
HAL Id: tel-02402461
https://theses.hal.science/tel-02402461v1

Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal trajectory planning and predictive control for
cinematographic flight plans with quadrotors

Gauthier Rousseau

To cite this version:
Gauthier Rousseau. Optimal trajectory planning and predictive control for cinematographic flight
plans with quadrotors. Automatic. Université Paris Saclay (COmUE), 2019. English. �NNT :
2019SACLC086�. �tel-02402461�

https://theses.hal.science/tel-02402461v1
https://hal.archives-ouvertes.fr


Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LC
08

6

Optimal trajectory planning and predictive
control for cinematographic flight plans

with quadrotors
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Remerciements

Je tiens à remercier Supélec et Parrot Drones pour m’avoir soutenu et aidé à monter
ce projet de thèse CIFRE que je leur ai proposé à l’issue de mon stage de fin d’études
au sein de Parrot Drones. Mes encadrants d’alors, Cristina Stoica Maniu, Professeur au
département Automatique de CentraleSupélec, et Mathieu Babel, ingénieur automaticien
à Parrot Drones, m’ont accordé leur confiance et leur temps pour concrétiser cette ambition
de mêler recherche et industrie en approfondissant un sujet d’étude sur 3 ans. Je remercie
les départements Automatique de Supélec et Parrot Drones ainsi que l’école doctorale STIC
d’avoir rendu cela possible en m’accueillant et en m’intégrant à leurs équipes pendant cette
période.

À ma directrice de thèse, Cristina Stoica Maniu, je tiens à manifester ma profonde
reconnaissance pour son soutien, sa bienveillance et son enthousiasme à toute épreuve
tout au long de cette aventure. Je remercie également Sihem Tebbani du département
Automatique de CentraleSupélec, ma co-encadrante, pour ses conseils, son temps et son
expertise.

Je tiens également à exprimer ma gratitude envers Mathieu Babel, co-encadrant de ma
thèse à Parrot Drones pour avoir partagé avec moi sa maîtrise du domaine de la robotique
et ses nombreuses qualités à la fois professionnelles et personnelles. Je remercie sincèrement
Nicolas Martin, ingénieur automaticien et responsable de mon équipe à Parrot Drones pour
son implication dans ce travail, ses conseils et ses aptitudes à la fois humaines et techniques.

Je remercie Nicolas Petit, Professeur à l’école des Mines de Paris, et Didier Theilliol,
Professeur à l’Université de Lorraine, pour avoir accepté d’être rapporteurs de ma thèse,
ainsi que pour leurs remarques et conseils avisés. Je remercie également Sylvain Bertrand
et Pedro Castillo-García pour avoir accepté d’être membres de mon jury de thèse et Nicolas
Langlois, pour l’avoir présidé.

Je remercie les membres des équipes Automatique de Supélec et Parrot Drones pour leur
convivialité, leur disponibilité et leur expérience. J’ai eu l’occasion de vivre de nombreux
moments précieux à leurs côtés et je leur en suis reconnaissant.

Je remercie également Olivier Deschamps, pilote professionnel de drones à Parrot Drones
pour ses conseils sur la prise de vue aérienne.

Enfin, je tiens évidemment à remercier ma famille, mes amis, et Anne ma plus fidèle
supportrice pour m’avoir accompagné et soutenu dans cette expérience.

i





Contents

Symbols vii

Acronyms xi

Figures xiii

Tables xvii

1 Introduction 1

1.1 Quadrotors for aerial video making . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Quadrotor modeling 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Drone body dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Drone body mechanical actions . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Equivalent full quadrotor system . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Linear model near hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Guidance – bi-level optimization 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Flight plan preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Feasibility of the trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Bi-level optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Smooth speed and contouring optimization . . . . . . . . . . . . . . . . . . 64

3.6 Minimum-time minimum-jerk trajectory . . . . . . . . . . . . . . . . . . . . 71

iii



CONTENTS

3.7 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Guidance – minimum-time B-spline trajectories 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Overview on B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Compact representation of the trajectory . . . . . . . . . . . . . . . . . . . . 90

4.4 Minimum-time trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Application to aerial cinematography with quadrotors . . . . . . . . . . . . 102

4.6 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Control strategy 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Camera references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Camera control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Drone full attitude reference . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 Conclusion 139

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A Reminder on screw theory a

A.1 Torsor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a

A.2 Application in rigid body mechanics . . . . . . . . . . . . . . . . . . . . . . b

B Gyroscopic and reaction propellers torques d

C Feasible rest-to-rest B-spline trajectory h

C.1 Case with a cruising phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . h

C.2 Case without a cruising phase . . . . . . . . . . . . . . . . . . . . . . . . . . i

C.3 Feasibility analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j

D Résumé en français k

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . k

D.2 Modélisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n

D.3 Génération de trajectoire par optimisation bi-niveaux . . . . . . . . . . . . . p

D.4 Génération de trajectoire B-splines non uniformes à temps minimal . . . . . s

iv



CONTENTS

D.5 Commande prédictive de la caméra . . . . . . . . . . . . . . . . . . . . . . . u

D.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . w

Bibliography y

v





Notation

Sets

N, N∗ The sets of natural and non-zero natural numbers, respectively

R, R∗, R+
The set of real number, non-zero real numbers and positive real
numbers, respectively

H The set of quaternions

Rn[X]
Vector space of polynomials with real coefficients, of degree inferior
or equal to n

[[i, j]]
For (i, j) ∈ N2, with i 6 j, the set of consecutive integers
{i, i+ 1, . . . , j − 1, j}

[a, b], [a, b[ , ]a, b[
For (a, b) ∈ R2, with a 6 b, a closed interval, a semi-open interval
and an open interval bounded by a and b, respectively

Conv(S) The convex hull of the set S

Algebra

a ∈ R A scalar

s ∈ C The Laplace variable

a ∈ Rn A vector of n elements

A ∈ Rn×m A matrix of n rows and m columns

In, In×m The identity matrices of size n-by-n and n-by-m, respectively

0n,0n×m
The matrices filled with zeros of size n-by-n and n-by-m, respec-
tively

1n,1n×m
The matrices filled with ones of size n-by-n and n-by-m, respec-
tively

u>,A> the transpose of a vector u and a matrix A, respectively

‖u‖2 The euclidean norm of a vector u

‖u‖Q The Q-norm of a vector u, i.e. given by u>Q u

vii



NOTATION

u × v The cross product of 2 vectors u ∈ R3 and v ∈ R3
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µD/W
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Chapter 1

Introduction

1.1 Quadrotors for aerial video making

In 2010, Parrot released the Parrot AR.Drone (figure 1.1), a smartphone piloted, fully
stabilized quadrotor equipped with a front camera. While existing quadrotors were mostly
oriented towards model aircraft enthusiasts and required advanced piloting skills, the Par-
rot AR.Drone was easily accessible to the general public thanks to its sensors and sta-
bilization algorithm [19]. Without the barrier of advanced piloting skills, anyone could
enjoy the possibilities of a flying camera which had been an expensive privilege reserved
to professionals (from expert multirotor pilots to helicopter or aircraft mounted systems).
Parrot’s quadrotor peaked in popularity and the concept of low cost flying camera emerged.
Though quadrotors were already present in literature before (see for instance [50], [23], [15],
[48], [52], [56], [20], [56]), the release of the Parrot AR.Drone constituted a turning point
in the democratization of the quadrotor to the general public.

Figure 1.1 – Parrot AR.Drone

Since then, several companies have joined the drone market and new generations of
drones have been developed with new or improved flight and footage capacities. With
their low cost of operation and their great maneuverability, they have become a valuable
tool for aerial footage, allowing to conveniently and inexpensively perform high quality
and visually rich footages. As a consequence, the system has found many applications, in
a wide range of domains, such as monitoring of construction sites [33], civil infrastructure
surveillance [49], forest fire prevention [129], urban traffic monitoring [63], quick deployment
of search and rescue infrastructures after disasters [57], or, more and more commonly, 3D
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mapping via photogrammetry [99], crops monitoring [28], [92] and cinematography [31].
In 2018, the use of drone for cinematography, photography and commercial video making
represented 27% of the use cases of professional drone [112], placing it as the predominant
use case before surveying and mapping (about 13%) and infrastructure inspections (about
8%) [112]. As the use of drones continues to spread in new applications and reinforces
in existing ones, the global consumer drone market could be multiplied by more than 2.6
by 2020 compared to 2015, to reach a total of more than 3B$, while the total civilian
drone market, including consumer, civilian and commercial applications, could rise up to
30B$ according to [45]. The research domain is not spared by the growing popularity of
quadrotors and the number of publications involving such systems have grow exponentially
since the early 2000s. The number of such publications has more than doubled between
the 2009-2012 period and the 2013-2016 period according to [69], growing from around 150
papers to 377 publications among 8 of the most popular robotics journals or conferences.

As a consequence of this spiking popularity, it is now common to see amateurs using
camera equipped quadrotors for video making. For these users, flying a quadrotor is not
an end, as it used to be with model aircraft hobbyists, but only a mean to capture images.
The piloting aspect of the drone thus tends to be put in the background while the general
public looks for smarter drones, capable of accomplishing higher level tasks autonomously
and allowing them to perform advanced footages. As the European leader in terms of
consumer quadrotors, Parrot strives to develop its drones in this direction and today, the
most recent products come with such features as automatic target framing, automatic
target following or automatic flight plan completion in order to make the piloting aspect
of the drone as transparent as possible.

Drone cinematography is one of the research domains for which the industry has been
a precursor. While industrial companies were already advanced in this matter (released of
the FlightPlan application by Parrot in 2015 for autonomous performance of static aerial
single takes, released of the Follow me application by Parrot in 2016 for filming moving
targets in a wide variety of contexts), it is only a recent domain of research in academic
research and really emerged in the 2015-2016 period with such works as [60], [59], [38],
[103], [35] or [43], which tackled static aerial single takes as well as moving actors filming.
These works yielded impressive results and have been followed by numerous publications,
such as [86], [87], [41], [58], [121], [130] in 2017, [62], [55], [44], [127], [26], [42], in 2018 or
[14] and [47] at the beginning of 2019.

In order to produce such features, developments in a large field of research are required
and concern domains such as computer sciences, electronics, mechanics, computer vision,
machine learning and automatic control. In the case of automatic control, every aspect
is concerned, from modeling and identification to state-estimation and controller design.
These aspects are usually regrouped in 3 categories in the context of robotics, constituting
the main blocks of what is usually referred to as the Guidance-Navigation-Control (GNC).
These blocks are illustrated on figure 1.2 and can be defined as follows

• Guidance. The high level control layer of the drone is called guidance. The task
of this stage is to generate feasible trajectories from high level indications such as
waypoints to join, positions of obstacles to avoid etc. This block is often split into
several sub-blocks dealing from higher to lower level tasks, leading to the generation
of usable reference trajectory. For instance, in order to join a given position, this
block can be divided into a path planner in charge of finding an obstacle-free path to
the destination, a trajectory planner generating a trajectory to accomplish this path
and a local planner that locally re-adjust this trajectory should unexpected obstacle
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block the way.

• Navigation. In robotics, the real-time on-board estimation of the state of the system
is the task of the navigation layer. For this aim, sensor data and control inputs sent
by the control stage can be used. For tasks requiring high level of autonomy, this
block can typically be split into a low level observer in charge of reconstructing the
state of the robot by sensor fusion and a higher level layer in charge, for instance, of
localizing the robot into a scene by Simultaneous Localization And Mapping (SLAM).

• Control. The control block is the low level control layer in charge of generating the
control signals for the actuators, to track the trajectories provided by the guidance
stage. To do so, this block can count on the navigation to get a feedback on the
state of the system. In the case of the camera equipped quadrotor, the position and
the attitude of the drone are controlled by the use of the four propellers while the
orientation of the camera can be controlled by the gimbal motors for instance.

• Supervision. The overall supervision of the flight is operated by the supervision
layer. This block is responsible of the tuning of the parameters of the three others,
of the generation of the high level references sent to the guidance layer etc. This task
can be assumed by a human or a program depending on the level of automation of
the system.

Figure 1.2 – GNC architecture

The goal of this PhD thesis is to contribute to the research on quadrotor guidance and
control for the autonomous performance of static aerial single takes. Indeed, though it
is one of the most complete of the current market, Parrot’s application for completing
autonomous cinematographic sequences, FlightPlan, has only known minor improvements
since its release in 2015. In this work, we will then propose new ways to generate smooth
and natural trajectories, both for the position of the drone and the angular orientation of
the camera.

1.2 Problem statement

1.2.1 Aerial sequence

In this work, we seek to have a flying camera autonomously shoot an aerial sequence,
specified by a list of actions to perform. More specifically, we consider as flying camera a
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Parrot Bebop 2 quadrotor [91], illustrated on figure 1.3. It is equipped with 4 propellers and
a fixed, digitally stabilized camera. This camera relies on a wide Field of View (FOV) to act
as a virtual 3 axes gimbal, by recording images on only a part of its sensor at each frame.
This is illustrated on figure 1.4, with the full FOV of the camera represented in cyan and
the recorded FOV in blue. The active part of the sensor can be moved to compensate the
rotation of the drone or change the direction of recording. This process is called Electronic
Image Stabilization (EIS) and serves the same purpose as usual mechanical gimbals. For
this reason, in the rest of this document, we consider that the drone is equipped with a
virtual gimbal. The difference with a mechanical gimbal however is that the active part of
the sensor can be arbitrarily reset for each frame, and the equivalent virtual gimbal is not
limited by any dynamics.

Figure 1.3 – Parrot Bebop 2 quadrotor
Figure 1.4 – Digital stabilization of the Bebop 2

A cinematographer could typically specify the sequence by the mean of a storyboard or
a script. The camera has 7 Degrees Of Freedom (DOF): its 3D position, 3D attitude and
magnification (i.e. zoom level). Each action is specified by a 3D position to join while
rotating the camera and adjusting its magnification in a given way.

Example 1 An example of simplistic cinematographic aerial sequence is illustrated on
figure 1.5

Figure 1.5 – Example of an aerial sequence

1. The camera starts ahead of the target, at its left and slightly above it. The subject is
framed at the bottom left corner of the image.

2. The camera moves toward the target and rotates in order to have the target framed
at the center of the image.

3. The camera moves to the right while keeping the subject framed at the center of the
image.
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4. The camera moves away from the target while zooming into it, in order to make a
"Vertigo" effect.

This series of actions constitutes the high level user input and it is formalized as a flight
plan, detailed in the following section.

1.2.2 Flight plan specifications

We consider flight plans consisting in series of N + 1 consecutive 3D waypoints

{w0,w1, . . . ,wN} (1.1)

i.e. a starting position w0 followed by N waypoints to join, and flight corridors to be
respected between each pair of consecutive waypoints. These corridors are considered as
straight cylinders joining each pair of waypoints.

Each waypoint can be of 3 different types

• Stop waypoint. The drone stops on the waypoint. The first and last waypoints of the
flight plan are usually stop waypoints, but they can also be used during the mission
for taking pictures, for standing at a given point in order to record a panorama etc.

• Lock waypoint. The drone passes on the waypoint. This kind of waypoint can be
used to impose precisely the position of the drone when passing through a window
or a door for instance, or for specific camera shots.

• Sphere waypoint. The drone passes in a neighborhood of a specified radius rwi around
the waypoint. This allows the drone to perform wider turns around the waypoint
while remaining in the flight corridors, resulting in more natural trajectories.

These types are illustrated on figure 1.6 with a stop waypoint on the left, a lock waypoint
on the middle and a sphere waypoint on the right.

Figure 1.6 – Different types of waypoint validation

For each pair of consecutive waypoints {wi−1,wi}, i ∈ [[1, N ]], a reference speed vi, a
flight corridor radius rcorri and a camera behavior are specified. The latter determines how
the camera pans, tilts, rolls and zooms while joining a waypoint. One behavior can be
specified for each one of the 3 rotation axes as well as the magnification. The available
camera behaviors are the following

• Constant. The reference is fixed between two waypoints. This is typically used for
travelings (see figure 1.7).

Figure 1.7 – Example of a constant pan reference
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• Ramp. The reference consists in a ramp with a given constant slope. This kind of
reference can be used for panoramas for instance (see figure 1.8).

Figure 1.8 – Example of a ramp pan reference

• Tangent. This reference can only be specified for the yaw and pitch axes. The
direction of recording is given by the velocity of the drone relatively to a ground fixed
frame. This results in subjective, point-of-view like camera shots (see figure 1.9).

Figure 1.9 – Example of a tangent pan reference

• Point Of Interest (POI). This reference can only be specified for the yaw and pitch
axes. The camera points toward a given target. This is a very popular type of camera
behavior among drone users (see figure 1.10).

Figure 1.10 – Example of a POI pan reference

• Vertigo. This reference can only be specified for the magnification. Usually used
simultaneously with POI behaviors on the pitch and yaw axes, the magnification
varies such that the apparent diameter of a given target stays constant. This results in
visual deformations of the background that adds intensity to a shot (see figure 1.11).

Figure 1.11 – Example of a vertigo magnification reference

• Plane. This reference can only be specified for the roll axis. Usually used with
tangent behaviors on the pitch and yaw axes, the roll is linked to the rotation speed
on the yaw axis to simulate the view from a fixed-wind aircraft(see figure 1.12).
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Figure 1.12 – Example of a plan roll reference

• Smooth transition. This kind of reference consists in a smooth transition between
the previous and the next camera behaviors.

For instance, the sequence presented in example 1 can be formalized by the flight plan
of figure 1.13 and table 1.1.

Figure 1.13 – Example of flight plan corresponding to the sequence of the example 1

Type Radius Corridor Speed Yaw Pitch Roll Magnification
w0 stop - - - cst. 0◦ cst. 0◦ cst. 0◦ cst. 1×
w1 sphere 1 m 1 m 2 m·s−1 smooth smooth cst. 0◦ cst. 1×
w2 sphere 1 m 1 m 2 m·s−1 POI POI cst. 0◦ cst. 1×
w3 stop - 1 m 2 m·s−1 POI POI cst. 0◦ vertigo

Table 1.1 – Detail of the flight plan on figure 1.13

Some aesthetic requirements have also been identified to guarantee a certain quality of
the video when completing a flight plan and are further detailed.

1.2.3 Requirements for aesthetic aerial shots

Since the aim of this work is to improve the autonomous flight capabilities of the Par-
rot Bebop 2, in the context of cinematographic aerial shots, it is useful to define the
autonomous cinematographic behavior the drone should adopt in order to ensure a good
video quality. Several factors have been identified to characterize the quality of a video on
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these drones, especially for the Parrot Bebop 2 for which the camera is fixed relatively to
the drone and the video stabilization is entirely digital.

• First, the position, attitude and magnification should vary smoothly and naturally,
without jolts, discontinuities, oscillations or overshoots. An example of inadequate
position trajectory for an aerial shot is presented on figure 1.14. As both the acceler-
ation and the jerk (time derivative of the acceleration) quantify the smoothness and
the jolts in a motion, they should be limited for both the translational and rotational
motions of the camera view.

• Secondly, following basic cinematographic principles, the reference angle of the cam-
era should not vary too quickly, otherwise, the video would look chaotic and would
not be visually satisfying. After discussion and outdoor tests with one of Parrot’s
professional pilots, a maximum rotation speed of 20◦·s−1 of the camera references
has been judged adequate.

• As the Parrot Bebop 2 uses a fully digital stabilization of the camera, its angle
relatively to the ground should also stay below 30◦ as much as possible, because of
the way the EIS works. This is partly due to the limited FOV of the front camera,
which prevents the camera to record in some directions (at the vertical of the drone
typically) when the drone angle relatively to the ground reaches too high values.

• Furthermore, since the camera is fixed relatively to the drone, the rotation speed
of the drone should remain limited in order to prevent motion blur to degrade the
quality of the video too much.

Figure 1.14 – Examples of inadequate and satisfying cinematographic trajectories

The respect of these conditions is a good start for making smooth and aesthetic videos.

1.3 Plan

This manuscript presents the work accomplished during this PhD thesis to achieve the
goal specified in section 1.2. It is organized as follows.

First, we propose a model of the drone in chapter 2, by using the tools of rigid body
mechanics. Unlike what is usually done in the literature, we build the model using the
Fundamental Principle of the Dynamics along with screw theory rather than Lagrange’s
formalism. This study leads to a nonlinear model of the quadrotor, which is then linearized
around the hovering equilibrium. The contribution of this chapter is twofold. First, by
including the inertia of the propellers in the linearized model, we highlight the apparition
of a non-minimum phase behavior in the rotation dynamics when tilting the propellers.
The method we propose to bring out this phenomenon from the model also allows to
highlight the coupling terms related to the propellers tilt between the different rotation
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and translation axes of the drone. This method and its results were published in [105].
Then, we propose a state-space representation of the dynamics of the quadrotor near the
hovering equilibrium which takes these phenomena into account.

Chapter 3 presents a first attempt at generating cinematographic position trajectories
by using a bi-level optimization algorithm. To this aim, we first propose a new character-
ization of the feasibility of a 3D position trajectory, suited to quadrotor cinematography.
Then, we use a bi-level optimization procedure to minimize the jerk and the duration of
the trajectory. The minimization of the jerk results in a smooth and natural trajectory,
while the minimization of the duration makes the speed profile getting closer to the speed
references requested by the user. This results in a new cinematographic trajectory gener-
ation algorithm that computes both the shape and the speed profile of the trajectory at
once, rather than in two different steps as it can be found in several works in the literature.
This new algorithm can notably take into account the drag of the quadrotor, resulting in
a better feasibility of the trajectory. The strategy is then validated both in simulation and
on an outdoor flight with a Parrot Bebop 2 drone. The results obtained in this chapter
have been published in [106].

As an alternative to the bi-level optimization algorithm, we then propose in chapter 4
a new technique to generate a B-spline trajectory with minimum duration and we apply
it to aerial cinematography with quadrotors. This chapter proposes several contributions
to the existing literature, starting with the use of non-uniform B-spline curves rather than
uniform ones, along with a new, compact representation of piecewise, non-uniform B-
spline trajectories satisfying the waypoint validation criteria defined in section 1.2.2 and
the continuity of a specified amount of derivatives at the connection between each piece of
trajectory. While other metrics than the duration are usually minimized when generating
B-spline trajectories, the use of non-uniform B-spline curves along with this new compact
representation allows us to directly minimize the duration of the trajectory. This novel
method is then applied to the case of aerial cinematography and confronted to simulations
and on an outdoor experiment. It has been published in [107].

Then, chapter 5 deals with the generation of the magnification trajectory and rotation
motion of the camera. After detailing a way to compute the different references for each
camera behavior defined in section 1.2.2, we combine a Nominal Model Following Control
architecture with a Model Predictive Control law to smoothly track the references while
keeping the disturbance rejection stiff. The results have been published in [106]. At last,
we study the reconstruction of the 3D attitude reference of the drone from a heading and
a thrust direction references. In particular, we propose a new method to achieve this and
compare it with the usual method in the literature, for different Parrot quadrotors.

Finally, concluding remarks and perspectives are given in chapter 6.

1.4 Publications

In addition to the present document, the work provided during this thesis also includes
the following publications.

1.4.1 Peer-reviewed journal paper

• Rousseau, G., Stoica Maniu, C., Tebbani, S., Babel, M. and Martin, N. (2019).
Minimum-time B-spline trajectories with corridor constraints. Application to cine-
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1.4.2 Peer-reviewed conferences papers
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Chapter 2

Quadrotor modeling

2.1 Introduction

2.1.1 Goal

In cinematography, both the position and the attitude of the camera are controlled and
can be considered as the outputs of the flying camera system, i.e. in this thesis a camera
equipped quadrotor. In the case of the Bebop 2, both the pitch and roll of the camera
are digitally stabilized and do not require modeling. The position of the camera however
is directly linked to the one of the drone itself and, due to the limited FOV of the front
camera (see figure 1.4), the yaw of the camera can not differ too much from the one of
the drone as well. The goal of this chapter is then to connect the position and the yaw of
the drone, considered as its outputs, to some inputs that will be specified in the following
section.

To this aim, we apply the tools of rigid bodies mechanics to build a quadrotor model
that will be used in the design of guidance and control laws in the next chapters. Typically,
this model will allow characterizing the feasibility of trajectories and synthesizing smooth,
stable controllers. Along with the construction of the model, remarks about existing results
will be given in order to elaborate the state-of-the-art of quadrotor modeling.

2.1.2 Vocabulary

First and foremost, in order to avoid confusions, it can be useful to clarify the main part
of the dedicated vocabulary used in this thesis.

Yaw, pitch and roll. The attitude of a rigid body, i.e. its 3D angular position, is
often described through rotations around the yaw, pitch and roll axes, as illustrated on
figure 2.1. The angles of each of these rotation are usually called the heading, elevation
and bank angles, which generally correspond to the ZYX Euler angles, as illustrated on
figure 2.1. Often, these 3 angles are simply called yaw, pitch and roll, respectively.

Notice that the yaw, pitch and roll rotation axes respectively correspond to the pan, tilt
and roll rotation axes that are often referred to in the cinematographic vocabulary.
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Figure 2.1 – Rotation of a rigid body

Ground angle. In this document, we call ground angle the angle between the vertical
(z axis) of the drone and the vertical of the ground (denoted α on figure 2.2).

Air speed. The vector representing the velocity of the drone relatively to its surrounding
air mass is called the air velocity and its norm is called the air speed.

Angle of attack. The angle between a reference line of a body (its longitudinal axis for
instance) and the air velocity is called the Angle Of Attack (AOA) (see figure 2.3).

Lift & Drag. The resultant of the aerodynamic actions applied on a solid is usually split
into two components, applied on the center of pressure. The lift is the component orthog-
onal to the velocity of the solid with respect to the surrounding air mass (air velocity).
The drag is the component collinear to the air velocity. These notions are illustrated on
figure 2.3.

Figure 2.2 – Ground angle Figure 2.3 – Air reaction on a solid

We can now tackle the quadrotor model construction. We start by presenting the general
method that we use in this chapter to build the model, in the following section.

2.1.3 Strategy

Different levels of modeling. As suggested by their name, quadrotor drones are actu-
ated through 4 propellers, usually powered by electric motors. Technically then, the duty
cycle or the voltage applied to each electric motor could be considered as the inputs of the
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Figure 2.4 – Different levels of references and inputs

drone. However, the desired level of details can typically change depending on whether it
is used for control or guidance, or on the complexity of the algorithm to design.

As a consequence, depending on the use of the model, other quantities can be considered
as control inputs, such as the angular velocity of the drone, that would then be sent as
reference to a low level controller in charge of tracking angular velocity trajectories. Such
a low level controller is often supposed ideal or approximated by a simple dynamics by a
higher level algorithm. Furthermore, flatness properties can be used to link some quantities
such as the mechanical actions of the propellers or the angular velocity of the drone, to
some derivatives of the outputs of the drone (position and yaw), which are then considered
as inputs by high level algorithms (guidance algorithms typically).

As an example, in [88], the inputs of the drone are considered to be the mechanical
actions applied by the propellers on the drone. These actions can be linked to the snap
of the drone (the 4-th time derivative of the position) and the angular acceleration of the
drone on the yaw axis, through a flatness analysis. Then a high level guidance algorithm
can generate a snap trajectory with constraints on the time-derivatives of the trajectory
(determined through the flatness analysis) for guaranteeing its feasibility. The obtained
trajectory is then tracked by a lower level control algorithm that considers the mechanical
actions of the propellers as inputs. The latter are finally controlled by an even lower
algorithm, supposed ideal.

More generally, the higher level the algorithm, the higher level the input. This is for
instance the case in [83], where a jerk trajectory is generated, or in [75], were snap tra-
jectories are used. Notice that it is not always the case though and that some guidance
algorithms can, on the contrary, make use of lower level inputs; e.g. in [72] a guidance
algorithm generates advanced collision-free trajectories by taking into account the attitude
required to follow the trajectory.

In a similar fashion, different levels of modeling can be considered for the control stage.
Figure 2.4 provides a non-exhaustive, but representative list of the different levels of inputs
that can be found in the literature, which mainly depends on the choice of the physical
quantity considered as control input (motor speeds input, angular speed input etc.). These
inputs are ordered from higher to lower; orange double arrows indicate links between
quantities that can be highlighted through flatness analysis.
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Example 2 In order to better illustrate the classification proposed on figure 2.4, here is
an example of decomposition of the different inputs for each layer of the GNC

• A high level client may use very simplified model of the drone dynamics, linking a
high level reference (such as a waypoint to join or a velocity to reach), to high levels
quantities (such as the translational acceleration of the drone) through a simplified
low-pass filter model for example. This high level user lies at the top of the classifi-
cation and it is represented by the blue patch.

• Then, a guidance block generates a trajectory based on a model considering the angular
velocity of the drone as physical input. Thanks to a flatness analysis, the position of
the drone appears as a flat output of the system, with its third derivative, the jerk,
given as a function of the angular velocity. This allows the guidance block to work at a
kinematic level for the trajectory generation, rather than using the modeled dynamics
of the drone. This guidance layer is represented by the green patch.

• This trajectory is then tracked by a controller synthesized by considering the rotor
speeds as the physical inputs and represented by the orange patch. This controller
returns rotor speed references which are finally sent to a low level motor controller
computing duty-cycle or voltage control signals to the actuators and represented by
the red patch.

Remark 1 As it will be seen later, the mechanical actions provided by the propellers are
given by a function of their rotation speeds and the angular acceleration is a function of
these mechanical actions. As a consequence, the rotor speed and the angular acceleration
could be considered as same level inputs. However, compared to a model considering these
mechanical actions as inputs, a model with the rotor speed as inputs required an additional
level of modeling, describing the link between the mechanical actions and the rotor speed.
As it will be seen, this additional level of modeling is not trivial and these two models are
then placed at two different levels in figure 2.4. The same goes for the electrical mechanical
power of the propellers, which is linked by there aerodynamic power through a Figure Of
Merit (FOM), which also constitutes an additional level of the model.

Building the model. In order to design guidance and control algorithms, we seek to
build a model of the drone taking as inputs some quantities among those defined in the
previous paragraph and as outputs some state variables, for instance. To this aim, the tools
of rigid body mechanics are used in this document. Yet a quadrotor does not constitute
such a body

• The drone is not monolithic, it is constituted of several components that can move
relatively to each other (rotation of the propellers, movements of the payloads etc.).

• The components of the drone have a given elasticity and plasticity and can be subject
to deformations during the flight. This can lead to the apparition of vibration modes,
for instance.

The first assumption for the construction of the model is to consider the drone compo-
nents to be rigid, by neglecting their deformations. However, the first point still prevents
to use the tools of rigid body mechanics directly on the entire quadrotor as a single solid.
The drone is thus divided into several components, that can reasonably be considered as
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CHAPTER 2. QUADROTOR MODELING

Figure 2.5 – Joints diagram of the drone system

rigid parts. This decomposition is illustrated on figure 2.5 and consists in the drone body
(containing the camera, the battery, the sensors the arms, the antennas, etc.), the rotors
and the potential payloads. The latter are neglected in this work though, since the Parrot
Bebop 2 has a fixed camera and no payload.

However, in this work, the goal of the guidance or control algorithms is to control the
position of the center of mass of the entire drone (body, rotors, etc.), not only of one of
its components. Therefore, in order to build a model describing the evolution of the entire
drone, we adopt the following method

• Apply the fundamental principle of dynamics to the drone body in order to get a
model describing the evolution of its attitude and the position of its center of mass.
This step is described in sections 2.2 to 2.4.

• Deduce from the equations obtained for the drone body a model describing the
evolution of the entire drone. This step is described in section 2.5.

In the next section, we introduce the reference frames and the physical quantities relative
of the drone component and the environment, used for constructing the model.

2.2 General formulation

The model is constructed under the following assumptions

Assumption 1 Locally flat ground. Since the quadrotor is not supposed to fly over
further than a few kilometers, for no longer than half an hour, the rotation and curvature
of Earth are neglected. Since in addition the drone is not supposed to reach altitudes higher
than a few hundreds of meters above take-off, gravity is assumed uniform during the entire
flight.

Assumption 2 Rigid bodies Every component of the drone is assumed ideally rigid. This
means that the vector joining two points of a same solid is invariant in any basis attached
to this solid.
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2.2. GENERAL FORMULATION

Drone body. The drone body (without any rotor or payload), denoted by SB, is con-
sidered as a rigid body of mass mB, Center Of Mass (COM) B and inertia tensor JB/B at
the center of mass. The mass and the inertia of the drone body are considered invariant.
Attached to this solid is the reference frame Body, denoted by RB, of origin B and vector
basis BB = (xB,yB, zB).

Propellers. The drone is equipped with Np propellers denoted by SPi with i ∈ [[1, Np]]
(Np = 4 for a quadrotor such as the Bebop 2). For i ∈ [[1, Np]], we denote by SPi the i-th
propeller, of mass mi, center of mass Pi, and inertia JPi/Pi . Each propeller is motorized by
an electrical motor whose stator belongs to the drone body SB, and whose rotor belongs
to the propeller SPi .

Inertial reference frame. We study the movement of the drone body SB relatively to
the inertial reference frame World, denoted by RW , attached to the ground, of origin O and
basis BW = (xW ,yW , zW). The origin of RW , O, is chosen as the position of take-off. The
North-East-Down (NED) basis, local at O, is chosen for BW (as illustrated on figure 2.6).
Earth rotation is neglected, hence RW can be considered inertial.

Figure 2.6 – NED reference frame

Drone. As explained in section 2.1.3, the study of the motion of the drone body, in
interaction with its propellers and the surrounding environmnent, will be used to deduce
the motion of the entire drone, with its propellers. To this aim, we also define G the
center of mass of the entire drone (body and propellers), as well as the reference frame
Drone, denoted by RD, of origin G and vector basis BD = (xD,yD, zD) = (xB,yB, zB).
In section 2.5, it will be shown that the entire drone can be assimilated to an equivalent
fictitious rigid body SD, of mass m, center of mass G and inertia tensor JD/G.

The rigid bodies are represented on figure 2.7 while the ground and drone frames are
represented on figure 2.8.

Tables 2.1 and 2.2 also give a summary of the notation used for each solid and frame.

Position. The position of the center of mass of the drone body B and of the center of
mass of the entire drone G relatively to the ground-fixed frame RW are respectively given
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Figure 2.7 – Drone system and its rigid components Figure 2.8 – Ground and drone frames

Solid COM Mass Inertia
Body SB B mB JB/B

Propeller i SPi Pi mi JPi/Pi
Drone SD G mB JD/G

Table 2.1 – Notation for different rigid com-
ponents involved in the model construction

Frame Basis Origin
Ground RB BB B

Body RPi BPi Pi
Drone RD BD G

Table 2.2 – Notation for the different frames
involved in the model construction

by the vectors

ζB ,
#    „

OB =

xByB
zB


W

, ζ ,
#    „

OG =

xy
z


W

Velocity. The velocities of the centers of mass B and G relatively to RW are respectively
given by the vectors

vB/W =

ẋBẏB
żB


W

=

uBvB
wB


B

, vG/W =

ẋẏ
ż


W

=

uv
w


D

(2.1)

Attitude. The attitude of the drone relatively to the basis BW is described by the
rotation matrix RW→B = RW→D (both the drone body and the entire drone have the
same vector basis, thus the same attitude). It represents the rotation operator RW→B
transforming the basis BW into the basis BB. This allows writtingẋẏ

ż

 = RW→B

uv
w

 (2.2)

for instance.

Angular velocity. The angular velocity of the drone relatively to BW is given by

ΩB/W =

pq
r


B

It is linked to the attitude of the drone by the relation [126], [25]

ṘW→B = RW→B Ω̂BW/B (2.3)
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with Ω̂BW/B =

 0 −r q
r 0 −p
−q p 0

. Since the drone body SB and the entire drone SD share

the same vector basis, we have ΩD/W = ΩB/W .

Fundamental Principle of Dynamics. The model is constructed by applying the
Fundamental Principle of Dynamics (FPD) to the drone body SB

DB/W = Fext→B (2.4)

with

• DB/W the torsor representing the dynamics of the drone body relatively to the ground

fixed frame RW , DB/W =

{
µB/W
δBB/W

}
B

• µB/W the resultant of DB/W , equal to the time derivative of the linear momentum
of the drone body relatively to RW

• δBB/W the moment (i.e. the evaluation) of DB/W at B, equal to te time derivative of
the angular momentum of the drone body relatively to RW

and with

• Fext→B the torsor representing the mechanical actions experienced by the drone body,

Fext→B =

{
fext→B
τBext→B

}
B

• fext→B the resultant of Fext→B

• τBext→B the moment of Fext→B at B, the center of mass of the drone body

Remark 2 A short reminder about torsors and screw theory is given in appendix A.

The form of the drone model then depends on how these two physical quantities are
written and modeled. The expression of the dynamic resultant and moment of the drone
body typically depend on the choice of the representation of its attitude and the potential
approximations made in this choice. The expression of the mechanical actions experienced
by the drone body depends on the choice of which action to take into account and on how
they are modeled. In the next section, we focus on the left term of (2.4), i.e. the expression
of the dynamic torsor.

2.3 Drone body dynamics – DB/W

General expression. The linear momentum of the drone body relatively to the ground
fixed frame RW is

pB/W = mB vB/W (2.5)

Its mass being supposed invariant, the time derivative of this momentum is given by

µB/W = mB aB/W (2.6)
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with aB/W = v̇B/W the acceleration of the drone body in RW .

The angular momentum of the drone body relatively to RW , at B, is given by

σBB/W = JB/B ΩB/W (2.7)

Its inertia being supposed invariant, the time derivative of this angular momentum is given
by

δBB/W = JB/B Ω̇B/W + ΩB/W × JB/B ΩB/W (2.8)

This gives the expressions of the resultant and the moment at B of the dynamic torsor
DB/W . Denoting by JBB/B the inertia matrix at B, representing the inertia tensor at B,
JB/B, in the vector basis attached to the drone body BB, such as

JBB/B =

 Jx Jxy Jxz
Jxy Jy Jyz
Jxz Jyz Jz


we can detail the expressions (2.6) and (2.7)

µB/W =

mB ẍBmB ÿB
mB z̈B


W

=

mB (u̇B + q wB − r vB)
mB (v̇B + r uB − pwB)
mB (ẇB + p vB − q uB)


B

δBB/W =

Jxṗ+ Jxy q̇ + Jxz ṙ + q (Jxzp+ Jyzq + Jzr)− r (Jxyp+ Jyq + Jyzr)
Jxyṗ+ Jy q̇ + Jyz ṙ + r (Jxp+ Jxyq + Jxzr)− p (Jxzp+ Jyzq + Jzr)
Jxz ṗ+ Jyz q̇ + Jz ṙ + p (Jxyp+ Jyq + Jyzr)− q (Jxp+ Jxyq + Jxzr)


B

(2.9)

Simplifications. The vector basis of the drone body, BB, is supposed to be a principal
basis of inertia of the drone body (if not, a fixed change of basis suffices to make verify this
assumption, since the drone body inertia is supposed invariant). In this case, the inertia
matrix JBB/B is diagonal

JBB/B =

Jx Jy
Jz

 (2.10)

which simplifies the expression of the dynamic moment

δBB/W =

Jxṗ+ qr (Jz − Jy)
Jy q̇ + pr (Jx − Jz)
Jz ṙ + pq (Jy − Jx)


B

(2.11)

Coupling terms in δBB/W can thus be canceled if there are symmetries in the geometry of
the drone body. For instance, if Jx = Jy, the term pq (Jy − Jx) is canceled, which allows
(in some cases) to decouple the yaw dynamics from the roll and pitch dynamics.

For small angular speeds, (2.9) can be linearized and, if (2.10) is verified, this gives the
very simple expression 

µB/W ≈

mB u̇BmB v̇B
mB ẇB


B

δBB/W ≈

Jx ṗJy q̇
Jz ṙ


B

(2.12)
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Expression at G. The expression of the dynamic torsor of the drone body at the center
of mass of the entire drone, G, can be obtained from its expression at the drone body
center of mass by

DB/W =

{
µB/W

δBB/W +
#    „

GB × µB/W

}
G

(2.13)

The expression (2.13) dictates the evolution of the drone position and angular velocity
and (2.3) gives the evolution of the attitude of the drone body. Injecting (2.3) into (2.9)
results in a generic expression linking the mechanical actions experienced by the drone
body to the evolution of its position and attitude. The obtained expression depends on
the method used to parameterize the attitude.

Choice of attitude representation. The orientation of the drone (vector basis Body,
BB) relatively to the ground (vector basis World, BW) can be described in several ways.
In all cases, these representations rest on

• The choice of a set of parameters for characterizing the angular position of the drone
at a given time instant. This choice should typically offer 3 degrees of freedom.

• The characterization of the evolution of these parameters in time, in order to describe
the angular dynamics of the drone.

The following section gives an overview on three classical representations of the attitude:
Euler angles, unit quaternions and rotation matrices.

2.3.1 Attitudes representation: Euler angles

Very intuitive, Euler angles are one candidate to describe the attitude of the drone. This
representation consists in decomposing the attitude into 3 successive rotations.

The decomposition illustrated on figure 2.9 is used in this document. It consists in

• A rotation Rψ, around the z-axis, of angle ψ ∈ ]−π, π] called yaw (or heading)

• A rotation Rθ, around the y-axis, of angle θ ∈ [0, π] called pitch (or elevation)

• A rotation Rϕ, around the x-axis, of angle ϕ ∈ ]−π, π] called roll (or bank)

The reader will notice that θ is represented with a negative value on figure 2.9.

This constitutes the ZYX Euler angles convention commonly used in aerospace and
corresponds to the pan, tilt and roll rotations in cinematography. In the literature, these
Euler angles are also referred to as the Tait-Bryan angles when, as in this thesis, the
decomposition is operated along 3 different axes (ZYX and not ZYZ for instance). The
attitude of the drone body relatively to the ground is then

RW→B = Rψ Rθ Rϕ =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 (2.14)

Remark 3 The ground angle is linked to the pitch and roll angles by the relation

cα = cϕcθ (2.15)
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BW = (xW ,yW , zW)

B1 = (x1,y1, z1)

Rψ =

cψ −sψ 0
sψ cψ 0
0 0 1


ψ ∈ ]−π, π]

Ω1/W = ψ̇ zW

B2 = (x2,y2, z2)

Rθ =

 cθ 0 sθ
0 1 0
−sθ 0 cθ


θ ∈ [0, π]

Ω2/1 = θ̇ y2

BB = (xB,yB, zB)

Rϕ =

1 0 0
0 cϕ −sϕ
0 sϕ cϕ


ϕ ∈ ]−π, π]
ΩB/2 = ϕ̇xB

Figure 2.9 – Euler parameterization of the attitude

Decomposing the angular velocity ΩB/W along the axes of each of the rotations Rϕ, Rθ

and Rψ highlights the derivatives of the 3 parameters ϕ, θ and ψ

ΩB/W = ϕ̇xB + θ̇ y2 + ψ̇ zW (2.16)

leading to pq
r

 =

1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ

ϕ̇θ̇
ψ̇

 (2.17)

and ϕ̇θ̇
ψ̇

 =

1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

pq
r

 (2.18)

Remark 4 Equation (2.18) highlights two singularities at θ = 0 and θ = π. They corre-
spond to the situation of gimbal lock, for which the yaw and the roll axes are equal, resulting
in the loss of one degree of freedom of the representation.

Derivating the expression (2.18) and injecting the result into (2.11) leads to

δBB/W =

kmd1

kmd2

kmd3


B
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with

kmd1 = ϕ̈Jx − ψ̈Jxsθ + θ̇ψ̇

(
1

2
(Jz − Jy)c2ϕcθ − Jxcθ

)
− 1

2
θ̇2(Jz − Jy)s2ϕ

+
1

2
ψ̇2(Jz − Jy)s2ϕcθ

2

kmd2 = −θ̈Jycϕ + ψ̈Jysϕcθ − ϕ̇θ̇(Jysθ + (Jx − Jz)sϕ) + ϕ̇ψ̇(Jx + Jy − Jz)cψcθ

+ θ̇ψ̇(Jx + Jy − Jz)sϕsθ −
1

2
ψ̇2(Jx − Jz)s2θcϕ

kmd3 = −θ̈Jzsϕ + ψ̈Jzcϕcθϕ̇θ̇((Jy − Jx)cϕ − Jzsϕcθ) + ϕ̇ψ̇(Jx − Jy − Jz)sϕcθ

+ θ̇ψ̇(Jx − Jy − Jz)cϕsθ +
1

2
ψ̇2(Jx − Jy)sϕs2θ

The expression (2.18) can be approximated at order 0 for ϕ ≈ 0 and θ ≈ 0, leading toϕ̇θ̇
ψ̇

 ≈
pq
r

 (2.19)

and thus ϕ̈θ̈
ψ̈

 ≈
ṗq̇
ṙ

 (2.20)

Injecting these two results into (2.11) returns a simpler expression of δGB/W

δBB/W ≈

Jx ϕ̈+ θ̇ ψ̇ (Jz − Jy)
Jy θ̈ + ϕ̇ ψ̇ (Jx − Jz)
Jz ψ̈ + ϕ̇ θ̇ (Jy − Jx)


B

(2.21)

If, in addition, the rotation speed is small, the expression (2.11) can be approximated
at order 1 (in p, q, r, ϕ, θ and ψ), which gives

δBB/W ≈

Jx ϕ̈Jy θ̈

Jz ψ̈


B

(2.22)

This approximation is acceptable in a sufficient large domain around the hovering equilib-
rium to control a quadrotor at low speed. In [1], this approximation is considered to be
valid for a ground angle below 15◦ and the controller is forbidden to exceed this value in
order to maintain the fidelity of the model.

It can also be noticed that the rotation matrix RW→B can also be approximated at order
1 in ϕ, θ and ψ, leading to

RW→B ≈

 1 −ψ θ
ψ 1 −ϕ
−θ ϕ 1
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This corresponds to the expression of an infinitesimal rotation, as the sum of the identity
and a skew-symmetric matrix.

Though this representation has the advantage to be intuitive, it is neither unique nor
regular. In order to make it unique, it is necessary to bound the parameters ψ, θ and
ϕ in intervals such as the ones given at the beginning of this section, which introduces
discontinuities in the evolution of the parameters. This representation also exhibits two
singularities at θ = 0 and θ = π. Some care is required for dealing with these singularities,
as well as their neighborhood which are numerically sensitive. However, in a small domain
around the hovering equilibrium, this representation can be linearized, leading to very
simplified expressions of δGB/W .

2.3.2 Attitudes representation: Unit quaternions

Unit quaternions constitute another way to parametrize the attitude of a rigid body, by
the mean of 4 parameters. Though it is not an unique representation, it has the advantage
to be singularity-free.

A rotation of angle ν around the unit vector u = axW + byW + c zW , with (a, b, c) ∈ R3

and
√
a2 + b2 + c2 = 1, can be represented by the two unit quaternions q ∈ H and −q

with
q = cν/2 + a sν/2 i + b sν/2 j + c sν/2 k (2.23)

where i2 = j2 = k2 = i j k = −1.

More generally, a unit quaternion q = q0 +q1 i+q2 j+q3 k, with
√
q2

0 + q2
1 + q2

2 + q2
3 = 1,

can be used to represent the rotation RB→W . The expression of RB→W from the compo-
nents of q is given by [32]

RB→W =

1− 2
(
q2

2 + q3
2
)

2 (q1q2 − q0q3) 2 (q0q2 + q1q3)
2 (q0q3 + q1q2) 1− 2

(
q1

2 + q3
2
)

2 (q2q3 − q0q1)
2 (q1q3 − q0q2) 2 (q0q1 + q2q3) 1− 2

(
q1

2 + q2
2
)
 (2.24)

which can also be written in the following manner

RW→B =
(
q2

0 − q>v qv

)
I3 + 2 qvq

>
v + 2 q0q̂v (2.25)

with
qv =

(
q1 q2 q3

)>
q̂v =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 (2.26)

The evolution of this quaternion is given by

q̇ =
1

2
q$ (2.27)

with $ the pure imaginary quaternion representing ΩB/W in BB, i.e. $ = p i + q j + r k.
This expression can be written in the following matrix representation

q̇0

q̇1

q̇2

q̇3

 =
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0
p
q
r

 (2.28)
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Remark 5 A numerical integration of the relation (2.27) (for propagating a model for
instance) requires care as the norm of the quaternion should remain unitary.

As for the Euler angles, it is possible to linearize this expression near the hovering
equilibrium. For a small heading and a small ground angle, q is close to the identity
quaternion (q0 ≈ 1 and q1 ≈ q2 ≈ q3 ≈ 0). If the rotation speed is small too, then we can
approximate equation (2.28) at order 1 by the following expression

q̇0

q̇1

q̇2

q̇3

 ≈ 1

2


0
p
q
r

 (2.29)

which allows approximating the expression of the time derivative of the angular momentum

δGB/W ≈

Jx q̈1

Jy q̈2

Jz q̈3


B

(2.30)

The expression of the rotation matrix (2.24) can be approximated the same way, leading
to

RW→B ≈ I3 + 2 q̂v

or

RW→B ≈

 1 −2 q3 2 q2

2 q3 1 −2 q1

−2 q2 2 q1 1

 (2.31)

Remark 6 It can be noticed that the assumptions for this linearization are stronger than
the assumptions used for the linearization with the Euler angles representation. Indeed, the
heading is supposed small for the quaternion representation, while it could take any value
with Euler angles. For this reason, the linearization of equation (2.11) is less common
when unit quaternion are used for representing the attitude of the drone.

2.3.3 Attitudes representation: Rotation matrices

Finally, the attitude can directly be parameterize via the 9 components of the rotation
matrix RW→B. This representation is both regular and unique, but requires 9 parame-
ters and particular care regarding numerical errors. The matrix RW→B must indeed be
orthogonal with a determinant equal to 1, which constitutes a total of 6 constraints on the
components of RW→B

RW→B =

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 (2.32)

with the evolution of the rotation matrix RW→B given by equation (2.3).

2.3.4 Attitudes representation: Comparison

Very intuitive, the Euler angles representation involves only 3 parameters and is largely
adopted. This leads to a nonlinear model due to the presence of trigonometric functions. It
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can be used in its general formulation, as in [81] or [39], or it can be simplified close to the
hovering state, by linearizing the relation linking the rotation velocity to the derivatives
of the Euler angles. Numerous work opt for the latter solution, e.g. [2], [16], [36], [128],
[68], [98]. The model is even more simplified if the linearized expressions of the derivative
of the angular momentum (2.22) is used, such as in [15] or [1].

Unit quaternions are also quite spread for the control of rigid bodies. This approach
rests on 4 parameters, linked by one constraint (the quaternion must be unitary). A
linearization of the expression of the dynamic moment can also be performed with unit
quaternions (2.30), leading to a simpler expression. However, this is only possible for a
domain around a fixed heading, while the latter can vary freely with Euler angles. Such
a linearized quaternion model can still be found in the literature, e.g. [100]. Nonetheless,
the nonlinear model is more common when quaternions are used for parameterizing the
attitude, as in [18], [119] or [71].

Though the 4 parameters of the quaternion-based representation do not allow to visualize
the attitude of the drone as intuitively as the Euler angles, it is still reasonably easy to
extract a rotation angle and a rotation axis from a unit quaternion to have a better idea
of the rotation it represents. In addition, though the Euler angles representation only
uses 3 parameters, it can be more computationally expensive as it requires the evaluation
of trigonometric functions. It also presents 2 singularities (gimbal lock) while the unit
quaternions are regular. Nevertheless, both these representations are not unique, which
can lead to undesirable behavior of control algorithms if this has not been taken into
account during their design, as explained in [12] (unwinding phenomenon). It is however
possible to make these representations unique at the price of introducing discontinuities:
e.g. by bounding the 3 Euler angles into adequate intervals (see figure 2.9) or by imposing
the real part of the unit quaternions to be positive, as in [18]).

Finally, the representation of the attitude directly with rotation matrices is both unique
and regular, but requires 9 parameters linked by 6 constraints (characterizing the orthog-
onality and unit determinant). The consequence is that it can be heavier to propagate a
numerical model based on rotation matrices (with methods such as the Crouch-Grossman
method [27], [74], as used in [61] for instance). However, the use of this parameterization
leads to compact and elegant models, that have been used to design popular control laws
[65], [66], [96], [5], [46], [64], [6], [61] or [22]. Such laws have been successively used in
different applications, such as indoor flight [75], [102].

Table 2.3 summarizes the main differences between each representation. The computa-
tion requirements for each of these representations are discussed in [34].

Euler angles Unit quaternions Rotation matrices
3 parameters 4 parameters 9 parameters
No constraint 1 constraint 6 constraints

Singular Regular Regular
Intuitive Unintuitive Unintuitive

Trigonometric operations Matrix operations Matrix operations

Table 2.3 – Comparison of 3 attitude representations

In this section, we detailed the expression of the dynamic torsor DB/W and presented
several ways to represent and link the attitude of the drone to the dynamic torsor. In the
following section, we tackle the expression of the right term of (2.4), i.e. the modeling of
the mechanical actions experienced by the drone.
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2.4 Drone mechanical actions – Fext→B

With no payload nor deformations (rigid Bebop 2 assumption), the drone body experi-
ences 3 predominant mechanical actions

• Gravity. The action of gravity on the drone body, represented by the torsor Fgrav→B

• Propellers actions. The action of the propellers on the drone body, represented by
the torsor Fprop→B

• Aerodynamic actions. The aerodynamic action of the surrounding air mass on the
drone body, represented by the torsor Fair→B

Any other mechanical action can reasonably be neglected. The total (cumulative) mechan-
ical action experienced by the drone body is then given by

Fext→B = Fgrav→B + Fprop→B + Fair→B (2.33)

In the next sections, we detail each one of these mechanical actions applied on the drone
body and represent them by torsors. In order to facilitate the construction of the entire
drone model later, we reduce these torsors at the center of mass of the entire drone, G,
rather than at the center of mass of the drone body, B.

2.4.1 Action of gravity on the drone body – Fgrav→B

Unlike what can typically be found in space applications, gravity is usually assimilated
to an uniform force field for consumer drones. The drone weight is thus represented by an
invariant force applied to the center of mass of the drone body, B, of magnitude mB g and
direction zW . It can thus be represented by the following torsor

Fgrav→B =

{
mB g zW

0

}
B

=

{
mB g zW

mB g
#    „

GB × zW

}
G

(2.34)

The expression of this torsor in the drone body basis depends on the parameterization
of the attitude (e.g. Euler angles, unit quaternion or rotation matrix)

mB g zW =

−mB gsθmB gsϕcθ
mB gcϕcθ


B

=

 2mB g(q1q3 − q0q2)
2mB g(q0q1 + q2q3)

mB g
(
1− 2

(
q1

2 + q2
2
))

B

=

mB gR>W→B

0
0
1


B

(2.35)

If a linearized attitude is used (2.3.1), (2.31), we get the approximation

mB g zW ≈

−mB g θmB g ϕ
mB g


B

≈

−2mB g q2

2mB g q1

mB g


B

(2.36)

2.4.2 Actions of the propellers – Fprop→B

The mechanical actions of the propellers on the drone body involve several possibly
complex and nonlinear phenomena. Nonetheless, depending on the context, simple models
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of these actions can be sufficient to design guidance or control algorithms within acceptable
flight domains.

The drone is equipped withNp propellers numbered from 1 toNp (Np = 4 for a quadrotor
such as the Bebop 2). Each propeller is motorized by an electrical motor of rotation axis
zPi , whose stator belongs to the drone body SB, and whose rotor belongs to the propeller
SPi . For i ∈ [[1, Np]], we denote by SPi the i-th propeller, of mass mi, center of mass Pi
and inertia tensor JP/iPi. The position and orientation of the i-th propeller relatively to
the drone is parameterized as illustrated on figure 2.10

#     „

GPi =

lxilyi
lzi


B

, zPi =

sθicψisθisψi
cθi


B

(2.37)

The angular velocity of the i-th propeller relatively to the drone body is given by ΩPi/B =
ωi zPi . Often, the propellers can only rotate in one direction. For this reason, we fix ωi > 0,
which leaves only one choice for zPi . Furthermore, given the shape of the propeller, the
axis zPi can be considered as a principal axis of inertia of the i-th propeller (though it not
exactly correct in practice).

Figure 2.10 – Pose of the i-th propeller relatively to the drone body

The general expression of the mechanical action applied to the drone body by the i-th
propeller is given by the FPD applied to SPi in the ground fixed frame RW

DPi/W = FB→Pi + Fgrav→Pi + Fair→Pi (2.38)

with

• DPi/W the torsor describing the dynamics of the i-th propeller at Pi

• FB→Pi the torsor describing the mechanical actions applied to i-th propeller by the
drone body

• Fgrav→Pi the torsor describing the mechanical actions of gravity on the i-th propeller

• Fair→Pi the torsor describing the mechanical actions applied to i-th propeller by the
surrounding air mass

From this expression, we can deduce the action of the i-th propeller on the drone body,
knowing that FB→Pi = −FPi→B given Newton’s 3rd law

FPi→B = −DPi/W + Fgrav→Pi + Fair→Pi (2.39)
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The actions of all the propellers on the drone body are then given by the sum of the
action of each propeller

Fprop→B =

Np∑
i=1

FPi→B (2.40)

The modeling of each one of these quantities thus determines the model of the action of
the propellers on the drone body and is presented in sections 2.4.2.1 to 2.4.2.3.

2.4.2.1 Propeller dynamics – DPi/W

The expression of the torsor describing the dynamics of the i-th propeller, reduced at
G, can be obtained from its expression reduced at Pi, as follows

DPi/W =

{
µPi/W
δPiPi/W

}
Pi

=

{
µPi/W

δPiPi/W +
#     „

GPi × µPi/W

}
G

=

{
mi aPi/W

JPi/Pi Ω̇Pi/W + ΩPi/W × JPi/Pi ΩPi/W +mi
#     „

GPi × aPi/W

}
G

(2.41)

with µPi/W the dynamic resultant of the propeller, δPiPi/W its dynamic moment and aPi/W
the acceleration of its center of mass relatively to the inertial frame RW .

The time derivative of the linear momentum of the propeller relatively to the ground
can be expressed by

µPi/W = mi aPi/W = mi(ar + ad + ac) (2.42)

with

ar = aPi/B

ad = aB/W + ΩB/W ×
(
ΩB/W ×

#     „

BPi

)
+ Ω̇B/W ×

#     „

BPi

ac = 2 ΩB/W × vPi/B

the relative, drive and Coriolis accelerations, respectively. Since each component of the
drone is supposed rigid, vPi/B = 0 and aPi/B = 0, the relative and Coriolis accelerations
of the propeller are null and the expression of the dynamic resultant becomes

µPi/W = mi aB/W +mi Ω
××
B/W

#     „

BPi +mi Ω̇B/W ×
#     „

BPi (2.43)

where Ω××B/W is the tensor such that Ω××B/W
#     „

BPi = ΩB/W ×
(
ΩB/W ×

#     „

BPi

)
.

A similar decomposition can be operated on the angular moment derivative, by injecting
ΩPi/W = ΩPi/B + ΩB/W into equation (2.41). The detailed calculations are provided in
appendix B. Following either the assumption

Assumption 3 The i-th propeller behaves as a flat cylinder of axis zPi (especially adapted
for propellers with more than 3 blades)

or the assumption

Assumption 4 The derivative of the angular momentum of the propeller, δPiPi/W , can be
approximated by its mean value for one full rotation of the propeller around its axis
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and under the 3 following assumptions

Assumption 5 The propeller is well balanced and, relatively to the drone body, only rotates
around its axis zPi

Assumption 6 The inertia of the propeller is significantly smaller than the inertia of the
drone body

Assumption 7 The rotation speed of the propeller relatively to the drone body,
∥∥ΩPi/B∥∥2

,
is much higher than the rotation speed of the drone body relatively to the ground

∥∥ΩB/W∥∥2

we can rewrite the dynamic torsor of the i-th propeller as the sum of 3 fictitious mechanical
actions

DPi/W ≈ −Finertiai→B − Fgyroi→B − Fleveri→B (2.44a)

with the terms detailed in appendix B

Finertiai→B = −
{

0

JPi/Pi Ω̇Pi/B

}
G

(2.44b)

Fgyroi→B = −
{

0
ΩB/W × JPi/Pi ΩPi/B

}
G

(2.44c)

Fleveri→B = −
{

µPi/W
#     „

GPi × µPi/W

}
G

(2.44d)

and

JPi/Pi Ω̇Pi/B =

ω̇iJzisθicψiω̇iJzisθisψi
ω̇iJzicθi


B

(2.44e)

ΩB/W × JPi/Pi ΩPi/B =

 ωiJzi(qcθi − rsθisψi)
−ωiJzi(pcθi − rsθicψi)
−ωisθiJzi(qcψi − psψi)


B

(2.44f)

where Jzi denotes the inertia of the i-th propeller on its rotation axis.

2.4.2.2 Propeller weight – Fgrav→Pi

The action of gravity on the propellers can be represented by a force applied at the
center of mass Pi of the propeller i

Fgrav→Pi =

{
mi g

0

}
Pi

=

{
mi g

mi
#     „

GPi × g

}
G

(2.45)

2.4.2.3 Propeller thrust – Fair→Pi

As the propellers rotate, each of their blades receives a reaction of the surrounding
air mass. This reaction is represented on figure 2.11 and is used to actuate the drone.
The aerodynamic actions experienced by each blade of the propeller i adds to each other,
resulting in a force, the thrust (ti on figure 2.11), predominantly produced by the lift
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of each blade (l1 and l2 on figure 2.11), and an aerodynamic torque (τi on figure 2.11),
notably produced by the drag of the blades (d1 and d2 on figure 2.11). The deflection of
the surrounding air by the blades of a propeller generates a lift which adds to the lift of
the other blades and constitute the thrust of the propeller (in blue on the figure). This
deflection induces vortices, especially at the tip of each blade, that dissipate energy and
generate a force opposing the movement of each blade called the induced drag. In the
meantime, as the air flows around the blades, the air generates a force that tends to draw
the blade with it due to its viscosity. This contribute to what is called the profile drag. The
sum of these two drag forces is represented in red on the the figure, for each blade. The
drags experienced by the blades compensate each other and the leverages they generate at
the center of mass of the propeller add to generate a torque.

Figure 2.11 – Lift and drag of a propeller

Thus, each propeller experiences the air reaction in the following general form

Fair→Pi =

{
ti
τi

}
Pi

=

{
ti

τi +
#     „

GPi × ti

}
G

(2.46)

with ti the thrust and τi the aerodynamic torque.

The two quantities ti and τi remain to be modeled. Most of the time, a quadratic model
in ωi is derived from the blade element theory

ti = ρ ai ω
2
i zPi

τi = ρ bi ω
2
i zPi

(2.47)

with ρ the air density and ai and bi constants, with the coefficients ai and bi identified on
a test bench. Though this model is quite spread and can be suitable at low speed and in
a confined environment with no wind, it remains a simplistic model. Indeed, this model is
mostly acceptable in static flight (i.e. with no air speed).

The thrust and torque experienced by the propeller is usually non trivial as numer-
ous phenomena occur on the propeller in dynamic flight. Some of these phenomena are
presented in the following paragraphs. The aim is not to detail the physics and models
behind all these effects but to give some typical examples and their impact on the behavior
of the propellers. For detailed theory and models of the aerodynamics of helicopter and
multicopter rotors, one can consult [108], [3].

Dissymmetry of lift If the surrounding air mass has a non zero lateral speed relatively
to the drone, the blade moving upstream (the advancing blade) has a higher air speed than
the blade moving downstream (the retreating blade).
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This results in a higher lift and a higher drag on the advancing blade than on the
retreating one. As a consequence, the leverages induced by the lift of each blade at the
center of mass the propeller, Pi, do not compensate each other anymore, and the lift
now induces a torque on the propeller, as illustrated on figure 2.12, with this additional
torque represented in orange. In addition, the resultant of the drag of each blade do not
compensate anymore as well, and the sum of each of these drag adds a lateral component
to the thrust, along vair/B and behave as a drag action on the entire propeller, represented
in purple on figure 2.13.

Figure 2.12 – Dissymmetry of lift Figure 2.13 – Dissymmetry of drag

The impact of this additional lift-induced torque and drag-induced force on the aero-
dynamic actions experienced by the propeller is illustrated on figure 2.14, with the total
force experienced by the propeller in purple and the total torque in orange, and can be
compared to the aerodynamic actions with no lateral air speed illustrated on figure 2.11.

Figure 2.14 – Dissymmetry of lift and drag

Blade flapping Though it was assumed that all the components of the drone are rigid,
this is not completely accurate in practice, especially for the rotor blades which tend to
deform under the action of the lift and drag they experience. In the absence of lateral
air speed, all the blades deform the same way (the rotor thus has the shape of flattened
cone), and both the thrust and the torque generated by the propeller are oriented along
its rotation axis.

However, with a non-zero lateral air speed, because of the dissymmetry of lift and drag,
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the advancing blade experiences more mechanical stress and deforms more than the re-
treating one, as illustrated on figure 2.15. Because of its high rotation speed, the rotor
undergoes a gyroscopic torque in response to this mechanical stress, that tends to tilt the
rotor backward (figure 2.15).

Figure 2.15 – Blade flapping

It should be noticed that the deformations have been exaggerated on figure 2.15 for
a better illustration of the phenomenon. This effect tends to compensate a part of the
dissymmetry of lift and drag, but not entirely. This deformation of the rotor disk is called
blade flapping and results in what could be assimilated to a virtual tilt of the rotor axis.
In [89], the result of this phenomenon is modeled as an additional drag term on the drone,
proportional to the air speed.

Angle of attack A change of AOA induces a change of lift and drag of each blade of
the propellers. As a consequence, the thrust is lower in ascending flight than in hovering
flight [90]. In lateral flight, for a given rotation speed of the propeller, this typically leads
to thrust pikes when the drone is braking even though the rotation speed of the propeller
is unchanged (see figure 2.16).

Figure 2.16 – Impact of the AOA on the thrust for a fixed rotation speed of the propellers

Turbulence The air stream near the rotor is turbulent and contains vortices, which
propagate in the propeller wake. They are in part due to pressure difference between the
upper skin (extrados) and the lower skin (intrados) of the blade. These turbulences have
an impact on the propeller thrust and are linked to the other phenomena listed here. The
Vortex Ring State (VRS) corresponds to an extreme case of sustained vortex between the
upstream and downstream air flows of the rotor (see figure 2.17), arising for a certain range
of ascending air speed. This phenomenon can degrade the thrust to such a point that the
drone becomes unable to counter gravity.
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Figure 2.17 – Vortex Ring State

Altitude Since the lift and drag of the blades are proportional to the air density, the
thrust decreases as the altitude increases (see figure 2.18). Though a drone will usually
not ascend high enough during a flight to notice any significant difference in air density
(regulations limits the ground altitude of drone to 150 m or less depending on the country),
it still means that a given drone will behave differently when taking off at sea level or at
the top of a mountain.

Figure 2.18 – International standard atmosphere model for air density

Environment In addition to all these phenomena, the environment (ground, walls, ob-
stacles etc.) also impact the air flow around the propellers. The ground effect for instance
designates the increase of thrust close to the ground, as the air deflection by the ground
causes an overpressure under the propellers [10], [97], [4].

Conclusion The physics behind some of these phenomena can typically be found in
aerodynamics and helicopter theory [108]. However, the small, fast, fixed-pitch rotors of
multicopters do not behave exactly as helicopter rotors. In-depth studies of these phenom-
ena and their modeling in the more specific context of multirotor propellers has been lead
in [20], [5], [8] and [3]. Though much more realistic, the resulting model is also more com-
plex than the simplified quadratic, invariant one (2.47). In [7] and [3], this more complete
model is successfully used for control design.

Other works successfully included some of these phenomena in the model, through sim-
pler, approximated models, for control synthesis and led to significant improvements of
the position and the attitude control [52], [56]. However, these model-based approaches
can require extensive efforts in the identification of the numerous parameters of the model.
They also lead to models that are very specific to a given drone. A significant dispersion
of the parameters can occur among a series of mass product drones such as the Bebop 2,
so these parameters may vary too much for an identified model to be transposed to every
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drone even of a same series. In addition, these parameter are expected to vary during the
life cycle of a drone, through damage or alterations of its components (blade damage or
replacement, change of camera, addition of accessories etc.).

An alternative to such model based approaches is to adjust a simplified model in real-
time via adaptive design for instance. In particular, the use of Incremental Nonlinear
Dynamics Inversion (INDI, [110]) has proven to be capable to efficiently deal with these
phenomena even in the presence of non trivial flight environments (wind gusts [113], pay-
load transportation [30] etc.). In [120], online identification is used to additionally take
into account physical interactions with the surrounding environment.

In this manuscript, the action of air on the propellers is approximated by the sum of 2
mechanical actions

• The on-axis rotor torque and thrust modeled by a quadratic function of the propeller
speed and with parameters depending of the air velocity (derived from [20])

Fthrusti→Pi =

{
ti
τi

}
Pi

=

{
ti zPi
−τi zPi

}
Pi

=

{
ti zPi

−τi zPi + ti
#     „

GPi × zPi

}
G

=



ti sθicψiti sθisψi
ti cθi


Bτi sθicψi + ti

(
lyi cθi − lzi sθisψi

)
τi sθisψi + ti (lzi sθicψi − lxi cθi)
τi cθi + ti sθi

(
lxi sψi − lyi cψi

)

B


G

(2.48)

with {
ti = ρ

(
α0i

(
vB/air

)
+ α1i

(
vB/air

)
ωi + α2i

(
vB/air

)
ω2
i

)
τi = ρ

(
β0i

(
vB/air

)
+ β1i

(
vB/air

)
ωi + β2i

(
vB/air

)
ω2
i

) (2.49)

and the coefficients αj i, βj i (scalar functions), i ∈ [[0, 2]], j ∈ [[1, Np]], identified on
test bench for different air speeds for instance. In this work, this action is considered
as the actuation of the drone.

• The remaining actions, considered as disturbances and approximated as follows

Fdisti→Pi =

{
fdisti→Pi
τGdisti→Pi

}
G

(2.50)

The action of air on the propeller is then, given by summing these 2 actions

Fair→Pi = Fthrusti→Pi + Fdisti→Pi (2.51)

2.4.2.4 Motor – FB→Pi

Often neglected, the dynamics of the electric motor driving the propeller can be taken
into account to improve the synthesis of control algorithms. The FPD applied to the i-th
propeller (2.39) can be projected along the rotor axis zPi , leading to

δPiPi/W · zPi =
(
τPiB→Pi + τPiair→Pi + τPigrav→Pi

)
· zPi (2.52)
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Gravity does not induce any torque on the propeller. The variation of angular momentum
has been detailed section 2.4.2.3. The term τPiair→Pi depends on the model of aerodynamic
actions on the propeller. For the quadratic thrust model (2.48), we have τPiair→Pi · zPi = τi.

Injecting (2.44a) into (2.52) leads to

Jzi ω̇i = τPiB→Pi · zPi + τPiair→Pi · zPi (2.53)

The motors are either brushed electric motor, such as on Parrot AR.Drone or the Parrot
Mambo drones, or Brushless Direct Current (BLDC) motors such as on the Parrot Bebop 2
drone. An electric motor can be represented by the following electro-mechanical equations{

Vi = Ri Ii + Li İi + kωi ωi

τPiB→Pi · zPi = kii ii − fi ωi
(2.54)

with Vi the input voltage, Ii the input current, Ri the resistance, Li the inductance, kωi
the counter electromotive force gain, kii the electromotive torque gain and fi the friction
coefficient of the stator/rotor pivot link.

The GNC is not always in charge of controlling the speed of each propeller. Often, a
separate low level controller called the Electronic Speed Control (ESC) is in charge of this
task. In this case, the control stage of the GNC sends, as control input, rotor speeds or rotor
thrust references that are then tracked by the ESC. The dynamics of the system {ESC +
rotor} is often neglected in the synthesis of guidance or control algorithms, however it will
be shown in section 2.6.3 that this dynamics can have significant impact on the dynamics
of the drone, especially for some particular configurations of the propellers.

If the GNC is in charge of controlling the rotor speed, then it can be worth including
the electric motor model into the drone model, as in [6]. Otherwise, the behavior of the
dynamics of the controlled system {ESC + rotor} can for instance be approximated by a
low pass filter, linking the propellers speed or thrust to their actual value [76], i.e.

ω̇i + fci ωi = ωref i for a first order low pass filter

ω̈i + 2ξ$i ω̇i +$2
i ωi = $2

i ωref i for a second order low pass filter

These models are limited though, as they do not include the saturation of speed and
acceleration of the propellers, as well as the quadratic nature of the drag they experience
which tends to augment their characteristic response time at high speed, for instance.

2.4.3 Action of the surrounding air mass – Fair→B

The aerodynamic reaction of the air on the drone body is not trivial to model. This
reaction can be divided into a drag (parasitic drag) in the same direction as the air speed
and a lift produced by the drone body form factor. In forward flight, this lift can take
the form of a down-force due to the attitude of the drone body (see figure 2.19). These
actions depend on the air speed of the drone body but are also influenced by the airflow
generated by the propellers. As a consequence it is not completely accurate to separate on
the one hand the action of air on the drone body, and on the other hand its action on the
propellers.

This action can still be approximated by a linear [116] or quadratic function of the speed
[5], [81], or neglected at low speed as the propeller blade flapping and drag are predominant
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(less than 10m·s−1, [5])

fair→B = −ρ
∥∥vB/air

∥∥
2
Cpar vB/air (2.55)

with ρ the air density and Cpar a tensor depending on the air speed vair/B that act as lift
and drag coefficients and can be identified in a wind tunnel for instance.

Furthermore, the surrounding air also resists any rotational movement, by generating a
torque that can be approximated by a quadratic function

τBair→B = −ρ
∥∥ΩB/W∥∥2

Γpar ΩB/W (2.56)

and the complete mechanical action of air on the drone body is

Fair→B =

{
fair→B
τGair→B

}
G

(2.57)

Figure 2.19 – Body lift acting as a down force in lateral flight

Remark 7 Often, all the aerodynamics phenomena (both on the propellers and the drone
body) are regrouped as one mechanical action. This will be done in section 2.5 when building
the model of the entire drone.

The FPD applied to the drone body (2.4) allows building a model of the drone body, in
interaction with the propellers and the environment. However, the goal of this chapter is
to build a model of the entire drone. Such a model can be deduced from the study of the
drone body dynamics proposed in section 2.3 and the mechanical actions experienced by
the drone body, presented in this section 2.4. This is the topic of the next section.

2.5 Equivalent full quadrotor system – SD

Fundamental Principle of Dynamics. Given the model of the mechanical actions
experienced by the drone body, detailed in section 2.4, the FPD applied to the drone
body (2.4) can expanded as follows

DB/W =

Np∑
i=1

(
Finertiai→B + Fgyroi→B + Fleveri→B + Fgrav→Pi + Fthrusti→Pi + Fdisti→Pi

)
+ Fgrav→B + Fair→B (2.58)

It is not convenient to use a model of the drone body, interacting with the propellers
as separate mechanical bodies. Indeed, most of the parameters involved in the model are

36



CHAPTER 2. QUADROTOR MODELING

identified on the drone with its propellers (center of mass, inertia, aerodynamics coeffi-
cients, thrust coefficients, etc.). Furthermore, the trajectory of the entire drone (position
of the center of mass and attitude) matters for the GNC rather than the one of the drone
body. Equation (2.58) can thus be rewritten to describe the entire drone as one equivalent
mechanical system {drone body + propellers}, denoted by SD

DB/W −
Np∑
i=1

Fleveri→B︸ ︷︷ ︸
DD/W

= Fgrav→B +

Np∑
i=1

Fgrav→Pi︸ ︷︷ ︸
Fgrav→D

+Fair→B +

Np∑
i=1

Fdisti→Pi︸ ︷︷ ︸
Fair→D

+

Np∑
i=1

(
Finertiai→B + Fgyroi→B + Fthrusti→Pi

)
︸ ︷︷ ︸

FPi→D

(2.59)

We now detail each term in this expression. Particularly, we will identify the mass, the
center of mass and the inertia of this equivalent solid SD, such that the left terms in (2.59)
correspond to its dynamic tensor. We start by focusing on the total action of gravity of
the system and the identification of the mass and the center of mass of the entire drone.

Drone gravity. From (2.34) and (2.45), the term Fgrav→D is given by

Fgrav→D , Fgrav→B +

Np∑
i=1

Fgrav→Pi =



(
mB +

Np∑
i=1

mi

)
g zW

g

(
mB

#    „

GB +
Np∑
i=1

mi
#     „

GPi

)
× zW


G

(2.60)

Defining

m = mB +

Np∑
i=1

mi (2.61a)

#    „

BG =
1

m

Np∑
i=1

mi
#     „

BPi (2.61b)

the 2 terms of the moment of Fgrav→D at G cancel each other and we get the action of
gravity on the entire drone, as a force applied on its overall center of mass

Fgrav→D =

{
mg zW

0

}
G

(2.62)

We now focus on the left term of (2.59) to identify the inertia of the equivalent entire
drone system.

Drone dynamic torsor. From equations (2.13) and (2.44d), the term DD/W is given
by

DD/W , DB/W −
Np∑
i=1

Fleveri→B =


µB/W +

Np∑
i=1
µPi/W

δBB/W +
#    „

GB × µB/W +
Np∑
i=1

#     „

GPi × µPi/W


G

(2.63)
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In the following, we seek to show that the resultant and the moment at G of this torsor
can be written in a similar fashion as in (2.6) and (2.7), by using the the obtained expression
of the massm and the center of mass G of the equivalent drone system, as well as its inertia
tensor JD/G, that we will identify in the process.

We start with the resultant of the torsor (2.63). Knowing that
#    „

OG =
#    „

OB +
#    „

BG, we
have

vG/W = vB/W + ΩB/W ×
#    „

BG (2.64)

and
aG/W = aB/W + Ω××B/W

#    „

BG+ Ω̇B/W ×
#    „

BG (2.65)

Using equation (2.61b), we thus have

aG/W = aB/W +
1

m

Np∑
i=1

mi

[
Ω××B/W

#    „

BG+ Ω̇B/W ×
#    „

BG
]

(2.66)

Multiplying this expression by m and identifying the obtained terms with equations (2.6)
and (2.43) leads to

µD/W ,
d

dt

(
m vG/W

)
= µB/W +

Np∑
i=1

µPi/W (2.67)

and the resultant of the the torsor (2.63) corresponds to the dynamic resultant of a rigid
body of mass m and center of mass m.

We now focus on the moment at G of the torsor (2.63). Since
#     „

GPi =
#    „

GB+
#     „

BPi, the two
right terms in the expression of the moment of (2.63) can be rewritten

#    „

GB×µB/W+

Np∑
i=1

#     „

GPi×µPi/W = − #    „

BG×µB/W−
#    „

BG×
Np∑
i=1

µPi/W+

Np∑
i=1

#     „

BPi×µPi/W (2.68)

By replacing the dynamic resultant of the drone body µB/W and of the dynamic resultant
of propellers µPi/W by their expressions (2.43), (2.6), this equation becomes

#    „

GB × µB/W +

Np∑
i=1

#     „

GPi × µPi/W = − #    „

BG×mB aB/W

− #    „

BG×
Np∑
i=1

mi aB/W −
#    „

BG×Ω××B/W

Np∑
i=1

mi
#     „

BPi −
#    „

BG× Ω̇B/W ×
#     „

BPi

+

Np∑
i=1

mi
#     „

BPi × aB/W +

Np∑
i=1

mi
#     „

BPi ×Ω××B/W
#     „

BPi +

Np∑
i=1

mi
#     „

BPi × Ω̇B/W ×
#     „

BPi (2.69)

Using (2.61b) and the fact that, for two vectors u ∈ R3 and v ∈ R3, u × v×× u =
−v × u×× v, expression (2.69) can be simplified as follows

#    „

GB × µB/W +

Np∑
i=1

#     „

GPi × µPi/W = ΩB/W ×

−m #    „

BG×× −
Np∑
i=1

mi
#     „

BPi
××

ΩB/W

+

−m #    „

BG×× −
Np∑
i=1

mi
#     „

BPi
××

 Ω̇B/W (2.70)
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Defining

JD/G = JB/B −m
#    „

BG×× −
Np∑
i=1

mi
#     „

BPi
×× (2.71)

and using both (2.7) and (2.70) we can finally rewrite (2.70)

δBB/W +
#    „

GB × µB/W +

Np∑
i=1

#     „

GPi × µPi/W = JD/G Ω̇D/W + ΩD/W × JD/G ΩD/W (2.72)

We obtained the desired expression

DD/W =

{
m aG/W

JD/G Ω̇D/W + ΩD/W × JD/G ΩD/W

}
G

=

{
µD/W
δGD/W

}
G

(2.73)

with ΩD/W = ΩB/W . The expression of JD/G corresponds to the inertia obtained with
the Huygens formula for a system consisting of the drone body along with each propeller
assimilated to point masses. The torsor (2.73) corresponds to a dynamic torsor, allowing
to define an equivalent system {drone body + rotors}.

Drone system. We define the equivalent, fictional rigid solid drone, SD, constituted of
the drone body and the propellers, the latter being assimilated to Np punctual masses mi,
located at Pi, with no inertia. This system is of mass m, center of mass G and inertia
JD/G, defined by (2.61a), (2.61b) and (2.71), respectively.

To this solid is attached the frame RD of origin G and basis BD. The latter can be
chosen to be principal of inertia for instance.

The FPD applied to the drone SD is given by equation (2.59)

DD/W = Fgrav→D + Fair→D +

Np∑
i=1

FPi→D (2.74)

Simplified nonlinear model. For guidance typically, the mechanical actions applied
on the drone by the propellers are directly used as input for the model (i.e. the force and
the torque they apply on the drone). As a consequence, neither the inertial actions of the
rotors (reaction and gyroscopic torques) nor their aerodynamic model appear in the drone
model. Thus, the expression (2.74) can be written as the following nonlinear model

ζ̈ = g + u1 RW→D zW + fdist

ṘW→B = RW→B Ω̂D/W

JD/G Ω̇D/W = u2 xD + u3 yD + u4 zD −ΩD/W × JD/G ΩD/W + τdist

(2.75)

with u1, u2, u3 and u4 the inputs of the model, and fdist and τdist disturbances that can
be considered or not into the model. A model of this kind has lead to the design of
popular control laws, without disturbances ([66]) or with disturbances ([64], [84]) as well
as guidance algorithms ([75]) since the outputs of the drone can easily be linked to the
inputs of this model through a flatness analysis.
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2.6 Linear model near hovering

Often, ESC are used to control the speed of each propeller. These rotor speeds thus
constitute good control input candidates for the control stage of the GNC system. It it
then reasonable to use a model that incorporates the dynamics of the propellers for the
synthesis of a control law. By doing so, it appears that the inertia of the rotors can have a
significant impact on the attitude dynamics of the drone. This section emphasizes several
dynamical aspects of a quadrotor induced by propellers inertia, especially when its rotors
are tilted and/or asymmetrically distributed around its body, as for the Bebop 2. To
achieve this, we derive a linear model from the one obtained in section 2.5 and apply it to
different configurations of the propellers.

2.6.1 Linear model

For small pitch and roll angles as well as small speeds and angular speeds, the FPD-
based model (2.74) can be linearized near the hovering equilibrium. We first detail the
linearization of each term of the model, for a ZYX Euler angles representation of the drone
attitude.

Drone dynamics. We suppose the vector basis of the drone BD principal of inertia,
and thus its inertia matrix in the drone vector basis diagonal

JDD/G =

Jx Jy
Jz

 (2.76)

Then, the linearization of the dynamic torsor of the drone near the hovering equilibrium
gives

DD/W ≈



m u̇
m v̇
m ẇ


DJx ṗJy q̇

Jz ṙ


D


G

(2.77)

Gravity The expression of the action of gravity is linearized around the hovering equi-
librium, leading to

Fgrav→D ≈


−mg θmg ϕ

mg


D

0


G

(2.78)
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Air reaction The action of the surrounding air on the drone (parasitic drag, blade
flapping, etc.) is approximated by a linear model near the hovering equilibrium

Fair→D ≈



−cu u−cv v
−cw w


D−cp p−cq q

−cr r


D


G

(2.79)

with cu, cv, cw, cp, cq, cr scalar constants.

Propellers By denoting ωhi the speed of the i-th propeller when hovering, we introduce
the rotation speed increment δωi such that the speed of this propeller near the hovering
equilibrium can be expressed

ωi = ωhi + δωi (2.80)

with δωi � ωhi. Supposing the air density invariant during the flight, the thrust and
torque of the propellers (2.48) can be simplified near the hovering equilibrium

ti =
(
α0i + α1i ωi + α2i ω

2
i

)
zPi ,

τi =
(
β0i + β1i ωi + β2i ω

2
i

)
zPi

(2.81)

with α0i, α1i, α2i, β0i, β1i and β2i scalar constants. The linearization of this quadratic
thrust model near the hovering equilibrium gives

Fthrusti→D ≈
{

(thi + ai δωi) zPi
−(τhi + bi δωi) zPi

}
Pi

(2.82a)

with
thi = α0i + α1i ωhi + α2i ωh

2
i

ai = α1i + 2α2i ωhi

τhi = β0i + β1i ωhi + β2i ωh
2
i

bi = β1i + 2β2i ωhi

(2.82b)

The reaction torque of the i-th propeller given by (2.44b) has a linear form

Finertiai→D ≈
{

0
−Jzi δω̇i zPi

}
G

(2.83)

with Jzi the inertia of the propeller along its rotation axis. Since the rotation speed of
the drone relatively to the ground has been considered small, the gyroscopic torques are
neglected.

Given the parameterization of zPi and
#     „

GPi in the drone fixed basis (2.37), the sum of
the actions of all the propellers can be expressed as follows

Np∑
i=1

FPi→D =

Np∑
i=1

(
Fthrusti→D + Finertiai→D

)
=


Np∑
i=1

thi zPi

Np∑
i=1

(
τhi + thi

#     „

GPi × zPi

)

G

+



uuuv
uw


Dupuq

ur


D


G

(2.84)
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with (uu, uv, uw, up, uq, ur) ∈ R6 obtained using (2.48)

uu
uv
uw
up
uq
ur

 = Bω→u ·


δω1

δω2

δω3

δω4

 + Bω̇→u ·


δω̇1

δω̇2

δω̇3

δω̇4

 (2.85a)

and

Bω→u =
(
B1 B2 B3 B4

)
, Bω̇→u =

(
C1 C2 C3 C4

)

∀i ∈ [[1, Np]] Bi =



ai sθicψi
ai sθisψi
ai cθi

−bi sθicψi + ai
(
lyi cθi − lzi sθisψi

)
−bi sθisψi + ai (lzi sθicψi − lxi cθi)
−bi cθi + ai sθi

(
lxi sψi − lyi cψi

)

, Ci =



0
0
0

−Jzi sθicψi
−Jzi sθisψi
−Jzi cθi


(2.85b)

Fundamental Principle of Dynamics The application of the FPD (2.74) at the ho-
vering equilibrium then gives

0 = mg zW +

4∑
i=1

thi zPi

0 =

4∑
i=1

(
τhi + thi

#     „

GPi × zPi

) (2.86)

Its linearization around the hovering equilibrium gives, in the drone fixed basis BD

m u̇ = −mg θ − cu u+ uu, Jx ṗ = −cp p+ up,

m v̇ = mg ϕ− cv v + uv, Jx q̇ = −cq q + uq,

m ẇ = −cw w + uw, Jx ṙ = −cr r + ur

(2.87)

Ideally, each of the 6 DOF of the quadrotor would be decoupled and controlled inde-
pendently. However, with only 4 propellers, the drone is underactuated and this is not
possible. Nevertheless, it is usually possible to decouple the action of the propellers on the
three rotation axes and the z translation axis. One way to achieve this is to introduce the
matrix

Bω→v =
(
04×2 I4

)
· Bω→u (2.88)

and the decoupled control inputs (vw, vp, vq, vr) ∈ R4
vw
vp
vq
vr

 = Bω→v ·


δω1

δω2

δω3

δω4

 (2.89)

We then define the mix matrix

Bv→ω = (Bω→v)
−1 (2.90)
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defining the speed increment required for each rotor to achieve a given force on the drone
z axis, and given torques on the 3 drone axes. It can then be written

uu
uv
uw
up
uq
ur

 = Bω→u · Bv→ω ·


vw
vp
vq
vr

 + Bω̇→u · Bv→ω ·


v̇w
v̇p
v̇q
v̇r

 (2.91)

This relation will help us highlighting the impact of the configuration of the propellers in
the next sections.

Motor model Each brushless motor is controlled by a ESC which is assumed to confer
the motors a second order low-pass filter behavior near the hovering equilibrium state

δω̈i + 2ξi$i δω̇i +$2
i δωi = $2

i δωref i (2.92)

In the next section, we apply this linear model to the case of an X4 quadrotor.

2.6.2 X4 quadrotor

The most common quadrotor configuration is called the X4 configuration and is repre-
sented on figure 2.8. It is composed of four identical fan propellers, symmetrically disposed
around the center of mass of the drone, alternating clockwise and anti-clockwise directions
of rotation and pointing toward the vertical axis of the drone. The plans (G,xD,yD) and
(G,xD, zD) are symmetry plans of the quadrotor and the 4 propellers are oriented toward
±zD.

If the propeller 1 rotates Counterclockwise (CCW configuration, as the Parrot Bebop
2), the axes of the propellers are given by

zPi = −zD, zPi = zD, zPi = −zD, zPi = zD (2.93)

Otherwise, if the propeller 1 rotates Clockwise (CW configuration, Parrot Bebop 1), then
the signs should be inverted. In the following, we focus on the CCW configuration as it
corresponds to the Parrot Bebop 2. For an X4-CCW, the propellers rotate along the axes
defined in (2.93) and the angular velocity of each propeller relatively to the drone is then

ΩP1/D = −ω1 zD ΩP2/D = ω2 zD ΩP3/D = −ω3 zD ΩP4/D = ω4 zD (2.94)

The propellers poses relatively to the drone are parameterized as follows
ψ1 ψ2 ψ3 ψ4

θ1 θ2 θ3 θ4

lx1 lx2 lx3 lx4

ly1 ly2 ly3 ly4
lz1 lz2 lz3 lz4

 =


0 0 0 0
π 0 π 0
lx lx −lx −lx
−ly ly ly −ly
lz lz lz lz

 (2.95)

with lx > 0 and ly > 0. Since the 4 propellers are identical, we also have a1 a2 a3 a4

b1 b2 b3 b4
Jz1 Jz2 Jz3 Jz4

 =

 a −a a −a
b b b b
Jp Jp Jp Jp

 (2.96)
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This results in the following expressions for Bω→u and Bω̇→u

Bω→u =



0 0 0 0
0 0 0 0
−a −a −a −a
ly a −ly a −ly a ly a
lx a lx a −lx a −lx a
b −b b −b

, Bω̇→u =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Jp −Jp Jp −Jp

 (2.97)

The propellers actions on the x and y translation axes are null and their action on the z
translation axis and the three rotation axes are fully decoupled

Bω→u · Bv→ω =

(
02×4

I4

)
, Bω̇→u · Bv→ω =

(
05×3 05×1

01×3
Jp
b

)
(2.98)

and we can write

uu(s) = 0, uv(s) = 0, uw(s) = vw(s),

up(s) = vp(s), uq(s) = vq(s), ur(s) =

(
1 +

Jp
b
s

)
vr(s),

(2.99)

with s the Laplace variable. Injecting these expressions into (2.87) gives

w(s) =
1

cz +m s
vw(s), p(s) =

1

cp + Jx s
vp(s),

q(s) =
1

cq + Jy s
vq(s), r(s) =

1 +
Jp
b s

cr + Jz s
vr(s),

(2.100a)

and
u(s) =

−m g

s (cq + Jy s)(cv +m s)
vq(s)

v(s) =
m g

s (cp + Jx s)(cu +m s)
vp(s)

(2.100b)

The inertia of the propellers induces a zero in the yaw dynamics. The latter is usually
significant, and allows reducing and smoothing the control signals on this axis during
dynamic flight phases. This also means that a drone model taking the rotation speed of
the propellers as inputs should include the dynamics of the electric motor or the motor
controlled by the ESC, as they act as low-pass filters. Otherwise the transfer of the
drone rotation speed on the yaw axis would not be strictly proper anymore. Indeed, any
discontinuity of the propeller rotation speeds would lead to an infinite inertia torque on
the yaw axis and would allow a discontinuous behavior of the yaw axis, which contradicts
reality and degrades the fidelity of the model.

Usually, industrial drone are not exactly in X4 configuration. Indeed, the propellers are
often tilted in order to improve the actuation on the yaw axis. In the next section, we study
the impact of tilting the propellers in the dynamics of the translational and rotational axes.
Inn particular, we focus on the effects due to the inertia of the propellers.

2.6.3 V4 quadrotor

On an X4 configuration, the rotation on the yaw axis is controlled using the propellers
drag and the reaction torques on their axis. These tend to be one or more orders of
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magnitude smaller than the torques induced by the propellers lift on the roll and pitch
axes. The pitch and roll axes are critical as they are used to control the lateral position
of the drone. However, in the case of the Bebop 2, the yaw axis of the drone is used to
actuate the yaw axis of its camera, fixed on the drone body. As a consequence, the yaw
axis is also critical, for the quality of the video.

A solution to balance these dynamics is to tilt the propeller axes in order to have a
leverage induced by the lift on the yaw axis, too. This can be achieved by actuating the
orientation of the propellers, as in [82], or by using non-X4 configurations. One way to
improve a quadrotor actuation on its yaw axis is then to tilt its propellers in a “V” shape, as
illustrated on figure 2.20. Sometimes only the rear propellers are tilted (called a V-tail or
Y4 configuration). Such an Y4 configuration is studied in [54], and a Lynxmotion Hunter
V400 frame, a popular V-tail frame among hobbyists, is used in [9].

In the following, we suppose that both the front and rear propellers are tilted as on
figure 2.20. We call this configuration the V4 configuration.

Figure 2.20 – V4 configuration

The four propellers are supposed identical. The pose of the propellers is similar to (2.95)
with the following difference(

ψ1 ψ2 ψ3 ψ4

θ1 θ2 θ3 θ4

)
=

(
π/2 π/2 −π/2 −π/2
π − ϑ ϑ π − ϑ ϑ

)
(2.101)

with ϑ ∈
[
0, π2

]
the V-angle, illustrated on figure 2.20. Such a configuration leads to the

following Bω→u matrix

Bω→u =



0 0 0 0
a sϑ −a sϑ −a sϑ a sϑ
−a cϑ −a cϑ −a cϑ −a cϑ

a (lxcϑ − lzsϑ) −a (lxcϑ − lzsϑ) −a (lxcϑ − lzsϑ) a (lxcϑ − lzsϑ)
−b sϑ + a lxcϑ −b sϑ + a lxcϑ b sϑ − a lxcϑ b sϑ − a lxcϑ
b cϑ + a lxsϑ −b cϑ − a lxsϑ b cϑ + a lxsϑ −b cϑ − a lxsϑ

 (2.102)

A part of the propellers lift is now added to their drag torques on the yaw axis, improving
the actuation of the drone on this axis. However, these drag torques also appear on the
pitch axis now, and counter a part of the propellers lift, degrading the actuation on this
axis.

Inversing the direction of rotation of the propellers, i.e. using a V4-CW configuration
leads to

Bω→u =



0 0 0 0
a sϑ −a sϑ −a sϑ a sϑ
−a cϑ −a cϑ −a cϑ −a cϑ

a (lxcϑ − lzsϑ) −a (lxcϑ − lzsϑ) −a (lxcϑ − lzsϑ) a (lxcϑ − lzsϑ)
b sϑ + a lxcϑ b sϑ + a lxcϑ −b sϑ − a lxcϑ −b sϑ − a lxcϑ
b cϑ − a lxsϑ −b cϑ + a lxsϑ b cϑ − a lxsϑ −b cϑ + a lxsϑ

 (2.103)

The propellers lift now counters the propellers drag on the yaw axis, degrading the yaw
dynamics. Since the propellers have been tilted in order to increase the yaw dynamics, this
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solution is not relevant here. For this reason, hereafter, we keep the V4-CCW configuration
for the propellers.

Using the expressions

Bω→u · Bv→ω =

0 0 0 0
0 kpv 0 0

I4


Bω̇→u · Bv→ω =

 04

0 0 −τq 0
0 0 0 τr

 (2.104a)

with
kpv =

sϑ
lycϑ − lzsϑ

τq =
Jp sϑ

a lxcϑ − b sϑ

τr =
Jp cϑ

b cϑ + a lxsϑ

(2.104b)

This leads to the following transfer functions

uu(s) = 0, uv(s) = kpv vp(s), uw(s) = vw(s),

up(s) = vp(s), uq(s) = (1− τq s) vq(s), ur(s) = (1 + τr s) vr(s),
(2.105)

The differences with respect to (2.99) are the following: uv and up are now coupled since
both depends on vv and a zero appears on the pitch axis, as a part of the torques induced
by the inertia of the propellers. For realistic values of the V-angle ϑ, thrust coefficients
a, b and distance lx, the propellers lift action on the pitch axis is still much stronger than
the action of the propellers drag torques, and a lxcϑ > b sϑ. This zero on the pitch axis
is thus a positive real scalar, inducing a non-minimum phase behavior on the pitch axis.
However, this is usually a high frequency zero that only affects the very beginning of the
transient response of the pitch axis.

These additional terms in the transfer functions (2.105) lead to the following drone
dynamics

w =
1

cz +m s
vw p =

1

cp + Jx s
vp

q =
1− τq s
cq + Jy s

vq, r =
1 + τr s

cr + Jz s
vr,

(2.106a)

and
u = −m g

1− τq s
s (cq + Jy s)(cv +m s)

vq

v =
m g + kpvcp s+ kpvJx s

2

s (cp + Jx s)(cu +m s)
vp

(2.106b)

It can be noticed that zeros are introduced in the transfer functions of the speeds u and
v, in comparison to the X4 configuration (2.100).

A simulation of the linear model was performed for a symmetric quadrotor in V4 config-
uration, for different values of the V-angle ϑ, and with a realistic set of parameters (mass,
inertia, thrust and drag coefficients, propellers positions etc.), similar to the parameters
of a Bebop 2. For a V angle ϑ = 10◦ on each propeller, the required propeller rotation
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speed increments δωi required to achieve a given torque on the yaw axis was divided by 2
in steady state compared to an X4 configuration (see figure 2.21).

Figure 2.21 – Impact of the V angle on each axis

In the meantime, the propeller rotation speed increments required to obtain a given
torque on the pitch axis and a given force on the z axis were nearly unchanged (less than
5% higher than an X4), up to a V angle ϑ = 20◦ (∼ 10% higher than an X4).

Figure 2.22 shows the evolution of the total propellers torque on the pitch axis uq in
response to a step of decoupled torque control input vq. The impact of the V-angle on a
PID-controlled pitch angle closed-loop was also simulated. The PID controller was tuned
for a 0◦ V angle, and its robustness regarding the positive real zero introduced by the
V-angle is presented figure 2.23. As expected, the larger the V-angle ϑ, the stronger the
non-minimum phase behavior in the pitch dynamics. However, the step response of uq/vq
typically reaches its minimum in less than 10 ms (figure 2.22). The overshoot increases by
20% for a 40◦ V-angle on figure 2.23 and could be reduced by retuning the PID controller.
Hence, the non-minimum phase behavior on the pitch axis is hardly visible for a V-angle
ϑ that could reasonably be encountered on a potential industrial quadrotor.

Figure 2.22 – uq/vq step response Figure 2.23 – θ/θref step response

In the meantime, figure 2.24 illustrates that when ϑ increases, the action of the inertia
of the propellers on the yaw axis relatively to the action of the lift and drag torques
dramatically decreases (∼ halved for ϑ = 20◦). As a consequence, if the V4 configuration
improves the static gain between propellers speeds and propellers torques on zD, it could
degrade the bandwidth on the yaw axis.

The impact of the coupling gain kpv in (2.105) is illustrated by figure 2.25. The force
generated by the term mg ϕ (in blue) behaves in a similar way as a double integrator
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regarding vp (and does not depend on ϑ). The green line stands for the evolution of the
term kpv vp. Only the motor dynamics remains (also present in the term mg ϕ), giving
here a second order low-pass filter behavior. The red curve represents the sum of these two
terms, and can be compared to the blue curve to emphasize the extra dynamics added by
the term kpv vp on the V4 configuration.

Consequently, for a quadrotor designed to achieve high velocities along xD, it could
be more interesting to tilt the propellers around yD, instead of xD. This way, the roll
dynamics would be degraded, leading to a non-minimum phase behavior, in favor of a
better yaw dynamics, while the pitch dynamics would have a slightly higher bandwidth
due to a coupling term between vq and uu.

Figure 2.24 – ur/vr step response Figure 2.25 – Impact of the V4 configuration on
the y translation axis

Remark 8 The V4 configuration is useful for understanding the effects of tilting a pro-
pellers, but a better way to make the propellers lift contribute to the actuation of the yaw
axis is to tilt the propellers along the axis joining their center of mass to the center of mass
of the drone

#     „

GPi. We call this the W4 configuration and it can be found on many consumer
drones, such as the Bebop 2.

In a more general way, [118] proposed a method to characterize the dynamics of the 3
rotation axes for any propeller configuration. This method is then used to optimize the
configuration in order to reach a desired balance between the dynamics of the 3 rotation
axes, for instance, having the propeller act equally on the 3 axes rather than having a weaker
yaw axis, as for the X4 configuration.

However, this work does not take the inertia of the propeller into account, as we did in
this section. As for the V4 configuration, the computation of the matrix Bω̇→u.Bv→ω we
introduced in this section reveals that the W4 configuration also induces a non-minimum
phase behavior but on both the pitch and roll axes. The effect of the inertia of the propellers
is then present on the 3 rotation axes but the real positive zeros on the pitch and roll axes
are smaller than the one on the pitch axis of the V4 configuration, for a same rotation
angle of the propeller axes.

In the following section, we write the linear model described above as a Linear Time-
Invariant (LTI) state-space model.
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2.6.4 General LTI state-space model

The motor model (2.92) linking the rotor speed references δωref i to their actual speed
δωi can be written

d

dt

(
Ω

Ω̇

)
= AΩ

(
Ω

Ω̇

)
+ BΩ Ωref (2.107)

with

Ω =
(
δω1 δω2 δω3 δω4

)>
Ωref =

(
δωref i δωref i δωref i δωref i

)>

AΩ =


04 I4

−$2
1 0 0 0

0 −$2
2 0 0

0 0 −$2
3 0

0 0 0 −$2
4

−2ξ1$1 0 0 0
0 −2ξ2$2 0 0
0 0 −2ξ3$3 0
0 0 0 −2ξ4$4



BΩ =


04

$2
1 0 0 0

0 $2
2 0 0

0 0 $2
3 0

0 0 0 $2
4



(2.108)

In order to use the decoupled control inputs vi as model inputs rather than the pro-
pellers rotation speed increments δωi we can operate the following change of variable on the
model (2.108). Introducing the reference decoupled control inputs

(
vwref , vpref , vqref , vrref

)
∈

R4, the model (2.108) can be re-written by using the mix matrix (see (2.90) and (2.89))

d

dt

(
V

V̇

)
= AV

(
V

V̇

)
+ BV Vref (2.109)

with
V =

(
vw vp vq vr

)>
Vref =

(
vwref vpref vqref vrref

)>
AV =

(
Bω→v 04

04 Bω→v

)
AΩ

(
Bv→ω 04

04 Bv→ω

)
BV =

(
Bω→v 04

04 Bω→v

)
BΩ Bv→ω

(2.110)

with Bω→v defined in (2.88) and Bv→ω defined in (2.90). and we can now link the reference
decoupled control inputs viref to the mechanical action generated by the propellers ui by
using (2.91)

d

dt

U
V

V̇

 = AU

U
V

V̇

 + BU Vref (2.111)

with
U =

(
uu uv uw up uq ur

)>
AU =

(
06

(
Bω→uBv→ω Bω̇→uBv→ω

)
AV

08×6 AV

)
BU =

((
Bω→uBv→ω Bω̇→uBv→ω

)
BV

BV

) (2.112)
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and Bω→u and Bω̇→u introduced in (2.85).

Finally, using FPD, linking between the mechanical actions of the propellers to the
system outputs (2.87), we can write the state space model representation of the system

d

dt


X
U
V

V̇

 = AX


X
U
V

V̇

 + BX Vref (2.113)

with
X =

(
u v w ϕ θ ψ p q r

)>
AX =


Ctrans G 03

1
m I3

03 03 I3 03

03 03 Crot J−1
09×11

014×9 AU


BX =

(
09×4

BU

)
(2.114)

with

Ctrans =
1

m

−cu 0 0
0 −cv 0
0 0 −cw


G =

0 −g 0
g 0 0
0 0 0


Crot = J−1

−cp 0 0
0 −cq 0
0 0 −cr


J =

Jx 0 0
0 Jy 0
0 0 Jz



(2.115)

We can actually reduce this model by removing the mechanical action of the propellers
as follows

d

dt

X
V

V̇

 = A′X

X
V

V̇

 + B′X Vref (2.116)

with

A′X =


Ctrans G 03

03 03 I3

03 03 Crot

1
m

(
I3 03

)
Bω→u Bv→ω

04

J−1
(
03 I3

)
Bω→u Bv→ω

1
m

(
I3 03

)
Bω̇→u Bv→ω

04

J−1
(
03 I3

)
Bω̇→u Bv→ω

08×12
04

AV

I4

04


B′X =

(
013×4

BV

)
(2.117)
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2.7 Conclusion

In this chapter, a model of a quadrotor has been derived from the equations of rigid
body mechanics. One contribution of this chapter consists in using the screw theory rather
the than Lagrange formalism to build the model. In order to build the model, we started
by detailing the dynamics of the drone body and we presented 3 representations of the
attitude of the drone. We also detailed the main mechanical actions experienced by the
body of the quadrotor. Then, we proposed one method to rewrite the obtained equations
in order to build a model of the entire quadrotor.

In a second part, we linearized this model around the hovering equilibrium. As another
contribution, we emphasized the impact of the inertia of the propellers in the drone dy-
namics for different configurations of the propellers, more specifically the apparition of a
non-minimum phase behavior and coupling terms. This result was presented at the IFAC
World Congress 2017 [105].

Finally, we proposed a new Linear Time-Invariant (LTI) state-space model representation
that takes into account the BLDC motors and the inertia of the propellers into account,
for any quadrotor configuration.

The obtained nonlinear and linearized models will be used in the following chapters for
designing guidance and control laws.
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Chapter 3

Guidance – bi-level optimization

3.1 Introduction

Performing autonomous aerial footage requires having a flying camera execute a smooth
and natural 7D motion (3D position, 3D rotation and magnification) meeting the require-
ments of cinematography in terms of shape, speed profile and smoothness, such as the
ones specified in section 1.2. This is a wide problem; its different aspects have been and
are still largely studied in the research community. In this work, in order to simplify the
problem, it is split into, firstly, the 3D position motion and, secondly, the 4D rotation and
zoom motion. This chapter deals with the generation of a 3D position motion suitable for
cinematography.

Two opposing approaches are classically proposed in the literature to tackle the problem
of motion generation, including the area of aerial cinematography.

• On the one hand, the paradigm of trajectory tracking suggests to compute a trajectory
allowing to complete the mission, giving the position of the drone as a function of
time. This trajectory constitutes a reference that the drone has to track by the mean
of a controller. At a given time instant t, this controller compares the evaluation of
the reference trajectory at t with the current estimated state of the drone and sends
control signals to the actuators to cancel the error between the reference and the
estimate.

• On the other hand, the paradigm of path following suggests to remove the time
dependency of the motion by designing a policy from which emerges the completion
of the mission. At a given time instant, the behavior of the drone is then typically
given by its position relatively to the path to follow, rather than the evaluation of a
timed reference as it is the case for the trajectory tracking.

The advantage of the path following strategy is obvious; free of time dependency, it is
much more robust to deviations from the expected path than the trajectory tracking, when
encountering obstacles or heavy disturbances, for example. This is illustrated on figure 3.1.
A path in light green is followed by the drone, whose motion is represented in blue. On
the left, a timing law is added to the path and a trajectory tracking strategy is adopted
to complete the mission. At each time instant, the evaluation of the reference trajectory
corresponds to a reference position to join and is represented by a green circle. On the
right, a path following strategy is adopted. At the second time instant, a wind gust makes
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the drone deviate from the path. On the left, the evaluation of the reference trajectory
goes on, unaware of the deviation, and actually prevents the drone from clinging back to
the path. On the right, the drone first rejoins the path before going on. The trajectory
tracking strategy leads to a higher overall deviation from the path than the path following
method. On the other side, by rejoining the path in priority, the path following method
leads to delay in the performance of the mission. To summarize, the trajectory tracking
could seem less robust than the path following strategy, but gives better control on the
state of the drone at a given time instant and allows taking into account time-domain
constraints in the generation of the motion.

Figure 3.1 – Robustness of path following over trajectory tracking

In addition, various methods exist to mitigate this weakness of the trajectory tracking
method, such as local re-planning, which consists in modifying the reference trajectory
locally in order to avoid an obstacle for instance [51], [122], or the dynamic time-scaling,
for which the time is dilated (the trajectory is slowed or accelerated) when the drone
deviates from the reference trajectory [117].

The domain of aerial cinematography is not spared by the confrontation of these two
approaches. Predictive control techniques constitutes good candidate policy for a path
following method. Indeed, Model Predictive Control (MPC) has been successively applied
to quadrotors in [17], [1], [6] and [61] and could be a candidate to simultaneously perform
both the feedback control and the smooth trajectory generation. A promising path follow-
ing strategy currently developed for cinematography thus consists in the use of a Model
Predictive Contouring Control (MPCC) law to follow a given flight path, along with cam-
era references, as suggested in [35] for quadrotor cameras. This strategy has also been
applied to the case of target following with the drone motion constrained on a virtual rail
and has yield impressive results, as in [86], [87], where an MPC strategy is used to generate
motions directly through the optimization of cinematographic criteria, such as framing or
occlusion, with obstacle avoidance solutions.

Unfortunately, this involves to solve a nonlinear optimization problem in real-time, usu-
ally achieved by using quadrotors with a high on-board computation power or by making
the computations on a deported computer. This kind of decentralized computation is
not suited to the case studied in this thesis, and the Bebop 2 is far from having the re-
quired computation resources to solve the problem on-board, in real-time. Furthermore,
as mentioned in the paragraphs above, the path following strategy leaves little control on
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the duration of the motion. This is an issue as some camera references used in this the-
sis require precise timing to be convincing, such as a constant speed panorama from one
waypoint to another.

For these reasons, the trajectory tracking approach has been chosen in the present work.
Several precursor works have already been lead with similar high level inputs as the flight
plan presented in section 1.2.2. The use of smooth piecewise polynomials to generate
smooth trajectories is quite popular. In [75] trajectories are generated through the mini-
mization of the root mean square of one or several derivatives of the position, for a given
duration of the overall trajectory. In this method, flight corridors were satisfied on a
finite number of points (gridding). It was successfully developed and applied on real sys-
tems [101], [102], where a bi-level optimization is used to optimize the trajectory duration
and to ensure its feasibility. In [60], a similar method is used for designing a smooth path
which evaluation is given by a discretized timing law, in order to deal with the dynamics of
the quadrotor and its payload, and applied to cinematography. A continuous-time alterna-
tive to this timing law is proposed in [103], in which it was used to make a cinematographic
trajectory feasible without altering its shape. It was also used in [59], as part of a method
proposed to perform scripted aerial shots with quadrotors.

The trajectory generation is usually divided into 2 steps: first the computation of a
smooth path completing the flight plan, with a suitable shape, and then the computation
of a timing law to perform this path, i.e. the conversion of this path into a reference
trajectory respecting smoothness and feasibility constraints. As an example, in [38] a
cinematographic path is first generated by interpolation of two camera poses. Then, a
steering method (such as [40]) is used to complete the path. A similar strategy is applied
in [41] with a smooth path generated using a method similar to [75].

In this chapter, we propose an algorithm merging the two steps, i.e. that directly syn-
theses a cinematographic trajectory from an input flight plan as detailed in section 1.2.2.
To this aim, we first propose in sections 3.2 and 3.3 a novel way to guarantee the fea-
sibility of the trajectory regarding the dynamics of the drone along with the respect of
the cinematographic requirements detailed in section 1.2.3. Then, in sections 3.4 and 3.6
we propose a method inspired by the work of [75] and [101], adapted and extended to be
suitable for cinematography. Finally, some improvements of the methods are explored in
section 3.7.

We first begin with the suggestion of a quick preprocessing of the input flight plan in
order to check the relevancy of the inputs and to cover a part of the feasibility issue.

3.2 Flight plan preprocessing

Before generating any trajectory from the input flight plan, a quick preprocessing is
performed to check the relevance of the references and to split the trajectory generation
problem into simpler ones.

Splitting the flight plan. First, the flight plan is split at each stop waypoint other
than the first (i.e. w0) and the last (i.e. wN ) waypoints. Whenever two waypoints are
superimposed, they are both replaced by stop waypoints and the flight plan is split. This
results in several flight plans, containing only lock and sphere waypoints, except for the
first and the last ones. Trajectories are separately generated for each flight plan and are
then laid end to end.
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As a consequence, from this point, we only consider a flight plan containing two stop
waypoints w0 and wN at the beginning and at the end, and between them only lock and
sphere waypoints.

Colliding waypoints. In order to prevent the validation of more than one sphere way-
point at a time, and to prevent any singular camera behavior, the validation radius of each
sphere waypoint is limited to a third of the distance with its previous and next waypoints,
as illustrated on figure 3.2.

Figure 3.2 – Limitation of the waypoints validation radii

Clamping the speed references. From the identification of the parameters of the drone
model, and from the flight experience acquired with flight tests, a simplified flight envelop
in terms of velocity is determined. This envelop is given by the maximum descending speed
of the drone before entering VRS state (see section 2.4.2.3), with a security margin, its
maximum admissible ground angle and a limiting collective thrust (sum of the truths of
each propeller, giving the vertical force applied on the drone) before degrading the attitude
control. The last two factors give a maximum reachable lateral speed and a maximum
reachable ascending speed, which are used to characterize the flight envelope. The set of
admissible velocities is thus given by a cylinder

Sv =

(vx, vy, vz) ∈ R3

∣∣∣∣∣∣∣∣

√
v2
x + v2

y 6 vlat

vz 6 vdescent

vz > −vascent

 (3.1)

with vlat, vdescent and vascent the lateral, descending and ascending velocities, respectively.
The VRS threshold speed is given by [109], [5]

vVRS =
1

2
vh (3.2)

with vh the mean induced velocity of the air over the rotor surface during undisturbed
hovering (approximately 5 m·s−1 for a Bebop 2). The maximum descending speed is then
chosen with the security margin εVRS ∈ ]0, vVRS[

vdescent = vVRS − εVRS (3.3)

In addition, a minimum admissible speed reference vmin is added in order to prevent
the user to plan an overly long flight. Finally, camera yaw, pitch and roll excursions
between each pair of consecutive waypoints are approximated (see chapter 5). Given a
maximum camera rotation speed, these excursions give an additional upper bound on the
speed reference vi,cam (that can be lower than vmin). For instance, if two waypoints are
very close but a 120◦ yaw panorama has to be performed between them at a maximum
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rotation speed of 5◦.s−1, the speed reference between these 2 waypoints should not exceed
d · 120/5 m·s−1 (with d the distance between the 2 waypoints).

The third step of the preprocessing, after splitting the flight plan and preventing way-
points collision, is thus to clamp the reference velocities so that they lie within the admis-
sible set. From the original speed reference vi, i ∈ [[1, N ]], between the waypoints wi−1 and
wi we define the clamped reference speed νi ∈ R. Defining

ui =
(
ui,x ui,y ui,z

)>
=

wi −wi−1

‖wi −wi−1‖2
(3.4)

with ‖wi −wi−1‖ always strictly positive (otherwise the flight plan would have been split
on this waypoint as explained above), we compute the clamped reference speed as follows

νi,z = max {vascent,min {vdescent, vi ui,z}}

νi,xy = min
{
vlat, vi

√
u2
i,x + u2

i,y

}
νi = min

{
vi,cam,max

{√
ν2
i,xy + ν2

i,z, vmin

}} (3.5)

This preprocessing of the flight plan alone does not ensure the feasibility of the trajectory
nor the respect of aesthetic requirements detailed in section 1.2.3. To complete these
requirements, different criteria are highlighted in the next section.

3.3 Feasibility of the trajectory

In [83], a simplified drone model is used for the trajectory generation, with the total
thrust and the angular velocity of the drone considered as inputs of the drone. The
actuation limitations are then reformulated into constraints on the time derivatives of the
position that ensure the feasibility of the trajectory. In this chapter, we use the same model
as in [83], which can be derived from the model (2.75) by neglecting the disturbances and
considering the angular velocity ideally controlled (and thus as an input).

The inputs are the total thrust normalized by the drone mass, f , and the 3 components
of the angular velocity of the drone Ω =

(
p q r

)>. The drone model is then

ζ̈ = g zW − f R zW (3.6a)

Ṙ = R Ω̂ (3.6b)

with Ω̂ =

 0 −r q
r 0 −p
−q p 0

. Notice that, compared to (2.75), the indexes of the rotation

operator RW→D and angular velocity ΩW→D have been droped to improve readability, as
there is no possible frame confusion anymore.

Camera yaw speed constraint. As explained in section 1.2.3, from purely aesthetic
considerations, the camera should not rotate too quickly. With the fully digital stabilization
of the camera on a Bebop 2, the pitch and roll of the camera can rotate freely, independently
of the drone motion. Nevertheless, the camera is fixed relatively to the drone and does
not have a sufficient field of view to record at an arbitrary heading. On the contrary, it
is limited to record around the drone heading. To simplify, this means that the camera
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heading is approximatively equal to the drone heading. This aesthetic criterion on the
camera rotation motion thus applies to the drone rotation around its yaw axis.

As a consequence, the time variation of the drone heading is limited to a maximum value

ψ̇ 6 ψ̇max (3.7)

Actuation constraints. The inputs have limited range and must verify

f > fmin (3.8a)
f 6 fmax (3.8b)
‖Ω‖2 6 Ωmax (3.8c)

with fmin < g, fmax > g and Ωmax > 0. The limitation on the norm of the angular
velocity (3.8c), Ωmax, is given by the capabilities of the angular velocity control loop
(dynamics of the controller and actuators, saturation of the actuators, estimation accuracy,
sensors noises and saturations etc.).

In addition, the ground angle of the drone α must also remain below a maximum value
for 3 reasons

• There is a maximum ground angle above which the drone is no longer able to counter
gravity at maximum horizontal speed and starts to fall. Though this would not be
an issue for a descending motion for instance, it was desired to keep the capacity to
counter gravity at all time as a safety measure.

• Above a certain ground angle, the efficiency of the vertical camera of the drone
(which takes part in the drone velocity estimation) and the ultrasound sensors begin
to degrade.

• As it was mentionned in section 1.2.3, the ground angle should be limited in order
to guaratee that the camera can record in the desired direction.

The lowest of these limiting values is chosen as upper bound on the ground angle

α 6 αmax (3.8d)

with αmax ∈ ]0, π/2[.

In a similar way to [83], we reformulate these limitations into constraints on the time
derivatives of the position of the drone. The additional difficulty in our work is the non
zero rotational motion around the yaw axis of the drone and the maximum ground angle,
which complexifies a bit the computation of the feasibility constraints.

Acceleration constraint. Given the model (3.6a), the acceleration of the drone is given
by the sum of the gravity, of direction zW and magnitude g, and the thrust, of direction
R zW and magnitude t. This is illustrated on figure 3.3, with the thrust and the accelera-
tion in thick orange arrows. The limitations induced by the constraints (3.8a), (3.8b) and
(3.8d) are also represented on figure 3.3. Given the limitations (3.8), the set of admissi-
ble acceleration can thus be represented, by a white domain on figure 3.3. However, this
would lead to an asymmetrical behavior of the flying camera on the translational axes.
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In the context of video making, this was judged not satisfying to have different acceler-
ation capabilities whether the drone is ascending or descending and wether the drone is
moving horizontally or vertically. It was thus chosen to get a bound on the magnitude
of the acceleration that would ensure the feasibility of the trajectory, as illustrated on
figure 3.4. Though it introduces some conservatism, it confers a homogeneous behavior of
the translational motion along the 3 axes.

Figure 3.3 – Admissible set for the acceleration Figure 3.4 – Acceleration bound

Using figure 3.4, we propose the following new bounds on the acceleration

Proposition 1

(∥∥∥ζ̈∥∥∥
2
6 amax , min {g − fmin, fmax − g, g sαmax}

)
⇒


f > fmin

f 6 fmax

α 6 αmax

(3.9)

We now show that this result can directly be obtained from (3.6a), (3.8a), (3.8b) and (3.8d).

First, let us define

ζ̈ = ax xW + ay yW + az zW (3.10a)

a⊥ =
√
a2
x + a2

y (3.10b)

a =
√
a2
⊥ + a2

z =
∥∥∥ζ̈∥∥∥

2
(3.10c)

Using (3.6a) we have
f2 = a2

⊥ + (g − az)2 (3.11)

Replacing a2
⊥ from (3.10c) in (3.11) gives

f2 = a2 − 2g az + g2 (3.12)

Since a2
z = a2 − a2

⊥ (3.10c), we have |az| 6 a and

a2 − 2g a+ g2︸ ︷︷ ︸
b1(a)

6 f2 6 a2 + 2g a+ g2︸ ︷︷ ︸
b2(a)

(3.13)

Solving b1(a) > fmin leads to

(a 6 g − fmin)⇒ (t > fmin) (3.14)
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while solving b2(a) 6 fmax leads to

(a 6 fmax − g)⇒ (t 6 fmax) (3.15)

Furthermore, for a given acceleration magnitude a, we have

tan (α) =
a⊥

g − az
=

√
a2 − a2

z

g − az
(3.16)

where tan (α) reaches its maximum for az = a2/g. We thus have

tan (α) 6
a√

g2 − a2︸ ︷︷ ︸
b3(a)

(3.17)

Solving b3(a) 6 tan (αmax) leads to

(a 6 gsαmax)⇒ (α 6 αmax) (3.18)

Equations (3.14), (3.15) and (3.18) lead to (3.9).

Jerk constraint. The constraint on the angular speed (3.8c) remains to be dealt with.
In order to guarantee its respect, we propose the following new constraint on the jerk

Proposition 2
ψ̇max < Ωmax

j 6 jmax ,

√
Ω2

max (1 + sαmax
2)− ψ̇2

max − sαmaxψ̇max

1 + sαmax
2

fmin

⇒ (‖Ω‖2 6 Ωmax) (3.19)

We now give the proof of this proposition. Derivating (3.6a) and injecting (3.6b) into the
obtained expression give

ζ(3) = −ḟ R zW − f RΩ̂ zW (3.20)

or, since f > 0 and Ω̂ zW = q xW − pyW ,

q xW − pyW =
ḟ

f
zW −

1

f
R> ζ(3) (3.21)

The thrust f is considered as an input with no slew rate hence the term ḟ is unbounded
and there is no limitation on the component of the jerk along R zW . Projecting (3.21)
along xW and yW allows us to write

√
p2 + q2 =

√(
R> ζ(3) · xW

)2
+
(
R> ζ(3) · yW

)2
f

6
j

fmin
(3.22)

with j =
∥∥ζ(3)

∥∥
2
. This bound is typically used in the literature [83] but it does not take

into account the vertical component of the angular velociy, r. As a consequence, the latter
is often imposed null ([83], [88]) which does not impact the position control of the drone
which is decoupled from its yaw movement. Here, however, the drone has to follow heading
references between the waypoints, as detailed in section 1.2.2. This implies that the vertical
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component of the angular velocity is non zero in the general case. In this work, we use the
constraint on the heading varitation given by (3.7) to get a bound on r, allowing to get a
new, extended bound on the jerk ensuring the feasibility of the trajectory.

From (2.17) and (2.15) we get

r = −sϕ θ̇ + cα ψ̇ (3.23)

and from (2.18)
θ̇ = cϕ p− sϕ q (3.24)

If both p and q are null, then θ̇ is null too. Otherwise, the expression (3.24) can be written
as follows

θ̇ = cϕ+γ

√
p2 + q2 (3.25)

with

γ = arctan2

(
q√

p2 + q2
,

p√
p2 + q2

)
(3.26)

which leads to the following bound on θ̇∣∣∣θ̇∣∣∣ 6√p2 + q2 6
j

fmin
(3.27)

Furthermore, it can be deduced from (2.15) that |ϕ| 6 α and |sϕ| 6 sα 6 sαmax . Given (3.7),
we then have

|r| 6 sαmax

j

fmin
+ ψ̇max (3.28)

As a consequence we can finally write

‖Ω‖22 = p2 + q2 + r2 6
1 + sαmax

2

f2
min

j2 +
2sαmaxψ̇max

fmin
j + ψ̇2

max︸ ︷︷ ︸
b4(j)

(3.29)

Solving b4(j) 6 Ω2
max leads to (3.19).

The feasibility of the trajectory can thus be characterized by one constraint on the accel-
eration and one constraint on the jerk. These constraints are then used for the trajectory
generation process, which is summmarized in the next section.

3.4 Bi-level optimization

In [75], piecewise polynomial trajectories with minimum snap are used for completing
a flight plan under corridor constraints. The choice to minimize the snap is justified by
its strong link to the control signals of the drone, revealed by a flatness analysis ([75]).
The validation time of each waypoint must be specified and is chosen depending on the
context, as imposed values or as solution of an optimization problem, for instance. A similar
approach is used in this work, adapted to the cinematographic context for generating a
feasible and visually satisfying trajectory.
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Piecewise polynomial trajectory. Piecewise polynomial trajectories are commonly
used in robotics as they allow to parameterize rich trajectories from a reasonable number
of parameters. The trajectory is divided into N pieces numbered from 1 to N , each one
joining a pair of consecutive waypoints. For i ∈ [[1, N ]], the i-th piece joins the waypoint
wi−1 to the waypoint wi.

Each piece of the trajectory is parameterized as a polynomial curve of degree n ∈ N and
polynomial coefficients Ci ∈ R3×(n+1)

Ci =
(
ci,0 ci,1 . . . ci,n

)
,

Cx
i

Cy
i

Cz
i

 (3.30)

The i-th polynomial piece, of coefficients Ci, is denoted by %Ci and its evaluation at a
given time instant is given by

∀t ∈ R %Ci(t) =
n∑
j=0

ci,j t
j (3.31)

We denote by C ∈ R3N×(n+1) the matrix containing the coefficients of all the polynomial
pieces

C = {Ci}i∈[[1,N ]] (3.32)

Finally, for i ∈ [[1, N ]] we define ∆ti ∈ R∗+, the duration of the piece of trajectory number
i, as well as the vector of durations ∆t ∈ R1×N

∆t =
(
∆t1 ∆t2 . . . ∆tN

)
(3.33)

In the following, this vector is designated as the Time Of Flight (TOF) vector. These
durations allow computing the time instants for which the waypoints are validated and
where a connection between two pieces of trajectory occurs. For a given initial time t0,
these connections occur at the time instants {ti}i∈[[1,N ]] such as

∀i ∈ [[1, N ]] ti = ti−1 + ∆ti (3.34)

and correspond to the instants for which the overall trajectory switches between two poly-
nomial representations. In the following, we consider that t0 = 0. The total duration of
the trajectory is denoted by T

T =
N∑
i=1

∆ti (3.35)

This overall piecewise trajectory is denoted by ζ∆t,C and its evaluation is given by

ζ∆t,C(t) =


%C0(t0) if t < t0

%Ci(t) if ti−1 6 t < ti, i ∈ [[1, N ]]

%CN
(tN ) if t > tN

(3.36)

Bi-level optimization. In this work, a similar scheme as in [75] is adapted to the cine-
matographic context and used for generating a feasible and visually satisfying trajectory.
After the preprocessing of the flight plan, we use a bi-level optimization to generate a
visually satisfying trajectory. This optimization is illustrated on figure 3.5: for a given
vector of durations between each pair of consecutive waypoints, ∆t, a set of polynomial
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coefficients C∗(∆t) is generated by solving an optimization problem on the polynomial
coefficients. These coefficients are the optimal coefficients for this vector of durations.
The vector of duration is then modified and the procedure is repeated until a satisfying
trajectory ζ∆t∗,C∗ has been generated, for an optimal vector of durations ∆t∗.

Figure 3.5 – Bi-level optimization principle

The reason for adopting this scheme of optimization is that the computation of the
polynomial coefficient can be expressed as a simple quadratic programming problem if the
durations of the pieces of trajectory are fixed, at least for the cost functions and constraints
used in this work. On the contrary, the choice of the durations of the pieces of trajectory
is a nonlinear problem. Knowing that the polynomial coefficients represent many more
parameters than the durations of the pieces of trajectories, this scheme allows splitting the
problem into

• A “large” but reasonable to solve quadratic problem returning the polynomial coef-
ficients

• A nonlinear but “small” optimization problem returning the durations of the pieces
of trajectories

which seems less time consuming that solving only one “large” nonlinear problem returning
both the polynomial coefficients and the durations.

Given a TOF vector ∆t, the problem solved for generating a piecewise polynomial
trajectory is of the general form

C∗(∆t) = arg min
C∈R3×(n+1)

JC(∆t,C)

s.t.

{
fC(∆t,C) = 0

gC(∆t,C) 6 0

(3.37)

In a similar way, the optimization problem solved for choosing a TOF vector can be
formalized as follows

∆t∗ = arg min
∆t∈R1×N

J∆t(∆t)

s.t.

{
f∆t(∆t) = 0

g∆t(∆t) 6 0

(3.38)

Remark 9 It should be noticed that it is usually easier and better suited for numer-
ical stability to parameterize each i-th piece of trajectory as a polynomial function of
τ = (t− ti)/(ti+1 − ti) ∈ [0, 1] rather than t directly [75]. In addition, this problem can
be formulated as an optimization problem on the derivatives of the trajectories at the con-
nections between the pieces (i.e. at the time instants ti) rather than on the polynomial
coefficients [102], which reduces the number of decision variables and increases the numer-
ical robustness of the algorithm. Neither of these recommendations are followed in this
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chapter in order to better understand the general strategy used for generating the trajec-
tory. However, the proposed optimization problem can be reformulated to comply with these
recommendations, which were followed for the actual implementation of the algorithm and
the flight experiment presented at the end of this chapter.

The following sections deal with the choice of criteria for the two levels of optimization
as well as the details of the constraints.

3.5 Smooth speed and contouring optimization

In the following, we detail our first attempt at generating cinematographic trajectories,
using generic criteria for the two levels of optimization. The aim is to generate trajectories
similar to the ones generated by the Parrot Flight Plan feature of the Bebop 2 (i.e. a series
of straight lines with turns on the waypoints) but smoother and with proof of feasibility.

3.5.1 Lower level – polynomial coefficients

The optimization problem for the lower stage of the bi-level optimization is defined as
follows.

Cost function. Three derivatives are included in the cost function, each one with a
given weight

• Snap. Following the reasoning in [75], the snap is included in the cost function as a
way to reduce the control signals required to track it.

• Jerk. As mentioned previously, the jerk quantifies the jolts in the drone motion and
it is also strongly linked to its rotation speed, which should be limited to prevent
the motion blur from degrading the video quality. It is hence included in the cost
function, too.

• Acceleration. The acceleration is linked to the drone angle and it can thus be
reduced to keep a margin relatively to its maximum admissible value.

Furthermore, two additional terms are also included in the objective function

• Velocity. Since a desired speed is specified by the user on each piece of trajectory,
the mean square of the error between the velocity and its reference is also added to
the cost function.

• Position. Finally, a contouring term, the mean square of the distance of the drone
to the straigth line joining the previous and the next waypoint, is included too (fi-
gure 3.6). The reasons for this is to produce trajectories that look like the ones
returned by the already implemented algorithm in the Parrot Bebop 2, i.e. a se-
quence of straight lines between waypoints and turns on waypoints. This term also
constitutes an alternative to the corridor hard constraints as it tends to make the
trajectory stick to the straight lines connecting the waypoints.
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Figure 3.6 – Contouring error

The cost function in (3.37) is then given by

JC(∆t,C) =

∫ T

0

(
µc ‖(ζ∆t,C(t)−wi−1)× ui‖22 + µv

∥∥∥vi ui − ζ̇∆t,C(t)
∥∥∥2

2

+µa

∥∥∥ζ̈∆t,C(t)
∥∥∥2

2
+ µj

∥∥∥ζ(3)
∆t,C(t)

∥∥∥2

2
+ µs

∥∥∥ζ(4)
∆t,C(t)

∥∥∥2

2

)
dt

=

N∑
i=1

∫ ti

ti−1

(
µc ‖(%Ci(t)−wi−1)× ui‖22 + µv ‖vi ui − %̇Ci(t)‖

2
2

+µa ‖%̈Ci(t)‖
2
2 + µj

∥∥∥%(3)
Ci

(t)
∥∥∥2

2
+ µs

∥∥∥%(4)
Ci

(t)
∥∥∥2

2

)
dt

(3.39)

Constraints. The trajectory is subject to the following constraints

• Waypoints validation. The waypoints are validated on the connections between
the different trajectory pieces, i.e. the waypoint wi is validated at time ti. Hence
the trajectory must satisfy the waypoint validation criteria described in section 1.2
for each time ti depending on the type of the waypoint wi.

• CL continuity. Each piece of trajectory is a polynomial and is thus infinitely deriv-
able on its interval. However, the entire trajectory being piecewise polynomial, its
derivatives may not be continuous on the connections between the different pieces.
In order to have a smooth and feasible trajectory, the continuity of the derivatives
should be imposed on the connections up to a given order L.

• Flight corridor. The trajectory should not exit cylinders of given radius joining
each pair of waypoints.

The position is constrained on the waypoints for lock and stop waypoints, with additional
constraints of null speed and null acceleration for the stop waypoints

∀i ∈ [[1, N ]]



%Ci(ti−1) = wi−1 if wi−1 is of type stop or lock

∀l ∈ [[1, L]] %
(l)
Ci

(ti−1) = 0 if wi−1 is of type stop

%Ci(ti) = wi if wi is of type stop or lock

∀l ∈ [[1, L]] %
(l)
Ci

(ti) = 0 if wi is of type stop

The validation of sphere waypoints is ensured by an inequality constraint on the distance
between the drone and the waypoint at the corresponding validation time

∀i ∈ [[1, N ]]

{
‖%Ci(ti−1)−wi−1‖2 6 rwi−1 if wi−1 is of type sphere
‖%Ci(ti)−wi‖2 6 rwi if wi is of type sphere
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with rwi the radius of the validation sphere centered on wi, after the preprocessing (see
section 3.2). These quadratic constraints are approximated by linear constraints, by con-
straining the trajectory in a box of side length rwi/

√
3 centered on the waypoint, rather

than in a sphere.

When not already guaranteed by the waypoints validation constraints, the continuity
of the position and its L first time derivatives is imposed on the connections between the
different pieces of trajectory

∀i ∈ [[1, N − 1]]

{
%Ci(ti) = %Ci+1(ti) if wi is of type sphere

∀l ∈ [[1, L]] %
(l)
Ci

(ti) = %
(l)
Ci+1

(ti) if wi is of type sphere or lock

Gridding is used for formulating the last constraint as in [75], meaning that the constraint
is imposed on a finite number ngrid of points on the trajectory via an inequality constraint
(figure 3.7). As there is no guarantee that the trajectory would not exit the corridors
between these points, the amount of points ngrid must not be too low.

Figure 3.7 – Corridor constraints and griding strategy

For each point of the grid, 3 constraints ensure that this point lies inside the cylinder
corresponding to the flight corridor between two waypoints

• 2 longitudinal constraints ensuring that the point lies within the two waypoints of
the piece of trajectory

• 1 lateral constraint ensuring that the point lies within the cross section of the flight
corridor

The 2 longitudinal constraints are written using a simple projection of the point on the
axis joining the two waypoints and the lateral constraint is obtained using the contouring
error of the point (see figure 3.6)

∀i ∈ [[1, N − 1]], ∀j ∈
[
[0, ngrid − 1]

]
u>i (%Ci(ti,j)−wi−1) > −εcorr

u>i (%Ci(ti,j)−wi−1) 6 ‖wi −wi−1‖2 + εcorr

‖(%Ci(ti,j)−wi−1)× ui‖2 6 rcorri

with εcorr a positive tolerance that can be set to zero and ti,j computed as follows

∀i ∈ [[1, N ]], ∀j ∈ [[0, ngrid − 1]] ti,j = ti−1 +
j

ngrid − 1
(ti − ti−1)
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As for the sphere waypoints validation, the lateral corridor constraints are linearized by
constraining the vector (%Ci(ti,j)−wi−1) × ui inside a box of side length rcorri/

√
3 and

centered on the origin O, resulting in 6 linear lateral constraints. This is illustrated on
figure 3.8.

Figure 3.8 – Linearized corridor constraints

Optimization problem. As a result, for a given TOF vector, a piecewise polynomial
trajectory can be generated by solving a Quadratic Programming (QP) problem under
linear constraints. We define the optimization vector xC ∈ R3N (n+1)×1

xC =
(
Cx

1 Cy
1 Cz

1 Cx
2 Cy

2 Cz
2 . . . Cx

N Cy
N Cz

N

)> (3.40)

The cost function to minimize (3.39) can be expressed as a quadratic function of xC [75],
[101]. The problem to solve then has the form

x∗C(∆t) = arg min
xC∈R3N (n+1)×1

x>C H(∆t) xC + f>(∆t) xC + u(∆t)

s.t.



Astop(∆t) xC = bstop(∆t)

Alock(∆t) xC = block(∆t)

Asphere(∆t) xC 6 bsphere(∆t)

Acontinuity(∆t) xC = bcontinuity(∆t)

Acorridor(∆t) xC 6 bcorridor(∆t)

(3.41)

Notice that the constant scalar term u(∆t) in the cost function in (3.41) is not required
for solving the QP problem. It will however be needed for the optimization of the TOF
vector, which is the task of the upper level of the bi-level optimization procedure. This
upper level is now detailed.

3.5.2 Upper level – durations

On the one had, the lower level of the bi-level optimization algorithm returns a set of
optimal polynomial coefficients for a given TOF vector. On the other hand, the upper
level is in charge of find the TOF vector minimizing the cost function (3.39).

Cost function. As the total duration of the flight plan does not matter in this context,
the vector ∆t for which the corresponding optimal trajectory ζ∆t,C∗(∆t) has the lowest
cost JC(∆t,C) is chosen. This means that, looking back at (3.38), we have

J∆t(∆t) = JC(∆t,C∗(∆t)) (3.42)

which is a nonlinear cost function of the TOF vector.
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Constraints. The duration of each piece of trajectory, ∆ti, is imposed strictly positive
via a simple linear inequality constraint

∆t > ε∆t

with ε∆t = ε1N × 1 and ε ∈ R∗+.

Furthermore, in order to guarantee the feasibility of the trajectory, constraints on the
norms of the acceleration and the jerk are added. Gridding is used for this, meaning that
these constraints are enforced on a finite set of ncstrt checkpoints along the trajectory

∀i ∈ [[1, N ]], ∀j ∈ [[0, ncstrt − 1]]


∥∥∥%̈C∗i (∆t)(ti,j)

∥∥∥
2
6 amax∥∥∥%(3)

C∗i (∆t)(ti,j)
∥∥∥

2
6 jmax

(3.43)

with amax and jmax defined in (3.9) and (3.19) respectively. These constraints on the
acceleration and the jerk can be formulated as quadratic constraints on the polynomial
coefficients, which are the solution of a QP problem (giving the optimal polynomial coeffi-
cients for a given vector ∆t). This makes the constraints on the acceleration and the jerk
nonlinear.

Optimization problem. The optimization problem to solve for the choice of the dura-
tion of each piece of trajectory can thus be formulated as follows

∆t∗ = arg min
∆t∈R1×N

JC(∆t,C∗(∆t))

s.t.


−∆t 6 −ε∆t

∀j ∈ [[1, ncstrt]] x∗C
>(∆t) Qacc,j x∗C(∆t) 6 bacc

∀j ∈ [[1, ncstrt]] x∗C
>(∆t) Qjerk,j x∗C(∆t) 6 bjerk

(3.44)

The bi-level optimization method for generating the overall trajectory is then summa-
rized on figure 3.9, with the hilgh level at the top and the low level at the bottom.

Figure 3.9 – Smooth speed and contouring bi-level optimization formulation

3.5.3 Numerical simulations and discussion

The proposed bi-level optimization algorithm is further tested on simple benchmarks.
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Optimization parameters. A trajectory is generated using the presented bi-level strat-
egy, for both benchmarks, with the following parameters

• Feasibility bounds. The thrust is bounded in the interval [tmin, tmax] = [1.5, 25] m·s−2.
The ground angle is limited to αmax = 30◦ and the angular speed is bounded by
Ωmax = 200◦·s−1. The bound on the heading variation is ψ̇max = 20◦·s−1.

• Differentiability class. Since the angular speed is bounded, so is the derivative of
the attitude of the drone (see (3.6b)). The attitude of the drone is thus continuous
and, given (3.6a), the acceleration of the drone should be continuous too. The
trajectory is thus chosen to be C2, i.e. L = 2.

• Polynomial degree. Each piece of trajectory is a polynomial of degree n and is
thus an element of Rn[X] (the vector space of polynomials with real coefficients, of
degree inferior or equal to n) which is of dimension n + 1. The waypoints valida-
tion and/or continuity constraints impose the L + 1 first and last time derivatives
of the position (position to L-th derivative). Each of these constraints is a linear
equality constraint on the coefficients and consitutes a hyperplan of Rn[X]. The
intersection of these 2(L+ 1) hyperplans must be non empty for the problem to be
feasible. As a consequence, a sufficient condition to ensure the feasibility of the lower
level optimization (polynomial coefficients) is to choose the polynomial degree of the
trajectory n > 2(L+ 1). In order to avoid any case of unique feasible solution (and
thus a non optimizable trajectory) and to keep the polynomial degree reasonably low
to avoid numerical issues, a polynomial degree n = 2(L+ 1) + 1 = 7 is chosen.

• Weights. The weighting terms of the cost function (3.39) are chose as follows µc =
10, µv = 10, µa = 1, µj = 5, µs = 10.

• Grid density. On each piece we use 10 checkpoints for both the corridor and
feasibility constraints.

A convex interior-point algorithm is used to solve lower level QP problem corresponding
to the optimization of the polynomial coefficients, while a Sequential Quadratic Program-
ming algorithm (SQP, [37]) is used to solve the nonlinear times of flight optimization.

Benchmarks. The first benchmark is a small 2D flight plan (constant altitude) contain-
ing 3 pieces, to be completed at low speed (2 m.s−1, 3 m.s−1 and 1 m.s−1). The start and
ending waypoints w0 and w3 are stop waypoints, the second one w1 is a lock waypoint and
the third one w2 is an autonext waypoint. This benchmark is illustrated on figure 3.10.

The second benchmark is a 3D flight plan containing 9 pieces, extracted from a real
flight plan. This benchmark is illustrated on figure 3.11.

Results. The results for both benchmarks are respectively presented on figures 3.12
and 3.13.

Though the trajectory generated by the cascade is smooth and verifies the acceleration
and jerk constraints, this formulation of the problem appears unsatisfactory. Indeed, this
first formulation was designed in a way to resemble the actual trajectories used by Parrot:
a sequence of straight lines and turns on wapyoints. However, three problems made us
understand that this design was not exactly adapted to our context
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Figure 3.10 – Benchmark 1
Figure 3.11 – Benchmark 2

• Firstly, the optimization depends on many parameters, making it difficult to find one
set of these parameters giving satisfactory results for a wide variety of flight plans.

• Secondly, the reference speeds are approximately respected but the speed tends to
exceed and oscillate around its reference values.

• Finally, the trajectory, even produced with an adequate set of parameters, is too
"robotic", meaning that if the sequence of straigth lines and turns is easy to predict
and to understand from the user point of view, it does not suit the context of video
making. When comparing to human made quadrotor trajectories for video making,
it appears obvious that, on the contrary, the trajectory has to be smooth and as far
as possible from a robotic sequence.

Figure 3.12 – Optimal trajectory for benchmark 1
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Figure 3.13 – Optimal trajectory for benchmark 2

In order to address these issues, we reformulate the bi-level optimization to generate
minimum-time/minimum-jerk trajectories.

3.6 Minimum-time minimum-jerk trajectory

The idea behind this strategy is to seek the fastest feasible cinematographic trajectory
respecting the velocity references, via a similar cascade optimization as previously

• For a given TOF vector, a minimum jerk trajectory is generated under waypoint val-
idation, continuity and corridor constraints. By minimizing the jerk, this trajectory
has minimum jolts and reduces the drone rotation speed required for the trajectory
tracking (and thus minimizes the motion blur).

• The TOF vector is chosen so that it minimizes the overall duration of the mission,
under the constraint that the drone velocity should not exceeds the velocity references
and that the drone acceleration, angle and jerk should not exceed given limits.

3.6.1 Lower level – polynomial coefficients

Since only the jerk is minimized, the cost function is simplified to the following expression

JC(∆t,C) =
N∑
i=1

∫ ti

ti−1

∥∥∥ζ(3)
∆t,C(t)

∥∥∥2

2
dt (3.45)

and constitutes a quadratic form. The same constraints of waypoint validation, continu-
ity and flight corridor as for the previous formulation are used, leading to the following
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optimization problem for the lower level of the procedure

x∗C(∆t) = arg min
xC∈R3N (n+1)×1

x>C H(∆t) xC

s.t.



Astop(∆t) xC = bstop(∆t)

Alock(∆t) xC = block(∆t)

Asphere(∆t) xC 6 bsphere(∆t)

Acontinuity(∆t) xC = bcontinuity(∆t)

Acorridor(∆t) xC 6 bcorridor(∆t)

(3.46)

3.6.2 Upper level – durations

Cost function and constraints. Since the lower level optimization loop does not take
into account the reference velocities, the upper level loop will try to reduce the duration
of each piece of trajectory as much as possible, but such that the drone speed does not
exceed its references. The overall duration of the trajectory is used as cost function

J∆t(∆t) =

N∑
i=1

∆ti (3.47)

which is linear. The respect of the reference speed is added as a hard constraint

∀i ∈ [[1, N ]], ∀j ∈ [[0, ncstrt − 1]]
∥∥∥%̇C∗i (∆t)(ti,j)

∥∥∥
2
6 νi (3.48)

It can be noticed that this is a better formulation as it consider the speed rather than
velocity, as in the previous formulation.

Optimization problem. The optimization problem for the choice of the duration of
each piece of trajectory can thus be formulated as follows

∆t∗ = arg min
∆t∈R1×N

11×N ·∆t

s.t.


−∆t 6 −ε∆t

∀j ∈ [[1, ncstrt]] x∗C
>(∆t) Qspeed,j x∗C(∆t) 6 bspeed

∀j ∈ [[1, ncstrt]] x∗C
>(∆t) Qacc,j x∗C(∆t) 6 bacc

∀j ∈ [[1, ncstrt]] x∗C
>(∆t) Qjerk,j x∗C(∆t) 6 bjerk

(3.49)

The bi-level optimization method for generating the overall trajectory is then summa-
rized on figure 3.14.
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Figure 3.14 – Minimum-time/minimum-jerk bi-level optimization formulation

3.6.3 Simulations and discussion

The strategy is confronted to the 2 benchmarks presented in section 3.5.3. The results are
presented on figures 3.15 and 3.16. In both cases the obtained trajectory is much smoother
and seems much more natural and less robotic than with the previous formulation.

The results still show some direction of improvement

• The trajectory on benchmark 1 is quite slow, while the bounds on acceleration and
jerk are far to be (see figure 3.15, right). In other words, the trajectory appears
suboptimal. Actually, it can be seen that the speed is the limiting factor as a speed
constraint is active on the 3rd piece of trajectory. This is inherent to this formulation
of the problem. Indeed, the lower level optimization (polynomial coefficient) only
minimizes the jerk and does not contain any consideration on the speed.

• The size of the problem to solve is given by the number of pieces of trajectory, and
can be significant for large flight plans.

• At high speed, the air drag can significantly decrease the acceleration capacity of the
drone, and the proof of feasibility of the trajectory given in section 3.3 might not
hold.
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Figure 3.15 – Minimum-time/minimum-jerk trajectory for benchmark 1

Figure 3.16 – Minimum-time/minimum-jerk trajectory for benchmark 2

In order to overcome this weakness, the next section proposes some improvements to
this strategy.

3.7 Improvements

3.7.1 Linear drag model

In order to improve the feasibility of the trajectory at high speed, the model (3.6) is
augmented with a linear drag action, in order to represent the loss of acceleration capacity
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when the speed increases. Equation (3.6a) is thus replaced by

ζ̈ = g zW − tR zW − λ ζ̇ (3.50)

and the constraint on the acceleration in (3.49) becomes

∀i ∈ [[1, N ]], ∀j ∈ [[0, ncstrt − 1]]
∥∥∥%̈C∗i (∆t)(ti,j) + λ%̇C∗i (∆t)(ti,j)

∥∥∥
2
6 amax (3.51)

Furthermore, if a measurement of the wind velocity is available, the constraint can even
be rewritten to include a more accurate representation of the drag

∀i ∈ [[1, N ]], ∀j ∈ [[0, ncstrt − 1]]
∥∥∥%̈C∗i (∆t)(ti,j) + λ

(
%̇C∗i (∆t)(ti,j)− vwind

)∥∥∥
2
6 amax

(3.52)
with vwind the mean value of the wind velocity relatively to the ground. This supposes
that the wind does not vary too much and is low enough for a feasible trajectory to exists

Benchmark 3. In order to illustrate the impact of this augmented formulation, it is
tested on a simple benchmark, presented on figure 3.17. The flight plan is such that the
acceleration is the limiting constraint rather than the reference speed or the jerk limitation.
The trajectory and its derivatives are shown on figure 3.17, the blue line corresponds to
the result obtained without considering the drag, by solving the problem (3.49), while the
green line corresponds to the result including the drag model (3.51).

Figure 3.17 – Minimum-time/minimum-jerk trajectory with and without drag for benchmark 3

For the green curve, the acceleration constraint is given by (3.50), while it is only given
by (3.43) for the blue one. This leads to an excessive value of the acceleration at high
speed for the blue curve, when the drag is considered, which can threaten the feasibility of
the trajectory.

A wind of 5 m·s−1 oriented along yW is now added to the benchmark 3. The result is
illustrated on figure 3.18. The two trajectories represented include the drag but only the
green one includes the wind velocity measurement (3.52).
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Figure 3.18 – Minimum-time/minimum-jerk trajectory with and without wind for benchmark 3

At the beginning of the flight plan, the wind is actually helping the drone to accelerate,
which is taken into account on the green curve, with a higher peak acceleration and speed,
while respecting the constraints. On the contrary, at the end of the flight plan, the drone
has to fight the wind which leads to a lower achievable acceleration for a given speed. For
the blue curve, not taking the wind into account leads to an infeasible trajectory.

3.7.2 Initialization

Usually, a starting point is required for solving the optimization problem (3.49), i.e. a
starting value for each time of flight ∆ti. The three following methods to initialize the
algorithm have been proposed and tested

• Arbitrary value. A fixed, arbitrary value

∀i ∈ [[1, N ]] ∆ti = cst (3.53)

• Constant speed. An estimated obtained by supposing the speed constant equal to
the reference on each piece of trajectory

∀i ∈ [[1, N ]] ∆ti =
‖wi −wi−1‖2

νi
(3.54)

This initial guess is expected to be lower than the optimal value, as any accelerating
and braking phases are neglected.

• Bang-off-bang acceleration. An estimated obtained with a rest-to-rest, Bang-Off-
Bang (BOB) acceleration profile between each waypoint, i.e. a trajectory that stops
at each waypoint and with a trapezoidal speed profile

∀i ∈ [[1, N ]] ∆ti =

2
√
‖wi−wi−1‖2

amax
if ν2i

amax
> ‖wi −wi−1‖2

‖wi−wi−1‖2
νi

+ νi
amax

otherwise
(3.55)

76



CHAPTER 3. GUIDANCE – BI-LEVEL OPTIMIZATION

This initial guess is expected to be larger than the optimal value, as the trajectory
stops at each waypoint.

The results in terms of number of iterations to solve the problem (3.49) with a SQP as
well as the final cost of the trajectory (overall duration) are presented in table 3.1 for each
initialization method, for benchmarks 1 and 2.

Method Benchmark 1 Benchmark 2
Iterations Cost Iterations Cost

Arbitrary 36 70.82 31 121.18
Constant speed 16 71.64 19 121.18

BOB acceleration 27 71.64 45 121.18

Table 3.1 – Comparison of the initialization methods

As expected, the arbitrary method does not yield the best results in terms of number
of iterations, obtained with the constant speed model. The latter result can be explained
by the conservatism of the BOB acceleration method, which supposes that the trajectory
stops at each waypoints, leading to largely overestimated times of flights. However, the
arbitrary initialization returns the trajectory with a slightly better cost for the benchmark
1 (< 1.2% better than with the two other methods), which could be explained by a local
minimum of the cost function. This difference does not appear on the benchmark 2.

3.7.3 Waypoint horizon

In order to reduce the size of the optimization problem (3.49), we suggest a receding
horizon methodology. If the flight plan contains more waypoints than a given limit, the
trajectory is not computed over the entire flight plan at once but in several steps, over
truncated pieces of the overall flight plan.

For a horizon Nw and a flight plan containing at least Nw + 2 waypoints, the trajectory
is first computed between the first and the (Nw + 1)-th waypoints (i.e. w0 to wNw). This
results in a piecewise trajectory ζ1 containing Nw pieces. The first piece of this trajectory
corresponds to the trajectory joining w0 to w1. As the trajectory does not necessarily pass
on the waypoint w1 (for sphere waypoints), we call κ1 the ending position of this first piece
of trajectory (see figure 3.19) and κ(l)

1 the l-th time derivative of the position on this point
(l ∈ [[1, L]]). Only this first piece of trajectory is kept and will constitute the first piece of
the overall, final trajectory ζ. According to the receding horizon strategy, the horizon is
then shifted by one waypoint and a new trajectory ζ2 is computed, having κ1 as starting
waypoint w1. This new starting waypoint is of special type constrained, meaning that the
position and its first L time derivatives are imposed, in this case equal to κ1, κ

(1)
1 , ..., κ(L)

1 .
Again, only the first piece of this new trajectory ζ2 is kept and it constitutes the second
piece of the final trajectory ζ. The continuity at the connection between the two trajectory
pieces is ensured by the constraints on the position and its derivatives on κ1. The process
is repeated until the last waypoint of the flight plan is reached. In order to ensure the
feasibility of the problem, the last waypoint of the horizon is always imposed to be of type
stop, even though it was not in the initial flight plan. The next step is then initialized with
the previous solution, plus a feasible rest-to-rest trajectory for the new piece of trajectory
(there always exists one).

Example 3 A flight plan containing 5 waypoints {w0, . . . ,w4} and a horizon Nw = 3 is
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illustrated in figure 3.19. The trajectory is computed in 2 steps: between the waypoints w0

and w3 first, and between w1 and w4 next.

Step 1: A trajectory is generated between w0 and w3, with w3 replaced by a stop waypoint
at the same position.

Step 2: A trajectory is generated between the waypoints w1 and w4, with the waypoint
w3 of type sphere, as it was originally, and the waypoint w1 replaced by a constrained
waypoint at the position κ1, ensuring the continuity with the trajectory computed at Step
1.

Since the new trajectory reaches the final waypoint w4, there is no need to repeat the
process.

Figure 3.19 – Receding waypoint horizon

For on-line computation, the trajectory could for instance be updated each time a way-
point is validated. A constraint on the time of flight on the first piece of trajectory can
also be added in the optimization problem (3.49), so that it is greater than the average
trajectory computation time plus a security margin.

The gain in terms of computation time provided by this receding horizon strategy was
evaluated by generating a trajectory for the benchmark 2, first without waypoint horizon
and then with a waypoint horizon Nw = 3. The test was repeated several times and the
mean values of the time to compute the overall trajectory and the times to compute each
step were saved. These values are given in table 3.2, first the mean value to compute each
step is given and then the mean time to compute the overall trajectory. These values are
normalized by the computation time without horizon. Not only the waypoint horizon allows
computing small steps much faster than the overall trajectory, but the overall computation
time is also reduced.

No horizon, 1 step Horizon Nw = 3, 7 steps
step total step total

computation time 1 1 0.034 0.24

Table 3.2 – Computation time with and without waypoint horizon on benchmark 2

This comes at a cost however, in terms of optimality of the overall trajectory. The loss
of optimality of the final trajectory induced by this strategy is illustrated on figure 3.20,
where a given flight plan is processed with different horizons Nw ∈ {2, 3, 4}. This loss is
negligible for a sufficiently large horizon.
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Figure 3.20 – Impact of the waypoint horizon on the optimality of the trajectory

Notice that the systematic replacement of the last waypoint by a stop waypoint can
reduce the speed of the trajectory for a series of close waypoints, especially if they are
aligned.

3.7.4 Suboptimal trajectory

The trajectory obtained with this bi-level algorithm is smooth and feasible. However, as
it can be seen on figure 3.15, the trajectory appears largely suboptimal in term of duration:
the acceleration and jerk constraint are far from being active anywhere, meaning that the
drone could have completed the flight plan much faster. Actually, in the example on
figure 3.15, only one constraint on the speed is active, at the connection between the
second and the third pieces of trajectory, i.e. at the time instant t = t2. This is due to
the lower level optimization, on the polynomial coefficients, having no information on the
bounds on the derivatives, it only generates a continuous trajectory with minimum jerk on
its overall duration. On figure 3.15, for the same TOF vector, the lower level optimization
could adjust the polynomial coefficients so that the speed is smaller at t2 and larger at
t = 60 s for instance. This would move the time at which the peak speed is reached on
pieces 2 and/or 3 so that the trajectory has the same duration as on figure 3.15 but with
no active constraint. This would let the upper level optimization reducing the times of
flight, leading to a better solution. Unfortunately, with this minimum-time/minimum-jerk
bi-level formulation of the optimization problem, the lower level optimization has no reason
to do so as it does not take such consideration into account.

In this work, the goal is not to generate a trajectory with minimum duration as it
could be the case for racing or delivery missions for instance, but a trajectory suited for
cinematography. The minimization of the duration is only one way to have the speed
get closer to its reference during the flight. As a consequence, the issue of suboptimal
duration explained above could be ignored. After all, the trajectory on figure 3.15 is
smooth, feasible, respects the requirements identified in section 1.2.3 for cinematography
and though duration could be smaller, it is still very acceptable.
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Unfortunately, this suboptimality can become an issue for waypoints separated by a
large distance, to be joined at low speed. Such a situation can be encountered for some
timelapses1 for instance. This issue is illustrated on figure 3.21, where a trajectory is
generated to complete a trivial flight plan containing 2 waypoints separated by 100 m. The
speed reference on the unique piece of trajectory to compute is 1 m·s−1. Neither the drag
nor the wind are taken into account for this test.

Figure 3.21 – Intrinsic limitation of the bi-level formulation

The drone takes more than 50 s to reach its peak speed, of only 1 m·s−1, for a total
mission duration of more than 150 s. At 1 m·s−1, it would have been expected to see the
100 m covered in approximately 100 s with the reference speed reached in a few seconds.
This large suboptimality is caused by the reasons given above, and can especially become
an issue for large flight plans, since the duration of the mission is limited by the battery.

In response to this limitation of the proposed algorithm, an alternative approach has been
tested, with the bounds on the derivatives also included in the lower level optimization,
on the polynomial coefficients. In order to prevent any infeasibility of the problem, these
constraints have been formulated as soft constraint, should the upper level optimization
(durations) try a TOF vector that would require to exceed the bounds on the derivatives.
The results have shown that this modification can improve the speed profile, but at the
expanse of a less smooth and natural curve, less suited for cinematography, as illustrated
on figure 3.22. In this figure, the soft constraint strategy is applied to the benchmark 1,
leading to a better respect of the speed references as well as a decrease of almost 10 s of
the total duration of the mission when compared to figure 3.15.

Furthermore, this extension of the algorithm has revealed less robust to numerical issues
and the penalty on the soft constraints arduous to tune. For these reasons, this soft con-
straint formulation has been abandoned. A solution to overcome this suboptimal duration
issue is presented in the next chapter, through a single-level optimization of a B-spline
trajectory.

1A timelapse is a footage performed at low frame rate, which is then read with a normal framerate.
This results in an accelerated video.
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Figure 3.22 – Improvement of the speed profile with soft constraints in the lower level optimization for
benchmark 1

3.8 Conclusion

In this chapter, a novel method to generate cinematographic quadrotor trajectories have
been proposed, by improving and extending the bi-level trajectory generation procedure
[75], [101], [102], to the case of cinematography. The trajectory is parameterized as a
piecewise polynomial, with given polynomial coefficients and a given duration for each
piece.

Our first contribution lies in a new approach to characterize the feasibility of a quadrotor
trajectory, suited for cinematography.

Then, the bi-level optimization strategy for generating piecewise polynomial trajectories
is adapted to the specific requirements of this work. The proposed trajectory generation
method thus consists in solving a bi-level optimization on the polynomial coefficients and
the durations of the polynomial pieces, under the constraints of waypoints validation, flight
corridor satisfaction, and feasibility guarantee. In particular, we proposed to minimize the
duration of the mission by optimizing the duration of each piece of trajectory indepen-
dantly. The cinematographic requirements are met through the minimization of the jerk
as well as constraints on the duration of each polynomial piece.

Another contribution lies in the suggestion of new improvements of the technique, such
as different methods of initilization, the inclusion of the drag and the wind into the model
or the addition of soft constraint into the lower level of the bi-level procedure for improving
the speed profile.

Overall, the method returns smooth, natural and feasible trajectories. The method
performed well confronted to an outdoor experiment and the results were published in [105].
The video of the flight is available at https://www.youtube.com/watch?v=IR9Ablo-ryI.
However, singular cases have been highlighted for which the bi-level strategy tends to
return overly slow trajectories which can be an issue. Another weakness of this method
is the use of gridding to enforce the corridor and feasibility constraints, which does not
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guarantee their respect over the entire trajectory.

For these reasons, we propose in the next chapter a new strategy which fixes both these
issues.
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Chapter 4

Guidance – minimum-time B-spline
trajectories

4.1 Introduction

Though it has been successfully applied on a Parrot Bebop 2, the bi-level formulation
presented in chapter 3 still lacks some guarantees in the respect of the constraints (corridor
and feasibility constraints) and a speed profile closer to the reference speeds. We were also
able to highlight some numerical robustness issues of the bi-level optimization algorithm on
singular flight plans. As explained in section 3.7.4, the tendency of the bi-level formulation
of chapter 3 to produce too slow trajectory is inherent to this formulation. This is also
the case of the numerical issues that have been encountered. One way to overcome both
inconvenients is to merge the 2 optimization levels, i.e. to abandon the bi-level formulation.

Concerning the guarantee on the constraints satisfaction, one elegant way to achieve this
is to parameterize the trajectory by the mean of B-spline curves. Due to their intrinsic
property to constrain the curve and its derivatives inside convex regions, the use of B-spline
curves to parameterize the trajectory is popular for trajectory generation, in a wide variety
of applications [125], [114], [94], [80], [78], [79]. These curves have also recently spread in
the domain of aerial robotics [123], [115], [124], [77], [88]. They can be seen as an extension
of the Bézier curves, which have already been used for trajectory generation [24], [53] and
are piecewise polynomials parameterized by a set of control points and a vector of knots,
defining when the curve switches between two polynomial representations. The piecewise
nature of these curve is another advantage as it allows us to keep the polynomial degree
low, while still being able to parameterize rich trajectories.

Most of the time, a particular kind of B-spline is used, i.e. uniform B-spline (also called
cardinal B-spline), for which the knots are equally spaced. Their advantage is that they
can simplify some of the calculation and allow some of them to be preformed off-line. This
can significantly speed up the B-spline generation process which is useful for embedded
systems. However, one drawback is that it is difficult to generate time-optimal trajectories
using uniform B-splines, and other metrics are usually optimized rather than the duration
for their generation (e.g. the length or the root mean square of a derivative). This can
complexify the generation of trajectories with both the shape and speed profile suited for
cinematography. In [115] it is suggested to optimize the number of control points, which
can help improving the results for cinematography, but requires the resolution of a Mixed
Integer Programming (MIP) problem.
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In this chapter, we propose a new method to generate minimum-time B-spline trajec-
tories for aerial cinematography which avoids the use of a bi-level optimization and only
minimizes the duration of the trajectory. This allows generating trajectories with better
speed profiles and improves the numerical stability of the algorithm. Secondly, the frame-
work of B-splines is used in order to guarantee the validation of the constraints over the
entire trajectory, rather than on a finite set of points (gridding).

In order to facilitate the comprehension of trajectory generation algorithm proposed in
this chapter, we first introduce useful notations and preliminary results about B-splines
and clamped B-splines in section 4.2. We then present a novel, compact way to represent
a piecewise clamped B-spline trajectory in section 4.3, used in section 4.4 to formulate the
trajectory generation as an optimization problem. The algorithm is then confronted to the
same benchmarks as in chapter 3 to compare its performance with the bi-level formulation
in section 4.5. Finally, a study on the initialization of the of the optimization problem is
proposed in section 4.6.

4.2 Overview on B-splines

Basis-spline curves (commonly called B-spline curves) are often considered as an exten-
sion of the Bézier curves. The latter can be seen as one way to parameterize polynomials
as convex combinations of control points, weighted by Bernstein polynomials. In a similar
fashion, B-spline curves can be seen as one way to parameterize piecewise polynomials as
convex combinations of control points, weighted by B-spline functions. This is useful since
piecewise polynomials allow to parameterize rich trajectories while keeping the polynomial
degree low, thus avoiding potential issues such as oscillations (“wiggling”) or numerical
instability.

B-spline curves are piecewise polynomial curves described by

• A set of (n+ 1) control points, which have a similar role as the polynomial coefficients

• A polynomial degree k

• A set of (m+ 1) knots defining where the curve switches between two polynomial
representations

An example of such a B-spline curve of degree 2 is presented on figure 4.1, with the control
points {pi}i∈[[0,4]] in black and each polynomial piece of the curve in a different color.

Figure 4.1 – Example of B-spline curve

In order to facilitate the comprehension of this chapter, this section gives a quick overview
about B-spline curves and introduces notations and preliminary results that will be used
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in the other sections. It starts with notions on B-spline functions, used as weights on
the control points. For more details, [29] and [95] provide in-depth presentations of these
objects.

4.2.1 B-spline functions

Given a polynomial degree k > 0 and a vector of (m+ 1) > k + 1 increasing knots,
represented by the matrix

τ = (τ0 τ1 . . . τm) ∈ R1×(m+1) (4.1)

a set of (n+ 1) = m−k B-spline functions
{
Nτ
i,k

}
i∈[[0,n]]

can be defined, using the following

recurrence ([29], [95])

∀i ∈ [[0, n]], ∀t ∈ R

If k = 0

Nτ
i,k(t) =

{
1 if τi 6 t < τi+1

0 otherwise
(4.2a)

Else

Nτ
i,k(t) = ωτ

i,k(t) N
τ
i,k−1(t) +

(
1− ωτ

i+1,k(t)
)
Nτ
i+1,k−1(t) (4.2b)

with

ωτ
i,k(t) =


t− τi

τi+k − τi
if τi+k > τi

0 otherwise

(4.3)

Each B-spline function is then a piecewise polynomial that switches between 2 polyno-
mial representations at each knot. Notice that, following the definition, the support of Nτ

i,k

is [τi, τi+k+1[. Outside of this domain, Nτ
i,k is null.

These B-spline functions define a partition of unity over the interval [τk, τn+1[ ([29], [95])

∀i ∈ [[0, n]] Nτ
i,k > 0

∀t ∈ [τk, τn+1[
n∑
i=0

Nτ
i,k(t) = 1

(4.4)

Figure 4.2 illustrates an example of B-spline functions of degree 2 with 8 knots. The thick
line represents the sum of the basis functions and the light blue rectangle represents the
domain over which the B-spline functions form a partition of unity.

The B-spline functions can be used to build curves, as explained in the following para-
graph.

85



4.2. OVERVIEW ON B-SPLINES

Figure 4.2 – Example of B-spline functions

4.2.2 B-spline curves

By introducing a set of (n+ 1) control points {pi}i∈[[0,n]] represented by

∀i ∈ [[0, n]] pi =
(
pxi pyi pzi

)> ∈ R3×1

P =
(
p0 p1 . . . pn

)
∈ R3×(n+1)

(4.5)

a B-spline curve B, of knots τ and control points P, can be defined as follows

B =

n∑
i=0

Nτ
i,k pi (4.6)

Remark 10 Notice that a knot vector and a set of control points suffice to define a B-spline
curve as its polynomial degree k is then set by k = m− n− 1 (see section 4.2.1).

Remark 11 Though 3 dimensional control points are used in this chapter, as they will be
used to parameterize the position of a quadrotor, their definition is not restricted to R3 in
the general case.

The evaluation of the curve at t ∈ R is then the combination of the control points
weighted by the evaluation of the B-spline functions at t. Since these functions are piecewise
polynomials, the B-spline curve B is a piecewise polynomial curve, switching between two
polynomial representations at each knot.

Due to (4.4), in the interval [τk, τn+1[, a B-spline curve verifies the so-called convex hull
property ([29], [95]).

Property 1 For i ∈ [[k, n]] and t ∈ [τi, τi+1[

B(t) ∈ Conv( {pj | j ∈ [[i− k, i]]} ) (4.7)

As a consequence, the curve lies within the convex hull of the entire set of control
points in [τk, τn+1[. Though this consequence is weaker than property 1, it will be used in
section 4.4 to constrain B-spline curves into convex regions. It can then be convenient to
separate the knot vector into

• k external knots at the beginning of the knot vector and k external knots at the end

• A starting knot τk and an ending knot τn+1, which define the domain over which the
convex hull property holds
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• n − k internal knots, which are the instants for which the B-spline curve switches
between two polynomial representations, inside the interval [τk, τn+1[

(τ0 . . . τk−1︸ ︷︷ ︸
k knots

τk
↓

starting
knot

τk+1 . . . τn︸ ︷︷ ︸
n−k

internal knots

τn+1
↓

ending
knot

τn+2 . . . τm︸ ︷︷ ︸
k knots

) (4.8)

Figure 4.3 illustrates an example of a B-spline curve of degree 2, with the same knot
vector as figure 4.2. The thick black dots are the control points and the light blue polygon
is the interior of their convex hull. The green line is the B-spline curve, evaluated inside
(continuous) and outside (dashed) the domain [τk, τn+1[.

Figure 4.3 – Convex hull of a B-spline of degree 2

The following paragraph details a specific case of B-spline curves, that is later used to
parameterize trajectories.

4.2.3 Clamped B-spline

In this work the trajectory is parameterized as a clamped B-spline, i.e. a B-spline whose
first k knots are equal to the starting knot τk, and last k knots are equal to the ending
knot τn+1. The knot vector thus has the following form

(τk . . . τk︸ ︷︷ ︸
k+1

equal knots

τk+1 . . . τn︸ ︷︷ ︸
n−k knots

τn+1 . . . τn+1︸ ︷︷ ︸
k+1

equal knots

) (4.9)

The impact of this specificity is illustrated on figure 4.4, with an example of B-spline
functions of degree 2, with a knot vector of the same form as (4.9) and containing 2 internal
knots (τ3 and τ4).

Figure 4.4 – Example of clamped B-spline functions

The consequence of the particular form of the knot vector (4.9) is that, when evaluated
over [τk, τn+1[, the B-spline curve starts on the first control point and ends on the last one
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B(τk) = p0, lim
t→τ−n+1

B(t) = pn (4.10)

Remark 12 To be more accurate, the curve tends to pn when approaching τn+1 by the
left. The value of each B-spline function at τn+1 being zero for a clamped B-spline curve,
given (4.2), the evaluation of the curve then jumps to the origin when reaching τn+1.

An example of a clamped B-spline curve of degree 2 is given on figure 4.5. The knot
vector is the same as the one on figure 4.4 and the control points are the same as on
figure 4.3.

Figure 4.5 – Example of clamped B-spline curve

Furthermore, given the form of this knot vector, it can be written differently. In this
work, a vector of knot steps is thus introduced, represented by the vector

∆τ =
(
∆τ0 ∆τ1 . . . ∆τn−k

)
∈ R1×(n−k+1) (4.11)

Given an initial knot τ0, the knot vector can be reconstructed from the knot step vector
as follows

∀j ∈ [[0,m]] τj =



τ0 if j 6 k

τ0 +

j−k−1∑
i=0

∆τ i if k < j 6 n

τ0 +
n−k∑
i=0

∆τ i otherwise

(4.12)

In this work, the knot steps are imposed to be strictly positive, which implies that a
B-spline curve of degree k is at least Ck−1 continuous on [τk, τn+1[. However these knot
steps can differ from each other, unlike for uniform clamped B-splines, for which they are
all equal.

4.2.4 Clamped B-spline derivatives

The derivatives of a clamped B-spline curve are also clamped B-spline curves, which
share the same knot steps as the original curve. The control points of the B-spline curve
derivatives are given by linear combination of the original ones. For the l-th derivative,
l ∈ [[0, k]], each of these control points p

(l)
i can be obtained as follows ([29], [95])

p
(l)
i =


pi if l = 0

k − l + 1

τi+k+1 − τi+l

(
p

(l−1)
i+1 − p

(l−1)
i

)
otherwise

(4.13)
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In this work, this expression is reformulated using the knot step vector introduced
above. For l ∈ [[1, k]], we define the matrix Dl(∆τ ) ∈ R(n+2−l)×(n+1−l) such that ∀(i, j) ∈
[[0, n+ 1− l]]× [[0, n− l]]

Dli,j (∆τ ) =


− ρj if i = j

ρj if i = j + 1

0 otherwise
(4.14)

with
ρj =

k − l + 1
min (n−k,j)∑

q=max (0,j+l−k)

∆τ q

(4.15)

given by injecting (4.12) into (4.13). Then (4.13) can be re-written

P(l) =

{
P if l = 0

P(l−1) Dl(∆τ ) otherwise
(4.16)

Defining, for l ∈ [[1, k]]

D0→l(∆τ ) =

l∏
q=1

Dq(∆τ ) (4.17)

where Dq is given by (4.14), it comes that

P(l) = P D0→l(∆τ ) (4.18)

This derivative has a polynomial degree k − l and thus possesses n+ 1− l control points.
Since it is also a clamped B-spline, it verifies (4.10)

lim
t→τ+k

dl

dtl
B(t) = p

(l)
0 , lim

x→τ−n+1

dl

dtl
B(t) = p

(l)
n−l (4.19)

In order to improve the readability, the rigorous limits symbols are dropped in the
following. It should nonetheless be remembered that, due to their piecewise nature, some
derivatives of a B-spline curve are only one-sided or not defined at all.

4.2.5 Clamped B-spline integrals

In the same manner, for l ∈ N∗, we define the matrix D−l(∆τ ) ∈ R(n+l)×(n+1+l) such
that ∀(i, j) ∈ [[0, n+ l]]× [[0, n+ 1 + l]]

D−li,j (∆τ ) =

{
σi if j > i > 0

0 otherwise
(4.20)

with

σi =

min (n−k,i−1)∑
q=max (0,i−k−l)

∆τ q

k + l
(4.21)

The control points of the l-th integral (l > 0) can then be obtained as follows

P(−l) =

{
P if l = 0

P(1−l) D−l(∆τ ) + p
(−l)
0 11×(n+1+l) otherwise

(4.22)
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with p
(−l)
0 the initial value of the l-th integral, at the starting knot, and 1a×b a a-by-b

matrix filled with ones. This integral has a polynomial degree k + l.

As a consequence, it is easy to constrain a B-spline curve and its derivatives (or integrals)
into convex polytopes, thanks to the convex hull property.

In this section, clamped B-spline curves were presented along with some of their prop-
erties. In the following, they are used to parameterize trajectories, composed of several
clamped B-spline curves laid end to end. Considering the specifications to be met by these
trajectories for validating the waypoints (detailed in section 1.2.2), we now propose a novel,
compact way to represent them.

4.3 Compact representation of the trajectory

The flight plan to complete is preprocessed with the methode described in section 3.2.
In particular, we consider a flight plan with only lock or sphere waypoints except for the
first waypoint that can be either stop or constrained and the last one that can only be
stop.

4.3.1 Piecewise clamped B-spline trajectory

Similarly to chapter 3, for a flight plan containing N + 1 waypoints, the trajectory is
divided into N pieces, each one joining a pair of consecutive waypoints. For i ∈ [[1, N ]], the
i-th piece joins the waypoint wi−1 to the waypoint wi. Each i-th piece of the trajectory is
parameterized by a clamped B-spline curve Bi, defined by the knot steps ∆τ i ∈ R1×(n−k+1)

∆τ i =
(
∆τ i,0 ∆τ i,1 . . . ∆τ i,n−k

)
(4.23)

and the control points Pi ∈ R3×(n+1)

Pi =
(
pi,0 pi,1 . . . pi,n

)
,

Px
i

Py
i

Pz
i

 (4.24)

This choice to parameterize each piece of trajectory by a clamped B-spline is motivated
by the two following reasons

• The extremities of each piece of trajectory correspond to the validation of a waypoint.
The properties of clamped B-splines (4.19) and (4.10) are especially convenient to ad-
just the position and its time derivatives at the extremities of the pieces of trajectory,
in order to meet the validation requirements of each waypoint.

• Each piece of trajectory should lie within its flight corridors and the magnitude of
the time derivatives of the position should verify given upper bounds. The fact that
the derivatives of a clamped B-spline are also clamped B-spline and the property
(4.7) of these curves allows to efficiently formulate these constraints.

In a similar way as in chapter 3, these trajectory pieces are connected so that the position
and its L first time derivatives coincide at the connections, with L < k. The overall
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trajectory is then CL continuous. Given an initial time t0, these connections occur at the
time instants {ti}i∈[[1,N ]] such as

∀i ∈ [[1, N ]] ti = ti−1 +

n−k∑
j=0

∆τ i,j (4.25)

and correspond to the time instants where a waypoint is validated.

The evaluation of the overall trajectory ζ at a time instant t ∈ R is obtained in a similar
fashion as in chapter 3

ζ(t) =


w0 if t < t0

Bi(t) if ti−1 6 t < ti, i ∈ [[1, N ]]

wN if t > tN

(4.26)

In order to validate the waypoints while remaining smooth, this trajectory has to satisfy
several constraints at the connections between its different pieces, that are now detailed.

4.3.2 Trajectory derivatives at the connections

In order to get an overall trajectory that is CL, L < k, and to respect the criteria of
validation of each waypoint, boundary conditions on the time derivatives must be met
at the beginning and at the end of each piece of trajectory. Depending on the type of
waypoints, these derivatives can be imposed or set free, in which case they must coincide
with the ones of the previous and the following pieces of trajectory. Considering that the
first waypoint is either a stop or a constrained waypoint and that the last one is always
a stop waypoint, these constraints on the time derivatives can be formulated in a similar
way as in chapter 3

∀i ∈ [[1, N ]]

If wi−1 is a stop waypoint 
Bi(ti−1) = wi−1

∀l ∈ [[1, L]]
dl

dtl
Bi(ti−1) = 0

(4.27a)

Else, if wi−1 is a constrained waypoint

∀l ∈ [[0, L]]
dl

dtl
Bi(ti−1) = w

(l)
i−1 (4.27b)

Else, if wi−1 is a lock waypoint
Bi(ti−1) = wi−1

∀l ∈ [[1, L]]
dl

dtl
Bi(ti−1) =

dl

dtl
Bi−1(ti−1)

(4.27c)

Else, if wi−1 is a sphere waypoint

∀l ∈ [[0, L]]
dl

dtl
Bi(ti−1) =

dl

dtl
Bi−1(ti−1) (4.27d)
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If wi is a stop waypoint

∀l ∈ [[0, L]]
dl

dtl
Bi(ti) = 0 (4.27e)

Else, if wi is a lock waypoint

Bi(ti) = wi (4.27f)

Else, if wi is a sphere waypoint

‖Bi(ti)−wi‖2 6 rwi (4.27g)

where rwi is the validation radius of the waypoint wi and w
(l)
i−1 is value of the l-th derivative

of the trajectory imposed at the validation of the waypoint wi. Since clamped B-splines
are considered, these constraints can directly be written as constraints on the first and the
last control points of each piece of trajectory and their derivatives

dl

dtl
Bi(ti−1) = p

(l)
i,0

dl

dtl
Bi(ti) = p

(l)
i,n−l

Whatever the type of waypoint, the L+ 1 first time derivatives (including the position)
of a piece of trajectory are then constrained at its beginning. Some derivatives can also be
imposed at the end of this piece, depending on the type of waypoint.

In the following we represent the time derivatives of the overall trajectory ζ at the
beginning of a piece of trajectory, i.e. at the time instant ti−1, with i ∈ [[1, N ]] by the
matrix Γi ∈ R3×(L+1)

Γi =
(
ζ(ti−1) d1

dt1
ζ(ti−1) . . . dL

dtL
ζ(ti−1)

)
(4.28)

These constraints allow reducing the number of parameters necessary for the trajectory
generation, as explained in the next paragraph.

4.3.3 Reduced set of control points

A consequence of the constraints (4.27) is that the L + 1 first control points of each
piece of trajectory are imposed and can thus be removed from the trajectory generation
problem. Furthermore, depending on the type of waypoint at the end of the trajectory
piece, the L+1 last control points (stop waypoint) or the last control point (lock waypoint)
can also be removed.

As another contribution of this thesis, we thus introduce a compact way to represent a
piecewise B-spline trajectory satisfying both the continuity constraints and the stop and
lock waypoints validation constraints detailed in (4.27). For each i-th piece of trajectory,
we introduce a reduced set of control points, equal to the set of control points of the i-th
piece minus the control points imposed by the continuity constraints. For i ∈ [[1, N ]], the
number of reduced control points of the i-th piece of trajectory is denoted by ñi 6 n− L
such that

ñi =


n− 2L− 1 if wi is stop
n− L− 1 if wi is lock
n− L if wi is sphere

(4.29)
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and the reduced set of control points is represented by the matrix P̃i ∈ R3×ñi

P̃i =
(
pL+1 pL+2 . . . pñi+L

)
,

P̃x
i

P̃y
i

P̃z
i

 (4.30)

The rest of this section details the reconstruction of the full set of control points from
the reduced one, starting with the L+ 1 first control points.

4.3.4 Reconstruction of the L+ 1 first control points

For the i-th piece of trajectory, i ∈ [[1, N ]], the L+1 first time derivatives at the beginning
of the piece of trajectory, Γi, are either

• Explicitly given by the waypoint wi−1 (stop or constrained waypoint)

• Imposed equal to the L + 1 first time derivatives at the end of the previous piece
of trajectory (piece i − 1, if i > 1) by the continuity constraints (sphere waypoint).
These derivatives are given by the last L+ 1 control points of the (i− 1)-th piece of
trajectory

• Given both by the waypoint wi−1 and the time derivatives at the end of the (i− 1)-th
piece of trajectory (lock waypoint).

The reconstruction of the L + 1 first control points of the i-th piece of trajectory can
then be performed in two steps, illustrated on figure 4.6, for L = 2

• First, the time derivatives Γi (green arrow on figure 4.6) are determined from wi−1

and the last L + 1 control points of the previous piece (piece i − 1, if i > 1), using
the derivative properties (4.16). The latter are represented by the matrix Pi−1,end,
equal to the last L+ 1 columns of Pi−1 (control points in solid red on figure 4.6).

• Then, the first L+ 1 control points of the i-th piece are reconstructed from Γi, using
the integral properties (4.22). These control points are represented by the matrix
Pi,start equal to the first L+1 columns of Pi (control points in solid blue on figure 4.6).

Figure 4.6 – Reconstruction of the first L+ 1 control points

These two steps are now detailed, starting with the determination of Γi.
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4.3.4.1 Derivatives at the end of the previous piece of trajectory

Since clamped B-splines are used to parameterize each piece of trajectory, the L+1 first
time derivatives at the end of a piece are given by the last control points of each of its
derivatives (4.19). These can be obtained from the knot steps and the last L + 1 control
points as follows.

For a given knot step vector ∆τ , using (4.16), we define the matrix Ol(∆τ ) ∈ R(L+1)×(L+1)

such that, for l ∈ [[1, L]] and ∀(i, j) ∈ [[0, L]]2

Oli,j (∆τ ) =


1 if j < l and i = j

−γj if j > l and i = j

γj if j > l and i = j − 1

0 otherwise

(4.31)

where
γj =

k − l + 1
n−k∑

q=n−k−j+l
∆τ q

(4.32)

For i ∈ [[2, N ]] we define the control points to derivatives matrix Mp→d(∆τ ) ∈ R(L+1)×(L+1),
giving the first L + 1 derivatives at the end of the (i− 1)-th piece of trajectory from its
last L+ 1 control points

Mp→d(∆τ ) = JL+1

L∏
l=1

Ol(∆τ ) (4.33)

where Ja is the a-by-a anti-diagonal matrix with every anti-diagonal term equal to 1. The
derivatives are then obtained as follows(

pi−1,n p
(1)
i−1,n−1 . . . p

(L)
i−1,n−L

)
=
(
pi−1,n−L pi−1,n−L+1 . . . pi−1,n

)
Mp→d(∆τ i−1)

(4.34)

4.3.4.2 Derivatives of the beginning of the current piece of trajectory

As explained before, some derivatives of the trajectory can be imposed on a waypoint,
depending on its type. A generic expression of the first L+ 1 derivatives at the beginning
of the i-th piece of trajectory is then

∀i ∈ [[1, N ]]

If i = 1

Γi =


(
wi−1 03×L

)
if wi−1 is stop(

wi−1 w
(1)
i−1 . . . w

(L)
i−1

)
if wi−1 is constrained

(4.35a)

Else

Γi = Pi−1,end Mp→d(∆τ i−1) (4.35b)
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where

∀ ∈ [[1, N − 1]] Pi,end =


(
pi,n−L pi,n−L+1 . . . pi,n−1 wi

)
if wi is lock(

pi,n−L pi,n−L+1 . . . pi,n

)
if wi is sphere

(4.36)
with the control points pi,j in (4.36) being part of the reduced set P̃i (see (4.30)).

The computation of these derivatives can be conveniently reformulated as follows

∀i ∈ [[1, N ]]

If i = 1

Γi = A1,i (4.37a)

Else

Γi

(
∆τ i−1, P̃i−1

)
= A1,i + A2,i(∆τ i−1) + P̃i−1 A3,i Mp→d(∆τ i−1) (4.37b)

with

A1,i =


(
wi−1 03×L

)
if wi−1 is stop

03×(L+1) if wi−1 is lock or sphere(
wi−1 w

(1)
i−1 . . . w

(L)
i−1

)
if wi−1 is constrained

A2,i(∆τ i−1) =


(
wi−1 03×L

)
Mp→d(∆τ i−1) if wi−1 is lock

03×(L+1) otherwise

A3,i =



0(ñi−1−L−1)×(L+1)

(IL×L 0L×1)

01×(L+1)

 if wi−1 is lock

(
0(ñi−1−L−1)×(L+1)

I(L+1)×(L+1)

)
if wi−1 is sphere

(4.38)

Based on Γi, the reconstruction of the first L + 1 control points of the piece i ∈ [[1, N ]]
can now be performed, as detailed in the next paragraph.

4.3.4.3 Starting derivatives to control points

The L+1 first control points of a piece of trajectory can be obtained from the first L+1
time derivatives at its beginning. Using (4.22), we can define for a given knot step vector
∆τ the matrix Ql(∆τ ) ∈ R(L+1)×(L+1) such that, for l ∈ [[1, L]] and ∀(i, j) ∈ [[0, L]]2

Qli,j (∆τ ) =


1 if j < l and i = j

νj if j > l and i = j

1 if j > l and i = j − 1

0 otherwise

(4.39)
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where

νj =

l−1∑
q=0

∆τ q

k + l − j
(4.40)

For i ∈ [[1, N ]] we define the derivative to control points matrix Md→p(∆τ ) ∈ R(L+1)×(L+1)

giving the first L + 1 control points of the i-th piece of trajectory from the first L + 1
derivatives at the beginning of this piece of trajectory

Md→p(∆τ ) =

L−1∏
l=0

QL−l(∆τ ) (4.41)

which gives the first L+ 1 control points

Pi,start =
(
pi,0 pi,1 . . . pi,L

)
(4.42)

from the starting derivatives. Indeed, for i ∈ [[1, N ]], the following expressions hold

If i = 1

Pi,start(∆τ i) = Γi Md→p(∆τ i) (4.43a)

Else

Pi,start

(
∆τ i−1,∆τ i, P̃i−1

)
= Γi

(
∆τ i−1, P̃i−1

)
Md→p(∆τ i) (4.43b)

The reconstruction of the remaining control points is now detailed.

4.3.5 Reconstruction of the full set of control points

In some cases, the last control points are also imposed. In the case where the next
waypoint is a stop waypoint, the last L+1 control points are imposed equal to wi. Similarly,
if wi is a lock waypoint, the last control point is constrained on the waypoint. In the case
of a sphere waypoint, there is no constraint on the last control points.

Finally, the remaining control points (i.e. other than the first and the last ones) do not
require reconstruction, as they are directly equal to the reduced control points. The overall
reconstruction operation can thus be formulated as follows, for i ∈ [[1, N ]]

Pi =
(
Pi,start pi,L+2 pi,L+3 . . . pi,n−L−1 Pi−1,end

)
(4.44)

with pi,j being part of the reduced control points P̃i, for j ∈ [[L+ 2, n− L− 1]] (see (4.30)).
Using (4.37), (4.36) and (4.43), the full reconstruction operation can be formulated as
follows

If i = 1

Pi = Tfixedi(∆τ i) + P̃i Tcurrenti (4.45a)

Else

Pi = Tfixedi(∆τ i) + Tlocki(∆τ i−1,∆τ i) + P̃i−1 Tpreviousi(∆τ i−1,∆τ i) + P̃i Tcurrenti

(4.45b)
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with
Tfixedi = A1,i Md→p(∆τ i) A4 + wi A5,i

Tlocki(∆τ i−1,∆τ i) = A2,i(∆τ i−1) Md→p(∆τ i) A4

Tpreviousi(∆τ i−1,∆τ i) = A3,i(∆τ i−1) Md→p(∆τ i) A4

Tcurrenti = 0ñi×(n−ñi−L)

(4.46)

and
A4 =

(
IL+1 0(L+1)×(n−L)

)
A5,i =


(
01×(n−L) 11×(L+1)

)
if wi is stop(

01×n 1
)

if wi is lock

01×(n+1) otherwise

(4.47)

Therefore, in the general case, the full set of control points of a given piece of trajectory

• Linearly depends on the reduced control points of this piece of trajectory

• Nonlinearly depends, on the one hand, on the knot steps of this piece of trajectory
and, on the other hand, on the knot steps and the reduced control points of the
previous piece of trajectory

The knot steps and the reduced control points thus constitute the degrees of freedom for
adjusting the trajectory.

In this section, a novel compact way to parameterize the entire trajectory ζ as a piecewise
clamped B-spline curve, by the mean of knot step vectors and reduced sets of control
points was proposed. In the next section, this convenient compact representation is used
to formulate the trajectory generation process as an optimization problem.

4.4 Minimum-time trajectory

One way to obtain a smooth trajectory meeting the requirements of section 1.2 is to gen-
erate a minimum-time trajectory with constraints on the magnitude of the velocity and its
derivatives. Typically, the smoothness of the trajectory can directly be obtained by bound-
ing the magnitude of the acceleration and the jerk with low values, rather than penalizing
them as in the previous chapter. One contribution of this chapter is thus to formalize the
minimum-time trajectory generation as an optimization problem on the duration of the
trajectory, using the formalism of B-splines. The first paragraph details one general way
to formulate this problem, using the trajectory parameterization introduced in section 4.3.
Then, the expression of the constraints is detailed in the following paragraphs. Notice
that the formulation of the problem is specified for 3D trajectories, however it is easily
adaptable to other dimensions and to other applications than quadrotor cinematography.

4.4.1 Optimization problem

The trajectory is parameterized as a piecewise clamped B-spline curve, with the compact
representation presented in section 4.3. It is then parameterized by

• N knot step vectors ∆τ i, each vector containing n− k elements
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• N reduced sets of control points P̃i, with the i-th set containing ñi control points,
themselves given by 3 coordinates

This gives a total of nx = N (n− k + 1) +
N∑
i=1

ñi parameters which are stored in the vector

x ∈ Rnx , such that

x =
(
∆τ 1 ∆τ 2 . . . ∆τN P̃x

1 P̃y
1 P̃z

1 P̃x
2 P̃y

2 P̃z
2 . . . P̃x

N P̃y
N P̃z

N

)>
(4.48)

containing all the information required to reconstruct the trajectory over its entire domain.

In order to complete the flight plan described in section 1.2.2, a vector x minimizing the
duration T ∈ R∗+ of the flight plan is chosen, under similar constraints as in chapter 3

• The knot steps are strictly positive

• The trajectory does not exit the corridors

• The trajectory validates the sphere waypoints by passing within a neighborhood of
specified radius around them

• The magnitude of the trajectory derivatives does not exceed specified bounds

The trajectory generation can then be formulated as the following nonlinear optimization
problem

x∗ = arg min
x∈Rnx

T (x)

s.t.



xi > ∆τmin, i ∈ [[0, (n− k + 1)N − 1]]

Acorridor x− bcorridor 6 0

gcorridor(x) 6 0

gsphere(x) 6 0

gderivatives(x) 6 0

(4.49)

with the linear cost function

T (x) =
N∑
i=1

n−k∑
j=0

∆τ i,j (4.50)

The expressions of the constraints are detailed in section 4.4.2, section 4.4.3 and sec-
tion 4.4.4.

Problem (4.49) constitutes a Nonlinear Programming (NLP) that can be solved using
classical algorithms, such as a SQP for instance. This requires some care in the choice of
the starting point of the algorithm. A series of rest-to-rest trajectories joining each pair of
waypoints can be a candidate as initial guess for solving the problem. Though it can be
quite suboptimal, there always exists a rest-to-rest trajectory joining two waypoints which
satisfies the constraints of the NLP (4.49) and it is reasonably simple to compute one. An
example of such an initial guess is proposed in section 4.5.

The tuning parameters of the algorithm are the polynomial degree k > 0 and the number
of control points (n+ 1) > k of the clamped B-splines (thus setting their number of knot
steps n− k + 1). As mentioned in section 4.2.3, a clamped B-spline with strictly positive
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knot steps is Ck−1 continuous. In order to obtain a trajectory that is CL, the polynomial
degree must then verify k > L. The lowest value k = L + 1 constitutes a good candidate
as it keeps the polynomial degree as low as possible. Only the parameter n then remains
to be set and constitutes a tuning parameter. However, the choice of n is not entirely
free. As explained in section 4.3, for a given vector of knot steps, each constraint on the
time derivatives of the trajectory in (4.27) imposes the value of one control points (and
this is used to reduce the number of optimized control points). For a CL trajectory, there
are at most L+ 1 constraints on the derivatives at one extremity of a piece of trajectory,
when validating a waypoint. Since each piece of trajectory has 2 extremities, choosing
n > 2 (L+ 1) guarantees that there are always enough control points to satisfy these
constraints, whatever the type of waypoints.

4.4.2 Corridor constraints

In this section we propose a better formulation of the corridor constraints than in chap-
ter 3 (section 3.5.1) by 2 means

• The convex hull property of B-spline is used rather than a gridding method. By
constraining the control points of the trajectory into the flight corridors, which are
convex regions, the trajectory is guaranteed to respect them everywhere.

• The lateral corridor constraints are better formulated, using polygonal sections of
the flight corridors.

The flight corridors are approximated by ncorr-prisms (ncorr > 3), leading to ncorr + 2
constraints for each control point

• 2 longitudinal constraints ensuring that the control point lies between the two way-
points of the corresponding piece of trajectory

• ncorr lateral constraints ensuring that the control point respects the cross section of
the prism (and thus of the cylinder), as illustrated in figure 4.7

Corridor longitudinal constraints. Given the unit vector ui, for i ∈ [[1, N ]]

ui =
wi −wi−1

‖wi −wi−1‖2
(4.51)

where ‖wi −wi−1‖2 is always strictly positive (otherwise the flight plan would have been
split, see section 3.2). Then, the longitudinal constraints are given by

u>i (pi,j −wi−1) > −εcorr

u>i (pi,j −wi−1) 6 ‖wi −wi−1‖2 + εcorr

(4.52)

with εcorr > 0 a given tolerance that can be set to 0. These constraints can be rewritten
as

−u>i pi,j + u>i wi−1 − εcorr 6 0

u>i pi,j − u>i wi−1 − ‖wi −wi−1‖2 − εcorr 6 0
(4.53)
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Corridor lateral constraints. Regarding the lateral constraints, they can be formu-
lated by considering the 2D vector which corresponds to the projection of (pi,j −wi−1)
onto the cross section of the prism. To this aim, a 2D orthonormal basis {exi , eyi} of
this cross section is constructed, in which the equation of the boundaries of the prism can
be easily expressed. The vector among {ui × xW , ui × yW , ui × zW}, with the highest
norm is normalized and chosen as the first vector of this basis, exi . The second vector is
then eyi = ui × exi . On figure 4.7, the corridor between the waypoints wi−1 and wi is
represented in light blue and the unit vector ui is represented in red. The cross section of
a 5-prism is represented in dark blue, with its basis {exi , eyi} in green. The control point
pi,j (in orange) lies within the section of the prism and it is between the two waypoints,
which guarantees its satisfaction of the corridor constraint.

Figure 4.7 – Approximation of the cylindrical flight corridor by a prism

The ncorr lateral constraints on each control point can be expressed as follows, ∀i ∈
[[1, N ]], ∀j ∈ [[0, n]], ∀q ∈ [[1, ncorr]]

ai,q e>xi (ûi (pi,j −wi−1)) + bi,q e>yi (ûi (pi,j −wi−1)) + ci,q 6 0 (4.54)

where the following coefficients are defined in the following manner

ai,q = cos (qδ)− cos ((q + 1)δ)

bi,q = sin ((q + 1)δ)− sin (qδ)

ci,q = −rcorri sin (δ)

(4.55)

with δ = 2π
ncorr

. Regrouping the terms related to the control points and to the waypoints,
the expression (4.54) can be rewritten as follows, ∀i ∈ [[1, N ]], ∀j ∈ [[0, n]], ∀q ∈ [[1, ncorr]]

(
ai,q e>xi + bi,q e>yi

)
ûi pi,j −

(
ai,q e>xi + bi,q e>yi

)
ûi wi−1 + ci,q 6 0 (4.56)

Corridor inequality constraints The corridor constraints (4.53) and (4.56) for a given
control point can be written as follows

Λi pi,j − λi 6 0 (4.57)
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with pi,j given by (4.45) and

Λi =



−u>i
u>i(

ai,1 e>xi + bi,1 e>yi
)

ûi(
ai,2 e>xi + bi,2 e>yi

)
ûi

...(
ai,ncorr e>xi + bi,ncorr e>yi

)
ûi



λi =



−u>i wi−1 + εcorr

u>i wi−1 + ‖wi −wi−1‖2 + εcorr(
ai,1 e>xi + bi,1 e>yi

)
ûi wi−1 − ci,1(

ai,2 e>xi + bi,2 e>yi
)

ûi wi−1 − ci,2
...(

ai,ncorr e>xi + bi,ncorr e>yi
)

ûi wi−1 − ci,ncorr



(4.58)

Since the reduced control points are part of the optimization vector x defined in (4.48),
this constraint is linear relatively to x if pi,j belongs to the reduced set of control points.
However, the other control points of the full set must be reconstructed, using (4.45), which
is a nonlinear operation on the optimization vector. As a consequence, this constraint is
nonlinear for the control points needing reconstruction.

The corridor constraints which are linear in x can be gathered and expressed as follows

Acorridor x− bcorridor 6 0

while the nonlinear ones can be written as a nonlinear function of x

gcorridor(x) 6 0

Since they are independent of the decision variables, the matrices Λi and vectors λi
are computed only once for each piece of trajectory (during the initialization phase of the
optimization). Furthermore, these constraints can be removed for the control points that
are imposed equal to a waypoint, i.e. on stop or lock waypoints, since the waypoints always
lie inside their corridors.

This formulation of the corridors constraints, by maintaining the control points inside
the flight corridors, provides a sufficient condition for guaranteeing that the trajectory
lies within the corridors. As explained in [77], a certain conservatism can be expected
from such a formulation. However, this conservatism can be reduced by increasing the
number of control points, which allows the curve to stick closer to the control polygon.
The counterpart is that, trough a finite, reasonable amount of constraints, the entire piece
of trajectory is guaranteed to satisfy the constraints. This is a significant advantage over
methods such as gridding, for instance, for which the validation of the constraints is only
guaranteed on some points of the trajectory.

4.4.3 Sphere waypoints validation

When a waypoint wi (i ∈ [[1, N − 1]]) is a sphere waypoint, the i-th piece of trajectory
must end within a sphere of radius rwi , centered on wi. This can be ensured by constraining
its last control point inside this sphere, since clamped B-spline curves are used. Then, due
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to the continuity of the trajectory, the next piece starts inside the sphere and validates wi

as well.

Each sphere waypoint validation can be formulated by one nonlinear constraint

‖pi,n −wi‖22 − r
2
wi

6 0 (4.59)

which can be rewritten

p>i,npi,n − 2 w>i pi,n + w>i wi − r2
wi

6 0 (4.60)

All theses quadratic constraints can be regrouped as a nonlinear function of x

gsphere(x) 6 0 (4.61)

These constraints can also be approximated by a set of linear constraints on pi,n, by
replacing the sphere by a convex polyhedron (e.g. a platonic or archimedean solid). Since
pi,n is part of the reduced control points for a sphere waypoint and does not need re-
construction, these linear constraints in pi,n are also linear in x. In this case, the sphere
waypoints validation constraints can be expressed as follows

Asphere x− bsphere 6 0 (4.62)

4.4.4 Time derivatives bounds

For each piece of trajectory, bounds on the magnitude of the time derivatives can be
imposed. The convex hull property can be used to this aim, as for the corridor constraints.
For l ∈ [[1, L+ 1]], the l-th time derivative of the trajectory is also a clamped B-spline, of
control points given by (4.18). Therefore, constraining these control points into a sphere
ensures that the magnitude of this derivative will never exceed the value of the radius of
this sphere

∀(i, j) ∈ [[1, N ]]× [[0, n− l]]
∥∥∥p(l)

i,j

∥∥∥2

2
− di,l2max 6 0 (4.63)

with di,lmax the bound on the l-th time derivative for the i-th piece of trajectory and the
control points p

(l)
i,j given by (4.18) and (4.45). Since equation (4.18) is nonlinear relatively

to the knot steps, the constraint (4.63) is a nonlinear constraint in x

gderivatives(x) 6 0 (4.64)

In order to illustrate the behavior of the overall trajectory generation strategy, it is now
applied to the case of aerial cinematography with a quadrotor, on the benchmarks defined
in chapter 3.

4.5 Application to aerial cinematography with quadrotors

In this section, we apply the strategy described above to perform a cinematographic
flight plan with a quadrotor. To this aim, we generate a minimum-time trajectory with
speed, acceleration and jerk constraints as in chapter 3. From a slow but feasible subop-
timal trajectory, the knot steps of each piece of trajectory are reduced and their control
points optimized until the constraints on the derivatives are active. It can be noticed that
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ensuring feasibility through bounds on the derivative can introduce some conservatism in
the trajectory as a quadrotor dynamics is more complex than a multiple integrator. How-
ever, in the context of video making, smoothness and video quality can be considered more
important than having the most time-optimal trajectory. The minimization of the dura-
tion of the trajectory is just one way to produce a trajectory suited for cinematography.
For a more generic solution, not specific to video making, this strategy could be improved
by including the dynamics of the quadrotor, in a similar fashion as in [88] (where flatness
properties are used jointly with uniform B-splines).

4.5.1 Tuning parameters for trajectory generation

In the previous chapter, we obtained bounds both on the acceleration and the jerk guar-
anteeing the feasibility of the trajectory (section 3.3). The smoothness of the trajectory
was obtained by minimizing the jerk while its feasibility was given by constraints on the
acceleration and jerk. However, in this minimum-time B-spline formulation, the smooth-
ness has not been taken into account, the time is minimized so that the trajectory sticks
as much as possible to the bounds on the derivatives, i.e. the speed reference and the
feasibility constraints. One way to obtain a smooth trajectory is then to use stronger
bounds on the acceleration and jerk than what is required for the feasibility of the tra-
jectory. In other terms, the smoothness is now enforced through jerk and acceleration
constraints. The following values are respectively chosen as bounds on the acceleration
and jerk: amax = 1 m·s−2 and jmax = 0.3 m·s−3, respectively.

Furthermore, a consequence of the bounded jerk is that the acceleration has to be con-
tinuous. For this reason the trajectory was chosen C2 continuous in chapter 3. In order to
compensate the fact that the smoothness of the trajectory is now only obtained by stronger
bounds on the acceleration and jerk, we decided to impose the jerk to be continuous too,
i.e. we chose a C3 continuous trajectory. This typically leads to a continuous angular
velocity of the quadrotor, as in [13] or [85].

The degree of the trajectory is then chosen as the lowest one allowing a C3 trajectory,
i.e. since the clamped B-splines are Ck−1 continuous (see section 4.2.3), k = 4. Finally, in
order to use the initialization strategy described below, each piece of trajectory contains
n+ 1 = 11 control points and thus 7 knot steps.

For each piece of trajectory, the speed must not exceed the reference and the norm of
the acceleration and of the jerk are respectively limited to amax and jmax. The snap is also
limited in order to prevent the optimal trajectory to present short periods of time with
an excessively high snap, leading to an almost discontinuous behavior of the jerk. In the
following, we choose smax = 0.5 m·s−4.

4.5.2 Initial feasible trajectory

As an initial feasible guess for the optimization process, we first propose a rest-to-rest
trajectory with a BOB snap profile, divided into three phases: acceleration, cruising and
braking. We distinguish the following two cases: first, a case with a cruising phase (4.65a),
and, second, a case where the distance is too short for this (4.65b). The initial solution is
thus given as follows.

Proposition 3 The initial piecewise clamped B-spline trajectory given by the following
snap profile
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For i ∈ [[1, N ]]

If 4 ṽi
3

√
ṽi
2s < ‖wi −wi−1‖2

∆τacc =
3

√
ṽi
2s
, ∆τ cruise =

‖wi −wi−1‖2
ṽi

− 4∆τacc

∆τ init = (∆τacc 2∆τacc ∆τacc ∆τ cruise ∆τacc 2∆τacc ∆τacc)

P
(4)
init =

(
sui −sui sui 0 −sui sui −sui

) (4.65a)

Else

∆τacc =
4

√
‖wi −wi−1‖2

8s

∆τ init =

(
∆τacc 2∆τacc

1

2
∆τacc

1

2
∆τacc ∆τacc 2∆τacc ∆τacc

)
P

(4)
init =

(
sui −sui sui sui −sui sui −sui

)
(4.65b)

with

ṽi = min

(
vi,

8 a2
max

9 jmax

)
, s =

3 j2
max

2 amax
(4.66)

and νi the speed reference of the i-th piece of trajectory, is a feasible solution of the
NLP (4.49).

A proof of feasibility of this trajectory, relatively to the constraints of the problem (4.49),
is given in the appendix C. The initial control points for this piece of trajectory can then
be deduced from this snap profile using (4.22).

An example of such a trajectory is represented on figure 4.8, for which vi = 8 a2max
9 jmax

. The
blue lines represent the evaluation of the velocity, acceleration, jerk and snap of a rest-to-
rest trajectory, projected along the vector ui (the trajectory is a straight line of direction
ui), while the red lines represent the bounds.

Figure 4.8 – Initial rest-to-rest trajectory profile
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4.5.3 Simulation

The proposed trajectory generation strategy is applied to the benchmarks 1 (figure 4.9)
and 2 (figure 4.10) defined in section 3.5.3.

Figure 4.9 – Minimum-time B-spline trajectory for benchmark 1

Figure 4.10 – Minimum-time B-spline trajectory for benchmark 2

The constraints are respected and the speed profile is much better than the speed profiles
obtained with the bi-level optimization. However on benchmark 1, the position seems less
smooth, since the penalty on the jerk has been removed in comparison to section 3.6.
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4.5.4 Comparison with uniform clamped B-splines

Often, uniform clamped B-splines are used, which means that the knot steps are all
equal. This is not the case in this work, where they are optimized to fully exploit the
piecewise polynomial nature of B-splines.

Using uniform B-spline makes the formulation easier and the computation faster, as most
of the calculations can be performed once, during the initialization phase of the resolution
of the optimization problem, or even be done off-line. This is especially convenient for
on-board computation. However, there are only two ways to act on the derivatives of such
a spline. They can either be scaled in magnitude by scaling the knot steps (which does
not change the shape of the overall curve), or be changed locally by moving the control
points (4.13), which modifies the shape of the trajectory. The latter solution is limited in
presence of flight corridors.

The limitations of this kind of splines are illustrated on figure 4.11. In this example,
a trajectory is generated for a simple flight plan of only 2 waypoints separated by 100 m,
to join with a reference speed of 1 m.s−1 (the same as on figure 3.21), using the strategy
described in this chapter and with the same parameters as in section 4.5.1. In the first
case, a non-uniform clamped B-spline is used (figure 4.11 top), while in a second case,
an uniform B-spline is used (figure 4.11 bottom). The speed profile of each trajectory is
presented on figure 4.11, with each knot marked by a vertical gray line. Notice that since
the two considered waypoints are stop, only 3 control points are optimized, the other 8
being imposed on the waypoints.

Figure 4.11 – Comparison of a non-uniform and an uniform minimum-time B-spline trajectories

Both solutions verify all the constraints: speed, acceleration, jerk, snap and corridor
constraints, though the satisfaction of the corridor constraints is trivial as the trajectory is
a straight line in this example. However, the uniform B-spline trajectory is much slower,
due to long acceleration and braking phases. Indeed, for a B-spline curve of degree k, the
k-th derivative is constant between 2 knots, i.e. for a duration equal to a knot step (see
figure 4.8). For a uniform clamped B-spline, the knot steps being all equal, these durations
are directly given by the length of the interval [τk, τn+1[ and by the number of knot steps,
n− k+ 1, fixed by the number of control points and the polynomial degree. The constant
knot steps of a uniform B-spline hence prevents the possibility to have arbitrarily long (or
short) acceleration, deceleration and cruising phases.

In order to deal with this issue, one could introduce more control points, but considering
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the wide variety of possible flight plans, it can be delicate to choose an adequate number
of control points. In [115], control points are added or removed on-the-flight, during the
optimization process, which results in a MIP that can significantly impact the computation
time.

Freeing the knot steps by using non-uniform clamped B-splines, as it is proposed in this
paper, allows the derivatives to be more independent relatively to the control points and
the shape of the curve. This is an elegant and robust way to solve the issue, but, as for
the MIP, it comes at a certain cost on the computation time.

Finally, the speed profile obtained with the non-uniform B-spline can be compared to
the one obtained with the bi-level, minimum-time/minimum-jerk strategy of chapter 3, in
section 3.7.4. Again, the non-uniform B-spline gives a much better speed profile. This is
due to the piecewise nature of the B-spline allowing to parameterize much richer trajectories
than with a single polynomial.

4.5.5 Outdoor experiment

In order to evaluate the cinematographic quality and the feasibility of the trajectories
obtained with the method proposed above, a trajectory was generated off-line and then
performed by a real quadrotor. This test consists in the performance of a cinematographic
flight plan containing 6 waypoints. A minimum-time B-spline trajectory is generated to
join the waypoints while respecting corridors and bounds on the derivatives. The trajectory
is generated off-line, using a waypoint horizon Nw = 3, which means that the trajectory
is computed in 3 steps. An undersampled linear predictive controller such as described in
chapter 5 is used to track the camera angles references smoothly, without introducing too
much framing error thanks to the anticipative aspect of the controller and the knowledge
of the overall reference trajectory. The flight plan is performed under an average wind of
approximately 5.3 m·s−1 (19 km/h), with gusts up to 9.0 m·s−1 (32 km/h).

Though this work was initially designed for the Parrot Bebop 2, Parrot released a new
product during this thesis, in 2018: the Parrot ANAFI quadrotor (see figure 4.12, [93]).
Since this drone has a better camera and more capabilities, we performed the experiment
with a Parrot ANAFI instead of a Bebop 2, in order to better judge the results of the
minimum-time B-spline trajectory generation algorithm in the context of cinematography.

Figure 4.12 – Parrot ANAFI quadrotor

A video of the outdoor flight is available at https://youtu.be/A0oYx268sis. figure 4.13
presents the flight plan performed by the quadcopter and the corresponding optimal tra-
jectory, as well as the position tracking error during the flight. The latter is computed
using satellite navigation and the internal sensors of the drone.

The trajectory satisfies the specifications of section 1.2.3. The trajectory is smooth and
it is difficult to guess the position of the waypoints only by looking at the trajectory or the
video, which comforts the idea that the trajectory is natural. The position tracking error
remains low for an outdoor flight (< 0.4 m despite the wind gusts), which gives confidence
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Figure 4.13 – Trajectory for the flight experiment (top) and position tracking error during the flight
(bottom)

in the feasibility of the trajectory.

4.6 Initialization

The initialization method we developed in section 4.5.2 has the advantage to be an
analytical solution, but it is largely suboptimal. Since it uses a fixed the number of knot
steps, a knot insertion algorithm1 [29] must be used if we want to use more knot steps for
each piece of trajectory. However, this method prevents the use of less knot steps.

As a consequence, once the overall trajectory generation strategy was validated, we
studied other ways to initialize the NLP (4.49). This section proposes 4 novel ways to
generate suboptimal minimum-time clamped B-spline trajectories with corridor constraints
and bounds on the derivative, that can be used to initialize the problem (4.49) for any
number of control points, any polynomial degree and any dimension (and thus not restricted
to the case of quadrotor cinematography).

We start by two new methods to generate generic feasible rest-to-rest uniform clamped
B-spline trajectories.

4.6.1 Uniform rest-to-rest B-spline trajectory

In section 4.5.2 we proposed to initialize each piece of trajectory by a rest-to-rest tra-
jectory, given by a bang-off-bang snap law. However this is not the only way to obtain a

1For a given B-spline B1, a knot insertion algorithm returns the control points of another B-spline B2,
with the same knots as B1 but with an additional knot τ̃ ∈ [τ0, τm], such that the two curves as well as
their derivatives are equal.
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rest-to-rest trajectory. In this section we propose another way to generate a feasible rest-
to-rest B-spline trajectory using an uniform B-spline curve. For each piece of trajectory
we first choose a suitable set of control points and then the knot steps.

For a trajectory of differentiability class CL, we suppose that the polynomial degree is
at least k > L + 1 and that there are at least (n+ 1) > 2 (L+ 1) control points for each
piece of trajectory.

Control points. For the i-th piece of trajectory, between the waypoints wi−1 and wi, a
rest-to-rest trajectory can simply be obtained by setting the first half of the control points
on wi−1 and the last half on wi. In case of an odd number of control points, the middle
one can be set on wi−1 for instance. The initial control points are set as follows

∀i ∈ [[1, N ]] ∀j ∈ [[0, n]] pi,j =

{
wi−1 if j 6 floor(n/2)

wi otherwise
(4.67)

Since the waypoints respect the flight corridors, so does the control points and the trajec-
tory respect the corridor constraints, too. Finally, since each piece of trajectory is supposed
to contain at least (n+ 1) > 2 (L+ 1) control points, there are at least L+1 control points
on the waypoints wi−1 and wi. As a consequence, the trajectory passes exactly on the
waypoints and the L first derivatives of the position on the waypoints are null (since at
least (L+ 1) are superimposed on the waypoints, as detailed in (4.13) and section 4.3).
Then, the waypoints validation criteria are also satisfied. Only the knot steps vector thus
remains to be chosen.

Knot steps. In this section, in order to initialize the knot vector so that the trajectory
is feasible relatively to the constraints of the problem (4.49), we propose to set all the knot
steps equal. The initial trajectory is thus an uniform clamped B-spline. We now show
that, having fixed the control points, the choice of the smallest knot steps respecting the
constraints of (4.49) can be analytically computed.

Since we use an uniform clamped B-spline for this initial trajectory, all the knot steps
are equal on a given piece of trajectory and the vector of knot steps can be expressed as
follows, for the i-th piece of trajectory

∆τ i = ∆τ i 11×(n−k+1) (4.68)

This considerably simplifies the expression of the control points of the time derivatives of
the B-spline curve. Indeed, the expression of the matrix D0→l in (4.18) then simplifies to

D0→l(∆τ ) =
1

∆τ li
D0→l

(
11×(n−k+1)

)
(4.69)

and the expression of control points of the l-th derivative of the position becomes

P
(l)
i =

1

∆τ li
Pi D0→l

(
11×(n−k+1)

)
=

1

∆τ li
P̂

(l)
i (4.70)

with P̂
(l)
i = Pi D0→l

(
11×(n−k+1)

)
fixed, representing the control points of the l-th deriva-

tive obtained for a unitary knot step. Then the bound on the magnitude of each control
points of the l-th derivative of the i-th piece of trajectory is given by

∀j ∈ [[1, n− l]]
∥∥∥p(l)[i, j]

∥∥∥
2

=
1

∆τ li

∥∥∥p̂(l)[i, j]
∥∥∥

2
6 di,lmax (4.71)

109



4.6. INITIALIZATION

since the control points p̂
(l)
i,j are fixed, this can be rewritten

∀j ∈ [[1, n− l]] ∆τ li >
l−1

√√√√∥∥∥p̂(l)
i,j

∥∥∥
2

di,lmax

(4.72)

The control points respecting the corridor constraints and the waypoint validation crite-
ria, only the bounds on the magnitude of the derivatives remain to be verified. The choice
of the knot step ∆τ i on each piece of trajectory can be set to the smallest value for which
these bounds are met. Using the result (4.72), this can be formulated as the following
optimization problem

∆τ∗i = arg min
∆τ i∈R

∆τ i

s.t.



∆τ i > ∆τmin

∀j ∈ [[1, n− 1]] ∆τ i >

∥∥∥p̂(1)
i,j

∥∥∥
2

di,1max

∀j ∈ [[1, n− 2]] ∆τ i >

√√√√∥∥∥p̂(2)
i,j

∥∥∥
2

di,2max

...

∀j ∈ [[1, n− L]] ∆τ i >
L−1

√√√√∥∥∥p̂(L)
i,j

∥∥∥
2

di,Lmax

(4.73)

which can be rewritten in the following manner

∆τ∗i = arg min
∆τ i∈R

∆τ i

s.t. ∆τ i 1nbounds
> ∆τmin

(4.74)

with ∆τmin the vector of all the right-term values of the inequality constraints in (4.73)
and nbounds the number of these constraints. The solution of this problem is given by the
largest element of ∆τmin, i.e.

∆τ∗i = max ∆τmin (4.75)

By doing this for each piece of trajectory, we obtain a feasible rest-to-rest uniform
clamped B-spline trajectory. The initial trajectory obtained by this method for the bench-
mark 1 is presented on figure 4.14. The trajectory parameters (number of knots, polynomial
degree, derivative bounds etc.) are the same as in section 4.5.1.

Equally distributed control points. Alternatively, in order to reduce the suboptimal-
ity, some control points can be set between the waypoints rather than on them. The L+ 1
first and last control points are set on the waypoints to ensure the validation criteria of the
waypoints by passing on them and cancelling the first L+ 1 derivatives of the position on
the waypoints. The remaining points are then equally distributed between wi−1 and wi.

∀i ∈ [[1, N ]] ∀j ∈ [[0, n]] pi,j =


wi−1 if j 6 L

wi if j > n− L
wi−1 + (j − L) ∆wi otherwise

(4.76)
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Figure 4.14 – Uniform rest-to-rest initialization for benchmark 1

with ∆wi = wi−wi−1

n−L . The knot steps are then obtained by the same method. The initial
trajectory obtained by this method for the benchmark 1 is presented on figure 4.15. The
trajectory parameters (number of knots, polynomial degree, derivative bounds etc.) are
the same as in section 4.5.1.

Figure 4.15 – Alternative uniform rest-to-rest initialization for benchmark 1

4.6.2 Uniform smooth B-spline trajectory

All the initialization methods proposed for now involve rest-to-rest trajectories. Stopping
at each waypoint can induce a severe suboptimality of the trajectory. In this section,
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we propose to use as initial solution for the NLP (4.49) a uniform B-spline trajectory
minimizing the mean square of one of the derivatives of the position, as the jerk, for
instance.

To this aim, we first set all the knot steps of each piece of trajectory to 1. Then, we
optimize the control points so that the mean square of the jerk or another derivative of
the overall trajectory is minimized, while verifying the waypoint validation criteria and
the flight corridors. The obtained control points are fixed, and a similar method as for the
rest-to-rest initialization is then used to compute the knot step vector.

The method is then similar to the one used in section 3.6 in the fact that two stages are
used to generate the trajectory, one for the control points (equivalent to the computation
of the polynomial coefficients in section 3.6) and one for the knot steps (equivalent to the
computation of the times of flight in section 3.6). However, it differs in the fact that there
is no feedback between these two levels. Here, the control points are first optimized, once,
and then they are used to optimize the knot steps.

Since the knot steps are fixed, so is the duration of trajectory, and minimizing the mean
square of the l-th time derivative of the position trajectory is equivalent to minimize

Jl =

∫ tN

t0

∥∥∥∥ dl

dtl
ζ(t)

∥∥∥∥2

2

dt =

N∑
i=1

∫ ti

ti−1

(
dl

dtl
Bi(t)

)>(
dl

dtl
Bi(t)

)
dt (4.77)

Though the square of a B-spline can be computed analytically (it is also a B-spline, of
polynomial degree 2k) and then integrated to get the mean square of this B-spline, it is not
the most convenient way to minimize this derivative. An alternative to minimize the mean
square of the l-th derivative is then to minimize the norm of its control points. Indeed,
since the derivative is constrained inside the convex hull of its control points, reducing
their norm compresses the convex hull and thus the mean square of the derivative. As a
consequence, we minimize the alternative cost function

Jl =
1

2

N∑
i=1

n∑
j=0

p
(l)
i,j

>
p

(l)
i,j =

1

2

N∑
i=1

n∑
j=0

(
p

(l),x
i,j

)2
+
(
p

(l),y
i,j

)2
+
(
p

(l),z
i,j

)2
(4.78)

We will now show that, defining np =
N∑
i=1

ñi and the optimization vector xp ∈ Rnp such

that

xp =
(
P̃x

1 P̃y
1 P̃z

1 P̃x
2 P̃y

2 P̃z
2 . . . P̃x

N P̃y
N P̃z

N

)>
(4.79)

With fixed the knot steps, the cost function Jl can be expressed as a quadratic form of xp.

Since the knot steps have been set to 1, the reconstruction of the control points of the
i-th piece (4.45) can be simplified

Pi =

{
Bf i + P̃i Bci if i = 1

Bf i + P̃i−1 Bpi + P̃i Bci otherwise
(4.80)

112



CHAPTER 4. GUIDANCE – MINIMUM-TIME B-SPLINE TRAJECTORIES

with

Bf i =

{
Tfixedi(11×n−k+1) if i = 1

Tfixedi(11×n−k+1) + Tlocki(11×n−k+1,11×n−k+1) otherwise

=

Bf
x
i

Bf
y
i

Bf
z
i


Bpi = Tpreviousi(11×n−k+1,11×n−k+1)

Bci = Tcurrenti

(4.81)

In the case of fixed knot steps, the reconstruction is a linear operation on the reduced
control points.

Let us focus on the x dimension of the i-th piece of trajectory, with i > 1. The x
coordinates of the control points of the l-th time derivative of this piece of trajectory are
given by

P
(l),x
i = Pl

i Rl =
(
Bf i + P̃i−1 Bpi + P̃i Bci

)
Rl (4.82)

with Rl = D0→l(11×n−k+1). The sum of the squares of the x coordinates of all the control
points of this piece of trajectory is given by

n∑
j=0

(
p
(l),x
i,j

)2
= P

(l),x
i P

(l),x
i

>

= P̃x
i−1 Bpi Rl R

>
l Bp

>
i P̃x

i−1
> + P̃x

i Bci Rl R
>
l Bc

>
i P̃x

i
> + 2 P̃x

i−1 Bpi Rl R
>
l Bc

>
i P̃x

i
>

+ 2 Bf
x
i Rl R

>
l

(
Bp
>
i P̃x

i−1
> + Bc

>
i P̃x

i
>
)

+ 2 Bf
x
i Rl R

>
l Bf

x
i
>

(4.83)
The expression for the other dimensions is obtained similarly, while the case i = 1 is dealt
with by removing the terms relative to the previous piece of trajectory. Then, the cost
function Jl can be written

Jl = x>p Hl xp + f>l xp + gl (4.84)

Since the reconstruction of the full set of control points is now a linear operation, all the
corridor constraints can be expressed as linear constraints on the reduced control points
rather than only the corridor constraints on the reduced control points (as in section 4.4.2).
Furthermore, by using a linear formulation of the sphere waypoints validation constraints,
the computation of the control points consists in solving a QP problem under linear con-
straints

x∗p = arg min
xp∈Rnp

x>p Hl xp + f>l xp

s.t.

{
A′corridor xp − b′corridor 6 0

Asphere xp − bsphere 6 0

(4.85)

with A′corridor, b′corridor the matrix and vector for expressing the linear corridor constraints
and Asphere and bsphere the matrix and vector for expressing the sphere waypoints validation
constraints.

Once the control points have been computed, the knot steps are then obtained by the
same method as in the previous section and given by (4.75). The initial trajectory obtained
by this method, by minimizing the jerk, for the benchmark 1, is presented on figure 4.16.
The trajectory parameters (number of knots, polynomial degree, derivative bounds etc.)
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Figure 4.16 – Minimum-jerk uniform initialization for benchmark 1

are the same as in section 4.5.1. The obtained initial trajectory is smooth but the speed
profile is still largely suboptimal. To overcome this inconvenient, we propose another to
generate a feasible trajectory by using a non-uniform B-spline trajectory.

4.6.3 Non-uniform smooth B-spline trajectory

In order to improve the speed profile of the previous method in order to get closer to an
optimal solution for the problem (4.49), we propose to free the knot steps of the uniform
B-spline trajectory obtained in the method of section 4.6.2 and to optimize them to reduce
the duration, while maintaining the feasibility. The differences with the NLP (4.49) are
the following

• First, only the knot steps are optimized, the control points are fixed as the solution
of the QP problem (4.85).

• Second, the control points being fixed, there is need to reconstruct the set of control
points anymore. The issue is that the control points reconstruction implicitly ensures
the continuity of the derivatives at the connections between the different pieces of
trajectory. This continuity must then be enforced by an additional constraint on the
knot steps now, as further detailed.

Defining np = N (n− k + 1) and xτ ∈ Rnp such that

xτ =
(
∆τ 1 ∆τ 2 . . . ∆τN

)> (4.86)
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the optimization problem to solve is then

x∗τ = arg min
x∈Rnx

N∑
i=1

n−k∑
j=0

∆τ i,j

s.t.


xτ > xτmin

gderivatives(xτ ) 6 0

gcontinuity(xτ ) = 0

(4.87)

The nonlinear continuity constraints at the connection can be formulated as follows

∀i ∈ [[2, N ]] ∀l ∈ [[1, L]] Pi−1 D0→l(∆τ i−1)

(
0n−l×1

1

)
−Pi D0→l(∆τ i)

(
1

0n−l×1

)
= 0

(4.88)
All these constraints can be written as a function of the decision vector xτ , i.e. gcontinuity(xτ ) =
0. Though there are additional nonlinear equality constraints relatively to (4.49), there
are also less inequality constraints and much less decision variables, as the control points
are fixed. As a consequence, the resolution of this problem (4.87) is much faster than the
original NLP (4.49), which allows using this method for the initialization of (4.49). The
initial trajectory obtained with this method, by minimizing the jerk, for the benchmark
1, is presented on figure 4.17. The trajectory parameters (number of knots, polynomial
degree, derivative bounds etc.) are the same as in section 4.5.1.

Figure 4.17 – Minimum-jerk non-uniform initialization for benchmark 1

Figure 4.18 illustrates an example with 15 knot steps per piece of trajectory rather than
8 as in the previous examples. The shape of the obtained initial trajectory as well as
its speed profile almost meet the aesthetic requirements for cinematography. The only
imperfections of this trajectory are that it is slow to decelerate at the end of the second
piece of trajectory and that the acceleration and jerk profile are not really smooth nor
natural.
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Figure 4.18 – Minimum-jerk non-uniform initialization for benchmark 1 with additional knots

4.6.4 Comparison of the initialization methods

In this section, we present a comparison of the different initialization methods. For the
benchmark 1, we compare for each method the number of iterations required by the SQP
solver of the fmincon function of Matlab c© to solve the problem (4.49). The trajectory
parameters (number of knots, polynomial degree, derivative bounds etc.) are the same as
in section 4.5.1. The results are given in table 4.1, with

• The method 1 designating the bang-off-bang snap initialization (section 4.5.2)

• The method 2 and 3 designating, respectively, the uniform rest-to-rest initialization
(section 4.6.1) with the control points on the waypoints and with the control points
equally distributed

• The methods 4, 5, 6 and 7 designating the initialization proposed in section 4.6.2,
minimizing respectively the speed, acceleration, jerk and snap, respectively

• The methods 8, 9, 10 and 11 designating the initialization proposed in section 4.6.3,
minimizing respectively the speed, acceleration, jerk and snap, respectively

Method 1 2 3 4 5 6 7 8 9 10 11
Iterations 162 321 166 109 145 183 131 97 127 153 112

Table 4.1 – Comparison of the B-spline trajectory initialization methods

All the methods lead to the same solution of the NLP (4.49). For this example, it
seems that the non-uniform initialization minimizing the speed performs best. However,
the results on only one example are not sufficient to conclude. Future work is planned to
automatically test these methods on many random flight plans.
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4.7 Conclusion

This chapter presented a trajectory generation algorithm suited for a wide variety of
flight plans, guaranteeing the corridors and the bounds on the derivatives. To this aim,
the piecewise nature of clamped B-splines is exploited, by optimizing their knots and
control points, in order to obtain a time-optimal trajectory.

To achieve this, a first contribution of this chapter is to introduce a new compact rep-
resentation of a piecewise B-spline trajectory satisfying the waypoint validation criteria
defined in section 1.2.2 as well as the continuity of the derivatives at the connections
between the pieces.

Then, as a second contribution, we propose one technique to obtain a minimum-time B-
spline trajectory, by optimizing the knot steps and the control points of the trajectory. The
feasibility of the trajectory is obtained by bounding the magnitude of the time-derivatives
of the position with the values obtained in section 3.3 while the validation of the flight
corridors and sphere waypoints are obtained through linear and nonlinear constraints. To
do so, we use the compact representation of a piecewise B-spline trajectory introduced in
this chapter. The algorithm then consists in a Nonlinear Programming (NLP) problem.

Confronted to simulations, the method responded to the cinematographic requirements,
returning smooth and feasible trajectories with better speed profiles than the bi-level for-
mulation of chapter 3. It was successfully applied on a real drone through an outdoor
experiment. The output video is available at https://youtu.be/A0oYx268sis, it is con-
vincing and the limited tracking error comforts the feasibility of the trajectory. These
results were published in [107].

Finally, as the last contribution of this chapter, we proposed 4 methods to quickly obtain
an initial feasible solution for the NLP problem, some of which are satisfying enough in
terms of cinematographic criteria to constitute inexpensive (though not as good) alterna-
tives to the resolution of the optimization problem in case the computation time would be
critical.

The experience acquired on B-spline curves during this work allowed the author to make
an intervention on Bézier and B-splines curves [104] in the massive open online course
DroMOOC [11].

In the next chapter, we tackle the last remaining task to perform the aerial shot, the
generation of the magnification trajectory and the rotation motion of the on-board cam-
era.
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Chapter 5

Control strategy

5.1 Introduction

Though the previous chapter presented several techniques to generate a position trajec-
tory suited for quadrotor cinematography, it only partially dealt with the problem to solve.
In addition to waypoints to validate, speed reference and flight corridors to respect, the
flight plan reference defined in section 1.2.2 also contains camera angles and magnification
behaviors to adopt between the waypoints. In this chapter, given a smooth trajectory, we
propose to generate smooth camera references by the mean of a linear MPC law.

First, the angle and magnification references are detailed in section 5.2. Then, we
propose and detail a linear under-sampled MPC controller to smooth the camera references
in section 5.3, as they can be discontinuous when changing the camera behavior on a
waypoint, for instance. Finally, in section 5.4 we propose two novel approaches to merge
the yaw and thrust direction references of the drone into full 3D attitude references, and
compare it to a widespread method through examples on a Bebop 2 drone and a Parrot
ANAFI.

We start by giving the mathematical expression of the camera references corresponding
to the camera behavior defined in section 1.2.2.

5.2 Camera references

In addition to its 3D position, a flying camera also has 4 DOF, its 3D angular position
(attitude) and its magnification. Its attitude is expressed by the mean of ZYX Euler angles
(see section 2.3.1), denoted by ψc (yaw), θc (pitch) and ϕc (roll), while the magnification is
expressed by a factor mc (with the default magnification given by mc = 1). While joining a
waypoint, the camera can adopt a different behavior on each one of these quantities, defined
in section 1.2.2. In this section, we detail the computation of the references associated to
each camera behavior.

5.2.1 References

Each camera behavior covers one piece of trajectory. For the segment i ∈ [[1, N ]] between
the waypoints wi−1 and wi, lasting over the periode [ti−1, ti], the references at a time
instant t ∈ [ti−1, ti] are computed as follows.
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Constant. For a constant reference we have

η(t) = ηi (5.1)

with η designating either ψc, θc, ϕc or mc and ηi a constant.

Ramp. The ramp reference is given by 2 references: a reference ηi to join when validating
the waypoint wi with a constant reference speed η̇i. We then have

η(t) = ηi−1 + (ηi − ηi−1)
t− ti−1

ti − ti−1
(5.2)

with η designating either ψc, θc, ϕc or mc and ηi−1 the reference when validating the
previous waypoint.

Point of Interest. The POI reference is only available for the yaw and pitch axes. It is
given by a 3D reference position ζPOI =

(
xPOI yPOI zPOI

)> in the ground fixed frame
(NED, see section 2.2) and a reference framing angle ηi. The reference is then computed
using the evaluation of the drone trajectory ζ =

(
x y z

)>. For the yaw axis, this gives

ψc(t) = arctan2 (yPOI − y(t), xPOI − x(t)) + ψci (5.3)

and for the pitch axis

θc(t) = − arctan2

(
zPOI − z(t),

√
(xPOI − x(t))2 + (yPOI − y(t))2

)
+ θci (5.4)

The singular cases for which the drone is at the vertical of the POI (for the yaw) or on
the POI (for the pitch) are dealt with by taking the last well defined reference (in other
words, the reference is not updated for singular cases).

Tangent. The tangent reference is only available for the yaw and pitch axes. The refer-
ence is given by the direction of the drone velocity ζ̇ =

(
ẋ ẏ ż

)> and a reference framing
angle ηi. For the yaw axis, this gives

ψc(t) = arctan2 (ẏ(t), ẋ(t)) + ψci (5.5)

and for the pitch axis

θc(t) = − arctan2

(
ż(t),

√
ẋ2(t) + ẏ2(t)

)
+ θci (5.6)

As for the POI, the references are not updated in presence of a singular case (null velocity).

Vertigo. The vertigo reference is only available for the magnification and should be used
along with POI behaviors on the pitch and yaw axes. Given a 3D reference position
ζPOI =

(
xPOI yPOI zPOI

)> in the ground fixed frame, the magnification varies such that
the apparent diameter of an object at the position ζPOI stays constant (i.e. so that it
occupies a constant field of view in the output video). This can be achieved by setting

mc(t) =
mci

di
‖ζPOI − ζ(t)‖2 (5.7)

with mci the magnification when validating the previous waypoint, wi, and

di = ‖ζPOI − ζ(ti−1)‖2 (5.8)

the distance between the drone and the POI also at the validation of wi.
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Plane. The plane reference is only available for the roll and should typically be used
along with tangent behaviors on the pitch and yaw axes. It simulates the view from a
fixed-wind aircraft by rolling as the rotation speed on the yaw axis increases. One way to
achieve this is to set

ϕc(t) = ϕcmax tanh
(
kψ̇c

ψ̇c

)
(5.9)

with ϕcmax the maximum admissible roll reference and kψ̇c
a tuning parameter and tanh

the hyperbolic tangent function, used as a smooth saturation function.

Smooth. Finally, for the smooth transition between 2 camera behaviors, we use a cubic
polynomial interpolation between the last reference of the (i− 1)-th piece of trajectory, at
the validation of wi−1, and the first reference of the (i+ 1)-th piece of trajectory, at the
validation of wi

η(t) = ηi−1 + ∆tiη̇i−1 τ(t) + (3ηi − 3ηi−1 −∆tiη̇i − 2∆tiη̇i−1) τ2
i (t)

+ (2ηi−1 − 2ηi + ∆tiη̇i−1 + ∆tiη̇i) τ
3
i (t) (5.10)

with η designating either ψc, θc, ϕc or mc, ∆ti = (ti − ti−1) and τi(t) = t−ti
ti−ti−1

.

5.2.2 Speed reference limitation

Since some camera behaviors use the duration of a piece of trajectory or the position
or velocity of the drone, the latter must be low enough for the resulting camera reference
to be both feasible and aesthetically satisfying. One way to deal with this could have
been to add constraints in the trajectory generation algorithm to take into account the
camera references. However their computation can be nonlinear in regard to the position
and its time derivatives (POI, smooth, etc.) which can lead to complicate optimization
problems for the trajectory generation. Instead, we have chosen to approximate the angle
and magnification excursions on each piece of trajectory to compute a minimum duration
under which the camera references could lead to infeasible or unsatisfying footage. For
instance, if a 120◦ yaw panorama has to be performed on a piece of trajectory i, at a
reference speed of 5◦·s−1, the duration of this piece of trajectory should not be lower than
∆tmini = 24 s.

These minimum duration are thus converted into maximum translational speeds

vi,cam =
‖wi −wi−1‖2

∆tmini
(5.11)

used in the preprocessing of the flight plan before generating a position trajectory (sec-
tion 3.2). It should be noticed that this method has some drawbacks. Firstly, it induces
some conservatism and, secondly, it does not guarantee that the camera reference varia-
tions will not be locally large. However, this is a first approach approach to facilitate the
generation of the camera motion, that can be improved later.

To achieve this, since the position trajectory is not yet generated when the estimated
durations are computed, it is approximated by a broken line joining the waypoints. In
other words, we suppose that the waypoint validations occur on the waypoints and that
the velocity on the i-th piece is collinear to the vector wi − wi−1. Then, the camera
reference at the beginning and at the end of each piece of trajectory can be approximated
by using the expression given in the previous paragraph and their difference gives the
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excursion on each camera axis, ∆ηi (with η designating either ψc, θc, ϕc or mc). Given
the slope references η̇i for the ramp behaviors and a general bound for the time derivative
of the reference on each axis, η̇max, a minimum approximated duration of the piece can be
computed

∆tmini =
∆ηi
η̇i

(5.12)

with η̇i = η̇max for camera behaviors other than the ramp behavior. Then (5.11) is used to
obtain a speed limitation for this piece of trajectory.

In this section, we detailed how the camera references are computed for each available
camera behavior. In the next section, we propose one way to smoothly track these refer-
ences by the mean of an MPC law.

5.3 Camera control

As described above, different types of camera behavior can be specified over each piece of
trajectory. These can lead to discontinuous camera references, for example when validating
a waypoint with a POI yaw behavior to join another waypoint with a tangent yaw behavior,
or when passing above a POI. In this section we propose a way to smoothly track the
considered camera references while keeping the framing error low.

5.3.1 Nominal model following control architecture

The drone used for this work is a Parrot Bebop 2, equipped with a fixed, digitally
stabilized front camera, which acts as a virtual gimbal. This virtual gimbal can roll without
restrictions but its heading and elevation relatively to the drone are limited into a cone. In
order to keep the allowed camera elevation excursion as high as possible, the drone heading
relatively to the ground is imposed to be the same as the one of the camera (still relatively
to the ground). This way, without perturbations on the yaw axis, the virtual gimbal only
has to roll and pitch during the flight.

This implies that the yaw axis behavior of the attitude loop of the drone must meet some
requirements in order to ensure a good video quality. These performance specifications
are typically, in order of priority: a minimum phase behavior, a smooth and slow time
response and the absence of oscillations, undershoots and/or overshoots. The tracking
errors result in bad framing of the video and thus should also be limited. This means that
the disturbance rejection dynamics should be stiff, as opposed to the reference tracking
which should be smooth.

To achieve this, the Nominal Model Following Control (NMFC) architecture proposed
in [67] is used in this work. This architecture consists in a 2-stage controller as illustrated
in figure 5.1. Its robustness regarding disturbances and its performances in decoupling
reference tracking and disturbances rejection dynamics are discussed in [111].

The principle of this architecture is the following

• A first stage, called virtual controller, has a virtual linear drone model track the
heading reference according to the requirements for a good video quality in terms
of smoothness, angular speed etc. This nominal model is referred to as the virtual
model.
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Figure 5.1 – NMFC architecture for the heading controller

• The output heading trajectory performed by the virtual drone is then tracked as a
reference by the second stage, called the physical controller, acting directly on the
real drone and using the real-time estimated state of the real drone.

• The control signals generated by the virtual controller are sent as a feedforward
control input to the real drone. Thus, if the virtual model matched perfectly the real
drone dynamics, without uncertainties and perturbations, the drone would actually
be controlled in open-loop and the physical controller would not have to generate
any control signal.

This architecture is a simple way to separate the reference tracking and the disturbance
rejection dynamics.

Heading references can vary significantly from a piece of trajectory to another, depending
on the chosen camera behavior. As a consequence, the heading reference over the entire
mission can include steps, ramps or smooth parts. Due to its anticipating action, a MPC
is used as virtual controller, in order to efficiently track this reference. This is illustrated
on figure 5.2, a step reference is tracked both by a causal controller and a MPC. Both
controller are volontarily slow in order to provide a smooth response, which lead to a
large transient error (represented by the light red area) for the causal controller. On the
contrary, thanks to its anticipative action, the MPC is able to reduce the tracking error
while still offering a smooth and slow response [21].

Figure 5.2 – Anticipative behavior of a predictive controller

Furthermore, this type of controller can explicitly take constraints into account, e.g. in
order to limit the rotation speed, acceleration or jerk. The anticipative behavior of the
MPC is obtained by the use of a preview on the future references and the prediction of
the system response to a given series of future control inputs, obtained by propagating a
model of the system. The latter is detailed in the next section.
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5.3.2 Virtual model

The virtual heading dynamics is described by a continuous-time LTI system such as the
one derived from the linearization of the drone dynamics near the hovering equilibrium in
section 2.6. More specifically, we simplify the state space model (2.117) in order to only
take into account the yaw axis of the drone

ẋ(t) = A x(t) + B u(t)

z(t) = C x(t) + D u(t)
(5.13)

with x ∈ Rn the state vector, u ∈ Rp the control vector and z ∈ Rm the output vector.
Here, we choose u = vr (see section 2.6)

z =
(
ψ r ṙ

)> (5.14)

where ψ denotes the drone heading, r ≈ ψ̇ and ṙ denote its angular velocity and acceleration
around the yaw axis, respectively, and

A =


0 1 0 0
0 −cr 1 τr
0 0 0 1
0 0 −$2 −2ξ$


B =

(
0 0 0 $2

)>
C =

1 0 0 0
0 1 0 0
0 −cr 1 τr


D = 04×1

(5.15)

Given this model, we now detail the MPC tuning parameters and synthesis.

5.3.3 MPC controller

The virtual model (5.13) is discretized with a sampling period TMPC. In the sequel, this
equivalent discrete-time model is

ẋMPC[k + 1] = AMPC xMPC[k] + BMPC uMPC[k]

zMPC[k] = CMPC xMPC[k] + DMPC uMPC[k]
(5.16)

This discretized model (5.16) is controlled by a MPC controller. The controlled variables
are the heading and its two first derivatives, i.e. the rotation speed and acceleration on
the yaw axis. For a discrete signal y, we denote by ŷ[k + i|k] the prediction of the value of
y at the step k+ i, computed using its value at the step k. The MPC controller generates
at each step a control signal minimizing

• The heading tracking error ψref − ψ

• The angular speed r for the reasons mentioned in section 1.2.3 (aesthetic and motion
blur)

• The angular acceleration ṙ and the control input variations ∆uMPC, strongly linked
to the angular jerk, in order to obtain a smooth motion
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with, at each step k, the control signal increment ∆uMPC[k] = uMPC[k] − uMPC[k − 1].
This leads to a classical quadratic cost function (as described in [21] and [73])

J [k] =

hp∑
i=1

∥∥∥zref
MPC[k + i]− ẑMPC[k + i− 1|k]

∥∥∥2

Q
+

hu−1∑
i=0

‖uMPC[k + i]− uMPC[k + i− 1]‖2R

(5.17)
where hp and hu define the prediction and control horizons, respectively, and ẑMPC denotes
the prediction of zMPC. The weighting terms are the diagonal matrix

Q =

µψ µr
µṙ

 (5.18)

and R = µṙ, with µψ, µr, µṙ adjustable strictly positive weights on each controlled variable
and µṙ a strictly positive weight on the control signal variations.

An advantage of the MPC strategy is that it explicitly takes into account the constraints
in the generation of the control signals. The control signal can thus be bounded between
maximum admissible values

|uMPC| 6 umax (5.19)

In order to comply with the feasibility proof of the position trajectory given in section 3.3,
another constraint could be added on the angular speed, by the mean of a soft constraint
as recommended in [73] for state constraints

|r| 6 rmax + εr

εr > 0

J̃ = J + µεεr

(5.20)

with εr a slack variable and µε its weight in the cost fuction. The use of a soft constraint
means that the maximum angular speed can be exceeded and when it occurs, the MPC
temporarily increases the priority of the reduction of the angular speed. Another, more
conservative but less computation demanding way to achieve a similar goal is to bound the
variations of the references

ψ̃ref [k] = ψref [k − 1] + min {rmax,max {−rmax, ψref [k]− ψref [k − 1]}} (5.21)

As for the soft constraint, this does not guarantee that the speed limitation will not be
temporarily exceeded, but only that the reference to track does not exceed this limitation.

Remark 13 Though the use of soft constraints would have constituted a more elegant
solution, the very limited on-board computation power of the Bebop 2 prevented to deploy
such a solution, at least in a reasonable amount of time.

5.3.4 MPC undersampling

To be relevant, a MPC controller must be able to predict the reference and the behavior
of the system over a time horizon consistent with the time response of the system and the
desired time response of the closed-loop. In the case of the camera angle control, slow and
smooth responses are desired, leading to a prediction horizon around one second or more.
This is an issue as a low sampling period is required to efficiently control the system and

125



5.3. CAMERA CONTROL

reject disturbances. Typical orders of magnitude for this sampling period lie from 1 ms to
10 ms, which would result in large prediction horizons of hundreds to thousands of steps
(such as in [70]). The computation resources of the drone being restricted, a solution is to
undersample the MPC to a lower frequency in order to get a more reasonable prediction
horizon. The control signals sent by the MPC are then interpolated at higher frequency
and sent as a feedforward to the real drone. Early simulations showed that undersampling
the MPC to a reasonable sampling frequency prevented the use of a zero-order hold for
this task, as the discontinuities of the control signal would produce small jolts in the video,
and that even smooth camera angles inputs from the user would still end looking like a
sequence of steps.

In order to prevent this jerky behavior, the MPC generates piecewise affine control
signals at low frequency which can then be interpolated at higher frequency. To achieve
this, two virtual models are used

• An oversampled virtual model, discretized at the drone sampling period Ts

• An undersampled virtual model, discretized at the MPC sampling period TMPC =
K Ts, with K ∈ N.

Figure 5.3 illustrates the block diagram of the proposed heading virtual MPC controller.
The reference generation then works as follows

Figure 5.3 – Block diagram of the heading virtual controller

• The undersampled virtual model is controlled by the MPC controller, which generates
an undersampled control signal uMPC[k]

• The undersampled control signal is interpolated using an affine law, leading to a
continuous piecewise affine control signal uMPC(t)

• This piecewise affine control signal is sampled at the drone sampling period, which
gives an oversampled control signal us[l], sent to the oversampled virtual model

• The output of the oversampled signal constitutes the reference to be tracked by
the physical attitude controller, while the oversampled control signal is sent as a
feedforward input

• The undersampled control signal keeps being interpolated until an entire sampling
period TMPC has passed, and a new undersampled control signal uMPC[k + 1] is
generated by the MPC controller.

An example of an undersampled signal filtered by a causal First-Order Hold (FOH) fil-
ter before re-sampling at a higher frequency is presented on figure 5.4 with in red the
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Figure 5.4 – Oversampling strategy for the virtual heading MPC controller

undersampled signal, in green the undersampled signal filtered by the causal FOH and
in blue the oversampled signal. Notice that the Zero-Order Hold (ZOH) discretization
does not hold anymore for the undersampled virtual model. For a given time t such as
l Ts 6 t < (l + 1)Ts, with l ∈ N, and l Ts = k TMPC + i Ts = (kK + i)Ts, with k ∈ N and
i ∈ [[0,K − 1]], the following expression holds

us(t) = us[l] =

(
1− i

K

)
uMPC[k − 1] +

i

K
uMPC[k] (5.22)

The continuous-time system is modeled by the LTI state-space representation (5.13).
The ZOH discretization at the period Ts of this continuous-time system is given by

us[l + 1] = F xs[l] + G us[l]

zs[l] = C xs[l] + D us[l]
(5.23)

with F = eATs and G =
(∫ Ts

0 eAθ dθ
)

B.

The discretized expression of the undersampled system controlled by the MPC law is
recursively computed. Starting from

xs[(k + 1)K] = F xs[(k + 1)K − 1] + G us[(k + 1)K − 1]

= FK xs[kK] +
K−1∑
i=0

FK−1−iG us[kK + i]
(5.24)

and using (5.22), it leads to

xs[(k + 1)K] = FK xMPC[k]

+

(
K−1∑
i=0

(
1− i

K

)
FK−1−iG

)
uMPC[k − 1]

+

(
K−1∑
i=0

i

K
FK−1−iG

)
uMPC[k]

(5.25)

This gives the following expression for the undersampled model

xMPC[k + 1] = AMPC xMPC[k] + BMPC uMPC[k]

zMPC[k] = CMPC xMPC[k]
(5.26)
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with

xMPC[k] =

(
xMPC[k]

uMPC[k − 1]

)

AMPC =

 FK
K−1∑
i=0

(
1− i

K

)
FK−1−iG

0p×n 0p×p


BMPC =

K−1∑
i=0

i
K FK−1−iG

Ip


CMPC =

(
C D

)

(5.27)

Since the inputs and outputs of these two models are the same, the expression of the cost
function (5.17) is unchanged (but with the model (5.26) used for the prediction).

The weights of the cost function (5.17) remain to be adjusted, which is the topic of the
next section.

5.3.5 PSO-based MPC tuning

The model (5.26) is used for the MPC controller synthesis, which requires to tune 6
strictly positive parameters: hp, hu µψ, µr, µṙ and µ∆u. The sampling period for the
MPC controller is considered TMPC = 0.1 s. A time response around 1 s is chosen for the
closed-loop in this work, which means that a pertinent prediction horizon hp would be
around 10 steps. Finally, the control horizon hu should be reduced in order to limit the
computing resources requirement if constraints are to be added.

For given values of hp and hu, the tuning of the 4 remaining parameters is performed
by a Particle Swarm Optimization (PSO) algorithm. First, for a given scenario, an ideal
response of the oversampled model is defined, as well as a template around this ideal
response. This ideal response is obtained using a linear, non causal low-pass filter. Then,
the optimization program has to find the set of parameters of the undersampled MPC
controller that leads to the closest oversampled response to the ideal one in the mean
square sense. Penalties are added to the cost function should the closed-loop response exit
the template, overshoot or undershoot, show a non-minimum phase behavior or oscillate

Jtuning =

NJ∑
l=0

(ψideal[l]− ψ[l])2 +
3∑
i=1

εi (5.28)

with 

ε1 =

NJ∑
l=0

µtemplate max {ψ[l]− ψtemplate,max[l], ψtemplate,min[l]− ψ[l], 0}

ε2 =

NJ∑
l=0

µovershoot max {ψ[l]− ψmax[l], 0}

ε3 =

NJ∑
l=0

µundershoot min {ψ[l]− ψmin[l], 0}

(5.29)

with NJ the number of steps in the scenario, ψideal the ideal response and µtemplate,
µovershoot and µundershoot strictly positive weights. The weights µtemplate, µovershoot and
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µundershoot do not require any fine tuning. The weight µundershoot must be large as a non-
minimum phase behavior of the closed loop seriously impacts the quality of the video. The
template penalty µtemplate should come after, and finally the overshoot penalty µovershoot,
that can be set null since the template already penalizes a too large overshoot.

The task is then repeated for different values of hp and hu and the settings producing the
lowest cost function value are chosen. This procedure is automatized for more convenience.

Simulation of the undersampled MPC tuned with the parameters obtained with this
PSO tuning are shown on figure 5.5. For a ramp reference (red), the MPC generates an
undersampled control signal (blue). This control signal is re-sampled at higher frequency
(light blue) and sent to the oversampled virtual model, whose heading (light blue, serving as
a filtered reference for the physical controller) is close to a previously defined ideal response
(dash green). On the one hand, thanks to its large time horizon, the MPC is able to
anticipate the reference and to confer the closed-loop system a slow but accurate response.
On the other hand, the FOH strategy succeeds in smoothing the under sampled control
signal of the MPC and the response of the oversampled virtual meets the smoothness
requirements of section 1.2.3.

Figure 5.5 – Heading ramp response with the optimal MPC settings

The elevation, roll and magnification of the camera do not have any dynamics since
they are given by the virtual gimbal of the Bebop 2. As a consequence, their references
are filtered by a non-causal low pass filter, which does not induce any phase distortion.
As with the heading MPC, the non causal filter for the other DOF of the camera are
undersampled and filtered by a FOH in order to avoid hundreds of evaluations of the
references at each step, while still keeping a large enough horizon for the filter to efficiently
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smooth the references. The smoothed pitch, roll and magnification references obtained as
outputs of these non-causal filters are sent to the digital stabilization of the Bebop 2.

As explained in section 5.3.1 the control signal generated by the heading MPC is sent
to a virtual, simulated drone. The output of this virtual model is sent as a smoothed
heading reference both to the virtual gimbal and to the real drone. The heading reference
of the drone is thus imposed, but its reference attitude still has 2 DOF left. In the next
section, we use the thrust reference of the drone for tracking the position trajectory to set
these 2 DOF and reconstruct the full, 3D attitude reference to be tracked by the attitude
controller of the quadrotor.

5.4 Drone full attitude reference

In addition to the heading reference, the drone also needs to track the position trajectory
by adjusting its thrust and pitch/roll angles. At each time instant, a position controller is
thus in charge of computing a 3D thrust reference fref in the ground frame NED for this
task

fref =

fxfy
fz

 (5.30)

Since, in a first approximation, the drone can only generate a thrust along its vertical
vertical axis (2.48), the drone have to make its vertical axis zD coincide with the desired
thrust direction fref/‖fref‖2. As a consequence, if the heading reference sets 1 dimension
of the drone attitude, the direction of the thrust fref requested by the position controller
dictates the 2 others. This section focuses on a way to merge the thrust vector and heading
references to produce 3D attitude references to be followed by the (physical) attitude
controller.

5.4.1 Angle fusion for the Parrot Bebop 2

Given a yaw reference ψ (set as the output of the virtual model (5.23) in our work) we
define the vector

xhoriz =

cψsψ
0


W

(5.31)

in the ground horizontal plan, defining the heading direction we desire to achieve. Given
such a vector, it is suggested in [66] to reconstruct the reference drone axes (xref ,yref , zref)
by the following method.

• First, the reference vertical axis zref of the drone is given by the reference thrust
vector

zref = − fref

‖fref‖2
(5.32)

• Then, the y-axis yref can be set as a vector normal both to zref and the projection
of xhoriz on the plan normal to zref , i.e.

yref =
zref × xhoriz

‖zref × xhoriz‖2
(5.33)

130



CHAPTER 5. CONTROL STRATEGY

• Finally, the x-axis xref is set to complete the vector basis

xref = yref × zref (5.34)

With this solution, the heading of the reconstructed 3D attitude (angle of the z-axis rota-
tion of the ZYX Euler angle, see section 2.3.1) does not exactly correspond to the yaw refer-
ence in the general case. This is illustrated on figure 5.6 for which the desired heading is null
(xhoriz = xW) and the desired thrust direction is fref/‖fref‖ = (−0.3536, 0.3536,−0.8660)W .

Figure 5.6 – Heading mismatch when using the projection method for reconstructing the 3D attitude
reference

Instead, this heading actually is the one minimizing the angle between the vectors xhoriz

and xref . This is not an issue with the Bebop 2 as the FOV of the front camera allows the
virtual gimbal to correct this. On the contrary, this is even an advantage as, by minimizing
the angle between xhoriz and xref , there are more chances that xhoriz lies within the FOV
of the fixed camera, which is a cone of axis xref . This method is thus suited for the Bebop
2. This last aspect will be detailed in section 5.4.3.

Nevertheless, as it has been mentioned in chapter 4, Parrot released a new quadrotor
during this thesis, the Parrot ANAFI. Though this work was originally intended for the
Bebop 2, we desired to extend it to the ANAFI. The latter possesses a 2-axis mechanical
gimbal (roll, pitch), with a digital stabilization of the yaw axis. Contrary to the Bebop 2,
the mechanical axes of the gimbal confer a much larger excursion to the y-axis of the camera
for the ANAFI, but as a counter part, the digital stabilization is much more limited in range
on the yaw axis, and it is critical that the heading of the drone coincides with the reference
camera heading. As a consequence, the angle fusion suggested in [66] and exposed above is
no longer suited. For a given yaw reference, we rather seek to have the x-axis of the drone
lying in the vertical plane defined by the heading reference, xref ∈ (G,xhoriz, zW), or in
other terms, we seek to set xref such that its projection on the horizontal plan (G,xW ,yW)
is collinear to xhoriz. In order to achieve this, we now propose a new way to merge the
thrust direction and yaw references into a 3D attitude reference, suited for the Parrot
ANAFI quadrotor.
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5.4.2 Angle fusion for the Parrot ANAFI

As for the previous method, we set the reference z-axis of the drone as zref = − fz
‖fref‖2

.
This reference zref can be parameterized in the ground fixed frame NED by the ground
angle α ∈ [0, π] and the angle β ∈ [−π, π] such that

zref =

 sβsα
−cβsα
cα


W

(5.35)

Conversely, these angles can be reconstructed from a given vector zref as follows

α = arccos
(
z>ref zW

)
β =

{
0 if α = 0

arctan2

(
z>ref xW , z

>
ref yW

)
otherwise

(5.36)

This is illustrated on figure 5.7, where the ground vertical axis zW is rotated of an angle α
around the vector cβ xW + sβ yW , in the horizontal plan (in dashed grey on the figure).

Figure 5.7 – Parameterization of the vertical axis of the drone with the angles α and β

Setting zref = − fz
‖fref‖2

, we can compute the parameters α and β from the desired thrust
direction

α = π − arccos

(
fz
‖fref‖2

)
β =

{
0 if α = 0

arctan2 (fx, fy) + π otherwise

(5.37)

We suppose that α < π/2. We can now look for the vector xref lying in the plan
(G,xhoriz, zW) and normal to zref .

Since it is in the plan (G,xhoriz, zW), xref can be expressed in the following manner

xref = Rψ Rγ xW (5.38)

where

Rψ =

cψ −sψ 0
sψ cψ 0
0 0 1


Rγ =

 cγ 0 sγ
0 1 0
−sγ 0 cγ

 (5.39)

with γ ∈ [−π, π] represented on figure 5.8.
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Figure 5.8 – Definition of the γ angle

Replacing Rψ and Rγ by there expressions (5.39) in (5.38) leads to

xref =

cψcγsψcγ
−sγ


W

(5.40)

Since xref is normal to zref , we can write

x>ref zW = 0 (5.41)

By injecting (5.35) and (5.40) in this expression, we get

cγsα (sβcψ − cβsψ)− sγcα = 0 (5.42)

and

γ = arctan2 (sα (cψsβ − sψcβ), cα) (5.43)

which gives xref by injecting this result into (5.40). Finally, we complete the basis by
setting

yref = zref × xref (5.44)

We thus obtain the full reference attitude

Rref =
(
xref yref zref

)
(5.45)

The results of this method applied to the same heading and thrust direction references
as for the figure 5.6 are illustrated on figure 5.9.
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Figure 5.9 – Reconstructed 3D attitude reference proposed in this work

The heading extracted from the reconstructed 3D attitude reference now matches the
yaw reference ψ.

In order to better understand the differences between the two methods, we compare
their result on an example in the following section.

5.4.3 Comparison of the two methods

Figure 5.10 gives a simplified representation of the sets of achievable recording directions,
relatively to the drone. For a camera direction xcam, if xcam lies within this feasible set,
the direction pointed by xcam appears at the center of the video. The framing is correct.
Conversely, if xcam does not lie within the sets represented on figure 5.10, the camera has
reached its maximum achievable excursion and the direction pointed by xcam does not
appear at the center of the video. The framing is then wrong. In the worst cases, the
direction pointed by xcam does not appear at all on the video and the target is out of the
field of view.

Figure 5.10 – Simplified representations of the feasible directions of recording of the Bebop 2 and the
ANAFI

These achievable sets are given by the field of view of the front fish-eye camera for
the Bebop 2 which is fixed relatively to the drone. For the ANAFI, the roll axis of the
mechanical gimbal first cancels the roll of the drone and then the pitch axis of this gimbal
tilts the camera to the desired pitch. Consequently, at the difference of the Bebop 2, the
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feasible sets of the ANAFI does not rotate with the drone when the drone rolls (as long
as the roll axis of the mechanical gimbal is able to cancel the drone roll). The feasible set
still pitches with the drone though. Finally, a small digital margin on the yaw axis of the
camera is given by the digital stabilization.

We now illustrates on two examples how the choice of the method for reconstructing the
reference attitude interacts with these achievable camera direction sets. We start with an
example with the Bebop 2.

Bebop 2. The first example is illustrated on figure 5.11, with a Bebop 2 drone. The
vector xhoriz is represented in red, the vector xref in blue and the direction of recording,
xcam, in green. On the left, the method of section 5.4.1 is used for reconstructing the
attitude reference, while the method of section 5.4.2 is used on the right. On the right, the
heading of the drone coincides with the one given by xhoriz, as explained in section 5.4.2,
but this leads to a larger angle between the vectors xref and xcam, sending xcam outside of
the feasible set. On the contrary, on the left, using the method of section 5.4.1 leads to a
smaller angle between the vectors xref and xcam, and xcam is now reachable.

Figure 5.11 – Comparison of the two attitude reconstruction methods on the Bebop 2

In addition, we can propose another, new way to reconstruct the 3D attitude reference
that minimizes the angle between the vectors xref and xcam by replacing (5.33) by

yref =
zref × xcam

‖zref × xcam‖2
(5.46)

i.e. by setting xref as the projection of xcam on the plan normal to zref , rather than the
projection of xhoriz. The results of this method are presented on figure 5.12, with the
original method used on the left and the proposed alternative on the right. On the right,
the camera direction lies within the feasible set. On the contrary, with the original method
(on the left) it is inside of the admissible FOV.

Though this method does indeed reduce the angle between the vectors xref and xcam

compared to the method of section 5.4.1, and thus helps maintaining xcam in the feasible
set for any reference thrust direction, it leads to a significant deviation from the original
yaw reference. As a consequence, the feedforward generated by the undersampled MPC
of section 5.3 might not be consistent with the reconstructed heading trajectory. For this
reason, we abandoned this approach for this work and decided to keep the original method
proposed by [66]. However, in a different context, it could be an advantageous approach
for maximizing the reachable camera directions set.
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Figure 5.12 – Alternative attitude reconstruction methods on the Bebop 2

ANAFI. The second example is illustrated on figure 5.13, with the ANAFI. The vector
xhoriz is represented in red, the vector xref in blue and the direction of recording, xcam,
in green. On the left, the method of section 5.4.1 is used for reconstructing the attitude
reference, while the method of section 5.4.2 is used on the right. On the left, the heading
deviation induced by the reconstruction of the attitude makes xcam exiting the feasible
set. On the contrary, on the right, using the method of section 5.4.2 increases the pitch
required by the gimbal to reach the desired camera direction but the resulting attitude
reference is free of heading deviation, which brings xcam back into the feasible set.

Figure 5.13 – Comparison of the two attitude reconstruction methods on the ANAFI

Remark 14 In practice, the FOV of the Bebop 2 is large enough to prevent the target to
completely exit it (supposing that the reconstructed attitude reference is accurately tracked).
However, this issue is still significant enough in practice to prevent a correct framing, i.e.
to have the desired camera direction centered in the video on the Bebop 2 if the method 2
proposed in section 5.4.2 is used for the reference attitude reconstruction. The same goes
for the Parrot ANAFI, although the issue is more significant than on the Bebop 2 as the
stabilization margins on the yaw axis are severe on this drone. Hence, using the method of
section 5.4.1 for ANAFI can lead to significant framing errors, while they are non-existent
when using the method proposed in section 5.4.2.
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5.5 Conclusion

In this chapter, we tackled the last remaining task for performing an autonomous aerial
footage: the generation of the magnification trajectory and the rotation motion of the
on-board camera.

To achieve this, as a first contribution, we propose to use a Nominal Model Following
Control (NMFC) scheme to separate the reference tracking and the disturbance rejection
dynamics. In order to have a smooth and slow reference tracking without inducing too much
tracking error, we suggested to use a linear Model Predictive Control (MPC) controller as
virtual controller of the NMFC. Since a large time horizon is required to obtain a smooth
response, we propose as a second contribution to undersample the MPC controller and to
filter the control signals it outputs by a FOH filter. The filtered control signal are then
re-sampled at the higher drone frequency by a classical Zero-Order Hold (ZOH) filter. This
way, the undersampling of the MPC does not induce low frequency discontinuities in the
control signals, which would have degraded the smoothness of the system response. The
performances of this control scheme were convincing when confronted to simulation we
were able to deploy it on-board, during an outdoor flight experiment. These results were
part of the publication [105].

Finally, we study the impact of the method to reconstruct the full attitude reference
of the drone from the desired heading of the camera output by the NMFC controller and
the thrust reference output by the position controller of the drone. Though the classical
method used in the literature for this task appears suited for the Bebop 2, it is not viable for
the newer Parrot drone, the ANAFI, due to its different image stabilization mechanism.
To palliate this issue, we proposed, as a last contribution, a new method to merge the
heading and thrust direction references into a full attitude reference which fixes the drone
heading equal to the camera heading.
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Chapter 6

Conclusion

6.1 Summary

Through this PhD thesis, we developed a strategy to compute a 7D cinematographic
quadrotor trajectory from a generic high level reference. The proposed method is capable
to deal with various types of 3D waypoints to join, along with a wide variety of camera pan,
tilt, roll and magnification behaviors. The computation of the trajectory is split into, first,
the generation of a position trajectory, and, second, the generation of the camera rotation
motion and magnification trajectory. In both steps, aesthetic criteria are taken into account
to produce an overall smooth and natural 7D trajectory suited for cinematography.

In chapter 1, after a brief introduction to the domain of aerial cinematography in sec-
tion 1.1, we provided a complete specification of the goal to achieve in this work, in
section 1.2.

Then, in order to propose relevant solutions for the generation of the 7D quadrotor
trajectory, we conducted a deep investigation on the quadrotor model in chapter 2. Our
work differs and contributes to the literature in the use of screw theory for building the
model, which allowed us to perform a rigorous study of the gyroscopic and reaction torques
of the propellers (appendix B). Along with the construction of the model, we provided a
state-of-the-art on the modeling of quadrotors, including the different levels of modeling
(section 2.1), the dynamics of the quadrotor body and the representation of its attitude
(section 2.3), and the modeling of the different involved mechanical actions (section 2.4).
Since the tools of rigid body mechanics do not directly allow us to build a model of the
entire quadrotor, we developed the model of the drone body in order to get an equivalent
nonlinear model of the entire quadrotor. In a second part (section 2.6), we linearized
this model around the hovering equilibrium. This allowed us to emphasize the role of the
propellers inertia when tilting the propellers, as on industrial quadrotors. In particular, we
showed that this tilt resulted in the apparition of coupling terms between the 3 translation
axes and 3 rotation axes of the quadrotor, as well as the apparition of a non-minimum
phase behavior of the rotation dynamics of the drone. This result constitutes another
contribution of this chapter and was published in [105]. Finally, we proposed a new Linear
Time-Invariant (LTI) state-space model of the quadrotor near the hovering equilibrium for
a generic configuration of the propellers, taking into account the impact of the inertia of
the propellers as well as the dynamics of the Brushless Direct Current (BLDC) motors,
controlled in closed-loop by the Electronic Speed Control (ESC).

We then tackled the generation of the position trajectory in chapter 3. As a first con-
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tribution, based on the nonlinear model obtained in chapter 2, we derived a new set of
constraints on the time-derivatives of the position ensuring the feasibility of the trajec-
tory, suited for cinematography, in section 3.3. Using these constraints, we improved and
extended the existing bi-level snap optimization procedure of piecewise polynomial tra-
jectories to the case of cinematography in section 3.5 and section 3.6. More specifically,
we proposed to minimize both the duration of the mission and the jerk of the trajectory
in order to obtain a smooth motion respecting the speed references set by the user. As
another contribution, we were able to include the drag of the quadrotor as well as the
wind in the bi-level optimization method in section 3.7. We also studied in section 3.7
the impact of the initialization of the bi-level optimization procedure and the addition
of soft constraints in the optimization of the polynomial coefficients for improving the
speed profile of the trajectory. The strategy proposed in this chapter was successfully con-
fronted to simulations and returned smooth and visually satisfying trajectories. To finish,
we were able to confront the method to an outdoor flight experiment on a Parrot Bebop
2 quadrotor, with convincing results https://www.youtube.com/watch?v=IR9Ablo-ryI.
These contributions were published in [106].

Nevertheless, after identifying several limitations of the bi-level optimization strategy,
we proposed in chapter 4 a new, alternative method to generate the position trajectory,
based on the use of non-uniform B-spline curves. The choice to use B-spline curves to
parameterize the trajectory is motivated by their property to be easily bounded in convex
regions. This allows us to conveniently guarantee the respect of the flight corridors and
feasibility constraints over the entire trajectory, by constraining the control points of the
position trajectory and its time-derivatives inside feasible convex regions. Starting with
an overview and preliminary results on non-uniform B-spline curves in section 4.2, we
introduced in section 4.3 a novel, compact way to represent a piecewise clamped B-spline
that implicitly guarantees the validation criteria of the waypoints and the continuity of
the first derivatives of the position. This compact representation constitutes the first
contribution of this chapter and allows us to formulate the trajectory generation problem
as Nonlinear Programming (NLP) problem in section 4.4. This NLP formulation represents
the second contribution of this chapter, as we propose a new approach to generate a
minimum-time B-spline trajectory, while other metrics than the duration are usually used
in the literature for B-spline curves. The method successfully met the cinematographic
requirements when confronted to simulations in section 4.5 and, as another contribution, we
applied it in the context of an outdoor flight experiment on a Parrot ANAFI quadrotor, with
convincing results https://youtu.be/A0oYx268sis. These original results were published
in [107]. Finally, as a last contribution, we proposed 4 methods to generate a feasible B-
spline trajectory for the initialization of the NLP problem in section 4.6.

Finally, chapter 5 dealt with the generation of a smooth camera rotation motion and
magnification trajectory. After computing the camera references for each camera behavior
defined in the specifications of section 1.2, we proposed as a first contribution to use a
Nominal Model Following Control (NMFC) scheme to smoothly track the camera references
in section 5.3, as it is convenient to separate the reference tracking and disturbance rejection
dynamics. In order to obtain a slow but accurate tracking of the references, we use the
anticipative behavior of a Model Predictive Control (MPC) controller in the NMFC scheme.
Since the slow desired time response of the closed-loop system can lead to a large time
horizon of the MPC, we propose to undersample the controller and to interpolate its control
signals by a First-Order Hold (FOH) filter, before re-sampling them at high frequency and
to send them to an oversampled, nominal model of the drone. In order to explicitly take
this affine interpolation into account in the design of the MPC controller, we include the
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action of the FOH filtering, the high frequency re-sampling and the following Zero-Order
Hold (ZOH) filtering of the control signals generated by the MPC into the model used
for the state prediction. Since the tuning of the MPC controller can be delicate, we
proposed a method to choose the weights of its cost function based on a Particle Swarm
Optimization (PSO) algorithm. The behavior of the undersampled MPC law was validated
in simulation and tested on-board, during an outdoor flight experiment on a Parrot Bebop
2 quadrotor https://www.youtube.com/watch?v=IR9Ablo-ryI. These new results were
published in [106]. Finally, in section 5.4, we studied the reconstruction of the 3D attitude
reference of the drone from a thrust reference and the yaw reference of the camera. As
a last contribution, we proposed 2 new techniques to reconstruct this attitude reference
and we compared them to the usual method found in the literature, for 2 different image
stabilization mechanisms. In particular, we showed that the existing method from the
literature is not suited for a quadrotor equipped with a 2-axis mechanical gimbal.

6.2 Outlooks

Though the overall strategy developed in this PhD thesis for the autonomous perfor-
mance of aerial takes with quadrotors was validated on outdoor flight experiments, it still
constitutes a proof of concept. Several directions of development have been identified and
could complete this work.

Concerning the impact of the inertia of the propellers identified in the section 2.6 of
chapter 2 (i.e. the non-minimum phase behavior brought in the attitude dynamics by the
reaction torques of the propellers), it could be interesting to deepen the study by using
a more realistic, nonlinear model of the quadrotor, rather than the linearized one. This
would allow to characterize the phenomenon for a larger flight envelop, and to better quan-
tify its impact on the quadrotor flight. This would also be the opportunity to study the
impact of the gyroscopic torques of the propellers and to compare it with the impact of the
reaction torques for different domains of the flight envelop. Finally, the validation of these
phenomena on a real system would consolidate the theoretical results. Preliminary work
has been provided during this thesis to obtain such experimental results, with a specially
modified Bebop 2. The prototype presented a V4 configuration with a V-angle of 45◦,
as illustrated on figure 6.1, in order to highlight the non-minimum phase behavior of the
pitch axis. However, we did not have the opportunity to re-tune the on-board controllers
of the quadrotor to suit this new configuration, as this aggressive V-angle revealed partic-
ularly destructive to the closed-loop stability, on the real system. In the future, it could
nonetheless be interesting to perform more tests on this configuration.

Another potential improvement concerns the minimum-time B-spline trajectory gener-
ation algorithm proposed in chapter 4, which does not include the drag of the quadrotor,
as it was done in section 3.7 for the bi-level optimization proposed in chapter 3. This
could be achieved by using the fact that the product of 2 B-spline curves is also a B-spline
curve. As a consequence, the left term of (3.52) can be expressed as a B-spline curve, and
using the convex hull property on this curve by constraining its control points in a feasible
domain could be a solution to integrate the constraint (3.52) in the NLP problem (4.49).
In addition, further work is required to properly implement the minimum-time B-spline
trajectory generation algorithm in order to quantify the computation load needed to gen-
erate a trajectory and to assess its feasibility in real-time. This would also constitute a
valuable opportunity to compare its performances with other popular methods, in terms
of aesthetic quality of the trajectory, computation time and numerical robustness.
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Figure 6.1 – Prototype of V4 quadrotor

Furthermore, in chapter 5, the on-board computation resources prevented us from solving
a complex optimization problem with the MPC controller. With the improved computation
power of the most recent generations of consumer quadrotors, it could be interesting to
improve this method with a more detailed optimization problem, taking into account more
aesthetic requirements.

Finally, the overall method could be improved by the addition of obstacle avoidance
capacities. This could be achieved by using the cardinal B-spline based, local re-planning
method proposed in [122] which requires a smooth and feasible nominal global trajectory,
such as the ones obtained with the procedure exposed in chapter 4.
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Appendix A

Reminder on screw theory

A.1 Torsor

Vector field. Let E be a vector space of dimension n built on R along with a scalar
product, and E an affine space of direction E. A function V on E with values in E is called
a vector field

V :

(
E → E

P 7→ V (P )

)
(A.1)

Equiprojectivity. Let V be a vector field on E . V is equiprojective if it verifies

∀ (A,B) ∈ E2 V (A) · #    „

AB = V (B) · #    „

AB (A.2)

with · designating the scalar product on E.

Torsor. Let E be an affine space of direction R3. A torsor T on E is an equiprojective
vector field on E

Remark 15 In rigid body mechanics, E corresponds to the 3D physical space.

Moment. Let T be a torsor on E and P ∈ E . The evaluation of T at P , T (P ), is called
the moment of T at point P .

Resultant. Let T be a torsor on E . It has the property

∃! r ∈ R3, ∀(A,B) ∈ E2 T (B) = T (A) +
#    „

BA× r (A.3)

The vector r is called the resultant of T .

Remark 16 This property is a consequence of the equiprojectivity of a torsor.
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APPENDIX A. REMINDER ON SCREW THEORY

Elements of reduction. As a consequence of (A.3), it can be deduced that the resultant
of a torsor along with its moment at a given point entirely define this torsor. Such a pair
defines the reduction of a torsor at a point and is sometime called a screw. For a torsor T
on E , of resultant r, we denote its reduction at a point A ∈ E by the following notation

∀A ∈ E T =

{
r
T (A)

}
A

(A.4)

Remark 17 Using (A.3), the reduction of torsor on a point B ∈ E can be deduced from
its reduction at point A ∈ E as follows

∀(A,B) ∈ E2

{
r
T (A)

}
A

=

{
r

T (A) +
#    „

BA× r

}
B

(A.5)

A.2 Application in rigid body mechanics

Let SB be a rigid body of massm, center of mass G and inertia tensor JB/G. Attached to
this solid is the referential frame Body, RB, of origin B and vector basis BB = (xB,yB, zB).
It is in motion relatively to the inertial reference frame World, RW , attached to the ground,
of origin O and basis BW = (xW ,yW , zW).

Kinetic torsor. We define the kinetic torsor of the rigid body SB relatively to the
inertial reference frame RW

KB/W =

{
m vG/W

JB/G ΩB/W

}
G

,

{
pB/W
σGB/W

}
G

(A.6)

with vG/W the velocity of G in RW and ΩB/W the angular velocity of BB relatively to
BW . The resultant of KB/W is the linear momentum of SB and is denoted by pB/W in this
document. Its moment at a point P is the angular momentum of SB at P and is denoted
by σPB/W in this document.

Dynamic torsor. The time-derivative of the kinetic torsor is called the dynamic torsor

DB/W =
d

dt
KB/W =

{
d
dtpB/W
d
dtσ

G
B/W

}
G

,

{
µB/W
δGB/W

}
G

(A.7)

Its resultant is called the dynamic resultant and is denoted by µB/W in this document. Its
moment at a point P is called the dynamic moment at P and is denoted by δPB/W in this
document.

Mechanical action. Any mechanical action exerted by an actor A on an actor B can
be represented by a torsor, denoted at a point P by

FA→B =

{
fA→B
τPA→B

}
P

(A.8)

where fA→B and τPA→B are the resultant and the moment at P of this mechanical action,
respectively.
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APPENDIX A. REMINDER ON SCREW THEORY

Remark 18 If the resultant is null, then this action is called a torque. If there exists
a point P at which the moment is null, this action is called a force, applied at P . Any
mechanical action can be represented as the sum of a torque torsor and a force torsor.

Fundamental Principle of Dynamics. Let Fext→B denotes the sum of all the me-
chanical actions applied to the rigid body SB. The FPD applied to the solid SB can be
expressed

DB/W = Fext→B (A.9)
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Appendix B

Gyroscopic and reaction propellers
torques

This appendix details the calculations leading to the expressions of the reaction and
gyroscopic torques used in equation (2.44a). The use of screw theory to this aim constitutes
a contribution of this thesis and allows to identify several assumptions required to obtain
the usual expressions given, but rarely justified, in the literature.

We start by giving the general expression of the dynamic moment of a propeller at the
center of mass of the quadrotor, G. Then, we propose different assumptions which allow
to simplifie some of the terms of this dynamic moment. Finally, we rewrite this dynamic
moment in order to define 3 fictitious mechanical actions and give their expressions in the
drone vector basis.

Rotor The rotor of the i-th propeller, SPi , is linked to its stator (part of the drone body
SB) through a motorized pivot. This rotor is of mass mi, center of mass Pi and inertia
JPi/Pi . The frame RPi of origin Pi and vector basis BPi = (xPi ,yPi , zPi) is attached to
the rotor. The rotor is supposed to be correctly balanced, so that, relatively to the drone,
it only rotates along the axis (Pi, zPi). The ZYZ Euler angles ψi, θi and φi are used to
parameterize the attitude of the propeller relatively to the drone body, such that

RPi→B =

cψicθicφi − sψisφi −sψicθicφi − cψisφi sθicφi
cψicθisφi + sψisφi −sψicθisφi + cψicφi sθisφi

−cψisθi sψisθi cθi

 (B.1)

with ψi and θi fixed (defined in section 2.4.2). The angular velocity of the propeller
relatively to the drone body is given by

ΩPi/B = ωi zPi (B.2)

with ωi > 0. The angle φi gives the angular position of the rotor on its rotation axis (see
figure B.1).

Dynamic torsor Supposing that the mass and inertia of the propellers are invariant,
the dynamic torsor of the i-th propeller is given by

DPi/W =

{
µPi/W
δPiPi/W

}
Pi

=

{
µPi/W

δPiPi/W +
#     „

GPi × µPi/W

}
G

(B.3)
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Figure B.1 – Propeller angular position

with µPi/W given by equation (2.43) and δPiPi/W given by

δPiPi/W =
d

dt

(
JPi/Pi ΩPi/W

)
(B.4)

Knowing that ΩPi/W = ΩPi/B + ΩB/W , expression (B.4) can be written as follows

δPi

Pi/W = JPi/Pi

(
Ω̇Pi/B + ΩB/W ×ΩPi/B + Ω̇B/W

)
+
(
ΩPi/B + ΩB/W

)
×JPi/Pi

(
ΩPi/B + ΩB/W

)
(B.5)

Simplifications The assumption that the rotor is correctly balanced leads to equa-
tion (B.2) and implies that the term ΩPi/B × JPi/Pi ΩPi/B in equation (B.5) is null. Fur-
thermore, for a drone such as the Parrot Bebop 2

• The inertia of the rotors are significantly smaller than the inertia of the drone body
(up to 3 orders of magnitudes for the Bebop 2).

• The angular velocity and acceleration of the drone body relatively to the ground are
significantly smaller than the ones of the propellers relatively to the drone body.

Then, it is reasonable to neglect the terms JPi/Pi Ω̇B/W and ΩB/W×JPi/Pi ΩB/W in (B.5).
It can be noticed that the second observation does not hold for some extreme cases, such as
[84] or [131] for which the rotation speed of the drone body might be significant compared
to the one of the propellers.

Fictitious mechanical actions As a consequence, the dynamic torsor of the i-th pro-
peller can be expressed as the sum of 3 fictitious mechanical actions

DPi/W ≈ −Finertiai→B − Fgyroi→B − Fleveri→B (B.6a)

with

Finertiai→B = −
{

0

JPi/Pi Ω̇Pi/B

}
G

(B.6b)

Fgyroi→B = −
{

0
ΩB/W × JPi/Pi ΩPi/B + ΩPi/B × JPi/Pi ΩB/W + JPi/Pi ΩB/W ×ΩPi/B

}
G

(B.6c)

Fleveri→B = −
{

µPi/W
#     „

GPi × µPi/W

}
G

(B.6d)

respectively the reaction torque, the gyroscopic torque and the leverage action.

e



APPENDIX B. GYROSCOPIC AND REACTION PROPELLERS TORQUES

Reaction torque The moment of the reaction torque in the drone body basis BB is
given by

JPi/Pi Ω̇Pi/B =

RB→Pi JPiPi/Pi

 0
0
ω̇i


B

(B.7)

with JPiPi/Pi the matrix representing JPi/Pi in he basis BPi .

If we suppose the basisBPi principal of inertia for the propeller i (which is not completely
accurate in practice), JPiPi/Pi is diagonal

JPiPi/Pi ≈

Jxi Jyi
Jzi

 (B.8)

then expression (B.7) can be written

JPi/Pi Ω̇Pi/B =

ω̇i Jzisθicψiω̇i Jzisθisψi
ω̇i Jzicθi


B

(B.9)

The expression of the reaction torque is thus

Finertiai→B =


0−ω̇i Jzisθicψi−ω̇i Jzisθisψi

−ω̇i Jzicθi


B


G

(B.10)

Gyroscopic torque The moment of the gyroscopic torque is given by the sum of the 3
terms in (B.6c).

The expression of the term ΩB/W × JPi/Pi ΩPi/B in the basis BB is given by

ΩB/W × JPi/Pi ΩPi/B =

pq
r

 × RB→Pi JPiPi/Pi

 0
0
ωi


B

=

 ωi Jzi (qcθi − rsθisψi)
−ωi Jzi (pcθi − rsθicψi)
−ωi Jzi sθi (qcψi − psψi)


B

(B.11)

The expressions of the last two terms are more complex and dependent on φi. However,
for sufficient rotation speeds of the propellers, the angular velocities of both the propellers
and the drone body can be considered constant over a complete round of the rotor. We
thus propose to approximate the expressions of these two terms by their mean value over
one propeller round

ΩPi/B × JPi/Pi ΩB/W =

RB→Pi

 0
0
ωi

 × RB→Pi JPiPi/Pi RB→Pi
>

pq
r


B

(B.12)

which leads to

1

2π

∫ 2π

0
ΩPi/B × JPi/Pi ΩB/W dϕ =

−ωi 1
2

(
Jxi + Jyi

)
(qcθi − rsθisψi)

ωi
1
2

(
Jxi + Jyi

)
(pcθi − rsθicψi)

ωi
1
2

(
Jxi + Jyi

)
sθi (qcψi − rsψi)


B

(B.13)
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The same can be done for the last term

JPi/Pi ΩB/W ×ΩPi/B =

RB→Pi JPiPi/Pi RB→Pi
>

pq
r

 × RB→Pi

 0
0
ωi


B

(B.14)

which gives

1

2π

∫ 2π

0
JPi/Pi ΩB/W ×ΩPi/B dϕ =

 ωi
1
2

(
Jxi + Jyi

)
(qcθi − rsθisψi)

−ωi 1
2

(
Jxi + Jyi

)
(pcθi − rsθicψi)

−ωi 1
2

(
Jxi + Jyi

)
sθi (qcψi − rsψi)


B

(B.15)

It can be noticed that the two terms (B.13) and (B.15) cancel each other and only the
term ΩPi/B × JPi/Pi ΩB/W remains in (B.6c). The expression of the gyroscopic torque is
thus

Fgyroi→B =


0−ωi Jzi (qcθi − rsθisψi)

ωi Jzi (pcθi − rsθicψi)
ωi Jzi sθi (qcψi − psψi)


B


G

(B.16)

Rotor disk The more blades there are on the propellers, the more their inertia ap-
proaches the form

JPiPi/Pi ≈

Jxi Jxi
Jzi

 (B.17)

for which the inertia on the x-axis is equal to the inertia on the y-axis. This approximation
is quite valid for 3 or more blades per propeller (which is the case for the Parrot Bebop
2). If this is the case, then the propellers behave as flat cylinders of revolution axis zPi .
The dependence in φi disappears in the two last terms of (B.6c) and their expression is
exactly equal to the averaged expressions given above. In this case, the assumption of
constant body and propeller angular velocities over one round of a propeller is then no
longer required.
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Appendix C

Feasible rest-to-rest B-spline
trajectory

This appendix provides one way to initialize the Nonlinear Programming (NLP) (4.49)
with a C3, feasible, clamped B-spline trajectory, for the case studied in section 4.5. This
initial guess is a rest-to-rest trajectory with a Bang-Off-Bang (BOB) snap profile and it is
divided into three phases: accelerating, cruising, braking. A feasibility proof of this initial
solution is provided.

For a piece of trajectory i, joining two waypoints wi−1 and wi such that ‖wi −wi−1‖2 >
0, with a speed reference νi > 0, a maximum admissible acceleration amax > 0 and a
maximum admissible jerk jmax > 0, we first define the 2 scalars

ṽi = min

(
νi,

8 a2
max

9 jmax

)
(C.1a)

s =
3 j2

max

2 amax
(C.1b)

with ṽi the maximum reachable cruising speed with the method proposed in this appendix
and s a snap reference.

We now detail the case with a cruising phase.

C.1 Case with a cruising phase

In the case where

4 ṽi
3

√
ṽi
2s

< ‖wi −wi−1‖2 (C.2)

we can define the following time intervals

∆τacc =
3

√
ṽi
2s
, ∆τ cruise =

‖wi −wi−1‖2
ṽi

− 4∆τacc (C.3)

The clamped B-spline defined by the following knot steps and control points is chosen as
initial solution

∆τ init = (∆τacc 2∆τacc ∆τacc ∆τ cruise ∆τacc 2∆τacc ∆τacc) (C.4a)

P
(4)
init = ui · (s − s s 0 − s s − s) (C.4b)
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First, since νi > 0, amax > 0 and jmax > 0, we have ∆τacc > 0. Furthermore, using the
assumption (C.2) and given that ‖wi −wi−1‖2 > 0, it follows that ∆τ cruise > 0.

Using (4.22), the control points of the jerk are deduced from (C.4b), with a null jerk as
initial condition

P
(3)
init = ui · (0 s∆τacc − s∆τacc 0 0 − s∆τacc s∆τacc 0) (C.5)

From (C.1a) we can deduce that ṽi 6
8 a2max
9 jmax

, which, injected into (C.3), leads to

∆τacc 6
2 amax

3 jmax
(C.6)

Equations (C.1b) and (C.6) lead to s∆τacc 6 jmax. The norm of each control point of P
(3)
init

is bounded by s∆τacc and thus bounded by jmax.

Similarly, the control points of the acceleration are

P
(2)
init = ui ·

(
0 0

3

2
s∆τ2

acc 0 0 0 − 3

2
s∆τ2

acc 0 0

)
(C.7)

Using (C.1b) and (C.6), we can write 3
2s∆τ2

acc 6 amax. The norm of each control point of
P

(2)
init is thus bounded by amax.

The control points of the velocity are

P
(1)
init = ui ·

(
0 0 0 2s∆τ3

acc 2s∆τ3
acc 2s∆τ3

acc 2s∆τ3
acc 0 0 0

)
(C.8)

Equation (C.3) directly gives ∆τ3
acc = ṽi

2s . The bound on the norm of the control points of
P

(1)
init is then ṽi 6 νi.

Finally, one last integration step with the initial condition pinit0 = wi−1 gives the control
points of the position

Pinit = ui · (0 0 0 0 2α 4α 6α 8α 8α 8α 8α) + wi−1 (C.9)

with α = s∆τ3
acc

(
∆τacc + 1

4∆τ cruise

)
. Using (C.3) and ∆τ3

acc = ṽi
2s leads to α = 1

8‖wi −wi−1‖2.
The last control point of the position is thus wi.

We now detail the second case with no cruising phase.

C.2 Case without a cruising phase

If (C.2) is not satisfied, i.e.

4 ṽi
3

√
ṽi
2s

> ‖wi −wi−1‖2 (C.10)

we define

∆τacc =
4

√
‖wi −wi−1‖2

8s
(C.11)

Injecting (C.10) into (C.11) gives the same bound on ∆τacc as in the case with a cruising
phase

∆τacc 6
3

√
ṽi
2s

6
2 amax

3 jmax
(C.12)
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The clamped B-spline defined by the following knot steps and control points is chosen
as initial guess

∆τ init =

(
∆τacc 2∆τacc

1

2
∆τacc

1

2
∆τacc ∆τacc 2∆τacc ∆τacc

)
(C.13a)

P
(4)
init = ui · (s − s s s − s s − s) (C.13b)

The control points of the jerk are

P
(3)
init = ui ·

(
0 s∆τacc − s∆τacc −

1

2
s∆τacc 0 − s∆τacc s∆τacc 0

)
(C.14)

Therefore, given (C.1b) and (C.12), their norm is bounded by jmax.

The control points of the acceleration are

P
(2)
init = ui ·

(
0 0

3

2
s∆τ2

acc

1

4
s∆τ2

acc 0 0 − 3

2
s∆τ2

acc 0 0

)
(C.15)

Thus, given (C.1b) and (C.12), their norm is bounded by amax.

The control points of the velocity are

P
(1)
init = ui ·

(
0 0 0

7

4
s∆τ3

acc 2s∆τ3
acc 2s∆τ3

acc 2s∆τ3
acc 0 0 0

)
(C.16)

Equation (C.12) gives ∆τ3
acc 6 ṽi

2s , hence, the norm of each control points of the velocity
is bounded by ṽi 6 νi.

Finally, the control points of the position are

Pinit = ui ·
(

0 0 0 0
7

4
β

15

4
β

23

4
β 8β 8β 8β 8β

)
+ wi−1 (C.17)

with β = s∆τ4
acc. Given (C.11), the last control point of the position is thus wi.

C.3 Feasibility analysis

In both cases the position trajectory contains n+1 = 11 control points and n−k+1 = 7
knot steps. Its polynomial degree is thus k = 4, which implies that the position trajectory
is C3.

The fist control point of the position is wi−1 and the last one is wi (see (C.9) and (C.17)).
Since clamped B-splines are used, the trajectory then starts on wi−1 and ends on wi. The
trajectory is a straight line (see (C.9) and (C.17)), thus the lateral corridor constraints are
satisfied. The position control points are set between wi−1 and wi (see (C.9) and (C.17))
thus the convex hull property ensures that the longitudinal corridor constraints are satisfied
too. The bounds on the control points of the time derivatives of the position are respected.
Finally, the first and last control point of the velocity, the acceleration and the jerk are 0.
Laying end to end several of these feasible rest-to-rest trajectories thus leads to an overall
trajectory that is C3.

All the constraints are satisfied, the initial guess is feasible. This proves the validity of
the proposition 3.
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Appendix D

Résumé en français

D.1 Introduction

D.1.1 Contexte général

Grâce à leur faible coût et leur grande agilité, les véhicules sans pilote de type quadri-
coptère se sont largement popularisés depuis la dernière décennie. Si leur polyvalence
leur a permis de trouver des applications dans divers domaines comme la surveillance,
l’agriculture ou la photogrammétrie, ils se sont notamment imposés comme un moyen de
prise de vue aérienne privilégié. Il est ainsi désormais courant de voir des amateurs utiliser
des quadricoptères équipés de caméras stabilisées à des fins vidéographiques. Dans ce
contexte, le pilotage du drone n’est pas une fin en soi, comme elle peut l’être pour un
aéromodéliste, mais seulement un moyen d’acquérir des images. L’aspect pilotage de ces
appareils tend par conséquent à se retrouver en arrière plan et le public se tourne main-
tenant vers des appareils de plus en plus intelligents, capables d’accomplir des tâches haut
niveau de manière automatisée pour capturer des plans riches et complexes. Les appareils
les plus récents embarquent ainsi des algorithmes de cadrage automatique de sujets, de
suivi autonome de personnes ou de réalisation de plans de vol.

Le développement de tels algorithmes comme sujet de recherche au sein de la commu-
nauté scientifique est relativement récent et a réellement émergé dans la période 2015-2016,
bien que de tels algorithmes étaient déjà déployés par les industriels du domaine. Ce sujet
constitue aujourd’hui un sujet populaire de recherche sur lequel le nombre de publications
croit chaque année. Le développement de telles capacités requiert en effet des avancées
dans des domaines variés comme la vision par ordinateur (computer vision), l’apprentissage
automatique (machine learning) et l’automatique. Tous les aspects de l’automatique sont
notamment concernés, de la modélisation et identification à l’estimation et le contrôle.
Ces derniers aspects sont généralement regroupés en trois catégories dans le contexte de la
robotique

• Guidage. La couche de contrôle haut niveau en charge de générer des trajectoires
faisables depuis des consignes ou informations haut niveau, comme des points de
passages à rejoindre ou des positions d’obstacles à éviter par exemple.

• Navigation. L’estimation en temps réel de l’état du drone, en charge notamment
de la fusion des différents capteurs embarqués.

• Pilotage. La couche bas niveau du contrôle en charge de générer les signaux de
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commande destinés aux actionneurs, depuis les références issues du guidage et les
estimations issues de la navigation.

• Supervision. La supervision générale du vol, en charge de générer les références
haut niveau pour le guidage et de choisir les paramètres des trois autres blocs selon la
mission. Ce bloc peut être un programme ou un humain équipé d’une télécommande
par exemple.

Cette thèse porte sur le développement d’algorithmes de guidage et pilotage pour la
réalisation autonome d’une des tâches haut niveau mentionnées plus haut, la capture d’une
séquence de plans prédéfinis.

D.1.2 Spécification du problème

Le type de plan de vol à réaliser est spécifié dans le premier chapitre. Ils consistent en
la réalisation d’une séquence de plans formalisée par

• Points de passages. Une suite de points de passage à rejoindre et valider succes-
sivement.

• Couloirs de vol. Des couloirs de vol à respecter entre chaque point de passage,
sous forme de cylindre.

• Vitesse. Des consignes de vitesse pour rejoindre chaque point de passage, à ne pas
dépasser.

• Type de plan. Un type de plan à réaliser en rejoignant chaque point de passage.

Trois types de points de passage sont proposés : stop, pour lequel le drone doit s’arrêter
sur le point de passage (en début et en fin de plan de vol typiquement, ou pour prendre
une photo), lock, pour lequel le drone doit passer exactement sur le point de passage
(utile si le drone doit passer par une position spécifique telle qu’à travers une porte par
exemple) et sphere, pour lequel le drone doit seulement passer dans un voisinage du point
de passage. Les plans à réaliser sont quant à eux caractérisés par un comportement pour
chaque degré de liberté de la caméra (autre que sa position), à savoir son cap (pan),
son assiette (tilt), son inclinaison (roll) et son grossissement (zoom). Le comportement de
chaque degré de liberté de la caméra peut être choisi séparément. Parmi les comportements
proposés pour ces degrés de liberté figurent notamment le travelling (référence constante),
le panorama (référence en rampe), le point d’intérêt (suivi d’une cible fixe) ou le point
de vue (référence selon le vecteur vitesse du drone) ou enfin une transition entre deux
comportements différents. Un exemple de plan de vol est présenté figure D.1 et tableau
D.1.
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Figure D.1 – Exemple de plan de vol

Type Rayon Couloir Vitesse Pan Tilt Roll Zoom
w0 stop - - - cst. 0◦ cst. 0◦ cst. 0◦ cst. 1×
w1 sphere 1 m 1 m 2 m·s−1 trs. trs. cst. 0◦ cst. 1×
w2 sphere 1 m 1 m 2 m·s−1 PI PI cst. 0◦ cst. 1×
w3 stop - 1 m 2 m·s−1 PI PI cst. 0◦ vertigo

Table D.1 – Détails du plan de vol de la figure D.1

Des contraintes esthétiques et physiques sont prises en compte afin d’obtenir de ce plan
de vol une vidéo lisse et naturelle. Ces contraintes sont étroitement liées au quadricoptère
autour duquel s’articule les travaux de cette thèse, un Parrot Bebop 2 équipé d’une caméra
fixe, à la stabilisation entièrement numérique. Ces contraintes sont les suivantes

• La position, l’orientation et le grossissement de la caméra doivent évoluer de manière
douce et naturelle, sans discontinuités ou oscillations. L’accélération et le jerk quan-
tifiant cette notion de douceur et d’à-coups, leur amplitude doit rester limitée.

• La vitesse de rotation de la caméra doit être raisonnable pour ne pas produire une
vidéo chaotique et non satisfaisante d’un point de vue esthétique. La vitesse maxi-
male de rotation acceptable a été déterminée via un entretien avec un pilote profes-
sionnel et des tests en vol.

• Le Bebop 2 utilisant une caméra à la stabilisation entièrement numérique, son angle
relativement au sol doit rester en dessous d’une certaine valeur, due au fonction-
nement de la stabilisation. Cela est en partie la conséquence du champ de vision
limité de la caméra.

• La caméra du Bebop 2 étant fixe par rapport au drone, la vitesse de rotation de ce
dernier doit restée limitée afin de ne pas produire de flou de bouger qui dégraderait
la qualité de la vidéo.

Afin d’obtenir une réalisation autonome de plan de vols cinématographiques remplissant
ces critères, avec un Bebop 2, ces travaux mobilisent entre autre la modélisation et la
synthèse d’algorithme de guidage et pilotage du drone. Ce premier aspect est traité dans
un premier chapitre, dédié à la modélisation d’un quadricoptère tel que le Parrot Bebop 2.
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D.2 Modélisation

D.2.1 Construction du modèle

Le second chapitre de cette thèse consiste en une étude en profondeur de la dynamique
du drone menée en vue d’établir des modèles pertinents pour le guidage et le pilotage du
drone. Là où le formalisme de Lagrange est le plus souvent utilisé, le principe fondamental
de la dynamique et le formalisme des torseurs sont ici utilisés pour construire un modèle de
quadricoptère comme solide indéformable. Une approche à plusieurs niveaux est utilisée
pour satisfaire les différentes exigences de fidélité du modèle des algorithmes de guidage et
pilotage proposés dans la suite de la thèse. On préférera ainsi un modèle simplifié pour les
algorithmes de guidage et un modèle plus proche des actionneurs du drone pour la synthèse
des algorithmes de pilotage. Les hypothèses sous lesquelles sont construites le modèle sont
explicitées et justifiées, et comptent notamment l’hypothèse de la Terre plate et de solides
indéformables.

Le Bebop 2 étant constitué de plusieurs solides en interaction, son corps (représenté
figure D.2, à gauche) et ses rotors (représenté figure D.2, au milieu), il n’est pas possible
d’appliquer directement le principe fondamental de la dynamique directement au quadri-
coptère dans son ensemble. La construction du modèle est ainsi opérée en deux étapes

• La caractérisation de la dynamique et des actions subies par les différents constituants
du drone, à savoir son corps et ses rotors

• La construction d’un solide virtuel équivalent au drone complet (représenté figure
D.2, à droite), comprenant son corps et ses rotors

Figure D.2 – Schéma des différents solides considérés pour la modélisation

Les trois manières les plus répandues dans la littérature pour représenter l’attitude et
leur impact dans l’expression de la dynamique du drone, les angles d’Euler, les quaternions
unitaires et les matrices de rotation, sont exposées et comparées. Les différentes actions
mécaniques expérimentées par le drone sont présentées, et comptent la gravité, la réaction
de la masse d’air, vue comme une perturbation, et la poussée des moteurs (considérée
quadratique en la vitesse de rotation des rotors) et leurs effets d’inertie. La caractérisation
de la poussée des moteurs est notamment non triviale, car faisant intervenir de nombreux
phénomènes physiques comme la dissymétrie de portance entre rotors, le battement des
pales, la variation de densité de l’air avec l’altitude, les effets de proximité, la variation
de l’angle d’attaque des rotors due aux variations de vitesse air ou encore l’impact des
turbulences et de l’état de vortex entretenu. La caractérisation de la dynamique du corps du
drone et de ses interactions avec ses rotors et l’environnement permet ensuite de construire
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un modèle non linéaire équivalent du drone entier plutôt que du corps du drone uniquement

Accélération : ζ̈ = g zW +
4∑
i=4

fi + fpert

Attitude : Ṙ = R Ω̂

Accélération angulaire : J Ω̇ =

4∑
i=4

τi +
#     „

GPi × fi + τpert

Poussées moteurs : fi =
(
α0i + α1i ωi + α2i ω

2
i

)
zPi

Couples moteurs : τi =
(
β0i + β1i ωi + β2i ω

2
i

)
zPi − JPi ω̇i zPi −Ω× JPi ωi zPi

Dynamique moteur : ω̈i + 2ξi$i ω̇i +$2
i ωi = $2

i ωiref

(D.1)

Cette approche permet notamment de mener une étude rigoureuse des couples gyro-
scopiques et des couples de réaction générés par les rotors du drone. Tout au long de
la construction du modèle est proposé, en parallèle, un état de l’art de la modélisation
des quadricoptères. Afin de simplifier ce modèle et de mieux comprendre les effets de
l’inertie des rotors dans la dynamique en rotation, ce modèle est ensuite linéarisé autour
de l’équilibre correspondant au vol stationnaire.

D.2.2 Linéarisation du modèle et étude des configurations moteurs

Une linéarisation du modèle obtenu autour de l’état de vol stationnaire est étudiée et
permet de mettre en évidence le découplage des dynamiques en lacet, roulis, tangage et
translation verticale, ainsi que l’effet de l’inertie des rotors sur l’axe de lacet, via la matrice
de mixage.

Considérant tous les groupes propulsifs identiques et décomposant leur vitesse de rotation
ωi en leur vitesse en vol stationnaire ωhi et un incrément de vitesse par rapport à celle-ci
δωi

ωi = ωhi + δωi (D.2)

il est possible d’introduire des signaux de commande
δω1

δω2

δω3

δω4

 = Bv→ω ·


vw
vp
vq
vr

 (D.3)

tels que les expressions linéarisées de la dynamique en rotation et vitesse verticale puissent
être découplées, menant aux expressions suivantes.

w(s) =
kw

1 + τw s
vw(s), p(s) =

kp
1 + τp s

vp(s),

q(s) =
kq

1 + τq s
vq(s), r(s) = kr

1 + σr s

1 + τr s
vr(s),

(D.4)

avec Bv→ω la matrice de mixage, fonction des paramètres moteurs, w la vitesse verticale
du drone et p, q et r les composantes de la vitesse de rotation du drone sur ses axes de
roulis, tangage et lacet, respectivement.
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Dans la construction de la matrice de mixage pour un quadricoptère en configuration X4
(4 rotors à plat, symétriquement disposés autour du centre de gravité), nous constatons
notamment le déséquilibre de l’actionnement de la rotation du drone qui présente une
faiblesse sur l’axe de lacet. Cela provient du fait que dans une telle configuration, le
lacet est principalement actionné par la traînée des hélices quand le roulis et le tangage
sont actionnés par leur portance, qui engendre des moments bien supérieurs aux couples
induits par la traînée des rotors (entre 10 et 100 fois supérieurs). Or, le contrôle de cet
axe est important pour un drone comme le Bebop 2 pour lequel le cap de la caméra est
fortement lié au cap du drone. Pour compenser en partie cette faiblesse d’actionnement
de l’axe de lacet, une solution consiste à incliner les rotors afin de faire contribuer une
partie des couples issus de la portance des hélices à l’actionnement de l’axe de lacet. Une
étude est menée à l’aide du modèle linéarisé pour mettre en évidence et quantifier cet effet
en fonction de l’inclinaison des moteurs. Cette étude fait également apparaître l’impact
de l’inertie des hélices dans la dynamique en rotation. Si celui-ce se traduit en un zéro
bénéfique dans la dynamique en lacet, il se manifeste en revanche par l’apparition de zéros
à partie réelle positive dans les dynamiques de roulis et tangage lorsque les moteurs sont
inclinés, menant à un comportement à non minimum de phase, comme illustré ci-dessous

p(s) = kp
1− σp s
1 + τp s

vp(s), q(s) = kq
1− σq s
1 + τq s

vq(s) (D.5)

Des simulations sont menées pour appuyer cet aspect et une modélisation linéaire du
drone par système d’état, prenant en compte ces résultats est finalement proposée.

Les modèles obtenus sont utilisés dans la suite comme base pour synthétiser des al-
gorithmes de pilotage ou guidage, ce qui constitue l’objet des chapitres suivants. Le
développement d’algorithmes de guidage est traité en premier et constitue l’objet du
chapitre trois.

D.3 Génération de trajectoire par optimisation bi-niveaux

D.3.1 Stratégie

Nous abordons dans un troisième chapitre la question de la génération de la trajectoire
de la caméra volante. Celle-ci est traitée en deux parties, la génération de la trajectoire en
position du quadricoptère porteur de la caméra d’un côté et de la trajectoire en rotation
et grossissement de la caméra de l’autre. Deux méthodes courantes permettent d’aborder
la génération de la trajectoire en position du drone, le suivi de trajectoire ou le suivi
de chemin. La première consiste en la génération d’une trajectoire de référence comme
une fonction du temps, qui est suivie par un correcteur. La seconde méthode s’affranchit
de la dépendance au temps en s’appuyant sur une loi dont émerge le suivi d’un chemin
établi. Une comparaison de ces deux méthodes dans le domaine de la cinématographie est
proposée, en s’appuyant notamment sur la littérature. Si la méthode de suivi de trajectoire
peut être considérée comme moins robuste que celle du suivi de chemin de par sa sensibilité
aux décrochages de la trajectoire nominale de référence, elle autorise néanmoins un plus
grand contrôle temporel sur l’état du drone ce qui représente un avantage pour certaines
séquences de prise de vue. Une stratégie de suivi de trajectoire est ainsi choisie.

p



APPENDIX D. RÉSUMÉ EN FRANÇAIS

D.3.2 Contraintes de faisabilité et d’esthétique

Avant de traiter la question de la génération de la trajectoire en position, des contraintes
sur sur celle-ci sont mises en évidence afin que celle-ci soit non seulement faisable, rela-
tivement à la dynamique du drone, mais aussi satisfaisante au regard de critères cinéma-
tographiques. De telles garanties sont obtenues en deux temps. Tout d’abord, le plan de
vol est pré-traité afin d’assurer que les consignes de vitesse appartiennent au domaine de
vol. On ajuste ainsi les consignes de vitesses excessives, pouvant conduire à un état de
vortex entretenu ou pouvant nuire à la réalisation de certains plans. Si besoin, le rayon de
validation des points de passage est également réduit pour empêcher la validation simul-
tanée de plusieurs points de passages. Néanmoins, ce pré-traitement, seul, ne permet pas
de garantir la faisabilité de la trajectoire ni sont esthétique. En utilisant le modèle non
linéaire simplifié du drone, les contraintes de poussée minimale et maximale, de vitesse de
rotation maximale et angle maximal du drone relativement au sol et de variation temporelle
maximale de cap sont reformulées en termes de contraintes sur les dérivées temporelles de
la position du drone. Ces contraintes se démarquent notamment de la littérature par la
prise en compte de l’angle du drone ainsi que la vitesse de rotation en lacet du drone qui
est amenée à varier selon les plans à réaliser. Est ainsi montré qu’une borne sur l’amplitude
de l’accélération du drone permet de garantir, en l’absence de perturbation, le respect des
contraintes de poussée minimale et maximale et d’angle maximal relativement au sol. Le
respect des contraintes de vitesse de rotation et de variation de cap est quant à lui obtenu
via une contrainte sur l’amplitude du jerk du drone

(
a 6 amax , min {g − fmin, fmax − g, g sαmax}

)
⇒


f > fmin

f 6 fmax

α 6 αmax

(D.6a)


ψ̇max < Ωmax

j 6 jmax ,

√
Ω2

max (1 + sαmax
2)− ψ̇2

max − sαmaxψ̇max

1 + sαmax
2

fmin

⇒ (‖Ω‖2 6 Ωmax) (D.6b)

avec a l’accélération du drone, f la poussée du drone, fmin et fmax respectivement les
poussées minimales et maximales que peut fournir le drone, α l’angle entre la verticale du
drone et la verticale du sol et αmax sa valeur maximale atteignable par le drone, j le jerk
du drone, ψ̇max la vitesse en cap du drone et ψ̇max sa valeur maximale pour garantir une
qualité de vidéo correcte et Ωmax la vitesse de rotation maximale du drone par rapport au
sol. Ces contraintes sont ensuite utilisées pour la formulation du problème de génération
de trajectoire, définie dans le paragraphe suivant.

D.3.3 Optimisation bi-niveaux

Une première manière de générer une trajectoire polynomiale par morceaux via une
optimisation bi-niveaux est tout d’abord étudiée. Chaque morceau polynomial de la tra-
jectoire sert à rejoindre une paire de points de passage consécutifs. La trajectoire est alors
paramétrée par deux jeux de paramètres, des temps de vols entre chaque point de passage
du plan de vol d’une part et des coefficients polynomiaux d’autre part. Chacun de ces deux
jeux de paramètres est optimisé par un algorithme d’optimisation différent, fonctionnant
à deux niveaux différents et représentés figure D.3.
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Figure D.3 – Principe de l’optimisation bi-niveaux

Pour un jeu de temps de vols donné, un algorithme d’optimisation de niveau bas (en bas
sur la figure D.3) génère un jeu de coefficients polynomiaux paramétrant une trajectoire
à jerk minimal, respectant: les temps de vol entre chaque point de passage, les critères
de validation des points de passage et les couloirs de vols. Une méthode de maillage est
utilisée pour cette dernière contrainte, consistant à vérifier son respect en un nombre de
points fini de la trajectoire. L’algorithme assure également la continuité de la trajectoire
aux connections entre chaque morceau de polynôme. La résolution de ce problème constitue
un problème quadratique sous contraintes linéaires. De la minimisation du jerk résulte une
trajectoire douce et naturelle, masquant les transitions entre points de passage et ainsi
adaptée pour la cinématographie. Un second algorithme d’optimisation, de niveau haut
(en haut sur la figure D.3), est en charge de déterminer le jeu de temps de vol minimisant
la durée totale de la mission tout en s’assurant que les dérivées temporelles de la trajectoire
respectent les contraintes de faisabilité et d’esthétique mises en évidence précédemment. La
résolution de ce problème constitue un problème non linéaire. Cette architecture bi-niveaux
permet ainsi de séparer la génération de la trajectoire en un problème quadratique "large"
mais simple à résoudre, pour la génération des coefficients polynomiaux, et un problème
non linéaire mais de taille réduite, pour la génération des temps de vol. Cette méthode
de génération de trajectoire par optimisation bi-niveaux est confrontée à des simulations
(voir figure D.4) ainsi qu’à un vol en extérieur avec un drone Parrot Bebop 2.

Figure D.4 – Trajectoire à temps minimum/jerk minimum obtenue avec l’optimisation bi-niveaux
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D.3.4 Amélioration de l’algorithme

Diverses améliorations de l’algorithme sont ensuite proposées comme la prise en compte
de la traînée du drone. Un modèle de traînée linéaire est ainsi inclus et la formulation
de la contrainte sur l’amplitude de l’accélération est adaptée pour prendre en compte ce
phénomène. Une alternative à cette formulation prenant également en compte la vitesse
moyenne du vent par rapport au sol permet d’améliorer encore la faisabilité de la trajectoire.
Des simulations sont réalisées pour illustrer les performances de ces formulations augmen-
tées de la traînée, et permettent de comparer l’impact de ce phénomène sur le respect des
contraintes de faisabilité. Une étude sur l’initialisation du problème de niveau haut (non
linéaire) est ensuite menée et différentes méthodes d’initialisation sont comparées, dont une
initialisation à vitesse supposée constante et une initialisation pour laquelle l’accélération
de la trajectoire est approximée par un profil bang-off-bang. Leurs impacts sur le nom-
bre d’itérations requis par l’algorithme d’optimisation pour générer les trajectoires sont
présentés et comparés. Une stratégie d’horizon glissant sur les points de passage est en-
suite proposée pour maîtriser la taille du problème d’optimisation à résoudre. L’impact de
cette stratégie sur le temps de calcul de la trajectoire du plan de vol complet est illustré,
de même que son impact sur la qualité de la trajectoire obtenue. Bien que les résultats
soient satisfaisants, une limite de la formulation bi-niveaux est mise en évidence, celle-
ci conduisant à des profils de vitesses parfois trop peu agressifs. Ainsi, dans le chapitre
suivant, un algorithme pour générer des trajectoires plus agressives est proposé.

D.4 Génération de trajectoire B-splines non uniformes à temps
minimal

D.4.1 Stratégie

Une seconde manière de générer la trajectoire est proposée dans le quatrième chapitre.
La trajectoire est cette fois paramétrée par des B-splines, et l’optimisation de la trajec-
toire est monolithique plutôt que bi-niveaux. Les B-splines constituent des polynômes
par morceaux paramétrés par des points de contrôle dans l’espace ainsi que des nœuds,
correspondant aux instants pour lesquels la courbe B-spline change de représentation poly-
nomiale. L’utilisation de B-spline présente divers avantages. Là où la première méthode
utilisait un polynôme pour chaque paire de points de passages, la seconde utilise désormais
une B-spline, qui constitue en soi un polynôme par morceaux. Ainsi, chaque morceau
de trajectoire joignant une paire de points de passage est lui même découpée en sous-
trajectoires prenant typiquement la forme de phases d’accélération, croisière et freinage.
Ceci permet d’obtenir une trajectoire finale à la fois plus riche et de degré polynomial
moindre. De plus la propriété d’enveloppe convexe des B-splines est utilisée pour con-
traindre la trajectoire dans ses couloirs de vol et limiter l’amplitude des dérivées afin de
respecter les contraintes de faisabilité et d’esthétique. Ce travail se démarque notamment
de la littérature par l’utilisation de B-splines non uniformes, là où des B-splines uniformes
sont généralement utilisées.

D.4.2 Réduction des paramètres

Après une rapide introduction des B-splines et de leurs propriétés, une manière compacte
de représenter une trajectoire B-spline non uniforme respectant les contraintes de validation
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des points de passage est proposée. Ces contraintes imposent ou contraignent implicitement
le positionnement des points de contrôle des B-splines autour des points de passages, qui
peuvent alors être entièrement déterminés à partir des autres points de contrôle. Ces
points de contrôle contraints sont ainsi retirés la représentation, et l’ensemble des points
de contrôle est remplacé par un ensemble réduit de points de contrôle. Une méthode pour
reconstruire l’ensemble complet des points de contrôle à partir de l’ensemble réduit et
des nœuds de la B-spline est exposée, et constitue une opération linéaire en les points de
contrôle réduits et non-linéaire en les nœuds. Cette représentation compacte est ensuite
utilisée pour formuler la génération de la trajectoire comme une problème d’optimisation
non linéaire, ce qui fait l’objet du paragraphe suivant.

D.4.3 Problème d’optimisation

Bien que d’autres métriques que la durée totale de la trajectoire soient utilisées dans
la littérature pour la synthèse de trajectoires B-splines, comme sa longueur par exemple,
l’utilisation de B-splines non uniformes dans ce travail permet de directement générer une
trajectoire à durée minimale. La formulation du problème, de la fonction et des contraintes,
est détaillée. Contrairement à la méthode bi-niveaux, les contraintes de couloirs de vol et
sur l’amplitude des dérivées ne sont plus formulées par un maillage mais en utilisant la
propriété d’enveloppe convexe des B-splines pour garantir la satisfaction des contraintes
sur la totalité de la trajectoire. La méthode est confrontée à des simulations (voir figure
D.5) ainsi qu’à un vol en extérieur. Les profils de vitesse obtenus sont comparés à ceux
que l’on obtiendrait avec des B-splines uniformes et mettent en avant la pertinence de
l’utilisation de B-splines non-uniformes.

Figure D.5 – Trajectoire B-spline non uniforme à temps minimum

D.4.4 Étude de l’initialisation

Une étude sur l’initialisation du problème non linéaire est finalement menée. Plusieurs
méthodes d’initialisation sont proposées et comparées
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• Une trajectoire en ligne brisée s’arrêtant à chaque point de passage, présentant un
profil bang-off-bang en snap

• Une B-spline dont les points de contrôle sont confondus avec les points de passage

• Une B-spline dont les points de contrôle sont uniformément distribués entre les points
de passage

• Une B-spline uniforme minimisant la moyenne quadratique d’une dérivée de la posi-
tion

• Une B-spline uniforme minimisant la moyenne quadratique d’une dérivée de la posi-
tion

Ayant généré une trajectoire en position, il reste alors à traiter la trajectoire en rotation
et grossissement de la caméra, ce qui fait l’objet du chapitre cinq.

D.5 Commande prédictive de la caméra

D.5.1 Architecture à suivi de modèle nominal

Le cinquième chapitre traite de la génération de la trajectoire de la caméra. Plusieurs
modes de prises de vue sont détaillés ainsi que la manière de calculer les références en
rotation et grossissement pour chacun d’entre eux, tels que la prise de vue subjective, le
zoom compensé ou le point d’intérêt. Une estimation du temps minimal pour compléter
certains plans, compte tenu de l’excursion angulaire qu’ils requièrent et la limitation de
vitesse de rotation de la caméra, est proposée pour limiter les vitesses de références lors
du pré-traitement des plans de vols (voir section D.3.2).

Si les suivis des références en tilt, roll et zoom de la caméra ne posent pas de difficulté
puisqu’ils sont obtenus par la stabilisation de la caméra, le suivi des références en pan
requiert plus d’attention. La pan de la caméra étant identique au cap du drone, la com-
mande du pan de la caméra revient au commande du cap du drone. La génération d’une
loi de commande sur le cap du drone, pour un suivi doux des références en pan caméra,
induisant des transitions douces entre les modes de prises de vue lors de la validation des
waypoints, est ainsi étudiée. Une architecture de suivi de modèle nominal (Nominal Model
Following Control) est utilisée afin de séparer les dynamiques de suivi de référence et de
rejet de perturbations (voir figure D.6).

Figure D.6 – Architecture NMFC pour la commande en cap
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Cette architecture consiste en l’asservissement d’un modèle nominal drone, simulé en
temps réel, par un contrôleur virtuel. Ce contrôleur dicte la dynamique de suivi de
référence, douce et avec un temps de réponse relativement élevé dans ce travail pour
satisfaire les critères d’esthétique vidéo. L’état du modèle virtuel simulé asservi par le
contrôleur virtuel est envoyé comme référence à un second contrôleur de rejet de perturba-
tion à la dynamique plus raide, asservissant le drone réel cette fois. La commande générée
par le contrôleur virtuel est quant à elle envoyée en feedforward au drone. En l’absence
de perturbation et pour un modèle nominal parfait, ce feedforward doit ainsi induire la
même trajectoire sur le drone réel que sur le modèle simulé et le contrôleur de rejet de per-
turbation ne travaille pas. Le drone est ainsi piloté en boucle ouverte. Dans un scénario
réaliste, le contrôleur de rejet de perturbation compense les écarts à la trajectoire nominal
dus aux perturbations et erreurs de modélisation. Sa dynamique est par conséquent plus
raide afin de gommer ces écarts. Un contrôleur prédictif est proposé comme contrôleur
virtuel et est détaillé dans le paragraphe suivant; le contrôleur physique n’est pas détaillé
dans ce travail.

D.5.2 Contrôleur prédictif virtuel

Si la dynamique lente du contrôleur virtuel permet d’obtenir des mouvements caméra
fluides et doux, elle risque néanmoins d’entraîner de fortes erreurs de suivi, se traduisant
par des erreurs de cadrage notamment. Afin de palier ce problème, une loi de commande
prédictive est utilisée pour le contrôleur virtuel, pour son aspect anticipatif. Toutefois,
pour être pertinente, cette loi de commande doit disposer d’un horizon de prédiction au
moins du même ordre de grandeur que le temps de réponse désiré. Étant donné la haute
fréquence d’échantillonnage de la boucle de contrôle du Bebop 2, cela signifie typiquement
un horizon de l’ordre de la centaine de pas. Afin de réduire ce nombre de pas, un sous
échantillonnage de ce contrôleur prédictif est proposé. La commande obtenue est interpolée
par un bloqueur d’ordre un avant d’être ré-échantillonnée à haute fréquence.

Afin d’être pris explicitement en compte dans la synthèse de la loi de commande, cette
interpolation et le ré-échantillonnage qui la suit sont inclus dans le modèle de prédiction.
Le réglage des paramètres de la loi de commande pouvant être délicat, nous proposons une
méthode basée sur une optimisation par essaim particulaire pour effectuer ce réglage. Le
comportement de la loi de commande est validé en simulation ainsi qu’en vol extérieur.

D.5.3 Reconstruction de l’attitude du drone

Enfin, la reconstruction de l’attitude de référence du drone depuis le référence en cap de
sa caméra et la référence en vecteur poussée, ainsi que son impact sur le champ de vision
de la caméra est étudié. Une méthode alternative à la reconstruction classiquement utilisée
dans la littérature est proposée pour un drone plus récent de Parrot, le Parrot ANAFI,
disposant d’une nacelle caméra dont deux axes sont stabilisés mécaniquement et le dernier
numériquement.

v
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D.6 Conclusion

D.6.1 Récapitulatif

Après avoir spécifié le problème de prise de vue de plan séquence aériens via des plans
de vol, une analyse en profondeur de la dynamique d’un quadricoptère a été menée. Une
linéarisation du modèle non linéaire obtenu autour de l’état de vol stationnaire a notam-
ment permis de découpler les dynamiques en rotation et translation verticale du drone.
L’extension de ce modèle à des quadricoptères dont les rotors sont inclinés a permis de
mettre en évidence l’apparition de termes de couplages entre les dynamiques en rotation
et translation ainsi que d’un comportement à non minimum de phase sur certains axes de
rotations.

Dans un second temps, un première algorithme de génération de trajectoire est proposé,
reposant sur l’optimisation bi-niveaux d’une trajectoire polynomiale par morceaux, visant à
minimiser le jerk de la trajectoire. Cette méthode est améliorée par l’ajout d’un modèle de
traînée linéaire, ainsi que d’un horizon glissant sur les points de passages. Elle a notamment
été confrontée à un vol en extérieur avec un Parrot Bebop 2.

Un second algorithme de génération de trajectoire a ensuite été proposé afin d’obtenir des
trajectoires plus agressives. Celles-ci sont cette fois obtenues en optimisant une trajectoire
B-spline de manière à minimiser le temps de parcours du plan de vol. Une étude sur
l’initialisation du problème d’optimisation a été menée afin de réduire le temps de calcul
pour la génération de la trajectoire. Enfin, cet algorithme a été confronté à un vol extérieur
avec un Parrot ANAFI.

Enfin, une méthode a été proposée pour asservir le cap du drone, telle que le suivi des
références soit doux mais avec un impact maîtrisé sur l’erreur de suivi, et sans dégrader
la dynamique de rejet de perturbation. Une étude sur la reconstruction de l’attitude de
référence du drone à partir de sa poussée et son cap de référence est finalement menée.

D.6.2 Perspectives

Pour terminer, plusieurs axes de développement sont proposés. Concernant l’impact de
l’inertie des hélices dans la dynamique en rotation, il pourrait être intéressant d’approfondir
l’étude en utilisant un modèle plus fin, non linéaire, du quadricoptère. Cela permettrait
entre autre de caractériser l’influence de ces inerties sur un domaine de vol plus large.
Cela constituerait également l’opportunité d’étudier l’impact des couples gyroscopiques
des rotors et de le comparer à celui de l’impact des couples de réactions. De plus la
validation des résultats théoriques pour un drone à rotors inclinés sur un système réelles
permettrait de les consolider et de mieux les quantifier en pratique.

Un autre axe de développement concerne l’algorithme de génération de trajectoires B-
splines proposé en chapitre quatre, pour lequel n’a pas été fait le travail d’inclure le modèle
de traînée linéaire du chapitre trois. Cela pourrait être accompli en utilisant le résultat que
le produit de deux courbes B-spline est aussi une courbe B-spline, sur lequel s’applique aussi
la propriété d’enveloppe convexe. De plus, il serait intéressant d’optimiser l’implémentation
de l’algorithme afin de comparer ses performances en termes de temps de calcul à d’autres
algorithmes de la littérature. Cette méthode pourrait aussi bénéficier de l’ajout de con-
traintes d’évitement d’obstacles.

Enfin, la puissance de calcul augmentée des drones de nouvelle génération pourrait

w



APPENDIX D. RÉSUMÉ EN FRANÇAIS

être mise à profit pour complexifier la loi de commande prédictive utiliser pour contrôler
l’orientation de la caméra afin de prendre en compte des critères et contraintes cinémato-
graphiques plus poussés.

x
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Titre : Trajectoires optimales et commande prédictive d’un quadricoptère pour la réalisation de plans de vol
cinématographiques

Mots clés : Quadricoptère, Génération de trajectoire, Cinématographie, B-spline, UAV

Résumé : Cette thèse s’intéresse à la réalisation
autonome de plans de vol cinématographiques par
un quadrotor équipé d’une caméra. Ces plans de
vol consistent en une série de points de passage
à rejoindre successivement, en adoptant diverses
méthodes de prise de vue et en respectant des
références de vitesse ainsi que des couloirs de vols.
Une étude approfondie de la dynamique du quadrotor
est tout d’abord proposée, et utilisée pour construire
un modèle linéarisé du drone autour de l’équilibre
de vol stationnaire. L’analyse de ce modèle linéaire
permet de mettre en évidence l’impact de l’inertie
des rotors du drone dans sa dynamique, notamment
l’apparition d’un comportement à non minimum de
phase en roulis ou tangage, lorsque les moteurs
sont inclinés. Dans un second temps, deux algo-
rithmes de génération de trajectoires lisses, faisables
et adaptées à la cinématographie sont proposés. La

faisabilité de la trajectoire est garantie par le respect
de contraintes sur ses dérivées temporelles, adaptées
pour la cinématographie et obtenues grâce à l’étude
du modèle non linéaire du drone. Le premier repose
sur une optimisation bi-niveaux d’une trajectoire po-
lynomiale par morceaux, dans le but de trouver la
plus rapide des trajectoires à minimum de jerk per-
mettant d’accomplir la mission. Le second algorithme
consiste en la génération de trajectoires B-spline non-
uniformes à durée minimale. Pour les deux solu-
tions, une étude de l’initialisation du problème d’op-
timisation est présentée, de même qu’une analyse
de leurs avantages et limitations. Pour ce faire, elles
sont notamment confrontées à des simulations et vols
extérieurs. Enfin, une loi de commande prédictive est
proposée pour asservir les mouvements de la caméra
embarquée de manière douce mais précise.

Title : Optimal trajectory planning and predictive control for cinematographic flight plans with quadrotors

Keywords : Quadrotor, trajectory generation, cinematography, B-spline, UAV

Abstract : This thesis deals with the autono-
mous performance of cinematographic flight plans
with camera equipped quadrotors. These flight plans
consists in a series of waypoint to join while adop-
ting various camera behaviors, along with speed re-
ferences and flight corridors. First, an in depth study
of the nonlinear dynamics of the drone is proposed,
which is then used to derive a linear model of the
system near the hovering equilibrium. An analysis of
this linear model allows us to emphasize the impact
of the inertia of the propellers when the latter are til-
ted, such as the apparition of a nonminimum phase
behavior of the pitch or dynamics. Then, two algo-
rithms are proposed to generate smooth and feasible
trajectories suited for cinematography. The feasibility

of the trajectory is ensured by constraints on its time
derivatives, suited for cinematography and obtained
with the use of the nonlinear model of the drone. The
first algorithm proposed in this work is based on a bi-
level optimization of a piecewise polynomial trajectory
and try to find the fastest feasible minimum jerk trajec-
tory to perform the flight plan. The second algorithm
consists in the generation of feasible, minimum time,
nonuniform B-spline. For both solutions, a study of the
initialization of the optimization problem is proposed,
as well as a discussion about their advantages and li-
mitations. To this aim, they are notably confronted to
simulations and outdoor flight experiments. Finally, a
predictive control law is propose to smoothly but ac-
curately control the on-board camera.
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