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Résumeé

Les pieds d’aubes de soufflantes de turboréacteurs étant soumis a des sollicitations
de type fretting, I’introduction de matériaux composites dans la nouvelle génération de
moteur d’avion a rendu nécessaire le développement d’outils permettant de modéliser le
contact entre des matériaux hétérogenes. En particulier, le comportement tribologique
et ’endommagement de ces matériaux est encore mal compris. La mise en place de
méthodes numériques capable de prédire les endommagements dans le contact permet-
trait de mieux prédire la durée de vie des pieces en service et de garantir la sécurité des
passagers.

Cette these porte sur le développement de méthodes semi-analytiques pour la modé-
lisation de I’endommagement dans des conditions de fretting et de roulement. Ceci est
stratégique vu les temps de calculs prohibitifs des méthodes plus conventionnelles de
type éléments finis. La méthode de I'inclusion équivalente d’Eshelby est utilisée pour
modéliser des matériaux hétérogenes, de la présence de défauts jusqu’aux structures com-
plexes des matériaux composites. Cette technique est aussi utilisée afin de représenter
les dégradations des propriétés matériaux survenant au cours de I’endommagement. La
méthode permet de prendre en compte plusieurs inclusions simultanément et les temps de
calculs sont réduits grace a 1’ utilisation massive de transformées de Fourier rapides (FFT).
De premiers résultats permettent de montrer la capacité de cette méthode a représenter les
endommagements apparaissant lors d’une sollicitation de fretting : 1’usure et I’amorgage
de fissures. Des applications aux matériaux revétus sont proposées et la méthode est com-
parée a une méthode plus classique de modélisation de I'usure. Une bonne corrélation
entre les deux approches a permis de valider la méthode. Dans un second temps, cette
technique est adaptée a la modélisation de transformations microstructurales apparaissant
dans les roulements autour de défauts proches de la surface de contact. Une campagne
d’essais sous sollicitations de contact sur un matériau tissé¢ 2D a permis de mieux com-
prendre son comportement tribologique. En particulier, I’effet des propriétés de chaque
constituant sur le coefficient de frottement et sur I’évolution de I’usure dans le matériau est
¢tudié. Finalement, une technique de discrétisation est utilisée afin de représenter la struc-
ture complexe des matériaux composites tissés dans le code de calcul semi-analytique.
Leffet de la structure hétérogene sur la solution du contact est établi et la nécessité de
représenter les matériaux hétérogenes a la bonne échelle est soulignée. Une application
de cette technique a la microstructure des matériaux métalliques permet de prédire la
durée de vie des aciers utilisés dans les roulements.

MoOTS CLES :  Simulation numérique, contact, fretting, mécanique de I’endommagement,
usure, fatigue de roulement, microstructure, matériaux composites
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Introduction

Contact between parts is the main way of transmitting load in mechanical systems. These
parts can be subjected to cyclic loading and large loads that can strongly affect their life-
time. Moreover, the presence of heterogeneities inside the material can increase the risk
of early failure of the materials. The two dominant damage phenomena observed in con-
tact area are wear and crack initiation. Therefore problematic of contact damage is of
major interest for many industrial applications such as the blade/disk interface in aircraft
engines, bolted joints, wind turbine bearings and wheel-rail contact. Safran Aircraft En-
gines, a leader company in the design and production of aircraft engines (CFM-56, LEAP)
introduced composite materials in the LEAP aircraft engines in order to increase engine’s
performance and decrease its weight. Because of the vibrations and aerodynamic forces,
fan blades are subjected to fretting loading. In particular, fan blades are made of a 3D
woven composite and due to their heterogeneous composition, prediction of the damage
phenomena in the contact is very difficult. Existing results are available in the literature
for modeling a fretting contact. However these results are based on isotropic material
definitions and hence do not account for any heterogeneities near the contact surface. Be-
cause of the localized character of contact solicitation, classical homogenization theory
can not be easily applied and up to date none of the proposed homogenization model is
adapted to consider the presence of a free surface. Furthermore, hybrids bearings with ce-
ramic rolling elements have also been introduced in the new generation of aircraft engines.
Presence of manufacturing byproducts like carbides or voids with rolling elements may
affect the bearing life. Therefore, introduction of new materials in mechanical systems is
pushing forward the need for adapted simulation tools.

The purpose of this work is the development of the Semi-Analytical Method (SAM)
for the simulation of machine components damage under contact loading. The present
study focuses on fretting wear and rolling contact fatigue phenomena through the intro-
duction of continuum damage mechanics based models coupled with a heterogeneous
contact solver. Furthermore, experiments are conducted on woven composite materials
which indicate the need for a representative model of material microstructure. Capacity
of SAM to model their complex structure is introduced and an application on bearing steel
is proposed. Influence of the material structure on the contact solution is also emphasized.

The first chapter presents the background and the industrial context of the study. The
context linked to the application to blade/disk interfaces and rolling element bearings in
aircraft engines are first introduced along with contact damage phenomena during Fret-
ting and Rolling Contact Fatigue. A brief history and classical formulae of Continuum
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Introduction

Damage Mechanics are presented for a better understanding of the next chapters. Then, a
literature review is presented on the modeling and damage in heterogeneous materials and
on the numerical methods in contact mechanics. The second chapter briefly discusses the
semi-analytical heterogeneous contact model based on the work of former researchers.
The third chapter introduces a method to couple a continuum damage mechanics model
with the semi-analytical solver. Results with fretting loading in gross slip and partial slip
conditions are investigated. An application of the method for coated materials is intro-
duced. A model from the literature is also implemented and results validate our approach.
Finally, results obtained with the damage model and a classical wear model based on the
dissipated energy in the contact area are compared. The problem of butterfly wings for-
mation around a nonmetallic inclusion in rolling contact fatigue is discussed in the fourth
chapter. Introduction of small cuboidal heterogeneities allow to reproduce the effects of
microstructural alterations around a spherical inclusion. Experimental results from fret-
ting tests are presented in the fifth chapter and allow to better understand the tribological
behavior of composite materials. In the last chapter, a method is proposed to model com-
plex structure of heterogeneous materials using the semi-analytical method. Applications
to woven composite materials and to bearing steels to study the fatigue life of rolling
elements are presented.
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Chapter 1

Context and Background

This chapter aims at introducing the contact problems arising
in today’s aircraft engines. In particular, some issues due to
heterogeneous materials are briefly explained. A focus is
made on surface damage phenomena due to contact and on
way of modeling both the contact problem, surface and
subsurface damage and heterogeneous materials in numerical

simulations.
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Industrial context

1.1 Industrial context

The last few decades have seen a steady rise in the number of flights per year. Nowadays
over 2 billion people travel around the world every year with 360 000 airplanes [ATA 10].
Consequently, CO, emissions due to air travel have considerably increased and are ex-
pected to increase in the next decades if nothing is done. The aviation sector signed
a declaration to reduce emission by 50% before 2050 (see Fig. 1.1). To achieve this
goal, four different areas of improvement have been identified: technology, operations,
infrastructure and economic measures. Advance in technology has resulted in the use of
composite materials allowing to reduce the weight of the aircrafts. Today they account
for almost 50% of the structure of an aircraft (see Fig. 1.2). Compared to traditional
aluminum alloy, composite materials can represent a weight saving of 20% and can be
formed in more complex forms.
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Figure 1.1: Emissions reduction roadmap [ATA 10].

Furthermore, as soon as the function of carrying or transmitting load is needed in a
system, contact problems are arising. Thus, the impact of friction and wear on energy
consumption and CO, emissions have been studied at the global scale by Holmberg and
Erdemir [HOL 17]. According to their study, tribological contact issues represent almost
23% of the world’s energy consumption. Some of this energy consumption is used to
reduce friction or in replacement of worn parts. Developing new technologies to reduce
friction and increase life of contacting parts presents a great challenge for industry and
could represent short term energy savings up to 25% in the transportation industry.
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1. Context and Background

In the aeronautic sector, engineers have to predict the contact behavior and the dam-
age mechanisms, such as wear or cracks, to adapt their design and calculate the life of the
system components. In particular, aircraft engines has a key role in the aircraft CO, emis-
sions and fuel efficiency and the new generation of aircraft engines called LEAP achieves
excellent performance by using composites materials. In operation, composite materials
are subjected to cyclic contact loading. Therefore, the ability of calculating the contact in
heterogeneous materials is needed and development of robust and accurate computational
method is necessary to guarantee the safety of the system and of the passengers.

In a first part of this chapter, aircraft engine principles are briefly explained. In the
subsequent sections, two main contact interfaces in aircraft engines are presented: the
blade-disk interface and rolling element bearings. The damage phenomena associated
with these contact interfaces are also presented.
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Figure 1.2: Growth in the use of composites in commercial aircraft [ATA 10].

1.1.1 Aircraft engines

Airbreathing jet engines are used for aircraft propulsion since the late 1930s for both
civil and military applications. This system is based on the acceleration of the air flow
passing through the engine using the mechanical energy from combustion to create the
thrust. The airflow enters the engines through an inlet and enters a compressor. In the
combustion chamber, fuel is mixed with compressed air and resulting hot gases expand
through the turbine. The compressor is powered by the energy extracted by the turbine.
In modern engines, a two spool configuration with concentric rotating shafts is often used
for improved efficiency. A first shaft runs a low pressure spool (compressor and turbine)
and a second shaft runs a high-pressure spool at higher speed. Simple flux engines, where

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI045/these.pdf
© [T. Beyer], [2019], INSA Lyon, tous droits réservés



Industrial context

all the air flow is passing through the combustion chamber have a good efficiency for
speed above Mach 1 and are usually used in military applications.

Actual turbofan are a modification of the original turbojet adding a ducted fan (see
Fig. 1.4). Some of the entering flow bypasses the core and is accelerated only by the fan
using energy from the turbine. Fan dimensions are much more larger than the main core
to increase the accelerated airflow. Around 80 % of the thrust is ensured by the bypass
flow. The ratio between the air bypassing the core and the air entering the core is called
the bypass ratio (BPR). A high BPR is useful to reduce fuel consumption and noise. As
BPR increases, the radius of the fan blades increases and the rotating speed of the low
pressure turbine decreases needing more stage to extract the energy from combustion.
New configurations sometimes introduces a planetary gear box to allow the fan and the
turbine to spin at different velocities increasing efficiency of both components. The most
recent commercial aircraft engines (CFM Leap, Pratt&Whitney PW1000G) are double
core and double flux with a BPR around 11.

High-pressure Higl?—pressure
Fan compressor turbine

High-pressure

Low-pressure
shaft

Low-pressure Combustion Low-pressure Nozzle
compressor chamber  turbine

Figure 1.3: Schematic diagram of a high-bypass turbofan engine.

The new generation of aircraft engines commercialized by CFM (joint venture of Gen-
eral Electrics and Safran Aircraft Engines) uses composite materials resulting in a 450kg
weight loss. Compared to the previous generation of engines (CFM56) the specific con-
sumption is reduced by 16 %. CO, and NO, emissions are respectively reduced by 16%
and 50 % and noise decreases by 15 dB.

1.1.2 Blade / Disk interface

Fan blades are mounted on a disk fixed on the rotating shaft using a dovetail joint (see
Fig. 1.5). The joint is made of two interfaces between the blade’s foot and the disk
and its main goal is to ensure a good transmission of tangential forces and the radial
retention of the blade. The disk is made of a metallic alloy and fan blades is typically
made of either a metallic alloy with a coating ( 77 — 6Al — 4V in CFM-56) or a composite
materials (3D woven composites in CFM Leap). During take-off, centrifugal forces lead
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1. Context and Background

Figure 1.4: LEAP fan blades in RTM woven composite materials.

Figure 1.5: Dovetail joint at the blade disk interface.

to a radial displacement of the blade entering in contact with the disk interfaces (see Fig.
1.6). The reverse phenomenon occur during the landing phase. These kind of phenomena
are characterized by a low frequency but a high amplitude of blade displacement (around
5Hz and 100um). During the flight, structural vibrations and aerodynamical forces are
resulting in high frequency and low amplitude displacement at the blade/disk interface
(around 200 Hz and 10 um) also called fretting. Loading phases observed at the blade
disk interface during a flight cycle are summarized in Fig. 1.7.
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Aerodynamic forces and vibrations
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Figure 1.6: LEAP-1A engine with Fan blades in RTM woven composite materials.
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Figure 1.7: Evolution of solicitation frequencies and amplitude during a flight cycle.
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1. Context and Background

1.1.3 Bearings in aircraft engines

Bearings are often used in the aircraft engines to transmit load and reduce friction between
moving parts (see Fig. 1.8). With the new generation of aircraft engines with high BPR,
fan blades size and weight have increased. This is resulting in the need of transmitting
higher load and reducing weight together with a very long lifetime. To respond these
challenges, new hybrid bearings made of ceramic balls (Si3N4) and high performance steel
(M50, M50NiL) have been developed. Ceramic’s elements have very good material’s
properties but their damage phenomena are not well investigated. Furthermore, presence
of materials defects such as inclusions and voids after the manufacturing process can
strongly modify the fatigue behavior and service life of contacting elements. Same kind of
defects have also been found in titanium alloy used for blades like Ti-6Al-4V. Therefore,
contacts between blade and disk or between rolling element and bearings races can no
longer be considered homogeneous. Reproducing and modeling the behavior of these
materials under contact is paving the way to more reliable design of mechanical’s systems.

Figure 1.8: Bearings in aircraft engines

1.2 Contact damage phenomena

1.2.1 Fretting

Fretting is defined as a low amplitude repeated relative motion between two surfaces in
contact. The sliding between two surfaces in contact can lead to different surface damage
phenomena such as wear (fretting-wear), crack (fretting-fatigue) and corrosion (fretting-
corrosion). Magnitude of the motion is generally in the order of micrometers. Real contact
area can be hard to reproduce experimentally and, most of the time, simplified geometries
are used to study fretting. The three most common geometries are :

e Contact between a sphere and a flat surface.

10
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Contact damage phenomena

e Contact between a cylinder and a flat surface.

e Contact between two flat surfaces.

The two first configurations were analytically described by Hertz [HER 82] and can be
used to described the contact occurring in the blade-disk interface or between the rolling
elements and the races of a bearing. The last configuration is more complex due to dis-
continuity in the pressure and shear stress fields at the edge of the contact area. Complete
description of the stress field in elastic contact can be found in the books of Johnson
[JOH 85] and Hills [HIL 93]. Three modes of fretting for a sphere on a flat contact were
defined by Mohrbacher [MOH 95] are represented in Fig. 1.9. The first mode corresponds
to a constant normal force and an oscillating tangential displacement creating slips along
one direction, the second mode represents an oscillating normal forces creating radial
slips and the third mode corresponds to a constant normal load with a variable moment
around z.
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Figure 1.9: Fretting modes [MOH 95]

The first mode is the most investigated due to its simplicity and reasonable accuracy in
modeling fretting loading in the blade disk interface. A sphere or a cylinder is pushed in
contact on a flat with a constant normal load N and a tangential displacement 9 is imposed
on one of the solids. A parameter e can be defined comparing the relative displacement
and the contact radius a* [FOU 96]:

e=— (1.1)

When e < 1, a part of the initial contact area is always in contact and never exposed
to external environment. This is called fretting. If e > 1, the contact is in reciprocating
sliding (see Fig. 1.10).

11
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1. Context and Background

1.2.1.1 Fretting regimes

Based on the amount of stick and slip that occurs in the contact, two fretting sliding
conditions can be identified, namely gross slip and partial slip conditions [VIN 88].

e Gross slip condition: according to Coulomb’s law, the shear distribution Q is equal
to the coefficient of friction u times the pressure P along the contact surface : Q =
uP and the whole contact surface is sliding.

e Partial slip condition: the local tangential force is locally reaching Coulomb’s
threshold even if the macroscopic tangential force Q < uP resulting in a stick zone
at the center of the contact surface and a slip annulus appearing at the edge of the
contact surface [MIN 49].

Transition between the two conditions can be determined using the fretting loop plot
(Q(9)). In stick-slip condition, fretting loop has an elliptical form due to the local slip at
the edge of the contact surface while in full sliding condition, fretting loop has a parallel-
ogram form because the tangential force is equal to Coulomb’s threshold throughout the
tangential displacement.

To calculate the dissipated energy E; during a fretting cycle and the tangential stiffness
of the system d8’ the tangential displacement &, the maximum tangential force Q* and
the cycle aperture 8y can be identified on the fretting loop. For a rectangular cycle, E; =
430Q*. Several criteria for the transition between different fretting conditions have been
proposed by Fouvry [FOU 97] in a sphere/plane configuration.

Fretting regime : —)- Reciprocal sliding

Transition
A A stickslip | grosssliding |
N @ e>1 S| o @i o @ A
Q / o EL
s 26 e=1 5 % 5 £ E 7 5
g e<l 26 E stick zone - ___C'___
S O 5' b
= o) I R S R
.~ = slip zZ)ne ) i -
Displacement amplitude (8) Displacement amplitude (5)

Figure 1.10: Fretting regimes [MON 15]

To study the evolution of contact condition with time, Zhou and Vincent [ZHO 93b]
have established three fretting regimes based on experimental results : the partial slip
regime, the gross slip regime and the mixed fretting regime which corresponds to sliding
conditions evolving from gross slip to partial slip due to a modification of the contact
conditions. Generally, the partial slip regime is associated with high normal load and
low displacements, while gross slip regime is typically associated with lower normal load

12
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Contact damage phenomena

and higher displacements. The mixed regime corresponds to a transition between the two
aforementioned regimes. Wear is generally associated with the gross slip regime while
the partial slip regime to cracks [VIN 92] and both damage phenomena compete in the
mixed regime. Material response fretting map (see Fig. 1.14) associated with each fretting
regime map has been proposed in [BLA 91].
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Figure 1.11: Material Response Fretting Map

1.2.1.2 Surface damages

Under fretting loading, cracks and surface degradations appears as a result of fatigue phe-
nomenon, void nucleation and sub-surface crack propagation [SCO 67, SUH 73]. Due
to friction and stress gradient in the contact, the two main phenomena, namely wear
and crack initiation, are surface originated. Details on these two damage phenomena
are briefly recalled in the following subsection.

Wear

Wear in the blade-disk interface is mostly due to friction. Wear by friction can be classi-
fied as: adhesive wear (transfer of material due to local overstress), abrasive wear (hard
material is plastically deforms a softer one), corrosive wear and fatigue wear. Fatigue
wear would be caused by the cyclic shearing of material in the contact region followed by
the initiation, propagation and intersections of cracks. During fretting, most of the wear
debris are retained in the contact area. Furthermore, several wear mechanisms are often
coupled. A summary of different approaches found in the literature to describe friction
wear are listed:

e Archard’s wear law [ARC 53] defines the wear volume Viy as a function of the
sliding distance s, the normal load F and H the hardness of the softer material in
contact. K is dimensionless and is called the Archard wear coefficient.

13
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1. Context and Background

Ww =K F (1.2)
One should noticed that Archard’s law is independent of the coefficient of friction.
In experimental results, the hardness of the material may be unknown and a dimen-
sional Archard coefficient (or specific wear rate) is used [WIL 99]:

K
= #mmP N Y ! (1.3)
H

e Third body concept proposed by Godet [GOD 84, BER 90] takes into account the
interface between the contacting bodies. According to this concept, wear is gov-
erned by three phenomena: detachment, flow and ejection of wear particles. Nu-
merical simulation of wear debris in contact is very expensive in terms of computa-
tional time and are only used for qualitative analysis.

e Energetic approach developed by Fouvry [FOU 96, FOU 03] links the wear volume
to the dissipated energy in the contact during a fretting cycle. The dissipated energy
during a fretting cycle is the sum of the dissipated energy during each part of the
load path:

Eq=) 0.5~408" (1.4)
The dissipated energy is a function of the normal load, the coefficient of friction and
the tangential displacement. The wear volume can then be computed as the sum of
the dissipated energy for every fretting cycles:
N
Vw :OCZEd(k) (1.5)
k=1

Because there are not depending on the displacement amplitude, energetic ap-
proaches are widely used in the literature. Moreover, these approaches provides
an accurate estimation of the wear in sliding contact without representing local
mechanisms occurring in the contact area.

When studying contact of materials, one should be careful because the coefficient of
friction, friction phenomena, and wear are not material properties but depend on the whole
tribological system properties.

Cracks

In the partial slip regime, crack initiation and propagation appears at the edge of the
contact area as a result of damage accumulation by cyclic shearing of material in the slip
region [BRY 88]. Initiation steps described by Lemaitre and Chaboche [LEM 90] are:

14
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Contact damage phenomena

Figure 1.12: Wear scar from fretting [BRY 88].

1) Accommodation phase: stress concentration leads to plastic micro-strains.

2) Initiation phase: plastic strain accommodation leads to a short crack initiation.
Crack follows the path maximizing the shear stress with an angle around 45 de-
grees with the contact surface.

3) Propagation phase: short crack becomes a long crack following the linear elastic
fracture mechanics theory [FOR 61, NIX 88, LIS 03].

During the initiation phase, crack path may be influenced by the microstructure of the
material because the crack size is around the same size as those of grains [PAN 18]. Multi-
ple initiation criterion have been proposed in the literature based on Tresca stress [FIN 58,
MAT 77], Von Mises stress [SIN 59, CRO 56] and mesoscopic approach [DAN 93]. Also,
numerical simulations of the initiation and propagation of cracks in blade-disk contact
have been investigated by several authors [DIC 06a, MER 11, MON 15].

Figure 1.13: Crack initiation in partial slip fretting regime [BRY 88].

Finally, in some contact conditions, wear and cracks can compete in the tribological
system. Crack initiation points are also subjected to wear, limiting crack nucleation.

15
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1. Context and Background
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Figure 1.14: Crack initiation and propagation in partial slip fretting regime [FOR 61].

Now that the damage mechanisms occurring during fretting loading have been pre-
sented. The damage phenomena due to rolling contact loading are detailed in the next
section. One should note that fretting damage phenomena are friction originated while
damage phenomena in RCF are mainly due to the reversal of the shear stress during a
loading cycle.

1.2.2 Rolling Contact Fatigue (RCF)

Considering good lubrication, installation and operating conditions, life of bearings is
only limited by rolling fatigue mechanisms [HAR 01, SAD 09]. Rolling Contact Fatigue
(RCF) is a phenomenon due to a repeated rolling loading over a surface. RCF strongly
depends on the tribological conditions (lubrication, surface roughness etc.) and the ma-
terials properties. Classical fatigue theory can not be applied here due to some major
differences with RCF recalled here:

e Stress state in Hertzian contact is multi-axial.
e The maximum stress location is moving during a loading cycle (Fig. 1.15).

e RCF’s phenomenon occurs in a very localized volume (contact areas are about a
tenth of a millimeter).

e [.oading path is not proportional: component of the stress field are not evolving in
the same way (even more with plasticity or heterogeneity under the surface).

e Principal stress axes moves during the loading path, making harder to find the plane
of maximal shear stress.

e High negative hydrostatic stress due to applied compression limits crack propaga-
tion in mode 1.

e RCF is mainly due to the reversal of the shear stress [JAL 11] (see Fig. 1.16).
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Figure 1.16: Stress history of a point located at 0.5a* in the subsurface of the material as
the Hertzian load passes over.

The two different phenomena leading to RCF failure are surface originated pitting and
subsurface originated spalling [LIT 66, TAL 99]. Pitting is mainly due to surface defects
or insufficient lubrication while spalling is due to subsurface cracks initiating at material
imperfections like voids, dislocations and inclusions.

1.2.2.1 Surface initiated damage

Pitting is a phenomenon corresponding to a loss of a chunk of material due to a surface
initiated crack (see Fig.1.17). Those cracks are mainly due to low quality surface fin-
ishing, debris denting or wear [NEL 99, NEL 00, RYC 17]. Moreover, the approximate
thickness of a pit is about 10 um [DIN 03] and pitting occurs when one of the cracks is
reaching the surface. The crack trajectory depends on the shear stress acting on it during
the loading path and on the grain boundary stiffness and orientation.

17
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Figure 1.17: Surface initiated damage from RCF [ZAR 12] and illustration of pitting
[RYC 12].

1.2.2.2 Subsurface initiated damage

In contrast to pitting, spalling phenomena corresponds to subsurface originated cracks
reaching the surface and leading to a loss of a chunk of material [TAL 99, JIN 89]. The
subsurface cracks are initiated around heterogeneities close to the surface. This phe-
nomenon can be overcome with the use of coatings or by improving manufacturing pro-
cesses. Finally, the main difference with pitting is the bigger size of the chunk, called
spall. The average thickness of a spall is around 0.25a* to 0.35a* [DIN 03] and can lead
to the failure of the rolling element.

Spalling

RCF damage mechanism from subsurface

Heterogeneity Crack initiation Crack network Spall

Figure 1.18: Subsurface initiated damage from RCF [ZAR 12] and illustration of a spall
[TAL 92].

1.2.2.3 Microstructural alterations due to RCF

This section briefly discusses some additional failure phenomena associated with mi-
crostructural changes during the fatigue process. These phenomena are typically re-
vealed by microscopic analysis of etched steel microstructure. According to Zwirlein
and Schlicht [ZWI 82], microstructural alterations occur in the following order:

e Butterflies wings are formed of two white etching areas around hard inclusions
present in the bearing steel. Wings develop in two main directions depending on
the over rolling direction and with an angle of around 45 degrees with respect to
the contact surface. Cracks form at the top part of the upper wing and at the bottom
part of the lower wing and grow to reach the surface leading to the failure of the
bearing. [STY 51, GRA 10, MOG 16a, ALT 18]. The question whether the crack or
the wings happen first is still not clearly answered. Some authors believe that wings
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form first [MOG 15b, EVA 12] because of wings experimentally observed without
cracks and the lack of butterfly wings on the other side of the crack [MOG 16b].
Other authors believe that cracks are already present in the material due to heat
treatment or debonded inclusion and then wings appear by rubbing and collision of
crack faces [SOL 14].

e Dark etching region (DER) forms and expands with loading cycles just under the
raceway, in the region of maximum shear stress but with no preferential orienta-
tion. It is characterized by its dark appearance and has been associated with high
microplastic strain [GRA 10, BHA 12, WAR 13].

e White etching bands (WEB) appear inside the dark etching region and along spe-
cific angles from the over rolling direction. A first band is forming with an angle of
about 30 degrees called flat white bands and followed by a 80 degrees bands called
steep white band [MAR 66, ZWI 82, POL 95, KAN 13].

e White etching cracks (WEC) are part of a 3D crack network appearing under very
high load and are surrounded by white etching microstructure (or layer). Hydrogen
embrittlement in the steel is the most common theory used to explain WEC appear-
ance [EVA 13a, RUE 14]. There is still no clear consensus on the origins of these
phenomena [BLA 16, SOL 14]. Recently, Manieri et al. [MAN 19] showed that
WEC:s are a consequence of a specific high stress history. Moreover, WEC repre-
sents very high costs in wind turbine maintenance and is still an unsolved problem.

In order to achieve better design and to determine a better prediction of component
life, several numerical methods have been proposed in the literature to simulate damage
of materials under contact loading [MOG 15a, MOR 18b]. These methods are often based
on the continuum damage mechanics theory briefly discussed in the following section.
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1. Context and Background

Figure 1.19: Damage mechanisms in Rolling Contact Fatigue (a) Butterfly wings around
an inclusion [GRA 10] (b) Dark Etching Region in axial cross section (c) White Etching
Flat and Steep Bands [ZWI 82] (d) White Etching Cracks in axial cross section [RUE 14].
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1.3 Continuum Damage Mechanics

Continuum damage mechanics (CDM) describes the initiation and evolution of degrada-
tion in materials at the microscale such as micro cracks and voids. Study of the CDM
originated from efforts to model creep phenomena in USSR. In 1958, Kachanov intro-
duced a scalar variable associated with damage [KAC 58] and his student, Rabotnov,
defined the concept of effective stress [RAB 69]. Following this preliminary work, con-
tinuum damage concepts have been enriched by the works of Lemaitre. They coupled
CDM with both elasticity [LEM 77] and plasticity [LEM 84] and introduced a thermo-
dynamics framework [CHA 74]. Links with ductile fracture have also been proposed
by Leckie and Hayhurst [LEC 74]. Advances in CDM modelling has enabled the study
of phenomena like micro defects closure in compression, fatigue or anisotropic damage.
Moreover, CDM has been applied to different materials like concrete [ORT 85, MAZ 89]
and composite materials [MAI 97b, MAI 97a]. Thus, CDM is able to model the alter-
ation of a virgin material until the initiation of a mesoscopic crack in the volume element.
Damage is defined through the use of an internal variable called D. In quasi-brittle ma-
terials, damage is mostly due to debonding but in ductile materials, damage mechanisms
are strongly linked to plasticity and voids coalescence.

Building a model to represent damage in a material requires the definition of a damage
variable, an evolution law and a coupling with the constitutive equation of the material
[MAR 85]. Appearance of micro cracks is followed by an irreversible alteration of the
material characterized by a decreasing material stiffness. Instead of representing micro
cracks and voids geometrically in the material, CDM only model their effects on the me-
chanical properties. Kachanov [KAC 58] defines the damage variable D as the density of
micro cracks and voids in the cross sectional area of the representative elementary volume
(REV). With S, the effective area that carries the load and S, the original undamaged area
in the REV, D may be interpreted physically as the ratio of damaged surface area over
total surface area:

Damaged Surface
n
Total Surface

Figure 1.20: Cross sectional area of the RVE with a damaged area.
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Considering no healing of the material, D is monotonically increasing from D = 0,
the undamaged state, to D = 1 the complete local rupture of the material. D is defined in
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Figure 1.21: Stress strain curve with damage

every point of the solid and represents the alteration level of the REV in this point. In the
general case of anisotropic damage, D is a tensor.

The state of stress in the damaged material can be described by the effective stress
introduced by Rabotnov [RAB 69]:

. F FS§S o©

°T5TS3T (1-D)

Lemaitre [LEM 85] introduced the following hypothesis that the strain behavior is
modified by damage only through the effective stress. Hence, the strain associated with
a damaged state under the applied stress is equivalent to the strain associated with its
undamaged state under the effective stress. Applying the Hooke’s law with E, the modulus
of elasticity for the undamaged material, the elastic strain in the material becomes:

(1.6)

S__©o (1.7)

*TE T (1-DE

Using the effective stress and the strain equivalence, it yields that the damage variable
affects the linear elasticity modulus. An effective elasticity modulus linking the damage
parameter evolution with the material deterioration is defined:

E=E(1-D) (1.8)

Increase in the damage reduces the modulus of elasticity as shown in Fig.3.1. In order to
measure the damage variable, D can also be defined as:

E
D=1-— 1.9
z (1.9)
Now that the method to model the degradation of material has been recalled, the next
section will focus on the description of composite materials behavior and damage phe-
nomena.
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1.4 Modeling and damage in composite materials

1.4.1 Composite materials: structure and composition

Composite materials are made of an assembly of at least two different materials with a
goal of obtaining a material with better mechanical, thermal or chemical properties than
each material used alone. Composite materials allow complex geometries, low weight
and designed properties for specific application that make them very interesting in the
aeronautic industry. The main structure of composite materials can be decomposed into
the matrix and the reinforcements:

e The matrix surrounds the reinforcement materials and insuring the composite ma-
terial cohesion. Depending on the application, matrix can be made of polymer
(aerospace structure, RTM fan blades), metal (disk of engines) or ceramic (for high
temperature application like turbine nozzles).

e The reinforcements improve the matrix mechanical properties. They can be in the
form of particles, short fibers or long fibers (see Fig. 1.23).

Figure 1.23: Reinforcements in form of (a) Particles (b) Short fibers (c) Long fibers.

Matrix functions are mainly to give the general shape of the part, to transmit the load
into the fibers and to protect the fibers from the environment. In addition to its con-
stituents, structure of composite materials play a major role on their mechanical behav-
1ors. Composite made of particles or short fiber reinforcements are generally randomly
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1. Context and Background

distributed inside the matrix and do not have any specific structure. In contrast, long fiber
composites usually have specific geometries that are briefly described here:

e [aminated structures are made of plies with different orientation. Each ply is made
of yarns (bundles of fibers) with a plane orientation inside the ply. Individual layers
are often orthotropic. Modification of the ply order and orientation allow to design
the mechanical properties of the composite laminate to its application. Their main
damage behavior called delamination corresponds to the separation of the layers at
the interface.

e Sandwich structures are made of two thin plates glued to a thick lightweight core.
Usually the core material has low stiffness compared to the plates. This kind of
structure allows the fabrication of very low density materials with good mechanical
properties for bending and torsion.

e Woven structures are made of fibers weaved together in a complex structure called
preform and introduced into a resin. Different kind of weaving and knitting are
possible to get the desired mechanical properties.

Fan blades of the LEAP engine are 3D interlock woven composites made of a polymer
matrix and a carbon fibers preform. 3D woven composites have good performances when
out-of-plane loading is applied on the part [PEA 07]. A Resin Transfer Molding (RTM)
process is used to develop this material: a fiber preform is introduced into a mold and a
heated resin is injected that transforms into a continuous solid matrix.

Understanding and modeling the behavior of this kind of material is very complex.
Depending on the kind of problem that need to be represented, three scales of repre-
sentation can be used: microscopic scale (scale of fibers), mesoscopic scale (yarns are
considered homogeneous) and macroscopic scale (the part is considered homogeneous).
In contact conditions, validity of the macroscopic scale may not be the most appropriate
scale due to the very local solicitations in regard to the material structure. One should be
careful about the sensibility of contact mechanics to scale effects of the materials.

1.4.1.1 Behavior of composite materials

Behavior of woven composite depends on the materials used for the matrix, the fibers
and the weaving structure. Most of the time, the macroscopic homogeneous behavior is
considered as orthotropic. Considered separately, the polymer matrix has a viscoelastic
behavior and the yarn has a brittle linear elastic behavior. For a 3D woven material, the
behavior in tension in the direction of the yarn is found to be brittle non linear elastic
and the behavior of the whole material in out-of-plane tension is found to be non linear
with presence of residual strain due to damage [BOR 04]. Fracture of carbon fibers is
brittle [TAN 00] and load-unload experimental results show the damage behavior of the
material with solicitation in the different directions of the material (weft direction, warp
direction and 45 degree out-of-plane) [SCH 08]. Hurmane [HUR 15] observed that in
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Modeling and damage in composite materials

tension, yarns realign in the direction of the tension loading leading to an hardening of
the material behavior. Thus, complete behavior of a 3D woven composite in tension along
the warp direction can be described in three steps (see Fig. 1.25):
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Figure 1.24: Mechanical behavior of a 2D woven composite in (a) traction along the
fibers (b) plane shears [BOR 04].

1) Viscoelastic behavior.

2) Damage due to matrix cracks and debonding between yarns and matrix.

3) Yarn failure.

Stress

Debonding

0 Strain

Figure 1.25: Behavior of a 3D woven composite in tension along the warp direction
[HUR 14].
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1. Context and Background

1.4.1.2 Damage phenomena in composite materials

After forming, 3D woven composites with polymer matrix have a very low porosity
level and no apparent damage (see Fig.1.26). Moreover, polymer matrix has a very
low Young modulus compared to the Young modulus of the fibers. Hence, yarns
are transmitting most of the load. A lot of studies have been done on the damage
mechanisms of woven composite materials and mostly focusing on traction loading
[COU 08, KER 14, GRA 13a, LI 15, DOI 15a]. Only a few studies have investigated
compression loading [COX 92, HUR 15, ELI 15, ELI 17, MBA 13]. Behaviors in flexion
[MAR 10], torsion [SCH 09b] and in fatigue [HEN 11, HEN 13, RAK 13, ANG 16] have
also been studied by some authors.

Figure 1.26: Initial state of 3D woven polymer matrix composite [COU 08].

Due to their structures, mechanical behavior of woven composites highly depends
on the direction of loading in respect to the direction of the yarns (warp, weft and out-
of-plane directions). Common damage mechanisms can be described at three different
scales:

e Microscopic damage mechanisms: fibers-matrix debonding and matrix micro-
cracks inside the yarn (see Fig. 1.27(a)). No notable effects on the global behavior
have been observed.

e Mesoscopic damage mechanisms: cracks in matrix pockets between the yarns.
Cracks are deviated by materials interface (see Fig. 1.27(b)). Effects are mainly
observed on the behavior in the warp direction [HUR 15].

e Macroscopic damage mechanisms: Fracture and failure of the material.

When every matrix pockets have been fully damaged, damage is reaching saturation
and load is only transmitted through the yarn leading to the hardening of the material
[HUR 15].

In compression, only a few damage mechanisms occur before finale failure of the ma-
terial [HUR 15]. Compression loading is increasing the ripple of the yarns resulting in
the softening of the material in the weft direction. Some microscopic damage phenom-
ena appear due to out-of-plane deformation coming from Poisson’s effect. Ripples of the
yarns leads to debonding and fracture of the fibers as in Fig. 1.28. Couegnat [COU 08]
measured the acoustic emissions of a 2.5D epoxy composite material in tension loading.
No damage have been detected for loading below 300 MPa. Above this threshold, first
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() (b)

Figure 1.27: Damage mechanisms at the microscopic level [COU 08].
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Figure 1.28: Debonding of the yarn followed by kinking fracture in compression
[HUR 15].

Figure 1.29: Matrix fracture in tension along the yarns at 0deg [ROM 15].
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1. Context and Background

Figure 1.30: Damage of 2.5D-C/epoxy (a) Transverse crack and debonding of the yarn
(b) Longitudinal crack of the yarn [COU 08].

fibers failure appears and transverse failures initiate from 475 MPa (see Fig. 1.30(b)).
Exact values may depend on the considered material but give a first idea of the damage
threshold in polymer woven composite materials. For 3D woven materials, a small non
linearity is observed in the yarn direction due to the presence yarns in the third direction.
Yarns parallel to the loading direction are in tension and damage the material. Due to the
complex stress field appearing under contact loading, comparison with existing work on
pure tension and compression damage mechanisms is limited. Elias [ELI 15] observed the
damage mechanisms during low speed impact on a 3D woven polymer matrix composite
with a spherical projectile. The stress field under low speed impact is close to the one in
normal load contact conditions [CHA 11c]. Elias performed some optic microscope ob-
servation and found the same kind of damage as already described (yarns debonding and
matrix cracking). He compared the localization of the experimentally observed damage
with an elastic finite element simulation of impact and found that most damaged zones
are in the zone of shear stress while less damaged zone (just under the impact) are zone
of high hydrostatic stress. Non damaging effect of hydrostatic stress has already been
observed for laminated composite [CAR 12]. Some recent works on the tribological be-
havior of carbon-reinforced polymer composite against titanium alloy have been done by
Li et al. [LI 18b] and showed that the main fretting wear mechanisms are carbon fiber
wear, fiber-resin debonding and matrix cracking. Due to friction, wear debris migrate out
of the contact area and pile-up at the border of the contact. The kind of wear associated
with the carbon fibers is abrasive with creation of small wear particles while the resin
has brittle fracture and adhesive wear behavior. Finally, this section presented the main
damage phenomena occurring in woven composite materials. In the next section, some
existing damage models for composite materials are presented.

1.4.1.3 Damage models for composite materials

Damage prediction and simulation in composite materials is very important in the aero-
nautic industry with the introduction of the LEAP engine. Different approaches have been
proposed depending on the kind of mechanisms to model and at which scale the material
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is modeled.
At the microscopic scale, two main methods have been proposed:

e Implicit representation through the rigidity reduction of the mesh grid [SCI 99].
e Explicit representation of the crack by introduction of new nodes in the mesh.

At the mesoscopic scale, the work of Daggumati [DAG 10] and Lomov’s team
[LOM 00, LOM 07a] with WiseTex software allow to fully mesh the woven pattern. Dam-
age is represented by degrading the mechanical properties of the yarns. Another approach
has been proposed by Doitrand et al. [DOI 17a, DOI 17b] to introduce cracks inside the
yarn at the mesoscopic scale.

At the macroscopic scale, the complex geometry of the material is not represented but
only the effects of the different damage mechanisms on the overall behavior are described.
One can cite the work of the LMT Cachan [CHA 95, ALL 93, LAD 94] on an anisotropic
damage model with closure effect [MAI 97b] at the macroscopic scale. A specific focus
is made on ceramic composite materials and the damage variable can be a scalar, a 2nd
order tensor or a 4th order tensor. This model has been coupled with micro mechanics
models to take into account self healing and fiber damage [HIL 96, LET 06].

Another damage model for composite material has been developed at Onera for
20 years firstly for ceramic composites [MAI 97a, AIE 01, LAU 07, SAL 18] and later
for polymer composites with the work of Marcin [MAR 10]. The “Onera Dam-
age Model” (ODM) has been continuously improved and adapted to different load-
ings and physics. One can cite the work of Rakotoarisoa and Angrand on fatigue
[RAK 13, ANG 16, KAM 15]. Recently Hurmane adapted this model to study compres-
sion [HUR 15] and Elias [ELI 15] for low speed impact. Garcia [GAR 17] adapted the
model for contact loading in landing systems. Moreover, in the ODM, the composite
material i1s assumed to be homogeneous with a damageable orthotropic behavior. The
ODM is made of different damage variables for each scale of damage phenomena and
coupled together. Microscopic damage variables are calculated and linked to mesoscopic
and macroscopic damage variables through different evolution laws traducing the differ-
ent scales of damage and finally affecting the macroscopic behavior of the material.

1.4.2 Homogenization of heterogeneous materials

The homogenization theory is used to simplify the simulation of heterogeneous materials
by defining a homogeneous twin material. The macroscopic response of the homogeneous
material and of the real heterogeneous material should be the same. Homogenization is
based on several assumptions that are recalled here:

The representative elementary volume

In the continuum mechanics theory, the representative elementary volume (REV) is de-
fined as the minimum volume allowing to obtain a homogenized behavior independent of
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the considered volume size. The size of the REV is often dependent of the size of the
microstructure of the material. In periodic materials like woven composite materials, the
presence of the woven pattern is used to defined the size of the REV and in metallic alloy,
the size of the REV will depend of the grain size distribution in the material.

Scale changes: fine scale and coarse scale

From the definition of the REV, two different scales can be defined. A fine scale associated
with the REV dimension / and a coarse scale, associated to the macroscopic structure L.
The homogenization theory hypothesizes the separation of scales : / < L. Therefore,
the structure can be considered as a continuum medium and the REV is considered as
a material point at the structure scale. Finally, the aim of homogenization is to define a
material response independent of the local scale of the material.

Localization

The macroscopic stress and strain are respectively called X and E. One can define the
localization tensor A(x) as the relationship between the local strain in the material and the
macroscopic strain and concentration tensor B(x) as the relationship between the local
stress to the macroscopic stress.

e(x)=A(x): E (1.10)
6(x)=B(x):X (L.11)

Effective properties

The main goal of the homogenization process is to define the macroscopic behavior of
the material through effective material properties. The effective stiffness tensor is de-
fined as the tensor linking the macroscopic stress X to the macroscopic strain E in the
heterogeneous material:

y=CE (1.12)

The macroscopic stress and strain are defined as the mean value over the volume of
material V of the local stress 6(x) and €(x):

5 —< o(x) >= %/Vc(x)dv (1.13)
E =< g(x) >= % /V e(x)dV (1.14)

In the linear elasticity framework, considering an applied strain £, one can obtain the
relationship between €(x) and o(x):
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o(x) = C'(x)e(x) (1.15)

with C?(x) the local stiffness tensor.

Y=<o(x) >=<C'(x):e(x) >=<C'(x): A(x) : E > (1.16)

Y=<C'(x):Ax) > E (1.17)

The homogenized stiffness tensor can be defined as:

CI =< Ci(x) 1 A(x) > (1.18)

Some of the different possible methods to define the localization and concentration
tensors are recalled in chapter 6.

1.5 Methods in contact mechanics

1.5.1 Analytical solution

The first theory of contact mechanics was proposed by Heinrich Hertz [HER 82] in 1882.
Hertz found the solution of the contact between two elastic solids assuming that:

e The contacting surfaces are continuous and non-conforming.
e The contact zone is elliptical
e No friction is occurring in the contact zone

e Contacting solids are elastic half-spaces: the size of the contact zone is small
enough compared to the characteristic length of the solids. It means that contact
stresses are not altered by the boundary conditions of the solids.

Even if the hypotheses of the Hertzian theory are restrictive, it is still widely used and
give a good description of the contact solution.

Contact mechanics theory was later extended to non-Hertzian geometry [JOH 85]. In
particular the work of Aleksandrov [ALE 86] on the contact between a punch and a half-
space and the work of Westergaard on sinusoidal rough contact [WES 39] can be cited
as example. Cattaneo [CAT 38] and Mindlin [MIN 49] proposed a solution for sliding
contact using Coulomb’s law for friction.

31

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI045/these.pdf
© [T. Beyer], [2019], INSA Lyon, tous droits réservés
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1.5.2 Numerical methods
Finite element

The finite element method is the most common numerical method in solid mechanics.
This method is very powerful to find approximate solutions of partial differential equa-
tions (PDE). Numerous commercial softwares use this method to solve complex problems
(thermal fields, dynamic, plasticity, viscosity, magnetic fields etc.). For 3D contact prob-
lem, the geometrical non-linearity can lead to algorithm convergence issues and a very
fine mesh is needed in the contact area to have a good accuracy leading to a high com-
putation cost. Recent works on numerical techniques by Yastrebov [YAS 11] investigated
the contact between rough surfaces. Extensive information is available in the books of
Wriggers [WRI 06] and Laursen [LAU 03] for synthesis of contact simulation with finite
element method.

Multigrid

This method is based on the work of Brandt, Lubrecht and Venner [BRA 90, LUB 91,
VEN 00] to discretize and solve Lamé equations using finite differences and innovative
numerical tools. The computation speed is considerably decreased by solving the equation
at different grid refinements depending on the local error (V-cycle strategy). This method
has been applied for heterogenenous materials and moving heat source by Boffy et al.
[BOF 12, BOF 14, BOF 15] and to composite material modeling [GU 16]. Computation
of EHL contact solution on rough surface with presence of a heterogeneity has also been
studied recently [MOR 17].

Semi-analytical

Semi-analytical methods are based on the numerical summation of analytical solutions to
elementary problems. In contact mechanics, they have been developed by several authors
[BEN 67, JOH 85, PAU 81] and one can refer to the work of Kalker [KAL 90]. Originally
Kalker’s work was based on the use of the Newton-Raphson algorithm which was replaced
later by the Gauss-Siedel method by Jaeger [JAE 04]. Finally, the Fast Fourier Transform
has been massively used to increase the speed of the method [POL 00, LIU 01].

Nelias and co-workers have been developing a code to solve a three dimensional
contact problem [GAL 06, GAL 07a, GAL 10, DON 17] based on the semi-analytical
method (SAM) initially proposed by Jacq et al. [JAC 02]. SAMs have been con-
tinuously developed and applied to several problems such as thermo-elasto-plastic
contact modeling [BOU 05], modeling plasticity and accumulation of plastic strains
[BOU 05, WAN 05], running-in [NEL 07], simulation of single impact [CHA 11a], shot
peening [CHA 12] and low plasticity burnishing [CHA 11b, NEL 07, CHE 08a], model-
ing of cuboidal inclusions [ZHO 09, ZHO 11a, ZHO 11b, ZHO 12, FUL 10, ZHO 16],
ellipsoidal inclusions [LER 10, LER 11, KOU 14b], heterogeneous viscoelastic behavior
[KOU 14a, KOU 15a], heterogeneous elastoplastic behavior [AMU 16, DON 16], as well

32

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI045/these.pdf
© [T. Beyer], [2019], INSA Lyon, tous droits réservés



Methods in contact mechanics

as to account for material or coating anisotropy [BAG 12, BAG 13]. The method has also
been extended to ultraspeed impact [TAR 14] and contact on dented surface [ANT 08].
Recently, development of solutions for thermal inclusion [LI 19], application to function-
ally graded thin film [ZHA 18] and imperfect interface conditions [LI 18a] have been
proposed. Some applications to lubricated contact for rough contact [REN 09] and a
coupled heterogeneous EHL solver [WAN 13, SHE 14, ZHO 16] have been introduced.
Finally, semi-analytical methods are very fast and allow to obtain very accurate solution
to complex contact problems like plasticity or heterogeneity. Solutions developed in the
following work are based on this approach.

1.5.3 Simulation of Blade/Disk contact

The blade/disk interface has been studied by several researchers based on 2D analytical
solutions [NOW 98, HIL 88]. Contact geometry is often assumed to be equivalent to a
punch contact with rounded edges (see Fig. 1.31). Simulations with the Finite Element
Method (FEM) have been proposed in [MON 15, DIC 06b, YAS 11] but in order to simu-
late the contact between a composite blade and a metallic disk, the scale of representation
of the composite may strongly affects the contact solution and the capacity to represent
the damage occurring inside the material. Previous work of Leroux [LER 13] showed the
effects of the presence of heterogeneities on the contact pressure fields. He also used the
Wisetex software to obtain a composite geometry description and converted the yarn in
a series of ellipsoidal inclusions in the semi analytical solver (Fig. 1.32). Recent work
on the meshing of woven composite structure from tomography have been proposed by
Naouar et al. [NAO 15b] and is illustrated in Fig. 1.33. One should note that no con-
tact loading simulations has been performed on these kinds of mesh. Finally, the ability
of solving the contact problem on a composite material at the mesoscopic scale is still a
scientific challenge for the industry.

Figure 1.31: Geometrical approximation of the blade disk contact [RAJ 06]
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Figure 1.32: Von Mises stress during indentation of 2D composite material with semi-
analytical method [LER 13].

Figure 1.33: (a) Tomography of a Woven composite material 3D (b) Mesh of the woven
composite material from tomography [NAO 15b].

1.6 Synthesis and Outline

This section introduced the industrial challenge of the prediction of damage at the
blade/disk interface and in rolling element bearings in aircraft engines. Damage phenom-
ena arising with contact loading are presented and the Continuum Damage Mechanics
background is briefly described. Mechanical behavior and damage phenomena associated
with woven composite materials are introduced. Additionally, challenges in the modeling
of heterogeneous composite materials used for the fan blades of the LEAP engines have
been highlighted. Subsequently, a summary of different numerical modeling methods for
contact simulation are presented. Finally, the main goal of this work is identified to be the
development of a contact model for surface and subsurface damage while including the
effects of complex geometry of composite materials. Because of the difficulty of mod-
eling heterogeneous materials in contact loading, the semi-analytical method is used in
this study due to the low memory needed and high computation speed. Results presented
in the following chapter are based on the PhD work of Fulleringer [FUL 11], Leroux
[LER 13], Koumi [KOU 15b] and Jerbi [JER 16] on semi-analytical methods. The basics
of this method are summarized in the next chapter.
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Chapter 2

Semi-analytical method for contact on
heterogeneous material

In this chapter, a numerical contact solver based on analytical
solution summation and numerical acceleration technique is
detailed. Presence of a heterogeneity is taken into account
using the Eshelby’s equivalent inclusion method. A coupling
between the contact problem and the heterogeneous problem
is described allowing to solve the heterogeneous contact
problem. Influence of multiple heterogeneities is numerically
solved using conjugate gradient algorithm.
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Theoretical background of the contact algorithm

R2 H‘:/ p-dl
Jr,

Ry
Body 1(E1,11)

Figure 2.1: Description of the contact problem.

2.1 Theoretical background of the contact algorithm

2.1.1 Elastic contact problem equations
2.1.1.1 Normal Contact

Let’s consider two elastic bodies B; and B, defined by their undeformed surfaces in the
orthogonal basis Oxyz. The applied load W is transmitted into the contact through the
contact zone I'.. Resulting contact pressure field p must verify the equilibrium equation
as following:

w= | plx.y)dr @.1)

The gap between the two surfaces at each point (x,y) of the computation domain is
equal to the summation of the initial distance between the contacting surfaces #;, the rigid
body displacement 6 and the normal component of the elastic displacements of the two

. Bi+B
bodies uz' 72,

h(x,y) = hi(x,y) +uf B2 (x,y) — 8 2.2)

The distance h(x,y) is always positive to ensure the non-interpenetration of contacting
bodies. The contact conditions are defined by the following inequalities:

When h(x,y) =0 and p(x,y) >0 — contact

When &(x,y) > 0 and p(x,y) =0 — separation 2.3)
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2. Semi-analytical method for contact on heterogeneous material

Figure 2.2: Contact of a sphere over an elastic half-space.

Finally, solving the normal contact problem between the two bodies can be resumed
to simultaneously solving a system of equations and inequations traducing the boundary
conditions of the contact interface. For a load imposed problem, the normal loading W is
known.

p(x,y) >0 V(x,y) € T, (2.4)
hi (x,y) +u; (x,y) —6=0 V(x,y) €I, (2.5)
p(x,y)=0 V(x,y)oTe (2.6)
hi (x,y) +u; (x,y) —8>0 V(x,y) 3T, (2.7)
;p(x,y)-S:W (2.8)

P

where u, (x,y) is representing the total elastic displacement of the two bodies at the point
(x,y). The variables p (x,y) and u, (x,y) are the two unknowns of the system.

In the case of two elastic elastic materials, the analytical relationship between the two
variables was found by Love [LOV 52].

(1=v?) [*= = p(§mn)ddn
uZ (xvy) = (29)
TE /_oo /;oo \/(&_x)2+(n_y)2

2.1.1.2 Tangential Contact

When the tangential displacements are not nil, a new set of conditions is needed to solve
the tangential contact problem. The tangential contact conditions can be written using
the Coulomb’s friction law to express the shear stresses g in the contact. The tangential
load Q and the contact zone I'. are known from the solution of the normal problem. The
following system of equation needs to be solved to determine the sticking region I'y; and
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Theoretical background of the contact algorithm

the slipping region I';.
Asz (X,

g (x,y) = —u-p(x,y)- ﬁ V(x,y) €y (2.10)
Aur (x,y) — Ady = Asz (x,y) V(x,y) €Ty (2.11)
| gz (x,y) [[<p-p(x,y) V(x,y) € Iy (2.12)
Aur (x,y) —Ad; =0 V(x,y) €Ty (2.13)
Y axy)S=0 (2.14)
FP

Iyuly =T, (2.15)

O; is the tangential rigid body displacement and s; is the relative slip amplitude. The
tangential surface displacement u; is the result of the displacements coming from both
the shear stresses and the normal pressure field.

2.1.1.3 Coupling between the normal and the tangential problem

Now that the equations characterizing the contact conditions have been set, an iterative
method is used to solve the normal and tangential contact problems one after the other.

1. The normal problem is solved assuming no shear tractions. The contact area I'. and
the pressure field p are found

2. The tangential problem is solved considering the pressure field p found previously.
Shears g, slips s and sticking area I'; are found.

3. If shears are not equal to zero, the normal problem must be solved again considering
the shear field g.

This iterative loop must be repeated until both of the problem converged (process of Pana-
giotopoulos [PAN 85].

The problem is considered fully coupled when normal tractions induce radial shears
like in the second mode of fretting (spherical indentation) or when two dissimilar materi-
als are in contact.

Uy = l/l)lcj —+ l/l)qcx + I/t)qcy
uy =l + u + uy’ (2.16)

uy = ul +ud +ud
When a sphere is moving only along the x-direction (first mode of fretting), one can
assume that shears along the x-direction only depend on the tangential force or displace-

ment in this direction. This simplification allow to reduce the computation time of the
contact solution.
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2. Semi-analytical method for contact on heterogeneous material

O\'_C?

O]

N

A4

)

<

Figure 2.3: Discretizaton of the contact loading in N, rectangles of uniform pressure and
shears.

2.1.2 Numerical discretization

The principle of the semi-analytical problem is to use analytical solution to solve Neum-
man’s problem. The aforementioned problem consists in finding the elastic deflections
u and stresses ¢ in the half-space. Boussinesq [BOU 85] solution is giving the normal
displacement at any point of a surface subjected to a unit force. Love [LOV 52] proposed
a similar solution for a rectangle on which a uniform pressure is applied and Cerruti
[CER 82] for a tangential load. These elementary solutions are known as Green’s func-
tions or influence coefficients. Finally, a coupling between the normal and tangential
loadings is needed to find the shear distribution in frictional contact [CIA 98a, CIA 98b].

To numerically solve the set of equation for the contact problem, the pressure distri-
bution will be discretized into N, = Ny x N, rectangles of uniform pressure and shears.
Distance between each computation point along the x-direction is A, and along the y-
direction A,.

According to linear elasticity theory, the surface normal displacement of the half-
space at any point (x,y) is found by adding the contribution of each rectangle of uniform
pressure p.

Ny NV

u(i,j) =), Y KP(i—k,j—1)p(k,1) (2.17)
k=11=1
Nx Ny

+ )Y KE(i—k,j—1)gx (k1) (2.18)
k=1I[=1
Nx Ny

+Y Y KP ik j—1)qy (k1) (2.19)
k=1I[=1

The matrix K, here represent the effects of a uniform pressure or a uniform shear applied
on a patch located at (x',y") on the normal displacements u; at (x,y)

The subsurface stress field is mandatory to study damage phenomena or plasticity
in the material and can be determined by using the same discretization and summation
technique. The volume is discretized in many cubes in the same manner than the surface
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Theoretical background of the contact algorithm

and stresses are considered uniform in each element of the discretization.

Ny N‘
cij(xy2) =) Y p(l,m)(C{;(x—l,y—m,z,vz)) (2.20)
[=1m=1
Ny Ny
+Y ) a(t,m)(C(x— 1,y —m,z,v2)) (2.21)

=
3
ﬂ‘

_l_
1=

qy(1,m)(Cly (x =1,y —m,z,v2)) (2.22)

N
I
—_
3
I
—_

2.1.3 Discrete Convolution Fast Fourier Transfrom (DC-FFT)

Surface displacements and subsurface stresses are calculated using influence coefficients
(corresponding to the Green functions in their discretized form) and expressed as discrete
convolution products between influence coefficients and the perturbation. These convo-
lution products are then computed by switching to the frequency domain using the Fast
Fourier Transforms (FFT) where it becomes a simple matrix multiplication. This method
was proposed by Ju and Farris [JU 96] and allow to compute a double summation in only
O(N + 3N1logN) operations instead of O(N?) for a computation zone size of N points.
It should be noted that for contact problem, functions are not periodic and a numerical
error is appearing. A numerical method called DC-FFT (Discrete Convolution and Fast
Fourier Transform) need to be used to avoid the numerical error. This method is using the
’zero-padding’ and the ’wrap-around order’ techniques (recalled in Appendix D).

The DC-FFT Method

The technique of zero padding and wrap-around order are the necessary treatments for
properly converting the linear convolution into the cyclic convolution. The DC-FFT (Dis-
crete Convolution and Fast Fourier Transform) method presented by Liu [LIU 00] is re-
called here

1. Find the influence coefficients, {K j} N
2. Expand {K;}, into {K;},, with wrap-around order;

3. Apply FFT to {K;},, and obtain {K;

Yow Yons

4. Input the pressure, {Pj} N’

5. Expand the pressure with zero padding, p; = p;, j € [O,N—1], p; =0, j€
[N,2N —1];

6. Apply FFT to obtain {ps},y:
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2. Semi-analytical method for contact on heterogeneous material

7. Make the element-by-element product of the complex numbers, and obtain the fre-
quency response, {is},y;

8. Apply the IFFT to obtain {u f}ZN;

9. Discard the spoiled terms and keep {”f}zN’ j€[0,N—1].

The DC-FFT method can be extended to 2D and 3D by repeating the Fourier transform
for each direction. The 2D DC-FFT is used for surface source like:

Z

N,

=

CKP(i—k,j—1)p(k,]) (2.23)

Z
k=1

—
Il

1

The 3D-DC-FFT method consists in applying the DC-FFT along the three directions
x,y and z. It is commonly used for volume source and volume image calculations.

2.1.4 Contact solver algorithm
2.1.4.1 Weak formulation and constrained optimization

The unique solution of the contact problem can be found by minimizing the strain energy
(or complementary energy) of the problem and considering that one body can not inter-
penetrate the other one. The contact pressures p are positive and the contact shears g are
bounded by the Coulomb’s law. The strain energy is divided in two part corresponding to
the normal and tangential loading:

1
min (EpTAfp +h Tp+c— Z’“ijpij) & Alp+ h’ —A=0, (2.24a)
pij >0, Xj=0, (2.24b)
pij=0, Xj;>0. (2.24¢)
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Theoretical background of the contact algorithm

where h* is the distance between undeformed geometries including the initial separation
and the rigid body displacements.

1 7 T Gyt ay  Upei)
. Xl yij X1
min Eq A¥q+W* q—l—cp—i—Zkij 2P - (2.25a)
L upij
sAlg+W+| [ =0 (2.25b)
4
Y upij
|laij|| <wpij, Aij=0, (2.25¢)
|laij|| = ppij,  Aij > 0. (2.25d)

with W* the tangential displacement tensor induced by rigid body displacements.

In the normal problem, the constraint is linear and A;; is the gap g;; between two
surfaces. For the tangential contact problem A;; is the slip amplitude. Solving this kind
of equation correspond to a constrained optimization problem and a conjugate gradient
algorithm is used [POL 99]. Furthermore, DC-FFT techniques are used to reduce the
computation cost of the method.

2.1.4.2 Conjugate Gradient Algorithms (CGM)

The conjugate gradient algorithm is an iterative method which generates a sequence of ap-
proximations of the solution starting from an arbitrary initial approximation. This method
was initially proposed by Hestenes and Stiefel [HES 52, HES 80] and based on Lanczos
method and Krylov subspaces to find orthogonal residuals. The minimization problem
can be expressed like a linear system of equation where A is a positive defined symmetric
square matrix:

Ax=b (2.26)

Algorithm
Choose an initial value of xg;
Initialization of the variables: ry <— Axg, po < —ro, k < 0;
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2. Semi-analytical method for contact on heterogeneous material

while r;, # 0

end while

Ol

Xk4-1
Tk+1

Bit1

Pi+1

TT T T 7

r,{rk

T 9
Py Apy
Xi+1 + O Prs
i1+ O%Api;

rkT_|_1rk+l .
— et 1 + Brr 1Pk
k+1;

(2.27)

(2.28)
(2.29)

(2.30)

(2.31)
(2.32)

Because only the last iteration of the variable p;_; is needed to compute py, this
method is known to be very fast at solving big linear system without using a lot of mem-
ory. One of the limitation of the algorithm is the convergence issue if A is not a positive
defined and symmetric matrix.

2.1.5 General algorithm of the contact solver

A general flowchart of the semi-analytical contact solver with a coupling between normal
and tangential contact is presented in Fig. 2.4.

Initial State

Geometry

Load Path
Constitutive Law
Initial Stress or Strain

Normal Contact

aD
</

Tangential Contact

t=t+1

|

Elastic Contact

Contact Pressure P(z,y)
Contact Shears  Q(z,y)

. e
Elastic Stresses o

Elastic Displacements u

l

End of loading

l Yes
End

Figure 2.4: Flow Chart of fully coupled semi-analytical elastic contact solver
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Theoretical background of the heterogeneity contribution

2.2 Theoretical background of the heterogeneity contri-
bution

2.2.1 Heterogeneity in an infinite solid

A finite subdomain having different elastic properties than the surrounding matrix is called
an inhomogeneity (or heterogeneous inclusion). Applied stresses will be disturbed by the
existence of the inhomogeneity in the solid. Eshelby [ESH 61] proved that the disturbed
stress field can be simulated by considering a fictious eigenstrain inside the domain of
the inhomogeneity considering the solid as homogeneous. Eigenstrain is a name given
to nonelastic strains (thermal expansion, plastic strains, misfit strains) and traducing the
incompatibility between the heterogeneity and the surrounding matrix. The equivalence
between an heterogeneous inclusion problem and an homogeneous inclusion problem plus
an eigenstrain €* is called Eshelby’s equivalent inclusion method. When an external load
is applied, the disturbance in the stress field caused by the presence of the heterogeneity
is called eigenstress 6*. To determine the eigenstrain, a process to transform a single
heterogeneity into an inclusion has been defined by Eshelby and is showed in Fig. 2.5.

T T”E’T T T T”;lT T T T”;’T ¢ Inclusion and it

- ) surrounding area
m m
C Cukr

“ijkl pmmmmmmemeeen /—\

Qlm)

¥ ovay

¥ ovay ¥

vovay

Remove

inclusion

Inclusion in
Eshelby sense

Heterogeneity within
a loaded matrix

Deformation
without stress

e
T T K T T Back into the
X Return L
whole matrix . . Back to intial shape
e inclusion X K
* Remove by applying a virtual force
g i T; o
- - <):| = - { -—
— N\ i
C,(l”kf Eigenstress induced to balance T = 7(*,‘11”;}5;, n;
the removed virtual force

¢ ¢ T ¢ ¢ “:1 nj=-T;= pﬁ;’:‘);b nj

Eigenstress in
Eshelby sense

Figure 2.5: Single heterogeneity transformation into inclusion in the sense of Eshelby
and subsequent eigenstress

2.2.1.1 Eshelby’s equivalent inclusion method

An infinite matrix M with the elastic stiffness tensor Cf‘fk ; containing an ellipsoidal domain

Q with the elastic stiffness tensor C{ ikl is submitted at infinity to a uniform strain €°. The
strain field is disturbed by the presence of the inhomogeneity.
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2. Semi-analytical method for contact on heterogeneous material

In the case of linear isotropic elasticity, the relationship between the elastic strain €
and the elastic stress 0;; is expressed by the Hooke’s law:

6ij = Cly (&) +&u) in Q'
(2.33)
Gij = Cflj/-lkl (821 + Skl) in QM

The Eshelby’s equivalent inclusion method (EIM) consists in representing the ellip-
soidal inhomogeneity as an inclusion having the same elastic properties Cf‘l’.lkl as the matrix

but being subjected to an additional imaginary strain called eigenstrain €* giving:

l 1

The necessary and sufficient condition for the equivalence of the stresses and strains
in the two above problems of inhomogeneity and inclusion is provided by Eq. (2.34). In
particular, the eigenstrain 8;-*]. is related to compatibility strain g;; by:

€ij= Sijkl X eltl’ (2.35)

where §; ji; is the Eshelby’s tensor.
Substitution of Eq. (2.35) into Eq. (2.34) leads to:
AC;jiSkimnEpn + Cii€lr = —ACijuel) (2.36)

where

A M
ACiju =G ki G ki

Eshelby’s tensor and influence coefficients are analytically known for some particular
geometries (ellipsoids [ESH 57] and cuboids [MAC 58, CHI 78]) using harmonic poten-
tial function recalled in Appendix A.

Eshelby’s method considers only a uniform applied strain but in contact problem,
strains are not uniform. Moschovidis and Mura [MOS 75] extended Eshelby’s work for
non homogeneous applied strain. If the applied strain has a polynomial form of degree n,
the corresponding eigenstrain has also a polynomial form of degree n.

In all this thesis a strong hypothesis is made that the eigenstrain is constant inside the
inclusion. This simplification only hold if the applied field around the heterogeneity is
also constant. It means that the inclusion should be small enough compared to the radius
of contact a*. To take into account possible gradient of eigenstrain inside the inclusion,
eigenstrain development to first and second order polynomials have been proposed by
Leroux [LER 13] but are greatly increasing the computation cost of the method without
improving significantly the quality of the solution. An other technique consists in repre-
senting the inclusion as a cluster of multiple cuboid with the same size as the computation
discretization and with each heterogeneous cuboids having a constant eigenstrain. This
technique allow to represent complex geometries of heterogeneity through a voxelization
technique (see chapter 6).
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Theoretical background of the heterogeneity contribution

2.2.2 Heterogeneity in a half-space
2.2.2.1 Decomposition method

Three dimensional contact problems involve a half-space that is bounded by the surface
plane z = 0 in the cartesian coordinate system (x,y,z) as shown in Fig. 2.2. Jacq et al.
[JAC 02] and later Zhou et al. [ZHO 09] proposed a method allowing to extend previous
solution, valid only for infinite spaces, to half spaces. The solution for an isotropic half
space consists in decomposing the problem into three subproblems (Fig. 2.6), known as
Chiu’s decomposition [CHI 78].

3 : : : : H * __ * Lok Lok Lok .
(1) An inclusion with the prescribed eigenstrain €* = (€},; €},;€..; €}y
€;;€y,) in an infinite space.

ok .
xx’gyy’

(2) A symmetric inclusion with a mirror eigenstrain €} = (&
;Z;ejy; —gl ;—¢€} ) in the same space.

(3) A normal traction distribution —¢” at the surface of the half space (z = 0) which
is a function of the eigenstrains €* and €.

€ xz0 €yz

(2) EA NG

B I S

27 (0) =7 (1) >

Figure 2.6: Decomposition of the half-space solution into three sub-problems

The summation of the two solutions (1) and (2) leaves the plane of symmetry (z = 0)
free of shear tractions. By adding an opposite normal stress ¢”, the condition of free
surface traction is obtained.

A new method of decomposition was proposed by Zhou et al. [ZHO 14] to avoid the
use of the mirror eigenstrain and save computation time.

2.2.2.2 Determination of the eigenstress and surface eigen-displacement

The stress at any point of the domain meshed with n, X ny X n, cuboids is given by:
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2. Semi-analytical method for contact on heterogeneous material

ne—1ny—1ln,—1
cij(x,32) =Y, Y Y Bijubx—x,y—y z—ep (<)
x=0y'=0 /=0
nz_ln)'_lnx_l
+ Y Y Y Biu—xy—y 2+ ey, —2) (2.37)
=0 y/=0x=0

ny_l ny—1

=Y Y Mij(x—x"y—y2)6"(x,»",0)
=0 xI=0

where B, j; are the influence coefficients that relate the constant eigenstrain at the point
(x!,y!,z") which is the inclusion center in an infinite space to the stress G; ; at the point
(x,y,z). M;;j represent the influence coefficients relating the normal traction ¢” within a

discretized area centered at (x,y?,0) to the stress o;; at the point (x,y,z).

Bijui(x) = C)f,,, Dy (x)  for xin D—Q (2.38)
Bijii (x) = Clf (Dot (X) = Init) - for x in © (2.39)

where [;ji; = % (8,10 jk + 081) is the fourth-order identity tensor.

The expression for D;ji; is given in Mura [MUR 87] and recalled for simple geome-
tries in Appendix B.

1
8n(1—v)

For a single inclusion centered at (x/,y/,z’) in the half-space, the normal traction ¢"
at the surface point (x’,y’,0) is obtained as:

Dijji = (W ijki —2VOk9.ij — (1 — V) (Ski®ir + Okid,j1 + 010 jx + 010 jx)] (2.40)

o"(¥,y,0) = — By (X —xy' — ', =2 ep (4!, )
—B33kl(x/—Xlayl—yl7zla)€:k1(xl7yla—ZI)

In Eq. (2.37), each component M;;() is obtained by a double integration of the function
F;j() over a discretized surface area 2Ax x 2Ay centered at (x/,y,0), see appendices A and
B.

(2.41)

Mij(x—xy—y',2) = /
x—Ax Jyl—Ay
The 3D-FFT is used to accelerate the calculation of the first (1) and second terms (2) and
the 2D-FFT for the third term (3).
The surface normal ’eigen-displacements’ can be obtained when inserting the eigen-
strain into the total strain. They are generated by the pressure field 6" only. The normal
displacements are calculated as:

x+Ax Y Ay / / y
/ Fij(x—x',y—y,z)dxy (2.42)
y
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Theoretical background of the heterogeneity contribution

ny_l ny—1

wixy)=Y Y K'(x—x,y—y)o"(x,y) (2.43)
y'=0 x'=0

To solve the equation above numerically, the surface in contact is discretized into
ny X ny rectangular elements of uniform size 2Ax x 2Ay. Then, pressure and displacement
within each discrete patch are treated as constant and their values located at the center. The
effect of a uniform pressure on a rectangular area has been given by Love [LOV 52] and
Johnson [JOH 85]. K" denotes the influence coefficients that relate the normal pressure at
the surface point (x’,y’,0) to the normal displacement at the surface point (x,y,0), recalled
in Appendix A.

2.2.2.3 Algorithm for heterogeneous contributions in contact solution

The presence of a heterogeneity within one of the bodies in contact is taken into account
by adding in Eq. 2.44 the eigen-displacement ] induced by the eigenstresses. Equa-
tion 2.2 is then modified as follows:

h(x7y>:hi(xay)_8+uz(x7y)+u>zk(x7y) (244)

The contact loading stress field inside the material is used as an input load for the com-
putation of the eigenstrain using Eshelby’s equivalent inclusion method. The eigenstress
generated by the heterogeneity are added to the stress field from the contact loading. The
contact surface geometry is updated by adding the eigen-displacements in Eq. 2.44. The
modified geometry is used to solve the contact problem and the procedure is repeated until
convergence of both the problem as in Fig. 2.7. The heterogeneous problem and the con-
tact problem are fully coupled and has been validated using the Finite Element Method
[KOU 14a]. Comparison between a finite element model on Abaqus v6.11 and the semi-
analytical method have been realized on the same computer. With a very good agreement
between the results in both simulations, Koumi found the semi-analytical solver to be
eight times faster than the finite element model. The semi-analytical simulation is com-
puted on a grid of 10® computation points while the finite element model has 1.5 x 10°
ddls and is fully described in [KOU 14b].
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2. Semi-analytical method for contact on heterogeneous material

Heterogeneity

Figure 2.7: Iteration between contact problem and heterogeneous problem

2.2.2.4 Mutual influence between close inclusions

Moschovidis and Mura [MOS 75] extended Eshelby’s solution to two close ellipsoidal
inhomogeneities. In recent work, multiple inclusion problems have been solved by us-
ing a conjugate gradient algorithm to determine each unknown eigenstrain [ZHO 11a,
ZHO 11b, LER 10].

Let’s consider a solid with n heterogeneities Qy, (y = 1,2,...,n) and discretized into

ny X ny X n; computation points. Each heterogeneity, centered on a point (xo‘, B, z“Y), has

. I
an elastic tensor Ca By

geneity is recalled:

. The Eshelby’s equivalent inclusion (Eq. 2.35) for each hetero-

I M—1 dN I * d I M—1\ /.0
(CoprC  — 100 py T Coprfopy= U = CopyC ) (Egpy)s

With(0 <o <n,—1,0<B<n,—1,0<y<n,—1) (2.45)

The eigenstrain is supposed uniform inside each heterogeneity. The stress field G4y
at the point [o, 3,7| is influenced by the contribution of the eigenstrains of each hetero-
geneity inside the domain.
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2. Semi-analytical method for contact on heterogeneous material

n,—1ny—1lp,—1

Oopy= Y)Y ) Bo&p-Cy-9t 0o
¢=0 (=0 =0

with By _¢ g_t y—¢ the influence coefficients, function of the elastic properties and of the
geometric shape of the considered heterogeneity. They depend on the relative distance

between the heterogeneities (xo‘,yﬁ,z“/> and (xé, yg,z"’>. Eigenstresses are computed for
every point inside the domain both inside and outside the heterogeneities.

Equations 2.36 and 2.46 give the relationship between stress and eigenstrain to solve
the modified equivalent equation 2.45:

n;—1 n_v_l ny—1

-1 * *
(ChpsC " 1) X ¥ ¥ Buzpcyofice+Chpfapy

¢=0 {=0 &=0
_ (4 I M—1\ .0
- <1 —Clg,C )%Bm
0<a<n—-1,0<B<n,—1,0<y<n,—1) (2.47)

The equation 2.47 is the general equation to solve the multiple heterogeneity problem.
With n heterogeneities, 6n equations need to be solved. The system can be see like a linear
system to solve:

Ag" =D (2.48)

A conjugate gradient algorithm is used to numerically solve the equation system. The
adapted CGM algorithm proposed by Zhou [ZHO 11a] and Leroux [LER 13] is work-
ing with defined positive symmetric matrix. In some cases, like the presence of surface
traction, the matrix is no longer symmetric and other algorithms have been proposed
by Koumi [KOU 15b]: Bi-Conjugate Gradient Stabilized Algorithm (BiCGSTAB) and
Orthodir based on the work of Van der Vorst [VOR 92]. They are able to solve non
symmetric linear systems and are based on the bi-orthogonalization of Lanczos to solve
simultaneously two systems of equations associated with the matrix A and with the trans-
posed matrix A”. As a consequence, the need in memory is much more important than
for the classical CGM.

The proposed method allow to numerically find the eigenstrain of each heterogeneity in
the solid. They are used to determine the eigen-displacements u3 at the contact surface
and to take into account the presence of heterogeneities in the contact algorithm.
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Partial Conclusion

2.3 Partial Conclusion

This chapter presented the semi-analytical method for a contact on a heterogeneous mate-
rial. The contact problem is solved by summing analytical solutions of simple problems.
Solution of the contact problem is used as a loading input to solve the heterogeneous
material model based on Eshelby’s equivalent inclusion method. Presence of heterogene-
ity close to the surface is influencing the contact solution. A good agreement has been
found with a finite element model by Koumi [KOU 14b] and influence between multiple
heterogeneities is taken into account by numerical algorithm like the Conjugate Gradient
Method. The next chapter will use the semi-analytical method to model damage phenom-
ena in contact loading by coupling a continuum damage mechanics based model with the
heterogeneous contact solver.
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Chapter 3

Damage model for fretting

In this chapter, a damage model is proposed to simulate the
mechanisms appearing under fretting loading in both gross
slip and partial slip regime using semi-analytical method.
Application to coated materials is also presented. The
proposed damage model is compared to a damage model from
the literature using a jump-in-cycle algorithm. Finally, a
comparison between the damage law and a wear law based
on the dissipated energy is introduced.
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Continuum Damage Mechanics

3.1 Continuum Damage Mechanics

3.1.1 History and Background

Continuum Damage Mechanics (CDM) background permits to describe the initiation and
evolution of degradation in materials at the microscale such as micro cracks and voids.
The damage model used in the current approach is isotropic and based on a single scalar
damage variable D introduced by Kachanov [KAC 58]). Considering no healing of the
material, D is monotonically increasing from D = 0, the undamaged state, to D = 1 the
complete local rupture of the material.

The state of stress in the damaged material can be described by the effective stress
introduced by Rabotnov [RAB 69]:

c

(1-D)

Following Lemaitre [LEM 85] strain equivalence hypothesis, the strain behavior is

modified by damage only through the effective stress. Hence, the strain associated with

a damaged state under the applied stress is equivalent to the strain associated with its

undamaged state under the effective stress. Applying the Hooke’s law with E, the mod-

ulus of elasticity for the undamaged material, the elastic strain in the damaged material
becomes:

6= (3.1

6 o
S_E_—(I—D)E (3.2)
From this equation it can be deduced that an increase in the damage manifests as the
reduction in the modulus of elasticity as shown in Fig. 3.1. D characterizes the effect
of microscopic phenomenon on the macroscopic behavior of the material as a strength
loss. These usually reproduce the presence of micro-cracks within an elastic material.

The constitutive equation can be expressed as:

o= (1-D)Ee (3.3)

3.1.2 Thermodynamics of damage

In order to verify that the proposed model is in accordance with the law of thermody-
namics, one should recall the Clausius-Duhem inequality. The model will consider only
elastic strain and a constant temperature during the process. The chosen state variables
correspond to the physical mechanisms of deformation and degradation of the material
(see Table 3.1.2).

Mechanisms \ Observable state variables | Internal state variables | Associated variable

Elasticity € c
Entropy T s
Damage D —-Y

57

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI045/these.pdf
© [T. Beyer], [2019], INSA Lyon, tous droits réservés



3. Damage model for fretting

With Y the thermodynamics variable associated with the damage variable. The
Helmholtz specific free energy of the system is a function of all the variables:

¥ = (e, D,T) (3.4)

When considering no plasticity and no thermal effect, the potential is considered as the
Gibbs specific free enthalpy:

1
P = sup |:—Gij8ij — lP:| 3.5)

e [P
where p is the density. Lemaitre [LEM 72] showed that the strain constitutive equation for
a damaged material are equivalent that for a undamaged material by replacing the stress
by the effective stress.

oV
Gij = P—aeij = Ejjugn (1 —D) (3.6)
oY 1
Y = P3p = _EEijklgijSkl (3.7)

Then, the Clausius-Duhem inequality can be expressed as:

~Y.D>0 (3.8)

with Y a quadratic positive form. This condition should be satisfied by the evolution law
for the internal variables for the constitutive model to be thermodynamically admissible.

1 . )
EEijkleijgkLD >0 — D>0 (3.9)

Finally, damage being a dissipative phenomenon, the damage evolution law must be
defined accordingly with the fact that damage is always increasing in order to respect the
Clausius-Duhem inequality.

3.1.3 Elasticity coupled with CDM

In order to model the damage of concretes, predominant in tension, Mazars [MAZ 89]
used the scalar damage parameter D coupled with elasticity in his 3D model. He choosed
D as a function of the positive (tensile) strains and to evaluate these strains, he defined the
following scalar called equivalent strain:

g= Y (&) (3.10)
i=1,3
with
(&), = <£i+2|8i|) G.11)
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Continuum Damage Mechanics

and g; the principal strains. However, to study the damage of contact under fretting, D
needs to take into account tensile, compressive and shear stresses.

An adaptation of the expression of Mazars’s equivalent strain is proposed here :

= (&:)?

MU G.12)
i=1,3 i=1,3 i=1,3

V&l i & <0
@L—{O i 650 (3.13)

The equivalent strain is now traducing the local three-dimensional state of strain of the
solid via a uniaxial scalar variable.

with

The equivalent strain controls the growth of the damage variable according to an
evolving threshold. At the end of every time step and for every point of the discretization
of the half-space, the loading function can be defined as :

f(e,D) =& —K(D) (3.14)

K (D) takes the largest value of the equivalent strain € ever reached by the material during
the loading history at the considered point. K(D = 0) is initialized at €49, the damage
threshold strain, corresponding to the strain at the elastic limit.

{K(D):Sdo lf D=0 (3.15)

K(D) = max, € if D>0
If the threshold is reached, a new increment of damage called 0D is added to the damage

variable at the considered point. The evolution law for the damage variable is defined as:

_é—K(D)
€rR — €40

8D &> K(D)

—~D=D+38D (3.16)
dD =0 if €<K(D)

with € the strain leading to a macroscopic crack.

The behavior of the material is linear elastic on the first part of Fig. 3.1. When the equiv-
alent strain reaches the damage threshold, the local elastic properties of the matrix are
modified through the presence of micro-cracks which decreases the strength of the mate-
rial. This local decrease of the modulus of elasticity is irreversible. From €, the damage
threshold strain, the damage variable will modified the elastic behavior of the material
by decreasing the Young’s modulus as illustrated in Fig. 3.1 and until the material strain
reaches the macroscopic fracture strain €z (see Fig. 3.2(b)).The damage evolution is al-
ways increasing and locally linear by pieces (Fig. 3.2(a)).
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3. Damage model for fretting
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Figure 3.1: Stress-Strain plot with damage evolution.
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Figure 3.2: (a) Damage evolution as a function of strain showing the purely elastic do-
main and the damageable domain. (b) Purely elastic and damageable domains on a stress
strain plot.
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Implementation in the semi-analytical method

It should be noted that if the damage threshold is not evolving at each step by replac-
ing €49 into maxy, (€(x,y,z)) in the damage increment computation then every time the
equivalent strain € is exceeding the threshold the damage increment would correspond to
the increment for a pristine material and not for an already equivalent damaged material.
Damage evolution would be overvalued.

Moreover, hypothesis is made in the damage evolution law that the evolution of D
is linear by pieces. It should be noted that if every computed damage increments are
summed then the critical value of the damage variable called D, must be equal to 1:

i=N T X
€ i ER—&+E—& 1+... €& —¢€

D, = ZSD Z i+1 — & R iTE& i—1+ + € d0 - (3.17)
0 ER — Edo €rR — €40

3.1.4 Behavior of a representative volume element

The constitutive law is illustrated on a strain-stress curve for a cube in uni-axial tension
and compression in Fig. 3.3. The curve is showing a linear elastic behavior curve for
strain under the threshold €,y and becomes non-linear after damage occurs. The material
behavior is symmetric in tension and in compression because no conditions on micro-
defects closure is introduced [LEM 05].

2000+

1500+

1000+

-1000[ —e— Uniaxial Tension
—=— Uniaxial Compression

-15001

-2000F : ‘
et 05 0 05 1
€ ‘/ER

(a) (b)

Figure 3.3: Stress-Strain plot with damage evolution for a cube in uni-axial tension and
compression.

3.2 Implementation in the semi-analytical method

3.2.1 General algorithm of the coupled damage contact solver

The damage model defined in 3.1.3 is coupled with the semi-analytical contact solver
developed by Nelias and co-workers [GAL 10, LER 10]. This method is based on the
solution developed by Love [LOV 52] for a rectangular patch of pressure over a homo-
geneous half space. The Eshelby’s equivalent inclusion method is used as an enrichment
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3. Damage model for fretting

Figure 3.4: 3D view of a sphere on a elastic half-space with multiple cuboidal inclusions
superimposition

technique in order to introduce a local modification of the Young’s modulus of the ma-
terial. Multiple cuboidal inclusions with the same size as the discretization of the half-
space and initially with the same elastic properties are superimposed on the half-space
as presented in Fig. 3.4. The effect of damage on the material is traduced through the
modification of the Young’s modulus of the inclusions. This enrichment technique has
already been validated for coated materials with cuboidal inclusions through comparison
with both analytical solution and multigrid method in [KOU 15b].

Leroux et al. [LER 10] and Koumi et al. [KOU 14b] have shown that the contact
pressure distribution may be significantly modified by the presence of inhomogeneities
close to the surface, which subsequently affect the subsurface stress distribution. The
Young’s modulus of the inclusions are modified by the damage variable D and hence
affect the contact pressure distribution through the contribution of eigenstrains. One of
the main advantage of the method is to compute only the stress field in the area around
the contact (at the surface but also in depth). It has been observed that damage usually
happened just under the contact during fretting [BRY 88]. For sake of computational
efficiency, the half-space has been enriched only in this area. Note that no damage occurs
far from the contact. When the first element is reaching a damage value equal to 1, the
simulation is stopped. It should be noted that in CDM, D = 1 means that the element is
too damaged to ensure continuity which can lead to the initiation of crack. Depending of
the area concerned and of the localization of the damage, it can be interpreted as wear or
crack initiation.

One should note that because simulations are stopped when a first element damage
value reaches 1, the present model is only simulating the phenomena leading to the first
appearance of wear or crack. In order to continue the simulation once an inclusion dam-
age value reaches 1, the contact surface should be modified by removing the considered
element.
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Implementation in the semi-analytical method
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Figure 3.5: Algorithm of Heterogeneous Elastic-Damageable Contact Problem

The main step of the algorithm, summarized on the flowchart in Fig. 3.5 are described
here:
1*" Fretting Cycle :

e Stepl:
Enrichment with cuboidal inclusions with the same Young’s modulus Ey than the
half-space.
Solve the elastic contact problem for the initial loading increment, and determine
the elastic stresses and strains in the solid.

e Step2: Damage module
Compute the equivalent strains for the current loading increment.
Test the damage criterion for each inclusion and determine the inclusion’s damage
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3. Damage model for fretting

increments dD for the current time step.

Increment the loading and solve the elastic problem again.

Compute the equivalent strains and, after testing the damage criterion, determine
the inclusion’s damage increment 8D.

Repeat until the last loading increment of the loading cycle.

e Step3: At end of the cycle:
Update the corresponding Young’s modulus with the damage variable computed
during the loading cycle.

i'" Fretting Cycle :

e Assign to each inclusion the new Young’s modulus.

e Repeat the previous steps for the considered loading cycle. Compute elastic
stresses, equivalent strains and the damage increments 8D for each time step of the
cycle.

e At the end of the fretting cycle, if one-or more-of inclusions are totally damaged :
stop the calculation.

The damage evolution is computed for each cycle and material’s properties are modi-
fied at the end of each fretting cycle.

3.2.2 Simulation on a homogeneous solid
Validation of the enrichment technique

For validation purpose of the enrichment technique, a comparison with the analytical
Hertzian solution is performed. Note that the heterogeneous semi-analytical method has
been compared and validated in previous work with both analytical solutions [LER 10]
and finite element simulation [KOU 14b]. A 3D rigid sphere in contact with a hetero-
geneous half-space has been simulated with the semi-analytical method. The half-space
Young’s modulus and Poisson’s ratio are chosen as Ey = 210 GPa and yy = 0.3, respec-
tively. The normal applied load is W = 410 N. For the homogeneous half-space, this load
leads to a contact radius a* = 0.32 mm and a maximum contact pressure Py = 1890.8
MPa. The half-space is discretized in 67 x 67 x 51 computation points such as the space
between the constituted is 2Ax = 2Ay = 2Az = 0.062a*. Then the half-space is filled
from the free surface to a defined thickness with cuboidal inclusions centered on com-
putation points and having the same dimensions as the discretization. The enrichment is
constituted of 62 x 62 x 36 cuboids as illustrated in Fig. 3.4.

64

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI045/these.pdf
© [T. Beyer], [2019], INSA Lyon, tous droits réservés



Implementation in the semi-analytical method

A comparison between the analytical Hertzian contact solution and the contact solu-
tion founded with the enriched half-space is given for the pressure distribution, for the
half space stresses along axis z and axis y at surface (z = 0) as shown in Fig. 3.6. A very
good agreement is found which in turn validates the numerical enrichment technique.

Simulations with the semi-analytical solver with and without inclusions have been
performed. Results show a computation time about 60 times higher with an enriched
half-space than without any enrichment. Most of the computation cost is due to the com-
putation of the inclusion stress field.

Description of the problem

In this section the contact simulation between a rigid sphere of radius R = 25 mm and
a homogeneous half-space is presented. The contacting bodies are subjected to an os-
cillatory tangential motion. The two bodies are first brought into contact with a nor-
mal load W = 410 N. A tangential displacement along the x direction is then applied.
The half-space Young’s modulus and Poisson’s ratio are chosen as Ep = 210 GPa and
uo = 0.3, respectively. For the homogeneous half-space, this load leads to a Hertzian
contact radius a* = 0.32 mm and a maximum contact pressure Py = 1890.8 MPa. The
imposed rigid body displacement is cycling between u, = 0.025 mm and u, = —0.025
mm (u,/a* = 0.078) to reproduce an entire fretting loop. The fretting cycle is decom-
posed into multiple time steps as shown in Fig. 3.7.

The half-space has been enriched with damageable elastic cuboidal inclusions with
the same properties than the half-space. The damage model, as presented in section 3.1.3
is used with two parameters : €g = 0.036 and €49 = 0.003225. Firstly, results in the case
of the gross slip regime are presented, afterwards the partial slip regime is investigated
and finally, simulation in the case of coated materials are presented.

3.2.2.1 Gross slip regime

Here are presented the results of contact simulations in gross slip regime. According
to Coulomb’s law, the shear distribution is equal to the coefficient of friction times the
pressure along the contact surface : Q = u x P.

For unlubricated contact, the coefficient of friction is generally high [FOU 04] and
main phenomena are wear and cracks. That is why all simulations have been performed
with a friction coefficient u > 0.3.

A first fretting simulation is presented with a coefficient of friction u=0.5. In Fig. 3.8,
the distribution of the equivalent strain € is shown for normal and tangential loading con-
ditions for the undamaged material. It can be observed that the maximum value of € is
reached at depth around z/a* = 0.5 under the surface for a normal loading. This local-
ization is the same than the maximum Von Mises stress for a circular Hertzian contact.
When a tangential displacement is added, the maximum value of € is reached at the sur-
face and is more than 50% higher than with normal load only. All damage simulations
have been performed until at least one point reached the critical damage value D = 1.
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3. Damage model for fretting
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Figure 3.6: Validation of the enrichment technique with Hertzian analytical solution (a)
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Figure 3.7: Normal and tangential loads during one fretting cycle

The distribution of the scalar damage variable D at the end of fretting simulation is plot-
ted at the contact surface z = 0 and in the plane x = 0 in Fig. 3.9(a) and Fig. 3.9(b). It
can be observed that the maximum damage is located at the center of the contact surface
where the contact pressure is the higher and where the surface has seen the biggest sliding
amplitude.

Figure 3.10 represents the evolution of the damage variable and the associated Young’s
modulus for the most damaged point of the material during fretting cycles. As the Young’s
modulus is decreasing, the equivalent strain is increasing and the material is becoming
more damaged until the damage variable reaches its critical value and the Young’s modu-
lus has dropped to 0.

As the damage variable increases, contact pressure decreases (Fig. 3.11) and conse-
quently, the contact area increases to respect the load equilibrium (Eq. 2.1). Moreover,
the contact pressure drops locally by almost 40% at the center of the contact, where the
surface is the more damaged.
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0.01

0.009

B R 0.008
0.007
0.006
0.005
0.004
0.003
0.002

0.001

Figure 3.8: Equivalent strain € (a) under normal loading in the plane x = 0. (b) under
normal and tangential loading in the plane y = 0 with u = 0.5 during the first fretting
cycle.
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Figure 3.9: Damage variable D with u = 0.5 (a) in the plane z = 0. (b) in the plane x =0
after 17 cycles.
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Figure 3.10: Evolution of damage and Young modulus with cycles for u = 0.5
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Figure 3.11: Effect of damage on contact pressure for u = 0.5
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3. Damage model for fretting

Effect of the coefficient of friction

Simulations were then performed in order to identify the influence of the friction coef-
ficient on the model response. Firstly, values of the equivalent strain € along direction z
for different coefficients of friction are compared in Fig. 3.12. It can be observed that for
u < 0.3, the highest value of € is localized in the subsurface under the center of the contact
while for u > 0.3, it is localized at the surface z = 0. Note that during unlubricated fretting
conditions, the friction coefficient is usually high [FOU 04]. The following studies will
focus on friction coefficient u > 0.3.

It can be observed in Fig. 3.15 that a higher coefficient of friction leads to an increased
surface damage rate. It comes from the fact that, according to Coulomb’s law, the higher
is the coefficient of friction, the higher are the surface shear stresses. That is why the
damage surface is larger with u = 0.7 (Fig. 3.13(a) and Fig. 3.13(b)) than for u = 0.5 and
the pressure distribution is dropping on a larger surface (see Fig. 3.14). It should be noted
that the number of cycles leading to failure is significantly lower than what can be found
in literature. The number of damage cycles found in our model is compared to the number
of cycles leading to the first appearance of wear, also called the wear initiation period.

Effect of computation discretization on damage evolution

The reference space between the computation point is defined as 2Ax = 0.062a* in sec-
tion 3.2.2. Simulations are performed with different discretization sizes and the damage
evolution of the most damaged point is plotted in Fig. 3.16. The enrichment size is kept
the same for every simulation. This is leading to a greater number of inclusions to fill the
enrichment domain when the discretization size is decreasing. There is no effect of the
discretization size on the damage computation at the beginning of the simulation but after
a few cycles, damage values are slowly diverging. For an identical damage value, dif-
ferent discretizations are modifying the Young’s modulus in a different material volume.
In the following cycles, the stress field will not be the same for the different discretiza-
tions. Furthermore, discretization size and area must be adapted to the considered loading
(rolling contact).

Effect of enrichment size on damage evolution

The half-space is constituted of N, X N, x N, cuboids as illustrated in Fig. 3.4. Fretting
simulations are performed with u = 0.5 and with different enrichment sizes and plotted
in Fig. 3.17. The enrichment depth in the z direction is corresponding to a distance of
2.23a* and is kept the same for every simulation. Enrichment distances in the x and y
directions are equals and vary from 2a* to 4a*. One can observe that no effect of the size
of the enrichment is observed on the damage evolution nor on contact pressure (see Fig.
3.18).
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Figure 3.12: Equivalent strain € along direction z for different friction coefficients

Figure 3.13: Damage variable D with u = 0.7 (a) in the plane z = 0. (b) in the plane x =0
after 4 cycles
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Figure 3.15: Evolution of damage function of friction coefficient
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Figure 3.16: Effect of computation discretization on damage evolution
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Figure 3.17: Effect of enrichment size on damage evolution
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Figure 3.18: Comparison of contact pressure at the end of the damage simulation function
of enrichment width

3.2.2.2 Partial slip regime

In this section, the same damage model is used in the partial slip regime. A gross slip
fretting loop is associated to wear whereas the partial slip regime is associated to crack-
ing appearance. For the contact between a sphere and a plane in partial slip regime the
center of the contact is sticking and an annular slip zone is appearing at the edge of the
contact area as shown in [MIN 49]. Accordingly to fretting material response (fretting
map), cracking appearance is generally associated with smaller displacement amplitude
and higher normal loading than in gross slip conditions [VIN 92].

A simulation is performed using a coefficient of friction of u = 0.7 and a normal
load W =900 N. Accordingly with Hertzian theory, this load leads to a contact radius
a* = 0.41817 mm and a maximum contact pressure Py = 2457.386 MPa. The tangential
displacement is imposed with a value of u, = 0.001 mm or u,/a* = 0.0023. The damage
model parameters are kept the same as in section 4.3.1.

The state of the scalar damage variable D at the end of fretting simulation can be
observed at the contact surface z = 0 and in the plane x = 0 in Fig. 3.19(a) and Fig. 3.19(b)
after five fretting cycles. The higher damage values are localized in the slip circular zone
at the edge of the contact. It is where the material sees the maximum strain during fretting
cycles. In agreement to that, the pressure distribution is locally dropping at the contact
edge as the damage is increasing (Fig. 3.20). During the damage progression, the contact
area is increasing to respect the load equilibrium (Eq. 2.1) and the shear maximum value
is moving out of the initial contact area (Fig. 3.21). These results exhibit the same effects
of damage on contact pressure that the ones found in Ghosh et al. [GHO 13].

The results obtained in sections 3.2.2.1 and 3.2.2.2 are qualitatively in good agreement
with the surface damage phenomenon usually observed in fretting conditions, see for
example our experimental results in Figs. 3.22(a) and 3.22(b) — that can be compared to
Figs. 3.13 and 3.22 — or to literature data [VIN 92].
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Figure 3.19: Damage variable D with u = 0.7 (a) in the plane z = 0. (b) in the plane x =0
after 5 cycles.
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Figure 3.20: Evolution of contact pressure with damage in the plane x = 0 for u = 0.7
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Figure 3.21: Evolution of contact shear distribution with damage in the plane x = O for
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Figure 3.22: Wear scar of a steel ball (a) under gross slip regime (b) under stick-slip
regime.
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Figure 3.23: Damage variable D with u = 0.4 (a) in the plane z = 0. (b) in the plane x =0
after 7 cycles.

Figure 3.24: Evolution of contact pressure with damage in the plane x = 0 for y = 0.4

Effect of the coefficient of friction

A second simulation was realized with a coefficient of friction u = 0.4. All other param-
eters are kept the same than in the previous simulation. In Fig. 3.23, one can observe
that the increasing slip zone and vanishing stick zone are leading to an increased surface
damage zone. Wear and crack initiation phenomena are competing in the slip zone where
the maximum shear stress occur.

Contact pressure in Fig 3.24 and shear stress in Fig. 3.25 show that pressure is locally
decreasing at the border of the contact area and the stick zone at the center is less affected
by damage. The contact area is increasing with the decreasing pressure to ensure the
contact load equilibrium.

Finally, results found with the proposed damage model are in good agreement with
the physical phenomena experimentally observed in literature as recalled in Fig 3.26.
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Figure 3.25: Evolution of contact shear distribution with damage in the plane x = O for
u=0.4
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Figure 3.26: Fretting regime and associated damage phenomena
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3.2.2.3 Application to coated materials

A lot of materials used in the industry are coated to protect the surface from damage or
to help keeping the integrity of the substrate. Hard metallic coatings can mitigate fretting
by reducing friction and resisting crack initiation [BEA 87, FOU 97]. Using the same
enrichment technique as before gives the possibility to simulate coated materials. From
the top surface until a defined thickness z. cuboidal inclusions with different material
properties than the substrate are used. Above this layer, the same material properties than
the substrate are used for the inclusions (see Fig. 3.27).

This section only aims to investigate the effects of elastic coatings on the localization
of damage in the material. Firstly, only the distribution of equivalent strain € is studied.
Different coating’s stiffnesses (with a Young modulus ratio defines as y = E/Ey with
E and Ej the modulus of the coating and substrate, respectively) and thickness (z.) are
studied and the effect on damage evolution is analyzed.

Two different coating stiffnesses are studied here, a harder one with y = 2 and a softer
one with y=0.5. The equivalent strain € is plotted in order to represent the coating effect
on the damage localization. The same parameters as in section 4.3.1 are used for the
contact loading.

In Figs. 3.28 and 3.29, the equivalent strain € is plotted for the undamaged material
during the first cycle in the plane y = 0 for four different coating thicknesses z. and for
both coating stiffness ratios y. These results are compared to the uncoated model along
the axe z in Figs. 3.30 and 3.31.

For y= 0.5, the maximum equivalent strain € is always located in the coated material
(see Fig. 3.28) and € is very attenuated in the substrate. Moreover, the equivalent strain €
in the coating is almost twice the value of € in the uncoated half-space (Fig. 3.30).

In contrary to soft coatings, the maximum equivalent strain € is always located in
the substrate material (see Fig. 3.29) for hard coatings (Y = 2). Moreover, the maximum
equivalent strain € in the hard coating is almost two times lower than with the uncoated
half space (Fig. 3.31). It is important to notice that the maximum of the equivalent strain
€ is located at the interface between the coating and the substrate for a coating thickness
ze/a* = 0.5 (close to the maximum shear stress localization). In the case of z. = a*, there
is no high equivalent strain € at the interface. The layered structure of hard coatings leads
to damage propagation at the interface between the coating and the substrate parallel to
the surface as shown in [GOR 79].

The damage variable D is plotted in Fig. 3.32, along the z-axis for the two different
coating stiffnesses for a coating thickness z. = 0.25a after one fretting cycle. A strong
hypothesis is made here that the damage parameters are the same for the coating and for
the substrate even if there are not from the same material.

It can be observed that, accordingly with what was previously observed with €, the
soft coating is a lot more damaged than the hard one. Moreover, for the hard coating, the
maximum damage is located at the interface between the substrate and the coating. But
for the soft coating, the maximum of damage is located at the surface and is much higher
(around 5 times).

79

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI045/these.pdf
© [T. Beyer], [2019], INSA Lyon, tous droits réservés



3. Damage model for fretting

|
—
Z X
Y
Z
v

Figure 3.27: Enrichment of the half space with cuboidal inclusions to simulate the effect

of coatings.
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Figure 3.28: Equivalent strain € with a soft coating (y= 0.5) of thickness (a) z. = 0.125a*
(b) z. = 0.25a* (¢) z. = 0.5a* (d) z. = a*
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Figure 3.29: Equivalent strain € with a hard coating (y = 2) of thickness (a) z. = 0.125a*
(b) z. = 0.25a* (¢) z. = 0.5a* (d) z. = a*
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Figure 3.30: Equivalent strain along z for different thickness z. and with a soft coating
(1=0.5)
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Figure 3.31: Equivalent strain along z for different thickness z. and with a hard coating
Y=2)

The results presented here show that hard coatings are effective to protect the material
from fretting surface degradations while soft coatings are damaging faster than uncoated
material assuming that the damage threshold in term of yield strength (€,40) and ductility
(eg) are the same. Finally, soft coatings are accommodating the surface stress field in the
contact limiting crack initiation but are more subjected to wear. In contrary, hard coatings
are wear resistant but are increasing the surface stresses leading to surface fatigue and
pitting.
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Figure 3.32: Damage after one fretting cycle along z direction for two different coating
stiffnesses

3.3 Comparison with another damage model

A damage law used in Ghosh et al. [GHO 13] is presented in this section and implemented
into the semi-analytical contact solver. Fretting simulations are performed in gross slip
regime and results are compared between the two damage models.

3.3.1 Presentation of the damage model

The theoretical developments leading to the damage wear law presented in Ghosh et al.
[GHO 13] are briefly presented in this part. Recalling that fretting wear is caused by
micro-cracks growing along weak point in the material due to high contact stresses, a
damage evolution law with an isotropic damage variable D based on the work of Chaboche
and Lesne [CHA 88] is defined. The evolution of D is a function of the stress level:

dD
v =f(e.D) (3.18)

with N the number of stress cycles and ¢ the stress level at the considered point. Xiao et
al. [XIA 98] proposed a damage evolution law of the following form:

dD Op "

— = —= 3.19

dN (cr(l —D) > (3.19)
with 6 the critical stress quantity for the considered damage phenomenon (wear here),
G, and m are material parameters that need to be determined. As hypothesized for rolling

contact fatigue by Raje et al. [RAJ 08a] and extended to fretting wear by Ghosh et al.
[GHO 13], it is assumed that shear stress causes surface initiated failure because it un-
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dergoes two reversals in an Hertzian contact. Finally one can replace Ac by At in Eq.
3.19.

Previous work have shown the importance of coefficient of friction in surface failure
mechanisms. In particular, Fouvry et al.[FOU 96] proposed a theory linking the wear
volume to the dissipated energy due to friction in the interface. Furthermore, coefficient
of friction can be expressed as a function of the softer material shear strength and it
penetration hardness.

dD _ 0.85,; AT
dN E H(1-D)
with N the number of stress cycles, S, the ultimate tensile strength of the material, E
the Young’s modulus and H the hardness of the material. At is the shear stress reversal at

the considered point during a fretting cycle. Details leading to this equation can be found
in Ghosh et al. [GHO 13].

E H(1-D)
/dN /{ossu, v }dD, (3.21)

The number of cycles N leading to failure is defined as:

(3.20)

_E H
~0.85, 2AT

(3.22)

The shear stress amplitude during one fretting cycle is calculated using the semi-
analytical contact solver and damage evolution is calculated at every point of the material
domain using Equation 3.20. For sake of computational efficiency, the number of cycles
leading to the first fully damaged element is computed using the jump-in-cycles algorithm
proposed by Lemaitre [LEM 92] and already used in finite element simulation by Slack
et al. [SLA 10]. This method assumes a linear damage evolution over a block of cycles.

3.3.2 Gross slip regime

Contact between a rigid sphere of radius R = 25mm and a homogeneous half-space is
simulated using the semi-analytical solver. The same material and loading characteristics
than in section 4.3.1 are used with a coefficient of friction u = 0.7.

The half-space has been enriched with damageable elastic cuboidal inclusions with
initially the same properties than the half-space. The damage model proposed in Ghosh et
al. [GHO 13] is used with two parameters: S,; = 2500 MPa and H = 1 GPa. The damage
increment used in the jump-in-cycles algorithm is chosen to be AD = 0.01. All damage
simulations have been performed until at least one point reached the critical damage value
D = 1. Results in the case of gross slip regime and partial slip regime are investigated.
The distribution of the scalar damage variable D at the end of fretting simulation is plotted
at the contact surface z = 0 and in the plane x = 0 in Fig. 3.33. It can be observed that
the maximum damage point is located at the center of the contact surface as observed
with the previous model in Fig. 3.13. As the damage variable increases, contact pressure
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Figure 3.33: Damage variable D with u= 0.7 (a) in the plane x = 0. (a) in the plane z =0
after 28 loading cycles using damage model from Ghosh et al. [GHO 13].

decreases (Fig. 3.34) and consequently, the contact area increases to respect the load
equilibrium (see Eq. 2.1). Moreover, the contact pressure found at the last cycle with the
two models are similar. A small difference is found between the two pressures due to
the fact that simulation is stopped once the damage variable reaches the value D = 1 for
the first time. The represented contact pressure is computed with the damage state from
the previous cycle and depending on the damage evolution law, the damage level at this
previous cycle is not exactly the same in the two models.

The number of damage cycles found in this damage model is equal to 28 compared
to 4 in the proposed model (see Fig. 3.35). Therefore one damage cycle in our model
is equivalent to approximately 7 cycles in the model of Ghosh et al. [GHO 13] in this
specific example i.e. with the defined hardness and tensile strength.

3.3.3 Partial slip regime

In this section, simulation with this damage model are realized in the partial slip regime.
Simulation parameters are the same than in section 3.2.2.2 and the damage model param-
eters are kept the same as in section 3.3.2.

The state of the scalar damage variable D at the end of fretting simulation can be
observed at the contact surface z = 0 in Fig. 3.36 after 34 fretting cycles. The higher
damage values are localized in the slip circular zone at the edge of the contact. The
present results exhibit the same effects of damage on contact pressure that the ones found
with the proposed damage model in section 3.2.2.2 and in Ghosh et al. [GHO 13].
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Figure 3.34: Contact pressure with damage in the plane x = 0 for y = 0.7 at the last
iteration of the simulation for the two models.
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Figure 3.35: Damage evolution with fretting cycles for the two damage models with
u=0.7.
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Figure 3.36: (a) Damage variable D with u = 0.7 in the plane z = 0 in partial slip regime.
(b) Contact pressure evolution with fretting cycles in the plane x = 0 using damage model
from Ghosh et al. [GHO 13].

3.4 Comparison with a wear model.

All the proposed damage models aim at simulate the damage phenomenon leading to
wear or crack initiation at the contact surface. In this section, a comparison between the
damage model from section 3.1.3 and simulation of wear in the semi-analytical solver is
proposed. The wear law used here is based on the quantity of dissipated energy in the
contact during each fretting cycle [GAL 07a].

N
Viw =0 ) Eq(k) (3.23)
k=1

Following Coulomb’s law, one can write the local dissipated energy by friction per
surface area, ed, as the product of surface shear and slip:

ed = q.s (3.24)
The local wear law can then be expressed as:
N
Ah=0Y &(N) Y gqs (3.25)
k=1 1Cycle

In the wear simulation, an increase in the computed wear volume is introduced by
modifying the surface geometry of the solid in the contact area. Wear is usually shared
by the two materials in contact. To be consistent with our damage simulation, one can
consider that only the half-space is going to be wearing. The surface equation is modified
considering the number of cycles AN and the wear depth Ah. More details can be found
in [GAL 07b].

fz(x,y) :fz(x7y>_ANAh(x7y> (326)
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Figure 3.37: Contact pressure with one damaged element and with wear surface modifi-
cation in the plane x = 0.

One should notice that the damage model from section 3.1.3 is based on a volume
stress computation of a damage variable while the wear model is based on surface stress
computation and is not taking into account any subsurface phenomena. The effect on
the contact pressure is based on a surface modification in the wear model and on the
eigendisplacements coming from the inclusions in the damage model.

In order to easily compare the effects of wear and damage on the contact pressure,
a rigid sphere in contact on a half space with only one inclusion almost fully damaged
(E =~ 0) and tangent to the surface is plotted in Fig. 3.37. It is compared with the contact
pressure from a rigid sphere in contact with a half-space where the flat surface have been
modified at the same point and by the same size than the previously considered inclusion
(no inclusion is present in this case) as if only this point of the surface have been worn
off. Both of the contact pressure are dropping to O at the considered point and two
peaks of pressure due to the discontinuity around the surface modification can also be
observed in Fig. 3.37. A very good agreement is found between the two contact pressure
confirming the ability of the damage model to represent the phenomena leading to wear
without modifying the surface geometry.

Furthermore, fretting simulations have been performed with the wear model and com-
pared to the same simulation but with the damage model from 3.1.3 after 4 fretting cycles.
In every simulations, contact conditions and damage parameters are kept the same than in
section 4.3.1. For the simulation with the wear model, AN = 100000, Az = 0.0002 mm
and the wear coefficient is chosen arbitrarily. Fretting loops associated with each fretting
slip regime are showed in Fig. 3.38.

Contact pressures along the x direction at the last computed cycle are compared for
both models in gross slip and partial slip regimes in Fig. 3.39. In every cases, the contact
area is increasing while the contact pressure is dropping, at the center of the contact area
in full sliding conditions (see Fig. 3.39(a)) and at the border of the contact area in stick
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Comparison with a wear model.
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Figure 3.38: Fretting Loops (a) in Gross slip regime (b) in partial slip regime.

slip conditions (see Fig. 3.39(b)).

Wear scars are compared to the level of damage at the surface along the x axis in the
gross slip regime in Fig. 3.40 and in the partial slip regime in Fig. 3.41. In the gross slip
regime, the center of the contact is the most damaged and it is also where the surface is the
most worn. No quantitative comparison can be made here because D is a dimensionless
variable while the wear scar depth is in mm. In the partial slip regime, the most damaged
area and the most worn surface are localized on the edges of the contact area. One should
observed that some damage is also localized at the center of the contact area while no wear
seems to appear at that time in the center of the contact area. Therefore, a good agreement
is found between the results from the damage model and based on a volume stress field
computation and a wear model from Gallego et al. [GAL 07a] based on surface stress
computation.
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Figure 3.39: Pressure distribution with Wear and Damage (a) in gross slip regime (b) in
partial slip regime.
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Figure 3.40: (a) Damage at the surface along x direction (b) Worn surface along x direc-
tion in the gross slip regime.
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Figure 3.41: (a) Damage at the surface along x direction (b) Worn surface along x direc-
tion in the partial slip regime.

3.5 Partial Conclusion

In this chapter, a numerical method has been proposed to model the effect of fretting on
surface damage and contact solution. A three-dimensional contact solver with a heteroge-
neous elastic damageable model is developed based on the Eshelby’s equivalent inclusion
method. Multiple cuboidal inclusions are superimposed on the half space solution as an
enrichment technique. The model has been validated by performing a comparison with
the Hertzian contact solution. The model allow to simulate fretting cycles while taking
into account the damage evolution of the surface and his influence on the contact solution.
The following major conclusions have been reached :

e The proposed method permits to couple the contact problem, the presence of het-
erogeneous inclusions and a damage law. The algorithm is very robust and con-
vergence can be easily reached even with high level of damage. Influence of the
computation discretization and enrichment size have been performed to proof the
accuracy of the simulations.

e Contact pressure and shear distributions have been investigated along with the dam-
age evolution for both gross slip and partial slip regimes.

e The results obtained with our model are in good agreement with the surface damage
phenomenon caused by fretting. The proposed method reproduces accurately some
classical results of the literature [VIN 92].

e The model proposed in Ghosh et al. [GHO 13] has been implemented in the semi-
analytical solver along with the jump in cycle algorithm and a good agreement has
been found between the two models.
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3. Damage model for fretting

e The enrichment technique allows to simulate fretting contact on coated material.
The influence of these coatings on the damage localization in the material has been
highlighted. In agreement with the literature [BEA 87, FOU 97], it is found again
that hard coatings are protecting the surface from fretting damage.

e A good agreement between wear simulation model [GAL 07a] through surface ge-
ometry updating and damage simulation has been observed.

The present work is made on the assumption of linear elasticity to keep the model
simple and demonstrate its capability. To be more realistic, the present model could be
improved by taking into account plasticity effects during the fretting cycles. One way
of adding the plasticity effect would be to define a second damage evolution law based
on the accumulated plastic strain and to take the larger damage increment as the current
damage increment as in [WAR 14, SHE 15].
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Chapter 4

Damage model for Rolling Contact
Fatigue

In this chapter, the coupling between continuum damage
mechanics based model and the heterogeneous contact solver
is applied to rolling contact fatigue. A first part is focusing on

subsurface microstructural alterations occurring around

nonmetallic inclusions and called butterfly wings. A second
part is considering the application of a damage model to
surface initiated damage on indented surface.
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Introduction

4.1 Introduction

Rolling element bearings (REB) are commonly used when a relative rotary motion and
a significant amounts of load needs to be transmitted between machine components such
as wind turbines, transmission systems and engines. REBs carry the load through con-
tacts between the rolling elements and the races and low friction losses are ensured by
lubrication. After a proper installation and under good operating conditions, the main
phenomenon limiting the life of the bearings is rolling contact fatigue (RCF) [HAR 01].
In contrast to classical fatigue, RCF is not due to tensile stress but due to the reversal of
the shear stress [JAL 11] (see Fig. 4.1). The two different phenomena leading to RCF fail-
ure are surface originated pitting and subsurface originated spalling [LIT 66]. Pitting is
mainly due to surface defects or insufficient lubrication while spalling is due to subsurface
cracks initiating at material imperfections like voids, dislocations and inclusions. Non-
metallic inclusions present in the material are byproducts of steel manufacturing process
and act as stress raisers in the material [KER 06, SCH 88]. Moghaddam et al. [MOG 16a]
reviewed the alterations occurring around these inclusions in rolling contact fatigue.

=3 -2 -1 0 1 2 3
x/a*

Figure 4.1: Stress history of a point located at 0.5a™ in the subsurface of the material as
the Hertzian load passes over.

4.1.1 Experimental observations

Kang et al. [KAN 13] have shown that micro-structural alterations occur in the matrix
when bearing steel is subjected to RCF loading. One is commonly referred to as "butterfly
wings” and is associated with crack initiation in the vicinity of inclusions (Fig. 4.2).
This phenomenon was observed for the first time in 1947 by Jones [JON 47] and then
by Styri [STY 51] in 1951 and has been continuously investigated since. Butterfly wings
are regions where the material is transformed from martensite into ultrafine ferritic grains
[BHA 12, BEC 81]. The pair of wings around the inclusion form a 45° angle with the
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4. Damage model for Rolling Contact Fatigue

rolling direction (see Fig. 4.2). Tricot et al. [TRI 72] and Nelias et al. [NEL 99] showed
that the wings formation is dependent on the over rolling direction (ORD) (see Fig. 4.3).
Furthermore, butterfly wings are often the site of crack initiation, in particular on the top

of the upper wing and bottom of the lower wing. These cracks can propagate and lead to
the failure of the bearings [GRA 07, EVA 12, EVA 13c].

Figure 4.2: Butterfly wings formed around an inclusion [EVA 13b]. The rolling direction
is from right to left.

Figure 4.3: Butterfly wings around an inclusion in rolling contact fatigue. Picture on the
right is showing a case where the over rolling direction have been inverted. [TRI 72]

Many experimental works have been conducted to investigate the root causes and ef-
fects of butterfly wings on RCF failure. Destructive methods provide a good knowledge
of the microstructrual alteration that occur in the butterflies [GRA 07, EVA 13c, KRE 16,
ALT 18]. On the other hand, non-destructive methods such as acoustic emission and
X-ray tomography are able to track the formation of wings and the initiation and propaga-
tion of cracks [GUY 97, STI 09, UME 09, RAH 09, KAN 13]. In particular, ultra-sound
methods have been used to detect inclusions localization, wings propagation [GUY 97]
and the effects of inclusions depth on wing formation [NEL 99].
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Presentation of the damage model

4.1.2 Numerical model

Numerical models have been developed by some investigators to simulate butterfly wings
formation in rolling contact fatigue. Salehizadeh and Saka [SAL 92] computed the resid-
ual stress evolution around a circular inclusion. The hydrostatic stress around inhomo-
geneities with or without the presence of cracks has been investigated by Hirakoa et
al.[HIR 06]. Alley and Neu [ALL 10] proposed a model based on the plastic strain accu-
mulation around an inclusion under rolling contact loading. Recently, Cerullo and Tver-
gaard [CER 15] used the Dang Van criterion to determine the effects of small inclusions
on fatigue.

Among the numerical models, some are based on Continuum Damage Mechanics
(CDM) to study failure due to fatigue [LEM 92]. Moghaddam et al. [MOG 15b] pro-
posed a damage mechanics approach to simulate butterfly wings propagation using fi-
nite element simulation. The model was later extended to crack propagation [MOG 15a]
and to 3D simulation [MOG 16b]. In the 3D model, the inclusion is embedded in a
half-space discretized using a Voronoi tesselation. This kind of discretization has been
used intensively to represent the microstructure of the material [RAJ 08a, VIJ 18]. Guan
et al. [GUA 17] used also the Voronoi tesselation to compute the stress intensity fac-
tors and the crack propagation around an inclusion. Lately, CDM has also been applied
to study the microstructural transformation leading to dark etching layer in the mate-
rial under Rolling Contact Fatigue [MOR 18b] and coupled with an EHL contact solver
[PAU 17a, PAU 17b].

For three-dimensional problem and a moving load, a very fine mesh is required
for the contact interfaces and for the inclusion region leading to high computation
costs. In order to compute the coupled solution of the contact problem over an
heterogeneous material, the numerical method developed by Nelias and co-workers
[JAC 02, LER 10, KOU 14b, AMU 16] is used. One should note that the results pre-
sented by Moghaddam et al. [MOG 15b, MOG 16b] don’t take into account the effect
of the heterogeneity on the contact solution. The purpose of the present work is to use
the damage mechanics approach to model the phenomenon of butterfly wings forma-
tion around nonmetallic inclusions coupled with a semi-analytical heterogeneous contact
solver. The subsurface and the contact problem solutions are coupled. The microstruc-
tural modifications inside the material are represented by adding cuboidal heterogeneities
at the location where the damage occurs.

4.2 Presentation of the damage model

In the elastic heterogeneous contact solver presented in Chapter. 2, a Continuum Damage
Mechanics (CDM) based model was implemented in order to describe the degradation
of material due to contact loading. Following the same principles that in Chapter. 3 but
applied to subsurface damage phenomena, section 4.2.1 recall the basics of CDM and its
applications to butterfly formations around nonmetallic inclusions. Sections 4.2.2 present
the implementation of the damage model in the heterogeneous contact algorithm.

97

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI045/these.pdf
© [T. Beyer], [2019], INSA Lyon, tous droits réservés



4. Damage model for Rolling Contact Fatigue

4.2.1 Continuum Damage Mechanics

The state of stress in the damaged material can be described by the effective stress
introduced by Rabotnov [RAB 69]:
c
6= —— 4.1
(i=D) 4.1)
In the present model, it is assumed that D is a scalar representing the alteration of
the material behavior during the phase transformation from martensite into ferrite. Thus,
an increase in the damage manifests as a reduction in the modulus of elasticity in the
constitutive relationship.

6= (1-D)Ee 4.2)

Micro indentation tests have shown that the hardness increases during the transforma-
tion [BEC 81, EVA 12, UME 09, GRA 10, MOG 15a]. Moghaddam et al. [MOG 15a]
used a reverse analysis of his indentation test results to determine the reduced modulus
of elasticity in the wings to be Epyrerfiy = 0.9Egee and therefore Dpyyerf1y 1s assumed
to be 0.1 in the simulations. After this microstructural transformation, the hypothesis is
made that no other transformation will occur and then no more damage will be happen-
ing at this location. Furthermore, no damage is applied to the inclusion itself. In order
to compute the damage evolution in the material, a stress-based non linear evolution law
was proposed by Xiao et al. [XIA 98]:

dD . Op "
dN = (cru —D)) 4

Where N is the number of stress cycles and G is a measure of the stress mainly re-
sponsible for the fatigue damage. The resistance stress, G,, and m are material dependent
parameters. A version of the damage evolution law for the modeling of butterfly wings
was proposed by Moghaddam et al.[MOG 15b]:

dD AT "
ﬁ: (Tr(l_D)> (4'4)

With At = Talternating + |Tm€an| (4.5)

Because butterfly wings is assumed to be a shear driven phenomenon, the stress com-
ponent (A7) is the sum of Tuyernaring, the alternating shear stress and |Tueqn| the absolute
value of the mean shear stress during one loading cycle. They are the components of
the stress tensor mainly responsible for the damage accumulation and the formation of
butterfly wings. The resistance stress T, represents the ability of the material to resist

98

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI045/these.pdf
© [T. Beyer], [2019], INSA Lyon, tous droits réservés



Presentation of the damage model

fatigue damage accumulation. T, and the exponent m are material dependent parameters.
An analogy with shear driven fatigue test, torsion test, is used to determine these parame-
ters based on the experimental results obtained by Shimuzu for bearing steel AISI 52100
[SHI 09]. In the following simulations, values of 6.11 GPa and 10.0 will be used for 7,
and m respectively.

4.2.1.1 Jump-in-cycle Algorithm

In order to achieve computational efficiency in high cycle fatigue, the jump-in-cycles
procedure is used [LEM 92]. This method assumes that, over a finite number of cycles
AN, the stress history of a loading cycle remains constant and the increment in damage
AD is assumed to be constant. The damage evolution is then a piecewise linear function
over a block of cycles AN as illustrated in Fig. 4.4. Stress computations are performed
once for every block of cycles and not for each individual cycle N.

]

[N
Aal
o

AN® AN? AN N

Figure 4.4: Piecewise linear damage evolution with block of cycles in the Jump-in-cycles
algorithm [RAJ 08a]

The procedure is described below:

1 N = 0: for a pristine material domain, the initial damage in each element is assumed
tobe DY =0, j = 1...etemenss-

2 Stress history (A‘c)i- for a loading cycle is computed at each point of the material
using the semi-analytical contact solver.

3 The damage evolution rate in each element is evaluated knowing the stress history
for the present block and the current state of damage in the element using the fol-

lowing equation:
. m
d_D : _ Talternating + ’Tmean‘ (46)
N ) ; t.(1—D')
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4. Damage model for Rolling Contact Fatigue

4 The element with the maximum damage evolution rate is chosen as the critical
element for the current block of cycles:

dD\' dD\'
(—) = Max| (—> | 4.7)
dN crit dN J
5 The number of cycles in the current block of cycles is computed as:
- AD
AN' = : (4.8)
() cri
dN / crit
6 The number of cycles elapsed is updated to:
N =N+AN' (4.9)
7 The increment in damage for each element during the current block of cycles is then
given by: _
. dD\" .
AD. = == ) AN! 4.10
J (dN ) F (4.10)

8 The damage states for each element at the start of the next block of cycles are
updated to: . . .
D! =D+ AD), (4.11)

9 The elastic moduli are modified at the start of the next block of cycles according to:

E' =Ey(1-D)) (4.12)

The value of AD is an input of the algorithm and AD is the maximum damage incre-
ment for each block of cycles. A small value of AD will increase the computation time
and the accuracy of the method. Moreover, to be in perfect agreement with Moghaddam
et al. [MOG 15b], the value of AD is set to 0.01. It takes ten loading cycles to transform
a first element from martensite to ferrite.

4.2.2 Integration of the damage model in the contact algorithm

The damage model defined in section 4.2 is coupled with the semi-analytical contact
solver developed by Nelias and co-workers [GAL 10, LER 10, KOU 14b]. In order to
take into account the local damage of the matrix, a cuboidal heterogeneity is added at
each damaged location as an enrichment technique as in Chapter 3. The Young modulus
of the added heterogeneity corresponds to the locally damaged Young modulus of the
matrix and the size of the cuboidal heterogeneity is the same as the discretization of
the half-space (see Fig. 4.5). At the beginning of each time step of the loading cycle,
Eshelby’s equivalent inclusion solution is computed to take into account the modifications
of the material parameters on the contact solution. A flowchart of the solver algorithm
to explain the coupling between the contact solver and the damage model is presented in
Fig. 4.6.
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z

Figure 4.5: Illustration of the enrichment technique using cuboidal inclusion around a
central spherical inclusion.
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Figure 4.6: Flowchart of the coupled contact solver and damage model
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4. Damage model for Rolling Contact Fatigue

4.3 Results

4.3.1 Description of the problem

The rolling of a 3D rigid cylinder on an elastic damageable body with a spherical inclusion
is investigated (Fig. 4.7). The radius of the cylinder is R = 5.5mm and its length in
the Y-direction is Ly = 0.16 mm. A normal load W = 55 N is applied on the cylinder.
The half-space Young’s modulus and Poisson’s ratio are chosen as Ep = 200 GPa and
vo = 0.3, respectively. For the homogeneous half-space, this load leads to a contact half
width ¢* = 0.1 mm and a maximum contact pressure Py = 2 GPa. One should note that
the dimension of the contact in the Y-direction is approximately 16 times larger than the
contact half width. A spherical inclusion with a diameter d;, = 0.16a™ is placed at the
center of the domain at a depth z; = 0.54*. The inclusion Young modulus is chosen
to be E; = 300 GPa and its Poisson’s ratio v; = 0.3 to be consistent with Al»O3 oxide
inclusions. The loading moves from left (x < 0) to right (x > 0), maintaining the normal
load constant, on a distance equal to 2a™ decomposed into 21 time steps. The tangential
displacement at each time step is equal to 0.1a*. The value of the coefficient of friction is
chosen to be u = 0.05 and the direction of surface traction is opposite to the over rolling
direction (which corresponds to the driven surface). The loading and material parameters
are consistent with the ones in Moghaddam et al. [MOG 15b]. Note that the computation
being elastic, only the direction of surface traction has an influence on the results. The
half-space is discretized in 225 x 71 x 45 computation points such that the space between
points is 2Ax = 2Ay = 2Az = 0.04a*. As in Moghaddam et al. [MOG 15b] simulations are
stopped when a second pair of wings is appearing. Quifionez [QUI 19] computed a similar
model with a coupled EHL and 3D finite element simulation with a subsurface inclusion.
Their model is made of 193 x 385 x 129 points and for every time step, computation time
is found to be about 1 hour with a 2.6 Ghz CPU and 16 GB RAM. The proposed method
is found to be around 40 times faster at solving the same kind of problem.

Figure 4.7: 3D view of the rolling of a cylinder on a elastic half-space with a spherical
inclusion.

An important difference between the model proposed by Moghaddam et al.
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Results

[MOG 15b, MOG 16b] and the results presented here is the presence of a coupling be-
tween the contact solver and the heterogeneous material which permit to take into account
the effect of the inclusion on the contact pressure [LER 10, LER 11, LER 13, KOU 14b,
KOU 14a, KOU 15a, KOU 15b, AMU 16]. Furthermore, the 3D model in Moghaddam
et al. [MOG 16b] is using a Voronoi tesselation to represent the microstructure of the
material around the inclusion.

0
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Figure 4.8: Effect of the presence of a spherical inclusion located at z;,c = 0.5a™ under

the surface on the stresses at the center of the contact.Note that here the inclusion is 1.5
times harder than the matrix: E; = 300GPa, Ey = 200GPa.

Moghaddam et al. [MOG 15b] found that in order to describe butterfly formation as
a stress-based fatigue phenomenon, one should take into account the stress history of the
material during each loading cycle and, in particular, the alternating shear stresses. In
3D, the value of these stresses should be calculated in all the different planes around the
inclusion in order to find the plane of maximum alternative shear stress. But Weinzapfel
et al. [WEI 11] have shown that the plane of the maximum shear stress around a spherical
inclusion during a rolling cycle is the XZ-plane. In the following simulations, the compu-
tation of the alternating shear stress, Tyjrernaring, and of the mean shear stress, Tpean, Will
use the shear stress in the XZ-plane, T,;.
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4. Damage model for Rolling Contact Fatigue

The effect of the inclusion on the stress field is decreasing with the distance from
its center. Therefore the computation of the alternating shear stress and of the damage
evolution will be limited to a square REV with the inclusion in its center and a size
L =3 xdjy,. (see Fig. 4.9). Other authors studied line contact by periodically duplicated
the contact pressure solution in the Y-direction to simulate line contact on rough surfaces
[REN 09] and with periodically distributed inclusions [ZHO 16]. One should note that in
the present study, dimension of the contact in the Y-direction is more than 30 times the
size of a REV side length. Hence no duplicating technique is needed here. The alternating
shear stress, the absolute mean stress and the resulting delta stress after one rolling cycle
are represented in Fig. 4.10.

Figure 4.9: View of the REV around the spherical inclusion

The alternating shear stress in Fig. 4.10(a) shows high amplitude in four regions
around the inclusion and the absolute mean stress shows two maximum amplitude stress
at top left and bottom right of the inclusion (see Fig. 4.10(b)). The absolute mean stress
around the inclusion is influenced by the presence of surface traction (see Fig. 4.10(b)).

While the alternating shear is the more critical for butterfly formation, the mean shear
stress is influenced by surface traction and therefore is giving the butterfly propagation’s
direction. One can observe that the sum of these two components is showing two re-
gions with higher amplitude giving the direction of the wing formation as shown in Fig.
4.10(c). These results correlate well with the stress distribution found by Moghaddam et
al. [MOG 15b].

4.3.2 Wings initiation and propagation

Most of the previous numerical results of the literature have been done in 2D [ALL 10,
CER 15, MOG 15b] but the actual model is in 3D and allows to observe the propagation of
the butterfly wings around the inclusion in the same way as in [MOG 16b]. The formation
and growth of the wings around the inclusion is shown chronologically in Fig. 4.11. Each
red cuboid corresponds to a zone where the microstructural transformation happened and
an heterogeneity with a Young’s modulus £ = 0.9E is introduced. It can be noted that the
wings grow both in the planes XZ and XY.

The damage distribution is shown in different planes of the half-space parallel to the
rolling direction (see Fig. 4.12). It can be observed that the damage increases out of the
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Figure 4.10: Alternating shear Stress Tyjsernaring (@), absolute mean shear stress |Timean| (D)
and their summation At(c) in MPa during one load pass over a half-space in the plane
y=0.
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Figure 4.11: Chronological order of butterfly initiation and evolution in 3D with inclusion
depth z;;,c = 0.5a*.

106

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI045/these.pdf
© [T. Beyer], [2019], INSA Lyon, tous droits réservés



Results

plane of maximum alternating shear stress around the inclusion (see Fig. 4.12(d)). As
observed in Fig. 4.11 and Fig. 4.12, butterfly wings seem to propagate in a direction
transverse to the rolling direction. This phenomenon could explain some experimental
observation in the open literature of inclusion-less butterflies [LUN 10].

It should be noted that in the model proposed by Moghaddam et al. [MOG 16b], the
volume around the inclusion is discretized using a Voronoi tessellation technique. In the
semi-analytical solver, the volume is discretized in small cuboids to compute the stress
field. That is why the representation of the damage around the inclusion and the inclusion
itself demonstrates a non-smooth interface in Fig. 4.12. In the semi-analytical method,
the discretization size needs to be constant in the domain [POL 99] and its size is equal to
0.04a*. In the FE model of Moghaddam et al. [MOG 15b], four different mesh densities
are used and in the REV of the inclusion, the mesh size is equal to 0.008a*. The results
obtained are compared with both the experimental results of Takemura [TAK 01] and the
results of Moghaddam et al. [MOG 15a] in order to determine when butterflies wings
appear during the life of the bearings. Takemura studied fatigue life of bearings made of
AISI 52100 steel with more than 400 tests. He reported the life of bearings related to but-
terfly wings formation around oxide inclusions. Three different loadings corresponding
to a maximum Hertzian pressure of 2.0, 3.0 and 4.0 GPa are used to compare the butterfly
initiation life with the one in [MOG 15b, TAK 01]. The initiation life is taken when the
damage variable reaches for the first time the value D = 0.1 and plotted in Fig. 4.13.
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Figure 4.13: S-N curve for butterfly initiation comparing results from experimental data
[TAK 01], finite element [MOG 15a] and semi-analytical simulations.

When the maximum Hertzian pressure is increasing, the shear stress becomes larger in
the material and the number of cycles leading to initiation of butterfly wings is decreasing.
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Figure 4.12: Sectioning of the damage variable D around an inclusion at z;, = 0.5a*
in different planes parallel to the rolling direction. (a) Plane y=0 (b) Plane y=0.04a* (¢)
Plane y=0.08a" (d) Plane y=0.12a* (e) Plane y=0.16a* (f) Plane y=0.2a".
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It can be observed that the model closely matches the results of finite element simulation
and the experimental results for load around 2.0 GPa but is less conservative than the
numerical results of Moghaddam et al. [MOG 15b] for higher loads. This difference
could come from the difference in the discretization between the two simulations. A
larger discretization in the simulation results in computing the level of stress on a larger
volume of the solid in the semi-analytical method. Stress gradients are averaged in the
element volume. Thus the average stress field on the element volume is lower and leads
to a larger jump in the cycles and therefore to a larger initiation life as observed in Fig.
4.13. For all loadings, the results obtained with the semi-analytical results are in good
agreement with the experimental results of Takemura [TAK 01].

4.3.3 Effect of inclusion depth

The effect of the inclusion depth was investigated experimentally by Lund [LUN 10],
Grabulov [GRA 07] and Evans [EVA 13b]. Evans results were compared by Moghaddam
et al. [MOG 15b] using the damage FE model. They showed that for an inclusion close
to the surface (between 0.2a* and 0.5a™), the lower wing is more developed and for an
inclusion between 0.54* and 0.8a*, the upper wing is larger. However it should be recalled
that in their models it is assumed that the presence of the inclusion does not influence
the contact pressure distribution. This hypothesis does not hold when the inclusion is
close to the surface, i.e. when z;, < a* [LER 10, LER 11, LER 13, KOU 14b, KOU 14a,
KOU 15b, KOU 15a, AMU 16].

In the current study, five different inclusion depths have been investigated: 0.2a*,
0.3a*, 0.4a*, 0.5a* and 0.6a*. The results for the damage distribution shown in Fig. 4.14
are in good agreement with those of Moghaddam et al. [MOG 15b] and the 3D shape of
the wings around the different inclusions is shown in Fig. 4.15. For an inclusion stiffer
than the matrix and close to the contact surface (zj,c < 0.5a*) the lower wing is more
developed than the upper wing (see Fig. 4.14(a) and Fig. 4.14(b)). Moreover, it can
be noted that when an inclusion is located at 0.3a*, no upper wing is appearing during
the rolling cycles 4.15(a). For an inclusion at a depth larger than 0.54, the upper wing
is more developed (see Fig. 4.14(d)) and a third wing is appearing on the top of the
inclusion. It comes from the fact that the effect of surface traction decreases when the
inclusion’s depth becomes larger. Thus the alternating shear stress becomes predominant
over the absolute mean stress, leading to the appearance of a second pair of wings (see
Fig. 4.14(d)). The depth of an inclusion determines how the wings expand and can lead
to cracks and damage of the roller bearings.

4.3.4 Effect of inclusion stiffness

Simulations have been performed with an inclusion softer than the matrix (E; = 10GPa)
and with the same parameters than presented in section 4.3.1. After one rolling cycle, the
delta shear stress At is found to be maximum at four localization around the inclusion (see
Fig. 4.16) but obtained results show that no damage propagation in the form of butterfly
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4. Damage model for Rolling Contact Fatigue

(@) (b)

(©) (d)

Figure 4.14: Damage variable D in the plane y = 0 with inclusion depth (a) z;, = 0.3a*
(b) Zine = 0.4a™ (¢) zZjne = 0.5a* (d) zine = 0.6a*. The inclusion considered is 1.5 times
stiffer than the matrix.
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Figure 4.15: Butterfly wings around a spherical inclusion with inclusion depth (a) zj,c =
0.3a* (b) zinc = 0.4a* (¢) zine = 0.5a* (d) zine = 0.6a*. The inclusion considered is 1.5

times stiffer than the matrix.
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4. Damage model for Rolling Contact Fatigue

wings is observed with the model. In fact, the presence of a soft inclusion in the matrix
is decreasing the stress in the region around the inclusion while a high stress gradient
is appearing at the interface between the inclusion and the matrix. Hence, a debonding
phenomenon may occur at this location, not taken into account in the current model.

1000
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200
02 -0. 0 01 02
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Figure 4.16: Delta shear stress At in MPa in the plane y = 0 with a very soft inclusion
E; = 10GPa.

4.3.5 Effect of butterfly initiation on contact pressure

One of the main differences between the FEM simulation proposed by Moghaddam et
al. [MOG 16b] and the semi-analytical solver proposed here is the coupling between
the contact solver and the heterogeneous half-space. In the model of Moghaddam, a
Hertzian contact pressure is imposed as an input of the simulation and no effect of the
inclusion nor the damage of the material is affecting the contact solution. Leroux et al.
[LER 10, LER 11, LER 13] and Koumi et al. [KOU 14b, KOU 14a, KOU 15a, KOU 15b]
have shown that the contact pressure distribution may be significantly modified by the
presence of inhomogeneities close to the surface (z;,c < a*), which subsequently affects
the subsurface stress distribution (see Fig. 4.8 and Fig. 4.17).

In order to highlight the effect of the presence of an inclusion on the contact pressure,
simulations have been realized with an inclusion very close to the contact surface (zj,c =
0.2a*) and with two different Young’s modulus. One can define 7y as the ratio between the
inclusion and the matrix Young’s moduli. A hard inclusion with y= 1.5 as in section 4.3.1
is compared to a soft inclusion with y = 0.05. Contact pressure when the contact load is
just over the inclusion is plotted for both inclusion ratio in Fig. 4.17. In presence of a hard
inclusion, a peak of pressure is observed. The maximum contact pressure is around 10%
higher than the Hertzian pressure. With a soft inclusion, a local drop of contact pressure
of almost 50% is observed. Influence of the depth of the inclusion on the contact pressure
is also observed in Fig. 4.18. In the case studied here, it must be noted that inclusions are
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really small compared to the contact half width (d;,. = 0.16a*) and the contact pressure
is affected only when the inclusion is close to the contact surface.
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Figure 4.17: Influence of the inclusion stiffness ratio y = E;/Ej at a depth zj,. = 0.2a*

on the contact pressure in the plane y = 0. Inclusion’s diameter is dj,. = 0.16a*.
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Figure 4.18: Comparison of the contact pressure with a spherical inclusion under the
center of the contact for different inclusion’s depth. Inclusion’s diameter is dj, = 0.16a*
and 1.5 times stiffer than the matrix (E;/Ey = 1.5).

During the formation of butterfly wings, the microstructural transformation appear-
ance modifies the response of the material when the loading is rolling over the domain.
The introduction of small heterogeneities around the inclusion modifies the stress field in
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4. Damage model for Rolling Contact Fatigue

the material. Computation have been performed with a inclusion depth of z;,. = 0.2a*.
Contact pressure over the damaged area is locally found to be slightly decreasing with
the formation of the wings (see Fig. 4.19). This is due to the fact that the metallurgical
transformation is associated with a local decrease of the Young modulus (by 10%. This
effect is localized due to the small area concerned but is increasing with the evolution of
the wings formation. As observed in section 4.3.3, only the lower wing is appearing in
this case and consequently a small asymmetry is appearing in the contact pressure (see
Fig. 4.19(a)). One can note that due to the small alteration of the material properties
in the wings (a 10% decrease), the effect on the contact pressure is limited compared to
the effect of the presence of a hard inclusion close to the surface. Finally, results show
that the coupling between the heterogeneous contact solver and the damage model is not
modifying the ability to predict butterfly formation with the damage model.
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Figure 4.19: (a) Comparison of the contact pressure with a spherical inclusion of diameter

dine = 0.16a* and 1.5 times stiffer than the matrix (E; = 300GPa) under the center of the

contact for a inclusion’s depth z;,. = 0.2a* before and after wing initiation. (b) Butterfly
wing appearance in the plane y = 0.
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4. Damage model for Rolling Contact Fatigue

4.4 Application to rolling contact fatigue on indented
surface.

The damage model studied in chapter 3 is applied to surface initiated damage during
rolling contact fatigue. In particular, this study focus on damage occurring around indent
as observed in Fig. 4.21 and called C-cracks. They often lead to the creation of a spall.

The rolling of a 3D sphere on an elastic damageable body with an artificial indent is
investigated. The radius of the sphere is R = 2.78 mm. The half-space and the sphere
are made of the same material with a Young’s modulus and Poisson’s ratio defined as
Eo = 210 GPa and v = 0.3, respectively. A normal load W = 25 N is applied and for a
homogeneous half-space, this load leads to a contact radius ¢* = 0.077 mm and a max-
imum contact pressure Py = 2027.5 GPa. The loading moves from left (x < 0) to right
(x > 0), maintaining the normal load constant, on a distance equal to 2a™ decomposed
into 21 time steps. The tangential displacement at each time step is equal to 0.1a*. The
value of the coefficient of friction is chosen to be u = 0.05 and the direction of surface
traction is opposite to the over rolling direction (see Fig. 4.20). Note that the computation
being elastic, only the direction of surface traction has an influence on the results. The
half-space is discretized in 291 x 121 x 15 computation points such that the gap between
points is 2Ax = 2Ay = 2Az = 0.085a*. The geometry of the dent is defined by a damped
cosinus (see Eq. 4.13) that described a dent of r = 0.065 mm radius and of d = 0.0032
mm depth. No residual stress or plasticity is considered here.

hi(x,y) = hi 35c0s |20 130 413
i(x,y) = hi(x,y) + cos{ ET} exp[ W] (4.13)
The presence of an indent on one of the contacting surface is resulting in peaks of
pressure around the indent when the load is moving over the surface (see Fig. 4.4). The
corresponding Von Mises stress show high gradient located on the side of the indent (Fig.
4.23). Thus, the equivalent strain is computed during each step of the loading cycle re-
sulting in an increment of damage at the end of every rolling cycle. The local Young
modulus of the half-space is modified accordingly. This method has been fully detailed

Trailing edge  Leading edge

Figure 4.20: Definition of Over Rolling Direction [MOR 15]
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Damage
Initiation

Figure 4.21: C-cracks around indent under rolling condition [MOR 15]
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Figure 4.22: Contact pressure on the indented surface
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Figure 4.23: Dimensionless von Mises stress field 6y /Py in the contact over an indent
(a) in the subsurface (b) on the top surface

in chapter 3. Equivalent strain when the load is over the indent is plotted in Fig. 4.24(a).
Damage parameters are chosen arbitrarily and are equal to the one in chapter 3. Damage
variable after 28 rolling cycles in the plane z = 0 (Fig. 4.24(b)) show a maximum on the
left part of the indent at the same spot than the crack initiation spot in Fig. 4.21. Finally,
the influence of damage on the contact pressure in the plane y = 0 is observed in Fig. 4.4
and results in a decreasing maximum pressure at the localization of the pressure peaks.
Finally, this section suggests a new application of the semi-analytical solver for surface
initiated damage in RCF. A good agreement is found between the maximum damage lo-
calization and crack initiation spot observed in the literature. Further study should focus
on the effect of geometry and plastic strain around real indent.
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Figure 4.24: (a) Equivalent strain at the end of the first rolling cycle. (b) Damage in plane
z = 0 after 28 rolling cycles over the indent.
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Figure 4.25: Contact pressure on indented surface without damage (blue line) or with
damage after N=28 cycles (green line) and compared with contact pressure without pres-
ence of the dent.
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4. Damage model for Rolling Contact Fatigue

4.5 Partial Conclusion

In this section, a numerical method has been proposed to model the effect of rolling con-
tact fatigue on butterfly wings formation around a non-metallic spherical inclusion. A
three-dimensional contact solver with an heterogeneous elastic damageable model is de-
veloped based on the Eshelby’s equivalent inclusion method. Cuboidal inclusions are
superimposed on the half space solution as an enrichment technique to represent the mi-
crostructural alteration around the spherical inclusion. The proposed method allows to
couple the contact problem, the presence of heterogeneous inclusions and a stress-based
damage evolution law. The computation cost of the damage evolution is improved through
the use of a jump-in-cycles algorithm. The shape of the wings in 3D has been investigated
for different inclusion depths. Moreover, the effects of the inclusion and of the wing prop-
agation on the contact pressure due to the existence of a coupling in the solver have been
highlighted. These effects represent one of the main advantage of the method, especially
when inclusions are close to the surface (i.e between the surface and the Hertzian depth).
A second section introduced an application of the method to surface initiation rolling
contact fatigue. Preliminary results show the capacity of the damage model to predict the
crack initiation spot around an artificial indent. The results obtained with both approach
correlate well with results in the open literature [MOG 15b, MOG 16b, MOR 15]. The
ability of modeling damage using the semi-analytical method has been emphasized. The
following chapter presents some experimental work to better understand the tribological
behavior of composite materials. The following results are needed to build a damage
model adapted to this kind of material.
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Chapter 5

Contact experiments on composite
materials

In this chapter, several experimental testings on a woven
composite material are presented with the aim of achieving a
better understanding of their tribological behavior. In a first
part, pin-on-disk tests between a composite disk and a steel

ball are conducted followed by fretting tests with the same
material configuration. In a second part, a few contact
experiments at the scale of the macroscopic structure of the
composite are presented. Results obtained in this chapter
show the different tribological behaviors of each material

constituent.
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