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Model independent searches for New Physics using Machine Learning at the
ATLAS experiment

by JIMÉNEZ Fabricio

We address the problem of model-independent searches for New Physics (NP), at
the Large Hadron Collider (LHC) using the ATLAS detector. Particular attention
is paid to the development and testing of novel Machine Learning techniques for
that purpose. The present work presents three main results. Firstly, we put in
place a system for automatic generic signature monitoring within TADA, a soft-
ware tool from ATLAS. We explored over 30 signatures in the data taking period
of 2017 and no particular discrepancy was observed with respect to the Standard
Model processes simulations. Secondly, we propose a collective anomaly detection
method for model-independent searches for NP at the LHC. We propose the para-
metric approach that uses a semi-supervised learning algorithm. This approach uses
penalized likelihood and is able to simultaneously perform appropriate variable se-
lection and detect possible collective anomalous behavior in data with respect to a
given background sample. Thirdly, we present preliminary studies on modelling
background and detecting generic signals in invariant mass spectra using Gaussian
processes (GPs) with no mean prior information. Two methods were tested in two
datasets: a two-step procedure in a dataset taken from Standard Model simulations
used for ATLAS General Search, in the channel containing two jets in the final state,
and a three-step procedure from a simulated dataset for signal (Z′) and background
(Standard Model) in the search for resonances in the tt̄ invariant mass spectrum case.
Our study is a first step towards a method that takes advantage of GPs as a mod-
elling tool that can be applied to several signatures in a more model independent
setup.

HTTPS://WWW.UCA.FR/
http://sf.ed.uca.fr/
http://clrwww.in2p3.fr/




v

Acknowledgements
During the last three years, I have been fortunate to interact with many people

and institutions, several of which played a critical role in the research presented in
this document. I am greatly indebted to all of them.

I would like to start by thanking my laboratory (LPC) and especially the director,
Dr. Dominque Pallin, for having welcomed and hosted me as a doctoral student.
Also, I am grateful to all former and current members of the ATLAS group that
supported me and provided fertile ground for regular discussions since the start of
my work here. Prof. Julien Donini, my supervisor, played a crucial role in most
aspects of this work; his patient advice and insights have been the key to achieving
the conclusion of this thesis, for which I am grateful.

My doctoral program was funded by the AMVA4NewPhysics Innovative Train-
ing Network, an EU Marie Sklodowska Curie Action. This gave me the somehow
rare freedom to collaborate and interact with colleagues around the globe, as well
as the opportunity to take part in enriching training periods and events. I would
like to thank the people that supervised me during my training periods: Professors
Giovanna Menardi and Bruno Scarpa from the Statistics Department at the Univer-
sity of Padova, Prof. Daniel Whiteson from the University of California at Irvine,
and Dr. Ilya Narsky from The Mathworks, Inc. I am grateful for all the discussions
and experiences with fellow doctoral students from the Network, in particular to Dr.
Grzegorz Kotkowski.

During my qualification task and beyond, Dr. Markus Elsing and Dr. Simone
Amoroso from CERN provided very valuable guidance in a wide variety of topics
related to the ATLAS collaboration.

Last, but certainly not least, I would like to thank my family for their constant
unconditional support, and Gabriela for her love and company during the last years.





vii





ix

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 The Standard Model and Beyond 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Theoretical basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Electro-weak interactions . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 The Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Strong interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Limitations of the Standard Model and potential extensions . . . . . . 11
2.3.1 Limitation of the Standard Model . . . . . . . . . . . . . . . . . 11
2.3.2 An extension of the Standard Model: RPV-MSSM . . . . . . . . 12

Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
R Parity Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The Large Hadron Collider and the ATLAS detector 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Proton acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Proton collisions at the LHC . . . . . . . . . . . . . . . . . . . . . 17

3.3 A Toroidal LHC ApparatuS (ATLAS) . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Geometric conventions . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Magnet system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Inner detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Pixel Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Semiconductor Tracker . . . . . . . . . . . . . . . . . . . . . . . . 21
Transition Radiation Tracker . . . . . . . . . . . . . . . . . . . . 21

3.3.4 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Liquid Argon Calorimeter . . . . . . . . . . . . . . . . . . . . . . 22
Tile Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Forward Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.5 Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.6 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Monitoring Generic Signatures in ATLAS 29
4.1 TADA: A fast monitoring system for ATLAS . . . . . . . . . . . . . . . 29

4.1.1 TAG file writing and analysis model . . . . . . . . . . . . . . . . 30
4.2 Generic Signatures in TADA . . . . . . . . . . . . . . . . . . . . . . . . . 31



x

4.2.1 Automated Generation of signatures . . . . . . . . . . . . . . . . 31
4.2.2 Generic channels monitored . . . . . . . . . . . . . . . . . . . . . 32

Multijets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Multiobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Several Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Leptons plus Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Machine Learning in High Energy Physics 39
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Boosted Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . 45

5.3 Unsupervised and semi-supervised learning . . . . . . . . . . . . . . . 47
5.3.1 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.2 Semi-supervised learning . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Methods for General Searches for New Physics in particle colliders . . 52

5.5.1 The Sleuth Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5.2 The H1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Machine Learning Methods for Model-Independent New Physics Searches 55
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Searching for New Physics Using A Penalized Anomaly Detection Method 59
6.1 Fixed-background model . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Penalized anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.1 Penalization of the background . . . . . . . . . . . . . . . . . . . 62
6.2.2 Penalization of the signal-plus-background model . . . . . . . . 63

6.3 Application to High Energy Physics . . . . . . . . . . . . . . . . . . . . 64
6.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Detector simulation . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.2 Event selection and variables used . . . . . . . . . . . . . . . . . 66
6.3.3 Method performance . . . . . . . . . . . . . . . . . . . . . . . . . 66

Preprocessing and application of the method . . . . . . . . . . . 66
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Model Independent Search For Generic Resonant Signals Using Gaussian
Processes 71
7.1 Bayesian Learning and Gaussian Processes . . . . . . . . . . . . . . . . 71
7.2 Modeling backgrounds and signals with Gaussian Processes . . . . . . 73
7.3 Methods for searching generic resonances . . . . . . . . . . . . . . . . . 74

7.3.1 GP methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Two-step procedure . . . . . . . . . . . . . . . . . . . . . . . . . 75
Three-step procedure . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Datasets and signal injection . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4.1 Dijet dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4.2 Top-quark pair data . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4.3 Identifying signals in invariant mass spectra . . . . . . . . . . . 79



xi

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.1 Two-step procedure GP fit on the dijet spectrum . . . . . . . . . 80

Extracted parameters . . . . . . . . . . . . . . . . . . . . . . . . . 82
Comparison with other two-step procedure options . . . . . . . 83

7.5.2 Benchmark: Parametric fit of the dijet mass spectrum . . . . . . 87
7.5.3 Three-step procedure in tt̄ invariant mass spectrum . . . . . . . 91

7.6 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8 Conclusions and outlook 101

A Variable selection for the Penalized Anomaly Detection method 103

B Tukey-transformed distributions for the PAD method 105

C Parameter initialization 109
C.0.1 Gaussian process method . . . . . . . . . . . . . . . . . . . . . . 109

Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Signal plus Background . . . . . . . . . . . . . . . . . . . . . . . 109

C.0.2 Parametric fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Signal plus Background . . . . . . . . . . . . . . . . . . . . . . . 110

D Five-parameter background fit 111

E A First Implementation of Generalized Additive Models in MATLAB 117
E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
E.2 GAMs and the Backfitting algorithm . . . . . . . . . . . . . . . . . . . . 117
E.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

E.3.1 The GeneralizedAdditiveModel class . . . . . . . . . . . . . . . 119
The grid property . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
The S property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
The fitgam method . . . . . . . . . . . . . . . . . . . . . . . . . . 120
The predict method . . . . . . . . . . . . . . . . . . . . . . . . . . 121

E.3.2 Algorithms: Backfitting and Boost . . . . . . . . . . . . . . . . . 121
Backfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

E.3.3 Smoothers: running lines, loess . . . . . . . . . . . . . . . . . . . 121
Running Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Loess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

E.4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
E.4.1 Classification using a logistic model . . . . . . . . . . . . . . . . 122

Two-dimensional Gaussian distributions . . . . . . . . . . . . . 122
Repeated indices . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Physics data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E.4.2 Regression in a two dimensional step function (identity link) . 126
E.4.3 Pieces of code under test (not fully functional) . . . . . . . . . . 127

Bibliography 129





xiii

List of Figures

2.1 Particles of the Standard Model and a few of their properties. Elec-
trical charges are in units of the electron charge magnitude. Values
taken from ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Accelerator complex at CERN [29]. Experiments are shown with their
respective year of start of operations and circumference length. . . . . 16

3.2 Schematic transversal view of the LHC dipole, taken from [30]. . . . . 17
3.3 Left: ATLAS peak luminosity per fill in 2017. Right: LHC delivered

(green) and ATLAS recorded (yellow) luminosity between 2015 and
2018. Taken from [31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Schematic view of the ATLAS detector. Taken from [32]. . . . . . . . . . 19
3.5 ATLAS magnet systems. Taken from [34]. . . . . . . . . . . . . . . . . . 20
3.6 Left: Schematic view of the inner detector dimensions and subcom-

ponents. Right: Section of a transversal slice of the inner detector
subcomponents; the R value indicates distance to the proton beam.
Taken from [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 ATLAS calorimeter system. Taken from [38]. . . . . . . . . . . . . . . . 22
3.8 Left: Sketch of an electromagnetic barrel module in the most central

region, showing the respective layers and dimensions [39]. Right: de-
tail of the interleaving of the elements in the ECAL [40]. . . . . . . . . . 23

3.9 A sketch of a TileCal wedge. Taken from [41]. . . . . . . . . . . . . . . . 24
3.10 Schematic view of the muon spectrometer in the x-y (top) and z-y

(bottom) projections. Taken from [42]. . . . . . . . . . . . . . . . . . . . 25

4.1 Example multijet selection: HT > 1 TeV, number of jets equal to six.
Plots correspond to each variable monitored: HT (4.1a), missing trans-
verse energy (4.1b), invariant mass (4.1c), and effective mass (4.1d).
Bottom panels present a ratio between the data and Standard Model
Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Example multiobject selection: number of objects (leptons plus jets)
greater or equal to 7. Plots correspond to each variable monitored: HT
(4.2a), missing transverse energy (4.2b), invariant mass of the seven
objects (4.2c), and effective mass (4.2d). Bottom panels present a ratio
between the data and Standard Model Monte Carlo. . . . . . . . . . . . 35

4.3 Example diphoton selection: HT > 250 GeV. Plots correspond to each
variable monitored: HT (4.3a), missing transverse energy (4.3b), in-
variant mass (4.3c), and effective mass (4.3d). Bottom panels present
a ratio between the data and Standard Model Monte Carlo. . . . . . . . 37

4.4 Example lepton plus jets selection: number of leptons equal one, num-
ber of jets equal two, HT > 1 TeV. Plots correspond to each vari-
able monitored: HT (4.4a), missing transverse energy (4.4b), invariant
mass (4.4c), and effective mass (4.4d). Bottom panels present a ratio
between the data and Standard Model Monte Carlo. . . . . . . . . . . . 38



xiv

5.1 A Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 A Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 A Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . 51
5.4 A Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Voronoi tessellation in 2D using Euclidean distance. Colored regions

encompass voronoi cells around black points. Taken from [139]. . . . . 54
5.6 Distribution of pseudo-experiment fraction that have at least m =

1(blue), 2(red), or 3(green) channels below a certain p-value thresh-
old (horizontal axis) for discrepancies found in the invariant mass
spectra. Results are given for both the toys for SM expectation and
tested against the nominal expectation (dashed) and for those tested
against the modified hypothesis (‘SM, tt̄γ removed’) expectation in
which that SM process is removed (solid). Dashed arrows are the re-
sults for the SM hypothesis and solid arrows the results for the modi-
fied hypothesis. Taken from the General Search performed in [45]. . . . 56

5.7 A diagram of a Variational Autoencoder. The leftmost and rightmost
layers are respectively the input and output. The first three layers
correspond to the encoder and the last three to the decoder. The set
of parameters in the latent space learnt by the encoder are denoted θ
from which the sampling is performed. The goal is that the output is
able to reconstruct the input. . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Feynman diagram for the production of a stop quark decaying into
two light quarks, in the RPV-MSSM [28, 153]. . . . . . . . . . . . . . . . 65

6.2 Left: Normalized distributions of signal and dijet background for the
invariant mass. Right: power transformation of the invariant mass
distributions with a coefficient α = −1.05. . . . . . . . . . . . . . . . . . 67

6.3 Signal (red circles) and background (black circles) events in two vari-
ables η1 and φ1. The signal component is presented with mean at the
blue cross and yellow contour curves. . . . . . . . . . . . . . . . . . . . 68

6.4 Receiver Operating Characteristic curve for a signal with mixture pa-
rameter λ = 0.1. Sensitivity (True Positive Rate) versus Specificity (1
− False positive Rate) values are presented in the solid black line. A
dotted diagonal (random choice) is presented for reference. . . . . . . . 69

6.5 Scatter plots for the background (black circles) and signal (red circles)
from the unlabeled dataset in pairs of transformed variables. The sig-
nal fit is overlayed with mean (blue cross) and curve levels (solid yel-
low). Variables pT2 and Emiss

T (vertical axes in the figures at the top)
are uninformative and have mean equal zero. . . . . . . . . . . . . . . . 70

7.1 Correlation from the background kernel, ΣB in eq. (7.10), after a fit is
performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Covariance from the signal kernel, in eq. (7.13), after a fit is performed. 75
7.3 Distribution of simulated dijet events invariant mass used for the AT-

LAS General Search in [45]. . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Distribution of simulated tt̄ events invariant mass used for the analy-

sis in [167]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.5 Illustrative plot for the definition of R. The background and background-

plus-signal histograms, and the original Gaussian function are plot-
ted. Vertical dashed lines indicate the identified window where signal
and background events are counted. . . . . . . . . . . . . . . . . . . . . 79



xv

7.6 Top panel: invariant mass spectrum displaying a GP background fit,
event counts for a background toy with signal injected centered at 3.5
TeV with a width of 150 GeV and R of 0.1, and a signal plus back-
ground fit. The magenta line is the posterior mean of the GP fit using
the ΣSB kernel; the blue line represents the background-only compo-
nent of the GP fit. Middle and bottom panels: per-bin significance of
the discrepancy between the event counts and respective fits. . . . . . . 81

7.7 Residual plot corresponding to figure 7.6. The GP signal component
(solid magenta) and the signal injected (dashed black line) are dis-
played as well as a subtraction of the toy data set with a signal injected
minus the background GP fit (black dots with error bars). Injected and
extracted signal values are shown. . . . . . . . . . . . . . . . . . . . . . 81

7.8 Top panel: invariant mass spectrum displaying a GP background fit,
event counts for a background toy with signal injected centered at 4
TeV with a width of 150 GeV and R of 0.1, and a signal-plus back-
ground fit. Middle and bottom panels: per-bin significance of the
discrepancy between the event counts and respective fits. . . . . . . . . 82

7.9 Residual plot corresponding to figure 7.8. The GP signal component
and the signal injected are displayed as well as a subtraction of the
toy data set with a signal injected minus the background GP fit (black
dots with error bars). The GP fit signal component (solid magenta)
incorrectly identified the injected signal (dashed black line). Injected
and extracted signal parameter values are shown. . . . . . . . . . . . . 83

7.10 Linearity plots for the width of the signal injected in the dijet spec-
trum; each plot corresponds to indicated mass M (in GeV) and R pair
of values. The values of R are the same for each plot column, and
those of the width are fixed through each plot row. Points and error
bars (means and rms) are calculated from the distribution of extracted
mass values. A dashed red x = y line is plotted for reference. . . . . . . 84

7.11 Linearity plots for the mass of the signal injected in the dijet spec-
trum; each plot corresponds to indicated width W (in GeV) and R
pair of values. The values of R are the same for each plot column, and
those of the mass are fixed through each plot row. Points and error
bars (means and rms) are calculated from the distribution of extracted
width values. A dashed red x = y line is plotted for reference. . . . . . 85

7.12 Linearity plots for the R of the signal injected in the dijet spectrum;
each plot corresponds to indicated mass M and width W pair of val-
ues (both in GeV). The values of the width are the same for each plot
column, and those of the mass are fixed through each plot row. Points
and error bars (means and rms) are calculated from the distribution of
extracted width values. A dashed red x = y line is plotted for reference. 86

7.13 Linearity plots for the R parameter, for all masses and widths of the
signal injected in the dijet spectrum, and spurious detection (injected
R = 0). The error bar comes from the RMS of the distribution of ex-
tracted values. Values of R increase by 0.1 from 0 to 0.4, included;
points appear slightly shifted in the horizontal axis for better visibil-
ity. The upper value of the error bar in the spurious detection (0.25) is
presented. Dashed horizontal red lines are plotted for reference. . . . . 87



xvi

7.14 Option A Linearity plots for the R parameter, for all masses and widths
of the signal injected in the dijet spectrum, and spurious detection (in-
jected R = 0). The error bar comes from the RMS of the distribution of
extracted values. Values of R increase by 0.1 from 0 to 0.4, included;
points appear slightly shifted in the horizontal axis for better visibil-
ity. The upper value of the error bar in the spurious detection (0.25) is
presented. Dashed horizontal red lines are plotted for reference. . . . . 88

7.15 Option B Linearity plots for the R parameter, for all masses and widths
of the signal injected in the dijet spectrum, and spurious detection (in-
jected R = 0). The error bar comes from the RMS of the distribution of
extracted values. Values of R increase by 0.1 from 0 to 0.4, included;
points appear slightly shifted in the horizontal axis for better visibil-
ity. The upper value of the error bar in the spurious detection (0.37) is
presented. Dashed horizontal red lines are plotted for reference. . . . . 89

7.16 χ2/ndof normalized distributions for the three options. . . . . . . . . . 90
7.17 Parametric three- and five-parameter background fits in the General

Search dijet background mass spectrum. The p-values corresponding
to the χ2 score given the degrees of freedom are respectively p(χ2

3, 29) =
0.816 and p(χ2

5, 27) = 0.771. This spectrum is simulated using the
Pythia event generator [56], details on the text. . . . . . . . . . . . . . . 91

7.18 Parametric approach (three-parameter background fit): Linearity plots
for the width of the signal injected in the dijet spectrum; each plot
corresponds to indicated mass M (in GeV) and R pair of values. The
values of R are the same for each plot column, and those of the width
are fixed through each plot row. Points and error bars (means and
rms) are calculated from the distribution of extracted mass values. A
dashed red line x = y is plotted for reference. . . . . . . . . . . . . . . . 92

7.19 Parametric approach (three-parameter background fit): Linearity plots
for the mass of the signal injected in the dijet spectrum; each plot cor-
responds to indicated width W (in GeV) and R pair of values. The
values of R are the same for each plot column, and those of the mass
are fixed through each plot row. Points and error bars (means and
rms) are calculated from the distribution of extracted width values. A
dashed red x = y line is plotted for reference. . . . . . . . . . . . . . . . 93

7.20 Parametric approach (three-parameter background fit): Linearity plots
for the R of the signal injected in the dijet spectrum; each plot cor-
responds to indicated mass M and width W pair of values (both in
GeV). The values of the width are the same for each plot column, and
those of the mass are fixed through each plot row. Points and error
bars (means and rms) are calculated from the distribution of extracted
width values. A dashed red line x = y is plotted for reference. . . . . . 94

7.21 Parametric approach (three-parameter background fit): Linearity plots
for the R for all masses and widths of the signal injected in the dijet
spectrum and spurious detection. The upper value of the error bar in
the spurious detection (0.14) is presented. Values of R are from 0.1 to
0.4 in intervals of 0.1; points appear shifted in the horizontal axis for
better visibility. A dashed red line is plotted for reference. . . . . . . . . 95

7.22 Background of the tt̄ invariant mass spectrum (black dots), modeled
with the first two steps of the three-step procedure (solid magenta).
The pure ΣB GP component is also presented (solid blue). . . . . . . . . 96



xvii

7.23 Top panel: tt̄ invariant mass spectrum displaying a GP background
fit (with turn-on), event counts for a background toy with Z′ signal
injected centered at 750 GeV amplified by a factor 15, and a signal
plus background fit. The magenta line is the posterior mean of the
GP fit using the ΣBTS kernel; the blue line represents the background-
plus-turn-on component of the GP fit. Middle and bottom panels:
per-bin significance of the discrepancy between the event counts and
respective fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.24 Signal extraction plot corresponding to fig. 7.23. The GP signal in the
third step (solid magenta) and the signal injected (dashed black line)
as well as a subtraction of the background toy with a signal injected
minus the background GP fit (black dots with error bars). . . . . . . . . 98

B.1 Normalized distributions of signal and background dijet for kinematic
and angular variables (left) and after the Tukey transformation (right). 106

B.2 Normalized distributions of signal and background dijet for kinematic
and angular variables (left) and after the Tukey transformation (right). 107

D.1 Parametric approach (five-parameter background fit): Linearity plots
for the width of the signal; each plot corresponds to indicated mass
and R pair of values. The values of R are the same for each plot col-
umn, and those of the width are fixed through each plot row. Points
and error bars (means and rms) are calculated from the distribution
of extracted mass values. A dashed red line is plotted for reference. . . 112

D.2 Parametric approach (five-parameter background fit): Linearity plots
for the mass of the signal; each plot corresponds to indicated width
and R pair of values. The values of R are the same for each plot col-
umn, and those of the mass are fixed through each plot row. Points
and error bars (means and rms) are calculated from the distribution
of extracted width values. A dashed red line is plotted for reference. . 113

D.3 Parametric approach (five-parameter background): Linearity plots for
the R of the signal; each plot corresponds to indicated mass and width
pair of values. The values of the width are the same for each plot
column, and those of the mass are fixed through each plot row. Points
and error bars (means and rms) are calculated from the distribution of
extracted width values. A dashed red x = y line is plotted for reference.114

D.4 Parametric approach (five-parameter background): Linearity plots for
the R for all masses and widths of the signal and spurious detection.
Values of R are from 0.1 to 0.4 in intervals of 0.1; points appear slightly
shifted in the horizontal axis for better visibility. A dashed red line is
plotted for reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

E.1 Two 2-dimensional Gaussians . . . . . . . . . . . . . . . . . . . . . . . . 123
E.2 Prediction on a test data set using running lines smoother . . . . . . . . 123
E.3 Prediction on a test data set using loess smoother . . . . . . . . . . . . 124
E.4 Prediction on a physics test data set (2 variables) using running lines

smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
E.5 Prediction on a physics test data set (2 variables) using loess smoother 125
E.6 Prediction on a physics test data set (5 variables) using running lines

smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
E.7 Prediction on a physics test data set (5 variables) using loess smoother 125



xviii

E.8 2-dimensional, four-step function. . . . . . . . . . . . . . . . . . . . . . 126
E.9 Regression using running lines on a two-dimensional step function

(left) and box plot of predicted values (right). . . . . . . . . . . . . . . . 126
E.10 Regression using loess on a two-dimensional step function (left) and

box plot of predicted values (right). . . . . . . . . . . . . . . . . . . . . . 127



xix

List of Tables

2.1 Transformation of SM fermions under gauge groups. . . . . . . . . . . 5
2.2 Minimal particle content of the Supersymmetric Standard Model. Su-

persymmetric partners are denoted with a tilde. Table taken from [28]. 13

4.1 Object selection requirements in TADA. An explanation for the key-
words in the requirements is provided in the text. . . . . . . . . . . . . 31

4.2 Overlap removal rules applied in TADA. . . . . . . . . . . . . . . . . . 31
4.3 Summary of the 31 generic selections in TADA. For each of the selec-

tions, four distributions were monitored. . . . . . . . . . . . . . . . . . 38

6.1 Powers obtained per variable from a Tukey ladder of powers trans-
formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Summary of the anomaly detection results performed by the penal-
ized anomaly detection (PAD), in Section 6.2, and the fixed background
model (FBM), in Section 6.1, for datasets with different signal propor-
tions λ. For each scenario, 50 datasets are generated to obtain a mean
result with the respective standard deviations presented in brackets. . 70

7.1 Number of injected signal events within a window for values of R,
for a signal of 3 TeV mass and 150 GeV width. The values and errors
obtained are the mean and standard deviation of the distribution of
values obtained after repeating the injection in 100 background toys. . 80

7.2 Injected values in the mtt̄ spectrum. The center of the bin containing
the maximum number of signal events (bin(max)) is reported, as well
as half of the length of the window used. The reported R value is
an average calculated by repeating the injection in 100 background
toys; the error on that value is taken as the standard deviation of all
obtained R values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Three step procedure extracted values for signals in the mtt̄ spectrum.
Minimum mass threshold 550 GeV. . . . . . . . . . . . . . . . . . . . . . 97

7.4 Three step procedure extracted values for signals in the mtt̄ spectrum.
Minimum mass threshold 600 GeV. . . . . . . . . . . . . . . . . . . . . . 98





xxi

To my family.





1

Chapter 1

Introduction

The Standard Model (SM) of particle physics is the theory that describes with great
success three of the four fundamental interactions present in nature. Since its incep-
tion, decades ago, this theory has undergone many experimental tests its predictions
have been confirmed to great accuracy. However, it is believed that the SM is not a
complete theory but rather a low-energy limit of a more general effective field theory,
as there are some both theoretical and experimental aspects that are not satisfactory.
This has inspired theorists to hypothesize scenarios in which new symmetries or
interactions are introduced, and incentivized experimentalists to probe the SM as
far as possible. New Physics (NP) is the generic term used to refer to phenomena
beyond the SM description.

Experiments such as CERN’s Large Hadron Collider (LHC) as well as several
other preceding collider experiments have had the search for NP as one of their main
goals. The collaborations such as ATLAS and CMS design and analyze the data from
detectors with the aim of finding evidence for NP. Most efforts in searching for NP
concentrate in probing a specific parameter space associated to a hypothesis where
a given NP theory should show some measurable effects if it is true. Such searches
are deemed model dependent, while searches that reduce as much as possible the
assumptions on the nature of NP are called model independent. Model dependent
searches for NP have so far lead to null results at the LHC, which has set limits in
the parameter spaces explored for the corresponding models, and sparked interest
in model independent searches and those that automatically explore many generic
signatures.

The optimal analysis of the data is a crucial necessity in NP searches. The de-
velopment and performance of Machine Learning (ML) algorithms has seen a rev-
olution in the last decade, that has translated into an improvement in many High
Energy Physics tasks, leading to an increased NP discovery potential.

This thesis focuses on model-independent NP searches, with an emphasis in the
study and development of ML methods for that purpose. Among the main chal-
lenges addressed are the detection of NP signals that are faint or located in heavily
populated background regions; also, reducing spurious detection in the absence of
signal is crucial, as well as having a method that handles complex datasets. The
methods proposed and studied here provide proofs of concepts for alternatives to
existing methods, where our results already show promising paths for further de-
velopment.

This document is organized as follows. Chapters 2 and 3 are devoted to intro-
duce, respectively, the theoretical context (the SM and beyond) and experimental
facilities (the LHC and the ATLAS detector). Then chapter 4 presents TADA, a fast
monitoring tool from ATLAS, which is used in this work to automatically monitor
many (generic) signatures. A review of the ML methods currently used in High En-
ergy Physics follows in chapter 5. Chapter 6 presents a method that uses Gaussian
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Mixture Models to perform anomaly detection in a semi-supervised setup, via a pe-
nalized likelihood. A dataset was simulated with SM processes (background) and
a benchmark NP scenario (signal) to provide a proof of concept for the method in
High Energy Physics. Then, in chapter 7 we present studies of Gaussian Process
methods to model background and signal invariant mass spectra from simulated
datasets used for NP searches in ATLAS, in two cases: the dijet signature from the
General Search and a dataset used for resonant searches decaying into top quark
pairs. Finally, conclusions and an outlook are given in 8.
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Chapter 2

The Standard Model and Beyond

2.1 Introduction

The Standard Model (SM) of Particle Physics [1–4] is a highly successful theory that
describes elementary particles and their interactions at the most fundamental level.
Three of the four fundamental forces of nature, namely electromagnetism, the weak,
and the strong nuclear forces are described in the SM. Besides gravitation, the in-
teractions comprised in the SM underlie all physical phenomena in nature. This
decades-old theory has endured many experimental tests and it is considered today
as one of the most successful scientific frameworks.

Particles in the SM can be classified in two kinds, namely fermions and bosons.
This distinction is made on the basis of the quantum-mechanical spin: fermions are
particles with half integer spin and obey the Fermi-Dirac statistics, whereas bosons
have integer spin and follow the Bose-Einstein statistics. Some properties of the
particles contained in the SM are presented in the diagram in figure 2.11.

Fermions in the SM come in three families or generations, these correspond to the
three columns of fermions in figure 2.1. Fermion families each contain two quarks,
and two leptons; for example, the first generation consists of the up and down quarks
(respectively u and d), the electron (e) and the electron neutrino (νe). Atomic nuclei
are aggregates of neutrons and protons (which, in turn, are bound states of u and d
quarks), and are surrounded by electrons to form atoms; then fundamental particles
from the first family are the constituents of all ordinary matter. Besides protons
and neutrons, quarks from any family (except the top) form bound states that are
collectively called hadrons.

The second generation is composed of the charm (c) and strange (s) quarks, the
muon (µ) and the muon neutrino (νµ); the third generation consists of the top (t) and
bottom (b) quarks, and the tau (τ) and tau neutrino (ντ). Fermions from the second
and third generations are unstable and heavier than those of the first family, and they
have a short lifetime before decaying into ordinary matter. Due to the similarity in
quantum numbers among the families, u, c, and t quarks (same electric charge) are
named up-type quarks and analogously, d, s, and b, down-type quarks. The electron,
muon and tau, all with electrical charge equal to -1, are known as charged leptons,
as opposed to the zero-charged neutrinos.

Gauge bosons mediate interactions among fermions and in some cases among
themselves, as it will become clear later in this chapter. Respectively, the strong,
electromagnetic, and weak forces are mediated by gluons, photons, and the weak
bosons W± and Z; all of which have spin 1 and are known as vector bosons. In
contrast, the scalar (spin-0) Higgs boson is responsible for the mass acquisition of
other particles in the SM.

1Here and in the rest of this thesis we use the convention h̄(reduced Planck constant)= c(speed of
light)=1, unless we explicitly state otherwise.
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up ( )�

mass:      2.3 MeV
charge:   2/3
spin:       1/2

down ( )�

4.8 MeV
-1/3
1/2

charm ( )�

1.3 GeV
2/3
1/2

strange ( )�

95 MeV
-1/3
1/2

top ( )�

173.1 GeV
2/3
1/2

bottom ( )�

4.2 GeV
-1/3
1/2

electron ( )�

0.5 MeV
-1
1/2

electron
neutrino ( )��

< 2.2 eV
0
1/2

muon ( )�

105.7 MeV
-1
1/2

< 0.2 MeV
0
1/2

tau ( )�

1.8 GeV
-1
1/2

< 15.5 MeV
0
1/2

muon
neutrino ( )��

tau
neutrino ( )��

gluon ( )�

0
0
1

photon ( )�

0
0
1

125 GeV
0
0

Higgs ( )�

W boson
( )� ±

80.4 GeV

1
±1

Z boson ( )�

91.2 GeV
0
1

LEPTONS

QUARKS

FERMIONS BOSONS

VECTOR GAUGE

SCALAR

FIGURE 2.1: Particles of the Standard Model and a few of their prop-
erties. Electrical charges are in units of the electron charge magnitude.

Values taken from ref. [5].

All particles we have mentioned have another particle associated, with the same
mass but opposite physical charges; those are known as antiparticles.

2.2 Theoretical basis

The SM is a theory that is based on local gauge symmetries. The symmetry group of
the SM is G = SU(3)C ⊗ SU(2)L ⊗U(1)Y; the strong interaction is governed by the
SU(3)C symmetry group and the electromagnetic and weak (together, electroweak)
interactions by SU(2)L ⊗ U(1)Y. The subscripts C, L, Y, denoting color charge, left-
handedness, and hypercharge, are associated with the structure of the groups that will
be explained in subsequent sections.

Interactions in the SM are governed by the transformations of the fields under
those symmetry groups. Table 2.1 contains a summary of the fermions transforma-
tions under the SM gauge groups. Left-handed fermions (subscript L in the table)
transform as doublets (denoted 2) under SU(2)L whereas the right-handed (R) ones
transform as singlets (1). There are no right-handed neutrinos in the SM. All par-
ticles in the SM that do not interact via the strong force are color singlets (1) under
SU(3)C. Quarks are color triplets (3) in under SU(3)C and gluons transform as color
octets. In the table, α = 1, 2, 3 is a color index for quarks, and i = 1, 2, 3 is used for
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identifying families. The hypercharge Y is associated with the transformation under
the U(1)Y symmetry group.

Notation
Family Group transformation

1st 2nd 3rd SU(3)C SU(2)L U(1)Y

Qα
iL

(
uα

L
dα

L

) (
cα

L
sα

L

) (
tα

L
bα

L

)
3 2 1/3

uα
iR uα

R cα
R tα

R 3 1 4/3

dα
iR dα

R sα
R bα

R 3 1 −2/3

ψiL

(
νeL
ēL

) (
νµL
µ̄L

) (
ντL
τ̄L

)
1 2 −1

ēiR ēR µ̄R τ̄R 1 1 −2

TABLE 2.1: Transformation of SM fermions under gauge groups.

The SM also includes a scalar field, known as the Higgs field, that transforms
as a doublet under SU(2)L. This field is responsible for breaking the electroweak
SU(2)L ⊗U(1)Y symmetry, allowing for a mass acquisition mechanism of all fermions
except the neutrinos, and the weak bosons Z, W±.

2.2.1 Electromagnetism

The quantum field theory that describes the electromagnetic interactions in the SM
is known as Quantum Electrodynamics (QED) [6, 7]. The Lagrangian (density) of a
free fermion with mass m can be written in the form

Lfree = ψ̄(iγµ∂µ −m)ψ , (2.1)

where ψ = ψ(x) represents the fermionic field for space-time four-coordinates x,
and γµ are the Dirac gamma matrices2.

Electromagnetism is governed by a U(1)Q symmetry, where transformations are
local phases θ = θ(x):

ψ→ exp(iαθ)ψ , (2.2)

where α is known as the coupling strength of the interaction. In order to preserve the
invariance of the Lagrangian, one turns to defining the so-called covariant derivative

Dµ = ∂µ − ieAµ , (2.3)

where −e is the electron charge, and Aµ is the associated gauge field that transforms
as

Aµ → Aµ +
1
e

∂µθ , (2.4)

2Defined by the anticommutation relationship {γµ, γν} = 2ηµν, with the Minkowski metric ηµν =
diag(+,−,−,−).
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that is identified with the electromagnetic four-potential. The antisymmetric electro-
magnetic field strength tensor is:

Fµν = ∂µ Aν − ∂ν Aµ . (2.5)

The propagation of such field is taken into account by adding an invariant term
proportional to:

FµνFµν . (2.6)

The total QED Lagrangian then reads:

LQED = ψ̄(iγµDµ −m)ψ− 1
4

FµνFµν (2.7)

= ψ̄(iγµ∂µ −m)ψ− eψ̄γµ Aµψ− 1
4

FµνFµν . (2.8)

Notice that the first term is the free Lagrangian (eq. (2.1)), while the second term
is the interaction of the fermion with the gauge field Aµ, whose associated field is
the photon; the last term dictates the kinematics of the gauge field propagation. The
strength of the electromagnetic interaction, in the second term, is related to the cou-
pling by α = e2

4π and it is one of the fundamental parameters of QED. This parameter
is not a constant and its value depends on the energy scale in which the studied in-
teractions are taking place: at low energies (e.g. those of atomic reactions) its value is
approximately 1/137, but at energies of the order of the weak bosons masses (∼ 100
GeV) it is rather around 1/127. The variation of the value of this parameter (as well
as other observables in quantum field theories, in general) is affected by the high-
order terms in a perturbative expansion, that need to be taken into account when
changing the energy scale.

2.2.2 Electro-weak interactions

Weak interactions are responsible for a number of observed phenomena in nuclear
processes, notably the beta decay. As we have seen in table 2.1, left-handed fermions
are represented in doublets, while right-handed ones appear as singlets. Weak inter-
actions distinguish between left- and right-handed fermions, that in the theory are
described by the chiral operators:

ψL = PLψ =
1
2
(1− γ5)ψ , (2.9)

ψR = PRψ =
1
2
(1 + γ5)ψ , (2.10)

where the product of gamma matrices γ5 = iγ0γ1γ2γ3, and the PR,L are projection
operators, i.e. satisfy P2 = P. It has been observed experimentally that parity is
maximally violated[8]3.

In the SM, the electromagnetic and weak interactions are described together in a
SU(2)L ⊗U(1) gauge theory [1, 2, 9]. SU(2)L preserves the invariance under local
phase transformations θ = θ(x) of the kind

ψ→ exp(igθ · TL)ψ (2.11)

3There exist three discrete symmetries in the SM, charge conjugation (C), parity (P) or mirroring,
and time reversal (T ). Quantum Field Theories require that altogether CPT is conserved.
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where g is the SU(2)L coupling constant, and TL are the three generators of the
SU(2)L gauge group, i.e. TkL = σk/2 with Pauli spin matrices being σk

4.
In the SU(2)L ⊗U(1)L symmetry group, four associated gauge bosons appear:

three from SU(2)L and one for U(1)Y, namely Wa (a =1,2,3), with electric charges5

+1, −1, and 0, and B, with charge 0. The Lagrangian for electro-weak interactions
then contains all possible terms for the fermions plus the kinematics of the gauge
fields:

LEW = ψ̄iL(iγµDL
µ)ψiL + Q̄iL(iγµDL

µ)QiL (left-handed fermions)

+ ∑
f=u, d, e

f̄iR(iγµDR
µ ) fiR (right-handed fermions)

+
1
4

Wa
µνWµν a − 1

4
BµνBµν (gauge field propagation).

(2.12)

In this expression, analogously to the pure electromagnetic case, we have introduced
covariant derivatives

DL
µ = ∂µ + i

g
2

TkLWk
µ + i

g′

2
YBµ , (2.13)

DR
µ = ∂µ + i

g′

2
YBµ , (2.14)

where Y is the generator of U(1)Y (the hypercharge), and g′ the coupling constant.
Field strength tensors are defined in terms of the gauge fields:

Bµν = ∂µBν − ∂νBµ (2.15)

Wa
µν = ∂µWa

ν − ∂νWa
µ − g′εabcWb

µWc
ν , (2.16)

where εabc is the antisymmetric symbol.
After the spontaneous breaking of the electroweak symmetry, that we will dis-

cuss below, one obtains a relationship between the weak fields postulated above
(Wa, B), and the physical ones associated with the SM (W±, Z, A):

W± =
1√
2
(W1 ∓ iW2) , (2.17)

(
A
Z

)
=

(
cos θW sin θW
− sin θW cos θW

)(
B

W3

)
, (2.18)

where the weak mixing angle θW is defined as

tan θW =
g′

g
. (2.19)

2.2.3 The Higgs mechanism

Bosons postulated to mediate weak interactions, as they appear above, do not in-
clude a mass term in the Lagrangian. As we experimentally know that those bosons
(W±, Z) are indeed massive, a mechanism is needed to include such mass terms.
This is done via the so-called Brout-Englert-Higgs (BEH) mechanism or simply the

4They comply with the commutation relation [TiL, TjL] = iεijkTkL.
5In units of the electron charge magnitude.
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Higgs mechanism, that describes the spontaneous breaking of the electroweak sym-
metry.

This symmetry is broken following the pattern

SU(2)L ⊗U(1)Y → U(1)Q , (2.20)

from which it is possible to find a relationship between the electromagnetic charge
(Q) and the weak hypercharge (Y):

Q = T3 +
1
2

Y , (2.21)

with T3 the eigenvalue of the diagonal generator of SU(2)L.
The terms introduced in the total Lagrangian to break the symmetry describe an

SU(2) doublet of complex scalar fields,

φ =

(
φ+

φ0

)
=

(
φ1 + iφ2
φ3 + iφ4

)
, (2.22)

in the following way:

LHiggs = (Dµφ)†(Dµφ)−V(φ) . (2.23)

The covariant derivative of this equation corresponds to 2.13, and V(φ) corresponds
to the Higgs potential, given by:

V(φ) = µ2φ†φ + λ(φ†φ)2 , (2.24)

which is invariant under the local SU(2)L transformation. The parameter λ is re-
quired to be positive, so that the potential is bounded from below; for µ2 > 0 the
minimum of the potential is located at φ = 0 but, since there is no reason for this
requirement, it is possible to have a non-zero vacuum when µ2 < 0. Without loss of
generality, one can choose among all possible minima

φmin =
1√
2

(
0
v

)
, (2.25)

where the vacuum expectation value

v =

√
−µ2

λ
(2.26)

is a constant real value. This leaves three degrees of freedom which are “gauged
away.” By choosing a direction for the minimum, with only one of the doublet com-
ponents getting a vacuum expectation value, the SU(2) symmetry is said to be bro-
ken.

The spectrum for this potential can be obtained by making a perturbative expan-
sion around the minimum, i.e.

φ =
1√
2

(
0

v + h

)
, (2.27)
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with h = h(x). If we substitute this value in the first term of the Lagrangian in eq.
(2.23) we get a term for the gauge fields

1
8

v2g′2((W1
µ)

2 + (W2
µ)

2) +
1
8
(gBµ − g′W3

µ)
2 . (2.28)

This expression corresponds to mass terms for the W± and Z bosons, where

mW =
1
2

vg′ , and mZ =
1
2

v
√

g2 + g′2 , (2.29)

leaving the photon massless mA = 0. The Higgs boson mass, is given by mh =√
−2µ2. Finally, a relationship between massive weak bosons can be obtained

mZ =
mW

cos θW
. (2.30)

It is possible to write terms that involve interactions between the Higgs doublet
and the SM fermions which are invariant under SU(2). These are known as Yukawa
interactions6:

LYukawa = ∑
i,j=1,2,3

yd
ijQ̄iLφdjR + yu

ijQ̄iLφ̃ujR − ye
ijψ̄iLφejR + h.c. , (2.31)

where we introduced

φ̃ = −iσ2φ∗ =

(
−φ0∗

φ−

)
, (2.32)

and the Yukawa matrix couplings y for each of the quarks and leptons. Once the
Higgs field acquires the vacuum expectation value from eq. (2.31), we obtain the
mass terms for quarks and charged leptons:

LYukawa = ∑
f=u,d,e

m f
ij f̄iL f jR + h.c. , (2.33)

masses are related to the Yukawa couplings by

m f
ij =

vy f
ij√
2

,

for f = u, d, e. In a basis where the Yukawa matrices are diagonal (known as the
mass basis), m f

ii correspond to the physical mass of the fermion f .
The fact that the weak interaction (flavor) basis and the mass basis are not the

same leads to the so-called quark mixing. (Under the assumption of massless neu-
trinos, leptons do not mix as it is always possible to perform a unitary transforma-
tion where the interaction between leptons and W± remains unaltered.) This means
that mass eigenstates can be written as a mixture of flavor eigenstates via a unitary
matrix known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [10, 11], whose

6Here we assume neutrinos as massless but, in reality, they have a small but non-vanishing mass.
Neutrino masses and their implications are a major research interest in particle physics, and is beyond
the scope of this Chapter.
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measured entries are [5]:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

0.97446± 0.00010 0.22452± 0.00044 0.00365± 0.00012
0.22438± 0.00044 0.97359+0.00010

−0.00011 0.04214± 0.00076
0.00896+0.00024

−0.00023 0.04133± 0.00074 0.999105± 0.000032

 .

(2.34)

2.2.4 Strong interactions

Quantum Chromodynamics (QCD) is the theory of the strong force, that describes
interactions among quarks and gluons. These particles carry what is known as color
charge, and all observed hadrons (quark bound states) in nature are color singlets
(or colorless).

QCD is a gauge theory described by the SU(3)C group of local symmetries,
where quarks are represented as color triplets and transform (θ = θ(x)) via

ψ→ exp
(

i
2

λαθα

)
ψ , (2.35)

where λα are the eight generators of the SU(3)C group in the fundamental represen-
tation, known as the Gell-Mann matrices, and α = 1, . . . , 8 the color index. These
generators satisfy [λα, λβ] = i f αβγλγ, with f αβγ the structure constants of the group
and α, β, γ = 1, . . . , 8. The field strength associated to this symmetry is denoted Gα

µν,
which represents the gluon strength tensor. We can then write, analogously to other
symmetries in the SM:

LQCD = ∑
quark flavors

iq̄γµDµq− 1
4

Gα
µνGαµν , (2.36)

with the covariant derivative

Dµ = ∂µ + igsλ
αGα

µ , (2.37)

where gs is the coupling of the strong force, and the relation between the field
strength and the gluon field Gα

µ, a color octet, is

Gα
µν = ∂µGα

ν − ∂νGα
µ + gs f αβγGβ

µGγ
ν . (2.38)

Putting all these elements together in the lagrangian in eq. (2.35) leads to interaction
terms between quarks and gluons, and gluon self-interactions from the last term in
eq. (2.38).

There are two peculiar features of strong interactions, known as confinement
and asymptotic freedom. No free quarks have even been observed, as they are color
triplets; instead, quarks (except the top) are confined into hadrons that combine color
charge such that the final bound state is colorless, the two most common examples
of bound states being mesons (two quarks) and baryons (three quarks). At distances
above 10−15m, the strong force by gluon exchange is believed to be constant, and
thus the energy stored, e.g. between two quarks grows linearly with the distance
among them. Once there is enough energy, a quark-antiquark pair is created from
the gluon field, leading to new colorless bound states and screening the original
interaction.
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The magnitude of the strong coupling αs = g2
s /(4π) depends on the typical en-

ergy (or momentum transfer) scale of the interaction Q:

αs =
12π

(33− 2n f ) ln(Q2/Λ2)
, (2.39)

where n f is the number of quark flavors and Λ is the QCD energy scale (∼ 0.3 GeV),
where the coupling as a function of Q2 diverges and perturbative calculations are
not possible. As the energy scale grows, the strong coupling tends to zero, a limit in
which quarks appear free and they don’t form bound states; this phenomenon is the
asymptotic freedom.

2.3 Limitations of the Standard Model and potential exten-
sions

The SM is a highly successful theory that has endured decades of experimental con-
firmation. Its predictions included that of the existence of a third lepton family,
and the Higgs boson, that were eventually observed [12–15]. Furthermore, there are
many measurable quantities that have been experimentally tested to different or-
ders of accuracy, e.g. the electron anomalous magnetic dipole moment [16] or in the
electroweak sector as reviewed in Chapter 10 of [5], thus setting constraints in the
existence of physics beyond the SM. However, there is a number of limitations to the
SM that have lead to believe that it is not a complete theory of fundamental particles
and interactions.

2.3.1 Limitation of the Standard Model

Below, we list several of the most important of the SM limitations:

• Matter-antimatter asymmetry The Universe is vastly dominated by the
presence of matter with respect to antimatter, but the mechanisms present in
the SM to create a matter-antimatter imbalance cannot explain the great extent
of this asymmetry. It has been suggested that such mechanism, referred to as
baryogenesis, are related to CP violation and could lead to the current asymme-
try from an initial state that contained matter and antimatter in equal parts. A
review of the observational evidence and theoretical frameworks can be con-
sulted in [17].

• Lack of dark matter candidate From astronomical observations, such as
that of the rotation of galaxies, lensing effects, study of the Cosmic Microwave
Background, among other, we have known for decades that most (∼85%) of
the matter in the Universe interacts only gravitationally. This kind of matter,
known as Dark Matter, has not been directly observed and there are no can-
didates in the SM that satisfy the observations. Theoretical frameworks and
experimental statuses are given in [18, 19]; an accessible recent review of this
problem is addressed in [20].

• Neutrino masses Neutrinos in the SM are massless, but atmospheric, solar,
and reactor neutrino experiments have determined that neutrino masses are
non-zero, although orders of magnitude smaller than those of charged leptons
[21]. There are several theoretical complications for including neutrino mass
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terms in the SM, and mechanisms beyond the SM have been proposed for such
purpose [22].

• Gravity not included This force is, by many orders of magnitude, weaker
than the other three fundamental interactions that are described in the SM. The
existence of a massless spin-2 gauge boson, the graviton, has been hypothe-
sized but its detection is far from current experimental capabilities. Many ef-
forts in the theoretical community have been devoted to reconcile the current
theory of gravity, i.e. General Relativity (a classical theory of the dynamics of
curved space-time), and the (quantum-mechanical) Standard Model.

• Hierarchy and fine tuning The value of the Higgs boson mass (mH) gets
quantum radiative corrections from the virtual effects of every particle that
couples to the Higgs boson. At one loop, taking a generic fermion-Higgs cou-
pling −λ f φ f̄ f , this fact can be expressed as

∆m2
H = −

|λ f |
8π2 Λ2 , (2.40)

where Λ is the (ultraviolet) momentum cutoff imposed to regulate the inte-
gral coming from the loop. This is in itself not a problem of the Standard
Model. However, we know that at the Planck scale (ΛP ∼ 1019 GeV), some
new framework is required to describe the quantum gravitational effects that
become important; if the SM is able to describe Nature up to high energy scales
(still below ΛP), the corrections in eq. (2.40) become large and it is considered
“difficult” to keep the Higgs mass at the electroweak scale of ∼ 100 GeV. This
aspect of the SM has been referred to as the hierarchy problem and, if the SM is
true at scales much higher then the electroweak scale, it would require that the
radiative corrections cancel out with great precision to keep the Higgs boson
mass value; this is known as fine-tuning.

These limitations have inspired a plethora of extensions to the SM, that aim to
solve the issues presented in the list above. Those extensions provide a framework
in which the SM is a low-energy effective field theory.

2.3.2 An extension of the Standard Model: RPV-MSSM

Many extensions of the SM have been proposed to address one or several of its lim-
itations. Extensions include, for example, the introduction of new symmetries: that
between fermions and bosons known as Supersymmetry [23], or between the left
and right electroweak sector [24–26]; the extension of the Higgs sector with an extra
SU(2) doublet [27]; the postulation of extra spatial dimensions (reviewed in ch. 117
of [5]); among many other. In this section we discuss a few aspects of R-Parity Violat-
ing Minimal Supersymmetric Standard Model (RPV-MSSM); this will be of interest
in the studies presented in Chapter 6.

Supersymmetry

Supersymmetry (often referred to as SUSY) is a hypothesized space-time symme-
try that relates bosons to fermions. SUSY has become popular because it provides
several explanations to the some limitations of the SM, and phenomenology that
could be potentially verified at the TeV scale7. Notably, under some scenarios, the

7Although no evidence for SUSY has been found at LHC searches to date.
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Spin 1 Spin 1/2 Spin 0

gluons g gluinos g̃
photon γ photino γ̃

—————— −−−−−−−−−− —————————
W±

Z
winos W̃ ±

1,2
zinos Z̃1,2

higgsino h̃0

H±

H

h, A


Higgs
bosons

leptons l sleptons l̃
quarks q squarks q̃

TABLE 2.2: Minimal particle content of the Supersymmetric Standard
Model. Supersymmetric partners are denoted with a tilde. Table

taken from [28].

lightest supersymmetric particle can be a Dark Matter candidate; furthermore, SUSY
resolves several aspects of the hierarchy and fine tuning problems.

The introduction of supersymmetry implies that for each of the particles in the
Standard Model there is a partner (known as superpartner) with a spin differing by
1/2. If SUSY is an actual symmetry of nature, we know that it needs to be sponta-
neously broken at some high-energy scale, as no superpartners have been observed
at the mass of its corresponding SM particle. The contributions of the supersymmet-
ric partners to eq. (2.40) balance out at orders presumably not much higher that a
few TeVs to keep the Higgs boson mass stable without fine tuning.

The minimal supersymmetric Standard Model (MSSM) is the supersymmetric
extension to the SM that introduces the fewest new interactions and states. The
particle content of the MSSM is summarized in table 2.2. Fermions superpartners are
denoted by prepending an “s” to the SM fermion name and bosons superpartners
by appending “ino”; e.g. the partner of the top quark is a boson called stop.

In the MSSM, left handed fermions are chiral super multiplets denoted8 L, Q, ec,
uc. Right handed fields eR, uR and dR are also represented in terms of left-handed
super multiplets via charge conjugation (ec, uc and dc). Gauge bosons are promoted
to gauge vector superfields with their fermionic counterpart named gauginos. The
Higgs sector usually is extended to two SU(2) doublets:

Hu =

(
H0

u

H−u

)
Hd =

(
H+

d
H0

d

)
. (2.41)

The MSSM superpotential is then written:

WMSSM = µHuHd + ye
ijHdLiec

j + yd
ijHdQidc

j − yu
ijHuQiuc

j , (2.42)

which contains a mass term for the Higgs doublets (first term) and Yukawa terms.
This prescription leads to five states: two charged Higgs bosons (H±), a pseudoscalar
A and two neutral Higgs scalars H and h, the latter of which is identified with the
Higgs boson. The superpartners of neutral, non-colored SM gauge bosons (W3, B,

8We skip indices for notation clarity.
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before SSB) plus the neutral Higgs states (H0
d , H0

u) mix to form four neutral states
called neutralinos and denoted χ̃0

1, χ̃0
2, χ̃0

3, χ̃0
4. In a similar way, the superpartners

of charged gauge bosons and the charged Higgs states mix to form the charginos
χ̃±1 , χ̃±2 .

R Parity Violation

An extra discrete Z2 symmetry, called R-parity is introduced in the MSSM:

R = (−1)3B+L+2s , (2.43)

where B and L are the baryon and lepton numbers and s is the spin. Imposing R-
parity has desirable consequences in the MSSM, such as automatically forbidding
proton decay and conserving baryon and lepton numbers in all renormalizable cou-
plings.

More generally, the superpotential of the MSSM with R-parity violating terms
can be written as

WRPV = µi HuLi +
1
2

λijkLiLjec
k + λ′ijkLiQjdc

k +
1
2

λ′′ijkuc
i dc

j d
c
k , (2.44)

where λijk = −λjik and λ′′ijk = −λ′′ikj. The couplings λ couplings are tightly con-
strained, as no flavor or baryon number violation processes or proton decays have
been observed. We will see in chapter 6 an example of a search where the simulated
benchmark signal was simulated from an R-parity violating process.
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Chapter 3

The Large Hadron Collider and the
ATLAS detector

3.1 Introduction

Major discoveries in Particle Physics have been achieved in the last decades by
studying high energy collisions. In pursuing the exploration of the so-called en-
ergy frontier, physicists have built increasingly powerful devices to produce and
study particle collisions at the highest energy possible. The energy available in such
collisions allows for the creation of heavy particles, whose presence can be subse-
quently inferred with data recorded by detectors located at collision points. The
discovery of the last two fundamental particles in the Standard Model (SM), namely
the top quark and the Higgs boson, happened respectively at Fermilab’s Tevatron (a
proton-antiproton collider) [12, 13] and at CERN’s Large Hadron Collider (LHC, a
proton-proton collider1) [14, 15].

The LHC is the most powerful particle accelerator and collider ever built and
it aims to probe the predictions of the SM and shed light on the existence of New
Physics (NP). The main experiments of the LHC physics program are four: ATLAS,
CMS, LHCb and ALICE. ATLAS and CMS are known as general purpose detectors,
since they cover nearly the full solid angle and have been designed to study a wide
range of phenomena from the collisions. LHCb is a forward detector specialized
in the studying CP violation with hadrons containing b quarks, among other top-
ics. The purpose of A Large Ion Collider Experiment (ALICE) is to study heavy-ion
collisions, that produce quarks and gluons at extreme energy densities, in a phase
of matter known as quark-gluon plasma that is thought to have existed at the very
early universe.

Below we provide a brief introduction to and description of the experimental
setup and facilities of interest in this thesis, namely proton-proton collisions at the
LHC recorded by ATLAS.

3.2 The Large Hadron Collider

The LHC is a circular collider located across the French-Swiss border. Its main ring
has a circumference of about 27 km in a tunnel located approximately 100 m under-
ground. Superconducting magnets are responsible for accelerating charged particles
(protons or heavy ions) in opposite directions of the ring. The accelerated particle
beams are then focused to intersect each other at different points, where the detectors
are placed. The LHC is designed to produce collisions up to center of momentum

1Collisions of other nature, e.g. of heavy ions, are also studied at the LHC, which is a subject out of
the scope of this thesis.
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energy of
√

s = 14 TeV and deliver an instantaneous luminosity higher than 1034

cm−2s−1.

3.2.1 Proton acceleration

The LHC is served by a chain of smaller accelerators that inject (bunches of2) par-
ticles in the main ring. The proton acceleration procedure happens as follows, and
can be traced with the grey arrows in figure 3.1. Protons are obtained by ionizing
hydrogen with an electric field; then, they are injected and accelerated at the LINAC
2, a linear accelerator, to an energy of 50 MeV. A sequence of three further steps of
injection and acceleration happen at increasing energies: firstly, reaching 1.4 GeV at
the Proton Synchrotron Booster (PSB), then 25 GeV at the Proton Synchrotron (PS),
and finally 450 GeV at the Super Proton Synchrotron (SPS).

FIGURE 3.1: Accelerator complex at CERN [29]. Experiments are
shown with their respective year of start of operations and circum-

ference length.

The final acceleration of proton bunches happens at the main LHC ring, to reach
a maximum of 6.5 TeV of energy per beam, that circulate in vacuum tubes. Electric
fields are used to accelerate proton beams and magnetic fields for bending them, i.e.
to keep them in orbit, and focusing for collisions. Sixteen radiofrequency cavities op-
erating in a superconducting state are used to create the electric field for acceleration,
reaching a maximum tension of 2 megavolts. Over 1200 dipole magnets that gener-
ate an 8.3 tesla magnetic field are used to bend the beams, and quadrupole magnets
are used to keep the beam squeezed (i.e. avoid spread in the plane perpendicular
to the beam direction). The magnet system also operates in a superconducting state,
which is achieved by a cryogenic system with liquid helium cooled down to 1.9 K.

2A proton bunch contains approximately 1011 protons.
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Finally, a system of quadrupoles are used to focus the beams to intersect; this re-
duces their spread from 0.2 millimeters down to 16 micrometers across. Figure 3.2
presents a transversal view of the LHC dipole.

FIGURE 3.2: Schematic transversal view of the LHC dipole, taken
from [30].

3.2.2 Proton collisions at the LHC

One defining property of a collider is the instantaneous luminosity (L), which is a
quantity specifying the potential number of collisions per second. The number of
events for a given process X from a proton-proton (pp) collision is proportional to
the process cross section (σpp→X):

dNpp→X

dt
= L σpp→X . (3.1)

Given that most of the physics of interest at the LHC correspond to rare processes, it
is crucial to design colliders with the maximum luminosity possible.

The luminosity can be expressed as:

L =
N2

b nb frevγ

4πεnβ∗
F , (3.2)

where Nb is the number of protons per bunch and nb the number of bunches per
beam, frev the revolution frequency, γ the Lorentz factor, εn the normalized trans-
verse emittance of the beam and β∗ is a function that quantifies the oscillations of
protons at the collision point. Finally, the geometric factor F accounts for the cross-
ing angle at the intersection point θc:

F =

(
1 +

(
θcσz

2σ∗

)2
)1/2

, (3.3)
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where σz and σ∗ are respectively the RMS of the longitudinal and transversal beam
spreads.

We present in figure 3.3 plots corresponding to instantaneous luminosity (left)
and integrated luminosity over time (right). On the left plot, we can see that during
the data taking period of 2017, the instantaneous luminosity exceeded the design
value of 1034 cm−2 s−1. During the so-called Run 2 LHC data-taking period in 2015-
2018, the integrated luminosity recorded by ATLAS has reached 147 fb−1, as it is
visible in the plot on the right.
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FIGURE 3.3: Left: ATLAS peak luminosity per fill in 2017. Right: LHC
delivered (green) and ATLAS recorded (yellow) luminosity between

2015 and 2018. Taken from [31].

The LHC collides bunches of protons every 25 nanoseconds. At each bunch
crossing, on the order of 20 interactions from the colliding protons take place on
average. One of the experimental challenges of the LHC detectors is to distinguish
the outcome of different interactions that “pile-up” in the detectors. There can also
be pile-up effects from different bunch crossings due to short time separation among
bunches and slow response from the detector.

3.3 A Toroidal LHC ApparatuS (ATLAS)

ATLAS is a general purpose detector at the LHC that has been designed primarily to
make measurements of the SM and searching for NP with proton-proton collisions.
It is the largest of all LHC detectors, with a cylindrical shape of 44 m long and 25 m
in diameter, and weighs 7000 tons.

ATLAS comprises several specialized subsystems for different purposes. In or-
der to identify and measure the properties of the particles created in the collisions,
several concentric subdetectors are disposed in layers around the collision point.
The subdetectors can be separated in four parts: the inner detector that is respon-
sible for measuring the trajectory of charged particles, the calorimeters, responsi-
ble for measuring the energy and direction of particles, and finally a detector that
measures properties of the muons that penetrated the previous layers, called the
muon spectrometer. A magnet system is responsible for bending the trajectories of
charged particles, which is used to measure their momenta. Figure 3.4 presents a
scheme of the ATLAS detector, its dimensions and subcomponents. Along with the
subdetectors and magnets, ATLAS also has a triggering system that is responsible
for selecting only events that contain potentially interesting physics, and a computer
system for developing software for the storage, processing and analysis of the data
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recorded. We present in the following subsections a brief review of several aspects
of the detector.

FIGURE 3.4: Schematic view of the ATLAS detector. Taken from [32].

3.3.1 Geometric conventions

A convenient set of conventional spatial coordinates are used throughout the collab-
oration. The xyz-coordinates are defined as follows: the z-axis is defined to be par-
allel to the (counter-clockwise) beam direction, the x-axis points towards the center
of the LHC ring, from the collision point, and the y-axis points upwards towards the
Earth surface. The xy-plane, perpendicular to the beam direction, is referred to as
the transverse plane, and the projection of the momentum of a particle in that plane
is called the transverse momentum, denoted pT.

Angular coordinates are also defined: θ is the polar angle, measured from the
z-axis, and φ is the azimuthal angle, measured from the x-axis. Usually the polar
angle is translated to pseudorapidities:

η = − ln tan
θ

2
, (3.4)

because η differences are Lorentz-invariant under a boost along the z-axis3. The
distance in the η-φ plane is defined as

∆R =
√
(∆η)2 + (∆φ)2 . (3.5)

3In the ultrarelativistic limit.
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3.3.2 Magnet system

ATLAS has two main superconducting magnet systems [33] for bending charged
particle trajectories: the central solenoid and the toroid system. The central solenoid
is responsible for providing the magnetic field for the inner detector, and is com-
posed of four magnets aligned with the with the beam axis, reaching to a 2 Tesla
axial magnetic field. The toroid system is composed of three parts, for providing a
magnetic field used for muon spectrometry: the barrel toroid with eight coils for the
central region (2.5 Tesla) and the two end-cap toroids with eight coils each for the
more forward region (0.35 Tesla). Figure 3.5 shows a model of the magnet systems.

FIGURE 3.5: ATLAS magnet systems. Taken from [34].

3.3.3 Inner detector

The inner detector is the closest to the interaction point, and is responsible for mea-
suring the direction, momentum and charge of charged particles. It achieves a trans-
verse momentum resolution of σT/pT = 0.05%pT ⊕ 1%. This detector plays an im-
portant role in the reconstruction of primary and secondary vertices.

The inner detector has three main components, i.e. the Pixel Detector, the Semi-
conductor Tracker (SCT) and the Transition Radiation Tracker (TRT). It is immersed
in the magnetic field produced by the central solenoid. Figure 3.6 presents schemes
of the inner detector and a view of a transversal slice.

Pixel Detector

The Pixel Detector is the closest component to the interaction point. Its main purpose
is the identification of secondary vertices that are then used to identify particle jets
coming from a b quark (known as b-jets). The Pixel Detector has a total of 80 million
pixels (channels) made of polarized PN junctions, where the passage of a charged
particle leads to the creation of electron-hole pairs that, in the presence of an electric
field, can be transformed into a signal sent to the readout. The nominal pixel size is
50 × 400 µm2. This detector covers the full φ range and values of pseudorapidity
such that |η| < 2.5.

Besides the three layers shown in figure (3.6) (right), an insertable B-layer [36]
was placed closer to the beam pipe (occupying the 31-40 mm R region). This allows
for an improvement in the reconstruction of primary and secondary vertices. The
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FIGURE 3.6: Left: Schematic view of the inner detector dimensions
and subcomponents. Right: Section of a transversal slice of the inner
detector subcomponents; the R value indicates distance to the proton

beam. Taken from [35].

Pixel Detector has a resolution of 40 µm in the direction parallel to the beam axis
(known as longitudinal direction) and 8 µm in the R-φ plane [37].

Semiconductor Tracker

The Semiconductor Tracker (SCT) uses silicon microstrip sensors with a technology
similar to that of the Pixel Detector. The sensors are distributed over four coaxial
cylindrical layers and 18 (plane) disks, perpendicular to the beam axis, at the endcap;
it has 6 million channels. The SCT covers the full φ region and pseudorapidities
|η| < 2.5. The resolution of the SCT is 17 µm per layer in the R-φ plane and 580 µm
in the z-axis.

Transition Radiation Tracker

The Transition Radiation Tracker (TRT) is the most external part of the inner detec-
tor. Its fundamental element is a straw tube with a diameter of 4 mm, in the center of
which a 0.03 mm-diameter gold-plated Tungsten wire is placed; there is an electric
field between the wire and the surface of the tube. The tube is filled with a mixture
of gases (argon, carbon dioxide and oxygen4), that is ionized with the passage of
charged particles. The electrons resulting from the ionization are driven to the wire
to create an electric signal. The tracks reconstructed by the TRT provide good dis-
crimination between electrons and charged π± mesons, via the transition radiation
produced in materials of different dielectric constant that are interleaved with the
straws.

4This mixture used the more expensive Xenon instead of Argon in the past.
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3.3.4 Calorimeters

The calorimeters are designed to measure the energy that a particle loses as it in-
teracts with the detector material. The aim is to make particles lose as much en-
ergy as possible, often stopping them completely (total absorption). Electromag-
netic and hadronic calorimeters in ATLAS are sampling calorimeters, i.e. they have
parts made of an active material where the energy is deposited from a sequence of
interactions that create a shower, and other parts from a different absorber mate-
rial for measuring the deposited energy in the active material. Figure 3.7 presents a
schematic view of the ATLAS calorimeters.

FIGURE 3.7: ATLAS calorimeter system. Taken from [38].

Liquid Argon Calorimeter

ATLAS’ electromagnetic calorimeter (ECAL) uses liquid Argon (LAr) as the active
medium, and lead plates as absorbers. The main goal of the ECAL is to measure the
energy of electrons and photons, and the electromagnetic component of hadronic
jets. The ionization induced in the LAr by the passage of charged particles is then
collected by readout electrodes that are kept at high voltage (2 kV) with respect to
the absorbers.

Full φ coverage is ensured by the accordion-like geometry of the layers. De-
tails of an ECAL module are presented in figure 3.8. The electromagnetic barrel
(EMB) calorimeter covers the region |η| < 1.475 (except a small region near η = 0)
and consists of two half-barrels. Each of the two electromagnetic endcap (EMEC)
calorimeters consist of two wheels, the inner wheel and the outer wheel, covering
respectively ranges 1.375 < |η| < 2.5 and 2.5 < |η| < 3.2. A cryostat system is
responsible for maintaining the LAr at a temperature of about 90 K.

The modules of the ECAL are segmented in three main layers with different cell
granularities in the η-φ plane (figure 3.8, left). Additionally, a preshower (PS) layer
covers a region of |η| < 1.8. A small fraction of the energy is deposited in the first
layer and the PS layer, while most of the energy is deposited in the second layer.
The third layer is responsible for measuring the last part of the shower of the most
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FIGURE 3.8: Left: Sketch of an electromagnetic barrel module in the
most central region, showing the respective layers and dimensions
[39]. Right: detail of the interleaving of the elements in the ECAL

[40].

energetic particles. The energy resolution of the ECAL is σE
E = 10%√

E/GeV
⊕ 0.7% for

the passing electrons and photons.

Tile Calorimeter

The Tile Calorimeter (also TileCal) uses scintillating plastic tiles as the active medium
and steel as absorber. It consists of a central barrel covering |η| < 1.0 and two
extended barrels in 0.8 < |η| < 1.7. Each of the 64 barrel modules has a wedge
shape covering approximately a range of ∆φ = 0.1. The segmentation in η for each
module varies across the three layers present: ∆η = 0.1 for the first two and ∆η = 0.2
for the third layer. The TileCal achieves an energy resolution for hadronic jets of
σE
E = 50%√

E/GeV
⊕ 3% in the central barrel and σE

E = 100%√
E/GeV

⊕ 10% in the extended
barrel. Figure 3.9 presents a scheme of a single TileCal module wedge.

The Hadronic Endcap is composed of two independent wheels per endcap, be-
hind those of the EMEC. It uses a copper plates and LAr technology, covering a
region of 1.5 < |η| < 3.2.

Forward Calorimeter

This calorimeter covers the most forward region of 3.1 < |η| < 4.9 where the most
intense flux of particles is present. It uses also a LAr technology and consists of three
parts: one closer to the interaction point that uses copper as absorber and is in charge
of the measurement of electromagnetic interactions, and other two parts that use
Tungsten as absorber and measure hadronic interactions. The Forward Calorimeter
uses concentric rods inside tubes that are parallel to the beam axis.

3.3.5 Muon Spectrometer

The Muon Spectrometer (MS) is the largest and outermost of the ATLAS subde-
tectors. It is a system designed for detecting the charged particles that escape the
calorimeters, mostly muons, and measuring their trajectory, momentum and charge.
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FIGURE 3.9: A sketch of a TileCal wedge. Taken from [41].

The MS covers a region of |η| < 2.7 and is able to measure particle momenta in the
range 3 GeV - 1 TeV, with a pT resolution of 10% for 1 TeV muons. The toroidal
system provides the magnetic field used to bend the charged particles in a plane
parallel to the beam axis, that are then measured by the MS.

There are mainly four elements in the MS, that are displayed in figure 3.10:

• The Monitored Drift Tubes (MDTs) are aluminum cylinders with a 30 mm di-
ameter (and length of 0.85-6.5 m) with a tungsten wire in their center, filled
with a mixture of gaseous argon and CO2 (93% and 7% respectively). The ion-
ization of this gas by the muons is collected by the tungsten wire, there is a total
of over 354000 tubes. The main purpose of the MDTs is to precisely measure
the position of the bent particles.

• The Cathode Strip Chambers (CSCs) have the same purpose as the MDTs but
with more precision, and operate in the inner part of the endcap (2.0 < |η| <
2.7) with 70000 channels. CSCs are multi-wire proportional chambers filled
with a gas mixture of 80% Ar and 20% CO2. Cathode strips are perpendicular
to the (anode) wires of the chambers, allowing for the measurement of the
charge distribution.

• Resistive Plate Chambers (RPCs) consist of a parallel pair of resistive plates
with a 2 mm gap, that are kept with an electric field of about 5 kV/mm. The
gap is filled with a gas mixture of 94.7% C2H2F4, 5% Iso-C4H10 and 0.3% SF6.
RPCs provide triggering information with over 380000 channels; they and are
disposed in three cylindrical layers covering the central region, concentric with
the beam axis.

• Thin Gap Chambers (TGCs) are used for triggering in the endcap region (1.05 <
|η| < 2.4). TGCs are multi-wire proportional chambers of high granularity that
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operate in narrow time windows <25 ns (proton bunch time separation), as it
is the case of RPCs. A gas mixture of 55% CO2 and 45% n-C5H12 is used to fill
the TGCs.

FIGURE 3.10: Schematic view of the muon spectrometer in the x-y
(top) and z-y (bottom) projections. Taken from [42].
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3.3.6 Trigger System

This system is in charge of selecting proton (bunch) crossings containing “interesting
collisions” to be recorded, and discarding the rest5. Since the LHC collisions happen
at a rate of 40 MHz, the trigger system needs to be able to make the decision in a
suitable time window. The ATLAS trigger system has two major parts: the Level-1
trigger, that operates at a hardware level and reduces the rate of events to the order
of 100 kHz, and a software-based High Level Trigger (HLT) that reduces the accepted
events further down to about 1 kHz.

The hardware-based Level 1 trigger is implemented in dedicated electronics (FP-
GAs and ASICs) that allow for fast decision making. This trigger uses information
from the MS and the calorimeters, and also computes the missing transverse mo-
mentum Emiss

T and the event-wise sum of jet energy, to produce data to be processed
by the Central Trigger Processor (CTP). The Level 1 Calorimeter trigger uses a slid-
ing window algorithm to search for energy maxima in trigger towers (see figure 3.8,
left), and compares the value found with a predefined threshold. The Level 1 Muon
trigger uses hits in the RPCs (central region) and TGCs (endcaps) to identify muons
for different pT thresholds. Both the calorimeter and muon Level 1 triggers define
Regions Of Interest (ROI) in solid angle, where the particles have been identified.
The CTP takes the trigger decision based on a combination of predefined criteria
(ROIs, predefined thresholds, multiplicity of identified objects, etc.) that are stored
in the hardware.

The High-Level Trigger (HLT) uses as inputs the events that passed the Level 1
trigger. However, the HLT is able to process events in parallel and asynchronously,
unlike the sequential Level 1 trigger, with algorithms that run in a computer farm.
The HLT uses the whole granularity of the detector and the ROIs to reconstruct the
different physics objects. The selections imposed in the HLT are designed to mini-
mize the differences with the offline selections imposed in physics analyses.

HLT selections are stored in so-called trigger chains that contain labels that iden-
tify the requirements imposed, following the structure:

[LEVEL]_[N TYPE][THRESHOLD]_[QUALITY]_[ISOLATION]

where LEVEL identifies the Level 1 trigger or HLT, N TYPE is the multiplicity and
type(s) of object(s) used, THRESHOLD the pT threshold used, and QUALITY and ISOLATION
define quality requirements and isolation working points on the objects, respectively.

Finally, the events that pass the HLT selection are stored at the CERN computing
center (Tier 0) for reconstruction. The data is also distributed across the Worldwide
CERN Computing Grid [43] for further processing and analysis.

3.4 Conclusions

We have reviewed the key aspects of the LHC and the ATLAS detector. With that
experimental equipment, the current knowledge of the energy frontier is being ex-
plored by performing SM measurements and searching for New Physics. The sub-
components of the ATLAS detectors have been designed for such purpose, allowing
for efficient reconstruction and precise measurements of the particles produced in
the collisions, covering almost the full solid angle. A major upgrade in ATLAS is
planned for the new luminosity conditions at the LHC, the High-Luminosity LHC,

5Most events at the LHC are low-pT inelastic collisions. Also, handling (processing and storing) all
events would turn to be very expensive and impractical.
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to start in 2025. Other experiments proposed and ongoing offer promising research
paths, such as precision measurements ar Higgs boson factories (e.g. the Interna-
tional Linear Collider) or increasing the energy by an order of magnitude (Future
Circular Collider).
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Chapter 4

Monitoring Generic Signatures in
ATLAS

In this Chapter, we describe the use of the TAg DAta (TADA) monitoring system
[44] for automatically exploring generic signatures in ATLAS. TAG data refers to a
condensed file format that contains information from the (simulated or recorded)
collision events. The exploration of generic signatures with TADA is inspired from
the General Searches for New Physics (e.g. that in ref. [45]), aiming to extend the
already broad set of signatures monitored by the system.

4.1 TADA: A fast monitoring system for ATLAS

There are two main purposes for TADA: to serve as an early warning system for
New Physics searches, and to provide a tool for physics validation and performance
of the data and MC. TADA uses data runs that were processed and updated twice
a day during data-taking periods. Both the running of the monitoring system and
the writing of the data in TAG format happen in the so-called Tier-0 of the ATLAS
computing infrastructure [46] whose purpose, among others, is to promptly process
the raw data that is output from the detector’s data acquisition system. The final
output of the TADA system consists in a webpage with hundreds of channels with
thousands of histograms filled, that is available to the members of the ATLAS col-
laboration in https://atlas.web.cern.ch/Atlas/fastphys/tagmon/.

The TADA monitoring software is written in C++ and Python. This solution al-
lows the efficient handling of the more computationally-intensive tasks such as the
processing of the TAG files (with C++) as well as a clean interface for other function-
alities like the use of metadata, job management, and the generation of the system
webpage (with Python). Python dictionaries are used for storing the definitions of
channels, i.e. trigger and object requirements, histograms to be booked and filled,
etc.

There is a broad number of physics channels that are monitored by TADA. Those
use a selection of events and requirements that are inspired in real dedicated anal-
yses that perform e.g. studies searching for New Physics. A set of histograms are
filled and other kind of plots and tables are produced to validate the recorded data
and check their compatibility with MC simulations. The main categories for the sig-
nal regions are Standard Model Top, Higgs, Exotics, and Susy. Being a fast monitoring
tool, TADA cannot lead to making sensible claims on the existence of New Physics,
but the appearance of a feature in data in one of such channels would trigger ded-
icated inspection. A number of performance and validation control plots are also
presented in the webpage.

https://atlas.web.cern.ch/Atlas/fastphys/tagmon/
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Despite its great performance as a monitoring tool, there are a few limitations to
the TADA monitoring system. Arguably the most relevant is that systematic errors
are not included. Also, there are no background (SM) samples estimated from data-
driven techniques available; instead, k-factors are applied in some cases (e.g. in
multijet MC samples).

4.1.1 TAG file writing and analysis model

The TAG file format is used as an input for TADA after a sequence of processing
in the Tier-0. Such format is derived from the Analysis Object Data (AOD) files,
which contain a summary of the reconstructed objects of the events. AOD files are
themselves derived from raw data formats that come from the detector after the filter
of the High Level Trigger (for data) or its simulated output (for MC).

The TAG format stores a reduced representation of the data. It contains the fol-
lowing objects per event1: 6 electrons, 6 muons, 4 taus, 4 photons, and 10 jets; as
well as missing transverse energy, trigger counters and global event information.
For each of the objects attributes corresponding to kinematic quantities (pT, η, φ),
and particle identification, isolation and quality information are stored. Moreover,
the objects and the event-wide quantities that are written in the TAG file are required
to satisfy a set of criteria, motivated by the detector specifics, data quality to be used
and physics of interest2. The selection of events and objects is further constrained
during the TADA processing, that we describe below.

The analysis code from TADA operates in three steps taking as an input the TAG
files. On the first step, objects are defined and selected using the criteria where
acceptance regions for the transverse momentum and the pseudorapidity of each
object are defined as well as other quality and identification requirements. Table
4.1 presents a summary of those criteria along with some coming from the TAG
writing. Electrons are required to pass the loose likelihood identification (Electron-
IDLikelihoodLoose) [47]. A combined reconstruction (isCombined) is required for
the muons, i.e. the tracks reconstructed in the Muon Spectrometer are matched with
those in the Inner Detector [48]; muons are also required to pass loose identification
requirements (LooseID), as defined in the same reference. Further, a veto for cos-
mic muons is applied and nearby second muons dR < 0.01 is applied. For photons,
a loose identification (PhotonIDLoose) defined in ref. [49] is required. In the case
of hadron jets, the identification is performed with the anti-kt algorithm [50] with
R = 0.4, and the b-jets are identified using the mv2c10 b-tagger at 70% efficiency as
described in [51]. Tau jets are required to pass a medium selection working point
(JetBDTSigMedium) from a BDT output from ref. [52].

Also on the first step, a sequence of overlap removal rules are applied on the
objects for an angular separation dR, a procedure that is summarized in Table 4.23.

The second step uses the definitions of the signal regions for the monitored chan-
nels; there, all histograms are booked and filled. Finally, on the third step, postpro-
cessing tasks are performed: plots and tables are produced and the webpage is built
with all the results.

1Ordered by leading pT , without charge distinction.
2The event and object criteria required, calibration and overlap removal tools used in the TAG writ-

ing can be found in the following link: https://twiki.cern.ch/twiki/bin/view/AtlasProtected/
TagForEventSelection210 (restricted access to ATLAS collaboration members).

3This table is taken from the internal note available in https://cds.cern.ch/record/2226510/
files/ATL-PHYS-INT-2016-023.pdf.

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TagForEventSelection210
https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TagForEventSelection210
https://cds.cern.ch/record/2226510/files/ATL-PHYS-INT-2016-023.pdf
https://cds.cern.ch/record/2226510/files/ATL-PHYS-INT-2016-023.pdf
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Object pT |η| Other requirements

e > 10 GeV ∈ (0, 1.37) ∪ (1.52, 2.47) ElectronIDLikelihoodLoose

µ > 10 GeV < 2.7

isCombined
LooseID
Cosmics veto
Reject second muons with dR < 0.01

γ > 20 GeV ∈ (0, 1.37) ∪ (1.52, 2.37) PhotonIDLoose

(b-)jet > 40 GeV < 2.8
AntiKt4TopoJets
LooseBadTool
(mv2c10 b-jet tagger)

τ > 20 GeV ∈ (0, 1.37) ∪ (1.52, 2.5) JetBDTSigMedium

TABLE 4.1: Object selection requirements in TADA. An explanation
for the keywords in the requirements is provided in the text.

Rank Overlap removal separation

1 remove jets overlapping with electrons dR < 0.2
2 remove taus overlapping with muons dR < 0.2
3 remove jets overlapping with taus dR < 0.4
4 remove electrons overlapping with jets dR < 0.4
5 remove muons overlapping with jets dR < 0.4
6 remove photons overlapping with electrons dR < 0.2
7 remove jets overlapping with photons dR < 0.4

TABLE 4.2: Overlap removal rules applied in TADA.

4.2 Generic Signatures in TADA

Monitoring only the channels that have a corresponding signature-specific analy-
sis has a clear disadvantage: it leaves a vast amount of data unexplored. This is
one of the main motivations for General Searches, where data are compared to sim-
ulations in a broad set of channels using an automatic procedure. We follow the
same approach in TADA by implementing a system that is able to combine differ-
ent objects at different multiplicities, thereby establishing a mechanism to bridge the
gap between the explored channels and the available data. The webpage containing
this generic search can be found in cern.ch/Atlas/fastphys/tagmon_fabricio/
tagmon/.

Generic searches were present in TADA during a part of LHC Run-1, but they
were not maintained because of lack of personpower. The effort of updating generic
searches required a major overhaul of the obsolete data-processing code which was
adapted to automatically produce both data files and associated information which
need to be transparent to the TADA processing and postprocessing and web page
systems4.

4.2.1 Automated Generation of signatures

The generic search system allows the end-user to input a set of constraints and
physics objects to be combined automatically. There is a library of functions that

4The branch of the software containing the generic channels can be accessed by the collaboration
members in /afs/cern.ch/atlas/project/fastphys/tagmon/dev_fabricio/tagmon.

cern.ch/Atlas/fastphys/tagmon_fabricio/tagmon/
cern.ch/Atlas/fastphys/tagmon_fabricio/tagmon/
/afs/cern.ch/atlas/project/fastphys/tagmon/dev_fabricio/tagmon
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1 'Selection': '''
2 ( TrigEmuOneMu || TrigEmuOneEl) &&
3 ( IsGoodJetMET ) &&
4 ( (NLooseElectron + NLooseMuon) == {nlep} ) &&
5 ( LooseElectronPt1 > 26000 || LooseMuonPt1 > 26000 ) &&
6 ( NJet == {njet} ) &&
7 ( HT >= {ht} )
8 ''',
9 'SelectionFunc': [require_good_lepton, require_good_jet],

10 'Variables': {
11 'nlep' : [1,2],
12 'njet' : [2,3,4,5],
13 'ht' : [1000*_GeV, 2000*_GeV],
14 }

LISTING 1: Three Python dictionary keys used for generic selections.

allows to take that input and generate several data objects (e.g. selection strings,
histogram definitions) that are understandable to TADA; the input is entered in the
form of a python dictionary

An example is shown in Listing 1. Here the idea is to have events that pass trig-
ger and quality requirements, and then combine different possible values for the
number of jets, leptons and minimum sum of the transverse momentum of all ob-
jects in the event (HT). Lines 1-8 contain the Selection key, that is a string with all
the criteria required for the events: the first two lines (2 and 3) are the trigger and
quality requirements, and line 5 imposes that the leading lepton has a transverse
momentum greater than 26 GeV; lines 4, 6, and 7 contain the values that are com-
bined (number of leptons, number of jets and minimum HT values), indicated by
curly braces. The key SelectionFunc in line 9 defines an array of functions where,
respectively for all leptons and all jets, the functions impose a minimum transverse
momentum and quality requirements. The minimum jet pT values imposed by the
function are 420 GeV for the leading jet and 40 GeV for sub-leading ones, whereas
the requirement for the leptons’ pT is 10 GeV. The choice of those specific pT min-
imum values comes from trigger thresholds, that aim to minimize turn-on effects.
The generic variables (Variables) defined in lines 11-13 correspond to the possible
values of those inside braces in the selection string, i.e. one or two leptons, two to
five jets and a minimum HT of 1 or 2 TeV. This finally leads to 16 different selections.

In the definition of the dictionary for generic selections there is also a key to
define the histograms to be filled. For performance purposes we have only used four
variables: the invariant mass of all objects selected (Minv), HT, the missing transverse
energy (Emiss

T ), and the effective mass (Meff = HT + Emiss
T ). There are functions to also

automatize the creation of those.

4.2.2 Generic channels monitored

Once the system for creating generic selections was put in place, we defined sev-
eral channels for monitoring. The channels are organized in groups called Multijets,
Multiobjects, Several Photons, and Leptons plus Jets; which will be presented below.
The system indeed allows for a broader exploration than that shown here, and is left
for future work.
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The generic channels were put in place during the data taking of 2017, as part of
LHC run II, of proton-proton collisions at a center-of-mass energy of

√
s = 13 TeV.

The LHC runs recorded by ATLAS that were used by TADA, and are presented in
the following, amount to a luminosity of 43.8 fb−1 and were processed using release
21 of the ATLAS Athena software. Data from 2015 and 2016 are also available and
the merged data for the 2015-2017 period adds up to 68.6 fb−1; this merged dataset
uses the 2017 trigger setup.

The simulation campaign from which the Standard Model Monte Carlo samples
were derived goes by the name of MC16a. The default set of MC samples defined in
TADA were included in the generic signatures below (unless explicitly stated other-
wise) and those are:

• tt̄+single-t. Samples for top quark pairs (tt̄) were produced using Powheg [53,
54] (limiting the hdamp parameter to 1.5 times the top mass), Pythia 8 [55, 56]
(using the A14 tune [57] and nnpdf23 [58] at leading-order (LO)) and EvtGen
[59]. Single top-quark (single-t) samples were generated using Powheg [53,
54], Pythia 6 [55] (with the Perugia 2012 tune [60]) and EvtGen [59].

• Dibosons. These samples, corresponding to processes generating WW, ZW or
ZZ, were generated using Sherpa 2.2.1 [61] using nnpdf30 at next-to-next-to-
leading-order (NNLO).

• W/Z+jets. The processes corresponding to final states with a weak boson
plus jets, were also generated with Sherpa 2.2.1 [61] using nnpdf30 at NNLO
for leptonic decays and Sherpa 2.1.1 and the CT10 pdf [62].

• Multijets. These were dijet samples generated with Pythia 8 [55, 56] using
the A14 tune [57] and nnpdf23 [58] LO and EvtGen [59]. Multijet samples are
the combination of samples generated at different ranges of the leading jet pT
value (known as slices).

The total MC is normalized to the luminosity of the data collected. In the case of mul-
tijet samples, which is a difficult process to model, no data-driven technique is used
for estimation, but correction factors are applied to those distributions. The value of
such factors was taken from the derivation done in ref. [63]. There, the generated
events are reweighted according to a ratio of the cross section of the QCD dijet pro-
cess calculated at Next-to-Leading-Order (NLO) from the NLOJet++ package [64–
66] and that of the same process at LO from the matrix element plus showering from
Pythia 8 [55, 56].

Multijets

The signatures explored are those with many jets in the final state, with high HT.
Other dedicated set of channels in TADA explores signatures of jets at lower mul-
tiplicities, under the Exotics group of signatures. The one-jet trigger HLT_j420 is
required (events with one jet with pT > 420 GeV and a mass of at least 35 GeV)
as well as jet/Emiss

T quality requirements from the detector, on the events. Here we
combine different values of two variables:

• The number of jets, from 6 to 10.

• The minimum value of HT, 1 and 2 TeV.
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There are two further criteria for jets in the events: firstly, the events are required
to be separated in the angular plane with R = 0.4 or larger (having in mind that jet
cones with that same R value are used in the jet clustering algorithm); secondly, the
leading jet is required to have pT > 420 GeV and all the sub-leading ones pT > 40
GeV.

Figure 4.1 presents one example of the multijet channels. In the histograms, we
observe an approximate agreement between data and MC: a part of the discrepancy
arguably has its origin in the multijet MC samples, that are known to be difficult to
model, as we have pointed out before. Besides that, the other important contribu-
tions in this signature are those from W/Z+jets. During the data-taking periods, no
peculiar feature or anomaly appeared on the data.
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FIGURE 4.1: Example multijet selection: HT > 1 TeV, number of jets
equal to six. Plots correspond to each variable monitored: HT (4.1a),
missing transverse energy (4.1b), invariant mass (4.1c), and effective
mass (4.1d). Bottom panels present a ratio between the data and Stan-

dard Model Monte Carlo.
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Multiobjects

Inclusive high-multiplicity signatures are explored in this group. Similarly to the
multijet case, events need to pass the one-jet trigger and jet/Emiss

T quality require-
ments. Events with Emiss

T > 400 GeV are selected, and the leading-pT jet required to
pass quality requirements and have pT > 420 GeV.

The variable value entered in the generic dictionary is only one:

• The number of electrons, plus the number of muons, plus the number of jets,
greater or equal than 6, 7 or 8.

This leads to three selections.
In Figure 4.2 we can see the plots for the signature of seven or more objects.

Once again, we get an approximate agreement between data and Monte Carlo and
an overestimation is present mostly due to the multijet contribution.
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FIGURE 4.2: Example multiobject selection: number of objects (lep-
tons plus jets) greater or equal to 7. Plots correspond to each vari-
able monitored: HT (4.2a), missing transverse energy (4.2b), invari-
ant mass of the seven objects (4.2c), and effective mass (4.2d). Bottom
panels present a ratio between the data and Standard Model Monte

Carlo.
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Several Photons

Channels with several photons in the final state, and with two different HT values
were monitored. The HLT_g35_medium_g25_medium_L12EM20VH trigger is applied on
the events; it requires two reconstructed photons with pT > 35 GeV and pT > 25
respectively, and passing a medium identification criterion [49]. The generic values
to be combined are:

• The number of photons, two or three.

• The minimum value of HT, 250 or 500 GeV.

Furthermore, the leading photon is required to have pT > 35 GeV and all the sub-
leading selected ones pT > 25.

In for this set of selections, we have included a SM diphoton sample generated
using Sherpa 2.1.1 and the CT10 pdf [62] for both the hard process and the parton
shower, identified as “γγ Sherpa”. The samples were generated for processes that
produce two photons and 0, 1, or 2 jets, in different slices of the diphoton invariant
mass, and then combined.

Figure 4.3 presents the signature in which we select two photons and impose
HT > 250 GeV. General good agreement is found in the SM histograms with re-
spect to the data, except in the Emiss

T , where the simulations underestimate the data
obtained. This deficit possibly has its origins in the fact that the pile-up spectrum
obtained in data had an important disagreement with respect to simulations during
the 2017 data taking. Given that pile-up affects (adds noise) to the Emiss

T calculation,
we can expect some impact in that variable5

Leptons plus Jets

This corresponds to the example that we quoted at the beginning of section 4.2.1, and
Listing 1. Either the single muon or the single-electron trigger, respectively labeled
by the strings HLT_mu26_ivarmedium or HLT_e26_lhtight_nod0_ivarloose is ap-
plied: the single muon trigger requires events with a muon with a 26 GeV minimum
pT threshold and a medium gradient isolation requirement as defined in [48], and
the single electron trigger also requires one electron with a minimum pT of 26 GeV,
a likelihood-based tight identification and a loose gradient isolation requirement, as
explained in ref [67].

The variable values combined (leading to 16 selections) are:

• The number of muons plus the number of electrons equal to one or two.

• The number of jets from two to five.

• The minimum value of HT, 1 or 2 TeV.

In Figure 4.4, we present the plots for one example: one jet, two leptons and
HT > 1 TeV. This and other selections inside this group are dominated by the W+jets
contribution for requiring the presence of the lepton(s) on top of the jet(s). General
good agreement is found between the data and Monte Carlo, and no particular data
feature appeared during data-taking periods.

5The interested reader can check the W validation plots page, in particular https:
//atlas.web.cern.ch/Atlas/fastphys/tagmon_fabricio/tagmon/shared-images/2017/val_
W/val_Wenu__AvgIntPerXing_both.gif.

https://atlas.web.cern.ch/Atlas/fastphys/tagmon_fabricio/tagmon/shared-images/2017/val_W/val_Wenu__AvgIntPerXing_both.gif
https://atlas.web.cern.ch/Atlas/fastphys/tagmon_fabricio/tagmon/shared-images/2017/val_W/val_Wenu__AvgIntPerXing_both.gif
https://atlas.web.cern.ch/Atlas/fastphys/tagmon_fabricio/tagmon/shared-images/2017/val_W/val_Wenu__AvgIntPerXing_both.gif
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FIGURE 4.3: Example diphoton selection: HT > 250 GeV. Plots cor-
respond to each variable monitored: HT (4.3a), missing transverse
energy (4.3b), invariant mass (4.3c), and effective mass (4.3d). Bottom
panels present a ratio between the data and Standard Model Monte

Carlo.

4.3 Conclusion

Within the TADA monitoring system we have put in place a system that, inspired in
General Searches performed by the ATLAS collaboration [45], allows for automati-
cally combining different objects and selection criteria. Four sets of signatures were
defined and monitored during data-taking period of 2017, generating over 30 dif-
ferent signatures that lead to over 120 histograms filled, a few of which have been
shown here. Signatures monitored are summarized in table 4.3. Even if TADA can-
not lead to discovery claims, during periods when the data luminosity doubles at a
fast rate (e.g. 2016 and 2017). This monitoring tool becomes of great utility for the
collaboration, as it can provide quick feedback to specialists with offline monitoring,
processing new runs in the tier-0 twice a day. No particular anomalous behavior was
observed in the data during data-taking periods. The system for creating generic se-
lections certainly allows for a broader exploration, that is left for future work.
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FIGURE 4.4: Example lepton plus jets selection: number of leptons
equal one, number of jets equal two, HT > 1 TeV. Plots correspond
to each variable monitored: HT (4.4a), missing transverse energy
(4.4b), invariant mass (4.4c), and effective mass (4.4d). Bottom panels
present a ratio between the data and Standard Model Monte Carlo.

Group # Selections Variables

Multijets 10
Number of jets = {6, 7, 8, 9, 10}
HT > {1, 2} TeV

Multiobjects 3 Number of objects = {6, 7, 8}

Several Photons 4
Number of photons = {2, 3}
HT > {250, 500} GeV

Leptons plus jets 16
Number of leptons (e, µ) = {1, 2}
Number of jets = {2, 3, 4, 5}
HT > {1, 2} TeV

TABLE 4.3: Summary of the 31 generic selections in TADA. For each
of the selections, four distributions were monitored.
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Chapter 5

Machine Learning in High Energy
Physics

5.1 Motivation

Machine Learning (ML) is a discipline at the intersection of computer science and
statistics. Without being explicitly programmed to perform a specific task, ML algo-
rithms learn a mathematical model, i.e. approximate a function, by using observed
real or simulated data for improving their performance on that task. (Many some-
what similar definitions of ML can be found in the literature; see e.g. chapter 18 of
ref. [68].) Ultimately, the algorithm should be able to make predictions on future
data.

Very broadly, learning tasks can be separated into two main types: unsupervised
and supervised. Supervised learning tasks consist in building models for which
the desired output is known in the training dataset, whereas unsupervised tasks
aim to extract information (e.g. patterns) in the training dataset where no desired
outputs are provided. Some techniques lie in between the two categories above;
for example, active learning [69] (access a limited amount of desired outputs for
optimizing performance) or semi-supervised learning [70] (desired output available
only for a fraction of the training set), the latter of which is discussed in further detail
in Chapter 6.

Statistical models and tools are at the core of any experimental data analysis,
and more specifically ML has found a broad set of applications in physical sciences
including High Energy Physics. Applications lie in different sub-domains, such as
detector design and calibration [71], simulation techniques [72], and particle identi-
fication and event discrimination [73], to name a few. Most of such applications have
led to significant improvements in the discovery potential of new particles, includ-
ing those proposed in beyond-the-SM scenarios, e.g. in ref. [74]. Optimal analysis is
particularly needed when dealing with experiments that are expensive to build and
run as they often happen in High Energy Physics.

There are a few reasons why ML techniques are well suited for particle collision
data analyses. Despite the monumental success that the SM has seen as a scien-
tific theory, it is in general difficult to build a statistical model from first principles
within the SM (see Chapter 2) to compare with measured data. Further, at a quan-
tum level interactions are probabilistic, from the collision itself to the interaction of
final particles with the detectors. Our theoretical predictions are therefore based
on simulations that rely on a set of approximations and effective models that are
tuned with the help of already-available data, and then those simulations are tested
against measurements. Finally, collisions producing interesting physics are rare and
thus high-energy collider experiments are designed to produce large volumes of
high-dimensional data; learning statistical models from data and dealing with high
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dimensions are two of the main goals of ML techniques in general, and where they
have been shown to succeed [75].

For decades, experimental particle physicists have used machine learning tech-
niques. Artificial Neural Networks (NNs) were first introduced in particle physics
back in 1987 for addressing track and cluster finding in detectors [76], and Boosted
Decision Trees (BDTs) in 2004 for particle identification [77]. The use of BDTs and
NNs has gone beyond their initial applications, with uses in on- and offline event
selection, parameter estimation, and others. These techniques along with other used
in particle physics have been traditionally referred to as Multivariate Analysis Meth-
ods, and have been reviewed e.g. in ref. [78]. Notably, Machine Learning techniques
have had an impact in the early measurements of the top quark mass [79] in 1997
and the Higgs boson discovery [14, 15] in 2012.

In recent years, the advent of larger datasets, new software capabilities and the-
oretical developments during the last couple of decades have fueled a revolution in
ML with a direct impact in science and industry. Given that research in ML advances
at an increasingly-faster pace, mostly due to incentives in the industry, physicists are
facing the challenge of porting all pertinent knowledge to improve their analyses, as
it is stated in ref. [80].

5.2 Supervised learning

A supervised learning problem is typically put as finding a function f : X → Y that
maps the inputs x with D features (i.e. dimensions) to a lower-dimensional space,
where outputs (targets) y exist. In the training dataset, inputs X = (x1; · · · ; xN) con-
tain N observations (e.g. collision events) and the N desired outputs Y = (y1; · · · ; yN),
some quantity of interest. The case in which the desired output is not used (or not
available) for finding f is referred to as unsupervised learning, discussed below in
5.3.

In supervised learning, finding the best f , i.e. training, means optimizing some
loss function L( f (X), Y). This function measures the goodness of the prediction f (X)
with respect to the desired output Y . Models such as NNs or BDTs are examples of
functions f that are parameterized by a set of hyperparameters θ. Optimizing the loss
function then consists in tuning hyperparameters, and several algorithms have been
designed for such task and are available in the market depending on the model used,
as we will see below.

The fact that ML models follow this “learning from data” approach, often with
few or no assumptions on the true underlying process, can lead to some limitations.
Since such models are tuned with data that can be noisy, limited and/or biased, the
case is often that the resulting models are prone to overtraining; this is, simply put,
training to an extent in which the model continued increasing performance on the
training dataset but decreasing it on a new dataset. Overtraining normally means
that our model has learnt unnecessary details from data, that leads to high variance
error in unseen data. In contrast, undertrained models are overly simple and there-
fore prone to bias error; the goal consists in finding a good tradeoff between bias and
variance [81]. Regularization techniques by means of constraining the loss function
are used to avoid overtraining; a use of regularization in another context is presented
in Chapter 6.

Arguably, the two most important supervised ML tasks that are performed in
practice are classification and regression. On one hand, classification deals with data
whose output has two or more labels, where one would aim to find boundaries in
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the feature space that identify regions associated to the different labels. Regression,
on the other hand, consists in approximating a function of continuous outputs. We
briefly describe below a few conventional methods that appear in standard text-
books in ML such as refs. [82] or [83].

Methods that use a linear combination to map the input variables to f are known
as linear methods and can be written:

f (x, w) ∼ w · x = w0 + w1x1 + · · ·+ wDxD , (5.1)

where w is a vector of weights (parameters) wi that need to be optimally chosen, for
example, via the maximization of the likelihood, among other methods. Further, this
linear mapping can happen via a basis of functions φ:

f (x, w) ∼ w ·φ(x) = w0 + w1φ1(x) + · · ·+ wDφD(x) , (5.2)

that allows for more flexibility than the model in eq. (5.1).
The simplest example of regression is linear regression. There, one regresses

the value of the desired output y onto x, assuming a linear relationship of the kind
y ∼ f (x, w) = w0 + w1x and finds the weights by minimizing the residual sum of
squares:

RSS(w) =
N

∑
i
( f (xi, w)− yi)

2 . (5.3)

An extension of linear regression to many features (as in the case of eq. 5.1) is re-
ferred to as multiple linear regression.

In a number of cases, linear regression with the ordinary least squares method
is too simple of a prescription to find the best fit. Several improvements have been
devised to aim for a more robust function than least squares (i.e. less prone to over-
training), notably by adding a penalty term to eq. 5.3 as a form of regularization.
The form of the loss function then becomes:

L(w) = RSS(w) + γp(w) , (5.4)

where p is a penalty function on the parameters and γ a parameter that needs to
be chosen to regulate the penalty. Two important examples that are now standard
in the literature are the so called L1 and L2 penalties, that lead to Lasso and Ridge
regression, respectively. For reference, the respective penalty terms are written:

pL1 =
D

∑
j
|wj| , (5.5)

pL2 =
D

∑
j

w2
j . (5.6)

We will see an example of penalization in the context of anomaly detection in Chap-
ter 6.

Linear regression can also be formulated in a Bayesian context, where one infers
a (posterior) distribution of parameters. The underlying machinery is based in the
use of Bayes’ theorem: postulate a prior probability on the weights and use the like-
lihood to update our knowledge about the distribution of weights. The optimization
procedure for a Bayesian linear regression is often analytically intractable and one
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has to make use of methods like Markov Chain Monte Carlo to perform the opti-
mization by sampling the posterior. An example of an exception where Bayesian
linear regression is tractable is the case in which we postulate Gaussian priors over
the parameters; there, maximizing the posterior is equivalent to performing least
squares with an L2 penalty, i.e. Ridge regression.

A more general and powerful regression tool that can be devised using Bayes’
theorem are Gaussian Processes (GPs) [84]. Used for non-linear regression, GPs con-
sist in associating a N-dimensional joint Gaussian distribution to the N data points.
The mean of the joint Gaussian is constrained (conditioned) by each yi and the co-
variance matrix is given by the correlation between pairs of points; it is possible to
infer new values of y∗ ∈ Y for an arbitrary x∗ ∈ X through some standard alge-
braic procedure called completing the squares and assuming a Gaussian likelihood.
A continuous set of regressed values is achieved in the limit in which the GP has
an infinite-dimensional joint Gaussian distribution. In practice, one introduces a
positive-definite parametric function called kernel which is a measure of similarity
to model the covariance between pairs of points, instead of using the covariance
computed from the data. Kernel parameters are obtained via maximum likelihood
estimation to perform the regression. In Chapter 7 we provide greater detail on the
theoretical bases of GPs and an application in High Energy Physics.

Linear methods have been employed in classification. More formally, this con-
sists in finding a separation of classes of events in the feature space, as it is the case
of logistic regression and linear discriminant analysis (LDA). In logistic regression for
binary classification, i.e. where we two possible outputs commonly labeled as {0, 1},
the linear combination is mapped to the class prediction f via the logit link:

log
(

f (x)
1− f (x)

)
= w · x , (5.7)

where f can be understood as the probability of belonging to class “1”. Normally
one decides a threshold in f to decide whether a prediction will be identified in
either class. The key idea behind LDA is to construct and maximize a discriminant
quantity from the means and (co)variances of sampled events from each class, where
the linear combination in eq. (5.1) defines a separation between the classes. A classic
example is the Fisher discriminant,

F(w) =
(µ1 − µ0)2

σ2
1 + σ2

0
, (5.8)

where weights can be obtained via

w = Σ−1(µ1 − µ0) , (5.9)

with Σ the common covariance matrix of the samples. LDA is more stable than
logistic regression when the classes are well separated and when the sample size
is small. Detailed descriptions of those methods can be found in e.g. chapter 4 of
reference [85].

Below, we describe two methods that have been frequently used in High Energy
Physics for several years: Boosted Decision Trees and Artificial Neural Networks.
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5.2.1 Boosted Decision Trees

Two common tasks in data analyses from detectors at the LHC are particle identifica-
tion and signal versus background discrimination. An example of an analysis where
Boosted Decision Trees (BDTs) have been used multiple times for such tasks can be
found in ref. [73]. In that work, photons are identified by using variables of different
kinds: some are related to the shape of energy deposits in the calorimeter, and other
to the kinematic and angular properties of the deposits. BDTs are also used for se-
lecting events that contain two photons with certain features, that are related to the
signal of interest, and at the same time rejecting those that come from uninteresting
SM physics.

An accessible example of supervised ML is a tool that uses a tree model to make
decisions about the data, known as Decision Trees, and further help with tasks such
as classification and regression. Decision Trees have become popular for being easily
interpretable and scaling well with the dimensionality of the dataset, among other
reasons. In High Energy Physics, boosted Decision Trees which we will discuss be-
low, have become the de facto supervised ML tool for several tasks and have been
implemented in TMVA[86].

Decision Trees contain a set of nodes where the data is split (forked) into branches,
that can feed other nodes for further forking. The data enter through a node, the root
node, and is forked into two branches according to a criterion defined by a threshold
on a single variable, also known as cut1. An observation xi belongs to one branch if it
satisfies a criterion Cj : xij > cj for a variable indexed by j, otherwise the observation
is forked into the other branch. The process is repeated once the data from a branch
arrives to a new node. Branches that do not input data to another node are known
as leaf nodes. The tree then grows until a prescribed stopping criterion is met, like a
maximum number of leaves, no more purity is gained, et cetera. The idea of limiting
and modifying the amount of nodes and leaves is known as pruning. An example
model of a decision tree is presented in Figure 5.1.

Each leaf node of the Decision Tree identifies a hyperrectangle in the feature
space. The goal of going through such sequence of decisions is to increase the purity
in the result, as measured by some metric (e.g. the Gini index or the cross-entropy),
that would ultimately amount to optimizing the loss function.

The bias-variance tradeoff is also present in DTs. As we know, the amount of
nodes should optimize the performance on unseen data; on one hand, if there are
few nodes, the tree can be overly simple and highly biased and, on the other hand,
many nodes can lead to hyperrectangles constructed with a small number of data
points, where generalization is difficult and prone to high variance error.

We will illustrate how boosting is performed with decision trees for classifica-
tion. Boosting is a popular ensemble method that combines a sequence of learners,
e.g. Decision Trees, to build a single, more powerful learner, that has been shown
to reduce bias and variance [87]. The basic idea underlying Boosted Decision Trees
(BDTs) is to iteratively grow weak classifiers f weak (i.e. DTs that perform marginally
better than random choice) to form a strong BDT. At a given iteration p, many DTs
are grown and one f weak

p is chosen, such that it minimizes the misclassification rate,
from which a learner weight αp that assigns the importance of the data points is cal-
culated; misclassified points become more important in subsequent iterations. After

1Most Decision Trees used in practice are binary, i.e., contain nodes forking into two branches, but in
principle there could be more branches per node; since the number of nodes grows exponentially with
the amount of branches per node, however, the complexity of the tree increases much more rapidly in
non-binary trees.
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FIGURE 5.1: Binary Decision Tree of depth equal three.

P iterations we construct the BDT output

f (x) =
P

∑
p=1

αp f weak
p (x, θp) , (5.10)

where θp corresponds to the parameters of the p-th tree and αp is determined by the
specifics of the boosting algorithm.

Once the tree is trained, one can use an independent dataset to assess the purity
of each leaf. For example, if we have a binary tree, and the output labels are denoted
by yi = {0, 1}, the result at each leaf will be a real number contained in the interval
[0, 1]. We can then decide on an output threshold value, with which we classify the
data point on either class, normally according to the specifics of our problem, e.g.
preference of type of error. We will denote the inferred class ỹi ∈ {0, 1}.

Among the most popular boosting algorithms used in BDTs are Adaptive Boost-
ing (AdaBoost) [88], Gradient Boosting [89], and Extreme Gradient Boosting (XG-
Boost) [90]. The AdaBoost algorithm starts by uniformly initializing event weights

w(1)
i = w(1)(xi, yi) =

1
N

(5.11)

for N observations. At iteration p, the weak classifier f weak
p is chosen such that it

minimizes the weighted misclassification error

εp = ∑
ỹi 6=yi

w(p)
i , (5.12)

then the learner weight is calculated for that classifier, as

αp =
1
2

ln
(

1− εp

εp

)
, (5.13)
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and finally event weights are updated for each data point

w(p+1)
i =

w(p)
i exp (−αpyi f weak

p (xi, θp))

Z(p)
, (5.14)

where Z(p) is a normalizing constant.
Gradient Boosting is similar to AdaBoost, except that Gradient Boosting uses a

differentiable residual error (loss) to perform boosting at each iteration, instead of
the update rule in eq. (5.14). It is essentially applying Gradient Descent algorithm in
BDTs (see section on Neural Networks below). XGBoost is a powerful type of Gradi-
ent Boosting that has become popular for its speed and performance, and has gained
popularity within the High Energy Physics community after several appplications,
notably at the HiggsML Challenge [91].

5.2.2 Artificial Neural Networks

Artificial Neural Networks, or simply Neural Networks (NNs), are a class of models
that, loosely inspired in the human brain, process information through connected
neurons. Neural Networks aim to approximate a complex function by composing
multiple processing units (the neurons) that are simple functions.

A neuron takes a (set of) value(s) as an input and uses an activation function g
to produce an output value; the collective effect of all neurons is f , our NN, that
we will train. The parameters of a NN that need to be optimized during training
are known as weights (w) and biases (b), of each activation function. The amount of
neurons, the connections among them and the choice of activation function(s) are
collectively referred to as the architecture of the network. Altogether,

hout = g(w · hin + b) , (5.15)

where the input and output values are represented, respectively, by hin and hout.
One of the most studied examples of NNs is the Multilayer Perceptron, which

consists on a sequence of sets of neurons known as layers; the data x enter through
an input layer, and then the information flows through the hidden layers, until a final
output layer retrieves the value of f (x). For a layer indexed by t, we can construct
a matrix of weights Wt from all weight vectors w of each neuron, and similarly a
vector bt from the biases. If all neurons of a layer have the same activation function
gt, as it often happens in practice, the output of one layer can be put as

ht+1 = gt(Wt · ht + bt) . (5.16)

Note that ht, bt, and ht+1 are vectors with dimensions Dt, Dt, and Dt+1 respectively,
i.e. the amount of neurons on layers t and t + 1, and the matrix of weights has
dimension Dt times the number of weights in the activation function. A traditional
choice of activation function is the sigmoid, defined by:

σ(z) =
1

1 + exp(−z)
, (5.17)

which is equivalent to the logit link in eq. (5.7). A more modern choice is the Recti-
fied Linear Unit (ReLU) activation function, defined as

σ(z) = max(0, z) , (5.18)
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that helped overcome what was known as the “vanishing gradients” problem [92];
the softmax has also found use in classification with Convolutional Neural networks,
that we will discuss shortly:

σ(z)i =
ezi

∑DT
j=1 ezj

(5.19)

where both i, j = 0, · · · , DT with DT the dimension of the last layer. An example of
a graph that represents a Multilayer Perceptron is presented in Figure 5.2.

Input layer

Hidden layer

Neuron

Output layer

FIGURE 5.2: A feed-forward Neural Network: the fully connected
Multilayer Perceptron. There are 8 neurons on the input layer, then
6-4-2 on the subsequent hidden layers, and an output layer of a single

neuron.

A common algorithm for training Neural Networks is known as Gradient De-
scent with backpropagation. Gradient Descent consists in using a differentiable loss
function where, at each iteration, a gradient step is performed in the space of param-
eters (weights and biases) of the NN for optimization. Since by construction NNs are
composite functions, and each of the neurons uses a differentiable activation func-
tion2, it is possible to use the chain rule to compute the gradient of the loss function.

2In practice, there exist some activation functions that are non-differentiable at a few points, where
the value of the derivative may be prescribed. The ReLU activation is an example of this case.
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The update of a gradient step in the parameter space has the form:

θ← θ− α∇θL(X, θ) , (5.20)

where α is an adjustable parameter referred to as the learning rate, that dictates the
magnitude of the gradient step. The backpropagation (short for backward propa-
gation) of the error consists in computing the effect that each intermediate neuron,
from the input to the output layer, had in the final loss.

The standard form of gradient descent in eq. (5.20) is also known as batch gradi-
ent descent, as the loss function is calculated on a set (all) of the training examples.
A faster alternative consists in calculating the loss for one randomly chosen training
example, that can lead to finding an optimal solution with less computations. This
is known as Stochastic Gradient Descent. Mini-batch gradient descent uses the in-
termediate approach of using a few n training examples for calculating the gradient
of the loss.

Multilayer Perceptrons have been used with certain success in High Energy physics
for different tasks, such as particle identification (including trigger applications), pa-
rameter measurement, event selection, as it has been reviewed, e.g. in ref. [93].

Although conceptually NNs have several decades of existence, during the last
decade they have regained popularity, notably in tasks such as image classification
[94]. It is known that Neural Networks with as few as one hidden layer, i.e. shallow
NNs, can be universal function approximators [95], but more recently it has been
shown in practice that Deep NNs (with many hidden layers) are more powerful
and efficient than shallow ones, as they may not require to have an intractably high
number of neurons (see e.g. [96]). We will discuss further the use of Deep Learning
in section 5.4 below.

5.3 Unsupervised and semi-supervised learning

A different paradigm in ML is known as unsupervised learning where, in contrast to
supervised learning, the desired outputs are not used for training. We thus let the
method use a set of input data to learn a representation that can then be useful for
discovering patterns, to summarize information contained or other tasks. Reviews
of unsupervised learning and methods can be found in e.g. ref. [97] and Chapter
10 of ref. [85]. The so-called semi-supervised paradigm takes elements of supervised
and unsupervised learning, using a data set whose outputs are known partially. We
devote the rest of this section to defining and briefly describing these paradigms.

5.3.1 Unsupervised learning

Unsupervised methods use input data X = {xi}N
i=1, xi ∈ X to build a representa-

tion in another space. Such representation can be useful for getting insight on the
data, for example, by identifying localized concentrations (clusters) of data points, or
performing dimensionality reduction; such examples are traditionally the two most
studied unsupervised tasks.

Among the main motivations of using unsupervised methods is the lack of knowl-
edge of the desired output. Further, letting a method learn in an unsupervised man-
ner can be useful for identifying unanticipated properties of the data. For example,
if we started with a high-dimensional feature space and wanted to identify clusters,
it may not be evident to realize that a given point belongs to a cluster or not by visual
inspection of projections of the data in, e.g. a two-dimensional space.
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Clustering relies on the introduction of some metric or distance which has to be
chosen based on domain knowledge of the problem. Clusters can then be built as
sets of points that are close to each other according to the metric. A simple and pop-
ular clustering method is the so-called K-means: it consists in identifying K clusters
in the data using the Euclidean distance. The method starts with randomly assign-
ing a cluster number from 1 to K to each observation, then compute K mean vectors
(known as centroids), one for each cluster number, and assign each observation to
the cluster that has the closest centroid. The last two steps, i.e. the computation of
the mean vectors and assignment, are iterated until the assignment stops changing.
K-means optimizes (i.e. finds a local minimum for) the following function for all
clusters {C1, · · · , CK}:

K

∑
k=1

1
|Ck| ∑

i,i′∈Ck

D

∑
j=1

(xij − xi′ j)
2 , (5.21)

where |Ck| is the number of observations on cluster k.
A more general probability density model than that underlying K-means can be

constructed from a mixture of Gaussian distributions. A Gaussian Mixture Model
(GMM) is prescribed, for K mixture components, by:

p(x|θ) =
K

∑
k=1

πkN (x|µk, Σk) , (5.22)

where the parameters πk, µk and Σk, for k = 1, · · · , K, are respectively positive mix-
ing proportions, means and covariance matrices of Gaussian distributions (N ); these
parameters are collectively denoted θ. (Mixing proportions satisfy ∑K

k=1 πk = 1.)
A way of estimating maximum likelihood parameters of a GMM is given by the
Expectation-Maximization (EM) algorithm that we describe in some detail in Chap-
ter 6. We recover K-means if we apply the EM algorithm to a GMM, choosing the
same covariance matrix (σ21) and mixture proportions (1/K) for each mixture com-
ponent, in the limit σ→ 0; then µk correspond to the centroids of K-means [98].

Another well studied and widely applied clustering algorithm is DBSCAN [99].
This is a non-parametric algorithm that given two parameters, ε (neighborhood ra-
dius) and a minimum amount of points to define a dense region ε, is able to connect
points in the feature space, thus defining clusters. In comparison to K-means, DB-
SCAN does not need an a-priori input of the number of clusters to be used, it is able
to identify clusters of arbitrary shape, and it is more robust to outliers.

We can find a successful application of clustering in High Energy Physics in iden-
tifying hadron jets. Since jets are produced within a cone and leave a spread trace
of different particles in the detector, we are able to use clustering to identify jets in
the detection region. Popular jet clustering algorithms are the kt algorithm [100],
the Cambridge-Aachen algorithm [101] and the anti-kt algorithm [102], the latter of
which has become the default jet clustering tool at CMS and ATLAS analyses, be-
cause it has the desirable property of being safe to infrared gluon emissions. The
distance in the anti-kt algorithm is defined using the magnitude of the transverse
momentum (kt) of pairs of objects i, j:

dij = min(kt,i, kt,j)
∆2

ij

R2 , (5.23)
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where the squared distance in the rapidity (y) and azimuthal angle (φ) plane is: ∆2
ij =

(yi − yj)
2 + (φi − φj)

2 and R is a fixed parameter (a common value in ATLAS is 0.4).
Dimensionality reduction is a crucial task in ML for several reasons. For ex-

ample, one may want to transform a dataset with many features into a lower (e.g.
two) dimensional representation to be able to visualize the data, or to reduce the
computational expense in some calculation such as the ones that occur in a learning
algorithm. A lower-dimensional representation of the data in general implies a loss
of information.

Often such reduction of the dimensionality is imperative as a pre-processing
step, before inputting data into a ML algorithm. Many ML methods, K−means
included, suffer from the so-called curse of dimensionality; this is, the algorithm de-
grades its performance or rapidly increases the computational expense when aug-
menting the amount of features used. The curse of dimensionality has its origin in
the exponential growth of the volume in a (feature) space with the number of di-
mensions, see e.g. ref. [103].

A standard dimensionality reduction technique is the Principal Component Analy-
sis (PCA). It consists in finding a set of uncorrelated axes (the principal components)
from a linear combination of the features and ordering them by the amount of vari-
ability they carry. The aim of selecting a few of the first principal components is
to retain as much information as possible in a low-dimensional space. In short, the
first principal component is defined by a vector in the feature space in a direction
in which the data vary the most; the second component is defined by a linear com-
bination that is orthogonal to the first principal component and that has maximal
variance; this procedure is extended to find further principal components. PCA,
among others such as Independent Component Analysis or Factor Analysis, falls
into the category of linear decomposition methods.

More modern techniques for dimensionality reduction employ non-linear meth-
ods or manifold learning. These approaches use e.g. non-linear combinations of
features (in contrast to the linear combination used in PCA), or learn a manifold in
the feature space where the data is projected. An example of these kind of methods
is t-distributed stochastic neighbor embedding (t-SNE) [104].

5.3.2 Semi-supervised learning

Semi-supervised learning (SSL) is a paradigm in-between supervised and unsuper-
vised learning [105]. The data provided for training the method is partially labeled,
this is, the labeled pair of inputs and targets Xl , Yl and the unlabeled set Xu. In
this work, we adopt the conventional interpretation of assuming SSL as a form of
supervised learning where additional information on the input, Xu, is provided.

Semi-supervised learning, to the best of our knowledge, has rarely seen applica-
tions in experimental High Energy Physics. A method for detecting signals as col-
lective anomalies using semi-supervised learning is presented in ref. [106]; it uses
Gaussian Mixture Models in a two-step procedure. Another method that tackles the
same problem (with the same dataset) by using one-class support measure machines
can be found in [107]. In the use case considered in those references and the exten-
sion proposed in Chapter 6, as opposed to most SSL applications, the sample size
of the labeled set (Xl , Yl) is not necessarily much smaller (or not smaller at all) than
that of the unlabeled set Xu; producing a (simulated) labeled dataset does not entail
a larger computational cost than producing an unlabeled one.
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In this setup, the goal is to identify, if present, a subset of observations in data
that can be indicative of a New Physics signal and that deviates from the distribu-
tion of background events (i.e. the SM). More formally, the idea is to model the
background distribution from a pure SM background (labeled) sample Xl in the first
step (all elements in Yl are the “background” label) running the EM algorithm on a
GMM. The second step consists in identifying the signal subset of observations, that
are assumed to be concentrated somewhere, among the more abundant background
observations in Xu; for that, the EM algorithm is run on a model where the back-
ground mixture from the first step is kept fixed (up to a global constant) and another
GMM is fit to the signal distribution on top of the fixed background. We will come
back to this in more detail in Chapter 6.

5.4 Deep Learning

The term Deep Learning refers to a set of techniques that are able to learn different
levels of abstract representations of the data. Traditional applications of ML meth-
ods require feature engineering, i.e. the intervention of a domain expert to devise
variables (features) that are sensible for the problem. Such engineered features, that
are then fed to the ML algorithm, are calculated from the raw data (e.g. the out-
put of a measurement instrument) and often have an interpretation in the domain.
In this scenario, the human expert is creating an abstract representation of the raw
data. The key idea of Deep Learning is to let the ML method learn abstract repre-
sentations of the raw data on its own. A famous review of Deep Learning and its
applications can be found in ref. [75].

Deep Learning saw its birth with the emergence of complex architectures in NNs,
where many neuron layers are used and high levels of representation abstraction
are achieved. To give a sense of such complexity, deep NNs can have hundreds of
millions of parameters and a similar amount of training examples. This contrasts
with the idea of shallow learning, e.g. a simple MLP such as the one in Figure 5.2.

The pioneering work in ref. [74] uses Deep Learning in the context of exotic
particle searches at the LHC. This study showed the capability of improving the
classification of signal and background events in two benchmark scenarios (new
heavy Higgs bosons and SUSY particles) with the use of deep NNs and raw data,
with respect to more traditional shallow techniques that use engineered high-level
features.

The advent of big data, new technologies like graphical processing units (GPUs),
as well as some theoretical breakthroughs, set fertile soil for Deep Learning. During
the last decade, techniques that use Deep Learning have introduced advancements
in various fields such as computer vision (e.g. [108]), natural language processing
[109], drug discovery [110], among others, outperforming other methods and reach-
ing super human performance in many cases.

Below we briefly describe three of the most popular Deep Learning methods
used in the market.

Convolutional Neural Networks Known also as ConvNets or CNNs, these are
deep multilayer perceptrons with a distinctive architecture that is convenient for the
processing of data in the form of multiple arrays. Convolutional layers perform filter-
ing, or discrete convolution, on the input in order to create a feature map of relevant
characteristics for the task (for example, by applying a filter for edge detection on an
image). Pooling layers combine or summarize the sets of features into single neurons
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in the next layer. Pooling and convolutional layers are often used at the first stages
of the network (just after the input layer), along with a non-linear activation such as
ReLU to reduce the dimensionality of the data, thereby creating a high-level repre-
sentation of the input. Dense layers, follow the same structure of a fully-connected
MLP, which gives the final output, usually having a softmax activation in the last
layer. Since their conception and initial developments [111, 112], ConvNets have
performed well in different computer vision tasks, but notably in the last decade
they have received increased attention for their performance on image classification
[113]. In Figure 5.3 a representation of a CNN for image classification is displayed
with the respective types of layers and activations.

FIGURE 5.3: A Convolutional Neural Network for image classifica-
tion. Feature learning is performed by the convolutional (subsam-
pling) and pooling layers, while the classification is finally left to a

fully connected MLP. Taken from [114].

Recurrent Neural Networks (RNNs) This architecture [115] is conceived to deal
with sequential input, by storing on the hidden states information processed from
the previous parts of the input. An example of sequential input is language (text or
audio), where RNNs can be used, for example, to predict the next word in a sentence
or to represent meaning. At a given step t in a sequence, a recurrent unit takes as an
input the t-th element of the sequence and the previous state of the network, i.e. the
output of the t− 1 unit. The operations performed on the input state and data (i.e.
the hyperparameters) are shared across all steps in the RNN. Popular examples of
recurrent units are the so-called long-short-term-memory [116] and gated recurrent
units [117]. A diagram for this architecture is presented in figure 5.4.

Generative Adversarial Networks (GANs) The core idea of GANs is to have a su-
pervised setup with two deep NNs, one that is a generative model (the simulator)
and a discriminative model, that tries to detect whether the other network is gen-
erating examples that are similar to those of the training set. For an application to
LHC physics GANs were trained with events from the output of a detector (e.g. a
calorimeter), the generator can be used to sample events, and were presented as an
alternative to other traditional simulators [71]. A recent work [72] demonstrates that
it is possible to recover many physical observable distributions from dijet events by
training a GAN as an alternative to the more traditional chain of simulators Mad-
Graph[119], Pythia[56] and Delphes[120].
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FIGURE 5.4: A folded representation of a Recurrent Neural Network
(left) and unfolded equivalent (right). Time steps are denoted by t,
(hidden) units by h and outputs by o. Network parameters are repre-

sented by U, V, W. Taken from [118].

Deep Learning has proven to be useful in our domain. Tasks such as simula-
tion of events and particle identification have taken profit from different novel Deep
Learning methods, that we will discuss shortly. A recent review of this topic with a
survey of applications can be found in [121]. It is remarkable that many of the meth-
ods used were conceived outside the particle physics community to tackle problems
in various, a priori dissimilar domains, as it is the case of ConvNets and RNNs.

Posing the classification of measured objects as an image detection problem has
allowed to port ConvNets and their advances in image processing to our field. The
parallel is made by creating a “picture” of the object from the different layers of the
detector. The identification of jet images calorimeter cells use this idea, and further,
some jet classification methods also use jet substructure information to perform the
task. Neutrino experiments such as NOvA take advantage of the ConvNet architec-
ture to categorize the interaction of a neutrino with scintillating material [122]. A
sequence of track parameters have also been used for training RNNs for the classifi-
cation of jets [123].

5.5 Methods for General Searches for New Physics in parti-
cle colliders

So far, there is no result from LHC that points to the existence of New Physics. Since
most of the effort underlying these searches consists in testing a set of hypotheses
specified by the New Physics model studied, there is a renewed interest in develop-
ing approaches that reduce the number of assumptions on New Physics. Such ap-
proaches are called model-independent and rely more heavily on the experimental
data available and Monte Carlo simulations of the SM. Further, under the assump-
tion that there is no preferential experimental signature for New Physics to appear,
methods have been designed for exploring signatures generically. Some effort in ex-
amining a large amount of signatures has been devoted in collider experiments [45,
124–136] and are commonly referred to as General Searches (GS).

Historically, the first attempt to make a GS used data collected by the L3 collab-
oration at the LEP collider about 20 years ago [137]. This first study used a global
comparison between data and Monte Carlo simulations and was performed on 280
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exclusive signatures3; the number of events and a few kinematic distributions were
visually inspected for the most discrepant signatures. More systematic efforts were
put in place afterward at the CDF and D0 experiments at the Tevatron and at the H1
experiment at HERA, which were then continued by the next generation of collider
experiments at the LHC.

There have been two seminal works that have introduced methods to be used in
General Searches; respectively, they are the SLEUTH algorithm [124], first used by
the D0 collaboration, and the one used by the H1 collaboration [130].

5.5.1 The Sleuth Algorithm

This algorithm, initially known as Sherlock, was first defined and applied in the
study in ref. [124], and used in multiple signatures containing a muon and an elec-
tron in the final state. Some modification or extension of it was then employed in
future GS with data collected by the same experiment [125–127], and by its compet-
ing collaboration at the Tevatron, the CDF experiment [128, 129].

The Sleuth algorithm uses a two-to-four dimensional feature space according to
the particle content in the final state of the signature. The motivation for the variables
chosen, the selection criteria on the objects and further experimental details can be
found in the references above. We proceed to describe the more statistical aspects of
the method.

The algorithm starts by defining a set of regions R in the feature space, for any
chosen subset of data points N = 1, ..., Ndata. A transformation is applied to the
data into a unit hypercube, in a way in which the expected sample of b background
events (provided) is equivalent to the volume of the region. A partition of the feature
space from the transformed data points is created via a Voronoi tessellation; this is,
for each of the data points a cell is defined as all the points in the feature space that
are closer to that data point than to other data points [138]. (This is analogous to the
labeling of points after running K-means, using the data points as centroids.) As an
illustration, figure 5.5 presents a Voronoi tessellation in the plane.

Regions R are thus defined by a set of contiguous Voronoi cells, that identifies
2Ndata different regions. This number of regions is reduced by the application of
several plausibility criteria.

The number of expected background events b̂R is then estimated from MC sim-
ulations for each region R (i.e. the volume of the region). Further, the weighted
probabilities pR

N that the background estimate for R can fluctuate to at least N is
computed; the R that minimizes pR

N is calculated for each N, and these minimum
probabilities are deemed pN .

The comparison among regions to find the most interesting one is carried out
using an ensemble of pseudo experiments, also known as toy experiments. The frac-
tion PN of toys in which the minimum pN(toys) is smaller than pN(data) is calculated,
and from all PN define P as the one that is minimal with respect to N. Finally, the
fraction P is defined as the fraction of toys in which P(toys) is smaller than P(data).

HereP represents the quantity that will tell whether a region is interesting and to
which extent. The criterion to signal a signature as interesting in the work in [124] is
P . 0.01 The fact that Sleuth uses a d-dimensional space (where d = 2, 3 or 4) leads
to high trial factors, i.e an increase in the look-elsewhere effect4, due to the number
of potential regions to be explored, even after applying the plausibility criteria. This
reduces the discovery potential of the algorithm with respect to other methods that

3As a general rule, only exclusive signatures are used in GS analyses.
4Discussed e.g. in the context of HEP in [140].
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FIGURE 5.5: Voronoi tessellation in 2D using Euclidean distance. Col-
ored regions encompass voronoi cells around black points. Taken

from [139].

use one-dimensional approaches on each variable, as we will se below, at the cost of
potentially losing information in such reduced dimensionality.

5.5.2 The H1 Algorithm

The algorithm introduced by the H1 collaboration [130] at the HERA collider uses
an alternative approach for the same task of analyzing multiple signatures in Gen-
eral Searches. This method (with a few improvements) has been further used by a
subsequent analysis at the same experiment [131], and by the CMS [135, 136] and
ATLAS [45, 132–134] collaborations. We present the version of the method from ref.
[45].

The algorithm takes as an input two binned distributions for one variable: one
for observed events and another one for the background events from simulations.
A subset of the most discrepant contiguous bins (known as windows) for the two



5.6. Machine Learning Methods for Model-Independent New Physics Searches 55

distributions is chosen, where the discrepancy is measured with the following esti-
mator:

p0 = 2 ·min [P(n ≤ N), P(n ≥ N)] , (5.24)

P(n ≤ N) =
∫ ∞

0
dx N (x; b, δb) ·

N

∑
n=0

e−xxn

n!
+
∫ 0

−∞
dx N (x; b, δb) , (5.25)

P(n ≥ N) =
∫ ∞

0
dx N (x; b, δb) ·

∞

∑
n=N

e−xxn

n!
, (5.26)

where n is the independent variable of the Poisson distribution, and N, b and δb,
respectively, the number of observed events, the number of expected background
events and their error, within the window. The first integral in eq. (5.25) is a con-
volution of a Gaussian distribution centered at the number of background events
with a width equal to the background error, with a Poisson distribution; they take
into account the statistical and systematic components of the uncertainties. (The sec-
ond integral of the same equation accounts for the observation of no events given a
negative number of expected background events from variations of the systematic
uncertainties.) Respectively, eqs. (5.25) and (5.26), are the probability of observing
no more than N (events in data), and the probability of observing at least N. The
algorithm scans all possible windows in the spectrum and chooses the smallest p0
found.

This procedure is repeated many times with pseudo experiments (toys), in or-
der to get a distribution of smallest p0−values that is then compared to the value
obtained with data. The comparison is done by studying the fraction of toys that
have their smallest p0−values below a certain threshold, which gives the probabil-
ity of having observed that deviation by chance. This procedure is then run across
all signatures (686) and the cumulative distributions of fractions of pseudo experi-
ments with at least m signatures with smallest p0−values below the threshold gives
the final assessment of a sign of new physics; m is taken to be 1, 2 or 3. A figure
representing this procedure, with distributions of fractions of pseudo-experiments
from the General Search analysis in [45] is presented in figure 5.6.

5.6 Machine Learning Methods for Model-Independent New
Physics Searches

During the last couple of years, several ML methods for performing model-independent
searches for New Physics have been proposed. The methods, being model-independent,
share the goal of performing a search that is as agnostic as possible to the underly-
ing physical process that may be responsible for the New Physics signal. We provide
references and a short description of those methods below.

In the method in [141], Variational Autoencoders (VAEs) are used to detect out-
lier events that may correspond to New Physics. Autoeconders are a NN architec-
ture that can be understood as two operators: the encoder, that compresses the input
data into a lower-dimensional space via a feed-forward NN with a decreasing num-
ber of neurons on each layer, and the decoder, that is another NN with has the same
amount of layers and an increasing amount of neurons, which are the same numbers
as in the encoder but in reverse order. Thus, autoencoders have the same number of
input and output neurons, and the network is trained such that the reconstruction
error (between input and output samples) is minimized. This architecture has been
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FIGURE 5.6: Distribution of pseudo-experiment fraction that have at
least m = 1(blue), 2(red), or 3(green) channels below a certain p-value
threshold (horizontal axis) for discrepancies found in the invariant
mass spectra. Results are given for both the toys for SM expectation
and tested against the nominal expectation (dashed) and for those
tested against the modified hypothesis (‘SM, tt̄γ removed’) expecta-
tion in which that SM process is removed (solid). Dashed arrows are
the results for the SM hypothesis and solid arrows the results for the
modified hypothesis. Taken from the General Search performed in

[45].

used for non-linear dimensionality reduction (the output of the trained encoder) and
for anomaly detection, by using the reconstruction error of an autoencoder trained
only with non-anomalous data. Although similar in architecture, VAEs are concep-
tually richer than plain autoencoders, as they allow to learn a representation of the
data in a latent space, after the data is encoded; that representation is described by
a set of parameters of a (usually Gaussian) distribution and the loss function is ex-
tended to have a Kullback-Leibler (KL) divergence between the latent and another
distribution. The KL divergence is a measure of dissimilarity between two distribu-
tions p and q, defined as:

DKL(p‖q) =
∫ ∞

−∞
p(x) log

(
p(x)
q(x)

)
dx , (5.27)

In Figure 5.7 we present a diagram of a VAE. In ref. [141], VAEs are trained on pure
SM background samples using 21 features and tested on a number of benchmark
beyond-the-SM simulated scenarios.

In the method proposed in ref. [142], a test statistic is constructed to compare
two samples, the first of them corresponding to pure Standard Model background
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θ Sample
f(θ)

Encoder Decoder

FIGURE 5.7: A diagram of a Variational Autoencoder. The leftmost
and rightmost layers are respectively the input and output. The first
three layers correspond to the encoder and the last three to the de-
coder. The set of parameters in the latent space learnt by the encoder
are denoted θ from which the sampling is performed. The goal is that

the output is able to reconstruct the input.

processes and a second one that can contain signs of New Physics, but is still mostly
comprised of background events. A Nearest Neighbors [83] method is applied on
events to construct a probability density ratio from two samples. There, the KL
divergence is used as a measure of discrepancy among samples; the test proposed
is thus unbinned and non-parametric. The work presents results for two examples:
a synthetic dataset, comparing samples generated from similar multidimensional
Gaussian distributions, and for a simulated LHC collisions taking a Dark Matter
model for simulating the signal.

A method that shares some of the ideas we just discussed, is presented in [143].
They exploit the advantages of NNs as universal approximators, and train them
using a loss function that is proportional to the Neyman-Pearson test statistic, from
which the background-only or non-background-only hypotheses can be tested.

In ref. [144], ML is used to improve a traditional method know as “bump hunt-
ing” [145]. The method goes beyond the one-dimensional histogram (used in bump
hunting) to consider auxiliary information and finds an optimal (generic) classifier
trained on a small sample, where the signal over background proportion ratio is
known.

5.7 Conclusions

Machine Learning methods that are relevant to High Energy Physics were presented.
An introduction to basic concepts in ML were introduced to motivate the methods
and substantiate their relevance. Due to their crucial importance in our field, meth-
ods like NNs and BDTs were described to some extent; some recent applications
of Deep Learning were surveyed, as well as applications of ML techniques in the
context of Model-Independent searches for New Physics. Methods that have been
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historically used for model-independent and multi-signature searches were also de-
scribed. We expect in the near future many more applications at the intersection of
ML and HEP, where both communities have profited with the advancement and de-
velopments of new techniques, as well as with the appearance of more challenging
problems.

In Chapters 6 and 7 we make use of ML methods in HEP. In Chapter 6 we study
a method that uses GMMs for modelling background distributions and detecting
signals (anomalies) on top of the background, while performing variable selection
via a penalized likelihood, in a semi-supervised setup. This method is tested in the
context of a model-independent search for New Physics. In Chapter 7 we make use
of Gaussian Processes, which are a powerful and flexible tool for making regression;
we apply this method in the search for resonances in invariant mass spectra.
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Chapter 6

Searching for New Physics Using A
Penalized Anomaly Detection
Method

In this chapter, we present a novel method for performing the detection of an anoma-
lous set of observations via a semi-supervised setup, with an application in High
Energy Physics. The method extends that proposed in ref. [106] for approaching the
same problem by, in a single procedure, performing anomaly detection and feature
selection, which is achieved by imposing penalty terms in the likelihood.

Note that anomalies are defined here in a collective sense. This is, we do not
deem individual data points as anomalous, but rather a set of points whose behavior
as a whole (i.e. their distribution) deviates from that of the set of non-anomalous
observations. The majority of points in the dataset are assumed to be generated
by background (non-anomalous) processes whereas a minority of the observations, if
present, would correspond to a signal (anomalous) process. The method presented
here aims to tackle the problem of detecting signals that are either faint or located in
regions of the feature space that are heavily populated by background observations.

Searches for New Physics can be posed as a collective anomaly detection prob-
lem. The background observations correspond to SM processes and the appearance
of an anomalous collection of observations can be indicative of a New Physics signal.
More specifically, we focus on model-independent searches that impose the fewest
amount of physical constraints on the New Physics signal. Thus, the datasets avail-
able are that of the pure background sample coming from simulations of the SM, and
the one measured by the experiment that can contain some unknown signal. We will
see later in this chapter an application of our method in one of such searches.

The semi-supervised approaches that we discuss in this chapter exploit the in-
formation on the datasets via a two-step procedure. Firstly, the pure-background
dataset is used to fit, i.e. learn, a background model, and secondly, a signal model
is added to the background one and a fit is performed by keeping the latter fixed.
Finite mixtures of Gaussians are used in both steps for modelling and their param-
eters are optimized by using the Expectation-Maximization (EM) algorithm [146];
however, this approach suffers from the curse of dimensionality, as it is noted in
[106], where it is proposed to perform Principal Component Analysis (PCA)1 on the
input data before applying the method in a lower dimensional representation of the
data.

Our method introduces a penalized likelihood to perform both feature selection
and collective anomaly detection. In order to achieve the desired task, the penalty
term constrains the parameters of the Gaussian mixtures, namely their means and

1See Chapter 5, Section 5.3.1 for a definition.
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covariance matrices, and a variation of the EM algorithm is crafted for this purpose,
as we will describe below.

6.1 Fixed-background model

We proceed to describe the fixed-background model that is proposed in [106]. Two
sets of data are used in this setup: the labeled pure-background dataset X l = (xl

1; · · · ; xl
N),

and the unlabeled dataset Xu = (xu
1 ; · · · ; xu

M); if present, the anomaly will appear as
a small subset of observations in the unlabeled set.

The realizations x of either the labeled or the unlabeled set live in a D-dimensional
feature space, and are assumed to be generated from probability density functions
(pdf), respectively, the background pdf fB(·), and the signal-plus-background pdf
fSB(·). If a signal process appears in the unlabeled dataset with pdf fS(·), then we
can write the signal-plus-background model as a mixture:

fSB(x) = (1− λ) fB(x) + λ fS(x) , (6.1)

where λ is a mixture coefficient between 0 and 1.
The density functions of the background and signal processes are assumed to

be finite mixtures of Gaussian distributions, that are able to accommodate complex
shapes [147]:

fB(x|θB) =
K

∑
k=1

πkN (x|µk, Σk) , (6.2)

fS(x|θS) =
K+Q

∑
q=K+1

πqN (x|µq, Σq) , (6.3)

where K and Q are the number of Gaussian components in the background and sig-
nal model, respectively, and the summands are Gaussian distributions (with given
means µ’s and covariance matrices Σ’s) weighted by non-negative mixing propor-
tions (π’s), which are constrained to:

K

∑
k=1

πk =
K+Q

∑
q=K+1

πq = 1 .

The sets of parameters of the background and the signal are then

θB = {πk, µk, Σk}K
k=1 , and θS = {πq, µq, Σq}K+Q

q=K+1 .

The log-likelihood of the background parameters in the model in eq. (6.2), for
the labeled dataset (xi ∈ X l), can be written as

logL(θB) =
N

∑
i=1

log

(
K

∑
k=1

πkN (xi|µk, Σk)

)
. (6.4)

An optimal solution for fitting the model to the data is found by maximizing the
likelihood. Numerical methods such as the Expectation-Maximization (EM) algo-
rithm are used in practice, as there is no analytic solution available. This algorithm
is guaranteed to increase the (log) likelihood until a local maximum in the space of
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all possible θB parameters is reached. In addition, the EM algorithm may be initial-
ized at different points in the parameter space to improve the chance of reaching a
global optimum, which is not guaranteed by the algorithm.

At a given iteration, with current estimates of the parameters θ̂B, the EM algo-
rithm first proceeds to calculate the posterior probability of each observation, in-
dexed by i, to have been generated by each of the components of the mixture, which
is known as the expectation (E) step:

τik =
π̂kN (xi|µ̂k, Σ̂k)

fB(xi|θ̂B)
, (6.5)

then the maximization (M) step uses these posteriors to update the values of θ̂B:

πk ←
1
N

N

∑
i=1

τik , (6.6)

µk ←
∑N

i=1 τikxi

∑N
i=1 τik

, (6.7)

Σk ←
∑N

i=1 τik(xi − µk)(xi − µk)
T

∑N
i=1 τik

, (6.8)

that increase the likelihood. The E and M steps are performed until a local minimum
is found. A background model, specified by θ̂B, is thus obtained by running the EM
on the labeled sample.

The key idea of a fixed-background model is to perform a second optimization
of the signal-plus-background model in eq. (6.1) on the unlabeled data. The method
is said to be semi-supervised because it operates in two steps. In the first step, the
parameters θ̂B are obtained from the labeled data as we have described above. In
the second step, the background parameters are kept fixed, up to a mixing factor
(1 − λ̂) in all background components, thus accommodating a mixture model for
the signal process on the unlabeled data. For this purpose, the EM algorithm can be
extended to the signal-plus-background model using the unlabeled dataset, and one
can rewrite the likelihood accordingly.

The posterior probability of an observation to be generated by the background
distribution is

τiB =
(1− λ̂) fB(xi|θ̂B)

fSB(xi|θ̂SB)
, (6.9)

and that for the component q of the signal mixture

τiqS =
λ̂π̂qN (xi|µ̂q, Σ̂q)

fSB(xi|θ̂SB)
, (6.10)

where θ̂SB corresponds to all the estimated parameters for the signal-plus-background
model, namely those in θ̂B, θ̂S, and the mixture proportion λ̂.

6.2 Penalized anomaly detection

The fixed-background model is applied in ref. [106] in a space of D = 2, that comes
from performing PCA on the labeled background sample. This preprocessing is
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needed to mitigate on one hand the curse of dimensionality2, as a mixture of K
Gaussians requires the estimation of K(D + 1)(D + 2)/2 − 1 parameters and, on
the other hand, convergence problems of the method in higher-dimensional spaces.
Moreover, the use of PCA on the background data reduces the power of the method
not only because the projected data carries less information, but also because there
is no guarantee that the projected space (computed with background data) will be
sensitive to the appearance of the signal. The penalized anomaly detection method
we introduce is a variant of the fixed-background model where both the parameter
estimation and dimensionality reduction are performed simultaneously.

6.2.1 Penalization of the background

For the moment, we will focus on the case of the background distribution modelling
and in subsequent sections extend the idea to the full signal-plus background model.

For a mixture of Gaussians, following the work in ref. [148], the task can achieved
by adding a penalty (or regularization) term to the log-likelihood, in the same fash-
ion of Ridge regression or the Lasso3. The penalized parameters here are those in
the mean of the Gaussian components, and assuming the (D-dimensional) identity
covariance matrix for all components. This method is applied to standardized data,
i.e. the observations are transformed such that their distribution on each variable
have mean equal zero and standard deviation equal to unity. The log-likelihood
then takes the form:

logLp(θB) =
N

∑
i=1

log

(
K

∑
k=1

πkN (xi|µk,1)

)
− γp(θB) , (6.11)

where the penalty term

p(θB) =
K

∑
k=1

D

∑
j=1
|µkj| (6.12)

and γ is the strength of the penalty, also known as shrinkage parameter, as it drives
the estimates of the means of the Gaussian components to the zero vector. (Here, µkj
is the value of the k-th Gaussian component mean in the j-th dimension.) In order
to perform dimensionality reduction, the EM algorithm is adjusted to the penalized
maximum likelihood which allows for the identification of features that are informa-
tive, i.e. the ones in which the means of the Gaussian components are near zero are
deemed uninformative and discarded, whereas those where the component means
are far from zero are retained.

The approach in [149] instead penalizes values on the component means by using
the likelihood in eq. (6.11) with

p(θB) =
D

∑
j=1

√√√√ K

∑
k=1

µ2
kj , (6.13)

where the parameters inside the square root are simultaneously penalized or shrunk
across all K components, leading to a performance improvement in identifying un-
informative variables with respect to using the penalty in eq. (6.12). This conclusion

2Ibid.
3See Section 5.2.
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was reached in [149] after testing the method in synthetic data in different set-ups
(including cases in which noise variables were added), and in gene expression and
molecular subtype discovery real datasets. Further work in ref. [150] considered a
second penalty term in the covariance matrices, that are there required to be diago-
nal (and not the identity), where the penalty drives their variances to unity.

The approach we present aims to be a more general way to exploit the informa-
tion in the model parameters for both modelling the distributions and variable se-
lection. We relax of the requirement in the covariance matrix to be merely positive-
definite, and include two penalty terms to be added to the likelihood. One term
penalizes the means and mixing proportions, and one the eigenvalues of the covari-
ance matrices of the components, respectively

p1(θB) =
D

∑
j=1

√√√√ K

∑
k=1

πkµ2
kj , (6.14)

and

p2(θB) =
K

∑
k=1

D

∑
j=1

max(δkj, εk) . (6.15)

where δkj is the j-th largest eigenvalue of Σk, and εk is a small positive value for
the k-th component. Thus, the shrinkage of the covariance parameter happens via
the second penalty by driving each of the eigenvalues of the covariance matrices
towards their respective small value εk. The average of the subset of the Lk smallest
eigenvalues is used to estimate each εk, where Lk is chosen using sequential tests.
The details of the procedure to choose the eigenvalues can be found in [151].

The full penalized likelihood then reads

logLp(θB) =
N

∑
i=1

log

(
K

∑
k=1

πkN (xi|µk, Σk)

)
+ γ1

D

∑
j=1

√√√√ K

∑
k=1

πkµ2
kj + γ2

K

∑
k=1

D

∑
j=1

max(δkj, εk) ,

(6.16)

where γ1 and γ2 are the shrinkage parameters of the penalties. The posteriors and
update rules on the respective steps of the EM algorithm then need to be accord-
ingly modified for this penalized likelihood. Details on how variable selection is
performed are given in Appendix A.

6.2.2 Penalization of the signal-plus-background model

We now proceed to include the framework we just described in 6.2.1 within the
fixed-background model described in Section 6.1. The automatic variable selection is
performed taking into the account both the labeled and unlabeled datasets; thereby
avoiding the risk of discarding variables that may turn to be relevant for the signal.
This implies that both the penalized likelihood for the full signal-plus-background
model depends on the estimation of background parameters, and the likelihood of
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the background estimation depends on the estimated signal parameters. Both like-
lihoods then need to be optimized simultaneously. They are explicitly for the back-
ground model:

logLp(θB|θ̂S) =
N

∑
i=1

log

(
K

∑
k=1

πkN (xl
i|µk, Σk)

)

+ γ1

D

∑
j=1

√√√√ K

∑
k=1

πkµ2
kj +

K+Q

∑
q=K+1

π̂qµ̂2
qj

+ γ2

D

∑
j=1

K

∑
k=1

max(δkj, εk) ,

(6.17)

where the θ̂S = {π̂q, µ̂q, Σ̂q}K+Q
q=K+1 have been estimated using the unlabeled dataset

Xu; and analogously for the signal(-plus-background) model:

logLp(θS|θ̂B) =
M

∑
i=1

log

(
(1− λ)

K

∑
k=1

π̂kN (xu
i |µ̂k, Σ̂k) + λ

K+Q

∑
q=K+1

πqN (xu
i |µq, Σq)

)

+ γ′1

D

∑
j=1

√√√√ K

∑
k=1

π̂kµ̂2
kj +

K+Q

∑
q=K+1

πqµ2
qj

+ γ′2

D

∑
j=1

K+Q

∑
q=K+1

max(δqj, εq) ,

(6.18)
where the θ̂B = {π̂k, µ̂k, Σ̂k}K

k=1 have been estimated using the labeled dataset X l.
The optimization is then performed alternating equations (6.18) and (6.17) with the
respective modified EM algorithm that maximizes the penalized likelihood follow-
ing the procedure in appendix A, as the signal and background parameters need to
be estimated for updating one another.

The shrinkage parameters (γ) are chosen in the program using the Bayesian In-
formation Criterion (BIC) [152], defined as follows:

BIC = ln(N)P− 2 ln(L̂p) (6.19)

where L̂p is the maximized penalized likelihood, N the number of data points ob-
served4, and P the number of parameters in the model defined by {θB, θS, γ′1, γ′2, γ1, γ2, λ}.
The BIC provides a tradeoff between the complexity of a model and the likelihood
achieved, which is used to choose among models.

6.3 Application to High Energy Physics

For a proof of concept of the method in the context of High Energy Physics, we put
in place a simple physics analysis using simulated data. We provide some details on
the simulation setup and on the data extracted, to be used in the method. Finally, we
present results for the method and a comparison with the fixed background model.

4In the case of the labeled dataset this is N. For the unlabeled dataset it should be M.
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6.3.1 Data description

In this application, we are interested in the signature containing two jets in the final
state (known also as “dijet” final states), denoted as “jj” coming from proton-proton
collisions at the LHC; for such signatures, background and hypothetical signal col-
lision events have been generated as described below. A simple analysis selection is
then performed on the samples and finally the anomaly detection method is tested.

We generated a set of MC samples using standard simulation software for high-
energy collisions. The simulated phenomena correspond to proton-proton collisions
at a center-of-mass energy

√
s = 13 TeV and measured by a simplified ATLAS de-

tector simulation implemented in the DELPHES [120] package. The main source of
Standard Model (SM) background in our signature is the production of two jets via
QCD processes, namely from the production of a pair of gluons, a pair of quarks, or
a gluon and a quark. The simulated signal corresponds to the resonant production
of a stop quark decaying into two jets, in the R-parity violating Minimal Supersym-
metric Model (RPV-MSSM) [28, 153], using the package in [154]; a motivation for
the physics of this R-parity-violating process leading to this and other multi-jet final
states at the LHC is given e.g. in [155]. A more in-depth description of the simula-
tions performed for signal and background follows.

Signal

As a benchmark for testing the anomaly detection algorithm, we produced a sample
of 5 * 105 stop quark signal events. The hard process was simulated using MAD-
GRAPH 5.2.6.5 [119] at Leading Order, where we used the four-flavor scheme and
nn23lo1 [156] to model the proton parton distribution functions. The mass of the
resonant stop was fixed to a value of 1000 GeV. All default parameters from MAD-
GRAPH 5 were used except the value of the pseudorapidity, which was restricted to
|η| < 2.5. The resulting events were then ported to PYTHIA 8.240 [56] for showering,
decay and hadronization.

Within the RPV-MSSM model used, the production and decay (to two jets) of
a resonant stop happens via a single Feynman diagram in a four-flavor scheme, as
depicted in figure 6.1.

t̃1

s̄

d̄ s̄

d̄

FIGURE 6.1: Feynman diagram for the production of a stop quark
decaying into two light quarks, in the RPV-MSSM [28, 153].

The production cross section reported by MADGRAPH 5 is 18.011 ± 0.003 pb.

Background

The production of 5 * 105 dijet events from QCD processes was performed using
the same MADGRAPH 5 and PYTHIA 8 versions as the ones for the signal. There
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are many ways in which QCD interactions can lead to a pair of jets in the hard pro-
cess, namely all possible diagrams that contain two gluons, a quark and a gluon or
two quarks in the final state. In a four-flavor scheme at tree level, there are 65 such
processes. The production cross section corresponding to the QCD background re-
ported by MADGRAPH 5 is: 3.382 ± 0.001 mb.

Detector simulation

Both signal and background event samples have been passed through a fast detector
simulation using the DELPHES 3.4.1 software. We have kept all default parameters
except the jet cone parameter ∆R = 0.4, and used the ATLAS detector card that comes
with the software distribution.

6.3.2 Event selection and variables used

The signal and background simulated samples are then analyzed and an event se-
lection is applied. A set of requirements are imposed on the object properties and
event variables, inspired by realistic experimental analyses, in order to e.g. mitigate
detector effects, simulate trigger selection. Furthermore, several features (variables)
are extracted and calculated. The features of the events that pass the selection com-
prise the input of the anomaly detection algorithm. Typical values of object selection
are already included in the DELPHES ATLAS detector card; at this level, the only ad-
ditional requirement we impose is that the event contains only two jets and each of
them has a transverse momentum of 20 GeV or more.

Given that we are performing a model-independent search, the selection require-
ments are not optimized for any particular signal, even if we could, in principle,
devise such a procedure for the stop production described above.

The variables extracted and calculated for each event are the following:

• The energy of each jet E1, E2.

• The three momenta of each jet (i = 1, 2): (pT,i, ηi, φi).

• Reconstructed invariant mass of the dijet system: Minv(j1, j2).

• Missing transverse momentum: Emiss
T .

• Angular distance of the two jets in the η − φ plane: ∆R(j1, j2).

• Sphericity as defined in [157].

• Centrality defined as C =
ET,i

∑i Ei
where i = 1, 2 is the jet index.

These add to 13 variables for each event. An example of a normalized distribution,
the invariant mass, for the background and signal described above can be found in
figure 6.2 (left).

6.3.3 Method performance

Preprocessing and application of the method

As it is manifest in figure 6.2 (left), the distribution of events in several of the vari-
ables can become heavily skewed. Even if, in principle, finite mixtures of Gaussians
lead to models with great flexibility, skewed data may require a high number of
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components to be accommodated. Therefore a preliminary processing of the data
is performed with two transformations: a Tukey ladder of powers transformation
[158] is used, and then all the data is standardized with respect to the background
dataset. The Tukey ladder of powers consists in transforming the data per variable
x, by applying a transformation of the type

f (x) =


xα , for α > 0
−xα , for α < 0
ln(x) , for α = 0

(6.20)

that effectively reduces skewness and makes the distribution of values more Gaussian-
like, as it is shown in 6.2 (right).
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FIGURE 6.2: Left: Normalized distributions of signal and dijet back-
ground for the invariant mass. Right: power transformation of the

invariant mass distributions with a coefficient α = −1.05.

For obtaining the Tukey transformation, for each variable, a range of possible
α values is given 5 and the transformation chosen is such that it maximizes the
Shapiro-Wilk test statistic [160]. For the variables in this dataset, the α values are
presented in table 6.1.

Variable E1 η1 φ1 pT1

α -0.65 0.6 0.775 -2.1

Variable E2 η2 φ2 pT2

α -0.6 0.55 0.825 -0.475

Variable ∆R(j1, j2) Minv(j1, j2) Emiss
T Sphericity Centrality

α -0.05 -1.05 0.125 0.25 0.5

TABLE 6.1: Powers obtained per variable from a Tukey ladder of
powers transformation.

Even after this preprocessing, the variables η1,2 were removed, because they still
show complex non-elliptical patterns. This leaves a total of 11 input variables to the
penalized anomaly detection method. Plots for the standardized distributions and
the corresponding Tukey-transformed versions can be found in appendix B.

5In the implementation that we use (transformTukey) [159], the default range is from -10 to 10 in
steps of 0.025, that we keep for our problem.
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Results

We applied the method in 50 data subsets taken from the background and signal
simulations, using different proportions of injected signal events λ. The number
of events was chosen to be M = N = 4000 with proportion values 5, 10, 15, and
20 percent6. The method was constrained to use one Gaussian component for the
signal, which can already extract signal information from the data if it is present.
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FIGURE 6.3: Signal (red circles) and background (black circles) events
in two variables η1 and φ1. The signal component is presented with

mean at the blue cross and yellow contour curves.

A representation of the method for two variables can be observed in figure 6.3.
Given that signal events may lie in heavily-populated background regions, as it is
the case in our dataset, the signal posterior probabilities of the modified EM algo-
rithm7 will yield low values; this can be addressed by using the area under the Re-
ceiver Operating Characteristic curve (AUC) [161]. The points on this curve are cal-
culated for different threshold values of the EM posterior (from 0 to 1), in eq. (6.10),
by using the true positive rate (Sensitivity) and false positive rate (1− Specificity)
when classifying the observations as signal or background.

An example of Receiver Operating Characteristic curve is presented in figure 6.4,
where the injected signal proportion as 10% and the AUC is 0.768. In that case two
of the variables were identified as uninformative, pT2 and Emiss

T .
Results are shown in table 6.2 for both methods, the penalized anomaly detection

(PAD), defined in Section 6.2, and the fixed background model (FBM), defined in
Section 6.1. We present the estimated mixture proportion, the ARI and the AUC
with respective errors, taken from repeating the model fit with 50 signal samples.
The λ values are underestimated in general for both methods, but the penalized
anomaly detection performs better in terms of AUC, improving as λ grows. The
spurious detection test (no signal present) lead to an estimated mixing parameter
λ̂ of 0.103 (0.027); a value of λ =1.3 (mean value plus error) can be taken as an
indication of the capability of the method to detect faint signals.

6The sample sizes of the labeled and unlabeled datasets are respectively M and N, as it was stated
at the beginning of this chapter.

7As defined in appendix A, or in the case of the Fixed Background Model, eq. (6.10).
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FIGURE 6.4: Receiver Operating Characteristic curve for a signal with
mixture parameter λ = 0.1. Sensitivity (True Positive Rate) versus
Specificity (1 − False positive Rate) values are presented in the solid
black line. A dotted diagonal (random choice) is presented for refer-

ence.

6.4 Conclusion and outlook

In this chapter we presented a method that uses a penalized likelihood to perform
both variable selection and anomaly detection, in a semi-supervised setup. We
applied that method in the case of dijet events, where both background and sig-
nal samples were produced using a chain of software packages for MC simula-
tions that recreate the processes taking place in collision events and their detection.
The method is able to achieve its task, performing in general better than an alter-
native (the fixed-background model) as the AUC shows. However, the penalized
anomaly detection method underestimates the signal proportion, in particular for
the higher values of λ (0.15, 0.20). Also, spurious anomalies were detected when
testing the method in the absence of signal; the extracted mixture value in that case
was λ = 0.103± 0.027.

The studies we presented are a proof of concept for the penalized anomaly de-
tection method, but there are several promising directions for improvement. Fu-
ture studies on this method may include the exploration of other penalties that may
be more effective in performing shrinkage, beyond what we have reviewed in this
chapter, and the use of other kinds of finite mixture models [147] that could allevi-
ate the problem of pre-selecting variables for the method. The method could also
see some improvements in the automatization of the running of the software and
handling of the samples, that we leave for future work.
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FIGURE 6.5: Scatter plots for the background (black circles) and signal
(red circles) from the unlabeled dataset in pairs of transformed vari-
ables. The signal fit is overlayed with mean (blue cross) and curve
levels (solid yellow). Variables pT2 and Emiss

T (vertical axes in the fig-
ures at the top) are uninformative and have mean equal zero.

TABLE 6.2: Summary of the anomaly detection results performed by
the penalized anomaly detection (PAD), in Section 6.2, and the fixed
background model (FBM), in Section 6.1, for datasets with different
signal proportions λ. For each scenario, 50 datasets are generated
to obtain a mean result with the respective standard deviations pre-

sented in brackets.

Method λ
Average
estimate λ̂

Average AUC

PAD 0 (spurious) 0.103(0.027) -
PAD 0.05 0.040(0.012) 0.725(0.109)
PAD 0.10 0.057(0.013) 0.818(0.078)
PAD 0.15 0.086(0.006) 0.876(0.017)
PAD 0.20 0.112(0.006) 0.882(0.012)
FBM 0 (spurious) 0.123(0.031) -
FBM 0.05 0.025(0.009) 0.708(0.118)
FBM 0.10 0.046(0.008) 0.764(0.078)
FBM 0.15 0.070(0.006) 0.771(0.073)
FBM 0.20 0.096(0.012) 0.780(0.054)
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Chapter 7

Model Independent Search For
Generic Resonant Signals Using
Gaussian Processes

In the present chapter we make use of Gaussian processes (GPs) for regression. This
is a flexible method that allows for a smooth modeling of some physical spectra
(e.g. invariant mass) as measured by the ATLAS experiment at the LHC. We begin
by providing a definition and a few relevant results in the theoretical formulation
of GPs. Then, we describe a previous analysis where GPs were used in the dijet
mass spectrum [162] for modelling signal and background distributions in a two-
step procedure for the dijet spectrum, and provide details on our GP method, which
is a modification of that procedure. We compare the performance of the GP method
with a simpler approach based on parametric fits in the dijet spectrum. Further, we
propose a three-step procedure for modelling the tt̄ invariant mass spectrum and
extracting potential resonances.

7.1 Bayesian Learning and Gaussian Processes

Gaussian processes (GPs) are a Bayesian inference method in a function space, de-
fined as “a collection of random variables, a finite collection of which have a joint
Gaussian distribution” [84]. In the GP setup we have knowledge of the desired out-
put (responses), and thus GPs are a supervised method. Given a prior distribution
over the parameters of a set of functions in the function space and using the likeli-
hood of the observations, we can obtain a posterior distribution over such parame-
ters through Bayes’ rule.

Let f be the function that is regressed and x and x′ arbitrary points in the input
space X , the prior on the regression can be noted as

f (x) ∼ GP(µ(x), Σ(x, x′)) , (7.1)

where GP is the infinite-dimensional function space associated with the joint Gaus-
sian distribution, from which f is sampled. Thus, there are two functions that are
defined to specify a GP: the mean and the covariance or kernel, respectively,

µ(x) = E[ f (x)] , (7.2)
Σ(x, x′) = E[( f (x)− µ(x))( f (x′)− µ(x′))] . (7.3)

The kernel and mean functions above, as their names suggest, dictate the mean value
and the covariance of the GP distribution for points in the input space. In practice,
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the kernel is often specified via a function with a set of hyperparameters, instead of
obtaining the covariance directly from data samples.

For a finite set of points, the prior and posterior are joint Gaussian distribu-
tions with as many dimensions as observations there are, and there is a formal-
ism that allows to predict new output values for arbitrary inputs. In ref. [162],
GPs are used to model the Poisson process corresponding to a binned distribu-
tion of events, i.e. the spectrum. Let the bin centers be denoted by the vector
x = (x1, . . . , xN), the corresponding observed responses y = (y1, . . . , yN), the func-
tion f is then averaged within the corresponding bin to produce a set of expected
counts f̄ (x) = ( f̄ (x1), . . . , f̄ (xN)). The spectrum is approximated via the product of
two multidimensional Gaussians by the probability model:

p(y(x)) = N (y| f̄ (x), σ2(x))N ( f̄ (x)|µ, Σ) , (7.4)

where σ are the uncertainties in the values of f̄ , that is an approximation of the
Poisson noise via a Gaussian. The second factor is an N multivariate Gaussian dis-
tribution. Note that we use the vector µ = (µ(x1), . . . , µ(xN)) and the matrix Σ with
Σij = Σ(xi, xj), constructed from the mean and covariance functions respectively.

After some standard algebraic manipulation, known as completing the square,
it is possible to obtain explicit expressions to infer the response of the function f at
a new arbitrary input value. The posteriors of the mean and covariance of the GP
corresponding to a new set of data points x?, given x and y, can then be calculated
by:

mean( f?) = µ? + Σ?[Σ + σ2(x)1]−1(y− µ), (7.5)

cov( f?) = Σ?? − Σ?[Σ + σ2(x)1]−1Σ? , (7.6)

where f? = f (x?), Σ? = Σ(x, x?), and Σ?? = Σ(x?, x?); µ? is the mean prior corre-
sponding to x?. Note that the dimension of the GP multivariate gaussian is extended
by the dimension of x?.

It is possible to initialize the prior mean µ with a function from our domain
knowledge but setting it equal to zero is common practice and does not necessar-
ily pose a limitation when using GPs. The most important ingredient to be specified
is then the kernel, where there exist several common choices in the literature (e.g.
the exponential squared or other radial kernels) [84, 163], or a new kernel could be
crafted for a particular application1. The hyperparameters in the kernel need to be
adjusted as well; this is usually done finding the maximum log marginal likelihood
of the GP:

logL = −1
2

log |Σ| − (y− µ)TΣ−1(y− µ)− N
2

log 2π . (7.7)

The standard algorithm to obtain the value f?, its variance and the likelihood in-
volves solving triangular systems and matrix inversion, as it is implied in the expres-
sion for the kernel, eq. (7.6). The details of the algorithm and some optimizations
can be consulted in reference [84].

Kernels that depend only on the (Euclidean) distance between the inputs, |x− x′|,
are referred to as stationary kernels. A commonly-used stationary kernel is the radial

1A set of example kernels, how to compose them, and an explanation on how they can express the
structure can be found in Chapter 2 of Duvenaud’s thesis in ref. [163].
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basis function

Σ(x, x′) = A exp
(
−|x− x′|2

2l2

)
, (7.8)

that will become relevant in subsequent discussions; A represents the strength of the
correlation and l a typical correlation length between points.

7.2 Modeling backgrounds and signals with Gaussian Pro-
cesses

We proceed to present here some aspects of the work developed in [162], where
a method to model backgrounds and generic signals with GPs is proposed for the
search for new physics in the dijet invariant mass spectrum. There, the GP approach
is presented in contrast of a more traditional framework, referred to as the paramet-
ric method. For a few decades, the parametric method has been used to model the
background in the spectrum, which is heavily dominated by processes from strong
interactions. For the studies presented in this Chapter, we will use simulated ATLAS
dijet events.

The parametric approach is given by a formula of the form

f (x|θ) = θ0(1− x)θ1 xθ2 xθ3 log x , (7.9)

where x is the invariant mass divided by the center of mass energy of the collisions,
x =

mjj√
s . This kind of ad-hoc functions have been used and evolved empirically to

provide a good fit for the observed spectrum, e.g. as it is shown in a recent search
for new phenomena in that spectrum [164] using the ATLAS detector, and does not
make use of information from the underlying physical process. We provide further
details on the parametric approach below in section 7.5.2.

The prescription of the GPs in [162] is given by using a mean and kernel func-
tions:

µ(x) = f (x|θ) (7.10)

ΣB
(

x, x′
)
= A exp

(
d− (x + x′)

2a

)√
2l(x)l (x′)

l(x)2 + l (x′)2 exp

(
− (x− x′)2

l(x)2 + l (x′)2

)
. (7.11)

The mean function µ here is given by the fitted parametric background model, with
its parameters fixed. The proposed kernel ΣB is non-stationary and constructed fol-
lowing several physical considerations. We can observe that the last factor is a mod-
ified squared exponential, where l(x) = bx + c amounts for a typical length related
to the dijet mass resolution that has a linear relationship with mass; this leads to a to-
tal of five hyperparameters A, a, b, c, and d, that will collectively be referred to as θB.
The product of the last two factors in ΣB is referred to as Gibbs kernel [84]; whereas
the first factor assumes that fluctuations in the correlation follow an exponentially
decaying regime for high masses, with a typical length of a and shifting term d. The
first factor A is analogous to the ones appearing in kernels presented previously in
eq. (7.8). Figure 7.1 presents a correlation plot from the background kernel, where it
is possible to observe how the band around the diagonal increases with mass values,
as dictated by the Gibbs kernel.
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FIGURE 7.1: Correlation from the background kernel, ΣB in eq. (7.10),
after a fit is performed.

The work in [162] presents modeling studies for backgrounds and generic sig-
nals. Two tests are performed for background modeling, namely background-only
tests to assess the power of the method to model that distribution without assuming
any signal, and signal-plus-background tests, where a GP model of the background
is fitted on data where there is some signal injected For modeling signals, a two-
step approach is presented, where the background GP is fitted on background only
simulations, and the data with signal injected is modeled via an addition of kernels:

ΣSB = ΣB + ΣS , (7.12)

with

ΣS(x, x′) = AS exp
(
−1

2
(
x− x′

)2 /l2
)

exp
(
−1

2

(
(x−m)2 +

(
x′ −m

)2
)

/t2
)

.

(7.13)

The first exponential of this kernel with the prefactor AS (signal correlation strength)
is equivalent to eq. (7.8) and the other exponential localizes the signal in a mass
window of width t and mean m. The parameters of ΣS, namely AS, l, t, and m are
collectively referred to as θS. For illustration, figure in 7.2 presents a plot of the sig-
nal kernel, with hyperparameters chosen after fitting an injected Gaussian signal at
3 TeV, that we will explain below.

7.3 Methods for searching generic resonances

We take as a starting point what has been described in the previous section and pro-
ceed to describe our extensions, as well as provide further detail for the parametric
fit, that is used as a benchmark.

In general, we are interested in probing how sensitive is a method in detecting
the presence of new physics in a spectrum. Typically, such presence becomes man-
ifest in the invariant mass spectrum as an excess of events within a (narrow) mass
interval, that can be generically accounted for as a signal sampled from a Gaussian
distribution (or “bump”) on top of the background distribution coming from SM
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FIGURE 7.2: Covariance from the signal kernel, in eq. (7.13), after a
fit is performed.

physics processes. The idea is then to have signal hypotheses for different param-
eters of the Gaussian distribution, and evaluate the extent to which the method is
able to identify the signal. As it is in general easier to identify narrow and intense
signals lying in the less-populated regions of the background, our interest is focused
on detecting signals that are as broad and faint as possible on top of more populated
background regions.

7.3.1 GP methods

Here we present an extension of the GP framework that is able to operate in a num-
ber of signatures given histograms corresponding to measured data and a Monte
Carlo (MC) simulation of the background. The fundamental difference is that we
will not take as an input the mean function µ of the GP from the parametric approach
as in general such function is not available, but set µ(x) = 0. As it is discussed in
[84], and mentioned earlier in this Chapter, Gaussian Processes are in general flexible
enough to regress a function even if the mean is set to zero.

We propose two procedures: one that involves two steps and another one with
three steps. The two-step procedure stems from the work in [162], whereas the three
step procedure fits the background shape in two steps, allowing for modelling of
turn-on regions, and a final step accommodates the signal. We describe in further
detail those two proposals below.

Two-step procedure

The distribution histogram from the background simulation is used for our tests in
a two-step procedure, that are performed as follows:

First step A GP fit is performed on a pure background distribution (e.g. from sim-
ulation) using the background kernel ΣB, with µ = 0. We obtain the posterior mean
and covariance (that comes from the kernel with optimized θB).

Second step The optimized hyperparameters of ΣB of that background fit are fixed
in a second fit using the ΣSB = ΣB + ΣS, to obtain a GP for the full model, including
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the parameters of the signal θS, that leads to identify a concentrated excess or deficit
centered at m with width t (recall eq. (7.13)).

The tests are performed as follows. The first step is applied directly on the simu-
lated background, from which the parameters θB are extracted. In order to proceed
with the second step, we generate many datasets from the simulated background
sample, known as pseudodata or toy experiments, following a Poisson distribution
per bin. A simulated or artificial signal is then injected in a toy, where the fit of the
second step is performed. The process of injecting a signal into a background toy is
repeated several times (each time in a different toy) for each signal hypothesis to ob-
tain a distribution of values for the extracted parameters. We also test the method by
fitting the GP in the second step in the absence of any signal (i.e. in a background toy
histogram) to inspect the extent to which the method performs a spurious detection.

Three-step procedure

The three-step procedure operates in the following manner: the first two steps model
the background and the third step the signal plus background distribution. This
procedure has its origin in the difficulties found in using a single background step,
as described in the two-step procedure, in distributions where there is a turn-on
regions, as it is the case for the invariant mass top-quark pair spectrum, that we will
study below. The three steps are the following:

First step This is the same as the first step in the two-step procedure. We obtain θB,
which is a base for the background fit.

Second step The optimized hyperparameters of ΣB of the first step are fixed for
a second GP background fit using the ΣBT = ΣB + ΣS, on the same background
distribution. This “signal” component of the background accommodates the turn-
on.

Third step The optimized hyperparameters of ΣBT from the previous two steps are
fixed for a third fit using the ΣBTS = ΣBT + ΣS, to obtain a GP for the background
(plus turn-on) plus signal, where it is possible to extract signal parameters.

The tests are performed in a way similar to that of the two-step procedure: once
the background parameters are obtained with the first and second step (using the
background sample), the artificial or simulated signal is injected in different back-
ground toys, for the signal parameter extraction.

7.4 Datasets and signal injection

7.4.1 Dijet dataset

This dataset is taken from the ATLAS General Search [45] simulated Standard Model
background. It is a simulation of the QCD processes from proton-proton collisions
with a center-of-mass energy of

√
s = 13 TeV. This simulated dataset was produced
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for studying the data recorded by the ATLAS detector in 2015 (3.2 fb−1). The dis-
tribution invariant mass values of simulated ATLAS dijet events that we use is dis-
played in figure 7.3, which comes from the dataset used for the General Search in
[45].
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FIGURE 7.3: Distribution of simulated dijet events invariant mass
used for the ATLAS General Search in [45].

The events are produced with the Pythia 8 MC generator [56] for the hard process
in the collision and hadronization, and the GEANT 4 package [165] for the detector
response, as it is described in reference [45]. Details on the trigger and offline se-
lections on the events are also described in the given reference. In the specific case
of events containing two jets the selection corresponds to passing a requirement of
missing transverse energy (Emiss

T ) higher than 200 GeV in the event as well as the
Emiss

T trigger, or an event containing a jet of transverse momentum (pT) greater than
500 GeV, passing the single jet trigger. Jets are reconstructed using the anti-kt al-
gorithm [50] with a parameter R = 0.4, and are required to pass a minimum pT of
60 GeV and an absolute pseudorapidity (|η|) lower than 2.8. The bin width of the
histogram is constructed using the formula:

h(x) =

√√√√N objects

∑
i=1

k2σ2
i (x/2) , (7.14)

where k is the width of the bin in standard deviations and σ2
i (x/2) is the expected

detector resolution for the pT of object i (in our case, each of the two jets) evaluated
at pT = x/2 and η = 0. In the formula, x represents the variable used that is the
invariant mass in our case. The bin widths vary in an approximate range of (90, 360)
GeV, increasing as the mass values are higher.

For the dijet mass spectrum, the parameters are Nobjects = 2, and k = 2 that
corresponds to ±1 standard deviations. Also, the resolutions are respectively 2.4%
and 2.0% for dijet masses of 2 TeV and 5 TeV for the ATLAS detector, at a center of
mass energy

√
s = 13 TeV [166].
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7.4.2 Top-quark pair data

We test the method in a second simulated dataset, that is used in searches for heavy
particles decaying into top quark pairs with the ATLAS detector, presented in ref.
[167]. There is a number theories that postulate the production of heavy resonances
decaying in that final state, e.g. topcolor-assisted-technicolor Z′ production [168], or
a Kaluza-Klein excitation of the Graviton [169–171]; here we use simulated samples
for the first case (Z′).

The studies performed here use simulated samples for both SM processes and for
the hypothetical Z′ signal, in the invariant mass spectrum. For the SM background,
the contributions of processes in decreasing order of importance are: the production
of a top-quark pair (tt̄), a weak boson, W or Z, in association with jets (V+jets), a
single top quark, multiple jets and dibosons. All background process are generated
using MC simulations except the multiple jet contribution, that is estimated from
data. The background spectrum is displayed in figure 7.4.
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FIGURE 7.4: Distribution of simulated tt̄ events invariant mass used
for the analysis in [167].

For the signal, our studies use simulations where the mass was fixed to two val-
ues: 750 or 1250 GeV, with an amplitude of 1.85 pb and 1 pb respectively. These
amplitude values come from the 95% confidence level limit on the Z′ cross-section
derived in that study [167]. We also applied different amplification factors to those
signals, in order to perform the tests.

All experimental details (MC simulations used, simulated triggers, object and
event selection, spectrum binning choice, etc.) are provided in the given reference
([167]). In the studies presented here, we work only with the selection (identified
as “category 3, resolved selection” in [167]), where one top quark candidate decays
hadronically, and another leptonically (muon-neutrino), and both have associated
b-tagged jets.
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7.4.3 Identifying signals in invariant mass spectra

We inject signals of specified standard deviation and mass (mean) of the signal Gaus-
sian distribution. Some care needs to be taken regarding amplitude values, as often
invariant mass spectra span values of several different orders of magnitude in the
event counts: signals with the same amplitude can be much smaller than statistical
noise if lying on a region heavily populated by the background, or a very obvious
discrepancy if located at the very tail of the spectrum. Furthermore, the resolution
of the detector also varies through different values of the invariant mass as we have
seen in the previous subsection.

Instead of directly using the amplitude, we prescribe values for a quantity de-
fined from a signal-over-background ratio (R). We calculate the amplitude of the
Gaussian signal from the mean and standard deviation: R is the ratio of signal to
background events in a window constructed from the interval given by the signal
mean and the standard deviation. The number of events taken into account in a
given window is given by the bin counts of the distribution contained in the win-
dow; bins whose center are outside the range (mean ±σ) are not counted.

R =
Injected signal events in the window
Background events in the window

. (7.15)

Analogously, the extraction of the R (and hence the amplitude) of the signal comes
from the same ratio within a window defined by the mean and width of the ex-
tracted signal from the parameters of the signal model. We present in figure 7.5 an
illustration of a Gaussian signal injection in the dijet spectrum. (The window marks
the edges of the bins taken into account for R and are therefore not necessarily sym-
metric with respect to the signal mean.)

2 4 6 8
Invariant Mass [TeV]

100

101

102

103

104

105

106

Ev
en

ts
pe

r
bi

n

Gaussian signal
Dijet background
Background + injected signal

FIGURE 7.5: Illustrative plot for the definition of R. The background
and background-plus-signal histograms, and the original Gaussian
function are plotted. Vertical dashed lines indicate the identified win-

dow where signal and background events are counted.

In order to have a sense of how to convert from R to the number of signal events
within a window in the dijet spectrum, we present table 7.1 with corresponding
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R 0.1 0.2 0.3 0.4
# signal events 720 ± 20 1450 ± 50 2160 ± 50 2890 ± 60

TABLE 7.1: Number of injected signal events within a window for
values of R, for a signal of 3 TeV mass and 150 GeV width. The
values and errors obtained are the mean and standard deviation of
the distribution of values obtained after repeating the injection in 100

background toys.

values for the case of a signal at 3 TeV and a width of 150 GeV. Since a signal of a
specified R will get a (different) amplitude value for each background toy sampled
where it is injected, we get a distribution of values for the number of events injected,
from which we calculate the mean and standard deviation, presented in the table.

We choose a total of 60 signal hypotheses to be injected in the dijet spectrum. This
quantity comes from the different possible combinations of values for the Gaussian
distribution used for the signal, namely the mass (3, 3.5, 4, 4.5, and 5 TeV), the width
(150, 300, and 450 GeV), and the R ratio (0.1, 0.2, 0.3, and 0.4). The values were
chosen to cover a wide range of the spectrum and different intensities of the signal
hypotheses. For every signal hypothesis, the sampling of the signal Gaussian is
performed and injected 100 times, one per background toy, and thus a distribution
of 100 values for each signal parameter is obtained for each hypothesis.

The spurious signal detection test is performed as follows. We perform the back-
ground GP fit in the background distribution and the signal-plus-background GP
fit in 100 different toy backgrounds. The extracted (spurious) signal parameters are
then used as a benchmark for comparison with the distribution of the extracted pa-
rameters from genuine detections.

7.5 Results

In this section we present the results of applying the GP methods described above for
identifying an excess of events for an invariant mass spectrum that can be indicative
of new physics.

7.5.1 Two-step procedure GP fit on the dijet spectrum

In this subsection we present results for the GP method in the dijet invariant mass
spectrum. We also present results for the benchmark parametric function fit.

We start by discussing the plot on figure 7.6 that displays two GP fits and the
background toy with an injected signal. The excess coming from the signal is visible
in the neighborhood of the 3.5 TeV in the significance of the dataset with respect
to the background-only fit (middle panel). The plotted significances correspond to
“signed z-values only if p-value < 0.5”, as defined in [172], where the p-value is
calculated assuming that each bin count follows a Poisson distribution. In appendix
C we give details on parameters chosen to initialize and run the GP method.

The residual plot shown in figure 7.7 shows a clearer representation of the signal
injected and the identification by the GP fit method.

In the example displayed in the last figures, we can qualitatively say that the
identification is performed successfully, as the extracted parameters are close to the
signal parameters. However, one example of misidentification due to the width of
the injected signal with respect to the binning is presented in figures 7.8 and 7.9.
Even if the same procedure was applied, except that the signal now has a mass of 4
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FIGURE 7.6: Top panel: invariant mass spectrum displaying a GP
background fit, event counts for a background toy with signal in-
jected centered at 3.5 TeV with a width of 150 GeV and R of 0.1,
and a signal plus background fit. The magenta line is the posterior
mean of the GP fit using the ΣSB kernel; the blue line represents the
background-only component of the GP fit. Middle and bottom pan-
els: per-bin significance of the discrepancy between the event counts

and respective fits.

FIGURE 7.7: Residual plot corresponding to figure 7.6. The GP signal
component (solid magenta) and the signal injected (dashed black line)
are displayed as well as a subtraction of the toy data set with a signal
injected minus the background GP fit (black dots with error bars).

Injected and extracted signal values are shown.
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TeV, the signal GP fits a narrow excess (a statistical fluctuation) at low values of the
spectrum, near 1.7 TeV. The performance of the method is sensitive to the variable
bin widths with respect to the injected signal width as we will discuss below. Ul-
timately, a sensible statement on the performance of the method can only be made
on the basis of repeating the signal injection in many background toys and perform-
ing a fit for each of them; this procedure needs to be followed for each of the signal
hypotheses studied.

FIGURE 7.8: Top panel: invariant mass spectrum displaying a GP
background fit, event counts for a background toy with signal in-
jected centered at 4 TeV with a width of 150 GeV and R of 0.1, and
a signal-plus background fit. Middle and bottom panels: per-bin sig-
nificance of the discrepancy between the event counts and respective

fits.

Extracted parameters

The plots shown in figure 7.10 display the relationship between injected and ex-
tracted values for the width parameter. From the plot we notice that the higher the
values of R, the closer the extracted distribution of width values approaches the true
injected signal.

We have mentioned in section 7.4.3 that the identification is more difficult as the
signal becomes wider. This statement does not hold in all the width plots, specifi-
cally in the 150 GeV case; an explanation follows. We need to take into account that
the tests are performed on a dataset that comes in the form of histograms (i.e. we do
not have access to per-event information) that have a prescribed binning according
to the criteria that were used in the General Search analysis in [45]. Then, injected
signals occupy less bins as the signal hypothesis is higher, and in particular injected
signals with a width of 150 GeV may be poorly identified, because virtually all the
injected signal events are concentrated in a single bin for the higher mass points.
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FIGURE 7.9: Residual plot corresponding to figure 7.8. The GP signal
component and the signal injected are displayed as well as a subtrac-
tion of the toy data set with a signal injected minus the background
GP fit (black dots with error bars). The GP fit signal component (solid
magenta) incorrectly identified the injected signal (dashed black line).

Injected and extracted signal parameter values are shown.

Similar linearity plots for the mass parameter can be found in figure 7.11. In gen-
eral, good agreement between the injected and extracted parameter distribution is
found. The distributions for higher mass values, and in particular those of the 5 TeV
signal hypotheses with lower R, lead to incorrect identification. An explanation is
that a fixed R can lead to different levels of identification difficulty across the spec-
trum, despite being a more uniform quantity for injecting signals than the number
of events.

A set of plots corresponding to the last parameter, the R, is presented in figure
7.12. We can see good agreement for most hypotheses, but for higher values of mass
(lower rows), the distribution of values becomes more inaccurate. This is showing
once again that having the same R in the lower populated background regions, i.e.
higher mass in this case, as elsewhere may lead to undesirably faint signals that are
far beyond detection in some regions.

A plot summarizing all extracted R values plus the extracted spurious signals is
presented in figure 7.13. We can notice here and also in figure 7.12 that in some cases
the extracted value of the R is negative. Hence, the GP signal kernel has identified
a deficit as a signal (or, technically, the integral of the signal component of the GP
mean prediction is a negative number). The cases in which such negative values
appear are indicative of an incorrect identification.

The spurious measurements reported are R = 0.05 ± 0.2 which is compatible
with no signal and leads to an upper error of 0.25.

Comparison with other two-step procedure options

We explored also two variants of the GP two-step procedure we proposed in sec. 7.3,
as follows:

• Option A: Freeze background mean and hyperparameters: Similar to the de-
fault option, but prescribing the posterior mean of the first step as an input
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FIGURE 7.10: Linearity plots for the width of the signal injected in the
dijet spectrum; each plot corresponds to indicated mass M (in GeV)
and R pair of values. The values of R are the same for each plot col-
umn, and those of the width are fixed through each plot row. Points
and error bars (means and rms) are calculated from the distribution
of extracted mass values. A dashed red x = y line is plotted for refer-

ence.

mean for the second fit. Such prescription aims to constrain the second step fit
from the (background-) data-driven first step.

• Option B: Single step background plus signal: Perform a single GP fit using
ΣSB on data that may contain signal. Thus, this procedure is completely data
driven, as it does not rely on the pure background sample.
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FIGURE 7.11: Linearity plots for the mass of the signal injected in
the dijet spectrum; each plot corresponds to indicated width W (in
GeV) and R pair of values. The values of R are the same for each plot
column, and those of the mass are fixed through each plot row. Points
and error bars (means and rms) are calculated from the distribution
of extracted width values. A dashed red x = y line is plotted for

reference.

Corresponding plots for the distribution of R values for options A and B can be
found respectively in figures 7.14 and 7.15.

General good agreement is found in the linearity plots for all options. However,
we can see that the higher mass hypotheses tend to be identified poorly; this is due
to the specific binning of this spectrum, where R can lead to undesirably faint signals
at high mass values (because of small event counts in such bins).

The values presented as the upper error of the spurious signal detections serve
as an indication of the ability of the method to detect genuine signals. The method
achieves upper errors of R =0.25 for the default and option A, which indicates that
there is not a particular gain in detecting spurious signals when the mean constraint
from Option A is imposed. As we stated before in subsection 7.3.1, GPs are in general
tools flexible enough to model the distribution without prescribing a mean function,
and in terms of signal extraction it did not represent a significant gain in the extrac-
tion power.

Finally, in Figure 7.16 we present normalized plots for the χ2/ndof distribution
obtained for the fits from the three options. The values are extracted for all possible
hypotheses using the 100 toys for each hypothesis; for each option, this means 6000
values. Here it is possible to notice once again that the difference between Options
1 and 2 is not significant in terms of reproducing the spectrum (with the signal in-
jected). Option B performs slightly better in terms of reproducing the spectrum with
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FIGURE 7.12: Linearity plots for the R of the signal injected in the
dijet spectrum; each plot corresponds to indicated mass M and width
W pair of values (both in GeV). The values of the width are the same
for each plot column, and those of the mass are fixed through each
plot row. Points and error bars (means and rms) are calculated from
the distribution of extracted width values. A dashed red x = y line is

plotted for reference.

signal, which may come from the fact that a 9-parameter space is being explored
during optimization (more flexible than the 4-parameter one in the second step of
the default and option A, for the signal kernel). However, the flexibility in Option B
comes with the price of being more prone to spurious detection, reaching to R values
of 0.37.
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FIGURE 7.13: Linearity plots for the R parameter, for all masses and
widths of the signal injected in the dijet spectrum, and spurious de-
tection (injected R = 0). The error bar comes from the RMS of the
distribution of extracted values. Values of R increase by 0.1 from 0
to 0.4, included; points appear slightly shifted in the horizontal axis
for better visibility. The upper value of the error bar in the spurious
detection (0.25) is presented. Dashed horizontal red lines are plotted

for reference.

7.5.2 Benchmark: Parametric fit of the dijet mass spectrum

As a benchmark scenario for the dijet invariant mass spectrum, we use two para-
metric models to fit the background given by the following functional forms:

Three-parameter background fit function: f3(x|θ) = θ0(1− x)θ1 xθ2 , (7.16a)

Five-parameter background fit function: f5(x|θ) = θ0(1− x)θ1 xθ2 xθ3 log(x)xθ4(log(x))2
.

(7.16b)

To give a sense of how these functions behave in the context of the dijet spectrum,
we provide a depiction of both background fits in figure 7.17. The two resulting
functions are close to each other in a way that the difference is not visible, but a
value of the chi-squared is provided for each plot. We can perform an F-test [173] to
assess the difference between the two models; that essentially evaluates how much
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FIGURE 7.14: Option A Linearity plots for the R parameter, for all
masses and widths of the signal injected in the dijet spectrum, and
spurious detection (injected R = 0). The error bar comes from the
RMS of the distribution of extracted values. Values of R increase by
0.1 from 0 to 0.4, included; points appear slightly shifted in the hori-
zontal axis for better visibility. The upper value of the error bar in the
spurious detection (0.25) is presented. Dashed horizontal red lines

are plotted for reference.

it is gained from adding the two extra factors (the ones containing θ3 and θ4) in the
five-parameter model. The criterion we use is that less than 0.9 will lead to prefer
the new model (with more parameters); the closer this number is to one, the less one
has gained from adding the extra terms with new parameters. The value obtained
for an F-test is 0.9404, so we keep the three parameters for the tests presented here.
We leave the results corresponding to the five-parameter model in appendix D and
carry on with the three-parameter model, as both lead to a similar background fit.

Two-step procedures similar to that presented in section 7.3 are used for each of
the background fit functions. A maximum likelihood fit is performed on the back-
ground distribution and then signals are injected in toy distributions generated from
the background, where we perform a signal-plus-background fit, using a sum of the
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FIGURE 7.15: Option B Linearity plots for the R parameter, for all
masses and widths of the signal injected in the dijet spectrum, and
spurious detection (injected R = 0). The error bar comes from the
RMS of the distribution of extracted values. Values of R increase by
0.1 from 0 to 0.4, included; points appear slightly shifted in the hori-
zontal axis for better visibility. The upper value of the error bar in the
spurious detection (0.37) is presented. Dashed horizontal red lines

are plotted for reference.

background fit function used plus a Gaussian function:

f (x|θSB) = f3-or-5(x|θB) + Gaussian(x|θS) (7.17)

where θB are the set of (three or five) parameters of the background model and θS
corresponds to the amplitude, mean and width of the Gaussian distribution. As
the parametric fit is in general more rigid than the GP approach, the parameters
obtained in the background fit are used to initialize the signal-plus-background fit,
without keeping them fixed.

As a reference comparison scenario for the specific case of two jets, we present re-
sults for the parametric approach, where we study the same cases as before injecting
different signal hypotheses and testing both genuine and spurious detections. The
setup for constructing the datasets is identical to the one used in the GP approach in
7.4.3.
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FIGURE 7.16: χ2/ndof normalized distributions for the three options.

In figures 7.18, 7.19 and 7.20 we present linearity plots for extracted signal values
using the three-parameter function to fit the background plus a Gaussian function
for the signal. The figures correspond respectively to the extracted width, mass, and
R. Despite finding a general good agreement between the injected and extracted
values and obtaining smaller error bars from the distributions than those found in
the GP approach, there are two important observations from the plots in figure 7.18.
First, the fact that the extraction becomes more difficult for higher masses and low
R (plots closer to the bottom-left corner) as it appeared in the GP approach. Second,
the extracted values appear to be underestimated for the highest injected value (450
GeV) with R 0.3 and 0.4.

The corresponding mass plots in figure 7.19 reflect the features we have dis-
cussed for the width regarding higher mass and low R. Besides that, the distri-
butions of mass values show good agreement for all cases, including the 3 TeV mass
signals with higher widths, unlike the values shown in the previous case in figure
7.18.

Figure 7.20 shows plots for the relation between injected and extracted R values
in the case of the three-parameter function used to fit the background. Once again,
here it is evident that higher masses become more challenging for the range of Rs
we have injected in all widths.
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FIGURE 7.17: Parametric three- and five-parameter background fits
in the General Search dijet background mass spectrum. The p-values
corresponding to the χ2 score given the degrees of freedom are re-
spectively p(χ2

3, 29) = 0.816 and p(χ2
5, 27) = 0.771. This spectrum is

simulated using the Pythia event generator [56], details on the text.

A summary plot for all R measurements and the spurious signal detection ref-
erence appears in figure 7.21. For the distribution of spurious detection values, see
that the upper bound of the error bar reaches 0.14 in R, which is lower than what we
have found for the GP approach.

Even if the parametric approach, as we have seen, is more accurate in extracting
signal parameters, the GP method remains an option with several advantages. We
should note that the GP method provides a tool that is more flexible to shapes, and
includes some physical information encoded in the kernel, which is preferable than
the ad-hoc nature of the parametric form. Also, the parametric background model
explicitly contains a distribution designed for the spectrum, and the signal shape
used on top is exactly the one used for the shape generation sample (Gaussian), that
leads to such better performance.

7.5.3 Three-step procedure in tt̄ invariant mass spectrum

We present results of applying the three-step GP procedure in the invariant mass
spectrum of top quark pairs, described in sec. 7.3.1. In an effort to use the two-step
procedure in this spectrum, we observed that the signal kernel was not able to iden-
tify injected signals, but always accommodated the turn-on part of the background.
Thus, we used the ΣTB = ΣB + ΣS to model the background in two steps; an illustra-
tion of this is presented in figure 7.22. The contribution of the turn-on component is
evident at low masses, where the optimization leads to identifying a concentration
of events centered at the beginning of the spectrum, and with a width of 144 GeV
(that was left to fluctuate between 100 and 500 GeV in the optimization) covering
the turn-on region.

The third step is then used to identify a signal. The two signal Z′ hypotheses
available are used for injection, at 750 GeV (1.85 pb) and 1250 GeV (1 pb), which is
repeated in 100 background toys. The three step procedure is able to identify the
signals only if they are amplified by a factor with respect to their original amplitude
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FIGURE 7.18: Parametric approach (three-parameter background fit):
Linearity plots for the width of the signal injected in the dijet spec-
trum; each plot corresponds to indicated mass M (in GeV) and R pair
of values. The values of R are the same for each plot column, and
those of the width are fixed through each plot row. Points and error
bars (means and rms) are calculated from the distribution of extracted

mass values. A dashed red line x = y is plotted for reference.

value, depending on the hypothesis. Also, we imposed different lower thresholds in
the minimum value of the allowed signal mass mean range to 550 and 600 GeV. In
figure 7.23 we present an example of a 750 GeV Z′ signal injected and amplified by
a factor 15; the corresponding signal extraction plot appears in 7.24.

The injected signal values are presented in table 7.2. To give a sense on where the
signal is located, we report the center of the bin that contained the highest amount
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FIGURE 7.19: Parametric approach (three-parameter background fit):
Linearity plots for the mass of the signal injected in the dijet spec-
trum; each plot corresponds to indicated width W (in GeV) and R
pair of values. The values of R are the same for each plot column,
and those of the mass are fixed through each plot row. Points and
error bars (means and rms) are calculated from the distribution of ex-
tracted width values. A dashed red x = y line is plotted for reference.

of events (bin(max)), and a window defined around that bin by including on each
side as many as necessary to reach 34% of the events; that way the window contains
a value roughly above 68% of the signal distribution events, which corresponds to
±1 standard deviations. The table reports the bin with the highest amount of events
and half of the window size. Further, an extracted R value using the window and its
standard error from repeating the injection in 100 background toys are presented in
the table. In contrast to the dijet spectrum, that spans from approximately 1 to 8 TeV,
the tt̄ spectrum appears in the range of 0.5 to 2.5 TeV. Therefore, the signals here are
relatively wider than in the dijet case.

Results for extracted values of mass and width of the signal appear in tables 7.3
and 7.4 for minimum mass thresholds of 550 and 600 GeV respectively. The mass
and width parameters are taken from the optimized hyperparameters of the signal
kernel obtained in the third step; the tables present the mean and average value for
fits from injecting each of the hypotheses in 100 background toy experiments.

For a minimum mass threshold 550 GeV, in table 7.3, we observe different perfor-
mance for the two injected mass hypotheses, as compared with the values reported
in table 7.2. For 750 GeV, with the smaller amplification factor of 5, the signal mean
value is lower than the center of (bin(max)) and the width value was overestimates
the half window, but for the higher amplifications both the mean and width were
compatible within error. The values of R are all above that of the reported injected
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FIGURE 7.20: Parametric approach (three-parameter background fit):
Linearity plots for the R of the signal injected in the dijet spectrum;
each plot corresponds to indicated mass M and width W pair of val-
ues (both in GeV). The values of the width are the same for each plot
column, and those of the mass are fixed through each plot row. Points
and error bars (means and rms) are calculated from the distribution
of extracted width values. A dashed red line x = y is plotted for

reference.

R. In the case of 1250 GeV hypothesis, the method has difficulties extracting both
the mass and the R value for all amplification factors (even if the mass appears to
approach the correct value as the amplification increases). Also, width values are
within error properly estimating the size of the window.

We also report results when imposing a minimum mass of 600 GeV, in table 7.4.
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FIGURE 7.21: Parametric approach (three-parameter background fit):
Linearity plots for the R for all masses and widths of the signal in-
jected in the dijet spectrum and spurious detection. The upper value
of the error bar in the spurious detection (0.14) is presented. Values
of R are from 0.1 to 0.4 in intervals of 0.1; points appear shifted in the
horizontal axis for better visibility. A dashed red line is plotted for

reference.

With respect to the case of minimum mas 550 GeV, the behavior is somehow similar.
For the 750 GeV hypothesis, the amplification by a factor 5 lead to underestimation
of the mass and overestimation of the width, but the R value is compatible with the
injected one. For higher amplifications in the same hypothesis, the mean and width
are consistent with injected values (except the width at a factor 15 that is slightly
underestimated); however, the R values were underestimated. All values are under-
estimated in the 1250 hypothesis, except that of the signal width when amplifying
the signal by 5, and in that scenario it is unlikely that we are in the presence of a
genuine detection, as the R value is marginally above zero.

A spurious detection test was also performed for the two cases of minimum mass
threshold, denoted in the table as “No signal” in the first row of tables 7.3 and 7.4.
We can notice that the extracted mass values on each case are driven towards the
minimum allowed value for the mass, in which case both the turn-on component of
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FIGURE 7.22: Background of the tt̄ invariant mass spectrum (black
dots), modeled with the first two steps of the three-step procedure
(solid magenta). The pure ΣB GP component is also presented (solid

blue).

Hypothesis (factor) bin(max) [GeV] half window [GeV] R

750 GeV (5)
700 82.5

0.100 ± 0.001
750 GeV (10) 0.200 ± 0.002
750 GeV (15) 0.300 ± 0.003
1250 GeV (5)

1260 335.0
0.18 ± 0.01

1250 GeV (10) 0.35 ± 0.01
1250 GeV (15) 0.53 ± 0.01

TABLE 7.2: Injected values in the mtt̄ spectrum. The center of the
bin containing the maximum number of signal events (bin(max)) is
reported, as well as half of the length of the window used. The re-
ported R value is an average calculated by repeating the injection in
100 background toys; the error on that value is taken as the standard

deviation of all obtained R values.

ΣTB and the signal kernel contribute to the background turn-on.

7.6 Conclusions and outlook

In this chapter we explored different aspects of GP approached that are able to per-
form background modelling and signal detection, prescribing µ(x) = 0 (no mean in-
formation). The two-step procedure was able to detect signals with different widths,
intensities, and locations in the dijet invariant mass spectrum. We use R, a ratio
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FIGURE 7.23: Top panel: tt̄ invariant mass spectrum displaying a
GP background fit (with turn-on), event counts for a background toy
with Z′ signal injected centered at 750 GeV amplified by a factor 15,
and a signal plus background fit. The magenta line is the posterior
mean of the GP fit using the ΣBTS kernel; the blue line represents the
background-plus-turn-on component of the GP fit. Middle and bot-
tom panels: per-bin significance of the discrepancy between the event

counts and respective fits.

Hypothesis (factor) m [GeV] w [GeV] R

No signal 557.4 ± 14.8 137.3 ± 8.8 0.02 ± 0.03
750 GeV (5) 625.1 ± 24.0 120.4 ± 14.5 0.23 ± 0.07
750 GeV (10) 682.2 ± 17.1 87.1 ± 17.4 0.42 ± 0.07
750 GeV (15) 703.6 ± 7.9 71.4 ± 9.82 0.48 ± 0.04
1250 GeV (5) 809.0 ± 88.9 341.0 ± 44.1 0.01 ± 0.01
1250 GeV (10) 845.7 ± 81.3 339.0 ± 47.9 0.09 ± 0.05
1250 GeV (15) 947.4 ± 155.4 278.5 ± 98.5 0.21 ± 0.13

TABLE 7.3: Three step procedure extracted values for signals in the
mtt̄ spectrum. Minimum mass threshold 550 GeV.

of events defined within a window to measure the intensity of the signal; since the
spurious detection lead to identifying signals with strengths R = 0.05± 0.2 we use
that value as an indication of the typical faint signal that the method is capable to
identify. Two modifications of the two-step procedure were also tested but did not
lead to significantly better results when compared to the default.

We applied a GP method also in the more challenging case of the search for a
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FIGURE 7.24: Signal extraction plot corresponding to fig. 7.23. The
GP signal in the third step (solid magenta) and the signal injected
(dashed black line) as well as a subtraction of the background toy
with a signal injected minus the background GP fit (black dots with

error bars).

Hypothesis (factor) m [GeV] w [GeV] R

No signal 610.8 ± 53.0 125.5 ± 46.7 0.04 ± 0.05
750 GeV (5) 626.6 ± 20.9 119.3 ± 14.4 0.16 ± 0.06
750 GeV (10) 680.9 ± 19.5 84.7 ± 22.0 0.36 ± 0.08
750 GeV (15) 705.7 ± 8.7 63.1 ± 12.7 0.39 ± 0.07
1250 GeV (5) 929.4 ± 106.5 307.0 ± 74.9 0.01 ± 0.01
1250 GeV (10) 1047.6 ± 112.0 224.5 ± 77.6 0.19 ± 0.07
1250 GeV (15) 1115.6 ± 32.7 177.7 ± 32.3 0.35 ± 0.07

TABLE 7.4: Three step procedure extracted values for signals in the
mtt̄ spectrum. Minimum mass threshold 600 GeV.

resonant signal in the tt̄ invariant mass spectrum. There, a three-step method was
presented and used: the first two steps model the background, including the turn-on
region, and the third step is used for extracting the signal. We used two simulated
Z′ signal hypothesis samples, one with a mass of 750 GeV and the other at 1250 GeV.
The original signal amplitudes were faint, and the method was not able to detect
them; thus, the signals were amplified with different factors up to a level in which
detection was possible.

The GP methods that we used provide the first steps towards alternative back-
ground modelling and signal identification techniques. However, the procedures
presented here can see some improvement. In particular, in the definition of the in-
tensity of the signal injected, where our definition of R is better than prescribing an
single amplitude value across the spectrum, but fails at high bin widths, as we could
see in the dijet spectrum tests. Also, the interest of model-independent searches can
be better suited by having more generic methods likely by exploring other kernels,
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and not relying e.g. in the construction of further fit steps, as it happens in the three-
step procedure.

Further studies of this method may aim towards more data-driven approaches,
by applying a GP method that is flexible enough to model a background-only distri-
bution in the presence of signal. That direction has the advantage of not needing a
MC simulation of the background, which in some cases provide a poor background
estimation.
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Chapter 8

Conclusions and outlook

This work revolves around the issue of model-independent searches New Physics in
ATLAS with a special focus on Machine Learning techniques. In order to substan-
tiate that problem, we presented in chapters 2 and 3 theoretical and experimental
details respectively; further, we reviewed in chapter 5 a number of Machine Learn-
ing methods applied in the context of High Energy Physics, in the search for New
Physics.

Inspired in General Searches performed by the ATLAS collaboration [45], we pre-
sented the result of monitoring many generic signatures using the TADA system.
TADA is designed to provide quick feedback to specialists in the case a discrepancy
appears in a particular signature, and also serves as a tool for validation and per-
formance studies of the data taken and simulations. We put in place a system that
automatically fills histograms in generic signatures, and that was used during the
2017 data taking period of ATLAS; no particular feature in the generic signatures
triggered an alert to other groups during that period. The generic signature moni-
toring system can be easily expanded, as the software infrastructure is already built,
and could serve for future data to be taken by the collaboration.

We also presented a method for collective anomaly detection with an application
in HEP. It is based on a previous work that uses Gaussian Mixture Models in a semi-
supervised two-step procedure. Our method uses a penalized likelihood for auto-
matically performing variable selection. We used a set of simulation software for
generating LHC-like proton-proton collision events and a fast simulation for emu-
lating the detector response of ATLAS. The processes simulated correspond to Stan-
dard Model QCD processes as a background and a heavy (stop) resonance as a signal
that leads to a final state of two jets. Our method performs slightly better than pre-
sented in the previous work, but with the advantage of having a built-in system for
variable selection. We reported that the method underestimates signal proportions,
particularly in the presence of the stronger signals injected (> 15%). Further im-
provements of the presented method include the exploration of other penalties as
well as the automation of several procedures within the algorithm for alleviating
preprocessing.

Finally, we tested and modified a method that uses Gaussian Processes for mod-
elling background and signal distributions in invariant mass spectra. We present
two procedures NP searches in ATLAS in two cases: the dijet signature from the
General Search and a dataset used for resonant searches decaying into top quark
pairs. For the two-step procedure in the dijet dataset, we were able to compare
several proposed options within the Gaussian Process method as well as with a tra-
ditional parametric fit method. The method was able to properly detect injected
artificial Gaussian signals down to an R value1 of 0.05 ± 0.2. The necessity of a

1R is a ratio of number of signal over background events defined within a window given by the
(injected or extracted) signal distribution.
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three-step procedure appeared when modelling the turn-on on the tt̄ invariant mass
spectrum. For this spectrum, we made use of the more challenging Z′ signal hypoth-
esis samples, where only in the case of amplifying a signal by a factor of at least 10 a
proper detection was able to be achieved. These Gaussian process methods can see
improvements e.g. in the definition of the R quantity, and automatization of differ-
ent parts of the method. Improvements can also come from the exploration of new
kernels, will help improve the methods presented here.

More generally, we foresee that Machine Learning will continue to help improv-
ing the techniques used for New Physics searches at many levels, as we have dis-
cussed. The challenges posed by the LHC datasets, and the absence of signs of New
Physics so far, pose a unique scenario for pushing active research areas like deep
learning or unsupervised methods to mine the available data.
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Variable selection for the Penalized
Anomaly Detection method

As we have seen in Chapter 6, variable selection is achieved by having (a set of)
shrunk parameters that indicate which variable is to be removed. In the case of the
penalty in eq. (6.12), from ref. [148], covariances are constrained to be the iden-
tity, and shrinkage drives means to zero for an uninformative variable indexed by p
where the factorization of that variable can be performed for the Gaussian compo-
nent k. For a given observation:

N (xi|µk,1) = N (xip|0, 1)N (xD−1
i |µD−1

k ,1D−1) , (A.1)

where the right hand side contains a product of a unidimensional Gaussian density
for the p-th variable, and a (D − 1)-dimensional Gaussian density where the argu-
ments have the p-th variable removed. This is used to simplify the posterior for the
adjusted EM algorithm that is1

τik =
πkN (xi|µk,1)

∑K
k′=1 πk′N (xi|µk′ ,1)

=
πkN (xD−1

i |µD−1
k ,1D−1)

∑K
k′=1 πk′N (xD−1

i |µD−1
k′ ,1D−1)

. (A.2)

A similar procedure is derived for the mean and eigenvalue penalization we
described in the Chapter. We start by partitioning the features into two sets labeled
by a and b and thus X = (Xa, Xb) such that the dimension of the realizations in Xa

and that of those in Xb add to D; similarly the means are partitioned µk = (µa
k, µb

k),
and the covariances written in blocks of appropriate dimensions

Σk =

(
Σaa

k Σab
k

Σba
k Σbb

k

)
. (A.3)

Then, the factorization of variables in b (that are assumed to be the uninformative)
for component k and a given observation xi:

N (xi | µk, Σk) = N
(

xb
i

∣∣∣ µb
k, Σbb

k

)
×N

(
xa

i

∣∣∣Σab
k

(
Σbb

k

)−1 (
xb

i − µb
k

)
, Σaa

k − Σab
k

(
Σbb

k

)−1
Σba

k

)
.

(A.4)

The conditions that are required to be satisfied for this approach are that means in
b are zero, the covariances in b across the Gaussian components are all equal to Σbb,
and off-diagonal covariance blocks Σab

k , and Σba
k are blocks of zeros with appropriate

1In this subsection we skip the caret over the current parameter estimates to lighten up notation.



104 Appendix A. Variable selection for the Penalized Anomaly Detection method

dimensions, for all k values; where

Σbb =
K

∑
k=1

πkΣbb
k . (A.5)

Putting all this information together for modifying the EM algorithm leads to a
posterior:

τik =
πkN

(
xb

i | 0b, Σbb)N (xa
i

∣∣ µa
k + 0abxb

i , Σaa
k − 0abΣba)

∑K
k′=1 πk′N

(
xb

i | 0b, Σbb
)
N
(
xa

i

∣∣ µa
k′ + 0abxb

i , Σaa
k′ − 0abΣba

)
=

πkN
(

xa
i | µa

kΣaa
k

)
∑K

k′=1 πk′N
(

xa
i | µa

k′ , Σaa
k′
) (A.6)

where the effect of the uninformative variables labeled b cancels out. The condition
on the means is ensured by the penalty term p1 but for the covariance condition
model selection needs to be performed among all potential sets of uninformative
variables, that satisfy the condition on the means, by using the Bayesian Information
Criterion. More details can be found in ref. [151].
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Tukey-transformed distributions
for the PAD method

A Tukey ladder of powers [158] was used as a preprocessing step, as described in
chapter 6. Here we present the plots corresponding to the coefficients presented in
Table 6.1, in figures B.1 and B.2.
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FIGURE B.1: Normalized distributions of signal and background dijet
for kinematic and angular variables (left) and after the Tukey trans-

formation (right).
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FIGURE B.2: Normalized distributions of signal and background dijet
for kinematic and angular variables (left) and after the Tukey trans-

formation (right).
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Appendix C

Parameter initialization

We specify here values provided to perform the maximization of the likelihood with
the minuit algorithm [174] via its Python interface [175].

C.0.1 Gaussian process method

Background

The initialization parameters for the background are:

• A = random(0, 106)

• a = random(0, 400)

• b = random(0, 10)

• c = random(0, 100)

• d = random(0, 650)

Limits on the values of those parameters:

• A = (100, 1015)

• a = (1, 3000)

• b = (0.1, 1000)

• c = (10, 3000)

• d = (200, 2000)

Obtained values for these parameters: A = 2.47448640 * 1010, a = 3.09264468*
102, b = 22.7827200, c = 2999.99668, d = 1999.85146.

Signal plus Background

Background kernel hyperparameters are kept frozen. The initialization for signal
kernel parameters is:

• A = random(0, 3000)

• m = random(0, 3000)

• t = random(0, 200)

• l = random(0, 50)
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Limits on the values of those parameters:

• A = (0, 100000)

• m = (1000, 7000)

• t = (50, 500)

• l = (10, 10000)

C.0.2 Parametric fit

Background

The initialization is the same for both the three- and five-parameter background fit.
In the three-parameter fit, values for θ3 and θ4 are not used.

• θ0 = random(0, 1)

• θ1 = random(0, 8)

• θ2 = random(0, 6)

• θ3 = random(0, 1)

• θ4 = random(0, 1)

Limits on the values of those parameters:

• θ0 = (0, 10)

• θ1 = (-20, 20)

• θ2 = (-20, 20)

• θ3 = (-20, 20)

• θ4 = (0, 50)

Obtained for the three-parameter background model: θ0 = 5.131641680942489, θ1
= 8.252253105791226, θ2 = -2.604810239837292.

Obtained for the five-parameter background model: θ0 = 9.993937994190874, θ1 =
8.655403124376392, θ2 -1.8369620252642136, θ3 = 0.3456933396129145, θ4 = 0.056820004297544746.

Signal plus Background

Initial values for the background are the ones obtained in the background fit. Initial
values on the Gaussian signal are:

• Amp = random(0, 1000)

• Mean = random(1000, 6000) (GeV)

• Width = random(100, 450) (GeV)

Limits on the values of those parameters:

• Amp = (0, 6000)

• Mean = (1000, 8000) (GeV)

• Width = (100, 450) (GeV)
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Five-parameter background fit

Using the same parametric procedure described in our work, but using the five-
parameter formula in eq. (7.16b) instead. We show analogous sets of plots for the
extraction of the signal width, mass, and R parameters in figures D.1, D.2 and D.3
respectively. The extracted width values shown in figure D.1 are similar to those pre-
sented for the three-parameter case (cf. figure 7.18). Both features, the one regarding
the poorer performance at high masses and the bias at 3 TeV for higher Rs, are also
present in this plot.

Analogous comments to those made in the three-parameter case apply to the
mass plots in D.2 (cf. figure 7.19).

The set of plots for the R parameter appearing in figure D.3 show a similar be-
havior (overall) to that found in the other parametric case (cf. figure 7.20). There
is a difference in the plot corresponding to the signal at 3 TeV with 450 GeV width,
where the 0.4 R is underestimated.

As a final plot in figure D.4 we present the summary of the extracted R values
and the one coming from spurious detections. The distribution of spurious signal
R values leads to a higher error upper bound (0.22) in spurious detections than that
obtained for the three-parameter case (see figure 7.21).
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FIGURE D.1: Parametric approach (five-parameter background fit):
Linearity plots for the width of the signal; each plot corresponds to
indicated mass and R pair of values. The values of R are the same for
each plot column, and those of the width are fixed through each plot
row. Points and error bars (means and rms) are calculated from the
distribution of extracted mass values. A dashed red line is plotted for

reference.
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FIGURE D.2: Parametric approach (five-parameter background fit):
Linearity plots for the mass of the signal; each plot corresponds to
indicated width and R pair of values. The values of R are the same for
each plot column, and those of the mass are fixed through each plot
row. Points and error bars (means and rms) are calculated from the
distribution of extracted width values. A dashed red line is plotted

for reference.
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FIGURE D.3: Parametric approach (five-parameter background): Lin-
earity plots for the R of the signal; each plot corresponds to indicated
mass and width pair of values. The values of the width are the same
for each plot column, and those of the mass are fixed through each
plot row. Points and error bars (means and rms) are calculated from
the distribution of extracted width values. A dashed red x = y line is

plotted for reference.
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FIGURE D.4: Parametric approach (five-parameter background): Lin-
earity plots for the R for all masses and widths of the signal and spuri-
ous detection. Values of R are from 0.1 to 0.4 in intervals of 0.1; points
appear slightly shifted in the horizontal axis for better visibility. A

dashed red line is plotted for reference.
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Appendix E

A First Implementation of
Generalized Additive Models in
MATLAB

This appendix documents the result of an industrial secondment performed during
twelve weeks at The Mathworks, Inc., within the training program of the AMVA4New-
Physics Innovative Training Network, a Marie-Sklodowska Curie Action of the Eu-
ropean Union. The company develops scientific software and it is known for their
flagship packages MATLAB and SIMULINK. In the following we present several
aspects of an implementation of Generalized Additive Models for the Statistics and
Machine Learning Toolbox of MATLAB.

E.1 Introduction

Generalized Additive Models (GAMs) are a class of models that combine features
from Generalized Linear Models (GLMs) and Additive Models. This class of models
provides a more flexible tool than GLMs, giving a smooth multidimensional model
while retaining interpretability on the predictors.

Posed about three decades ago by Hastie and Tibshirani [176, 177], GAMs have
been long studied, and several implementations are available. An implementation
by Hastie and Tibshirani [178] and another one by Simon Wood [179, 180] are avail-
able in R; more recently, an implementation in Python appeared [181]. The present
work is the first step towards making GAMs part of the MATLAB Statistics and Ma-
chine Learning Toolbox.

In this document we describe some of the key concepts and algorithms relevant
to GAMs as well as some details in our implementation. We then show some tests
in a few scenarios.

E.2 GAMs and the Backfitting algorithm

An easy way to illustrate GAMs is starting from GLMs. Given a training data set
with P predictor vectors {X1, ..., XP}= X, and response vector Y, the task of fitting a
GLM consists in finding values for a coefficient matrix β of size N × P. (Assuming
the length of each predictor and of the response, or number of observations to be N.)
A link function g(·) relates the linear model on the covariates, and the response:

g(Y) = s0 + ∑
j

β jXj, (E.1)
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where s0 is an offset term. There exists a set of commonly-used link functions (e.g.
logit, identity, log) from which one has to decide taking into account the type of
problem to be solved.

GAMs incorporate the additive feature by using one smoothing function s per
covariate:

g(Y) = s0 + ∑
j

sj(Xj) . (E.2)

Fitting a GAM consists in finding suitable smooth functions s, which will be obtained
using a non-parametric procedure.

Given an Additive Model like the one on the RHS of equation (E.2), it is possi-
ble to estimate each of the smoothers in an iterative procedure, by defining partial
residuals:

Rk = Z− s0 −∑
j 6=k

sj(Xj) , (E.3)

for a response variable Z. That way, smooth functions are obtained for all residu-
als, and the procedure is iterated until some convergence criterion is satisfied. This
algorithm is known as the backfitting algorithm.

A modification of backfitting, known as the local scoring algorithm is used to fit
GAMs. We initialize s0 = g(E(Y)), and s(0)k = 0 for all k. Then the procedure iterates
in m, defining the quantities1:

η(m−1) = s0 + ∑
j

s(m−1)
j (Xj) (E.4a)

µ(m−1) = g−1
(

η(m−1)
)

(E.4b)

W =
(

V(m−1)
)−1

(
∂µ

∂η

)2

(m−1)
(E.4c)

Z = η(m−1) +
(

Y− µ(m−1)
)(∂µ

∂η

)
(m−1)

(E.4d)

where the entries of V(m−1) are the variances of Y at each entry of µ(m−1). We use
the backfitting algorithm to fit an Additive Model to Z with weights given by W, to
estimate the smooth functions s(m)

k from the partial residuals as they appear in eq.
(E.3).

There are several choices of smoothers one can use. In this work, the running
lines and loess smoothers are used, but most implementations also include estima-
tions via splines, which is left for future work. Both running lines and loess are based
on performing multiple local (respectively linear and polynomial) least-squares re-
gressions in sliding windows to provide a smooth one-dimensional model, or an
estimate of a residual Rk in our use case.

1Operations in the following equations (addition, exponentiation, multiplication, differentiation)
on column vectors are element-wise.
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E.3 Implementation

Two utilities are available for fitting Generalized Linear Models in the Statistics
and Machine Learning Toolbox, namely glmfit and the more recent fitglm. Since
GAMs are an extension of GLMs, we borrow several functionalities from both GLM
packages in our code.

E.3.1 The GeneralizedAdditiveModel class

An object of the GeneralizedAdditiveModel class contains methods (fitgam, predict)
and properties (grid and smoothers S), that are relevant to fit GAMs given a training
data set, and to make predictions for test data sets.

In our implementation, the smoothing functions are stored using cell arrays that
contain function handles. Since the local least-squares regressions for a particular
residual result in a piece-wise function defined at the neighborhood of the input
points, we store a function handle containing two coefficients per regression.

The number of regressions performed (or handles stored) Mj is at most the num-
ber of points in the covariate (N), where the number decreases in the presence of
repeated points. By creating a grid in the training step, before starting the backfit-
ting iterations, we run once a sorting algorithm in each covariate that is useful for
two purposes: identifying the neighboring and repeated points for each local re-
gression in the smoother, and for matching points in a testing data set with their
corresponding handle (using the sorting indices) as we discuss below.

A few other options regarding the storage of smoothers and matching with test-
ing points were considered but discarded in favor of our proposal:

• Create function handles that return a zero value everywhere except in the inter-
val surrounding the regression point. This would have the apparent advantage
of avoiding the matching in the prediction step described in detail below, as the
functions will return non-zero values for an input point only in the appropri-
ate interval. However, this is inconvenient for at least two reasons: firstly, each
function handle would have to store the two extrema to identify the non-trivial
interval, and since for every two consecutive intervals the first interval’s upper
bound is the lower bound of the second, we would be storing repeated values.
Secondly, using such functions implies running each of the Mj handles in each
of the points for a covariate in the test set that will, in general, return zero
in most cases. By having a grid constructed as we propose, both the number
of values for the intervals is reduced and the smoothing functions are run at
points within the relevant interval.

• Not storing a grid but matching the smoother handles in the prediction step
by using the training covariates. This implies storing as many smoothers as in-
put values in the covariate matrix and in the same order. The predict method
would take the input covariates and the test covariates (X, Xtest), and an array
of smoother handles. For each point in every test covariate, the the method
would have to find the index of the nearest neighbor in the corresponding
training covariate to retrieve the relevant smoother. A typical use of a model
like GAMs involves running the training method fewer times than the pre-
dicting one. Therefore, we choose to reduce the amount of operations in the
predict method as much as possible, moving them to the training step.

Below we describe the properties and methods in the class.
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The grid property

Given P covariates {X1, ..., XP} each of length N, the grid property is a cell array that
stores P one-dimensional grids, i.e. one per covariate. Each 1D grid is an ordered
array constructed from a specific Xj that contains the extrema of the covariate and at
most N − 1 values half-way between each ordered pair of unique points from Xj. If
we take Mj to be the length of the 1D grid for covariate Xj, then Mj ≤ N + 1, where
the inequality holds in the case of repeated values in Xj.

The S property

Smooth functions of the Additive Model are stored in a cell array S that contains P
cell arrays, one per covariate. The j-th cell array contains Mj − 1 function handles,
corresponding to intervals from the j-th 1D grid; the intervals are bounded by each
pair of consecutive values in that 1D grid.

The cell arrays contained in S are ordered to match values on the grid, i.e. given a
test set of covariates Xtest, for each k-th observation on the j-th covariate one should
find the index i in the 1D grid that satisfies

grid{j}(i) < Xtest
kj ≤ grid{j}(i+1). (E.5)

On average checking the condition above requires Mj/2 operations as the array
stored in grid{j}(i) is sorted. Then, we would apply the smoothing function stored
in S{j}{i} to Xtest

kj .

The fitgam method

This method takes as input a training data set: X and the responses Y; and a set of ar-
guments detailed in the code. The method returns an instance of the GeneralizedAdditiveModel
class where the S and grid properties have been set. A property containing the
inverse of the link function ilinkfun is also stored, which is used in the predict
method (see below).

Below an outline of the tasks that this method performs:

Copied from or inspired by glmfit

• Parse the arguments via parseArgs.

• Set handles for the link function, its derivative, and its inverse via stattestlink.

• Initialize the µ and η vectors via startingVals.

• Variance estimation via getGLMVariance.

The gridder function This function constructs and returns a cell array of 1D grids
from a given N × P matrix of covariates, to set the grid property. It follows the idea
described in E.3.1 and uses the unique command to sort the values and create the 1D
grids. Arrays of indices to map the covariates to the 1D grids and vice versa, igrid
and idata respectively, are also returned.
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The local scoring algorithm Before the local scoring iterations, we initialize a ma-
trix for the residuals, Rold and a cell array for the handles in S. At each iteration, we
set the values of the weights W, update the value of the transformed response Z and
call the backfit function (described below), to update η, the residual matrix and the
smoothers in S, as described in section E.2.

The predict method

This method takes as an input the trained model (an instance of the GeneralizedAd-
ditiveModel class) and a matrix of P test covariate predictors Xtest = {Xtest

1 , ..., Xtest
P },

and returns the model evaluated on each of the input points, i.e. a predicted re-
sponse of the same length as each of the covariates.

The method performs two tasks, matching the values of Xtest in the grid and
applying the smoothers. For the first task the method loops on each test predictor,
and for the every entry therein finds the index that satisfies eq. (E.5), with the help of
the find command. With the relevant indices, it is possible to construct the additive
model finding the smoothers in S.

E.3.2 Algorithms: Backfitting and Boost

Backfitting

The backfit function implements the backfitting algorithm that was previously de-
scribed in section E.2. It takes as an input the input covariates X and a response
Y (that is Z in the case of local scoring), the type of smooth function to be used,
(running line or loess), the weights, the fitting algorithm, the width of the smoother
window, a successive over-relaxation parameter2 ω, the indices igrid and idata
(see the gridder function), and the residual matrix and S from previous iterations.

This function iterates P times (runs the smoother once per covariate) and returns
updated values of the function handles (S), the Y (or Z) estimates at the training set
points and the updated residual matrix.

Boost

We have written an implementation of this algorithm from [183] which shares sev-
eral similarities with backfitting. Boost is intended to be used with regression trees,
which is a part of the code that is still under testing, see E.4.3.

E.3.3 Smoothers: running lines, loess

Running Lines

The runline function takes one covariate, a response, weights, the width of the re-
gression window and the igrid and idata indices (see the gridder function). The
regression is performed using the backslash operator on the set of points that are
near (within the provided window) each unique point in the covariate, labeled by
the igrid indices. This way, the number of regressions performed is Mj. The func-
tion returns a cell array of function handles with stored coefficients, and estimates
of the smooth functions mapped back to each point of the input covariate with the
idata indices. Such mapping has to be performed to return a residual vector of the
appropriate length for the next backfitting iteration.

2This parameter wasn’t discussed in section E.2 but an explanation is available in [182].
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Loess

The loess function takes the same input parameters as runline and also returns
a cell array of handles with corresponding coefficients and the estimates at the co-
variate points. The local regression is also performed a set of points close to each
unique point in the covariate, but the regression weights are multiplied by a tri-cube
function.

Trees

Under test. See E.4.3.

E.4 Tests

We have tested the functionality of our code with two link functions for classification
and regression: logit, and identity respectively. Other links (e.g. log, probit, loglog)
are left for future work.

E.4.1 Classification using a logistic model

Our first test example consists in performing binary classification in a data set. To
realize this model, we use the logit link function defined as

g(µ) = ln
(

µ

1− µ

)
. (E.6)

From that prescription one can derive the explicit expressions for equations (E.4) and
apply the local scoring algorithm.

Two-dimensional Gaussian distributions

The training data set is constructed sampling 2000 points from two Gaussian dis-
tributions in two dimensions (1000 points each) for the covariates, labelling the re-
sponse with zero and one the points coming from either Gaussian distribution. An
illustration of the resulting sampled covariates and labels appears in fig. E.1.

Two tests have been performed, changing only the smoother from running lines
to loess in the training. We indicate the rest of the arguments in the training method:
use a binomial distribution, a logit link, a fixed amount of (20) iterations, and the
backfit algorithm.

As a testing data set we sample another set from two Gaussian distributions with
same parameters. The result of the predict method can be visualized and assessed
using the true labels.

In figures E.2 and E.3 we see plots for running lines and loess respectively. The
AUC figure of merit is the area under the ROC curve (True Positive Rate vs. False
Positive Rate), constructed by using different working points as a criterion to sepa-
rate one class from the other. The greater the AUC, the better discriminant power
the classifier has. In the tests the two smoothers lead to a similar AUC.

The script that makes the tests above is tgam_logit.
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FIGURE E.1: Two 2-dimensional Gaussians

FIGURE E.2: Prediction on a test data set using running lines
smoother

Repeated indices

In order to make sure that the case of repeated points was handled properly, we’ve
written the tgam_logit_repeated script. There we construct a simple data set with
many repeated covariate points. We then inspected manually that the repeated
points were not taken into account to handle the grid, and the unique ones were used
appropriately to select neighboring points for the regression in loess and runline.

Physics data set

As an example we’ve used a data set from a High-Energy Physics simulation. Very
broadly, we would like to discriminate between signal and background classes of
events (observations) that correspond to different physical processes. Our data set
contains seven continuous variables that are physical observables, as measured in a
collider detector, and about 10 thousand observations for each class. The most tradi-
tional approach in the domain consists in performing a univariate analysis, selecting
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FIGURE E.3: Prediction on a test data set using loess smoother

an discriminant interval in which the signal is more prominent; we use GAMs in the
case of two and five dimensions.

For constructing both training and testing data sets, we take 1000 events of each
class. We pre-process the variables centering the values at the mean and dividing by
the standard deviation. We will use GAMs in the two scenarios used above in E.4.1,
with the same argument, and varying the smoother. Also, for each of the smoothers
we train the GAM with two variables and five variables.

The resulting plots from the two variable case using the running lines and loess
smoothers are respectively in figures E.4 and E.5 respectively. In the two variable
case, the loess smoother leads to a slightly better classifier (as indicated by the AUC).

FIGURE E.4: Prediction on a physics test data set (2 variables) using
running lines smoother

In the case of five variables, the corresponding plots are E.6 and E.7. Here it is
also the case that loess performs better than running lines. We can also observe that
using more variables makes a significant increase in the performance of the classifier
in the test data set.

The script that produces the tests above is the tgam_logit_phys.
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FIGURE E.5: Prediction on a physics test data set (2 variables) using
loess smoother

FIGURE E.6: Prediction on a physics test data set (5 variables) using
running lines smoother

FIGURE E.7: Prediction on a physics test data set (5 variables) using
loess smoother
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E.4.2 Regression in a two dimensional step function (identity link)

With a more simple model prescription, we can use GAMs for regressing functions.
In that case we make use of the identity link g(µ) = µ. For testing this scenario,
we generate a four-step function in two dimensions, as depicted in figure E.8; steps
have response values around 1, 2, 3, and 4; taking 400 points on each step. Each step
contains a small Gaussian noise component of variance 0.2 around the correspond-
ing response constant value. For testing we use a similar data set with 300 points on
each step.

FIGURE E.8: 2-dimensional, four-step function.

As an input to the fitgam method, we specify the normal distribution, the iden-
tity link, the backfitting algorithm and the width of the smoother window (0.1). We
test with both the running lines and loess smoothers as before and plot the predicted
values for the testing data set. We also include box plots that illustrate the dispersion
of the predicted values versus the true step value. Figures E.9 and E.10 contain plots
for running lines and loess respectively.

FIGURE E.9: Regression using running lines on a two-dimensional
step function (left) and box plot of predicted values (right).
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FIGURE E.10: Regression using loess on a two-dimensional step func-
tion (left) and box plot of predicted values (right).

The script that makes the tests displayed above is tgam_id.

E.4.3 Pieces of code under test (not fully functional)

The implementation of a boosting algorithm using regression trees is incomplete,
as it can be seen in the code3 in the local scoring iterations in the fitgam method,
and the boost function. One can run some test on the training set in the code, but
in order to extract the smoothers some approach different to the grid plus function
handles (as used for backfitting) has to be devised.

3The code is proprietary by the company.
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