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Adapté de Olins et Olins, 2003.  
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Figure 2:

 Adapté de Olins et Olins, 2003.  
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Figure 3:

Adapté de Annunziato, 2008 (Nature Education). 



2.3. Les composants du nucléosome 

 

figure 4A

fold domain

figure 4B



 
 
 

 
 

 
 
 
 

 
 

 
 
 

 

 
 

 
 
 
 

Figure 4:
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Adapté de Dutnall et Ramakrishnan, 1997 et Cutter et Hayes, 2015. 
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Adapté de Happel et Doenecke, 2009. 
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Adapté de Kouzarides et al., 2007 et Javaid et Choi, 2017

2.4.2.1. Introduction au « code histone » 



writers

readers

erasers

2.4.2.2. L’acétylation dynamique des lysines 

3

ε
figure 7A

Histone AcetylTransferase
Histone DéACétylases

figure 7A

figure 7B

P300/CBP-Associated Factor SMARCA - SWI/SNF-related 
Matrix-associated Actin-dependent Regulator of Chromatin A

α Transcriptional Intermediary Factor 1α



figure 7A

 

Figure 7:
En A

En B



2.4.2.3. La méthylation dynamique des queues d’histones 

S-AdénosylMéthionine, 

figures 8A et 9A

 

Histone K (Lysine) MethylTransferase
Histone K 

(Lysine) DeMethylase)

figure 8A

Su(var)3-9, Enhancer of Zeste, Trithorax

figure 8B



readers

Plant HomeoDomain
Bromodomain and PHD domain Transcription Factor

Nucleosome Remodelling 
Factor

Lysine-Specific Demethylase-1 lysine (K)-specific 
DeMethylase 1A

figure 
8A

figure 8A
Jumonji Histone DeMethylases



Figure 8:
En A

En B



Mixed-Lineage 
Leukemia MLL1

 

2.4.2.3.2.1. Introduction 

MonoMethylArginine G G

Asymmetric DiMethylArginine G G

Symmetric DiMethylArginine
figure 9A

2.4.2.3.2.2. Les histones arginine méthyltransférases (PRMTs) 

Protein R(Arginine) MethylTransferases

figure 9A

S-Adénosyl-l-Homocystéine 
figure 9A

S. cerevisiae Arabidopsis
Caenorhabditis elegans 



as as
Coactivator-

Associated R(arginine) Methyltransferase 1

in vivo In vitro

s s

FBXO11

in vitro



Figure 9: 
En A

En B

 



2.4.2.3.2.3. Les protéines adaptatrices 

readers figure 9B

β

CHRomatin Organization MOdifier Malignant Brain Tumor

reader

Plant Homeodomain Finger protein 1
figure 9B

2.4.2.3.2.4. Les rôles sur la chromatine 

readers



Nucleosome Remodelling 
and Deacetylase

in vitro

Meyer et al.
Androgen Receptor

2.4.2.3.2.5. La méthylation d’arginines, un phénomène réversible ? 

JuMonJi Domain-containing protein 6

in vitro in vivo



figure 9B

figure 9B
Peptidyl-Arginine 

Deiminases

2.4.2.3.2.6. Ouverture : implication dans la tumorigénèse 

Nanog
Sox2



Non-Small-Cell Lung Carcinoma
Epithelial-to-Mesenchymal Transition

Zeb1

Eram et al.

in cellulo in vivo

2.4.2.4. La phosphorylation dynamique des histones  

figure 10A



Mitogen-Activated Protein Kinases

Extracellular signal-Regulated Kinases 1 & 2
c-Jun N-terminal Kinase Extracellular signal-Regulated Kinases 5

figure 11
figure 11

(MAPK-Activated Protein 
Kinases p90 
Ribosomal S6 Kinases Mitogen- and Stress-activated Kinases

figure 11

Figure 10: 

En A
En B

 



N (amino)-Terminal Kinase 
Domain Carboxyl-Terminal Kinase Domain

figure 12

Cyclic AMP Response Element-Binding protein Estrogen 
Receptor α RSL-Like Protein Kinase

figure 12

Figure 11: 
Adapté de Cargnello et Roux, 2011. 

Figure 12:  

Adapté de Cargnello et Roux (Revue), 2011. 



figure 10B readers

BRCA1 C -Terminal figure 10B
Mediator of DNA Damage Checkpoint protein 1

c-Fos et c-Jun

phospho-switch

figure 10
Protein Phosphatase



Chowdhury et al.

Epidermal Growth Factor



2.4.2.5. Autres modifications des queues d’histones 

 

figure 6B

Really Interesting New Gene 1B

BReast CAncer type 1 susceptibility gene

DeUBiquitinating enzymes
Ubiquitin Specific Peptidase 21 BRCA1 Associated-Protein 1



BRCA1

 

Small Ubiquitin-like 
MOdifier

in vivo

 

Tan et al.



 

3.1. Le mécanisme de transcription de gènes eucaryotes 

A R N
A D N

General Transcription Factors

 

PreInitiation Complex
Initiator Sequence

core element

Upstream Activation Sequences Upstream Repression Sequences
figure 13



TATA-Binding Protein

 

RNA Polymerase B 1
Carboxy-

Terminal repeat Domain

Figure 13: 
Adapté de Wray et al, 2003 



 

figure 14

Mediator

Mediator
Suppressor of RNA polymerase B

figure 14
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Adapté de Archer et al., 1997.
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Adapté de Mangelsdorf et al., 1995. 
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Adapté de Robinson-Rechavi et al., 2003. 
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Figure 20:

Adapté de Khorasanizadeh and Rastinejad, 2001. 
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Figure 21:

 Adapté de Nagy and Schwabe, 2004 et Huang et al., 2010. 
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Figure 22:
Adapté de Nagy and Schwabe, 2004 et Huang et al., 2010 
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 Adapté de Savkur et Burris, 2004. 



 

3.2.3.1. Son rôle dans la localisation du récepteur 

hinge figure 18

Nuclear 
Localization Sequence

3.2.3.2. Son rôle dans l’activité nucléaire du récepteur 

hinge



hinge

 

N-Terminal Domain

α

figure 
18



 

figure 18
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Figure 24:

Arbre issu et adapté de Nuclear Receptors Nomenclature Committee, 1999. 
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Figure 25:
Adapté de Eick et Thornton, 2011. 
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Adapté de Goulet al., 2007. 
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 Adapté de Wu et al., 2010. 
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Abstract

The progesterone receptor (PR) is an inducible transcription factor that plays critical roles in

female reproductive processes and in several aspects of breast cancer tumorigenesis and

progression, including cell migration and invasiveness. Our report describes the first evidence that

the type I protein arginine methyltransferase 1 (PRMT1) is a new co-factor controlling

progesterone pathway through the direct methylation of PR protein. Mechanistic assays indicate

that PRMT1 participates with PR in the formation of transcriptional complexes, both in the absence

of and after hormonal activation. Depleting PRMT1 causes increased PR protein levels, which

lead to the deregulation of a subset of PR-target genes and decreased cellular growth and migration

rates. Noticeably, PR methylation at arginine 637 is induced by hormonal treatment and affects

breast cell growth control, by modifying the stability, the balance between phosphorylation and

degradation and, in fine, the transcriptional activity of PR. Thus, PR methylation acts as a

molecular switch to control PR transcriptional activity, which can have important implications in

breast cancer tumorigenesis.
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INTRODUCTION

The progesterone receptor (PR) is a member of the nuclear hormone receptor family of ligand-

dependent transcription factors [1]. Acting through its cognate steroid hormone progesterone, PR

regulates the expression of gene networks to control development, differentiation and proliferation

of female reproductive tissues during the reproductive cycle and pregnancy [2]. Furthermore,

numerous studies have established that PR is an important regulator of several aspects of breast

cancer tumorigenesis and progression, including cell migration and invasiveness [3,4]. Two major

isoforms of PR exist across species, the longer PR‐B and the shorter PR‐A, which differ in 

promoter usage [5]. They are differentially expressed and exhibit distinct functions in vivo [6]. PR-

A is more responsible for progesterone actions in uterus and ovary, while PR-B is required for

mammary gland development [6], mediating the proliferative actions of progestins [7,8].

The signaling of PR regulates transcription of target genes through a variety of mechanisms. Upon

exposure to progesterone, PR behaves either as a signaling transducer activating multiple

cytoplasmic kinase pathways [9] or as a hormone-activated transcription factor, that binds to

specific hormone-responsive elements within target gene enhancer or promoter regions [10]. PR

activity is also regulated by extensive post-translational modifications that include

phosphorylation, acetylation, ubiquitination, SUMOylation and methylation (reviewed in [4,11]).

These modifications modulate each step of the receptor activity, by modifying hormone sensitivity,

subcellular receptor localization, protein stability or interactions with cofactors. Crosstalk among

signaling pathways and post-translational events maintain tight control the diversity and context-

dependent transcription of PR. For example, progesterone stimulation induces MAPK-dependent

phosphorylation of its receptor on Ser-294, a key modification essential for the enhancement of

PR transcriptional activity. This event is also a signal for the ligand-dependent down-regulation,

that leads to the degradation of the receptor, a key event in nuclear steroid receptor functions

[12,13].
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The molecular mechanisms underlying PR-dependent transcription have been extensively studied,

both in the absence of, and upon exposure to progesterone [14,15]. Unliganded PR has been

reported to target and stabilize a repressive complex that binds to a subset of hormone‐inducible 

genes maintained in a silent state prior to hormone induction [16]. Hormonal stimulation leads to

the activation of downstream kinase cascades, including ERK1/2 and finally, to PR

phosphorylation [9]. The activated form of PR, associated with kinases, induces the recruitment

of histone modifying enzymes. This is followed by a local chromatin remodeling and the assembly

of the transcription initiation complex on upregulated genes [14].

Protein arginine methyltransferases (PRMTs) are one such class of histone-modifying enzymes

that regulate transcription. Two primary transcriptional coactivators in this family are PRMT1 and

CARM1, recruited as coregulators on the promoters of genes targeted by nuclear receptors [17,18].

PRMT1 is the predominant asymmetric arginine methyltransferase in humans and functions as a

general transcriptional co-activator, by depositing dimethylarginines on histone 4 (H4R3me2as).

However, it also methylates a large variety of non-histone substrates, thus regulating many cellular

processes, including RNA processing, transcriptional regulation, signal transduction, DNA repair,

and protein-protein interactions, required for tissue homeostasis [19,20]. Aberrant expression of

PRMT1 has been reported in several malignancies, including breast cancer, although how PRMT1

contributes to oncogenesis remains largely elusive [21,22].

We herein show that PRMT1 is a new actor of progesterone signaling. Indeed, PRMT1 closely

interacts with PR and regulates its function by acting at different crucial steps, through the direct

methylation of PR on Arg-637. PRMT1 depletion resulted in increased levels of PR protein, which

coincides with the inhibition of a subset of PR-regulated genes and retarded cell growth and

migration. In turn, arginine methylation of the receptor activates a transcriptional program that is

essential for the proliferation of PR-positive breast cancer cells.
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RESULTS

PRMT1 associates with progesterone receptor in breast cancer cells

To test whether PR might be regulated by arginine methylation, we initially examined a physical

association between PR and PRMT1 in vitro and in cells. Using T47D breast cancer cell extracts,

we readily immunoprecipitated PR, the A and B isoforms of the human progesterone receptor,

using an anti-PRMT1 antibody (Fig. 1A). Each isoform exerting tissue specific effects, PR‐B has

been described to act specifically in breast [6] mediating the proliferative actions of progestins

[7,8], we focused our studies essentially on PR-B (named PR).

We also observed the binding of PR and PRMT1 using an in vitro GST-binding assay (Fig. EV1A).

As PR is a ligand‐regulated nuclear transcription factor, we wondered whether the PR-PRMT1

interaction was hormone-dependent and in which cellular compartment this interaction occurred.

For that, we used the in situ Proximity Ligation Assay (PLA), enabling the detection, the

localization and the quantification of protein interactions with high sensitivity [27]. T47D cells

were starved in medium deprived of steroids for 48 h (T0), prior the treatment with the PR agonist

R5020 for the times, indicated in Fig 1B. The presence of red dots indicated that interactions

between endogenous PR and PRMT1, mainly in the nucleus, varied during the course of progestin

induction (Fig. 1B). Quantification of the PLA dots per 100 cells indicated a high number of

interactions between the two endogenous proteins in the absence of hormonal induction (Fig. 1B,

lower left panel). Notably, 15 min of R5020 treatment engendered a significant reduction in the

signal abundancy, reflecting the dissociation of the PR-PRMT1 complex; then a second interaction

peak was detected after 1h of treatment (Fig. 1B, lower left panel). A strong decrease in dot

numbers was observed when the expression of PRMT1 or PR was knocked-down using specific

siRNAs (Fig. EV1D), compared to mock T47D cells transfected with scramble siRNA (siCT) (Fig.

EV1B-C), validating the specificity of the PR-PRMT1 interaction, which is nuclear, dynamic and

progesterone-regulated.
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PRMT1 influences the outcome of progesterone signaling

To explore the role of PRMT1 in progesterone signaling, we used a loss-of-function approach in

T47D cells. Starved T47D cells were treated with 10 nM of R5020 to activate PR signaling. As

largely described [28], we confirmed that this treatment induced the rapid and transient activation

of ERK 1 and 2 kinase activities, by phosphorylation of Thr-202 (T202) and Tyr-204 (Y204)

respectively. These kinase activations correlated with the phosphorylation of PR on Ser-294

(S294) (Fig. 2A, left panel), described as the transcriptionally “primed” form of the receptor

[12,29]. Finally, in breast cancer cells, once activated, the majority of PRs is degraded after 6h of

progestin treatment (Fig. 2A, left panel). Of note, PRMT1-knockdown cells displayed an impaired

ERK activation following progestin treatment (Fig. 2A, right panel, and 2B) and an increase of the

PR protein level at basal conditions, and after hormonal treatment, thus interfering with the ligand-

dependent down-regulation characteristic of the nuclear steroid receptors (Fig. 2A, right panel, and

2B). To understand whether the PR stabilization by PRMT1 knockdown was related to the ERK

inhibition, we quantified the phosphorylation of PR on S294, direct target of MAPK normalized

to the signal of total PR, showing the inhibition of the agonist-induced S294 phosphorylation (Fig.

2B, right panel). Supporting these data, over-expression of PRMT1 resulted in an increased

activation of ERK and a decreased amount of PR following progestin treatment (Fig. EV2A). Next,

we investigated whether these effects required the methyltransferase activity of PRMT1. The

phosphorylation of ERK and PR after progestin treatment were analyzed in T47D cells treated

with MS023, a selective inhibitor of type I PRMT-dependent methylation [30]. The effect and the

optimal concentration of this inhibitor in our hands were validated on H4R3 dimethylation, the

main target of PRMT1, by immunofluorescence and Western blot assays, and the concentration of

60 nM was selected for our experiments (Fig. EV2B). Figure 2B shows that ERK activation and

PR phosphorylation on S294 were strongly decreased by the MS023 treatment, whereas increased

level of PR protein was observed, similarly to PRMT1 knockdown (Fig. 2A). Interestingly, the
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increase of the receptor was not associated with an increased synthesis of its mRNA (Fig. 2C).

Treatment of the protein synthesis inhibitor, cycloheximide, showed that PRMT1 depletion

increased the half-life of endogenous PR after 6h of treatment (Fig. 2D). We also treated the cells

with the proteasome inhibitor MG132, finding that the treatment significantly increased the levels

of PR after 6h of progestin treatment, both in control and in PRMT1 depleted cells (Fig. 2E). These

data indicate that PRMT1 participates to the regulation of the progestin-dependent degradation of

PR controlled by the proteasome system.

Collectively, these results suggest that PRMT1 and its enzymatic activity are required for the

turnover of PR, in response to progesterone treatment. The effects of PRMT1 knockdown are

reminiscent of the phenomena reporting that, inhibitors of MAPK or of the 26S proteasome,

blocked PR turnover, leading to a decrease of its transcriptional activity [12].

PRMT1 physically associates with the repressive HP1-LSD1-complex prior to hormone

treatment.

The above results indicate that depletion of PRMT1 and inhibition of its catalytic activity are

sufficient to perturb some of the major biological functions of PR, namely MAPK and PR

activation by progestins, ultimately resulting in nucleosome remodelling and target gene induction

[10]. Moreover, PRMT1 has previously been reported to be a coactivator of several nuclear

receptors [17,31]. We confirmed that PRMT1 enhances reporter gene activity of PR in a luciferase-

based transcription assay, and we showed that the enzymatic function is required for this effect

(Fig. EV3A). Given that PRMT1 associates with progesterone receptor in the nucleus of breast

cancer cells, mainly in the absence of hormonal induction, and after 1h of progestin treatment (Fig.

1B), we wondered whether PRMT1 could directly contribute to the PR-mediated transcriptional

regulation at these crucial steps.
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It has previously been shown that, prior to hormone treatment, unliganded PR (uPR) binds

genomic sites and targets the LSD1/HP1γ repressive complex to a subclass of hormone‐inducible

genes, maintaining gene silencing prior to hormone activation [16]. Thus, we first assessed

whether PR-PRMT1 interaction exists within this repressive complex. Immunoprecipitation (IP)

with an antibody against HP1γ showed its association with PR and PRMT1 in starved T47D cell

extracts (Fig. 3A). Reciprocally, IP with an antibody against PRMT1 showed an interaction with

both LSD1 and HP1γ (Fig. 3B). Finally, using an anti-PR antibody, we once again observed

interactions between PR, PRMT1 and HP1γ (Fig. 3C). Mock immunoprecipitation experiments

using anti-IgG confirmed the specificity of these interactions (Fig. 3A-C). To further visualize

these interactions in cellulo, PLA assays were carried out on untreated T47D cells. These

experiments clearly indicated that PRMT1 specifically interacts with both HP1γ and LSD1, in the

nucleus of T47D cells (Fig. 3D and 3E, respectively, and EV3B). Interestingly, PRMT1 depletion

by siRNA impacted PR-HP1γ interaction (Fig. 3G and EV3B). Since this PR-HP1γ association is

essential for the anchorage of the complex on promoters of repressed target genes, a role for

PRMT1 in the interaction between the complex and the chromatin is plausible. Consistent with

this, PRMT1 also interacted with the H3K9me3 histone, which is a mark of inactive chromatin

[32] and is essential to anchor the complex on the repressed promoters (Fig. 3F and EV3B). To

evaluate the role of PRMT1 in the basal repression of progestin responsive genes, we performed

chromatin immunoprecipitation experiments followed by qPCR analysis (ChIP-qPCR) on two

endogenous promoters described to be repressed by uPR, namely STAT5A and EGFR [16]. We

observed that, in absence of hormone, not only uPR and LSD1, described by Vincent et al. [16],

but also PRMT1, were found within these endogenous progesterone-responsive promoters (Fig.

3H and Fig. EV3C-D). Overall, these results indicate that PRMT1 interacts with PR within the

LSD1/HP1γ repressive complex in the absence of hormonal treatment.
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PRMT1 is recruited at PR target genes in response to R5020 in breast cancer cells

In the context of gene activation, previous studies indicated that this repressive complex is

displaced by hormone treatment and the ligand-bound activated PR is recruited to target promoters

[16]. We performed ChIP experiments in cells incubated for 1h with R5020 and we showed that

PRMT1 and PR, as well as the activation mark H3K4me3, were present on the same gene

promoters analyzed above (Fig. 4A-B and Fig. EV3E). On the other hand, binding of PRMT1 was

also detected on the FKBP5 promoter, a PR target gene described to be independent from

LSD1/HP1γ repressive complex, suggesting a more wide-ranging function of PRMT1 on PR

transcription (Fig. 4A). Intriguingly, under conditions of PRMT1 depletion, induced expression of

these PR-target genes was differentially affected: EGFR gene expression was diminished, STAT5

mRNA level was increased, whereas FKBP5 expression was not significantly changed (Fig. 4C).

As such, the impact of PRMT1 on the PR-dependent transcription appears to be gene-specific.

Identification of the progestin-activated genes whose expression depends on PRMT1 in

breast cancer cells

To address the relevance and the functional significance of the above results, we decided to

identify the progestin-activated genes whose expression depends on PRMT1. RNA-seq analyses

in PRMT1-depleted T47D cells by siRNA (or transfected with siCT), with or without R5020

treatment (10 nM for 6h) was performed. The efficacy of hormonal treatment and PRMT1

knockdown were confirmed by Western blot and qRT-PCR (Fig. EV4A-C). RNA-sequencing

results indicated that, among the 795 genes activated after 6h of R5020 treatment (Fig. 5A right

panel – pink color), 235 genes were impacted by siPRMT1 (about 30% of the total R5020-

regulated genes) (Fig. 5A – red color). Among those, 64% of genes were down regulated when

PRMT1 was knocked down, indicating that their R5020-induced activation required PRMT1

(PRMT1-dependent genes), 36% were further up-regulated (PRMT1-repressed genes) (Fig. 5B).

qPCR analysis of genes randomly selected from the list of PRMT1-dependent genes confirmed
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that PRMT1 is required for their R5020-induced transcription (Fig. EV4D). The list of the 235

differentially regulated genes obtained by RNA-seq is given in the Supplemental material section.

PRMT1 regulates the growth and the migration of PR-positive breast cancer cells

A pathway analysis of the 235 genes regulated by R5020 and PRMT1 revealed an enrichment of

genes involved in cell movement, morphology and proliferation, indicating a role for PRMT1 in

progesterone-stimulated proliferation and migration (Fig. EV4E). The proliferation of T47D cells,

stimulated with estrogen (E2) or R5020, was analyzed using the Incucyte technology. Figure EV4F

shows that E2 and, to a lesser extent R5020, activated T47D cell proliferation. Nevertheless,

R5020 antagonized the proliferative effect of E2, as described [33]. Of interest, depletion of

PRMT1 or treatment of cells with MS023, reduced the proliferation of T47D cells when treated

with progestin (Fig. 5C and EV4G). Similarly, scratch wound healing experiment assessed that

depletion of PRMT1 induced a significant decrease in cellular migration in response to

progesterone over the period of 24h (Fig. 5D and S4H). Notably, among the 235 genes activated

by R5020 and PRMT1, we analyzed EGFR, EGR1, SGK1 and CD44, which are functionally

connected and described for their roles in the regulation of mammary epithelium differentiation

under normal physiology, and in cell migration and invasion during breast cancer progression

[34,35]. qRT-PCR and Western blot analysis confirmed that depletion of PRMT1 significantly

reduced the R5020-induced expression of these key targets (Fig. 5E-F and S4A-B). The expression

of NDRG1, a target of SGK1 [36], was also reduced when PRMT1 was depleted (Fig. 5E). To

gain further insight, we also analyzed PDK1 and p38 MAPK activations, two enzymes involved

in the phosphorylation and activation of SGK1, leading to the activation of downstream targets,

such as NDRG1 [37,38] (Fig. 5G and S4I). Again, PRMT1 knockdown inhibited the

phosphorylation of these two kinases. Collectively, these results suggest that PRMT1, through

transcriptional regulation of some downstream PR target genes, including for instance EGFR and

EGR1, can promote cell proliferation and migration in hormonally responsive breast cancer.
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PRMT1 methylates PR-B at a conserved site in vitro and in cells

In the light of the above results, we asked whether the ability of PRMT1 to regulate PR pathway

in breast cancer cells depends on its function as transcriptional coregulator, or on the methylation

of relevant actors of PR signaling, or both. Because PR is subject to extensive post-translational

modifications (PTMs) [11] and because we have shown that PRMT1 regulates PR signaling in a

methyl transferase-dependent way (Fig. 2), we firstly analyzed whether PRMT1 directly

methylated the receptor, using two complementary approaches. Firstly, extracts from T47D cells

starved or treated by R5020 for the times indicated in figure 6A, were immunoprecipitated using

PR antibody and then probed with a commercial antibody against asymmetric dimethyl-arginine

(adme-R, note pan-methyl-R), the type of methylation marks that PRMT1 deposits (Fig. 6A).

Notably, the pan-methyl-R antibody detected a discrete band corresponding to the PR-B isoform.

The putative existence of asymmetrically dimethylated form of PR was also analyzed on

exogenous PR expressed in T47D cells by transfection with a plasmid expressing a V5-tagged PR-

B, and stimulated or not with R5020 for 1h. Extracts from transfected cells were

immunoprecipitated using the pan-methyl-R antibody and then probed with an anti-PR. We

confirmed that the receptor is methylated in cells, mostly following hormonal treatment (Fig. 6B).

Collectively, these data identify PR as a potential substrate of PRMT1 in T47D cells.

In order to identify the PRMT1-dependent methylation site(s) of PR, we performed in vitro

methylation assays using purified GST-tagged PR fragments, incubated with either recombinant

GST-PRMT1 or recombinant CARM1, used as a control (Fig. 6C). In this condition, CARM1

failed to methylate PR-B fragments, although CARM1 auto-methylation could be detected (Fig.

EV5A). Among the various functional domains of PR, PRMT1 specifically methylated only the

fragments 3 and 4, spanning in the DBD and hinge region, suggesting that arginine methylation

by PRMT1 mainly occurs in the 587-687 amino acids region (Fig. 6C and 6D, left panel). Of great

interest, this region encompasses the C-terminal extension (CTE) region, previously described as
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a dynamic region involved in DNA binding, nuclear localization, interaction with co-regulatory

proteins and dimerization of the receptor [39]. This region is also a site for PTMs [40], including

the PRMT1-dependent methylation of ERα [26]. Sequence alignment of steroid receptor CTEs

shows a conserved position for the R637 residue, within a GGR motif similar to the target motif

of PRMT1 methylation (Fig. 6E). To assess whether the GGR motif was a direct target for the

enzyme, we mutated the arginine 637 to alanine residue into the GST-PR3 fragment, leading to a

complete loss of the methylation signal in vitro (Fig. 6F, left panel).

Further analyses were conducted in the context of full-length PR in T47D cells. For in cellulo

studies, the Arg-637 was substituted to lysine, in order to preserve its positive charge. The WT

and mutated versions (R637K) of V5-tagged PR were expressed T47D cells and

immunoprecipitations with the pan-methyl-R antibody were performed in these cell extracts

following R5020 stimulation. Anti-V5 Western blot on the eluates confirmed that methylation of

PR was induced by hormonal stimulation in cells, and that the R637K mutation strongly impaired

PR methylation (Fig. 6G). Similar results were obtained using the R637A mutant (Fig. EV5B). To

explore the role of PR-R637 methylation in PR functions, we generated an antibody recognizing

the asymmetric dimethylation of PR on R637 (named anti-met-R637-PR, see Fig. 7A) and we

tested its functionality and specificity using several approaches in vitro and in cellulo. Dot blot

assays revealed that the anti-met-R637-PR antibody specifically detected the asymmetric

dimethylated R637 peptide, but not the corresponding non-modified one (Fig. 7B). Moreover, the

antibody recognized the wild-type PR3 fragment, but not the R637A mutant, both methylated in

vitro by PRMT1 (Fig. 7C). However, we were unable to detect endogenous methylated R637-PR

form in T47D cells by Western blot analysis, possibly because of the low amount of PR

R637me2(as) or the low affinity of our antibody for the substrate. To bypass this problem, V5-

tagged wild-type or -mutated forms of PR were overexpressed in Cos7 cells, immunoprecipitated

with the anti-met-R637-PR antibody and then probed with the anti-PR antibody. Figure 7D clearly
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shows a decrease in the methylation of extracts from cells transfected with the non-methylable PR

mutant, compared to the wild-type form of PR, confirming R637 as a major site of arginine

methylation on PR. Additionally, we used this antibody to explore the subcellular localization of

methylated PR at the endogenous level. Immunofluorescence experiments confirmed that the

methylation of endogenous PR occurred in the nucleus upon hormonal treatment in T47D cells

(Fig. 7E). Importantly, knockdown of PRMT1 strongly reduced the extent of PR methylation

(Fig.7E). Taken together, these data indicate that PR is specifically methylated by PRMT1 on

arginine 637 after R5020 induction in breast cancer cells.

Inhibiting PR methylation decreases breast cancer cell proliferation and impacts PR

turnover

To investigate the function of PR methylation in breast cancer cells, we used the CRISPR/Cas9

technology to knock out endogenous PR. Genomic DNA sequencing of representative PR KO

clones of T47D cells (T47DKO) revealed non-homologous end joining-induced random insertions

or deletions at the targeted sites. Protein expression of several clones was measured by Western

blot and revealed that the expression of PR is undetectable in KO clones (Fig. EV6A). We chose

the clone #2 (underlined in Fig. EV6A) to stably re-express the wild-type and mutated (R637K)

forms of PR-B in the T47DKO cells, and we named T47DWT and T47DR637K respectively, these

derived cell lines. The cellular localization and expected levels of wild type and R637K proteins

were analyzed by IF using the anti-PR antibody (Fig. 8A). We showed that, in both T47DWT

control the PR-R637K cells, the receptor was located in the nucleus of untreated cells and upon 1h

of R5020 treatment (Fig. 8A). As with PRMT1 inhibition, loss of methylation of PR at R637

resulted in a higher basal protein level, which appeared stable after 6h of R5020 stimulation (Fig.

8A-C). Treatment of the protein synthesis inhibitor cycloheximide showed that, after 6h of R5020

stimulation, more than 90% of PR-R637K was still present, compared to less than 50% in control
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conditions (Fig. 8D). Thus, PRMT1-mediated methylation seems to participate to the regulation

of PR turnover, required for active hormonal-dependent transcription [41].

Finally, we analyzed the impact of R637K mutation on the progesterone signaling. Treatment of

T47DWT and T47DR637K cells with R5020 induced rapid and transient activation of ERK kinases

(Fig. 8C). However, the R637K mutation seems to affect ERK activation, as observed after

PRMT1 depletion, but to a lesser extent (see Fig. 2). Importantly, the expression of some PRMT1-

dependent PR-downstream targets analyzed in figure 5, as EGFR and EGR1, appeared lower in

T47DR637K cells compared to T47DWT cells, after 3h of progestin induction (Fig. 8F). In line with

these results, we tested whether PR methylation-defective cells displayed dysregulated cell

proliferation, as observed after PRMT1 depletion (Fig. 5C). Notably, absence of PR methylation

at R637 markedly decreased oncogenic PR functions, leading to reduced cell growth of T47DR637K

cells compared to T47Dwt cells, when treated with R5020 (Fig. 8E and Fig. EV6B). Interestingly,

the loss of R637 methylation effects observed under progesterone treatment are similar to the

results obtained with PRMT1 knockdown cells, strongly suggesting that the effects of PRMT1 on

the progesterone pathway occur, at least in part, through the methylation of PR.

Considering these findings, we conclude that PRMT1-mediated arginine methylation may add an

additional dimension to the signal transduction cascades that regulate progesterone signaling. On

the basis of our results, we propose a model in Fig. 8G, to illustrate how PRMT1 could regulate

PR signaling at different crucial steps: a) in resting unstimulated cells, by controlling the silencing

of a subset of genes prior to hormone activation and b-c) in hormone-activated cells, by the direct

methylation of PR, leading to increased transcription via the activation of PR degradation.
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Discussion

In this report, we have defined a novel role for PRMT1, regulating progesterone signaling at

distinct crucial steps (Fig. 8G). We show that, in the arrested cells, PRMT1 forms a complex with

the uncharged receptor uPR in the nucleus of the T47D cells (Fig. 1B), within the repressive

complex LSD1/HP1γ, and is also recruited to the promoters of a subset of genes maintained in a

silent state prior to hormone activation [16]. PRMT1 appears to contribute to the anchoring of the

repressive complex, as it strongly associates with the mark of inactive chromatin H3K9me3 (Fig.

3F). Consistently, the depletion of PRMT1 by siRNA affects the interaction of uPR with HP1γ, 

essential in anchoring the complex on target genes. Intriguingly, although we do not detect

methylated forms of PR without hormone, our results show that PRMT1 depletion as well as the

mutation of the Arginine 637 (PRR637K), strongly affect the stability of the receptor in absence of

hormone (see Fig. 2 and Fig. 8). BRCA1 has been described as the possible E3 ubiquitine-ligase

responsible for the degradation of PR in absence of hormone [42]. Considering the key role of

BRCA1 in breast cancer [43], it can be stimulating to speculate about a possible functional link

between BRCA1 and PRMT1 in the regulation of progesterone signaling in breast cancer.

The progestin treatment induces the dissociation of the PR-PRMT1 complex, which is re-

constituted after 1h of treatment in the nucleus of T47D cells, where PRMT1 is recruited on the

promoters of several PR-target genes. These results imply that, in breast cancer, PRMT1 acts as a

coregulator of PR. Furthermore, we also describe the first evidence that, after 1h of progestin

treatment, PRMT1 directly methylates PR, primarily at the conserved arginine residue Arg-637 on

a RGG methylation consensus motif, in vitro and in vivo (Fig. 6, 7 and 8B). This methylated form

of PR is nuclear and precludes the degradation of the receptor, which in turn slow down its

transcriptional properties.
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In response to ligand binding, MAPK activation modulates PR activity by phosphorylating the

receptor on serine residues Ser-294 [12,13]. This modification is crucial for the transcriptional

activity of PR, priming the receptor for robust transcriptional activation, also influencing its

promoter selectivity [44]. Previous studies have demonstrated the critical role of PR

degradation/re-synthesis in the active transcription of the receptor [45]. Indeed, PR degradation

constitutes a stimulatory switch that accelerates the recycling of receptors from pre-initiation

complexes, required for active hormonal-dependent transcription [41]. Our results show that this

mechanism involves the asymmetric dimethylation of PR by PRMT1, which reduces PR stability,

thereby accelerating its transcriptional activity. It is tempting to speculate that the effects of

PRMT1 on PR stability can be mediated by the crosstalk with PR ubiquitination. Indeed, our

laboratory has previously showed that PRMT1 physically interacts with the CCR4-NOT complex

via the CAFv2 (CNOT7 v2) subunit, regulating the methyltransferase activity of PRMT1 [23,46].

Furthermore, CNOT4, a subunit of the CCR4-NOT complex, has been shown to be an E3 ligase

[47] and recent data have shown that a RNA binding protein, RBM15, is methylated by PRMT1,

which triggers its ubiquitination and degradation by the E3 ligase CNOT4 [48]. In future studies,

it will be interesting to investigate whether PRMT1-dependent methylation of PR induces its

degradation thought the recruitment of the E3 ligase CNOT4.

Our study highlights the direct and functional crosstalk between PRMT1, arginine methylation and

progesterone signaling, uncovering the molecular mechanisms by which PRMT1 functions as an

important modulator of the progesterone response pathway. Indeed, its recruitment on the PR-

dependent promoters is important for the transcriptional activity of the receptor, both in the

absence, and after hormonal stimulation. RNA-seq data supported these results, showing that

PRMT1 knockdown in breast cancer cells can affect the expression of thousand progesterone-

targeted genes, positively or negatively, and that PRMT1-regulated genes are involved in relevant

cell functions including, cell movement, morphology and proliferation (Fig 5A-D and Fig. EV4E).



Malbeteau et al

17

Notably, we show that PRMT1 activates the expression of genes functionally implicated in

regulating mammary epithelium differentiation under normal physiological conditions, and cell

migration and invasion during breast cancer progression. Consistently, silencing of PRMT1 in

T47D cells leads to significant cell-cycle arrest and a reduced ability to migrate, supporting the

involvement of PRMT1 in breast tumorigenesis. Therefore, it is possible that high-level expression

of PRMT1 facilitates oncogenesis by providing tumour cells with a survival advantage, in part by

enhancing the progestin-dependent receptor degradation, and thereby maintaining cells in a

proliferative mode. Many studies already revealed an impact of PRMT1 in breast tumorigenesis

[49]. The expression of the enzyme is often upregulated in tumour samples compared to adjacent

normal tissue. Moreover, these studies have highlighted different mechanisms by which PRMT1

regulates the proliferation of tumor cells (regulation of the epithelio-mesenchymal transition EMT,

sensitization of cells to a therapy, etc.) [22]. Our results identify a new regulation way used by

PRMT1: the direct methylation of the progesterone receptor, a key driver of proliferation of breast

cells. Since PRMT1 enhances the transcriptional activity of PR (Fig. EV3A), we can consider that

PRMT1-mediated transactivation is mainly due to direct methylation of PR, leading to increased

transcription via the activation of PR degradation (Fig. 8F). This is supported by the analyze of the

biological consequences of PR methylation at R637 under physiological conditions, using the

T47Dwt and T47DR637K cell lines, engineered to stable express the wild-type and mutant forms of

PR-B in PRKO T47D cells. We established that, the effects of the loss of methylation at R637

observed under progesterone treatment are similar to the results obtained in PRMT1 knocked down

cells: T47DR637K cells display decreased oncogenic PR functions, including a retarded cell growth

and a reduced expression of some PRMT1-dependent PR downstream targets, identified by RNA-

seq (Fig. 8E-F). Moreover, the methylation of arginine 637 affects PR stability and/or turnover

(Fig. 8B-D), suggesting that the effects of PRMT1 on progesterone pathway occur, at least in part,

through the methylation of PR on this conserved residue. Notably, the Arg 637 is located within
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the hinge region of the steroid receptor, which contains sites for posttranslational modifications,

such as phosphorylation and acetylation [40]. Precisely, this conserved arginine residue Arg 637

flanks an acetylation consensus site, in which three lysine residues Lys 638-640 -641 are modified

following progesterone stimulation [50]. It is interesting to note that non-acetylatable mutants

(PRK-A) exhibit defective transcriptional activation and are more stable than wild-type receptors,

namely a phenotype similar to non-methylable mutant PRR637K (Fig. 8). It could exist a functional

communication between these two modifications, as we currently observed with the histone tails

on chromatin [51].

In summary, our findings reveal important insights that link arginine methylation to the

maintenance of the balance between phosphorylation and down-regulation of PR. PRMT1 controls

this ligand-dependent turnover of the receptor, a key determinant for PR target gene selection

and/or proper transcriptional regulation. Altered methylation of the receptor results in aberrant

cellular response to hormonal stimuli, that might contribute to pathogenesis.

Materials and Methods

Cell culture and treatments

T47D (ATCC) were cultured in RPMI-1640 medium, supplemented with 10% fetal bovine serum

(FBS), 2% penicillin-streptomycin (Life Technologies) and insulin (10μg/ml). Cos7 and HeLa

cells (ATCC) were maintained in DMEM, supplemented with 10% FBS and 2% penicillin-

streptomycin (Life Technologies). All cell lines were grown in a humidified atmosphere with 5%

CO2 at 37°C, authenticated by Eurofins and tested for Mycoplasma infection by the MycoAlert

Mycoplasma Detection Assay (Lonza, Rockland, ME USA).

Prior to experiments, when it was indicated, cells were grown in phenol red-free medium

supplemented with 10% charcoal-stripped serum (Biowest). 48h later, medium was replaced by
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fresh serum-free medium. After 48h in serum-free conditions, cells were treated with 10 nM of 

R5020 (Perkin Elmer) or an equivalent amount of ethanol vehicle for the indicated time. When

indicated, inhibitors were added to cells: MS023 Type I PRMT inhibitor (Tocris) for 48h, at the

indicated concentration. Cyclohemixide (Sigma, 50μM) or MG132 proteasome inhibitor (Sigma,

10 μM) or DMSO vehicle were added 16h or 8h respectively before R5020 treatment.

Generation of CRISPR cell lines PR-KO

To knock-out PR genes in T47D cells, we used the pLCV2 plasmid (a gift from Feng Zhang,

Addgene plasmid #52961). Oligonucleotides pairs were hybridized and cloned into the

LentiCRISPR V2 vector linearized with BsmB1 to generate T47D clones KO. (PR Guide#1 Fw

CACCGcccagtgaagccgtctccgc, Rev AAACgcggagacggcttcactgggC; PR Guide #2 Fw ;

CACCGtctgcgggtccgcttctgaa; Rev AAACttcagaagcggacccgcagaC) targeting the regions 624-637

and 693-713 of the PR-B coding sequence. To generate knockout clones, T47D cells were

transfected with the corresponding LentiCRISPR V2 plasmids and selected with blasticidin

(5 μg/ml, Invitrogen, Grand Island, NY, USA) for 1 week. Cells were then cloned in 96-well plates

by limiting dilution. Isolated clones were characterized by immunoblotting. For five different

clones, we confirmed the knockout at DNA and protein levels. We performed genotyping PCRs

using a forward primer upstream (5’- GGGGAGTCCAGTCGTCAT -3’) and a reverse primer 

downstream (5’- ACTTTCGTCTTCCAGCAGC 3’) of the sgRNA cleavage site. The amplified

fragments were then sequenced using an oligo targeting a sequence inside the fragment (5’ 

CCAGAAAAGGACAGCGGAC 3’). 

Generation of stable cell lines, T47DWT and T47DR637K

For the production of rescue cell lines, PR CRISPR KO cells were transfected with pPRUpuPR-

WT and -R637K, plasmids using Jetprime (Polyplus transfection). Screening of stable transfected
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cells was performed using puromycin dihydrochloride, 1 μg/ml. Stable cell populations called

T47Dwt and T47DR637K were maintained in medium containing 0.5 μg/ml puromycin.

Plasmids and constructions

The GST-PR vectors (GST-PR-1, -PR-2, -PR-3, -PR-4, -PR-5) were constructed by inserting the

cDNA fragments illustrated in Figure 6C, obtained by PCR amplification, into the pET41a vector

(Novagen). The GST-PR-3 R637A mutant was also produced. The GST-PR fusion proteins were

expressed in BL21 competent cells and purified using glutathione-sepharose 4B resin (GE

Healthcare Life Sciences) as previously described. All of the PR mutants were generated using a

QuikChange XL Site-Directed Mutagenesis kit (Stratagene) according to the manufacturer’s 

instructions and the sequences were verified by DNA sequencing. The mammalian expression

vector pSG5 PRB was a gift from Pr P. Chambon [5]. pSG5V5 PRB was obtained by inserting the

V5-TAG coding sequence in frame with the coding sequence of PRB by PCR. pSG5V5 PRB

plasmid was used to generate PR-R637A. To rescue the phenotype of PR KO clones, a guide-

resistant mutant of the PRB isoform was created (pSG5V5 gr) by substituting four nucleotides in

the PR guide 1 (G633A, G6364, T639C and G641A) and four nucleotides in the PR guide 2

(C715T, T717A, C718T and G720A) targeting regions. This guide-resistant PRB was cloned into

the stable mammalian expression vector pPRUpu. pSG5V5gr PRB and pPRUpuV5gr PRB were

used to obtain the PR R637K.

Sequences of the primers used are listed in the Supplementary Material Section.

GST pull-down

GST and GST-PRMT1 were expressed in Escherichia coli and purified over glutathione-sepharose

beads. Binding assays, using in vitro translated PR-B or ERα labeled with [35S] methionine, were

carried out as previously described [23].
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In vitro methylation assays

The in vitro methylation assays were performed as described previously [23]. Briefly, GST-

PRMT1 or His-tagged CARM1 (Upstate Biotechnology) were incubated with different GST-

tagged PR fragments or GST-tagged hinge ER in the presence of S-adenosyl-L[methyl-

3H]methionine (Amersham Biosciences) GST-PRMT1 or His-tagged CARM1 (Upstate

Biotechnology) for 90 min at 37°C or 1h at 30°C, respectively. Methylation reactions were

quenched by the addition of an equal volume of 2x Laemmli sample buffer, heated at 100°C for 5

min, and separated on SDS-PAGE. Following electrophoresis, gels were soaked in Amplify

fluorographic reagent (Amersham Biosciences) according to the manufacturer’s instructions and 

visualized by fluorography. The cold methylation assays were performed using 0,5 mM of

AdoMet.

siRNA and plasmid transfection

siRNA transfections were performed using Lipofectamine 2000 (Invitrogen, Thermofisher)

according to the manufacturer’s protocol. After 72h, the down-regulation was analyzed by Western

blot or by RT-qPCR. If requested after 48h, the medium was replaced by fresh medium without

serum and cells were treated with R5020 (10 nM) or ethanol for different times. Plasmid

transfections were done using the JetPRIME reagent (Ozyme) according to the manufacturer’s 

protocol. Cells were analyzed after the indicated times (48h or 72h). SiRNAs pool against PR,

PRMT1 and HP1y were purchased from Thermofischer Scientific (catalog #AM16708) and the

siRNA negative control from Eurogentec (catalog # SR-CL000-00).

Luciferase reporter assay

Reporter assay was carried out as described [24].
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Cycloheximide chase assay

3x105 cells were grown in complete RPMI medium for 24h and then in phenol red-free medium

supplemented with 10% charcoal-stripped serum for 48h. 16h before starting the R5020

stimulation, 50μg/mL cycloheximide (Sigma) or vehicle DMSO were added. After each R5020-

time point, cells were lysed with protein lysis buffer with freshly-added protease inhibitor and

analyzed by Western blot.

RNA extraction and real-time RT-qPCR analysis

Total RNA (1 μg) was extracted and purified using TRI-Reagent (Sigma-Aldrich, USA), prior to

being reverse-transcribed using 100 ng of random primers following the Superscript II

(ThermoFisher, USA) protocol. Real time PCR was performed with SYBR Green qPCR master

mix (BioRad) in a Step One plus real-time PCR detection system (Applied Biosystems). All

amplifications were performed in triplicate. Mean values of triplicate measurements were

calculated according to the -ΔΔCt quantification method, and were normalized against the 

expression of 28S ribosomal mRNA as reference. Data were presented as mean ± SEM. Sequences

of the oligonucleotides used are listed in the Supplementary Material Section.

Chromatin immunoprecipitation

Chromatin immunoprecipitation was performed as previously described [25]. Briefly, chromatin

was prepared from 5x106 of T47D cells (untreated or treated with 10 nM of R5020 for 1h). Cells

were crosslinked with 1% formaldehyde (Sigma-Aldrich, USA) for 10 min at room temperature

and treated with 0.125 M glycine for 5 min. Nuclei were lysed in 300 μL ice-cold RIPA buffer

prior to Chromatin-DNA shearing with a Diogene Bioruptor. ChIP was performed using 4 μg of 

anti-PR antibody (Santacruz #sc7208), anti-PRMT1 (Bethyl Laboratories #A300-722A), anti-

LSD1 (Cell Signaling #2184) and anti-H3K4me3 (C15410003, Diagenode, Belgium).
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Dynabeads® Protein G (10003D, Life Technologies, France) were used to retrieve

immunocomplexes. After 5h of proteinase-K reverse-crosslinking at 65°C, DNA was purified with

phenol/chlorophorm/isoamylalcohol. 2 ng of input DNA were used for qPCR analysis to quantify

co-precipitated chromatin-DNA. Relative enrichment of a given promoter region obtained with a

specific antibody was compared with Input DNA, normalized to a reference locus (human

chromosome 1 in which no histone modification was reported). Data were presented as

mean ± SEM. Sequences of the primers used to amplify ChIP‐enriched DNA are listed in the 

Supplementary Material Section.

RNA-sequencing and RNA-seq analysis

RNA-Sequencing experiment was performed in T47D cells. Cells were transfected with siCT or

siPRMT1 (50 nM) for 72h and treated with R5020 (10 nM) for 6h before RNA extraction.

Sequencing was done by the IGFL (Institute of functional genomic of Lyon) Sequencing Platform,

to compare gene expression levels of R5020-induced genes between siCT and siPRMT1

conditions. cDNA libraries were prepared using the SENSE mRNA-Seq Library Prep Kit V2

(Lexogen, Vienna Austria). Quality of the cDNA was assessed and RT-qPCR was performed for

selected PR target genes as quality control. All libraries were sequenced on an Illumina

Nextseq500 and mapped on the hg19 version of the human genome using Bowtie2 (Galaxy

Version 2.3.2.2). Count tables were prepared using htseq-count (Galaxy Version 0.9.1galaxy3).

Differential gene expression analysis was performed with DEseq2 (Galaxy Version 2.1.8.3) using

different thresholds. For R5020-induced genes in siCT-cells: FDR < 0.05; p-adjusted value < 0.01;

fold-change > 2; expression > 10 reads per million. For R5020-induced genes in siPRMT1-cells:

FDR < 0.05; p-adjusted value < 0.01; fold-change > 1.5; expression > 10 reads per million. RNA

sequencing data has been submitted to Gene Expression Omnibus (GEO) and are available with
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the GSE134194 submission number. Experiments were performed three independent times for si-

RNA transfection and RNA extraction.

Immunoprecipitation, immunoblot and antibodies

After treatment, cells were lysed and immunoprecipitations and Western blots were carried out as

described [26]. The antibodies and their respective quantities are listed in the Supplementary

Material Section.

Generation of methylated-R637-PR antibody

Rabbits were immunized with a peptide corresponding to PR amino acids 628-640 (NH2-

CQAGMVLGG([Me2as]R)KFK-CONH2), in which R637 was asymmetrically dimethylated by

Covalab (Villeurbanne, France). To purify the met-R637-PR specific antibody, the dimethyl

peptide used for the immunization and the corresponding control peptide (non-methyl) were

coupled separately to cyanogen bromide activated agarose beads. The antisera were first bound on

the non-methylated peptide column. The unbound antiserum was then applied to the methylated

peptide column and eluted. The title and the specificity of the purified antibody were then tested

by enzyme-linked immunosorbent assay (ELISA).

Proximity ligation assays, image acquisition and analysis

PLA was performed using the Duolink kit (Sigma) according to the manufacturer’s instructions as 

previously described [27]. Cells (3x105) were grown on coverslips in 12-well plates. After

saturation in the blocking solution, seeded cells were incubated with different pairs of primary

antibodies. At the end, samples were then analyzed under fluorescence microscopy on a Nikon

Eclipse Ni microscope. Images were acquired under identical conditions at 60X magnification.

Image acquisition was performed by imaging DAPI staining at a fixed Z-Position while a Z-stack

of ± 5 μm at 1 μm intervals was carried out. The final image was stacked to a single level before 
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further quantification. On each sample, at least one hundred cells were counted. Analysis and

quantifications of these samples were performed using the Image J software (Version 1.52, NIH,

Bethesda, MD, USA). The antibodies used are listed in Supplementary Material Section.

Immunofluorescence

As previously described [23], T47D-cells (3x105) and T47DWT/R637K stable cells (2x105) were

grown on coverslips in 12-well plates. After treatment, cells were fixed in methanol for 2 min and

washed twice in PBS. Non-specific binding was blocked using a 1% gelatin solution for 30 min at

room temperature. Cells were incubated with the different primary antibodies (listed in

Supplementary Material Section) for 1h at 37°C, then with the secondary antibodies Alexa Fluor

488 anti-mouse (Jackson ImmunoResearch, Cambridge, UK) (1:2000e) and Alexa Fluor 568 anti-

rabbit (Invitrogen, Carlsbard, USA) (1:1000e) in Dako diluent for 1h. To finish, coverslips were

mounted on glass slides in mounting solution (Dako, Carpinteria, CA, USA). The fluorescent

slides were viewed under the NIKON NIE microscope.

Analysis of cell migration

6x105 cells plated on 96-well ImageLock plates (Essen BioScience) were plated for 24h at 37°C

and then scratched (800 μm width) with the Wound Maker (Essen BioScience). Addition of R5020

or vehicle ethanol were added in the medium just after scratching, and wound closure was followed

and evaluated with the Incucyte Live-Cell Imaging System and dedicated software (Essen

Bioscience). Cell migration was evaluated by monitoring the evolution of the size of wound

closure (μM) for 24h maximum, in order to assess the contribution of cell proliferation to gap

filling. Since wound width decreases as cell migration progresses over time, we represented the

results as graphs indicating the rate of migration, corresponding to the change in wound area over

time, extrapolated from three independent experiments, each one performed in triplicate.



Malbeteau et al

26

Analysis of cell proliferation

4x103 cells were seeded onto a 96-well plate were plated 5h before incubation with the different

hormones (E2, R5020 or ethanol). Images were acquired using an IncuCyte ZOOM over 7 days,

and cell proliferation was measured as the percentage of cell density observed over this period.

Results are represented as graphs indicating the rate of proliferation over time, extrapolated from

at least three independent experiments, each one performed in triplicate.
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Figure legends

Fig. 1 | PRMT1 and PR interact in the nucleus of T47D breast cancer cells. A. Whole-cell extracts
(WCE) of T47D were collected and subjected to immunoprecipitation (IP) using anti-PRMT1
antibody or control IgG, and immunoblotted with anti-PR. B. Proximity Ligation Assay (PLA) was
used to detect the cellular co-localization of endogenous PRMT1 and PR in T47D, grown on
coverslips in 12-well plates. Cells were transfected with control siRNA (siCT) or with siRNA against
PRMT1 (siPRMT1) and were cultured in medium deprived of steroids for 48 h, prior to the addition
of 10 nM R5020 for the indicated times. PLA for PR-PRMT1 interaction was performed with anti-
PR and anti-PRMT1 specific antibodies. The nuclei were counterstained with DAPI (blue) (Obj:
X60). The detected interactions are represented by red dots. Quantification of the number of signals
per cell, shown in the lower panel was performed by computer-assisted analysis, as reported in the
Materials and Methods section. The mean ± SD of one experiment representative of three
experiments is shown. The P‐value was determined using the Student's t‐test. *** indicates a P <
0.001. The efficacy of PRMT1 siRNA treatment analyzed by Western blot is shown in the lower
panel (right).
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Fig. 2 | PRMT1 affects progesterone signaling pathway. Cell extracts from T47D cells depleted or
not for PRMT1 by siRNA A. or treated with 60 nM of MS023 inhibitor B., grown in charcoal-
stripped serum for 48h and treated with 10 nM of R5020 for the indicated times, were examined by
Western blot analysis using the indicated antibodies (left panel). Quantification of phospho-PR [P-
PR-B (S294)] band intensity relative to PR-B intensity was measured by ChemiDoc MP (Biorad).
The ratio was calculated for each time points and is shown graphically (right panel). Data are
representative of three independent experiments. C. PR mRNA level in T47D cells, silenced with
PRMT1 siRNA (siPRMT1) or with siRNA control (siCT), treated with 10 nM of R5020 for 6h. The
mean ± SEM of three experiments is shown. The P‐value was determined using the Student's t‐test.
*** indicates a P < 0.001. D. Half-life study of endogenous PR-B protein. Lysates from T47D cells
depleted or not for PRMT1 as in A were collected at the indicated time points after addition of
cycloheximide (CHX) and subjected to immunoblotting with the indicated antibodies. The amount
of PR-B was quantified by densitometry and is shown relative to the amount of PR-B expressed in
absence of cycloheximide. Data are shown graphically (lower panel) are representative of three
independent experiments. E. Lysates from T47D cells depleted or not for PRMT1 as in A were
treated for 8h with 10μM of the proteasome inhibitor MG132 or vehicle DMSO before R5020
treatment and then were immunoblotted with the indicated antibodies.
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Fig. 3 | PRMT1 targets the uPR-HP1γ-LSD1 repressive complex in nuclei of untreated T47D cells.
T47D cells were grown for 48h in charcoal-stripped serum and then starved for 1 day in serum-free
RPMI medium. Whole-cell extracts of T47D were collected and subjected to immunoprecipitation
(IP) using A. an anti-HP1γ, B. an anti-PRMT1 or C. an anti-PR antibody or with control IgG, were
then immunoblotted with the indicated antibodies by Western blot. D-F. T47D cells silenced with
siRNA control, anti-PRMT1 or anti-HP1γ and grown as described in A, on coverslips in 12-well
plates, were analyzed by PLA to detect the cellular interactions/co-localizations of endogenous
PRMT1 and its different endogen partners, HP1γ (D), LSD1 (E) and H3K9me3 (F) in the nucleus of
untreated T47D cells. The interactions were quantified as described in Fig. 1B. The mean ± SD of
one experiment representative of three experiments is shown. The P‐value was determined using the
Student's t‐test. *** indicates a P < 0.001. The effect of siRNA treatments on protein expression was
analyzed by Western blot and shown in the Fig. EV3B. G. Endogenous interactions between PR and
HP1γ were analyzed by PLA, as described in D. H. T47D cells, grown as described in A, were
collected and subjected to chromatin immunoprecipitation (ChIP) using an anti-PRMT1 antibody.
The precipitated DNA fragments were used for qPCR analysis using specific primers for the
indicated promoters with respect to the input DNA and normalized against a reference locus (human
chromosome 1 gene). The mean ± SEM of at least three experiments is shown. The P‐value was
determined using the Student's t‐test. * indicates a P < 0.05 and ** indicates a P < 0.01.
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Fig. 4 | PRMT1 is a transcriptional coregulator of activated PR in T47D cells. T47D cells, grown in
charcoal-stripped serum for 48h and then treated with 10 nM R5020 for 1h, were subjected to ChIP
assay using A. an anti-PRMT1 or B. an anti-PR antibody, or with control IgG. The precipitated DNA
fragments were used for qPCR analysis using specific primers for the indicated promoters with
respect to the input DNA and normalized to a reference locus (human chromosome 1 gene). The
mean ± SEM of at least three experiments is shown. The P‐value was determined using the Student's
t‐test. * indicated a P < 0.05 and ** for a P < 0.01. C. T47D cells, depleted or not (siCT) for PRMT1
by siRNA (siPRMT1), were treated, or not (Eth) 6h with 10 nM of R5020. Total RNA was prepared
and cDNAs analyzed by RT-qPCR with specific primers for EGFR, STAT5A and FKBP5. The values
were normalized against 28S mRNA and represent the mean ± SEM of three experiments. The
P‐value was determined using the Student's t‐test. ** indicates a P < 0.01 and *** indicates a P <
0.001.
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Fig. 5 | PRMT1 regulates the R5020-induced proliferation and migration of T47D breast cancer
cells. A. Genome-wide RNA-sequencing analysis was performed on T47D cells to identify the genes
dependent on PRMT1 for R5020-regulated expression. Left panel: Hypothetical results of gene
expression profiles for a given gene illustrate how specific pairwise comparisons between datasets
for individual samples were performed. Numbered bars represent hypothetical mRNA levels from
RNA-seq data for cells expressing the indicated siRNA (PRMT1 or CT) and treated for 6h with
ethanol (Eth) or 10 nM of R5020. Colored numbers represent pairwise comparisons performed to
determine sets of genes for which mRNA levels were significantly different between the samples.
For instance, comparison 1 = set of R5020-regulated genes (fold change ≥2, adjusted P < 0.01);
comparison 4 = set of PRMT1-dependent genes (fold change > 1.5, adjusted P < 0.01). Right panel:
Pink and white Venn diagram represents the R5020-regulated genes in cells expressing siCT
(comparisons 1 and 2); blue Venn diagram, PRMT1-dependent genes in R5020-treated cells
(comparisons 3 and 4). Overlap area (in red) indicates the number of genes shared among sets.
Controls for T47D cell treatments are provided in the Fig. EV4A-C. B. Representation of fold
changes (log2FC) of all target gene expressions identified by RNA-sequencing analysis (235 genes).
On the left (light blue), genes which are down-regulated with siPRMT1 (64%), thus positively
regulated by PRMT1. On the right (dark blue), genes which are negatively regulated by PRMT1
(36%). C. Analysis of T47D cell proliferation by Incucyte technology. Cells were transfected with
siCT or siPRMT1, and treated with 60 nM of MS023 (or DMSO) for 48h in charcoal-stripped serum,
and then plated onto 96-well plates for analysis. Steroid hormones (10 nM) were added in the
medium every 48h to ensure the proliferation of cells. Image acquisition was conducted every hour
using the Incucyte software, which calculates the percentage of cell confluency according to time
over 7 days. Results are represented as graphs showing the proliferation rate every 24h. The mean ±
SD of one experiment representative of three experiments is shown. The P‐value was determined
using the Student's t‐test. *** indicates a P < 0.001. Western blot control on T47D cells transfected
with siRNA or treated with PRMT1 inhibitor is shown in the Fig. EV4G. D. Cell migration of T47D
cells, depleted or not for PRMT1 by siRNA and treated with 10 nM of R5020 or vehicle for 12h, 24h
and 36h, was analyzed in a wound scratch assay, as reported in the Materials and Methods section.
Briefly, wound closure was followed and evaluated with the Incucyte Live-Cell Imaging System and
dedicated software (Essen Bioscience). Left panel: the bar plots indicate the cellular migration rate,
with a direct comparison between untransfected cells and PRMT1-depleted cells. The mean ± SD of
one experiment representative of three experiments is shown. The P‐value was determined using the
Student's t‐test. ** indicates a P < 0.01. Right panel: Images of cells 24h after the scratch wound.
The blue line corresponds to the initial area of the wound. White arrows indicate cell migration
areas. Western blot control on T47D cells transfected with siRNA is shown in the Fig. EV4H. E.
T47D cells, transfected with siRNA against PRMT1 or siCT, were treated or not 6h with 10 nM of
R5020. Total RNA was prepared and cDNAs analyzed by RT-qPCR with specific primers for the
indicated PR target genes. The values were normalized against 28S mRNA and represent the mean ±
SD of at least three experiments. The P‐value was determined using the Student's t‐test. * indicates a
P < 0.05, ** indicates a P < 0.01 and *** indicates a P < 0.001. F-G. Whole-cell extracts of T47D,
depleted or not using siPRMT1 and treated with R5020 for the indicated times were collected and
subjected to Western blot analysis using the indicated antibodies.
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Fig. 6 | PR is methylated by PRMT1 in R5020-stimulated T47D breast cancer cells. A. Whole-cell
extracts of T47D stimulated with 10 nM of R5020 for the indicated times were collected and
subjected to immunoprecipitation (IP) using an anti-PR antibody or with control IgG, and
immunoblotted with pan-methyl-R antibody and with anti-PR. B. T47D cells were transfected with
V5-tagged PR-B expressing plasmid and then treated for 1h with 10 nM R5020 or vehicle. Lysates
were IP with pan-methyl-R antibody and analyzed by immunoblot using the PR antibody. Results
shown are representative of three independent experiments. C. Illustration of PR domains. PR
regions that are subcloned with GST-tag and purified for in vitro methylation assay. D. An in vitro
methylation assay was conducted by incubating different recombinant GST-PR fragments with 3H-
SAM (S-adenosyl-methionine) as the methyl donor and recombinant GST-PRMT1 as the enzyme, or
recombinant CARM1 used as a control (Fig. EV5A). The methylated proteins were visualized by
autoradiography. Red stars indicate the methylated fragments of PR. Black star indicates a bacteria
associated contaminant, as the signal did not correspond to any detectable fragment by Coomassie
blue staining gel, shown in the right panel. E. Alignment of the CTEs of steroid/nuclear receptors
with conserved arginine ® sequence in a similar position in the CTE. F. An in vitro methylation
experiment of WT and arginine mutated in PR-3. The red star indicates the methylated fragment of
PR. The corresponding Coomassie‐stained gel is shown in the right panel. G.T47D cells were
transfected with V5-tagged PR-WT or -R637K encoding plasmids and then treated for 1h with 10
nM R5020, or vehicle ethanol. Lysates were immunoprecipitated with pan-methyl-R antibody and
analyzed by immunoblot using V5 and PR antibodies. Results shown are representative of three
independent experiments.
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Fig. 7 | Arginine 637 of PR is methylated by PRMT1 under progesterone treatment. A. Polyclonal
peptide antibody (the met-R637-PR antibody) was generated using the annotated peptides
encompassing asymmetrically dimethylated-R1637 as antigen. B. Dot-blot experiment was
performed on different quantities of the indicated peptides, asymmetrically methylated or not at the
arginine, and immunoblotted with the met-R637-PR antibody. Peptide sequences were done in the
upper panel. C Western blotting analysis showed that met-R637-PR antibody only detected GST-PR-
3 but not GST-PR3 R637A both methylated in vitro using cold SAM (S-adenosyl-methionine) as
methyl donor and recombinant GST-PRMT1. The corresponding Coomassie‐stained gel is shown in
the lower panel. D.T47D cells were transfected with V5-tagged PR-WT or -R637K encoding
plasmids and then treated for 1h with 10 nM R5020, or vehicle ethanol. Lysates were
immunoprecipitated the met-R637-PR antibody and analyzed by immunoblot with an anti-PR
antibody. Western-Blot quantification for the immunoprecipitated methylated PR (met-R637-PR)
was determined relative to input using ChemiDoc MP (Biorad). Results shown are representative of
three independent experiments. E. Immunofluorescence assay was performed on T47D cells,
transfected with either siCT or siPRMT1 and then stimulated with 10 nM of R5020 for 1h, using the
met-R637-PR and anti-PR antibodies. The nuclei were counterstained with DAPI (blue) (Obj: X40).
The effect of siRNA treatments onPRMT1 expression was verified by Western blot.
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Fig. 8 | Inhibiting PR methylation decreases breast cancer cell proliferation and PR tunover. A.
Immunofluorescence assay of T47D PRKO, T47DWT and T47DR637K cells, before and after
stimulation with 10 nM of R5020 for 1h, stained with anti-PR antibody. The nuclei were
counterstained with DAPI (blue) (Obj: X40). B. Whole-cell extracts of T47DWT or T47DR637K,
stimulated with 10 nM of R5020 for 1h, were collected and subjected to immunoprecipitation (IP)
using an anti-PR antibody or control IgG, and immunoblotted with pan-methyl-R antibody and with
anti-PR. C. T47Dwt and T47DR637K cells were stimulated with 10 nM of R5020 for the indicated
times and total protein extracts were analyzed byblot using the indicated antibodies. D. Half-life of
the endogenous PR-B in T47DWT and T47DR637K stable cells. Lysates from T47DWT and T47DR637K
cells treated with cyclohemixide (50μM) before the stimulation with R5020 for the indicated time
points, were analyzed by immunoblotting with the indicated antibodies. The amount of PR-B was
quantified by densitometry and is shown relative to the amount of PR-B expressed in absence of
cycloheximide. Data are shown graphically (lower panel) are representative of three independent
experiments. Two different expositions are shown to quantify the PR-B band intensity for each time.
The half-life curves are shown in the lower panel and are representative of three independent
experiments. E. Analysis of T47DWT and T47DR637K cell’s proliferation by Incucyte technology,
performed as described in Fig. 5C. Image acquisition was conducted every hour using the Incucyte
software, which calculates the percentage of cell confluency according to the time for 7 days.
Results are represented as a graph showing the proliferation rate every 24h. The mean ± SD of one
experiment representative of three experiments is shown. The P‐value was determined using the
Student's t‐test. *** indicates a P < 0.001. F. T47Dwt and T47DR637K cells were stimulated with 10
nM of R5020 for the indicated times and total protein extracts were analyzed by Western blot using
the indicated antibodies. G. Model for regulatory functions of PRMT1 in PR signaling. (a) In
unstimulated cells, PRMT1 associates with unliganded PR (uPR) within the repressive LSD1/HP1γ
complex on some progesterone-inducible genes, to maintain them in a silent state; (b-c) addition of
progestin (R5020) leads to the phosphorylation of PR on Ser-294 (S294), the transcriptionally
primed form of the receptor. (c) PRMT1 targets promoters of R5020-responsive genes and regulates
their transcription, at least in part through the methylation of the receptor on the Arg-637. This
modification controls the PR degradation, which constitutes a stimulatory switch that accelerates the
recycling of receptors from pre-initiation complexes, required for active hormonal-dependent
transcription.
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Figure EV1, related to Fig. 1 | PRMT1 and PR interact in the nucleus of T47D breast cancer

cells. A. Direct interaction between PR and PRMT1 was analyzed by GST-pulldown

experiments. 35S-labeled in vitro translated PR-B and ERα, used as a positive control, were

incubated with equivalent amounts of GST and GST-PRMT1 bound to glutathione-sepharose

beads. The eluted proteins were analyzed by SDS-PAGE and visualized by autoradiography.

Autoradiograph (upper) and Coomassie staining (lower) are shown. B-C. Validation of the

specificity of PRMT1-PR association detected by Ligation Assay (PLA). T47D were grown on

coverslips in 12-well plates and transfected with siRNAs control (siCT) or against PR (siPR)

or PRMT1 (siPRMT1). PLA was used to detect the cellular co-localization of endogenous

PRMT1 and PR B. in unstimulated cells or C. after R5020 treatment (1h). The interactions are

represented by red dots. The nuclei were counterstained with DAPI (blue) (Obj: X60).

Quantification of the number of signals per cell was performed by computer-assisted analysis

as reported in the Materials and Methods section and are shown in the right panels. The mean

± SD of one experiment representative of three experiments is shown. The P‐value was 

determined using the Student's t‐test. ** indicates a P < 0.01 and *** indicates a P < 0.001 D.

The effectiveness of PRMT1- and PR-siRNA treatments were analyzed by Western blot.
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Fig. EV2 related to Fig. 2 | PRMT1 affects progesterone signaling pathway. A. T47D cells were

transiently transfected with HA-PRMT1 or empty-HA plasmids for 48h with JetPrime Reagent

(Ozyme). Transfected cells were grown in charcoal-stripped medium for 48h and then stimulated

with 10 nM of R5020 for the indicated times. Expression of indicated proteins were analyzed by

Western blot (left panel). Quantification of PR-B band intensity for each time was measured by

ChemiDoc software (Biorad) and compared to the time 0. Data are shown graphically (right panel)

are representative of three independent experiments B.Analysis of MS023 inhibitor specificity. Left

panel: immunoblot of R5020-stimulated T47D cells (1h), treated, or not (DMSO), with different

quantities of MS023. Expression of indicated proteins were analyzed. Right panel:
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immunofluorescence of T47D cells, treated with 60 nM of MS023 and then stimulated 1h with 10

nM of R5020, using an anti-H4R3me2(as) primary antibody.
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Fig. EV3 related to Fig. 3 and Fig. 4 | PRMT1 targets the uPR-HP1γ-LSD1 repressive

complex in nuclei of untreated-T47D cells. A. HeLa cells were transiently transfected with

MMTV-LUC reporter plasmid and expression vectors encoding PR and wild type or mutant

PRMT1 as indicated, using Lipofectamine 2000 (Invitrogen). Transfected cells were grown in

hormone‐free medium for 48h in the presence or absence of 10 nM of R5020, and extracts of

the harvested cells were tested for luciferase activity using the Promega luciferase assay kit.

The results were normalized as indicated and presented as the mean ± SEM of at least three

independent experiments. The P‐value was determined using the Student's t‐test. * indicates a 

P < 0.05. B. The effect of siRNA treatments on protein expression described in Fig 3D-G was

analyzed by Western blot using the indicated antibodies. C-E. Whole-cell extracts of T47D

cells, grown for 48h in charcoal-stripped medium and then starved one more day in free-serum

RPMI medium, were collected and subjected to ChIP using an anti-PR, an anti-LSD1 or an anti-

H3K4me3 antibodies or control rabbit IgG. The precipitated DNA fragments were used for

qPCR analysis using specific primers for the indicated promoters with respect to the input DNA

and normalized against a reference locus (human chromosome 1 gene). The mean ± SEM of at

least three experiments is shown. The P‐value was determined using the Student's t‐test. * 

indicates a P < 0.05 and ** indicates a P < 0.01.
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Fig. EV4 related to Fig. 5 | PRMT1 is a transcriptional coregulator of activated PR in T47D

cells. A. Western blot using total protein from T47D treated with either siCT or siPRMT1, and

stimulated for 6h of R5020 and used for RNA-seq analysis. Western blot was performed with

the indicated antibodies. B-C. qRT-PCRs using total mRNAs from T47D treated with either

siCT or siPRMT1, and stimulated for 6h of R5020. Primers for FKBP5, STAT5A and PRMT1

genes or D. of the PR-target genes CCND1, IGFBP5 and IGF1R were used. The mean ± SEM

of at least three independent experiments is shown. The P‐value was determined using the 

Student's t‐test. * indicated a P < 0.05 and *** for a P < 0.001. E. Ingenuity Pathway Analysis

(IPA) of cellular functions for the 235 R5020-regulated genes that are dependent on PRMT1.

The orange vertical line represents the fold of statistical significance. F. Analysis of T47D cell

proliferation by Incucyte technology. Cells were grown for 48h in charcoal-stripped serum and

then plated onto 96-well plates for analysis. Steroid hormones (10 nM) were added in the

medium every 48h to ensure the proliferation of cells. Image acquisition and analysis were done

as in Fig. 5C. The mean ± SD of one experiment representative of three experiments is shown.

The P‐value was determined using the Student's t‐test. *** indicates a P < 0.001. G-H. WB

controls on T47D cells used for F. the Incucyte proliferation assay (Fig. 5C and Fig. EV4F) and

for G. the wound scratch assay (Fig. 5D) are shown. I. Scheme of the regulation of proteins

involved in migration and proliferation pathways dependent on PR, according to the literature.



Supplemental information Malbeteau et al

Fig. EV5 related to Fig. 6 and 7 | PR is methylated on arginine residues in R5020-stimulated T47D

breast cancer cells. A. An in vitro methylation assay was conducted by incubating different

recombinant GST-PR fragments with 3H-SAM (S-adenosyl-methionine) as the methyl donor, and

recombinant GST-CARM1 as the enzyme. The black arrow shows the automethylation of the

enzyme. B. T47D cells, transfected either with V5-tagged PR-WT or -R637A encoding plasmids,

were stimulated with 10 nM R5020 for 1h. Upper panel: lysates were immunoprecipitated with pan-

methyl-R antibody and analyzed by immunoblot using V5 antibody. Results shown are

representative of three independent experiments. Lower panel: Western-Blot quantification for the

immunoprecipitated methylated PR (met-R637-PR) was determined relative to input using

ChemiDoc MP (Biorad) to measure chemiluminescence from the immunoblots. Results shown are

representative of three independent experiments.



Supplemental information Malbeteau et al

Fig. EV6 related to Fig. 8 | Inhibiting PR methylation decreases breast cancer cell proliferation and

PR turnover. A. Whole-cell extracts of the different clones of T47D PRKO were collected and

analyzed by western-blot for their expression of PR, using a PR-antibody, as well as ERα. The clone

#2 (underlined) was chosen for stably re-expressing PRWT or PRR637K, as observed in experiences

of Fig. 8. T47D (PR-positive cells), MDA-MB-231 and BC-52 (two PR-negative cell lines) were

used as control of this experiment. B. Cell lysates of PRWT and PRR637K, used for the cell

proliferation test shown in Fig. 8E, were collected and analyzed by western-blot for their expression

of V5.



Supplemental information Malbeteau et al

Supplemental Material Section

- List of antibodies

Antibody Company Reference WB IP IF PLA ChIP Species
EGFR Cell Signaling / Ozyme #4267 1:500 Rabbit
EGR1 SCBT sc-515830 1:500 Mouse

ERK1/2 Cell Signaling / Ozyme #4695 1:2000 Rabbit
GAPDH SCBT sc-4724 1:1000 Mouse

H3K4me3 Diagenode C15410003 4μg Rabbit
H3K9me3 ActiveMotif #39161 1:1000 Rabbit
H4 total Cell signaling #13919 1:1000 Rabbit

H4R3me2(as) ActiveMotif #39705 1:500 1:1000 Rabbit
HP1γ Abcam ab10480 2μg Rabbit
HP1γ Abcam ab66617 1:500 1:500 Rabbit
IgG Cell Signaling / Ozyme #2729 2μg 4μg Rabbit

LSD1 SCBT sc-53875 1:500 1:500 Mouse
LSD1 Cell Signaling / Ozyme #2184 8μL Rabbit

met-R637-PR Home made 1:200 15μL 1:300 Rabbit
Pan-methyl-R Cell Signaling / Ozyme #13522 1:500 4μL Rabbit

P-ERK1/2 Cell Signaling / Ozyme #5726 1:2000 Rabbit
P-P38 Cell Signaling #9211 1:500 Rabbit

P-PDK1 Cell Signaling #3438 1:1000 Rabbit
P-PR S294 Cell Signaling / Ozyme #13736 1:500 Rabbit

PR SCBT sc-7208 1:2000 2μg 4μg Rabbit
PR ThermoFischer MA1-12626 1:1000 1:500 1:500 Mouse

PRMT1 Bethyl Laboratories / Euromedex #A300-722A 2μg 4μg Rabbit
PRMT1 Millipore / Merck #07-404 1:2000 1:1000 Rabbit
PRMT1 Sigma / Merck P1620 1:500 1:500 Mouse
SGK1 SCBT sc-28338 1:300 Mouse

Tubulin α Sigma / Merck T6074 1:10000 Mouse
V5 Life Technologies R920-25 1:1000 Mouse

Experiment
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- List of primers
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- List of regulated genes found by RNA-Seq
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Discussions et perspectives 

Le Romancer et al.

Insulin-like Growth factor Choucair et al.

via

1) PRMT1 est un corégulateur transcriptionnel spécifique de gènes cibles de PR.  



Vicent et al.

Gene Ontology



Molecular Cell

2) PRMT1 contrôle la prolifération des cellules, notamment en méthylant PR.  

charcoal-stripped fetal bovine serum
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figure 46
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3) PRMT1 est impliquée dans la stabilité du récepteur. 

Lange et al.
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figure 47
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4). PRMT1, un intermédiaire clé dans la relation ERα-PR des cellules mammaires ? 

Figure 48:



Mohammed et al.
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5). L'étude de la relevance de la méthylation de PR dans la physiologie in vivo.  
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