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Abstract:
Bessel beams are solutions of Helmholtz equation.
They can propagate while conserving their
transverse intensity profile in space even in
filamentation regime. This feature is very
advantageous in high power laser applications such
as plasma waveguide generation and laser ablation
because they can generate homogeneous plasma
channels in dielectrics. However, for moderate
to low focusing conditions, Bessel pulses can
sustain nonlinear instabilities, which consist in the
modulation of the central core intensity along the
propagation. Such a feature can prevent efficient
energy deposition which hampers the applicability of
Bessel pulses. The aim of this thesis is to investigate
the possibility to control laser-generated plasma
channels using spatially-reshaped Bessel pulses.
In a first part, we have developed an experimental
method based on a spatial light modulator to modify

the evolution of the on-axis intensity of Bessel beams
in the linear propagation regime. To study and
control Kerr-induced instabilities, we developed, in
a second part, a novel model based on four wave
mixing interactions in Bessel beams. We have
then demonstrated a novel approach to control
these instabilities via on-axis intensity shaping.
Bessel filamentation models in transparent media
were then studied. Most models used in literature
are based on nonlinear Schrödinger equation
for light propagation and Drude model for laser-
matter coupling. Experimental results on Bessel
filamentation in glass showed propagation-invariant
features in contrast with numerical simulations.
Several corrections to this model were discussed.
Our results show that such models are insufficient to
explain our experimental results and thus the need
to develop a more suitable one.

Titre : Nonlinear instabilities and filamentation of Bessel beams

Mots-clés : Faisceaux de Bessel, filamentation, Mise en forme spatial de lumière, instabilités non-linéaires,
modélisation de filamentation, interaction laser-plasma.

Résumé :
Un faisceau de Bessel est un champ
électromagnétique résistant à la diffraction. il peut
se propager en préservant son profile transversal
d’intensité même en régime de filamentation. Ceci
est très avantageux pour les applications laser
de haute puissance, en particulier parce qu’ils
permettent de générer des canaux de plasma
homogènes dans les diélectriques. Cependant, à
haute intensité, les impulsions laser ultracourtes
subissent, dans certaines conditions expérimentales
(faible focalisation), des instabilités non linéaires
entraînant la modulation d’intensité du lobe central
au cours de la propagation, ce qui peut être
néfaste pour ces applications comme l’usinage
des matériaux transparents. L’objectif de cette
thèse est de contrôler la génération de canaux de
plasma par impulsions de Bessel via le contrôle
du profil spatial de ces impulsions. Nous avons
dans une première partie, développé une méthode
expérimentale pour manipuler le profil d’intensité
axiale en régime linéaire. La seconde partie

concerne l’étude et le contrôle des instabilités
non linéaires induites par l’effet Kerr. Nous avons
développé un modèle théorique du mélange à
quatre ondes dans les faisceaux de Bessel et avons
démontré une nouvelle approche pour manipuler
ces instabilités par une mise en forme appropriée
de l’intensité axiale des faisceaux de Bessel.
Nous avons ensuite étudié la validité des modèles
de filamentation basés l’équation non linéaire de
Schrödinger et le modèle de Drude. Les résultats
expérimentaux de la filamentation des faisceaux de
Bessel dans le verre ont montré un comportement
invariant par propagation, contrairement aux
modèles numériques. Nous avons testé et amendé
les modèles de dynamiques de plasma et de
propagation. Nos simulations sont comparées à
des résultats expérimentaux. Nous montrons que
les corrections que nous avons pu apporter par
rapport à l’état de l’art sont insuffisantes et rendent
nécessaire une autre forme de modèle.
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"One of the beautiful things about science is that it allows us to bumble along,
getting it wrong time after time, and feel perfectly fine as long as we learn
something each time."

Martin A. Schwartz
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GENERAL INTRODUCTION

The advent of ultrafast lasers, which is a generic term for picosecond and femtosec-
ond lasers, has opened the way to numerous fields for research and applications in
physics, materials science, chemistry, biology, materials processing among others. The
high power that such lasers generate has brought light-matter interactions to new heights.
Of particular interest, experiments on the interaction of pulsed laser beams with transpar-
ent media showed an increase in light intensity along the beam propagation. This effect,
called Kerr self-focusing, has caught a major interest and was extensively studied since
such an effect allows to overcome transverse intensity spreading of light beams as dic-
tated by linear diffraction. Indeed, a conventional light beam, called Gaussian beam, can
only remain localized in space over a short distance called Rayleigh length. In this re-
gard, these experiments showed that Kerr self-focusing yields transversely-localized light
beams in space that are formed over propagation distances higher than Rayleigh length.
Such a phenomenon was referred to as "filamentation" [Shen, 1975].

Light filaments formed using laser pulses with durations lower than a hundred of
picoseconds were relatively small in length. The advent of femtosecond light sources
in 1980s allowed the discovery of unprecedented regimes of light-matter interactions
and filamentation. In 1995, Braun et al. discovered that high intensity ultrafast pulses
remain focused in air over distances greater than 20 m. Other experiments showed
that 2-kilometer long filaments could be formed in air [Couairon et al., 2007]. These
results have opened the way to novel potential applications such LIDAR (Light Detection
And Ranging) [Iwasaki et al., 2003], plasma waveguide generation [Durfee et al., 1993],
controlled electric discharge [Clerici et al., 2015], THz radiation [Bitman et al., 2012] or
high aspect ratio laser machining [Tzortzakis et al., 2001].

Numerous studies on the filamentation of femtosecond Gaussian beams were reported
[Couairon et al., 2007]. The process of Gaussian filament formation involves many linear
and nonlinear effects, specifically diffraction, dispersion, Kerr self-focusing, nonlinear ab-
sorption and plasma defocusing. As light intensity increases due to Kerr self-focusing,
the probability of nonlinear absorption becomes greater and leads to the generation of
a plasma of free-electron-holes. This plasma plays the role of a defocusing lens and
attenuate light intensity. Kerr self-focusing can be triggered afterwards if the light field re-
mains sufficiently intense. A long filament can then be formed as a result of the interplay
between these focusing and defocusing effects [Couairon et al., 2007].

Although Gaussian filaments are widely used, they have drawbacks which hamper their
applicability. The formation of Gaussian filaments involves spatio-temporal dynamics
which makes it difficult to control. Hence in applications where the generation of uniform
plasma channels is needed such as materials processing [Courvoisier et al., 2016b], the
use of Gaussian filaments is limited. In this regard, spatial beam shaping into Bessel
light modes has emerged as an alternative to Gaussian beams [Polesana et al., 2008].
Indeed, the above described filamentation process involves pronounced spatio-temporal
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dynamics which reshape input Gaussian pulses into light fields with conical waveform
similar to that of Bessel pulses. Hence, Gaussian pulses, initially shaped into Bessel
pulses, sustain less spatio-temporal dynamics and can propagate according to a
propagation-invariant regime.

Bessel beams were proposed as a propagation-invariant solution to Helmholtz equation in
linear propagation regime and thus they are diffraction-free [Durnin, 1987]. By definition,
a Bessel beam is made of the superposition of plane waves propagation along the surface
of a cone making the same angle with the propagation axis. Its transverse amplitude
profile consists of an intense central core surrounded be several peripheral rings of lower
intensity. In practice, Bessel beams can only be generated over limited propagation length
where they can preserve their diffraction-resistant properties.

The use input Bessel beams as an alternative to conventional Gaussian beams was
proposed before 1990. The long line focus of axicon-focused laser pulses was ex-
tremely attractive to generate uniform plasma channels over many Rayleigh lengths.
For instance, Bunkin et al. used axicon-focused nanosecond laser beams in their
experiments to generate long and uniform laser sparks (laser-generated-plasma of
free-electrons in air or generally in gases) [Bunkin et al., 1983]. In contrast, laser
sparks engendered by input Gaussian pulses were non-uniform and more limited in
spatial extent. The advantages of Bessel beams over Gaussian beams were reported
in many fields of applications such high aspect ratio machining, materials processing,
generation of THz radiation and plasma waveguides, etc. However, depending on laser
and geometrical parameters, Bessel beams can undergo nonlinear instabilities leading
to strong intensity modulation of the central core of Bessel beams along propagation
[Polesana et al., 2007, Cooley et al., 2006]. Such a feature hampers the applicability of
Bessel pulses, for example, in the generation of uniform plasma waveguides in gases
and high aspect ratio nano-holes in transparent solids [Gaizauskas et al., 2006].

This thesis has been conducted in the framework of spatial beam shaping of high power
laser pulses and its application in micro-nano ablation of transparent materials. Our group
has previously demonstrated that a single pulsed Bessel beam can realize ablation traces
with an aspect ratio higher than 100:1 [Bhuyan et al., 2010]. Actually, these results were
obtained for Bessel beams with high cone angles, typically superior to 9◦ in glass. How-
ever, for Bessel beams with lower cone angles, for which longer plasma channels can
be generated, the above mentioned nonlinear instabilities take place, which may prevent
the generation of uniform ablation traces. For this reason, and by means of spatial beam
shaping of Bessel pulses, we aim to investigate the possibility to reduce the extent of
nonlinear instabilities and control the uniformity of laser-generated plasma channels.

My thesis consists of four chapters. The first describes Bessel beams, their experimental
generation, their properties in linear and nonlinear regimes and their applications. We
will review the main advantages of Bessel beams over conventional Gaussian beams in
different applications. Nonlinear instabilities in Bessel beams will also be discussed. We
will present their causes and the solutions proposed in previous works to mitigate their
extent.

To introduce our approach in controlling nonlinear instabilities using beam shaping, we
first need to develop an experimental approach suitable for the above mentioned applica-
tions. In fact, the central core intensity of conventional Bessel beams varies along propa-
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gation. It usually has a bell-shaped evolution, which, as we will see, predetermines their
nonlinear propagation behavior. Hence, our approach consists in controlling the central
intensity at each point of the propagation distance. In the second chapter, we will there-
fore present numerical and experimental results on on-axis intensity shaping of Bessel
beams using spatial light modulator. We show that our experimental technique ensures a
relatively high energy throughput which is suitable for high power laser applications.

In the third chapter, we will present theoretical and numerical studies on nonlinear insta-
bilities in Bessel beams and their control using on-axis intensity shaping. To this end, we
developed a theoretical model based on four wave mixing interactions. This model allows
to unravel the major features occurring in the unsteady nonlinear propagation regime, i.e.
where nonlinear instabilities arise. Afterwards, we will recall how nonlinear instabilities
can be controlled as reported in the literature and use our model for further investigation.
We will discuss the possibility to control the growth of nonlinear instabilities by suitable
on-axis intensity shaping of Bessel beams in pure Kerr media and show that our results
are also valid in the filamentation regime where plasma is generated.

Finally, we will study the modeling of Bessel filamentation in transparent media in the case
of high angle focusing. Experimental results obtained by our group show that high-angle
Bessel beams are stationary and remain highly focused even at ablation-level intensities.
However, these results could not be reproduced numerically: simulation results show
that Bessel beams undergo significant transverse spreading in space. After recalling the
derivation of the nonlinear Schrödinger equation (NLSE), we propose several possible
corrections.





1
BESSEL BEAMS IN LINEAR AND

FILAMENTATION REGIMES

Bessel beams are a special class of diffraction-free beams. While conventional light
fields, such as Gaussian beams, are bound to transversely spread along propagation,
Bessel beams can propagate while conserving an invariant transverse beam shape. In-
deed, Bessel beams were found to be an exact solution to light propagation equation in
free space. However, this is only valid in infinite space where the transverse beam inten-
sity has no physical limit. Hence, ideal Bessel beams, which consequently carry infinite
energy, are physically non-realizable. In practice, only approximated versions of Bessel
beams can be realized. Experimentally-generated Bessel beams present many inter-
esting properties, particularly long and localized focus volume and self-healing features,
which have found a wide range of applications.

In this thesis, my work concerns the applications of Bessel pulses in high power laser
applications, and particularly laser micro-nano machining. In such applications, use is
made of invariant-propagation regimes of filamentation which allow a coherent energy
deposition of the Bessel pulse in nonlinear samples.

In the first section, I shall review Bessel beams, their properties and present some of their
applications in the linear propagation regime.

In the second section, I will discuss the different properties and features of Bessel fila-
ments in nonlinear Kerr media and present some of their different applications. Then, I
will specifically discuss the application of Bessel pulses in plasma shaping and present
the outline of my work in this field.

1.1/ NON-DIFFRACTING BESSEL BEAMS

1.1.1/ DEFINITION

In linear physics, the propagation of light in free space is characterized by diffraction. Any
light field with finite transverse intensity distribution can undergo transverse spreading
along the propagation direction. Taking for example a Gaussian beam with a beam
waist w0 and a wavelength λ, the distance at which it can remain transversely localized
in space before spreading is given by Rayleigh length DR = πw2

0/λ. However, there
exists special types of optical waves which are intrinsically immune to diffraction. These

5
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optical waves are referred to as nondiffracting beams. They are theoretically introduced
as beam-like exact solutions of the propagation equation with a propagation-invariant
transverse intensity.

Let’s consider the scalar propagation equation in vacuum given by:

( ∂2

∂z2 + ∆⊥ −
1
c2

∂2

∂t2

)
E(x, y, z, t) = 0 (1.1)

where ∆⊥ is the transverse laplacian characterizing the transverse variation of the optical
field E(x, y, z, t); (x, y) refer to the transverse variables, z is the longitudinal coordinate, t is
the time variable and c is the vacuum light velocity. Propagation-invariant solutions to this
equation account for optical fields whose time averaged intensity I(x, y, z) ∝ |E(x, y, z, t)|2

is constant along propagation. We consider monochromatic solutions in the form
E(x, y, z, t) = A(x, y)exp[i(kzz − ωt)] where kz and ω are the longitudinal spatial frequency
(propagation constant) and angular frequency respectively. Durnin has introduced Bessel
beams as cylindrically-symmetric and monochromatic wave solutions whose field ampli-
tude A(x, y) takes the form of the zeroth order Bessel function of the first kind J0 as follows
[Durnin, 1987]:

E(x, y, z, t) = exp[i(kzz − ωt)]
∫ 2π

0
exp[ikr(x cos φ + y cos φ)]

d φ
2π

(1.2)

E(x, y, z, t) = exp[i(kzz − ωt)] J0(krr) (1.3)

where φ is the azimuth angle, r =
√

x2 + y2 is the radial coordinate and kr is the corre-
sponding transverse spatial frequency such as the wavevector k of the beam is written as
k2 = k2

r + k2
z .

Equation (1.2) shows that a Bessel beam is formed by the superposition of an infinite
number of plane waves propagating at different azimuth angles φ and forming the same
angle with the propagation axis z. This angle, denoted the cone angle θ, is defined as a
function of the spatial frequency kr as follows: θ = asin(k/kr). This superposition yields a
propagation-invariant interference pattern which consists of an intense central core sur-
rounded by multiple secondary rings of lower intensity (see Fig. (1.1,left)). In the far field,
Bessel beams take the form of a ring of radius kr (see Fig. (1.1,right)). For an ideal J0
beam, it can be represented by Dirac function which corresponds to the inverse Hankel
transform of the function J0. For experimentally-generated Bessel beams, the spectral
distribution is centered around the central frequency kr0 = k sin(θ) with a width that is
inversely proportional to the aperture radius.

1.1.2/ APODIZED BESSEL BEAMS

The nondiffracting wave solution presented in the previous section is only valid in infinite
space. Indeed, the energy contained in a J0 Bessel beam is infinite and thus it cannot be
realized physically. This stems from the fact that a Bessel beam has an infinite number
of secondary rings, each carrying the same amount of energy as that contained in the
central core [Durnin, 1987].
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Figure 1.1: Transverse spatial distribution of Bessel beam in (left) near and (right) far
fields.

Figure 1.2: Transverse intensity distribution of a Bessel beam (solid line) and Gaussian
beam (dashed line) whose width is equal to that of the Bessel central core. (right) On-axis
intensity evolution of (solid line) an apertured Bessel beam and (dashed line) a Gaussian
beam. [From Ref. [Durnin, 1987]].

To physically realize a Bessel beam, a spatial truncation of the beam is required. Durnin
performed a numerical study on the propagation of apodized Bessel beams and com-
pared simulation results with those of Gaussian beam propagation [Durnin, 1987]. He
considered a Bessel beam truncated at an aperture radius of 2 mm. Its main lobe Full
Width at Half Maximum (FWHM) is chosen to be initially (at a plane z = 0) identical to that
of the Gaussian beam and is equal to 100 µm as shown in Fig. (1.2,left).

Figure (1.2,right) shows the evolution along propagation of the central core intensity of
both beams. Over a long propagation distance, the on-axis intensity of the Bessel beam
oscillates around its initial value (at z = 0) with a decreasing frequency. Most importantly,
the Bessel beam maintains an invariant spot size of the central core and only drops in
intensity at a propagation distance of about z = 1 m. In contrast, the Gaussian beam ex-
hibits a noticeable intensity decay at about 1 cm which corresponds to its Rayleigh length.
Thus, even though the spatial apodization of Bessel beams leads to the reappearance of
diffraction effects, a truncated Bessel beam can still maintain its nondiffracting proper-
ties over a propagation length that can be several orders of magnitudes higher than the
Rayleigh length corresponding to its main lobe size.
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1.1.2.1/ DIFFRACTION-FREE LENGTH: BESSEL ZONE

zmax

R

Cone

shadow

shadow

shadow

 angle θAperture
radius

Figure 1.3: Geometrical estimation of the Bessel zone. [After Ref. [Durnin, 1987]].

Numerical simulations thus show that Bessel beams with finite aperture can remain fo-
cused over a longer propagation distance compared to Gaussian beams. This diffraction-
free length, termed "Bessel zone", can be estimated geometrically as shown in Fig. (1.3)
[Durnin, 1987]. We recall that a Bessel beam is made of the interference of infinite num-
ber of plane waves that all cross the optical axis at an angle θ. The fact that a Bessel
beam is truncated means that the range at which their interference takes place is lim-
ited by the size of the aperture. Moreover, their interference extent will also depend on
their angle of incidence at the aperture, i.e. the cone angle θ. Thus, one can define the
Bessel zone, denoted zmax, as the propagation range where the truncated plane waves
interfere. For an aperture of radius R, the Bessel zone can be geometrically estimated by
the relation:

zmax ≈ R/ tan(θ) (1.4)

Contrary to Gaussian beams whose Rayleigh length is geometrically determined by the
beam waist, Bessel beams offer two degrees of freedom to define the Bessel zone.

1.1.2.2/ SIZE OF THE CENTRAL CORE OF BESSEL BEAMS

The Full Width at Half Maximum (FWHM) of the central core of Bessel beams is given
by: W = 2.27/kr0 [Tiwari et al., 2012] . Thus, the central core size does not depend on the
aperture radius which allows preserving the nondiffracting length of Bessel beams with
the possibility of decreasing the central core diameter.

1.1.2.3/ SELF-RECONSTRUCTION OF BESSEL BEAMS

One can view the long focus volume of Bessel beams as a quasi-homogeneous energy
distribution along the propagation distance because of their conical flow of energy. At a
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given propagation distance z1, only a portion of the plane waves, constructing the Bessel
beam, interfere at the central core while the other portion gives rise to the side lobes.
Then, at a point z1 + dz, it is the interference of another portion of plane waves that gives
rise to the central core. In other words, the photons generating the central core at the
point z1 are not the same as those generating it at the point z1 + dz. Consequently, if one
were to put an obstacle at the point z1, then the Bessel beam will be blocked at this point
but will inevitably be reconstructed at a later point z2 = z1 +∆z, as shown in Fig. (1.4). This
gives rise to the self-reconstruction or self-healing property of Bessel beams.

Figure 1.4: Self-reconstruction property of Bessel beams. [From Ref.
[McGloin et al., 2005]]

1.1.2.4/ SUPERLUMINAL VELOCITY OF BESSEL BEAMS

Thanks to its conical structure, the wavefront of a Bessel beam is tilted with respect to
the propagation axis at an angle θ (the cone angle). Hence, the phase velocity of Bessel
beams, given by the relation vφ = ω/kz = c/ cos(θ), is higher than light velocity. The
phase velocity is then termed "superluminal". However, this effect is merely geometrical
and only applies to the apparent speed of the central core intensity. Indeed, considering
the conical superposition of plane waves, the central core of Bessel beams is seen to
move faster than the light velocity. Nonetheless, the energy flow of the beam remains
subluminal and thus no information can be transmitted at the superluminal velocity of the
wavepacket generated on the optical axis [McGloin et al., 2005, Saari et al., 1997].

1.1.3/ EXPERIMENTAL GENERATION OF BESSEL BEAMS

Since Durnin first introduced the nondiffracting Bessel beams and their potential applica-
tions, many techniques have been developed in order to experimentally generate these
optical fields and study their properties.
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1.1.3.1/ CATEGORIES OF BESSEL BEAM GENERATORS

Bessel beam generation methods consist in transforming an input light field into the de-
sired spatial distribution of Bessel beams. Generally, the aim is to produce a superposi-
tion of plane waves propagating on a cone which would form a Bessel beam. In practice,
there are two different ways to achieve this conical interference:

Direct-space beam shaping: The first approach aims to directly transform the wave-
front of an incident beam into a conical one. This allows generating an approximation of
the transverse distribution of a J0 Bessel function that is a characteristic of a Bessel beam
in real space. Hence, this approach is termed "Direct-space shaping".

Fourier-space beam shaping: In contrast with direct-space shaping, this approach
allows generating a Bessel beam according to a two-step process. The first step consists
in shaping the transverse intensity profile of an incident beam into a ring-like pattern
which is equivalent to a Bessel beam distribution in the far-field. The next step lies in
transforming the ring-like shape into a J0 Bessel function distribution using the Fourier
transform property of lenses in the paraxial regime [Durnin et al., 1989].

1.1.3.2/ EXPERIMENTAL REALIZATION OF BESSEL BEAMS: PHASE AND AMPLITUDE

MODULATION

Any light field can be defined by its amplitude and phase distributions. In practice, whether
it is space- or Fourier-space beam shaping, both can be performed by applying either an
amplitude or phase modulation (or both) to an incident beam.

Phase-only modulation: This modulation type is usually more adapted to direct-space
beam shaping. The formation of a Bessel beam can be achieved by applying an
azimuthally-symmetric phase Φ(r) to an input light field. An example of experimental
schemes for Bessel beam generation is described in Fig. (1.5). In this scheme, an input
beam, of complex amplitude Uinc, passes through an optical system which contains the
desired spatial phase Φ(r). At the output of this optical system, the incident beam will
acquire a conical wavefront which can be described by a transmission function that is
expressed as exp(i Φ(r)). Hence, the resulting field Uout is given by:

Uout = Uinc exp(i Φ(r)) (1.5)

The longitudinal extent of the beam (Bessel zone) is constrained by both the numerical
aperture of the optical system and the radius of the incoming beam.

Amplitude-only modulation: In opposition to phase-only modulation, amplitude-only
modulation is usually used for Fourier-space beam shaping. An example of experimental
configuration is presented in Fig. (1.6). An amplitude mask is firstly applied to an input
beam in order to shape its transverse intensity into a ring-like pattern. Then, by using
Fourier transformation, the ring beam can be transformed into the target Bessel beam.
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Figure 1.5: Experimental scheme for Direct-space Bessel beam generation using phase-
only modulation.
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Figure 1.6: Experimental scheme for Fourier-space Bessel beam generation using
amplitude-only modulation.

Note that simultaneous modulation of both amplitude and phase can also be performed.
This point will be discussed in the chapter 2.

1.1.3.3/ BEAM SHAPING INSTRUMENTS AND EXPERIMENTAL METHODS

Many instruments have been proposed to generate Bessel beams such as holograms
[Turunen et al., 1988], spatial light modulators [Davis et al., 1993, Froehly et al., 2014],
axicons [Polesana et al., 2007], digital micro-mirror devices [Gong et al., 2013] and op-
tical fibers [Steinvurzel et al., 2011]. Other techniques are based on more sophisticated
procedures such thermal nonlinear optical effects [Zhang et al., 2014]. In the following,
we will present the major experimental methods used in previous works, especially those
largely used in high power laser applications. We will specifically describe these tech-
niques according to the above described beam shaping categories .

Circular slit at the back focal plane of a lens: This experimental method was first
introduced by Durnin et al. [Durnin et al., 1989]. It allows the generation of Bessel beams
from Fourier space using amplitude-only modulation [Durnin et al., 1989]. The experi-
mental setup is described in Fig. (1.7). It consists of an annular aperture with a diameter
d and a width ∆d. It is placed at the back focal plane of a lens of a focal distance f and a
radius R. An incident beam passing through the slit will be shaped into a ring beam. The
lens will then perform a Fourier transform of the ring beam to generate an approximation
of a J0 beam with a cone angle θ = tan−1(d/2 f ).

However, the energy throughput of this method is considerably low since most of the
energy is blocked at the annular aperture. Furthermore, the quality of the constructed
Bessel beam depends on the width of the aperture ∆d. Normally, the incident light am-
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FIG. 1. The transverse profiles of a Jo beam and of a Gauss-
ian beam with the same spot size (FWHM = 70 pm) in the
"=0 plane are shor n at a succession of z values. The Jo beam
is invariant to propagation along the z axis, but the Gaussian
beam exhibits normal diAractive spreading and a rapid de-

crease of peak intensity. The dotted curves indicate the Gauss-
ian beam at the distances: Curve a z=0, curve b z =10 cm,
and curve c z =100 cm, if we assume K=6328 A. The Gauss-
ian intensities at z =10 and 100 cm have been multiplied by
factors of 30 and 2000, respectively, to permit visibility.

Gaussian beam, while the Jp hearn has the same intensi-

ty profile at every value of z. Of course, Durnin's solu-
tions are rigorously exact only in infinite free space,
whereas any realizations of such beams in a laboratory
will necessarily be limited by a finite aperture,

In this note we report the first experimental investiga-
tion of Durnin's nondiAracting beams. A beam having
the same parameters of Fig. 1 was created by means of
the setup shown in Fig. 2. A circular slit of mean diame-
ter d=2. 5 mm and width hd =10 pm was placed in the
focal plane of a lens of focal length f=305 mm and ra-
dius R =3.5 mrn. Ideally, each point along the slit acts
as a point source which the lens transforms into a plane
wave. It is not hard to see that the set of plane ~aves
formed in this way has wave vectors lying on the surface
of a cone, and Durnin has shown that this can be regard-
ed as the defining characteristic of the Jp beam. %hen
the slit is illuminated with collimated light of wavelength

one then obtains a Jp beam with spot parameter
a =(2z/X)sinH, where 0=tan '(d/2f). In practice, of
course, the amplitude is modulated by the difI'raction en-
velope of the slit. That modulation is negligible within
the finite output aperture R, provided that Ad ((iaaf/R, as
it is in this particular case.

In our experiment the radius of the lens sho~n in Fig.
2 defines the finite aperture. According to geometrical
optics, a shadow zone begins along the z axis at a dis-
tance Z,„=R/tanO from the aperture. Since the beam
radius is approximately r = a ', we can use tanO
= sinO=a/K =ak/Zx to express the maximum propaga-
tion distance as Z,„=2ycRr/X.

This geometrical estimate of the maximum range

FIG. 2. Experimental arrangement for the creation of a Jo
beam. Collimated light of wavelength k illuminates a circular
slit located in the focal plane of a lens. The mean diameter of
the slit is d, the width of the slit is h, d, the focal length of the
lens is f, and the radius of the output aperture is R. The dis-
tance Z,„ indicates the beginning of the geometrical shadow
zone along the .axis.

should be compared to the distance that an ordinarily
collimated or apodized beam can propagate without
significant spreading. The usual distance over which a
beam of radius r remains transversely well localized
while propagating in free space is the Rayleigh range
Z„=vcr /X Thus the .propagation range predicted from
Fig. 2 will be much larger than the conventional range of
a beam of radius a ' whenever R&) e

In Fig. 3(a) we show a numerical simulation of the
propagation of the peak intensity of both the Gaussian
and the Jp beam shown in Fig. 1, taking into account the
finite initial aperture diameter 2R =7 mm. The peak in-
tensity of the Gaussian beam decreases by an order of
magnitude after propagating only 5 crn. The peak inten-
sity of the Jp beam, on the other hand, oscillates about
its initial value with increasing amplitude and decreasing
frequency until reaching a point where a sharp decline
occurs. (Since these intensity oscillations are reminis-
cent of the Fresnel diA'raction pattern near a knife edge,
it is important to note that this graph represents the
propagation of peak intensity away from the aperture
rather than difrraction in the transverse plane near the
aperture. ) Using the numerical values given above, one
finds that the geometrical estimate Z,„ for the rnax-
imum range of the Jp beam is 85 cm, a point located
exactly at the base of the sharp decline in peak intensity
shown in Fig. 3.

In Fig. 3(b) we show the curve of Fig. 3(a) with ex-
perimental data points superimposed. A Jp beam having
the parameters given above was measured every centime-
ter from z =10 cm (the outer surface of our lens) to
z =1 m. The data are well fitted by the numerical simu-
lation of the propagation of peak intensity. We have also
observed the transverse profile of the beam as a function

1500

Figure 1.7: Bessel beam generator based on a annular aperture placed at the object
focal plane of a lens. [From Ref. [Durnin et al., 1989]]

plitude will be modulated after passing the annular slit and this modulation can only be
negligible in case ∆d � λ f /R [Durnin et al., 1989]. Thus, this approach is less used in
practice, especially in high power laser applications.

Axicons: An axicon is an optical element that is manufactured in the form of a glass
cone. It was first introduced by Mcleod as a means to construct images from a given
source over a continuous straight line [McLeod, 1954, McLeod, 1960]. Even before the
introduction of J0 beams by Durnin et al., axicons had already been used as an alternative
to conventional lenses since laser beams focused by this optical element (axicon) have a
long focus volume [Bunkin et al., 1983].

Axicons allow the generation of Bessel beams in direct space via phase-only modulation.
Thanks to its conical form, an incident beam passing through an axicon, with a base angle
γ and a refraction index nax, will acquire an axisymmetric linear phase in the form:

Φ(r) = −2 π sin[θ(γ, nax)] r/λ (1.6)

Thus, the optical field at the output of the axicon will have an axially symmetric wavefront
making an angle θ with the propagation axis, which generates an approximation of a J0
beam, as depicted in Fig. (1.8). The value of θ is obtained using the Snell law sin(γ + θ) =

nax sin(γ) [Polesana et al., 2008].

Axicons, and specifically refractive axicons, have the property to generate Bessel beams
from incident Gaussian beams with a very high energy throughput, and thus they
have been largely used in high power laser applications, such as materials processing
[Courvoisier et al., 2016b]. However, manufactured axicons may suffer from some imper-
fections, especially at the axicon tip, which cause the generated-Bessel-beams to un-
dergo on-axis intensity modulations [Čižmár et al., 2009]. Such undesired features can
be avoided using spatial filtering as reported in [Čižmár et al., 2008].

Holographic optical elements: Holography was first introduced by Gabor in 1948 as
an imaging technique. In contrast to photography where only intensity information of an
object is recorded, holography allows recording both amplitude and phase information.



1.1. NON-DIFFRACTING BESSEL BEAMS 13

AxiconInput beam
Bessel beam

Cone angle θ

z

Base angle γ

Figure 1.8: Bessel beam generation using an axicon.

The principle of holography can be described as follows: the object to be imaged is
illuminated by a coherent light source (laser). Then, the reflected light (object beam)
is superposed to another light beam of the same wavelength which has not seen the
object (reference beam). This superposition yields an interference pattern which contains
information on the amplitude and phase of the object beam. Then, this pattern, called
hologram, is recorded on an appropriate material. To reconstruct the wavefront of the
object beam, one simply needs to illuminate the recorded hologram by the reference
beam [N.Kim et al., 2017].

The concept of holography was further extended to computer (or digital) holography
where holograms can be designed by computer. A major property of computer holog-
raphy is that the object is not necessary to construct a hologram [Tricoles, 1987]. One
can design an ideal wavefront and, by means of numerical simulation of light propagation
theory, it is possible to record numerical data of the corresponding hologram. This type
of holograms is referred to as Computer Generated Hologram (CGH) [Tricoles, 1987].
Computer holography can be used to design and fabricate optical elements by recording
CGHs into an appropriate material. Such optical elements are called holographic optical
elements (HOEs) [Kim et al., 2009].

HOEs have been largely used in a wide range of applications and particularly
as Bessel beam generators [Turunen et al., 1988, Vasara et al., 1989, Cox et al., 1991,
Paterson et al., 1996]. In this regard, the wavefront information to be recorded is a spatial
phase distribution that is identical to that applied by an axicon. However, in contrast to
the continuous phase distribution of an axicon, information in holograms takes the form of
a fringe-like pattern. Therefore, Bessel beam generators based on holograms are often
referred to as "diffractive axicons".

There are different types of holograms depending on the mode of information transmis-
sion to an incident laser light. In Ref. [Turunen et al., 1988], Turunen et al. proposed a
Bessel beam generator where the desired beam wavefront is recorded on an amplitude-
binary hologram according to the experimental scheme depicted in Fig. (1.5). Similarly to
axicons, it acts as a transmission function described by a multiplicative complex function
in the form exp(iΦ(r)) where Φ(r) is defined by Eq. (1.6).

In this example, the hologram takes the form of concentric rings whose width depends
on the geometrical parameters of the target field as shown in Fig. (1.9,left). However,
note that because of the fringe pattern of holograms, the light field passing through the
hologram will be diffracted at different diffraction orders [Vasara et al., 1989]. As a result,
the energy conversion of holographic elements is generally lower than that provided by
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Figure 1.9: Example of a binary-amplitude hologram for Bessel beam generation (left)
without and (right) with carrier frequency. [from Ref. [Vasara et al., 1989]]

axicons. To obtain a good beam quality, spatial filtering is required in order to separate the
diffraction order which contains the target light information from the others. Generally, this
spatial filtering can be performed by adding a linear phase ramp (or a carrier frequency
[Vasara et al., 1989]) to the hologram. An example of holograms with carrier frequency is
shown in Fig. (1.9,right).

Regarding the diffraction efficiency of the target diffraction order, it is of the order of
10 % for binary-amplitude holograms. Generally phase holograms are mostly used
to generate Bessel beams since not only they provide a higher diffraction efficiency
(≈ 40%) [Vasara et al., 1989], but also higher quality Bessel beams. Of particular in-
terest, blazed holograms can potentially provide a diffraction efficiency close to 100%
[Turunen et al., 1988]. However, this largely depends on the manufacturing process.

Phase-only spatial light modulators: Spatial Light Modulators (SLMs) refer to active
optical components designed to manipulate the spatial distribution of light such as phase,
amplitude and polarization. These components apply computer-generated holograms
onto incident light beams with the benefit of reconfigurability. A spatial light modulator
that is specifically designed to manipulate the light spatial phase is referred to as phase-
only SLM.

In our work, we specifically use SLMs based on Liquid-Crystal-On-Silicon (LCOS) tech-
nology. They are referred to as LCOS-SLM. The active surface of a LCOS-SLM is made
of a matrix of pixels. Each pixel is composed of parallel-aligned liquid crystal layers ar-
ranged between a transparent and reflecting surfaces.

Under the effect of an external electric field, it is possible to freely control the alignment
of liquid crystals. Due to the rod-like shape of these crystals, an applied electric voltage
can induce a birefringence. Hence, by controlling the voltage applied at each pixel of
the active surface, it is possible to control the effective refractive index at each of these
pixels. In other words, LCOS-SLMs offer the possibility to control the wavefront of light
fields interacting with a SLM at each pixel.

In order to actively control the arrangement of liquid crystals, a SLM device is connected
to a computer. Wavefront patterns (or phase masks) can be numerically computed and
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are used to control the electric voltage applied on the liquid crystal pixels.

Gaussian one, we apply a rotationally symmetric index change
n�x; y� � r sin�θ�∕�2T�, with r �

�����������������
x2 � y2

p
. The phase mask

then reads as Φ�x; y;ω� � �ω∕c�r sin θ. This produces a
Bessel beam with a radial component of the wavevector kr �
k sin θ where k � ω∕c is the wavevector. Importantly, the
conical angle θ is independent of the frequency, in contrast
to [20], where the phase was supposed to be invariant with
the frequency.

At wavelengths ∼800 nm, the phase modulation depth of
the SLM is limited to ∼3π. Therefore, the phase mask at
the central frequency is wrapped between 0 and 2π. The wrap-
ping, however, produces undesired diffraction orders. To spa-
tially separate them and allow for spatial filtering, we add a
linear phase shift in the (xy) plane that produces a blazed
grating. Finally, the phase mask reads as

Φ�r⃗;ω� � ω

ω0
Φ�r⃗;ω0� �

ω

ω0

�
ω0

c
r sin θ� k⃗1 · r⃗�2π�

�
; (1)

where k⃗1 � �ω0∕c� sin αu⃗ with u⃗ a unitary vector in the SLM
plane, and α is the deviation angle of the �1 diffracted order.

In the focal plane of L1, the first order of diffraction of the
beam at a frequency ω is an annulus of radius R � f 1 sin θ.
Because of the grating-like structure induced by the second
term k⃗1 · r⃗ of the phase mask [Eq. (1)], the different frequen-
cies are angularly dispersed and the centers of the annuli are
distributed along the axis u⃗. The optical axis of the micro-
scope objective is centered on the central frequency. Finally,
after Fourier-transforming the beam with the microscope ob-
jective, each input frequency is shaped into a Bessel beam that
has a conical angle θ0 � θf 1∕f 2 and that propagates along an
axis tilted from the optical axis by an angle γ�λ� � −�f 1∕f 2�
��λ − λ0�∕λ0� sin α. The demagnification factor f 1∕f 2 allows
us to largely increase the values of achievable conical angles
θ0 after the microscope objective (up to 26° in our experimen-
tal setup). A transmission efficiency of ∼25% in the first order
of diffraction has been experimentally measured in our
configuration.

Figure 2 shows the effect of the spectral dispersion γ�λ�. We
superposed the intensity maps at three different wavelengths
covering the spectral range FWHM of a 100 fs laser (795 nm in
blue, 800 nm in green, and 805 nm in red). Each intensity dis-
tribution was encoded in one of the RGB channels so that the
regions in space where the beams overlap appear in white.
The intensity distributions are linearly tilted by an angle
γ�λ� from the optical axis, but a good overlap is observed al-
most all along the beam. Indeed, the diffraction-free range of a

Bessel beam is zmax ≈ w0
0∕ sin θ0 [2], where w0

0 � w0f 2∕f 1 is
the waist of the image of the Gaussian beam with waist w0

that illuminates the SLM. The radius of the central lobe is
r0�λ� � 2.405λ∕�2π sin θ0�. Therefore, the lateral shift of the
beam over the Bessel zone zmaxγ�λ0 � Δλ� at a wavelength
λ0 � Δλ is smaller than the radius of the central lobe if Δλ ≤
2.405λ20∕�2πw sin α� � �14 nm in our case (α � 5.3 mrad,
w � 3.2 mm). Therefore, the influence of the grating structure
on the intensity distribution is negligible for 100 fs pulses,
independently of the conical angle.

Figure 3(a) compares the experimental and numerical in-
tensity distributions of a 100 fs Bessel beam with a conical
angle θ0 � 26°. The distribution is shown in the plane defined
by the optical axis and the vector u⃗ where the lateral shift is
the highest. In our numerical model, the field of a 100 fs pulse
is propagated from the SLM plane to the MO focal plane with
appropriate Fourier transforms and filtering; in a second step,
it is propagated from the MO focal plane, along the Bessel
zone, with the nonparaxial angular spectrum of plane waves
[21]. The comparison with the experiment shows an excellent
agreement. Figure 2(b) shows the experimental cross section
of the beam. Here the central spot size is 0.7 μm FWHM.

2. SPATIOTEMPORAL ANALYSIS
A. Pulse Front Tilt and Temporal Broadening
Although the influence of the grating structure of the SLM is
negligible on the intensity distribution, it generates a pulse
front-tilt on the Bessel pulse. We have reconstructed the spa-
tiotemporal linear propagation of Bessel pulses for a conical
angle θ0 � 5°. Figure 4 shows the temporal beam evolution at
different propagation distances z of the numerically recon-
structed laser pulse. Importantly, we observe [Fig. 4(a)] the
presence of a temporal broadening that is less than 10% be-
tween z � 0 and z � 200 μm. This temporal broadening is a
consequence of the grating like effect due to the linear phase
shift. Because of spectral dispersion, a pulse-front tilt Δ is also
visible [Fig. 4(b)] and expresses as Δ � −λ∂γ∕∂λ �
sin αf 1∕f 2 � 0.55 rad [22] with tan Δ � tan Δτ∕c. The lobes

Fig. 1. Experimental setup for femtosecond Bessel beam generation.
A 100 fs laser beam is incident onto an SLM on which is encoded a
phase mask. Spatial filtering is performed in the Fourier plane of the
first lens of the demagnification system. Lens and microscope
objective form a 4-f demagnification system to increase the range
of achievable conical angles.

Fig. 2. Intensity map I�z; r� for three different wavelengths covering
the spectral FWHM of a 100 fs laser beam encoded on three color
channels. The white regions show clearly where the spectral content
of the beam is homogeneous. This shows the effect of the small
angular dispersion (γ ≤ 1°).

Fig. 3. (a) Comparison of the experimental and numerical intensity
maps in the �r; z� plane for a 100 fs Bessel beam with conical angle of
26°. (b) Corresponding experimental beam cross section.
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Figure 1.10: Experimental setup for femtosecond Bessel beam generation from direct-
space using a phase-only SLM. Image taken from Ref. [Froehly et al., 2014].

Phase-only SLMs have attracted a major interest and have been largely de-
ployed as Bessel beam generators [Davis et al., 1993, Chattrapiban et al., 2003,
Froehly et al., 2014]. Bessel beams are generated in the same manner as that used in
holographic techniques. Figure (1.10) shows an experimental setup to generate Bessel
beams from direct space using a phase-only SLM. An incident laser beam, passing
through the active surface of a SLM, is diffracted at different diffraction orders.

In this example, the phase mask is composed of an azimuthally-symmetric wavefront
pattern (information of the Bessel beam to be generated) to which a linear phase ramp is
added to separate the different diffraction orders. Since information of the Bessel beam
is solely contained in the first diffraction order, a spatial filtering system is set up to filter
out all undesired diffraction orders, especially the zeroth one. This system is called "4f
system"; it is made of one lens and a microscope objective. The SLM is placed at the
focal of the lens to convert the beam at the SLM plane into the corresponding spatial
spectrum at the image plane of the lens. The spatial filtering is then performed in this
image plane. Then the microscope objective is used to reconstruct the Bessel beam in
direct space.

While axicons and holographic elements can produce Bessel beams with specific geo-
metrical properties, phase-only SLMs are more versatile since one can freely modify the
imprinted phase mask using computer-generated holograms. The versatility of phase-
only SLMs makes them a powerful tool for spatial beam shaping. Of particular interest, a
single phase-only SLM can be used for simultaneous spatial amplitude and phase shap-
ing, which very useful for arbitrary shaping of the on-axis intensity of Bessel beams. We
will specifically discuss this topic in chapter 2.

1.1.4/ BESSEL PULSES

So far, we have only discussed monochromatic Bessel beams in the form of continuous
waves. Actually, a Bessel pulse, which is made of a superposition of Bessel beams with
different temporal frequencies, is still a propagation-invariant solution of the propagation
equation in the linear regime. The spatial shaping of laser pulses into Bessel beams
using the above described methods is still valid, but the spatio-temporal properties of the
spatially-shaped pulses differ depending on the Bessel beam generator. We consider
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Bessel pulses generated by refractive and diffractive axicons and compare their spatio-
temporal properties based on their respective group velocity.

The on-axis group velocity vg is given by:

vg = (dkz/dω)−1 (1.7)

where kz = n(ω)ω/c cos(θ(ω)), ω is the angular frequency of the pulse and n(ω) is the
frequency-dependent refractive index of the propagation medium. We consider the case
of cone angles defined in the paraxial approximation, i.e. cos(θ) ≈ 1 − θ2/2. In this case,
Eq. (1.7) can be derived as follows:

vg =
c

n(ω) cos(θ)

(
1 +

ω

n(ω)
∂[n(ω)]
∂ω

cos(θ) − ω tan(θ)
∂[θ]
∂ω

)−1

(1.8)

In the particular case where the dispersion of the propagation medium is negligi-
ble [Alexeev et al., 2002], i.e. ∂[n(ω)]/∂ω = 0, the expression of vg is reduced to
[Klewitz et al., 1998]:

vg =
c

n(ω0) cos(θ)
1

1 − tan(δ) tan(θ)
(1.9)

where tan(δ) = ω(∂θ/∂ω) and δ is interpreted as the pulse tilt angle [Klewitz et al., 1998].
For a Bessel beam generated by a refractive axicon, its cone angle is frequency-
dependent [Froehly et al., 2014]. Considering an axicon with positive dispersion, the an-
gular dispersion is found to be positive and thus it yields a superluminal group velocity vg >

vφ = c/n(ω0) cos(θ) that is even superior to the phase velocity [Klewitz et al., 1998]. Bessel
beams generated by annular slits also exhibit the same property [Saari et al., 1997]. Su-
perluminal speed of the central core of Bessel pulses has been investigated in a number
of experiments. Alexeev et al. measured a superluminal ionization speed induced by
axicon-generated Bessel pulses [Alexeev et al., 2002]. Such a feature was also demon-
strated by measuring the terahertz radiations focused by axicons in comparison with the
ones measured without any optical element [Lloyd et al., 2003]. Of particular interest,
Saari and Reivelt [Saari et al., 1997] showed that Bessel pulses exhibiting a superlumi-
nal velocity are X-shaped in the longitudinal plane and thus such pulses are referred to as
"Bessel-X pulses". Direct measurement of their spatio-temporal field was performed us-
ing the interferometric technique SEA TADPOLE [Bowlan et al., 2009]. Note that Bessel-
X pulses are different from the dispersion-free X waves since the former can still undergo
dispersion effects.

However, if we use diffractive axicons, such as those produced by holograms and spatial
light modulators, Bessel beams are generated with a frequency-independent cone an-
gle [Froehly et al., 2014]. Hence, the angular dispersion is negative [Klewitz et al., 1998].
As shown in Fig. (1.11,b), the pulse front remains perpendicular to the propagation
axis as the pulse propagates whereas the wavefront is tilted at the angle θ with respect
to the propagation direction. The spatio-temporal aspects of Bessel beams generated
by phase-only SLM were particularly studied in [Froehly et al., 2014]. While locally, the
Bessel pulse velocity is superluminal, the overall traveling speed is subluminal and is
given by vg = c cos(θ). Such a pulse is termed "Pulsed Bessel beam" and its temporal
profile is usually modeled by a temporal Gaussian envelope [Courvoisier et al., 2016b].
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Refractive axicon

Wavefront

a) b)

Figure 1.11: Group velocity of a Bessel pulse for two types of Bessel beam generators:
a) refractive and b) diffractive axicon. Image taken from [Klewitz et al., 1998].

1.1.5/ APPLICATIONS OF BESSEL BEAMS IN THE LINEAR REGIME

Thanks to their peculiar properties, specifically their diffraction-resistant and self-healing
features, Bessel beams have found a wide range of applications such as imaging, op-
tical micro-manipulation [Arlt et al., 2001], optical guiding, spectroscopy, etc. In imag-
ing applications, the long focal volume of Bessel beams allows a longer penetra-
tion depths in samples compared to Gaussian beams, especially in biological tissues.
Such a property has been used in numerous imaging techniques such as microscopy
[Fahrbach et al., 2010], optical coherence elastography [Fang et al., 2017], optical co-
herence tomography [Lee et al., 2008], Phakometry [Lambert et al., 2016], dark-field mi-
croscopy [Lei et al., 2008], etc.

The self-reconstruction property of Bessel beams was shown to be very advantageous
in many applications. In imaging applications, this feature allows Bessel beams to be
more resistant to highly scattering media [Fahrbach et al., 2012] which has further ex-
tended their applicability. Figure (1.12,left) shows simulation results of the propagation of
a Bessel beam along a cluster of spheres which represents a scattering medium. While
scattering is clearly seen in the peripheral rings, the central core of the beam hardly
deviates from a straight line along its propagation length.

Figure (1.12,right) shows a comparison between fluorescence images of biological sam-
ples (two Drosophila egg chambers) obtained by Gaussian and Bessel beams. In the
case of Gaussian illumination, the incident beam is significantly scattered from the prop-
agation axis (dashed line) after passing through the first chamber. As a result, only the
edges of the second chamber are illuminated. In contrast, this second chamber is well
imaged by the Bessel beam thanks to its resistance to scattering from the first chamber.

Bessel beams can also be used as optical tweezers to manipulate multiple particles at
different locations along their propagation length [Garces-Chavez et al., 2002]. Thanks
to its self-healing property, a Bessel beam can reconstruct itself after interacting with
each particle. Hence, the use of a single Bessel beam gives the possibility to manipulate
multiple particles even it they are located in two different cells as shown in Fig. (1.13).
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Figure 1.12: (left) Simulation of Bessel beam propagation in a thick medium as reported
in [Fahrbach et al., 2010] and (right) comparison depth imaging performance of Gaussian
and Bessel beams. Images taken from [Fahrbach et al., 2010].
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Optical tweezers1 are commonly used for manipulating micro-
scopic particles, with applications in cell manipulation2, colloid
research3–5, manipulation of micromachines6 and studies of the
properties of light beams7. Such tweezers work by the transfer of
momentum from a tightly focused laser to the particle, which
refracts and scatters the light and distorts the profile of the beam.
The forces produced by this process cause the particle to be
trapped near the beam focus. Conventional tweezers use gaussian
light beams, which cannot trap particles in multiple locations
more than a few micrometres apart in the axial direction, because
of beam distortion by the particle and subsequent strong diver-
gence from the focal plane. Bessel beams8,9, however, do not
diverge and, furthermore, if part of the beam is obstructed or
distorted the beam reconstructs itself after a characteristic
propagation distance10. Here we show how this reconstructive
property may be utilized within optical tweezers to trap particles
in multiple, spatially separated sample cells with a single beam.
Owing to the diffractionless nature of the Bessel beam, secondary
trapped particles can reside in a second sample cell far removed
(,3 mm) from the first cell. Such tweezers could be used for the
simultaneous study of identically prepared ensembles of colloids
and biological matter, and potentially offer enhanced control of
‘lab-on-a-chip’ and optically driven microstructures.

Any light beam can be thought of as a superposition of plane
waves. As the waves propagate a distance Dz, they undergo a phase
shift kzDz, where kz is the wavevector of the beam in the z direction. In
most cases, each plane wave component suffers a different phase shift,
and so the resulting beam—the interference pattern of the plane
waves—changes shape. There do exist, however, special beams where
the phase shift is the same for every plane wave component. These
beams do not change shape on propagation, and therefore may be
considered diffraction free. For this to happen, the phase shift kzDz
must be the same for all the plane wave components, which can
happen if all the waves propagate on a cone. Such a cone can readily
be created by illuminating a thin annulus in the front focal plane of a
lens. So we can see how such a beam may also be able to reconstruct
itself: if part of the beam is blocked, then a shadow is cast into the
beam, but the plane waves on the cone that pass the obstruction can
reform the beam at a point just beyond the length of the shadow. Such
self-reconstruction properties are characteristic of a Bessel beam.

A practical realization of a Bessel beam11 can be produced by
illuminating a conical shaped optical element, called an axicon, with

a gaussian beam12. The beam produced is a close approximation to a
Bessel beam over a characteristic propagation distance. The central
maximum propagates for several Rayleigh ranges without appreci-
able divergence, and thus approximates a rod of light. The outer
rings of the Bessel beam act to replenish the central maximum and
prevent it from spreading. This replenishment also allows the Bessel
beam to reconstruct itself if blocked13. If a beam has an object, of
radius rob, placed at its centre, then the object will cast a shadow of
length l s into the beam:

ls <
robk

kr
ð1Þ

where kr is the radial wavevector of the beam, with a wavevector
k¼ ðk2

r þ k2
z Þ

1=2:
After this distance the beam will have reformed, and will continue

to propagate without diffraction over its remaining propagation
distance. In Fig. 1 we show a numerical simulation of a zeroth-order
obstructed Bessel beam. We could also use high-order Bessel beams,
which have an intensity minimum on axis—such beams also
reconstruct when blocked. In addition, there are other families of
diffractionless beams, such as the Mathieu beams14, which have
properties comparable to (but distinct from) Bessel beams and that
can be used similarly to the work presented here. We are also able to
generate other patterns of diffractionless beams, notably by creating
interference patterns (between two other non-diffracting beams of
opposite helicity) that have a number of spots equal to twice the
azimuthal index of the interfering beams (D.M., V.G.-C. and K.D.,
manuscript in preparation). By using spatial light modulators15, it is
possible to create arrays of Bessel beams in any desired pattern,
adding a greater generality to our technique.

Bessel beams can be used as simple two-dimensional optical
tweezers16. As they are propagation invariant, they act as a rod of
light and have no confining force in the beam propagation direc-
tion. We are able to create tweezers in two differing geometries.
Standard (downward) tweezers push (via radiation pressure) the
samples down against the microscope slide. Inverted (upward)
tweezers are used to levitate, align, stack and guide particles, again

Figure 1 Beam propagation simulation. Numerical simulation of the propagation of a

Bessel beam that has its central maximum blocked. a, Bessel beam before the

obstruction—a set of concentric rings surrounding a bright central spot. b, Obstruction

placed over the central spot. c–e, The beam at various positions beyond the obstruction.

The beam is seen to distort, and then reform in e. Boxes are 0.75 mm squares.

Figure 2 Inverted tweezers experimental set-up. Main figure, set-up for manipulation of

particles that have large spatial separations. The cells (I and II) are 3 mm apart, and

100 mm deep. a–f, Frames from a video taken of objects captured by the Bessel beam;

control spot radius r0 ¼ 5 mm. a, A hollow sphere (n , 1) of ,5 mm diameter is trapped

in cell I between the central spot and the first ring of the Bessel beam. Note that n is the

relative refractive index between the particle and the suspending medium. b, The beam a

short distance above a. Here the beam has been distorted by the particle. c, Some small

distance above the first sample cell, the beam has reformed and is no longer distorted.

d, The beam enters the cell II, and is able to stack three 5-mm-diameter solid silica spheres.

e, f, The beam profile above the stack of particles. The beam has reformed once more.
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Figure 1.13: Setup for manipulation of particles placed in two different cells separated by
a distance of 3 mm. Image taken from Ref. [Garces-Chavez et al., 2002].

1.2/ BESSEL FILAMENTATION

1.2.1/ BRIEF HISTORY ON FILAMENTATION

As mentioned above, generally, any beam-like wave tends to transversely spread as it
propagates in free space. Before the introduction of propagation-invariant solutions to the
wave equation, nonlinear effects have been proposed as a solution to overcome diffrac-
tion and generate localized wave-packets over long propagation distances.

The discovery of Kerr-self focusing in 1964 was the point of beginning. Hercher et al. have
studied the interaction of nanosecond laser pulses with glass and found that such pulses
can induce weak but noticeable damage [Shen, 2009]. This experiment showed the in-
crease in light intensity along propagation, thus suppressing the intrinsic light spreading.

To explain this effect, Chiao et al. proposed a self-trapping model according to which a
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waveguide is generated because of the self-action of the light field in nonlinear regime
[Shen, 2009]. Talanov and Kelly have shown that light self-focusing only takes place
when the input laser power is higher than a threshold value [Chiao et al., 2009]. At the
conclusion of these studies, the concept of filamentation has been introduced as "an
intense streak of light parallel to the direction of beam propagation" [Shen, 1975].

However, before the advent of femtosecond laser sources, the observed light filaments
had relatively small propagation lengths. In transparent condensed media, the typical
length of light filaments was of the order of 1 mm. Laser pulses with tens of picoseconds
and longer pulse durations usually induce damage in the propagating media which pre-
vent the formation of longer filaments [Tzortzakis et al., 2001]. In the 1980s, the laser
technology has been further developed thanks to two major advancements. Firstly, laser
energy amplification techniques, such as the chirped pulse amplification (CPA) method,
were introduced allowing the amplification of laser power up to the petawatt level. Sec-
ondly, research in solid-state lasers, such as Titanium-sapphire-based laser, had given
rise to the femtosecond laser technology. Hence, it has become possible to confine a
great amount of energy in an ultrashort time frame, which led to the exploration of new
regimes of laser-matter interactions.

In 1995, Braun et al. studied the nonlinear propagation of a 50-mJ 200-fs laser pulse in air.
They demonstrated that such a laser pulse could remain transversely localized in space
over distances greater than 20 m. This showed that self-focusing effect still occurred at
such propagation distances thus producing a filament with unprecedented propagation
length. Prior to this experiment, use was usually made of pulses with longer pulse dura-
tion (> 100 ps) and laser intensity superior to 1014 W/cm2 to generate light filaments on
the order of few centimeters [Durfee et al., 1993]. However, in the experiment of Braun
et al., the femtosecond laser pulse intensity was only on the order of 1013 W/cm2. This
showed that light filaments can be effectively formed using femtosecond laser sources
with lower input energy. Other experiments showed that 2-kilometer long filaments could
also be formed in air [Couairon et al., 2007]. These results have opened the way to novel
potential applications and thus rejuvenated the interest of the scientific community on
filamentation.

In transparent condensed media, Tzortzakis et al. used a femtosecond laser pulse to
generate, for the first time, a 2-cm long filament in fused silica [Tzortzakis et al., 2001].
The filament was formed from a 2-µJ input Gaussian pulse with a pulse duration of 160
fs. In comparison to linear propagation regime where the beam diameter significantly
increases along propagation, the filament remains transversely localized over a longer
propagation distance (see Fig. (1.14) for more details). Note that, in this experiment, the
laser pulse was weakly focused in the sample. In case of a tightly focused laser pulse, the
pulse may induce a damage or at least a local matter modification in the medium which
may prevent the formation of a long filament [Sudrie et al., 2002].

1.2.2/ NONLINEAR PROCESSES INVOLVED IN FILAMENTATION

Along the filamentation process, many nonlinear effects are involved. In the following, we
will briefly describe some of these effects:
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(a) (b)

Figure 1.14: (a) A photograph of the self-guided filament in fused silica at input energy
of 2 µJ. (b) Measured diameter of the filament along its propagation compared to that
measured in linear propagation regime at low input energy (50 nJ). Figures taken from
Ref. [Tzortzakis et al., 2001].

1.2.2.1/ KERR SELF-FOCUSING

Kerr effect is a third order nonlinear effect. It mainly takes place in isotropic and cen-
trosymmetric materials where second order nonlinearity is negligible (or nonexistent).

Kerr nonlinearity consists in inducing refractive index change in the propagating medium
by the action of the laser field on itself. The refractive index n thus becomes intensity-
dependent according to the formula n = n0 + n2I where I is the laser intensity. In case
n2 is positive, Kerr nonlinearity plays, in the spatial domain, the role of a focusing lens
as illustrated in Fig. (1.15). This leads to an increase in intensity and allows overcoming
transverse intensity spreading induced by diffraction [Couairon et al., 2007].

Figure 1.15: Illustration of Kerr effect which acts as a focusing lens. Image taken from
Ref. [Couairon et al., 2007].
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1.2.2.2/ PHOTOIONIZATION

Photoionization of transparent materials refers to a physical process according to which
electrons in the valence band (bound electrons) are transferred to the conduction band by
means of optical energy absorption. In transparent materials, the gap energy between the
valence band and conduction band, denoted Ui, is much higher than single photon energy
E1ph, which allows light to be transmitted through the material. Thus, the ionization of
transparent materials is only possible at high intensities where the probability of nonlinear
light absorption is measurable [Couairon et al., 2007].

The probability of photoionization, denoted WPI, can be described by Keldysh formula as
follows [Sudrie et al., 2002]:

WPI =
2ω0

9 π

(
ω0m

~
√

Γ

)3/2

Q(γ,Ui, ω0) (1.10)

where ω0 is the angular frequency, m is the reduced mass of electron and hole, Γ =

γ2/1 +γ2 and γ = ω0
√

mUi/qE is referred to as adiabaticity parameter with q is the electric
charge and E is the electric envelope. Q is a function of laser and material parameters.
As an example, Fig. (1.16) shows the photoionization rate computed for fused silica with
a potential gap Ui = 9 eV.

produce the experimental results accurately only with the PI
rate given by Eq.s4d. Following the same idea, we note that
several values for the gap in fused silica may be found in the
literature. A gap of 9 eV is found in Refs. 23, 31, 35, 36, 40,
and 43. A lower gap of 7.8 eV is found in Refs. 44–46.
Recently, a gap of 7.1 eV has been also determined.47 Again,
we note that we used consistently the gap of 9 eV and the
Keldysh formulation for the computation of photoionization
rates, since the results computed with a gap of 7.6 eV could
not be satisfactorily compared with experiments. A recent
paper by Gruzdev48 shows, however, that these photoioniza-
tion rates not only depend on the gap but also on the band
structure assumed to be nonparabolic in Keldysh’s formula-
tion.

IV. STUDY OF THE TRANSMISSION AS A FUNCTION
OF THE PULSE ENERGY

In order to compare the numerical results with experimen-
tal data, we first perform two sets of experiments so as to
measure the values to be introduced in the code for the non-
linear index of refraction and for the momentum transfer
collision time tc. The nonlinear refraction index was deter-
mined by recording the shift of the nonlinear focus as a func-
tion of the laser energy. By comparing measured and calcu-
lated transmitted energies as a function of the incident energy
of the pulses that are focused in silica, we could determine
the momentum transfer collision timetc. These two param-
eters are then kept fixed for the entire analysis. The other
physical parameters given above have been obtained from
the literature and are kept constant in all numerical simula-
tions.

A. Shift of the nonlinear focus

In a transparent medium with positive nonlinear refraction
index, a laser pulse with power above the critical power for
self-focusing is known to shrink upon itself along the propa-
gation axis. This leads to an apparent reduction of the focal

distance with increasing laser intensity.49 In our experiments,
the defocusing effect of the plasma generated by the pulse
around this nonlinear focus prevents a growth of intensity
above a few 1013 W/cm2. By studying the position of the
damage induced by the propagation of laser pulses with dif-
ferent energies under the optical microscope, we could mea-
sure the shift of the damage track as a function of the pulse
power. The damage tracks shown in Fig. 3 have been ob-
tained by exposing a silica sample during 2 s to 160 fs laser
pulses with various energies from 0.25mJ s1.56 MWd to
1.25mJ s7.8 MWd, focused by the objectives203 ,NA
=0.5d. The head of the damage moves towards the laser as
the pulse energy increases. The damage is assumed to be
induced by the plasma, which itself is expected to be trig-
gered around the nonlinear focus. Figure 4 shows the mea-
sured shift of the nonlinear focus as a function of the pulse
power. The critical power for self-focusing and the nonlinear
index of refraction may be deduced from this measurement.
An extension of Marburger’s formula49 has been proposed in
a Kerr medium with nonlocal nonlinearity such as the Raman
contribution of the Kerr effect.50 In this case, the position of
the nonlinear focus was shown to be closely reproduced by
Eq. s9d

znf =
0.367zR

ÎfsmaxtP̃instd/Pcrd1/2 − 0.852g2 − 0.0219
, s9d

where P̃instd indicates how the local power in the temporal
slice t is shared between the instantaneous and the delayed
component

FIG. 2. Ionization rate for fused silica with gapUi =9 eV com-
puted with Keldysh’s formulation for multiphoton ionizationsg
@1, dotted curved, tunnel ionizationsg!1, dash-dotted curved and
from the general formula valid in the intermediate regimessolid
lined. The background atom density is 2.131022 cm−3. The multi-
photon rateWMPI=s6I

6rat is shown by the dashed line. The vertical
line indicates the maximum intensity reached numerically.

FIG. 3. Observation of the shift of damage tracks in the bulk of
a silica sample as a function of the laser energysindicated in the
figured. The pulse duration was 160 fs. The beams were focused in
fused silica with an objective 203 with NA=0.5.

FIG. 4. sad Shift of the nonlinear focus as a function of the pulse
power. The continuous curve corresponds to Eq.s11d after determi-
nation of n2. sbd Linear representation of the data as in Eq.s12d
vanishing forPin=Pcr/1.002.
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Figure 1.16: Ionization rate for fused silica with gap Ui =9 eV computed with Keldysh’s
formulation for multiphoton ionization (γ � 1, dotted curve) and tunnel ionization (γ � 1,
dash-dotted curve) and from the general formula valid in the intermediate regime (solid
line). The multiphoton rate is shown by the dashed line. Figure taken from Ref.
[Couairon et al., 2005].

Keldysh formula effectively covers two extreme cases of ionization process, that we can
distinguish from the value of the γ parameter. For a laser wavelength of λ = 800 nm,
the parameter γ is equal to unity for an intensity of 35 TW/cm2. If γ � 1, correspond-
ing to weak intensities, photoionization can be assimilated to multiphoton ionization. It
consists of the absorption of multiple photons of energie E1ph to overcome the potential
gap (see Fig. (1.17 ,left)). For γ � 1, the laser intensity is strong enough to deform the
structure of the atomic potential (see Fig. (1.17,right)) as to suppress the potential barrier
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[Couairon et al., 2007] . This leads to electron transition from the valence to the conduc-
tion band through tunneling effect. This ionization process is termed tunnel ionization.

Deformation 
of atomic 
potential

Multiphoton ionization Tunnel ionization

E
n
e
rg

y

electron

hole

E1ph

Figure 1.17: Illustration of multiphoton (left) and tunnel (right) ionizations. E1ph refers to
the energy of a single photon. [After Ref.[Couairon et al., 2007]].

1.2.2.3/ PLASMA ABSORPTION AND AVALANCHE IONIZATION

Photoionization leads to electron transition from the valence to conduction band. Con-
sidering laser pulse interaction with transparent materials, photoionization occurs in
the leading part of the pulse whereas its trailing part interacts with the induced free-
electrons. In this stage, free-electrons absorb light through inverse Bremsstrahlung effect
[Vogel et al., 2005], which can be assimilated to Joule heating or successive single pho-
ton absorption [Rethfeld, 2004]. In the event the energy gained is superior to a critical
value, high-energy electrons can collide with valence electrons which acquire enough en-
ergy to transit to the conduction band. These processes are illustrated in Fig. (1.18) and
take place repeatedly for as long as the light field is present.

Figure 1.18: Illustration of avalanche ionization. Image taken from Ref.
[Vogel et al., 2005].



1.2. BESSEL FILAMENTATION 23

1.2.2.4/ PLASMA DEFOCUSING

In contrast to Kerr self-focusing, free-electron plasma plays the role of a defocusing lens.
Its effect consists in reducing the refractive index of the medium and is approximately
expressed by the relation n ≈ n0−ρ/2ρcr where ρ is the density of laser-generated plasma
and ρcr is the critical plasma density (it corresponds to plasma frequency equal to that of
the laser field).

Figure 1.19: Illustration of plasma defocusing effect. Image taken from Ref.
[Couairon et al., 2007].

1.2.3/ FILAMENTATION MODELING OF GAUSSIAN BEAMS

1.2.3.1/ MODELING SCENARII

Many models have been introduced to describe light filaments. As discussed above,
the first experimentally observed filaments were obtained for nanosecond pulse duration.
They were seen as transversely localized light rays propagating over multiple Rayleigh
lengths [Shen, 1975]. The first model introduced is the self-trapping theory which states
that a filament is formed from an interplay between nonlinear self-focusing and diffraction
[Chiao et al., 2009]. Another model is named the moving focus. It states that an input
pulse can be fragmented into independent time slices each having its own nonlinear focus
length [Shen, 1975, Brodeur et al., 1997].

These two models were sufficient to explain many of the filamentation aspects in the
regime of long pulse duration and the formation of short filaments. However, regard-
ing femtosecond filaments such as that reported by Braun et al.[Braun et al., 1995],
the nonlinear dynamical processes involved are more complicated and require a
more complicated model to describe their features. Specifically, it was shown that
such filaments undergo significant spatio-temporal deformations such as pulse splitting
[Mlejnek et al., 1998] which cannot be explained by these two models.

A more advanced model states that light filaments are formed through a non-
linear interplay between Kerr self-focusing and the generated plasma defocusing
[Couairon et al., 2007]. After an initial increase in intensity due to self-focusing, the light
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intensity increases so much that, at some point, the light field will self-collapse. However,
nonlinear absorption of light takes place and decreases the light intensity. Meanwhile,
a plasma of electron-hole is locally generated and significantly decreases the refractive
index of the medium and thus plays the role of a diverging lens. The nonlinear absorption
and plasma defocusing will then decrease light intensity which will transversely spreads.
If the light field power is still above the self-focusing threshold, then it will once again in-
crease in intensity thanks to Kerr nonlinearity. Therefore a cycle of focusing and defocus-
ing will persist for as long as the pulse power is greater than the self-focusing threshold.
These dynamics are illustrated in Fig. (1.20).

Figure 1.20: Illustration of filament formation according to a cycle of nonlinear focusing
and defocusing effects. Image taken from Ref. [Couairon et al., 2007].

These nonlinear dynamics have been shown to lead to progressive reshaping of the ini-
tial Gaussian intensity profile into a Bessel-like wave [Dubietis et al., 2004]. Actually, it
was experimentally demonstrated that light filaments can reconstruct themselves when
an obstacle is placed along their propagation path, which is reminiscent of the self-healing
property of Bessel beams. Thus, it was shown that an initial spatial reshaping of Gaus-
sian beams into Bessel beams yields more stable and controllable formation of filaments
[Polesana et al., 2008].

1.2.3.2/ MODELING EQUATIONS

For numerical simulation, light filamentation is usually modeled by the following nonlinear
propagation equation [Couairon et al., 2007]:

∂A
∂z

=
i

2k
∇2
⊥A − i

k(2)

2
∂2A
∂t2 + [NKerr(|A|2) + NPI(|A|2) + NPlasma(ρ)]A (1.11)

This equation is derived according to the scalar approximation and describes the prop-
agation of the envelope A of a linearly polarized electric field E, written as E =

<[A exp(ik z − iω0t)]. It has been used to explain the major properties of filamentation
of Gaussian beams [Sudrie et al., 2002, Couairon et al., 2007] and also Bessel beams
[Polesana et al., 2005, Polesana et al., 2008, Dubietis et al., 2007] whether in gases,
transparent liquids or solids. The first two terms of the right hand side of this equation
account for linear effects: the operator ∇2

⊥ stands for transverse laplacian and accounts
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for diffraction while the other term accounts for dispersion through the group velocity dis-
persion (GVD) coefficient k(2). This equation also takes into account the major nonlinear
effects involved in filamentation, namely Kerr nonlinearity NKerr, photoionization NPI(|A|2)
and light coupling to laser-induced plasma NPlasma(ρ) where ρ is the plasma density.

This equation is coupled to the time evolution of plasma density described by the following
equation [Couairon et al., 2007]:

∂ρ

∂t
= [WPI + Wavaρ](1 − ρ/ρat) − ρ/τr (1.12)

where Wava alludes to avalanche ionization and τr is the relaxation time of free-electrons.

Although many features of filamentation could be described by this model, filamen-
tation modeling is still a hot topic since other features remain unexplained especially
those regarding the propagation-invariant property of Bessel beams in this regime
[Courvoisier et al., 2016b]. We will further discuss this point in chapter 4 where we will
show how to derive the nonlinear propagation equation, the approximations involved and
the different models of light-plasma coupling used in literature.

1.2.4/ BESSEL FILAMENTATION

The propagation of Bessel beams in Kerr media was investigated numerically
and experimentally by many groups [Andreev et al., 1991, Gadonas et al., 2001,
Sogomonian et al., 2000, Klewitz et al., 1998, Polesana et al., 2008, Dota et al., 2012].
The concept of filamentation of Bessel beams is a bit different from that of Gaussian
beams. As stated above, Gaussian filaments are formed by the interplay between Kerr
self-focusing and nonlinear losses. However, Bessel beams are intrinsically diffraction-
resistant and thus are "self-guided" without the need of Kerr self-focusing. Nonetheless,
these nonlinear dynamics still take place in Bessel filaments. Let us first discuss the effect
of Kerr nonlinearity on Bessel beams.

1.2.4.1/ NONLINEAR BESSEL BEAM

The effect of Kerr nonlinearity has been first considered in pure Kerr media, i.e. where
nonlinear losses are negligible [Gadonas et al., 2001, Johannisson et al., 2003]. Consid-
ering the nonlinear propagation model of Eq. (1.11) and neglecting nonlinear losses
(photoionization and plasma terms), it is reduced to a nonlinear Schrödinger equation
(NLSE) as follows:

∂A
∂z

=
i

2k
∇2
⊥A + i kn2/n |A|2A (1.13)

In Refs. [Gadonas et al., 2001, Johannisson et al., 2003], dispersion was neglected and
Kerr nonlinear term NKerr is written as i kn2/n |A|2 where k is the wavenumber of the light
field; n and n2 are the linear and nonlinear refractive indices respectively.

Numerical simulation results of this equation showed that the central core of Bessel
beams undergoes intensity modulation along the propagation distance as seen in Fig.
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(1.21, left). This nonlinear intensity modulation will be referred to as "nonlinear insta-
bilities" [Ouadghiri-Idrissi et al., 2017]. In the spectral domain, it was shown that Bessel
beams can sustain Kerr-induced spectral distortions which lead to the generation of two
additional spectral components: an axial wave component of spatial frequency kr = 0
and a secondary conical wave with a spatial frequency kr =

√
2kr0 where kr0 is the spa-

tial frequency of the incident Bessel beam [Gadonas et al., 2001, Pyragaite et al., 2006].
Experimental evidence of the appearance of these two components was reported
in [Gadonas et al., 2001, Pyragaite et al., 2006, Polesana et al., 2007]. An example is
shown in Fig. (1.21,right ).

The observed longitudinal intensity modulation was interpreted by the phase retardation
between the input Bessel beam and the self-induced axial wave [Gadonas et al., 2001,
Polesana et al., 2008]. We will further discuss these nonlinear instabilities in chapter 3.
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Figure 1.21: (left) Evolution of the central core intensity along propagation in the linear (1)
and nonlinear regimes (2-4) where nonlinearity is increased from (2) to (4). (right) Exper-
imental observation of spatial spectrum of Bessel beam transmitted through a benzene
cell in the nonlinear regime. Images taken from Ref. [Gadonas et al., 2001].

Johannisson et al. discussed solutions of nonlinear Schrödinger equation (NLSE). Near
the central core of Bessel beams, it was shown that the NLSE has an approximate solu-
tion of the form:

A = A0J0
( √

2k(δ + δNL)r
)

exp(−iδ z) (1.14)

where A0 is the peak amplitude, δ = k2
r0/2k and δNL = kn2/n |A0|

2 are the linear and nonlin-
ear phase shifts of the beam central core. For a medium with positive nonlinear refractive
index, a Bessel beam sustains ring compression in the near-field as shown in Fig. (1.22).

The NLSE was shown to have no stationary solutions [Johannisson et al., 2003]. Johan-
nisson et al. discussed the possibility of partial or global collapse with increased beam
intensity and explained these nonlinear dynamics in terms of interplay between Kerr effect
and diffraction.

1.2.4.2/ BESSEL FILAMENT: NONLINEAR UNBALANCED BESSEL BEAM (NL-UBB)

In order to achieve a stable propagation regime of Bessel beams which is desired for high
power laser applications, stationary solutions of the nonlinear propagation equation have
been thoroughly investigated.
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term is a rescaling of the radial coordinate makes it

reasonable to look for an approximate solution of

the form

AðrÞ � A0J0ðf ðrÞÞ; ð16Þ
where f ðrÞ is a function of r, d, j, and A0. It is

difficult to determine f using analytical methods,

but by noticing that the linear solution can be

written as

A ¼ A0J0

Z r

0

ffiffiffi
d

p
dr0

� �
; ð17Þ

and by comparing with Eq. (5) it seems reasonable

that a good approximation should be obtained by

the implicit expression

A ¼ A0J0

Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ jA2ðr0Þ

p
dr0

� �
: ð18Þ

Although this is, in fact, an integral equation for

AðrÞ, it nevertheless provides a very simple formula

for finding A numerically. The corresponding ap-

proximate solution is compared to the numerical

solution of the full equation in Fig. 3. When the

amplitude is low the two curves are identical, since

the ansatz then reduces to the Bessel function. In

the case of a focusing nonlinearity, there is good

agreement between the two approaches, but it is

also seen that a phase shift appears between the

curves for increasing A0. Quite good agreement is

seen also in the defocusing case. In particular, the

initial flattening is well modelled. The phase shift is
now of the opposite sign.

This approximate solution implies that the ar-

gument of the Bessel function increases approxi-

mately as
R r
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ jA2

p
dr0, which is a nonlinear

generalisation of the linear case. Thus the main

effect of a focusing nonlinearity is to increase the

curvature of the peaks by increasing the growth

rate of the argument, making the solution radially
compressed. In the defocusing case the curvature is

decreased, which is most clearly seen in the main

lobe.

Finally, Figs. 4 and 5 further illustrate the

nonlinear deformations of the linear diffraction-

less Bessel solutions. The numerically obtained

curves clearly show the features discussed above;

the radial compression of the central lobe in the
focusing case and the radial expansion in the de-

focusing case. The expansion effect in the latter

case rapidly increases as the amplitude approaches

the critical value A0 ¼ 1, above which no station-

ary solutions are possible. The phase shifting effect

of the nonlinearity on the Bessel-like oscillations is

also seen, the shift changing sign with the sign of

the nonlinearity.

Fig. 3. The implicit analytical solution given by Eq. (18) (solid

lines) together with the numerical result (dashed lines). The

different initial amplitudes are indicated in the graph. A defo-

cusing nonlinearity is used in the fourth plot.

Fig. 4. A focusing nonlinear term gives rise to a radial com-

pression, which is illustrated using numerical simulations.
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Figure 1.22: Numerical results: radial compression of Bessel beams in a Kerr medium
for increased peak amplitude. Image taken from [Johannisson et al., 2003].

Porras et al. investigated the stability of Bessel beams in the presence of nonlinear losses
(NLL), precisely multiphoton absorption (MPA) [Porras et al., 2004, Porras et al., 2015].
Considering the filamentation model of Eq. (1.11) and neglecting laser-plasma coupling,
the propagation equation reads:

∂A
∂z

=
i

2k
∇2
⊥A + i k n2/n|A|2A −

1
2
σK K~ω0|A|2 K−2A (1.15)

where the photoionization term is written as NPI = −1/2WPIK~ω0/|A|2. Here, photoioniza-
tion is approximated to multiphoton ionization, i.e. WPI = σK |A|2 K where σK is multiphoton
ionization rate and K is the number of photons absorbed to overcome the potential gap
Ui. Asymptotically, this equation has a propagation-invariant solution of the form:

A =
A0

2

[
boutH

(1)
0

(√
2kδr

)
+ binH(2)

0

(√
2kδr

)]
exp(−iδ z) (1.16)

This solution consists of the superposition of an inward and outward Hankel func-
tions H(2)

0 and H(1)
0 with different amplitudes |bin| and |bout| respectively with |bin| ≥ |bout|

[Porras et al., 2015]. In case |bin| = |bout|, this equation is reduced to J0
(√

2kδr
)

exp(−iδ z)
which corresponds to an ideal Bessel beam. In the filamentation regime, however, these
two amplitudes are different and thus the solution (1.16) can be interpreted as a non-
diffracting Bessel beam with unbalanced amplitudes of its inward and outward Hankel
components. Hence, it is referred to as NonLinear Unbalanced Bessel Beam (NL-UBB).

The amplitudes of the two Hankel components are related by |bin|2 − |bout|
2 = k N∞/A2

0
where N∞ refers to power loss due to nonlinear absorption. This relation shows that
an input Bessel beam is reshaped into a NL-UBB due to nonlinear losses. This power
loss was shown to engender an inward energy flux to compensate it [Porras et al., 2004,
Polesana et al., 2006] and also leads to a loss of contrast of the beam side lobes (see
Fig. (1.23)).
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Figure 1.23: Magnification of the fluence profile (logarithmic scale of normalized units)
of the reshaped Bessel beam (BB) (solid line) after the nonlinear propagation through
a 5-mm-long fused silica sample, compared with the linearly propagated Bessel beam
(dotted line) through the same sample. Image taken from Ref. [Polesana et al., 2006].

1.2.4.3/ FILAMENTATION REGIMES

The presence of nonlinear losses does not necessarily imply the formation of NL-UBB.
Modulation instability analysis showed that NL-UBBs can only be formed in case nonlin-
ear losses prevail over Kerr nonlinearity [Porras et al., 2004]. This condition can be sat-
isfied if the Bessel beam intensity "I" exceeds a critical value Ic which can approximately
be defined by the following relation [Couairon et al., 2012]:

I ≥ Ic ≡
(2kn2/n
σKUi

)1/(K−2)
(1.17)

Hence, depending on the peak intensity of Bessel beams, three different regimes of
Bessel filamentation have been defined [Polesana et al., 2008]:

- Weakly nonlinear regime: this filamentation regime occurs in case the light power is
high enough to trigger Kerr nonlinearity but not high enough to generate a dense plasma.

- Steady filamentation regime: it is characterized by a smooth spatial reshaping of the
beam into NL-UBB (see Fig. (1.24,left)). As discussed above, the high increase in
intensity of the central core is continuously absorbed and replenished from the peripheral
rings.

- Unsteady filamentation regime: in this regime, even though the Bessel pulse remains
spatially localized, it undergoes noticeable spatio-temporal dynamics such as pulse
splitting [Couairon et al., 2007]. Since Kerr nonlinearity is predominant, Kerr-induced
instabilities step in which lead to the appearance of periodic strong intensity peaks as
presented in Fig. (1.24,right).
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Figure 1.24: Simulation results of the filamentation of two Bessel beam beams with
different cone angles: Fluence distribution along propagation for (left) θ = 0.15◦ and (right)
θ = 0.05◦. Image taken from [Polesana et al., 2008].

Numerically, both steady and unsteady regimes were studied using different filamentation
equation models. Whether or not light-plasma coupling is accounted for, the reshaping of
input Bessel beam into a NL-UBB can be demonstrated. In addition, their experimental
demonstration was performed in [Porras et al., 2004, Polesana et al., 2007]. The un-
steady regime was also particularly observed in glass [Gaizauskas et al., 2006].

Note that, in the literature, two kinds of nonlinear instabilities were reported. One is
caused by Kerr nonlinearity which was described above. The other one is induced by
laser-generated plasma and was mainly reported to occur in gases (see Fig. 1.25)
[Cooley et al., 2006]. Indeed, Bessel pulses were shown to generate plasma waveguides
in gases [Durfee et al., 1993]. A waveguide is characterized by a specific longitudinal
wavenumber kg according to which a propagating mode can be channeled through it. In
some cases, Bessel beams can be self-trapped in these waveguides [Fan et al., 2002].
In case the self-trapped beam has a different wavenumber, an intensity beating, resulting
from the superposition of both modes, can be induced which may further be amplified by
plasma absorption [Cooley et al., 2006].

Although there are some similarities between these instabilities, plasma-induced instabili-
ties were found to greatly depend on the gas pressure but independent of the Bessel cone
angle, in contrast with Kerr-induced instabilities. In this thesis, we will solely consider Kerr
instabilities since we are more interested in Bessel filamentation in transparent solids.
Furthermore, these instabilities were also demonstrated in gases [Gadonas et al., 2001]
which will make our results valid in gaseous media as well.

1.2.5/ APPLICATIONS OF BESSEL FILAMENTATION

Filamentation has found a wide range of applications such as laser-generated plasma
waveguides [Durfee et al., 1993], electrical discharge guiding [Clerici et al., 2015], pulse
compression, high power terahertz generation, charged particle acceleration, laser abla-
tion [White et al., 2008], materials processing [Amako et al., 2003], etc. Although Gaus-
sian filaments are widely used, they have some drawbacks which hamper their appli-
cability in some these applications. For instance, the formation of Gaussian filaments
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Figure 1.25: Shadowgrams of channels formed in argon for different pressures: (a) 200
torr, (b) 280 torr, (c) 300 torr, (d) 340 torr, (e) 370 torr, and (f) 420 torr. Laser pulse: 100
ps FWHM, λ = 1064 nm, and peak intensity 5 × 1013 W/cm2; and axicon base angle 25◦.
Image taken from Ref. [Cooley et al., 2006].

involves spatio-temporal dynamics which makes it difficult to control. Hence in applica-
tions where the generation of uniform plasma channels is needed, such as materials
processing [Courvoisier et al., 2016b], the use of Gaussian filaments is limited. In this
regard, spatial beam shaping into Bessel light modes has emerged as an alternative to
Gaussian beams.

Actually, the idea to use input Bessel beams as an alternative to conventional Gaus-
sian beams was proposed before 1987. The long line focus of axicon-focused laser
pulses was extremely attractive to generate uniform plasma channels over many Rayleigh
lengths. For instance, Bunkin et al. used axicon-focused nanosecond laser beams in
their experiments to generate long and uniform laser sparks (laser-generated-plasma of
free-electrons in air or generally in gases) [Bunkin et al., 1983]. In contrast, laser sparks
engendered by input Gaussian pulses were non-uniform and more limited in spatial ex-
tent. In this section, we will present some applications of filamentation and highlight the
advantages of Bessel beams over Gaussian beams.

1.2.5.1/ LASER-INDUCED PLASMA WAVEGUIDE

The generation of plasma waveguides makes use of the expansion properties of laser-
induced electron-plasmas. A laser filament first produces a plasma channel whose num-
ber density is maximal at the spatial center of the beam. Afterwards, the plasma expands
in space and its maximal density is gradually shifted away from the center of the beam.
At a time frame of the order of 1 nanosecond, the plasma density becomes minimal over
the axis of the channel (Fig. 1.26). As explained above, a free-electron plasma induces a
local reduction in the refraction index of the medium. This means that a plasma channel
with minimal on-axis density yields a maximal on-axis refraction index, which can be seen
as a waveguide [Durfee et al., 1993].

The concept of laser channeling using plasma waveguides using two laser pulses was first
introduced by Durfee et al. [Durfee et al., 1993]. It consists, in a first step, in generating
a plasma channel using a high energy laser pulse. Then, by launching a second pulse
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Figure 1.26: Calculation of 30 torr Argon time response to a 100 ps laser pulse with
a peak intensity of 400 TW/cm2, a spot size of 10 µm and a wavelength of 1.064 µm.
The rapid rise in electron density at early times was seen to be due to direct ionization
by the laser. The pulse, Gaussian in time, peaks at 0.125 ns. Image taken from Ref.
[Durfee et al., 1993].

with an appropriate delay, this second pulse will be channeled over the whole length of
the laser spark.

In Ref. [Durfee et al., 1993], Durfee et al. also compared the performance of laser
sparks generated by Gaussian and Bessel pulses by measuring laser scattering of the
guided second pulse. The experimental setups used to this end are described in Figs.
(1.27,a,b). For Gaussian-induced spark, the second pulse is significantly scattered and
thus only partly guided (see Fig. 1.27,c). As for the Bessel-pulse-induced spark, the
second pulse (Gaussian) is quasi-perfectly guided over the whole plasma channel ex-
cept at both ends of the latter (see Fig. 1.27,d). Indeed, the fluorescence image shows
that the initial laser spark generated by the Bessel pulse is long, uniform and highly lo-
calized in space. Furthermore, its length is about 24 the Rayleigh length of its cen-
tral spot. These results showed a more effective confinement of laser pulses using
plasma channels induced by Bessel pulses than those generated by Gaussian pulses
[Durfee et al., 1993, Durfee et al., 1995].

1.2.5.2/ ELECTRIC DISCHARGE GUIDING

Electric discharge refers to high-intensity electric current propagating along unpredictable
paths in gases. Actually, the propagation of such electric current follows the path where
the gas density is the lowest, which is extremely difficult to predict. Light filamentation
has emerged as a potential solution to guide and control these structures.

The principle of guiding electric discharges is also based on the generation of laser
sparks. Here, use is made of the local decrease in the gas density thanks to plasma
generation. As a result, the gas density along the laser filament will be minimal and will
act as guide for electric discharges.

In Ref. [Clerici et al., 2015], Clerici et al. compared experimental results of electric dis-
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Figure 1.27: Experimental setup for guiding laser pulses using laser-generated plasma
channel using (a) a lens and (b) using an axicon. (c) Fluorescence images from sparks
generated by Gaussian pulses in Argon for different delays and (d) fluorescence images
of (top) Bessel-induced spark and (bottom) the scattered light of the second pulse at a
delay of 15 ns at the channel entrance and exit. Images taken from [Durfee et al., 1993].

charge guiding using Gaussian and Bessel beams as shown in Fig. (1.28). It is clear that
the guided discharge current is more localized in space and more uniform in the case of
Bessel-induced filaments.

Figure 1.28: Guiding of electric discharge using laser sparks generated by a) a pulsed
Gaussian beam and b) a Bessel pulse. Image taken from Ref. [Clerici et al., 2015].

1.2.5.3/ GENERATION OF THZ RADIATION

In the wake of the generation of free-electron plasma, space charge separation
could induce an electric discharge oscillating at frequencies in terahertz range
[Hamster et al., 1993, Bystrov et al., 2005]. This charge separation can be induced
by various mechanisms and specifically the ponderomotive force. The generation
of terahertz radiation can be performed using both Gaussian and Bessel beams
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[Akhmedzhanov et al., 2009].

Generally, terahertz radiation is more efficiently generated using Gaussian beam,
especially if an external electric field is applied in the electric discharge zone
[Akhmedzhanov et al., 2009]. For Gaussian beams, the intensity distribution of tera-
hertz radiation is generally asymmetric. It gains an axisymmetric distribution when an
external electrostatic field is applied. As for Bessel beams, the generated-terahertz
radiation is radially polarized and is axially symmetric in the form of a Cerenkov cone
[Akhmedzhanov et al., 2009]. Furthermore, the superluminal velocity of the Bessel beam
has been shown to contribute to the generated THz field. Another point of difference
is that the application of an external electric field does not increase the energy con-
version of THz radiations, in contrast with THz radiations induced by Gaussian beams
[Akhmedzhanov et al., 2009].

Figure 1.29: Transverse intensity distribution of THz radiations generated by (left) Bessel
beam and (right) Gaussian beam [Akhmedzhanov et al., 2009].

Despite the lower energy conversion rate of THz radiations generated by Bessel beams,
such THz radiations still hold important advantages over those generated by Gaussian
beams. For instance, it was demonstrated in Ref. [Zhang et al., 2011] that Bessel beams
can significantly improve the depth of focus in THz imaging. It was also demonstrated
that Bessel beams undergo reduced spherical aberration when imaging objects embed-
ded in a dielectric medium. In Ref. [Bitman et al., 2012], the imaging depth was shown
to increase by a factor of 3.5 using broadband THz Bessel beams compared to THz
Gaussian beams.

1.2.6/ BESSEL FILAMENTATION AND LASER MICRO-NANO MACHINING

In gases, light filamentation can take place without concern of matter damage in con-
trast with solid materials. For this reason, gases are preferred over transparent solids
in many applications of filamentation, such as the generation of plasma waveguides and
THz radiations. However, matter damage induced by high power laser has been ex-
ploited in many applications such materials processing, fabrication of waveguides, laser
surgery, etc. Laser technology is now largely used in industry since it can be used to
process any kind of materials with an extreme precision (down to tens of nanometers)
[Gil-Villalba et al., 2015, Gattass et al., 2008].
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1.2.6.1/ PHYSICAL PROCESSES OF LASER INTERACTION WITH TRANSPARENT MATERI-
ALS

Generally, femtosecond pulses are more appropriate for laser ablation than laser pulses
with long duration [Chichkov et al., 1996] because the thermodynamical gradients are
higher and thus less burr is formed around the crater. The process of laser ablation
is not an instantaneous process. It involves several physical effects as described in Fig.
(1.30). Firstly, laser energy is absorbed through nonlinear processes, namely photo-
ionization, inverse Bremsstrahlung effect, and impact ionization. As a result, a plasma
of free-electron-holes is generated. These processes take place on a time scale ranging
from few femtoseconds to few picoseconds.

The second step involves the thermalization of laser-generated free-electrons. This
results in energy transfer between free-electrons (carrier-carrier scattering) and local
energy transfer from the electrons to the lattice (carrier-phonon scattering). Then, at
a time scale superior to few tens of picoseconds, a shock wave emission and thermal
diffusion take place as a result of energy transfer from the locally heated lattice to its
surrounding. At this stage, depending on the energy absorbed by the lattice, the material
phase can evolve from the solid state to liquid, gas or even plasma phase. Then, at
about a few nanoseconds, the material will be re-solidified.

Figure 1.30: Timescale of the physical phenomena associated with the interaction of
laser pulses with transparent materials. The green bars represent typical timescales for
the relevant process. Image taken from Ref. [Gattass et al., 2008].

As shown in Fig. (1.30), the energy transfer from free-carrier to the lattice takes place
in the picosecond time range. Further hydrodynamics interactions occur at times higher
than hundreds of picoseconds. Thus, femtosecond laser pulses do not affect energy
transfer to the lattice and further processes. The main interaction process in the fem-
tosecond time scale is electron heating which will prevent further damage due to shock
waves and thermal diffusion [Gamaly et al., 2013].
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Figure 1.31: Impact of increased spherical aberrations in elongating laser induced-
channels [Ahmed et al., 2014].

1.2.6.2/ HIGH ASPECT RATIO LASER PROCESSING

There are two different categories of the application of laser pulses in materials pro-
cessing: laser surface processing and high aspect ratio materials processing. Light
filamentation is well suited for high-aspect-ratio processing of transparent materials. It
has been shown that Bessel filaments could perform deep drilling in transparent mate-
rials with an aspect ratio superior to 100:1 [Bhuyan et al., 2010], which is unattainable
for Gaussian filaments [Ahmed et al., 2014] and other drilling technologies such as DRIE
[Wu et al., 2010] and electrochemical discharge machining [Jui et al., 2013]. Of course,
this in only valid in transparent materials since opaque media prevent the establishment
of conical energy flux and thus the formation of filaments.

Laser-induced channels using femtosecond Gaussian beams: White et al. demon-
strated deep laser drilling in fused silica with an aspect ratio greater than 20:1 using
single-shot femtosecond Gaussian beams [White et al., 2008]. Herbstman et al. also
showed that single-shot femtosecond Gaussian beams can induce sub-micro channels
in glass with a length greater than the Rayleigh range [Herbstman et al., 2010]. These
experiments showed that the aspect ratio of laser-induced channels can be further en-
hanced by filamentation. It was later demonstrated that the enhancement of filamentation
by means of spherical aberrations can further increase the length of laser-induced chan-
nels (Fig. 1.31). This was performed by placing thick glass plates between focusing
optical element and samples [Ahmed et al., 2014].

Generally, laser-drilled channels using Gaussian filaments are not uniform, which is
clearly shown in Fig. 1.31. Indeed, and as discussed above, light filaments formed from
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input Gaussian beams are generally difficult to control because of the pronounced spatio-
temporal reshaping involved in the filament formation. Therefore, it is hard to predict the
conditions for which long and uniform nanochannels can be formed.

Laser-induced channels using femtosecond Bessel beams: In contrast to
Gaussian filaments, propagation-invariant Bessel filaments can be directly formed
in the steady nonlinear propagation regime. High-aspect ratio laser drilling
was demonstrated using single-shot pulsed Bessel beams [Bhuyan et al., 2010,
Bhuyan et al., 2011, Bhuyan et al., 2014, Mitra et al., 2015]. In the example shown in Fig.
([Courvoisier et al., 2016b],top), the nanochannel has an aspect ratio of about 100:1 and
was drilled using a 230-fs Bessel pulse with a input energy of 3.1 µJ and a cone an-
gle of θ = 11◦ in glass. In addition, the process of laser drilling using femtosecond
Bessel beams was demonstrated to be highly reproducible [Bhuyan et al., 2010] which
was attributed to the robustness of Bessel filaments to spatio-temporal reshaping (such
as transverse beam break-up) at ablation-level intensities. These experiments showed
that Bessel beams are more advantageous than Gaussian beams in transparent materi-
als processing applications.

The sequence of Bessel-beam laser drilling is shown in Fig.
([Courvoisier et al., 2016b],bottom), the conical structure of Bessel beams yields a
uniform energy deposition over the whole Bessel zone of the beam, which results in the
generation of uniform plasma channels. Afterwards, the energy gained by the plasma is
transfered to the lattice whose phase is changed as a result. Then, an elongated void is
left after that the phase-modified material is removed from the sample or compressed on
the channel sides. The void formation mechanism is not yet clear.

Figure 1.32: (top) SEM image of a nanochannel drilled by a single-shot femtosecond
Bessel beam [Bhuyan et al., 2010] and (bottom) Sequence of glass drilling using Bessel
beams [Courvoisier et al., 2016b].

One can further increase the dept of nanochannel (and thus the aspect ratio) by decreas-
ing the cone angle. However, in this case, the Bessel filaments may propagate according
to the unsteady filamentation regime. As previously discussed, this regime is character-
ized by the modulation of longitudinal intensity of the beam central core and one may
obtain periodic ablation traces instead of uniform channels [Gaizauskas et al., 2006].
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1.3/ CONTRIBUTIONS OF MY THESIS

In the high power laser applications described above, Bessel beams are usually gener-
ated using either refractive or diffractive axicons. A Bessel beam generated using these
optical elements exhibits a significant variation of central core intensity along propaga-
tion. Generally, one has to use only a portion of the Bessel zone where the central core
intensity is nearly constant [Bhuyan et al., 2010]. In addition, the longitudinal distribution
of laser-generated plasma depends on the exact intensity value at a given propagation
distance. For example, Hine et al. showed that, by modulating the on-axis intensity of
Bessel beams, the longitudinal density distribution of the generated electrons varies ac-
cording to the chosen intensity profile [Hine et al., 2016]. This shows that plasma shaping
is necessary to extend the applicability of Bessel beams and further improve laser-based
technologies. For example, plasma shaping can allow further control over matter modifi-
cation such as the amount of the induced-damage and refraction index modification. This
thesis is focused on three points:

1.3.1/ ON-AXIS INTENSITY SHAPING OF BESSEL BEAMS

The first step in controlling longitudinal plasma distribution is the capability to arbi-
trarily shape the on-axis intensity profile of Bessel beams. So far, this point has
been extensively studied by some groups [Čižmár et al., 2009, Zamboni-Rached, 2004,
Zamboni-Rached et al., 2005]. Prior to our work, arbitrary shaping of Bessel beams
was performed using either Fourier-space beam shaping [Čižmár et al., 2009] or using
amplitude-only SLMs [Vieira et al., 2014]. Both beam shaping techniques generally yield
very low energy throughput which makes them unsuitable in high power laser applica-
tions.

In the second chapter, I will present my work on on-axis intensity shaping of Bessel beams
by means of phase-only SLM. I will describe our experimental procedure and present our
numerical and experimental results.

1.3.2/ CONTROL OF NONLINEAR INSTABILITIES IN UNSTEADY BESSEL FILA-
MENTS

As described in the previous section, Bessel beams can propagate according to unsteady
nonlinear regime which may prevent the formation of uniform plasma channels. This un-
desired effect has been shown to be caused Kerr-induced instabilities. These instabilities
consist in the generation of new spectral components through four wave mixing process
[Gadonas et al., 2001]. The observed longitudinal intensity modulation was thus inter-
preted as the interference of the input conical beam with the newly generated spectral
components. This effect will, of course, prevent controlling plasma shapes.

Actually, this issue has been studied previously and various means have been proposed
to avoid it [Porras et al., 2004, Polesana et al., 2007]. One way is to enhance nonlinear
losses, specifically, multiphoton absorption in order to compensate for Kerr induced non-
linearities [Couairon et al., 2012]. This can be achieved by increasing the cone angle
and/or the intensity of the input Bessel beam. However, this means that one should avoid
some experimental configurations [Porras et al., 2004, Polesana et al., 2008]. The inter-
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est of low cone angle Bessel beams, for which Kerr-induced instabilities are predominant,
is their long focal distance as well as the possibility to reduce the diameter of laser ab-
lated traces [Bhuyan et al., 2014]. In the third chapter, I will analytically and numerically
discuss the causes of these instabilities. I will also show the possibility to control these
instabilities by means of on-axis intensity shaping of Bessel beams.

1.3.3/ MODELING OF BESSEL FILAMENTATION

The last point concerns the modeling of the propagation of Bessel pulses in the fil-
amentation and ablation regimes. As discussed above, filamentation modeling re-
mains a hot topic since there are still some features that could not be explained by
existing models. In our group, we have performed many experiments on Bessel fil-
amentation in glass and especially fused silica. Our results show that Bessel fila-
ments can conserve their propagation-invariant features even at ablation-level intensities.
However, numerical simulations based on generalized nonlinear Schrödinger equation
[Polesana et al., 2008, Couairon et al., 2007] predict that the Bessel filaments exhibit a
spatial expansion of the central core. Regarding the topic of this thesis, filamentation
modeling is necessary in order to study the effect of on-axis intensity shaping of Bessel
beams on the distribution of laser-induced plasma. In the fourth chapter, I will present
numerical simulation results using different existing models. I will compare results and
point out the necessity to develop a novel model to explain the propagation-invariance of
Bessel filaments in the ablation regime.



2
ARBITRARY ON-AXIS INTENSITY

SHAPING OF BESSEL BEAMS

INTRODUCTION

We have discussed in the first chapter the main properties of quasi-Bessel beams. One
of the drawbacks of spatial apodization is that since the nondiffracting length is limited in
space, the intensity of the Bessel beam varies significantly from the beginning to the
end of the Bessel zone. Such undesired feature restricts the applicability of Bessel
beams in applications [Čižmár et al., 2009]. For instance, in optical trapping, optical
forces used to manipulate micro-particles depend on the intensity value of the laser beam
[Arlt et al., 2001] . In materials processing, precise value of the beam intensity along the
propagation distance is often required for high aspect ratio drilling. In these applications,
only a restricted area of the Bessel zone where the intensity is quasi-constant is gener-
ally used [Bhuyan et al., 2010]. Hence, arbitrary shaping of the on-axis intensity of Bessel
beams offers the possibility to extend their applicability in many fields of applications.

The first research studies on controlling the on-axis intensity of Bessel beams were fo-
cused on generating Bessel beams with constant intensity profile. In the early 1990s,
axicons with logarithmic phase retardation have been developed [Sochacki et al., 1993].
However, although this optical element can generate Bessel beams with flat-
top intensity profile, it exhibits significant intensity oscillations [Sochacki et al., 1993,
Golub et al., 2010]. In addition, the cone angle of such Bessel beam varies along the
propagation distance, which limits the applicability of logarithmic axicons.

In 2004, Zamboni-Rached first introduced a theoretical approach to arbi-
trarily shape the on-axis intensity of Bessel beams [Zamboni-Rached, 2004,
Zamboni-Rached et al., 2005]. His approach is based on superposing Bessel beams
with the same temporal frequency but having different transverse spatial frequencies.
It was shown that the on-axis intensity pattern of the resulting Bessel beam can be
expanded in Fourier series. Hence, for a given profile of the on-axis intensity in finite
propagation length, it is possible to compute the corresponding spatial distribution in
Fourier space. This formalism has been generalized to dispersive media and further
developed to engineer the beam polarization along propagation [Vieira et al., 2015].

In 2009, Cizmar and Dholakia developed a similar approach which is also based on the
superposition of J0 beams with different transverse wavenumbers [Čižmár et al., 2009].
Instead of Fourier series expansion, the spectral distribution of the target Bessel beam

39
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is computed using the inverse Fourier transform of the corresponding on-axis intensity
profile.

Regardless of the theoretical approach, longitudinal intensity shaping of Bessel beams
requires simultaneous modulation of the amplitude and phase of an input light beam
[Vieira et al., 2014, Čižmár et al., 2009]. Generally, optical elements, including spatial
light modulators (SLMs), can modulate either the amplitude or the phase separately.
Hence, for simultaneous amplitude and phase modulation, it is necessary to use two
optical elements. However, it was demonstrated that both information can be encoded on
a single spatial light modulator [Kirk et al., 1971, Davis et al., 1999, Bolduc et al., 2013,
Arrizón et al., 2005, Mendoza-Yero et al., 2014, Clark et al., 2016, Arrizón et al., 2007].

Prior to our work, the experimental methods based on SLMs were shown to generate
arbitrarily shaped Bessel beams with high beam quality but with very low energy through-
put [Čižmár et al., 2009, Li et al., 2014, Vieira et al., 2014, Vieira et al., 2015]. Cizmar
et al. experimentally demonstrated the generation of Bessel beam of modified on-axis
intensity profiles using a single phase-only SLM. Li et al. also used the same technique
to generate axially shaped self-imaging bottle beams [Li et al., 2014]. Experimental
results showed good agreement between simulation and experiments. Vieira et al.
reported the generation of such modified Bessel beams using single amplitude-only SLM
[Vieira et al., 2014, Vieira et al., 2015].

In this thesis, our objective is to generate Bessel beams with arbitrary longitudinal inten-
sity profile which we aim to apply in laser filamentation in Kerr media. Thus, we chose
an experimental technique that yields relatively high beam quality and also a high energy
throughput.

In the first section, we will first present the theoretical framework of arbitrary manipulation
of the on-axis intensity of Bessel beams as described in [Čižmár et al., 2009]. In the
second section, we will present different techniques based on a single SLM. We will
then specifically present our chosen method based on both reproduced beam quality and
energy throughput. Afterwards, we will present our numerical and experimental results.

2.1/ THEORETICAL BACKGROUND

Let U(x, y, z = 0) 1 be the complex amplitude of the light field defined in a transverse plane
(x, y) at an initial propagation point z = 0 and S (kx, ky, z = 0) the corresponding spatial
spectrum. Here, kx and ky are the spatial frequencies corresponding to the transverse
variables x and y. The optical amplitude is computed from the beam spectrum S (kx, ky, z =

0) via inverse Fourier transform as follows:

U(x, y, z = 0) =
1

4π2

∞∫
−∞

S (kx, ky, z = 0)ei(kx x + kyy) dkx dky (2.1)

Since a Bessel beam is azimuthally independent, the optical field can be calculated from

1In this thesis, I choose to express the amplitude in terms of W1/2/cm instead of V/cm, unless stated
otherwise.



2.1. THEORETICAL BACKGROUND 41

its corresponding spectrum using Hankel transformation [Čižmár et al., 2009]:

U(r, z = 0) =
1

2π

∞∫
0

S (kr, z = 0)J0(krr)kr dkr (2.2)

r is the radial variable and is defined by r =
√

x2 + y2; kr is the corresponding spa-

tial frequency and is defined by kr =

√
k2

x + k2
y . From this expression, we can de-

duce the axial pulse envelope U(r = 0, z) at the center of the Bessel beam (r = 0)

[Čižmár et al., 2009]. Provided that kr =

√
k2 − k2

z , where kz is the longitudinal spatial
frequency, dkr = −kzdkz/kr. Thus, equation (2.2) becomes:

U(r, z = 0) = −
1

2π

∞∫
0

S (
√

k2 − k2
z , z = 0)J0(krr)kz dkz (2.3)

N.B. in Ref. [Čižmár et al., 2009], there is no (-) sign in equation (2.3) which naturally
has no impact on the on-axis intensity profile.

For z > 0, the integrand of equation (2.3) is multiplied by the propagation term eikzz. Given
that the Bessel function J0(krr) is equal to 1 for r = 0, the field on-axis envelope U(r = 0, z)
is given by:

U(r = 0, z) = −
1

2π

k∫
0

kzS (
√

k2 − k2
z , z = 0)eikzz dkz (2.4)

where k = 2π/λ is the wavevector and λ is the wavelength of the input beam. We note that
the superior limit of this integral is k and not ∞ since evanescent modes do not propagate
over distances superior to the light wavelength as considered here [Čižmár et al., 2009].
This expression shows that the on-axis envelope is defined as the inverse Fourier trans-

form of the function kzS (
√

k2 − k2
z , z = 0) provided that the latter is equal to 0 outside the

interval [0, k]. U(r = 0, z) can be written as
√

I(z)eikz0z, where I(z) is an arbitrary form of
the on-axis intensity and kz0 = k cos(θ) where θ is the conical angle [Čižmár et al., 2009].
This phase term thus defines a conical beam (Bessel beam). Consequently, the beam
spatial spectrum can be computed from the corresponding on-axis intensity as follows
[Čižmár et al., 2009]:

S (
√

k2 − k2
z , z = 0) =

1
kz

∫ +∞

−∞

√
I(z)ei(kz0−kz)z dz (2.5)

Therefore, it is possible to shape a Bessel beam with any physically realizable form of the
on-axis intensity in the linear regime thanks to Eq. (2.5).
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2.2/ SPATIAL AMPLITUDE AND PHASE SHAPING USING A SINGLE

SLM

According to Eq. (2.5), in order to experimentally realize Bessel beams with arbitrary
shape of the on-axis intensity, it is necessary to perform a simultaneous modulation of
the amplitude and phase of an incoming beam [Čižmár et al., 2009]. Throughout the
years, many methods have been proposed to this end. Most of these techniques are
based on phase-only holograms imprinted on a SLM. There is also an experimental ap-
proach to encode the complex field information on a digital micro-mirror device (DMD)
[Rodenburg et al., 2014]. However, the quality of Bessel beams produced by DMDs is
generally lower [Gong et al., 2013] than that generated by SLMs [Čižmár et al., 2009],
which is not suitable for high power laser applications.

Actually, SLMs can either modulate or phase of an input beam and generally cannot
perform both tasks simultaneously. Hence, the most basic method is to use two SLMs to
independently modulate the amplitude and phase of an input light field [Neto et al., 1996].
However, this method presents many drawbacks since the use of two SLMs is costly
and more importantly it yields a very low diffraction efficiency. Fortunately, many other
methods have been reported where both amplitude and phase can be encoded in a single
hologram. We can categorize these techniques depending on the reconstruction space.
A computer-generated hologram can be designed to reconstruct a Bessel beam either in
direct space or Fourier space.

We recall that we aim to generate arbitrarily-shaped Bessel beams for high power laser
applications. In this regard, the experimental technique we choose should guarantee a
relatively high energy throughput which is appropriate for these applications. Further-
more, this technique should allow a high control over the peak intensity reached by the
shaped Bessel beam along propagation. In this section, we will present a brief overview
on amplitude and phase shaping techniques and compare their performances. Since we
are interested in arbitrary beam shaping, we solely consider techniques based on SLMs.
Then, we will specifically present our chosen technique and describe the experimental
setup used in our experiments.

2.2.1/ FOURIER-SPACE BEAM SHAPING

Cizmar et al. proposed an amplitude and phase beam shaping technique using a phase-
only SLM [Čižmár et al., 2009] which was applied to generate quasi-Bessel beams from
Fourier space. Amplitude modulation imposes that information of the target field can only
be encoded into a limited area of the phase mask. As it is the case for Fourier-space
Bessel beam generators, this area correspond to a ring [Čižmár et al., 2009], as shown
in Fig. (2.1,left). The expression of the target Bessel beam is firstly computed using Eq.
(2.5). Then, the corresponding hologram is computed using numerical iteration according
to Gerchberg-Saxton algorithm.

Actually, this experimental technique is very precise and allows the generation of high
quality beams. Target on-axis intensity profiles of Bessel beams can be reproduced
with high accuracy [Čižmár et al., 2009, Li et al., 2014]. An example is shown in Fig.
(2.1,right) where a comparison is made between numerical and experimental results of
the generation of a Bessel beam with constant on-axis intensity. However, since the area
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where the amplitude and phase are encoded on the SLM is very small, most of the light
diffracted from the SLM will be lost. Hence, this experimental approach yields a very low
energy throughput.
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Figure 2.1: (left) phase-only hologram for arbitrary on-axis intensity shaping and (right)
comparison between numerical and experimental results of the generation of a Bessel
beam with constant on-axis intensity profile. Images taken from [Čižmár et al., 2009].

2.2.2/ DIRECT-SPACE BEAM SHAPING

In order to generate Bessel beams with relatively high energy throughput, it is better to
encode information of the target Bessel beams in direct-space since the spatial amplitude
of Bessel beams in this space occupies a larger area compared to that in Fourier space.

Prior to our work, and to our knowledge, only one experimental technique was used to ar-
bitrarily shape the on-axis intensity of Bessel beams from direct space [Vieira et al., 2014,
Vieira et al., 2015]. This technique was introduced by Arrizon et al. and consists in en-
coding the amplitude and phase of a target field on a single amplitude-only hologram
[Arrizón et al., 2007]. In contrast with the iterative nature of the technique reported by
Cizmar in [Čižmár et al., 2009], this one is deterministic which allows direct computation
of the hologram given the exact expression of the target field. An example is shown in
Fig. (2.2) where the target on-axis intensity shape is made of three flat-top profiles.

This technique is indeed very accurate since it guarantees a good consistency between
theoretical and experimental results. Nonetheless, it is actually recommended to encode
the amplitude and phase modulation on phase-only hologram instead of an amplitude-
only one. As shown in Fig. (2.3), a polarizer and an analyzer optical components are
added in order to perform amplitude modulation. Consequently, the energy throughput of
an amplitude-only SLM is generally lower than that provided by a phase-only SLM. For
this reason, we choose an experimental method based on a phase-only SLM.

There is no unique way to encode the target amplitude and phase onto a
single phase-only hologram [Kirk et al., 1971, Davis et al., 1999, Bolduc et al., 2013,
Arrizón et al., 2005, Mendoza-Yero et al., 2014]. One technique consists in decompos-
ing the target field into a superposition of two fields with two different phase profiles. The
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Figure 2.2: Numerical and experimental data of a Bessel beam whose intensity profile
is made of three separate flat-top shapes (a) 3D intensity map and (b) the corresponding
on-axis intensity profiles. Images taken from [Vieira et al., 2014].

Figure 2.3: Experimental setup for amplitude and phase shaping using an amplitude-only
hologram. Exp: beam expander, Pol: polarizer, Anl: analyzer and CA: circular aperture
mask. Figure is taken from [Vieira et al., 2014].

phase mask is then expressed as a function of these two phase profiles and consists of
two interlaced phase holograms. This technique allows the reconstruction of the target
field at the zeroth diffraction order [Mendoza-Yero et al., 2014].

A second approach allows the generation of the target field in the first order of diffraction:
the amplitude is obtained by modulating the level of phase wrapping, which is directly
linked to the diffraction efficiency. This approach was first introduced by Davis et al.
[Davis et al., 1999].

To illustrate its principle, let’s consider a one dimensional refractive blazed grating which
can be assimilated to a column of a phase-only hologram. Normally, a blazed hologram
should have a maximal phase depth of 2π in order to maximize the diffraction efficiency.
Theoretically, a light beam incident to such grating would be totally deflected at the first
diffraction order, as depicted in Fig. (2.4,a). If the phase depth is decreased, for example,
to π, then a part of the incident beam passes through the grating unmodulated which
results in a decrease in the diffraction efficiency. Thus, only a part of the incident beam
is deflected at the first diffraction order. The rest is deflected in the unmodulated zeroth
diffraction order. However, it is this undesired effect that is used to modulate the ampli-
tude: if the phase depth is modulated according to a specific pattern, one can include
amplitude modulation in a phase-only hologram. This feature is illustrated in Fig. (2.4,c).

This technique was further improved by Bolduc et al. [Bolduc et al., 2013]. As we will
show in the next section, the approach of Davis et al. does not allow retrieving the target
field accurately. Bolduc et al. showed how to accurately encode the amplitude and phase
of the target field on a single phase-only hologram. In our work, we choose this improved
technique since it is theoretically very accurate as reported in Ref. [Bolduc et al., 2013].



2.3. OUR EXPERIMENTAL APPROACH 45

Figure 2.4: Principle of amplitude and phase beam shaping using a single phase-only
hologram. Images taken from Ref. [Davis et al., 1999]

Indeed, Clark et al. [Clark et al., 2016] compared the performances of different tech-
niques including the methods of Arrizon et al. [Arrizón et al., 2005, Arrizón et al., 2007],
the method of Davis et al. [Davis et al., 1999] and the improved version proposed by
Bolduc et al. They showed that the latter is the most accurate. In addition, the energy
throughput of these techniques is similar and ranges between 12 and 18 %. Hence, the
method of Bolduc et al. holds an advantage over the other methods as stated in Ref.
[Clark et al., 2016]. In the next section, we will present a detailed description of this tech-
nique. We will first describe our experimental setup and then show how to compute the
expression of the phase mask corresponding to target fields.

2.3/ OUR EXPERIMENTAL APPROACH

2.3.1/ EXPERIMENTAL SETUP

In our experiments, we used a Liquid Crystal On Silicon phase-only SLM (LCOS-SLM)
provided by Hamamatsu which belongs to the series X10468-02. We present its charac-
teristics in table (2.1).

Quantity Value
Wavelength 750 − 850 nm
Active area [16 mm, 12 mm]

Number of pixels [792, 600]
Pixel pitch x 20 µm

Modulation depth ≥ 2π

Table 2.1: SLM characteristics used in our experiments.

Our setup is described in Fig. (2.5). The light source is an amplified Titanium:Sapphire
(Ti:Sa) laser emitting 120 fs pulses at a wavelength of 800 nm. Its transverse intensity
shape is assimilated to a Gaussian distribution of diameter 4.7 mm at 1/e2. The beam is
polarized at the same direction as that of the SLM liquid crystals. The laser field is set in
an oblique-incidence configuration with respect to the SLM at a small angle of 7◦.

The back-reflected field is separated at different diffraction orders which then pass
through a 4f optical system with a total demagnification factor of 1/55. This system is
made of two optical elements: the first is a lens, with a focal distance f1 of 1 m, placed
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Fig. 1. (a) Experimental setup. Ainc is the incident laser beam, U(m,n) is the beam amplitude 
reflected on the SLM, S(kr,z = 0) is the amplitude spatial spectrum and E(r,z = 0) is the 
reconstructed Bessel beam envelope (b) Example of the phase mask applied on the SLM; (c) 
Experimentally measured Bessel beam intensity distribution. 

Phase-mask design: Now, we derive the expression of the phase mask to apply on the 
SLM to generate the target spectrum S(kr) in the first order of diffraction, for an imperfect but 
reasonably smooth input amplitude Ainc. It is important to realize that the SLM mask and the 
plane z = 0 are optically conjugated by the 4-f telescope. The amplitude distribution in the 
focal plane of MO1 is a filtered image of the amplitude diffracted in first order by the SLM, 
with a demagnification factor (-f2/f1). For clarity, we ignore the magnification factor in the 
analytical derivation below. 

The target Bessel beam initial amplitude � �, 0E r z � can be expressed in terms of its 

spatial amplitude A and phase φ . To encode both informations into a single phase-only SLM, 
Davis et al [28] suggested to modulate the phase wrapping in order to locally tune the amount 
of light energy diffracted into the first order. Indeed, the general expression of the imprinted 
phase mask is given by [31]: 

� � � � � � � �, , mod , , , 2refm n M m n F m n m nψ φ π� �� �� � (3) 

where m and n correspond to the pixels of the SLM. M is a normalized bounded positive 
function of amplitude (0 ≤M ≤1), F contains the phase information of the target field, φref is a 
linear phase ramp used to separate the different diffraction orders, and mod is the modulo 
function, used for the phase wrapping operation. If the incident laser beam amplitude is Ainc, 
the complex amplitude of the field after reflection on the SLM is: 

� � � � � �, , .exp ,incU m n A m n i m nψ� � �� � (4) 

After developing in Taylor expansion the exponent and expanding in Fourier series the 
periodic phase term F + φref, we select out only the first term in the Fourier series. After 
inverse Fourier transform, this first term corresponds to the amplitude that will be diffracted 
in the 1st diffraction order [31]: 

� � � � � �� � � � � �� �1 , , sinc , exp , ,incU m n A m n M m n i F m n M m nπ π π� ��− − �� � (5) 

Here, we included in the derivation the slowly-varying amplitude Ainc of the beam incident 
on the SLM. By identifying U1 with the amplitude of the Bessel beam E(r, z = 0) = Aeiφ
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USLM(m,n)

Uret(r,z=0)

Figure 2.5: Experimental setup using LCOS-SLM . Ainc is the amplitude of the incident
laser beam, US LM(m, n) is the beam spatial envelope reflected on the SLM, S (kr, z = 0) is
the spatial spectrum and Uret(r, z = 0) is the retrieved Bessel beam envelope (b) Exam-
ple of the phase mask applied on the SLM; (c) Experimentally measured Bessel beam
intensity distribution.

exactly at a distance equal to its focal length from the SLM. This allows constructing the
amplitude distribution of the laser beam in the far field (Fourier plane). This then allows to
spatially separate the different diffraction orders to prepare spatial filtering. Knowing that
information of the shaped Bessel beam is carried by the first diffraction order (which is
the spatial spectrum expressed in Eq. (2.5)), we use an iris around this diffraction order
and filter out all the other undesired ones. The second element is a microscope objective
(MO1) with numerical aperture NA = 0.3. It is placed at a distance equal to its focal length
away from the Fourier plane of the first lens L1. This allows performing the second optical
Fourier transformation to reconstruct the Bessel beam in the real (direct) space at the
longitudinal position z = 0 which corresponds to the image focal point of MO1.

The imaging system has a magnification of 27.7 and consists of a microscope objective
MO2 (NA = 0.4), an imaging lens L2 and a CMOS camera (pixel pitch 5.2 µm), placed
on a motorized translation stage. We sequentially reconstruct the beam propagation by
recording images along the propagation distance z.

2.3.2/ COMPUTATION OF THE PHASE MASK

Let us consider a target light field Utar(x, y) with a spatial amplitude Atar(x, y) and phase
φtar(x, y) written as:

Utar(x, y) = Atar(x, y)exp[iφtar(x, y)] (2.6)

The target is defined in a transverse plane (XOY) where x and y are transverse spatial
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coordinates. Considering a phase mask ψ(x, y) imprinted on a SLM, an incident laser field
Uinc(x, y) = Ainc(x, y)exp[iφinc(x, y)] on the SLM will acquire the imprinted phase profile and
is then expressed as:

US LM(x, y) = Uin(x, y)exp[iψ(x, y)] (2.7)

Recall that our chosen technique is based on modulating the phase depth to control the
amount of energy diffracted at each group of pixels of the SLM. Hence, the phase-only
hologram can be expressed by a phase function F(x, y) wrapped over 2π multiplied by a
normalized amplitude function M(x, y) which plays the role of a modulation function. The
phase-only hologram, denoted ψ(x, y), is then written as:

ψ(x, y) = M(x, y) ·mod[F(x, y), 2π] (2.8)

Different ways were suggested to define the functions M(x, y) and F(x, y). The common
point between them is that the modulation function should depend on target amplitude
Atar(x, y) while F(x, y) depend on the target spatial phase φtar(x, y). We will first show how
Davis et al. [Davis et al., 1999] defined the functions M(x, y) and F(x, y) and present the
improvements proposed by Bolduc et al. [Bolduc et al., 2013]. Note that this technique
was originally developed for incident light fields with uniform intensity distribution. We will
show how to generalize this approach to non-uniform light sources.

2.3.2.1/ THE EXPRESSION OF THE LIGHT FIELD AT THE FIRST DIFFRACTION ORDER

A light beam, of amplitude Ainc, incident to the SLM will acquire a spatial phase in the form
of the multiplicative exp(iψ(x, y)). Considering the pixelization of the back-reflected field,
the continuous transverse variables x and y will be reduced to discrete variables defined
at the SLM pixels m and n respectively. The back-reflected field, denoted US LM, can be
written as:

US LM(m, n) = Aincexp(iψ(m, n)) (2.9)

Davis et al. considered the special case of an incident plane wave (Ainc = 1). They
showed that the quantity US LM(m, n) can be expanded into a Fourier-Taylor series. It is
given by:

US LM(m, n) =

+∞∑
−∞

Uq(m, n)exp(iq F(m, n)) (2.10)

The index q can be interpreted as the diffraction order of the back-reflected. The coeffi-
cients Uq(m, n) are written as:

Uq(m, n) = exp{i[q − M(m, n)π]}sinc{π[q − M(m, n)]} (2.11)

The retrieved light beam at the first diffraction order, denoted Uret, is then expressed as
[Bolduc et al., 2013]:

Uret(m, n) = −sinc[π (M(m, n) − 1)] exp[i(F(m, n) + πM(m, n)))] (2.12)
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2.3.2.2/ THE EXPRESSION OF THE FUNCTIONS M AND F

Davis et al. first proposed to linearly scale the target amplitude distribution Atar(x, y) to
the target phase function φtar(x, y). In other words, the functions M(x, y) and F(x, y) are
simply assimilated to Atar(x, y) and φtar(x, y) respectively [Davis et al., 1999]. The phase
mask has then the following expression:

ψ(x, y) = Atar(x, y) ·mod[φtar(x, y), 2π] (2.13)

Equation (2.12) shows that the amplitude of the reconstructed light field is Aret(m, n) =

−sinc[π (Atar(m, n) − 1)] whereas its phase is φret(m, n) = φtar(m, n) + πAtar(m, n). Hence, the
target amplitude and phase are not accurately retrieved using the method of Davis et al.

Bolduc et al. introduced an improved method where the expressions of the functions
M(x, y) and F(x, y) are chosen so that the reconstructed light beam at the first diffraction
order has the exact expression of the target light beam Utar(x, y). Identifying Eqs. (2.6)
and (2.12) yields:

M(x, y) = 1 +
1
π

sinc−1(Atar(x, y)) (2.14)

F(x, y) = φtar(x, y) − πM(x, y) (2.15)

Bolduc et al. have also compared the performance of both techniques in the generation
of a light beam whose transverse intensity is made of the superposition of two Laguerre-
Gaussian modes. In their experiment, they approximated the modulation function M(x, y)
by Atar(x, y) as it was suggested by Davis et al. whereas they kept the proposed expres-
sion of phase function F(x, y) given by Eq. (2.15). Since, this expression allows removing
the coupling between the phase and amplitude in the phase mask, their experiment high-
lighted the impact of phase-amplitude decoupling on the quality of reconstructed beams.
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Figure 2.6: Qualitative comparison of the method of Davis et al. [Davis et al., 1999]
and that of Bolduc et al. [Bolduc et al., 2013]. The target intensity profile purposely has
small features to accentuate the difference between the two methods. The experimen-
tally recorded images are taken in the far-field of a HOLOEYE SLM. Image taken from
[Bolduc et al., 2013].

As shown in Fig. (2.6), the target field was fairly reproduced using the approximated
version of the method of Bolduc et al. compared to that of Davis et al. As mentioned
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above, Clark et al. compared the performances of these two methods [Clark et al., 2016]
and showed that, when it comes to precision and beam quality, the method proposed by
Bolduc et al. generally yields the best results.

Note that major works on amplitude and phase shaping only consider uniform incident
beams. For incident beams with a Gaussian intensity profile, such as those emitted by
femtosecond laser sources, one has to use a beam expander to approximate the incident
laser beam to a plane wave. Since we aim to optimize the energy conversion of our
setup, we have considered the intensity distribution in the computation of phase masks.
This point was also considered by Clark et al. in their paper [Clark et al., 2016] where
the non-uniformity of the incident light field was accounted for in the expression of phase
masks. Thus, accounting for the incident beam amplitude Ainc, and considering that the
corresponding phase is flat, we show that the expression of the phase mask can be
written as (see appendix section 4.3):

M(x, y) = 1 +
1
π

sinc−1(Atar2(x, y)) (2.16)

F(x, y) = φtar(x, y) − πM(x, y) (2.17)

where Atar2 = Atar/Ainc and should be normalized: 0 ≤ Atar2 ≤ 1.

To summarize, the design of our phase masks is performed in the following sequence:

1. We compute the spatial spectrum corresponding to a Bessel beam with a specific
profile of the on-axis intensity using Eq. (2.5).

2. We compute the corresponding optical envelope Utar in real space using 2D inverse
Fourier transform.

3. We experimentally measure the intensity profile of the incident laser beam |Ainc|
2

and then compute and normalize the quantity Atar2 = Atar/Ainc.

4. We compute the functions M and F to prepare their encryption on our SLM.

2.4/ THEORETICAL AND NUMERICAL ANALYSIS

We have described in section 2.1 the theory of arbitrary shaping of the on-axis inten-
sity of Bessel beams reported in Ref. [Čižmár et al., 2009]. As stated in Eq. (2.5), i.e:

S (
√

k2 − k2
z , z = 0) =

1
kz

∫ +∞

−∞

√
I(z)ei(kz0−kz)z dz, this theory consists in computing the spa-

tial spectrum S (
√

k2 − k2
z , z = 0) of a Bessel beam for a target profile of the on-axis

intensity I(z) ≡ I(r = 0, z). Of particular interest, we pointed out the fact that the spatial
spectrum should be strictly defined in the range of longitudinal frequencies kz ∈ [0 − k]
where k is the wavenumber of the beam. This point was discussed by Cizmar et al.
[Čižmár et al., 2009]; they showed that spatial spectra defined outside this frequency
range cannot be fairly reproduced. Hence, the concept of arbitrary shaping of Bessel
beams is constricted to target on-axis intensity shapes that are physically realizable.
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In this section, we will discuss the physical limitations imposed on spatial spectra of
Bessel beams and their impact on retrieved on-axis intensity profiles. To this end, we
will use numerical simulations of the propagation of Bessel beams in the linear regime.
Firstly, we will briefly describe our numerical approach to study the linear propagation of
shaped Bessel beams. Then we will introduce physical criteria allowing fair reproduction
of target fields of Bessel beams and present our numerical simulation results.

2.4.1/ PLANE WAVE SPECTRUM AND WAVE PROPAGATION

In this chapter, we consider the propagation of Bessel beams in the linear regime, i.e.
in case the light power is low enough to not trigger nonlinear effects. Our numerical
method is based on the plane wave spectrum representation since it is easy to implement
and allows accurate computation of scalar optical fields at any point of the propagation
distance. Let’s first recall the principle of this numerical approach and then briefly present
our numerical algorithm.

We consider a light wave defined by the complex amplitude U(x, y, z) in the spatial domain;
its temporal component is neglected. Note that since our modified Bessel beams are the-
oretically computed using the scalar approximation, we consider that these optical fields
are linearly polarized along a given direction ex and that this polarization is conserved
along propagation.

The light wave is defined on a transverse plane (x, y) and propagates along a propagation
axis z that is perpendicular to the plane (x, y). We consider that the light wave is initially
defined at a plane (x, y, z = 0) and it is represented by U(x, y, z = 0). Our aim is to compute
the complex amplitude U(x, y, z = Z) of the wave at a plane (x, y, z = Z) that is parallel to
the plane (x, y, z = 0).

The propagation of the light field U(x, y, z = 0) in the linear regime can be described by
Helmholtz equation:

( ∂2

∂z2 + ∇2
⊥ + k2)U(x, y, z) = 0 (2.18)

where ∇2
⊥ =

∂2

∂x2 +
∂2

∂y2 is the transverse Laplacian and stands for diffraction. According to

the plane wave spectrum approach is performed in three steps:

2.4.1.1/ FIELD DECOMPOSITION INTO PLANE WAVES

The complex amplitude of the input light field is decomposed into an infinite number of
plane waves. It is written as:

U(x, y, z = 0) =
1

4π2

∞∫
−∞

S (kx, ky, z = 0)ei(kx x + kyy) dkx dky (2.19)

This expression is seen as an inverse two-dimensional Fourier transform of the spatial
spectrum S (kx, ky, z = 0) of the light field. Similarly, the complex amplitude of the wave
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at the plane (x, y, z = Z) can also be expressed as a function of its spatial spectrum as
follows:

U(x, y, z = Z) =
1

4π2

∞∫
−∞

S (kx, ky, z = Z)ei(kx x + kyy) dkx dky (2.20)

2.4.1.2/ PLANE WAVE PROPAGATION

The second step consists in computing the spatial spectrum S (kx, ky, z = Z) of the field at
the distance z = Z as a function of S (kx, ky, z = 0) where Z > 0. In this regard, we consider
the fact that the complex amplitude of the field U(x, y, z = Z) should satisfy the Helmholtz
equation (2.18). By inserting Eq. (2.20) in Eq.( 2.18), we obtain:

∂2S (kx, ky, z = Z)
∂z2 + (k2 − k2

x − k2
y )S (kx, ky, z = Z) = 0 (2.21)

An elementary solution to this differential equation can be written in the following form:

S (kx, ky, z = Z) = S (kx, ky, z = 0) exp(i kzz) (2.22)

where k2
z = k2 − k2

x − k2
y and the term exp(i kzz) can be referred to as "propagator". In case

k2
x − k2

y > k2, i.e. kz < k, the effect of propagation yields a change in the relative phase
of each component of the spatial spectrum. In contrast, if kz > k, then the propagator is
positive and the light field is exponentially attenuated.

2.4.1.3/ RECONSTRUCTION OF THE LIGHT FIELD ALONG PROPAGATION

The third step consists in reconstructing the complex amplitude of the field in real space
U(x, y, z = Z) using Eq. (2.20). The expression of the complex amplitude of the optical
field at any point of the propagation axis z > 0 can be written as:

U(x, y, z) =
1

4π2

∞∫
−∞

S (kx, ky, z = 0)exp[i(kxx + kyy + kzz)] dkx dky (2.23)

N.B: Since Bessel beams are axially symmetric, we can also express the spatial spectrum
of the beam using Hankel transform which is equivalent to 2D Fourier transform. This
implies that the two transverse coordinates (x, y) are reduced to a single variable r =√

x2 + y2 which allows reducing the initially two-dimensional problem to a one-dimensional
one. The expression of the optical field then becomes:

U(r, z) =
1

2π

∞∫
0

S (kr, z = 0)J0(krr)exp(i kzz) kr dkr (2.24)

This formalism will be specifically used in our numerical simulations of the propagation
of Bessel beams in the nonlinear and filamentation regimes. In this chapter, we will
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solely use the formalism based on 2D Fourier transform since we intend to study the
propagation of Bessel beams with shaped on-axis intensities reconstructed by our phase-
only holograms. This will also allow us to study the effect of incident laser beam and
compare numerical and experimental results.

2.4.2/ PHYSICALLY REALIZABLE TARGET FIELDS

In this section, we will discuss the physical limitations related to arbitrary shaping of the
on-axis intensity of Bessel beams. According to the theoretical approach presented in
section 2.1, one can directly compute the spatial spectrum S tar(kz) as a function of a target

on-axis intensity profile Itar(z) (Eq. 2.5), i.e. S tar(kz) =
1
kz

∫ +∞

−∞

√
Itar(z)ei(kz0−kz)z dz. To accu-

rately reproduce the target intensity profile, Cizmar et al. showed that the computed spa-
tial spectrum should be confined in the frequency range kz ∈ [0 − k] [Čižmár et al., 2009].

Actually, in experimental conditions, the lower limit of this spectral range is actually not
zero but it is defined by the numerical aperture (NA) of the system. Hence, a lower cutoff
frequency kmin

z = k
√

1 − NA2 is introduced. We also note that numerical sampling can also
induce an effective numerical aperture.

In the following, we will particularly discuss the two physical limits related to the spatial
spectrum: the lower limit is related to the numerical aperture (NA) of the experimental
setup while the upper limit is related to the laser wavelength.

2.4.2.1/ EFFECT OF SPECTRAL TRUNCATION ON RETRIEVED ON-AXIS INTENSITY PRO-
FILES

To study the effect of spectral truncation of the target spatial spectrum S tar(kz), we con-
sider a response function R(kz) that is equal to 1 in the range kz ∈ [kmin

z − k] and is zero
outside this range. We define a truncated spatial spectrum S tr as follows:

S tr(kz) ≡ S tar(kz).R(kz) where R(kz) =

1 , kz ∈ [kmin
z − k]

0 ,otherwise
(2.25)

Using Eq. (2.4), we compute the corresponding on-axis complex amplitude Utr(r = 0, z):

Utr(r = 0, z) = −
1

2π

k∫
0

kzS (kz).R(kz)exp(i kzz) dkz

= Utar(r = 0, z) ⊗ H(z) (2.26)

where Utar(r = 0, z) =
√

Itar(z)exp(i kz0z) is the target on-axis amplitude, ⊗ stands for the
convolution product and H(z) is the Fourier transform of the response function which
yields:

H(z) = (k − kmin
z )sinc

(k − kmin
z

2
z
)
exp

(k + kmin
z

2
z
)

(2.27)
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Equations (2.26) and (2.27) show that the retrieved on-axis intensity undergoes periodic
oscillations because of the convolution product with the sinc function.

2.4.2.2/ CONSTRAINTS ON THE TARGET INTENSITY PROFILE

In order to avoid the on-axis oscillations induced by spectral truncations, the intensity
variations in target on-axis intensity Itar should be lower than the oscillation period of the
sinc function sinc[(k − kmin

z ) z/2] of Eq. (2.27) or specifically the full width at half maximum
of its central lobe ∆H. The latter reads:

∆H = 4π/(k − kmin
z ) (2.28)

Let us reconsider, as an example, the case of an intensity profile in the form of a flat-top
profile as depicted in Fig. (2.7,c-green curve). In the ideal case, this intensity profile,
denoted Icst0, is characterized by abrupt intensity variations, i.e. infinite slopes at both
ends of the beam longitudinal extent. It is expressed as:

Icst0 =

Imax , zi ≤ z ≤ z f

0 ,otherwise
(2.29)

where zi and z f denotes the beam terminations. In Fig. (2.7), we choose zi = 51 µm and
z f = 289 µm and consider a cone angle of 13◦.

According to our discussion, it is obvious that the spatial spectrum computed from this
intensity profile will be truncated by the response function R(kz). We analytically resolve
Eq. (2.5) (see page 40) to compute the spatial spectrum S (kz, z = 0) corresponding to
this profile. We show in Fig. (2.7,a-blue dashed line) the modulus of the computed
spectrum. The spectrum takes the form of a sinc-like function and extends outside the
range kz ∈ [kmin

z − k].

We numerically study the effect of spectral apodization of this spatial spectrum on the re-
trieved on-axis intensity profile. We simulate the propagation of the corresponding Bessel
beam using the plane wave spectrum approach as described above. The results are
shown in Fig. (2.7,b-blue dashed line) where we clearly notice truncation-induced on-
axis intensity oscillations.

In order to avoid this undesired aspect, we use parabolic intensity transitions at both ends
of the flat-top profile as shown in Fig. (2.7,c-green line). This profile, denoted Icst, can be
described by Eq. (2.30).

Icst =



Imax(z/zi)2 , 0 ≤ z ≤ zi

Imax zi ≤ z ≤ z f

Imax
(
1 −

z − z f

zmax − z f

)2 , z f ≤ z ≤ zmax

0 ,otherwise

(2.30)

Here, zi and z f in Eq. (2.30) are the same as in Eq. (2.29) and zmax = 340 µm. We
choose parabolic variation because it allows reaching zero intensity values in contrast with
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the Gaussian apodization proposed in Ref. [Čižmár et al., 2009]. In addition, it provides
smoother intensity variation compared to other profiles such as exponential ones.

In our experimental conditions (as shown in our setup of Fig. 2.5), we use a microscope
objective with numerical aperture NA = 0.3 which corresponds to kmin

z = 0.945 k. Thus,
according to Eq. (2.28), the lowest intensity variation above which intensity oscillations
can be avoided is ∆H = 34 µm.

Using Fig. (2.7,c), we estimate the intensity variation induced by the parabolic intensity
decay at the edges of the flat-top profile, i.e. at the points zi or z f . In this figure, we
plot a line tangent to the parabolic profile (dotted line) at the point zi and find that this
intensity variation is approximately 33 µm, which is approximately equal to the theoretical
value ∆H. Hence, the target on-axis intensity profile Icst is expected to be retrieved with
practically no oscillations.
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Figure 2.7: Comparison of the spatial spectra for two flat-top on-axis intensity profiles
with and without parabolic ramps. The two truncations of the spectrum at kz = k and
kz = kmin

z are specifically shown. The spectrum is expressed in the image plane of the
SLM (θ = 13◦). (bottom) Retrieved on-axis intensity for the target intensity profile (b)
without and (c) with parabolic variations (with typical variation length of about ∆H = 33 µm
for our experimental conditions).

We plot in Fig. (2.7,a-red dashed line) the modulus of the spatial spectrum corresponding
to the improved on-axis intensity profile Icst. We notice that the sinc-like oscillations of the
spectrum are significantly damped in this case compared to the case of profile Icst0. The
spatial spectrum is consequently confined in the spectral range which allows to fairly
conserve the target spectral distribution.

In Fig. (2.7,c), we show simulation results of the linear propagation of the corresponding
beam and compare the retrieved on-axis intensity profile with the target. The target on-
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axis intensity profile is reproduced with a maximal relative error of about 1%. It is then
clear that, to fairly retrieve a target on-axis intensity profile, it is necessary to avoid abrupt
intensity variations over propagation distances inferior to the quantity ∆H.

2.4.2.3/ CONSTRAINTS ON THE GEOMETRICAL PARAMETERS

Another point that should be accounted for to avoid spectral truncation is the beam geo-
metrical parameters, namely the cone angle θ and the spot size of the input light beam. If
we reconsider the spectrum depicted in Fig. (2.7,a), we notice that |S (kz)|, that is centered
around the frequency kz0 = k cos(θ), is placed nearly in the middle of the definition range
kz ∈ [kmin

z − k]. Indeed, the variation of the cone angle will shift the position of the central
frequency near the edges of this frequency range. Regarding the effect of the input beam
spot size, we recall that the spectral width of the spatial spectrum is inversely proportional
to the beam size. Hence, for low enough value of the beam spot size, the spectral width
will be large enough to cause the spatial spectrum to be extended outside this range.

N.B: Note that since the input spatial amplitude of modified Bessel beams is generally
different from that Gaussian profiles (see Fig. (2.8,right)), it is not appropriate to charac-
terize the transverse spatial extent of the input beam by the beam waist w0. Hence, we
will define a quantity wb which refers to the half width at 1/e2 of the maximal amplitude
and refer to it as "beam radius".

For a lower cone angle, the center of the spectrum defined at kz = kz0 will be shifted
closer to the cutoff frequency kz = k which will lead to spectrum truncation regardless of
the shape of the target intensity. This point is clearly shown in Fig. (2.8,left, blue line).
In this figure, we show the modulus of the spatial spectrum computed from the same
on-axis intensity profile Icst described by Eq. (2.30). We use a cone angle θ = 6.1◦ and a
beam radius wb = 75 µm. For a higher cone angle, the spectrum will be truncated at the
low cutoff frequency kz = kmin

z . In this case, one can use an optical element with higher
numerical aperture to avoid this truncation.
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Figure 2.8: (left) Modulus of the spatial spectrum retrieved for the target on-axis intensity
profile Icst defined Eq. (2.30) and (right) the corresponding input spatial amplitude for
(dashed dotted line) cone angle θ = 6.1◦ and wb = 75 µm and (dotted black line) cone
angle θ = 13◦ and wb = 26 µm.

In the same figure (2.8,black dotted lines), we show the effect of beam radius of the input
beam. We consider the same target on-axis intensity Icst with a cone angle θ = 13◦ and
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a lower value of the beam radius wb = 26 µm. The input amplitude of corresponding the
Bessel beam is shown in Fig. (2.8,right). We plot in Fig. (2.8,left) the modulus of its
spatial spectrum which is cut off at both edges of the spectral range kz ∈ [kmin

z − k].

2.4.2.4/ LIMITATIONS IMPOSED BY THE SLM

To avoid spectral truncation, it is necessary to utilize a beam radius as high as possible.
However, this is limited by the size of optical elements. For example, our SLM has an
active area of [16 mm, 12 mm]. For axially symmetric beams, such as Bessel beams, the
maximal area than can be utilized is [12 mm, 12 mm], which corresponds to a maximum
aperture radius of wS LM = 6 mm in the SLM plane. Considering the demagnification factor
(1/55) of our setup, this corresponds to wimage = 110 µm. In this case, the minimal cone
angle one can use to avoid spectral truncation is about 3 mrad in the SLM plane, which
corresponds to 10◦ in the image plane.

Regarding the maximal cone angle, we mentioned that it depends on the numerical aper-
ture of the experimental setup. Nonetheless, one should also take into account other
factors such as spatial filtering and the diffraction efficiency of the setup.

Actually, the encryption of a computer-generated hologram onto a SLM implies the sam-
pling of the phase mask on the SLM pixels. In other words, the phase value is fixed over
the area of each pixel of the SLM. A good sampling should satisfy Shannon theorem
which states that a single period should be encoded on at least two pixels.

Let us consider a linear phase ramp, wrapped over 2 π, which is used to separate the
different diffraction orders. This phase ramp is given by the function φlin = 2π sin(α)/λ,
with a period p = λ/ sin(α). Shannon theorem indicates that the maximal angle that can
be used is given by αmax ≈ λ/2∆, where ∆ is the SLM pixel pitch. Considering our SLM
characteristics, this corresponds to αmax = 20 mrad. This implies the possibility to use
high deflection angles and thus high values of the cone angle.

However, the diffraction efficiency of our SLM decreases with the spatial frequency (and
thus decreases with the deflection angle α). In our experimental conditions, and account-
ing for other SLM imperfections, we used a maximal angle of 6 mrad for both the cone
angle of Bessel beams θ and the deflection angle of reference waves α.

2.5/ NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we will compare experimental and numerical results of the linear propaga-
tion of modified Bessel beams according to the experimental setup described in Fig. 2.5.
We consider two different on-axis intensity profiles. In addition to the flat-top intensity
shape, we also consider an intensity profile in the form of a linear ramp and parabolic
intensity decay. We discuss the performance of our beam shaping method, specifically
its energy throughput and the accuracy of the retrieved on-axis intensity.
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2.5.1/ NUMERICAL SIMULATION RESULTS

In our numerical simulations, we consider the parameters of our SLM as described in
table (2.1), namely a number of sampling points N = 600 and an aperture diameter of
12 mm in the SLM plane. This allows to study the effect of the SLM pixelization on the
retrieved on-axis intensity profile.

Note that we compute Fourier transformation using the FFT function. Normally, this func-
tion requires a number of sampling points in the form of 2p where p is an integer. For-
tunately, our numerical simulations show that we can still obtain the same results even if
use N = 600, which does not satisfy the formula N = 2p. Indeed, we compared results for
N = 600 and N = 1024 and found that they are in very good agreement.

Regarding the target on-axis intensity shape, we consider, as a case study, the case of a
Bessel beam with flat-top intensity profile and parabolic ramps as described previously by
Eq. (2.30). It is exactly as the one shown in Fig. 2.7,c,green line): We use a cone angle
of 4 mrad in the SLM plane, corresponding to 13◦ in the image plane of the 4f system.
The longitudinal parameters are zi = 51, z f = 289 and zmax = 340 µm in the image space.

2.5.1.1/ COMPUTATION OF THE PHASE MASK USED IN EXPERIMENTS

We recall that the expression of the phase mask is given by: ψ(x, y) = M(x, y)mod[(F(x, y)+

φre f , 2π]. The exact version states that M(x, y) and F(x, y) are respectively expressed as:

M(x, y) = 1 +
1
π

sinc−1[Atar2(x, y)] (2.31)

F(x, y) = φtar(x, y) − πM(x, y) (2.32)

where Atar2 depends on the incident amplitude profile Ainc as Atar2 = Atar/Ainc. We use a
deviation angle α = 5.5 mrad in the linear phase ramp φre f .

We show in Fig. (2.9.a) the experimentally measured intensity |Ainc|
2 of the laser beam

and we compare in Fig. (2.9.b,c) the phase mask distributions in case of uniform and
non-uniform laser illuminations respectively. We notice that the inclusion of non-uniform
light distribution in the phase mask allows to adjust the phase height to the light amplitude
in each pixel of the SLM. In other words, at the transverse spatial positions where the light
intensity is weak, the phase height at these positions is higher compared to the case of
uniform illumination.

2.5.1.2/ EVOLUTION OF THE BESSEL BEAM GENERATED BY THE SLM

Let us consider, in our simulations, an incident laser beam with the same intensity distri-
bution shown in Fig. (2.9,a) and study its evolution through the 4f system after interacting
with the phase mask presented in Fig. (2.9,c). We firstly analyze its transverse field dis-
tribution at the common focal plane of the lens and microscope objective (see setup of
Fig. (2.5), page 45) and the image plane of the 4f system.

We recall that the laser beam incident on the SLM acquires the imprinted phase profile
ψ in the form of a multiplicative exp(iψ). We compute the corresponding field distribution



58 CHAPTER 2. ARBITRARY ON-AXIS INTENSITY SHAPING OF BESSEL BEAMS

Figure 2.9: Image of the incident beam intensity at the SLM plane, (b) phase mask
corresponding to a uniform light illumination (Ainc = 1) and (c) phase mask corresponding
to the incident laser beam.

S (x f , y f ) at the common focal plane (Fourier plane) using 2D Fourier transform. We show
in Fig. (2.10, a-b) the field distribution before and after spatial filtering. The use of a ref-
erence wave with a deviation angle of 5.5 mrad allowed about 6-mm-separation between
the zeroth diffraction order and the ring center of the first order. Nonetheless, there are
still residual ring-like structures in the first diffraction order which stem from higher orders
of diffraction.

a)

b) d)

c)

Figure 2.10: Computation of the field distribution at the common focal plane of the lens
and microscope objective (see setup of Fig. (2.5), page 45) of our 4f system (a) before
and (b) after spatial filtering and centering. Reconstruction of the optical field distribution
in the image space at (c) z = 0 µm and (d) z = 60 µm. the subscripts "f" and "4f" added
to the transverse coordinates (x f , y f and x4 f , y4 f ) refer to the Fourier plane and image
plane of the 4f system respectively

We compute the inverse Fourier transform of the filtered field at the first diffraction order
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to reconstruct the Bessel beam in real space. We show in Fig. (2.10,c) the amplitude
distribution of the reconstructed Bessel beam Uret(x4 f , y4 f ). We notice the presence of
disturbances in the form of fringe-like patterns. These disturbances are caused by the
non-filtered diffraction orders which interfere with the light field that stems from the first
order. However, numerical simulations show that these disturbances tend to propagate
away from the propagation axis and thus do not further interfere with the central core of
the beam. This feature is displayed in Fig. (2.10,d) where we show the amplitude of the
Bessel beam at a propagation point z = 60 µm.

We show in Fig. (2.11) the distribution of the retrieved on-axis intensity of the SLM-
reconstructed Bessel beam. We compare it to the case where the Bessel beam is com-
puted directly from the target intensity profile (ideally retrieved). We notice that the target
intensity profile is fairly reproduced with a maximum relative error of 3 % compared to
less than 2 % in the ideal case. This then shows the validity of our approach.

simulation of experiment

ideally retrieved

target

Figure 2.11: Comparison of (green line) target on-axis intensity profile with the one
retrieved in case (blue dashed line) the Bessel beam is computed directly from the target
on-axis intensity [ideally retrieved] and (dotted red line) in case it is generated by the SLM.

2.5.1.3/ IMPACT OF THE ENCRYPTION METHOD

So far, we have used the exact expression of the phase mask, given by Eq. (2.32), to
exactly encode the amplitude and phase of the target field. In Ref. [Bolduc et al., 2013],
and as previously discussed, Bolduc et al. proposed an approximate expression of the
phase mask to facilitate its computation and showed that this approximation can still allow
fair reconstruction of target fields. Actually, the inverse sinc function in the expression of
modulation function M(x, y) was seen to be time consuming and thus an approximation
was proposed. Here, we will verify whether or not the proposed approximation is suitable
for on-axis intensity shaping.

We recall that the approximate version proposed by Bolduc et al. [Bolduc et al., 2013]
consists in assimilating the expression of M(x, y) to Atar2 (defined in page57) while keep-
ing the same expression of the phase term F(x, y) as in Eq. (2.32). We simulate the
propagation of the same Bessel beam (as in Fig. (2.11)) using these two different phase
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masks and compare in Fig. (2.12) the corresponding retrieved on-axis intensity shapes.

In contrast with the exact version, it is clear that the approximate version proposed by
Bolduc et al. does not fairly reconstruct the target intensity profile. The reproduced in-
tensity profile in this case (triangles) largely deviates from the targeted one. We also
considered other profiles, such as one in the form of linear slope and parabolic decay
(Figure not shown). We observed in this case that the approximate approach yields an
oscillating on-axis intensity with a large relative error. This shows that such an approxi-
mation should be avoided in the case of on-axis intensity shaping of Bessel beams.
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Figure 2.12: Comparison between the target on-axis intensity profile of a modified Bessel
beam with flat on-axis intensity and the ones retrieved using (triangles) the approximation
proposed in Ref. [Bolduc et al., 2013] and (circles) our implementation of this method
[Ouadghiri-Idrissi et al., 2016].

2.5.2/ EXPERIMENTAL RESULTS AND DISCUSSION

We show a comparison between simulation results and experimental data in case of
Bessel beams with two different profiles: one is flat-top intensity profile we have used
so far as in Fig. (2.11). The other is in the form of a linear ramp along with a parabolic
intensity decay. This intensity decay is formulated in the same way as in the flat-top
intensity profile (see Eq. (2.30)). In this regard, we consider three Bessel beams with
different values of the intensity slope but exhibiting the same intensity decay. We use in
all cases a cone angle of 4 mrad in the SLM plane (13◦ in the image plane).

Regarding the computation of the phase masks, we take into account, in all cases, the
non-uniformity of the input laser beam whose intensity is described in Fig. (2.9,a). We
use a reference wave with a deviation angle of 5.5 mrad.

In Fig. (2.13,bottom), we compare the numerically and experimentally retrieved on-axis
intensity profiles in all cases: the intensity distributions of the experimentally generated
beams are in excellent agreement with the target and numerical results. The mean rela-
tive error is inferior to 4 % which is experimentally acceptable.

The energy throughput slightly varies from one mask to another due to the variation of
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Figure 2.13: Numerical and experimental data of the intensity distribution along the prop-
agation axis of Bessel beams with (left) uniform and (right) uniformly growing on-axis
intensity profiles.

the beam radius of the target field (corresponding to its chosen longitudinal extent). We
experimentally estimate the energy throughput by measuring the ratio of the power of the
first diffraction order to that of the input beam. In the case of Bessel beam with flat-top
profile, we find an efficiency value of about 10 %.

Numerically, we estimate the energy throughput by computing the power ratio of the light
field after and before spatial filtering. We find that it is higher than the experimental
value by a factor of 2. This may be due to other imperfections of the SLM that were not
accounted for in our numerical model.

In our work, we numerically studied the effect of the input beam intensity distribution on
the retrieved Bessel beam. Our results show that the input intensity (with homogeneous
distribution) does not affect the retrieved on-axis intensity distribution. However, it allows
increasing the energy throughput of the system. We have numerically measured this
quantity in the case of a uniform illumination and compared it to the non-uniform illumina-
tion case. In the first case we found an efficiency of 11 % compared to about 23 % in the
second case.

We can obtain better energy conversion factors if the input field distribution is optimized.
For example, we found an energy conversion of about 60 % in the case of an incident
Gaussian beam with a beam waist of 4 mm. Experimentally, this generally needs the
implementation of a another optical element to appropriately shape the laser beam.
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2.6/ CONCLUSION

In this chapter, we have presented our numerical and experimental works on arbitrary
on-axis intensity shaping of Bessel beams using a single-phase only SLM. We firstly
presented the theoretical background of on-axis intensity shaping which was reported by
Cizmar et al. [Čižmár et al., 2009]. It is based on the interference of multiple J0 beams of
the same temporal frequency but of different longitudinal wavenumbers. According to this
theory, the spatial spectrum of Bessel beams can be computed from any arbitrary target
profile of the on-axis intensity, provided that the latter is physically realizable.

This approach requires the shaping of both the spatial amplitude and phase of an inci-
dent beam. We presented experimental techniques which allow performing this task. Our
chosen approach satisfies our requirements on high energy throughput and high recon-
structed beam accuracy. The latter (i.e. high beam accuracy) is necessary since the
Bessel beam intensity should be accurately controlled at each point of the propagation
distance. The high energy throughput concerns the applicability of this technique in high
power laser applications. To this end, we adopted an experimental approach allowing pre-
cise reconstruction of arbitrarily-shaped Bessel beams from direct space using a single
phase-only SLM. This approach was first introduced by Bolduc et al. [Bolduc et al., 2013]
which we further improved and generalized for non-uniform SLM illumination.

Afterwards, we numerically studied the physical limitations applied to target on-axis inten-
sity profiles of Bessel beams and the corresponding spatial spectra. The spatial spectrum
should be confined in a spectral frequency range delimited by the beam wavelength at
the upper limit and the numerical aperture of the experimental system at the lower one.
In case the spectrum is defined outside this range, the retrieved on-axis intensity will
exhibit on-axis oscillations. To avoid these truncation-induced oscillations, we showed
that target intensity profiles should exhibit smooth intensity variations. We also discussed
constraints applied to the cone angle and beam size of the target Bessel beam.

Finally, we presented our numerical study of SLM pixelization impact on retrieved opti-
cal fields and compared results with our experimental data. Our results showed a very
good agreement between simulations and experiments which validate our chosen ex-
perimental approach. We also discussed the energy throughput of our technique. Our
measurements showed that it is typically around 10 % and that it depends largely on
the transverse size of the target beam. We also discussed the possibility to improve the
energy throughput by means of intensity shaping of the incident laser field.



3
NONLINEAR DYNAMICS AND CONTROL

OF KERR-INDUCED INSTABILITIES IN
BESSEL BEAMS

INTRODUCTION

The nonlinear propagation of Bessel beams in transparent Kerr media has caught a
major interest and found many applications. We have discussed in the first chapter
the major properties of Bessel filaments and some of these applications. Particularly,
Bessel beams allow for homogeneous energy deposition over long propagation distances
in transparent materials. Consequently, Bessel pulses can sustain steady propagation
regime of filamentation which is very advantageous in high power laser applications
[Courvoisier et al., 2016b, Durfee et al., 1993]. Nevertheless, despite the robustness of
these beams, they may undergo, in some conditions, nonlinear instabilities, which restrict
their applicability [Polesana et al., 2008, Cooley et al., 2006].

Nonlinear instabilities refer to the modulation of the central core intensity of Bessel
beams along the propagation distance [Alexeev et al., 2002]. Instabilities induced by
Kerr nonlinearity were particularly investigated by Gadonas et al. [Gadonas et al., 2001].
Considering four wave mixing interactions and using phase-matching arguments, they
showed that a Bessel beam can sustain Kerr self-action which deforms its angular spec-
trum to generate two additional spectral components: an axial wave component and a
secondary conical wave whose cone angle is

√
2 times the incident one (outer ring)

[Gadonas et al., 2001, Pyragaite et al., 2006]. Their numerical simulations highlighted
peak intensity modulation of Bessel beams along propagation which was explained by
the interference of the conical beam with the axial wave component.

In order to achieve a stable propagation regime of Bessel beams, stationary solutions
of the nonlinear propagation equation have been thoroughly investigated. Porras et al.
investigated the stability of Bessel beams in the presence of nonlinear losses (NLL), pre-
cisely multiphoton absorption (MPA) [Porras et al., 2004]. They showed that stable Bessel
filaments can only be formed (steady filamentation regime) if MPA prevails over Kerr self-
focusing. This condition can be satisfied for relatively high input power and high cone
angles [Porras et al., 2004, Couairon et al., 2012].

In filamentation applications such as materials processing, specific values of the cone
angle and input power can be required [Courvoisier et al., 2016b]. Polesana et al.

63



64 CHAPTER 3. NONLINEAR DYNAMICS AND CONTROL OF INSTABILITIES

investigated the effect of the exact positioning of Bessel beams in nonlinear media on
the stability of Bessel filaments [Polesana et al., 2007, Polesana et al., 2008]. They
showed that a Bessel beam will smoothly reshape into a stable filament only if it is
progressively formed inside the Kerr medium. However, if the Bessel beam, with the
same values of the input power and cone angle, is formed prior entering the nonlinear
sample, it will exhibit significant instabilities which consist in quasi-periodic intensity
modulation along propagation (unsteady filamentation regime) as shown in Fig. 3.1.
These two input conditions are referred to as smooth and abrupt intensity transitions
respectively. According to Ref. [Polesana et al., 2007], experimental and numerical
results showed that the growth of the axial wave and outer ring is greatly enhanced in
the case of abrupt intensity transition. Theoretically, this increase in intensity growth
was attributed to enhanced longitudinal phase-matching between the input conical
wave and these newly-generated spectral components [Polesana et al., 2007]. In
contrast, the growth of these components was shown to be impeded in the smooth
transition case. Hence, although nonlinear instabilities can still occur in the case of
smooth intensity transition [Polesana et al., 2008], these results showed the possibility
to reduce nonlinear instabilities even for specific values of the cone angle and input power.

pulses sent through an axicon when the position of the en-
trance face of the cell was shifted from the tip of the axicon
�51�. The peak power of the input Gaussian beam was above
the self-focusing threshold for water but below that for air.
For a 5-cm-long water cell in contact with the axicon, the
axicon focuses the Gaussian beam into a Bessel filament
within the cell. The steady Bessel filament then forms
smoothly �solid curve in Fig. 8� and was shown to undergo
reshaping into structures identified as nonlinear unbalanced
Bessel beams �23,51�. In contrast, for a 3-cm-long water cell
placed 2 cm away from the tip of the axicon, a Bessel beam
forms in air and then enters the water cell abruptly, i.e., with
peak intensity and power sufficient to immediately trigger
nonlinear effects. This results in the unsteady Bessel filamen-
tation regime �dashed curve in Fig. 8� with strong oscilla-
tions of the beam features around those of the potential non-
linear unbalanced Bessel beams attractors in the form of
nonlinear unbalanced Bessel beams, and an associated tem-
poral and spectral dynamics detailed below.

Figure 9�a� shows the intensity map for the near-field of
the unsteady Bessel filament at the propagation distance of
1.4 cm in the nonlinear medium �3.4 cm on Fig. 8�. The
simulation shows that recurrent pulse splitting events are
transmitted from the central peak of the Bessel-like solution
to the external rings. Figure 9�a� shows a central peak just
before splitting and a couple of pre- and post-subpulses,
which actually come from the occurrence of a previous pulse
splitting event. The first ring is also populated by two
couples of subpulses. The near-field dynamics which re-
shapes the central peak and each Bessel ring can be summa-
rized in three steps which occur cyclically: �i� Pulse splitting
in time of the central peak; �ii� separation of the split pulses;
�iii� reconstruction of the central peak. These dynamics re-
shape each Bessel ring with some delay with respect to the
center owing to the energy flux from the ring toward the
center established when the central peak is reconstructed.

The angularly resolved spectra associated to this cyclical
dynamics also present some remarkable features which may
be used as signatures for an experimental detection of the
number of pulse splitting events �51�. Figure 9�b� displays

the numerically computed angularly resolved spectrum of the
field at the same propagation distance as in Fig. 9�a�. The
relevant features are the axial continuum, the secondary ring
�k�=3.8�105 m−1�, and the paired horizontal bands �k�

= �2�105 m−1, �1.5�105 m−1, �0.5�105 m−1�. The
axial emission consists in three parts resulting from a split-
ting of the broad continuum. The arms of the cross-shaped
central part were formed by a splitting in time of the pulse
and give rise to the generation of an additional paired band.
Each pulse splitting in time is associated with a stretching of
the central part of the continuum which is finally split into
three parts and generates an additional paired band. The
number of paired bands thus corresponds to the number of
splitting events.

B. Interpretation of the periodicity of unsteady Bessel
filaments

The complex splitting dynamics occurring in the unsteady
Bessel filaments can be interpreted as the destructive inter-
ference between the conical wave and a tightly localized
pulse superimposing with the Bessel central peak and propa-
gating longitudinally. Nonlinear effects play a role mainly in
the intense central peak of the Bessel beam, where pulse
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FIG. 9. �Color online� �a� Detailed near-field I�r , t� for the un-
steady Bessel filament in water at propagation distance z=1.4 cm.
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Angularly resolved spectra obtained from simulation of unsteady
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Figure 3.1: Numerical simulation results of Ref. [Polesana et al., 2008] comparing the
on-axis fluence of a pulsed Bessel beam in the case of smooth (solid line) and abrupt
(dotted line) intensity transitions. The abrupt intensity transition is considered at the inter-
face between air (linear medium) and water (nonlinear medium) at the point z = 2 cm.

In this chapter, we will present a novel approach to control Kerr-induced instabilities by
means of on-axis intensity shaping of Bessel beams. In the first section, we will first
introduce a detailed theory in order to give more insight to the FWM interactions involved
in the generation and growth of new spectral components. Since Kerr-induced instabilities
were shown to be mainly caused by the generation of new spatial spectral components
[Gadonas et al., 2001], we restrict our work to monochromatic waves. We use the slowly
varying envelope approximation for Bessel beams as in Ref. [Tewari et al., 1996]. We
calculate the third order nonlinear polarization and then derive the Helmholtz equation.

In the second section, we review the theoretical interpretations of Kerr-induced insta-
bilities and investigate related nonlinear dynamics. Using the theory of Gadonas et
al. [Gadonas et al., 2001] and our model, we show that nonlinear spectral distortions
in Bessel beams are established in two steps. The first consists in an initial spectral
broadening which leads to the generation of an "axial wave seed". The second step is
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the establishment of four wave mixing (FWM) interactions leading to the amplification of
the axial wave seed and generation of an outer ring.

In the third section, we further investigate nonlinear instabilities in the case of smooth and
abrupt intensity transitions. We consider our theoretical model to explain how nonlinear
instabilities are mitigated in the smooth transition case and enhanced in the other case.

In the fourth section, we introduce our approach to control nonlinear instabilities by means
of on-axis intensity shaping of Bessel beams. Using numerical simulations in pure media
(where only Kerr nonlinearity is accounted for), we show that nonlinear spectral distortions
can be reduced for specific longitudinal intensity profiles of Bessel beams. We further
discuss the limitation of our approach and show the possibility of further improvements.

Finally, we numerically show that our results are also valid in the filamentation regime,
where photoionization and laser-generated plasma are accounted for. We specifically
show that Bessel filaments can be further stabilized for Bessel beams with optimized lon-
gitudinal intensity profiles. We also show that such modified Bessel beams can generate
more uniform plasma channels compared to those generated by conventional Bessel-
Gauss beams.

3.1/ THEORETICAL BACKGROUND

In 1996, Tewari et al. introduced a theoretical model to describe and explain enhanced
third harmonic generation (THG) in Bessel beams [Tewari et al., 1996]. Our theoretical
model follows the same approach. Instead of THG nonlinear terms, we will solely consider
Four wave mixing (FWM) interactions to study nonlinear spectral distortions in Bessel
beams which are related to Kerr-induced instabilities. Hence, we will later refer this theory
to as "reduced FWM model".

Firstly, we will compute the third order nonlinear polarization and then select the relevant
nonlinear terms which we consider having direct impact on the generation of new spectral
components. Afterwards, we will include these terms in the Helmholtz equation which we
will analytically and numerically study.

3.1.1/ THIRD ORDER NONLINEAR POLARIZATION

In Kerr media, information on nonlinear effects is contained in the third order nonlinear
polarization PNL.It is written as follows:

PNL = ε0χ
(3)EEE (3.1)

where E is the total electric field and χ(3) is the third order susceptibility. According to
previous works [Gadonas et al., 2001], nonlinear instabilities are mainly caused by spa-
tial distortions of Bessel beam spectra. Hence, for the sake of simplicity, we neglect time
contribution and consider that the interacting waves oscillate at the same temporal fre-
quency ω0. Of course, it is possible to extend our model to the non-monochromatic case
to give more insight into other Kerr-induced phenomena such as temporal spectral broad-
ening and stimulated Raman scattering [Polesana et al., 2007, Dubietis et al., 2007]. This
will be the subject of future works.
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In the framework of four wave mixing interactions, we consider the interaction of two
intense pump waves, denoted E1 and E2, with a signal wave E3 to generate an idler wave
E4. The idler wave is then assumed to be generated at the same angular frequency ω0. In
addition, we consider that these four waves E j are linearly polarized along the same axis
x and possessing different longitudinal spatial frequencies kz j. The expression of each of
these waves is given by:

E j =
1
2

E jx E j = A jexp[i(ω0t − kz jz)] + c.c (3.2)

where A j is the complex amplitude of the electric field E j. The total electric field can be
written as:

E =

4∑
j=1

E j (3.3)

We substitute Eq. 3.3 in Eq. 3.1 and only consider nonlinear polarization terms P(4)
NL

related to the idler wave E4. We obtain:

P(4)
NL =

1
8
ε0χ

(3)x
[
E3

4 + 3(E2
1 + E2

2 + E2
3)E4 + 6(E1E2E3)

]
(3.4)

We substitute Eq. 3.2 in Eq. 3.4, and only keep terms preserving the same frequency ω0.
Writing Eq. 3.4 in the same form as Eq. 3.2, we obtain:

P(4)
NL =

1
2

x p(4)
NL, ω0

exp[i(ω0t − kz4z)] + c.c (3.5)

where

p(4)
NL, ω0

=
3
4
ε0χ

(3)
[
|A4|

2A4 + 2 (|A1|
2 + |A2|

2)A4

+2
(
A1A∗2A3e−i(kz1−kz2+kz3−kz4)z + A∗1A2A3e−i(−kz1+kz2+kz3−kz4)z

+A1A2A∗3e−i(kz1+kz2−kz3−kz4)z) + ...
]

(3.6)

This equation is similar to that reported in [Agrawal, 2013] which was demonstrated for
nonlinear interactions in optical fibers. The first and second terms of Eq. 3.6 are re-
sponsible for self phase modulation (SPM) and cross phase modulation (XPM) respec-
tively. The last three terms correspond generally to non-degenerate FWM processes.
As stated above, Kerr-induced FWM interactions are responsible for the generation of
new spectral components (axial wave and outer ring), which are responsible for nonlin-
ear instabilities. We will later show that, according to the theory of Gadonas et al. Ref.
[Gadonas et al., 2001], the first two FWM terms (second line of Eq. 3.6) are responsible
for the generation of the axial wave while the other leads to the generation of the outer
ring through parametric amplification [Gadonas et al., 2001]. In previous works on modu-
lation instability in nonlinear fibers, both XPM and FWM-induced parametric amplification
were accounted for [Agrawal, 2013]. In our case, since we consider three FWM terms, the
inclusion of XPM will further complicate the resolution and analysis of our model. Thus,
we will only consider the three FWM terms.
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3.1.2/ REDUCED FWM MODEL

In our theory, we limited Kerr-nonlinearity to three FWM terms as stated above. Hence,
our model is referred to as "reduced FWM model". In the following, we will derive the
propagation equation where we implement the previously computed third order polariza-
tion. We then solve the resulting equation in spectral domain to study the generation and
growth of new spectral components.

3.1.2.1/ DERIVATION OF HELMHOLTZ EQUATION

The starting point is the following wave equation given by:

∆E4 −
εr

c2

∂2E4

∂t2 = µ0
∂2P(4)

NL

∂t2 (3.7)

E4 was defined in Eq. 3.2. For simplicity, we will only consider ideal Bessel beams defined
by the J0 Bessel function. The complex amplitudes of the four interacting waves A j are
defined as follows:

A j =J0(kr jr)eiφ j , j = 1, 2, 3 (3.8)
A4 =a4(z) J0(kr4r)

where kr j is the transverse spatial frequency of the amplitude A j. Here, we considered
the approximation of undepleted pump where the intensity of the pump waves remains
constant along propagation. To further simplify the problem and subsequent analytical
analysis, we assume that the signal wave also remains constant. Thus, our conclusions
would generally only be valid for relatively short propagation distances.

Note that we also took into account the input phase of each wave. Actually, since we
defined each wave at a specific spatial frequency kr j, the input phase φ j is then interpreted
as a spectral phase related to the frequency kr j. As in Ref. [Tewari et al., 1996], we are
solely interested in the axial behavior of A4 which is referred to as axial complex envelope
and is denoted a4(z). The evolution of this complex envelope along propagation will be
analyzed according to the Helmholtz equation which will later be derived.

Since we developed an expression of P(4)
NL with the same form as E4, we can develop Eq.

3.7 without the complex conjugate terms. We obtain:

2ikz4
∂a4(z)
∂z

J0(kr4) =
k2

ε0n2 p(4)
NL (3.9)

where n is the linear refractive index and k =
√

k2
r j + k2

z j is the wavenumber in the nonlinear
medium. This formula is demonstrated in Appendix 3.A (page 153). Substituting Eq. 3.8
in Eq. 3.9 and neglecting SPM and XPM terms in the expression of p(4)

NL, it becomes:

∂a4(z)
∂z

J0(kr4r) =
−2i k n2

n cos(θ4)
J0(kr1r)J0(kr2r)J0(kr3r)

[
exp(−i∆kz1z)ei∆φ1 + exp(−i∆kz2z)ei∆φ2

+ exp(−i∆kz3z)ei∆φ3
]
. (3.10)
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where n2 = (3/8)χ(3)/n and the functions ∆kz j and ∆φ j are defined by Eqs. 3.11 and 3.12.

∆kz1 =kz1 + kz2 − kz3 − kz4

∆kz2 =kz1 − kz2 + kz3 − kz4 (3.11)
∆kz3 = − kz1 + kz2 + kz3 − kz4

and

∆φ1 =φ1 + φ2 − φ3

∆φ2 =φ1 − φ2 + φ3 (3.12)
∆φ3 = − φ1 + φ2 + φ3

Here, we define the longitudinal phase matching conditions (LPM) for ∆kz j = 0.

In order to remove the J0 function from the left-hand-side of Eq. 3.10, Tewari et al. sug-
gested to multiply both parts of this equation by rJ0(kr4r) and integrate over 0 to +∞. In
other words, we apply Hankel transformation on both sides of the propagation equation.
Hence, this allows the analysis of the propagation equation in the spectral domain.

We recall that, in the spatial frequency domain, a Bessel beam takes the form of a ring
(Bessel ring) with a radius kr0 = k sin(θ) where θ is the cone angle. While an ideal Bessel
beam is composed of a single frequency kr0, the spatial spectrum of a quasi-Bessel beam
is distributed over multiple frequencies centered around kr0. In this regard, we generally
consider that the frequencies kr1 and kr2 of pump waves can be different from kr0.

On the left part of Eq. 3.10, we encounter the integral
∫ +∞

0 rJ2
0(kr4r)dr. According to

Lommel [Tewari et al., 1996], this integral is infinite and is given by:

∫ +∞

0
rJ2

0(kr4r)dr =
1

kr4
δ(0) (3.13)

In our work, we consider a finite upper limit of this integral which is denoted r f . According
to Ref. [DLMF, ], the integral

∫ +r f

0 rJ2
0(kr4r)dr is equal to r2

f /2(J2
0(kr4r f ) + J2

1(kr4r f )). Using
the asymptotic expressions of both Bessel functions [DLMF, ], i.e.

Jα(kr4r) =

√
2

πkr4r
cos

(
kr4r −

απ

2
−
π

4

)
, α = 1, 2 (3.14)

then, this integral can be approximated to:∫ r f

0
rJ2

0(kr4r)dr =
r f

πkr4
(3.15)

which is also proportional to
1

kr4
. Hence, we can avoid an infinite value of this integral

and simplify our equation as demonstrated in [Tewari et al., 1996]. Equation 3.10 then
becomes:
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∂a4(z)
∂z

= i C0 tan(θ4)IT PM
[
exp(−i∆kz1z)ei∆φ1

+ exp(−i∆kz2z)ei∆φ2 + exp(−i∆kz3z)ei∆φ3
]
. (3.16)

where C0 = −2π k2n2/nr f and IT PM is the Transverse Phase Matching integral. In contrast
with Ref. [Tewari et al., 1996], IT PM is defined for a finite upper integral limit and is given
by:

IT PM =

∫ r f

0
J0(kr1 r) J0(kr2 r) J0(kr3 r) J0(kr4 r) r dr (3.17)

3.1.2.2/ DERIVATION OF HELMHOLTZ EQUATION FOR θ4 = 0

Equation 3.16 is not valid in case the idler wave frequency is zero (θ4 = 0). In this special
case, the integral

∫ +r f

0 rJ2
0(kr4r)dr is reduced to

∫ +r f

0 rdr, which yields r2
f /2. Thus, the idler

wave is assimilated to an apertured plane wave instead of a J0 beam. Then, Eq. 3.16 is
written as:

∂a4(z)
∂z

= −i
4 kn2

nr2
f

IT PM0
[
exp(−i∆kz1z)ei∆φ1

+ exp(−i∆kz2z)ei∆φ2 + exp(−i∆kz3z)ei∆φ3
]
. (3.18)

The TPM integral is reduced to a product of three Bessel functions instead of four and is
written as:

IT PM0 =

∫ r f

0
J0(kr1 r) J0(kr2 r) J0(kr3 r) r dr (3.19)

3.1.2.3/ NORMALIZED PROPAGATION EQUATION

In this section, we will normalize our propagation equation 3.16 and then generalize it
to account for broad spatial spectra of input quasi-Bessel beams. As we will show in
the following sections, it is necessary to consider the contribution of multiple spectral
components to describe the nonlinear evolution of the spatial spectrum of the beam. This
generalization will be performed by summing the normalized equation over all frequencies
of the pump and signal waves.

Let’s use the following normalized parameters as in Ref. [Gadonas et al., 2001]:

- β j = kr j/kr0, j = 1, 2, 3, 4.

- ν = kr0r.

Regarding LPM conditions, let’s consider as an example the first condition ∆kz1 and gen-
eralize it to the other two conditions. We have:

∆kz1 =kz1 + kz2 − kz3 − kz4

=k
[
cos(θ1) + cos(θ2) − cos(θ3) − cos(θ4)

]
=k

[
1 − θ2

1/2 + 1 − θ2
2/2 − 1 + θ2

3/2 − 1 + θ2
4/2

]
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Here, we used the approximation cos(θ j) ≈ 1 − θ2
j/2. We multiply and divide this equation

by k to express it by the transverse frequencies kr j ≈ k θ j:

∆kz1 = −
1

2 k
[
k2

r1 + k2
r2 − k2

r3 − k2
r4
]
×

kr0

kr0

= −
k2

r0

2 k
[
β2

1 + β2
2 − β

2
3 − β

2
4
]

We define the characteristic distance Lp = 2 k/k2
r0 which is equivalent to the Rayleigh

range of the central core of Bessel beams [Gadonas et al., 2001]. We then define the
following normalized parameters: ξ = z/Lp; ∆kzm = −∆βzm/Lp where

∆βz1 = β2
1 + β2

2 − β
2
3 − β

2
4

∆βz2 = β2
1 − β

2
2 + β2

3 − β
2
4 (3.20)

∆βz3 = −β2
1 + β2

2 + β2
3 − β

2
4

Finally, to generalize our theoretical model to a distribution of spectral components, we
use a triple integral of Eq. 3.16 over all possible frequencies of the pump and signal
waves. It becomes:

∂a4(ξ, θ4)
∂ξ

= i C0 tan(θ4)

+∞∫
0

dβ1S 1(β1)

+∞∫
0

dβ2S 2(β2) (3.21)

×

+∞∫
0

dβ3S 3(β3) IT PM

3∑
m=1

exp(i∆φm + i∆βzmξ)

where IT PM is rewritten as:

IT PM =
1

k2
r0

∫ ν f

0
J0(β1ν) J0(β2ν)) J0(β3ν) J0(β4ν) ν dν (3.22)

and ν f = kr0r f and S j(β j), j = 1, 2, 3, stand for the amplitude distribution of the spectral
components of the pump and signal waves respectively. The complex spatial spectra are
given by: S̃ j(β j) = S j(β j)exp[iφ j(β j)]. Recall that we interpreted the input phase term φ j as
the spectral phase φ j(β j) related to the frequency β j. For simplicity, we will keep on using
the notation φ j.

Note that the notation S j(β j) does not imply that each interacting wave has its specific
spectral distribution. It was only introduced to show that each of these waves is defined
in a specific range of frequencies. We will later define these domains and present our
arguments.

3.1.3/ ANALYSIS OF THE TPM INTEGRAL

The transverse phase matching (TPM) integral is a finite integral of the product of four
zeroth order Bessel functions. To compute this integral, it is necessary to use some
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approximations or perform numerical integration. We will analyze this integral numerically
and analytically and compare our results with those reported in [Gadonas et al., 2001].
We will show that IT PM peaks at specific transverse spatial frequencies which we will
refer to as transverse phase matching conditions. We will also show that IT PM is inversely
proportional to the central frequency and demonstrate that Kerr nonlinearity decreases
with the value of the cone angle.

3.1.3.1/ NUMERICAL COMPUTATION

To numerically compute this integral, we first define a vector ν representing the transverse
coordinate. we also define two vectors β3 and β4 representing all possible values of the
spatial frequencies of the signal and idler waves A3 and A4.

As discussed above, since the spatial spectrum of a quasi-Bessel beam contains many
frequencies, the spatial frequencies β1 and β2 of the pump waves can be different from
the central frequency β0 = 1. We then define a matrix [R, P,Q] from the vectors ν, β3, β4.
If β3 = β4 or β3 has a specific value, then we define a 2×2 matrix.

To verify the validity of our calculations, We compared our results with those of Ref.
[Gadonas et al., 1999]. To this end, we considered a Gaussian apodization and choose
the same parameters as those of this reference. The integral is written as:

IT PM =

∫ r f

0
exp(−ν2/g2)J0(β1 ν) J0(β2 ν) J0(β3 ν) J0(β4 ν) ν dν (3.23)

where g = kr0d0 and d0 contains information on the waist of the Gaussian envelope of
the pump and signal waves [Gadonas et al., 1999]. To compute the integral, we use the
function "sum" of the matrix R multiplied by the product of the four Gaussian enveloped
Bessel functions over the matrix R. Figure 3.2 shows a comparison between Fig. (2) of
Ref. [Gadonas et al., 1999] and our numerical result. There is a very good consistency
between the two curves which validates our calculations.
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β4=kr4/kr0 β4=kr4/kr0

Figure 3.2: Comparison between (right) Fig. (2) of Ref. [Gadonas et al., 1999] and (left)
our numerical computation of Eq. 3.23. The parameters β3 and β4 are denoted p and q in
Ref. [Gadonas et al., 1999].
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3.1.3.2/ ANALYTICAL COMPUTATION

To simplify the analytical resolution of this integral, we consider the asymptotic approxima-

tion of Bessel functions of the zeroth order that is expressed as J0(ν) ≈

√
2
πν

cos
(
ν − π/4

)
[DLMF, ].

This asymptotic formula has a singularity for ν = 0 and can only be used in a range
[ν0,+∞[, where ν0 > 0 is a constant. For lower values of ν (up to ν0 which can be de-
termined numerically), we can develop the function J0(ν) in Tailor series up to the first
order to simplify the analytical computation of the TPM integral. In this case, J0(ν) can be
approximated to:

J0(ν) ≈


1 − ν2/4 , 0 ≤ ν ≤ ν0√

2
πν

cos
(
ν − π/4

)
, ν0 ≤ ν

(3.24)

To verify the validity of this approximation, we compare the variation of the function J0(x),
defined by the Matlab function "besselj(0,ν)", with the approximation given by Eq. 3.24.
We choose ν0 = 1.1. Fig. 3.3 shows that this approximation fairly reproduces the Bessel
function J0(ν).
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Figure 3.3: Comparison between the variation of J0(ν), defined by the Matlab function
"besselj(0,ν)", with its approximate expression given by Eq. 3.24 where ν0 = 1.1.

In order to make use of this approximation, we should consider that the argument of each
Bessel function of the TPM integral IT PM = 1/k2

r0

∫ +ν f

0 J0(β1ν) J0(β2ν)) J0(β3ν) J0(β4ν) ν dν
can be different from the other. That is to say, each function has a specific value of the
breakpoint ν0.

For simplicity, let’s first consider the case where β1 = β2 and β3 = β4 which corresponds
to two identical pump waves interacting with a signal wave to yield an idler wave at the
same frequency as that of the signal. For analytical integration, we can consider infinite
upper limit.
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CASE OF TWO IDENTICAL PUMP WAVES

In this case, the TPM integral consists of the squared product of just two Bessel functions:

IT PM = 1/k2
r0

∫ +∞

0
J2

0(β1 ν) J2
0(β4 ν) r dr (3.25)

The breakpoints of the Bessel functions J0(β1 ν) and J0(β4 ν) are ν1 = 1.1/β1 ν4 = 1.1/β4
respectively. In our calculations, we compute IT PM as a function of β4 for a given value
of β1. Since the breakpoint ν4 varies as a function of β4, the approximative expression of
IT PM integral depends on whether ν1 < ν4 or ν1 > ν4.
In the case where β4 < β1 (ν1 < ν4), the integral 3.22 can be written as IT PM = I1 + I2 + I3
where:

I1 =

∫ ν1

0
1/k2

r0
(
1 −

(β1 ν)2

4
)2(1 − (β4 ν)2

4
)2ν dν , νε[0, ν1] (3.26)

I2 =

∫ ν4

ν1

2
kr0kr1 π

cos2(β1 ν − π/4)
(
1 −

(β4 ν)2

4
)2dν , νε[ν1, ν4] (3.27)

I3 =

∫ +∞

ν4

4
kr1 kr4 π2

cos2(β1 ν − π/4) cos2(β4 ν − π/4)
ν

dν , νε[ν4,+∞] (3.28)

We obtain similar expressions for β4 > β1. More details can be found in Appendix 3.B
(page 154). These integrals can be solved analytically. The solution to these integrals
shows that only the third integral I3 presents singularities, which we interpret as trans-
verse phase matching (which are referred to as transverse spatial resonances in Ref.
[Gadonas et al., 2001]):

I3 =
1

2 kr1kr4π2

{
− Ci[2(β1 + β4) ν] + Ci[2(β1 − β4) ν] (3.29)

+ 2 Si(2β1 ν) + 2 Si(2β4 r) + ln(ν)
}+∞
ν4

where Ci(x) and Si(x) stand for the cosine and sine integrals respectively and are defined

as follows: Ci(x) =
∫ +∞

0
cos(t)

t
dt and Si(x) =

∫ +∞

0
sin(t)

t
dt. Knowing that the integral Ci(x)

exhibits a singularity for x = 0, the TPM integral then exhibits a singularity for β4 = β1.
Although this expression is not valid for β4 = 0, the fact that I3 is inversely proportional to
β4 suggests that the TPM integral exhibits a resonance at this frequency too.

Fig. 3.4 shows a comparison between the numerical and analytical computation of the
TPM integral. The angle of the signal wave β4 varies from 0.005 and 1.5. We observe a
strong resonance at lower cone angles and a weak resonance at the pump cone angle
(20 mrad). These results are in qualitative agreement with those obtained by Gadonas et
al. as well as my numerical computation of this integral (Fig. 3.4 [red dotted line]).

N.B: Notice that IT PM is inversely proportional to the central frequency kr0. This shows
that this integral is smaller for higher values of cone angles. Thus, this partly explains
why nonlinear instabilities are weaker for high cone angles.
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Figure 3.4: (blue line) Analytical and (red dotted line) numerical computation of the TPM
integral given by Eq. 3.25.

CASE OF DIFFERENT INTERACTING WAVES

In the case where all spatial frequencies are different, the resolution of Eq. 3.22 is more
complicated since there are two other breakpoints. However, the resonance conditions
are only found in case the Bessel function is approximated by the second formula of Eq.
3.24. In the case β4 > β j, j = 1, 2, 3 , the expression of the TPM integral is given by:

IT PM =
1

2
√

kr1kr2kr3kr4π2

{
Ci[(β1 + β2 − β3 − β4) ν] + Ci[(β1 − β2 + β3 − β4) ν] (3.30)

+ Ci[(β1 − β2 − β3 + β4) ν] + Ci[(β1 + β2 + β3 + β4) ν]

− Si[(β1 − β2 − β3 − β4) ν] + Si[(β1 + β2 + β3 − β4) ν]

+ Si[(β1 + β2 − β3 + β4) ν] + Si[(β1 − β2 + β3 + β4) ν]
}+∞
ν4

From this expression, and since the function "Si" is always finite, we deduce three different
resonance conditions corresponding to the conditions for which the function Ci exhibits
singularities:

∆β1 = β1 + β2 − β3 − β4; ∆β2 = β1 − β2 + β3 − β4 and ∆β3 = −β1 + β2 + β3 − β4 (3.31)

For two identical pump waves β1 = β2 = 1, these conditions are reduced to β3 = β4 and β3+

β4 = 2. These two conditions are identical to those reported in Ref. [Gadonas et al., 2001]
(see Fig. (2) of Ref. [Gadonas et al., 2001] shown in Fig. 3.5). However, if we consider
the results of Gadonas et al. (the same figure 3.5), they stated that transverse spatial
resonances can occur for two more conditions. They are noted as: β3 = β4+2 and β4 = β3+

2. These two conditions were determined considering numerical integration of the TPM
integral. In our case, we assume that these conditions refer the cutoff frequencies over
which the TPM integral is zero [Tewari et al., 1996]. Therefore, they will not be accounted
for in our analysis.
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Figure 3.5: Figure (2) of Ref. [Gadonas et al., 2001]: Results of the numerical computa-
tion of the TPM integral written as: IT PM =

∫ +∞

0 exp(−2ν2/g2)J2
0(ν) J0(β3 ν) J0(β4 ν) ν dν. The

parameters β3 and β4 are denoted p and q in Ref. [Gadonas et al., 2001].

CASE OF TWO IDENTICAL PUMP WAVES AND β4 = 0

Considering the particular case where β4 = 0, the TPM integral reads:

IT PM0 = 1/k2
r0

∫ +∞

0
J2

0(β1 ν) J0(β3 ν) r dr (3.32)

For β1 = 1, an analytical solution to this integral can be written as [DLMF, ]:

IT PM0 =
1

πβ3

√
1 − β2

3/4
(3.33)

This equation exhibits a singularity for two spatial frequencies, namely β3 = β4 = 0 and
β3 = 2. Notice that these two TPM conditions can be obtained from the general TPM
conditions described by Eqs. 3.31. Hence, although the TPM integral 3.22 is only defined
for β4 > 0, the case where β4 = 0 can still be taken into account for values close to zero.

3.2/ ANALYSIS OF KERR-INDUCED INSTABILITIES IN BESSEL

BEAMS

Before introducing our approach in controlling nonlinear instabilities in Bessel beams, we
propose to use our reduced FWM model to analyze their different features. To this end,
we first present and analyze numerical simulation results of nonlinear propagation of a
Bessel beam. We will specifically analyze FWM interactions leading to the generation
and growth of new spectral components. We will then use our model to interpret these
nonlinear dynamics.
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3.2.1/ NUMERICAL SIMULATION MODEL IN A PURE KERR MEDIUM

Our numerical simulations are based on standard nonlinear Schrödinger equation
(NLSE) [Gadonas et al., 2001, Porras et al., 2004, Polesana et al., 2008]. To highlight
the effect of Kerr-induced instabilities, we will, in a first approximation, only consider
Kerr nonlinearity and neglect other nonlinear effects (nonlinear losses), as in Ref.
[Gadonas et al., 2001]. The propagation equation we solve is then written as:

∂A
∂z

=
i

2k0
∆⊥A + ik0n2|A|2A (3.34)

where A is the linearly polarized monochromatic complex amplitude of the laser electric
field, ∆⊥ = 1/r∂/∂r +∂2/∂r2 is the transverse Laplacian operator, r and z are the radial and
axial coordinates, k0 is the wave vector in vacuum (k = n k0 in the medium), n and n2 are
the linear and nonlinear refractive indices.

Nonlinear instabilities were shown to depend on the input beam conditions
[Polesana et al., 2007]. These conditions are depicted in Fig. (3.6). In case the Bessel
beam is progressively formed in the medium (Fig. (3.6,left)), nonlinear instabilities were
shown to be negligible. In contrast, instabilities were shown to be enhanced in case the
beam is formed prior entering the sample in such a way as its peak intensity coincides
with the point of laser-matter contact (Fig. (3.6,middle)). These conditions are thus re-
ferred to smooth and abrupt intensity transitions.
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Figure 3.6: Input conditions for numerical simulations reported in (left) Ref.
[Polesana et al., 2008] and (right) Ref. [Gadonas et al., 2001].

In their analysis of nonlinear instabilities in Bessel beams [Gadonas et al., 2001],
Gadonas et al. modeled quasi-Bessel beams with a Gaussian-apodized Bessel func-
tion: AGJ0(r, z = 0) = exp(−r2/w2

0) J0(k r sin(θ)). In their simulations, the Bessel beam, at
z = 0, is at its maximum intensity as depicted in Fig. (3.6,right). They showed that non-
linear intensity modulation appears right after entering the nonlinear medium. This fea-
ture is similar to the abrupt input condition, like the one shown in [Polesana et al., 2007].
This model does not correspond to quasi-Bessel beams that are usually used experi-
mentally, i.e. those generated by axicons. In the following, we will consider an axicon-
generated Bessel beam [Polesana et al., 2007, Polesana et al., 2008], which we will refer
to as Bessel-Gauss beam, propagating according to the smooth intensity transition case.
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The input field is then modeled by a Gaussian beam with a spatial phase characterizing
the axicon conical focusing:

ABG(r, z = 0) = exp
(
−

r2

w2
0

− k r sin(θ)
)

(3.35)

where w0 is the beam waist defined at 1/e of the central amplitude and θ is the cone angle
of the beam in the nonlinear medium.

Although nonlinear instabilities are reduced in smooth transition case, they can still take
place in case Kerr nonlinearity prevail over nonlinear losses, which corresponds to rela-
tively low peak intensities of Bessel beams and low cone angles [Polesana et al., 2007,
Porras et al., 2004, Couairon et al., 2012]. In our simulations, since nonlinear losses are
neglected, the input power and Bessel cone angle are chosen as to induce significant
on-axis intensity modulation. We use a relatively low value of the cone angle θ = 4° as
to enhance nonlinear FWM interactions. The peak intensity is chosen to be high enough
to trigger Kerr nonlinearity but low enough to not lead to optical collapse, i.e. nonlin-
ear losses in this case are physically small and can be neglected in a first step (weakly
nonlinear filamentation regime [Polesana et al., 2008]). We chose a maximal intensity
Imax = 14.5 TW/cm2 corresponding to an input power Pin = 47.6 MW. Parameters of our
simulations are summarized in table 3.1.

λ (µm) n n2 (m2/W) θ (◦) w0 (µm) Pin (MW)
0.8 1.45 2.48 10−20 4 300 47.6

Table 3.1: Numerical parameters used in simulations. The values of n and n2 correspond
to those of fused silica [Gulley et al., 2010].

Note that our nonlinear propagation equation (3.34) is solved using cylindrical symmetry.
Thus, potential azimuthal modulation instabilities are not accounted for.

3.2.2/ NUMERICAL SIMULATION RESULTS

Simulation results are shown in Fig. (3.7). In Fig. (3.7,a), we plot the intensity evolution
as a function of the radial distance r and propagation distance z. The beam intensity is
seen to undergo longitudinal modulation not only along the central core but also in the
peripheral rings. The on-axis intensity is shown in Fig. (3.7,b), where these intensity
oscillations, with a period of ≈ 180.5 µm, are clearly apparent.

In Fig. (3.7,c) the spatial spectrum |S (kr, z)|2 is displayed as a function of the propagation
distance. We recall that the spatial spectrum of a Bessel beam in the linear regime is
in the form of a ring centered around the Bessel transverse frequency kr0 = 0.55 µm−1.
In our simulations, we make use of azimuthal symmetry of the beam and thus we only
display the evolution of a cross-section along the propagation distance. After an initial
stage of spectral broadening around the central frequency kr0, we notice the generation
of two particular spectral components at kr ≈ 0 and kr ≈ 1.5kr0. These components are
referred to an axial wave and outer ring respectively.

As discussed above, the observed longitudinal intensity modulation can be explained as
the interference of these newly-generated waves with the input conical beam. In the
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literature, although both spectral components are considered as part of nonlinear insta-
bilities, the axial wave is the only one that is usually considered to interact with the in-
put Bessel beam [Gadonas et al., 2001, Polesana et al., 2008]. Furthermore, we notice
in Fig. (3.7,c) parabolic-like structures in the spatial spectrum that appear before the
growth of the axial wave. What is the contribution of the outer ring in nonlinear intensity
modulation? and what is the cause of these spectral structures and what is their role
in subsequent nonlinear distortions? In the following, we will bring an answer to these
questions.
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Figure 3.7: NLSE simulation results: (a) intensity distribution of a Bessel–Gauss (BG)
beam propagating in a pure nonlinear Kerr medium (n2 = 2.4810−16 cm2/W), as a function
of the radial and propagation distances r and z, (b) the corresponding on-axis intensity,
(c) the spatial spectrum distribution |S (kr j|

2/|S (kr0|
2| along the propagation distance (log-

arithmic scale dB) and (d) the on-axis spectral intensity of the axial wave (solid line) and
outer ring in linear scale (dashed line). The intensity of both spectral components are
normalized to the maximal intensity value of the central frequency.

3.2.3/ INTERPRETATION OF NEW FREQUENCY GENERATION

In abrupt input condition, the axial wave was shown to be directly generated and thus
leads to instantaneous on-axis intensity modulation [Polesana et al., 2007]. In soft input
condition, which is the case of Fig. (3.7), both the axial wave and outer ring are gradually
generated and amplified as shown in Fig. (3.7,c,d). Up to z = 2600 µm, the axial wave and
outer ring (kr ≈ 0 and kr ≈ 1.5kr0) are not efficiently generated and exhibit an oscillatory
behavior. The magnitude of their spectral intensity is very low and is below −40 dB. After
this propagation point, we notice a significant increase in the spectral intensity of both
spectral components in an oscillating fashion. Notice the near linear growth of the axial
wave which is similar to the one reported in [Gadonas et al., 2001]. Considering the beam
spectral expansion, which exhibits parabolic-like structures, all spectral components that
are further away from the main ring (Bessel ring) show the same oscillatory behavior. To
explain these features, let’s first recall the theory of Gadonas et al..

In our reduced FWM model, we considered all the FWM interactions that, according to
our estimate, contribute the most to nonlinear instabilities. However, this does not tell
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us whether these FWM interactions take place all at once or that they step in accord-
ing to a specific order. In this regard, the theory of Gadonas et al., reported in Ref.
[Gadonas et al., 2001], shows that nonlinear interactions occur at a specific order and
not necessarily at the same time. We will discuss this point later in this section.

We will first recall and describe the theory of Gadonas et al. We will specify the simi-
larities between this theory and our reduced FWM model. Then, we will further discuss
the different features of nonlinear spectral distortions of Bessel beams observed in our
simulations.

3.2.3.1/ DESCRIPTION OF THE THEORY OF REF. [GADONAS ET AL., 2001]

The theory reported by Gadonas et al. [Gadonas et al., 2001] allowed describing the
nonlinear processes leading to the generation of both the axial wave and outer ring.
This theory is based on standard nonlinear Schrödinger equation (NLSE) expressed by
Eq. (3.34). Considering the same normalized parameters as described previously (sec-
tion 3.1.2.3, page 69), this equation becomes:

∂B
∂ξ
− i∆⊥nB = iγ|B|2B (3.36)

where the input optical envelope is simply modeled by a J0 beam A0(r) =
√

I0J0(ν) and
B0 = J0(ν). The nonlinear medium is assumed to be of weak nonlinear coefficient δNL =

n2k0I0 compared to the linear phase shift of a J0 beam δ = k2
r0/2k, i.e. γ = δNL/δ � 1. In

this case, the solution of Eq. (3.36) was written as:

B = B0(ν) + B1(ν, ξ) + B2(ν, ξ) + ... (3.37)

such that B j−1 ∝ γ j−1, j ∈ N∗. Finally, considering quantities of the same order, i.e. B j,
γ( j−1)B j−1,etc, one can develop a series of nonlinear propagation equations to calculate
each of the quantities B j as a function of B j−1 [Gadonas et al., 2001]:

∂B1

∂ξ
− i∆⊥nB1 = iγ|B0|

2B0 , first approximation (3.38)

∂B2

∂ξ
− i∆⊥nB2 = iγ(2|B0|

2B1 + B2
0B∗1) , second approximation (3.39)

These two equations indicate that the solution B1 depends on nonlinear interaction of
input beam B0 = J0(ν) with itself while the solution B2 depends on the interaction of B0 with
the self-generated wave B1. It is then clear that the two nonlinear interactions described
according to the second approximation can only take place after the one described in the
first approximation.

In the following, we will separately consider the nonlinear interactions described by Eqs.
(3.38) and (3.39). Then, we will solely take into account nonlinear terms specific to each
equation and insert them in our reduced FWM model. Afterwards, We will compare our
theoretical results with numerical simulation results of Fig. (3.7).
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3.2.3.2/ FIRST APPROXIMATION: GENERATION OF THE AXIAL WAVE SEED

According to the first approximation (Eq. 3.38), the solution B1 is a result of the interaction
of three identical waves B0 = J0(ν). In the framework of FWM process, this corresponds
to the interaction of two identical pump waves with a signal wave identical to the pump. In
this case, the longitudinal phase-matching (LPM) condition for the idler wave states that
β4 = β3 = 1. Such an interaction is reminiscent of self-phase modulation (SPM) according
to which the pump wave self-induces a nonlinear phase shift. In the following, we will refer
to this term as SPM (that is solely applied to the idler wave). Regarding the transverse
phase-matching (TPM) condition, the TPM integral is written as:

I1st
T PM = 1/k2

r0

∫ ν f

0
J3

0(ν)J0(β4 ν) ν dν (3.40)
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Figure 3.8: Numerical computation of the TPM integral in the case of the first approxima-
tion according to Eq. (3.8, (solid line) and tan(θ4) I1st

T PM (dashed line). These two quantities
are normalized to their specific maximal value.

Its numerical computation shows that transverse resonance occurs also for β4 = 1 (see
Fig. (3.8)). According to Ref. [Gadonas et al., 2001], Bessel beams are robust to Kerr
nonlinearity of the first approximation and no new frequency can be efficiently generated.
However, although the TPM integral is maximal at β4 = 1, it is not zero at other spatial
frequencies. Unfortunately, this theory does not tell us the behavior of the idler wave
along propagation. In this regard, we consider our reduced FWM model described by Eq.
(3.21).

Considering the same conditions as in the first approximation, we consider two single and
identical pump waves and a signal wave each defined at β1 = β2 = β3 = 1. We ignore the
input spectral phases φ j (we will discuss their impact in the next section). The expression
of the corresponding input spatial spectra is written as:

S̃ j(β j) = δ(β j − 1), j = 1, 2, 3 (3.41)

By inserting Eq. (3.41) in Eq. (3.21) and integrating over ξ, we find:

a4(ξ, θ4) = 3i C0 tan(θ4) I1st
T PMξ exp

[
0.5i(1 − β2

4)ξ
]
sinc

[
0.5(1 − β2

4)ξ
]

(3.42)
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We compute the squared absolute value I4(ξ, θ4) = |a4(ξ, θ4)|2 of Eq. (3.42) and we obtain:

I4(ξ, θ4) ∝
(
I1st
T PM

)2 tan2(θ4)
(1 − β2

4)2
sin2 [

0.5(1 − β2
4)ξ

]
(3.43)

The on-axis envelope of the idler wave a4(ξ, θ4) is then expressed as a function of the
same TPM integral I1st

T PM. Notice that the LPM terms ∆βzm are all reduced to (1 − β2
4).

The dependence of I4(ξ, θ4) on this LPM term is expressed as [sin(0.5(1 − β2
4)ξ)/(1 − β2

4)]2.
This term states that I4 oscillates at a period p(θ4) = λ/n| cos(θ4) − cos(θ0|). This term
also indicates that I4 only has significant values at low propagation distances and in case
β4 = 1, i.e. in case LPM condition is satisfied. Thus, we express the z-evolution of the
idler wave as a function of both TPM integral and LPM terms.

As in Ref. [Tewari et al., 1996], I4 is proportional to tan2(θ4) which shows that the magni-
tude of the idler wave would be lower for low cone angles as shown in Fig. (3.8).
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Figure 3.9: Evolution of angularly-resolved intensity (dB) of the idler wave along prop-
agation in case (a-b) the idler wave is generated by SPM only (first approximation:
β1 = β2 = β3 = 1, i.e. the input spatial spectra of the pump and signal waves are defined by
Eq. (3.41)) and (c-d) the idler wave is resulted from both SPM and other FWM interactions
[second approximation: i.e. the spatial spectrum of pump wave is defined by Eq. (3.41)
while that of the signal wave is written by Eq. (3.46), i.e. S̃ 3(β3) = δ(β3 − 1) + δ(β3 − 0.01)].

In Fig. (3.9, left), we show the spectral intensity map of the idler wave according to Eq.
(3.42) and specifically plot the variation of the axial wave along propagation. Here, we
consider the same cone angle θ = 4° as in our numerical simulation of the NLSE (Fig.
(3.7)). This figure shows that the idler wave is intense around the central frequency
and increases in intensity along propagation. However, the intensity decreases for
frequencies that are away from the central one. On the one hand, this is due to the
magnitude of the TPM integral which is maximal at β4 = 1. On the other hand, and as
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we stated above, the intensity |a4|
2 decreases in magnitude along propagation except if

the same condition β4 = 1 is satisfied. In addition, this intensity drop is sharper for low
frequencies since a4 is proportional to tan(θ4). Of particular interest, we notice that the
idler wave oscillates for frequencies that are away from the central frequency β4 = 1 and
exhibits parabolic-like structures.

Comparing these results to our numerical simulation results of Fig. (3.7,right) (page 78),
we notice a qualitative agreement up to z = 2600 µm. Hence, the nonlinear dynam-
ics observed prior to the intensity amplification of the axial wave (spectral broadening,
parabolic-like structures) can be interpreted as SPM-like interactions. The oscillating be-
havior of the axial wave was also reproduced by our FWM model. Here, the oscillation
period p = λ/n(1 − cos(θ4)) yields 226 µm which is about the same as that obtained nu-
merically in Fig. (3.7,d), i.e pnum ≈ 226 µm. Hence, this SPM term is the origin of the axial
wave seed which is further amplified for propagation distances z > 2600 µm.

The parabolic-like patterns obtained from the NLSE simulation results (Fig. 3.7,c) are also
well described by our reduced FWM model. According to Eq. 3.42, these parabolic-like
structures stem from the term ξsinc

[
0.5(1 − β2

4)ξ
]
. This term is maximal in case the LPM

condition is satisfied, i.e. β4 = 1. In case β4 , 1, this term indicates that a4(ξ, β4) oscillates
at frequency-dependent propagation length p(θ4) = λ/n| cos(θ4) − cos(θ0|). This shows that
the oscillation period is longer for spatial frequencies that are closer to the central one.
As depicted in Fig. (3.9,left), this gives rise to the observed parabolic-like patterns.

At low propagation, we can then deduce that SPM is the most efficient Kerr-induced effect
since the Bessel beam has yet to reach its peak intensity. As the intensity increases along
propagation, other Kerr-induced effects become more and more efficient which leads to
further spectral distortions, that is the generation of the axial wave and outer ring.

3.2.3.3/ SECOND APPROXIMATION: GROWTH OF NEW SPECTRAL COMPONENTS

Let us now consider the second approximation of Eq. (3.39) as stated in the theory of

Gadonas et al. [Gadonas et al., 2001], i.e.
∂B2

∂ξ
− i∆⊥nB2 = iγ(2|B0|

2B1 + |B0|
2B∗1) and

analyze the nonlinear dynamics observed for z > 2600 µm.

As stated above, the solution B2 depends on the interaction of B0 with the self-generated
wave B1. According to Eq. (3.39), the solution B2 depends on two nonlinear interactions,
namely 2|B0|

2B1 and |B0|
2B∗1. These two terms refer both to the interaction of two identical

pump waves, defined at β = 1 with a signal wave that was self-generated beforehand
by the SPM term (which is qualitatively depicted in Fig. (3.9, left)). In contrast with the
first approximation, the signal wave in this case is defined at all spectral components
contained in B1.

Regarding TPM conditions, these two terms have both same TPM integral
[Gadonas et al., 2001], which is:

I2nd
T PM = 1/k2

r0

∫ r f

0
J2

0(ν) J0(β3 ν) J0(β4 ν) ν dν (3.44)

This integral was shown to manifest two main transverse resonances (Fig. 3.5), namely
for β3 = β4 and β3 + β4 = 2 and particularly β3 = β4 = 0. Regarding LPM conditions, they
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depend on the interaction term [Gadonas et al., 2001]:

- The first term (2|B0|
2B1) is maximal for β4 = β3. The axial wave, which is defined at

β4 = 0, actually satisfies both LPM and TPM conditions which explains its significant
intensity growth along propagation. In this regard, we can assimilate the term "2|B0|

2B1"
to cross phase modulation (XPM) applied to the axial wave.

- The second term (B2
0B∗1) yields β4 =

√
2 − β2

3. This LPM condition does not correspond
to any transverse spatial resonance. Hence, the efficiency of the corresponding nonlinear
interaction depends on the spectral intensity of the signal wave. In other words, the axial
wave in this case is the only spectral component that can take the role of a signal wave
(β3 ≈ 0) since it is amplified through a XPM-like nonlinear process. Consequently, the
idler wave is generated at β4 =

√
2, which corresponds to the outer ring, according to a

parametric amplification [Gadonas et al., 2001].

In the following, we will refer to these two terms as "FWM" since they are the only ones
that efficiently generate new frequencies. In addition, in contrast with SPM effect of the
first approximation, these two interactions involve two intense pump waves with a weak
signal wave which correspond to the conventional picture of FWM processes. We illus-
trate these two interactions in Fig. (3.10).
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Figure 3.10: Illustration of FWM interactions of the second approximation, described by
Eq. (3.39) satisfying the corresponding LPM conditions.

The theory of Gadonas et al. thus allows predicting the nonlinear FWM processes leading
to the generation and growth of the axial wave and outer ring. However, this theory
cannot describe other features related to the nonlinear evolution of the spatial spectrum
of Bessel beams. For instance, according to the NLSE simulation results described in
Fig. (3.7,right) (page 78), the spatial spectrum displays interference patterns and that
both the axial wave and outer ring exhibit an oscillatory behavior along propagation. In
this regard, we will use our reduced FWM model in order to explain these features.

We consider the interaction of two identical pump waves with a signal wave defined at an
arbitrary frequency β3. Our equation is written as follows:

a4(ξ, θ4) = i C0 tan(θ4) I2nd
T PMξ

{
2 exp

[
0.5i(β2

3 − β
2
4)ξ

]
sinc

[
0.5(β2

3 − β
2
4)ξ

]
+ exp

[
0.5i(2 − β2

3 − β
2
4)ξ

]
sinc

[
0.5(2 − β2

3 − β
2
4)ξ

]}
(3.45)
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As in the first approximation, the on-axis envelope of the idler wave is also expressed
as a function of both TPM integral and LPM terms. Our LPM conditions, described by

Eq. (3.20), are reduced to β4 = β3 and β4 =

√
2 − β2

3, exactly as those obtained from the
second approximation [Gadonas et al., 2001]. In Fig. (3.9,right), we depict the angularly
resolved spectral intensity of the idler as a function of z for β3 = 0.01 (axial wave seed)1.
Here, we superimposed Eq. (3.45) to Eq. (3.42) to account for the spectral expansion
induced by SPM interactions. In other words, the input spatial spectra of the pump waves
are defined at the central frequency β1 = β2 = 1 as described by Eq. (3.41). As for the
signal wave, it is composed of two different spectral components: the central spectral
component and a signal wave seed β3 ≈ 0. In Fig. (3.9,right), we defined this signal wave
seed at β3 = 0.01. Hence, the expression of the corresponding spectrum is given by:

S̃ 3(β3) = δ(β3 − 1) + δ(β3 − 0.01) (3.46)

The general picture we observe in this figure is qualitatively consistent with our simulation
results of the NLSE of Fig. 3.7: the axial wave is amplified along propagation. Here it
exhibits weak oscillations and the growth takes the form of a parabola (3.9,d-solid line),
which contrasts with the linear and oscillating growth observed numerically. Note here
that the signal wave seed, which we defined at β3 = 0.01, is assumed to be constant in
our FWM model whereas it is actually oscillating along propagation (see Fig. (3.7,d)).
Nonetheless, this assumption allows describing some features of the outer ring growth as
displayed in Fig. (3.9,d-dashed line): the outer ring grows quasi-linearly in an oscillating
fashion, which is in qualitative agreement with the NLSE simulation results. This shows
that the oscillating behavior of the idler wave is mainly due to the SPM effect rather than
the parametric amplification effect. Another feature described here is the fringe pattern
observed for distances z > 2600 µm in Fig. (3.9,c). Notice that about the same pattern is
obtained by our FWM model which results from the superposition of the idler generated
by both SPM (first approximation) and FWM terms (second approximation).

Particular case where β4 = 0: Regarding the particular case where β4 = 0, we also
consider the interaction of two identical pump waves with a signal wave composed of two
frequencies as defined by Eq. (3.46). Here, the axial wave seed in Eq. (3.46) can be
defined at β3 = 0 instead of 0.01. By superposing the SPM term (Eq. 3.42) to the FWM
term (Eq. 3.45), the on-axis evolution of the axial wave can be written as:

a4(ξ, θ4 = 0) ∝6i I1st
T PM0 exp(0.5iξ) sin(0.5ξ)

+ i I2nd
T PM0

[
2 ξ + exp(i ξ) sin(ξ)

]
(3.47)

where I1st
T PM0 = 1/k2

r0

∫ ν f

0 J3
0(ν) ν dν and I2nd

T PM0 = 1/k2
r0

∫ r f

0 J2
0(ν) ν dν. According to this equa-

tion, the on-axis envelope of the idler wave shows two different behaviors: the first is a
linear increase in amplitude, i.e. a quadratic increase in intensity as it is the case in Fig.
(3.9,d-solid line) where the axial wave seed is defined at β3 = 0.01. The second one
concerns the oscillating behavior determined by the two sine functions.

Notice that these two sine functions have two different oscillating periods: the SPM term
yields an oscillating period of pS PM = λ/n(1−cos(θ0)) while the FWM term yields of pFWM =

1Since Eq. (3.45) is not valid for β4 = 0, we choose β3 = 0.01 instead of 0 so that the spatial frequency for
which the LPM condition β4 = β3 is satisfied is in the range of validity of our equation.
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pS PM/2. If we reconsider the NLSE simulation results described in Fig. (3.7) in page 78
(it is re-shown in Fig. (3.11)), we notice a particular feature in the behavior of the axial
wave: within the observed oscillations of the axial wave for distances z > 3500 µm, we
notice weaker sub-oscillations with half the oscillating period of the main oscillations,
which is qualitatively described by our model. This particular feature was also observed
in Ref. [Gadonas et al., 2001]. Although these sub-oscillations are very weak and may
not have any particular effect on the growth of new spectral components, this feature can
still be considered as a signature of the efficiency of FWM interactions.
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Figure 3.11: Same as Fig. (3.7,d): NLSE simulation results showing the evolution of the
axial wave and outer ring along propagation.

Frequency shift of the outer ring: Another point of difference between our theoret-
ical and simulation results is the frequency at which the outer ring is generated. Nu-
merically, the outer ring is generated at β4 = 1.5 whereas it is theoretically produced at
β4 =

√
2. This point of difference is due to a nonlinear effect that is not included in our

FWM model, namely the frequency shift of the beam spatial spectrum due to the com-
pression of the central core of the beam [Polesana et al., 2005, Porras et al., 2004]. In
the nonlinear regime, the Bessel frequency kr0 was shown to be dependent on the Bessel
beam intensity. In a first approximation, it reads [Porras et al., 2004]:

kr0,NL =
√

2 k (δ + δNL)

=
√

2 k δ(1 + δNL/δ)

= kr0

√
1 + 4 n2I/nθ2 (3.48)

where δ and δNL were defined earlier in this section (page 79). This frequency shift does
not affect the phase-matching conditions of the axial wave. In contrast, the LPM condition

for the outer ring becomes intensity-dependent as β4 =

√
2

√
1 + 4 n2Ie/nθ2. It is clear

that the outer ring would also undergo a frequency shift which explains its generation
at β4 ≈ 1.5 rather than

√
2. Note that this expression only describes the frequency shift

of the outer ring and can roughly be used to predict its value. One reason is that the
intensity Ie in this expression is hard to define. In Ref. [Norfold et al., 2010], Ie was
defined as an effective intensity and approximated to Ie = 0.27Imax. Considering our
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numerical parameters of table (3.1), this LPM condition yields β4 ≈ 1.58 which is higher
than the numerical value ≈ 1.5.

To summarize, our model, along with the theory of Gadonas et al., allows a qualitative
understanding of the main features of Kerr-induced spectral distortions in Bessel beams.
At low propagation distances, where the peak intensity of the Bessel beam is still low,
the input conical pump wave interacts with itself resulting in spectral broadening. Along
this process, the seed of the axial wave is generated manifesting an oscillating behavior
along propagation. As the propagation distance increases, the peak intensity increases
leading to efficient FWM interactions. As a result, the axial wave is significantly amplified
which leads in turn to the generation of the outer ring through parametric amplification. In
addition, our theory allows describing other features related to the nonlinear evolution of
the spatial spectrum of Bessel beams, such as the parabolic-like patterns related to SPM
spectral broadening and the fringe-patterns resulting from the superposition of idler waves
induced by SPM and FWM interactions. In the next section, we will further investigate the
impact of these two components on the input conical beam.

3.2.4/ INTERPRETATION OF LONGITUDINAL INTENSITY MODULATION

Gadonas et al. stated that the appearance of the axial wave is a signature of non-
linear instabilities in Bessel beams [Gadonas et al., 2001] and the observed longitudi-
nal intensity modulation is the result of the interference of the input conical beam with
this self-generated component [Gadonas et al., 2001, Polesana et al., 2008] . In Ref.
[Polesana et al., 2007], modulation instability analysis showed that both the axial wave
and outer ring can be interpreted as unstable modes. Furthermore, the magnitude of
nonlinear instabilities was shown to depend on how efficient parametric amplification is.
Thus, the interference of outer ring with input conical beam can theoretically also lead to
longitudinal intensity modulation. Here, we will investigate the contribution of these two
components to on-axis intensity modulation .

Let us consider the spatial spectrum of a Bessel beam superposed to that of a self-
generated component defined at β j (i.e. either the axial wave βax ≈ 0 or outer ring βout ≈

1.5). To simplify our computation, we consider ideal J0 beams whose spatial spectrum is
defined by an off-axis Dirac function. Let us define this spectrum at an initial plane z = 0.
It reads:

S (β, z = 0) = S 0δ(β − 1) + S jδ(β − β j) (3.49)

where S 0 and S j are the spectral amplitudes of the input conical wave and self-generated
wave respectively. The subscript j refers to either the axial wave "ax" or the outer ring
"out". For simplicity, we fix the value of S 0 to unity (S 0 = 1). Using inverse Hankel transform
of this equation, we compute the corresponding optical envelope in real space U(r, z = 0).
Using the normalized radial coordinate ν = kr0r, it yields:

U(ν, z = 0) = J0(ν) + S jβ jJ0(β jν) (3.50)

To analyze the on-axis evolution of this field, we use the same approach as in Ref.
[Čižmár et al., 2009] which was described in chapter 2: we consider longitudinal varia-
tions of the central core (ν = 0) and we multiply Eq. (3.50) by the propagator exp(ikz jz).
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We obtain:

U(ν = 0, z) = exp(ikz0z) + S jβ jexp(ikz jz) (3.51)

We then compute the corresponding squared absolute value (intensity) yielding:

I(z) = 1 + α2
d + 2αd cos[(kz0 − kz j)z] (3.52)

where αd = S jβ j is the on-axis modulation depth. According to this equation, in order to
obtain the same modulation depth for both the axial wave (βax) and outer ring (βout), their
spectral amplitudes should satisfy the condition: S out = S axβax/βout. Given that βax/βout �

1, the spectral amplitude of the outer ring S out can be far lower than that of the axial wave
and still yield the same modulation depth αd. Considering our numerical results of Fig.
(3.7,d), also shown in Fig. (3.11), at z ≈ 2600 µm, both spectral components have about
the same order of magnitude while nonlinear on-axis intensity oscillations have already
taken place. We can deduce that the axial wave is not intense enough to efficiently
interfere with the input conical beam. Hence, the observed on-axis intensity modulation
is mainly due to the interaction of the conical wave with the outer ring rather than the axial
wave.

Regarding the nonlinear oscillation period Lper, we have mentioned above that numerical
results yield Lper = 180.5 µm. According to Eq. (3.52), Lper can be written as:

Lper =
2π

k | cos(θ) − cos(θ j)|
(3.53)

For the axial wave (θax ≈ 0 rad), Lper = 226 µm whereas it yields Lper = 180.1 µm for the
outer ring (θout = 1.5 θ0). This further proves that the observed nonlinear oscillation are
most likely due to the outer ring and not the axial wave. The role of the latter consists
mainly in the generation of the outer ring through parametric amplification.

3.2.5/ SUMMARY

In this chapter, we have, so far, meticulously studied nonlinear instabilities in Bessel
beams. Using our reduced FWM model combined with the theory of Gadonas et al.
[Gadonas et al., 2001], we described and explained the different features related to the
growth of new spectral components (axial wave and outer ring) which lead to the appear-
ance of these instabilities.

Numerical simulation results of the standard NLSE showed that the nonlinear evolution of
the spatial spectrum of Bessel beams goes through two different stages. In the first stage,
the spatial spectrum undergoes an initial spectral broadening. In the plane (kr, z), this
spectral expansion is shaped according to a parabolic-like pattern and gradually reaches
the axial wave frequency along the propagation axis. The second stage consists in the
generation and amplification of both the axial wave and outer ring which is accompanied
by the modulation of the central core intensity of the beam in the real space.

Gadonas et al. has introduced a theoretical model [Gadonas et al., 2001] to explain these
phenomena. This theory is based on standard NLSE. The solution to this equation was
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developed in a series of solutions. To determine these solutions, they developed approx-
imate nonlinear propagation equations among which two approximate equations were
considered.

Of particular interest, this formalism determines the order at which Kerr-induced effect
take place. The first approximation describes the interaction of three identical pump
waves (input conical waves) according to a SPM-like process which leads to the ob-
served spectral broadening. The second approximation describes the interaction of two
pump waves (input conical waves) with a signal wave that is generated through the SPM
process. Using phase matching arguments, it was shown that the signal wave is defined
at the axial wave frequency (kr ≈ 0). This results in the amplification of the axial wave
through XPM-like process and the generation of an outer ring kr ≈

√
2kr0 through para-

metric amplification. In other words, the SPM process is required to generate an "axial
wave seed" so that the subsequent nonlinear effects (XPM and parametric amplification)
can take place to generate and amplify the axial wave and outer ring.

However, this theory cannot explain some other features observed in numerical simulation
of the NLSE such as the parabolic shape characterizing the spatial spectrum evolution
and the evolution along propagation of the axial wave seed. In this regard, we devel-
oped a novel theoretical model which we referred to as "reduced FWM model". In this
theory, we considered all nonlinear processes involved in the generation of new spectral
components.

Our model allows describing the evolution along propagation of the idler wave resulting
from the interactions of two pump waves with a signal wave in the spectral domain. We
showed that the observed parabolic patterns results from SPM-generated spectral com-
ponents that are longitudinally phase-mismatched and whose spectral intensity oscillates
along propagation. Particularly, the spectral component at the axial wave frequency re-
mains weak and oscillates along propagation. This component (axial wave seed) will
then play the role of a signal wave in subsequent nonlinear interactions leading to its
amplification. Our model also describes the observed interference patterns as the inter-
ference of the idler waves generated by the different nonlinear interactions (SPM, XPM
and parametric amplification processes).

Lastly, we have shown that the nonlinear intensity modulation of the central core of Bessel
beams results from the interaction of the input conical wave with the outer ring rather than
the axial wave. We also explained the frequency shift of the outer ring to high frequency
as a result of the ring compression of the Bessel beam main lobe.

3.3/ SOFT AND ABRUPT INTENSITY TRANSITIONS

We mentioned above that nonlinear instabilities can be controlled depending on the exact
positioning of Bessel beams with respect to nonlinear media: nonlinear spectral distor-
tions are mitigated for Bessel beams formed progressively inside the nonlinear medium
in contrast with those formed before interacting with the sample [Polesana et al., 2007,
Sogomonian et al., 2000]. These two input conditions are referred to as smooth and
abrupt intensity transitions respectively as depicted in Fig. (3.6,a,b). The decrease in
spectral distortions, in the case of smooth transition case, was explained by quenching
nonlinear instabilities leading to smooth and spontaneous shaping of the Bessel beam
into a stationary and nonlinear stable field, namely the Nonlinear Unbalanced Bessel
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Beam (NLUBB). Such smooth transformation is characterized by slow transient dynam-
ics in the transverse space coordinates [Polesana et al., 2007].

Modulation instability analysis showed that the axial wave and outer ring both play the role
of unstable modes [Polesana et al., 2007]. The increase in nonlinear instabilities in the
case of abrupt transition corresponds then to an exponential amplification of these two
modes. In an another work [Dubietis et al., 2007], the abrupt-transient case is assumed to
enhance Kerr-nonlinear interactions which lead to significant phase distortions. Thus, this
is assumed to relax the constraints for transverse momentum conservation, in contrast
with the smooth transition case. In this section, we will use our reduced FWM model to
further investigate these features. We show the role of the spectral phase distribution
in reducing the efficiency of FWM interactions which then hampers the growth of these
unstable modes.

3.3.1/ NUMERICAL ANALYSIS

In order to gain more insight into the tremendous increase in instabilities taking place in
abrupt input condition, let’s first compare and analyze the evolution of the spatial spectra
in both cases. In our simulations, we use the same numerical propagation model based
on standard NLSE (Eq. 3.34) where nonlinear losses are neglected. We use the same
parameters as in table (3.1) except for the input power. Since Kerr nonlinearity is assumed
to be enhanced in the abrupt transition case, we choose a lower value of the input power,
namely Pin = 31.2 MW corresponding to a beam peak intensity of Imax = 9 TW/cm2. In
the linear regime, this Bessel beam reaches its peak intensity at z = 2160 µm. Hence, we
consider this propagation point as the transition point between the linear and nonlinear
regime in the abrupt intensity transition.

We present numerical results in Fig. (3.12) where we compare the nonlinear propagation
of the Bessel beam in both cases and compare the corresponding spatial spectra evolu-
tion along propagation. Regarding the on-axis intensity evolution, we obtain comparable
results as those reported in [Polesana et al., 2007]. In the smooth transition case, the
Bessel beam exhibits weak intensity oscillations. In contrast, it undergoes, in the abrupt
case, sharp intensity modulation right after entering the nonlinear medium, i.e. at the
point z = 2160 µm.

We have discussed in the previous section the nonlinear dynamics of the growth of spa-
tial spectra in the case of smooth transition. The beam undergoes a gradual spectral
broadening showcasing parabolic-like structures which stretches to the zeroth frequency
(axial wave). Here, we notice less intensity growth of both the axial wave and outer ring
since we used a lower value of the input power. In the abrupt intensity transition, the ini-
tial spectral broadening extends to nearly all frequencies right after entering the medium,
in contrast with the seemingly-cascaded broadening observed in smooth transition case.
After this initial broadening, the axial wave noticeably increases in intensity which is fol-
lowed by the growth of the outer ring. Other spectral components, other than those close
to the central one, all manifest an oscillating behavior shaped as parabolic-like structures
in (β, z) space.

As it is the case in the smooth transition case, the oscillation period is seen to decrease
for spectral components that are further from the pump in the abrupt transition case. The
axial wave and outer ring also present an oscillating behavior. But since they satisfy
longitudinal phase-matching conditions, FWM processes, namely XPM and parametric
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Figure 3.12: (a) On-axis intensity distribution of a Bessel–Gauss beam propagating in
a pure nonlinear Kerr medium (n2 = 2.4810−16 cm2/W) for the smooth (solid line) and
abrupt (dotted line); (b-c) the corresponding spatial spectra evolution along the propa-
gation distance (logarithmic scale dB) for both cases respectively and (d-e) the intensity
evolution of the corresponding axial wave (black solid line) and outer ring (dashed line)
along propagation (spectral intensities are normalized to pump’s maximal value). Note
that the intensity of newly-generated spectral components in the case of abrupt transition
is two order of magnitude higher than the one reached in case of smooth transition.

amplification (second approximation), take place leading to further growth of these two
components respectively. In the smooth transition case, however, even though the peak
intensity is about the same as the one reached in the abrupt case at z = 2160 µm, the axial
wave only present an oscillating behavior and no noticeable growth is observed. This may
be explained by a more intense axial wave seed in the case of abrupt transition leading
to more efficient FWM interactions.

We conclude that the main point of difference between the soft and abrupt transition
cases lies in the initial spectral broadening. While the latter is being gradually established
in the smooth transition case, it encompasses nearly all frequencies in the other case.
Furthermore, it occurs right after the beam enters the nonlinear medium.

3.3.2/ INTUITIVE INTERPRETATION

According to our analysis in the previous section, the nonlinear effect causing such spec-
tral broadening is SPM. We have seen that this effect is also behind the parabolic-like
structures, which are also observed in the case of abrupt transition. However, it is clear
that there is another factor that affects SPM-induced broadening, which may be related
to input conditions related to both cases. We will first provide an intuitive interpretation in
this section. We will then provide a detailed interpretation based on our reduced FWM
model in the next section.
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Figure 3.13: Comparison between the input phase distributions (at z = 0) of a BG beam
at different positions with respect to the nonlinear medium: (red dashed line) smooth and
(red dotted line) abrupt intensity transitions.

We compare in Fig. (3.13, bottom) the input spectral amplitude (green) and phase (red)
corresponding to both cases (the point z = 0 refers to transition point between the linear
and nonlinear media). While the input amplitude is naturally the same, we notice that the
phase distribution is steeper in the smooth transition case and is quasi-flat in the other.
The input amplitude takes the form of a Gaussian function and is mostly in the range
β ∈ [0.98 − 1.02]). In the following, the Bessel ring will be defined in this spectral range.

A quasi-flat spectral phase implies that spectral components composing the pump wave
are nearly in-phase. Hence, if each of these spectral components interacts according to
SPM process (first approximation), then each idler wave generated from these interac-
tions will be in phase with the others. The resulting idler wave at a given frequency will
then be made of constructive interference of all these waves, which explains the abrupt
appearance of spectral components at about all frequencies around the central one. This
may also explain the sharp intensity growth of the axial wave seed which leads to more
efficient FWM interactions.

In contrast, a steep spectral phase profile, which implies out-of-phase spectral compo-
nents, may lead to partially-destructive interference and the axial wave seed will then be
weaker. This assumption is only valid in case these spectral components remain out-
of-phase along the propagation. We compare in Fig. (3.14) the spectral intensity and
corresponding spectral phase distributions at two different propagation points, namely
z = 1800 and z = 2160 µm and compare results with the case of abrupt intensity transition.
While the spectral intensity is gradually being shifted to higher frequencies because of the
compression of the beam central core [Porras et al., 2004], the spectral phase is gradually
being flattened as the beam propagates but remains slightly steeper than in the abrupt
transition case. To explain the low intensity rise of the axial wave even though the spec-
tral phase is being flattened, we assume that the axial wave that is generated beforehand
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would be superimposed to the one that is generated at later propagation point. Hence,
even if the axial wave generation becomes more efficient as the beam propagates, it is
bound to destructively interfere with those previously engendered, which makes it rela-
tively less intense. If we reconsider the evolution of the axial wave (Fig. (3.12,d)), we
notice that it decreases in intensity and modulation depth around z = 2160 µm. Based
on our discussion, we can understand it as the result of partial destructive interference.
Subsequent intensity increase can be attributed to further FWM interactions (XPM of the
second approximation).
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Figure 3.14: NLSE simulation results: Comparison of the spectral intensity and phase
distributions in the spectral range of the pump at different propagation points in case of
smooth and abrupt intensity transition. Note that the spectral intensity distribution is the
same at the transition point between the linear and nonlinear media in both cases.

In a nutshell, the input spectral phase distribution can be the origin of the sharp inten-
sity growth of the axial wave in the case of abrupt intensity transition compared to that
of smooth transition. In the following, we will use our reduced FWM model to further
investigate the effect of input spectral phase on the growth of nonlinear instabilities.

3.3.3/ THEORETICAL ANALYSIS

3.3.3.1/ THEORETICAL CONSIDERATIONS

Theoretically, we previously (section 3.2.3.1(page 80)) interpreted the growth of nonlin-
ear instabilities by approximating a quasi-Bessel beam to a single-frequency J0 beam,
i.e. we neglected the spectral distribution of the beam. However, the beam spectral
distribution should be accounted for to differentiate between the soft and abrupt input
conditions. Hence, it is necessary to consider that the interacting waves are composed
of multiple frequencies with different input spectral phases. Indeed, according to our intu-
itive interpretation that we proposed in the previous section, we qualitatively highlighted
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the importance of the spectral phase. In order to simplify our analysis, we consider a
pump wave composed of only two spectral components defined at βa and βb with φa and
φb being their respective input spectral phases. In the following, we will reconsider the
theory of Gadonas et al. [Gadonas et al., 2001] that we previously described in sec-
tion 3.2.3.1(page 79) and use our FWM model for further analysis.

We reconsider the nonlinear propagation equation described by Eq. (3.36). We recall
that its proposed solution B is given by formula (3.37), i.e B = B0(ν) + B1(ν, ξ) + B2(ν, ξ) + ...,
where B0 is the input J0 beam. B1 and B2 correspond to solutions to the first and second
approximations of the NLSE (3.36).

In order to account for the contribution of two spectral components, we propose to model
the input beam B0 by a superposition of two J0 beams Ba and Bb as follows:

B0 = Ba + Bb where

Ba = J0(βaν)exp(iφa)
Bb = J0(βbν)exp(iφb)

(3.54)

We specifically study the impact of input spectral phase on the generation of the axial
wave seed (first approximation) and subsequent growth of axial wave and outer ring (sec-
ond approximation). In this regard, we can further simplify the problem by considering
that the two spatial frequencies are nearly equal (βa ≈ βb ≈ 1) and still consider their
phase difference. In this case, Eq. (3.54) is reduced to:

B0 = J0(ν)[exp(iφa) + exp(iφb)] (3.55)

3.3.3.2/ FIRST APPROXIMATION: IMPACT ON AXIAL WAVE SEED

According to the first approximation, we have seen that the NLSE can be written as
∂B1

∂ξ
− i∆⊥nB1 = iγ|B0|

2B0 (Eq. (3.38)). By inserting formula (3.55) in this equation we

obtain:

∂B1

∂ξ
− i∆⊥nB1 = 2 iγ J3

0(ν) [1 + cos(φa − φb)] [exp(iφa) + exp(iφb)] (3.56)

The nonlinear term of this equation is then dependent on the phase difference ∆φ = φa−φb

of the pump spectral components. Specifically, the term [1 + cos(φa −φb)] shows that Kerr-
induced SPM is weaker if ∆φ is non-zero, which corresponds to the smooth intensity
transition case.

Further analysis of this feature can be performed using our FWM model. We study the
evolution of the idler wave resulting from the interaction of identical pump and signal
waves, each composed of the two considered spectral components. In this case, the
spectral distribution of each of these waves can be written as S̃ j(β j) = δ(β j − 1) [exp(iφa) +

exp(iφb)], with j = 1, 2, 3. Regarding the TPM integral, it can be seen that it is the same in
all nonlinear terms since the interacting waves are supposed to only differ in input spectral
phase. Hence, it is defined by Eq. (3.40). Thus, Eq. (3.21) can be written as:
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∂a4(ξ)
∂ξ

∝ tan(θ4)I1st
T PMexp[i (1 − β2

4)ξ] [3 eiφa + 3 eiφb + ei(2 φa−φb) + ei(2 φb−φa)] (3.57)
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Figure 3.15: Numerical results using our FWM model: Angularly resolved intensity (dB)
of the idler wave resulting from the interaction of three waves composed each of three
frequencies: β j = 0.995, 1, 1.005 (with j=1,2,3 referring to two pump and signal waves
respectively) in case of (a) a varying and (b) flat phase distribution (smooth and abrupt
transitions respectively). The input spectral phases related to these frequencies are taken
from Fig. (3.13). (c) The corresponding evolution along propagation of the axial wave
spectral intensity (β4 ≈ 0) in linear scale.

where I1st
T PM = 1/k2

r0

∫ ν f

0 J3
0(ν)J0(β4 ν) ν dν. Analytically, we are only interested in the evolu-

tion along propagation of the idler wave. For a specific frequency, the TPM integral can
be reduced to a factor of proportionality since it is constant along propagation. We then
integrate over ξ and compute the corresponding on-axis spectral intensity. It yields (see
Appendix 3.C, page 156):

I4(ξ, β4) ∝ tan2(θ4) ξ2 sinc2[0.5 (1 − β2
4)ξ] [1 + cos(φa − φb)]3 (3.58)

The growth of the idler wave intensity is proportional to the term ξ2 sinc2[0.5 (1 − β2
4)ξ] ∝

sin2[0.5 (1 − β2
4)ξ] which indicates the above discussed oscillating behavior. Of particular

interest, I4(ξ, β4) is proportional to the cube of the phase-dependent term [1 + cos(φa −φb)]
which shows that non-zero phase difference allows reducing the peak value of these
oscillations and thus decreases the magnitude of the axial wave seed.
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For instance, let’s consider the example described in Fig. (3.13). We choose two adjacent
spectral components of the pump defined at βa = 1 and βb = 0.995. Their phase difference
is ∆φso f t = 0.88 rad and ∆φabrupt = 0.3 rad in the smooth and abrupt transition cases
respectively. Formula (3.58) shows that the magnitude of newly-generated components
would be reduced by a factor of about 1.7. This factor can increase considering the
contribution of multiple frequencies. However, further analytical analysis requires the
integration over multiple frequencies which is too difficult to realize and thus only semi-
analytical analysis can be performed.

In Fig. (3.15), we consider the contribution of three spectral components defined at the
frequencies β = 0.995, 1, 1.005. We compare the idler wave growth at frequencies in the
range β ∈ [0.005 − 1.5]. Regarding the input spectral phase relative to these frequencies,
we simply extract the corresponding values from the input phase distribution depicted in
(Fig. 3.13) using linear interpolation. It is clear that extent of SPM-induced broadening is
mitigated in the case of smooth condition with a reduction factor of about 5 as shown in
Fig. (3.15,bottom).

3.3.3.3/ FIRST APPROXIMATION: CASCADED FEATURE OF SPECTRAL BROADENING

So far, we have shown how the input spectral phase allows controlling the magnitude
of SPM-induced spectral broadening. However, the NLSE numerical results (Fig. (3.7))
showed an apparent-cascaded pattern of this spectral broadening, which has not been
explained so far. Indeed, we considered, in the previous section, the contribution of
three adjacent spectral components, i.e. β = 0.995, 1, 1.005, and studied the behavior
along propagation of the corresponding spatial spectrum. As shown in Fig. (3.15), the
angularly resolved intensity of the idler wave does not exhibit this cascaded feature. In
this regard, it is necessary to consider the contribution of other spectral components,
specifically those defined at the tails of Bessel ring. In Fig. (3.16), we take into account
the contribution of five spectral components defined in the range β ∈ [0.96 − 1.04],
namely β = 0.96, 0.98, 1, 1.02, , 1.04, and plot the evolution of the idler wave spectral
intensity along propagation and compare results in smooth and abrupt conditions. The
corresponding input spectral phase distributions are also extracted from Fig. (3.13) using
linear interpolation.

In the soft input condition, initial spectral broadening is very weak and only cover frequen-
cies that are close to the central one. Notice that it gradually extends to more frequencies
for longer propagation distances in cascaded-like fashion, qualitatively as observed nu-
merically. Note here that, in contrast with numerical simulations of the NLSE, the spectral
phase profile remains constant. Hence, spectral broadening extension is assumed to
be faster if spectral phase flattening could be accounted for. Contrary to these results,
the initial spectral broadening covers all frequencies in the abrupt case, which is also
in qualitative agreement with numerical simulation results of Fig. (3.12). Regarding the
generation of the axial wave seed, we notice that it is initially more intense in the case of
abrupt input condition by about two orders of magnitudes, which is also consistent with
numerical results.
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Figure 3.16: Numerical results using our FWM model: Angularly resolved intensity (dB)
of the idler wave resulting from the interaction of three waves composed each of five
frequencies: β j = 0.96, 0.98, 1, 1.02, , 1.04 (with j=1,2,3) referring to two pump and signal
waves respectively) in case of (a) a varying and (b) flat phase distribution (smooth and
abrupt transitions respectively). The input spectral phases related to these frequencies
are taken from Fig. (3.13). (c) The corresponding evolution along propagation of the axial
wave spectral intensity (β4 ≈ 0) in linear scale.

3.3.3.4/ SECOND APPROXIMATION: GROWTH OF UNSTABLE MODES

So far, we have studied the effect of the input spectral phase on the initial spectral broad-
ening induced by SPM. We have seen that the intensity of the axial wave seed is weaker
in the case of smooth intensity transition compared to the abrupt transition case. We
interpreted this difference in intensity to their related input spectral phase profile which is
steeper in the case of smooth transition.

By the propagation point where the Bessel beam reaches its peak intensity (z =

2160 µm) and the amplification of new spectral components takes place, the spectral
phase profile around the central frequency becomes quasi-flat due to linear propagation
[Jarutis et al., 2000] (see Fig. (3.14)). Consequently, even in the case of smooth intensity
transition, the input phase profile of the pump wave may not have a direct impact on the
growth of the axial wave and outer ring. To investigate this point, let’s reconsider the sec-
ond approximation of the NLSE as developed by Gadonas et al. [Gadonas et al., 2001],



3.3. SOFT AND ABRUPT INTENSITY TRANSITIONS 97

i.e.
∂B2

∂ξ
− i∆⊥nB2 = iγ(2|B0|

2B1 + B2
0B∗1). We recall that the solution B2 specifically refers to

the evolution of both the axial wave and outer ring along propagation.

The point here is to study the growth of the solution B2 depending on the input spec-
tral phase of both B0 and B1. We recall that B0 refers to the input conical wave.
We use the same definition we proposed previously as described by Eq. 3.55, i.e.
B0 = J0(ν)[exp(iφa) + exp(iφb)]. As for B1, which plays the role of a signal wave, we as-
similate it to an axial wave seed. This choice is justified since we demonstrated that the
axial wave is amplified though an XPM-like interaction and also leads to the generation
of an outer ring through parametric amplification. In order to investigate the impact of its
spectral phase, we consider the simple case where B1 is assimilated to a plane wave and
is composed of two adjacent spectral components β31 and β32, such as β31 ≈ β32 ≈ 0. We
solely take into account their respective spectral phases φ31 and φ32. Hence, we express
the quantity B1 as:

B1 = exp(iφ31) + exp(iφ32) (3.59)

The second approximate solution of the NLSE thus becomes:

∂B2

∂ξ
− i∆⊥nB2 =2 iγ J2

0(ν) [1 + cos(φa − φb)]
√

1 + cos(φ31 − φ32)

×

[
exp

(
i
φ31 + iφ32

2

)
+ exp

(
i(φa + φb) − i

φ31 + iφ32

2

)]
(3.60)

The phase difference between the pump wave spectral components is clearly apparent
in the term "[1 + cos(φa − φb)]". Since the input spectral phase is bound to flatten as the
beam approaches its peak intensity, even in the smooth transition case, this term will not
play a role in reducing the growth of unstable modes. However, notice that growth of
B2 also depends on the phase difference between the axial wave spectral components.
In addition, according to the term exp (i(φa + φb) − i(φ31 + iφ32/2)), the phase difference
between the pump and signal waves may also influence the evolution of both the axial
wave and outer ring. In order to further investigate the impact of this phase difference, we
use our reduced FWM model.

Considering the same definitions of the pump and signal waves, the expressions of their
respective spectra can be written as:

S̃ j(β j) =δ(β j − 1) [exp(iφa) + exp(iφb)], j = 1, 2 (3.61)
S̃ j(β j) =δ(β3 − β31) [exp(iφ31) + exp(iφ32)] (3.62)

We then insert them in the propagation equation (Eq. 3.21) of the idler wave a4(ξ). We
compute its squared absolute value I4(ξ, β4) = |a4(ξ, β4)|2 in order to clearly show the
impact of the phase distribution of the pump and signal waves on the growth of the idler
wave. I4(ξ, β4) can be expressed as (the demonstration of this formula is in Appendix 3.C,
page 156):
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I4(ξ, β4) ∝ i tan2(β4θ0)ξ2[1 + cos(φa − φb)]2 [1 + cos(φ31 − φ32)] (3.63)

×
{
sinc2[0.5(2 − β2

31 − β
2
4)ξ] + 4 sinc2[0.5(β2

31 − β
2
4)ξ]

+ 4 cos[φa + φb − φ31 − φ32 + (1 − β2
31)ξ] sinc[0.5(2 − β2

31 − β
2
4)ξ]sinc[0.5(β2

31 − β
2
4)ξ]

}
Based on this equation, it is clear that the intensity of the idler wave decreases in case
the phase difference between spectral components of the pump wave (φa−φb) and that of
the signal wave (φ31 −φ32) are higher. However, the term cos[φa +φb −φ31 −φ32 + (1−β2

31)ξ]
indicates the phase difference between the pump and signal does not affect the overall
growth of the idler wave. Indeed, the phase term φa+φb−φ31−φ32 does only affect the idler
wave growth with a distance lower that its oscillatory period p = λ/n(1 − cos(θ0)). Hence,
the only term which may decrease the growth of the idler wave is [1 + cos(φ31−φ32)]. Now,
let’s analyze the distribution of the spectral phase near the peak intensity of the Bessel
beam and investigate the effect of this term.

Previously, we studied the spectral phase distribution propagation point z = 2160 µm which
is the transition point between the linear and nonlinear medium in the case of abrupt
intensity transition. We compared in Fig. (3.14) this phase profile to that obtained in
the smooth transition case at the same propagation point (page 92). The spectral phase
around the central frequency is quasi-flat in both cases due to linear propagation.

We plot in Fig. (3.17,a) these phase profiles over the range β ∈ [0 − 1.5]. We clearly
notice that, in the case of abrupt transition, the phase distribution is rapidly varying away
from the central frequency whereas it is quasi-flat in the smooth transition case. Hence,
according to Eq. (3.63), specifically the term [1 + cos(φ31 − φ32)], one may conclude that
the growth of nonlinear spectral distortions should be decreased. However, note that, in
the abrupt transition case, the axial wave has yet to be generated at this point. In this
regard, one should consider the phase profile at a later propagation point by which the
axial wave seed is generated.

We plot in Fig. (3.17,b) the spectral phase profile at 30 µm away from z = 2160 µm,
i.e. z = 2190 µm. It is clear that the phase profile becomes quasi-flat away from the
central frequency, and specifically near the axial wave range. In the smooth transition
case, it remains nearly unchanged. Based on these observations, we conclude that since
the spectral phase remains quasi-flat near the axial wave range, the growth of both the
axial wave and outer ring is inevitable. In other words, one cannot directly control FWM
processes leading to the amplification of the axial wave seed and generation of the outer
ring depending on input intensity transition case. The input condition only affects these
processes indirectly by controlling the intensity of the axial wave seed.

3.3.4/ SUMMARY

In this section, we theoretically and numerically studied the dependence of Kerr-induced
instabilities on input conditions of the interaction of the Bessel beams with nonlinear Kerr
media. A Bessel beam that is formed progressively inside a Kerr medium yields weak
nonlinear modulation of its on-axis intensity (smooth intensity transition). However, if the
Bessel beam is formed prior entering the medium (abrupt intensity transition), nonlinear
instabilities will be enhanced [Polesana et al., 2007].
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Figure 3.17: NLSE simulation results: Spectral phase distribution at a propagation dis-
tance z = 2190 µm in case of abrupt intensity transition. This propagation point is 30 µm
away from the transition point between the linear and and nonlinear medium. This spec-
tral phase profile is compared to the one obtained in the smooth intensity transition at the
points z = 0 and z = 2190 µm.

In our numerical simulation of the NLSE, we specifically studied the evolution along prop-
agation of the spatial spectra related to these two cases. In the case of abrupt intensity
transition, the initial spectral broadening extends to nearly all frequencies right after en-
tering the medium, in contrast with the gradual spectral broadening observed in smooth
transition case. At the propagation point where the central core intensity reaches its peak
intensity (transition point in the abrupt transition case), the axial wave seed intensity is
found to be lower in the case smooth transition than in case of abrupt transition. Conse-
quently, the subsequent growth of the axial wave is greater in the abrupt transition case,
which explains the enhancement of nonlinear instabilities in this case.

We explained the difference in the axial wave seed intensity in terms of the input spectral
phase profile. In the abrupt transition case, the spectral phase has a quasi-flat profile,
which implies that spectral components composing the pump wave are nearly in-phase.
Hence, if each of these spectral components interacts according to SPM process, then
each idler wave generated from these interactions will be in phase with the others. The
resulting idler wave at a given frequency will then be made of constructive interference of
all these waves, which increases the axial wave seed intensity in this case. In contrast,
the spectral phase takes the form of a steep ramp profile in the smooth transition case.
This implies out-of-phase spectral components, which may lead to partially-destructive
interference and the axial wave seed will then be weaker.

Theoretically, we studied the growth of the idler wave resulting from SPM-like interactions
of the pump and signal waves. To simplify our analysis, we considered the contribution
of only two spectral components. We found that the growth of the idler wave intensity de-
creases if the phase difference between these two components is higher. This shows that
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non-zero phase difference (corresponding to the smooth intensity case) allows reducing
the peak value of these oscillations and thus decreases the magnitude of the axial wave
seed.

In the case of smooth transition case, our theoretical analysis only applies to the initial
spectral broadening where input spectral phase slightly varies. At the peak central core
intensity of the Bessel beam, the spectral phase becomes flat due to linear propagation.
As a result, there is no longer any difference between the smooth and abrupt transition
cases. We conclude that the difference between these two cases resides only in the
initial spectral broadening which affects the intensity of the axial wave seed which, in
turn, affects subsequent FWM processes.

3.4/ CONTROL OF NONLINEAR INSTABILITIES USING SHAPED IN-
TENSITY PROFILES

In the previous section, we have discussed the dependence of nonlinear instabilities in
Bessel beams on the exact positioning of the beam with respect to the nonlinear medium.
Specifically, nonlinear instabilities were shown to noticeably decrease if the beam is pro-
gressively formed inside the medium (smooth intensity transition). In other words, non-
linear instabilities are expected to decrease if the beam intensity is smoothly increasing
inside the sample.

In this section, we will discuss the possibility to control Kerr-induced instabilities depend-
ing on the initial intensity rise of the beam inside nonlinear media. In this regard, we
will consider quasi-Bessel beams with shaped on-axis intensity profiles as discussed in
chapter 2 and numerically study their nonlinear propagation. We will show that nonlinear
spectral distortions can be mitigated for Bessel beams with slowly increasing input inten-
sity rise. Based on our theoretical model, we analyze numerical results and specifically
discuss the effect of intensity shaping on initial spectral broadening (first approximation)
and ensuing growth of new spectral components (second approximation).

3.4.1/ NUMERICAL SIMULATION RESULTS

In our numerical simulations, we use the same nonlinear propagation equation described
by formula (3.34). We will still neglect nonlinear losses as to bring out the effect of in-
tensity shaping on the control of Kerr-induced instabilities in Bessel beams. We will later
present simulation results taking into account nonlinear losses and show that our results
are also valid in the filamentation regime.

We compare the nonlinear propagation of three Bessel beams with different on-axis in-
tensity profiles, i.e. the ones describing their propagation in the linear regime. Their peak
maximal intensity is chosen to be the same in order to study the effect of the initial inten-
sity rise on the growth of nonlinear instabilities. These three intensity profiles are depicted
in Fig. (3.18,a) and are described as follows: the first profile, denoted profile-1, is that of
a conventional Bessel-Gauss beam (green dashed line) identical to that we have used so
far. The second profile (profile-2) consists of a linear leading edge followed by a flat-top
intensity and parabolic decaying trailing edge (blue dotted line). Profile-3 is identical to
profile-2 except that it exhibits a parabolic intensity rise instead of a linear ramp (red solid



3.4. CONTROL OF NONLINEAR INSTABILITIES ... 101

line). Numerical parameters are the same as in table (3.1).

The on-axis intensity evolution of these Bessel beams are presented in Fig. (3.18,b).
Compared to the case of the BG beam (profile-1), the two other beams present the same
longitudinal nonlinear oscillations of the central core intensity but they differ in the oscilla-
tion depth. Although the Bessel beams with profile-2 and profile-3 only differ in terms of
the initial intensity rise, the oscillation depth is seen to significantly decrease for profile-3.

In the spectral domain (Fig. (3.18,c)), the observed weak on-axis intensity oscillations in
case of profile-3 correspond to weak intensity growth of the axial wave below -40 dB up
to z = 4000 µm and around -30 dB afterwards. We specifically plot in Fig. (3.18,d) the
spectral intensity evolution of the axial wave. In the case of profile-3, the growth of the
axial wave seed is slowly established. In addition, while the initial stage of spectral broad-
ening showcases an oscillating behavior of the axial wave seed in the case of profile-1
and profile-2, this oscillating behavior is initially absent in the case of profile-3 and only
appears at a propagation distance around z = 3000 µm. Following the appearance of
these oscillations, both the axial wave and outer ring increase in intensity which indicates
that FWM processes become active past this propagation point. However, their growth
remains noticeably weaker compared to the other two Bessel beams.
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Figure 3.18: Simulation of the nonlinear propagation of three Bessel beams with different
(a) target on-axis intensity profiles. Evolution of their respective (b) on-axis intensities, (c)
spatial spectra (dB) and (d) spectral intensities of axial wave (linear scale) along propa-
gation. Spectral intensities are normalized to their respective maximal values. Numerical
parameters are described in table (3.1).

3.4.2/ INTUITIVE INTERPRETATION

The strong reduction in nonlinear instabilities in the case of profile-3 could be explained
by the reduction in the nonlinear propagation length of the Bessel beam thanks to its initial
parabolic intensity rise. Indeed, since these Bessel beams propagate according to soft
input condition (smooth transition case), the weak intensity rise in the case of profile-3
may lead to a weaker intensity growth of the axial wave seed. To verify this assumption,
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further numerical simulations are required.
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Figure 3.19: NLSE simulation results: Nonlinear propagation of Bessel beams with in-
tensity profiles 3 and 4: plot of (a) the corresponding on-axis intensity and (b) spectral
intensity of the axial wave along propagation I(kr = 0, z). Comparison of their respective
(c) amplitude and (d) phase distributions with that of profile-2.

We consider another on-axis intensity profile, denoted profile-4, whose initial intensity rise
is proportional to z4, which is smoother than that of profile-3 for propagation distances be-
low z = 500 µm. We compare in Fig. (3.19,a) the nonlinear propagation corresponding
to these two profiles. It is clear that nonlinear oscillations are much stronger in the case
of profile-4. In the spectral domain (Fig. 3.19,b), although the growth of the axial wave
seed is initially weaker in the case of profile-4, this axial wave seed exhibits an oscillating
behavior with a higher modulation depth than that obtained for profile-3. This notice-
able increase in the axial wave seed intensity cannot be explained by a slightly shorter
propagation length where a relatively high intensity (>5 TW/cm2) is reached.

We also considered different on-axis intensity profiles of the input intensity rise of the
form I(r = 0, z) ∝ zγ where γ ∈ Q+∗ 2. For γ = 1.5 and 2.5, numerical results of the
NLSE show that the corresponding nonlinear on-axis intensities exhibit slightly higher
modulation depth than in case of profile-3 (intensity rise I(r = 0, z) ∝ z2). This shows
that there is an optimal profile of the initial intensity rise leading to weaker nonlinear
instabilities.

Another possible interpretation lies in the input spectral distribution of Bessel beams.
Based on our numerical results, the major difference in the nonlinear propagation of our
chosen Bessel beams resides in the initial spectral broadening and thus the growth of
the axial wave seed. Recall that, in the previous section, the same difference in behavior
was observed in the smooth and abrupt transition cases. Hence, we can use the same
reasoning we used in the previous section to interpret these results which is based on

2positive rational number superior to 0
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the input spectral phase distribution. It is therefore not the steepness of the intensity rise
than matters, but rather it is the input spectral phase.

Figure (3.19,c,d) shows the spectral amplitude and phase distributions corresponding
to profiles 2,3 and 4. The BG beam (profile-1) was studied beforehand (Fig. 3.13).
Its input spectral amplitude takes the form of a Gaussian function centered around the
central frequency while the spectral phase is in the form a linear ramp in the range (β ∈
[0.98 − 1.02]) and is constant outside this range. In the case of profiles 2,3 and 4, the
distribution of their spectral amplitudes is similar between them and takes the shape of
a sinc-like function. The spectral phase corresponding to profile-2 is similar to that of
profile-1 except that it exhibits a slightly oscillating behavior in the tails of the spectrum.
In the case of profiles 3 and 4, however, while the spectral phase also takes the form of
a linear ramp in the range β ∈ [0.98 − 1.02], it varies significantly outside according to an
oscillating profile along a ramp.

We estimate the spectral domain of influence of the phase to be in the range β ∈ [0.8 1.2].
Although the input spectral phase is rapidly varying over a wider spectral range, spectral
frequencies that contribute to the formation of the Bessel beam are restrained around
the central frequency. To investigate the influence of the input spectral phase of spectral
components, we vary the input phase outside the main Bessel ring (β ∈ [0.98 − 1.02])
and simulate the linear propagation of the corresponding phase-modified Bessel beam.
Our simulations show that the on-axis intensity is affected by the input phase in the range
β ∈ [0.8 − 1.2] by more than 5% in the linear regime when the phase outside the main
Bessel ring is modified. Hence, we estimate that the initial spectral broadening largely
depends on the phase distribution in this domain [Ouadghiri-Idrissi et al., 2017].

In the framework of FWM interactions, we interpret the decrease in nonlinear instabilities
for profile-3 by the phase mismatch between the pump and signal waves which, as dis-
cussed in the previous section, leads to partial destructive interference of the resulting
idler wave [Ouadghiri-Idrissi et al., 2017]. Comparing the spectral phase of profiles 3 and
4, we notice that it is steeper in the case of profile-3. This difference in phase distribution
can explain the strong decrease in nonlinear instabilities observed for profile-3. In the
next section, we will further investigate this hypothesis using our reduced FWM model.

3.4.3/ THEORETICAL ANALYSIS

We investigate the impact of input phase distribution on the initial spectral broadening.
We have seen that this spectral broadening is the result of the interaction of the pump
with itself, which we referred to as SPM. However, since we estimated that the influence
domain of the input phase is extended to the range β ∈ [0.8 − 1.2], it is necessary to
extend the domain of definition of the pump wave over all this spectral range.

Using our reduced FWM model described by Eq. (3.20), we consider the contribution of
27 spectral components in the chosen spectral range. We numerically compute the spec-
tral intensity of the idler wave and compare its evolution for spatial spectra corresponding
to profile-1 and profile-3. Numerical computation results are depicted in Fig. (3.20,a,b).
Regarding profile-1 (BG beam), we observe about the same features as those obtained
in case the pump wave is solely defined in the range β ∈ [0.96 − 1.04], i.e. the cascaded
feature of spectral broadening (see Fig. 3.16). In contrast, this feature is totally absent
in the case of profile-3 where spectral broadening only occurs starting from a propaga-
tion distance of z = 1500 µm. Particularly, the form of spectral expansion is in qualitative
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Figure 3.20: Results using our FWM model: Angularly resolved intensity (dB) of the
idler wave resulting from the interaction of three waves composed each of twenty-seven
frequencies: β j = [0.805 − 1.195] for input phase distributions of (a) profile-1 and (b)
profile-3 and (c) the corresponding evolution along propagation of the axial wave intensity
(kr ≈ 0).

agreement with NLSE simulation results (Fig. 3.18,c).

In Fig. (3.20,c) we compare the evolution of the axial wave intensity corresponding to
these two profiles. The absence of axial wave oscillation is clearly seen which is also
consistent with numerical simulation results of the NLSE of Fig. (3.18). We then conclude
that the low intensity tails of the spatial spectrum also contribute to the initial spectral
broadening. Furthermore, related input spectral phase plays a major role in the weak
growth of the axial wave.

N.B.: Regarding the results of Fig. 3.20, if we consider the contribution of a lower number
of frequencies in the range β = [0.805 − 1.195], we do not obtain the same results for the
spectral phase distribution related to profile-3. Provided that our calculations are correct,
we assume that this disagreement is normal since, in our numerical simulations of the
NLSE, we considered the contribution of much more spectral components. We can also
conclude that the attenuation of the initial spectral broadening observed for profile-3 is
the result of the interference of multiple spatial frequencies in this spectral range.
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We stress on the point that these conclusions are only valid in case the phase distribu-
tion is conserved along propagation. According to our numerical simulation of the NLSE,
the input phase remains about the same up to a propagation point of z = 1200 µm. As
discussed in the previous section, as the spectral phase flattens because of linear prop-
agation, SPM and FWM interactions become more efficient and inevitably lead to signif-
icant growth of the axial wave and outer ring. Hence, the control of input intensity rise
only allows controlling the initial spectral broadening. FWM processes responsible for the
growth of unstable modes only occur after the generation of an axial wave seed. How-
ever, at the propagation point where it appears, the spectral phase distribution becomes
quasi-flat as the Bessel beam intensity reaches its peak value. Therefore, the optimiza-
tion of the input intensity rise of the beam only allows controlling the SPM-induced initial
spectral broadening and not the FWM processes of the second approximation. In the
next section, we will investigate the possibility to control these FWM processes.

3.4.4/ CONTROL OF THE GROWTH OF UNSTABLE MODES (SECOND APPROXIMA-
TION)

We propose a proof-of-concept approach to directly manipulate FWM processes of the
second approximation. As discussed in section 3.2.4, nonlinear oscillations of the on-axis
intensity of Bessel beams is the result of the interference of the input conical beam with
the self-generated outer ring. This approach is then based on adding an unstable mode
to the input Bessel beam to compensate for the one that is induced by Kerr effect. In
other words, the unstable mode that is added to the input beam should be in opposition
of phase to the Kerr-induced one. In direct-space, the addition of an unstable corresponds
to an oscillating target on-axis intensity that will be compensated by Kerr nonlinearity.

To implement our approach, we first study the nonlinear propagation of a Bessel beam
and specifically record the on-axis intensity profile. Then, we design, using the theoretical
approach described in Chapter 2, a target on-axis intensity with the same oscillation
period but with a phase retardation with respect to that obtained in the nonlinear regime.

We present In Fig. (3.21) an example of the application of this approach. The target on-
axis intensity and the corresponding input spatial spectrum are depicted in Fig. (3.21,top).
In this example, we consider a conventional BG beam (greed line) and compare its non-
linear propagation to a modified BG (MBG) beam which exhibits longitudinal oscillations
with an oscillation period of 185 µm (red line). Their spatial spectra are identical except
that the MBG beam has an additional spectral component defined at β ≈ 1.5 (outer ring).
Notice the spectral phase of this component is defined at 2 π whereas it is defined at π
for the BG beam. Of course, although BG beams have no spectral component at β ≈ 1.5,
a spectral component of weak intensity is generated at this frequency thanks to initial
spectral broadening. Hence, we consider that the spectral phase still evolves along prop-
agation in the linear regime and that its initial phase value is determined by input spectral
phase of the BG beam, i.e. "π". Supposing that its intensity is low enough to not trigger
Kerr nonlinearity, then it will only undergo linear phase shift. In the ideal case, the added
outer ring is assumed to remain in opposition of phase to the Kerr-generated one and
thus destructively interfere.

In Fig. (3.21,bottom), we present numerical results of the NLSE and compare their re-
spective on-axis intensity evolution as well as the evolution of the outer ring. It is clear
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that the MBG exhibits lower longitudinal modulation depth compared to the conventional
BG beam, which indicates a decrease in nonlinear instabilities. In the spectral domain,
for the BG beam, while the outer ring intensity is lower at low propagation distances, it
significantly increases starting from the propagation point z = 2600 µm. In contrast, in
the case of MBG beam, the spectral intensity of the outer ring does not undergo any
noticeable growth and only present an oscillating behavior. This shows then the possibil-
ity to manipulate FWM processes of the second approximation via longitudinal intensity
shaping of Bessel beams.
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Figure 3.21: (a) Target intensity profiles and (b) input spectrum of the modified Bessel-
Gauss (MBG) beam. (bottom) Numerical simulation results of the NLSE: (c) their respec-
tive on-axis intensity and (d) spectral intensity of idler wave evolution along propagation
for (green dashed line) BG beam and (red dotted line) MBG beam.

Although our approach allows a decrease in nonlinear oscillations, complete suppression
of these oscillations remains a difficult challenge, especially regarding the optimal input
spectral intensity of the additional wave around β = 1.5 and the corresponding spectral
phase profile. Further theoretical studies are required to complete this approach.

3.4.5/ SUMMARY

We presented a novel approach to control Kerr-induced instabilities depending on the ini-
tial intensity rise of the beam inside nonlinear media. By means of numerical simulations
of the NLSE, we showed that nonlinear on-axis intensity modulation can be reduced for
Bessel beams with slowly increasing input intensity rise and specifically in the form of a
parabola. In the spectral domain, this modulation decrease is accompanied by a weak
growth of the axial wave and outer ring. As in the case of smooth transition case, we
related it to a weak growth of the axial wave seed.

We also explained the difference in the axial wave seed intensity in terms of the input
spectral phase profile. In the case of an on-axis intensity profile with parabolic intensity
rise (profile-3), the spectral phase has a steeper profile over a wide range of frequencies
compared to the case of a Bessel-Gauss beam. This implies that the destructive interfer-
ence between out-of-phase spectral components leads to a less intense axial wave seed
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in the case of the axially shaped Bessel beam (profile-3).

However, this approach only allows controlling the initial spectral broadening and conse-
quently the intensity of the axial wave seed. To control subsequent FWM processes, we
proposed a proof-of-concept approach based on adding an unstable mode (outer ring)
to the input Bessel beam to compensate for the one that is induced by Kerr effect. In
other words, the unstable mode that is added to the input beam should be in opposition
of phase to the Kerr-induced one. In direct-space, the addition of an unstable correspond
to an oscillating target on-axis intensity that will be compensated by Kerr nonlinearity.
This approach opens the possibility to completely suppress Kerr-induced on-axis inten-
sity modulation, but it is a difficult challenge regarding experimental implementation.

3.5/ BESSEL FILAMENTATION USING SHAPED LONGITUDINAL IN-
TENSITY PROFILES

In this section, we will numerically study the nonlinear propagation of longitudinally-
shaped Bessel beams in the filamentation regime. We will show the effects of the at-
tenuation of Kerr-nonlinearity on the stability of the beam in presence of nonlinear losses
(MultiPhoton Absorption (MPA) and plasma defocusing). We aim to show that our results
are also valid in the filamentation regime.

3.5.1/ FILAMENTATION MODEL

We present numerical simulation results using two filamentation models which we briefly
discussed in chapter 1. The first was reported in Ref. [Porras et al., 2004] where pho-
toionization is approximated to multiphoton ionization and light-plasma coupling is ne-
glected. It is described by the following equation and will be referred to as "reduced
filamentation model":

∂A
∂z

=
i

2k0
∆⊥A + ik0n2|A|2A −

1
2
σK |A|2K−2K~ω0A (3.64)

This nonlinear propagation equation was shown to have a propagation-invariant solution
termed "Nonlinear unbalanced Bessel beam" (NL-UBB) which characterizes steady
filamentation regime. As discussed in chapter 1, an input Bessel beam can be reshaped
into a NL-UBB in case nonlinear losses, and specifically multiphoton absorption, prevail
over Kerr self-focusing. Hence, we aim to show that reduced Kerr-nonlinearity in shaped-
Bessel beams allows satisfying this condition in a wider range of beam parameters
compared to conventional BG beams.

The second model accounts for dispersion and plasma generation. We use the
model equations reported in Ref. [Sudrie et al., 2002]. We model the propagation
of cylindrically-symmetric envelope A of a linearly polarized electric field E, written as
E = <[A exp(ik z − iω0t)]:
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∂A
∂z

=
i

2k
∇2
⊥A− i

k(2)

2
∂2A
∂t2 + ik0n2|A|2A−

1
2
σK |A|2K−2K~ω0A(1− ρ/ρat)−

σ

2
(1 + iωτc)ρA (3.65)

where ρat is the density of neutral atoms, τc is the electron collision time and σ is the
cross-section of inverse Bremsstrahlung effect given by:

σ =
kq2

n2ω2ε0m∗e

ωτc

1 + ω2τ2
c

(3.66)

where ε0 is vacuum permittivity and m∗e is the effective free-electron mass. The time
evolution equation of laser-generated plasma is written as:

∂ρ

∂t
=

(
σK |A|2K +

σ

Ui
ρ|A|2

)
(1 − ρ/ρat) − ρ/τr (3.67)

where τr is the free-electron relaxation time. Numerical parameters are given for fused
silica [Sudrie et al., 2002] and are presented in table 3.2.

β2 ( f s2/cm) 361 m∗e (Kg) 0.635 × 9.1 × 10−31

Ui (eV) 9 ρat (cm−3) 2.1 × 1022

K 6 σK (cm9s−1W−6) 9.8 × 10−71 × ρat

τc ( f s) 23.3 σ (cm2) 0.96 × 1018

Table 3.2: Numerical parameters used in simulations of Bessel filamentation in fused
silica.

Input fields: pulsed quasi-Bessel beams : The input field is spatially modeled by a
quasi-Bessel beam with a temporal Gaussian envelope. For pulsed BG beams, the input
field reads:

ABG(r, t, z = 0) = A0exp
(
−

r2

w2
0

−
t2

t2
p
− k r sin(θ)

)
(3.68)

where tp is the pulse temporal half width defined at 1/e of the central amplitude . For
longitudinally shaped Bessel beams, we first compute the complex spatial spectral am-
plitude corresponding to the desired profile of the longitudinal central core intensity I(z) ≡
I(r = 0, z) as described in chapter 2 [Čižmár et al., 2009, Ouadghiri-Idrissi et al., 2016]:

S (kz, z = 0) =
1
kz

+∞∫
−∞

√
I(z) exp[i(kz0 − kz)z]dz (3.69)

where kz =
√

k2 − k2
r is the longitudinal frequency coordinate and kz0 = k cos(θ). The

corresponding spatial counterpart is then computed using the inverse Hankel transform
HT−1. The input profile of the modified Bessel beam is then defined as:

AMBB(r, t, z = 0) = A0exp
− t2

t2
p

 HT−1[S (kz, z = 0)] (3.70)
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3.5.2/ DECREASE OF THE CRITICAL INTENSITY ABOVE WHICH MPA PREVAILS
OVER KERR EFFECT

The condition for which nonlinear losses prevail over Kerr self-focusing can be sat-
isfied if the Bessel beam peak intensity "I" exceeds a critical value Ic as follows
[Couairon et al., 2012]:

I ≥ Ic ≡
(2k0n2

σKUi

)1/(K−2)
(3.71)

Considering our numerical parameters, Ic ≈ 60 TW/cm2. Hence, we consider, in our
simulations, pulsed-Bessel beams whose maximal intensity lower than the critical value:
Imax = 25 TW/cm2 as to naturally trigger the unsteady filamentation regime.
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Figure 3.22: Numerical simulation results of the propagation of two Bessel beams in the
filamentation regime (we consider the reduced filamentation model of Eq. (3.64) where
laser-plasma coupling is neglected) with (a) profile-1 (green dashed line) and profile-3
(red solid line): (b) plot of the peak temporal intensity of the central core along z, and (c)
the corresponding intensity distribution in transverse and propagation distances for both
beams. Input pulse energy, Ein = 3.6 µJ for profile 1 and Ein = 3.8 µJ for profile 3, pulse
duration 130 fs; cone angle θ= 4°; Imax = 25 TW/cm2 and beam waist w0 = 100 µm.

We compare the propagation of two pulsed Bessel beams with different on-axis intensity
profiles (Fig. 3.22,a): profile-1 which refers to a BG beam and profile-3 which allows
reducing nonlinear instabilities. We present in Fig. 3.22 numerical simulation results of
Eq. (3.64) (plasma terms neglected). Nonlinear evolution of the central core intensity
of both beams is shown in Fig. (3.22,b) while the intensity distribution in transverse and
longitudinal distance is depicted in Fig. (3.22,c).

As it is expected for the pulsed BG beam, its on-axis intensity presents significant intensity
modulation which marks the unsteady filamentation regime. However, we clearly notice
that the Bessel beam with target profile-3 exhibits lower intensity modulation which is
attributed to reduced Kerr-induced instabilities. We then conclude that the attenuation
of Kerr nonlinearity enhances the stabilization of Bessel beams in presence of nonlinear
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losses.
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Figure 3.23: Nonlinear propagation of two Bessel beams with profile 1 (green dashed
line) and profile 3 (red solid line) in the filamentation regime (accounting for MPA and
plasma defocusing): plot of (a) the on-axis fluence (J/cm2), (b) the peak temporal intensity
of the central core along z. Evolution of the central core intensity in time and propagation
coordinates for (c) profile-1 and (d) profile-3. Evolution of maximal plasma density in
transverse and propagation distances for (e) profile-1 and (f) profile-3.

3.5.3/ CONTROL OF LASER-INDUCED PLASMA CHANNELS

We now consider the full filamentation model described the Eqs. (3.65) and (3.67). We
use the same beam parameters as in Fig. (3.22) and consider the same on-axis intensity
profiles. Numerical results are shown in Fig. (3.23) where we specically plot in (a) the on-
axis fluence and in (b) the peak temporal intensity of the central core along propagation.

Notice that although plasma defocusing has stabilized the BG pulse (Fig. 3.23,a,green
dashed line), the corresponding peak temporal intensity presents severe on-axis intensity
oscillations (Fig. 3.23,b)). In contrast, the shaped Bessel beam sustains very weak oscil-
lations of the on-axis intensity. These features are apparent in Fig. (3.23,c-d) where we
display the time evolution of the central core intensity along propagation: the pulsed BG
beam sustains pronounced temporal reshaping, especially after a propagation distance
of z = 1000 µm where the pulse undergoes temporal splitting. In contrast, the spatially-
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shaped Bessel pulse exhibits weaker temporal reshaping which highlights its stability in
the time domain. These weak temporal dynamics can be explained by the reduction in
Kerr-induced instabilities as discussed in previous sections.

We show in Fig. (3.23,e-f) the evolution of laser-generated maximal plasma densities
as a function of the transverse and longitudinal coordinates for the two intensity profiles.
It is clear that the plasma channel generated in the case of profile-3 is more uniform
than the one produced in the case of profile-1. In addition, the plasma density is relatively
higher in the case of profile-3. We assume that, since the intensity of the spatially-shaped
Bessel pulse undergoes weak temporal dynamics, the peak intensity of the pulse remains
quasi-constant along propagation allowing the generation of a uniform plasma channel in
contrast with the pulsed BG beam.

CONCLUSIONS

In this chapter, we have discussed Kerr-induced nonlinear instabilities and introduced a
novel approach based on shaping the on-axis intensity of Bessel beams to reduce their
extent in order to generate stable Bessel filaments.

In the first section, we introduced our theoretical model, which we named reduced FWM
model, in order to interpret the different features of Kerr-induced instabilities. By means
of this model, we investigated the evolution along propagation of Kerr-induced distortions
of the spatial spectrum of Bessel beams. This was performed by analyzing the idler
wave generated as a result of the interaction of two pump waves with a signal wave in
the spectral domain. Although such an analysis cannot be performed using the theory
of Gadonas et al. [Gadonas et al., 2001], the latter still allows describing the major Kerr-
induced effects causing nonlinear instabilities. Particularly, this theory points out the order
at which these nonlinear effects take place as the Bessel beam propagates which cannot
be determined using our reduced FWM model. Hence, these two theories complement
each other and allow a thorough investigation of nonlinear instabilities.

In the second section, we reviewed the different nonlinear dynamics of Kerr-induced in-
stabilities. Numerical simulation results show that related nonlinear spectral distortions
are established in two steps. The first step consists in spectral broadening and the gen-
eration of an axial wave seed. The second step lies in the amplification of this axial wave
seed and outer ring generation which are a signature of Kerr-induced instabilities. Us-
ing the theory of Gadonas et al. and our theoretical model, we showed that the initial
spectral broadening is caused by self-phase modulation, i.e. the interaction of the Bessel
ring with itself. The growth of signal wave and outer ring were interpreted in terms of
FWM interactions as reported in Ref. [Gadonas et al., 2001]. Hence, the control of non-
linear instabilities should reside either in the initial spectral broadening or ensuing FWM
processes.

In the third section, we used our FWM model to interpret the dependence of nonlinear
instabilities on the positioning of Bessel beams with respect to nonlinear media. Our
interpretation is based on the input spectral phase distribution relative to the two cases.
In the abrupt intensity transition, the input spectral phase of the Bessel ring is quasi-
flat. In the framework of FWM interactions, the pump wave is considered to be made of
multiple spectral components, each with nearly the same input phase. At a given spatial
frequency, the resulting SPM-generated idler wave will be made of a superposition of in-
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phase components which will constructively interfere. As a result, the extent of the initial
spectral broadening, and therefore nonlinear instabilities, will be enhanced.

In contrast, the input spectral phase is rapidly-varying in the smooth transition case which
will lead to reduced spectral broadening. However, this is only valid in case the input
spectral phase remains rapidly-varying along propagation. Indeed, numerical simulations
show that the spectral phase becomes quasi-flat by the point the growth of the axial wave
takes place. The smooth intensity transition therefore only allows controlling the first stage
of nonlinear spectral distortions.

In the fourth section, we introduced our approach to control nonlinear instabilities using
shaped-intensity profiles. Our numerical simulations show that nonlinear instabilities are
effectively reduced if the initial intensity rise of Bessel beams is slowly established. As in
the case of smooth intensity transition, we interpreted results based on the input spectral
phase.

However, this approach also only allows controlling the initial spectral broadening. To con-
trol subsequent FWM interactions, we proposed the following solution: considering that
longitudinal intensity modulation is the result of the interference of the input conical beam
with a Kerr-generated outer ring, we proposed to add an additional spectral component
to the input beam that is defined at the same frequency as the outer ring but in opposition
of phase to it. Our numerical simulations show the potential applicability of this approach
since the growth of Kerr-induced outer ring was seen to be reduced along propagation.
However, further studies still need to be performed to complete this method.

Finally, we showed that our results are also valid in the filamentation regime. Specifically,
reduced Kerr-nonlinearity in shaped Bessel beams allows generating plasma channels
that are more uniform compared to those generated by conventional pulsed BG beams.

In our numerical simulations in the filamentation regime, we used nonlinear propagation
model that is widely used in the literature. However, it was shown that this model cannot
explain some features of Bessel filamentation, particularly the steady propagation regime
of Bessel pulses at ablation-level intensities [Courvoisier et al., 2013]. In the next chapter,
we will model the filamentation regime of stationary (steady) Bessel beams.



4
FILAMENTATION OF BESSEL BEAMS

INTRODUCTION

In chapter 1, we have shown aspects and applications of Bessel filamentation in trans-
parent media. We have presented the different Bessel filamentation regimes, particularly
the steady and unsteady ones.

The first experiments of Bessel filamentation were performed in air using axicon-focused
laser beams. Bunkin et al. used a 40-ns pulsed Bessel beam, with high cone angle (≥
18◦) to generate a long and uniform laser spark. Nanosecond Bessel pulses (with low
cone angles ≤ 10◦) were used experimentally to generate quasi-periodic laser sparks
in gases [Andreev et al., 1991]. In 1993, Durfee et al. showed that 100-ps Bessel
beams can generate uniform plasma waveguides [Durfee et al., 1993]. In 2006, Pole-
sana et al. demonstrated the generation of uniform Bessel filaments in liquid. They
later demonstrated that steady and unsteady filamentation regimes can be formed in
water depending on the initial positioning of the beam with respect to nonlinear sample
[Polesana et al., 2007]. In glass, the propagation of Bessel filaments can generate ei-
ther permanent (matter modification, ablation) or non-permanent damage. Both steady
[Bhuyan et al., 2010, Bhuyan et al., 2011] and unsteady [Gaizauskas et al., 2006] propa-
gation regimes were reported and it was shown that it highly depends on whether the
Bessel cone angle is high or low respectively.

Of particular interest, Bhuyan et al. performed many experiments on the
filamentation of femtosecond Bessel beams with high cone angle in glass
[Bhuyan et al., 2010]. Their results showcased propagation-invariant features of Bessel
filaments [Courvoisier et al., 2016b] resulting in inducing high aspect ratio nanochannels.

To interpret these result, previous members of our group numerically investigated the
propagation of high cone angle Bessel filaments in glass [Courvoisier et al., 2013]. They
used a widely used numerical model which is based on the nonlinear Schrödinger equa-
tion (NLSE) for nonlinear light propagation and Drude model for laser-matter coupling
[Couairon et al., 2007]. This model was presented in chapter 3 (section 3.5.1, page 107)
and it accounts for dispersion, diffraction, Kerr self-focusing, multiphoton absorption and
plasma absorption and defocusing.

According to the experimental results, one can expect that the laser-generated plasma
channel will be uniform and confined in the volume area of the central core of the beam.
However, numerical results are incompatible with experimental ones. They predict the
generation of plasma on a wide region, much larger than the void formed. This is even
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more apparent for the fluence distribution as shown in Fig. (4.1,c) [Xie et al., 2016].

To obtain results compatible with experiments, it appeared from numerical simulations
performed in our group [Xie et al., 2016] and in others [Garzillo et al., 2016], that the col-
lision time must be decreased to the range of 10 to 15 as1 (see Fig. (4.1)). In this case
only, a homogeneous energy deposition could be obtained. Later in this chapter, we will
also show experimental results that confirm the stationary behavior of Bessel beams in
the ablation regime, and that could not be reproduced with state of the art model.

Figure 4.1: Comparison between experimental fluence maps in J/cm2 (a-b) and simula-
tions with nonlinear Schrödinger model for (c) τc = 1 fs and (d) τc = 15 as. Image taken
from Ref. [Xie et al., 2016].

In this chapter, we will discuss the validity of filamentation models based on the above
described NLSE and time evolution equation of plasma density. In the first section, we
will first recall the steps and approximations used to derive the NLSE.

In the second section, we will present our experimental results on the filamentation of
femtosecond Bessel beams in fused silica. We will discuss, based on numerical results
reported in literature, the possible improvements that can be introduced in the filamenta-
tion model. We will then introduce our proposed improvements and compare the corre-
sponding numerical simulations with experimental results.

4.1/ FILAMENTATION MODELING

The filamentation of pulsed laser beams is modeled using Maxwell equations coupled
with matter equations. Maxwell equations describe the pulse propagation in nonlinear
self-modified media. Although Maxwell equations can perfectly describe the propagation

1The collision time of dense electronic plasma was experimentally measured and is around 1 fs
[Sun et al., 2005]. A value of the order of 10 as has yet to be demonstrated.
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of optical fields, their numerical simulations are time consuming, hence the need to resort
to approximations in order to simplify the propagation model.

Matter equations describe the matter modification induced by the laser field. They also
describe the evolution of laser-generated plasma of electron-holes in time and its ac-
tion on the laser field. These equations are originally very complicated and the physical
processes involved are hard to model. Their numerical resolution is then also time con-
suming and there is a need to simplify them through appropriate approximations. These
approximations are also needed to simplify the physical interpretation and descriptions of
the processes involved. In this section, we will recall these approximations. Their validity
in modeling the filamentation of Bessel beams will be discussed later in this chapter.

4.1.1/ NONLINEAR PROPAGATION EQUATIONS AND RELATED APPROXIMATIONS

Let us first summarize the different steps leading to the derivation of nonlinear
Schrödinger equation (NLSE), following the approach of Ref. [Couairon et al., 2011]. We
consider an electric field E propagating in a homogeneous, isotropic and nonmagnetic
dielectric medium. Starting from Maxwell equations, one can express the vectorial wave
equation in the time domain as follows [Couairon et al., 2011]:

∇2E − ∇(∇ .E ) −
1
c2

∂2

∂t2

∫ t

−∞

ε(t − t′)E(r, t′, z)dt′ =
1

ε0 c2

(∂J
∂t

+
∂2PNL

∂t2

)
(4.1)

where PNL is the nonlinear polarization, J refers to the current density of free charges, c is
the light velocity in vacuum. All fields depend on space transverse coordinates r ≡ (x, y),
propagation variable z and time t.

It is actually more convenient to solve this equation in space-frequency to avoid the time-
convolution term. Provided that the spectral counterpart of the time derivative is ∂t = −iω,
the vectorial wave equation is written as follows:

∇2Ê − ∇(∇ .Ê ) +
ω2n2(ω)

c2 Ê =
1

ε0 c2 (−iωĴ − ω2P̂NL ) (4.2)

where n2(ω) = ε(ω) refers to the linear complex refractive index of the sample. Later in
this section, we will express this quantity as a function of time. The hat functions refer to
the Fourier transforms of E, PNL, J

4.1.1.1/ SCALAR WAVE EQUATION

The first approximation used to simplify this propagation equation is the scalar one: the
electric field is assumed to be linearly polarized and transverse to the propagation axis
determined by the wavevector k. This applies also to the medium response, namely the
current J and the nonlinear polarization PNL. Furthermore, the electric field is assumed
to maintain its polarization state along the propagation distance.
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Firstly, these assumptions imply that the term ∇ (∇ .E ) can be neglected
[Couairon et al., 2011]. This approximation is valid for weakly focused beams or coni-
cal beams with sufficiently low cone angles. Secondly, the linear polarization assumption
implies that Eq. (4.2) can be written in a scalar form [Couairon et al., 2011]:

( ∂2
z + ∇2

⊥ )Ê + k2(ω)Ê = −
1

ε0 c2 (iωĴ + ω2P̂NL ) (4.3)

where k(ω) =
n(ω)ω

c
is the medium dispersion relation.

4.1.1.2/ NONLINEAR ENVELOPE EQUATION

From laboratoty to pulse time frame: To further simplify the propagation equation and
reduce the constraint on numerical sampling, the electric field is expressed as a super-
position of a pulse envelope E with a carrier wave of angular frequency ω0. Furthermore,
the propagation equation is expressed in the pulse reference frame (ξ, τ = t − z/vg) in-
stead of the laboratory frame (z, t) where vg is the pulse group velocity and is given by

v−1
g =

∂k(ω)
∂ω

|ω0 . The electric field is written as:

E(r, τ, ξ) = E(r, τ, ξ)exp[i(k −
ω0

vg
)ξ − iω0τ] (4.4)

A similar decomposition holds for the nonlinear polarization and the free charge current
whose envelopes are respectively denoted PNL andJ . The expression of the propagation
equation becomes:

∂2
ξÊ + 2iκ(ω)∂ξÊ = −∇2

⊥Ê − [k2(ω) − κ2(ω)]Ê −
ω2

c2

P̂NL

ε0
− i

ω

c2ε0
Ĵ (4.5)

where κ(ω) = k +
ω − ω0

vg
corresponds to space-time focusing [Brabec et al., 1997,

Polesana et al., 2008].

Minimal approximation: The minimal approximation consists in neglecting the second
derivative of the pulse envelope with respect to the propagation coordinate ∂2

ξ . Hence,
the nonlinear envelope equation becomes:

∂ξÊ =
i

2κ(ω)
∇2
⊥Ê + i[k(ω) − κ(ω)]Ê + i

[k(ω) − κ(ω)]2

2κ(ω)
Ê +

i
2κ(ω)

ω2

c2

P̂NL

ε0
−

ω

2κ(ω)c2ε0
Ĵ (4.6)

This approximation implies many assumptions. Physically, it is assumed that
the field amplitude and phase are evolving sufficiently slowly along propagation
[Couairon et al., 2011]. Notice that this equation is unidirectional. In other words, po-
tential back-reflected light is assumed to be very small compared to the one propagating
in the forward direction [Couairon et al., 2011].
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Slowly Varying Envelope Approximation (SVEA): The SVEA states that the pulse
envelope must slowly vary over a propagation distance of the wavelength order
[Brabec et al., 1997]. It consists in assimilating the group velocity to phase velocity. In the
other words, we approximate k(ω) and ω to k and ω0 respectively [Couairon et al., 2011].
The nonlinear envelope equation becomes:

∂ξÊ = i
(ω − ω0)2

2
k(2)Ê +

i
2 k
∇2
⊥Ê + i

ω2
0

2 c2k
P̂NL

ε0
−

ω0

2 c2ε0k
Ĵ (4.7)

In the time domain, this equation reads:

∂ξE =
i

2 k
∇2
⊥Ê − i

k(2)

2
∂2E

∂τ2 + i
ω2

0

2 c2k
PNL

ε0
−

ω0

2 c2ε0k
J (4.8)

where k(2) is the group velocity dispersion coefficient. Let us now develop the expressions
of nonlinear polarization PNL and plasma current density J .

4.1.2/ LASER-MATTER COUPLING TERMS OF NONLINEAR PROPAGATION EQUA-
TION

4.1.2.1/ NONLINEAR POLARIZATION

In Kerr media, PNL refers to the third order nonlinear polarization which was described
earlier in chapters 1 and 3. It reads:

PNL = ε0χ
(3)EEE (4.9)

where χ(3) is the third order susceptibility. We simply write the corresponding envelope as
follows:

PNL = ε0nn2IE (4.10)

where I is the intensity defined by I = ε0nc | E |2 /2, n2 is the nonlinear refraction index
which is expressed in m2/W as 3 χ(3)/4ε0n2c.

4.1.2.2/ NONLINEAR ABSORPTION

Although the term J refers to current density, one must also consider nonlinear absorption
processes which lead to the generation of free-electrons. In this regard, the expression
of the current J becomes: J ≡ Jabs + Jp where Jabs accounts for nonlinear absorption and
Jp refers to plasma current density [Couairon et al., 2011].

Nonlinear absorption is described by an effective current Jabs such that the averaged
dissipated power corresponds to the one necessary for the ionization of the sample
[Couairon et al., 2011]. This quantity depends then on the ionization potential Ui and
an intensity dependant ionization rate WPI(I). It is expressed as [Couairon et al., 2011]:

JabsE∗ = 2WPI(I)K~ω0 (4.11)
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where K is the number of photons absorbed to overcome the potential gap Ui and liberate
one electron. Using the scalar approximation, and in terms of envelopes, Eq. (4.11)
becomes:

Jabs

nε0c
=

WPI(I)
I

K~ω0E (4.12)

The expression of the probability of photoionization WPI was introduced in chapter
1 (section 1.2.2.2, page 21): it can be described by Keldysh formula as follows
[Sudrie et al., 2002]:

WPI =
2ω0

9 π

(
ω0m

~
√

Γ

)3/2

Q(γ,Ui, ω0) (4.13)

where ω0 is the angular frequency, m is the reduced mass of electron and hole, Γ =

γ2/1 +γ2 and γ = ω0
√

mUi/qE is referred to as adiabaticity parameter with q is the electric
charge and E is the electric envelope. Q is a function of laser and material parameters.

If we use the multiphoton absorption approximation to model the nonlinear ionization
especially in case the field peak intensity is inferior to 35 TW/cm2. WPI is:

WPI(I) ≡ σKI
K (4.14)

4.1.2.3/ PLASMA CURRENT DENSITY

We have briefly presented in chapter 1 the effect of free-electron plasma on the propa-
gating laser pulse. It induces a reduction in refraction index and thus reduces the pulse
intensity. This description actually stems from Drude model and is widely used in fila-
mentation modeling to describe the plasma current density J. Here we briefly recall this
model and show how to develop the expression of this quantity.

Drude model is based on a classical description of free electrons that undergo Lorentz
force and a friction force, determined by a collision time τc. This characteristic time cor-
responds to the time between two collisions with the ions. The time evolution equation of
plasma velocity is then given by:

me
∂vp

∂t
= −qE −

me

τc
vp (4.15)

where vp = −Jp/q ρ. We replace this relation in Eq. (4.15):

∂Jp

∂t
=

q2ρ

me
E + Jp

[∂ρ/∂t
ρ
− 1/τc

]
(4.16)

The evolution equation of the plasma current density has an additional term Jp∂tρ/ρ

with respect to the state of the art [Couairon et al., 2011, Couairon et al., 2007,
Courvoisier et al., 2013, Sudrie et al., 2002, Polesana et al., 2008]. According to Eq.
(4.16), neglecting this additional term implicitly implies that the rate of laser-induced ion-
ization is very small compared to the electron collision frequency 1/τc. Let us, in a first
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step, neglect this term. If we consider the envelope counterpart written in the pulse refer-
ence frame, Eq. (4.16) becomes:

∂Jp

∂τ
=

q2ρ

me
E +Jp(iω0 − 1/τc) (4.17)

where ∂τJ = exp[i(k−ω0/vg)−iω0t](∂τ−iω0)J [Couairon et al., 2011]. This equation can be
solved in Fourier domain and we express the spectral counterpart of the current envelope
as follows:

Ĵp =
q2τc

me(1 + ω2
0τ

2
c)

(1 + iω0τc)
(
1 − i(ω − ω0)

τc

1 − iω0τc

)−1
ρ̂E (4.18)

The space-time counterpart of Eq. (4.18 can be written as [Gulley et al., 2010]:

Jp =
q2τc

me(1 + ω2
0τ

2
c)

(1 + iω0τc)
(
1 +

i
ω0

g∂τ
)−1
ρE (4.19)

where g =
−iω0τc

1 − iω0τc
. Gulley et al. defined an operator G as follows [Gulley et al., 2010]:

G−1 =
(
1 +

i
ω0

g∂τ
)−1 (4.20)

This operator accounts for the variation of the refractive index as a function of time and
it stands for dispersion of plasma. In the literature, however, this operator is usually
neglected in the modeling of Bessel filamentation. This simplification can be seen as an
application of the slowly varying envelope approximation which states that ω ≈ ω0. The
expression of the current density envelope in the time domain then becomes:

Jp

n ε0c
= σ(1 + iω0τc)ρE (4.21)

where σ is the cross section of inverse Bremsstrahlung effect.

σ =
kq2

n2ω2ε0me

ωτc

1 + ω2τ2
c

(4.22)

4.1.2.4/ EQUATION OF PLASMA DENSITY EVOLUTION IN TIME AND AVALANCHE IONIZA-
TION

The nonlinear propagation model is coupled to a time evolution equation of plasma cur-
rent density [Couairon et al., 2011]. It is written in the form of a rate equation as follows
[Couairon et al., 2011]:

∂ρ

∂t
= (WPI + Wavaρ) (1 − ρ/ρat) − ρ/τr (4.23)
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where WPI is the photoionization rate that was previously defined. Wava refers to
avalanche ionization. This ionization process was presented in chapter 1 (section 1.2.2.3,
page 22). It describes the process according to which electrons in the valance band are
ionized by highly energetic conduction band electrons generated beforehand by photoion-
ization. τr is the electron recombination time.

The most simple model of avalanche ionization rate is based on the double-flux approxi-
mation [Stuart et al., 1996]. It states that each free-electron, right after reaching a critical
energy εcrit, will generate a second free-electron via collisions. This assumption also indi-
cates that the collision rate is much higher than that of energy gain of free-electrons. The
avalanche ionization rate is assumed to be proportional to pulse intensity and is written
as [Couairon et al., 2007]:

Wava =
σ

Ui
|E|2 (4.24)

4.2/ BESSEL FILAMENTATION IN FUSED SILICA: EXPERIMENTS

AND SIMULATION

As mentioned in the introduction, the filamentation model described in the previ-
ous section was used by our group to study filamentation of Bessel beams at
ablation-level intensities [Courvoisier et al., 2013]. While experimental results showed
that Bessel beams propagate according to a propagation-invariant regime of fila-
mentation [Xie et al., 2016] leading to uniform energy deposition along propagation
[Bhuyan et al., 2010, Courvoisier et al., 2013], numerical results using this model showed
non-uniform and weak deposition of energy. In our work, we aim to improve our numerical
model to better describe our experimental results.

In this section, we will firstly present our experimental results and describe the different
features of Bessel filamentation. Then, we will recall the limitations of the above described
filamentation model and discuss possible improvements that can be introduced. Finally,
we will present our numerical results and discuss the validity of these improvements.

4.2.1/ EXPERIMENTAL RESULTS

4.2.1.1/ EXPERIMENTAL SETUP AND METHODOLOGY

The experimental setup is similar to the one we used in our linear propagation experi-
ments as described in chapter 2 (section 2.3.1, page 45): the light source is an amplified
Ti:Sapphire laser emitting 130 fs pulses with a central wavelength of 800 nm. It is obliquely
incident on a SLM and the back-reflected light passes through a 4f system to filter out all
undesired diffraction orders. In the image plane of this system, light amplitude distribution
is demagnified by a factor 278. The Bessel beam onsets from the image focal plane of
the microscope objective where the samples under consideration are positioned.

Fluence distribution imaging: To compare numerical maps of fluence distribution with
experimental ones, the nonlinear propagation must be avoided from the plane z of con-
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Figure 4.2: Experimental setup used for measurement of 3D fluence distribution of
Bessel pulses in glass.

sideration to the camera. Therefore, in our experiments, the fluence distribution was
reconstructed by recording the fluence at the exit side of the sample and progressively
translating the beam across the exit side. 3D fluence distribution (in J/cm2) of the Bessel
beam is produced after energy calibration of the camera.

We also measure the energy evolution along propagation to estimate the energy loss
due to nonlinear and plasma absorption. This is performed by means of spatial inte-
gration of the measured fluence. More details are presented in Refs. [Xie et al., 2015,
Courvoisier et al., 2016a].

4.2.1.2/ EXPERIMENTAL PARAMETERS AND RESULTS

Figure (4.3) shows the evolution of fluence distribution and energy along propagation for
different values of the input energy. For these experiments, the pulse duration was 130 fs
and the Bessel-Gauss beam was characterized by a cone angle of 26◦ in air (17◦ in fused
silica) and a Gaussian waist of w0 = 15 µm.

We observe that the Bessel beams propagate in the steady filamentation regime. The
analysis of the samples shows that long and uniform sub-micron channels were gener-
ated for an input energy higher than Ein = 0.72 µJ. For Ein = 0.26 µJ, only refractive index
modification was observed.

For Ein = 0.26 µJ, we notice an intensity clamping feature where the fluence remains
quasi-constant after reaching a value of F = 1.85 J/cm2 at a propagation distance of
z = 20 µm. At this point, we notice the beginning of energy attenuation. This shows that
nonlinear absorption takes place leading to a decrease in the pulse fluence. The total
energy loss is between 8 to 11 % of the input energy.

For Ein = 0.72 µJ, the intensity clamping effect takes place twice along propagation, in
contrast with the case of an input energy of Ein = 0.26 µJ. The fluence keeps increasing
to reach a maximal value of approximately 3.9 J/cm2. This is accompanied by a signif-
icant decrease in energy in the range 33-37 % of the energy at z = 17 µm. The same
observations hold for Ein = 1.6 µJ where the energy loss is around 56-58 % of the input
value.
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Figure 4.3: Experimental results of the propagation of 130 fs Bessel-Gauss beams in
fused silica: (top) evolution of fluence distribution in the transverse and propagation coor-
dinates (middle) the corresponding on-axis fluence (r = 0) and (bottom) energy evolution
along propagation for different input energies (from left to right columns): 6 nJ (linear
regime), 0.26 µJ, 0.72 µJ, 1.6 µJ.

4.2.2/ NUMERICAL RESULTS AND DISCUSSION

4.2.2.1/ FILAMENTATION MODEL AND IMPROVEMENTS

Let us first briefly recall the discrepancies discussed in previous works and discuss the
validity of approximations used in the above described model.

Limitation of our filamentation model: We specifically consider previous results of our
group reported in Ref. [Courvoisier et al., 2013, Xie et al., 2016] where the propagation
of high cone angle Bessel filaments in glass was investigated.

Experimental results showed the formation of propagation-invariant Bessel filaments
yielding high aspect-ratio nano-channels. One then can expect that the laser-generated
plasma channel is uniform and is confined in the volume area of the central core of
the beam. However, numerical results using this model showed strong transverse
spreading in space of pulsed Bessel beams which contrasts with experimental obser-
vations as one can see from Fig. (4.1,c) (page 114). In addition, although laser-
generated plasma reaches a density superior to the critical one ρcr ≈ 1021 cm−3, its den-
sity drastically decreases along propagation which indicates inefficient energy deposition
[Courvoisier et al., 2013].

To obtain a better consistency with experiments, numerical simulation were performed
while neglecting avalanche ionization. However, although the plasma channel is uni-
form, the maximal plasma density reached is inferior to the critical value by an order of
magnitude, which might be insufficient to cause ablation [Bulgakova et al., 2015]. In Ref.
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[Garzillo et al., 2016], it was estimated that ablation requires plasma densities superior
to ρcr or even of the order of neutral atom density ρat = 2.2 1021 cm−3, but this hypothesis
has yet to be verified especially since their numerical results were obtained for an "un-
physical" value of the collision time τc ≈ 10 − 15 as [Xie et al., 2016]. We recall that the
collision time of dense electronic plasma was experimentally measured and is around 1
fs [Sun et al., 2005].

Validity of approximations involved in the NLSE: We discussed in the first section
the different approximations used to derive the nonlinear envelope equation. The first
approximation considered is the scalar one where the electric field is assumed to be
linearly polarized in the transverse plane of the wavevector direction. It was stated that
this approximation is only valid for low cone angles. Hence, since we use a very high
cone angle, this approximation may not be valid. The other approximations concern a
slowly evolving pulse envelope which states that the phase and group velocity are nearly
equal.

of constant density. Naturally, Fig. 5 should not be inter-
preted as representing the light and plasma channel at a
given instant but as the traces left by the propagating pulses
on the medium. For instance, the electron densities shown in
Fig. 5 represent the largest plasma densities reached for each
propagation distance. This steady Bessel filamentation is ob-
tained for a wide range of input parameters and is robust
with respect to an increase of the input pulse energy. It is
interesting to note that the fluence distributions as well as the
plasma channels obtained in Bessel filaments can exhibit a
Bessel-like profile which reflect the action of nonlinearities
on the profile of the axicon-focused input beam �radial com-
pression and loss of contrast of the Bessel oscillations �27��.
However, the detailed intensity distribution in space and time
exhibits other remarkable features not simply describable by
referring to the formation of nonlinear Bessel profiles.

For instance, Fig. 6 shows the evolution of the temporal
profiles of the on-axis intensity distribution. Limited tempo-
ral dynamics are observable from these profiles: The on-axis
intensity remains bell shaped and inspection of the associ-
ated spectra �not shown� indicates also a very limited con-

tinuum generation. The peak intensity propagates at a group
velocity which is given by �vg��0

cos �, where � is the Bessel
angle. This diagnostic, however, masks a slightly more com-
plex reshaping in space and time.

Figure 7 presents in details the evolution of the intensity
distribution in the Bessel filament. An important reshaping
occurs due to the effect of plasma defocusing. While the
transverse profiles exhibit the ringlike features of Bessel
beams in the leading part of the pulse, the trailing part is
clearly shaped as a cone in the space-time domain.

The steady Bessel filamentation regime where the interac-
tion with the medium and the generation of a plasma is
achieved continuously over a long distance is the most inter-
esting for applications. For instance, a steady Bessel filament
in air could lead to an enhanced THz generation in the for-
ward direction �52–55�. Amplification of a Bessel filament in
a suitable medium should be easier to perform than that of a
standard filament �56�. Since there might be some uncer-
tainty in the parameters used in the simulations, notably in
the determination of the multiphoton absorption coefficients,
we varied the multipoton absorption cross section �K while
other parameters were kept constant and we found a transi-
tion from the steady Bessel filamentation regime to the
weakly nonlinear filamentation regime when �K was de-
creased below a certain threshold ��8=3.7
�10−98 s−1 cm16 W−8 for K=7 photons or below �7=2.3
�10−83 s−1 cm14 W−7 for K=7 photons�. We have shown
numerically that a transition from the steady to the unsteady
Bessel filamentation regimes occurs when the base angle of
the axicon is decreased which will be discussed in the next
section.

V. UNSTEADY BESSEL FILAMENTATION AND
TRANSITION TO THE STEADY Bessel FILAMENTATION

REGIME

A. Space-time dynamics of the unsteady Bessel filaments

A transition between the steady to the unsteady Bessel
filamentation regimes was also observed in simulations of
Bessel filamentation in a water cell with ultrashort laser

FIG. 5. �Color online� Fluence distribution �first column� and
plasma channels �second column� generated by Bessel filamenta-
tion. The color bar units are in J /cm2 for the fluence �left-hand
column� and in decades �16�1016 cm−3� for the electron densities
�right-hand column�. The parameters of the input pulses sent
through the axicon of base angle �=0.5° are �FWHM=50 fs. First
line, Ein=1.44 mJ, w0=10 mm; second line, Ein=14.4 mJ, w0

=10 mm; third line, Ein=14.4 mJ, w0=5 mm.
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FIG. 6. Evolution of the temporal profiles of the on-axis inten-
sity distribution along the propagation distance for the Ein

=1.44 mJ, w0=10 mm, �FWHM=50 fs input pulse focused with the
�=0.5° axicon. The numbers label the intensity levels �13
�1013 W /cm2� and the dashed line marks the predicted velocity of
the Bessel pulse.

FIG. 7. �Color online� Evolution of the intensity distribution in
space and time during the process of Bessel filamentation. Input
pulse: Ein=14.4 mJ, w0=5 mm, �FWHM=50 fs, �ax=0.5°. Propa-
gation distances: z=10 cm �top left�, z=50 cm �top right�, z
=100 cm �bottom left�, z=150 cm �bottom right�.

POLESANA et al. PHYSICAL REVIEW A 77, 043814 �2008�

043814-6

Figure 4.4: Fluence distribution (first column) and plasma channels (second column)
generated by Bessel filamentation. The color bar units are in J/cm2 for the fluence
(left-hand column) and in decades 16 ≡ 1016 cm−3 for the electron densities (right-hand
column). The input Bessel-Gauss pulse has pulse duration of 50 fs and a cone angle
θ ≈ 0.25◦. First line, Ein = 1.44 mJ, w0 = 10 mm; second line, Ein = 14. mJ, w0 = 10 mm;
third line, Ein = 14.4 mJ, w0 = 5 mm. Image taken from Ref. [Polesana et al., 2008].

In Ref. [Polesana et al., 2008], Polesana et al. used a similar filamentation model as the
one used by our group. The point of difference lies in the approximations involved in the
derivation of the NLSE: while laser-plasma coupling equation are nearly identical, they did
not consider the slowly varying envelope approximation. Furthermore, in their numerical
simulations, Polesana et al. used Bessel beams with very low cone angles (less than 1◦).
Hence, the scalar approximation discussed above can be considered to be valid.

In Fig. (4.4), we present some of their numerical results showing the fluence and plasma
density distributions of femtosecond low cone angle Bessel-Gauss beams. For a low
intensity (low input energy Ein = 1.44 mJ and high beam waist w0 = 10 µm), the plasma
density is confined in central core of the beam along propagation distance yielding a
uniform plasma channel. However, for higher intensities, the fluence distribution of the
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pulse shows that its central core undergoes a spatial expansion accompanied by non-
confinement of the pulse-generated plasma density. These results are qualitatively similar
to those reported later by our group in Ref. [Courvoisier et al., 2013] as discussed above.
Hence, although there are less approximations in the nonlinear envelope equation used
by Polesana et al. [Polesana et al., 2008] than in Ref. [Courvoisier et al., 2013], similar
features regarding the behavior of plasma density are observed.

We then assume that the observed disagreement between experiment and simulations
is mainly due to laser-plasma coupling and not necessarily the nonlinear envelope equa-
tion. In this case, we can simply express the propagation equation using the simplest
approximation, i.e. the slowly varying envelope approximation, which is the one used in
Ref. [Courvoisier et al., 2013].

4.2.2.2/ NUMERICAL MODEL AND PARAMETERS

Based on the above discussion, the filamentation equation we numerically solve is given
by:

∂ξE =
i

2 k
∇2
⊥Ê − i

k(2)

2
∂2E

∂τ2 + ik0n2|I|
2E −

WPI(I)
2I

K~ω0E −
1

2 cε0n
Jp (4.25)

We express the photoionization rate WPI according to Keldysh formulation. Its variation
as a function of the intensity is depicted in Fig. (4.5).
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Figure 4.5: Nonlinear ionization rate as a function of optical intensity according to the
theory of Keldysh.

We express the time evolution equation of plasma density in its general form as defined
by Eq. (4.23): ∂tρ = (WPI + Wava ρ) (1 − ρ/ρat) − ρ/τr. We will show numerical simulation
results considering different models of plasma related terms, namely the current density
envelope Jp and the avalanche ionization term Wavaρ. Numerical resolution of these
equations is described in Ref. [Couairon et al., 2011, Couairon et al., 2002].

Numerical parameters used in our simulations are presented in table (4.1). The value of
the collision time is τc = 1.28 f s unless otherwise mentioned.
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λ (µm) 0.8
n 1.453

n2 (m2/W) 2.48 10−20

θ (◦)(in air) 26
k(2) ( f s2/cm) 361

Ui (eV) 7.2
τ ( f s) 1.28

w0 (µm) 15
ρat (cm−3) 2.1 × 1022

Table 4.1: Numerical parameters used in our simulations of 130-fs Bessel beams in fused
silica.

In the following, we will compare experimental data with simulation results of the fluence
(computed by integrating the pulse intensity over the time coordinate) and the energy
(computed by integrating the fluence over the transverse coordinates). We also present
results for plasma density as the maximal value reached in the time domain.

4.2.2.3/ RESULTS FOR AN INPUT ENERGY OF 0.26 µJ

We begin our analysis of numerical results with Ein = 0.26 µJ. We use the same expres-
sions of the current density and avalanche ionization as in Ref. [Courvoisier et al., 2013],
i.e. Jp/nε0c = σ(1 + iω0τc)ρE and Wava = σI/Ui. We show in Fig. (4.6) the evolution of
the energy, fluence and plasma density along propagation for two different values of the
collision time τc. We also compare results with available experimental data.

Our experimental method to image Bessel filaments allows to adjust numerical modeling
and parameters to give a better understanding of the physical effects involved in filamen-
tation [Courvoisier et al., 2016a]. For instance, experimental measurements of the colli-
sion time at ablation threshold yields a mean value of around 1.28 fs [Sun et al., 2005].
However, in the case of an input energy of 0.26 µJ, we did not observe any ablation traces.
Hence, we adjusted the value of τc to obtain a better consistency with experiments.

Numerical results for τc = 4 fs show a better agreement with experimental data than in
case τc = 1.28 fs. Firstly, there is a good consistency regarding the energy behavior be-
tween experiments and simulation results for τc = 4 fs whereas the energy loss is overes-
timated in the case τc = 1.28 fs. Furthermore, simulation of the fluence distribution shows
that the pulse undergoes a slight spatial expansion for τc = 1.28 fs whereas it preserves
its initial spatial size in the case of τc = 4 fs. The latter case is more consistent with exper-
imental data although the maximal fluence value is higher than the experimental one by
a factor of 1.5 (see Fig. (4.6,b)). Hence, the model used in Ref. [Courvoisier et al., 2013]
is sufficient to describe filamentation below ablation.

NB: the low fluence rise in the experimental curve compared to the numerical one is due
to spherical aberrations which are neglected in numerical simulations.

Regarding plasma density, its distribution is more localized and confined in space in the
case of τc = 4 fs. The maximal value reached in both cases is higher than 1021 cm−3

but still lower than the critical density ρcr = 1.7 1021 cm−3 over which the plasma becomes
opaque. Since no ablation traces are observed, we assume that laser-generated plasma
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Figure 4.6: Numerical simulation results of Eqs. (4.25), (4.21) and (4.23) where Wava =

σI/Ui for Ein = 0.26 µJ (a) energy and (b) central core fluence evolution along propagation
for (blue dotted line) τc = 1.28 fs and (blue solid line) τc = 4 fs and (red line) comparison
with experiments. (c-d) Fluence map and (e-f) evolution of plasma density in the radial
and propagation coordinates corresponding to two values of collision time [i.e. τc = 4 fs
(c-e) and τc = 1.28 fs (d-f)].

densities below the critical value are insufficient to cause ablation in glass as proposed in
[Garzillo et al., 2016]. Nevertheless, experimental measurements of plasma density are
still required to verify this claim.

4.2.2.4/ RESULTS FOR AN INPUT ENERGY OF 0.72 µJ

For Ein = 0.72 µJ, Bessel filaments induce ablation traces in fused silica. Using the
same model and parameters as in the previous section, we observe about the same
results as those reported in Ref. [Courvoisier et al., 2013]; as shown in Fig. (4.7), the
Bessel pulse undergoes pronounced spatial expansion and the maximal fluence value is
much lower than the experimental one. As for plasma density, it increases significantly at
low propagation distances to exceed the critical value ρcr. It then expands in transverse
spatial plane and decreases along the pulse propagation. The only observed consistency
is related to energy variation along propagation.

Note that although increasing the value of the collision time leads to the stabilization of the
fluence distribution, the energy loss and plasma density are underestimated compared to
experimental results. Let us now consider improved models of laser-plasma coupling in
our numerical simulations. We begin with the plasma current density.

Current density and plasma dispersion: When deriving Drude model in sec-
tion 4.1.2.3 (page118), we have neglected the term Jp∂tρ/ρ in the expression of current
density (4.17), provided that the ionization rate is small. However, if we assume that
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Figure 4.7: Numerical simulation results of Eqs. (4.25), (4.21) and (4.23) for Ein = 0.72 µJ
where Wava = σI/Ui (a) energy and (b) central core fluence evolution along propagation
for (black dashed line) τc = 1.28 fs and (red line) comparison with experiments. (c) Flu-
ence map and (d) evolution of plasma density in the radial and propagation coordinates.

over-critical plasma densities can be reached within few tens of fs (i.e. few optical cy-
cles) [Rethfeld, 2004], then this term becomes on the same order of magnitude as the
collision frequency 1/τc. Here, we will correct the propagation equation if this term is not
neglected. Equation then (4.16) becomes:

∂
(
Jp/ρ

)
∂τ

=
q2

me
E +
Jp

ρ
(iω0 − ν) (4.26)

We solve this equation in the spectral domain as in section 4.1.2.3. We obtain:(̂
Jp

ρ

)
=

q2τc

me(1 + ω2
0τ

2
c)

(1 + iω0τc)
(
1 − i(ω − ω0)

τc

1 − iω0τc

)−1
Ê (4.27)

It can be expressed in the time domain as:

1
n ε0c

Jp

ρ
= σ(1 + iω0τc)G−1E (4.28)

In Ref. [Gulley et al., 2010], the operator G−1 =
(
1 +

i
ω0

g∂τ
)−1 is actually applied to the

product ρE while, in our case, it is only applied to the pulse envelope E. In the general
case, one can compute the current density by numerically solving Eq. (4.26) to implicitly
consider plasma dispersion.

Considering the corrected expression of the current density (4.27) in our numerical sim-
ulations, our results show nearly no difference with the state of the art [Xie et al., 2016]
as shown in Fig. (4.7). Actually, even if we numerically compute the current density by
solving the corresponding time evolution equation (4.26), we still obtain the same results.
This shows that plasma dispersion plays no significant role in our case. This might be
due to the fact that avalanche ionization is much more important.
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Avalanche ionization model: Rethfeld’s model. The model we took earlier (Wava =

σI/Ui) to describe avalanche ionization rate is very basic since it is only a two-level sys-
tem, which does not describe the progressive capture of photons before impact ioniza-
tion. In Ref. [Rethfeld, 2004], Rethfeld introduced another model to describe the gradual
process of energy gain. Rethfeld suggested that free-electrons generated through pho-
toionization are initially at the lowest edge of the conduction band with an energy close
to zero ε1 ≈ 0 (Fig. (4.8)). These free-electrons will then gradually absorb single light
photons which define discrete energy levels εl = ε1 + l ~ω0, where l is an integer. Impact
ionization occurs when a free-electron absorbs enough energy to surpass a threshold
value εcrit corresponding to p =

[ εcrit

~ω0
+ 1

]
photons, where [x] denotes an integer. εcrit was

defined as follows:

εcrit = 1.5 (Ui + Uosc) (4.29)

where Uosc is the energy of free-electron oscillation in the laser field.

Figure 4.8: Illustration of the processes providing changes in the density and the energy,
respectively, of free electrons in the conduction band of a dielectric ([Rethfeld, 2004])

This process was then expressed in the form of multiple rate equations (MRE) as follows:

∂ρ1

∂t
= W̄PIρ0 + 2W̄avaρp −Wplρ1 − ρ1/τr

∂ρ2

∂t
= Wplρ1 −Wplρ2 − ρ2/τr

.

.

∂ρp

∂t
= Wplρp−1 − W̄avaρp − ρp/τr (4.30)

where Wpl is the probability of one-photon absorption and W̄ava denotes avalanche ion-
ization rate. In Ref. [Rethfeld, 2004], it was not expressed as Wava = σI/Ui (Eq. (4.24))
but was given a fixed value (W̄ava > 1015s−1). Adding up these equation yields:

∂ρ

∂t
= W̄ρ0 + W̄avaρp − ρ/τr (4.31)

where ρ =
∑p

l ρl and ρ0 = ρat − ρ. This equation is only different from that of Eq. (4.23)
(page 119) in terms of the quantity ρp: while Eq. (4.23) assumes that all free-electrons
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can simultaneously trigger avalanche ionization, Eq. (4.31) states that only a fraction of
free-electrons (ρp instead of ρ) is involved in this process.
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Figure 4.9: Numerical simulation results of Eqs. (4.25), (4.21) and (4.30) for Ein = 0.72
µJ (a) energy and (b) central core fluence evolution along propagation for (solid line)
τc = 1.28 fs and (red line) comparison with experiments. (c) Fluence map and (d) evolution
of plasma density in the radial and propagation coordinates.

Numerical simulation results considering this avalanche ionization model are shown in
Fig. (4.9). We used fourth order Runge-Kutta to solve each of the p =

[ εcrit

~ω0
+ 1

]
rate

equations. The evolution of the pulse fluence along propagation shows a propagation-
invariant feature as it is the case in experiments, whereas the peak fluence is overes-
timated. However, it is clear that the energy loss is overestimated compared to experi-
mental data. Despite this, the maximal plasma density is one order of magnitude lower
than that of the critical density ρcr = 1.7 1021 cm−3. This result is similar to that obtained
in Ref. [Courvoisier et al., 2013] where avalanche ionization is neglected. This suggests
that avalanche ionization is probably underestimated in this model.

Avalanche ionization using a Maxwellian distribution: We have tested another
model for avalanche from the literature. In fact, this ionization process is originally mod-
eled using Keldysh formulation [Chimier et al., 2011]. For a particular energy distribution
of free-electrons fe(ε), avalanche ionization rate is written as:

Wava(ε) =

∫ +∞

0
αava(ε) fe(ε)dε (4.32)

with αava(ε) =

α0(ε/εcrit − 1)2, ε > εcrit

0, otherwise
(4.33)

where αava is the impact probability of a free-electron of energy ε to collide with a bound
electron. Equation (4.33) shows that this probability only has non-zero values in case
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the free-electron energy is superior a critical value εcrit. In case the masses of free-
electrons and holes are considered equal, the expression of εcrit is defined by Eq. (4.29).
α0 is a rate constant that is related to the material and can be empirically evaluated
[Penano et al., 2005]. For fused silica, it is 1.5 fs−1.

The resolution of Eq. (4.32) is very complicated since one needs to solve the
kinetic equation related to the energy distribution function fe(ε) [Stuart et al., 1995,
Stuart et al., 1996]. Chimier et al. proposed to describe the distribution function fe us-
ing Fermi distribution [Chimier et al., 2011]. In this case, this equation is coupled to other
equations to determine other quantities such electron temperature and electron heating
capacity. Considering the fact that all these equations should be coupled to the nonlin-
ear propagation equation, then the resolution of the overall filamentation model becomes
more difficult and time consuming.

In this regard, even though the distribution function fe is non-Maxwellian
[Stuart et al., 1995, Stuart et al., 1996], some authors have proposed to use the
Maxwellian distribution to simplify the resolution of Eq. (4.32) and include it in filamenta-
tion models [Penano et al., 2005, Hallo et al., 2007]. In this case, the avalanche ionization
rate is written as:

Wava(γ) =α0
(
15/4γ2 − 3 γ + 1

)
erfc(

√
1/γ)

+
α0
√
π

exp(−1/γ)
(
7.5γ3/2 − γ1/2) (4.34)

where er f c(x) = 1 − (2/
√
π)

∫ x
0 exp(−t2)dt stands for the complementary error function,

γ = ε/εth and εth is the electron thermal energy. The latter can be determined using the
following equation:

∂(ρ εth)
∂t

= J E − 2Ui Wava ρ (4.35)

It states that free-electrons gain energy through Joule heating (J E) and lose energy be-
cause of avalanche ionization (2Ui Wava ρ). Note that, in this model, the electron colli-
sion frequency νc = 1/τc is varying in time and is defined as the sum of the electron-
neutral νen and electron-ion νei collision frequencies which are expressed in s−1 as:
νen = 2 10−7(ρat − ρ)(cm−3)Te(eV) and νei = 2.91 10−6ρ(cm−3)ΛT−3/2

e (eV) where Λ is Couloub
logarithm and was given values higher than 2 [Penano et al., 2005].

In our simulations, we expressed the quantities J and E as J = J cos(ω0τ) and E =

E cos(ω0τ) respectively. The current density envelope is computed by solving the corre-
sponding time evolution equation (4.26).

Figure (4.10) shows numerical results using this avalanche ionization model: we still
observe the good agreement between the experimental and numerical curves of energy
evolution along propagation. Although plasma density reaches a value superior to the
critical value, the fluence distribution exhibits significant spatial expansion which is in
opposition to experimental results.

Toy-model for avalanche: we suggested a possible correction of the plasma density
evolution equation (4.23) following the idea that not all free electrons can contribute to
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Figure 4.10: Numerical simulation results of Penano’s model [Penano et al., 2005] using
Eqs. (4.25) and (4.34) (4.35). Additional parameters can be found in the same reference.
(blue solid line): (a) Energy and (b) central core fluence evolution along propagation and
(red line) comparison with experiments. (c) Fluence map (d) Evolution of plasma density
in the radial and propagation coordinates.

avalanche ionization. Considering an intensity-dependent avalanche ionization rate, we
write Eq. (4.23) in the same form as (4.31):

∂ρ

∂t
=

[
WPI + σI/Ui(η ρ)

]
(1 − ρ/ρat) − ρ/τr (4.36)

where η = ρp/ρ is assumed to be an arbitrary constant parameter. Hence, in our simu-
lations, we consider that only a fixed fraction of the total plasma density participates in
avalanche ionization. We show in Fig. (4.11) our numerical results for two values of η,
namely 0.1 and 0.2:

With regard to total energy loss, there is a very good consistency between experimental
and numerical curves as it is the case in Fig. (4.7). We assume that since both plasma
and nonlinear absorption contribute to nonlinear losses, then if one energy absorption
process decreases in efficiency, the efficiency of other process will increase and vice
versa.

In addition, the fluence distribution is more consistent with experiments and specifically
for η = 0.1. The distribution of plasma density can also be seen to be in agreement with
experiment since it does not significantly expand in the transverse direction. Although the
maximal plasma density does not exceed the critical value, it is still unclear if this density
is enough to trigger the formation of a void channel as discussed above.

Finally, we note that even though this toy model works well for Ein = 0.72 µJ, the results
of Ein = 1.6 µJ could not be reproduced. This shows that some of the approximations
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involved in these models are not valid or that there are other physical effects that are not
accounted for.

4.3/ CONCLUSIONS

In this chapter, we investigated filamentation of femtosecond Bessel beams of high
cone angle in fused silica. Experimental results showcase the formation of propagation-
invariant Bessel filaments leading to the generation of high aspect-ratio nano-channels.
These observations suggest an efficient energy deposition along the propagation dis-
tance and that laser-generated plasma channels are uniform and confined in the volume
of the central lobe of Bessel beams.

We studied Bessel filamentation using numerical simulations based on nonlinear
Schrödinger equation (NLSE) for pulse propagation and Drude model for laser-plasma
coupling. Numerical results obtained before this thesis showed a pronounced spatial
expansion of the central lobe of Bessel filaments which is accompanied by non-uniform
plasma channels. To investigate the discrepancy between experiments and simulations,
we investigated the different approximations used to develop this model.

In the NLSE, we considered plasma dispersion effect in the expression of the current den-
sity. Nevertheless, numerical results show the same discrepancies. We obtained better
consistency with experiments by correcting avalanche ionization. We firstly considered
Rethfield’s multiple rate equation model which, in principle, better describes the dynamics
of avalanche ionization
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We also considered another avalanche ionization model from the literature where the en-
ergy distribution of free-electrons is assumed to be Maxwellian. Simulations showed that
although the maximal plasma density remains superior to the critical value along prop-
agation, the central core of the beam undergoes a transverse spatial expansion which
contrasts with experiments.

Finally, we proposed a toy-model considering that only a fixed fraction of the free-electron
plasma density contributes to avalanche. Our simulations can be considered to be
in agreement with experiments. However, the maximal density of the laser-generated
plasma remains inferior to the critical density, which might be insufficient to cause abla-
tion. Moreover, inconsistencies are observed if the input energy is further increased. The
models considered in this thesis are then insufficient to describe Bessel filamentation. In
this regard, additional experiments and more appropriate physical modeling are required
to explain the exceptional characteristics of ablation with a Bessel pulses.





CONCLUSION AND PERSPECTIVES

This thesis was dedicated to the study of arbitrary on-axis intensity shaping of Bessel
beams and its application in controlling Kerr-induced nonlinear instabilities and laser-
generated plasma.

We developed, in a first step, an experimental technique to arbitrarily shape the on-axis
intensity of Bessel beams. This approach requires the shaping of both the spatial ampli-
tude and phase of an incident beam. We used a technique that enables exact encryption
of the amplitude and phase of the target Bessel beam on a phase-only spatial light mod-
ulator (SLM). Beam shaping is performed from direct-space and thus ensures a much
higher energy throughput than Fourier-space shaping. We numerically studied physically
realizable target on-axis intensity profiles depending on physical limitations imposed by
laser wavelength and numerical aperture of experimental setup. We showed that these
limitations can be expressed as a convolution product of the target intensity profile and a
sinc-shaped function which may yield undesired on-axis intensity oscillations.

We presented our experimental results for two different target on-axis intensity profiles.
Our results showed a very good agreement between simulation and experiment which
validate our chosen experimental approach. We also discussed the energy throughput
of our technique. Our measurements showed that it is typically around 10 % and that
it depends largely on the transverse size of the target beam. We also discussed the
possibility to improve the energy throughput by means of intensity shaping of the incident
laser field.

In the second part of this thesis, we analytically and numerically discussed Kerr-induced
nonlinear instabilities and their control using on-axis intensity shaping of Bessel beams.
Kerr-induced instabilities refer to the modulation of central core intensity of Bessel beams
along propagation. This modulation was interpreted as the interference of the input
Bessel beam with new spectral components (axial wave and outer ring) resulting from
four wave mixing (FWM) interactions. In our work, we further investigated the underlying
features of these instabilities by means of our model (reduced FWM model) in addition to
the theory of Gadonas et al. [Gadonas et al., 2001]. We showed that nonlinear spectral
distortions go through two stages: a Bessel beam first undergoes self-phase modulation
(SPM) leading to an initial expansion of its spatial spectrum and the generation of an axial
wave "seed". The second stage lies in the amplification of the axial wave seed and outer
ring generation as a result of cross-phase modulation (XPM) and parametric amplification
respectively. Our results then show that the control of nonlinear instabilities resides either
in the initial spectral broadening or ensuing FWM processes.

We interpreted previous results on the control of nonlinear instabilities in Bessel beams
depending on whether they are formed progressively inside or prior entering nonlinear
media (smooth and abrupt transition). We showed that the input phase profile determines
the SPM-induced broadening in the first stage.

135
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We then introduced our approach to control nonlinear instabilities using shaped-intensity
profiles. Our numerical simulations show that these instabilities are effectively reduced
if the initial intensity rise of Bessel beams is slowly established. Our interpretation
of results is also based on input spectral phase profile as in the case of smooth and
abrupt transitions. We showed that our results are also valid in the filamentation regime.
Specifically, reduced Kerr-nonlinearity in shaped Bessel beams allows generating plasma
channels that are more uniform compared to those generated by conventional pulsed
Bessel-Gauss beams.

In the last chapter, we investigated the validity of filamentation modeling of femtosecond
Bessel beams in glass at ablation-level intensities. Experimental results highlight the for-
mation of propagation-invariant Bessel filaments leading to the generation of high aspect-
ratio nano-channels. Numerical results obtained using extended nonlinear Schrödinger
equation and Drude model showed a pronounced spatial expansion of the central lobe of
Bessel filaments which is accompanied by non-uniform plasma channels. We reconsid-
ered the different approximations used to develop this model in order to investigate the
observed disagreement between experiments and simulations.

Our work showed that only by correcting avalanche ionization one can obtain a better
consistency with experiments. We suggested a toy-model considering that only a fixed
fraction of free electron plasma density contributes to avalanche. Our simulations could
be somehow in agreement with experiments. However, the maximal density of the
laser-generated plasma remains inferior to the critical density, which might be insufficient
to cause ablation. We concluded that the models considered in this thesis are insufficient
to describe Bessel filamentation. In this regard, additional experiments and physical mod-
eling are required to explain the exceptional characteristics of ablation with Bessel pulses.

At the conclusion of my thesis, we conceive three axis of potential research. The first
concerns direct applications of on-axis intensity shaping of Bessel beams in high power
laser applications. Our technique allows to generate a superposition of Bessel beams of
different cone angles and with controllable on-axis intensity profiles. This approach can
be easily extended to Bessel vortices.

Regarding our reduced FWM model, we have, so far, neglected temporal contribution.
We think it would be interesting to generalize our model to time domain as to investi-
gate the impact of on-axis intensity shaping on temporal spectral broadening, anti-Stokes
generation [Dubietis et al., 2007] and other related nonlinear phenomena. Another pos-
sible axis of research concerns Plasma-induced instabilities in gases as reported in
[Cooley et al., 2006].

Finally, we believe that the control of filamentation by initial shaping will provide interesting
new pathways for the applications of filamentation and plasma generation: in ultrafast-
laser matter interaction studies, laser materials processing, secondary sources such as
THz generation.
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APPENDIX OF CHAPTER 2

2.A DEMONSTRATION OF THE LIGHT FIELD EXPRESSION AT THE

FIRST DIFFRACTION ORDER

As discussed in chapter 2, section 2.3.2, we expressed the phase mask ψ(x, y) designed
to modulate the amplitude and phase of in incident field Uinc(x, y) as follows:

ψ(x, y) = M(x, y).F(x, y) (37)

where M(x, y) is an amplitude modulation term such as ≤ M(x, y) ≤ 1 and F(x, y) is phase
function wrapped over 2 π. In the following, we will omit writing the (x, y) related to the
different quantities for simplicity.

After interacting with the SLM, the incident light field Uinc, with a spatial amplitude Ainc

and phase φinc, will acquires the phase term ψ in the form of the multiplicative exp(iψ).
Considering the spatial phase φinc of an incident laser beam is quasi-flat, the expression
of the light field at the SLM plane US LM is given by :

US LM = Aincexp(iψ) (38)

We first expand the exponential term in a Taylor series. We obtain:

US LM = Ainc

+∞∑
p=0

(i M)p

p!
F p (39)

Here, we separated the amplitude and phase term in order to expand the latter in a Fourier
series:

US LM = Ainc

+∞∑
p=0

(i M)p

p!

+∞∑
n=−∞

Anexp(i n F) (40)

where An =
∫ 2 π

0
1

2 π
F pexp(−i n F)dF. Then, we can write the whole expression of US LM in

the form of a Fourier series as follows:

US LM = Ainc

+∞∑
n=−∞

Tnexp(i n F) (41)
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where the Fourier coefficient Tn is written as : Tn =
1

2 π

∫ 2π
0

{∑+∞
p=0

(i M F)p

p!

}
exp(−i n F)dF

This expression can be further simplified by writing the Taylor-expanded term∑+∞
p=0

(i M F)p

p!
as exp(i M F) and then computing the integral. The expression of Tn then

becomes:

Tn =
1

2 π

∫ 2π

0
exp(i M F)exp(−i n F)dF

Tn =
1

2 π

[
exp{i(M − n)F}

i(M − n)

]2 π

0

Tn =
1

2 π
exp{2 π i(M − n)} − 1

i(M − n)

Tn = exp{i(M − n) π}
exp{i(M − n) π} − exp{−i(M − n) π}

2 π i(M − n)
(42)

Then, the coefficient Tn can be written as :

Tn = exp{i(M − n) π}sinc{(M − n) π} (43)

where the sinc function is defined as sinc{(M − n) π} = sin{(M − n) π}/((M − n) π). The
expression of US LM then becomes :

US LM = Ainc

+∞∑
n=−∞

exp{i(M − n) π}sinc{(M − n) π}exp{i n F} (44)

At the first diffraction order (n = 1), where the target light field is retrieved, the expression
of the light field Uret is given by :

Uret = −Aincsinc{(M − 1) π}exp{i (πM + F)} (45)

By identifying Eq. (45) to the expression of a target field Utar = Atarexp(iφtar)

M(x, y) = 1 +
1
π

sinc−1(Atar2(x, y)) (46)

F(x, y) = φtar(x, y) − πM(x, y) (47)

where Atar2 = Atar/Ainc and should be normalized : 0 ≤ Atar2 ≤ 1.

2.B ANALYTICAL COMPUTATION OF THE SPATIAL SPECTRUM

In this appendix, we present analytical formula of spatial spectra related to two different
on-axis intensity profiles :
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CASE OF A FLAT-TOP PROFILE WITH PARABOLIC RAMPS

This on-axis intensity profile, denoted Icst, is given by:

Icst =



Imax(z/zi)2 , 0 ≤ z ≤ zi

Imax zi ≤ z ≤ z f

Imax
(
1 −

z − z f

zmax − z f

)2 , z f ≤ z ≤ zmax

0 ,otherwise

(48)

The corresponding spatial spectrum is computed using Eq. (2.5): S cst(
√

k2 − k2
z , z = 0) =

1
kz

∫ +∞

−∞

√
Icstei(kz0−kz)z dz. Inserting Eq. (48) in Eq. (2.5) we obtain :

S cst(
√

k2 − k2
z , z = 0) =

√
Imax

kz

{∫ zi

0
(z/zi)ei(kz0−kz)z dz +

∫ z f

zi

ei(kz0−kz)z dz (49)

+

∫ zmax

z f

(
1 −

z − z f

zmax − z f

)
ei(kz0−kz)z dz

}

The expression of the spatial spectrum is then made of the sum of the spatial spectra of
each segment of the on-axis intensity profile. After resolving these integral, we obtain:

S cst(
√

k2 − k2
z , z = 0) =

√
Imax

kz

{
1
−zia2 [exp(i a zi) (i a zi − 1) + 1]

+
exp(i a z f ) − exp(i a zi)

i a

+
1

(zmax − z f ) a2 [exp(i a zmax) (i a zmax − 1) − exp(i a z f ) (i a z f − 1)]

+ (1 +
z f

zmaxz f
)
exp(i a zmax) − exp(i a z f )

i a

}
(50)

where a = kz0 − kz.

CASE OF A LINEAR RAMP PROFILE WITH PARABOLIC DECAY

This on-axis intensity profile, denoted Iramp, is given by:

Iramp =


Imaxz/zi , 0 ≤ z ≤ z f

Imax
(
1 −

z − z f

zmax − z f

)2 , z f ≤ z ≤ zmax

0 ,otherwise

(51)

We resolve Eq. (2.5) in the same way as described in Eq. (49). The spatial spectrum
S ramp corresponding to this profile is given by:
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S ramp(
√

k2 − k2
z , z = 0) =

√
Imax

kz

{∫ z f

0

√
z/z f ei(kz0−kz)z dz +

∫ zmax

z f

(
1 −

z − z f

zmax − z f

)
ei(kz0−kz)z dz

}
(52)

where the second integral of this equation is the same as the third integral in the right
hand side (r. h. s.) of Eq. (49) and its resolution is described by the third and fourth terms
on (r. h. s) of Eq. (50). The solution of the first integral, S ramp1 =

∫ z f

0

√
z/z f ei(kz0−kz)z dz,

written as:

S ramp1(
√

k2 − k2
z , z = 0) =

1
z f

{
z f

a
[sin(a z f )i cos(a z f )]

+

√
π/2

a3/2

[
SinF

(√
2 a z f /π

)
− i CosF

(√
2 a z f /π

)]}
(53)

where a was previously defined as a = kz0 − kz. and the functions sinF and CosF stand for
the sine and cosine Fresnel integrals and are defined as follows:

SinF(x) =

∫ x

0
sin

(
π

2
t2
)

dt (54)

CosF(x) =

∫ x

0
cos

(
π

2
t2
)

dt (55)
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3.A DERIVATION OF HELMHOLTZ EQUATION FOR A J0 FUNCTION

In this appendix, we show how Eq. (3.9) (page 67) is obtained. The propagation equation
is given by:

∆E4 −
εr

c2

∂2E4

∂t2 = µ0
∂2P(4)

NL

∂t2 (56)

where

E4 =
1
2

x
(
A4exp[i(ω0t − kz4z)] + c.c

)
(57)

A4 =a4(z) J0(kr4r)eiφ4 (58)

We ignore complex conjugate terms "c.c" and consider that all waves are polarized along
axis x. Eq. (56) becomes:

∆
[
A4ei(ω0t−kz4z)] − εr

c2

∂2

∂t2

[
A4ei(ω0t−kz4z)] =µ0

∂2

∂t2

[
p(4)

NL, ω0
ei(ω0t−kz4z)]

∆
[
A4e−i kz4z] +

ω2
0εr

c2

[
A4e−i kz4z] = −

ω2
0

ε0c2

[
p(4)

NL, ω0
e−i kz4z] (59)

where

p(4)
NL, ω0

=
3
4
ε0χ

(3)
[
|A4|

2A4 + 2 (|A1|
2 + |A2|

2 + |A3|
2)A4

+

3∑
j=1

(
A2

j A
∗
4e−i(2kz j−2kz4)z) + 2

(
A1A2A∗3e−i(kz1+kz2−kz3−kz4)z

+ A1A∗2A3e−i(kz1−kz2+kz3−kz4)z + A∗1A2A3e−i(−kz1+kz2+kz3−kz4)z)] (60)

We have:

∆
[
A4e−i kz4z)] =

( ∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2

)
a4(z) J0(kr4r)eiφ4e−i kz4z (61)

For derivative terms along variable "r" we have:

1
r
∂J0(kr4r)

∂r
= − kr4

J1(kr4r)
r

∂2J0(kr4r)
∂r2 = − kr4

∂J1(kr4r)
∂r

= + kr4
J1(kr4r)

r
− k2

r4J0(kr4r)
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For derivative terms along variable "z" we have:

∂2a4(z)e−i kz4z

∂z2 =
∂

∂z
∂a4(z)e−i kz4z

∂z

=
∂

∂z
(∂a4(z)

∂z
e−ikz4z − ikz4a4(z)e−ikz4z)

=
∂2a4(z)
∂z2 e−i kz4z − 2ikz4

∂a4(z)
∂z

e−ikz4z − k2
z4a4(z)e−ikz4z

According to the slowly varying envelop approximation, we neglect the second derivate
of a4(z). Eq. (61) becomes:

∆
[
A4e−i kz4z)] = −

[
(k2

r4 + k2
z4)a4(z) + 2ikz4

∂a4(z)
∂z

]
J0(kr4r)e−ikz4zeiφ4 (62)

We have k2 = k2
r4 + k2

z4 = εr
ω2

0

c2 , [Durnin, 1987]. Then, Eq. (59) becomes:

2ikz4
∂a4(z)
∂z

J0(kr4r)eiφ4 =
k2

n2ε0
p(4)

NL, ω0
(63)

where εr = n2 and n is the linear refractive index.

3.B ANALYTICAL COMPUTATION OF A TPM INTEGRAL DEFINED FOR

β1 = β2 AND β3 = β4

We analytically develop the expression of transverse phase matching (TPM) integral in-
troduced in chapter 3 (section 3.25, page 73). It is defined for two identical pump waves
(β1 = β2) interacting with a signal wave to yield an idler wave identical to the latter (β4 = β3):

IT PM = 1/k2
r0

∫ ν f

0
J2

0(β1 ν) J2
0(β4 ν) r dr (64)

We use the approximate expression of the J0 function:

J0(β ν) ≈


1 − (β ν)2/4 , 0 ≤ ν ≤ ν0√

2
πβ ν

cos
(
β ν − π/4

)
, ν0 ≤ ν

The breakpoints of the Bessel functions J0(β1 ν) and J0(β4 ν) are ν1 = 1.1/β1 ν4 = 1.1/β4
respectively. In our calculations, we compute IT PM as a function of β4 for a given value
of β1. Since the breakpoint ν4 varies as a function of β4, the approximative expression of
IT PM integral depends on whether ν1 < ν4 or ν1 > ν4.
In the case where β4 < β1 (ν1 < ν4), the integral (64) can be written as IT PM1 = I1 + I2 + I3
where:
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I1 =

∫ ν1

0
1/k2

r0
(
1 −

(β1 ν)2

4
)2(1 − (β4 ν)2

4
)2ν dν , νε[0, ν1] (65)

I2 =

∫ ν4

ν1

2
kr1 π

cos2(β1 ν − π/4)
(
1 −

(β4 ν)2

4
)2dν , νε[ν1, ν4] (66)

I3 =

∫ ν f

ν4

4
kr1 kr4 π2

cos2(β1 ν − π/4) cos2(β4 ν − π/4)
ν

dν , νε[ν4, ν f ] (67)

Their analytical solutions are given by:

I1 =
1

256

[β4
1β

4
4ν

10

10
− β2

1β
2
4(β2

1 + β2
4)ν8 − 32(β2

1 + β2
4)ν4 (68)

+
8
3

(β4
1 + β4

4 + 4β2
1β

2
4)ν6 + 128 ν2

]ν1

0

I2 =
1

1920β5
1

[
4β5

4ν
4(3β4

4ν
4 − 40β2

4ν
2 + 240) (69)

+ 30β1β
4
4ν[2β

2
1(β2

4ν
2 − 4) − 3β2

4] sin(2β1ν)

− 15{2β4
1(β2

4ν
2 − 4)2 + β2

1(8beta2
4 − 6β4

4ν
2) + 3β4

4} cos(2β1ν)
]ν4

ν1

I3 =
1

2 kr1kr4π2

[
− Ci[2(β1 + β4) ν] + Ci[2(β1 − β4) ν] (70)

+ 2 Si(2β1 ν) + 2 Si(2β4 r) + ln(ν)
]ν f

ν4

In the case β4 > β1 (ν1 > ν4), the integral (64) can be similarly written as IT PM2 = I2 + I4 + I6
where:

I4 =

∫ ν4

0
1/k2

r0
(
1 −

(β1 ν)2

4
)2(1 − (β4 ν)2

4
)2ν dν , νε[0, ν4] (71)

I5 =

∫ ν1

ν4

2
kr0kr4 π

cos2(β4 ν − π/4)
(
1 −

(β1 ν)2

4
)2dν , νε[ν4, ν1] (72)

I6 ==

∫ ν f

ν1

4
kr1 kr4 π2

cos2(β1 ν − π/4) cos2(β4 ν − π/4)
ν

dν , νε[ν1, ν f ] (73)

Similarly, the solutions to these integrals are written as:

I4 =
1

256

[β4
1β

4
4ν

10

10
− β2

1β
2
4(β2

1 + β2
4)ν8 − 32(β2

1 + β2
4)ν4 (74)

+
8
3

(β4
1 + β4

4 + 4β2
1β

2
4)ν6 + 128 ν2

]ν4

0
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I5 =
1

1920β5
4

[
4β5

1ν
4(3β4

1ν
4 − 40β2

1ν
2 + 240) (75)

+ 30β4β
4
1ν[2β

2
4(β2

1ν
2 − 4) − 3β2

1] sin(2β4ν)

− 15{2β4
4(β2

1ν
2 − 4)2 + β2

1(8beta2
1 − 6β4

4ν
2) + 3β4

1} cos(2β4ν)
]ν1

ν4

I6 =
1

2 kr1kr4π2

[
− Ci[2(β1 + β4) ν] + Ci[2(β1 − β4) ν] (76)

+ 2 Si(2β1 ν) + 2 Si(2β4 r) + ln(ν)
]ν f

ν1

The total integral (64) is then written as:

IT PM = IT PM1 + IT PM2

I1 + I2 + I3 , β4 < β1

I4 + I5 + I6 , β4 > β1

where Ci(x) and Si(x) stand for the cosine and sine integrals respectively. They are de-
fined as follows:

Ci(x) =

∫ +∞

0

cos(t)
t

dt (77)

Si(x) =

∫ +∞

0

sin(t)
t

dt (78)

3.C EXPRESSION OF THE IDLER WAVE FOR TWO-FREQUENCY PUMP

AND SIGNAL WAVES

We recall the expression of the growth rate of the idler wave axial envelope defined in
chapter 3 (section 3.21, page 70):

∂a4(ξ, θ4)
∂ξ

= i C0 tan(θ4)

+∞∫
0

dβ1S 1(β1)

+∞∫
0

dβ2S 2(β2) (79)

×

+∞∫
0

dβ3S 3(β3) IT PM

3∑
m=1

exp(i∆φm + i∆βzmξ)

where IT PM is defined as:

IT PM =
1

k2
r0

∫ ν f

0
J0(β1ν) J0(β2ν)) J0(β3ν) J0(β4ν) ν dν (80)

and ν f = kr0r f and S j(β j), j = 1, 2, 3, stand for the amplitude distribution of the spectral
components of the pump and signal waves respectively. The complex spatial spectra are
given by: S̃ j(β j) = S j(β j)exp[iφ j].
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We consider two identical pump waves defined at the central frequency β1 = β2 = 1 Their
respective input phases are denoted φa and φb. We define a signal wave at two adjacent
frequencies β31 and β32 (β31 ≈ β32) with input phases φ31 and φ32 respectively. Their
respective spatial spectra are then written as:

S̃ j(β j) =δ(β j − 1) [exp(iφa) + exp(iφb)], j = 1, 2 (81)
S̃ j(β j) =δ(β3 − β31) [exp(iφ31) + exp(iφ32)] (82)

We insert Eq. (82) in Eq. (79):

∂a4(ξ, θ4)
∂ξ

= i C0 tan(θ4)Iab2
T PM

[
ei(2−β2

31−β
2
4)ξ {exp[i(2φa − φ31)] + exp[i(2φb − φ31)] (83)

+ exp[i(φa + φb − φ31)] + exp[i(φa + φb − φ32)]
}

+ exp[i(2φa − φ32)] + exp[i(2φb − φ32)]

+ 4 ei(β2
31−β

2
4)ξ [exp(iφ31) + exp(iφ32)][1 + cos(φa − φb)]

]
where Iab2

T PM =
1

k2
r0

∫ ν f

0 J2
0(ν) J0(β31ν) J0(β4ν) ν dν

We further develop this equation using trigonometric relations:

∂a4(ξ, θ4)
∂ξ

=2i C0 tan(θ4)Iab2
T PM[1 + cos(φa − φb)]

√
1 + cos(φ31 − φ32) (84)

×
[
ei(2−β2

31−β
2
4)ξ exp[i(φa + φb −

φ31 + φ32

2
)] + 2 ei(β2

31−β
2
4)ξ exp[0.5 i(φ31 + φ32)]

]
We now integrate this equation over ξ: a4(ξ, θ4) =

∫ ξ

0
[
∂a4(ξ, θ4)/∂ξ

]
:

a4(ξ, θ4) =2i C0 tan(θ4)Iab2
T PM[1 + cos(φa − φb)]

√
1 + cos(φ31 − φ32) (85)

×
[
exp[i(φa + φb −

φ31 + φ32

2
)]

exp[i(2 − β2
31 − β

2
4)ξ] − 1

i(2 − β2
31 − β

2
4)

+ 2 exp[0.5 i(φ31 + φ32)]
exp[i(β2

31 − β
2
4)ξ] − 1

i(β2
31 − β

2
4)

]

a4(ξ, θ4) =2i C0 tan(θ4)Iab2
T PM ξ[1 + cos(φa − φb)]

√
1 + cos(φ31 − φ32) (86)

×
[
exp[i(φa + φb −

φ31 + φ32

2
)]e0.5 i(2−β2

31−β
2
4)ξsinc[0.5 (2 − β2

31 − β
2
4)ξ]

+ 2 exp[0.5 i(φ31 + φ32)]e0.5 i(β2
31−β

2
4)ξsinc[0.5 (β2

31 − β
2
4)ξ]

]

Expression of I4(ξ, β4) for identical two-pump waves and a different signal wave

We compute the squared absolute value I4(ξ, θ4) = |a(ξ, θ4)|2 of Eq. (86):
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I4(ξ, β4) ∝ i tan2(β4θ0)ξ2[1 + cos(φa − φb)]2 [1 + cos(φ31 − φ32)] (87)

×
{
sinc2[0.5(2 − β2

31 − β
2
4)ξ] + 4 sinc2[0.5(β2

31 − β
2
4)ξ]

+ 4 cos[φa + φb − φ31 − φ32 + (1 − β2
31)ξ] sinc[0.5(2 − β2

31 − β
2
4)ξ]sinc[0.5(β2

31 − β
2
4)ξ]

}
Expression of I4(ξ, β4) for identical two-frequency pump and signal waves

In this particular case, we just replace the expression of the signal wave by that of the
pump, i.e. S̃ 3(β j) = δ(β3 − 1) [exp(iφa) + exp(iφb)] in the expression of Eq. (86). We then
find the expression of the corresponding I4(ξ, θ4) presented in chapter 3 (section 3.58,
page 94).

I4(ξ, β4) ∝ tan2(θ4) ξ2 sinc2[0.5 (1 − β2
4)ξ] [1 + cos(φa − φb)]3 (88)
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