, longues dans le noir et sous vide d'après Donaldson et Knifton 117 tandis que Haines 122 affirme que le sel est instable et s'oxyde sous air et à la lumière

, En revanche, la susceptibilité obtenue est très différente de celle du bismuth massif. Il serait donc intéressant de confirmer ce résultat et de relier de manière systématique l'évolution des propriétés magnétiques à la taille des particules et de progresser dans la compréhension de l'influence de leur surface sur les propriétés physiques de ce métal

H. R. Kotadia, P. D. Howes, S. H. Mannan, and . Review, On the Development of Low Melting Temperature Pb-Free Solders. Microelectronics Reliability, vol.54, pp.1253-1273, 2014.

S. Cheng, C. Huang, and M. Pecht, A Review of Lead-Free Solders for Electronics Applications. Microelectronics Reliability, 2017.

X. Saint-martin, Packaging Des Circuits Intégrés, vol.33, pp.1-24, 2005.

G. Dehaine, Assemblage Des Circuits Intégrés. Techniques de l'ingénieur, pp.1-19, 1987.

H. Jiang, K. Moon, and C. P. Wong, Recent Advances of Nanolead-Free Solder Material for Low Processing Temperature Interconnect Applications. Microelectronics Reliability, vol.53, pp.1968-1978, 2013.

L. M. Lee and A. A. Mohamad, Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review. Advances in Materials Science and Engineering, pp.1-11, 2013.

T. Lee, T. R. Bieler, C. Kim, and H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology, 2015.

P. L. Liu and J. K. Shang, Interfacial Embrittlement by Bismuth Segregation in Copper/Tinbismuth Pb-Free Solder Interconnect, Journal of Materials Research, vol.16, issue.06, pp.1651-1659, 2001.

D. C. Lin, S. Liu, T. M. Guo, G. Wang, T. S. Srivatsan et al., An Investigation of Nanoparticles Addition on Solidification Kinetics and Microstructure Development of Tin-lead Solder, Materials Science and Engineering: A, vol.360, issue.1-2, pp.285-292, 2003.

C. Buttay, Modules et Boîtiers de Puissance (Packaging), pp.1-18

R. M. German, Introduction. In Sintering: from Empirical Observations to Scientific Principles, pp.1-12, 2014.

C. Buttay, A. Masson, J. Li, M. Johnson, M. Lazar et al., Die Attach of Power Devices Using Silver Sintering -Bonding Process Optimisation and Characterization, Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), pp.84-90, 2011.

V. Bley, B. Allard, and L. Ménager, Conditionnement Des Modules de Puissance. Techniques de l'ingénieur, vol.3385, pp.1-16, 2010.

K. S. Siow, Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging?, Journal of Electronic Materials, vol.43, issue.4, pp.947-961, 2014.

K. S. Siow and Y. T. Lin, Identifying the Development State of Sintered Silver (Ag) as a Bonding Material in the Microelectronic Packaging Via a Patent Landscape Study, Journal of Electronic Packaging, vol.138, issue.2, p.20804, 2016.

D. Lu and C. P. Wong, Materials for Advanced Packaging, 2009.

H. Greve, L. Chen, I. Fox, and F. P. Mccluskey, Transient Liquid Phase Sintered Attach for Power Electronics

, IEEE, pp.435-440, 2013.

C. Ehrhardt, M. Hutter, H. Oppermann, and K. Lang, A Lead Free Joining Technology for High Temperature Interconnects Using Transient Liquid Phase Soldering

, IEEE, pp.1321-1327, 2014.

R. M. German, P. Suri, and S. J. Park, Review: Liquid Phase Sintering, Journal of Materials Science, vol.44, issue.1, pp.1-39, 2009.

A. Sharif, C. L. Gan, and Z. Chen, Transient Liquid Phase Ag-Based Solder Technology for High-Temperature Packaging Applications, Journal of Alloys and Compounds, vol.587, pp.365-368, 2014.

K. Guth, N. Oeschler, L. Boewer, R. Speckels, G. Strotmann et al., New Assembly and Interconnect Technologies for Power Modules, pp.1-5, 2012.

B. Pan and C. K. Yeo, Transient Liquid Phase Sintering (TLPS) Conductive Adhesives for High Temperature Automotive Applications, SAE International Journal of Materials and Manufacturing, vol.7, issue.2, pp.320-327, 2014.

O. Mokhtari and H. Nishikawa, Transient Liquid Phase Bonding of Sn-Bi Solder with Added Cu Particles, Journal of Materials Science: Materials in Electronics, vol.27, issue.5, pp.4232-4244, 2016.

. Lau, J. Solder Joint Reliability: Theory and Applications

. Springer, , 1991.

K. N. Subramanian, Lead-Free Solders: Materials Reliability for Electronics, 2012.

D. Jacobson and G. Humpston, Principles of Soldering, 2004.

W. J. Boettinger, C. A. Handwerker, and U. R. Kattner, The Mechanics of Solder Alloy Wetting and Spreading

F. G. Yost, F. M. Hosking, and D. R. Frear, , 1994.

H. J. Ellingham, Reducibility of Oxides and Sulfides in Metallurgical Processes, Journal of the Society of Chemical Industry, vol.63, pp.125-133, 1944.

C. W. Dannatt and H. J. Ellingham, Roasting and Reduction Processes -A General Survey, Discussions of the Faraday Society, vol.11, pp.126-139, 1948.

K. Du?ek, D. Bu?ek, M. Pla?ek, A. Géczy, O. Krammer et al., Influence of Vapor Phase Soldering Fluid Galden on Wetting Forces (Tombstone Effect), Journal of Materials Processing, vol.251, pp.20-25, 2018.

W. Lin and Y. C. Lee, Study of Fluxless Soldering Using Formic Acid Vapor, IEEE Transactions on Advanced Packaging, vol.22, issue.4, pp.592-601, 1999.

H. Matsuki, H. Matsui, E. Watanabe, and F. D. Div, Fluxless Bump Reflow Using Carboxylic Acid. International Symposium on Advanced Packaging Materials, pp.135-139, 2001.

K. J. Puttlitz and K. A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, 2004.

C. Scholz, K. Boucke, and R. Poprawe, Investigation of Indium Solder Interfaces for High-Power Diode Lasers, 2003.

T. Ishii and S. Aoyama, Fluxless Fabrications of Sn-Au Solder Microbumps by a Hydrogen Plasma Reflow Technique, Journal of Electronic Materials, vol.34, issue.5, pp.630-634, 2005.

C. C. Dong, R. E. Patrick, and E. J. Karwacki, Electron Attachment: A New Approach to H2 Fluxless Solder Reflow for Wafer Bumping, IEEE Transactions on Advanced Packaging, vol.30, issue.3, pp.485-490, 2007.

K. Tu, Solder Joint Technology

, Springer Series in Materials Science, vol.117, 2007.

Y. Liu, F. Sun, and X. Liu, Improving Sn-0.3Ag-0.7Cu Low-Ag Lead-Free Solder Performance by Adding Bi Element

. Ieee, , pp.343-346, 2010.

S. Ahmed, M. Basit, J. C. Suhling, and . Lall, P. Effects of Aging on SAC-Bi Solder Materials, pp.746-754, 2016.

J. E. Morris and . Nanopackaging, , 2008.

P. Pawlow, Über Die Abhängigkeit Des Schmelzpunktes von Der Oberflächenenergie Eines Festen Körpers, Z. Phys. Chem, vol.65, pp.1-35, 1909.

M. Takagi, Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films, Journal of the Physical Society of Japan, vol.1954, issue.3, pp.359-363

C. R. Wronski, The Size Dependence of the Melting Point of Small Particles of Tin, British Journal of Applied Physics, vol.18, issue.12, pp.1731-1737, 1967.

J. R. Sambles, An Electron Microscope Study of Evaporating Gold Particles: The Kelvin Equation for Liquid Gold and the Lowering of the Melting Point of Solid Gold Particles, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, pp.339-351, 1558.

G. L. Allen, R. A. Bayles, W. W. Gile, and W. A. Jesser, Small Particle Melting of Pure Metals. Thin Solid Films, vol.144, issue.2, pp.297-308, 1986.

P. Buffat and J. Borel, Size Effect on the Melting Temperature of Gold Particles, Physical Review A, vol.13, issue.6, pp.2287-2298, 1976.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Size-Dependent Melting Temperature of Individual Nanometer-Sized Metallic Clusters, Physical Review B, issue.13, pp.8548-8556, 1990.

S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Allen, Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements, Physical Review Letters, vol.77, issue.1, pp.99-102, 1996.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan et al., Size-Dependent Melting Point Depression of Nanostructures: Nanocalorimetric Measurements, Physical Review B, issue.15, pp.10548-10557, 2000.

C. L. Jackson and G. B. Mckenna, The Melting Behavior of Organic Materials Confined in Porous Solids, The Journal of Chemical Physics, vol.93, issue.12, pp.9002-9011, 1990.

J. Sun and S. L. Simon, The Melting Behavior of Aluminum Nanoparticles, Thermochimica Acta, vol.463, issue.1, pp.32-40, 2007.

C. J. Coombes, The Melting of Small Particles of Lead and Indium, Journal of Physics F: Metal Physics, vol.2, issue.3, pp.441-449, 1972.

J. Liu, C. Andersson, Y. Gao, and Q. Zhai, Recent Development of Nano-Solder Paste for Electronics Interconnect Applications, 10th Electronics Packaging Technology Conference, pp.84-93, 2008.

Y. Gao, C. Zou, B. Yang, Q. Zhai, J. Liu et al., Nanoparticles of SnAgCu Lead-Free Solder Alloy with an Equivalent Melting Temperature of SnPb Solder Alloy, Journal of Alloys and Compounds, vol.484, issue.1-2, pp.777-781, 2009.

C. Zou, Y. Gao, B. Yang, and Q. Zhai, Melting and Solidification Properties of the Nanoparticles of Sn3.0Ag0.5Cu Lead-Free Solder Alloy, Materials Characterization, issue.4, pp.474-480, 2010.

L. Zhang and K. N. Tu, Structure and Properties of Lead-Free Solders Bearing Micro and Nano Particles, Materials Science and Engineering: R: Reports, vol.82, pp.1-32, 2014.

Y. Shu, K. Rajathurai, F. Gao, Q. Cui, and Z. Gu, Synthesis and Thermal Properties of Low Melting Temperature Tin/Indium (Sn/In) Lead-Free Nanosolders and Their Melting Behavior in a Vapor Flux, Journal of Alloys and Compounds, vol.626, pp.391-400, 2015.

F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas et al., Synthesis and Melting Behaviour of Bi, Sn and Sn-Bi Nanostructured Alloy, Journal of Alloys and Compounds, vol.623, pp.7-14, 2015.

A. Roshanghias, G. Khatibi, A. Yakymovych, J. Bernardi, H. Ipser et al., Solder Joints Integrity and Strength, vol.45, pp.4390-4399, 2016.

J. Shen and Y. C. Chan, Research Advances in Nano-Composite Solders. Microelectronics Reliability, vol.49, pp.223-234, 2009.

Y. Li and Y. C. Chan, Effect of Silver (Ag) Nanoparticle Size on the Microstructure and Mechanical Properties of Sn58Bi-Ag Composite Solders, Journal of Alloys and Compounds, vol.645, pp.566-576, 2015.

A. N. Fouda and E. Eid, Influence of ZnO Nano-Particles Addition on Thermal Analysis, Microstructure Evolution and Tensile Behavior of Sn-5.0wt% Sb-0.5wt% Cu Lead-Free Solder Alloy, Materials Science and Engineering: A, vol.632, pp.82-87, 2015.

K. Savolainen, L. Pylkkänen, H. Norppa, G. Falck, H. Lindberg et al., Engineered Nanomaterials and Occupational Health and Safety -A Review, Safety Science, vol.48, issue.8, pp.957-963, 2010.

A. J. Ferreira, J. Cemlyn-jones, C. Robalo-cordeiro, N. Nanoparticles, and P. Nanotoxicology, Revista Portuguesa de Pneumologia (English Edition, vol.19, issue.1, pp.28-37, 2013.

O. Vendier, L. Raynaud, V. Baco, M. Gougeon, H. Le-trong et al., Procédé de Fabrication d'un Dispositif Comprenant Des Brasures Réalisées à Partir d'oxalate Métallique, 2011.

R. J. Deffeyes and W. R. Tyler, Acicular Metallic Powders Produced from the Organometallic Salts. US 4004917 A, 1977.

P. Tailhades, V. Carles, and A. Rousset, Method of Preparing Metal Powders, Metal Powders Prepared in This Way and Compacts That Include These Powders, vol.6464750, 2002.

D. Poquillon, J. Lemaitre, V. Baco-carles, P. Tailhades, and J. Lacaze, Cold Compaction of Iron Powders -Relations between Powder Morphology and Mechanical Properties: Part I: Powder Preparation and Compaction, Powder Technology, vol.126, pp.65-74, 2002.

V. Baco-carles, A. Arnal, D. Poquillon, and P. Tailhades, Correlation between the Morphology of Cobalt Oxalate Precursors and the Microstructure of Metal Cobalt Powders and Compacts, Powder Technology, vol.185, issue.3, pp.231-238, 2008.

P. J. Panteix, V. Baco-carles, P. Tailhades, M. Rieu, P. Lenormand et al., Elaboration of Metallic Compacts with High Porosity for Mechanical Supports of SOFC, Solid State Sciences, vol.11, issue.2, pp.444-450, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00425042

J. L. Davis, F. Nounou, A. B. Suppelsa, and R. W. Pennisi, Solder Paste Having Solder Alloy/Formate Complexes as Oxide Scavengers, and Method for Preparing Same, 1992.

P. Tailhades, M. Brieu, P. Mollard, A. Rousset, and Y. Chassaigne, High Performances Boron Doped Gamma -Fe2O3 Particles Prepared from Oxalic Precursors, IEEE Transactions on Magnetics, vol.26, issue.1, pp.63-65, 1990.

N. Audebrand, M. Vaillant, J. Auffrédic, and D. Louër, Synthesis, Open-Framework Structure and Thermal Behaviour of Ammonium Tin Oxalate, Sn2(NH4)2(C2O4)3·3H2O, Solid State Sciences, vol.3, issue.4, pp.483-494, 2001.

C. Yu, L. Zhang, J. Shi, J. Zhao, J. Gao et al., A Simple Template-Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution, and Their Electrochemical Properties, Advanced Functional Materials, vol.18, issue.10, pp.1544-1554, 2008.

V. Baco-carles, I. Pasquet, V. Laurent, A. Gabriel, and P. Tailhades, Preparation and Electrical Properties of Dense Micro-Cermets Made of Nickel Ferrite and Metallic Copper, Solid State Sciences, issue.8, pp.1503-1506, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00457357

D. Wang, D. Wang, and T. Wang, Shape-Controlled Synthesis of Porous SnO2 Nanostructures via Morphology Conserved Transformation from SnC2O4 Precursor Approach, Nano-Micro Letters, vol.2011, issue.1

S. Kitagawa, T. Okubo, S. Kawata, M. Kondo, M. Katada et al., An Oxalate-Linked Copper(II) Coordination Polymer, [Cu2(Oxalate)2(Pyrazine)3]n, Constructed with Two Different Copper Units: X-Ray Crystallographic and Electronic Structures, Inorganic Chemistry, vol.34, issue.19, pp.4790-4796, 1995.

J. Y. Lu, Crystal Engineering of Cu-Containing Metal-organic Coordination Polymers under Hydrothermal Conditions. Coordination Chemistry Reviews, vol.246, pp.327-347, 2003.

R. G. Greenler, Infrared Study of the Adsorption of Methanol and Ethanol on Aluminum Oxide, The Journal of Chemical Physics, vol.37, issue.9, pp.2094-2100, 1962.

P. Baraldi, Thermal Behaviour of Metal Carboxylates: Metal Formates, Spectrochimica Acta Part A: Molecular Spectroscopy, vol.35, issue.8, pp.1003-1007, 1979.

A. Yabuki, N. Arriffin, and M. Yanase, Low-Temperature Synthesis of Copper Conductive Film by Thermal Decomposition of Copper-amine Complexes, Thin Solid Films, vol.519, issue.19, pp.6530-6533, 2011.

D. Shin, S. Woo, H. Yem, M. Cha, S. Cho et al., A Self-Reducible and Alcohol-Soluble Copper-Based Metal-Organic Decomposition Ink for Printed Electronics, ACS Applied Materials & Interfaces, vol.6, issue.5, pp.3312-3319, 2014.

Y. I. Khimchenko, V. P. Vasilenko, L. S. Radkevich, V. V. Myalkovskii, &. Chubar et al., Decomposition of Iron, Cobalt, Nickel, and Copper Formates, Soviet Powder Metallurgy and Metal Ceramics, vol.16, issue.5, pp.327-332, 1977.

D. Dollimore, The Production of Metals and Alloys by the Decomposition of Oxysalts, Thermochimica Acta, vol.177, pp.59-75, 1991.

R. K. Tukhtaev, Y. M. Yukhin, T. A. Udalova, B. B. Bokhonov, and N. Z. Lyakhov, Synthesis of Metal Nanopowders by Reduction in Organic Liquids, pp.239-242, 2008.

V. Koleva, D. Stoilova, and D. Mehandjiev, Formation of Copper-Manganese Oxides from CuxMn1?x(HCOO)2·2H2O Mixed Crystals, Journal of Solid State Chemistry, vol.133, issue.2, pp.416-422, 1997.

F. Kenfack and H. Langbein, Synthesis and Thermal Decomposition of Freeze-Dried Copper-iron Formates, Thermochimica Acta, vol.426, issue.1-2, pp.61-72, 2005.

C. Villette, Elaboration et Caractérisation de Fines Particules de Ferrites Spinelles Substitués, Relations Structure-Propriétés Magnétiques, 1995.

P. Baraldi and T. Manfredini, A Thermal Study on Isomorphous Metal Formates, Thermochimica Acta, vol.162, issue.1, pp.75-81, 1990.

A. Kaufman, C. Afshar, M. Rossi, D. E. Zacharias, and J. P. Glusker, Metal Ion Coordination in Cobalt Formate Dihydrate, Structural Chemistry, vol.4, issue.3, pp.191-198, 1993.

C. Stålhandske, A. Kjekshus, S. Svensson, T. Holme, A. A. Lindberg et al., The Crystal Structure of Bismuth(III) Formate, Acta Chemica Scandinavica, vol.23, pp.1525-1533, 1969.

U. Kolitsch, Two Bismuth Oxalate Hydrates and Revision of Their Chemical Formulae, Acta Crystallographica Section C Crystal Structure Communications, vol.59, issue.12, pp.501-504, 2003.

J. A. Kaduk, M. A. Toft, and J. T. Golab, Crystal Structure of Antimony Oxalate Hydroxide, Sb(C2O4)OH. Powder Diffraction, pp.19-24, 2010.

D. Dollimore, D. L. Griffiths, and D. Nicholson, Thermogravimetric Analysis of Various Oxalates in Air and in Nitrogen, Journal of the Chemical Society, vol.488, p.2617

D. Dollimore, The Thermal Decomposition of Oxalates. A Review, Thermochimica Acta, vol.117, pp.331-363, 1987.

E. D. Macklen, Influence of Atmosphere on the Thermal Decomposition of Some Transition Metal Oxalates, Journal of Inorganic and Nuclear Chemistry, vol.30, pp.2689-2695, 1960.

M. Devillers, F. De-smet, and O. Tirions, Bismuth and Mixed Bismuth-Lanthanide Carboxylates as Precursors for Pure and Ln-Promoted Bismuth Molybdate Catalysts, Thermochimica Acta, vol.260, pp.165-185, 1995.

J. Mu and D. D. Perlmutter, Thermal Decomposition of Carbonates, Carboxylates, Oxalates, Acetates, Formates, and Hydroxides, Thermochimica Acta, vol.49, pp.207-218, 1981.

A. Górski and A. Kra?nicka, Origin of Organic Gaseous Products Formed in the Thermal Decomposition of Formates, Journal of Thermal Analysis, vol.32, issue.4, pp.1243-1251, 1987.

P. Tailhades, C. Villette, A. Rousset, G. U. Kulkarni, K. R. Kannan et al., Cation Migration and Coercivity in Mixed Copper-Cobalt Spinel Ferrite Powders, Journal of Solid State Chemistry, vol.141, issue.1, pp.56-63, 1998.

V. Baco-carles, L. Datas, and P. Tailhades, Copper Nanoparticles Prepared from Oxalic Precursors, ISRN Nanotechnology, pp.1-7, 2011.

K. Kiryukhina, H. Le-trong, P. Tailhades, J. Lacaze, M. Gougeon et al., Towards a New Solder Material for Highly Dissipative Electronic Assemblies. International Symposium on Microelectronics, pp.836-000841, 2013.

K. Kiryukhina, H. Le-trong, P. Tailhades, J. Lacaze, V. Baco et al., Silver Oxalate-Based Solders: New Materials for High Thermal Conductivity Microjoining, Scripta Materialia, vol.68, issue.8, pp.623-626, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00832138

K. Kiryukhina, PâTes à Braser à Base d'oxalate d'argent Pour Applications Électroniques Fortement Dissipatives : De l'intérêt Des Particules Nanométriques Issues de La Décomposition de l'oxalate d'argent, 2014.

, Test Method Standard, Microcircuits, MIL-STD, vol.883

P. Zerrer, A. Fix, M. Hutter, and U. Pape, NanoFlux -Doping of Solder Pastes

, IEEE, pp.923-928, 2008.

P. Zerrer, A. Fix, M. Hutter, and H. Reichl, Solidification and Wetting Behaviour of SnAgCu Solder Alloyed by Reactive Metal Organic Flux. Soldering & Surface Mount Technology, vol.22, pp.19-25, 2010.

K. Xu, D. Zeng, S. Tian, S. Zhang, and C. Xie, Hierarchical Porous SnO2 Micro-Rods Topologically Transferred from Tin Oxalate for Fast Response Sensors to Trace Formaldehyde, Sensors and Actuators B: Chemical, vol.190, pp.585-592, 2014.

L. Jiang, X. Wu, Y. Guo, and L. Wan, SnO2-Based Hierarchical Nanomicrostructures: Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion Batteries, The Journal of Physical Chemistry C, issue.32, pp.14213-14219, 2009.

X. Wang, C. Zhao, R. Liu, X. Liu, and Q. Shen, Preparation and Comparative Structural Properties of Porous SnO2 Microrods and Submicrorods, Ionics, vol.20, issue.6, pp.841-848, 2014.

T. Minami, Substitution of Transparent Conducting Oxide Thin Films for Indium Tin Oxide Transparent Electrode Applications, Thin Solid Films, vol.516, issue.7, pp.1314-1321, 2008.

M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films, Chemistry of Materials, vol.14, issue.6, pp.2812-2816, 2002.

S. Kitabayashi and N. Koga, Physico-Geometrical Mechanism and Overall Kinetics of Thermally Induced Oxidative Decomposition of Tin(II) Oxalate in Air: Formation Process of Microstructural Tin(IV) Oxide. The Journal of Physical Chemistry C, vol.118, pp.17847-17861, 2014.

Y. R. Ren, S. Y. Jia, S. C. Zhang, C. L. Liu, and Y. C. Cui, Stannous Oxalate as a Novel Catalyst for the Synthesis of Polytrimethylene Terephthalate, Chinese Chemical Letters, vol.18, pp.872-874, 2007.

R. Alcántara, F. J. Fernández-madrigal, P. Lavela, C. Pérez-vicente, and J. L. Tirado, Tin Oxalate as a Precursor of Tin Dioxide and Electrode Materials for Lithium-Ion Batteries, Journal of Solid State Electrochemistry, vol.6, pp.55-62, 2001.

J. W. Kim, J. K. Lee, J. Choi, H. Lee, and J. Lee, Facile Preparation of SnC2O4 Nanowires for Anode Materials of a Li Ion Battery, Current Applied Physics, vol.14, issue.6, pp.892-896, 2014.

J. D. Donaldson and J. F. Knifton, Tin(II) Formate, Journal of the Chemical Society, vol.925, p.4801

J. D. Donaldson, J. F. Knifton, and S. D. Ross, The Vibrational Spectra of Some Tin (II) Carboxylate Complexes, Spectrochimica Acta, vol.21, issue.6, pp.1043-1046, 1965.

C. H. Kennard and J. J. Van-der-zee, Comment on the Powder Pattern of Tin(II) Formate, Journal of Inorganic and Nuclear Chemistry, vol.34, issue.2, pp.774-775, 1972.

P. G. Harrison and E. W. Thornton, Tin(II) Formate: A Reinvestigation, Journal of the Chemical Society, vol.21, issue.10, 1274.

J. Fenerty, P. G. Humphries, and J. Pearce, The Reconstructive Decomposition of Tin(II) Formate in Oxidising and Inert Atmospheres, Thermochimica Acta, vol.61, issue.3, pp.319-327, 1983.

P. J. Haines, Problem Solving and Applications of Thermal Methods, Thermal Methods of Analysis, pp.206-272, 1995.

K. Kim, P. Cho, J. Lee, and S. Hong, Preparation of SnO2 Whiskers via the Decomposition of Tin Oxalate, Journal of Electroceramics, vol.17, issue.2-4, pp.895-898, 2006.

H. Sun, S. Kang, and J. Mu, Synthesis of Flowerlike SnO2 Quasi-Square Submicrotubes from Tin (II) Oxalate Precursor, Materials Letters, pp.4121-4123, 2007.

H. Taib and C. C. Sorrell, Synthesis of Tin Oxide (SnO2) by the Oxalate Route: Effects of Addition Method and Ageing, Materials Science Forum, pp.973-976, 2007.

A. Wladimirsky, D. Palacios, M. C. Antonio, A. C. González-baró, and E. J. Baran, Vibrational Spectra of Tin(II) Oxalate, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.77, issue.1, pp.334-335, 2010.

L. Szirtes, J. Megyeri, E. Kuzmann, and A. Beck, Organic Derivatives of Tin(II/IV): Investigation of Their Structure. Radiation Physics and Chemistry, vol.80, pp.786-791, 2011.

P. S. Cho, K. W. Kim, and J. H. Lee, Improvement of Dynamic Gas Sensing Behavior of SnO2 Acicular Particles by Microwave Calcination, Sensors and Actuators, vol.123, pp.1034-1039, 2007.

H. Taib and C. C. Sorrell, Synthesis of Tin Oxide (SnO2) by Precipitation, Materials Science Forum, issue.42, pp.969-972, 2007.

C. Xu, X. Zhao, S. Liu, and G. Wang, Large-Scale Synthesis of Rutile SnO2 Nanorods, Solid State Communications, vol.125, pp.301-304, 2003.

A. Gleizes and J. Galy, Polyèdre de coordination de l'Etain(II) dans SnC2O4: Relations structurales entre SnC2O4, Na2C2O4 et Na2Sn(C2O4)2, Journal of Solid State Chemistry, vol.30, issue.1, pp.23-33, 1979.

A. D. Christie, R. A. Howie, and W. Moser, Tin(II) Oxalate Structures, Inorganica Chimica Acta, vol.36, pp.447-448, 1979.

A. Stanulis, A. Hardy, C. De-dobbelaere, J. D'haen, M. Van-bael et al., SnO2 Thin Films from an Aqueous Citrato Peroxo Sn(IV) Precursor, Journal of Sol-Gel Science and Technology, vol.62, issue.1, pp.57-64, 2012.

D. Dollimore and D. L. Griffiths, Differential Thermal Analysis Study of Various Oxalates in Oxygen and Nitrogen, Journal of Thermal Analysis, vol.1970, issue.3, pp.229-250

V. G. Leontyev, L. D. Ivanova, K. Bente, and V. F. Gremenok, Fabrication of Bulk Materials from Fine Particles of PbTe-SnTe Solid Solutions Prepared through Thermal Decomposition of Salts, Inorganic Materials, vol.48, issue.10, pp.991-996, 2012.

V. G. Leontyev, L. D. Ivanova, K. Bente, and V. F. Gremenok, Synthesis of PbTe-SnTe Particles by Thermal Decomposition of Salts to Create Nano-Structured Thermoelectric Materials, Crystal Research and Technology, vol.47, issue.5, pp.561-566, 2012.

L. D. Ivanova, V. G. Leontyev, L. I. Petrova, Y. V. Granatkina, and E. S. Avilov, Thermoelectric Properties of a Pb0.2Sn0.8Te Solid Solution Prepared through Thermal Decomposition of Salts, Inorganic Materials, vol.50, issue.2, pp.124-129, 2014.

A. Huidobro, A. Sepúlveda-escribano, and F. Rodr??uez-reinoso, Vapor-Phase Hydrogenation of Crotonaldehyde on Titania-Supported Pt and PtSn SMSI Catalysts, Journal of Catalysis, vol.212, issue.1, pp.94-103, 2002.

K. V. Mishchenko, Y. M. Yukhin, and I. A. Vorsina, Interaction of Bismuth(III) Oxide With Formic Acid Solutions, Russian Journal of Inorganic Chemistry, vol.57, issue.4, pp.564-568, 2012.

G. G. Briand and N. Burford, Bismuth Compounds and Preparations with Biological or Medicinal Relevance, Chemical reviews, vol.99, issue.9, pp.2601-2658, 1999.

H. Suzuki and T. Ogawa, Organobismuth(III) Compounds, Organobismuth Chemistry

J. Hagberg, A. Uusimäki, J. Levoska, and S. Leppävuori, Preparation of Bi-Pb-Sr-Ca-Cu-O High TC Superconducting Material via Oxalate Route at Various PH Values. Physica C: Superconductivity, vol.160, pp.369-374, 1989.

L. Marta, M. Zaharescu, L. Ciontea, and T. Petrisor, Chemical Route to the Synthesis of Superconducting Bismuth Oxide System, Applied Superconductivity, vol.1, issue.3-6, pp.677-691, 1993.

M. Popa, A. ?o?ovãnã, L. Popescu, N. Drãgan, and M. Zaharescu, Cu Oxalate Powders Used in BSCCO Preparation, Journal of the European Ceramic Society, vol.18, issue.9, pp.1265-1271, 1998.

M. Villegas, C. Moure, J. F. Fernandez, and P. Duran, Low-Temperature Sintering of Submicronic Randomly Oriented Bi4Ti3O12 Materials, Ceramics International, vol.22, issue.1, pp.15-22, 1996.

A. Umabala, M. Suresh, and A. Prasadarao, Bismuth Titanate from Coprecipitated Stoichiometric Hydroxide Precursors, Materials Letters, vol.44, issue.3-4, pp.175-180, 2000.

J. Lv, T. Karaki, and M. Adachi, Oxalate Precursor Route for Preparing (Bi,Na)0.83Ba0.17TiO3 Nanopowder and Ceramics, Physica Status Solidi, vol.208, issue.5, pp.1056-1060, 2011.

M. Devillers, O. Tirions, L. Cadus, P. Ruiz, and B. Delmon, Bismuth Carboxylates as Precursors for the Incorporation of Bismuth in Oxide-Based Materials, Journal of Solid State Chemistry, vol.126, issue.2, pp.152-160, 1996.

R. Chen, Z. Shen, H. Wang, H. Zhou, Y. Liu et al., Fabrication of Mesh-like Bismuth Oxide Single Crystalline Nanoflakes and Their Visible Light Photocatalytic Activity, Journal of Alloys and Compounds, vol.509, issue.5, pp.2588-2596, 2011.

M. Muruganandham, R. Amutha, G. Lee, S. Hsieh, J. J. Wu et al., Facile Fabrication of Tunable Bi2O3 Self-Assembly and Its Visible Light Photocatalytic Activity, The Journal of Physical Chemistry C, vol.2012, issue.23, pp.12906-12915

H. Wang, H. Yang, and L. Lu, Topochemical Synthesis of Bi2O3 Microribbons Derived from a Bismuth Oxalate Precursor as High-Performance Lithium-Ion Batteries, vol.4, p.17483, 2014.

Y. Peng, P. Yu, Q. Chen, H. Zhou, and A. Xu, Facile Fabrication of Bi12O17Br2/Bi24O31Br10 Type II Heterostructures with High Visible Photocatalytic Activity, The Journal of Physical Chemistry C, issue.23, pp.13032-13040, 2015.

K. Xiao, N. Tian, Y. Guo, H. Huang, X. Li et al., Facile Synthesis, Electronic Structure and Photocatalytic Activity of a Novel Bi-Based Hydroxyl Oxalate Bi(C2O4)OH. Inorganic Chemistry Communications, vol.52, pp.5-8, 2015.

J. Xu, F. Teng, W. Yao, and Y. Zhu, Morphology-Dependent Photoelectrochemical Properties of Multi-Scale Layered Bi(C2O4)OH. RSC Advances, vol.6, pp.23537-23549, 2016.

Z. Liu, H. Wang, G. Pan, J. Niu, and P. Feng, Facile Synthesis, Structure and Enhanced Photocatalytic Activity of Novel BiOBr/Bi(C2O4)OH Composite Photocatalysts, Journal of Colloid and Interface Science, vol.486, pp.8-15, 2017.

F. Duan, Y. Zheng, L. Liu, M. Chen, and Y. Xie, Synthesis and Photocatalytic Behaviour of 3D Flowerlike Bismuth Oxide Formate Architectures, Materials Letters, vol.64, issue.14, pp.1566-1569, 2010.

J. Xiong, G. Cheng, Z. Lu, J. Tang, X. Yu et al., BiOCOOH Hierarchical Nanostructures: Shape-Controlled Solvothermal Synthesis and Photocatalytic Degradation Performances, CrystEngComm, vol.13, issue.7, p.2381, 2011.

S. Xia, C. Dong, X. Wei, J. Wang, K. Wu et al., Reduced Graphene Oxide Modified Flower-like BiOCOOH Architectures with Enhanced Photocatalytic Activity, Materials Letters, vol.156, pp.36-38, 2015.

X. Feng, W. Cui, J. Zhong, X. Liu, F. Dong et al., Enhanced Visible Light Photocatalytic Activity of Br-Doped Bismuth Oxide Formate Nanosheets, Molecules, vol.20, issue.10, pp.19189-19202, 2015.

B. Chai and X. Wang, Enhanced Visible Light Photocatalytic Activity of BiOI/BiOCOOH Composites Synthesized via Ion Exchange Strategy, RSC Adv, vol.2015, issue.10, pp.7589-7596

R. Chen, Z. R. Shen, H. Wang, H. J. Zhou, Y. P. Liu et al., Fabrication of Mesh-like Bismuth Oxide Single Crystalline Nanoflakes and Their Visible Light Photocatalytic Activity, Journal of Alloys and Compounds, vol.509, issue.5, pp.2588-2596, 2011.

Ø. Sørbye, I. Kruse, A. Salmenperä, A. Block-bolten, J. M. Toguri et al., Studies on the Coagulation of Chicken Blood. VII. Use of Nickel Oxalate, Bismuth Oxalate, Cadmium Phosphate and Bismuth Phosphate for Differentiation and Assay of Strontium Carbonate Non-Adsorbable Labile Factors, Acta Chemica Scandinavica, vol.16, pp.1662-1674, 1962.

E. Diez, O. Monnereau, L. Tortet, G. Vacquier, P. Llewellin et al., Synthesis of Bismuth (III) Oxide from Oxalate: A Study by Controlled Transformation Rate Thermal Analysis (CRTA), J. Optoelectron. Adv. Mater, vol.2, issue.5, pp.552-556, 2000.

O. Monnereau, L. Tortet, P. Llewellyn, F. Rouquerol, and G. Vacquier, Synthesis of Bi2O3 by Controlled Transformation Rate Thermal Analysis: A New Route for This Oxide ? Solid State Ionics, vol.157, pp.163-169, 2003.

L. Tortet, O. Monnereau, P. Roussel, and P. Conflant, Synthesis and Characterisation of a New Hydrated Bismuth (III) Oxalate : Bi2(C2O4)3,6H2O, Journal de Physique IV, vol.118, pp.43-50, 2004.

M. Popa, A. ?o?ovãnã, L. Popescu, N. Drãgan, and M. Zaharescu, Cu Oxalate Powders Used in BSCCO Preparation, Journal of the European Ceramic Society, vol.18, issue.97, pp.1265-1271, 1998.

M. Rivenet, P. Roussel, and F. Abraham, One-Dimensional Inorganic Arrangement in the Bismuth Oxalate Hydroxide Bi(C2O4)OH, Journal of Solid State Chemistry, vol.181, issue.10, pp.2586-2590, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01780877

L. Tortet, O. Monnereau, P. Conflant, and G. Vacquier, Synthesis and Characterization of New Hydrated Bismuth (III) Oxalates. Annales de chimie Science des Matériaux, vol.32, pp.69-80, 2007.

G. Gattow and K. Sarter, Bismut(III)-Formiate. Zeitschrift für anorganische und allgemeine Chemie, vol.463, pp.163-166, 1980.

G. Polla, R. F. Baggio, E. Manghi, and P. K. De-perazzo, Gel Growth and Characterization of Bismuth Oxalate Single Crystals, Journal of Crystal Growth, vol.67, issue.1, pp.68-74, 1984.

B. Aurivillius and U. Gloor, X-Ray Studies of Bismuth Oxide Acetate, CH3COO.OBi and Related Compounds, Acta Chemica Scandinavica, vol.9, pp.1213-1218, 1955.

D. Xie, Q. Su, J. Zhang, G. Du, and B. Xu, Graphite Oxide-Assisted Sonochemical Preparation of ?-Bi2O3 Nanosheets and Their High-Efficiency Visible Light Photocatalytic Activity, Journal of Materials Science, vol.49, issue.1, pp.218-224, 2014.

G. Vanhoyland, A. Le-bail, J. Mullens, and L. C. Van-poucke, Characterization and Structure Determination of Ammonium Bismuth Oxalate Hydrate, Bi(NH4)(C2O4)2·xH2O. Inorganic Chemistry, vol.43, pp.785-789, 2004.

W. H. Bragg and W. L. Bragg, The Reflection of X-Rays by Crystals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, issue.605, pp.428-438, 1913.

B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 2001.

P. Scherrer, Bestimmung Der Größe Und Der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, pp.98-100, 1918.

G. M. Sheldrick, Phase Annealing in SHELX-90: Direct Methods for Larger Structures, Acta Crystallographica Section A Foundations of Crystallography, vol.46, issue.6, pp.467-473, 1990.

G. M. Sheldrick, SHELXT -Integrated Space-Group and Crystal-Structure Determination, Acta Crystallographica Section A Foundations and Advances, vol.71, issue.1, pp.3-8, 2015.

R. Alcántara, F. F. Madrigal, P. Lavela, C. Pérez-vicente, and J. Tirado, Tin Oxalate as a Precursor of Tin Dioxide and Electrode Materials for Lithium-Ion Batteries, Journal of Solid State Electrochemistry, vol.6, issue.1, pp.55-62, 2001.

C. C. Dong, A. Schwartz, and D. V. Roth, Effects of Atmosphere Composition on Soldering Performance of Lead-Free Alternatives, pp.211-221, 1997.

B. Kim, J. Lee, H. Yoon, and S. Kim, Reduction of SnO2 with Hydrogen, Materials Transactions, vol.52, issue.9, pp.1814-1817, 2011.

D. Swenson, The Effects of Suppressed Beta Tin Nucleation on the Microstructural Evolution of Lead-Free Solder Joints, Journal of Materials Science: Materials in Electronics, vol.18, issue.1-3, pp.39-54, 2006.

G. M. Pound and V. K. Mer, Kinetics of Crystalline Nucleus Formation in Supercooled Liquid Tin, Journal of the American Chemical Society, vol.1952, issue.9, pp.2323-2332

J. H. Perepezko, Nucleation in Undercooled Liquids, Materials Science and Engineering, vol.65, issue.1, pp.125-135, 1984.

C. Nayral, E. Viala, P. Fau, F. Senocq, J. Jumas et al., Synthesis of Tin and Tin Oxide Nanoparticles of Low Size Dispersity for Application in Gas Sensing, Chemistry, vol.6, issue.22, pp.4082-4090, 2000.

E. Sutter, F. Ivars-barcelo, and P. Sutter, Size-Dependent Room Temperature Oxidation of Tin Particles. Particle & Particle Systems Characterization, vol.31, pp.879-885, 2014.

J. G. Partridge, M. R. Field, J. L. Peng, A. Z. Sadek, K. Kalantar-zadeh et al., Nanostructured SnO 2 Films Prepared from Evaporated Sn and Their Application as Gas Sensors, Nanotechnology, vol.19, issue.12, p.125504, 2008.

K. Momma and F. Izumi, VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data, Journal of Applied Crystallography, vol.44, issue.6, pp.1272-1276, 2011.

J. D. Donaldson, J. F. Knifton, and S. D. Ross, The Fundamental Vibrational Spectra of the Formates of the Main Group Elements, Spectrochimica Acta, vol.20, issue.5, pp.847-851, 1964.

F. Gauzzi, B. Verdini, A. Maddalena, and G. Principi, X-Ray Diffraction and Mössbauer Analyses of SnO Disproportionation Products, Inorganica Chimica Acta, vol.104, issue.1, pp.1-7, 1985.

M. Moreno, Kinetic Study of the Disproportionation of Tin Monoxide, Solid State Ionics, vol.144, issue.1-2, pp.81-86, 2001.

C. Machado-bailly, H. Delalu, J. M. Létoffé, and R. Metz, Études Cinétiques de La Dismutation Du Monoxyde d'étain SnO, Journal de Physique IV, vol.113, pp.135-138, 2004.

A. V. Narlikar, The BSCCO System, vol.35, 2001.

I. Guy, Elaboration et Caractérisation de Poudres et de Varistances à Base d'oxyde de Zinc Dopé, 1995.

H. D. Flack, On Enantiomorph-Polarity Estimation, Acta Crystallographica Section A Foundations of Crystallography, vol.39, issue.6, pp.876-881, 1983.

J. W. Medernach and R. L. Snyder, Powder Diffraction Patterns and Structures of the Bismuth Oxides, Journal of the American Ceramic Society, vol.61, pp.494-497, 1978.

H. A. Harwig and A. G. Gerards, The Polymorphism of Bismuth Sesquioxide, Thermochimica Acta, vol.28, issue.1, pp.121-131, 1979.

C. Frondel, Mineralogy of the Oxides and Carbonates of Bismuth, American Mineralogist, vol.28, p.521, 1943.

E. A. Olson, M. Y. Efremov, M. Zhang, Z. Zhang, and L. H. Allen, Size-Dependent Melting of Bi Nanoparticles, Journal of Applied Physics, vol.97, issue.3, p.34304, 2005.

K. Chattopadhyay and R. Goswami, Melting and Superheating of Metals and Alloys. Progress in Materials Science, vol.42, pp.287-300, 1997.

R. Goswami and K. Chattopadhyay, Melting of Bi Nanoparticles Embedded in a Zn Matrix, Acta Materialia, vol.52, issue.19, pp.5503-5510, 2004.

S. J. Limmer, W. G. Yelton, K. J. Erickson, D. L. Medlin, and M. P. Siegal, Recrystallized Arrays of Bismuth Nanowires with Trigonal Orientation, Nano Letters, vol.14, issue.4, pp.1927-1931, 2014.

M. A. Meitl, T. M. Dellinger, and P. V. Braun, Bismuth-Ceramic Nanocomposites with Unusual Thermal Stability via High-Energy Ball Milling, Advanced Functional Materials, vol.13, issue.10, pp.795-799, 2003.

C. D. Zou, Y. L. Gao, B. Yang, and Q. J. Zhai, Melting and Undercooling of Bismuth Nanocrystals by Solvothermal Synthesis, Physica B: Condensed Matter, vol.404, issue.21, pp.4045-4050, 2009.

S. J. Peppiatt, The Melting of Small Particles, II. Bismuth. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, pp.401-412, 1642.

A. Pavlovska, D. Dobrev, and E. Bauer, Surface Melting versus Surface Non-Melting: An Equilibrium Shape Study, Surface Science, vol.286, issue.1-2, pp.176-181, 1993.

R. Goswami and K. Chattopadhyay, Depression of Melting Point of Multidomained Bismuth in Aluminum Based Metallic Glass Nanocomposites, Applied Physics Letters, vol.69, issue.7, pp.910-912, 1996.

M. A. Meitl, T. M. Dellinger, and P. V. Braun, Bismuth-Ceramic Nanocomposites with Unusual Thermal Stability via High-Energy Ball Milling, Advanced Functional Materials, vol.13, issue.10, pp.795-799, 2003.

M. Liu and R. Y. Wang, Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals, Scientific Reports, vol.5, issue.1, 2015.

F. G. Shi, Size Dependent Thermal Vibrations and Melting in Nanocrystals, Journal of Materials Research, vol.9, issue.05, pp.1307-1314, 1994.

F. Weis, R. Schneider, M. Seipenbusch, and G. Kasper, Synthesis of Bi2O3/SiO2 Coreshell Nanoparticles by an Atmospheric CVS/CVD Process and Their Modification by Hydrogen or Electron-Beam Induced Reduction, Surface and Coatings Technology, vol.230, pp.93-100, 2013.

L. Erdey, R. Belcher, and L. Gordon, Gravimetric Analysis Part II, 1965.

S. Li, K. Xu, S. Hu, W. Jiang, J. Zhang et al., Synthesis of Flower-like Ag2O/BiOCOOH p-n Heterojunction with Enhanced Visible Light Photocatalytic Activity, Applied Surface Science, vol.397, pp.95-103, 2017.

M. W. Nathans and M. Leider, Studies On Bismuth Alloys. I. Liquidus Curves Of The Bismuth-Copper, Bismuth-Silver, and Bismuth-Gold Systems, The Journal of Physical Chemistry, vol.66, issue.10, pp.2012-2015, 1962.

R. P. Elliott and F. A. Shunk, The Au?Bi (Gold-Bismuth) System. Journal of Phase Equilibria, vol.1982, issue.4, pp.479-481

H. Okamoto and T. B. Massalski, The Au?Bi (Gold-Bismuth) System. Bulletin of Alloy Phase Diagrams, vol.4, issue.4, pp.401-407, 1983.

, Phase Diagrams and Computational Thermodynamics Metallurgy Division, The National Institute Of Standards And Technology (NIST)

S. W. Yoon, M. D. Glover, H. A. Mantooth, and K. Shiozaki, Reliable and Repeatable Bonding Technology for High Temperature Automotive Power Modules for Electrified Vehicles, Journal of Micromechanics and Microengineering, vol.23, issue.1, p.15017, 2013.

Y. Liu, D. A. Geiger, and D. Shangguan, Component Candidacy of Second Side Reflow with Lead-Free Solder, Materials Transactions, vol.47, issue.6, pp.1577-1583, 2006.

+. , Pondération w = w? × [1 -(?Fobs / 6 × ?Fest)²]² w' = [P0T0?(x) + P1T1?(x)

, où Pi sont les coefficients d'un polynôme de Chebychev en ti(x), x = Fcalc/Fcalcmax. polynôme de Chebychev en ti(x), x = Fcalc/Fcalcmax

, Longueurs de liaisons (Å) ; en italique, les liaisons (ou distances) avec des atomes d'oxygène de molécules d'eau polynôme de Chebychev en ti(x), x = Fcalc/Fcalcmax

, Longueurs de liaisons (Å) ; en italique, les liaisons de type 3 qui relient les feuillets

. Bi, , p.3

. Bi, , p.3