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Résumé en français : 

Dynamique des structures protéiques et son impact sur les comportements 

structuraux locaux 

Les structures protéiques sont de nature hautement dynamique contrairement à leur représentation dans les 

structures cristallines. Une composante majeure de la dynamique structurelle est la flexibilité des protéines 

inhérentes. L'objectif principal de cette thèse est de comprendre le rôle de la dynamique inhérente dans les 

structures protéiques et leur propagation. La flexibilité des protéines est analysée à différents niveaux de 

complexité structurelle, du niveau d'organisation primaire au niveau quaternaire. Chacun des cinq premiers 

chapitres traite un niveau différent d'organisation structurelle locale avec le premier chapitre traitant des 

structures secondaires classiques tandis que le second analyse la même chose en utilisant un alphabet 

structurel - les blocs protéiques. Le troisième chapitre se concentre sur l'impact d'événements 

physiologiques spéciaux comme les modifications post-traductionnelles et le désordre sur les transitions 

d'ordre sur la flexibilité des protéines. Ces trois chapitres indiquent une mise en œuvre dépendante du 

contexte de la flexibilité structurelle dans leur environnement local. Dans les chapitres suivants, des 

structures plus complexes sont prises en compte. Le chapitre 4 traite de l'intégrine αIIbβ3 impliquée dans des 

troubles génétiques rares. L'impact des mutations pathologiques sur la flexibilité locale est étudié dans deux 

domaines rigides de l'intégrine αIIbβ3 ectodomaine. La flexibilité inhérente dans ces domaines est montrée 

pour moduler l'impact des mutations vers les boucles. Le chapitre 5 traite de la modélisation structurelle et 

de la dynamique d'une structure protéique plus complexe du récepteur des chimiokines des antigènes du 

groupe Duffy incorporé dans un système de membrane mimétique érythrocytaire. Le modèle est soutenu 

par l'analyse phylogénétique la plus complète sur les récepteurs de chimiokines jusqu'à ce jour, comme 

expliqué dans le dernier chapitre de la thèse. 

 

Mots clés :  

Flexibilité de la structure des protéines, allostérie, Blocs Protéiques, fragments de double personnalité, 

modification post-translationnelle, Intégrine αIIbβ3, Thrombasthénie de Glanzmann, thrombocytopénie allo-

immune fœtale / néonatale, paludisme à Plasmodium vivax, récepteurs des chimiokines des antigènes du 

groupe Duffy, phylogénie moléculaire. 

  



 

 

Abstract in English: 

Dynamics of protein structures and its impact on local structural 

behaviors 

Protein structures are highly dynamic in nature contrary to their depiction in crystal structures. A major 

component of structural dynamics is the inherent protein flexibility. The prime objective of this thesis is to 

understand the role of the inherent dynamics in protein structures and its propagation. Protein flexibility is 

analyzed at various levels of structural complexity, from primary to quaternary levels of organization. Each 

of the first five chapters’ deal with a different level of local structural organization with first chapter dealing 

with classical secondary structures while the second one analysis the same using a structural alphabet - 

Protein Blocks. The third chapter focuses on the impact of special physiological events like post-

translational modifications and disorder to order transitions on protein flexibility. These three chapters 

indicate towards a context dependent implementation of structural flexibility in their local environment. In 

subsequent chapters, more complex structures are taken under investigation. Chapter 4 deals with integrin 

αIIbβ3 that is involved in rare genetic disorders. Impact of the pathological mutations on the local flexibility 

is studied in two rigid domains of integrin αIIbβ3 ectodomain. Inherent flexibility in these domains is shown 

to modulate the impact of mutations towards the loops. Chapter 5 deals with the structural modelling and 

dynamics of a more complex protein structure of Duffy Antigen Chemokine Receptor embedded in an 

erythrocyte mimic membrane system. The model is supported by the most comprehensive phylogenetic 

analysis on chemokine receptors till date as explained in the last chapter of the thesis. 

 

Keywords: 

Protein structural flexibility, Allostery, Protein Blocks, Dual personality fragments, Post-translational 

modifications, Integrin αIIbβ3, Glanzmann Thrombasthenia, Fetal/neonatal Alloimmune Thrombocytopenia, 

Plasmodium vivax malaria, Duffy Antigen Chemokine Receptors, Molecular phylogenetics 
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INTRODUCTION 

I.1 Proteins  

Protein are the mediators of information content stored in the DNA and perform myriad of 

functions inside the cell. From being signalling molecules [1] to enzymes [2] to cellular receptors 

[3] to forming cytoskeleton [4], they are involved in regulating the cellular function at every step. 

Genetic information stored in the DNA is transcribed by RNA polymerase into an mRNA 

transcript which is then used by ribosomes to translate a protein biopolymer. Such sequential 

transfer of information from DNA to RNA to Protein is known as the central dogma of molecular 

biology [5]. For a protein to mediate its function, it is required to fold correctly and therefore the 

relation between protein structure and function is quintessential [6].  

 

I.1.1 Protein sequence 

Proteins are made up of amino-acids attached to one another via peptide bonds [7]. Amino 

acids are the organic molecules containing amine (-NH2) and carboxyl (-COOH) groups as well 

as an R (side-chain) group which is specific to each amino acid (Fig I.1a). A presence of the amine 

and carboxyl group states that between pH 2.2 - 9.4, the amino acids contain a negative carboxylate 

as well as positive ammonium group, hence existing as Zwitterions. Based on the R group, the 

amino acids can be classified into polar/nonpolar or aliphatic/aromatic or charge/uncharged 

residues (Fig I.1b). Generally, the non-polar residues form the core of the protein structures while 

the polar residues are present on the surface to carry out important functions such as catalysis [8].  

 

  

https://paperpile.com/c/wsrnTw/92lU
https://paperpile.com/c/wsrnTw/tgBy
https://paperpile.com/c/wsrnTw/O4Tu
https://paperpile.com/c/wsrnTw/Ou23
https://paperpile.com/c/wsrnTw/uJJo
https://paperpile.com/c/wsrnTw/P0mz
https://paperpile.com/c/wsrnTw/M7qM
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Figure I.1. Amino acid structure in (a) shows the –NH2, R and –COOH groups and (b) shows the 

classification of amino acid based on the nature of R group. 

+Source internet, www.stanford.edu/tutorials/biochem/ 

 

I.1.2 Structure of proteins 

The structure of a protein is dictated by its sequence. Anfinsen, in early 70s conducted a 

very elegant experiment to prove this characteristic point [9]. The paradigm of sequence-structure-

function relationship holds true for majority of the proteins. It states that if two proteins have 

similar sequences, then it is highly likely that they have similar structures which in turn implies 

that they should have similar function [10,11]. This underlying principle has been extensively used 

to predict function for a given protein [12,13]. In order to classify protein structures, it is important 

to understand the recurring patterns in their 3D arrangement. Ramachandran et al used a model 

system of two-linked peptide units to identify those conformations which displayed no short-

contact between any two atoms [14]. The conformations were selected based on the accessible 

rotations around N-Cα and C-Cα single bonds called phi (Φ) and psi (Ψ) dihedral angles 

respectively (Fig I.2).  

https://paperpile.com/c/wsrnTw/EKbC
https://paperpile.com/c/wsrnTw/hGQC+Qh5L
https://paperpile.com/c/wsrnTw/Zp0V+IP2L
https://paperpile.com/c/wsrnTw/wK9t
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The values obtained for each accessible Φ and Ψ were plotted as what is famously known 

today as Ramachandran map. It was observed that the polypeptide backbone can take up certain 

conformations which are allowed according to the Ramachandran map confirming the occurrence 

of regular structures in proteins. 

 

Figure I.2. Polypeptide chain in fully extended conformation showing the Φ and Ψ dihedral 

angles. The different bond lengths are also shown. 

++Source internet: Nelson & Cox, Lehninger Principles of Biochemistry, 4th ed. (2004) 

 

I.2 Protein structure organisation 

Protein structures can be organised into four levels of structural hierarchy viz. primary, secondary, 

tertiary and quaternary (Fig I.3).  

I.2.1 Primary structure 

An organisation of amino-acids in a linear fashion, next to one another, depicts the primary 

structure of the protein (Fig I.3). Sequential arrangement of amino acids in a polypeptide chain 

refers to its primary structure. A protein generally adopts this conformation during the translation 

process, when the peptide is being polymerized from the ‘P’ site of the ribosome. 

I.2.2 Secondary structure 

The second level of structural organisation in a protein is defined by secondary structures and is 

governed by a highly regular, local sub-structural arrangement of polypeptide backbone. 

Traditionally, these include α-helices and β-sheets (Fig I.3) which are identified by a fixed intra  
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Figure I.3: Levels of protein structure organisation; Primary, Secondary, Tertiary and 

Quaternary structures. 
+Source internet, www.ucsf:com/lectures/molecularbiology/proteins 

 

and inter-chain hydrogen-bonding pattern. These secondary structures have a fixed geometry 

defined by their backbone dihedral angles (Φ and Ψ) and are known to occupy definite location in 

the Ramachandran map. Example, α-helices occupy the Φ, Ψ position -57, -47 while β-sheets 

typically occupy position -140, 130. Apart from α-helices, the most prominent helices occurring 

in the protein, 310 and π-helices are other types of helices that occur in proteins. These types of 3 

helices are distinguished by the H-bonding pattern between them. The intra-chain H-bond is 

formed between i and i+4 residue in the α-helix, between i and i+3 residue in the 310-helix and i 

and i+5 residue in the π-helix [15,16]. The Φ and Ψ values for these helices are given in Table I.1. 

Table I.1. Characteristics of different types of helices found in proteins.  

 

Helix type Phi (Φ) Psi (Ψ) Description 

α-helix (R) -57 -47 Right handed α-helix 

310-helix -49 -26 Right-handed 310-helix 

π-helix -57 -80 Right-handed π-helix  

 

Apart from these, proteins can have also kinks in helices which is often introduced due to 

a proline residue in the middle of α-helix [17]. Separately, polyproline helices and collagen triple 

https://paperpile.com/c/wsrnTw/96RW+bKYr
https://paperpile.com/c/wsrnTw/QIV4
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helix enjoy status of being special cases of secondary structure elements which occur at different 

Φ, Ψ values than the regular helices and sheets [18,19]. β-sheets are formed by arrangement of β-

strands in register with each other. They are also classified further into antiparallel and parallel β-

sheets depending upon the direction of the strands in register which in turn decides the geometry 

of H-bond. In an antiparallel arrangement, the consecutive β-strands are in opposite direction to 

each other such that the N-terminus of one strand is adjacent to the C-terminus of the next (Fig 

I.4a). This results in a planar H-bond arrangement which deems most suitable for the stability of 

the β-sheets. The backbone dihedral angles Φ and Ψ for antiparallel sheets are –140°, 135°. On the 

other hand, parallel β-sheets have the two strands running in same direction making the inter-strand 

H-bond slightly out-of-plane (Fig I.4b), hence lowering the stability of parallel sheets when 

compared to antiparallel. The dihedral angles Φ and Ψ are –120°, 115° for the parallel sheets. 

Strands are rarely long, maximum 15 residues in length and most β-sheets contain less than 6 

strands. Side chains from adjacent residues of a strand in a β-sheet are found on opposite sides of 

the sheet and do not interact with one another. Therefore, like α-helices, β-sheets have the potential 

for amphiphilicity with one face being polar and the other being non-polar. It has also been noted 

that parallel sheets are generally buried inside while antiparallel sheets have one side exposed to 

the solution [20].  

 

 

 

 

 

 

Figure I.4. The top and side views of (a) antiparallel β-sheet (b) parallel β-sheet. 

 

Like the kinks in helices, β-sheets are known to have β-bulges which are caused by 

interruption in the hydrogen bonding [21]. A β-bulge is a region between two consecutive β-type 

hydrogen bonds which includes two residues (positions 1 and 2) on one strand opposite a single 

https://paperpile.com/c/wsrnTw/OfYB+cuMC
https://paperpile.com/c/wsrnTw/Ea6e
https://paperpile.com/c/wsrnTw/rN5V
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residue (position x) on the other strand. Two common types of β –bulges are known viz. the 

“classical” β-bulge and the “G1” β-bulge. The main functional attribute of β-bulges is to 

accommodate for any single residue insertion or deletion within a β-structure [21]. 

Besides helices and sheets exist a third kind of structural element called turns which help 

in reversing the direction of a polypeptide chain. Turns are mainly found on the protein surface 

and hence contain polar or charged residues and were first identified in protein structures by 

Venkatachalam [22]. Turns are further classified into α-, β- and γ-turns, out of which β-turns are 

the most common ones consisting of a sequence of four residues They were defined as linked by 

a 1-4 (310-type) hydrogen bond between the -C=O of the first residue and the -NH of the fourth 

residue [20]. 

α-helices and β-sheets are composed of repetetive units of particular hydrogen bonding 

patterns as shown in Table I.1 and Fig. I.4. These repetetive units are classified based on their 

hydrogen bonding and length. A β-bridge is a singelton hydrogen bond observed in isolation with 

a length of 3 to 4 residues. When multiple bridges exist together, they form a β-sheet [21]. If such 

hydrogen bonding is missing but the local curvature around the Cα atoms has an angle of 70, it is 

classified as a bend. A bend is the only secondary structure element whose principle identification 

is not done by hydrogen bonding pattern [21]. The structural examples of bend and bridges can be 

seen in Fig. 1.5 

 I.2.3 Super secondary structures 

The secondary structural elements can come together in more than one ways to form some 

higher order structures. Their structural complexity is smaller than the tertiary structures and 

denote topological arrangement of helices, sheets and turns. These are called as super-secondary 

structures and usually occur as small yet functionally important structural motifs. These motifs are 

generally involved in either biological or structural functions. Some examples include the helix-

turn-helix motif which is known to bind DNA [23], the EF-hand motif known to bind Ca2+ [24] 

and β-hairpin motif which plays a structural role and connects two antiparallel β-strands [25]. 

Figure I.3 shows a β-hairpin motif in the secondary structure section. 

 

 

https://paperpile.com/c/wsrnTw/rN5V
https://paperpile.com/c/wsrnTw/fd9O
https://paperpile.com/c/wsrnTw/Ea6e
https://paperpile.com/c/wsrnTw/kPxB
https://paperpile.com/c/wsrnTw/wuXU
https://paperpile.com/c/wsrnTw/Jg35
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I.2.4 Tertiary and quaternary level of protein folding 

Tertiary structure denotes the 3D arrangement of the secondary structure elements to form 

a well-folded functional polypeptide (Fig I.3). Tertiary structure is generally defined for a single 

polypeptide chain where the interior of the folded protein is known as core and is formed by 

hydrophobic amino acids. The concept of protein domains can be defined at this level. Protein 

domains are the compact globular modules that are capable of folding and functioning 

independently of the rest of the protein. Within a protein, different domains can be identified e.g. 

ligand-binding domain, DNA-binding domain etc. 

In many cases, two or more tertiary structures join together to constitute the functional state 

of a protein. Such organisation of two or more tertiary structures is called quaternary structure of 

a protein (Fig I.3). Each polypeptide chain in the quaternary structure is termed as a subunit. In 

other words, quaternary structure can be a homomer, formed from the self-assembly of repeated 

copies of a single subunit. On the other hand, heteromeric complexes are composed of multiple 

distinct protein subunits, usually encoded by different genes [26]. Classical example of proteins 

with similar structure, but one fully functional in tertiary state and the other in quaternary is 

Myoglobin and Haemoglobin where the former is functional as a single chain while the latter 

requires association of 4 chains to form a functional molecule [27]. 

 

I.3 Structural and functional classification of proteins 

Proteins can be classified into various groups depending upon sequence or structural similarity. 

The classification of proteins becomes important to propose function for a novel protein. One of 

the ways to classify proteins is to group them into families and superfamilies. A protein family 

consists of a set of proteins that are evolutionarily related by virtue of similarities in sequence or 

structure and function. The families can be arranged into hierarchy where the proteins having a 

common ancestor are grouped into smaller subgroups, indicating more closely related members, 

called subfamilies. A superfamily consists of different families of proteins where the members 

within the superfamily are distantly related [28]. A schema of classifying proteins into families is 

shown in Figure I.5. 

 

https://paperpile.com/c/wsrnTw/WxK2
https://paperpile.com/c/wsrnTw/HXHp
https://paperpile.com/c/wsrnTw/8bWC
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Figure I.5: A hypothetical protein family classification showing Family, Superfamily and 

Subfamily level hierarchy.  
+Source internet. www.ebi.ac.uk 

 

Proteins are grouped into families depending upon similarities in their functional regions, 

commonly termed as domain. Two classification schemes, one based on similarities between 

domain sequence and the other based on similarities between domain structures are available. 

These are Pfam (http://pfam.xfam.org) domain definitions and the SCOP 

(http://scop.berkeley.edu/) domain definitions. 

According to SCOP [29], the protein structures can be classified into following categories 

depending upon similarities between protein domains:  

a) Domain: A part of a protein. For simple proteins, it can be the entire protein  

b) Species: The domains in "protein domains" are grouped according to species name  

c) Protein domain: Grouping together similar sequences having essentially the same 

functions 

d) Family: It contain proteins with similar sequences signifying homology but typically 

distinct functions  

e) Superfamily: Proteins in a family are grouped together which have at least a distant 

common ancestor 

f) Fold: It groups structurally similar superfamilies 

g) Class: Grouping the protein structures mainly on secondary structure content and 

organization. 

https://paperpile.com/c/wsrnTw/e6mA
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Four classes are defined in SCOP - domains containing all α-helices (a.*), domains containing all 

β-sheets (b.*), domains containing α/β (c.*) and domains containing α+β (mainly segregated, 

represented as superfamily d.*). SCOP classification also goes beyond ‘c.*’ uptil ‘g.*’ containing 

different categories of transmembrane proteins. *denotes the sub-family structure after the 

superfamily a, b, c, d, e, f, and g. 

 

I.4 Protein types based on cellular environment 

Protein structures have to correctly fold to perform correct function. Depending on the nature of 

cellular environment and functional requirements proteins can be either globular, fibrous or 

membrane proteins.  

 

I.4.1 Globular proteins  

Globular proteins are those polypeptide chains that fold into a compact shape. They are the 

most common protein types. These proteins have a well-defined hydrophobic core such that the 

apolar residues face towards protein interior while the polar residues face outwards. Functionally 

these proteins can be enzymes, regulatory proteins, messengers, and transporters etc. Many 

different folds are associated with globular proteins.  

 

I.4.2 Fibrous proteins 

On the other hand, fibrous proteins are generally elongated and are mostly involved in 

cellular support and structural functions. They are more stable than globular proteins. Some very 

well characterized fibrous proteins include collagen, actin, myosin, and keratin etc. 

 

I.4.3 Membrane proteins 

As the name suggests, membrane proteins are the ones that interact with phospholipid 

membrane. They can be integral membrane proteins which can be permanently attached to the 

membrane or peripheral membrane proteins which are temporarily attached to the lipid bilayer 
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[30]. The integral membrane proteins are transmembrane proteins which span across the 

membranes. It can either be single pass (passing the membrane only once) or multi-pass membrane 

(passing the membrane more than once) protein. They function mostly as membrane receptors, 

transport channels, Ion channels, and cell-adhesion and aggregation molecules. Membrane 

proteins form a separate class in SCOP (e.* to g.*). 

An example of globular protein, membrane protein and fibrous protein each is shown in Figure 

I.6. 

 

Figure I.6: Examples of (a) globular protein – myoglobin (PBDid- 1vxc) (b) membrane protein – 

DARC dimer embedded in membrane (modelled in chapter 5) (c) fibrous protein – collagen triple 

helix (PBDid- 1bkv) 

+Source internet, www.rcsb.org/ 

I.5 Experimental determination of protein structure 

Coordinates for 139717 structures have been deposited in the protein data bank (PDB) as of April 

29, 2018. Three main experimental methods exist to determine the structure of a protein. These 

https://paperpile.com/c/wsrnTw/gJBg


 

11 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

are X-ray crystallography, nuclear magnetic resonance (NMR) Spectroscopy and cryo-electron 

microscopy (cryoEM). Out of these, X-ray crystallography has been the method of choice for 

solving majority of the structures. Though, in the recent years, cryoEM is becoming a popular 

method to solve the protein structures, especially macromolecular assemblies.  

 

I.5.1 X-ray Crystallography 

X-ray crystallography is a technique used to determine the atomic structure of a protein. 

The technique itself is more than a 100 years old but became a popular method of choice for protein 

structure determination since 1950s when Sir John Kendrew first solved the structure of sperm 

whale myoglobin [31]. Since then, 123230 structures solved by crystallography have been 

deposited in PDB so far. Following structure determination of the lysozyme from bacteriophage 

T4 (T4 lysozyme) [32], it became a prototype for the study of protein folding and thermodynamics 

[33]. 

Briefly, crystallography requires protein crystallisation – a process of forming protein 

crystals. A unit cell is the crystal repeating unit which defines the smallest group of atoms which 

has the overall symmetry of a crystal, and from which the entire lattice can be built up by repetition 

in three dimensions. The protein atoms systematically arrange themselves in three dimension in a 

unit cell. The protein crystal is then exposed to X-rays causing diffraction according to the Bragg’s 

law; which states that a constructive interference happens when the condition ‘nλ=2dsinθ’ is 

satisfied, where d is the distance between two planes, θ is the angle of incidence and λ is the 

wavelength of X-ray beam (Fig I.7). 

Figure I.7. Pictorial representation of Bragg’s law. 

+Source internet, www.wikipedia.org/braggslaw/ 

https://paperpile.com/c/wsrnTw/Psry
https://paperpile.com/c/wsrnTw/qL9f
https://paperpile.com/c/wsrnTw/el8Z
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A three-dimensional picture of the electron density within the crystal is produced by 

measuring the angles and intensities of these diffracted beams. The main challenge in generating 

the electron density from the diffraction pattern is deciphering the phases which are lost while 

collecting the diffraction data. This is the notorious phase problem in crystallography, which is the 

problem of loss of information concerning the phase that can occur when making a physical 

measurement [34,35]. The phases in crystallography can be obtained by various methods such as 

molecular replacement (MR), multi-wavelength anomalous diffraction (MAD), multiple 

isomorphous replacement (MIR) etc. Once the electron density is obtained, the mean positions of 

the atoms in the crystal as well as the extent of disorder in the structure can be determined. A flow 

chart for X-ray crystallography is shown in Figure I.8. 

Figure I.8. Flowchart showing workflow of X-ray crystallography. A crystal is bombarded with 

X-rays to obtain a diffraction pattern. The pattern is then used to generate an electron density map 

into which atoms are fitted, sometimes based on best guess. 

+Source internet, www.stanford.edu/tutorials/biophysics/ 

 

  

 

https://paperpile.com/c/wsrnTw/w0PX+yHCk
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I.5.1.1 Crystal packing defects  

Besides, the uncertainty value induced by phase problem there lies another concern 

with the X-ray technique- The packing of the structure in the crystal. [36]. Although X-ray 

crystallography gives detailed atomic information about the structure, all the interactions 

observed in the packed crystals may not be biologically relevant. Many of them may be an 

artifact of crystal packing and may not be observed in solution. Differentiating the true 

interactions from such non-specific interaction may become a daunting task [37,38]. An 

analysis of general interface properties has revealed some features to distinguish specific 

vs non-specific interactions within crystals [39,40]. These properties include interface area, 

composition of the interface, spatial distribution of the interface residues, secondary 

structure, core interface conservation and the space group to which they belong. A recent 

study has shown that many of these properties are indistinguishable for the specific and 

non-specific interactions [41] and hence one has to be cautious while analysing protein-

protein contacts obtained from the crystal structures. 

 

I.5.2 Nuclear Magnetic Resonance- NMR 

NMR is the second most common method to determine protein structures. Most NMR 

structures consist of a single type of polypeptide chain and a majority of the structures solved using 

NMR are monomers [42]. This is because smaller proteins are easily characterized using NMR 

than the larger proteins and hence the proteins that tend to exist as huge oligomers are not amenable 

to structure determination using NMR. It has been shown that since 2005, the number of structures 

determined using NMR in PDB has sharply decreased showing a fall in the popularity of the 

method [42]. Even though NMR spectroscopy is usually limited to proteins smaller than 35 kDa, 

it is often the only method to study the conformational heterogeneity and intrinsically disordered 

nature of proteins. 

NMR exploits the quantum mechanical properties of the central core ("nucleus") of the 

atom. These properties depend on the local environment of the molecules and their measurement 

provides a map of how the atoms are chemically linked, how close are they in space, and how 

rapidly they move with respect to each other. Principle behind obtaining NMR spectra is that each 

https://paperpile.com/c/wsrnTw/nJKf
https://paperpile.com/c/wsrnTw/ox3U+fcQe
https://paperpile.com/c/wsrnTw/EKAg+VnJD
https://paperpile.com/c/wsrnTw/E2br
https://paperpile.com/c/wsrnTw/BLbb
https://paperpile.com/c/wsrnTw/BLbb
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distinct nucleus in a protein experiences a distinct electronic environment and thus has a distinct 

chemical shift by which it can be recognized. A resonance assignment is obtained for the protein 

to find out the chemical shift corresponding to each atom. To perform structure calculations, a 

number of experimentally determined restraints are generated like distance restraints and angle 

restraints. These restraints are used as an input to generate multiple structures satisfying these 

restraints. Hence, NMR generates an ensemble of structures while X-ray crystallography provides 

one structure which generally is a space and time-averaged structural snapshot. 

 

I.5.3 Cryo-electron Microscopy 

Though X-ray crystallography is considered as the gold standard for providing atomic 

resolution structures, it suffers from the drawback of providing a static snapshot which may be far 

from the physiological structure. Also, many proteins resist crystal formation and a lot of time and 

effort has to be invested to solve the structure using X-ray crystallography. NMR on the other 

hand, though being capable of elucidating dynamics information is limited by the size 

considerations. Hence, cryoEM can provide solutions to these limitations such that it can be used 

for bigger protein complexes and can image complexes in their physiological environment [43]. 

Although the use of cryoEM technique has been limited to medium to low (5-15 Å) resolution 

range yet structures with resolution better that 3 Å are getting published thus making the technique 

tractable [44]. CryoEM is becoming the most sought after technique to extract structural 

information about the macromolecular complexes not amenable to either X-ray or NMR. After 

procuring a density map, the most important task is to obtain a high confident pseudo-atomic model 

for the same. The structures to be fitted into the electron density map can either be the crystal 

structures of a subcomponent or can be a homology modeled structure. If the density map 

resolution is better than 4 Å, de-novo modeling can be used to calculate the pseudo-atomic model. 

CryoEM is a type of Transmission Electron Microscopy (TEM), in which the sample is 

studied at cryogenic temperatures. The information obtained is invaluable in understanding the 

macromolecular assembly at physiological conditions. CryoEM techniques can be classified into 

three types: a) Electron Crystallography, b) Single particle analysis, and c) Cryo-electron 

tomography. Out of these single-particle analysis or Single particle cryoEM is emerging as a 

technique of choice to determine 3D structure of proteins with an increasingly advancing electron 

https://paperpile.com/c/wsrnTw/Vh6B
https://paperpile.com/c/wsrnTw/cOPK
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beams, detectors and ability to analyse isolated complexes (“Single particles”) under native 

conditions [45]. Its emergence can be judged from the number of EM maps being released every 

year as well as the improvement in their resolution ranges (Fig I.9).  

 

Figure I.9. Statistics of EM maps and their resolution since 2013. (a) shows the frequency of 

occurrence of various resolutions of EM maps and (b) shows the best and average resolutions over 

the years. The worst resolution has been clipped to 30Å for this plot. 

+Source internet, www.emdb.org/ 

 

The basic principle behind electron microscopy is the deflection of electrons in an 

electromagnetic field. An EM consists of an electron source, a series of lenses, and an image 

detecting system, which currently are high-end digital cameras [46]. As the electrons from the 

source hit the condenser lens, they are converged and fall on the object as a parallel beam. The 

aperture at the back focal plane of objective lens filters out the electrons scattered at very high 

angles, hence preventing them from reaching the image plane. Image magnification is provided by 

the objective lens and the projector lens. Once a good quality image is obtained, next task is to 

generate 3D reconstruction of the 2D projections of the objects using the phase information present 

in the image itself. The next important task after obtaining 3D electron density map is to calculate 

the pseudo-atomic model for the structure in question. Depending on the resolution, this can be 

achieved either through de-novo model building or through rigid body fitting or flexible fitting of 

https://paperpile.com/c/wsrnTw/Bp69
https://paperpile.com/c/wsrnTw/siM6
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predicted models / structures from other techniques. A simplified view of the electron microscope 

is given in Figure I.10.  

 

Figure I.10: A simplified view of the electron microscope. 

 +Taken from [46] 

 

I.5.4 Circular Dichroism spectroscopy 

Another popular technique to determine the secondary structure content of the proteins is 

the Circular Dichroism (CD) spectroscopy which is based on the principle of the differential 

absorption of the left and right-handed circular polarised light. This technique is a routine to 

precisely estimate the secondary structure content of the protein and confirm their proper folding 

under the experimental setup. A typical CD spectral profile for different secondary structure looks 

like Figure I.11. 

 

https://paperpile.com/c/wsrnTw/siM6
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Figure I.11. A sample CD-spectra for a protein. The profiles for different secondary structures 

are shown in different colours. 

+Source internet, www.fbs.leeds.ac.uk/facilities/cd/ 

 

I.6 Computational Structural Biology: In silico techniques for protein structures 

It takes a considerable amount of time and effort to experimentally determine the three-

dimensional structure of proteins using any of the above mentioned techniques. It sometimes takes 

from months to years to obtain a protein crystal which can successfully diffract. Though cryoEM 

circumvents the need of getting crystals, the technique is more amenable to the proteins with higher 

molecular weight. Moreover, the growth in structural space for proteins does not match up to the 

speed with which sequence space is growing (Fig I.12). 

Hence, it becomes increasingly important to resort to the computational methods to predict 

three-dimensional structure of a given protein. The history of theoretically predicting the structural 

elements dates back to 1970s when Chou and Fasman calculated the propensities of amino acids 

in α-helices, β-sheets and turns [47]. Since then various methods have been developed to predict 

the secondary structures from the sequence [48–50]. Protein secondary structure prediction refers 

to the prediction of the conformational state of each amino acid residue of a protein sequence as 

one of the three possible states, namely, helices, strands, or coils, denoted as H, E, and C, 

respectively.  

Another important application of computational methods is their ability to predict tertiary 

structure of proteins. Three main approaches are employed in computational 3D prediction are: 

homology modelling, threading, and ab-initio prediction. The first two are knowledge-based 

methods; they predict protein structures based on knowledge of existing protein structural 

https://paperpile.com/c/wsrnTw/g3bz
https://paperpile.com/c/wsrnTw/LHa0+37G9+9om2
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information in databases. Homology modelling builds an atomic model based on an experimentally 

determined structure that is closely related at the sequence level. Threading identifies proteins that 

are structurally similar, with or without detectable sequence similarities. The ab initio approach 

requires molecular simulations to predict structures based on physicochemical principles 

governing protein folding without the use of structural templates. There are meta-servers that 

combine fold recognition and homology modelling to model a structure based on multiple 

templates matching different folds.  

Figure I.12. Growth of sequence space vis-à-vis the structural space. (a) shows the number of 

sequences deposited in Uniprot since 1990 (Taken from Uniprot) (b) shows the number of 

structures deposited in PDB over the years  

+Source internet www.rcsb.org 

I.6.1 Secondary structure assignment 

Given their fundamental importance in protein structures, it is important to define and 

characterize secondary structure elements for a given protein structure. Various standard methods 

are available for this purpose. Several assignment methods can be used like, DSSP [51], STRIDE 

[52] and predefined libraries of secondary structure can also be used. 

I.6.1.1 DSSP – Define secondary structure of proteins 

The DSSP algorithm is a standard method for assigning secondary structure to the 

amino acids of a protein using the coordinates of the structure. The DSSP program was 

designed by Wolfgang Kabsch and Chris Sander. It identifies the intra-backbone hydrogen 

bonds of the protein using a purely electrostatic definition. A hydrogen bond is identified 

https://paperpile.com/c/wsrnTw/NU9Y
https://paperpile.com/c/wsrnTw/w4b4
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if E in the following equation is less than -0.5 kcal/mol. Based on the identified hydrogen 

bonds, eight types of secondary structure are assigned. These eight types are usually 

grouped into three larger classes: helix (G, H and I), strand (E and B) and loop (S, T, and 

C, where C sometimes is represented also as blank space).  

I.6.1.2 STRIDE - STRuctural Identification 

STRIDE is also a secondary structure assignment tool like DSSP but instead of 

using only the hydrogen bond potential, it also includes dihedral angle potentials to define 

secondary structures within a protein. Hence, its criteria for defining individual secondary 

structures are more complex than those of DSSP. The STRIDE energy function contains a 

hydrogen-bond term containing a Lennard-Jones-like 8-6 distance-dependent potential and 

two angular dependence factors reflecting the planarity of the optimized hydrogen bond 

geometry. The criteria for individual secondary structural elements, which are divided into 

the same groups as those reported by DSSP, also contain statistical probability values 

derived from empirical examinations of solved structures. There have been comparisons 

between DSSP and STRIDE since their inception. It has been shown than DSSP and 

STRIDE agree for 95% of the cases [53]. I should be noted that it has been shown than 

both DSSP and STRIDE under-represent π-helix [54]. 

 

I.6.2 Secondary structure prediction 

The prediction of secondary structures is based on the regular arrangement of amino acids 

in the secondary structures which are stabilized by hydrogen bonding patterns. The structural 

regularity serves the foundation for these prediction algorithms. Protein secondary structure 

prediction with high accuracy is not a trivial task. It has remained a very difficult problem for 

decades. Specifically, because protein secondary structure elements are context dependent. The 

formation of α-helices is determined by short-range interactions, whereas the formation of β-

strands is strongly influenced by long-range interactions. Prediction for long-range interactions is 

theoretically difficult. Albeit, after more than three decades of effort, prediction accuracies have 

only been improved from about 50% to about 82%. There are many methods available for 

secondary structure prediction. Out of these PSIPRED is the most popular one [49].  

https://paperpile.com/c/wsrnTw/iBc4
https://paperpile.com/c/wsrnTw/ho9X
https://paperpile.com/c/wsrnTw/37G9
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PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) is a web-based program that predicts protein 

secondary structures using a combination of evolutionary information and neural networks. 

PSIPRED incorporates two feed-forward neural networks which performs an analysis on output 

obtained from PSI-BLAST. A profile is extracted from the multiple sequence alignment generated 

from three rounds of the PSI-BLAST. This profile is then used as input for a neural network 

prediction. To achieve higher accuracy, a unique filtering algorithm is implemented to filter out 

unrelated PSI-BLAST hits during profile construction. A schematic of PSIPRED is shown in 

Figure I.13. 

 

Figure I.13. Workflow of PSIPRED.  

+Taken from [42]. 

 

I.6.3 Protein Blocks: A comprehensive structural alphabet 

A structural alphabet (SA) is a library of N structural prototypes (the letters). Each 

prototype is representative of a backbone local structure of l-residues length. The combination of 

those structural prototypes is assumed to approximate any given protein structure. One of the most 

developed and comprehensive SA is the Protein Blocks (PBs) [53].  

https://www.frontiersin.org/articles/10.3389/fmolb.2015.00020/full#B27
https://www.frontiersin.org/articles/10.3389/fmolb.2015.00020/full#B27
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PBs are a structural alphabet composed of a set of 16 local prototypes each of 5 residues 

length, labeled from a to p (see Fig I.14 Bottom). They are described as series of eight Φ, Ψ 

dihedral angles. An unsupervised classifier similar to Kohonen Maps [55,56] and Hidden Markov 

Models [57] was used to define PBs. Therefore, they approximate all the local regions of a protein 

structure with an average RMSD of 0.41 Å [58]. The PBs m and d can be roughly described as 

prototypes for the central region of α-helix and β-strand, respectively. PBs a-c primarily represent 

the N-cap of β-strand while e and f correspond to C-caps; PBs g - j are specific to coils, PBs k and 

l correspond to N cap of α-helix while PBs n - p to C-cap. 

 

Figure I.14: Protein blocks. Top row depicts the 5 residue long prototype. Bottom row shows the 

16 protein blocks along with their respective secondary structure approximations. 

+Adapted from [53] and [58].  

PB Assignment: For each “nth” position of the structure, 8 dihedrals ψ (n − 2), φ (n − 1), ψ 

(n − 1), φ (n), ψ (n), φ (n + 1), ψ (n + 1), φ (n + 2) are compared to the dihedrals of each of the 16 

PBs. The comparison is made by a least squares approach to match the RMSDA criteria (Root 

mean square Deviation on Angular Values) [59].  

https://paperpile.com/c/wsrnTw/Zdyx+Dt75
https://paperpile.com/c/wsrnTw/TPyw
https://paperpile.com/c/wsrnTw/R6VG
https://paperpile.com/c/wsrnTw/NZEV
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               𝑅𝑀𝑆𝐷𝐴 (𝑉1, 𝑉2)  =  √
1

2(𝑀−1)
 ∑𝑀−1

𝑖=1  [𝜓𝑖(𝑉1) − 𝜓𝑖(𝑉2)]2 +  [𝜙𝑖+1(𝑉1) − 𝜙𝑖+1(𝑉2)]2  

 

where, V1 is the 8 dihedrals vector extracted from the 5 residues long window; V2 is the 8 

dihedrals vector corresponding to the compared PBs. PB, which gets lowest RMSDA is chosen as 

the representing conformation observed in the window. 

Applications: PBs have been used to address various problems including, protein 

superimposition [60,61], general analyses of flexibility [62,63] and prediction of structure and 

flexibility [64–67] and protein binding sites, and structural analysis of β-bulges [68]. PBs can be 

assigned to a given structure or an ensemble with valid coordinates using PBxplore [69]. The 

structural analysis of different structural dataset is assisted by two statistical measures derived 

from the assigned PBs. 

Neq: Quantification of the structural flexibility at a given position n, can be obtained by 

calculating the average number of PBs across a set of conformers at position n. This is called the 

“equivalent number” of PBs or Neq. Neq is based on a statistical metric similar to Shannon entropy 

[53]. It is calculated as: 

𝑁𝑒𝑞 =  𝑒𝑥𝑝 (− ∑

16

𝑖=1

𝑓𝑥. 𝑙𝑛(𝑓𝑥)) 

where fx is the frequency of PB ‘x’. The value of x can be any PB from a to p. An Neq 

value of 1 will indicate that only one type of PB is observed at position n while Neq value of 16 

will denote a random and propotional (1:16) distribution. 

 

I.6.4 Tertiary structure prediction 

The tertiary structure of the proteins is predicted either using ab-initio methods or based 

on a template identified through homology. The latter is the more common, reliable, less time-

consuming method and is based on the paradigm that similar sequences have similar structures 

and hence similar functions [10], [11]. Homology modelling starts with identification of a suitable 

template which shares homologous relationship with the sequence of interest. Using elegant 

https://paperpile.com/c/wsrnTw/6PsS+MRhd
https://paperpile.com/c/wsrnTw/chdc+6hqd
https://paperpile.com/c/wsrnTw/B3Dj+FPAL+2OWX+rGVo
https://paperpile.com/c/wsrnTw/AVoy
https://paperpile.com/c/wsrnTw/g1vn
https://paperpile.com/c/wsrnTw/iBc4
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computational algorithms, the coordinates of the backbone of the template are copied to the query 

and the side chains are optimised. Modeller is the most popular program to perform molecular 

modelling and is described in brief herein [70]. 

I.6.4.1 Modeller 

Modeller is a computer program that models three-dimensional structures of 

proteins and their assemblies by satisfaction of spatial restraints (Fig I.15). The initial step 

before starting the modelling procedure is to identify a suitable template. This forms the 

foundation for rest of the modelling process. The template selection involves searching for 

a homologous structure in PDB using either BLAST [71] or any other fold recognition tool 

such as Phyre2 [72] or HHpred [73]. Generally, the structures with sequence identity 

greater than 30% are considered safely as homologous to the query protein. Once the 

structure of suitable confidence is identified as a template, an alignment is performed 

between the query and the template. This can be achieved either using scripts from 

Modeller or using a suitable alignment tool. This alignment, in PIR format, is the input to 

the Modeller program. From its alignment with template 3D structures, Cα- Cα distances, 

hydrogen bonds and dihedral angle restraints for the target sequence are calculated by 

Modeller. The form of these restraints has been obtained from a systematic statistical 

analysis of the relationships between many pairs of homologous structures [74]. The spatial 

restraints are obtained empirically, from a database of protein structure alignments. These 

restraints are expressed as probability density functions (pdfs) for the features to be 

restrained. For example, the probabilities for main-chain conformation of an equivalent 

residue in a related protein are expressed as a function of the local similarity between the 

two sequences.  A smoothening procedure has been employed in the derivation of these 

relationships to minimise the problem of sparse database. Next, these spatial restraints and 

Charmm energy terms enforcing proper stereochemistry are combined into an objective 

function [75]. The output is a 3D model for the target sequence containing all main-chain 

and side-chain non-hydrogen atoms which ensures a minimal deviation from the input 

restraints. The final model is then optimised using variable target function methods 

employing methods of conjugate gradients and molecular dynamics with simulated 

annealing. Several slightly different models can be calculated by varying the initial 

https://paperpile.com/c/wsrnTw/6XK2
https://paperpile.com/c/wsrnTw/oUfV
https://paperpile.com/c/wsrnTw/knR7
https://paperpile.com/c/wsrnTw/TDPn
https://paperpile.com/c/wsrnTw/qmPF
https://paperpile.com/c/wsrnTw/valf
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structure. The variability among these models can be used to estimate the errors in the 

corresponding regions of the fold. Also, the loops are further refined using different 

protocols for loop modelling. Side chains are further optimised using the rotamer libraries, 

which are favoured side chain torsion angles extracted from known protein crystal 

structures. 

 

Figure I.15. Workflow of Modeller. The target sequence is aligned to the template, spatial 

restraints are obtained and then satisfied to obtain a 3D model. 

+Taken from Modeller v9.14 tutorial pages 

 

I.6.5 Accuracy of predicted models 

The accuracy of comparative models depends on the extent of the sequence identity 

between the query and the template [76]. Usually, errors are expected to be more in the structurally 

variable region than in the structurally conserved region. The CASP (Critical Assessment of 

https://paperpile.com/c/wsrnTw/MqtS
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protein structure prediction) assessments happen every two years to test the ability of different 

structure prediction methods to accurately model the query proteins. It has generally been seen 

that many of the models show higher RMSD to the true native structure than the one selected by a 

structural alignment to be the best available template.  

 

I.6.6 Dynamic nature of protein structures 

Proteins may exist in multiple conformations and are always in motion under cellular 

environment. The paradigm of sequence-structure-function also includes dynamics before function 

these days. Thus redefining the paradigm as; proteins with similar sequences share similar 

structures which in turn share similar dynamics and hence give rise to similar functions. While 

experimental techniques such as NMR and cryoEM help understanding the underlying dynamics 

behind these proteins, computational methods also provide insights into the same. Due to their 

high efficiency, molecular dynamics simulation and normal mode analysis are the methods of 

choice in majority of the cases to understand the dynamics associated with a protein in a simulated 

cellular environment. 

 

I.6.7 Molecular dynamics 

Molecular dynamics (MD) is a computer simulation method for studying the physical 

movements of atoms and molecules. In molecular dynamics, successive configurations of the 

system are generated by integrating Newton's laws of motion. The result is a trajectory that 

specifies how the positions and velocities of the particles in the system vary as a function of time. 

The trajectory is obtained by solving the differential equations in the form of Newton's second law 

(F = ma): 

𝛿2𝑥𝑖 

𝛿𝑡2
=

𝐹𝑥

𝑚𝑖
 

This equation describes the motion of a particle of mass m; along one coordinate (x,) with 

Fx. being the force on the particle in that direction. MD simulation is based on an assumption that 
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system follows ergodicity which means that all accessible microstates are equally probable over a 

long period of time. 

Briefly, molecular dynamics simulation begins by defining the initial coordinates for the 

system of interest. A small time-step Δt is chosen such that the next coordinates can be evolved. 

Next atom positions are predicted and the velocities are updated. The forces are calculated for the 

new set of positions and the positions are further adjusted. Periodic boundary conditions are 

employed and then the next iteration follows. This procedure is repeated until the given time. Few 

concepts important for understanding the MD theory are described below. 

 

Force fields: In order to calculate the potential energy of the system, mathematical 

functional forms and parameters have been defined, called force fields. Potential energy is further 

used to calculate the forces on the atoms. The force field is a collection of equations and associated 

constants designed to reproduce molecular geometry and selected properties of tested structures. 

The parameters for energy functions have been derived from physical or chemical experiments or 

from quantum mechanical calculations. The equation for the calculation of potential energy in 

molecular mechanics include interaction terms from bonded and non-bonded interactions. The 

specific parameters for the interactions vary between force fields, but a general expression for total 

potential energy can be written as: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 + 𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 

Where 𝐸𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙  and 𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐸𝑣𝑎𝑛 𝑑𝑒𝑟 𝑤𝑎𝑎𝑙𝑠 

The bond and angle terms are modelled as quadratic energy functions and non-bonded terms are 

modelled as Lennard-Jones and Coulombs potential. The detailed energy function is calculated as: 

 

𝑈(𝑅) =  ∑ 𝑘𝑖
𝑏𝑜𝑛𝑑(𝑟𝑖 − 𝑟0

𝑏𝑜𝑛𝑑𝑠

)2  + ∑ 𝑘𝑖
𝑎𝑛𝑔𝑙𝑒

(𝜃𝑖 − 𝜃0

𝑎𝑛𝑔𝑙𝑒𝑠

)2 +  ∑ 𝑘𝑖
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

[ 1

+ cos(𝑛𝑖𝜙𝑖 + 𝛿𝑖)] +  ∑ ∑ 4𝜀𝑖𝑗[(
𝜎𝑖𝑗

𝑟𝑖𝑗
)12 − (

𝜎𝑖𝑗

𝑟𝑖𝑗
)6] 

𝑗≠𝑖

+ ∑ ∑
𝑞𝑖𝑞𝑗

𝜀𝑟𝑖𝑗
𝑗≠𝑖𝑖𝑖

 

 

            Non-bonded 



 

27 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

Different force-fields are designed for different purposes. e.g. AMBER [77] force-field is used 

majorly for simulating DNA and proteins. CHARMM [78] can be used for both small molecules 

and macromolecules. GROMOS is a general purpose force-field for the study of biomolecules 

[79]. 

Energy minimisation: Classical MD simulations try to explore all possible conformations 

of a protein in a given energy well assuming that the protein structure indeed lies at the energy 

minima. Crystal structures may not always be trapped in their minimum energy conformation 

while crystallisation. Hence, before proceeding with the simulations, it is mandatory to find 

minima for the protein structure. Mathematically, minima occur when the when the first derivative 

of potential is zero and when the second derivative is positive. There are two commonly use 

methods to perform energy minimization, steepest descent [80] and conjugate gradient [81]. 

Steepest descent is the simplest method to use for performing energy minimization. It follows the 

fastest decrease of the potential “U” opposite of the gradient. It is the fastest method from a poor 

starting geometry but can converge very slowly near energy minima. This is due to the fact that it 

can oscillate back and forth across a minimum. Conjugate gradient on the other hand, adds history 

to the steepest descent method to gather second derivative information and guides the search where 

the derivative determines the pathway.  

Solvation: Since the biomolecules have to be simulated in a cellular environment, the 

protein has to be solvated. Two types of solvation methods are available: Implicit solvation [82] 

and explicit solvation [83]. In implicit solvation model, the solvent is defined as a continuum of 

homogenous polarizable medium which possess properties equivalent to the solvent. While in an 

explicit solvent model, the coordinates for the solvent molecules are explicitly defined. This 

solvation method is more realistic and can give a true picture of interaction between the solute and 

solvent. The protein molecule is solvated in a box before performing an energy minimisation step 

and then the main MD run is performed. 

Periodic boundary conditions (PBC): In majority of the simulations, the simulation box 

should be large enough to circumvent the boundary artefacts. Such scenario can be avoided by 

employing the periodic boundary conditions, where one side of the simulation comes back from 

the opposite side, mimicking a bulk phase [84]. For PBCs, particles are enclosed in a box, and the 

box is replicated to infinity by rigid translation in all the three Cartesian directions, completely 

https://paperpile.com/c/wsrnTw/K5Vf
https://paperpile.com/c/wsrnTw/42er
https://paperpile.com/c/wsrnTw/uq7G
https://paperpile.com/c/wsrnTw/47JV
https://paperpile.com/c/wsrnTw/zZQr
https://paperpile.com/c/wsrnTw/uZHB
https://paperpile.com/c/wsrnTw/8Mx2
https://paperpile.com/c/wsrnTw/ODwB
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filling the space. The basic idea behind the PBC is that if an atom moves in the original simulation 

box, all its images move in a concerted manner by the same amount and in the same fashion. When 

PBCs are applied, there is a chance that the number of interacting pairs increase enormously. The 

reason is that there is an interaction not only interacts with other particles in the simulation box, 

but also with their images. Such a problem is avoided by choosing a finite range potential within 

the criteria of minimum image convention [84]. The essence of the minimum image criteria is that 

it allows only the nearest neighbors of particle images to interact. 

MD Ensembles: In molecular mechanics, the ensembles are the statistical entities that are 

used to represent the possible states of a system. Different ensembles utilised in MD simulation 

are canonical ensemble, isothermal-isobaric ensemble and microcanonical ensemble.  Canonical 

ensemble conserves the number of molecules (N), volume (V) and temperature (T) of the system, 

hence also called as NVT ensemble. The temperature is maintained through the association of a 

thermostat. In isothermal-isobaric ensemble, the number of molecules (N), pressure (P) and 

temperature (T) of a system is conserved, hence popularly known as NPT ensemble. In micro-

canonical ensemble, the system’s energy (E) is conserved along with number of molecules (N) and 

volume (V), hence called NVE ensemble. 

 

I.6.8 Normal mode analysis (NMA) 

Classical molecular dynamics simulations generally provide information on the dynamics 

happening at the μs time-scales which mostly includes the side chain motions or at most some loop 

motions if the energy barrier between the different states are within a difference of few KBT. 

Bigger conformational changes such as domain motions can be accessed using advance sampling 

techniques in MD, which requires more computational power and an expert level understanding 

of the field and parameters. In such a scenario, a simpler, yet powerful, network-based technique, 

normal mode analysis (NMA) can be used. NMA is purely a geometry-based approach where a 

protein is modelled as a network of mass and springs. Generally, the Cα atoms of a protein are 

defined as nodes and a spring is defined for the edges connecting these Cα atoms within a certain 

cut-off distance. The movement of each node is expressed in terms of squared fluctuations i.e. 

displacement of nodes from their mean positions. Collective motion of many such nodes in a 

certain direction defines the global motions which are biologically relevant and correspond to the 
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domain motions [85]. Such a simplified approach to study protein dynamics has been shown to 

successfully reproduce biologically relevant motions [86]. 

Two types of NMA can be implemented; Gaussian network model (GNM) or Anisotropic 

network model (ANM). In GNM, the squared fluctuations are assumed to be isotropic while in 

ANM the fluctuations are anisotropic. An adjacency matrix is diagonalized in GNM while in ANM 

a hessian matrix is diagonalized to calculate the Eigen vectors and Eigen values. These values 

correspond to the direction of motion in ANM. Hessian matrix consists of the double derivative of 

the hooks potential defined for the system.   

 

I.7 Biomolecular interactions 

Proteins seldom work in isolation. Multiple interactions within a cell viz. protein-protein, protein-

ligand and protein-DNA are key to proper functioning of a cell. Besides the experimental methods 

to study biomolecular interactions, various computational methods are also available. Two 

biomolecular entities can be computationally docked to study their binding modes. Protein can be 

docked with another protein using HADDOCK [87]. 

HADDOCK (High Ambiguity Driven biomolecular DOCKing) is an information-driven 

flexible docking approach for the modelling of biomolecular complexes [88]. Docking is defined 

as the modelling of the structure of a complex based on the known three-dimensional structures of 

its constituents. HADDOCK incorporates a wide variety of experimental and/or bioinformatics 

data to drive the modelling. This allows focusing the search to relevant portions of the interaction 

space using a more sophisticated treatment of conformational flexibility.  

AutoDock [89] is used to predict the binding mode of a protein with a ligand. It is a freely 

available, open-source software which practically is a suit for automatic docking tools. AutoDock 

has been widely-used and there are many examples of its successful application in the literature 

[90,91]. It is very fast, provides high quality predictions of ligand conformations, and good 

correlations between predicted inhibition constants and experimental ones. AutoDock has also 

been shown to be useful in blind docking, where the location of the binding site is not known. 

 

https://paperpile.com/c/wsrnTw/zWaK
https://paperpile.com/c/wsrnTw/BVhu
https://paperpile.com/c/wsrnTw/n8jo
https://paperpile.com/c/wsrnTw/P72n
https://paperpile.com/c/wsrnTw/mo0M
https://paperpile.com/c/wsrnTw/7VeB+7ch2
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I.8 Molecular phylogenetics 

Genetic changes due to mutations or recombination gets accumulated in each generation of an 

organism or population. In subsequent generations, these accumulations may exhibit phenotypic 

changes in the organism thus leading to its evolution. The rate of such genetic changes is 

fundamental to understand the evolution of a given species or taxonomic group. In molecular 

biology, the rate of change of particular biomolecules like, DNA (nucleotides), RNA (gene) or 

amino acids (protein) is of interest. The rate of accumulation of changes in these biomolecules 

studied along with the evolution of a species in tree of life is called Molecular phylogenetics. 

 I.8.1 Type of changes: In molecular biology mutations are caused by substitutions of 

nucleotide bases or amino acids. However, given the central dogma of molecular biology the 

substitutions in nucleic acids are fundamental. In DNA the substitutions are of two types: 

A) Transitions: a substitution of a purine by purine base or pyrimidine by a pyrimidine 

base.  A ↔ T or C ↔ G substitutions will classify as transitions [Figure I.16]. 

B) Transversions: a substitution of a purine base by a pyrimidine base is called 

transversion. (A or G) ↔ (C or T, or U in RNA) is termed as transversion. Such 

substitutions are less frequent than transitions [Figure I.16]. 

Figure I.16. DNA substitutions. The exchanges between purine to purine nucleotide bases is 

called transitions and are more frequent in nature. The exchange of a purine base with a 

pyrimidine base is called transversion. Transversions are rare. 

+Source internet, www.humangenomeproject.org 
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Due to the degeneracy of the genetic code, substitutions in the DNA or RNA may not affect 

the amino acid sequence and thus the protein function will be unaltered. Such synonymous 

substitutions are called silent mutations at amino acid level. However, silent mutations can 

accumulate over generations and put selective pressure on a specific codon for an amino acid, 

altering the extent of protein expression. Besides, there are missense (non-synonymous) and 

nonsense mutations (stop codon) that can lead to change in expression and loss of expression or 

truncated expression, respectively. Due to failure of DNA repair machinery mostly due to external 

factors there can also be an insertion or deletion of a nucleotide base that can lead to frameshift 

mutation causing adverse effects in codon reading by ribosome. 

 

I.8.2 Substitution rates: Depending on the type of molecule, the rate of selective 

substitutions differ. For instance, in DNA and RNA, the minimum possibility of a mutation is 1 in 

4, i.e 25% while it goes down to 5% (1 in 20) in case of proteins. Therefore, separate substitution 

models, sensitive to the type of biomolecules is required while studying their evolution. With the 

advancement of molecular phylogenetics, there are distinguished substitution models available for 

varied kinds of molecular analysis. More details on practical use of different matrices is provided 

in chapter 6, section 6.2.4. 

 

I.8.3 SNP or mutation: When considered in regards to an individual organism, the 

nucleotide or amino acid substitution is termed as a point mutation. However, when a population 

or species is considered, environment factors and genetic events like genetic drift, geographic 

displacement can lead to more than one kind of substitution at the same position. Therefore, in 

context of a population, it is termed as a single nucleotide polymorphism (SNP) or amino acid 

variant [92]. An example is shown in Figure I.17 

 

I.8.4 Phylogenetic tree generation: A phylogenetic tree is generated by using the selective 

substitution rates on a biomolecule and the variations induced by those substitutions in the 

sequence of the biomolecule in different species. Therefore, quintessential for generating a 

phylogram is the sequences of all possible homologs (based on local identity) of a given 

https://paperpile.com/c/wsrnTw/CtEb
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protein/DNA or RNA. All the sequences are then globally aligned to identify the conservation sites 

as well as highly mutated sites. The multiple sequence alignment (MSA) can be generated by two 

prominent methods: 

Progressive or hierarchical method [93]:  

A crude MSA is generated by first aligning the most similar sequences and 

subsequently adding less related sequences or groups to the alignment. The inclusion 

of new sequences is carried out until the entire query set has been incorporated into the 

solution. The initial tree describing the sequence relatedness is based on pairwise 

comparisons that may include heuristic pairwise alignment methods. Thus, the 

alignment results are dependent on the choice of "most related" sequences and therefore 

can be sensitive to inaccuracies in the initial pairwise alignments. 

 

Figure I.17. Point mutations and SNP. A) A point mutation is any change in the sequence of DNA 

that may or may not alter the amino acid sequence. B) Single nucleotide polymorphism (SNP) are 

the co-existing changes in the DNA all of which can affect the amino acid sequence. However, 

none of the effects of SNP is deleterious. The different polymorphisms (A, G, T) are termed as 

alleles. If the lower representing allele in a SNP has a fixation value of above 1%, then it can be 

called as a mutation. However, defining an allele by 1% fixation is still debatable. 

+Source internet, www.humangenomeproject.org 

Iterative method [93,94]: 

It optimizes an objective function based on a selected alignment scoring method by 

assigning an initial global alignment and then realigning sequence subsets 

https://paperpile.com/c/wsrnTw/OlbV
https://paperpile.com/c/wsrnTw/pafv+OlbV
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according to the scoring method. The realigned subsets are then themselves aligned 

to produce the next iteration of MSA. The iterations are continued each of the query 

sequence is aligned at least twice. Therefore, an improvement over iterative method 

removes the bias of an initial alignment. However, since it usually takes multiple 

iterations to achieve a final MSA, the method is computationally exhaustive. 

 

 I.8.5 Types of phylogenetic trees: The goal of a molecular phylogenetics is to construct a 

tree topology that best explains the evolutionary history of the given sequences. There are four 

approaches to analyze the generated MSA and define a tree topology. The most primitive and basic 

ones are: distance based methods and parsimony based methods. Distance based methods uses the 

substitution models to estimate pairwise evolutionary distances among each sequence of MSA. 

The distance matrix is then analyzed by hierarchical clustering type methods such as neighbor-

joining (single linkage clustering) or unweighted pair-group with arithmetic mean (average 

clustering) [94]. In the parsimony approach, the goal is to identify a topology that requires the 

fewest necessary changes to explain the differences among the observed sequences. Both of these 

methods works better in very closely related sequences but often fail to work with datasets 

comprising of distant homologs. In case of highly diversified homologs, the two character based 

methods are highly useful as they employ probabilities and thus ignore initial bias. 

 

A) Maximum likelihood based [95]: 

An initial tree is first built using a fast but suboptimal method such as Neighbor-

Joining. A likelihood function is calculated based on the substitution model. The 

branch lengths of the NJ tree are then adjusted to maximize the likelihood of the 

data set under the given substitution model. Then variants of the topology are 

created using the NNI (nearest neighbor Interchange) method to search for 

topologies that fit the data better. Maximum-Likelihood branch lengths are 

computed for these variant tree topologies and the greatest likelihood is retained as 

the best choice. The search continues until no greater likelihoods are found [96]. 

 

 

https://paperpile.com/c/wsrnTw/pafv
https://paperpile.com/c/wsrnTw/ZSOY
https://paperpile.com/c/wsrnTw/8jWc
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B) Bayesian inference based [97]: 

BI based methods can be seen as an extension of the ML based methods with a 

major difference being the use of a prior probability. BI based methods use the 

initial MSA and the substitution matrix to generate a priori probability that the 

given topology should belong to the base tree architecture. Therefore, instead of 

testing the likelihood as in ML, BI used the prior probability to make the decision 

[96]. 

  

I.8.6 Reliability of the tree topology: After a tree topology have been generated, statistical 

measure like bootstrapping, jackknifing are used to test its robustness [95]. Bootstrapping works 

very similar to e-value calculation. Random sites in the alignment is replaced and is used to build 

new trees. It is possible that some positions will be repeated in the subsample, while some positions 

will be left out. Such multiple resamples are run for mostly 100 to 1000 times based on the size of 

the dataset. A bootstrap value closer to 100 gives higher confidence in the branching. 

 

An introduction to these concepts is important to understand the subsequent chapters in the thesis. 

All of these concepts would be used at different places in different chapters. For simplification, 

the thesis is organized into three major sections; A) Chapters 1 to 3 that focuses on secondary 

structures rather than whole proteins. B) Chapter 4 deals with domain level analysis of a structural 

assembly while Chapter 5 studies a complete protein structure of a membrane protein. Proteins 

involved in both the chapters are crucial due to the pathologies they are involved in. C) Chapter 6 

is though related to chapter 5 but it does not study the structural behaviors. Rather it is focused on 

sequence analysis and phylogenetics which adds a fresh perspective towards the end of the thesis. 

Each chapter deals with a systematic study of an individual idea. There are some 

supplementary (marked as ‘S’) and sub-chapters (marked as ‘a’, ‘b’, ‘c’ with the chapter number). 

The supplementary chapter provides information related to the parent chapter while sub-chapters 

are individual studies dealing with the question in parts. Each chapter including sub-chapters and 

supplementary chapters contains information regarding, introduction to the topic, methods used, 

results and discussion and conclusiong and future perspectives. In some chapters, an additional 

section for acknowledgment is included to thank the team members and collaborators for their 

https://paperpile.com/c/wsrnTw/H5jg
https://paperpile.com/c/wsrnTw/8jWc
https://paperpile.com/c/wsrnTw/ZSOY
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support. At last there is a conclusive outline of the thesis that is written from the perspective of 

personal learning experience during the PhD and the impact of different projects on that learning 

curve. There are two chapters that should have been included in this thesis document but cannot 

be included due to restraints of space and time. Each of these two chapters are associated with our 

collaborators in India and Canada. My responsibility towards the collaboration with Karboune lab, 

McGill university, Canada is to perform docking analysis of seven different sugars with 

Levansucrase from five different species. The collaboration with N. Srinivasan lab at Indian 

Institute of Science involves the investigation of structural dynamics of different protein kinases 

in their active and inactive state. Recently, a research article derived on molecular dynamics 

analysis of inactive and active protein kinase A (PKA) have been submitted to Biophysical Journal. 

Following are the main objectives on which chapters are constructed: 
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OBJECTIVES 

 

O.1 Understanding local dynamics of repetitive secondary structures. 

 

 

O.2 Studying the dynamic behavior of structural alphabets- Protein Blocks. 

 

 

O.3 Systematic study of local structural changes in special events in a protein structure biology, 

like Post-translational modifications and Disorder to order transitions. 

 

  

O.4 To understand role of inherent flexibility at a more complex structural organization and 

function; Study of protein domains in a protein structure that undergoes structural transition. 

 

 

O.5 Systematic analysis of structural organization and dynamics in a protein protein complex; 

Study of a structural oligomer and interactions involved in pathology. 
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Chapter 1: Understanding dynamic behaviors of secondary structures- 

Dynamics and deformability of α-, 310 - and π-helices 

 

1.1 Introduction 

 

Before the first protein 3D structure was solved at atomic resolution [31], Pauling and Corey 

provided evidence that polypeptide chains can adopt a limited number of repetitive local protein 

structures stabilized by intramolecular hydrogen bonds [98–100]. The two major local folds are: 

(i) the α-helix (or 3.613 helix) with hydrogen bond between amino acid residues i and i + 4, and 

(ii) the β-sheet composed of extended strands with hydrogen bonds between adjacent strands, 

running parallel or antiparallel. They roughly represent 1/3rd and 1/5th of the residues found in 

proteins, respectively. Therefore, protein structures are often represented as seen in crystals as (i) 

rigid macromolecules (ii) comprising of repetitive units of helices, sheets and coils. However, both 

the definitions are partial because in physiology proteins are highly dynamic macromolecules and 

the description of protein structures could be more precise.  

Of the current popular secondary structures, helices and β-sheets are the two predominant 

conformational forms. The hydrogen bonding pattern of the two differs considerably and therefore 

they can be treated as two separate independent conformations with respect to protein folding. For 

instance, different types of helices like 310- and π-helices have been proposed as intermediate 

conformations in the folding of an α-helix [101–103]. Similarly, β -turns, bends, and strands are 

commonly observed during the formation of β-amyloid aggregates. Moreover, our team have 

previously worked with ‘chameleon sequences’ that are short stretch of structured regions that can 

interchange between helix and strand conformations [104]. Therefore, for simplicity of the 

analysis, the dynamics of these secondary structures will be studied individually. The first one 

being different types of helices. 

 

1.1.1 α-helices  

Since the characterization of helices in 1951 [100], extensive explorations have been conducted to 

better understand their formation and their role in the kinetics of protein folding. Although a 

general view of the folding kinetics is too complex to define theoretical folding models for helices. 

Recent cutting-edge experiments have underlined their significant contribution through different 

https://paperpile.com/c/wsrnTw/Psry
https://paperpile.com/c/wsrnTw/pZo1+l4dM+ksvr
https://paperpile.com/c/wsrnTw/PpN0+7N3n+BUyN
https://paperpile.com/c/wsrnTw/ylq5
https://paperpile.com/c/wsrnTw/ksvr
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examples [105]. Furthermore, with accumulating high-resolution experimental 3D structure, many 

studies have been carried out to decipher the sequence features that preferentially drives folding 

towards a given local fold. 

 In this context, α-helices have been intensely analyzed [106–108]. It has been emphasized 

that the length of an α-helix depends on its amino acid composition [109,110] and that its 

extremities (or caps) have specific signatures [111–113]. These caps can be stabilized by 

hydrophobic interactions between helical residues and residues outside the repetitive structures 

[114–116]. The importance of such interactions was highlighted for instance in the case of class 

α-glutathione transferases where, using computational approaches, it was shown that the highly 

conserved helix 9 modulates their catalytic and binding function and that a mutation of N-cap 

residue Asp-209 destabilizes the enzyme's function [117,118]. 

For structural description of α-helices, please see section I.2.2 

 

1.1.2 310-helices 

310-helices (shown in Fig 1.1) are less frequent than α-helices and represent about 4% of the 

residues in proteins. The 310-helix is characterized by intramolecular hydrogen bonds between 

residues i and i+3, and is usually short, containing three or four residues per turn [119,120]. 

Nonetheless, two-turn and longer 310-helices have also been reported [120]. In terms of location, 

they are preferentially observed at the termini of α-helices and are considered as connectors 

between two α-helices [20,121,122]. However, the 310-helix is also often found in the regions 

connecting strands within β-hairpin or β-β-corner motifs [123]. In terms of sequence, their amino 

acid content is different from the α-helix [124]. 

A specific analysis of a 310-helix adjoining the α-helix and β-strand has shown that the 

composition of 310-helices in vicinity of β-strands is much more conserved among family members 

of homologous structures than those 310-helices adjacent to two helices [123]. The preferred length 

of the 310-helix occurring between an α-helix and β-strand is equal to 3 residues, but extends to 4 

residues when located between two α-helices (α-310-α) [125]. 

 

1.1.3 π-helices 

π-helices (shown in Fig 1.1) which are less frequent than both of α- and 310-helices. They represent 

about 0.02% of the residues in proteins. In the π-helix (or 4.416-helices), hydrogen bonds are 

https://paperpile.com/c/wsrnTw/e7YX
https://paperpile.com/c/wsrnTw/7Pnw+ivSJ+ytrb
https://paperpile.com/c/wsrnTw/qNCR+JjeA
https://paperpile.com/c/wsrnTw/ZuwP+ITjI+qaXS
https://paperpile.com/c/wsrnTw/d8jD+j43x+5KCg
https://paperpile.com/c/wsrnTw/1DX3+dQjW
https://paperpile.com/c/wsrnTw/ZR3C+yz1k
https://paperpile.com/c/wsrnTw/yz1k
https://paperpile.com/c/wsrnTw/OsPc+Ea6e+GyE6
https://paperpile.com/c/wsrnTw/m5Lr
https://paperpile.com/c/wsrnTw/293I
https://paperpile.com/c/wsrnTw/m5Lr
https://paperpile.com/c/wsrnTw/jnFg
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formed between amino acid residues i and i+5. This helix conformation is less stable due to steric 

constraints, which could also explain why π-helices are rare [16]. In 2000, Weaver found only 14 

well-defined π-helices in the available PDB files (i.e. about 13500 structures) [126]. However, the 

π-helix should occur more frequently in protein structures than has been previously described, and 

should be conserved within functionally related proteins [54,127]. π-helix show distinct residue 

preferences that differ from those of α-helices [127]. Interestingly, it was shown that on a limited 

number of π-helices they were directly linked to the formation or stabilization of a specific binding 

site [126]. Thus conformationally, π-helices can be of crucial importance in protein-protein or 

protein-ligand interactions. 

 

Figure 1.1 The different type of helices. Two views, lateral and dorsal (bottom) are provided for 

each helix to appreciate the differences in their helical rise, pitch and the helical core. 

 

 

1.1.4 Prediction of helices from amino acid sequences 

The individual studies on different types of helices point out significant differences in the amino 

acid composition of various helical motifs, which can be exploited for their prediction. For 

instance, the secondary structure prediction method SSPRO8 performs reasonably well for 8 

https://paperpile.com/c/wsrnTw/bKYr
https://paperpile.com/c/wsrnTw/Ykis
https://paperpile.com/c/wsrnTw/lb5P+ho9X
https://paperpile.com/c/wsrnTw/lb5P
https://paperpile.com/c/wsrnTw/Ykis
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different states with a prediction accuracy of ~62 - 63% [127,128]. However, although it aims at 

separate predictions of α-, 310- and π-helices; the 310-helix prediction rate is very low and the π-

helix is rarely predicted. The latest approach with RaptorX Property performs slightly better for 

310-helix, but remains unsuccessful for the π-helix [127–129].  

The rare occurrences of these motifs largely explain the low rates of predictions. It may 

also arise from the difficulty to assign 310- and π-helices. Although the hydrogen bonding pattern 

and other structural parameters are well characterized for 310- and π-helices yet assignment 

methods fail to assign. Their failure might be due to the enhanced flexibility profile of these helical 

structures [130]. 

 

1.1.5 Dynamic relationship between helices: What is known! 

Indeed, a dynamic relationship would exist between the different kinds of helices, for instance 

between α- and π-helices as shown in [131]. Importantly, 310-helices and to a lesser extent π-

helices, have been proposed to be intermediates in the folding / unfolding of α-helices [101–103]. 

However, such studies are often based on model systems like polyalanine peptides and use 

molecular dynamics (MD) simulations to inspect the effect of chain-lengths and N-terminus 

residues in α-helix folding [132]. Unfortunately, flexibility profiles and putative interconversion 

between helical states have never been conducted for a large set of protein structures. 

Therefore, it was decided to conduct the first large scale MD simulation study from a large 

number of structural folds. The underlying motivation being to catalogue the flexibility profile of 

helices and depict how the helical regions evolve (Fig 1.1). Thus the study provides new insights 

into the flexibility and deformability of the different helical states, which are an essential 

component of the structure and function of biological macromolecules. The MD simulations 

analyse and quantify the stability of helices by considering α-helices as well as 310- and π-helices. 

 

1.2 Methods 

 

1.2.1 Dataset preparation 

A non redundant dataset at 40% sequence identity was extracted using ASTRAL compendium 

2.03 [133–135]. It consists of 5580 protein chains resulting from 4432 PDB files. By filtering on 

chain lengths between a range of 50-250 residues, resolution better than 1.5 Å and excluding chains 

https://paperpile.com/c/wsrnTw/lb5P+wz5z
https://paperpile.com/c/wsrnTw/lb5P+wz5z+k4YV
https://paperpile.com/c/wsrnTw/s7Tu
https://paperpile.com/c/wsrnTw/TC0i
https://paperpile.com/c/wsrnTw/PpN0+7N3n+BUyN
https://paperpile.com/c/wsrnTw/ui4s
https://paperpile.com/c/wsrnTw/91kL+VYXv+kr58
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with any discontinuity in position numbering, missing residues, modified and/or incomplete 

residues; only 169 domains were selected. Only globular proteins were used. An in-house parser 

was used to filter out and fetch the information as implemented in earlier publications from the lab 

[136]. The selected 169 SCOPids are provided in the Table 1.1. 

The 169 domains represent an equilibrated repartition among the different SCOP classes: 

all-α represent 18.9% of the chains, all-β 29.6%, α/β 24.8% and 26.7% represent α+β class. These 

SCOP domains belong to 155 X-ray structures in PDB. 

 

Table 1.1 SCOP ids of the final selected 169 domains. The first four columns contain 35 SCOP 

ids each while the last one contains 29 entries. The ‘d’ (first character) signifies that the given 

structure is a domain. While the following four characters denote the PDB ids of which the domain 

is a part of. The 6th character in the string is the chain ID of the PDB file. The last or the 7th 

character if present, signifies the alternate structure form of the domain or isoforms. 

 

 

 

  

https://paperpile.com/c/wsrnTw/xaLk
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1.2.2 Protocol for MD simulations 

Three independent MD simulations of 50 ns each were performed for all protein structures with 

GROMACS 4.5.7 software [137], using AMBER99sb force field [138]. Thus generating a 

collective simulation time of 150 (3*50) ns. Each protein structure was immersed in a periodic 

dodecahedron box using TIP3P water molecules and neutralized with Na+ or Cl- counter-ions. The 

system was then energetically minimized with a steepest-descent algorithm for 2000 steps. The 

MD simulations were performed in isothermal-isobaric thermodynamics ensemble (NPT) with 

temperature fixed at 300 K and pressure at 1 bar. A short run of 1 ns was performed to equilibrate 

the system using the Berendsen algorithm for temperature and pressure control [139]. The coupling 

time constants were equal to 0.1 ps for each physical parameter. A production step of 50 ns was 

done using the Parrinello-Rahman algorithm [140]for temperature and pressure control, with 

coupling constants of T= 0.1 ps and P= 4 ps. All bond lengths were constrained with the LINCS 

algorithm [141], which allowed an integration step of 2 fs. The PME algorithm [142] was applied 

for long-range electrostatic interactions using a cut-off of 1 nm for nonbonded interactions. 

This protocol was applied to each of the 169 protein domains. From each MD simulation, 

the conservation of the secondary structures was observed and the structural deviation of each 

snapshot from the initial structure was measured. Conformations were saved after every ps. For 

each MD simulation, the secondary structures were analyzed and the structural deviation of each 

snapshot from the initial structure was measured. Trajectory analyses were performed with the 

GROMACS v4.6.5, in-house Python and R scripts. Root mean square deviations (RMSD) and root 

mean square fluctuations (RMSF) were computed on Cα atoms. Normalized RMSFs and 

normalized B-factors were computed as in Bornot et al, 2011 [143]. 

 

1.2.3 Analysis of the local protein conformation 

Secondary structure assignment was performed using DSSP version 2.2.1 with default parameters. 

DSSP assigns secondary structures as a 7 state model based on intra-hydrogen bonding pattern. 

The 7 states are represented as ‘H’- α-helix, ‘G’- 310-helix, ‘I’- π-helix, ‘S’- bend, ‘T’- hydrogen 

bonded turn, ‘B’- β-bridge, and ‘E’- extended β-strand. In contrast to the previous version of DSSP 

(cmbi version, 2000) or as termed by the authors as DSSPold, the irregular or coil or loops are 

marked with a blank in the output. Thus reducing 8-state assignment by DSSPold to 7-state 

https://paperpile.com/c/wsrnTw/pmet
https://paperpile.com/c/wsrnTw/QZ2r
https://paperpile.com/c/wsrnTw/SU47
https://paperpile.com/c/wsrnTw/sQjs
https://paperpile.com/c/wsrnTw/jgjB
https://paperpile.com/c/wsrnTw/2V06
https://paperpile.com/c/wsrnTw/dK5E
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assignment. Since loops or coils are highly flexible structures the blank spaces in the DSSP output 

were replaced by ‘C’. 

It should be noted that the Gromacs v4.5.7 that was used for the molecular dynamics, 

support the DSSPold developed by Kabsch and Sander in 1983. Since, 25 years, a prominent error 

in the judgement of hydrogen bonding pattern lead to the misassignment of π-helices as H or T 

[144]. Therefore, the new version of DSSP (v2.2.1) was used on each frame from the MD trajectory 

to avoid any errors that may have been induced due to the use of DSSPold. 

Protein Blocks (PBs) were also assigned to the same number of frames and Neq was used 

to analyse the behavior of PBs throughout the simulations. Detailed discussion of the methodology 

and results from PB analysis will be discussed in Chapter 2. 

 

1.2.4 Clustering approach 

In the initial state, i.e the input structure, each residue is associated to one of the 8 defined 

secondary states assigned by DSSP [51]. Post simulation, the states for each residue is again 

assigned using DSSP. Hence, each residue is associated to a vector of size, S=8 representing the 8 

defined secondary states and more specifically, the occurrence of each observed state. To define 

common behaviors between residues, a k-means clustering approach was used [145].  

At first a subset is created that represents all the residues that were associated to a particular 

state before MD, e.g. a subset of 310-helices. Then a fixed number of clusters ‘k’ is determined, 

with k=5 (selected after few tests). As per the DSSP states, the k-clusters are of size S=8. All the 

data of the subset is then compared to each k-cluster and the one with the minimal Euclidean 

distance is considered the winner. After one cycle (and after all subsets had been used), the values 

of the k clusters are modified in order to correspond with the associated observations. The 

modifications done to a cluster is such that each cluster is the barycenter of the associated 

observations. After a few cycles, the k clusters are stable and can be analyzed for behaviors of 

different helices. 

 

  

https://paperpile.com/c/wsrnTw/6fHy/?locator_label=section&locator=5&suffix=Acknowledgements
https://paperpile.com/c/wsrnTw/NU9Y
https://paperpile.com/c/wsrnTw/7JMh
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1.3 Results and discussions 

 

1.3.1 Analyses of protein structures 

The DSSP assigned 8 states for each frame of all the domains under simulation. In the dataset, the 

distribution of the helices assigned using DSSP is as follows: 31.5% are assigned as α-helix while 

3.99% as 310-helix and 0.28% as π-helices. This distribution is similar to the distribution observed 

by Tyagi et al.in 2009 [146]. As shown in Table 1.2, the lowest B-factors are associated to α-

helices, an expected feature since α-helices are found most prominently in the ordered state [18]. 

Interestingly, π-helices are observed in the dataset to be less flexible than 310-helices with 

average normalized B-factor values of 0.09 and 0.24, respectively. Both correspond to the flexible 

region as defined in [18,147,148]. This tendency is correlated with the relative accessibility of the 

residues computed by DSSP, a higher accessibility being observed for 310-helices than for π-

helices (Table 1.2 and Figure 1.2, row 2). 

 

Table 1.2 Behaviors of helices. Average normalized B-factors (from X-ray structures), average 

normalized RMSF (from the MDs) and the average relative accessibility surface area (for X-ray 

structures) of α-, 3 10 - and π-helices are presented. 

 

 

1.3.2 Analyses of molecular dynamics 

The distribution of normalized B-factors (Fig 1.3A) and normalized RMSF (Fig 1.3B) is highly 

similar to the distribution observed in a previous studies from our lab, performed with a smaller 

dataset [143,149]. Figure 1.3C shows the correlation between normalized B-factor values and 

normalized RMSF (Pearson’s coefficient r = 0.43). The correct correlation is also very close to the 

one previously observed by Bornot et al, 2011 [143].  

Interestingly, 60.2% of the positions do not change at all. Thus no local deformability is 

observed as is also reflected with an Neq value of 1.0. Furthermore, the behavior observed with B-

factors is confirmed with RMSF analysis. The most rigid helical structures are α-helices while π-

https://paperpile.com/c/wsrnTw/uu1z
https://paperpile.com/c/wsrnTw/OfYB
https://paperpile.com/c/wsrnTw/OfYB+aFBT+b2DY
https://paperpile.com/c/wsrnTw/AAgU+dK5E
https://paperpile.com/c/wsrnTw/dK5E
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helices appears more flexible but 310-helices are observed to be the most flexible ones (refer to 

Table 1.2). 

 

Figure 1.2 Normalized B-factors, RMSf, and rASA for α-, 310- , and π-helix. The 3 x 3 matrix 

shows individual plots of normalized B-factors (Row1), normalized RMSf (Row2), and relative 

Solvent Accessibility (row 3) for α-helix (col1), 310-helix (col2) and π-helices (col3). The values in 

Table 1.2 are calculated from these plots. 

  

1.3.3 Helical persistence during simulation 

Based on the frequency of the initial DSSP state during the dynamics, perseverance of a state can 

be estimated. Estimation of perseverance can answer questions such as, how many times an 

initially assigned ‘H’ persisted as an α-helix during the simulation of 150 ns and how many times 

does it changes its conformation? However, it does not provide any details about the changed state. 

 

1.3.3.1 α-helix 

DSSP α-helix state represents nearly 30% of the residues in the complete dataset of 169 

domains. Of those residues (Fig 1.4A), 31.5% always remain as α-helical during the entire 

simulation. However, 91.4% maintains an α-helical state for more than 50% of the simulation time, 

while only 3.9% remain as an α-helix for less than 25% of the time. These statistics illustrate the 

very stable behavior of the α-helix. 
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Figure 1.3 Normalized B-factors and RMSf behaviors on the whole dataset. A) – Normalized B-

factor distribution; B) – Normalized RMSf distribution; C) Correlation between normalized B-

factor distribution and normalized RMSf. 

 

1.3.3.2 310-helix  

Despite its relative importance, the 310-helix is observed to be a less stable local structure 

during simulations in comparison to the α-helix. As can be seen in Figure 1.4B, the tendency of 

310-helix residues to remain in the 310- configuration is very limited. Indeed, no residue was found 

to retain the 310-helix conformation for the collective simulation time of 150 ns (Table 1.3). The 

residues adopting a 310-helix conformation in the initial structure are 3.9% of the total residues in 

the dataset. Therefore, the representation of 310-helix is just 13% of the α-helical representation. 

Among the residues initially observed in the 310-helix state, only 15.7% retained initial state for 

more than 90% of the simulation time. However, 54.1% of the residues were observed more than 

half of the time as 310-helix. 

 

 



 

47 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

1.3.3.3 π-helix  

π-helix was observed to be an extremely rare state in the initial input structures. It was 

observed 14 times less than the 310-helices, i.e 0.02% of the total dataset. They are depicted to be 

slightly less accessible and with regards to their average B-factor and RMSF values, they are 

supposedly more stable. However, Figure 1.4C shows that this is not the case. Indeed, only 2.4% 

of the residues remained as a π-helix more than half of the simulation time and the rest is not stable. 

More than 97.6% were observed as a π-helix for less than 1/4th of the time.  

However, rare nature of π-helix is a serious concern given that the selected 169 structures 

spanned all the SCOP classes. This observation formed the basis of re-assignment of the structures 

and MD trajectories using DSSP v2.2.1 as the DSSPold underestimates π-helix. 

 

Figure 1.4 Persistence of initial helical state. The frequency of residues remaining in the original 

assigned state of the three types of helices during simulations. A) α-helix; B) 310-helix; C) π-helix. 
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1.3.4 Impact of secondary structure reassignment on the persistence status 

DSSP reassignment had no observable change in 310-helices (still 3.5%) representation and 

perseverance frequencies. However, π-helix assignment has a significant 15-fold increase in the 

initial structures, increasing from 0.02% to 0.32% of the total residues. The increase in π-helix 

assignment is derived from 2/3rd of the previously assigned α-helices and 1/3rd of turns. As α-helix 

state has a dominant representation of 30%, the decrease in their representation is non-significant. 

Thus the DSSP reassignment provides a different view of π-helices. The π-helices are found to be 

relatively more stable as expected from their B-factor and RMSF analysis. 

The updated persistence rates for π-helices are also updated in Table 1.3 as the last row (π-

helixDSSPv2.2.1). along with their older values for comparison. It is observed that 39.6% of initially 

assigned π-helices remained as π-helices for more than 50% of the simulation time. Similar to the 

previous assignments, none of the π-helices remained as π-helices for 100% of the time, however, 

15% remained for more than 90% of the time. 

 

Table 1.3 Initial state perseverance of each helix. The different columns identify the %age of 

simulation time, each helix remained in its initial conformation. For e.g. 29.1% of α-helices remain 

as α-helix during the whole simulation and 91.4% of initial α-helices remains as α-helix for more 

than 50% of the simulation time. The last column, < 25% defines the persistence of an initial 

confirmation for less than 1/4th of the simulation time. Therefore, a large value in this column 

clearly signifies high flexibility or deformability. Please note that the data was reassigned using 

new version of DSSP and major changes were observed only in π-helices, as depicted by rows 3 

and 4 in the table. 
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1.3.5 Conformational exchanges during simulations 

So far the frequency to retain the initial DSSP state is analysed. It is observed that the initial state 

is not preserved during the entire simulation, except for α-helix (H). Nonetheless the three helices 

change their initial state for more than 50% of the simulation time. Therefore, another important 

question arises: which conformation do they transform into? Do they preferentially explore the 

conformational space of other helical conformations or the non-helical ones?  

Table 1.4 depicts the exchange rates between helical as well as non-helical states. For 

example, ~10% of times an α-helix adopts a non-helical state. Among the helical states it remains 

an α-helix for 88.3% of times thus clearly establishing α-helix as the favored conformation. While, 

an α- to 310-helix transformation happens at 1.64%, the change from α- to π-helix is negligible. 

However, 310-helix transforms to α-helix in 8.29% of cases while retains a 310-helix conformation 

for 53.4% of the cases. It shows significant transformations to non-helical states. π-helix in contrast 

to 310- prefers α-helical conformation (~57%) than retaining π-helix (3.87% of the times). Apart 

from α-helix conformation, π-helix to non-helical transformations are significant at 38.3%. 

Collectively, the helical states transform to non-helical states at 28.8% of times. However, 61.72% 

of the cases that have 310-helix as initial conformation adapts a helical conformation while π-helix 

and α-helix initial conformations stays in the helical fold for 61.7% and 90% of times respectively. 

Therefore, indicating that positions that have an initial conformation of a helix will tend to remain 

as a helix.  

 

Table 1.4 Exchange rates of helices expressed as percentages. The table quantifies the Helical 

and non-helical exchange rates for helices. Most of the α-helix (88.3%) tends to remain as α-helix 

thus denoting the rigidity associated to it. 310-helix and π-helix changes to non-helical 

conformations (including coil), the most. Similar results can be interpreted from the table. 
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1.3.6 k-means Cluster analysis: Dynamic behavior of the helices during simulations 

To understand the extent of transitions among helical states, clustering of the ensemble of 

conformations was done, based on k-means with k=5 clusters for comparative purpose. The 

clusters are named according to their major DSSP state, with subscript indicating a minor DSSP 

state (T for turn or C for coil). For example, the cluster αC will indicate a cluster majorly contains 

the α helix conformation but also has some coil states as well. The detailed composition of each 

cluster starting from the α-helix, 310-helix and π-helix initial state is given in Figures. 1.5, 1.6 and 

1.7, respectively. 

The classification highlights that a residue initiated from an α-helical state (Fig 1.5) tends 

to transit preferentially towards a β-turn state. Indeed, apart from the most populated cluster α1 

(76.4% of the residues) that is composed of residues remaining as an α-helix, the second cluster α2 

(11.5% of the residues) reveals a decreased content of α-helices in favor of β-turn states. In clusters 

αT1 and αT2 (4.2% and 6.6% of the residues, respectively), apart from a small subcluster depicting 

conformations that switch to the 310-helix conformation (light blue). This shift causes increase in 

population of β-turn conformations. The least populated cluster αC is associated with non repetitive 

structures (1.1% of the residues). Also, it underlines the correlation between flexibility and the 

presence of β-turns: the higher the β-turn or coil content, the larger the normalized RMSF 

(nRMSF). A similar correlation is observed with accessibility and Neq values. Clearly, the cluster 

α1 represents most of the buried and stable α-helices. 

For residues initially assigned as 310-helices (Fig 1.6), the most populated cluster is 310. 

The 310 cluster represents residues that remain in the 310-helix conformation (40.5% of the 

residues). It is also the most rigid (both low B-factor and RMSF). From cluster 310
T1 to cluster 

310
T2 (25.0 and 17.5% of the residues respectively), the 310-helix content decreases and the content 

of β-turns increases. The flexibility increases concomitantly. It also perfectly correlates with the 

relative accessibility (going from 32.8 to 36.3 and 41.8) and Neq values (1.34, 1.49 and 1.59, 

respectively). The preferred transition to the β-turn was expected as the 310-helix was shown to 

overlap by nearly 90% [150]. This is one of the reasons for the disappearance of β-turn type III 

[151]. The cluster 310
C has the highest content of non-repetitive structures and is, as expected, 

associated with high flexibility. Surprisingly, residues in this cluster are less accessible than those 

in clusters 310
T1 and 310

T2. Cluster 310
α (10.5% residues) that represents the transition to α-helical 

conformation exhibits low accessibility values, the lowest RMSF values compared to clusters 310
C 

https://paperpile.com/c/wsrnTw/Jifn
https://paperpile.com/c/wsrnTw/8bGz


 

51 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

, 310
T1 and 310

T2 , and the lowest Neq values,which shows the slightest local conformation change 

of all the 310 clusters. However, it is associated to high B-factor values. 

 

 

 Figure 1.5 Different clusters for α-helix. A) Five clusters with a gradient of color are shown 

(ranging from red 100% to blue 0%). The displayed secondary structures are: α-, 310- and π-

helices, β-strand, turn (T), bend (S), β-bridge (b) and coil (C). 

B) shows the correlation between normalized B-factors and normalized RMSf among 

different clusters. Extent of flexibility can be estimated from the correlation. For e.g αC and αT1 

are the most flexible clusters with most of the α-helices transforming to coil and turn 

conformations, respectively. Similarly, α1 is the most rigid cluster with 76.4% of α-helices showing 

perseverance. (refer to table 1.5) 
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Figure 1.6 Different clusters for 310-helix. A) Five clusters with a gradient of color are shown 

(ranging from red 100% to blue 0%). The displayed secondary structures are: α-, 310- and π-

helices, β-strand, turn (T), bend (S), β-bridge (b) and coil (C).  

B) shows the correlation between normalized B-factors and normalized RMSf among different 

clusters. Extent of flexibility can be estimated from the correlation. For e.g 310
C is the most flexible 

clusters with most of the 310-helices transforming to coil and bends. Cluster 310
α shows high B-

factor value but low RMSf which suggests that transition from 310 to α is not the only one 

dominating the cluster. As evident from the cluster as well as Table 1.5, that transition to Turns 

also contribute to the dynamics of this cluster. 

 

Figure 1.7 summarizes the dynamic evolution of the rare π-helices. The cluster named π 

(10.1% of the residues), which showed the highest frequency of π-helices, was also associated with 

the β-turn, bends and some coil conformations, but not α- or 310-helices. This is, however, a tip of 

the iceberg of contradictions in this cluster. Cluster π was found to be associated with the lowest 

crystallographic B-factors and had the highest relative accessibility. During the MD, it had a very 

flexible behavior, with the highest RMSF values and also the highest Neq values observed. The 

contradictions could be explained with the following three clusters, πα1 , πα2 and παT that have a 

higher α-helical content with no π-helix residues and few β-turns. They showed a slight increase 

in their Neq values. Cluster πα1 represents π-helix residues (38.7%) that had medium B-factor 

values associated with a higher stability as an α-helix because they are buried compared to other 
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clusters. Clusters πT and παT have intermediate flexibility behaviors, while the most flexible cluster 

is cluster πα2. 

 

Figure 1.7 Different clusters for α-helix. A) Five clusters with a gradient of color are shown 

(ranging from red 100% to blue 0%). The displayed secondary structures are: α-, 310- and π-

helices, β-strand, turn (T), bend (S), β-bridge (b) and coil (C). 

B) shows the correlation between normalized B-factors and normalized RMSf among different 

clusters. Extent of flexibility of π-helix can be easily estimated from the correlation, as most of the 

clusters lie on the right half having higher B-factor and RMSf values. For e.g cluster nπ
T has less 

RMSf but higher B-factor value which suggests that π-helix to Turn transition does not lead to 

deformability. In contrast, the cluster with π-helices conserved has high RMSf value thus showing 

the inherent flexibility in π-helices. C) The cluster matrix for the assignments done using DSSPold. 

As can be observed that almost none of the clusters had π-helix representation. 
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Table 1.5 Analysis of different clusters. Shown are each cluster, its occurrence, the average 

normalized B-factors (nBfactors), the average normalized RMSF (nRMSF), the average relative 

accessibility solvent area (rASA) and the average number of equivalent (Neq) expressed as 

percentages. 

 

 

1.3.7 Impact of secondary structure reassignment on the exchange rates and dynamics 

For the reasons described in section 1.3.3 and occurrence of many contradictions in the π-cluster, 

it was required to reassign structures using DSSP v2.2.1. As expected, the major changes are seen 

in exchange rates of π-helices and cluster π while clusters α- and 310 remains largely unaffected. 

The exchange rates of π-helices are 28.5% to α-helices, 1.43% to 310-helices, and remains 

as π-helices 42.2% of the times. Therefore, the exchange rates vary largely from the DSSPold 

assignments where 56.9% of π-helices transformed to α-helix and only 3.87 remained as π-helices. 

Also, ~27.7% of π-helices transformed to non-helical conformations which shows a decrease of 

10.6% from DSSPold non-helical transformations. This clearly indicates that the 38% of increase 

in π-helices is contributed by 50% decrease in α-helices conversions. 

After reassignment, a pure π-helix cluster was found (named nπ) representing 20% of the 

residues. Figure 1.7A shows the new clustering for these π-helices. It is totally different from the 

previous cluster π, which was a mix of β-turn, bends and some coil conformations. Two other 

clusters (nπ
α1 and nπ

α2) are also found associated with the transition to α-helices; they represent 
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23.4% and 16.5%, while cluster nπ
T is mainly associated with turns (25.5%). These three share 

common features with previous clusters πα1, πα2 and πT, but the proportion of π-helix residues in 

these clusters is drastically higher. The only fuzzy cluster is cluster nπ
V, which is a mix of α-helix, 

π-helix, β-turn, and β-bridge (14.7%). Therefore, the results after reassignment shows that the 

previous assignment of the π-helix strongly biased our views of this local protein conformation. 

 

1.4 Conclusions and future perspectives 

 

In a previous work from the lab on β-bulges, it was shown that one β-bulge from a 15 β-bulge 

containing structure disappears after 2/5th of the MD simulation and never returns [68]. Thus 

depicting that, sometimes non-classical conformations associated with a classical repetitive 

structure can show some unexpected behaviors. This could be the effect of their inherent 

flexibility. Therefore, current study was designed to understand the dynamic behaviors of 

repetitive structures at the basic level of structural complexity, i.e the secondary structures. Herein 

the focus is specifically on the helical structures while the rest states of secondary structures are 

under analysis. 

The first pertinent result is the quantification of the persistence of helical residues in their 

original local conformation. More than 3/4th of α-helix residues remain in the helical conformation 

while it decreases to 40.5% for the 310-helices. Surprisingly, even if π-helices are mostly buried, 

they are not observed to be stable. The second interesting result on the flexibility and deformability 

of helical structures is the huge difference between the three types of helix. The α-helix shows 

good correlation between stability of the α-helical content and (i) the flexibility as seen through B-

factors and RMSf, (ii) accessibility of the residues. The Neq analysis of α-helix residues depicts 

that besides persisting as α-helix, they have a higher tendency to assume β-turn conformations than 

either the 310- or π-helices. The 310-helix shows a similar general behavior in 90% of cases. Indeed, 

correlation is good in terms of flexibility (both crystallographic and in silico), accessibility (with 

the exception of cluster 310
C) and Neq values. 

Nonetheless, the 310-helix that transforms to the α-helix conformation shows different 

characteristics. It retains higher B-factor and RMSF values than the average of cluster 310 but is 

associated with lower accessibility and lower Neq. The cluster 310, seems to have the dynamic 

characteristics of a local protein conformation that can adopt an α-helical conformation [152]. 

https://paperpile.com/c/wsrnTw/AVoy
https://paperpile.com/c/wsrnTw/44ki
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Using classical DSSP (cmbi version), the π-helices cannot be described as stable and therefore 

new DSSP version 2.2.1 is used to reassign all the initial structures and trajectory frames. The 

residues that stayed mostly associated with the π-helix conformation are also associated with β-

turn, bend and coil conformations, but never α- or 310-helices. A counterintuitive finding is that 

they are also associated with low B-factors but due to the high accessibility, they are very 

flexible/deformable thus showing the highest RMSF and Neq values. The other residues lose their 

initial π-helix conformation and mainly assume an α-helical conformation or to a lesser extent a 

β-turn conformation. Such dynamic behavior of π-helices with low B-factors and high accessibility 

may be characteristics of post nucleation, cooperative protein folding effect. Also, it was recently 

shown that π-helices help the protein chain to fold properly and also in helix packing. They 

facilitate favorable non bonded interactions by positioning the functionally important helical 

residues in the correct orientation [127]. Therefore, it indeed becomes fitting for π-helices to 

exhibit such dramatic flexibility in their dynamics. 

For this analysis, 169 protein chains were selected with a limited redundancy from SCOP. 

They are of high quality. However, one must not downplay the fact that crystallization also 

produces some crystal contact packing effects, and these were found in a limited number of cases 

[40,41]. The crystal packing might have an effect on the initial assignment but during molecular 

simulations, it did not have a significant effect. It is important to properly define the properties of 

these helical conformations that can have implications in both experimental and computational 

studies, i.e. analyses of flexibility of protein local conformations, force field parameterization and 

disorder, etc. 

The dynamics of β-strands and related DSSP states are analysed along with more precise 

local structure estimations using protein blocks. Chapter 2 will contain the details and discussion 

about their dynamics. Before transitioning to beta-strands, helical component of the protein 

secondary structures needs to be complete. Therefore, it is highly fitting to discuss about 

Polyproline-II helices (PPII) that are conventionally ignored by popular assignment softwares like 

DSSP, Stride, etc. A short discussion dedicated to PPII is provided as a supplementary to chapter1. 

  

https://paperpile.com/c/wsrnTw/lb5P
https://paperpile.com/c/wsrnTw/E2br+VnJD
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Dissemination of results 

 

The results from chapter 1 were published as: Narwani T.J., Craveur P., Shinada N.K., Santuz H., 

Rebehmed J., Etchebest C., de Brevern A.G. Dynamics and Deformability of α-, 310- and π-

Helices. Archives of Biological Sciences (2018) 70(1):21-31.  
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Chapter S1: Recent advances on polyproline II 

 

About half of the globular proteins are composed of regular secondary structures like α-helices, 

and β-sheets, while the rest are constituted of irregular secondary structures, such as turns or coil 

conformations. Other regular secondary structures are often ignored, despite their importance in 

biological processes. Therefore, three-dimensional structure information is usually described as a 

simple succession of these repetitive structures (see Figure S1.1), connected by “random” coil 

[98,153]. Helical structures are locally stabilized by hydrogen bond patterns of backbone atoms 

(between residues i and i+4) [99], while extended structures are also maintained by hydrogen 

bonds but at longer distances [100]. As shown in previous chapters, the two forms are highly 

abundant as they represent 1/3rd (helices) and 1/5th (sheets) of the total residues. A third defined 

state, called β-turns, is characterized by the reversal of polypeptide chain and is stabilized by a 

hydrogen bond between the first and last residues [22,151,154]. 25% of the total residues are 

associated with such structures [155]. However, another common repetitive conformation that was 

characterized before the β-turns in the 1950s, but often forgotten. Such conformations are called 

Poly-l-proline-II helices II (PPII) [156,157] (see Figure  S1.1B). 

Figure S1.1 Structural characteristic of three secondary structures. A) Right-handed α-helix, B) 

left-handed PPII, and C) A β-strand. The cartoon representation highlights the structural 

geometry, while ball and stick represent the atomic arrangements of the three secondary 

https://paperpile.com/c/wsrnTw/pZo1+SObg
https://paperpile.com/c/wsrnTw/l4dM
https://paperpile.com/c/wsrnTw/ksvr
https://paperpile.com/c/wsrnTw/8bGz+BRIr+fd9O
https://paperpile.com/c/wsrnTw/cWsQ
https://paperpile.com/c/wsrnTw/9WTJ+LoEw
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structures. The proline rings can be observed in (B), and the comparison of oxygen (red) and 

nitrogen (blue) clearly indicates the absence of intra H-bonding in PPII.  

In A and C, the close proximity of oxygen and nitrogen atoms makes it favourable for intra H-

bonding. High helical rise of the PPII and lack of intra H-bonding make its backbone highly 

solvent accessible. Images are generated with the PyMOL software. 

 

S1.1 Introduction to polyproline II helices 

 

PPII is characterized as a left-handed helical structure with dihedral angles characteristic to that of 

β-strands and with an overall shape resembling a triangular prism [158,159]. Figure S1.2 shows a 

comparison of PPII with other local structure helices. The PPII helix has distinct trans-isomers of 

peptide bonds with dihedral angles of [−75°, +150°]. The rise per residue of PPII helix is 3.1 Å 

with three residues per turn. Thus, this distinct helical structure rises at 9.3 Å per turn compared 

to 6.0 Å pitch of a 310-helix. The primary reason for such open and relatively elongated geometry 

of PPII is the absence of H-donor atoms due to the cyclic side chain of proline residues. Therefore, 

the PPII conformation is highly acceptable of H-donor atoms from its environment or third party 

moieties enhancing its solvation energy. PPII (containing hydroxyproline) is observed commonly 

in the collagen triple helix and hence was deemed confined to fibrous proteins. 

 

Figure S1.2 Orientation and structural organization of the different helices. A) α-helix: right 

handed with a spherical coiling. B) 310-helix, C) π-helix, and D) Poly-II-proline helix: left handed 

with a triangular prism coiling. Proline residues are marked in yellow. E) PPII helix with minimum 

residues possible. Only three residues can adopt a PPII conformation. In this example, none of the 

https://paperpile.com/c/wsrnTw/ftmX+lLTw
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residue is proline. The proline rings can be observed in (D). High helical rise of the PPII can be 

clearly seen. Images are generated with the PyMOL software. 

 

Interestingly, PPII stabilizes the collagen triple helix, a conformation that motivated the 

academic arguments between G.N Ramachandran and F.H Crick eventually leading to the 

development of the popular Ramachandran map [160–162]. It was found through circular 

dichroïsm studies that PPII is present in folded proteins and in other structural folding contexts as 

well [163–165]. Later, Creamer and his team in 2005 demonstrated the existence of PPII in 

denatured proteins [166], while NMR studies established PPII as a favoured local structure over 

α-helices in denatured states [167]. Interestingly, the presence of proline residues is not a strict 

requirement for a PPII and that indeed establishes PPII as a distinct class in secondary structures. 

Rather, it has been advocated since 1993 to include PPII in mainstream secondary structures, such 

as α-helices and β-sheets [168]. A striking fact is that residues associated with PPII conformations 

represent nearly 5% of the total residues in a structure [169], but the lack of popular PPII 

assignment approaches hinders their systematic analysis. 

 

S1.2 Amino acid compositions in PPII helices 

 

A review article by Adzhubei and Sternberg in 2013 have refreshed the interest in PPII as 

mainstream secondary structures, such as α-helices and β-sheets. However, it also underlined the 

non-obligation of the presence of proline residues in PPII [170]. Numerous mutational studies, 

e.g., SH3 domain—PPII peptide binding analysis provided a desired assertion that PPII 

conformations are favourable in denatured space [171,172]. Impact of residue level mutations on 

PPII concludes that PPII conformation is retained even after successive changes of proline with 

alanine or glycine residues, implying that PPII are not constituted by a succession of proline 

residues alone. Therefore, PPII should rather be understood as a structural conformation found 

with different residue propensities in folded and unfolded states. Other experiments further 

establish PPII as a separate structural class [170,173]. 

Apart from these studies, restricted coiled library analysis performed by Jha et al. in 2005 

explores the influence of neighbors on the residues having favourable PPII propensities [174]. 

Examination of the bias-free coiled library sets reveals dominant PPII conformation for ten of 

amino acid residues:  

https://paperpile.com/c/wsrnTw/xWsQ+LRBv+n3tR
https://paperpile.com/c/wsrnTw/BpTT+RXHW+orr4
https://paperpile.com/c/wsrnTw/h2fC
https://paperpile.com/c/wsrnTw/EXWN
https://paperpile.com/c/wsrnTw/DGQa
https://paperpile.com/c/wsrnTw/fOSI
https://paperpile.com/c/wsrnTw/l7n6
https://paperpile.com/c/wsrnTw/RMex+PJ7k
https://paperpile.com/c/wsrnTw/l7n6+raLp
https://paperpile.com/c/wsrnTw/Xs0A
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Pro, Ala, Met, Glu, Leu, Asn, Cys, Gln, Lys, Gly, and Tyr 

Another proposal of similar propensities comes from Cubellis and co-workers who analysed 

position specific propensities in 5700 PPII helices and classified data with peptide lengths [175]. 

Thus, residues, such as Ala, Met, Lys, Thr, and Leu, favour PPII conformation in longer peptides, 

while Asp, Ile, and Glu adopts the conformation in shorter peptides (<3 res). Trp, Phe, and Gly do 

not favour PPII; however interestingly, Gly is present in a repetitive motif in collagen triple helix, 

while Trp and Phe have been crystallized in interaction with PPII–hydrophobic motif interactions. 

Thus, supposedly, these residues could stabilize and mark the terminus of a PPII helix [175]. In 

the most recent survey, Kumar and Bansal show that 40% of PPII contain no Pro residues at all. 

Besides, aromatic amino acids are avoided within the helix, while Gly, Asn, and Asp residues are 

preferred in the proximal flanking regions [176]. 

Based on hard-sphere Monte Carlo simulations, the propagation of the PPII helix is 

logically explained by the interaction between the prolyl ring and the backbone (Cβ) of the 

previous residue. However, this logic breaks when a poly-Alanine adopts a PPII conformation, 

and therefore, a better explanation could be the neighboring environment and the presence of polar 

residues. PPII does not have characteristic main chain H-bonding pattern; thus arguably, Ser, Thr, 

Gln, and other polar residues can stabilize the PPII helix by non-local hydrogen bonding with the 

backbone [171,175] 

Therefore, the overall survey of amino acid propensities reveals that propensities of amino 

acids in PPII are highly context based. The composition of amino acids seems to deviate according 

to the presence of PPII in fibrous or globular protein context. 

 

S1.3 Assignment methods for PPII 

 

PPII dihedral angles are quite particular. The most classical way to analyse them is to use 

Ramachandran map (1963), as shown in Figure S1.3. As briefly discussed in thesis introduction 

section I.1., the map is based on calculations of dihedral angles between the two adjacent planes 

of protein backbone, hinged at Cα atoms. The dihedral rotation of the planes is restricted by the 

steric clashes that define the disallowed regions on the map. Therefore, the map is a very powerful 

tool to assess the stability of a structure based on the local analysis of degrees of freedom for 

dihedral planes. Further evolution of the map leads to the marking of areas for specific secondary 

https://paperpile.com/c/wsrnTw/cIGB
https://paperpile.com/c/wsrnTw/cIGB
https://paperpile.com/c/wsrnTw/QEGj
https://paperpile.com/c/wsrnTw/RMex+cIGB
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structures, namely, α-helix, β-strands, and later β-turns (see Figure S1.3A). Lately, allowed region 

for PPII was assigned in the north-western quadrant of the map, allowed for β-strands (see Figure 

S1.3B). A recent review catalogues the evolution of Ramachandran map very efficiently [177]. It 

is, however, very distinctive observation that Prof. Ramachandran incepted the idea based on the 

collagen hydrogen bonding argument [161,178], which arose due to the presence of 

hydroxyproline [160]. 

Figure S1.3: Ramachandran Map. A) From a non-redundant dataset of the Protein Data Bank. 

B) highlights the allowed region for PPII helix assigned using modified DSSP approach [169]. 

Visualisation is done with the R software (R CoreTeam 2013). 

 

More than 20 secondary structure assignment methods (SSAM) had been published in 30 

years [51,54,179–198]. They have been defined with various criteria [199]. The most popular 

SSAM uses backbone hydrogen bonding pattern-based methods. Nonetheless, very few SSAM 

assigns PPII to the protein coordinates. Only five SSAMs, to be more precise, include the 

assignment of PPII conformations. 

 

XTLSSTR [187]: The first available approach was XTLSSTR , where a structure is assigned based 

on a simple approach similar to the visual inspection of secondary structures. It calculates three 

distances and two angles based on the backbone geometry and then searches for amide–amide 

https://paperpile.com/c/wsrnTw/yCKw
https://paperpile.com/c/wsrnTw/bHwt+LRBv
https://paperpile.com/c/wsrnTw/xWsQ
https://paperpile.com/c/wsrnTw/mA5O+e2UZ+Yt9o+v9Oi+agmR+ho9X+NU9Y+Nk5T+n5Lc+BDN7+hN4I+v5rU+t9ED+iqEh+ERm8+3gWk+613N+6hin+h6Lc+aSPq+JtUa+FwrY
https://paperpile.com/c/wsrnTw/fhCn
https://paperpile.com/c/wsrnTw/hN4I
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interactions. It successfully assigns α-helix, 310-helix, extended β-strand, hydrogen bonded and 

non-hydrogen bonded turns, and polyproline (type-II) helices. 

 

SEGNO [182]: makes assignment based on distance and torsion angle calculation. For assigning 

PPII, it uses dihedral angles between the two-peptide planes separated by one and two residues, 

respectively, named diheco and diheco2. An important observation is that PPII is assigned when a 

residue is not defined as β-strand by SEGNO and lies within predefined values of Φ and Ψ angles. 

Later, taking into account the range of the four diheco angles (220–270 and 100–140), the PPII 

helical conformation is assigned to the residue. These thresholds are relaxed for the termini of PPII 

with a minimum length of the helix to be three residues and the overall shape of PPII is deemed to 

be like a triangular prism. 

 

PROSS [200]: uses the concept of mesostates from a torsional grid for the assignments. The grid 

is described as the unit squares covering all areas in a Ramachandran map. The grids are of two 

kinds based on their unit area: smaller unit square: fine grid and broader unit square: coarse grid. 

Based on the type, each unit grid is referred to as a coarse/fine mesostate. Therefore, in principle, 

the Ramachandran plot is converted into a Φ/Ψ grid with marked regions (allowed, favourable, 

and disallowed) covering more than one mesostates. In a very similar approach related to SEGNO, 

PROSS also does not directly assign PPII conformation rather resolve it out after β-strand 

leftovers. 

 

DSSP-PPII [169]: is an extension of DSSP with included dihedral angle parameters for PPII 

assignment, thus isolating PPII from coils. DSSP-PPII uses dihedral space (Φ and Ψ, −75° and 

+145°) to define the core of PPII while increasing the space by a metric value, ε, radiating out at 

1°. The value of ε is chosen as an equilibrium between the number of amino acids assigned as PPII 

by the three previous approaches plus, an extra constraint that two consecutive dihedral angles 

should be assigned as PPII. One of the major features of this method is to use DSSP that is already 

an established and trusted method for other secondary structure elements (SSE). Therefore, the 

code can be adapted to apparently any other assignment method, if and when required. A specific 

database had been proposed to the scientific community [169] 

https://paperpile.com/c/wsrnTw/v9Oi
https://paperpile.com/c/wsrnTw/fLAS
https://paperpile.com/c/wsrnTw/fOSI
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 A major caveat to use DSSP-PPII is that the DSSP at its foundation is the old DSSP (cbmi 

version) and not the corrected version from 2011 [144]. As discussed in section 1.2.3, the old 

version of DSSP is prejudiced towards π-helices and often assign them into α-helices or β-turns. 

However, since the script is portable, current efforts are taken into account to adapt the script with 

new version of DSSP and include PPII helices too in chapter-1 analysis of α-, 310-, and π-helices. 

 

ASSP [127]: is an extension of helical geometry calculation program, HELANAL-plus (Bansal et 

al. 2000) that is used to calculate the local helical structure parameters: twist, rise, virtual torsion, 

and radii. ASSP uses the difference between these parameters calculated over two or more adjacent 

Cα windows of four residues. Later, in the protocol, the overlaps are resolved based on the 

established minimum lengths of helices: α- (4), 310- (3), π (5), and PPII (3). Therefore, PPII 

conformations are assigned based on the helical geometry of the local region. Since it uses 

HELANAL, which further is based on Sugeta and Miyazawa, and Shakarji methods for helical 

geometry, ASSP tends to assign β-sheets with less efficiency [201,202]. Kumar et al, applied ASSP 

to analyse in detail the PPII [176] and found that near 3/4 of PPIIs occur in conjunction with α-

helices and β-strands, and serve as linkers as well. They also underline a large number of CH···OH-

bonds. 

All these methods are well designed for PPII assignments. However, most of them tend to 

assign PPII by indirect approaches due to the different bonding patterns of PPII. Unfortunately, 

the number of PPII assignment approaches is still limited compared to SSAM for other secondary 

structure elements, and remains a limitation for the use by scientific community. 

 

S1.4 Physiological importance of PPII 

 

A distinct feature of polyproline helices is that unlike other SSE, they do not have intra-hydrogen 

bonding thus making the backbone as well as the side chains highly solvent accessible. Such 

conformations would be hankering for finding partners for hydrogen bonding and stabilization. 

Therefore, the sequence and structural characteristics of PPII make it worth to be probed for 

partnered interactions. One of the important tools to study the PPII role in protein–protein and 

DNA–protein interactions is the SH3 domain models. SH3 (Src homology 3) domains are small 

yet important structural domains involved in cell signalling and regulation, e.g., Tyrosine kinases. 

https://paperpile.com/c/wsrnTw/6fHy
https://paperpile.com/c/wsrnTw/lb5P
https://paperpile.com/c/wsrnTw/7Rae+sjbm
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SH3 domains are also well known to interact with PPII conformations [203]. Hence, host-pathogen 

models designed with SH3 domains are critical to understand the interaction space of PPII 

conformation with respect to proteins and/or nucleic acids.  

Many such studies focusing on signal transduction and cell–cell recognition have been 

explored for potential PPII–protein and PPII–nucleic acid interactions [204,205]. For instance, C-

terminus of Synapsin-I, a protein regulating synaptic vesicle transport in neurons, is a proline-rich 

region. Synapsin-I interacts with the cytoplasmic polyproline region of membrane protein, vesicle-

associated membrane protein 1 (VAMP-I) [205]. Phosphorylation of a serine residue upstream of 

C-terminus PPII helix regulates the secretion of a synaptic vesicle, while VAMP-I helps in 

recognition. Similarly, in Ras-GTP signalling pathway, the SH3 domains of the adaptor protein 

bind to the polyproline region of SoS protein (xPxxPPPψxPx) leading to the exchange of GTP. 

Another set of interactions [206] is in vacuolar sorting, where SH3 domain of phosphatidylinositol-

3 kinase binds to the GTP-binding protein. 

Structurally, it is acknowledged that the PPII helix-binding region of SH3 domain is a 

smooth hydrophobic surface flanked by conserved charged residues [206]. The PPII interactions 

also have a significant structural–functional role in transcription, as many transcription factors 

have proline-rich terminals [207]. This could also indicate the role of PPII interactions in 

multimeric complex formation during transcription. A well-characterized case of PPII–protein 

interaction is the RNA polymerase II (RNApolII). C-terminus of RNApolII has multiple copies of 

conserved motif YSPTSPS, which further is a two-fold SPXX motif. SPXX is a DNA binding motif 

found in DNA binding domains [208,209]. Furthermore, Hicks and Hsu (2004) investigated the 

structural aspects of PPII in DNA binding and recognition [204]. Exemplifying with three DNA 

interacting proteins viz.; the third K homology domain of NOVA-2 see Figure S1.4 [210], the 

Epstein–Barr nuclear antigen-1, and the Drosophila paired protein homeodomain, they quantify 

the binding of PPII to the nucleotides’ minor groove and underline the specificity and non-

specificity of recognition. The optimal size and specific recognition offered by PPII backbone 

residues strongly suggest to identify PPII as a nucleic acid binding motif [204]. 

https://paperpile.com/c/wsrnTw/fBYD
https://paperpile.com/c/wsrnTw/gZoR+ITiv
https://paperpile.com/c/wsrnTw/ITiv
https://paperpile.com/c/wsrnTw/kjcR
https://paperpile.com/c/wsrnTw/o9X7
https://paperpile.com/c/wsrnTw/l5Py+WUqy
https://paperpile.com/c/wsrnTw/gZoR
https://paperpile.com/c/wsrnTw/t5a7
https://paperpile.com/c/wsrnTw/gZoR
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Figure S1.4 Interaction of Nova Protein K homology domain with RNA hairpin (PDBid: 

1EC6_A [210]). The conserved motif of the variable loop is coloured in yellow. The two PPII 

helices are coloured in magenta. The occurrence of C-term PPII helix is reported to be the 

difference between RNA bound and unbound form. Image is generated with the PyMOL software. 

 

S1.5 Pathological roles of PPII 

 

Role of PPII in protein–protein and DNA–protein interactions, and its role in sorting and transport 

mechanisms have been investigated. KISS-1 Receptor (KISS1R) in its intracellular domain has 

three triplets of Proline–Arginine–Arginine (PRR). The addition of a fourth triplet induces the 

formation of a PPII, and inhibits KISS1R presentation on cell membrane. The retention of KISS1R 

in cytoplasm ceases the interaction with KISS peptin and thus abolishes the secretion of GnRH 

leading to Hypogonadotropic hypogonadism [211]. Besides, several studies using ROA (Raman 

optical activity) and VBD (vibrational circular dichroism) structural visualization techniques 

confirm the presence of PPII conformation in pathological fibrillar aggregates [163,170,212]. 

Conversion of PPII to β-sheet conformation in amyloidogenic precursor of human lysozyme may 

indicate a highly potential role of PPII in numerous amyloid-based conformational disorders [212]. 

https://paperpile.com/c/wsrnTw/KPKW
https://paperpile.com/c/wsrnTw/Yzda+BpTT+l7n6
https://paperpile.com/c/wsrnTw/Yzda
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For instance, phosphorylation of a threonine flanked by a PPII in Tau protein leads to the 

misfolding and aggregation of microtubular proteins in Alzheimer’s disease [213]. A similar role 

of PPII has been found in α-synuclein, responsible for aggregation in Alzheimer’s and Parkinson’s 

pathologies [170]. Taken together, this emphasizes a deeper understanding of PPII structural 

features [214]. 

 

S1.6 Recent advances in PPII research 

 

The growing interest in physico-chemical and structural properties of PPII, especially their short 

extended-helical structure has attracted the attention of pharmaceutical companies. Very recently, 

cell-penetrating vector approaches are designed based on PPII scaffold [54,215–219]. As discussed 

in section S1.4, PPII backbone has a high solvent accessibility and thus becomes highly hydrated 

in solvents. Therefore, use of PPII for cell penetration poses a challenge for hydrating the PPII-

based moiety and their convenient uptake in hydrophobic membranes [216]. Chmielewski’s group 

[220,221] addressed this by designing and introducing cationic and hydrophobic moieties on the 

PPII backbone and observed no structural change. The compactness and inherent flexibility of the 

PPII conformation is the key to their adaptability and accompanied by cationic and hydrophobic 

moieties; they become highly suitable for a cell-penetrating vector [222]. A tremendous increase 

in PPII-based Cell-Penetrating Peptide (CPP) uptake compared to the traditional ones has been 

reported.  

Another important difference is the claimed reduction in toxicity. This is based on the 

observations that PPII scaffold-based CPP: Sweet ArrowPeptides—SAP(E)—obtain a net 

negative charge unlike the traditional CPP which are positively charged [216,217]. 

 

S1.7 Summary: To consider PPII as a regular secondary structure 

 

Polyproline II helix is arguably a distinct member in secondary structure elements, based on its 

geometry, sequence, and structure. PPII has a left-handed geometry unlike the right-handedness 

of popular protein helices (see Fig S1.2). Its sequence composition varies based on the presence in 

a globular or fibrous protein environment. It is quite an interesting observation that proline, a major 

α-helix breaker or kink inducer, when in succession adapts a distinct helical form itself. Moreover, 

https://paperpile.com/c/wsrnTw/w4dk
https://paperpile.com/c/wsrnTw/l7n6
https://paperpile.com/c/wsrnTw/AFGL
https://paperpile.com/c/wsrnTw/b5lV+ho9X+zeOl+Zw3H+1XTV+msvL
https://paperpile.com/c/wsrnTw/zeOl
https://paperpile.com/c/wsrnTw/MuRP+js2t
https://paperpile.com/c/wsrnTw/t5no
https://paperpile.com/c/wsrnTw/zeOl+Zw3H
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it dominates the α-helical form in denatured space. Such examples can be appreciated in light of 

the expanse of the secondary structural space. Although PPII conformation represents only 5% of 

the conformational space, it is highly recommended for it to be considered in the regular secondary 

structures. Besides, its representation is equivalent to, if not more than, the 310-helices. The 

involvement of PPII–protein and PPII–nucleic acid interactions in different pathologies, structural 

applications, and drug carriers makes it even more viable candidate to be included in the main 

regular secondary structures. Its potential role in Alzheimer’s and Parkinson’s could not be 

ignored, given recent publications on the subject. The presence of PPII in regular, ordered, and 

disordered regions while establishes that its distinctiveness is not sufficient to seize the complete 

structural space of PPII conformations. Therefore, more assignment approaches and coiled library 

experiments are needed to explore such conformations. Figure S1.5 shows the number of 

publications about PPII since 1968. The increase is clear, but remains limited. The number of 

papers had never been higher than 100 papers/per year. Therefore, we can hope for a better 

representation of PPII among regular secondary structures. 

 

Figure S1.5. Year wise publications trends on Polyproline II helices. The bars depict the number 

of publications corresponding to the year on x-axis. An exponential function is represented in blue 

curve. Dark towers show the sudden surge in publications compared to the previous year. 

Visualisation is done with the R software (R Core Team 2013) 
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Dissemination of results 

 

The information from chapter S1 was archived as a mini review article: Narwani T.J., Santuz H., 

Shinada N.K., Melarkode Vattekatte A., Ghouzam Y., Srinivasan N., Gelly J.-C., de Brevern A.G. 

Recent advances on polyproline II. Amino Acids (2017) 49(4):705-713. 
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Chapter 2: Understanding local structure behaviors using Protein Blocks 

 

2.1 Introduction 

In Chapter 1, a systematic analysis of dynamic behavior of helical structures was performed. 

Therefore, Chapter 2 extends the similar question to β-strands or rather precisely, non-helical 

secondary structures which were not focused upon in Chapter 1. Besides using DSSP v2.2.1, 

Protein Blocks (PB) will also be used to have maximum coverage of the local structural space. 

Since PB are 5 residue length based abstraction of the protein structure backbone, PBs are expected 

to provide better insights into the dynamics of local protein structure. 

 

2.1.1 A brief recap 

The α-helix (or 3.613 helix) and the β-sheet have been extensively analysed since their discovery 

by Pauling and Corey, 65 years ago [98–100,151]. The secondary structure description of protein 

structures had led to the development of more than 20 secondary structure assignment 

methodologies [51,54,179–198], with DSSP being the most popular one [51]. Such descriptions 

have often been updated from time to time to include other types of secondary structures such as 

β-turns [22,150,155,186], PolyProline II [168,171,223,224] and loops categorization [225,226]. 

However, no single secondary structure assignment method (SSAM), have been designed for all 

types of known secondary structures. Therefore, specialists often have to use different SSAM 

based on its expertise and then normalize individual results to obtain a meaningful ss assignment. 

Such an example can be seen in sub-chapter 3b of this thesis. 

 

2.1.2 Limitations of SSAMs      

Analysis using different SSAM can still have some limitations such as the non-definition or 

ambiguity of the coil state, some known problems with short repetitive structures and ofcourse, 

the discrepancies between different algorithms [198,227–229]. Hence, alternative views have been 

proposed using systematic analysis of all local protein conformations. It has motivated the 

development of local protein structure libraries that (i) are able to approximate all (or nearly all) 

local protein structures and (ii) do not take into account the classical secondary structures. Such 

libraries brought about the categorization of 3D structures, without any a priori, into small 

https://paperpile.com/c/wsrnTw/pZo1+l4dM+ksvr+8bGz
https://paperpile.com/c/wsrnTw/mA5O+e2UZ+Yt9o+v9Oi+agmR+ho9X+NU9Y+Nk5T+n5Lc+BDN7+hN4I+v5rU+t9ED+iqEh+ERm8+3gWk+613N+6hin+h6Lc+aSPq+JtUa+FwrY
https://paperpile.com/c/wsrnTw/NU9Y
https://paperpile.com/c/wsrnTw/fd9O+BDN7+cWsQ+Jifn
https://paperpile.com/c/wsrnTw/DGQa+RMex+Iiy7+1pRi
https://paperpile.com/c/wsrnTw/ltWF+fyiE
https://paperpile.com/c/wsrnTw/aMwr+HW7B+FwrY+BZ9e
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prototypes that are specific to local folds found in proteins. The complete set of such local structure 

prototypes defines a structural alphabet [230]. 

 

2.1.3 Why Protein Blocks? 

The precursor research in defining a structural alphabet was carried out by Unger and co-workers 

[231]. This led to numerous applications, from the analysis of sequence-structure relationship 

[232] to the prediction of short loops [229], etc. In this context, Protein Blocks have been the most 

successful structural alphabet [53,233] and following are few studies where PBs are extensively 

used: 

(i) 3D protein backbone description [233], (ii) Local structure prediction [53,58,234], (iii) 

Description and the prediction of long fragments [64,235–239], (iv) Prediction of short loops 

[228,229], (v) Analysis of protein contacts [240], (vi) Structural modelling of transmembrane 

proteins [241,242], (vii) Definition of a reduced amino acid alphabet dedicated to mutation design 

[243,244], (viii) Protein structure superimposition and comparison [245–247]; (ix) Reconstruction 

of globular protein structures [248], Peptide designing [249], and (x) Definition of binding site 

signatures [62]. A recent impressive development concerns the inclusion of PBs in threading 

approaches [250,251] and especially to an efficient one called ORION [252,253]. 

Interestingly, PBs show great use for analysis of protein flexibility [18] using molecular 

dynamics in the specific cases of Integrins [254,255], transmembrane proteins like KISS1R [211] 

and NMDA Receptor Channel Gate [256]. Therefore, PB was selected as the choice for structural 

alphabet to analyse the dataset of 169 protein domains (see section 1.2.1). 

 

2.1.4 Previous studies on local flexibility of protein structures 

The number of large-scale analyses of protein dynamics remain slightly limited. A prominent one 

is the Dynameomics project [257]. It simulated a representative sample of all globular protein meta 

folds and focuses on the unfolding process. Although a robust study to probe protein folding, it 

does not correspond to the analyses of protein flexibility. A database is available and provides 

visual results [258]. A more related study can be the work of Grubmüller’s group namely 

Dynasome [259]. They showed that in the 34 different descriptors defined to characterize the 

simulation of the 112 proteins, only a few Collective Dynasome descriptors describes most of the 

https://paperpile.com/c/wsrnTw/20vG
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https://paperpile.com/c/wsrnTw/SsOz
https://paperpile.com/c/wsrnTw/BZ9e
https://paperpile.com/c/wsrnTw/iBc4+xASZ
https://paperpile.com/c/wsrnTw/xASZ
https://paperpile.com/c/wsrnTw/iBc4+P8Ie+R6VG
https://paperpile.com/c/wsrnTw/QSYM+4gnG+BrI5+1BhA+ICLj+B3Dj
https://paperpile.com/c/wsrnTw/BZ9e+HW7B
https://paperpile.com/c/wsrnTw/vlUE
https://paperpile.com/c/wsrnTw/jsSk+H9Zl
https://paperpile.com/c/wsrnTw/GwyN+LYbp
https://paperpile.com/c/wsrnTw/FCQy+FKiO+CaTI
https://paperpile.com/c/wsrnTw/LY4F
https://paperpile.com/c/wsrnTw/oaHY
https://paperpile.com/c/wsrnTw/chdc
https://paperpile.com/c/wsrnTw/EeTv+Iyqy
https://paperpile.com/c/wsrnTw/tYiJ+X1sl
https://paperpile.com/c/wsrnTw/OfYB
https://paperpile.com/c/wsrnTw/n9NE+bFNx
https://paperpile.com/c/wsrnTw/KPKW
https://paperpile.com/c/wsrnTw/bZfn
https://paperpile.com/c/wsrnTw/ietM
https://paperpile.com/c/wsrnTw/3XDW
https://paperpile.com/c/wsrnTw/la2C


 

72 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

movement. However, that cannot be defined as a local structural analysis as the Dynasome 

descriptors define the structures globally. 

 Thus, it would be worth to see the dynamics of proteins from the local structure perspective 

that can provide insights on the inherent protein flexibility. 

 

2.2 Methods 

 

All the methods used were same as Chapter 1, given that the same data set was operated upon. 

However, the clustering method as well as use of PB is different. 

 

2.2.1 Data set preparation - Same as section 1.2.1 

2.2.2 Molecular dynamics simulations - Same as section 1.2.2 

2.2.3 Analysis of local protein conformation 

For the analysis of non-helical states, the secondary structures were assigned using DSSP ver 2.2.1 

for the same reasons as cited in section 1.2.3. The DSSP states analysed under the current chapter 

are:  

Turn (T), Bend (S), β-bridge (B), Extended β-strand (E), and coils (C) 

Protein Blocks were assigned using PBxplore [69] toolkit from GitHub. To follow the evolution 

of a local protein conformation in regards to its original PB assignment, a simple constituency PB 

ratio, named CPB was calculated. CPB is the percentage of times the PB x is found associated at this 

position where x is the initially assigned PB. 

 

2.2.4 k-means Clustering 

A residue is initially associated to one of the 8 defined secondary states assigned by DSSP [51] 

and one of the 16 PBs [53]. During MDs, DSSP and PBxplore are used again to assign the protein 

chain secondary structures. Hence, each residue is associated to a vector of size S = 8, representing 

the 8 defined secondary states and more specifically the occurrence of each observed state. For 

PBs the vector size is S = 16. To define common behaviors between residues, a k-means clustering 

approach was used [145].  

At first, a subset is created. It represents all the residues that were associated to this state 

before MD, e.g. PB d. Then a fixed number of clusters k is determined. The k clusters are of size 

https://paperpile.com/c/wsrnTw/g1vn
https://paperpile.com/c/wsrnTw/NU9Y
https://paperpile.com/c/wsrnTw/iBc4
https://paperpile.com/c/wsrnTw/7JMh
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S=16 for PBs and S = 8 for secondary structures analysis. All the data of the subset is compared to 

each of the k cluster, and the one with the minimal Euclidean distance is considered as the winner. 

After one cycle (after all the subset have been used), the values of the k clusters are modified to 

correspond with the associated observations. That is each cluster is the barycentre of the associated 

observations. After few cycles, the k clusters are stable and can be analysed. This will provide 

answers to questions like, how the residues associated to PB d assignment have evolved. 

 

2.3 Results and discussions 

 

2.3.1 Analyses of the data-set and simulations 

In the secondary structure dataset, α-helix has the most assignments at a frequency of 31.4% 

succeeded by the frequency of extended β-strand (E) at 24.5%. Least assigned secondary structures 

by DSSP v2.2.1 were π-helix (0.32) and β-bridge (1%). Table 2.1 summaries the frequencies for 

different DSSP states. 

 

Table 2.1 Frequencies of occurrences of DSSP states during dynamics. The table summarizes 

the frequency of occurrences of all the DSSP states during MD simulations of 169 domains. 

 

 Protein blocks also showed similar statistics with PB m (approximately the core of an α-

helix) being assigned the most (28.9%). PB d that can be assumed closer to the core of a β-strand 

was assigned 19.8% of time. If a complete correspondence is to drawn between the frequecies 

DSSP states and PBs, then α-helix and β-strands are represented at 31.4% and 24.5% of times 

respectively by DSSP while ~35% and 30% of time respectively in PBs. For PBs, the values are 

calculated by adding the frequencies of PB l, m, and n, and PBs c, d, and e, since PBs l and n 
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approximate terminus of an α-helix while PBs c and e approximates β-strand N and C caps. Table 

2.2 summarises the observed frequencies of all the 16 PBs.  

 

Table 2.2 Frequencies of occurrences of all PBs during dynamics. The table summarizes the 

frequency of occurrences of all the 16 PBs during MD simulations of 169 domains. PB m and d 

are the most commonly observed PBs which is an indicator of order in the structure and less 

flexibility during dynamics. 

 

Distributions of normalized B-factor, normalized RMSf and relative solvent accessibility follow 

classical distributions as observed in chapter 1 (see Fig 2.1A to 2.1C). The correlation between 

normalized B-factor and normalized RMSf is 0.43, while their correlation with Neq is low, i.e. 

0.24 and 0.14, respectively. Both B-factors and RMSf are global properties as they take into 

account the overall structure for calculations. Neq on the other hand is a local and precise value 

for the given position and can be influenced by ±2 neighbors since PB is a 5 residue long prototype. 

Therefor, low correlation between B-factors, Neq and RMSf, Neq may indicate that the local 

structures in the dataset proteins behave differently than the overall protein dynamics. Indeed, 

more than 60% of the residues have an Neq of 1.0, i.e. does not change during all simulations, 
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while only 0.8% have a Neq higher than 4 (see Fig 2.1D). This indicates that overall the 169 chains 

have high mobility but their local structural regions do not move intrinsically. 

 

Figure 2.1 Distributions of different structural properties. A) Normalized B-factor, B) 

Normalized Root mean square fluctuations (RMSf), C) Relative solvent accessibility, D) 

Equivalent number of PBs, Neq. The image can be divided in to two panels. Left panel includes 

distributions for structural properties of static structures while right panel displays the structural 

properties of protein dynamics. 

 

2.3.2 Dynamics of the non-helical secondary structures 

Figure 2.2 shows a summary of the dynamic evolution of all non-helical states. Near 95% of the 

residues assigned to β-strand remains as β-strand during the dynamics while 4.2% goes to coil 

state. Interestingly, the rare β-bridge that tends to remains associated to β-bridge, also goes to coil 

state 12.8% and β-sheet with 10.3% of times. Unlike helical states, where interconvertibility was 
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seen to some extent, non-helical states tend to have more perseverance. However, slight exchanges 

can be seen between bends (12.07%) and turns (7.23%). 

 

Figure 2.2 Dynamic exchanges of non-helical DSSP states. All the initial DSSP non-helical 

states are shown on x-axis (a vector S=5). On y-axis are all the DSSP states to which changes 

during dynamics are measured. The color scheme varies from blue to red, with red being the 

maximum and blue being minimum. The β-strand can be seen to remain as β-strand for 94.34% 

for times. This suggests the rigidity associated with β-strands. Turns (T) and Bends (S) remain as 

T and S for 75.69% and 74.77% of times but also interchange with: T to S – 12.07% of times while 

S to T – 7.23% of times. 

 

2.3.3 Cluster analysis of non-helical states 

Clusters were named with the most characteristic state other than initial state. For instance, βbridge 

would translate to that β-strand dominant cluster have β-bridges as the second most dominant state 

in the cluster.  
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2.3.3.1 Clusters of β-strand 

The first cluster is cluster β (>99% of ‘E’ assignments). is represents 92.2% of the 

occurrences with extremely low normalized B-factor (-0.48) and normalized RMSf (-0.53), it 

corresponds to the most buried part of the dataset (mean relative accessibility of 14.4). Figure 2.3 

shows the clusters for β-strands (E) in detail. The last four clusters have higher relative 

accessibility ranging between 21.6 and 28.9. They are named βC1, βbridge, βTurn, and βC2. As expected 

βC1 and βC2 are the most occurring with a frequency of 3.9% and 2.4%, respectively. The βC1 cluster 

is relatively more rigid with nBfac value of -0.20 and nRMSf of -0.22 compared to -0.03 of βC2 

cluster. βC1 also have the most β-strand content with near 2/3rd of the cluster consisting of β-strand 

vs only 14% in case of βC2.  

 Figure 2.3 Evolution of β clusters. The image comprises of a table that provides details 

about the individual frequency of the cluster and structural properties along with the behavior of 

DSSP states in different clusters 
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A βTurn cluster having a small frequency of 0.84% also appeared. It is quite flexible with 

regards to other clusters and display the highest accessibility among the 5 β-strand clusters.  

However, βbridge forms a rigid cluster second to pure β cluster with nBfac of -0.31 and a low RMSf 

of -0.22. Surprisingly, it is the cluster with least frequency (0.6%) and represents 54% β-bridges, 

6% coil and 39% β-sheet. 

 

Figure 2.4 Evolution of β-turn clusters. The image comprises of a table that provides details 

about the individual frequency of the cluster and structural properties along with the behavior of 

DSSP states in different clusters. A major share of the cluster Turnα is contributed by α-helices 

(52%). This depicts the interconversion among helices and turns. 

 

2.3.3.2 Clusters of β-turns 

Venkatachalam first described and classified the β-turns as hydrogen bond turns [22]. 

Later, the definition of turns evolved from an energetic to a distance criterion between Cα [151]. 

DSSP differentiates between hydrogen bond turns (namely turns, T) and non-hydrogen bond turns 

(namely bends, S) [51]. A turn has a perseverance with a rate of 75.7% (see Fig 2.2) while it can 

transform to bends at 12.1% or to an α-helix (4.7%), coil (4.0%), 310-helix (3.0%) but rarely it is 

https://paperpile.com/c/wsrnTw/fd9O
https://paperpile.com/c/wsrnTw/8bGz
https://paperpile.com/c/wsrnTw/NU9Y
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seen transforming to bridges or strands. The percentage of bends and helical state is expected, as 

310-helix was often confused with type III β-turn (obsolete).  

The clustering reflects these results with 5 cluster belonging to Turns (Fig 2.4). Pure turn 

cluster, represents 63.8% of the initial turns while the rest four in decreasing order of their turn 

representation are:  Turnbend1, Turnbend2, Turnα, and TurnC. The clusters are characterized by higher 

normalized B-factor (0.42 to 0.88) and normalized RMSf (0.32 to 0.74). All clusters show high 

relative solvent accessibility above 50% with an exception of Turnα having 36.9% accessibility. In 

conclusion, (hydrogen bond) turns are not so rigid with the extreme being TurnC having an nBfact 

of 0.88 and nRMSf of 0.74. 

  

2.3.3.3 Clusters of bends 

 Slightly less frequent than turns, they also transform less to helical states relative to turns. 

Consequently, the perseverance analysis reveal that 71% of bends remain as bends and 14.8% goes 

to coils, 7.2% to turns and 1.6% to β-strands (Fig 2.2). These results are similarly reflected in the 

five clusters for bends. 

The pure bend cluster occurs 63.8% of the time, followed by bendC1, bendC2, bendturn, bendβ 

in decreasing order of their occurences of bends. Figure 2.5 show the details about the 5 bend 

clusters. The clusters, bend, bendC1, and bendC2 are more rigid than Turns clusters with lower 

nBfac, nRMSf and rASA values. The bendturn is an equivalent of the two Turnbend (Turnbend1, 

Turnbend2). The unique cluster among 5 bend clusters is the bendβ that transforms at a rate of 63% 

to β-sheet, 25% to bends and 11% to coil. It has the lowest nBfac value, lowest rSA yet accessible 

at 30.1% but surprisingly, it has the highest nRMSF of 0.98 that is the highest mobility observed 

in any of the non-helical clusters. 
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Figure 2.5 Evolution of clusters for bend. The image comprises of a table that provides details 

about the individual frequency of the cluster and structural properties along with the behavior of 

non-helical DSSP states in different clusters. Although bends and turns are similar in structure 

yet, for Bends unlike turns, an α cluster does not appear. Although in BendTurn cluster slight 

tendencies to change to helices can be seen. This can also arise if there is a misidentification of 

turns (59%) by DSSP. 

 

Hence, even if turns and bends are highly comparable, they have unexpected specificities. 

The lack of hydrogen bonds at short range allows for a limited number of bends to participate 

dynamically in β-sheet and forms a specific recurrent cluster. For the turns, a specific cluster 

exchanges with α-helix state, but not specifically w ith 310-helix. 

 

2.3.4 Overall PB analysis with respect to the initial assignment 

As seen in Figure 2.1D, more than 60% of the residues have an Neq of 1.0, i.e. no change of PB 

assignment during the whole simulation. This rigid-constituency is highly dependent of the type 

of PBs. PBs geometrically related to core of repetitive structures like PB m (for α-helix) and PB d 

(for β-sheet) remained preserved at 100% with respective frequency of 86.2% and 75.4% (the 

values pertain to CPB as shown in Table 2.3).  
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Table 2.3 CPB - Frequency of PB staying in the initial PB assignment. Analysis done using 8 

different thresholds with 100%, the residues that are only seen during their dynamics associated 

to their initial PB assignment. Followed by 99-90%, 89-75%, 74-50%, 49-25%, 24-10%, 9-1% 

and finally less than 1%. 

 

 

It decreases very rapidly in a strong gradient with PBs n (66.6%), l (63.2%), i (60.7%), a 

(60.0%), f (59.9%), k (56.5%), h (53.7%), o (51.2%), c (50.1%), b (46.5%), e (43.1%), p (39.9%), 

j (19.1%) and g (16.2%). These CPB tendencies hold valid at every level of perseverance of the 

initial PB as well as inversely. Therefore, if an assigned PB does not have high conservation for 

100% of the time, its occurrences at shorter intervals, like 49-25% or 24-10% will add up to the 

CPB. Thus the PB at that position remains preserved. For instance, the lowest CPB in 100% threshold 

is for g (16.2%) and j (19.1%). At less than 50% of the times, the highest CPB are found associated 

to PBs g (40.3%) and j (16.2%) and not with PBs d (4.8%) and m (3.9%). Hence a strong 

correlation exists between the original assignment and the conservation of the local protein 

conformations. This leads to the occurence of the same PB and therefore low Neq. 

However, a simple question may arise that if such CPB observations are not due to the 

accessibility of the residues? If a local protein conformation is accessible, it’s probability to change 

increases. Such tendency does exist but is not a binary case for every PB (see Fig 2.6).  
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For PBs m and d, the percentage of rigid position (CPB >75%) is largely higher than in the 

deformable class (CPB <25%) and is directly linked to their solvent accessibility. However, the PB 

n does not show this simple (and expected) tendency, the difference between rigid and deformable 

position is not significant. Depending on the type of PBs, it goes from a slight tendency to no 

tendency at all. For instance, PB j that is one of the two less constraint PBs, is more exposed than 

the others. It has the same distribution of relative accessibility in the deformable classes and the 

rigid ones. Hence, no specific rules can be observed here. 

Figure 2.6 CPB in regards to relative solvent accessibility. Following the analysis of CPB 

in table 2.3, the percentage a residue stay associated to its initial PB assignment was linked to the 

relative solvent accessibility (rSA). For each PB, four classes were defined to consider the 

association to initial PB, ranging from high (>75%, green), medium (75-50%, purple and 50%-

25%, blue) to low (>25%, pink). In each panel, on the left is shown the occurrences, while on the 

right are the normalized values to 100% for every rSA value. The four PBs shown here are PB d 

(top left), PB m (top right), PB j (bottom left), and PB n (bottom right). The difference between 

rSA tendencies of the lower panel do not agree with those of top panel ones. The rSA profiles of 

PB d and m differs in different classes while for PB n these is no significant difference and for PB 

j there is no difference at all. 
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Figure 2.7 shows the distribution of PBs accordingly to the initial assigned PB. It reflects 

the previous results underlying the important frequencies of PBs m and d (96% and 94%), and the 

low frequencies of PBs g and j (59% and 72%) to stay as assigned. It also shows the 

interconvergency amongst PBs, if any. Hence seven PBs transforms to PB m with a frequency 

higher than 2% (a threshold used in all representation) and eight to PB d. 22% of these transitions 

are observed, the highest one being PB g to PB p (9%), PB g to PB c (8%) and to PB e (6%), and 

from PB p to PB m (6%). While most of the transitions are logical in a way that geometrically they 

stay in similar neighborhood. Another way to analyse the evolution of PBs is the computation of 

Neq (see Fig 2.7).  

 

Figure 2.7 Exchange rates among different PBs. The plot shows the different PBs a residue 

adopts during dynamics. x-axis is labelled as ‘from’ i.e. the initial PB assignments and y-axis are 

the 16 PBs it has a possibility to change to. The color scheme for the plot is same as used before, 

blue shows minimum values while red shows maximum establishing a range between them. PB d, 

f, k, and m shows strong tendencies towards perseverance. PB g however, is the relatively less 

conserved and can transform to other PBs like, PB p, c, e, m, a, d, and n. This is reflected in the 

Neq plot on the alternate y-axis. 
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2.3.5 Cluster analysis of Protein blocks- PB evolution 

Clusters were generated using k-means approach to study the behavior of individual PBs. Thus, 

80 (16 * 5) clusters were generated and analyzed. Figures 2.8 through 2.11 shows a summary of 

their recurrent behavior highlighting clusters of PBs a, b, g and f. The clusters are named based on 

the dominant PB in the cluster.  

 

 2.3.5.1 Clusters of PB a 

The five clusters of PB a shows interesting results. Figure 2.8 shows the details about 

clusters of PB a. Cluster a1, is the cluster with >98% of PB a and represents 4/5th of positions 

initially associated to PB a. Surprisingly, it does not have the least normalized B-factor values. 

Although it is associated to the lowest normalized RMSf and one of the lowest relative solvent 

accessibility values. It also represents a first example of that the more stable cluster (i.e. PB x that 

stay PB x) is not always associated to lowest nBfac and rSA. 

 

Cluster a2 represents another behaviors, namely, the cluster that is still highly controlled 

by the original PB, but also goes to a large number of other local conformations. Therefore, in 

Cluster a2, PB a still represents 67% of the occurrences but with 6 PBs at an interconversion rate 

of more than 2%. The PBs to which initial assignment of PB a transforms to are: PBs b, c, d, f, l 

and m. 

Cluster a3 introduces more fuzziness in PB a cluster. Only, 22% of PBs that were initially 

assigned, PB a remained as PB a. Most of the changes are shown to be attributed to PB c (65% of 

PB c). 

Cluster a4 represents the fuzzy cluster, it represents only 5.3% of the original PB and 

therefore, must be the more deformable. The average Neq of 2.36 (overall), and cluster Neq of 

8.43. it is also associated to highest accessibility, highest nBfac and highest nRMSf values. 
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Figure 2.8 Evolution of clusters of PB a. The figure comprises of a table that provides details 

about the individual frequency of the cluster as well as static and dynamic structural properties. 

Values for both Neq are given; the average Neq (Neq) and Neq of the cluster (cl. Neq). The spread 

of each cluster of a is shown. As apparent, one ‘stable’ cluster herein, a1. While one entirely fuzzy 

cluster among the 5 clusters is expected given the increasing deformability. a4 shows the 

characteristics of the fuzzy cluster. Transformations among PB c, f, d are considered geometrical 

transitions based on their geometric resemblance. 

 

In our previous work, geometrical compatibilities among PBs were assessed by considering the 

second best PB for every local conformation [58]. According to this concept of geometrical 

resemblance, similar PBs can interchange more often. Clusters a3 and a5 followed such geometrical 

transitions, since they have respectively high frequencies of PB c (65%) and PB d (76%). However, 

no clusters with strong evolution to PB f can be seen. 

 

 2.3.5.2 Clusters of PB b 

Figure 2.9 show the details about clusters of PB b. The cluster b1 (>97% of PB b) represents 

79% of the original PB b with lowest rSA and lowest nRMSf but the second lowest nBfac (0.00 

vs. -0.06 for cluster b3). Interestingly none of the three following clusters have used the expected 
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major geometrical transitions (PBs d, c and f). However, geometric transition changes are observed 

for PB l for cluster b2 (22%), PB k for cluster b3 (64%) and PB a for cluster b4 (65%). Only cluster 

b3 can be considered as comparable with cluster b1 in terms of nRMSf and nBfac and closest rSA. 

Cluster b5 showed the maximum fuzziness with transitions among ~10 different PBs. 

 

Figure 2.9 Evolution of clusters of PB b. The figure comprises of a table that provides details 

about the individual frequency of the cluster as well as static and dynamic structural properties. 

Values for both Neq are given; the average Neq (Neq) and Neq of the cluster (cl. Neq). The spread 

of each cluster of b is shown. As apparent, one ‘stable’ cluster herein, b1. While one entirely fuzzy 

cluster among the 5 clusters is expected given the increasing deformability. b5 shows the 

characteristics of the fuzzy cluster. Transformations among PB c and d are considered geometrical 

transitions based on their geometric resemblance. However, cluster b3 shows a non-geometric 

transition from b to k but strikingly it has nBfac of 0 and very low nRMSf. 

 

2.3.5.3 Clusters of PB f 

Figure 2.10 show the details about clusters of PB f. As often seen the majority cluster f1 

(>98% of PB f) represents 83% of original PB b positions had lowest nBfac, nRMSf and rSA. The 

expected geometrical transitions (PBs b and k) have not been used during dynamics to substitute 
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PB f. They have been replaced by PB e for cluster f3 (65%) and PB d for cluster f5 (66%). 

Interestingly, the transition of PB f to PB d is associated with high nBfac, high nRMSf and high 

rSA that is quite uncommon for PB d. Cluster f2 is less stable than cluster b1 with a lower PB 

content of PB f (69%). 

Figure 2.10 Evolution of clusters of PB f. The figure comprises of a table that provides details 

about the individual frequency of the cluster as well as static and dynamic structural properties. 

Values for both Neq are given; the average Neq (Neq) and Neq of the cluster (cl. Neq). The spread 

of each cluster of f is shown. As apparent, one ‘stable’ cluster herein, f1. While one entirely fuzzy 

cluster among the 5 clusters is expected given the increasing deformability. f4 shows the 

characteristics of the fuzzy cluster. Transformations among PB f, g, h are considered geometrical 

transitions based on their geometric resemblance. However, cluster f3 and f5 shows a non-

geometric transition from f to e and d. 
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2.3.5.3 Clusters of PB g 

Finally Figure 2.11 shows the details about clusters for PB g. Cluster g1 (>89% of PB g) 

represents 55% of the original PB g positions and have the lowest rSA and lowest nRMSf but the 

second lowest nBfac (0.04 vs. 0.03 for cluster g2). As seen in the previous sections, PB g does not 

stay as PB g as often than other PBs. The following clusters are composed of 33%, 24%, 20% and 

16% of PB g. The first surprise cluster is cluster g2 directed by PB e (57%) that is quite comparable 

to cluster g1 in terms of protein flexibility characteristics (similar nBfac and nRMSf). Cluster g3 

was more or less expected as PB c is an expected geometrical transition; it represents 64% of the 

cluster. Surprisingly, the cluster g4 is controlled by PB p (52%) that is not a major geometrical 

transition. 

  

Figure 2.11 Evolution of clusters of PB g. The figure comprises of a table that provides details 

about the individual frequency of the cluster as well as static and dynamic structural properties. 

Values for both Neq are given; the average Neq (Neq) and Neq of the cluster (cl. Neq). The spread 

of each cluster of g is shown. As apparent, one ‘stable’ cluster was expected but a slight 

deformable g1 is observed. While one entirely fuzzy cluster among the 5 clusters is expected given 

the increasing deformability. g5 shows the characteristics of the fuzzy cluster but g4 also appears 

to be slightly fuzzy. 
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2.3.6 Summary of the clustering 

For each PB, one cluster represents the initial PB with high frequency with more than 95% of 

initial PB, except for cluster g which represented PB g only 89.2% of times. This ‘stable’ cluster 

is not always associated to the lowest normalized B-factors and lowest mean relative solvent 

accessibility.  One cluster among the five cluster is a fuzzy cluster with the highest average Neq 

and especially highest cluster Neq. The three remaining clusters are divided into: 

(i) a cluster that is a degenerated version of the ‘stable’ cluster, often having more than 

mere 60% of initial PB and a mix of others eg, clusters a2, b2, c2, d2, f2, h2, i2, j2, k2, n2, o2, 

and p2. 

(ii) Clusters that are directed by unexpected PBs, i.e. not from the major geometrical 

transitions.e.g. clusters b2, b3, b4, c3, e2, f3, f5, g2, etc. 

(iii) The remaining clusters follows a major geometrical transitions among PBs  

 

Comparison of the obtained clusters showed that most of the fuzzy clusters are highly similar and 

that most of the other clusters with unexpected PB does not cluster with their associated PB 

clusters. Figure 2.12 highlights that the initial local conformations can go to very different 

conformational behaviors. Interestingly, near no cluster from a given PB is associated to one of its 

related generated cluster. Such that, cluster f1 is closest to cluster e3, cluster f2 is closest to d4, 

cluster f3 seems closest to e1, cluster f4 is a fuzzy cluster, and cluster f5 is closest to cluster a5. The 

dynamics, therefore have a strong local protein conformation impact that have been clustered and 

described. 
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Figure 2.12 Hierarchical clustering of the 5-clusters of each PBs. In blue are shown the fuzziest 

clusters and in red the first cluster associated to each PB.  

 

2.4 Conclusions and perspectives  

 

In the current analysis, MD simulations were performed on a large set of 169 representative protein 

domains. In chapter 1, it was shown that only 76.4% of the residues associated to α-helices retain 

their conformation, while this tendency drops to 40.5% for 310-helices and is never seen for π-

helices. Taking the logical step further the current study extends the analysis to non-helical 

conformations and PBs. The resulting analysis confirms the rigidity of sheets, but also underline 

its capacity to transform into turn conformations. While the dynamics between turns (with 

hydrogen bond) and bends (without hydrogen bond) have some strong similarities, the two 
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conformations behave distinctively. The turns can transform to helical structures while bends 

prefer to go to extended structures. 

An entire analysis of a large set of protein dynamics simulations using a structural alphabet 

is performed. It is done on two levels: (i) a global view in terms of PBs, (ii) performing clustering 

for each types of PBs. Systematic analysis of PBs provide surprising results with multiple 

informations. As expected a large part of the buried positions remain highly stable, but it is not an 

observed (fixed) rule. In fact, for at least half of the PBs, the fact to be buried or exposed does not 

change its dynamics, at all. The majority of PBs tend to remain as their original PB, or at least with 

a high frequency. Some PBs have a higher tendency to be not as rigid as others and it is particularly 

true for PB g and PB i. The intriguing fact is that the change from a PB to another one is not an 

obvious geometrical change. It is more frequent to go to an unexpected PB than an expected one 

(due to its geometrical compatibility). 

The use of two types of classification shows the difficulty to cluster properly these 

dynamical properties but it indeed improves (i) our knowledge of protein dynamics and (ii) the 

relationship between sequence – structure and dynamics. 

 

ACKNOWLEDGEMENTS 

The current analysis and the one carried out in chapter 1 would have not been completed without 

the immense support from M. Nicolas Shinada and Dr. Alexandre de Brevern. A special thanks to 

Dr. de Brevern is required for his sincere help in shaping and compiling the chapter.  

 

   



 

92 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

Chapter 3: Understanding local protein flexibility in light of physiological 

structural events: Case studies 

 

Proteins are the functional currency of the biological systems. All the molecular events from DNA 

replication, transcription, translation, to sorting, transport, expression, to signalling involve 

proteins in important roles.  Such diversity of functions often involves the same set of proteins but 

with some molecular variations. For instance, phosphorylation, glycosylation, SUMOylation, 

acetylation, methylation, etc, at certain sites in a structure induces conformational changes. Thus 

contributing to its functional versatility. Therefore, it is indeed important to understand the impact 

of such structural changes on local structure dynamics. 

 

3a: Impact of post-translational modifications on protein backbone 

conformation 

 

3a.1 Introduction 

 

3a.1.1 Physiological role of Post-Translational Modifications 

After its synthesis, a protein can undergo reversible or irreversible covalent modifications, namely 

Post-Translational Modifications (PTMs). The modifications alter the physicochemical properties 

of the proteins and thereby regulate enzymatic activity, cellular localization and intermolecular 

interactions [260–262]. Additionally, a protein could be modified in many ways and at different 

residue positions over time. The same position may also undergo changes of different kinds. 

However, changes may be specific to certain amino acids. For example, N-glycosylation found on 

asparagine in the specific consensus sequence Asn-X-Ser/Thr; where ‘X’ can be any amino acid 

residue but proline [263]. Also, PTMs are extremely diverse, ranging from the addition of a small 

group of atoms, such as phosphorylation [264], to the attachment of bulkier oligosaccharide by 

glycosylation [265]. PTMs are essential to regulate biological functions, such as DNA 

transcription by histone methylation and demethylation, acetylation or phosphorylation [266,267], 

nuclear-cytosolic or extra-cytosolic transport by SUMOylation [268,269] or glycosylation 

[270,271], tagging proteins for degradation by ubiquitination [272], and regulation of kinase 

https://paperpile.com/c/wsrnTw/xvgr+aFS2+8B9q
https://paperpile.com/c/wsrnTw/veID
https://paperpile.com/c/wsrnTw/W68l
https://paperpile.com/c/wsrnTw/nG7k
https://paperpile.com/c/wsrnTw/6vMU+3hFj
https://paperpile.com/c/wsrnTw/Cj61+I85T
https://paperpile.com/c/wsrnTw/l759+8qfW
https://paperpile.com/c/wsrnTw/pzp0
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activity with phosphorylation [273]. Due to implications in all major physiological functions of 

the cell, PTMs are often associated with major human diseases such as cancer, diabetes, 

cardiovascular disorders and Alzheimer's disease [274–276]. 

 

3a.1.2 The PTM code 

In context of protein function, such diverse roles may lead to cooperative mechanisms of PTMs 

such as competition for serine and threonine residues between phosphorylation and O-

glycosylation [277]; ubiquitination favored over phosphorylation leading to protein degradation 

[278], or the interactions between PTMs regulating the activity of the p53 protein and Histones 

[279,280]. These observations suggest towards the existence of a PTM-code [281–283], which is 

based on the presence and association of several PTMs leading to the realization of particular 

functions (Fig 3a.1). Recently, the increasing number of annotations on PTMs have assisted in 

understanding the cross talk or direct / indirect influences among different types of PTMs [284–

286] their competition for the same residue [287], or the co-evolution of different PTMs sites 

within the same protein [288,289].  

Figure 3a.1 PTM cross-talks and information sharing is indicative of a PTM code. A) A 

schematic representation of cross talks between the PTM inducing proteins, like Kinases, known 

as writers, the PTMs like phosphorylation on regulatory centers, and the cellular function inducing 

readers. The dashed lines show the cross-talk between different PTMs. The sequential numbers 

https://paperpile.com/c/wsrnTw/WKxV
https://paperpile.com/c/wsrnTw/3LZX+ZCZs+kAp8
https://paperpile.com/c/wsrnTw/BQHb
https://paperpile.com/c/wsrnTw/ovYQ
https://paperpile.com/c/wsrnTw/hpwo+9sRk
https://paperpile.com/c/wsrnTw/hh5z+PzcE+vIJS
https://paperpile.com/c/wsrnTw/dYpr+IvZ5+SiPm
https://paperpile.com/c/wsrnTw/dYpr+IvZ5+SiPm
https://paperpile.com/c/wsrnTw/QF4h
https://paperpile.com/c/wsrnTw/UnLg+lhmo
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depict the sequence of events. These indicate that a protein can reach multiple functional states 

using PTM-driven logic gates, thus indicating a PTM code. B)  shows an example of such PTM 

code to exist using PTM network of p53 regulation. Different PTM inducing proteins modify p53 

genes with their respective PTMs. The fate of p53 regulation can follow different pathways 

depending upon the proteins that read the PTM induced by Writters.  
+Images taken from: A) [289] and B [280] 

 

3a.1.3 Effect of PTMs on protein structure 

The proteins functions and their 3D structures are intrinsically related. Hence, it is expected that 

PTMs, which regulate function, impact the structure of proteins as well. Several previous studies 

have investigated the effects that PTMs could have on the protein structure and dynamics, using 

X-ray data [290], and NMR data [291]. Xin and Radivojac [290] computed local and global 

RMSDs between modified (with at least one PTM), and unmodified PDB chains of the same 

protein. They concluded from the statistical analysis of their RMSDs that N-glycosylation and 

phosphorylation induce conformational changes, with a limited impact, at both local and at global 

levels, with a larger influence for phosphorylation. On their side, Gao and Xu [291] suggest that 

disorder-to-order transition could be induced by the modifications of phospho-serine/-threonine, 

various types of methyllysines, sulfotyrosine, 4-carboxyglutamate, and potentially 4-

hydroxyproline. 

Also intrinsically disordered protein regions have been associated with numerous PTMs, 

as hydroxylation, methylation, and notably phosphorylation [291–294] which was recently 

proposed to function as protein interaction switches in more ordered regions [295]. 

 

3a.1.4 Computational analysis of PTMs 

The available data on PTMs have increased drastically in the recent years due to improvements of 

mass spectrometry-based detection methods [296]. To acknowledge such expansion of data, many 

databases and prediction tools have been developed. They have enhanced the understanding of 

various PTMs in different organisms and simplified the analysis of complex PTM data [297]. 

These PTM databases contain crucial sequence annotations, specific to some PTM types and/or 

organisms [298], and provide related structural data thus mapping the PTM sites on corresponding 

structures in Protein Data Bank (PDB) [299]. 

Numerous machine learning methods consisting of predicting PTM sites were published 

recently. They mainly focus on certain types of PTM and/or organisms, and differ in their learning 

https://paperpile.com/c/wsrnTw/qbEc
https://paperpile.com/c/wsrnTw/g24m
https://paperpile.com/c/wsrnTw/qbEc
https://paperpile.com/c/wsrnTw/g24m
https://paperpile.com/c/wsrnTw/g24m+iIlw+MfMr+GZxp
https://paperpile.com/c/wsrnTw/alJ6
https://paperpile.com/c/wsrnTw/IDQY
https://paperpile.com/c/wsrnTw/Z5HQ
https://paperpile.com/c/wsrnTw/abqI
https://paperpile.com/c/wsrnTw/0MqJ


 

95 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

protocols (support vector machine, random forest, neuronal network, etc.), and in the set of 

descriptors extracted from the mining of the experimental data [297,300]. Few of them, used 

descriptors derived from structural data, such as prediction of secondary structures, disorder and 

accessible surface area [301,302], or from structural properties extracted from PDB [303,304]. 

 

3a.1.5 PTM-SD 

Post Translational Modification Structural Database, abbreviated as PTM-SD 

(http://www.dsimb.inserm.fr/dsimb_tools/PTM-SD/) [305] was designed by Craveur et al. from 

our lab in 2014 [136]. PTM-SD (Fig 3a.2) is designed to give users a curated access to the proteins 

for which one or more Post Translational Modification(s) is (are) structurally resolved in the 

Protein Data Bank (PDB) and also experimentally annotated in dbPTM [299] and PTMCuration 

[306]. PTM-SD uses diverse set of rules to underline the discrepancies between annotation in the 

structure and the sequences owing to different sources. Also, PTM-SD allows the user to create 

customized PTM queries and perform different analyses on the returned hit. For example, 

computing distribution of organisms, proteins, PDB codes/chains, and PTM types, assigning PBs, 

computing Neq (section 1.6.3), highlighting discrepancies between PDB sequence and UniProt 

sequence, clustering for generation of non-redundant dataset, etc. 

Besides a global view on PTMs, the database also provides details for each PTM and 

further connects to different PTM information and annotations found in other databases. Such data 

are very informative for studying relationship between PTMs and protein structures, for designing 

comparative modeling protocol, and for prediction protocol based on different approaches, for 

example, on secondary structure descriptors. 

  

https://paperpile.com/c/wsrnTw/Z5HQ+hvd8
https://paperpile.com/c/wsrnTw/4IjV+ktXe
https://paperpile.com/c/wsrnTw/j2Vi+Cfrc
https://paperpile.com/c/wsrnTw/ZDFc
https://paperpile.com/c/wsrnTw/xaLk
https://paperpile.com/c/wsrnTw/0MqJ
https://paperpile.com/c/wsrnTw/foiE
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Figure3a.2 PTM-SD, a database of structurally resolved and annotated PTM in proteins. A 

summary of the PTM-SD database Query and Search page. Also depicting the tools that can be 

implemented to reduce redundancy (clustering), compute statistics and Neq (local entropy) values. 

Using these tools, a customized dataset can be created from the required query with PDB and/or 

UniProt ids, selective type of PTMs based on specific modified residues in specific organisms. 

Similar queries were used to generate the dataset used for studying effect of PTMs on the protein 

backbone conformations (selections highlighted in green). 

 

Since PTM-SD gives access to X-ray structures of modified residues in proteins that 

specifically correspond to all PTM annotations along with their statistical characterization like Neq 

[136]. It was used to investigate the impact of PTMs on the protein backbone conformations 

observed in crystallographic data. The currrent structural analysis is focused on understanding the 

following: 

I. The diversity of the backbone conformations of N-glycosylated and phosphorylated 

regions.  

https://paperpile.com/c/wsrnTw/xaLk
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II. Local and global effects on the backbones were compared between 4 specific 

examples of PTMs associated to a high number of experimental data. 

III. The conformational changes of the presence and absence of PTMs on the protein 

were also compared, in regards to the backbone flexibility. 

 

3a.2. Methods 

 

3a.2.1 Dataset preparation       

The dataset was generated using PTM-SD. It comprises of structures pertaining to 

phosphorylation, N-glycosylation and methylation while also contains corresponding structures 

without a modification. Table 3a.1 summarizes the dataset composition. The comprehensive 

dataset included a total of 9,870 PTMs that are present on 5,948 structures. From these PTMs, 

7,110 modifications are N-glycosylation while 1,874 are phosphorylation and 886 are 

methylations. The dataset was further refined to remove redundancy (>25% identity) using PTM-

SD clustering toolkit. The percentage identity signifies that the sequences in each cluster have 

greater than 75% identity and the intercluster sequences will have more than 25% difference in 

their sequence identity. In summary, it removes the same type of PTM at the same position if the 

sequences are 75% identical. 

 

Table 3a.1 The Dataset for PTM analysis: Using PTM-SD, a comprehensive structural dataset 

is prepared with PTMs, N-glycosylation, phosphorylation and methylation. The table indicates the 

details of the dataset with diversity indicated as number of different source organisms, size 

depicted by the no. of chains and quality of data is indicated by the number of PTM. Similar 

statistic is also given for the derived non-redundant dataset (in columns 5 to 7). 
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The non-redundant dataset consisted of 348 N-glycosylation on 156 PDB chains from 41 

different organisms, 92 phosphorylations on 76 structures from 12 different organisms and 19 

methylations on 15 structures from 9 distinct organisms, details in Table 3a.1. 

Similar datasets were also generated for the analysis of different types of phosphorylations. Dataset 

was selected based on the amino acid residue phosphorylated. 84 serine modifications on 59 pdb 

chains while 51 phosphothreonine and 42 phosphotyrosine are found on 38 and 36 unique pdb 

chains. Tabular details are provided in; Table 3a.2. 

 

Table 3a.2 Dataset for phosphorylation analysis. The table represents the details of the dataset 

comprising of different kind of phosphorylation modifications, built using PTM-SD. The diversity 

of the data is indicated by the number of different source organisms, size depicted by the no. of 

chains and quality of data is indicated by the number of PTM.  Similar statistics is also given for 

the derived non-redundant dataset (in columns 5 to 7). 

 

A derived dataset was also generated to assess the impact of PTM on the global structure. 

Therefore, a dataset comprising 4 proteins; Renin endopeptidase (N-glycosylation), Liver 

carboxylesterase (N-glycosylation), Cyclin dependent Kinase 2 (Phosphothreonine) and Actin 

(Methylation) was generated (refer to Table 3a.3). 
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Table 3a.3 Dataset to analyse local and global impacts of PTMs on 4 proteins. Four proteins as 

listed in Column1 are selected to study the impact of PTM on the protein structure. Column 2 lists 

the modification taken into account while Column 3 & 4 are the no. of structures used for 

comparison of structural impact in presence and absence of the PTM, respectively. 

 

 

3a.2.2   Protein Blocks (PB) assignment      

PB assignment was done using our in-house PBxplore tool [69]. The PB assignment translates a 

3D structure to 1D sequence of PBs. The input is the structure coordinate file from PDB, 

representing an X-ray structure with or without PTM. The algorithm uses 5 residues long window 

for each position. For each “nth” position, 8 dihedrals ψn-2, φ n-1, ψ n-1, φ n, ψ n, φ n+1, ψ n+1, φ n+2 are 

compared to the reference set of 16 PBs. The comparison is performed using the RMSDA criteria 

(Root Mean Square Deviation on Angular values) [59]: 

 

𝑅𝑀𝑆𝐷𝐴 (𝑉1, 𝑉2)  =  √
1

2(𝑀 − 1)
 ∑

𝑀−1

𝑖=1

 [𝜓𝑖(𝑉1) − 𝜓𝑖(𝑉2)]2 +   [𝜙𝑖+1(𝑉1) − 𝜙𝑖+1(𝑉2)]2 

 

where, V1 is the 8 dihedrals vector extracted from the 5 residues long window; V2 is the 8 dihedrals 

vector corresponding to the compared PBs. PB, which gets lowest RMSDA is chosen as the 

representing conformation observed in the window. 

 

  

https://paperpile.com/c/wsrnTw/g1vn
https://paperpile.com/c/wsrnTw/NZEV
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3a.2.3 Local structure entropy - Neq 

3D structures of a specific protein could be observed with different conformations in X-ray 

crystals, or during molecular dynamics simulations. This could be attributed to the intrinsic 

flexibility of the structure or the consequences of interactions with small molecules (ligand, 

cofactor, water molecules), or macromolecules (proteins, DNA, RNA). Under such scenarios, each 

of these 3D conformations would be assigned a different PB sequence (see Fig 3a.3). By analyzing 

the variation of PBs at each position, it is possible to investigate the local conformational changes 

in a protein structure. 

The equivalent number of PBs (Neq) is a statistical measurement similar to Shannon entropy and 

represents the average number of PBs observed at a given position [53]. Neq are assigned using 

PTM-SD utility toolkit where Neq is calculated as follows: 

 

𝑁𝑒𝑞 =  𝑒𝑥𝑝 (− ∑

16

𝑖=1

𝑓𝑥. 𝑙𝑛(𝑓𝑥)) 

 

where fx is the frequency of PB x (x goes from a to p). A Neq value of 1 indicates that only one 

type of PB is observed, while a value of 16 is equivalent to a random distribution. 

For example, Neq value around 6 would indicate that at the current position of interest, 6 different 

PBs are observed. An Neq exactly equal to 6 would mean that 6 different PBs are observed in 

equal proportions (1/6). By plotting the computed Neq value at each residue position (Fig 3a.3), it 

is possible to locate which protein regions have local conformational change, or in other words, 

which region of the structure represents backbone deformation.  

https://paperpile.com/c/wsrnTw/iBc4
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Figure 3a.3 Using Neq to understand protein backbone flexibility. A) The protein backbone is 

assigned with PB sequence. The structures are superposed in 3D thereby yielding a superposition 

in 1D, as a sequence of PBs (shown in B). C) The Neq is then calculated as the equivalent number 

of PB at a given position. The green color in the plot maps on to the green highlighted region in 

the (A) and (B). 

 

3a.2.4 Normalization of the B-factor values 

B-factor values are partly dependent on the resolution of the crystal and of the refinement process 

[147,307,308]. Also crystallographic contact packing and addition of stabilizing molecules can 

impact the B-factor values. Thus, in order to compare B-factor from several X-ray structures of 

the same protein, it is required to normalize the value. Raw B-factor values were normalized as 

recommended by Smith et al [309], starting by removing outliers values detected with the median-

based approach - median absolute deviation (MAD). 

The MAD was calculated from the median of the B-factor values using cran-R utility 

(www.cran.r-project.org/package=R.utils), mad() with 1.4826 as the consistency scaling constant 

[310,311]. The outliers were removed by defining upper and lower limit (median ± 2.5*MAD) of 

the B-factor data. Finally, the refined set of B-factors was normalized using: 

     𝑛𝐵𝑓𝑎𝑐 =  
𝑥 − 𝜇

𝜎
 

where μ and σ are the mean and the standard deviation of the B-factor values (without outliers) 

respectively and x is the raw B-factor values of Cα (except outliers). 

Most of the statistical analyses were done using Python programming language and R 

software [312]. 

 

 

https://paperpile.com/c/wsrnTw/T15S+aFBT+nGRr
https://paperpile.com/c/wsrnTw/5FV4
https://paperpile.com/c/wsrnTw/l5Lw+NzNi
https://paperpile.com/c/wsrnTw/JtSW
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3a.3 Results and discussions 

        

3a.3.1 Impact of PTM on overall protein backbone conformational diversity 

Using PTM-SD [136], the two most frequent PTMs were focused upon, N-glycosylation and 

phosphorylation. 3,092 and 1,307 chains were found containing 7,110 N-glycosylations and 1,873 

phosphorylations in 100 and 22 organisms respectively. A non-redundant dataset, with less than 

25% of identity between the corresponding UniProt sequences, was generated, resulting in the 

selection of 348 N-glycosylations (for 156 protein chains in 41 organisms) and 92 

phosphorylations (for 75 protein chains in 12 organisms, see Table 3a.1). 

 

3a.3.1.1 Neq analysis 

Based on 16 PBs, Neq underlines the diversity of local conformation in a finer manner than 

the classical secondary structures (see Methods 3a.2.3). Figure 3a.4 shows the variations of PBs 

around the two PTMs ー N-glycosylation and phosphorylation. It is observed that the PTM sites 

do not exhibit any significant preferences for a particular local structure conformation. The Neq 

values are very high, ranging from 9.03 to 11.44 for N-glycosylation, and from 5.95 to 11.41 for 

phosphorylation, implying that these two modifications are observed in widely diverse structural 

contexts. Nonetheless, it is interesting to note that both types of PTMs have an overall different 

Neq profiles (see black curve in Figure 3a.4). 

https://paperpile.com/c/wsrnTw/xaLk
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Figure 3a.4 Comparisons of PTM sites of N-glycosylation and Phosphorylation. The top panels 

show the PB profiles of A) N-glycosylation and B) Phosphorylation. The PBs are plotted on the Y-

axis and PTM position in the chain at X-axis. The colors are encoded according to the intensities 

as mentioned by the vertical bar on the left with blue depicting the least and red depicting the max. 

intensities. The white color or absence of a PB intensity corresponds to the missing region in the 

PDB file. The lower panels show the Neq analysis of A) N-glycosylation and B) phosphorylation. 

The Neq values are plotted on X-axis. The red curve indicate the amount of data used to compute 

Neq values, or in other words the percentage of ordered residues at each position in the X-ray 

crystal. 

 

For N-glycosylation, the PTM site position presents an Neq = 10.76 which is extremely 

high. This suggests that N-glycosylated residues have backbone conformation as diverse as 2/3 of 

the backbone conformations observed in proteins. Additionally, the surrounding positions of the 

PTM sites show the same level of diversity, with Neq values fluctuating around 10. 

For phosphorylation, the Neq profile is quite different. First of all, as indicated by the red 

curve on Figure 3a.4, the surrounding positions of phosphorylation sites are mainly disordered. 
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The farther the positions are from the PTM sites, the higher is the disorder in the structure; 

suggesting that 

 less residues were available at these positions in the PDB chains to be used for the PBs 

assignments and the Neq computation. However, the data used is diverse enough to reach high 

level of Neq (6.48) computed at the PTM position. Preceding positions, i.e. upstream -8 to -2 show 

even higher diversity. It is important to confirm that the absence of data in the surrounding 

positions is not the consequence of phosphorylation sites located at the N- or C- terminus; indeed, 

only 12 of them (out of 92) are close to the protein extremities. 

 

3a.3.1.2 Analysing structural conformations using PBs 

A more precise analysis of the distribution of each type of PBs is depicted in (see Fig 3a.4 

top panels). The intensity of the color at each position depicts percentage derived from the 

frequency of the local conformations occurring at the position. Resulting color underlines that N-

glycosylation and phosphorylation sites are observed for all types of local conformations, almost 

any kind of PBs (except PBs g for both, and, h, j, and p for phosphorylation). 

The conformations of the N-glycosylation sites and their surrounding residues are mainly 

associated with the PBs d and m. However, this proportion does not exceed 31%. It is interesting 

to note that the positions +3 to +6 downstream of the N-glycosylation sites are significantly 

observed in a PB d conformation. This illustrates the fact that, ~1/3 of the times N-glycosylation 

site precedes a β-strand conformation. 

For phosphorylation, the modification sites have a preference of PB d, the cores of β-

strands, in a little over 40% of the cases. The vicinity of the phosphorylation sites is also observed 

with a wide variety of conformations, however a slight preference was observed for the PBs b, c, 

d, f, l and m. It should be noted that more than 50% of the phosphorylation sites are separated by 

two residues of a PB d. 

It is important to understand that data used here provides information on the backbone 

conformation of PTM sites when the modifications are present, but do not obviously reflects the 

backbone in the absence of modifications. Additionally, while phospho-serine and phospho-

threonine share similar PB profiles, they are distinct from phospho-tyrosine (see Fig 3a.5 and Table 

3a.2). The modified residues were observed in a large set of backbone conformations for all three 
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cases, but the preferences for the core β-strand conformation (PB d) is greater in the case of Ser 

and Thr. On the contrary, Tyr does not show any clear preference for a local structure. 

 

Figure 3a.5 Flexibility profile for different types of Phosphorylation. Neq distribution curves 

(black) gives an insight into the extent of local structural changes at the phosphorylation site and 

its sequential neighborhood. The red curve represents the percentage of available data for 

calculating Neq at a position. Higher the percentage better is the confidence. As can be seen that 

the Neq profiles of phospho-serine (A) and phospho-threonine (B) are similar in topology while 

they both differ from the Neq profile of phospho-tyrosine (C). 

 

3a.3.2 Local backbone diversity compared to global backbone diversity in modified structures. 

In order to compare the flexibility of the PTM region with the rest of the protein, we selected a 

large number of 3D chains corresponding to the same protein. Each chain was solved with a single 

PTM at identical sequence positions. 4 different proteins were studied, covering 3 types of PTMs: 

N-glycosylation in renin endopeptidase and liver carboxylesterase, phosphorylation in cyclin-

dependent kinase 2 (CDK2), and methylation in actin. A total of 471 PDB chains were used for 

the analysis. 

 

3a.3.2.1 Neq analysis 
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The Neq profiles of modified sites and surrounding positions were compared with those of 

all other positions in the proteins. Figure 3a.6 shows the example of one N-glycosylated residue, 

at position 141, in renin endopeptidase. Figure 3a.6A is a zoom around the PTM site, while Figure 

3a.6B shows the Neq all along the protein. In this example, the maximum entropy is found at 

position 234, with a Neq value of 7.13. This position and its surroundings are associated with the 

maximum number of missing residues (red curves in Figure 3a.6B), suggesting a highly flexible 

region. It corresponds to what Zhang et al. 2007 defined as a Dual Personality Fragments (DPF): 

a protein region, which can appear as either ordered or disordered in crystal structures. It is 

suggested that DPFs are potential targets of regulation by allostery or PTMs [313]. Herein, the 

flexible region from position 230-238 (see red fragment in Fig 3a.6C) is not annotated as PTM site 

and also does not interact with ligands in the structures; but interestingly the positions 230 to 234 

are known to be missing in a second isoform of this protein. 

In comparison, the backbone of the modified residue is always ordered and presents slight 

deformations with Neq of 1.94. Its immediate neighbor positions are in the same range, with 

slightly higher values in positions -6, -1, and +1 (Neq values 2.58, 2.10, and 2.53 respectively). In 

Figure 3a.6A, the PTM site seems to be slightly more deformable than majority of its surrounding 

positions. Using a larger scale (Fig 3a.6B) this deformation does not seem to be significantly 

different than other deformable parts along the sequence. To quantify it precisely, statistical tests 

were performed for each case (see Table 3a.4 and Fig 3a.7). 

  

https://paperpile.com/c/wsrnTw/n4Ml
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Figure 3a.6 N-glycosylatation on the Asn141 of the human renin endopeptidase (P00797). The 

Neq profiles are given at a local scale (A), for the surrounding positions of the PTM site (colored 

in green), and at a global scale (B), for all sequence positions. (C) The 80 structures used for the 

computation were aligned on the backbone, and represented in cartoon. The glycosylated position 

is shown in green sticks, the disulfide-bridges in blue spheres, and the DPF loop colored in red. 
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Figure 3a.7 Local structure comparison of phosphorylation and methylation. Top panel shows 

the superposed chains containing phosphorylation (left) and methylation (right). The green color 

in the cartoon represented structure depicts the PTM. Lower panel, shows the Neq analysis of all 

chains containing phosphorylation and methylation. On x-axis is the Neq and residue positions 

(UniProt) is plotted on the y-axis. The red curve shows the %age of structural information 

available (ordered residues). The green trace marks the PTM and its neighbors. A) Threonine 160 

phosphorylation in CDK2. B) Histidine 75 methylation in Actin. 

 

3a.3.2.2 Statistical significance of differences in local and global flexibility 

Firstly, the Shapiro-Wilk (SK) test provides extremely low p-value, in all the cases, forcing 

the rejection of the null hypothesis (see columns 3 and 4 of Table 3a.4). This underlines that Neq 

values for PTM-region and the rest of the protein does not follow a normal distribution. Therefore, 

the nonparametric Mann-Whitney-Wilcoxon (MWW) test was used to see if Neq profiles observed 

in the PTM-region are significantly different from those observed in the rest of the protein. With 

a significance level, risk α = 5%, only the phosphorylated Thr-160 in the Cyclin-dependent kinase 

2 protein and its neighboring positions have a significantly different Neq profile than the rest of 

the protein; the p-value being equal to 0.0194. 
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It should be noted that in both cases of N-glycosylation, no significant differences were 

observed between the Neq profile of the PTM-region and the Neq profile of the rest of the protein. 

 

Table 3a.4 Statistical tests for the 4 proteins. Shapiro-Wilk (SW) test checks if data follows 

Normal law distribution, while Mann-Whitney-Wilcoxon (MWW) is a nonparametric test that 

compared mean values. Are indicated the size of samples (n), the calculated statistics (stats), and 

the p-values. The chosen risk α is equal to 5%, the significant p-values allow dismissing the 

hypothesis H0 and are colored in red. 

 

 

3a.3.3 B-factors and comparison of backbone mobility with and without modifications  

In comparison to Neq, the B-factor does not give a measure of the deformation of the backbone, 

but could be used to represent its mobility in the crystal context. For each of the 4 proteins of 

interest, the B-factors of the Cα were extracted from every PDB chain. After normalization (see 

section 3a.2.4), the B-factors were averaged for each, structurally available, position along the 

sequence. The same statistical analyses, as applied to Neq, were performed with the B-factors in 

order to compare the backbone mobility in the PTM areas, and in the rest of the protein (Fig 3a.8). 

It is observed, using B-factors that N-glycosylations do not have a significant impact on the protein 

structures backbone. While phosphorylation of Thr-160 residue in CDK2 have a smaller B-factor 

compared to non-phosphorylated Thr-160. These trends are in accordance with the trends observed 

with Neq distribution. 
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Figure 3a.8 Normalized B-Factor distribution for different proteins with and without PTMs. 

Each plot depicts normalized b-factor distribution of the protein with PTM (black line) and without 

PTM (yellow trace). The green colors highlights the PTM site and its neighborhood in structures 

with PTM (light green) and without PTM (pale green trace). The blue and red lines shows the 

position-wise data availability in PDB. The b-factor trends match with the trends observed in Neq 

analysis. Major differences are seen in B-factor values during phosphorylation while least 

difference is observed in N-glycosylations. 
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3a.4 Conclusions and perspectives 

     

PTM-SD and its user-friendly query search and utility toolkit helped in datasets extraction for 

different PTMs and compare them with the PTM- ‘null’ X-ray structures. Thus the effects of 

specific PTMs on protein backbone conformation was analysed. The conformational backbone 

diversity of modified residues and its close neighborhood positions is compared for the two most 

frequent PTMs; N-glycosylation and phosphorylation. Secondly, special case studies are 

performed on 4 different proteins that individually undergo an N-linked glycosylation, 

phosphorylation and methylation. For these, the local and global backbone diversity observed in 

X-ray data when a single PTM is present is compared. Finally, the backbone diversity with and 

without the PTM was compared for all four of the case studies, Table 3a.2. 

The backbone analysis of the two examples of N-glycosylation, showed that the addition 

of the glycan neither impact the local nor the global backbone conformation of the proteins. 

However, the methylation on actin structure induces a local increase of the backbone diversity at 

the PTM site region, highlighting a higher deformation of this part of the protein. However, no 

effect on the intrinsic mobility of this region has been observed (same B-factor profiles with or 

without the PTM). Unfortunately, the large variability of ligands found associated with actin in X-

ray data used in this study, does not allow to propose an effect of the methylation at a global scale, 

see Figure 3a.9. 

Figure 3a.9 Impact of methylation on Actin and its ligand binding. Superimposed Actin structure 

along with its binding ligands. A) Actin with its ligand, without the methylation of H75. The ligands 

are represented as stick models. B) Actin with ligands while Histidine at 75 is methylated. Subtle 
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changes can be observed in binding pattern of the ligand due to the presence of PTM. However, 

the data-set is too small and due to variety of ligands precise the nature of such changes cannot 

be commented upon. 

 

It is clearly observed through Neq as well as normalized B-factor values that the 

phosphorylation site and its neighborhood positions display a backbone diversity that is significant. 

The comparison of modified structures of CDK2 with the unmodified ones reveals that the 

phosphorylation on the activation loop at Thr 160 have several local effects. It rigidifies the 

backbone (lower Neq and lower B-factor) locally while increasing the deformation of two other 

regions, near Thr14 - Tyr15, and near Thr39. These sites pertain to three other phosphorylation 

sites related to CDK2 activity (T14, Y15) and subcellular localization (T39). The observed rigidity 

in the backbone is in agreement with the proposition made by Xin and Radivojac [290]. They 

proposed that phosphorylation, by introducing new H-bond and salt bridges in the local 

neighborhood leads to a conformational shift to the lowest valley in the energy landscape of the 

protein. This decrease of energy was also observed by Groban and coworkers in their attempt to 

computationally predict the conformational changes of the CDK2 activation loop induced by the 

phosphorylation [314]. Finally Gao and Xu [291] suggest, by analyzing NMR structures, that 

disorder-to-order transition might be introduced by Threonine phosphorylation.      

  

Despite the intrinsic link between PTM and protein function, the molecular effects of the 

modifications on the protein structures and dynamics remains poorly understood. Our study, like 

previous systematic studies of structural data of modified and unmodified protein [290,291], shows 

that these effects could be of multiple types (stabilization and destabilization), at different scales 

(at the local PTM region, in other part of the protein as allosteric effect, or at a global level), and 

depend of the PTM types. However, in order to propose general rules for the molecular impact of 

each type of PTMs, additional structural data related to the large amount of PTM annotations 

already available is needed. In the scope of a systematic study, these data have to be used carefully. 

Indeed, many factors, independent of the presence of PTMs, could have affected the structure of 

the proteins, such as the crystallographic packing, the presence of engineer mutations or cross-

links to help crystallization process, the presence of ions, ligands and protein partners in contact 

with the protein structure of interest. 

https://paperpile.com/c/wsrnTw/qbEc
https://paperpile.com/c/wsrnTw/Qo7K
https://paperpile.com/c/wsrnTw/g24m
https://paperpile.com/c/wsrnTw/g24m+qbEc
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Molecular modeling of PTMs combines with molecular dynamic simulation is an 

interesting alternative. Some recent computational studies have investigated the effect of PTMs 

[300] on the stability of specific proteins. However, the success of such simulations also rely upon 

the growing number of experimental data, for the development of accurate PTM force field 

parameters. Once standardized, such molecular dynamics protocols can be of great use to 

understand impact of multiple PTMs on the structure of a protein. 

A critical caution for any systematic, PDB based structural analysis is the uncertain nature 

of missing regions. As expected, in our datasets numerous PDB structures lack coordinates for 

some regions, which is depicted by a dip of the red curves in Neq plots. These particular regions 

mainly correspond to disorder regions in protein, which diversify the functional spectrum of 

proteins [315] by expanding their protein protein interactome. The selectivity of interacting 

partners and order-disorder transition of the protein structures is regulated by PTMs, and most of 

the times by phosphorylations. [316]. During the analysis of CDK2, identical structures with 

missing coordinates in the catalytic loop (functional domain) are found to be flagged as a Dual 

Personality Fragment [313,316]. However, this region gets ordered based on the phosphorylation 

of Thr 160. It may be suggested that this selectivity of interacting partners for CDK2 may well 

also be impacted by the number of phosphorylations in and around the catalytic domain. 
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Dissemination of results 

The results of the chapter 3b have been published as a scientific poster at ADELIH conference, PTM- from 

bench to bed side, held in Paris in Oct, 2016. It got the best poster award. 

The latest development is that the manuscript for a research article consisting of results from Chapter 3a 

have been written and revised. We are waiting for one of the authors final comments before sending it to 

journals. The work will be published as: 
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3b: Characterization of Dual Personality Fragments - DPF 

 

3b.1 Introduction 

A major problem when using X-ray crystal data from Protein Data Bank (PDB) is related to 

missing regions or regions with no coordinates. The length of such regions range from a single 

amino acid to 20 to 25 residues and sometimes larger. Missing regions in a crystal structure arise 

when the X-ray diffraction pattern from the crystal is too ambiguous for a crystallographer to 

resolve to certain atom or molecule. Thus signifying regions in the protein structure that are highly 

mobile or deformed that they cannot be snapped by X-ray or CryoEM. These highly mobile, 

deformed regions existing as an interconverting ensemble of structures in a protein and are 

functionally attributed as natively unfolded or intrinsically unstructured or intrinsically disordered 

regions (IDRs) [317,318]. The IDRs have been shown to be of crucial importance in protein-

protein interactions since they can interact with more than one partners, given their structural 

malleability [319,320]. Some prominent examples of proteins that are natively unfolded are: Tau 

protein [321], MAP2 [322], α-synuclein [317], and Myelin Basic Protein [323]. 

 However, there lies a subtler side of disordered proteins that pertains to regions that are 

either ordered or disordered based on their environmental context or interacting partners [315,317]. 

Such regions in proteins are called conditionally disordered regions. Many enzymes and viral 

peptides behave in a similar manner where the structural orderliness changes with respect to their 

binding partner. Between these structurally disordered proteins and those with well defined three 

dimensional structure lies a conceptual boundary thus defining the structure–disorder continuum 

[315]. 

 

3b.1.1 Dual Personality Fragments 

Assumed to be lying at the boundary of structure-disorder continuum, these protein fragments can 

transit from order to disorder and therefore exhibit properties of both the states. Thus many of such 

protein regions are visible in crystal structures, for eg. the catalytic loop of an enzyme. These 

fragments have been described by various names. They are called “dual personality fragments” by 

Zhang et al., 2007 [313], “Ambiguous regions” by Le Gall et al., 2007 [324], and “twilight zone” 

by Szilágyi et al., 2008 [315,325]. Due to the presence of such structures, the earlier version of 

order and disorder as binary states is being challenged. Recent research defines the structural space 

https://paperpile.com/c/wsrnTw/zrfR+K9pN
https://paperpile.com/c/wsrnTw/omii+cCjV
https://paperpile.com/c/wsrnTw/ZUu3
https://paperpile.com/c/wsrnTw/OKP4
https://paperpile.com/c/wsrnTw/zrfR
https://paperpile.com/c/wsrnTw/CCou
https://paperpile.com/c/wsrnTw/zrfR+uNcx
https://paperpile.com/c/wsrnTw/uNcx
https://paperpile.com/c/wsrnTw/n4Ml
https://paperpile.com/c/wsrnTw/TlDF
https://paperpile.com/c/wsrnTw/uNcx+vkGZ
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as a continuum with structure and disorder being the two extremes [315]. The DPF lie at the center 

of this structure continuum. Figure 3b.1 shows an example that undergoes order - disorder 

transition [313]. 

 

Figure 3b.1 An example of disorder to order transition. Shown here are the two crystal structure 

of same protein, Cyclin dependent Kinase 2 (CDK2). A) shows the CDK2 bound to inhibitor 

staurosporine (STU) thus deactivating the kinase. Thus PBDid 1AQ1:A is CDK2 in inactive state. 

Two regions are seen missing (represented by dashed lines). B) An active state structure of CDK2, 

identifiable by presence of its substrate peptide and ATP. The regions missing in A) can be seen 

in the active state (shown in red). +taken from Zhang et al, 2007, Structure [313] 

 

 

3b.1.2 Identification of DPF 

Disorder refers to a highly flexible ensemble of structures co-existing such that a definitive 

structure cannot be identified. Therefore, these are highly difficult to detect. NMR can show the 

ensembles with large deviation in certain regions but the technique is limited by the small size of 

proteins. Therefore, there is not enough data generated for a systematic analysis. On the other hand, 

X-ray crystallography can indirectly indicate disorder. Due to their highly flexible state, the 

disordered region would be shown as a distortion or noise on the diffraction pattern. Therefore, 

such region would be missing in the X-ray coordinate files. Since, DPF are structures that can 

https://paperpile.com/c/wsrnTw/uNcx
https://paperpile.com/c/wsrnTw/n4Ml
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transit between order and disorder, therefore some of the ordered state of a DPF would be 

crystallized [313]. 

 The rationale behind using the X-ray data is founded on the generation of crystals for 

crystallography. It is common to observe multiple crystal structures of the same protein. Often, 

with motive of improving the resolution, crystallographer alters the crystallization conditions, or 

introduce mutations, or add co-factors to the crystal solution, etc. From a crystallographer’s 

perspective, these will yield different crystals with better resolution than the other. However, these 

conditions also become ideal to identify DPFs. With changes in crystallization conditions, the 

protein behavior will also change and many a times, this can be a trigger for order to disorder or 

vice versa transformation of a DPF [313]. 

 Therefore, DPFs can be identified by using different crystal structures of the same protein 

and then comparing them. 

 

3b.1.3 Characterization of DPF 

Due to lack of a definitive structure, the disorder regions (IDRs or IDPs) are characterized based 

on the sequence related properties. However, DPF can also express as structured regions and 

therefore can be characterized based on sequence as well as structural features. So far, only Zhang 

et al. have systematically characterized DPF in 2007 that is more than a decade ago. Following is 

a summary of their results and observations: 

A) 92.3% of DPF are less than 10 amino acid residues in length. 

B) No specificity in neighborhood of a DPF was observed as 50% of the dataset had a 

DPF in vicinity of a disordered region while rest 50% had an ordered region next 

to DPF. 

C) Structural analysis was performed just with DSSP assignments. It was observed 

that most of the DPF have been assigned as ‘C’ (coil) by DSSP. However, a striking 

27% was assigned in regular secondary structures with 20% assigned as helices 

(collectively H, G, I) and 7% as sheets. 

D) Amino acid propensities were identified for ordered, disordered and DP fragments. 

Smaller and hydrophilic amino acids like, Ser, Ala, Lys, Glu, and Gly were found 

abundant in disordered regions and deficient in ordered regions. Many polar and 

charged residues like, Asp, Thr, Gln, Pro, and Arg are found to have similar 

https://paperpile.com/c/wsrnTw/n4Ml
https://paperpile.com/c/wsrnTw/n4Ml
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preferences for ordered and disordered regions. But these amino acids have higher 

propensities to be found in DPF regions as well. Ordered regions also some often 

occuring residues associated to them like, Iso, Phe, Typ, Tyr, His, Met, and Cys. 

 Of these, Thr, Arg, Gly, Asn, Pro, and Asp were found exclusively in DPF. 

E) From a similar analysis of clustered amino acids based on their physicochemical 

properties, it was determined that disordered regions have affinity towards polar 

residues while DPF have affinity towards hydrophobic and charged residues. 

 

3b.1.4 Functional importance of DPF 

After characterising DPF based on certain sequence and structure features, Zhang et al., 2007, also 

characterized functional importance of DPF. They used ScanProSite to predict functionally 

important sites in their dataset. DPF were shown to be strongly associated with post-translational 

modifications. About 70% of DPF were tagged with predicted PTM sites by ScanProSite. 

Moreover, it was found to be more likely that in 20% of cases a PTM site is to be found within 5 

residues of DPF. 

 

3b.1.5 Dynamics in DPF 

So far, to the best of our knowledge, there have been no attempt to understand the role of flexibility 

in DPF or structural space lying at the center of the structural continuum. In the current context of 

our objectives, it becomes fitting to study the inherent role of flexibility in highly dynamic 

structures such as DPF. The analysis of local structure behavior in the DPF transitions can be very 

useful and pivotal in our understanding of structural flexibility. Therefore, it was decided to redo 

the structural and sequence characterization of DPF. Thereafter model the missing regions in 

disordered DPF to perform short molecular dynamics on both states of DPF to catalogue the local 

structure behaviors. 

 Moreover, as can be seen in preceding sections that the study from 2007 does not detail in 

to the structural aspect of DPF and characterized mostly based on sequence features. 
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3b.2 Methods 

 

3b.2.1 Dataset preparation 

A redundant dataset of crystal structures were extracted from PDB (2016) hosted at www.rcsb.org 

[134]. Each chain in a pdb entry was treated separately as a single structure. Short chains having 

8 residues or less were removed. Only crystal structures having resolution better than 2.5 Å and 

R-factor higher than 0.25 were selected. Thus, a total of 192163 structures (individual chains) were 

used for all analysis. 

 

3b.2.2 Feature assignment 

All the structures were assigned with different structural and sequence features in order to 

systematically analyse the DPF, order and disorder regions. Besides amino acid sequence, various 

features assigned for each structure includes: 

a) DSSP- All the 8 states of DSSP [144]  was assigned for each residue. For methodological 

details, please refer to section I.6.2.1. 

b) Segno- Segno assignments do differ a lot from DSSP as both have an agreement of only 

~82% [182]. Segno was used specifically for the assignment of Polyproline helices which 

is one of its nine state assignment. For methodological details, please refer to section S1.3. 

c) ProMotif- A 1995 program [186] is based on DSSP-like approach and efficiently assigns 

many structural motifs like, β and ɣ turns, β-bulges, β-hairpins, Ѱ loops, β-α-β units and 

disulfide bridges. It uses various geometrical properties based on hydrogen bonding pattern 

and distances between consecutive Cα atoms to identify these structural motifs. ProMotif 

v2.0 was used to specifically include β-turns information in DPF regions.  

d) Protein blocks- Besides, secondary structures PBs can provide precise approximation of 

the local structure which can be highly useful in characterizing DPF. Therefore, all the 

structures were also assigned with 16 PBs. For methodological details, please refer to 

section I.6.3 or 3a.2.2. 

e) B-factors- Crystallographic temperature factors were extracted from pdb files for all the 

structured regions.  

https://paperpile.com/c/wsrnTw/VYXv
https://paperpile.com/c/wsrnTw/6fHy/?locator_label=section
https://paperpile.com/c/wsrnTw/v9Oi
https://paperpile.com/c/wsrnTw/BDN7
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f) Relative solvent accessibility- The solvent accessibility of each structured residue was 

calculated using Naccess v2.1.1 (www.bioinf.manchester.ac.uk/naccess/) which provides 

both absolute as well as relative solvent accessibility for each residue. 

g) Disorder- As it is the unstructured region, the amino acid sequence was extracted by 

comparing the SEQRES and ATOM records of the pdb coordinate file. 

 

3b.2.3 Pairwise sequence alignment 

Pali v3.0 structural alignment database (Phylogeny and Alignment of homologous protein 

structures) [326] contains the structure based, domain level pairwise alignment of all the 

homologous proteins. The proteins are decomposed into domains according to SCOPe v2.04. 

Therefore, alignments for 192163 structures were extracted from Pali. A total of 2168 pairwise 

alignments were obtained from Pali. 

 

3b.2.4 Identification of DPF, Order and Disorder regions 

The different regions of interest namely, DPF, Order, Disorder were extracted from the Pali 

pairwise alignments. A group of Python methods were written to extract these regions by simply 

defining the following criterion: 

 If a given alignment has PB ‘z’ represented more than twice in between an alignment with 

gaps in one structure (zz-----z) but a defined region in the counter structure in the alignment 

(bcddddef). It was marked as a DPF. If the counter structure also lacks a defined region, then if 

will be classified as Disorder. The rest of the alignment where both the regions consists of well 

formed PBs and no ‘z’ is present, they were marked as Order. Figure 3b.2 represents a schematic 

example of the logic. 

 

All the analyses were performed using python, R and bash scripts. Images were generated using 

R. 

https://paperpile.com/c/wsrnTw/FKI0
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Figure 3b.2 Schematic flow of DPF, Order and Disorder identification from alignment. The 

image shows a pairwise structural alignment derived from Pali between PBDIDs- 1H8Z:B and 

2ZC6:D chains. The PB sequence (present as the second row in each PDB) is scanned for PB z 

that signifies undefined PB. If a region bound by two z is empty both in the hit and at the 

corresponding positions in the second structure, then it is identified as Disorder. If the ‘z___z’ is 

corresponded by a PB sequence in the counter-alignment, it is identified as a DPF. When the 

regions in both the pairs of alignment have a complete pb sequence, it is treated as order. Thus, 

in the above example, there are 1 disorder, 3 DPF (2 same strand, 1 on second pb strand), and 4 

Order states. Rest of the annotations are extracted using the demarcations provided by PBs. 

 

 

3b.3 Results and discussions 

 

3b.3.1 Data set statistics 

Of the total PDB structures in the dataset (192163), 34893 consists of DPF. This shows that 18% 

of PDB consist of structures that have DP regions while 39% of structures contain disordered 

regions. The distribution of the lengths of DPF varies immensely, although most of the DPF have 

a length between 1 to 7 residues, see Fig 3b.3. The length distribution is highly skewed towards 

shorter DPFs with an isolated peak at 3 residue length. However, there are some DPF with an 

enormous length of 139 residues also. Although these structures also have a very long sequences 

yet regions of 133 to 139 residue length that can transition between order and disorder are 
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interesting case study. Especially when, such long regions are usually observed in intrinsically 

disordered proteins. It is also observed that there are hundreds of structures in our redundant data-

set that contain DPF of the lengths 16 to 22.  

  Besides, each structure did not contain a single such region. There are cases where more 

than one DPF are observed in a structure. Rather there are 35 such structures that contain more 

than 10 DPF per structure; data represented in Figure 3b.4. However, maximum number of 

structures contain single DPF. Occurences of more than 10 DPF in a structure can provide insights 

about its function. Such structures must have multiple interacting partners which puts pressure on 

such regions to remain disordered natively. Thus encompassing enough flexibility to interact with 

multiple partners. When any interacting partner is in vicinity, the DPF can become structured. 

Many enzymes and Molecular recognition features (MoRFs) are known to function in such a 

manner [327]. 

 

Figure 3b.3 Length distribution of DPF across the dataset. The histogram shows the length of 

different DPFs identified on x-axis. The y-axis depicts the raw number of occurrences. The 

lengthiest DPF identified is 139 residues long while most DPFs have a length of 3 residues. The 

distribution is skewed towards smaller DPF lengths. 

 

3b.3.2 Amino acid distributions 

Given the interdependence of sequence, structure and function, the amino acid sequence can 

provide indications towards a protein’s structure and function. In the amino acid survey of DPF, 

https://paperpile.com/c/wsrnTw/t966
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order and disorder regions, it was observed that there is a considerable overlap among many 

residues which have equal or near equal propensities in either structure. However, there are certain 

residues which can be specifically attributed to DPF, order and disorder. Cys, Gly, Asp, and Lys 

shows strong propensities for DPF. According to plots in Figure 3b.5, Ala, Leu, and Gln are 

favourable to the ordered state of a protein. Moreover, Phe, Ser, Val, and Typ were observed to 

achieve high values for disorder. 

 

Figure 3b.4 Number of DPF per structure. The histogram shows the number of DPFs per 

structure on x-axis while y-axis shows the raw occurrences. Mostly, there is a single DPF per 

structure but there can be 2 to 3 DPFs per structure. The most number of DPFs in a structure, in 

the dataset is 13. Only one structure have 13 DPFs in one pairwise alignment- 2XVN:C and 

4B3L:F 

 Figure 3b.5 shows the amino acid distributions of all the 3 states of structural continuum  

(order, DPF, disorder) in one plot along with earlier trends as observed by DeForte and Uversky 

in 2016 [315]. These trends help understand the preferred amino acid propensities of the three 

structural states. A region consisting of high frequency of C, G, D, and K with low R, T, V, I 

frequencies can be a potential DPF. The DPF favored residues are a mix of hydrophobic and 

hydrophilic tendencies while except for Cys, rest are flexible. These can explain the diverse nature 

of DPF with some regions being found in membrane proteins and others in globular proteins. More 

flexibility is needed for maintaining different interactions. 

 

https://paperpile.com/c/wsrnTw/uNcx
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Figure 3b.5 Amino acid distributions in Order, DPF and Disorder. The plot shows three 

normalized frequency values (absolute) for each amino acid on x-axis. The gray bars represent 

Disorder, the red circles represent Order and blue circles represent DPF. The width of the circles 

is proportional to their normalized frequency value. C, G, D, E, K are the most abundant amino 

acids observed in DPF regions. Below the plot can be seen a legend with two amino acid scales 

for hydrophobicity and flexibility based on Kyle and Doolittle hydrophobicity and Vihinen’s 

flexibility scales. The color scheme in the legend depicts order or disorder promoting residues. 

Please note that in legend the blue color represents disorder while in plot, blue represents DPF 

and gray represents Disorder. 

 +Image graphic in lower portion is taken from [315] 

 

3b.3.3 Secondary structure distributions 

A comparison between secondary structures present in DPF and ordered regions was carried out 

using DSSP, Segno and ProMotif. This provided more detailed analysis of the secondary structure 

space of the regions with inclusion of conformations like: β-turns, ɣ-turns, β-bulges and PPII. The 

results indicate specific secondary structure preference for DPF as well as ordered regions. For 
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instance, α-helix and β-turns are observed to be highly prominent in DPF while extended β-strands 

are seen more often in ordered state along with π-helices and PPII helices (see Figure 3b.6). It is 

quite interesting to see the PPII are observed more in ordered state, albeit they are a known 

conformation in denatured proteins. 

 The propensities of amino acids (more C, G, D) and PB (in subsequent section) also helps 

to pinpoint the type of β-turn. According to de Brevern, 2016 [150] novel β-turn type IV1 and type 

IV3 are potentially the most occuring conformations in DPF regions (see Figure 3b.6). Although 

PPII are not the abundant most in DPF yet, there is a considerable occurrence of PPII helices in 

DPF regions. Overall, most of the secondary structures known to occur frequently in flexible 

regions are also observed significantly in DPF regions. This is important observation because the 

current structural analysis is based on the structured state of DPF and not the disordered state. 

Therefore, the DPF are analysed in a state of induced rigidity yet most of the secondary structures 

associated mostly with moibility are observed. This provides crucial insights into their structure 

and function relation. 

 

 3b.3.3.1 Protein Block distributions 

 Protein Blocks provide much closer approximations of protein backbone than regular 

secondary structures do [18]. Therefore, it is fitting to compare protein block distributions for order 

and DPF regions. Figure 3b.7 shows the PB distribution of DPF (blue) and order (red) residues. 

Both the DPF and order regions are highly populated with core of α-helical conformation as seen 

by abundance of m on both plots (Fig 3b.7). However, DPF relatively have more PBs k and l which 

ideally represent N-caps of an α-helix but will also qualify for β-turns since they also lie at terminus 

of α-helices. Both the states, DPF and order, have significant representation of β-sheets (PB c, and 

d) but order have more β-sheet character. A major difference is seen in the frequencies of PB f. 

DPF consists of more PB f conformation which vaguely resembles a β-sheet’s C-cap but also 

resembles closely with β-bulges. Bulges are found located at the ends of antiparallel β-sheets and 

are important players in flexibility of the local structures. Contrary to the observations made with 

secondary structure distribution, β-bulges are prominently seen in DPF than in order. Thus making 

them a characteristic of DPF along with β-turns type IV1 and type IV3.  

https://paperpile.com/c/wsrnTw/Jifn
https://paperpile.com/c/wsrnTw/OfYB
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Figure 3b.6 Secondary structure distribution between DPF and order regions. The x-axis 

represents the various secondary structure motifs like; different types of helices, β-turns, ɣ-turns, 

bulges, PPII, Bend, β-bridge, Extended strand and coil. These The y-axis represent the normalized 

frequencies of each secondary structure in DPF (blue) and Order (red). Helices and turns are 

collectively the most dominant secondary structures in DPF. 

 

Counter-intuitively, the PBs g, h, i, and j (approximately loops) are less abundant in DPF than in 

order regions. Perhaps, protein blocks were able to resolve turns and bulges from the assigned state 

of coil (C) by DSSP and others. 
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Figure 3b.7 Protein blocks distribution of DPF and order regions. The x-axis represents the 16 

PBs. The y-axis represents the normalized frequencies of each PB in DPF (blue) and Order (red). 

PB m is abundant in both the cases. While DPF has more representation of PB f, k, and l, Order 

regions have more number of sheets (PB c, d) besides having high helical content with PB m. 

 

 

3b.3.4 B-factors distributions 

So far, in the preceding sections, indirect attempts have been made to understand flexibility by 

using secondary structures and PBs. However, a direct method for assessing flexibility is B-factors. 

Since DPF are captured in their structured state, B-factors are available from X-ray data. Figure 

3b.8 shows a linear comparison of normalized B-factor values for both DPF and order state. Both 

shows a similar gumbel curve differing in their maximum and minimum values. The B-factor 

values for DPF suggests relative rigidity when compared with those of the ordered state. This is 

indeed counter-intuitive and needs more verification. However, crystal structures are known to 

suffer from crystal contacts that badly alters the B-factors of a protein structures. Therefore, 

attempts are underway to generate short molecular dynamics for random set of 200 structures from 

both states having equal representation. This will help in bypassing the problems, if any, due to 

crystal packing effects and will provide a more robust analysis on flexibility of backbone. 
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Figure 3b.8 Normalized B-factor distribution of DPF and Order. The blue color represents the 

distribution of B-factors for DPF regions and red colored distribution represents B-factor values 

for Order. They both have a gumbel distribution with Order having slightly higher spread of data. 

 

3b.3.5 Trends in Relative solvent accessibility (rSA) values 

Figure 3b.9 shows the distribution of rSA for DPF (blue) and order (red) states. The two medians 

from the box plots suggest that DPF have more accessibility than ordered regions. Although the 

median of DPF lies at ~25%, the first quartile limit (Q1) is just above 10% which is at the border 

of accessibility and buried areas (< 7%). The interquartile range (IQR) of both the plots are 

comparable with DPF having an IQR of 28 while order have an IQR of 20. The Q1 of ordered 

region lies at 2% suggesting some deep buried regions, Figd 3b.9. The non-outlier data in the box 

and whiskers of DPF (blue) have much more surface accessibility compared to the non-outlier data 

of order. However, the outliers to the boxplot of ordered region shows intense clustering from 
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~55% to 75% thus suggesting some high accessible conformations. The outliers to the DPF boxplot 

are lesser in number yet they have higher rSA values (>80%). 

  

Figure 3b.9 Relative solvent accessibility distribution for DPF and Order. The blue colored box 

represents the distribution of rSA for DPF regions and red colored boxplot represents rSA for 

Order. Overall, the range and spread of rSA for Order is smaller than DPF. It has very low Q1, 

around 2 that signifies deeply buried residues. While most of the distribution for DPF lies above 

10% accessibility, i.e. all of the residues in DPF regions are accessible than compared to first 

quartile of Order having very low rSA. 

 

From these analyses it can be concluded that DPF have more rSA than order regions. This can be 

supported by the need to interact with multiple partners and solvent, since order can be triggered 

by environmental changes such as temperature, pH, etc. The lower Q1 and smaller range of order 

regions can be explained by the strong relation between rigidity and buryness of the regions in the 

structure. 
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3b.4 Conclusions and perspectives 

 

Subsequent to the analysis of the effect of PTM on protein backbone, another unique event of 

protein life was analysed ㅡ Dual personality fragments. DPF are regions in a protein structure 

that can transform between disorder and order structural states. This makes them quite important 

as such structures support conceptualizing the structural continuum that suggests that structural 

states are more fluid than rigid. However, they are not very well characterized given that there  

has been only one systematic analysis on them, that too in 2007. The study by Zhang et al focuses 

on sequence characterization of DPF and that too based on identical structures alone. As DPF are 

essentially the disordered fragments that transit to structured state, surprisingly, their structural 

data remains unexploited. Therefore, it was decided to design a systematic analysis of DPF 

sequence and structural properties and comparison with those of order and disorder states. This 

could provide insights into the structure and function of DPFs and could also be suggestive of the 

structural properties of the otherwise denatured state. 

 As suggested by Zhang et al, that DP fragments differ from the disorder and order in their 

specific sequence composition. The DPF characteristic amino acid signature, as proposed by 

Zhang et al. is, ‘T,R,G,N,P, and D’ [313]. However, there can a caveat in the analysis as the 

propensities they take into consideration are solely from the corresponding data-set and not from 

other studies. Therefore, while analyzing amino acid distribution for DPF, order and disorder 

previously known propensities for order and disorder were also considered. Instead of a suggestive 

sequence motif, the analysis proposed characterization by frequency. Such that, if a given region 

has high frequency of Cys, Gly, Asp, and Lys then it can be an indicative of a DPF region. The 

rationale behind such an approach is two fold. A) from the analysis, Cys, Gly, Asp, Lys turn out 

to be specifically high for DPF regions. Also, Asp is labelled as inconsistent in being either order 

or disorder promoting and Gly, Asp are also part of the proposed signature by Zhang et al. B) two 

of the residues, Cys and Gly are rigid and moderately flexible while rest two are highly flexible. 

Also, Cys and Gly are hydrophobic while Asp and Lys are hydrophilic. Since, they differ in their 

properties, the probability of a region having high frequency of these four residues can be a reliable 

indicator of a DPF. Besides, the structural features of the region should also be considered. For 

instance, having a region with high occurrence of C, G, D, and K that has higher alpha helical and 

https://paperpile.com/c/wsrnTw/n4Ml
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beta turn content can be a DPF. Such characterization can be used as a motivation to develop 

machine learning tools to predict DPF from sequences alone by using PSI-PRED or jPred. 

 The rSA analysis shows that DPF are much more accessible than ordered regions and 

fittingly so. DPF have been shown to contain the site of a PTM or located near a PTM site. They 

have also been proposed to be active regions in Molecular recognition features (MoRFs) and 

enzymes [327], both of which requires interactions with multiple partners. Therefore, functionally 

high flexibility and more solvent accessibility is beneficial for DPF. However, there have been 

certain ambiguities in the B-factor analysis for flexibility. These can be attributed to the crystal 

contacts due to packing defects. Therefore, a logical step is to randomly select ~200 structures 

from the dataset and perform short MD simulations to understand the role of flexibility in DPF. 

Such an analysis is expected to provide much better perspective on the structural biology of DPF 

and may as well on the folding of protein structures. 
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Dissemination of results 

 

The resuts from chapter 3b were presented in the form of a scientific poster at IDP-2017 

(Intrinsically Disordered Proteins) held at Mohali, India during December 2017. The 

dissemination it the form of poster helped having fruitful discussion with prominent researchers 

in the field like Vladmir Uversky, Peter Tompa, Rohit Pappu and Richard Kriwacki. The poster is 

published as: Narwani TJ, Joseph AP and de Brevern AG. Feature characterization of DPF: the 

dual personality fragments in proteins [version 1; not peer reviewed]. F1000Research 2017, 

6:2186 (poster) (doi: 10.7490/f1000research.1115178.1) 

During the writing of the thesis, the chapter have also been compiled as a manuscript, it is expected 

to be published by end of year 2018. 

http://dx.doi.org/10.7490/f1000research.1115178.1
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Chapter 4: Local structural dynamics in multidomain proteins- A case study of 

Integrin αIIbβ3 

 

4.1 Introduction 

 

While studying the impact of modifications on protein backbone, certain long range interactions 

were observed. Such interactions are delocalized, i.e the point of impact is structurally distant from 

the region of the observed effect [328]. Usually, such long range interactions occur in multidomain 

proteins which goes through structural transitions essential for their regulatory functions [329]. 

Transitioning of a structure from one structural state to another involves the changes in flexibility 

at a large scale. However, the driving forces during such transitions are the local structural regions. 

Subtle changes in these regions accumulates into large transitioning effects. Therefore, the next 

objective is to understand the behavior of structural flexibility in long range interactions in a 

multidomain protein. 

 One of our close collaborator Dr. Vincent Jallu from the Platelet Lab, INTS, works with 

Integrins αIIbβ3 proteins that are implicated in rare bleeding disorders like Glanzmann 

Thrombasthenia (GT) and Fetal Neonatal Alloimmune Thrombocytopenia (FNAIT). The Integrin 

protein is a multi-domain heterodimer that is expressed on the platelet cells. It undergoes structural 

transition from closed to open state upon activation to bind with clotting factors and aggregate. 

Thus it plays an important role in the clotting pathway. During, GT the defects in Integrin αIIbβ3 

leads to the failure in transition that results in absence of clotting, thus the patient can bleed to 

death in event of an injury. Besides, Integrin αIIbβ3 are also involved in FNAIT, another 

thrombocytopenic defect occurring in neonatal or fetal stage. It arises due to polymorphisms of 

amino acids. The polymorphism can cause the expression of Human Platelet Antigen (HPA) in 

embryo. If the mother lacks the antigen, her placental immune system will generate antibodies 

against HPA that will lead to destruction of platelet cells. Due to its structural properties and 

pathophysiology, Integrin αIIbβ3 becomes the protein of interest for studying local structural 

dynamics in multi-domain complexes. 

  

https://paperpile.com/c/wsrnTw/w35I
https://paperpile.com/c/wsrnTw/sHeL
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4.1.1 Integrins 

Integrins are composed of a large family of heterodimeric complexes involved in cell adhesion 

that are expressed in different cell types. The heterodimer comprises of  two large non-covalently 

associated, single-span type I transmembrane α and β subunits comprised of approximately 1000 

and 800 residues respectively [330]. In humans, the integrins protein superfamily consists of 24 

heterodimeric receptors resulting from different combinations of 18 α and 8 β subunits. Figure 4.1 

depicts a schematic representation of integrins superfamily and different kinds of integrins. The 

extracellular domain (ectodomain) of integrins comprise of recognition sites for extracellular 

matrix proteins and counter receptors. The specific binding of ectodomain to such extracellular 

proteins and receptors lead to aggregation, cell-matrix adhesion and cell-cell adhesion, 

respectively [330]. While on the intracellular side, short C-terminal cytoplasmic domains link 

ectodomain to the cytoskeleton. Thus leading to bidirectional transmission of force through single 

span type I transmembrane helices. Therefore, integrins functions are crucial to embryonic 

development, tissue repair, host defence, homeostasis as well as haemostasis.  

 

Figure 4.1.  Family schematics of Integrins. Integrins are family of proteins involved in adhesion 

and aggregation functions. An Integrin is identified by its heterodimeric structural assembly 

comprising of an alpha and a beta subunit. Overall, there are 18 α and 8 β subunits which are 

shown here. Based on the subunits involved, Integrins are classified into collagen receptors, 

Laminin receptors, Leukocyte specific receptors and RGD (Arg, Gly, Asp) receptors. Integrin 

αIIbβ3 is a member of RGD receptors. Two β subunits (β1 and β7) bind to α subunits across classes. 

+Image taken from [330] 

https://paperpile.com/c/wsrnTw/xHaa
https://paperpile.com/c/wsrnTw/xHaa
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Some well-known human integrin structures are: αxβ2, αvβ3 (cell-matrix adhesion) and 

αIIbβ3 (cell-cell adhesion). αv can associate to β1,3,5,6,8 subunits while αIIb, that is specific to platelets 

and megakaryocytes cells, only associates to β3 [330].  

 

 4.1.1.1 Inside-out signaling 

 Besides their mechanical functions, integrins ectodomain can undergo conformational 

changes in response to the molecular or chemical signals that interact with the cytoplasmic tails. 

The induced conformational changes in the ectodomains lead to selective affinity for extracellular 

ligands [331]. For instance, the conformational changes that occur in the ectodomain of Integrin 

αIIbβ3 resulting in enhanced affinity for clotting factors like, Fibrinogen and Von Willebrand factor 

(vWF). 

 

4.1.1.2 Outside-in signaling  

Integrins also transmit chemical signals into the cell providing information about their 

adhesive state, vascular location, local environment, etc. These endocrine, paracrine, and autocrine 

signals further illicit other membrane proteins like G-proteins coupled receptors, especially 

chemokine receptors that can elicit numerous variable responses. Such crosstalk results in cellular 

migration, differentiation, survival, and motility. This type of signaling wherein chemicals released 

by an Integrin can cause changes in distant cells via different membrane receptors or transporters 

is known as outside-in signaling [332]. 

 

4.1.2 Integrin αIIbβ3 

The integrin αIIbβ3 is a fibrinogen receptor expressed at the platelet surface. It also binds to vWF 

in case of severe injuries. As evident from the nomenclature, it consists of an αIIb subunit non-

covalently bound with β3 subunit. It is responsible for platelets aggregation, a key process in 

primary haemostasis and thrombus formation [333]. Integrin αIIbβ3 has been shown to get activated 

by both outside-in and inside-out signaling [334]. Studies have shown that elevated levels of 

cytoplasmic Ca+2 leads to the binding of Talin protein on the cytoplasmic domain of β3 subunit. 

This binding causes allosteric changes in the ectodomain that transitions from closed to open state 

conformation thus making it activated to bind with fibrinogen or vWF. Multiple integrin αIIbβ3 

https://paperpile.com/c/wsrnTw/xHaa
https://paperpile.com/c/wsrnTw/DOiL
https://paperpile.com/c/wsrnTw/IjrX
https://paperpile.com/c/wsrnTw/wFPZ
https://paperpile.com/c/wsrnTw/wFPZ
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aggregates upon a fibrinogen leading to thrombus formation. Figure 4.2 shows a diagram of the 

inside-out signaling of integrin αIIbβ3 [334]. 

  

Figure 4.2.  Inside-out signalling in Integrins. The image depicts the inside out signalling in 

Integrin αIIbβ3. First Talin is activated due to binding of Thrombin at PAR1 receptor. Talin then 

binds to cytoplasmic tails of β3 subunit that causes allosteric changes in the propeller domain that 

contains RGD. These events lead to opening of the structure. 

+Image taken from [334] 

 

 On the other hand, the concentration of divalent ions in the extracellular matrix triggers the 

activation of integrin αIIbβ3. The headpiece domains of integrin αIIbβ3 consists of metal ion 

dependent adhesion sites (MIDAS), adjacent to MIDAS (ADMIDAS) and ligand induced metal 

binding site (LIMBS) that are coordinated by Ca+2 ions. Therefore, increased concentration of Ca+2 

ions has shown to reinforce the bent (closed) form of the ectodomain thus keeping it in the inactive 

state while increased concentration of Mn+2 favours integrin αIIbβ3 activation and leads to the 

https://paperpile.com/c/wsrnTw/ZrMq
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extended (open) conformation. Thus integrin αIIbβ3 have been shown to be activated by both types 

of signalling [334]. 

 

4.1.3 Multi-domain structure of Integrin αIIbβ3 

The αIIbβ3 structure is organized into 3 distinct regions; an N-terminus extracellular ectodomain, a 

single spanning transmembrane (TM) region and a C-terminus cytoplasmic region. The 

cytoplasmic region in α subunit is very swift (~20 residues) while in β subunit it extended up to 

46 residues in length and constitutes an important node for signalling. Talin binds at the 

cytoplasmic domain of β subunit. Both α and β subunit TM regions are single spanning, and consist 

of 22 residues each. The ectodomain is relatively huge with 959 and 693 residues in α and β 

subunits respectively. Figure 4.3 depicts transition steps from the inactive conformations of αIIbβ3 

(crystallized closed structure, PBDid: 3FCS) to its theoretical open liganded active form. A 

complete structure of the open forms of the ectodomain with or without ligand remains to be 

crystallized. The ectodomain is further divided into four regions: headpiece, knee, legs and tails.  

Headpiece: The headpiece that carries the ligand-binding site consists of the β-propeller 

domain of αIIb subunit and the β-I domain of β3 subunit. The αIIbβ3-propeller domain consists of a 

7 bladed fold with four Ca2+ ions coordinated with β-hairpin loops connecting the antiparallel β-

strands (see Fig 4.3A). The β-I domain of β3 mainly consists of α helices and loops with 

coordinated metal ions Ca2+ and Mg2+ constituting a MIDAS (Metal Ion Dependent Adhesion 

Sites) with an ADMIDAS (Adjacent to MIDAS) and SyMBS (Synergistic Metal Binding Site). 

These sites play critical role in opening the αIIbβ3 binding site and helps in ligand binding [335]. 

 

αIIb Leg and the Knee: Downstream the β-propeller is the αIIb leg, composed of the Thigh 

domain, the Genu (knee), the rigid Calf-1 and Calf-2 domains. The short loop of αIIb Genu 

coordinates with a divalent calcium [336]. This metal ion might help in stabilizing Calf-1 and 

Thigh domain interface during the opening of the structure following the activation process 

(angular shift at Genu). The αIIb leg is rigid and provides a framework to the entire ectodomain. 

https://paperpile.com/c/wsrnTw/Y6N1
https://paperpile.com/c/wsrnTw/heUX
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Β3 Leg and Knee: The β3 β-I domain of the headpiece is succeeded by the Hybrid, PSI, and 

4 IEGFs (Integrin Epidermal Growth Factor) domains. A short knee joins the IEGF-1 with IEGF-

2 domains. The β3 leg consists of IEGF-2 to IEGF-4 whose C-terminus ends in the ankle domain 

(tail). αIIb and β3 transmembrane and cytoplasmic domains are not shown.  

 

Figure 4.3 Closed to open transition of αIIbβ3. (A) The closed form of αIIbβ3 ectodomain, with 

Calf-1 domain highlighted in green. Rest of the structure is depicted in dull grey to bring clarity. 

Structural organization of ectodomain is labelled. The rainbow schema of colours on secondary 

structures represents the αIIbβ3 structure. Regions in green-blue spectra mark the αIIb subunit and 

yellow-red spectra mark the β3 subunit. (B) Closed inactive form of αIIbβ3. The structure is bent 

along the plane of knee domains. (C) Extended αIIb headpiece with β3 leg resting alongside the αIIb 

leg. (D) Extended β3 conformation: The β3 headpiece has intrinsic conformational changes at C-

terminus leading to an outward pull of the β3 leg. (E) Extended αIIbβ3 conformation: In the last 

stage, β3 headpiece pulls out creating a ligand-binding cavity between the two headpieces. Mg2+ 

constituting MIDAS can be seen as a green sphere in the cavity, while the ligand Fibrinogen (dull 



 

139 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

grey dots) approaches the glycoprotein. All metal ions are shown as solid spheres with golden 

ones representing Ca2+ while green representing Mg2+. Polysaccharides (N-acetyl glucosamines 

and Mannose) are shown in ball and stick representations. Please notice that the open forms had 

been modelled from the closed structure according to expected conformations using 

Modeller_v_9.16 [70] and images are generated by PyMol_v_1.7.0 [352]. 

 

4.1.3.1 Structural transition from bent to extended state  

The activation state of αIIbβ3 controlled by inside - out signalling results from platelet 

activation by multiple exogenous factors (physiological plasmatic agonists, exposed sub-

endothelial matrix) leading to the binding of Talin at β3 cytoplasmic tail. The αIIb headpiece opens 

up creating an angular shift between Thigh and Calf-1 domains (Fig 4.3C) meanwhile, the β3 leg 

and tail remains parallel to the αIIb leg. Thereafter, opening of the β3 headpiece pulls the β3 legs 

outward resulting into an extended open conformation (Figs 4.3D and 4.3E) that can bind 

plasmatic fibrinogen at the MIDAS, which is constituted by elements of both the headpieces [337]. 

Finally, fibrinogen binding leads to outside-in signaling and directing the platelet cells into close 

proximity of other platelets. Multiple platelets expressing αIIbβ3 binds to fibrinogen thus forming a 

thrombus leading to clot formation. 

 

4.1.4 Defective expression of integrin αIIbβ3 

Upon activation the integrin αIIbβ3 binds plasmatic fibrinogen leading to platelet aggregation. 

However, a defect in the expression of αIIbβ3 or failure to open up or specific mutations can have 

disruptive results. Defective platelet aggregation leads to two severe life-threatening bleeding 

disorders: Glanzmann thrombasthenia (GT) and Fetal / neonatal alloimmune thrombocytopenia 

(FNAIT). GT is a rare autosomal recessive genetic disease associated with defective expression 

and / or function of αIIbβ3 [338] while FNAIT results from fetal / neonatal platelet destruction by 

maternal alloantibodies in mothers lacking the fetal platelet alloantigens inherited from the father. 

Clinical consequences of FNAIT range from no symptoms to intracranial hemorrhages with a risk 

of neurological sequel and/or fetal/neonatal death [339]. Both diseases result from αIIb and β3 gene 

polymorphisms.  

In GT, more than 300 mutations have been identified in αIIb or β3 genes. Most of them are 

reported in GT specific database: https://sinaicentral.mssm.edu/intranet/research/glanzmann. 

These mutations have distinguished effects on the αIIbβ3 phenotype. Many missense mutations 

https://paperpile.com/c/wsrnTw/wjUX
https://paperpile.com/c/wsrnTw/Gv0P
https://paperpile.com/c/wsrnTw/vssN
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cause defective expression of αIIbβ3 on the platelet cells. While certain silent mutations do not 

affect the phenotype instead can change the allosteric propagation of the transition sequence 

leading to lack of affinity for fibrinogen.  

However, in FNAIT, neither the expression nor function of αIIbβ3 is affected but single 

nucelotide polymorphisms (SNP) resulting in amino acid (aa) variations lead to sequence that 

defines Human Platelet Antigens (HPA). The effects of these amino acid substitutions on αIIbβ3 

structure remain largely unknown. Most of the human platelet alloantigens are described in the 

HPA database http://www.ebi.ac.uk/ipd/hpa. 

 

4.1.5 Domains of interest 

Given the enormous size of the ectodomain of integrin αIIbβ3 and high number of mutations for GT 

and FNAIT pathologies, it seems logical to study one or two domains at a time. Previously, the 

collaboration with Dr. Jallu on FNAIT and GT have been fruitful. Using closed state ectodomain 

crystal structure from PBDID: 3FCS, it was shown that the β3 Lys253Met GT mutation impaired 

key ionic interactions between the αIIb β-propeller and the β3 β-I like domain [340]. Nonetheless, 

static models cannot depict all mutation-induced effects on a highly dynamic structure like 

integrins. Therefore, molecular dynamics (MD) simulations were used to study L33P substitution 

located in the PSI domain of β3 subunit. The L33P substitution is responsible for the HPA-1 

system, clinically the most important one in Caucasian populations [255]. The dynamics of 

structures of PSI domain as L33 and P33 variants was compared to find that the mutation does 

have an impact on the conformations [255,341]. Later, a third variant with a Valine at position 33 

(L33V) was also studied along the L33P mutation [341]. Although the 3 variants mostly shared 

common conformations, the P33 variant showed a higher mobility and specific conformations of 

IEGF-1, IEGF-2, and PSI domains. As shown in Figure 4.4, the L33V substitution mainly 

displaced a dynamic equilibrium between common structures that could explain a variable 

reactivity of different anti-HPA-1a sera with the two β3 forms [341]. 

 As discussed in section 4.1.3 that the leg region of the αIIb subunit plays anchoring role 

during the structural transition and is known to consist the most rigid domains of the αIIbβ3 

structure. However, Nussinov lab have discussed multiple times that rigid domains can have 

underlying allostery [342,343]. Therefore, the apparent rigidity of the leg domains, Calf-1 and 

Calf-2 became our domains of interest. 

https://paperpile.com/c/wsrnTw/5PCi
https://paperpile.com/c/wsrnTw/ygjs+bFNx
https://paperpile.com/c/wsrnTw/ygjs
https://paperpile.com/c/wsrnTw/fZQx+oGlH
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Figure 4.4. Most frequent structures in L33-β3 and V33-β3 of residues 27 to 31 and 435 to 438. 

Secondary structures (light green) of the β3 knee of L33 and V33 variants are shown. Worm lines 

correspond to loops or extended conformations, arrows to β sheets, and ribbons to α-helices or β-

turns. Left panel, the dominant structure formed with residues 27-31 (grey) and 435-439 (red) 

adopting PB sequences 27bfkbc31 (loop) and 435fklmm439 (β-turn). The side chain of residue 

E29 is colored in blue. Right panel, one of the minor competing structures adopting extended 

conformations (shown here PB sequences: 27bdfbc31 and 435cbfbc439) for L33-β3 and in a lesser 

extent for V33-β3. The grey double arrows visualize for L33-β3 and V33-β3 the balance (and 

frequencies) existing between the dominant structure and all the minor structures whose only one 

is shown here-; (the thickness of the bar is proportional to the frequency).  
+Image taken from [341] 
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4.1.5.1 Calf-1 domain 

The first domain in the leg region of αIIb subunit extends from residues 603 to 743 

(numbered as in PDBid 3FCS). It consists of 9 consecutive β-strands connected by 8 loops (Fig 

4.5A). Loops 1 and 10, located at the N- and C-terminals of Calf-1 connects it with N-ter Thigh 

and C-ter Calf-2 domains, respectively. 

 

Figure 4.5 Calf-1 and Calf-2 domains demarcation and structural organization. Shown are the 

isolated individual domains A) Calf-1 and B) Calf-2. Both the domains have a beta sandwich fold 

with anti-parallel running beta strands connected through loops. Calf-1 has a small missing region 

between β4 and β5, colored in gray. Calf-2 has two big regions of missing atomic coordinates, as 

marked by β1 - β2 (11 residues) and β5 – β6 (34 residues). 

 

4.1.5.2 Calf-2 domain 

The last domain in the αIIb ectodomain extending from residues 744 to 959 (numbered as 

in PDBid 3FCS). Calf-2 is made of 10 consecutive β-strand connected by 11 loops as shown in 

Figure 4.5B. The C-ter of Calf-2 is binded with the single spanning TM-helix of αIIb subunit. 
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Therefore, the prime objective will be to understand the role of inherent flexibility in the 

domains of Calf-1 and Calf-2. Additionally, to study the structural changes induced by GT and 

FNAIT mutations specific to these domains.  

 

 

4.2 Methods 

 

4.2.1 Structural data  

The αIIb Calf-1 and Calf-2 domains were extracted from a 2.55 Å resolution crystal structure of the 

αIIbβ3 integrin (PBDID 3FCS) [344]. Calf-1 is a domain of 141 residues [positions 603–743] while 

Calf-2 spans over 216 residues from position 744 to 959. Both have a mainly beta (2) sandwich 

(2.60) protein with an immunoglobulin-like (2.60.40) topology as described in CATH database 

(no: 2.60.40.1510 and 2.60.40.1530 in 

http://www.cathdb.info/version/latest/domain/3fcsA03).  

Some missing atoms in side chains of residues 667 and 668 of Calf-1 were completed using 

Modeller software v.9.14 [70]. However, Calf-2 had important missing regions which posed a 

challenge. Two regions of length 11 residues (position: 763-775) and 34 residues (position: 840-

873) were missing and therefore were difficult to model using classical modeller protocol. 

 

4.2.1.1 Modeling the missing regions in Calf-2 

Homologs for αIIbβ3 integrin (PBDID 3FCS) were searched in PDB database using blastp 

v2.6.0 [401] that returned 8 structures. Sorting based on low e-value and high query coverage 

reveals two proteins having the highest percent identity of 38%. PBDids 4G1E and 3IJE were 

selected from primary results. Although both the αVβ3 integrin structures have the missing regions 

yet 4G1E is selected since it has a missing region of 17 residues compared to 34 residues in 3FCS 

and 28 residues in 3IJE. Therefore, selecting 4G1E will at least make the gap covered by half the 

length. Moreover, the Calf-2 domain of 4G1E is structurally closer to that of 3FCS with an RMSD 

of 0.72 Å and TM-score of 0.95. 

Apart from sequence based homology search, structurally similar proteins were also sought 

after using FATCAT (Flexible structure AlignmenT by Chaining Aligned Frames Fragment Allow 

Twists) [345]. The top hit being a leukocyte specific receptor, αXβ2 integrin (PBDID 4NEH) 

having 24% identity. However, the Calf-2 domain in 4NEH is complete without any gaps, having 

https://paperpile.com/c/wsrnTw/DC62
https://paperpile.com/c/wsrnTw/6XK2
https://paperpile.com/c/wsrnTw/7JlF


 

144 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

a total length of 190 residues. Although the αXβ2 integrin is a distant homolog yet using two more 

related templates for modelling αIIbβ3 Calf-2 domain can be useful. 

 

4.2.2 Selected mutations and their structural variants 

Calf-1 variants- The Seven Calf-1 domain variants studied herein were involved in GT and are 

reported in the GT database, https://sinaicentral.mssm.edu/intranet/research/glanzmann. Variants 

L653R[345,346], L721R (only reported in the GT database), L721V[347], R724P[347,348], 

R724Q[349], and P741R[347,348] severely impaired αIIbβ3 expression (less than 5% expressed) 

while variant C674R[347,348][350] allowed a 10% residual expression (type I and II GT [351]). 

 

Calf-2 variants- Five mutations were selected in Calf-2 domain. Two of these have implications 

in GT; H798P, S926L [340] while the rest three are polymorphisms that lead to HPA system 

implicated in FNAIT. The polymorphisms involved in FNAIT are: V837M, L841M, I843S. It is 

noted that four of the five mutations lie in the 34 residue long missing region in Calf-2 (840 - 873). 

These are suggestive of the underlying importance of the region. The selection of these variants in 

Calf-2 is suggested by the collaborators from platelet lab in INTS. 

 The seven GT aa substitutions were introduced in the structures by in-silico mutagenesis 

using PyMOL software [352] and the SCWRL method [353]. The effects of all mutations were 

studied exclusively. 

 

4.2.3 Molecular Dynamics 

MD simulations were done using GROMACS 5.1.1 software [354] with Gromos96 54a7 force-

field [355]. WT and variant forms were soaked in a rhombic dodecahedral simulation box with 

TIP3P water molecules and neutralized with Cl- ions. The MD protocol is similar to the ones used 

in our previous works [255,341]. After 1 nsec of equilibration (with position restraints on the 

protein), each system was simulated through 10 independent dynamics for a total of 1 microsecond 

(10 × 100 nsec). Molecular conformations were saved every 100 psec for downstream analysis. 

The first 5 nsec of each MD simulation were discarded considering the noise generated by residues 

at the extremities.  

Trajectory analyses were done with the GROMACS software, in-house Python and R 

scripts. Root mean square deviations (RMSD) and root mean square fluctuations (RMSF) were 

https://paperpile.com/c/wsrnTw/7JlF+CHBM
https://paperpile.com/c/wsrnTw/3os4
https://paperpile.com/c/wsrnTw/3os4+CzWk
https://paperpile.com/c/wsrnTw/ZaKn
https://paperpile.com/c/wsrnTw/3os4+CzWk
https://paperpile.com/c/wsrnTw/3os4+CzWk
https://paperpile.com/c/wsrnTw/3os4+CzWk
https://paperpile.com/c/wsrnTw/U3HK
https://paperpile.com/c/wsrnTw/5PCi
https://paperpile.com/c/wsrnTw/sGxZ
https://paperpile.com/c/wsrnTw/LsEp
https://paperpile.com/c/wsrnTw/nXzE
https://paperpile.com/c/wsrnTw/tOwj
https://paperpile.com/c/wsrnTw/bFNx+ygjs
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calculated on Cα atoms only. Residues interactions were analysed using the online tool PIC 

(Protein Interactions Calculator) [356].  

Two important computational resources were used for running MD simulations. Our in-

house super cluster, Serenity, having 48 compute nodes with 16 cores per node, thus generating a 

computational power of 768 cores. Also, CINES national supercomputer OCCIGEN was used 

under allocation no. A0010707621. 

 

4.2.3.1 Trajectory analysis using Protein Blocks 

Protein Blocks (PBs) are very efficient in tasks such as protein superimpositions [61]and 

MD analyses [241]. They are labelled from a to p: PBs m and d can be roughly described as 

prototypes for core of α-helix and central β-strand, respectively. PBs a to c primarily represent β-

strand N-ter and PBs e and f representing β-strand C-ter; PBs a to j are specific to coils; PBs k and 

l to α-helix N-ter while PBs n to p to α-helix C-ter. PB assignment was carried out using PBxplore 

tool developed by our team and freely available at GitHub (https://github.com/pierrepo/PBxplore) 

[69]. PB were assigned for each residue of the domains and over every snapshot extracted from 

MD simulations. The equivalent number of PBs (Neq) is a statistical measurement similar to 

entropy that represents the average number of PBs for a residue at a given position. For details on 

Neq, please refer Introduction 1.6.3. 

To underline the main differences between the wild-type (WT) and a variant for each 

position, ΔNeq value is computed. ΔNeq is the absolute difference between corresponding Neq 

values. However, a same ΔNeq value can be obtained with different types of blocks in similar 

proportions. Therefore, to detect a significant change in PBs profile, a ΔPB value was calculated. 

It corresponds to the absolute sum of the differences for each PB between the probabilities of a PB 

x to be present in the WT and the variant forms (x goes from PB a to PB p). ΔPB is calculated as 

follows: 

     𝛥𝑃𝐵 = ∑16
𝑥−1 | 𝑓𝑥

𝑊𝑇 −  𝑓𝑥
𝑣𝑎𝑟|  

 

where, 𝑓𝑥
𝑊𝑇 and 𝑓𝑥

𝑣𝑎𝑟 are the percentages of occurrence of a PB x in respectively the WT 

and the variant forms of Calf-1 structures. A value of 0 indicates perfect PBs identity between WT 

and variant, while a score of 2 indicates a total difference. 

 

https://paperpile.com/c/wsrnTw/q7p9
https://paperpile.com/c/wsrnTw/MRhd
https://paperpile.com/c/wsrnTw/jsSk
https://paperpile.com/c/wsrnTw/g1vn
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4.3 Results and Discussions 

 

The rigid, anchor region of the αIIb subunit leg that comprises of two domains of Calf-1 and Calf-

2 is under investigation for inherent flexibility. A core β sandwich fold consisting of 8 to 9 

antiparallel β strands connected with loops. Usually, a β sandwich fold is found in anchoring roles 

in the structures, for eg, in heavy chains (VH) of antibodies [23], Flaf protein in Archeal cell 

envelope [42] and therefore has more rigidity associated to it. Moreover, the inside-out as well as 

outside-in signaling primarily interacts with the β3 subunit. Therefore, it will be interesting to 

understand the role of inherent flexibility in the dynamics of these domains. Also, the dynamics of 

wild type Calf domains will be compared with that of different variants (structural) implicated in 

GT and FNAIT. 

 

4.3.1 Completing the missing regions in Calf-2 domain 

With huge gaps of 11 and 34 residues, it will not be possible to understand the dynamics of Calf-

2. The selected templates, 4G1E and 4NEH were used exclusively to model the missing regions. 

While the overall scaffold of the Calf-2 domain is provided by the αIIbβ3 self-template structure of 

3FCS. Thus three template structures are used having PBDids; 3FCS (αIIbβ3), 4G1E (αVβ3), and 

4NEH (αXβ2). However, the generated model with best DOPE score did not have convincing 

conformation for the 34 residue missing region. It modelled it as a highly disordered loop (based 

on the loop conformation in all the 100 models) which exhibited self-interactions. Given that the 

loop consists of FNAIT variants that will lead to expression of HPA and that the loop might interact 

with IEGF domains of β3 subunit, the loop confirmation is unacceptable. Therefore, based on the 

shorter yet complete loop structure of the leukocyte specific integrin, αXβ2 (4NEH) and the very 

small structural distance between G840 and Q873, structural constraints are designed for the 

missing region. Each 5th residue in the loop should have a distance of 10Å while two 20Å distance 

restraints are put between 840th to 850th residue and 863rd to 873rd residue. The principle schematic 

of the restraints is shown in Figure 4.6A. The principle of such structural restraints is to avoid the 

self interaction of the loop and an expanded conformation given its interactions with IEGF 

domains. 
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Thus the final selected model has two loops and both exhibit small helical component at the most 

distal part of the loops, Fig 4.6B. Short molecular dynamics of 50 nsec confirmed the stability of 

the loop, although the loop 7 is highly more deformable. 

 

Figure 4.6 Completing the missing regions in Calf-2. A) schematic of restraints applied. B) the 

modelled loops based on the structural restraints. 

 

4.3.2 Structural analysis of the Calf-1 domain  

Calf-1 domain extends from residues 603 to 743 of the αIIb integrin subunit. This domain is an all 

β structure adapting an Immunoglobulin-like β-sandwich fold with 9 consecutive β-strands 

connected by 8 loops (the loops position can be seen in Figure 4.7D)  [357]. Loops 1 and 10, 

located at the N- and C-terminals of Calf-1 connects it with N-ter Thigh and C-ter Calf-2 domains, 

respectively. RMSD from all MD simulations reach a steady state at 2.5 nsec (Fig 4.8) that is 

maintained in longer runs of 100 nsec indicating stable and reproducible independent dynamics. 

According to the high B-factor values obtained from crystallographic data, loops 2, 3, 4 and 5 are 

the most flexible regions of Calf-1 (Fig 4.7A). Residues 622, 643, 710 and residues 667/668 (of 

loop 5 that contains missing atoms) presented the highest B-factor values in their respective loops. 

On average β-strands are more rigid than loops [34,35] although some of their residues represent 

relatively high B-factor values in Calf 1. As it is known that B-factors are strongly influenced by 

the crystal packing of the structure [40] therefore, it was checked and B-factors are confirmed to 

be not influenced by crystal packing contacts. 

https://paperpile.com/c/wsrnTw/CB9Z
https://paperpile.com/c/wsrnTw/VnJD
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Figure 4.7 Comparison of the protein flexibility of Calf-1 through different metrics. 3D 

structures of Calf-1domain represented through (A) B-factor values, (B) RMSF values, and (C) N 

eq values. Local structure is ranked from rigid (thin blue line, a value of 0.0) to flexible (thick red 

line, a value of 4.0). Residues with completed missing atoms are in grey in the B-factor cartoon 

(A). (D) The Calf-1 amino acid sequence is placed in regards to its secondary structures 

assignment and to protein flexibility according to the B-factor, the RMSF or the Neq values. Blue, 

green, yellow, orange and red colours scale the structure from rigid to flexible. The loops are: 

loop1 (size: 9, positions 603–611), loop 2 (size: 10, positions 620–629), loop 3 (size: 7, positions 

640–646), loop 4(size: 4, positions 653–656), loop 5 (size: 8, positions 665–672), loop 6 (size: 6, 

positions 678–683), loop 7 (size:6, positions 690–695), loop 8 (size: 8, positions 708–715), loop 9 

(size: 11, positions 725–735), and loop 10 that begins at position 742. 
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Figure 4.8 RMSD curves of the WT form of Calf-1 domain. Shown are curves of the 5 MD 

simulations performed for 50 nsec. All curves converge at 25000 picoseconds to reach a steady 

state. 
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4.3.3 Inherent flexibility in the Calf-1 domain 

Some protein moieties that are very flexible in solution might seem to be rigid only because they 

are involved in the solid-state packing. RMSF values computed from MD simulations measure the 

mobility of each residue around its median position in the structure and allow assessing protein 

flexibility (Fig 4.7B). High RMSF values are often associated with loops and sometimes with C-

ter of β-strands. As defined by high RMSF values, loop 2 (residues 619–620 and 625–626), loop 

5 (residues 665–671) and loop 8 (residues 711–713) are flexible regions, with loop 5 being the 

most flexible. The rest of the structure is relatively rigid.  

RMSF and B-factor values are correlated for loops 2, 5 and 8 (Fig 4.7D). Some points are 

noteworthy: (a) the limits of flexible positions can show some little differences between RMSF 

and B-factor and (b) loop 3 is associated to high B-factor but low RMSF values although it binds 

a Ca2+ (not included during simulations) in the crystal structure. Similar correlation between B-

factor and RMSF values have been reported previously [238]. Figure 4.7[B to D] also indicate a 

good correlation between RMSF and Neq values. Indeed, highest Neq values are associated to 

flexible regions (as defined by B-factor and RMSF) with residues K678-T682 (loop 6) and N709-

E712 (loop 8), but also with T619 (loop 2). Expectedly, some regions show higher Neq for some 

residues; G641-G643 (loop 3) and S728-N730 (loop 9). On the other hand, highly flexible region 

can also represent high local rigidity in terms of PBs, for instance, residues V666-F669 and E670 

in loop 5 (Fig 4.7C and 4.9).  

 

4.3.3.1 Flexible yet rigid: Resolving ability of Neq 

Direct comparison of RMSF and Neq values (Fig 4.9A) clearly shows that E667 represents 

a high RMSF but a low Neq. This can be explained by its PB distribution (Fig 4.9B): E667, G668 

and F669 representing the highest RMSF values (and also B-factors), mainly adopted the PB 

sequence “hia” with respective occurrences of 86.2, 82.9 and 61.6%. A series of PB “hia” is a 

classical loop conformation but this region (in blue rectangle on Fig 4.9C) maintains a single 

conformation and is not really flexible. This apparent discrepancy can be explained by the insertion 

of the rigid stretch E667-F669 in a larger flexible (or more precisely deformable) loop N665-L672. 

Interestingly, the results reveal that a locally rigid aa stretch (few possible conformations/low Neq) 

can be a part of a large mobile loop involved in the global structural motions of the protein (high 

RMSF). Overall, the results show a good correlation between experimental data (B-factor), RMSF 

https://paperpile.com/c/wsrnTw/1BhA
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and Neq obtained from MD simulations. Although some discrepancies did exist, they are explained 

by local structure singularities. As expected in an all-β domain, rigid β-strands are linked by 

flexible loops. 

 

Figure 4.9 Local rigid conformation in a deformable loop, low Neq versus high RMSF. (A) 

Superimposed RMSF and Neq values (red and blue curves respectively) from residues N665 to 

G668, (B) The WebLogo 49 indicates the frequency of occurrences with respect to the PBs adopted 

(size of the letter) by a residue in MD simulations. Here, residues V666 to F669 mainly adopted 

the PBs profile “ehia” corresponding to low Neq for them. (C) 3D model of the Calf-1 domain 

and the frame magnified of two adopted by the loop conformations (red and yellow worm-lines) 

carrying the residue E667 (in blue) that keep a rigid structure relative to the mobile loop. 
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4.3.4 Comparisons of dynamics between GT variants and WT Calf-1 

The αIIbβ3 integrin was cut into compact structural domains through Protein Peeling [358] that 

correlate the delineations found in literature [344]. As shown in Figure 4.10, the variant residues 

under investigation are mostly located at β-strands presenting low flexibility with the exception of 

residue 653 localized near the β-strand 3 C-ter. Similar to WT system, the 7 variants (structural 

mutants) were studied with 10 independent MD simulations performed to a complete timing of 1 

μsec and with parameters similar to Jallu et al., 2014 [341]. Each system reached a plateau after 5 

nsec with an average RMSD of 2Å (beginning of loop 1 and end of loop 10 excluded). All energetic 

and geometric parameters show a good evaluation for the 70 different simulations used in this 

study; no clashes are found. The Calf-1 domain stays consistent during the whole dynamics. 

Average RMSF from each variant and the WT were comparable (Fig 4.11). The most important 

variations observed in loop 2 (V625), loop 5 (E670), loop 8 (A713) and loop 9 (N732) did not lead 

to disordered patterns. Some variants showed specific higher or lower RMSF for some restricted 

positions like for C674R and L721V variants (Fig 4.11).  

 

 

Figure 4.10 Ribbon model of the Calf-1 domain showing the location of the studied variant 

residues. Strands are coloured in green and loops in yellow. Variant residues are identified as red 

balls. N-ter and C-ter ends are shown as yellow balls. 

 

 

  

https://paperpile.com/c/wsrnTw/XPeU
https://paperpile.com/c/wsrnTw/DC62
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Figure 4.11 Calf-1 RMSF of the different systems. By comparison, Calf-1 variant structures 

mainly behaved like the WT form (black curve). The noisy peaks for the N-ter first residues were 

discarded in the majority of the analyses since, in nature they lay at conjunction to the neighboring 

domain. 

 

 

4.3.5 Protein block analysis of WT and variant dynamics 

To resolve deformed region from rigid and flexible regions, PBs analyses of the MD trajectories 

is performed. PBs analyses revealed striking local structure alterations, but distant from the variant 

sites. Three variants R724Q, L653R and C674R are found to be representative of all behaviors 

observed for the 7 variants.  

 

4.3.5.1 R724Q 

This aa variation is located at β-strand number 8. In regards to the WT structure (Fig 4.12), 

the highest Neq differences are at S621 (beginning of loop 2), A644 (loop 3) and L710 (loop 8). 

These loops that are naturally flexible are even more so in the variant. Therefore, an increase in 

flexibility is observer. Conversely, residues L624 to D628 have a lower Neq value thus indicating 

that loop 2 represents a dual behavior, with increased deformability at its beginning and enhanced 

stability in its C-ter part. Surprisingly, the mutant residue Q724 (β-strand 8) conserved the same 
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Neq (Fig 4.12_A) with a low ΔPB of 0.09 (Fig 4.12B) indicating that local β-strand conformation 

is conserved, i.e. PB d. 

 

Figure 4.12 Variant R724Q. (A) Neq values of residues from the WT system (black curve) and of 

the R724Q variant (red curve). Positions of the residues 724 and S621 that presented the highest 

RMSF alteration are respectively indicated by blue and green dots lines. (B) Curve of the ΔPB 

values computed from the difference between the two systems. (C) PB maps from residues 722 to 

726 for the WT (left) and the variant (right)systems. (D) PB maps for residues 619 to 623. Color 

scales indicate the frequency of occurrences of the PBs in the map. (E) Molecular interactions 

made by the residues 724 in the WT and the variant systems (left and right cartoons respectively). 

(F) Molecular interactions made by the residues 621 in the WT and the variant systems (left and 

right cartoons respectively). Residues 724 and S621 are shown as cyan balls in the WT form, and 

as light cyan balls the variant. Orange balls indicate residues that conserved their interactions 

with the residues724 or S621 while magenta balls correspond to residues with modified 

interactions. A cartoon of the Calf-1domain shows the respective locations of the residues 724 and 

621 
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Regarding the structure, the polar amino acid arginine contains a longer aliphatic side-

chain than glutamine, an uncharged hydrophilic polar amino acid. Q724 conserves the backbone - 

backbone interaction with E648 as observed with R724 (β-strand 3, see Fig 4.12E). Besides, Q724 

lost the ionic bond and the side chain - side chain interactions with E648 but made new hydrogen 

bonds through side chains interactions with E722. This showcase a classic example of structural 

compensation that maintained the local conformation of the residue through different interactions. 

The highest ΔNeq (2.71) that is also associated with the highest ΔPB (0.57), is observed for S621 

(Fig 4.12A, B). S621 is located at the opposite side of the domain in reference to residue 724 (Fig 

4.12E). In the variant structure, S621 mostly remained in a PB d (i.e., β-strand) conformation with 

however, a decreased frequency of occurrences. Besides, downstream P622 and L623 presented 

some lost conformers with increased frequencies of PBs e and h respectively. Very few typical 

backbone - backbone interactions of S621 with L623 and backbone - side chain interactions with 

N629 are replaced by a single bond between side chains with N629. Adding to this high mobility, 

S621 did not do consistent and sustainable interactions. This behavior is amplified in the Q724 

variant with the most stable residue S621 in a naturally flexible region (loop 2), became one of the 

most deformable positions.  

 

4.3.5.2 L653R 

This GT variant results from a L653R substitution in loop 4. The highest Neq variations 

(Fig 4.13A) affected residues G620 - P622 (loop 2), V630 - L631 (β-strand 2), E646 (loop 3), 

R671 (loop 5) and L710 (loop 8). As observed with the R724Q substitution, residues G620 - L623 

gained slightly more flexibility. Conversely, residues L624 - D628 shows increased flexibility but 

with a limited impact (average ΔPB = 0.23) on the most frequent PBs (PB e for L624, h for V625 

and i for G626 in Fig 4.13B). The mutated residue in position 653 (loop 4) is not subjected to any 

Neq modification. It conserves a strong local structural stability (Fig 4.13C) similar to its direct 

environment. The PB series at this position “dddeh” is even slightly more common in the variant 

than in the WT (64% and 59%, respectively). 

In the R653 variant, the 8 hydrophobic bonds of L653 disappeared in favour of new 

interactions between the R653 backbone and A657 and E676 side-chains (Fig 4.13E). The 

backbone – backbone interaction with R683 remained conserved. The mutation zone showed no 
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conformational change as the loss of important specific interactions were partly compensated by 

new ones. Of the 9 original interactions only 1 is conserved while 3 new are created.  

 

Figure 4.13  The variant L653R. Panels (A and B) respectively show the Neq and the ΔPB curves 

of the L653 (WT) and R653 (variant) systems. Panels (C, D) respectively show the PB maps of 

residues 651 to 655 and 677 to 681 with the WT at the left and the variant form at the right. (E) 

Molecular interactions made by the residues L653or R653 and (F) by E679. For colour scales and 

residue presentation, see the legend of Figure 4.12. 

 

 

Q679 (loop 6) is a very interesting case where ΔNeq is negligible while the ΔPB is the 

highest (0.78). The most frequent PB b (N-ter of β-strand) is replaced by a PB h (loop structure) 

in regards to their frequency of occurrences (Fig 4.13D). 
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Hydrogen interactions with T682 and K677 are retained but the backbone - backbone 

interaction with E681 is lost and replaced by side chain and ionic side chain interactions with R724 

in loop 9. In the variant structure, this region has high fluctuations in PBs, mainly associated to 

loops that even affected the C-ter of the β-strand 5 located the above loop 9. 

 

4.3.5.3 C674R 

This variant is associated with a C674R substitution in β-strand 5. An Neq profile (Fig 

4.14A) similar to that occurring in the R724Q substitution is observed (see section 4.3.5.2). Loop 

2 presented the same increased deformation at its beginning (S621), followed by a stiffening in its 

centre (residues L624-D628). The same PB series “ehiac” (L624 - D628) is found in greater 

proportion than in the Q724 and R674 variants, reinforcing the local stiffening of the loop in this 

region. The main destabilization was far upstream of residue 674 (Fig 4.14C). 

 

Loss of a disulfide bridge: With the C674R substitution, the residue 674 not just lost its 

covalent disulfide bond with C687 located at the end of β-strand 6, but also its aromatic interaction 

with Y659 in β-strand 4 (Fig 4.14D). However, the mutated R674 made an ionic bond with E688 

located at end of β-strand 8 that strengthened a backbone – backbone interaction. The 80% 

frequency of PB d (the highest) in WT decreased to 49% in the variant. Surprisingly, N675 and 

Q676 located downstream the substitution remained structurally stable with similar PB 

occurrences.  

The highest Neq variation affected R671 as shown by the strongest ΔNeq (5.02) and ΔPB 

(0.91). The side chain of R671 is mainly exposed at the domain surface and forms a single ionic 

interaction with the neighboring E670, like in WT. But in the variant conformation, the R671 side-

chain can occasionally turn towards loop 8 to make ionic side chain interactions with E688 (Fig 

4.14E). The frequency of PB d (the highest) drastically decreased in the variant leading to an 

increased disorganization of the neighborhood. 

Experimentally, the C674R mutation severely impaired the αIIbβ3 complex expression with 

only 10% of the integrin expressed at the surface of the patient’s platelets and transiently 

transfected CHO cells. However, the C674R mutation did not impair pro-αIIb synthesis but affect 

the stability of the complex that is not correctly matured and/or expressed at the cell membrane. 
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Figure 4.14  The variant C674R. Panels (A and B) respectively show the Neq and the ΔPB curves 

of the C674 (WT) and R674 (variant) systems. Panel C show the PB maps of residues 669 to 676 

for the WT (above) and the variant forms (below). (D) Molecular interactions made by the residues 

C674 or R674 and (E) R671. For colour scales and residue presentation, see the legend of Fig 

4.12. 

 

4.3.5.3 Other variants 

Proline is the aa known to cause the most drastic change in conformations [359]. Indeed, 

the P741R substitution (Fig 4.15) inverse the PB profile going from 55% of PB d (β-strand) and 

29% of PB f (C-cap of β-strand) to 24% of PB d and 59% of PB f. This case was associated with 

a low ΔNeq (0.15) while the ΔPB was high (0.70). In P741R substitution two hydrophobic 

interactions were lost and R741 formed ionic and side chain - side chain interactions shortening 

the β-strand. 

 

https://paperpile.com/c/wsrnTw/mjlP
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Figure 4.15  Comparative study of the ΔPB values for all WT-variant pairs. Histogram schema 

presenting the ΔPB value computed for each residue position (abscissa) from each variant and the 

WT systems. Green triangle indicates the aa variation position while the purple one position shows 

the position of maximal ΔPB. Residues from loops 2, 3 and 8 presenting common high ΔPB for all 

variants are boxed. 

 

In the remaining 5 variants studied, compensation mechanisms were also observed. Most 

interactions formed by WT residues are replaced by new ones, allowing conservation of the local 

structure. Surprisingly, regions displaying significant changes (high ΔPB) are distant from 

substitution sites without any contact/interaction with the substituted aa. These regions contribute 

towards increasing the deformability and are usually located at interfaces adjacent to neighborhood 

β-propeller, Calf-2 or Thigh domains. These results depict changes resulting from substitutions in 

distant regions suggesting long-range mechanism to be at play.  

Different variants with common mutation sites. L721R and L721V showed quite different 

results (Fig 4.15). Compared to L721R, the L721V substitution had very little impact on RMSF, 
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apart for the end of loop 8, which is a highly flexible region. This is particularly true for E712 

(loop 8), whose ΔNeq were respectively, 3.33 and 0. 

 

4.4 Conclusions and future perspectives 

 

The MD simulations of Calf-1 domain allowed to demonstrate more or less pronounced structural 

changes in the wild type structure as well as the impact of GT variants. The analysis gets huge 

enhancement by using protein blocks statistical measures like ΔNeq and ΔPB. These helped in 

closely evaluating the regions that comprised of a local regions of rigidity inside otherwise 

deformable regions, for instance as analysed in case of Glu 667, Fig 4.10. Flexibility profile of the 

Calf domains showed that although their anchoring role demands them to have a rigid core yet the 

connecting loops contribute to the structural dynamics of the core. This principle gets even more 

profound by studying the effect of GT variants on the Calf-1 structure. Overall in the structural 

mutants, the beta-strand core tends to maintain or regain rigidity which can be attributed to its 

structural role in the big integrin complex. However, the impact of GT variants that may disturb 

the core are systematically compensated by the loops. The energy gain or loss due to lost 

interactions in mutants is shown to be compensated by new interactions and the residual energy is 

apparently transferred to the loops. This causes the long range effects of the impact of mutation, 

as observed at residues L653, L721, and R724. 

While, mutation at C674 and P741 variants displayed conformational changes at the mutated site, 

predominantly. In the case of the C674R substitution, the resulting loss of the disulfide linkage 

relaxes the structure and introduces significant structural alterations (Fig 4.14 and 4.13). Such an 

effect is largely suggestive that the structural-functional context of the structure influences the 

rigidity. Thus, inherent flexibility is important and crucial to the conservation of the core. 

For P741R it should be noted that residue 741 is located at two residues upstream from the 

C-term of Calf-1 and is normally in contact with the Calf-2 domain. Thus, the absence of the 

neighboring domain in Calf-1 MD simulations can impact the observations. To resolve, MD 

simulations of the complete domains have been performed. However, the technical failure of our 

computational cluster inhibits the inclusion of results from Calf-2, Calf-1 + Calf2 + knee + Thigh 

domains. Nonetheless, similar observations were also made in the dynamics of these domains as 
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well. The calcium containing domain, ‘Genu’ (knee) seems to play a key role in assisting the 

flexible domain to be stabilized during structural changes from leg to thigh regions. 

Although the primary objective was to profile the inherent flexibility in all-beta, rigid Calf 

domains yet the evaluation of the dynamics of GT variants enhanced our understanding of local 

structure dynamics. With deservingly expected developments in the project, it will be interesting 

to compare and test the inferences from leg region with apparently flexible domains of β3 subunit. 
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Dissemination of results 

The results from Calf-1 showing effects of 7 GT variants on the wild type structure of  integrin αIIbβ3 have 

been published as: Goguet M.*, Narwani T.J.*, Petermann R., Jallu V., de Brevern A.G. In silico 

analysis of Glanzmann variants of Calf-1 domain of αIIbβ3 integrin revealed dynamic allosteric. 

Sci Rep (2017) 7(1):8001 

The use of derived statistical tool from PBs, ΔNeq and ΔPB in assessing structural flexibility have 

also been summarized in the form of a review article. The article is titled as: Craveur P., Joseph 

A.P., Esque J., Narwani T.J., et al. Protein flexibility in the light of structural alphabets. Frontiers 

in Molecular Biosciences - Structural Biology (2015). 

Another manuscript emphasizing on the modelling approach for long missing regions of Calf-2 

and its dynamics is under preparation. 
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Chapter 5: Protein dynamics in structural assemblies- An affair of ACKR1 and 

Plasmodium vivax 

 

5.1 Introduction 

 

As have been seen from subsequent chapters that local protein structures are context dependent. 

For instance, in chapter 3, differences in dynamics of secondary structures can be observed 

between PTM and DPF dependent contexts. Moreover, in chapter 4 the dynamics of backbone is 

preserved, although key residues lying in beta-strands are mutated. Both the Calf domains in 

Integrin αIIbβ3 have a structural role of anchoring the chain to the cytoplasmic membrane. 

Therefore, the ambitious mutation in the core of the domain had compensatory effects to preserve 

its function. Thus the objective is to understand protein flexibility in a more complex structural 

organization that is, a multimeric assembly. Also, in the preceding chapters the domains and local 

structures under investigation can be encapsulated as having a globular nature. Therefore, to add 

contrast to the structural contexts studied so far, a transmembrane protein is selected as a case 

study to understand protein dynamics in structural assemblies. 

 The selected protein is Duffy Antigen / Chemokine Receptor (DARC). DARC has a 

physiologically promiscuous behavior in humans while being corruptly implicated in Malaria. 

DARC is a transmembrane GPCR and thus expectedly have scarce information about its structure. 

Therefore, the primary challenge will be to generate a robust structural model and consequently 

investigate the dynamics of its important structural regions. Being a GPCR implicated in a 

pathology like Malaria, its structural dynamics can be exploited to design effective inhibitors for 

Malarial transmission. 

  

5.1.1 Malaria 

Four Plasmodium species Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and 

Plasmodium malariae, are the cause of malaria in Homo sapiens sapiens while a simian parasite 

Plasmodium knowlesi may also be able to infect [360]. Of these Plasmodium falciparum malaria 

mostly lead to fatalities while the rest leads to milder yet recurring and severe infections. Although, 

Plasmodium vivax infections are not as fatal as Plasmodium falciparum, yet it is the most 

widespread malaria causing species in Asia, Europe and Americas [361,362][363] as shown in the 

https://paperpile.com/c/wsrnTw/5fKG
https://paperpile.com/c/wsrnTw/W40z+7Fss
https://paperpile.com/c/wsrnTw/W40z+7Fss
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Figure 5.1A. Plasmodium vivax has a high morbidity rate in the developing countries of south-east 

Asia, southern America and, Africa with upto 140 million cases of Plasmodium vivax malaria per 

year [361]. Of these 80% of infections are reported from Asia and south America, while only 

12.4% are acquired in Africa. The populations of western sub-saharan Africa are resistant to 

Plasmodium vivax infections, Figure 5.1B [364]. This is attributed to a silencing mutation that 

selectively abolishes the expression of Duffy Antigen/Chemokine Receptor (DARC) on 

erythrocytes (Red Blood Cells). 

 

Figure 5.1 An affair of Plasmodium vivax and ACKR1. A) shows the endemicity of the 

Plasmodium vivax infected malaria with red depicting highest and cyan depicting lowest no. of 

cases. Most of the incidents are reported in the tropical and sub-tropical climate zones, except 

most of African continent. B) depicts the spatial distribution of Duffy negative population across 

the world. Ranges are shown as gradient of color red with pink being negligible while more red 

indicated more Duffy negative population. As can be seen from C) that the Duffy negativity totally 

complements Plasmodium vivax malaria trends, especially in African continent. 
+The images are generated from the Malaria Atlas project (https://map.ox.ac.uk/).  

https://paperpile.com/c/wsrnTw/W40z
https://paperpile.com/c/wsrnTw/dIHb
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5.1.2 Plasmodium vivax 

Plasmodium vivax, like other plasmodium parasites, have a dual phased, digenetic life cycle. The 

sexual cycle or schizogony is carried out in the host, female Anopheles ending in the generation of 

sporozoites [365]. The blood meal of the mosquito on human commences the asexual cycle or 

sporogony. This culminates with the production of gametocytes that are sucked by the host 

mosquito during blood meal. While in the asexual phase, the Plasmodium vivax merozoites 

undergo two stages of development in liver and three stages of infection in erythrocytes called 

erythrocytic cycle. Malarial merozoites must invade erythrocytes to begin the infection stage and 

this makes the invasion a critical step in the life cycle of Plasmodium vivax. A bottleneck in the 

merozoites entry process is the interaction of their micronemes with a septa-helical 

transmembrane, glycoprotein on erythrocytes known as DARC. However, in liver, the merozoites 

can also enter a dormant stage called hypnozoites. Figure 5.2 shows a schematic representation of 

Plasmodium vivax life cycle. 

 

Figure 5.2 Life cycle of Plasmodium. Parasites of Plasmodium genus have digenetic life-cycle. 

The sexual part of the life-cycle is carried out in vectors, mostly mosquito. The infectious stage is 

executed in the host cells, mostly Humans. After a blood meal the parasite is transferred to the 

host via salivary glands. The parasite multiplies in the hepatic cells but is asymptomatic and 

https://paperpile.com/c/wsrnTw/g87A
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therefore difficult to diagnose malaria. In 2-3 weeks, the parasites rupture the hepatic cells to 

enter blood stream where they infect Erythrocytes. The erythrocyte infection leads to malarial 

symptoms. The parasite cells multiply in the erythrocytes and spread over and thence when the 

vector takes another blood meal the parasite enters the blood stream of vector to carry on the 

sexual cycle. 
+Image credits to Stephan Kappe, PhD, University of Washington 

 

 

5.1.3 An introduction to DARC 

Duffy Antigen / Chemokine Receptor is a minor blood group antigen that expresses Human 

alloantigens, Fya and Fyb in its N-terminal extracellular domain [366]. It was discovered in western 

Africa and is allegedly named after the individual whom it was discovered in [367]. Its official 

denomination is Atypical Chemokine Receptor 1 (ACKR1) while alternatively it had been 

previously termed as Fy glycoprotein (Fy) or Cluster of Differentiation 234 (CD234). ACKR1 is 

encoded by a single copy gene, DARC, located on chromosome 1 [368]. DARC gene exists as two 

co-dominant alleles Fya and Fyb arising due to a base mutation, G125A [369]. In Fya, the mutation 

in the 42nd codon leads to the encoding of glycine while in Fyb it encodes aspartic acid, described 

by polymorphism- G42D [370]. These alleles are immunologically distinct and therefore would 

result into four Duffy blood group phenotypes: Fya+b+, Fya+b-, Fya-b+ and Fya-b-. Some minor 

phenotypes have also been characterized namely, Fy3, Fy4, Fy5, Fy6 and Fyx (weak expression of 

Fyb) [371]. Fya-b- also called Fy-null phenotype, arises due to a polymorphism in Fyb at 46th 

nucleotide (T46C) in the erythroid regulatory element of the DARC promoter region. The mutation 

leads to the disruption of the binding site for erythroid transcription factor, GATA1, in erythrocytes 

derived from hemopoietic lineage [372], as depicted in Fige 5.3. Therefore, the Duffy -ve or Fy-

null blood group phenotype would abolish the expression of ACKR1 on erythrocytic membrane. 

While, the Duffy -ve individuals can have ACKR1 expressed on the endothelial lining of 

postcapillary venules, epithelial cells of renal collecting ducts [373] and Purkinje cells [374]. Since 

Plasmodium vivax merozoites invade reticulocytes by interacting with ACKR1 (DARC), the duffy 

-ve population can avoid this parasitic invasion thus making them resistant to Plasmodium vivax 

infected malaria, Fig 5.1C. 

 

https://paperpile.com/c/wsrnTw/tinT
https://paperpile.com/c/wsrnTw/DPtF
https://paperpile.com/c/wsrnTw/hZq1
https://paperpile.com/c/wsrnTw/O6Or
https://paperpile.com/c/wsrnTw/F1Xs
https://paperpile.com/c/wsrnTw/kkBD
https://paperpile.com/c/wsrnTw/HKl2
https://paperpile.com/c/wsrnTw/ludU
https://paperpile.com/c/wsrnTw/2TQe
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Figure 5.3 Disruption of GATA-1 box. A schematic description of the expression of DARC gene 

in normal phenotypes (left) and in Duffy -ve phenotypes (right). In the promoter region of the gene, 

the SNP T46C alters the recognition site of GATA-1 thus leading to loss of expression of DARC 

gene. The SNP is predominant in the Fyb allele lineage that expresses DARC on reticulocytes. 

Therefore, loss of DARC on RBC, will hinder the interaction with Plasmodium vivax DARC 

binding proteins. 

+Image taken from [372] 

 

5.1.3.1 Sequence of ACKR1 (DARC) 

As it has been established that ACKR1 interaction is the primal point of access for 

Plasmodium vivax merozoites, it becomes crucial to understand the sequence-structure-function 

of ACRK1 and its mechanism of interaction with Plasmodium vivax micronemes. ACKR1 is a 

transmembrane protein belonging to Chemokine Receptor family which is a member of class A 

GPCR gene family [375]. Therefore, with a protein sequence of 336 amino acids (in Humans) 

ACKR1 adapts a rhodopsin-like structure identified by the classical 7-transmembrane helices 

linked by 6 connecting loops; 3 on the extracellular region (extracellular domains or ECD) while 

3 on intracellular (intracellular domains or ICD). The extracellular region from N-terminal to the 

https://paperpile.com/c/wsrnTw/SLVs
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start of first helix is termed as ECD1 and the cytosolic C-terminal region is termed as ICD4. The 

first 60 amino acid residues of ACKR1 sequence constitutes the ECD1. The residues 60 - 316 

forms the TM domain and residues 316 - 336 constitutes the ICD4 [241], see Figure 5.4. The 

members of Chemokine Receptors are structurally conserved especially in the 7-TM structure. The 

major variation arises in the length and amino acid composition of ECD1. It comprises of epitopes 

specific to the chemokine ligands and Fy blood group antigens. Besides, the ECD1 in ACKR1 also 

contains specific residues which are highly conserved given their roles in important interactions. 

A detailed description of such residues is provided in the subsequent sections in lieu of a fitter 

context. 

Figure 5.4. ACKR1. A) a schematic representation of ACKR1 (uniprot ID: Q16570) highlighting 

the important epitopes for blood Fy antibodies. The SNP that leads to Fya and Fyb allele lineages 

is also shown. The conserved cysteines that forms the disulfide bridges are highlighted in green. 

The intracellular loop 2 is labelled as ICD2 and as seen, DRYLAIV motif is missing. B) shows a 

tentative model structure of ACKR1 monomer that shows the structural placement of conserved 

motifs and epitopes. G-proteins natural docking site is also shown but as ACKR1 lacks the DRY 

motif, G-proteins do not couple. 
+Image credits: A) taken from [374], B) adapted from [430] 

  

https://paperpile.com/c/wsrnTw/jsSk
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5.1.3.2 Physiology of ACKR1 and Chemokine Receptors  

Chemokine receptors are classified by the type of chemokine ligand it interacts with. The 

receptors which interact with CC class of chemokines are called CCR while those interacting with 

CXC chemokines are termed as CXCR. In their inactive state chemokine receptors are coupled 

with heterotrimeric complex of G-proteins (Guanine binding proteins). G-proteins are further 

bound to a guanosine diphosphate (GDP) molecule [376]. The binding of the chemokine ligand 

predominantly happens at the N-terminal face with extracellular regions (loops and parts of 

helices) forming the binding pocket. Major portion of the ECD1 is responsible for ligand 

recognition and specificity. Chemokine binding illicit a conformational change across extracellular 

to intracellular faces of the 7TM leading to the exchange of GTP for GDP molecule. This exchange 

dissociates the heterotrimeric complex of G-proteins into Gα and dimeric Gβɣ [376]. Activated G-

proteins having a GTP molecule attached, triggers a series of regulatory pathways using secondary 

messengers for downstream propagation. Most used secondary messengers are 

phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG). A summarising description of chemokine signaling response is depicted in 

Figure 5.5. The allosteric motions set into place by chemokine binding leads to outward tilting of 

the intercellular face of the chemokine receptor [377]. The motif that is responsible for coupling 

G-proteins is located in the ICD2 [378]. It is represented by a conserved amino acid sequence of 

aspartate, arginine, tyrosine followed by slightly less conserved sequence of leucine, alanine, 

isoleucine and valine- 'DRYLAIV'. The sequence DRY has been observed to be very crucial for 

the activation of the G-proteins, especially the Arg residue that interacts directly with the Gɑ 

protein in active state [379]. In the inactive state, Arg forms an ionic lock with the Asp [380]. Upon 

activation, the pKa of the arginine changes consequently leading to the disruption of the ionic lock. 

The loss of the ionic interaction is compensated by new interactions with the well conserved Tyr 

residue of the following intracellular loop- ICD3 and Gα subunit of the G-proteins [381]. 

Therefore, the Arg works as a molecular switch and DRY motif is crucial for G-protein mediated 

signaling upon activation. 

 

 

 

 

 

https://paperpile.com/c/wsrnTw/iuIT/?locator_label=figure&locator=1
https://paperpile.com/c/wsrnTw/iuIT/?locator_label=figure&locator=1
https://paperpile.com/c/wsrnTw/yECd
https://paperpile.com/c/wsrnTw/ocNB
https://paperpile.com/c/wsrnTw/Htii
https://paperpile.com/c/wsrnTw/fpng
https://paperpile.com/c/wsrnTw/Wh56
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Figure 5.5 Chemokine system signalling.  The cartoon picture shows the various pathways that 

can be triggered by chemokine binding to a chemokine receptor. Shown are the chemokine 

receptors, CXCR3, CXCR4, a dimer of CXCR4 and CXCR7 (ACKR3), and CXCR7 (ACKR3). All 

these receptors can be activated by either CXCL12 or CXCL11. The signalling of ACKR3 shows 

no Gαi signalling as it has variations in the DRY motif.  

 

The Atypical Chemokine Receptor (ACKR) contain variations in this DRYLAIV motif 

and therefore cannot transduce signal after binding to a chemokine. Some ACKRs for eg, D6 

(ACKR2), CXCR7 (ACKR3), (GPR35) contains the motif with some variation and are able to 

transduce signal by independent pathways [382,383]. The DRY motif is completely absent in 

ACKR1 and therefore it cannot couple with G-proteins and thus no signal transduction is observed, 

https://paperpile.com/c/wsrnTw/HmDf+9XhP
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see Fig 5.4B. Besides, ACKR1 is also the only member in chemokine receptor family that binds 

non-specifically to chemokines. It binds to inflammatory chemokines of both types: CXCL as well 

as CCL. ACKR1 have been reported to interact with: CXCL1, CXCL8, CCL2 and CCL5 in 

erythrocytes. This makes ACKR1 behavior to be an ‘atypical’ one amongst the subfamily of 

atypical chemokine receptors. Among chemokine receptors, surprisingly less information is 

available about ACKR1 while it is the oldest known chemokine receptor [384]. The physiological 

function of ACKR1 in erythrocytes is yet unclear. As it binds to 20 chemokines of different types, 

it supposedly functions as a scavenger and regulate the inflammatory pathways [385][386]. Due 

to lack of an active response to chemokine binding, ACKR1 is also termed as a silent or decoy 

receptor. In non-erythrocytic cells like those in venular endothelium, cerebellar neurons and 

Purkinje fibers, ACKR1 is expressed by the allele Fya [373,387]. In endothelial cells, it mediates 

chemokine transcytosis. Wherein, ACKR1 internalizes the chemokines and migrate them from 

luminal to extravascular space, to induce leukocytes migration and thus regulate inflammatory 

response [388]. While the physiological function of ACKR1 in erythrocytes is still under 

consideration, it plays a critical part in entry of Plasmodium vivax micronemes [389]. It has been 

shown that DARC dimerizes during its interaction with Plasmodium vivax proteins. This makes 

ACKR1 a.k.a DARC, a protein of interest for our case study. 

 

5.1.3.3 Structure of ACKR1 

A decoy receptor like ACKR1 that is also the point of entry for Plasmodium vivax in 

Humans, is indeed an intriguing case of host-pathogen biology. Thus, enriching literature is 

available about the cell biology of ACKR1 and Plasmodium vivax DARC Binding Protein 

(PvDBP). Numerous studies also identifies critical residues and motifs involved in both the 

proteins [390]. However, scarce information is available about the molecular structure of ACKR1 

while structure of P.knowlesi DBP was published in 2005 by Singh et al, highlighting the crucial 

insights into DARC - DBP interactions [390]. The lack of structural information can be attributed 

to the challenge of crystallizing membrane bound proteins like GPCR. Currently, in PDB, 115 

crystal structure of GPCR proteins are available [391], of which only 20 have a resolution lesser 

than 2.5 Å. This is indeed a small number for popular drug targets like GPCR. Availability of only 

115 of ~800 GPCR proteins also estimates the challenges of experimental structure determination 

https://paperpile.com/c/wsrnTw/vBsT
https://paperpile.com/c/wsrnTw/b53u
https://paperpile.com/c/wsrnTw/b53u
https://paperpile.com/c/wsrnTw/ludU+Gwh3
https://paperpile.com/c/wsrnTw/z28K
https://paperpile.com/c/wsrnTw/jTAb
https://paperpile.com/c/wsrnTw/Oll9
https://paperpile.com/c/wsrnTw/Oll9
https://paperpile.com/c/wsrnTw/tioW


 

172 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

for membrane bound GPCRs. Chemokine receptors are Class A GPCR and have only 8 structures 

available in PDB with only 1 qualifying the resolution and r-free value thresholds. 

 

5.1.4 Homology modeling of DARC 

In the absence of an experimentally determined structure of DARC, it is logical to perform 

homology modelling to study the structural aspects of DARC. It is mentionworthy that our group 

have generated a structural model for DARC in 2005 and is the only one since then. It has a 

monomeric assembly modelled on a template from a very distant relative (sequence identity 12%) 

belonging to Rhodopsin family (Bovine Rhodopsin, PBDid: 1F88:A) [241]. With technological 

advancement in molecular biophysics, there is much more information available about chemokine 

receptors than in 2005 [377]. Therefore, we decided to remodel DARC using comparative 

modeling coupled with knowledge based restraints. In the last decade, evidence of oligomerization 

of chemokine receptors have gained enormous support. It has been reported that chemokine 

receptors often exist as homo- or heterodimers as well as oligomers with members outside 

chemokine receptor family [377]. Chemokine receptors have conserved 7-TM helices and a 

variable length N-terminal domain, ECD1, which is mostly disordered [392]. The disorder in 

ECD1 accounts for the functional diversity along with promiscuous binding network of chemokine 

ligands with chemokine receptors [377]. However, failure of drug candidates due to non-

specificity towards target chemokine receptor leads to the notion of redundancy in chemokine 

receptors. In the last decade, these notions have been critically challenged by reports of 

oligomerization in chemokine receptors that diversifies the functional spectrum of the family 

[377]. There are profoundly three types of oligomeric structures in chemokine receptors: CC 

oligomers, CXC oligomers, and heteromers formed predominantly by the members of either CCRs 

or CXCRs and with other TM receptors [377]. However, an XCR and two CX3CR also exist. The 

major difference among chemokine receptors is among the sequential difference between cysteines 

and a tyrosine residue that can undergo sulfonation [393]. The dimerization of chemokine 

receptors is believed to be influenced by the class of the chemokines involved. Since, DARC binds 

to both classes of chemokine ligands with similar affinities, it poses a challenge to identify a correct 

template for comparative modelling. Consequently, three questions emerge: 1) Does DARC exist 

as a monomer or an oligomer? 2) If as oligomer, then is it a heteromer or homomer? 3) Which of 

the chemokine receptor(s) can be effectively used as a template(s) structure? Fortunately, in 2010 

https://paperpile.com/c/wsrnTw/jsSk
https://paperpile.com/c/wsrnTw/yECd
https://paperpile.com/c/wsrnTw/yECd
https://paperpile.com/c/wsrnTw/TQU0
https://paperpile.com/c/wsrnTw/yECd
https://paperpile.com/c/wsrnTw/yECd
https://paperpile.com/c/wsrnTw/yECd
https://paperpile.com/c/wsrnTw/tdND
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first structure of chemokine receptor was solved and released as a series of 4 structures with 

different antagonist ligands [394–397]. All the structures were crystallized as homodimers thus 

diminishing the alleged role of crystal packing. This was followed by a series of NMR and 

mutagenesis studies which assesses most CXCRs and DARC as a dimer [377]. Chakera and 

collegues in 2008 [398], had shown that DARC exists as a heteromer in cells proposing a 

CCR5/DARC complex. While these evidence were supporting DARC to be modelled as a dimer 

rather than the previous monomeric model. The question on homo- or heteromeric state was still 

unanswered because the heterodimeric studies were based on case specific analysis. DARC 

dimerizes with CCR5 to restrict the conformational changes in CCR5 that favors chemotaxis, thus 

acting as a trans-inhibitory partner [398]. DARC’s physiological state on erythrocytes as well as 

during Plasmodium vivax contact was still not clear. 

In 2014 Batchelor et al. [389], crystallized the DARC-PvDBL interaction and showed the 

assembly to be a heterotetrameric and heterotrimeric. In both the structures, homodimer of PvDBL 

was shown interacting with either monomer (2:1) or dimer (2:2) of DARC based on which it is 

termed as trimeric or tetrameric. ITC (Isothermal Titration Calorimetry) results postulate the 

trimeric assembly as an intermediate structure in a stepwise binding process. Thus proposing a 

hypothesis that PvDBL homodimerizes under the effect of ACKR1 as depicted in Figure 5.6A. 

The structure provides crucial details about the interaction of ECD1 (DARC’s N-terminus) and 

PvDBL but do not have coordinates for the transmembrane structure or other interface and non-

interface domains. The 2.6 Angstrom structure shows the dimerization of the regions of two 

distinct PvDBL namely PvDBL-RII (cysteine rich region II) and dimerization of ECD1 of DARC. 

Since the interaction takes place at the central region of DARC’s ectodomain (ECD1) therefore, 

only residues 19-30 have sufficient electron density, Figure 5.6B. This also validates that the N-

terminal ECD1 is indeed an IDR (Intrinsically Disordered Region) that acquires structure upon 

dimerization and interaction with Plasmodium vivax. The work of Batchelor et al, 2014 is highly 

pivotal in finding answers to the questions about homology modelling of DARC. Based on the 

findings above, DARC was decided to be modelled as a homodimer. 

The selection of an effective template structure still remained at large. To decide whether 

to use a CXCR or CCR structure or both as a template, a crude phylogenetic approach was adopted. 

An understanding of the phylogenetic placement of DARC with other human chemokine receptors 

should provide sophisticated support in selection of a structural template. Therefore, a 

https://paperpile.com/c/wsrnTw/IutV+mO7N+sccR+yA9x
https://paperpile.com/c/wsrnTw/yECd
https://paperpile.com/c/wsrnTw/ps49
https://paperpile.com/c/wsrnTw/ps49
https://paperpile.com/c/wsrnTw/jTAb
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phylogenetic tree was plotted using the sequences available for 21 chemokine receptors [399,400]. 

Based on the tree topology and branch lengths, it is observed that DARC is highly distant from the 

rest of the clades while CXCR4 is suggested as a potent structural template for modelling DARC.   

Figure 5.6 Plasmodium vivax and ACKR1 interaction. A) shows the pathway followed by 

Plasmodium vivax DARC binding ligand (PvDBL) to bind with ACKR1 expressed on the 

reticulocytes of Duffy positive individuals. A monomer of PvDBL interacts with homodimer of 

ACKR1 that causes the dimerization of the PvDBL. Once dimerized, the N-terminal residues 19-

30 of the ECD1 of ACKR1 docks irreversibly into binding pockets of PvDBL dimer. This is termed 

as a hetero-tetramer assembly (PBDID: 4NUV). B) shows the zoomed in version of the 

heterotetramer interaction. The otherwise disordered residues 19-30 of ACKR1 forms a well 

defined helix while rest of the ECD1 does not have definitive electron density. 
+Image adapted from [389] 

  

https://paperpile.com/c/wsrnTw/1B1j+SKYn


 

175 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

5.2. Methods 

 

5.2.1 Structural template selection 

 

5.2.1.1 Template search 

The sequence of the ACKR1 or DARC was extracted from UniProtKB/Swiss-Prot database 

(accession number: Q16570). The sequence corresponding to the isoform 2 was selected as it has 

been annotated as the physiological form. The sequence so obtained was used as a query in blastp 

v2.6.0+ [401] as well as pHMMER v3.1b2 [402] to search against PDB database. For blast, amino 

acid substitution matrix BLOSUM62 [403] was used along with word_size: 6, window_size: 40. 

The composition based scoring adjustments (comp_based_stats) were used with an e value 

threshold of 1e-5. pHMMER was run with default values using BLOSUM62 substitution matrix. 

e-value restrictions for domains, -domE and -incdomE, were used to focus the search on the 7TM 

domains and thus remove false positives.  

The blastp search extracted only two hits, pertaining to ECD1 of ACKR1 in PDB 

structures: ids 4NUV and 4NUU. These PBD represent the heterotetrameric and heterotrimeric 

assembly of PvDBL and DARC, respectively [389]. pHMMER also has these two as top hits and 

since -domE option was used; other TM proteins were also hit. However, a conclusive result was 

not obtained. Although, the matched subjects have >90% identity but they had critically less query 

coverage (< 8%). This noise in the results was created by the relatively long ECD1 of DARC.  

Therefore, the query sequence was re-submitted after clipping the first 50 residues. Using 

the same parameters as before, with blastp and pHMMER; the query fetched significant number 

of hits containing chemokine receptors as well as other GPCR structures too. It is noteworthy, that 

only 50 residues instead of 60 residues of ECD1 were clipped in order to maintain the effect of 

ECD1 in the structure. The results were scanned and resubmitted to PSI-blast (after blastp) and 

JACKHMMER (after pHMMER). The iterations were stopped after third run (including the first 

run) with the final set containing 15 pdbs. An attempt to enrich the potential template dataset was 

made using FATCAT [345] at default configuration. The structure search method did not find any 

new hits that could be added to the 15 hits found by the sequence search methods. 

 

 

https://paperpile.com/c/wsrnTw/yQ9J
https://paperpile.com/c/wsrnTw/dUp3
https://paperpile.com/c/wsrnTw/ztmR
https://paperpile.com/c/wsrnTw/jTAb
https://paperpile.com/c/wsrnTw/7JlF
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5.2.1.2 Template selection 

Of the selected 15 PBDids, 5 were removed given the missing residues in their structures 

(based on REMARK 465 of PDB file), higher R-free value and lower resolution (> 3Å). The final 

set of potential templates contained 10 protein structures representing CXCR4, CCR5, CXCR2 

and a viral GPCR protein. The PBDids for these structures are: CXCR4: {3ODU, 3OE6, 3OE8, 

3OE9, 4RWS}, CXCR2: {4JL7, 4N6X}, CCR5 {4MBS}, vGPCR: {4XT1, 4XT3}. To verify their 

structural integrity, a conformational space analysis was performed using a three layered structural 

analysis, which was called a Three Tier Method (TTM). The TTM comprises of three simple 

metrics namely, TM-score [404], RMSD (root mean square deviation) and alignment coverage. 

All the structures were first isolated into individual chains and heteroatoms were removed. 

The boundaries of TM-helices of each chain were identified and were pair-fitted using ProFit 

Version 3.1 [405]. This step validated the structural integrity of the GPCRs. After this preliminary 

analysis, TM-align [404] was used to perform all v/s all pairwise alignments of individual chains, 

as TM-align is length independent. The statistics extracted from the TM-align were used in the 

TTM. Table 5.1, shows the output of the TTM with a comparison of all vs all chains. The use of 

PDBs 3OE6, 3OE8, 3OE9 in the analysis acted as a positive control for the TTM. The first section 

analyse the TM-score, which depends on the reference structure selected during alignment. Higher 

the TM-score, more related are the structures. Second section establishes structural relatedness 

using RMSD: lower the value, closer are the structures. The second section acts as a validation for 

the first section. In the third section, alignment lengths or coverage was used to assess the structural 

comparison. 

These steps along with the preliminary analysis done using ProFit proved crucial in 

identification and exclusion of the outliers like, 4JL7, 4N6X, and parts of 4RWS and 4XT3. The 

TTM helped in narrowing the templates from 10 to 2. The selected templates were 3ODU 

(CXCR4) and 4MBS (CCR5). 3ODU exists as a dimer in the asymmetric unit while 4MBS 

contains a monomer in its asymmetric unit (based on REMARK 290 and 350 of their PDB files). 

  

https://paperpile.com/c/wsrnTw/Mwgt
https://paperpile.com/c/wsrnTw/cuxU
https://paperpile.com/c/wsrnTw/Mwgt
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Table 5.1 Three Tier Method for filtering template structures. All vs all structural comparison 

of tentative template structures is done using TM-align and ProFit. Tier 1: indicates the TM-scores 

of pairwise structural alignments. A TM-score above 0.8 indicates same family and a TM-score > 

0.9 indicates highly similar structures (highlighted in green). Tier 2: indicates the RMSD in (Å). 

Half matrix is shown as the RMSD does not change with change of reference structure. The low 

RMSD values of the range 0.65 – 4.97 are shown. 3ODU and 4RWS are potential templates given 

their overall low RMSD values. Tier 3: is the alignment coverage during the pairwise structural 

alignment. It helps in justifying the high structural deviation values in Tier 1 and 2. 
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5.2.1.3 Phylogenetic Analysis for template selection 

To select between a CXCR and a CCR template to model DARC was a challenge, given 

that DARC binds to both classes of chemokine ligands. Therefore, phylogenetic information of 

chemokine receptors was used in the selection process. Sequences of 21 chemokine receptors out 

of 24 known Human chemokine receptors were selected. 3 receptors, namely CX3CR1, XCR1, 

and ACKR6 were excluded as they do not bind to the canonical chemokine ligands [399,400]. 

Multiple alignment of these 21 sequences was performed using MAFFT v7.2 [406], with default 

parameters. The multiple sequence alignment (MSA), in Stockholm format, was annotated with 

the helical boundary information of 7TM helices. Sequence editor, JalView v16 [407] was used to 

refine the MSA based on the conservation of cysteine residues and DRY motif.    

 

 5.2.1.4 Tree generation and visualization 

 The resulting MSA was submitted to IQ-Tree v1.4.2 [408]- an efficient tree reconstruction 

algorithm based on maximum likelihood. A phylogram was generated using JTT exchange rate 

matrix having free rate heterogeneity and empirical frequencies from the data: (JTT+F+R10). The 

tree was bootstrapped at 1000 exchanges. The resulting phylogram was visualized using iterative 

Tree of Life (iTOL) [409]. For details on the tree building parameters, see section 6.2.4. 

 

5.2.2 Structural Modelling 

5.2.2.1 Sequence Alignment 

The sequence of the template structure and ACKR1 (without the ECD1) was aligned using 

Promals3D [410]. In addition to the global alignment of sequences, Promals3D also takes into 

account the secondary structure elements (SSE) of template and the predicted sse using PSIpred 

[49]. Therefore, it helped in easy visualization of the alignment in the TM regions. However, the 

global pairwise alignment was also annotated with the assigned SSE of template using DSSP. It 

was made sure that there were no critical in/dels in the helical regions. The final alignment was 

saved in PIR format in the alignment.ali file. The alignment had the complete sequence of DARC 

minus the 49 residues at N-terminal, namely ECD1. 

 

 

 

https://paperpile.com/c/wsrnTw/1B1j+SKYn/?locator=,4
https://paperpile.com/c/wsrnTw/RQsp
https://paperpile.com/c/wsrnTw/61d3
https://paperpile.com/c/wsrnTw/aFt3
https://paperpile.com/c/wsrnTw/Fl19
https://paperpile.com/c/wsrnTw/5Sos
https://paperpile.com/c/wsrnTw/37G9
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5.2.2.2 Structural Modelling and assessment 

Modeller v9.16 [75] was used to generate structural models using the template and the 

alignment file. Modeller script, model-default.py was customized by adding snippets to define 

spatial restraints and different model assessment scores. Two constraints were added; the 

transmembrane boundaries and two disulfide bonds. Three assessment scores were given to assess 

the best model among the 100 models generated. Apart from DOPE/molpdf [75,411], and GA341 

(model reliability), normalized DOPE score (nDOPE) was also calculated in order to compare 

models from different templates. For instance, to compare model quality generated from a 

monomeric template and a dimeric template because DOPE works only with single chains.  

Since, the query is a TM protein and assessment scores like DOPE/molpdf, GA341 are 

optimized for globular proteins, it was required to assess the models differently. Therefore, 

MAIDEN was used [412]. Model quality Assessment for Intramembrane Domains using an 

ENergy criterion- MAIDEN is a statistical potential optimized using structural information of 

membrane proteins from PDBTM (xml file) [413]. The energy potential of TM proteins is supplied 

as an ‘intp’ file with option ‘-e’. These potentials are also used to calculate an approximation of 

the free energy which is given as the raw potential in the output. MAIDEN uses sequence based 

decoys to calculate Z-scores, similar in principle to e-value calculations. An important feature of 

MAIDEN is that it uses globular potentials for calculations of the extra-membrane portions. 

Further, a conformational space for the models were sampled using TM-score of 101*101 pairwise 

alignment of all models against all models (100) and the template (1). This step helped in 

understanding the expanse of models from the template as well as among themselves. 

A top twenty approach or “T20 test” was devised to select the best model. Top twenty 

models were selected from each of the scoring functions. An intersection of the 4 sets, each 

containing 20 models was calculated. The set can be represented as (MAIDEN ∩ (GA341 ∩ 

(nDOPE ∩ DOPE))), where the set names represent the 20 best models according to the scoring 

function. Since, only one of the scores is optimized for TM proteins, MAIDEN set was given 

preference over nDOPE, DOPE and GA341 sets. For instance, if a model appears lower in T20 of 

nDOPE and DOPE/molpdf but ranks as the best model according to MAIDEN score, that model 

will be selected. Thus a MAIDEN score is weighted more than the rest of the assessment scores. 

This information is then clubbed with the TM-score analysis and a best model is selected. In 

https://paperpile.com/c/wsrnTw/valf
https://paperpile.com/c/wsrnTw/valf+qQNq
https://paperpile.com/c/wsrnTw/SJci
https://paperpile.com/c/wsrnTw/rhaz
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summary, the best model should be ranked amongst the top 20 models in each scoring scheme and 

should be a representative of the collective structural space of template and models. 

 

5.2.3 Membrane Building 

The structural model should be embedded in a lipid bilayer. This step is important for the analysis 

of the pathophysiological role of DARC. Therefore, the first step was to resolve the protonation 

states of asp, lys, glu and his residues at the physiological pH 7.2, which was done using proPka 

[414] and PDB2PQR server [415]. The dimeric model was then submitted to PPM server [414,416] 

to estimate the extent of the lipid bilayer. PPM server was used after specifying that the N-term of 

the model lies on the extracellular side. PPM server hosted online by OPM database that hosts the 

membrane orientations of 3426 TM proteins from PDB. The structural model was then submitted 

to the Membrane Builder of CHARMM-GUI [417]. The objective was to embed the structural 

model of DARC in a mimic reticulocyte membrane. The composition of the RBC membrane 

during reticulocyte stage as well as mature stage, was estimated by doing extensive literature 

survey. Following information was extracted about the RBC membrane: 

 

a) The physiological pH of the membrane ranges from 6.3 to 7.9 [418]. 

b) Cholesterol (CHL) seems equally distributed between the inner and outer halves 

[419]. 

c) Phospholipids are asymmetrically distributed between the leaves and is crucial for 

red cell physiology [420]. Changes in membrane lipids can affect the RBC shape 

by perturbing the balance in inner and outer leaflet lipids [421,422]. 

d) Fluidity of the bilayer is determined by molar ratio of cholesterol to phospholipids, 

degree of unsaturation of phospholipid acyl chains, and phosphatidylcholine to 

sphingomyelin ratio [423]. In reticulocyte membrane, since the phospholipid and 

cholesterol is synthesized from glycerol and acetate, their concentration are 

expected to be in nearly equal proportions [424].  

e) While phosphatidylcholine (PC) forms highly fluid lipid regions, sphingomyelin 

(SM) induces rigidity [423]. 

https://paperpile.com/c/wsrnTw/QaVG
https://paperpile.com/c/wsrnTw/6JIC
https://paperpile.com/c/wsrnTw/QaVG+xaBn
https://paperpile.com/c/wsrnTw/pz5W
https://paperpile.com/c/wsrnTw/GMnL/?locator_label=figure&locator=1
https://paperpile.com/c/wsrnTw/P8HG
https://paperpile.com/c/wsrnTw/8yoy
https://paperpile.com/c/wsrnTw/AII1+lWyH
https://paperpile.com/c/wsrnTw/8iub
https://paperpile.com/c/wsrnTw/NnGx/?locator_label=figure&locator=4
https://paperpile.com/c/wsrnTw/8iub
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f) PC and SM are located in the outer leaflet while; phosphatidylinositols (PI), 

phosphatidylethanolamine (PE), and phosphatidylserine (PS) occur mostly in the 

inner leaflet [425]. 

g) Most of all PC lipids are in the outer leaflet while most of all PS lipids are in the 

inner leaflet [422],[418]. 

h) Redistribution of membrane phospholipids may trigger clotting cascade [426]. 

 

The concentration, type of lipids, and distribution ratio was calculated strictly to satisfy these 

findings from literature. Therefore, the selection of heterogeneous lipids in step 02 of Membrane 

builder was the bottleneck of the protocol. Out of 182 different lipids, POPC, POPE, POPS, POPI 

and PSM were chosen. Since all of these are derivatives of the same acyl chain, Palmitoyl Oleoyl- 

and therefore offer consistency in acyl unsaturation and chain lengths. Therefore, the effect of acyl 

chain unsaturation on membrane fluidity can be effectively normalized. Further, these lipids are 

added in definitive ratios. Cholesterol (CHL1) is added in equal amount at 25:25 (outer: inner) 

satisfying the ratio 1:1.  

 

5.3. Results and Discussion 

 

Our interest in studying the structure of ACKR1 (previously named DARC) is two fold. Primarily 

we wanted to understand the inherent dynamics of a protein structure in a multimeric assembly; a 

homodimer in this case. Secondly, DARC is rather an interesting protein that does not transduces 

signal, unlike other chemokine receptors and plays a crucial role in pathophysiology of P.vivax 

malaria. Absence of a robust structure for DARC makes it challenging to understand its structural 

biology as well as its interaction with the PvDBP. Therefore, it becomes elementary to model the 

structure of DARC so as to achieve our objectives.  

 

5.3.1 Phylogenetics based selection of the template 

As explained in the methods section of this chapter, to enhance the template selection procedure, 

phylogenetic information is used. A phylogram for 21 Human chemokine receptors was generated 

as shown in Figure 5.7. DARC (mentioned as ACKR1 in the tree), has the longest distance from 

the root at 5.97 branch length units. Only one receptor comes closer to DARC with 5.20 units 

https://paperpile.com/c/wsrnTw/BXRr
https://paperpile.com/c/wsrnTw/lWyH
https://paperpile.com/c/wsrnTw/GMnL/?locator_label=figure
https://paperpile.com/c/wsrnTw/Oe69
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distance from the root, GPR35 or potentially CXCR8 [427]. However, GPR35 does not belong to 

the same clade as DARC. The distance of DARC from its nearest clade is 4.92 units. According 

to the tree topology, CCR10 seems closest to DARC, in the clade. Interestingly, the distance of 

CCR10 from DARC is 3.10 units which quantifies the observation that there is huge evolutionary 

gap between DARC and its closest neighbor. This observation also intensifies the curiosity in the 

evolution of DARC which is handled later in details (see chapter 6). Based on the branch lengths 

and tree topology, CXCR3 (3.97 units away from DARC), CXCR5 (3.70 units away) and CXCR4 

(4.16 units away) are the next closest neighbor of DARC, in that particular order. Of these, only 

CXCR4 has a crystal structure available in PDB. Since, CCR10 is the closest neighbor of DARC 

and the crystal structure of CCR5 is known, the proximity between CCR10 and CCR5 was also 

tested. Unfortunately, CCR5 is 1.42 units and seven clades away from CCR10 while it has a 

distance of 5.52 units from DARC, see Figure 5.7. Therefore, CXCR4 clearly qualifies as the 

selected template for modelling a structure for DARC. 

Figure 5.7 Phylogenetic placement of ACKR1. The tree topology as generated by IQtree. The 

green colour of branches indicates high bootstrap values (of 1000). The branch lengths are 

indicated on the branches approximated to two decimal places. The green coloured labels indicate 

members belonging to the clade of ACKR1. The green asterisks mark the availability of structure 

in PDB. As observed, ACKR1 is highly distant from rest of the clade at a branch length of 3.66 

https://paperpile.com/c/wsrnTw/eS06
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units. It’s closest neighbor in the clade is CCR10 however, the structure for CCR10 does not exist. 

The neighbor also having a crystal structure is CXCR4 at a branch length of 4.16 units from 

ACKR1. 

 

5.3.2 Structural model for Duffy Antigen / Chemokine Receptor 

  

5.3.2.1 T20 test for the selection of the best model 

Structural template search accompanied by a robust template selection protocol along with 

phylogenetic placement of DARC in Human chemokine receptors and using the gathered 

molecular biology information as anchors, the homodimeric structure is modelled as depicted in 

Figure 5.8. Of the 100 models generated, the model no. 85 was selected based on the intersection 

set of the ‘T20 test’ and proximity analysis with the template structure using RMSD and TM-score. 

The intersection set contained models numbered: m33, m59, and m85. m85 has the least energy in 

MAIDEN calculations and ranked 16th in the nDOPE set. However, it appears last in the GA341 

set. m33 tops the nDOPE, DOPE and GA341 sets but ranks 9th in MAIDEN scores. m59 like m85 

ranks 2nd in MAIDEN set but appears in the last quarter of nDOPE, DOPE and GA341 sets. Since, 

both m59 and m85 are ranked higher in the MAIDEN set they were weighted higher. Of these two, 

GA341 score becomes a ‘decider’, with m85 having a score of 0.15 in contrast to higher score of 

0.21 for m59. GA341 is a score to estimate the accuracy of the model using percent sequence 

identity between individual chains of model and template. An ideal model would be scored 1.00 

thus having 100% sequence identity with all the template chains. However, our approach is to find 

a divergent structure from the CXCR4 template and thus m85 is selected on this argument. The 

RMSD between m85 and m59 is 0.56Å while structural deviation from template is 2.14Å and 

2.17Å for m85 and m59 respectively. The deviation from template structure is also quantified by 

average TM-score (mean of chain-wise scores) as 0.812 and 0.815 for m85 and m59 respectively. 
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Figure 5.8 Structural model for ACKR1. With the help of T20 approach for model selection, best 

model was selected and validated. A) The important cysteines are found to be conserved and forms 

the disulfide bridges (Cys in red and S-S bond is shown in orange). The terminals are shown in 

black, ball and stick models. ICD2 (loop that contains DARC) is shown in grey colour. B) shows 

the top view of the dimer with respective helices marked. The orientation symmetry of the helices 

is mirrored and the ECD1 seems to move towards each other, as expected. The top view also shows 

the open interface and binding pocket for the ligand. C) Bottom view of the dimer shows the 

inwards tilting and gives a better perspective on the orientation of the ICD2 (grey). 

 

5.3.2.2 Structural orientation in the bilayer 

Modeller protocol does not take into account the effect of solvent on the structural model. 

The conformations may change with solvent properties, especially in the case of TM protein 

structure; wherein some region interacts in a hydrophobic environment while the rest resides in a 

hydrophilic environment. DARC is a TM protein that is expressed on the RBC membranes and 

therefore it is required to embed the obtained structural model in a lipid bilayer. However, before 

building the membrane, it is essential to mark the boundaries of the TM regions and estimate the 
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orientation of the TM helices. Therefore, PPM web server was used [416]. The PPM protocol that 

uses the alignment of protein structure’s z-axis with the normal to the bilayer and minimization of 

the transfer free energies of the embedded amino acid residues, provided a membrane orientation 

for the homodimeric model of DARC. The assembly have a ΔG for transfer energies as 107.9 

kcal/mol. The thickness of the hydrophobic bilayer is estimated as 30.6 ± 0.8Å which matches 

with the average bilayer depth of TM proteins. Moreover, PPM server also reports a tilt in the TM 

helices at 4. ± 2°. The TM boundaries are also provided for the seven helices. These results provide 

some elementary understanding of the structure of the DARC homodimer.  

 

5.3.3 Comparison with the old computational model of DARC 

As it is mentioned in section 5.1.4 that our lab has generated a homology model of DARC in 2005 

therefore it would be logical to compare the old model and the new. Although, there are robust 

reasons to believe that the two structural models are not fittingly comparable. In 2005, the protein 

data bank had only a very few crystal structure of 7TM fold and even rare would have been to find 

a crystal structure for Class A GPCR. This can be put into context by acknowledging that the first 

crystal structure of chemokine receptor was published in 2010. Therefore, the comparison of the 

two structural models is merely a conventional exercise. 

 The structural model from 2005 (for reference will be called, DARCold hereafter) is 

modelled based on a bovine Rhodopsin GPCR template. The bovine rhodopsin (PBDid 1F88:A) 

had a sequence identity of less than 20% in the TM regions. According to de Brevern et al, 2005, 

an ensemble of structural models were generated but only two were selected as they followed the 

spatial restraints [241]. The major difference is that both the models are monomeric. And as during 

the current study, a lot of time was invested in finding our the correct oligomeric state of DARC 

in erythrocytes. An explanation for the monomeric model could be that the Rhodopsin is a non-

erythroid protein and therefore DARCold might represent the structural model of DARC from 

vascular lineage (Fya). DARC is known to express as monomer in epithelial cells. Therefore, in 

order to compare the current model with DARCold, one subunit of the dimer have to used. The 

RMSD between two subunits of DARC dimer is 0.12Å. Figure 5.9 shows the structural 

superposition between the old models and single subunit of the current dimeric model. Since, the 

DARCold was modelled as a whole structure therefore, both the models consist of ECD1 which 

causes a lot of noise in comparing the TM-scores and RMSD. Therefore, alignment was done using 

https://paperpile.com/c/wsrnTw/xaBn
https://paperpile.com/c/wsrnTw/jsSk
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current model as the reference and ECD1 from DARCold was ignored. The RMSDs between the 

DARCold and current monomer is 6.25Å and 5.84Å with the ECD1. The TM-scores among the 

two DARCold models and current model are 0.73 and 0.76 depicting that the TM domains belong 

to the family. However, upon a quick observation of Figure 5.9, it can be seen that the TM helices 

of DARCold does not show a well defined outward tilting at their N-terminal face. Therefore, the 

major deviation in TM-region among models can be seen at the N-terminal face of TM-helices. 

Another striking difference among models is that the old models does not have the disulfide 

bridges among conserved cysteines. This can also explain the less defined to absent outward tilting 

of DARCold. However, the TM-score among the old models is 0.82 and they have an RMSD of 

2.63Å. 

 

Figure 5.9 Structural comparison between old and new models of DARC. A) Superposed 

structural model of DARCold (yellow) and ACKR1monomeric model (green). The gray color of 

the ECD1 and ICD4 signifies that these were not included in the alignment using TM-align. B) 

Superposed structural models of ACKR1 monomer (green) and more extended of the DARCold 

models. The loops of ECD1 are not not shown here since they were not used in the alignment. 

These loops can be seen in C) forming an anti-parallel beta sheet (in blue). In C) the helices 

orientation can be appreciated. In A and B, the deviation of yellow and blue model from green 
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model is mostly inward and therefore, they do not have a well defined outward tilting. The cysteine 

residues are shown in Red. 

 

5.3.3 Generation of a mimic RBC bilayer 

While the effect of a lipid membrane on the structure can be estimated using a lipid membrane 

embedded structure of DARC using CHARMM-GUI (see methods), the bottleneck is the choice 

of lipids in the membrane. Since, the second objective of the project is to apprehend the DARC - 

PvDBL interactions, the type of membrane is an important factor. The membrane builder from 

CHARMM-GUI is a sophisticated software but like every other computational tool, the biological 

significance of its result depends on the given inputs. Therefore, it was important to generate an 

in-silico mimic of a physiological RBC membrane. However, it becomes really complicated 

because the reticulocytes (young RBC) are slightly different from erythrocytes (mature RBC) 

[424]. Unfortunately, there are no standardized concentration of lipids available for reticulocytes 

but some RBC centered research articles mention lipid distribution among cytosolic and 

extracellular halves of the lipid membrane [424,426,428]. Such articles were mined (details in 

Methods) and an estimate of the lipid concentrations and distributions amongst the two leaflets of 

reticulocyte membrane was proposed. 

After estimating the orientation of the structural model and estimating the reticulocyte 

membrane composition, it was subjected to the membrane building protocol at CHARMM-GUI 

web-server. The structure was inspected manually for the TM boundaries, helix orientations and 

disulfide bridges, at each step of the six-step long protocol. After the first step, the oriented 

structure showed a beta strand in ECD3 between TM helix 4 and 5 while the input structure has a 

β-hairpin loop. It was found that the appearance of β-strand is due to the difference in the 

visualization platforms as the coordinates of both the files were same. In step 2, after verifying the 

cross-sectional areas, heterogeneous lipids were added with the system having a water cross-

section of 10 Å (height) on both sides of the bilayer. The system size was calculated based on the 

number of lipids added to the system. A total of 121 lipids were added to the upper leaflet while 

110 lipids were added to the lower leaflet. This is to maintain the asymmetry of the reticulocyte 

membrane. The final structural model was assembled with the generated membrane using 

replacement method (Fig 5.10). The resulting dimeric structure is minimized for removal of bad 

https://paperpile.com/c/wsrnTw/NnGx/?locator_label=figure&locator=4
https://paperpile.com/c/wsrnTw/Oe69+ejUk+NnGx
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contacts, especially between cholesterol ring and the lipid tails, using PME and SHAKE algorithm 

in Gromacs [429]. 

 

Figure 5.10 Membrane embedded ACKR1 dimer. A) shows the orientation of the helices in a 

dummy membrane boundary (shown as cluster of dots). The width of the TM region is also shown. 

Red colour highlights the disulfide bridges and grey colour on the intracellular face depicts ICD2. 

B) The complete model system with dimer embedded in an RBC mimic membrane (shades of 

yellow), sandwiched by water layers of thickness 10Å containing 22 neutralizing K+ ions. 

Cholesterol is coloured separately from the phospholipids to depict its equal distribution across 

leaves. Terminals are coloured in black. C) A top view of the membrane system with SS bridges 

highlighted in red colour. The top view gives a better perspective of outward tilting and binding 

pocket. Cholesterol is shown in yellow as ball and stick model. 

 

  

https://paperpile.com/c/wsrnTw/H1K1
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5.3.4 Validation of the structural model in bilayer 

Disulfide bridges in the extracellular domains is a signature feature of chemokine receptors. These 

SS bonds brings the ECD1 (N-ter to 50 residues) closer to the extracellular face of the receptor. 

Since ECD1 contain motifs for ligand identification and specificity, the SS-bond assist in 

formation of the binding pocket. The other disulfide bond associates ECD2 with TM4 thus 

providing anchorage to the changed conformation [430]. Due to these disulfide bridges, the inward 

tilting of the helices is observed. The inward tilting causes an outward tilting of the helices 

supported by the microswitch containing motifs, CWxp, DRY, and NPxxY. All chemokine 

receptors have conserved disulfide bridge forming cysteines, with an exception of CXCR6. 

The disulfide bridges are found conserved in the structural model. The orientation of 

helices was modified after the addition of lipids. Chain A helices has an additional tilt of 2° and 

the helices of the chain B have a tilt of 13°. However, the overall tilt of the dimer matches the 

initial tilt estimated by PPM server, i.e. 4. ± 2°.  The transmembrane regions are also in validation 

to the PPM server estimations. 

 

5.3.5 Structural interface 

The interface of the homodimer membrane system is calculated using PIC web server [356] 

and ViP approach. ViP is developed by our collegue, Dr. Jeremy Esque based on his work on 

VLDP to describe structures using Voronoi and Laguerre tessalations. ViP has been standardized 

for membrane bound interfaces and therefore provides confidence to the calculations from PIC. 

The interface interactions are observed to be predominantly hydrophobic in nature with few 

important polar interactions. Residues from TM5 and TM 6 of both the monomeric units forms 

majority of the interface. However, a smaller interface lying closer to the cytosolic leaflet of the 

bilayer is also observed. Fig 5.11 shows the structural interface of the ACKR1 homodimer. 

The larger interface lies towards the extracellular face of ACKR1 comprising mostly of 

hydrophobic residues like, Ala, Leu, Val, Phe, and Ile. A total of 23 residues, majorly from TM5, 

forms the interface. The electrostatic interactions (in red, Fig 5.11) are made by Glu present at the 

N-terminal region of TM5, Arg and Lys belonging to TM6, and Arg residing in ICD2. The arginine 

residues from ICD2 makes the smaller interface at the intracellular side. The interface in the ICD2 

is most surprising because ICD2 is the location of Arg microswitch of DRY motif (in gray color, 

Fig 5.11). The Arg in DRY either forms an ionic bond with Asp of DRY in inactive state or 

https://paperpile.com/c/wsrnTw/3c34
https://paperpile.com/c/wsrnTw/q7p9
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interacts with G-proteins during activation. However, DRY is completely absent in ACKR1 which 

makes this observation interesting. 

Apart from these two polar interactions are also observed involving Thr from TM5 and Ser 

from TM6 (in blue, Fig 5.11). Therefore, a total of 23 residues from TM5, TM6, and ICD2 makes 

the structural interface between DARC dimer. 

 

Figure 5.11 Dimer interface. The figure shows 7 + 7 TM-helices as cylinders embedded in 

phospholopid membrane (shown as transparent surface). The helices are marked with their 

numbers. The interacting residues are coloured in yellow (hydrophobic), blue (polar), and red 

(charged interactions). TM5 and TM6 covers the major interface area on extracellular side. 

However, ICD2 also have charged interaction (Arg) forming a smaller interface at intracellular 

face. 
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5.4. Conclusions and future perspectives 

 

ACRK1 is the oldest known among chemokine receptors. However, it was identified as a blood 

group antigen system in 1950 and called ‘Duffy’ in reference to the patient in whose sera, the 

antigen was found. Therefore it was called Duffy Antigen [431]. It would be decades later in 1993 

that Duffy antigen would be found to have structural properties of a chemokine receptor and acts 

as a receptor for malarial parasite, P.vivax [432]. Since 1993, there have been numerous studies 

on Duffy antigen’s role as a P.vivax receptor [433–435] but a few discusses about its role as a 

chemokine receptor [366,430,436]. Later in 1998, the contribution of Duffy antigen towards 

chemokine system would be identified as a receptor of chemokine ligands belonging to different 

classes [437]. Thus Duffy antigen was renamed as Duffy Antigen Chemokine Receptor (DARC).  

DARC is identified as a mammalian chemokine receptor that can bind to inflammatory 

chemokines across classes. Besides able to bind effectively to different chemokines, it does not 

transduce the signal as it lacks the motifs that couple with G-proteins. Therefore, in 2014 

International Union for Pharmacology (IUPHAR), updated the nomenclature and replaced DARC 

with Atypical Chemokine Receptor 1 (ACKR1) [384]. Among the atypical chemokine receptors, 

ACKR1 is the only one that exhibit promiscuous binding with chemokines and lacks the 

DRYLAIV motif completely. Also, ACKR1 serves as a receptor for Plasmodium vivax merozoites 

leading to the symptomatic infectious stage of malaria. 

These makes ACKR1 an important protein from physiological, pathological and 

evolutionary perspectives. Still, there is none to scarce information about the structure of ACRK1 

except for the residues 19-30 in its N-terminal extracellular domain. Therefore, we decided to build 

a structural model for ACKR1 integrating the physiological, pathological and evolutionary 

information available about ACKR1. The physiological and pathological properties of chemokine 

receptors assisted in identifying the key residues. Structural information from other chemokine 

receptors would provide the basic scaffold for modeling ACKR1. However, chemokine receptors 

exist in various oligomeric states and therefore it was challenging to decide the oligomeric state as 

well as homo- or hetero- composition of ACKR1. These questions were addressed with the 

information gathered on oligomerization of chemokine receptors and phylogenetic analysis of 21 

human chemokine receptors. Thus, ACKR1 was decided to be modelled as homodimer based on 

its closest homolog (with available structure), CXCR4. The modelling procedure was provided 

https://paperpile.com/c/wsrnTw/5eWF
https://paperpile.com/c/wsrnTw/CrcE
https://paperpile.com/c/wsrnTw/eQiE+1ngH+ChDM
https://paperpile.com/c/wsrnTw/lQ3D+tinT+3c34
https://paperpile.com/c/wsrnTw/UvaS
https://paperpile.com/c/wsrnTw/vBsT
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with the knowledge about the transmembrane boundaries and disulfide bridges. Since, the structure 

under consideration is a membrane protein caution was taken in selecting the best structural model. 

One such approach is to use T20 Test, where sets containing 20 top ranked models from different 

assessment scores are intersected to obtain best model(s). The generated model is validated for 

conservation of important residues and structural features. Moreover, comparison with 12 years 

old model show important difference underlying the needed to propose novel one. As the structure 

under study is a membrane protein, the structural model is embedded in an in-silico membrane 

system. Given that ACKR1 expressed on reticulocytes acts as the receptor for P.vivax, the 

embedded membrane system mimics the real RBC membrane composition. The interfacial 

residues are identified from the dimer and they are in accordance to the physiological data available 

for chemokine receptors. This enhances confidence in the structural model of ACKR1. 

In terms of understanding the behavior of local structural flexibility, we notched up to a 

more complex structural organization with a dimer formation in a phospholipid membrane system. 

The primary objective is to understand the dynamics of local secondary structures and protein 

blocks at the interface region as well as at the sites of conserved motifs, like ICD2. Thereafter, a 

perturbation response study of key residues in the dynamic local structures can help us understand 

the role of allostery in the 7TM structure of ACKR1. Therefore, conclusive remarks on the 

dynamics of the local structures in the homodimeric, membrane embedded, assembly of ACKR1 

will require all atom molecular dynamics. However, given the enormous size of the system the 

computational cost is expensive. Therefore, while the 1 microsecond range simulations are running 

on the cluster, a primary study of the motions using ANM based normal mode analysis (NMA) is 

designed. The NMA of the ACKR1 dimeric model will also be used for perturbation studies. 

 The impact of this study will be two-fold. Besides understanding the role of structural 

flexibility in a membrane protein assembly can reveal insights about the behavioral changes in 

local structures depending upon the context. While, a molecular model of P.vivax DARC Binding 

Ligand region II (PvDBL-RII) is under process, the molecular modelling and dynamics protocol 

designed for ACKR1 can be directly applied to PvDBL-RII. The docking pose of ACKR1 dimer 

and PvDBL-RII is already known from the PBDID 4NUV. Therefore, molecular dynamics of the 

complex with an RBC mimic membrane is expected to be impactful towards identifying key 

residues in the complex and targeting them to inhibit P.vivax binding to DARC in reticulocytes. 
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Our new colleague Dr. Agata Kranjc Pietrucci has already started working towards modelling the 

PvDBL and ECD1 of ACRK1. 
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Dissemination of results 

The results from the structural study of ACKR1 have been published as a scientific poster at ISMB-

3dSIG conference held at Prague in July 2017. A more recent and updated poster is to be presented 

at EMBL BioMalPar XIV conference to be held at Heidelberg in May 2018. The conference hosts 

a section dedicated to computational approcahes and therefore can nourish intense discussion on 

our results. The response to the poster at ISMB yielded fruitful discussions with researchers 

dedicated to GPCR biology, like Dr. Ravinder Abrol of California State University. Following is 

the updated poster: Narwani TJ, Pietrucci AK, Abby S and de Brevern AG. DARC shade of 

chemokine receptors [version 1; not peer reviewed]. F1000Research 2017, 6(ISCB Comm J):1269 

(poster) (doi: 10.7490/f1000research.1114529.1) 

   

http://dx.doi.org/10.7490/f1000research.1114529.1


 

195 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

Chapter 6: An evolutionary perspective on Chemokine Receptors. 

 

6.1 Introduction: 

 

As discussed in chapter 5, the template selection protocol for modelling ACKR1, was supported 

by the phylogenetic placement of ACKR1 among human chemokine receptors. The resulting tree 

topology depicted ACKR1 to be highly distant from rest of the clade. Thus leaving a big 

phylogenetic gap between ACKR1 and its closest neighbor. Also, recently it has been established 

that the silent mutation in Duffy negative of Western African population have reached fixation 

levels [438]. This mutation grants them natural immunity against Plasmodium vivax Malaria and 

thus is seen as a striking example of natural selection of genetic traits. 

The function of ACKR1 on erythroid cells as well as the underlying mechanisms of its 

promiscuous behavior towards chemokines and P.vivax DBL is not clearly established. Moreover, 

the chemokine receptor family consist of many anomalies. Besides, ACKR1 interaction with 

Plasmodium vivax; CCR5, CCR3 and CXCR4 also plays an important role in the entry of the virus 

during HIV-1 infection [439,440]. Interestingly, there are reported incidents of gene piracy in the 

chemokine receptors. The large DNA viruses copy the encoding regions of host chemokine 

receptors and use them against the host machinery to either bypass the immune response or cellular 

reprogramming or cell entry [441]. Several viral homologues of chemokine receptors have been 

identified in Humans, mostly encoded by the members of Poxviridae and Herpesviridae families 

[442,443]. 

Therefore, a comprehensive phylogenetic analysis of chemokine receptors is designed to 

understand some, if not all, peculiarities of chemokine receptors. 

 

6.1.1 Chemokines: 

Chemokines are an abbreviated form of chemotactic cytokines and are defined as the cytokines 

that induce chemotaxis by binding to GPCRs. They are involved in major immunological and 

homeostatic pathways and thus form the largest family of cytokines [444][445]. The chemokine 

concentration acts as a chemoattractant to guide the migration of cells, mostly leukocytes (also 

called homing). Chemokines are small proteins weighing 8 to 10 kilodaltons characterized mainly 

by 4 invariant cysteine residues [445]. Functionally, chemokines can be characterized as 

https://paperpile.com/c/wsrnTw/B8p2
https://paperpile.com/c/wsrnTw/O6sh+HDrR
https://paperpile.com/c/wsrnTw/ngNp
https://paperpile.com/c/wsrnTw/1HC5+y7F3
https://paperpile.com/c/wsrnTw/3w2n
https://paperpile.com/c/wsrnTw/3w2n
https://paperpile.com/c/wsrnTw/XaR9
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inflammatory and homeostatic. The homeostatic chemokines are constitutively secreted and 

perform functions like leukocyte trafficking out of bone marrow, and across blood and lymphatic 

vessels. Therefore, the homeostatic chemokines are important for immunosurveillance and 

immune tolerance of the organism [446] [447]. Moreover, the memory of an immune response is 

also dependent on the leukocyte localisation during an immune response [448]. The migration of 

leukocyte also happens during diseases that deregulate the immune system. For example, 

inflammation during atherosclerosis, chronic allergies in autoimmune diseases, multiple sclerosis 

and many others. The chemokines that traffic such leukocytes are called, inflammatory leukocytes. 

A complete classification of chemokines can be seen in Figure 6.1C 

 

Figure 6.1 Chemokines structure and classification. A) shows the structural scaffold of 

chemokines. The sites of two disulfide bridges is also shown. N-terminal domain ends before the 

first Cys residue. N-loop plays important role in binding to the receptor. B) schematic diagrams 

of chemokines according to their classes. The number of residues between the two Cys between N-

termimal domain and N-loop forms the basis of classification of chemokines. C) The table shows 

https://paperpile.com/c/wsrnTw/h7tJ
https://paperpile.com/c/wsrnTw/9cgX
https://paperpile.com/c/wsrnTw/0KwL
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all the known chemokines and their receptors. The agonist and antaonist activities are in reference 

to the type of response illicit by the receptor after binding to chemokine. ACKR1 is the only 

receptor that binds to chemokines from both the classes. Also ACKR1 binds only to inflammatory 

chemokines. 

+Image A taken from [444], +Image C taken from [378] 

 

All chemokines adopt a similar structure with 3 antiparallel beta-strands and an alpha helix 

as depicted in Figure 6.1A. The N-terminus is a long deformed region that contains two of the four 

cysteine residues. The position of the two cysteines in the N-terminal loop are important in the 

nomenclature of the chemokines. The loop region from second cysteine residue uptil a short, single 

turn 310-helix is called as an N-loop, followed by three antiparallel beta strands (β1, β2, β3) 

succeeded by a C-terminal ɑ-helix. The turn connecting β1 to β2 is termed as 30’s loop, while the 

turn between β2 and β3 is called 40’s loop. The 50’s loop joins the β3 strand to the α-helix. The 

30’s turn contains the third cysteine and 50’s loop contains the fourth cysteine. These cysteines 

form two disulfide bridges with each of N-terminal cysteine forming a S-S bond with 30’s loop 

cysteine and 50’s loop cysteine, respectively [444]. 

The chemokines are classified by the local sequence of the N-terminal cysteines. Presence 

of an amino acid between the two cysteines represented as a local motif -CxC- is classified as α-

chemokine or CXC chemokine Figure 6.1B. When the two cysteines are adjacent, the chemokine 

is classified as CC- or β-chemokine. These two classes represent majority of the chemokines with 

27 ɑ- and 17 β-chemokines known. However, some smaller groups like CX3C chemokines and C 

chemokines exist. Of these, CX3C or ɣ-chemokines are represented by the presence of three amino 

acids between the N-terminal cysteines. CX3C chemokine is unusual as it is a part of a surface 

receptor and contains only one member CX3CL1 or fractalkine (Fig 6.1B). The C-type chemokines 

are also unusual because it contains only two cysteines, one at N-terminal and another one 

downstream. Therefore, C-chemokines contain only one disulfide bridge (Fig 6.1B). To date, only 

two C-chemokines known as XCL1 and XCL2 exist. With exception of two C-chemokines, the 

rest three chemokine families have four cysteines albeit they are not positionally conserved. 

Therefore, the identity between chemokine sequences can vary from 20% to 90% [444]. 

 

https://paperpile.com/c/wsrnTw/3w2n
https://paperpile.com/c/wsrnTw/3w2n/?locator=472
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Figure 6.2 Chemokines receptors. The schematic representation of basic chemokine receptor 

scaffold. Important residues are marked with green, orange and pink color. Blue denotes the 

residues involved in disulfide bridges. Pink represents the most conserved residue in a TM helix 

while orange indicates the microswitch residues. Yellow tabs show the important motifs involved 

during the activation of the chemokine receptor. Arrows indicate the interactions, (solid- 

permanent, dotted- transient). 

+Image taken from [381] 

 

6.1.2 Chemokines and their receptors: 

NMR studies have shown that the formation of the disulfide bridges lead to decrease in 

deformability of the N-terminal loop but the N-loop stays flexible [449]. The N-terminal loop of 

ɑ-chemokines (CXC) is responsible for the activation of leukocytes. The motif composed of 

residues glutamate, leucine, and arginine (ELR) present in the N-terminal loop (preceding the first 

cysteine) is the key player in activation of neutrophils and sometimes eosinophils [450]. It has 

been established that the ɑ-chemokines consisting an ELR motif (called ELR+ chemokine) induces 

leukocyte migration and are therefore involved in homeostasis [451]. However, the ELR- ɑ-

chemokines (eg. CXCL8, previously, interleukin-8) are involved in migration of lymphocytes that 

leads to inflammation. The ELR and other residues in the N-terminal loop like lysine, serine, and 

methionine are crucial for the activation of the receptor [452]. 

https://paperpile.com/c/wsrnTw/yxpg
https://paperpile.com/c/wsrnTw/QKOf
https://paperpile.com/c/wsrnTw/MXfS
https://paperpile.com/c/wsrnTw/OZRo
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The flexibility of the N-loop is determined to play a role in recognition and binding of the 

chemokine to its receptor known as a chemokine receptor. The residues like Tyr, Ser, Lys, Pro, 

Phe, Gln, Ile, Ser, Arg, Glu, and His are crucial in specificity of the chemokine ligand towards the 

chemokine receptor [453–456]. For instance, presence of sequences like ‘YSKPF’, ‘LQGI’, 

‘RFFESH’ in the N-loop of CXCL8, CXCL1, CXCL12, CCL7, CCL2, CCL5 confers specificity 

to their respective receptors. Also, mutational studies of the β-chemokine N-loop residues, 

established four core residues important for receptor specificity and binding [457]. 

The chemokine receptors are one of the largest sub-family among class A GPCRs adopting 

a septa-helical transmembrane (7TM) structure. Different chemokine receptors have variation in 

the lengths of their N-terminal extracellular domain (ECD1) and C-terminal intracellular domain 

(ICD4). The ECD1 is composed of mostly acidic amino acids with a Tyr residue that can be 

sulfonated and at least one Cys residues [458]. The cysteine forms a disulfide bridge with ECD3 

(see Figure 6.2). The S-S bridge is crucial to the binding of the chemokine ligand [430]. The N-

terminal domain also consists of a site for N-acetyl glycosylation. As was observed in chapter 3, 

attachment of a glycan is a surface event and may not interact with the core of the structure. 

However, the N-glycosylation at the terminals behave differently [459]. Therefore, the 

glycosylation in the N-terminal loop of chemokine receptors might assist in stability of the 

otherwise mobile ECD1 thus forming a pocket for binding the chemokine ligand [459]. Although 

the Cys, Arg and Tyr residues provide identity to the ECD1 of chemokine receptors yet there is 

variability in the length and composition of ECD1 among various chemokine receptors. Such a 

variability is important for ligand specificity [460]. Unlike N-terminal domain, the C-terminal 

domain does not vary much in size across the chemokine receptor family [461]. It is identified by 

the presence of serine / threonine residues which are sites for phosphorylation by a GPCR Kinase 

(GRK) [462]. The phosphorylation in ICD4 is crucial to desensitize the activated chemokine 

receptor by preventing the recoupling of the G-proteins with the 7TM helices. The desentization 

is important, in order to prevent repeated stimulation of the receptor and to mark it for 

internalization [463,464]. Such signalling mechanism is an alternative to classical Gαi mediated 

signaling in GPCR. 

https://paperpile.com/c/wsrnTw/hRQJ+QPHo+gTJY+77GZ
https://paperpile.com/c/wsrnTw/qjq6
https://paperpile.com/c/wsrnTw/0L8N
https://paperpile.com/c/wsrnTw/3c34
https://paperpile.com/c/wsrnTw/W3L5
https://paperpile.com/c/wsrnTw/eZHm/?locator=30
https://paperpile.com/c/wsrnTw/YQWv/?locator_label=figure&locator=3
https://paperpile.com/c/wsrnTw/PYFL
https://paperpile.com/c/wsrnTw/r2k4+Y0uy
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Upon chemokine receptor activation, the S-S bridges between ECD1 and ECD4 / TM7, 

and TM3 and ECD3, brings the helices closer forming a pocket at the extracellular face (see Figure 

6.3) for the binding of chemokine ligand. At the intracellular face, the ICD3 and ICD4 orients in 

close proximity to the heterotrimeric G-proteins (known as Gα, Gβ, and Gγ) with Gα binded to a 

molecule of GDP (guanosine diphosphate). Apart from ICD2 and ICD3, the intracellular regions 

of TM helices (3,5,6,7) also interact with the Gα subunit of the heterotrimeric G-proteins. The 

extracellular loops (ECD2, ECD3, ECD4) as well as N-terminal regions of each TM helix interacts 

with the binding chemokine [465]. Figures 6.2 and 6.3 highlights the interacting residues and 3-D 

structural orientations during chemokine ligand receptor interaction. 

 

Figure 6.3 Structural organization of a chemokine receptor. The 7TM helices forms a classical 

helical bundle with three interconnecting loops, facing each extracellular and intracellular sides.  

Helices are marked as numbers. Chemokine binding pocket is shown along with the specific 

epitopes present in ECD1 for ligand identification. In the current image, given the epitopes, the 

chemokine receptor is ACKR1. The crucial disulfide bridges is also shown. The disulfide bridge 

between N-terminal domain and last extracellular loop is crucial for ligand binding pocket 

formation. 
+Image taken from [372] 

 

 

 

https://paperpile.com/c/wsrnTw/WU1p
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6.1.3 Chemokine signalling in brief: 

The chemokine binding to the receptor illicit a conformational change across extracellular to 

intracellular faces of the 7TM leading to the exchange of GTP for GDP molecule. This dissociates 

the heterotrimeric complex of G-proteins [376]. Gβγ subunits are able to activate Phospholipase 

Cβ2 (PLC). In the cell, PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) into 

phosphatidylinositol 1,4,5-triphosphate (IP3) and diacyl-glycerol (DAG). Of these secondary 

messengers, IP3 mobilizes the cytosolic free calcium while DAG employs Ca2+ to activate various 

Protein Kinase C (PKC). The activated PKC and free calcium ions forms the basis of various 

subsequent pathways that would lead to transendothelial migration as well as paracellular and 

transcellular migration of leukocytes [466]. The selection of the subsequent pathway will be 

dependent on the kind of chemokine ligand attached to the chemokine receptor. A homeostatic 

chemokine of CXC type, like CXCL1, CXCL8, CXCL6 could follow either of Ras-Rho, MAPK 

or RTK pathways. Binding of an inflammatory chemokine like CCL11, CCL7, CXCL9, CXCL10 

will employ different pathways for inflammatory responses. Although competitive binding to 

chemokine receptors across chemokine family is rare yet there are promiscuous receptors that bind 

to both types of chemokines [467]. Figure 6.4 shows different pathways by which chemokine 

receptor signal. 

Figure 6.4 Chemokine system signalling pathway. The complete signalling scheme for chemokine 

system. The left side shows normal G-protein signalling via Gαί, Gβ४, and Gαq pathways. Upon 

activation, the GDP is exchanged for GTP thus dissociating the heterotrimeric G-proteins. The 

https://paperpile.com/c/wsrnTw/iuIT/?locator_label=figure&locator=1
https://paperpile.com/c/wsrnTw/y5kH
https://paperpile.com/c/wsrnTw/kQ4A
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right side receptors show atypical or G-protein independent signaling. The steps 1,2,4 depicts the 

biased signalling usually leading to receptor internalization. 

+Both Image are taken from [376] 

 

 

6.1.4 Conservation of microswitches in chemokine receptors: 

The availability of the crystal structures of active state class A GPCRs (like Bovine Rhodopsin) 

by the advent of new millenia, encouraged numerous biomolecular and biophysical studies. These 

lead to a practical understanding of the activation mechanism of GPCRs. Later, in 2010 the first 

crystal structure of a chemokine receptor was solved [395]. Numerous studies supported that the 

activation of the chemokine receptor by the chemokine binding is accompanied by a see-saw tilting 

of the 7TM helices [468,469]. The extracellular portions of the helices supported by the disulfide 

bridges lead to an inward tilting of the helices. Thereby, causing an outward tilting of the 

intracellular regions of the TM helices. This leads to the interaction of the ICDs with G-proteins. 

The key residues involved in such a switching of the structure, post activation are called molecular 

microswitches. Following are the well known microswitches in chemokine receptors. 

  

(i) DRY motif- The conserved three residue motif composed of Asp, Arg and Tyr is located 

at the junction of TM3 and ICD2. The motif is positionally conserved throughout the chemokine 

receptor family with one exception. The arginine residue in the motif functions as a microswitch. 

In the inactive state, it forms an ionic lock with the Asp [380]. Post ligand binding, the pKa of the 

arginine changes consequently leading to the disruption of the ionic lock. The loss of interaction 

is compensated by new interactions with the well conserved Tyr residue of the following 

intracellular loop- ICD3 and Gα subunit of the G-proteins [381]. This leads to the outward tilt of 

the TM3 helix towards the heterotrimeric G-proteins. The Arg residue is highly conserved 

throughout the chemokine receptors as well as the class A GPCRs. However, in some class A 

GPCRs like Rhodopsin, the ‘D’ of the motif is replaced by Glu (E) residue. Therefore, the motif 

is also known as E/DRY motif [381]. 

 

(ii) CWxP motif: Located in the TM6 helix the short motif is composed of residues Cys, 

Trp succeeded by any residue and a Pro. As mentioned in chapter 1.2 that proline residues are 

helix breaker due to their cyclic backbone. Therefore Pro in case of CWxP motif causes a kink in 

https://paperpile.com/c/wsrnTw/mO7N
https://paperpile.com/c/wsrnTw/z9Ec+BqIX
https://paperpile.com/c/wsrnTw/fpng
https://paperpile.com/c/wsrnTw/Wh56
https://paperpile.com/c/wsrnTw/Wh56
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the helix due to its singular presence and hydrophobic environment [469]. This kink is crucial to 

the helix movement during activation. Upon activation, the Trp residue interacts with the Phe of 

the neighboring TM5, as marked by arrows in Figure 6.2. This interaction accompanied by the 

disulfide bridge between TM3 and ECD3 leads to the tilt in the TM5 helix. Thus Trp functions as 

a microswitch in CWxP motif. However, the Cys residue of the motif is also claimed to work as a 

microswitch [470]. The Cys residue interacts with the Asn of TM7. This interaction keeps the helix 

in position. Upon activation the interaction breaks leading to the outwards movement of 

intracellular region of TM6. This makes CWxP motif a crucial microswitch with Pro residue 

inducing kink in the TM6. However, the motif is not found highly conserved [381]. There are two 

variations in the form of xWxP and xQxP where in the Cys is usually substituted with Thr, Phe, 

Ser, or Leu. The expected reason for such substitution is the non-conservative nature of the Asn 

residue in TM7 with which Cys of CWxP interacts [381].  

 

(iii) NPxxY motif: The motif comprised of residues Asn, Pro succeeded by two amino acids 

and a Tyr. The Tyr of the motif interacts with a conserved Phe residue 5 to 6 residues downstream 

of Tyr [381]. Therefore, it can also be represented as NPxxY(x)5,6F motif. Upon ligand binding, 

the Tyr-Phe interaction breaks and Tyr interacts with a hydrophobic cluster between TM6 and 

TM7 thus stabilising the tilt of TM6, as marked in Figure 6.2. The loss of interaction between Cys 

of CWxP and Asn (TM7) results in the outward tilt with Tyr of NPxxY motif balancing the 

movement. This may suggest that microswitches might be working in concert. 

Apart from these three prominent motifs, there are certain residues that also function as 

molecular microswitches in the chemokine receptor activation process [381]. However, these are 

not as conserved as the DRY, CWxP and NPxxY motifs. Such important residues are Phe in TM6, 

Glu in TM7, Trp in TM2, and a TxP (Thr, any res, Pro) motif in TM2 and interact with one of the 

DRY, CWxP or NpxxY to induce their effects [381]. 

 

6.1.5 Nomenclature of chemokine receptor 

For receptor activation, the chemokine ligand has to bind with its specific chemokine receptor. 

Similar to the N-terminal loop of chemokines, the N-terminal region or ECD1 of chemokine 

receptor is majorly responsible for recognition and binding of the chemokine. As discussed earlier, 

the ECD1 of chemokine receptors have an acidic composition besides having a sulfonated tyrosine 

https://paperpile.com/c/wsrnTw/BqIX
https://paperpile.com/c/wsrnTw/9EoU
https://paperpile.com/c/wsrnTw/Wh56
https://paperpile.com/c/wsrnTw/Wh56
https://paperpile.com/c/wsrnTw/Wh56
https://paperpile.com/c/wsrnTw/Wh56
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and N-glycosylation. The ECD1 of different chemokine receptors contain different epitopes. These 

epitopes are essential for the recognition and binding specificity of the chemokine ligand and are 

thus unique [471]. The epitopes therefore enhance the variability of the ECD1 as well as the 

specificity of the binding chemokine(s). Thus, forming the basis of nomenclature of chemokine 

receptors [472]. 

There are 24 known chemokine receptors identified by the class and type of chemokine 

ligand that binds to it. The chemokine receptors that interact with ɑ-chemokines are called 

receptors, while those receiving β-chemokines as their ligands are named, CC-receptors. Thus 

following the trend, there are primarily four categories of chemokine receptors; CXC-receptor 

(CXCR), CC-receptor (CXCR), CX3C-receptor or fractalkine receptor (CX3CR), and XC-

receptor (XCR). Of these four, the CXCR and CCR have the most number of members with CCR 

having 11 and CXCR having 7 receptors [472]. They are named as CCR1 through 11 and CXCR1 

through 7. Since the ɣ- and ẟ-chemokines have only one and two members, therefore, CX3CR 

have a single receptor (CX3CR1) while XCR have two receptors that are isoforms. Since the 

number of CXC- as well as CC- types chemokines is way bigger than the number of CXCRs and 

CCRs respectively. Therefore, the same receptor is used by more than one chemokine ligand using 

slight variations in the N-loop. For instance, CXCL8 binds to both CXCR1 and CXCR2. The 

amino acid sequence ‘YSKPF’ in the N-loop of CXCL8 makes it more specific towards CXCR1 

over CXCR2 [444]. Nevertheless, the class of the chemokine ligand defines the receptors. Such 

that the CXC- type receptors will bind to CXC- chemokines and CCRs will bind to only CC-

chemokines, as shown in Figure 6.5A. However, certain chemokine receptors like, CXCR7 and 

CCR11 does not illicit signal via G-proteins upon binding of the chemokine ligand. 

  

https://paperpile.com/c/wsrnTw/6L4W
https://paperpile.com/c/wsrnTw/m4g3
https://paperpile.com/c/wsrnTw/m4g3
https://paperpile.com/c/wsrnTw/3w2n
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Figure 6.5 Chemokines and their receptors. A) shows the share space of the chemokine and their 

receptors. Some of the receptors are shared among many chemokines for eg. CCL5 binds with 5 

receptors. While lower sector of (A) shows the receptors specific to single chemokine. B) shows 

details about the ACKRs. ACKR1 is the only motif that completely lacks the DRY motif and also 

binds to two classes of chemokines. 
+Image A is taken from [467] 
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6.1.5.1 Atypical chemokine receptors 

 The chemokine receptor binds to a chemokine ligand and illicit cellular pathways using G-

proteins that finally lead to leukocyte migration for homeostasis or inflammation. A chemokine 

receptor that bind to chemokines but does not signal is termed as an atypical chemokine receptor 

(ACKR) [384]. There can be more than one reasons for the failed signal transduction for example, 

lack of microswitches, or mutations in such motifs, or alternate signaling using β-arrestins. Among 

the known chemokine receptors, it was found that CXCR7 and CCR11 cannot signal through G-

proteins and therefore fail to induce leukocyte migration [473]. Apart from these, Duffy antigen 

discovered in 1950 would be later classified as an ACKR along with a β-chemokine receptor D6 

[386,474]. These comprises a sub-family of four 7TM receptors under canonical chemokine 

receptors. The four ACKR are named as ACKR1 (previously Duffy Antigen for Chemokine 

Receptors), ACKR2 (previously D6 or CCBP2), ACKR3 (previously CXCR7), and ACKR4 

(previously CCR11). 

 All ACKR are expressed on non-leukocyte cells. While ACKR1 is also expressed on 

vascular endothelium and erythrocytes, the rest of ACKR members are expressed on lymphatic 

endothelial cells [473]. All ACKRs except ACKR1, are known to signal via G-proteins 

independent pathways like biased signaling using β-arrestins [475]. Therefore, ACKR1 cannot 

signal either through canonical or alternate signaling mechanism. The reason for such behavior 

could be attributed to ACKR1 complete lack of the DRY motif, especially the Arg microswitch 

[381]. Therefore, it cannot couple to G-proteins or β-arrestins. In other ACKRs the Arg 

microswitch is conserved although the overall DRY-LAIV motif contain variations. Another 

starking difference between ACKR1 and rest of the ACKRs is that ACKR1 is the only member 

that binds to both α- and β-chemokines. Figure 6.5B provides details about the four different 

ACKRs and their ligands.  

The ACKRs expressed on endothelial cells are known to perform ligand scavenging 

functions, wherein the bound chemokine ligand is internalized and subjected to lysosome activity 

[476]. In vascular endothelium, ACRK1 is involved in ligand presentation. After internalizing of 

the chemokine by the vascular ACKR1, the ligand is transferred to the laminar side and presented 

for the leukocyte migration [388]. Such scavenging activity by ACKRs is of importance in 

inflammatory responses whereby the excessive chemokines can be internalized and hyper-

inflammation can be prevented. Therefore, the chemokines binding to ACKRs are mostly 

https://paperpile.com/c/wsrnTw/vBsT
https://paperpile.com/c/wsrnTw/ovKN
https://paperpile.com/c/wsrnTw/vzQ2+cgWx
https://paperpile.com/c/wsrnTw/ovKN/?locator=2&suffix=Table%201
https://paperpile.com/c/wsrnTw/Aixs
https://paperpile.com/c/wsrnTw/Wh56
https://paperpile.com/c/wsrnTw/vld6
https://paperpile.com/c/wsrnTw/z28K
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inflammatory in nature rather than homeostatic. Fig 6.1C and Fig 6.5A provides an overall 

summary of different chemokine receptors and nature of their chemokine ligands and their 

interactions. 

  

6.1.5.2 Virus encoded chemokine receptors (vChemR) 

 Three members of the chemokine receptor family are known to be involved in 

pathogenesis. ACKR1, besides being an atypical chemokine receptor is also the point of entry for 

Plasmodium vivax into human red blood cells [432,477]. CCR5 and reportedly CXCR4 interacts 

as a co-receptor with glycoprotein CD4 for HIV-1, during the virus’s entry into T-lymphocytes 

[478]. Such microbial exploitation of the chemokine system can be attributed to its fundamental 

role in the cell-mediated immunity. Thus, some mammalian DNA viruses have evolved strategies 

to evade the system. The mammalian dsDNA (double stranded) viruses like poxviruses and 

herpesviruses employ gene piracy during their host infection and encode the chemokine receptor 

as well as chemokines and cytokines [479]. The viral cytokines and viral chemokines are then used 

to compete with host chemokines to desensitize their receptors and thus bypass the immune 

detection. A vChemR however, attracts the host chemokines that would otherwise will lead to an 

immune response. To date, 10 virally encoded chemokines and chemokine receptors have been 

identified. Some of such viruses are; Human Cytomegalovirus (HCMV, a β-herpesvirus), Tanapox 

virus (a poxvirus), Yaba-like disease virus (YLDV, a poxvirus), Human Herpes Virus (U12 and 

U51 families of HHV), etc. 

The vChemR are structurally similar to the chemokine receptors given their 7TM structure 

but they vary significantly in their sequence. Most of the vChemR have different conservation 

profile for the Arg (DRY), Tyr (NPxxY), and Asn (in TM7). Moreover, they have different 

selective pressures on the DRY-LAIV motif [461]. Such design ables them to employ different 

pathways to signal, scavenge, internalize or act as a sink for chemokines. Also, most of the 

vChemR are known to have constitutive activity i.e they can transduce signal through different 

pathways without a ligand thus remaining in a constant active state [480,481]. However, some 

receptors like, ORF74 (an HHV8) exhibit high specificity for the ligands of CXCR1 and CXCR2. 

This have been proposed to be a receptor specific exploitation to gain control over the host's 

regulatory mechanisms [479]. The ORF74 is peculiar as it has DTW motif instead of DRY motif 

but can have normal G-proteins signalling. It has been shown that the chemokine binding and 

https://paperpile.com/c/wsrnTw/r833+CrcE
https://paperpile.com/c/wsrnTw/Boc9
https://paperpile.com/c/wsrnTw/lbwO
https://paperpile.com/c/wsrnTw/YQWv
https://paperpile.com/c/wsrnTw/mcSR+vRSQ
https://paperpile.com/c/wsrnTw/lbwO
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signaling is directed by the C-terminal helix of ORF74. Therefore, the evolutionary pressures on 

the C-terminal of ORF74 will be totally different from canonical and atypical chemokine receptors 

[482,483]. A mutational study reports that, the C-terminal region of the vChemR are usually 

shorter and this helps them evade the normal internalization procedure of a chemokine receptor. 

All of the vChemR except YLDV and ORF74, behaves in a promiscuous manner and can bind to 

multiple chemokines depending on their host's immune response. Therefore, it becomes 

compelling to understand such biological hacking of genes that exploits the immune mechanisms, 

otherwise designed to identify and kill such viruses. 

 

Our prime interest in understanding chemokine receptors was due to ACKR1’s (DARC) 

promiscuous behavior and its relation to Plasmodium vivax. Since ACKR1 branched out as an 

outlier amongst Human chemokine receptors phylogenetic tree (see section 5.3.1). The study was 

initially directed to find evolution of ACKR1. However, given the complex yet interesting 

relationships of the chemokine system a number of attempts have been made to understand the 

phylogeny of the chemokine system, including the vChemR [381,461,484]. All these studies have 

a caveat that they are centered around the mammalian phylogeny since virally encoded chemokine 

receptors effect the mammalian hosts. Therefore, in order to answer our questions about evolution 

of ACKR1 and understanding the phylogenetic perspective of the chemokine receptors, a 

comprehensive protocol was designed. The objective of this protocol would be to understand the 

exhaustive phylogenetic relationships among the chemokine receptors. 

 

6.2 Methods: 

 

6.2.1 Extraction of homologs and building the dataset: 

The 21 sequences of chemokine receptors (as obtained in chapter 5) were subjected to pHMMER 

v3.1b2 [402] with SWISS-PROT database  as the target. Output was controlled using e-value (-E) 

and domain wise e-value (--domE) cutoffs at 10e-5. After filtering the hits by high e-value, short 

sequences and the domains with low coverage values were also removed. Hits which had 

significantly large bias were also removed. As a result, a refined set of 118 homologs were 

obtained. 

https://paperpile.com/c/wsrnTw/vORJ+MLV0
https://paperpile.com/c/wsrnTw/YQWv+Wh56+XJkz
https://paperpile.com/c/wsrnTw/dUp3
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A multiple sequence alignment of the 118 sequences was generated using alignment 

program MAFFT v7.27 (Multiple Alignment using Fast Fourier Transform) [406] with its iterative 

alignment method G-INS-i at 1000 iterations. The method is recommended for global alignment 

of sequences of similar lengths and works best on a set of <= 200 sequences. The generated MSA 

was checked for unnecessary gaps using a python script provided by our collaborator Dr. Sophie 

Abby. The refined alignment was used to build an HMM profile that would be used to search the 

nr database (March 2016 release). Using 118 sequences instead of the 21 sequences assure that the 

HMM profile have enough diversity to match distant homologs. Figure 6.6 shows the conservation 

profile of functionally important sites in 118 chemokine receptors. All the default settings were 

used for hmmbuild v3.1b2 with --amino tag. Using the HMM profile generated from a carefully 

curated MSA enhances the confidence in the quality of the hits obtained by hmmsearch (v3.1b). 

A total of 10332 hits were obtained. The output was filtered based on high domain wise e-values 

and high bias to score ratios. After removing 3936 sequences, a data-set of 6404 sequences was 

obtained.  

Figure 6.6 MSA used for HMM building. The multiple sequence alignment of 118 chemokine 

receptor homologs. The alignment is colored according to residue identity. The intensity of blue 

color signifies the extent of conservation of a single amino acid. Conservation of important 

microswitch motifs is also shown. The blue dots signify high conservation of important residues 

for chemokine receptors, e.g. Proline. 

 

https://paperpile.com/c/wsrnTw/RQsp
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6.2.2 Data-set optimization: 

Visualizing 6404 sequences as a single phylogram would have been difficult and noisy. Therefore, 

the sequences were clustered at 65% sequence identity using SiLiX clustering program [485], 

resulting into a non-redundant dataset. The threshold for clustering was chosen based on the 

consideration that a non-redundant database (NCBI_nr) clustered at 100% identity was used. Also, 

the average percent identity between class A GPCRs is 26% [397,398]. The clusters were selected 

based on SiLiX Family_networks_builder (silix-fnet) utility. It gives weighted edges that describes 

the network between predefined families. In this case, the set of pre-defined families (FILE.FAMS 

file) include the 21 Human chemokine receptors and the utility was used without -strict option. 

The clusters were therefore selected based on their size (minimum 100 sequences) and weights of 

the edges. Thus by clustering, 3277 sequences were obtained. Of these, 148 were singletons, i.e a 

cluster that have only one sequence. Therefore, a final sequence set comprising of distant 

homologs of chemokine receptors was obtained, containing 3129 sequences. 

 

6.2.3 Multiple Sequence Alignment (MSA): 

MAFFT v7.27 was used to align 3129 homologs of chemokine receptors. Since all the sequences 

obtained are expected to belong to class A GPCR family, the 7 transmembrane helices provide a 

strong control. To exploit this feature, an MSA of 21 human chemokine receptors, including 

ACKR was generated. The alignment was manually edited to conserve the 7TM boundaries as 

extracted from CXCR4 crystal structure [394] and JPred secondary structure predictions [486]. 

This alignment was used as a seed for MSA of 3129 sequences. A seed alignment given to MAFFT 

is expected to anchor the alignment for 7TM conservation. However, it should be noted that it does 

not conflict with the substitution rates of each position, as described by the substitution matrix. 

MAFFT was used with a progressive refinement method, FFT-NS-i that uses a rough guide tree. 

It should be noticed that use of a progressive alignment method gives huge boost to the speed while 

accuracy can be affected. However, use of the more accurate iterative methods with ~ 3000 

sequences would have been computationally expensive. Therefore, the iterative alignment method 

(G-INS-i) used during MSA for HMM building and the presence of the seed sequences will 

provide close approximations for the guide tree. The default BLOSUM62 substitution matrix was 

used because of the SiLiX clustering performed at 65% during data-set optimization stage. The 

https://paperpile.com/c/wsrnTw/LKBG
https://paperpile.com/c/wsrnTw/IutV
https://paperpile.com/c/wsrnTw/JudL
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resulting MSA was edited using python scripts to remove empty gaps and noisy alignment 

positions. The final MSA was visualized using JalView application [407] 

 

6.2.4 Generating the phylogenetic tree: 

A robust maximum likelihood (ML) tree was generated from the MSA of 3129 sequences, using 

IQ-Tree v1.4.2 [487]. Since, the data-set comprises of distant homologs with no a priori 

information regarding their evolutionary rates, using an ML based method is fitting. IQ-Tree 

provides many advanced options to optimize the tree and therefore many options were supplied to 

the IQ-Tree command. Following options were provided with the command: 

Amino acid substitution matrix -m GPCRtm+F+R10 

Additional protein structure matrices -madd EHO,EX2,EX3,UL2,UL3,EX_EHO,LG4X 

Tree refinement options  -wbtl, -bb 1000, -abayes, -con 

 

All the default substitution matrices available in IQ-Tree like Dayhoff, JTT, DCMut, Poisson, 

WAG, etc, are optimized on globular proteins. Shortly after the first JTT matrix in 1992, Jones et 

al published another matrix in 1994 that was based on transmembrane proteins and showed that 

the substitution rates are different than the classical Dayhoff matrices [488]. Therefore, a new 

substitution matrix based on class A GPCR specific substitution rates, GPCRtm, was used. The 

GPCRtm had been shown to outperform JTT-tm matrix [489]. 

 The frequency rate change of amino acids for TM proteins can vary significantly, given the 

low sequence identity among GPCRs. Thus, an empirical calculation of frequencies from the data 

(F) was selected. The model for the rate of heterogeneity was selected by using IQ-Tree’s 

ModelFinder utility with (-m MFP) option. Therefore, before selecting the heterogeneity rate, a 

test run was performed on the data and a free rate of heterogeneity across sites (R) was suggested. 

R10 signifies a free rate model with 10 sites (at given time) being allowed to evolve at different 

rates. The selection of the rate category is a computationally expensive step for IQ-Tree and 10 is 

the maximum value available for large data-sets. 

 Additional important matrices that are derived from the protein structures were also given 

with option -madd. These matrices are based on structural properties like, extended, helix, other 

sites (EHO), 2 state and 3 state models for solvent accessibility: exposed and buried sites (EX2), 

https://paperpile.com/c/wsrnTw/61d3
https://paperpile.com/c/wsrnTw/wkxp
https://paperpile.com/c/wsrnTw/hYxg
https://paperpile.com/c/wsrnTw/DJXN
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and exposed, intermediate and buried sites (EX3). Ex_EHO combines the EHO and EX2 models 

while UL are the unsupervised trained models of EX2 and EX3. All the matrices might not be used 

during tree assembly, however in case of TM proteins these matrices can be of assistance. 

 Finally, the ML tree was bootstrapped with 1000 steps. Ultrafast option (-bb) was selected 

given the computationally exhaustive process otherwise. IQ-Tree was also commanded to write 

the bootstrapped tree along with individual branch lengths. This tree will be used for final 

visualization. Another statistical measure, Bayes probability test (-abayes) was also used to test 

individual branches along with bootstraps. These provide confidence to the tree topology. 

 

6.2.5 Tree visualization: 

The bootstrapped unrooted tree was visualized using interactive Tree of Life (iTOL) [409]. The 

topology was changed to circular and scaled according to the branch lengths for better 

visualization. The tree topology was analyzed for the clade organizations. In-built iTOL utilities 

were exploited to isolate different taxa based on branch lengths while color-marking CCRs, 

CXCRs, ACKRs and others. All the nodes having branch lengths < 0.05 were collapsed for 

improved visualization. The collapsed nodes are shown as circles proportional to the size of each 

node. Labels are shown at the tree circumference. 

 

6.3 Results and Discussions 

 

6.3.1 Composition of the dataset: 

The raw dataset obtained from HMMer searches contained 3810 sequences that were annotated as 

a predicted chemokine receptor or GPCR, or uncharacterized, or hypothetical proteins, or synthetic 

proteins. Contemporary annotations are mostly automated and thus can be potentially misleading 

[490,491]. Therefore, sequences were not removed from the dataset based on their annotations. 

 Initially there were 3810 sequences that were annotated as a predicted chemokine receptor. 

862 sequences were annotated as hypothetical proteins while 33 sequences had titles with 

“synthetic” keywords in them. After refinement of the first stage, based on Hmmer domain wise 

e-values and bias to score ratio, 892 sequences that annotated as ‘predicted’, ‘unnamed’, and 

‘partial’ were removed. 552 of 862 ‘hypothetical’ proteins were removed while only 4 synthetic 

proteins were left. When the rejected proteins were analysed, their average length was 134 residues 

https://paperpile.com/c/wsrnTw/Fl19
https://paperpile.com/c/wsrnTw/rp1b+7wi2
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which directly translates to the reason for their high domain e-values and high bias. Post clustering, 

the number of such sequences was reduced to 2029; of which 19 are annotated as unnamed while 

57 were labelled as ‘hypothetical’. Therefore, 1953 proteins with annotations containing 

‘predicted’ proteins were selected in a dataset of 3129 sequences. This amounts to ~62% of the 

dataset, thus giving away the state of the contemporary automated annotation methods. 

 

 6.3.1.1 Viral Chemokine Receptors: 

 The initial dataset contained 1074 viral chemokine receptor hits. However, 1051 were 

rejected based on short lengths and could not pass the first stage of filtering. The rejected receptors 

mostly belonged to Equine herpesvirus (EPV), Sheep poxvirus (CPV), and Fowl poxvirus (APV) 

while most of the Human pox and herpes virus (like HCMV, HHPV) were among the 23 receptors 

selected. Post clustering, these were reduced to 7 sequences as 9 were rejected as singletons. The 

singletons also belonged to Human Epstein Barr virus (BILF-EBV), Equine EPV, Capri CPV and 

Aves APV classes. The BILF receptor from EBV was investigated for its rejection and it was found 

out that it is a non-chemokine receptor encoded in the virus genome. Therefore, it’s rejection as a 

singleton can be justified.  

The final 7 viral chemokine receptors belonged to Yaba-like disease virus, Yaba monkey tumor 

virus, Tanapox virus, Human cytomegalovirus (HCMV), and Swine poxvirus. Except HCMV, rest 

all belong to poxviridae family. Two receptors from HCMV (beta herpesvirus), unique short 28 

(US28) and unique long 33 (UL33) were present in the final dataset. 

 

6.3.2 Multiple Sequence Alignment 

Before proceeding with the generation of the phylogenetic tree, it is logically fitting to validate the 

MSA on which the tree will be built. The alignment has huge gaps especially at the terminal 

regions. Such gaps are well expected given the known diversity of N- and C-terminal regions 

among class A GPCRs, decoy and viral chemokine receptors. The terminals do not have a 

previously known conserved position except for the C-terminal microswitch containing motif, 

NPxxY. However, no conserved positions are observed downstream NPxxY and therefore these 

regions are removed in consideration of the loss of information to the noise they generated. 

Similarly, the N-terminal positions are highly variable and no highly conserved column is observed 

before the first cysteine residue in the sequence of the seed chemokine receptors. This corresponds 
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to the 45th to 55th residues in the human chemokine receptor, given the variable length of their N-

terminal deformed region. The high conservation of the first cysteine is supported by its role in the 

important disulfide bridge formation with TM7. The SS bridge may reduce the flexibility of the 

N-terminal loop and thus forming a binding pocket for the chemokine ligand.  

The rest of the MSA also have some enormous gaps and the TM boundaries are also not 

completely conserved. This is also expected given the average identity of class A GPCR family is 

~26%. Yet the important residues such as most of the cysteine, proline, tyrosine, tryptophan 

threonine, aspartate, and asparagine residues are found to be highly conserved if not completely 

conserved, as shown in Figure 6.7. This finding validated the MSA as all these residues will be 

under selective evolutionary pressure given their important role in the function. Apart from these, 

the motifs containing microswitches, including TxP, are also well conserved. However, these 

motifs have a single or double insertions in them. As this is further investigated, it is found that 

these insertions are contributed by a single sequence in each case as can be seen in Figure 6.7 

consensus row. For instance, in motif NPxxY, there are two gaps between the ‘x’ and ‘x’ making 

the motif as NPx--xY. The insertion includes a glycine (G) and tyrosine (Y) residue from a 

predicted GCPR35 receptor in nine banded Armadillo (NCBI Acc: XP_012378710.1). It is also 

noticed that the motif is not at all conserved in the GCPR35 sequence, where it reads: DAxGYxY 

instead of NPxxY. Therefore, it can be safely considered as an artifact especially when removing 

such sequences reveal absolutely conserved motifs like NPxxY, CWxP, TxP. The most validating 

observation about the MSA is very high or near complete conservation of DRY motif with D, R, 

and Y occuring more than 90% of times at the aligned position. Moreover, the DRY motif is 

completely absent in all the ACKR1 sequences and have substitutions like E, K, and F 

(respectively) in some viral and decoy receptors. The conservation profiles of these important 

regions is shown in logo in consensus row and quality row in Figure 6.7. 
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Figure 6.7 MSA used for tree generation. The multiple sequence alignment of 3129 homologs of 

human chemokine receptors. The intensity of blue color signifies the extent of conservation of a 

single amino acid. The blue ticks on the top denotes the collapsed alignment between two points. 

The overall conservation is depicted as consensus logo along with the quality index of alignment. 

Conservation of important microswitch motifs is shown. The blue dots signify high conservation 

of important residues for chemokine receptors, e.g. Proline. 

 

6.3.3 Tree topology 

The circular tree is referentially rooted at CCR1 as shown in the Figure 6.8. Overall the tree 

topology is in accordance with the classical nomenclature scheme of chemokine receptors. Most 

of the CCR receptors makes a single super-clade while most of CXCRs also lie in clades adjacent 

to one another. The ACKRs, however, do not form isolated clades, rather are found to be placed 

according to their old names. For instance, ACKR2 is taxonomically related to CCR super-clade 

containing CCR6, CCR7, CCR9, and CCR10 while ACKR4 is placed next to CXCR6. ACKR3 is 

phylogenetically most related to GPR35 which have been characterized as CXCR8 and 

interestingly the old name of ACKR3 is CXCR7. These observations indicate the selective 

evolutionary pressures on the chemokine receptors based on their functions, i.e, binding to 

chemokines. The classical nomenclature of chemokine receptors is based on the type of 

chemokines that bind to a receptor. The phylogenetic placement of these receptors seems to follow 

the trend. For instance, the clade of CXCR2 has high overlaps with the adjacent clade of CXCR1 

so much so that it is difficult to consider CXCR2 as a separate clade, see Fig 6.7. It is also known 
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that CXCL1 (IL-8) can bind to both CXCR1 as well as CXCR2 with different affinities [444]. 

Moreover, the ligand pool of CXCR1 and CXCR2 consists of CXCL2, CXCL1 and CXCL8; the 

genes of these chemokines lie on Human chromosome 4. Similar overlaps are also observed in the 

clades of CCR2 and CCR5. While both CCR2 and CCR5 have exclusive set of ligands but their 

encoding genes are located on Human chr 17. Besides, all the ligands in ligand pool of CCR2 and 

CCR5 have macrophage regulatory function. Therefore, further validations on their chemokine 

signaling can propose a merging of the two chemokine receptors. A caveat of proposing it from 

the current study is that the chemokine signaling of all the chemokine receptors have to be analysed 

in context of their individual species. 

 

6.3.3.1 Evolutionary placement of ACKR1 

ACKR1 forms a distant isolated clade placed at extremely large branch length of more than 

7 units from the root. The closest clade to ACKR1 is GPR35 (or CXCR8) at 5.4 branch units from 

the root (as seen in Fig 6.8). Therefore, ACKR1 is highly distant from rest of the tree with a 

distance of 4.7 units from its branching node. The super-clade (sharing the same node) of ACKR1 

consists of three clades ACKR1, GPR35, and ACKR3 and can be represented as (ACKR1(GPR35, 

ACKR3)). The clade of CXCR4 lies adjacent to this super-clade sharing the parent node with it. It 

can be represented as ((ACKR1(GPR35, ACKR3)) CXCR4). Since, no crystal structure is 

available for either GPR35 or ACKR3, CXCR4 becomes the closest clade that have its molecular 

structure determined, experimentally. This observation supports the choice of CXCR4 as a 

potential structural template for modelling ACKR1 structure. The same observation was also made 

from the phylogenetic tree generated with 21 seed sequences.  

  

https://paperpile.com/c/wsrnTw/3w2n
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Figure 6.8 Evolutionary perspective on chemokine receptors. The tree topology generated from 

IQtree for 3129 chemokine receptor sequences. The different clades are colored under the shades 

of same color. For instance, all CCR have shades of blue while CXCR and ACKR have shades of 

green and red, respectively. The clade distances are based on the bootstrapped branch lengths. 

Most populous species from each clade is shown as a cartoon. The walking hippo denote 

Mammals. The ACKR1 clade is expanded to fullest to show the location of primates in the tree. 

Yellow coloured branches signify the presence of viral chemokine receptors. They form outlier 

groups in each of the CCR8, ACKR4, and CCR10 clades. 

 

6.3.3.2 Occurence of Viral encoded chemokine receptors 

 As discussed before, in the section 6.3.1.1 that there are 7 viral chemokine receptors that 

are included for the MSA. vChemR are guided by evolutionary pressures different from those on 

chemokine receptors and therefore, it is interesting to see their placement in the tree. Rather than 

forming a separate clade, the vChemR are found in the clades of chemokine receptors like CCR8, 

CCR10 and ACKR4 placed as outliers in their respective clades. Yatapox viruses like Tanapox 
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virus (TPV), Yaba-like disease virus (YDV), and Yaba monkey tumour virus (YTC) are clustered 

in the same clade located in the CCR8 clade. TPV and YDV are immediate neighbors sharing the 

same branch as shown in Figure 6.8. While, YTV branches off just before the branching node of 

TPV, YDV forming a representation as (YTV (TPV, YDV)). The clade is placed at a distance of 

1.8 units from the average distance of CCR8 members from the root thus making it an outlier to 

the group. vChemR belonging to Human Cytomegalovirus (HCMV) US28 and UL33 are located 

within the clade of ACKR4 at a distance of 0.8 away from the average distance of ACKR4 from 

the root. The phylogenetic distance between US28 and UL33 is 0.24 units while the distance to 

their closest ACKR4 neighbor is 0.25. The other pox viruses, i.e, the swinepox virus are found in 

the CCR10 clade occupying a single isolated branch. The branch is 0.5 units away from the average 

distance of CCR10 members from the root and 0.05 units away from closest CCR10 neighbors. 

The two swinepox viruses are present very close to each other at a distance of 0.005 units. 

The viruses in the CCR8 clade are quite distant from rest of the clade while the HCMV and 

SPV in ACKR4 and CCR10 resp, are located at a minimal distance from their respective clades. 

Given that CCR10 previously included ACKR2 and the SPV forms a distinct clade in CCR10 

could be an indication that vChemR are closer to decoy receptors than canonical receptors. This is 

also supported by the fact that most of the vChemR are known to function as scavengers, a property 

ACKR shares as well. More detailed analysis of ACKR and vChemR will be required to conclude 

such a hypothesis, especially when the studies on human and mouse chemokine receptors have 

shown otherwise [381,461,484]. 

 

6.3.4 Taxonomic distribution of the clades 

The taxonomic contribution of the sequences in a phylogenetically scaled tree can reveal the 

evolution of the query protein/gene. Therefore, an analysis is performed by taxonomically 

identifying each sequence in the tree from its source organism and thereafter observing the stages 

in their evolution. Overall, the tree is populated by the taxonomic class Mammalia as majority 

while there are substantial number of chemokine receptors from classes Aves, Reptilia, and Fishes. 

Moreover, Mammalia is not the majority population in all the clades. Chemokine receptor 

sequences of CCR4 and CCR8 have predominantly Avian contribution and CXCR4 have majority 

of sequences originating from class Reptilia. Figure 6.9 provides information about the sequence 

contributions by different taxonomic classes to each clade. Also, Figure 6.8 depicts the taxonomic 

https://paperpile.com/c/wsrnTw/YQWv+Wh56+XJkz
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distribution by denoting a representative cartoon belonging to the most dominant taxa in each 

clade. 

Figure 6.9 Taxonomic distribution of the different chemokine receptor clades. Relative 

frequencies of different taxas is plotted on each clade. Mammalia is shown to be the most populist 

group. However, in CXCR7, CXCR4, CCR8, CCR4, dominant groups are Fishes, Reptilia, and 

birds respectively. ACKR1 has occurrence of a sequence that is annotated as “UnDefined 

protein”. Few synthetic constructs are also observed in CXCR4 and CXCR2 clades. The values 

for CCR11 should be clubbed with those of ACKR2. 

 

In the clade CCR4, the population of Aves chemokine receptor sequences (at 46%) is 

nearly succeeded by the mammalian chemokine receptors at 44%. While the clade has small 

number of sequences from class Fishes and Reptilia contributing to 4% and 6% to the CCR4 

sequence pool. Similarly, in clades of CCR8, 49% of receptors are avian while 43% are from 

Mammalia and 8% from Amphibia, Fishes, and Reptilia combined. Sequence pool of CXCR4 has 

significant contributions from all the major taxonomic classes. Reptilia have dominating 

contribution to CXCR4 sequences with 37% succeeded by 26% from Mammalia. CXCR4 also 

have 13% of sequences belonging to Amphibia which is also the most dominant contribution from 

class Amphibia to a chemokine receptor clade. In other clades, Amphibia contributes only 1% to 

2% to the sequences. Clade CXCR7 have an equal population of Fishes and Mammalia with 43% 



 

220 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

of sequences belonging to each class. The class Mammalia completely dominates the sequence 

pool of CCR1, CCR2, CCR3, CCR10, CXCR3, CXCR8, ACKR1, and ACKR2 with more than 

80% contribution to their sequences.  

 

 Mammalian species distribution in clades: Mammalia is either the major contributing or 

second major contributing class towards chemokine sequences in all the clades. It indicates that 

major evolution of chemokine receptors is confined to mammals and therefore it is required to 

explore it at the species level to understand the evolutionary trends. The sequences of mammalian 

chemokine receptor in the tree belong to a diverse set of mammalian species; from Bears 

(Ailuropoda and Ursus), to hedgehogs (Erinaceidae), to the exotic species of Pika (Ochotona), to 

Marsupials like Tasmanian devil (Dasyuromorphia), to egg laying mammal like Platypus 

(Ornithorhynchus), to Sea cow (Sirenia), to Whales, to Primates, to Apes and to Humans. 

Therefore, the mammalian chemokine receptors are diversified in almost all the genera of class 

Mammalia. Figure 6.10 shows the absolute contribution of different genera of class Mammalia to 

chemokine sequences of each clade.  

 

Figure 6.10 Mammalian contribution to different chemokine receptor sequences. Absolute 

distribution of mammalian species in different clades. Mostly, few genera dominate all clades. 

Such genera are those of: Primates, rodents, chiroptera (bats), and Moles. The occurrence of 

another dominant genus in a clade is signified by a highlighted border, for instance Humans have 
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17% or second largest contribution to the CCR5 sequences. The values for CCR11 should be 

clubbed with those of ACKR2. 

 

 Although the diversity in mammalian chemokine receptors is considerable yet there are 

some species that dominate others by their contribution to the sequence pool. Therefore, in almost 

all the clades, four major species are observed to have majority contribution to the chemokine 

receptor pool. Most of the sequences in each clade belong to Primates, Rodentia (Muridae family), 

Moles (Talpidae family), and Bats (order Chiroptera). These four species contribute towards 50% 

of the sequence pool in each clade. Also, overall the most contributing genera are: Rodentia with 

~20% of sequences belonging to it and ~19% of receptor sequences originating from Primates. 

With 3.12% and 2.08% of sequences belonging to Apes and Humans, the hominidae contribution 

to the chemokine receptor sequences amounts to 5.2%. 

 In CCR1, 26% of sequences are contributed by Rodentia while 13% belong to Primates 

and 9% from Bats (Chiroptera) and Moles each, thus comprising more than 50% of the clade 

population. Similar trend is observed in other clades with slight exceptions in CCR5, CXCR1, 

CXCR2 and ACKR1 where some other species contributes significantly, if not equally to the 

clade’s receptor pool. For instance, in CCR5 17% of sequences belong to homo sapiens, preceded 

by 34% of sequences originating from Primates. Also, it is the highest contribution of homo 

sapiens to any clade in the tree. These statistics from CCR5 are indicative of the number of studies 

performed on CCR5 possibly due its involvement in HIV-1 infection. On the contrary, there only 

two sequences belonging to Humans in ACRK1, one of which happens to be the query seed 

sequence. Similarly, a single human chemokine receptor is observed in CCR1, CCR2, CCR6, 

CCR7, CCR9, CXCR1, CXCR4, CXCR6 through CXCR8, and all atypical receptors, except 

ACKR1. These statistics are indicative of the conservation in the human chemokine receptors and 

different evolutionary pressures on Human CCR5 and ACKR1. 

 

6.3.5 Tracing evolution of ACKR1 

In clade of ACKR1, the phylogenetic clade is mapped with the information of the source species 

to understand the evolution of ACKR1. Figure 6.11 shows the mapped species, as cartoons, on the 

clade of ACKR1 along with their taxonomic grouping (numbered circles).  
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Figure 6.11 Topology of the ACKR1 clade. Figure shows the phylogenetic relationships among 

class Mammalia for ACKR1. Taxonomic orders are depicted as cartoon of its most known species. 

The branch distance from the root can be estimated using the radiating scale values given on the 

right side. The numbers shown on the nodes signifies that the nodes after that can be collapsed 

under same order. For eg. [1] corresponds to superorder Cetartiodactyla, [2] will collapse all 

bats species under chiroptera. Although the ACKR1 clade has a distance of more than 7.0 from 

the root, yet the whole clade, except marsupials, have evolved within 1.0 units. 

 

Although the clade is phylogenetically remote to rest of the chemokine receptors the branches 

within the clade are very closely related to each other. If the clade is collapsed at 0.05 branch 

lengths, more than half of the clade is clustered. Moreover, as discussed in the sections above that 

Mammalia is the dominant population and contains enormous diversity within it. Thus, it was 

difficult to understand the evolutionary history of ACKR1 just by mapping the taxonomic 

information. Therefore, the clades were collapsed under their taxonomic orders to simplify the 

visualization of, otherwise very closely related sub-clades, Figure 6.12A. One taxonomic order is 

expanded each time to analyse the evolutionary progress, Fig 6.12[B to D]. The branch lengths are 

converted to evolutionary ages by subtracting individual branch lengths from the root distance. 

This will reveal the youngest leaf with an age of 0 and closer the leaf gets to the root, the age value 

increases. Figure 6.12A depicts the phylogram focused on the ACKR1 clade extracted from the 
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whole tree. All leaves are shown collapsed at their respective taxonomic orders, except hominidae. 

For instance, all the chemokine receptor sequences belonging to camels, cattle, whales, horses, 

sheep, pig, and other even-toed ungulates are collapsed together under Cetartiodactyla taxonomic 

order. Some of the leaves cannot be clustered given their taxonomic placement in the clade. For 

instance, Dermoptera also known as the flying lemurs lies as a single node linking Primates to 

order Afrotheria. The sub-clade of hominidae is not collapsed because it contains the seed ACKR1 

sequence and can serve as a reference point for tracing ACKR1’s evolution. 

 

 

Figure 6.12 Tracing ACKR1 evolutionary developments. The branch lengths of the ACKR1 clade 

is converted to age values (from the root). The larger the value, more ancient is the branch leaf. 

A) shows the evolution of ACKR1 in order primates with respect to other taxonomic families. B) 

shows the detailed evolution of ACKR1 protein in primates. The youngest species that acquired 

ACKR1 is highlighted in blue dotted lines and its representative is shown as cartoon. The most 

ancient species is marked by red dotted lines. Squirrel monkeys (new world monkeys) are the 

youngest while Tamarins are the oldest in primate sub-clade. C) Similar analysis for Rodentia. 
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Rats and Damaraland mole rat have acquired ACKR1 recently. Interestingly, the mole-rat branch 

is accompanied by the eldest species in the clade, naked mole rat. D) Age wise analysis of the 

youngest species in the ACKR1 clade. 

 

It is observed from the branch ages that the ACKR1 sequence originating from the 

Marsupial species of Tasmanian devil (sarcophilus harrisii) and Opossum (monodelphis 

domestica) are the youngest with an age value of 0 and 0.5, respectively. Please refer to Figure 

6.12D. ACKR1 sequence from the Eulipotyphla species (Hedgehogs) is the oldest and given the 

clade topology the common ancestor of Eulipotyphla and rest of the mammalia is the oldest link 

traceable to ACKR1 evolution (age 1.5). ACKR1 seems to have first evolved from Hedgehogs to 

non-primate mammals like species from orders Carnivora and Rodentia. Based on the branch ages, 

the delayed transfer of ACKR1 from Eulipotyphla to other clades (nodal age difference = 0.37) is 

accompanied by a rapid speciation events. ACKR1 sequences from genera Equus (Horse), Lepus 

(Rabbit) and Ochotona (Pika) have similar ages of the order of 1.0 to 0.9 thus indicating a parallel 

evolution, see Figure 6.12. ACKR1 is later found in genera Camelus (Camel), Pteropus (old world 

bats) and marks its entry in primates with first occurrences in Dermaptera species (flying lemurs) 

and then in Lemurs from genus Propithecus and Microcebus, see Fig 6.12B. The reference age of 

these species lies between 0.90 to 0.80. Once, ACKR1 sequence have proliferated the primates, it 

soon enters the Hylobates species and the Platyrrhini (new world monkeys) while evolving 

parallelly from Lagomorpha to Heterocephalus (Mole-rats), Figure 6.12[B,C]. The node ages of 

Artiodactyla also shows tha ACKR1 sequence may have been evolving parallely in the sub-clade 

with bovine ACKR1 sequences having an age of 0.79. Evolution of ACKR1 is seen simultaneously 

in many order like Rodentia, Artiodactyla and Chiroptera (bats) having node ages of 0.75. 

Thereafter, the ACKR1 homologs in Hylobates may have speciated to old world monkeys 

like Cercopithecus and Rhinopithecus, as shown in Figure 6.12B. Within an age difference of 0.03 

ACKR1 homologs are observed in all old world monkeys and all the great apes of hominidae. This 

might be an example of parapatric or sympatric speciation of ACKR1 gene leading to its evolution 

in four different species of hominids in a very short age difference of 0.01 (0.72 to 0.71). The 

ACKR1 homologs from genera Canis (Dogs) and Felix (cats) also have the same age as 0.71. 

Meanwhile, the homologs of ACKR1 in odobenidae (walrus), carnivora (Weasels, Bears, 

and Pandas), Loxodonta (Elephant) and new world monkeys keep evolving further. The most 

recent advances in the speciation of ACKR1 has been shown in genera Sus (Pig), and many species 
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of Rodentia. Amongst Rodentia (Fig 6.12C), ACKR1 belonging to genera Mus and genera Rattus 

are shown to be the youngest with branch age of 0.49 and 0.45, respectively. Surprisingly, 

Marsupials (Tasmanian Devil and Opossum) seems to have acquired ACKR1 gene most recently 

with a branching age of 0.31, Figure 6.12D. 

Although, the reference time of occurence of ACRK1 in Primates is comparatively later 

from the origin of ACKR1 in mammalia yet the speciation in primates is very rapid. Most of the 

topology of ACKR1 clade resembles that of the mammalian tree of life but with some critical 

exceptions, like placement of Eulipotyphla. If validated, such exceptions can give insights into the 

evolution of ACKR1 among Mammalia. 

 

6.3.6 Structural relatedness between clades 

The sequences of chemokine receptors have high amount of diversity with exception of a few 

functionally conserved regions. However, from a structural perspective the receptors share a 

common 7TM GPCR fold. Therefore, a quick protocol is designed to extract structural information 

from the tree. All the sequences in each clade was used as a query against the PDB database using 

Blastp. The resulting hits were sorted based on high query coverage and low e-value and the top 

hit was selected. It was performed in order to get one structural representative from each clade. 

 However, it is observed that only 12 unique PDB ids are represented as hits for the 3129 

sequences. These PDB ids are: 1Z9M, 3AU4, 3DYU, 3ODU, 3OE0, 3OE6, 4MBS, 4NUV, 4XNV, 

4XT1, 4YAY ,4ZUD, 5LWE, 5T1A, 5UIW, and 5XSZ. Of these 3OE6, 3ODU, and 3OE0 are 

crystal structures of CXCR4 and 4NUV is the structure of residues 19-30 of ACKR1. Therefore, 

4NUV was rejected from the list. Since all the blast hits matched chain A of the PDB proteins, 

chain A of these 11 structures was extracted. From the blast results the PBDids were reverse 

mapped on to their query sequence and thence to their respective clades in the tree. At last, the 

clades that have a structural representative are: CCR2 (5T1A), CCR5 (4MBS), CCR8 (5UIW, 

shared with CCR5), CCR9 (5LWE), CCR10 (3AU4), CXCR4 (3ODU, 3OE6, 3OE0), GPR35 or 

CXCR7 (4XT1, 4XNV, 5XSZ), ACKR1 (1Z9M), and ACKR3 (3DYU, 4YAY, 4ZUD). The chain 
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of the structures is aligned using TM-Align to assess their structural relatedness. Table 6.1: 

summarizes the closeness profile of these structures. 

 

Table 6.1. Structural relatedness among different clades. The TM-score profile of 18 PDB 

structures representing major clades of the tree. For many clades, no PDB structure was found. 

The PDB id and the chain id used is represented on both axes under the name of the clade it 

represents. These represent 9 clades from the tree. The gradient green, from light to dark indicates 

higher structural similarity or better TM-score. The intensity of grey shows least TM-score and no 

relation. Both row-wise and column-wise averages are calculated and represented as a dark green 

bars. 

 

 

 PBDID: 1Z9M is the structure of a Nectin like cell adhesion molecule which does not have 

a 7TM structure. Therefore, 1Z9M cannot be treated as an ACKR1 representative. Similarly, 3AU4 

also does not have a 7TM structure being a Netrin receptor involved in apoptosis. Netrin receptor 

has a large number of helices interspersed by two beta sheets but does not belong to 7TM GPCR 

family and therefore, it cannot be a representative of CCR10. However, according to blast results, 

these PDB ids are related to the ACKR1 and CCR10 clade and therefore kept in the analysis. These 

might be useful as a positive and negative control for structural alignment of 7TM using TM-

Align. 

 As revealed by the green color in the Table 6.1 that all but ACKR1 and CCR10 are 

structurally related. The relatedness of the structures is given by the TM-Score; a value of 0.5 and 

above implies that the structures are related while a value below 0.3 reflects random structures. 

ACKR3 have very good structural similarity with CCR5, CXCR4, GPR35, CCR8 (shared with 

CCR5), and CCR2 with an average TM-Score of 0.72. CXCR4 have structure relatedness with 

CCR2, CCR8, and CCR5 with an average TM-Score of 0.63. GPR35 have an average score of 

0.67 while CCR5 have an average score of 0.57. However, CCR2 have an average score of 0.49 
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when CCR2 is used as the reference but when rest of the structural representatives are aligned with 

CCR2 the average TM-Score is 0.73. Therefore, CCR2 is structurally related to only CXCR4 

(score 0.86) but not with rest of the structures. However, they show high local similarity with the 

CCR2 structure when they are aligned to CCR2. Such an analysis is also important to assess the 

structural diversity of chemokine receptors. 

 

6.4 Conclusions and Perspectives 

 

Chemokine receptor family is comprised of a diverse set of sequences classified into various sub-

groups like CCR-, CXC-, CX3C, or XC- Receptors. The current classification is based on the class 

of chemokine ligand binding to the receptor, therefore an α-chemokine binding receptor is named 

CXCR while a β-chemokine binding receptor is termed CCR. Such a premise, however may 

change with the enhancing knowledge about the hetero-oligomerization in chemokine receptors 

and discovery of more virally encoded chemokine receptors. Therefore, it may become necessary 

to understand the evolutionary perspective of chemokine receptors to assess their phylogenetic 

relations along side their functional relationships. The presented phylogenetic study is based on 

the most comprehensive data (till date) on chemokine receptors. The data-set contains 3129 

sequences of chemokine receptors and few other class A GPCRs. Strict controls and filters have 

prevented the contamination of the dataset by unrelated or highly redundant sequences. The tree 

is also supported by a robust multiple sequence alignment founded on a seed alignment of 118 

known chemokine receptors. Moreover, the MSA is also validated by the conservation of all the 

important functional and structural sites. These initial checks and validations accompanied by the 

use of GPCR specific substitution model for tree building enhances the confidence in the 

phylogram. 

Strong evidence provided by the overlaps in the clades of CCR2 and CCR5 as well as 

CXCR1 and CXCR2 is suggestive of similar evolutionary pressures among the two pair of 

receptors. The similarity between the gene locations of their respective ligands as well their 

functional similarity further supports the merging of the two clades. However, detailed analysis of 

their ligand’s genetic and biochemical profiles as well as receptor cross-talks during hetero-

oligomerization have to be performed for confirming the hypothesis. Series of works by Zlotnik, 

Nomiyama, Yoshie, et al explores the genomic organization and evolution of chemokines going 
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back to agnathan fishes [492–495]. The future intend of our project is to utilize such information 

to deduce parallels between evolution of chemokines and that of chemokine receptors. Such a 

study can inform us about the evolutionary pressures of chemokines on chemokine receptors and 

vice versa.  

The current tree is rooted on CCR1 which is not an outlier to the phylogram and therefore 

may arise doubts. However, the rooting of the tree in this particular study does not matter because 

the principle question to address is the phylogenetic relationships among chemokine receptor and 

evolution of individual clades. Therefore, an unrooted tree can also be used instead of a rooted 

one. Given that ACKR1 is the most distant clade and thus can be treated as an outlier, based on 

the distance and not on function, a tree rooted on ACKR1 was also generated. The tree topology 

remained the same with few node rotations. Thus the current tree topology having each branch 

tested with bootstrap and bayesian probability has a high confidence value. 

The great diversity among the sequences of chemokine receptors is complemented by the 

huge diversity of the species in the tree. The species information, in reference to the tree of life, is 

used to understand the evolution of chemokine receptors. One such deduction is carried out in the 

clade of ACKR1. The evolution of ACKR1 is traced by the virtue of their branch lengths converted 

to ages. The age of each node helps in identifying the first and recent occurence of ACKR1 in 

species and also in tracing the gaps in between. However, unfortunately there are no ACKR1 

sequences identified outside mammalia yet and thus limits the access of our analysis. The absence 

of non-mammalian ACKR1 gene might be the reason for the huge distance of ACKR1 clade from 

rest of the clades that have sequences from Amphibia, Fishes as well as Reptilia.  

However, there can be another explanation to the absence of ACKR1 in non-mammalian 

classes. A strong hypothesis might be that ACKR1 is not a chemokine receptor, based on its 

atypical behavior and non-specific binding to different chemokine classes. Such behaviors are 

noticed in some viral chemokine receptors too but ACKR1 differs from viral chemokine receptors 

also. The virally encoded receptors are in a constitutively active state while ACKR1, especially in 

reticulocytes does not signal or scavenge at all. Therefore, it might have been a viral chemokine 

receptor that was genetically pirated from the host during infection. During a subsequent infection 

by the virus (possibly a ssDNA or retrovirus) the altered receptor gene was back-pirated into the 

host genome. However, this is a mere speculation and would require rigorous analysis to test it; 

for which the current evolutionary tree will be highly useful.  

https://paperpile.com/c/wsrnTw/oucc+oUao+akIx+14U2


 

229 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

A caveat of studying evolution of viral chemokine receptors along side canonical and decoy 

chemokine receptors is the choice of the substitution matrix. Although the vChemR are genetically 

pirated from the vertebrate hosts yet they are expressed as a viral protein and therefore, virus 

specific substitution models should be preferred. Comparing tree topologies of ACKR and viral 

chemokine receptors generated using a virus specific substitution matrix to the current tree 

topology can be insightful. 

 

ACKNOWLEDGEMENTS 

All the support and guidance required for the phylogenetic analysis was provided by our 

collabolator and friend from Austria, Dr. Sophie Abby. Her inputs have been pivotal in designing 

and shaping the work. It is her expertise in molecular phylogenetics that suggested using MSA of 

118 chemokine receptors as seed for the MSA of 3129 sequences. It is my pleasure to have found 

a mentor like Sophie. 

  



 

230 

Narwani Tarun Jairaj – Thèse de doctorat - 2018 

Dissemination of the results 

 

The results from chapter 6 have been published in the form of a scientific poster at ISMB/ECCB 

conference held at Prague in July 2017. The poster garnered overwhelming response with people 

asking interesting questions about the viral chemokine receptors. The poster was awarded as best 

poster at the conference.   Narwani TJ, Abby S and de Brevern AG. An evolutionary perspective 

on chemokine receptor family [version 1; not peer reviewed]. F1000Research 2017, 6(ISCB 

Comm J):1271 (poster) (doi: 10.7490/f1000research.1114530.1)  

 

 

During the compilation of the chapter, a manuscript has been written and we expect to get it 

published by end of the year 2018. 

  

http://dx.doi.org/10.7490/f1000research.1114530.1
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Conclusive Outline: 

 

 

Before starting my PhD with Alex, I was gifted a book from my previous scientific advisor, Dr. 

Srikrishna Subramanian. The book was a series of inspiring lectures from famous physicist Dr. 

Richard Feynman titled ‘The pleasure of finding things out’. The book gives insights into Dr. 

Feynman’s approach towards science that can be summarized as simply as curiosity.  

 During the course of these three years of research work under PhD tenure, I got to learn 

more than just the meaning of pleasure of finding things out. Perhaps, Alex designed the flow of 

my PhD, titled Dynamics of protein structures and its impact on local structural behaviors, in this 

specific manner to help me learn and grow. The first chapter focuses on a portion of structural 

space, Helices and asks very simple question on how do they behave in dynamics. While chapter 

5 that forms the penultimate chapter for my thesis deals with a complex structure assembly that 

too in a membrane environment. In hindsight, I can see the underlying plan of my thesis as I realize 

that each chapter exploits the information gained from its preceding chapters. The inclusion of 

chapter 6 was unavoidable because of its close association with chapter 5 of the thesis but it also 

helped me employ different in silico techniques to answer pertinent questions. 

 

Chapter 1 is based on the objective to understand local structural behaviors in helices. Therefore, 

the first task was to check the persistence of helices in their original or starting conformation 

(during MD simulations). It was observed that more than 3/4th of α-helices persist thus indicating 

the order in their structures. However, 310-helices changed much frequently with more than 40.5% 

of time the residues assigned as 310-helices changed to either a helical or non-helical conformation. 

The π-helices were observed to be the most deformed as very few π-helices persisted as π-helices 

during the collective simulation time of 150ns. The α-helix showed good correlation among their 

stability and flexibility in terms of B-factors, RMSf and surface accessible area. The unsupervised 

clustering of different helical conformations and use of PB and related statistics, Neq showed that 

the α-helix also have a higher tendency to assume β-turn conformations than either of the two other 

helical forms. The individual clusters of 310- and π-helix revealed their tendency to transit to α-

helix. However, the 310-helix that transformed to α-helix showed different characteristics. It 

depicted higher B-factor and RMSf values than the average values in its cluster, thus revealing that 
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310-helix are dynamic than α-helices. The residues associated with π-helices were found to be also 

closely associated with β-turn and bend rather than other helices. A counterintuitive finding was 

that π-helices that showed low B-factors but high accessibility. Thus defined them as very 

flexible/deformable also supported by their very high RMSF and Neq values. Such dynamic 

behavior of π-helices may be characteristics of post nucleation, cooperative protein folding effect 

of protein folding. 

Since π-helices, due to their high deformability were being assessed for their involvement 

in disorder and folding process, we found out the that Polyproline II helical conformations 

dominates other helical forms in less structured space. Moreover, based on its geometry, sequence 

and structure it should be a part of regular secondary structure elements. PPII has a left-handed 

geometry unlike the right-handedness of popular protein helices. Therefore, in an attempt to 

understand PPII conformation, we reviewed the recent advances made in PPII. We found out that 

there has been a sudden surge in publications related to PPII. An interesting personal learning was 

that it is not necessary for PPII helical conformation to be comprised of proline residues at all. 

Rather, the amino acid composition of PPII can change depending on its context and so does its 

length. This provided interesting insights into inherent flexibility PPII helices contain. 

 

After the analysis of dynamic behavior of helices, the study was extended to non-helical 

conformations as well. The resulting analysis confirmed the rigidity of sheets, but also underline 

their capacity to transform into turn conformations. While the dynamics between turns (with 

hydrogen bond) and bends (without hydrogen bond) showed some strong similarities, the two 

conformations behave quite distinctively. These revealing results about the dynamics of DSSP 

secondary structure states motivated us to analyze the structures using a structural alphabet – The 

Protein Blocks (PB). Systematic analysis of PBs provided surprising results with multiple 

information. An important one was in regards to the relationship between solvent accessibility, 

stability and dynamics. While a large part of buried residues remained stable, important 

discrepancies were observed. For at least half of the PBs (16 in number), the fact to be buried or 

exposed did not affect their dynamics, at all. Majority of PBs persisted as their original PB. Some 

PBs showed higher tendency to be not as rigid as others, particularly PB g and PB i. The changes 

amongst PBs in their clusters were assessed based on their geometrical compatibility. More 

frequently they tend to exchange with an unexpected PB than an expected one. Thus depicting the 
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inherent flexibility in protein backbone using simple molecular dynamics. These results with PBs 

and DSSP states provided a very basic understanding that protein structures are much more 

dynamic than we usually assume due to our exposure to static X-ray crystal data. The importance 

of having such inherent flexibility can be attributed their involvement in regulation of cellular 

function. 

 

Such regulatory processes require protein structures to modulate their behavior in different 

contexts and at molecular level, it is achieved by post translational modifications (PTM). 

Therefore, we analyzed PDB data extracted from PTM-SD database in order to find the impact of 

PTMs on protein backbone. N-glycosylation, phosphorylation and methylation were selected as 

PTMs of interest based on the sufficient data that exist in PDB. Besides their global analyses, 

specific example proteins were chosen for the three PTMs – N-glycosylation in Liver 

carboxylesterase 1 and Renin endopeptidase, threonine phosphorylation in Cyclin dependent 

kinase 2 and histidine methylation in Actin. The backbone analysis using PB derived entropy 

function (Neq) of N-glycosylation showed that the addition of the glycan neither impact the local 

nor the global backbone conformation of the proteins. However, the methylation on actin structure 

induced a local increase of the backbone diversity at the PTM site region, thus highlighting a higher 

deformation of this part of the protein. However, no effect on the intrinsic mobility of this region 

was observed as the structure with and without PTM had same B-factor profiles. Neq as well as 

normalized B-factor values revealed that the phosphorylation site and its neighborhood positions 

display a significant backbone diversity. The comparison among modified and unmodified 

structures of CDK2 revealed that the phosphorylation on the activation loop at Thr 160 have 

several local effects. It rigidifies the backbone locally while increasing the deformation at two 

distant regions both of which are also important sites for PTM. 

Despite the intrinsic link between PTM and protein function, the molecular effects of the 

modifications on the protein structures and dynamics remain poorly understood. Therefore, 

molecular modeling of PTMs combined with molecular dynamic simulation is an interesting 

alternative. It is mention-worthy here that I also work on understanding dynamics of active to 

inactive transformation in protein kinases in collaboration with Prof. N. Srinivasan of IISc 

Bangalore. I have already completed the structures of kinases with and without PTM, using 

molecular modelling. Moreover, we also recently submitted a molecular dynamics analysis of 
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active and inactive protein kinase A. Therefore, these data can be used for a more global 

understanding of the impact of PTM on protein backbone. 

A major concern while dealing with PTM structures are the missing regions in PDB 

crystals that mostly pertains to disorder in protein. The disorder helps protein structures to expand 

their protein-protein interactome. The selectivity of interacting partners and order-disorder 

transition of the protein structures is also regulated by PTMs, and most of the times by 

phosphorylation thus explaining the missing regions in our analyses. While managing these 

missing regions in phosphorylation data, we stumbled upon a rather interesting structural event. 

 

A unique structural event of protein life known as Dual personality fragments (DPF) was identified 

and analyzed subsequent to the analysis of the effect of PTM on protein backbone. DPF are regions 

in a protein structure that can transform between disorder and order structural states and is expected 

to be lying at the core of structural continuum. Almost scarce information is available for DPF as 

only a single research article by Adam Godzik’s lab in 2007. They tried to identify and characterize 

DPF and proposed that DPF differs from the disorder and order in their specific sequence 

composition. The DPF characteristic amino acid signature, as proposed by Zhang et al. 2007 is, 

Thr, Arg, Gly, Asn, Pro, and Asp. Though a one of its kind and a benchmark study, they focus 

mostly on sequence based characterization of DPF like most disorder related articles. DPF transit 

from disorder to order and thus will have structural information available. We decided to exploit 

this structural information to characterize DPF along with sequence features. Based on our 

analyses with PB, secondary structures, B-factors, and solvent accessibility we characterize DPF. 

High frequency of Cys, Gly, Asp, and Lys in a region can be an indicative of a DPF. Two 

of these residues, Cys and Gly are rigid and moderately flexible while rest two are highly flexible. 

Also, Cys and Gly are hydrophobic while Asp and Lys are hydrophilic. This information coupled 

with involvement of DPF in multi-partner interactions and MoRFs (Molecular recognition 

features), the presence of high propensity of these residues makes sense. Additionally, having a 

region with high occurrence of C, G, D, and K that also have a higher alpha helical and beta turn 

content is also an indicative of a DPF. Although the definite characterization of DPF and using 

that information to predict DPF from sequence seems distant for now yet the information acquired 

about the protein local structures is enriching. 
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The finding of a region in CDK2 that showed distant effect upon phosphorylation indicated 

allostery or at least long range interactions in protein structures. This motivated us to move further 

ahead from analysis of secondary structures to more complex multi-domain proteins like integrin 

αIIbβ3. The integrin structure undergoes structural transition from a bend to open conformation and 

allostery have been shown to play a major role. We decided to study two rigid domains in the 

structure which functions are the anchor during the structural transformation. Therefore, the 

intrinsic dynamics of these rigid beta sandwich domains, Calf-1 and Calf-2, would be quite 

exciting to study. Especially since the αIIbβ3 is implicated in a rare bleeding disorder like 

Glanzmann Thrombasthenia (GT) and pregnancy related disorder Fetal / Neonatal Alloimmune 

Thrombocytopenia (FNAIT).  Protein blocks statistical measures like ΔNeq and ΔPB were used to 

analyze the impact of GT mutations on the Calf-1 domain. The significance of using these 

measures is their ability to resolve local rigid regions encompassed inside an otherwise deformable 

region. 

It was observed that the impact of GT variants that may disturb the core β-strands are 

systematically compensated by the loops. The energy gained or lost due to loss of interactions in 

mutants was shown to be compensated by new interactions with the residual energy being 

transferred to the loops. Interestingly, of the seven GT variants studied only two, C674 and P741, 

displayed conformational changes at the mutated site. The case of the C674R substitution was 

particularly enriching for me as I remembered the famous Anfinsen’s experiment. The resultant 

loss of the disulfide bridge relaxes the structure and introduces significant structural alterations but 

the β sandwich architecture persist. Such an effect suggested that the structural-functional context 

influences the rigidity. Thus, inherent flexibility is important and crucial to the conservation of the 

core. 

 

In terms of understanding the behavior of local structural flexibility, we further notched up to a 

more complex structural organization with a dimer formation in a phospholipid membrane system. 

The protein of interest was Duffy Antigen Chemokine Receptor, DARC. DARC is identified as a 

mammalian chemokine receptor that can bind to inflammatory chemokines across classes. Besides 

able to bind effectively to different chemokines, it does not transduce the signal since it lacks the 

motifs that couple with G-proteins during GPCR signaling. Therefore, International Union for 

Pharmacology (IUPHAR) updated the nomenclature and replaced DARC with Atypical 
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Chemokine Receptor 1 (ACKR1). Among the atypical chemokine receptors, ACKR1 is the only 

one that exhibit promiscuous binding with chemokines and lacks the DRYLAIV motif completely. 

Most characteristically, ACKR1 serves as a receptor for Plasmodium vivax merozoites on human 

RBC that leads to the symptomatic infectious stage of malaria. Although DARC was the first one 

to be identified among chemokine receptors yet to date no experimentally determined structure 

exists. Only a structural model generated using homology modelling exists that was done by Alex 

in 2005. Therefore, we decided to build a structural model for ACKR1 integrating the latest 

physiological, pathological and evolutionary information available. The physio-pathological 

properties of chemokine receptors assisted in identifying the key residues. Structural information 

from other chemokine receptors was also instrumental in establishing the basic scaffold for 

modelling ACKR1. Using these along with phylogenetic information of human chemokine 

recepors as well as structural information acquired in preceding chapters, ACKR1 was modelled 

as a homodimer based on the crystal structure of active CXCR4 (PDBid 3ODU). The dimeric 

interface was determined and key residues were identified. Most importantly, the dimer model is 

embedded in an erythrocyte membrane mimic system. Special caution was carried in building the 

membrane and was perhaps the most challenging task of all due to the specific cell structure of 

RBCs.  

The primary objective is to understand the dynamics of local secondary structures and 

protein blocks at the interface region as well as at the sites of conserved micro-switch motifs. 

Therefore, while the 1 microsecond range simulations are ongoing on the cluster, a primary study 

of the motions using ANM based normal mode analysis (NMA) is designed. The NMA results 

have been just weeks before completion of this thesis and therefore not included in the main 

chapter. The preliminary NMA results indicate that the two subunits of the dimer have different 

structural fluctuations rather they are shown to be negatively correlated. Exploration of these 

results can provide insights into the individual and concerted dynamics of the dimer. Further, a 

perturbation response study of key residues has also been carried out. The preliminary results show 

that the interface residues are the most effected one and the TM1 and TM7 are the most exposed 

and sensitive regions. Any perturbation in the interface residue leads to increased fluctuation in 

the overall structure, especially in TM1 and TM7. The further analysis of these results can help us 

understand the role of allostery in the 7TM structure of ACKR1. Of course, the conclusive remarks 

on the dynamics of the local structures in the homodimeric, membrane embedded, assembly of 
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ACKR1 requires all atom molecular dynamics. However, given the enormous size of the system 

the computational cost is expensive and I hope I will have time to analyze these results in 

subsequent months of finishing this document.  

Given the endemic that is malaria and especially the global widespread presence of P.vivax 

infected malaria, the prime objective has been extended to study the interactions of ECD1 with 

P.vivax DARC Binding Ligand. 

 

During the template selection for modelling ACKR1, information of phylogenetic relationships 

among 21 human chemokine receptors was used. The resulting tree showed ACKR1 to be highly 

distant from rest of the family. This kindled the curiosity regarding the evolution of ACKR1. 

Therefore, we decided to collaborate with Dr. Sophie Abby from Austria to study the molecular 

phylogenetics of the chemokine receptor family. Foremost, this required a basic understanding of 

chemokines and their receptors, their sequence, structure and function characteristics. The current 

classification of chemokine receptors is based on the class of chemokine ligand binding to the 

receptor. An α-chemokine (CXC type) binding receptor is named CXCR while a β-chemokine (CC 

type) binding receptor is termed as CCR. Such a premise, however may change with the enhancing 

knowledge about the hetero-oligomerization of chemokine receptors and discovery of more virally 

encoded chemokine receptors. The information gathering process during this project was 

fascinating for instance, I learned for the very first time about the existence of virally encoded 

chemokine receptors. The concept of gene piracy and how smartly does viruses use chemokine 

receptor mimics of their host to escape the immune response.  

The design of protocol for generating the tree was suggested by Sophie. Thus we used state 

of the art tools like SiLiX for clustering the sequences and IQtree for generating the maximum 

likelihood tree. Also, the sequence alignment was checked at each stage for conservation profiles 

of important functional residues. For the final multiple sequence alignment (MSA) of 3129 

sequences, the manually verified MSA of 118 sequences (used for HMM profile building) was 

used as a seed. The most fascinating part was the analysis and deducing functional information 

from the tree. Strong evidence provided by the overlaps in the clades of CCR2 and CCR5 as well 

as CXCR1 and CXCR2 suggested similar evolutionary pressures among the two pair of receptors. 

The similarities between the gene locations of their respective ligands as well their functional 

similarity further support the merging of the two clades. The evolution of ACKR1 was traced by 
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converting their branch lengths to ages. The age helped in identifying the first (primitive) and the 

most recent occurrence of ACKR1 among species of tree of life and also in tracing the gaps in 

between. Strikingly, there are no ACKR1 sequences identified outside class Mammalia and thus 

limits the access of our analysis. The absence of non-mammalian ACKR1 gene might be the reason 

for the huge distance of ACKR1 clade from rest of the tree that have sequences from Amphibia, 

Fishes as well as Reptilia. A strong hypothesis might be that ACKR1 is not a chemokine receptor 

and have been a viral chemokine receptor that was genetically pirated from the host during 

infection. However, during a subsequent infection by the virus (possibly a ssDNA or retrovirus) 

the altered receptor gene was back-pirated into the host genome.  

Sadly, I do not have sufficient time and information at present to test this hypothesis but 

this question remains open. Hopefully, I may return to address this question during my research 

career. I do acknowledge that the test may be negative for such a strong hypothesis but such is the 

pleasure of finding things out.  
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Abstract in English: 

Dynamics of protein structures and its impact on local structural 

behaviors 

Protein structures are highly dynamic in nature contrary to their depiction in crystal structures. A major 

component of structural dynamics is the inherent protein flexibility. The prime objective of this thesis is to 

understand the role of the inherent dynamics in protein structures and its propagation. Protein flexibility is 

analyzed at various levels of structural complexity, from primary to quaternary levels of organization. Each 

of the first five chapters’ deal with a different level of local structural organization with first chapter dealing 

with classical secondary structures while the second one analysis the same using a structural alphabet - 

Protein Blocks. The third chapter focuses on the impact of special physiological events like post-

translational modifications and disorder to order transitions on protein flexibility. These three chapters 

indicate towards a context dependent implementation of structural flexibility in their local environment. In 

subsequent chapters, more complex structures are taken under investigation. Chapter 4 deals with integrin 

αIIbβ3 that is involved in rare genetic disorders. Impact of the pathological mutations on the local flexibility 

is studied in two rigid domains of integrin αIIbβ3 ectodomain. Inherent flexibility in these domains is shown 

to modulate the impact of mutations towards the loops. Chapter 5 deals with the structural modelling and 

dynamics of a more complex protein structure of Duffy Antigen Chemokine Receptor embedded in an 

erythrocyte mimic membrane system. The model is supported by the most comprehensive phylogenetic 

analysis on chemokine receptors till date as explained in the last chapter of the thesis. 
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Protein structural flexibility, Allostery, Protein Blocks, Dual personality fragments, Post-translational 

modifications, Integrin αIIbβ3, Glanzmann Thrombasthenia, Fetal/neonatal Alloimmune Thrombocytopenia, 

Plasmodium vivax malaria, Duffy Antigen Chemokine Receptors, Molecular phylogenetics 

 

  



Résumé en français : 

Dynamique des structures protéiques et son impact sur les comportements 

structuraux locaux 

Les structures protéiques sont de nature hautement dynamique contrairement à leur représentation dans les 

structures cristallines. Une composante majeure de la dynamique structurelle est la flexibilité des protéines 

inhérentes. L'objectif principal de cette thèse est de comprendre le rôle de la dynamique inhérente dans les 

structures protéiques et leur propagation. La flexibilité des protéines est analysée à différents niveaux de 

complexité structurelle, du niveau d'organisation primaire au niveau quaternaire. Chacun des cinq premiers 

chapitres traite un niveau différent d'organisation structurelle locale avec le premier chapitre traitant des 

structures secondaires classiques tandis que le second analyse la même chose en utilisant un alphabet 

structurel - les blocs protéiques. Le troisième chapitre se concentre sur l'impact d'événements 

physiologiques spéciaux comme les modifications post-traductionnelles et le désordre sur les transitions 

d'ordre sur la flexibilité des protéines. Ces trois chapitres indiquent une mise en œuvre dépendante du 

contexte de la flexibilité structurelle dans leur environnement local. Dans les chapitres suivants, des 

structures plus complexes sont prises en compte. Le chapitre 4 traite de l'intégrine αIIbβ3 impliquée dans des 

troubles génétiques rares. L'impact des mutations pathologiques sur la flexibilité locale est étudié dans deux 

domaines rigides de l'intégrine αIIbβ3 ectodomaine. La flexibilité inhérente dans ces domaines est montrée 

pour moduler l'impact des mutations vers les boucles. Le chapitre 5 traite de la modélisation structurelle et 

de la dynamique d'une structure protéique plus complexe du récepteur des chimiokines des antigènes du 

groupe Duffy incorporé dans un système de membrane mimétique érythrocytaire. Le modèle est soutenu 

par l'analyse phylogénétique la plus complète sur les récepteurs de chimiokines jusqu'à ce jour, comme 

expliqué dans le dernier chapitre de la thèse. 

 

Mots clés :  

Flexibilité de la structure des protéines, allostérie, Blocs Protéiques, fragments de double personnalité, 

modification post-translationnelle, Intégrine αIIbβ3, Thrombasthénie de Glanzmann, thrombocytopénie allo-

immune fœtale / néonatale, paludisme à Plasmodium vivax, récepteurs des chimiokines des antigènes du 

groupe Duffy, phylogénie moléculaire. 


