
HAL Id: tel-02402056
https://theses.hal.science/tel-02402056

Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable algorithms for large-scale machine learning
problems : Application to multiclass classification and

asynchronous distributed optimization
Bikash Joshi

To cite this version:
Bikash Joshi. Scalable algorithms for large-scale machine learning problems : Application to multiclass
classification and asynchronous distributed optimization. Artificial Intelligence [cs.AI]. Université
Grenoble Alpes, 2017. English. �NNT : 2017GREAM046�. �tel-02402056�

https://theses.hal.science/tel-02402056
https://hal.archives-ouvertes.fr

 THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE GRENOBLE
ALPES

Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Bikash JOSHI

Thèse dirigée par Massih-Reza AMINI, Professeur, Université
Grenoble Alpes, et
codirigée par Franck IUTZELER Maitre de Conférences ,
Université Grenoble Alpes

préparée au sein du Laboratoire Laboratoire d'Informatique de
Grenoble
dans l'École Doctorale Mathématiques, Sciences et technologies
de l'information, Informatique

Algorithmes d'apprentissage pour les grandes
masses de données : Application à la
classification multi-classes et à l'optimisation
distribuée asynchrone

Scalable Algorithms for Large-scale Machine
Learning Problems:Application to Multiclass
Classification and Asynchronous Distributed
Optimization

Thèse soutenue publiquement le 26 septembre 2017,
devant le jury composé de :

Monsieur MASSIH-REZA AMINI
PROFESSEUR, UNIVERSITÉ GRENOBLE ALPES, Directeur de thèse
Monsieur FRANK IUTZELER
MAITRE DE CONFÉRENCES ,UNIVERSITÉ GRENOBLE ALPES, Co-
directeur de thèse
Monsieur STEPHANE CANU
PROFESSEUR, INSA ROUEN, Rapporteur
Monsieur THIERRY ARTIERES
PROFESSEUR, ECOLE CENTRALE DE MARSEILLE, Rapporteur
Monsieur JERÔME MALICK
CHERCHEUR, CNRS DELEGATION ALPES, Président
Madame MARIANNE CLAUSEL
PROFESSEUR, UNIVERSITE DE LORRAINE, Examinateur

i

Abstract
This thesis focuses on developing scalable algorithms for large scale machine learning.

In this work, we present two perspectives to handle large data. First, we consider the

problem of large-scale multiclass classification. We introduce the task of multiclass

classification and the challenge of classifying with a large number of classes. To alle-

viate these challenges, we propose an algorithm which reduces the original multiclass

problem to an equivalent binary one. Based on this reduction technique, we introduce

a scalable method to tackle the multiclass classification problem for very large number

of classes and perform detailed theoretical and empirical analyses.

In the second part, we discuss the problem of distributed machine learning. In

this domain, we introduce an asynchronous framework for performing distributed

optimization. We present application of the proposed asynchronous framework on two

popular domains: matrix factorization for large-scale recommender systems and large-

scale binary classification. In the case of matrix factorization, we perform Stochastic

Gradient Descent (SGD) in an asynchronous distributed manner. Whereas, in the

case of large-scale binary classification we use a variant of SGD which uses variance

reduction technique, SVRG as our optimization algorithm.

ii

iii

Résumé
L’objectif de cette thèse est de développer des algorithmes d’apprentissage adaptés aux

grandes masses de données. Dans un premier temps, nous considérons le problème de

la classification avec un grand nombre de classes. Afin d’obtenir un algorithme adapté

à la grande dimension, nous proposons un algorithme qui transforme le problème

multi-classes en un problème de classification binaire que nous sous-échantillonnons

de manière drastique. Afin de valider cette méthode, nous fournissons une analyse

théorique et expérimentale détaillée. Dans la seconde partie, nous approchons le

problème de l’apprentissage sur données distribuées en introduisant un cadre asyn-

chrone pour le traitement des données. Nous appliquons ce cadre à deux applications

phares : la factorisation de matrice pour les systèmes de recommandation en grande

dimension et la classification binaire.

iv

v

Acknowledgments
First and foremost, I would like to express my sincere gratitude to my thesis su-

pervisor, Massih-Reza Amini, for his continuous support and guidance for this thesis.

I really appreciate his knowledge and kindness which made this work possible and

always allowed me to work in a stress free environment. I also like to thank my co-

supervisor Franck Iutzeler for his valuable guidance and motivation for this thesis. I

was always impressed by his brilliance and energy for research.

My appreciation also extends to my jury members for their interesting questions

and comments during my thesis defense. Moreover, I would like to thank my theis re-

viewers for carefully reviewing my thesis report and giving very insightful comments,

which immensely helped me to improve the quality of my thesis report.

I am also thankful to the AMA laboratory for providing me the required resources

and workspace for conducting my research. I also like to thank my lab colleagues,

with whom I spent a wonderful time.

Last but not at all the least, I would like express my gratitude to all my family

members for always motivating me and believing in my abilities. Especially, I am

indebted to my mother, for her continuous love and support through my entire life.

vi

vii

CONTENTS

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Background . 1

1.1.1 Large-scale Multiclass Classification 2

1.1.2 Distributed Computing . 3

1.2 Thesis Contributions . 5

1.2.1 Large-scale Multiclass Classification 5

1.2.2 Distributed Computing . 6

1.3 Thesis Organization . 6

I Reduction of Multiclass to Binary Classification 9

2 Multiclass Classification 10

2.1 Introduction . 10

2.2 Related Work . 11

2.2.1 Extensible Algorithms . 11

2.2.2 Transformation to Binary (Binarization) 12

2.2.3 Embedding Based approaches . 15

2.2.4 Tree-based approaches . 16

2.2.5 Miscellaneous . 17

2.3 Challenges in Multiclass Classification . 18

2.4 Text Classification . 20

2.4.1 Text preprocessing . 21

2.4.2 Feature Representation: . 21

viii

2.4.3 Evaluation Measures . 23

2.5 Closing remarks . 26

3 Reduction to Binary Classification 28

3.1 Ranking Loss for Multiclass Classification 28

3.2 Multiclass to Binary Reduction . 30

3.2.1 Reduction Strategy . 30

3.2.2 Reduction Example . 30

3.2.3 Low-dimensional Feature Map . 31

3.3 Naive Reduction Algorithm (mRb) . 32

3.3.1 Algorithm Description . 32

3.3.2 Generalization Bound Analysis Using Fractional Rademacher Com-

plexity . 33

3.3.3 Preliminary Experiments with mRb 36

3.3.4 New Challenges . 42

3.4 Double Sampled Multi to Binary Reduction Algorithm (DS-mRb) 44

3.4.1 Algorithm Description . 44

3.4.2 Generalization Bound Analysis using Local Fractional Rademacher

Complexity . 47

3.4.3 Large-class (Extreme) Classification Experiments using DS-mRb 57

3.5 Closing Remarks . 63

II Asynchronous Framework for Distributed Machine Learning 65

4 Distributed Machine Learning 66

4.1 Introduction . 66

4.1.1 Distributed Algorithms . 66

4.1.2 Desired Properties of Distributed System 67

4.1.3 Distributed Frameworks . 68

4.2 Problem Formulation . 69

4.3 Asynchronous Distributed Strategy . 71

4.3.1 Description . 71

4.3.2 Consistency justification . 71

4.4 Closing Remarks . 76

ix

5 Application 1: Distributed Matrix Factorization for Recommender Systems 78

5.1 Recommender Systems . 78

5.1.1 Formal Definition . 78

5.1.2 Types of Recommender System Models 79

5.2 Matrix Factorization for Recommender System 82

5.2.1 Loss Function . 83

5.2.2 Learning Algorithms . 83

5.2.3 Matrix Factorization with User and Item Based Regularization . 85

5.3 Related Work . 86

5.3.1 Shared-Memory methods . 87

5.3.2 Shared-nothing methods . 88

5.4 ADGMF Algorithm . 90

5.5 Experimental Results . 92

5.5.1 Experimental Setup . 92

5.5.2 The effect of similarity based regularization 93

5.5.3 Evaluation of Convergence Time 95

5.5.4 Computation and Communication Trade-off 95

5.6 Closing Remarks . 96

6 Application 2: Distributed Binary Classification 97

6.1 Binary Classification . 97

6.1.1 Introduction . 97

6.1.2 Linear Vs Non-linear models . 97

6.1.3 Binary linear classification methods 98

6.2 Related Work . 99

6.3 Distributed SVRG Algorithm . 101

6.3.1 Single Machine SVRG . 101

6.3.2 ADGBC Algorithm . 102

6.4 Experimental Results . 103

6.4.1 Experimental Setup . 103

6.4.2 Results . 105

6.5 Closing Remarks . 108

Conclusion 114

Publications 119

x

Bibliography 120

xi

xii

LIST OF FIGURES

1.1 Distribution of classes in DMOZ dataset 3

1.2 Evolution of size of big data over years . 4

1.3 Distributed and Parallel Computing . 4

2.1 One-Vs-One Multiclass Classification [Fleury et al., 2013] 13

2.2 One-Vs-All Multiclass Classification . 14

2.3 ECOC Multiclass Classification . 15

2.4 Research Challenges in Extreme Classification 19

2.5 Long-tailed distribution on DMOZ dataset 20

3.1 A toy example depicting the transformation T (Eq. 3.7) applied to a

training set S of size m= 4 and K = 4. 31

3.2 The proper exact fractional cover of the set T (S) obtained after trans-

formation of the training set S= {x1
1,x2

2,x3
3}. For the sake of clarity, the

class labels of pairs of examples are omitted. The fractional chromatic

number of T is in this case χ∗T = 2. 34

3.3 MaF1 of all methods with respect to the number of classes for DMOZ (top)

and Wikipedia (down). 41

3.4 Training time in seconds of all methods with respect to the number of

classes for Wikipedia . 42

3.5 The dependency graph G = {1, . . . , 12} corresponding to the toy prob-

lem of Figure 3.1, where dependent nodes are connected with vertices

in blue double-line. The exact proper fractional cover C1, C2 and C3

is shown in dashed. The fractional chromatic number is in this case

χ∗(G) = K − 1= 3. 47

xiii

3.6 Comparisons in Total (Train and Test) Time (min.), Total Memory usage

(GB), and MaF1 of the five best performing methods on LSHTC1, DMOZ,

WIKI-Small, WIKI-50K and WIKI-100K datasets. 62

4.1 Diagrams of the distributed synchronous (a) and asynchronous (b) frame-

works. 72

5.1 User-Rating Matrix . 80

5.2 Types of Recommender Systems . 80

5.3 Strata used by SSGD for a 3 × 3 blocking of V [Makari et al., 2015] . . 89

5.4 Top: Test RMSE curves with respect to time for ADGMF, AD-ADMM, ASGD,

and DSGD on NetFlix (left), and ML-10M (right) Datasets. Bottom:

Total Convergence Time Vs. Number of Cores curves for ADGMF, ASGD,

DSGD and AD-ADMM on the NetFlix (left), and ML-10M (right) Datasets. 94

6.1 The effect of varying batch size for broadcasting parameter for (a) Webspam

and (b) Epsilon Datasets . 106

6.2 Training Loss Vs Time Plot for (a) Webspam, (b) Epsilon and (c) RCV

Datasets . 109

6.3 Test Accuracy Vs Time Plot for (a) Webspam, (b) Epsilon and (c) RCV

Datasets . 110

6.4 Convergence Speedup Result for Epsilon Dataset 111

xiv

xv

LIST OF TABLES

2.1 Confusion matrix . 24

2.2 Popular evaluation measures for multiclass classification 25

3.1 Characteristics of the datasets used in our experiments 37

3.2 Let x t represent the term frequency of term t in document x , and V the

set of distinct terms within S, then yt =
∑

x∈y x t , |y| =
∑

t∈V yt , St =
∑

x∈S x t , lS =
∑

t∈V St . It is the inverse document frequency of term t,

d1(xy) and d2(xy) are the distances of x to its two nearest neighbours

in class y . 38

3.3 Accuracy, MaF1 of methods that could be trained with 7500 classes of

DMOZ and Wikipedia collections. Nc is the proportion of classes that

are covered or in other words the fraction of classes that are identified

in test set. Statistics are given over 50 random samples of training/test

sets. 39

3.4 Characteristics of the datasets used in our experiments 57

3.5 Joint example/class representation for text classification, where t ∈

y∩x are terms that are present in both the class y ’s mega-document and

document x. Denote by V the set of distinct terms within S then xt is

the frequency of term t in x, yt =
∑

x∈y xt , |y|=
∑

t∈V yt , Ft =
∑

x∈S xt ,

lS =
∑

t∈V St . Finally, It is the inverse document frequency of term t,

len(y) is the length (number of terms) of documents in class y , and

avg(len(y)) is the average of document lengths for all the classes . . . 59

3.6 Hyper-parameters used in the final experiments 60

3.7 Comparison of the result of various baselines in terms of time, memory,

accuracy, and macro F1-measure . 61

xvi

5.1 Characteristics of Datasets used in our experiments. |U | and |I | denote

respectively the number of users and items. 92

5.2 MAE and RMSE measures for different methods on MovieLens and Net-

Flix datasets. Best results are shown in bold. 93

6.1 Characteristics of Datasets used in our experiments. 103

6.2 Comparison of the communication overhead of all approaches on the

three collections . 107

xvii

xviii

1 INTRODUCTION

1.1 BACKGROUND

Machine Learning (ML) algorithms help to extract useful information from data, so

that it can be utilized in future for useful tasks such as prediction or clustering. ML

algorithms work by learning a model or pattern from the data and using the model

to discover useful information for the future unseen data. These algorithms have

proved to have a huge social and economic impact for different stakeholders. This

has fueled the popularity of ML in applications such as document analysis, computer

vision, natural language processing, voice recognition, recommendation, ranking and

many others.

In the last decade we have seen an exponential growth in the quantity of data,

mainly due to the popularity of digital technologies. Some of the areas where such

large scale data collections are prevalent are Computer Vision, Recommender Sys-

tems, Information Retrieval, Social Networks, etc. Efficiently handling and effectively

exploiting such large magnitude of data has opened a new area of research. Also such

large magnitude of data has posed a serious challenge for the traditional ML tech-

niques. So, there is a need to adapt and improve the existing ML techniques to scale

well and cope up with the new applications.

As the title suggests, in this thesis we intend to analyze the challenges of large-

scale data in ML and devise effective algorithms to tackle it. In our study we consider

two different areas involving large-scale data. Even though they are two separate

perspectives, they both come under the umbrella of large-scale ML. First, we study

and analyze the problem of large-scale multiclass classification. Second, we study

distributed computing for handling large-scale data.

1

1.1.1 LARGE-SCALE MULTICLASS CLASSIFICATION

Multiclass classification refers to classification problems where we need to classify an

example to one of finite set of categories. The goal of these algorithms is to learn a

function which, given a new example will correctly assign a class label. Some of the

popular applications of multiclass classification are text, image or video classification.

Traditionally, multiclass classification problems involved at most hundreds of classes,

however, in the past few years we have observed a spectacular increase in data thanks

to the popularity of internet and social media websites such as Facebook 1, Wikipedia
2, Flickr 3, Youtube 4 etc. As for example there are around thousands of new articles

added to Wikipedia 5 every day and each of them has to be categorized to one of

millions of categories.

Similarly, recent applications involving text or image classification has to deal with

very large number of classes (upto millions), hence this is also referred as extreme clas-

sification. Extreme classification poses several challenges to the existing approaches

of multiclass classification. First set of challenges are related to the computational

complexity of the algorithms. More precisely, learning a model using such large mag-

nitude of data significantly increases the total runtime of the algorithm as well as the

total memory used during the learning process. Another set of challenges are intro-

duced from the underlying properties of such large scale data collections. First of

which is known as class imbalance problem. In large-scale multiclass collections it is

observed that most of the classes has very few representative examples as shown in

Figure 1.1. Such distribution is referred to as long-tailed distribution. Presence of such

class imbalance in data distribution affects the predictive performance of algorithms

in large-scale collections, since it is difficult to properly predict the rare classes (classes

with few examples). Similarly, large-scale datasets involve high dimensionality and

large sample size, which also makes learning a challenging task.

1www.facebook.com
2http://www.wikipedia.org
3https://www.flickr.com
4https://www.youtube.com/
5https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

2

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2-5 6-10 11-30 31-100 101-200 >200

#
 C

la
s
s
e
s

Documents

DMOZ-7500

Figure 1.1: Distribution of classes in DMOZ dataset

1.1.2 DISTRIBUTED COMPUTING

As mentioned earlier, the main challenge we are faced in last few years is the rapidly in-

creasing size of training data and model complexity. As for example we can see in 1.2,

the growth of size of data over the years 6. It is evident from the exponential growth

of the size of data that, it is difficult to store such huge amount of data in one single

machine. Even if we can keep such data in a single machine it will take tediously long

time to perform learning in a sequential manner as in traditional machine learning

approaches. So, with the rapid development and availability of computing resources,

the obvious solution to tackle this problem is to adopt distributed techniques.

In distributed computing, the data is partitioned and dispatched across several

machines and learning is performed simultaneously. In such a setting, each of the

computing nodes have their own memory and processing units. The memory is not

shared between the machines in distributed setting. This is different from commonly

used technology known as shared-memory parallel computing, which is often con-

fused with distributed computing. In parallel computing each of the computing units

6http://www.unece.org

3

Figure 1.2: Evolution of size of big data over years

Source: http://www.unece.org

have access to the same shared memory. These two different settings are depicted in

Figure 1.3.

Figure 1.3: Distributed and Parallel Computing

Source: http://lycog.com/distributed-systems/parallel-and-distributed-computing/

In distributed computing, information is exchanged between the machines using

the network bandwidth, which is often very limited. So, communication is one of the

4

scarcest resources in distributed computing [Li, 2017]. Most of the distributed meth-

ods rely on exchanging the gradients of loss function after every iteration [Zhang et al.,

2015, Huo and Huang, 2016, Dean et al., 2012]. Hence, they tend to become expen-

sive in terms of communication cost. Also, many of the distributed algorithms perform

information exchange in a synchronized manner [Sra, 2012, Ho et al., 2013, Mairal,

2015]. For such methods, the slower machines become the bottleneck for the whole

system, as faster machines has to wait for the slower machines to finish their computa-

tion. Hence, there is a need for totally distributed algorithms which can overcome the

synchronization problem as well as minimize the total cost of communication between

the machines.

1.2 THESIS CONTRIBUTIONS

In this thesis, we take into account the above-mentioned problems of large-scale ma-

chine learning and propose algorithms in each of these domains which try to overcome

the challenges addressed. We will discuss about the specific contributions correspond-

ing to each of the problem in the following sections:

1.2.1 LARGE-SCALE MULTICLASS CLASSIFICATION

In the domain of large-scale multiclass classification we have following contributions:

1. First, we propose an algorithm to reduce multiclass classification problem to an

equivalent binary classification problem. The reduced binary problem consists

of similar number of positive and negative instances. Hence, it overcomes the

class imbalance problem inherent in multiclass classification collection.

2. We further extend the algorithm, and introduce a double sampling strategy dur-

ing training phase and an efficient candidate pre-selection approach during pre-

diction phase. These modifications help to further improve the computational

complexity of the model significantly. So, this makes the algorithm particularly

attractive for extreme classification involving huge number of classes.

3. We derive generalization bounds for the proposed algorithm using local frac-

tional Rademacher complexity, taking into account the inter-dependency be-

tween examples in the binary reduced dataset.

5

4. We empirically validate the effectiveness of the proposed algorithms in large text

classification collections taking into account upto 100,000 categories.

1.2.2 DISTRIBUTED COMPUTING

In this front, we have following contributions:

1. We present a totally asynchronous distributed framework for distributed com-

puting. In the proposed framework, data is partitioned and dispatched across

several machines. Each machine performs gradient iterations in parallel over

the local sub-part of data and updates local parameter simultaneously. Only af-

ter completing one complete pass over the local sub-part, the machines send the

updated parameter to the master machine. The master machine integrates all

received parameters and broadcasts it back to the worker machines, which use

the updated parameter for a new pass over the data. In this way, we overcome

the synchronization bottleneck as well as the communication cost is reduced

since, we only exchange locally updated parameters as opposed to frequent ex-

change of gradients. Additionally, We present the convergence results for the

proposed framework.

2. We empirically present the effectiveness of the proposed framework for binary

classication and distributed matrix factorization.

1.3 THESIS ORGANIZATION

We divide the whole thesis in two main parts:

I Reduction of Multi-class Classification to Binary Classification: Containing Chap-

ters 2, 3 .

II Asynchronous Framework for Distributed Machine Learning: Containing Chap-

ters 4, 5 and 6.

In Part I we discuss in detail the reduction of multiclass classification problems to

binary classification. To begin with, we introduce Multiclass classification in chapter 2.

We mainly discuss the challenges of performing large-scale classification and present

6

the state-or-art techniques. Then we discuss the ranking loss for multiclass classifica-

tion and show the equivalence of this loss function to binary classification based loss.

This gives main basis for our reduction algorithm. In Chapter 3, we formally present

our two reduction algorithms. We also derive a generalization bound based on frac-

tional Rademacher Complexity for the inter-dependent data. At the end, we present

our empirical results in very large text classification collections of size up to 100000

classes.

In Part II, we explore the distributed techniques for handling large scale data for

Machine Learning. In this domain, we propose an asynchronous framework for per-

forming distributed machine learning. We show the application of the proposed frame-

work in two popular domains: distributed matrix factorization in Recommender Sys-

tems and distributed binary classification. We begin this section with Chapter 4, where

we introduce the distributed machine learning and discuss various research works in

the two applications that we consider. Then we present our first application, dis-

tributed matrix factorization in Chapter 5. In this chapter, we present the algorithm

AsyDM which is an asynchronous algorithm for performing matrix factorization for

larges scale Recommender Systems. In Chapter 6, we present another application of

the asynchronous algorithm for performing binary classification in large scale binary

classification datasets. Theoretical and empirical analysis as well as the comparison

with popular state-of-art approaches are discusses in each section.

7

8

I REDUCTION OF MULTICLASS TO BINARY

CLASSIFICATION

9

2 MULTICLASS CLASSIFICATION

2.1 INTRODUCTION

Supervised learning refers to problems which comprise examples of the input vectors

along with their corresponding target vectors [Bishop, 2006]. For such problems, the

strategy is to learn a prediction function from the training data. The learned function

is later used for prediction on unseen data. Problems where we aim to assign each

input vector to one of finite set of categories are referred to as classification problems.

Some of the popular examples of classification problems are: digit recognition, spam

detection, document classification, image classification etc. Another kind of problems

where the output consists of one or more continuous variables, are known as regres-

sion problems. Some examples of regression problems are: credit score prediction,

house price prediction, stock price prediction over time, user rating prediction in Rec-

ommender Systems etc.

Many supervised learning techniques aim at performing binary classification, where

the number of possible classes is two. However, many real world classification prob-

lems involve the classification of an example to one or more classes from a prede-

fined set of classes. Such problems are known as Multiclass classification problems.

More precisely, problems where an example can belong to more than one classes,

are referred as multilabel multiclass classification or often as multilabel classification.

Whereas, the simplest case of problems where each example belongs to only one class

from a finite set of classes, are known as monolabel multiclass classification or com-

monly as multiclass classification. Throughout this part, we will consider the case of

monolabel multiclass classification and we will use the term multiclass classification

to denote it.

Multiclass classification is a popular area of research in ML. Some of the popular ex-

amples of multiclass classification are text classification [Joshi et al., 2017,Joshi et al.,

2015b, Yen et al., 2016], image categorization [Deng et al., 2010, Perronnin et al.,

10

2010,Cinbis et al., 2012], face recognition [Guo et al., 2016,Parkhi et al., 2015] and

video annotation [Abu-El-Haija et al., 2016,Vondrick et al., 2013]. With the explosion

in generation of data from different sources, modern multiclass classification prob-

lems involve very large size of datasets as well as very large number of classes and

size of feature vectors. For example: in the case of text classification (as in LSHTC
1 and BioASQ 2 challenges) and image classification [Deng et al., 2010] the number

of classes and size of feature space can be several thousands or even upto the order

of millions. This increasing size of multiclass classification problems causes serious

problems to the traditional multiclass classification approaches. We will explore those

challenges in more detail in upcoming sections.

2.2 RELATED WORK

Large-scale multiclass classification, which has evolved as a popular branch of machine

learning, considers problems involving extremely large number of classes. Hence it is

also referred as extreme classification. A number of prior works have addressed dif-

ferent aspects of this problem, which we are going to review in this section. Different

approaches of multiclass classification can be categorized in the following categories.

2.2.1 EXTENSIBLE ALGORITHMS

Multiclass classification problem can be solved by extending the popular binary classi-

fication algorithms such as SVM, neural networks, decision trees, k-nearest neighbors,

Naive Bayes etc [Aly, 2005].

• Neural Networks: Multilayer Feedforward Neural Networks can be naturally ex-

tended to handle multiclass scenario by using K output binary neurons for each

of the class in multiclass setting. Different ways of choosing output codewords

are proposed [Dietterich and Bakiri, 1995] such as: One-per-class coding, Dis-

tributed output coding etc.

• Decision Trees: Decision trees are widely used and powerful algorithm mainly

for binary classification. The algorithm makes a tree shaped structure where the

nodes are the features and the leafs represent the class labels. A new examples

1http://lshtc.iit.demokritos.gr
2http://bioasq.org/

11

is classified to one of the classes by following the route from root node to the

leaf node. At each node a test is performed for the features of the example.

This algorithm can be naturally extended to multiclass scenario by considering

K leafs corresponding to each class label.

• Support Vector Machines (SVM): SVM’s are considered as one of the most popu-

lar and robust algorithms in ML. The main idea of algorithm lies in maximizing

the margin of the separating hyperplane. In normal setting, they are devised to

handle binary classification. However, many extensions [Allwein et al., 2000,Di-

etterich and Bakiri, 1995, Friedman, 1996, Hsu and Lin, 2002] have been pro-

posed to adapt it to handle multiclass scenario. In these extensions, the opti-

mization problem is modified with additional parameters or constraints.

The extensible algorithms do not scale well to handle large-scale problems. In

most of the cases, the complexity of algorithm becomes intractable. Because of these

limitations, they are rarely used for extreme classification.

2.2.2 TRANSFORMATION TO BINARY (BINARIZATION)

Many research work have been proposed in last years for binary clasification, such

as margin based classifiers, decision trees and ensembles [Bishop, 2006]. Some of

the techniques can be naturally extended to handle multiclass problems (e.g. deci-

sion trees). Whereas other powerful and popular techniques, for e.g. Support Vector

Machines (SVM) [Cortes and Vapnik, 1995] cannot be easily adapted to multiclass

scenario. So, it is a common practice to decompose the multiclass problem to sim-

ple binary classification problems, the process is commonly referred to as binariza-

tion [Rocha and Goldenstein, 2014]. Binarization involves mapping one multiclass

problem into several binary problems (divide and conquer), solve the individual prob-

lems using traditional binary learners (base learners) and finally combine their in-

dividual outcomes to derive multiclass prediction [Garcia-Pedrajas and Ortiz-Boyer,

2006]. Broadly these approaches can be classified to three main categories: Ove-Vs-

One(OVO), One-Vs-All (OVA) and Error Correcting Output Codes (ECOC).

In OVO, a binary problem is created for each pair of classes of the initial problem.

So, this leads to K(K − 1)/2 binary problems, and as many binary classifiers. Figure

2.1 depicts OVO approach with separating hyperplanes of individual SVM classifiers for

three classes. The predicted class for a new instance is the one that receives majority

12

Figure 2.1: One-Vs-One Multiclass Classification [Fleury et al., 2013]

of the votes. This approach has a quadratic complexity in the number of classes, hence

they cannot be used for extreme classification as they do not pass the scale for very

large number of classes. Hence the approaches better suited for extreme classification

setting are OVA and ECOC.

In OVA [Lorena et al., 2008] K binary problems are created, in each of them one

class is seen as the positive class and the others as negative class. Given real-valued

predictors g1, . . . , gK , the predicted class for an instance x is given by arg maxy g y(x)

i.e. the class with highest score by the predictor. This approach is shown in Figure

2.2. This approach has a long history, where the early work dates back to [Schiolkopf

et al., 1995]. However, in the popular work of [Rifkin and Klautau, 2004], this ap-

proach was further revived and their empirical results showed its superiority over OVO,

ECOC and M-SVM approaches. Later [Fan et al., 2008a] provided an easy and scalable

implementation of the algorithm in their Liblinear package, which is widely used for

experiments. The complexity of OVA is O(K X d), where K and d are number of classes

and feature dimension respectively. Even though this complexity is better as compared

to OVO, it is still high for extreme classification setting. Additionally, this approach is

highly affected by class imbalance problem inherent in extreme classification.

In the ECOC-based approach [Dietterich and Bakiri, 1995], each of the L classes

are represented with a binary code ck, also known as the codeword. This gives rise

13

Figure 2.2: One-Vs-All Multiclass Classification

Source: https://houxianxu.github.io/2015/04/23/logistic-softmax-regression/

to a coding matrix M of size L × ck. During training, one binary classifier is learned

for each column to separate the positive and negative codes. Hence, there are as

many binary classifiers learned as the number of columns in the code matrix. For a

new test example, x, a codeword is assigned by evaluating with each of the learned

classifiers (h). At prediction time, inference is performed by selecting the class that

minimizes the distance between its code and the predicted code. The most popular

distance measures are Hamming or Euclidean distance. This procedure is depicted in

Figure 2.3. As shown in the figure, the correct predicted class for the new example

x is C3, which is the closest to the input test example in terms of both Hamming and

Euclidean distance measures. Methods to speed up prediction or training with ECOC

have recently been proposed: for example, only a subset of the classifiers may be used

at inference time without loss of accuracy [Park and Fürnkranz, 2012]; in another

direction, a Naive Bayes approach that only requires a single pass over the data for

training has proved effective [Park and Fürnkranz, 2014]. However, the key challenge

for these methods is to accurately choose the coding matrix.

Usually, a class binarization task involves creating, learning and combining several

binary base learners. So, in large-scale setting standard binarization approaches such

14

Figure 2.3: ECOC Multiclass Classification

Source: http://www.islab.ece.ntua.gr/

as OVA and OVO become computationally intractable for training and prediction both

because they require large number of models. Also, they suffer from the popular

problem of class imbalance inherent in large-scale multiclass problems.

2.2.3 EMBEDDING BASED APPROACHES

Extreme multiclass/multilabel problems often involve learning with training exam-

ples, features and labels upto the order of millions. Hence, a natural way to handle

such large number of class labels is to project the label vectors into a low dimensional

space, with the assumption that the label matrix is low-rank. Different embedding

based approaches mostly differ in the way the label matrix is compressed to low-rank

and then decompressed back to original space. Different compression and decompres-

sion techniques are employed such as compressed sensing [Hsu et al., 2009, Kapoor

et al., 2012], Bloom Filters [Cisse et al., 2013], SVD [Tai and Lin, 2012], output

codes [Zhang and Schneider, 2011] etc. One state-of-art method LEML [Yu et al.,

2014a] uses the Empirical Risk Minimization (ERM) framework while using a reg-

ularized least-square objective. In another recently proposed method SLEEC (Sparse

Local Embedding for Extreme Classification) [Bhatia et al., 2015], the data is first clus-

tered into smaller regions. It then performs local embeddings of label vectors using

K-nearest neighbour classifier. The main advantages of embedding based methods in-

clude their simplicity, ease of implementation, strong theoretical foundations, ability

15

to handle label correlations (for multilabel scenario) and their ability to be extended

in online or incremental scenarios [Bhatia et al., 2015]. Moreover, their use has been

extended beyond classification, and been successfully used in ranking problems as

demonstrated in WSABIE system [Weston et al., 2011a]. Hence, they are quite popu-

lar approach especially for extreme multilabel classification [Hsu et al., 2009,Tai and

Lin, 2012, Balasubramanian and Lebanon, 2012, Bi and Kwok, 2013, Chen and Lin,

2012,Ferng and Lin, 2011]. However, the main downside of these approaches include

their slow training and prediction times even with the use of considerably low embed-

ding dimension. Also, the critical assumption that the training matrix is low rank, is

violated in almost all real world applications. Hence, these approaches often suffer

from lower accuracy in such applications.

2.2.4 TREE-BASED APPROACHES

Methods using tree-based classifiers have gained popularity in recent times. These

methods rely on binary tree structures where each leaf corresponds to a class and

inference is performed by traversing the tree from top to bottom, a binary classifier

being used at each node to determine the child node to develop. These methods have

logarithmic time complexity. In an earlier work, FilterTree [Beygelzimer et al., 2009b]

presents a robust tree-based method for multiclass classification. However, the prob-

lem with this approach was the choice of partition. In most cases, the success of this

method was related with choice of partition. Partition finding problem was also ad-

dressed in conditional probability tree [Beygelzimer et al., 2009a], however the use of

conditional probability violates the logarithmic time operation. Later, [Bengio et al.,

2010] used recursive spectral clustering on a confusion graph to address the partition-

ing problem. However, this makes the problem O(k) or even worse during training,

making it intractable in extreme classification scenario. In another work, [Weston

et al., 2013] used k-means hierarchial clustering to recover partition of the label sets,

focusing their work primarily for multilabel rather than multiclass problems. [Choro-

manska et al., 2013] proposed an efficient method for extreme multiclass classifica-

tion, using decision trees with an online learning algorithm. FastXML [Prabhu and

Varma, 2014] is another popular method useful for both multiclass and multilabel

scenario which optimizes an nDCG based ranking loss function. This method employs

the partitioning of feature space instead of the label space using the observation that

only small number of labels are active in each region of feature space. An extension

16

of this method is proposed as PfastReXML [Jain et al., 2016], which uses propensity

scores to improve on tail label prediction. Also, another algorithm Log-time Log-space

(LTLS) [Jasinska and Karampatziakis, 2016] claims to perform extreme classification

in logarithmic time and space by embedding large classification problems into simple

prediction problems and using dynamic programming for inference. Their empirical

results show significant improvement in time and space usage. However their poor

classification accuracy, especially for large-class cases is not justified. Another notable

work using decision trees is Recall Tree [Daume III et al., 2016], which uses a bi-

nary tree to map an example to an small subset of candidate labels and uses a more

tractable one-against-all classifier for prediction.

The main advantage of using the tree-based methods is to make the training,

and/or prediction time logarithmic in number of classes, hence making it more attac-

tive for extreme classification. However, its still a challenging task to find a balanced

tree structure which can partition the class labels. Even though the above-mentioned

methods have proposed several heuristics to address this problem and are able to re-

duce the complexity of the model to logarithmic time, empirically they do not show

good predictive performance especially in large-class scenario. This is mainly caused

by the fact that the prediction error made at the top the tree structure cannot be cor-

rected at lower levels, also known as the cascading effect.

2.2.5 MISCELLANEOUS

In the proposed method also, we design joint features between classes and examples

allowing to learn a single parameter vector for the whole problem. Another similar

piece of work in [Weston et al., 2011b] learns representation for each classes. This ap-

proach learns a projection of examples and classes into a low dimensional space, hence

reducing both training and inference time. However, in contrast to our approach, this

method learns one parameter vector per class, while we use joint features of classes

and examples allowing to reduce the number of vector parameters to one. In another

line of work, [Titsias, 2016] proposed an approximation for the softmax layer for calcu-

lating probabilities of multiclass classification. Specifically, the author proposes a new

bound on the softmax which factorizes the calculations in a product and thus avoids

to evaluate the normalization constant which can become intractable for very large

number of classes. In the case of extreme multiclass classification a doubly stochastic

approximation scheme is used, without providing any theoretical guarantees, where

17

one randomly selects a number of candidate classes while performing gradient de-

scent. In our proposed method we also introduce a double stochastic procedure as an

unbiased empirical risk minimization of the original expected loss.

Another recent algorithm to address extreme classification is PD-sparse method

[Yen et al., 2016], where authors use sparsity for high-dimensional datasets. How-

ever, sparsity is not guaranteed to generate small size models without hurting model

accuracy.

2.3 CHALLENGES IN MULTICLASS CLASSIFICATION

Large-scale multiclass classification or extreme classification has emerged as a pop-

ular research problem in machine learning research community. Hence, it has been

the central topic in many top conferences and workshops in last few years such as

Large Scale Hierarchical Text Classification Challenge 3 whose results were presented

in ECML, ECIR, WSDM and ICML, the Extreme classification workshop in NIPS 2013,

2015, 2016 and 2017 4. These popular workshops/conferences alongwith many oth-

ers helped to bring together researchers from all over the globe to discuss the chal-

lenges in extreme classification. Additionally, this has given rise to many useful bench-

mark datasets for the task and popular algorithms to tackle the problem. Here, we will

summarize the main challenges in extreme classification.

1. Class imbalance/ Data Scarcity problem: In large-scale classification collections,

it is observed that the average category size is related to the number of cat-

egories taken into consideration. This pattern is evident from the Figure 2.4.

This figure shows that the average category size decreases as the number of cat-

egories increases. This pattern is more prominent in large-scale collections. It

has also been observed in large-scale collections that majority of classes have

very few representative examples, whereas a few classes contain majority of

examples. This behavior is termed as power law distribution or long-tailed dis-

tribution [Babbar et al., 2014a]. Figure 2.5 shows such long tailed distribution

for one of the popular text classification datasets (DMOZ). Such power law dis-

tribution of category size implies a sever class imbalnce in such collections which

makes learning a difficult task. Hence, class imbalance problem has to be taken

3http://lshtc.iit.demokritos.gr/
4http://manikvarma.org/events/XC13/index.html

18

into account when learning a model for extreme classification.

Figure 2.4: Research Challenges in Extreme Classification

Source: Yimming Yang Talk at WSC Workshop WSDM 2014

2. Dimensionality: In extreme classification scenarios, one has to deal with datasets

of very large size and dimensionality. For example: in the case of Wikipedia large

dataset with 325K categories, the feature dimension is more than a million. Sim-

ilarly, for DMOZ dataset the feature size is more than half a million. Feature

dimension directly relates with the size of the vocabulary to be used as well as

the complexity of the learning model. There have been many approaches which

tend to encode the problem in lower dimension using different feature embed-

dings. However, it is not a trivial task as it might directly affect the prediction

performance of the model. Also, if the number of categories is huge, the number

of examples in the dataset is also very large. Hence, the algorithms have to be

adapted to handle such extreme classification setting.

3. Model complexity: As we already discussed, extreme classification involves prob-

lems of huge dimensionality and training data size. This significantly increases

the memory and computational burden when learning a model. For example,

we will show in experimental section that for a subset of WIKI-325K dataset con-

taining 100K categories, One-Vs-All algorithm requires nearly 1 TB to store the

parameters. Similarly it takes several days for learning the model. This a com-

19

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2-5 6-10 11-30 31-100 101-200 >200

#
 C

la
s
s
e
s

Documents

DMOZ-7500

Figure 2.5: Long-tailed distribution on DMOZ dataset

mon problem for most of the approaches listed in the previous section. Hence,

in extreme classification setting, it is critical to devise algorithms which have

low computational complexity in terms of the time to learn a model as well as

the total memory used to store the learned parameters.

2.4 TEXT CLASSIFICATION

In this section, we introduce text classification, which is a popular multiclass classifi-

cation problem. This is also our application of choice to validate the proposed algo-

rithms. Text classification is a supervised learning problem, where we are given the

descriptionX ∈ Rd of text documents and a fixed set of classesC= {c1, c2, ..., ck} [Man-

ning et al., 2008]. In the learning phase, we are given a training set D with labels,

and our task is to learn a predictor γ that maps documents to classes:

γ : X→ C

In most of the recent text classification problems, the document space X is high

dimensional as well as the number of class labels. For example, in two popular doc-

20

ument collections DMOZ 5 and Wikipedia 6 they are up to the order of hundreds of

thousands to millions.

2.4.1 TEXT PREPROCESSING

Before applying learning algorithms, the text collections are preprocessed. This helps

to weed out unnecessary information from the text while keeping the information

useful for better learning. Many of the popular tools in Natural Language Processing

(NLP) such as NLTK 7, Scikit-learn 8 provide in-built functionality for preprocessing.

Some of the commonly used preprocessing steps are listed below [Manning et al.,

2008]:

• Stop-word removal: Stop words refer to commonly occurring words in a lan-

guage. Such words do not contribute to distinguish one text document from

the other, hence needs to be removed. Popular text processing toolkits have

predefined list of stop words.

• Stemming and Leammatization: Documents use different form of words because

of grammatical reasons. For e.g. organize, organizes, organized or organizing.

Similarly many words might be derivationally related words with similar mean-

ing such as democracy, democratic and democratization. Both stemming and

lemmatization are used to reduce such multiple derivationally related words to

their base form. Stemming is a crude method that chops off the derivational

affixes from words. Whereas lemmatization performs it in a more proper way

by using the vocabulary and morphological analysis of words.

2.4.2 FEATURE REPRESENTATION:

After preprocessing, next step is to represent each text document with a set of fea-

tures. Individual components of text document are the words. Hence, many feature

representations are proposed to represent the words in the document. In this section,

we will discuss two representations: Bag of words, which is the most popularly used

5http://www.dmoz.org/
6www.wikipedia.org
7http://www.nltk.org
8http://scikit-learn.org

21

representation in text applications and dyadic representation, which we will use in

our proposed algorithms.

• Bag of Words (BOW) Representation: This model is also known as Vector Space

Model (VSM) [Raghavan and Wong, 1986,Van Rijsbergen, 1979,Hu, 2011]. In

this model, each document is represented as a vector of length same as the total

distinct terms in the corpus, also known as the dictionary. Each distinct term

present in a document is given a weight and represented as the document vector.

Hence, for each term in the dictionary not present in the document as given a

weight as zero. There are many ways to assign the weights for each terms in the

document. One simple way is to use the frequency of occurrence of each distinct

term in the document as the feature value. It is also commonly known as Term

Frequency (TF). Such representation can be used to assess the similarity between

two document vectors. However, using raw term frequency suffers from a critical

issue [Manning et al., 2008] that it assumes each term to be equally important.

However, certain terms may be used too frequently in all the documents and

hence are very less useful to discriminate between two documents. Hence, to

mitigate the effect of these popularly occurring words, another representation

is proposed which tries to scale down the frequency of the terms with document

frequency (number of documents in the collection containing that term). This

representation is known as Inverse Document Frequency (IDF) and is given as

[Manning et al., 2008]:

id ft = log
N

d ft

Where N is the total number of documents in the collection and d ft represents

the document frequency for the term t. IDF of a rare term is high and frequently

appearing terms is low. The most popular bag of words representation, known

as tf-idf weighting, which is calculated as the multiplication of tf and idf values.

The tf-idf representation of a term t in a document d is given as:

tf-idf= t ft,d × id ft

So, the tf-idft,d term assigned for each term in document d is [Manning et al.,

2008]:

22

1. highest when t occurs many times in a few documents.

2. lower when term occurs fewer times in a document; or occurs in many

documents.

3. lowest when the term occurs in almost all the documents.

• Dyadic (or Joint) Representation: Another popular feature representation in in-

formation retrieval is the one commonly used in ranking of documents accord-

ing to their relevance to a query. This field of research is known as learning to

rank [Liu et al., 2009, Qin et al., 2010, Liu, 2011]. Here, the query-document

pair is represented by a multi-dimensional feature vector. The small set of fea-

tures try to encode the relevance of the document with respect to the query.

For example one simple example of a feature can be the total number of terms

present in both the query feature vector and the document vector. Similarly, a

number of classical information retrieval features can be manufactures by con-

sidering this relevance. Moreover, this joint representation can be used to extract

specialized similarity features such as BM25, LMIR [Qin et al., 2010]. All the

documents belonging to one class can be considered as a single large document.

Hence, the query-document joint feature representation can be extended to the

joint representation of a document and the collection of documents belonging

to one class. In our work, we use this joint feature representation to classify

documents to one of the classes. We have exchangeably used the terms joint or

dyadic or similarity-based feature representation throughout this thesis to de-

note it. In the experiments section we will present the features we have used in

the experiments.

2.4.3 EVALUATION MEASURES

The correctness of a classification task can be evaluated using four aspects: exam-

ples which are predicted as positive and the true class is also positive (true positives),

examples which are predicted as negative and the true class is also negative (true

negatives), examples predicted as positive however the true class is negative (false

positives) and examples which are predicted to belong to negative class however the

true class is positive (false negatives). All these attributes are summed up as a confu-

sion matrix shown in Table 2.1.

23

We begin with presenting evaluation measure for a binary classification task. These

can be extended for multiclass classification case as well. Some of the commonly used

evaluation measures are summarized below:

1. Accuracy is measured as the fraction of predictions that are correct. Mathemat-

ically, it is represented as:

Accurac y =
T P + T N

T P + T N + F P + FN

2. Precision: measures the fraction of correctly identified positive examples out of

the total positive predicted as positive. Mathematically, it is represented as:

Precision=
T P

T P + F P

3. Recall: measures the total fraction of positive examples identified out of the

total positive examples. Mathematically, it is represented as:

Recal l =
T P

T P + FN

4. F-Measure: (also known as F1 measure)is the measure that combines both pre-

cision and recall as their harmonic mean. Mathematically, it is represented as:

F −Measure = 2.
Precision ∗ Recal l
P recision+ Recal l

True class Predicted as positive Predicted as negative

Positive true positive (tp) false negative (fn)

Negative false positive (fp) true negative (tn)

Table 2.1: Confusion matrix

Table 2.2 presents the popularly used evaluation measures for multiclass classifi-

cation [Sokolova and Lapalme, 2009]. For each class Ci, the assessment is denoted

as t pi, f ni, tni and f pi. Here, one thing to note is that most of the measures are

assessed in two ways: average of the same measures calculated individually for each

class (macro-averaging denoted with index M), or the computing the cumulative sum

24

of tp, fp, tn, fn and then calculating the measures (micro averaging denoted as µ sub-

scripts). Macro averaging treats each class equally whereas micro averaging favours

the bigger classes. Hence, macro averaging is considered as a superior evaluation mea-

sure as compared to average accuracy and micro-averaging in multiclass classification

where the class imbalance problem is inherent.

Measure Formula Description

Average Accuracy
∑l

i=1
t pi+tni

tpi+ f ni+ f pi+tni
l Measures per-class effectiveness of

a classifier

Error Rate
∑l

i=1
f pi+ f ni

tpi+ f ni+ f pi+tni
l Measures per-class classification error

Precisionµ
∑l

i=1 t pi
∑l

i=1(t pi+ f pi)
Agreement of the data class labels with

those of a classifier if calculated

from sums of per-text decisions

Recal lµ
∑l

i=1 t pi
∑l

i=1(t pi+ f ni)
Effectiveness of a classifier to identify

class labels if calculated from

sums of per-text decisions

Fscoreµ
(β2+1)PrecisionµRecal lµ
β2Precisionµ+Recal lµ

Harmonic mean of micro averaged

precision and micro averaged recall

PrecisionM

∑l
i=1

t pi
tpi+ f pi
l An average per-class agreement of

the data class labels with

those of the classifiers

Recal lM

∑l
i=1

t pi
tpi+ f ni
l An average per-class effectiveness

of a classifier to identify

class labels

FscoreM
(β2+1)PrecisionM Recal lM
β2PrecisionM+Recal lM

Harmonic mean of macro averaged

precision and macro averaged recall

Table 2.2: Popular evaluation measures for multiclass classification

25

2.5 CLOSING REMARKS

In this chapter, we discussed multiclass classification in detail. We begin with the

introduction to multiclass classification. In Section 2.2, we presented various state-of-

the-art algorithms to solve multiclass classification problems. Then in section 2.3, we

discussed various challenges associated with it. Later in section 2.4, we introduced a

popular application involving multiclass classification, which is also the application of

choice to validate our proposed methods. In that section, we discussed various steps of

text classification such as text preprocessing, feature representations and the popular

evaluation measures. Now, with enough background in multiclass classification and

the text classification application, we will present our proposed multiclass to binary

reduction technique in next chapter.

26

27

3 REDUCTION TO BINARY CLASSIFICATION

3.1 RANKING LOSS FOR MULTICLASS CLASSIFICA-

TION

We consider monolabel multiclass classification problems defined on a joint spaceX×Y

where X ⊆ Rd is the input space and Y = {1, . . . , K} the output space, made of K class

labels. Elements of X × Y are denoted as xy = (x , y). Furthermore, we assume the

training set S = (xyi
i)

m
i=1 is made of i.i.d pairs distributed according to a fixed but

unknown probability distribution D, and we consider a class of functions G = {g :

X × Y → R} as our predictors. We define the instantaneous loss of g ∈ G on an

example xy as:

e(g,xy) =
1

K − 1

∑

y ′∈Y\{y}

1g(xy)≤g(xy′), (3.1)

where 1π is the indicator function that is equal to 1 if the predicate π is true and 0

otherwise. Compared to the classical multiclass error:

e′(g,xy) = 1y 6=argmaxy′∈Y g(xy′), (3.2)

the loss of (3.1) estimates the average number of classes, given any input data, that get

a greater scoring by g than the correct class. The loss (3.1) is hence a ranking criterion,

and the multiclass SVM of [Weston and Watkins, 1998] and AdaBoost.MR [Schapire

and Singer, 1999] optimize convex surrogate functions of this loss. The multiclass

classification problem we are going to study is that of finding a function g ∈ G using

the labeled training set S with small generalization error L(g):

L(g) = Exy∼D [e(g,xy)] . (3.3)

28

Accordingly, the empirical error of g ∈G over S is

L̂m(g,S) =
1
m

m
∑

i=1

e(g,xyi
i) (3.4a)

=
1

m(K − 1)

m
∑

i=1

∑

y ′∈Y\{yi}

1
g(xy

i)≤g(xy′
i)

(3.4b)

We further work out the empirical loss of Equation (3.4) in order to i) have it

ressemble a more usual binary classification loss with, in particular, a single sum run-

ning over only one index, ii) make apparent the need of dealing with non-i.i.d. random

variables and iii) after a theoretical introduction, set the stage for our practical binary

reduction approach.

A first step to reshape the empirical loss is to see that the instantaneous loss (3.1)

can be rewritten as

e(g,xy) =
1

K − 1

∑

y ′∈Y\{y}

1 ỹh(xy ,xy′)≤0,

where h is defined as h(xy ,xy ′) = g(xy)− g(xy ′). This bears strong resemblance with

a binary-classification-loss-based risk, a resemblance that can be strengthened by in-

troducing the transformed set T (S) of size n= m(K − 1) defined as

T (S) =
��

Z j, ỹ j

�

: j = 1, . . . , n
	

, (3.5)

where each Z j is one of the pairs (xy
i ,xy ′

i), and ỹ j = 1 if the first observation in Z j

is constituted by an example xi and its true class in S (i.e. y = yi) and the second

observation is constituted by the same example and any other of the K−1 classes; and

ỹ j = −1 otherwise (i.e. if the order is reverse). This allows us to rewrite the empirical

loss of (3.4b) as:

LT
n (h, T (S)) =

1
n

n
∑

j=1

1 ỹ jh(Z j)≤0. (3.6)

With these definitions at hand, it is clear that the selection of a hypothesis in G

minimizing the empirical risk of (3.4) over the training set S, is equivalent to the

search of a hypothesis in H = {h : h(xy ,xy ′) = g(xy) − g(xy ′), g ∈ G} minimizing

the empirical risk of (3.6) over T (S). However, even if the examples in S are i.i.d.,

the examples in T (S) are no longer independent since the same observations xy ∈ S

are involved in different pairs of T (S). Thus, in order to obtain generalization error

bounds LT
n (h, T (S))we need to address the issue of learning with interdependent data.

We will discuss this issue in detail in next sections.

29

3.2 MULTICLASS TO BINARY REDUCTION

3.2.1 REDUCTION STRATEGY

In section 3.1 , we derived an equivalence of multiclass classification problem to a

binary problem. Hence, if we can represent each example of our dataset as dyadic

pairs of (x, yi) for all i ∈ K, then based on that equivalence shown in Equation 3.6 we

can transform the multiclass dataset to binary. Figure 3.1, depicts this transformation

over a toy problem. More precisely, we consider the following transformation:

T (S) =

 (

�

Z j =
�

xk
i ,xyi

i

�

, ỹ j = −1
�

if k < yi
�

Z j =
�

xyi
i ,xk

i

�

, ỹ j = +1
�

elsewhere

!

j
.
=(i−1)(K−1)+k

, (3.7)

for j = (i − 1)(K − 1) + k with i ∈ [m], k ∈ [K − 1], thus T transforms a monolabel K

class classification set S of m feature/label pairs into a set T (S) of size N = m(K − 1).

We consider the following class of functions

H= {h : (X×Y)2→ R;

h(xy ,xy ′) = g(xy)− g(xy ′), g ∈G,
(3.8)

Here, one thing to note is that the label assignment in Equation 3.7 is done based

on the new hypothesis function learned over the subtraction of dyadic representations

as represented in 3.8. Hence, if the first representation in the subtraction pair corre-

sponds to the true label, then the subtraction should be positive making the binary

label as +1 and vice versa.

3.2.2 REDUCTION EXAMPLE

Figure 3.1, presents a toy example of reduction of multiclass classification to binary

classification. The example consists of an original multiclass dataset denoted as S =
�

x1, x2, x3, x4

	

, which consists of 4 examples each of them belong to four classes; Y

=
�

y1, y2, y3, y4

	

respectively. We apply our binary transformation function denoted

as T to this multiclass dataset and obtain the binary reduced dataset denoted as T (S).

As can be seen in the figure, new examples in the transformed set are created by the

subtraction of dyadic representations of each example with its true class and all other

class labels in the output space following the transformation function in 3.7. We will

30

discuss about the feature representation in the next section. As we said before for m

examples in the original set we create m× (K − 1) examples in the transformed set.

Hence, in the example with 4 training examples and 4 class labels we have 4× (4 -1)=

12 examples in the transformed set. One notable property of this transformation is that

the number of positive and negative examples in the transformed set are equivalently

similar. This helps to solve the class imbalance problem of multiclass classification.

Figure 3.1: A toy example depicting the transformation T (Eq. 3.7) applied to a

training set S of size m= 4 and K = 4.

3.2.3 LOW-DIMENSIONAL FEATURE MAP

In multiclass classification, the output space is unstructured and the algorithms using

the "trivial" feature map need a single parameter vector for each class. So, the param-

eter for such problems is in fact the concatenation of one parameter vector per class.

However, our reduction technique relies on the dyadic (joint) representation of xy of

example and classes. This allows us to make use of a non-trivial feature representa-

tion φ(xy) by using a small number of adequately chosen similarity features between

examples and classes. Typical low-dimensional features for text classification can be

common terms between example and all examples in a class, similarity features etc

(see Section 3.3.3.2). This joint feature space is independent of the number of classes

and hence remains same for any number of classes. So, learning can be achieved by

combining these features, using same parameter vector for all the classes. The use of

such low-dimensional feature representation has a huge benefit in terms of memory

usage. We will demonstrate this fact further in the Experiments section later.

31

3.3 NAIVE REDUCTION ALGORITHM (mRb)

3.3.1 ALGORITHM DESCRIPTION

Now, using the reduction strategy introduced in previous section, we present our first

classification algorithm based on the reduction of multiclass to binary.

3.3.1.1 Reduction Phase

The first step of the classification algorithm is the binary reduction phase introduced

in 3.2.1. Algorithm 1 outlines the reduction phase of the proposed algorithm. We use

a low-dimensional dyadic feature representation rather than using the original feature

space as suggested in 3.2.3. The dyadic representation consists of a small number of

adequately chosen features. The output of the reduction phase is a binary transformed

dataset.

Input: Labeled training set S= (xyi
i)

m
i=1

Initialize

T (S)← ;

for i = 1..m do

for k = 1..K do

if k < yi then
T (S)← T (S)∪

�

Z =
�

φ(xk),φ(xyi)
�

, ỹ = −1
�

end

else
T (S)← T (S)∪

�

Z =
�

φ(xyi),φ(xk)
�

, ỹ = +1
�

end

end

end

return T (S)
Algorithm 1: Multi-class to Binary Reduction Phase

3.3.1.2 Learning Phase

Since the transformation gives us a binary dataset, we can now train a binary learner.

Some of the popularly used binary learners [Bishop, 2006] are Logistic Regression,

32

SVM etc. The binary learner learns a weight vector, W. These learned weights can be

used to classify the future unseen instances.

3.3.1.3 Prediction Phase

Now, after training the binary learner, we use the learned model to classify the test

instances. However, its not very trivial in our case, since the model is learned over

binary dataset and the test instances are multiclass. So, the procedure we follow

during prediction phase is depicted in Algorithm 2. For each test example, x’, we

make a dyadic representation with respect to all the class labels in Y, and the one

with the highest dot product with the weight vector is assigned as the predicted class

for the test example.

Input: Unlabeled test set T= (xi)Ti=1

Learned feature weight vector W

Initialize:

P ← ;

forall x ∈ T do
P ← P ∪ argmaxk∈K〈W,φ(xk)〉

end

return predicted classes P
Algorithm 2: Prediction with Binary Learned Model

3.3.2 GENERALIZATION BOUND ANALYSIS USING FRACTIONAL

RADEMACHER COMPLEXITY

With these definitions at hand, it is clear that the selection of a hypothesis in G mini-

mizing the empirical risk of (3.4) over the training set S, is equivalent to the search of

a hypothesis in H = {h : h(xy ,xy ′) = g(xy)− g(xy ′), g ∈ G} minimizing the empirical

risk of (3.6) over T (S). However, even if the examples in S are i.i.d., the examples in

T (S) are no longer independent since the same observations xy ∈ S are involved in dif-

ferent pairs of T (S). Thus, in order to obtain generalization error bounds LT
n (h, T (S))

we need to address the issue of learning with interdependent data.

There exist several ways to tackle this problem among which two settings received

particular attention in the literature. The first one deals with learning from mixing pro-

33

cesses, where the dependency between random variables decreases over time [Mohri

and Rostamizadeh, 2009,Steinwart and Christmann, 2010]. The second direction, on

which the present work is based on, is developed around the idea of graph coloring

that divides a graph, representing the relations between random variables, into sets

of independent random variables called proper cover of the graph [Janson, 2004].

A proper cover of T (S) is constituted of K −1 disjoint sets (Ck)K−1
k=1 each containing

m independent examples. For all k ∈ {1, . . . , K − 1} it is defined as

Ck = {(Zk+ j(K−1), ỹk+ j(K−1)); j ∈ {0, . . . , m− 1}}

Moreover, (Ck,αk)K−1
k=1 is said to be a proper exact fractional cover of T (S), if (Ck)K−1

k=1

is a proper cover of T (S) and if ∀k,αk > 0 and

∀i ∈ {1, . . . , n},
∑

k=1

αk1(Z i , ỹi)∈Ck
= 1.

S

T (S)

(C1, ↵1 = 1)

(C2, ↵2 = 1)

x1
1 x2

2 x3
3

(x1
1,x

2
1) (x1

1,x
3
1)

(x2
2,x

3
2)(x2

2,x
1
2)

(x3
3,x

1
3) (x3

3,x
2
3)

(x1
1,x

2
1) (x2

2,x
1
2) (x3

3,x
1
3)

(x1
1,x

3
1) (x2

2,x
3
2) (x3

3,x
2
3)

Figure 3.2: The proper exact fractional cover of the set T (S) obtained after transfor-

mation of the training set S = {x1
1,x2

2,x3
3}. For the sake of clarity, the class labels of

pairs of examples are omitted. The fractional chromatic number of T is in this case

χ∗T = 2.

The fractional chromatic number of T , denoted as χ∗T is then the minimum sum

of weights, or the minimum number of sets containing each independent random

variables, which for the proposed transformation is equal to K −1. Figure 3.2 depicts

the transformation and its associated proper exact fractional on a toy problem.

34

Using graph coloring arguments, [Janson, 2004] extended Hoeffding’s inequal-

ity to sums of interdependent random variables and based on that result, different

studies proposed new generalization error bounds for learning with interdependent

data, thus proving the consistency of the ERM principle for this case [Usunier et al.,

2006,Ralaivola et al., 2010]. Here we build on [Usunier et al., 2006] who proposed a

generalization of [McDiarmid, 1989] concentration inequality to the case of interde-

pendent random variables.

Our theoretical result is the following theorem which provides data-dependent

bound on the generalization error of the multiclass classifier (Eq. 3.3). This result is

at the basis of the algorithm for the binary classification of pairs of examples that we

expose in the next section. We consider here kernel-based hypotheses with κ : Z→ R

a positive semidefinite (PSD) kernel and φ : X×Y→H its associated feature mapping

function, defined as:

GB = {xy ∈ X×Y 7→ 〈w ,φ(xy)〉 | ||w || ≤ B} (3.9)

where w is the weight vector defining the kernel-based hypotheses and 〈·, ·〉 denotes

the dot product. We further define the following associated function class:

HB = {(xy ,x′y
′
) ∈ Z 7→ gw(x

y)− gw(x
′y ′) | gw ∈GB}.

Theorem 3.1. Let S = (xyi
i)

m
i=1 ∈ (X × Y)

m be a dataset of m examples drawn i.i.d.

according to a probability distribution D over X × Y and T (S) = ((Z i, ỹi))ni=1 ∈ (Z ×

{−1,1})n the transformed set obtained with the transformation function T defined above.

Further let κ : Z→ R be a PDS kernel, and let φ : X×Y→ H be the associated feature

mapping function. Then for all 1> δ > 0 with probability at least (1−δ) over T (S) the

following generalization bound holds for all hw ∈HB:

LT (hw)≤ εT
n (hw, T (S)) +

2BG(T (S))
m
p

K − 1
+ 3

√

√

√ ln(2
δ)

2m
(3.10)

where εT
n (h, T (S)) = 1

n

n
∑

i=1

L (ỹihw(Z i))with the surrogate Hinge lossL : t 7→min(1, max(1−

t, 0)), LT (hw) = ET (S)[LT
n (hw, T (S))] and G(T (S)) =

q

∑n
i=1 dκ(Z i) with

dκ(x
y ,xy ′) = κ(xy ,xy) + κ(xy ′ ,xy ′)− 2κ(xy ,xy ′)

Proof. Exploiting the fact that L dominates the 0/1 loss and using the fractional

Rademacher data-dependent generalization bound proposed for interdependent data

35

in Theorem 4 of [Usunier et al., 2006] one has

LT(hw)≤εT (hw)≤ ε̂T
n (hw, T (S))+R̂ T

n(L ◦HB,S)+3

√

√

√χ∗T ln(2
δ)

2n

Where εT (hw) = ET (S)[ε̂T
n (hw, T (S))] and R̂ T

n (L ◦ HB,S) is the empirical fractional

Rademacher complexity of L ◦HB on T (S). Further, as L is 1-Lipschitz, so

R̂ T
n (L ◦HB,S)≤ R̂ T

n (HB,S)

where

R̂ T
n (HB,S)=

K−1
∑

k=1

2αk

M
Eσ sup

h∈HB

m−1
∑

j=0

σ jhw(Zk+ j(K−1))

Now, for all k∈{1, .., K−1} and j∈{0, .., m−1}, let zk j and z′k j be the first and the second

pair of Zk+ j(K−1), then from the bilinearity of dot product and the Cauchy-Schwartz

inequality, R̂ T
n (HB,S) is upper-bounded by

K−1
∑

k=1

2αk

n
Eσ sup

hw∈HB

®

w ,
m−1
∑

j=0

σ j(φ(zk j)−φ(z′k j))

¸

≤
K−1
∑

k=1

2Bαk

n
Eσ

m−1
∑

j=0

σ j(φ(zk j)−φ(z′k j))

Further, for all i, j ∈ {0, . . . , m− 1}2, i 6= j, we have Eσ[σiσ j] = 0 so

R̂ T
n (HB,S) ≤

K−1
∑

k=1

2Bαk

n

√

√

√

√

m−1
∑

j=0

dκ(zk j, z′k j)

=
2Bχ∗T

n

K−1
∑

k=1

αk

χ∗T

√

√

√

√

m−1
∑

j=0

dκ(zk j, z′k j)

Now as
∑K−1

k=1
αk
χ∗T
= 1 and that t 7→

p
t is concave, from Jensen inequality we have

R̂ T
m(HB,S)≤

2Bχ∗T
n

√

√

√

√

K−1
∑

k=1

αk

χ∗T

m−1
∑

j=0

dκ(zk j, z′k j)

The result follows from rearranging the examples and the equalities χ∗T = K − 1, and

n= (K − 1)m.

3.3.3 PRELIMINARY EXPERIMENTS WITH mRb

To validate the proposed classification algorithm based on the reduction of multiclass

problem to binary, we conducted a series of experiments on text classification.

36

3.3.3.1 Dataset

We evaluate the proposed method for multi-class classification in a large-scale scenario

using DMOZ and Wikipedia datasets of the Large Scale Hierarchical Text Classifica-

tion challenge (LSHTC 2011) [Partalas et al., 2015]. These datasets contain 27875

and 36504 categories respectively for DMOZ and Wikipedia and they are provided in

a pre-processed format using stop-word removal and stemming. The dimension of

the vectorial space (d), the size of the training set (m) and the test set are respec-

tively 594158 , 394756 and 104263 for DMOZ and 346299 , 456886 and 81262 for

Wikipedia. For each of these datasets we randomly draw several samples with increas-

ing number of classes: 100, 500, 1000, 2000, 3000, 4000, 5000, 7500 and by keeping

the same proportion of examples in the training and the test sets than in the initial

collections. Various characteristics of these subsets of the two original datesets are

listed in Table 3.1.

of DMOZ WIKI

classes Train Test Feature Train Test Feature

size size dimension size size dimension

100 985 258 23382 1481 326 11841

500 4874 1279 66541 7995 1623 32736

1000 9479 2478 102745 15615 3288 47520

2000 18378 4830 177108 30447 6509 74912

3000 27729 7287 202775 45340 9569 85585

4000 37634 9886 264216 63375 13422 113074

5000 47281 12426 271205 76904 16268 114049

7500 103794 26886 371634 91283 20025 122847

Table 3.1: Characteristics of the datasets used in our experiments

3.3.3.2 Feature Representation:

For the feature mapping, we used the following features in the vector representation

of φ(xy) (Table 3.2) by considering a class y as a mega-document, constituted by

the concatenation of all of the documents in the training set belonging to it. The

first 8 features are classical ones employed in learning to rank [Liu et al., 2007] by

resembling class and a document to respectively a document and a query. The last

37

two features represent the distance of an example x to its two nearest neighbors in

class y .

Features in the vector representation of φ(xy).

1.
∑

t∈y∩x

ln(1+ yt) 2.
∑

t∈y∩x

ln(1+
lS
St
) 3.

∑

t∈y∩x

It

4.
∑

t∈y∩x

yt

|y|
.It 5.

∑

t∈y∩x

ln(1+
yt

|y|
) 6.

∑

t∈y∩x

ln(1+
yt

|y|
.It)

7.
∑

t∈y∩x

ln(1+
yt

|y|
.
lS
St
) 8.

∑

t∈y∩x

1 9. d1(xy)

10. d2(xy)

Table 3.2: Let x t represent the term frequency of term t in document x , andV the set of

distinct terms within S, then yt =
∑

x∈y x t , |y|=
∑

t∈V yt , St =
∑

x∈S x t , lS =
∑

t∈V St .

It is the inverse document frequency of term t, d1(xy) and d2(xy) are the distances of

x to its two nearest neighbours in class y .

3.3.3.3 Baselines:

To assess the performance of the proposed algorithm, we perform a comparison of

the popular state-of-the-art approaches for multiclass classification. We specifically

compared the following methods:

• mRb: The proposed multiclass to binary reduction approach.

• OVA: The Liblinear [Fan et al., 2008b] implementaion of One-Vs-All SVM.

• OVO: The Liblinear implementation of One-Vs-One.

• M-SVM: The Liblinear implementation of Multiclass SVM (Crammer-Singer al-

gorithm [Crammer and Singer, 2002]).

• LogT : Vowpal-Wabbit (a public fast learning system proposed by [Choromanska

and Langford, 2015] for extreme multiclass classification). We use their logtree

solver for our comparison.

38

3.3.3.4 Experimental Settings:

• Platform: In all of our experiments, we used a server with an intel Xenon

1.8HGz processor and 16GB of RAM.

• Parameters: For OVA and M-SVM, we need to choose appropriate value of C pa-

rameter. In our experiments, we perform a grid search in the following range of

values {10−2, 10−1, 100, 101, 102}, and use the one that leads to the best perfor-

mance on the validation set.

• Evaluation Measures: Results are evaluated over the test set first using the

accuracy. As we have discussed in previous section, one of the prominent chal-

lenges for large-scale multiclass classification is class imbalance problem. When

the dataset exhibits such behaviour accuracy cannot be considered as a good

measure for evaluation. Hence, we also use macro F1-Measure (we will denote

it as MaF1) as another measure for evaluation , which is the harmonic average

of macro precision and macro recall (see section 2.4.3).

3.3.3.5 Evaluation on the largest data part

DMOZ-7500 Wikipedia-7500

Accuracy MaF1 Nc Accuracy MaF1 Nc

mRb 0.499↓±.011 0.352 ± .009 0.495 0.467↓±.023 0.378 ± .012 0.551

OVA 0.549±.036 0.282↓±.018 0.379 0.484±.029 0.348↓±.017 0.489

LogT 0.311↓±.034 0.096↓±.029 0.194 0.231↓±.035 0.151↓±.021 0.287

Table 3.3: Accuracy, MaF1 of methods that could be trained with 7500 classes of DMOZ

and Wikipedia collections. Nc is the proportion of classes that are covered or in other

words the fraction of classes that are identified in test set. Statistics are given over 50

random samples of training/test sets.

We start our evaluation by analyzing the performance measures of different ap-

proaches on the setting with the largest number of classes we considered in our ex-

periments (K = 7500). Table 3.3 summarizes results obtained by mRb, OVA and LogT,

as the corresponding training processes of M-SVM and OVO were killed by the system

and did not pass the scale. Results are averaged over 50 random splits of tests sets.

39

We use bold face to indicate the highest performance rates, and the symbol ↓ indicates

that performance is significantly worse than the best result, according to a Wilcoxon

rank sum test used at a p-value threshold of 0.01 [Lehmann, 1975]. The competitive

methods are OVA and mRb with a discrepancy over their accuracy and MaF1 measures

on both collections. To analyze this divergence we estimated the proportion of classes

that have been covered, or for which at least one true positive document was found. It

comes out that mRb covers 6% to 12% more classes than OVA (that is 465 to 900 more

classes on both datasets). The reason here is that OVA is affected by the class imbalance

problem especially in the extreme case where classes contain very few documents. For

the large scale scenario this problem is accentuated as the class distribution is long-

tailed, as for example in DMOZ-7500, more than half of the classes contain less than 5

documents (Figure 2.5).

3.3.3.6 Evaluation on all subsets

We also show the comparison of various baselines on data subsets with increasing

number of classes. We analyzed their performance in terms of MaF1values.

As expected all performance curves decrease monotonically with respect to an in-

creasing number of classes. The breaking points beyond which OVO and M-SVM cannot

be trained, happen at the same time on both collections for respectively K = 500 and

K = 3000 classes. The performance of mRb are in between of those of OVA and M-SVM

before the breaking point, with a slight advantage for M-SVM, while mRb uniformly out-

performs OVA with a larger gap on Wikipedia. We notice that on this collection, mRb

achieves for 7500 classes MaF1 score comparable to the OVA’s one for 5000 classes.

Comparatively, for K = 3000, the numbers of parameters of these two models are

roughly 5.4×108 to 6.5×108 on respectively Wikipedia and DMOZ collections which

are O(107). However, since we adopt a low-dimensional feature representation, we

have a very small parameter size O(10). This low-dimensional representation signif-

icantly reduces the complexity of the model, especially for cases with higher number

of classes.

3.3.3.7 Evaluation of training time

Another performance comparison we performed was the total training time for all the

algorithms. Figure 3.4 summarizes the training time of all methods for an increasing

number of classes on DMOZ dataset. In the large-class scenario (such as 7500 classes)

40

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

100 500 1000 3000 5000 7500

M
aF

1

of classes (K)

DMOZ

M-SVM
mRb
OVA
OVO
LogT

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

100 500 1000 3000 5000 7500

M
aF

1

of classes (K)

Wikipedia

M-SVM
mRb
OVA
OVO
LogT

Figure 3.3: MaF1 of all methods with respect to the number of classes for DMOZ (top)

and Wikipedia (down).

we can observe that the only algorithms which are able to pass the scale are OVA, mRb

and LogT. Out of which mRb performs significantly faster as compared to OVA. LogT

performs quite well in terms of training time, since it obeys a tree structure for training,

41

which makes its training time logarithmic in the number of classes. However, as we

noticed in the previous result, the prediction performance of logarithmic algorithms

are not competitive as compared to other state-of-the-art methods.

1

10

100

1000

10000
22000

100 500 1000 3000 50007500

T
ra

in
in

g
tim

e
(s

)

of classes (K)

Wikipedia

M-SVM
mRb
OVA
OVO
LogT

Figure 3.4: Training time in seconds of all methods with respect to the number of

classes for Wikipedia

3.3.4 NEW CHALLENGES

In the preliminary results with mRb, we noticed that the proposed classification ap-

proach was able to tackle the main challenges of multiclass classification. First of all

the reduced binary problem has equivalent number of positive and negative exam-

ples, hence it does not suffer from class imbalance problem. This fact contributes to

the comparable or better predictive performance of the proposed method as compared

to the baselines. Additionally, learning a classifier over the binary dataset is signifi-

cantly faster. We can notice this in the training time comparison plot in Figure 3.4.

The use of low-dimensional joint feature representation helped to reduce the feature

42

dimension significantly. As we already mentioned, the feature dimension in text clas-

sification problem can be very huge (up to the order of millions). Hence, the use of

dyadic features helped us to restrict this huge feature dimension to as small as just 10

features. This contributes to significantly lower memory requirements as compared to

most of baseline approaches such as OVA, OVO and M-SVM.

However, there are a some new challenges associated with the proposed approach.

Even though the proposed method scales well enough for large-scale cases, it still has

fairly large computational cost and memory usage. Let us discuss this with respect to

both phases of the algorithm:

• Reduction Phase: If we denote the number of examples in the training set as m

and the total number of classes is K , one complete reduction process refers to

m× K transformations of all (example, class) pairs from original feature space

to low-dimensional feature set and m× (K −1) subtractions of low-dimensional

feature representations as can be seen from Algorithm 1. But since large-scale

applications involve both higher number of training examples and class size, the

computational cost for these operations can become huge. Also, the number of

examples in the binary reduced dataset is m×K . Similarly the memory required

to store such huge amount of reduced examples becomes quite high.

• Testing Phase: During the testing phase, for each test example x ′ we first per-

form K transformations and then calculate the dot product of the learned weight

W with each joint representations (x ′, yi) for i ∈ K . This again causes large com-

putational cost.

Hence in order to overcome the above-mentioned challenges of mRb algorithm, we

proposed a modified version of the algorithm denoted as DS-mRb, which improves

over each of the challenges mentioned above. In the next section, we will discuss the

proposed algorithm in detail and in the later sections we will discuss its theoretical

and empirical properties.

43

3.4 DOUBLE SAMPLED MULTI TO BINARY REDUC-

TION ALGORITHM (DS-mRb)

3.4.1 ALGORITHM DESCRIPTION

First, we will introduce our proposed DS-mRb algorithm by detailing its two main

characteristics: (i) an aggressive, doubly sampled, multi-class to binary reduction;

and (ii) an efficient prediction method with candidate pre-selection.

3.4.1.1 Aggressive Double Sampling

Earlier we discussed that the transformation of Multi-class to binary, T introduced

in Section 3.3 can lead to a large computational overhead. In order to improve the

memory/computational complexity, we practice a µ,κ-double subsampling on T (S) by:

1. For each class k ∈ {1, . . . , K}, draw randomly a set Sπk
of examples from S of

that class with probability πk, and let Sπ =
K
⋃

k=1

Sπk
;

2. For each example xy in Sπ, draw uniformly κ adversarial classes in Y\{y}.

After this double sampling, we construct our transformed problem as in Eq. (3.7),

leading to a set Tκ(Sµ) of sizeµκK . Algorithm 3 presents in pseudocode theµ,κ-double

subsampled reduction of the multiclass problem.

This aggressive double sampling practically leads to dramatic improvements in terms

of memory consumption, computational complexity, and a higher multiclass prediction

accurracy. Majority of large-scale multiclass classification datasets exhibit a long-tailed

distribution [Babbar et al., 2014b], which implies that most of the classes contain very

few examples, especially when the number of classes is large. In order not to miss out

those rare classes during sampling, we first sample randomly a few training examples

from each class. This also avoids having a large number of very similar examples in

one class leading to minimal performance improvement.

Still, in cases where the number of classes K becomes large, the initialization of

(subsampled) set T (Sµ) can be a computational bottleneck. However, thanks to our

loss formulation (Eq. 3.1), its size can be sensibly reduced. Indeed, e(g,xy) can be

seen as the expectation of 1g(xy)≤g(xy′) on y ′ uniformly over Y\{y}:

44

Input: Labeled training set S= (xyi
i)

m
i=1

initialization: Sπ← ;;

Tκ(Sπ)← ; ;

for k = 1..K do

Draw randomly a set Sπk
of examples of class k from S with probability πk;

Sπ← Sπ ∪ Sπk
;

end

forall xy ∈ Sπ do

Draw uniformly a set Yxy of κ classes from Y\{y} . κ� K;

forall k ∈ Yxy do

if k < y then

Tκ(Sπ)← Tκ(Sπ)∪
�

Z =
�

φ(xk),φ(xy)
�

, ỹ = −1
�

;

end

else

Tκ(Sπ)← Tκ(Sπ)∪
�

Z =
�

φ(xy),φ(xk)
�

, ỹ = +1
�

;

end

end

end

return Tκ(Sπ)
Algorithm 3: DS-mRb

e(g,xy) =
1

K − 1

∑

y ′∈Y\{y}

1g(xy)≤g(xy′) ≈ Ey ′[1g(xy)≤g(xy′)].

It means that one can define a new empirical loss by sampling over the classes. Let

κ ≤ K − 1 be the number of classes to investigate per example. For each example xy ,

draw uniformly a κ-tuple K of distinct elements of Y\{y}. The new subsampled loss

over Sµ = (x
yi
i)i=1,..,µK is:

ˆ̂Lµ,κ(g,S) =
1
µK

µK
∑

i=1

1
κ

∑

y ′∈Yxy

1
g(x

yi
i)≤g(xy′

i)

!

. (3.11)

This loss is an unbiased estimator of the normalized loss L(g) = Exy∼D [e(g,xy)] =

Exy∼D

�

Ey ′[1g(xy)≤g(xy′)|y = y]
�

where D is the distribution of the examples after class

normalization. Thus, this new loss enables to approximate the statistical loss L at a

much lower computational cost than the classical emprical loss. Finally, one can notice

45

that such reasoning does not hold for the classical loss of Eq. 3.2 due to its non-linear

formulation.

3.4.1.2 Prediction with Candidate Selection

After learning over our reduced problem using the Tκ(Sµ) dataset obtained after ag-

gressive sampling, we obtain a vector w such that, for an observation x, the larger

〈w,φ(xy)〉 over y is, the more likely x belongs to class y .

However in the large class scenario, computing the feature representation for all

classes may require a huge amount of time. So, in order to improve the prediction

time, we apply the trick of selecting a small subset of candidate classes beforehand.

For a new observation x, the candidate set denoted asKσ contains theσ nearest classes

for the test example, based on the centroid distance of test example vector with the

class centroids. Class centroids are computed by taking mean of all the examples of

that particular class.

Candidate set is selected by computing the cosine distance between a test example

vector and each class centroid vectors and selecting theσ nearest ones. Note that class

centroid may already have been computed in the preliminary feature representation

and thus represent no additional computation. Algorithm 4 presents the pseudocode

of prediction with candidate selection.

Input: Unlabeled test set T= (xi)Ti=1

Learned feature weight vector w

Initialize:

P ← ;

forall x ∈ T do
Select Kσ candidate set of σ nearest-centroid classes for x

P ← P ∪ argmaxk∈Kσ〈w,φ(xk)〉

end

return predicted classes P
Algorithm 4: Prediction with Candidate Selection Algorithm

46

3.4.2 GENERALIZATION BOUND ANALYSIS USING LOCAL FRAC-

TIONAL RADEMACHER COMPLEXITY

In this work, we derive a new generalization bounds based on Local Rademacher

Complexities introduced in [Ralaivola and Amini, 2015] that implies second-order (i.e.

variance) information inducing faster convergence rates (Theorem 3.2). Our analysis

relies on the notion of graph covering introduced in [Janson, 2004] and defined as :

Definition 3.1 (Exact proper fractional cover of G , [Janson, 2004]). Let G = (V ,E) be

a graph. C = {(Ck,ωk)}k∈[J], for some positive integer J, with Ck ⊆ V and ωk ∈ [0,1]

is an exact proper fractional cover of G , if:

1. it is proper: ∀k, Ck is an independent set, i.e., there is no connections between

vertices in Ck;

2. it is an exact fractional cover of G: ∀v ∈ V ,
∑

k:v∈Ck
ωk = 1.

The weight W (C) of C is given by: W (C) .
=
∑

k∈[J]ωk and the minimum weight

χ∗(G) = minC∈K (G)W (C) over the set K (G) of all exact proper fractional covers of

G is the fractional chromatic number of G .

Figure 3.5: The dependency graph G = {1, . . . , 12} corresponding to the toy problem

of Figure 3.1, where dependent nodes are connected with vertices in blue double-line.

The exact proper fractional cover C1, C2 and C3 is shown in dashed. The fractional

chromatic number is in this case χ∗(G) = K − 1= 3.

47

From this statement, [Janson, 2004] extended Hoeffding’s inequality and proposed

large deviation bounds for sums of dependent random variables which was the precur-

sor of new generalisation bounds, including a Talagrand’s type inequality for empirical

processes in the dependent case presented in [Ralaivola and Amini, 2015].

With the classes of functions G and H introduced previously, consider the param-

eterized family Hr which, for r > 0, is defined as:

Hr = {h : h ∈H,V[h] .
= VZ, ỹ[1 ỹh(Z)]≤ r},

where V denotes the variance. The fractional Rademacher complexity introduced

in [Usunier et al., 2005] entails our analysis :

RT (S)(H)
.
=

2
N
Eξ
∑

k∈[K−1]

ωkECk
sup
h∈H

∑

α∈Ck
Zα∈T (S)

ξαh(Zα),

with (ξi)Ni=1 a sequence of independent Rademacher variables verifying P(ξn=1) =

P(ξn=−1) = 1
2 . If other is not specified explicitly we assume below all ωk = 1.

Our first result that bounds the generalization error of a function h ∈ H; R(h) =

ET (S)[R̃T (S)(h)], with respect to its empirical error R̃T (S)(h) over a transformed training

set, T (S), and the fractional Rademacher complexity, RT (S)(H), states as :

Theorem 3.2. Let S = (xyi
i)

m
i=1 ∈ (X × Y)

m be a dataset of m examples drawn i.i.d.

according to a probability distribution D over X×Y and T (S) = ((Z i, ỹi))Ni=1 the trans-

formed set obtained as in Eq. (3.7). Then for any 1> δ > 0 and 0/1 loss ` : {−1,+1}×

R→ [0, 1], with probability at least (1−δ) the following generalization bound holds for

all h ∈Hr :

R(h)≤ R̃T (S)(h) +RT (S)(` ◦Hr) +
5
2

�

q

RT (S)(` ◦Hr) +
s

r
2

�

√

√

√ log 1
δ

m
+

25
48

log 1
δ

m
.

Lemma 1. Fractional chromatic number is monotone in graph inclusion: ifG = 〈VG ,EG 〉 ⊆

H = 〈VH ,EH 〉 implies VG ⊆ VH and EG ⊆ EH we have χ∗(G)≤ χ∗(H).

Proof. Consider any exact proper fractional cover [Janson, 2004] of graphH , CH =

{(Ck,ωk)}k∈J for some index set J . By removing from each Ck vertices that belong

to VH \ VG and incident edges we get a cover CG = {(C′k,ωk)}k∈J of graph G . Once

for a certain k holds C′k = ∅ we remove it from CH which is essentially the same as

assignment ωk
.
= 0.

48

The cover CG is a proper fractional cover of G since the number of connections

between vertices in C′k is a subset of those in Ck for any k ∈ J . The cover CG is also

exact (modulo empty sets in CH) since for any v :

v ∈ VH ∩VG :
∑

k:v∈C′k

ωk =
∑

k:v∈Ck

ωk = 1,

where CH = {(Ck,ωk)}k∈J is an exact proper fractional cover of graph H . That im-

plies that each exact proper fractional cover CH of graph H can be converted to

an exact proper fractional cover CG of graph G without increasing the covering cost

W (CG)
.
=
∑

Ck∈CG
ωk ≤ W (CH). Denote the set of all exact proper fractional cover-

ings of graph G asK (G) and coverings obtained by pruningK (H) as above through

KH (G).

By the definition of fractional chromatic number we have

χ∗(G)= min
C∈K (G)

W (C)
(1)
≤ min
C∈KH (G)

W (C)≤ χ∗(H),

where (1) is implied by inclusion KH (G) ⊆K (G).

Lemma 2 (Empirical Bennet inequality, theorem 4 of [Maurer and Pontil, 2009]). Let

Z1, Z2, . . . , Zn be i.i.d. variables with values in [0, 1] and let δ > 0. Then with probability

at least 1−δ in Z= (Z1, Z2, . . . , Zn) we have

E[Z]−
1
n

n
∑

i=1

Zi ≤

√

√2Vn(Z) log 2/δ
n

+
7 log2/δ
3(n− 1)

,

where Vn(Z) is the sample variance

Vn(Z) =
1

n(n− 1)

∑

1≤i< j≤n

(Zi − Z j)
2.

Lemma 3 (Concentration of Fractionally Sub-Additive Functions, theorem 3 of [Ralaivola

and Amini, 2015]). Let H be a set of functions from X to R and assume all func-

tions in H are measurable, square-integrable and satisfy E[f (Xn)] = 0,∀n ∈ [N] and

sup f ∈H ‖ f ‖∞ ≤ 1. Assume that C= {(Ck,ωk)}k∈J is a cover of the dependency graph of

X[N] and let χ f
.
=
∑

kωk.

Let us define:

Z
.
=
∑

k∈[J]

ωk sup
f ∈H

∑

n∈Ck

f (Xn)

49

Let σk be so that σ2
k =

∑

n∈Ck
sup f ∈HE

�

f 2(Xn)
�

, v
.
=
∑

kωkσ
2
k + 2E[Z], and c

.
=

25χ f /16. Then, for any t ≥ 0.

P
�

Z ≥ E[Z] +
p

2cvt +
c t
3

�

≤ e−t (3.12)

Let below D be a probability measure over X × Y. It can be decomposed into a

direct product of D= DY×DX|Y with marginal distribution DY over Y and conditional

DX|Y over X. Let D̄ = D̄Y × DX|Y be a measure properly renormalized in accordance

with the algorithm, e.g. Py∼D̄[y(x) = y] = πy/π, where π=
∑K

i=y πy .

Lemma 4. Let S = (xyi
i)

m
i=1 ∈ (X×Y)

m be a dataset of m examples drawn i.i.d. accord-

ing to a probability measure D = DY × DX|Y over X × Y and T (S) = ((Z i, ỹi))Ni=1 the

transformed set obtained with the transformation function T defined in Eq. (3.7). Let

D̄ = D̄Y × DX|Y, PD̄Y[y(x) = k] = πk/π, 1 ≤ i ≤ K, be a measure over X × Y used

in the (π,κ)-mRb algorithm. With the class of functions G = {g : X × Y → R} and

H = {h : h(φ(xy),φ(xy ′)) = g(xy)− g(xy ′), g ∈ G} for any δ > 0 for all h ∈ H with

probability at least 1−δ we have :

R(h)≤ αExy∼D̄R̃T (xy)(h) +

√

√2α log 2K/δ
β(m− 1)

+
7β log 2K/δ

3(m− 1)
.

holds the for all h ∈ H, where ` : {−1,+1} × R → [0,1] is the 0/1 loss, and α =

maxy: 1≤y≤K πηy/πy , and β =maxy: 1≤y≤K π/πy , and ηy > 0 is the proportion the class

y in the training set S.

Proof. First, decompose the expected risk R(h) as a sum of the conditional risks over

the classes

R(h) = Exy∼D[eh(x
y)]

(1)
= Ey∼DYExy∼D|y(x)=y[eh(x

y)|y(x) = y]

(2)
=

K
∑

y=1

Pxy∼D[y(x) = y] ·Exy∼D|y(x)=y [eh(x
y)|y(x) = y] , (3.13)

where (1) and (2) are due to the law of total expectation.

Similarly consider the expected loss Exy∼D̄R̃T (xy)(h) :

Exy∼D̄R̃T (xy)(h) = Exy∼D̄[eh(x
y)]

(1)
= Ey∼D̄YExy∼DX|Y,y(x)=y[eh(x

y)|y(x) = y]

(2)
=

K
∑

y=1

Pxy∼D̄[y(x) = y] ·Exy∼D|y(x)=y [eh(x
y)|y(x) = y]

=
K
∑

y=1

πy

π
·Exy∼D|y(x)=y [eh(x

y)|y(x) = y] , (3.14)

50

where (1) and (2) are also due to the law of total expectation.

From (3.13) and (3.14) we conclude

R(h)≤ max
y: 1≤y≤K

Pxy∼D[y(x) = y]
πy/π

·Exy∼D̄R̃T (xy)(h) (3.15)

Finally, we need to bound the multiplier in front of Exy∼D̄R̃Tκ(Sπ)(h) in Eq. (3.15).

Denote through ηy an empirical probability of the class y ∈ Y :

ηy =
1
m

∑

x∈S

1y(x)=y .

Note, that empirical variance Vn(ηy) in accordance with lemma 2 is

Vm(ηy) =
ηy(1−ηy)m

(m− 1)

For any y ∈ Y we have with probability at least 1−δ/K by lemma 2 :

Pxy∼D[y(x) = y]≤ ηy +

√

√2Vm(ηy) log 2K/δ

m
+

7 log 2K/δ
3(m− 1)

(1)
=

ηy +

√

√2ηy(1−ηy) log 2K/δ

m− 1
+

7 log 2K/δ
3(m− 1)

(2)
≤

ηy +

√

√2ηy log2K/δ

m− 1
+

7 log2K/δ
3(m− 1)

,

where (1) is a substitution of Vm(ηy) by its explicit value; (2) is due to the fact that

0< ηy ≤ 1.

Then simultaneously for all y ∈ Y we have with probability at least 1−δ :

Pxy∼D[y(x) = y]≤ ηy +

√

√2ηy log 2K/δ

m− 1
+

7 log 2K/δ
3(m− 1)

Thus with probability at least 1−δ :

max
y: 1≤y≤K

Pxy∼D[y(x) = y]
πy/π

≤ α+
√

√2α log2K/δ
β(m− 1)

+
7β log2K/δ

3(m− 1)
, (3.16)

with

α= max
y: 1≤y≤K

πηy

πy
, β = max

y: 1≤y≤K

π

πy

From equations (3.15) and (3.16) and the fact that Exy∼D̄N R̃T (xy)(h) ≤ 1, we have

with probability at least 1−δ :

R(h)≤ αExy∼D̄R̃T (xy)(h) +

√

√2α log 2K/δ
β(m− 1)

+
7β log 2K/δ

3(m− 1)
.

51

The results of the previous lemmas, hence entail the following lemma.

Lemma 5. Let S= (xyi
i)

m
i=1 ∈ (X×Y)

m be a dataset of m examples drawn i.i.d. according

to a probability distribution D over X×Y and Tκ(S) = ((Z i, ỹi))mκi=1 the transformed set

obtained as in Eq. (3.7) and draw κ adversarial samples by algorithm DS-mRb. With

the class of functions G = {g : X×Y→ R} and H = {h : h(φ(xy),φ(xy ′)) = g(xy)−

g(xy ′), g ∈G}, consider the parameterized family Hr which, for r > 0, is defined as :

Hr = {h : h ∈H,V[h] .
= VZ, ỹ[1 ỹh(Z)]≤ r},

whereV denotes the variance. Then for any δ > 0 and 0/1 loss ` : {−1,+1}×R→ [0, 1],

with probability at least (1−δ) the following generalization bound holds for all h ∈Hr :

R(h)≤ R̃Tκ(S)(h) +RTκ(S)(` ◦Hr)+

5
2

�

q

RTκ(S)(` ◦Hr) +
s

r
2

�

√

√(K − 1) log 1/δ
mκ

+
25
48

log1/δ
m

.

Proof. Consider the function Φ defined as:

Φ(X , r)
.
= N sup

h∈Hr

�

EX ′[R̃T (X ′)(h)]− R̃T (X ′)(h)
�

,

where X ′ is an i.i.d. copy of X and where we have used the notation EX ′[R̃T (X ′)(h)]

for ET (S)R̂N (h, T (S)) to make explicit the dependence on the sequence of dependent

variables X ′. It is easy to see that:

Φ(X , r)≤
∑

k∈[K−1]

ωk sup
h∈Hr

∑

α∈Ck

�

E(ỹ ′,Z ′)[1 ỹ ′h(Z ′)]− 1 ỹαh(Zα)

�

= Z . (3.17)

Lemma 3 readily applies to upper bound the right hand side of (3.17). Therefore, for

t > 0, the following holds with probability at least 1− e−t:

Φ(X , r)≤ E[Z] +
p

2cvt +
c t
3

,

where c = 25χ f /16 = 25(K − 1)/16 and v ≤ N r + 2E[Z]. Using
p

a+ b ≤
p

a +
p

b

and 2
p

ab ≤ ua+ b/u for all u> 0, we get,

∀u> 0,Φ(X , r)≤ (1+ u)E[Z] +
p

2cN r t +
�

1
3
+

1
u

�

c t.

52

Furthermore, with a simple symmetrization argument, we have,

E[Z] = E





∑

k∈[K−1]

ωk sup
h∈Hr

∑

α∈Ck

�

E ỹ ′,Z ′)[1 ỹ ′h(Z ′)]− 1 ỹαh(Zα)

�



≤ NR(` ◦Hr),

with ωk = 1 for all k since the fractional chromatic number of the dependency graph

corresponds to the sample T (S) equals to K−1 and stands for the covering determined

by Eq. (4) with unit weights ωk.

Further, as N = mκ, and fractional chromatic number of Tκ(S) ≤ T (S) = K − 1

(theorem 1 of [Joshi et al., 2015a]), with probability at least 1− e−t , we have for all

h ∈Hr

R(h)− R̃Tκ(S)(h)≤

inf
u>0

�

(1+ u)RTκ(S)(` ◦Hr) +
5
4

√

√2(K − 1)r t
mκ

+
25
16

�

1
3
+

1
u

�

(K − 1)t
κm

�

. (3.18)

The minimum of the right hand side of the inequality (3.18) is reached for u∗ = 5
4

r

(K−1)t
κmRTκ(S)(`◦Hr)

,

plugging back the minimizer and solving for δ = e−t gives the result.

Proof of the theorem 1. Theorem 1 of [Joshi et al., 2015a] states that fractional chro-

matic number of T (S) is bounded from above by K − 1. Then by the lemma 5 with

have with probability at least 1−δ :

R(h)≤ R̃T (S)(h) +RT (S)(` ◦Hr) +
5
2

�

q

RT (S)(` ◦Hr) +
s

r
2

�

√

√ log1/δ
m

+
25
48

log 1/δ
m

,

entails the statement of the theorem 1.

Our main result is the following theorems which bounds the generalization error

of a function h ∈H learned by minimizing R̃Tκ(Sπ).

Theorem 2 (a). Let S = (xyi
i)

m
i=1 ∈ (X × Y)

m be a dataset of m examples drawn i.i.d.

according to a probability measure D= DY×DX|Y over X×Y and T (S) the transformed

set obtained with the transformation function T defined in Eq. (3.7). Let Sπ ∈ (X×Y)n

and Tκ(Sπ), |Tκ(Sπ)| = M be a training sets derived from S and T (S) respectively using

the algorithm DS-mRb with parameters π1, . . . ,πK and κ. With the class of functions

53

G= {g : X×Y→ R} andH = {h : h(φ(xy),φ(xy ′)) = g(xy)− g(xy ′), g ∈G} we have

the following bound on the expected risk of the classifier :

R(h)≤ αR̃Tκ(Sπ)(h)+αRTκ(Sπ)(`◦H)+α

√

√(K − 1) log 2/δ
2Mκ

+

√

√2α log4K/δ
β(m− 1)

+
7β log 4K/δ

3(m− 1)
.

holds with probability at least 1−δ, for any δ > 0, the for all h ∈H, ` : {−1,+1}×R→

[0, 1] is the 0/1 loss, and

α= max
y: 1≤y≤K

ηy/πy , β = max
y: 1≤y≤K

1/πy ,

and ηy is strictly positive empirical probability of the class y over S.

Proof. By lemma 4 we have for D̄ = D̄Y ×DX|Y, PD̄Y[y(x) = i]∝ πi, 1 ≤ i ≤ K with

probability at least 1−δ/2 :

R(h)≤ αExy∼D̄R̃Tκ(Sπ)(h) +

√

√2α log4K/δ
β(m− 1)

+
7β log4K/δ

3(m− 1)
.

By theorem 4 of [Usunier et al., 2005] we have with probability at least 1−δ/2 :

Exy∼D̄R̃Tκ(Sπ)(h)≤ R̃Tκ(Sπ)(h) +R(H) +

√

√

√χ∗Tκ(Sπ)
log 2/δ

2Mκ
,

where a dependency graph for subsample Tκ(Sπ) is a subgraph of the dependency

graph for the whole sample T (S).

Then by lemma 1 we have χ∗Tκ(Sπ) ≤ χ
∗
T (S) = K − 1, the last is due to theorem

1 of [Joshi et al., 2015a], where χ∗T (S) and χ∗T (S) stand for the fractional chromatic

number of the dependency graph for Tκ(Sπ) and T (S) resp. Gather together the last

two equations we prove the theorem.

Theorem 2 (b). Let S = (xyi
i)

m
i=1 ∈ (X × Y)

m be a dataset of m examples drawn i.i.d.

according to a probability distribution D over X×Y and T (S) = ((Z i, ỹi))Ni=1 the trans-

formed set obtained with the transformation function T defined in Eq. (3.7). Let Sπ ∈

(X×Y)M and Tκ(Sπ) be a training set derived from T (S) using the algorithm DS-mRb

with parameters π1, . . . ,πK and κ. With the class of functions G= {g : X×Y→ R} and

H = {h : h(φ(xy),φ(xy ′)) = g(xy)− g(xy ′), g ∈G}, consider the parameterized family

Hr which, for r > 0, is defined as :

Hr = {h : h ∈H,V[h] .
= VZ, ỹ[1 ỹh(Z)]≤ r},

54

where V denotes the variance. Then for any δ > 0 with probability at least (1− δ) the

following generalization bound holds for all h ∈Hr :

R(h)≤ αR̃Tκ(Sπ)(h)+αRTκ(Sπ)(` ◦Hr)+α

√

√ log 4/δ
2m

+

√

√2α log4K/δ
β(m− 1)

+
7β log 4K/δ

3(m− 1)

+
5α
2

�

q

RTκ(Sπ)(` ◦Hr) +
s

r
2

�

√

√(K − 1) log2/δ
κM

+
25α
48

log2/δ
M

,

where ` : {−1,+1} × R → [0, 1] is the 0/1 loss and R(Hr) is the Local Fractional

Rademacher Complexity defined as:

R(Hr)
.
=

2
N
Eξ





∑

k∈[K−1]

ωkEZCk



sup
h∈Hr

∑

α∈Ck(T (S))

ξαh(Zα)









with ξ = (ξ1, . . . ,ξN) a sequence of N independent Rademacher variables such that

P(ξn = 1) = P(ξn = −1) = 1/2, and α = maxy: 1≤y≤K ηy/πy , β = maxy: 1≤y≤K 1/πy ,

and ηy > 0 is the empirical probability of the class y over S.

Proof. The proof of the theorem essentially combines the results of theorem 1 and

lemma 4.

By lemma 4 we have with probability at least 1−δ/2 :

R(h)≤ αExy∼D̄R̃T (xy)(h) +

√

√2α log 4K/δ
β(m− 1)

+
7β log 4K/δ

3(m− 1)
. (3.19)

Lemma 2 (a) applied to Tκ(Sπ), Tκ(Sπ) = Mκ gives with probability at least 1−

δ/2 :

Exy∼D̄R̃T (xy)(h)≤ R̃Tκ(Sπ)(h) +RTκ(Sπ)(` ◦Hr)+

5
2

�

q

RTκ(Sπ)(` ◦Hr) +
s

r
2

�

√

√(K − 1) log2/δ
Mκ

+
25
48

log 2/δ
M

(3.20)

Substitution (3.19) in (3.20) gives :

R(h)≤ αR̃Tκ(Sµ)(h) +αRTκ(Sµ)(` ◦Hr) +

√

√2α log 4K/δ
β(m− 1)

+
7β log 4K/δ

3(m− 1)
+

5α
2

�

q

RTκ(Sµ)(` ◦Hr) +
s

r
2

�

√

√(K − 1) log2/δ
Mκ

+
25α
48

log 2/δ
M

Proof of the theorem 2. The statement of theorem 2 in the paper is essentially a union

of the statements of theorem 2 (a) and theorem 2 (b) proved above.

55

The essence of the last theorem is improvement conditional error within classes

with low prior probability, which in its turn improves macro MaF1-measure of the clas-

sifier.

56

3.4.3 LARGE-CLASS (EXTREME) CLASSIFICATION EXPERIMENTS

USING DS-mRb

In this section, we provide an empirical evaluation of the proposed reduction approach

with the DS-mRb sampling strategy for large-scale multi-class classification of docu-

ment collections. First, we present the mapping φ : X×Y→ Rp. Then, we provide

a statistical and computational comparison of our method with state-of-the-art large-

scale approaches on popular datasets.

3.4.3.1 Datasets

We evaluate the proposed method using popular datasets from the Large Scale Hier-

archical Text Classification challenge (LSHTC) 1 and 2 [Partalas et al., 2015]. These

datasets are provided in a pre-processed format using stop-word removal and stem-

ming. Various characteristics of these datesets including the statistics of train, test

and heldout are listed in Table 3.4. Since, the datasets used in LSHTC2 challenge

were in multi-label format, we converted them to multi-class format by replicating

the instances belonging to different class labels. Also, for the largest dataset (WIKI-

large) used in LSHTC2 challenge, we used samples with 50,000 and 100,000 classes.

The smaller dataset of LSHTC2 challenge is named as WIKI-Small, whereas the two

50K and 100K samples of large dataset are named as WIKI-50K and WIKI-100K in our

result section.

Datasets # of classes, K Train Size Test Size Heldout Size Dimension, d

LSHTC1 12294 126871 31718 5000 409774

DMOZ 27875 381149 95288 34506 594158

WIKI-Small 36504 796617 199155 5000 380078

WIKI-50K 50000 1102754 276939 5000 951558

WIKI-100K 100000 2195530 550133 5000 1271710

Table 3.4: Characteristics of the datasets used in our experiments

3.4.3.2 Baselines

We compare the proposed approach, denoted as the sampling strategy by DS-mRb,

with popular baselines listed below:

57

• OVA: LibLinear [Fan et al., 2008a] implementation of one-vs-all SVM.

• M-SVM: LibLinear implementation of multi-class SVM proposed in [Crammer

and Singer, 2002].

• RecallTree [Daume III et al., 2016]: A recent tree based multi-class classifier

implemented in Vowpal Wabbit.

• FastXML [Prabhu and Varma, 2014]: An extreme multi-class classification method

which performs partitioning in the feature space for faster prediction.

• PfastReXML [Jain et al., 2016]: Tree ensemble based extreme classifier for

multi-class and multilabel problems.

• PD-Sparse [Yen et al., 2016]: A recent approach which uses multi-class loss

with `1-regularization.

For methods FastXML, PfastReXML and PD-Sparsewe used the solvers provided

by the authors. Also referring to the work [Yen et al., 2016], we did not consider

other recent methods SLEEC [Bhatia et al., 2015] and LEML [Yu et al., 2014a] in our

experiments, since they have been shown to be consistently outperformed by the above

mentioned state-of-the-art approaches.

3.4.3.3 Feature Representation

For our newly proposed method DS-mRb, we used mostly the same features as used

for mRb. The only difference is the last two features. Instead of using the to nearest

neighbors, we use centroid distance and BM25 as the last two features. The two

additional features gave good promise for better result. The feature are summarized

in Table 3.5.

3.4.3.4 Parameter Tuning

Each of these methods require tuning of various hyper-parameters that influence their

performance. For each methods, we tuned the hyper-parameters over a heldout vali-

dation set and used the combination which gave best predictive performance. In the

following section we will discuss the important hyper-parameters that we needed to

tune.

58

Features in the joint example/class representation representation φ(xy).

1.
∑

t∈y∩x

log(1+ yt) 2.
∑

t∈y∩x

log
�

1+
lS
Ft

�

3.
∑

t∈y∩x

It

4.
∑

t∈y∩x

yt

|y|
.It 5.

∑

t∈y∩x

log
�

1+
yt

|y|

�

6.
∑

t∈y∩x

log
�

1+
yt

|y|
.It

�

7.
∑

t∈y∩x

log
�

1+
yt

|y|
.
lS
Ft

�

8.
∑

t∈y∩x

1 9. d(xy ,centroid(y))

10. BM25 =
∑

t∈y∩x It .
2×yt

yt+(0.25+0.75·len(y)/avg(len(y))

Table 3.5: Joint example/class representation for text classification, where t ∈ y ∩

x are terms that are present in both the class y ’s mega-document and document x.

Denote by V the set of distinct terms within S then xt is the frequency of term t in

x, yt =
∑

x∈y xt , |y| =
∑

t∈V yt , Ft =
∑

x∈S xt , lS =
∑

t∈V St . Finally, It is the inverse

document frequency of term t, len(y) is the length (number of terms) of documents

in class y , and avg(len(y)) is the average of document lengths for all the classes

• OVA, M-SVM: For both these methods chose SVM with linear kernel as the base

classifier, since it was performing the best in our experiments as well as reported

in another work [Yen et al., 2016]. Here, the parameter to be tuned for both

these methods is the penalty term denoted as ’C’.

• RecallTree: For RecallTree method, we tuned four hyper-parameters: bit

precision ("b"), learning rate (l), loss function type (loss_function) and number

of passes over the training data (passes).

• FastXML and PfastReXML: For FastXML and PfastReXML methods the im-

portant hyper-parameters are: number of trees to be grown (t) and SVM weight

co-efficient (c).

• PD-Sparse: For PD-Sparse method the hyper-parameters to be tuned are:

L1-regularization weight weight (l) and training with or without hashing (mul-

tiTrain or multiTrainHash respectively). Here, it is important to note that the use

of hashing causes lower memory usage but increases the training time signifi-

cantly. However, for larger datasets it was impossible to train without hashing

because of huge memory required by the model. Hence, in all our methods we

used hashing while training.

59

• DS-mRb: For the proposed method, we first choose the average number of exam-

ples to be taken per class in the first sub-sampling. Then based on the probability

distribution of each class we randomly pick examples from each class. Also we

tune the number of adversarial classes (κ) and Candidate classes (q).

The list of used hyper-parameters for our final results are reported in the table 3.6.

Algorithm Parameters LSHTC1 DMOZ WIKI-Small WIKI-50K WIKI-100K

OVA C 10 10 1 NA NA

M-SVM C 1 1 NA NA NA

RecallTree b 30 30 30 30 28

l 1 0.7 0.7 0.5 0.5

loss_function Hinge Hinge Logistic Hinge Hinge

passes 5 5 5 5 5

FastXML t 100 50 50 100 50

c 100 100 10 10 10

PfastReXML t 50 50 100 200 100

c 100 100 10 10 10

PD-Sparse l 0.01 0.01 0.001 0.0001 0.01

Hashing multiTrainHash multiTrainHash multiTrainHash multiTrainHash multiTrainHash

DS-mRb Examples per class in average* 5 5 2 2 2

Adversarial Classes (κ) 122 27 36 5 10

Candidate Classes (q) 10 10 10 10 10
* Here examples per class for proposed mRb method represents the average number of examples sampled per class. The examples are chosen at random

from each class with probability πk based on the distribution.

Table 3.6: Hyper-parameters used in the final experiments

3.4.3.5 Comparison Result:

The parameters of the datasets along with the results for compared methods are shown

in Table 3.7. The results are provided in terms of train and predict times, total memory

usage, and predictive performance measured with accuracy and macro F1-measure

(MaF1). For better visualization and comparison, we plot the same results as bar plots

in Fig. 3.6 keeping only the best five methods while comparing the total runtime and

memory usage.

First, we observe that the tree based approaches (FastXML, PfastReXML and

RecallTree) have worse predictive performance compared to the other methods.

This is due to the fact that the prediction error made at the top-level of the tree cannot

be corrected at lower levels, also known as cascading effect. Even though they have

lower runtime and memory usage, they suffer from this side effect.

For large scale collections (WIKI-Small, WIKI-50K and WIKI-100K), the solvers with

competitive predictive performance are OVA, M-SVM, PD-Sparse and DS-mRb. How-

60

Data OVA M-SVM RecallTree FastXML PfastReXML PD-Sparse DS-mRb

LSHTC1 train time 23056s 48313s 701s 8564s 3912s 5105s 321s

m = 163589 predict time 328s 314s 21s 339s 164s 67s 544s

d = 409774 total memory 40.3G 40.3G 122M 470M 471M 10.5G 2G

K = 12294 Accuracy 44.1% 36.4% 18.1% 39.3% 39.8% 45.7% 37.4%

MaF1 27.4% 18.8% 3.8% 21.3% 22.4% 27.7% 26.5%

DMOZ train time 180361s 212356s 2212s 14334s 15492s 63286s 1060s

m = 510943 predict time 2797s 3981s 47s 424s 505s 482s 2122s

d = 594158 total memory 131.9G 131.9G 256M 1339M 1242M 28.1G 5.3G

K = 27875 Accuracy 37.7% 32.2% 16.9% 33.4% 33.7% 40.8% 27.8%

MaF1 22.2% 14.3% 1.75% 15.1% 15.9% 22.7% 20.5%

WIKI-Small train time 212438s >4d 1610s 10646s 21702s 16309s 1290s

m = 1000772 predict time 2270s NA 24s 453s 871s 382s 2577s

d = 380078 total memory 109.1G 109.1G 178M 949M 947M 12.4G 3.6G

K = 36504 Accuracy 15.6% NA 7.9% 11.1% 12.1% 15.6% 21.5%

MaF1 8.8 % NA <1% 4.6% 5.63% 9.91% 13.3%

WIKI-50K train time NA NA 4188s 30459s 48739s 41091s 3723s

m = 1384693 predict time NA NA 45s 1110s 2461s 790s 4083s

d = 951558 total memory 330G 330G 226M 1327M 1781M 35G 5G

K = 50000 Accuracy NA NA 17.9% 25.8% 27.3% 33.8% 33.4%

MaF1 NA NA 5.5% 14.6% 16.3% 23.4% 24.5%

WIKI-100K train time NA NA 8593s 42359s 73371s 155633s 9264s

m = 2750663 predict time NA NA 90s 1687s 3210s 3121s 20324s

d = 1271710 total memory 1017G 1017G 370M 2622M 2834M 40.3G 9.8G

K = 100000 Accuracy NA NA 8.4% 15% 16.1% 22.2% 25%

MaF1 NA NA 1.4% 8% 9% 15.1% 17.8%

Table 3.7: Comparison of the result of various baselines in terms of time, memory,

accuracy, and macro F1-measure

ever, standard OVA and M-SVM have a complexity that grows linearly with K thus the

total runtime and memory usage explodes on those datasets, making them impossi-

ble to learn. For instance, on Wiki large dataset sample of 100K classes, the memory

consumption of both approaches exceeds the Terabyte and they take several days to

complete the training. Furthermore, on this data set and the second largest Wikipedia

collection (WIKI-50K and WIKI-100K) the proposed approach is highly competitive in

terms of Time, Total Memory and both performance measures comparatively to all the

other approaches. These results suggest that the method least affected by long-tailed

class distributions is DS-mRb, mainly because of two reasons: first, the sampling tends

to make the training set balanced and second, the reduced binary dataset contains

similar number of positive and negative examples. Hence, for the proposed approach,

there is an improvement in both accuracy and MaF1 measures.

The recent PD-Sparse method also enjoys a competitive predictive performance

but it requires to store intermediary weight vectors during optimization which pre-

61

vents it from scaling well. The PD-Sparse solver provides an option for hashing

leading to fewer memory usage during training which we used in the experiments;

however, the memory usage is still significantly high for large datasets and at the

same time this option slows down the training process considerably.

In overall, among the methods with competitive predictive performance, DS-mRb

seems to present the best runtime and memory usage; its runtime is even competitive

with most of tree-based methods, leading it to provide the best compromise among

the compared methods over the three measures: time, memory and predictive perfor-

mance.

0

45

90

135

180

T
im

e
(m

in
.)

LSHTC1

0

300

600

900

1200
DMOZ

0

150

300

450
WIKI-Small

0

300

600

900

1200
WIKI-50K

0

1000

2000

3000
WIKI-100K

0

4

8

12

T
o

ta
l

M
e

m
o

r
y

(G
B

)

0

10

20

30

0.0

2.5

5.0

7.5

10.0

0

12

24

36

0

14

28

42

0

10

20

30

M
a

F
(%

)

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

RecallTree FastXML PfastReXML PD-Sparse Proposed DS

Figure 3.6: Comparisons in Total (Train and Test) Time (min.), Total Memory usage

(GB), and MaF1 of the five best performing methods on LSHTC1, DMOZ, WIKI-Small,

WIKI-50K and WIKI-100K datasets.

62

3.5 CLOSING REMARKS

In this part of the thesis we presented a new approach to reduce a large-scale multi-

class classification problem to equivalent binary classification problem by subtraction

of pairwise joint representation of example, class pairs. First, we proposed a basic

algorithm, which helps to overcome the challenges of class imbalance and large-scale

classification. However, the reduction process introduces new challenges correspond-

ing to the size of the new binary dataset and the time taken for the reduction process

as well as the memory usage. To overcome these new challenges, we introduced an

extended version of the algorithm referred to as DS-mRb. This extension of naive

approach incorporates a double sampling approach during reduction and candidate

selection during prediction phase. This helps to reduce the total runtime and mem-

ory usage of the algorithm, whereas the predictive performance remains the same as

before. We also experimentally validated the effectiveness of the propsoed approach

on popular datasets of text classification considering large class cases (up to 100000).

The experiments were performed on 5 different datasets of different characteristics

and sizes. We also present the comparison of result with respect to 6 other recent

state-of-the-art approaches for large-scale multiclass classification. The results sug-

gest that the propsoed approach, DS-mRb is the best performance compromise among

all compared methods.

63

64

II ASYNCHRONOUS FRAMEWORK FOR DIS-

TRIBUTED MACHINE LEARNING

65

4 DISTRIBUTED MACHINE LEARNING

4.1 INTRODUCTION

As the popularity of internet has increased over the last decade, the amount of avail-

able data has grown rapidly. So, machine learning algorithms need to be (re)designed

to handle these large-scale datasets. Some of the common machine learning domains

with such magnitude of data are binary classification and recommender systems. For

example, in large-scale binary classification problems, the number of examples and

the feature size can be upto the order of millions. Similarly, recommender system ap-

plications may involve users, items and ratings of the order of millions or even more.

Handling this magnitude of data has become a prominent challenge in the machine

learning community. Even if we are able to keep it in a single machine, running a

machine learning algorithm on such huge datasets takes unacceptably large amount

of time.

Perhaps the simplest strategy in such situations is to reduce the dataset by discard-

ing many examples, also known as subsampling. However, this strategy can only be

useful if the problem is simple enough. However, in most of the machine learning ap-

plications, subsampling significantly affects the quality of the machine learning model

as we are throwing away useful information.

4.1.1 DISTRIBUTED ALGORITHMS

So, a better solution is to run the machine learning algorithms in a distributed manner

simultaneously. Distributed algorithms can be divided into two groups:

1. Shared Memory or Parallel Algorithms : These algorithms make use of multi-

ple cores within the same machine while keeping the entire dataset in the main

memory. So, all the processors have access to the data and can perform the ma-

chine learning optimization simultaneously [Zinkevich et al., 2010,Recht et al.,

66

2011,Jaggi et al., 2014,Leblond et al., 2016,Zhao and Li, 2016]. However, one

obvious drawback is that the size of datasets can be so huge that it might not fit

in the memory of single machine.

2. Shared-Nothing or Distributed Algorithms: Another line of algorithms consider

a fully distributed scenario [Dean et al., 2012, Xu and Yin, 2014, Chang et al.,

2015,Zhang et al., 2015,Huo and Huang, 2016], where the individual machines

has its private memory which cannot be directly accessed by another machine.

They are suitable for many industry scale applications, since datasets are usually

collected and stored in a decentralized manner using a cluster. In such cases, it

is a tedious task to move data from different machines to a single machine. In

this work, we also consider the fully distributed scenario and will refer it simply

with the term "distributed" throughout the rest of the thesis.

4.1.2 DESIRED PROPERTIES OF DISTRIBUTED SYSTEM

In the distributed setting, information needs to be communicated over the network

bandwidth, which is a limited resource. Hence, communication cost is one of the most

important considerations for distributed frameworks. Moreover, it is also important

to make sure that each machine runs reliably without failure, especially when the

workload is increased significantly. A good distributed framework should be able to

address these challenges inherent in distributed environments. Below we will discuss

the main desired properties of a distributed computing system [Li, 2017]:

1. Efficiency: Distributed computing systems should incur least communication

cost while making an optimal usage of the computing resources. In the dis-

tributed environments the available network bandwith is very limited and has

to be shared by several machines for exchanging information. For example, the

memory bandwith of a personal computer is around 400 Gbit/sec, whereas the

network bandwidth on Amazon AWS is just 10 Gbit/sec [Li, 2017]. Moreover,

the communication latency in such systems are significantly worse. For instance,

the latency for accessing the main memory in single machine is around 100 ns,

whereas in data centers it is around 0.1 ms to 1 ms.

Also, the machines in distributed systems usually have different computing power

and are running different workloads. Hence, some of them are significantly

67

faster/slower than the others. So, the distributed algorithms relying on synchro-

nization between the machines do not perform well, since the slower machines

become the performance bottleneck of the entire system. Hence, while designing

the distributed algorithms such synchronization between the machines should

be avoided.

2. Fault Tolerance: One common problem in distributed computing environments

is that a machine can fail during computation. Such failures occur more in dis-

tributed systems comprising of large number of machines and handling large

amount of data. Hence, a good distributed system should be robust to such fail-

ures. Many of the advanced distributed frameworks such as Spark 1, OpenMPI
2, MPICH 3 have specialized features for fault tolerance.

3. Ease of use: The programming interface of a distributed system should be simple

and flexible. It should provide an interface which hides the implementation

details, while being flexible enough to implement several different algorithms.

4.1.3 DISTRIBUTED FRAMEWORKS

In this age of big data, there are many programming frameworks available to devise

distributed algorithms in parallel and distributed environments. Here we will review

two of the widely recognized frameworks for distributed system: Message Passing

Interface (MPI) [Snir, 1998] and MapReduce [Dean and Ghemawat, 2008].

1. MPI: is a message passing library specification utilizing a message passing model

for parallel and distributed environments [Snir, 1998]. It is not a programming

implementation by itself. There are several available implementation of MPI

specification such as OpenMPI, MPICH and GridMPI [Diaz et al., 2012].

MPI provides point-to-point, collective, one-side, and parallel I/O models for

communication. Point-to-point communication allows the exchange of infor-

mation between to communicating processes, whereas a collective communi-

cation refers to the broadcast of message from one process to many processes.

MPI also allows message passing in various modes such as blocking and non-

blocking communication. It can be used in various platforms such as Linux, OS

1https://spark.apache.org/
2https://www.open-mpi.org/
3https://www.mpich.org/

68

X, Windows, Solaris etc. It works with different file systems such as NFS, HDFS

etc. The main advantage of using MPI is its flexibility of programming. In MPI,

the programmer has full control over the framework, hence it can be used to

devise complex architectures. Moreover, MPI supports both synchronous and

asynchronous communication.

2. MapReduce: On the other hand, MapReduce is the programming paradigm used

by Hadoop framework, popularly referred as the big data processing frame-

work. Hadoop clusters comprises of thousands of commodity machines and a

distributed file system called HDFS. MapReduce organizes the application as

Map and Reduce pairs [Kang et al., 2015]. Normally the data read and write

operations are done with HDFS. In such frameworks, programmers do not have

to worry about data partitioning, process creation and synchronization. So, the

main advantage of using MapReduce paradigm is its ease of use, as most of the

tasks are performed behind the scene by the framework itself. Moreover, these

frameworks have a better fault tolerance mechanism. However, in contrast to

MPI, the downsides of MapReduce paradigm is the lack of flexibility for program-

mers. One recent framework, following MapReduce paradigm and running on

top of Hadoop clusters is Spark. It is an open source processing engine adopted

by enterprises across wide range of industries. The main advantages of using

Spark over existing Hadoop MapReduce is their speed and advanced ability of

fault tolerance. As opposed to existing Hadoop frameworks, Spark uses an in-

memory model for computation. Hence, they are several magnitude faster than

Hadoop frameworks which read and write data to and from HDFS file system.

4.2 PROBLEM FORMULATION

We consider a fully distributed scenario where training sets are stored over M con-

nected machines. Such applications have attracted much interest in both machine

learning and optimization communities. In this work, we consider the minimization

of a loss function which can be represented as the sum of smooth functions.

Here, depending on the application, this minimization objective can have different

forms. We will list the three possible cases:

69

• Case 1:

L (v,w) =
M
∑

i=1

Li(vi,w) (4.1)

where v = (v1, ..,vM). In this model, each loss function Li depends on (i) a

local version of parameter v, i.e. vi, that does not need to be exchanged across

different machines, and (ii) a shared parameter w that has to be exchanged.

• Case 2:

This is the case where each loss Li, depends only on local versions of param-

eter v, the learning problem reduces as shown below. This is a totally parallel

scenario that can be solved locally on each machine in parallel.

L (v) =
M
∑

i=1

Li(vi) (4.2)

• Case 3:

The other extreme is a more typical case where each loss Li, depends only on

the global shared parameter w and the learning problem in this case reduces to:

L (w) =
M
∑

i=1

Li(w) (4.3)

This kind of problem is extremely common in ML when one wants to find the

best predictor from a dataset split in several batches.

In this work, we will consider two applications, which will represent the two dis-

tributed scenarios shown above. First, we will consider distributed matrix factoriza-

tion problem with Stochastic Gradient Descent (SGD) based optimization. This cor-

responds to Case 1 above. We will notice that in this problem, we need to update

two parameters out of which one is totally local to machines, whereas the other one

needs to be shared among the machines. Second, we will consider the problem of

binary classification which corresponds to Case 3. In this problem, each machines

locally update a parameter vector which needs to be shared among all the machines

periodically.

70

4.3 ASYNCHRONOUS DISTRIBUTED STRATEGY

In this section, we present our proposed asynchronous distributed approach by first

describing the deduced learning strategy. We then provide a consistency justification

in the form of a convergence proof.

4.3.1 DESCRIPTION

The main challenge of distributed learning is to effectively partition the data into com-

puting nodes, and efficiently perform communication between them. Indeed, in the

synchronous case, the slowest node becomes the bottleneck of the whole system and

a potentially large amount of computational time is lost (Figure 4.1 (a)).

The main idea of our approach is that when a machine finishes an iteration over the

subpart of the data it contains, it broadcasts its updated parameter values to the master

node; which gathers the received parameter values from the workers (if any, and tak-

ing only the last one if multiple parameter values are received from one machine); and

updates the parameter vector with the received updates. Then the updated parameter

is broadcasted to worker nodes. In this way each computing node runs its iterations

independently and gets rid of the synchronization bottleneck. Faster machines will

perform their epochs faster, whereas the slower ones will be lagging on time but after

finishing each epoch they will receive the most updated parameters from the master.

This situation is depicted in Figure 4.1 (b).

The main difference with other distributed asynchronous algorithms proposed in

the literature [Zhang et al., 2015, Huo and Huang, 2016], our approach does not

exchange gradients but rather parameter values updated after one complete pass over

local subpart of the data. Although these quantities have the same sizes, we show that

broadcasting of parameters performs better in practice, since they are exchanged after

each epoch, whereas gradients need to be exchanged after every mini-batch update.

4.3.2 CONSISTENCY JUSTIFICATION

In the case where the training data is partitioned into M batches {S1, . . . ,SM}, one for

each computing machine, in the shared parameter case, the objective Eq. (4.3) can be

71

(a) Synchronous Framework

(b) Asynchronous Framework

Figure 4.1: Diagrams of the distributed synchronous (a) and asynchronous (b) frame-

works.

rewritten as

L (w) =
M
∑

i=1

Li(w). (4.4)

Here we may take advantage of the differentiability of (Li)Mi=1 and use a gradient

algorithm to find a minimizer of the global objective,L . With a fixed stepsize gradient

as an elementary operation before exchanging, we make the following assumptions :

Assumption 1 (on the functions).

a. The objective function, L , has a unique minimizer w?;

b. Each Li is differentiable and ∇Li is 1
L -cococercive, that is ∀w,w′ ∈ Rd:

〈w−w′;∇Li(w)−∇Li(w
′)〉 ≥

1
L
‖∇Li(w)−∇Li(w

′)‖2.

As a consequence of the Baillon-Haddad theorem (Th. 18.15 in [Bauschke and

Combettes, 2011]); Assumption 1 (b) is notably verified whenever all functionsLi are

convex and Li-smooth, that is differentiable with an Li-Lipschitz continuous gradient

72

Asynchronous Distributed Gradient update rule

When machine i finishes computing ∇Li(w
k−dk

i)

(Local step) at i: wk+1
i =wk−dk

i − γ∇Li(w
k−dk

i)

(Master step) wk+1 = 1
M

∑M
j=1 wk+1

j

Broadcast wk+1

with L =maxi Li. Also, if a function Li is Li-smooth but not necessarily convex, then,

considering gi =Li +λ/2‖ · ‖2, it comes that ∇gi is 1/(2λ) cocoercive for λ > L (see

Prop. 2 in [Zhu and Marcotte, 1996]). In our case, this means that if the (smooth)

cost function is non-convex, then one can add a `2 regularization term so that the sum

function verifies the sought property.

In Assumption 2, we also make the rather mild assumption that the delays are

bounded, meaning that no machine is infinitely slower than the others. More precisely,

we consider that the duration of its computation is bounded by D in the sense that

if machine i finishes its computation at time k + 1, then the value of the averaged

parameter it used is at most D ticks old. Mathematically, denoting the computation

delay for machine i at time k by dk
i , our bounded delay assumptions means that when

machine i finishes, say at time k, the (outdated) value of the averaged parameter it

used is wk−dk
i with dk

i ≤ D.

Assumption 2 (on the algorithm). The delays are uniformly bounded, i.e. there is

D <∞ such that for any machine i and iteration k; the delay dk
i ≤ D.

The proposed Asynchronous Distributed update rule, corresponding to Figure 4.1

(b), is summarized in the pseudo-code in the right. In the local step, all machines

including the master update their parameters; and in the master step, once the master

finishes its update, it broadcasts the aggregated parameters (from the latest received

ones) to all workers. Furthermore, using a gradient step as an elementary operation,

the convergence of the algorithm can be proven with the attractive properties that the

considered stepsizes can be chosen fixed, as in the standard gradient algorithm, and

thus do not decay or depend on the delay; and that no assumptions are made on the

distribution of the delays.

Theorem 1 (Convergence). Suppose that Assumptions 1 and 2 hold. Let γ ∈]0,2/L[.

Then the sequence (wk)k produced by our Asynchronous Distributed Gradient update

rule converges to w?.

73

Proof. From Assumption 1 (i), w? is the unique minimizer of L and ∇L (w?) =
∑M

i=1∇Li(w?) = 0. Let us define for all i = 1, .., M w?
i = w? − γ∇Li(w?). Then at

time k for the updating machine i, it comes from the cocoercivity of∇Li, Assumption

1 (b); and the definition wk+1
i =wk−dk

i − γ∇Li(w
k−dk

i):

wk+1
i −w?

i

2
=

wk−dk
i − γ∇Li(w

k−dk
i)− (w? − γ∇Li(w

?))

2

≤

wk−dk
i −w?

2
+ γ2

∇Li(w
k−dk

i)−∇Li(w
?)

2
−

2γ
L

∇Li(w
k−dk

i)−∇Li(w
?)

2
.

Now by setting δ = γ
�

2
L − γ

�

> 0 we get:

wk+1
i −w?

i

2 ≤

wk−dk
i −w?

2
−δ

∇Li(w
k−dk

i)−∇Li(w
?)

2

=

1
M

M
∑

j=1

(w
k−dk

i
j −w?

j)

2

−δ

∇Li(w
k−dk

i)−∇Li(w
?)

2

≤
1
M

M
∑

j=1

w
k−dk

i
j −w?

j

2
−δ

∇Li(w
k−dk

i)−∇Li(w
?)

2
,

where we used the fact that
M
∑

j=1

w?
j =

M
∑

j=1

w? − γ
M
∑

j=1

∇L j(w
?) = Mw?.

As the gradient of the objective∇L (w) =
∑M

j=1∇L j(w) is null at w?. The last inequal-

ity is due to the convexity of the squared norm. For all other j 6= i,

wk+1
j −w?

j

2
=

wk
j −w?

j

2
.

Let yk
d = (

wk−d
i −w?

i

2
)i=1,..,M be the size-M vector of the individual errors at time

k−d; and let yk be the size-M(D+1) vector obtained by concatenating the (yk
d)d=0,..,D.

From yk to yk+1, we have that i) the last M values, yk
D, are dropped as they cannot

intervene as D is the maximal delay; ii) the other ones are moved M coordinates lower

yk+1
d+1 = yk

d for d = 0, .., D−1; iii) for the first M coordinates, they are copied from time

k, yk+1
0 = yk

0, except for the i-th one which verifies ‖wk+1
i −w?

i ‖
2 ≤ 1

M

∑M
j=1 ‖w

k−dk
i

j −w?
j‖

2

thus yk+1
0 (i) ≤ 1

M

∑M
j=1 yk

dk
i
(j). Thus one can write yk+1 � Ak+1yk where ‘�’ indicates

the elementwise inequality and Ak+1 represents the linear (in)-equalities mentioned

above. Ak+1, seen as a (D+1)×(D+1) block matrix has identities on its sub-diagonal,

and the top left block is the identity except for line i which has 1/M coefficients on

the M columns corresponding to dk
i . One can notice that it is non-negative and the

row sum is constant equal to 1.

Taking the `∞-norm, we have ‖yk+1‖∞ ≤ ‖Ak+1yk‖∞ ≤ ‖Ak+1‖∞‖yk‖∞ ≤ ‖yk‖∞
as the `∞-induced matrix ‖ · ‖∞ is the maximal row sum and all rows of non-negative

74

matrix Ak+1 have unit sum. This means that (‖yk‖∞)k is a converging sequence, say to

some value α. Now, suppose that there is some coordinate that is strictly lower than

α, then it cannot be equal to α or greater anymore due to the above inequality; this

means, that as the communication time is bounded, any coordinate holding the valueα

will have to (strictly) decrease due to the averaging with the strictly lower coordinate,

which contradicts α being the limit of sequence (‖yk‖∞)k. Thus, all errors converge

to the same value which means that ‖∇Li(w
k−dk

i)−∇Li(w?)‖2→ 0, implying that all

wk
i and thus wk converge. Furthermore, all limits points of wk null the gradient ofL ;

w? being unique (Assumption 1 (i)), the convergence ensues.

One can notice that using this asynchronous framework, the machines local pa-

rameters all converge to different values while their sum converge to the sought min-

imizer. As this sum is received after each iteration, the agents also have individual

knowledge of the full minimizer. Finally, the tools used in this proof make it adaptable

to a wide range of elementary operations verifying cocoercive contraction properties.

For instance, if the loss has a smooth and a non-smooth part, the gradient step can

be replaced by a proximal gradient step. Other possible extensions here include the

Alternating Direction Method of Multipliers (ADMM) and Primal-Dual algorithms.

75

4.4 CLOSING REMARKS

In this chapter, we introduced distributed machine learning. We began by introducing

distributed algorithms in two different kinds of settings: shared-memory and shared-

nothing. Then, we discussed the mainly desired properties of distributed frameworks

followed by popularly used frameworks. In Section 4.2, we formulated the problem,

which we are going to use throughout this part of the thesis. In Section 4.3, we pre-

sented our framework for asynchronous distributed machine learning based on aver-

aging of parameters and showed the proof of convergence in this setting. Now, in the

next two chapters, we will use the proposed asynchronous distributed frameworks for

the optimization in two different applications: matrix factorization for recommender

systems and large-scale binary classification.

76

77

5 APPLICATION 1: DISTRIBUTED MATRIX

FACTORIZATION FOR RECOMMENDER SYS-

TEMS

5.1 RECOMMENDER SYSTEMS

Recommender Systems (RS) represent an active area of research in data mining due

to large industrial potential. The main aim of Recommender Systems is to provide a

personalized recommendation of an online product or service to the users, who are

usually overloaded with the available information. So, we can also define it as an in-

formation filtering system on the web. Hence, the ultimate goal of the Recommender

systems is to improve the customer relationship management as well as the revenue

from the industrial viewpoint. RS recommends suitable items to users by predicting

the user’s interest in an item based on the information about the users, items or their

interactions [Bobadilla et al., 2013]. The main feature of RS is to "guess" user’s prefer-

ences and interests by analyzing information related to the user and/or other users to

provide them with personalized recommendation [Resnick and Varian, 1997]. Some

of the popular examples of use of RS in the industry are: movie recommendation

by Netflix, song recommendation by Pandora and spotify, product recommendation

by Amazon, job recommendation by LinkedIn, content recommendation by Facebook,

quora etc.

5.1.1 FORMAL DEFINITION

Formally, a recommendation problem involves estimating the ratings for the items that

has not been seen or rated by a particular user [Adomavicius and Tuzhilin, 2005]. The

prediction is performed based on the user’s interaction with other items or some meta

78

information related to the users or items.

Hence, in this user-item context, a recommendation problem can be formulated as

follows. Let U and I denote set of users and items respectively. In modern applications,

the set U and I are very huge, millions or billions in most cases. Recommendation

system takes these two sets of users and additionally the partial ratings given by some

of the users to some of the items. Usually the number of ratings are very few. The

recommendation problem can be divided into two sub-problems:

1. Finding the unknown ratings

2. Sorting the ratings to provide top-k recommendation

Here, the second sub-problem is a sorting problem. Whereas the first sub-problem

carries more importance. The problem of estimating the ratings can be considered as

the problem of estimating a utility function. Let f be an utility function which outputs

an item’s importance corresponding to a user. Hence, the recommendation problem

can be defined as finding a subset i
′ ∈ I of items to be recommended for each user

u ∈ U that maximizes the utility function f. Mathematically:

∀u ∈ U , i
′
= argmaxi∈I f(u, i) (5.1)

In the context of RS, user’s rating for the items is represented as a matrix known

as rating matrix. In this matrix the rows represent the uses and the columns represent

each of the items. Each cell of the matrix contains the corresponding user’s rating for

that item. Figure 5.1 presents a sample rating matrix, where the non-zero values indi-

cate user’s rating for items and zeros represent unknown ratings. As already discussed

the main aim of the RS is to estimate those unknown values in the rating matrix. As

can be seen in the figure, user’s provide rating for very few items. Hence, most of the

values in the rating matrix are unknown which makes the matrix sparse. In most of

the real cases, the sparsity of the rating matrix can be upto 99 %.

5.1.2 TYPES OF RECOMMENDER SYSTEM MODELS

Broadly, RS methods can be divided into two main groups:

• Content Based Recommendation

• Collaborative Recommendation

79

Figure 5.1: User-Rating Matrix

Source: http://katbailey.github.io/post/matrix-factorization-with-tensorflow/

Figure 5.2: Types of Recommender Systems

5.1.2.1 Content Based Recommendation (CB)

In CB methods, items are recommended to a user, which are similar to the items user

has preferred in the past [Pazzani and Billsus, 2007]. Here the notion of similarity is

80

derived from the metadata of the items. Based on the user’s preference in the past,

a list of attributes are derived known as the user-profile. Similarly, an item profile is

created using the information about the item such as item descriptions or features.

Hence, the recommendations are done by matching user and item profiles. For ex-

ample a movie profile could include attributes such as: genre, participating actors,

popularity etc and user profile might include attributes such as: demographic infor-

mation or user’s response to some questionnaire. The CB programs hence try to match

the users and items based on the similar attributes in their profiles [Koren et al., 2009].

According to [Adomavicius and Tuzhilin, 2005], the main limitations of Content-

Based RS are as follows:

• Content Scarcity: In real-case scenarios it is observed that obtaining the explicit

attributes about the users and items is difficult. In many situations, these in-

formation are very scarce. Hence, matching users and items using such limited

content directly affects the performance of the recommender system.

• Over-specialization: Another issue with these methods is that they tend to overfit

the user’s behavior based on the past preference. Hence, the users are always

recommended with similar items everytime. This can be reduced by introducing

randomness in the user/item profiles.

• New user problem: This is a common problem in most of the RS methods, com-

monly known as cold-start problem. This problem arises because of the lack of

information about a user’s past rating.

5.1.2.2 Collaborative-Filtering Based Recommendation (CF)

These methods identify user-item associations by analyzing the relationships between

users and interdependencies among items. These methods rely on user’s previous

ratings to estimate unknown ratings without requiring to create explicit profiles [Koren

et al., 2009]. In practice they are more accurate than the CB methods [Koren et al.,

2009].

There are two types of CF-based methods used primarily in RS: memory-based

methods and model based methods. Memory based methods use user rating data to

compute similarity between users or items. Users are recommended new items based

on the similarity. These approaches are effective and easy to implement. However,

computing user/item similarity is a tedious task for large RS datasets. Model based

81

approches are one of the most successful approaches of RS and implemented in most

of the industries. The main idea of these approaches is to learn a model from the

rating data and estimate unknown ratings using the model. Most popular example of

model based RS is latent factor models. These methods try to estimate the ratings by

characterizing both users and items with low-dimensional factors inferred from the

rating patterns.

The main limitations of CF methods includ:

• New user problem (cold-start): This is the problem same as for CB methods,

arising while recommending items to a new user.

• New item problem: CF relies on ratings of similar users on an item. But if an

item is not rated by enough users, then the recommendation results can be very

biased.

• Sparsity: Huge sparsity in rating matrix is another prominent problem of CF

methods. Since, its difficult to calculate similarity in the presence of sparsity

and the models tend to overfit in such data.

5.2 MATRIX FACTORIZATION FOR RECOMMENDER

SYSTEM

The most successful approach to realize latent factor model in practice is matrix factor-

ization [Koren et al., 2009]. Matrix factorization for collaborative filtering captured

much attention, especially after the Netflix prize [Koren et al., 2009]. The premise

behind this approach is to approximate a large rating matrix R with the multiplica-

tion of two low-dimensional factor matrices P and Q, i.e. R ≈ R̂ = PQ> that model

respectively users and items in the same latent space. Hence the interaction between

users and items are modeled as the inner product in the latent space. These latent

factors are supposed to decode hidden information which defines user’s interest for

items. This model is closely related to a Singular Value Decomposition (SVD), which

is a popular factorization method in linear algebra. We cannot apply SVD to collab-

orative filtering because of the sparsity of the rating matrix, since conventional SVD

is not defined if the matrix is not complete and anyway the complexity of computing

SVD in large dimension is prohibitive.

82

5.2.1 LOSS FUNCTION

For a pair of user and item (u, i) for which a rating rui exists, the corresponding in-

stantaneous loss is defined as `2-regularized quadratic error:

`(P,Q, u, i) =
�

rui − q>i pu

�2
+λ(||pu||2 + ||qi||2), (5.2)

where pu (resp. qi) is u-th line of P (resp. i-th line of Q) and λ≥ 0 is a regularization

parameter. The global objective is hence :

L (P,Q) =
∑

(u,i):ruiexists

`(P,Q, u, i). (5.3)

Note that instantaneous error `(P,Q, u, i) depends only on P and Q through pu and qi;

however, item i may also be rated by user u′ so that the optimal factor qi depends on

both pu and pu′ .

5.2.2 LEARNING ALGORITHMS

Two algorithms are popularly used to minimize the loss function of 5.2.

5.2.2.1 Alternating Least Squares (ALS)

Equation 5.2 consists of two unknowns pu and qi making the error function non-

convex. However, we can fix one of the two unknowns and make the optimization

problem quadratic, for which an optimal solution can be obtained. Hence, in ALS

method, we alternately fix one variable and solve the least square problem for the

other variable. This iterative process ensures the convergence of overall problem. In

the following we will summarize the strong and weak points of this algorithm.

Strong points:

• This changes the originally non-convex problem to a convex (quadratic) prob-

lem, for which a closed-form solution can be obtained.

• It is easy to parallelize ALS [Koren et al., 2009] as updating individual rows of

one of P or Q while fixing the other can be done simultaneously.

Weak points:

• Even though they are good for parallel applications, it becomes a challenge when

the size of P or Q becomes large to be fit in the memory of a single machine.

83

• Per iteration convergence speed of ALS is slower as compared to SGD (which we

will discuss next).

• They are not trivial to implement and their predictive performance is not as good

as SGD based optimization.

5.2.2.2 Stochastic Gradient Descent (SGD)

SGD is a popular optimization algorithm in Machine Learning [Bottou, 2010], and it

has also been shown to be effective for matrix factorization [Koren et al., 2009]. It

has gained popularity, especially after being the winning solution for the Netflix prize

competition 1.

In this case, the approach proceeds as follows: at each iteration k,

• select a user/item pair (uk, ik) for which a rating exists;

• perform a gradient step on `(P,Q, uk, ik).

Algorithm 5 presents the algorithmic steps of SGD for matrix factorization. Here,

m, n and k denote the total users, items and dimension of latent space simultaneously.

Input: A training set Rm×n, initial values Pm×k and Qn×k

while not converged do
Select a training point (u,i) ∈ R uniformly at random

P
′

u∗← Pu∗ −α
∂
∂ Pu∗
`(Rui, Pu∗,Q∗i)

Q∗i ←Q∗i −α
∂
∂Q∗i
`(Rui, Pu∗,Q∗i)

P
′

u∗← Pu∗

end

Algorithm 5: SGD for Matrix Factorization

Here stochasticity is used in the sense that the gradient on `(P,Q, uk, ik) can be seen

as an approximation of the gradient on an underlying global model but the choice of

the considered users/items may or may not be random depending on the algorithm.

Here, we will summarize the main strong and weak points of this algorithm.

Strong points:

• Ease of implementation.

1https://en.wikipedia.org/wiki/Netflix_Prize

84

• Better predictive performance and convergence speed.

Weak points:

• The updates of SGD are inherently sequential, hence its not straightforward to

parallelize it. Moreover, the traditional convergence analysis is based on this

assumption of sequential updates.

• Another drawback of a straightforward parallel implementation is that updates

on factor matrices might not be independent. For example, for training points

that lie on same rows (i.e. ratings corresponding to the same users), an SGD

step modifies the same corresponding rows in factor matrix P; thus, these points

cannot be learnt over in parallel and efficient communication between the com-

puting nodes is necessary to synchronize the updates on factor matrices.

5.2.3 MATRIX FACTORIZATION WITH USER AND ITEM BASED

REGULARIZATION

From the literature, we noticed that both memory and model based methods have their

strong and weak points. Both type of methods rely on different types of information

to enhance the RS performance. There is not a single method which acts flawlessly.

Hence, we try to incorporate the benefits of Neighborhood based method in matrix

factorization method by introducing new regularization terms for similar users and

similar items.

The intuition behind similarity based regularization is that similar users have simi-

lar tastes. Hence, we impose that the factor vector of each user (resp. item) should be

close to the average factor vector of its similar users (resp. items). For computing the

most similar users (or items) we considered a modified version of Pearson correlation

coefficient [Herlocker et al., 1999] which for two users ui and u j writes:

sim(ui, u j) =

∑

ik∈Ic
(rik − r i.)(r jk − r j.)

q
∑

ik∈Ic
(rik − r i.)2

q
∑

ik∈Ic
(r jk − r j.)2

Where, Ic is the items co-rated by both users, r i. and r j. denote the average ratings for

ui and u j respectively.

Hence, we are able to find the N most similar users for ui, denoted by Ni (resp. N j

for items similar to i j). We now propose a slight modification of the individual ratings

85

objective function ` of Eq. (5.2) above by adding another regularization term. For

a pair of user and item (ui, i j) for which a rating ri j exists, the similarity-regularized

individual objective writes:

`1(ui, i j, P,Q) = (ri j − q>j pi)
2 +λ(||pi||2 + ||q j||2)

+λu

pi −
1
|Ni|

∑

m∈Ni

pm

2

+λi

q j −
1
|N j|

∑

n∈N j

qn

2

(5.4)

where λu ≥ 0 and λi ≥ 0 are the regularization parameters linked to the similar-

user and similar-item regularizations respectively. Performing the same updates as the

conventional SGD but replacing ` by `1, we get Algorithm 6 for minimizing the whole

matrix factorization problem (Eq. 5.3) where ` is replaced by `1 i.e. the similarity-

regularized problem:

min
P,Q

∑

i, j:ri jexists

`1(ui, i j, P,Q). (5.5)

Input: R,λ,λu, λi

Initialize: P and Q randomly while not converged do
Choose randomly (ui, i j) ∈ R

Ni = GetSimilarUsers(i, N)

N j = GetSimilar I tems(j, N)

Update pi and q j by a gradient step on `1(ui, i j,P,Q) (Eq. 5.4)

end

Algorithm 6: Similarity based regularization

5.3 RELATED WORK

Despite its simplicity, there are several computational challenges associated with this

problem. As previously, performing SGD sequentially on a single machine takes un-

acceptably large amount of time to converge for common rating matrices of several

million ratings. So, there is a need to perform SGD in an efficient distributed manner

for such large datasets. In this section we will show a detailed account of performing

large-scale matrix factorization in a distributed manner.

Hence, to handle the large-scale matrix factorization, we can distribute the com-

putation across multiple workers. This gives rise to two distributed architectures:

86

Shared-memory (parallel) and shared-nothing. In the case of shared-memory meth-

ods, the entire data is kept in the memory of a single machine and multiple processors

work parallelly on the data. However, this might not be a feasible solution if the size of

dataset is very huge to fit in a single machine, which is usually the case in modern RS

applications. Hence, to overcome this limitation, shared-nothing (totally distributed)

approaches are used, in which the machines do not share memory and the dataset is

kept in disjoint machines. Even thought the main focus of this thesis is for shared-

nothing (distributed) scenario, for the sake of completeness we will present some of

the popular shared-memory methods.

5.3.1 SHARED-MEMORY METHODS

Earlier work in this line include methods with the name Parallelized SGD (PSGD), in

which the dataset is partitioned into several parts and SGD is run independently and in

parallel on different subparts. The updated parameters corresponding to each subpart

are averaged either after each pass over the data [Hall et al., 2010, McDonald et al.,

2010] or once at the end [Zinkevich et al., 2010]. These methods rely on synchro-

nization between the parallel processes, hence exhibit slow convergence rate in prac-

tice. Another popular method is HogWild [Recht et al., 2011], which randomly selects

subset of rating matrix and apply the update rules simultaneously in parallel fashion

without any synchronization between the threads. They also guarantee the conver-

gence of their method when factorizing a highly sparse matrix, where one can ensure

that the occurrence of over-writing problem because of multiple threads trying to up-

date the same user/item factor is rare. In a slightly different line of work, [Gemulla

et al., 2011] introduced the idea of Stratified SGD (SSGD) and introduced oen algo-

rithm in this line: Distributed SGD (DSGD). This method partitions the rating matrix

into disjoint (interchangeable) blocks in which parameter update corresponding to

one block is mutually independent to another one. Hence, these methods can be

easily parallelized and extended in shared-nothing settings as well. Both of these

methods HogWild and DSGD suffer from problems such as: locking problem (arising

because of synchronous operation) and memory discontinuity [Zhuang et al., 2013].

FPSGD [Zhuang et al., 2013] alleviates the memory locking problem by introducing a

novel blocking scheme. Similarly they solve the memory discontinuity by introducing

a solution called partial random method which randomly chooses a free block and

accesses the block sequentially.

87

5.3.2 SHARED-NOTHING METHODS

These methods are designed to handle large-scale matrix factorization problems, typi-

cally when the rating matrix or the factor matrices are too large to be fit in the memory

of a single machine. Here, the important assumption is that the worker machines have

disjoint memory. Hence, the main challenge in shared-nothing methods is to have ef-

fective communication between the computing nodes [Makari et al., 2015]. Hence,

these methods are not that popular as compared to the shared-memory methods in

the literature.

A general workflow of shared-nothing methods can be represented as below:

• Partition the data and factor matrices, and dispatch them across the different

computing nodes.

• Each node works on different subparts of data and updates the factor matrices

accordingly.

• Nodes communicate (exchange) updated parameters between them to have an

agreement on the updates. This communication is done once each epoch or

multiple times in an epoch.

Depending on the type of partitioning of the data, these methods can be catego-

rized into two types of methods:

5.3.2.1 Row (or column) wise splitting

One popular example of this type of splitting is ASGD algorithm presented in [Makari

et al., 2015]. In this approach, the rating matrix is partitioned row-wise into several

blocks and SGD is run on individual blocks on distinct machines. From the decomposi-

tion R̂= PQ>, one can see that if the rating matrix is divided by row-blocks, R̂b = PbQ
>,

that is; the block b of R̂ depends only on the block b of P then, the block-split problem

writes:

min
P,Q

∑

blocks b





∑

(u,i):rbui
exists

`(Pb,Q, u, i)



 . (5.6)

Factor matrices are thus updated independently on each machine for the corre-

sponding ratings. Even though the rating matrix parts on each machine are different,

the factor matrix updates are not independent. So, after each epoch the factor ma-

trices present in each machine are synchronized. However, the machines send the

88

updates to the master machine immediately and hence the author has referred this

as an asynchronous method. But this cannot avoid the bottleneck of synchronization

after every epoch.

5.3.2.2 Stratified SGD

The main idea of stratified SGD methods is to exploit the structure of matrix factoriza-

tion problem and induce disjoint blocks which can be parallelized easily. Each of these

disjoint parts are referred to as stratum (or blocks). One such exmple of stratification

of rating matrix is shown in Figure 5.3. Here, the rating matrix is denoted as V , and

the numbers in the superscript represent the row and column numbers respectively.

Also, Algorithm 7 summarizes the generic algorithm of stratifies SGD method.

Figure 5.3: Strata used by SSGD for a 3 × 3 blocking of V [Makari et al., 2015]

Input: Incomplete matrix Rm×n, factor matrices: Pm×k and Qn×k, blocking

parameter b

Block R, P and Q into b × b, b × 1 and 1 × b blocks

while not converged do
Choose step size α

for s = 1, ..., b do
Pick w blocks R1 j1, ..., Rb jb to form a stratum

for k = 1, ..., b do
Run SGD on the training points in Rk jk with step size α

end

end

end

Algorithm 7: Generic SSGD Algorithm

One popular approach based on stratified SGD is, referred to as Distributed SGD

(DSGD) [Gemulla et al., 2011, Makari et al., 2015], which we alredy discussed be-

fore in the shared memory section. This method can be extended to be applied in

89

distributed memory architecture as well by placing the disjoint blocks in disjoint com-

puting nodes. Even though these methods can overcome the problem of simultaneous

updates, they require several synchronizations within an epoch which hurts their com-

putational performance.

5.4 ADGMF ALGORITHM

As we saw in the previous section, even though the stratified partitioning helps to

make disjoint sections and rules out the problem of locking or overwriting of updates,

it requires synchronization even within the epochs. Hence, in this work we stick with

the row-wise blocking of the rating matrix. We apply our asynchronous distributed

framework introduced in Section 4.3. In order to apply the asynchronous distributed

strategy to this problem (referred to as ADGMF in the following), we split the rating ma-

trix in row-wise manner. Hence, in this case, we only need to communicate the matri-

ces Q between machines, whereas the matrices P are updated locally, corresponding

to each sub-part, and are later concatenated at the end of the operation. Hence, this

corresponds to Case 1 of Section 4.2. In the distributed network, one of the machines

acts as the master machine, whereas the other machines act as the workers. The mas-

ter machine can also act as one of the workers. In our experiments also we used the

master machine as one of the workers. The overall optimization is performed into

following two steps:

• Worker Step:

As shown in the asynchronous distributed architecture 4.1b, each worker ma-

chine works on their local subpart of data. Because of the row-wise splitting,

the updates on Pmatrix are disjoint and hence local to each machine. Whereas,

all the worker machines update same rows ofQmatrix. Hence, all the machines

need to have an agreement on the updates made on Q matrix for better and

faster convergence. Hence, each worker machines communicate the updated Q

matrix to the master machine, which takes care of aggregating all the received

updates from the worker machines and broadcasting it back to the workers. We

will discuss more about the master step next. Soon, after sending the updated

parameter to the master machine, the worker machine checks if it has received

an aggregatedQ parameter from the master or not. If it has received the updated

parameter from the master machine, it will begin a new epoch with the updated

90

Q parameter, otherwise it will continue with its previously updated parameter

matrices. In this way, even if the workers are disjoint, they have a common view

over the whole dataset and this helps them to converge faster. Also, the slower

workers will complete each epoch slow as compared to the faster machines,

but once they finish their epoch, they will receive the most updated aggregated

parameter from the master. The overall steps performed in a worker step are

shown in Algorithm 8.

Parameters: learning rate γ

Initialize: Pj

Receive matrix Q from the master;

From the subpart of the data stored in machine j, pick randomly (u, i) for

which rui exists ;

(Pj,Q j)← (Pj,Q)− γ∇`(Pj,Q, u, i);

Send Q j to the master;

Algorithm 8: ADGMF worker step in the computing machine j ∈ {1, . . . , m}

• Master Step:

Master machine performs the task of collecting the received updates from the

workers and aggregating the received Q matrices. This aggregation can be per-

formed in a timely manner depending on the application. In our experiments,

we used master as a worker as well and performed the aggregation after each

epoch on master. Hence, after each epoch the master checks for received up-

dates from the worker machines and it averages the received updates. Soon

after averaging it broadcasts the aggregated parameter to the workers so that

they can use it immediately in their next epoch. The master step is shown in

Algorithm 9.

Initialize: machines M and Q

Receive matrix Qi from the subset of workers (m ⊂ M and i ∈ m) ;

Compute Q = 1
m

∑m
j=1 Q j ;

Broadcast Q
Algorithm 9: ADGMF master step in the master machine

Hence, we can observe that both master machine and workers perform their task

independently and asynchronously. Hence, this approach avoids the performance bot-

tleneck due to slower machines in the network.

91

5.5 EXPERIMENTAL RESULTS

5.5.1 EXPERIMENTAL SETUP

We conducted a number of experiments to empirically validate the proposed asyn-

chronous framework on matrix factorization for recommendation where the recom-

mendation matrix is split into M rows as in Problem (5.6).

1. Datasets: We performed experiments on Movielens-10M (ML-10M)2 and the

Netflix Collection3 that are two popular corpora in collaborative filtering.

Table 5.1: Characteristics of Datasets used in our experiments. |U | and |I | denote

respectively the number of users and items.

Dataset |U | |I | γ λ K training size test size sparsity

ML-10M 71567 10681 0.005 0.05 100 9301274 698780 98.7 %

NetFlix (NF) 480189 17770 0.005 0.05 40 99072112 1408395 99.8 %

NF-Subset 28978 1821 0.005 0.05 40 3255352 100478 93.7 %

2. Baselines: To validate the asynchronous distributed algorithm described in the

previous section, we compare the following four strategies:

• The proposed approach ADGMF (Section 5.4),

• The asynchronous distributed ADMM approach (AD-ADMM) [Chang et al.,

2015],

• Two distributed algorithms specifically proposed for matrix factorization

ASGD [Makari et al., 2015] and DSGD [Makari et al., 2015].

3. Platform: The distributed framework we considered was implemented using

PySpark version 1.5.1. by connecting 7 servers with different computational

power.

4. Hyper-Parameters: Various free parameters of SGD such as learning rate (γ),

regularization parameter (λ) and number of latent factors (K) were set fol-

lowing [Chin et al., 2015], [Yu et al., 2014b]. For our proposed similarity-

based regularization λu, λi, and the number of similar users/items N were
2http://grouplens.org/datasets/movielens/
3http://www.netflixprize.com/

92

chosen with values that led to the best RMSE on validation sets for each col-

lection chosen among {10−1, 5.10−2, 10−2, 5.10−3, 10−3, 5.10−4, 10−4} for λu, λi

and {10,20, 30,40, 50} for N . These values as well as the datasets characteristics

are listed in Table 6.1.

5. Evaluation Measures: In our experiments, we used the Mean Absolute Error

(MAE) and the Root Mean Square Error (RMSE) as performance measures. Also,

we compared the convergence time for each of the algorithms in the synchronous

and the asynchronous distributed settings.

5.5.2 THE EFFECT OF SIMILARITY BASED REGULARIZATION

Table 5.2: MAE and RMSE measures for different methods on MovieLens and NetFlix

datasets. Best results are shown in bold.

Dataset
SGD

Similarity Based Regularization

Similar Users and Items Similar Users Only

MAE RMSE MAE RMSE MAE RMSE

ML-100K
ua 0.7490 0.9478 0.7390 0.9332 0.7404 0.9359

ub 0.7619 0.9660 0.7555 0.9564 0.7540 0.9590

ML-1M
ra 0.7324 0.9706 0.7208 0.9517 0.7188 0.9487

rb 0.6973 0.8861 0.6928 0.8787 0.6946 0.8799

ML-10M rb 0.6523 0.8415 0.6488 0.8384 0.6512 0.8402

NF-Subset NA 0.6498 0.8287 0.6469 0.8256 0.6477 0.8267

First, we compare the results between the traditional SGDmethod and the proposed

Modified SGD with Similarity Based Regularization. The difference here is solely on

the objective function that is minimized (Pbs. (5.3) and (5.5) respectively). We tested

two scenarios: i) where only the users are regularized with similarity (λi = 0); and

ii) when both users and items are regularized with the same parameter (λu = λi).

Table 5.2 shows the complete results of our experiments.

It comes out that forcing the vectors of users and items to lie within the centroids of

their most similar users and items found by the Pearson similarity measure is effective

as the final RMSE and MAE with Algorithm 1 are always better than with classical

SGD. Thus, there is a significant benefit to use this regularization in terms of learning.

We also report results by looking at the effect of the similar user regularization and

93

6 8 10 12 14 16 18 20
110

110.5

111

111.5

112

112.5

113

113.5

114

114.5

115

some text

time (hour.)

Lo
ss

fu
nc

ti
on

NetFlix

ADGMF
ASGD
DSGD

AD-ADMM

60 80 100 120 140 160 180 200 220 240 260 280 300 320

96

98

100

102

104

106

108

110

time (min.)

Lo
ss

Fu
nc

ti
on

ML-10M

ADGMF
ASGD
DSGD

AD-ADMM

5 10 15 20
25

50

75

100

Number of Cores

Ti
m

e
Pe

r
Ep

oc
h

(s
ec

)

NetFlix

ADGMF
ASGD
DSGD

AD-ADMM

4 6 8 10 12 14 16 18 20 22

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

Number of Cores

Ti
m

e
Pe

r
Ep

oc
h

(s
)

ML-10M

ADGMF
ASGD
DSGD

AD-ADMM

Figure 5.4: Top: Test RMSE curves with respect to time for ADGMF, AD-ADMM, ASGD,

and DSGD on NetFlix (left), and ML-10M (right) Datasets. Bottom: Total Convergence

Time Vs. Number of Cores curves for ADGMF, ASGD, DSGD and AD-ADMM on the NetFlix

(left), and ML-10M (right) Datasets.

not items (λu > 0,λi = 0). As shown in Table 5.2, this user-only regularization also

gives uniformly better results than traditional SGD, and even better than the user and

item regularization on one dataset.

94

5.5.3 EVALUATION OF CONVERGENCE TIME

We begin our experiments by comparing the evolution of the loss function of Eq. (5.3)

with respect to time until convergence. The convergence points are shown as names of

the algorithms vertically (we stopped ASGD after 20 hours on the NF dataset). Figure

5.4 (top) depicts this evolution for ML-10M and NF datasets using 10 and 15 cores

respectively. Synchronization based approaches (ASGD and DSGD) aggregate all the

information at each epoch and thus begin to converge more sharply at the beginning.

However, with these approaches, when the fastest machines finish their computations,

they have to wait for slower machines; thus, they require much more time to converge

than the asynchronous methods (AD-ADMM and ADGMF). Finally, it comes out that ADGMF
converges faster than the other algorithms on both datasets. This is mainly due to the

fact that ADGMF does not obey to any delay mechanism as in AD-ADMM for instance.

5.5.4 COMPUTATION AND COMMUNICATION TRADE-OFF

We performed another set of experiments aimed at measuring the effect of number of

cores on performance of the proposed approach and the baselines. Figure 5.4 (bottom)

depicts this effect by showing the evolution of time per epoch of the SGD method used

in ADGMF, ASGD, DSGD and AD-ADMM with respect to increasing number of machines.

From these experiments, it comes out that for all approaches the time per epoch of

the method decreases as the number of machines increases.

But after a certain number of machines (10 in both experiments), the time per

epoch of some approaches begin to be affected as the communication cost takes over

the computation time. The approach that is the most affected by this is DSGD, as

synchronizations in this case are done after each sub-epoch. We can also see that even

though the per epoch speedup is best for ASGD, it requires a much higher number of

epochs to converge as compared to ADGMF and DSGD.

95

5.6 CLOSING REMARKS

In this Chapter, we extensively studied the Recommender System application. Mod-

ern RS application involves dataset of very large magnitude. Hence, it has emerged

as a challenging task. While disucssing the approaches for RS, we noticed that Matrix

factorization approaches have received a good reputation in the research community

because of the success promised by these methods. However, when the size of dataset

becomes very huge, it becomes infeasible to perform traditional matrix factorization

methods in a single machine. Hence, distributed methods are required to tackle this

problem. In this Chapter, we applied our asynchronous distributed framework to per-

form matrix factorization in a distributed manner. Additionally, we introduced an ex-

tra regularization term to incorporate the user and item similairity in the error function

of SGD for matrix factorization. The use of neighbourhood information promised to

give improvement in the performance of SGD method. Also, in the experiment section

we demonstrated the benefits of using asynchronous framework over the synchroniza-

tion based baselines.

96

6 APPLICATION 2: DISTRIBUTED BINARY

CLASSIFICATION

6.1 BINARY CLASSIFICATION

6.1.1 INTRODUCTION

Binary classification refers to supervised learning problem involving the classification

of an example to one of the two class labels. Majority of real-time applications involve

binary classification or can be modeled as a binary classification problem. Some of

the popular examples of binary classification are: spam detection, cancer detection,

deciding whether or not to show an item or add to a user etc. A binary dataset is

denoted as:

(x i, yi) ∈ Rd × {−1,+1}

where, i = 1, ..., n are the training examples, x i is the feature vector and yi is the

corresponding label.

6.1.2 LINEAR VS NON-LINEAR MODELS

Given a training set (x i, yi), binary classification methods construct the followin de-

cision function [Yuan et al., 2012]:

d(x) =wTφ(x) + b

Where, w is referred as the weight vector and b is an intercept known as bias. This

decision function defines a separating plane which separates the instances correspond-

ing to the two classes. Hence, based on the nature of this decision function the binary

97

classification method can be divided into two types: linear classifiers and non-linear

classifiers. As the name suggests, linear classifiers use a linear separating boundary,

whereas it is non-linear in the case of non-linear classifiers. Non-linear classifiers map

each of the training examples to a higher dimensional vector φ(x). In contrary, the

linear classifiers use the original feature space.

Since, non-linear classifiers use more features, they are supposed to have better

predictive perfomrance as compread to similar linear methods. However, in many

applications and experiments [Yuan et al., 2012], linear classifiers are shown to have

similar accuracy as compared to the non-linear classifiers. Whereas, linear classifiers

are far more efficient in terms of training and testing time. This makes them very

useful for large-scale scenarios. Hence, in this work, we will focus on linear methods

for binary classification.

6.1.3 BINARY LINEAR CLASSIFICATION METHODS

Linear binary classification involves the risk minimization of the following error func-

tion:

L (w) =
1
n

n
∑

i=1

`i(w) + r(w) (6.1)

Where, r(w) is the regularization term and `i(w) is the loss function associated

with each example in the training set. The loss function in 6.1 penalizes the misclassi-

fied instances (x,y). Also, the type of loss function used helps to distinguish between

different learning algorithms. Some of the commonly used loss functions are listed

below:

`i L1(w) = max(0, 1− yiw
T x i) (6.2)

`i L2(w) = max(0,1− yiw
T x i)

2 (6.3)

`i LR(w) = log(1+ e−yiw
T x i) (6.4)

Here, 6.2 and 6.3 are used in L1-loss and L2-loss Support Vector Machine (SVM)

[Boser et al., 1992,Cortes and Vapnik, 1995] respectively, whereas 6.4 is used by the

Logistic Regression algorithm [Cramer, 2002]. These algorithms are popularly used

for binary classification. Both of them have advantage and disadvantages for different

kind of datasets. The three loss functions in 6.2–6.4 are all convex and non-negative.

98

Hence, the popular optimization methods can be applied for their minimization. We

will explore the different state of the art optimization schemes in the Related Work

section (6.2).

6.2 RELATED WORK

One of the most popularly used optimization methods to minimize the loss function of

the form 4.3 and 6.1 is full gradient descent (FG) method which dates back to [Cauchy,

1847]. FG method uses the iterations of the form:

wk+1 =wk −αkL ′(wk)

=wk −
αk

n

n
∑

i=1

`i(w
k)

(6.5)

The convergence of FG method is fast, it can be unappealing when n becomes sig-

nificantly large. As the sum in Eq. (4.3) becomes very large, computing gradients of

L would be computationally very expensive. To overcome this issue, it is common to

use Stochastic Gradient Descent (SGD) methods where instead of updating the current

iterate using a full gradient, only one (or a few) randomly selected terms of the sum

are considered [Bottou, 2010, Roux et al., 2012, Shalev-Shwartz and Zhang, 2013].

Updating with this randomly subsambled gradient instead of the true one leads to

a variance-like error in the iteration that has to be mitigated, for instance by using

decreasing stepsizes which is harmful in practice [Bottou, 2010, Johnson and Zhang,

2013]. Another, more performing, way to deal with this variance is to use variance re-

duced variants of SGD, such as SVRG [Johnson and Zhang, 2013] or SAG/SAGA [Roux

et al., 2012,Defazio et al., 2014]. These methods incorporate incremental benefits of

SGD whereas reducing the variance caused by random-sampling in SGD by occasion-

ally computing full-gradients. This reduction in variance contributes to better conver-

gence properties and the use of fixed stepsizes.

However, with the increasing size of the datasets, it has become impossible to store

and process data in a single machine. In this case, the most common approach con-

sists in partitioning the dataset into several machines, and to solve the optimization

problem in a distributed manner [Langford et al., 2009]. The majority of the dis-

tributed methods rely on a synchronization between the worker machines [Shamir

et al., 2014,Boyd et al., 2011] where, the information from all the workers are gath-

99

ered after every iteration and the parameters are synchronized. For these methods, the

loading of machines play a central role in the convergence time of the whole system

and in the extreme case, the slowest machine may become a bottleneck. To overcome

this shortcoming, recent studies have considered asynchrony in the communication

of the shared parameter between the machines [Dean et al., 2012, Zhang and Kwok,

2014, Zhang et al., 2015, Reddi et al., 2015, Huo and Huang, 2016]. Asynchronous

algorithms can be applied either in shared-memory or distributed-memory environ-

ments. Shared memory algorithms, commonly referred as parallel distributed algo-

rithms, are mainly devised for multi-core systems. All the cores in such system share

the main memory, hence the parameter vector is usually kept in main memory and is

accessible by all the processing units for making any updates. Some of the prominent

parallel implementation of SGD or its variants are: Hogwild! [Recht et al., 2011], Co-

CoA [Jaggi et al., 2014], AsySVRG [Zhao and Li, 2016] and ASAGA [Leblond et al.,

2016]. Even though having promising theoretical/empirical results and ease of im-

plementation these approaches are limited to multi-core systems.

On the other hand, distributed approaches introduce asynchrony in distributed

memory environments. One popular architecture for distributed algorithms is param-

eter server (PS) implementation. The server keeps receiving delayed information from

a subset of workers in each iteration, thus avoiding the full synchronization among all

workers. One popular example of such architecture is downpour SGD [Dean et al.,

2012]. Here, each worker reads the parameter vector from the server, computes the

local gradient and pushes the updates to the server. Hence, the gradient updates for

each mini-batch are sent back to the server, which updates the parameter vector for

each received gradients. Following this architecture, recently variance reduced ver-

sions of SGD has been implemented in asynchronous distributed setting in [Zhang

et al., 2015,Huo and Huang, 2016]. Even though both the methods communicate the

gradients in an asynchronous fashion, they suffer from mainly two drawbacks. First

after each mini-batch update the gradient should be communicated. So, if the size of

dataset grows large the communication cost will become huge especially for a large

number of workers. Secondly, even if the mini-batch updates are asynchronous, these

algorithms synchronize after one complete pass over the data which is penalizing as

in disparate distributed environments any sort of synchronization can lead to slower

performance.

100

6.3 DISTRIBUTED SVRG ALGORITHM

In this section, we will analyze the SVRG method for binary classification. First, we will

begin with the single machine SVRG algorihtm. Then, we will present our proposed

asynchronous distributed version of the SVRG algorithm denoted as ADGBC.

6.3.1 SINGLE MACHINE SVRG

Single machine SVRG algorithm is presented in Algorithm 10. In this method, at each

time (usually after one complete pass over the data), we keep a snapshot of estimated

w, denoted as ew. Then we maintain an average gradient over the whole data using

the snapshot, ew as:

eµ=∇L (ew) =
1
n

n
∑

i=1

∇Li(ew) (6.6)

For each single or mini-batch updates of inner iteration, parameter w is updated

as:

wt ←wt−1 −
γ

|I t |

∑

i∈I t

(∇Li(w
t−1)−∇Li(ew) + eµ) (6.7)

where γ is the learning rate.

This modification in update rule of SGD contributes to the reduction of variance

of the algorithm near the convergence point and also leads to a linear convergence of

the algorithm.

Parameters: Update frequency m, batch size B and learning rate γ

Initialize: w ∈ Rd

while s = 1, 2, .., S do
ew← w ; w0 ← w

Compute eµ= 1
n

∑n
i=1∇Li(ew)

for t = 0, 1,2.., m− 1 do
Randomly pick a mini-batch I t s.t. |I t |= B

vt = 1
|I t |

∑

i∈I t (∇Li(wt)−∇Li(ew) + eµ)

update wt+1←wt − γvt

end

w← wm

end

Algorithm 10: Single Machine SVRG Algorithm

101

6.3.2 ADGBC ALGORITHM

In this section, we present our proposed asynchronous distributed SVRG algorithm, us-

ing the asynchronous framework discussed in previous section. The distributed mem-

ory algorithm in the master node and the worker nodes are shown in Algorithms 11

and 12. Each machine perform parameter update on their local data and after each

iteration the worker machines send the updated parameter to the server node which

directly responds by sending the averaged common parameter using the last gathered

updates. In this way, all the machines have an overall view of the parameter updates

from whole data, while only working with the local data.

The server node can also be used as a worker, updating the parameter on its local

sub-part of the data. Here, one thing to note is that we compute the average gradient,

eµ in SVRG, only over the local data. The average gradient over local data using the

parameter updated using the data on all machines gives a good approximation of the

full average gradient over the whole dataset. This allows us to avoid the need for

synchronization among the machines after one pass over the full data.

Initialize: Iteration k, machines M and w

Receive wi from the subset of workers (m ⊂ M and i ∈ m) ;

Compute w = 1
m

∑m
j=1 w j ;

Broadcast w

Algorithm 11: ADGBC master step in the master machine

Input: Maximum number of iterations T , batch size B and learning rate γ

Initialize: ∗ Receive parameter ew ∈ Rd from the master, or use the last

parameter estimation happened before a new reception ;

∗ w0← ew;

∗ Compute µ̃ j ← ∇̄L j(ew) ;

for t = 0, .., T − 1 do
Randomly pick a mini-batch I t

j of size B in the subpart of the data stored in

machine j;

Update wt+1←wt − γ

|I t
j |

∑

(xi ,yi)∈I t
j
(∇`(wt ,xi, yi)−∇`(ew,xi, yi) + eµ j);

end

ew←wT and send wT to the master.

Algorithm 12: ADGBC local step in the computing machines j ∈ {1, . . . , m}

102

6.4 EXPERIMENTAL RESULTS

We conducted a number of experiments aimed at showing the behaviour of the pro-

posed ADGBC algorithm in learning efficient classification functions optimizing the `2-

regularized logistic regression surrogate. Specifically, we study the convergence and

the communication overhead of the proposed algorithm by comparing it with state-

of-the-art distributed approaches.

6.4.1 EXPERIMENTAL SETUP

6.4.1.1 Datasets

We performed our experiments on three popular large-scale binary classification datasets:

Webspam, Epsilon and RCV. The various characteristics of the datasets are presented

in Table 6.1. Note that Epsilon is fully dense while RCV is the sparsest dataset.1

Table 6.1: Characteristics of Datasets used in our experiments.

Dataset n d #nonzeros

Epsilon 500000 2000 109

Webspam Unigram 350000 253 29,796,333

RCV 697641 47236 51,055,210

6.4.1.2 Baselines

The majority of distributed approaches consider the shared-memory scenario, where

the parameter vector is kept in the shared memory, which can be updated by all the

processors simultaneously [Zhao and Li, 2016,Leblond et al., 2016]. But the focus of

this paper is for shared-nothing scenario, where the disparate machines do not share

memory. Unlike most of the approaches which rely on some sort of synchronization

among the machines, we consider a totally asynchronous setting. To validate the

asynchronous distributed algorithm described in previous section, we compare the

following strategies:

• The proposed approach ADSVRG,
1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

103

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

• Sync-SVRG, SVRG based method with synchronization of gradients after every

mini-batch update.

• Async-SVRG: Distributed architecture proposed in [Huo and Huang, 2016],

which asynchronously communicate gradients after every mini-batch updates.

Since the asynchronous methods were quite sensitive to initial point, we performed

a synchronized gradient step during the first pass over the data. This gave a stable start

for all the algorithms.

6.4.1.3 Experimental Settings

We shall now describe the platform, as well as the tuning of the hyper-parameters and

the evaluation measures used in our experiments.

1. Platform: Experiments were conducted in a platform with 7 servers. The code

was implemented using a python module mpi4py using OpenMPI2 as the MPI

library. Since the focus of the paper is for shared-nothing scenario, the disparate

machines do not share memory. Three of the servers had Intel Xenon E5-2640

2.60 GHz processors with 32 cores and 256 GB memory each. Two others had

Intel Xenon E5-2643 3.40 GHz processors with 24 cores and 128 GB memory

each and the last two ones had have Intel Xeon E5-2407 2.20GHz processors

with 4 cores and 48 GB memory each. Each core of a server here corresponds to a

computing node or a machine that we considered in our analysis presented in the

previous sections. Even though some of the servers have identical configuration,

they were running different workloads on them making the configuration similar

to a real scenario case.

2. Hyper-parameters: In all the experiments, we used a fixed regularization rate,

λ = 1
n , where n is the size of the dataset. The fixed learning rates were chosen

from a set of values in range {10−4, 10−3, 10−2, 10−1} and the reported perfor-

mance were the best obtained with one of those stepsizes. The mini-batch size

for Webspam, Epsilon and RCV datasets were respectively fixed to 5, 10 and

20.

3. Evaluation Measures: Convergence result was evaluated in terms of minimiza-

tion of objective function over time. The communication overhead incurred by

2https://www.open-mpi.org/

104

https://www.open-mpi.org/

each algorithm in the network as well as the communication time are shown in

terms of the total number of send/receive calls.

6.4.2 RESULTS

We performed experiments to assess the effect of varying broadcast frequency on the

performance of asynchronous methods. We were then interested in the convergence

time as well as the communication overhead and the effect of increasing the number

of workers.

6.4.2.1 Effect of Varying Broadcast Frequency

We chose varying batch sizes after which the parameter vectors were broadcasted in

each worker machines. The effect of varying batch size for broadcast on the mini-

mization of objective function on training data for Webspam and Epsilon datasets

are shown in Figure 6.1. As it can be observed, the broadcasting of the parameter

vectors has in general a negative effect on the performance of the algorithm. In Fig-

ure 6.1, we can notice that when the parameter was broadcasted after 1/10000 or

1/1000’th pass over the local data, the minimization of the objective function is not

very good, whereas broadcasting after a larger pass over the data improves the mini-

mization up to some point when the parameters pooling do not occur often enough.

This gives a good motivation for our approach of broadcasting parameter vectors only

after updating the parameter vector over one pass of the local data.

6.4.2.2 Evaluation of Convergence Time

Figure 6.2 and 6.3 compare the convergence results for the three methods on all

datasets. The convergence results are presented in terms of minimization of the ob-

jective function in the training sub-part of the data on the the root machine and the

evolution of the test accuracy with respect to time (in seconds). As It can be observed

the proposed method ADSVRG converges much faster than the other two approaches

which is mainly due to the synchronization of gradients between the worker machines.

The objective function is minimized considerably faster for ADSVRG than the other

two methods. It can be seen that this behavior becomes more noticeable for larger

datasets. For example on the RCV collection, ADSVRG converges three times faster

than the other methods. As an effect the test performance reached by ADSVRG, at its

105

n/10000 n/1000 n/100 n/10 n 2n 3n
Batch size

0.2395

0.2400

0.2405

0.2410

0.2415

0.2420

0.2425

0.2430

Op
tim

um
 T

ra
in

in
g

Lo
ss

n/10000 n/1000 n/100 n/10 n 2n 3n
Batch size

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

Op
tim

um
 T

ra
in

in
g

Lo
ss

Figure 6.1: The effect of varying batch size for broadcasting parameter for (a)

Webspam and (b) Epsilon Datasets

convergence, is lower than the two others, but the difference is not significant. Also

it is to be noted that the difference in the convergence speed can become even larger

if some of the machines are extremely overloaded, which is generally the case in the

cluster environments.

6.4.2.3 Communication Overhead

We also present the communication overhead incurred by each of the methods. The

total communication cost for each algorithm is compared in terms of the total number

106

Methods
Webspam Epsilon RCV

Nc time (s) Nc time (s) Nc time (s)

Sync-SVRG 336021 635.44 108009 589.9 83711 4756.25

Async-SVRG 839831 42.13 108000 110.03 30701 733.47

ADSVRG 33611 14.93 12004 29.6 8380 631.92

Table 6.2: Comparison of the communication overhead of all approaches on the three

collections

of communication calls (send, receive, broadcast, gather), as well as the time spent

in those calls. Since for Sync-SVRG and Async-SVRG methods the convergence is

very slow near the tail, we compare the communication cost till the iteration when all

methods achieve the same minimization of the objective function. Table 6.2 shows the

detailed results obtained for each algorithm on all datasets. It can be observed that the

ADSVRG incurs the minimum communication overhead as the number of communica-

tion between the machines is very low. Most of the calls shown for ADSVRG are made

during the first epoch where the gradients are synchronized. Whereas Sync-SVRG and

Async-SVRG methods have to communicate large number of times in order to broad-

cast their local gradients to the master and receive the updated parameters from the

master machine. Since Sync-SVRG is totally synchronous, the communication calls

are blocking in nature and hence considerably slow. Whereas for Async-SVRG and

ADSVRG the communication calls are mostly non-blocking and hence return immedi-

ately.

6.4.2.4 Speedup Result with Increasing Number of Workers

Finally, we evaluate the scalability of the proposed framework with respect to the

increasing number of worker machines. In this experiment, we vary the number of

workers from 5 to 25, each time increasing the number of workers by 5. Figure 6.4

illustrates the evolution of the loss function of ADSVRG on the training set (a) as well

as the test accuracy (b) with respect to time (in seconds) on the Epsilon collection.

Figure 6.4 (c) also depicts the speedup in convergence time with respect to the number

of workers. In the ideal case, shown in red, when the number of workers double, the

convergence time is divided by two; and hence the speedup is linear. From this figure,

it comes out that as the number of workers increases the ADSVRG algorithm is able

to achieve a near linear speedup, which is mainly due to the fact that, it relies on

107

very low communication between the workers which is is also shown in Table 6.2. On

the other hand, as the number of workers increases the performance of the algorithm

slightly deteriorates.

6.5 CLOSING REMARKS

In this chapter, we analyzed the binary classification problem. We started with the

introduction and the types of binary classification methods. Then we discussed the

different optimization functions for linear binary classification. In the related work

section we summarized the different ways of perfoming optimization for linear meth-

ods. Hence to tackle the problem of large-scale binary classification we used the pro-

posed asynchronous distributed framework for linear binary classification algorithm.

The results suggest improvement in the convergence time with the use of proposed

framework. We also demonstrated the scalability of the method for large-scale binary

classification datasets. Hence, the proposed framework shows potential for binary

classification application.

108

0 500 1000 1500
Time (sec)

0.228

0.238

0.248

0.258

0.268

Tr
ai

ni
ng

 L
os

s

AD-SVRG
Sync-SVRG
Async-SVRG

0 500 1000 1500 2000
Time (sec)

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Tr
ai

ni
ng

 L
os

s

AD-SVRG
Sync-SVRG
Async-SVRG

0 1000 2000 3000
Time (sec)

0.09

0.12

0.15

0.18

Tr
ai

ni
ng

 L
os

s

AD-SVRG
Sync-SVRG
Async-SVRG

Figure 6.2: Training Loss Vs Time Plot for (a) Webspam, (b) Epsilon and (c) RCV

Datasets 109

0 500 1000 1500
Time (Sec)

0.88

0.89

0.90

0.91

0.92

Te
st

 A
cc

ur
ac

y

AD-SVRG
Sync-SVRG
Async-SVRG

0 500 1000 1500 2000
Time (Sec)

0.86

0.87

0.88

0.89

Te
st

 A
cc

ur
ac

y

AD-SVRG
Sync-SVRG
Async-SVRG

0 1000 2000 3000
Time (Sec)

0.945

0.955

0.965

Te
st

 A
cc

ur
ac

y

AD-SVRG
Sync-SVRG
Async-SVRG

Figure 6.3: Test Accuracy Vs Time Plot for (a) Webspam, (b) Epsilon and (c) RCV

Datasets 110

100 200 300 400 500 600 700 800 900
Time (sec)

28

30

32

34

36

38

40

42

44

Tr
ai

ni
ng

 L
os

s

5 Workers
10 Workers
15 Workers
20 Workers
25 Workers

100 200 300 400 500 600 700 800 900
Time (Sec)

0.860

0.865

0.870

0.875

0.880

0.885

Te
st

 A
cc

ur
ac

y

5 Workers
10 Workers
15 Workers
20 Workers
25 Workers

0 5 10 15 20 25
Number of Workers

0

1

2

3

4

5

Sp
ee

du
p

AD-SVRG
Ideal

Figure 6.4: Convergence Speedup Result for Epsilon Dataset

111

112

113

CONCLUSION

The goal of this thesis was to explore ML algorithms for large-scale data and devise effi-

cient algorithms. To achieve this objective we studied this problem from two different

perspectives. First, we considered the problem of large-scale multiclass classification.

Then we analyzed the distributed algorithms for ML. In both the areas we discussed

the challenges of handling large-scale data and proposed efficient algorithms to solve

them. We also showed a detailed theoretical and empirical analysis of the proposed

algorithms to validate the claims. Analysis of both the problems constitute the two

parts of this thesis.

In the first part of the thesis, we study the multiclass classification problem. We

proposed an algorithm for the reduction of multiclass classification to a binary clas-

sification problem. In Chapter 2, we began with the introduction to multiclass clas-

sification. Then, we presented various state-of-the-art algorithms to solve multiclass

classification problems. We noticed that there is no single method which is superior to

every other methods. Each of the methods has their advantages and drawbacks. We

also discussed about the popular challenges associated with multiclass classification,

typically for large-class scenario.

To solve the discussed challenges, we introduced our first reduction algorithm re-

ferred to as Naive reduction algorithm (mRb) in Chapter 3. The reduction technique is

based on binarization of the original problem considering pairwise subtraction of joint

representations of examples and classes. The preliminary results showed the efficacy

of the reduction technique in solving the popular challenges of multiclass classifica-

tion. However, we noticed that the proposed algorithm introduced some new chal-

lenges. The pairwise subtraction of all possible pairs is a tedious task if the number

of classes is very large. First of all it takes tediously long time for extraction of joint

features and the subtraction task. Secondly, it results in large number of examples

in the reduced binary dataset. Also, during prediction phase, we need to create joint

representation of each test example with respect to all the classes. These problems

114

significantly magnify as the number of classes increase.

Hence, to overcome these new challenges, we extended the Naive reduction al-

gorithm and proposed the extended algorithm referred as Double-Sampled multi to

binary reduction (DS-mRb) algorithm. We made extensions in two problematic areas

of the Naive algorithm. First, we incorporated a double sampling strategy during the

reduction phase. First sampling is with respect to the number of examples considered

from each class. Secondly, we randomly sample classes to consider for making joint

representation and subtraction. Using such double sampling significantly improved

the runtime of the reduction process as well as the total memory used for keeping

the reduced examples. The second extension is with respect to the prediction phase,

where we pre-select a small subset of candidates to consider for the final prediction.

This helped to make the prediction phase faster.

The performance of the proposed method was validated using popular datasets

for text classification application. Also, we compared the results with a number of

popular baseline methods. The analysis of the result shows the efficacy of the pro-

posed algorithm. The comparison helped us to conclude that the proposed method is

the best performance compromise considering various aspects of evaluation such as

the total runtime, memory usage and predictive performance. Additionally, we pre-

sented a detailed theoretical analysis of the proposed model. Our reduction strategy

brings inter-dependency between the pairs containing the same observation and its

true class in the original training set. Thus, we derive new generalization bounds

using local fractional Rademacher complexity showing that even with a shift in the

original class distribution and also the inter-dependency between the pairs of exam-

ple, the empirical risk minimization principle over the transformation of the sampled

training set remains consistent.

In this part of thesis we showed effectiveness of the proposed double-sampled multi

to binary reduction (DS-mRb) algorithm for large-class multiclass classification. This

work opens several research directions. First, even though this algorithm works very

well for text classification, its performance on other applications is still untested. This

remains as an open question for potential future works. However, finding meaningful

joint features can be a challenging task in many multiclass classification application.

Another future research direction would be to extend this approach to handle multi-

label classification, where one example may belong to more than one classes at once.

In such problems, it will be interesting to incorporate the label dependencies in the

algorithm.

115

In the second part of the thesis, we studied distributed approaches for perform-

ing ML optimization. In distributed computing, we partition the data across several

machines and simultaneously perform the learning task. We consider the scenarios

where the memory is not shared between the machines. In such setting, the main

consideration is to minimize the communication between the machines and to avoid

the bottleneck of synchronization between the machines. We introduced a framework

which overcomes these two challenges. The proposed framework is based on asyn-

chronous distributed optimization. We showed the effectiveness of the framework

by considering two applications: matrix factorization for recommender system and

large-scale binary classification.

In Chapter 4, we introduced distributed ML. We began by discussing different

settings of distributed computing, their desired properties and popularly used dis-

tributed computing tools. Later, we formulated the problem structure that we con-

sidered throughout the second part of the thesis. Then, we presented our framework

for asynchronous distributed machine learning based on averaging of parameters and

showed the proof of convergence in this setting. This chapter introduced the proposed

framework, which opened the door for utilizing it for ML applications.

In Chapter 5, we used the proposed asynchronous distributed framework for dis-

tributing matrix factorization in Recommender System application. We began with

introducing the background of Recommender systems and popularly used methods in

this domain. We focused on matrix factorization, since it is one of the most popularly

used methods. Additionally, we introduced an extra regularization term to incorpo-

rate the user and item similarity in the error function of SGD for matrix factorization.

The use of neighbourhood information promised to give improvement in the perfor-

mance of SGD method. Also, in the experiment section we demonstrated the benefits

of using asynchronous framework over the synchronization based baselines.

Finally, in Chapter 6, we performed the distributed optimization of binary classi-

fication algorithm using the proposed asynchronous distributed framework. In this

chapter, we started with the introduction and the types of binary classification meth-

ods. Then we discussed different loss functions popularly used for linear binary classi-

fication. We presented different optimization schemes for binary classification. Hence

to tackle the problem of large-scale binary classification we used the proposed asyn-

chronous distributed framework for linear binary classification algorithm. The results

suggest improvement in the convergence time with the use of proposed framework.

We also demonstrated the scalability of the method for large-scale binary classifica-

116

tion datasets. Hence, the proposed framework shows potential for binary classification

application.

The results in this part of thesis give an indication for a potential research direction.

With the popularity of big data and distributed frameworks such as Spark and MPI,

asynchronous communication is already an important consideration and will be very

essential for applications in future. Because of time and infrastructure constraints we

could not analyze various aspects of this research, which leads to several open ques-

tions and potential future extensions of this thesis. One interesting direction would be

to test such framework in industrial scale applications with large clusters consisting of

thousands of machines. However, in such scale the main challenge will be to control

the communication frequency to utilize the network bandwidth optimally.

117

118

PUBLICATIONS

1. B. Joshi, M.R. Amini, I. Partalas, F. Iutzeler, Y. Maximov, Aggressive Sampling

for Multi-class to Binary Reduction with Applications to Text Classification, NIPS

2017

2. B. Joshi, F. Iutzeler, M.R. Amini. An Asynchronous Distributed Framework for

Large-scale Learning Based on Parameter Exchanges. International Journal of

Data Science and Analytics, IJDSA (Under Review)

3. B. Joshi, F. Iutzeler, M.R. Amini. Asynchronous Distributed Matrix Factorization

with Similar User and Item Based Regularization. Proceedings of the 10th ACM

Conference on Recommender Systems (RecSys’16), Boston, USA, 2016.

4. B Joshi, MR Amini, I Partalas, L Ralaivola, N Usunier, E Gaussier. On Binary

Reduction of Large-Scale Multiclass Classification Problems. International Sym-

posium on Intelligent Data Analysis, (IDA), 2015.

5. B Joshi, MR Amini, I Partalas, L Ralaivola, N Usunier, E Gaussier. Multi-class to

Binary reduction of Large-scale classification Problems. International Workshop

on Big Multi-Target Prediction ECML/PKDD 2015.

119

BIBLIOGRAPHY

[Abu-El-Haija et al., 2016] Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici,

G., Varadarajan, B., and Vijayanarasimhan, S. (2016). Youtube-8m: A large-scale

video classification benchmark. arXiv preprint arXiv:1609.08675.

[Adomavicius and Tuzhilin, 2005] Adomavicius, G. and Tuzhilin, A. (2005). Toward

the next generation of recommender systems: A survey of the state-of-the-art

and possible extensions. IEEE transactions on knowledge and data engineering,

17(6):734–749.

[Allwein et al., 2000] Allwein, E. L., Schapire, R. E., and Singer, Y. (2000). Reducing

multiclass to binary: A unifying approach for margin classifiers. Journal of machine

learning research, 1(Dec):113–141.

[Aly, 2005] Aly, M. (2005). Survey on multiclass classification methods. Neural Netw,

pages 1–9.

[Babbar et al., 2014a] Babbar, R., Metzig, C., Partalas, I., Gaussier, E., and Amini, M.-

R. (2014a). On power law distributions in large-scale taxonomies. ACM SIGKDD

Explorations Newsletter, 16(1):47–56.

[Babbar et al., 2014b] Babbar, R., Metzig, C., Partalas, I., Gaussier, E., and Amini,

M. R. (2014b). On power law distributions in large-scale taxonomies. SIGKDD

Explorations, 16(1).

[Balasubramanian and Lebanon, 2012] Balasubramanian, K. and Lebanon, G.

(2012). The landmark selection method for multiple output prediction. arXiv

preprint arXiv:1206.6479.

[Bauschke and Combettes, 2011] Bauschke, H. H. and Combettes, P. L. (2011). Con-

vex analysis and monotone operator theory in Hilbert spaces. Springer Science &

Business Media.

120

[Bengio et al., 2010] Bengio, S., Weston, J., and Grangier, D. (2010). Label embed-

ding trees for large multi-class tasks. In Advances in Neural Information Processing

Systems, pages 163–171.

[Beygelzimer et al., 2009a] Beygelzimer, A., Langford, J., Lifshits, Y., Sorkin, G., and

Strehl, A. (2009a). Conditional probability tree estimation analysis and algorithms.

In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,

pages 51–58. AUAI Press.

[Beygelzimer et al., 2009b] Beygelzimer, A., Langford, J., and Ravikumar, P. (2009b).

Error-correcting tournaments. In Proceedings of the 20th International Conference

on Algorithmic Learning Theory, ALT’09, pages 247–262.

[Bhatia et al., 2015] Bhatia, K., Jain, H., Kar, P., Varma, M., and Jain, P. (2015). Sparse

local embeddings for extreme multi-label classification. In Advances in Neural In-

formation Processing Systems, pages 730–738.

[Bi and Kwok, 2013] Bi, W. and Kwok, J. (2013). Efficient multi-label classification

with many labels. In International Conference on Machine Learning, pages 405–413.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition. Machine Learning, 128:1–

58.

[Bobadilla et al., 2013] Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A.

(2013). Recommender systems survey. Knowledge-based systems, 46:109–132.

[Boser et al., 1992] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training

algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop

on Computational learning theory, pages 144–152. ACM.

[Bottou, 2010] Bottou, L. (2010). Large-scale machine learning with stochastic gra-

dient descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer.

[Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.

(2011). Distributed optimization and statistical learning via the alternating direc-

tion method of multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–

122.

[Cauchy, 1847] Cauchy, A. (1847). Méthode générale pour la résolution des systemes

d’équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538.

121

[Chang et al., 2015] Chang, T., Hong, M., Liao, W., and Wang, X. (2015). Asyn-

chronous distributed ADMM for large-scale optimization- part I: algorithm and

convergence analysis. ArXiv e-prints, 1509.02597.

[Chen and Lin, 2012] Chen, Y.-N. and Lin, H.-T. (2012). Feature-aware label space di-

mension reduction for multi-label classification. In Advances in Neural Information

Processing Systems, pages 1529–1537.

[Chin et al., 2015] Chin, W.-S., Zhuang, Y., Juan, Y.-C., and Lin, C.-J. (2015). A

learning-rate schedule for stochastic gradient methods to matrix factorization. In

PAKDD (1), pages 442–455.

[Choromanska et al., 2013] Choromanska, A., Agarwal, A., and Langford, J. (2013).

Extreme multi class classification. In NIPS Workshop: eXtreme Classification, sub-

mitted.

[Choromanska and Langford, 2015] Choromanska, A. and Langford, J. (2015). Log-

arithmic time online multiclass prediction. In NIPS.

[Cinbis et al., 2012] Cinbis, R. G., Verbeek, J., and Schmid, C. (2012). Image cate-

gorization using fisher kernels of non-iid image models. In Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2184–2191. IEEE.

[Cisse et al., 2013] Cisse, M. M., Usunier, N., Artieres, T., and Gallinari, P. (2013).

Robust bloom filters for large multilabel classification tasks. In Advances in Neural

Information Processing Systems, pages 1851–1859.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks.

Machine learning, 20(3):273–297.

[Cramer, 2002] Cramer, J. S. (2002). The origins of logistic regression.

[Crammer and Singer, 2002] Crammer, K. and Singer, Y. (2002). On the algorithmic

implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res.,

2:265–292.

[Daume III et al., 2016] Daume III, H., Karampatziakis, N., Langford, J., and Mineiro,

P. (2016). Logarithmic time one-against-some. arXiv preprint arXiv:1606.04988.

122

[Dean et al., 2012] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M.,

Senior, A., Tucker, P., Yang, K., Le, Q. V., et al. (2012). Large scale distributed deep

networks. In Advances in neural information processing systems, pages 1223–1231.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: simpli-

fied data processing on large clusters. Communications of the ACM, 51(1):107–113.

[Defazio et al., 2014] Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga: A

fast incremental gradient method with support for non-strongly convex composite

objectives. In Advances in Neural Information Processing Systems, pages 1646–1654.

[Deng et al., 2010] Deng, J., Berg, A., Li, K., and Fei-Fei, L. (2010). What does clas-

sifying more than 10,000 image categories tell us? Computer Vision–ECCV 2010,

pages 71–84.

[Diaz et al., 2012] Diaz, J., Munoz-Caro, C., and Nino, A. (2012). A survey of parallel

programming models and tools in the multi and many-core era. IEEE Transactions

on parallel and distributed systems, 23(8):1369–1386.

[Dietterich and Bakiri, 1995] Dietterich, T. G. and Bakiri, G. (1995). Solving mul-

ticlass learning problems via error-correcting output codes. Journal of artificial

intelligence research, 2:263–286.

[Fan et al., 2008a] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J.

(2008a). Liblinear: A library for large linear classification. J. Mach. Learn. Res.,

9:1871–1874.

[Fan et al., 2008b] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J.

(2008b). Liblinear: A library for large linear classification. Journal of Machine

Learning Research, 9:1871–1874.

[Ferng and Lin, 2011] Ferng, C.-S. and Lin, H.-T. (2011). Multi-label classification

with error-correcting codes. In Asian Conference on Machine Learning, pages 281–

295.

[Fleury et al., 2013] Fleury, A., Noury, N., and Vacher, M. (2013). Improving super-

vised classification of activities of daily living using prior knowledge. Digital Ad-

vances in Medicine, E-Health, and Communication Technologies, page 131.

123

[Friedman, 1996] Friedman, J. (1996). Another approach to polychotomous clas-

sification. Technical report, Technical report, Department of Statistics, Stanford

University.

[Garcia-Pedrajas and Ortiz-Boyer, 2006] Garcia-Pedrajas, N. and Ortiz-Boyer, D.

(2006). Improving multiclass pattern recognition by the combination of two strate-

gies. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(6):1001–

1006.

[Gemulla et al., 2011] Gemulla, R., Nijkamp, E., Haas, P. J., and Sismanis, Y. (2011).

Large-scale matrix factorization with distributed stochastic gradient descent. In

Proceedings of the 17th ACM SIGKDD international conference on Knowledge discov-

ery and data mining, pages 69–77. ACM.

[Guo et al., 2016] Guo, Y., Zhang, L., Hu, Y., He, X., and Gao, J. (2016). Ms-celeb-1m:

A dataset and benchmark for large-scale face recognition. In European Conference

on Computer Vision, pages 87–102. Springer.

[Hall et al., 2010] Hall, K. B., Gilpin, S., and Mann, G. (2010). Mapreduce/bigtable

for distributed optimization. In NIPS LCCC Workshop.

[Herlocker et al., 1999] Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J.

(1999). An algorithmic framework for performing collaborative filtering. In ACM

SIGIR conference on Research and development in information retrieval, pages 230–

237. ACM.

[Ho et al., 2013] Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons, P. B., Gibson,

G. A., Ganger, G., and Xing, E. P. (2013). More effective distributed ml via a stale

synchronous parallel parameter server. In Advances in Neural Information Processing

Systems 26, pages 1223–1231.

[Hsu and Lin, 2002] Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods

for multiclass support vector machines. IEEE transactions on Neural Networks,

13(2):415–425.

[Hsu et al., 2009] Hsu, D. J., Kakade, S. M., Langford, J., and Zhang, T. (2009). Multi-

label prediction via compressed sensing. In Advances in neural information process-

ing systems, pages 772–780.

[Hu, 2011] Hu, R. (2011). Active learning for text classification.

124

[Huo and Huang, 2016] Huo, Z. and Huang, H. (2016). Asynchronous stochastic gra-

dient descent with variance reduction for non-convex optimization. arXiv preprint

arXiv:1604.03584.

[Jaggi et al., 2014] Jaggi, M., Smith, V., Takác, M., Terhorst, J., Krishnan, S., Hof-

mann, T., and Jordan, M. I. (2014). Communication-efficient distributed dual

coordinate ascent. In Advances in Neural Information Processing Systems, pages

3068–3076.

[Jain et al., 2016] Jain, H., Prabhu, Y., and Varma, M. (2016). Extreme multi-label

loss functions for recommendation, tagging, ranking & other missing label applica-

tions. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, pages 935–944. ACM.

[Janson, 2004] Janson, S. (2004). Large deviations for sums of partly dependent

random variables. Random Structures and Algorithms, 24(3):234–248.

[Jasinska and Karampatziakis, 2016] Jasinska, K. and Karampatziakis, N. (2016).

Log-time and log-space extreme classification. arXiv preprint arXiv:1611.01964.

[Johnson and Zhang, 2013] Johnson, R. and Zhang, T. (2013). Accelerating stochas-

tic gradient descent using predictive variance reduction. In Advances in Neural

Information Processing Systems, pages 315–323.

[Joshi et al., 2015a] Joshi, B., Amini, M., Partalas, I., Ralaivola, L., Usunier, N., and

Gaussier, É. (2015a). On binary reduction of large-scale multiclass classification

problems. In Advances in Intelligent Data Analysis XIV - 14th International Sympo-

sium, IDA 2015, pages 132–144.

[Joshi et al., 2017] Joshi, B., Amini, M.-R., Partalas, I., Iutzeler, F., and Maximov, Y.

(2017). Aggressive sampling for multi-class to binary reduction with applications

to text classification. arXiv preprint arXiv:1701.06511.

[Joshi et al., 2015b] Joshi, B., Amini, M.-R., Partalas, I., Ralaivola, L., Usunier, N., and

Gaussier, E. (2015b). On binary reduction of large-scale multiclass classification

problems. In International Symposium on Intelligent Data Analysis, pages 132–144.

Springer.

125

[Kang et al., 2015] Kang, S. J., Lee, S. Y., and Lee, K. M. (2015). Performance com-

parison of openmp, mpi, and mapreduce in practical problems. Advances in Multi-

media, 2015:7.

[Kapoor et al., 2012] Kapoor, A., Viswanathan, R., and Jain, P. (2012). Multilabel

classification using bayesian compressed sensing. In Advances in Neural Information

Processing Systems, pages 2645–2653.

[Koren et al., 2009] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization

techniques for recommender systems. Computer, (8):30–37.

[Langford et al., 2009] Langford, J., Smola, A. J., and Zinkevich, M. (2009). Slow

learners are fast. Advances in Neural Information Processing Systems, 22:2331–2339.

[Leblond et al., 2016] Leblond, R., Pedregosa, F., and Lacoste-Julien, S. (2016).

Asaga: Asynchronous parallel saga. arXiv preprint arXiv:1606.04809.

[Lehmann, 1975] Lehmann, E. (1975). Nonparametric Statistical Methods Based on

Ranks. McGraw-Hill, New York, USA.

[Li, 2017] Li, M. (2017). Scaling Distributed Machine Learning with System and Algo-

rithm Co-design. PhD thesis, Intel.

[Liu, 2011] Liu, T.-Y. (2011). Learning to rank for information retrieval. Springer

Science & Business Media.

[Liu et al., 2009] Liu, T.-Y. et al. (2009). Learning to rank for information retrieval.

Foundations and Trends R© in Information Retrieval, 3(3):225–331.

[Liu et al., 2007] Liu, T.-Y., Xu, J., Qin, T., Xiong, W., and Li, H. (2007). Letor: Bench-

mark dataset for research on learning to rank for information retrieval. In Pro-

ceedings of SIGIR 2007 workshop on learning to rank for information retrieval, pages

3–10.

[Lorena et al., 2008] Lorena, A. C., Carvalho, A. C., and Gama, J. a. M. (2008). A

review on the combination of binary classifiers in multiclass problems. Artif. Intell.

Rev., 30(1-4):19–37.

[Mairal, 2015] Mairal, J. (2015). Incremental majorization-minimization optimiza-

tion with application to large-scale machine learning. SIAM Journal on Optimiza-

tion, 25(2):829–855.

126

[Makari et al., 2015] Makari, F., Teflioudi, C., Gemulla, R., Haas, P., and Sismanis,

Y. (2015). Shared-memory and shared-nothing stochastic gradient descent algo-

rithms for matrix completion. Knowledge and Information Systems, 42(3):493–523.

[Manning et al., 2008] Manning, C. D., Raghavan, P., Schütze, H., et al. (2008). Intro-

duction to information retrieval, volume 1. Cambridge university press Cambridge.

[Maurer and Pontil, 2009] Maurer, A. and Pontil, M. (2009). Empirical bernstein

bounds and sample variance penalization. arXiv preprint arXiv:0907.3740.

[McDiarmid, 1989] McDiarmid, C. (1989). On the method of bounded differences.

Survey in Combinatorics, pages 148–188.

[McDonald et al., 2010] McDonald, R., Hall, K., and Mann, G. (2010). Distributed

training strategies for the structured perceptron. In Human Language Technologies:

The 2010 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pages 456–464. Association for Computational Linguis-

tics.

[Mohri and Rostamizadeh, 2009] Mohri, M. and Rostamizadeh, A. (2009).

Rademacher complexity bounds for non-i.i.d. processes. In Advances in Neu-

ral Information Processing Systems 21, pages 1097–1104.

[Park and Fürnkranz, 2014] Park, S. and Fürnkranz, J. (2014). Efficient implemen-

tation of class-based decomposition schemes for naïve bayes. Machine Learning,

96(3):295–309.

[Park and Fürnkranz, 2012] Park, S.-H. and Fürnkranz, J. (2012). Efficient predic-

tion algorithms for binary decomposition techniques. Data Mining and Knowledge

Discovery, 24(1):40–77.

[Parkhi et al., 2015] Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face

recognition. In BMVC, volume 1, page 6.

[Partalas et al., 2015] Partalas, I., Kosmopoulos, A., Baskiotis, N., Artieres, T.,

Paliouras, G., Gaussier, E., Androutsopoulos, I., Amini, M.-R., and Galinari, P.

(2015). LSHTC: A Benchmark for Large-Scale Text Classification. ArXiv e-prints.

[Pazzani and Billsus, 2007] Pazzani, M. and Billsus, D. (2007). Content-based rec-

ommendation systems. The adaptive web, pages 325–341.

127

[Perronnin et al., 2010] Perronnin, F., Sénchez, J., and Xerox, Y. L. (2010). Large-

scale image categorization with explicit data embedding. In Computer Vision and

Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2297–2304. IEEE.

[Prabhu and Varma, 2014] Prabhu, Y. and Varma, M. (2014). Fastxml: A fast, accu-

rate and stable tree-classifier for extreme multi-label learning. In Proceedings of the

20th ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 263–272. ACM.

[Qin et al., 2010] Qin, T., Liu, T.-Y., Xu, J., and Li, H. (2010). Letor: A benchmark

collection for research on learning to rank for information retrieval. Information

Retrieval, 13(4):346–374.

[Raghavan and Wong, 1986] Raghavan, V. V. and Wong, S. M. (1986). A critical anal-

ysis of vector space model for information retrieval. Journal of the American Society

for information Science, 37(5):279.

[Ralaivola and Amini, 2015] Ralaivola, L. and Amini, M. (2015). Entropy-based con-

centration inequalities for dependent variables. In Proceedings of the 32nd Interna-

tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,

pages 2436–2444.

[Ralaivola et al., 2010] Ralaivola, L., Szafranski, M., and Stempfel, G. (2010). Chro-

matic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary

β-Mixing Processes. Journal of Machine Learning Research, 11:1927–1956.

[Recht et al., 2011] Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild: A lock-

free approach to parallelizing stochastic gradient descent. In Advances in Neural

Information Processing Systems, pages 693–701.

[Reddi et al., 2015] Reddi, S. J., Hefny, A., Sra, S., Poczos, B., and Smola, A. J. (2015).

On variance reduction in stochastic gradient descent and its asynchronous variants.

In Advances in Neural Information Processing Systems, pages 2647–2655.

[Resnick and Varian, 1997] Resnick, P. and Varian, H. R. (1997). Recommender sys-

tems. Communications of the ACM, 40(3):56–58.

[Rifkin and Klautau, 2004] Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all

classification. Journal of machine learning research, 5(Jan):101–141.

128

[Rocha and Goldenstein, 2014] Rocha, A. and Goldenstein, S. K. (2014). Multi-

class from binary: Expanding one-versus-all, one-versus-one and ecoc-based ap-

proaches. IEEE Transactions on Neural Networks and Learning Systems, 25(2):289–

302.

[Roux et al., 2012] Roux, N. L., Schmidt, M., and Bach, F. R. (2012). A stochastic

gradient method with an exponential convergence _rate for finite training sets. In

Advances in Neural Information Processing Systems, pages 2663–2671.

[Schapire and Singer, 1999] Schapire, R. E. and Singer, Y. (1999). Improved boosting

algorithms using confidence-rated predictions. Machine learning, 37(3):297–336.

[Schiolkopf et al., 1995] Schiolkopf, B., Burges, C., and Vapnik, V. (1995). Extract-

ing support data for a given task. In Proceedings, First International Conference on

Knowledge Discovery & Data Mining. AAAI Press, Menlo Park, CA, pages 252–257.

[Shalev-Shwartz and Zhang, 2013] Shalev-Shwartz, S. and Zhang, T. (2013).

Stochastic dual coordinate ascent methods for regularized loss minimization. Jour-

nal of Machine Learning Research, 14(Feb):567–599.

[Shamir et al., 2014] Shamir, O., Srebro, N., and Zhang, T. (2014). Communication-

efficient distributed optimization using an approximate newton-type method. In

ICML, volume 32, pages 1000–1008.

[Snir, 1998] Snir, M. (1998). MPI–the Complete Reference: The MPI core, volume 1.

MIT press.

[Sokolova and Lapalme, 2009] Sokolova, M. and Lapalme, G. (2009). A systematic

analysis of performance measures for classification tasks. Information Processing &

Management, 45(4):427–437.

[Sra, 2012] Sra, S. (2012). Scalable nonconvex inexact proximal splitting. In Ad-

vances in Neural Information Processing Systems 25, pages 530–538.

[Steinwart and Christmann, 2010] Steinwart, I. and Christmann, A. (2010). Fast

learning from non-i.i.d. observations. In Advances in Neural Information Process-

ing Systems 22, pages 1768–1776.

[Tai and Lin, 2012] Tai, F. and Lin, H.-T. (2012). Multilabel classification with princi-

pal label space transformation. Neural Computation, 24(9):2508–2542.

129

[Titsias, 2016] Titsias, M. (2016). One-vs-each approximation to softmax for scalable

estimation of probabilities. In Advances in Neural Information Processing Systems 29,

pages 4161–4169.

[Usunier et al., 2005] Usunier, N., Amini, M., and Gallinari, P. (2005). Generalization

error bounds for classifiers trained with interdependent data. In Advances in Neural

Information Processing Systems 18 (NIPS), pages 1369–1376.

[Usunier et al., 2006] Usunier, N., Amini, M. R., and Gallinari, P. (2006). Generaliza-

tion error bounds for classifiers trained with interdependent data. In Advances in

Neural Information Processing Systems 18, pages 1369–1376.

[Van Rijsbergen, 1979] Van Rijsbergen, C. (1979). Information retrieval.

dept. of computer science, university of glasgow. URL: citeseer. ist. psu.

edu/vanrijsbergen79information. html, 14.

[Vondrick et al., 2013] Vondrick, C., Patterson, D., and Ramanan, D. (2013). Effi-

ciently scaling up crowdsourced video annotation. International Journal of Com-

puter Vision, 101(1):184–204.

[Weston et al., 2011a] Weston, J., Bengio, S., and Usunier, N. (2011a). Wsabie: Scal-

ing up to large vocabulary image annotation. In IJCAI, volume 11, pages 2764–

2770.

[Weston et al., 2011b] Weston, J., Bengio, S., and Usunier, N. (2011b). Wsabie: Scal-

ing up to large vocabulary image annotation. In Proceedings of the International

Joint Conference on Artificial Intelligence, IJCAI.

[Weston et al., 2013] Weston, J., Makadia, A., and Yee, H. (2013). Label partitioning

for sublinear ranking. In ICML (2), pages 181–189.

[Weston and Watkins, 1998] Weston, J. and Watkins, C. (1998). Multi-class support

vector machines. Technical report, Technical Report CSD-TR-98-04, Department of

Computer Science, Royal Holloway, University of London.

[Xu and Yin, 2014] Xu, Y. and Yin, W. (2014). A globally convergent algo-

rithm for nonconvex optimization based on block coordinate update. ArXiv e-

prints:1410.1386.

130

[Yen et al., 2016] Yen, I. E., Huang, X., Zhong, K., Ravikumar, P., and Dhillon, I. S.

(2016). Pd-sparse: A primal and dual sparse approach to extreme multiclass and

multilabel classification. In Proceedings of the 33nd International Conference on

Machine Learning.

[Yu et al., 2014a] Yu, H.-F., Jain, P., Kar, P., and Dhillon, I. (2014a). Large-scale multi-

label learning with missing labels. In International Conference on Machine Learning,

pages 593–601.

[Yu et al., 2014b] Yu, Z.-Q., Shi, X.-J., Yan, L., and Li, W.-J. (2014b). Distributed

stochastic admm for matrix factorization. In Proceedings of the 23rd ACM Interna-

tional Conference on Conference on Information and Knowledge Management, pages

1259–1268. ACM.

[Yuan et al., 2012] Yuan, G.-X., Ho, C.-H., and Lin, C.-J. (2012). Recent advances of

large-scale linear classification. Proceedings of the IEEE, 100(9):2584–2603.

[Zhang and Kwok, 2014] Zhang, R. and Kwok, J. T. (2014). Asynchronous distributed

admm for consensus optimization. In ICML, pages 1701–1709.

[Zhang et al., 2015] Zhang, R., Zheng, S., and Kwok, J. T. (2015). Fast distributed

asynchronous sgd with variance reduction. CoRR, abs/1508.01633.

[Zhang and Schneider, 2011] Zhang, Y. and Schneider, J. G. (2011). Multi-label out-

put codes using canonical correlation analysis. In AISTATS, pages 873–882.

[Zhao and Li, 2016] Zhao, S.-Y. and Li, W.-J. (2016). Fast asynchronous parallel

stochastic gradient descent: A lock-free approach with convergence guarantee. In

AAAI, pages 2379–2385.

[Zhu and Marcotte, 1996] Zhu, D. L. and Marcotte, P. (1996). Co-coercivity and its

role in the convergence of iterative schemes for solving variational inequalities.

SIAM Journal on Optimization, 6(3):714–726.

[Zhuang et al., 2013] Zhuang, Y., Chin, W.-S., Juan, Y.-C., and Lin, C.-J. (2013). A

fast parallel sgd for matrix factorization in shared memory systems. In Proceedings

of the 7th ACM conference on Recommender systems, pages 249–256. ACM.

[Zinkevich et al., 2010] Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. (2010).

Parallelized stochastic gradient descent. In Advances in neural information process-

ing systems, pages 2595–2603.

131

