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FABIEN DUFOULON

Composition du Jury :

Colette Johnen
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Chapter 1

Introduction

Small inexpensive inter-communicating electronic devices have become widely avail-
able. As a result, solutions for networks of such devices should be scalable and par-
ticularly resource efficient (in terms of energy consumption, time, exchanged data,
etc.). The design and analysis of such solutions is one of the focuses of distributed
computing - the study of distributed systems.

Electronic devices can differ greatly in capabilities depending on the application
and cost restrictions. In particular, devices with severely limited capabilities (e.g.,
basic communication, constant-size memory or limited mobility), referred to as weak
devices, have become more and more common. Systems of weak devices are at the
heart of an ever-increasing amount of emerging high-potential applications, which
include low energy transmission wireless networks, robot swarms, programmable
matter and DNA-based computing devices. At a high level, these applications
are core to highly anticipated innovative technologies such as advanced robotics,
biological computing and the Internet of Things. Therefore, it is not surprising
that distributed systems of weak devices have recently received much interest from
the distributed computing community. Importantly, studying distributed systems
of weak devices can give insight into resource-efficient design of distributed systems
composed of stronger devices. Additionally, notice that it has become apparent
that the multitude of electronic networks underpinning modern society consumes
an increasingly large amount of energy. This is at odds with the global call for
energy awareness. As a result, it is extremely important to understand how these
networks can function in a more energy efficient manner.

Distributed systems lack a centralized control - a central authority with a full
view of the system, assigning tasks to nodes accordingly. Instead, nodes take indi-
vidual decisions in order to achieve some common goal (i.e., to solve a distributed
problem). In order for these decisions to be correct and coordinated, nodes share
information (e.g., by sending messages or writing on a shared memory) but within a
certain limit since communication is resource-consuming. An active line of research
consists in building efficient information transmission methods (i.e., communication
primitives) upon a resource-limited but energy-efficient communication mechanism.
Importantly, such communications [8, 74, 94, 38, 55] underpin low energy wireless
(radio) networks.

Drawing additional interest to this work, parallels have been drawn between dis-
tributed systems with severely limited communication and some biological systems
[85, 57, 86]. These include biological cellular systems, which communicate through
protein secretions [37, 20, 2], as well as swarms of fireflies, which communicate
through flashes of light [21]. Studying such systems may suggest solutions useful in
the electronic world, since natural distributed systems are generally simple, robust
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Chapter 1. Introduction

and resource-efficient.

1.1 Challenges of Limited Communication

Limited communication mechanisms generally suffer from some of the three fol-
lowing aspects. First, only a small amount of information can be transmitted in
a single communication. Second, the sender may not be detectable a priori (e.g.,
information about the sender may not be included in the message). Third, simul-
taneous communications may result in information loss. This is common when
communications use a shared medium (e.g., wireless communications or Ethernet).
Such simultaneous communications are often called collisions.

Low-energy wireless networks build upon a severely limited communication
mechanism that suffers from all three aspects. Nodes communicate using simple
bursts of energy and carrier sensing: nodes detect the presence of energy bursts
and cannot easily exchange information as e.g. in the conventional message-passing
models. Recent research has focused on this simple communication [44, 43, 92, 82,
94, 38, 55] and how to communicate information efficiently. As a first step, efficient
control of interference is crucial. However additional factors, such as the degree of
synchronization between nodes, may impact the communication efficiency.

Interference Control. Multiple nodes in the same neighborhood (defined by an
underlying ad-hoc structure of communication: the communication graph), com-
municating at the same time, produce some kind of interference. In traditional
wireless networks, interference is destructive: messages sent by neighboring nodes
are received only if there are no collisions, and their contents are lost otherwise (i.e.,
two or more messages cannot be distinguished from zero messages, but can be dis-
tinguished from a single message). With destructive interference, the information
loss is extreme. As a result, information transmission often builds upon collision
avoidance methods [10, 33], which are highly time-consuming.

On the other hand, a carrier-sensing-like communication generally can provide
non-destructive interference: a node with two or more neighbors communicating
simultaneously, detects that some communication happened rather than nothing.
Thus, collisions are detected. They convey information, if only a very small amount.
An important challenge lies in understanding how non-destructive interference can
be controlled efficiently to allow for faster information transmission [92, 94].

Synchronization between Nodes. Some degree of synchronization between
(neighboring) nodes’ local clocks may be leveraged to obtain faster communica-
tion. If such synchronization is available, communication may take advantage of
the clock values to convey additional information. On the other hand, without
any synchronization, are nodes able to communicate information, and if yes, in a
time-efficient manner?

It is necessary to better understand how much synchronization is required in low-
energy wireless networks, and the trade-offs between synchronization and efficient
communication in such networks.

2



Section 1.2. The Beeping Model

1.2 The Beeping Model

Distributed systems composed of weak devices with severely limited communication
capabilities - using simple bursts of energy - are the main focus of this thesis. A
burst of energy can be thought of as a basic unmodulated wireless communica-
tion, a simple flash of light [64] or even protein secretion [2]. We are interested
in using theoretical tools to analyze such systems. Towards that end, we rely on
a formal communication model, which provides a formal foundation for the design
and analysis of provably correct (using analytical tools) solutions.

The systems of our concern have been modeled by the beeping communication
model [38]. Nodes wake up at some arbitrary times and then communicate in a
synchronous manner (i.e., in rounds) using an extremely limited communication
mechanism: nodes can either beep or listen in each round. The beeps are bursts
of energy that bear no content - basically empty messages. As for listening nodes,
they use carrier sensing. As such, they can only detect whether at least one of
their neighbors (according to the communication graph) is beeping, or if none are.
Consequently, collisions in the beeping model produce non-destructive interference.
Notice that due to such collisions, a beep that originally transfers less than a bit -
being a unary signal - may transfer even less information, when multiple beeps in
the neighborhood are merged into one.

The beeping model differs from classical approaches in distributed computing.
Indeed, beeps are not an abstract representation of a physically-complex message-
passing communication. Traditionally, reliable communication in wireless networks
requires an underlying multiple access method - also known as Medium Access
Control (e.g., TDMA , FDMA or CDMA schemes) - to deal with multiple incoming
messages. This underlying layer tends to be highly affected by the physical reality
of wireless transmissions. Abstracting away this physical reality allows for clear and
provably correct solutions at a possible cost to efficiency.

In contrast, beeps are a very simple low-level communication mechanism [17].
This however also has many advantages. First, as means of communication, beeps
are well-behaved. A beep takes a short, well-defined amount of time and consumes
very little energy. Although simultaneous beeps cause non-destructive interference,
this type of interference is easier to deal with compared to destructive interference.
Moreover, the beeping communication mechanism does not require many assump-
tions, which allows positive results in this model to be widely applicable to other
distributed computing models. Finally, the beeping model can be useful for under-
standing distributed systems emerging from natural (e.g., biological and chemical)
phenomena.

1.3 Designing Efficient Primitives for Fundamental Dis-
tributed Communication Problems

This thesis focuses on fundamental distributed communication primitives. We are
interested in designing time-efficient, uniform and deterministic solutions to such
problems.
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Chapter 1. Introduction

Time Efficiency. The foremost concern of this thesis is the design of time-efficient
solutions. Decreasing the running time of a solution generally also decreases its
bandwidth and energy consumption. The natural time measured in the beeping
model is in terms of rounds (see round complexity defined in Section 2.2).

Uniform Solutions. A second prime concern of this thesis is the design of uni-
form solutions, that is, not requiring any knowledge on the communication graph’s
parameters (even any upper bounds). Indeed, it is unrealistic to assume that such
parameters are always available, especially when considering the ad-hoc nature of
many wireless networks. These networks are not constrained by any a priori fixed
structure. Instead, the communication graph highly varies with each network de-
ployment.

Notice that, in the beeping model, algorithm design is easier if nodes know the
communication graph’s parameters. In particular, nodes may be designed to wait
until one algorithm has terminated, before starting the subsequent one. The time
to wait is a pre-computed time upper bound which generally depends on the graph
parameters. On the other hand, without any information about these parameters,
ensuring proper execution of consecutive algorithms is difficult: it is hard for a node
to determine whether distant nodes have finished executing the current algorithm.
As a result, uniform solutions are much harder to obtain than non-uniform ones.

Deterministic Guarantees. A third concern of this thesis is the design of deter-
ministic solutions. Deterministic solutions are useful whenever random behavior is
inappropriate or deterministic guarantees are required. For example, it may appear
costly to incorporate random generators into weak devices. Moreover, the events
in the system itself may not be necessary random, thus no randomness in the ex-
ecution scheduling can be assumed. Furthermore, amongst existing works on the
beeping model, the more difficult (for design) deterministic case has received less
attention.

The problems considered in this work (defined in Section 2.3) all embody symmetry-
breaking to some extent. It is well known that without any way to break symmetry
(e.g., with unique identifiers, a conflict-resolving/asymmetric scheduler or an asym-
metric communication graph), solving these problems deterministically is impossible
[7]. We assume a synchronous (inherently symmetric) scheduler and an arbitrary
communication graph (i.e., possibly also completely symmetric). Therefore, our de-
terministic solutions assume that nodes have unique identifiers, which is a natural
and common assumption.

1.4 Contributions and Outline

The results of the thesis are presented in Chapters 4 through 7. In this section,
we give an overview of these results. They all gravitate around the design of effi-
cient distributed communication primitives. Obtaining efficient communication in
the beeping model is challenging, as beeps have poor expressiveness (being unary
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Section 1.4. Contributions and Outline

signals) and suffer from collisions. Overcoming these two difficulties requires inter-
ference control. Throughout this thesis, we leverage symmetry-breaking and coding
techniques to achieve efficient interference control.

On the one hand, symmetry-breaking primitives (e.g., vertex coloring, maximal
independent set, leader election or desynchronization) allow nodes to avoid (the
interference produced by) collisions. By avoiding all collisions, nodes can straight-
forwardly communicate messages.
For instance, computing a 2-hop coloring (a basic and local symmetry-breaking
problem) allows to assign different colors to nodes within distance 2. As a result,
by communicating (perpetually) in order of colors, nodes avoid sender-side colli-
sions (in which a node and at least one of its neighbors beep) and receiver-side
collisions (in which a node listens and at least two of its neighbors beep). By
avoiding these two types of collisions, one can implement message-passing between
neighboring nodes.
Likewise, electing a leader (a global symmetry-breaking problem) allows to coordi-
nate network-wide messages such as to avoid any interference.

On the other hand, coding techniques (e.g., group testing or superimposed cod-
ing) allow nodes to control the amount of interference (and its negative impact)
during simultaneous communications.
For instance, nodes can use superimposed coding to transmit messages simulta-
neously. To do so, they beep and listen in a coded manner (determined by some
codeword), which limits the negative impact of interference. More precisely, mul-
tiple codeword transmissions result in the OR-superposition (see Section 2.2) of
these codewords. For a small number of codewords, this superposition is unique
and can thus be decoded (despite collisions). By decoding it, nodes can extract all
codewords (i.e., messages) sent in their neighborhood.

In essence, the methods provided in this thesis can be categorized as interference
control on a local scale or a global scale. Additionally, some assume global clocks
whereas others assume uncoordinated local clocks (see their description below).

Synchronous vs. Uncoordinated Starts. First, we give some preliminary
information on the settings assumed to get the results. In the first part, we assume
that nodes start at the same time (almost equivalently, nodes start at some arbitrary
times or upon hearing a beep, whichever happens first). Then, in the second part,
we assume a much harder setting, where nodes start at some arbitrary times and
do not wake up upon hearing a beep. In both parts the communication graph
is assumed to be general, and its parameters, such as the diameter D, maximum
degree ∆ and the network size n are unknown for most of our results. That is, the
solutions are uniform.

1.4.1 Main Contributions

Our contributions are split between the two settings. The corresponding publica-
tions are [16, 52, 51, 15, 50].
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Chapter 1. Introduction

Synchronous starts: For this setting, we give the first deterministic and uniform
(∆+1)-vertex coloring algorithm (resulting in a deterministic and uniform maximal
independent set algorithm), as well as the first deterministic O(a)-vertex coloring
(where a is the arboricity of the communication graph) in the beeping model. In
particular, most of the existing previous randomized algorithms either are non-
uniform [38, 2, 96] or use more than ∆ + 1 colors [23]. These newly designed local
symmetry breaking primitives are extremely efficient in sparse graphs. They allow
interference control and are useful for simulating the message-passing model.

Later, improving on [60, 58, 39], we focus on global symmetry breaking and pro-
pose the first deterministic and uniform time-optimal leader election algorithm, as
well as the first time-optimal randomized leader election solution (with anonymous
nodes).

Finally, by leveraging group testing techniques, we present the first computationally-
and time-efficient multi-broadcast algorithms, both deterministic and randomized,
improving on [40, 42].

Uncoordinated starts: The only previous works in this setting are [38, 2]. We
give the first primitive for simulating communication on the square graph, by using
original coding theory tools. In particular, the primitive is deterministic. By lever-
aging it, we give the first randomized 2-hop desynchronization algorithm, improving
on the pioneering desynchronization algorithm of [38]. Furthermore, using this new
desynchronization algorithm, the message passing model can be simulated even in
this setting.

1.4.2 Detailed Outline

Some preliminaries are addressed in Chapters 2 and 3. Chapter 2 defines the beep-
ing model, important notations as well as the problems considered in this thesis.
Chapter 3 gives a general overview of previous works in the beeping model.

Beeping Model with Synchronous Starts. In Chapters 4 to 6, the focus is on
deterministic and uniform solutions. We give algorithms for problems with either
no known solutions or improve upon the existing ones, while providing their time
optimal versions. These results also contribute to a better understanding of how
the beeping model relates to both CONGEST 1 (i.e., message-passing) with 1-bit
messages and the classical wireless radio network model with collision detection2.

• Our first result (Chapter 4) considers local symmetry-breaking problems - more
precisely vertex coloring and maximal independent set. In the (∆ + 1)-vertex

1The CONGEST model [90] assumes that nodes communicate via a graph-based message-
passing infrastructure. Different messages of bounded size can be sent to different neighbors, and
nodes receive the full content of all the incoming messages and their incoming port (i.e., the link
identifier through which the message was received).

2Nodes communicate O(log n) size messages via local broadcast, according to some undirected
communication graph. Collisions produce destructive interference (thus all message content is lost
upon collisions). If collision detection is available, then algorithms designed in the beeping model
can be straightforwardly translated to this model.
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coloring problem, each node computes a color in {1, . . . ,∆ + 1} such that no
two neighbors have the same color. In the maximal independent set (MIS)
problem, nodes compute a set of nodes which is both independent (no two
neighbors are in the set) and maximal (no node can be added to the set
while satisfying the independence property). These two problems are major
problems in distributed computing. Coloring is a central problem in wireless
and radio networks in general. The computed colors can be used as local
identifiers, allowing in turn to solve many other problems. On the other
hand, an MIS can be used to decompose the network into clusters of radius
1, such that each node in the MIS is a cluster head. Clustering is a general
approach for task allocation and resource sharing.
We give deterministic algorithms for these two problems, as well as for their
2-hop variants: 2-hop coloring and 2-hop MIS. Then, we present an algorithm
which uses a 2-hop coloring solution to simulate a classical message-passing
(i.e., CONGEST ) model with B-bit messages in the beeping model, for an
O(∆4B) multiplicative overhead. Finally, we present the first deterministic
algorithm for O(a)-coloring (where a is the arboricity of the communication
graph). All solutions presented in this chapter are extremely efficient in sparse
graphs.

• Our second result (Chapter 5) focuses on leader election (LE). Conversely,
LE is a global symmetry-breaking problem. In LE, a single node should
consider itself the leader, and all other nodes should be aware of the leader’s
identifier. Leader election is a longstanding problem in distributed computing.
Electing a leader allows to decide on a node with authority over the network.
That node can then coordinate all other nodes in order to control network-
wide interference, or act as the root for a spanning tree in order to gather
information efficiently from all over the network.
We present an optimal O(D+ logn) leader election algorithm in the beeping
model, which is also an optimal LE algorithm for the stronger (and more
traditional) radio network model with O(logn) bit messages and collision
detection. Additionally, this result shows, somewhat surprisingly, that leader
election has the same asymptotic complexity in the beeping model and in
CONGEST with 1-bit messages, allowing to conclude that beeps may provide
time-efficient communication. Finally, since LE is an important primitive, the
improved leader election algorithm is an essential component in improving
information dissemination solutions (see [42] as well as Chapter 6).

• Our third result (Chapter 6) considers information dissemination in the beep-
ing model - more precisely the multi-broadcast problem. In this problem, an
unknown number of source nodes need to disseminate their messages to all
nodes of the network, in such a way that all nodes are aware of all messages
and the corresponding source’s identifiers. As a primitive, multi-broadcast is
a common abstraction of communication over the network. By leveraging this
primitive, multiple nodes can broadcast simultaneously over the network in
a time-efficient manner. Moreover, it allows to implement node-to-node data
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Chapter 1. Introduction

transfer.

The previous known deterministic multi-broadcast algorithm [42] has optimal
time complexity, but needs excessive computational power for the required
pre-processing computation. We start by devising an optimal deterministic
multi-broadcast algorithm with improved pre-processing computation, when
there are few sources. However, this algorithm still uses a high amount
of computational power, exponential in the number of sources. Then, we
propose nearly-optimal deterministic and randomized multi-broadcast algo-
rithms. These are optimal for most ranges of the parameters. This time,
both algorithms use only a reasonable (polynomial) amount of computational
power for pre-processing.

Beeping Model with Arbitrary Starts. In the second part of the thesis, we
assume that nodes wake up in an uncoordinated manner. This setting is significantly
harder, but in turn the results are more widely applicable. Moreover, they may
inspire design techniques for future dynamic [22] or self-stabilizing [45] algorithms
in the beeping model. Indeed, consider a dynamic network in which nodes join and
leave repetitively (or equivalently are victims of transient faults, in the context of
self-stabilization). Then, solutions that consider synchronous starts are absolutely
helpless when faced with such dynamics, whereas dealing with uncoordinated starts
means dealing in part with the difficulties of the dynamic setting. Additionally,
notice that biological distributed systems, relying on energy efficient but extremely
basic communication mechanisms, are surprisingly tolerant to unexpected situations
which might arise due to faults or due to the dynamic nature of the system. Hence,
studying the impact of limited communication in the arbitrary start setting may
also help understanding biological systems.

Two main results are obtained in this setting. They are summarized below and
are presented in detail in Chapter 7. Both results consider the square of the com-
munication graph (obtained by adding to the given graph additional edges between
distance 2 nodes). This is a clear departure from previous works in this setting,
which studied problems needing no information beyond the 1-hop neighborhood of
a node. Whereas here, we consider problems in which nodes need to gather infor-
mation from their 2-hop neighborhood. The difficulty lies in that the nodes must
somehow coordinate with their neighbors to propagate a beep to distance 2 despite
the basic communication mechanism and uncoordinated starts.

• Our fourth result is a deterministic (but non-uniform) primitive allowing
nodes to communicate to their 2-hop neighbors. Such a primitive is par-
ticularly relevant in wireless radio networks. Indeed, interference can remain
an issue even if a method allowing to break symmetry within the immediate
neighborhood is available. For instance, a node can still suffer from collisions
if two of its neighbors (at distance 2 from each other) communicate simulta-
neously: this is called the hidden terminal problem. By using this primitive
to translate such symmetry-breaking methods to 2-hop neighborhoods, these
collisions can be taken care of.
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Although this primitive is easily available in the synchronous starts setting,
it was unknown whether nodes could properly communicate to their 2-hop
neighborhood if nodes start in an uncoordinated manner. The difficulty lies
in the lack of a coordinated view of time between the nodes, which makes
the simple interference mechanism of beeps extremely hard to deal with. Due
to this difficulty, nodes are very limited and seem unable to convey complex
information.
By developing a variant of superimposed codes, we show how this difficulty
can be overcome to obtain the 2-hop communication primitive, albeit with a
slight drawback: nodes at distance 2 receive a beep after a certain time delay.

• Our fifth result is a randomized and non-uniform 2-hop desynchronization
algorithm in the uncoordinated starts setting. In the 2-hop desynchronization
problem, nodes seek to determine infinite disjoint (in its 2-hop neighborhood)
sequences of (global) rounds, for the sake of avoiding collisions. Importantly, a
2-hop desynchronization solution is an efficient medium access control method.
Such methods are essential components in wireless networks, since they can
be used to establish a reliable MAC layer. This layer controls interference on
a local scale, which allows nodes to implement message-passing.
To obtain a 2-hop desynchronization solution, we apply the 2-hop primitive to
an existing 1-hop desynchronization algorithm [38], by controlling the num-
ber of simultaneous communications and dealing with the delay in commu-
nication introduced by the 2-hop communication primitive. Using the 2-hop
desynchronization solution to avoid collisions, we implement reliable message-
passing primitives in this harsh beeping model.

9





Chapter 2

Preliminaries

2.1 Model

In the beeping model, time is divided into synchronized rounds (with the exception
of [69]). The communication graph is denoted by a simple static connected undi-
rected graph G = (V,E), where V is the node set (i.e., processes) and E the edge
set, representing possible communication between processes. The network size |V |
is denoted by n, the diameter by D and the maximum degree by ∆. Time is divided
into discrete time intervals, called (global) rounds. First, we describe the most gen-
eral beeping model which we denote by BEEPU . A node wakes up spontaneously
at an arbitrary round (arbitrary time offset). From this starting round onwards,
the node is said to be awake, and then in each subsequent round, synchronously
with other awake nodes, it executes the following steps. First, the node beeps (in-
struction BEEP in algorithms) or listens (LISTEN in algorithms). Beeps are
transmitted to all (awake) neighbors of the beeping node during the round. Then,
if the node listens (in the previous step of the same round), it knows whether or not
at least one of its neighbors beeped (during the previous step of the same round).
Finally, the node performs local computations.

Local and Global Rounds. For any given global round r, an awake node v in
r knows only the local round value rv (round value relative to node v’s wake-up
time). For any local round rv, v is unaware of the global round. Thus, any two
nodes u and v may have uncoordinated local clocks (see Figure 2.1). For the sake
of analysis, for any given node v, a function gv is defined such that for any local
round rv ≥ 1, gv(rv) denotes the global round corresponding to rv. Additionally,
gv has an inverse function, denoted by g−1

v .

Node u’s local rounds

Node v’s local rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9

Global rounds:
from the first wake-up 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Figure 2.1 – Local rounds can be arbitrarily different in BEEPU , due to adversarial
wake-up.

Identifiers. Nodes have unique identifiers (IDs). This property is essential in
order to break symmetry in deterministic algorithms. The identifier of a node

11
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v ∈ V , idv, is an integer from {1, . . . , L} where L is some upper bound (dependent
on G) on the identifiers unknown to nodes. Then, the maximum length over all
identifiers in G is dlogLe (also unknown). For simplicity, we make the common
assumption (in most chapters) that identifiers have logarithmic (in n) length, i.e.,
the ID space is {1, . . . , N} where N = nc for some unknown constant c > 1.

Wake-up Assumptions. The wake-up assumption can differ. More precisely, the
uncoordinated wake-up assumption, in which nodes wake up arbitrarily (denoted by
BEEPU ), is the most general but two other simpler, more restrictive variants are
more typically considered. In wake-on-beep (BEEPW ) nodes wake up upon hearing
a beep or arbitrarily, whichever comes first. In synchronous wake-up (BEEPS)
nodes all wake up at the same time.

Depending on the wake-up assumption, nodes’ local clocks either are synchronous
(i.e., a global clock), locally almost synchronous (i.e., differ by less than a constant
between neighbors) or uncoordinated (i.e., arbitrarily different). The first two set-
tings are presumably stronger than the third one. Indeed, synchronous local clocks
can be used to convey more information than just a beep: for example, an algo-
rithm can distinguish beeps in odd and beeps in even rounds, which is a simple trick
used to simulate communication on the square communication graph in BEEPS
(cf. Section 4.5). Since locally almost synchronous clocks can be used to simulate
synchronous local clocks [1], they similarly allow a beep to convey additional in-
formation. However, uncoordinated local clocks cannot a priori be used to convey
information beyond a simple beep since neighbors’ clock values are arbitrarily dif-
ferent. It is unclear how the first two wake-up assumptions can be (or if they can
even be) simulated using uncoordinated local clocks.

2.2 Definitions and Notations

In this section, we give definitions and notations that will be used throughout this
thesis.

Graphs. The square of the communication graph is denoted by G2 = (V2, E2),
where V2 = V and E2 = E ∪{{v1, v2} ∈ V 2| ∃u ∈ V \ {v1, v2}, s.t. {v1, u}, {u, v2} ∈
E}. For any given node v, its one-hop neighborhood in G is denoted by N (v) =
{v}∪ {u ∈ V | {v, u} ∈ E} and its 2-hop neighborhood (i.e., its 1-hop neighborhood
in G2) by N2(v) = {v} ∪ {u ∈ V | {v, u} ∈ E2}. Node v is included in both sets.
For a node v ∈ V , the neighbors of v are N ∗(v) = N (v) \ {v} and the 2-hop
neighbors of v are N ∗2 (v) = N2(v) \ {v}. Subsequently, the degree of a node v in G
is d(v) = |N ∗(v)| and its 2-hop degree (i.e., its degree in G2) is d2(v) = |N ∗2 (v)|.

The distance between two nodes u and v in G is dist(u, v). Equivalently, the
square graph of G is the graph G2 = (V2, E2), where V2 = V and E2 = {{u, v}|u, v ∈
V, dist(u, v) ≤ 2}. G[R] denotes the subgraph of G induced by R ⊂ V . Its edges
(EG[R]) are the edges of G connecting two vertices in R. The arboricity of G,
denoted by a(G) or just a, is the minimum number of disjoint forests into which
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the edge set E can be partitioned. Arboricity can equivalently [84] be defined as a
measure of density: a = max

R⊆V,|R|≥2
|EG[R]|
|R|−1 .

Formal Language. We use the terminology of formal language theory and focus
on the alphabet {0, 1}. The empty word is denoted by ε. The operator ‖ is for
the word concatenation. For any positive integer i, 0i (respectively, 1i) denotes the
concatenation of i symbols 0’s (resp., 1’s) (where 00 = ε). The length of a word x is
denoted by |x|, x[j] denotes the jth bit of x and x[i, j] the factor of x, from the ith
to the jth bit. Let x and y be two words (of possibly different lengths), x is a prefix
(resp., proper prefix) of y if there exists a word (resp., non empty word) z such that
x ‖ z = y. Moreover, x is greater (in lexicographical order) than y, denoted by
x � y, if y is a proper prefix of x, or if x[j] > y[j] for the first differing bit j (even
if |x| < |y|).

The following operations are illustrated using Figure 2.2. For any two words x
and y of the same length, we define the (bitwise OR) superposition of x and y (and
say that x and y are (OR) superposed) as the binary word w of length |w| = |x|
such that ∀i ∈ {1, . . . , |w|}, w[i] = 0 ⇔ x[i] = y[i] = 0. We naturally extend the
superposition to the case of several words of the same length.

1 0 0 0 1 0 0 0 0 0 1 0 1

1 1 0 0 0 1 0 0 0 0 0 1 0

0 1 1 0 0 0 1 0 0 0 0 0 1

1 1 1 0 1 1 1 0 0 0 1 1 1

Superposition
of 3 binary words

One possible decomposition of
1110111000111 into 3 binary
words of length 13. There are
many other decompositions
of 1110111000111 in the set
of binary words of length 13.

Figure 2.2 – Superposition and decomposition on binary words.

Additionally, for any two words x and y of the same length, x is said to be
included in y if ∀i ∈ {1, . . . , |x|}, x[i] = 1 ⇒ y[i] = 1. Finally, for any binary word
w and a set of words W , we define a decomposition of w in W , as a subset S of W
for which the superposition of all words is w. The decomposition of a word is not
guaranteed to be a function.

System Definitions. We adopt the usual definitions for the system/algorithm.
The state of a node is defined by the current values of its variables. A configuration
is a vector of the states of all the nodes. The algorithm is defined as a transition
function τ on states. In this work, we consider the beeping model, therefore we
also consider the synchronous scheduler : in each round, nodes apply τ on their
state. As a result, the algorithm can be straightforwardly translated to a transition
function τ ′ on configurations. An execution is a sequence of configurations where
consecutive configurations are obtained by applying τ ′. A terminal configuration is a
configuration that stays unchanged when applying τ ′ (it is repeated in an execution).
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Termination is obtained when a terminal configuration has been reached. A variable
var of a node v is explicitly associated to v using a subscript varv.

A problem is given as a first order predicate over executions. An algorithm is
said to solve a problem if each execution terminates and satisfies the predicate of
the problem specification. In this thesis, such predicates can be naturally obtained
from the problems’ definitions given in Section 2.3. The round complexity (time
complexity) of an algorithm is the number of rounds needed to reach the first ter-
minal configuration in the worst case. An algorithm is said to be locally termination
detecting, or simply locally terminating, if for any given node v, v is aware if it has
reached a terminal state. An algorithm is said to be uniform1 in a parameter p
if the algorithm solves the considered problem for all values of p with the same
transition function. In other words, the algorithm is not given p and is unable to
infer it from the information it receives. For example, in a uniform (in n) algorithm,
nodes do not know the size n of the network, neither can they deduce it from their
identifier.

Defining α-encoding. Introduced in [25], an α-encoding is a tool which allows to
compare integers (identifiers) bit by bit in a uniform manner (i.e., to compare their
binary values). Indeed, when using α-encodings (of integers from {1, . . . , N}), such
algorithms do not need to know the binary values’ lengths (depending on logN) to
compare them bit by bit (see Lemma 1). Importantly, uniform comparison of IDs
is an essential component in order to perform deterministic symmetry-breaking. As
a result, α-encodings of IDs (α-IDs) are used in the local symmetry-breaking and
leader election solutions of Chapters 4 and 5.

Definition 1. Let i be a positive integer and bin its binary representation. The
α-encoding of i, denoted by α(i), is 1|bin| ‖ 0 ‖ bin.

The α-encoding of integer i is made up of two parts, as explained in Figure 2.3.
Comparing two α-encodings α(i) and α(j) consists of first comparing the minimum
number of bits necessary to encode the integers, and if it is the same, comparing
the binary representations of i and j.

4 1 0 0 1 1 1 0 1 0 0
binary

The encoding starts with as many 1’s as the length
of the binary representation, followed by a 0.

α-encoding

Then, append binary representation from the second bit
onwards

Figure 2.3 – Description of α-encoding

1It is known that termination detection is easy in a synchronous setting whenever particular
parameters related to the size of the communication graph are known, i.e., non-uniform terminating
algorithms are easier to construct than the uniform ones.
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α-encoding preserves the order between two integers.

Lemma 1 ([25]). For any i, j ∈ N>0: i < j ⇔ α(i) ≺ α(j), where ≺ is the
lexicographical order on α-encodings.

Modulo Operation. For any two integers a, b (∈ Z) and any positive integer k
(∈ N>0), let a ≡ b mod k denote the congruence relationship between a and b such
that a mod k = b mod k.

2.3 Problem Definitions

In this section, we give precise definitions of the problems studied in this thesis.
These problems are fundamental building blocks in distributed computing, and
are also often used to understand the relation between the different distributed
computing models.

Local Symmetry-Breaking Problems (MIS and Vertex Coloring). The
following two problems are considered to be local symmetry-breaking problems, as
two neighboring nodes cannot have the same output. Thus, obtaining a solution
requires breaking symmetry between neighboring nodes.

A set I ⊆ V of vertices is said to be an independent set if for any u, v in I, u
and v are not neighbors in G. An independent set I is maximal (MIS) if any vertex
in V \ I has a neighbor in I (MIS defines the MIS problem specification). A c-
coloring col is a function from V into a set of colors {1, . . . , c} such that ∀(u, v) ∈ E
col(u) 6= col(v) (defining the c-coloring problem specification). These two problems
are tightly connected. Notice that in a vertex coloring solution, nodes with the same
color constitute an independent set. By starting with an empty set and adding non-
conflicting nodes in order of increasing colors, an MIS is obtained. Inversely, a set
of disjoint MIS that cover the network can be used to obtain a coloring, since the
same color can be given to all nodes of an MIS (and there are at most ∆ + 1 MIS).
In addition, we define the 2-hop variants of these problems: a 2-hop MIS (respec-
tively, 2-hop coloring) of G is an MIS (resp., coloring) of its square graph G2.

Leader Election Problem. In the leader election (LE) problem, each node has
a boolean variable, indicating a leader or a non-leader state. During an execution,
there is never more than one leader (safety property). Initially, all nodes are non-
leaders. Every execution terminates, and at the termination there is exactly one
leader.
Now we give auxiliary definitions. First, we define eventual leader election, where
the algorithm terminates but no node can detect this. Then, we define terminating
leader election, where the algorithm terminates and all nodes detect when there
remains a single candidate node (the leader). Finally, we define explicit leader
election (when nodes have unique identifiers): a terminating leader election in which
all nodes know the elected leader’s identifier at the termination.
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Information Dissemination Problems (Multi-Broadcast). Let S be a sub-
set of k nodes (for some k > 1) called sources and having (possibly identical)
messages in {1, . . . ,M}, where M is unknown to all nodes. For any node v, mv

denotes its single message. If v is not a source then mv = ε. Equivalently, mv refers
to the binary representation of length at most dlogMe. In the multi-broadcast (with
provenance) problem, all nodes must receive the message of each source with its
ID. In other words, they must compute the set {(mv, idv) | v is a source }. The
gossiping problem is a variant of the multi-broadcast problem in which all nodes
are sources.

2-hop Desynchronization Problem. In the 2-hop desynchronization problem,
every node has to determine a sequence of (global) rounds, disjoint from those of
its 2-hop neighbors. The sequence should form an arithmetic sequence from some
point on. The difference between consecutive values of that arithmetic sequence
(i.e., the common difference) is denoted by T , and is said to be the period of the
sequence. In a sense, if a node beeps according to such an arithmetic sequence,
then T is the period between that node’s consecutive beeps. If two nodes determine
disjoint sequences from a certain round onwards, they are said to be desynchronized
with regard to T (see Figure 2.4). Notice that, as illustrated in Figure 2.4, nodes
can only decide on such sequences (of global rounds) by using their local view of
time (local rounds).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 156 12

1 2 3 4 5 6 7 8 9 10 11 12 137 13Node u’s local rounds

Node v’s local rounds

T rounds

T rounds

Figure 2.4 – Disjoint sequences of rounds (the colored rounds) with period T = 6
of nodes u and v.
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Chapter 3

Related Work

The results concerning the beeping model fall into different categories. First, we
consider the related work for the beeping model with a single-hop communication
graph. This setting is equivalent to that in which nodes communicate via a noise-
less multiple access channel. Traditional results on multiple access channels assume
ternary or binary feedback: in each round, nodes know whether no node communi-
cated, a single one did or whether a collision happened (respectively, know whether
a single node communicated or detect communication noise). Second, we consider
the related work for the more general setting, that is, with a multi-hop topology,
starting with local scale problems, followed by global scale problems.

3.1 Beeping in a Single-hop Network.

Authors of [70] were the first to consider the single-hop beeping model, which they
motivated by drawing connections with circuit-based algorithm implementations
and more generally shared communication channels. Nodes are assumed to wake
up at the same time, and have identifiers. In [70], it is shown that there is an
equivalence between the membership problem - in which nodes need to find out the
IDs of a subset of active nodes - and conflict resolution problem - in which every
active node needs to use the channel alone at least once - in the beeping model.
Moreover, [70] presents a deterministic algorithm solving these problems, which
scales if multiple channels are available, as well as a randomized lower bound.
[68] considers a slightly different setting, the fault-prone beeping multiple access
channel, in which there is a non-zero probability in each round that a fault occurs
in the channel. In a faulty round, nodes hear nothing regardless of their behaviors.
A deterministic algorithm provides a global clock with arbitrarily small constant
error probability - unavoidable due to the channel faults - which is then used to
obtain a logarithmic time consensus algorithm.
[30] consider the renaming problem, in which nodes hold no IDs and should be
given unique numbers in {1, . . . , n} where n is the network size. An O(n logn)
expected time Las Vegas1 (LV) renaming algorithm is presented first, requiring
that n be known, followed by a Monte Carlo2 (MC) renaming algorithm which does
not require the knowledge of n.

Counting the number of nodes is considered in [19, 26]. The solution in [19]
provides an (1 + ε)-approximation of the network size using O(log logn + log f

ε2 )
1A Las Vegas (LV) algorithm is a randomized algorithm that guarantees a correct output and

has some probability at least p(T ) of finishing within a finite number of rounds T .
2A Monte Carlo (MC) algorithm is a randomized algorithm with a deterministic time guarantee

and that has a correct output with some probability at least p.
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rounds with probability 1 − 1
f (for arbitrary ε and f), and is almost tight. In

contrast, the solution in [26] provides the exact value of the network size n with
high probability3 (w.h.p.) using O(n) rounds if collision detection is assumed, and
O(n logn) otherwise.

In a slightly different mindset, [61, 62] present leader election solutions for a
clique of beeping finite state machines. Instead of focusing solely on time efficiency,
[61] first gives a randomized LV state-optimal leader election algorithm. Then, in
a second time, [61] provides a faster randomized LV leader election algorithm, but
in return the algorithm uses a less than optimal number of states. Additionally,
a clique of beeping finite state machines is shown to be able to simulate a loga-
rithmic space turing machine with a given error bound. [62] follows up on [61] by
considering leader election in single-hop networks and MIS in multi-hop networks
with a computational noise modelization - a node’s state machine might transition
erroneously due to the computational noise.
Finally, [17] present a low layer communication protocol such that nodes can trans-
mit encrypted messages to a designated sink node.

3.2 Beeping in a Multi-hop Network.
Local Symmetry-breaking. The beeping model was first considered with the
uncoordinated wake-up assumption (BEEPU ), for symmetry-breaking problems.
The pioneering paper of [38] proposes a randomized O(∆ logn) solution to interval
coloring - or equivalently to the 1-hop desynchronization problem. Nodes solve
desynchronization by generating pulses periodically with a fixed common period
T such that pulses of neighboring nodes are evenly distributed throughout the
time period T . Clearly, the intervals centered on the pulses of nodes constitute
an interval coloring. Such solutions are prime examples of symmetry-breaking,
since they allow a node to choose a different interval than its neighbors. Following
which [1, 3, 2] propose an efficient O(log3 n) randomized LV algorithm for the MIS
problem given an upper bound N on the network size. Importantly, both results
in BEEPU require a priori knowledge: in particular, [1, 3, 2] prove that MIS takes
Ω(
√

n
logn) rounds if no upper bound on the network size is known. Both results are

also probabilistically self-stabilizing (i.e., converges to a correct configuration from
any given initial configuration, with some probability).

All the following results consider BEEPS or BEEPW only. [1, 3, 2] give an
efficient O(log2 n) randomized LV algorithm for the MIS problem assuming collision
detection capabilities. [96] follow up on this result with an O(logn) w.h.p. time
optimal randomized LV MIS algorithm if collision detection is available, which
can be transformed into an O(log2 n) w.h.p. time optimal randomized MC MIS
algorithm without collision detection.
[27] presents randomized coloring, 2-hop coloring, MIS and 2-hop MIS solutions,
and in particular improves on the constant for the MIS algorithm of [96], from an
extremely large constant to a more practically relevant constant.
Finally, [67] gives a randomized MIS algorithm with good ”local” complexity - with

3With high probability (w.h.p.): with error probability upper bounded by n−θ(1).
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dependence only on a node’s degree and the intended error bound - instead of the
more common ”global” complexity which is defined by the slowest node and thus
typically depends on the network size n.

Some results consider topologies commonly assumed in wireless network liter-
ature. [100] focuses on backbone construction and gives approximation algorithms
for minimum dominating set and minimum connected dominating set in unit disk
graphs. [65] gives a randomized one-round algorithm resulting in a polylogarith-
mic approximation of the maximum independent set in graphs with polynomially
bounded-independence.

Leader Election, Multi-Broadcast and Data Aggregation. The first global
scale problem studied in the beeping model was leader election. Although it is nec-
essary in order to solve global problems, it is not clear at first that beeps can be
used to communicate accross the network because of the interference. [60] intro-
duced beeping waves, a technique for communicating a message (using beeps) from
a designated root. They also proposed a leader election algorithm which selects
a reduced number of candidates that then detect the presence of other candidates
using these beeping waves and randomized sequences to detect collisions, resulting
in a randomized MC solution with O((D + logn) · (log2 logn)) w.h.p. round com-
plexity. Since leader election in the beeping model requires Ω(D + logn) rounds,
the above complexity is nearly optimal.

The first deterministic O(D · logn) round solution is presented in [58]. This
solution is uniform, i.e., does not require any parameter knowledge. An important
building block in their solution is the Balanced Execution Technique, which allows
to sequentially execute uniform algorithms without any parameter knowledge in a
locally synchronous manner.

By combining the beep wave technique and the deterministic leader election
solution above, [40] presents algorithms for information dissemination and data
aggregation. More precisely, they give algorithms for the broadcast, multi-broadcast
(with and without provenance) and the gossiping problems. In part due to the non-
optimality of the leader election in [58], the multi-broadcast and gossiping solutions
are non (but nearly) optimal.

Drawn by the similarities in communication between the beeping model and
swarms of fireflies, [6, 64] study synchronization in the beeping model. [6] considers
the wake-on-beep model and shows that in certain conditions, using the ”averaging
rule” allows the network to converge to a single periodic beep. This solution relies
heavily on the wake-on-beep assumption, whereas it is also interesting to study
synchronization in BEEPU . Then, [64] consider self-stabilizing synchronization with
byzantine nodes, but augment the beeping model with the capability to count the
number of neighboring beeping nodes. As a result, the work gives little intuition
regarding self-stabilizing byzantine synchronization in the classical beeping model.

Finally, the problem of counting the number of nodes over the network was first
considered in dynamic graphs in [89]. Algorithms presented in a stronger model
are adapted to the beeping model and result in an O(n2 logn) round deterministic
exact counting algorithm.
With a different perspective, [79] consider the problem of computing local sums and
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gives a randomized (1 + ε) approximation algorithm (computing these local sums).
Interestingly, this algorithm can be used to construct a randomized approximation
algorithm for random walk distribution which can then be adapted to approximation
algorithms for PageRank and global sum. The latter randomized approximation
algorithm for global sum can also be used to approximate (within an (1 + ε) factor)
the number of nodes in the network.

Some Remarks. Some unusual variants assume a very different setting. [54]
considers mobile robots moving on a graph and communicating using beeps and
[69] considers an asynchronous beeping model with bivalent beeps: nodes can use
loud beeps or soft beeps. In the latter, bivalent beeps are required to deal with the
impossibility results caused by the asynchrony assumption. Multiple soft beeps are
indistinguishable from a loud beep.
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Chapter 4

Local Symmetry-Breaking
Methods

Chapters 4 through 6 consider the beeping model in which nodes wake up simul-
taneously (BEEPS). Solutions obtained assuming synchronous starts can be easily
translated to BEEPW (where nodes wake up at some arbitrary times or upon hear-
ing a beep, whichever comes first) with an additive O(D) time overhead. This
overhead is caused by the nature of the wake-up assumption. The adversary can
wake up a single node, which will then wake up the whole network starting with its
neighbors, such that the last node inevitably wakes up O(D) rounds after the first
one.

In both models, algorithms can use the synchronous nature of the rounds (i.e.,
the high synchronization between neighboring nodes) to convey collision-tolerant
information through beeps. However, doing so has a quantifiable, negative impact
on the time complexity. This work studies the efficiency of using beeps in such a
way.

In addition, the non-destructive interference caused by beep collisions (i.e., two
or more beeps cannot be distinguished from a single beep but can be distinguished
from zero beeps) remains a difficulty. To deal with this difficulty, we study local
symmetry-breaking problems, such as vertex coloring and maximal independent
set. Solving the 2-hop variants of these problems provides the (local) interference
control needed to implement traditional message communication primitives (i.e.,
message-passing between neighboring nodes), as is shown in Section 4.6.

4.1 Introduction
The coloring problem consists in assigning colors to nodes such that no two neigh-
boring nodes (sharing an edge in the communication graph) have the same color.
The MIS problem consists in choosing a set of nodes in the communication graph
such that no two nodes in the set are neighbors, and such that any node not in the
set has a neighbor in that set. More specifically, a coloring can be used to allocate
resources that cannot be shared by neighboring nodes. For example, a coloring can
be used to allocate access to the communication medium and avoid interference.
Likewise, nodes in an MIS can act as cluster heads in order to coordinate actions,
and participate in a network backbone construction. In particular, interference can
be controlled by limiting communication to these cluster heads.

Therefore, the MIS and coloring problems serve as important primitives for algo-
rithm design in the beeping model and have naturally received a lot of attention (see
Section 4.1.1). Efficient probabilistic solutions were proposed for general graphs.
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However, the more difficult deterministic case, useful whenever random behavior is
inappropriate or deterministic guarantees are required, has received much less at-
tention (see Section 4.1.1). In this work, we are interested in designing deterministic
algorithms having efficient time complexity.

Sparse Communication Graphs. Because of the ad-hoc nature of wireless net-
work, communication graphs do not follow a fixed structure. Graphs with low edge
density are said to be sparse. The maximum degree and the arboricity of a graph
(see definitions in Section 2.2) are measures of its edge density, where low values in-
dicate sparse graphs. Contrarily to graphs with low maximum degree, low arboricity
graphs can be seen as graphs which are “globally” sparse but may be “locally” dense.
Many real-world networks are sparse [56]. In particular, graphs embedded in some
surface, for example the plane, have low arboricity. In this section, we leverage the
sparsity of the communication graph in order to design efficient symmetry-breaking
algorithms.

4.1.1 Specific Related Work

In [27], round complexity lower bounds are given for the MIS and (∆ + 1)-coloring
problems. These bounds are Ω(logn) and Ω(∆ + logn) respectively. They were
obtained assuming randomized algorithms, and thus apply to both deterministic and
randomized ones. In the latter case, the solution or the running time is guaranteed
w.h.p. Moreover, these bounds apply to a stronger variant of the beeping model
(with collision detection). In this variant, listening nodes can distinguish between
a single beep and a collision. In [38], the authors present the first (non-uniform)
coloring algorithm for the beeping model (more precisely, for BEEPU ). It outputs a
correct coloring after O(∆ + logn) rounds w.h.p. Following this paper, randomized
MIS and coloring algorithms were designed for BEEPS with collision detection, in
a series of papers [2, 96, 23]. These algorithms achieve optimal round complexity,
but assume collision detection. Moreover, the resulting colorings often employ more
than ∆ + 1 colors. These algorithms can be translated to the weaker BEEPS with
no collision detection with an Ω(logn) multiplicative factor.

Schneider and Wattenhofer [94] solve deterministic MIS in the radio network
model with collision detection. Although the term "beeping model" does not appear
in [94], the presented algorithm straightforwardly works in BEEPS . It is time
optimal for growth-bounded graphs (GBG). These are graphs where, for any given
node v and integer r, the number of nodes in any independent set (see definition
in Section 2.3) within distance r of v is bounded by f(r), which is polynomial in
r. However, this property does not cover all bounded degree graphs, trees, planar
graphs, or more generally, sparse graphs.
The round complexities of different MIS and coloring algorithms are compared
below (see respectively Figures 4.1 and 4.2). The only deterministic algorithms are
those in [94] and in the present paper. Some algorithms require K, an upper bound
on ∆.
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Table 4.1 – MIS algorithms in BEEPS

Reference Time complexity Comments

[96] O(log2 n) w.h.p. Anonymous nodes
[94] O(logn), deterministic Growth bounded graphs
Our work O(∆2 logn+ ∆3), deterministic Scales for ∆ = O(logc n)
Our work O(a2 log2 n+ a3 logn), deterministic Scales for a = O(logc n)

Table 4.2 – Vertex coloring algorithms in BEEPS

Reference Time complexity Number of colors used

[23] O(∆ logn+ log2 n) (w.h.p.) ∆ + logn colors
[23] O(K log2 n) (w.h.p.) K + 1 colors
[38] O(∆ + logn) (w.h.p.) O(K) colors
Our work O(∆2 logn+ ∆3) ∆ + 1 colors
Our work O(a2 log2 n+ a3 logn) ∆ + 1 colors
Our work O((a2∆2 + aµ∆4) · log2 n+ a3∆3 logn) O(a) colors

4.1.2 Algorithm-related Definitions

In the beeping model, algorithms must specify what is done in each round. Due to
the nature of the communication model, each action is performed on a sequence of
consecutive rounds. For instance, a node may have to wait for a round of silence,
or beep only every k rounds. At the code level, this type of action is expressed by
a loop. As it will appear later, in some complex algorithms, such loops are nested.
In this section, for the sake of clarity, we will name the sequence of rounds in the
innermost loop the L1-phase, the sequence of loops in the loop just above, the L2-
phase, and so on.
We extend previous definitions concerning algorithms (see Section 2.2) to Li-phases,
in particular uniformity and termination. We consider terminal Li-phase states
(states that no longer change in this Li-phase), locally terminating Li-phases (any
given node v detects when it has reached a terminal Li-phase state) and uniform
Li-phases (when the range of the loop index is unknown). The problem of detecting
when a given Li-phase has ended (terminated) for all nodes raises the question of
synchronizing the start of the following Li-phase.
We solve this problem by using Li-synchronization points, represented by  i in
the code. Upon reaching an Li-synchronization point (after having reached a ter-
minal Li-phase state), any given node v waits for all of its neighbors to reach a
terminal Li-phase state before executing the following Li-phase, if there is any.
Li-synchronization points require locally terminating Li-phases, so that any given
node v can detect when all of its neighbors have reached the synchronization point.
The method for detecting that was first introduced in [58], with the "Balanced
Execution Technique" (BET). However, BET only guarantees L1-synchronization
points. In Section 4.7, we extend BET to guarantee Li-synchronization points for
any i ≥ 1. The extension, referred to as EBET, is crucial in the design of complex
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uniform algorithms in BEEPS .
We call an algorithm a competition algorithm when nodes are “eliminated” round

after round until the “surviving” nodes form an independent set (possibly empty).
In this paper, we only consider competition algorithms where the elimination pro-
cess is deterministic and depends on identifier comparison.

4.1.3 Auxiliary Problems

The problems defined below are used to obtain a vertex coloring algorithm. The
ruling set allows for limited symmetry-breaking capabilities, and a coloring can be
obtained by gradually reducing the defect of a defective coloring.

Ruling Set. A set J ⊆ V of vertices is said to be a (t, s)-ruling set [9], if for any
two vertices u, v ∈ J , dist(u, v) ≥ t, and for any vertex v ∈ V \J , there exists a
vertex u ∈ J such that dist(u, v) ≤ s. With this definition, an MIS is a (2, 1)-ruling
set. A forest is said to be a (t, s)-ruling forest if the roots are a (t, s)-ruling set and
the trees are of depth at most s.

Defective Coloring. Any given function colorD is a d-defective c-coloring [14]
if ∀v ∈ V , colorD(v) ∈ {1, . . . , c} and v has at most d neighbors colored with
colorD(v). We say that colorD has a defect of d. An edge where both endpoints
have different colors is said to be a non defective edge, otherwise it is said to be a
defective edge. With this definition, a (proper) coloring is a 0-defective coloring.

4.2 Ruling Set Algorithm and Competition Graphs

Ruling sets serve as building blocks to construct complex algorithms. They have
been used to compute MIS [9] and colorings [95, 93]. In these papers, the ruling
sets are used to decompose the network, and nodes in the ruling set (the “local
leaders”) take care of solving the problem for the nodes within a certain distance.
In the beeping model, doing so is more difficult. We show in the subsequent Section
4.3, how ruling sets can still be used to design an efficient coloring algorithm.

In this section, we introduce a competition algorithm (RulingSet - Algorithm
1 in Section 4.2.1) computing a (2, O(logN))-ruling set. This algorithm can be
considered as a variant of the ruling set algorithm from [9]. That algorithm is heavily
recursive, requiring concurrent communications, which are incompatible with the
beeping model. Therefore, we adapt it and provide a non-recursive competition
algorithm with a similar behavior. To prove correctness (Section 4.2.2), we use
competition graphs, which are directed graphs that serve to model the behavior of
competition algorithms and help analyzing them. They were first used in [66], but
in association with a non-deterministic elimination process. As we are interested in
uniform deterministic algorithms, we use the nodes’ α-IDs (see definition in Section
2.2) to label the edges of a competition graph with integer values, and these values
determine a deterministic elimination process. The resulting labeled competition
graphs allow to compute the surviving nodes in a convenient way.
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4.2.1 Uniform Competition Algorithm for Computing a Ruling Set

Nodes use their unique identifiers for comparison and survivors of the elimination
process constitute the output set. Each node v has a unique identifier idv. The
identifiers are encoded on at most lmax bits, but lmax is unknown to the nodes
and thus the binary representations of the identifiers do not necessarily have the
same length. Every node v computes the α-identifier α(idv) (or α(v) for short, by
notation abuse) and outputs a boolean value survivedv. We prove that the output
is a (2, O(logN))-ruling set (Theorem 6).

Algorithm 1 RulingSet

1: IN: id: Integer OUT: survived: Boolean value
2: survived := true, α := α(id) . Get α-ID
3: for round r := 1 ; r ≤ |α| ; r++ do . r is incremented after each iteration
4: if α[r] = 1 then
5: Beep . Consider the rth most significant bit
6: else
7: Listen
8: if beep heard then . If a neighbor has a greater identifier
9: survived := false

10: EndAlgorithm
11: EndAlgorithm . No beep heard

The following lemma is straightforward.

Lemma 2. RulingSet has a round complexity of maxv∈V |α(v)| = O(logN).

4.2.2 Correctness Analysis of Algorithm 1

The output set of RulingSet is analyzed through a game, which we refer to as the
“elimination game”. This game is enacted on an edge-labeled directed acyclic graph
Gdag, the labeled competition graph, constructed from the original communication
graph G and the nodes’ unique identifiers. This construction process is adapted
here to the RulingSet algorithm, but it applies to any competition algorithm. Gdag
is defined as (V,Edag, label), where Edag is the set of directed edges and label an
edge labeling function. Gdag is constructed from the α-IDs, encoded on a maximum
of 2lmax + 1 bits.

• Let (u, v) be an edge of G with α(u) � α(v). Then, (u, v) is a directed edge
in Gdag, directed from u to v.

• Let (u, v) be an edge of Gdag. For the smallest index i ∈ {1, . . . , 2lmax + 1}
such that α(u)[i] = 1 and α(v)[i] = 0, set label(u, v) to i: the edge (u, v) is
labeled (with) i.

For any edge e = (u, v) of Gdag, u is called the origin and v the extremity of e.
It is straightforward to prove that Gdag is a directed acyclic graph.
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4: ’100’ 2: ’10’ 3: ’11’Input graph and
identifiers

1110100 11010 110113 5
Gdag, using α-IDs

Constructing Gdag

Figure 4.1 – Example of Gdag construction

The elimination game is played by the nodes of Gdag, round by round, in the
following way: on round r, all surviving nodes with an outwards edge e labeled
label(e) = r eliminate the extremities of these edges. The game finishes when no
more node can be eliminated (thus after at most 2lmax + 1 rounds). A node’s
survival is stored as a boolean in the survived variable.

Definition 2. Let v be a vertex in Gdag. Let e be an incoming edge. We say that
e is acting if the origin of e is not eliminated before round label(e), and non acting
otherwise. If e = (u, v) is an acting incoming edge, then u eliminates v at round
label(e) if and only if v has not already been eliminated.
We define the same notions for outgoing edges.

Definition 3. Let Π = (v1, . . . , vl) be a directed path in Gdag.
There is a unique label sequence Slab(Π) = (s1, . . . , sl−1) s.t. ∀r ∈ [l − 1], er =
(vr, vr+1) and sr= label(er).

Results similar to the following lemma and theorem are proven in [36] for a more
limited case. Lemmas 3 and 5 are straightforward.

Lemma 3. Let Π = (v1, . . . , vl) be a directed path in Gdag. Slab(Π) has no consec-
utive equal labels: ∀r∈ [l − 1] sr 6=sr+1.

Theorem 4. Let v be any node from Gdag not surviving the elimination game.
There exists a surviving node u such that dist(u, v) ≤ 2lmax + 1, where lmax =
O(logN) .

Proof. First, a path Π from a surviving node u to node v is constructed, then we
prove that Π’s length is at most 2lmax + 1.
Π is constructed by induction. Node v did not survive, so there exists an acting
incoming edge. The acting incoming edge (w, v) with the smallest label is added to
Π. If w does not survive the elimination game, the previous actions are repeated
and an acting incoming edge is added to Π. This is done until a surviving node is
reached. Since at least one node survives the elimination game, Π’s construction is
well-defined and Π = (el, . . . , e1).
Now, let us prove by contradiction that l ≤ 2lmax + 1. Suppose l > 2lmax + 1 and
focus on Slab(Π). Because the edge-labels are integers from {1, . . . , 2lmax + 1} and
consecutive labels are non equal by Lemma 3, there exists an extremum sr indexed
by r ∈ {2, . . . , 2lmax + 1}. Thus there exists i ∈ {r − 1, r} such that si > si+1.
However, both ei and ei+1 are acting incoming edges, by construction. Thus, the
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origin of ei is eliminated in round si+1, which contradicts the fact that ei is acting.
Hence, we have a contradiction.

Lemma 5. Let I = {v ∈ V s.t. survivedv = true} at the termination of
RulingSet. Let S be the set of survivor nodes of an elimination game played on
Gdag. We have I = S.

Theorem 6. The output set I = {v ∈ V s.t. survivedv = true} of RulingSet is
a (2, O(logN))-ruling set.

Proof. Since nodes have unique IDs, I is independent. By Theorem 4 and Lemma
5, I is a (2, O(logN))-ruling set.

4.3 MIS and Vertex Coloring Algorithms

Let us now present MIS and (∆ + 1)-coloring algorithms with O(∆2 logn + ∆3)
round complexity, where ∆ is the maximum degree of the communication graph G.
When ∆ = O(1), we obtain an asymptotically optimal O(logn) round complexity
[94] . For polylogarithmic ∆, the algorithm is still very efficient. Nodes know the
maximum degree ∆ at first, but this assumption is dropped later on. Nodes know
no polynomial upper bound N on their total number.

The algorithms presented here are based on computing and refining defective
colorings. Defective colorings were first used to solve the distributed coloring prob-
lem in [12] and [75]. Here, we refine the defective coloring differently from the
previous works. The exact method is explained below.

4.3.1 Non-uniform Algorithms for MIS and (∆ + 1)-Coloring
The (∆ + 1)-coloring algorithm DegreeColoring (Algorithm 2) starts with a ∆-
defective coloring color, where all nodes start with the same color. Following which,
the defect of color is reduced iteratively, until the defect is 0 and color is proper.
DegreeColoring can be seen as an L4-phase. It has ∆ L3-phases: in each of these
phases, the defect of color is reduced by at least 1. Each L3-phase is made of ∆ + 1
coloring L2-phases, followed by an additional color reduction L2-phase (see Figure
4.2). At the start (and end) of each L3-phase, color values are in {1, . . . ,∆+1}. The
coloring L2-phases are used to compute a new coloring newColor. The newColor
values are in {1, . . . , 2∆ + 2}, but the defect of newColor is strictly smaller than
that of color. Following which, a color reduction L2-phase is executed to reduce the
color range of newColor to {1, . . . ,∆+1}, and the values of newColor are assigned
to color.

Now we describe the L2-phases in more detail. In each coloring L2-phase (see
Figure 4.3), nodes with a specific color compute a (2, O(logN))-ruling forest on the
subgraph induced by themselves, using RulingSet (Algorithm 1) and Breadth First
Searches (BFS) - ColorByBFS function (see below). During BFS, they recolor
themselves with an even or odd available color depending on the parity of their
depth in the ruling forest. Finally, all nodes communicate the changes in color and
update their set of unavailable colors. The following color reduction L2-phase is
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Figure 4.2 – Structure of an L3-phase in the (∆ + 1)-coloring algorithm

color newColor
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∆ + 1 coloring subphases

Figure 4.3 – Structure of a coloring L2-phase p2 in the (∆ + 1)-coloring algorithm
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made up of ∆ + 1 L1-phases. In each such L1-phase, the range of colors used by
all nodes is reduced by 1 (if the range is greater than ∆ + 1). This is important
because the color range affects the round complexity, and that range can increase
exponentially if it is not reduced in each L3-phase.

Coloring L2-phase. Let us now present the functions used in a coloring L2-phase.
There are two functions, ColorByBFS and BroadcastColors. ColorByBFS re-
colors each participating node. The resulting coloring can be defective. The input
parameters are a boolean (inSet) indicating whether or not the node is part of
the ruling set, i.e., serving as BFS roots, and a set of unavailable colors (U). The
roots initiate parallel BFS. Other nodes compute their distance to the nearest root,
which is given by the BFS, and recolor themselves with an available (not in U)
newColor, according to the parity of this distance. The newColor values returned
by ColorByBFS are in {1, . . . , 2∆ + 2}. This is because the set of unavailable
colors contains at most ∆ colors, and possibly all of the same parity. Therefore,
ColorByBFS chooses the smallest available odd (resp. even) value amidst the first
∆ + 1 odd (resp. even) values.
BroadcastColors communicates the colors chosen by the neighboring nodes. The
function has four input parameters: the node’s color (newColor), a boolean indicat-
ing whether or not it should participate in the current invocation (changingColor),
a set of unavailable colors (U) and the maximum degree ∆. The color is conveyed
through the round number.
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function ColorByBFS(inSet, U): newColor
1: beeping := false . |U | ≤ ∆, U ⊂ {1, . . . , 2∆ + 2}.
2: if inSet then
3: beeping := true . Roots initiate BFS
4: for round r := 1 ; r++ do
5: if beeping then
6: Beep . All nodes beep once. The root is r − 1 hops away.
7: newColor := min{k ∈ (N>0 \ U) | k ≡ r mod 2}
8: Return newColor . newColor ∈ {1, . . . , 2∆ + 2}
9: else
10: Listen
11: if beep heard then
12: beeping := true

function BroadcastColors(newColor, changingColor, U , ∆): U
1: for round r := 1 ; r ≤ 2∆ + 2 ; r++ do
2: if newColor = r and changingColor then
3: Beep
4: else
5: Listen
6: if beep heard then
7: U := U ∪ {r} . More unavailable colors
8: Return U

Color Reduction L2-phase. Now, let us present the ColorReduction function
invoked in the color reduction L2-phase. Its input parameters are an integer value
given by a d-defective c-coloring (color), the maximum degree ∆ and the maximum
color c (in the coloring). Nodes broadcast colors from {1, . . . ,∆+1} in ∆+1 rounds,
after which, nodes with color = c change their color to the smallest available color
in {1, . . . ,∆+1}. The output is the node’s new color (color), given by a d-defective
c′-coloring, with c′ = min(c− 1,∆ + 1).

function ColorReduction(color, ∆, c): color
1: U := ∅ . U stores unavailable colors
2: for round r := 1 ; r ≤ ∆ + 1 ; r++ do
3: if color = r then
4: Beep
5: else
6: Listen
7: if beep heard then
8: U := U ∪ {r}
9: if color = c then

10: color := min({1, . . . ,∆ + 1} \ U)
11: Return color
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The (∆ + 1)-Coloring Algorithm. In DegreeColoring (Algorithm 2), we only
require L1-synchronization points (for RulingSet and ColorByBFS), introduced
in Section 4.1.2. Both functions are uniform in N , and thus are not explicitly
terminating (if executed alone). However, they are locally terminating. Therefore
we can use BET to perform neighboring termination detection and make nodes
start the next step of the algorithm synchronously. On the other hand, as the time
lengths of all L2, L3 and L4-phases (and ColorReduction calls) are upper bounded
by ∆ + 1, their termination is completely synchronized at all nodes and we do not
need L2, L3 and L4-synchronization points.

Algorithm 2 DegreeColoring

1: IN: id: Identifier, ∆: Maximum degree
2: OUT: color: Integer value
3: color := 1
4: // Each node removes at least one defective edge per L3-phase
5: for L3-phase p3 := 1 ; p3 ≤ ∆ ; p3++ do
6: U := ∅ . Stores newColor values already chosen during this phase
7: newColor := 0 . newColor ∈ {1, . . . , 2∆ + 2} during L3-phase
8: // An L3-phase starts with ∆ + 1 coloring L2-phases
9: for coloring L2-phase p2 := 1 ; p2 ≤ ∆ + 1 ; p2++ do
10: if color = p2 then
11: inSet := RulingSet(id)
12:  1 . L1-synchronization point
13: if color = p2 then
14: newColor := ColorByBFS(inSet, U)
15:  1
16: U := BroadcastColors(newColor, (color = p2), U,∆)
17:  2 . This synchronization point is not needed (strictly explanatory)
18: color := newColor
19: // Followed by one L2-phase, which contains ∆+1 color reduction L1-phases
20: // Before the L2-phase, color ∈ {1, . . . , 2∆ + 2}
21: for color reduction L1-phase p1 := 1 ; p1 ≤ ∆ + 1 ; p1++ do
22: color := ColorReduction(color,∆, 2∆+3− p1)
23:  1
24: // After all color reduction L1-phases, color ∈ {1, . . . ,∆ + 1}
25:  3 . Not needed, for clarity only
26: EndAlgorithm

Lemma 7. At the start (and end) of an L3-phase, color ∈ {1, . . . ,∆ + 1}.
Lemma 8. The defect of color is reduced by one per L3-phase.
Proof. Let color be d-defective at the start of L3-phase p3. For any given node v,
v has at most d defective edges. It is easy to see that non-defective edges remain
non-defective. In a non-defective edge (v, u), let v be the node with the higher color
w.l.o.g. During L3-phase p3, v stores a set of unavailable newColor values, includ-
ing newColoru. As such, when v executes ColorByBFS, newColorv 6= newColoru.
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All endpoints of the defective edges of v, and v itself, execute RulingSet and
ColorByBFS in the same L2-phase. If DistC(v) denotes v’s distance to the
nearest BFS tree root (RulingSet survivor), there is at least one endpoint u with
|DistC(u) − DistC(v)| = 1. Because of the difference in the parity of these dis-
tances, u and v choose different values in {1, . . . , 2∆ + 2}, and at least one edge
becomes non-defective.

Theorem 9. Algorithm 2 solves (∆ + 1)-coloring in O(∆2 logn+ ∆3) rounds.

Proof. Algorithm 2 is correct after ∆ L3-phases, by Lemmas 7 and 8.
As for the time complexity of Algorithm 2, both RulingSet and ColorByBFS

take O(logn) rounds, whereas BroadcastColors takes O(∆) rounds. As a result,
each coloring L2-phase takes O(∆ + logn) rounds. Moreover, each color reduction
L2-phase takes O(∆) rounds. Finally, Algorithm 2 terminates after O(∆2) coloring
L2-phases and O(∆2) color reduction L2-phases.

Given a (∆+1)-coloring, it is simple to compute an MIS in ∆+1 rounds. Nodes
with the same color form an independent set. Adding iteratively (at each round)
nodes from each such set to a common independent set results in an MIS. Thus,
MIS can also be solved in O(∆2 logn+ ∆3) rounds.

4.3.2 Uniform (∆ + 1)-Coloring
Now, we wish to transform DegreeColoring into UnifDegreeColoring, which
is uniform in both ∆ and n. The first step is to replace the functions used in
DegreeColoring by uniform functions, and to synchronize them using synchroniza-
tion points. Then, every non-uniform stopping condition of a loop appearing in
DegreeColoring should be eliminated and replaced by a so called local termination
component. This component is an Li−2-phase executed at the end of each iteration
(Li−1-phase) of the loop (Li-phase). It serves to detect if the executing node has
finished the ongoing loop. More formally, this component serves to detect whether
the executing node has reached a terminal Li-phase state, and makes the Li-phase
locally-terminating.

Uniform Functions. First, let us present UnifBroadcastColors, a uniform ver-
sion of BroadcastColors (since BroadcastColors requires ∆). UnifBroadcast-
Colors is an L2-phase, made of consecutive L1-phases, each composed of 2 rounds.
In the first round, the executing node v beeps if it has not yet communicated
newColorv. Otherwise, it listens so it can detect if all of its neighbors have al-
ready communicated their newColor value, and if so, v terminates. In the second
round, we have the round behavior of BroadcastColors. In such a way, we obtain
a uniform function having the same behavior as BroadcastColors. Moreover, in
this particular case, since all L1-phases contain exactly 2 rounds, it is also locally
synchronized, even without using EBET, and therefore there is no need to indicate
synchronization points explicitly.

Next, we design a uniform version of ColorReduction. It is used inReduceColors,
a uniform version of the color reduction L2-phase from DegreeColoring.
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function UnifBroadcastColors(newColor, changingColor, U): U
1: for L1-phase p1 := 1 ; p1++ do . L1-phase consists of two rounds
2: // First round
3: if newColor ≥ p1 and changingColor then
4: Beep . Not finished yet
5: else
6: Listen
7: if no beep heard then
8: Return U . If all neighbors beeped their colors
9: // Second round
10: if newColor = p1 and changingColor then
11: Beep . Communicate your color
12: else
13: Listen
14: if beep heard then
15: U := U ∪ {p1} . Keep neighbors’ newColor values

UnifColorReduction has two input parameters: the node’s color (color), given by
a d-defective c-coloring, and a set of unavailable colors (U). It also has two out-
put parameters: the node’s new color color, given by a d-defective c′-coloring (with
c′ = min(c−1,∆+1)), and a boolean sameColor indicating whether color changed.
Every node v conveys its color value to its neighbors by beeping in the first round
of the L1-phase indexed by colorv. Nodes with the highest color in their neighbor-
hood choose the smallest available color (colors previously conveyed by neighbors
are forbidden). If that color is the node’s current color, then sameColor is assigned
to true. Other nodes do not change their color (and end with sameColor equal to
false). Here again, there is no need to indicate synchronization points explicitly,
since all L1-phases contain exactly 2 rounds.

ReduceColors is an L4-phase. It has two input parameters: the node’s color
(color), given by a d-defective c-coloring, and a set of unavailable colors (U). It
has a single output: the node’s new color (color), given by a d-defective (∆ +
1)-coloring. The main idea is to have the nodes with the highest color in their
neighborhood change their color to the smallest available color (in {1, . . . ,∆ +
1}). At some point, they can no longer improve their color (finished is true).
These nodes terminate, allowing the other nodes in their neighborhood to change
their color value. Here, it is crucial to put L2-synchronization points after the
UnifColorReduction and UnifBroadcastColors calls, because these functions are
uniform. Thus, different nodes can finish executing these functions at different
times, i.e., not synchronously. As these functions are locally terminating, EBET
can be used to ensure the synchronization points.

Local Termination Component. Following this, let us describe the functions
used for UnifDegreeColoring’s local termination component. These functions are
used to detect when the executing node’s color is proper, i.e., no neighbor has the
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function UnifColorReduction(color, U): color, sameColor
1: sameColor := false
2: for L1-phase p1 := 1 ; p1++ do . L1-phase consists of two rounds
3: // First round
4: if color = p1 then
5: Beep
6: else
7: Listen
8: if beep heard then
9: U := U ∪ {p1}

10: // Second round
11: if color > p1 then
12: Beep
13: else
14: // Only a node with the highest color in its neighborhood hears no beep
15: Listen
16: if beep heard then
17: Return (color, sameColor)
18: else
19: color := min({1, . . . , p1} \ U)
20: if color = p1 then
21: sameColor := true
22: Return (color, sameColor)

function ReduceColors(color, U): color
1: finished := false
2: while not finished do . At most c L3-phases
3: (color, finished) := UnifColorReduction(color, U)
4:  2
5: U := UnifBroadcastColors(color, finished, U)
6:  2 . Actually, also an L3-synchronization point
7: Return color

same color. Then, the executing node can exit the outermost loop and thus locally
terminate the algorithm (see lines 27 to 33).

ColorCollision uses UniformCollisonBeep to detect whether there are same
color neighbors amongst executing nodes. The function has two input parame-
ters: an identifier (id) and the node’s color (color). The output parameter is a
boolean indicating whether the node detected a collision with a same color node
(collision). In each L2-phase p2, nodes with color p2 check for a collision by using
UnifCollisionBeep. If no neighboring node with the same color p2 exists, then no
collision is detected by the executing nodes.

UnifCollisionBeep detects whether there are any neighbors amongst the cur-
rently executing nodes (a collision). The input parameter is an identifier (id) and
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function ColorCollision(id, color): collision
1: for L2-phase p2 := 1 ; p2++ do . At most ∆ + 1 L2-phases
2: if color = p2 then
3: collision := UnifCollisionBeep(id)
4: Return collision
5:  2

the output parameter is a boolean indicating whether the node detected a collision
(collision). In each L1-phase, a node beeps in the first or the second round, de-
pending on whether the pth1 most significant bit of α(id) is 0 or 1. If a beep is heard,
then there is a collision. Two executing neighboring nodes always detect a collision
because they have different identifiers. A node terminates if the phase index p1 is
greater than the length of the α-ID.

function UnifCollisionBeep(id): collision
1: collision := false
2: for L1-phase p1 := 1 ; p1++ do . L1-phase consists of two rounds
3: if p1 > |α(id)| then
4: Return collision
5: if α(id)[p1] = 0 then
6: Beep ; Listen
7: if beep heard in the second round then
8: collision := true
9: else
10: Listen ; Beep
11: if beep heard in the first round then
12: collision := true

The Uniform (∆ + 1)-Coloring Algorithm. Finally we describe UnifDegree-
Coloring. The main idea is the same as in DegreeColoring: we refine the initial
∆-defective coloring until the coloring is proper. The main differences are the local
termination components. The L4-phase’s (L3 loop) local termination component is
similar to the local termination component in UnifBroadcastColors. A node has
finished an L4-phase if all of its neighbors have chosen a new color. The algorithm’s
local termination component is described previously. The additional Ut variable is
used to store unavailable colors that have already been chosen by neighboring nodes
which have terminated the algorithm.

Theorem 10. MIS and (∆ + 1)-coloring can be solved in O(∆2 logn+∆3) rounds
with an algorithm uniform in both ∆ and N .
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Algorithm 3 UnifDegreeColoring

1: IN: id: Identifier OUT: color: Integer value
2: Ut := ∅ . Stores color values chosen for output by terminated neighbors
3: color := 1
4: // Each node removes at least one defective edge per L5-phase
5: for L5-phase p5 := 1 ; p5++ do
6: U := ∅ . Stores newColor values already chosen during this phase
7: newColor := 0 . newColor ∈ {1, . . . , 2∆ + 2} during the L5-phase
8: // This L3 loop is an L4-phase
9: for coloring L3-phase p3 := 1 ; p3++ do

10: if color = p3 then
11: inSet := RulingSet(id)
12:  1
13: if color = p3 then
14: newColor := ColorByBFS(inSet, U ∪ Ut)
15:  1
16: U := UnifBroadcastColors(newColor, color = p3, U)
17:  2 . L2-synchronization point here, thus we have coloring L3-phases
18: // From here on, local termination component for L4-phase
19: if color > p3 then
20: Beep . Beep if new color still not chosen
21: else
22: Listen . Check if any neighbor is still choosing a new color
23: if no beep heard then Exit L3 loop
24:  4 . Crucial because some nodes end the L4-phase earlier than others
25: color := ReduceColors(newColor, Ut) . After, color ∈ {1, . . . ,∆ + 1}
26:  4
27: // From here on, local termination component for L5 loop
28: collision := ColorCollision(color)
29:  3 . Because ColorCollision is an L3-phase
30: Ut := UnifBroadcastColors(color, collision = false, Ut)
31:  2 . Because UnifBroadcastColors is an L2-phase
32: if not collision then
33: EndAlgorithm . Exit L5 loop

4.4 Improvements for Graphs with Small Arboricity

DegreeColoring is efficient for graphs with polylogarithmic maximum degree ∆.
However, not all graphs have a low maximum degree, and in these graphs, Algo-
rithm 3 is less efficient. Using ideas from [63] and [11], it is possible to design a
(∆ + 1)-coloring algorithm which is efficient on graphs with low arboricity a (more
specifically, with polylogarithmic a). Notice that some important topologies like
trees and planar graphs have an arboricity of 1 and 3 respectively, while their max-
imum degree can be arbitrarily large.
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Theorem 11. MIS and (∆ + 1)-coloring can be solved with O(a2 log2 n+ a3 logn)
round complexity in BEEPS, where a is the arboricity of the communication graph.

To support this theorem, we design two coloring algorithms with the above
round complexity: one is uniform in N but not in a, and the other is uniform in a
but not in N . It is important to have an algorithm uniform in a, since a may be
harder to obtain than an upper bound on N . The following results from [11] are
used to obtain the following algorithms.

Lemma 12. [11] If G is of arboricity a, at least ε
2+ε |V | nodes have a degree less

than (2 + ε)a.

Theorem 13. [11] If G is of arboricity a, it can be decomposed into l = O(logn)
sets of nodes H1, . . . ,Hl such that each set Hi has maximum degree O(a) in the
induced subgraph G[∪lk=iHk].

The LimitedDegreeColoring function is the main component of both algo-
rithms. It colors all participating low-degree nodes, if it is given an upper bound on
the arboricity a. A node v is considered to be a low-degree node if it has deg(v) ≤
∆a, where ∆a = (2 + ε) · a for a parameter ε > 0. Contrarily to DegreeColoring,
it may happen that some nodes have no available colors in {1, . . . ,∆a + 1}, due to
their high degree, and end the function uncolored, represented by the color 0. We
use LimitedColorReduction, a slightly modified version of ColorReduction, pre-
sented below. The only change is that color is set to 0 if the set of available colors
A is an empty set (line 13).

function LimitedColorReduction(color, c1, c2): color
1: U := ∅ . U stores unavailable colors
2: for round r := 1 ; r ≤ c1 + 1 ; r++ do
3: if color = r then
4: Beep
5: else
6: Listen
7: if beep heard then
8: U := U ∪ {r}
9: A := {1, . . . , c1 + 1} \ U . Set of available colors
10: if color = c2 and A 6= ∅ then
11: color := min(A)
12: else if color = c2 and A = ∅ then
13: color := 0
14: Return color

Lemma 14. Let ∆a = (2 + ε) · a, with ε > 0. Given the input c = ∆a, Limited-
DegreeColoring outputs a (∆a+1)-coloring on a subgraph of nodes, which includes
all nodes with degree less than or equal to ∆a. All other nodes have output 0. The
round complexity is O(a2 · logn+ a3).
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function LimitedDegreeColoring(id, c): color
1: color := 1
2: for L3-phase p3 := 1 ; p3 ≤ c ; p3++ do
3: U := ∅ . Stores newColor values already chosen during this phase
4: newColor := 0
5: for L2-phase p2 := 1 ; p2 ≤ c+ 1 ; p2++ do
6: if color = p2 then
7: inSet := RulingSet(id)
8:  1 . L1-synchronization point
9: if color = p2 then

10: newColor := ColorByBFS(inSet, U)
11: if color 6∈ {1, . . . , 2c+ 2} then
12: Return 0 . Not a good color
13:  1
14: U := BroadcastColors(newColor, (color = p2), U, c)
15: color := newColor
16: for L1-phase p1 := 1 ; p1 ≤ c+ 1 ; p1++ do
17: color := LimitedColorReduction(color, c, 2c+ 3− p1)
18: if color = 0 then
19: Return 0 . No color in {1, . . . , c+ 1} could be chosen
20: collision := ColorCollision(color)
21: if collision then
22: Return 0 . If not properly colored, no color is chosen
23: Return color

Proof. The round complexity is straightforward.
LimitedDegreeColoring outputs a (∆a+1)-coloring on the subgraph of nodes with
non-zero colors because all colors are chosen from {1, . . . , 2∆a+2}, if available, and
are then reduced to {1, . . . ,∆a + 1}. ColorCollision ensures that the coloring is
valid.

Now, let us prove by contradiction that for any given node u with deg(u) ≤
∆a, the output is a non-zero color. u outputs 0 due to LimitedColorReduction,
ColorByBFS or ColorCollision. The first two cases are impossible because |U(u)| ≤
∆a. In the last case, ColorCollision is executed after ∆a L3-phases. In each L3-
phase, incident non-defective edges remain non-defective, and at least one incident
defective edge becomes non-defective. Since after ∆a L3-phases u has no defective
edges, u has no neighbor v with coloru = colorv.

4.4.1 (∆ + 1)-Coloring Uniform in N

First, let us focus on the first algorithm, uniform in N . LimitedDegreeColoring is
executed iteratively by uncolored nodes until all nodes are properly colored. Since
a is known, and by Lemma 12, each invocation of the function colors a constant
fraction of the nodes of the communication graph. Colored nodes no longer par-
ticipate in subsequent LimitedDegreeColoring calls. By Theorem 13, executing
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LimitedDegreeColoring l = O(logN) times colors all nodes with O(a · logN) col-
ors. As N is unknown, invocations of LimitedDegreeColoring continue until the
executing node is colored properly (local termination component). When this hap-
pens for all nodes, the O(a · logN)-coloring is transformed into a (∆ + 1)-coloring
by ReduceColors, as in Algorithm 3. This takes an additional O(a2 · log2 n) rounds.

Algorithm 4 UnifNArbColoring

1: IN: id: Identifier, a: Arboricity of G, ε: Parameter
2: OUT: color: Integer value
3: ∆a := (2 + ε) · a
4: for L4-phase p4 = 1 ; p4++ do . At most l = 2

ε · logn L4-phases
5: color := LimitedDegreeColoring(id,∆a)
6:  4
7: if color 6= 0 then
8: color := color + (p4 − 1) · (∆a + 1)
9: Exit L4 loop
10:  5 . color is an O(a · logn)-coloring
11: color := ReduceColors(color, ∅) . At most O(a2 · log2 n) rounds
12: EndAlgorithm . color ∈ {1, . . . ,∆ + 1}

Theorem 15. Algorithm 4 solves MIS and (∆ + 1)-coloring with O(a2 log2 n +
a3 logn) round complexity. This algorithm is uniform in N but non-uniform in a.

Proof. Let us prove that after all L4-phases, arbColor is an O(a · logn)-coloring.
In each L4-phase of Algorithm 4, only uncolored nodes (Vrem) participate in

LimitedDegreeColoring. Since the subgraph induced by Vrem also has arboricity
at most a, by Lemmas 12 and 14, ε

2+ε |Vrem| nodes have a degree less than ∆a

and thus are part of the subgraph with a (∆a + 1)-coloring. They exit the L4
loop, thus by Theorem 13, there are at most 2

ε · logn = O(logn) L4-phases. Since
we use non-overlapping ranges of ∆a + 1 colors for each L4-phase, arbColor is an
O(a · logn)-coloring. The round complexity follows from the number of L4-phases
and Lemma 14.

4.4.2 (∆ + 1)-Coloring Uniform in a

In the second algorithm (uniform in a), we compute an upper bound on a. This
is done by estimating a iteratively. At each iteration (L5-phase) p5, a is estimated
to be 2p5 and LimitedDegreeColoring is executed l = O(logN) times, given this
estimation. After O(log a) iterations, the estimation is at least as large as the actual
arboricity. When this happens, LimitedDegreeColoring executed O(logN) times
provides a proper coloring (followed by the color range reduction) as in the first
algorithm.

Theorem 16. Algorithm 5 solves MIS and (∆ + 1)-coloring with O(a2 log2 n +
a3 logn) round complexity. This algorithm is uniform in arboricity a but non-
uniform in N .
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Algorithm 5 UnifAArbColoring

1: IN: id: Identifier, N: Polynomial upper bound on n, ε: Parameter
2: OUT: color: Integer value
3: for L5-phase p5 := 1 ; p5++ do . At most 1 + blog ac L5-phases.
4: ∆p5 := (2 + ε) · 2p5

5: len := 2
ε · logN

6: for L4-phase p4 := 1 ; p4 ≤ len ; p4++ do
7: color := LimitedDegreeColoring(id,∆p5)
8:  4
9: if color 6= 0 then
10: color += (∆p5 − 2− ε+ p5 − 1) · len+ (p4 − 1) · (∆p5 + 1)
11: Exit L5 loop
12:  5 . Not needed, for clarity only
13:  6 . color is an O(a·logn)-coloring
14: color := ReduceColors(color) . At most O(a2 · log2N) rounds
15: EndAlgorithm . color ∈ {1, . . . ,∆ + 1}

Proof. Let us first prove that Algorithm 5 solves (∆ + 1)-coloring. At the end of
L5-phase p5, by Lemma 14, all nodes with degree less than ∆p5 = (2 + ε) · 2p5 are
colored. By Lemmas 12 and 14, and Theorem 13, at L5-phase p5 = 1 + blog ac,
∆p5 ≥ (2 + ε) · a and all nodes are colored after 2

ε · logN L4-phase. Since the
color ranges from different L4-phases or different L5-phases do not overlap, and the
non-zero colors returned by LimitedDegreeColoring form a coloring, arbColor is
an O(a · logN)-coloring. And after the ReduceColors call, the coloring is reduced
to a (∆ + 1)-coloring.
It is straightforward to prove the round complexity. Since arbColor is an O(a ·
logN)-coloring, ReduceColors takes at most O(a2 log2N) rounds, while the L5
loop takes at most O(a2 log2N + a3 logN) rounds.

4.5 Uniform Algorithms for the 2-hop Variants
To obtain algorithms for 2-hop MIS and 2-hop coloring, we provide and use a general
transformer, the SquareSim algorithm (Algorithm 6), allowing to "simulate G2

over G". The idea is that nodes propagate beeps for an extra round (and therefore
contact nodes at distance 2), so that they can simulate an algorithm on the square
of the communication graph, for a small time multiplicative overhead. SquareSim
provides two primitives SquareSim(true) and SquareSim(false) to simulate in
G, the BEEP and LISTEN instructions invoked on graph G2.

Lemma 17. An algorithm designed to be executed on G2 can be simulated on G
by replacing all BEEP instructions by calls to SquareSim(true) and LISTEN
instructions by calls to SquareSim(false).

The maximum degree of the square communication graph is ∆2. By applying
Lemma 17 to the previous algorithms, we obtain algorithms for solving 2-hop col-
oring with (∆2 + 1) colors and 2-hop MIS. These algorithms are very efficient on
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Algorithm 6 Simulating the square communication graph: SquareSim
1: IN: beep: Boolean value OUT: detectedBeep: Boolean value
2: detectedBeep := false
3: if beep then
4: Beep . Beep to neighbor nodes: First round
5: else
6: Listen
7: if beep heard then
8: detectedBeep := true
9:
10: if detectedBeep then
11: Beep . Relay beep to distance 2 nodes: Second round
12: else
13: Listen
14: if beep heard and not beep then
15: detectedBeep := true
16: EndAlgorithm

bounded degree graphs, and efficient for graphs with polylogarithmic ∆. 2-hop col-
oring is an important tool in the beeping model, used to break symmetry and to deal
with the interference. In the next section, we show how this can be used to simulate
the stronger CONGEST communication model and obtain an O(a)-coloring.

Corollary 18. 2-hop MIS and 2-hop (∆2+1)-coloring can be solved in O(∆4 logn+
∆6) rounds.

Instead of the maximum degree of the square of the given graph, consider its
arboricity. Using a result from [5], showing that a(G2) ≤ 23 · a · ∆, we obtain
Corollary 19, which provides a more efficient result for graphs with small arboricity.

Corollary 19. 2-hop MIS and 2-hop (∆2 + 1)-coloring are solved by the two algo-
rithms in Sect. 4.4 with an O(a2∆2 log2 n + a3∆3 logn) round complexity. One of
them is uniform in N but not in a, and the other is uniform in a but not in N .

4.6 CONGEST Model Simulation and O(a)-Coloring

By using a 2-hop coloring, nodes can simulate the transmission of messages through
the edges of the communication graph, like in the CONGEST model with edge
bandwidth B (commonly O(logN)). We want to make sure that for any given
node v, a message can be sent or received along any edge without interference, and
that the provenance and destination of the message can be deduced easily.

First, InitCongest (Algorithm 7) is used at the beginning of the simulation
to obtain all possible message provenance and destinations for any given node v
(simulated by the colors from the 2-hop coloring). After which, the transmission of
messages is done through SimCongest.
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Algorithm 7 InitCongest

1: IN: color: Integer value from a 2-hop c-coloring
2: OUT: Nb: Port numbers
3: Nb := ∅ . Stores neighbors’ colors (used as ports)
4: for round r := 1 ; r ≤ c ; r++ do . Get neighbors’ colors
5: if r = color then
6: Beep
7: else
8: Listen
9: if beep heard then
10: Nb := Nb ∪ {r}
11: EndAlgorithm

Our simulation algorithm SimCongest (Algorithm 8) is made of two compo-
nents. The first component is used to transmit a B bit message. If we have no
interference, a node can transmit B bits during 2B rounds (in phases of two rounds,
one round for transmitting bit 1 and another one for bit 0).
The second component, and the core part of the simulation, deals with the in-
terferences inherent to the beeping model. Here, a 2-hop c-coloring (for some
constant c) is required so that messages can be associated to a pair of colors
p = (colorProvenance, colorDestination), according to their provenance and des-
tination (c2 possibilities). The simulation is composed of phases, each of c2 invoca-
tions of the first component. In this way, transmitted bits never collide.
The B bit messages are part of the input parameters of SimCongest. They are
given through a hash table (mSend), with the message destinations (colors) as keys
and the messages as values. The messages received are stored in a similar structure
(mRec), where the message provenances are the keys.

The following lemma is straightforward.

Lemma 20. Given a 2-hop c-coloring, the CONGEST model with edge bandwidth
B can be simulated in BEEPS, with an O(c2 ·B) multiplicative factor.

An O(a)-Coloring Algorithm in the Beeping Model. Finally, using the sim-
ulation of CONGEST , one can use the result of Barenboim and Elkin [13] (given
for CONGEST ), to obtain an O(a)-coloring in BEEPS .
It is done by first computing, in BEEPS , a 2-hop (∆2+1)-coloring in O(a2∆2 log2 n+
a3∆3 logn) rounds (Corollary 19). Then theO(a)-coloring from [13] (withO(aµ logn)
round complexity) is combined with the CONGEST simulation, using the (∆2 +1)-
coloring obtained before. By Lemma 20, the resulting simulation of the O(a)-
coloring algorithm has O(aµ∆4 log2 n) round complexity.
The final result is an O((a2∆2 + aµ∆4) · log2 n+ a3∆3 logn) time O(a)-coloring al-
gorithm in BEEPS . Notice that now by using this coloring algorithm, together with
the SquareSim algorithm, to obtain a 2-hop O(a · ∆)-coloring (see Section 4.5),
we reduce the time multiplicative factor when simulating CONGEST algorithms.
Consequently, one obtains a more efficient simulation.
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Algorithm 8 SimCongest

1: IN: B: Edge bandwidth, color: Integer value from a 2-hop c-coloring, c: maxi-
mum color value, mSend: Hash table of messages to send

2: OUT: mRec: Hash table of messages received
3: for L3-phase p3 := 1 ; p3 ≤ c ; p3++ do
4: for L2-phase p2 := 1 ; p2 ≤ c ; p2++ do
5: for L1-phase p1 := 1 ; p1 ≤ B ; p1++ do
6: if p3 = color then . p3 can send its p1th bit to p2
7: if p2 ∈ Nb and mSend(p2)[p1] = 0 then
8: // Send a 0 message.
9: Beep ; Listen
10: else if p2 ∈ Nb and mSend(p2)[p1] = 1 then
11: // Send a 1 message.
12: Listen ; Beep
13: else
14: Listen ; Listen . Synchronize
15: else if p2 = color then
16: // Listen for a possible incoming p1th bit.
17: Listen ; Listen
18: // Then append the received bit in mRec.
19: if beep heard in first round then
20: mRec(p3) := mRec(p3) ‖ 0
21: if beep heard in second round then
22: mRec(p3) := mRec(p3) ‖ 1
23: else
24: Listen ; Listen . Synchronize
25: EndAlgorithm

4.7 Extended Balanced Execution Technique (EBET)

We remind that the "Balanced Execution Technique" (BET) from Förster et al.
[58] guarantees L1-synchronization points. Now, we present an extension of BET,
with which we guarantee Li-synchronization points for all i ≥ 1. The "Extended
Balanced Execution Technique" (EBET) allows the design of complex uniform al-
gorithms in BEEPS .

4.7.1 Introducing EBET

Synchronization points are not a natural primitive in BEEPS : an Li-synchronization
point forces nodes which have reached a terminal Li-phase state (ended the Li-
phase) to wait for their neighboring nodes to end the Li-phase, before starting the
next one. Some algorithms are difficult to design in a uniform manner without
the use of synchronization points. Therefore, we want to be able to design an
algorithm P using synchronization points, and then apply a “technique” on the
formal description of P, so that the result is an algorithm that can be run in
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BEEPS (not necessarily a formal description). The resulting algorithm is called
Psim. The technique we use for that is EBET.

Extended Balanced Execution Technique. EBET has two crucial compo-
nents and a parameter k (∈ N>0), which controls the small multiplicative overhead
of EBET. The first component is a Finite State Machine (FSM), used to stall nodes
when they have ended an Li-phase (synchronization property), for all i ≤ k, so that
other nodes can catch up (resulting in a resynchronization process for the start of
the next Li-phase). The second is a balanced round counter rC, which is used so
that nodes can reach some agreement on the clock value for the current L1-phase.
By balanced counter, we mean that the rC values of two neighbors differ by at most
1 (balancing property). Thus two neighbors participating in the same L1-phase are
in the same round, or in consecutive rounds. EBET’s main addition is an exten-
tion to the FSM component. As a consequence, EBET provides Li-synchronization
points, for all i ≤ k. For better clarity, we consider EBET with k = 2, but it is
simple to extend the following techniques for any given positive integer k.

We assume that in P and Psim, all nodes start synchronously. By using syn-
chronization points, P is easily described, coded and understood. Here we consider
P to be a uniform loop of L2-phases (thus a uniform L3-phase). Whereas Psim is a
uniform loop of L1-phases, and each of its L1-phase simulates a round of P. Since
the L1-phases of Psim contain exactly 11 rounds (referred to as slots to differentiate
from the rounds in P), Psim can be run in BEEPS . We refer to phases of P as
original phases, and to phases of Psim as simulation phases. It is crucial that Psim
outputs the same result as P (with a similar round complexity), and proving this
is the main focus of Section 4.7.3.

Outline. In the first section (Section 4.7.2), we describe the balanced counter
technique (extending that of [58]), which allows EBET to maintain a balanced round
counter, and to guarantee the synchronization property for all Li-phases. When
abstracted to a higher level, the synchronization property results in the simulation
of Li-synchronization points. In the second section (Section 4.7.3), we describe
how communication is adapted for EBET. Indeed, nodes do not have perfectly
synchronized round counters, so we adapt the manner in which nodes communicate
between themselves (having a balanced counter is crucial here), so as to simulate
an execution with synchronized round counters.

4.7.2 Extending the Balanced Counter Technique for EBET

Slot Behavior in the Balanced Counter Technique. The balanced counter
technique is implemented in the following manner. Nodes have the following vari-
ables: state, rC, p1 and p2. Theses variables are parametrized by a node v and if
unclear, by a simulation L1-phase p, to indicate their value for v at the start of a
simulation L1-phase p. The state variable can be any of the 5 states from Figure 4.4
(CT , R-N , R-W , R-N2 and R-W2). A node v with state(v, p) = CT is said to be
participating (in phase p), because it is simulating a round of an original L1-phase
in P. We define CT2 = {CT,R-N,R-W}, a composite state, and similarly, a node
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v with state(v) ∈ CT2 is simulating an original L2-phase in P (not necessarily a
round).

Figure 4.4 – Finite State Machine Component for EBET (k = 2)
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in COUNT
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in COUNT2
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Each simulation L1-phase contains exactly 8 slots and is used to convey a node’s
local clock value and its FSM state. Using this information, nodes know if they
are ahead or behind of their neighbors, and act accordingly. The first three slots
(indexed 0 to 2) are used to convey the counter value (rC) modulo 3, and the other
slots (indexed 3 to 7) are used to convey the current FSM state of a node (state).
For any given node v, the information is conveyed in the following manner during
each simulation L1-phase:

• If state = CT , then v beeps in slots (rC mod 3) and 3,

• If state = R-N , then v beeps in slot 4,

• If state = R-W , then v beeps in slots rC mod 3 and 5,

• If state = R-N2, then v beeps in slot 6,

• If state = R-W2, then v beeps in slots rC mod 3 and 7.

Node v listens in all slots it does not beep in.
Now, we describe the state transitions of the FSM, and their guard conditions

(also shown in Figure 4.4). These conditions are essential for the balanced counter
and synchronization properties (Lemmas 24 and 25) in EBET. For any given node
v, the allowed state transitions are:

1. CT → R-N if no node u ∈ N (v) is in R-W or R-W2,

2. R-N → R-W if no node u ∈ N (v) is in CT ,

3. R-W → CT if no node u ∈ N (v) is in R-N ,

4. CT → R-N2 if no node u ∈ N (v) is in R-W or R-W2,
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5. R-N2→ R-W2 if no node u ∈ N (v) is in CT2,

6. R-W2→ CT if no node u ∈ N (v) is in R-N2.

The state transitions of the FSM can be decomposed into two cycles. We denote
the first cycle (transitions 1 → 2 → 3) as an L1-cycle, and the second cycle (tran-
sitions 4 → 5 → 6) as an L2-cycle. An L1-cycle is used to transition to the next
original L1-phase (if there is one) of the current original L2-phase being simulated
(from P), and essentially implements an L1-synchronization point. Similarly, an
L2-cycle is used to transition to the next original L2-phase (if there is one) in P,
and essentially implements an L2-synchronization point.

In terms of states, an L1-cycle goes CT → R-N → R-W → CT . R-N is used
to indicate the executing node has finished the simulated original L1-phase. Nodes
in that state do not interfere with their neighbors’ simulations of that original L1-
phase, as the balanced counter rC is not conveyed: no beeps in the first three slots.
On the other hand, R-W is used to indicate the node is starting the next original
L1-phase. Nodes in that state stall neighboring nodes participating in that next
original L1-phase in two different ways. First, a rC value of 0 is conveyed, which
stalls the increment function of these neighboring nodes (see paragraph ”Functions
of the Balanced Counter Technique”). As such, the neighboring rC values satisfy
rC ≤ 1 (Lemma 23). Second, neighboring nodes are prevented from transitioning to
R-N or R-N2 until the node participates, i.e., transitions to CT (see the conditions
of transitions 1 and 4). Since R-W interferes with participating nodes while R-N
does not, the synchronization property relies heavily on the conditions of transition
2. That is, a node remains in R-N while its neighbors simulate additional rounds of
the original L1-phase, and only transitions once all neighboring nodes have finished,
i.e., transitioned to R-N .

In the same way, an L2-cycle goes CT → R-N2 → R-W2 → CT . The R-N2
(resp., R-W2) state acts similarly to the R-N (resp., R-W ) state. Since R-W2
interferes with participating nodes, as well as nodes going through a L1-cycle, while
R-N2 does not, the synchronization property relies heavily on the conditions of
transition 5. That is, a node remains in R-N2 while its neighbors simulate ad-
ditional L1-phases of the original L2-phase (either participating or going through
L1-cycles), and only transitions to the next L2-phase once all neighbors have fin-
ished, i.e., transitioned to R-N2.

The synchronization property results from the following observations. Two
neighboring nodes going through a L1-cycle (resp. L2-cycle) are always in two
consecutive states of the L1-cycle (resp., L2-cycle), due to the transition condi-
tions. In other words, they have gone through the same number of L1-cycles (resp.,
L2-cycles), unless a node participates and its neighbors is still in state R-W (resp.,
R-W2). In which case, the participating node can neither increment its balanced
counter (beyond 1), nor transition to any other state, and thus waits for its neigh-
bor. Finally, consider two neighboring nodes, one going through a L1-cycle and the
other through a L2-cycle. Then the second node’s state is necessarily R-N2, and it
neither interferes with the first node, nor transitions before the first node enters a
L2-cycle (i.e., enters the R-N2 state).
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Functions of the Balanced Counter Technique. The L1 and L2-cycles, as
well as the balanced counter rC, are managed by the following functions: reset,
reset2 and increment. These functions can only be invoked by participating nodes
and increment p1, p2 and rC while ensuring the synchronization and balancing
properties. When node v increments p1 (resp., p2), that means that v has done a
full L1-cycle (resp., L2-cycle). Consequently, p1 (resp., p2) counts the number of L1-
synchronization points invoked in the current original L2-phase (resp., the number
of L2-synchronization points invoked). The synchronization property, which states
that p1 and p2 are the same for two neighboring participating nodes, means that
they are simulating the same original L1-phase.

We define a boolean next(v, p), used in the following function, for any given
simulation L1-phase p and node v. The boolean is true if and only if all neighboring
nodes of v have equal or greater rC values. v learns its next value after the first
three slots of p, since the boolean is true if and only if v detects no beeps in slot
rC(v) − 1 mod 3. If next(v, p) is true, then rC(v) is incremented at the end of
phase p.

increment is used to increment rC without violating the balancing property.
Node v calls increment in the very first phase of Psim (and whenever an original
L1-phase starts), and calls increment again whenever the previous call finishes,
until the original L1-phase is finished. During these calls, v simulates P since
state(v) = CT . When increment is invoked by a node v, v waits for the first
simulation L1-phase p in which next(v, p) is true. At the end of this phase, v
increments rC.

reset is used to go through a full L1-cycle. When invoked by v, v goes through
a full L1-cycle (transitions 1, 2 and 3). During the cycle, rC(v) is reset to 0
after transition 1 succeeds and p1(v) is incremented after transition 3 succeeds.
Similarly, reset2 is used to go through a full L2-cycle (transitions 4, 5 and 6).
During the cycle, rC(v) and p1(v) are reset to 0 after transition 4 succeeds and
p2(v) is incremented after transition 6 succeeds. The reset (resp. reset2) function
simulates a L1-synchronization point (resp. L2-synchronization point): it is invoked
by a participating node v in the round after it reaches a L1-synchronization point
(resp. L2-synchronization point), when simulating P. The details are in Section
4.7.3.

Properties of the Balanced Counter Technique. First, we give a few lemmas
(Lemmas 21, 22 and 23), which are then used to prove both the balancing and
synchronization properties (Lemmas 24 and 25).

Lemma 21. For any given simulation L1-phase p and node v, if state(v, p) =
R-W2, then for all u ∈ N (v) state(u, p) 6∈ {R-N,R-W}.

Proof. Let us prove this lemma by induction on p. Trivially true for p = 0 because
of the initialization conditions (state(v, 0) 6= R-W2).
For the induction step, by contradiction, let us consider a node u ∈ N (v), such
that state(u, p) ∈ {R-N,R-W}. Since at most one transition can be enacted by
a node per phase, we know state(v, p − 1) ∈ {R-N2, R-W2} and state(u, p − 1) ∈
CT2. It is not possible that state(v, p − 1) = R-N2 because of the condition
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for transition 5. Now, consider state(v, p − 1) = R-W2. It is not possible that
state(u, p−1) = CT because of the condition for transition 1, and it is not possible
that state(u, p − 1) ∈ {R-N,R-W} due to the induction hypothesis. As a result,
for all u ∈ N (v) state(u, p) 6∈ {R-N,R-W}.

By proving Lemma 21, we also prove its contrapositive - Lemma 22 - which is
used to simplify the proof of Lemma 23. Indeed, Lemma 22 highlights the fact that
nodes which have ended the current L2-phase are stalled in the R-N2 state until
all of their neighbors also end the L2-phase.

Lemma 22. For any given simulation L1-phase p and node v, if there exists u ∈
N (v) such that state(u, p) ∈ {R-N,R-W}, then state(v, p) 6= R-W2.

Lemma 23. For any given simulation L1-phase p and node v, if state(v, p) ∈
{R-W,R-W2}, then for all u ∈ N (v) rC(u, p) ≤ 1.

Proof. Let us prove this lemma by induction on p. Trivially true for p = 0 because
of the initialization conditions (state(v, 0) 6∈ {R-W,R-W2}).
For the induction step, consider a given simulation L1-phase p and node v, where
state(v, p) ∈ {R-W,R-W2}. Since state(v, p) 6= CT , rC(v, p) = 0. Consider any
given neighboring node u of v. If state(u, p) 6= CT , then rC(u, p) = 0. Now,
consider state(u, p) = CT . Let us prove that rC(u, p) ≤ 1.

First, consider state(v, p) = R-W . Since at most one transition can be enacted
by a node per phase, we know state(v, p− 1) ∈ {R-N,R-W} and state(u, p− 1) ∈
{CT,R-W,R-W2}. By Lemma 22, state(u, p − 1) 6= R-W2. It is also not possible
that state(v, p− 1) = R-N : the condition for transition 2 renders state(u, p− 1) =
CT impossible, and state(u, p − 1) = R-W is also impossible, because u is then
unable to enact transition 3 at the same time that v enacts transition 2. Finally,
the remaining possibilities are that state(v, p − 1) = R-W and state(u, p − 1) ∈
{CT,R-W}. For state(u, p − 1) = R-W , since u enacts transition 3 at the end
of phase p − 1, rC(u, p) = 0. As for state(u, p − 1) = CT , rC(u, p − 1) ≤ 1 by
induction hypothesis. Since v stalls u (state R-W and rC(v, p−1) = 0), u is unable
to increment rC higher than 1 at the end of phase p− 1 and rC(u, p) ≤ 1.

Now, consider state(v, p) = R-W2. Since at most one transition can be enacted
by a node per phase, we know state(v, p−1) ∈ {R-N2, R-W2} and state(u, p−1) ∈
{CT,R-W,R-W2}. First, consider state(v, p − 1) = R-N2. Since at the end of
phase p−1, v enacts transition 5, we have state(u, p−1) 6∈ CT2. However, it is also
impossible that state(u, p−1) = R-W2, because then at the end of phase p−1, u and
v enacts respectively transition 6 and 5. Now, let us consider state(v, p−1) = R-W2.
By Lemma 21, it is impossible that state(u, p−1) = R-W . If state(u, p−1) = R-W2,
then as u enacts transition 6 at the end of phase p− 1, rC(u, p) = 0. Otherwise, if
state(u, p− 1) = CT , then by induction hypothesis, rC(u, p− 1) ≤ 1. Since v stalls
u, rC(u, p) ≤ 1.

Using Lemma 23, which states that nodes in R-W or in R-W2 stall the bal-
anced counters of neighboring participating nodes, we prove the balancing property
(Lemma 24).
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Lemma 24 (Balancing property). For any given simulation L1-phase p and two
neighboring participating nodes u and v, |rC(v, p)− rC(u, p)| ≤ 1.

Proof. Let us prove that rC satisfies the balancing property by induction on p. For
p = 0, the balancing property is given by the initialization conditions.
For the induction step, consider a simulation L1-phase p > 0 and two neighboring
nodes u and v. In the first case, u and v were participating in simulation L1-phase
p− 1. Then by the induction hypothesis for p− 1, |rC(u, p− 1)− rC(v, p− 1)| ≤ 1.
Since counters can only increase by one per simulation L1-phase, and increment
stalls nodes which are ahead, the induction hypothesis holds. In the second case, at
least one of the nodes was not participating in simulation L1-phase p− 1. W.l.o.g,
u was not participating. Due to the transition restrictions, u was in R-W or R-W2
in p − 1 (node u cannot transition from R-N to CT in a single phase). Thus, by
Lemma 23, rC(v, p− 1) ≤ 1. The same line of arguments as above shows that the
induction hypothesis holds.

The balancing property highlights the fact that early nodes are stalled by neigh-
boring nodes with smaller counters, and so on until the latest node. However this
latest node is never stalled, and thus controls the increment rate of all balanced
counters. Once this node catches up with the other nodes, all nodes increment
their round counters synchronously. Thus, from the perspective of the latest node,
the balanced counters are fully synchronized counters.

Now, we prove the synchronization property (Lemma 25), which states that
p1 (resp., p2) is an index for original L1-phases (resp., L2-phases). As a result,
two neighboring participating nodes are simulating the same L1-phase (in the same
L2-phase).

Lemma 25 (Synchronization property). For any given simulation L1-phase p and
two neighboring nodes u and v, if state(u, p) = state(v, p) = CT then p1(v, p) =
p1(u, p) and p2(v, p) = p2(u, p). It can also be said that u and v have invoked reset2
the same number of times, and have invoked reset the same number of times since
they last invoked reset2.

Proof. Let us prove by induction on p, that for any given simulation L1-phase p
and two neighboring nodes u and v:

1. if state(u, p) = R-W and state(v, p) = CT (or vice versa) then p1(v, p) =
p1(u, p) + 1 and p2(v, p) = p2(u, p),

2. else if state(u, p) = R-W2 and state(v, p) = CT (or vice versa) then p1(v, p) =
p1(u, p) = 0 and p2(v, p) = p2(u, p) + 1,

3. else if state(u, p) = CT2 and state(v, p) = R-N2 (or vice versa) then p1(v, p) =
0 and p2(v, p) = p2(u, p),

4. otherwise, p1(v, p) = p1(u, p) and p2(v, p) = p2(u, p).

The synchronization property corresponds to the case when state(u, p) = state(v, p) =
CT .
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Trivially true for p = 0 because of the initialization conditions.
For the induction step, consider a simulation L1-phase p > 0 and two neighboring
participating nodes u and v.

First, consider state(u, p) = R-W and state(v, p) = CT . By Lemma 22,
state(v, p − 1) 6= R-W2. Because it is not possible for both u and v to transi-
tion at the end of phase p− 1 (see condition for transition 3), or for u to transition
from R-N to R-W if v stays in CT (see condition for transition 2), state(u, p−1) 6=
R-N . Thus, consider state(u, p − 1) = R-W . We know state(v, p − 1) = CT or
state(v, p − 1) = R-W . Thus, by induction hypothesis (items 1 and 3) for p − 1,
item 1 of the induction hypothesis holds.

Now, consider state(u, p) = R-W2 and state(v, p) = CT . Suppose by contra-
diction that state(u, p− 1) = R-N2. Because of the condition for transition 5, the
only possibility is that state(v, p − 1) = R-W2. However, it is impossible for both
u and v to transition at the end of phase p − 1 (see condition for transition 6).
Thus, consider state(u, p − 1) = R-W2. By Lemma 21, state(v, p − 1) 6= R-W .
Thus, either state(v, p − 1) = R-W2, or state(v, p − 1) = CT . And by induction
hypothesis (items 2 and 3) for p− 1, item 2 of the induction hypothesis holds.

Then, consider state(u, p) = CT2 and state(v, p) = R-N2. Since at most one
transition can be enacted by a node per phase, we know state(u, p − 1) ∈ CT2 ∪
{R-W2} and state(v, p− 1) ∈ {CT,R-N2}. First, consider state(v, p− 1) = R-N2.
It is impossible that state(u, p−1) = R-W2, because of the condition for transition
6. Then, state(u, p− 1) ∈ CT2 and we can rely on the induction hypothesis (item
3) for p − 1. Now, consider state(v, p − 1) = CT . Because of the condition for
transition 4, it is impossible that state(u, p − 1) = R-W2. Thus, by induction
hypothesis (items 1 and 4) for p − 1 and the definition of reset2 (p1 is reset after
transition 4 succeeds), item 3 of the induction hypothesis holds.

Finally, consider the other cases. Then either state(u, p) = state(v, p), or
state(u, p) 6= state(v, p). Moreover, for p−1, then either state(u, p−1) = state(v, p−
1) or state(u, p−1) 6= state(v, p−1). By using the induction hypothesis (all items),
item 4 of the induction hypothesis holds.

Using the balancing and synchronization properties, we can simulate fully syn-
chronized round counters (as in BET) with rC. Consequently, EBET simulates the
rounds of an original L1-phase.

4.7.3 Balanced Executions in EBET

We extend the simulation L1-phases with 3 additional slots. Thus, a simulation
L1-phase contains 11 slots. The 3 extra slots are dedicated to the simulation of a
round r in P. That simulated round is either rC or rC − 1, depending on the rC
values of the neighboring nodes.
We define a correct action, for any given participating node v and simulation L1-
phase p of Psim. v’s action when simulating round r in simulation L1-phase p is
said to be correct if it is the same as v’s action in round r of P. We prove that
all actions (simulating rounds of P) done by nodes in Psim are correct. Thus, Psim
and P have the same result.
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Rules to ensure Balanced Execution. We give the following additional rules.
They ensure, that for any given participating node v and simulation L1-phase p of
Psim, v’s actions in L1-phase p is correct.

• If next(v, p) = false, v simulates round rC(v, p)− 1.

• Otherwise, v simulates round rC(v, p).

A round r is simulated by v in the following way. If v’s action for r is BEEP ,
then v beeps in slot r mod 3 + 8 of simulation L1-phase p, and otherwise it listens
in that slot.

With the rules above, the following definitions are natural. For any given node
v and for any simulated round r of P, we define pn(v, r) as the first simulation
L1-phase p in which v simulates the next round (r + 1). We also define pf (v, r) as
the first simulation L1-phase p in which v simulates round r.

Now, consider end of phase rounds of P (rounds in which a node ends an Li-
phase and thus reaches a Li-synchronization point). A participating node v detects
whether it reaches a Li-synchronization point after round r of P in simulation L1-
phase pn(v, r), since in that phase, v is already done with beeping or listening to
beeps for round r (as even the slowest neighbors simulated r in the previous phase).
Consequently, consider rF as the round after which v reaches a Li-synchronization
point in P. v invokes reset or reset2 (depending on the synchronization point) in
simulation L1-phase pn(v, rF ), which ensures the simulation of P is correct.

Simulation Proofs. First, we give the following simple lemma. It states that
when a node v is simulating round rC(v, p) − 1 in a simulation L1-phase p, it has
already simulated the round once, in a previous simulation phase. The round is
simulated again while v is waiting for the slower nodes (with smaller rC values),
until next(v) is true, in which case all neighboring nodes have caught up.

Lemma 26. For any given phase p > 0 and participating node v, v has already
simulated round rC(v)− 1 at least once.

Now, we prove a crucial lemma (Lemma 27). Basically, it states that for any
simulation L1-phase p, all nodes have correctly simulated P for all rounds r <
rC(v, p). Moreover, in the round in which a participating node v increments rC(v),
rC(v) is simulated correctly, due to the fact that all neighbors have already acted
once for rC(v) − 1, and that all of these actions were correct. Using this lemma,
obtaining Theorem 28 is straightforward.

Lemma 27. For any given simulation L1-phase p and participating node v, all
previous actions from v were correct.

1. Moreover, if next(v, p) = true:

(a) If v listens for round rC(v)− 1: ∃u ∈ N (v), u participating, s.t. u beeps
for rC(v)−1⇔ v detects a (correct) beep for rC(v)−1 in a phase p′ < p.

(b) If v beeps for round rC(v)− 1: ∃u ∈ N (v), u participating, s.t. u listens
for rC(v)−1⇔ u detects a (correct) beep for rC(v)−1 in a phase p′ < p.
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(c) v’s action for round rC(v, p) is correct,

2. Otherwise, v’s action for round rC(v, p)− 1 is correct.

Proof. Let us prove this lemma by induction on the simulation L1-phase p. For
p = 0, the induction hypothesis (IH) holds obviously.

For the induction step, consider a phase p > 0 and any given participating node
v. First, from the IH in phase p− 1, we get that all actions done by v previous to
phase p− 1 were correct, as well as the action v executed in p− 1.

Next, let us prove part 1a and 1b of the IH. Consider any given phase p′ in
which v or any of its neighbors simulates rC(v, p) − 1 for the first time. In part 1
of the IH, next(v, p) = true thus p′ < p (Lemma 26).
Let us prove (⇒) of parts 1a and 1b. Consider u ∈ N (v) s.t. u beeps (resp. listens)
for rC(v, p)− 1. We prove v detects u’s beep (resp. u detects v’s beep). The faster
node of the pair (u and v) is stalled by the slower node. When the slower node
first simulates rC(v, p) − 1 in a phase p′ < p, the faster node w is still simulating
rC(v, p) − 1 because next(w, p′) is false. Thus, in p′, v detects u’s beep (resp. u
detects v’s beep). By the IH, any beep heard is correct.
(⇐) follows from the fact that beeps are transmitted to neighboring nodes only and
because of the manner in which the last three slots are used (and non participating
nodes do not use them).
Since all previous actions done by v were correct and part 1a of the IH holds (for
phase p), part 1c of the IH holds.

Finally, let us prove part 2 of the IH. Suppose next(v, p) = false. We know
v’s action for rC(v, p) − 1 in phase p − 1 is correct, by part 1a of the IH or part
2 of the IH (depending on next(v, p − 1)). Since the action chosen by v for round
rC(v, p)− 1 does not change, part 2 of the IH holds.

Theorem 28. The outputs of P and Psim are identical.

Finally, let us prove that the round complexity of Psim, Rsim, is close to R, the
round complexity of P. Theorem 29 states that using EBET impacts the round
complexity by a small multiplicative factor only. It should be noted though, that R
is dependent on the Li-synchronization points. Indeed, P might be slowed by the
synchronization points (due to the “global” resynchronization process). However,
when each original Li-phase’s round complexity is bounded independently of a
parameter (in particular, the diameter D), R is independent of that parameter,
and Rsim is also independent of that parameter.

Theorem 29. Let Rsim be the round complexity of Psim and R be that of P. Then
Rsim = O(R).

Proof. First, there is a constant factor (here 11) between the number of rounds
and the number of simulation L1-phases in Psim. Thus, we compare the number of
simulation L1-phases in Psim and the number of rounds in P.
Let L be any given original L1-phase of P. Let w be the node which takes the most
rounds to end L, that quantity being rw. In Psim, for any given node, at most rw
simulation L1-phases are used to simulate L. This holds for all original L1-phases,
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and starting the next L1-phase takes a constant number of simulation L1-phases.
Moreover, P uses Li-synchronization points at the end of every original Li-phase,
thus its round complexity R is the sum of the round complexities of all original
L1-phases. Consequently, we have Rsim = O(R).

4.8 Summary
A brief description of this chapter follows.

• First, in Section 4.2, we present a (2, O(logN))-ruling set algorithm and intro-
duce a tool for analyzing competition algorithms: the labeled "deterministic"
competition graphs. Using such graphs in algorithm analysis is inspired by
[66]. Here we adapt this technique to the case of deterministic competition
algorithms. In particular, the ruling set algorithm is a deterministic competi-
tion algorithm and its analysis rely on the labeled deterministic competition
graphs. This general tool may be useful also in future studies of MIS and
coloring.

• Then, we present a series of uniform MIS and coloring algorithms in Sections
4.3 through 4.5.

– First, we present O(∆2 logn+ ∆3) deterministic uniform algorithms for
MIS and (∆ + 1)-coloring, where ∆ is the unknown maximum degree
(Section 4.3). These algorithms are time optimal for bounded degree
graphs. They also scale well to graphs with polylogarithmic ∆. Indeed,
in these graphs, the time complexity is polylogarithmic with regards to
n, which is very efficient.

– Then, we extend the previous algorithms with time complexity depen-
dent on ∆, to algorithms with time complexity dependent on the arboric-
ity a (Section 4.4). We get O(a2 log2 n+a3 logn) time MIS and (∆ + 1)-
coloring uniform algorithms. This results in efficient polylogarithmic
time complexity for the large family of graphs where a = O(logc n).

– Finally, we extend the previous algorithms intoO(a2∆2 log2 n+a3∆3 logn)
time 2-hop coloring and 2-hop MIS uniform algorithms (Section 4.5).

• In Section 4.6, given a 2-hop coloring, we prove that the CONGEST model can
be simulated with an O(∆4) multiplicative overhead. Using this simulation
and the algorithm proposed in [13] for the CONGEST model, we get an
O((a2∆2+aµ∆4)·log2 n+a3∆3 logn) time O(a)-coloring algorithm in BEEPS ,
for any given positive constant µ < 1. To the best of our knowledge, this is
the first coloring algorithm using less than ∆ + 1 colors in BEEPS .

• Finally, in Section 4.7, we prove that the Balanced Execution Technique can be
extended to guarantee Li-synchronization points for any i ≥ 1. The extension,
referred to as EBET, is crucial in the design of complex uniform algorithms
in BEEPS . In particular, all uniform vertex coloring algorithms presented in
this chapter cannot be implemented with L1-synchronization points only.
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Chapter 5

Optimal Leader Election
Algorithm

In this chapter, we are interested in interference control on a global scale (in the
synchronous starts setting). For that reason, we consider leader election which is
a global scale symmetry-breaking problem. Once a leader is elected, it can force
network-wide coordination in order to avoid or take advantage of collisions. This
is illustrated in the next chapter, where the leader is essential in implementing the
multi-broadcast primitive.

Traditionally, leader election solutions rely on relatively large messages (i.e., of
O(logn) size). Recently, however, [25] assumed only 1-bit messages and proposed
the first optimal (O(D+logn) rounds) deterministic leader election solution in this
setting. Compared to 1-bit messages in a model without interference, as considered
in [25], beeps appear to be a weaker communication mechanism. Therefore, a
natural question is whether a time-optimal (O(D + logn) rounds) deterministic
leader election solution can also be obtained in the beeping model. We answer
this question positively in this chapter. To do so, we do not use local symmetry-
breaking primitives to avoid collisions and ensure that nodes can communicate
large messages (i.e., IDs) reliably to their neighbors. Instead, nodes exchange a
small amount of collision-tolerant information, by utilizing the strong degree of
synchronization (global clocks) and non-destructive interference, provided by the
model. More precisely, when nodes hear a beep (possibly a collision) in some round
r, the information received is the round number r1. This technique allows nodes to
efficiently compare IDs in a pipeline-like manner.

5.1 Introduction

The leader election (LE) problem, where a single (leader) node is given a distin-
guished role in the network, is a fundamental building block in algorithm design.
This is because a leader can initiate and coordinate behaviors in the network, often
making leader election a crucial first step in applications requiring communication
and agreement on a global scale. For example, more advanced communication
primitives such as broadcast, gossiping and multi-broadcast, rely on a leader to
coordinate transmissions [40] (see also Chapter 6).

Being a fundamental coordination problem, leader election has received a lot of
attention (see Section 5.1.1) in the beeping model. Probabilistic and deterministic

1Notice that some degree of synchronization between neighboring nodes is crucial for this to
work. Indeed, this technique does not work in the uncoordinated starts setting.
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(non-optimal) solutions were proposed for general graphs, and a time complexity
lower bound of Ω(D+logn) was established (D is the diameter of the network, and
n its size). We show in this work that an asymptotically time-optimal deterministic
algorithm can be designed. This algorithm gives rise to an anonymous (not using
IDs) randomized algorithm that also matches the lower bound (Section 5.4.1).

Deterministic Uniform Leader Election and α-identifiers. We remind that
the α-encoding [25] of an integer i ∈ N>0 is a word obtained from the binary
representation bin of i. By definition, α(i) = 1|bin| ‖ 0 ‖ bin (see Section 2.2). In
the leader election solution presented in this chapter, instead of IDs, nodes compare
their α-encodings (α-IDs). As a result, the leader election solution compares binary
words instead of integer values. Importantly, a word x is well-formed if there exists
an integer i such that x = α(i). This integer can be obtained by taking the last
b |x|2 c bits of x. Additionally, it is simple to prove that for every word x, there is
at most one such integer i. Thus the α−1 function (α’s “inverse”) is defined on
well-formed words.

5.1.1 Specific Related Work

Leader election (LE), being a fundamental problem in distributed computing, has
been studied in various models. In particular, recent models designed for wire-
less networks assume that simultaneous communications interfere with each other.
Consequently, leader coordination is even more important in these models.

Even though computational complexities (in particular time complexity) for LE
are key aspects in the algorithmic design, additional properties are also of concern:
for example, one might want nodes to detect termination, or to ensure that there
is never more than one leader node during any execution (safety property).

Related Work in BEEPS Ghaffari and Haeupler [60] present the first LE algo-
rithm for BEEPS , which elects a leader in O(D+logn) ·O(log2 logn) rounds w.h.p.
[60] also gives a lower bound of Ω(D+ logn) rounds for LE, applicable both to de-
terministic and randomized (w.h.p. time) algorithms. This bound can be compared
to the Ω(D) lower bound in the CONGEST model [76]. CONGEST differs from
BEEPS in that any given node can send (different) messages of O(logn) bits to each
of its neighbors during a round. When nodes receive messages, there are no colli-
sions and they can distinguish from which edge they received a particular message.
Intuitively, since a beep can convey at most one bit, additional Ω(logn) rounds
are necessary [83, 25, 47]. Following the result from [60], Czumaj and Davies [39]
presented a randomized LE algorithm with O(D+ logn) expected time in BEEPS .
In both randomized algorithms, the safety property is guaranteed w.h.p., but some
upper bound N on the number of nodes n is required. As for deterministic LE,
Förster et al. [58] give the first algorithm in BEEPS , with an O(D · logn) round
complexity. This algorithm is uniform in both n and D. The round complexities
of different LE algorithms, including those presented in this work, are compared
below (see Table 5.1).
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We remind that upper bounds in BEEPS apply to the radio network model with
O(logn) bit messages and collision detection (since algorithms designed in BEEPS
can be straightforwardly translated to this model). For instance, [60, 58] give the
best randomized (w.h.p.) and deterministic results for the radio network model
prior to our work.
Importantly, for both models, these previous results are not tight, especially for
deterministic leader election.

Table 5.1 – LE algorithms in the beeping model

Reference Round complexity Safety Knowledge

[60] O(D + logn) ·O(log2 logn) w.h.p. w.h.p. N = nc

[58] O(D · logn) deterministic time Deterministic None
[39] O(D + logn) expected time w.h.p. N = nc

Our work O(D + logn) deterministic time Deterministic None
Our work O(D + logn) w.h.p. w.h.p. N = nc

Related Work in CONGEST with 1-bit Messages. Amongst the extensive
leader election literature in other models, Casteigts et al. [25] is particularly rele-
vant to this work. [25] proposes an O(D + logn) time deterministic LE algorithm
in the constant-size CONGEST model, where the algorithm is uniform in both the
number of nodes n and the diameter D. This model is much stronger than BEEPS ,
in that a node can easily learn its local topology and has direct links to commu-
nicate with its neighbors, whereas the absence of such links in the beeping model
causes interference and makes directed messages (with known sender and receiver)
unachievable or plainly inefficient. Notice that by using a 2-hop coloring and by
separating in time the transmission of messages according to the colors of both the
sender and receiver (as shown in Section 4.6), the constant-size CONGEST model
can be simulated, but with a prohibitive multiplicative factor of O(∆4) (where ∆
is the maximum degree).
Nevertheless, one of the main contributions of [25] is a rooted (in the maximum ID
node) spanning tree construction and an information diffusion algorithm, designed
to spread the maximum identifier efficiently, in a pipeline-like manner (rather than
performing consecutive local comparisons on complete identifiers). This latter shift
is crucial to the time-optimality of their algorithm, and is used here to improve on
the O(D · logn) result from [58].

5.2 Uniform Eventual Leader Election

The algorithm (Algorithm 9) is described first (Section 5.2.1). Then, in Section
5.2.2, k-balanced messages are presented. They are used to allow constant-size
communication phases composed of rounds and dedicated to the communication of
(large) messages respecting local constraints. Using the k-balanced message tech-
nique, a detailed description of the communication phases (appearing in Algorithm
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9) is given in Section 5.2.3. Finally, in Section 5.2.4, we relate the presented tech-
niques to existing works in CONGEST models.

5.2.1 Description

Algorithm 9 Uniform Eventual Leader Election Algorithm
1: IN: id: identifier
2: OUT: leader: boolean, leaderId: identifier
3: candidate := true, prefix := ε, suspicious := false . ε is the empty word
4: leaderId := 0, leader := false . id and leaderId are IDs, from {1, . . . , N}
5: for diffusion phase p := 1 ; p++ do
6: // First, a communication phase with c rounds.
7: Communicate (prefix, suspicious) to all neighboring nodes.
8: // Then, apply predicates of rules 1 to 5 on received
9: // (prefix, suspicious) pairs.
10: Use received (prefix, suspicious) pairs to update prefix, candidate and
11: suspicious
12: if not candidate then
13: leader := false
14: else if prefix = α(id) then
15: leader := true
16: if prefix is well-formed then
17: leaderId := α−1(prefix)

All nodes aim to spread their α-ID (α(id) in Algorithm 9) to the whole network
(information diffusion algorithm). They execute loosely synchronized bit-wise com-
parisons and propagate the bits of the highest detected prefix (of α-ID). All nodes
start out as candidates, with two variables: prefix and suspicious. The binary
word prefix is initialized to the empty word ε and represents the prefix of an α-ID.
Most of the time, it represents the highest prefix of which the node is aware. Each
node adapts its prefix by adding or removing the less significant bits, depending
on the information gathered. The boolean suspicious is initialized to false and
indicates whether the node removed bits from prefix in the last phase.

Nodes execute diffusion phases (of c rounds each) synchronously. A diffusion
phase consists of one communication phase of c = O(1) rounds (line 7), used to
send prefix and suspicious to all neighbors, followed by a (limited) modification
of prefix. Depending on the newly computed prefix value, nodes decide on the
outputs of leader and leaderId.

Communication Phase. The communication phase is described in detail in Sec-
tion 5.2.3. In the same phase, each node receives (prefix, suspicious) pairs from
its neighbors, but does not know which node sent which message, nor how many
nodes sent any of these messages (multiplicity).
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Limited Modification of prefix. After the communication phase, any node v
checks if prefixv is a locally greater prefix, using the received pairs (see details
below) and the previously gathered information. If this is the case, it appends a bit
from its α-ID to prefixv (if prefixv is a proper prefix of α(idv)), or does nothing
(if prefixv = α(idv)). Otherwise, it modifies prefixv depending on the highest
detected prefix value, and becomes a follower. It can no longer become a leader.
If that modification removes bits from prefixv, node v is said to be suspicious for
the following phase, and suspiciousv is assigned to true for one phase.

The five rules below, inspired from [25], associate conditions (predicates) to
actions. A predicate evaluated to true triggers the associated action. In line
10, these predicates are evaluated (by some node v) on the set of the received
(prefix, suspicious) pairs, in the given order of priority, and the first triggered
action is performed.

1. If there exists a suspicious neighbor u, such that prefixu is a proper prefix
of prefixv, remove min{|prefixv| − |prefixu|, 3} letters from the end of
prefixv.

2. If prefixv = (z ‖ 0 ‖ w) with w 6= ε and there exists a neighbor u with
prefixu = (z ‖ 1 ‖ y), delete |w| letters from the end of prefixv.

3. If prefixv = (z ‖ 0) and there exists a neighbor u with prefixu = (z ‖ 1 ‖ y),
then change prefixv to (z ‖ 1).

4. If there exists a neighbor u with prefixu = (prefixv ‖ 1 ‖ w) then append
1 to prefixv.

5. If there exists a neighbor u with prefixu = (prefixv ‖ 0 ‖ w) then append
0 to prefixv.

If any of the predicates (of the rules 1-5) is true, prefixv is not a locally greater
prefix. Indeed, if a neighbor u (of v) is suspicious and prefixu is a proper prefix
of prefixv, then a neighbor of u has a greater prefix than prefixv, or is changing
its prefix according to rule 1 above. By deleting the last bits of prefixv, node v is
matching prefixv to an unknown but greater prefix. In all 4 other cases, prefixu is
clearly a greater prefix than prefixv, therefore prefixv modifies (a limited amount
of) its last bits to more closely match prefixu.

Deciding the Output. Additional local computations in lines 12-17 conclude
a diffusion phase. Once a candidate’s prefix variable is well-formed (i.e., once
idv = α−1(prefixv)), this node becomes a leader. If in later rounds it becomes
a follower, then it withdraws from the leader role. Although this process violates
the safety property, it is necessary in order to elect a leader, as the last remaining
candidate cannot detect that it is the last, due to the lack of termination detection
in this preliminary eventual LE version.
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Analysis. The 5 rules described above are an idea adopted from [25]. Thus the
described information diffusion process satisfies Lemma 30 and Theorem 31 below,
adopted from the results of [25] and adapted here to our beeping algorithm (see
Section 3.1.4 for more details).

Lemma 30 (Beeping version of Lemma 8 in [25]). Let u and v be two neighboring
nodes. Then, prefixu and prefixv are identical, except in at most 6 (least signifi-
cant) bits: without loss of generality, from the |prefixu|th bit (possibly included) to
the |prefixv|th bit.
Note that if the |prefixu|th bit differs in prefixu and prefixv, then ||prefixu| −
|prefixv|| < 6

Theorem 31 (Beeping version of Theorem 10 in [25]). Let X be the maximum
identifier. After |α(X)|+6r phases of the information diffusion algorithm, all nodes
within distance r (for any r ≥ 0) from the node with ID X have prefix = α(X).
Thus, after at most |α(X)| + 6D phases, for each node v, prefixv = α(X), and
there is a unique candidate node.

Proof. Let l be the maximum ID node. We prove the theorem by induction on r.
Node l has the maximum identifier X, thus it appends a bit from α(X) in each
diffusion phase. After |α(X)| phases, prefixl = α(X). This concludes the case
when r = 0.
For the induction step (r > 0), consider any given node u at distance r+ 1 of node
l, and one of its neighbors v at distance r from l. By Lemma 30, prefixu and
prefixv differ in less than 6 bits. After |α(X)|+ 6r phases, since prefixv = α(X)
(induction hypothesis), node v does not modify prefixv and node u necessarily
corrects (removes, changes or adds) at least one of prefixu’s bits in each of the 6
following phases, until prefixu = α(X).

Recall that a communication phase is composed of c = O(1) rounds (c is defined
in Section 5.2.3). This implies the following theorem.

Theorem 32. Uniform Eventual Leader Election is solved by Algorithm 9 in O(D+
logn) rounds (in BEEPS).

Proof. Let v be any given node and X the maximum identifier in the network.
From Theorem 31, prefixv = α(X) after O(D + logn) phases. Nodes have the
leader’s identifier by applying the α−1 function. Moreover, the maximum ID node
is well-formed after |α(X)| = O(logn) phases, thus after O(logn) rounds. As a
result, the maximum ID node is, and remains, a leader henceforth.

5.2.2 Balanced messages

A basic design technique called multi-slot design pattern [23], allows to communicate
constant-size messages without the sender’s ID nor multiplicity, given a synchronous
start. It works in communication phases of M rounds, if at most M different mes-
sages (in {1, . . . ,M}) are allowed. Beeping in the jth round of a phase is equivalent
to sending the message j. However, receivers cannot detect which (and how many)
nodes sent that message. Thus, due to the beeping model’s restrictions, if a node
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sends a message m, it receives no information about whether any of its neighbors
also did.

Clearly, this design technique cannot be used to directly send prefix values, as
these values are in {1, . . . , N}, and communication phases would be O(N) rounds
long. But this technique can be adapted to send the values of a locally constrained
(k-balanced) variable. A variable var is said to be k-balanced if it satisfies the
k-balancing property, that is, if the difference between neighboring var values is at
most k (for every node v and neighboring node u, |varu − varv| ≤ k).

If one wishes to communicate k-balanced messages, then it is enough to convey,
for a message m, the remainder r = m mod(1 + 2k), using the previous technique,
with phases ofM = 1+2k rounds (where k is known a priori to all nodes). Then, the
receiver knowing at the same time its own remainder, the sender’s remainder and
the fact that the messages are k-balanced, can deduce the originally sent message
(but does not know if multiple nodes have sent this message). Specifically, let v be
the receiver and u the sender. Node v deduces the original message mu from the
received remainder message ru: mu = mv + ru − rv − b ru−rvk+1 cM .

Received remainder ru =

mu −mv =
(ru − rv)− b ru−rvk+1 cM

Decoded message mu =

’0’ ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’

-1

18

-4

15

-3

16

-2

17

v

19

+1

20

+2

21

+3

22

+4

23

Figure 5.1 – Communication of k-balanced messages, where k = 4 and M = 9. The
executing node v, and its message value mv, are highlighted. If v receives a message
ru = 3, it is able to deduce that the corresponding message mu is 21.

Consider the example depicted in Figure 5.1 for k = 4. For a given node
v, any message mu sent by a neighboring node u is in {mv − k, . . . ,mv + k}. By
conveying the remainder ru = mu mod(1+2k), node u indicates whether its message
mu is in the next 4 values or in the previous 4, respectively to mv, and the exact
position amongst the 4 possibilities (more precisely, through ru−rv). The remaining
−b ru−rvk+1 cM factor deals with the fact that some lower (thanmv) messagesmu result
in a high remainder ru, and some higher messages mu in a low remainder ru, due
to the modulo operation. Node v can deduce the message mu by using all of this
information, along with its own message mv.

The k-balanced message technique is of independent interest, and allows efficient
algorithm design when nodes communicate locally-similar values.

5.2.3 Designing constant-size communication phases

In this section, we show that by applying the balanced messages approach, using
only O(1) beeping rounds, a node can deduce its neighbors’ prefix values (and
whether some of them are suspicious), even though there are O(N) different possible
values of prefix.
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From Lemma 30, we know that |prefix| is a 6-balanced variable. Moreover, two
neighboring nodes have similar prefix values, which differ only in (at most 6 of)
the last bits. Therefore, if a node can learn the last 6 bits of a neighboring prefix,
and their exact positions, then it can fill up the empty bits (in more significant
positions) using the bits from its own prefix. To learn that, one could use two
consecutive communication subphases: the first communicates the position of the
last bit (which is |prefix|, a 6-balanced variable) in a subphase with 13 rounds, and
the second communicates an ending message with the last 6 bits (using a message
from {1, . . . , 26}, encoding all possible 6 letters combinations), in a subphase with 64
rounds. However, this does not work in BEEPS because one needs to know, for every
different ending message sent by neighbors, the corresponding position of the last bit
(thus the corresponding position message). Although this is trivial in CONGEST ,
because messages from different neighbors are received on different edge ports, it is
too costly to simulate this functionality in BEEPS (see Section 5.1.1). Fortunately,
as the message space is constant-size in both of these communication subphases,
the Cartesian product of both message spaces is also constant-size. This allows
to associate position and ending messages, using O(1) rounds, even in BEEPS .
Consequently, communication phases with 832 rounds (for messages in {1, .., 13} ×
{1, . . . , 26}) are needed to communicate enough information for a node to deduce
all neighboring prefix values.

On top of that, the nodes also need to communicate the boolean suspicious. For
this reason, the message space is adapted to {1, .., 13}×{1, . . . , 26}×{false, true}.
This results in communication phases (introduced in Algorithm 9, Section 5.2.1) of
length c = 1664 rounds, which although large, is still O(1) size.

5.2.4 Remarks on the eventual leader election algorithm

As mentioned in the related work (Section 5.1.1), [25] is particularly relevant to our
work. In this section, we discuss this in detail.
The structure of the information diffusion algorithm is essentially the same. The
algorithm progresses in diffusion phases, consisting of a communication phase (cor-
responding to a single round in the considered CONGEST model) where nodes send
their (prefix, suspicious) values, after which nodes change their prefix variable de-
pending on the (prefix, suspicious) pairs received. Recall the 5 rules presented in
Section 5.2.1: the set of the different possible changes for the prefix variable is of
a constant size, and these changes are meant to affect at most a constant number
of (the last) bits of prefix. An important point in [25] is the proof that this set of
changes allows the maximum identifier to spread over the network, in an optimal
O(D + logn) number of phases. We use the same constant-size set of changes (for
prefix). That is why Lemma 30 also applies to our algorithm.

However, the other core element of their information diffusion algorithm, the
communication phase, cannot be used in BEEPS . In [25], nodes maintain up-to-
date copies of the prefix variables of their neighbors to circumvent the limited
message size and can keep these copies up-to-date in a single communication phase
of O(1) rounds. In such a phase, nodes communicate what change was carried out
(and which neighbor sent which message): sending the type of change is equivalent
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to sending the complete prefix value in this situation. In BEEPS , nodes are un-
able to know which neighbor sent which message. Although this capability can be
simulated, it is unlikely that it can be done without increasing the time complexity
of [25]. Current methods result in an O(∆4) multiplicative factor (see discussion in
Section 5.1.1).

One of the main contributions of this work is the introduction of the k-balanced
message method to leverage the local constraints between (unbounded) values,
which allows to communicate in O(1) rounds. With the k-balanced message tech-
nique, a node can convey a value of prefix to its neighbors in O(1) rounds (of
BEEPS) only. This communication process differs greatly from that of [25].

5.3 Uniform Terminating Leader Election (Explicit LE)
Being often used as a primitive, the LE algorithm must be uniform and detect ter-
mination (e.g., so that it can be composed with other algorithms). Since classical
approaches are not suited to BEEPS , we propose an explicit leader election algo-
rithm using a different termination detection approach. Notice that, as mentioned
previously, it is simple (in a synchronous setting) to transform the uniform eventual
leader election algorithm, Algorithm 9, into a non-uniform one using knowledge of
D and N , and thus of the time complexity expressed in terms of these parameters.
Then, candidates can wait until the algorithm terminates, by counting rounds cor-
responding to the evaluated time complexity. However, this technique cannot be
used here.

Instead, we use a primitive called overlay networks. We briefly describe it in
Section 5.3.1. Then, in Section 5.3.2, an adapted version of this primitive is used to
create a uniform termination detection component. This component is combined
with the previously presented eventual leader election algorithm to obtain uniform
explicit leader election.

5.3.1 Overlay network

The overlay network approach, in the context of leader election, was first used
for BEEPS in [58]. Such an overlay has a designated root, and consists of layers
centered around the root. Nodes at a distance d from that root (level d), have up
links (resp. down links) towards all neighboring nodes (of the overlay) at distance
d − 1 (resp. at distance d + 1) from the root. Using these (virtual) links, the root
can gather information about the network and disseminate it. The default behavior
for non-root overlay nodes is to relay any beep received over an up (resp. down)
link in some phase p, to all down (resp. up) links in phase p+ 1.

Overlay Phases. In more detail, overlays work in the following way. Time is
divided into overlay phases of 9 rounds, where each phase consists of 3 subphases of
3 rounds each. The first 3 rounds are called control rounds, the next 3 - up rounds
and the last 3 - down rounds. Each set of 3 rounds is numbered from 0 to 2.

When nodes join the overlay, they initialize a depth variable (in {0, 1, 2}),
through which they know some information about their layer (and thus how to
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communicate with the other layers). The root node joins the overlay at a given
time, and assigns itself depth := 0. The other nodes willing to join the overlay listen
in all control rounds. Since overlay nodes beep in the control round depth (in all
overlay phases), the joining nodes assign themselves depth = beepHeard+1(mod3),
where beepHeard is the smallest control round in which a beep was heard.

Satisfying Local Constraints. It is important that the depth variable satisfies
some local constraints, to be guaranteed by the joining process. More specifically, for
any distance d and for any given (overlay) node v in level d, all neighboring (overlay)
nodes u in level d− 1 (resp. in level d+ 1) must have depthu = depthv − 1 (mod 3)
(resp. depthu = depthv + 1 (mod 3)), where −1 (mod 3) = 2.

With this property, nodes can listen over an up link (resp. down link) by
listening in up (resp. down) round depth − 1 (mod 3) (resp. depth + 1 (mod 3)).
Moreover, nodes beep over an up link (resp. down link) by beeping in up (resp.
down) round depth (mod 3). In other words, communication through up and down
links is the same as sending, or listening for, a depth message (using the multi-
slot design pattern from [23], described in Section 5.2.2) using the corresponding
subphase (a message from Mdepth = {0, 1, 2}).

5.3.2 Termination detection component for explicit leader election

We describe the proposed termination detection component and its interactions with
the eventual leader election algorithm (Algorithm 9). The termination detection
component is meant to gather information from the whole network, on whether
there are any candidates with a greater α-ID. If there are none, the last candidate
terminates and becomes leader. The combined final algorithm structure is given in
Algorithm 10.

As in Algorithm 9, time is divided into diffusion phases, but these phases
now include an additional termination detection phase. A termination detection
phase consists of a border detection phase followed by an adapted overlay phase.
The border detection phase is a communication phase for messages in Mprefix =
{1, .., 13} × {1, . . . , 26}, where nodes can detect if any of their neighbors has a dif-
ferent prefix value (similar to the communication in Section 5.2.3). If that is the
case for an overlay node (even the root) which has been part of the overlay for more
than 6 phases, this node becomes a border node (i.e., there exists a neighbor with a
different prefix value). The adapted overlay phase is a communication phase with
3 subphases, each for messages in Mdepth×Mprefix. Each adapted overlay network
is associated to a specific prefix (i.e., that of the overlay’s root, necessarily a can-
didate node). This prefix is used (communicated) so that nodes can detect whether
the other endpoint of a down link or up link, is part of the same overlay (i.e., has
the same prefix). Consequently, different overlay networks do not interfere with
each other. A border detection phase has |Mprefix| rounds and an adapted overlay
phase has 9|Mprefix| rounds, thus a termination detection phase has s = 10|Mprefix|
rounds.
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Algorithm 10 Uniform Terminating Leader Election Algorithm
1: IN: id: identifier ; OUT: leader: boolean, leaderId: identifier
2: candidate := true, prefix := ε, suspicious := false . ε is the empty word
3: leaderId := 0, leader := false
4: for diffusion phase p := 1 ; p++ do
5: // First, a communication phase with c = O(1) rounds.
6: Communicate (prefix, suspicious) to all neighboring nodes.
7: // Then, apply predicates of rules 1 to 5 on received
8: // (prefix, suspicious) pairs.
9: Use received (prefix, suspicious) values to update prefix, candidate and

10: suspicious.
11: // Finally, termination detection phase with s = O(1) rounds.
12: Execute a termination detection phase.
13: if candidate and prefix = α(id) then
14: If no beep is heard in down links, exit the loop.
15: else
16: If a beep is heard in up links, exit the loop.
17: leaderId := α−1(prefix)
18: if candidate then
19: leader := true . Last candidate becomes the leader

High-Level Description. Upon having a well-formed prefix, each candidate
designates itself as root and starts constructing an overlay network by using the
termination detection phase. Nodes which have just joined the overlay and border
nodes beep in their up links (relayed all the way back to the root) using the adapted
overlay phase. As a result, the root hears beeps in its down links in each (termi-
nation detection) phase, until the overlay network covers the whole graph (Lemma
34). Moreover, the only overlay that can cover the whole graph is the overlay of the
highest α-ID node (because this node never changes prefix depending on another
node’s α-ID, and consequently never joins another candidate’s overlay). Therefore,
when the root hears no beeps in its down links (and is not a border node), it knows
that its overlay covers the whole graph, and that it is the highest α-ID node (thus
the maximum ID node). All other roots hear beeps in down links (or become border
nodes), until their prefix is changed.

Detailed Overlay Construction. In more detail, the construction of the adapted
overlay networks is done as follows. Once a candidate node has a well-formed prefix
(after exactly |α(id)| diffusion phases), it sets itself up as an overlay’s root (in phase
p = |α(id)|), but it stays silent for 6 termination detection phases (from phase p to
phase p + 5) before beeping in the control rounds of phase p + 6 (and only in this
phase). On the other hand, follower nodes with a well-formed prefix attempt to
join the overlay corresponding to prefix right away. Once a follower node joins an
overlay (in phase p′), it also stays silent for 6 termination detection phases before
beeping in the control rounds of phase p′ + 6.

For any given node v that joins an overlay in termination detection phase p′,
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its neighbors know if they join v’s overlay or not, by phase p′ + 6 at the latest (by
Theorem 31). By staying silent for 6 termination detection phases upon joining, v
ensures that all of its neighbors join the overlay at the same time (if they choose
to join). Consequently, two nodes u and v, at the same distance d from an over-
lay’s root r, never join r’s overlay in different termination detection phases, and
depthu = depthv. Otherwise, we could have depthu 6= depthv, which means a com-
mon neighbor of u and v at distance d− 1 from r would not have properly defined
down links.

Lemma 33. Let r be the root of an overlay network. This overlay is properly
constructed, that is, nodes at level d have the same depth value.

Proof. Let us prove by induction that if a node at distance d from r joins r’s overlay,
then it is in phase |α(idr)| + 6d. Let us first consider a node v at distance 1 from
r. For node v to join r’s overlay, another overlay node must beep in the control
rounds and prefixv must be equal to α(idr), in the same phase. Notice that for
any given two neighbors u and v, which are in different overlays, both nodes beep
in different control rounds, because prefixu 6= prefixv.
In phase |α(idr)| + 6, r beeps in the control rounds, and thus v can join in that
phase (if prefixv = α(idr)). In addition, if prefixv 6= α(idr) in phase |α(idr)|+ 6,
then by Theorem 31, node v does not consider α(idr) as the highest prefix value
it has encountered. As a result, it is impossible that prefixv = α(idr) after phase
|α(idr)|+6, and that v joins r’s overlay after phase |α(idr)|+6. The induction step
(d > 1) is similar, starting from a node v at distance d from r.

Overlay Property. Because the adapted overlay networks are properly con-
structed, we can prove that as long as an overlay has not covered the whole network,
follower nodes beep in their up links, stopping the root from becoming a leader.
In more detail, after a candidate node beeps in the control rounds, it listens to
its down links in every termination detection phase. As long as it hears a beep in
these links, or is a border node, it does not become leader. Once no beep is heard,
it becomes leader, sends a beep in its down links and terminates. On the other
hand, after a follower node joins the overlay (in phase p), its beeps in its up links
in the first 7 termination detection phases (from phase p to phase p + 6). It also
beeps in the up links if it is a border node (and relays any beep heard through a
down link). Finally, when a follower node hears a beep in its up links, it terminates.
Consequently, before an overlay network covers the whole network, the root receives
beeps in every (termination detection) phase.

Lemma 34. Let r be the root of an overlay network. Then from diffusion phase
|α(idr)| + 6 onwards, node r hears beeps in its down links every phase, until it
becomes a border node itself, or until its overlay covers the whole network.

Proof. Let r be the root of an overlay network. From Lem. 33, r’s overlay network is
properly constructed, therefore the virtual links can be used. We define a (overlay)
downwards path from node v to node u, as a sequence of down links starting in v
and ending in u. A node u is downwards reachable from node v if there is an overlay
downwards path from v to u.
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Consider a follower node v, having just joined r’s overlay (in phase p). Node v
beeps in its up links for 7 termination detection phases after it joins (from phase
p to phase p + 6). For each additional level in the overlay with nodes downwards
reachable from v, v beeps in its up links during 7 additional termination detection
phases (by relaying beeps heard in its down links, to its up links). Although the
next layer (node u) is one further hop away from the root, and starts beeping in
phase p + 6, v beeps during phase p + 6 (7th termination detection phase after it
joins) and relays u’s first beep in phase p+7. Consequently, there is no interruption
in beeps sent through the up links. If an overlay node becomes a border node (some
of its neighbors do not join in phase p + 6), then it beeps in up links in all phases
p′ > p+6. If it exits the overlay, then its neighbors closer to the root become border
nodes and beep in their up links. Therefore, the root keeps hearing beeps in its
down links while levels are added to its overlay, but also if one of its overlay nodes
becomes a border node. In that latter case, the root does not have the maximum
ID, and hears beeps in its down links until it becomes a border node itself.

Theorem 35. Explicit Leader Election is solved (uniformly) in O(D+logn) rounds
in BEEPS.

Proof. The maximum identifier node v starts to construct its overlay network in
phase |α(idv)| + 6, which is O(logn). For any given node u 6= v, prefixv never
modifies its bits to match prefixu. Consequently, v never joins u’s overlay and v’s
overlay is the only one to grow until it covers the whole network, at a rate of adding
a level every 6 diffusion phases. Thus, v’s overlay covers the whole network after an
additional O(D) diffusion phases. Node v hears beeps in its down links for another
additional O(D) phases, since beeps from the last nodes to join the overlay take
O(D) rounds to reach v. After that, node v no longer hears beeps in its down links
(Lemma 34) and is the only node in the network to terminate as leader. Then, it
beeps in its down links, so that all nodes can terminate.

5.3.3 Discussion and Perspectives

The deterministic LE algorithm presented in Sections 5.2 and 5.3 works without
any change with an arbitrary (unbounded) ID space {1, . . . , U}. In this case, its
round complexity is O(D + logU). For an unbounded ID space, a known result
from distributed bit complexity [47] gives a lower bound of Ω(logU) for a network
with two nodes. This implies a lower bound of Ω(D+logU) for multi-hop networks.
Consequently, the presented algorithm is asymptotically time-optimal even with an
unbounded ID space.

Furthermore, the algorithm can be modified to work when starting with only a
subset of nodes as candidates, or when the IDs are not unique, as long as the highest
ID is still unique2. Since a set of (non-unique) IDs with a unique maximum can
be generated without knowing n or N [81], this last variant can then be applied to
obtain a randomized uniform (in both n and D) eventual leader election algorithm.

2With non-unique ids, only eventual leader election can be guaranteed.
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5.4 Additional Results

LE is an important and often-used primitive when designing distributed algorithms.
Thus, it makes sense that improving the time complexity of LE results in improved
time complexities for other tasks. We propose improved algorithms for leader elec-
tion in anonymous networks and MIS and coloring (in trees).

5.4.1 Randomized Leader Election

When dealing with communication-restrictive models such as BEEPS , anonymity
is especially important from an application viewpoint. Indeed, when considering
large scale dynamic wireless networks, it might not be economically feasible to
equip all nodes with unique identifiers. Additionally, nodes might be prevented
from revealing their unique IDs (explicitly or through their actions), due to privacy
or security concerns [97]. For this case, a deterministic algorithm assuming unique
identifiers can be adapted into a randomized one (w.h.p. time and safety guarantees)
for anonymous networks, as stated in [60]. Indeed, one can generate a unique ID
w.h.p. by independently sampling θ(logn) bits. But in return the knowledge of the
network size n or at least some polynomial upper bound N = O(nc), is required.

However, it is also possible to obtain a (slighly less efficient) randomized uniform
(in both n and D) solution. Indeed, the deterministic leader election algorithm
still works correctly if nodes’ identifiers are from a set of non-unique IDs with a
unique maximum ID. Using α-IDs instead of IDs does not affect this property.
It is shown in [81] that a set of (non-unique) IDs with a unique maximum can be
generated w.h.p. without knowing n or N . The lengths of these randomly generated
IDs are in expectation O(logn log∗ n), and w.h.p. O(logn(log∗ n)2), where log∗ n
is the iterated logarithm3. Therefore, the proposed deterministic leader election
solution combined with [81] results in a randomized uniform (in both n and D)
O(D+logn(log∗ n)2) eventual leader election algorithm (in which both success and
time complexity are guaranteed w.h.p.).
For a slightly different result, in which error probability is upper bounded by 1

n
rather than 1

nθ(1) , [81] shows a set of (non-unique) IDs with a unique maximum can
be generated (with probability 1− 1

n) in which the lengths of the randomly generated
IDs are O(logn) with probability 1 − 1

n . As a result, a randomized uniform (in n
and D) O(D + logn) eventual leader election algorithm can be obtained, in which
both success and time complexity are guaranteed with probability 1− 1

n .

5.4.2 MIS and 5-Coloring for Trees

It is well-known that given a leader in tree networks (elected using O(D + logn)
rounds), it is simple to 2-color the tree in O(D) supplementary rounds. However,
MIS and coloring have an Ω(logn) lower bound (even in tree networks, as the bound
from [94] holds for a graph of disconnected pair of nodes), so this O(D + logn) 2-
coloring algorithm is non optimal for most communication graphs. Still, using

3The iterated logarithm is defined recursively as: log∗ n = 1+log∗ log n if n > 1, and 0 otherwise.
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the proposed uniform leader election algorithm, we design uniform, asymptotically
time-optimal O(logn) MIS and 5-coloring algorithms in BEEPS , for tree networks.

We first give the algorithmic description of the 5-coloring algorithm. Roughly,
low degree nodes are colored first using 3 colors, and the remaining nodes form a
subgraph where the connected components have at most a logarithmic diameter.
Using the LE algorithm, these connected components can be 2-colored in a loga-
rithmic number of rounds. Now, we give more details as to how these steps are
achieved. First, the LimitedDegreeColoring algorithm presented in Section 4.4 is
used to 3-color all nodes v with deg(v) ≤ 2, in O(logn) rounds. Then, since all re-
maining nodes have a degree of at least 3, every remaining (non-colored) connected
component (a tree) has a diameter of at most logn. Thus, electing a leader for
each such connected component requires O(logn) rounds. It is well-known that, in
trees, coloring nodes according to their distance to the root can be done using 2
colors. This distance can be learnt by all nodes in O(logn) rounds. Specifically,
nodes are synchronized after the leader election, and the leader broadcasts a beep,
using a beep wave [60, 40] or reusing the overlay network from the leader election.
The phase in which a node receives the broadcasted beep indicates its distance to
the leader. Therefore the remaining non-colored nodes can be colored with another
2 colors, resulting in a 5-coloring for the communication graph.

From this 5-coloring, it is simple to compute an MIS in 5 additional rounds.
Nodes with the same color form an independent set. Adding iteratively (at each
round) nodes from each such set to a common independent set results in an MIS.
Consequently, an MIS on the communication graph can also be computed inO(logn)
rounds.

Notice that since all parts of the uniform 5-coloring algorithm are themselves
uniform, it is a bit tricky to force nodes to resynchronize during the sequential
execution. For this purpose, we use the EBET technique presented in Section 4.7,
to provide synchronization points in a uniform fashion - that is possible because,
for every component of the proposed algorithm, the terminal state at a node can
be detected locally - and thus solve the issue.

5.5 Summary

In a first part, we proposed a deterministic and completely uniform (in n and
D) leader election algorithm with an O(D + logn) asymptotically optimal round
complexity. Classical approaches used to solve leader election in CONGEST models
do not directly apply to BEEPS . Although they can be adapted using a transformer,
doing so is too costly in most communication graph topologies (see discussion in
the related work section: Section 5.1.1). To solve the strongest version of LE, the
explicit leader election (defined in Section 2.3), we proceeded in two main steps.
• First, in Section 5.2, we design a uniform algorithm for eventual leader elec-
tion by building upon the k-balanced message technique.

• Then, in Section 5.3, we combine this algorithm with a specially designed
uniform termination detection component to obtain a uniform explicit leader
election algorithm.
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In a second part, we showed how the proposed deterministic LE algorithm can
be applied to obtain additional results in Section 5.4.

• First, in Section 5.4.1, by independently sampling θ(logn) bits to create
unique identifiers w.h.p. and using the deterministic LE algorithm, we also
obtain a uniform (in D only) randomized leader election algorithm which
takes O(D + logn) rounds w.h.p. and works in anonymous networks. How-
ever, this solution is not uniform in n. By combining the deterministic LE
algorithm with results from [81], a randomized uniform (in both n and D)
O(D+ logn(log∗ n)2) w.h.p. LE algorithm is obtained, which is nearly time
optimal.

• Then, in Section 5.4.2, using the deterministic LE algorithm we propose the
first asymptotically time-optimal (in O(logn) rounds) Maximal Independent
Set (MIS) and 5-coloring algorithms for trees in BEEPS (leveraging the fact
that given a leader in a tree network, it is simple to compute a 2-coloring).
The MIS and coloring algorithms can be considered as essential symmetry-
breaking procedures, and designing optimal-time solutions (even limited to
tree networks) might be crucial for other applications in BEEPS .

Interestingly, both deterministic and randomized (uniform in D) LE solutions
presented here are the first to achieve time-optimality for these guarantees in both
BEEPS and the radio network model with collision detection, outperforming all
previous deterministic and randomized results. This work closes the gap between
upper and lower bounds for LE.
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Chapter 6

Information Dissemination and
Data Aggregation

In this chapter, we consider a distributed global communication problem (still in
the synchronous starts setting) - multi-broadcast - building on top of the global
interference control method presented in the previous chapter (i.e., leader election).

In multi-broadcast, k sources (generally with k << n) should communicate
their messages to the whole network. Variants of the problem include broadcast
(with a single source) and gossiping (where all nodes are sources). Without any
coordination at a global scale, it is impossible for the k sources to efficiently control
interference and communicate their information. To deal with this, leader election
can be used to provide a needed degree of global interference control, and allow
for the required coordination. A natural solution would now use the leader to
coordinate the k sources to broadcast their messages in a strict order, to avoid
collisions. However, this results in a non-time-optimal solution.

Instead, we utilize group testing techniques to present time-optimal (and nearly-
optimal but more computationally-efficient) solutions. Using such techniques allows
sources to broadcast their messages simultaneously, in a coded manner, while limit-
ing the negative impact of collisions (and the resulting information loss). By doing
so, the k source messages can be transmitted faster than by relying on k consecutive
broadcasts.

6.1 Introduction

We consider a fundamental distributed communication problem: multi-broadcast.
Optimal and nearly optimal uniform solutions are presented. Contrary to previous
results, these solutions are constructible. It is important to emphasize that these
results come from an entirely original approach based on (combinatorial) group
testing theory. Group testing is a method coming from statistics, initially introduced
during the Second World War to quickly detect an infection among a group of people
[48]. In its original formulation (i.e., as probabilistic group testing), the defects
were assumed to follow some probability distribution, and the goal was to design a
strategy identifying all defects using a small expected number of tests. Probabilistic
group testing has been used for local neighbor discovery tasks in some distributed
settings [80]. In the combinatorial context [78, 71], no assumptions are made about
the distribution of the defects and the goal is to design a strategy with a small
maximum number of tests (i.e., a worst-case scenario). Results from combinatorial
group testing are crucial to the current work. They are used to efficiently detect all
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broadcasting sources, since these can be arbitrary, i.e., cannot be assumed to follow
some known probability distribution.

Related Work for Multi-Broadcast. In [40], an O(D · logL+k log LM
k ) round

deterministic, completely uniform (in L, D and k) algorithm for k-source multi-
broadcast is presented, and the lower bound of Ω(D + k log LM

k ) rounds is given.
The multi-broadcast algorithm of [40] also provides an O(n log LM

n + D · logL)
round solution for gossiping. The time-optimal leader election algorithm presented
in Chapter 5 is crucial in improving the results of [40]. In a first time, by executing k
consecutive leader elections interleaved with the solution of [40], a slightly improved
multi broadcast solution can be obtained: O(D · logL) factors are reduced to O(D ·
min{k, logL}). Then, in [42], the lower bound for multi-broadcast given in [40] is
extended to also apply to randomized algorithms and a time-optimal deterministic
and uniform solution to multi-broadcast is proposed. However, this solution relies
on a non-constructive existence proof of a complex combinatorial structure, meaning
that it must be pre-computed for each possible set of network parameters, and
provided to the network nodes in advance (see discussion below).

Importantly, by considering the BEEPS model, the focus is on how non-destructive
interference impacts the multi-broadcast problem. This improves the understand-
ing of this problem even for stronger models. For example, in the related radio
network model assuming O(logn) bit messages and collision detection, the fastest
known (non-explicit) algorithms were designed in BEEPS [42]. Somewhat counter-
intuitively, efficient solutions for the stronger model do not use the O(logn) bits
contained in the messages, but simply rely on collision detection. In comparison, in
radio networks assuming O(logn) bit messages without collision detection (in which
solutions cannot leverage the non-destructive interference for communication), the
best multi-broadcasting randomized algorithm [10] requires O(n logn) time while
the best deterministic algorithm [33] requires O(n log4 n) time.

Explicitness. Algorithms in BEEPS (and related models such as the radio net-
work models) generally seek to minimize the number of rounds required to complete
communication tasks. As a result, the cost of local computations is often ignored.
Indeed, the fastest deterministic communication algorithms in BEEPS and in the ra-
dio network models, are often non-explicit: they rely upon the use of combinatorial
objects whose existence is only proven existentially (see e.g. [41, 42]). Although the
existence proofs of the combinatorial objects involved are ‘non-constructive’, they
do imply a naive construction: one can simply generate candidate objects randomly,
if shared randomness is available, and in lexicographical order otherwise, and test if
they actually satisfy the conditions of the object. However, there are exponentially
many possible candidates, and testing naively whether these candidates objects are
the required combinatorial objects necessitates an exponential number of computa-
tions. Such an approach thus results in an impractically high computation cost.

In some settings an argument can be made that an exponential computation
cost may still be acceptable, since the construction of suitable combinatorial objects
only ever needs to be performed once, and henceforth the object can be stored and
provided whenever needed to wireless devices. However, in BEEPS this approach
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poses a problem: the combinatorial objects that we need depend on the parameters
of the network which are not known in advance. Hence, network nodes would have
to be pre-loaded with objects for every possible set of parameters. This is again
impractical, especially since our aim is to model networks of weak devices which
would generally have very limited space.

Consequently, we are only concerned by computationally tractable solutions. In
BEEPS , explicit solutions correspond to algorithms with computation time poly-
nomial in L and k (for the nodes), and weakly explicit solutions to algorithms with
computation time polynomial in L and exponential in k. The latter can still be
computationally feasible if k << L when performing multi-broadcast, and thus of
practical interest.

6.2 Group Testing

We draw from group testing theory to design efficient solutions in BEEPS (see
Section 6.4). The objective of group testing is to identify a subset of defective
items in a set, by testing multiple items at a time instead of resorting to individual
testing. One example is the christmas tree lighting problem: to search for a broken
bulb among a group of six, one can arrange electrically in series three bulbs and
apply a voltage. If they light up, then they are in good condition, and the broken
bulb is one of the three others. Some classical applications of group testing are
blood testing, DNA library screening, signal processing, streaming algorithms and
wireless multiple-access communications [49].

Formal Definition. A formal definition of the (d, I)-combinatorial group testing
(CGT) problem follows. Consider I items, represented by the integers in {1, . . . , I},
and any arbitrary subset B of d items. The items in B are said to be defective.
The only way to differentiate defective items from good (i.e., non-defective) items is
through testing. For efficiency reasons, tests consider sets of items (pools) instead
of individual items. When testing a pool, a positive result (output 1) indicates
that at least one item in the pool is defective, whereas a negative result (output 0)
indicates that no item in the pool is defective. Tests are considered to be error-free.
A solution to the CGT problem is a group testing strategy, that is, a sequence of t
tests (for some positive integer t) such that the set B can be computed from the
results by using a decoder. One way of computing B is to use the naive decoder :
a set B′ is initialized to the set of all items (i.e., {1, . . . , I}) after which for every
negative test result (output 0), the items of the test’s pool are removed from B′. It
is important to note that the group testing strategy is tightly related to the decoder:
more complex decoders could lead to fewer tests.

Explicitness in Group Testing. In group testing literature, testing strategies
are devised to identify defective items from a pool, and efforts have been made
to minimize the number of tests, and stages of adaptivity, required by the strate-
gies. Again, however, it transpires that the best deterministic strategies rely on
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existentially-proven combinatorial objects, and so are not efficiently constructible
or decodable, by the tester.

Consequently, computationally tractable solutions are sought, for practical rea-
sons. In the group testing literature, an explicit strategy is one in which each
test sequence can be constructed and the output decoded, in time polynomial in
I and d. Also of interest is a weaker notion, which we refer to as weak explicit-
ness, where construction and decoding time is polynomial in I and exponential in
d. The terminology used here corresponds to that used for multi-broadcast. More
precisely, when an explicit (respectively weakly explicit) testing strategy is used to
obtain a solution to multi-broadcast, the result is an explicit (resp. weakly explicit)
algorithm.

Related Work for Group Testing. In the most frequent setting in group test-
ing, non-adaptive (i.e., offline) group testing, all tests are designed offline: a test’s
outcome does not influence the following tests. Non-adaptive group testing allows
tests to be performed in parallel. However, it was proven in [53] that test strategies
in non-adaptive group testing require Ω(d2 · log I

log d) tests. An explicit construction
with O(d2 · log I) tests for the non-adaptive setting is given in [91]. On the other
hand, in a fully adaptive setting (i.e., online setting), where each test’s pool depends
on the results of all previous tests, the information theoretic lower bound implies
that test strategies require Ω(d log I

d) tests, but all tests must be performed se-
quentially. An optimal fully-adaptive test strategy is given in [71]. Intermediately,
adaptive group testing refers to multiple stages of tests: all tests of a stage are
defined independently from the results of the stage, but can depend on the results
of previous stages’ tests. Thus tests in the same stage can be done in parallel but
successive stages must be treated sequentially. Surprisingly enough when compared
with non-adaptive group testing, it is possible to construct two-stage test strategies
with Θ(d log I

d) tests [18, 35]. In particular, a weakly explicit construction for such
two-stage testing strategies (with O(d log I

d) tests) is given in [35]. Additionally, ex-
plicit constructions are given in [29, 72, 88] with a nearly optimal number of tests.
In particular, [88] gives an explicit construction for strategies with O(d1+ε log I)
tests for any value ε > 0.

Matrix Notations. For any a × b matrix M and any integers i ∈ {1, . . . , a}
and j ∈ {1, . . . , b}, the entry of M in row i and column j is denoted by M [i, j].
Additionally, the ith row of m is denoted by M [i, :] and the jth column of m is
denoted by M [:, j]. For any integer d, let Id be the d × d identity matrix, that is,
the matrix with entry 1 on the diagonal and 0 otherwise.

6.3 A General Scheme for Multi-Broadcast

A natural solution for multi-broadcast is as follows. First, a leader node (with the
maximum ID) is elected, allowing the network to rely on broadcast and convergecast
(respectively, sending a message from and to the leader). Once a leader has been
elected, the ID range L is known to all nodes. Relying on communications via
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the leader, it is now possible to efficiently compute global bounds on the network’s
diameter D and the message range M . Then, the k sources are identified and
ordered, as efficiently as possible, by all nodes. Henceforth, this is referred to as the
source identification component. Finally, the sources convergecast their messages
to the leader (pipelined so that the messages arrive to the leader contiguously in
order), and the leader broadcasts the string of messages back through the network.
Since all nodes agree on the sources’ order, all nodes now have all the messages
together with the corresponding IDs of the sources. We outline this scheme in
Algorithm 11.

Algorithm 11 Multi-Broadcast Scheme
1: Perform Leader Election
2: Estimate Network Parameters
3: Perform Source Identification
4: Collect Source Messages
5: Broadcast Source Messages

All the steps of Algorithm 11, with the exception of Source Identification, can
be performed efficiently, explicitly, and deterministically using known procedures
from previous works on BEEPS :

• Leader election can be performed with O(D + logL) round complexity (see
Chapter 5). The algorithm requires unique identifiers and elects the node
with the maximum identifier. The output is a boolean indicating whether
the executing node is the leader or not.

• Estimating diameter D can be performed in O(D) rounds [42]. The al-
gorithm requires a leader, and outputs in all nodes an estimate D̃ with
D ≤ D̃ ≤ 2D. Henceforth, we assume that D is known because D̃ can be
used instead of D with only a constant-factor overhead.

• Message range M can be similarly estimated in O(D + logM) time [42].

• Collecting source messages can be done using the CollectMessages pro-
cedure from [42]. This procedure requires a leader and upper bounds of D
and the maximum length, in bits, of the messages to be collected, denoted
by p. It takes as input a set of messages held by nodes in the network. On
completion, the leader receives the OR superposition of all the messages, and
the running time is O(D + p) rounds.
We apply this procedure by collecting messages of p = kdlogMe bits, one
from each source, in which source numbered i in lexicographical order places
its input message into the bit interval [idlogMe, (i+ 1)dlogMe), with 0’s in
every other position (the values of k and the order i are computed during the
previously performed source identification component). The superposition
of these words is therefore simply the concatenation of all source messages
in order. The running time is O(D + p) = O(D + k logM).
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• Broadcasting source messages can be performed using the Beep-Wave pro-
cedure of [42]. This procedure allows a leader to broadcast a p-bit message
to all nodes in O(D+ p) time. Applying the procedure to the concatenation
of all k source messages in order yields an O(D + k logM) time.

All these auxiliary procedures terminate such that nodes start each subsequent
procedure synchronously. Consequently, source identification is the only remaining
step for which there is no efficient procedure, and it is here that the perspective of
group testing allows us to make improvements. We denote the round complexity
of a potential source identification algorithm by TSI . Efficient deterministic source
identification solutions are presented in Section 6.4 and their round complexities
are given by Theorems 44 and 47. Moreover, the scheme for source identification
when k is unknown is presented in Section 6.4.3. Finally, an efficient randomized
source identification solution is presented in Section 6.5 and its round complexity
is given by Theorem 49.

Theorem 36. Multi-broadcast can be solved in O(D+logL+k logM+TSI) rounds
in BEEPS.

Proof. Applying the above procedures to the scheme in Algorithm 11, the total
running time of steps 1 and 2 is O(D+ logL+ logM). After these steps, a leader is
elected and all nodes know common constant-factor upper bounds for D, L and M .
The subsequent procedure for source identification takes TSI rounds, and results in
all nodes being aware of all source IDs. Finally, steps 4 and 5 are then correctly
performed, completing multi-broadcast in a further O(D + k logM) rounds. The
total running time is therefore O(D + logL+ k logM + TSI).

6.4 Source Identification and Group Testing

We now show how the problem of source identification can be reduced to that of
combinatorial group testing (defined in Section 6.2). Recall that we have k source
nodes with unique IDs from [L], a specified leader node which is known to all nodes
in the network, and universal knowledge of (linear upper bounds on) L andD. Upon
completing source identification, we require that the leader node has knowledge of
all the source IDs (i.e., of S).

Efficient and simple group testing strategies can be obtained by using list dis-
junct matrices (LDM). Such strategies, called LDM-strategies, are presented in
Section 6.4.1 and are the building blocks of the source identification algorithm, de-
scribed in two stages. First, a simplified scheme (when the number of sources k is
known) is presented in Section 6.4.2. Then an extended scheme for unknown k is
presented in Section 6.4.3. This extended scheme computes a CLDM-strategy (an
extension of an LDM-strategy), and its time complexity (resp. computation cost)
depends on the CLDM-strategy’s parameters (resp., explicitness property). Weakly-
explicit and explicit constructions of CLDM-strategies with optimal or nearly opti-
mal parameters are proposed in Section 6.4.4, resulting in efficiently constructible
source identification and multi-broadcast solutions.
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6.4.1 Group Testing Strategies and LDM-strategies

Recall that the (d, I)-combinatorial group testing problem (CGT) consists of finding
a subset B of d defective items within a set of I items. Good strategies for CGT
use at least 2 stages (see Related work in Section 6.2). In a two-stage strategy, a
first stage determines a subset B1 of {1, . . . , I} with B1 ⊃ B and |B1| = Î, and the
second stage determines a subset B2 of {1, . . . , Î} with B2 ⊃ f1(B) and |B2| = d
(where f1 maps B1 to {1, . . . , Î} in lexicographical order).

Definition 4. Let B be some unknown subset of d defective items within a set of
Î items. A testing strategy using s stages and t tests over all s stages to determine
a superset B′ ⊃ B of size at most d+ `− 1 is called a (d, `, Î) s-stage t-test testing
strategy.

In group testing, it is common to build testing strategies by using list disjunct
matrices. A single list disjunct matrix defines a single stage testing strategy, and
a sequence of s list disjunct matrices defines an s-stage testing strategy (for some
integer s).

Definition 5. A (d, `, Î, t)-list disjunct matrix is a t× Î binary matrix M such that
for any disjoint subsets T,R ⊆ {1, . . . , Î} with |T | = d, |R| = `, there is a row i of
the matrix with

∑
j∈T M [i, j] = 0 and

∑
j∈RM [i, j] > 0.

Lemma 37. A (d, `, Î, t)-list disjunct matrix defines a (d, `, Î) single stage t-test
testing strategy: each row M [i, :] defines the pool of the ith test (for 1 ≤ i ≤ t).

Proof. LetM be a (d, `, Î, t)-list disjunct matrix. Assume by contradiction that the
t-test testing strategy defined by the t rows of M is not a a (d, `, Î) single stage
t-test testing strategy. Consider the set B′ returned by the naive decoder applied
on the results of these t tests: B′ is initialized at {1, . . . , Î} and each negative test
eliminates all items involved in the tests from B′. Assume by contradiction that
|B′| ≥ d + `. Note that the d defective items are never eliminated by the naive
decoder and are thus in B′. For the sake of analysis, we can decompose B′ into two
disjoint subsets, the defective items B and the remaining items R with |B| = d and
|R| ≥ `. From the list disjunctness property of M , there is a row i in M such that∑
j∈BM [i, j] = 0 and

∑
j∈RM [i, j] > 0. As a result, the test corresponding to this

row is negative and there is a column j ∈ R such that M [i, j] = 1. Consequently,
the naive decoder eliminates one of the items in R, hence a contradiction.

Definition 6. A (d, I)-LDM-strategy using s stages and t tests is a sequence
M1, . . . ,Ms of list disjunct matrices with parameters (d, `1, I1, t1), . . . , (d, `s, Is, ts)
satisfying:

I1 = I,• `s = 1,•

d+ `i − 1 = Ii+1 for all 1 ≤ i < s,•
∑
i≤s ti = t.•

Lemma 38. A (d, I)-LDM-strategy using s stages and t tests is a (d, 1, I) s-stage
t-test testing strategy and thus solves (d, I)-CGT.
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Proof. Consider a (d, I)-LDM-strategy F using s stages and t tests. Then F is a
sequence of s list disjunct matrices M1, . . . ,Ms with parameters (d, `1, I1, t1),. . . ,
(d, `s, Is, ts). By Lemma 37, M1 defines a single stage t1-test testing strategy. The
naive decoder returns a set B1 such that the set of defective items B ⊂ B1 and
|B1| ≤ d + `1 − 1 = I2. The items of B1 are mapped to {1, . . . , I2} according to
their lexicographical order (represented by function f1). Notice that the defective
item set B is mapped to f1(B) (where |f1(B)| = |B|), and that the subsequent stage
seeks to determine a superset B2 of f1(B) (and not of B). After which, Lemma 37
is similarly applied to M2, . . . ,Ms−1, thus defining functions f2, . . . , fs−1.
Finally, Ms defines the tests of stage s by Lemma 37 and the naive decoder returns
Bs ⊂ {1, . . . , Is}. Since Bs is a superset of fs−1(. . . f1(B)) and |Bs| ≤ d+`s−1 = d,
Bs = fs−1(. . . f1(B)). Therefore, as B = f−1

1 (. . . f−1
s−1(Bs)) then an s-stage t-test

strategy defined by F solves (d, I)-CGT.

If d is known then a (d, I)-LDM-strategy can be computed (see Section 6.4.4 for
some constructions) and this LDM-strategy defines an s-stage t-test testing strategy
solving (d, I)-CGT.

6.4.2 Source Identification for known k

In this section, we give a simplified version (Algorithm 12) of the source identifi-
cation solution, in which we know the number of sources k. This assumption is
removed in the extended scheme presented in Section 6.4.3. Algorithm 12 relies on
efficient constructions of LDM-strategies (for example, a 2-stage O(k log L

k ) weakly
explicit LDM-strategy), which are presented later in Section 6.4.4.

Source Identification Scheme (Algorithm 12). The source identification al-
gorithm first computes a (k, L)-LDM-strategy F using s stages and t tests (which
requires knowing k and L), after which sources are identified in s phases. Let
F = M1, . . . ,Ms where Mu (for 1 ≤ u ≤ s) has parameters (k, `u, Lu, tu), L1 = L
and `s = 1. Details on constructions of good LDM-strategies are deferred to Sec-
tion 6.4.4. Using a weakly explicit LDM-strategy results in a weakly explicit source
identification solution, and an explicit LDM-strategy in an explicit source identifi-
cation solution.
Nodes start with no knowledge about which nodes could be the sources, and in each
phase they obtain more information by implementing a stage of the group testing
strategy defined by F (see Lemma 38). Let f be initialized to the identity function
on {1, . . . , L} in the first phase. The function f is updated so that in every phase u,
it renames some of the identifiers in {1, . . . , L} to {1, . . . , Lu} (including all source
IDs).

The algorithm executes s phases. In each phase u (for 1 ≤ u ≤ s), a node v
sets cu(v) to Mu[:, f(idv)] (i.e., the f(idv)th column of Mu) if it is a source, and
0tu otherwise (see lines 5-6). The superposition w of the words cu is collected
by the leader and then broadcast to all network nodes through the use of the
auxiliary functions described in Section 6.3 (see lines 7-8). Consequently, nodes
compute Su = {x ∈ {1, . . . , Lu} | x is included in w} and update f (see lines 11-
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13). More precisely, f is updated to fu ◦ f , where fu renames the elements of Su
to {1, . . . , Lu+1} according to their lexicographical order: the yth element of Su is
mapped to y. After all s phases are finished, nodes compute S = f−1(Ss) (see line
14).

Implementation of the Testing Strategy. Each phase u for 1 ≤ u ≤ s im-
plements the stage u of the testing strategy. Nodes use the tests of stage u to
determine some subset Su of {1, . . . , Lu} which contains f(S) (where |f(S)| = |S|
because no defective item is eliminated by the naive decoder, see Section 6.4.1).
Indeed, the leader collects all messages cu and broadcasts their superposition w to
all nodes, which is the superposition of at most k columns of Mu. Each bit w[i] (for
1 ≤ i ≤ tu) can be seen as the test result of test i of stage u in the testing strategy.
In the last phase, Ss is a subset of {1, . . . , Ls} with |Ss| = k+`s−1 = k. Therefore,
Ss = fs−1 ◦ . . . ◦ f1(S).

Algorithm 12 Source Identification Scheme (with known k)
1: Inputs: k and upper bounds for L,M and D
2: Compute M1, . . . ,Ms and their parameters (k, `1, L1, t1), . . . , (k, `s, Ls, ts)
3: f := idv
4: for phase u := 1 ; u ≤ s ; u++ do
5: if v is a source node then cu := Mu[:, f ]
6: else cu := 0tu
7: Collect all binary words cu by OR superposition into w at the leader
8: Broadcast the superposition w
9: Get Su = {x ∈ {1, . . . , Lu} | x is included in w}

10: if u < s then
11: Let fu be a function from Su to {1, . . . , Lu+1} in lexicographical order.
12: if v is a source node then
13: f = fu(f)
14: Return S = f−1

1 ◦ . . . ◦ f−1
s−1(Ss) . S is the set of source IDs

Theorem 39. Assume Algorithm 12 computes a (k, L)-LDM-strategy F using s
stages and t tests. Then it solves source identification in O(Ds + t) rounds in
BEEPS.

Proof. Algorithm 12 solves source identification since the testing strategy defined
by F correctly identifies all k source nodes.
In phase u (1 ≤ u ≤ s), the leader gather binary words of tu bits from the nodes
in O(D + tu) rounds. Then the leader broadcasts the superposition in O(D + tu)
rounds. Over all s phases, the round complexity is O(

∑
u≤s(D + tu)) = O(Ds+ t)

rounds.

Therefore, a good source identification solution should use an LDM-strategy
with both small s and small t. The related work in Section 6.2 describes such
strategies. However, these either require high computation cost (i.e., weak explic-
itness) or non-optimal (but nearly optimal) s and t [88].
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6.4.3 Extending the Source Identification Scheme to Unknown k

An extended scheme (of Algorithm 12), working when k is unknown, is presented be-
low. The scheme computes an s-stage L-CLDM-strategy (see Definition 8) instead
of a (k, L)-LDM-strategy, where the former object is a sequence of constructions
that produces an (k̂, L)-LDM-strategy for any number of defective items k̂ ≤ L,
and can thus be computed when k is unknown. Details on constructions of good
CLDM-strategies are deferred to Section 6.4.4.

Definition 7. A (d̂, Î)-list disjunct matrix construction is a function C with input
(d̂, Î) and output (M, `, t) where M is a (d̂, `, Î, t)-list disjunct matrix.

Definition 8. A I-CLDM-strategy is a sequence C1, . . . , Cs of constructions of list
disjunct matrices satisfying: ∀d̂ ≤ I, let C1(d̂, I) = (M1, `1, t1) and for 1 < i ≤ s,
Ci(d̂, Ii) = (Mi, `i, ti) for Ii = d̂+`i−1−1, thenM1, . . . ,Ms is a (d̂, I)-LDM-strategy.

Scheme for Source Identification with Unknown k. The extended scheme
first computes an s-stage L-CLDM-strategy FC = C1, . . . , Cs. Following which,
sources are identified in s phases, and each phase consists of at most dlog ke sub-
phases. Similarly to Algorithm 12, nodes start with no knowledge about which
nodes could be the sources, and in each phase u they obtain more information by im-
plementing at most dlog ke consecutive single stage testing strategies on {1, . . . , Lu}.
Notice that the set of items {1, . . . , Lu} tested upon does not change throughout
the different single stage testing strategies (i.e., subphases) of the phase u. Let f be
initialized to the identity function on {1, . . . , L} in the first phase. The function f
is updated so that in every phase u, it renames some of the identifiers in {1, . . . , L}
to {1, . . . , Lu} (including all source IDs).

Subphase Implementation. In sub-phase r of phase u, if r = 1 then node v
computes k̂1

u, as the smallest power of 2 (k̂1
u = 2gu for some integer gu) such that

Cu(k̂1
u, Lu) = (M1

u , `
1
u, t

1
u) satisfies t1u ≥ D. This prerequisite ensures that the round

complexity of phase u in this extended scheme is the same as that in Algorithm 12.
For any other subphase r > 1, node v computes k̂ru = 2r−1k̂1

u.
Following which, a node v first computes k̂ru and Cu(k̂ru, Lu) = (M r

u, `
r
u, t

r
u). Then,

it sets cu to M r
u[:, f(idv)] (i.e., the f(idv)th column of M r

u) if it is a source, and 0tu
otherwise. The superposition w of the words cu is collected by the leader and then
broadcast to all network nodes through the use of the auxiliary functions described
in Section 6.3. Then, nodes compute Sru = {x ∈ {1, . . . , Lu} | x is included in w}.
If |Br

u| ≥ k̂ru + `ru, nodes execute subphase r + 1 with k̂r+1
u = 2k̂ru and still on items

{1, . . . , Lu}. Otherwise, nodes finish the current phase and if u < s then nodes
execute the following phase u+ 1 with Lu+1 = k̂ru + `ru− 1 (on items {1, . . . , Lu+1})
and the function f is updated to fu ◦ f , where fu renames the elements of Sru to
{1, . . . , Lu+1} according to their lexicographical order: the yth element of Su is
mapped to y.

The last subphase of a phase implements the only successful single stage testing
strategy of the phase. Moreover, if kru > k then the single stage testing strategy
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defined by M r
u is guaranteed to return a subset Sru of less than k̂ru + `ru − 1 items.

Consequently, each phase has at most dlog ke subphases.

This method can be used to solve (k, L)-CGT with unknown k, at the cost of
a multiplicative factor dlog ke for both stages and tests in comparison to the cor-
responding (k, L)-LDM-strategy computed when k is known. Fortunately, when
CLDM-strategies are used in our source identification solution, this multiplicative
factor does not affect the round complexity (see Lemma 40 and Th. 41).

Lemma 40. Each phase u of the extended source identification scheme takes Ru =
O(
∑
r≤r′ t

r
u) rounds for r′ = max{1, dlog ke − gu}. Let tu be defined by Cu(k, Lu).

If Cu satisfies t1u = O(D) and if r′ > 1,
∑
r≤r′ t

r
u = O(tu), then it follows that

Ru = O(D + tu).

Proof. Consider a phase u (for 1 ≤ u ≤ s). The phase takes Ru = O(
∑
r≤r′ t

r
u)

rounds for r′ = max{1, dlog ke − gu}, since in each subphase r (for 1 ≤ r ≤ r′),
tru ≥ D and nodes gather binary words of tru bits at the leader in O(D+ tru) = O(tru)
rounds, which then broadcasts the superposition in O(D+ tru) = O(tru) rounds.

The conditions of Lemma 40 are satisfied by all 3 CLDM-strategies proposed in
Section 6.4.4. Consequently, the following theorem holds for each:

Theorem 41. Assume that the s-stage L-CDM-strategy FC used in the scheme
satisfies Lemma 40 for each phase u (1 ≤ u ≤ s). The extended scheme solves
source identification with unknown k in O(Ds+ t) rounds, where t is defined by the
(k, L)-LDM-strategy computed by FC (with k̂ = k).

Proof. A phase in the extended scheme gives the same correctness guarantees as a
phase in Algorithm 12. Therefore, correctness of the extended scheme follows from
that of Algorithm 12.
By Theorem 39, Algorithm 12 takes O(Ds + t) rounds. Moreover, by Lemma 40
each phase in the extended scheme has the same round complexity as in Algorithm
12 (given some properties on the CLDM-strategy used). Therefore, the extended
scheme takes O(Ds+ t) rounds.

6.4.4 Efficiently constructible source identification solutions

Various CLDM-strategies resulting in efficient deterministic source identification
solutions are presented in this section. Theorem 39 from Section 6.4.2 emphasizes
that both stages and tests should be as low as possible. However strategies with
a single stage require a non-optimal Ω(d2 · log I

log d) tests (see Related work in Section
6.2), thus the CLDM-strategies proposed here have at least 2 stages.
Several constructions of list disjunct matrices are presented, with a trade-off be-
tween computational cost and optimal parameters (optimal number of tests). First
we give a weakly explicit construction with optimal parameters, resulting in a
weakly-explicit (2-stage O(k log L

k )-tests) CLDM-strategy and thus a weakly ex-
plicit round-optimal source identification solution. Following which, we give two
explicit constructions with nearly optimal parameters and use them to construct
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two different explicit CLDM-strategies. Their combination results in an explicit
nearly optimal (optimal for most ranges of D and k) source identification solution.

Lemma 42. For any integers k̂, L̂ with L̂ > k̂, the L̂ × L̂ identity matrix (i.e.,
the matrix with entry 1 on the diagonal and 0 otherwise) is a (k̂, 1, L̂, L̂)-list dis-
junct matrix. Thus, there exists a construction function CInd(k̂, L̂) = (IL̂, 1, L̂) with
computation cost poly(k̂, L̂).

The matrix construction CInd defines a testing strategy with individuals tests on
all L̂ items. Although this strategy is not efficient when L̂ >> k̂, it is very efficient
once L̂ ≤ k̂ log L̂

k̂
. The challenging part is therefore to reduce the L (possibly

defective) items to L̂ = O(k log L
k ) items.

Weakly Explicit Construction with Optimal Parameters. We use an op-
timal weakly-explicit group testing result from [35]:

Theorem 43 ([35]). There exists a construction function CW (k̂, L̂) = (MW , k̂, O(k̂ log L̂
k̂

))
with computation cost O(k̂3L̂2k̂+1 log L̂).

The CLDM-strategy F1 = CW , CInd is a weakly explicit 2-stage O(k log L
k )-

test CDLM-strategy. As a side note, F1 defines what is referred to as a trivial
two-stage testing strategy in group testing (see Related work in Section 6.2): CW
determines most non-defective items, after which CInd can be used to determine the
k defective items (among the remaining O(k) items). When F1 is given to the source
identification scheme in Section 6.4.3, the result is a weakly explicit algorithm with
optimal round complexity for source identification.

Theorem 44. The extended source identification scheme using a testing strategy
defined by F1 is a weakly explicit algorithm solving source identification in opti-
mal O(D + k log L

k ) rounds. Consequently, combining this result and the multi-
broadcast scheme in Section 6.3, the result is a weakly explicit algorithm solving
multi-broadcast in optimal O(D + k log LM

k ) rounds.

Proof. Consider F1 = CW , CInd and the extended source identification scheme pre-
sented in Section 6.4.3. It is simple to prove that CW and CInd satisfy the conditions
of Lemma 40. Therefore, we can use Theorem 41 to prove that the extended source
identification scheme computing F1 is a weakly explicit algorithm solving source
identification in optimal O(D + k log L

k ) rounds.

Explicit Constructions with Near Optimal Parameters. Unfortunately,
there are no known explicit constructions for group testing strategies usingO(k log L

k )
tests and a constant number of stages. As a result, the best known results in group
testing [88] do not give optimal multi-broadcast algorithms in BEEPS . However,
by combining two explicit CLDM-strategies, we can design a multi-broadcast algo-
rithm in BEEPS optimal for most ranges of D and k. For D >> k logL we can use
an existing explicit construction from [88]:
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Theorem 45 ([88]). For any constant ε > 0, there exists a construction function
CE(k̂, L̂) = (ME , k̂

1+ε, k̂1+ε log L̂) with computation cost poly(k̂, L̂).

For D << k logL we present a new construction:

Theorem 46. Given integers k̂, L̂ with L̂ ≥ 2k̂, let q denote blog2k̂ L̂c. There
exists a construction function CDIG(k̂, L̂) = (MDIG, k̂

q, 2k̂q) with computation cost
poly(k̂, L̂).

Proof. Write each j ∈ [L̂] in base 2k̂, i.e., j = j0j1j2 . . . jq, and each digit ji is an
integer between 0 and 2k̂ − 1. For each x ∈ [q], define the 2k̂ × L̂ matrix Mx by
Mx[i, j] = 1 iff jx = i. Then, we let MDIG be the 2k̂q × L̂ matrix obtained by
vertically concatenating all Mx. We will show that MDIG is a (k̂, 2q, L̂, 2k̂q)-list
disjunct matrix.

Let T be a subset of [L̂] with |T | = k̂. For each x ∈ [q], |DIGx := {i : ∃j ∈
T with jx = i}| ≤ k̂ i.e., at most k̂ different values for digit x are held by the k̂
elements of T . For any j′ ∈ [L̂] which has j′x /∈ DIGx, we have Mx[j′x, j′] = 1 and
Mx[j′x, j] = 0 for all j ∈ T .
So, for any element j′ not in the set DIG := DIG1 × DIG2 × · · · × DIGq, there
is a row in MDIG where j′ has value 1 and all elements of T have value 0. DIG is
therefore the set of remaining possible defectives, and its size is at most k̂q.

Two explicit CLDM-strategies are presented here:

• The first strategy F2 = CE , CInd is an explicit 2-stage O(k1+ε logL)-test
CLDM-strategy. It is, similarly to F1, a trivial two-stage testing strategy.
When the source identification scheme in Section 6.4.3 uses a testing strategy
defined by F2, the result is an explicit algorithm for source identification with
optimal round complexity when D = Ω(k1+ε logL).

• The second strategy F3 is a sequence of O(log k log logL
log k ) + 1 constructions,

where constructions Ci = CDIG for 1 ≤ i ≤ O(log k log logL
log k ) and the last con-

struction is CInd. F3 is an explicit CLDM-strategy using O(log k log logL
log k )+1

stages and O(k log L
k ) tests. When the source identification scheme in Sec-

tion 6.4.3 uses a testing strategy defined by F3, the result is an explicit al-
gorithm for source identification with optimal round complexity when D =
O( k log L

k

log k log logL
log k

).

By executing these two source identification solutions (one defined by F2, the
other by F3) in parallel (i.e., one round of the first algorithm, then one of the
second, and so on), the following result can be obtained.

Theorem 47. Source identification can be solved using an explicit algorithm with
optimal round complexity when either D = O( k log L

k

log k log logL
log k

) or D = Ω(k1+ε logL) (for

any constant ε > 0). As a result, multi-broadcast can be solved using an explicit
algorithm with optimal round complexity for most ranges of k and D.
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Proof. Consider F2 = CE , CInd and the extended source identification scheme pre-
sented in Section 6.4.3. It is simple to prove that CE and CInd satisfy the conditions
of Lemma 40. Therefore, we can use Theorem 41 to prove that the extended source
identification scheme computing F2 is an explicit algorithm solving source identi-
fication in nearly optimal O(D + k1+ε logL) rounds (for any constant ε > 0). As
a result, if D = Ω(k1+ε logL) (for any constant ε > 0), then the round complexity
above is optimal for source identification.

Similarly, we prove that the extended source identification scheme computing F3
is an explicit algorithm solving source identification in nearly optimalO(D log k log logL

log k+

k log L
k ) rounds. When D = O( k log L

k

log k log logL
log k

), the round complexity above is optimal
for source identification.

6.5 Explicit Solutions for Randomized Group Testing
While asymptotically optimal explicit 2-stage randomized group testing strategies
exist (e.g., constructing a (d̂, O(d̂), Î, O(d̂ log Î

d̂
)) list-disjunct matrix by setting each

entry to 1 independently with probability Θ(1/d̂)), these strategies are not directly
implementable in our BEEPS framework. This is because they rely on shared ran-
domness, i.e., the tester must have access to the randomness used to construct the
matrix in order to decode it. However, one practical way to achieve this in BEEPS
is to have the leader node generate the random bits to be used, and broadcast
them to the network. This will result in a time cost (in rounds) equivalent to the
number of the generated random bits. To minimize this cost and obtain an efficient
randomized multi-broadcast algorithm in BEEPS , we present a new group testing
result demonstrating that an optimal testing strategy can be generated using very
few random bits:

Theorem 48. Given d̂, Î with Î ≥ 2d̂, and O(log Î(1 + log log Î
log d̂ )) independent uni-

formly random bits, one can construct an explicit 2-stage group testing strategy FP
such that for any set T of d̂ defective items, the strategy recovers T using O(d̂ log Î

d̂
)

tests and succeeding with high probability (1− 1/poly(Î)).

This strategy can be used in the same source identification framework as those
in Section 6.4, starting with an estimate k̂ such that k̂ log L

k̂
= Θ(D), and succes-

sively doubling until the algorithm succeeds. The resulting algorithm solves source
identification in O(D+ k log L

k + logL log logL) rounds, with high probability (i.e.,
with probability (1− 1/poly(L))).

Theorem 49. Source identification can be solved in BEEPS with an explicit ran-
domized algorithm in O(D + k log L

k + logL log logL) rounds, succeeding with high
probability. This round complexity is optimal whenever k = Ω(log logL).

6.5.1 Proving Theorems 48 and 49

We first show a construction of a testing matrix to be used in our randomized group
testing strategy:
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Theorem 50. Given d̂, Î with Î ≥ 2d̂, and O(log Î(1 + log log Î
log d̂ )) independent uni-

formly random bits, one can construct an O(d̂ log Î
d̂
)× Î matrix such that the matrix

eliminates all but d̂ non-defectives with high probability (i.e., with only 1/poly(Î)
probability of failure).

Proof. First, classic results on hashing [99] (see definitions below and Theorems
51 and 52) are given. Then, we present a matrix construction that uses only
O(log Î(1 + log log Î

log d̂ )) independent uniformly random bits (leveraging the classic
results on hashing). Finally, we prove that this matrix eliminates all but d̂ non-
defectives with high probability (i.e., with only 1/poly(Î) probability of failure).

Definition 9. A family of functions H mapping {1, . . . , X} to {1, . . . , Y } is ε-
almost pairwise independent if for every x1 6= x2 ∈ {1, . . . , X}, y1, y2 ∈ {1, . . . , Y },
we have

Pr [H(x1) = y1 and H(x2) = y2] ≤ 1
Y 2 + ε .

Here the randomness is over uniformly random choice of H from H.

Definition 10. For X,Y, k ∈ N with f ≤ X, a family of functions G mapping
{1, . . . , X} to {1, . . . , Y } is f -wise independent if for every distinct x1, . . . , xf ∈
{1, . . . , X}, the values G(x1) . . . , G(xf ) are independent and uniformly distributed
in {1, . . . , Y }, when G is drawn uniformly at random from G.

Theorem 51. There exists an explicit ε-almost pairwise independent family H of
functions H : {1, . . . , X} → {1, . . . , Y } such that any H ∈ H can be specified using
O(log log X̂ + log Ŷ + log ε−1) bits.

Theorem 52. There exists an explicit f -wise independent family G of functions G :
{1, . . . , X} → {1, . . . , Y } such that any G ∈ G can be specified using O(f logXY )
bits.

(We omit some details here such as requiring the domain and range of the
functions to be integer powers of 2, but since we are concerned with asymptotic
complexity, this does not affect the results).

The following functions are used to minimize the amount of random bits nec-
essary for our construction. Let c be a sufficiently large constant. We also require
that Î and d̂ are sufficiently large, but again this does not affect asymptotic results.

• Let H be an explicit 1
d̂3 -almost pairwise independent family of functions H :

{1, . . . , Î} → {1, . . . , cd̂} described by Theorem 51, with functions specified
using O(log log Î + log cd̂+ log d̂3) = O(log log Î + log d̂) bits.

• Let G be an explicit 4 log Î
log d̂ -wise independent family of functions

{1, . . . , O(log Î
d̂
)} → {1, . . . , 2O(log d̂+log log Î)} described by Theorem 52, with

functions specified by O(4 log Î
log d̂ log(log Î

d̂
· 2O(log d̂+log log Î))) = O(log Î(1 +

log log Î
log d̂ ) bits.
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Randomized Matrix Construction of a Testing Matrix. Importantly, we
assume that O(log Î(1 + log log Î

log d̂ )) random bits are provided to the algorithm. Using

these, select a random function g ∈ G. Then, for x ∈ {1, . . . , c log Î
d̂
}, let Hx :

{1, . . . , Î} → {1, . . . , cd̂} be the function from H specified by the O(log log Î+log d̂)-
bit string g(x). We then define a cd̂× Î matrix Mx by Mx[i, j] = 1 iff Hx(j) = i.

Finally, let our testing matrix M be the c2d̂ log Î
d̂
× Î matrix obtained by verti-

cally concatenating all Mx.

Proving the Testing Matrix Property. Let T be our arbitrary set of defective
items, i.e., a subset of {1, . . . , Î} with |T | = d̂.

For each x ∈ {1, . . . , c log Î
d̂
}, let Sx be the set of non-defective items which

are not eliminated by a matrix My with y < x (i.e., Sx is the set of all items
j′ ∈ {1, . . . , Î} \ T such that there is no y < x and i ≤ t with My[i, j′] = 1 and
My[i, j] = 0 ∀j ∈ T ). Then Sx+1 \ Sx is the set of all items which are eliminated
by matrix Mx. Clearly S1 = {1, . . . , Î} \ T . We now wish to show that for any
x ∈ {1, . . . , c log Î

d̂
}, the probability that |Sx+1| > |Sx|

2 is at most 9
ĉd
.

Fix some x ∈ {1, . . . , c log Î
d̂
}. We assume that |Sx| ≥ cd̂, since otherwise we have

already eliminated sufficient items. For j ∈ Sx, denote by 1j the indicator variable
that j /∈ Sx+1, i.e., that j is eliminated by matrix Mx. Notice that by symmetry,
these 1j are identically distributed for all j ∈ Sx (though they are not independent,
or even pairwise independent). Denote the expectation of these indicator variables
by µ.

We first bound µ from below. For any item j in Sx, the probability that all
elements j′ ∈ T have Hx(j′) 6= Hx(j) (i.e., have value 0 on row Hx(j)) is lower
bounded by:

Pr

 ⋂
j′∈T
{Hx(j′) 6= Hx(j)}

 ≥ 1−
∑
j′∈T

Pr
[
{Hx(j′) = Hx(j)}

]
≥ 1− d̂ · ( 1

cd̂
+ 1
d̂2

)

≥ c− 2
c

,

where the initial inequality follows from a union bound and the first equality by
1
d̂3 -almost pairwise independence of Hx. In this event 1j = 1, so µ ≥ c−2

c .

Additionally, by linearity of expectation, E [|Sx \ Sx+1|] =
∑
j∈Sx E [1j ] = µ|Sx|.

We must now show a concentration bound on |Sx \ Sx+1|. To do so, we will need
the following lemma:

Lemma 53. For any i 6= j ∈ Sx, E [1i1j ] ≤ µ

2d̂ + µ2.
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Proof.

E [1i1j ] = Pr [1i = 1j = 1]
= Pr [1i = 1j = 1 ∧Hx(i) = Hx(j)] + Pr [1i = 1j = 1 ∧Hx(i) 6= Hx(j)]
≤ Pr [1i = 1 ∧Hx(i) = Hx(j)] + Pr [1i = 1j = 1 | Hx(i) 6= Hx(j)]
≤ Pr [1i = 1] Pr [Hx(i) = Hx(j)] + µ2

= µ( 1
cd̂

+ 1
d̂2

) + µ2 ≤ µ

(c− 1)d̂
+ µ2 .

We use this bound on the correlation of the indicator variables 1j to bound the
variance of their sum:

Lemma 54. Var
[∑

j∈Sx 1j
]
≤ 2µ|Sx|2

cd̂
.

Proof.

Var

∑
j∈Sx

1j

 = E


 ∑
j∈SX

1j −E

∑
j∈Sx

1j

2


= E


∑
j∈Sx

(1j − µ)

2


=
∑
i,j∈Sx

E [(1i − µ)(1j − µ)]

=
∑
j∈Sx

E
[
(1j − µ)2

]
+

∑
i 6=j∈Sx

E [(1i − µ)(1j − µ)]

= |Sx|µ(1− µ) +
∑

i 6=j∈Sx
E
[
1i1j − µ(1i + 1j) + µ2

]

≤ 2
c
|Sx|µ+

∑
j1 6=j2∈Sx

(
µ

(c− 1)d̂
+ µ2 − 2µ2 + µ2

)

≤ 2µ|Sx|2

c2d̂
+ µ|Sx|2

(c− 1)d̂

≤ 2µ|Sx|2

cd̂
.

Here the first inequality uses Lemma 53, and the second relies on our assumption
that |Sx| ≥ cd̂.

Now that we have a bound on the variance of
∑
j∈Sx 1j , we simply apply Cheby-

shev’s inequality to obtain

Pr

∣∣∣∣∣∣
∑
j∈Sx

1j − µ|Sx|

∣∣∣∣∣∣ ≥ ε
 ≤ Var

[∑
j∈Sx 1j

]
ε2

≤ 2µ|Sx|2

cd̂ε2
.
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Setting ε = µ|Sx|
2 yields:

Pr

∑
j∈Sx

1j ≤
µ|Sx|

2

 ≤ 8
cµd̂
≤ 8

(c− 2)d̂
≤ 9
cd̂

.

So, with probability at least 1 − 9
cd̂
, we have |Sx+1| ≤ |Sx| − µ|Sx|

2 = µ|Sx|
2 as

required.
We will call any x with |Sx+1| > µ|Sx|

2 bad. The random strings used to construct
each matrix Mx are c log Î

log d̂ -wise independent, hence so are the events that each x is
bad. Therefore,

Pr
[
at least 4 log Î

log d̂
values x are bad

]
≤
(
c log Î

d̂

4 log Î
log d̂

)( 9
cd̂

) 4 log Î
log d̂

≤

ce log Î
d̂

4 log Î
log d̂


4 log Î
log d̂ ( 9

cd̂

) 4 log Î
log d̂

≤
(

9e log d̂
4d̂

) 4 log Î
log d̂

≤ 2−
4 log Î
log d̂

log
√
d̂

= 2−2 log Î

= Î−2 .

So, with high probability, at most 4 log Î
log d̂ values x are bad, i.e., at least c

2 log Î
d̂

are not. For any x which is not bad, Mx eliminates at least a half of the remaining
non-defective items. Then, the number of items which are not eliminated by the
concatenated matrix M is at most(1

2

) c
2 log Î

d̂ |S1| ≤ Î · 2−
c
2 log Î

d̂ ≤ Î · 2− log Î

d̂ ≤ d̂ .

That is, at most d̂ non-defective items remain.

Randomized Source Identification. We can now easily describe our two-stage
testing strategy:

Proof of Theorem 48. In stage 1, use the construction from Theorem 50 to rule out
all but O(d̂) non-defective items, using O(d̂ log Î

d̂
) tests. In stage 2, test all of the

remaining items individually, using O(d̂) tests. The probability that both stages
succeed is at least 1− Î−2.

Finally, we describe how to implement this strategy for source identification in
BEEPS .
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Proof of Theorem 49. To perform source identification, the leader node generates
O(logL log logL) independent uniformly random bits, and broadcasts them to all
nodes in O(D+logL log logL) rounds. This is sufficient randomness to perform the
group testing strategy of Theorem 48 with any d̂ (and Î = L). Then, we initially set
k̂ such that k̂ log L

k̂
= D (or k̂ = 1 if D < logL). We repeatedly perform the group

testing strategy of Theorem 48, doubling k̂ until it successfully identifies all sources.
By the argument of Theorem 41, this takes only O(D + k log L

k + logL log logL)
total rounds. Furthermore, since we perform at most log k iterations of the group
testing strategy, the probability that they all execute correctly (and therefore our
overall probability of success) is at least 1− log k

L2 ≥ 1− 1
L by a union bound.

6.6 Summary
In a first part, combinatorial group testing theory is introduced in Section 6.2, and
a general scheme for multi-broadcast is presented in Section 6.3 which breaks up
multi-broadcast into simpler auxiliary tasks: leader election, estimation of network
parameters, source identification and dissemination of source messages. Apart from
source identification, all other tasks can be achieved with existing methods (either
from Chapter 5 or [40, 42]). As for source identification, it can be seen as a group
testing problem, albeit with different constraints from those traditionally considered
in existing group testing results, due to the distributed nature of multi-broadcast.

In a second part, in Sections 6.4.1 through 6.4.3, group testing strategies based
on list disjunct matrices (see Definition 5) are shown to give efficient solutions for
multi-broadcast. Finally, several constructions of list disjunct matrices are pre-
sented in Sections 6.4.4 and 6.5. Some of them are novel and some are from the
existing group testing literature. Using these, we obtain several algorithms for the
multi-broadcast task:

• An optimal O(D + k log LM
k )-time weakly explicit deterministic algorithm.

• An explicit deterministic algorithm optimal for most ranges of k and D.

• An explicit randomized algorithm optimal for k = Ω(log logL).
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Chapter 7

2-hop Communication with
Uncoordinated Starts

In Chapter 7, we study the harshest variant of the beeping model, BEEPU , as op-
posed to Chapters 4 through 6. Importantly, results obtained in the uncoordinated
starts setting are more widely applicable. In particular, they are more tolerant to
poorly controlled settings, and thus of more practical interest. For instance, the
techniques used for this chapter can be useful in the design of dynamic or self-
stabilizing algorithms. Additionally, since biological systems often operate in less
coordinated and more dynamic settings, this study may prove useful in order to
better understand systems in nature.

We are interested in interference control on a local scale, in this harsher setting.
For that reason, we consider desynchronization problems, and in particular 2-hop
desynchronization.

To achieve a 2-hop desynchronization solution, nodes need to communicate in-
formation to other nodes within distance 2. However, all existing techniques pro-
viding such communication require some degree of synchronization between neigh-
boring nodes, unavailable in this setting. Therefore, we introduce an original cod-
ing technique, suited to the uncoordinated starts setting, which allows nodes to
communicate information simultaneously in an uncoordinated manner. With this
technique, nodes can communicate beyond their 1-hop neighborhood - i.e., a 2-hop
beep, through which a node can beep and be heard by a listening 2-hop neighbor.
In other words, we present a 2-hop communication primitive - allowing nodes to
2-hop beep - with the prerequisite that nodes know (some upper bound on) the
maximum degree ∆.

Utilizing 2-hop beeps, an existing desynchronization algorithm [38] can be con-
verted into a 2-hop desynchronization algorithm. By desynchronizing nodes at
distance 2 (instead of distance 1), we obtain the required local interference control,
strong enough1 to simulate a message-passing communication between neighboring
nodes (in the uncoordinated starts setting).

7.1 Introduction

Additional Definitions Pertaining to BEEPU . The model is defined in Section
2.1. However, we give several additional definitions here.

1A 1-hop desynchronization solution deals with sender-side collisions, but not with receiver-side
collisions (see discussion in Section 1.4).
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• For any awake node v in a global round r, the awake 1-hop neighborhood of
v is denoted by N a(v, r) = {u ∈ N (v)|u is awake in r}. Similarly, the awake
(reachable) 2-hop neighborhood of v is denoted by N a

2 (v, r) = N a(v, r)∪{u ∈
N2(v)| u is awake in r and ∃w ∈ N a(v, r) ∩N a(u, r)}.

• For any node v, Hv denotes the history of v, defined as an infinite binary
vector: Hv[rv] = 1 if in some local round rv, v or one of its neighbors
beeped, and Hv[rv] = 0 if v listened in rv and no neighbors beeped. The
factor Hv[r1, r2] (for local rounds r1, r2 ≥ 1 of v) is said to be the round
sequence [r1, r2] of v.

Specific Related Work. In this setting, Cornejo and Kuhn [38] give a proba-
bilistic algorithm solving the 1-hop desynchronization problem (or equivalently, the
interval coloring problem) in O(∆ logn) rounds w.h.p.2 (n is the number of nodes
and ∆ is the maximum degree of the communication graph). In this problem, every
node is required to determine, from some round onwards, an arithmetic sequence
of (global) rounds, disjoint from the sequences determined by its neighbors. The
period is T = O(∆). The solution in [38] builds upon a probabilistic sender-side
collision detection subcomponent, where nodes jitter (i.e., delay their beep) by 1
round with probability 1

2 . This eventually allows a node to determine sequences
where its neighbors do not beep while it beeps itself. We extend the construction
in [38] to the 2-hop desynchronization problem. Although the solution also builds
upon the probabilistic sender-side collision detection subcomponent from [38], the
extension relies on 2-hop communication primitives, implementing communication
with nodes at distance 2 (on the square of the communication graph). This case
is considerably more complicated, since communicating to a non-neighboring node
(within distance 2) requires coordinating with a neighboring node relaying the com-
munication. Moreover, nodes must be careful to relay communication up to distance
2 and no further. Although solving 1-hop desynchronization allows nodes to avoid
sender-side collisions, receiver-side collisions still remain. Two neighbors of a node
v, at distance 2 of each other, can have the same sequence of rounds in a 1-hop
desynchronization solution. On the contrary, 2-hop desynchronization requires for
the sequence of a node to be disjoint from the sequences of nodes in its 2-hop neigh-
borhood. This allows nodes to avoid both sender and receiver-side collisions. Hence,
it is possible to implement higher level communication primitives for sending and
receiving messages (cf. concluding remark).

Related Work on Superimposed Codes. In BEEPS (with simultaneous wake
ups), [60] encodes messages as sequences of beeps and listenings using superimposed
codes [73] in order to solve leader election efficiently. This technique allows multiple
nodes to transmit messages simultaneously, given that they start in the same round.
To do so, superimposed codes guarantee that any (OR) superposition (see Section
2.2) of (a limited number of) codewords can be uniquely decoded: the unique decom-
position property. However, in BEEPU , nodes may wake up in different (arbitrary)

2with probability at least 1− 1
n
.
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rounds and have no access to a common source of time. Therefore, nodes cannot
ensure that message transmissions start in the same round and superimposed codes
cannot be used. In this work, we introduce a variant of this technique that we call
uncoordinated superimposed codes and which similarly allows simultaneous trans-
missions (i.e., ensures the unique decomposition property), but in the more general
case in which nodes do not start transmitting in the same round. In other words,
uncoordinated superimposed codes tolerate arbitrary shifts of (a limited number
of) codewords.

Similar combinatorial structures have been used for the wake-up problem in
radio networks [59, 34, 32, 31]. In this problem, nodes wake up at some arbitrary
times or upon hearing a message. However, upon hearing a collision, nodes do not
wake up. Therefore, in an efficient solution, nodes must use messages very carefully
in order to avoid collisions and wake up the network’s other nodes. For that reason,
[34] introduces radio synchronizers. These guarantee that for any superposition of
(a limited number of) different codewords, arbitrarily shifted, there is at least one
position at which a single codeword has a 1 bit and all others have a 0 bit. In other
words, if nodes communicate according to unique codewords with arbitrary shifts,
then there is at least one round in which a single node communicates alone and
thus avoids collisions.
Importantly, notice that the property provided by radio synchronizers is weaker
than that provided by uncoordinated superimposed codes. For instance, radio syn-
chronizers were not designed for superpositions that comprise of the same codeword
multiple times, with different shifts. Since dealing with these superpositions is cru-
cial in the proposed solution, uncoordinated superimposed codes are used in this
work instead of radio synchronizers.

7.2 Implementing 2-hop Communication Primitives

In this section, the BEEP2H and LISTEN2H primitives are presented. When exe-
cuted in G, they simulate the effect of BEEP and LISTEN on the square commu-
nication graph G2, albeit with a time delay δ for some positive integer δ. Below we
define what it means to implement these primitives.

Definition 11 (BEEP2H and LISTEN2H). A node v is said to solve (or implement)
the BEEP2H and LISTEN2H primitives (with some delay δ ≥ 0) if it computes the
history of communication on the square communication graph - an infinite binary
vector H2

v - in the following way:

• H2
v is initialized to 0 for every element.

• If a node v invokes BEEP2H in some round rv, then H2
v(rv) := 1 and ∀u ∈

N a
2 (v, gv(rv)) s.t. u invokes LISTEN2H in ru (where ru = g−1

u (gv(rv))), u
sets H2

v(ru) to 1 at the latest in round ru + δ.

• If a node v invokes LISTEN2H in some round rv, then if ∃u ∈ N a
2 (v, gv(rv)))

s.t. u invokes BEEP2H in g−1
u (gv(rv)), v sets H2

v(rv) to 1 at the latest in
round rv + δ.
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Encoding Distances as Sequences of Beeps and Listenings. Beeps com-
municate a very limited amount of information. This obstacle is commonly circum-
vented by relying on sequences of beeps and listenings (encoded by 0’s and 1’s) to
transmit more complex information, where 0 corresponds to a listening (node exe-
cutes LISTEN) and 1 corresponds to a beep (BEEP). If a node beeps and listens
according to a binary sequence m, the node is said to transmit m (or beep m).
These sequences must be carefully chosen, because if several neighbors of a given
node transmit such sequences simultaneously, what is received is their superposi-
tion. Then the node must be able to extract the different superimposed sequences.
This problem can be solved using superimposed codes [60] (see Definition 12), but
only in the case of simultaneous wake-ups (meaning nodes are somehow coordi-
nated). For dealing with the case of arbitrary (or uncoordinated) wake-ups (i.e.,
BEEPU ), we propose here a variant of this technique that we call uncoordinated
superimposed codes (see Definition 13 and Figure 7.1).

Definition 12 (from [60]). An (h,k)-superimposed code or SI(h,k) code of length
l is a set of h binary codewords of length l such that (1) every superposition of k
or less different codewords has a unique decomposition in the set of codewords and
(2) every superposition of more than k different codewords is different from any
superposition of k or less different codewords.

Definition 13. An (h, k)-uncoordinated superimposed code or USI(h, k)-code C of
length l is a set of h binary codewords of length l such that (1) every superposition
of k or less different offsetted codewords of the form 0o||c||02(l−1)−o (denoted by
(c, o), where c ∈ C and o ∈ {0, . . . , 2(l − 1)}) has a unique decomposition in the
set of offsetted codewords, and (2) every superposition of more than k different
offsetted codewords is different from any superposition of k or less different offsetted
codewords.

The following lemma plays a crucial role in the design of 2-hop communication
primitives (in Section 7.2.2). Basically, the superposition of k − 1 or less different
offsetted (i.e., shifted) codewords (from some USI(h, k)-code C) has a unique de-
composition into C, and therefore cannot hide any offsetted codeword other than
the superposed k − 1 offsetted codewords.

Lemma 55. Consider a USI(h, k)-code C of length l. For any given codeword
c′ ∈ C, consider the superposition s of k − 1 or less different offsetted codewords of
the form 0o||c||02(l−1)−o such that c ∈ C, o ∈ {0, . . . , 2(l − 1)}, and o = l − 1 ⇔
c 6= c′. Then 0l−1||c′||0l−1 is not included in s.

Proof. Consider the superposition s′ of k − 1 different offsetted codewords and
(c′, l−1): s′ is a superposition of k different offsetted codewords. By contradiction,
assume 0l−1||c′||0l−1 is included in s. Then s and s′ are identical, which contradicts
part 1 of Definition 13.

High-level Description of Algorithm in Section 7.2.2. In this algorithm,
2-hop beeps (beeps over the square communication graph) are transmitted with a
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Offset o1 = 2 Codeword c

0 0 0

Codeword c′

Uncoordinated superposition of ≤ k offsetted codewords

Unique decom-
position of the
uncoordinated
superposition
into offsetted

codewords: (c,2),
(c,4),(c′,4),(c′,1)

Figure 7.1 – {c, c′} is a USI(2,k)-code of length 4. The uncoordinated superposi-
tions of at most 4 offsetted codewords have a unique decomposition into the set of
offsetted codewords.

time delay δ for some even integer δ ≥ 1. The main idea behind the algorithm is
to provide to all nodes the same two codewords c1 and c2, which are finite-length
sequences (of length l) of zeros and ones. It is important that collisions between
uncoordinated transmissions of codewords do not affect the decoding, and for that
reason, a USI(2,k)-code (its construction is given in Section 7.2.1) is chosen for
{c1, c2}, with some well-chosen integer k. By encoding the distance from any node
executing BEEP2H using c1 (distance 0: source) and c2 (distance 1: relay), nodes
communicate over distance 2 with a delay of δ = 4l rounds. The source s of a
2-hop beep transmits c1. By the properties of USI-codes, neighbors of s detect the
transmission of c1, which they relay by transmitting c2. When detecting c1 or c2, a
node learns that it is at most 2 hops away from a 2-hop beep’s source.

7.2.1 Using Distinct Difference Sets to construct USI-Codes

In this section, distinct difference sets (DDS) are defined and used as building blocks
for USI-codes. A construction for distinct difference sets (Theorem 56), derived from
Singer’s work on finite projective geometry [98], is given in Section 5.5 of [46]. This
construction uses prime numbers. By the Bertrand-Chebyshev theorem [28], for
every positive integer k, there is a prime number p such that k ≤ p ≤ 2k. As a
result, for any integer k, a construction of USI(2,k)-codes of length O(k2) can be
obtained. This construction gives a USI(2,(∆up+1)2 +1)-code of length O(∆4

up) for
any given integer value ∆up (Corollary 61), a crucial component for the algorithms
of the 2-hop communication primitives presented in Section 7.2.2.

Definition 14 (Distinct Difference Set). An (l, k) distinct difference set (DDS) is a
subset D of {0, . . . , l−1} of size k, such that every non-zero element of {0, . . . , l−1}
can be expressed exactly once as d1 − d2 mod l, where d1, d2 ∈ D and d1 6= d2.

Theorem 56 ([98]). Let k be an integer such that k − 1 is a power of a prime
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number. Then there exists a (constructible) set of k integers {d0, . . . , dk−1}, such
that ∀i ∈ {0, . . . , k − 1}, di ≤ k2 − k, and this set is a (k2 − k + 1, k)-DDS.

Given a DDS, a USI-code with a single codeword can be obtained. The codeword
leverages the DDS’s properties to guarantee the unique decomposition property of
the resulting USI-code.

Theorem 57. Let D be an (l, k)-DDS. Define the set S as the set of integers
{d + 1, d ∈ D}, and the codeword c as a binary word of length l such that c[p] = 1
if p ∈ S. Then {c} is a USI(1, k − 1)-code of length l.

The following lemma states that if a (l,k)-DDS is used to construct the codeword
of a USI(1,k)-code, then any two offsetted codewords (differing only in the offsets)
have at most one position where their bits are both 1. As a result, the superposition
s of k − 1 offsetted codewords has at most k − 1 positions where the bit is 1, in
common with a different offsetted codeword a. Therefore, if a is not one of the
k − 1 superposed offsetted codewords, then a is not included in the superposition
s, which guarantees the unique decomposition property of the USI(1,k)-code.

Lemma 58. Let D be an (l, k)-DDS. Define the set S as the set of integers {d +
1, d ∈ D}, and the codeword c as a binary word of length l such that c[p] = 1 if p ∈ S.
For o, o′ ∈ {0, . . . , 2(l−1)}, o 6= o′, let a = 0o||c||02(l−1)−o and a′ = 0o′ ||c||02(l−1)−o′.
There exists at most one j ∈ {1, . . . , 3l − 2} such that a[j] = a′[j] = 1.

Proof. By contradiction, assume that there exist j, j2 ∈ {1, . . . , 3l− 2}, j 6= j2 such
that a[j] = a′[j] = 1 and a[j2] = a′[j2] = 1. Then, there exist d1, d2, d

′
1, d
′
2 ∈ D,

where d1 6= d′1, d2 6= d′2, d2 > d1 and d′2 > d′1, such that d2 − d1 = d′2 − d′1. That
contradicts the fact that D is a DDS.

Proof of Theorem 57. Let us prove by contradiction that every superposition of
k − 1 or less different words ai = 0oi ||c||02(l−1)−oi has a unique decomposition.
Consider an arbitrary superposition s of k − 1 or less different words ai. Assume
that for some o′ 6= oi ∀i ∈ {1, . . . , k − 1}, the word a′ = 0o′ ||c||02(l−1)−o′ (which is
not part of the offsetted codewords superposed to obtain s) is included in s. By
Lemma 58, ∀i ∈ {1, . . . , k − 1}, there exists at most one j ∈ {1, . . . , 3l − 2} such
that ai[j] = a′[j] = 1. However, {p, a′[p] = 1} has cardinality k, so a′ cannot be
included in s.

Therefore, for any superposition s of at most k − 1 offsetted codewords, by the
unique decomposition property, there are at most k−1 offsetted codewords included
in s. Consequently, the superposition s2 of k′ ≥ k different offsetted codewords is
different from any superposition of k−1 or less different offsetted codewords because
at least k′ offsetted codewords are included in s2 (possibly more than k′).

It follows (Theorem 59 below) that a USI-code with multiple codewords can
be obtained by dividing the single codeword from the previous construction, into
multiple smaller codewords. The proof of Theorem 59 can be easily obtained from
Lemma 60 and the proof of Theorem 57. The proof of Lemma 60 is similar to that
of Lemma 58. Corollary 61 results from Theorems 56 and 59.
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Theorem 59. Let D be an (l, h · k)-DDS. Define the set S as the set of integers
{d + 1, d ∈ D}, the sets S1,. . .,Sh as partitions of S where each Si is of size k,
and for any i ∈ {1, . . . , h} the codeword ci as a binary word of length l such that
ci[p] = 1 if p ∈ Si. Then {c1, . . . , ch} is a USI(h,k − 1)-code of length l.

Lemma 60. Let D be an (l, h · k)-DDS. Define the set S as the set of integers
{d+ 1, d ∈ D}, the sets S1,. . .,Sh as partitions of S where each Si is of size k, and
for any i ∈ {1, . . . , h} the codeword ci as a binary word of length l such that ci[p] = 1
if p ∈ Si. For o, o′ ∈ {0, . . . , 2(l− 1)} and c, c′ ∈ {c1, . . . , ch}, let a = 0o||c||02(l−1)−o

and a′ = 0o′ ||c′||02(l−1)−o′ such that if c = c′ then o 6= o′, then there exists at most
one j ∈ {0, . . . , 3l − 2} such that a[j] = a′[j] = 1.

Corollary 61. For any given h and k, one can construct a USI(h,k) of length
l ≤ h2(2k + 1)2. Thus, for any given k, one can construct a USI(2,k) of length
l ≤ 4(2k + 1)2 ≤ 16(k + 1)2.

7.2.2 Algorithms for the 2-hop Communication Primitives

We consider a communication graph with maximum degree ∆, where an upper
bound on the maximum degree ∆up = O(∆) is known by all nodes. Moreover, we
assume the knowledge of some integer f ≥ 1 and of a USI(2,k)-code C = {c1, c2}
of length l = O(∆4

up) with k ≥ f(∆up + 1)2 + 1. This code is known to every node
of the graph.

Algorithms implementing BEEP2H and LISTEN2H are given below (Algorithms
13 and 14). Both algorithms rely on Algorithm 15, which manages the transmission
of codewords c1,c2 of the given USI(2,k)-code (using beeps and silences) and the
decoding of these codewords (by inspecting the round sequences, defined in Section
7.1).

2-hop Communication Details. The primitives work as follows. A node v
invokes either BEEP2H or LISTEN2H in each local round rv, but cannot invoke
BEEP2H more than f times within 4l − 1 rounds.

• On the one hand, v 2-hop beeps in some round rv by invoking BEEP2H (i.e.,
2-hop beeps) in rv. One says that v starts a 2-hop beep in (global) round
gv(rv), and v conveys this information to its neighbors by transmitting the
codeword c1 (beeping or listening according to ones or zeros in the binary
word c1).

• On the other hand, v listens to 2-hop beeps (and relays them if necessary) in
the following manner. In each local round rv, if c1 (resp. c2) is included in
the round sequence [rv−2l, rv− l−1] of v and rv ≥ 2l+1 (resp. rv ≥ 4l+1),
v sets H2

v[rv − 2l] to 1 (resp. for c2, sets H2
v[rv − 4l] to 1). Furthermore, v

transmits another codeword c2 (relaying the information that a neighboring
node transmitted c1 previously) to relay the 2-hop beep (resp. transmits
nothing).
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Constraints on listStarting. For some node v, assume v invokes BEEP2H in
some local round rv. Then rv is stored in listStartingv so that v knows how it
should transmit c1 in the l − 1 following rounds. Additionally, the listStarting
variable is heavily used in the analysis of Algorithm 15 to prove that multiple
sequences of BEEP2H and LISTEN2H of different nodes are transmitted correctly.
The constraints on the rounds in this list are described in the following remark.
Remark 1. For any given node v and local round r′v ∈ listStarting(v): |{r′′v ∈
listStarting(v) | r′′v 6= r′v and |r′v − r′′v | < 4l}| < f

Algorithm 13 BEEP2H
1: IN: {c1, c2}: USI(2,k)-code of length l, f : maximum frequency, r: current

(local) round
2: INOUT: listStarting: list of integers, H2: vector of booleans
3: // Store the round of BEEP2H invocation in memory.
4: if |{r′ ∈ listStarting | r 6= r′ and |r − r′| < 4l}| < f then
5: // At most f BEEP2H invocations allowed within 4l rounds for a node.
6: listStarting := listStarting ∪ {r}
7:
8: // Rounds of all BEEP2H invocations within 4l rounds transmitted to Alg. 15.
9: CodewordTransmission({c1, c2}, r, listStarting, H2) . Alg. 15

Algorithm 14 LISTEN2H
1: IN: {c1, c2}: USI(2,k)-code of length l, f : maximum frequency, r: current

(local) round
2: INOUT: listStarting: list of integers, H2: vector of booleans
3: CodewordTransmission({c1, c2}, r, listStarting, H2) . Alg. 15

High-Level Proofs. A high-level analysis of Algorithm 15 is given below, with
the proofs deferred to Section 7.2.3. Most importantly, Theorem 68 states that
BEEP2H and LISTEN2H (as defined by Algorithms 13 and 14) satisfy Definition
11 given at the beginning of Section 7.2 (with a delay δ of 4l = O(∆4

up)), albeit
with a constraint on the frequencies of BEEP2H invocations: a single node cannot
invoke BEEP2H more than f times within 4l− 1 rounds when using Algorithms 13
and 14.

Lemma 62. For any given node v and local round rv, if v beeps in round rv then
there is a round r′v, where rv − (l − 1) ≤ r′v ≤ rv, such that v transmits c1 or c2
starting from r′v.

Proof. From the definition of Algorithm 15 (lines 9 and 17).

In Algorithm 15, the most difficult part consists in listening to, and relaying,
2-hop beeps. This amounts to correctly detecting codeword transmissions by lis-
tening to all round sequences [r, r+ l− 1] of length l. However the round sequence
[r, r + l − 1] is impacted by any codeword transmission starting in the l-interval
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Algorithm 15 CodewordTransmission
1: IN: {c1, c2}: USI(2,k)-code of length l, r: current (local) round
2: INOUT: listStarting: list of integers, H2: vector of booleans
3: // With the constraint:
4: // ∀r1 ∈ listStarting, |{r2 ∈ listStarting | r1 6= r2 and |r1 − r2| < 4l}| < f
5:
6: // Transmit a bit of codeword c1.
7: for integer j := 1 ; j ≤ l ; j++ do . At most f transmissions of c1 by v.
8: if (r + 1− j) ∈ listStarting and c1[j] = 1 then
9: BEEP
10:
11: // Listen to beeps to detect bits of c1.
12: for integer i := 1 ; i ≤ l ; i++ do
13: r′ := r − 2l + 1− i
14: // If c1 detected (starting in r′), v relays information by transmitting c2.
15: if c1 is included in round sequence [r′, r′ + l − 1] then
16: if c2[i] = 1 then
17: BEEP
18:
19: // If c1 or c2 were detected in round sequence [r−2l, r− l−1], then update H2.
20: if c1 is included in round sequence [r − 2l, r − l − 1] then
21: H2[r − 2l] := 1
22: else if c2 is included in round sequence [r − 2l, r − l − 1] and r ≥ 4l + 1 then
23: H2[r − 4l] := 1

centered on r (see definition below). Such codewords cannot be avoided, and are
unpredictable, since nodes communicate in an uncoordinated manner, making this
very challenging. Additionally, a node may be relaying a 2-hop beep and listening
for other 2-hop beeps at the same time. In the following, we prove that commu-
nication using (codewords from) a USI-code (with the correct parameters) allows
nodes to correctly decode transmissions (thus listen to, and relay, 2-hop beeps).

Definition 15. For any given global round r ≥ 1, the l-interval centered on r is
defined as the set of positive integers in {r − (l − 1), . . . , r + (l − 1)} and denoted
by I(r). Alternatively, for any awake node v and local round rv ≥ 1, the notation
I(rv) is used as shorthand for I(gv(rv)).

Theorems 63 and 64 provide an upper bound on the number of different codeword-
round pairs transmitted during I(r). Importantly, such upper bounds allow to prove
Lemmas 65, 66 and 67. More concretely, Theorem 63 states that v transmits at
most f(∆ + 1) different codeword-round pairs (i.e., starts a 2-hop beep or relays a
2-hop beep) in I(r) for any round r. As for Theorem 64, it asserts that nodes in
the neighborhood of v transmit at most f(∆ + 1)2 different codeword-round pairs
in I(r) for any round r. This second theorem is crucial to our results, as it gives an
upper bound on the number of uncoordinated codeword transmissions during I(r).
Therefore, the properties of our USI(2,k) (with k ≥ f(∆+1)2 +1) can be leveraged
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to ensure that nodes properly decode the uncoordinated codeword transmissions.

Theorem 63. For any given global round r ≥ 1 and awake node v in r, there are at
most f(∆ + 1) different codeword-round pairs (c,r′) with c ∈ {c1, c2} and r′ ∈ I(r),
such that v transmits c starting from round g−1

v (r′).

Theorem 64. For any given global round r ≥ 1 and awake node v in r, there are at
most f(∆+1)2 different codeword-round pairs (c,r′) with c ∈ {c1, c2} and r′ ∈ I(r),
such that a node u ∈ N a(v, r′) transmits c starting from round g−1

u (r′).

Lemmas 65, 66 and 67 give a more high-level understanding of Algorithm 15,
which is used to prove Theorem 68. Broadly, these lemmas affirm that nodes cannot
communicate or receive false codewords in spite of the uncoordinated transmissions
(since codewords come from a USI-code with the correct parameters).

• Lemma 65 states that a codeword (i.e., c1 or c2) is included in a round
sequence of length l if and only if at least one neighboring node transmitted
the entire codeword (either started or relayed a 2-hop beep). Consequently,
this lemma rules out the possibility that multiple nodes each beep only some
part of a false codeword. In other words, multiple nodes cannot create a
false codeword through uncoordinated tranmissions.

• Lemma 66 asserts a similar result: for any node v, the codeword c1 is included
in its beep history (starting in some round r) if and only if v starts a 2-hop
beep in round r (and thus invoked BEEP2H in round r). That is to say, a
node never falsely starts a 2-hop beep.

• Finally, Lemma 67 states that a node v relays a 2-hop beep (by transmitting
c2 starting in global round r) if and only if one of its neighbors u was awake
and started a 2-hop beep in global round r − 2l. This means that a node
never falsely relays a 2-hop beep.

Lemma 65. For any given global round r ≥ 1 and awake node v in r: ∀i ∈ {1, . . . , l}
where c[i] = 1, ∃u ∈ N a(v, r) s.t. u beeps in round g−1

u (r) + i− 1 ⇔ ∃u ∈ N a(v, r),
∀i ∈ {1, . . . , l} where c[i] = 1, u beeps in round g−1

u (r) + i− 1.

Lemma 66. For any given global round r ≥ 1 and awake node v in r:
∀i ∈ {1, . . . , l} where c1[i] = 1, v beeps in g−1

v (r)+i−1⇔ g−1
v (r) ∈ listStarting(v).

Lemma 67. For any given global round r ≥ 2l + 1 and awake node v in r: (
∀i ∈ {1, . . . , l} where c2[i] = 1, v beeps in g−1

v (r) + i − 1 ) ⇔ g−1
v (r) ≥ 2l + 1 and

∃u ∈ N a(v, r − 2l), g−1
u (r − 2l) ∈ listStarting(u).

With these results, nodes can deduce the starting rounds of codeword transmis-
sions that started in their awake 2-hop neighborhood, by inspecting round sequences
of length l. Consequently, leveraging this property, nodes can communicate over
distance 2, albeit with a delay of 4l rounds - see Theorem 68.

Theorem 68. For any given node v, assume that Algorithm 15 is executed for some
local round rv ≥ 4l + 1. For any local round r′v ∈ {1, . . . , rv − 4l}: H2

v(r′v) = 1 ⇔
∃u ∈ N a

2 (v, gv(r′v)), s.t. g−1
u (gv(r′v)) ∈ listStarting(u).
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Proof. Assume that H2
v(r′v) = 1. Then either c1 is included in round sequence

[r′v, r′v+l−1] or c2 is included in round sequence [r′v+2l, r′v+3l−1] (lines 20-21). The
first case is equivalent to ∀i ∈ {1, . . . , l}, where c1[i] = 1, ∃u ∈ N a(v, gv(r′v)) such
that u beeps in round g−1

u (gv(r′v))+i−1. Then, by Lemmas 65 and 66, the first case
is equivalent to ∃u ∈ N a(v, gv(r′v)) such that g−1

u (gv(r′v)) ∈ listStarting(u). The
second case is equivalent to ∀i ∈ {1, . . . , l}, where c2[i] = 1, ∃u ∈ N a(v, gv(r′v + 2l))
such that u beeps in round g−1

u (gv(r′v + 2l)) + i − 1. Then, by Lemmas 65 and
67, the second case is equivalent to ∃u ∈ N a

2 (v, gv(r′v)) such that g−1
u (gv(r′v)) ∈

listStarting(u).

7.2.3 Detailed Proofs of the 2-hop Communication Primitive

The proofs of Theorems 64 and 63, as well as Lemmas 65, 66 and 67, are quite
involved. The underlying reason is that the statements are intertwined. We concen-
trate on proving Theorem 64, using (interleaved) strong induction. The inductive
step can be split into two main parts. First, if Theorem 64 holds for all rounds
r1 ≤ r, then Lemma 67 holds for all rounds r2 ≤ r + l. Following which Theorem
64 holds for round r + 1, thereby completing the inductive step.

The first step - the conditional proof of Lemma 67 - is the more complex one.
We show that if Theorem 64 holds for some round r1, then Lemmas 65 and 66 also
hold for round r1. Moreover, if Theorem 64 as well as Lemmas 65 and 66 hold for
all rounds r2 ≤ r1 (for some round r1), then Theorem 63 holds for round r1 + l.
Finally, if Theorem 64 and Lemma 66 hold for all rounds r2 ≤ r1 (for some round
r1), and Theorem 63 holds for round r1 + l, then Lemma 67 holds for round r1 + l.

Proof: Theorem 64 holds for round r1 ≥ 1 ⇒ Lemma 65 holds for round
r1.
(⇐) Trivial.
(⇒) We transform a problem on concurrent codeword transmissions into an equiv-
alent problem on offsetted codewords, and thus leverage the properties of the USI-
code {c1, c2}. Consider the round sequence I(r1) of v (shorthand for round sequence
[g−1
v (r1) − (l − 1), g−1

v (r1) + (l − 1)]). It is equal to the first 2l − 1 bits of the su-
perposition s of the offsetted codeword (c′,o′) defined as follows: for each round
r′ ∈ I(r1) and codeword c′ ∈ {c1, c2}, such that there exists a node u ∈ N a(v, r′)
and u transmits c′ starting from g−1

u (r′), a corresponding offsetted codeword (c′,o′)
with o′ = r′ − r1 + l − 1 is considered (note that o′ ∈ {0, . . . , 2(l − 1)}).
It is known that ∀i ∈ {1, . . . , l} where c[i] = 1, ∃u ∈ N a(v, r1) s.t. u beeps in round
g−1
u (r1) + i − 1. Assume by contradiction that no node u ∈ N a(v, r1) transmits c
starting from g−1

u (r1). Equivalently, ∀u ∈ N a(v, r1), ∃i ∈ {1, . . . , l} where c[i] = 1,
s.t. u does not beep in g−1

u (r1)+ i−1. In terms of offsetted codewords, the offsetted
codeword (c,l − 1), or equivalently 0l−1||c||0l−1, is included in the superposition s
of all offsetted codewords (c′,o′) considered above (and (c,l − 1) is not part of the
superposition).
Theorem 64 holds for r1. Thus, there are at most f(∆+1)2 different codeword-round
pairs (c′,r′) with c ∈ {c1, c2} and r′ ∈ I(r1) s.t. a node u ∈ N a(v, r′) transmits c′
starting from g−1

u (r′). Consequently, s is the superposition of at most f(∆ + 1)2
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offsetted codewords (c′,o′) (excluding (c,l− 1)). Because {c1, c2} is a USI(2,k)-code
with k ≥ f(∆up+1)2 +1, then by Lemma 55, 0l−1||c||0l−1 is not included in s. Thus
0l−1||c is not included in round sequence I(r1), resulting in a contradiction.

Proof: Theorem 64 holds for round r1 ≥ 1 ⇒ Lemma 66 holds for round
r1.
(⇐) Follows from the definition of Algorithm 15 (line 9).
(⇒) In a slight departure from the proof above, only transmissions of v (started
in I(r1)) are considered. The superposition s of the offsetted codeword (c′,o′) is
defined as follows: for each round r′ ∈ I(r1) and codeword c′ ∈ {c1, c2}, such that v
transmits c′ starting from g−1

v (r′), a corresponding offsetted codeword (c′,o′) with
o′ = r′ − r1 + l − 1 is considered (note that o′ ∈ {0, . . . , 2(l − 1)}).
It is known that ∀i ∈ {1, . . . , l} where c1[i] = 1, v beeps in round g−1

v (r1) + i −
1. Assume by contradiction that g−1

v (r1) 6∈ listStarting(v). Therefore, v does
not transmit c1 starting from round g−1

v (r1). In terms of offsetted codewords,
the offsetted codeword (c,l − 1), or equivalently 0l−1||c||0l−1, is included in the
superposition s of all offsetted codewords (c′,o′) considered above (and (c,l − 1) is
not part of the superposition).
Similarly to the proof above, it is shown that since Theorem 64 holds for r1 and
{c1, c2} is a USI(2,k)-code with k ≥ f(∆up + 1)2 + 1, we have a contradiction.

Proof: Theorem 64 holds for all rounds r2 ≤ r1, with r1 ≥ 1 ⇒ Theorem
63 holds for round r1 + l.
Assume by contradiction that there are at least f(∆ + 1) + 1 different rounds
r′ ∈ I(r1 + l), such that v transmits c2 starting from r′. Therefore, for at least
f(∆ + 1) + 1 different rounds r′ ∈ I(r1 + l), c1 is included in the round sequence
[g−1
v (r′)− 2l, g−1

v (r′)− l− 1] of v (lines 15-17 of Algorithm 15): v transmits c2 only
if it previously received a c1 transmission by one of its neighbors.
Lemmas 65 and 66 imply that at least f(∆ + 1) + 1 local rounds (corresponding
to f(∆ + 1) + 1 global rounds within an interval of 2l − 1 rounds) are part of
the listStarting variables of neighbors of v, which induces a contradiction with
Remark 1. For at least f(∆ + 1) + 1 different rounds r′′ ∈ I(r1 − l) (r′′ = r′ − 2l),
∀i ∈ {1, . . . , l}, where c1[i] = 1, ∃u ∈ N a(v, r′′) s.t. u beeps in g−1

u (r′′)+ i−1. Since
Theorem 64 holds for all rounds r2 ≤ r1, so do Lemmas 65 and 66. Therefore, for
at least f(∆ + 1) + 1 different rounds r′′ ∈ I(r1 − 2l), ∃u ∈ N a(v, r′′) s.t. r′′ ∈
listStarting(u). Since |N (v)| ≤ ∆+1, ∃u ∈ N (v) s.t. there are f+1 different global
rounds r3, . . . , rf+2 ∈ I(r1 − 2l) with g−1

u (r3), . . . , g−1
u (rf+2) ∈ listStarting(u).

Finally, there are at most f(∆ + 1) different rounds r′ ∈ I(r1 + l), such that v
transmits c2 starting from g−1

v (r′). Additionally, by Remark 1, there are at most f
different rounds r′′ ∈ I(r1 + l), such that v transmits c1 starting from g−1

v (r′′), and
any transmission of c1 during I(r1 + l) by v is done at the expense of a transmission
of c2 in I(r1+l). Therefore, there are at most f(∆+1) different rounds r′ ∈ I(r1+l),
such that v transmits a codeword starting from g−1

v (r′).

Proof: Theorem 64 holds for all rounds r2 ≤ r1, with r1 ≥ l+ 1 ⇒ Lemma
67 holds for round r1 + l.
(⇐) It is known that ∃u ∈ N a(v, r1 − l), g−1

u (r1 − l) ∈ listStarting(u). Since
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Theorem 64 holds for r2 = r1− l, so does Lemma 66. Thus, ∃u ∈ N a(v, r1− l),∀i ∈
{1, . . . , l} where c1[i] = 1, u beeps in g−1

u (r1 − l) + i − 1. And c1 is included in
the round sequence [g−1

v (r1)− l, g−1
v (r1)− 1] of v. By lines 15-17 of Algorithm 15,

∀i ∈ {1, . . . , l} where c2[i] = 1, v beeps in g−1
v (r1 + l) + i− 1.

(⇒) Consider the round sequence I(r1 − l) of v. It is equal to the first 2l − 1
bits of the superposition s of the offsetted codeword (c′,o′) defined as follows: for
each round r′ ∈ I(r1 − l) and codeword c′ ∈ {c1, c2}, such that there exists a node
u ∈ N a(v, r′) and u transmits c′ starting from g−1

u (r′), a corresponding offsetted
codeword (c′,o′) with o′ = r′− r1 + 2l− 1 is considered (note that o′ ∈ {0, . . . , 2(l−
1)}).
Assume by contradiction that ∀u ∈ N a(v, r1 − l), g−1

u (r1 − l) 6∈ listStarting(u).
Following which, assume by contradiction that c1 is included in the round sequence
[r1 − l, r1 − 1] of v. In terms of offsetted codewords, the offsetted codeword (c1,l −
1), or equivalently 0l−1||c1||0l−1, is included in the superposition s of all offsetted
codewords (c′,o′) considered above (and (c1,l− 1) is not part of the superposition).
Since Theorem 64 holds for r2 = r1 − l and {c1, c2} is a USI(2,k)-code with k ≥
f(∆up + 1)2 + 1, we have a contradiction, and c1 is not included in the round
sequence [r1 − l, r1 − 1] of v (meaning v does not transmit c2 starting from round
g−1
v (r1 + l)).
Now, it could still be the case that ∀i ∈ {1, . . . , l} where c2[i] = 1, v beeps in
g−1
v (r1 + l) + i − 1. But Theorem 64 holds for r1, thus Theorem 63 holds for
r1 + l. Because {c1, c2} is a USI(2,k)-code with k ≥ f(∆up + 1)2 + 1, then by
Lemma 55, 0l−1||c2 is not included in round sequence I(r1 + l) of v, resulting in a
contradiction.

Proof of Theorem 64. Theorem 64 is proven trivially for rounds in {1, . . . , l+ 1}
because no node can beep according to c2 starting from rounds before 2l+ 1 (lines
15-17 of Algorithm 15).

Let r be some round, r ≥ l+1. For any given node v, assume Theorem 64 holds
for all rounds r1 ≤ r. Let us prove it also holds for r + 1 (inductive step). First,
by Remark 1, there are at most f(∆ + 1) different rounds r′ ∈ I(r + 1), such that
∃u ∈ N a(v, r′) and u transmits c1 starting from g−1

u (r′).
Now, assume by contradiction that there are at least f(∆2 + 1) + 1 different rounds
r′ ∈ I(r + 1), such that ∃u ∈ N a(v, r′) and u transmits c2 starting from g−1

u (r′).
Since Theorem 64 holds for all r1 ≤ r, Lemma 67 holds for all 2l + 1 ≤ r2 ≤
r + l (and r′ ≤ r + l). By Lemma 67, there are at least f(∆2 + 1) + 1 different
rounds r′′ ∈ I(r + 1 − 2l) (r′′ = r′ − 2l) such that ∃w ∈ N a

2 (u, r′′ − 2l) and
r′′ ∈ listStarting(w). Thus, ∃w ∈ N a

2 (v, r′′) s.t. there are f + 1 different global
rounds r3, . . . , rf+2 ∈ I(r + 1 − 2l) and g−1

w (r3), . . . , g−1
w (rf+2) ∈ listStarting(w).

By Remark 1, this is not possible. Thus there are at most f(∆2+1) different rounds
r′ ∈ I(r+ 1) such that ∃u ∈ N a(v, r′) and u transmits c2 starting from g−1

u (r′).

7.3 Solving the 2-hop Desynchronization Problem

Now that nodes have access to 2-hop communication primitives, communication on
the square graph can be simulated. The solution presented in [38] is extended here
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through the use of these primitives, in order to obtain a 2-hop desynchronization.
More precisely, in O(∆4

up logn) rounds after its wake-up, a node determines a peri-
odic sequences of rounds, of period T = O(∆4

up), disjoint from those of nodes in its
2-hop neighborhood. Probabilities are necessary to break symmetry between nodes
without relying on identifiers.

Now the solution is presented. It is assumed that nodes are given the same
period T = κ(∆up + 3)4 and the same USI(2,(∆up + 1)2 + 1)-code C of length
l ≤ 16(∆up + 3)4 (l = O(∆4

up)), where κ is set to 93. Conceptually, the algorithm
is executed in periods of T rounds.
Some supplementary notations are needed. The discrete uniform distribution on a
set S is denoted by U(S). The round number within a period is denoted by index
i ∈ {1, . . . , T}. The (local) period numbers are denoted by p and any variable var
changes at most once every period, in the round of index 4l. By abusing the notation
the value of var at the start of the round of index 4l + 1 is said to be the value of
var in p and is denoted by var(p). Additionally, for any node v, the starting local
round of a period pv is denoted by startv(pv) and the global round related to the
local round of index i in period pv is denoted by gv(i, pv) = gv(startv(pv)) + (i− 1).

Algorithm Description. Consider a node v. Upon wake-up, it listens for T
rounds (the first period). In any other period pv ≥ 2, v listens for the first 4l
rounds, thus at the end of the round of index 4l v has a complete history Bv(pv)
of BEEP2H invocations during its previous period pv − 1. Additionally, v invokes
BEEP2H exactly once per period (in gv(ibv, pv)), after computing a round index
iev ∈ {4l+ 1, . . . , T − 2}, a bit jitterv ∈ {0, 1} and ibv = iev + jitterv. The bit jitterv
is used to obtain probabilistic sender-side collision detection, with probability 1

2 .
Node v computes iev as follows. First, with Bv(pv), it computes whether any

2-hop neighbors invoked BEEP2H within 2 rounds of gv(ibv, pv) − T . If none did,
then disjoint(pv) = true and v keeps the same round index iev(pv) = iev(pv − 1): v
starts an arithmetic sequence with common difference T . Else if 2-hop neighbors
invoked BEEP2H within 1 round of gv(ibv, pv)−T , then a collision is detected (with
probability 1

2) and disjoint(pv) = false. Following this v randomly computes a
round index iev ∈ {4l+ 1, . . . , T −2}, such that the global round gv(iev, pv) is at least
three rounds away from any global round gv(i, pv) for i ∈ Bv(pv). As a result, v
decides on a sequence disjoint from those of its 2-hop neighbors with a constant
probability.

Analysis. The subsequent results are in the same vein as those in [38]. We prove
that for any node v, O(logn) periods after waking up in (global) round rw, node v
is good (see Definition 16) w.h.p. and thus desynchronized w.h.p. with all nodes in
its 2-hop awake (reachable) neighborhood N a

2 (v, rw). Therefore, O(logn) periods
after all nodes wake up, all nodes output a correct 2-hop desynchronization solution
w.h.p. Unfortunately, although the original 1-hop desynchronization algorithm is
probabilistically self-stabilizing (i.e., converges to a correct configuration from any
given initial configuration, with some probability), the 2-hop desynchronization
algorithm presented here is not (due to the use of the proposed USI-codes).
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Algorithm 16 2-hop Desynchronization
1: IN: κ: integer, ∆up: upper bound on the maximum degree, C: USI-code of

length l
2: OUT: sequence: sequence of rounds . Sequence determined by v
3: disjoint := false, lS := ∅, T = κ(∆up + 3)4

4: // H2 is the history of communication in the square graph, with a 4l delay.
5: H2 := vector < binary >
6: for local round r := 1 ; r++ do
7: i := (r − 1) % T + 1 . Round index in the current T -round period.
8:
9: // Communicate on the square graph
10: if r ≤ T or i ≤ 4l then
11: LISTEN2H(C,1,r,lS,H2)
12: else if r > T + 4l and i = ib then
13: BEEP2H(C,1,r,lS,H2)
14: else
15: LISTEN2H(C,1,r,lS,H2)
16:
17: // Local computation once per period pv > 1,
18: // at the end of the round of index 4l.
19: if r > T and i = 4l then
20: // B contains the indexes of BEEP2H invocations during the previous
21: // period.
22: B := {j ∈ {1, . . . , T}| H2[r + j − i− T ] = 1}
23: // The free indexes F are indexes at least 3 rounds away from B.
24: F := {j′ ∈ {4l + 1, . . . , T − 2} | ∀j ∈ B, |j′ − j| > 2}
25: if r > 2T then
26: // During previous period, v invoked BEEP2H in rS.
27: rS := r + ib − i− T
28: if (ib − 1) ∈ B or (ib + 1) ∈ B then
29: disjoint := false . If a collision is detected.
30: else if {rS − 2, rS − 1, rS + 1, rS + 2} ∩B = ∅ then
31: disjoint := true. . If no 2 hop neighbors within 2 rounds.
32: if not disjoint then
33: ie := U(F ) . Choose a new round for the output sequence.
34: jitter := U({0, 1}) . Compute a jitter bit for sender-side CD.
35: // v invokes BEEP2h in round of index ib of this period.
36: ib := ie + jitter
37: sequence := sequence ∪ {r + ie − i}

Definition 16. For any given node v and any given period pv, v is said to be a good
node in pv if ∀u ∈ N2(v), for any integer j ≥ 1, |sequencev[pv]−sequenceu[j]| > 1.
If v is not good in pv, then it is a bad node.

Lemma 69 states that once some node v becomes good in a period pv, then its
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2-hop neighbors always decide on round indexes corresponding to global rounds at
least 3 rounds away from gv(iev, p′v) in all following periods p′v. Thus, even with the
jitter, v and its 2-hop neighbors always invoke BEEP2H at least 2 global rounds
away, thus proving Lemma 70.

Lemma 69. For any given node v, once v is good in some period pv then for all
periods p′v ≥ pv: ∀u ∈ N2(v), for any period pu ≥ 1 such that gu(startu(pu)) ≥
gv(startv(pv)), |gv(iev, p′v)− gv(ieu, pu)| > 2.

Proof. For any node w and period pw ≥ 2, due to the properties of BEEP2H and
LISTEN2H (from Section 7.2), the history of 2-hop communication during period
pw−1 is complete at the end of the round indexed 4l of pw. Then, by the definition
of Algorithm 16 (line 24), for all periods p′v ≥ pv, for any given node u ∈ N2(v),
node u (in some period pu ≥ 1 such that gu(startu(pu)) ≥ gv(startv(pv))) chooses
a round index ieu such that |gv(iev, p′v)− gv(ieu, pu)| > 2. It is important to note that
ieu ≤ T − 2 (in every period), so that u knows whether neighbors beeped in the
rounds indexed T − 1 and T of period pu − 1 when deciding Fu in period pu.

Lemma 70. For any given node v, once v is good in some period pv then it remains
good in all following periods p′v > pv (even if 2-hop neighbors wake up in later
periods).

Once a node is good, it remains good forever. On the other hand, a bad node
becomes good after two periods with constant probability (Lemma 74). Therefore,
a bad node becomes a good node w.h.p. after O(logn) periods (Theorem 75).
Lemma 74 is obtained by combining Lemmas 71 and 72. Lemma 72 builds upon
Lemma 73, which proves that at least a constant fraction of the period is composed
of free indexes.

Lemma 71. Consider a bad node v in some period pv with disjointv(pv + 1) =
true. Then v is good in period pv + 1 or disjoint(pv + 2) = false with probability
at least 1

2 .

Proof. Consider a bad node v in some period pv with disjointv(pv + 1) = true.
Since disjointv(pv + 1) = true, iev(pv + 1) = iev(pv). Moreover, v is a bad node in
pv, so there exists a set of nodes S ⊂ N2(v) such that for any node u ∈ S, there is a
period pu such that |gv(iev(pv), pv) + jitterv(pv)− gu(ieu(pu), pu)− jitteru(pu)| ≤ 1.

Consider a node u in S. If disjointu(pu + 1) = false then u chooses ieu(pu + 1)
such that |gv(iev(pv + 1), pv + 1)− gu(ieu(pu + 1), pu + 1)| > 2. Thus, if for all nodes
u in S, disjointu(pu + 1) = false then v is good in period pv + 1.
Otherwise, ∃u ∈ S such that disjointu(pu + 1) = true. Thus ieu(pu + 1) = ieu(pu).
Since jitterv(pv + 1) and jitteru(pu + 1) are chosen from {0, 1} with probability 1

2 ,
then gv(iev(pv + 1), pv + 1) + jitterv(pv + 1) 6= gu(ieu(pu + 1), pu + 1) + jitteru(pu + 1)
with probability 1

2 . Since u and v beep in different rounds with probability 1
2 ,

disjoint(pv + 2) = false with probability at least 1
2 (line 28).

Lemma 72. Consider a bad node v in some period pv with disjoint(pv+1) = false.
Then v is good in period pv + 1 with probability at least exp −10

(1−9β)κ .
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Lemma 73. If κ ≥ 81, then for any given node v and any given period pv ≥ 2 of
v, |Fv| ≥ (1− 81

κ )T .

Proof. Consider a node v and a period pv ≥ 2. Since indexes that are within
2 rounds of B are not in Fv, |Fv| ≥ T − (4l + 2) − 5(∆2 + 1). As l ≤ 16

κ T ,
|Fv| ≥ T (1 − 64

κ − 10∆2 − 7). Following which, |Fv| ≥ T (1 − 64
κ −

17
κ ). Finally,

|Fv| ≥ (1− 81
κ )T (and 1− 81

κ ≥ 0 for κ ≥ 81).

Proof of Lemma 72. Consider a bad node v in some period pv with disjointv(pv +
1) = false. Since disjointv(pv) = false, iev(pv + 1) is chosen uniformly at random
in Fv(pv + 1). Let r′ = gv(iev(pv + 1), pv + 1). Node v becomes good in pv + 1 unless
a non-empty subset of nodes S ⊂ N2(v) invoke BEEP2H in {r′ − 2, . . . , r′ + 2} (at
most once each). Taking into account the jitter, the probability pu that a node
u ∈ S interferes with v is at most 6

|Fu(pu)| for some period pu, which is at most
6

(1− 81
κ

)T . Then, the probability that v is good in period pv + 1 is p =
∏
u∈S

(1− pu) ≥

(1 − pu)|N2(v)| ≥ exp −12
(1− 81

κ
)κ . The last inequality holds for 6

(1− 81
κ

)κ ≤
1
2 , thus

κ ≥ 93.

Lemma 74. Consider a bad node v in some period pv. Then v is good in period
pv + 2 with constant probability.

Theorem 75. A bad node v becomes good after O(logn) periods with high proba-
bility.

Concluding Remark. A node v executing Algorithm 16 decides w.h.p. on an
arithmetic sequence of rounds O(logn) periods after its wake-up, such that no
other awake node in its 2-hop neighborhood invokes BEEP2H within 2 rounds.
During each following period, small intervals centered on the sequence’s round (for
that period) can be used to transmit bits. For any awake neighbor of v, v is
the only node to invoke BEEP2H during these intervals, thus each bit is received
without collisions. As a result the SEND and RECEIVE primitives, dealing with
messages of any size, can be implemented on top of BEEP2H and LISTEN2H via
this communication mechanism. These primitive are correct O(∆4

up logn) rounds
after every node has woken up.

7.4 Summary
In a first part, we implement the 2-hop communication primitives BEEP2H and
LISTEN2H in BEEPU (Section 7.2).

• To do so, we first introduce uncoordinated superimposed codes, which are
an original combinatorial approach that we develop exploiting the properties
of distinct difference sets (DDS) - see Section 7.2.1.

• Then, in Sections 7.2.2 and 7.2.3, we give algorithms for the 2-hop commu-
nication primitives BEEP2H and LISTEN2H building upon the technique
of uncoordinated superimposed codes. These primitives replace BEEP and
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LISTEN for communication on the square graph (i.e., nodes can commu-
nicate up to distance 2 with beeps or listenings). While being the crucial
component of this work, these primitives are also quite general in the sense
that they can be used for solving other problems (e.g., 2-hop MIS) in the
beeping model with uncoordinated wake-ups.

In a second part, a solution to the 2-hop desynchronization problem inO(∆4
up logn)

rounds w.h.p. is presented in Section 7.3 (where ∆up is some known upper bound
on the maximum degree ∆). This result is particularly significant since it allows
to implement the higher level communication primitives SEND and RECEIVE as
in the message passing model. This in turn allows to synchronize the local clocks,
desynchronized because of the arbitrary wake-ups.
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Chapter 8

Conclusion

8.1 Overview

Algorithm design in the beeping model is challenging. Indeed, beeps are simple
unary signals, and suffer from some degree of information loss when collisions hap-
pen. Our results provide interference control, using symmetry-breaking primitives
and coding techniques. Importantly, efficient interference control allows for efficient
communication primitives in the beeping model.

On the one hand, we addressed interference control on a local scale. First, we
examined local symmetry-breaking problems - vertex coloring and maximal inde-
pendent set (Chapter 4) - in the synchronous starts setting (i.e., BEEPS). Deter-
ministic and uniform solutions for these problems were proposed, as well as solutions
for their 2-hop variants. Using these, message-passing between neighboring nodes
can be simulated in exchange for some overhead. Following which, we investigated
a different symmetry-breaking problem - 2-hop desynchronization (Chapter 7) - in
the uncoordinated starts setting (i.e., BEEPU ). As a first step, we introduced an
original coding technique to obtain the first 2-hop communication primitive. Using
this, we presented the first (randomized) 2-hop desynchronization algorithm. Im-
portantly, this solution can also be used to implement message-passing with some
overhead, but in the more practically-relevant uncoordinated starts setting.

On the other hand, we have also addressed interference control on a global scale.
First, we studied the leader election problem (Chapter 5) - a global symmetry-
breaking problem - and designed a time-optimal deterministic and uniform algo-
rithm in BEEPS . Then, we focused on a fundamental communication primitive:
multi-broadcast (Chapter 6). Building upon the efficient leader election solution
(from Chapter 5) and coding techniques, computationally- and time-efficient solu-
tions for multi-broadcast were presented. The solutions given in Chapters 5 and 6
show that on a global scale, dealing with non-destructive interference can be done
without any negative impact (i.e., asymptotic overhead).

In conclusion, the results of the thesis shed some light on how the degree of
synchronization between nodes can impact the design of efficient (interference con-
trol) solutions in the beeping model. On the one hand, in the synchronous starts
setting, in which nodes have synchronized local clocks, time-efficient deterministic
and uniform solutions were obtained (in Chapters 4 to 6). For these solutions, tech-
niques that leverage the strong degree of synchronization to convey, using beeps,
small amounts of collision-tolerant information, are crucial. On the other hand, in
the uncoordinated starts setting, nodes can have arbitrarily different local clocks
and as a result, such techniques are unavailable. Instead, to cope with the lack of
synchronization, we introduce an original coding technique (in Chapter 7). How-
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ever, some knowledge on graph parameters (resulting in a non-uniform solutions),
as well as randomization, are required. Whether this is necessary in such a harsh
setting is an open question. This question, and other questions related to the thesis,
are addressed below.

8.2 Perspectives

We start by discussing perspectives following directly from the results of the thesis.
First, notice that while the proposed global interference control methods are efficient
and have no negative impact (asymptotically), that is not the case for the local
interference control methods. Can local interference control be achieved even more
efficiently in the beeping model? How much (if any) of a negative impact does
optimal local interference control produce?

Furthermore, an important result of this thesis shows that local interference con-
trol is also possible in the uncoordinated starts setting. Since most previous works
have considered the synchronous starts setting (see the related work in Chapter 3),
the uncoordinated starts setting is still poorly understood. In particular, how do
beeps efficiently and reliably convey information in this setting? Can they even do
so in a uniform manner (i.e., without any parameter knowledge or purely deter-
ministically)? Finally, can efficient global interference control be achieved in this
setting?

Now we take a step back and propose three different future lines of research.

Difference between Beeps and 1-bit Messages. Recent works study the im-
pact of reducing the message size in traditional message-passing models. [74, 24]
consider CONGEST limited to 1 bit messages, and respectively present coloring
and leader election solutions. The beeping model is closely related to this model.
CONGEST with 1-bit messages can simulate beeping algorithms, but it is yet un-
clear if the beeping model is weaker, and if yes, to what extent it is so. By studying
how communicating by beeps impacts algorithmic solutions, it is possible to under-
stand if and how a stronger communication is required for efficient algorithms.

In this work, it is shown that for both the beeping model (with synchronous
starts) and CONGEST with 1-bit messages, O(D+ logn) solutions for leader elec-
tion can be obtained. Additionally, [42] shows that multi-broadcast can also be
solved with the same asymptotical complexity in both models (if computation effi-
ciency is not taken into account).

However, what about local scale (symmetry-breaking) problems? Is there a gap
between both models for the coloring and MIS problems? As an intermediate step,
problems providing a smaller degree of symmetry-breaking (e.g., ruling set) can also
be taken into account.
Moreover, local scale symmetry-breaking problems allow to simulate CONGEST
communication. In this work, we provide CONGEST simulations in both the syn-
chronous starts and uncoordinated starts setting. However, these simulations (even
for 1-bit messages) have high multiplicative overheads that depend on the commu-
nication graph’s maximum degree. Then, is it possible to design simulations with
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constant overhead (possibly by obtaining better coloring solutions)?

Fault-Tolerance in the Beeping Model. Electronic devices have become more
and more widespread, at the cost of reduced reliability. In other words, these devices
suffer more often from faults, e.g., crashes or transient faulty behaviors, due to
mass-production and large-scale deployment. Self-stabilizing distributed algorithms
provide solutions that handle transient faults in a distributed manner. Classical
self-stabilizing solution generally rely on perpetually communicating large amounts
of information [4] in order to detect and correct the inconsistencies produced by
transient faults. However, it is yet unknown whether such perpetual information
exchange can be obtained under transient faults using beeps. As such, obtaining
self-stabilization solutions in the beeping model may only be possible for problems in
which inconsistencies can be easily detected using beeps. For instance, for the MIS
and desynchronization problems, a simple probabilistic collision detection primitive
(using randomization) can detect inconsistencies, and randomized self-stabilizing
solutions have been given [2, 38]. On the other hand, detecting inconsistencies in
problems such as clock synchronization and vertex coloring is more challenging.
Can self-stabilizing solutions for these problems be obtained in the uncoordinated
starts setting? Moreover, is randomization necessary to ensure self-stabilization in
the beeping model?

Furthermore, with the rise of the Internet of Things, security issues have taken
the forefront. Solutions that deal with byzantine faults [77], which model arbitrary
non-mobile faulty behaviors, allow to cope with some of these issues. However,
byzantine faults appear to be very difficult to tackle in the beeping model. In
particular, byzantine fault masking may not be possible, that is, it may not be
possible for all correct nodes to have correct outputs. Indeed, although a byzantine
node can transmit very little false information using a beep, it can choose to beep in
all rounds. In doing so, its neighbors are unable to obtain any information. To deal
with that, [64] augments the beeping model with the ability to count the number
of beeping nodes, thus allowing nodes to handle byzantine faults.

Nevertheless, instead of byzantine fault masking, is byzantine containment [87]
achievable in the original beeping model? More precisely, can nodes contain byzan-
tine faults, such that correct nodes that are at a certain distance away from a
byzantine node are able to give a correct output?

Beeps, Fireflies and Synchronization. Among emerging phenomena in na-
ture, the synchronized flashing phenomenon of firefly swarms [21] offers a riveting
display of persistent regular behavior achievable in a distributed system with lim-
ited communication. Such synchronization behaviors are yet to be understood fully.
Improving our knowledge regarding these behaviors has implications from a purely
scientific perspective, but also from a practical perspective. Indeed, synchronization
solutions allow nodes to synchronize their local clocks, which they can then leverage
for more complex solutions (as has been show for the beeping model in this work).

Beeps offer severely limited communication capabilities. As a result, several
parallels can be drawn between the distributed synchronization behavior in firefly
swarms and the study of the synchronization problem in the beeping model. [6] gives
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a synchronization solution for the wake-on-beep setting, whereas [64] considers self-
stabilizing synchronization with byzantine faults, but augments the beeping model
with the capability to count the number of neighboring beeping nodes. However,
it would be interesting to consider the synchronization problem in the uncoordi-
nated starts setting (i.e., BEEPU ), for which both works give little intuition. In
this harsh setting, can synchronization be achieved using only beeps, or is it neces-
sary to assume some stronger capabilities, e.g., being able to count the number of
beeping nodes? In a distributed system relying on beeps for communication, does
synchronization require the use of randomization?

110



Bibliography

[1] Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn.
Beeping a maximal independent set. In Proceedings of the 25th International
Symposium on Distributed Computing (DISC), pages 32–50, 2011.

[2] Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn.
Beeping a maximal independent set. Distributed Computing, 26(4):195–208,
2013.

[3] Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, and Z. Bar-Joseph. A
biological solution to a fundamental distributed computing problem. Science,
331(6014):183–185, 2011.

[4] Y. Afek, S. Kutten, and M. Yung. The local detection paradigm and its
applications to self-stabilization. Theoretical Computer Science, 186(1):199 –
229, 1997.

[5] G. Agnarsson and M.M. Halldorsson. Coloring powers of planar graphs. SIAM
Journal on Discrete Mathematics, 16(4):651–662, 2003.

[6] D. Alistarh, A. Cornejo, M. Ghaffari, and N. Lynch. Firefly synchronization
with asynchronous wake-up. In Workshop on Biological Distributed Algo-
rithms, 2014.

[7] D. Angluin. Local and global properties in networks of processors (extended
abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing (STOC), pages 82–93, 1980.

[8] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computa-
tion in networks of passively mobile finite-state sensors. Distributed Comput-
ing, 18(4):235–253, March 2006.

[9] B. Awerbuch, M. Luby, A. V. Goldberg, and S. A. Plotkin. Network de-
composition and locality in distributed computation. In Proceedings of the
30th Annual Symposium on Foundations of Computer Science (FOCS), pages
364–369, 1989.

[10] R. Bar-Yehuda, A. Israeli, and A. Itai. Multiple communication in multihop
radio networks. SIAM Journal on Computing, 22(4):875–887, 1993.

[11] L. Barenboim and M. Elkin. Sublogarithmic distributed mis algorithm for
sparse graphs using nash-williams decomposition. In Proceedings of the 27th
Annual ACM Symposium on Principles of Distributed Computing (PODC),
pages 363–379, 2008.

[12] L. Barenboim and M. Elkin. Distributed (δ+1)-coloring in linear (in δ) time.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing
(STOC), pages 111–120, 2009.

111



Bibliography

[13] L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in
polylogarithmic time. In Proceedings of the 29th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 410–419, 2010.

[14] L. Barenboim and M. Elkin. Distributed Graph Coloring: Fundamentals and
Recent Developments. Morgan & Claypool Publishers, 2013.

[15] J. Beauquier, J. Burman, P. Davies, and F. Dufoulon. Optimal multi-
broadcast with beeps using group testing. In Proceedings of the 26th Interna-
tional Colloquium on Structural Information and Communication Complexity
(SIROCCO), pages 65–79, 2019.

[16] J. Beauquier, J. Burman, F. Dufoulon, and S. Kutten. Fast Beeping Protocols
for Deterministic MIS and (∆+1)-Coloring in Sparse Graphs. In Proceedings
of the 37th IEEE Conference on Computer Communications (INFOCOM),
pages 1754–1762, 2018.

[17] P. Błaśkiewicz, M. Klonowski, M. Kutyłowski, and P. Syga. Lightweight
protocol for trusted spontaneous communication. In Proceedings of the 6th
International Conference on Trusted Systems (INTRUST), pages 228–242,
2014.

[18] A. Bonis, L. Gasieniec, and U. Vaccaro. Optimal two-stage algorithms for
group testing problems. SIAM Journal on Computing, 34(5):1253–1270, 2005.

[19] P. Brandes, M. Kardas, M. Klonowski, D. Pajak, and R. Wattenhofer. Ap-
proximating the size of a radio network in beeping model. In Proceedings of
the 23rd International Colloquium on Structural Information and Communi-
cation Complexity (SIROCCO), pages 358–373, 2016.

[20] S. J. Bray. Notch signaling: a simple pathway becomes complex. Nature
Reviews Molecular Cell Biology, 7:678–689, 10 2006.

[21] John Buck. Synchronous rhythmic flashing of fireflies. ii. The Quarterly
Review of Biology, 63(3):265–289, 1988.

[22] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent
and Distributed Systems, 27(5):387–408, 2012.

[23] A. Casteigts, Y. Métivier, J. M. Robson, and A. Zemmari. Design patterns in
beeping algorithms. In Proceedings of the 20th International Conference on
Principles of Distributed Systems (OPODIS), pages 15:1–15:16, 2016.

[24] A. Casteigts, Y. Métivier, J. M. Robson, and A. Zemmari. Deterministic
leader election takes Θ(d+log n) bit rounds. Algorithmica, 81(5):1901–1920,
2019.

[25] A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari. Deterministic leader
election in O(D + logn) time with messages of size O(1). In Proceedings of

112



Section Bibliography

the 30th International Symposium on Distributed Computing (DISC), pages
16–28, 2016.

[26] A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari. Counting in one-
hop beeping networks. Theoretical Computer Science, 2019.

[27] A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari. Design patterns
in beeping algorithms: Examples, emulation, and analysis. Information and
Computation, 264:32 – 51, 2019.

[28] P. Chebyshev. Mémoire sur les nombres premiers. Journal de mathématiques
pures et appliquées 1re série, 17:366–390, 1852.

[29] M. Cheraghchi. Noise-resilient group testing: Limitations and constructions.
Discrete Applied Mathematics, 161(1):81 – 95, 2013.

[30] B. S. Chlebus, G. De Marco, and M. Talo. Naming a channel with beeps.
Fundamenta Informaticae, 153:199–219, 2017.

[31] B. S. Chlebus, L. Gąsieniec, D. R. Kowalski, and T. Radzik. On the wake-up
problem in radio networks. In Proceedings of the 32nd International Collo-
quium on Automata, Languages and Programming (ICALP), pages 347–359,
2005.

[32] B. S. Chlebus and D. R. Kowalski. A better wake-up in radio networks. In
Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 266–274, 2004.

[33] B. S. Chlebus, D. R. Kowalski, A. Pelc, and M. A. Rokicki. Efficient dis-
tributed communication in ad-hoc radio networks. In Proceedings of the
38th International Colloquium on Automata, Languages and Programming
(ICALP), pages 613–624, 2011.

[34] M. Chrobak, L. Gąsieniec, and D. Kowalski. The wake-up problem in multi-
hop radio networks. SIAM Journal on Computing, 36(5):1453–1471, 2007.

[35] F. Cicalese and U. Vaccaro. Superselectors: Efficient constructions and appli-
cations. In Proceedings of the 18th Annual European Symposium of Algorithms
(ESA), pages 207–218, 2010.

[36] R. Cole and U. Vishkin. Deterministic coin tossing with applications to opti-
mal parallel list ranking. Information and Control, 70(1):32 – 53, 1986.

[37] J. R. Collier, N. A. M. Monk, P. K. Maini, and J. H. Lewis. Pattern formation
by lateral inhibition with feedback: a mathematical model of delta-notch
intercellular signalling. Journal of Theoretical Biology, 183(4):429–446, 1996.

[38] A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In Proceed-
ings of the 24th International Symposium on Distributed Computing (DISC),
pages 148–162, 2010.

113



Bibliography

[39] A. Czumaj and P. Davies. Brief announcement: Optimal leader election in
multi-hop radio networks. In Proceedings of the 35th Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 47–49, 2016.

[40] A. Czumaj and P. Davies. Communicating with Beeps. In Proceedings
of the 19th International Conference on Principles of Distributed Systems
(OPODIS), pages 1–16, 2016.

[41] A. Czumaj and P. Davies. Deterministic communication in radio networks.
SIAM Journal on Computing, 47(1):218–240, 2018.

[42] A. Czumaj and P. Davies. Communicating with beeps. Journal of Parallel
and Distributed Computing, 130:98 – 109, 2019.

[43] J. Degesys and R. Nagpal. Towards desynchronization of multi-hop topologies.
In Proceedings of the 2nd IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO), pages 129–138, 2008.

[44] J. Degesys, I. Rose, A. Patel, and R. Nagpal. Desync: Self-organizing desyn-
chronization and tdma on wireless sensor networks. In Proceedings of the
6th International Conference on Information Processing in Sensor Networks
(ISPN), pages 11–20, 2007.

[45] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, November 1974.

[46] A. Dimitromanolakis. Analysis of the Golomb ruler and the Sidon set prob-
lems, and determination of large, near-optimal Golomb rulers. Master’s thesis,
Department of Electronic and Computer Engineering, Technical University of
Crete, 2002.

[47] Y. Dinitz and N. Solomon. Two absolute bounds for distributed bit complex-
ity. In Proceedings of the 12th International Colloquium on Structural Infor-
mation and Communication Complexity (SIROCCO), pages 115–126, 2005.

[48] Robert Dorfman. The detection of defective members of large populations.
Ann. Math. Statist., 14(4):436–440, 1943.

[49] D-Z. Du and F. K. Hwang. Combinatorial Group Testing and Its Applications.
World Scientific, 1993.

[50] F. Dufoulon, J. Burman, and J. Beauquier. Solving 2 hop desynchronization
in the beeping model. Submitted.

[51] F. Dufoulon, J. Burman, and J. Beauquier. Beeping a deterministic time-
optimal leader election. In Proceedings of the 32nd International Symposium
on Distributed Computing (DISC), pages 20:1–20:17, 2018.

[52] F. Dufoulon, J. Burman, and J. Beauquier. Brief announcement: Beeping a
time-optimal leader election. In Proceedings of the 37th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages 237–239, 2018.

114



Section Bibliography

[53] A.G. D’yachkov, V.V. Rykov, and A.M. Rashad. Superimposed distance
codes. Problems of Control and Information Theory, 18(4):237–250, 1989.

[54] S. Elouasbi and A. Pelc. Deterministic rendezvous with detection using beeps.
In Proceedings of the 11th International Symposium on Algorithms and Exper-
iments for Wireless Sensor Networks (ALGOSENSORS), pages 85–97, 2015.

[55] Y. Emek and R. Wattenhofer. Stone age distributed computing. In Pro-
ceedings of the 32nd Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 137–146, 2013.

[56] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-
world graphs. In Proceedings of the 10th International Symposium on Exper-
imental Algorithms (SEA), pages 364–375, 2011.

[57] O. Feinerman and A. Korman. Theoretical distributed computing meets bi-
ology: A review. In Distributed Computing and Internet Technology, pages
1–18, 2013.

[58] K.-T. Förster, J. Seidel, and R. Wattenhofer. Deterministic leader election in
multi-hop beeping networks. In Proceedings of the 28th International Sympo-
sium on Distributed Computing (DISC), pages 212–226, 2014.

[59] L. Gąsieniec, A. Pelc, and D. Peleg. The wakeup problem in synchronous
broadcast systems. SIAM Journal on Discrete Mathematics, 14(2):207–222,
2001.

[60] M. Ghaffari and B. Haeupler. Near optimal leader election in multi-hop ra-
dio networks. In Proceedings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 748–766, 2013.

[61] S. Gilbert and C. Newport. The computational power of beeps. In Proceedings
of the 29th International Symposium on Distributed Computing (DISC), pages
31–46, 2015.

[62] S. Gilbert and C. Newport. Symmetry breaking with noisy processes. In
Proceedings of the 36th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 273–282, 2017.

[63] A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking in
sparse graphs. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing (STOC), pages 315–324, 1987.

[64] R. Guerraoui and A. Maurer. Byzantine fireflies. In Proceedings of the 29th In-
ternational Symposium on Distributed Computing (DISC), pages 47–59, 2015.

[65] M. Halldórsson and C. Konrad. Computing large independent sets in a single
round. Distributed Computing, 31(1):69–82, 2018.

[66] A. J. Hoffman, K. Jenkins, and T. Roughgarden. On a game in directed
graphs. Information Processing Letters, 83(1):13–16, 2002.

115



Bibliography

[67] S. Holzer and N. Lynch. Brief announcement: Beeping a maximal independent
set fast. In Proceedings of the 30th International Symposium on Distributed
Computing (DISC), 2016.

[68] K. Hounkanli, A. Miller, and A. Pelc. Global synchronization and consensus
using beeps in a fault-prone mac. In Proceedings of the 12th International
Symposium on Algorithms and Experiments for Wireless Sensor Networks
(ALGOSENSORS), pages 16–28, 2017.

[69] K. Hounkanli and A. Pelc. Asynchronous broadcasting with bivalent beeps. In
Proceedings of the 23rd International Colloquium on Structural Information
and Communication Complexity (SIROCCO), pages 291–306, 2016.

[70] B. Huang and T. Moscibroda. Conflict resolution and membership problem
in beeping channels. In Proceedings of the 27th International Symposium on
Distributed Computing (DISC), pages 314–328, 2013.

[71] F. K. Hwang. A method for detecting all defective members in a population by
group testing. Journal of the American Statistical Association, 67(339):605–
608, 1972.

[72] P. Indyk, H. Q. Ngo, and A. Rudra. Efficiently decodable non-adaptive group
testing. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1126–1142, 2010.

[73] W. H. Kautz and R. C. Singleton. Nonrandom binary superimposed codes.
IEEE Transaction on Information Theory, 10(4):363–377, 1964.

[74] K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. Distributed
coloring in Õ(

√
logN) bit rounds. In Proceedings of the 20th International

Conference on Parallel and Distributed Processing, IPDPS’06, 2006.

[75] F. Kuhn. Weak graph colorings: Distributed algorithms and applications. In
Proceedings of the 21st Annual Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 138–144, 2009.

[76] S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan. On the
complexity of universal leader election. In Proceedings of the 32nd Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages
100–109, 2013.

[77] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, pages 382–401,
July 1982.

[78] C. H. Li. A sequential method for screening experimental variables. Journal
of the American Statistical Association, 57(298):455–477, 1962.

[79] Z. Liu and M. Herlihy. Approximate local sums and their applications in radio
networks. In Proceedings of the 28th International Symposium on Distributed
Computing (DISC), pages 243–257, 2014.

116



Section Bibliography

[80] J. Luo and D. Guo. Neighbor discovery in wireless ad hoc networks based
on group testing. In 46th Annual Allerton Conference on Communication,
Control, and Computing, pages 791–797, 2008.

[81] Y. Métivier, J.M. Robson, and A. Zemmari. Analysis of fully distributed
splitting and naming probabilistic procedures and applications. Theoretical
Computer Science, 584:115 – 130, 2015. Special Issue on Structural Informa-
tion and Communication Complexity.

[82] A. Motskin, T. Roughgarden, P. Skraba, and L. Guibas. Lightweight coloring
and desynchronization for networks. In Proceedings of the 28th IEEE Con-
ference on Computer Communications (INFOCOM), pages 2383–2391, 2009.

[83] K. Nakano and S. Olariu. Randomized O(log logn)-round leader election
protocols in packet radio networks. In Proceedings of the 9th International
Symposium on Algorithms and Computation (ISAAC), pages 210–219, 1998.

[84] C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. Jour-
nal of the London Mathematical Society, 39:12, 1964.

[85] S. Navlakha and Z. Bar-Joseph. Algorithms in nature: the convergence of
systems biology and computational thinking. Molecular Systems Biology, 7(1),
2011.

[86] S. Navlakha and Z. Bar-Joseph. Distributed information processing in biolog-
ical and computational systems. Communications of the ACM, 58(1):94–102,
December 2014.

[87] M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In
Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems
(SRDS), pages 22–29, 2002.

[88] H. Q. Ngo, E. Porat, and A. Rudra. Efficiently decodable error-correcting list
disjunct matrices and applications. In Proceedings of the 38th International
Colloquium on Automata, Languages and Programming (ICALP), pages 557–
568, 2011.

[89] R. Oshman. Distributed Computation in Wireless and Dynamic Networks.
PhD thesis, Massachusetts Institute of Technology, 2012.

[90] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Monographs
on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics, 2000.

[91] E. Porat and A. Rothschild. Explicit nonadaptive combinatorial group testing
schemes. IEEE Transactions on Information Theory, 57(12):7982–7989, 2011.

[92] C. Scheideler, A. Richa, and P. Santi. An O(logn) dominating set protocol for
wireless ad-hoc networks under the physical interference model. In Proceedings
of the International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), pages 91–100, 2008.

117



Bibliography

[93] J. Schneider, M. Elkin, and R. Wattenhofer. Symmetry breaking depending
on the chromatic number or the neighborhood growth. Theoretical Computer
Science, 509(C):40–50, October 2013.

[94] J. Schneider and R. Wattenhofer. What is the use of collision detection (in
wireless networks)? In Proceedings of the 24th International Symposium on
Distributed Computing (DISC), pages 133–147, 2010.

[95] J. Schneider and R. Wattenhofer. Distributed coloring depending on the chro-
matic number or the neighborhood growth. In Proceedings of the 18th Interna-
tional Colloquium on Structural Information and Communication Complexity
(SIROCCO), pages 246–257, 2011.

[96] A. Scott, P. Jeavons, and L. Xu. Feedback from nature: An optimal dis-
tributed algorithm for maximal independent set selection. In Proceedings of
the 32nd Annual ACM Symposium on Principles of Distributed Computing
(PODC), pages 147–156, 2013.

[97] J. Seidel. Anonymous distributed computing: computability, randomization
and checkability. PhD thesis, ETH Zurich, Zürich, Switzerland, 2015.

[98] J. Singer. A theorem in finite projective geometry and some applications
to number theory. Transactions of the American Mathematical Society,
43(3):377–385, 1938.

[99] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science, 7(1–3):1–336, 2012.

[100] J. Yu, L. Jia, D. Yu, G. Li, and X. Cheng. Minimum connected dominating set
construction in wireless networks under the beeping model. In Proceedings
of the 34th IEEE Conference on Computer Communications (INFOCOM),
pages 972–980, 2015.

118



Annexe A

Synthèse

Les petits appareils électroniques peu coûteux et à communication sans fil sont
devenus largement disponibles. Bien que chaque entité ait des capacités limitées (par
exemple, communication basique ou mémoire de taille constante), un déploiement
à grande échelle de telles entités communiquantes constitue un réseau performant,
en plus d’être peu coûteux. De tels systèmes distribués présentent toutefois des
défis importants en ce qui concerne la conception d’algorithmes simples, efficaces et
évolutifs.

Dans cette thèse, nous nous intéressons à l’étude de ces systèmes, composés
d’appareils dotés de capacités de communication très limitées, à base de simples im-
pulsions d’énergie. Ces systèmes distribués peuvent être modélisés à l’aide dumodèle
de bips, dans lequel les noeuds communiquent en émettant un bip, un simple signal
indifférencié, ou en écoutant leurs voisins (selon un graphe de communication non
orienté). Les communications simultanées (c’est-à-dire les collisions) entraînent des
interférences non destructives : un noeud, dont deux voisins ou plus émettent si-
multanément un bip, détecte seulement un bip. Ce mécanisme de communication
simple, général et économe en énergie rend les résultats obtenus dans le modèle
de bips applicables à de nombreuses situations différentes, avec cependant un chal-
lenge. En raison de la faible expressivité des bips et des collisions, la conception des
algorithmes est difficile. Tout au long de ce travail, nous surmontons ces deux diffi-
cultés afin de fournir des primitives de communication efficaces. La thèse s’intéresse
particulièrement aux solutions déterministes, rapides (en temps) et indépendantes
des paramètres du graphe de communication (c’est-à-dire uniformes).

A.1 Réveils Synchrones des noeuds

La première partie de la thèse considère un cadre dans lequel les noeuds se réveillent
en même temps (c’est-à-dire que le réseau a été configuré a priori). La majorité des
résultats obtenus dans le modèle de bips suppose ce cadre.

Pour obtenir des solutions efficaces pour des problèmes fondamentaux de com-
munication distribuée, nous nous concentrons d’abord sur la résolution efficace de
problèmes de brisure locale de symétrie : ensemble indépendant maximal et colo-
ration de sommets utilisant au plus ∆ + 1 couleurs (où ∆ est le degré maximal
du graphe de communication). Ce sont deux problèmes majeurs en algorithmique
distribuée. Un ensemble indépendant maximal permet une décomposition du ré-
seau en petits groupes (de rayon 1), chacun dirigé par un noeud de l’ensemble. Une
telle décomposition peut être utilisée pour la répartition des tâches et le partage
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des ressources dans le réseau. Quant à la coloration, ce problème est un compo-
sant fondamental dans les réseaux à communications radios, et plus généralement
les réseaux sans fil. En effet, les couleurs (des noeuds) peuvent servir d’identifiants
locaux et permettent donc une brisure de symétrie locale, essentielle dans la gestion
d’interférence et la résolution de problèmes distribués plus complexes.

Nous élaborons des solutions à ces problèmes ainsi qu’à leurs variantes à dis-
tance deux. Cela nous permet de simuler une communication par messages. Ces
solutions sont particulièrement efficaces lorsque le graphe de communication est
peu dense. Enfin, en combinant avec certains résultats existants, qui s’appuient sur
la communication de messages, nous obtenons le premier algorithme de coloration
utilisant moins de ∆ + 1 couleurs dans le modèle de bips.

Ensuite, nous étudions des problèmes définis à l’échelle du réseau, tels que l’élection
d’un leader et la diffusion multiple de messages. L’élection d’un leader est un élé-
ment essentiel dans la conception d’algorithmes distribués. En effet, un leader dis-
pose d’une autorité absolue sur le réseau et peut donc coordonner les autres noeuds
pour limiter les interférences à l’échelle du réseau. Il peut aussi démarrer la construc-
tion d’un arbre couvrant afin de récupérer efficacement l’information de l’ensemble
du réseau. Ceci est un premier pas, crucial, dans la diffusion multiple de messages,
où plusieurs noeuds sources cherchent à communiquer leur message (et possiblement
leur identifiant) à tous les noeuds du réseaux, de façon efficace.

Nous donnons les deux premiers algorithmes d’élection de leader optimaux en
temps pour le modèle de bips. L’un est déterministe, mais nécessite des identifiants
uniques. Le second n’a pas besoin d’identifiants (utile pour des raisons de sécurité
et de confidentialité), mais est randomisé. S’appuyant sur une élection de leader
optimale en temps, plusieurs algorithmes pour la diffusion multiple, efficaces en
temps et en calcul, sont présentés. Bien qu’une solution précédente (pour la diffusion
multiple), optimale en temps, soit disponible, elle nécessite des méthodes coûteuses
en calcul.

A.2 Réveils asynchrones des noeuds

La deuxième partie de la thèse considère un cadre plus difficile mais plus général,
dans lequel les noeuds se réveillent de façon asynchrone. La conception de solutions
dans ce cadre est d’importance majeur : elles pourront servir de point d’appui pour
obtenir des solutions tolérantes aux fautes transitoires ou aux réseaux dynamiques
(dans lequel les noeuds se joignent au réseau, ou le quittent, de façon arbitraire).

Nous nous concentrons sur le problème de désynchronisation à distance deux, qui
permet un contrôle de l’accès au support, primordial dans les réseaux sans fil. Dans
ce problème, les noeuds cherchent à émettre des bips de façon périodique, tout en
évitant d’émettre dans la même ronde qu’un autre noeud voisin ou à distance deux :
c’est-à-dire, de façon désynchronisée à distance deux. Cela nécessite que les noeuds
transmettent et recoivent de l’information dans leur voisinage à distance deux. Puis-
qu’un bip ne se transmet qu’aux voisins, communiquer dans le voisinage à distance
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deux nécessite qu’un noeud se coordonne avec ses voisins pour qu’ils retransmettent
ensuite l’information à leurs voisins. Ce type de problématique n’avait pas été consi-
déré auparavant et démarque notre travail des résultats précédents dans le modèle
de bips avec réveils asynchrones.

Pour élaborer une solution au problème de désynchronisation à distance deux,
nous montrons dans un premier temps qu’il est possible pour les noeuds de com-
muniquer de manière cohérente au-delà de leur voisinage immédiat, en utilisant des
outils de la théorie du code. À cette fin, une primitive permettant aux noeuds de
simuler une communication sur le carré du graphe de communication est présentée.
Cette primitive est un élément central dans la conception de l’algorithme de désyn-
chronisation à distance deux, et s’appuie sur un type de code, non considéré jusque
là, pour lequel nous donnons une construction originale.

Dans un deuxième temps, nous montrons précisément comment cette primi-
tive peut être composée avec un mécanisme probabiliste, pour désynchroniser les
noeuds à distance deux. Celle-ci permet un contrôle de l’accès au support, afin d’im-
plémenter des primitives de haut niveau pour l’envoi et la réception de messages.
Ces primitives, ayant été conçues pour des réseaux sans fil communiquants à travers
des bips, sont extrêmement générales.
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Titre : Surmonter les interférences dans le modèle de communication par bips
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communication basique

Résumé : Les petits appareils électroniques peu
coûteux et à communication sans fil sont deve-
nus largement disponibles. Bien que chaque en-
tité ait des capacités limitées (par exemple, com-
munication basique ou mémoire de taille constante),
un déploiement à grande échelle de telles entités
communiquantes constitue un réseau performant, en
plus d’être peu coûteux. De tels systèmes distribués
présentent toutefois des défis importants en ce qui
concerne la conception d’algorithmes simples, effi-
caces et évolutifs.
Dans cette thèse, nous nous intéressons à l’étude
de ces systèmes, composés d’appareils dotés de
capacités de communication très limitées, à base
de simples impulsions d’énergie. Ces systèmes dis-
tribués peuvent être modélisés à l’aide du modèle
de bips, dans lequel les noeuds communiquent en
émettant un bip, un simple signal indifférencié, ou
en écoutant leurs voisins (selon un graphe de com-
munication non orienté). Les communications simul-
tanées (c’est-à-dire les collisions) entraı̂nent des in-
terférences non destructives : un noeud, dont deux
voisins ou plus émettent simultanément un bip,
détecte seulement un bip. Ce mécanisme de com-
munication simple, général et économe en énergie
rend les résultats obtenus dans le modèle de bips
applicables à de nombreuses situations différentes,
avec cependant un challenge. En raison de la faible
expressivité des bips et des collisions, la concep-
tion des algorithmes est difficile. Tout au long de
ce travail, nous surmontons ces deux difficultés afin
de fournir des primitives de communication efficaces.
La thèse s’intéresse particulièrement aux solutions
déterministes, rapides (en temps) et indépendantes
des paramètres du graphe de communication (c’est-
à-dire uniformes).
La première partie de la thèse considère un cadre
dans lequel les noeuds se réveillent en même
temps (c’est-à-dire que le réseau a été configuré
a priori). Pour obtenir des solutions efficaces pour

des problèmes fondamentaux de communication
distribuée, nous nous concentrons d’abord sur la
résolution efficace de problèmes de brisure locale de
symétrie : ensemble indépendant maximal et colora-
tion de sommets utilisant au plus ∆ + 1 couleurs (où
∆ est le degré maximal du graphe de communica-
tion). Nous élaborons des solutions à ces problèmes
ainsi qu’à leurs variantes à distance deux. Cela nous
permet de simuler une communication par messages.
Enfin, nous obtenons le premier algorithme de colora-
tion utilisant moins de ∆ + 1 couleurs dans le modèle
de bips. Ensuite, nous étudions des problèmes définis
à l’échelle du réseau, tels que l’élection d’un leader
et la diffusion multiple de messages. L’élection d’un
leader est un élément essentiel dans la conception
d’algorithmes distribués. Nous donnons les deux pre-
miers algorithmes d’élection de leader optimaux en
temps pour le modèle de bips. L’un est déterministe,
mais nécessite des identifiants uniques. Le second
n’a pas besoin d’identifiants (utile pour des raisons
de sécurité et de confidentialité), mais est randomisé.
S’appuyant sur une élection de leader optimale en
temps, plusieurs algorithmes pour la diffusion mul-
tiple, efficaces en temps et en calcul, sont présentés.
La deuxième partie de la thèse considère un cadre
plus difficile mais plus général, dans lequel les noeuds
se réveillent de façon asynchrone. Nous nous concen-
trons sur le problème de désynchronisation à dis-
tance deux, qui permet un contrôle de l’accès au sup-
port, primordial dans les réseaux sans fil. Nous mon-
trons qu’il est possible pour les noeuds de communi-
quer de manière cohérente au-delà de leur voisinage
immédiat. À cette fin, une primitive permettant aux
noeuds de simuler une communication sur le carré du
graphe de communication est présentée. Cette primi-
tive est un élément central dans la conception de l’al-
gorithme de désynchronisation à distance deux. En-
fin, nous exploitons cette solution afin d’implémenter
des primitives de haut niveau pour l’envoi et la
réception de messages.



Title : Overcoming interference in the beeping communication model

Keywords : beeping model, interference control, wireless networks, weak devices, limited communication

Abstract : Small inexpensive inter-communicating
electronic devices have become widely available. Al-
though the individual device has severely limited ca-
pabilities (e.g., basic communication, constant-size
memory or limited mobility), multitudes of such weak
devices communicating together are able to form low-
cost, easily deployable, yet highly performant net-
works. Such distributed systems present significant
challenges however when it comes to the design of
efficient, scalable and simple algorithms.
In this thesis, we are interested in studying such sys-
tems composed of devices with severely limited com-
munication capabilities - using only simple bursts of
energy. These distributed systems may be modeled
using the beeping model, in which nodes communi-
cate by beeping or listening to their neighbors (accor-
ding to some undirected communication graph). Si-
multaneous communications (i.e., collisions) result in
non-destructive interference: a node with two or more
neighbors beeping simultaneously detects a beep. Its
simple, general and energy efficient communication
mechanism makes the beeping model widely appli-
cable. However, that simplicity comes at a cost. Due
to the poor expressiveness of beeps and the inter-
ference caused by simultaneous communications, al-
gorithm design is challenging. Throughout the thesis,
we overcome both difficulties in order to provide effi-
cient communication primitives. A particular focus of
the thesis is on deterministic and time-efficient solu-
tions independent of the communication graph’s para-
meters (i.e., uniform).
The first part of the thesis considers a setting in which
nodes wake up at the same time (i.e., the network
has been set up a priori). To obtain efficient solutions
to fundamental distributed communication problems,
we first focus on efficiently solving problems for local
symmetry-breaking: (∆+1)-vertex coloring and maxi-
mal independent set (where ∆ is the maximum de-

gree of the communication graph). The solutions we
devise are particularly efficient when the communi-
cation graph is sparse. They are then used to solve
the 2-hop variants of these problems and to simu-
late message-passing. Finally, combining this simu-
lation with existing results, which assume message-
passing, gives the first vertex coloring algorithm using
less than ∆ + 1 colors in the beeping model. Then,
we study problems defined on a global scale, such
as leader election and multi-broadcast (i.e., informa-
tion dissemination). Leader election is a crucial buil-
ding block in the design of distributed algorithms. We
give the first two time-optimal leader election algo-
rithms for the beeping model. One is deterministic,
but requires unique identifiers. The second one does
not need identifiers (useful for security and privacy
reasons), but is randomized. Building upon the time-
optimal leader election solution, computationally effi-
cient and time-optimal algorithms for multi-broadcast
are presented. Although a previous time-optimal solu-
tion was available, it required computationally expen-
sive methods.
The second part of the thesis considers a more dif-
ficult but more general setting, in which nodes wake
up at some arbitrary time rounds. We focus on the
desynchronization problem, and more precisely on its
2-hop variant, which can be used as medium access
control method. We show that it is possible for nodes
to communicate in a coherent manner beyond their 1-
hop neighborhood. More concretely, a primitive allo-
wing nodes to simulate communication on the square
of the communication graph is presented. This primi-
tive is a centerpiece in the design of the 2-hop de-
synchronization algorithm. Finally, by leveraging this
solution, we show that higher-level primitives for sen-
ding and receiving messages can be obtained in this
difficult setting.
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