condition generator, which for a C program anno-
tated with ACSL specifications, returns a set of proof obligations that can be discharged either
automatically by automated theorem provers (e.g. Alt-Ergo, CVC4, Z3 2) or with some help
from the user via a proof assistant. If those proof obligations are valid, the program satisfies the
annotations.

2See, resp., https://alt-ergo.ocamlpro.com, http://cvc4.cs.nyu.edu, https://z3.
codeplex.com/

https://alt-ergo.ocamlpro.com
http://cvc4.cs.nyu.edu
https://z3.codeplex.com/
https://z3.codeplex.com/
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2.2.1 Simple Example

If we consider function loop shown on Figure 2.3, applying WP for proving the preservation of
loop invariant on line 10 by the loop body, gives us the following proof obligation;

Assume {
(* Pre-condition *)
Have: 0 <= x. 1
(* Initializer *)
Init: x = n. 2
(* Else *)
Have: n <= 9. 3
(* Invariant *)
Have: n2 <= 10. 4
(* Then *)
Have: n2 <= 9. 5
Have: (1 + n2) = n3. 6

}
Prove: n3 <= 10.

The proof obligation is composed of a set of assumptions, and a formula that has to be
proven.

The assumptions are a translation into first order logic of the precondition (1), the assignment
of parameter x to local variable n (2), the fact that the boolean condition of the if is false (3),
the fact that the loop invariant holds at the begining of the loop body (4), the fact that the loop
condition holds at the begining of the loop body (5) and the loop body, corresponding to an
assignment (6). Note that there is no connection between the logical variable modeling the local
variable n before the loop and at the beginning of the loop body, since the proof of preservation
of the loop invariant is done for any loop iteration.

The formula that has to be proven corresponds to the invariant after the loop body. As
briefly explained before, the proof of the preservation of the invariant consists in verifying that
the invariant holds after the body of the loop, assuming the invariant holds before the loop
iteration. In the case of the example, it is not very hard to prove that the invariant holds from the
assumptions in (5) and (6).

In Chapter 5 we present, in a simplified way, how such a formula is generated.

2.2.2 Advanced Example

The WP plugin supports a large subset of the C syntax and allows proving advanced examples,
as shown in ACSL by Example 3 for various examples taking from the C++ library Standard
Template Library (STL).

We propose in the following an example of an annotated selection sort algorithm on arrays
of integers, to present an advanced example.

3https://github.com/fraunhoferfokus/acsl-by-example.git

https://github.com/fraunhoferfokus/acsl-by-example.git
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The proof of a sorting algorithm is frequently divided in two parts: proving that the resulting
array is sorted, and that the algorithm preserves the elements of the initial array. Therefore, we
first define what is a sorted array using a logical predicate:
/*@ predicate sorted(int* tab, integer idx) =

\forall integer x,y; 0 <= x < y < idx ==> tab[x] <= tab[y]; */

The predicate states that an array tab is sorted between indices 0 included and idx excluded, by
comparing the elements at different indices pairwise.

Then, we define an inductive predicate stating that two arrays have the same elements (pos-
sibly in a different order) between two states:
/*@ inductive same_elements{L1, L2}(int *a, int *b, integer begin, integer end) {

case refl{L1, L2}:
\forall int *a, int *b, integer begin, end;
same_array{L1,L2}(a, b, begin, end) ==>
same_elements{L1, L2}(a, b, begin, end);

case swap{L1, L2}: \forall int *a, int *b, integer begin, i, j, end;
swap{L1, L2}(a, b, begin, i, j, end) ==>
same_elements{L1, L2}(a, b, begin, end);

case trans{L1, L2, L3}: \forall int* a, int *b, int *c, integer begin, end;
same_elements{L1, L2}(a, b, begin, end) ==>
same_elements{L2, L3}(b, c, begin, end) ==>
same_elements{L1, L3}(a, c, begin, end);

}*/

The case refl states that if both arrays are equal, using predicate same_array, then the arrays
have the same elements.
/*@ predicate same_array{L1,L2}(int *a, int *b, integer begin, integer end) =

\forall integer k; begin <= k < end ==> \at(a[k],L1) == \at(b[k],L2);
*/

The case swap states that if an array has only two indices that are swapped against another
array, then the arrays have the same elements.
/*@ predicate swap{L1, L2}(int *a, int *b, integer begin,

integer i, integer j, integer end) =
begin <= i < end && begin <= j < end &&
\at(a[i], L1) == \at(b[j], L2) &&
\at(a[j], L1) == \at(b[i], L2) &&
\forall integer k; begin <= k < end && k != i && k != j

==> \at(a[k], L1) == \at(b[k], L2);

*/

Finally, the case trans states that the predicate same_elements is transitive. Notice that the in-
ductive definition of predicate same_elements can also have an equivalent definition using simple
axioms (like for predicate isFact in Figure 1.1).

Using those predicates, we can annotate the implementation of a selection sort algorithm
written in C shown on Figure 2.6. The implemented sorting algorithm divides the input array
into two parts: the sub-array already sorted, which is built up from 0 to i (excluded), and the sub-
array remaining unsorted from i to n. Initially, the sorted sub-array is empty and the unsorted
sub-array is the entire input array. The algorithm proceeds by finding the smallest element in



20 CHAPTER 2. FRAMA-C

1 /*@ requires 0 <= n;
2 requires \valid(tab+(0..n));
3 ensures sorted(tab,n+1);
4 ensures same_elements{Pre,Post}(tab,tab,0,n+1);
5 assigns tab[0..n];
6 */
7 void select_sort(int tab[], int n){
8 int i, min;
9 /*@ loop invariant 0 <= i <= n+1;

10 loop invariant \forall int j,k; 0 <= j < i <= k < n+1 ==> tab[j] <= tab[k];
11 loop invariant sorted(tab,i);
12 loop invariant same_elements{Pre,Here}(tab,tab,0,n+1);
13 loop assigns i, tab[0..n], min;
14 loop variant (n+1) -i;
15 */
16 for (i = 0; i <= n; i++){
17 min = find_min(tab,i,n);
18 if(min != i) {
19 l1:swap(tab+i, tab+min);
20 /*@ assert swap{l1,Here}(tab,tab,0,i,min,n+1);*/
21 }
22 }
23 return;
24 }

Figure 2.6 – Selection sort algorithm written in C with ACSL annotations

the unsorted sub-array, using function find_min, defined previously on Figure 2.5 and swapping
it with the leftmost unsorted element (index i) using the swap function defined previously on
Figure 2.4.

The contract of function select_sort has a postcondition which states that after the call
the array tab is sorted between indices 0 an n+1 (excluded) (line 3 on Figure 2.6). A second
postcondition states that the resulting array tab in state Post has the same elements as array tab

in state Pre (line 4 on Figure 2.6).
The contract is also composed of two preconditions which state that the integer n is not

negative and tab has valid locations up to n (lines 1–2 on Figure 2.6).
Finally, an assigns clause states that only locations of tab between indices 0 to n may be

modified (line 5 on Figure 2.6).

To prove the postconditions, four loop invariants are used to summarize the behavior of the
loop. The invariant at line 8 states that the value of i is between 0 and n+1. Thus, we know
at loop exit that the value of i is n+1, by combining the invariant with the negation of the loop
condition (i <= n).

The invariant at line 9 states that the values in the left sub-array are smaller than the values
of the right sub-array.

The invariant at line 10 states that the left sub-array (from 0 to i excluded) is sorted. At loop
exit we know that the whole array is sorted (post condition at line 3), since the value of i is n+1.

The invariant at line 11 states that the current array has always the same elements as the
initial array. At loop exit, we have the final array that has the same elements as the initial array
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(postcondition at line 4). Notice that we use an assertion at line 20 to guide the prover on how
the case trans must be instantiated.
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Chapter 3

Context

This chapter is devoted to the presentation of the language used in our formalizations. Since we
address the verification of properties on imperative programs such as C, we choose as a basis
for our modelling language a simple imperative while language with procedure calls. while
language has the benefit of providing basis for tractable formalizations while remaining close
to real imperative languages. The R-WHILE language we propose in this chapter is similar
to the one proposed in [Win93], augmented with procedure calls [AdO09]. Indeed, as stated
in Chapter 1, we focus on properties connecting functions. Knowing that modelling function
calls is complicated and requires a significant amount of work, we propose in the following
chapter a formalization of function calls that is as simple as possible: our functions have neither
parameters nor a return value. Everything is done by reading and updating global variables
shared by all functions. Examples of formalization with function calls with parameters can be
found in [Car94, AdO09].

In addition to the language presentation, we recall the notion of Hoare Triples for reasoning
about program properties, and Hoare Logic [Hoa69] for the verification of Hoare Triples.

The chapter is organized as follows. Section 3.1 will first introduce the notations we use in
the rest of this thesis. Section 3.2 presents the syntax and semantics of the while language, and
Section 3.3 presents the related Hoare Logic.

3.1 Notations

Most notations and terms presented in the following are taken from [Win93]. We recall them in
Sections 3.1.1 and 3.1.2 with slight variations that will make it easier to introduce our work.

Section 3.1.3 introduces some notations about Fist-Order Logic used in the following for-
malization.

3.1.1 Set notations

Sets are denoted with upper-case letters A and elements of sets with lower-case letters a:

a ∈ A.

23
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We use P to denote the set consisting of all subsets of a set (powerset):

P(A) = {B|B ⊆ A}.

We use u with index A as a notation for an element of the powerset of a set A : uA ∈ P(A).
We denote by X × Y , the set of pairs (x, y), with the first element from X and the second

from Y . We denote by An = A × .... × A, the set of tuples of size n over A . We denote by
S\X the subtraction of subset X from S.

The set of partial functions from A to B is written A ⇀ B and the set of total functions
A → B. The fact that a function f is in the set of total functions taking a parameter from A
and returning a value in B is written f : A → B. The application of a (partial) function f to x
(called a parameter) is written f(x) or f x and can be defined or undefined (in the case of partial
functions), the latter being noted ⊥. We assume that the application of ⊥ is equal to ⊥: for all
set X , we have ∀x ∈ X.⊥x = ⊥. Thus, for a function f : X ⇀ (Y ⇀ Z), we have following
behavior:

∀x ∈ X, y ∈ Y.(f(x))y =

{
⊥ if f(x) = ⊥
(f(x))y

.

We call dom the set for which a function f : A ⇀ B is defined:

dom(f) = {a|a ∈ A.f(a) 6= ⊥}.

A function can be defined using a relation between the parameters.

Example 3.1. We define a function fst : X × Y → X for extracting the first element of a pair:

fst((x, y)) = x,

and its counterpart snd : X × Y → Y for extracting the second element of a pair:

snd((x, y)) = y.

Alternatively, a function can be defined over a finite domain by writing the set of its bindings.

Example 3.2. Let us define a function f as follows:

f = {a1 7→ b1, ..., an 7→ bn}.

Using the defined function f , we can define a new function in two ways:

• By adding new bindings

f [an+1 ← bn+1] ≡ {a1 7→ b1, ..., an 7→ bn, an+1 7→ bn+1}.

• By modifying existing bindings

f [a1 ← bm] ≡ {a1 7→ bm, ..., an 7→ bn}.
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3.1.2 Syntax and Semantics notations

In this manuscript, all grammar rules are given using a notation close to BNF [Pie02]. All
semantics are given using denotational semantics [Win93, Min15, Sch86]. Thus, we use the
traditional notation J·K around an argument of a semantic function to show that the argument is
a piece of syntax.

Example 3.3. Let f : A → (B → C) be a semantic function from A to a function from B
to C. When we use the notation fJaK, we denote that the parameter of function f matches the
syntactic object a. Moreover, since fJaK is a function of B → C, fJaKb is the application of the
function fJaK to b and returns an object of C.

3.1.3 Monomorphic First-Order Logic

In Section 2.2 we presented the plugin WP for the generation of verification conditions, defined
in a First-Order Logic. As in the following we intend to formalize a verification condition
generator such as WP, we introduce in this section the syntax of Monomorphic First-Order
Logic [SSCB12] used in the following chapters. Monomorphic First-Order Logic, called below
MFOL, is an extension of the well-known First-Order Logic that consists in adding types to the
logic.

Example 3.4. Assume we have two types, nat and array, for the sets of natural numbers and
arrays of natural numbers, and following associated functions:

• m[e] (of type : array× nat→ nat) for accessing an array m at index e.

• m[e1 ← e2] (of type : array×nat×nat→ array) for updating an array m at index e1 with
e2.

Axiomatisation of arrays can be done by the following two formulas:

∀vt : array, v1, v2, v3 : nat, v1 6= v3 ⇒ (vt[v1 ← v2])[v3] = vt[v3], (Q-NO-UPDATE)

∀vt : array, v1, v2 : nat, (vt[v1 ← v2])[v1] = v2. (Q-UPDATE)

Formula Q-NO-UPDATE tells that updating a location in an array does not change other locations.
Formula Q-UPDATE tells that getting the value of a location updated with value v results in value
v.

We quickly recall the grammar rules defining MFOL, but typing rules and semantics of
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MFOL are not presented, as they are standard [BBPS16]:

t : := nat

| array

e : := f(e1, ..., en)

| vt

q : := T | F
| p(e1, ..., en) | q1 ∧ q2 | q1 ∨ q2 | q1 ⇒ q2 |¬q
| e1 =t e2

| ∀v : t.q | ∃v : t.q

The syntax of MFOL is made of types, terms and formulae. Types t are composed of
naturals and arrays of naturals. Note that only simple types can be defined in MFOL. Type
constructors can be found in Polymorphic First-Order Logic [BP13] and we will not use them
in our formalization.

A term e is either a typed variable vt, composed of a variable and a type, or the application
of a function symbol f to a list of terms (we call V the set of typed variables and use variables
v, v0, v1, ... to range over V).

Function symbols f have a signature composed of a list of types t1, ..., tn and a type return
t such that f : t1 × ... × tn → t. Terms of a given type are noted et in cases where the type is
not clear. In the following we use Eq for the set of terms and use variables e, e0, e1, ... to range
over Eq.

A formula q is either T (true), F (false), conjunction, disjonction, negation, equality between
terms or application of a predicate symbol. We also add implication for convenience only, since,
in classical logic, q1 ⇒ q2 is equivalent to ¬q1 ∨ q2. Predicate symbols p have a signature
composed of a list of types t1, ..., tn such that p : t1 × ... × tn → o (o is the pseudotype for
set {T, F}). In the following we use Q for the set of formulae and use variables q, q0, q1, ... to
range over Q.

To avoid having different signatures for the same symbol we assume the sets of function and
predicate symbols are disjoint. As the signature is given by a function that maps function and
predicate symbols to a signature, nothing more is required. In order to make the variables easier
to distinguish, we sometimes use m for variables of type array (the associated set is called M)
and i for natural variables (the associated set is called I).

For telling if a formula q is valid for a given set of closed formulas (no free variable) or
axioms uQ, we define function smt with the following signature:

smt : P(Q)×Q→ V erdict,

with V erdict = {V,U} where V states for valid and U for unknown.



3.2. WHILE LANGUAGE WITH PROCEDURE CALLS 27

We consider function smt as an oracle or a black box for the theories used by Satisfiability
Modulo Theories (SMT) solver. As the theories used by SMT solvers are often not decidable,
it may be not possible to prove that a valid formula is valid. We assume in the following that if
function smt declares a formula valid (V ), the formula is valid, and otherwise we do not know if
the formula is false or if it cannot be proven valid. In the latter case we consider that the validity
of the formula is unknown (U ).

In the following we assume the function smt has a native theory for naturals, which depends
in practice on the SMT solvers. Thus, we consider in the following that the theory (axioms and
functions) for naturals is suitable for our needs and is left implicit.

Example 3.5. If we name formula Q-NO-UPDATE qno−update and Q-UPDATE qupdate, and con-
sider formula q1 defined by:

(m1 = m0[4← i1] ∧m2 = m1[i2 ← i3] ∧ ¬(4 = i2))⇒ m2[4] = i1.

We expect that calling function smt, with formula qno−update and qupdate as axioms and
asking if q1 is valid, smt({qno−update, qupdate}, q1) returns V . In practice any SMT solver clas-
sically used as program verification will be able to answer V .

3.2 While Language with Procedure calls

In this section, we present the syntax of our R-WHILE language and the corresponding denota-
tional semantics.

3.2.1 Program Syntax

The following categories of sets are associated to the language:

• Constants:

– N, the set of natural numbers,

– B = {true, false}, the set of boolean values,

• Memory locations:

– X, the set of locations for natural numbers,

– Y, the set of program names,

• Syntactic expressions:

– Ea, the set of arithmetic expressions,

– Eb, the set of boolean expressions,

• Commands:

– C, the set of commands,
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• Operators:

– Oa the set of arithmetic operators,

– Ob the set of boolean operators,

– Ol the set of logical operators.

We define the following metavariables to range over the categories:

• n, n0, n1, ... ∈ N,

• x, x0, x1, ... ∈ X,

• a, a0, a1, ... ∈ Ea,

• b, b0, b1, ... ∈ Eb,

• c, c0, c1, ... ∈ C,

• y, y0, y1, ... ∈ Y,

We can now define the grammar rules for arithmetic expressions, boolean expressions and com-
mands:

opa : := +| × |−
opb : :=< | = | >
opl : := ∨ |∧

a : := n

| x
| a1 opa a2

b : := true | false
| a1 opb a2

| b1 opl b2 | ¬b1

c : := skip do nothing

| x := a assignment

| c1; c2 sequence

| assert(b) assertion

| if b then {c1} else {c2} condition

| while b do {c1} loop

| call(y) procedure call
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Command assert(b) is called an assertion and indicates that boolean expression b must be valid
at the point where the command occurs. Command call(y) is a function call without explicit
parameter and return value (thus we use in the future the expression procedure call rather than
function call). As in assembly code, with a given calling convention [Kip14], parameters and
return value are shared implicitly between the caller and the callee through memory locations
i.e. it is left to the caller to put the right values to the right locations before the call. The called
program is the program located at y. For simplicity reasons, we do not provide commands al-
lowing to update command bindings: our set of routines will be fixed for each program. Finally,
to resolve ambiguity between sequences of commands, we use {}.

As an example, we consider the following two programs, with one using a procedure call.

x1 := x0 + 5;
call(y);
x3 := x2 + x1

x1 := x0 + 5;
x2 := x1 + 4;
x3 := x2 + x1

The semantics we give in the following section implies that if program name y maps to com-
mands x2 := x1 + 4, the two programs are equivalent, since by replacing the call command by
the called program, we get identical programs.

3.2.2 Program Evaluation

In addition to the categories of sets introduced in the previous section, we add Σ = X ⇀ N,
the set of memory states for natural numbers, mapping locations to naturals. We also define
Ψ = Y ⇀ C, the set of memory states for commands, mapping program names to command.
We use metavariables σ, σ0, σ1, ... to range over Σ, and ψ,ψ0, ψ1, ... to range over Ψ.

In order to avoid complexity, we assume that the set of locations for natural numbers X and
the set of program names Y are disjoint (X ∩ Y = ∅), i.e. we can only access natural numbers
through Σ using X and commands through Ψ using Y.

ξa will denote the function that evaluates arithmetic expressions in N, according to a memory
state for natural numbers. Thus, for an arithmetic expression a in Ea, we have ξaJaK : Σ ⇀ N.
ξb will denote the function that evaluates boolean expressions in B, according to a memory state
for naturals numbers. Thus, for a boolean expression b in Eb, we have ξbJbK : Σ ⇀ B. ξc will
denote the function that evaluates commands in Σ, according to a pair, composed of a memory
state for natural numbers and a memory state for commands. Thus, for a command c in C, we
have ξcJcK : Σ×Ψ ⇀ Σ

Notice that all those functions are partial functions, since memory states are partial functions.
In the case of ξcJcK there are also other reasons that will be discussed later. As a result, some
evaluation cases may be undefined. For convenience, we lift the sets of natural numbers and
booleans with ⊥:

N⊥ = N ∪ {⊥},
B⊥ = B ∪ {⊥},

to get total functions for arithmetic expressions and boolean expressions. We also extend any
binary arithmetic operator opa , boolean operator opb and logical operator opl with the following
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rules:

∀a1, a2 ∈ N⊥.a1 opa⊥ a2 =

{
⊥ if a1 = ⊥ or a2 = ⊥
a1 opaN a2 otherwise

∀a1, a2 ∈ N⊥.a1 opb⊥ a2 =

{
⊥ if a1 = ⊥ or a2 = ⊥
a1 opbN a2 otherwise

∀b1, b2 ∈ B⊥.b1 opl⊥ b2 =

{
⊥ if b1 = ⊥ or b2 = ⊥
b1 oplB b2 otherwise

Unary operator ¬ is extended with the following rule:

∀b,∈ B⊥.¬⊥b =

{
⊥ if b = ⊥
¬b otherwise

We can now provide the semantics for arithmetic expression evaluation, and the semantics for
boolean expression evaluation.

Definition 3.1. Evaluation function ξa : Ea → (Σ → N⊥), for arithmetic expressions Ea,
is defined by structural induction on arithmetic expressions:

ξaJnKσ = n

ξaJxKσ = σ(x)

ξaJa0 opa a1Kσ = ξaJa0Kσ opa⊥ ξaJa1Kσ.

Definition 3.2. Evaluation function ξb : Eb → (Σ → B⊥), for boolean expressions Eb, is
defined by structural induction on boolean expressions

ξbJtrueKσ = true

ξbJfalseKσ = false

ξbJa0 opb a1Kσ = ξaJa0Kσ opb⊥ ξaJa1Kσ
ξbJb0 opl b1Kσ = ξbJb0Kσ opl⊥ ξbJb1Kσ

ξbJ¬bKσ = ¬⊥ξbJbKσ.

For command evaluation, in addition to the fact that memory states are partial functions,
we have to take into account that commands while and call may lead to a non-terminating
evaluation.

Example 3.6. For memory state ψ = {y 7→ call(y)} and the following program c defined by:

call(y)

the evaluation does not terminate, since call(y) calls call(y).
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To obtain a finite mathematical object, the denotational semantics for commands commonly
uses least fixed point [Win93, AGM94]. However, for commands while and call, we prefer a
fixpoint free semantics to get a total function. To ensure that evaluation terminates, we pass an
additional parameter to the evaluation function that tells it how long it can run. The evaluation
terminates either normally or stops if the parameter reaches 0. In our case, we take a natural
number n which decreases for each call to the evaluation function. In case n reaches 0 the
evaluation returns the state Ωt. This approach is commonly used in Coq formalization of pro-
gramming languages when using functions as model (see e.g. [PAC+18], where this approach is
used to prove termination of the evaluation function for a small while program). In this context,
the parameter is called fuel.

In addition, we introduce the state Ωa for the case where an assertion is false, and Ω⊥ for the
case where an expression evaluates to⊥. Thus, we end up with a set Ω of three particular states:

Ω = {Ω⊥,Ωt,Ωa},

and, for σ in Ω, by convention, we define ξaJaKσ = ⊥ and ξbJbKσ = ⊥.
We now lift the set Σ with Ω

ΣΩ = Σ ∪ Ω,

to get a total function for command evaluation.
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Definition 3.3. Evaluation function ξc : C → (N × ΣΩ × Ψ → ΣΩ), for commands C, is
defined, if we run out of fuel or the memory state for natural numbers is in Ω, by

ξcJcK(n, σ, ψ) = Ωt if n = 0

ξcJcK(n, σ, ψ) = σ if σ ∈ Ω,

and otherwise, by structural induction on commands

ξcJskipK(n, σ, ψ) = σ

ξcJx := aK(n, σ, ψ) =


Ω⊥ if ξaJaKσ = ⊥
Ω⊥ if σ(x) = ⊥
σ[x← ξaJaKσ] otherwise

ξcJc0; c1K(n, σ, ψ) = ξcJc1K(n− 1, ξcJc0K(n− 1, σ, ψ), ψ)

ξcJassert(b)K(n, σ, ψ) =


Ω⊥ if ξbJbKσ = ⊥
σ if ξbJbKσ = true

Ωa if ξbJbKσ = false

ξcJif b then {c0} else {c1}K(n, σ, ψ) =


Ω⊥ if ξbJbKσ = ⊥
ξcJc0K(n− 1, σ, ψ) if ξbJbKσ = true

ξcJc1K(n− 1, σ, ψ) if ξbJbKσ = false

ξcJcall(y)K(n, σ, ψ) =

{
Ω⊥ if ψ(y) = ⊥
ξcJψ(y)K(n− 1, σ, ψ) otherwise

ξcJwhile b do {c}K(n, σ, ψ) =


Ω⊥ if ξbJbKσ = ⊥
ξcJc; while b do {c}K(n− 1, σ, ψ) if ξbJbKσ = true

σ if ξbJbKσ = false

Notice that Ω⊥ is returned if evaluation function ξaJaKσ or ξbJbKσ returns⊥, or we try to update
an undefined memory location (σ(x) = ⊥ in the case of assignment). This last point implies
that no additional binding from memory location to value is added to the memory state i.e. we
have no dynamic memory allocation. State Ωa appears only if an assertion does not hold. As
previously discussed, for each recursive call to ξcJcK, the parameter n decreases.

3.3 Hoare Triple

Since a program is a function from state to state, one may want to check if executing a program
c on a state verifying a boolean expression b1 leads to a state verifying another property b2. In
the spirit of the approach initiated by Hoare in [Hoa69], such a connection between c, b1 and b2
can be defined using the following notation:

[b1]c[b2].
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The triple states that, for any state σ, if σ satisfies b1 then the execution of c on σ terminates in
a state that satisfies b2. Commonly, b1 is called the precondition and b2 the postcondition.

We define expression
σ |= b,

indicating that ξbJbKσ evaluates to true, and we say that σ satisfies b. We can now give a formal
definition of the triple (for a fixed ψ):

∀σ ∈ Σ.σ |= b1 ⇒ (∃n ∈ N.ξcJcK(n, σ, ψ) |= b2).

Notice that, since for all σ in Ω we have ξbJbKσ = ⊥, σ |= b implies that σ /∈ Ω i.e. the program
terminates, all assertions are valid and all locations are bound.

In the future we assume that the following statements are always satisfied for a Hoare Triple:

• The set of variables used in boolean expressions b1 and b2 are subsets of the domain of
the memory state σ:

CvbJb1K ⊆ dom(σ),

CvbJb2K ⊆ dom(σ),

where function Cvb (defined in Appendix A.1.1) returns the set of variables used in a
boolean expression of Eb.

• The domain of the memory state σ is equal to the set of locations used in command c and
the commands associated to all defined program names in ψ:

CvcJcK ∪
⋃

y∈dom(ψ)

CvcJψ(y)K = dom(σ), (Wv(c, ψ, σ))

where function Cvc (defined in Appendix A.1.1) returns the set of variables used in a
command of C.

• The set of program names used in command c is a subset of the domain of ψ. Moreover,
for all defined program names in ψ, the associated commands use sets of program names
that are subsets of the domain of the memory state ψ.

Cf JcK ∪
⋃

y∈dom(ψ)

Cf Jψ(y)K ⊆ dom(ψ), (Wf (c, ψ))

where function Cf (defined in Appendix A.1.2) returns the set of program names used in
a command c.

Statements Wv and Wf ensure that no access to undefined locations or program names
are performed. Thus, the evaluation of command c is different from Ω⊥ (ξcJcK(n, σ, ψ) 6=
Ω⊥). The evaluation of boolean expressions b1 and b2 is different from ⊥ (ξbJb1Kσ 6= ⊥,
ξbJb2K(ξcJcK(n, σ, ψ)) 6= ⊥), since variables used inside boolean expressions are defined in
the memory state.
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Lemma 3.1. For a given c, ψ and n

∀σ ∈ Σ.Wv(c, ψ, σ) ∧Wf (c, ψ)⇒ ξcJcK(n, σ, ψ) 6= Ω⊥

Proof. By structural induction on C, Eb and Ea

An environment satisfiesWv andWf is called well defined and denotedWD(c, ψ, σ).

We can now refine the Hoare triple in two cases, for a given ψ:

• Proof of termination:

∀σ ∈ Σ.σ |= b1 ⇒ (∃n ∈ N.ξcJcK(n, σ, ψ) 6= Ωt).

As we are working on finite programs, the proof of existence of an n such that the evalua-
tion for c terminates can be refined to the proof of existence of an n such that the evaluation
terminates for each loop and recursive call that occurs in c. Proving that such a natural
number exists can be done by exhibiting an integral expression that stays positive but de-
creases strictly at each step of a loop or a recursive call. Generally, program termination
has been extensively studied (see e.g. [CPR11]) and will not be discussed any further in
this manuscript, as well-known techniques are readily available in our context.

• Functional correctness:

∀n ∈ N.∀σ ∈ Σ.σ |= b1 ∧ ξcJcK(n, σ, ψ) 6= Ωt ⇒ ξcJcK(n, σ, ψ) |= b2.

Functional correctness is also known as partial correctness and states that, if a state σ
satisfing b1, and if the execution of c on σ terminates, the state resulting from the execution
of c on σ satisfies b2. It was originally proposed by Hoare in [Hoa69] and noted b1{c}b2.
We use in the following the more modern notation:

{b1}c{b2}.

By taking the convention that for any boolean expression b, we have Ωt |= b, i.e. an eval-
uation that has not finished satifies any assertion, we can refine the definition of functional
correctness by

∀σ ∈ Σ.σ |= b1 ⇒ ξ̇cJcK(σ, ψ) |= b2,

where function ξ̇c calls function ξc with an arbitrary amount of fuel n.

In [AdO09] a proof system is provided to decide if a statememt {b1}c{b2} is valid, written
|= {b1}c{b2}. The system is an extension of the original one without procedure calls that
can be found in [Hoa69, Win93], known as Hoare Logic.
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For a given ψ, if there is a derivation such that ` {b1}c{b2} is a conclusion of rule RE-
CURSION , then |= {b1}c{b2} is valid.

∀y ∈ dom(ξ).ξ ` {fst(ξ(y))}ψ(y){snd(ξ(y))} ξ ` {b1}c{b2}
` {b1}c{b2} (RECURSION)

where environment ξ is defined by

ξ ∈ Ξ = Y⇀ Eb × Eb,

that is, a mapping between program names to the associated (procedure) contract, com-
posed of a pre- and a post-conditions. Procedure contracts allow specifying the behavior
of a single procedure call, that is, for a given program name y, if σ |= fst(ξ(y)) is verified
when calling y in state σ, σ′ |= snd(ξ(y)) will be verified when the call returns with state
σ′. We use metavariables ξ, ξ0, ξ1, ... to range over Ξ.

As for the initial triple, we assume that the set of variables used in the contracts are subsets
of the domain of the memory state σ :

∀y ∈ dom(ξ).CvbJfst(ξ(y))K ⊆ dom(σ),

∀y ∈ dom(ξ).CvbJsnd(ξ(y))K ⊆ dom(σ).
(Wa(ξ, σ))

The meaning of rule RECURSION, is that ` {b1}c{b2} is valid, if for a set of assumptions
(procedure contracts) ξ, there is a derivation such that ξ ` {b1}c{b2} and each procedure
contract in ξ is a conclusion of the following axioms and rules.

ξ ` {b}skip{b} (SKIP)

|= b⇒ ba

ξ ` {b}assert(ba){b ∧ ba} (ASSERT)

ξ ` {b[a/x]}x := a{b} (ASSIGN)

ξ ` {b1}c1{b2} ξ ` {b2}c2{b3}
ξ ` {b1}c1; c2{b3} (SEQUENCE)

ξ ` {b1 ∧ bif}c1{b2} ξ ` {b1 ∧ ¬bif}c2{b2}
ξ ` {b1}if bif then {c1} else {c2}{b2} (CONDITION)
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ξ ` {bI ∧ bwhile}c{bI}
ξ ` {bI}while bwhile do {c}{bI ∧ ¬bwhile} (WHILE)

ξ(y) = (b1, b2)

ξ ` {b1}call(y){b2} (CALL)

|= (b1 ⇒ b′1) ξ ` {b′1}c{b′2} |= (b′2 ⇒ b2)

ξ ` {b1}c{b2} (CONSEQUENCE)

We use notation b[a/x] in rule ASSIGN for the substitution of all occurences of location
x by the arithmetic expression a. Notice that rule ASSERT for assertion guarantees that
Ωa does not occur by providing the fact that the assertion ba is a logical consequence of
precondition b. For the rule WHILE for loop, we name bI a loop invariant, since it is
preserved by the loop body c and it holds at loop entry and exit.

The set of axioms and rules shares the environment ξ of assumptions used in case of
rule CALL for procedure calls. Note that contracts must be well chosen in order to be
used in accordance with the rule CALL. A proof of soundness of the proof system can be
found in [AdO09].

Example 3.7. If we consider the following environment for command ψ:

ψ =


y →

if x1 > 0 then {
x2 := x2 + x3;
x1 := x1 − 1;
call(y)

} else {
skip

}


and the following Hoare Triple:

{true}x1 := x4;x2 := 0; call(y){x2 = x4 × x3},

we can use the previous proof system to show that the triple is valid. We search a deriva-
tion with the following as conclusion:

` {true}x1 := x4;x2 := 0; call(y){x2 = x4 × x3}.

Using rule RECURSION we get the following two sub-proofs:

ξ ` {true}x1 := x4;x2 := 0; call(y){x2 = x4 × x3}, (sub-proof 1)

ξ ` {x2 = x3 × (x4 − x1) ∧ 0 ≤ x1 ∧ x1 ≤ x4}ψ(y){x2 = x4 × x3}, (sub-proof 2)



3.3. HOARE TRIPLE 37

where ξ is wisely chosen as follows:{
y →

(
x2 = x3 × (x4 − x1) ∧ 0 ≤ x1 ∧ x1 ≤ x4,

x2 = x4 × x3

)}
.

Proof of sub-proof 1: Using rule for sequence SEQUENCE and x2 = x3× (x4−x1)∧0 ≤
x1∧x1 ≤ x4 as the intermediate boolean expression, we get the following two sub-proofs:

ξ ` {true}x1 := x4;x2 := 0

{
x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4

}
(sub-proof 1.1)

ξ `
{
x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4

}
call(y){x2 = x4 × x3} (sub-proof 1.2)

Proof of sub-proof 1.1: using rule CONSEQUENCE, and the fact that

true⇒ 0 = x3 × (x4 − x4) ∧ 0 ≤ x4 ∧ x4 ≤ x4,

(as x4 is a location for a natural, statememt 0 ≤ x4 is consequence of true) we get :

ξ `
{

0 = x3 × (x4 − x4)∧
0 ≤ x4 ∧ x4 ≤ x4

}
x1 := x4;x2 := 0

{
x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4

}
Using the rule for sequence SEQUENCE and 0 = x3 × (x4 − x1) ∧ 0 ≤ x1 ∧ x1 ≤ x4 as
the intermediate boolean expression, we get:

ξ `
{

0 = x3 × (x4 − x4)∧
0 ≤ x4 ∧ x4 ≤ x4

}
x1 := x4

{
0 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4

}
(sub-proof 1.1.1)

ξ `
{

0 = x3 × (x4 − x1)∧
0 ≤ x1 ∧ x1 ≤ x4

}
x2 := 0

{
x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4

}
(sub-proof 1.1.2)

Using axiom ASSIGN and the fact that

0 = x3 × (x4 − x1)∧
0 ≤ x1 ∧ x1 ≤ x4

≡
(
x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4

)
[0/x2]

and
0 = x3 × (x4 − x4)∧

0 ≤ x4 ∧ x4 ≤ x4
≡
(

0 = x3 × (x4 − x1)∧
0 ≤ x1 ∧ x1 ≤ x4

)
[x4/x1]

we can prove sub-proof 1.1.1 and sub-proof 1.1.2.

Proof of sub-proof 1.2: Since for procedure y the associated contract corresponds to the
triple of Proof of sub-proof 1.2

ξ(y) = (x2 = x3 × (x4 − x1) ∧ 0 ≤ x1 ∧ x1 ≤ x4, x2 = x4 × x3),

we can use directly the rule CALL.
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Proof of sub-proof 2:

ξ `
{
x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4

}
ψ(y){x2 = x4 × x3}

Using the condition rule CONDITION, we get:

ξ `


x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4∧
¬x1 > 0

 skip{x2 = x4 × x3} (sub-proof 2.1)

ξ `


x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4∧
x1 > 0


x2 := x2 + x3

x1 := x1 − 1;
call(y)

{x2 = x4 × x3} (sub-proof 2.2)

Proof of sub-proof 2.1: using rule CONSEQUENCE and the fact that :

x2 = x3 × (x4 − x1) ∧ 0 ≤ x1 ∧ x1 ≤ x4 ∧ ¬(x1 > 0)⇒ x2 = x3 × x4

we get
ξ ` {x2 = x4 × x3}skip{x2 = x4 × x3}

that can be proven using axiom SKIP.

Proof of sub-proof 2.2: using the rule for sequence SEQUENCE and choosing x2 = x3 ×
(x4 − x1) ∧ 0 ≤ x1 ∧ x1 ≤ x4 ∧ x1 > 0 as the intermediate boolean expression, we get:

ξ `


x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4∧
x1 > 0

 x2 := x2 + x3

x1 := x1 − 1;


x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4∧
x1 >= 0


(sub-proof 2.2.1)

ξ `


x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4∧
x1 >= 0

 call(y){x2 = x4 × x3} (sub-proof 2.2.2)

Proof of sub-proof 2.2.1: Using the rule for sequence SEQUENCE and choosing x2 =
x3 × (x4 − (x1 − 1)) ∧ 0 ≤ x1 − 1 ∧ x1 − 1 ≤ x4 ∧ x1 − 1 >= 0 as the intermediate
boolean expression, we get:

ξ `


x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4∧
x1 > 0

x2 := x2 + x3


x2 = x3 × (x4 − (x1 − 1))∧
0 ≤ x1 − 1 ∧ x1 − 1 ≤ x4∧

x1 − 1 >= 0


(sub-proof 2.2.1.1)

ξ `


x2 = x3 × (x4 − (x1 − 1))∧
0 ≤ x1 − 1 ∧ x1 − 1 ≤ x4∧

x1 − 1 >= 0

x1 := x1 − 1


x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4∧
x1 − 1 >= 0


(sub-proof 2.2.1.2)
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By noticing that

x2 = x3 × (x4 − x1)∧
0 ≤ x1 ∧ x1 ≤ x4∧

x1 > 0
⇒

x2 + x3 = x3 × (x4 − (x1 − 1))∧
0 ≤ x1 − 1 ∧ x1 − 1 ≤ x4∧

x1 − 1 >= 0

and

x2 + x3 = x3 × (x4 − (x1 − 1))∧
0 ≤ x1 − 1 ∧ x1 − 1 ≤ x4∧

x1 − 1 >= 0
≡

 x2 = x3 × (x4 − (x1 − 1))∧
0 ≤ x1 − 1 ∧ x1 − 1 ≤ x4∧

x1 − 1 >= 0

 [x2+x3/x2]

and

x2 = x3 × (x4 − (x1 − 1))∧
0 ≤ x1 − 1 ∧ x1 − 1 ≤ x4∧

x1 − 1 >= 0
≡

 x2 = x3 × (x4 − x1)∧
0 ≤ x1 ∧ x1 ≤ x4∧

x1 >= 0

 [x1 − 1/x1]

and using rule CONSEQUENCE and ASSIGN we can prove sub-proof 2.2.1.1 and sub-proof
2.2.1.2.

Proof of sub-proof 2.2.2: Using rule CONSEQUENCE, CALL and noticing that

x2 = x3 × (x4 − x1)∧
0 ≤ x1 ∧ x1 ≤ x4∧

x1 >= 0
⇒ x2 = x3 × (x4 − x1)∧

0 ≤ x1 ∧ x1 ≤ x4

and
ξ(y) = (x2 = x3 × (x4 − x1) ∧ 0 ≤ x1 ∧ x1 ≤ x4, x2 = x4 × x3)

The previous Example 3.7 shows that Hoare logic is a powerful method for properties
on programs. However, the example also shows that it is not always easy to guess the
right boolean expression in case of rules CONSEQUENCE and SEQUENCE. Moreover, the
system quickly becomes cumbersome. Chapter 5 shows how to solve this difficulty.
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Chapter 4

Background on Relational Property
Verification

This chapter focuses on the presentation of relational properties. It follows the same outline as
[BCK16]. First, we propose a formal definition of relational properties in Section 4.1. Based
on this definition, we present three existing deductive methods for proving validity of relational
properties: Relational Hoare Logic (Section 4.2), Self-Composition (Section 4.3) and Product
Program (Section 4.4). We discuss their benefits and limitations and the support for the construct
call() in the context of the R-WHILE language. In order to distinguish the syntactic elements
and functions defined in this chapter from those in the previous chapter, we add the symbol˜on
each new syntactic elements and function.

4.1 Relational Properties

We mentioned in Chapter 1 that standard axiomatic semantics relates one command c to two
boolean expressions b1 and b2, respectively the pre- and post-condition. We recall the definition
of triple {b1}c{b2} given in Chapter 3 for a fixed environment ψ (mapping program names to
commands):

∀σ ∈ Σ.σ |= b1 ⇒ ξ̇cJcK(σ, ψ) |= b2

As already noted in Chapter 1, it can happen that we want to reason about more than one
program. More precisely, we want to express the following statement:

∀(σ1, ..., σn) ∈ Σn.(σ1, ..., σn) |= b̃1 ⇒ (ξ̇cJc1K(σ1, ψ1), ..., ξ̇cJcnK(σn, ψn)) |= b̃2

That is, n programs executed from n states verifying a property b̃1 lead to n states verifying
another property b̃2. Function ξ̇c (introduced in Section 3.3) calls evaluation function for com-
mands ξc with an arbitrary amount of fuel n.

In the following, we give a formal syntax and semantics for the evaluation of relational
properties. To avoid cumbersome notations due to the manipulation of tuples, we propose the
use of functions for handling the set of memory locations and programs.

41
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We define two new categories of sets Ẽa for relational arithmetic expressions and Ẽb for re-
lational boolean expressions. We use metavariables ã, ã0, ã1, ... to range over Ẽa and b̃, b̃0, b̃1, ...
to range over Ẽb. We also define the set T for tags, used to distinguish between memory states,
and use metavariables t, t0, t1, ... to range over T.

Using these new sets, we define the following grammar rules for relational arithmetic ex-
pressions and relational boolean expressions:

ã : := n

| x〈t〉
| ã opa ã

b̃ : := true | false
| ã1 opb ã2

| b̃1 opl b̃2 | ¬b̃′

The only difference with the grammar rules proposed in Section 3.2, is the use of notation 〈t〉
in the case of arithmetic expressions. This notation has been proposed by Benton [Ben04] to
distinguish between memory locations from different memory states.

We define Φ, the relational state environment that maps tags to memory states,

Φ = T⇀ Σ

and use metavariables φ, φ0, φ1, ... to range over Φ.
Using environment Φ, we define the evaluation function for Ẽa and Ẽb as follows.

Definition 4.1. Evaluation function ξ̃a : Ẽa → (Φ → N⊥), for relational arithmetic ex-
pressions Ẽa, is defined by structural induction on relational arithmetic expressions:

ξ̃aJnKφ = n

ξ̃aJx〈t〉Kφ = (φ(t))(x)

ξ̃aJã0 opa ã1Kφ = ξ̃aJã0Kφ opa⊥ ξ̃aJã1Kφ.
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Definition 4.2. Evaluation function ξ̃b : Ẽb → (Φ → B⊥), for relational boolean expres-
sions Ẽb, is defined by structural induction on relational boolean expressions:

ξ̃bJtrueKφ = true

ξ̃bJfalseKφ = false

ξ̃bJã0 opb ã1Kφ = ξ̃aJã0Kφ opb⊥ ξ̃aJã1Kφ

ξ̃bJb̃0 opl b̃1Kφ = ξ̃bJb̃0Kφ opl⊥ ξ̃bJb̃1Kφ

ξ̃bJ¬b̃Kφ = ¬⊥ξ̃bJb̃Kφ.

We define Φc, the relational execution environment that maps tags to the pair composed of a
command and a memory state for commands:

Φc = T⇀ C×Ψ.

We use metavariables φc, φc0, φc1, ... to range over Φc. To simplify reading, we define the
following projections to access the command and the memory state for commmand in a pair
bound to a tag in an environment φc:

• body : C×Ψ→ C,

• state : C×Ψ→ Ψ.

We now lift the set Φ with Ω
ΦΩ = T⇀ ΣΩ,

and define evaluation function ξ̃c for the evaluation of relational execution environment φc.

Definition 4.3. Evaluation function ξ̃c : Φc × ΦΩ → ΦΩ, for relational execution environ-
ment Φc, is defined by:

ξ̃c(φc, φ) = φ[t1 ← σ1]...[tn ← σn]

where
(i) {t1, ..., tn} = dom(φc),

(ii) σi = ξ̇cJbody(φc(ti))K(φ(t), state(φc(ti))).

Function ξ̃c evaluates all commands defined in φc with the associated memory state defined
in environment φ using evaluation function ξ̇c for simple commands C. The environment φ is
updated with the resulting state.

In the future we assume that the following statements are always satisfied:

• There is no command evaluation on undefined memory states:

dom(φc) ⊆ dom(φ).
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• The sets of tags used in the relational boolean expressions b̃1 and b̃2 are defined in φc:

C̃tbJb̃1K ⊆ dom(φc),

C̃tbJb̃2K ⊆ dom(φc),

where function C̃tb (defined in Appendix A.1.4) returns the set of tags used in a relational
boolean expression.

• The sets of locations used in the context of a tag in b̃1 and b̃2 are defined in the memory
state associated to that tag:

∀t ∈ C̃tbJb̃1K, C̃vbJb̃1Kt ⊆ dom(φ(t)),

∀t ∈ C̃tbJb̃2K, C̃vbJb̃2Kt ⊆ dom(φ(t)),

where function C̃vb (defined in Appendix A.1.4) returns the set of locations associated to
a given tag in a relational boolean expression.

• The set of triples formed by a memory state ψ, σ and a command c for a given tag are well
defined:

∀t ∈ dom(φc).WD(body(φc(t)), state(φc(t)), φ(t)),

where statementWD is defined in Section 3.3.

As for the Hoare triple, those hypotheses ensure that state Ω⊥ is not occurring.

Assuming the previouse hpotheses and using function ξ̃c, we can give our definition of rela-
tional properties for a given relational execution environment φc:

Definition 4.4. We call relational property the statement

∀φ ∈ Φ.φ |= b̃1 ⇒ ξ̃c(φc, φ) |= b̃2

stating that, if an environment φ satisfies the relational boolean expression b̃1, and if evalu-
ation of the relational execution environment φc on φ terminates, the resulting environment
satisfies the relational boolean expression b̃2.

We define judgement
φ |= b̃,

indicating that ξ̃bJb̃Kφ evaluates to true or there is an evaluation that has not finished:

∃t ∈ dom(φ).φ(t) = Ωt.

In the rest of this chapter, we will present existing methods for the verification of relational
properties. For that, we will focus on relations over two executions. In other words, we will
consider functions φ ∈ Φ such that dom(φ) ⊆ {t1, t2} and φc ∈ Φc such that dom(φc) ⊆
{t1, t2}. We note this set of environments Φ2 and Φ2

c .
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In this context, we use the notation proposed in [Ben04] to denote relational properties :

{b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2}.

This notation has the benefit of being simple and short to write (by omitting the memory state
for command ψ). We interpret the notation as an application of function ξ̃c on an environment φ,
satisfying relational boolean expression b̃1, and an environment φc, with command c1 defined for
tag t1 and command c2 defined for tag t2, and resulting in an environment satisfying relational
boolean expression b̃2:

∀φ ∈ Φ2.φ |= b̃1 ⇒ φ[t1 ← σ1][t2 ← σ2] |= b̃2

where
(i) body(φc(t1)) = c1,
(ii) body(φc(t2)) = c2,

(iii) σ1 = ξ̇cJbody(φc(t1))K(φ(t1), state(φc(t1))),

(iv) σ2 = ξ̇cJbody(φc(t2))K(φ(t2), state(φc(t2))).

4.2 Relational Hoare Logic

In Section 3.3 we presented Hoare Logic for proving validity of a Hoare triple. As relational
properties are an extension of standard properties, proposing a similar verification approach
seems natural. Benton introduced in [Ben04] Relational Hoare Logic for the verification of
relational properties relating two programs.

4.2.1 Minimal Relational Hoare Logic

Relational Haore Logic consider programs executed in locksteps i.e. both commands have the
same shape for each rule. As for Hoare Logic, a relational property is valid (|= {b̃1}c1〈t1〉 ∼
c2〈t2〉{b̃2}) if ` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2} is a conclusion of a proof in the following rule system:

` {b̃}skip〈t1〉 ∼ skip〈t2〉{b̃} (R-SKIP)

` b̃⇒ b1〈t1〉 ∧ b2〈t2〉
` {b̃}assert(b1)〈t1〉 ∼ assert(b2)〈t2〉{b̃ ∧ b1〈t1〉 ∧ b2〈t2〉} (R-ASSERT)

` {b̃[a1〈t1〉/x1〈t1〉, a2〈t2〉/x〈t2〉]}x1 := a1〈t1〉 ∼ x2 := a2〈t2〉{b̃} (R-ASSIGN)

` {b̃1}c1〈t1〉 ∼ c3〈t2〉{b̃2} ` {b̃2}c2〈t1〉 ∼ c4〈t2〉{b̃3}
` {b̃1}c1; c2〈t1〉 ∼ c3; c4〈t2〉{b̃3} (R-SEQUENCE)
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` {b̃1 ∧ b1〈t1〉 ∧ b2〈t2〉}c1〈t1〉 ∼ c3〈t2〉{b̃2}
` {b̃1 ∧ ¬b1〈t1〉 ∧ ¬b2〈t2〉}c2〈t1〉 ∼ c4〈t2〉{b̃2}

` {b̃1 ∧ b1〈t1〉 ≡ b2〈t2〉}if b1 then {c1} else {c2}〈t1〉 ∼ if b2 then {c3} else {c4}〈t2〉{b̃2}
(R-CONDITION)

` {b̃ ∧ b1〈t1〉 ∧ b2〈t2〉}c1 ∼ c2{b̃ ∧ b1〈t1〉 ≡ b2〈t2〉}
` {b̃ ∧ b1〈t1〉 ≡ b2〈t2〉}while b1 do {c1}〈t1〉 ∼ while b2 do {c2}〈t2〉{b̃ ∧ ¬(b1〈t1〉 ∨ b2〈t2〉)}

(R-WHILE)

|= (b̃1 ⇒ b̃′1) ` {b̃′1}c1〈t1〉 ∼ c2〈t2〉{b̃′2} |= (b̃′2 ⇒ b̃2)

` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2} (R-CONSEQUENCE)

a〈t〉 is a shorthand for the application of function Ãta (defined in Appendix A.5.1). The function
adds tag t to an arithmetic expression a of Ea. For instance, tagging x1 +x2 yields the following
result:

ÃtaJx1 + x2Kt ≡ x1〈t〉+ x2〈t〉
Similarly, b〈t〉 is a shorthand for the application of function Ãtb (defined in Appendix A.5.1).
The function adds tag t to a boolean expression b of Eb. For instance, tagging x1 < x2 yields
the following result:

ÃtbJx1 < x2Kt ≡ x1〈t〉 < x2〈t〉
b̃1 ≡ b̃2 is a shorthand for the encoding of equivalence in relational boolean expression ((¬b̃1 ∧
¬b̃2) ∨ (b̃1 ∧ b̃2)).

Most rules are a straightforward extension of the original rules from Hoare Logic, adapted to
support two commands. Note that the while rule R-WHILE forces the loops to be synchronized,
since the two loop conditions must have the same boolean value (a similar requirement exists in
the case of rule R-CONDITION for condition).

Example 4.1. We consider the following relational property

{x〈t1〉 = x〈t2〉}x := x+ 1〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉+ 1 = x〈t2〉}.

We can use the previous proof system to show that this quadruple is valid.

` {x〈t1〉 = x〈t2〉}x := x+ 1〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉+ 1 = x〈t2〉}.

Using rule R-CONSEQUENCE and the fact that x〈t1〉 = x〈t2〉 ⇒ x〈t1〉+ 2 = x〈t2〉+ 2, we get:

` {x〈t1〉+ 2 = x〈t2〉+ 2}x := x+ 1〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉+ 1 = x〈t2〉}.

Which is equivalent to

` {(x〈t1〉+ 1 = x〈t2)〉[r]}x := x+ 1〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉+ 1 = x〈t2〉},

with r = {x〈t1〉+ 1/x〈t1〉, x〈t2〉+ 2/x〈t2〉}. Using axiom R-ASSIGN, we prove the quadruple.
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4.2.2 Extended Minimal Relational Hoare Logic

Since program are considering executed in locksteps, it is hard to compare programs with dif-
ferent structures. To solve this limitations, additional rules can be added to the system. For
example, in the cases of a relational property between two programs with different number of
assignment commands, rule R-SI can be used to introduce a command skip and axiom R-DA
to prove properties between a skip command and an assign command (the symmetrical versions
of these rules are also true).

` {b̃1}c1〈t1〉 ∼ (skip; c2)〈t2〉{b̃2}
` {b̃1}c1〈t2〉 ∼ c2〈t2〉{b̃2} (R-SI)

` {b̃[a〈t1〉/x〈t1〉]}x := a〈t1〉 ∼ skip〈t2〉{b̃} (R-DA)

Example 4.2. We consider a modified version of the relational property shown in Example 4.1,

{x〈t1〉 = x〈t2〉}
x := x+ 1;
x := x+ 1

〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉 = x〈t2〉},

and want to prove validity of the quadruple.

` {x〈t1〉 = x〈t2〉}
x := x+ 1;
x := x+ 1

〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉 = x〈t2〉}.

We can first use rule R-SI to add a skip command.

` {x〈t1〉 = x〈t2〉}
x := x+ 1;
x := x+ 1

〈t1〉 ∼
skip;
x := x+ 2

〈t2〉{x〈t1〉 = x〈t2〉}.

We can then use rule R-ASSIGN to split the proof in two sub proofs.
` {x〈t1〉 = x〈t2〉}x := x+ 1〈t1〉 ∼ skip〈t2〉{x〈t1〉+ 1 = x〈t2〉+ 2}

` {x〈t1〉+ 1 = x〈t2〉+ 2}x := x+ 1〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉 = x〈t2〉}

Using the fact that x〈t1〉 = x〈t2〉 ⇒ x〈t1〉+ 2 = x〈t2〉+ 2 and r = {x〈t1〉+ 1/x〈t1〉, x〈t2〉+
2/x〈t2〉}, we get the following rules:

` {x〈t1〉+ 2 = x〈t2〉+ 2}x := x+ 1〈t1〉 ∼ skip〈t2〉{x〈t1〉+ 1 = x〈t2〉+ 2}

` {x〈t1〉 = x〈t2〉[r]}x := x+ 1〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉 = x〈t2〉}

We can rewrite the first rule to get the following rules:
` {x〈t1〉+ 1 = x〈t2〉+ 2[x〈t1〉+ 1/x〈t1〉]}x := x+ 1〈t1〉 ∼ skip〈t2〉{x〈t1〉+ 1 = x〈t2〉+ 2}

` {x〈t1〉 = x〈t2〉[r]}x := x+ 1〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉 = x〈t2〉}

Using axioms R-ASSIGN and R-DA respectively, we prove both quadruples.
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Since many rules exist for handling dissimilar programs, we refer interested readers to
[Ben04, BCK16] to get more rules. Those rules are often symmetric and/or inverted and trivial
except for the case of the loop which is as usual more difficult.

In general, Relational Hoare Logic requires many additional rules to get a system powerful
enough to support differently structured programs. As a result, it is not always easy to find
which rules must be applied and which property must be inferred. Finally, Relational Hoare
Logic requires the support of relational boolean expression b̃ and handles two programs at the
same time. This makes it difficult to use in existing verification tools.

4.2.3 Relational Hoare Logic and Procedures

The literature offers no rules for handling procedure calls call() in relational Hoare Logic, al-
though it is possible to solve this problem by connecting Relational Hoare Logic to the proof
system presented in Section 3.3 for Hoare Triples, as we show below.

First, we define environment Φa associating a tag to an environment of procedure contracts

Φa = T⇀ Ξ.

As for the simple Hoare Triple, we assume that the sets of variables used in the contracts for a
given tag are subsets of the domain of the memory state for the given tag.

∀t ∈ dom(φa).Wa(φa(t), φ(t))

Moreover, we assume that there is at most one set of contracts for each tag belonging to the
domaine of φc:

dom(φa) = dom(φc)

Then, we can notice that a relational property that links only one tag is actually a Hoare
triple. This is formally described by rule R-CALL

φa(t1) ` {D̃tbJb̃1K}c1{D̃tbJb2K} C̃tbJb̃1K = {t1} C̃tbJb̃2K = {t1}
φa ` {b̃1}c1〈t1〉{b̃2} (R-CALL)

where function D̃tb (defined in Appendix A.4.1) removes all tags from relational boolean ex-
pression and function C̃tb (defined in Appendix A.1.4) returns the set of tags used in a relational
boolean expression. The fact that C̃tbJb̃1K = {t1} and C̃tbJb̃2K = {t1} is ensured by the hypothe-
ses on relational properties.

Then, we can define rule R-COMBINE that splits a relational property.

φa ` {b̃1_t1}c1〈t1〉{b̃2_t1} φa ` {b̃1_t2}c2〈t2〉{b̃2_t2}
C̃tbJb̃1_t1K = {t1} C̃tbJb̃2_t1K = {t1} C̃tbJb̃1_t2K = {t2} C̃tbJb̃2_t2K = {t2}

φa ` {b̃1_t1 ∧ b̃1_t2}c1〈t1〉 ∼ c2〈t2〉{b̃2_t1 ∧ b̃2_t2}
(R-COMBINE)

Notice that we can split a relational property only if the relational boolean expression does not
link locations with different tags. This is an important restriction. In particular, the rule cannot
be applied on the previous examples of the form x〈t1〉 = x〈t2〉.



4.3. SELF-COMPOSITION 49

Finally, we define rule R-RECURSION, an extension of rule RECURSION.

∀t ∈ dom(φa).∀y ∈ dom(φa(t)).φa(t) ` {fst(φa(t)(y))}state(φc(t))(y){snd(φa(t)(y))}
φa ` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2}
` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2}

(R-RECURSION)
The combination of rules R-COMBINE and R-RECURSION allow the use of standard Hoare
Triples in the context of the proof of relational properties. Unfortunately, Hoare Triples are
not always practical, as relational boolean expressions linking locations with different tags are
not supported. Thus, it is required to find an equivalent form that do not link locations with
different tags, which is not always trivial.

4.3 Self-Composition

An alternative to Relational Hoare Logic is Self-Composition. Self-composition is a theoretical
approach to prove relational properties by reducing the verification of a relational property to
the verification of a Hoare Triple.

In this section, we give an overview of self-composition in the context of our definition of
relational properties. A proof of this reasoning can be found in [BDR11].

First, the definition 4.4 of relational properties can be refined as follows (for a given φc ∈
Φ2
c):

∀φ ∈ Φ2.φ |= b̃1 ⇒ ξ̃c({t2 → φc(t2)}, ξ̃c({t1 → φc(t1)}, φ)) |= b̃2 (4.1)

This definition corresponds to composing in sequence function ξ̃c over the domain of φc.
Now, if for both tags in φ the associated memory states do not share locations, i.e.

dom(φ(t1)) ∩ dom(φ(t2)) = ∅,

we can merge the two memory states into one memory state using a merging function:

M̃(φ) = {ts → φ(t1) ∪ φ(t2)}.

Afterwards, we change all tags in the boolean expressions b̃1 and b̃2 into one single tag using
function R̃ttb : Ẽb → (T → Ẽb) (defined in Appendix A.3.2) with the property that for a
given relational boolean expression and a given tag t, we have C̃tbJR̃ttbJb̃KtK = {t}. Similarly,
we change the environments φc such that the evaluation of commands φc(t1) and φc(t2) is
performed on the same state in environment φ. We get the following statement from 4.1:

∀φ ∈ Φ2.M̃(φ) |= R̃ttbJb̃1Kts ⇒
ξ̃c({ts → φc(t2)}, ξ̃c({ts → φc(t1)},M̃(φ))) |= R̃ttbJb̃2Kts (4.2)
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By noticing that composing in sequence function ξ̃c on environments φc having as domain
a single tag is equivalent to the sequence composition of both commands, we can define an
environment φcs by:

{ts → {body(φc(t1)); body(φc(t2)), state(φc(t1)) ∪ state(φc(t2))},

where we assume that dom(state(φc(t1))) ∩ dom(state(φc(t2))) = ∅. We get the following
statement from 4.2:

∀φ ∈ Φ2.M̃(φ) |= R̃ttbJb̃1Kts ⇒ ξ̃c(φcs,M̃(φ)) |= R̃ttbJb̃2Kts. (4.3)

Since property 4.3 use only one tag ts, we can use rule R-CALL, saying that a relational
property using only one tag is a Hoare Triple, to give the following rule for the verification of
relational properties:

` {D̃tbJb̃1K}c1; c2{D̃tbJb2K}
` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2} (SELF-COMP)

Rule SELF-COMP says that a relational property is valid if the Hoare Triple corresponding to the
self-composed programs is valid. We recall that rule SELF-COMP is only valid if the memory
states for natural numbers and the memory states for commands are disjoint for each tag:

dom(φ(t1)) ∩ dom(φ(t2)) = ∅
dom(state(φc(t1))) ∩ dom(state(φc(t2))) = ∅.

By performing a straightforward combination of rule RECURSION and rule SELF-COMP, we
get support of procedure call in Self-Composition.

∀t ∈ dom(φa).∀y ∈ dom(φa(t)).φa(t) ` {fst(φa(t)(y))}state(φc(t))(y){snd(φa(t)(y))}
φa(t1) ∪ φa(t2) ` {D̃tbJb̃1K}c1; c2{D̃tbJb2K}

` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2}
(RECURSION-SELF-COMP)

Notice that the rule requires that for both tags in φa the domain of the contracts are disjoint:

dom(φa(t1)) ∩ dom(φa(t2)) = ∅,

which is ensured from the moment we have:

dom(state(φc(t1))) ∩ dom(state(φc(t2))) = ∅.

Example 4.3. We consider the same example as in Section 4.1.

{x〈t1〉 = x〈t2〉}x := x+ 1〈t1〉 ∼ x := x+ 2〈t2〉{x〈t1〉+ 1 = x〈t2〉}.

We can prove this example using Self-Composition. However, the memory states are sharing
location since both programs and relational boolean expressions b̃1 and b̃2 share locations. To
fulfill the requirement of Self-Composition, we can simply rename the locations to get disjoint
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memory states, since the set of variables used is equal to the domain of the memory state. Sim-
ilarly, in case the memory state for commands and for contracts are not disjoint for all tags,
we can rename the procedures. We present in the following only rule R-RENAME-L, for the
renaming of locations:

` {R̃vbJb̃1K(t2, x, x
′)}c1〈t1〉 ∼ c2[x/x′]〈t2〉{R̃vbJb̃2K(t2, x, x

′)}
` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2} (R-RENAME-L)

where function R̃vb (defined in Appendix A.3.1) rename location x into x′ for a tag t in a
relational boolean expression. We use notation c[x/x′] for the substitution of all occurrences
of location x by location x′ in a command. Notice that the rule is not complete for simplicity;
the renaming of locations in the procedures and procedure contracts are absent. The symmetric
version (the command c2 is renamed) and the other way around of rule R-RENAME-L are also
true. A proof that renaming is sound can be found in [BDR11].

Using the renaming we get:

{xt1〈t1〉 = xt2〈t2〉}xt1 := xt1 + 1〈t1〉 ∼ xt2 := xt2 + 2〈t2〉{xt1〈t1〉+ 1 = xt2〈t2〉}.

Now, since no locations are shared between commands and relational boolean expressions, we
can replace all tags by the same tag

{xt1〈ts〉 = xt2〈ts〉}xt1 := xt1 + 1〈ts〉 ∼ xt2 := xt2 + 2〈ts〉{xt1〈ts〉+ 1 = xt2〈ts〉},

and compose sequentially both programs.

{xt1〈ts〉 = xt2〈ts〉}xt1 := xt1 + 1;xt2 := xt2 + 2〈ts〉{xt1〈ts〉+ 1 = xt2〈ts〉}.

Since the same tag is used, we can remove the tag to get a Hoare Triple.

{xt1 = xt2}xt1 := xt1 + 1;xt2 := xt2 + 2{xt1 + 1 = xt2}.

Using rules SEQUENCE,CONSEQUENCE and ASSIGN, the triple can be proven valid.

Example 4.3 shows that Self-Composition is a simple method to prove validity of relational
properties. However, the fact that Self-Composition relies on methods for the proof of Hoare
Triple has also its drawbacks. No relational property can be expressed between intermediate
commands. For example, in case of loops, it may be necessary to have a relational invariant (ex-
ample 4.4) i.e. an invariant linking locations from different loops. This is possible in Relational
Hoare Logic, since the invariant in the rule for loops R-WHILE is a relational boolean expression
b̃, and the body of the loops are handled simultaneously.

Example 4.4. The following example, taken from [BCK11], shows a relational property be-
tween a program (tagged 〈t1〉) adding the sum of the first ten naturals to location x1 and an
optimized version (tagged 〈t2〉). The optimisation consists in beginning the loop with x3 set to 1
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instead of 0. Thus, the number of iterations is reduced by one. The property consists in proving
that both programs are equivalent by checking that the value of location x1 is the same after
evaluation of each program, by assuming that before the evaluation, the value of location x2 is
the same for each program.

{x2〈t1〉 = x2〈t2〉}

x1 := x2;
x3 := 0;
while x3 < 10 do {

x1 = x1 + x3;
x3 = x3 + 1

}

〈t1〉 ∼

x1 := x2;
x3 := 1;
while x3 < 10 do {

x1 = x1 + x3;
x3 = x3 + 1

}

〈t2〉{x1〈t1〉 = x1〈t2〉}

Using Self-Composition, we get a new program where the loops composing the initial programs
are in sequence.

{x2_t1 = x2_t2}

x1_t1 := x2_t1 ;
x3_t1 := 0;
while x3_t1 < 10 do {

x1_t1 = x1_t1 + x3_t1 ;
x3_t1 = x3_t1 + 1

};
x1_t2 := x2_t2 ;
x3_t2 := 1;
while x3_t2 < 10 do {

x1_t2 = x1_t2 + x3_t2 ;
x3_t2 = x3_t2 + 1

}

{x1_t1 = x1_t2}

No property relating the values of locations involved in both loops can be defined. Only standard
loop invariant can be used. In this case, the following non linear invariant is required twice to
prove that the value in location x1_t1 and x1_t2 are equal after the loops :

x1_ti = x2_ti +
x3_ti × (x3_ti − 1)

2
.

4.4 Product Program

Example 4.4 shows that proving relational properties using Self-Composition can be tedious.
Barthe et al. proposed in [BCK16, BCK11] Product Program, an extension of Self-Composition
performing more advanced code transformations. The objective is to solve the problems men-
tioned in example 4.4.

4.4.1 Minimal Product Program

As for the Self-Composition, Product Program requires that for both tags in φ the associated
memory states do not share locations and for both tags in φc the associated states do not share
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commands. Verification of relational properties using Product Program is based on the following
rules:

c1 × c2 → c ` {D̃tbJb̃1K}c{D̃tbJb̃2K}
` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2} (PRODUCT)

In addition to Self-Composition, we have c1 × c2 → c performing specific transformations
depending on the related command c1 and c2 and using following system:

skip× skip→ skip; skip (P-SKIP)

x1 := a1 × x2 := a2 → x1 := a1;x2 := a2 (P-ASSIGN)

assert(b1)× assert(b2)→ assert(b1); assert(b2) (P-ASSERT)

c1 × c2 → c c′1 × c′2 → c′

c1; c′1 × c2; c′2 → c; c′ (P-SEQUENCE)

c1 × c3 → c c2 × c4 → c′

if b1 then {c1} else {c2} × if b2 then {c3} else {c4} →
assert(b1 ≡ b2); if b1 then {c} else {c′} (P-CONDITION)

c1 × c2 → c

while b1 do {c1} × while b2 do {c2} →
assert(b1 ≡ b2); while b1 do {c; assert(b1 ≡ b2)} (P-WHILE)

Notice that in case of command skip, assignment, assertion and sequence, Product Program is
almost equivalent to Self-Composition. Only the order of the commands are changed due to the
rule for sequence.

Where Product Program differs from Self-Composition is in the case of condition and loops.
Instead of composing in sequence the command, and thus duplicating commands, a single com-
mand is maintained. For example, the product of two loops is one loop, with as body the product
of the bodies of the related loops. However, this is true only if the loops are synchronized. Thus,
the loop conditions must evaluate to the same boolean value at entry and during iteration. This
explains the presence of the assertions (the case of command if is similar).

4.4.2 Extended Minimal Product Program

Notice that Relational Hoare Logic and Product Program are close. This is used in [BCK16]
to combine both methods in order to avoid introducing assertions in the program by rule P-
CONDITION and P-WHILE; equivalence between conditions are proved in the rules. Moreover,
if no rule for handling dissimilar program can be applied, Self-Composition is used to get a
complete proof system.
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The similarities with Relational Hoare Logic also implies that additional rules must be used
in Product Program to overcome the requirement of program similarity. We can present follow-
ing rules taken from [BCK16]:

x1 := a1 × skip→ x1 := a1 (P-DASSIGN)

assert(b)× skip→ assert(b) (P-DASSERT)

(skip; c1)× c2 → c

c1 × c2 → c (P-SI)

assert(b); c; while b do {c} × c′ → c′′

while b do {c} × c′ → c′′ (P-UL)

Similarities between those rules (P-DASSIGN, P-SI) and the additional rules for Relational
Hoare Logic (R-SI,R-DA) can be identified, since they attempt to solve the same problem.

Example 4.5. We reconsider example 4.4 from the previous section, already with renamed
locations:

{x2_t1〈t1〉 = x2_t2〈t2〉}
x1_t1 := x2_t1 ;
x3_t1 := 0;
while x3_t1 < 10 do {

x1_t1 = x1_t1 + x3_t1 ;
x3_t1 = x3_t1 + 1

}

〈t1〉 ∼

x1_t2 := x2_t2 ;
x3_t2 := 1;
while x3_t2 < 10 do {

x1_t2 = x1_t2 + x3_t2 ;
x3_t2 = x3_t2 + 1

}

〈t2〉

{x1_t1〈t1〉 = x1_t2〈t2〉}

We notice that the loops are not synchronized, the program on the left performs one additional
iteration. Thus, we apply rule P-UL to get synchronized loops. As the loop unfolding results in
two programs with dissimilar shapes, we use P-SI to get two programs with similar shapes. We
can then apply rule P-DASSERT and P-DASSIGN for the dissimilar part and rule P-ASSIGN and
P-WHILE for the similar part to get the product program:

x1_t1 := x2_t1 ;
x3_t1 := 0;
assert(x3_t1 < 10);
x1_t1 = x1_t1 + x3_t1 ;
x3_t1 = x3_t1 + 1
while x3_t1 < 10 do {

x1_t1 = x1_t1 + x3_t1 ;
x3_t1 = x3_t1 + 1

}

×

x1_t2 := x2_t2 ;
x3_t2 := 1;
skip;
skip;
skip;
while x3_t2 < 10 do {

x1_t2 = x1_t2 + x3_t2 ;
x3_t2 = x3_t2 + 1

}
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The resulting triple is as follows:

{x2_t1 = x2_t2}

x1_t1 := x2_t1 ;
x1_t2 := x2_t2 ;
x3_t1 := 0;
x3_t2 := 1;
assert(x3_t1 < 10);
x1_t1 = x1_t1 + x3_t1 ;
x3_t1 = x3_t1 + 1;
assert(x3_t1 < 10 ≡ x3_t2 < 10);
while x3_t1 < 10 do {

x1_t1 = x1_t1 + x3_t1 ;
x1_t2 = x1_t2 + x3_t2 ;
x3_t1 = x3_t1 + 1;
x3_t2 = x3_t2 + 1;
assert(x3_t1 < 10 ≡ x3_t2 < 10)

}

{x1_t1 = x1_t2}

Using Hoare Logic, we can prove this triple. Notice that the product program only requires one
loop invariant x1_t1 = x1_t2 (called coupling invariant) for the loop rule WHILE, in opposition to
example 4.4, where we needed two invariants. Moreover, the coupling invariant is much easier
to use and prove. In general, if two loops are of similar shape, it is easier to define a coupling
invariant, in order to connect the desired parts, than to define two invariants resuming the result
of the loops and finally connect desired parts using those invariants.

4.4.3 Product Program and Procedures

Support of procedure call in product program is proposed in [EMH18] through the following
rule (here in a simpler form than the transformation proposed in [EMH18]):

state(φc(t1))(y1)× state(φc(t2))(y2)→ c

call(y1)× call(y2)→ call(y)
with ψ(y) = c (P-CALL)

We assume that the call on the left of × is originally tagged with t1 and the call on the right of
× is originally tagged with t2. The product consists in merging two procedure calls to y1 (in
context of t1) and y2 (in context of t2) into a single call to y. The program bound to y is the
product of the programs bound to y1 (in context of t1) and y2 (in context of t2).

Example 4.6. We consider the following relational property:

{x1〈t1〉 = x2〈t2〉}call(y1)〈t1〉 ∼ call(y2)〈t2〉{x1〈t1〉 = x2〈t2〉},

a relational execution enviroment φc, where the memory states for command are defined, for
each tag, by:

state(φc(t1)) = {y1 → x1 := x1 + 1},
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state(φc(t2)) = {y2 → x2 := x2 + 1}.

We can apply rule P-CALL and PRODUCT to get the following Hoare Triple:

{x1 = x2}call(y){x1 = x2},

where state ψ is defined by:

{y → x1 := x1 + 1;x2 := x2 + 1}

In this chapter we have presented classical verification methods for relational properties in
the context of the R-WHILE language. We have seen that those methods have a limited support
for procedure call and cannot use relational properties as hypotheses. We will see in Chap-
ter 6 how we can extend Relational Hoare Logic and Self-Composition to get a better support
of procedure calls in order to use relational properties, like procedure contracts in axiomatic
semantics.

The previous presentation on product program was made for the sake of completeness on the
basic techniques for verifying relational properties. We will not go back over this verification
technique.



Chapter 5

Extension

The semantics introduced in Section 3.2, for the R-WHILE language, defines exactly what a
program does. The Hoare logic, presented in Section 3.3 provides a way to state properties on
programs, and to prove them. However, there are properties that we want to specify on programs
that cannot be expressed within this frame.

Example 5.1. We consider a program c defined by:

x3 := x1;
x1 := x2;
x2 := x3

It is not possible to write a property, using Eb, that specifies that the values stored at locations x1

and x2 after evaluation of the c program are the values stored at locations x2 and x1 respectively
before evaluation.

More generally, it is not possible to write properties that refer to the values associated to
locations in distinct memory states. A solution to this problem is the use of labels and a specific
construct, that we call at (as in Section 2.1). Labels are mapped to memory state, and the at
construct allows referring to the value of a location in a memory state linked to a label, so that
Example 5.1 can be written as follows:

{true}

l1 : x3 := x1;
l2 : x1 := x2;
l3 : x2 := x3;
l4 : skip;

{at(x1, l4) = at(x2, l1) ∧ at(x2, l4) = at(x1, l1)}

Note that we use here an additional label l4, to refer to the state after the evaluation of the
command at the label l3. We show in Section 5.2 how this problem is solved.

Another limitation of the present model is the impossibility to refer to axiomatized predicates
inside boolean expressions. As shown in Example 1.1 for the verification of factorial function,
using predicates in deductive verification is standard. Moreover, axiomatized predicates are the
basis of the solutions proposed in Chapter 6 and Chapter 8 for handling relational properties.

57
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The chapter is therefore organized as follows. Section 5.1 presents the extensions added to
the R-WHILE language, of Section 3.2 to solve the previously mentioned limitations. Section 5.2
refines the definition of Hoare Triples by taking into account the extensions. Finally, Section 5.3
presents verification condition generation [Gor88] for the verification of Hoare Triples in the
context of the extended R-WHILE language.

5.1 Extended R-WHILE Language

In the following, sections 5.1.1, 5.1.2 and 5.1.3 present the extended arithmetic expressions,
boolean expressions and commands of R-WHILE. Section 5.1.4 defines some hypotheses as-
sumed to be valid in the following chapters. In order to distinguish the syntax and functions
defined in this chapter from those in the previous chapters, we add the symbol ˆ on each new
syntax and function. The extended R-WHILE language is called R-WHILE*.

5.1.1 Extension of Arithmetic Expressions

For our first extension, which focuses on Ea, we require that commands are named using identi-
fiers. We therefore introduce a new set L of identifiers, which are called label. We use variables
l, l0, l1, ... to denote labels. The syntax for naming commands using labels is presented in Sec-
tion 5.1.3.

We now define the grammar rule for extended arithmetic expression Êa;

α : := n

| at(x, l)
| α1 opa α2

We use metavariables α, α0, α1, ... to range over the set Êa. Extended arithmetic expressions Êa
are similar to arithmetic expressions Ea, but use the new construct at(x, l) instead of x. at(x, l)
denotes the value of memory location x at the memory state bound to label l. We thus define Λ,
the environment that maps labels to memory states

Λ = L⇀ Σ,

and use metavariables λ, λ0, λ1, ... to range over the set Λ.
Using environment Λ, we can give the following evaluation function for Êa.
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Definition 5.1. Evaluation function ξ̂a : Êa → (Λ → N⊥) for arithmetic expressions Êa,
is defined by structural induction on extended arithmetic expressions:

ξ̂aJnKλ = n

ξ̂aJat(x, l)Kλ = (λ l) x

ξ̂aJα0 opa α1Kλ = ξ̂aJα0Kλ opa⊥ ξ̂aJα1Kλ.

5.1.2 Extension of Boolean Expressions

For our second extension, which focuses on Eb, we want to refer to predicates inside boolean ex-
pressions. More precisely, we want predicates parametrized by extended arithmetic expressions.
Therefore, we first define P, the set of predicate identifiers, composed of the set of identifiers Pn
for predicates taking n extended arithmetic expressions.

P =
⋃
n∈N

Pn.

To avoid typing rules, we assume that all sets Pn are disjoint to get well typed predicate by
definition:

∀i1, i2 ∈ N.(i1 6= i2)⇒ Pi1 ∩ Pi2 = ∅.

We use metavariables p, p0, p1, ... to range over the set P and pn, pn0 , p
n
1 , ... to range over the set

Pn.
We define the grammar rules for extended boolean expressions Êb

β : := true | false
| α1 opb α2

| β1 opl β2 | ¬β′

| β0 ⇒ β1

| pn(α1, ..., αn)

and use metavariables β, β0, β1, ... to range over the set Êb. We add implication to Êb for
convenience.

For the evaluation of extended boolean expressions we note that, since Êb contains predicates
without explicit definition, we cannot use the same type of evaluation function as for Eb. To
decide whether an extended boolean expression is valid, we have to use a set of axioms related
to the predicates. Therefore, we use the function smt, defined in Section 3.1.3, to decide if, for a
set of axioms, a translation into first-order logic of an extended boolean expression is valid. The
translation of extended boolean expressions Êb is performed by function ξ̂b defined as follows.
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Definition 5.2. Evaluation function ξ̂b : Êb → (Λ → Q⊥) for boolean expression Êb, is
defined by structural induction on extended boolean expressions:

ξ̂bJtrueKλ = JT K

ξ̂bJfalseKλ = JF K

ξ̂bJα0 opb α1Kλ =

{
⊥ if ξ̂aJα0Kλ = ⊥ or ξ̂aJα1Kλ = ⊥
Jξ̂aJα0Kλ opb ξ̂aJα1KλK

ξ̂bJβ0 opl β1Kλ =

{
⊥ if ξ̂bJβ0Kλ = ⊥ or ξ̂bJβ1Kλ = ⊥
Jξ̂bJβ0Kλ opl ξ̂bJβ1KλK

ξ̂bJ¬βKλ =

{
⊥ if ξ̂bJβKλ = ⊥
J¬ξ̂bJβKλK

ξ̂bJβ0 ⇒ β1Kλ =

{
⊥ if ξ̂bJβ0Kλ = ⊥ or ξ̂bJβ1Kλ = ⊥
Jξ̂bJβ0Kλ⇒ ξ̂bJβ1KλK

ξ̂bJpn(α1, ..., αn)Kλ =

{
⊥ if ξ̂aJα1Kλ = ⊥ or ... or ξ̂aJαnKλ = ⊥
Jp(ξ̂aJα1Kλ, ..., ξ̂aJαnKλ)K.

Notice that the translation of natural numbers, returned by function ξ̂a, into constant terms
of Eq, of type nat, is implicit. In other words, we suppose that function smt supports integer
arithmetic (which is the case in practice for most of the provers used in program verification).

Notice also that arithmetic operators are absent from the generated formulas; function ξ̂a
evaluates extended arithmetic expressions to naturals. We could have defined function ξ̂a such
that extended arithmetic expressions are translated into terms of Eq, resulting in formulas con-
taining arithmetic operators. However, we have chosen otherwise, for convenience reason.

Boolean and logical operators are also translated implicitly into the MFOL language. Pred-
icate identifier pn are translated implicitly into an associated predicate identifier p of MFOL.

Example 5.2. If we consider the following extended boolean expression

p(at(x1, l1), at(x2, l2)) ∧ at(x1, l1) + at(x2, l1) = 3,

and an environment λ = {l1 → {x1 → 1, x2 → 2}, l2 → {x1 → 1, x2 → 1}}, we get the
following well typed formula by applying function ξ̂b

p(1, 1) ∧ 3 = 3.

Now, if we consider the following set of closed formulas

uQ = {∀v1, v2 : nat.v1 = v2 ⇒ p(v1, v2)},

the oracle function smt will return V for the following query:

smt(uQ, p(1, 1) ∧ 3 = 3).
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5.1.3 Extension of Commands

As stated earlier, the at(x, l) construct requires that some commands are named with labels. We
therefore define Ĉ, an improved C.

ς : := l : skip
| l : x := a

| ς1; ς2

| l : assert(β)

| l : if b then {ς1} else {ς2}
| l : while b do {ς}
| l : call(y)

Command assert(β) takes now an extended boolean expression Êb as parameter. The condition
of commands if and while remains a simple boolean expression of Eb. In other words, the eval-
uation of a program still uses only the current state of the memory. Only assertions can refer to
other states through their corresponding label. The assignment expression remains an arithmetic
expression of Ea. All commands, except sequential composition, are named using labels. Since
all atomic commands are named, it is not required to name the sequential composition. We use
metavariables ς, ς0, ς1, ... to range over the set Ĉ.

Since we have extended commands, we have to refine the definition of Ψ into Ψ̂ as follows:

Ψ̂ = Y⇀ Ĉ.

A consequence of the fact that a command assert(β) takes now an extended boolean expres-
sion as a parameter is that it can refer to any label that occurs in a program, through the construct
at(x, l), including labels of commands that have not been executed yet, or that will even not be
executed at all during the evaluation of the program. Thus, in order to ensure that we will always
be able to evaluate our extended boolean expressions, we limit the use of construct at(x, l) with
the following three rules (A formal definition of those rules are given in Section 5.1.4):

Rule 1. A label l must occur before the occurrence of at(x, l) in the program.

Example 5.3. The following program is not well defined since we refer, inside an assertion, to
label l3 that occurs after the assertion:

l1 : x2 = 3; l2 : assert(at(x1, l3) = at(x1, l1)); l3 : x1 = x2 + 2.

Rule 2. A label l must not be inside an inner block, that is, we cannot refer to the value of a
location in a state that occurs in a loop, a call or conditions.



62 CHAPTER 5. EXTENSION

Example 5.4. The following program is not well defined, since we refer, inside an assertion
which is outside of the loop, to label l2 that occur inside the loop body:

l1 : while x1 < 4 do {l2 : x1 = x1 + 1}; l3 : assert(at(x1, l2) < 5).

Rule 3. A label l must not be outside a call, that is, we cannot refer to the value of a location in
a state that occurs outside a call.

Example 5.5. For the following command, the memory ψ = {y 7→ l3 : assert(at(x1, l1) < 5)}
is not well defined since we refer, inside an assertion, to label l1 that doesn’t occur inside the
program at location y:

l1 : x1 := 10; l2 : call(y).

We can now give the signature of function ξ̂c for the evaluation of commands Ĉ:

ξ̂c : Ĉ→ ((N× Ψ̂× P(Q)× (ΣΩ × Λ))→ (ΣΩ × Λ)).

The possibility of referring to specific states through construction at(x, l) requires storing states
in an environment Λ during evaluation. Thus, the evaluation function for commands takes a pair
in Σ× Λ as a parameter, rather than a single memory state σ in Σ.

Since in the following definition of function ξ̂c, the memory state for command ψ̂ and the
set of axioms uQ are never modified, we can consider them implicitly and give the following
shorthand:

ξ̂cJςK(n, (σ, λ)) = ξ̂cJςK(n, ψ̂, uQ, (σ, λ)).

We can now give the definition of function ξ̂c.
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Definition 5.3. Evaluation function for extended commands

ξ̂c : Ĉ→ ((N× Ψ̂× P(Q)× (ΣΩ × Λ))→ (ΣΩ × Λ)),

is defined, if we run out of fuel or the memory state for natural numbers is in Ω, by

ξ̂cJςK(n, (σ, λ)) = (Ωt, λ) if n = 0

ξ̂cJςK(n, (σ, λ)) = (σ, λ) if σ ∈ Ω,

otherwise, by structural induction on commands

ξ̂cJl : skipK(n, (σ, λ)) = (σ, λ[l← σ])

ξ̂cJl : x := aK(n, (σ, λ)) =


(Ω⊥, ∅) if ξaJaKσ = ⊥
(Ω⊥, ∅) if σ(x) = ⊥
(σ[x← ξaJaKσ], λ[l← σ]) otherwise

ξ̂cJς0; ς1K(n, (σ, λ)) = ξ̂cJς1K(n− 1, ξ̂cJς0K(n− 1, (σ, λ)))

ξ̂cJl : assert(β)K(n, (σ, λ)) =


(Ω⊥, ∅) if ξ̂bJβK(λ[l← σ]) = ⊥
(σ, λ[l← σ]) if smt(uQ, ξ̂bJβK(λ[l← σ])) = V

(Ωa, ∅) otherwise

ξ̂cJl : if b then {ς0} else {ς1}K(n, (σ, λ)) =
(Ω⊥, ∅) if ξbJbKσ = ⊥
(fst(ξ̂cJς0K(n− 1, (σ, λ[l← σ]))), λ[l← σ]) if ξbJbKσ = true

(fst(ξ̂cJς1K(n− 1, (σ, λ[l← σ]))), λ[l← σ]) if ξbJbKσ = false

ξ̂cJl : call(y)K(n, (σ, λ)) =

{
(Ω⊥, ∅) if ψ̂(y) = ⊥
(fst(ξ̂cJψ̂(y)K(n− 1, (σ, ∅))), λ[l← σ]) otherwise

ξ̂cJl : while b do {ς}K(n, (σ, λ)) =
(Ω⊥, ∅) if ξbJbKσ = ⊥
(fst(ξ̂cJς; l : while b do {ς}K(n− 1, (σ, λ[l← σ]))), λ[l← σ]) if ξbJbKσ = true

(σ, λ[l← σ]) if ξbJbKσ = false

In the case of named commands, the environment λ is updated gradually with bindings
l ← σ (label of the evaluated command to the memory state before the evaluation). Thus, if
the evaluated program satisfies rule 1, we are sure to find in λ the labels we require to evaluate
assertions.
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In the case of the assertion command, we use function smt to ensure that the associated
extended boolean expression holds. If functon smt returns V , we know that the assertion holds.
If the function smt returns U , we do not know if the formula holds, thus we return Ωa. In the
case function smt is not complete, i.e. some valid formulas cannot no be proven valid, program
with valid assertions can return Ωa. Notice that we could add the proven boolean expression β
to the set of formulas uQ as a hypothesis. However, strictly speaking, this is not needed, since β
is a logical consequence of the axioms. Since adding a mechanism to update the set of axioms
that we use would be pretty heavy, we chose to avoid it. A specific command for the update will
be defined in Section 6.3, where we really require it.

For commands if b then {ς0} else {ς1}, call(y) and while β do {ς}, the returned environ-
ment λ is only updated with the label of the current command (as for all other named commands).
Function fst is used to extract the memory state from the returned pair from the recursive call to
evaluation function ξ̂c. Thus, if the evaluated program satisfies rule 2, we are sure to find in λ
the labels we require to evaluate assertions.

For the case of procedure call, the recursive call to evaluation function ξ̂c is performed with
empty environment λ. Thus, if the callable procedures satisfy rule 3, we are sure to find in λ the
labels we require to evaluate assertions.

As for evaluation function ξc, we use a natural number n to ensure termination.
Finally, in case a state of Ω is returned, we associate to it an empty environment λ, since the

evaluation will stop anyways.

5.1.4 Well Defined Program

We have presented in the previous Section 5.1.3 the evaluation function for command ξ̂c. This
function requires that program satisfies rules 1,2 and 3. Thus, we give in this section a formal
definition of those rules through a function checking that commands of Ĉ are well-defined.

First, we lift the powerset of labels P(L)with ⊥:

P(L)⊥ = P(L) ∪ {⊥}.

Then, we define function liftu taking two sets of labels as parameter (uL⊥1 and uL⊥2), and
returning ⊥ if there exists a label that occurs in both sets of labels. The function also propagates
⊥.

Definition 5.4. Definition of liftu : P(L)⊥ × P(L)⊥ → P(L)⊥ for merging two sets of
labels:

liftu(uL⊥1, uL⊥2) =


⊥ if ⊥ = uL⊥1 or ⊥ = uL⊥2

⊥ if uL⊥1 ∩ uL⊥2 6= ∅
uL⊥1 ∪ uL⊥2 otherwise

Using function liftu, we define function Ŵ to guarantee that a command ς obeys rule 1 and
rule 2.
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Definition 5.5. Function Ŵ : Ĉ → (P(L)⊥ → P(L)⊥), checking that rule 1 and rule 2
are satisfied by a command Ĉ, is defined by structural induction on commands:

ŴJl : skipKuL⊥ = liftu(uL⊥ , {l})
ŴJl : x := aKuL⊥ = liftu(uL⊥ , {l})
ŴJς0; ς1KuL⊥ = ŴJς1K(ŴJς0KuL⊥)

ŴJl : assert(β)KuL⊥ =

{
⊥ if ĈlbJβK * uL⊥ ∪ {l}
liftu(uL⊥ , {l}) otherwise

ŴJl : if b then {ς0} else {ς1}KuL⊥ =


⊥ if ŴJς0K(liftu(uL⊥ , {l})) = ⊥
⊥ if ŴJς1K(liftu(uL⊥ , {l})) = ⊥
liftu(uL⊥ , {l}) otherwise

ŴJl : call(y)KuL⊥ = liftu(uL⊥ , {l})

ŴJl : while b do {ς}KuL⊥ =

{
⊥ if ŴJςK(liftu(uL⊥ , {l})) = ⊥
liftu(uL⊥ , {l}) otherwise

Parameter uL⊥ corresponds to all labels we can refer to (in addition to the label of the current
command) in a boolean expression Êb, through a construct at(x, l). Thus, to ensure rule 1 we
check that, in case of an assertion, the set of labels used inside a boolean expression Êb is a
subset of uL⊥ ∪ {l} using function Ĉlb (defined in Appendix A.1.3) returning the set of labels
used in a boolean expression Êb. Rule 2 is ensured by the fact that the set of labels uL⊥ is only
lifted with the label of the current command, in case of commands if,while, and call.

Notice that duplicate labels in the set of reachable labels are not allowed. Otherwise some
labels would be hidden by others when evaluating a command. The absence of duplicated labels
is guaranteed by using function liftu when merging elements of uL⊥ .

We now refine the statement for well defined program C, defined in Section 3.3, for Ĉ:

• The domain of the memory state σ is equal to the set of locations used in command ς , and
commands ψ(y) for all defined program names y:

ĈvcJςK ∪
⋃

y∈dom(ψ̂)

ĈvcJψ̂(y)K = dom(σ), (Ŵv(ς, ψ̂, σ))

where function Ĉvc (defined in Appendix A.1.1) returns the set of variables used in a
command Ĉ.

• The set of program names used in command ς is a subset of the domain of ψ̂. Moreover,
for all defined program names in ψ̂, the associated commands uses a set of program names
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that is a subset of the domain of the memory state ψ̂.

Ĉf JςK ∪
⋃

y∈dom(ψ̂)

Ĉf Jψ̂(y)K ⊆ dom(ψ̂), (Ŵf (ς, ψ̂))

where function Ĉf (defined in Appendix A.1.2) returns the set of program names used in
a command Ĉ.

• For a given environment λ mapping labels to memory state, for all valid labels, the asso-
ciated memory state for natural numbers has the same domain as σ:

∀l ∈ dom(λ), dom(λ(l)) = dom(σ) (Ŵλ(λ, σ))

• For a set of reachable uL, a program ς is well defined in terms of Ŵ . Moreover, for all
defined program names in a given ψ̂, the associated command can only refer to labels that
are defined in itself (rule 3):

ŴJςKuL 6= ⊥ ∧ ∀y ∈ dom(ψ̂), ŴJψ̂(y)K∅ 6= ⊥ (Ŵl(uL, ς, ψ̂))

Note that function Ŵ is only focused on the labels on a given path of the program, thus
duplicated labels can be allowed.

Example 5.6. The following program, using a command if, is consider as well-defined by func-
tion Ŵ .

l1 : x := x+ 10;
l2 : if x1 > 1 then {

l3 : x2 := 2
} else {

l3 : x2 := 3
};

l4 : assert(at(x, l2) = at(x, l1) + 1)

Note that label l3 is used in the two branches of the condition.

To avoid such cases, we added an additional statement for well defined program. The set
of labels used in a program ς are unique. Moreover, for all defined program names in a given
memory state ψ̂, the associated command uses a set of unique labels.

ÛJςK 6= ⊥ ∧ ∀y ∈ dom(ψ̂), ÛJψ̂(y)K 6= ⊥, (Ŵu(c, ψ̂))

where function Û (defined in Appendix A.2) takes a command and returns all labels used in the
command, or ⊥ if there are duplicated labels.
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We now use the previously defined properties to show that the evaluation of a program ς does
not result in state Ω⊥ for an appropriate environment. The fact that an environment satisfies Ŵu,
Ŵλ, Ŵv, Ŵf and Ŵl is called ŴD(ς, ψ̂, σ, λ). It should be noted that requiring that ŴD be
satisfied by the environment is not the weakest condition such that the evaluation function ξ̂c
does not lead to state Ω⊥. Indeed, evaluation function ξ̂c does not require reachable labels to be
unique, as Ŵl states (this condition simply avoids ambiguities). Moreover, unique labels, as Ŵu

states, are also not required by function ξ̂c to not end in state Ω⊥. Again, Ŵu merely ensures
that there is no ambiguity when referring to a label.

Lemma 5.1. For a given ς , ψ̂, uQ and n

∀σ ∈ Σ.∀λ ∈ Λ.

ŴD(ς, ψ̂, σ, λ)⇒ fst(ξ̂cJςK(n, ψ̂, uQ, (σ, λ))) 6= Ω⊥

Proof. By structural induction on Ĉ, Êb, Eb, Êa and Ea

5.2 Hoare Triple

In this section we refine the definition of functional correctness using boolean expressions Êb
and commands Ĉ.

The notation for functional correctness, using boolean expressions Êb and commands Ĉ, is
noted as before:

{β1}ς{β2}
However, there is a problem if we want to write the associated definition. The memory state
after the evaluation is not linked with a label, since it is the last memory state. So, we cannot
refer to this state inside the expression β2. Furthermore, for each program, the memory state
before the evaluation may have a different label, since each program can have a different label
for the first command. It would be convenient to have a specific label to refer to the state given
as parameter to the evaluation function for extended commands and returned by the evaluation
function for extended commands. Therefore, we define two specific (and reserved) labels Pre
and Post, for the state before the evaluation and after the evaluation. Finally, as for function ξc
in Section 3.3, we define a function ˙̂

ξc calling function ξ̂c with an arbitrary amount of fuel, in
order to distinguish from total correction.

We can now give the definition of functional correctness for a given set of axioms uQ and a
memory state for extended commands ψ̂:

∀σ ∈ Σ.∀λ ∈ Λ.λ[Pre← σ] |= β1 ⇒ λ′[Pre← σ][Post← σ′] |= β2

where (σ′, λ′) =
˙̂
ξcJςK(ψ̂, uQ, (σ, λ))

Statement λ |= β indicates that environment λ satisfis a boolean expression β i.e ξ̂bJβKλ must
be different from ⊥ and smt(uQ, ξ̂bJβKλ) evaluates to V , where uQ is the set of given axioms.
Moreover, λ |= β holds if the evaluation has not finished:

∃l ∈ dom(λ).λ(l) = Ωt,
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i.e., there is a label for which the associated state is Ωt.
In the following the environment λ is initially always empty, so we can refine the previous

definition to obtain the definition of Hoare Triples {β1}ς{β2} used in the following:

Definition 5.6. We call extended Hoare Triples the statement

∀σ ∈ Σ.[Pre← σ] |= β1 ⇒ λ[Pre← σ][Post← σ′] |= β2

where (σ′, λ) =
˙̂
ξcJςK(ψ̂, uQ, (σ, ∅))

stating that, if an environment λ (only defined for label Pre) satisfies β1, and if the execu-
tion of ς on λ terminates, the resulting environment satisfies β2.

As for the Hoare Triple defined in Section 3.3, we assume that some hypotheses are satisfied
by the environment composed of ψ̂, σ and ς:

• The set of variables used in boolean expressions β1 and β2 are subsets of the domain of
the memory state σ:

ĈvbJβ1K ⊆ dom(σ)

ĈvbJβ2K ⊆ dom(σ)

where function Ĉvb (defined in Appendix A.1.1) returns the set of variables used in a
extended boolean expression Êb.

• The set of labels used in the precondition β1 is a subset of the singleton {Pre}. The set
of labels used in the postcondition β2 is a subset of the set composed of the labels we can
refer to through the command ς and labels Pre and Post:

ĈlbJβ1K ⊆ {Pre}

ĈlbJβ2K ⊆ ŴJςK∅ ∪ {Pre, Post}

where function Ĉlb (defined in Appendix A.1.3) returns the set of labels used in an ex-
tended boolean expression Êb and function Ŵ (defined in Section 5.1.4) returns the set of
reachable labels from an initial set of reachable labels and a command.

• The command ς , the memory state ψ̂ and σ satisfy property ŴD defined in section 5.1.4
and labels Pre and Post do no occur in command ς:

ŴD(ς, ψ̂, σ, ∅) ∧ {Pre, Post} /∈ ĈlcJςK

These properties ensure that rule 1,2 and 3 are satified by the triple. Moreover, labels Pre
and Post are never used by command ς and the evaluation of boolean expressions β1, β2 and
command ς are different from ⊥ and Ω⊥ respectively.
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5.3 Verification Conditions

In Section 3.3, we presented an extended Hoare Logic for proving functional correctness. How-
ever, the proof system is not compliant with boolean expression of Êb and command of Ĉ and
thus cannot be used here. So, we propose in the following section Verification Condition Gen-
eration for proving functional correctness. The approach is well-known [Gor88, Win93] and
is based on the fact that, for a well annotated program, we have functional correctness if all
generated verification conditions (called VC’s) are valid. We call a well annotated program, a
program equipped with boolean expressions Êb (assertions) that refer to specific program points
and an environment Ξ̂ mapping program names to two boolean expressions in Êb (pre- and
post-condition), similar to the environment Ξ of Section 3.3.

Ξ̂ = Y⇀ Êb × Êb.

We use metavariables ξ̂, ξ̂0, ξ̂1, ... to range over Ξ̂. Similar to the assumption Wa (defined in
Section 3.3), we assume for a given σ and ξ̂ the following properties to be satisfied:

∀y ∈ dom(ξ̂).ĈlbJfst(ξ̂(y))K ⊆ {Pre} ∧ ĈvbJfst(ξ̂(y))K ⊆ dom(σ),

∀y ∈ dom(ξ̂).ĈlbJsnd(ξ̂(y))K ⊆ {Pre, Post} ∧ ĈvbJsnd(ξ̂(y))K ⊆ dom(σ).

(Ŵa(ξ̂, σ))

That is, for each defined program name, the associated contract is composed of a pre- and
post-condition. The precondition can only use the label Pre, and the postcondition can use
labels Pre and Post. As we seek to define a modular verification condition generator, we want
to replace any individual call to a procedure y by its contract (if the given precondition is satisfied
before the call, the given postcondition is satisfied after it). Therefore the pre- and post-condition
only rely on the state before and after the call (label Pre and Post).

The basic idea of verification condition generation is to translate boolean expressions Êb
and programs Ĉ into first-order formulas (in our case MFOL) and then prove validity of the
generated VC’s (in our case using function smt).

The difficulty of proving the resulting VC’s depends on the translation and the annotations.
As following formalization intend to show in a very simplified way what a verification condition
generator like WP would do on a restricted language like R-WHILE*, we chose a very simple
translation by considering a memory state as an array. Such a memory model is typically used to
model the heap in case of pointers. Several alternative models are possible [Bar11], like using
logical variable to model the value of the locations. However, we expect that such a model will
be less simple to formalize.

The following translation is inspired by the work proposed in [FS01], and the tool WP.

5.3.1 Translation of Ea and Eb
As mentioned earlier, we choose to model the memory states by arrays. Thus, in the context of
arithmetic and boolean expressions in Ea and Eb, the translation consists in replacing location
by access to an array.
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Example 5.7. If we consider the following boolean expression

x1 + x2 = 10,

the translation will result in following formula

m[1] +m[2] = 10,

where m represents the current memory state where the boolean expression is evaluated. Notice
that the choice of the natural number representing a location is arbitrary. We choose here 1 for
x1 and 2 for x2.

We now define the two functions Ta and Tb for translating arithmetic and boolean expression
into formulas of Q.

First, we define mapping ∆ from locations to naturals

∆ = X⇀ N,

and use metavariables δ, δ0, δ1, ... to range over the set ∆.

We assume a function Nn returning a fresh constant term of type nat. To avoid any com-
plexity in the future, we write e = Nn when we want a fresh constant term e.

Finally, we define function lift returning the constant term of type nat associated to location
x for a given environment δ. If no binding exists for the location in δ, the binding is created
using a new constant term.

Definition 5.7. Function lift : ∆×X→ ∆×Eqnat returning the natural number associated
to location x for a given environment δ:

lift(δ, x) =

{
(δ[x← e], e) where e = Nn if δ(x) = ⊥
(δ, δ(x)) otherwise

Example 5.8. If we call function lift with an environment δ defined for location x1 and a loca-
tion x1, we get as result the associated natural δ(x1) and the environment δ unchanged:

lift({x1 → 1}, x1) = ({x1 → 1}, 1).

If we call function lift with an environment δ not defined for a location x2 and a location x2,
we get as result a fresh natural number and the environment δ lifted with the binding x2 to the
fresh natural number:

lift({x1 → 1}, x2) = ({x1 → 1, x2 → 2}, 2).

Using function lift , we can define function Ta for translating an arithmetic expression Ea
into a term of Eq.
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Definition 5.8. Function Ta : Ea → (M × ∆ → Eq × ∆), translating arithmetic expres-
sion Ea into an arithmetic expression Eq, is defined by structural induction on arithmetic
expressions:

TaJnK(m, δ) = (JnK, δ)
TaJxK(m, δ) = (Jm[e]K, δ′) where (δ′, e) = lift(δ, x)

TaJa0 opa a1K(m, δ) = (Je0 opa e1K, δ′′)
where (e0, δ

′) = TaJa0K(m, δ) and (e1, δ
′′) = TaJa1K(m, δ′)

The array variable m models the current memory state where the arithmetic expression is
evaluated. Parameter δ resumes the current naming choices for locations and guarantees no
duplicated naming using function lift .

Using function Ta, we can define function Tb for translating a boolean expression Eb into a
formula of Q, for a given array variable m modeling the current memory state and environment
δ containing the current naming choices for locations.

Definition 5.9. Function Tb : Eb → (M×∆→ Q×∆), translating a boolean expression
Êb into a formula Q, is defined by structural induction on boolean expressions:

TbJtrueK(m, δ) = (JT K, δ)
TbJfalseK(m, δ) = (JF K, δ)

TbJa0 opb a1K(m, δ) = (Je0 opb e1K, δ′′)
where (e0, δ

′) = TaJa0K(m, δ) and (e1, δ
′′) = TaJa1K(m, δ′)

TbJb0 opl b1K(m, δ) = (Jq0 opl q1K, δ′′)
where (q0, δ

′) = TbJb0K(m, δ) and (q1, δ
′′) = TbJb1K(m, δ′)

TbJ¬bK(m, δ) = (J¬qK, δ′)
where (q, δ′) = TbJbK(m, δ)

5.3.2 Translation of Êa and Êb
In contrast to expressions Ea and Eb, extended expressions Êa and Êb can refer to different
memory states using the construct at. Thus, the translation consists in replacing the at by
accesses to the corresponding array.
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Example 5.9. If we consider the following boolean expression:

at(x1, l1) + at(x2, l2) = 10,

the translation will result in following formula

m1[1] +m2[2] = 10,

where m1 models the memory state at label l1 and m2 models the memory state at label l2.

We now define function T̂a and T̂b for translating extended arithmetic and boolean expression
into formulas of Q.

First, we define mapping Θ from labels to array variables

Θ = L⇀M,

and we use metavariables θ, θ0, θ1, ... to range over the set Θ.

We assume a function Nvm returning a fresh array variable. As for function Nn, we write
m = Nvm when we want a new array variable m.

We define S, the product of environment Θ and ∆.

S = Θ×∆.

Finally, we define function lifts returning the constant term associated to location x for a
given environment δ, and the array variable associated to label l for a given environment θ. If no
bindings exist for the label, the binding is created using a new array.

Definition 5.10. Function lifts : S ×L×X→ S ×M×Eqnat, returning the constant term
associated to location x for a given environment δ, and the array variable associated to label
l for a given environment θ:

lifts((θ, δ), l, x) =



((θ[l← m], δ′),m, e) if θ(l) = ⊥
where

m = Nvm
(δ′, e) = lift(δ, x)

((θ, δ′), θ(x), e) otherwise
where

(δ′, e) = lift(δ, x)
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Example 5.10. The behavior of function lifts is similar to the behavior of function lift . When
the bindings already exist, the different environments are left unchanged:

lifts(({l1 → m1}, {x1 → 1}), l1, x1) = (({l1 → m1}, {x1 → 1}),m1, 1)

Otherwise, they are lifted;

lifts(({l1 → m1}, {x1 → 1}), l2, x2) = (({l1 → m1, l2 → m2}, {x1 → 1, x2 → 2}),m2, 2)

Using function lifts, we can define function T̂a for translating an extended arithmetic ex-
pression Êa into a term Eq.

Definition 5.11. Function T̂a : Êa → (S → Eq × S), translating an arithmetic expres-
sion Êa into an arithmetic expression Eq, is defined by structural induction on extended
arithmetic expressions:

T̂aJnKs = (JnK, s)

T̂aJat(x, l)Ks = (Jm[n]K, s′) where (s′,m, n) = lifts(s, l, x)

T̂aJα0 opa α1Ks = (Je1 opa e2K, s′′)

where (e1, s
′) = T̂aJα0Ks and (e2, s

′′) = T̂aJα1Ks′

Parameter s summarizes the current naming choices for locations and memory states and
guarantees no duplicated naming using function lifts.

Using function T̂a, we can define function T̂b for transforming an extended boolean expres-
sion Êb into a formula Q.
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Definition 5.12. Function T̂b : Êb → (S → Q × S), translating a boolean expression Êb
into an formula of Q, is defined by structural induction on extended boolean expressions:

T̂bJtrueKs = (JT K, s)

T̂bJfalseKs = (JF K, s)

T̂bJα0 opb α1Ks = (Je0 opb e1K, s′′)

where (e0, s
′) = T̂aJα0Ks and (e1, s

′′) = T̂aJα1Ks′

T̂bJβ0 opl β1Ks = (Jq0 opl q1K, s′′)

where (q0, s
′) = T̂bJβ0Ks and (q1, s

′′) = T̂bJβ1Ks′

T̂bJ¬βKs = (J¬qK, s′) where (q, s′) = T̂bJβKs

T̂bJpn(α1, ..., αn)Ks = J(p(e1, ..., en)K, sn)

where (e1, s1) = T̂aJα1Ks and ... and (en, sn) = T̂aJαnKsn−1

As for function ξ̂b, the translation of boolean and logical operators are implicit, and predicate
identifier pn are translated implicitly into an associated predicate identifier p.

5.3.3 Translation of Ĉ

In the following, we define function T̂c for the translation of a command ς into a formula q.
Function T̂c can be seen as computing the strongest postcondition [DS90] and has some struc-
tural similarities with the evaluation function ξ̂c defined in Section 5.1.3.

Translation function T̂c has the following signature;

T̂c : Ĉ→ (Ξ̂× V → V ),

where V is the product Q× P(Q)×M× S. A tuple (q, uQ,m, s) gathers the following infor-
mation:

• a formula q corresponding to the strongest postcondition,

• a set of formulas that must be valid such that q can be considered as the strongest postcon-
dition (i.e. verification condition for the assertions, invariant,... found in the program),

• an array variable m modeling the current memory state (similar to the memory state σ in
case of function ξ̂c defined in Section 5.1.3),
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• a tuple s defining the current naming choices.

Since in the following definition of function T̂c, the environment for annotation ξ̂ is never
modified, we can consider it implicitly and give the following shorthand:

T̂cJςKv = T̂cJςK(ξ̂, v).

As the definition of function T̂c is long, we split the definition in different parts for better
readability. First, we define function T̂c for basic commands (skip, assignment, assertion and
sequence). Then, we define function T̂c for command call. The definition of function T̂c for
commands if and while can be found in Appendices B.1 and B.2 as they are not essential in the
following.

Definition 5.13. Function T̂c : Ĉ→ (Ξ̂×V → V ), translating a command Ĉ (case of skip,
assignment, sequence and assertion) into an formula of Q, is defined by structural induction
on commands:

T̂cJl : skipK(q, uQ,m, (θ, δ)) = (q, uQ,m, (θ[l← m], δ))

T̂cJl : x := aK(q, uQ,m, (θ, δ)) = (Jq ∧m′ = m[ex ← e]K, uQ,m′, (θ[l← m], δ2))

where
(i) (e, δ1) = TaJaK(m, δ),
(ii) (δ2, ex) = lift(δ1, x),
(iii) m′ = Nvm ;

T̂cJς0; ς1Kv = T̂cJς1K(T̂cJς0Kv)

T̂cJl : assert(β)K(q, uQ,m, (θ, δ)) = (Jq ∧ q′K, uQ ∪ {q ⇒ q′},m, s)
where (q′, s) = T̂bJβK(θ[l← m], δ)

For commands skip, assignment and assertion we add to environment θ the fact that the current
label refers to the array variable modeling the memory state before the evaluation (equivalent to
the binding added to λ for function ξ̂c).

In case of command skip, as nothing changes on the memory state, the array variable mod-
eling the memory state before and after the evaluation of the command is the same.

In case of assignment,

(i) we translate the arithmetic expression a into a term e,

(ii) we choose a natural for location x,
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(iii) we choose a new array variable for modeling the memory state after the evaluation of the
command.

Finally, we add to formula q the fact that the array variable modeling the memory state after the
evaluation (m′) is equal to the array variable modeling the memory state before the evaluation
(m) with the position corresponding to location x updated with the term corresponding to the
arithmetic expression of the assignment.

In the case of assertion, we translate the extended boolean expression β into a formula and
add to the set of verification conditions the fact that the assertion must hold assuming q.

Example 5.11. We consider the following well defined program composed of assignment, skip,
sequence and assertions.

l1 : x1 := x2 + 2;
l2 : skip;
l3 : x1 := x1 + 3;
l4 : assert(at(x1, l4) = at(x2, l1) + 5);
l5 : x1 := x1 + 1

We can transform this program in a first order formula, using function T̂c, starting from assump-
tion T . We propose to present the transformation progressively.

l1 : x1 := x2 + 2;
l2 : skip;
l3 : x1 := x1 + 3;
l4 : assert(at(x1, l4) = at(x2, l1) + 5);
l5 : x1 := x1 + 1

T∧
ml2 = ml1 [1← ml1 [2] + 2]

In the case of the first assignment, the memory state at label l1 is modeled by array variable ml1 .
The next memory state (at label l2) is modeled by array variable ml2 . Location x1 is modeled
by position 1 in the arrays and location x2 by position 2.

l1 : x1 := x2 + 2;
l2 : skip;
l3 : x1 := x1 + 3;
l4 : assert(at(x1, l4) = at(x2, l1) + 5);
l5 : x1 := x1 + 1

T∧
ml2 = ml1 [1← ml1 [2] + 2]

The skip command adds nothing in the formula, the array modeling the memory state at label l3
is the same as the one at label l2.

l1 : x1 := x2 + 2;
l2 : skip;
l3 : x1 := x1 + 3;
l4 : assert(at(x1, l4) = at(x2, l1) + 5);
l5 : x1 := x1 + 1

T∧
ml2 = ml1 [1← ml1 [2] + 2]∧
ml4 = ml2 [1← ml2 [1] + 3]
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The second assignment has similar effects as the first one.

l1 : x1 := x2 + 2;
l2 : skip;
l3 : x1 := x1 + 3;
l4 : assert(at(x1, l4) = at(x2, l1) + 5);
l5 : x1 := x1 + 1

T∧
ml2 = ml1 [1← ml1 [2] + 2]∧
ml4 = ml2 [1← ml2 [1] + 3]∧
ml4 [1] = ml1 [2] + 5

T∧
ml2 = ml1 [1← ml1 [2] + 2]∧
ml4 = ml2 [1← ml2 [1] + 3]
⇒ ml4 [1] = ml1 [2] + 5

An assertion results in a verification condition for the assertion itself, stating that the strongest
postcondition generated up to this point implies the assertion itself. In addition, the assertion is
assumed in the main formula and the array modeling the memory states at label l5 is the same
as the one at label l4.

l1 : x1 := x2 + 2;
l2 : skip;
l3 : x1 := x1 + 3;
l4 : assert(at(x1, l4) = at(x2, l1) + 5);
l5 : x1 := x1 + 1

T∧
ml2 = ml1 [1← ml1 [2] + 2]∧
ml4 = ml2 [1← ml2 [1] + 3]∧
ml4 [1] = ml1 [2] + 5∧
mnext = ml4 [1← ml4 [1] + 1]

T∧
ml2 = ml1 [1← ml1 [2] + 2]∧
ml4 = ml2 [1← ml2 [1] + 3]
⇒ ml4 [1] = ml1 [2] + 5

The last assignment has similar effects as the previous ones on the main formula.

We now define function T̂c for the command call. In this case, we want to use the contract
in ξ̂ to link the state before and after the procedure call.

Example 5.12. We consider the following program composed of assignments and a procedure
call to y.

l1 : x := x+ 1;
l2 : call(y);
l3 : x := x+ 1

• If we have no contract for procedure call y we expect following result;

l1 : x := x+ 1;
l2 : call(y);
l3 : x := x+ 1

ml2 = ml1 [1← ml1 [1] + 1]∧
mlnext = ml3 [1← ml3 [1] + 1]
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Here, we have no relation between array variable ml2 , modeling the state at label l2, and
array variable ml3 , modeling the state at label l3, since we have no information on the
effects of the function on memory.

• If we have a contract for y in an environment ξ̂ defined by;

{y → (true, at(x, Post) = at(x, Pre) + 1)},

we expect following result:

l1 : x := x+ 1;
l2 : call(y);
l3 : x := x+ 1

ml2 = ml1 [1← ml1 [1] + 1]∧
ml3 [1] = ml2 [1] + 1∧
mlnext = ml3 [1← ml3 [1] + 1]

Since the precondition always holds, we can use the postcondition to get a relation be-
tween array variable ml2 and array variable ml3 . However, the relation only concerns
location x, which can be limiting.

A solution to the previous limitation is to assume we have a set of locations uX that are
specified as assigned i.e. none of the locations outside of uX are modified. Using this information
we can connect the state before and after a procedure call completely.

Example 5.13. Assume we have a set of assigned locations uX defined by {x}. We can refine
the previous example as follows:

l : x := x+ 1;
l2 : call(y);
l3 : x := x+ 1

ml2 = ml1 [1← ml1 [1] + 1]∧
ml3 [1] = ml2 [1] + 1 ∧ml3 = ml2 [1← i]
mlnext = ml3 [1← ml3 [1] + 1]

The green part of the formula represents the fact that only location x has been assigned, i.e. ml3

is identical to ml2 , except for cell 1 (corresponding to location x), which is updated with an
arbitrary value, represented in the formula by a free variable i. This gives a complete knowl-
edge of the state after a procedure call, since we know that only x has been assigned, and the
postcondition says how.

This approach is well-known as frame rule. Thus, we are only interested in using the spec-
ification in the following. Solutions for proving the frame rule can be found, for example, in
[Moy09]. We simply assume the existence of a function V̂Cf : Ĉ × Êb × Ξ̂ × P(X) → P(Q)
that returns the set of formulas that must be valid in order for the frame rule P(X) to be valid,
for a program Ĉ, a precondition Êb and an environment for contract Ξ̂.

For the definition of function T̂c, we assume a functionNvn returning a fresh natural variable.
As before, we write v = Nvn when we want a new natural variable v. We also refine the
definition of the environment for contracts to support the frame rule;

Ξ̂ = Y⇀ Êb × Êb × P(X),

where P(X) represents the set of assigned locations.
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Definition 5.14. Function T̂c : Ĉ → (Ξ̂ × V → V ), translating a command Ĉ (case of
procedure call) into a formula of Q, is defined by:

T̂cJl : call(y)K(q, uQ,m, (θ, δ)) =



(Jq ∧ qPre ∧ qPost ∧m′ = m[e1 ← v1]...[en ← vn]K,
uQ ∪ {q ⇒ qPre},m′, (θ[l← m], δn))

if ξ̂(y) = (βPre, βPost, {x1, ..., xn}),
where
(i) (qPre, (_, δPre)) = T̂bJβPreK({Pre← m}, δ),
(ii) m′ = Nvm ,
(iii) (qPost, (_, δPost) = T̂bJβPostK({Pre← m,Post← m′}, δPre),
(iv) v1 = Nvn , ..., vn = Nvn ,
(v) (δ1, e1) = lift(δPost, x1), ..., (δn, en) = lift(δn−1, xn);

(q, uQ,m
′, (θ[l← m], δ)) if ξ̂(y) = ⊥,

where m′ = Nvm .

(i) First, we translate the precondition βPre into a formula qPre.

(ii) Then, we define a new array m′ modeling the state after the procedure call.

(iii) Then, we translate the postcondition βPost into a formula qPost.

(iv) Then, for each assigned location, we define a new natural variable.

(v) Then, for each assigned location, we get the corresponding index in the array representing
memory state.

Finally, we add to the set of verification conditions the verification condition stating that the
strongest postcondition generated up to this point implies the precondition qPre. We also add to
q the precondition qPre, the postcondition qPost and the frame rule.

5.3.4 Verification of Hoare Triples

Using the function T̂c, we can define function V̂Ch returning the set of formulas (verification
conditions) for a given Hoare Triple.

V̂Ch : Ĉ× (Êb × Êb)× Ξ̂→ P(Q)
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Function V̂Ch takes the triple in the form of a command and a couple of boolean expressions
(the pre- and post-conditions). As stated earlier, the precondition uses label Pre to model the
current state and the postcondition uses label Post to model the current state (Ŵa(ξ̂, σ)). The
definition of the function V̂Ch is therefore as follows:

Definition 5.15. Function V̂Ch : Ĉ×(Êb×Êb)×Ξ̂→ P(Q) returning the set of verification
conditions for a Hoare Triple:

V̂Ch(ς, (βPre, βPost), ξ̂) = uQ ∪ {q ⇒ qPost}
where
(i) m = Nvm ,
(ii) (qPre, s) = T̂bJβPreK({Pre→ m}, ∅),
(iii) (q, uQ,m

′, (θ′, δ′)) = T̂cJςK(qPre, ∅,m, s),
(iv) (qPost, _) = T̂bJβPostK(θ′[Post← m′], δ′).

(i) First, we define a new array variable m modeling the memory state at label Pre.

(ii) Then, we translate the precondition βPre into a formula qPre.

(iii) Then, we translate the command ς into a formula q, by taking the formula qPre, corre-
sponding to the precondition, as assumption.

(iv) Then, we translate the post condition into a formula of qPost.

The final set of formulas is composed of the set of sub-formulas obtained during the translation
of the command, and the formula corresponding to the fact that the postcondition must hold after
the program execution assuming the precondition.

Example 5.14. If we consider the following well defined Hoare Triple using the program shown
in Example 5.11:

{
at(x2, P re) = 4

} l1 : x1 := x2 + 2;
l2 : skip;
l3 : x1 := x1 + 3;
l4 : assert(at(x1, l4) = at(x2, l1) + 5);
l5 : x1 := x1 + 1;

{
at(x1, Post) = 10

}

We generate the associated verification condition using function V̂Ch (in this case the state before
and after the evaluation are associated to the reserved labels Pre and Post).

mPre[2] = 4∧
ml2 = mPre[1← mPre[2] + 2]∧
ml4 = ml2 [1← ml2 [1] + 3]∧
ml4 [1] = mPre[2] + 5∧
mPost = ml4 [1← ml4 [1] + 1]
⇒ mPost[1] = 10

mPre[2] = 4∧
ml2 = mPre[1← mPre[2] + 2]∧
ml4 = ml2 [1← ml2 [1] + 3]
⇒ ml4 [1] = mPre[2] + 5
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Using function smt (and axioms Q-NO-UPDATE and Q-UPDATE) we can show that those formu-
las are provable.

Using functions V̂Ch and V̂Cf , we can define function V̂Cp generating all verification con-
ditions corresponding to the contracts defined in an environmnt ξ̂.

Definition 5.16. Function V̂Cp : Ψ̂×Ξ̂→ P(Q), returning the set of verification conditions
that must be valid in order for the procedure contracts Ψ̂ to be valid:

V̂Cp(ψ̂, ξ̂) =
⋃

y∈dom(ξ̂)

V̂Ch(ψ̂(y), (βPre, βPost), ξ̂) ∪ V̂Cf (ψ̂(y), βPre, uX, ξ̂)

where (βPre, βPost, uX) = ξ̂(y)

We can now give rule E-RECURSION for the verification of Hoare Triple in the case of R-
WHILE*, for a set of axioms uQ.

∀q ∈ V̂Ch(ς, (β1, β2), ξ̂) ∪ V̂Cp(ψ̂, ξ̂).smt(uQ, q) = V

` {β1}ς{β2} (E-RECURSION)

The rule stat that, if all formulas returned by function V̂Cp for a given set of contracts are valid,
and all formulas returned by function V̂Ch are valid, the corresponding Hoare Triple is valid.
Note the similarities with rule RECURSION.
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Chapter 6

Source code transformation

In Chapter 4, we presented three deductive verification methods for relational properties. Those
methods can be used to prove relational properties, but are unable to use relational properties as
hypotheses in the subsequent verifications. However, in modular deductive verification, using a
set of assumptions is a key point as already shown in Sections 3.3 and 5.3.

To solve this limitation, we propose in this chapter a modular deductive verification of re-
lational properties in the context of the R-WHILE* language. The verification of relational
properties relies on self-composition and generation of verification conditions. The ability to
use relational properties relies on axiomatization of procedure call.

The chapter is organized as follows. First we adapt in Section 6.1 the definition of relational
properties, given in Section 4.1, to extended commands Ĉ and extended boolean expressions
Êb. In Section 6.2, we recall the notion of self-composition, in the context of the R-WHILE*
language, combined with function V̂Ch for the generation of verification conditions. Finally, in
Section 6.3 we present our solution for using relational properties as hypotheses.

6.1 Relational Properties and Labels

Adapting the definition of relational properties to extended commands Ĉ and extended boolean
expressions Êb is a straightforward combination of the definition of Hoare Triples given in Sec-
tion 5.3 and relational properties given in Section 4.1. To distinguish the syntax and functions
defined in this chapter from those in the previous chapters, we add the symbol ˜̂ (relational
extended),˜ (relational) orˆ (extended) on each new syntax and function.

First we give the grammar rules for relational extended arithmetic expressions ˜̂Ea and rela-
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tional extended boolean expressions ˜̂Eb:

α̃ : := n

| at(x, l)〈t〉
| α̃ opa α̃

β̃ : := true | false
| α̃1 opb α̃2

| β̃1 opl β̃2 | ¬β̃′

| β̃0 ⇒ β̃1

| pn(α̃1, ..., α̃n)

As for b̃ and ã, the only difference of β̃ and α̃ with the grammar rules proposed in Section 5.1
for the R-WHILE* language, is the use of notation 〈t〉 in arithmetic expressions for tagging
locations.

In Section 5.1 we have defined evaluation functions for β and α using an environment Λ that
maps labels to states of natural numbers. This environment is used to get the value of a location
in a state at a given reachable label. Since we have now multiple states associated to programs
identified by tags, we define the relational extended state environment Φ̂ that maps tags to an
environment Λ.

Φ̂ = T⇀ Λ

and use metavariables φ̂, φ̂0, φ̂1, ... to range over Φ̂.
We define the evaluation functions for ˜̂Ea and ˜̂Eb as follows.

Definition 6.1. Evaluation function ˜̂
ξa :

˜̂Ea → (Φ̂ → N⊥) for relational extended arith-

metic expressions ˜̂Ea, is defined by structural induction on relational extended arithmetic
expressions:

ξ̃aJnKφ̂ = n

ξ̃aJat(x, l)〈t〉Kφ̂ = (((φ̂(t))l)x

ξ̃aJα̃0 opa α̃1Kφ̂ = ξ̃aJα̃0Kφ̂ opa⊥ ξ̃aJα̃1Kφ̂
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Definition 6.2. Evaluation function ˜̂
ξb :

˜̂Eb → (Φ̂→ Q⊥), for relational extended boolean

expression ˜̂Eb, is defined by structural induction on relational extended boolean expressions:

˜̂
ξbJtrueKφ̂ = JT K

˜̂
ξbJfalseKφ̂ = JF K

˜̂
ξbJα0 opb α1Kφ̂ =

{
⊥ if ˜̂

ξaJα0Kφ̂ = ⊥ or ˜̂
ξaJα1Kφ̂ = ⊥

J ˜̂
ξaJα0Kφ̂ opb

˜̂
ξaJα1Kφ̂K

˜̂
ξbJβ0 opl β1Kφ̂ =

{
⊥ if ˜̂

ξbJβ0Kφ̂ = ⊥ or ˜̂
ξbJβ1Kφ̂ = ⊥

J ˜̂
ξbJβ0Kφ̂ opl

˜̂
ξbJβ1Kφ̂K

˜̂
ξbJ¬βKφ̂ =

{
⊥ if ˜̂

ξbJβKφ̂ = ⊥
J¬ ˜̂
ξbJβKφ̂K

˜̂
ξbJβ0 ⇒ β1Kφ̂ =

{
⊥ if ˜̂

ξbJβ0Kφ̂ = ⊥ or ˜̂
ξbJβ1Kφ̂ = ⊥

J ˜̂
ξbJβ0Kφ̂⇒ ˜̂

ξbJβ1Kφ̂K

˜̂
ξbJp

n(α1, ..., αn)Kφ̂ =

{
⊥ if ˜̂

ξaJα1Kφ̂ = ⊥ or ... or ˜̂
ξaJαnKφ̂ = ⊥

Jp(
˜̂
ξaJα1Kφ̂, ...,

˜̂
ξaJαnKφ̂)K

As for function ξ̂b in Section 5.1.2, constant terms, boolean and logical operators and predi-
cates are implicitly translated into the MFOL language.

We now refine the definition of relational execution environment Φc (defined in Section 4.1)
to relational extended excution environment Φ̂c, mapping tags to the pair composed of a ex-
tended command and a memory state for extended commands.

Φ̂c = T⇀ Ĉ× Ψ̂

As for Φc we use projection functions body and state to access the command and the memory
state for command.

We also refine the definition of environment Φa, the environment that maps tags to an envi-
ronment of procedure contracts, into Φ̂a, the environment that maps tags to an environment of
procedure contracts of extended commands, defined by

Φ̂a = T⇀ Ξ̂

We now combine the definition of function ξ̂c (defined in Section 5.1.3), for the evaluation
of extended commands, and function ξ̃c (defined in Section 4.1), for the evaluation of relational
properties, to get function ˜̂

ξc, for the evaluation of relational extended execution environment
φ̂c.
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Definition 6.3. Evaluation function ˜̂
ξc : Φ̂c × ΦΩ × Φ̂ × P(Q) → ΦΩ × Φ̂, for relational

extended execution environment Φ̂c:

˜̂
ξc(φ̂c, φ, φ̂, uQ) = (φ[t1 ← σ1]...[tn ← σn], φ̂[t1 ← λ1]...[tn ← λn])

where
(i) {t1, ..., tn} = dom(φ̂c),

(ii) (σi, λi) =
˙̂
ξcJbody(φ̂c(ti))K(uQ, state(φ̂c(ti)), (φ(ti), φ̂(ti))).

As for function ξ̃c, function ˜̂
ξc evaluates all commands defined in φ̂c with the associated

memory state defined in environment φ and environment λ defined in φ̂ using evaluation function
for extended commands ˙̂

ξc. The environments φ and φ̂ are updated with the resulting memory
states and environment, mapping labels to memory states, respectively.

We are now refining some hypotheses to avoid evaluation ending in state Ω⊥ and ⊥. Most
assumptions are similar to those defined in Section 4.1, using constructions defined in Sec-
tion 5.1.4:

• There is no command evaluation on undefined memory states :

dom(φ̂c) ⊆ dom(φ)

• The sets of tags used in the relational boolean expressions β̃1 and β̃2 are defined in φ̂c:

C̃tbJβ̃1K ⊆ dom(φ̂c)

C̃tbJβ̃2K ⊆ dom(φ̂c)

where function C̃tb (defined in Appendix A.1.4) returns the set of tags used in a relational
boolean expression.

• The sets of locations used in the context of a tag in β̃1 and β̃2 are defined in the memory
state associated to that tag:

∀t ∈ ˜̂CtbJβ̃1K,
˜̂CvbJβ̃1Kt ⊆ dom(φ(t))

∀t ∈ ˜̂CtbJβ̃2K,
˜̂CvbJβ̃2Kt ⊆ dom(φ(t))

where function ˜̂Cvb (defined in Appendix A.1.4) returns the set of locations associated to
a given tag in a relational boolean expression.

• For a given tag, the set of labels used in the precondition β̃1 is a subset of the set composed
of label Pre. The set of labels used in the postcondition β̃2 is a subset of the set composed
of the labels we can refer through the command for that tag and labels Pre and Post:

∀t ∈ dom(φ).
˜̂ClbJβ1Kt ⊆ {Pre}
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∀t ∈ dom(φ).
˜̂ClbJβ2Kt ⊆ ŴJbody(φ̂c(t))K∅ ∪ {Pre, Post}

where function ˜̂Clb (defined in Appendix A.1.4) returns the set of labels used in a boolean
expression Eb for a given tag and function Ŵ (defined in Section 5.1.4) returning the set
of reachable labels from an initial set of reachable labels and a command.

• All defined environments of procedure contracts for extended commands, in an environ-
ment φ̂a, are well defined; the set of variables used in the contracts is a subset of the
domain of the memory state associated to the corresponding tag, the set of labels used in
the precondition is a subset of set composed of label Pre, the set of labels used in the
postcondition is a subset of the set composed of labels Pre and Post:

∀t ∈ dom(φ̂a).Ŵa(φ̂a(t), φ(t))

where predicate Ŵa is defined in Section 5.3 and ensures that an environment of procedure
contracts for extended commands is well defined.

• There is one set of contracts for each tag belonging to the domain of φ̂c:

dom(φ̂a) = dom(φ̂c)

• For each tag, environments φ and φ̂c forms a well defined well-defined program:

∀t ∈ dom(φ̂c).ŴD(body(φ̂c(t)), state(φ̂c(t)), φ(t), ∅)∧{Pre, Post} ( ĈlcJbody(φ̂c(t))K

where predicate ŴD is defined in Section 5.1.4.

We can now combine the definition of extended Hoare Triple (defined in Section 5.2) and re-
lational properties (defined in Section 4.1), and using function ˜̂

ξa, ˜̂
ξb and ˜̂

ξc to give the definition
of extended relational properties.

Definition 6.4. Extended Relational Properties

∀φ ∈ Φ.φ̂ |= β̃1 ⇒ φ̂′′ |= β̃2

where
(i) {t1, ..., tn} = dom(φ),

(ii) φ̂ = {t1 → [Pre→ φ(t1)], ..., tn → [Pre→ φ(tn)]},
(iii) (φ′, φ̂′) =

˜̂
ξc(φ̂c, φ, φ̂, uQ),

(iv) φ̂′′ = {t1 → φ̂′(t1)[Post← φ′(t1)], ..., tn → φ̂′(tn)[Post← φ′(tn)}.

Expression φ̂ |= β̃ states that an environment φ̂ satisfies a relational extended boolean ex-

pression β̃ i.e ˜̂
ξbJβ̃Kφ̂ must be different from⊥ and smt(uQ,

˜̂
ξbJβ̃Kφ̂) returns V , where uQ is the

set of given axioms. Moreover φ̂ |= β̃ holds if an evaluation has not finished:

∃t ∈ dom(φ̂).∃l ∈ dom(φ̂(t)).(φ̂(t))(l) = Ωt,
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i.e., there is a tag for which there is a label for which the associated state is Ωt.
As for the definition of extended Hoare triple, where we consider the environment λmapping

labels to memory states to be initially empty, we enforce in the definition of extended relational
properties the environment φ̂ to be initially empty (condition (ii) of Defintion 6.4). We use
function ˜̂

ξc to evaluates the relational extended execution environment φ̂c (condition (iii) of
Defintion 6.4). We update the relational extended state environment φ̂ with the final state of
relational state environment φ for label Post (condition (iv) of Defintion 6.4).

To denote an extended relational property, we reuse the notation used for relational properties
defined in Section 4.1:

{β̃1}ς1〈t1〉 ∼ ς2〈t2〉{β̃2}.

Example 6.1. If we consider the following relational property:

{at(x1, P re)〈t1〉 = at(x1, P re)〈t2〉}
l1 : x1 := x1 + 1〈t1〉 ∼ l1 : x1 := x1 + 1〈t2〉
{at(x1, Post)〈t1〉 = at(x1, Post)〈t2〉}

and an empty set of assumptions, we can prove the property valid by verifying the formula:

∀φ ∈ Φ2.φ̂ |= at(x, Pre)〈t1〉 = at(x, Pre)〈t2〉 ⇒ φ̂′ |= at(x, Post)〈t1〉 = at(x, Post)〈t2〉
where
(i) {t1, t2} = dom(φ),

(ii) φ̂ = {t1 → {Pre→ φ(t1)}, t2 → {Pre→ φ(t2)}},
(iii) (σt1 , λt1) =

˙̂
ξcJl : x := x+ 1K(∅, ∅, (φ(t1), φ̂(t1))),

(iv) (σt2 , λt2) =
˙̂
ξcJl : x := x+ 1K(∅, ∅, (φ(t2), φ̂(t2))),

(v) φ̂′ = {t1 → λt1 [Post← σt1 ], t2 → λt2 [Post← σt2 ]}.

6.2 Self Composition

We have seen in Section 4.3 that we can use self-composition to prove relational properties
by translating them into standard Hoare Triple. We present in this section how to apply this
approach in the case of the R-WHILE* language.

From rule RECURSION-SELF-COMP we can refine a new rule RECURSIVE-SELF-COMP-E

for proving relational properties using functions V̂Ch and V̂Cp

∀t ∈ dom(φ̂a).∀q ∈ V̂Cp(state(φ̂c(t)), φ̂a(t)).smt(uQ, q) = V

∀q ∈ V̂Ch(ς1; ς2, (
˜̂DtbJβ̃1K,

˜̂DtbJβ̃2K), φ̂a(t1) ∪ φ̂a(t2)).smt(uQ, q) = V

` {β̃1}ς1〈t1〉 ∼ ς2〈t2〉{β̃2}
(RECURSIVE-SELF-COMP-E)

where function ˜̂Dtb (defined in Appendix A.4.1) removes all tags from a relational boolean

expression of ˜̂Eb. The principle of this rule is the same as for rule RECURSION-SELF-COMP;
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all procedure contracts are proven valid using function V̂Cp and smt. The relational property is
proven valid by converting it into a Hoare Triple composed of the flattening of the precondition
with respect to the tags, the sequence of the programs involved in the relational properties, and
the flattening of the postcondition with respect to the tag. We use V̂Ch and smt as for the
verification of a standard Hoare Triple in R-WHILE*.

As already mentioned in Section 4.3, self-composition requires that some properties are
satisfied. We refine here those properties in the context of the R-WHILE* language:

• The memory states for naturals must be disjoint:

∀t1, t2 ∈ dom(φ̂c), φ(t1) ∩ φ(t2) = ∅.

In the previous section, we assumed that for each tag, the associated command, memory
state for natural and memory state for commands are well defined (predicate ŴD). Thus,
the set of variables used in the program (and in the called procedures) is equal to the
domain of the memory state ( predicate ŴD includes predicate Ŵv). We can refine the
property of disjoint memory states for naturals by ensuring the absence of shared locations
between programs and procedures:

∀t1, t2 ∈ dom(φ̂c), t1 6= t2 ⇒ĈvcJbody(φ̂c(t1))K ∪
⋃

y∈dom(state(φ̂c(t1)))

ĈvcJstate(φ̂c(t1))(y)K


∩ĈvcJbody(φ̂c(t2))K ∪
⋃

y∈dom(state(φ̂c(t2)))

ĈvcJstate(φ̂c(t2))(y)K


= ∅.

• The set of called procedure are disjoint

∀t1, t2 ∈ dom(φ̂c), t1 6= t2 ⇒ dom(state(φ̂c(t1))) ∩ dom(state(φ̂c(t2))) = ∅.

This also implies that the set of contracts are disjoint.

• To ensure having no duplicated labels in the resulting self-composed program, we assume
having no duplicated labels between the programs linked by the relational property:

∀t1, t2 ∈ dom(φ̂c), t1 6= t2 ⇒ ÛJbody(φ̂c(t1))K ∩ ÛJbody(φ̂c(t2))K = ∅.

where function Û (defined in Appendix A.2) takes a command and returns all labels used
in the command, or ⊥ if there are duplicated labels. As the program in φ̂c are assumed
well defined, the case of ⊥ has no need to be treated.

Labels don’t have to be renamed in procedures because labels are isolated to the body of
the procedure (according to the semantics of a well-defined program), i.e. we cannot refer
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to labels in the body of a procedure, and we cannot refer to labels outside the body of
a procedure. It is therefore not necessary to guarantee the separation between the labels
used in the different procedures in the context of self-composition.

Example 6.2. We consider the following relational property

{at(x, Pre)〈t1〉 = at(x, Pre)〈t2〉}
l1 : x := x+ 5;
l2 : call(y);
l3 : x := x+ 6

〈t1〉 ∼
l1 : x := x+ 5;
l2 : call(y);
l3 : x := x+ 6

〈t2〉

{at(x, Post)〈t1〉 = at(x, Post)〈t2〉}

A relational extended execution environment φ̂c, where the memory states for commands are
defined, for each tag, by:

state(φ̂c(t1)) = {y → l : x := x+ 1},

state(φ̂c(t2)) = {y → l : x := x+ 1},
and an environment φ̂a defined by:

t1 →

y →
 true,

at(x, Pre) + 1 = at(x, Post),
{x}

 ,

t2 →

y →
 true,

at(x, Pre) + 1 = at(x, Post),
{x}




That is for both tags, the program associated to program name y returns a state where the value
of location x is equal to the value of location x before the procedure call plus 1. Moreover,
the program only assigns location x. It is not hard to see that the procedure in φ̂c satisfies the
contract in φ̂a.

We can note that the programs and procedures in the relational extended execution en-
vironment φ̂c shares locations, program names and labels. Thus, the requirements of Self-
Composition are not fulfilled. In Section 4.3 we have seen that renaming the locations is a
solution to get an associated relational state environment φ with disjoint memory states for each
tag. Moreover, renaming the command names ensures disjoint memory states for commands. In
the same spirit we can simply rename the labels to ensure unique labels between commands.

If we apply those renamings and Self-Composition to the relational property, we get the
following Hoare Triple:

{at(xt1 , P re) = at(xt2 , P re)}

l1_t1 : xt1 := xt1 + 5;
l2_t1 : call(yt1);
l3_t1 : xt1 := xt1 + 6;
l1_t2 : xt2 := xt2 + 5;
l2_t2 : call(yt2);
l3_t2 : xt2 := xt2 + 6

{at(xt1 , Post) = at(xt2 , Post)}
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where all locations, labels and program names have been renamed and the two programs are
composed in sequence.

The renamings are also applied to the memory state for commands in the relational extended
execution environment φ̂c

state(φ̂c(t1)) = {yt1 → lt1 : xt1 := xt1 + 1},

state(φ̂c(t2)) = {yt2 → lt2 : xt2 := xt2 + 1},
and in environment φ̂a

t1 →

yt1 →
 true,

at(xt1 , P re) + 1 = at(xt1 , Post),
{xt1}

 ,

t2 →

yt2 →
 true,

at(xt2 , P re) + 1 = at(xt2 , Post),
{xt2}




To prove the validity of the previous triple we can use function V̂Ch :

V̂Ch(ςs,

(
at(xt1 , P re) = at(xt2 , P re),
at(xt1 , Post) = at(xt2 , Post)

)
, φ̂a(t1) ∪ φ̂a(t2))

In practice, the renaming must only be applied to environment φ̂a. Applying the renaming to the
environment φ̂c is not required as it is not used by function V̂Ch which takes as a parameter the
self-composed programs and an environment of contract, mapping programs names to contracts.
Moreover, only procedures called by the self-composed programs should be subject to renaming,
as the contract of the other procedures are not used by function V̂Ch. The only case were
applying the renaming to φ̂c is required is in the case where procedure calls are inlined.

Assuming that xt1 is mapped to index 1 and xt2 to index 2, we get the following VC:

mPre[1] = mPre[2]∧
ml2_t1

= mPre[1← mPre[1] + 5]∧
ml3_t1

[1] = ml2_t1
[1] + 1 ∧ml3_t1

= ml2_t1
[1← i1]∧

ml1_t2
= ml3_t1

[1← ml3_t1
[1] + 6]∧

ml2_t2
= ml1_t2

[2← ml1_t2
[2] + 5]∧

ml3_t2
[2] = ml2_t2

[2] + 1 ∧ml3_t2
= ml2_t2

[2← i2]∧
mPost = ml3_t2

[2← ml3_t2
[2] + 6]⇒

mPost[1] = mPost[2]

We have in blue the part corresponding to the program associated to tag t1, and in red the
part corresponding to the program associated to tag t2. By using axioms Q-NO-UPDATE and
Q-UPDATE, we get the following valid formula:

mPre[1] = mPre[2]⇒
mPre[1] + 5 + 1 + 6 = mPre[2] + 5 + 1 + 6

Note that we omit some VC’s corresponding to the proof that the preconditions of the pro-
cedure calls hold. Those VC’s are trivial since the preconditions correspond to true.
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For relational properties linking single bodies of procedures whose contracts have been ver-
ified, i.e relational properties of the form:

{β̃1}... ∼ state(φ̂c(ti))(y)〈ti〉 ∼ ...{β̃2}

where the contract φ̂a(ti)(y) is valid, it is not required to prove the formulas corresponding
to the fact that the precondition of called procedures hold, the invariants (when there are loops
inside the bodies) hold, assertions hold in the case of the linked procedure body state(φ̂c(ti))(y).
Those formulas have already be verified during the verification of the contracts φ̂a(ti)(y). This
became clear when combining the previous relational property and the contract of the linked
procedure (φ̂a(ti)(y) = (βpre, βpost, _)) into an equivalent relational property:

{β̃1 ∧ βpre〈ti〉}... ∼ φ̂c(ti)(y)〈ti〉 ∼ ...{β̃2 ∧ βpost〈ti〉}

We know that for precondition βpre, all preconditions of called procedures, loop invariants and
assertions in φ̂c(ti)(y) hold. Moreover, βpre can be assumed in the relational precondition, as
during the verification of procedure contract for tag ti it is verified to hold before each call to y.

Unfortunately, the current formalization of function V̂Ch is not suitable for filtering formu-
las. This optimization will therefore not be highlighted in the following and we require that all
generated formulas must be proven valid. This implies that the relational precondition implies
the precondition of linked single procedures.

6.3 Axiomatisation of Relational Properties

In the previous Section 6.2 we have shown how to use Self-Composition to prove relational
properties in the context of the R-WHILE* language using standard contracts. However, as
already mentioned for Section 4.3, using the contract of procedures in the proof of relational
properties is not as powerful as using relational properties.

Example 6.3. We consider the following relational property using the syntax of Section 4.1

{x〈t1〉 = x〈t2〉}
x := x+ 5;
call(y);
x := x+ 6

〈t1〉 ∼
x := x+ 5;
call(y);
x := x+ 6

〈t2〉{x〈t1〉 = x〈t2〉}

and a relational extended execution environment φc, where the memory states for command are
defined, for each tag, by:

state(φc(t1)) = {y → x := x+ 1},

state(φc(t2)) = {y → x := x+ 1}.
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It would be convenient to use a relational property stating that for two calls to procedure y,
if the value in location x is the same in both tags before execution, then the value in location x
is the same in both tags after execution.

{x〈t1〉 = x〈t2〉}state(φc(t1)(y))〈t1〉 ∼ state(φc(t2)(y))〈t2〉{x〈t1〉 = x〈t2〉}

By contrast, finding a standard contract for the call of y such that the property can be proven
appears non-trivial, even if we have shown in the previous section that with more expressive
boolean expressions it is possible.

Therefore, we propose in this section an approach to prove relational properties using (other)
relational properties, in the same manner as we use contracts of procedure for Hoare Triples.
First, we propose in Section 6.3.1 some rules, extending the proof system proposed in Relational
Hoare Logic shown in Section 4.2, as an intuition. We then propose in Section 6.3.2 an encoding
of relational properties in First-Order Language MFOL such that they can be used in the context
of Self-Composition in the R-WHILE* language.

6.3.1 Using Relational Properties in Relational Hoare Logic

First, we define the environment of relational properties Ξ̃ (equivalent to Ξ for Hoare Triple):

Ξ̃ = P(Y× T) ⇀ Ẽb × Ẽb,

and use metavariables ξ̃, ξ̃0, ξ̃1, ... to range over Ξ̃.
For a given set of pairs, composed of a program name and a tag, environment Ξ̃ associates a

pair of relational boolean expressions, building a relational contract. The meaning of a relational
contract is similar to that of a procedure contract; for a given set of pairs u, composed of program
names and tags, if φ |= fst(ξ̃(u)) is verified, then for each pair (y, t) ∈ u, calling the procedure
y on the state associated to the tag t in φ results in a relational state environment φ′, such that
φ′ |= snd(ξ̃(u)) is verified.

We assume the relational boolean expressions composing the relational contracts satisfy the
same properties as those presented in Section 4.1 for relational property.

Example 6.4. If we consider an environment ξ̃ defined by,

{{(y, t1), (y, t2)} → (x〈t1〉 = x〈t2〉, x〈t1〉 = x〈t2〉)} ,

the equivalent set of relational properties would be
{x〈t1〉 = x〈t2〉}

state(φc(t1))(y)〈t1〉 ∼ state(φc(t2))(y)〈t2〉
{x〈t1〉 = x〈t2〉}
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Using relational contracts:

Using environment Ξ̃, we can extend rules from the proof system for Hoare Triple, shown in
Section 3.3, to use relational properties in Relational Hoare Logic. The approach is the same as
in Section 4.2 to build rules for Relational Hoare Logic.

First, we can define rule R-RCALL, an extension of rule CALL for using relational contracts:

ξ̃((y1, t1), (y2, t2)) = (b̃1, b̃2)

ξ̃ ` {b̃1}call(y1)〈t1〉 ∼ call(y2)〈t2〉{b̃2} (R-RCALL)

The rule means that if we have in the assumption the relational property about the two procedure
calls y1 and y2, the property is valid.

We also define rule R-RRECURSION an extension of rule RECURSION

ξ̃ ` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2}
∀a = {(y1, t1), (y2, t2)} ∈ dom(ξ̃).

ξ̃ ` {fst(ξ̃(a))}state(φc(t1))(y1) ∼ state(φc(t2))(y2){snd(ξ̃(a))}
` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2} (R-RRECURSION)

meaning that ` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2} is valid, if for a set of assumptions (relational procedure
contracts) ξ̃, there is a derivation such that ξ̃ ` {b̃1}c1〈t1〉 ∼ c2〈t2〉{b̃2} and each relational
procedure contract in ξ̃ is a conclusion of Relational Hoare Logic, extended with rule R-RCALL.

Example 6.5. Using rules R-RCALL and R-RRECURSION Example 6.3 can be proven using
relational properties.

` {x〈t1〉 = x〈t2〉}
x := x+ 5;
call(y);
x := x+ 6

〈t1〉 ∼
x := x+ 5;
call(y);
x := x+ 6

〈t2〉{x〈t1〉 = x〈t2〉}

First, we use rule R-RRECURSION to get the following sub-proofs:

ξ̃ ` {x〈t1〉 = x〈t2〉}
x := x+ 5;
call(y);
x := x+ 6

〈t1〉 ∼
x := x+ 5;
call(y);
x := x+ 6

〈t2〉{x〈t1〉 = x〈t2〉}, (sub-proof 1)

and

ξ̃ ` {x〈t1〉 = x〈t2〉}state(φc(t1))(y)〈t1〉 ∼ state(φc(t2))(y)〈t2〉{x〈t1〉 = x〈t2〉},
(sub-proof 2)

and ξ̃ is chosen as follows:

{{(y, t1), (y, t2)} → (x〈t1〉 = x〈t2〉, x〈t1〉 = x〈t2〉)} .

Proof of sub-proof 1: Using rule for sequence R-SEQUENCE we get the following sub-proofs:

ξ̃ ` {x〈t1〉 = x〈t2〉}x := x+ 5〈t1〉 ∼ x := x+ 5〈t2〉{x〈t1〉 = x〈t2〉} (sub-proof 1.1)
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ξ̃ ` {x〈t1〉 = x〈t2〉}call(y)〈t1〉 ∼ call(y)〈t2〉{x〈t1〉 = x〈t2〉} (sub-proof 1.2)

ξ̃ ` {x〈t1〉 = x〈t2〉}x := x+ 6〈t1〉 ∼ x := x+ 6〈t2〉{x〈t1〉 = x〈t2〉} (sub-proof 1.3)

Using rule R-CONSEQUENCE and axiom R-ASSIGN, we prove sub-proof 1.1 and sub-proof 1.3.
Using rule R-RCALL, we prove sub-proof 1.2.

Proof of sub-proof 2: Using rule R-CONSEQUENCE and axiom R-ASSIGN.

Combining relational contracts:

Until now we have always considered relational properties linking 2 programs. If we now con-
sider the case where more than two properties are linked, it may be interesting to combine
properties with less or the same number of programs. Therefore, we define rule R-RCOMBINE,
an extension of rule R-COMBINE.

ξ̃ ` {b̃11}call(yi1)〈ti1〉 ∼ ... ∼ call(yj1)〈tj1〉{b̃21}
... ξ̃ ` {b̃1k}call(yik)〈tik〉 ∼ ... ∼ call(yjk)〈tjk〉{b̃2k}
{(yi1 , ti1), ...., (yj1 , tj1)} ⊆ {(y1, t1), ...., (yn, tn)}

... {(yik , tik), ...., (yjk , tj1)} ⊆ {(y1, t1), ...., (yn, tn)}
C̃tbJb11K ⊆ {ti1 , ...., tj1} C̃tbJb21K ⊆ {ti1 , ...., tj1}
... C̃tbJb1kK ⊆ {tik , ...., tjk} C̃tbJb2kK ⊆ {tik , ...., tjk}

ξ̃ ` {b̃11 ∧ ... ∧ b̃1k}call(y1)〈t1〉 ∼ ... ∼ call(yn)〈tn〉{b̃21 ∧ ... ∧ b̃2k} (R-RCOMBINE)

The rule means that we can prove a relational property linking n procedure calls by proving k
relational properties, each linking a set of procedure calls that is a subset of the set composed of
the n initial procedure calls. Note that this rule can be generalized to any command.

Example 6.6. We consider the following relational property linking three procedure calls

ξ̃ `
{
x〈t1〉 = x〈t2〉∧
x〈t2〉 = x〈t3〉

}
call(y)〈t1〉 ∼ call(y)〈t2〉 ∼ call(y)〈t3〉

{
x〈t1〉 = x〈t2〉∧
x〈t2〉 = x〈t3〉

}
and an environment ξ̃ defined by{

{(y, t1), (y, t2)} → (x〈t1〉 = x〈t2〉, x〈t1〉 = x〈t2〉),
{(y, t2), (y, t3)} → (x〈t2〉 = x〈t3〉, x〈t2〉 = x〈t3〉)

}
Using rule R-RCOMBINE we get the following sub-proofs:

ξ̃ ` {x〈t1〉 = x〈t2〉}call(y)〈t1〉 ∼ call(y)〈t2〉{x〈t1〉 = x〈t2〉},

and
ξ̃ ` {x〈t2〉 = x〈t3〉}call(y)〈t2〉 ∼ call(y)〈t3〉{x〈t2〉 = x〈t3〉}.

Using rule R-RCALL we can prove the sub-proofs.
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Using relational contracts from different tags:

Finally, when the relational execution environment φc shares a set of equal memory states for
programs:

∃t1, t2 ∈ dom(φ̂c).state(φ̂c(t1)) = state(φ̂c(t2)),

we can define rule R-TAG-L allowing some flexibility in the way we use tags:

ξ̃ ` {R̃tbJb̃1K(t1, tk)}call(y1)〈tk〉 ∼ call(y2)〈t2〉{R̃tbJb̃2K(t1, tk)}
tk 6= t2 state(φc(tk)) = state(φc(t1))

ξ̃ ` {b̃1}call(y1)〈t1〉 ∼ call(y2)〈t2〉{b̃2} (R-TAG-L)

The rule mean that for two tags (t1 and tk), if their environment for command are equal, proving
a relational property linking a procedure for one tag (t1) is equivalent to prove the relational
property for the same procedure for the other tag (tk). Notice that the symmetric version (i.e.
renaming t2 as tk) of the rules (called R-TAG-R) is also true.

Example 6.7. We consider the following relational property linking three procedure calls

ξ̃ `
{
x〈t1〉 = x〈t2〉∧
x〈t2〉 = x〈t3〉

}
call(y)〈t1〉 ∼ call(y)〈t2〉 ∼ call(y)〈t3〉

{
x〈t1〉 = x〈t2〉∧
x〈t2〉 = x〈t3〉

}
and an environment ξ̃ defined by{

{(y, t1), (y, t2)} → (x〈t1〉 = x〈t2〉, x〈t1〉 = x〈t2〉))
}

Using rule R-RCOMBINE we get the following sub-proofs:

ξ̃ ` {x〈t1〉 = x〈t2〉}call(y)〈t1〉 ∼ call(y)〈t2〉{x〈t1〉 = x〈t2〉},

and
ξ̃ ` {x〈t2〉 = x〈t3〉}call(y)〈t2〉 ∼ call(y)〈t3〉{x〈t2〉 = x〈t3〉}.

If we have:
state(φ̂c(t1)) = state(φ̂c(t2)) = state(φ̂c(t3)),

using rule R-TAG-L and R-TAG-R on the second sub-proof, we get:

ξ̃ ` {x〈t1〉 = x〈t2〉}call(y)〈t1〉 ∼ call(y)〈t2〉{x〈t1〉 = x〈t2〉},

ξ̃ ` {x〈t1〉 = x〈t2〉}call(y)〈t1〉 ∼ call(y)〈t2〉{x〈t1〉 = x〈t2〉}.

Using rule R-RCALL we can prove the sub-proofs using only one relational contract. Without
rule R-TAG-L and R-TAG-R, we would need two relational contracts, like in Example 6.6.

With rules R-TAG-L, R-RCOMBINE, R-RRECURSION and R-RCALL it becomes possible to
use relational contracts as part of the verification of relational property with Relational Hoare
Logic. In the following section we show how to get the same results in case of the R-WHILE*
language and Self-Composition.
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6.3.2 Using Relational Properties with Self-Composition

First, we define the environment of relational properties (equivalent to Ξ̂ for Hoare Triples):

˜̂
Ξ = P(Y× T) ⇀

˜̂Eb ×
˜̂Eb

As previously, for a given set of pairs, composed of a program name and a tag, environment ˜̂
Ξ

associate a pair of relational extended boolean expressions, corresponding to a relational con-
tract. The relational extended boolean expressions composing the relational contract satisfy the
same properties as those presented in Section 6.1, with the exception that the first relational
boolean expression only uses label Pre, and the second relational boolean expression only uses
label Pre and Post. We use metavariables ˜̂

ξ,
˜̂
ξ0,

˜̂
ξ1, ... to range over ˜̂

Ξ.

Using relational properties in the context of verification condition generation could be per-
formed in a similar way as for standard contracts i.e. we replace a set of procedure calls by
the corresponding relational postcondition and prove that the relational precondition holds.
However, such an approach can be hard to apply, since finding the right combination (rule R-
RCOMBINE) of procedure calls that must be replaced by the corresponding property is not
straightforward. Moreover, the corresponding precondition must hold.

Therefore, we use an alternative method that is commonly used in modular deductive veri-
fication. The solution consists in using predicates as connectors between an axiomatization and
the program, like in the examples shown on Figure 1.1 and Section 2.2.2. It then is left to the
function smt to choose the right combination and instantiation of the right formulas.

Similar work can be found in [LM08] for the axiomatization of methods with equivalent
results in the context of Spec# [BLS05], in [HKLR13] for axiomatization of equivalent programs
in Boogie, and in [DM06] for the axiomatization of pure methods in the Java Modeling Language
[LRL+00].

Axiomatization

The first step of the approach consists in translating the relational property into a formula of Q.
We propose to model the locations by integer variables and procedure calls by predicates. The
predicate takes as a parameter all the variables corresponding to the locations that belong to the
tag of the corresponding procedure call.

Example 6.8. If we consider a relational contract ˜̂
ξ defined by{

{(y, t1), (y, t2)} →
(

at(x, Pre)〈t1〉 = at(x, Pre)〈t2〉,
at(x, Post)〈t1〉 = at(x, Post)〈t2〉

)}
we can translate the contract for {(y, t1), (y, t2)} into following formula:

∀vt1Pre, vt1Post, vt2Pre, vt2Post, vtrace1id, vt2id : nat,

(py_t1(vt1Pre, vt1Post) ∧ py_t2(vt2Pre, vt2Post) ∧ vt1Pre = vt2Pre)⇒
vt1Post = vt2Post
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Variables vt1Pre and vt1Post represent location x for tag t1 respectively at labels Pre and Post.
Variables vt2Pre and vt2Post represent location x for tag t2 respectively at labels Pre and Post.
Predicates py_t1 and py_t2 represent respectively a procedure call of y for tags t1 and t2.

If for an environment φ̂c, all memory states for programs ψ̂ are the same (rule R-TAG-L and
R-TAG-R):

∀t1, t2 ∈ dom(φ̂c).state(φ̂c(t1)) = state(φ̂c(t2))

we can refine the previous translation by using only one predicate per program name

∀vt1Pre, vt1Post, vt2Pre, vt2Post, vt1id, vt2id : nat,
(py(vt1Pre, vt1Post, vt1id) ∧ py(vt2Pre, vt2Post, vt2id)∧

vt1id 6= vt2id∧
vt1Pre = vt2Pre)⇒ vt1Post = vt2Post

(AXIOM-RELA)

To model the fact that we have distinct procedure calls, each shared predicate takes as parameter
an additional identifier, which is instantiated by distinct variables (hence the vt1id 6= vt2id in
AXIOM-RELA) for each distinct call in the relational property.

In general, only one set of procedures is defined in a complete program. The case where
different sets of procedures are defined can be transformed into a single set of procedure by
performing a union of the memory states for commands. Therefore, we assume in the following
that for a relational extended execution environment φ̂c, all memory states for commands are the
same for all defined tags:

∀t1, t2 ∈ dom(φ̂c).state(φ̂c(t1)) = state(φ̂c(t2)) (HYP-PRO-STATE)

Connection between axiomatization and the procedures

The second step consists in using the generated formula AXIOM-RELA as an axiom. Since each
procedure call is modeled by a predicate, we can use those predicates to link the formula to the
procedure calls by assuming it after the call. Therefore, we define a new command assume(β),
adding to the set of axioms an extended boolean expression β. The semantics is as follows.

Definition 6.5. Evaluation function

ξ̂c : Ĉ→ ((N×Ψ× P(Q)× (ΣΩ × Λ))→ (ΣΩ × Λ× P(Q)))

for extended commands ξ̂c (case of command assume), is defined by:

ξ̂cJl : assume(β)K(n, (ψ, uQ))σλ ={
(Ω⊥, ∅, ∅) if ξ̂bJβK(λ[l← σ]) = ⊥
(σ, λ[l← σ], {ξ̂bJβK(λ[l← σ])} ∪ uQ) otherwise

The definition is similar to the case of command assert. The difference is that the boolean
expression is not checked valid but the associated formula is added to the set of axioms uQ,
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if different from ⊥. When the translation of the boolean expression returns ⊥, the evaluation
function return Ω⊥ since ⊥ is not part of the syntax of MFOL. Notice that the signature of
function ξ̂c has changed; the set of axiom uQ can be changed by the commands and must be

returned. This modification implies also a modification in the definition of ˜̂
ξc, which is similar.

Example 6.9. Using command assume, we can connect the program to the axiomatized rela-
tional property AXIOM-RELA as follows:

{at(x, Pre)〈t1〉 = at(x, Pre)〈t2〉}
l1 : x := x+ 5;
l2 : call(y);
ln : assume(py(at(x, l2), at(x, ln), 1));
l3 : x := x+ 6

〈t1〉 ∼

l1 : x := x+ 5;
l2 : call(y);
ln : assume(py(at(x, l2), at(x, ln), 2));
l3 : x := x+ 6

〈t2〉

{at(x, Post)〈t1〉 = at(x, Post)〈t2〉}

Note that the two occurrences of predicate py take two different identifiers.

As for the evaluation function ξ̂c for command assert, the definition of function T̂c for com-
mand assume is similar to the one for command assert. The difference consists in the absence
of a verification condition for verifying that the boolean expression holds.

Definition 6.6. Function T̂c : Ĉ → (Ξ × V → V ), translating a command Ĉ (case of
command assume) into an formula of Q, is defined by:

T̂cJl : assume(β)K(ξ, (q, uQ,m, (θ, δ))) = (q ∧ q′, uQ,m, s)
where (q′, s) = T̂bJβK(θ[l← m], δ)

Example 6.10. If we apply Self-Composition as shown in Section 6.2 on the relational property
of Example 6.9, we get the following Hoare Triple:

{at(xt1 , P re) = at(xt2 , P re)}
l1_t1 : xt1 := xt1 + 5;
l2_t1 : call(yt1);
ln_t1 : assume(py(at(xt1 , l2_t1), at(xt1 , ln_t1), 1));
l3_t1 : xt1 := xt1 + 6;
l1_t2 : xt2 := xt2 + 5;
l2_t2 : call(yt2);
ln_t2 : assume(py(at(xt2 , l2_t2), at(xt2 , ln_t2), 2));
l3_t2 : xt2 := xt2 + 6

{at(xt1 , Post) = at(xt2 , Post)}
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Using function V̂Ch we get the following verification condition:

mPre[1] = mPre[2]∧
ml2_t1

= mPre[1← mPre[1] + 5]∧
py(ml2_t1

[1],mln_t1
[1], 1) ∧mln_t1

= ml2_t1
[1← i1]∧

ml1_t2
= mln_t1

[1← mln_t1
[1] + 6]∧

ml2_t2
= ml1_t2

[2← ml1_t2
[2] + 5]∧

py(ml2_t2
[2],mln_t2

[2], 2) ∧mln_t2
= ml2_t2

[2← i2]∧
mPost = mln_t2

[2← mln_t2
[2] + 6]⇒

mPost[1] = mPost[2]

Notice that we have assumed that the contract corresponding to program names yt1 and yt2 is
composed only of the frame rule. Thus, in addition to the predicates, we have formula mln_t1

=
ml2_t1

[1← i1] and mln_t2
= ml2_t2

[2← i2] connecting the array modeling the states before and
after the procedure call.

By using axiom Q-NO-UPDATE and Q-UPDATE and removing some statements, we get the
following formula:

mPre[1] = mPre[2]∧
py(mPre[1] + 5,ml3_t1

[1], 1)

py(mPre[2] + 5,ml3_t2
[2], 2)⇒

ml3_t1
[1] + 6 = ml3_t2

[2] + 6

By instantiating axiom AXIOM-RELA as follows

(py(mPre[1] + 5,ml3_t1
[1], 1) ∧ py(mPre[2] + 5,ml3_t2

[2], 2)∧
1 6= 2 ∧mPre[1] + 5 = mPre[2] + 5)⇒ ml3_t1

[1] = ml3_t2
[2]

we can prove validity of the formula.

We can define the following rule for resuming the use of a set of relational properties defined
in an environment ˜̂

ξ in the case of the proof of a relational property:

(uQr, a) = Axio(
˜̂
ξ)

∀q ∈ V̂Ch(Use(ς1; ς2, a), (
˜̂DtbJβ̃1K,

˜̂DtbJβ̃2K), φ̂a(t1) ∪ φ̂a(t2)).smt(uQ ∪ uQr, q) = V

` {β̃1}ς1〈t1〉 ∼ ς2〈t2〉{β̃2}

where function Axio takes an environment of relational properies ˜̂
ξ and returns the set of equiva-

lent axiomatized properties uQr (added to the set of axioms uQ of function smt), and a mapping
a : Y ⇀ P(P) from command name to a set of predicates (the correspondence between proce-
dures and the set of predicates used in the axiomatizations). Using this mapping, function Use
adds assumptions in the Self-Composed programs such that the set of axiomatizations uQr can
be used by function smt to prove the verification conditions. Notice that the rule is not complete
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for simplicity; the proofs for the relational properties defined in ˜̂
ξ and the standard contract for

each tag defined in the extended execution environment φ̂a are absent.
Finally, we can notice that a similar rule can be defined for standard Hoare Triples such that

relational properties can be used.

(uQr, a) = Axio(
˜̂
ξ) ∀q ∈ V̂Ch(Use(ς, a), β1, β2, ξ̂).smt(uQ ∪ uQr, q) = V

` {β1}ς{β2}

In this chapter, we have presented our solution for using relational properties as a contract
on multiple procedures in the context of the R-WHILE* language. In the following Chapter 7,
we adapt this approach to the C language, the ACSL specification language and the FRAMA-C
platform.
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Chapter 7

Relational Properties for C programs

This chapter focuses on the verification of relational properties in the context of the C program-
ming language, the specification language ACSL, the FRAMA-C platform and the WP plugin
presented in Chapter 2.

As the specification language ACSL has no support for relational contracts, we have first
extended the specification language with a new clause and new constructs. Then, since the
WP plugin only supports simple function contracts, we have adapted the approach proposed
in Sections 6.2 and 6.3 to the C programming language and ACSL, in a FRAMA-C plugin 1

called RPP (Relational Property Prover). RPP translates the relational contracts into C code
and standard ACSL annotations analysable by WP.

This chapter is organized as follows. Section 7.1 presents the extensions we added to the
specification language ACSL to express relational properties. In this section, we assume the
reader is familiar with the concepts and syntax of the ACSL specification language introduced
in Section 2.1. Section 7.2 presents the transformation required to make the ACSL extension
suitable for the verification condition generator WP, and performed by the RPP plugin. Finally,
Section 7.3 presents some applications of RPP.

7.1 Specification language

As mentioned earlier, the ACSL specification language has no support for expressing relational
contracts. Therefore, we extended the language and introduce relational properties by external
relational annotations. The grammar is introduced on Figure 7.1 for predicates and Figure 7.2
for terms.

As the supported subset of C includes functions with parameters, we first present in Sec-
tion 7.1.1 the grammar on a subset of the C syntax, equivalent to the R-WHILE* language, i.e.
functions without parameters and return value. Then, in Section 7.1.2 we present the extension
in case of functions with parameters

1https://frama-c.com/download/frama-c-plugin-development-guide.pdf
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call-id ::= id

funct-param ::= relational-call-terms+

funct-name ::= poly-id

funct-call ::= \call( funct-name , funct-param , call-id )

call-parameter ::= funct-call+

call-set ::= \callset( call-parameter)

relational-pred ::= \true | \false

| relational-terms == relational-terms
| relational-terms != relational-terms
| relational-terms <= relational-terms
| relational-terms >= relational-terms
| relational-terms > relational-terms
| relational-terms < relational-terms
| relational-pred && relational-pred
| relational-pred || relational-pred
| relational-pred ==> relational-pred
| ! relational-pred
| \forall binders ; relational-pred
| \exists binders ; relational-pred

external-relational-annot ::= /*@ relational relational-clause ; */

relational-clause ::= \forall binders ; call-set ==> relational-pred
| call-set ==> relational-pred
| relational-pred

Figure 7.1 – Grammar for predicates in relational clauses
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literal ::= \true | \false | int | float

relational-label ::= Post_ call-id
| Pre_ call-id

bin-op ::= + | - | * | /

result-reference ::= \callresult( call-id )

pure-function-param ::= relational-call-terms+

pure-funct-name ::= poly-id

pure-funct-call ::= \callpure( pure-funct-name , pure-funct-param)

relational-call-terms ::= literal
| pure-funct-call
| relational-call-terms bin-op relational-call-terms

relational-terms ::= literal
| relational-terms bin-op relational-terms
| result-reference
| \at( poly-id , relational-label )
| pure-funct-call

Figure 7.2 – Grammar for terms in relational clauses

7.1.1 From R-WHILE* to C

We now show on Figure 7.3 an example of a relational property as defined in the previous
section, in order to introduce the various constructions of the grammar.

1 int x;
2

3 /*@ assigns y \from y;*/
4 void h();
5

6 /*@ relational R1:
7 \callset(\call(h,id1),\call(h,id2)) ==>
8 \at(x,Pre_id1) < \at(x,Pre_id2) ==> \at(x,Post_id1) < \at(x,Post_id2);
9 */

Figure 7.3 – Annotated C function with relational annotations

Specification of relational properties in the case of a subset of C, equivalent to R-WHILE*,
is similar to the definition of relational properties shown in Section 6.1. An external relational
annotation is composed of two parts. A set of calls call-set defining the related function calls,
and the relational property itself, given as an ACSL predicate in the relational-pred part. Note
that the relational annotation is added after the function definition to ensure that this function is
declared.

In the property R1 of Figure 7.3, two function calls to h are explicitly specified in the \callset
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construct, using construct \call. Since we might refer to memory locations in either the pre- or
the post-state of any call implied in the relational property, we need to be able to make explicit
references to these states, and not only to the state of a single call. Therefore, each call has its
own identifier call-id, equivalent to the tag in T we have seen in the previous sections. In the
case of Figure 7.3, we have identifiers id1 and id2 associated to each call. Each such call-id
gives rise to two logic labels. Namely, Pre_call-id refers to the pre-state of the corresponding
call, and Post_call-id to its post-state. These labels can in particular be used in the ACSL term
\at(e,L) that indicates that the term e must be evaluated in the context of the program state
linked to logic label L, as is the case in our example to indicate that the value of global variable
x is evaluated in four different states:

• Pre_id1, the state before the execution of function h with tag id1

• Post_id1, the state after the execution of function h with tag id1

• Pre_id2, the state before the execution of function h with tag id2

• Post_id2, the state after the execution of function h with tag id2

7.1.2 Functions with Parameters

In case of relational properties linking function with parameters and returned values, a relational
clause is composed of three parts. An example is shown on Figure 7.4.

1 int y;
2

3 /*@ assigns \result \from x,y;*/
4 int f(int x);
5

6 /*@ relational R1:
7 \forall int x1,x2;
8 \callset(\call(f,x1,id1),\call(f,x2,id2)) ==>
9 \at(y,Pre_id1) < \at(y,Pre_id2) ==>

10 x1 < x2 ==> \callresult(id1) < \callresult(id2);
11 */

Figure 7.4 – Annotated C function with parameter and relational annotations

In addition to the two parts previously presented, we also declare a set of universally quan-
tified variables, that will be used to express the arguments of the calls that are involved in the
clause. Moreover, a new construct \callresult, that takes a call-id as parameter can be used to
refer to the value returned by the corresponding call defined in call-set.

In the case of a pure function, i.e. a function only "assigning" the return value and whose
return value only depends on the parameters, it is possible to use the \callpure contructions to
denote the value returned by a pure function. This allows specifying relational properties over
pure functions without the overhead required for handling side-effects. Nested \callpure are
allowed. To ensure that a function has no side effects, an assigns \result \from param clause
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must be used (Section 2.1), where param corresponds to a subset of the set of parameters of the
function. An example is shown on Figure 7.5.

1 /*@ assigns \result \from x;*/
2 int f(int x);
3

4 /*@ relational R1:
5 \forall int x1,x2; x1 < x2 ==> \callpure(f,x1) < \callpure(f,x2);
6 */

Figure 7.5 – Annotated pure C function with relational annotations

A similar specification approach exists for defining relational properties on Java pure meth-
ods [DM06] in the JML specification language.

7.2 Code Transformation

As for the presentation of the specification language, we divide the presentation of the code
transformation. First, we present the transformation on a subset of the C syntax, equivalent to
the R-WHILE* language. Then, we present the transformation on function with parameters and
return value. Finally, we show the transformation in case of pointers.

7.2.1 From R-WHILE* to C

As said before in Section 7.1.1, the new syntax for relational properties enables us to speak
about the value of global variables at various states of the execution, thanks to the logic labels
bound to each call involved in the \callset of the property. This is for instance the case in the
relational property of Figure 7.6, where we give a body to the function h of Figure 7.3. The
property indicates that h is monotonic with respect to global variable y, in the sense that if a first
call to h is done in a state Pre_id1 where the value of y is strictly less than in the pre-state Pre_id2

of a second call, this will also be the case in the respective post-states Post_id1 and Post_id2.

1 int y;
2

3 /*@ assigns y \from y;*/
4 void h(){
5 int a = 10;
6 y = y + a;
7 return;
8 }
9 /*@ relational R1:

10 \callset(\call(h,id1), \call(h,id2)) ==>
11 \at(y,Pre_id1) < \at(y,Pre_id2) ==> \at(y,Post_id1) < \at(y,Post_id2);
12 */

Figure 7.6 – Relational property on a function with side-effect
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However, this new syntax is not supported by the WP plugin. Thus, we apply the self-
composition transformation presented in Section 6.2 to property R1 over function h to get the
code shown on Figure 7.7.

1 int y_id1;
2 int y_id2;
3

4 void relational_wrapper_1(void){
5 int a_1 = 10;
6 y_id1 = y_id1 + a_1;
7 int a_2 = 10;
8 y_id2 = y_id2 + a_2;
9 /*@ assert Rpp:

10 \at(y_id1,Pre) < \at(y_id2,Pre) ==> \at(y_id1,Here) < \at(y_id2,Here);
11 */
12 return;
13 }

Figure 7.7 – Self-Composition on a function with side-effect

To fully perform the self-composition transformation, we have to generate a new function,
commonly called wrapper function. The wrapper function inlines the calls occurring in the
relational property under analysis, with a suitable renaming of local and global variables to
avoid interferences between the calls, as each function call must operate on its own memory
state, separated from the other calls in order for self-composition to work. Notice the creation
of global variables as needed to let each part of the wrapper use its own set of copies (lines 1–2
in Figure 7.7).

However, to avoid useless creation of global variables (renaming variables that are not
used by the function), we require that each function involved in a relational property has been
equipped with a proper set of ACSL assigns clauses, including \from components. This con-
straint let us determine the parts of the global state that are accessed (either for writing or for
reading) by the functions under analysis and that must be subject to duplication. In case of func-
tion h, only global variable y is read and written by the function. Thus, only variable y must be
duplicated.

Then, in the spirit of calculational proofs [LP13], we state an assertion equivalent to the
relational property (lines 7–8 in Figure 7.7). The proof of such an assertion is possible with the
deductive verification tool WP.

1 /*@ axiomatic Relational_axiom_1 {
2 predicate h_acsl(int y_pre, int y_post, int id);
3

4 lemma Relational_lemma_1:
5 \forall int y_id2_pre, y_id2_post, y_id1_pre, y_id1_post, id1, id2;
6 h_acsl(y_id2_pre, y_id2_post, id2) ==> h_acsl(y_id1_pre, y_id1_post, id1)
7 ==> id1 != id2 ==> y_id1_pre < y_id2_pre ==> y_id1_post < y_id2_post;
8 }*/

Figure 7.8 – Axiomatisation of a relational property on a function with side-effect
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To be able to use the property, we apply the axiomatization presented in Section 6.3 to
property R1 over function h to obtain the code shown on Figure 7.8.

We have to generate a new global annotation. This ACSL axiomatic definition introduces a
logical reformulation of the relational property as a lemma over otherwise unspecified predicates
(h_acsl in the example) as presented in Section 6.3. We declare a predicate that takes as param-
eters the relevant parts of the program states that are involved in the property. In the example,
this is shown on lines 5–7 in Figure 7.8, where we have four quantified variables represent-
ing the value of global variable y before and after both calls involved in the relational property.
Moreover, each predicate takes an integer parameter modeling the identifier that must be unique.

1 int y;
2

3 /*@ assigns y \from y;*/
4 void p(){
5 h();
6 return;
7 }
8

9 /*@ relational R2:
10 \callset(\call(p,id1), \call(p,id2)) ==>
11 \at(y,Pre_id1) < \at(y,Pre_id2) ==> \at(y,Post_id1) < \at(y,Post_id2);
12 */

Figure 7.9 – Relational property on a function calling a function with side-effect

Using this reformulation, a relational property linking a function calling function h can use
property R1. For example, if we consider function p, shown on Figure 7.9, calling function h. We
can prove relational property R2, similar to property R1.

1 int y_id1; int y_id2;
2

3 /*@ assigns y_id1 \from y_id1;*/
4 void h_id1();
5

6 /*@ assigns y_id2 \from y_id2;*/
7 void h_id2();
8

9 void relational_wrapper_2(void){
10 l1:h_id1();
11 /*@ assert h_acsl(\at(y_id1,l1),\at(y_id1,Here),1);
12 */
13 l2:h_id2();
14 /*@ assert h_acsl(\at(y_id1,l2),\at(y_id1,Here),2);
15 */
16 /*@ assert Rpp:
17 \at(y_id1,Pre) < \at(y_id2,Pre) ==> \at(y_id1,Here) < \at(y_id2,Here);
18 */
19 return;
20 }

Figure 7.10 – Self-Composition on a function calling a function with side-effect

Applying the self-composition transformation presented in Section 6.2 to property R2 over
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function p gives the code shown on Figure 7.10. As for property R1, the wrapper function in-
lines the calls occurring in the relational property under analysis, and applies some renaming.
Moreover, the function calls are also renamed. Notice the creation of function prototypes with
the associated contract, on line 1–2 of Figure 7.10.

In addition, new assertions are generated after the functions calls, on line 11 and 14 of Fig-
ure 7.10. As for the assume construct used in Section 6.3, they specify that there is an exact
correspondence between the original C function and its newly generated logical ACSL counter-
part so that the axiomatics of Figure 7.8 can be used. However, the ACSL syntax contains no
construct for defining assumptions, therefore we have to use assertions that are to be considered
as axioms and are not proven. For instance, assertion on line 11 of Figure 7.10, states that predi-
cate h_acsl holds with two arguments representing the values of y before and after the execution
of h.

7.2.2 Functions with Parameters

In Section 7.1.2 we introduced a new construct \callpure(f,args), denoting the value returned
by the call to a pure function f with arguments <args>. In Figure 7.11, property R1 at lines 9–10
expresses the maximum (function max) of a pair using absolute values (function abs).

1 /*@ requires x > INT_MIN;
2 assigns \result \from x;
3 */
4 int abs (int x){
5 return (x >= 0) ? x : (-x);
6 }
7

8 /*@ assigns \result \from x,y;*/
9 int max(int x,int y){

10 return (x >= y) ? x : y;
11 }
12

13 /*@ relational R1:
14 \forall int x,y; INT_MIN < x-y <= INT_MAX ==>
15 \callpure(max,x,y) == (x+y+\callpure(abs,x - y))/2;
16 */

Figure 7.11 – Relational property on functions with parameters

Applying the self-composition transformation to property R1 over function max and abs gives
the code of Figure 7.12. The transformation is as before, with in addition, the wrapper func-
tion taking the quantified variables as parameters. These parameters are used to initialize the
variables corresponding to the parameters of the functions.

The axiomatization, shown on Figure 7.13, is also as before, with in addition, the declaration
of the predicate taking as parameters the returned value and the formal parameters of the C
function.
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1 void relational_wrapper(int x, int y){
2 int ret_var_1, ret_var_2;
3 int x_1 = x; int y_1 = y;
4 int x_2 = x-y;
5 ret_var_1 = (x_1 >= y_1) ? x_1 : y_1;
6 ret_var_2 = (x_2 >= 0) ? x_2 : (-(x_2));
7 /*@ assert ret_var_1 == ((x + y) + ret_var_2) / 2;*/
8 return;
9 }

Figure 7.12 – Self-Composition on functions with parameters

1 /*@ axiomatic Relational_axiom {
2 predicate max_acsl(int x, int y, int result, int id);
3 predicate abs_acsl(int x, int result, int id);
4 lemma Relational_lemma{L}:
5 \forall int x, y,r1,r2,id1,id2;
6 max_acsl(x, y,r1,id1) ==> abs_acsl(x - y, r2,id2)
7 ==> r1 == ((x + y) + r2) / 2;
8 }*/

Figure 7.13 – Axiomatisation of a relational property on functions with parameters

7.2.3 Support of Pointers

In Section 7.2.1, we have shown how to specify relational properties in presence of side effects
over global variables, and how the transformations for both proving and using a property are
performed. The support of pointer dereference is similar with some nuance. An example of a
relational property on a function k using pointers (monotonicity with respect to the content of a
pointer) is given in Figure 7.14, where k is specified to assign *y using only its initial content.

1 int* y
2

3 /*@ assigns *y \from *y;*/
4 void k(){
5 *y = *y + 1;
6 return;
7 }
8

9 /*@ relational R1:
10 \callset(\call(k,id1), \call(k,id2)) ==>
11 \at(*y,Pre_id1) < \at(*y,Pre_id2) ==> \at(*y,Post_id1) < \at(*y,Post_id2);
12 */

Figure 7.14 – Relational property on a function with pointers

As proven in [BDR11] Self-Composition works if the memory footprint of each call is sep-
arated from the others; considering the memory states defined now by a pair

Σ = Σv × Σp

composed of a memory state Σv = X ⇀ N mapping locations to naturals, and a heap Σp =
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N ⇀ N mapping pointers (naturals) to naturals. We assume unable to access to the value of
locations using pointers i.e pointers allow only accessing the heap.

The requirement of Self-Composition for disjoint memory states σ̄1 ∩ σ̄2 = ∅ can be refined
in separated locations σ1 ∩ σ2 = ∅, and separated heaps σp1 ∩ σp2 = ∅. Thus, we must en-
sure that pointers that are accessed during distinct calls point to different memory locations. As
above, such accesses are given by assigns clauses, combined with construct \from, in the con-
tract of the corresponding C functions. Memory separation is enforced using ACSL’s built-in
predicate \separated. For the wrapper function, we add a requires clause stating the appropriate
\separated locations. This can be seen on Figure 7.15, line 3, where we request that the copies
of pointer y used for the inlining of both calls to k points to two separated areas in the memory.

1 int *y_id1; int *y_id1;
2

3 /*@ requires \separated(y_id1, y_id2);*/
4 void relational_wrapper_1(){
5 *y_id1 = *y_id1 + 10;
6 *y_id2 = *y_id2 + 10;
7 /*@ assert Rpp:
8 \at(*y_id1,Pre) < \at(*y_id2,Pre) ==> \at(*y_id1,Here) < \at(*y_id2,Here);*/
9 return;

10 }

Figure 7.15 – Self-Composition on functions with pointers

We also need to refine the declaration of the predicate in presence of pointer accesses. First,
the predicate now needs to explicitly take as parameters the pre- and post-states of the C function.
In ACSL, this is done by specifying logic labels as special parameters, surrounded by braces,
as shown in line 2 of Figure 7.16. Second, a reads clause allows one to specify the footprint of
the predicate, that is, the set of memory accesses that the validity of the predicate depends on
(line 2). Similarly, the lemma on lines 4–11 takes 4 logic labels as parameters, since it relates
two calls to k, each of them having a pre- and a post-state.

1 /*@ axiomatic Relational_axiom_1 {
2 predicate k_acsl{pre, post}(int *y, int id) reads \at(*y,pre), \at(*y,post);
3

4 lemma Relational_lemma_1 {pre_id1, post_id1, pre_id2, post_id2}:
5 \forall int *y_id1, int *y_id2, id1,id2;
6 \separated(y_id1,y_id2)
7 ==> k_acsl{pre_id1, post_id1}(y_id1,id1)
8 ==> k_acsl{pre_id2, post_id2}(y_id2,id2)
9 ==> id1 != id2

10 ==> \at(*y_id1,pre_id1) < \at(*y_id2,pre_id2)
11 ==> \at(*y_id1,post_id1) < \at(*y_id2,post_id2);
12 }*/

Figure 7.16 – Axiomatisation of a relational property on functions with pointers

Notice that the memory separation assumption restrict the relational properties to the case
where pointers are always different, which does not reflect the initial relational property.
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7.3 Relational Property Prover (RPP)

We have seen in the previous Sections 7.1 and 7.2 how to express relational properties on C
functions and how we can generate C code and plain ACSL specifications in order to take
advantage of a standard verification condition generator for proving relational properties and
use them as hypotheses in subsequent verification tasks.

To check that this approach works in practice, we have implemented this approach in a plugin
of FRAMA-C called RPP 2. The transformations performed by RPP are published in [BKGP17,
BKG+18], with slight differences from what was presented in Section 6.3 on how relational
properties are made usable. Typically, the use of unique identifiers (to ensure different calls)
are absent from the current implementation, implying some limitation on the type of supported
relational properties that can be used soundly in other proofs. Supported properties includes:

• properties linking functions with different names i.e. the resulting axiomatisation linking
only different predicates such that the identifiers are not required.

• properties whose precondition ensures disjoint function calls i.e the relational precondi-
tion implies that the axiomatisation is instantiated with different calls.

The fact that a property can be used soundly is not checked by the tool, it is left to the user to
ensure that the property is supported.

Despite these limitations, we have tested with success our tool on different benchmarks 3.
These tests aim at confirming:

• the ability to specify various relational properties over a large class of functions;

• the capacity to prove and use such properties using the generated transformation;

• the support of a large range of function implementations;

• the ability to use other techniques (runtime checks, test generation for invalidating the
property) when WP fails to prove a corresponding property.

Subsection 7.3.1 will present our own benchmark composed of a mix of different types of re-
lational properties. This benchmark is mainly designed to validate the first two items. Subsec-
tion 7.3.2 will show how RPP has performed on the benchmark proposed in [SD16]. This will
confirm the second and third points. Finally, we will present in Subsection 7.3.3 and 7.3.4 our
use of the E-ACSL and STADY plugins assessing the last point.

7.3.1 Internal Examples

As stated previously, we have tested RPP on a set of relational properties extracted from real
case studies, shown on Figure 7.17. This includes in particular monotonicity (row 1), factorial
(row 2), order on function (row 3), idempotent (row 4), encryption (row 5), properties found

2https://github.com/lyonel2017/Frama-C-RPP
3https://github.com/lyonel2017/RPP-Examples-TAP-2018

https://github.com/lyonel2017/Frama-C-RPP
https://github.com/lyonel2017/RPP-Examples-TAP-2018
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Num Relational Property Specified /
Generated Verified Used Side

effect Loop Recursive

1 ∀x1, x2 ∈ Z :
x1 < x2⇒ f(x1) < f(x2) 3 3 3 3 7 7

2 ∀ x;
f(x+ 1) = f(x) ∗ (x+ 1) 3 3 3 3 7 3

3 ∀x, f1(x) ≤ f2(x) ≤ f3(x) 3 3 7 7 7 7

4 ∀x, f(f(x)) = f(x) 3 3 7 7 3 7

5 ∀Msg,Key;
Decrypt(Encrypt(Msg,Key),Key) = Msg 3 3 3 3 3 7

6
∀ t, subt1, ..., subtn;

t = subt1 ∪ ... ∪ subtn ⇒
max(t) = max(max(subt1), ...,max(subtn))

3 3 7 3 3 7

7 ∀ A,B;
(A+B)ᵀ = (Aᵀ +Bᵀ) 3 3 7 7 3 7

8 det(A) = det(Aᵀ) 3 3 7 7 3 7

9 ∀x1, x2, y, f(x1 + x2, y) = f(x1, y) + f(x2, y) 3 3 3 7 7 3

10 ∀a, b, c, Med(a, b, c) = Med(a, c, b) 3 3 7 7 7 7

Figure 7.17 – Summary of relational properties considered by RPP

in map/reduce, as the one in row 6, stating that the choice of the partitioning for the initial set
of data should not play a role in the final result. The benchmark is also composed of more
academic examples like linear algebraic properties of matrices, over functions containing loops
(rows 7 and 8), additivity row 9, or the property of row 10, that states the symmetry of the
median of three numbers.

Figure 7.17 summarizes the results obtained on the benchmark. The first three columns indi-
cate respectively whether the corresponding property could be specified and the corresponding
code transformation generated, proved and used as a hypothesis in other proofs. The last three
columns show what kind of C constructs are used in the implementation of the functions un-
der analysis, namely side effects, presence of loops (which are always difficult for WP-related
verification techniques, due to the need for loop invariants), and presence of recursive functions.

7.3.2 Comparator Functions

We also evaluated RPP on the benchmark proposed in [SD16]. It is composed of a collection
of flawed and corrected implementations of comparators over a variety of data types written in
Java, inspired from a collection of Stackoverflow 4 questions. Translating the Java code into
C was straightforward and fully preserved the semantics of the functions. We focused on the
same properties as [SD16], that is anti-symmetry (P1), transitivity (P2) and extensionality (P3)
(mentioned in Section 1.3). Mathematically, these properties can be expressed as such:

4https://stackoverflow.com

https://stackoverflow.com
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P1 : ∀ s1, s2. compare(s1, s2) = −compare(s2, s1)

P2 : ∀ s1, s2, s3. compare(s1, s2) > 0 ∧ compare(s2, s3) > 0

⇒ compare(s1, s3) > 0

P3 : ∀ s1, s2, s3. compare(s1, s2) = 0⇒ (compare(s1, s3) = compare(s2, s3))

Results are depicted in Table 7.18. For each comparator, we indicate whether the properties
P1, P2 and P3 hold according to RPP (3 and 7 show whether the property was proved valid
by WP). We get similar results as [SD16], with the exception of PokerHand, for which the
generated wrapper function seems currently out of reach for WP (limits of scalability due to
the combinatorial explosion of self-composition). However, by rewriting the function in a more
modular way and using the capacity to use relational properties, WP was able to handle the
example.

7.3.3 Counterexample Generation

For the properties that do not hold in the comparator benchmark, we have been able to find coun-
terexamples thanks to the proposed encoding of a relational property by self-composed code and
using another FRAMA-C plugin, STADY [PKB+16]. STADY5 is a testing-based counterexample
generator. In particular, STADY tries to find an input vector that will falsify an ACSL annotation
for which WP could not decide whether it holds, thereby showing that the code is not conforming
to the specification.

We apply STADY to try to find a test input such that the assert clause at the end of the
wrapper function is false. The results are shown in the STADY columns of Figure 7.18. Obvi-
ously, STADY does not try to find counterexamples for properties that are proved valid by WP.
For properties that are not proved valid, 3 indicates that a counterexample is found (within a
timeout of 30 seconds), while $ indicated the only case where a counterexample is not gener-
ated before a 30-second timeout. A longer timeout (60 minutes) did not improve the situation
in that case. Symbol 0 denotes two cases where the code translation uses features that are
currently not yet supported by STADY. As shown in the table, thanks to the RPP translation,
STADY was able to find counterexamples for almost all unproven properties. Notice that some
examples required minor modifications so that STADY can be used. In particular, to be able to
use testing, we need to add bodies for unimplemented functions. Other modifications consisted
in reducing the input space to a representative smaller domain (by limiting the size of an input
array) for some examples to facilitate counterexample generation [PKB+16].

7.3.4 Runtime Assertion Checking

The code transformation technique of RPP also enables runtime verification of relational prop-
erties through the E-ACSL plugin [DKS13, VSK17]. More precisely, the E-ACSL plugin

5See https://github.com/gpetiot/Frama-C-StaDy

https://github.com/gpetiot/Frama-C-StaDy
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Proof (WP) Counterex. gen. (STADY)
Benchmark P1 P2 P3 P1 P2 P3
ArrayInt-false.c 3 3 7 – – 3

ArrayInt-true.c 3 3 3 – – –
CatBPos-false.c 7 7 7 3 3 3

Chromosome-false.c 3 7 7 – $ 3

Chromosome-true.c 3 3 3 – – –
ColItem-false.c 7 7 7 3 3 3

ColItem-true.c 3 3 3 – – –
Contact-false.c 3 7 7 – 3 3

Container-false-v1.c 7 3 3 3 – –
Container-false-v2.c 7 7 7 3 3 3

Container-true.c 3 3 3 – – –
DataPoint-false.c 7 7 7 3 3 3

FileItem-false.c 3 3 7 – – 3

FileItem-true.c 3 3 3 – – –
IsoSprite-false-v1.c 7 7 7 3 3 3

IsoSprite-false-v2.c 7 7 3 3 3 –
Match-false.c 7 3 7 3 – 3

Match-true.c 3 3 3 – – –
NameComparator-false.c 7 3 3 3 – –
NameComparator-true.c 3 3 3 – – –
Node-false.c 3 3 7 – – 3

Node-true.c 3 3 3 – – –
NzbFile-false.c 7 3 3 3 – –
NzbFile-true.c 3 3 3 – – –
PokerHand-false.c 3 7 7 – 0 0

PokerHand-true.c 3 3 3 – – –
Solution-false.c 3 3 7 – – 3

Solution-true.c 3 3 3 – – –
TextPosition-false.c 3 7 7 – 3 3

TextPosition-true.c 3 3 3 – – –
Time-false.c 7 3 3 3 – –
Time-true.c 3 3 3 – – –
Word-false.c 7 7 3 3 3 –
Word-true.c 3 3 3 – – –

Figure 7.18 – Comparator properties analysed with WP and STADY after RPP translation

translates ACSL annotations into C code that will check them at runtime and abort execution
if one of the annotations fails. We tested the E-ACSL plugin on the test inputs generated by
STADY in order to check that each generated counterexample does indeed violate the relational
property. As expected, the obtained results validate those of the previous section. Since coun-
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terexample generation with STADY [PKB+16] basically includes a runtime assertion checking
step for each test datum considered during the test generation process, we do not present the
results of this step in separate columns.
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Chapter 8

Direct Translation of Relational
Properties

In Chapter 6, we have shown how to prove and use relational properties in the context of self-
composition and the R-WHILE* language. In Chapter 7 we implemented the approach of Chap-
ter 6 in the context of the C language and the FRAMA-C platform. The tool, called RPP, was
tested on different benchmarks.

During the implementation of RPP we noticed that performing the renaming required by
self-composition and the self-composition itself can be tedious to perform. We have also seen
in Section 7.2.3 that in case of pointers, self-composition requires some additional assumptions
about memory separation [BDR11]. The generation of such hypotheses can become cumber-
some as the complexity of the code under analysis grows and make the resulting formula harder
to prove valid.

Therefore, we propose in this chapter an alternative approach for the verification of relational
properties by translating the properties directly, without self-composition. The new method
requires no renaming or separation of the memory states. Moreover, the new translation allows
to refining the axiomatization of relational properties proposed in Section 6.3.2.

The chapter is organized as follows. Section 8.1 presents the translation of relational proper-
ties into formalus of MFOL, using concepts introduced in Section 5.3. Section 8.2 presents an
alternative axiomatization of relational properties solving some issues of the method proposed
in Section 6.3.2.

8.1 Direct Translation of Relational Properties

In this section, we show how we can generate verification conditions for proving relational
properties without Self-Composition. We first define the functions for embedding relational
extended arithmetic and boolean expressions into MFOL. Those functions are almost equivalent
to the functions Ta and Tb (defined in Section 5.3.2) for translating extended arithmetic and
boolean expressions. Then, we define function ˜̂VCr returning the verification conditions that
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must be valid such that a relational property is valid. The function uses function T̂c (defined in
Section 5.3.3) for computing the strongest postcondition.

8.1.1 Translation of ˜̂Ea and ˜̂Eb
Example 8.1. If we consider the following relational extended boolean expression

at(x, l)〈t1〉+ at(x, l)〈t2〉 = 10,

we want a translation that returns a formula of the form

mt1 [1] +mt2 [1] = 10,

where mt1 represents the memory state at label l for tag t1, mt2 represents the memory state at
label l for tag t2 i.e. for different tags, the same label has different array variables that model the
memory state.

For the natural numbers representing a location, we propose that the choice is shared i.e for
different tags, the same location has the same natural number representing a location. This will
be important for the following Section 8.2. Such a choice is sound because we consider the
case where address of location cannot be handled by the language i.e. we have no pointers of
locations.

To get such a result, we first define mapping Υ from tags to mapping Θ (defined in Sec-
tion 5.3.2), that maps labels to array variables,

Υ = T→ Θ,

and we use metavariables υ, υ0, υ1, ... to range over the set Υ.
Then, we define R, the pair of environment Υ and ∆ (defined in Section 5.3.1) mapping

location to natural numbers
R = Υ×∆.

Finally, we define function liftr, returning the constant term associated to location x for a
given environment δ, and the array variable associated to label l and a tag t for a given environ-
ment υ:
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Definition 8.1. Function liftr : R × L × X × T → R ×M × Eqnat returning the constant
term associated to location x for a given environment δ, and the array variable associated to
label l and a tag t for a given environment υ:

liftr((υ, δ), l, x, t) =



((υ[t← θ], δ′),m, e) if υ(t) = ⊥
where

((θ, δ′),m, e) = lifts((∅, δ), l, x)

((υ[t← θ], δ′),m, e) otherwise
where

((θ, δ′),m, e) = lifts((υ(t), δ), l, x)

Note that function liftr is a generalization of function lifts (defined in Section 5.3.2), sup-
porting tags. If we call function liftr with an environment υ defined for tag t and label l, and an
environment δ defined for location x, and a label l, a location x and a tag t, we get as result the
associated array variable (υ(t))(l), the natural δ(x) and the environment υ and δ unchanged:

liftr(({t1 → {l1 → m1}}, {x1 → 1}), l1, x1, t1) = (({t1 → {l1 → m1}}, {x1 → 1}),m1, 1)

If there are undefined binding, the environments are lifted;

liftr(({t1 → {l1 → m1}}, {x1 → 1}), l2, x2, t1) =

(({t1 → {l1 → m1, l2 → m2}}, {x1 → 1, x2 → 2}),m2, 2)

liftr(({t1 → {l1 → m1}}, {x1 → 1}), l1, x1, t2) =

(({t1 → {l1 → m1}, t2 → {l1 → m2}}, {x1 → 1}),m2, 1)

Using function liftr, we can define function ˜̂Ta for translating an relational extended arith-

metic expression ˜̂Ea into a term of Eq, and function ˜̂Tb translating a relational extended boolean

expression ˜̂Eb into an formula of Q.
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Definition 8.2. Function ˜̂Ta :
˜̂Ea → (R → Eq × R), translating a relational extended

arithmetic expression ˜̂Ea into a term,of Eq, is defined by structural induction on relational
extended arithmetic expressions:

˜̂TaJnKr = (JnK, r)
˜̂TaJat(x, l)〈t〉Kr = (Jm[n]K, r′) where (r′,m, n) = liftr(r, l, x, t)

˜̂TaJα̃0 opa α̃1Kr = (Je1 opa e2K, r′′)

where (e1, r
′) =

˜̂TaJα̃0Kr and (e2, r
′′) =

˜̂TaJα̃1Kr′.

Definition 8.3. Function ˜̂Tb :
˜̂Eb → (R → Q × R), translating a relational extended

boolean expression ˜̂Eb into an formula of Q, is defined by structural induction on relational
extended boolean expression:

˜̂TbJtrueKr = (JT K, r)
˜̂TbJfalseKr = (JF K, r)

˜̂TbJα̃0 opb α̃1Kr = (Je0 opb e1K, r′′)

where (e0, r
′) =

˜̂TaJα̃0Kr and (e1, r
′′) =

˜̂TaJα̃1Kr′

˜̂TbJβ̃0 opl β̃1Kr = (Jq0 opl q1K, r′′)

where (q0, r
′) =

˜̂TbJβ̃0Kr and (q1, r
′′) =

˜̂TbJβ̃1Kr′

˜̂TbJ¬β̃Kr = (J¬qK, r′) where (q, r′) =
˜̂TbJβ̃Kr

˜̂TbJpn(α̃1, ..., α̃n)Kr = (Jpn(e1, ..., en)K, rn)

where (e1, r1) = T̂aJα̃1Kr and ... and (en, rn) = T̂aJα̃nKrn−1.

As said earlier, the definitions are almost identical to the definitions of function T̂a for trans-
lating an extended arithmetic expression Êa into a term of Eq, and function T̂b translating a
extended boolean expression Êb into an formula of Q. The only difference is to call the function
liftr instead of lifts in function T̂a.
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8.1.2 Verification of Relational Properties

We have given in Section 5.3.4 the definition of function V̂Ch for the generation of verification
conditions for a Hoare Triple (defined in Section 5.3.4). Basically, the verification condition
states that the strongest postcondition, obtained from the precondition and the program, implies
the postcondition.

In the case of relational properties, a similar function ˜̂VCr for the generation of verification
conditions can be defined. The function translates the relational precondition and, for each de-
fined tag in a relational extended execution environment, the associated command into a formula
(the relational strongest postcondition) that must imply the formula corresponding to the rela-
tional postcondition. As for function V̂Ch : Ĉ×(Êb×Êb)×Ξ̂→ P(Q), taking a command, a pre-

and post-condition, and an environment of contract, function ˜̂VCr : Φ̂c×(
˜̂Eb×

˜̂Eb)×Φ̂a → P(Q)
takes a relational extended execution environment (Φ̂c = T⇀ Ĉ×Ψ̂), a relational pre- and post-
condition and an environment that maps tags to an environment of contracts (Φ̂a = T⇀ Ξ̂).

Definition 8.4. Function ˜̂VCr : Φ̂c×(
˜̂Eb×

˜̂Eb)×Φ̂a → P(Q) returning the set of verification
conditions that must be valid in order for the relational property to be valid:

˜̂VCr(φ̂c, (β̃Pre, β̃Post), φ̂a) = uQ ∪ {JqPre ∧ qt1 ∧ ... ∧ qtn ⇒ qPostK}
where
(i) {t1, ..., tn} = dom(φ̂c),
(ii) mt1 = Nvm , ...,mtn = Nvm ,
(iii) υ = {t1 → {Pre→ mt1}, ..., tn → {Pre→ mtn}},
(iv) (qPre, (υ

′, δ)) =
˜̂TbJβ̃PreK(υ, ∅),

(v)


(qt1 , uQt1 ,m

′
t1 , (θt1 , δt1)) = T̂cJbody(φ̂c(t1))K(φ̂a(t1), (T, ∅,mt1 , (υ

′(t1), δ)),

...,

(qtn , uQtn ,m
′
tn , (θtn , δtn)) =

T̂cJbody(φ̂c(tn))K(φ̂a(tn), (T, ∅,mtn , (υ
′(tn), δtn−1)),

(vi) υ′′ = {t1 → θt1 [Post← m′t1 ]}), ..., {tn → θtn [Post← m′tn ]},
(vii) (qPost, _) =

˜̂TbJβ̃PostK(υ′′, δtn),
(viii) uQ =

⋃
i{JqPre ⇒ qK|q ∈ uQti}

(ii) First, for each defined tag ti in φ̂c, we define a new array variable mti modeling the state
before the evaluation of the command body(φ̂c(ti)).

(iii) Then, we define environment υ associating to each defined tag in φ̂c an environment that
maps label Pre, modeling the state before the evaluation of the command body(φ̂c(ti)),
to the associated array variable.

(iv) Then, we translate the relational extended boolean expression β̃Pre into a formula qPre in
the context of υ.
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(v) Then, for each defined tag ti in φ̂c, we translate the command body(φ̂c(ti)) into a formula
qti . Note that the environment δ, mapping locations to naturals, is shared.

(vi) Then, we define environment υ′′ associating for each defined tag ti in φ̂c the environment
θti , obtained from the translation of command body(φ̂c(ti)), and the mapping label Post,
modeling the state after the evaluation of the command body(φ̂c(ti)), to the array variable
m′ti .

(vii) Then, we translate the relational extended boolean expression β̃Post into a formula QPost

in the context of υ′′.

(vii) Then, we define the set of verification conditions uQ composed of the set of verification
conditions uQti , where we add qPre as hypothesis; the verification conditions for each
command are generated only from the precondition T (true), so we add the formula cor-
responding to the relational precondition.

The set of verification conditions that must be proven valid for proving that the relational
property holds is composed of the set of verification conditions uQ and the verification condi-
tions stating that the relational strongest postcondition (qPre and all qti) implies the relational
postcondition (qPost).

Using function ˜̂VCr and function V̂Cp (for the generation of verification conditions for a pro-
cedure contract) we can define rule RECURSIVE-RELATIONAL for proving relational properties
and using standard procedure contracts.

∀t ∈ dom(φ̂a).∀q ∈ V̂Cp(state(φ̂c(t)), φ̂a(t)).smt(uQ, q) = V

∀q ∈ ˜̂VCr(φ̂c, (β̃1, β̃2), φ̂a).smt(uQ, q) = V

` {β̃1}ς1〈t1〉 ∼ ς2〈t2〉{β̃2}
(RECURSIVE-RELATIONAL)

Note that this rule requires no modification of the initial property i.e composing in sequence the
programs linked by the property, removing the tags from the boolean expression, in opposition
to rule RECURSIVE-SELF-COMP-E where self-composition is used.

Since we create for each tag a fresh array variable modelling the memory state and each pro-
gram is handled separately, no additional hypotheses are required. By contrast, self-composition
required that the set of variables, labels and command names used in the programs are disjoint.

Example 8.2. We take again the example used to present Self-composition in the context of
R-WHILE* in Section 6.2:

{at(x1, P re)〈t1〉 = at(x1, P re)〈t2〉}
l1 : x1 := x1 + 5;
l2 : call(y);
l3 : x1 := x1 + 6

〈t1〉 ∼
l1 : x1 := x1 + 5;
l2 : call(y);
l3 : x1 := x1 + 6

〈t2〉

{at(x1, Post)〈t1〉 = at(x1, Post)〈t2〉},
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with a relational extended execution environment defined, for each tag, by:

φ̂c(t1) =

 l1 : x1 := x1 + 5;
l2 : call(y);
l3 : x1 := x1 + 6

, {y → l : x1 := x1 + 1}

 ,

φ̂c(t2) = φ̂c(t1),

and an environment that maps tags to an environment of contracts φ̂a defined by:
t1 →

y →
 true,

at(x1, P re) + 1 = at(x1, Post),
{x1}

 ,

t2 →

y →
 true,

at(x1, P re) + 1 = at(x1, Post),
{x1}




We can use function ˜̂VCr to generate the verification conditions that must be valid such that the
relational property is valid:

˜̂VCr(φ̂c,
(
at(x1, P re)〈t1〉 = at(x1, P re)〈t2〉,
at(x1, Post)〈t1〉 = at(x1, Post)〈t2〉

)
, φ̂a)

Assuming that x1 is mapped to index 1, we get the following VC:

mPre_t1 [1] = mPre_t2 [1]∧
T∧
ml2_t1 = mPre_t1 [1← mPre_t1 [1] + 5]∧
ml3_t1 [1] = ml2_t1 [1] + 1 ∧ml3_t1 = ml2_t1 [1← i1]∧
mPost_t1 = ml3_t1 [1← ml3_t1 [1] + 6]∧
T∧
ml2_t2 = mPre_t2 [1← mPre_t2 [1] + 5]∧
ml3_t2 [1] = ml2_t2 [1] + 1 ∧ml3_t2 = ml2_t2 [1← i2]∧
mPost_t2 = ml3_t2 [1← ml3_t2 [1] + 6]⇒
mPost_t1 [1] = mPost_t2 [1]

We have in blue the part that corresponds to the program with tag t1 and in red the part that
corresponds to program with tag t2. Note that, there is no relation between the blue and the red
parts. By using axioms Q-NO-UPDATE and Q-UPDATE, we get the following valid formula:

mPre_t1 [1] = mPre_t2 [1]⇒
mPre_t1 [1] + 5 + 1 + 6 = mPre_t2 [1] + 5 + 1 + 6



126 CHAPTER 8. DIRECT TRANSLATION OF RELATIONAL PROPERTIES

In the previous example, the blue and red parts in the resulting formulas have the same
shape. Only the name of the variables are different. This is due to the relational property that
links two instances of the same program. Thus, in the case of relational properties relating the
same program ς n times, we can only call one time function T̂c for program ς and rename the
variable in the resulting formula with fresh variables to get the same result.

Such an approach is proposed in [SS14] for an efficient verification of non-interference
(Section 1.3.2) by minimizing the number of calls to a verification condition generator; a simple
renaming of all variables in a formula is in generale of lower complexity then the generation of
verification conditions.

Finally, we can notice that it is not always required to verify all verification conditions re-
turned by function ˜̂VCr, for the same reasons as for Self-Composition (Section 6.2).

8.1.3 Relational Properties and Pointers

We have seen in Section 7.2.3 the Self-Composition transformation and the axiomatization for
proving and using relational properties with pointers. The proposed Self-Composition transfor-
mation required that pointers associated to different tags are separated. As mentioned earlier, the
generation of such hypotheses can be cumbersome. Moreover, the separation hypothesis restrict
the relational properties that can be proven.

A direct translation into verification conditions would not require separation hypotheses be-
tween pointers from different tags. Function ˜̂VCr handles the memory states associated to dif-
ferent tags separately, thus a pointer associated to a tag t is only used in the context of memory
states associated to tag t. Pointers associated to different tags could have the same value in a
relational property.

Notice that if we want to support pointers of locations the current transformation requires
some refinements. In the actual model the value of a locations x for two tags is represented by
accessing two different arrays at the same index: for example ml t1 [1] for the value of location x
at label l for tag t1, and ml t2 [1] for the value of location x at label l for tag t2. Assume we have
a relational property comparing two pointers of location x for two different tags. The pointer of
location x for tag t1 would be represent by the natural 1 and for tag t2 by natural 1. However,
in case of a non-deterministic allocator, they is no guarantie that location x is associated twice
to the same position in the memory (for two different tags). To ensures that the pointers of
location are not comparable in case of a non-deterministic allocator, a possible solution would
be to use a memory models with regions [Bar11], i.e. the access to the array would no be a
simpl natural, but a composition of region (modeling the tag) and a natural value: for example
ml t1 [adress(t1, 1)] for the value of location x at label l for tag t1, and ml t2 [adress(t2, 1)] for
the value of location x at label l for tag t2. A similar memory model already existe in the tool
WP.

8.1.4 Implementation in RPP

The verification of relational properties by direct translation into verification conditions has been
partially implemented in the plugin RPP. We used a direct communication with the WP plugin
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without going through C and ACSL constructs. This led to a much smaller and simpler imple-
mentation, compared to the equivalent implementation of the Self-Composition based approach.

The current implementation does not support pointers and the use of relational properties;
only a part of the benchmark presented in Section 7.3.1 and 7.3.2 is supported. A comparison
between the two implemented approaches is therefore left as future work.

8.2 Extended Axiomatization

We have presented in Section 6.3.2 how to use relational contracts by translating them into
an axiomatization. Part of the translation consists in modelling by predicates the procedures
connected by the property. The signature of those predicates depends on the property itself,
more precisly depending on which locations are examined in the property.

Example 8.3. We consider the following relational contract relating the procedure y for tags t1
and t2:

{(y, t1), (y, t2)} →
(

at(x1, P re)〈t1〉 < at(x1, P re)〈t2〉,
at(x1, Post)〈t1〉 < at(x1, Post)〈t2〉

)
(R-CONTRACT-1)

We have seen in Section 6.3.2 that an equivalent axiomatization would be:

∀v1_t1Pre, v1_t1Post, v1_t2Pre, v1_t2Post, vt1id, vt2id : nat,
(p(v1_t1Pre, v1_t1Post, v1_t1id) ∧ p(v1_t2Pre, v1_t2Post, v1_t2id)∧

vt1id 6= vt2id∧
v1_t1Pre < v1_t2Pre)⇒ v1_t2Post < v1_t2Post.

We now consider a second relational contract relating again procedure y for tags t1 and t2:

{(y, t1), (y, t2)} →


at(x2, P re)〈t1〉 < at(x2, P re)〈t2〉∧
at(x3, P re)〈t1〉 < at(x3, P re)〈t2〉,
at(x2, Post)〈t1〉 < at(x2, Post)〈t2〉∧
at(x3, Post)〈t1〉 < at(x3, Post)〈t2〉

 (R-CONTRACT-2)

and the equivalent axiomatization:

∀v2_t1Pre, v2_t1Post, v3_t1Pre, v3_t1Post, v2_t2Pre, v2_t2Post, v3_t2Pre, v3_t2Post,
vt1id, vt2id : nat,

(p′(v2_t1Pre, v2_t1Post, v3_t1Pre, v3_t1Post, vt1id)∧
p′(v2_t2Pre, v2_t2Post, v3_t2Pre, v3_t2Post, vt2id)∧

vt1id 6= vt2id∧
v2_t1Pre < v2_t2Pre ∧ v3_t1Pre < v3_t2Pre)⇒ v2_t1Post < v2_t2Post ∧ v3_t1Post < v3_t2Post,

We note that the predicates modelling the same procedure call are different for each axiom-
atization. This is due to the relational properties that links different sets of locations. The
axiomatization for property R-CONTRACT-1 links locations x1 for two different tags and two
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different labels. The axiomatization for property R-CONTRACT-2 links locations x2 and x3 for
two different tags and two different labels.

Applying the approach proposed in Section 6.3.2 to connect the previous axiomatizations to
a relational property on programs calling procedure y gives the following result:

at(x1, P re)〈t1〉 < at(x1, P re)〈t2〉∧
at(x2, P re)〈t1〉 < at(x2, P re)〈t2〉∧
at(x3, P re)〈t1〉 < at(x3, P re)〈t2〉


l1 : x1 := x1 + 5;
l2 : call(y);
ln : assume(p(at(x1, l2), at(x1, ln), 1)∧

p′(at(x2, l2), at(x2, ln), at(x3, l2), at(x3, ln), 1));
l3 : x1 := x1 + 6

〈t1〉

∼
l1 : x1 := x1 + 5;
l2 : call(y);
ln : assume(p(at(x1, l2), at(x1, ln), 2)∧

p′(at(x2, l2), at(x2, ln), at(x3, l2), at(x3, ln), 2));
l3 : x1 := x1 + 6

〈t2〉


at(x1, Post)〈t1〉 < at(x1, Post)〈t2〉∧
at(x2, Post)〈t1〉 < at(x2, Post)〈t2〉∧
at(x3, Post)〈t1〉 < at(x3, Post)〈t2〉


We have to assume after each procedure call both predicates associated to both axiomatizations.

8.2.1 Alternative axiomatization

We propose in the following an alternative axiomatization to avoid defining different predicates
for the same procedure for each relational property. The refinement consists in passing the array
variable (modelling the memory states) as parameter to the predicate instead of the locations
related by the property. Thus, the predicates takes always three parameters; the array variables
modelling the memory state before and after the procedure call, and the identifier. A conse-
quence is that variables modelling locations are replaced by access to arrays at the corresponding
index. Thus, the axiomatization will depend on the environment mapping locations to naturals.
As we have chosen, in Section 8.1, to share the environment δ for all tags, the environments
mapping locations to naturals is the same for each tag.

Example 8.4. For relational contracts R-CONTRACT-1 and R-CONTRACT-2 we can give the
following alternative axiomatizations assuming environment δ = {x1 → 1, x2 → 2, x3 → 3}:

∀mt1Pre,mt1Post,mt2Pre,mt2Post : array, vt1id, vt2id : nat,
(p(mt1Pre,mt1Post, vt1id) ∧ p(mt2Pre,mt2Post, vt2id)∧

vt1id 6= vt2id∧
mt1Pre[1] < mt2Pre[1])⇒ mt1Post[1] < mt2Post[1]

(E-AXIOM-RELA-1)
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∀mt1Pre,mt1Post,mt2Pre,mt2Post : array, vt1id, vt2id : nat,
(p(mt1Pre,mt1Post, vt1id) ∧ p(mt2Pre,mt2Post, vt2id)∧

vt1id 6= vt2id∧
mt1Pre[2] = mt2Pre[2] ∧mt1Pre[3] = mt2Pre[3])⇒
mt1Post[2] = mt2Post[2] ∧mt1Post[3] = mt2Post[3]

(E-AXIOM-RELA-2)

8.2.2 Connection between axiomatization and the procedures

The predicates in the axiomatization of relational properties take as parameter array variables.
Thus, to be able to use the axiomatization, we have to refine the definition of predicates in
extended boolean expression Êb (defined in Section 5.1.2).

The set of predicate identifiers P is now composed of the set of identifiers P(n1,n2) for pred-
icates taking a pair of n1 labels and n2 memory location.

P =
⋃

n1,n2∈N
P(n1,n2)

As in Section 5.1.2, we assume that all sets P(n1,n2) are disjoint to get well typed predicates by
definition:

∀i1, i2, j1, j2 ∈ N.(i1 6= i2 ∨ j1 6= j2)⇒ P(i1,j1) ∩ P(i2,j2) = ∅

For the sake of simplicity we give in the following only the definition of function T̂b, trans-
lating extended boolean expressions into formulas of MFOL, for the case of predicates with
labels. The definition of evaluation function for extended boolean expression ξ̂b is similar to the
definition for T̂b.

Definition 8.5. Function T̂b : Êb → (S → Q×S), translating a boolean expression Êb into
an formula of Q, is defined, for the case of predicates with labels, by:

T̂bJpn1,n2((l1, ..., ln1)(α1, ..., αn2))Ks = J(p(m1, ...,mn1 , e1, ..., en2)K, sm)

where
(s1,m1) = liftm(s, l1) ... (sn1 ,mn1) = liftm(sn1−1, ln1)

(e1, sn1+1) = T̂aJα1Ksn1 ... (en2 , sm) = T̂aJαnKsm−1

where function liftm returning the array variables associated to a given label is defined as fol-
lows:
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Definition 8.6. Function liftm : S × L → S ×M, returning the array variable associated
to label l for a given environment θ:

liftm((θ, δ), l) =


((θ[l← m], δ),m) if θ(l) = ⊥

where
m = Nvm

((θ, δ), θ(x)) otherwise

Example 8.5. We take the relational properties of the previous example and apply the approach
for connecting the axiomatizations to procedure call using predicates with labels. We get the
following result: 

at(x1, P re)〈t1〉 = at(x1, P re)〈t2〉∧
at(x2, P re)〈t1〉 = at(x2, P re)〈t2〉∧
at(x3, P re)〈t1〉 = at(x3, P re)〈t2〉


l1 : x1 := x1 + 5;
l2 : call(y);
ln : assume(p((l2, ln), (1)));
l3 : x1 := x1 + 6

〈t1〉 ∼

l1 : x1 := x1 + 5;
l2 : call(y);
ln : assume(p((l2, ln), (2)));
l3 : x1 := x1 + 6

〈t2〉


at(x1, Post)〈t1〉 = at(x1, Post)〈t2〉∧
at(x2, Post)〈t1〉 = at(x2, Post)〈t2〉∧
at(x3, Post)〈t1〉 = at(x3, Post)〈t2〉


As the axiomatizations share the same predicate, only one predicate is assumed after the proce-
dure calls.

The verification of the relational property is done using function ˜̂VCr. Assuming that x1 is
mapped to index 1, x2 is mapped to index 2 and x3 is mapped to index 3 we get the following
VC:

mPre_t1 [1] = mPre_t2 [1] ∧mPre_t1 [2] = mPre_t2 [2] ∧mPre_t1 [3] = mPre_t2 [3]∧
T∧

ml2_t1 = mPre_t1 [1← mPre_t1 [1] + 5]∧
p(ml2_t1 ,ml3_t1 , 1)∧

mPost_t1 = ml3_t1 [1← ml3_t1 [1] + 6]∧
T∧

ml2_t2 = mPre_t2 [1← mPre_t2 [1] + 5]∧
p(ml2_t2 ,ml3_t2 , 2)∧

mPost_t2 = ml3_t2 [1← ml3_t2 [1] + 6]⇒
(mPost_t1 [1] = mPost_t2 [1] ∧mPost_t1 [2] = mPost_t2 [2] ∧mPost_t1 [3] = mPost_t2 [3])
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By using axiom Q-NO-UPDATE and Q-UPDATE and removing some statements, we get the
following formula:

mPre_t1 [1] = mPre_t2 [1] ∧mPre_t1 [2] = mPre_t2 [2] ∧mPre_t1 [3] = mPre_t2 [3]∧
py(mPre_t1 [1← mPre_t1 [1] + 5],ml3_t1 , 1)
py(mPre_t2 [1← mPre_t2 [1] + 5],ml3_t2 , 2)⇒

(ml3_t1 [1] + 6 = ml3_t2 [1] + 6 ∧ml3_t1 [2] = ml3_t2 [2] ∧ml3_t1 [3] = ml3_t2 [3])

By instantiating axiom E-AXIOM-RELA-1 as follows

(py(mPre_t1 [1← mPre_t1 [1] + 5],ml3_t1 , 1) ∧ py(mPre_t2 [1← mPre_t2 [1] + 5],ml3_t2 , 2)∧
1 6= 2∧

mPre_t1 [1← mPre_t1 [1] + 5][1] = mPre_t2 [1← mPre_t2 [1] + 5][1])⇒
ml3_t1 [1] = ml3_t2 [1]

and axiom E-AXIOM-RELA-2

(py(mPre_t1 [1← mPre_t1 [1] + 5],ml3_t1 , 1) ∧ py(mPre_t2 [1← mPre_t2 [1] + 5],ml3_t2 , 2)∧
1 6= 2∧

mPre_t1 [1← mPre_t1 [1] + 5][2] = mPre_t2 [1← mPre_t2 [1] + 5][2]∧
mPre_t1 [1← mPre_t1 [1] + 5][3] = mPre_t2 [1← mPre_t2 [1] + 5][3]))⇒

ml3_t1 [2] = ml3_t2 [2] ∧ml3_t1 [3] = ml3_t2 [3]

we can prove validity of the formula.

Notice that this axiomatization of relational properties does not work with Self-Composition.
The renaming performed to ensure separated memory state may differ from one verification
(using Self-Composition) to another. Thus, it is required that the renamed locations are given as
parameter to the predicates.



132 CHAPTER 8. DIRECT TRANSLATION OF RELATIONAL PROPERTIES



Chapter 9

Conclusion

9.1 Summary

In this thesis we have provided two solutions regarding the problem of relational property verifi-
cation: the support of modular relational property verification in existing verification tools, and
the verification and use of relational properties in deductive verification.

In the context of a simple while language with recursive procedure calls, labels and predi-
cates, called R-WHILE*, we have designed a technique for proving and using relational prop-
erties in deductive verification. The approach is based on Self-Composition (Section 6.2) for
proving relational properties and introduces axiomatized relational properties to allow the use of
relational properties in other deductive verification activities (Section 6.3).

The approach has been implemented in a tool called RPP, in the context of the C language
and the FRAMA-C platform. RPP provides an extension to the ACSL language for expressing
relational properties (Section 7.1). The extended annotations are translated into standard ACSL
annotations and C code such that the WP plugin can be used (Section 7.2). The tool has been
evaluated over a set of examples.

The implementation of Self-Composition in RPP has shown that even if Self-Composition
is theoretically a simple approach, in practice, it requires a huge amount of work to fulfil the
required assumption (Section 6.2). Therefore, we have designed an alternative verification ap-
proach (Section 8.1) that is not based on code transformation, but translates a relational property
directly into verification conditions, like for the verification of standard Hoare Triples (Sec-
tion 5.3.4). This alternative verification approach allows a refinement of the method for using
relational properties (presented in Section 8.2). Moreover, this approach opens some perspec-
tives that are discussed in the following section.

9.2 Perspectives

We discuss in this section some research directions that would provide interesting extensions to
the work presented in this thesis.
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9.2.1 Relational Properties Specification

In Section 7.1 we proposed an extended ACSL syntax for the specification of relational proper-
ties. This syntax can be sometimes a little bit heavy. The relational pre- and post-conditions are
not clearly separated. Moreover, the use of specific label Pre_call-id appears cumbersome: we
use a label and a tag to refer to a memory state.

A more interesting specification consists in having separated clauses in a global relational
contract relational, as shown on Figure 9.1. Such a separation has already been proposed in
[U+17] in the context of JML and Java programs.

1 int y;
2

3 int f(int x);
4 int g(int x);
5

6 /*@ relational R1:
7 callset \call{l1,l2}(f,id1), \call{l3,l4}(g,id2);
8 requires \param(x,id1) == \param(x,id2) && \at(y,l1) == \at(y,l3);
9 ensures \callresult(id1) == \callresult(id2) && \at(y,l2) == \at(y,l4);

10 */

Figure 9.1 – Annotated C functions with extended global relational contract

A relational global contract would be composed of three parts:

• The set of related functions, written using a callset clause.

• The relational precondition, written using a requires clause.

• The relational postcondition, written using a ensures clause.

In the context of relational properties on functions, we are only interested in the state before
and after each function call. Therefore, we can define for each function call, two labels to denote
the state before and after the corresponding call. In case of the example shown on Figure 9.1,
on line 7, we have defined for function f labels l1 for the pre-state and l2 for the post-state. For
function g, we have defined labels l3 and l4. Those labels can be used in the relational pre- and
post-condition in term \at(e,L) that indicates that the term e must be evaluated in the context of
the program state linked to logic label L. To refer to the parameter of a function, we use a new
construct \param, taking as parameter the name of a formal parameter and a call identifier. In
case of the example shown on Figure 9.1, we have defined, on line 8, that the formal paramter x
associated to the identifier id1 (function f) is equal to the formal parameter x associated to the
identifier id2 (function g).

The use of labels for naming the pre- and post-states of a function call in a relational property
also allows some other perspectives.

Calling Relationships between Functions

Using the labels defined for a function call in a relational property, we can define calling relation-
ships between functions. An example is shown on Figure 9.2, where the post-state of function f
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1 int y;
2

3 void f(); void g(); void h(); void k(); void i();
4

5 /*@ relational R1:
6 callset
7 \call{l1,l2}(f,id1), \call{l4,l5}(h,id2),
8 \call{l2,l3}(g,id3), \call{l5,l6}(k,id4), \call{l5,l7}(i,id5);
9 requires \at(y,l1) == \at(y,l4);

10 ensures \at(y,l2) == \at(y,l5) && \at(y,l5) == \at(y,l6);
11 */

Figure 9.2 – Calling relationships between functions

is shared with the pre-state of function g. The post-state of function h is shared with the pre-state
of functions k and i. Figure 9.3 shows the equivalent call graphs.

l1

f

l2

g

l3

l4

h

l5

k

l6

i

l7

Figure 9.3 – Call graphs

Many combinations can be explored. Moreover, we can imagine defining built-in function
that can be called inside such properties. Figure 9.4 shows an example where we have a \havoc

built-in, similar to the havoc predicate in Boogie [BCD+05], stating that store l2 and l3 are
equal except for the locations y, which are mapped to an arbitrary value in store l3.

1 int y;
2

3 void f(); void h();
4

5 /*@ relational R1:
6 callset \call{l1,l2}(f,id1),\havoc{l2,l3}(y), \call{l3,l4}(h,id2);
7 requires .....;
8 ensures ....;
9 */

Figure 9.4 – Calling relationships between functions with a built-in function
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Equivalent Functions

In the current method for using relational contract, it is not possible to share properties between
functions that are equivalent i.e. if the pre-state for two different functions are equal, the post-
state are equal. It would be interesting to define an equivalence relation between functions,
such that a relational property verified for one function is also valid for the equivalent function.
Figure 9.5 shows an example of how such an equivalent relation could be specified by using a
construct \equiv(lx,ly) stating that the memory states associated to labels lx and ly are equal.

1 void f();
2 void g();
3

4 /*@ relational R1:
5 callset \call{l1,l2}(f,id1), \call{l3,l4}(g,id2);
6 requires \equiv(l1,l3);
7 ensures \equiv(l2,l4);
8 */

Figure 9.5 – Equivalence relation between functions

An associated axiomatization would be of the form

lemma Relational_lemma_1 {l1,l2}: f{l1,l2}(id) <==> g{l1,l2}(id);

where f{l1,l2}(id) and g{l1,l2}(id) are respectively the predicates associated to function f

and g.

9.2.2 Relational properties for Loops

We have seen in Example 4.5 that relational properties on loops can be useful in the verification
of relational properties. Such properties present several challanges:

• The specification of relational loop invariant. A relational loop invariant can potentially
relate different loops from different function bodies. However, in general it is not possible
to refer to a specific loop. The problem can be faced by using a naming system for loops,
for example using the label naming the statement.

• The verification of relational loop invariant. We have presented in Chapter 4 some solu-
tions for this problem, limited to synchronized loop. Thus, loop must be synchronized
by unrolling. More advances solutions can be found in [KKU18, U+17] requiring no
synchronization.

• The use of relational loop invariant in subsequent proofs. We see two solution to this
problem:

– Axiomatization of relational loop invariants. As for procedure contracts, presented
in Section 6.3.2, we define an axiomatization of relational loop invariants using pred-
icates to represent the linked loops. Those predicates are assumed after the loops to
connect the axiomatizations to the loops.



9.2. PERSPECTIVES 137

– Convert loops to procedure calls; we convert the loops into function calls, as pro-
posed in [KKU18], using similar transformations to those proposed in [HKLR13].
The transformation consists in replacing the loop by a recursive procedure call, and
is formalized by the following rule:

{b̃1}call(y)〈t1〉 ∼ c2〈t2〉{b̃2}
{b̃1}while b1 do {c1}〈t1〉 ∼ c2〈t2〉{b̃2}

where state(φc(t1))(y) = if b1 then {c1; call(y)} else {skip}. The benefit of con-
verting loops to procedure calls is that the work proposed in Section 6.3.2 for using
relational procedure contracts can be used. Moreover, the problem of specification
does not arise since we have seen how relational procedure contracts can be defined.

9.2.3 Verification of Functional Dependencies

Functional dependencies clauses (presented in Section 2.1) are not verified in the current im-
plementation of the WP plugin. Moreover, the implementation of Self-Composition in RPP is
based on such clauses, as said in Section 7.2.1. Thus, the Self-Composition transformation may
be erroneous. Therefore, it would be interesting to be able to verify such clauses by expressing
functional dependencies as relational properties, similar to what is proposed in [CMPP11]. For
a potentially modified location x that is specified to depend upon locations x1,...xk, the property
can be expressed by the following relational property (for a given program c):

x1〈1〉= x1〈2〉
∧

...
xk〈1〉= xk〈2〉

 c〈1〉 ∼ c〈2〉{x〈1〉 = x〈2〉}
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Appendix A

Tool Functions

A.1 Collector Functions

The following sections present the set of functions used for collecting locations X, command
names Y, labels L and tags T from (relational/extended) arithmetic expressions, (relational/ex-
tended) boolean expressions and (extended) commands.

A.1.1 Locations

The sets of functions for collecting locations X from (extended) arithmetic expressions, (ex-
tended) boolean expressions and (extended) commands.

Definition A.1. Function Cva : Ea → P(X), returning the set of memory locations used in
an arithmetic expression Ea, is defined by structural induction on arithmetic expressions:

CvaJnK = ∅
CvaJxK = {x}

CvaJa0 opa a1K = CvaJa0K ∪ CvaJa1K.

Definition A.2. Function Ĉva : Êa → P(X), returning the set of memory locations used
in an extended arithmetic expression Êa, is defined by structural induction on extended
arithmetic expressions:

ĈvaJnK = ∅
ĈvaJat(x, l)K = {x}

ĈvaJα0 opa α1K = ĈvaJα0K ∪ ĈvaJα1K.
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Definition A.3. Function Cvb : Eb → P(X), returning the set of memory locations used in
a boolean expression Eb, is defined by structural induction on boolean expressions:

CvbJtrueK = ∅
CvbJfalseK = ∅

CvbJa0 opb a1K = CvaJa0K ∪ CvaJa1K
CvbJb0 opl b1K = CvbJb0K ∪ CvbJb1K

CvbJ¬bK = CvbJbK.

Definition A.4. Function Ĉvb : Êb → P(X), returning the set of memory locations used in
an extended boolean expression Êb, is defined by structural induction on extended boolean
expressions:

ĈvbJtrueK = ∅
ĈvbJfalseK = ∅

ĈvbJα0 opb α1K = ĈvaJα0K ∪ ĈvaJα1K

ĈvbJβ0 opl β1K = ĈvbJβ0K ∪ ĈvbJβ1K

ĈvbJ¬βK = ĈvbJβK

ĈvbJp
n(α1, .., αn)K = ĈvaJα0K ∪ .. ∪ ĈvaJαnK.

Definition A.5. Function Cvc : C→ P(X), returning the set of memory locations used in a
command C, is defined by structural induction on commands:

CvcJskipK = ∅
CvcJx := aK = {x} ∪ CvaJaK
CvcJc0; c1K = CvcJc1K ∪ CvcJc0K

CvcJassert(b)K = CvbJbK
CvcJif b then {c0} else {c1}K = CvbJbK ∪ CvcJc0K ∪ CvcJc1K

CvcJwhile b do {c}K = CvbJbK ∪ CvcJcK
CvcJcall(y)K = ∅.
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Definition A.6. Function Ĉvc : ξc → P(X), returning the set of memory locations used in
an extended command Ĉ, is defined by structural induction on extended commands:

ĈvcJl : skipK = ∅
ĈvcJl : x := aK = {x} ∪ CvaJaK
ĈvcJς0; ς1K = ĈvcJς0K ∪ ĈvcJς1K

ĈvcJl : assert(β)K = ĈvbJβK

ĈvcJl : if b then {ς0} else {ς1}K = CvbJbK ∪ ĈvcJς0K ∪ ĈvcJς1K
ĈvcJl : while b do {ς}K = CvbJbK ∪ ĈvcJςK

ĈvcJl : call(y)K = ∅.

A.1.2 Command Names

The set of functions for collecting command names Y from (extended) commands.

Definition A.7. Function Cf : C → P(Y), returning the set of program names used in a
command C, is defined by structural induction on commands:

Cf JskipK = ∅
Cf Jx := aK = ∅
Cf Jc0; c1K = Cf Jc0K ∪ Cf Jc1K

Cf Jassert(b)K = ∅
Cf Jif b then {c0} else {c1}K = Cf Jc0K ∪ Cf Jc1K

Cf Jwhile b do {c}K = Cf JcK
Cf Jcall(y)K = {y}.
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Definition A.8. Function Ĉf : Ĉ → P(Y), returning the set of program names used in an
extended command Ĉ, is defined by structural induction on extended commands:

Ĉf Jl : skipK = ∅
Ĉf Jl : x := aK = ∅
Ĉf Jς0; ς1K = Ĉf Jς0K ∪ Ĉf Jς1K

Ĉf Jl : assert(β)K = ∅
Ĉf Jl : if b then {ς0} else {ς1}K = Ĉf Jς0K ∪ Ĉf Jς1K

Ĉf Jl : while b do {ς}K = Ĉf JςK
Ĉf Jl : call(y)K = {y}.

A.1.3 Labels

The set of functions used for collecting labels L from extended arithmetic expressions, extended
boolean expressions and extended commands.

Definition A.9. Function Ĉla : Êa → P(L), returning the set of labels used in an ex-
tended arithmetic expression Êa, is defined by structural induction on extended arithmetic
expressions:

ĈlaJnK = ∅
ĈlaJat(x, l)K = {l}

ĈlaJα0 opa α1K = ĈlaJα0K ∪ ĈlaJα1K.

Definition A.10. Function Ĉlb : Êb → P(L), returning the set of labels used in an extended
boolean expression Êb, is defined by structural induction on extended boolean expressions:

ĈlbJtrueK = ∅
ĈlbJfalseK = ∅

ĈlbJα0 opb α1K = ĈlaJα0K ∪ ĈlaJα1K

ĈlbJβ0 opl β1K = ĈlbJβ0K ∪ ĈlbJβ1K

ĈlbJ¬βK = ĈlbJβK

ĈlbJp
n(α1, .., αn)K = ĈlaJα0K ∪ .. ∪ ĈvaJαnK.
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Definition A.11. Function Ĉlc : Ĉ → P(L), returning the set of labels defined in an ex-
tended command Ĉ, is defined by structural induction on extended commands:

ĈlcJl : skipK = {l}
ĈlcJl : x := aK = {l}
ĈlcJς0; ς1K = ĈlcJς0K ∪ ĈlcJς1K

ĈlcJl : assert(β)K = {l}
ĈlcJl : if b then {ς0} else {ς1}K = ĈlcJς0K ∪ ĈlcJς1K ∪ {l}

ĈlcJl : while b do {ς}K = ĈlcJςK ∪ {l}
ĈlcJl : call(y)K = {l}.

A.1.4 Tags

Tags

The set of functions for collecting tags T from relational (extended) arithmetic expressions,
relational (extended) boolean expressions.

Definition A.12. Function C̃ta : Ẽa → P(T), returning the set of tags used in a relational
arithmetic expression Ẽa, is defined by structural induction on relational arithmetic expres-
sions:

C̃taJnK = ∅
C̃taJx〈t〉K = {t}

C̃taJã0 opa ã1K = C̃taJã0K ∪ C̃taJã1K

Definition A.13. Function C̃tb : Ẽb → P(T), returning the set of tags used in a relational
boolean expression Ẽb, is defined by structural induction on relational boolean expressions:

C̃tbJtrueK = ∅
C̃tbJfalseK = ∅

C̃tbJã0 opb ã1K = C̃taJã0K ∪ C̃taJã1K

C̃tbJb̃0 opl b̃1K = C̃tbJb̃0K ∪ C̃tbJb̃1K
C̃tbJ¬b̃K = C̃tbJb̃K.
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Definition A.14. Function ˜̂Cta :
˜̂Ea → P(T), returning the set of tags used in a relational

extended arithmetic expression ˜̂Ea, is defined by structural induction on relational extended
boolean expressions:

˜̂CtaJnK = ∅
˜̂CtaJat(x, l)〈t〉K = {t}
˜̂CtaJα0 opa α1K =

˜̂CtaJα0K ∪ ˜̂CtaJα1K.

Definition A.15. Function ˜̂Ctb :
˜̂Eb → (T → P(T)), returning the set of tags used in a

relational extended boolean expression ˜̂Eb, is defined by structural induction on relational
exended boolean expressions:

˜̂CtbJtrueK = ∅
˜̂CtbJfalseK = ∅

˜̂CtbJα0 opb α1K =
˜̂CtaJα0K ∪ ˜̂CtaJα1K

˜̂CtbJβ0 opl β1K =
˜̂CtbJβ0K ∪ ˜̂CtbJβ1K

˜̂CtbJ¬βK =
˜̂CtbJβK

˜̂CtbJp
n(α1, .., αn)K =

˜̂CtaJα0K ∪ .. ∪ ˜̂CtaJαnK.

Locations

The sets of functions for collecting locations X from relational (extended) arithmetic expressions
and relational (extended) boolean expressions, associated to a given tag.

Definition A.16. Function C̃va : Ẽa → (T→ P(X)), returning the set of variables used in
a relational arithmetic expression Ẽa for a given tag, is defined by structural induction on
relational arithmetic expressions:

C̃vaJnKt′ = ∅
C̃vaJx〈t〉Kt′ = {x} if t = t′

C̃vaJx〈t〉Kt′ = ∅ if t 6= t′

C̃vaJã0 opa ã1Kt′ = C̃vaJã0Kt′ ∪ C̃vaJã1Kt′.
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Definition A.17. Function C̃vb : Ẽb → (T → P(X)), returning the set of variables used
in a relational boolean expression Ẽb for a given tag, is defined by structural induction on
relational boolean expressions:

C̃vbJtrueKt
′ = ∅

C̃vbJfalseKt
′ = ∅

C̃vbJã0 opb ã1Kt′ = C̃vaJã0Kt′ ∪ C̃vaJã1Kt′

C̃vbJb̃0 opl b̃1Kt′ = C̃vbJb̃0Kt
′ ∪ C̃vbJb̃1Kt

′

C̃vbJ¬b̃Kt
′ = C̃vbJb̃Kt

′.

Definition A.18. Function ˜̂Cva :
˜̂Ea → (T → P(X)), returning the set of variables used

in a relational extended arithmetic expression ˜̂Ea for a given tag, is defined by structural
induction on relational extended arithmetic expressions:

˜̂CvaJnKt′ = ∅
˜̂CvaJat(x, l)〈t〉Kt′ = {x} if t = t′

˜̂CvaJat(x, l)〈t〉Kt′ = ∅ if t 6= t′

˜̂CvaJα0 opa α1Kt′ =
˜̂CvaJα0Kt′ ∪ ˜̂CvaJα1Kt′.

Definition A.19. Function ˜̂Cvb :
˜̂Eb → (T→ P(X)), returning the set of variables used in a

relational extended boolean expression ˜̂Eb for a given tag, is defined by structural induction
on relational extended boolean expressions:

˜̂CvbJtrueKt
′ = ∅

˜̂CvbJfalseKt
′ = ∅

˜̂CvbJα0 opb α1Kt′ =
˜̂CvaJα0Kt′ ∪ ˜̂CvaJα1Kt′

˜̂CvbJβ0 opl β1Kt′ =
˜̂CvbJβ0Kt′ ∪ ˜̂CvbJβ1Kt′

˜̂CvbJ¬βKt′ = ˜̂CvbJβKt′

˜̂CvbJp
n(α1, .., αn)Kt′ = ˜̂CvaJα0Kt′ ∪ .. ∪ ˜̂CvaJαnKt′.
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Labels

The sets of functions for collecting labels L from relational extended arithmetic expressions and
relational extended boolean expressions, associated to a given tag.

Definition A.20. Function ˜̂Cla :
˜̂Ea → (T → P(L)), returning the set of labels used

in a relational extended arithmetic expression ˜̂Ea for a given tag, is defined by structural
induction on relalational extended arithmetic expressions:

˜̂ClaJnKt′ = ∅
˜̂ClaJat(x, l)〈t〉Kt′ = {l} if t = t′

˜̂ClaJat(x, l)〈t〉Kt′ = ∅ if t 6= t′

˜̂ClaJα0 opa α1Kt′ =
˜̂ClaJα0Kt′ ∪ ˜̂ClaJα1Kt′.

Definition A.21. Function ˜̂Clb :
˜̂Eb → (T → P(L)), returning the set of labels used in a

relational extended boolean expression ˜̂Eb for a given tag, is defined by structural induction
on relational extended boolean expressions:

˜̂ClbJtrueKt
′ = ∅

˜̂ClbJfalseKt
′ = ∅

˜̂ClbJα0 opb α1Kt′ =
˜̂ClaJα0Kt′ ∪ ˜̂ClaJα1Kt′

˜̂ClbJβ0 opl β1Kt′ =
˜̂ClbJβ0Kt′ ∪ ˜̂ClbJβ1Kt′

˜̂ClbJ¬βKt′ = ˜̂ClbJβKt′

˜̂ClbJp
n(α1, .., αn)Kt′ = ˜̂ClaJα0Kt′ ∪ .. ∪ ˜̂ClaJαnKt′.

A.2 Unique labels

The following section presents the functions Û , returning the set of labels used in an extended
command Ĉ. The function returns ⊥ if there are duplicated labels in the command. Function
liftu (defined in Section 5.1.4) is used to merge two sets of labels, and returns ⊥ if the intersec-
tion of the sets is not empty.
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Definition A.22. Function Û : Ĉ → P(L)⊥, returning the set of labels used in an ex-
tended command Ĉ or ⊥ if there are duplicated labels, is defined by structural induction on
extended commands:

ÛJl : skipK = {l}
ÛJl : x := aK = {l}
ÛJς0; ς1K = liftu(ÛJς0K, ÛJς1K)

ÛJl : assert(β)K = {l}
ÛJl : if b then {ς0} else {ς1}K = liftu({l}, liftu(ÛJς0K, ÛJς1K))

ÛJl : call(y)K = {l}
ÛJl : while b do {ς}K = liftu({l}, ÛJςK).

Note that function Û is not collecting labels in called procedures.

A.3 Renaming Functions

The following sections presents the set of functions used for renaming tags and locations in the
case of relational arithmetic expression and relational boolean expression.

A.3.1 Location

The following sections presents the set of functions used for renaming a location into a given
location for a given tag, in the case of relational arithmetic expression and relational boolean
expression.

Definition A.23. Function R̃va : Ẽa → (T × X × X → Ẽa), renaming a location in
a relational arithmetic expression Ẽa into a given location for a given tag, is defined by
structural induction on relational arithmetic expressions:

R̃vaJnK(t′, x′, x′′) = JnK

R̃vaJx〈t〉K(t′, x′, x′′) =

{
Jx〈t〉K if x 6= x′ or t 6= t′

Jx′′〈t〉K if x = x′ and t = t′

R̃vaJã0 opa ã1K(t′, x′, x′′) = JR̃vaJã0K(t′, x′, x′′) opa R̃vaJã1K(t′, x′, x′′)K.
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Definition A.24. Function R̃vb : Ẽb → (T × X × X → Ẽb), renaming a location in a
relational boolean expression Ẽb into a given location for a given tag, is defined by structural
induction on relational boolean expressions:

R̃vbJtrueK(t
′, x′, x′′) = JtrueK

R̃vbJfalseK(t
′, x′, x′′) = JfalseK

R̃vbJã0 opb ã1K(t′, x′, x′′) = JR̃vaJã0K(t′, x′, x′′) opb R̃vaJã1K(t′, x′, x′′)K

R̃vbJb̃0 opl b̃1K(t′, x′, x′′) = JR̃vbJb̃0K(t
′, x′, x′′) opl R̃vbJb̃1K(t

′, x′, x′′)K

R̃vbJ¬b̃Kt
′ = J¬R̃vbJb̃Kt

′K.

A.3.2 Tags

The following sections presents the set of functions used for renaming all tags or a tag into a
given tag, in the case of relational arithmetic expression and relational boolean expression.

Definition A.25. Function R̃tta : Ẽa → (T → Ẽa), renaming the set of tags used in a
relational arithmetic expression Ẽa into a given tag, is defined by structural induction on
relational arithmetic expressions:

R̃ttaJnKt′ = JnK

R̃ttaJx〈t〉Kt′ = Jx〈t′〉K
R̃ttaJã0 opa ã1Kt′ = JR̃ttaJã0Kt′ opa R̃ttaJã1Kt′K.

Definition A.26. Function R̃ttb : Ẽb → (T → Ẽb), renaming the set of tags used in
a relational boolean expression Ẽb into a given tag, is defined by structural induction on
relational boolean expressions:

R̃ttbJtrueKt
′ = JtrueK

R̃ttbJfalseKt
′ = JfalseK

R̃ttbJã0 opb ã1Kt′ = JR̃ttaJã0Kt′ opb R̃ttaJã1Kt′K

R̃ttbJb̃0 opl b̃1Kt′ = JR̃ttbJb̃0Kt
′ opl R̃ttbJb̃1Kt

′K

R̃ttbJ¬b̃Kt
′ = J¬R̃ttbJb̃Kt

′K.
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Definition A.27. Function R̃ta : Ẽa → (T × T → Ẽa), renaming a tag in a relational
arithmetic expression Ẽa into a given tag, is defined by structural induction on relational
arithmetic expressions:

R̃taJnK(t′, t′′) = JnK

R̃taJx〈t〉K(t′, t′′) =

{
Jx〈t〉K if t 6= t′

Jx〈t′′〉K if t = t′

R̃taJã0 opa ã1K(t′, t′′) = JR̃taJã0K(t′, t′′) opa R̃taJã1K(t′, t′′)K.

Definition A.28. Function R̃tb : Ẽb → (T × T → Ẽb), renaming a tag in a relational
boolean expression Ẽb into a given tag, is defined by structural induction on relational
boolean expressions:

R̃tbJtrueK(t
′, t′′) = JtrueK

R̃tbJfalseK(t
′, t′′) = JfalseK

R̃tbJã0 opb ã1Kt′ = JR̃taJã0K(t′, t′′) opb R̃taJã1K(t′, t′′)K

R̃tbJb̃0 opl b̃1Kt′ = JR̃tbJb̃0K(t
′, t′′) opl R̃tbJb̃1K(t

′, t′′)K

R̃tbJ¬b̃K(t
′, t′′) = J¬R̃tbJb̃K(t

′, t′′)K.

A.4 Delete Functions

The following sections present the set of functions used for removing all tags from relational
(extended) arithmetic expression and relational (extended) boolean expression.

A.4.1 Tags

Definition A.29. Function D̃ta : Ẽa → Ea, deleting all tags used in a relational arithmetic
expression Ẽa, is defined by structural induction on relational arithmetic expressions:

D̃taJnK = JnK

D̃taJx〈t〉K = JxK

D̃taJã0 opa ã1K = JD̃taJã0K opa D̃taJã1KK.
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Definition A.30. Function D̃tb : Ẽb → Eb, deleting all tags used in a relational boolean
expression Ẽb, is defined by structural induction on relational boolean expressions:

D̃tbJtrueK = JtrueK

D̃tbJfalseK = JfalseK

D̃tbJã0 opb ã1K = JD̃taJã0K opb D̃taJã1KK

D̃tbJb̃0 opl b̃1K = JD̃tbJb̃0K opl D̃tbJb̃1KK
D̃tbJ¬b̃K = J¬D̃tbJb̃KK.

Definition A.31. Function ˜̂Dta :
˜̂Ea → Êa, deleting all tags used in an relational extended

arithmetic expressions Êa, is defined by structural induction on relational extended arith-
metic expressions:

˜̂DtaJnK = JnK
˜̂DtaJat(x, l)〈t〉K = Jat(x, l)K
˜̂DtaJα̃0 opa α̃1K = J ˜̂DtaJα̃0K opa

˜̂DtaJα̃1KK.

Definition A.32. Function ˜̂Dtb :
˜̂Eb → Êb, deleting all tags used in a relationl extended

boolean expressions Êb, is defined by structural induction on relational extended boolean
expressions:

˜̂DtbJtrueK = JtrueK
˜̂DtbJfalseK = JfalseK

˜̂DtbJα̃0 opb α̃1K = J ˜̂DtaJα̃0K opb
˜̂DtaJα̃1KK

˜̂DtbJβ̃0 opl β̃1K = J ˜̂DtbJβ̃0K opl
˜̂DtbJβ̃1KK

˜̂DtbJ¬β̃K = J¬ ˜̂DtbJβ̃KK
˜̂DtbJp

n(α̃1, .., α̃n)K = Jpn(
˜̂DtaJα̃0K, ..,

˜̂DtaJα̃nK)K.

A.5 Add Functions

The following sections present the set of functions used for adding tags T to arithmetic expres-
sion and boolean expression.
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A.5.1 Tags

Definition A.33. Function Ãta : Ea → Ẽa, adding a tag in an arithmetic expression Ea
to get a relational arithmetic expression Ẽa, is defined by structural induction on arithmetic
expressions:

ÃtaJnK = JnK

ÃtaJxKt = Jx〈t〉K
ÃtaJa0 opa a1Kt = JÃtaJa0Kt opa ÃtaJa1KtK.

Definition A.34. Function Ãtb : Eb → Ẽb, adding a tag in a boolean expression Eb to get a
relational boolean expression Ẽb, is defined by structural induction on boolean expressions:

ÃtbJtrueKt = JtrueK

ÃtbJfalseKt = JfalseK

ÃtbJa0 opb a1Kt = JÃtaJa0Kt opb ÃtaJa1KtK

ÃtbJb0 opl b1Kt = JÃtbJb0Kt opl ÃtbJb1KtK
ÃtbJ¬bKt = J¬ÃtbJbKtK.
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Appendix B

Translation Function T̂c

In the following sections, we define function T̂c for the translation of commands if and while
into a formula q.

B.1 Command if

In this section we focus on the definition of function T̂c for command if.

Definition B.1. Function T̂c : Ĉ → (Ξ̂ × V → V ), translating a command Ĉ (case of
condition) into an formula of Q, is defined by:

T̂cJl : if b then {ς0} else {ς1}K(q, uQ,m, (θ, δ)) =

(Jq ∧ (q′ ⇒ (qς1 ∧m′ = mς1)) ∧ (¬q′ ⇒ (qς2 ∧m′ = mς2))K, uQ′,m′, (θ[l← m], δς2))

where
(i) (q′, δ′) = TbJbK(m, δ),
(ii) m′ = Nvm ,
(iii) (qς1 , uQς1 ,mς1 , (_, δς1)) = T̂cJς0K(T, ∅,m, (θ[l← m], δ′)),

(iv) (qς2 , uQς2 ,mς2 , (_, δς2)) = T̂cJς1K(T, ∅,m, (θ[l← m], δς1)),

(v) uQ
′ =

{qu |qu = Jq ∧ q′ ⇒ qtK and qt ∈ uQς1}∪
{qu |qu = Jq ∧ ¬q′ ⇒ qtK and qt ∈ uQς2} ∪ uQ.

(i) First, we translate the condition b into a formula q′.

(ii) Then, we define a new array m′, using function Nvm , which models the state after the
command.

(iii) Then, we translate the command for the case where b is true. Notice that the translation
function T̂c is called with the true formula as parameter. We get a formula qς1 and a set of
sub-formulas uQς1 .

155



156 APPENDIX B. TRANSLATION FUNCTION T̂C

(iv) Then, we translate the command for the case where b is false. Notice that the translation
function T̂c is called with the true formula as parameter. We get a formula qς2 and a set of
sub-formulas uQς2 .

(v) Then, we add q and respectively q′ and ¬q′ to the sub proof. Since the verification con-
ditions for each branch are generated only from the fact true (T ), we add the strongest
postcondition generated up to this point (q) and that b is true or false (q′ and ¬q′) to get
the complete strongest postcondition.

Finally, we add to q the fact that we have either qς1 or qς2 . We also add the fact that the array
variable (m′), which models the memory state after the evaluation of the command, is either
equal to the array variable which models the state after the command evaluation when the con-
dition is true (mς1), or the array variable which models the state after the command evaluation
when the condition is false (mς2).

Example B.1. We consider the following program composed of assignments and a condition:

l1 : if x1 > 1 then {
l2 : x2 := 2

} else {
l3 : x2 := 3

};
l4 : x2 := x2 + 5

Using function T̂c, we get the following formula:

l1 : if x1 > 1 then {
l2 : x2 := 2

} else {
l3 : x2 := 3

};
l4 : x2 := x2 + 5

(ml1 [1] > 1⇒
(mnext l2 = ml1 [2← 2] ∧ml4 = mnext l2))

∧
(¬(ml1 [1] > 1)⇒

(mnext l3 = ml1 [2← 3] ∧ml4 = mnext l3))
∧mnext = ml4 [2← ml4 [2] + 5]

We can recognize the two parts of the formula corresponding to the two branches of the condition
(one with ml1 [1] > 1, and the other with ¬ml1 [1] > 1).

B.2 Command while

In this section we focus on the definition of function T̂c for command while. As mentioned
in Section 3.3, loop invariants are used to summarize the behavior of a loop. Moreover, frame
rules can also be defined for loops, as shown in Section 2.1. Thus, we define a new syntax for
loop while b inv (β, uX) do {ς}, where we can define the loop invariant and the frame rule. As
the loop invariant must hold at the beginning of each loop iteration, we define a reserved label
Here, like label Pre and Post, to denote this state.

l1 : while x1 > 0 inv (at(x1, Here) > 0 ∨ at(x1, Here) = 0, x1) do {
l2 : x1 := x1 − 1

}
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We now define function T̂c for the case of loop.

Definition B.2. Function T̂c : Ĉ→ (Ξ̂×V → V ), translating a command Ĉ (case of loop)
into a formula of Q, is defined by:

T̂cJl : while b inv βI , {x1, ..., xn} do {ς}K(q, uQ,m, (θ, δ)) =

(Jq ∧ qe ∧ qi ∧ ¬qb ∧m′ = m[e1 ← v1]...[en ← vn]K, uQ ∪ uQe ∪ uQp ∪ uQf ,m
′, (θ′, δn))

where
I.
(i) (qe, (_, δe)) = T̂bJβIK(θ[l← m][Here← m], δ)
(ii) uQe = {q ⇒ qe},

II.
(i) m′ = Nvm
(ii) (qb, δ

′) = TbJbK(m′, δe),
(iii) (qi, (θ

′, δ′′)) = T̂bJβIK(θ[l← m][Here← m′], δ′),
(iv) v1 = Nvn , ..., vn = Nvn ,
(v) (δ1, e1) = lift(δ′′, x1), ..., (δn, en) = lift(δn−1, xn),

III.
(i) mp = Nvm
(ii) (q′b, δp) = TbJbK(mp, δn),

(iii) (q′i, (θp, δ
′
p)) = T̂bJβIK(θ[l← m][Here← mp], δp),

(iv) (qς , uQς ,m
′
p, (_, δ′′p)) =

T̂cJςK(Jq ∧ qe ∧ q′i ∧ q′b ∧mp = m[e1 ← v1]...[en ← vn]K, ∅,mp, (θp, δ
′
p)),

(v) (qp, _)) = T̂bJβIK(θ[l← m][Here← m′p], δ
′′
p),

(vi) uQp = {qς ⇒ qp} ∪ uQς ,

IV. uQf = V̂Cfl(ςc, bI , b, q, {x1, ..., xn})

T̂cJl : while b do {ς}K(q, uQ,m, (θ, δ)) = (q, uQ,m
′, (θ[l← m], δ))

where m′ = Nvm .

I. We verify that the invariant is established at loop entry:

(i) First, we translate the loop invariant βI into a formula qe.

(ii) Then, we define the verification condition uQe stating that the strongest postcondition
generated up to this point implies the loop invariant qe.

We add uQe to the set of verification conditions .



158 APPENDIX B. TRANSLATION FUNCTION T̂C

II. We assume the invariant, the negation of the loop condition and the frame rule after the
loop:

(i) First, we define a new array m′ which models the state after the loop.

(ii) Then, we translate the loop condition b into a formula qb.

(iii) Then, we translate the invariant βI into a formula qi, with the label Here associated
to m′.

(iv) Then, for each assigned location, we define a new natural variable.

(iv) Then, for each assigned location, we get the corresponding index in the array repre-
senting the memory state.

Finally, we add to q the invariant qi, the negation of the condition ¬qb and the frame rule.

III. We verify that the invariant is preserved by the loop body:

(i) First, we define a new array mp which models the state for an arbitrary loop iteration.

(ii) Then, we translate the loop condition b into a formula qb.

(iii) Then, we translate the invariant βI into a formula q′i, with the label Here associated
to mp.

(iv) Then, we translate the body of the loop into a formula. Function T̂c is called with
as strongest postcondition formula q, the formula corresponding to the invariant at
loop entry, the formula corresponding to the invariant and the loop condition at state
mp and the frame rule. We get a strongest postcondition qς and a set of verification
conditions uQς .

(v) Then, we translate the invariant βI into a formula qp, with the label Here associated
to m′p.

(vi) Then, we define the verification condition uQp stating that the strongest postcondition
qς implies the loop invariant at the end of the loop body qp.

We add to the set of verification conditions uQp and uQc.

III. We verify the frame rule: As for the definition of function T̂c, we assume the existence of
a function V̂Cfl : Ĉ × Êb × Eb × Q × P(X) → P(Q) that returns the set of verification
conditions that must be valid in order for the frame rule of the loop P(X) to be valid.

Example B.2. We consider the example of function loop shown on Figure 2.3 returning always
10. We can define the equivalent program using the R-WHILE* syntax:

{
true

}
l1 : if x >= 10 then {

l2 : x := 10;
} else {

l3 : while x < 10 inv (at(x,Here) <= 10, x) do {
l4 : x := x+ 1;

}
}

{
at(x, Post) = 10

}
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Using function V̂Ch (defined in Section 5.3.4), for generating the verification condition for
a Hoare Triple, we get the following formulas (the formulas for the frame rule excluded):

• The main formula corresponding to the triple:

T∧
((ml1 [1] >= 10⇒ (T ∧mnext l2 = ml1 [1← 10]) ∧mPost = mnext l2))

∧
(¬(ml1 [1] >= 10)⇒

(T ∧ml1 [1] <= 10 ∧mnext l3 [1] <= 10 ∧ ¬(mnext l3 [1] < 10) ∧mnext l3 = ml1 [1← v]

∧mPost = mnext l3))

⇒ mPost[1] = 10

We can recognize the two parts of the formula corresponding to the two branches of the
condition (one with ml1 [1] >= 10, and the other with ¬ml1 [1] >= 10).

• A sub formula corresponding to the fact that the invariant is holding at loop entry:

T ∧ ¬(ml1 [1] >= 10)⇒ T ⇒ ml1 [1] <= 10

• A sub formula corresponding to the fact that the loop invariant is preserved by the loop
body:

(* Pre-condition *)

T∧
(* Else *)

¬(ml1 [1] >= 10)⇒
(T∧

(*Loop invariant holds at loop entry *)

ml1 [1] <= 10∧
(* Loop invariant holds*)

ml_begin[1] <= 10∧
(* Loop condition holds *)

ml_begin[1] < 10∧
(* Frame rule*)

ml_begin[1] = ml1 [1← v]∧
(* Assignment *)

ml_end = ml_begin[1← ml_begin[1] + 1]

⇒ ml_end[1] <= 10)
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Some similarity can be noted with the results, shown in Section 2.2, of WP for the same
objective. We recognize the precondition (0 <= x which is always true in our case), the
fact that the boolean condition of the if is false (in green), the loop invariant holds at the
beginning of the current loop step (in orange), the loop condition holds at the beginning
of the current loop step (in violet) and the loop body, corresponding to an assignment (in
purple), and finally the loop invariant holds at the end of the loop body (in blue). Note
that the frame rule and the fact that the loop invariant holds at loop entry are not present in
the results shown in Section 2.2 due to WP simplification reason. The initial assignment
to local variable is not present in the above formula since we have no local variables.
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Ãtb , function adding a tag in a boolean expres-

sion Eb , 151

Eb, set of boolean expressions, 27
body , function returning the command for a

given tag t and environment φc, 43
B, set of boolean values, 27

Cf , function returning the set of program names
used in a command C, 141
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formula of Q, 75

T̂a, function translating an arithmetic expres-
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Titre: Propriétés relationnnelles pour la spécification et la vérification de programmes C avec Frama-C
Mots-clefs: Vérification déductive, propriétés relationnelles, Frama-C

Les techniques de vérification déductive fournissent des
méthodes puissantes pour la vérification formelle des
propriétés exprimées dans la Logique de Hoare. Dans
cette formalisation, également connue sous le nom de
sémantique axiomatique, un programme est considéré
comme un transformateur de prédicat, où chaque pro-
gramme c exécuté sur un état vérifiant une propriété P
conduit à un état vérifiant une autre propriété Q.

Les propriétés relationnelles, de leur côté, lient un
ensemble de programmes à deux propriétés. Plus pré-
cisément, une propriété relationnelle est une propriété
concernant n programmes c1, ...., cn, indiquant que si
chaque programme ci commence dans un état si et ter-
mine dans un état s′i tel que P (s1, ...., sn) soit vérifié,
alors Q(s′1, ..., s

′
n) est vérifié. Ainsi, les propriétés re-

lationnelles invoquent tout nombre fini d’exécutions de
programmes éventuellement dissemblables.

De telles propriétés ne peuvent pas être exprimées
directement dans le cadre traditionnel de la vérification
déductive modulaire, car la sémantique axiomatique ne
peut se référer à deux exécutions distinctes d’un pro-

gramme c, ou à des programmes différents c1 et c2.
Cette thèse apporte deux solutions à la vérification

déductive des propriétés relationnelles. Les deux ap-
proches permettent de prouver une propriété relation-
nelle et de l’utiliser comme hypothèse dans des véri-
fications ultérieures. Nous modélisons ces solutions à
l’aide d’un mini-langage impératif contenant des appels
de procédures.

Les deux solutions sont implémentées dans le
contexte du langage de programmation C, de la plate-
forme FRAMA-C, du langage de spécification ACSL et
du plugin de vérification déductive WP. Le nouvel ou-
til, appelé RPP, permet de spécifier une propriété rela-
tionnelle, de la prouver en utilisant la vérification déduc-
tive classique, et de l’utiliser comme hypothèse dans la
preuve d’autres propriétés. L’outil est évalué sur une sé-
rie d’exemples illustratifs.

Des expériences ont également été faites sur la vé-
rification à l’exécution de propriétés relationnelles et la
génération de contre-exemples lorsqu’une propriété ne
peut être prouvée.

Title: Relational properties for specification and verification of C programs in Frama-C
Keywords: Deductive verification, relational properties, Frama-C

Deductive verification techniques provide powerful
methods for formal verification of properties expressed
in Hoare Logic. In this formalization, also known as
axiomatic semantics, a program is seen as a predicate
transformer, where each program c executed on a state
verifying a property P leads to a state verifying another
property Q.

Relational properties, on the other hand, link n pro-
gram to two properties. More precisely, a relational
property is a property about n programs c1, ..., cn stating
that if each program ci starts in a state si and ends in a
state s′i such that P (s1, ..., sn) holds, then Q(s′1, ..., s

′
n)

holds. Thus, relational properties invoke any finite num-
ber of executions of possibly dissimilar programs.

Such properties cannot be expressed directly in the
traditional setting of modular deductive verification, as
axiomatic semantics cannot refer to two distinct execu-
tions of a program c, or different programs c1 and c2.

This thesis brings two solutions to the deductive ver-
ification of relational properties. Both of them make it
possible to prove a relational property and to use it as
a hypothesis in the subsequent verifications. We model
our solutions using a small imperative language contain-
ing procedure calls.

Both solutions are implemented in the context of the
C programming language, the FRAMA-C platform, the
ACSL specification language and the deductive verifica-
tion plugin WP. The new tool, called RPP, allows one
to specify a relational property, to prove it using classic
deductive verification, and to use it as hypothesis in the
proof of other properties. The tool is evaluated over a
set of illustrative examples.

Experiments have also been made on runtime
checking of relational properties and counterexample
generation when a property cannot be proved.

Université Paris-Saclay
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Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Remerciements
	Résumé étendu en français
	Introduction
	Formal Verification
	Deductive Verification
	Relational Properties
	Notations
	Examples
	Verification of Relational Properties

	Motivations
	Contribution
	Outline

	Frama-C
	The ACSL specification language
	The WP plugin
	Simple Example
	Advanced Example


	Context
	Notations
	Set notations
	Syntax and Semantics notations
	Monomorphic First-Order Logic

	While Language with Procedure calls
	Program Syntax
	Program Evaluation

	Hoare Triple

	Background on Relational Property Verification
	Relational Properties
	Relational Hoare Logic
	Minimal Relational Hoare Logic
	Extended Minimal Relational Hoare Logic
	Relational Hoare Logic and Procedures

	Self-Composition
	Product Program
	Minimal Product Program
	Extended Minimal Product Program
	Product Program and Procedures


	Extension
	Extended R-While Language
	Extension of Arithmetic Expressions
	Extension of Boolean Expressions
	Extension of Commands
	Well Defined Program

	Hoare Triple
	Verification Conditions
	Translation of Ea and Eb
	Translation of a and b
	Translation of 
	Verification of Hoare Triples


	Source code transformation
	Relational Properties and Labels
	Self Composition
	Axiomatisation of Relational Properties
	Using Relational Properties in Relational Hoare Logic
	Using Relational Properties with Self-Composition


	Relational Properties for C programs
	Specification language
	From R-While * to C
	Functions with Parameters

	Code Transformation
	From R-While * to C
	Functions with Parameters
	Support of Pointers

	Relational Property Prover (RPP)
	Internal Examples
	Comparator Functions
	Counterexample Generation
	Runtime Assertion Checking


	Direct Translation of Relational Properties
	Direct Translation of Relational Properties
	Translation of a and b
	Verification of Relational Properties
	Relational Properties and Pointers
	Implementation in RPP

	Extended Axiomatization
	Alternative axiomatization
	Connection between axiomatization and the procedures


	Conclusion
	Summary
	Perspectives
	Relational Properties Specification
	Relational properties for Loops
	Verification of Functional Dependencies


	Appendix Tool Functions
	Collector Functions
	Locations
	Command Names
	Labels
	Tags

	Unique labels
	Renaming Functions
	Location
	Tags

	Delete Functions
	Tags

	Add Functions
	Tags


	Appendix Translation Function c
	Command if
	Command while


