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CHAPTER 1. RÉSUMÉ DE LA THÈSE EN FRANÇAIS 12

Cette thèse porte sur deux aspects importants des équations aux dérivées
partielles d’évolution : le comportement des solutions en temps grand et les es-
timations hypocoercives. L’hypocoercivité est un ensemble de techniques qui
permet d’étudier le taux de convergence vers l’équilibre de solutions d’équa-
tions cinétiques. Un cas standard d’équation cinétique en mécanique classique
consiste à décrire un gaz de particules par une fonction de distribution qui dépend
de la position, de la vitesse et du temps, c’est-à-dire, à donner une description
probabiliste du gaz sur l’espace de phase. Pour mesurer la distance à l’équilibre,
il est usuel d’utiliser une fonctionnelle d’entropie ou d’énergie libre. La dérivée
en temps est souvent appelée la production d’entropie, et lorsqu’elle contrôle
linéairement l’entropie, on obtient alors une décroissance exponentielle de l’en-
tropie. Dans ce cas, on dira qu’il y a coercivité. Toutefois, dans beaucoup de
modèles physiques, la relaxation n’est produite que sur les variables de vitesse,
et la production d’entropie ne contrôle pas linéairement l’entropie. Pour au-
tant, il est parfois possible de construire une fonctionnelle d’entropie modifiée
qui, elle, décroit exponentiellement : les méthodes d’hypocoercivité consistent à
construire de telles fonctionnelles. C’est en particulier l’objet du chapitre qui est
consacré au système de Vlasov-Poisson-Fokker-Planck linéarisé. On considère
aussi des modèles diffusifs pour lesquels on établit une relation entre l’entropie
linéarisée, et la production d’entropie linéarisée. Non seulement cela permet de
démontrer une convergence exponentielle des solutions en temps grand, mais
dans certains cas, cette approche permet aussi de caractériser les taux optimaux
de retour exponentiel à l’équilibre. Deux modèles sont étudiés en détail : le
modèle de Cucker-Smale homogène (dynamique collective du vol des oiseaux
en biologie mathématique) et les équations de Nernst-Planck (évolution de sys-
tèmes de particules chargées).

1.1 Partie 1: hypocoercivité

Les méthodes hypocoercives utilisées en théorie des équations cinétiques peu-
vent être rangées en deux classes principales: les méthodes dites H1 reposent
sur des calculs de la dérivée en temps d’une information de Fisher. Par rapport
à l’information de Fisher physique qui porte typiquement seulement sur des
dérivées en vitesse, l’information de Fisher qui permet d’obtenir de la coercivité
contient des termes supplémentaires avec des dérivées par rapport à la variable
de position, et aussi des termes qui mélangent variable de vitesse et variable de
position: on parle d’ailleurs d’information de Fisher twistée.

1.1.1 Équation de Fokker-Planck cinétique

Le premier résultat porte sur une équation tout à fait classique et qui a été abon-
damment étudiée du point de vue de l’hypo-ellipticité: l’équation de Fokker-
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Planck cinétique avec un potentiel harmonique,

∂ f

∂t
+ v ·∇x f −x ·∇v f =∆v f +∇v ·

(
v f

)
. (1.1)

Parce que (1.1) est linéaire, nous supposons que
∥∥ f

∥∥
L1(Rd×Rd ) = 1. Il est bien

connu que la solution converge en temps grand vers une fonction gaussienne
en position et en vitesse, notée f?, qui a la forme

f?(x, v) = (2π)−d e−
1
2 (|x|2+|v |2) ∀ (x, v) ∈Rd ×Rd .

Nous définissons dµ := f?d x d v pour la mesure invariante sur l’espace des phases
Rd ×Rd . La fonction g := f / f? résout

∂g

∂t
+Tg = Lg (1.2)

où l’opérateur de transport T et l’opérateur de collision L sont

Tg := v ·∇x g −x ·∇v g and Lg :=∆v g − v ·∇v g .

De plus, T et L sont respectivement anti-auto-adjoint et auto-adjoint sur l’es-
pace L2(Rd ,dµ). Pour étudier la convergence vers la solution stationnaire f?,
nous considérons l’entropie

E [g ] :=
Ï
Rd×Rd

ϕ(g )dµ (1.3)

où
ϕ(w) := 1

p−1

(
w p −1−p (w −1)

)
, p ∈ (1,2] (1.4)

en particulier, quand p = 2,

ϕ2(w) = (w −1)2

et pour p → 1+,
ϕ1(w) := w log w − (w −1)

et les entropies correspondantes constituent une famille qui interpole entre une
norme L2 à poids gaussien (cas p = 2) et une entropie de Gibbs correspondant
à la limite p → 1. Nous savons de [116] que l’entropie (1.3) contrôle la conver-
gence vers l’état stationnaire en utilisant l’inégalité de Csiszár-Kullback.

Le taux de décroissance optimal de E [g ] a été établi par A. Arnold et J. Erb
dans [7], qui est le résultat suivant.

Proposition 1.1. Pour tout la solution nonnegative g ∈ L1(Rd ×Rd ) de (1.2) avec
une donnée initiale g0, tel que E [g0] <∞, nous pouvons une constante C > 0 qui
satisfait

E [g (t , ·, ·)] ≤C e−t ∀ t ≥ 0. (1.5)

De plus, le taux e−t est optimal pour t →+∞.
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Dans cette thèse, notre objectif est de donner une estimation plus forte. La
fonction h := g p/2 résout

∂h

∂t
+Th = Lh + 2−p

p

|∇v h|2
h

. (1.6)

Le principal résultat consiste à donner le taux de convergence exponentiel de
l’entropie généralisée

1

p −1

[Ï
Rd×Rd

h2 f?d x d v −
(Ï

Rd×Rd
h2/p f?d x d v

)p/2
]

notre principal outil est l’information Fisher

Jλ[h] = (1−λ)
∫
Rd

|∇v h|2 dµ+(1−λ)
∫
Rd

|∇x h|2 dµ+λ
∫
Rd

|∇x h +∇v h|2 dµ . (1.7)

Et notre résultat principal est le suivant.

Theorem 1.1. Laissons h pour la solution de (1.6) avec donné initiale h0 ∈ L1 ∩
Lp (Rd ,dγ), h0 6≡ 1. Alors il existe une fonction λ : R+ → [1/2,1) tel que λ(0) =
limt→+∞λ(t ) = 1/2 et une fonction continue ρ sur R+ tel que ρ > 1/2 a.e., et nous
avons

d

d t
Jλ(t )[h(t , ·)] ≤−2ρ(t )Jλ(t )[h(t , ·)] ∀ t ≥ 0.

En conséquence, pour tout t ≥ 0, nous avons l’estimation globale

Jλ(t )[h(t , ·)] ≤J1/2[h0] exp

(
−2

∫ t

0
ρ(s)d s

)
.

Nous donnons plus d’explications sur ce théorème. Le point remarquable de
cette approche est que, dans le calcul de la dérivée en temps des informations
de Fisher – qui ressemble beaucoup à des calculs de carré du champ dans une
approche à la Bakry-Emery – il est possible lorsque p est strictement compris
entre 1 et 2 d’obtenir non seulement le taux optimal de convergence exponen-
tielle, mais aussi d’exploiter l’un des termes de reste et d’obtenir une améliora-
tion, marginale, des taux de convergence. Cette amélioration met en évidence
un phénomène intéressant d’oscillation dans l’espace des phases, qui n’est pas
présent dans les méthodes d’entropie appliquées, par exemple, à des diffusions
non-dégénérées.

La structure principale de notre preuve provient de [161] de C.Villani. Nous
calculons

d

d t
Jλ[h] = d

d t

(∫
Rd

|∇v h|2 dµ+
∫
Rd

|∇x h|2 dµ+2λ
∫
Rd

∇x h ·∇v h dµ

)
.

nous définissons les notations suivantes

Hv v =
(

∂2h

∂vi ∂v j

)
1≤i , j≤d

, Hxv =
(

∂2h

∂xi ∂v j

)
1≤i , j≤d

,

Mv v =
(
∂
p

h

∂vi

∂
p

h

∂v j

)
1≤i , j≤d

, Mxv =
(
∂
p

h

∂xi

∂
p

h

∂v j

)
1≤i , j≤d

.
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et à partir du calcul direct,

−1

2

d

d t
Jλ(t )[h(t , ·)] = X ⊥ ·M1 X − 1

2
λ′(t ) X ⊥ ·

(
0 1
1 0

)
X +Y ⊥ ·M2 Y

où

M0 =
(

1 λ

λ 1

)
⊗ IdRd , M1 =

(
1−λ λ

2
λ
2 λ

)
⊗ IdRd

et

M2 =


1 λ −κ

2 −κλ
2

λ 1 −κλ
2 −κ

2
−κ

2 −κλ
2 2κ 2κλ

−κλ
2 −κ

2 2κλ 2κ

⊗ IdRd×Rd

sont des fonctions valorisées par matrice de blocs (λ,ν), ici κ = 8(2−p)/p. En
plus,

X = (∇v h,∇x h) , Y = (Hv v ,Hxv ,Mv v ,Mxv )

de la théorie de l’algèbre linéaire, nous savons que

Y ⊥ ·M2 Y ≥λ1(p,λ) |Y |2

pour quelque λ1(p,λ) tel que

λ1(p,1/2) = 1

4

(
2κ+1−

√
5κ2 −4κ+1

)
> 0

En particulier, nous choisissons λ= 1 et nous pouvons prouver le résultat de la
décroissance exponentielle avec le taux 1.

Pour prouver le meilleur résultat, nous remarquons que pour tout p ∈ (1,2),
par continuité nous savons que λ1(p,λ) > 0 si λ est assez proche de 1

2 . Nous
obtenons que

−1

2

d

d t
Jλ(t )[h(t , ·)] ≥ X ⊥ ·M1 X + 1

2
λ′(t ) X ⊥ ·M0 X +εX ⊥ ·M3 X

avec

M3 =
(

1 0
0 0

)
⊗ IdRd

et

ε= λ1(p,λ)
∫
Rd |∇v h|2 dµ

1+ (p −1)E [h2/p
0 ]

.

Cela découle de l’estimation |Y |2 ≥ ‖Mv v‖2 et de l’inégalité de Cauchy-Schwarz.
En suite, nous pouvons prouver que si pour quelque t0 > 0,∫

Rd
|∇v h|2 dµ= 0,

∫
Rd

|∇v h|2 +∇v h ·∇x h +|∇x h|2 dµ 6= 0,
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alors ∫
Rd

|∇v h|2 dµ> 0 pour t → t0+

cela signifie que e t
∫
Rd |∇v h|2 dµ est positif, sauf pour les valeurs isolées de t > 0.

Notre objectif est de trouver λ(t ) et ρ(t ) > 1/2, telles que

X ⊥ ·M1 X − 1

2
λ′(t ) X ⊥ ·

(
0 1
1 0

)
X +εX ⊥ ·M3 X ≥ ρ(t ) X ⊥ ·M0 X

pour X ∈R2d . Le détail de la preuve peut être vu dans la section 3.3 de chaptre 3.

Remarque 1.1. Nous considerons

f0(x, v) = f?(x −x0, v − v0) ∀ (x, v) ∈Rd ×Rd

pour quelque (x0, v0) 6= (0,0). Des calculs directs, nous obtenons que

f (t , x, v) = f?
(
x −x?(t ), v − v?(t )

)
avec

 x?(t ) =
(
cos

(p3
2 t

)
x0 + 2p

3
sin

(p3
2 t

)(
v0 + x0

2

))
e−

t
2 ,

v?(t ) =
(
−

p
3

2 sin
(p3

2 t
)(

x0 + v0
2

)+cos
(p3

2 t
)

v0

)
e−

t
2 ,

(1.8)

résout (1.1) et nous pouvons vérifier que le taux e−t est optimale.

1.1.2 Système de Vlasov-Poisson-Fokker-Planck linéarisé

Le deuxième cas d’application des méthodes hypocoercives porte sur le système
de Vlasov-Poisson-Fokker-Planck linéarisé. L’équation non linéaire de Vlasov-
Poisson-Fokker-Planck avec un potentiel externe V est

∂t f + v ·∇x f − (∇xV +∇xφ
) ·∇v f =∆v f +∇v · (v f ) ,

−∆xφ= ρ f =
∫
Rd

f d v .
(1.9)

Il décrit la dynamique d’un plasma de particules de Coulomb dans un réser-
voir thermique, qui dégénère en une équation de Vlasov-Poisson à basse tem-
pérature (ici la température est prise égale à 1 ainsi qu’à d’autres constantes
physiques). La solution stationnaire

f?(x, v) = ρ?(x) (2π)−d/2 e−|v |
2/2

où la densité spatialeρ? est obtenue en résolvant l’équation de Poisson-Boltzmann

−∆xφ? = ρ? = M
e−V −φ?∫

Rd e−V −φ? d x
.
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Pour linéariser cette équation, nous définissons f = f∗(1+εh), laissons ε→ 0, et
jetons O(ε2) terme. Et (1.9) devient

∂t h + v ·∇x h − (∇xV +∇xφ?
) ·∇v h + v ·∇xψh −∆v h + v ·∇v h = 0,

−∆xψh =
∫
Rd

h f?d v .
(1.10)

L’espace des phases est Rd ×Rd 3 (x, v) et le potentiel V est un potentiel de con-
finement qui permet de prévenir le phénomène de runaway et garantit l’exis-
tence d’une solution de masse finie f?. La méthode repose sur une méthode
d’hypocoercivité L2 qui consiste à construire la fonctionnelle de Lyapunov

Hδ[h] := 1
2 ‖h‖2 +δ 〈Ah,h〉

où le produit scalaire est défini par

〈h1,h2〉 :=
Ï
Rd×Rd

h1 h2 dµ+
∫
Rd
ρh1 (−∆)−1ρh2 d x (1.11)

avec ρh = ∫
Rd h f?d v , où dµ= f?d vd x. Les opérateurs de transport et de diffu-

sion sont donnés respectivement par

Th := v ·∇x h −∇x (V +φ?) ·∇v h + v ·∇xψh et Lh :=∆v h − v ·∇v h , (1.12)

Π est la projection orthogonale sur le noyau de L, et l’opérateur A est défini par

A := (
Id+ (TΠ)∗TΠ

)−1(TΠ)∗ .

Théorème 1.1. Supposons que d ≥ 1, V (x) = |x|α pour un paramètreα> 1 et M >
0. Il existe deux constantes positives C et λ, telles que toute solution h du système
de Vlasov-Poisson-Fokker-Planck linéarisé, de moyenne nulle avec ‖h0‖2 < ∞,
vérifie

‖h(t , ·, ·)‖2 ≤C ‖h0‖2 e−λt ∀ t ≥ 0. (1.13)

Un autre point est d’obtenir des estimations uniformes dans la limite de
diffusion. Pour tout ε > 0, nous considérons la solution de l’équation Vlasov-
Poisson-Fokker-Planck dans l’échelle parabolique donnée par

ε∂t f +v ·∇x f −(∇xV +∇xφ
)·∇v f = 1

ε

(
∆v f +∇v · (v f )

)
, −∆xφ= ρ f =

∫
Rd

f d v .

(1.14)
Il a été prouvé que lorsque d = 2 ou 3,(1.14) a une solution faible

(
f ε,φε

)
qui

converge comme ε→ 0+ vers f 0, où la densité de charge ρ = ∫
Rd f 0 d v est une

solution faible du systèmedrift-diffusion-Poisson

∂ρ

∂t
=∇x ·

(∇xρ+ρ∇x (V +φ)
)

, −∆xφ= ρ . (1.15)
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Une source d’inspiration pour la méthode est le comportement asymptotique
des solutions de (1.15) pendant une longue période. Pour t → +∞, il est bien
connu que (ρ,φ) converge vers un état stable (ρ?,φ?) donné par la équation de
Poisson-Boltzmann

−∆xφ? = ρ? = e−V −φ? (1.16)

à un taux exponentiel. Maintenant, nous linéarisons (1.14) pour obtenir l’équa-
tion

ε∂t h + v ·∇x h − (∇xV +∇xφ?
) ·∇v h + v ·∇xψh − 1

ε

(
∆v h − v ·∇v h

)= 0,

−∆xψh =
∫
Rd

h f?d v ,
Ï
Rd×Rd

h f?d x d v = 0.

(1.17)
On obtient une estimation de la décroissance qui est uniforme par rapport à
ε→ 0+.

Théorème 1.2. Nous supposons que d ≥ 1, V (x) = |x|α pour quelque α > 1 et
M > 0. Pour tout ε> 0 assez petit, il existe deux constantes C et λ, indépendantes
de ε, tells que pour tout la solution h de (1.17) avec une donnée initiale h0 tel que
‖h0‖2 <∞ satisfait (1.13).

La preuve du Théorème s’appuie sur un certain nombre d’observations prélim-
inaires:
• En raison du potentiel de confinement, l’intégration par parties peut être ef-
fectuée.
• Il existe une solution unique de l’équation de Poisson-Boltzmann.
• La mesure de probabilité construite au-dessus de la solution de l’équation de
Poisson-Boltzmann satisfait une inégalité de Poincaré.
• Le produit scalaire est bien défini.

La méthode, qui a été introduite dans [82, 83], repose sur la limite de diffu-
sion et un autre résultat montre que les estimations de décroissance sont en effet
uniformes par rapport à un paramètre de changement d’échelle correspondant
à la limite parabolique. Le point clef de la preuve consiste à introduire la norme
‖h‖2 = 〈h,h〉 qui fait intervenir le terme non-local du à l’équation de Poisson.
Nous considérerons un espace de fonctions de distribution tel queÏ

Rd×Rd
h f?d x d v = 0

et utiliser le produit scalaire (1.11) qui est adapté au couplage de Poisson. Nous
pouvons vérifier que cet espace H est Hilbert.

Avec ces préliminaires, il est possible de s’appuyer sur une méthode ab-
straite d’hypocoercivité qui va comme suit. Pour l’équation

∂t f +T f = L f (1.18)
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supposons qu’il existe des constantes λm , λM et CM > 0, telles que pour tout
F ∈H , les propriétés suivantes sont valables:

B coercivité microscopique

− 〈LF ,F 〉 ≥λm ‖(Id−Π)F‖2 ,

B coercivité macroscopique

‖TΠF‖2 ≥λM ‖ΠF‖2 ,

B dynamique macroscopique parabolique

ΠTΠF = 0,

B opérateurs auxiliaires bornés

‖AT(Id−Π)F‖+‖ALF‖ ≤CM ‖(Id−Π)F‖ .

Avec ces propriétés, nous pouvons prouver la proposition suivante.

Proposition 1.2. Il existe une constante λ > 0 dépendant de λm , λM et CM , tels
que λHδ[F ] ≤ Dδ[F ] pout tout F ∈ H . Par conséquent, pour une solution de
(1.18), nous avons

Hδ[F (t , ·)] ≤Hδ[F0]e−λt .

Revenons au système Vlasov-Poisson-Fokker-Planck linéarisé (1.10). nous
rappelons que les opérateurs de transport et de diffusion sont définis par (1.12).
Ensuite, nous devons vérifier que les hypothèses ci-dessus sont satisfaites. Les
trois premiers sont faciles à vérifier. La dernière hypothèse est plus compliquée
à prouver. (les détails sont donnés dans chapitre 7:
• Faites la reformulation de l’inégalité comme une estimation de régularité el-
liptique.
• Obtenons une estimation du type H1.
• Prouver les inégalités de Poincaré pondérées et les estimations de type H1.
• Obtenons des estimations pour la deuxième période de commande.

Remarque 1.2. L’hypocoercivité de l’équation (1.9) est toujours un problème ou-
vert. Pour l’équation

∂t f + v ·∇x f − (∇xV +ε∇xφ
) ·∇v f =∆v f +∇v · (v f ) ,

−∆xφ= ρ f =
∫
Rd

f d v .
(1.19)

où ε est la charge totale du système. F.Hérau et L.Thomann ont prouvé en [109]
que si ε> 0 est assez petit, alors nous avons le résultat d’hypocoercivité similaire.
En fait, en utilisant aussi la même méthode que l’équation cinétique de Fokker-
Planck. Mais pour le cas plus général ε= 1, les difficultés proviennent de l’estima-
tion du terme de Poisson.
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1.2 Partie 2: comportement asymptotique de grand temps

1.2.1 Modèle de Cucker-Smale homogène

La deuxième partie de la thèse porte sur des modèles diffusifs avec termes de
champ moyen. Les comportements collectifs émergents et l’auto-organisation
dans les interactions multi-agents sont des sujets intéressants dans de nom-
breux domaines. Dans les systèmes biologiques, peu importe les cellules, les
insectes ou les mammifères, tous les individus peuvent s’auto-organiser et se
déplacer de manière cohérente. Bien sûr, des conditions spéciales doivent être
remplies, sinon la dynamique aléatoire prédomine. Il est donc important de
créer un modèle mathématique qui décrit les commutations entre les systèmes
désorganisés et les systèmes présentant une phase ordonnée. Le modèle de Cucker-
Smale homogène, dit encore modèle de McKean-Vlasov, est utilisé pour décrire
la distribution des vitesses d’un groupe d’oiseaux. Ce modèle s’écrit

∂ f

∂t
= D∆v f +∇v ·

(∇vφ(v) f + (v −u f ) f
)

(1.20)

où la vitesse moyenne vers laquelle tendent les oiseaux est donnée par

u f (t ) :=
∫
Rd v f (t , v)d v∫
Rd f (t , v)d v

.

Le potentiel φ(v) = α
4 |v |4 − α

2 |v |2 quant à lui modélise le fait que les vitesses
très grandes ou les vitesses nulles sont peu favorables, mais qu’aucune direc-
tion n’est a priori privilégiée. La tendance des oiseaux à aligner leurs vitesses
est contrecarrée par les erreurs qu’ils commettent, ce qui est modélisé par un
bruit dont l’intensité est donnée en fonction de D . Ainsi, D petit correspond à
un régime de petit bruit dans lequel l’alignement des vitesses est possible, alors
que pour D grand, tout alignement est dominé par le bruit et la seule solution
stationnaire est isotrope. Dans [13] en particulier, les auteurs ont étudié le mod-
èle dans les régimes asymptotiques D → 0 et D → +∞. Le but de l’étude est
de compléter cette description en toute dimension et de démontrer l’existence
d’une transition de phase entre un régime ordonné avec une vitesse moyenne
non nulle pour D < D∗ et un régime homogène pour D ≥ D∗. Un premier résul-
tat de classification s’énonce comme suit.

Théorème 1.3. Supposons que d ≥ 1 et α > 0. Alors il existe une valeur critique
D∗ > 0 telle que

(i) D > D∗: il existe une seule solution stationnaire, stable, avec u f = 0.

(ii) D < D∗: il existe une solution stationnaire instable isotrope avec u f = 0 et
un ensemble continu de solutions stables positives ou nulles, non-symétriques,
polarisées (c’est-à-dire de vitesse moyenne non-nulle). De plus, les solu-
tions polarisées sont toutes identiques à une rotation près.
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Toute solution stationnaire a la forme

fu(v) = e
− 1

D

(
1
2 |v−u|2+α4 |v |4−α2 |v |2

)
∫
Rd e

− 1
D

(
1
2 |v−u|2+α4 |v |4−α2 |v |2

)
d v

où u = (u1, ..ud ) ∈ Rd résout
∫
Rd (u− v) fu(v)d v = 0. Après un rotation, u =

(u,0, ...0) = u e1 est donnée par H (u) = 0, où

H (u) :=
∫
Rd

(v1 −u)e−
1
D (φα(v)−u v1) d v et φα(v) := α

4 |v |4 + 1−α
2 |v |2

donc pour montre que de théorème, on devrais étudié le zéros de fonction H (u).
Parce que H (0) = 0 et si H (u) =, alors H (−u) = 0, donc nous considérons tou-
jours le cas u ≥ 0. D’abord, nous pouvons montrer que il existe un zéro unique
D∗ de H ′(0), et H ′(0) > 0 quand D < D∗, H ′(0) < 0 quand D > D∗.

Pour le cas d = 1, pour tout u > 0, H ′′(u) < 0 si H (u) ≤ 0. Par conséquent,
H change de signe au plus une fois sur (0,+∞). Le cas d = 2 est plus difficile.
Nous établissons les propriétés suivantes:
• quand D ≥ D∗, alors H ′(u) ≤ 0 pour tout u ≥ 0, donc 0 est le solution unique
de H (u) = 0.
• quand D < D∗, nous savons que H ′(0) > 0, donc il existe un zéro u1 of H (u).
De plus, nous prouverons que H (u) est décroissant strictement sur (u1,∞),
donc u1 est le zéro unique de H (u).

Cette transition de phase correspond à un exemple remarquable de brisure
de symétrie, au sens où l’énergie libre

F [ f ] := D
∫
Rd

f log f d v +
∫
Rd

f φd v − 1

2
|u f |2

atteint son minimum pour les solutions polarisées si D < D∗. L’étude ne se lim-
ite pas à l’analyse des solutions stationnaires et de leur stabilité. En effet, pour
une solution du problème d’évolution, il est remarquable que l’énergie libre est
en fait une fonction de Lyapunov qui décroît suivant la relation

d

d t
F [ f (t , ·)] =−I [ f (t , ·)] avec I [ f ] :=

∫
Rd

∣∣∣∣D ∇v f

f
+∇vφ−u f

∣∣∣∣2

f d v .

On montre par exemple le résultat suivant dans le régime de bruit élevé.

Théorème 1.4. Pour tout d ≥ 1 et pour tout α > 0, si D > D∗, alors toute solu-
tion f avec donnée initiale positive ou nulle fin de masse 1 telle que F [ fin] <∞
vérifie, pour une certaine constante C > 0, l’estimation

0 ≤F [ f (t , ·)]−F [ f0] ≤C e−CD t ∀ t ≥ 0
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Pour obtenir des taux de convergence, tout l’enjeu revient à comparer l’infor-
mation de Fisher I avec F . Dans l’espace des fonctions

A :

{
g ∈ L2( f0 d v),

∫
Rd

g f0 d v = 0

}
nous introduisons les formes quadratiques

Q1,u[g ] := lim
ε→0

2

ε2 F
[

fu(1+εg )
]= D

∫
Rd

g 2 fu d v −D2 |vg |2 ,

où vg := 1
D

∫
Rd v g fu d v , et

Q2,u[g ] := lim
ε→0

1

ε2 I
[

fu (1+εg )
]= D2

∫
Rd

∣∣∇g −vg
∣∣2 fu d v .

Nous montrerons le résultât de stabilité de la solution stationnaire.
• Q1,0 ≥ 0 ⇐⇒ D ≥ D∗. Si D > D∗, alors

Q1,0[g ] ≥ η(D)
∫
Rd

g 2 f0 d v (1.21)

pour quelque η(D) > 0.
• Pour D < D∗, |u| = u(D) 6= 0, Q1,u[g ] ≥ 0.
Ensuite, pour coercivité, on se rappelle l’inégalité de Poincaré: il existe une con-
stante optimaleΛD > 0, tel que pour tout h ∈ H1

(
Rd , fu d v

)
qui satisfait

∫
Rd h fu d v =

0, nous avons ∫
Rd

|∇h|2 fu d v ≥ΛD

∫
Rd

|h|2 fu d v. (1.22)

ici u est une vitesse admissible, tel que u = 0 si D ≥ D∗, ou |u| = u(D) si D < D∗.

u[ f ] = 0 if D ≥ D∗ or u f = 0 and D < D∗ ,

u[ f ] = u(D)

|u f |
u f if D < D∗ and u f 6= 0 .

Proposition 1.3. Nous supposons que d ≥ 1, α> 0, D > 0 et CD = DΛD . Consid-
érons une fonction de distribution non négative f ∈ L1(Rd ) avec

∫
Rd f d v = 1, et

u ∈Rd satisfait soit u = 0 soit |u| = u(D) si D < D∗ et considérons g = ( f − fu)/ fu.
Nous supposons que g ∈ H1

(
Rd , fu d v

)
. Si u = 0, alors

Q2,u[g ] ≥CD Q1,u[g ] .

Autrement, si u 6= 0 pour quelque D ∈ (0,D∗), alors il existe 0 < κ(D) < 1, tel que

Q2,u[g ] ≥CD
(
1−κ(D)

) (vg ·u)2

|vg |2 |u|2
Q1,u[g ]

avec vg := 1
D

∫
Rd (v −u) g fu d v.
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Nous allons maintenant étudier le comportement asymptotique à long temps
de la solution de (1.20) pour le cas D > D∗. On fait d’abord la linéarisation de
(1.20). On écrit

f = f0 (1+ g ), vg = 1

D

∫
Rd

v g f0 d v

alors (1.20) devient

∂g

∂t
=L g −vg ·

(
D ∇g − (

v +∇φα
)

g
)
, (1.23)

ici
L g := D∆g − (

v +∇φα
) · (∇g −vg

)
est l’opérateur linéarisé. En suite, sur l’espace

X :=
{

g ∈ L2( f0 d v) :
∫
Rd

g f0 d v = 0

}
Nous définissons naturellement le produit scalaire〈

g1, g2
〉

:= D
∫
Rd

g1 g2 f0 d v −D2 vg1 ·vg2

et il est équivalent à la norme standard L2( f0 d v). De plus,

Q1,0[g ] = 〈
g , g

〉
, Q2,0[g ] =− 〈

g ,L g
〉

.

Pour prouver le théorème de comportement asymptotique à long temps,
nous rappelons que CD est la constante optimale dans l’inégalité

Q2,0[g ] ≥CD Q1,0[g ] .

Pour le équation linéarisée
∂g

∂t
=L g (1.24)

avec donnée initiale g0 ∈X ,

1

2

d

d t
Q1,0[g ] = 1

2

d

d t

〈
g , g

〉= 〈
g ,L g

〉=−Q2,0[g ]

et il a une décroissance exponentielle. Donc〈
g (t , ·), g (t , ·)〉≤ 〈

g0, g0
〉

e−2CD t ∀ t ≥ 0.

Nous réécrivons (1.23)comme

f0
∂g

∂t
= D ∇·

(
(∇g −vg ) f0

)
−D vg ·∇(g f0)

nous trouvons que

1

2

d

d t
Q1,0[g ]+ Q2,0[g ] = D2 vg ·

∫
Rd

g (∇g −vg ) f0 d v .
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nous utilisons u f = D vg , inégalité de Cauchy-Schwartz et (1.21), et nous obtenons(∫
Rd

g (∇g −vg ) f0 d v

)2

≤
∫
Rd

g 2 f0 d v
∫
Rd

|∇g −vg |2 f0 d v ≤ Q1,0[g ]

η(D)

Q2,0[g ]

D2 .

dans Proposition 1.3, nous avons

d

d t
Q1,0[g ] ≤−2

(
1−|u f (t )|

√
CD
η(D)

)
Q1,0[g ] .

nous pouvons quelimt→+∞ |u f (t )| = 0, donc

limsup
t→+∞

e2CD t Q1,0[g (t , ·)] <+∞ (1.25)

de inégalité de Gronwall. De plus, on observe

f log
(

f / f0
)− ( f − f0) ≤ 1

2
( f − f0)2/ f0

donc finalement le théorème est prouvé.

Le cas D ≤ D∗ est plus compliqué mais il est néanmoins possible d’obtenir des
résultats analogues en temps grand pour la décroissance de l’entropie et, dans
des cas simples (d = 1, ou d ≥ 2 et données initiales possédant une symétrie)
avec conditions ad hoc sur l’entropie, d’établir la convergence vers une solu-
tion stationnaire polarisée. Dans le cas général, on monte aussi la décroissance
exponentielle de F [ f (t , ·)]−F [ fu] si F [ fin] <F [ f0], ce qui démontre la conver-
gence vers l’ensemble des solutions stationnaires polarisées.

Proposition 1.4. Nous supposons quet d ≥ 2, α > 0 et D ∈ (0,D∗). Nous con-
siderons une solution f de (1.20) avec donnée initiale non négative fin de masse
1, tel que F [ fin] < F [ f0] et supposons que u = limt→+∞ u f (t ) est uniquement
défini. Si

|(u f −u) ·u| ≥ εu(D) |u f −u|
pour quelques ε > 0 et t > 0 assez grand, alors il existe deux constantes C , λ et
quelque u ∈Rd , tel que

0 ≤F [ f (t , ·)]−F [ fu] ≤C e−λ t ∀ t ≥ 0.

Il y a encore des problèmes ouverts à ce sujet. Le premier problème est,
avons-nous plus d’informations sur la valeur seuil D∗ et u(D)? Nous avons déjá
prouvé que

lim
α→0

D∗(α,d) = 1

d +2
, lim

α→∞D∗(α,d) = 1

d
.

quand α→∞, existe-t-il une constante η> 0, telle que

lim
α→∞αη

(
D∗− 1

d

)
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existe? En plus, nous savons dans le section 4.2.6 et [13] que

lim
D→0

u(D) = 1, lim
D→D∗

u(D)2

D∗−D
=α

(1−α) (1−d D∗)−2D∗
1− (d +2)D∗

.

Pouvons-nous donner une description plus délicate du comportement de u(D)
sur (0,D∗)?

Le deuxième problème concerne le cas polarisé 0 < D < D∗. Nous ne pou-
vons pas dire exactement que quand la convergence vers la solution stationnaire
isotrope ou la solution stationnaire polarisée apparaît. Si la solution converge
vers la solution stationnaire isotrope f0, nous pouvons déduire de l’inégalité de
Log-Sobolev que

|| f (t , ·)− f0||L1(Rd ) → 0 quand t →∞

Mais maintenant f0 n’est pas linéairement stable, nous ne pouvons donc pas
utiliser la méthode ci-dessus pour étudier le comportement asymptotique à long
temps. Nous supposons qu’en utilisant la méthode φ-entropie pour prouver le
résultat suivant: pour chaque 0 < D < D∗, il existe 1 < p < 2, C∗,λ> 0, tel que∫

Rd
ϕp

(
f

f0

)
f0 d v ≤C∗e−λt .

1.2.2 Le système de Nernst-Planck

Le système de Nernst-Planck est d’abord étudé par W.Nernst et M.Planck en
électromagnétisme. Et ils ont utilisè ce modèle pour dècrire la diffusion de par-
ticules chargèes dans un solutè sous l’influence d’un potentiel, en présence de
forces électrostatiques. En dimension d = 2, le modèle d’origine est un système
sans confinement avec couplage Poisson a la forme

∂u
∂t =∆u +∇· (u∇v)

v =− 1
2π log |x|∗u

u(0, x) = n0 ≥ 0
x ∈R2 , t > 0. (1.26)

Et dans cette thèse, nous considérons le système de Poisson-Nernst-Planck avec
confinement s’écrit

∂n
∂t =∆n +∇· (n∇c)+∇· (n∇φ)

−∆c = n
n(0, x) = n0 ≥ 0,

∫
Rd n(0, x)d x = M > 0

x ∈Rd , t > 0. (1.27)

Il décrit un modèle de particules chargées soumises à la fois à une diffusion
et à une force de dérive donnée au travers d’une équation de Poisson par un
terme non-linéaire de champ moyen. Un tel système, dans lequel les partic-
ules se repoussent par interaction électrostatique, a tendance à tendre vers zéro
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ponctuellement, et c’est pourquoi on introduit un potentiel extérieur de con-
finement φ. De plus, pour le cas particulier d = 2,φ= µ

2 |x|2, nous pouvons relier
ces deux systèmes en changeant les variables

u(t , x) = R−d n(τ,ξ), v(t , x) = c(τ,ξ) où ξ= x

R
,τ= logR,R = (1+2µ t )

1
2

les solutions stationnaires de (1.27) sont les formes

−∆c∞ = n∞ = M
e−c∞−φ∫

Rd e−c∞−φd x
.

Comme dans le cas du modèle de Cucker-Smale homogène, nous définissons
l’énergie libre et les informations de Fisher

F [n] :=
∫
Rd

n logn d x +
∫
Rd

nφd x + 1

2

∫
Rd

n c d x

I [n] :=− d

d t
F [n] =

∫
Rd

n |∇(logn + c +φ)|2 d x .

Notre but estède prouver le résultat de convergence de la solution de (1.27) vers
les solutions stationnaires (n∞,c∞). Nous élaborons d’abord notre théorème
principal, qui donne le taux optimal du poids exponentiel en termes de norme
L2 pondérée.

Théorème 1.5. Nous supposons que d = 2 et le potentiel φ = µ
2 |x|2. nous sup-

posons aussi que n résout (1.27) avec donnée initiale n(0, x) = n0 ≥ 0,
∫
Rd n0 d x =

M, tel que F [n0] <∞. Alors il exists une constants positive C , tel que pour tout
les temps t > 0, ∫

Rd

|n(t , .)−n∞|2
n∞

d x ≤C e−2µt .

Nous prouverons également que le taux exponentiel 2µ est optimal. En fait,
nous pouvons prouver le résultat similaire pour le potentiel général φ aussi.
Comme dans le cas du modèle de Cucker-Smale homogène, c’est une linéarisa-
tion appropriée autour de la solution stationnaire qui décide du taux de conver-
gence. Un point particulièrement intéressant vient du fait que, avec le produit
scalaire correspondant à l’analogue de la forme quadratique Q1,0, l’opérateur
d’évolution linéarisé est la forme polaire de la forme quadratique Q2,0. Le prob-
lème est en fait plus simple que pour le modèle de flocking, car il est possible de
caractériser la solution stationnaire comme minimum de l’énergie libre, qui est
une fonctionnelle strictement convexe (et bornée inférieurement si φ est con-
finant). On montre alors que, sous des hypothèses de croissance sur φ, il y a
convergence avec un taux exponentiel, mais nous ne pouvons pas garantir que
le taux est optimal. Pour des résultats précis, nous renvoyons au chapitre dédié. .
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D’abord, nous étudions l’energie libre F [n]. Nous pouvons prouver sur le
ensemble

X :=
{

f ∈ L1
+(Rd ) :

∫
Rd

f (x)d x = M , f log f ∈ L1(Rd ), f φ ∈ L1(Rd )
}

,

F est semi-borné par le bas et il a un minimiseur unique n∞ sur X . En suite,
nous affirmons que si n résout (1.27), alors pour tout p ∈ [1,∞), q ∈ [2,∞),

lim
t→∞‖n(t , ·)−n∞‖Lp (Rd ) = 0, lim

t→∞‖∇c(t , ·)−∇c∞‖Lq (Rd ) = 0.

Pour prouver cette affirmation, nous devons d’abord montrer que ‖n(t , ·)‖Lp (Rd ),
‖∇c(t , ·)‖Lq (Rd ) sont uniformément borné à partir de calculs directs. Pour prou-
ver la convergence vers la solution stationnaire, le cas d = 3 est simple, et le cas
d = 2 est plus difficile. Nous utiliserons le lemme de Auber-Lions.

L’étape suivante, comme dans le cas du modèle de Cucker-Smale homogène,
nous étudions les perturbations autour des solutions stationnaires. Nous définis-
sons les formes quadratiques, qui sont respectivement la linéarisation de l’én-
ergie libre et l’information de Fisher:

Q1[ f ] := lim
ε→0

2

ε2 F [n∞ (1+ε f )] =
∫
Rd

f 2n∞ d x +
∫
Rd

|∇(g c∞)|2 d x

Q2[ f ] := lim
ε→0

1

ε2 I [n∞ (1+ε f )] =
∫
Rd

|∇( f + g c∞)|2n∞ d x

D’abord, si n∞ satisfait l’inégalité de Poincaré: il existe C? > 0, tel que

pour tout u ∈ H1(Rd ),
∫
Rd

un∞ d x = 0,
∫
Rd

|∇x u|2n∞ d x ≥C?

∫
Rd

u2n∞ d x

(1.28)
En particulier, pour d = 2,φ = µ

2 |x|2(µ > 0), la constante de coercivité opti-
male entre Q1[ f ] et Q2[ f ] est juste µ. La preuve de cette conclusion peut être
divisée en trois parties:
• Étape 1: pour les fonctions radiales, le problème est devenu un problème EDO.
Nous parvenons à trouver une valeur propre non triviale λ= 2µ> 0 et les fonc-
tions propres correspondantes.
• Étape 2: utiliser la théorie de Sturm-Liouville pour montrer que la valeur pro-
pre à l’étape 1 est la meilleure.
• Étape 3: pour des fonctions non radiales plus générales, nous faisons la dé-
composition des harmoniques sphériques, et la constante de coercivité opti-
male est atteinte aux fonctions dans l’une des composantes non radiales k = 1
avec la valeur propre µ.

Maintenant, nous revenons à l’équation (1.27). Pour prouver le théorème
sur le comportement asymptotique à grande temps, nous devons linéariser l’équa-
tion. Nous écrivons n = n∞(1+ f ),c = c∞(1+ g ), et (1.27) devient

∂ f

∂t
−L f = 1

n∞
∇( f n∞∇(g c∞)), −∆(g c∞) = f n∞
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ici

L f := 1

n∞
∇[

n∞∇(
f + g c∞

)]
est l’opérateur linéarisé. Nous définissons Gd comme la fonction de Green du
Laplacien dans Rd . Sur l’ensemble

A :=
{

f ∈ L2(Rd , n∞ d x) :
∫
Rd

f n∞ d x = 0

}
nous pouvons définir le produit scalaire〈

f1, f2
〉

:=
∫
Rd

f1 f2 n∞ d x +
∫
Rd

n∞ f1
(
Gd ∗ ( f2 n∞)

)
d x

de plus, nous avons

Q1[ f ] = 〈
f , f

〉
, Q2[ f ] =−〈

f ,L f
〉

.

1

2

d

d t
Q1[ f ] =

〈
∂ f

∂t
, f

〉
=−Q2[ f ]−

∫
Rd

∇( f + g c∞) f n∞∇(g c∞)d x

Nous supposons que C? est la constante de coercivité optimale entre Q1 et Q2

définie dans (1.28). Nous rappelons que C∗ = µ quand d = 2,φ = µ
2 |x|2(µ > 0).

Donc
1

2

d

d t
Q1[ f ] ≤−C?

(
1− ‖∇(g c∞)‖L∞(Rd )√

C?

)
Q1[ f ].

En faisant l’estimation de ‖∇(g c∞)‖L∞(Rd ), le théorème est finalement prouvé
par lemme de Gronwall. En fait, Le problème est en fait plus simple que pour
le modèle de flocking, car il est possible de caractériser la solution stationnaire
comme minimum de lnergie libre, qui est une fonctionnelle strictement con-
vexe.

Nous avons plus de résultats pour le cas d = 2,φ = µ
2 |x|2(µ > 0). D’abord,

nous pouvons prouver que ‖n(t , ·) − n∞‖L∞(Rd ) → 0 pour t → ∞. La preuve
est basée sur le noyau associé à l’équation de Fokker-Planck et à la formule
de Duhamel. De plus, nous combinons avec le théorème du comportement
asymptotique à grand temps, nous avons un meilleur résultat, qui est

‖n(t , ·)−n∞‖L∞(Rd ) =O(e−λt ) pour tout 0 <λ<µ.

Nous revenons au système de Nernst-Planck sans confinement (1.26). Du résul-
tat ci-dessus, nous obtenons un résultat sur l’asymptotique intermédiaire pour
les solutions de (1.26) en l’absence de tout potentiel externe de confinement.

Remarque 1.3. Un problème plus général concerne le comportement asympto-
tique à long temps des solutions aux systèmes de dérive-diffusion

∂u
∂t =∇(∇u +u∇φ+u∇φ0), u(0, .) = u0(x) ≥ 0
∂v
∂t =∇(∇v − v∇φ+ v∇φ0), v(0, .) = v0(x) ≥ 0

−∆φ= u − v
x ∈Rd , t > 0, (1.29)
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ici la dimension d est encore 2 ou 3. De plus,∫
Rd

u0 d x = Mu ,
∫
Rd

v0 d x = Mv

nous pouvons toujours prouver le résultat similaire en utilisant la méthode ci-
dessus. Mais attention, maintenant le résultat dépend vraiment des masses Mu et
Mv . D’autres travaux sur ce sujet sont en cours.

1.3 Partie 3: inégalité de Hardy-Littlewood-Sobolev loga-
rithmique généralisée

En fait, la véritable difficulté pour le système de Poisson-Nernst-Planck con-
siste à déterminer les conditions sous lesquelles l’énergie libre est bornée in-
férieurement. C’est d’ailleurs aussi l’une des difficultés dans l’étude du sys-
tème de Vlasov-Poisson-Fokker-Planck linéarisé. Si cela ne pose pas de réel
problème particulier en dimension d ≥ 3, en revanche le problème n’est pas
complètement simple en dimension d = 2. Lorsque l’on résoud une équation
de Poisson de la forme −∆c = n, le potentiel c est donné à une constante ad-
ditive près au moyen d’une convolution qui prend la forme c(x) = (−∆)−1 n =
− 1

2π

∫
R2 log |x − y |n(y)d y et il n’est pas évident de décider si l’énergie libre

F [n] =
∫
R2

n logn d x +
∫
R2

nφd x + 1

2

∫
R2

n (−∆)−1 n d x

est bornée inférieurement, étant donné que le noyau de convolution n’a pas
de signe défini. C’est l’objet du dernier chapitre de cette thèse de donner une
réponse précise sur la croissance nécessaire du potentiel extérieur pour garan-
tir une borne inférieure. L’estimation principale consiste à établir l’inégalité de
Hardy-Littlewood-Sobolev logarithmique généralisée suivante.

Théorème 1.6. Considérons le potentiel extérieur V (x) = 2 log
(
1+|x|2)+ logπ.

Pour tout α≥ 0, on a∫
R2

f log

(
f

M

)
d x +α

∫
R2

V f d x +M (1−α)
(
1+ logπ

)
≥ 2

M
(α−1)

Ï
R2×R2

f (x) f (y) log |x − y |d x d y

pour toute fonction f ∈ L1+(R2) de masse M = ∫
R2 f d x > 0. De plus, le cas d’égalité

est atteint par f? = M e−V et f? est l’unique fonction optimale pour tout α> 0.

Dans le cas limiteα= 0, l’inégalité n’est autre que l’inégalité de Hardy-Little-
wood-Sobolev logarithmique établie par Carlen et Loss. Pour α ∈ (0,1], le résul-
tat se déduit assez simplement du cas α= 0, en utilisant une simple inégalité de
Jensen. Par contre, pour α > 1, le coefficient du terme de convolution change
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de signe est c’est donc une inégalité d’une autre nature qui apparait. Il se trouve
que Carlen, Carrillo et Loss ont donné dans [51] une preuve du cas α = 0 basée
sur l’utilisation d’un flot non-linéaire. Cette approche peut être généralisée dans
le cas d’un potentiel extérieur et en particulier dans le cas de V avec α 6= 0, au
prix d’un flot de diffusion non-linéaire avec un terme de dérive. En pratique
cela revient à considérer la différence des deux termes de l’inégalité et à mon-
trer qu’elle est monotone sous l’action de l’équation d’évolution

∂ f

∂t
=∆

√
f +2

p
π∇· (x f ) .

Plus clairement, nous considérons l’énergie gratuite

F [ f ] :=
∫
R2

f log f d x +α
∫
R2

V f d x + (1−α)
(
1+ logπ

)
+2(1−α)

Ï
R2×R2

f (x) f (y) log |x − y |d x d y

À partir des calculs directs et de l’inégalité de Gagliardo-Nirenberg, t 7→F [ f (t , ·)]
est monotone noncroissant pour tout t ≥ 0. Le résultat de Carlen, Carrillo et
Loss fait principalement appel à l’homogénéité de l’équation et de l’inégalité,
ainsi qu’à la forme des profils asymptotiques. Ici, c’est une méthode d’entropie
nouvelle, dans un cas inhomogène, basée sur un flot non-linéaire, qui permet
d’établir l’inégalité fonctionnelle du théorème et de caractériser le cas d’égalité.

Ensuite, nous nous concentrons sur l’application du théorème. Considérons
le modèle de dérive-diffusion-Poisson

∂ f

∂t
=∆ f +β∇· ( f ∇V )+∇· ( f ∇φ) où − ε∆φ= f

Quand ε=−1, c’est le cas attrayant. Et quand ε=+1, c’est le cas répulsif (modèle
de Keller-Segel). Compte tenu de méthodes d’entropie, considérons la énergie
libre fonctionnelle

Fβ[ f ] :=
∫
R2

f log f d x +β
∫
R2

V f d x + 1

2

∫
R2
φ f d x .

Nous avons le corollaire suivant.

Corollaire 1.1. Supposons que M > 0. Le fonctionnel Fβ est borné par le bas et
admet un minimiseur sur l’ensemble des fonctions

B :=
{

f ∈ L1
+(R2), tel que

∫
R2

f d x = M

}
si soit ε = +1 et β ≥ 1+ M

8π , soit ε = −1, β ≥ 1− M
8π et M ≤ 8π. Si ε = +1, le min-

imiseur est unique.
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Partial differential equations (PDEs) can describe the models from many
fields such as physics, biology, ecology and economic studies. In this thesis, the
models we consider are all depending on the time t , which let the mathematical
models become evolution PDEs. We mainly study two aspects of the behaviour
of these models: the hypocoercivity and the large time asymptotic behaviour.

We first give the basic explanations about the meanings of hypocoercivity
and asymptotic behaviour.

• What is hypocoercivity? It is a typical issue of kinetic models. The word
"kinetic" comes from physics and refers in the language of classical mechanics
to a model that depends on the position variable x and the velocity variable v.
One of the important topics concerning these models is about the convergence
to a stationary state when the time is large enough and the rate of convergence.
In the language of mathematical PDE theory, it is to study the qualitative esti-
mate of the rate of the solutions towards a global equilibrium, or so-called sta-
tionary solution. A useful tool is the entropy, or the so-called free energy, which
is a nonnegative functional which is decaying with respect to the time t . Our
goal is to study the exponential rate of the convergence of the free energy of the
solutions towards the free energy of the stationary solution. If the entropy dis-
sipation is coercive with respect to the entropy functional, then we can directly
have the coercivity result from Grönwall’s inequality. However, in kinetic trans-
port models, this method cannot be directly implemented, because the decay of
the entropy functional only controls the convergence towards a subspace. The
key tool to solve this problem is to consider the modified entropy functional,
which is equivalent to the entropy functional, such that the decay of the modi-
fied entropy functional is exponential. This stratagy is called hypocoercivity, see
[161, 106, 133, 83] for more details. In this thesis, Chapter 3 and Chapter 7 focuse
on this topic.

• What is large time asymptotic behaviour? In this thesis, what we care about
is the behaviour of the solutions predicted by the original model after large time
(t → ∞). Is there an exponential rate of convergence of the solutions towards
stationary solutions ? If yes, can we find the optimal rate? Can we compute the
exact value of the optimal rate in some special cases? These questions will be an-
swered in Chapter 4 and Chapter 6 for the homogeneous Cucker-Smale model of
flocking and for the Nernst-Planck equations for charged particles. These mod-
els rely on non-linear equations in both cases. Our strategy of proof is to do the
linearization and show that the exponential rate of convergence to stationary
states is given by the spectral gap of the linearized operator around the station-
ary solutions. The main tools are the free energy and the relative Fisher infor-
mation. We consider the corresponding quadratic forms around the stationary
solutions and prove a coercivity result between the quadratic forms. Moreover,
we will show in Chapter 4 that for the flocking model, there exists a threshold
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value of the noise parameter which drives a phase transition and we will classify
all stationary solutions.

The mathematical method for studying the models depends on the dimen-
sion d of the space. Usually we can divide into three cases: d = 1, d = 2 and
d ≥ 3. This is because the corresponding tools and equations, such as the Pois-
son equation or the Sobolev inequalities, differ according to these three cases.
The 1-dimensional case is not the main target of this thesis, and we will discuss
it only in Chapter 4 and Chapter 7. The case d = 2 is often more complicated,
because the Poisson kernel involves a logarithm, and the Onofri or the logarith-
mic Hardy-Littlewood-Sobolev (log HLS) inequalities apply instead of normal
Sobolev or Hardy-Littlewood-Sobolev (HLS) inequalities. Chapter 5 is the theo-
retical preparation for d = 2, which will be used to prove the results of Chapter 6
and Chapter 7.

This introduction goes as follows. Part 2.1 is devoted to hypocoercivity. We
introduce the kinetic Fokker-Planck equation and the linearized Vlasov-Poisson-
Fokker-Planck equation, give the main results and main ideas of the proofs.
Part 2.2 is concerned with the large time asymptotic behaviour of the Cucker-
Smale model of flocking and of the Nernst-Planck equation. Moreover, we de-
scribe a phase transition in the flocking model. In part 2.3, we introduce a gener-
alized logarithmic Hardy-Littlewood-Sobolev inequality and give an important
application: the free energy is bounded from below, and admits a unique mini-
mizer under rather general conditions.

2.1 Part 1: hypocoercivity

In this thesis, we mainly focuse on the kinetic transport models. The ordinary
mathematical model to describe them can be written as

∂t f +T f = L f (2.1)

where the distribution function f (t , x, v) is defined on the phase space x, v ∈Rd ,
t ∈ [0,∞) is the time, and f belongs to a Hilbert space H with the corresponding
scalar product and associated norm. The operator T is called transport operator
and the operator L is called collision operator and they are respectively antisym-
metric and symmetric under the scalar product. Here we focuse on two equa-
tions: the kinetic Fokker-Planck equation in an external harmonic potential,

∂ f

∂t
+ v ·∇x f −x ·∇v f =∆v f +∇v ·

(
v f

)
, (2.2)
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that we use as a benchmark for testing optimal estimate, and the linearized
Vlasov-Poisson-Fokker-Planck equation

∂t h + v ·∇x h − (∇xV +∇xφ?
) ·∇v h + v ·∇xψh −∆v h + v ·∇v h = 0,

−∆xψh =
∫
Rd

h f?d v ,
Ï
Rd×Rd

h f?d x d v = 0.
(2.3)

2.1.1 Kinetic Fokker-Planck equation

The ϕ-entropy of a nonnegative function w ∈ L1(Rd ,dγ) is usually defined as

E [w] :=
∫
Rd
ϕ(w)dγ ,

where dγ denotes a nonnegative, usually bounded measure and ϕ is a nonneg-
ative convex continuous function on R+ such that

ϕ(1) = 0, ϕ′′ ≥ 0, ϕ≥ϕ(1) = 0 and (1/ϕ′′)′′ ≤ 0. (2.4)

A classic example is

ϕp (w) := 1
p−1

(
w p −1−p (w −1)

)
p ∈ (1,2] (2.5)

when p = 2, ϕ2(w) = (w −1)2 and the limit as p → 1+ is the Gibbs entropy

ϕ1(w) := w log w − (w −1) .

Now we consider the extension of the notion of ϕ-entropy to the kinetic Fokker-
Planck equation.

Because (2.2) is linear, we can suppose that
∥∥ f

∥∥
L1(Rd×Rd ) = 1. The stationary

solution is

f?(x, v) = (2π)−d e−
1
2 (|x|2+|v |2) ∀ (x, v) ∈Rd ×Rd .

The function g := f / f? solves

∂g

∂t
+Tg = Lg (2.6)

where the transport operator T and the collision operator L are

Tg := v ·∇x g −x ·∇v g and Lg :=∆v g − v ·∇v g .

Let dµ := f?d x d v be the invariant measure on the phase space Rd ×Rd , so that
T and L are respectively anti-self-adjoint and self-adjoint on the space L2(Rd ,dµ).

For the equation (2.6), we study the convergence of g (t , ·) towards the sta-
tionary state 1. We need a lemma, and its proof can be found in [116].
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Lemma 2.1. Suppose that f , g ∈ L1(Rd ) satisfy f ≥ 0, g > 0, and
∫
Rd f (x)d x =∫

Rd g (x)d x = 1. Then for ϕp defined in (2.5), we have(∫
Rd

| f − g |d x

)2

≤ 2
∫
Rd
ϕp

(
f

g

)
g d x

From the lemma above, if we can prove that the ϕ-potential

E [g ] :=
Ï
Rd×Rd

ϕ(g )dµ

converges to 0 for large time t , then the L1-convergence of g towards 1 for large
time t is also concluded. Moreover, for (2.2), the convergence of f towards the
stationary state f? can be naturally deduced.

First, the function h := g p/2 solves

∂h

∂t
+Th = Lh + 2−p

p

|∇v h|2
h

. (2.7)

With this notation, E [g ] =Î
Rd×Rd ϕ

(
f / f?

)
dµ so that, with f = g f? = h2/p f? we

have

E [g ] =
Ï
Rd×Rd

h2 log

(
h2Î

Rd×Rd h2 dµ

)
dµ if ϕ=ϕ1 ,

E [g ] = E [h2/p ] = 1

p −1

[Ï
Rd×Rd

h2 dµ−
(Ï

Rd×Rd
h2/p dµ

)p/2
]

if ϕ=ϕp , p ∈ (1,2] .

The optimal rate of decay of E [g ] has been established by A. Arnold and J. Erb
in [7], which is the following result.

Proposition 2.1. Take ϕ = ϕp for some p ∈ [1,2]. To any nonnegative solution
g ∈ L1(Rd ×Rd ) of (2.6) with an initial datum g0 such that E [g0] < ∞, we can
associate a constant C > 0 for which

E [g (t , ·, ·)] ≤C e−t ∀ t ≥ 0. (2.8)

Moreover the rate e−t is sharp as t →+∞.

In this thesis, our main tool is the Fisher information functional

Jλ[h] = (1−λ)
∫
Rd

|∇v h|2 dµ+(1−λ)
∫
Rd

|∇x h|2 dµ+λ
∫
Rd

|∇x h +∇v h|2 dµ . (2.9)

We can prove that even if this result of Proposition 2.1 is optimal, it is possi-
ble to obtain a slightly stronger result.
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Theorem 2.1. Let p ∈ (1,2) and h be a solution of (2.7) with initial datum h0 ∈
L1 ∩Lp (Rd ,dγ), h0 6≡ 1, and dγ be the Gaussian probability measure correspond-
ing to the harmonic potential potentialψ(x) = |x|2/2. Then there exists a function
λ :R+ → [1/2,1) such thatλ(0) = limt→+∞λ(t ) = 1/2 and a continuous function ρ
on R+ such that ρ > 1/2 a.e., for which we have

d

d t
Jλ(t )[h(t , ·)] ≤−2ρ(t )Jλ(t )[h(t , ·)] ∀ t ≥ 0.

As a consequence, for any t ≥ 0 we have the global estimate

Jλ(t )[h(t , ·)] ≤J1/2[h0] exp

(
−2

∫ t

0
ρ(s)d s

)
.

The strategy is based on a carré du champ computation as in Villani’s ap-
proach of the H1-hypocoercivity, where the improvement comes from the re-
mainder terms when p ∈ (1,2). We prove that for some λ ∈ (0,1) that depends on
time t , the rate of decay is faster than e−t up to a zero-measure set in t . Define
the notations

Hv v =
(

∂2h

∂vi ∂v j

)
1≤i , j≤d

, Hxv =
(

∂2h

∂xi ∂v j

)
1≤i , j≤d

,

Mv v =
(
∂
p

h

∂vi

∂
p

h

∂v j

)
1≤i , j≤d

, Mxv =
(
∂
p

h

∂xi

∂
p

h

∂v j

)
1≤i , j≤d

.

From direct computation,

−1

2

d

d t
Jλ(t )[h(t , ·)] = X ⊥ ·M1 X − 1

2
λ′(t ) X ⊥ ·

(
0 1
1 0

)
X +Y ⊥ ·M2 Y

where

M0 =
(

1 λ

λ 1

)
⊗ IdRd , M1 =

(
1−λ λ

2
λ
2 λ

)
⊗ IdRd

and

M2 =


1 λ −κ

2 −κλ
2

λ 1 −κλ
2 −κ

2
−κ

2 −κλ
2 2κ 2κλ

−κλ
2 −κ

2 2κλ 2κ

⊗ IdRd×Rd

are bloc-matrix valued functions of (λ,ν), here κ= 8(2−p)/p. And

X = (∇v h,∇x h) , Y = (Hv v ,Hxv ,Mv v ,Mxv )

from linear algebra theory, we learn that

Y ⊥ ·M2 Y ≥λ1(p,λ) |Y |2
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for some λ1(p,λ) such that

λ1(p,1/2) = 1

4

(
2κ+1−

√
5κ2 −4κ+1

)
> 0

if p ∈ (1,2), For any p ∈ (1,2), by continuity we know that λ1(p,λ) > 0 if λ is close
enough to 1

2 . We obtain that

−1

2

d

d t
Jλ(t )[h(t , ·)] ≥ X ⊥ ·M1 X + 1

2
λ′(t ) X ⊥ ·M0 X +εX ⊥ ·M3 X

with

M3 =
(

1 0
0 0

)
⊗ IdRd

and

ε= λ1(p,λ)
∫
Rd |∇v h|2 dµ

1+ (p −1)E [h2/p
0 ]

. This follows from the estimate |Y |2 ≥ ‖Mv v‖2 and from the Cauchy-Schwarz
inequality. Notice that e t

∫
Rd |∇v h|2 dµ is positive except for isolated values of

t > 0. Our goal is to find λ(t ) and ρ(t ) > 1/2 such that

X ⊥ ·M1 X − 1

2
λ′(t ) X ⊥ ·

(
0 1
1 0

)
X +εX ⊥ ·M3 X ≥ ρ(t ) X ⊥ ·M0 X

for any X ∈R2d . The detail of the proof can be seen in section 3.3 of Chapter 3.

Remark 2.1. We are able to give an example of a function that reaches the optimal
rate. Let

f0(x, v) = f?(x −x0, v − v0) ∀ (x, v) ∈Rd ×Rd

for some (x0, v0) 6= (0,0). From direct computations, we obtain that

f (t , x, v) = f?
(
x −x?(t ), v − v?(t )

)
with

 x?(t ) =
(
cos

(p3
2 t

)
x0 + 2p

3
sin

(p3
2 t

)(
v0 + x0

2

))
e−

t
2 ,

v?(t ) =
(
−

p
3

2 sin
(p3

2 t
)(

x0 + v0
2

)+cos
(p3

2 t
)

v0

)
e−

t
2 ,

(2.10)

solves (2.2). For the entropy with g = f / f? and ϕ=ϕp , we obtain as t →+∞ that

E [g (t , ·, ·)] =
Ï
Rd×Rd

ϕp (g )dµ= p

2

Ï
Rd×Rd

|g −1|2 dµ (1+o(1))

= p

2

(|x?(t )|2 +|v?(t )|2) (1+o(1)) =O
(
e−t ) .

This proves that the rate e−t is optimal .
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2.1.2 Linearized Vlasov-Poisson-Fokker-Planck equation

The nonlinear Vlasov-Poisson-Fokker-Planck equation with an external poten-
tial V is

∂t f + v ·∇x f − (∇xV +∇xφ
) ·∇v f =∆v f +∇v · (v f ) ,

−∆xφ= ρ f =
∫
Rd

f d v .
(2.11)

It describes the dynamics of a plasma of Coulomb particles in a thermal reser-
voir, which degenerates into a Vlasov-Poisson equation at low temperature (here
the temperature is taken to be 1 as well as other physical constants).

Under appropriate conditions on V , the system (2.11) has a unique nonneg-
ative integrable stationary solution f∗ with associated potential φ∗. Set

M =
Ï
Rd×Rd

f?d x d v > 0

as the mass. Now we linearize (2.11) around f∗. We define the function h such
that

f = f? (1+ηh) .

The mass constraint
Î
Rd×Rd f d x d v = M can then be rewritten asÏ

Rd×Rd
h f?d x d v = 0,

and (2.11) becomes

∂t h + v ·∇x h − (∇xV +∇xφ?
) ·∇v h + v ·∇xψh −∆v h + v ·∇v h = η∇xψh ·∇v h ,

−∆xψh =
∫
Rd

h f?d v .

The linearized equation (2.3) is obtained by dropping O (η) term. Define the
norm

‖h‖2 :=
Ï
Rd×Rd

h2 f?d x d v +
∫
Rd

|∇xψh |2 d x .

Our main result is devoted to the large time behaviour of a solution of the lin-
earized system (2.3) on R+×Rd ×Rd 3 (t , x, v) with given initial datum h0 at t = 0.

Theorem 2.2. Let us assume that d ≥ 1, V (x) = |x|α for some α > 1 and M > 0.
Then there exist two constants C and λ such that any solution h of (2.3) with an
initial datum h0 of zero average with ‖h0‖2 <∞ is such that

‖h(t , ·, ·)‖2 ≤C ‖h0‖2 e−λt ∀ t ≥ 0. (2.12)

This theorem can be extended to a general external potential V (x) under
technical conditions. The estimates are robust and compatible with the diffu-
sion limit, which is discussed more precisely in Chapter 7 (also see below). The
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strategy for proving Theorem 2.2 relies on two ideas:
•Use the norm obtained by a Taylor expansion of the entropy around the asymp-
totic state, that can measure the asymptotic rate of convergence. In presence of
a Poisson coupling, this norm has to involve a non-local term, which is the main
source of technical difficulties. See [50, 123, 124] for similar situations.
• On the basis of the previous norm, build a twisted norm, or Lyapunov func-
tional, which has a coercivity property and reflects the spectral gap that deter-
mines the rate of convergence. This idea is inspired from [83, 106].

Another point is to obtain estimates which are uniform in the diffusion limit.
For any ε > 0, we consider the solution of the Vlasov-Poisson-Fokker-Planck
equation in the parabolic scaling given by

ε∂t f +v ·∇x f −(∇xV +∇xφ
)·∇v f = 1

ε

(
∆v f +∇v · (v f )

)
, −∆xφ= ρ f =

∫
Rd

f d v .

(2.13)
It has been proved that when d = 2 or 3, (2.13) has a weak solution

(
f ε,φε

)
which

converges as ε→ 0+ to f 0, where the charge density ρ = ∫
Rd f 0 d v is a weak so-

lution of the drift-diffusion-Poisson system

∂ρ

∂t
=∇x ·

(∇xρ+ρ∇x (V +φ)
)

, −∆xφ= ρ . (2.14)

A source of inspiration for the method is the asymptotic behavior of the solu-
tions of (2.14) for large time. As t →+∞, it is well known that (ρ,φ) converges a
steady state (ρ?,φ?) given by the Poisson-Boltzmann equation

−∆xφ? = ρ? = e−V −φ? (2.15)

at an exponential rate. Now we linearize (2.13) to get the equation

ε∂t h + v ·∇x h − (∇xV +∇xφ?
) ·∇v h + v ·∇xψh − 1

ε

(
∆v h − v ·∇v h

)= 0,

−∆xψh =
∫
Rd

h f?d v ,
Ï
Rd×Rd

h f?d x d v = 0.

(2.16)
We obtain a decay estimate which is uniform with respect to ε→ 0+.

Theorem 2.3. Let us assume that d ≥ 1, V (x) = |x|α for someα> 1 and M > 0. For
any ε> 0 small enough, there exist two constants C and λ, which do not depend
on ε, such that any solution h of (2.16) with an initial datum such that ‖h0‖2 <∞
satisfies (2.12).

Let us explain the strategy of the method. We denote by T and L the transport
operator and the diffusion operator. Let us define Id as the identity, Π is the
orthogonal projection onto the null space of L, and assume that ∗ denotes the
adjoint with respect to 〈·, ·〉. As in [82, 83], we define the operator A by

A := (
Id+ (TΠ)∗TΠ

)−1(TΠ)∗
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and consider the Lyapunov functional

Hδ[h] := 1
2 ‖h‖2 +δ 〈Ah,h〉

for some δ> 0. If h solves (2.1), then

− d

d t
Hδ[h] =Dδ[h] ,

where

Dδ[h] :=− 〈Lh,h〉+δ 〈ATΠh,h〉− δ 〈TAh,h〉+δ 〈AT(Id−Π)h,h〉−δ 〈ALh,h〉 .

We shall consider a space of distribution functions such thatÏ
Rd×Rd

h f?d x d v = 0

and use the scalar product

〈h1,h2〉 :=
Ï
Rd×Rd

h1 h2 dµ+
∫
Rd
ρh1 (−∆)−1ρh2 d x

which is adapted to the Poisson coupling. With these preliminaries, it is possible
to rely on an abstract method for hypocoercivity on a Hilbert space H that goes
as follows. Suppose that there exist constants λm , λM and CM > 0, such that for
any F ∈H , the following properties hold:

B microscopic coercivity

− 〈LF ,F 〉 ≥λm ‖(Id−Π)F‖2 , (H1)

B macroscopic coercivity

‖TΠF‖2 ≥λM ‖ΠF‖2 , (H2)

B parabolic macroscopic dynamics

ΠTΠF = 0, (H3)

B bounded auxiliary operators

‖AT(Id−Π)F‖+‖ALF‖ ≤CM ‖(Id−Π)F‖ . (H4)

The first observation is the following abstract result, taken from [82, 83].

Proposition 2.2. There exists a constant λ > 0 depending on λm , λM and CM ,
such that λHδ[F ] ≤ Dδ[F ] for any F ∈ H . As a consequence, for a solution of
(2.1), we have Hδ[F (t , ·)] ≤Hδ[F0]e−λt .
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Let us come back to the linearized VPFP system (2.3). The transport and the
diffusion operators are defined by

Th := v ·∇x h −∇xW? ·∇v h + v ·∇xψh , Lh :=∆v h − v ·∇v h . (2.17)

The proof of Theorem 2.2 relies on a number of preliminary observations:
• Due to the confinement potential, integration by parts can be performed.
• There exists a unique solution of the Poisson-Boltzmann equation.
•The probability measure build on top of the solution of the Poisson-Boltzmann
equation satisfies a Poincaré inequality.
• The scalar product is well defined.

Next we need to check (H1)-(H4) are satisfied. (H1)-(H3) are not difficult to
prove. (H4) is more complicated (the details are given in section 7.4 of Chap-
ter 7):
• Do the reformulation of the inequality as an elliptic regularity estimate.
• Get an estimate of H1–type.
• Prove weighted Poincaré inequalities and weighted H1–type estimates.
• Get estimates for the second order term.

As a consequence, we can identify the best possible rates of convergence for
the nonlinear Vlasov-Poisson-Fokker-Planck system. We establish this rate in
the d = 1 case, but in higher dimensions, some global regularity estimates are
still missing.

Remark 2.2. We suppose in the theorem that V (x) = |x|α withα> 1. It also apply
for more general V , which should satisfy a number of technical assumptions, see
section 7.3. It is easy to check that V (x) = |x|α satisfies all assumptions.

The method also applies to the linearized VPFP system (2.16) in the parabolic
scaling, with estimates which are independent of the scaling parameter ε > 0.
See section 7.5 of Chapter 7 for the details.

2.2 Part 2: Large time asymptotic behaviour

In this part, we introduce the Cucker-Smale for flocking model in the homo-
geneous version, which is a Vlasov-McKean type model, and the Nernst-Planck
system. In both cases, we state a result on the exponential rate of convergence
to the set of stationary solution, and for the flocking model, we also give a result
on a phase transition which corresponds to a symmetry breaking phenomenon.

2.2.1 flocking model

Emerging collective behaviours and self-organization in multi-agents interac-
tions are interesting topics in many fields. In biological systems, no matter cells,
insects or mammals, all the individuals can be self-organized and moving co-
herently. Of course, special conditions have to be fulfilled, otherwise random
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dynamics predominate. So it is important to create a mathematical model that
describes the switches between disorganized systems and systems exhibiting an
ordered phase. Additionally, the order parameter which decides whether the
system is ordered or not and measure the stability or the unstability of some
special stationary solutions can also be used in the dynamical regime to get an
estimate of the rates of convergence.

In this chapter, we consider the flocking behaviour. The original homoge-
nous Cucker-Smale model, also called McKean-Vlasov model, describes the ve-
locities of a group of birds. In [154, 13], the authors have analyzed the equation

∂ f

∂t
= D∆v f +∇v ·

(∇vφα(v) f −u f f
)

(2.18)

where

u f (t ) :=
∫
Rd v f (t , v)d v∫
Rd f (t , v)d v

is the average velocity, D > 0 is the parameter of noise, f is a probability mea-
sure, and the potential φ is given by

φα(v) = α

4
|v |4 + 1−α

2
|v |2 .

In particular, in[13], the emphasis is put on the analysis of the asymptotic regimes
as D → 0+ (small noise regime) and D →+∞ (large noise regime). Our goal is to
give a more complete picture and analyse stability and dynamical issues. Fig. 2.1
shows that there exists phase transition between disordered and collective state.

In order to study the dynamics, it is convenient to introduce the free energy

F [ f ] := D
∫
Rd

f log f d v +
∫
Rd

f φαd v − 1

2
|u f |2

which decays according to

d

d t
F [ f (t , ·)] =−

∫
Rd

∣∣∣∣D ∇v f

f
+∇vφα−u f

∣∣∣∣2

f d v .

Let us assume first that d = 1. For any D ∈ (0,D∗), for some D∗ > 0, there are
three stationary solutions: f (0)

? , and f (±)
? , with F [ f (±)

? ] < F [ f (0)
? ]. We prove the

following result: if F [ f (t = 0, ·)] <F [ f (0)
? ] and D < D∗, then

F [ f (t , ·)]−F
[

f (±)
?

]
≤C e−λ t

for some positive constant C , whereλ is the eigenvalue of the linearized problem

at f (±)
? in the weighted space L2

(
( f (±)
? )−1

)
with scalar product

〈 f , g 〉± := D
∫
R

f g
(

f (±)
?

)−1
d v −u f ug .
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The question that we adress next is to describe the set of the stationary solutions
in higher dimensions, establish the (local) stability properties of these solutions
and relate the spectral gap of the linearized problem with the rate of conver-
gence of the solutions of the evolution problem.

In Chapter 4, we consider (2.18) in dimension d ≥ 1. Our first result is

Theorem 2.4. Let d ≥ 1 and α> 0. There exists a critical D∗ > 0 such that

(i) D > D∗: there exists only one stable stationary distribution with u f = 0.

(ii) D < D∗: there exists one instable isotropic stationary distribution with
u f = 0 and a continuum of stable non-negative non-symmetric polarized
stationary distributions (unique up to a rotation).

Any stationary solution of (2.18) can be written as

fu(v) = e
− 1

D

(
1
2 |v−u|2+α4 |v |4−α2 |v |2

)
∫
Rd e

− 1
D

(
1
2 |v−u|2+α4 |v |4−α2 |v |2

)
d v

where u = (u1, ..ud ) ∈ Rd solves
∫
Rd (u− v) fu(v)d v = 0. Up to a rotation, u =

(u,0, ...0) = u e1 is given by

H (u) = 0

where

H (u) :=
∫
Rd

(v1 −u)e−
1
D (φα(v)−u v1) d v and φα(v) := α

4 |v |4 + 1−α
2 |v |2 .

The key steps of the proof of Theorem 2.4 are as follows:
• First from direct calculations, we obtain the expression

H (u) =α

∫
Rd

(
1−|v |2)v1 e−

1
D (φα(v)−u v1) d v

and we show that there exists a unique zero D∗ of H ′(0), and H ′(0) > 0 when
D < D∗, H ′(0) < 0 when D > D∗.
• If d = 1, for any u > 0, H ′′(u) < 0 if H (u) ≤ 0. As a consequence, H changes
sign at most once on (0,+∞).
• For d ≥ 2, we establish the following properties:
(1) When D ≥ D∗, then H ′(u) ≤ 0 for any u ≥ 0, then 0 is the only solution of
H (u) = 0.
(2) When D < D∗, we know that H ′(0) > 0, so there exists a positive zero u1 of
H (u). We will prove that H (u) is strictly decreasing on (u1,∞), so u1 is the only
zero of H (u).
The details of the proof can be seen in Chapter 4.
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The threshold value D∗ is a function ofα and d . To prove the existence of D∗,
we prove that

1

d +2
< D∗ < 1

d
for any α> 0, d ∈N∗.

In the last section of Chapter 4, we prove that

lim
α→0

D∗(α,d) = 1

d +2
, lim

α→∞D∗(α,d) = 1

d
.

The proof of Theorem 2.4 requires some additional technical work that we shall
omit here.

After discovering the role of the threshold value D∗ in phase transition, we
consider the dynamical aspects of the problem. For this purpose, we need the
following list of objects:
• Free energy

F [ f ] := D
∫
Rd

f log f d v +
∫
Rd

f φαd v − 1

2
|u f |2 ,

• Relative entropy with respect to a stationary solution fu

F [ f ]−F [ fu] = D
∫
Rd

f log

(
f

fu

)
d v − 1

2
|u f −u|2 ,

• Relative Fisher information

I [ f ] :=
∫
Rd

∣∣∣∣D ∇ f

f
+αv |v |2 + (1−α) v −u f

∣∣∣∣2

f d v ,

• Non-equilibrium Gibbs state

G f (v) := e
− 1

D

(
1
2 |v−u f |2+α4 |v |4−α2 |v |2

)
∫
Rd e

− 1
D

(
1
2 |v−u f |2+α4 |v |4−α2 |v |2

)
d v

.

A direct computation shows that F [ f ] is a Lyapunov function in the sense that

d

d t
F [ f (t , ·)] =−I [ f (t , ·)]

while F [ f ]−F [ fu] can be considered as a relative entropy to an arbitrary sta-
tionary state fu because

F [ f ]−F [ fu] = D
∫
Rd

f log

(
f

fu

)
d v − 1

2
|u f −u|2 .

The Fisher information can be considered as a relative functional as well, as we
can write it as

I [ f ] = D2
∫
Rd

∣∣∣∣∇ log

(
f

G f

)∣∣∣∣2

f d v ,
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but the point is that it is relative to a non-equilibrium Gibbs state which is not a
stationary state. To be precise, we have that d

d t F [ f (t , ·)] = 0 if and only if f =G f

is a stationary solution.

Next, we study the quadratic forms obtained by expanding the relative en-
tropy and the Fisher information around a stationary solution. Here we consider
the space of the functions g ∈ L2( fu d v) such that∫

Rd
g fu d v = 0

and define

Q1,u[g ] := lim
ε→0

2

ε2 F
[

fu(1+εg )
]= D

∫
Rd

g 2 fu d v −D2 |vg |2

where vg := 1
D

∫
Rd v g fu d v ,

Q2,u[g ] := lim
ε→0

1

ε2 I
[

fu (1+εg )
]= D2

∫
Rd

∣∣∇g −vg
∣∣2 fu d v .

We have two questions:
(1) Is Q1,u nonnegative ?
(2) If yes, is Q2,u ≥λQ1,u for some λ> 0?

For the first question, the answer is given by the following result.

Lemma 2.2. Q1,0 is a nonnegative quadratic form if and only if D ≥ D∗. If D <
D∗, |u| = u(D) 6= 0, then Q1,u[g ] ≥ 0.

For the second question, we rely on the Poincaré inequality:∫
Rd

|∇h|2 fu d v ≥ΛD

∫
Rd

|h|2 fu d v for any h such that
∫
Rd

h fu d v = 0.

Let f ∈ L1(Rd ) with
∫
Rd f d v = 1, g = ( f − fu)/ fu and let u[ f ] = u(D)

|u f | u f if D < D∗
and u f 6= 0. Otherwise take u[ f ] = 0. So we can prove the proposition below.

Proposition 2.3. Let d ≥ 1, α> 0, D > 0. If u = 0, then

Q2,u[g ] ≥CD Q1,u[g ] .

Otherwise, if |u| = u(D) 6= 0 for some D ∈ (0,D∗), then

Q2,u[g ] ≥CD
(
1−κ(D)

) (vg ·u)2

|vg |2 |u|2
Q1,u[g ] .

In both cases, CD is a positive constant and κ(D) ∈ (0,1).
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We shall assume that CD denotes the optimal constant. Next we can prove a
theorem on the convergence to the isotropic solution in the high noise case.

Theorem 2.5. For any d ≥ 1 and anyα> 0, if D > D∗, then for any solution f with
nonnegative initial datum fin of mass 1 such that F [ fin] <∞, there is a positive
constant C such that, for any time t > 0,

0 ≤F [ f (t , ·)]−F [ f0] ≤C e−CD t

and CD is the optimal rate of convergence.

We first notice that from Logarithmic Sobolev inequality, we have∫
Rd

∣∣∣∣∇ log

(
f

f0

)∣∣∣∣2

f d v ≥K0

∫
Rd

f log

(
f

f0

)
d v =F [ f ]−F [ f0] (2.19)

so we can prove that

Proposition 2.4. A solution f ∈C 0
(
R+,L1(Rd )

)
of with radially symmetric initial

datum fin ∈ L1+(Rd ) such that F [ fin] <∞. Then

0 ≤F [ f (t , ·)]−F [ f0] ≤C e−λ t

for some λ> 0.

The general case relies on a more complicated method. The point in Propo-
sition 2.3 is to find the optimal exponential rate. In terms of f = f0 (1+ g ), (2.18)
becomes

∂g

∂t
=L g −vg ·

(
D ∇g − (

v +∇φα
)

g
)

where
L g := D∆g − (

v +∇φα
) · (∇g −vg

)
is the linearized operator. Next, we define〈

g1, g2
〉

:= D
∫
Rd

g1 g2 f0 d v −D2 vg1 ·vg2

as the scalar product on the space X := {
g ∈ L2( f0 d v) :

∫
Rd g f0 d v = 0

}
. We use

this scalar product and the Grönwall inequality to prove the result.

The large time behaviour for 0 < D < D∗ is more delicate. We get a similar
result about convergence to a polarized stationary solution in a special case.

Proposition 2.5. Assume that d ≥ 2, α> 0 and D ∈ (0,D∗). Let us consider a so-
lution f of (2.18) with nonnegative initial datum fin of mass 1 such that F [ fin] <
F [ f0] and assume that u = limt→+∞ u f (t ) is uniquely defined. If |(u f −u) ·u| ≥
εu(D) |u f −u| for some ε > 0 and t > 0 large enough, then there are two positive
constants C , λ and some u ∈Rd such that

0 ≤F [ f (t , ·)]−F [ fu] ≤C e−λ t ∀ t ≥ 0.
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Remark 2.3. There are still open problems about the flocking model, which are
mainly at the polarized case 0 < D < D∗. We know that the solution converges
to either the isotropic stationary solution f0 or the set of the polarized stationary
solution fu.

2.2.2 Nernst-Planck model

The Nernst-Planck model was introduced in electromagnetism in order to de-
scribe the diffusion of charged particles in a solute under the influence of a
potential, in presence of electrostatic forces. Nowadays, it is applied to many
other areas. For example, in biology, it is used to describe the movements of
ions crossing the cell membrane.

In dimension d = 2, the original model is a non-confined system with Pois-
son coupling given by

∂u
∂t =∆u +∇· (u∇v)

v =− 1
2π log |x|∗u

u(0, x) = n0 ≥ 0
x ∈R2 , t > 0. (2.20)

and in this thesis, we consider the Nernst-Planck equation with confining po-
tential in Rd with d = 2 or 3. The distribution function is obtained as a solution
of 

∂n
∂t =∆n +∇· (n∇c)+∇· (n∇φ)

−∆c = n
n(0, x) = n0 ≥ 0,

∫
Rd n(0, x)d x = M > 0

x ∈Rd , t > 0. (2.21)

When d = 2 and,for some µ > 0, φ(x) = µ
2 |x|2 is the harmonic potential, we can

relate (2.21) and (2.20) by changing variables according to

u(t , x) = R−d n(τ,ξ) , v(t , x) = c(τ,ξ) ,

ξ= x

R
, τ= logR , R = R(t ) := (1+2µ t )

1
2 . (2.22)

If it exists , the stationary solution (n∞,c∞) of (2.21) is given by

−∆c∞ = n∞ = M
e−c∞−φ∫

Rd e−c∞−φd x
. (2.23)

Our main goal is to determine the asymptotic behaviour of the solution of (2.21).

Theorem 2.6. Let d = 2 or 3 and assume thatφ(x) = µ
2 |x|2, for someµ> 0. Assume

that n solves (2.21) with initial datum n(0, x) = n0 ∈ L2+(n−1∞ d x) such that F [n0] <
∞ with mass

∫
Rd n0 d x = M. Then there exist two positive constants C andΛ such

that, for any time t > 0, ∫
Rd

|n(t , .)−n∞|2
n∞

d x ≤C e−Λ t .

In particular,Λ= 2µ when d = 2.
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For proving Theorem 2.6, it is interesting to introduce the free energy and the
Fisher information respectively defined by

F [n] :=
∫
Rd

n logn d x +
∫
Rd

nφd x + 1

2

∫
Rd

n c d x (2.24)

with c = (−∆)−1 n, and

I [n] :=
∫
Rd

n |∇(logn + c +φ)|2 d x .

Under appropriate conditions on φ, we can show that (n∞,c∞) is the minimizer
of F . The case d = 2 deserves some care and will be addressed in the next sec-
tion. By direct computation, we observe that

d

d t
F [n(t , ·)] =−I [n(t , ·)] . (2.25)

Proposition 2.6. For any p ∈ [1,∞) and q ∈ [2,∞), we have

lim
t→∞‖n(t , ·)−n∞‖Lp (Rd ) = 0, lim

t→∞‖∇c(t , ·)−∇c∞‖Lq (Rd ) = 0

The proof of Proposition 2.6 when d = 3 is simple and relies, among various
estimates, on the Hardy-Littlewood-Sobolev inequality. The case d = 2 is more
complicated, and the proof relies on the Aubin-Lions lemma.

In order to understand the asymptotic behaviour of the solutions, we study
the quadratic forms derived from the free energy F and the Fisher informa-
tion I by perturbing (n∞,c∞). Define

Q1[ f ] := lim
ε→0

2

ε2 F [n∞ (1+ε f )] =
∫
Rd

f 2n∞ d x +
∫
Rd

|∇(g c∞)|2 d x ,

Q2[ f ] := lim
ε→0

2

ε2 I [n∞ (1+ε f )] =
∫
Rd

|∇( f + g c∞)|2n∞ d x .

Here g c∞ := (−∆)−1( f n∞). Our goal is to show the following coercivity result.

Proposition 2.7. Assume thatφ is such that the measure n∞ d x admits a Poincaré
inequality. For any f ∈ H1(Rd ) such that

∫
Rd f n∞ d x = 0, we have

Q2[ f ] ≥C?Q1[ f ]

for some C? > 0. In particular, when d = 2, φ= µ
2 |x|2, we have C? =µ.

Sufficient conditions such that n∞ d x satisfies a Poincaré inequality are given
in Section 7.3 of Chapter 7. The main steps of the proof in the case of the har-
monic potential go as follows:
• First consider the radial case: the problem becomes an eigenvalue of an ODE.
We find that 2µ is an eigenvalue by direct computation.
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• Still in the radial function case, we prove that 2µ is the smallest positive eigen-
value by using the Sturm-Liouville theory.
• For the general, non-radial case, we use a spherical harmonics decomposition
to prove the result.

Now let us come back to the equation (2.21). Set

n(t , x) = n∞(x)
(
1+ f (t , x)

)
, c(t , x) = c∞

(
1+ g (t , x)

)
.

The linearized equation becomes{
∂ f
∂t −L f = 1

n∞
∇· [ f n∞∇(g c∞)

]
−∆(g c∞) = f n∞

x ∈Rd , t > 0 (2.26)

for any x ∈Rd , t ≥ 0, with the linear operator L defined by

L f := 1

n∞
∇[

n∞∇(
f + g c∞

)]
.

On the admissible set A :=
{

f ∈ L2(Rd , n∞ d x) :
∫
Rd f n∞ d x = 0

}
, define the

scalar product〈
f1, f2

〉
:=

∫
Rd

f1 f2 n∞ d x +
∫
Rd

n∞ f1
(
Gd ∗ ( f2 n∞)

)
d x . (2.27)

Then L is self-adjoint on A , and for any f ∈A ,we have

Q1[ f ] = 〈
f , f

〉
, Q2[ f ] =−〈

f ,L f
〉

.

A solution of the linearized equation

∂g

∂t
=L g

with initial datum g0 ∈A satisfies

1

2

d

d t
Q1[g ] =−Q2[g ]

and we obtain from Grönwall’s inequality that, for any t ≥ 0,

Q1
[
g (t , ·)]≤Q1

[
g0

]
e−2C∗ t .

The solution of the nonlinear equation (2.21) satisfies

d

d t
Q1[ f ] =−2Q2[ f ]−2

∫
Rd

∇( f + g c∞) f n∞∇(g c∞)d x

≤−2Q2[ f ]+
√

Q2[ f ]Q1[ f ] · ‖∇(g c∞)‖L∞(Rd )

where the inequality arises from the Cauchy-Schwarz inequality. This completes
the proof of Theorem 2.6.
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2.3 Part 3: Generalized log-HLS inequality

In this section, we consider functions defined on R2. Define

µ(x) := 1

π
(
1+|x|2)2

as the reference probability measure and

V (x) :=− logµ(x) = 2 log
(
1+|x|2)+ logπ

as the external potential. Define the space L1+(R2) as the set of a.e. nonnegative
functions in L1(R2). For any function f ∈ L1+(R2) with M = ∫

R2 f d x > 0, we have
the two inequalities :
• logarithmic Hardy-Littlewood-Sobolev inequality∫

R2
f log

(
f

M

)
d x + 2

M

Ï
R2×R2

f (x) f (y) log |x − y |d x d y +M
(
1+ logπ

)≥ 0,

(2.28)
• Jensen’s inequality∫

R2
f log

(
f

M

)
d x +

∫
R2

V f d x =
∫
R2

f log

(
f

f?

)
d x ≥ 0. (2.29)

It is possible to interpolate between these two inequalities, which corresponds
to some parameter α ∈ (0,1), but also to consider the case α> 1 in the follwoing
sense.

Theorem 2.7. For any α≥ 0, we have∫
R2

f log

(
f

M

)
d x +α

∫
R2

V f d x +M (1−α)
(
1+ logπ

)
≥ 2

M
(α−1)

Ï
R2×R2

f (x) f (y) log |x − y |d x d y
(2.30)

for any function f ∈ L1+(R2) with M = ∫
R2 f d x > 0. Moreover, the equality case is

achieved by f? = M µ and f? is the unique optimal function for any α> 0.

When 0 ≤ α ≤ 1, the theorem can be proved by multiplying (2.28) by 1−α
and multiplying (2.29) by α. The difficult case is of course α > 1. The strategy
of the proof is inspired by E. Carlen, J. Carrillo and M. Loss in [51]. Assume that
M = 1 without losing generality. Consider the evolution equation

∂ f

∂t
=∆

√
f +2

p
π∇· (x f )

and the free energy

F [ f ] :=
∫
R2

f log f d x +α
∫
R2

V f d x + (1−α)
(
1+ logπ

)
+2(1−α)

Ï
R2×R2

f (x) f (y) log |x − y |d x d y .
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After elementary calculations, we obtain that

d

d t
F [ f (t , ·)] =−8

(∫
R2

∣∣∇ f 1/4
∣∣2

d x − π

∫
R2

f 3/2 d x

)
− 8πα

∫
R2

(
f 3/2 −µ

√
f −p

µ f +µ3/2
)

d x .

On the one hand, we notice that∫
R2

(
f 3/2 −µ

√
f −p

µ f +µ3/2
)

d x =
∫
R2
ϕ

(
f

µ

)
µ3/2 d x

where
ϕ(t ) := t 3/2 − t −p

t +1

is a strictly convex function on R+ such that ϕ(1) = ϕ′(1) = 0, so that ϕ is non-
negative.
On the other hand, according to [67], the Gagliardo-Nirenberg inequality∥∥∇g

∥∥2
2

∥∥g
∥∥4

4 ≥π
∥∥g

∥∥6
6 (2.31)

applied to g = f 1/4 means that∫
R2

∣∣∇ f 1/4
∣∣2

d x − π

∫
R2

f 3/2 d x ≥ 0,

see also [51]. Hence we have proved that t 7→F [ f (t , ·)] is monotone nonincreas-
ing and for any t ≥ 0 we have that

F [ f0] ≥F [ f (t , ·)] ≥ lim
t→+∞F [ f (t , ·)] =F [ f?] = 0.

The proof of (2.30) is completed.
Let us draw some consequences of Theorem 2.7. We consider the drift-

diffusion-Poisson model

∂ f

∂t
=∆ f +β∇· ( f ∇V )+∇· ( f ∇φ) where − ε∆φ= f (2.32)

when V =− logµ. For ε=+1, the solution f converges as t →∞ to the stationary

solution M e−βV −φ∫
R2 e−βV −φ d x

, which is obtained by solving the equation

−∆ψ= M

(
e−γV −ψ∫

R2 e−γV −ψd x
−µ

)
, ψ= (

β−γ)
V +φ , γ=β− M

8π
.

It is possible to consider the solution as a critical point of the strictly convex
functional

ψ 7→JM ,γ[ψ] := 1

2

∫
R2
|∇ψ|2 d x +M

∫
R2
ψµd x +M log

(∫
R2

e−γV −ψd x

)
.



CHAPTER 2. INTRODUCTION 54

For ε=−1, the proof goes as in the case β= 0, see [33] for more details.

When ε=+1, (2.32) corresponds to the mean field model with repulsive elec-
trostatic forces. It can be used in electrolytes, plasmas and charged particles
models, and we refer to Chapter 6 for further details. When ε = −1, the model
corresponds to attractive forces, as in the Keller-Segel model. See [33] for more
details.

In view of entropy methods, we consider the free energy functional

Fβ[ f ] :=
∫
R2

f log f d x +β
∫
R2

V f d x + 1

2

∫
R2
φ f d x . (2.33)

Corollary 2.1. Let M > 0. The functional Fβ is bounded from below and admits
a minimizer on the set of the functions

B :=
{

f ∈ L1
+(R2), tel que

∫
R2

f d x = M

}
if either ε = +1 and β ≥ 1+ M

8π , or ε = −1, β ≥ 1− M
8π and M ≤ 8π. If ε = +1, the

minimizer is unique.

We will see in Chapter 6 and Chapter 7 that the scalar products associated
with the Nernst-Planck equation and the linearized Vlasov–Poisson–Fokker–
Planck equation are well defined in dimension 2 because of Theorem 2.7.
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Figure 2.1: This figure describes the phase transition. Solutions of D 7→ u(D) are
represented. Here d = 1. There exists a bifurcation point D = D∗ such that the
only stationary solution corresponds to u f = 0 if D > D∗ and there are three so-
lutions corresponding to u f = 0, ±u(D) if D < D∗ and u f = 0 is linearly unstable
if D < D∗.





Chapter 3

φ-entropy of kinetic
Fokker-Planck equation

Articleφ-entropies for Fokker-Planck and kinetic Fokker-Planck equations, in
collaboration with Jean DOLBEAULT, published in Mathematical Models and
Methods in Applied Sciences, 28 (13): 2637-2666, 2018.

This chapter is devoted to ϕ-entropies applied to Fokker-Planck and kinetic
Fokker-Planck equations in the whole space, with confinement. The so-called
ϕ-entropies are Lyapunov functionals which typically interpolate between Gibbs
entropies and L2 estimates. We review some of their properties in the case of
diffusion equations of Fokker-Planck type, give new and simplified proofs, and
then adapt these methods to a kinetic Fokker-Planck equation acting on a phase
space with positions and velocities. At kinetic level, since the diffusion only acts
on the velocity variable, the transport operator plays an essential role in the re-
laxation process. Here we adopt the H1 point of view and establish a sharp de-
cay rate. Rather than giving general but quantitatively vague estimates, our goal
here is to consider simple cases, benchmark available methods and obtain sharp
estimates on a key example. Some ϕ-entropies give rise to improved entropy –
entropy production inequalities and, as a consequence, to faster decay rates for
entropy estimates of solutions to non-degenerate diffusion equations. We prove
that faster entropy decay also holds at kinetic level away from equilibrium and
that optimal decay rates are achieved only in asymptotic regimes.

57
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3.1 Introduction

By definition, the ϕ-entropy of a nonnegative function w ∈ L1(Rd ,dγ) is the
functional

E [w] :=
∫
Rd
ϕ(w)dγ ,

where ϕ is a nonnegative convex continuous function on R+ such that ϕ(1) = 0
and 1/ϕ′′ is concave on (0,+∞), i.e.,

ϕ′′ ≥ 0, ϕ≥ϕ(1) = 0 and (1/ϕ′′)′′ ≤ 0. (3.1)

Notice that the last condition means 2(ϕ′′′)2 ≤ ϕ′′ϕ(i v) a.e. A classical example
of such a function ϕ is given by

ϕp (w) := 1
p−1

(
w p −1−p (w −1)

)
p ∈ (1,2]

where, in the case p = 2, ϕ2(w) = (w −1)2 and the limit case as p → 1+ is given
by the standard Gibbs entropy

ϕ1(w) := w log w − (w −1) .

Many results corresponding to the case p = 2 can be obtained, e.g., by spec-
tral methods. The case p = 1 is important in probability theory and statistical
physics. Our goal is to emphasize that they share properties which can be put
in a common framework. Throughout this paper we shall assume that dγ is a
nonnegative bounded measure, which is absolutely continuous with respect to
Lebesgue’s measure and write

dγ= e−ψd x

where ψ is a potential such that e−ψ is in L1(Rd ,d x). Up to the addition of a
constant to ψ, we can assume without loss of generality that dγ is a probability
measure. A review of the main properties of ϕ-entropies, new and simplified
proofs and key references are given in Section 3.2.

Without entering the technical details, let us illustrate the use of theϕ-entropy
in the case of diffusion equations. A typical application of the ϕ-entropy is the
control of the rate of relaxation of the solution to the Ornstein-Uhlenbeck equa-
tion

∂w

∂t
= Lw :=∆w −∇ψ ·∇w , (3.2)

which is also known as the backward Kolmogorov equation. If we solve the equa-
tion with a nonnegative initial datum w0 such that

∫
Rd w0 dγ= 1, then the solu-

tion satisfies
∫
Rd w(t , ·)dγ= 1 for any t > 0 and limt→+∞ w(t , ·) = 1. The Ornstein-

Uhlenbeck operator L defined on L2(Rd ,dγ) is indeed self-adjoint and such that

−
∫
Rd

(Lw1) w2 dγ=
∫
Rd

∇w1 ·∇w2 dγ ∀w1, w2 ∈ H1(Rd ,dγ) .
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As a consequence, it is also straightforward to observe that for any solution w
with initial datum w0 such that E [w0] is finite, then

d

d t
E [w] =−

∫
Rd
ϕ′′(w) |∇x w |2 dγ=: −I [w] ,

where I [w] denotes the ϕ-Fisher information functional. If for some Λ > 0 we
can establish the entropy – entropy production inequality

I [w] ≥ΛE [w] ∀w ∈ H1(Rd ,dγ) , (3.3)

then we deduce that

E [w(t , ·)] ≤ E [w0]e−Λ t ∀ t ≥ 0,

which controls the convergence of w to 1 as t →+∞, for instance in Lp (Rd ,dγ)
by a generalized Csiszár-Kullback inequality if ϕ = ϕp , 1 ≤ p ≤ 2. The entropy
– entropy production inequality is the Poincaré inequality associated with dγ if
ϕ=ϕ2, and the logarithmic Sobolev inequality if ϕ=ϕ1.

We recall that the study of (3.2) is equivalent to the study of the Fokker-
Planck equation

∂u

∂t
=∆u +∇x · (u∇xψ) . (3.4)

A nonnegative solution with initial datum u0 ∈ L1(Rd ,d x) and
∫
Rd u0 d x = M > 0

has constant mass M = ∫
Rd u(t , ·)d x for any t > 0, and converges towards the

unique stationary solution

u? = M
e−ψ∫

Rd e−ψd x
.

Without loss of generality, we shall assume that M = 1. Then one observes that
w = u/u? solves (3.2), which allows to control the rate of convergence of u to u?.
A list of results concerning the solutions of (3.2) and (3.4) is also collected in
Section 3.2.

The third section of this paper is devoted to the extension ofϕ-entropy meth-
ods to kinetic equations. Section 3.3 of this paper deals with the kinetic Fokker-
Planck equation, or Vlasov-Fokker-Planck equation, that can be written as

∂ f

∂t
+ v ·∇x f −∇xψ ·∇v f =∆v f +∇v ·

(
v f

)
. (3.5)

Our basic example corresponds to the case of the harmonic potential ψ(x) =
|x|2/2. Unless it is explicitly specified, we will only consider this case. Notice
that this problem has an explicit Green function whose expression can be found
in [53].
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Since (3.5) is linear, we can assume at no cost that
∥∥ f

∥∥
L1(Rd×Rd ) = 1 and con-

sider the stationary solution

f?(x, v) = (2π)−d e−ψ(x) e−
1
2 |v |2 = (2π)−d e−

1
2 (|x|2+|v |2) ∀ (x, v) ∈Rd ×Rd .

The function

g := f

f?

solves
∂g

∂t
+Tg = Lg (3.6)

where the transport operator T and the Ornstein-Uhlenbeck operator L are de-
fined respectively by

Tg := v ·∇x g −x ·∇v g and Lg :=∆v g − v ·∇v g .

Let dµ := f?d x d v be the invariant measure on the phase space Rd ×Rd , so that
T and L are respectively anti-self-adjoint and self-adjoint. The function

h := g p/2

solves
∂h

∂t
+Th = Lh + 2−p

p

|∇v h|2
h

. (3.7)

At the kinetic level, we consider the ϕ-entropy given by

E [g ] :=
Ï
Rd×Rd

ϕ(g )dµ .

With this notation, E [g ] =Î
Rd×Rd ϕ

(
f / f?

)
dµ so that, with f = g f? = h2/p f? we

have

E [g ] =
Ï
Rd×Rd

h2 log

(
h2Î

Rd×Rd h2 dµ

)
dµ if ϕ=ϕ1 ,

E [g ] = E [h2/p ] = 1

p −1

[Ï
Rd×Rd

h2 dµ−
(Ï

Rd×Rd
h2/p dµ

)p/2
]

if ϕ=ϕp , p ∈ (1,2] .

The optimal rate of decay of E [g ] has been established by A. Arnold and J. Erb
in [7]. In the special case of a harmonic potential, their result goes as follows.

Proposition 3.1. Assume that ψ(x) = |x|2/2 for any x ∈Rd . Take ϕ=ϕp for some
p ∈ [1,2]. To any nonnegative solution g ∈ L1(Rd ×Rd ) of (3.6) with initial datum
g such that E [g0] <∞, we can associate a constant C > 0 for which

E [g (t , ·, ·)] ≤C e−t ∀ t ≥ 0. (3.8)

Moreover the rate e−t is sharp as t →+∞.
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The striking point of this hypocoercivity result is to identify the sharp rate of
decay. The rate is specific of the harmonic potential ψ(x) = |x|2/2, but it turns
out to be useful for the comparison with rates obtained by other methods. Al-
though probably not optimal, a precise estimate of C will be given in Section 3.3,
with a simplified proof of Proposition 3.1.

The method is based on the use of a Fisher information type functional

J [h] = 1
2

∫
Rd

|∇v h|2 dµ+ 1
2

∫
Rd

|∇x h|2 dµ+ 1
2

∫
Rd

|∇x h +∇v h|2 dµ (3.9)

which involves derivatives in x and v . If h solves (3.6), then the key estimate is
to prove that

d

d t
J [h(t , ·)] ≤−J [h(t , ·)] .

The result of Proposition 3.1 follows from the entropy – entropy production in-
equality (3.16) that will be established in Proposition 3.4: since

ΛE [g (t , ·, ·)] =ΛE [h2/p ] ≤J [h] ,

then E [g (t , ·, ·)] has an exponential decay. However, we underline the fact that

d

d t
E [g (t , ·)] =−

∫
Rd

|∇v h|2 dµ 6= −J [h(t , ·)] .

At the level of non-degenerate diffusions, a distinctive property of the ϕ-
entropy with ϕ = ϕp and p ∈ (1,2) is that the entropy – entropy production
inequality I ≥ ΛE with an optimal constant Λ > 0 can be improved in the
sense that there exists a strictly convex function F on R+ with F (0) = 0 and
F ′(0) = 1 such that I ≥ ΛF (E ). This has been established in [6] and details
will be given in Section 3.2.5. The key issue is to prove that for some func-
tion ρ on R+, which depends on the solution w , such that ρ > Λ a.e., we have
d

d t I [w(t , ·)] ≤ −ρ(t )I [w(t , ·)]. One may wonder if a similar result also holds
in the hypocorcive kinetic Fokker-Planck equation. So far, no global improved
inequality has been established. What we shall prove is that, if we consider the
more general Fisher information functional

Jλ[h] = (1−λ)
∫
Rd

|∇v h|2 dµ+ (1−λ)
∫
Rd

|∇x h|2 dµ+λ
∫
Rd

|∇x h +∇v h|2 dµ ,

(3.10)
then for an appropriate choice ofλ (which turns out to be t-dependent), the rate
of decay is faster than e−t up to a zero-measure set in t . The precise statement,
which is our main result, goes as follows.

Theorem 3.1. Let p ∈ (1,2) and h be a solution of (3.7) with initial datum h0 ∈
L1 ∩Lp (Rd ,dγ), h0 6≡ 1, and dγ be the Gaussian probability measure correspond-
ing to the harmonic potential potentialψ(x) = |x|2/2. Then there exists a function
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λ :R+ → [1/2,1) such thatλ(0) = limt→+∞λ(t ) = 1/2 and a continuous function ρ
on R+ such that ρ > 1/2 a.e., for which we have

d

d t
Jλ(t )[h(t , ·)] ≤−2ρ(t )Jλ(t )[h(t , ·)] ∀ t ≥ 0.

As a consequence, for any t ≥ 0 we have the global estimate

Jλ(t )[h(t , ·)] ≤J1/2[h0] exp

(
−2

∫ t

0
ρ(s)d s

)
.

This result is weaker than the result for non-degenerate diffusions. The qual-
itative issues are easy to understand and to some extent classical in the hypoco-
ercivity theory, but no quantitative estimate of ρ in terms of h is known so far. If
ϕp -entropies were initially thought as interesting objects which interpolate be-
tween the Gibbs entropy and standard L2 estimates, improved entropy – entropy
production inequalities and the result of Theorem 3.1 capture an important fea-
ture when p ∈ (1,2): faster rates of decay for finite values of t . As t → +∞, we
cannot expect a faster decay rate, but we gain a pre-factor which is less than 1.
See Section 3.3.4 for more details.

Let us conclude this introduction with a brief review of the literature. Fokker-
Planck equations like (3.4) are ubiquitous in various areas of physics ranging
from the description of the motion of particles in a gas or a solute to semi-
conductor physics, models of stars in astrophysics or models of populations in
biology and social sciences, as microscopic dynamics involving Brownian mo-
tion are represented at macroscopic scales by diffusion equations. Second or-
der dynamics (in which forces produce acceleration) in random environments
obey in many cases to the Langevin equation and at macroscopic scale the cor-
responding distribution function solves (3.5). A typical example is given by par-
ticles having random encounters with some background obstacles, a situation
that can be encountered in many areas of physical modeling. It has to be em-
phasized that (3.4) appears in the diffusion limit of the solutions of (3.5), that
is, in the overdamped regime in which friction and other forces equilibrate very
fast, so that the velocity instantaneously adapts to the forces, which results in
first order dynamics. For some general properties of (3.4) and (3.5), a review of
stochastic and PDE methods and some entries to applied cases, we refer for in-
stance to [145, 139], among many other books on this topic.

The word ”hypocoercivity” is apparently due to T. Gallay and was made pop-
ular by C. Villani in [159]. Our computations are based on Villani’s ideas in Sec-
tion 3 of [159] (also see [161]), but the use of twisted gradients involving simul-
taneously derivatives in x and v can be also found in [107] and in earlier works
like [108]. It is actually a consequence of Hörmander’s hypoelliptic theory, which
covers simultaneously regularization properties and large time behaviour. One
can refer for instance to [92, 108, 105] and, much earlier, to [113]. The seed
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for such an approach can actually be traced back to Kolmogorov’s computa-
tion of Green’s kernel for the kinetic Fokker-Planck equation in [119], which
has been reconsidered by [? ] from a more modern point of view and success-
fully applied, for instance, to the study of the Vlasov-Poisson-Fokker-Planck sys-
tem in [158, 41, 42]. In case of the kinetic Fokker-Planck equation, we can refer
to [105, 107] in the case of a general potential of confinement, and more specif-
ically to [7]. In this last paper, the authors deal with the issue of accurate rates:
“while the main theorem in [161] covers a wide class of problems, the price paid
is in the estimate for the decay rate, which is off by orders of magnitude.” The
result of Proposition 3.1 addresses the issue of the optimal rate in a very simple
case. For completion, one also has to mention [122] and [114] for further theo-
retical and numerical results.

A twin problem of the kinetic Fokker-Planck equation is the linear BGK model,
which has no regularizing properties but shares many common features with the
kinetic Fokker-Planck equation as soon as we are concerned with rates of con-
vergence. We refer to [106, 133] for early contributions, to [82, 83, 45, 130, 1] for
more recent ones, and especially to [95]. In this last paper, J. Evans studies the
linear BGK model and a kinetic Fokker-Planck equation on the torus using the
ϕ-entropies.

In [159], only the cases p = 1 and p = 2 were considered, but it is well known
since the founding work [12] of Bakry and Emery that intermediate values of p
can then be considered. In the case ofϕ-entropies associated with non-degenerate
diffusions, this idea was invoked on many occasions, for instance in [21, 121,
58, 9, 37, 35] in relation with spectral estimates or the carré du champ meth-
ods. For carré du champ techniques in kinetic equations, we can refer to [20],
also [131, 129], and finally Remark 6.7 in [11] for an early contribution on ϕ-
entropies. Althoughϕ-entropies are natural in the context of the kinetic Fokker-
Planck equation, precise connections were made only quite recently. In [7],
A. Arnold and J. Erb discuss ϕ-entropies in the context of the kinetic Fokker-
Planck equation and prove, among more general results, Proposition 3.1. We
can also refer to [1, 2, 131] for various related results. As far as we know, no result
such as Theorem 3.1 has been established yet.

3.2 A review of results on ϕ-entropies

In this section we consider a ϕ-entropy defined by E [w] := ∫
Rd ϕ(w)dγ where

dγ = e−ψd x is a probability measure and ϕ satisfies (3.1). Most of the results
presented here are known, but they are scattered in the literature. Our purpose
here is to collect some essential statements and present simple proofs.



CHAPTER 3. φ-ENTROPY OF KINETIC FOKKER-PLANCK EQUATION 64

3.2.1 Generalized Csiszár-Kullback-Pinsker inequality

By assumption (3.1), we know that E is nonnegative and achieves its minimum
at w ≡ 1. It results from the strict convexity of ϕ that E [w] controls a norm of
(w −1) under a generic assumption compatible with the expression of ϕp . The
classical result of [141, 60, 120] has been extended in[117, 155, 47, 61]. Here is a
statement, with a short proof taken from Section 1.4 of [19], for completeness.

Proposition 3.2. Let p ∈ [1,2], w ∈ L1 ∩ Lp (Rd ,dγ) be a nonnegative function,
and assume that ϕ ∈ C 2(0,+∞) is a nonnegative strictly convex function such
that ϕ(1) =ϕ′(1) = 0. If A := infs∈(0,∞) s2−p ϕ′′(s) > 0, then

E [w] ≥ 2− 2
p A min

{
1,‖w‖p−2

Lp (Rd ,dγ)

}
‖w −1‖2

Lp (Rd ,dγ) .

When ϕ=ϕp , we find that A = p. This inequality has many variants and ex-
tensions: it is not limited toRd but also holds on bounded domains or manifolds
and the relativeϕ-entropy

∫
Rd

(
ϕ(w1)−ϕ(w2)−ϕ′(w1) (w2 −w1)

)
dγ can also be

used to measure ‖w2 −w1‖2
Lp (Rd ,dγ)

.

Proof. Up to the addition of a small constant, we can assume that w > 0 and
argue by density. A Taylor expansion at order two shows that

E [w] = 1

2

∫
Rd
ϕ′′(ξ) |w −1|2 dγ≥ A

2

∫
Rd
ξp−2 |w −1|2 dγ

where ξ lies between 1 and w . Withα= p (2−p)/2 and h > 0, for any measurable
set A ⊂Rd , we get

∫
A
|w −1|p h−αhαdγ≤

(∫
A
|w −1|2 hp−2 dγ

)p/2 (∫
A

hp dγ

)(2−p)/2

by Hölder’s inequality. We apply this formula to two different sets.

On A = {x ∈Rd : w(x) > 1}, we use ξp−2 ≥ w p−2 and take h = w :∫
{w>1}

|w −1|2 ξp−2 dγ≥
(∫

{w>1}
|w −1|p dγ

)2/p

‖w‖p−2
Lp (Rd ,dγ)

.

On A = {x ∈Rd : w(x) ≤ 1}, we use ξp−2 ≥ 1 and take h = 1:∫
{w≤1}

|w −1|2 ξp−2 dγ≥
(∫

{w≤1}
|w −1|p dγ

)2/p

.

By adding these two estimates and using with r = 2/p ≥ 1 the elementary in-
equality (a +b)r ≤ 2r−1(ar +br ) for any a, b ≥ 0 allows us to conclude the proof.
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3.2.2 Convexity, tensorization and sub-additivity

Let us turn our attention to (3.3). To start with, we observe that the functional
w 7→I [w] = ∫

Rd ϕ′′(w) |∇w |2 dγ is convex if and only if 1/ϕ′′ is concave. Now let
us consider two probability measures dγ1 and dγ2 defined respectively on Rd1

and Rd2 , such that Inequality (3.3) holds with γ= γi , and i = 1, 2:∫
Rdi

ϕ′′(w) |∇w |2 dγi =: Iγi [w] ≥Λi Eγi [w] ∀w ∈ H1(Rdi ,dγi ) , (3.11)

Here we denote by Eγ the ϕ-entropy for functions which are not normalized,
that is,

Eγ[w] :=
∫
Rd
ϕ(w)dγ−ϕ

(∫
Rd

w dγ

)
.

Assuming that dγ is a probability measure, by Jensen’s inequality we know that
w 7→ Eγ[w] is nonnegative because ϕ is convex. As we shall see below, w 7→
Eγ[w] is also convex, which is the key ingredient for tensorization. The ques-
tion at stake is to know if Inequality (3.3) holds on Rd1 ×Rd2 for the measure
dγ= dγ1 ⊗γ2. Most of the results of Section 3.2.2 have been stated in [58] or are
considered as classical. Our contribution here is to give simplified proofs.

Theorem 3.2. Assume that ϕ satisfies (3.1). If dγ1 and dγ2 are two probability
measures on Rd1 ×Rd2 satisfying (3.11) with positive constants Λ1 and Λ2, then
dγ1 ⊗γ2 is such that the following inequality holds:

Iγ1⊗γ2 [w] =
∫
Rd1×Rd2

ϕ′′(w) |∇w |2 dγ1 dγ2

≥ min{Λ1,Λ2}Eγ1⊗γ2 [w] ∀w ∈ H1(Rd1 ×Rd2 ,dγ) .

It is straightforward to notice that the Fisher information is additive

Iγ1⊗γ2 [w] =
∫
Rd2

Iγ1[w]dγ2 +
∫
Rd1

Iγ2[w]dγ1 ,

so that the proof of Theorem 3.2 can be reduced to the proof of a sub-additivity
property of the ϕ-entropies that goes as follows.

Proposition 3.3. Assume that ϕ satisfies (3.1) and consider two probability mea-
sures dγ1 and dγ2 on Rd1 ×Rd2 . Then for any w ∈ L1(Rd1 ×Rd2 ,dγ1⊗γ2), we have

Eγ1⊗γ2 [w] ≤
∫
Rd2

Eγ1 [w]dγ2 +
∫
Rd1

Eγ2 [w]dγ1 ∀w ∈ L1(dγ1 ⊗γ2) .

This last result relies on convexity properties that we are now going to study.
As a preliminary step, we establish an inequality of Jensen type.

Lemma 3.1. Let w ∈ L1(Rd1×Rd2 ,dγ1⊗γ2) be a function of two variables (x1, x2) ∈
Rd1 ×Rd2 . If Fγ1 is a convex functional on L1(dγ1) such that

d

d t

∫
Rd2

Fγ1

[
t w + (1− t )

∫
Rd2 w dγ2

]
dγ2

|t=0
= 0, (3.12)
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then the following inequality holds:∫
Rd2

Fγ1 [w]dγ2 ≥Fγ1

[∫
Rd2

w dγ2

]
.

Proof. Let wt = t w + (1− t )
∫
Rd2 w dγ2. By convexity of Fγ1 ,

Fγ1 [wt ] ≤ t Fγ1 [w]+ (1− t )Fγ1

[∫
Rd2

w dγ2

]
.

Hence it follows that

Fγ1 [wt ]−Fγ1

[∫
Rd2

w dγ2

]
≤ t

(
Fγ1 [w]−Fγ1

[∫
Rd2

w dγ2

])
,

from which we deduce that

0 = d

d t
Fγ1 [wt ]|t=0 ≤Fγ1 [w]−Fγ1

[∫
Rd2

w dγ2

]
.

Conclusion holds after integrating with respect to γ2.

The second observation is the proof of the convexity of w 7→ Eγ[w]. The
following result is taken from [121].

Lemma 3.2. If ϕ satisfies (3.1), then Eγ is convex.

Proof. We give a two steps proof of this result, for completeness.
• Define xt = t y + (1− t ) x, t ∈ (0,1). Since 1/ϕ′′ is concave,

1

ϕ′′(xt )
≥ t

ϕ′′(y)
+ 1− t

ϕ′′(x)
. (3.13)

The function ϕ is convex, hence ϕ′′(x) > 0 and ϕ′′(y) > 0 and so

1

ϕ′′(xt )
≥ t

ϕ′′(y)
and

1

ϕ′′(xt )
≥ 1− t

ϕ′′(x)
.

This means
ϕ′′(y) ≥ t ϕ′′(xt ) and ϕ′′(x) ≥ (1− t )ϕ′′(xt ) .

We can also rewrite (3.13) as

ϕ′′(x)ϕ′′(y) ≥ (t ϕ′′(x)+ (1− t )ϕ′′(y))ϕ′′(xt ) .

Consider the function

Ft (x, y) := t ϕ(y)+ (1− t )ϕ(x)−ϕ(xt )

and observe that

Hess(Ft ) =
(

(1− t )ϕ′′(x)− (1− t )2ϕ′′(xt ) − t (1− t )ϕ′′(xt )
− t (1− t )ϕ′′(xt ) t ϕ′′(y)− t 2ϕ′′(xt )

)
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is nonnegative since both diagonal terms are nonnegative and the determinant
is nonnegative. The matrix Hess(Ft ) is therefore nonnegative and Ft is convex.
• We observe that

t Eγ[w1]+ (1− t )Eγ[w0]−Eγ[t w1 + (1− t ) w0]

=
∫
Rd

Ft (w1, w0)dγ−Ft

(∫
Rd

w1 dγ,
∫
Rd

w0 dγ

)
is nonnegative by Jensen’s inequality, which proves the result.

Proof of Proposition 3.3. We claim that Fγ1 = Eγ1 satisfies (3.12). Indeed, let
us consider wt = t w + (1− t ) w0 with w0 := ∫

Rd2 w dγ2. A simple computation
shows that

d

d t
Fγ1 [wt ] =

∫
Rd1

ϕ′(wt ) (w −w0) dγ1 −ϕ′
(∫
Rd1

wt dγ1

)∫
Rd1

(w −w0) dγ1 ,

and, as a consequence at t = 0,

d

d t
Fγ1 [wt ]|t=0 =

∫
Rd1

ϕ′(w0) (w −w0) dγ1 −ϕ′
(∫
Rd1

w0 dγ1

)∫
Rd1

(w −w0) dγ1 .

Since w0 does not depend on x2, an integration with respect to γ2 concludes the
proof of (3.12). From Lemma 3.1, we get∫

Rd2
Eγ1 [w]dγ2 ≥ Eγ1

[∫
Rd2

w dγ2

]
.

By definition of Eγ1 , this means

∫
Rd2

[∫
Rd1

ϕ(w)dγ1 −ϕ
(∫
Rd1

w dγ1

)]
dγ2

≥
∫
Rd1

ϕ

(∫
Rd2

w dγ2

)
dγ1 −ϕ

(Ï
Rd1×Rd2

w dγ1 ⊗γ2

)
,

from which we deduce∫
Rd2

[∫
Rd1

ϕ(w)dγ1 −ϕ
(∫
Rd1

w dγ1

)]
dγ2

+
∫
Rd1

[∫
Rd2

ϕ(w)dγ2 −ϕ
(∫
Rd2

w dγ2

)]
dγ1

≥
Ï
Rd1×Rd2

ϕ (w) dγ1 ⊗γ2 −ϕ
(Ï

Rd1×Rd2
w dγ1 ⊗γ2

)
.

This ends the proof of Proposition 3.3. ä
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Proof of Theorem 3.2. The proof is an easy consequence of Proposition 3.3 and
of the observation that

min{Λ1,Λ2}Eγ1⊗γ2 [w]

≤Λ1

∫
Rd2

Eγ1 [w]dγ2 +Λ2

∫
Rd1

Eγ2 [w]dγ1

≤
Ï
Rd1×Rd2

ϕ′′(w)
[ |∇x1 w |2 +|∇x2 w |2 ]

dγ1 ⊗γ2

≤
Ï
Rd1×Rd2

ϕ′′(w) |∇w |2 dγ1 ⊗γ2 =Iγ1⊗γ2 [w] .

ä
As a concluding remark, we observe that tensorization is not limited to prob-

ability measures on Rd . The main interest of such an approach when dealing
with Rd is that it is enough to establish the inequality when d = 1. In the case
d = 1, sharp criteria can be found in [17] (also see [16]). There are many related
issues that can be traced back to the work of Muckenhoupt, e.g., [134] and Hardy
(see [104]).

3.2.3 Entropy – entropy production inequalities: perturbation results

Perturbing the measure in the case of a Poincaré inequality is essentially trivial.
In the case of the logarithmic Sobolev inequality, this has been done by Holley
and Stroock in [112]. More general entropy functionals have been considered
in [155], which cover all ϕ-entropies. Also see [4, 58].

Assume that for some probability measure dγ and for some Λ> 0, Inequal-
ity (3.3) holds, that is,

Λ

[∫
Rd
ϕ(w)dγ−ϕ(w)

]
≤

∫
Rd
ϕ′′(w)|∇w |2 dγ ∀w ∈ H1(dγ) . (3.14)

Here we denote by w the average of w with respect to dγ: w := ∫
Rd w dγ. Assume

that dµ is a measure which is absolutely continuous with respect to dγ and such
that

e−b dγ≤ dµ≤ e−a dγ

for some constants a, b ∈R. The statement below generalizes the one of Lemma 5.2
of [32].

Lemma 3.3. Under the above assumption, if ϕ is a C 2 function such that ϕ′′ > 0,
then

ea−bΛ

∫
Rd

[
ϕ(w)−ϕ(w̃)−ϕ′(w̃)(w−w̃)

]
dµ≤

∫
Rd
ϕ′′(w) |∇w |2 dµ ∀w ∈ H1(dµ) ,

where w̃ := ∫
Rd w dµ/

∫
Rd dµ.



69 CHAPTER 3. φ-ENTROPY OF KINETIC FOKKER-PLANCK EQUATION

Proof. We start by observing that

eb
∫
Rd
ϕ′′(w)|∇w |2 dµ≥

∫
Rd
ϕ′′(w)|∇w |2 dγ=Iγ[w]

≥ΛEγ[w] =Λ
[∫

Rd
ϕ(w)dγ−ϕ(w)

]
=Λ

∫
Rd

(
ϕ(w)−ϕ(w)−ϕ′(w) (w −w)

)
dγ .

By convexity of ϕ, we know that ϕ(w)−ϕ(w)−ϕ′(w) (w −w) ≥ 0, so that

ΛEγ[w] ≥Λea
∫
Rd

(
ϕ(w)−ϕ(w)−ϕ′(w) (w −w)

)
dµ

=Λea
∫
Rd

(
ϕ(w)−ϕ(w)−ϕ′(w) (w̃ −w)

)
dµ .

By convexity of ϕ again, ϕ(w)+ϕ′(w) (w̃ −w) ≤ϕ(w̃), which shows that

ΛEγ[w] ≥Λea
∫
Rd

(
ϕ(w)−ϕ(w̃)

)
dµ= eaΛ

∫
Rd

[
ϕ(w)−ϕ(w̃)−ϕ′(w̃)(w − w̃)

]
dµ

and completes the proof.

3.2.4 Entropy – entropy production inequalities and linear flows

Let us consider the counterpart of the Ornstein-Uhlenbeck equation (3.2) on a
smooth convex bounded domainΩ

∂w

∂t
= Lw :=∆w −∇ψ ·∇w , (3.15)

supplemented with homogenous Neumann boundary conditions

∇w ·ν= 0 on ∂Ω ,

where ν denotes a unit outward pointing normal vector orthogonal to ∂Ω. Let
us consider the measure dγ = (∫

Ω e−ψd x
)−1 e−ψd x. If w solves (3.15) with a

nonnegative initial datum w0 such that
∫
Ωw0 dγ = 1, then mass is conserved

so that
∫
Ωw(t , ·)dγ = 1 for any t ≥ 0 and converges to 1 as t → +∞. The next

question is how to measure the rate of convergence using the ϕ-entropy. For
simplicity, let us assume that ϕ = ϕp for some p ∈ [1,2]. An answer is given
by the formal computation of Section 7.1, adapted to the bounded domain Ω.
Because of the boundary condition, it is straightforward to check that

d

d t

∫
Ω

w p −1

p −1
dγ=− 4

p

∫
Ω
|∇w p/2|2 dγ

if p > 1 and a similar results holds when p = 1. Hence, if for some Λ> 0 we can
prove that∫

Ω

w p −1

p −1
dγ≤ 4

pΛ

∫
Ω
|∇w p/2|2 dγ for any w such that

∫
Ω

w dγ= 1, (3.16)



CHAPTER 3. φ-ENTROPY OF KINETIC FOKKER-PLANCK EQUATION 70

then we can conclude that
∫
Ω

w p−1
p−1 dγ decays like e−Λ t . The main idea of the

Bakry-Emery method, or carré du champ method, as it is exposed in [12] is
that (3.16) can be established using the flow itself, by computing d

d t

∫
Ω |∇z|2 dγ

with z := w p/2. Let us sketch the main steps of the proof.

As a preliminary observation, we notice that L is self-adjoint in L2(Ω,dγ) in
the sense that∫

Ω
w1 (Lw2)dγ=−

∫
Ω
∇w1 ·∇w2 dγ=

∫
Ω

(Lw1) w2 dγ

and also that

[∇, L] =−Hessψ .

Using w = z2/p we deduce from (3.15) that

∂z

∂t
= Lz + 2−p

p

|∇z|2
z

. (3.17)

We adopt the convention that a ·b =∑d
i=1 ai bi if a = (ai )1≤i≤d and b = (bi )1≤i≤d

are two vectors with values in Rd . If m = (mi , j )1≤i , j≤d and n = (ni , j )1≤i , j≤d

are two matrices, then m : n = ∑d
i , j=1 mi , j ni , j . Also a ⊗ b denotes the matrix

(ai b j )1≤i , j≤d . We shall use |a|2 = a ·a and ‖m‖2 = m : m for vectors and matrices
respectively. With these notations, let us use (3.17) to compute

1

2

d

d t

∫
Ω
|∇z|2 dγ=

∫
Ω
∇z ·∇

(
Lz + 2−p

p

|∇z|2
z

)
dγ

=
∫
Ω
∇z · (L∇z − Hessψ∇z

)
dγ+ 2−p

p

∫
Ω
∇z ·

(
2Hess z

∇z

z
− |∇z|2

z
∇z

)
dγ

= −
∫
Ω
‖Hess z‖2 dγ−

∫
Ω

Hessψ : ∇z ⊗∇z dγ+
∫
∂Ω

Hess z : ∇z ⊗νe−ψdσ

+2
2−p

p

∫
Ω

Hess z :
∇z ⊗∇z

z
dγ− 2−p

p

∫
Ω

∥∥∥∥∇z ⊗∇z

z

∥∥∥∥2

dγ

= − 2

p
(p −1)

∫
Ω
‖Hess z‖2 dγ−

∫
Ω

Hessψ : ∇z ⊗∇z dγ

− 2−p

p

∫
Ω

∥∥∥∥Hess z − ∇z ⊗∇z

z

∥∥∥∥2

dγ+
∫
∂Ω

Hess z : ∇z ⊗νe−ψdσ .

Here dσ denotes the surface measure induced by Lebesgue’s measure on ∂Ω.
We learn from Grisvard’s lemma, see for instance Lemma 5.1 in [? ] or [? ], that∫
∂ΩHess z : ∇z ⊗νe−ψdσ is nonpositive as soon asΩ is convex and ∇z ·ν= 0 on
∂Ω. As soon as we know that either

Hessψ≥Λ? Id
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for someΛ? > 0, or the inequality

2

p
(p −1)

∫
Ω
|∇X |2 dγ+

∫
Ω

Hessψ : X ⊗X dγ≥Λ(p)
∫
Ω
|X |2 dγ ∀X ∈ H1(Ω,dγ)d

holds for some Λ(p) > 0, which is a weaker assumption for any p > 1, then we
obtain that

d

d t

∫
Ω
|∇z|2 dγ≤−2Λ(p)

∫
Ω
|∇z|2 dγ .

Of course we know thatΛ(p) ≥Λ?. By convention, we takeΛ(1) =Λ?.

Proposition 3.4. Assume that p ∈ [1,2], ϕ = ϕp and, with the above notations,
Λ(p) > 0. If Ω is a smooth convex bounded domain in Rd , then (3.16) holds with
Λ= 2Λ(p).

Proof. It is straightforward. In view of the above computations, we know that

d

d t

(
4

pΛ

∫
Ω
|∇w p/2|2 dγ−

∫
Ω

w p −1

p −1
dγ

)
≤ 0

and limt→+∞
∫
Ω

w p−1
p−1 dγ = limt→+∞

∫
Ω |∇w p/2|2 dγ = 0. This is enough to con-

clude that, for any t ≥ 0,

4

pΛ

∫
Ω
|∇w p/2|2 dγ−

∫
Ω

w p −1

p −1
dγ≥ 0.

We conclude this section with the unbounded case Ω = Rd . For any given
p ∈ [1,2], let us assume that the inequality

2

p
(p−1)

∫
Rd

|∇X |2 dγ+
∫
Rd

Hessψ : X ⊗X dγ≥Λ(p)
∫
Rd

|X |2 dγ ∀X ∈ H1(Rd ,dγ)d

holds for some Λ(p) > 0. For p > 1, this assumption is a spectral gap condition
on a vector valued Schrödinger operator: see for instance [85] for further de-
tails. With this assumption in hand, we have the following functional inequality,
which interpolates between the logarithmic Sobolev inequality and the Poincaré
inequality.

Corollary 3.1. Assume that q ∈ [1,2) and let us consider the probability measure
dγ= e−ψd x on Rd . Then withΛ=Λ(2/q), we have∥∥ f

∥∥2
L2(Rd ,dγ) −

∥∥ f
∥∥2

Lq (Rd ,dγ)

2−q
≤ 1

Λ

∫
Rd

|∇ f |2 dγ ∀ f ∈ H1(Rd ,dγ) . (3.18)

Proof. By homogeneity, we know from Proposition 3.4 that∫
Ω

w p −w p

p −1
dγ≤ 2

pΛ(p)

∫
Ω
|∇w p/2|2 dγ

for all w such that f = w p/2. Here we take p = 2/q . The conclusion holds by
approximating Rd by a growing sequence of bounded convex domains.
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An equivalent form of (3.18) is

I [w] ≥ΛE [w] ∀w ∈ H1(Rd ,dγ) such that
∫
Rd

w dγ= 1 (3.19)

with the notation of Section 7.1, ϕ=ϕp and p = 2/q ∈ [1,2].

Remark 3.1. The optimality of the constantΛ= 1 in (3.18) is easy to obtain when
ψ(x) = 1

2 |x|2. With q = 1, (3.18) is the Gaussian Poincaré inequality

∥∥ f − f̄
∥∥2

L2(Rd ,dγ) ≤
∫
Rd

|∇ f |2 dγ ∀ f ∈ H1(Rd ,dγ) with f̄ =
∫
Rd

f dγ ,

with equality if f = f1, f1(x) = x1. By taking the limit as q → 2− in (3.18), we
recover Gross’ logarithmic Sobolev inequality

∫
Rd

f 2 log

 f 2∥∥ f
∥∥2

L2(Rd ,dγ)

dγ≤ 2
∫
Rd

|∇ f |2 dγ ∀ f ∈ H1(Rd ,dγ) .

For any q ∈ [1,2), the equality case in (3.18) withΛ= 1 is achieved by considering
1+ε f1 as a test function in the limit as ε→ 0.

From the point of view of the evolution equation, it is easy to see that the
equality in (3.16) is achieved asymptotically as t →+∞ by taking w = u/u? where u
is the solution of (3.4) given by

u(t , x) = u? (x −x?(t ))

with x?(t ) = x0 e−t for any fixed x0 ∈Rd .

3.2.5 Improved entropy – entropy production inequalities

In the proof of Proposition 3.4, the term
∫
Rd ‖Hess z −∇z ⊗∇z/z‖2 dγ has been

dropped. In some cases, one can recombine the other terms differently and
obtain an improved inequality if q ∈ (1,2). See [6] (and also [5] for a spectral
point of view or [74] in the case of the sphere). The boundary term

∫
∂ΩHess z :

∇z ⊗νe−ψdσ may also be of importance, as it is suggested in nonlinear prob-
lems by [78].

Let us give an example of an improvement, based on [6], in the special case
ψ(x) = |x|2/2. Using Hessψ = Id, after approximating Rd by bounded domains,
we obtain that

1

2

d

d t

∫
Rd

|∇z|2 dγ+
∫
Rd

|∇z|2 dγ≤−
∫
Rd

∥∥∥∥Hess z − 2−p

p

∇z ⊗∇z

z

∥∥∥∥2

dγ

− 2

p
κp

∫
Rd

|∇z|4
z2 dγ
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with κp = (p −1)(2−p)/p. A simple Cauchy-Schwarz inequality shows that(∫
Rd

|∇z|2 dγ

)2

≤
∫
Rd

|∇z|4
z2 dγ

∫
Rd

z2 dγ .

With the notations of Section 7.1, we have
∫
Rd z2 dγ= ∫

Rd w p dγ= 1+(p−1)E [w]
and

∫
Rd |∇z|2 dγ= p

4 I [w] so that

1

2

d

d t

∫
Rd

|∇z|2 dγ+
∫
Rd

|∇z|2 dγ≤− 2

p
κp

(∫
Rd |∇z|2 dγ

)2∫
Rd |z|2 dγ

can be rewritten as

d

d t
I [w]+2I [w] ≤−κp

I [w]2

1+ (p −1)E [w]
. (3.20)

We recall that we consider here the case ϕ = ϕp , p ∈ (1,2), so that κp is positive
and we can take advantage of (3.20) to obtain an improved version of Corol-
lary 3.1. The following result follows the scheme of Theorem 2 in [6].

Proposition 3.5. Assume that q ∈ (1,2) and let us consider the Gaussian proba-
bility measure dγ = (2π)−d/2 e−|x|

2/2 d x. Then there exists a strictly convex func-
tion F on R+ such that F (0) = 0 and F ′(0) = 1, for which

1

q
F

q

∥∥ f
∥∥2

L2(Rd ,dγ) −1

2−q

≤ ∥∥∇ f
∥∥2

L2(Rd ,dγ)

for any f ∈ H1(Rd ,dγ) such that
∥∥ f

∥∥
Lq (Rd ,dγ) = 1.

Proof. The proof follows the strategy of [6]. Let e(t ) := 1
p−1

(∫
Rd z2 dγ−1

)
where

z = w p/2 solves (3.17) with initial datum f . We deduce from (3.20) that

e′′+2e′ ≥ κp |e′|2
1+ (p −1)e ≥ κp |e′|2

1+e .

The function F (s) := 1
1−κp

[
1+s−(1+s)κp

]
solves F ′ = 1+κp

F
1+s and we can check

that (3.20) is equivalent to

d

d t

(
e′+2F

(
e
)(

1+e
)κp

)
≥ 0.

Since limt→+∞
(
e′(t )+2F

(
e(t )

)) = 0, we have shown that e′+ 2F
(
e
) ≤ 0 for any

t ≥ 0. This is true in particular at t = 0, with z(t = 0, ·) = f .

From the point of view of entropy – production of entropy inequalities, we
have obtained that

I [w] ≥ 2F (E [w])

where F is a strictly convex function such that F (0) = 0 and F ′(0) = 1. Using the
homogeneity and substituting f /

∥∥ f
∥∥

Lq (Rd ,dγ) to f , similar estimates have been
used in [6] to prove that

2
(2−q)2

[∥∥ f
∥∥2

L2(Rd ,dγ) −
∥∥ f

∥∥2(2−q)
Lq (Rd ,dγ)

∥∥ f
∥∥2(q−1)

L2(Rd ,dγ)

]
≤ ∥∥∇ f

∥∥2
L2(Rd ,dγ) ∀ f ∈ H1(Rd ,dγ) .
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3.2.6 Interpolation inequalities: comments and extensions

The inequality of Corollary 3.1 appears in many papers. It is proved for the first
time by the carré du champ method and any q ∈ [1,2] in [12] in the case of a com-
pact manifold, but special cases were known long before. For instance the case
q = 2 corresponding to the logarithmic Sobolev inequality can be traced back
to [103, 96] (also see [162, 90] for related issues) but was already known as the
Blachmann-Stam inequality [149]: see [160, 151] for a more detailed historical
account. The case q = 1 when ψ(x) = 1

2 |x|2 is known as the Gaussian Poincaré
inequality. It appears for instance in [135] but was probably known much earlier
in the framework of the theory of Hermite functions. In the case q ∈ (1,2) when
ψ(x) = 1

2 |x|2, we may refer to [21] for a proof based on spectral methods, which
has been extended in [5] to more general potentials.

One of the technical limitations of the carré du champ method is the dif-
ficulty of controlling the boundary terms in the various integrations by parts.
In the above proof, we used Grisvard’s lemma for convex domains. Alternative
methods, which will not be exposed here, rely on the properties of Green’s func-
tions, or use direct spectral estimates.

Let us list some possible extensions:

• In Corollary 3.1, for any given q ∈ [1,2], we need that Λ(p) is positive only
for p = 2/q . The condition for p = 1, which is equivalent to Hessψ≥Λ(1)Id with
Λ(1) > 0, is not required unless q = 2. For any q < 2, the positivity condition
of Λ(2/q) is a nonlocal condition, which allows ψ to be a non-uniformly strictly
convex potential: see [85] for details.

• The case of unbounded convex domains can be considered. Reciprocally,
according to [9], the case of a bounded convex domain Ω can be deduced from
the Euclidean case, by approximating a functionψwhich takes the value +∞ on
Ωc by smooth locally bounded potentials.

• Spectral methods can be used to establish that the family of inequalities of
Corollary 3.1 interpolates between the logarithmic Sobolev inequality and the
Poincaré inequality: this approach has been made precise in [21, 121], with ex-
tensions in [18, 5].

• Exhibiting a whole family of Lyapunov functionals for the same evolution
equation needs an explanation that has been given in [84, 86]: to each entropy,
we associate a notion of distance such that the equation appears as the gradient
flow of the entropy.

In the context of linear diffusions and Markov processes, ϕ-entropies are
very natural objects which put the Gibbs entropy and the quadratic form associ-
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ated to the Poincaré inequality in a common framework. It is therefore evident
to ask the same question in a kinetic framework involving a degenerate diffusion
operator coupled to a transport operator. Much less has been done so far and
the next section is a contribution to the issue of optimal rates of convergence
measured by ϕp -entropies, with a special emphasis on p 6= 1, 2.

3.3 Sharp rates for the kinetic Fokker-Planck equation

In this section, our goal is to provide a computation of the sharp exponential rate
in Proposition 3.1 and establish the improvement of Theorem 3.1 by generaliz-
ing the estimate of Proposition 3.5 to the kinetic setting. The method follows the
strategy of Section 3 of [159] in case p = 2, which is sometimes referred to as the
H1 hypocoercivity method of C. Villani. This method is also known to cover the
case p = 1. We extend it to any p ∈ [1,2] and compute the precise algebraic ex-
pressions, which allows us to identify the sharp rate. Similar computations have
been done in [7, 2, 1, 95, 131]. According to [53] (see earlier references therein),
the Green function associated with (3.5) is a Gaussian kernel, so that integrations
by parts can be performed on Rd ×Rd without any special precaution.

3.3.1 H1 hypocoercive estimates

Using the notation of Section 7.1, our strategy is to consider the solution h = g p/2

of (3.7), where g = f / f?, define

J [h] :=
∫
Rd

|∇v h|2 dµ+2λ
∫
Rd

∇v h ·∇x h dµ+ν
∫
Rd

|∇x h|2 dµ

and adjust the parameters λ and ν in order to maximize λ? =λ?(λ,ν) > 0 so that

d

d t
J [h(t , ·, ·)] ≤−λ?(λ,ν)J [h(t , ·, ·)] .

Since (3.6) is linear and preserves positivity, we recall that we can assume that g
is nonnegative and such that

∥∥g
∥∥

L1(Rd×Rd ,dµ) = 1. Let us define the notations:

Hv v =
(

∂2h

∂vi ∂v j

)
1≤i , j≤d

, Hxv =
(

∂2h

∂xi ∂v j

)
1≤i , j≤d

,

Mv v =
(
∂
p

h

∂vi

∂
p

h

∂v j

)
1≤i , j≤d

, Mxv =
(
∂
p

h

∂xi

∂
p

h

∂v j

)
1≤i , j≤d

.
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We start by observing that, up to a few integrations by parts, we obtain the iden-
tities

1
2

d

d t

∫
Rd

|∇v h|2 dµ

=−
∫
Rd

∇v h ·∇v (v ·∇x h −x ·∇v h)dµ+
∫
Rd

∇v h ·∇v (∆v h − v ·∇v h)dµ

+ ( 2
p −1

)∫
Rd

∇v h ·∇v

( |∇v h|2
h

)
dµ

=−
∫
Rd

∇v h ·∇x h dµ−
(∫
Rd

‖Hv v‖2 dµ+
∫
Rd

|∇v h|2 dµ

)
+κ

∫
Rd

(
Hv v : Mv v −2‖Mv v‖2)dµ (3.21)

with κ= 8(2−p)/p,

1
2

d

d t

∫
Rd

|∇x h|2 dµ

=−
∫
Rd

∇x h ·∇x (v ·∇x h −x ·∇v h)dµ+
∫
Rd

∇x h ·∇x (∆v h − v ·∇v h)dµ

+ ( 2
p −1

)∫
Rd

∇x h ·∇x

( |∇v h|2
h

)
dµ

=
∫
Rd

∇v h ·∇x h dµ−
∫
Rd

‖Hxv‖2 dµ+κ
∫
Rd

(
Hxv : Mxv −2‖Mxv‖2)dµ , (3.22)

and

d

d t

∫
Rd

∇v h ·∇x h dµ=
∫
Rd

|∇v h|2 dµ−
∫
Rd

|∇x h|2 dµ−
∫
Rd

∇v h ·∇x h dµ

−2
∫
Rd

Hv v : Hxv dµ

+κ
∫
Rd

(Hv v : Mxv +Hxv : Mv v −4Mv v : Mxv )dµ . (3.23)

Collecting these estimates shows that

− 1
2

d

d t
J [h(t , ·, ·)]

=−1
2

d

d t

(∫
Rd

|∇v h|2 dµ+2λ
∫
Rd

∇v h ·∇x h dµ+ν
∫
Rd

|∇x h|2 dµ

)
= (1−λ)

∫
Rd

|∇v h|2 dµ+ (1+λ−ν)
∫
Rd

∇v h ·∇x h dµ+λ
∫
Rd

|∇x h|2 dµ

+
∫
Rd

‖Hv v‖2 dµ−κ
∫
Rd

(
Hv v : Mv v −2‖Mv v‖2)dµ

+ 2λ
∫
Rd

Hv v : Hxv dµ−κλ
∫
Rd

(Hv v : Mxv +Hxv : Mv v −4Mv v : Mxv )dµ

+ν
∫
Rd

‖Hxv‖2 dµ−κν
∫
Rd

(
Hxv : Mxv −2‖Mxv‖2)dµ
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where κ= 8(2−p)/p. This can be rewritten as

−1
2

d

d t

∫
Rd

X ⊥ ·M0 X dµ=
∫
Rd

X ⊥ ·M1 X dµ+
∫
Rd

Y ⊥ ·M2 Y dµ

where

M0 =
(

1 λ

λ ν

)
⊗ IdRd , M1 =

(
1−λ 1+λ−ν

2
1+λ−ν

2 λ

)
⊗ IdRd

and

M2 =


1 λ −κ

2 −κλ
2

λ ν −κλ
2 −κν

2
−κ

2 −κλ
2 2κ 2κλ

−κλ
2 −κν

2 2κλ 2κν

⊗ IdRd×Rd

are bloc-matrix valued functions of (λ,ν), and

X = (∇v h,∇x h) , Y = (Hv v ,Hxv ,Mv v ,Mxv ) .

The problem is reduced to a problem of linear algebra, namely to maximize

λ?(λ,ν) := min
X∈R2d

X ⊥ ·M1(λ,ν) X

X ⊥ ·M0(λ,ν) X

on the set of parameters (λ,ν) ∈R2 such that

min
Y ∈R2d×R2d

Y ⊥ ·M2 Y

‖Y ‖2 ≥ 0.

Here X and Y now arbitrary vectors and matrices respectively in R2d and R2d ×
R2d . Elementary computations show that λ and ν must satisfy the condition
λ2 ≤ ν and also that λ?(λ,ν) achieves its maximum at (λ,ν) = ( 1

2 ,1), so that
λ?( 1

2 ,1) = 1
2 . For (λ,ν) = ( 1

2 ,1), M1( 1
2 ,1) = 1

2 M0( 1
2 ,1) and the eigenvalues of

M2( 1
2 ,1) are given as a function of κ= 8(2−p)/p by

λ1(κ) := 1

4

(
2κ+1−

√
5κ2 −4κ+1

)
, λ2(κ) := 3

4

(
2κ+1−

√
5κ2 −4κ+1

)
,

λ3(κ) := 1

4

(
2κ+1+

√
5κ2 −4κ+1

)
, λ4(κ) := 3

4

(
2κ+1+

√
5κ2 −4κ+1

)
.

In the range p ∈ [1,2], which means κ ∈ [0,8], they are all nonnegative: see
Fig. 3.1. Sinceλ1(κ) is the lowest eigenvalue, we have proved the following result.

Lemma 3.4. With the above notations and (λ,ν) = ( 1
2 ,1), we have the estimate∫

Rd
X ⊥ ·M1 X dµ+

∫
Rd

Y ⊥ ·M2 Y dµ≥ 1

2

∫
Rd

X ⊥ ·M0 X dµ

+ 1

4

(
2κ+1−

√
5κ2 −4κ+1

)
|Y |2 .
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Figure 3.1: Plot of the eigenvalues of M2( 1
2 ,1) as a function of κ.

3.3.2 Proof of Proposition 3.1

Assume that h solves (3.7). With (λ,ν) = ( 1
2 ,1), we deduce from Lemma 3.4 that

J [h] is defined by (3.9). Then it satisfies the differential inequality

d

d t
J [h(t , ·, ·)] ≤−J [h(t , ·, ·)] ,

from which we deduce that

J [h(t , ·, ·)] ≤J [h(0, ·, ·)]e−t ∀ t ≥ 0.

Using (3.3) with dγ = µd x d v , λ = 1 and ϕ = ϕp for any p ∈ [1,2] (also see Re-
mark 3.1), we obtain that

E [h(t , ·, ·)] ≤J [h0]e−t ∀ t ≥ 0

if h is the solution of (3.7) with initial datum h0.

The optimality of the rate is established by considering an initial datum which
is a decentred stationary solution. With the notations of Section 7.1, let

f0(x, v) = f?(x −x0, v − v0) ∀ (x, v) ∈Rd ×Rd

for some (x0, v0) 6= (0,0). The reader is invited to check that

f (t , x, v) = f?
(
x −x?(t ), v − v?(t )

)
with

 x?(t ) =
(
cos

(p3
2 t

)
x0 + 2p

3
sin

(p3
2 t

)(
v0 + x0

2

))
e−

t
2 ,

v?(t ) =
(
−

p
3

2 sin
(p3

2 t
)(

x0 + v0
2

)+cos
(p3

2 t
)

v0

)
e−

t
2 ,

(3.24)
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solves (3.5). Now let us compute the entropy as t → +∞: with g = f / f? and
ϕ=ϕp , we obtain that, as t →+∞,

E [g (t , ·, ·)] =
Ï
Rd×Rd

ϕp (g )dµ= p

2

Ï
Rd×Rd

|g −1|2 dµ (1+o(1))

= p

2

(|x?(t )|2 +|v?(t )|2) (1+o(1)) =O
(
e−t ) .

This proves that the rate e−t of Proposition 3.1 is optimal and completes the
proof.

Compared to the proof of Proposition 3.1, a refined estimate can be obtained
by observing that, in the computation of d

d t

∫
Rd |∇v h|2 dµ and d

d t

∫
Rd |∇x h|2 dµ,

we have

‖Hv v‖2 −κHv v : Mv v +2κ‖Mv v‖2 ≥ 0,

‖Hxv‖2 −κHxv : Mxv +2κ‖Mxv‖2 ≥ 0,

with κ= 8(2−p)/p. Let us define

a := e t
∫
Rd

|∇v h|2 dµ , b := e t
∫
Rd

∇v h ·∇x h dµ , c := e t
∫
Rd

|∇x h|2 dµ ,

and j := a+b+c .

We deduce from (3.21), (3.22) and (3.23) that

d a
d t

≤ a− 2(j−c) ,
d c
d t

≤ 2(j−a)− c and
d j
d t

≤ 0

while we know by definition of a, b and c and by the Cauchy-Schwarz estimate
that

a≥ 0, c≥ 0 and b2 ≤ ac .

In terms of a and c, the inequality b2 = (a+ c− j)2 ≤ ac means that the problem
is constrained to the interior of an ellipse, and that a = 0 if and only if c = j: see
Fig. 3.2. Finally, let us observe that we have the following property.

Lemma 3.5. Assume that p ∈ [1,2], ψ(x) = |x|2/2 and let h be a solution of (3.7)
with initial datum h0 ∈ L1 ∩ Lp (Rd ,dγ). With the above notations, if for some
t0 > 0, a(t0) = 0 and j(t0) 6= 0, then for any t > t0 with t − t0 small enough, we have
a(t ) > 0.

Proof. From the equivalence of (3.5) and (3.7), we know that h is smooth be-
cause of the expression of Green’s function. By definition of b and j, we have that
b(t0) = 0 and c(t0) = j(t0) > 0. Since a(t0) = 0 means that h does not depend on
v , we know that d j

d t (t0) = j(t0) > 0, hence proving that a(t ) > 0 for t − t0 > 0, small,

because of the condition b2 ≤ ac and d c
d t ≤ 0, which means that t 7→ (a(t ),c(t )) is

constrained to the interior of the ellipse of Fig. 3.2.
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Figure 3.2: Plot of the vector field associated with the ODEs d a
d t = a− 2(j− c)

and d c
d t = 2(j−a)− c. The coordinates are a/j (horizontal axis) and c/j (vertical

axis). The two straight lines intersecting at the center of the ellipse are defined
by 2(j−a)−c= 0 and a−2 j+2c= 0.

3.3.3 Proof of Theorem 3.1

Let us consider the Fisher information functional as defined in (3.10). A compu-
tation shows that

−1

2

d

d t
Jλ(t )[h(t , ·)] = X ⊥ ·M1 X − 1

2
λ′(t ) X ⊥ ·

(
0 1
1 0

)
X +Y ⊥ ·M2 Y

where M0, M1 and M2 are defined as before, with ν = 1, and X = (∇v h,∇x h),
Y = (Hv v ,Hxv ,Mv v ,Mxv ). We take of course λ=λ(t ). We know that

Y ⊥ ·M2 Y ≥λ1(p,λ) |Y |2

for someλ1(p,λ) such thatλ1(p,1/2) = 1
4

(
2κ+1−

p
5κ2 −4κ+1

)
> 0 if p ∈ (1,2),

and κ= 8(2−p)/p. For any p ∈ (1,2), by continuity we know that λ1(p,λ) > 0 if
λ−1/2 > 0 is taken small enough. From |Y |2 ≥ ‖Mv v‖2 and, by Cauchy-Schwarz,(∫

Rd
|∇v h|2 dµ

)2

≤
∫
Rd

h2 dµ
∫
Rd

‖Mv v‖2 dµ≤ c0

∫
Rd

‖Mv v‖2 dµ
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where c0 := 1+ (p −1)E [h2/p
0 ], we obtain

−1

2

d

d t
Jλ(t )[h(t , ·)] ≥ X ⊥ ·M1 X + 1

2
λ′(t ) X ⊥ ·M0 X +εX ⊥ ·M3 X

with ε = λ1(p,λ)c−1
0

∫
Rd |∇v h|2 dµ and M3 =

(
1 0
0 0

)
⊗ IdRd . We recall that a is

defined by a= e t
∫
Rd |∇v h|2 dµ is positive except for isolated values of t > 0. Our

goal is to find λ(t ) and ρ(t ) > 1/2 such that

X ⊥ ·M1 X − 1

2
λ′(t ) X ⊥ ·

(
0 1
1 0

)
X +εX ⊥ ·M3 X ≥ ρ(t ) X ⊥ ·M0 X

for any X ∈R2d .

To establish the existence of ρ > 1/2 a.e., we proceed in several steps.

• If a ≥ a? for some constant a? > 0, then we define ε(t ) = νe−t with ν =
λ1(p,λ)c−1

0 a?, λ(t ) = (1+ ε(t ))/2 and ρ(t ) = 1
2 (1+ν/(ν+ 3e t )). The same esti-

mate holds on any subinterval of R+.

• If a(t0) = 0 for some t0 ≥ 0, then in a neighborhood of (t0)+, we can solve

dλ

d t
= νε(t ) , λ(t0) = 1

2
.

An eigenvalue computation shows that

M1 + 1

2
νεM0 +εM3 ≥ ζ(ε,λ,ν)M0

with

ζ
(
0, 1

2 ,ν
)= 1

2 ,
∂ζ

∂ε

(
0, 1

2 ,ν
)= 2+p

3−2ν

3
,

∂ζ

∂λ

(
0, 1

2 ,ν
)=− 2p

3
.

We choose an arbitrary ν ∈ (0,1+p3/2). Since 0 <λ(t )−1/2 = o(ε(t )) for t−t0 > 0,
small enough, this guarantees that ρ(t ) = ζ (ε(t ),λ(t ),ν) satisfies ρ(t ) > 1/2 on a
neighborhood of (t0)+.

• If ζ(t0) = 0 for some t0 > 0, then in a neighborhood of (t0)−, we proceed as
above with some ν< 0.

• If (tn)n∈N is the increasing sequence of points such that a(tn) = 0 and if
a(t ) > 0 for any t ∈R+ such that t 6= tn for any n ∈N, we can choose a constant a?,
small enough, on any interval (tn , tn+1) and glue the above solutions to obtain a
function ρ(t ) > 1/2 on (0, t0) and ∪n∈N(tn , tn+1). It is an open question to decide



CHAPTER 3. φ-ENTROPY OF KINETIC FOKKER-PLANCK EQUATION 82

if there is an increasing sequence, finite or infinite, of times tn such that a(tn) = 0,
or if a(t ) is positive for any t > 0. We can of course impose that a(t0) = 0 at t0 = 0
by taking an initial datum h0 which does not depend on v . If such a sequence
(tn)n∈N exists, then we know that λ(tn) = 1/2 so that we have the remarkable
decay estimate

J1
2

[h(tn+1, ·)] ≤J1
2

[h(tn , ·)]e−2
∫ tn+1

tn
ρ(s)d s <J1

2
[h(tn , ·)]e−(tn+1−tn )

for any p ∈ (1,2). As far as a is concerned, we expect that it has some oscillatory
behaviour as indicated by the vector field in Fig. 3.2, but since terms involving
Y are neglected, this is so far formal. In any case, we can choose λ(t ) such that
limt→+∞λ(t ) = 1/2. This concludes the proof of Theorem 3.1.

3.3.4 Concluding remarks

Even if the global rate cannot be improved because it is determined by the large
time asymptotics, at any finite time the instantaneous rate of decay is strictly
higher in the case of the diffusions studied in Sections 3.2.4-3.2.5, or at least
higher at almost any time in the case of the kinetic equation, according to The-
orem 3.1.

As t →+∞, Theorem 3.1 provides us with an improved estimate of the lead-
ing order term. The exponential decay rate cannot be improved as shown by (3.24),
but we prove that there is a constant less than 1 to be taken into account. This
observation is reminiscent of what happens for nonlinear diffusions of porous
medium or fast diffusion type, which goes as follows. When looking at the rela-
tive entropy with respect to the best matching (in the sense of relative entropy)
profiles, it turns out that there is a delay τ compared to the relative entropy with
respect to a fixed Barenblatt profile. As a result, we obtain a multiplicative fac-
tor e−τ corresponding to an improved estimate in an asymptotic expansion as
t →+∞ [89]. We have a similar property when we study the large time behavior
of the solutions of (3.6) using a ϕp -entropy for any given p ∈ (1,2).

The key estimate of Theorem 3.1 asserts that

d

d t
Jλ(t )[h(t , ·)] ≤−2ρ(t )Jλ(t )[h(t , ·)] ≤−Jλ(t )[h(t , ·)]

where the last inequality is strict for almost any value of t ≥ 0 (unless h is a sta-
tionary solution). Now, let us consider the large time asymptotics and define

τ := lim
t→+∞

(
2
∫ t

0
ρ(s)d s − t

)
.

We cannot expect that τ = +∞ for any initial datum but at least show that τ is
positive (unless h is a stationary solution), so that for large values of t we have

J1/2[h(t , ·)]. e−τJ1/2[h0]e−t . (3.25)
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For instance, in case of (3.24), one can prove that ρ(t )−1/2 is of the order of e−t

and τ is finite. With e−τ < 1, (3.25) is anyway a strict improvement of the usual
estimate as t →+∞.

The improvement of Theorem 3.1 is obtained only for almost any time: ac-
cording to Lemma 3.5, the optimal decay rate could eventually be realized at an
increasing sequence of times tn ↗ +∞, but the solution will then deviate and
temporarily regain a faster decay rate. Qualitatively, this comes from the oscil-
lations in the phase space corresponding to the ODE associated with the vector
field shown in Fig. 3.2. Such a pattern is consistent with what is known of the
rates measured by hypocoercive methods in kinetic equations.
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Chapter 4

Flocking model

Article Flocking: phase transition and asymptotic behaviour. Appeared in
https://hal.archives-ouvertes.fr/hal-02143985 and https://arxiv.org/abs/1906.07517

This chapter is devoted to a continuous McKean-Vlasov model with noise,
which has isotropic and polarized stationary solutions depending on the inten-
sity of the noise. The first result establishes the threshold value of the noise
parameter which drives the phase transition. This threshold value is used to
classify all stationary solutions and their linear stability properties. Using an
entropy, these stability properties are extended to the non-linear regime. The
second result is concerned with the asymptotic behaviour of the solutions of the
evolution problem. In several cases, we prove that stable solutions attract the
other solutions with an optimal exponential rate of convergence determined by
the spectral gap of the linearized problem around the stable solutions. The spec-
tral gap has to be computed in a norm adapted to the non-local term.

85
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4.1 Introduction

In many fields such as biology, ecology or economic studies, emerging collective
behaviours and self-organization in multiagent interactions have attracted the
attention of many researchers. In this paper we consider the McKean-Vlasov
model in order to describe flocking. The original model of [63] is Cucker-Smale
model, which describes a population of N birds moving in R3 by the equations

vi (tn +∆t )− vi (tn) = λ∆t

N

N∑
i=1

ai j
(
v j (tn)− vi (tn)

)
, i = 1, 2. . . N

at discrete times tn = n∆t with n ∈ N and ∆t > 0. Here vi is the velocity of the
i th bird, the model is homogeneous in the sense that there is no position vari-
able, and the coefficients ai j model the interaction between pairs of birds as
a function of their relative velocities, while λ is an overall coupling parameter.
The authors proved that under certain conditions on the parameters, the solu-
tion converges to a state in which all birds fly with the same velocity. Another
model is the Vicsek model [157] which was derived earlier to study the evolution
of a population in which individuals have a given speed but the direction of their
velocity evolves according to a diffusion equation with a local alignment term.
This model exhibits phase transitions. In [65, 66, 98, 154], phase transition has
been shown in a continuous version of the model: with high noise, the system
is disordered and the average velocity is zero, while for low noise a direction is
selected.

Here we consider a model on Rd , d ≥ 1 with noise as in [36, 62]. The pop-
ulation is described by a distribution function f (v, t ) in which the interaction
occurs through a mean-field nonlinearity known as local velocity consensus and
we also equip the individuals with a so-called self-propulsion mechanism which
privileges a speed (without a privileged direction) but does not impose a single
value to the speed as in the Vicsek model. The distribution function solves

∂ f

∂t
= D∆ f +∇·

(
(v −u f ) f +αv

(|v |2 −1
)

f
)

, f (.,0) = fin > 0 (4.1)

where t ≥ 0 denotes the time variable and v ∈ Rd is the velocity variable. Here
∇ and ∆ are the gradient and the Laplacian with respect to v respectively. The
parameter D > 0 measures the intensity of the noise, α > 0 is the parameter of
self-propulsion which tends to force the distribution to be centered on velocities
|v | of the order of 1 when α becomes large, and

u f (t ) =
∫
Rd v f (t , v)d v∫
Rd f (t , v)d v

is the mean velocity. We refer to [14] for more details. Notice that (4.1) is one-
homogeneous: from now on, we will assume that the mass satisfies

∫
Rd f (t , v)d v =
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1 for any t ≥ 0, without loss of generality. In (4.1), the velocity consensus term
v −u f can be interpreted as a friction force which tends to align v and u f . Al-
together, individuals are driven to a velocity corresponding to a speed of order 1
and a direction given by u f , but this mechanism is balanced by the noise which
pushes the system towards an isotropic distribution with zero average veloc-
ity. The Vicsek model can be obtained as a limit case in which we let α→+∞:
see [40]. The competition between the two mechanisms, relaxation towards a
non-zero average velocity and noise, is responsible for a phase transition be-
tween an ordered state for small values of D , with a distribution function f cen-
tered around u with u 6= 0, and a disordered, symmetric state with u = 0. This
phase transition can also be interpreted as a symmetry breaking mechanism
from the isotropic distribution to an ordered, asymmetric or polarized distribu-
tion, with the remarkable feature that nothing but the initial datum determines
the direction of u f for large values of t and any stationary solution generates a
continuum of stationary solutions by rotation. We refer to [154] for more de-
tailed comments and additional references on related models.

So far, a phase transition has been established in [154] when d = 1 and it
has been proved in [13] by A. Barbaro, J. Canizo, J. Carrillo and P. Degond that
stationary solutions are isotropic for large values of D while symmetry breaking
occurs as D → 0. The bifurcation diagram showing the phase transition has also
been studied numerically in [13] and the phase diagram can be found in [154,
Theorem 2.1]. The first purpose of this paper is to classify all stable and unstable
stationary solutions and establish a complete description of the phase transi-
tion.

Theorem 4.1. Let d ≥ 1 and α > 0. There exists a critical intensity of the noise
D∗ > 0 such that

(i) if D ≥ D∗ there exists one and only one non-negative stationary distribution
which is isotropic, and stable if D > D∗,

(ii) if D < D∗ there exist one and only one non-negative isotropic stationary
distribution which is unstable, and a continuum of stable non-negative
non-symmetric stationary distributions, but this non-symmetric stationary
solution is unique up to a rotation.

Under the assumption of mass normalization to 1, it is straightforward to
observe that any stationary solution can be written as

fu(v) = e
− 1

D

(
1
2 |v−u|2+α4 |v |4−α2 |v |2

)
∫
Rd e

− 1
D

(
1
2 |v−u|2+α4 |v |4−α2 |v |2

)
d v

where u = (u1, ..ud ) ∈ Rd solves
∫
Rd (u− v) fu(v)d v = 0. Up to a rotation, we can

assume that u = (u,0, ...0) = u e1 and the question of finding stationary solutions
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to (4.1) is reduced to solve u ∈R such that

H (u) = 0 (4.2)

where

H (u) :=
∫
Rd

(v1 −u)e−
1
D (φα(v)−u v1) d v and φα(v) := α

4 |v |4 + 1−α
2 |v |2 .

Obviously u = 0 is always a solution. Moreover, if u is a solution of (4.2), then −u
is also a solution. As a consequence, from now on, we always suppose that u ≥ 0.
Theorem 4.1 is proved in Section 4.2 by analyzing (4.2). Taking u = u e1 is a key
but straightforward idea in case of stationary solution, which however does not
adapt so easily to non-stationary solutions of the evolution problem.

The second purpose of this paper is to study the stability of the stationary
states and the rates of convergence of the solutions of the evolution problem. A
key tool is the free energy

F [ f ] := D
∫
Rd

f log f d v +
∫
Rd

f φαd v − 1

2
|u f |2 (4.3)

and we shall also consider the relative entropy with respect to fu defined as

F [ f ]−F [ fu] = D
∫
Rd

f log

(
f

fu

)
d v − 1

2
|u f −u|2

where fu is a stationary solution to be determined. Notice that fu is a critical
point of F under the mass constraint. Since there is only one stationary solution
fu corresponding to u = 0 if D > D∗, we know that f0 is the unique minimizer of
F , it is non-linearly stable and in particular we have that F [ f ]−F [ fu] ≥ 0. See
Section 4.4 for more details.

To a distribution function f , we associate the non-equilibrium Gibbs state

G f (v) := e
− 1

D

(
1
2 |v−u f |2+α4 |v |4−α2 |v |2

)
∫
Rd e

− 1
D

(
1
2 |v−u f |2+α4 |v |4−α2 |v |2

)
d v

. (4.4)

Unless f is a stationary solution of (4.1), let us notice that G f does not solve (4.1).
A crucial observation is that

F [ f ] = D
∫
Rd

f log f d v + 1

2

∫
Rd

|v −u f |2 f d v +
∫
Rd

(α
4
|v |4 − α

2
|v |2

)
f d v

is a Lyapunov function in the sense that

d

d t
F [ f (t , ·)] =−I [ f (t , ·)]
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if f solves (4.1), where I [ f ] is the relative Fisher information of f defined as

I [ f ] :=
∫
Rd

∣∣∣∣D ∇ f

f
+αv |v |2 + (1−α) v −u f

∣∣∣∣2

f d v = D2
∫
Rd

∣∣∣∣∇ log

(
f

G f

)∣∣∣∣2

f d v .

(4.5)
It is indeed clear that F [ f (t , ·)] is monotone non-increasing and d

d t F [ f (t , ·)] = 0
if and only if f = G f is a stationary solution of (4.1). This is consistant with our
first stability result.

Proposition 4.1. For any d ≥ 1 and any α> 0, f0 is a linearly stable critical point
if and only if D > D∗.

Actually, from the dynamical point of view, we have a better, global result.

Theorem 4.2. For any d ≥ 1 and any α > 0, if D > D∗, then for any solution f
of (4.1) with nonnegative initial datum fin of mass 1 such that F [ fin] <∞, there
are two positive constants C and λ such that, for any time t > 0,

0 ≤F [ f (t , ·)]−F [ f0] ≤C e−λ t . (4.6)

We shall also prove that∫
Rd

| f (t , ·)− f0|2 f −1
0 d v ≤C e−λ t

with same λ> 0 as in Theorem 4.2, but eventually for a different value of C , and
characterize λ as the spectral gap of the linearized evolution operator in an ap-
propriate norm. A characterization of the optimal rateλ is given in Theorem 4.3.

For D < D∗, the situation is more subtle. The solution of (4.1) can in princi-
ple converge either to the isotropic stationary solution f0 or to a polarized, non-
symmetric stationary solution fu with u 6= 0. We will prove that F [ f ]−F [ fu]
decays with an exponential rate which is also characterized by a spectral gap in
Section 4.6. In non-symmetric case, the question of the rate of convergence to a
solution with a uniquely defined limiting u or a set of polarized solutions is still
open.

This chapter is organized as follows. In Section 4.2, we classify all stationary
solutions, prove Theorem 3.1 and deduce that a phase transition occurs at D =
D∗. Section 4.3 is devoted to the linearization. The relative entropy and the rel-
ative Fisher information provide us with two quadratic forms which are related
by the linearized evolution operator. The main result here is to prove a spec-
tral gap property for this operator in the appropriate norm, which is inspired by
a similar method used in [50] to study the sub-critical Keller-Segel model: see
Proposition 4.6. It is crucial to take into account all terms in the linearization,
including the term arising from the non-local mean velocity. The proof of The-
orem 4.2 follows using a Grönwall type estimate, in Section 4.5 (isotropic case).
In Section 4.6, we also give some results in the polarized case.



CHAPTER 4. FLOCKING MODEL 90

4.2 Stationary solutions and phase transition

The aim of this section is to classify all stationary solutions of (4.1) as a first step
of the proof of the phase transition result of Theorem 4.1. Our proofs are based
on elementary although somewhat painful computations. We refer to [154] for
more references for the case d = 1.

4.2.1 A technical observation

Let us start by the simple observation that

−D
∂

∂v1

(
e−

1
D (φα(v)−u v1)

)
= (

v1 −u +α(|v |2 −1
)

v1
)

e−
1
D (φα(v)−u v1)

can be integrated on Rd to rewrite H as

H (u) =α

∫
Rd

(
1−|v |2)v1 e−

1
D (φα(v)−u v1) d v

and compute

H ′(u) = α

D

∫
Rd

(
1−|v |2)v2

1 e−
1
D (φα(v)−u v1) d v .

We observe that H ′(0) = α
D |Sd−1|hd (D) where

hd (D) :=
∫ ∞

0
(sd+1 − sd+3)e−

ϕα(s)
D d s and φα(s) := α

4 s4 + 1−α
2 s2 .

With these notations, we are now in a position to state a key ingredient of the
proof.

Proposition 4.2. For any d ≥ 1 and any α> 0, hd has a unique positive root D∗.
Moreover hd is positive on (0,D∗) and negative on (D∗,+∞).

Proof. Our goal is to prove that hd = jd+1 − jd+3 is positive on (0,D∗) and nega-
tive on (D∗,+∞) for some D∗ > 0, where

jd (D) :=
∫ ∞

0
sd e−

1
D ϕα(s) d s . (4.7)

Let us start with two useful identities. A completion of the square shows that for
any n ∈N,

jn+5 −2 jn+3 + jn+1 =
∫ ∞

0
sn+1 (

s2 −1
)2

e−
φα
D d s > 0. (4.8)

With an integration by parts, we obtain that

α jn+5 + (1−α) jn+3 =
∫ ∞

0
sn+2ϕ′

α e−
1
D ϕα d s = (n +2)D jn+1 . (4.9)
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Next, we split the proof in a series of claims.

• The function hd is positive on (0,1/(d +2)] and negative on [1/d ,+∞). Let
us prove this claim. With n = d and n = d−2, we deduce from (4.8) and (4.9) that

hd > 1− (d +2)D

1+α jd+1 and hd < 1−d D

1+α jd−1 .

As a consequence, if hd (D) = 0, then D ∈ (1/(d +2),1/d).

• If α≤ 1, then hd (D) = 0 has a unique solution. By a direct computation, we
observe that

4D2 h′
d =αhd+4 +2(1−α)hd+2

using (4.9) with n = d +2. If α ∈ (0,1), it follows that h′
d < 0 on [1/(d +2),+∞),

which proves the claim.

• If α > 1 and h′
d (D◦) = 0 for some D◦ ∈ (1/(d + 2),1/d), then hd (D◦) > 0.

Indeed, using

4D2 h′
d =−α jd+7 + (3α−2) jd+5 + 2(1−α) jd+3 = 0,

combined with (4.9) for n = d +2 and n = d , we find that, at D = D◦,

hd (D◦) = (d +2)D −1+α (1−d D)

α−1+ (d +4)Dα
jd+1 .

Collecting our observations concludes the proof. See Fig. 4.1 for an illustra-
tion.

4.2.2 The one-dimensional case

Lemma 4.1. Let us consider a continuous positive functionψ on R+ such that the
function s 7→ψ(s)e s2

is integrable and define

H(u) :=
∫ +∞

0

(
1− s2)ψ(s) sinh(s u)d s ∀u ≥ 0.

For any u > 0, H ′′(u) < 0 if H(u) ≤ 0. As a consequence, H changes sign at most
once on (0,+∞).

Proof. We first observe that

H ′′(u)−H(u) =
∫ +∞

0

(
1− s2)(s2 −1

)
ψ(s) sinh(s u)d s < 0 ∀u > 0. (4.10)

Let u∗ > 0 be such that H(u∗) = 0. If H ′(u∗) < 0, there is a neighborhood of
(u∗)+ such that both H and H ′ are negative. As a consequence, by continuation,
H ′(u) < H ′(u∗) < 0 for any u > u∗. We also get that H ′(u) < 0 for any u > u∗ if
H ′(u∗) = 0 because we know that H ′′(u∗) < 0. We conclude by observing that
H ′(u∗) > 0 would imply H ′(u) > H ′(u∗) for any u ∈ (0,u∗), a contradiction with
H(0) = 0.
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Proposition 4.3. Assume that d = 1 and α > 0. With the notations of Proposi-
tion 4.2, Equation (4.2), i.e., H (u) = 0, has as a solution u = u(D) > 0 if and only
if D < D∗ and limD→(D∗)− u(D) = 0.

In other words, there exists a solution to (4.2) if and only if H ′(0) > 0.

Proof. Since H (0) = 0, for any D 6= D∗, hd (D) and H (u) have the same sign in a
neighborhood of u = 0+. Next we notice that

− 1

α
H (u) =

∫ ∞

0

(
v2 −1

)
v e−

φα(v)
D e

u v
D d v −

∫ ∞

0

(
v2 −1

)
v e−

φα(v)
D e−

u v
D d v .

The second term of the right-hand side converges to 0 as u →∞ by the domi-
nated convergence theorem. Concerning the first term, let us notice that |(v2 −
1) v |e−φα(v)/D is bounded on (0,3), so that∫ ∞

0

(
v2 −1

)
v e−

φα(v)
D e

u v
D d v

≥
∫ 1

0

(
v2 −1

)
v e−

φα(v)
D e

u v
D d v +

∫ 3

2

(
v2 −1

)
v e−

φα(v)
D e

u v
D d v

≥−C1 eu/D +C2 e2u/D →+∞ as u →+∞

for some positive constants C1 and C2. This proves that limu→+∞H (u) = −∞
and shows the existence of at least one positive solution of (4.2) if hd (D) > 0.

The fact that (4.2) has at most one solution on (0,+∞) follows from Lemma 4.1
applied with H(u) = H (D u) and ψ(v) = 2αv e−

φα(v)
D . Finally, as consequence

of the regularity of H and of (4.10), the solution u = u(D) of (4.2) is such that
limD→(D∗)− u(D) = 0.

For D = D∗, notice that H ′(0) =H ′′(0) = 0, and

H ′′′(0) = α

D2

∫
R

(1− v2)v3e−
φ∗
D∗ d v < 0

because

−
∫
R

(1− v2)v3e−
φ∗
D∗ d v =

∫
R

v(1− v2)2e−
φ∗
D∗ d v > 0

so we deduce by using the similar method above that H (u) has no positive so-
lutions.

4.2.3 The case of a dimension d ≥ 2

We extend the result of Proposition 4.3 to higher dimensions.

Proposition 4.4. Assume that d ≥ 2 and α > 0. With the notations of Proposi-
tion 4.2, Equation (4.2), i.e., H (u) = 0, has as a solution u = u(D) > 0 if and only
if D < D∗ and limD→(D∗)− u(D) = 0.
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Qualitatively, the result is the same as in dimension d = 1: there exists a so-
lution to (4.2) if and only if H ′(0) > 0. See Fig. 4.2.

In radial coordinates such that s = |v | and v1 = s cosθ, with θ ∈ [0,π],

H (u) =α
∣∣∣Sd−2

∣∣∣∫ π

0

∫ +∞

0

(
1− s2) sd e−

ϕα(s)
D cosθ (sinθ)d−2 e

u s
D cosθ d s dθ

written with the convention that |S0| = 2 can also be rewritten as

H (u) = 2α
∣∣∣Sd−2

∣∣∣∫ π/2

0

∫ +∞

0

(
1− s2) sd e−

ϕα(s)
D cosθ (sinθ)d−2 sinh

(u s
D cosθ

)
d s dθ .

Lemma 4.1 does not apply directly. Let us consider

h(s) :=
∫ π/2

0
cosθ (sinθ)d−2 sinh(s cosθ)dθ . (4.11)

Lemma 4.2. Assume that d ≥ 2. The function h defined by (4.11) is such that
s 7→ s h′(s)/h(s) is monotone increasing on (0,+∞).

Proof. Let s1 and s2 be such that 0 < s1 < s2 and consider a series expansion.
With

Pn :=
∫ π

0
(cosθ)2n (sinθ)d−2 dθ ,

we know that

s2 h′(s2)h(s1) =
∞∑

m=0

s2m+1
2

(2m)!
Pm+1

∞∑
n=0

s2n+1
1

(2n +1)!
Pn+1 ,

s1 h′(s1)h(s2) =
∞∑

m=0

s2m+1
1

(2m)!
Pm+1

∞∑
n=0

s2n+1
2

(2n +1)!
Pn+1 .

These series are absolutely converging and we can reindex the difference of the
two terms using i = min{m,n} to get

s2 h′(s2)h(s1)− s1 h′(s1)h(s2)

=
∞∑

i=0

∞∑
j=1

(s1 s2)2i+1

(2i +2 j +1)! (2i +1)!
Pi+1 P j+1

2i +2 j +1

2(i + j +1)

(
s j

2 − s j
1

)
> 0.

Proof of Proposition 4.4. We prove that limu→+∞H (u) =−∞ as in the case d = 1
by considering the domains defined in the coordinates (s,θ) by 0 ≤ s ≤ 1 and
θ ∈ [0,π/2] on the one hand, and 2 ≤ s ≤ 3 and 0 ≤ θ ≤ θ∗ for some θ∗ ∈ (0,π/6)
on the other hand.



CHAPTER 4. FLOCKING MODEL 94

If D ≥ D∗, we obtain from H ′(0) ≤ 0 that∫ 1

0

(
1− s2) sd+1 e−

ϕα(s)
D d s ≤

∫ ∞

1

(
s2 −1

)
sd+1 e−

ϕα(s)
D d s

obviously h′(s) is strictly increasing on (0,∞), which means that for any u > 0,∫ 1

0

(
1− s2) sd+1 e−

ϕα(s)
D h′

(us

D

)
d s <

∫ 1

0

(
1− s2) sd+1 e−

ϕα(s)
D h′

( u

D

)
d s

=
∫ ∞

1

(
s2 −1

)
sd+1 e−

ϕα(s)
D h′

( u

D

)
d s

<
∫ ∞

1

(
s2 −1

)
sd+1 e−

ϕα(s)
D h′

(us

D

)
d s

so H ′(u) < 0 for any u > 0, which proves that H (u) has no positive solutions
when D ≥ D∗.

For D < D∗, the existence of at least one solution u > 0 of H (u) = 0 follows
from Proposition 4.3. If there exist 0 < u1 < u2 such that H (u1) = H (u2) = 0,
then ∫ 1

0

(
1− s2) sd e−

ϕα(s)
D h(ũ1 s)d s =

∫ ∞

1

(
s2 −1

)
sd e−

ϕα(s)
D h(ũ1 s)d s

where ũ1 := u1/D < u2/D =: ũ2. We deduce from Lemma 4.2 that the function
s 7→ k(s) := h(ũ2 s)/h(ũ1 s) is a monotone increasing function on (0,+∞). Using
H (u1) = 0, we obtain∫ 1

0

(
1− s2) sd e−

ϕα(s)
D h(ũ2 s)d s =

∫ 1

0

(
s2 −1

)
sd e−

ϕα(s)
D h(ũ1 s)k(s)d s

<
∫ 1

0

(
s2 −1

)
sd e−

ϕα(s)
D h(ũ1 s)k(1)d s

=
∫ ∞

1

(
s2 −1

)
sd e−

ϕα(s)
D h(ũ1 s)k(1)d s

<
∫ ∞

1

(
s2 −1

)
sd e−

ϕα(s)
D h(ũ1 s)k(s)d s

=
∫ ∞

1

(
s2 −1

)
sd e−

ϕα(s)
D h(ũ2 s)d s ,

a contradiction with H (u2) = 0. ä

4.2.4 Classification of the stationary solutions and phase transition

We learn form the expression of I in (4.5) that any stationary solution of (4.1)
is of the form fu with u = u e1 for some u which solves (4.2) up to an rotation.
Since H (0) = 0, u = 0 is always a solution. According to Propositions 4.3 and 4.4,
Equation (4.2) has a solution u = u(D) if and only if D > D∗ where D∗ is obtained
as the unique positive root of hd by Proposition 4.2.
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Corollary 4.1. Let d ≥ 2 and α> 0. With the above notations and D∗ defined as
in Proposition 4.2, we know that

(i) if D ≥ D∗ there exists one and only one non-negative stationary distribution
fu given by u = 0, which is isotropic,

(ii) if d ≥ 2 and D < D∗ there exists one and only one non-negative isotropic
stationary distribution with u = 0, and a continuum of stable non-negative
non-symmetric stationary distributions fu with u = u(D)e for any e ∈Sd−1,
with the convention that S0 = {−1,1}.

There are no other stationary solutions.

In other words, we have obtained the complete classification of the station-
ary solutions of (4.1), which shows that there are two phases of stationary solu-
tions: the isotropic one with u = 0, and the non-isotropic ones with u 6= 0 which
are unique up to a rotation and exist only if D < D∗. To complete the proof of
Theorem 4.1, we have to study the linear stability of these stationary solutions.

4.2.5 An important estimate

The next result is a technical estimate which is going to play a key role in our
analysis.

Lemma 4.3. Assume that d ≥ 1, α> 0 and D > 0.

(i) In the case u = 0, we have that
∫
Rd |v |2 f0 d v > d D if and only if D < D∗.

(ii) In the case D ∈ (0,D∗) and u 6= 0, we have that∫
Rd

|(v −u) ·u|2 fu d v < D |u|2 .

(iii) In the case d ≥ 2 and D ∈ (0,D∗) and u 6= 0, we have that∫
Rd

|(v −u) ·w|2 fu d v = D |w|2 ∀w ∈Rd such that u ·w = 0.

Proof. Using Definition (4.7), we observe that
∫
Rd |v |2 f0 d v −d D has the sign of

jd+1 −d D jd−1 =α
(

jd+1 − jd+3
)=αhd (D)

by (4.9) with n = d −2. This proves (i) according to Proposition 4.2 and Corol-
lary 4.1.

By integrating D u ·∇(
(u · v) fu

)
, we obtain that

0 =
∫
Rd

(
D |u|2 − (u · v)2 (

α |v |2 +1−α)+u (u · v)
)

fu d v

= D |u|2 −
∫
Rd

|(v −u) ·u|2 fu d v +D |u|2 H ′(|u|)
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Then (ii) follows from Propositions 4.3 and 4.4 because H ′(u) < 0 if u = u(D) =
|u|.

With no loss of generality, we can assume that u = (u,0, . . .0) 6= 0. By integrat-
ing ∂

∂v1
fu on Rd , we know that

∫
Rd

(|v |2 −1
)

v1 fu d v = 0. Let us consider radial
coordinates such that s = |v | and v1 = s cosθ, with θ ∈ [0,π]. From the integra-
tion by parts

(d −1)D
∫ π

0
cosθ (sinθ)d−2 e

u s
D cosθ dθ = u s

∫ π

0
(sinθ)d e

u s
D cosθ dθ ,

we deduce that
∫
Rd

(|v |2 −1
)(

1− v2
1

)
fu d v = 0 because s2 (sinθ)2 = 1− v2

1 and∫
Rd

(|v |2 −1
)

v2
i fu d v = 0 ∀ i ≥ 2

by symmetry among the variables v2, v3,. . . vd . We conclude by integrating ∂
∂vi

fu

on Rd that ∫
Rd

|vi |2 fu d v = D ∀ i ≥ 2,

which concludes the proof of (iii).

Corollary 4.2. Assume that d ≥ 1, α > 0 and e ∈ Sd−1. There exists a function
D 7→ κ(D) on (0,D∗) which is continuous with values in (0,1) such that, with
u = u(D)e,

1

D

∫
Rd

|(v −u) ·w|2 fu d v = κ(D) (w ·e)2 +|w|2 − (w ·e)2 ∀w ∈Rd .

With κ(D) := 1
u(D)2

∫
Rd |(v −u) ·u|2 fu d v and u = u(D)e for an arbitrary e ∈

Sd−1, the proof is a straightforward consequence of Lemma 4.3.

4.2.6 An additional result on u(D)

The main goal of this subsection is to show a qualitative result on the behaviour
of u(D) as D → (D∗)−.

Proposition 4.5. Let 0 < D < D∗. If u(D) denotes the positive solution of H (u) =
0, then

lim
D→D∗

u(D)2

D∗−D
=α

(1−α) (1−d D∗)−2D∗
1− (d +2)D∗

.

Proof. According to the implicit function theorem, u(D) is a differentiable func-
tion of D on (0,D∗) and

∂H

∂u

∂u

∂D
=−∂H

∂D
=− 1

D2

∫
Rd

(v1 −u) (φα−u v1)e−
1
D (φα−u v1) d v .
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Notice that at D = D∗,

∂H

∂u
= 0 and

∂2H

∂u2 = D−2
∫
Rd

(1−|v |2) v3
1 e−φα/D∗ d v = 0

so we obtain that
∂H

∂u
∼βu2

as D → (D∗)−, where

β= 1

2

∂3H

∂u3 (0) = 1

2D3∗

∫
Rd

(1−|v |2) v4
1 e−

φα
D∗ d v < 0.

On the other hand, using integrations by parts and the identity∫
Rd

v2
1 e−φα/D∗ d v = D∗

∫
Rd

e−φα/D∗ d v

deduced from Lemma 4.3, we obtain∫
Rd

(v1 −u) (φα−u v1)e−
1
D (φα−u v1) d v

= 1

4
(α−4)u

∫
Rd

v2
1 e−

1
D (v2

1 φα−u v1) d v

+ 1

4
(2D +1−α−d D +αd D −αD)u +3u3

∫
Rd

e−
1
D (φα−u v1) d v ,

so that∫
Rd

(v1 −u) (φα−u v1)e−
1
D (φα−u v1) d v ∼ 1

4

(
(1−α)(1−d D∗)−2D∗

)
u

∫
Rd

e−
φα
D∗ d v

as D → (D∗)−. Notice that (1−α) (1−d D∗)−2D∗ < 0 because 1
d+2 < D∗ < 1

d . By
using (4.9) and

∫
Rd

(
1−|v |2) v2

1 e−φα/D∗ d v = 0, we obtain that

∫
Rd e−

φα
D∗ d v∫

Rd (1−|v |2) v4
1 e−

φα
D∗ d v

= 1

D∗
α

1− (d +2)D∗
,

which concludes the proof using

lim
D→D∗

(u(D))2

D∗−D
=−2 lim

D→D∗
u
∂u

∂D
.

Remark 4.1. We already know from [13] that limD→0 u(D) = 1. Combined with

this corollary, (u(D))2

D∗−D is uniformly bounded on (0,D∗). Moreover, we can give a

more explicit lower bound of (u(D))2

D∗−D . The proof is similar to the method from Sec-
tion 4.2.3, and we leave it to the reader.
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4.3 The linearized problem: local properties of the sta-
tionary solutions

This section is devoted to the quadratic forms associated with the expansion of
the free energy F and the Fisher information I around the stationary solution
fu studied in Section 4.2. These quadratic forms are defined for a smooth per-
turbation g of fu such that

∫
Rd g fu d v = 0 by

Q1,u[g ] : = lim
ε→0

2

ε2

(
F

[
fu(1+εg )

]−F
[

fu
])

= D
∫
Rd

g 2 fu d v −D2 |vg |2 where vg := 1

D

∫
Rd

v g fu d v ,

Q2,u[g ] := lim
ε→0

1

ε2 I
[

fu (1+εg )
]= D2

∫
Rd

∣∣∇g −vg
∣∣2 fu d v .

4.3.1 Stability of the isotropic stationary solution

The first result is concerned with the linear stability of F around f0.

Lemma 4.4. On the space of the functions g ∈ L2( f0 d v) such that
∫
Rd g f0 d v =

0, Q1,0 is a nonnegative (resp. positive) quadratic form if and only if D ≥ D∗
(resp. D > D∗). Moreover, for any D > D∗, let η(D) :=αC hd (D) for some explicit
C =C (D) > 0. Then

Q1,0[g ] ≥ η(D)
∫
Rd

g 2 f0 d v ∀g ∈ L2( f0 d v) such that
∫
Rd

g f0 d v = 0. (4.12)

Proof. On one hand, if D < D∗, let e ∈ Sd−1. We consider g (v) = v · e and, us-
ing (4.9) with n = d −2, compute

Q1,0[g ] = D
∫
Rd

v2
1 f0 d v −

(∫
Rd

v2
1 f0 d v

)2

= C

∫ ∞

0

(
d D sd−1 − sd+1

)
e−

ϕα(s)
D d s

where the last equality determines the value of C . This proves that Q1,0[g ] =
−αC hd (D) < 0. So the necessary condition for the linear stability of f0 is D ≥
D∗.

On the other hand, let g be a function in L2(Rd , f0 d v) such that
∫
Rd g 2 f0 d v =∫

Rd v2
1 f0 d v . We can indeed normalize g with no loss of generality. With v1 = v ·e,

e ∈ Sd−1 such that ug f0 = u e for some u ∈ R, we know by the Cauchy-Schwarz
inequality that(∫
Rd

v1 g f0 d v

)2

≤
∫
Rd

g 2 f0 d v
∫
Rd

v2
1 f0 d v =

(∫
Rd

v2
1 f0 d v

)2

=
(

1

d

∫
Rd

|v |2 f0 d v

)2

,

hence

Q1,0[g ] ≥ D
∫
Rd

v2
1 f0 d v −

(∫
Rd

v2
1 f0 d v

)2

=−αC hd (D) .

This proves the linear stability of f0 if D > D∗.
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The classification result of Theorem 4.1 is a consequence of Corollary 4.1
and Lemma 4.4.

4.3.2 A coercivity result

Let us start by recalling the Poincaré inequality∫
Rd

|∇h|2 fu d v ≥ΛD

∫
Rd

|h|2 fu d v ∀h ∈ H1
(
Rd , fu d v

)
such that

∫
Rd

h fu d v = 0.

(4.13)
Here u is an admissible velocity such that u = 0 if D ≥ D∗, or |u| = u(D) if D < D∗,
and ΛD denotes the corresponding optimal constant. Since ϕα can be seen as
a uniformly strictly convex potential perturbed by a bounded perturbation, it
follows from the carré du champ method and the Holley-Stroock lemma that
ΛD is a positive constant. Let

u[ f ] = 0 if D ≥ D∗ or u f = 0 and D < D∗ ,

u[ f ] = u(D)

|u f |
u f if D < D∗ and u f 6= 0 .

Based on (6.13), we have the following coercivity result.

Proposition 4.6. Let d ≥ 1, α > 0, D > 0 and CD = DΛD with ΛD as in (6.13).
Let us consider a nonnegative distribution function f ∈ L1(Rd ) with

∫
Rd f d v = 1,

let u ∈ Rd be such that either u = 0 or |u| = u(D) if D < D∗ and consider g =
( f − fu)/ fu. We assume that g ∈ H1

(
Rd , fu d v

)
. If u = 0, then

Q2,u[g ] ≥CD Q1,u[g ] .

Otherwise, if u 6= 0 for some D ∈ (0,D∗) with D∗ as in Corollary 4.1, then we have

Q2,u[g ] ≥CD
(
1−κ(D)

) (vg ·u)2

|vg |2 |u|2
Q1,u[g ]

with vg := 1
D

∫
Rd (v −u) g fu d v and κ(D) < 1 defined as in Corollary 4.2. As a

special case, if u = u[ f ], then Q2,u[g ] ≥CD
(
1−κ(D)

)
Q1,u[g ].

By construction, vg is such that D vg = ∫
Rd (v −u) g fu d v = ∫

Rd v g fu d v =
u f −u because

∫
Rd g fu d v = 0.

Proof. Let us apply (6.13) to h(v) = g (v)−(v−u)·vg . Using vg = 1
D

∫
Rd (v −u) g fu d v

and
∫
Rd g fu d v = 0, we obtain

1

D2 Q2,u[g ] =
∫
Rd

|∇g −vg |2 fu d v

≥ΛD

∫
Rd

(
g 2 +|vg · (v −u)|2 −2vg · (v −u) g

)
fu d v

=ΛD

[∫
Rd

|g |2 fu d v +
∫
Rd

|vg · (v −u)|2 fu d v −2D |vg |2
]

.
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If u = 0, either vg = 0 and the result is proved, or we know that 1
d

∫
Rd |v |2 f0 d v ≥

D by Lemma 4.3 because D ≥ D∗ by assumption. In that case we can estimate
the r.h.s. by∫
Rd

|g |2 f0 d v +|vg |2
(

1

d

∫
Rd

|v |2 f0 d v −2D

)
≥

∫
Rd

|g |2 f0 d v −D |vg |2 = 1

D
Q1,0[g ] ,

which again proves the result whenever u = 0.

If u 6= 0, let us apply Corollary 4.2 with w = vg and κ= κ(D):

∫
Rd

|vg · (v −u)|2 fu d v =K D |vg |2 with K = 1− (1−κ)
(vg ·u)2

|vg |2 |u|2
.

We deduce from the Cauchy-Schwarz inequality

D2 |vg |4 =
(∫
Rd

vg · (v −u) fu d v

)2

≤
∫
Rd

|g |2 f0 d v
∫
Rd

|vg · (v −u)|2 fu d v

that D |vg |2 ≤K
∫
Rd |g |2 f0 d v . Hence, if β ∈ (0,1), we obtain

1

D2 Q2,u[g ]− β

D2 Q2,u[g ] ≥ (
1−β− (2−K −β)K

)∫
Rd

|g |2 f0 d v .

With β= 1−K , we obtain 1−β−(2−K −β)K = 0, which proves the result.

4.4 Properties of the free energy and consequences

We consider the free energy F and the Fisher information I defined respec-
tively by (4.3) and (4.5).

4.4.1 Basic properties of the free energy

Proposition 4.7. Assume that fin is a nonnegative function in L1(Rd ) such that
F [ fin] <∞. Then there exists a solution f ∈ C 0

(
R+,L1(Rd )

)
of (4.1) with initial

datum fin such that F [ f (t , .)] is nonincreasing and a.e. differentiable on [0,∞).
Furthermore

d

d t
F [ f (t , .)] ≤−I [ f (t , .)] , t > 0 a.e.

This result is classical and we shall skip its proof: see for instance [? , Propo-
sition 2.1] for further details. One of the difficulties in the study of F is that
in (4.3), the term |u f |2 has a negative coefficient, so that the functional F is not
convex. A smooth solution realizes the equality, and by approximations, we ob-
tain the result.
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Proposition 4.8. F is bounded from below on the set{
f ∈ L1

+(Rd ) :
∫
Rd

f d v = 1 and
∫
Rd

|v |4 f d v <∞
}

and ∫
Rd

|v |4 f d v ≤ 1

α2

(
D +α+

√
(D +α)2 +4α

(
F [ f ]+ d

2 log(2π)D
) )2

.

Proof. Let g = f /µ where µ(v) := (2π)−d/2 e−
1
2 |v |2 and dµ= µd v . Since g log g ≥

g −1 and
∫
Rd (g −1)dµ= 0, we have the classical estimate∫

Rd
f log f d v + 1

2

∫
Rd

|v |2 f d v =
∫
Rd

g

(
log g − d

2
log(2π)

)
dµ≥− d

2
log(2π) .

By the Cauchy-Schwarz inequality,

|u|2 ≤
∫
Rd

|v |2 f d v and
∫
Rd

|v |2 f d v ≤
√∫

Rd
|v |4 f d v

and we deduce that

F [ f ] ≥− d

2
log(2π)D + α

4
X 2 − D +α

2
X with X :=

√∫
Rd

|v |4 f d v .

A minimization of the r.h.s. with respect to X > 0 shows that F [ f ] ≥ − (D+α)2

4α −
d
2 log(2π)D while the inequality provides the bound on X .

4.4.2 The minimizers of the free energy

Corollary 4.3. Let d ≥ 1 and α > 0. The free energy F as defined by (4.3) has
a unique nonnegative minimizer with unit mass, f0, if D ≥ D∗. Otherwise, if
D < D∗, we have

minF [ f ] =F [ fu] <F [ f0]

for any u ∈Rd such that |u| = u(D). The above minimum is taken on all nonneg-
ative functions in L1

(
Rd , (1+|v |4)d v

)
such that

∫
Rd f d v = 1.

Proof. Any minimizing sequence convergence is relatively compact in L1
(
Rd , d v

)
by the Dunford-Pettis theorem, f 7→ u f is relatively compact and the existence
of a minimizer follows by lower semi-continuity.

4.4.3 Proof of Theorem 4.1

By Corollary 4.3, f0 is the unique minimizer if and only if D ≥ D∗. It is moreover
linearly stable by Lemma 4.4. Otherwise fu with |u| = u(D) is a minimizer of F

and it is unique up to a rotation. Combined with the results of Corollary 4.1, this
completes the proof of Theorem 4.1. ä
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4.4.4 Stability of the polarized stationary solution

Another interesting consequence of Corollary 4.3 is the linear stability of F around
fu when D < D∗.

Lemma 4.5. Let D ∈ (0,D∗) and u ∈ Rd such that |u| = u(D). On the space of the
functions g ∈ L2( fu d v) such that

∫
Rd g fu d v = 0, Q1,u is a nonnegative quadratic

form.

The proof is straightforward as, in the range D < D∗, f0 is not a minimizer of
F and the minimum of F is achieved by any fu with |u| = u(D). Details are left
to the reader.

4.4.5 An exponential rate of convergence for radially symmetric solu-
tions

Proposition 4.9. Let α > 0, D > 0 and consider a solution f ∈ C 0
(
R+,L1(Rd )

)
of (4.1) with radially symmetric initial datum fin ∈ L1+(Rd ) such that F [ fin] <∞.
Then (4.6) holds for some λ> 0.

Proof. According to Proposition 4.7, we know that

d

d t

(
F [ f (t , ·)]−F [ f0]

)≤−I [ f (t , ·)]

where I defined by (4.5) and u f = 0 because the radial symmetry is preserved
by the evolution. We have a logarithmic Sobolev inequality

∫
Rd

∣∣∣∣∇ log

(
f

f0

)∣∣∣∣2

f d v ≥K0

∫
Rd

f log

(
f

f0

)
d v =F [ f ]−F [ f0] (4.14)

for some constant K0 > 0. This inequality holds for the same reason as for the
Poincaré inequality (6.13): since ϕα can be seen as a uniformly strictly con-
vex potential perturbed by a bounded perturbation, it follows from the carré du
champ method and the Holley-Stroock lemma that K0 is a positive constant.
Hence

d

d t

(
F [ f (t , ·)]−F [ f0]

)≤−K0

D

∫
Rd

f log

(
f

f0

)
d v =−K0

D

(
F [ f (t , ·)]−F [ f0]

)
and we conclude that

F [ f (t , ·)]−F [ f0] ≤ (
F [ fin]−F [ f0]

)
e−λ t

with λ = K0/D . The fact that F [ f (t , ·)]−F [ f0] ≥ 0 is a consequence of Corol-
lary 4.3.
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4.4.6 Continuity and convergence of the norm of the velocity average

Proposition 4.10. Let α > 0, D > 0 and consider a solution f ∈ C 0
(
R+,L1(Rd )

)
of (4.1) with initial datum fin ∈ L1+(Rd ) such that F [ fin] <∞. Then t 7→ u f (t ) is
a Lipschitz continuous function on R+ such that limt→+∞ u f (t ) = 0 if D ≥ D∗. If
D ∈ (0,D∗), along any increasing sequence (nk )k∈N of integers, one can extract a
subsequence, that we still denote by (nk )k∈N, such that, uniformly in t ∈ (0,1), we
obtain that limk→+∞ u f (t +nk ) = u with either u = 0 or |u| = u(D) if D ∈ (0,D∗).

Proof. Using (4.1), a straightforward computation shows that

du f

d t
=−α

∫
Rd

v
(|v |2 −1

)
f d v

where the right hand side is bounded by Hölder interpolations using Proposi-
tions 4.7 and 4.8. By Proposition 4.8 and Hölder’s inequality, we also know that
u f is bounded.

We have a logarithmic Sobolev inequality analogous to (4.14) if we consider
the relative entropy with respect to the non-equilibrium Gibbs state G f defined
by (4.4) instead of the relative entropy with respect to f0: for some constant K >
0, ∫

Rd

∣∣∣∣∇ log

(
f

G f

)∣∣∣∣2

f d v ≥K

∫
Rd

f log

(
f

G f

)
d v =F [ f ]−F [G f ] .

By the Csiszár-Kullback inequality∫
Rd

f log

(
f

G f

)
d v ≥ 1

4
‖ f −G f ‖2

L1(Rd ) , (4.15)

we end up with the fact that limt→+∞
∫ +∞

t

(∫
Rd | f −G f |d v

)2 d s = 0. Using Hölder’s
inequality∣∣∣∣∫

Rd
v

(
f −G f

)
d v

∣∣∣∣≤ (∫
Rd

| f −G f |d v

)3/4 (∫
Rd

|v |4 ( f +G f )d v

)1/4

the decay of F [ f (t , ·)] and Proposition 4.8, we learn that limt→+∞
∫
Rd v

(
f −G f

)
d v =

0. Let C (u) := ∫
Rd e−

1
D (φα(v)−u v1) d v . By definition of H , we have that∫

Rd
v

(
f −G f

)
d v = u f −

∫
Rd

v G f d v =
∫
Rd

(u f − v)G f d v =− H (u)

C (u)

u f

|u f |
with u = |u f | .

Since u f is bounded, C (u) is uniformly bounded by some positive constant and
we deduce that

lim
t→+∞H

(|u f |
)= 0.
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4.5 Large time asymptotic behaviour in the isotropic case

In this section, our main goal is to prove Theorem 4.2. In this section, we shall
assume that D > D∗.

4.5.1 A non-local scalar product for the linearized evolution operator

We adapt the strategy of [50] to (4.1). With vg = 1
D

∫
Rd v g f0 d v as in Section 4.3,

〈
g1, g2

〉
:= D

∫
Rd

g1 g2 f0 d v −D2 vg1 ·vg2 (4.16)

is a scalar product on the space X := {
g ∈ L2( f0 d v) :

∫
Rd g f0 d v = 0

}
by Lemma 4.4

because
〈

g , g
〉 = Q1,0[g ]. Let us recall that f0 depends on D and, as a conse-

quence, also D vg . Equation (4.1) means

∂ f

∂t
=∇·

(
D ∇ f + (v −u f +∇φα) f

)
and D ∇ f0 =− (v +∇φα) f0. Hence (4.1) is rewritten in terms of f = f0 (1+ g ) as

f0
∂g

∂t
= D ∇·

(
(∇g −vg ) f0 −vg g f0

)
using u f = D vg , that is,

∂g

∂t
=L g −vg ·

(
D ∇g − (

v +∇φα
)

g
)

with L g = D∆g − (
v +∇φα

) · (∇g −vg
)

(4.17)
and collect some basic properties of X endowed with the scalar product 〈·, ·〉
and L considered as an operator on X .

Lemma 4.6. Assume that D > D∗ and α > 0. Let us consider the scalar product

defined by (4.16) on X . The norm g 7→
√〈

g , g
〉

is equivalent to the standard

norm on L2( f0 d v) according to

η(D)
∫
Rd

g 2 f0 d v ≤ 〈
g , g

〉≤ D
∫
Rd

g 2 f0 d v ∀g ∈X . (4.18)

Here η is as in (4.12). The linearized operator L is self-adjoint on X with the
scalar product defined by (4.16) in the sense that

〈
g1,L g2

〉 = 〈
L g1, g2

〉
for any

g1, g2 ∈X , and such that

− 〈
g ,L g

〉=Q2,0[g ] . (4.19)

Proof. Inequality (4.18) is a straightforward consequence of Definition (4.16)
and (4.12). The self-adjointness of L is a consequence of elementary computa-
tions. By starting with

L g1 =
[

D∆g1 −
(
v +∇φα

) ·∇g1

]
+ (

v +∇φα
) ·vg1 ,
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we first observe that∫
Rd

[
D∆g1 −

(
v +∇φα

) ·∇g1
]

g2 f0 d v =−D
∫
Rd

∇g1 ·∇g2 f0 d v

and, as a consequence (take g2 = vi for some i = 1, 2. . . d),

vL g1 = vg1 −
∫
Rd

∇g1 f0 d v.

Hence

− 〈
L g1, g2

〉= D2
∫
Rd

(∇g1 −vg1

) · (∇g2 −vg2

)
d v ,

which proves the self-adjointness of L and Identity (4.19).

The scalar product 〈·, ·〉 is well adapted to the linearized evolution operator
in the sense that a solution of the linearized equation

∂g

∂t
=L g (4.20)

with initial datum g0 ∈X is such that

1

2

d

d t
Q1,0[g ] = 1

2

d

d t

〈
g , g

〉= 〈
g ,L g

〉=−Q2,0[g ]

and has exponential decay. According to Proposition 4.6, we know that〈
g (t , ·), g (t , ·)〉≤ 〈

g0, g0
〉

e−2CD t ∀ t ≥ 0.

4.5.2 Proof of Theorem 4.2

Let us consider the nonlinear term and prove that a solution g of (4.17) has the
same asymptotic decay rate as a solution of the linearized equation (4.20). By
rewriting (4.17) as

f0
∂g

∂t
= D ∇·

(
(∇g −vg ) f0

)
−D vg ·∇(g f0)

with f = f0 (1+ g ) and using
∫
Rd g f0 d v = 0, we find that

1

2

d

d t
Q1,0[g ]+ Q2,0[g ] = D2 vg ·

∫
Rd

g (∇g −vg ) f0 d v .

Using u f = D vg , by the Cauchy-Schwarz inequality and (4.12), we obtain(∫
Rd

g (∇g −vg ) f0 d v

)2

≤
∫
Rd

g 2 f0 d v
∫
Rd

|∇g −vg |2 f0 d v ≤ Q1,0[g ]

η(D)

Q2,0[g ]

D2 .

After taking into account Proposition 4.6, we have

d

d t
Q1,0[g ] ≤−2

(
1−|u f (t )|

√
CD
η(D)

)
Q1,0[g ] .
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By Proposition 4.10, we know that limt→+∞ |u f (t )| = 0, which proves that

limsup
t→+∞

e2(CD−ε) t Q1,0[g (t , ·)] <+∞ (4.21)

for any ε ∈ (0,CD ). After observing that f log
(

f / f0
)−( f − f0) ≤ 1

2 ( f − f0)2/ f0, this
completes the proof of Theorem 4.2 . ä

4.5.3 A sharp rate of convergence

We know from Proposition 4.6 that Q2,0[g ] ≥CD Q1,0[g ] for any g ∈ H1
(
Rd , f0 d v

)
such that

∫
Rd g f0 d v = 0. At no cost, we can assume that CD is the optimal con-

stant.

Theorem 4.3. For any d ≥ 1 and any α > 0, if D > D∗, then the result of Theo-
rem 4.2 holds with optimal rate λ= 2CD .

Proof. We have to prove that 4.21 holds with ε= 0. By definition of u f , we have
that

|u f |2 =
(∫
Rd

v ( f − f0)d v

)2

≤
∫
Rd

g 2 f0 d v
∫
Rd

|v |2 f0 d v

where g := ( f − f0)/ f0. This guarantees that |u f (t )| ≤ c
√
η(D)CD e−λ t/2. Then

the function y(t ) :=Q1,0[g (t , ·)] obeys to the differential inequality

y ′ ≤−2CD

(
1− c e−λ t/2

)
y

and we deduce as in Section 4.5.2 that limsupt→+∞ e2CD t y(t ) is finite by a Grön-
wall estimate. This rate is optimal as shown by using test functions based on
perturbations of f0.

4.6 Large time asymptotic behaviour in the polarized case

In this section, we shall assume that 0 < D < D∗. The situation is more delicate
than in the isotropic case D > D∗, as several asymptotic behaviours can occur.

4.6.1 Symmetric and non-symmetric stationary states

By perturbation of f0, we know that the set of the functions f such that F [ f ] <
F [ f0] is non-empty. Notice that the minimum of F on radial functions is achieved
by f0. It follows that any function f such that F [ f ] <F [ f0] is non-radial.

Lemma 4.7. For any d ≥ 1 and any α > 0, if D < D∗, then for any solution f ∈
C 0

(
R+,L1(Rd )

)
of (4.1) with initial datum fin ≥ 0 of mass 1 such that F [ fin] <

F [ f0]. Then limt→+∞ |u f (t )| = u(D) and limt→+∞F [ f (t , ·)] = F [ fu] for any u ∈
Rd such that |u| = u(D) and there exists a sequence {tn}, such that

f (tn +·, ·) −→ fu in L1(R+(0,1)×Rd ) as n →+∞ .
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Proof. We reconsider the proof of Proposition 4.10. Since u = 0 is forbidden by
Proposition 4.7 and t 7→ u f (t ) is a converging Lipschitz function, there exists a
unique limit u such that |u| = u(D). The convergence result follows from the
logarithmic Sobolev inequality and the Csiszár-Kullback inequality (4.15).

4.6.2 An exponential rate of convergence for partially symmetric so-
lutions

Let us start with a simple case, which is to some extent the analogous of the case
of Proposition 4.9 in the polarized case.

Proposition 4.11. Let α > 0, D > 0 and consider a solution f ∈ C 0
(
R+,L1(Rd )

)
of (4.1) with initial datum fin ∈ L1+(Rd ) such that F [ fin] < F [ f0] and u fin =
(u,0 . . .0) for some u 6= 0. We further assume that

fin(v1, v2, . . . vi−1, vi , . . .) = fin(v1, v2, . . . vi−1,−vi , . . .)

for any i = 2, 3,. . . d. Then (4.6) holds with λ = CD
(
1−κ(D)

) > 0, with the nota-
tions of Proposition 4.6.

Here we assume that fin(v1, v2, . . . vi−1, vi , . . .) is even with respect to all coor-
dinate of index i ≥ 2, so that u[ f ] = 0 or u[ f ] = (±u(D),0 . . .0) at any time t ≥ 0.

Proof. According to Proposition 4.10, we know that u f is continuous. On the
other hand, if u f = 0, then

F [ f ]−F [ f0] =
∫
Rd

f log

(
f

f0

)
d v =

∫
Rd

f

f0
log

(
f

f0

)
f0 d v ≥ X log X|X=∫

Rd f d v = 0

by Jensen’s inequality, a contradiction with the assumption that F [ fin] < F [ f0]
and Proposition 4.7. Hence u = u[ f ] is constant and we can reproduce with
Q1,u[n] the proof done for Q1,0[n] in Section 4.5.

4.6.3 Convergence to a polarized stationary state

To study the rate of convergence towards the stationary solutions fu with u 6= 0
in the range D ∈ (0,D∗), we face a severe difficulty if u f converges tangentially
to the set u(D)Sd−1 of admissible velocities for stationary solutions. Otherwise
we obtain an exponential rate of convergence as in Theorem 4.2.

Proposition 4.12. Assume that d ≥ 2, α > 0 and D ∈ (0,D∗). Let us consider a
solution f of (4.1) with nonnegative initial datum fin of mass 1 such that F [ fin] <
F [ f0] and assume that u = limt→+∞ u f (t ) is uniquely defined. If |(u f −u) ·u| ≥
εu(D) |u f −u| for some ε > 0 and t > 0 large enough, then there are two positive
constants C , λ and some u ∈Rd such that

0 ≤F [ f (t , ·)]−F [ fu] ≤C e−λ t ∀ t ≥ 0.
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Proof. We adapt the setting of Section 4.5.2 to g = ( f − fu)/ fu and get that

1

2

d

d t
Q1,u[g ]+ Q2,u[g ] = D2 vg ·

∫
Rd

g (∇g −vg ) fu d v .

With Z(t ) := CD
(
1−κ(D)

) (vg ·u)2

|vg |2 |u|2 , we can rewrite Proposition 4.6 and the esti-

mate of the nonlinear term as

Q2,u[g ] ≥Z(t )Q1,u[g ] and D2 vg ·
∫
Rd

g (∇g −vg ) fu d v ≤ D |vg |
√

Q1,u[g ]Q2,u[g ]√
η(D)

By assumption, Z(t ) ≥CD
(
1−κ(D)

)
ε2. The conclusion follows as in Section 4.5.2.

4.7 Some additional properties of D∗

In this section, we collect some plots which illustrate Section 4.2 and state re-
lated qualitative properties of D∗.

Proposition 4.13. For any α > 0 and d ≥ 1, the critical value D∗ = D∗(α,d) is
monotone decreasing as a function of d, such that

1

d +2
< D∗(α,d) < 1

d

with lower and upper bounds achieved respectively as α→ 0+ and α→+∞.

Proof. The monotonicity with respect to d can be read from

hd (D)−hd+1(D) =
∫ ∞

0
sd+1 (

s2 −1
)2

e−
φα
D d s > 0.

The lower bound is a consequence of∫ ∞

0

(
sd+1 − sd+3

)
e−

1
2 (d+2) s2

d s = 0.

As for the upper bound, for any D > 0, by considering the derivatives with re-
spect to α of jd+1 and jd−1 as defined in (4.7), we notice that

jd+1

jd−1
∼ 2 jd+3 − jd+5

2 jd+1 − jd+3
∼

α+1
α jd+3 − d+2

α D jd+1

2 jd+1 − jd+3

by L’Hôpital’s rule as α→+∞. We recall that jd+1(D) = jd+3(D) at D = D∗. By
letting α → +∞ with D = D∗, we conclude that jd+1/ jd−1 → 1. On the other
hand, (4.9) with n = d −2 means that jd+1(D∗) = d D∗ jd−1(D∗), from which we
conclude that limα→+∞ D∗(α,d) = 1/d .
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We conclude this chapter by computations of D∗ for specific values of the
parameters.

• If d = 1,α= 2, D∗ solves (1−4D) I−1/4
( 1

16D

)+(1+4D) I1/4
( 1

16D

)+I3/4
( 1

16D

)+
I5/4

( 1
16D

) = 0 where Iγ denotes the modified Bessel function of the first kind.
Numerically, we find that D∗ ≈ 0.529 matches [13, Fig. 1, p. 4].

• If d = 2, α= 2, we remind that D∗ ≈ 0.354: see Fig. 4.2.

• If d = 2,α= 4, D∗ ≈ 0.398 solves
(
16Γ

(3
2 , 9

16D

)−16
p
π
)

D−8Γ
(
1, 9

16D

)p
D+

6
p
π−3Γ

(1
2 , 9

16D

)= 0.

For further numerical examples, we refer the reader to [154, 13].
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Figure 4.1: Plot of hd (D) against D when d = 1 with α= 0.5, 1, . . . 3.0.
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Figure 4.2: Plot of u 7→H (u) when d = 2,α= 2, and D = 0.2, 0.25, . . . 0.45. In this
particular case, D∗ ≈ 0.354 solves

(
8 Γ

(3
2 , 1

8D

)−8
p
π
)

D −Γ(1
2 , 1

8D

)+2
p
π= 0.
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Chapter 5

Generalized log-HLS inequality

Article Generalized logarithmic Hardy-Littlewood-Sobolev inequality, in col-
laboration with Jean DOLBEAULT, accepted by International Mathematics Re-
search Notices, 2019.

This chapter is devoted to logarithmic Hardy-Littlewood-Sobolev inequali-
ties in the two-dimensional Euclidean space, in presence of an external potential
with logarithmic growth. The coupling with the potential introduces a new pa-
rameter, with two regimes. The attractive regime reflects the standard logarith-
mic Hardy-Littlewood-Sobolev inequality. The second regime corresponds to a
reverse inequality, with the opposite sign in the convolution term, that allows
us to bound the free energy of a drift-diffusion-Poisson system from below. Our
method is based on an extension of an entropy method proposed by E. Carlen,
J. Carrillo and M. Loss, and on a nonlinear diffusion equation.

113



CHAPTER 5. GENERALIZED LOG-HLS INEQUALITY 114

5.1 Main result and motivation

On R2, let us define the density of probability µ= e−V and the external potential
V by

µ(x) := 1

π
(
1+|x|2)2 and V (x) :=− logµ(x) = 2 log

(
1+|x|2)+ logπ ∀x ∈R2 .

We shall denote by L1+(R2) the set of a.e. nonnegative functions in L1(R2). Our
main result is the following generalized logarithmic Hardy-Littlewood-Sobolev
inequality.

Theorem 5.1. For any α≥ 0, we have that∫
R2

f log

(
f

M

)
d x +α

∫
R2

V f d x +M (1−α)
(
1+ logπ

)
≥ 2

M
(α−1)

Ï
R2×R2

f (x) f (y) log |x − y |d x d y
(5.1)

for any function f ∈ L1+(R2) with M = ∫
R2 f d x > 0. Moreover, the equality case is

achieved by f? = M µ and f? is the unique optimal function for any α> 0.

Withα= 0, the inequality is the classical logarithmic Hardy-Littlewood-Sobolev
inequality∫

R2
f log

(
f

M

)
d x+ 2

M

Ï
R2×R2

f (x) f (y) log |x−y |d x d y+M
(
1+ logπ

)≥ 0. (5.2)

In that case f? is an optimal function as well as all functions generated by a
translation and a scaling of f?. As long as the parameterα is in the range 0 ≤α<
1, the coefficient of the right-hand side of (5.1) is negative and the inequality is
essentially of the same nature as the one with α= 0. It can indeed be written as∫

R2
f log

(
f

M

)
d x +α

∫
R2

V f d x +M (1−α)
(
1+ logπ

)
+ 2

M
(1−α)

Ï
R2×R2

f (x) f (y) log |x − y |d x d y ≥ 0

For reasons that will be made clear below, we shall call this range the attractive
range.

If α= 1, the inequality is almost trivial since∫
R2

f log

(
f

M

)
d x +

∫
R2

V f d x =
∫
R2

f log

(
f

f?

)
d x ≥ 0 (5.3)

is a straightforward consequence of Jensen’s inequality. Now it is clear that by
adding (5.2) multiplied by (1 −α) and (5.3) multiplied by α, we recover (5.1)
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for any α ∈ [0,1]. As a consequence (5.1) is a straightforward interpolation be-
tween (5.2) and (5.3) in the attractive range.

Now, let us consider the repulsive range α > 1. It is clear that the inequality is
no more the consequence of a simple interpolation. We can also observe that
the coefficient (α−1) in the right-hand side of (5.1) is now positive. Since

G(x) =− 1

2π
log |x|

is the Green function associated with −∆ on R2, so that we can define

(−∆)−1 f (x) = (G ∗ f )(x) =− 1

2π

∫
R2

log |x − y | f (y)d y ,

it is interesting to write (5.1) as∫
R2

f log

(
f

M

)
d x+α

∫
R2

V f d x+4π

M
(α−1)

∫
R2

f (−∆)−1 f d x ≥ M (α−1)
(
1+ logπ

)
.

(5.4)
If f has a sufficient decay as |x|→+∞, for instance if f is compactly supported,
we know that (−∆)−1 f (x) ∼ − M

2π log |x| for large values of |x| and as a conse-
quence,

αV + 4π

M
(α−1)(−∆)−1 f ∼ 2(α+1) log |x|→+∞ as |x|→+∞ .

In a minimization scheme, this prevents the runaway of the left-hand side in (5.4).
On the other hand,

∫
R2 f log f d x prevents any concentration, and this is why

it can be heuristically expected that the left-hand side of (5.4) indeed admits a
minimizer.

Inequality (5.2) was proved in [52] by E. Carlen and M. Loss (also see [22]).
An alternative method based on nonlinear flows was given by E. Carlen, J. Car-
rillo and M. Loss in [51]: see Section 7.4 for a sketch of their proof. Our proof
of Theorem 5.1 relies on an extension of this approach which takes into account
the presence of the external potential V . A remarkable feature of this approach
is that it is insensitive to the sign of α−1.

One of the key motivations for studying (5.4) arises from entropy methods
applied to drift-diffusion-Poisson models which, after scaling out all physical
parameters, are given by

∂ f

∂t
=∆ f +β∇· ( f ∇V )+∇· ( f ∇φ) (5.5)

with a nonlinear coupling given by the Poisson equation

− ε∆φ= f . (5.6)
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Here V = − logµ is the external confining potential and we choose it as in the
statement of Theorem 5.1, while β ≥ 0 is a coupling parameter with V , which
measures the strength of the external potential. We shall consider more general
potentials at the end of this paper. The coefficient ε in (5.6) is either ε = −1,
which corresponds to the attractive case, or ε = +1, which corresponds to the
repulsive case. In terms of applications, when ε = −1, (5.6) is the equation for
the mean field potential obtained from Newton’s law of attraction in gravita-
tion, for applications in astrophysics, or for the Keller-Segel concentration of
chemo-attractant in chemotaxis. The case ε = +1 is used for repulsive electro-
static forces in semi-conductor physics, electrolytes, plasmas and charged par-
ticle models.

In view of entropy methods applied to PDEs (see for instance [116]), it is nat-
ural to consider the free energy functional

Fβ[ f ] :=
∫
R2

f log f d x +β
∫
R2

V f d x + 1

2

∫
R2
φ f d x (5.7)

because, if f > 0 solves (5.5)-(5.6) and is smooth enough, with sufficient decay
properties at infinity, then

d

d t
Fβ[ f (t , ·)] =−

∫
R2

f
∣∣∇ log f +β∇V +∇φ∣∣2 d x (5.8)

so that Fβ is a Lyapunov functional. Of course, a preliminary question is to es-
tablish under which conditions Fβ is bounded from below. The answer is given
by the following result.

Corollary 5.1. Let M > 0. The functional Fβ is bounded from below and admits
a minimizer on the set of the functions f ∈ L1+(R2) such that

∫
R2 f d x = M if either

ε = +1 and β ≥ 1+ M
8π , or ε = −1, β ≥ 0 and M ≤ 8π. If ε = +1, the minimizer is

unique.

As we shall see in Section 5.3.1, Corollary 5.1 is a simple consequence of The-
orem 5.1. In the case of the parabolic-elliptic Keller-Segel model, that is, with
ε = −1 and β = 0, this has been used in [87, 33] to provide a sharp range of ex-
istence of the solutions to the evolution problem. In [50], the case ε = −1 with
a potential V with quadratic growth at infinity was also considered, in the study
of intermediate asymptotics of the parabolic-elliptic Keller-Segel model.

Concerning the drift-diffusion-Poisson model (5.5)-(5.6) and considerations
on the free energy, in the electrostatic case, we can quote, among many oth-
ers, [100, 91] and subsequent papers. In the Euclidean space with confinig po-
tentials, we shall refer to [71, 72, 28, 9]. However, as far as we know, these papers
are primarily devoted to dimensions d ≥ 3 and the sharp growth condition on V
when d = 2 has not been studied so far. The goal of this paper is to fill this gap.



117 CHAPTER 5. GENERALIZED LOG-HLS INEQUALITY

The specific choice of V has been made to obtain explicit constants and optimal
inequalities, but the confining potential plays a role only at infinity if we are in-
terested in the boundedness from below of the free energy. In Section 5.3.3, we
shall give a result for general potentials on R2: see Theorem 5.2 for a statement.

5.2 Proof of the main result

As an introduction to the key method, we briefly sketch the proof of (5.2) given
by E. Carlen, J. Carrillo and M. Loss in [51]. The main idea is to use the nonlinear
diffusion equation

∂ f

∂t
=∆

√
f

with a nonnegative initial datum f0. The equation preserves the mass M =∫
R2 f d x and is such that

d

d t

(∫
R2

f log f d x − 4π

M

∫
R2

f
(
(−∆)−1 f

)
d x

)
=− 8

M

(∫
R2

∣∣∇ f 1/4
∣∣2

d x
∫
R2

f d x − π

∫
R2

f 3/2 d x

)
.

According to [67], the Gagliardo-Nirenberg inequality∥∥∇g
∥∥2

2

∥∥g
∥∥4

4 ≥π
∥∥g

∥∥6
6 (5.9)

applied to g = f 1/4 guarantees that the right-hand side is nonpositive. By the
general theory of fast diffusion equations (we refer for instance to [156]), we
know that the solution behaves for large values of t like a self-similar solution,
the so-called Barenblatt solution, which is given by B(t , x) := t−2 f?(x/t ). As a
consequence, we find that∫

R2
f0 log f0 d x − 4π

M

∫
R2

f0
(
(−∆)−1 f0

)
d x

≥ lim
t→+∞

∫
R2

B logB d x − 4π

M

∫
R2

B
(
(−∆)−1B

)
d x

=
∫
R2

f? log f?d x − 4π

M

∫
R2

f?
(
(−∆)−1 f?

)
d x

After an elementary computation, we observe that the above inequality is ex-
actly (5.2) written for f = f0.

The point is now to adapt this strategy to the case with an external poten-
tial. This justifies why we have to introduce a nonlinear diffusion equation with
a drift. As we shall see below, the method is insensitive to α and applies when
α> 1 exactly as in the case α ∈ (0,1). A natural question is whether solutions are
regular enough to perform the computations below and in particular if they have
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a sufficient decay at infinity to allow all kinds of integrations by parts needed by
the method. The answer is twofold. First, we can take an initial datum f0 which
is as smooth and decaying as |x| → +∞ as needed, prove the inequality and ar-
gue by density. Second, integrations by parts can be justified by an approxima-
tion scheme consisting in a truncation of the problem in larger and larger balls.
We refer to [156] for regularity issues and to [116] for the truncation method. In
the proof, we will therefore leave these issues apart, as they are purely technical.

Proof of Theorem 5.1. By homogeneity, we can assume that M = 1 without loss
of generality and consider the evolution equation

∂ f

∂t
=∆

√
f +2

p
π∇· (x f ) .

1) Using simple integrations by parts, we compute∫
R2

(
1+ log f

)
∆

√
f d x =−8

∫
R2

∣∣∇ f 1/4
∣∣2

d x

and∫
R2

(
1+ log f

)∇· (x f )d x =−
∫
R2

∇ f

f
· (x f )d x =−

∫
R2

x ·∇ f d x = 2
∫
R2

f d x = 2.

As a consequence, we obtain that

d

d t

∫
R2

f log f d x =−8
∫
R2

∣∣∇ f 1/4
∣∣2

d x + 8π
∫
R2
µ3/2 d x (5.10)

using ∫
R2
µ3/2 d x = 1

2
p
π

.

2) By elementary considerations again, we find that

4π
∫
R2

f (−∆)−1
(
∆

√
f
)

d x =−4π
∫
R2

f 3/2 d x

and

4π
∫
R2
∇· (x f ) (−∆)−1 f d x =−4π

∫
R2

x f ·∇(−∆)−1 f d x

= 2
Ï
R2×R2

f (x) f (y) x · x − y

|x − y |2 d x d y

=
Ï
R2×R2

f (x) f (y) (x − y) · x − y

|x − y |2 d x d y = 1

where, in the last line, we exchanged the variables x and y and took the half sum
of the two expressions. This proves that

d

d t

(
4π

∫
R2

f
(
(−∆)−1 f

)
d x

)
=−8π

∫
R2

(
f 3/2 − µ3/2)d x . (5.11)
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3) We observe that

µ(x) = 1

π
(
1+|x|2)2 = e−V (x)

solves
∆V =−∆ logµ= 8πµ (5.12)

and, as a consequence,∫
R2

V ∆
√

f d x =
∫
R2
∆V

√
f d x = 8π

∫
R2
µ

√
f d x .

Since

2
p
π

∫
R2

V ∇· (x f )d x =−2
p
π

∫
R2

f x ·∇V d x =−8
p
π

∫
R2

|x|2
1+|x|2 f d x

=−8
p
π+8

p
π

∫
R2

f

1+|x|2 d x =−8
p
π+ 8π

∫
R2

p
µ f d x ,

we conclude that

d

d t

∫
R2

f V d x = 8π
∫
R2

(
µ

√
f +p

µ f − 2µ3/2
)

d x . (5.13)

Let us define

F [ f ] :=
∫
R2

f log f d x +α
∫
R2

V f d x + (1−α)
(
1+ logπ

)
+2(1−α)

Ï
R2×R2

f (x) f (y) log |x − y |d x d y .

Collecting (5.10), (5.11) and (5.13), we find that

d

d t
F [ f (t , ·)] =−8

(∫
R2

∣∣∇ f 1/4
∣∣2

d x − π

∫
R2

f 3/2 d x

)
− 8πα

∫
R2

(
f 3/2 −µ

√
f −p

µ f +µ3/2
)

d x .

Notice that∫
R2

(
f 3/2 −µ

√
f −p

µ f +µ3/2
)

d x =
∫
R2
ϕ

(
f

µ

)
µ3/2 d x with ϕ(t ) := t 3/2−t−pt+1

and that ϕ is a strictly convex function on R+ such that ϕ(1) =ϕ′(1) = 0, so that
ϕ is nonnegative. On the other hand, by (5.9), we know that∫

R2

∣∣∇ f 1/4
∣∣2

d x − π

∫
R2

f 3/2 d x ≥ 0

as in the proof of [51]. Altogether, this proves that t 7→ F [ f (t , ·)] is monotone
nonincreasing. Hence

F [ f0] ≥F [ f (t , ·)] ≥ lim
t→+∞F [ f (t , ·)] =F [ f?] = 0.

This completes the proof of (5.1).
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5.3 Consequences

5.3.1 Proof of Corollary 5.1

To prove the result of Corollary 5.1, we have to establish first that the free en-
ergy functional Fβ is bounded from below. Instead of using standard variational
methods to prove that a minimizer is achieved, we can rely on the flow associ-
ated with (5.5)-(5.6).

•Repulsive case. Let us consider the free energy functional defined in (5.7) where
φ is given by (5.6) with ε=+1, i.e., φ=− 1

2π log | · |∗ f .

Lemma 5.1. Let M > 0 and ε=+1. Then Fβ is bounded from below on the set of
the functions f ∈ L1+(R2) such that

∫
R2 f d x = M if β≥ 1+ M

8π .

Proof. With g = f
M and α= 1+ M

8π , this means that

1

M
Fβ[ f ]− log M =

∫
R2

g log g d x +β
∫
R2

V g d x − M

4π

Ï
R2×R2

g (x) g (y) log |x − y |d x d y

= (β−α)
∫
R2

V g d x +
∫
R2

g log g d x +α
∫
R2

V g d x

− 2(α−1)
Ï
R2×R2

g (x) g (y) log |x − y |d x d y

≥ (β−α)
∫
R2

V g d x − (1−α)
(
1+ logπ

)
according to Theorem 5.1: the condition β≥α is enough to prove that Fβ[ f ] is
bounded from below.

Proof of Corollary 5.1 with ε=+1. Let us consider a smooth solution of (5.5)-(5.6).
We refer to [123] for details and to [9] for similar arguments in dimension d ≥ 3.
According to (5.8), f converges as t →+∞ to a solution of

∇ log f +β∇V +∇φ= 0.

Notice that this already proves the existence of a stationary solution. The equa-
tion can be solved as

f = M
e−βV −φ∫

R2 e−βV −φd x

after taking into account the conservation of the mass. With (5.6), the problem
is reduced to solving

−∆ψ= M

(
e−γV −ψ∫

R2 e−γV −ψd x
−µ

)
, ψ= (

β−γ)
V +φ , γ=β− M

8π
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using (5.12). It is a critical point of the functionalψ 7→JM ,γ[ψ] := 1
2

∫
R2 |∇ψ|2 d x+

M
∫
R2 ψµd x +M log

(∫
R2 e−γV −ψd x

)
. Such a functional is strictly convex as, for

instance, in [71, 72]. We conclude that ψ is unique up to an additional con-
stant.

• Attractive case. Let us consider the free energy functional (5.7) Fβ where φ is
given by (5.6) with ε = −1, i.e., φ = 1

2π log | · | ∗ f . Inspired by [87], we have the
following estimate.

Lemma 5.2. Let β≥ 0 and ε=−1. Then Fβ is bounded from below on the set of
the functions f ∈ L1+(R2) such that

∫
R2 f d x = M if M ≤ 8π.

Proof. With g = f
M and α= 1− M

8π , Theorem 5.1 applied to

1

M
Fβ[ f ]− log M = (β−α)

∫
R2

V g d x +
∫
R2

g log g d x +α
∫
R2

V g d x

+ 2(1−α)
Ï
R2×R2

g (x) g (y) log |x − y |d x d y

≥ (β−α)
∫
R2

V g d x − (1−α)
(
1+ logπ

)
proves that the free energy is bounded from below if M ≤ 8π.

Proof of Corollary 5.1 with ε=−1. The proof goes as in the case β= 0. We refer
to [33] and leave details to the reader.

Remark 5.1. Let us notice that Fβ is unbounded from below if β< 0. This follows
from the observation that lim|y |→∞Fβ[ fy ] = −∞ where fy (x) = f (x + y) for any
admissible f .

5.3.2 Duality

When α > 1, we can write a first inequality by considering the repulsive case in
the proof of Corollary 5.1 and observing that

JM ,γ[ψ] ≥ minJM ,γ

whereψ ∈ W2,1
loc(R2) is such that

∫
R2 (∆ψ)d x = 0 and the minimum is taken on the

same set of functions.

When α ∈ [0,1), it is possible to argue by duality as in [49, Section 2]. Since
f? realizes the equality case in (5.1), we know that∫

R2
f? log

(
f?
M

)
d x +α

∫
R2

V f?d x +M (1−α)
(
1+ logπ

)
= 2

M
(α−1)

Ï
R2×R2

f?(x) f?(y) log |x − y |d x d y
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and, using the fact that f? is a critical point of the difference of the two sides
of (5.1), we also have that∫

R2
log

(
f

f?

)
( f − f?)d x +α

∫
R2

V ( f − f?)d x

= 4

M
(α−1)

Ï
R2×R2

(
f (x)− f?(x)

)
f?(y) log |x − y |d x d y .

By subtracting the first identity to (5.1) and adding the second identity, we can
rephrase (5.1) as

F(1)[ f ] :=
∫
R2

f log

(
f

f?

)
d x ≥ 4π

M
(1−α)

∫
R2

( f − f?) (−∆)−1( f − f?)d x :=F(2)[ f ] .

Let us consider the Legendre transform

F∗
(i )[g ] := sup

f

(∫
R2

g f d x −F(i )[ f ]

)

where the supremum is restricted to the set of the functions f ∈ L1+(R2) such that
M = ∫

R2 f d x. After taking into account the Lagrange multipliers associated with
the mass constraint, we obtain that

M log

(∫
R2

e g−V d x

)
=F∗

(1)[g ] ≤ M

16π (1−α)

∫
R2
|∇g |2 d x+M

∫
R2

g e−V d x =F∗
(2)[g ] .

We can get rid of M by homogeneity and recover the standard Euclidean form
of the Onofri inequality in the limit case as α→ 0+, which is clearly the sharpest
one for all possible α ∈ [0,1).

5.3.3 Extension to general confining potentials with critical asymp-
totic growth

As a concluding observation, let us consider a general potential W on R2 such
that

W ∈C (R2) and lim
|x|→+∞

W (x)

V (x)
=β (HW )

and the associated free energy functional

Fβ,W [ f ] :=
∫
R2

f log f d x +β
∫
R2

W f d x + 1

2

∫
R2
φ f d x

where φ is given in terms of f > 0 by (5.6). With previous notations, Fβ =Fβ,V .
Our last result is that the asymptotic behaviour obtained from (HW ) is enough
to decide whether Fβ,W is bounded from below or not. The precise result goes
as follows.
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Theorem 5.2. Under Assumption (HW ), Fβ,W defined as above is bounded from
below if either ε=+1 and β> 1+ M

8π , or ε=−1, β> 1− M
8π and M ≤ 8π. The result

is also true in the limit case if (W −βV ) ∈ L∞(R2) and either ε=+1 andβ= 1+ M
8π ,

or ε=−1, β> 1− M
8π and M ≤ 8π.

Proof. If (W −βV ) ∈ L∞(R2), we can write that

Fβ,W [ f ] ≥Fβ[ f ]− M
∥∥W −βV

∥∥
L∞(R2) .

This completes the proof in the limit case. Otherwise, we redo the argument
using β̃V − (

β̃V −W
)
+ for some β̃ ∈ (0,β) if ε=−1, and for some β̃ ∈ (

1+ M
8π ,β

)
if ε=+1.
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This paper is devoted to the Nernst-Planck system of equations with an ex-
ternal potential of confinement. The main result is concerned with the asymp-
totic behaviour of the solution of the Cauchy problem. We will prove that the
optimal exponential rate of convergence of the solution to the unique station-
ary solution is determined by the spectral gap of the linearized problem around
the minimizer of the free energy. The key issue is to consider an adapted notion
of scalar product.
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6.1 Introduction

At the end of nineteenth century, Nernst and Planck introduced a system of
equations for representing the evolution of charged particles subject to electro-
static forces. The original model is exposed in [136, 142]: electrically charged
particles diffuse under the action of a drift caused by an electrostatic poten-
tial. Nowadays we use this system in various frameworks like, for instance, phe-
nomenological models for electrolytic behaviour in membranes. The original
model is the non-confined Nernst-Planck system. If we take into account a
mean-field Poisson coupling, in dimension d = 2, the system takes the form

∂u
∂t =∆u +∇· (u∇v)

v =G2 ∗u
u(0, x) = n0 ≥ 0

x ∈R2 , t > 0, (6.1)

where G2(x) = − 1
2π log |x| denotes the Green function of the Laplacian in R2.

We shall call this model the Poisson-Nernst-Planck system, which was also con-
sidered by Debye and Hückel in [64] and is sometimes called the Debye-Hückel
system in the literature. Up to a sign change in the mean-field term, the model
is similar to the Keller-Segel model, which is going to be a source of inspiration
(see [33, 34, 50] for more details) for the study of the large time behaviour and
this is a reason why we consider the two-dimensional case of the model.

Now let us introduce the notion of confinement. In the whole space, par-
ticles repel themselves and a well-known runaway phenomenon occurs: solu-
tions locally vanish while the mass escapes at infinity. This can be prevented us-
ing a container (a bounded domain, with convenient boundary conditions) with
walls, or a confinement potential. Actually, it is possible to obtain the bounded
domain case as a limit of a whole space case with an external potential of con-
finement taking larger and larger values outside of the domain. Here we shall
consider the Poisson-Nernst-Planck system with confinement in Rd , where the
dimension is d = 2 or d = 2. The density function n solves

∂n
∂t =∆n +∇· (n∇c)+∇· (n∇φ)

c =Gd ∗n
n(0, x) = n0 ≥ 0,

∫
Rd n(0, x)d x = M > 0

x ∈Rd , t > 0. (6.2)

The convolution kernel Gd is the Green function of the Laplacian in Rd , namely

G2(x) =− 1

2π
log |x| for any x ∈R2 and G3(x) = 1

4π |x| for any x ∈R3 .

In other words, we ask that c solves the Poisson equation

−∆c = n x ∈Rd ,

whileφ is a given external potential. In the special case of d = 2 andφ(x) = µ
2 |x|2

for some µ> 0, if we use the change of variables

u(t , x) = R−d n(τ,ξ) , v(t , x) = c(τ,ξ) ,
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ξ= x

R
, τ= logR , R = R(t ) :=√

1+2µ t , (6.3)

then we observe that (n,c) solves (6.2) if and only if (u, v) solves (6.1). Studying
the convergence rates of the solutions of (6.2) amounts to study the intermediate
asymptotics of the solutions of (6.1) when runaway occurs. Obviously, the mass
of a solution of (6.2) is conserved, and we shall write that

∫
Rd n(t , x)d x = M for

any t ≥ 0. The mass of a solution of (6.1) is also conserved, but one can prove
that, for a solution of (6.1), the mass contained in any given compact set in R2

decays to zero.
From here on, we shall assume that M > 0 is fixed. Now let us turn our at-

tention to the conditions on the confinement potential. From now on, we shall
assume that φ ∈ W1,∞

loc (Rd ) is such that ∇φ ∈ W1,∞(Rd ) and

liminf
|x|→+∞

φ(x)

log |x| > d , (C1)

and also that the bounded measure e−φd x admits a spectral gap (or Poincaré)
inequality, i.e., that there exists a positive constantΛφ such that∫

Rd
|∇u|2 e−φd x ≥Λφ

∫
Rd

|u|2 e−φd x

∀u ∈ H1(Rd ;e−φd x) such that
∫
Rd

u e−φd x = 0. (C2)

Based on Persson’s lemma, a sufficient condition is obtained by requesting that

σφ := lim
r→+∞ infess

x∈B c
r

(
1

4
|∇φ|2 − 1

2
∆xφ

)
> 0 and lim

r→+∞ infess
x∈B c

r

|∇φ| > 0. (C3)

Let us refer to [3] for details and further references. We learn from [9, 28] that the
stationary solutions (n∞,c∞) of (6.2) are obtained as solutions of the Poisson-
Boltzmann equation

−∆c∞ = n∞ = M
e−c∞−φ∫

Rd e−c∞−φd x
. (6.4)

Under Assumption (C1) and the additional condition

liminf
|x|→+∞

φ(x)

log |x| > 4+ M

2π
if d = 2, (C4)

we know (see [3, Lemma 5] and earlier references therein) that the unique solu-
tion of (6.4) is obtained as a minimizer of the free energy F defined by

F [n] :=
∫
Rd

n logn d x +
∫
Rd

nφd x + 1

2

∫
Rd

n (−∆)−1n d x . (6.5)

Further details are given in Section 6.2. A simple consequence of the minimiza-
tion procedure is that

F [n]−F [n∞] ≥ 0 ∀n ∈ L1
+(Rd )
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with the convention that F [n] can take the value +∞ if, for instance n logn is
not integrable. For sake of brevity, we shall say that φ is a confinement potential
satisfying Assumption (C) if (C1), (C3) and (C4) hold.

Our goal is to study the asymptotic behaviour of a solution of (6.2) with initial
datum n0 at t = 0 such that F [n0] is finite. It is a standard observation that the
free energy F [n(t , ·)] of a solution of (6.2) is monotone non-increasing along the
flows and obeys to

d

d t
F [n(t , ·)] =−I [n(t , ·)] (6.6)

where the Fisher information I is defined by

I [n] :=
∫
Rd

n |∇(logn + c +φ)|2 d x .

Our main result is that, as t → +∞, F [n(t , ·)] is bounded by I [n(t , ·)] up to a
multiplicative constant which shows that n(t , ·) converges to n∞ at an exponen-
tial rate. The precise result is not written in terms of the free energy but in terms
of a weighted L2 norm and goes as follows.

Theorem 6.1. Let d = 2 or 3 and consider a potential φ satisfying (C). Assume
that n solves (6.2) with initial datum n(0, ·) = n0 ∈ L2+(n−1∞ d x),

∫
Rd n0 d x = M,

and F [n0] <∞. Then there exist two positive constants C andΛ such that∫
Rd

|n(t , .)−n∞|2 n−1
∞ d x ≤C e−Λ t ∀ t ≥ 0.

In section 4, we will characterizeΛ as the spectral gap of the linearized oper-
ator associated with (6.2) and observe, as a special case, thatΛ= 2µ if d = 2 and
φ= µ

2 |x|2, for some µ> 0.
Beyond free energy and entropy methods, the study of the large time asymp-

totics of the Poisson-Nernst-Planck system involves various tools of nonlinear
analysis. Proving an exponential rate of convergence is interesting for studies
of Poisson-Nernst-Planck systems by methods of scientific computing. Specific
methods are needed for the numerical computation of the solutions, see [15,
138]. In [127], Liu and Wang implement at the level of the free energy a finite
difference method to compute the numerical solution in a bounded domain.
Concerning rates of convergence from a more theoretical point of view, let us
mention that the existence of special solutions and self-similar solutions is con-
sidered in [26, 27, 110]. We refer to [147] for a discussion of the evolution prob-
lem from the point of view of physics.

Variants of the Poisson-Nernst-Planck system with nonlinear diffusions have
been considered, for which the sharp rate of convergence is still unknown. Some
papers rely on the use of distances related to the L2-Wasserstein distance, see [70,
118, 163]. Exponential decay rates should be natural in view of the expected gra-
dient flow structure of the system in this framework. The simpler case of linear
diffusions on a bounded domain of Rd with d ≥ 3 was studied in [28]: the con-
vergence to the stationary solution occurs at an exponential rate. As already
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mentioned, another related model is the Keller-Segel system in dimension 2.
Regularity and asymptotic estimates for this system were discussed in [33, 50]
and are a source of inspiration for the present study, in particular concerning
the scalar product and the coercivity estimates. For completeness, let us men-
tion that similar ideas have been recently developed in [124] for the study of a
McKean-Vlasov model model of flocking, which also involves a non-local cou-
pling.

6.2 Miminizers of the free energy and convergence to the
stationary solution

The main goal of this section is to prove that the minimizer of the free energy F

is the stationary solution (n∞,c∞) considered in the introduction and that it at-
tracts any solution of (6.2) as t →+∞.

6.2.1 Minimizers of the free energy and stationary solutions

Lemma 6.1. Let d = 2 or d = 3 and assume that the potential φ satisfies (C). On
the set

X :=
{

f ∈ L1
+(Rd ) :

∫
Rd

f (x)d x = M , f log f ∈ L1(Rd ), f φ ∈ L1(Rd )
}

,

the free energy F is semi-bounded from below.

Proof. According to Assumptionn (C1), we know that e−φ ∈ L1(Rd ). Set ρ(x) :=
λe−φ, such that

∫
Rd ρ(x)d x = M . Since the function x log x is convex, we obtain

that
∫
Rd f log f d x ≥ ∫

Rd f logρd x by Jensen’s inequality. So

F [ f ] ≥
∫
Rd

f logρd x +
∫
Rd

f φd x + 1

2

∫
Rd

f (−∆)−1 f d x

= M logλ+ 1

2

∫
Rd

f (−∆)−1 f d x .

If d = 3,
∫
Rd f (−∆)−1 f d x ≥ 0 because the Green function G3(x) is nonnegative.

If d = 2, the result has been established in [80, Corollary 1.2] as a consequence
of Assumption (C4).

Lemma 6.2. Let d = 2 or d = 3 and assume that the potentialφ satisfies (C). There
exists a unique minimizer n∞ of F in X .

Proof. Standard minimization methods show that a minimizing sequence ad-
mits, up to the extraction of a subsequence, a limit which is a minimizer. From
the proof above, F is lower bounded and satisfies the coercivity inequality. For
a fixed minimizer n∞, it should satisfy the Euler-Lagrange equation

logn∞+φ+ c∞ =λ , c∞ = (−∆)−1n∞ ,
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for some Lagrange multiplierλ associated with the mass constraint, which means
that (n∞,c∞) solve (6.4). By direct computation, with c = (−∆)−1n, we observe
that

F [n]−F [n∞] =
∫
Rd

n log

(
n

n∞

)
d x + 1

2

∫
Rd

(n −n∞) (c − c∞)d x .

Since
∫
Rd n d x = ∫

Rd n∞ d x = M , we obtain from Jensen’s inequality that∫
Rd

n log

(
n

n∞

)
d x ≥ 0

and, according to [33],∫
Rd

(n −n∞)(c − c∞)d x =
∫
Rd

|∇(c − c∞)|2 d x ≥ 0.

Hence F [n]−F [n∞] ≥ 0 for any n ∈X , with equality if and only if n = n∞. This
means that the minimizer of F is unique.

We may notice that n∞ is radially symmetric if φ is radially symmetric, as a
consequence of the uniqueness result of Lemma 6.2.

We learn from the proof of [33, Lemma 23] that

max
|x|→∞

∣∣∣∣c∞+ M

2π
log |x|

∣∣∣∣<∞ if d = 2, max
|x|→∞

∣∣∣∣c∞− M

4π |x|
∣∣∣∣<∞ if d = 3,

and deduce from (6.4) that, as |x|→∞,

n∞ ∼ |x| M
2π e−φ if d = 2, n∞ ∼ e−

M
4π |x|−φ if d = 3. (6.7)

Proposition 6.1. Let d = 2 or d = 3 and assume that the potential φ satisfies (C).
Then the solutions (n∞,c∞) of (6.4) are such that c∞ is bounded if d = 3 and
‖∇c∞‖Lq (R2) is bounded for any q ∈ (2,+∞] if d = 2.

Proof. From (6.7) and (C4), we know that n∞ is bounded outside of a large cen-
tered ball of radius R > 0. Let us assume that |x| ≤ R and recall that

c∞(x) = κ3

∫
R3

e−c∞(y)−φ(y)

|x − y | d y if d = 3, with κ3 = M

4π
∫
R3 e−c∞−φd x

,

|∇c∞(x)| ≤ κ2

∫
R2

e−c∞(y)−φ(y)

|x − y | d y if d = 2, with κ2 = M

2π
∫
R2 e−c∞−φd x

.

In dimension d = 3, it is enough to observe that c∞ = (−∆)−1n∞ ≤ 0 and deduce
the bound

0 ≤ c∞(x) ≤ κ3

∫
R3

e−φ(y)

|x − y | d y .

In dimension d = 2, we deduce from (6.7) and (C) that for R > 0 large enough,
there exists a constant κ> 0 such that

n∞(x) ≤ n∞(x)1|x|<R +κ1|x|≥R |x|−4 ,
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which allows us to write

c∞(x) ≥− M

2π
log(2R)− κ

2π

∫
|y |≥R

log |x − y |
|y |4 d y

for any x ∈ R2 such that |x| ≤ R. Reinjecting this estimate in the expression of
|∇c∞(x)| completes the proof. The bound on ‖∇c∞‖Lq (R2) follows by observing
that |∇c∞(x)| ∼ |x|−1 as |x|→+∞.

6.2.2 Uniform bounds on the solution of (6.2)

We establish bounds on the solution n(t , ·) of (6.2) which are independent of t .

Lemma 6.3. Let d = 2 or d = 3 and assume that the potential φ satisfies (C). For
any solution n of (6.2), there exists a constant C > 0 and a time T > 0 such that

‖n(t , ·)‖Lp ≤C ∀ t ≥ T , ∀p ∈ (1,+∞] .

Proof. For any integer k, set n0,k = min(n0,k), then n0,k ∈ Lp (Rd ) for any p ≥ 1.
The solution n(t , ·) of the equation (6.2) with initial data n0,k is in Lp (Rd ) for any
t > 0 by the Maximum Principle. Since, by assumption, |∇φ| satisfies a Lipschitz
condition, there exists a constant C > 0 such that ∆φ≤C , and we have the esti-
mate

1

p −1

d

d t

∫
Rd

n(t , x)p d x =−p
∫
Rd

|∇n|2 np−2 d x −
∫
Rd

np+1 d x +
∫
Rd

np∆φd x

≤−
∫
Rd

np+1 d x +C
∫
Rd

np d x .

Using Hölder’s inequality
(∫
Rd n d x

) 1
p
(∫
Rd np+1 d x

) p−1
p ≥ ∫

Rd np d x, we obtain that∫
Rd

np+1 d x ≥ M− 1
p−1

(∫
Rd

np d x

) p
p−1

With z(t , ·) = ∫
Rd n(t , ·)p d x, the problem reduces to the differential inequality

1

p −1
z ′ ≤−M− 1

p−1 z
p

p−1 +C z

using
∫
Rd n0,k d x ≤ M . It is elementary to prove that

z(t ) ≤ (2C )p−1 M ∀ t ≥ 4C

and conclude that the bound

‖n(t , ·)‖Lp (Rd ) ≤ (2C )
p−1

p M
1
p

has a uniform upper bound in the limit as p →+∞. See [34] for further details
on a similar estimate.
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Corollary 6.1. Let d = 2 or d = 3 and assume that the potential φ satisfies (C).
For any solution n of (6.2) with initial datum n0 ∈ L1+(Rd ) such that F [n0] <+∞,
there exists a constant C > 0 and a time T > 0 such that

‖∇c(t , ·)‖Lq (Rd ) ≤C ∀ t ≥ T , ∀q ∈ (2,+∞] .

Proof. The method is inspired from [50, Section 3]. If h = (−∆)−1ρ, then

|∇h(x)| ≤ 1

|Sd−1|
∫
Rd

ρ(y)

|x − y |d−1
d x

can be estimated by splitting the integral into two parts corresponding to |x −
y | ≤ 1 and |x − y | > 1. By applying twice Hölder’s inequality, we deduce from

1

|Sd−1|
∫
‖x−y |<1

ρ(y)

|x − y |d−1
d y ≤ d

d
d+1 |Sd−1|− 1

d+1 ‖ρ‖Ld+1(R3)

1

|Sd−1|
∫
‖x−y |≥1

ρ(y)

|x − y |d−1
d y ≤ 1

|Sd−1| ‖ρ‖L1(Rd )

that

‖∇((−∆)−1ρ)‖L∞(Rd ) ≤ ‖ρ‖L1(Rd ) +d
d

d+1 |Sd−1|− 1
d+1 ‖ρ‖Ld+1(Rd ) (6.8)

for any ρ ∈ L1 ∩Ld+1(Rd ). Applying it with ρ = n(t , ·) and c = (−∆)−1n and using
Minkowski’s inequality ‖∇c(t , ·)‖Lq (Rd ) ≤ ‖∇c(t , ·)−∇c∞‖Lq (Rd ) +‖∇c∞‖Lq (Rd ), the
result follows from the estimate ‖∇c(t , ·)−∇c∞‖2

L2(Rd )
≤ 2F [n0] together with

Proposition 6.1 and Lemma 6.3.

6.2.3 Convergence to stationary solutions

The next step is to establish the convergence without rate of the solution of (6.2)
to the stationary solution. For later purpose, let us recall the Aubin-Lions com-
pactness lemma. A simple statement goes as follows (see [100] for more details).

Lemma 6.4. (Aubin-Lions Lemma) Take T > 0, p ∈ (1,∞), and let ( fk )k∈N be
a bounded sequence of functions in Lp (0,T ; H), where H is a Banach space. If
( fk )k∈N is bounded in Lp (0,T ;V ), where V is compactly imbedded in H and if
(∂ fk /∂t )k∈N is bounded in Lp (0,T ;V ′) uniformly with respect to k ∈ N, where V ′

is the dual space of V , then ( fk )k∈N is relatively compact in Lp (0,T ; H).

With this result in hand, we are in a position to prove the following result.

Proposition 6.2. Suppose that d = 2 or 3. Let n be the solution of (6.2) and as-
sume that the potential φ satisfies (C). Then for any p ∈ [1,∞) and any q ∈ [2,∞),
we have

lim
t→∞‖n(t , ·)−n∞‖Lp (Rd ) = 0 and lim

t→∞‖∇c(t , ·)−∇c∞‖Lq (Rd ) = 0.
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Proof. Since F [n(t , .)] is nonnegative and decreasing, by (6.6) we know that

lim
t→∞

∫ ∞

t
I [n(s, .)]d s = 0. (6.9)

This means that the sequence (nk ,ck )k∈N, defined by nk (t , ·) = n(t + k, ·), ck =
(−∆)−1nk , is such that ∇nk +nk∇ck +nk∇φ strongly converges to 0 in L2(R+×
Rd ). By lemma 6.4, this shows that (nk )k∈N is relatively compact and converges,
up to the extraction of a subsequence, to a limit n. Up to the extraction of an
additional subsequence, (ck )k∈N converges to c = (−∆)−1n so that we may pass
to the limit in the quadratic term and know that

∇n +n∇c +n∇φ= 0, −∆c = n .

Since mass is conserved by passing to the limit, we conclude that n = n∞ and
c = c∞. The limit is uniquely defined, so it is actually the whole family (n(t , ·))t>0

which converges as t →+∞ to n∞ and limt→+∞F [n(t , ·)] = F [n∞], then prov-
ing by the Csiszár-Kullback inequality that limt→∞ ‖n(t , ·)−n∞‖L1(Rd ) = 0 (see
[116]) and limt→∞ ‖∇c(t , ·)−∇c∞‖L2(Rd ) = 0. The result for any p ∈ [1,∞) and any
q ∈ [2,∞) follows by Hölder interpolation.

6.2.4 Uniform convergence in L∞ norm in the harmonic potential case

The issue of the convergence of n(t , ·) to n∞ and of ∇c(t , ·) to ∇c∞ in L∞(Rd ) was
left open in Section 6.2.3. As in the case of the Keller-Segel model, see [34], better
results can be achieved in the case of the harmonic potential.

Proposition 6.3. Set d = 2, φ = µ
2 |x|2, for some µ > 0. Then for any solution n

of (6.2) is such that
lim

t→+∞‖n(t , .)−n∞‖L∞(Rd ) = 0.

Proof. The main tool is the Duhamel formula: see [50] for more details. We have

n(t , x) =
∫
R2

K (t , x, y)n0(y)d y −
∫ t

0

∫
R2
∇K (t − s, x, y) ·n(s, y)∇c(s, y)d y d s

where K (t , x, y) is the Green function of the Fokker-Planck equation

∂n

∂t
=∆n +µ∇(nx)

which is

K (t , x, y) := µ

2π (1−e−2t )
e
− µ|x−e−t y |2

2(1−e−2t )

and from the semi-group property we get that

n(t +1, x) =
∫
R2

K (t , x, y)n(t , y)d y

−
∫ t+1

t

∫
R2
∇K (t +1− s, x, y) ·n(s, y)∇c(s, y)d y d s . (6.10)
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Notice that the stationary solution n∞ is a fixed-point of the evolution map, that
is,

n∞(x) =
∫
R2

K (t , x, y)n∞(y)d y

−
∫ t+1

t

∫
R2
∇K (t +1− s, x, y) ·n∞(y)∇c∞(y)d yd s . (6.11)

Buy doing the difference between (6.10) and (6.11), we have

n(t +1, x)−n∞(x)

=
∫
R2

K (t , x, y)
(
n(t , y)−n∞(y)

)
d y

−
∫ t+1

t

∫
R2
∇K (t +1− s, x, y)

(
n(s, y)∇c(s, y)d y −n∞(y)∇c∞(y)

)
d s .

Hence

‖n(t +1, x)−n∞(x)‖L∞(R2) ≤ ‖K (t , x, y)‖L∞(R2
x ;Lr (R2

y )) ‖n(t , x)−n∞‖L1(R2)

+
∫ 1

0
‖∇K (s, x, y)‖L∞(R2

x ;Lr (R2
y )) d s R(t )

where 1
p + 1

q + 1
r = 2 with p ∈ (2,∞), q ∈ [2,∞), r ∈ (1,2), and

R(t ) := sup
s∈(t ,t+1)

(
‖n(s, ·)‖Lp (R2) ‖∇c(s, ·)−∇c∞‖Lq (R2)

+‖∇c∞‖Lq (R2) ‖n(s, ·)−n∞‖Lp (R2)

)
. (6.12)

Notice that

∇K = µ2 (e−t y −x)

2π (1−e−2t )
e
− µ |x−e−t y |2

2(1−e−2t )

allows us to compute

‖∇K ‖Lr (R2
y ) =

µ2

2π (1−e−2t )

(∫
R2
|x|r e

− µr |x|2
2(e2t −1) d x

) 1
r

= κ(r )e3t
(

e2t −1

µ

)− 3
2+ 1

r

where κ(r ) =
(∫ ∞

0 xr e−
1
2 x2

d x
) 1

r
. So ‖∇K ‖Lr (R2

y ) is integrable in t ∈ (0,1) if and

only if 1 ≤ r < 2. From Proposition 6.2, R(t ) converges to 0, which completes
the proof.

6.3 Coercivity result of quadratic forms

In this section, we study the quadratic forms associated with the free energy F

and the Fisher information I when we Taylor expand these functionals around
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the stationary solution (n∞,c∞) defined by (6.4). Let us consider a smooth per-
turbation n = f n∞ of n∞ such that

∫
Rd f n∞ d x = 0 and suppose that g c∞ :=

(−∆)−1( f n∞). We define

Q1[ f ] := lim
ε→0

2

ε2 F [n∞ (1+ε f )] =
∫
Rd

f 2 n∞ d x +
∫
Rd

|∇(g c∞)|2 d x ,

Q2[ f ] := lim
ε→0

2

ε2 I [n∞ (1+ε f )] =
∫
Rd

|∇( f + g c∞)|2 n∞ d x .

6.3.1 A spectral gap inequality

According to [3, Section 3.2], if the potential φ satisfies (C1), (C2) and (C3), then
there exists a positive constant C?, such that∫

Rd
|∇h|2 n∞ d x ≥C?

∫
Rd

h2 n∞ d x

∀ f ∈ H1(Rd n∞ d x) such that
∫
Rd

h n∞ d x = 0. (6.13)

Here n∞ is the stationary solution given by (6.4).

Proposition 6.4. Let d = 2 or d = 3 and assume that the potential φ satisfies (C).
Then for any f ∈ H1(Rd ,n∞ d x) such that

∫
Rd f n∞ d x = 0, we have

Q2[ f ] ≥C?Q1[ f ] .

Proof. We apply (6.13) to h(x) = f (x)+ g c∞(x)− 1
M

∫
Rd g c∞ n∞ d x. Notice that∫

Rd h(x)n∞ d x = 0 from
∫
Rd f n∞ d x = 0 and

∫
Rd n∞(x)d x = M . So we obtain that

Q2[ f ] =
∫
Rd

|∇( f + g c∞)|2 n∞ d x

≥C?

∫
Rd

( f + g c∞)2 n∞ d x − C?

M

(∫
Rd

g c∞ n∞ d x

)2

=C?

∫
Rd

f ( f + g c∞)n∞ d x +C?

∫
Rd

g c∞( f + g c∞)n∞ d x

− C?

M

(∫
Rd

g c∞ n∞ d x

)2

=C?Q1[ f ]+C?

∫
Rd

f n∞ g c∞ d x +C?

∫
Rd

(g c∞)2 n∞ d x

− C?

M

(∫
Rd

g c∞ n∞ d x

)2

.

Let us study the term
∫
Rd f n∞ g c∞ d x. Obviously f n∞ is in L2(Rd ) because n∞

is bounded. Moreover, for any p ∈ (1,2), from Hölder’s inequality, we infer that

∫
Rd

| f |p np
∞ d x ≤

(∫
Rd

f 2 d x

) p
2

(∫
Rd

n
2p

2−p
∞ d x

) 2−p
2

<∞
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because n∞ ∈ L1 ∩ L∞(Rd ). When d = 3, we directly obtain from the Hardy-
Littlewood-Sobolev inequality that

∫
Rd f n∞ g c∞ d x is well defined and equal to∫

Rd |∇g c∞|2 d x. When d = 2, by log-Hölder interpolation, | f n∞| log | f n∞| is in-
tegrable. From the logarithmic Hardy-Littlewood-Sobolev inequality (see [52]),
we also know that

∫
Rd f n∞ g c∞ d x is well defined and learn from [33] that the

function ∇(g c∞) is bounded in L2(R2) using the fact that
∫
Rd f n∞ d x = 0. In a

word, this means that ∫
Rd

f n∞ g c∞ d x =
∫
Rd

|∇g c∞|2 d x

for d = 2 or 3. Next, let us notice that

C?

∫
Rd

(g c∞)2 n∞ d x − C?

M

(∫
Rd

g c∞ n∞ d x

)2

= C?

M

∫
Rd

(g c∞)2 n∞ d x
∫
Rd

n∞ d x − C?

M

(∫
Rd

g c∞ n∞ d x

)2

is nonnegative by Hölder’s inequality. Altogether, we conclude that

Q2[ f ] ≥C?Q1[ f ]+C?

∫
Rd

|∇(g c∞)|2 d x ≥C?Q1[ f ] .

6.3.2 Optimal spectral gap in a special case.

As a conclusion, let us give the optimal coercivity constant in the special case
that the dimension d = 2 and the harmonic function φ= µ

2 |x|2,µ> 0,

Lemma 6.5. Suppose that d = 2, φ = µ
2 |x|2, where µ > 0. Then for any f ∈

H1(R2,n∞ d x) such that
∫
R2 f n∞ d x = 0, we have

Q2[ f ] ≥µQ1[ f ] .

Proof. We establish the proof into three steps.

Step 1. Radially symmetric functions and cumulated densities. We first con-
sider the case of a spherically symmetric function f . The probelm is reduced
to solving an ordinary differential equation, for which we use a reformulation in
terms of cumulated densities. Let

Φ(s) := 1

2π

∫
B(0,

p
s)

n∞(x)d x , φ(s) := 1

2π

∫
B(0,

p
s)

( f n∞)(x)d x

and

Ψ(s) := 1

2π

∫
B(0,

p
s)

c∞(x)d x , ψ(s) := 1

2π

∫
B(0,

p
s)

(g c∞)(x)d x .
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Notice that n∞ and c∞ are both radial, so they can be regarded as functions of
r = |x|. We can easily infer that

n∞(
p

s) = 2Φ′(s) , n′
∞(

p
s) = 4

p
sΦ′′(s)

and
c∞(

p
s) = 2Ψ′(s) , c ′∞(

p
s) = 4

p
sΨ′′(s) .

The Poisson equation −psc ′∞(
p

s) =Φ(s) can henceforth be rephrased as

−4 sΨ′′ =Φ (6.14)

while the equation for the density,

n′
∞(

p
s)+µpsn∞(

p
s)+n∞(

p
s)c ′∞(

p
s) = 0,

is now equivalent to

Φ′′+ µ

2
Φ′+2Φ′Ψ′′ = 0. (6.15)

After eliminating Ψ′′ from (6.14) and (6.15), we can get that Φ satisfies the ordi-
nary differential equation

Φ′′+ µ

2
Φ′− 1

2 s
ΦΦ′ = 0 (6.16)

with initial dataΦ(0) = 0 andΦ′(0) = a. The solutions of the ODE are parameter-
ized in terms of a > 0.

Let us consider the linearized operator

L f := 1

n∞
∇· [ f n∞∇(g c∞)

]
.

If f solves −L f =λ f , computations similar to the above ones show that

(n∞ f )(
p

s) = 2φ′(s) , (n∞ f ′)(
p

s) = 4
p

sφ′′(s)−2
n′∞
n∞

φ′(s)

which is equivalent to

(g c∞)(
p

s) = 2ψ′(s) , (g c∞)′(
p

s) = 4
p

sψ′′(s) . (6.17)

Using (6.17), we find that

−ps (g c∞)′(
p

s) =φ(s) ,
p

s
(
(n∞ f ′)(

p
s)+n∞(g c∞)′(

p
s)

)+λφ(s) = 0.

After eliminatingΨ and ψ, we get thatΦ and φ satisfy the equation

φ′′+ µ s −Φ
2 s

φ′+ λ−2Φ′

4 s
φ= 0. (6.18)
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Next we check that φ= sΦ′(s) is a nonnegative solution of (6.18) with λ= 2µ. In
fact, (6.18) is equivalent to

2 sφ′′+ (µ s −Φ)φ′+ (µ−Φ′)φ= 0

which is (
2(sφ′−φ)+ (µ s −Φ)φ

)′ = 0.

notice that when φ= sφ′,

2(sφ′−φ)+ (µ s −Φ)φ= s
(
2 sΦ′′+ (µ s −Φ)φ′)= 0.

Hence λ= 2µ is an eigenvalue of the linearized operator L f .

Step 2. Characterization of the radial ground state. Let us prove that 2µ is the
lowest positive eigenvalue corresponding to a radial eigenfunction. Assume by
contradiction that L admits an eigenvalue λ ∈ (0,2µ) with eigenfunction f1 and
define the corresponding function φ1 that satisfy (6.18). Let us consider various
cases depending on the zeros of φ.

• Assume that φ1 is always strictly positive or strictly negative in (0,∞). Suppose
without losing generality that φ1(s) > 0 in (0,∞). On the one hand, if we multi-
ply (6.18) written for the eigenvalue 2µ and for the eigenvalue λ respectively by
φ1 and φ, we obtain that

φ1φ
′′− Φ

′′

Φ′ φ1φ
′+ 2µ−2Φ′

4 s
φ1φ= 0,

φφ′′
1 −

Φ′′

Φ′ φφ
′
1 +

λ−2Φ′

4 s
φφ1 = 0.

By subtracting the second identity from the first one, we have

φ′
1φ(s)−φ1φ

′(s)

Φ′(s)

∣∣∣∞
0

=
∫

(0,∞)

2µ−λ
4 s

φφ1 d s > 0. (6.19)

On the other hand, define

h(s) := 1

2π

∫
B(0,

p
s)

f 2
1 n∞(r )dr .

From the cumulated mass formulation of Step 1, we find that

h′(s) = 1

2
f 2

1 n∞(
p

s) = 2Φ′(s)2

n∞(
p

s)

is in L1(0,∞). So, for some constant κ> 0, we have

φ1(s)2 =
(∫

(s,∞)
φ′

1(s)d s

)2

≤
(∫

(s,∞)

φ′
1(s)2

n∞(
p

s)
d s

) (∫
(s,∞)

n∞(
p

s)d s

)
≤ κ

∫
(s,∞)

s−
α
2 e−

s
2 d s ≤ κe−

µ s
4
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when s is large enough. As a consequence, we known that

lim
s→∞φ1(s) = lim

s→∞φ(s) = lim
s→∞ sφ(s) = 0.

We also claim that
lim

s→∞ sφ′
1(s) = 0. (6.20)

In fact, for any large enough x1, x2, by integrating on (x1, x2), we have

φ′
1(x2)−φ′(x1)+ µ

2

(
φ1(x2)−φ1(x1)

)− Φ

2 s

(
φ1(x2)−φ1(x1)

)
−

∫ x2

x1

φ1
sφ′−Φ

2s2 d s +
∫

(x1.x2)

λ−Φ′

4 s
φ1 d s = 0.

Using again that φ1(s) ≤ κe−
µ s
4 , we get that there exists a constant c2 which is

independent of x1 and x2, such that |φ′
1(x2)−φ′

1(x1)| ≤ c2. So φ′
1(s) is bounded.

As a result, φ′′
1(s) is also bounded, with a bound c3. If (6.20) is not true, then

there exists a constant c1 and a strictly increasing, diverging sequence (sk )k∈N
such that sk φ

′
1(sk ) ≥ c1. For any interval (sk ,∞), we have that

c1

sk
≤C

√
e−

µ sk
4

which is impossible as k →∞. So from (6.20), we obtain that

lim
s→∞

φ′
1φ(s)−φ1φ

′(s)

Φ′(s)
= lim

s→∞ sφ′
1−φ1

(
1+ sφ′′

Φ′

)
= lim

s→∞ sφ′
1−φ1

(
1− µ s −Φ

2

)
= 0.

(6.21)
From (6.19), (6.21), we have

0 = φ′
1φ(s)−φ1φ

′(s)

Φ′(s)

∣∣∣∞
0

=
∫

(0,∞)

2µ−λ
4 s

φφ1 d s > 0

a contradiction.

• Assume that φ1 has a zero in (0,∞). By Sturm comparison theorem (see [69]),
we get that

φ(s) = sΦ′(s)

has a zero in (0,∞). It means that

n∞(
p

s) = 2Φ′(s)

has a zero between (0,∞). But according to the definition of n∞, it is impossible.
Hence we have shown that 2µ is the best constant.

Step 3. Spherical harmonics decomposition.
We now deal with the non-radial modes of L . Notice that n∞ and c∞ are

radial functions: we can use a spherical harmonics decomposition as in [50]. In
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dimension d = 2, we use radial coordinates and a Fourier decomposition for the
angular variables. On the k th mode we can write the operator L corresponding
to the radial functions f and g as

− f ′′− f ′

r
+ k2 f

r 2 + (
µr + c ′∞

)(
f ′+ (g c∞)′

)−n∞ f =λ f ,

−(g c∞)′′− (g c∞)′

r
+ k2g c∞

r 2 = n∞ f ,

for any integer k ≥ 1, It is obvious that in non-radial functions, k = 1 realizes
the infimum of the spectrum of L . We now check that when k = 1, λ = µ and
f = −n′∞/n∞ is an eigenstate. In fact, we can choose g c∞ = −c ′∞, so that f =
µr + c ′∞, and notice that

−c ′′∞− c ′∞
r

= n∞ , f ′+ f

r
= 2µ+ c ′′∞+ c ′∞

r
= 2µ−n∞ ,

for the first equation, and

− f ′′− f ′

r
+ k2 f

r 2 + (
µr + c ′∞

)(
f ′+ (g c∞)′

)+n∞ f

=−
(

f ′+ f

r

)′
−n′

∞+µ(
µr + c ′∞

)=µ f

for the second equation, while

−(g c∞)′′− (g c∞)′

r
+ k2g c∞

r 2 =−
(
c ′′∞+ c ′∞

r

)
=−n′

∞ = n∞ f .

It is easy to prove that f is nonnegative and that f1(r ) := r f (r ) solves −L f1 =
(λ+µ) f1 among the radial functions: we are back to the Step 2and find that
λ=µ.

Let us summarize: the spectral gap λ associated with the operator L is
achieved either among radial functions andλ= 2µ in this sense, or it is achieved
among the functions in one of the non-radial components (in the sense of har-
monics decomposition), which has to be the k = 1 component, and in that case
we have found that λ+µ = 2µ, that is λ = µ. Obviously λ = µ is optimal, which
completes the proof of Lemma 6.5.

6.4 Linearized equation and the large time behaviour

This section is primarily devoted to the proof Theorem 6.1 but also collects some
additional results.
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6.4.1 The scalar product and the linearized operator.

We adapt the strategy of [50]. Notice that〈
f1, f2

〉
:=

∫
Rd

f1 f2 n∞ d x +
∫
Rd

n∞ f1
(
Gd ∗ ( f2 n∞)

)
d x (6.22)

is a scalar product on the admissible set

A :=
{

f ∈ L2(Rd , n∞ d x) :
∫
Rd

f n∞ d x = 0
}

because Q1[ f ] = 〈
f , f

〉
. Now come back to the Poisson-Nernst-Planck system

with confinement (6.2). For any x ∈Rd and t ≥ 0, let us set

n(t , x) = n∞(x)
(
1+ f (t , x)

)
, c(t , x) = c∞

(
1+ g (t , x)

)
and rewrite the evolution problem in terms of f and g as

n∞
∂ f

∂t
=∆(n∞ f )+∇· (n∞ f ∇φ)+∇· (n∞∇(c∞ g )+n∞ f ∇c∞+n∞ f ∇(c∞ g )

)
.

After observing that

∆(n∞ f )+∇· (n∞ f ∇φ)+∇· (n∞ f ∇c∞) =∇· (n∞∇ f ) ,

it turns out that

n∞
∂ f

∂t
=∇· (n∞∇ f )+∇· (n∞∇(c∞ g )

)+∇· (n∞ f ∇(c∞ g )
)

.

Hence ( f , g ) solves
∂ f

∂t
−L f = 1

n∞
∇· [ f n∞∇(g c∞)

]
−∆(g c∞) = f n∞

x ∈Rd , t > 0 (6.23)

for any x ∈Rd , t ≥ 0, where the linear operator L is defined by

L f := 1

n∞
∇[

n∞∇(
f + g c∞

)]
.

Lemma 6.6. The linearized operator L is self-adjoint on A with the scalar prod-
uct defined in (6.22), which means that

〈
f1,L f2

〉 = 〈
L f1, f2

〉
for any f1, f2 ∈ A ,

and moreover,
−〈

f ,L f
〉=Q2[ f ]

for any f ∈A .

Proof. Set g1c∞ = (−∆)−1( f1 n∞), g2 c∞ = (−∆)−1( f2 n∞). By direct computation,
we obtain that〈

L f1, f2
〉= ∫

Rd
f2∇· (n∞∇( f1 + g1 c∞)

)
d x +

∫
Rd

g2 c∞∇· (n∞∇( f1 + g1c∞)
)

d x

=−
∫
Rd

n∞∇( f1 + g1 c∞) ·∇( f2 + g2 c∞)d x ,

which proves the lemma.
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6.4.2 Proof of Theorem 6.1

Proof. For the equations (6.23), we find that

d

d t
Q1[ f ] =−2Q2[ f ]−2λ(t ) with λ(t ) :=

∫
Rd

∇( f + g c∞) · f n∞∇(g c∞)d x .

According to the Cauchy-Schwarz inequality, we have that

(λ(t ))2 ≤Q2[ f ]
∫
Rd

f 2n∞ d x ‖∇(g c∞)‖2
L∞(Rd ) ≤Q2[ f ]Q1[ f ]‖∇(g c∞)‖2

L∞(Rd ) .

So we obtain

d

d t
Q1[ f ] ≤−2

(
1− ‖∇(g c∞)‖L∞(Rd )√

C∗

)
Q2[ f ] ≤−2C∗

(
1− ‖∇(g c∞)‖L∞(Rd )√

C∗

)
Q1[ f ] .

We know from Proposition 6.2 that limt→+∞ ‖∇(g c∞)‖L∞(Rd ) = 0, which proves
that

lim sup
t→∞

e2(C∗−ε) Q1[ f (t , ·)] <∞

for any ε ∈ (0,C∗). It remains to prove that we can also obtain this estimate with
ε= 0.

Suppose that C∗ is the optimal constant without losing generality. Let us
give a more accurate estimate of λ(t ). If d = 2, according to (6.8) applied to
ρ = f n∞, we have

‖∇(g c∞)‖L∞ ≤C (‖ f n∞‖L1 +‖ f n∞‖L3 )

where

‖ f n∞‖L1 ≤
p

M ‖ f
p

n∞‖L2 , ‖ f n∞‖L3 ≤ ‖ f
p

n∞‖
2
3

L2 ‖ f n∞‖
1
3
L∞ ‖n∞‖

1
3
L∞ .

Notice that from ‖ f
p

n∞‖2
L2 ≤Q1[ f ], we deduce that

‖∇(g c∞)‖L∞ =O
(
Q1[ f (t , ·)]

) 1
3 (6.24)

which leads to
λ(t ) ≤O

(
Q1[ f (t , ·)]

4
3

)
as t →+∞ .

As a result, we read from

d

d t
Q1[ f ] ≤−2C?Q1[ f ]+O

(
(Q1[ f ])

4
3

)
that

limsup
t→∞

e2C?t Q1[ f (t , ·)] <∞ .

When d = 3, we have the estimate

‖∇(g c∞)‖L∞ ≤C
(‖ f n∞‖L1 +‖ f n∞‖L4

)
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and similarly obtain that

‖ f n∞‖L1 ≤
p

M ‖ f
p

n∞‖L2 , ‖ f n∞‖L4 ≤ ‖ f
p

n∞‖
1
2

L2 ‖ f n∞‖
1
2
L∞ ‖n∞‖

1
4
L∞ .

Using again ‖ f
p

n∞‖2
L2 ≤Q1[ f ], we have

‖∇(g c∞)‖L∞ =O
(
Q1[ f (t , ·)]

) 1
4 (6.25)

which allows us to write that

λ(t ) ≤O
(
Q1[ f (t , ·)]

5
4

)
as t →+∞ .

We conclude as above, which completes the proof of Theorem 6.1.

6.4.3 Uniform rate of convergence

Let us give additional results on the convergence in various norms of the solu-
tion of (6.2) to the stationary solution.

Corollary 6.2. Under the assumptions of Theorem 6.1, if φ(x) = 1
2 |x|2, the solu-

tion n of (6.2) is such that

‖n(t , ·)−n∞‖Lp =O
(
e−

t
p

)
and ‖∇c(t , ·)−∇c∞‖Lq =O

(
e−

t (q+2d)
(d+1) q

)
as t →+∞, for any p ∈ (1,∞) and any q ∈ (2,∞). Additionally, if d = 2, then

‖n(t , ·)−n∞‖L∞ =O
(
e−λt

)
as t →+∞, for any λ< 1.

Proof. From the Cauchy-Schwarz inequality, we read that

‖n(t , ·)−n∞‖L1(Rd ) ≤
(
‖n∞‖L1(Rd )

∫
Rd

|n(t , ·)−n∞|2
n∞

d x

) 1
2

≤
p

C M e−t

for some C > 0 if t is taken large enough, and we also know also that

‖n(t , ·)−n∞‖Lp (Rd ) =O
(
e−

t
p

)
(6.26)

for any p ∈ [1,∞). By definition of Q1[ f ], we have

‖∇c(t , ·)−∇c∞‖L2(Rd ) ≤
p

C e−t

for some C > 0 if t is taken large enough, according to Lemma 6.5. Moreover,
according to (6.24), (6.25) and Theorem 6.1, we obtain that

‖∇c(t , ·)−∇c∞‖L∞(Rd ) =O
(
e−

t
d+1

)
. (6.27)
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This proves that

‖∇c(t , ·)−∇c∞‖Lq (Rd ) =O

(
e−

t (q+2d)
(d+1)q

)
for any q ∈ [2,∞) by interpolating between (6.26) and (6.27).

The proof of the case d = 2 is inspired by [50, Remark 5]. We reconsider
R(t ) defined in (6.12) in Section 6.2 with p = 7r

5r−4 , q = 7r
2r−3 . We obtain from

Corollary 6.2 that

‖n(t , ·)−n∞‖L∞(R2) =O
(
e−

5r−4
7r t

)
.

This is the first step of a proof by induction. If

‖n(t , ·)−n∞‖L∞(R2) =O
(
e−at ) ,

then one has
‖n(t , ·)−n∞‖L∞(R2) =O

(
e−

5r−4+(2r+4)a
7r t

)
.

By iterating this estimate infinitely many times, we finally have

‖n(t , ·)−n∞‖L∞(R2) =O
(
e−λt

)
for any λ< 1. The proof of the corollary is complete.

6.4.4 Intermediate asymptotics of the Poisson-Nernst-Planck system

Let us come back to the Poisson-Nernst-Planck equation (6.1). The self-similar
solution of (6.1) has the expression

u∞(x, t ) = 1

1+2t
n∞

(
1

2
log(1+2t ),

xp
1+2t

)
, (6.28)

v∞(x, t ) = c∞
(

1

2
log(1+2t ),

xp
1+2t

)
, (6.29)

where (n∞,c∞) are the stationary solutions of (6.2) given by (6.4) with the har-
monic potential φ(x) = 1

2 |x|2. Using Theorem 6.1 and Corollary 6.2, we achieve
a result on the intermediate asymptotics for the solutions of the Poisson-Nernst-
Planck system in absence of any external potential of confinement.

Theorem 6.2. Assume that u solves (6.1) with initial datum u(0, ·) = n0 ∈ L2+(n−1∞ d x),∫
Rd n0 d x = M, and F [n0] <∞. Let us consider the self-similar solution defined

by (6.28) and (6.29) of mass M. Then, as t →+∞, we have

(i) for any p ∈ (1,∞) and any λ< 1,

‖u(t , ·)−u∞‖L1(R2) =O
(
(1+2t )−

1
2

)
,

‖u(t , ·)−u∞‖Lp (R2) =O

(
(1+2t )−

λ
2 −

d(p−1)
2p

)
,
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(ii) for any q ∈ (2,∞) and any λ< 1,

‖∇v(t , ·)−∇v∞‖L2(R2) =O
(
(1+2t )−1+ d

4

)
,

‖∇v(t , ·)−∇v∞‖Lq (R2) =O
(
(1+2t )−

λ+1
2 + d

2q

)
.





Chapter 7

Linearized
Vlasov-Poisson-Fokker-Planck
system

Article L2-Hypocoercivity and large time asymptotics of the linearized Vlasov-
Poisson-Fokker-Planck system, in collaboration with Lanoir ADDALA, Jean DOL-
BEAULT and Lazhar TAYEB, appeared in https://hal.archives-ouvertes.fr/hal-
02299535 and https://arxiv.org/abs/1909.12762

This chapter is devoted to the linearized Vlasov-Poisson-Fokker-Planck sys-
tem in presence of an external potential of confinement. We investigate the
large time behaviour of the solutions using hypocoercivity methods and a no-
tion of scalar product adapted to the presence of a Poisson coupling. Our frame-
work provides estimates which are uniform in the diffusion limit. As an applica-
tion, we study the one-dimensional case and prove the exponential convergence
of the nonlinear Vlasov-Poisson-Fokker-Planck system without small mass as-
sumption.
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7.1 Introduction and main results

The Vlasov-Poisson-Fokker-Planck system in presence of an external potential V
is

∂t f + v ·∇x f − (∇xV +∇xφ
) ·∇v f =∆v f +∇v · (v f ) ,

−∆xφ= ρ f =
∫
Rd

f d v .
(VPFP)

In this paper, we shall assume that φ is a self-consistent potential correspond-
ing to repulsive electrostatic forces and that V is a confining potential in the
sense that the system has a unique nonnegative integrable stationary solution
f? with associated potential φ?. We shall denote by M = Î

Rd×Rd f?d x d v >
0 the mass. System (VPFP) is of interest for understanding the evolution of a
system of charged particles with interactions of two different natures: a self-
consistent, nonlinear interaction through the mean field potential φ and col-
lisions with a background inducing a diffusion and a friction represented by a
Fokker-Planck operator acting on velocities. System (VPFP) describes for in-
stance the dynamics of a plasma of Coulomb particles in a thermal reservoir:
see for instance [30], but it has also been derived in stellar dynamics for gravita-
tional models, as in [59], in the case of an attractive mean field Newton-Poisson
equation. Here we shall focus on the repulsive, electrostatic case. Applications
range from plasma physics to semi-conductor modelling. A key open question
is to get estimates on the rate of convergence to equilibrium in dimensions d = 2
and d = 3. As a step in this direction, we will establish a constructive estimate
of the decay rate of the linearized problem, which provides us with an upper
bound for the convergence rate of the nonlinear (VPFP) problem. A technical
but important issue is to decide how one should measure such a rate of relax-
ation. For this purpose, we introduce a norm which is adapted to the linearized
problem and consistent with the diffusion limit.

Let us consider the linearized problem around f?. Let h be a function such
that f = f? (1+ηh) with

Î
Rd×Rd f d x d v = M , that is, such that

Î
Rd×Rd h f?d x d v =

0. The system (VPFP) can be rewritten as

∂t h + v ·∇x h − (∇xV +∇xφ?
) ·∇v h + v ·∇xψh −∆v h + v ·∇v h = η∇xψh ·∇v h ,

−∆xψh =
∫
Rd

h f?d v .

At formal level, by dropping the O (η) term, we obtain the linearized Vlasov-
Poisson-Fokker-Planck system

∂t h + v ·∇x h − (∇xV +∇xφ?
) ·∇v h + v ·∇xψh −∆v h + v ·∇v h = 0,

−∆xψh =
∫
Rd

h f?d v ,
Ï
Rd×Rd

h f?d x d v = 0.
(7.1)

Let us define the norm

‖h‖2 :=
Ï
Rd×Rd

h2 f?d x d v +
∫
Rd

|∇xψh |2 d x .
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Our main result is devoted to the large time behaviour of a solution of the lin-
earized system (7.1) on R+×Rd ×Rd 3 (t , x, v) with given initial datum h0 at t = 0.
For simplicity, we shall state a result for a simple specific potential, but an ex-
tension to more general potentials will be given to the price of a rather long list
of technical assumptions that are detailed in Section 7.3.

Theorem 7.1. Let us assume that d ≥ 1, V (x) = |x|α for some α > 1 and M > 0.
Then there exist two positive constants C and λ such that any solution h of (7.1)
with an initial datum h0 of zero average with ‖h0‖2 <∞ is such that

‖h(t , ·, ·)‖2 ≤C ‖h0‖2 e−λt ∀ t ≥ 0. (7.2)

Our analysis is consistent with the diffusion limit of the linearized system, as
we shall explain below. For any ε> 0, if we consider the solution of the linearized
problem in the parabolic scaling given by

ε∂t h + v ·∇x h − (∇xV +∇xφ?
) ·∇v h + v ·∇xψh − 1

ε

(
∆v h − v ·∇v h

)= 0,

−∆xψh =
∫
Rd

h f?d v ,
Ï
Rd×Rd

h f?d x d v = 0,
(7.3)

then we obtain a decay estimate which is uniform with respect to ε→ 0+. The
result goes as follows.

Theorem 7.2. Let us assume that d ≥ 1, V (x) = |x|α for some α > 1 and M > 0.
For any ε> 0 small enough, there exist two positive constants C and λ, which do
not depend on ε, such that any solution h of (7.3) with an initial datum h0 of zero
average and such that ‖h0‖2 <∞ satisfies (7.2).

The result of Theorem 7.1 will be extended in Theorem 7.3 to a larger class of
external potentials V : in the technical part of the proof of Theorem 7.1, we will
specify precise but more general conditions under which the same result holds.
A similar extension applies in the case of Theorem 7.2. As an application of our
method, we establish the exponential rate of convergence of the solution of the
non-linear system (VPFP) when d = 1. For sake of simplicity, we state the result
for the same potential V as in Theorem 7.2.

Corollary 7.1. Assume that d = 1, V (x) = |x|α for some α > 1 and M > 0. If h
solves (VPFP) with an initial datum h0 of zero average and such that ‖h0‖2 <∞
and (1+h0) ≥ 0, then (7.2) holds for some positive constants C and λ.

The diffusion limit of systems of kinetic equations in presence of electro-
static forces has been studied in many papers. The mathematical results go back
at least to the study of a model for semi-conductors involving a linear Boltzmann
kernel by F. Poupaud in [143]. The case of a Fokker-Planck operator in dimen-
sion d = 2 was later studied by F. Poupaud and J. Soler in [144], and by T. Goudon
in [101], on the basis of the existence results of [137, 158]. With a self-consistent
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Poisson coupling, we refer to [42] for existence results in dimension d = 3 and
to [91, 72] for steady states, confinement and related issues. Based on free en-
ergy considerations introduced in [44, 72], N. El Ghani and N. Masmoudi were
able in [93] to establish diffusion limits also when d = 3. Altogether, it is proved
in dimensions d = 2 and d = 3 that the Vlasov–Poisson–Fokker–Planck system
with parameters corresponding to the parabolic scaling,

ε∂t f +v ·∇x f −(∇xV +∇xφ
)·∇v f = 1

ε

(
∆v f +∇v · (v f )

)
, −∆xφ= ρ f =

∫
Rd

f d v .

(7.4)
has a weak solution

(
f ε,φε

)
which converges as ε→ 0+ to

(
f 0 = ρM ,φ

)
where

M (v) = e−
1
2 |v |2

(2π)d/2
∀v ∈Rd

is the normalized Maxwellian function and where the charge densityρ = ∫
Rd f 0 d v

is a weak solution of the drift-diffusion-Poisson system

∂ρ

∂t
=∇x ·

(∇xρ+ρ∇x (V +φ)
)

, −∆xφ= ρ . (7.5)

Another piece of information is the asymptotic behavior of the solutions of (7.5)
for large times. As t → +∞, it is well known (see for instance [23] in the case
of a bounded domain, [9] in the Euclidean case when V (x) = |x|2, and [28] in
Rd with a confining external potential V for any d ≥ 3) that the solution of (7.5)
converges a steady state (ρ?,φ?) given by

−∆xφ? = ρ? = e−V −φ? (7.6)

at an exponential rate. The optimal asymptotic rates have been characterized
recently in [123] using the linearized drift-diffusion-Poisson system and a norm
which involves the Poisson potential. Apart the difficulty arising from the self-
consistent potential, the technique is based on relative entropy methods, which
are by now standard in the study of large time asymptotics of drift-diffusion
equations.

Our motivation is to study both regimes ε→ 0+ and t →+∞ simultaneously.
More precisely, we aim at proving that each solution

(
f ε,φε

)
of (7.4) converges

to ( f?,φ?) as t →+∞ in a weighted L2 sense at an exponential rate which is uni-
form in ε > 0, small. In the present paper, we will focus on a linearized regime
in any dimension and obtain an estimate of the decay rate in the asymptotic
regime. This allows us to obtain an asymptotic decay rates in the non-linear
regime when d = 1, but so far not in higher dimensions because we are still lack-
ing of some key estimates. Compared to the large time asymptotics of (7.5), the
study of the convergence rate of the solution of (7.4) or, in the case ε= 1, of the
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decay rate of the solution of (7.1), is much more difficult because the diffusion
only acts on the velocities and requires the use of hypocoercive methods.

T. Gallay coined the word hypocoercivity in the context of convergence with-
out regularization as opposed to hypoellipticity where both properties arise si-
multaneously. It is well adapted to kinetic equations with general collision ker-
nels and C. Villani made the hypocoercivity very popular in kinetic theory: see [159,
161]. Understanding the large time behavior of the kinetic Fokker-Planck equa-
tion (without Poisson coupling) is an interesting problem which has a long his-
tory: see [119, 113, 115, 92, 108] for some earlier contributions. C. Villani [161]
proved convergence results in various senses: in H1 [161, Theorem 35], in L2 [161,
Theorem 37], and in entropy [161, Theorem 39] when Hess(V ) is bounded. His
approach is however inspired by hypoelliptic methods, as in [106, 107, 133]. The
method of [7] is based on a spectral decomposition and produces an exponential
decay in relative entropy with a sharp rate. In a somewhat similar spirit, we can
also quote [45], which is based on a Fourier decomposition. Due to the Fokker-
Planck operator, smoothing effects in (7.4) can be expected as was proved in [43],
consistently with hypoelliptic methods: this will not be exploited in the present
paper.

In presence of a Poisson coupling, several papers deal, without any rate,
with the large time behavior of the solutions of (7.4), in presence of or with-
out an external potential: cf. [44, 56, 72]. When d = 2 and d = 3, F. Hérau and
L. Thomann [109] proved the trend to the equilibrium for the Vlasov-Poisson-
Fokker-Planck system with a small nonlinear term but with a possibly large ex-
terior confining potential. More recently, M. Herda and M. Rodrigues considered
in [111] the double limit as ε→ 0+ and t →+∞. All these approaches are how-
ever essentially of perturbative nature.

In [83], J. Dolbeault, C. Mouhot, and C. Schmeiser studied the exponential
decay in a modified L2 norm for the Vlasov-Fokker-Planck equation (and also
for a larger class of linear kinetic equations). The method was motivated by the
results of [106] but the main source of inspiration came from the analysis of the
diffusion limit, as in [24, 128, 81] (also see [150] in presence of an oscillating
external force field): the idea was to build a norm which reflects the spectral
gap that determines the rate of convergence in (7.5). Inspired by [31, 38, 88],
another idea emerged that asymptotic rates of convergence should be measured
in a norm induced by a Taylor expansion of the entropy around the asymptotic
state and that, in presence of a Poisson coupling, this norm should involve a
non-local term: see [50, 123, 124]. The goal of this paper is to mix these two
ideas.

This paper is organized as follows. In Section 7.2, we expose the strategy for
the L2-hypocoercivity method of [83] in the abstract setting of a general Hilbert
space. The notion of Hilbert space adapted to (7.1) is exposed in Section 7.3
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with some fundamental considerations on confinement by an external poten-
tial and adapted Poincaré inequalities. Section 7.4 is devoted to the proof of
Theorem 5.1: we have to check that the assumptions of Section 7.2 hold in the
functional setting of Section 7.3, with the special scalar product for Poisson cou-
pling involving a non-local term associated with the norm defined by (7.1). In
Section 7.5, we prove Theorem 7.2: our estimates are compatible with the diffu-
sion limit as ε→ 0. Coming back to the non-linear problem (VPFP) in dimen-
sion d = 1, we prove in this latter case that an exponential rate of convergence
as t →+∞ can be measured in the hypocoercive norm, that is, we prove Corol-
lary 7.1.

To make notation slightly lighter, we adopt the convention that ∇ and ∆
denote respectively ∇x and ∆x unless the variable is v or when there is a pos-
sible ambiguity, and in that case, it will be explicitly specified. We shall also
adopt the following conventions. If a = (ai )d

i=1 and b = (bi )d
i=1 are two vectors

with values in Rd , then a · b = ∑d
i=1 ai bi and |a|2 = a · a. If A = (Ai j )d

i , j=1 and

B= (Bi j )d
i , j=1 are two matrices with values in Rd ×Rd , then A : B=∑d

i , j=1 Ai j Bi j

and |A|2 =A : A. We shall use the tensor convention that a⊗b is the matrix of ele-
ments ai b j . By extension to functions, ∇w is the gradient of a scalar function w
while∇·u denotes the divergence of a vector valued function u= (ui )d

i=1 and∇⊗u
is the matrix valued function of elements ∂ui /∂x j . Hence Hess(w) = (∇⊗∇)w =(
∂2w/∂xi ∂x j

)d
i , j=1 denotes the Hessian of w and, for instance, u⊗u : Hess(w) =∑d

i , j=1 ui u j
(
Hess(w)

)
i j . We shall also write that |Hess(w)|2 = Hess(w) : Hess(w).

7.2 Hypocoercivity result and decay rates

This section is devoted to the abstract hypocoercivity method in general Hilbert
spaces and it is inspired from [83, 45]. Since the methods sets the overall strategy
of proof of our main results, we expose it for the convenience of the reader.

Let us consider the evolution equation

dF

d t
+TF = LF (7.7)

on a Hilbert space H . In view of the applications, we shall call T and L the trans-
port and the collision operators and assume without further notice that they are
respectively antisymmetric and symmetric. On H , we shall denote by 〈·, ·〉 and
‖ · ‖ the scalar product and the norm. As in [83], we assume that there are posi-
tive constantsλm ,λM , and CM such that, for any F ∈H , the following properties
hold:

B microscopic coercivity

− 〈LF ,F 〉 ≥λm ‖(Id−Π)F‖2 , (H1)
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B macroscopic coercivity
‖TΠF‖2 ≥λM ‖ΠF‖2 , (H2)

B parabolic macroscopic dynamics

ΠTΠF = 0, (H3)

B bounded auxiliary operators

‖AT(Id−Π)F‖+‖ALF‖ ≤CM ‖(Id−Π)F‖ . (H4)

Here Id is the identity, Π is the orthogonal projection onto the null space of L,
∗ denotes the adjoint with respect to 〈·, ·〉 and as in [82, 83], the operator A is
defined by

A := (
Id+ (TΠ)∗TΠ

)−1(TΠ)∗.

Since a solution F of (7.7) obeys to

1

2

d

d t
‖F‖2 = 〈LF ,F 〉 ≤−λm ‖(Id−Π)F‖2 ,

this is not enough to conclude that ‖F (t , ·)‖2 decays exponentially with respect
to t ≥ 0 and this is why we shall consider the Lyapunov functional

Hδ[F ] := 1
2 ‖F‖2 +δ 〈AF ,F 〉

for some δ> 0 to be determined later. If F solves (7.7), then

− d

d t
Hδ[F ] =Dδ[F ] :=− 〈LF ,F 〉+δ 〈ATΠF ,F 〉

− δ 〈TAF ,F 〉+δ 〈AT(Id−Π)F ,F 〉−δ 〈ALF ,F 〉 .

Let us define

δ? = min

{
2, λm ,

4λm λM

4λM +C 2
M (1+λM )

}
.

We recall that the two main properties of the hypocoercivity method of [83] for
real valued operators and later extended in [45] to complex Hilbert spaces go as
follows.

Proposition 7.1. Assume that (H1)–(H4) hold and take δ ∈ (0,δ?). Then we have:
(i) Hδ and ‖ ·‖2 are equivalent in the sense that

2− δ

4
‖F‖2 ≤Hδ[F ] ≤ 2+δ

4
‖F‖2 ∀F ∈H . (7.8)

(ii) For some λ> 0 depending on δ, Hδ and Dδ are related by the entropy – entropy
production inequality

λHδ[F ] ≤Dδ[F ] ∀F ∈H . (7.9)
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As a straightforward consequence, we have that a solution F of (7.7) with initial
datum F0 obeys to

Hδ[F (t , ·)] ≤Hδ[F0]e−λt

and

‖F (t , ·)‖2 ≤ 4

2−δHδ[F (t , ·)] ≤ 4

2−δHδ[F0]e−λt ≤ 2+δ
2−δ ‖F0‖2 e−λt ∀ t ≥ 0.

(7.10)

Proof. For completeness, we sketch the main steps of the proof, with slightly
improved estimates compared to [45, Theorem 3]. Since ATΠ can be viewed as
z 7→ (1+ z)−1 z applied to (TΠ)∗TΠ, (H1) and (H2) imply that

− 〈LF ,F 〉+δ 〈ATΠF ,F 〉 ≥λm ‖(Id−Π)F‖2 + δλM

1+λM
‖ΠF‖2 .

Our goal is to prove that the r.h.s. controls the other terms in the expression of
Dδ[F ]. By (H4), we know that

| 〈AT(Id−Π)F ,F 〉+ 〈ALF ,F 〉 | ≤CM ‖ΠF‖‖(Id−Π)F‖ .

As in [83, Lemma 1], if G =AF , i.e., if (TΠ)∗F =G + (TΠ)∗TΠG , then

〈TAF ,F 〉 = 〈
G , (TΠ)∗F

〉= ‖G‖2 +‖TΠG‖2 = ‖AF‖2 +‖TAF‖2 .

By the Cauchy-Schwarz inequality, we know that

〈
G , (TΠ)∗F

〉= 〈TAF , (Id−Π)F 〉
≤ ‖TAF‖‖(Id−Π)F‖ ≤ 1

2µ
‖TAF‖2 + µ

2
‖(Id−Π)F‖2

for any µ> 0. Hence

2‖AF‖2 + (
2− 1

µ

)‖TAF‖2 ≤µ‖(Id−Π)F‖2 ,

which, by taking either µ= 1/2 or µ= 1, proves that

‖AF‖ ≤ 1

2
‖(Id−Π)F‖ and ‖TAF‖ ≤ ‖(Id−Π)F‖ . (7.11)

This establishes (7.8) and, as a side result, also proves that

|〈TAF ,F 〉| = |〈TAF , (Id−Π)F 〉| ≤ ‖(Id−Π)F‖2 .

Collecting terms in the expression of Dδ[F ], we find that

Dδ[F ] ≥ (λm − δ) X 2 + δλM

1+λM
Y 2 − δCM X Y
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with X := ‖(Id−Π)F‖ and Y := ‖ΠF‖. We know that Hδ[F ] ≤ 1
2

(
X 2 +Y 2

)+ δ
2 X Y ,

so that the largest value of λ for which Dδ[F ] ≥ λHδ[F ] can be estimated by the
largest value of λ for which

(X ,Y ) 7→ (λm − δ) X 2 + δλM

1+λM
Y 2 − δCM X Y − λ

2

(
X 2 +Y 2)− λ

2
δX Y

is a nonnegative quadratic form, as a function of (X ,Y ). It is characterized by
the discriminant condition

h(δ,λ) := δ2
(
CM + λ

2

)2

−4

(
λm − δ− λ

2

)(
δλM

1+λM
− λ

2

)
≤ 0

and the sign condition λm − δ−λ/2 > 0. For any δ ∈ (0,δ?), the sign condition is
always satisfied by any λ> 0 and we also have that h(δ,0) > 0. Since λ 7→ h(δ,λ)
is a second order polynomial, the largest possible value of λ can be estimated by
the positive root of h(δ,λ) = 0.

Notice that the proof of Proposition 7.1 provides us with a constructive es-
timate of the decay rate λ, as a function of δ ∈ (0,δ?). We refer to [46] for a
discussion of the best estimate of the decay rate of Hδ, i.e., the largest possible
estimate of λ when δ varies in the admissible range (0,δ?).

7.3 Functional setting

In this section, we collect a number of observations on the external potential
V and on estimates based on the stationary solution obtained by solving the
Poisson-Boltzmann equation. Depending on growth conditions on V , we estab-
lish a notion of confinement (which guarantees that (VPFP) admits an integrable
stationary solution) and some coercivity properties (which amount to Poincaré
type inequalities). Our goal is to give sufficient conditions in order that:
1) there exists a nonnegative stationary solution f? of (VPFP) of arbitrary given
mass M > 0: see Section 7.3.2;
2) there is a Poincaré inequality associated with the measure e−V −φ?d x on Rd ,
and variants of it, with weights: see Section 7.3.3;
3) there is a Hilbert space structure on which we can study the evolution equa-
tion (7.1): see Section 7.3.6. These conditions on V determine a functional set-
ting which is adapted to implement the method of Section 7.2. The reader is
invited to check that V (x) = |x|α with α > 1 is an admissible potential in that
perspective.

In [83], without Poisson coupling, sufficient conditions were given on V which
were inspired by the carré du champ method and the Holley-Stroock pertur-
bation lemma. These conditions are not well adapted to handle an additional
Poisson coupling. Here we adopt a slightly different approach, which amounts



CHAPTER 7. LINEARIZED VLASOV-POISSON-FOKKER-PLANCK SYSTEM 156

to focus on sufficient growth conditions of the external potential V and on tools
of spectral theory like Persson’s lemma. For sake of simplicity, we require some
basic regularity properties of V (which are not optimal but avoid technicalities)
and assume that

V ∈ L∞
loc ∩W2,1

loc

(
Rd )

and liminf
|x|→+∞

V (x) =+∞ . (V1)

7.3.1 Preliminary considerations on the Poisson equation and con-
ventions

Let us consider the Green function Gd associated with −∆. We shall write φ =
(−∆)−1ρ as a generic notation for φ = Gd ∗ρ with Gd (x) = cd |x|2−d , c−1

d = (d −
2) |Sd−1| if d ≥ 3. With no restriction, using integrations by parts, we have that∫

Rd
ρφd x =

∫
Rd

(−∆φ)φd x =
∫
Rd

|∇φ|2 d x .

If d = 2, we use G2(x) = − 1
2π log |x|. It is a standard observation that φ =

(−∆)−1ρ is such that ∇φ(x) = − 1
2π

(∫
R2 ρd x

) x
|x|2 as |x| → +∞ is not square inte-

grable unless
∫
R2 ρd x = 0. If

∫
R2 ρd x = 0, one can prove that∫

R2
ρφd x =

∫
R2
|∇φ|2 d x <+∞ .

If d = 1, we have G1(x) =−|x|/2, but it is sometimes more convenient to rely
on the equivalent representation

φ(x) = M

2
x −

∫ x

−∞
d y

∫ y

−∞
ρ(z)d z (7.12)

for some integration constantφ0 ∈R and we shall still writeφ−φ0 =
(−d 2/d x2

)−1
ρ

whenever we use (7.12). We can moreover notice that φ−φ0 =
(−d 2/d x2

)−1
ρ is

such that φ′ = −m where m(x) := ∫ x
−∞ρ(y)d y if M = ∫

Rρd x = 0. In that case,
if we further assume that ρ is compactly supported or has a sufficient decay at
infinity, an integration by parts shows that∫

R
φρd x =−

∫
R
φ′md x =

∫
R
|φ′|2 d x =

∫
R

m2 d x ≥ 0. (7.13)

Altogether, whenever
∫
Rd ρd x = 0, we shall write

∫
Rd ρφd x = ∫

Rd |∇φ|2 d x ≥
0 without any further precaution, for any d ≥ 1.

7.3.2 The Poisson-Boltzmann equation

According to [91, 158, 72], stationary solutions of the (VPFP) system are given by

f?(x, v) = ρ?(x)M (v)
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where M (v) = (2π)−d/2 e−|v |
2/2 is the normalized Maxwellian function (or Gaus-

sian function) and the spatial densityρ? is determined by the Poisson-Boltzmann
equation

−∆φ? = ρ? = M
e−V −φ?∫

Rd e−V −φ? d x
.

It is obvious that φ? is defined up to an additive constant which can be chosen
such that M = ∫

Rd e−V −φ? d x and therefore solves (7.6). Here M = ∥∥ρ?∥∥
L1(Rd ) =∥∥ f?

∥∥
L1(Rd×Rd ) = M is the mass, which is a free parameter of the problem. The

critical growth of V needed to obtain solutions ρ? ∈ L1(Rd ) of (7.6) which min-
imize the free energy strongly depends on the dimension. It is characterized as
follows.

Lemma 7.1. Let M > 0. Assume that V satisfies (V1) and

|v |e−V ∈ L1(Rd ) if d ≥ 3,

liminf|x|→+∞ V (x)
log |x| > 4+ M

2π if d = 2,

liminf|x|→+∞ V (x)−M |x|/2
log |x| > 2 if d = 1.

(V2)

Then (7.6) has a unique solution ρ? ∈ L1(Rd ) such that
∫
Rd ρ?d x = M and φ? is

the unique solution of (7.6). Moreoverφ? is of class C 2 and liminf|x|→+∞W?(x) =
+∞, where

W? =V +φ? and ρ? = e−W? .

As a straightforward consequence of Lemma 7.1, we learn that under As-
sumptions (V1) and (V2), the potential W? also satisfies (V1).

Proof. The case d ≥ 3 is covered by [72, p. 123]. The free energy

J [ρ] :=
∫
Rd
ρ logρd x +

∫
Rd
ρV d x + 1

2

∫
Rd
ρφd x

is bounded from below under the mass constraint
∫
Rd ρd x = M using the fact

that ∫
Rd
ρφd x =

∫
Rd

|∇φ|2 d x ≥ 0

and Jensen’s inequality

J [ρ] ≥
∫
Rd
ρ logρd x +

∫
Rd
ρV d x =

∫
Rd

(u logu)e−V d x

≥
(∫
Rd

u e−V d x

)
log

(∫
Rd

u e−V d x

)
= M log M

applied to u := ρ eV . Here we assume with no loss of generality that
∫
Rd e−V d x =

1.
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The existence follows by a minimization method. As noticed in , the unique-
ness is a consequence of the convexity of F . Finally, by standard elliptic regu-
larity, φ? = (−∆)−1ρ? is continuous and has a limit as |x|→+∞.

In dimension d = 1 or d = 2, the same scheme can be adapted after proving
that F is bounded from below. This has been established in [80, Theorem 3.5]
(also see [123]) when d = 2 under Assumption (V2).The case d = 1 can be dealt
with by elementary methods. Let us consider the potential

V0(x) = M

2

(
(x +1)1(−∞,−1)(x)+ (x +1)(x −1)1(−1,+1)(x)− (x −1)1(+1,+∞)(x)−3

)
such that −V ′′

0 = M
2 1(−1,+1) =: ρ0 and let ψ=V −V0. We claim that

F [ρ] =
∫
R
ρ logρd x+

∫
R
ρ (V +V0)d x− 1

2

∫
R
ψ′′ψd x+ 1

2

∫
R
ρ0ψd x− 1

2

∫
R
ρV0 d x

is bounded from below because the first two integrals can be bounded using
Jensen’s inequality,

∫
Rψ

′′ψd x =−∫
R |ψ′|2 d x, ρ0 has compact support and∫

Rρ |V0|d x provides a moment bound. Combining these estimates provides us
with the lower bound we need.

7.3.3 Some non-trivial Poincaré inequalities

Assume that V is such that (V1)-(V2) hold. Before considering the case of the
measure e−W?d x on Rd , with W? =V +φ?, we may ask under which conditions
on V the Poincaré inequality∫
Rd

|∇u|2 e−V d x ≥CP

∫
Rd

|u|2 e−V d x ∀u ∈ H1(Rd ) such that
∫
Rd

u e−V d x = 0

(7.14)
is true for some constant CP > 0. Let us define w = u e−V /2 and observe that (7.14)
is equivalent to ∫

Rd
|∇w |2 d x +

∫
Rd
Φ |w |2 d x ≥CP

∫
Rd

|w |2 d x

under the condition that
∫
Rd w e−V /2 d x = 0. HereΦ= 1

4 |∇V |2− 1
2 ∆V is obtained

by expanding the square in
∫
Rd

∣∣∇w + 1
2 w ∇V

∣∣2
d x and integrating by parts the

cross-term. It is also straightforward to observe that the kernel of the Schrödinger
operator −∆+Φ on L2

(
Rd ,d x

)
is generated by e−V /2. According to Persson’s

result [140, Theorem 2.1], the lower end σ of the continuous spectrum of the
Schrödinger operator −∆+Φ is such that

σ≥ lim
r→+∞ infess

x∈B c
r

Φ(x) =:σ0 .

As a consequence, if σ is positive, either there is no eigenvalue in the interval
(0,σ) and CP = σ, or CP is the lowest positive eigenvalue, and it is positive by
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construction. In both cases, we know that (7.14) holds for some CP > 0 if σ0 > 0.
In order to prove (7.14), it is enough to check that

σV := lim
r→+∞ infess

x∈B c
r

(
1

4
|∇V |2 − 1

2
∆V

)
> 0 and lim

r→+∞ infess
x∈B c

r

|∇V | > 0. (V3a)

Now let us consider the measure ρ?d x = e−W?d x on Rd and establish the corre-
sponding Poincaré inequality.

Lemma 7.2. Assume that d ≥ 1 and consider V such that (V1), (V2) and (V3a)
hold. We further assume that

lim
r→+∞ infess

|x|>r

((
M −2V ′)2 −8V ′′+M 2

)
> 0 if d = 1. (V4)

If φ? solves (7.6) and W? =V +φ?, then there is a positive constant C? such that∫
Rd

|∇u|2ρ?d x ≥C?

∫
Rd

|u|2ρ?d x ∀u ∈ H1(Rd ) s.t.
∫
Rd

uρ?d x = 0.

(7.15)

Proof. It is enough to prove that

σW?
:= lim

r→+∞ infess
x∈B c

r

(
1

4
|∇φ?+∇V |2 − 1

2

(
∆φ?+∆V

))> 0.

We observe that, by (V3a), |∆φ?| = ρ? = 0
(|x|−d

)= o
(|∇V |2 −2∆V

)
and |∇φ?| =

O
(|x|1−d

)
is negligible compared to |∇V | if d ≥ 2. If d = 1, the result follows

from (V4) using the fact that φ′
?(∓x) ∼±M/2 as x →+∞.

We shall now replace (V3a) by the slightly stronger assumption that for some
θ ∈ [0,1),

lim
r→+∞ infess

x∈B c
r

(
θ

4
|∇V |2 − 1

2
∆V

)
≥ 0 and lim

r→+∞ infess
x∈B c

r

|∇V | > 0. (V3b)

Corollary 7.2. Assume that d ≥ 1 and consider V such that (V1), (V2), (V3b) and
(V4) hold. If φ? solves (7.6) and W? =V +φ?, then there is a positive constant C

such that∫
Rd

|∇u|2ρ?d x ≥C

∫
Rd

|u|2 |∇W?|2ρ?d x ∀u ∈ H1(Rd ) s.t.
∫
Rd

uρ?d x = 0.

(7.16)

Proof. By expanding |∇(
u
p
ρ?

) |2, using ∇pρ? =−1
2 ∇W?ρ? and integrating by

parts, we obtain that

0 ≤
∫
Rd

|∇(
u
p
ρ?

) |2 d x =
∫
Rd

|∇u|2ρ?d x −
∫
Rd

(
1

4
|∇W?|2 − 1

2
∆W?

)
|u|2ρ?d x .
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Combined with (7.15), this shows that∫
Rd

|∇u|2ρ?d x ≥
∫
Rd

[
(1−η)C?+η

(
θ

4
|∇W?|2 − 1

2
∆W?

)]
|u|2ρ?d x

+ ηθ

4

∫
Rd

|u|2 |∇W?|2ρ?d x

for any η ∈ (0,1). With η chosen small enough so that (1−η)C?+η
(
θ
4 |∇W?|2 −

1
2 ∆W?

)
is nonnegative a.e., the conclusion holds with C = ηθ/4.

In the same spirit as for Corollary 7.2, we shall assume that for some θ ∈ [0,1),

lim
r→+∞ infess

x∈B c
r

(
θ

4
|∇V |4 − 1

2
∆V |∇V |2 −Hess(V ) : ∇V ⊗∇V

)
≥ 0

and lim
r→+∞ infess

x∈B c
r

|∇V | > 0.
(V5)

Corollary 7.3. Assume that d ≥ 1 and consider V such that (V1), (V2), (V3b) and
(V5) hold. If φ? solves (7.6) and W? =V +φ?, then there is a positive constant C◦
such that ∫

Rd
|∇u|2 |∇W?|2ρ?d x ≥C◦

∫
Rd

|u|2 |∇W?|4ρ?d x

for any u ∈ H1(Rd ) satisfies
∫
Rd

uρ?d x = 0.

The proof is based on the expansion of the square in |∇(
u
p
ρ?

) |2 |∇W?|2, in-
tegrations by parts and an IMS truncation argument in order to use Lemma 7.2
in a finite centered ball of radius 2R, on which ∇W? is bounded and Assump-
tion (V5) outside of the centered ball of radius R. Details are left to the reader.
See [132, 148] or section 2 in [39] for details on the IMS (for Ismagilov, Morgan,
Morgan-Simon, Sigal) truncation method.

7.3.4 Further inequalities based on pointwise estimates

If M is a d ×d symmetric real valued matrix, let us denote by Λ(M) the largest
eigenvalue of M. With this notation, let us assume that

ΛV := lim
r→+∞supess

x∈B c
r

1

|∇V (x)|2 Λ
(
eV (x)

(
Hess

(
e−V (x))− 1

2
∆

(
e−V (x)) Id

))
<+∞ .

(V6)
In other words, Assumption (V6) means that for any ε > 0, there exists some
R > 0 such that

eV (x)
(
Hess

(
e−V (x))− 1

2
∆

(
e−V (x)) Id

)
≤ (ΛV −ε) |∇V (x)|2 Id,

x ∈Rd a.e. such that |x| > R ,

where the inequality holds in the sense of positive matrices.
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Lemma 7.3. Assume that d ≥ 1 and consider V such that (V1), (V2) and (V6) hold.
If φ? solves (7.6) and W? =V +φ?, then there is a positive constantΛ? such that∫

Rd

(
Hess(ρ?)− 1

2
∆ρ? Id

)
: ∇w ⊗∇w d x ≤Λ?

∫
Rd

|∇w |2 |∇W?|2ρ?d x (7.17)

for any function w ∈ H1
loc(Rd ).

Proof. An elementary computation shows that

Hess(ρ?) = (∇W?⊗∇W?−Hess(W?)
)
ρ? and ∆ρ? = (|∇W?|2 −∆W?

)
ρ? .

The proof is then similar to the above estimates. Details are left to the reader.

Similarly, let us assume that

lim
r→+∞supess

x∈B c
r

∣∣∣∇(
log

(|∇V (x)|2))∣∣∣<+∞ . (V7)

Lemma 7.4. Assume that d ≥ 1 and consider V such that (V1), (V2) and (V7) hold.
If φ? solves (7.6) and W? =V +φ?, then there is a positive constantΛ◦ such that∣∣∣∇(|∇W?(x)|2)∇W?(x)

∣∣∣≤Λ◦ |∇W?(x)|3 , x ∈Rd a.e. such that |x| > R . (7.18)

Here we mean that∇(|∇W?|2
)∇W? = 2Hess(W?) : ∇W?⊗∇W? and a straight-

forward consequence of (7.18) is that∣∣∣∇(|∇W?|2
)∇w

∣∣∣= 2
∣∣∣Hess(W?) : ∇W?⊗∇w

∣∣∣≤Λ◦ |∇W?(x)|2 |∇w | .

The inequality follows from the regularity and decay estimates ofφ?. Details are
left to the reader.

In the same vein, let us assume that∥∥ |∇V |2 e−V
∥∥

L∞(Rd ,d x) <+∞ and ‖|∇(|∇V |2) |2e−V ‖L∞(Rd ,d x) <+∞ . (V8)

Lemma 7.5. Assume that d ≥ 1 and consider V such that (V1), (V2) and (V8) hold.
If φ? solves (7.6) and W? =V +φ?, then ‖|∇W?|2ρ?‖L∞(Rd ,d x) and
‖|∇(|∇W?|2

) |2ρ?‖L∞(Rd ,d x) are finite.

7.3.5 A Bochner-Lichnerowicz-Weitzenböck identity and second or-
der estimates

Algebraic computations and a few integrations by parts provide us with the fol-
lowing estimate.

Lemma 7.6. Let M > 0 and ρ? = e−W? ∈ L∞
loc ∩W1,2(Rd ). Then for any smooth

function w on Rd with compact support, we have the identity∫
Rd

|Hess(w)|2ρ?d x ≤ 3
∫
Rd

1

ρ?

∣∣∇· (ρ?∇w
)∣∣2 d x + 7

2

∫
Rd

(∇W? ·∇w
)2
ρ?d x .
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Notice that if V satisfies (V1)–(V2) and W? = V +φ? where φ? is the unique
solution of (7.6), then ρ? is an admissible function for Lemma 7.6.

Proof. Let us start by establishing a Bochner-Lichnerowicz-Weitzenböck iden-
tity as follows:

1

2
∆

(
ρ? |∇w |2)=∇· (ρ?Hess(w)∇w

)+ 1

2
∇· (|∇w |2∇ρ?

)
= ρ? |Hess(w)|2 +ρ?∇w ·∇(∆w)+ 1

2
∆ρ? |∇w |2 +Hess(w) : ∇w ⊗∇ρ?

= ρ? |Hess(w)|2 +∇w ·∇(ρ?∆w)

− (∇w ·∇ρ?)∆w + 1

2
∆ρ? |∇w |2 +Hess(w) : ∇w ⊗∇ρ? .

We obtain after a few integrations by parts on Rd that∫
Rd
∆

(
ρ? |∇w |2)d x = 0,

∫
Rd

∇w ·∇(ρ?∆w)d x =−
∫
Rd

(∆w)2ρ?d x ,

1

2

∫
Rd
∆ρ? |∇w |2 d x +

∫
Rd

Hess(w) : ∇w ⊗∇ρ?d x = 0,

which proves that∫
Rd

|Hess(w)|2ρ?d x =
∫
Rd

(∆w)2ρ?d x +
∫
Rd

(∇w ·∇ρ?)∆w d x . (7.19)

We deduce from

∫
Rd

(∇w ·∇ρ?)∆w d x =−
∫
Rd
∆w (∇w ·∇W?)ρ?d x

≤ 1

2

∫
Rd

(∆w)2ρ?d x + 1

2

∫
Rd

(∇W? ·∇w
)2
ρ?d x

that ∫
Rd

|Hess(w)|2ρ?d x = 3

2

∫
Rd

(∆w)2ρ?d x + 1

2

∫
Rd

(∇W? ·∇w
)2
ρ?d x .

Since ∇ρ? = −∇W?ρ? and ∆w ρ? = ∇ · (ρ?∇w
)+ (∇W? ·∇w)ρ?, we have the

estimate∫
Rd

(∆w)2ρ?d x ≤ 2
∫
Rd

1

ρ?

∣∣∇· (ρ?∇w
)∣∣2 d x +2

∫
Rd

(∇W? ·∇w
)2
ρ?d x ,

which completes the proof.
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7.3.6 The scalar product

Let us define the measure dµ := f?(x, v)d x d v and consider the functional space

H :=
{

h ∈ L1 ∩L2
(
Rd ×Rd ,dµ

)
:
Ï
Rd×Rd

h dµ= 0 and
∫
Rd

|∇ψh |2 d x <∞
}

,

where we use the notation ρh = ∫
Rd h f?d v and ψh = (−∆)−1ρh . We also define

〈h1,h2〉 :=
Ï
Rd×Rd

h1 h2 dµ+
∫
Rd
ρh1 (−∆)−1ρh2 d x ∀h1, h2 ∈H .

Lemma 7.7. Let M > 0. If V satisfies (V1)–(V2), then
(
H ,〈·, ·〉) is a Hilbert space

for any d ≥ 1.

Proof. Up to an integration by parts, we can rewrite 〈h1,h2〉 as

〈h1,h2〉 =
Ï
Rd×Rd

h1 h2 dµ+
∫
Rd

(−∆ψh1 )ψh2 d x

=
Ï
Rd×Rd

h1 h2 dµ+
∫
Rd

∇ψh1 ·∇ψh2 d x

and observe that this determines a scalar product. This computation has to be
justified. Let us distinguish three cases depending on the dimension d .

Let us assume first that d ≥ 3. We know thatψ? =Gd ∗ρ? is nonnegative and
deduce ρ? is bounded because

0 ≤ e−V −ψ? ≤ e−V ∈ L∞(Rd ) .

Hence, for any p ∈ (1,2], we have

∥∥ρh
∥∥p

Lp (Rd )
=

∫
Rd

∣∣∣∣∫
Rd

h f?d v

∣∣∣∣p

d x ≤ ∥∥ρ?∥∥p−1
L∞(Rd )

Ï
Rd×Rd

|h|p dµ .

According to [125], we know by the Hardy-Littlewood-Sobolev inequality that∫
Rd×Rd

|ρ1(x)| |ρ2(x)|
|x − y |d−a

d x d y ≤CHLS
∥∥ρ1

∥∥
Lp (Rd )

∥∥ρ2
∥∥

Lq (Rd )

if a ∈ (0,d) and p, q ∈ (1,+∞) are such that 1+ a
d = 1

p + 1
q . This justifies the fact

that
∫
Rd ρh (−∆)−1ρh d x is well defined if h ∈ L1∩L2

(
Rd ×Rd ,dµ

)
. With a = 2, p <

3/2 if d = 3, p < 2 if d = 4 and p ≤ 2 if d ≥ 5, we deduce that ψh ∈ Lq ′
(Rd ) where

q ′ = q/(q − 1) = d p/(d − 2 p). A simple Hölder estimate shows the Gagliardo-
Nirenberg type estimate∥∥∇ψ∥∥2

L2(Rd ) ≤
∥∥∆ψ∥∥

Lp1 (Rd )

∥∥ψ∥∥
Lq1 (Rd )

and proves for an appropriate choice of (p1, q1) ∈ (1,2)× (2,+∞) with 1
p1

+ 1
q1

= 1

that ∇ψh is bounded in L2(Rd ).
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The case d = 2 is well known. The boundedness of
∥∥ρh

∥∥
Lp (Rd ) for any p ∈

(1,2] follows by the same argument as in the case d ≥ 3 and we learn that
|ρh | log |ρh | is integrable by log-Hölder interpolation. The boundedness from
below of

∫
R2 ρh (−∆)−1ρh is then a consequence of the logarithmic Hardy-Littlewood-

Sobolev inequality, see [52, 80]. Using the fact that
∫
Rd ρh d x = 0, we also know

from [33] that ∇ψh is bounded in L2(R2).

When d = 1, the nonnegativity of the scalar product is a consequence of (7.13)
and holds without additional condition by a simple density argument.

The condition
Î
Rd×Rd h dµ = 0 in the definition of h is simply an orthog-

onality condition with the constant functions, with respect to the usual scalar
product in L2

(
Rd ×Rd ,dµ

)
. By taking the completion of smooth compactly sup-

ported functions with zero average with respect to the norm defined by h 7→
〈h,h〉, we recover H , which is therefore a Hilbert space. In the next sections, we
shall denote by ‖ · ‖ the norm on H associated with the scalar product so that

‖h‖2 = 〈h,h〉 ∀h ∈H .

7.4 Proof of the main result

In this section, we prove Theorem 7.1. Our task is to check that the assumptions
of Section 7.2 hold in the functional setting of Section 7.3.

7.4.1 Definitions and elementary properties

On the space H , let us consider the transport and the collision operators re-
spectively defined by

Th := v ·∇x h −∇xW? ·∇v h + v ·∇xψh , Lh :=∆v h − v ·∇v h (7.20)

where∇xW? =∇xV +∇xφ?. In the literature, L is known as the Ornstein-Uhlenbeck
operator.

Lemma 7.8. With the above notation, L and T are respectively self-adjoint and
anti-self-adjoint.

Proof. If h1 and h2 are two functions in L2(Rd ,M d v), then L is such that∫
Rd

(Lh1)h2 M d v =−
∫
Rd

∇v h1 ·∇v h2 M d v

and as a special case corresponding to h1 = h, h2 = 1, we find thatρLh = ∫
Rd (Lh) f?d v =

0 and also ψLh = 0 for any h ∈ H . As a straightforward consequence, we have
that

〈(Lh1),h2〉 =−
Ï
Rd×Rd

∇v h1 ·∇v h2 dµ= 〈h1, (Lh2)〉 ∀h1, h2 ∈H .
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Concerning the transport operator, we know that that T f? = 0. Hence an inte-
gration by parts shows that

〈(Th1),h2〉 =
Ï
Rd×Rd

(v ·∇x h1 −∇xW? ·∇v h1)h2 dµ=− 〈h1, (Th2)〉 ∀h1, h2 ∈H

because ρTh = ∫
Rd (Th) f?d v = ∇xψh · ∫Rd v f?d v = 0 and ψTh = 0 for any h ∈

H .

7.4.2 Microscopic coercivity

By the Gaussian Poincaré inequality, we know that∫
Rd

|∇v g |2 M d v ≥
∫
Rd

∣∣g −Πg
∣∣2

M d v ∀g ∈ H1
(
Rd , M d v

)
,

where Πg = ∫
Rd g M d v denotes the average of g with respect to the Gaussian

probability measure M d v . By extension, we shall consider Π as an operator on
H and observe that

Πh = uh := ρh

ρ?
=

∫
Rd h f?d v∫
Rd f?d v

=
∫
Rd

h M d v ∀h ∈H .

Let us notice first thatΠ is an orthogonal projector.

Lemma 7.9. Π is a self-adjoint operator andΠ◦Π=Π.

Proof. It is straightforward to check that

(Π◦Π)h =Πuh = uh ,
Ï
Rd×Rd

(Πh1)h2 dµ=
∫
Rd

uh1 uh2 ρ?d x

and ∫
Rd
ρΠh1 (−∆)−1ρh2 d x =

∫
Rd
ρh1 (−∆)−1ρh2 d x

because ρh1 = ρ?uh1 = ρ?uΠh1 = ρΠh1 .

Lemma 7.10. Microscopic coercivity (H1) holds with λm = 1.

Proof. We already know that − 〈(Lh),h〉 = Î
Rd×Rd |∇v h|2 dµ and ρh−Πh = ρh −

ρΠh = 0 so that

‖h −Πh‖2 =
Ï
Rd×Rd

|h −Πh|2 dµ .

The conclusion is then a straightforward consequence of the Gaussian Poincaré
inequality.
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7.4.3 Macroscopic coercivity

Lemma 7.11. Assume that d ≥ 1 and consider V such that (V1), (V2), (V3a) and
(V4) hold. With the notations of Lemma 7.2, macroscopic coercivity (H2) holds
with λM =C?.

Proof. Using TΠh = v · (∇x uh +∇xψh
)
,

∫
Rd (v ·e)2 M d v = 1 for any given e ∈

Sd−1 and (7.15), we find that

M ‖TΠh‖2 =
∫
Rd

|∇x uh +∇xψh |2ρ?d x

≥C?

[∫
Rd

|uh +ψh |2ρ?d x − 1

M

(∫
Rd
ψh ρ?d x

)2]
because

∫
Rd uh ρ?d x = ∫

Rd ρh d x = 0. We know from Lemma 7.7 that
∫
Rd uh ψh ρ?d x =∫

Rd ρh ψh d x ≥ 0 and by the Cauchy-Schwarz inequality, we get that(∫
Rd
ψh ρ?d x

)2

≤ M
∫
Rd

|ψh |2ρ?d x .

Altogether, we collect these estimates into∫
Rd

|∇x uh +∇xψh |2ρ?d x ≥C?

[∫
Rd

|uh |2ρ?d x +
∫
Rd
ρh ψh d x

]
=C?M ‖uh‖2

which concludes the proof.

7.4.4 Parabolic macroscopic dynamics

Lemma 7.12. The transport operator T satisfies the parabolic macroscopic dy-
namics (H3).

Proof. Since TΠh = v · (∇x uh +∇xψh
)
, we obtain that

ΠTΠh = (∇x uh +∇xψh
) ·∫

Rd
v f?d v = 0.

7.4.5 Bounded auxiliary operators

The point is to prove that (H4) holds, i.e., that for any F ∈ H , ‖AT(Id−Π)F‖
and ‖ALF‖ are bounded up to a constant by ‖(Id−Π)F‖. This is the purpose of
Lemma 7.13 and Lemma 7.14. The two quantities, ‖AT(Id−Π)F‖ and ‖ALF‖, are
needed to control the bad terms in the expression of Dδ, in the abstract formu-
lation of Proposition 7.1, namely 〈TAF ,F 〉, 〈AT(Id−Π)F ,F 〉 and 〈ALF ,F 〉 (which
have no definite sign), by the two good terms, − 〈LF ,F 〉 and 〈ATΠF ,F 〉 (which
are both positive).
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Lemma 7.13. The operators TA and AL satisfy: for all h ∈ L2
(
Rd ×Rd ,dµ

)
‖ALh‖ ≤ 1

2
‖(1−Π)h‖ and ‖TAh‖ ≤ ‖(1−Π)h‖ .

Proof. If we denote the flux by jh := ∫
Rd v h f?d v , we remark that jLh =− jh and

ΠTh =∇· jh − (∇xV +∇φ?
) · jh

Since Ah = g means g + (TΠ)∗(TΠ)g = (TΠ)∗h =−ΠTh, this implies that

ALh =−Ah .

The same computation as for (7.11) shows that ‖ALh‖2 = ‖Ah‖2 = ‖g‖2 ≤ 1
4‖(1−

Π)h‖2 and ‖TAh‖ = ‖TΠg‖ ≤ ‖(1−Π)h‖, which completes the proof.

Lemma 7.14. Assume that d ≥ 1 and consider V such that (V1), (V2), (V3b), (V4),
(V5), (V6), (V7) and (V8) hold. There exists a constant C > 0 such that

‖AT(1−Π)h‖ ≤C ‖(1−Π)h‖ ∀h ∈H .

Proof. In order to get an estimate of ‖AT(1−Π)h‖, we will compute ‖ (AT(1−Π))∗ h‖.

Step 1: Reformulation of the inequality as an elliptic regularity estimate. We
claim that

‖(AT(1−Π)
)∗h‖2 =

Ï
Rd×Rd

|(AT(1−Π)
)∗h|2 dµ≤ 3

∫
Rd

|Hess(wg )|2ρ?d x , (7.21)

where wg := ug +ψg and −∆ψg = ρg is computed in terms of the solution g
of (7.22).

Let uh =Πh and wh := uh +ψh . We observe that TΠh = v ·∇x wh , ρTΠh = 0
and, as a consequence

(TΠ)∗(TΠ)h =−ΠT(TΠh) =−∆wh +∇W? ·∇wh =−eW?∇(
eW?∇wh

)
where W? =V +φ? is such that ρ? = e−W? . For any h ∈H , the function

g = (
1+ (TΠ)∗(TΠ)

)−1h

is obtained by solving the elliptic equation

g −∆wg +∇W? ·∇wg = h (7.22)

and we compute(
AT(1−Π)

)∗h =− (1−Π)TA∗h =− (1−Π)T(TΠ)
(
1+ (TΠ)∗(TΠ)

)−1h

=− (1−Π)T(TΠ)g =− (1−Π)
(
v ⊗ v : Hess(wg )

)
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where Hess(w) = (∇⊗∇)w denotes the Hessian of w . Hence, with |Hess(w)|2 =
Hess(w) : Hess(w), we obtain (7.21). A bound on

∫
Rd |Hess(wg )|2ρ?d x will now

be obtained by elliptic regularity estimates based on (7.22).

Step 2: Some H1-type estimates. By integrating (7.22) against M (v)d v , we notice
that

ug − 1

ρ?
∇· (ρ?∇wg

)= uh (7.23)

so that ∫
Rd

ug ρ?d x =
∫
Rd

uh ρ?d x =
Ï
Rd×Rd

h dµ= 0. (7.24)

If we multiply (7.23) by wg ρ? and integrate over Rd , we get after an integration
by parts that∫

Rd
ug (ug +ψg )ρ?d x +

∫
Rd

|∇wg |2ρ?d x ≤
∫
Rd

uh (ug +ψg )ρ?d x .

Using
∫
Rd ug ψg ρ?d x = ∫

Rd |∇ψg |2 d x and
∫
Rd uh ψg ρ?d x = ∫

Rd ∇ψh ·∇ψg d x
on the one hand, and the elementary estimates∣∣∣∣∫

Rd
uh ug ρ?d x

∣∣∣∣≤ 1

2

∫
Rd

(|ug |2 +|uh |2
)
ρ?d x ,∣∣∣∣∫

Rd
∇ψh ·∇ψg d x

∣∣∣∣≤ 1

2

∫
Rd

(|∇ψh |2 +|∇ψg |2
)

d x ,

on the other hand, we obtain that∫
Rd

|ug |2ρ?d x +
∫
Rd

|∇ψg |2 d x +2
∫
Rd

|∇wg |2ρ?d x ≤ ‖Πh‖2 (7.25)

where

‖Πh‖2 =
∫
Rd

|uh |2ρ?d x +
∫
Rd

|∇ψh |2 d x .

Using |∇ug |2 = |∇wg −∇ψg |2 ≤ 2
(|∇wg |2 +|∇ψg |2

)
, we deduce from (7.25) that∫

Rd
|∇ug |2ρ?d x ≤ 2

∫
Rd

|∇wg |2ρ?d x +2
∫
Rd

|∇ψg |2ρ?d x ≤K ‖Πh‖2 (7.26)

with K = 1+2‖ρ?‖L∞(Rd ,d x).

Step 3: Weighted Poincaré inequalities and weighted H1-type estimates. The so-
lution ug of (7.23) has zero average according to (7.24). We deduce from Corol-
lary 7.2 that ∫

Rd
|∇ug |2ρ?d x ≥C

∫
Rd

|ug |2 |∇W?|2ρ?d x ,

from which we get that

X 2
1 :=

∫
Rd

|ug |2 |∇W?|2ρ?d x ≤ K

C
‖Πh‖2 . (7.27)
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Next, we look for a similar estimate for
∫
Rd |ψg |2 |∇W?|2ρ?d x. The poten-

tial ψg has generically a non-zero average ψg := 1
M

∫
Rd ψg ρ?d x which can be

estimated by

M 2 |ψg |2 =
(∫
Rd
ψg ρ?d x

)2

=
(∫
Rd
ψg (−∆φ?)d x

)2

=
(∫
Rd

(−∆ψg )φ?d x

)2

=
(∫
Rd

ug φ?ρ?d x

)2

≤
∫
Rd

|φ?|2ρ?d x
∫
Rd

|ug |2ρ?d x ≤ κ1 ‖Πh‖2

with κ1 := ∫
Rd |φ?|2ρ?d x, using (7.25). Since ∇ρ? =−∇W?ρ?, we also have∫

Rd
ψg |∇W?|2ρ?d x =−

∫
Rd
ψg ∇W? ·∇ρ?d x =

∫
Rd

(
ψg ∆W?+∇ψg ·∇W?

)
ρ?d x

and, using the Cauchy-Schwarz inequality,

(∫
Rd
ψg |∇W?|2ρ?d x

)2

≤
∫
Rd

|ψg |2ρ?d x
∫
Rd

(∆W?)2ρ?d x

+
∫
Rd

|∇ψg |2 d x ‖ρ?‖L∞(Rd ,d x)

∫
Rd

|∇W?|2ρ?d x

By Lemma 7.2 applied to ψg −ψg ,

C?

∫
Rd

|ψg |2ρ?d x ≤ ‖ρ?‖L∞(Rd ,d x)

∫
Rd

|∇ψg |2 d x +C? |ψg |2 ,

and (7.25), we conclude that(∫
Rd
ψg |∇W?|2ρ?d x

)2

≤ κ2 ‖Πh‖2

where

κ2 :=
(

1

C?

∫
Rd

(∆W?)2ρ?d x +
∫
Rd

|∇W?|2ρ?d x

)
‖ρ?‖L∞(Rd ,d x)

+
∫
Rd
φ2
?ρ?d x

∫
Rd

(∆W?)2ρ?d x .

By applying Corollary 7.2 to ψg −ψg , we deduce from

C

∫
Rd

|ψg −ψg |2 |∇W?|2ρ?d x ≤
∫
Rd

|∇ψg |2ρ?d x

that

C

∫
Rd

|ψg |2 |∇W?|2ρ?d x ≤
∫
Rd

|∇ψg |2ρ?d x +2C ψg

∫
Rd
ψg ρ? |∇W?|2ρ?d x

X 2
2 :=

∫
Rd

|ψg |2 |∇W?|2ρ?d x ≤
(‖ρ?‖L∞(Rd ,d x)

C
+2

p
κ1κ2

M

)
‖Πh‖2 . (7.28)
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Now we use (7.27) and (7.28) to estimate the weighted H1-type quantity

X 2 :=
∫
Rd

|∇ug |2 |∇W?|2ρ?d x .

Let us multiply (7.23) by ug |∇W?|2ρ? and integrate by parts in order to obtain∫
Rd

|ug |2 |∇W?|2ρ?d x +
∫
Rd

|∇ug |2 |∇W?|2ρ?d x

+
∫
Rd

(∇ug ·∇ψg ) |∇W?|2ρ?d x +
∫
Rd

ug ∇
(|∇W?|2

)
(∇ug +∇ψg )ρ?d x

=
∫
Rd

uh ug |∇W?|2ρ?d x .

Using Lemma 7.4 and Lemma 7.5, we obtain that∣∣∣∣∫
Rd

ug ∇
(|∇W?|2

)∇ug ρ?d x

∣∣∣∣≤Λ◦
∫
Rd

|ug | |∇W?|2 |∇ug |ρ?d x ≤Λ◦ X1 X

and ∫
Rd

(∇ug ·∇ψg ) |∇W?|2ρ?d x ≤ κ3 X ‖Πh‖∫
Rd

ug ∇
(|∇W?|2

)∇ψg ρ?d x ≤ κ4 X1 ‖Πh‖

with κ3 := ‖|∇W?|2ρ?‖1/2
L∞(Rd ,d x)

and κ4 := ∥∥ |∇(|∇W?|2
) |2ρ?∥∥1/2

L∞(Rd ,d x), because

we know from (7.25) that
∫
Rd |∇ψg |2 d x ≤ ‖Πh‖2. Using Corollary 7.3,(∫

Rd
uh ug |∇W?|2ρ?d x

)2

≤
∫
Rd

|uh |2ρ?d x
∫
Rd

|ug |2 |∇W?|4ρ?d x ≤ ‖Πh‖2 X 2

C◦
Summarizing, we have shown that

X 2
1 +X 2 −κ3 X ‖Πh‖−Λ◦ X1 X −κ4 X1 ‖Πh‖ ≤ X

‖Πh‖√
C◦

.

Since X 2
1 and X 2

2 are bounded by ‖Πh‖2, we conclude that

X 2 =
∫
Rd

|∇ug |2 |∇W?|2ρ?d x ≤ κ‖Πh‖2 (7.29)

for some κ > 0, which has an explicit form in terms quantities involving ρ?
and its derivatives, as well as all constants in the inequalities of Sections 7.3.3
and 7.3.4.

Step 4: Second order estimates. After multiplying (7.23) by ∇· (ρ?∇wg
)
, we have∫

Rd

1

ρ?

∣∣∇· (ρ?∇wg
)∣∣2 d x =

∫
Rd

(uh −ug )∇· (ρ?∇wg
)

d x

=
∫
Rd

uh
p
ρ?

1p
ρ?

∇· (ρ?∇wg
)

d x +
∫
Rd

∇ug ·∇wg ρ?d x

≤ 1

2

∫
Rd

(
|uh |2ρ?+

1

ρ?

∣∣∇· (ρ?∇wg
)∣∣2

)
d x

+ 1

2

∫
Rd

(|∇ug |2 +|∇wg |2
)
ρ?d x



171 CHAPTER 7. LINEARIZED VLASOV-POISSON-FOKKER-PLANCK SYSTEM

and after using (7.25) and (7.26), we obtain that∫
Rd

1

ρ?

∣∣∇· (ρ?∇wg
)∣∣2 d x ≤

(
K + 3

2

)
‖Πh‖2 . (7.30)

Let Y =
(∫
Rd

(∇wg ·∇W?

)2
ρ?d x

)1/2
. After multiplying (7.23) by

(∇wg ·∇W?

)
ρ?,

we have that

Y 2 −
∫
Rd
∆wg

(∇wg ·∇W?

)
ρ?d x =

∫
Rd

(uh −ug )
(∇wg ·∇W?

)
ρ?d x .

Using the Cauchy-Schwarz inequality, we know that the right-hand side can be

estimated by Y
(∫
Rd |ug |2ρ?d x

)1/2 +Y
(∫
Rd |uh |2ρ?d x

)1/2 ≤ 2Y ‖Πh‖ according
to (7.25) and obtain that

Y 2 −2Y ‖Πh‖ ≤
∫
Rd
∆wg

(∇wg ·∇W?

)
ρ?d x .

Let us notice that∫
Rd
∆wg

(∇wg ·∇W?

)
ρ?d x =−

∫
Rd
∆wg ∇wg ·∇ρ?d x

=
∫
Rd

(
Hess(ρ?)− 1

2
∆ρ? Id

)
: ∇wg ⊗∇wg d x .

As a consequence, by Lemma 7.3 and (7.25), we arrive at

Y 2 −2Y ‖Πh‖ ≤ Λ?
2

∫
Rd

|∇wg |2 |∇W?|2ρ?d x = Λ?
2

X 2

where X 2 is the quantity that has been estimated in Step 4. Altogether, after
taking (7.29) into account and with λ= κΛ?/2, this proves that∫

Rd

(∇wg ·∇W?

)2
ρ?d x ≤

(p
1+λ−1

)2 ‖Πh‖2 . (7.31)

Step 5: Conclusion of the proof. We read from Lemma 7.6, (7.21) and (7.30)-(7.31)
that

‖(AT(1−Π)
)∗h‖2 ≤ 3

∫
Rd

|Hess(wg )|2ρ?d x ≤ 3

(
3
(
K + 3

2

)+ 7
2

(p
1+λ−1

)2
)
‖Πh‖2 ,

which concludes the proof of Lemma 7.14.

7.4.6 Proof of Theorem 7.1

The reader is invited to check that the potential V (x) = |x|α satisfies the assump-
tions (V1), (V2), (V3b), (V4) and (V6) if α> 1. The result is then a straightforward
consequence of Proposition 7.1 and Lemmas 7.8-7.14. A slightly more general
result goes as follows.
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Theorem 7.3. Let us assume that d ≥ 1 and M > 0. If V satisfies the assump-
tions (V1), (V2), (V3b), (V4), (V5), (V6), (V7) and (V8), then there exist two con-
stants C and λ such that any solution h of (7.1) with an initial datum h0 of zero
average such that ‖h0‖2 <∞ satisfies

‖h(t , ·, ·)‖2 ≤C ‖h0‖2 e−λt ∀ t ≥ 0.

7.5 Uniform estimates in the diffusion limit

The hypocoercivity method of [82, 83] is directly inspired by the drift-diffusion
limit, as it relies on micro/macro decomposition in which the relaxation in the
velocity direction is given by the microscopic coercivity property (H1) while the
relaxation in the position direction arises from the macroscopic coercivity prop-
erty (H2) which governs the relaxation of the solution of the drift-diffusion equa-
tion obtained as a limit.

7.5.1 Formal macroscopic limit.

Let us start with a formal analysis in the framework of Section 7.2, when (7.7) is
replaced by the scaled evolution equation

ε
dF

d t
+TF = 1

ε
LF (7.32)

on the Hilbert space H . We assume that a solution Fε of (7.32) can be expanded
as

Fε = F0 +εF1 +ε2 F2 +O (ε3)

in the asymptotic regime corresponding to ε→ 0+ and, at formal level, that (7.32)
can be solved order by order:

ε−1 : LF0 = 0,

ε0 : TF0 = LF1 ,

ε1 : dF0
d t +TF1 = LF2 .

The first equation reads as F0 =ΠF0, that is, F0 is in the kernel of L. Assume for
simplicity that L (TΠ) =−L, so that the second equation is simply solved by F1 =
− (TΠ)F0. Let us consider the projection on the kernel of the O (ε1) equation:

d

d t
(ΠF0)− ΠT (TΠ)F0 =ΠLF2 = 0.

If we denote by u the quantity F0 =ΠF0 and use (H3), then− (ΠT) (TΠ) = (TΠ)∗ (TΠ)
and the equation becomes

∂t u + (TΠ)∗ (TΠ)u = 0,
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which is our drift-diffusion limit equation. Notice that if u solves this equation,
then

d

d t
‖u‖2 =−2‖(TΠ)u‖2 ≤−2λM ‖u‖2

according to (H2). This program applies in the case of the scaled evolution equa-
tion (7.3). Let us give a few details.

Let us assume that a solution hε of (7.3) can be expanded as hε = h0 +εh1 +
ε2 h2 +O (ε3), in the asymptotic regime as ε→ 0+. Solving (7.3) order by order in
ε, we find the equations

ε−2 : ∆v h0 − v ·∇v h0 = 0,

ε0 : v ·∇x h0 −∇xW? ·∇v h0 + v ·∇xψh0 =∆v h1 − v ·∇v h1 ,

ε1 : ∂t h0 + v ·∇x h1 −∇xW? ·∇v h1 =∆v h2 − v ·∇v h2 .

Let us define u = Πh0, ψ = ψh0 such that −∆ψ = uρ?, w = u +ψ and observe
that the first two equations simply mean

u = h0 , v ·∇x w =∆v h1 − v ·∇v h1 ,

from which we deduce that h1 = −v · ∇x w . After projecting with Π, the third
equation is

∂t u −∆w +∇xW? ·∇u = 0,

using
∫
Rd v ⊗ v M (v)d v = Id. If we define ρ = uρ?, we have formally obtained

that it solves

∂tρ =∆ρ+∇·
(
ρ

(∇xV +∇xφ?
))+∇· (ρ?∇ψ)

, −∆ψ= ρ .

At this point, we can notice that the solution ρ converges to ρ? according to the
results of, e.g., [? ] at an exponential rate which is independent of ε.

7.5.2 Hypocoercivity

Let us adapt the computations of Section 7.2 to the case ε < 1 as in [45]. If F
solves (7.32), then

− ε
d

d t
Hδ[F ] =Dδ,ε[F ] ,

Dδ,ε[F ] :=− 1

ε
〈LF ,F 〉+δ 〈ATΠF ,F 〉−δ 〈TAF ,F 〉+δ 〈AT(Id−Π)F ,F 〉−δ

ε
〈ALF ,F 〉 .

The estimates are therefore exactly the same as in Proposition 7.1, up to the re-
placement of λm by λm/ε and CM by CM /ε. Hence, for ε > 0 small enough, we
have that

δ(ε) := min

{
2,
λm

ε
, ελ?(ε)

}
= 4λm λM ε

4λM ε2 +C 2
M (1+λM )

.
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We may notice that limε→0+
δ(ε)
ε = 2ζ with

ζ := 2λm λM

C 2
M (1+λM )

and, for ε> 0 small enough,

2− ζε

4
‖F‖2 ≤Hζε[F ] ≤ 2+ζε

4
‖F‖2 ∀F ∈H .

By revisiting the proof of Proposition 7.1, we find that with δ = ζε and λ = ηε

with

η := λm λ2
M

C 2
M (1+λM )2

,

the quadratic form

(X ,Y ) 7→
(
λm

ε
− δ

)
X 2 + δλM

1+λM
Y 2 − δ

CM

ε
X Y − λ

2

(
X 2 +Y 2)− λ

2
δX Y

is nonnegative quadratic form for ε > 0 small enough. In the regime as ε→ 0+,
the result of Proposition 7.1 can be adapted as follows.

Corollary 7.4. Assume that (H1)–(H4) hold and take ζ as above. Then for ε > 0
small enough,

ηεHζε[F ] ≤Dζε,ε[F ] ∀F ∈H .

Proof. The range for which the quadratic form is negative is given by the condi-
tion

λ2
m K 4 ε4 +K C 3

M

(
4K λm +3CM (K +4)

)
ε2 −2C 6

M < 0.

Further details are left to the reader.

As an easy consequence, if Fε solves (7.32), we have that

Hζε[F (t , ·)] ≤Hζε[F (0, ·)]e−η t ∀ t ≥ 0.

Proof of Theorem 7.2. With the abstract result on (7.32) applied to (7.3), the es-
timate (7.10) applies with δ= ζε. Hence the conclusion holds with λ= η and C

which can be chosen arbitrarily close to 4 as ε→ 0+.

7.6 The nonlinear system in dimension d = 1

With the notation (7.20), we can rewrite the Vlasov-Poisson-Fokker-Planck sys-
tem (VPFP) as

∂t h +Th = Lh +Q[h] , −∆xψh =
∫
Rd

h f?d v , with Q[h] :=∇xψh ·∇v h .

Here we assume that d = 1 and prove Corollary 7.1. Using the representation (7.12)
and

Î
R×Rh f?d x d v = 0, we know that

ψ′
h(x) =−

∫ x

−∞
uh ρ?d x ∀x ∈R .
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Lemma 7.15. Assume V satisfies (V1) and (V2) and let ρ? ∈ L1(Rd ) be the solu-
tion of (7.6) such that

∫
Rd ρ?d x = M. Let f = (1+h) f? ∈ L1+(Rd ×Rd ) such thatÎ

R×R f log( f / f?)d x d v <∞. Under the assumption
Î
R×Rh f?d x d v = 0, ψ′

h as
defined above satisfies the estimate

‖ψ′
h‖2

L∞(R) ≤ 4 M
Ï
R×R

f log

(
f

f?

)
d x d v .

Additionally, under the assumptions of Corollary 7.1, if h solves (VPFP), then

lim
t→+∞‖ψ′

h(t , ·)‖L∞(R) = 0.

Proof. We deduce from Jensen’s inequality∫
R

f log

(
f

M

)
d v ≥ ρh logρh

thatÏ
R×R

f log

(
f

f?

)
d x d v ≥

∫
R
ρh log

(
ρh

ρ?

)
d x =

∫
R

(1+uh) log(1+uh)ρ?d x

and get according to [60, 120, 141] from the Csiszár-Kullback-Pinsker inequality
that ∫

R
(1+uh) log(1+uh)ρ?d x ≥ 1

4 M

(∫
R
|uh |ρ?d x

)2

≥
‖ψ′

h‖2
L∞(R)

4 M
.

Concerning the evolution problem (VPFP), we recall that

d

d t

(Ï
R×R

f log

(
f

f?

)
d x d v + 1

2

∫
R
|ψ′

h |2 d x

)
=−

Ï
R×R

f

∣∣∣∣∇v log

(
f

f?

)∣∣∣∣2

d x d v ,

as noticed in [44], shows that limt→+∞
Î
R×R f (t , x, v) log

(
f (t ,x,v)
f?(x,v)

)
d x d v = 0, which

concludes the proof of Lemma 7.15.

Proof of Corollary 7.1. With the notations of Section 7.3.6 and the functional Hδ

defined as in the linear case by

Hδ[h] := 1
2 ‖h‖2 +δ 〈Ah,h〉

we obtain that

d

d t
Hδ[h]+〈Lh,h〉− δ 〈ATΠh,h〉+ δ 〈TAh,h〉− δ 〈AT(Id−Π)h,h〉+ δ 〈ALh,h〉

= 〈Q[h],h〉+δ 〈AQ[h],h〉+δ 〈Q[h],Ah〉 .

Let us give an estimate of the three terms of the right hand side.
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1) In order to estimate

〈Q[h],h〉 =
Ï
R×R

(ψ′
h ∂v h)h f?d x d v +

∫
R
ψ′

h ρ?

(∫
R
∂v h M d v

)
ψh d x ,

we notice that
Î
R×R |∂v h|2 f?d x d v =−〈Lh,h〉 and

(∫
R∂v h M d v

)2 ≤ ∫
R |∂v h|2 M d v .

Simple Cauchy-Schwarz inequalities show that

| 〈Q[h],h〉 | ≤ ‖ψ′
h‖L∞(R) | 〈Lh,h〉 |1/2

[
‖h‖+

(∫
R
|ψh |2ρ?d x

)1/2
]

.

Since ∫
R
ψh ρ?d x =

∫
R
ψh (−φ?)′′ d x =

∫
R

(−ψh)′′φ?d x =
∫
R

uh φ?ρ?d x

we deduce from Lemma 7.2 that∫
R
|ψh |2ρ?d x ≤C −1

?

∫
R
|ψ′

h |2ρ?d x +
(∫
R
ψh ρ?d x

)2

≤ ‖ρ?‖L∞(R)

C?

∫
R
|ψ′

h |2 d x +
∫
R
|uh |2ρ?d x

∫
R
|φ?|2ρ?d x

and finally that

| 〈Q[h],h〉 | ≤ κ‖ψ′
h‖L∞(R) | 〈Lh,h〉 |1/2 ‖Πh‖

with

κ= 1+max

{
‖ρ?‖L∞(R) C

−1
? ,

∫
R
|φ?|2ρ?d x

}
.

2) Let us consider g =Ah = ug given by

ug − 1

ρ?
∇· (ρ?∇wg

)=− 1

ρ?
∇· jh with jh :=

∫
Rd

v h f?d v .

With ψg such that −ψ′′
g = ug ρ?, we have to estimate

〈Q[h],Ah〉 =
Ï
R×R

(ψ′
h ∂v h)ug f?d x d v +

∫
R
ψ′

h ρ?

(∫
R
∂v h M d v

)
ψg d x .

Exactly as above, we have on the one hand that∣∣∣∣Ï
R×R

(ψ′
h ∂v h)ug f?d x d v

∣∣∣∣≤ ‖ψ′
h‖L∞(R) ‖g‖‖h‖ ≤ ‖ψ′

h‖L∞(R) ‖(Id−Π)h‖‖h‖

because ‖Ah‖ ≤ ‖(Id−Π)h‖, and on the other hand that∫
R
|ψg |2ρ?d x ≤C −1

?

∫
R
|ψ′

g |2ρ?d x +
(∫
R
ψg ρ?d x

)2

≤ ‖ρ?‖L∞(R)

C?

∫
R
|ψ′

g |2 d x +
∫
R
|ug |2ρ?d x

∫
R
|φ?|2ρ?d x
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by Lemma 7.2 again, from which we conclude that

| 〈Q[h],Ah〉 | ≤ κ‖ψ′
h‖L∞(R) | 〈Lh,h〉 |1/2 ‖(Id−Π)h‖ .

3) With g given in terms of h by (7.22), A∗h = v w ′
g and we learn from (7.25) that

‖A∗h‖ ≤ ‖Πh‖. Hence

| 〈AQ[h],h〉 | = |〈Q[h],A∗h
〉 | ≤ κ‖ψ′

h‖L∞(R) | 〈Lh,h〉 |1/2 ‖Πh‖ .

Summing up all these estimates, we obtain as in the proof of Proposition 7.1
that

d

d t
Hδ[h] ≤−λHδ[h]

for the largest value of λ for which

(X ,Y ) 7→ (λm−δ) X 2+ δλM

1+λM
Y 2−δCM X Y −λ

2

(
X 2 +Y 2)−λ

2
δX Y −εX (X+2Y )

is a nonnegative quadratic form, as a function of (X ,Y ). Here X := ‖(Id−Π)h‖,
Y := ‖Πh‖, and

ε := κ‖ψ′
h‖L∞(R)

can be taken as small as we wish, if we assume that t > 0 is large enough. This
completes the proof of Corollary 7.1.

Let us conclude this section by a couple of remarks.

(i) It is clear from the proof of Corollary 7.1 that the optimal rate is as close
as desired of the optimal rate in the linearized problem (7.1) obtained in Theo-
rem 5.1. Up to a change of the constant C , we can actually establish that these
rates are equal because we read form the above proof that ε(t ) = O

(
e−λt

)
and

the result follows from a simple ODE argument. This is a standard observation
in entropy methods, which has been used on many occasions: see for instance
[31].

(ii) Corollary 7.1 is written for V (x) = |x|α but it is clear that it can be ex-
tended to the setting of Theorem 7.3. Similarly, the reader is invited to check
that our estimates are compatible with the diffusion limit, as in Section 7.5.
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MOTS CLÉS

Hypocoercivité; équation cinétique linéaire; intervalle spectral; transition de phase; comportement asymptotique;
énergie gratuite; intervalle spectral; convergence vers équiilibre; limite de diffusion.

RÉSUMÉ

Cette thèse est consacrée à l’étude du comportement asymptotique dans le temps et de l’hypocoercivité des EDP d’évolution.
Nous montrons que pour l’équation de Nernst-Planck et dans les cas spécial de modèle de flocage, il existe des taux de con-
vergence exponentiels optimaux vers des solutions stationnaires pour un temps t long, et que ces taux sont déterminés par le
trou spectral du problème linéarisé autour des solutions stables. De plus, pour le modèle de flocage, nous prouvons qu’il existe
une valeur seuil qui commande la transition de phase et classe toutes les solutions stationnaires et les propriétés de stabilité
linéaire. Ensuite, pour l’équation cinétique de Fokker-Planck, nous prouvons que, pour son entropie, le taux de décroissance
exponentiel est plus rapide que le taux optimal jusqu’à une mesure nulle définie dans le temps. Et pour l’équation linéarisée de
Vlasov-Poisson-Fokker-Planck avec un potentiel de confinement externe, nous étudions le comportement dans le temps long des
solutions en utilisant des méthodes d’hypocoercivité et une notion de produit scalaire adaptée à la présence d’un couplage de
Poisson.

ABSTRACT

This thesis is devoted to study the large time asymptotic behaviour and hypocoercivity of evolution PDEs. We prove that for
Nernst-Planck equation and in several cases of flocking model, there exist optimal exponential rates of convergence to station-
ary solutions for large time, and the rates are determined by spectral gap of the linearized problem around the stable solutions.
Moreover, for the flocking model, we prove that there exists a threshold value that drives phase transition and classify all station-
ary solutions and the linear stability properties. Then for kinetic Fokker-Planck equation, we prove that for its φ-entropy, the
exponential rate of decay is faster than the optimal rate up to a zero-measure set in time t . And for linearized Vlasov-Poisson-
Fokker-Planck equation with an external potential of confinement, we study the large time behaviour of the solutions using
hypocoercivity methods and a notion of scalar product adapted to the presence of a Poisson coupling.
.

KEYWORDS

Hypocoercivity; linear kinetic equation; spectral gap; phase transition; asymptotic behaviour; free energy; spectral
gap; convergence to equilibrium; diffusion limit.
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