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Abstract

Robotic anthropomorphic hands are mostly used to reproduce the human dexterity

in manipulation. Beyond the mechanical and control challenges that this represents,

perceptive knowledge of the environment with which the hand interacts is key to ensure

that dexterity is achieved. In this sense, tactile object recognition has become an im-

portant asset for manipulation systems. Regardless of the advances in this domain, it

continues to be a valid subject of research today.

In this thesis, we propose a method to enable a robotic hand to quickly understand

the geometrical nature of an object that has been handled by it. We intend to exploit

every piece of information available from the moment the interaction between the hand

and the object begins. Thus, aside from the static data obtained once the object has

been fully grasped, the movements of the hand during the grasp execution will also be

exploited.

As a first contribution, we propose the proprioceptive shape signature. This descriptor,

based solely on proprioceptive data, is invariant to the size and pose of the object within

the hand and it contains information about the global shape of the object almost as soon

as the grasp execution ends.

As a second contribution, we propose a tool to extract information about the grasped

object from the dynamic data generated during the grasp execution. For this, the

movements of the fingers during the grasping process will be interpreted based on the

grasp strategy.

Finally, we present a method to perform sequential object shape identification based

on a collection of random forests. This method allows to update the recognition model

as new shapes are desired to be identified. Thus, the time-consuming process of training

the model from scratch is avoided.

Experiments to validate these methods are carried in both simulated and real environ-

ments. Synthetic data is used to train the learning algorithms, so that the tedious and

time-consuming of data gathering process with real hands is avoided. Furthermore, a

single grasp is needed to perform shape identification, contrary to most methods which

need multiple grasps.
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Chapter 1

Introduction

In-hand object manipulation, whether it is performed by a human being or by a robot,

requires visual and haptic information in order to be performed efficiently. This informa-

tion offers fundamental knowledge about the geometrical and physical characteristics of

the manipulated object. Without it, the manipulation task becomes almost impossible

to do by a robot, unless a perfect model of the environment in which it is performed is

available.

Visual information is not absolutely required for all manipulation tasks. The lack of

visual information certainly reduces the dexterity with which it can be accomplished,

but some dexterity can still be achieved. This is the case when an individual writes a

text message on his or her cellphone without looking at the screen or when someone

plays with a straw with his or her fingers while talking to a friend at a coffee shop.

The absence of haptic information would likely render these previously mentioned tasks

nearly impossible.

In general, manipulating objects without tactile input is a task unachievable. This

sense provides us with information about the object that the visual system cannot, such

as its weight or the location of its center of mass. Even if geometrical information could

be available through vision, occlusions happen once the object is grasped. For humans,

this might not be a problem, but it is one of the drawbacks when vision is used for this

matter on robotic hands.

Given the importance of tactile sensing for manipulation tasks, it is more frequent

nowadays to find robotic manipulation systems equipped with sensors to provide some

sort of haptic feedback to the controllers. Despite the advances in sensor technologies,

robotic hands are still far from performing dexterous manipulation tasks as efficiently

as human beings. Of course, it would be absurd to reduce this problem to tactile sensor

1
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technology only. Limitations related to other disciplines such as control and electrome-

chanical design of the hand also contribute to making this task a current challenge in

robotics. However, tactile perception is at the core of most of the limitations imposed by

those disciplines. For example, most control strategies for dexterous object manipulation

need tactile input.

Robotic haptic perception is, on its own, a large field with limitations that are related

to aspects other than the sensors themselves. Proper treatment of the sensor data is

also a concern of the robotic community and many publications continue to be issued

in important journals on that matter. A proper treatment of this data would make it

possible to identify the characteristics of the object fundamental in order to develop an

efficient manipulation strategy.

Identifying the shape of the manipulated object and having cues of its localization

within the hand enhance the dexterity of the robotic hand. Tactile object recognition

has particularly received a lot of attention during the last decades thanks to advances

in machine learning algorithms.

This thesis work focuses on that concern and presents a novel approach for in-hand

object shape identification based on haptic information. Unlike most works in this field,

the proprioceptive information will be intensively exploited. Analogies to the human

haptic system will be made to support the various usages of the information coming from

the haptic sensors on a robotic hand. Experiments in simulated and real environments

are performed to validate proper performance of the proposed method.

1.1 This thesis

In this thesis, we propose a method to identify the global shape of an object that

has been passed on to a robotic anthropomorphic hand. To picture the task that has

been identified as the goal of this thesis, imagine that an object has been passed on to a

sight blinded individual. By the end of the grasp execution, he or she will already have

collected enough information about the object to decide what manipulation strategy is

more appropiate to further explore it. All this information is provided by the haptic

system and it is collected from the moment the interaction with the object starts, which

is the moment when the object enters in contact with the individual’s hands. Thus, both

the process of grasping and the final position of our hand, in their own way, contribute

to the process of information acquisition.

Tactile sensing plays a particularly important role in reproducing this task with

an anthropomorphic hand. Thus, robotic hands are frequently equipped with sensing
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devices. These devices endow the hand with a haptic-like system and increase their

dexterity. Howe [1] listed them as follows: tactile sensor arrays, fingertip force/torque

sensors, dynamic tactile sensors and joint angle sensors (Fig. 1.1). He states that the

contact information needed for manipulation depends very much on the task wanted to

be achieved. This statement is also valid for tactile object recognition as each one of

those types of sensors would provide different information about the grasped object.

Figure 1.1: Schematic drawing of a robot hand equipped with several types of contact sensor
[1].

For tactile object identification, the interpretation of the data coming from sensors

used to be at the core of the research in the field. Much research work concentrated

in building different representations or descriptors to identify different characteristics,

mostly geometrical, of the object. However, with the latest advances of machine learning

algorithms, this is almost no longer the case. The entire process of interpretation of the

data is put on the learning algorithms. Despite the successful results obtained with

this approach, improvement via this route push tactile recognition farther away from its

original goal: providing input for the manipulation tasks.

Generally, one of the main purposes of this research is to endow a hand with haptic

data representations that allow it to identify more than just shape information of the

grasped object, but also estimate some information about its pose within the hand.

Thus, the data issued from haptic sensors installed on the robotic hand can be fully

exploited for both the identification task and subsequent manipulation tasks.
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In order to achieve this goal, we will particularly exploit proprioception data. This type

of information was our particular concern to make an actual contribution to the state-of-

the-art in tactile object recognition. Proprioception has been very rarely used for tactile

object recognition. When used, it has mostly a background role and it is combined

with other sensing modes. Moreover, the notion of movement is better reflected on

the proprioceptive data. Dynamic tactile data requires contact with the object, which

proprioceptive movements can provide with cues of the object even if contact with it

has not being reached.

1.2 Outline and contributions

• Chapter 2 describes the use of proprioception for shape identification in a robotic

hand. Here, we propose the proprioceptive shape signature, which are a sort

of shape descriptor generated from the proprioceptive data only. This descriptor

is generated from a representation of the proprioceptive data of the robotic hand.

A series of steps are presented to make these signatures invariant to the size and

pose of the object in the hand. Experiments on both simulated and real environ-

ments are carried out and the quality of the signatures is measured. Finally, the

signatures are tested for shape identification purposes.

• Chapter 3 concentrates on the exploitation of the dynamic proprioceptive data

generated during the grasp execution. This method is exploited to detect the

fingers that do not enter in contact with the grasped object. Experiments to

validate the method are carried out. Moreover, the influence of dropping out the

non-contact finger information from the feature vectors are analyzed.

• Chapter 4 presents a framework based on Random Forest algorithm for sequential

tactile shape identification. This approach makes it possible to update the

recognition model as new shapes are added to the identifiable set and training

from scratch is avoided. In this chapter, the contact normals at the fingertips are

measured and used as inputs for the RF algorithm. Experiments are carried out

to compare the performance of both proprioceptive data and contact normal data,

individually and combined.

• Chapter 5 concludes the thesis presenting some of perspectives for future work.
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Chapter 2

Proprioception for Object Shape

Identification

For human beings, tactile object recognition is an easy task to perform. According to

the experiments presented by Klatzky et al. in [11], we are capable of recognizing both

physical and geometrical properties of an object using tactile information. All this, with

a remarkable accuracy as high as 94% and a rapidity of approximately 5s. Our ability

to achieve this performance is mainly related to two abilities: tactile sensory perception

and shape representation.

Tactile sensory perception relies on the somatosensory system. This system pro-

vides the brain with various information coming from many sensory channels [12]. The

main sensory modes are touch, proprioception and temperature. For shape identifica-

tion purpose, human beings exploit touch and proprioceptive information. Temperature

sensory channels do not provide significant information about the shape of an object.

Hence, they will not be considered in this work.

The tactile shape identification process is largely influenced by the shape rep-

resentation. Without a proper representation, shape identification would be inacurate

even if the sensory perception functionality is intact. This was proved by Reed et al. [13]

in a study about tactile agnosia (lack or loss of ability to recognize an object through

touch). Results showed how a 65-year-old female subject, although having normal motor

and intellectual skills, had issues in recognizing objects with her right hand due to an

infarction on the left inferior parietal. In the conclusions, the researchers attributed this

phenomenon to an impairment of the shape representation caused by a loss of tactile

specific representations of shapes or high level shape features.

6
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In robotics, attemps to reproduce these abilities can be found in the tactile object

recognition literature. Many references document the efforts to endow robots with tactile

sensory perception. In this regard, different types of sensors have been developed or

adapted. Kappassov et al. [14] classified these sensors as touch (extrinsic) sensors and

proprioceptive (intrinsic) sensors.

Shape identification with touch sensors

Touch sensors have received most of the attention; they have been largely diver-

sified in terms of transduction methods. Some of them are based on the piezoresistive

effect [15–18], which is a property of certain materials to change their resistance as they

are mechanically deformed. Others are constructed using two electrodes separated by

a dielectric material. This type of sensors takes the capacitance of this arrangement as

a measure of the applied force/pressure [19–21]. Some other sensors exploit the piezo-

electric effect, which is the property of certain materials to produce electric charges

when subjected to a force/pressure [22–24]. Optical properties are also used in tactile

sensor technologies. When so, the light reflection between two materials with different

diffractive indices is exploited and changes in the light intensity are taken as a measure

of the applied force/pressure [25–27]. There are some other methods implemented in

tactile sensors, such as barometric measurements [28, 29], in which a liquid inside the

tactile sensor is used as a propagation media for vibrations and a transducer measures

the pressure value.

Many robotic anthropomorphic hands and manipulation systems are equipped with

such touch sensors and several shape representations have been developed for the

shape identification purpose based on the data issued from them. These representations

can be classified into two categories: hand-crafted surface models and statistical pat-

terns. The hand-crafted representations correspond to explicit geometrical models built

from data that are matched to object descriptions (Fig. 2.1). In other words, patterns

are created from a priori knowledge on the data generated by certain characteristics

of the objects on the sensor arrays. In this sense, they mostly intend to build shape

or surface models, such as edge, points, corners, etc., from preassure distributions on

a sensor array [30–35]. The statistical representation exploit algorithms, such as bag-

of-features (BoF), to classify the information from the pressure distributions [36–39].

These representations are not based on a priori knowledge on what the sensor data will

look like, but a classification algorithm generates a model to identify the group to which

each measurement corresponds. Both representations generally transform the pressure
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distributions into images and profit from image processing techniques to detect image

moments and/or create descriptors.

(a) Hand-crafted surface models from a Piezoelectric tactile sensor array
[24]

(b) On the left, a serial arm with a tactile sensor array at the end-
effector (in purple) palpating a shape. The yellow patches depicts the
places where the sensor array has entered in contact with the object. On
the right, sensor images extracted from contacts of the sensor array with

the object. These images are used for a statitical based method [36]

Figure 2.1: Methods using tactile object identification with sensor arrays.

Shape identification with proprioceptive sensors

Regarding the proprioceptive sensors, the diversification of transduction methods

is less important. Some of these sensors are shaft encoders based on either magnetic,

optical or resistive properties. Magnetic encoders are composed of a magnetic disk

and a hall sensor that detects the changes of the magnetic field as the disk rotates

[40]. Such sensors are used in several robotic hands (Fig. 2.2), as the iCub humanoid

robot hand [41], the Shadow Hand [42], the Utah/MIT dexterous hand [43] and the

fluidic robotic hand developed at the Institute of Applied Computer Science of Karlsruhe

[44]. Depending on the measurement method, encoders can be divided into two types:

absolute and incremental. The absolute encoders provide with a unique position from

the moment they are switched on. To the authors knowledge, this is the most common

encoder embedded in robotic hands. Such is the case of the Allegro Hand [45], the Shunk

SDH gripper [46], and NASA hand [47]. Incremental encoders, which provide electric

pulses as the joint rotates, can also be found in some robotic hands [48, 49]. Other

manipulation systems use accelerometers embedded on the grippers’ links and process
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their data through an Extended Kalman Filter to update the joint angles [50, 51]. Joint

forces are also contributing to proprioception and most of the aformentioned hands count

on their measurements too.

(a) iCub Robot Hand (b) Shadow Hand (c) Karlsruhe Hand

(d) Allegro Hand
(e) Shunk SDH 3-fingered

Hand (f) PR2 gripper

Figure 2.2: Robotic hand and grippers equipped with proprioceptive sensors.

Details about these proprioceptive sensors are rarely given in tactile shape identi-

fication literature and proprioceptive shape representations have not received as

much attention as touch shape representations. Thus, proprioceptive data has played

a background role in tactile shape identification; when found in literature, propriocep-

tive information is mostly combined with tactile information (Fig. 2.3) and several

approaches can be cited as examples. One of the most common approaches for shape

representation estimates contact point locations using kinematics information, which al-

lows to generate a point cloud and match it to a hand-crafted pattern (3D shape models,

or curves) [52–56]. Some works following a similar approach with contact normals will

be subject of discussion in chapter 3. Another approach consists in building statistical

patterns from the raw values of the joint angles [38]. Another technique is to add these

measurements to the feature vector in order to add more dimensions to the tactile in-

formation [57–59]. Proprioception can also be found in combination with other sensory

modalities, like vision [60] or hearing [61].

Although proprioception is largely used by humans to perform shape identifica-

tion, proprioceptive-only shape representations are not abundant in the literature.

Nearly all references to this are on statiscally-crafted representations obtained through

learning algorithms. Johnsson [62] implemented Self-Organizing Maps (SOM) based on

joint angle measurements from resistive encoders embedded on the LUCS Haptic Hand
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II [63]. The author intended to identify two shape categories (cylindric and cubic) and

estimate the size of the objects. During the experiments, five objects of different sizes

from each shape category were used for training, resulting in a 50-sample training set.

Results showed that the system was capable of grouping the objects according to their

shape and ordering them according to their sizes. The system also showed to be able

to generalize its adquired knowledge to six new objects not included in the training set.

Even if the system was capable of identifying specific objects, its performance would

have the tendency to diminish as the number of shape categories increases (examples to

illustrate this phenomenon will be presented in chapter 4).

The same combination of SOM with raw values of joint angles was implemented by

Ratnasingam et al. [64]. In this work, 25 objects from five different shape categories

(cylindrical, cubic, disk, spherical, irregular) were identified. During the data collection

process, each object was located in the hand on three different poses or orientations

and 20 grasps were performed for every object in every orientation. 1500 samples were

obtained in total from which 750 were used for training. To generate the feature vector,

the authors concatenated three grasps of the same object in a vector. Each one of those

grasps corresponded to one of the three chosen orientations of the object. This strategy

to build the feature vector has a main drawback: the order in which the grasp data

is concatenated needs to correspond to the order used in the training set. Thus, the

sequence in which the grasps are performed has to be known beforehand. One of the

important contributions of this work was the proof of usability of proprioceptive data for

object shape identification. Results showed that 25 objects could be identified with sam-

ples noised up to 40dB. Okamura et al. [65] used both tactile and proprioceptive data to

identify a group of shape patterns during tactile exploration and concluded that propri-

oceptive information was more robust to noise than tactile information. Furthermore,

they concluded that tactile information was not needed to recreate object shape.

(a) Point cloud approach [56]
(b) Method rating raw values of joint angles and image

moments from tactile sensors [38]

Figure 2.3: Methods combining proprioceptive and tactile data.
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Proprioceptive data represented by joint torques have also been used for object recog-

nition. That is the case in Bergquist et al. [66]. In this work, authors recorded joint

torques during interactions with objects like lifting, shaking, dropping, crushing and

pushing and used those recordings as inputs for a SOM. This was implemented on a

Barrett arm equipped with a 3-fingered hand. Given a training set of 2500 samples

coming from interactions with 50 objects, the algorithm showed to be able to recognize

an object with an accuracy larger than 90% after five interactions with the object. Even

if proprioception was used in this work, shape was not identified but specific object

recognition prioritized. Most of these methods rely on learning algorithms to statisti-

cally separate the data and very few references on model-based patterns are found for

proprioception-only methods. One of those is the work of Faria et al. [67], who corre-

lated hand configurations during in-hand object exploration to generate hypotheses on

a potential candidate object from a set.

Most of these methods achieve good results with accuracy rates higher than 85%.

However, they present certain limitations in the context of tactile object identification.

The first limition is mostly related to the type of data used for the training process of

the machine learning algorithms. Methods that use statiscally-crafted patterns based

on raw values of the joint angles/torques require large training sets for the recognition

algorithms to attain such results. Needing large training sets is not a problem per se, but

building them is in the context of tactile object shape identification; getting large sets

of data with a robotic hand can be a tedious and time consuming process. Furthermore,

mechanical robustness could represent a limitation for some robotic hands as extended

periods of usage might cause some damage to some of the mechanical parts. The second

limitation is related to the recognition approach. Some of the cited works prioritize

specific object recognition over shape identification. Even if tests on large numbers of

objects are presented in each of the cited references, the objects used tend to have very

similar global shapes. Therefore, multiple samples of each individual object need to be

present in the training set. This worsen the first limitation as the training data set

is consequently enlarged. Furthermore, a detrimental effect on the performance of the

recognition algorithm might be observed for specific object recognition if the number

of objects to be identified increases, as explained in [62]. The recognition approach is

limited by another factor: the number of interactions needed before efficiently identifying

the object. Some of the cited works need several grasps or interactions with the object

to achieve the reported recognition rates.

Proposed contributions in this chapter
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In this chapter, we present a method to perform global shape identification using

a model-based shape representation solely based on the robotic hand proprioceptive

data. With this approach, we intend to solve some of the aforementioned limitations

of the cited methods for tactile object recognition based on proprioception. Fig. 2.4

illustrates the work flow of the method presented in this chapter. In this diagram, the

main contributions of this method to the state of the art can be found:

• A representation of the proprioceptive data is created. To do so, human proprio-

ception is emulated and the hand kinematics topology made intrinsic to this repre-

sentation. This is an important contribution since it endows the robotic hand with

a more intelligible representation of finger configurations and their movements.

• A model-based shape representation called proprioceptive shape signature is gen-

erated from the proprioceptive data. This is one of the main contributions of this

thesis since all methods for tactile object recognition based on proprioceptive data

use statistically-based shape representations. After passed through the block for

disturbance suppression, these signatures are capable to describe the global shape

of an object independently on its size and pose within the hand.

Based on these two main contributions, particularly the proprioceptive shape signature,

several limitations of the cited methods can be resolved. First, global shape identification

is prioritized over specific object recognition, contrary to the cited proprioception-based

methods. This decreases the burden put on recognition algorithms when specific object

recognition is performed, specially for large sets of objects. Identifying the global shape

of an object is also convenient when a manipulation task is wanted to be performed since

Figure 2.4: Benchmarking of the presented method.
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geometrical information about the object is more important than specifically recognizing

the object. Second, objects can be identified with a single grasp while most methods,

both proprioception-based and tactile-based, need to perform more than one grasp.

Third, as signatures are based on a data representation that respects the kinematics

topology of the hand, some pose parameters can be estimated. In this thesis, we are

going to specifically focus on the estimation of the angle of rotation of the object with

respect to the normal to the palm.

Even if global shape identification is not a contribution by itself for tactile object

recognition, it is for the proprioception-based methods. It also has two advantages: First,

the amount of data needed to train learning algorithms, such as SOM, is reduced with

respect to methods that perform specific object recognition. Thanks to the invariance of

the signatures, the training set does not need to contain information about every single

object to be able to identify its shape. Second, global shapes can be easily modeled

in simulation, contrary to objects that surround us. Thus, synthetic data can be used

to generate the training set corpus. This helps avoiding the tedious process of data

collection with the real hand.

In this chapter, all these methodological and technical contributions will be detailed.

First, the proprioceptive representation of a robotic hand used will be exposed. Con-

ditions will be defined for this representation to embed information about the shape

of the object. The generation process of shape signatures will be explained in detail.

Next, the analysis of the finger configurations will then be presented as a tool for shape

recognition. Finally, simulated results will be presented along with experimental results.

In both cases, the Shadow Hand was used.

2.1 Human proprioception

In order to generate the shape proprioceptive signatures, some theoretical bases need to

be set. In particular, human proprioception and its functioning in the context of tactile

shape identification need to be understood and properly modeled for its exploitation in

robotic shape identification.

As explained at the beginning of this chapter, the human body is equipped with

many sensory systems and the one responsible for providing tactile cues regarding the

environment that surrounds us is the somatosensory system. The receptors that form

this system respond to different types of stimuli and contribute to different modes of

perception (cutaneous and kinesthetic). The cutaneous receptors are distributed all over

the skin surface. They are capable of detecting different types of information, such as
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touch, vibrations, pressure and temperature. The kinesthetic receptors are distributed

along the muscles, tendons and joints. They are responsible for sensing not only the body

position and movement, which can be defined as proprioception, but also, according to

Proske et al. [68], tension or force, efforts and balance. In the following, we will use the

term proprioception to refer to the joint angle positions only.

Both perception modes, tactile and proprioception, have their weighted importance

in the different haptic functions. According to Lederman et al. [69], when the haptic

function is tactile shape identification, the relevance of the information provided by each

perception mode is variable and depends on the geometrical properties of the object that

is to be identified. Among those properties, the size is the one that influences the most

the weighting process of the modes: when the size of the object requires the whole

hand for its manipulation, proprioception becomes an important input for global shape

identification. Based on this fact, the method presented in this chapter will focus on

recognizing shapes of objects larger than a fingertip.

The other factor contributing to how the importance of the perception modes is

weighted is the exploration procedure. Lederman et al. [2] associated different explo-

ration procedures used in tactile object recognition to the object property to be iden-

tified (Fig. 2.5). These relationships were obtained from analyzing which exploratory

procedure was used in experiments with individuals when asked to identify the different

properties of the object.

Figure 2.5: Depiction of six manual exploratory procedures and their associated object
property to be identified (in parenthesis) [2].

Both touch and proprioception contribute to these strategies. However, proprioception

becomes a particularly important input for shape identification when the exploratory

procedure of enclosure grasping is employed. In this kind of grasp, the hand takes the

object within its fingers enclosing the shape. In this scenario, proprioception carries
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significant information about the shape of the object in the joint angles as their con-

figurations describe it, to some extend. For this reason, the method presented in this

chapter will reproduce an enclosure grasping with a robotic hand.

2.2 Robotic proprioception for tactile shape identification

Proprioceptive shape representations are almost absent in the literature. In this thesis

work we want to reproduce, to some extend, the human use of proprioception for shape

identification. This section will be dedicated to the procedures followed to achieve this,

which are the main contributions of this chapter.

2.2.1 Proprioceptive data representation for a robotic hand

To endow a robotic hand with proprioception, a representation of its proprioceptive

data needs to be created. As the goal is to perform shape identification, this represen-

tation should be based on kinestetic data (joint angles). Based on the fact that human

beings use mental images of the joint angles to detect features of the objects [70], our

method will create an image to represent the joint angles of the hand. Since this repre-

sentation will exhibit the finger configurations, we will call it the Finger Configuration

Image (FCI). The use of an image will also allow us to exploit image processing tech-

niques to extract information from it, as detailed in further sections and chapters.

Since the FCI will represent the proprioception of the hand, it is important that

it respects the definition of proprioception itself which implies the knowledge of the

position of the neighboring parts of the body relative to each other. In the case of

the robotic hand, it should represent the relative positions of the segments (phalanges)

of the fingers with respect to each other. To fulfill this requirement, the FCI will be

designed so that each of its pixels corresponds to a joint, as illustrated in Fig.2.6.

The thumb is discarded from this representation because it is generally in an opposed

position with respect to the rest of the fingers when an object is grasped [71]. Moreover,

according to Newell et al. [72], the information integrated across the other fingers yields a

better representation of the surface of the object than the information gathered from the

thumb. This makes the proprioceptive information coming from the thumb unreliable

for shape identification. Thus, we will not include it in the FCI.

Given these theoretical basis about the use of proprioception for shape identification,

the next section will introduce the methodology followed to generate the FCI.
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Figure 2.6: Image superposed to the hand so each pixel corresponds to one joint. Conse-
quently, each column represents one finger and its pixels represent the joints of the finger. The

thumb is not included in this representation.

Finger configuration image FCI

Filling the pixels of the FCI with the angles of the corresponding joints would not be

different from using the raw values of the joint angles in cited methods for shape recog-

nition. Even if some post signal treatment would allow to extract information from that

image in such case, we want to replicate human proprioception. Consequently, the FCI

is rather filled with information based on the kinematic topology of the fingers, which

refers to the description of the configuration of its links and joints. In this approach,

each finger is considered as a serial manipulator. Each joint angle is the sum of all joint

angles downstream in the chain, the proximal phalanx being the first link in that chain.

Based on this, the following equation is derived to fill the FCI:

FCI(y, f) = k

y∑
i=1

θi,f (2.1)

where FCI(y, f) is the value for the pixel on the row y and column f of the image FCI

which corresponds to the representation of the corresponding joint angle shown in Fig.

2.6. θi,f is the angle of the joint i (row) of the finger f (column). k is a transformation

constant from angle to gray scale value. The value of k depends on the bit depth of the

pixels of the FCI. We define this value using the following expression:

k =
P

3
(2.2)

where P is the maximum output level set by the bit depth in which the FCI was defined

(e.g., 256 levels for a 8-bit image). It is divided by 3 so that there is an equal distribution

of the grayscale value among the three phalanges (under the assumption that the three
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joints share the same maximum value). The result is an image which pixels’ values are

updated when the joint angles of the concerned fingers change. Fig. 2.7 presents two

examples of how hand configuration is represented in the image FCI. The image on the

left shows that when the phalanges of a finger are aligned, the pixels corresponding to

that finger share the same gray scale value. On the other hand, the image on the right

shows that aligned fingers are represented as rows with the same grayscale value.

(a) Aligned phalanges (misaligned fingers). (b) Aligned fingers (Misaligned phalanges).

Figure 2.7: Finger configurations (Upper images) and their corresponding Finger Configura-
tion Images (lower images).

2.2.2 Reproduction of enclosure grasping

To reproduce the enclosure grasping with a robotic hand, several authors used an

adaptive strategy. To illustrate how it works, let us consider a robotic finger as the one

shown in Fig. 2.8. During grasping, θ1 starts increasing until a contact is detected on any

phalanx Ci upstream in the chain. If no contact is detected, the angle θ1 will continue to

increase until reaching its maximum value θmax1 (this angle depends on the kinematics

of the robotic hand being used). Once θ1 stops, the same procedure is followed with θ2

and so on with θ3 afterwards.

Authors in [38] and [63] used this strategy and detected the contacts Ci based on

touch sensors’ readings during the grasp execution. Since we present this method to

be solely based on proprioception, using contacts for the grasping strategy would be in

contradiction with this statement. Thus, we propose to replace contact readings of Ci

with joint torque readings Ti to detect contacts. In this case, a phalanx is stopped when

the joint effort goes beyond a predetermined threshold.
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This modification does not imply that tactile sensors cannot be used for this method to

be valid. As a matter of fact, touch sensors used in [63] did not provide much information

for shape identification and proprioception was fundamental for this task in the related

work described in [62]. What this modification allows us to do is to present a method

fully based on proprioception.

Algorithm 1 shows the procedure. For this enclosure grasping strategy, it is neces-

sary that at least the proximal phalanx is not coupled with the rest of the phalanges.

Otherwise, a different grasp strategy might be needed.

2.3 Proprioceptive shape signature

Given that the robotic hand has been endowed with a proprioception representation

and an enclosure grasping strategy, we can now consider using proprioception for shape

identification. For this, we are going to generate a model-based descriptor that we call

proprioceptive shape signature, or simply signature. In the next sections we will explain

the theoretical generation of a signature using the joint angles of fingers adapted on a

shape. Then, the application of the FCI into the process of signature generation and

finally, we will present a procedure to make the signature invariant to pose and size

changes of the shape in the hand.

𝜃1

𝜃2
𝜃3

𝐶1

𝐶2
𝐶3

𝑇1

𝑇2

𝑇3

Figure 2.8: Lateral view of a finger. Red lines show the areas of contacts Ci onto which the
contacts are detected. θi are the joint angles. Ti are the efforts on the joints i.
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2.3.1 Signature generation process

When the enclosure grasp is achieved, each finger conforms to the shape of the object.

Under this condition, global shape recognition can be identified. Even if corners and

edges are considered the most salient characteristics in 3D haptic shape perception [73],

they are not identifiable without tactile information. In the proprioception domain,

any polygonal shape which cross-section provokes the joint angles to behave similarly

will generate the same proprioceptive information. In this sense, proprioception alone

cannot discriminate them (e.g. an hexagonal pyramid from a cone). Thus, for the sake

of simplicity without losing the generality, this method assumes that when the enclosure

grasp is performed around an object, each finger adapts to a circular shape.

As illustrated in Fig. 2.9, the central angle subtended by the arc formed by the finger

on the circle is equal to the angle between the phalanges forming that arc (See Appendix

A).

Algorithm 1 Pseudo Code for grasp strategy for one finger

Input:
T , vector containing the efforts detected on each joint
θ, vector containing the joint angles to be sent to the hand. All elements are initial-
ized at 0
∆α Increment of the angles θi
thresT threshold of the joint efforts

begin
θ = [0, 0, 0]
i← 1;
flag = true

while flag = true do
GetTension(T )
if ∃n ∈ [i; 3] : T (n) > thresT then

i← n;
if i = 3 then

flag ← false;
end if

else
θi ← θi + ∆α
if θi = θmaxi then

flag ← false;
end if

end if
SendAngleCommand(θi)

end while
end
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Figure 2.9: Lateral view of a finger conformed to a circle. The red points represent the
contact points of the phalanges. These points form an arc shown in black that subtends the

angle θ′. θ is the angle between the phalanges forming the arc on the circle.

The underlying association between the joint angle θ and the arc length s sets a

relationship between the finger configuration and a geometric parameter of the object,

namely the radius r of the enclosed circle, as follows:

s = rθ (2.3)

Since the length of the finger is constant, it can be stated that the arc length s is also

constant. The angle θ and the radius r are inversely proportional variables.

Consider two fingers adapting to two different circles but forming arcs with the same

length on each. Fig. 2.10a shows that the angle (^AOB) subtended by the arc on the

larger circle is smaller than the one (^COD) on the smaller circle. Given that the joint

angle can be known, the radius r of a circle can be inferred by 2.3. When this is applied

to each finger, the radius of the different parts of the object shape can be obtained.

Each finger in contact to the object will generate a series (four, in the case of an

anthropomorphic robotic hand) of arcs on the object surface. The arcs created by every

finger forms a discrete representation of the contact surface. The contact surface can

be reconstructed through interpolation between the series of arcs. To obtain a smooth

surface, a cubic interpolation is adopted, so that small details on discontinuities on the

surface of the object will not be represented there. Fig. 2.10b) illustrates the result of the

interpolation between four circles of different radius. The blue manifold represents the

contact region between the object and the fingers. This manifold can now be exploited

to generate the proprioceptive signature of the shape.
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Figure 2.10: (A) Concentric circles showing the central angles of their corresponding inter-

cepted arcs (
_

AB and
_

CD). Both arcs have the same length. (B) Continuous case of Fig. 2.10a.
Infinite sequence of circles of different radii forming a shape (gray) and the manifold containing
the arcs of the same length formed on each circle (blue). (C) Central angles subtended by

their arcs contained in the manifold along the central segment OO′.

2.3.2 Proprioceptive signatures from the FCI

The FCI is now used to generate the proprioceptive signature of the object once

the grasp is achieved and the fingers are conformed to the shape. For this, a two-step

procedure is followed. First, the FCI is increased in size using cubic interpolation which

soften the transition between the different radii to which each finger adapts. The size-

increasing factor is chosen empirically. For this work, the chosen factor was 50, therefore,

a 200x150 image resulted from this. Second, the signature S(x) is built based on this

interpolated FCI (FCI ′) using the following expression.

S(x) =


−min FCI′x

max FCI′x

(2.4)

which allows plotting two lines based on the minimum and maximum gray scale values in

the corresponding column x of the FCI ′. Since most robotic hands have coupled joints

on the fingers, this representation integrates the information of those joints intrinsically.

Thus, the lower line of the signature represents the angle of the proximal phalanx and

the upper line represents the addition of the remaining angles (See Fig. 2.10c).
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2.3.3 Signature enhancement process

The position of the fingers relative to each other will be similar for the same shapes,

e.g., for a cone grasped along its main axis, the joint angles will be larger as its radius

increases along this axis. This will be always the case regardless the radius of the cone.

However, the absolute position of the finger will be affected by both the pose and the

size of the object; therefore, the signatures are directly affected by those parameters.

Fig. 2.11 illustrates how these parameters affect the signature. In case the object is

rotated in the hand, so will be the signature (Fig. 2.11a). The vertical position (Fig.

2.11b) and the size (Fig. 2.11c) of the object similarly affect the signature: they make

both lines to separate or get closer.

(a) Rotation

(b) Vertical position

(c) Size

Figure 2.11: Signature modifications with the size and pose of the object.

In order to make the signatures invariant to the pose and size of the object, a series

of modifications are separately performed on both lines of the signatures as follows:
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First, the effect of the shape rotation is corrected. To do this, the points p1 and p2

on the ends of the signature (See Fig. 2.12b) are taken and the angle α is computed. To

compute this angle, the slope of the line l that goes through those two points is used.

Once the angle α has been computed, the signature is rotated to −α so that it becomes

horizontal. Fig. 2.12b illustrates this step.

Second, the effect of the object size and vertical position on the signatures is cor-

rected. Since this parameter causes the signature to be shifted vertically, the mean of

the signature is computed and then subtracted from it. This will make the signature to

be centered on the horizontal axis. This modification is depicted in Fig. 2.12c.

Third, the signature is normalized. This normalization is made for identification

goals, as most machine learning algorithms require the input data to be normalized

(Fig. 2.12d). The normalization range in this method will be [−1; 1] following the

standard normalization ranges.

(a) Original signature

(b) Sequence of modifications made to the signature to correct it from the rotation of the object.

(c) Sequence of modifications made to the signature to correct the vertical shift due to the size of
the object.

(d) The signature is normalized between [−1; 1].

Figure 2.12: Signature enhancement procedure.
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After this 3-step process, the effects of both the size and pose of the object have been

discarded. The signature is in theory invariant to those parameters.

2.4 Experimental Setup

Experiments performed to test this method were carried in both simulated and real

environments. In this section, we will present the setups used for both environments. For

each setup, the procedures followed for the data collection and grasping execution will

also be explained. Experiments concerning the following chapters will be based on the

same setups and data collection process hereby presented. If additional information or

procedure is added, it will be explained in the corresponding chapter. Before explaining

the setups, the shapes chosen to validate this method will be introduced and their

theoretical signatures shown to the reader.

2.4.1 Test shapes

To outline its performance, the proposed approach was tested on a set of five primitive

shapes: cone, torus, sphere, one-sheeted hyperboloid and cylinder. The cone, sphere and

cylinder have received a lot of attention in previous works. This has not been the case

of the torus and hyperboloid, which makes them interesting to be added. Furthermore,

household objects are frequently shaped as one of those five shapes. Some of these

shapes were also chosen on their geometrical properties, such as convexity. This can be

better observed in Fig. 2.13, where these shapes are illustrated with the signature they

would theoretically generate. As can be noticed, they generate different signatures and

almost all of the possible combinations of convexity in the signatures.

(a) (b) (c) (d)

O
′

O

O O
′

(e)

Figure 2.13: Set of test shapes. The blue manifold on top of them is the result of equivalent
arcs formed on the circles contained in the shape. Below each shape, the corresponding
signature obtained by extracting the central angles from the manifold with respect to the

central axis OO′. The procedure was shown in Fig. 2.10.
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2.4.2 Simulated Setup

For experiments in simulation, the Gazebo model of the Shadow hand was used (Refer

to Appendix B for details). Fig. 2.14 shows the shapes as simulated in the Gazebo

simulator. The dimensions of these shapes can be modified, which we are going to take

advantage of for data collection. In this environment, the shapes to be grasped were

simulated as static which means that the physics of the simulated world do not apply

to them. Thereby, their position is not changed by the interaction forces with the hand.

On the contrary, the model of the hand was not static and not attached to any fixed

point. Thus, the interaction forces between the model of the hand and the object may

make the hand move from its initial position during the grasping execution.

(a) Cone (b) Torus (c) Sphere (d) Hyperboloid (e) Cylinder

Figure 2.14: Simulated models of the shapes on Gazebo.

Grasp

Forces at the joints cannot be measured in the simulated model of the Shadow hand.

On the other hand, contacts on the surface of the phalanges can be detected. Thus, the

contact-based version of the grasp strategy explained in section 2.2.2 will be employed

and the magnitude of the contact ignored. To control the finger movements, the PID

position controllers were performing.

Data collection process

In this thesis, it is claimed that signatures are made invariant to the size and pose of

the object. Thus, both the dimensions and positions of the objects were varied during

the data collection process to demonstrate this property. Specific information about the

dimensions and positions used to collect the data are found in Table 2.1. The range

of each parameter was chosen to be the widest possible. The goal of choosing such

large ranges was to later define the ranges within which the presented method works

accurately.

Regarding the rotation, this was tested with three of the shapes only: torus, hyper-

boloid and cylinder. Fig. 2.15 depicts how these shapes were rotated. The angle α was

changed from 0◦ to 25◦ with changes of 5◦.
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Table 2.1: Tested dimensions and positions for each object. The column Shape Dimension
shows the dimensions varying for each shape. In the column Size, the intervals of dimensions
that were tested and the change rates. Images in the column Position correspond to the

positions where the shapes were located. All dimensions are shown in cm.

Shape Dimensions Size Position

r = [1, 8]

∆r = 0.25

0.5

r = [1, 8]

∆r = 0.25

R increased propor-
tionally with r as
(R = 4 ∗ r)

0.5

r = [1, 8]

∆r = 0.25

0.5

0.5

d = [2, 10]

∆d = 0.25

0.5

r = [1, 8]

∆r = 0.25

0.5

All combinations of sizes, positions and rotations were considered and a data base

containing 10976 signatures was obtained after four simulation runs. The data from

these simulations will be used in next chapters.

2.4.3 Real-hand setup

Real application tests were performed on a Shadow Hand described in Appendix B.

Real objects with the same primitive shapes as the simulated ones in section 2.4.2 were

used. Two sets of objects were formed: one of the sets (Set 1) with 3D-printed and
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Figure 2.15: Schema showing how the angle α was varied to rotate the shapes with respect
to the normal to the palm.

polystyrene shapes, three objects of different dimensions for each shape (Fig. 2.16a),

the second set (Set 2) with everyday objects (Fig. 2.16b).

(a) Set 1 (b) Set 2

Figure 2.16: Objects used for real experiments. In Set 2, some of the objects were grasped
on different sites to get different shapes. This is indicated by rectangles on those objects.

Yellow is used for hyperboloid, red for cylinder and blue for cone.
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Grasp

The joint-force based grasp strategy was used in the Shadow hand for experiments

in the real environments. The force sensors embedded in this hand have a resolution

of 30mN. The parameter thresT in Algorithm 1 was set to 100mN for all joints. This

value was chosen empirically; it allows the fingers to use the force needed to move

although remaining within the normal security values (±300mN). To control the finger

movements, the PID force/torque controllers were performing.

Data colletion process

In the data collection process, the objects were passed on to the hand with different

random positions and rotations. Interaction forces between the hand and the objects

could make small changes on the position of the hand. Each object was grasped between

4 and 7 times for both Set 1 and Set 2. A picture was taken after the grasp was

executed, and this image was used to estimate the rotation angle of the object. This

was done by computing the angle between the axis of the hand and the axis of the object

as illustrated in Fig. 2.17.

Figure 2.17: Object angle estimation. Yellow lines correspond to the hand axis. Red line
to the object axis. The angle of rotation is measured between the horizontal axis of the hand

and the axis of the object.

In this chapter, both sets were combined for all tests. In future chapters, this might

not be the case. If so, it will be clearly indicated.
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2.5 Experimental evaluation of the signatures

In this section, we are going to evaluate different aspects of the signature generation

and quality. First, we will show the results obtained from generating the signature

using the FCI, then, we will measure the invariance of the signatures to size and pose.

The ranges within which the signatures are invariant will be defined. At last, we will

estimate the rotation angle of the object within the hand. This evaluation will be carried

on simulated and real data.

2.5.1 Signature generation

Fig. 2.18 shows the proprioceptive signatures obtained based on the FCI, as explained

in section 2.3.2. Results from both environments, simulated and real, are presented in

this figure. Changes exposed in section 2.3.3 can be noticed in these signatures: size

and pose of the objects make the signatures change their vertical shift and inclination,

respectively. Nevertheless, a visual inspection points out that these signatures keep

certain similarity to their corresponding patterns shown in Fig. 2.13.

The resemblance with the corresponding patterns is not valid for all shapes. For

instance, the signatures obtained for the cylinder have a certain similarity with the ones

obtained for the hyperboloid (Fig. 2.19e). This is due to the kinematics of the hand and

how the fingers are positioned with respect to each other in the Shadow hand, which

was not taken into account in the FCI. Even if kinematics were taken into account,

the generation straight horizontal lines on the signatures is theoretical and not likely to

happen in experiments.

Fig. 2.19 illustrates the signatures obtained for each shape after the enhancement

procedure has been performed on them. Through a visual inspection, the reader can infer

that signatures of the same shapes show significant similarities regardless the changes

of object size and the locations where the object was in the hand. Consequently, it can

be concluded that signatures are invariant to the size and pose of the object within the

hand. Since this is debatable for some shapes such as the sphere and the torus, the

signatures will be compared in the next section to the theoretical patterns using DTW

to measure the invariance more efficiently. Also, the threshold to discriminate them

from non-corresponding signatures will be defined.
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(a) (b) (c) (d) (e)

Figure 2.19: Measured signatures of the (a) cone, (b) torus, (c) sphere, (d) hyperboloid
,(e) cylinder after being enhanced. The signatures in blue the signatures that look like their
corresponding theoretical pattern. The gray ones are the ones that not. In order to determine

the similarities, the threshold difined in section 2.5.2 was used.

2.5.2 Signatures invariance

Hereby, we present the procedure followed to evaluate how much signatures are in-

variant with respect to the size and position of the shapes and the performance of the

signature enhancement procedure. For this, each enhanced signature from measure-

ments was compared to theoretical patterns shown in Fig. 2.13 using the Dynamic

Time Warping (DTW) algorithm [74]. This algorithm allows measuring the similarities

between two signals.

(a) signals shown in the Cartesian plane (b) Warping path computed from the lowest
distance between signals.

Figure 2.20: Dynamic Time Warping.

As a measure of similarity between two signals, DTW gives a distance-like measurement

between them. Given two signals as shown in Fig. 2.20a, DTW computes the warping

path by matching the points of the signals that are the closest to each other (Fig. 2.20b).

Results of this comparison are illustrated in Fig. 2.21. As one can observe, most

shapes showed lower DTW-distance when compared to their corresponding theoretical

signature. For reasons explained in the previous section, the cylinder is an exception to

this statement. Simulated results illustrated in Fig. 2.21a show this even more clearly:

the DTW-distances between the measured signatures and the corresponding pattern of

the cylinder were very high. For the real objects, the results are shown in Fig. 2.21b.
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Based on the results obtained with the simulated data, we decided to compare the

signatures of the cylinder with the pattern of the hyperboloid, which explains why the

DTW-distances are low for the cylinder. It confirms the similarity between both shapes

signatures.

Con Tor Sph Dia Cyl
0

50

100

150

200

Corresponding Signature
Non-Corresponding Signature
Threshold

(a)

Con Tor Sph Dia Cyl
0

50

100

150

200

Corresponding Signature
Non-Comparison Signature
Threshold

(b)

Figure 2.21: DTW-distances between generated signatures and theoretical signature pat-
terns: (A) Simulation. (B) with real hand.

The differences between the shapes of the cylinder and the hyperboloid must have

an effect on the signatures as well. As the cylinder is flat, its signature should be

less curved than the hyperboloid’s one. This should be reflected in the integrals of

both signatures. To confirm this, after the second step of the signature enhancement

procedure, the integral of the signatures was computed. Results (Fig. 2.22) showed

that this hypothesis was true for both simulated and real signatures: the hyperboloid

signatures presented a higher integral. Both simulated and real data behaved similarly

(i.e., the integrals of the hyperboloid tends to be larger than those of the cylinder) but

integral values were not the same in both environments. A threshold was defined to

discriminate these signatures. This threshold was chosen so that at least 75% of the

data of each shape could be discriminated.

Based on the results of the comparison of the signatures with the expected patterns,

a threshold was defined for the DTW-distances to determine whether a signature corre-

sponds to a specific pattern or not. To do so, only the simulated results were taken into

account. This threshold had to be lower than all distances between non-corresponding
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Figure 2.22: Integrals of the hyperboloid and cylinder resulting from the signature enhance-
ment procedure. The dashed line is the threshold defined to distinguish the signatures of these
two shapes. This threshold was computed using the mean of the mean values of the integrls

of each shape. (a) Simulation. (b) with real hand.

signatures. Thus, results shown in Fig. 2.21a were analyzed. It was observed that for

most of the signatures, the mean distances between the signatures and the correspond-

ing patterns felt below a threshold of 50, except for the sphere which mean goes up to

around 80. For the non-corresponding signatures, the lowest distances were about 60.

Thus, the threshold was fixed to 55. This threshold will be used in the results presented

in the following sections.

In order to further evaluate the signature enhancement procedure, the effects of

the inclination of the objects on the DTW-distances was analyzed. Fig. 2.23 shows

the percentage of measured signatures that correspond to the theoretical patterns as a

function of the inclination angle. These results correspond to signatures measured in

simulation. As shown in the referred figure, the signatures match their corresponding

pattern with an accuracy of 70% for most shapes independently of the inclination angle.

An exception to this is the torus, but still, never lower than 60%. This can be attributed

to the signatures of this shape that resembles the hyperboloid (shown in gray in Fig.

2.19b).

2.5.3 Defining ranges for size and position

To define the ranges within which the presented method works best, results from

the last section were used. Every signature that matched with its expected pattern

increased the probability of generating the correct signature for a specific pair of size

and pose. These probabilities were computed for each shape and put into a matrix

which dimensions depend on the number of parameters changing during the tests. For
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Figure 2.23: Identification rate of rotated objects with respect to the angle of rotation.

instance, in the case of the cone, only the radius and the vertical position changed.

Thus, the matrix is two-dimensional. Once the matrix is filled with the probabilities,

the means of the probabilities contained in every possible continuous interval for each

dimension of the matrix were computed. Only those for which the mean was higher

than 80% were kept. Then, the largest intervals from the chosen ones were considered

to reflect the best possible performance of the method.

Table 2.2 shows the ranges of the radius obtained for each shape. It also shows the

interval of positions on the hand considered for each shape. The position range defined

for the torus shows that this shape is better recognized on upper position. This is due

to the fact that given a horizontal pose of the torus in the hand, the contact zone is

not located on the top of the shape as shown Fig. 2.13 but rather on its inner part.

Consequently, the generated signature is the same as the hyperboloid one, as confirmed

by the Fig. 2.24. This explains why the lower positions are not included in the position

range.

Figure 2.24: Illustration of the location of the manifold formed by the fingers adapting
to a torus located near the palm and the corresponding generated signature. The shape is

cross-sectioned to facilitate the view.
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In the experiments with real objects, their sizes and locations were chosen to fall

within these ranges, which explains why the results depicted in Fig. 2.21b show that all

shapes fall below the threshold established in section 2.5.2.

Table 2.2: Ranges of size and positions in the hand attained for each one of the shapes.

Cone Torus Sphere Hyperboloid Cylinder

14cm

7cm

5cm

2.5cm

7cm

2cm

5.5cm

2cm

14cm

6cm

2.5.4 Estimation of the object angle of rotation

Thanks to how the signatures are generated, information about the pose of the object

within the hand can be estimated. The angle of rotation α is particularly relevant as

the signature inclination has a direct relationship with it. Indeed, the rotation angle

computed in step 1 of the signature enhancement procedure can be exploited and taken

as a measure of the object rotation.

Fig. 2.25 illustrates the results corresponding to the estimation of the rotation angle

α. In these images, the measured angle of the signature is plotted against the actual

inclination angle of the shape in simulation.

The behavior of the results matches with a linear relationship between computed

and actual angles. For this reason, a linear regression was used to create the model to

estimate the rotation angles. The performance of this model, created using simulated

data, was tested using data obtained with the real platform. Results are shown in

Fig. 2.26. In order to determine how well the model fits the data, the coefficient of

determination R2 is computed as follows:

R2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
(2)
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Figure 2.25: Measured angle of the signatures versus the actual angle of rotation of the
object in simulation.

where n is the number of samples y, ŷi represents the estimated values and ȳ is the

mean of y. This coefficient falls between [0 1], 1 being the perfect fit. The R2 obtained

for the torus, hyperboloid and cylinder were 0.61, 0.49 and 0.63, respectively. Thus,

the models fit sufficiently well to be used for rotation angle estimation. These results

depicts an interesting feature because it adds another advantage to the signature, such

as the capability of estimating the pose of the object within the hand.

2.5.5 Modified shapes

In this section, it is desired to evaluate the performance of the presented method

when the shapes to be identified do not correspond to geometric primitives. In other

words, to evaluate the behavior of the signatures when edges or distortions are present

on the shape. For this, an ovoid and a pyramid with a heptagon base were chosen as

modifications of the sphere and cone, respectively. Results are shown in Fig. 2.27. As

can be observed for the pyramid, its signature corresponded to the cone one, confirming

what was said in section 2.3 about proprioception not being able to detect edges and

generating the same signatures for shapes without edges. The ovoid generated signatures

similar to that of a sphere or a torus. When data was analyzed in more detail, we realized

that it depends on the position of the ovoid within the hand. Thus, for lower positions,

a signature similar to that of a sphere would be generated, and for upward locations in

the hand, the signature becomes similar to that of a torus.
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(a) Torus
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(b) Hyperboloid
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Figure 2.26: Measured angle of the signatures versus the actual angle of rotation of the
object in the real platform. The blue lines correspond to the linear regression model.
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Figure 2.27: DTW distances computed for an ovoid and a hectagon pyramid. The theoretical
signatures of a cone, torus, sphere, hyperboloid and cylinder were used.
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2.6 Experimental evaluation of shape identification with

signatures

For object shape identification, features were extracted from the enhanced signatures.

In this thesis work, points from each line of the signatures were taken. These point

were equidistant on the x-axis. Their coordinates on the y-axis were concatenated into

a vector. Here, the number of the chosen points were 12 in each line, which results in a

24-element feature vector. This feature vector will be the input for machine learning al-

gorithms. In this chapter, two machine learning algorithms will be used: Self-organizing

maps (SOM) and Support Vector Machine (SVM). Next sections will briefly introduce

these two algorithms.

2.6.1 Data division

In order to evaluate the performance of the signatures for object shape identification,

a separation of the data into two sets is needed: training set and test set. Thus, the

simulated data will be divided into two sets. The signatures that will be considered

in this section correspond to those falling within the ranges defined for object size and

position in section 2.5.

As common practice, the training set will contain 30% of the samples. This set should

contain an equal amount of samples of each shape in order to avoid bias and overfitting.

Since the amount of samples is not the same for all shapes, the 30% will be computed

with respect to the shape that has the fewer amount of samples.

The test set will contain all the samples that are not included in the training set.

Balance is also important in the test set. Thus, results will be computed as follows:

ten confusion matrices will be computed and for each confusion matrix, the number of

samples will correspond to 70% of the shape that has the fewer samples. Samples will

be chosen randomly. The results presented here will correspond to the mean of the ten

computed confusion matrices.

The data collected on the real platform will not be used for training. Thus, this data

will be put in a single test set. This data will be used as inputs for the SVM and SOM

trained with the simulated data.
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2.6.2 Self-Organizing Maps learning algorithm

Most previous works on shape identification based on proprioception only exploit

SOM to perform object shape identification. This choice is made based on the fact that

SOM emulates the functioning of the sensory cortex. To achieve such functioning, the

SOM algorithm emulates the topographical organization of the sensory cortex in the

mammalian brain: neurons can be driven by stimuli coming from neighboring neurons

[75] and similar stimuli can excite similar areas of the sensory cortex. SOM algorithm

serves as a clustering method based on artificial neural networks to create a topograph-

ical representation of the input data. It is called ”self-organizing” because it exploits

unsupervised competitive learning [76]. The neurons of the SOM are organized in a

2-dimensional manner so that each neuron is connected to its neighboring neurons only.

There is a weight vector associated with each neuron which length will be the same as

the input vector.

As the SOM is initialized, the weight vectors of each neuron are randomly assigned. To

create an organized map in the training phase, the SOM algorithm has two stages: the

competitive stage and the cooperative stage. In the competitive stage, the Euclidean

distance between the weight vector of each neuron and the values contained in the

input vector are computed. The neuron with the smallest Euclidean distance to the

input vector is chosen as the ”winner”. Thus, the weights of the ”winner” neurons will

be adapted to increase its similarity to the input vector. The cooperative stage is in

charge of adapting the weights of the neighboring neurons so that the formed maps

are topographically ordered. By doing so, the neighboring neurons respond to similar

inputs.

The following analysis of the performance of this algorithm will be based on two criteria:

the identification rate and the weight distances of neurons. The weight distances allow

to determine how close the weigths of two neurons are. Close weights depict neurons

belonging to the same cluster. This can tell us how efficiently the algorithm was capable

of clustering the feature vectors. For this, the neural network toolbox from matlab [77]

will be implemented.

Signatures were used as inputs to this algorithm. To take into account the results

from the previous sections, the integral of the signatures will be added to the 24-element

feature vector, which results in a 25-element feature vector. Fig. 2.28 shows the perfor-

mance of SOM when the raw values of the joint angles (JA) or the signatures (SI) are

used as inputs.

As can be observed, the confusion matrices show that the SI (Fig. 2.29b) perform

slightly better than the JA (Fig. 2.28a). However, it is important to point out that
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(a) Confusion matrix (%) using raw values of
joint angles (JA)

(b) Confusion matrix (%) using signatures and
integrals (SI)

Figure 2.28: Confusion matrices obtained with SOM using the simulated training and test
sets.

JA discriminated the hyperboloid and cylinder with more success, which proves that

information from these shapes are different. These differences are lost in the signature

during the normalization step of the enhancement process. Nevertheless, integrals of

the signatures contain the differences and allowed the SOM to successfully discriminate

both shapes.

The weight neighbor distances between the neurons of the SOM’s are depicted in

Figures 2.29a and 2.28b. The image corresponding to SI depicts a clear separation of

four clusters (because the hyperboloid and cylinder are mixed in the same cluster). This

is not the case when JA are used: no clear separation is observed.

(a) Joint Angles (b) Signatures + Integrals

Figure 2.29: Weight neighbor distances of the maps obtained with SOM algorithm using the
simulated data.

For the real data, the SOM model trained with simulated data were exploited. Once

more, SI (Fig. 2.30b) performed generally better than JA (Fig. 2.30a). In these results,

discrimination between the hyperboloid and cylinder is less successful than in simulated
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results. In the case of SI, it is related to the fact that the values of the integrals are

different with simulation and real plateform (Fig. 2.22).

(a) Confusion matrix (%) using raw values of
joint angles (JA)

(b) Confusion matrix (%) using signatures and
integrals (SI)

Figure 2.30: Results of SOM using the real data sets.

Based on this analysis, SI perform better than JA as inputs for object shape identifi-

cation. Thus, the next experiments will be made with the SI data only.

2.6.3 Support Vector Machine learning algorithm

We will make tests to evaluate the performance of the signatures with the Support

Vector Machine (SVM) algorithm [78]. SVM is defined as hyperplanes that separate the

training data by a maximal margin such as shown in Fig. 2.31. The training instances

that are the closest to the hyperplane are called support vectors.

To achieve separation of instances, SVM takes the input vectors and passes them

through a kernel function to project them into a high dimensional feature space. The

hyperplanes defined in this feature space correspond to more complex decision bound-

aries in the original space. Accoring to Tong et al. [79], two types of kernels are

commonly used: polynomial kernel and radial basis kernel. The first generates polyno-

mial boundaries in the original space while the second induces boundaries by placing

weighted Gaussians upon key training instances.

To implement this algorithm, the OpenCV library [80] will be exploited. The trainauto

will be used for training. This function chooses the optimal kernel to separate the data

empirically.

When the trainauto function had signatures as inputs, it found the radial basis kernel

the most optimal. The confusion matrices obtained using the SVM are shown in Fig.

2.32. Results issued from simulated data depict a better performance compared to those

issued from SOM in the same situation (Fig. 2.29b). Moreover, SVM performed better
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Figure 2.31: Object angle estimation. Yellow lines correspond to the hand axis, red line to
the object axis. The angle of rotation is measured between the horizontal axis of the hand

and the axis of the object.

than SOM on real data with a simulated-data-trained model (Fig. 2.32b). Results

presented later in this sections are based on the results summarized in the confusion

matrices.

(a) Confusion matrix (%) using simulated data (b) Confusion matrix (%) using real data

Figure 2.32: SVM results based on SI using simulated and real data sets.

Position and shape recognition rates

To further analyze the results obtained with SVM, the identification rates with respect

to size and position of the objects were computed. Fig. 2.33 illustrates the results

obtained for each shape with respect to position. Results agree with both the ranges

obtained in section 2.5.3 and the recognition rates obtained with SVM.

As for the results with respect to the size of the shapes, it is shown in Fig. 2.34 that

the recognition rate changes with respect to the radius of the shape within the ranges
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(a) Cone (b) Torus (c) Sphere (d) Hyperboloid (e) Cylinder

100%

40%

Figure 2.33: SVM results with respect to the position of the object. SI are used as inputs
from simulated data.

defined in section 2.5.3. The cylinder showed the lowest recognition rates which is due

to the confusion with the hyperboloid. Due to the scale used to illustrate these results,

the performance of he method for the cylinder seems drastically lower than for the other

shapes. However, the difference is 20% only, which still makes this method valid for

cylinder identification. In any case, in chapter 4 we are going to present how to improve

these results.

(a) Cone (b) Torus (c) Sphere (d) Hyperboloid (e) Cylinder

100%

40%

Figure 2.34: SVM results with respect to the size of the object. SI are used as inputs from
simulated data.

2.7 Conclusion

In this chapter, proprioceptive data was used to identify the shape of a grasped object

in a robotic hand. For this task, a representation of the joint angles of the fingers

was created in which the finger configurations were imprinted. This representation

allowed to find patterns related to the grasped shapes, thus to generate the so-called

proprioceptive shape signatures. It was shown that these signatures have the potential

of being profitable for both object recognition and manipulation tasks because they

contain information on the global shape and pose of the object within the hand.

Experiments were carried out on both simulated and real hands. Results obtained

in both cases were compared and showed to behave similarly. A comparison of the

signatures with the expected patterns based on DTW showed that measured signatures

of a given shape have a clear correspondence to the theoretical one of the same shape,
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and a very low correspondence to those of different shapes. When shapes look similar

to each other, such as cylinder and hyperboloid, and cannot be distinguished by their

normalized signatures only, another parameter extracted from the signature (its integral)

can be used to solve this problem. The cylinder is a flat shape and the integral of its

signature is lower than the integral of the signature of the hyperboloid, which shape is

concave. Thus, using both the signature and its integral, it can be concluded that they

exclusively correspond to a specific shape, which is beneficial for shape identification

tasks.

Signatures showed little variance within large ranges of size and pose (position and

orientation) for each shape since the effects of both parameters on the signatures were

discarded by the signature enhancement procedure. This brings several key features

to the presented method. First, the angle of inclination of the object in the hand can

be estimated through the inclination of the signature. Second, instead of focusing on

specific object recognition, signatures allow shape identification for any object within

the ranges defined in Table 2.2. Third, the signatures are generated and enhanced in

about 10ms. Fourth, no palpation is needed, as a single grasp is enough for the shape to

be identified. Thus, this method can be used in real-time for manipulation tasks where

physical knowledge on the object is more important than its identification.

Even if the method was basically designed for solid shapes, results showed that objects

with some elasticity and flexibility could also be identified. Such is the case of the plastic

bottles from Set 2 used in experiments, which shapes were successfully identified despite

the deformations that forces applied to them caused.

Regardless the satisfactory results, this method present some limitations. The lack

of tactile information makes it difficult to determine whether all fingers are in contact

with the object or not. This is not a limitation of the method per se, but more of

the proprioceptive data. In case this occurs, information contained in the signature

would not provide proper information for shape identification. Furthermore, the position

ranges within which this method works for all shapes was not the same. Each shape had

a different position range. Tactile data or larger exploration would fix this problem.

In future chapters, contacts will be detected using proprioceptive information based

on a tool develop to perform temporal analysis of the joint angle changes during the

grasp execution. Furthermore, a generalization of the ranges with respect to position

will also be possible thanks to the implementation of contact normals on the fingertips.

We will show that by integrating this data to the feature vector, the confusion between

the hyperboloid and the cylinder will no longer be an issue in this thesis work.



Chapter 3

Temporal Analysis of

Proprioception

The perceptive performance of the haptic system is thought to be exclusively based on

the capability of the sensors that conform it (cutaneous, thermal and kinesthetic sensors).

However, Lederman et al. [2] suggested that it is also related to hand movements.

By actively grasping or manipulating an object, variations of the sensory inputs are

generated allowing a better perception of the spatial layout and structure of the objects.

The performance of the haptic system are directly related to the generation of these

variations and when minimal sensory variation is generated, the haptic system generally

displays a poor performance [81–83].

There is an association between the hand movements, the sensory input and the type

of information desired. In this sense, humans use stereotyped hand movement patterns

to provoke specific sensory variations and, thus, obtain specific information about the

object. Those hand movements are called exploratory procedures (EP). In chapter 2, we

presented some associations established between a set of EPs and certain properties of

the object, such as texture, hardness and shape. In the case of the shape, two EPs were

associated with it: contour following and enclosure grasping.

Each of those EP, contour following and enclosure grasping, provides a different de-

scription of the object shape: contour following is associated with the exact shape of the

object while enclosure grasping is associated with its global shape. This is because they

employ different hand movements and therefore, generate different sensory variations.

Thus, dynamic information generated during an EP contains cues of a particular dimen-

sion of its associated object property. The following paragraphs offer a brief explanation

on how dynamic information has been exploited in robotics.

45
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Dynamic information from an exploration process

Both contour following and enclosure grasping have been implemented on different ma-

nipulation systems. However, only contour following has been used to generate dynamic

information. This is completely normal since its definition states it to be a dynamic EP.

In order to reproduce it with robots, several approaches have been developed based on

edge following. The techniques for edges detection depend on the nature of the data ex-

tracted from the tactile sensors. Some approaches convert the data coming from sensors

arrays into images. This makes it possible to exploit image processing techniques, such

as geometrical moments or Hu moments, to detect the edges [31, 84, 85]. Others take

the contact force and orientation readings from sensor arrays to obtain edge information

[86, 87].

Usage of dynamic information in the field of tactile shape identification has not

been limited to contour following. Some authors have implemented other exploration

procedures to generate dynamic data and extract information about the object. Moll et

al. [3] utilized a manipulation system consisting of two flat palms covered with tactile

sensors (Fig. 3.1a). To explore the object, they moved the flat palms to make the object

rotate. They reconstructed the shape of the object by monitoring the haptic sensor data

as the object is rotated. A set of differential equations were used to model the dynamics

of the object. Based on the motion of the contact points, the authors where able to prove

the observability of the shape, the motion and the center of mass of the object. Strub

et al. [4] combined tactile information with kinematics inputs to build a representation

of the shape of an object. They explored the object by rotating it between two robotic

fingers and trained a neural-dynamic model (Fig. 3.1b) based on haptic exploration.

Results showed that the algorithm was able to model two different n-gons from tactile

data while rotating them within the robotic hand. Okamura et al. [65] used a finger

sliding over a surface. In this work, six pattern features were defined (cusp, step, bump,

pit, ridge and ravine). The trajectory of the contact between the finger and the surface

was used to build a model of those patterns.

The cited methods proved dynamic data to be robust for object shape feature render-

ing. Object pose estimation should also be possible with most of these methods since

contact position is vital for them to work. Thus, these methods showed that dynamic

information represents a rich source of information on both the shape and the pose of

the explored object. However, their implementation within the framework of this thesis

is limited due to the EP they used.
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(a)

(b)

Figure 3.1: (A) Setup used by Moll et al. in [3]. Two flat surfaces attached to a fixed point
on one side and a robotic arm on the other. As the robotic arm moves, it makes the angle
between the flat surfaces change. (B) Cross section of a robot finger with the stress sensors

used by Howe et at. in [1]. (C) Neural-dynamic model used by Strub et al. in [4].

First, most of them were not implemented on robotic anthropomorphic hands. To do

so, important modifications would need to be done. Second, for some of these explo-

ration procedures, the objects were not manipulated but explored and their only goal

was to perform tactile object recognition. This is not a disadvantage per se, but it

represents a conflict with our goal of performing tactile shape identification to enhance

the manipulation dexterity. These two disadvantages are overcome with the second EP

that can be used for tactile shape identification: the enclosure grasping.

Dynamic information from a grasping process

Enclosure grasping can be easily performed with almost any robotic hand. It also

represents the initial interaction before further manipulation of the grasped object is

carried out. It has therefore been largely used in tactile object recognition methods.

That was the case of the works presented in the previous chapter. That includes the
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cited works in the introductory paragraphs and the method proposed in this thesis. The

results presented by these works were incontestably good, regardless of the limitations

that their approach may have had. However, for the effects of this chapter, we will focus

our interest on the type of data they used.

The methods that used enclosure grasping built shape representations on data gener-

ated after the grasp was completed. This means that the hand has stopped moving and

the collected data is static. This aligns with the consideration of enclosure grasping as

a static exploration procedure. However, not all haptic research agrees with such con-

clusion. In his work on proprioception [88], McCloskey expressed that ’every position is

arrived at through a movement and every movement causes a change in position’. Thus,

not only final finger configurations give information about the shape and pose of the

object, but also the movements to reach those configurations.

Despite the promising information contained in the movements during the grasping

process, references exploiting it are nonexistant. Furthermore, among the works using

this grasping as EP, very few performed object pose estimation. This is particularly

challenging for the methods based on touch information only. To extract dynamic in-

formation from the grasping process, proprioception should be particularly considered

because it is responsible for providing position and movement cues [89].

Proprioceptive data as source of dynamic information

In this chapter, we propose to extract information from the proprioceptive data gen-

erated during the enclosure grasping procedure. A tool will be developed to analyze the

fingers movements during the grasp execution. This tool represents the main contribu-

tion of this chapter and its applications may go from shape representation to feature

extraction.

Further discussions about the different applications of this tool will be carried out

in chapter 5. In this thesis, we focused on a particular application: the non-contact

finger detection. To the author’s knowledge, this is an issue that has not been addressed

by any of the cited works on tactile object recognition. We consider this an important

issue since most methods using enclosure grasping assume that all fingers must be in

contact with the object. Therefore, their approaches may fail if this assumption is not

met. Non-contact fingers will introduce false information leading to incorrect shape

representations. Recognition rates will consequently be negatively affected.

In the following sections, we will outline the context of the presented method. First,

we will explain how the Finger Configuration Image (FCI) is used to extract movement
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information during the grasp execution. Then, a procedure will be presented to interpret

the data extracted from the FCI. After that, two methods for non-contact finger

detection will be introduced. Finally, experiments to evaluate these methods and their

impact on the recognition rates will be presented. Both simulated and real results will

be included.

3.1 Temporal analysis of the grasping process

The framework of this research work was described in chapter 1. This framework

states that the interaction between an object and the robotic hand would be restricted

to a single grasp. If a human being was to perform this same interaction, they would

start collecting information about the object from the moment it enters in contact with

their hand. Thus, the haptic information obtained during and after the grasping process

would be exploited.

To extract data from both periods of time, we will divide the grasping process into

two phases: the dynamic phase and the static phase. The dynamic phase concerns the

data generated during the grasping process itself while the static phase relates to the

moment after the grasp is completed. As already mentioned, we will focus in this work

on the dynamic phase.

Our hypothesis about the dynamic phase containing information about the object

is based on the following statement: as the robotic hand adapts to the object, the

movements of its fingers will be constrained by the object that is being grasped, more

specifically, by its shape and its pose within the hand. These constraints will there-

fore imprint cues about both the shape and the pose of the object on the dynamic

information.

To exploit the dynamic phase, the proprioceptive information contained in the Finger

Configuration Image (FCI) will be exploited. Since this image is updated online, the

temporal analysis of its information is possible during the grasp execution. In this sense,

an analysis of the changes in the FCI during the grasp execution will be performed.

These changes will be recorded and depicted in an image designated as G. Once the

grasp is fully executed, G will be used to obtain information about the grasped object

such as its position and size.
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3.1.1 Bases of the temporal analysis

As previously expressed, the FCI and grasp strategy are the foundations for the

temporal analysis of proprioceptive data proposed in this chapter. Therefore, a complete

understanding of how they are combined for this analysis is essential.

First, for what the method presented here is concerned, the grasp strategy described

in chapter 2 will continue to be used. This grasp strategy imposes that the joint angles

change separately and sequentially starting from the closest to the palm. Thus, only one

joint angle will change at a time and it will not stop moving until a contact is detected

or its maximum value is reached.

Second, the gray-scale values of the FCI do not represent measurements of independent

joint angles. Instead, a relationship is established between the pixels of each column.

This relationship makes the grayscale value of each row depend on the one of the previous

row in its column.

When these two principles are combined, the behavior of the FCI is the following:

as the adaptive grasp starts, all pixels of each column in FCI share the same grayscale

value because the finger is straight. As they mode, when a contact is detected, the

moving joint stops and the following joint upstream in the chain starts moving. This

causes the related pixel of the row to change. Thus, the pixels of a column will no longer

share the same value.

3.1.2 Recording the time-related information

In order to record the variations depicted by the FCI during the grasp execution, a

new image G is created which size is determined beforehand. The number of columns is

the same as the FCI because the variations are computed for each column of the FCI.

The number of rows rowsG is related to some parameters of the robotic hand and the

system that controls it. Some of those parameters are:

• The maximum angle each joint can reach (θproximal, θmiddle and θdistal). This

parameter is related to the robotic hand itself and established by the grasping

strategy.

• The rates at which the joint angles change (∆θi) for each phalanx i. These param-

eters allow indicating the time taken by the hand to finish the grasping process.

They are established by the grasp strategy.



Chapter 3. Temporal Analysis of Proprioception 51

• The frequency (fG) at which the variations of the FCI are sampled in G. The

higher this frequency is, the more rows will be needed.

These three parameters define the number of rows of G as follows:

rowsG = fG ×
distal∑

i=proximal

θi
∆θi

(3.1)

It is advised that the recording process of the variations in the FCI during the

grasp execution is performed at the same sampling frequency as the FCI. Also, it

should start at the same instant as the grasp execution process. The variations of the

gray-scale values in the FCI are recorded using the following expression:

G(yt, x) = maxx(FCIt)−minx(FCIt) (3.2)

where the right term is the difference between the maximum and minimum gray-scale

values in each column x of the FCI at the instant t during the grasp execution. Each

time this difference is computed for each column x over time, the obtained vector is

stored in the row yt of G. In yt, the subscript t indicates the dependence between the

progression on the rows y as the time passes by.

The recording ends with the grasp execution process. The increasing differences

between joint angles of each finger are reflected in the image G as a whitening of the

corresponding columns (gradual increase of the grayscale value of the pixels of that

column downward the rows).

In Fig. 3.2, the recording process is illustrated using the simulated model of the

Shadow Hand. For this simulation, the sampling frequency fG was set to 10Hz, the

increment change to 20◦/seg. for the proximal phalanx and 25◦/seg. for the middle and

distal phalanges. The maximum angles of each joint (θproximal, θmiddle and θdistal) to

85◦.

3.1.3 Extracting information from image G

Once the recording is over, the generated G is processed to extract useful information.

Fig. 3.3a shows the image resulting from the recording process shown in Fig 3.2. By

visually analyzing this image, three areas can be identified and they are directly asso-

ciated to the different stages of the grasping execution process. Starting from the top

rows, which are the rows first filled during the recording process, an area of dimmed
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Figure 3.2: (a)Generation of the image G overtime. As the hand adapts to the object, the
rows of G are been filled with the difference between the minimum and maximum gray scale

values of the columns of the FCI.

pixels is observed. This area corresponds to the moments where the fingers seek to

reach the object. Then a lighter area starts to appear, which depicts the folding of the

finger after contact has been reached. Once the grasp strategy ends, the recording pro-

cess is stopped and a third dimmed area is observed. This third area does not contain

information about the finger movements.

Derivates

Focusing on the lighter area, a smooth change of the grayscale values is observed.

This transition depicts the finger adaptation to the shape of the object. Once one finger

has completely adapted, the grayscale value of its column becomes constant until the

rest of the fingers finish adapting. In order to extract the zones of the image G where

the finger adapts to the object, the pixels where the grayscale values increase need to
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(a) (b)

Figure 3.3: (A) Let us concentrate on the column on the right of the image G. In this figure,
the illustration shows an example of what the image G would look like after the grasping
execution is over. Each one of the signaled areas has its own meaning. Area 1 : this area
corresponds to the movement of the finger to reach the contact. Area 2.1 : The finger adapts
to the shape. Area 2.2 : The finger has already adapted but other fingers haven’t and the
grasp execution continues. Area 3 : Rows not filled because the grasp execution ends before
reaching them. (B) Resulting binarized image after applying the Sobel filter to the image G.

be located. This is made by computing the derivatives of this image along the vertical

axis. For this, a Sobel operation is applied to G. (Fig. 3.3b). This operator is usually

used for edge detection in image processing and it is basically an differentiation operator

that computes the gradient of the image intensity.

Binarization

After applying the Sobel filter to G, the resulting image is binarized. The threshold

thresG will depend on the smallest ∆θi established by the grasp strategy. Thus, thresG

is computed as follows:

thresG = 0.90× 8× min(∆θi)

fG
: ∆θi ∈ [∆θmiddle,∆θdistal] (3.3)

where the constant 8 results from the convolution of the Sobel operator with the image

G. This equation uses only the joint angles of the middle and distal phalanges. The

joint angle of the proximal phalanx is not included in this equation because, as this

phalanx moves, the joint angles of the middle and distal phalanges remain zero, and

thus, the value G(yt, x) from equation 3.2 remains zero too. The threshold is fixed to

90% (which explains the constant 0.90) to compensate for the inaccuracies of sampling

synchronization of the system.

This equation is defined as such because its goal is to detect the gradient between

continuous pixels of the columns of G. These differences are basically established by the

change rate of the angles ∆θi but reflected on the image G as grayscale values, which
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original values are modified by the Sobel operator. This threshold is used to binarize

the image G, resulting in the image Gbin. This process is presented in Algorithm 2.

Algorithm 2 Pseudo Code for the FCI temporal analysis

Input:
FCI, instantaneous FCI.
thresG, threshold expressed in equation (6).

Output:
Gbin, FCI temporal evolution binary image.

begin
flag = flase
n← 1;
while flag = false do

j ← 1
for each column j of FCI do

G(n, j) = maxFCIj −minFCIj
end for
n← n+ 1
Update(FCI)
if GraspIsOver then

flag = true
end if

end while
Gdiff = Sobel(G)
Gbin = binarize(Gdiff , thresG)

end

Since the kinematics are not considered in the FCI, a precise computation of the

movements followed by each finger is not possible based on the imageGbin only. However,

given the relationship of this image with the different stages of the grasp strategy (Section

3.1.3), it can be exploited to somehow interpret the movements executed by the fingers.

In Fig. 3.3a, the amount of rows in each area is proportional to the time taken by

the fingers to complete the associated stage of the grasping strategy. This assumption

implies that the sampling rate and the joint angle increments (∆θi) are constant or

nearly constant for each phalanx i. By knowing ∆θi, the amount of degrees the joint

angles have changed on every row of G can be computed as follows:

Deg/pixeli =
∆θi
fG

(3.4)

Based on the values assigned to the parameters involved in this equation (section

3.1.2), the proximal phalanx moves approximately 2◦ for each sample taken from FCI

to fill the image G shown in Figure 3.3a while the middle and distal phalanges move

2,5◦ for each sample taken from FCI.
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Given this interpretation, the final position of each finger and the time it took to adapt

to the shape are intrinsically contained in the imageGbin. By extracting this information,

both the size and pose of the object within the hand can be estimated. However, using

the information coming from all fingers might pose a problem in situations in which one

of the fingers did not enter in contact with the object. In such situation, incoherence

will be present in the extracted information. Therefore, before estimating the size and

pose of the object, a decision must be taken on whether a finger should be taken into

account or not. In the next section, the method developed to solve this problem will be

presented and explained.

3.2 Non-contact finger dropout using temporal informa-

tion

One of the applications proposed in this thesis for the temporal analysis of proprio-

ception is the detection of non-contact fingers. Most works on tactile object recognition

assume that all fingers are in contact with the object once the grasp is over. However,

this might not always be true. The object might be too small with respect to the hand

for all fingers to be in contact with it. Also, a lateral displacement of the object might

prevent one of the fingers from adapting to it. Such cases are illustrated in Fig. 3.4.

When non-contact fingers are included in the data for shape identification, the shape

representation can be modified to the point of not corresponding to any of the expected

patterns. Consequently, the recognition rate of learning algorithms might be directly

affected. Therefore, any information coming from the non-contact fingers should be

neglected.

Taking tactile information might seem the most logical solution to this situation. The

detection of a contact would immediately be translated as a contact reached with the

manipulated object. However, this approach has a important limitation: the finger might

reach contact with itself or another finger. It is therefore proposed to use proprioceptive

information to overcome this limitation.

In the absence of tactile information, proprioception can offer several cues for contact

detection during the grasping execution. These cues can be extracted from position or

movements of the fingers. Since this information can be obtained from the image Gbin,

we are going to use that image for non-contact finger detection.

In this section, two methods to detect the non-contact fingers are developed based on

position and movement cues, respectively. Experiments will be carried out to evaluate

the performance of both methods in simulation and with a real robotic hand.
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3.2.1 Position-based method

In this method, it is proposed to perform non-contact finger detection based on finger

position. In general, the following hypothesis is made: as the finger finishes adapting

to the shape of the object, contact information can be inferred from its adapting move-

ments. To illustrate this, the following case is considered: if the movements correspond

to a full closure of the finger, then no contact was reached.

Thus, this method performs an analysis of the movements made by the finger to reach

its position. To do so, it exploits the information contained in the image Gbin once the

grasping process is over. The interpretation of this image exposed in section 3.1.3 is

used. More precisely, the position and the size of the white areas of the image Gbin are

measured to detect the non-contact fingers. For this, a threshold needs to be defined for

both the position and the size of the white areas.

Threshold definition

According to the grasping strategy implemented in the proposed method, when a

finger does not enter in contact with the object, its joint angles do not change until

the ones downstream the chain reach their maximum values. This is reflected in Gbin,

and thus, can be detected. For this, the equation 3.4 is used to compute the number of

pixels the first and second areas would have when the maximum joint angles (θproximal,

θmiddle and θdistal) are attained in the grasping process. Two thresholds can be defined:

one for the position of the finger (threspos, associated with the first area) and the other

one for the finger adaptation stage (thresadapt, associated with the second area). These

thresholds are computed with the following expressions:

threspos =
θproximal

Deg/pixelproximal
(3.5)

(a) (b) (c)

Figure 3.4: In the images (A) and (B) are illustrated the situations in which the lateral
displacements of the shapes with respect to the hand prevent one finger to enter in contact
with the object. The image (C) shows a sphere which is both too small and displaced so the

little finger does not enter in contact with it.
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Algorithm 3 Position-based method for dropout of non-contact fingers

Input:
G, FCI temporal evolution binary image
threspos, Threshold of pixels for the first area
threslength, Threshold of pixels for the second area

Output:
C, set containing the indexes of contact fingers

begin
for each column j of G do

xinit = min({i ∈ [1, rowsG] : Gbin(i, j) = 1})
xend = max({i ∈ [1, rowsG] : Gbin(i, j) = 1})
if xinit < threspos or (xinit − xend) < threslength then
C ← j

else
Dropout j

end if
end for

end

thresadapt =
1

2

distal∑
i=middle

θi
Deg/pixeli

(3.6)

When the grasping strategy ends, the number of rows engaged in each area is measured.

Algorithm 3 illustrates the procedure followed to measure it and dropout fingers, which

will be contained in the set D. The fingers are dropped out if both thresholds are

simultaneously exceeded.

Phalanx coupling dependence

If coupling between phalanges is present in the hand, some modifications must then

be made to equations 3.5 and 3.6. For example, equation 3.6 implies that θmiddle and

θdistal are not coupled and have different changing rates (∆θi). However, the Shadow

hand used for the experiments shown in this work had these two joint angles coupled,

so, they always shared the same value. Consequently, their changing rates ∆θi were the

same. If this equation was used, the threshold would be larger than the value needed to

detect the non-contact fingers. To correct this and adapt it to our hand, a modification

to equation 3.6 was made and the threshold was computed as follows:

thres′adapt =
θmiddle

Deg/pixel
(3.7)
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Using equations 3.5 and 3.7, the thresholds are threspos = 42 and thres′adapt = 34).

In order to measure the performance of the presented method for non-contact fingers

dropout, experiments were carried out on the simulated hand and the real platform.

Section 3.2.3 will explain the procedure followed in those experiments.

3.2.2 Dynamic-based method

In this section, a method is proposed to perform non-contact finger detection based

on an online analysis of the movements of the fingers during the grasp execution. The

following hypothesis is stated: for a continuous and smooth-profile object, finger move-

ments should not be abruptly different from each other.

For this method, an analysis of the movements of all fingers is performed online.

Each finger is not looked at individually, but associations between their movements are

established. While making these associations, the grasping strategy and the geometrical

features of the test objects are taken into account.

Changes in the image G will be analyzed during the grasp execution. This allows

detection to be done before the grasping process is over. Therefore, time is saved and

grasp corrections can be made sooner, if desired.

For this method, algorithm 2 was modified so that the image Gbin is computed at the

same frequency fG. This image is then computed in real-time as the grasp is executed.

Based on this condition, the Fig. 3.2 will rather look like the image shown in Fig. 3.5.

Dynamic behavior of Gbin

In more detail, the algorithm uses the changes of the subsequent rows n of Gbin to

detect the non-contact fingers. Its functioning is divided into two phases. The first

phase corresponds to the rows {n : n ≤ threspos} and the second one to the rows {n :

n > threspos}. Two sets C and D are created that contain the columns j of the vector

Gnbin corresponding to the contact and non-contact fingers, respectively.

In the first phase, each column in Gnbin is included in either C or D, depending on

whether the finger is in contact or not with the object. The following rules are set to

include a finger in C:

• Every column j in Gnbin that is equal to 1 will be included in C
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Figure 3.5: (a)Generation of the image Gbin overtime by computing it at the frequency fG
as the hand adapts to the object.

• If two fingers enter in contact with the object, all other fingers between them will

probably do so as well. Thus, given two columns jm and jn already contained in

C, every other column between them is automatically included in C as well. The

function ConsecutiveTouch is created to detect this condition. It verifies that

all indexes j in the set C are consecutive (jn+1 − jn = 1 ∀j ∈ C). Otherwise, it

redefines the set C so that C = {j ∈ N : jfirst ≤ j ≤ jlast}

Before presenting the criteria to fill in the set D, let us introduce the function

AdaptOver. This function monitors which fingers have ended their adaptation process.

It verifies that columns j contained in C have changed their state from 1 to 0. In such

cases, the finger is considered as adapted, and the function AdaptOver includes it in the

set A.

Now, the following rules are set to include the columns j in the set of non-contact

fingers D:
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• When a finger has finished adapting, the fingers next to it that have not started

their adapting process will be considered as non-contact. Consequently, their cor-

responding columns j will be included in the set D. The function NotAdapted is

responsible for detecting such situation. It takes j ∈ A and verifies if its neighbors

j+1 and j−1 are contained in C. Otherwise, it includes it in D.

• If the threspos is exceeded, all columns j /∈ C are included in D.

For n > threspos, the previous rules are no longer valid. The enclosure grasping

will continue to be executed until all fingers in C have adapted (A ⊆ C). As long

as the grasp continues to be executed, the behavior of the columns contained in D is

observed by PositionBased function which exploits the function AdaptOver to detect

if the fingers in D have ended their adaptation process. If they did, it verifies that the

thresholds established by the Position-based method are respected. The columns that

respect these thresholds are taken out of D and included in C.

This method allows to stop the grasping execution as soon as all fingers in C finish

adapting to the object. As a consequence, time of the grasping execution is reduced.

Section 3.2.3 will present the set of experiments made to validate this method and a

comparison of the performance between position- and dynamic-based methods.

3.2.3 Evaluation of the non-contact finger detection methods

In this section, we will carry out a set of experiments in order to validate the presented

methods to detect the non-contact fingers. A comparison of their performance will be

discussed. For this, both simulated and real results will be taken into account.

Simulation

In the simulated environment, the data collection process included three of the five

shapes used in the previous chapter (cone, hyperboloid and cylinder). The collected

data of the sphere was also included since it contains non-contact fingers cases. The

torus was not included in these experiments for two reasons. First, in cases in which

its size was two little, fingers adapt to the whole shape rather than to one part of the

ring. Second, if moved laterally, the finger meant to be the non-contact finger enters in

contact regardless its size.

In order to collect the data, the horizontal positions of the cone, hyperboloid and

cylinder were shifted from x = 0 so that one of the fingers does not enter in contact with
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Algorithm 4 Dynamic-based method for dropout of non-contact fingers

Input:
Gnbin, newly computed row n of the image Gbin
threspos, Threshold of pixels for the first area.

Output:
C, set containing the indexes of contact fingers.

begin
while GraspExecution = true do

[Gnbin, n]← UpdateGraspProcess

Ctemp = {i ∈ [1; 4] : Gnbin(i) = 1 ∧ i 6⊂ C}
Dtemp = {i ∈ [1; 4] : Gnbin(i) = 0 ∧ i 6⊂ D}
C ← Ctemp ∪ C
A ← AdaptOver(Dtemp, C)
if n ≤ threspos then

ConsecutiveTouch(C)
for every element j in A do

D ← NotAdapted(j, C)
end for

else
B ← AdaptOver(D)
for every element j in B do

PositionBased(j)
end for
empty(B)
if A ⊆ C then

GraspExecution = false
end if

end if
end while

end

the object. As for the sphere, the shape was shifted in the horizontal axis within the

range of x = [−2, 2]cm. Thus, both cases (little objects or laterally shifted objects) were

included. The vertical position y and the sizes of the shapes were within the decisive

ranges defined in chapter 2. The ∆r of each shape was computed so that the number

of samples was roughly the same for each shape. Thus, 1787 ( 450/shape) samples were

obtained and used in these experiments.

To measure the performance of both methods, the contact information given by

the simulator was compared to the results obtained with the presented methods. The

results are shown in Fig. 3.6 in the form of a two-bar histogram. The detected bar

corresponds to the number of non-contact fingers detected by our methods. The blue

section of this bar depicts the number of matches between the contact information

given by the simulator and the results obtained with our methods. The gray section

represents the false positives. The measured bar represents the amount of non-contact

fingers successfully detected by the methods (in blue).
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Figure 3.6: Histograms illustrating the performance of the dropout non-contact finger meth-
ods based on the FCI temporal analysis for (A) position-based and (B) dynamic-based meth-
ods. The cases in which the methods detected a non-contact finger are shown in the detected
bar, whereas the cases when no contact was measured on one finger are depicted in the mea-
sured bar. The blue proportion of the bars corresponds to cases when the methods performed

accurately and the gray proportion, when they did not.

Let us start by looking at the numbers that correspond to the histograms in Fig.

3.6 and explain their nature. In this figure, the detected bar depicts that the position

and dynamic methods detected 1591 and 1819 non-contact fingers, respectively. These

numbers include the false positives. The measured bars indicate that among the 1787

samples, 1433 non-contact fingers were detected. This difference of 354 samples is due

to two factors. First, the range of x-positions of the sphere was not always enough to

prevent fingers to enter in contact with the object. Thus, the non-contact finger scenario

did not occur in 270 samples of the sphere. Second, a frequent situation presented itself

in which the finger did not adapt to the object but its lateral side touched the shape.

Thus, a contact was measured. This situation is due to the fact that the hand is not

attached to a fixed reference and interacting forces with the object can alter its position.

The other 84 samples were attributed to this situation. This proves the limitation of

using contact information to detect non-contact fingers.

Let us now interpret these numbers and begin with the detected bars for both methods.

The position-based method (Fig. 3.6a) exhibits a good performance by having a rate

of false-positives of 5,8%. In the case of the dynamic-based method, a slightly larger

number of false positives was detected (15,9%). This gives an advantage to the position-

based method.

The measured bars show that both methods were capable of successfully detecting

the non-contact fingers in 100% of the cases. If both performances were compared, the

dynamic-based method exhibited a slightly lower accuracy than that of the position-

based one. However, the dynamic-based method is still advantageous with respect to

the position-based one since it allows to reduce the time of the grasp execution.
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In order to measure the amount of time Tdiff saved by using the dynamic-based

method with respect to the position-based one, the following expression was used:

Tdiff =
nposition − ndynamic

fG
(3.8)

where nposition and ndynamic are the rows n of the imageGbin at which the grasp execution

process would stop when using the position- or dynamic-based method, respectively.

Tdiff was computed for every sample in which the method successfully detected the

non-contact finger.

Fig. 3.7 shows the relative and cumulative frequency distributions of the time re-

ductions of the dynamic-based method with respect to the position-based. As can be

observed in these plots, the dynamic-based method accurately predicts the non-contact

fingers 2.2 seconds before the end of the grasp execution in 50% of the cases.

Even though these results correspond to the simulation set-up, they represent a solid

reference to show the advantage of the dynamic-based method.
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Figure 3.7: (A) Relative frequency distribution for the dynamic-based method with respect
to the position-based method. (B) Cumulative frequency distribution. Blue bars correspond to
the percentage of samples that saved more than 2.2 seconds using the dynamic-based method

when compared to the position-based one.

Real Platform

To evaluate the performance on the real platform, the experiments carried out in

simulation were reproduced with the real hand following the same procedure and using

the same platform as experiments described in chapter 2. The experiments were done on

three shapes: cone, sphere and cylinder. Objects are from the Set 1 defined in chapter

2. As shown in Fig. 3.8, the grasp was executed so that the little finger would not enter
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in contact with the object. Five samples were collected for each object, giving a data

set of 45 samples.

(a) (b) (c)

Figure 3.8: Grasps performed to validate the non-contact finger dropout methods. Three
objects were used in these experiments: (A) Cone, (B) Sphere and (C) Cylinder.

Results of both the position- and dynamic-based methods on the real platform are

shown in Fig. 3.9. The position-based method detected the non-contact fingers in only

60% of times, while the dynamic-based method detected 100% of them. Thus, the

dynamic-based method performed better than the position-based one.
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Figure 3.9: Histograms illustrating the performance of the dropout non-contact finger meth-
ods based on the FCI temporal analysis for (A) position-based method and (B) dynamic-based
method. The cases in which the method detected a non-contact finger are shown in the de-
tected bar, whereas the cases when no contact was measured on one finger are depicted in
the measured bar. The blue proportion of the bars corresponds to cases when the methods

performed accurately and the gray proportion, when they did not.

The differences with respect to the results obtained in simulation can be attributed to

control perturbances present in the real hand. More specifically, when the experiments

were conducted, the middle and distal phalanges of the little finger would take longer to

start closing. This is due to the controller tuning: the effort needed by the little finger

to start moving was particularly higher than the other fingers. As the little finger starts

closing, it accelerates and moves faster than it should, making its corresponding white

area on the image Gbin shorter. Therefore, the position-based method was unable to

detect the non-contact finger because the thresadapt was not exceeded every time. An

adaptation of the thresholds to this perturbation would fix the problem.
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This situation does not affect the dynamic-based method because, by the time the

little finger starts closing, it is already detected as non-contact finger and dropped out.

With respect to the time-related performance, Fig. 3.10 shows the results in the

form of relative and cumulative frequency distributions. As can be observed, the results

correspond to those obtained in simulation. In this case, 69,2% of the samples saved

at least 11s. This difference has increased with respect to the simulated results as a

consequence of the delay of the little finger to start adapting.
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Figure 3.10: (A) Relative frequency distribution for the dynamic-based method with respect
to the position-based method. (B) Cumulative frequency distribution. Blue bars correspond to
the percentage of samples that saved more than 2.2 seconds using the dynamic-based method

when compared to the position-based one.

Both method showed how position and movement proprioceptive cues can be used for

non-contact finger detection. Generally speaking, the dynamic-based method performed

better than the position-based method in both simulated and real environment. It was

also confirmed that dynamic-based method saves grasp execution time, which might be

beneficial for manipulation tasks. The position-based method also showed good results

and its usage should not be yet neglected for possible applications with other robotic

hands.

3.3 Proprioceptive signature correction

Dropping out non-contact fingers can be exploited for several purposes and improve-

ments of the work presented in this manuscript. The correction of the signatures is one

of them. This section introduces a modification of the signature generation process ex-

plained in chapter 2. Experiments and results will be presented to show the advantages

of this modification on the shape identification rates.
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3.3.1 Modified procedure for signature generation

For the signature generation process described in chapter 2, it had been assumed

that objects were large enough for all fingers to be in contact with them when grasped.

However, in section 3.2, it was demonstrated that this was not the case for all shapes

and locations. For this reason, some signatures did not correspond to the expected

patterns. This translated into limitations of the method for shape identification based

on proprioceptive signatures.

In this section, we will introduce a modification to the signature generation process

presented in chapter 2. This modification will allow the proprioceptive signature to

overcome its limitation related to non-contact fingers.

Because non-contact fingers can be successfully detected using both position- and

dynamic-based methods, we perform the signature generation after one of these algo-

rithms has detected the non-contact fingers. The results of this modification is shown

in algorithm 5. In this manner, non-contact fingers will not be taken into account in the

signature generation process. By doing this, the generated signature will correspond to

its pattern. Three conditions are established in order for this combination to be coherent

with the purpose of signatures: identifying the shape of the object. These conditions

are the following:

• At least three fingers have to be detected as contact fingers. This is because a

minimum of three fingers are needed in order for the proprioceptive signatures to

have concavities that differentiate them. If less fingers are involved in the signature

generation process, they would not carry enough information to discriminate the

different shapes.

• Contact fingers should be in continuous sequence and no non-contact fingers should

be between them. This is related to the fact that the objects used in this work,

and most objects in real environment, have continuous or one block shapes. Thus,

if more than 2 fingers are in contact with the object, they must be consecutive

fingers. Based on this principle, the middle or the ring finger will always be in

contact with the shape.

• If one of the previous conditions is not respected, it is assumed that an error occurs

in the process of grasp execution. Thus, no signature will be generated for shape

identification

When these conditions are fulfilled, a modified FCI is created, which is called FCI ′.

This FCI ′ contains only those columns corresponding to the fingers that enter in contact
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with the object. Once this image is filled, then the signature generation algorithm can

be executed with this image as input. This process is illustrated in the Algorithm 5.

Algorithm 5 Signature generation after dropping out fingers

Input:
C, set containing indexes of contact fingers
FCI, Finger configuration image

Output:
S, proprioceptive signature.

begin
jmin = j∗ ∈ C : j∗ ≤ j ∀j ∈ C
jmax = j∗ ∈ C : j∗ ≥ j ∀j ∈ C
l = |C|
if jmax − jmin − 1 = l and l ≥ 3 then

for each column j of C do
FCI′ ←FCI(C)

end for
S = GenerateSignature(FCI′)

else
Grasp Error

end if

Fig. 3.11 depicts a comparison between the signature generated with the unmodified

(left) and modified (right) signature generation process. As can be observed, when

the non-contact finger is dropped out, the signature changes and its resemblance to

the expected pattern increases significantly. After their generation, the signatures go

through the signature enhancement procedure.

3.3.2 Evaluation of signature correction process

In this section, we are going to evaluate the influence that the modification of the

signature generation process has on the shape identification based on proprioceptive

shape signatures. First, we are going to show the impact on the identification rates

obtained in chapter 2. Then, the performance of the corrected signatures for shape

identification will be tested.

Impact on the identification rate

Hereby, the impact of the dropping out of non-contact fingers have on the identification

rate will be analyzed. Only results of simulation are presented.

Simulation. Data collected in chapter 2 is re-used and dropout methods are applied

to it. The division of this data in training and test sets are the same as in chapter 2.
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Figure 3.11: Signature correction by dropping out information from non-contact fingers. On
the left, all fingers are involved in the signature generation process. On the right, non-contact

fingers are dropped out and the signature is corrected.

Two SVM-models were trained with this data (SVMpos for the position-based method

and SVMdyn for the dynamic-based one). The results are compared to those obtained

in chapter 2.

Fig. 3.12 shows the confusion matrices obtained with this simulated data. The image

on the left corresponds to the position-based method and the one on the right to the

dynamic-based method.

When compared to the results obtained in chapter 2, recognition rates are not affected

because the sample set used for these results was taken making sure all fingers enter

in contact with the object. The only exception to this is the sphere because it was

moved laterally preventing some fingers to enter in contact with it. Its recognition rate

increased by around 10% for both dropout methods.
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(a)

(b)

Figure 3.12: Confusion matrices showing the recognition rates. The upper row corresponds
to the simulated results. The lower row corresponds to the results obtained with the real
platform. The first column corresponds to the results obtained using SVMpos. The second

columns corresponds to the ones obtained with SVMdyn.

Shape identification with corrected signatures

This section is dedicated to analyze the performance of both the non-contact finger

dropout method and the identification algorithms. Both simulated and real platform

results will be presented.

Simulation. The data generated following the procedures presented in section 3.2.3 was

used with the SVMpos and SVMdyn. Results are shown in Fig. 3.13. As can be observed,

the identification rates are mostly lower than those obtained with experiments where

all fingers were involved. This might seem contradictory with the fact that 100% of

the non-contact fingers were successfully detected by both position- and dynamic-based

methods. However, the false negatives and the displacements of the hand provoked by

the interaction forces during the grasping process caused these discrepancies.
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(a) (b)

Figure 3.13: Confusion matrices showing the identification rates for non centered objects.
The upper row corresponds to the simulated results. The lower row corresponds to the results
obtained with the real platform. The first column corresponds to the results obtained using

SVMpos. The second columns corresponds to the ones obtained with SVMdyn.

To further analyze this data, the Dynamic Time Warping (DTW) algorithm was used

again to compute the similarities between the measured signatures and the expected

patterns. These similarities were computed for both non-corrected and corrected sig-

natures so that a comparison could be made between both cases. The same procedure

as chapter 2 was used for this. As observed in Fig. 3.14a, non-corrected signatures do

not correspond to any of the expected patterns and their corresponding DTW-distance

exceeds the established threshold. In the case of the sphere, the threshold is respected

because all fingers are in contact with the object in most signatures contained in its

data.

On the other hand, the accumulated distance for all shapes is lower than the threshold

established in chapter 2. This is verified for both the position-(Fig. 3.14b) and the

dynamic-based methods (Fig. 3.14c). This explains why both SVMpos and SVMdyn also

show good performance for corrected signatures.

Real platform. The data collected during the experiments carried out in section

3.2.3 with the real platform was used as input for both SVMpos and SVMdyn trained with

simulated data. Results are shown in Fig. 3.15. Since the position-based method had a

poor performance on this data, it directly affects the identification rates of the SVMpos.

As observed in the results on Fig. 3.15a, the cone was mostly confused with the sphere.

This can be attributed to two factors. The first one is related to the aforementioned

situation in which the thumb interferes with the adaptation of the index finger on the

cone. The second reason is that when the signature of the cone is not corrected, it looks

more like the expected pattern of the sphere.
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Figure 3.14: Euclidean distances between the expected patterns and the measured signatures
in simulation. The blue bars are obtained by comparing the measured signatures with their
corresponding expected patterns. The gray bars correspond to the DTW-distances between
the measured pattern and the non-corresponding patterns. The dashed-line is the threshold

(55) established in chapter 2 for signature correspondence.

(a) (b)

Figure 3.15: Confusion matrices showing the identification rates for non centered objects.
The upper row corresponds to the simulated results. The lower row corresponds to the results
obtained with the real platform. The first column corresponds to the results obtained using

SVMpos. The second columns corresponds to the ones obtained with SVMdyn.
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In the case of the dynamic-based method, the identification rates of the shapes depict

a better performance. In this case, the confusion of the cone with the sphere is more

related to the first reason explained in the prior paragraph. Fig. 3.16 depicts the DTW

distances measured after the dropout non-contact finger methods were applied.
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Figure 3.16: Euclidean distances between the expected patterns and the measured signatures
in the real platform. The blue bars are obtained by comparing the measured signatures
with their corresponding expected patterns. The gray bars correspond to the DTW-distances
between the measured pattern and the non-corresponding patterns. The dashed-line is the

threshold (55) established in chapter 2 for signature correspondence.

As can be observed in Fig. 3.16a, the position-based method did not succeed to

dropout all fingers in the cone data, which explains the confusion of the cone with the

sphere. On the other hand, the dynamic-based method was capable of droping out

the non-contact fingers more efficiently, which corresponds to the identification rates

obtained with SVMdyn shown in Fig. 3.16b.

3.4 Conclusion

In this chapter, we introduced a novel method to perform a temporal analysis of

proprioception based on the Finger Configuration Image. This analysis allowed to de-

termine the movements followed by the fingers during the grasping strategy execution.

For this, changes on the FCI were recorded in an image G. Based on the interpretation

of the information in this image, two methods were presented to detect or predict if one
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of the fingers did not adapt to the object: the position-based method and the dynamic-

based method. The first one allowed detecting the non-contact fingers once the grasping

execution was over. The second one allowed predicting the non-contact fingers before

the grasping execution ended.

When the performance of both methods was compared in simulation, they presented

similar and good performance achieving to detect the non-contact fingers at all times.

This same situation could not be reproduced in the experiments with the real platform.

In these experiments, the performance of the position-based method was considerably

lower as it detected only 60% of the non-contact fingers while the dynamic-based method

maintained the performance reached in the simulated environment. The performance

of the position-based method was particularly affected by technical issues regarding the

hand controllers and results showed that the dynamic-based method was robust enough

to maintain its performance in such situations. However, the position-based method

should not be discarded since its performance can be considerably improved by fixing

the problem with the controllers.

Beyond the robustness and better performance of the dynamic-based method with

respect to the position-based one, it presents another advantage. This advantage is

related to the fact that this method allows to detect the non-contact fingers before

the grasping execution is over. This is particularly convenient as the grasp could be

rapidly corrected if one of the fingers is detected as non-contact. Results showed, in

both simulated and real experiments, that the dynamic-based method saves considerable

amount of the grasping-execution time in more than 58% of the samples.

These methods were also exploited to correct the generated signatures in cases when

one finger do not enter in contact with the object. To evaluate the performance in such

application of the presented methods to dropout the non-contact fingers, both SVM and

DTW algorithms were used. First, two SVM were trained following the same schema

presented in chapter 2. For this, these SVMs were trained using the data obtained

with the position- (SVMpos) and dynamic-based (SVMdyn) methods. Simulated results

showed that, by dropping out the non-contact fingers, shapes can be successfully iden-

tified with both methods. Both methods depicted similar performance with simulated

data. However, this was not the case with the data collected with the real platform.

Since the position-based method had a poor performance detecting the non-contact

fingers on the real data, it directly affected the recognition rate of SVMpos. This was

not the case with SVMdyn. Even if the results are not as good as those obtained in

simulation, the dynamic-based method is considered to be valid for real applications.
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Similar results were obtained using the DTW algorithm. In simulation, both meth-

ods performed similarly. However, this algorithm confirmed why the cone was being

highly confused with the sphere when its signature is not corrected by the position-

based method. Once more, the performance of the dynamic-based method was also

better under this analysis.

Generally, the method to predict the non-contact fingers in a grasp execution presented

in this chapter depicts a good and profitable performance on both simulated and real

environments. When applied to correct the signatures, it did not necessarily solved the

limitations of the signatures presented in chapter 2: the hyperboloid and the cylinder

are still confused. However, this problem will be treated in the following chapter.



Chapter 4

Sequential Recognition of

In-Hand Object Shape

Due to the unpredictable nature of realistic environments, tactile object recognition is

confronted to several challenges. Putting aside the challenges imposed by manipulation

and exploration tasks or data collection procedures, the challenges that we will address

here are related to the recognition algorithm, more specifically, the training phase they

go through before being able to perform any recognition.

Before a learning algorithm is capable of making predictions or identifying an instance,

it goes through a training phase. During this training phase, the algorithm receives as

input a set of samples representative of the different instances that it will have to identify.

Realistic environments work in a manner that might affect the efficiency of the training

phase of a learning algorithm. First, the amount of objects that the manipulation

system will possibly handle can be very large. Second, new objects might be frequently

introduced in the environment.

In this chapter, we will formulate a framework that will allow the training process

to perform efficiently under both conditions. In this framework, the large amount of

instances will be reduced by focusing on identifying the global shape of the objects

instead of their exact shape. This was already discussed in chapter 2. Hereby we will

discuss it further and a more robust solution will be presented. This framework will

also propose a solution to the challenge imposed by the addition of new instances to

the training set. This challenge has received very little attention in the tactile object

recognition literature. We will address it by using an online training technique. Further

explanations will be presented in the following sections.

75
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In order to present how the proposed framework tackles each one of the aforementioned

conditions, the structure of this chapter will be slightly different from the previous ones.

This should allow the reader to have a broader view with an optimal focus on the

contributions of this chapter. In this sense, the two following sections will present a

state-of-the-are regarding the solutions for each condition and the contributions of this

work on those aspects.

4.1 Reducing the amount of instances

Dealing with a big amount of objects to be recognized is a challenge for identification

algorithms. The more shapes are added to the identifiable set of objects, the lower

is the reported recognition rate. In [37], the recognition rate went from 96% to 84%

when 8 objects were added to a set of 13. The same behavior was reported in [64],

where recognition rates were reported to be 100% and 89% for sets of 5 and 25 objects,

respectively.

This issue was discussed in chapter 2, and our approach to address it was to focus

on global shape identification instead of specific object recognition. By doing so, the

amount of objects that can be recognized is considerably increased with no detriment

to the recognition rate. In this method, an unimodal shape recognition approach was

implemented based on the so-called shape proprioceptive signatures. Remarkable results

were obtained and the method showed to be robust enough to be applied to robotic

hands.

In order to preserve the performance of the presented method while increasing the

amount of shapes that can be identified with it, new dimensions need to be added to

the shape representation. To do so, a new mode of information will be exploited and

added to proprioceptive signatures, i.e., a multimodal shape identification approach will

be introduced now. This decision is driven by the fact that other authors proved that

multimodal data performs better than unimodal data. This is the case in [38], where

the authors showed that proprioception and tactile sensing perform better combined

than when exploited individually (See Fig. 4.1a). Same scenario was shown in [90],

where different types of tactile and proprioceptive data were used for object recognition

identification. Fig. 4.1b shows the results of this research. Notice how the researchers

achieve a better performance by combining all the inputs.

In order to choose the type of additional data to include in the proprioceptive signa-

tures, an analysis of the human haptic system was done. As discussed in chapter 2, the

haptic system can provide with both cutaneous (touch) and kinesthetic (proprioception)
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(a) Image taken from [38]

(b) Image taken from [90]

Figure 4.1: Recognition rates for uni- and multimodal data.

information. So far, proprioception usefulness for shape identification has been object

of study in this manuscript. Thus, the additional data to include in proprioception will

be taken from tactile information. Let us now discuss how touch can be interpreted for

the shape identification task.

4.1.1 Tactile data interpretation

To develop a shape representation of the explored object based on touch, our brain

interprets the tactile information in two manners: as a first- or as a second-order in-

formation [91]. Fig. 4.2 depicts a finger sliding on a surface profile and the tactile and

proprioceptive data are interpreted. Each representation contributes in a different way

to shape identification, depending on the object scale with respect to the hand as well

as the features that need to be identified.

Second-order information

During haptic exploration, a finger presses on the shape of the object causing the finger

skin to deform. The second-order information c(s) is the detected pressure gradient of
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Figure 4.2: Geometric information obtained from a finger as it explores a surface s of an ob-
ject: finger position p(s) (zeroth-order), contact normal n(s) (first-order), and local curvature

shown in red beneath the finger c(s) (second-order). Best view in color.

the skin as it is deformed. This type of information is very useful to identify local shape

features such as edges, corners and bumps. According to Wheat et al. [92], surfaces with

curvatures lower than −5, 8m−1 and larger than +4, 9m−1 can be discriminated with a

single finger pad from a flat surface with a 75% success rate. Note that the curvature

is inversely proportional to the radius of curvature. So, in terms of radius of the shape,

the second order information can detect curvatures of radius lower than −0.17m and

larger than +0, 20m.

In robotics, the second-order information has received a lot of attention with the devel-

opment of pressure sensor arrays and many shape representations have been developed

based on them (refer to chapter 1 for more detailed information). This information was

not exploited in this PhD work for two reasons:

1. The present work is focused on global shape identification. Local features like

bumps, edges and corners would be rather useful for manipulation purposes or

specific object recognition.

2. The curvatures of the objects used in this work do not correspond to the ranges

within which the second order information is the most accurate. Moreover, their

sizes go beyond the fingertip scale which is the scale at which the second order

information performs best.

It is however prudent to say that using this information would enlarge the scope of

application of the presented method. This will be further discussed in chapter 5.

First-order information

Another interpretation that our brain does with respect to the tactile information

is related to the slope of the touched surface. This can also be seen as the normal

to the contact surface n(s). According to Pont. et al. [93], the contact normals are
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the dominant information to detect curvatures in the range [−4; +4]m−1. Furthermore,

Wijntjes et al. [91] concluded from their research work that the orientation of contact

normals dominates the curvature identification. They state that this is true for explo-

ration lengths that go from the fingertip size to the arm length. Based on this conclusion,

we decided to exploit the contact normals in this thesis.

In robotics literature, several shape representations have been developed based on

contact normals. Most of them combine proprioception (zeroth-order information) with

contact normals. In the case of contact normals, most approaches focus on model-based

representations. Grimson et al. [94] used all possible contact normal orientations and

locations that can be generated on a set of known polyhedral objects to generate a tree

of feasible interpretations of this data. In order to prune the information and match it

to an object, they established a set of constraints for the combination of the distances

between the contacts and the directions of the contact normals. Jin et al. [95] computed

the parameters of a super-quadratic equation using contact normal information. To do

so, they first divided the shape into several patches using the k-means unsupervised

clustering method on the contact normals and classified the object with a one-vs-one

classifier constructed with binary Gaussian Process classifier. A similar work for super-

quadratic estimation was presented by Bierbaum et al. [96]. Most of these approaches

have not been implemented in robotic hands and a large amount of data is needed to

achieve the results reported by the concerned researchers. This can be translated into a

time-consuming exploration algorithm and sensor dependent procedure.

(a) Image taken from [96] (b) Image taken from [95]

Figure 4.3: Contact normal and localization used in description-based representations.

The statistically-based representations are less frequent in literature in this matter.

Schmitz et al. [90] used joint angles, sensor array and contact normal information

arranged in a feature vector as inputs of a deep neural network. In this work, experiments

were made on a Twendy-one hand [97] equipped with tactile sensor arrays, joint angles

and force/torque sensors on the fingertips (Fig. 4.4). For the data collection process, 20

different objects of different shapes and hardness were grasped at least 20 times using
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a power grasp. The feature vectors were formed combining 4 grasps, resulting in a

training set composed of 5000 instances. The recognition rate reported by the authors

was 88%. In spite of these results, the same limitations presented in chapter 2 remain;

several grasps are needed before the object can be accurately identified. Moreover, no

information whatsoever regarding the pose of the object within the hand is given.

Figure 4.4: Twendy-one hand scheme.

In this thesis work, a statistical-based representation was used. The direction of the

force sensors was exploited to perform object shape identification. The magnitude of the

force sensor was neglected, since this information would not be useful for shape identi-

fication. The three components of the force sensed by the fingertips were concatenated,

resulting in a 12-element feature vector for the normals. The learning algorithm used to

create this representation was discussed in section 4.2.

4.1.2 Proprioceptive vs. contact normal

Research has shown that the first-order (contact normal) information is quite robust

and sufficient to perform curvature identification [5, 93, 98]. Therefore, the following

question arises: why continuing to use proprioceptive inputs if contact normals are

sufficient for shape identification? To answer this question, let us take a look at Fig.

4.5. This figure shows the model developed by Wijntjes et al. [91] to describe how the

minimum curvatures that can be discriminated with each order of information change

with respect to the explored surface. Each order of information is represented with

a different curve. The curve depicting lower values is taken as the most robust one

because this means that it is capable of recognizing lower curvatures. This is the case

of the first-order information curve. Thus, the authors concluded that it is the most

robust one.
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Figure 4.5: The values from literature plotted in log-log scales. The gray data points indicate
thresholds obtained from zeroth-order information only. The black data points were obtained
with real shapes. The gray lines describe the model itself. This data can be found in: Pont

1999 [5], van der Horst 2007 [6], Gordon 1982 [7], Henriques 2003 [8], Drewing 2006 [9].

This conclusion does not necessarily mean that the zeroth- and second-order infor-

mation do not provide cues about the curvature. It rather states that for curvature

discrimination, humans will probably base their prediction on the first-order informa-

tion. Thus, the curvature cues given by proprioception can represent complementary

information to the contact normal.

In this thesis, the use of proprioception gains legitimacy when the radii of the shapes

and the length of the explored surface are taken into account. The largest radius for

which this method works best was reported to be 0, 14m (equivalent to a curvature

of approximately 7, 15m−1) in Chapter 2. The length of the explored surface for an

enclosure grasping should be about 0,13m. Thus, according to the model illustrated in

Fig. 4.5, proprioceptive information is capable of providing curvature cues for the setup

used in this thesis.

It is also important to point out that this model is based on fingertip exploration.

None of the results was obtained with full-hand exploration procedures. Curvature

detection on the fingertips is not sufficient for 3D shape identification. Extrapolation

of this model to full hand exploration requires a complex work that goes beyond the

scope of this thesis. If taken as is, the robotic hand would need to have distributed

sensors to compute all contact normals. However, most hands are equipped with force

sensors at the fingertips only. Therefore, contact normals at the fingertips are going to

be combined with proprioceptive information hereafter.
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4.2 Addition of new instances to the training set

This framework proposes to deal with the addition of objects to the training set.

This challenge directly concerns the learning algorithm. In this chapter, we propose to

address it with a focus on the training strategy. Most of the cited papers regarding

tactile object recognition perform an offline training, also called batch training. Such

strategy supposes that the amount of objects to be identified is known a priori and

the corpus of the training set is generated for those objects only. Using this type of

training does not pose any problem when the amount of objects to be recognized does

not change. However, in a realistic environment, the algorithm would need to be trained

from scratch every time a new object is added to the training set. This could be time

consuming as the amount of objects increases.

Online training techniques allow overcoming this problem. As defined by Rakhlin [99],

roughly speaking, online methods are those that ”process one datum at a time”. This

processing makes it possible to update the model with new data, avoiding to perform

the whole training process from scratch. This type of training is particularly interesting

when:

• The data contained in the training set is too large to be handled by the system.

• The application is inherently online.

Many sequential training algorithms have been applied to different applications. Most

of them concern vision problems, specially visual tracking. Ross et al. [100] used an

appearance model of the object to track objects and adapted it to changes in pose, view

angle, and illumination. This model was based on an online updated eigenspace using

the Sequential Karhunen–Loeve (SKL) algorithm [101]. Babenko et al. [10] used an

adaptive appearance model to track the position of an object in a video. Tracking took

into account the position of the object in the first frame of the video. In order to update

the position, the authors developed an online version of Multiple Instance Learning

(MIL) [102]. The use of MIL is the main contribution of this work. Traditional methods

would label individual samples which causes the appearance model to be updated with

suboptimal positives and ends up drifting the tracker and degrading the model (Fig.

4.6). MIL, on the other hand, labels a bag of samples instead. A bag will be labelled

as positive if at least one of the samples contained in it is positive. A bag is labeled

negative if all the samples in it are negative. This allows the model to better handle

ambiguities in the samples and correct the labeling of the individual images contained

in the bags. Other online training techniques have been presented [103–105] and their

applications mainly concern object tracking and recognition [106–108].
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Figure 4.6: Methods to update a discriminative appearance model: (a) Using a single positive
image. As one can notice, this image is not centered on the object perfectly. (b) Using several
positive images. This is a too rigid condition for a classifier to learn a boundary. (c) Using

one positive bag consisting of several image patches to update a MIL classifier [10].

To the author’s knowledge, application of sequential training for tactile shape identifi-

cation is not found in literature. This can be explained by the fact that this task is not

necessarily inherently online, like object tracking. However, advantages of sequential

training can be exploited in this field as well. In this chapter is presented a novel frame-

work based on Neural Forests (NF) to sequentially add new instances or new shapes to

the training set (i.e. open set recognition). Thus, the model can be sequentially trained

as new instances are available, instead of training it from scratch. This allows reducing

time of training as new shapes are added because the number of iterations to update

the model is less compared to the offline training technique. The developed framework

is detailed in the next sections.

4.3 Neural Forests Collection

One of the main contributions presented in this chapter is related to the use of an

online training technique for tactile shape identification. As mentioned earlier in this

chapter, all approaches cited in this manuscript rely on an offline training. In this

section, is described the architecture of the Neural Forests Collection that will be used

for tactile shape identification. We will specifically explain how the proposed framework

can be trained sequentially. First, a general model for multi-class identification will be

presented. Then, an explanation of the Neural Forests algorithm will be given followed

by a formalization of its use for online learning. Finally, the procedure for sequential

training will be exposed.
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4.3.1 Multi-class shape identification

Let us start with a general multi-class model based on an one-vs-all classifier. Our

main goal is to discriminate K different shapes, where K is given a priori. In this

context, for an unknown object shape Ok represented by its feature vector Si, the final

class assignment k̂ is computed as follows:

k̂ = argmaxk{p(Ok|Si)} (4.1)

where p(Ok|Si) denotes the probability of shape class k. This corresponds to the case in

which an one-vs-all classifier is geared towards discriminating this shape class. For the

training phase, the instances of the shapes are labeled in a binary manner. Thus, we

consider all instances of shape k as positive by setting the ground truth y∗i,k = 1 and all

instances of other shapes as negative: y∗i,k = 0. We then train a Neural forest to achieve

this binary classification task.

4.3.2 Soft trees with probabilistic split nodes

For the purpose of this chapter, we are going to implement a Neural Forests (NF)

[109]. NF were recently introduced as a hybrid of random forests and neural networks.

It consists in ensembles of balanced probabilistic trees that each contains an ensemble of

split and leaf nodes. Fig. 4.7 illustrates a scheme of one tree and each tree is a classifier.

The numbered circles are called split nodes while the circles at the bottom of the tree

are called leaf nodes. As can be observed, the split nodes distribute the probabilities

into two outputs. Thus, the split node number 1 divides the tree in two subtrees: right

subtree and left subtree. The depth of the tree is defined by the number of split nodes

between the input channel and the leaf nodes. In the case of a binary NF dedicated

towards discriminating a shape k, the probability is computed as follows.

p(Ok|Si) =
∑
t

∑
l∈L

µl(Si)y
l
t (4.2)

where the prediction ylt of leaf l of tree t is either 0 or 1, and is randomly sampled during

the initialization. µl denotes the probability to reach leaf node l, which is defined as a

product of continuous split probabilities associated to each probabilistic split node n,

that are parametrised by Bernoulli random variables dn ∈ [0, 1]. The so-called activation

dn(Si) for node n is defined as the output of a neuron layer (a Sigmoid function with

weights {βnj } and bias −θn):
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dn(Si) = σ(

f∑
j=1

βnj Sij − θn) (4.3)

Taking the expected value (which corresponds to an infinite number of samples from

tree t), an example Si goes to the right subtree associated to node n with a probability

given by the activation function dn(Si) and to the left subtree with probability 1−dn(Si).

From a decision tree perspective, the successive activations dn(Si) thus define a soft

routing through the tree, with oblique hyperplanes in the feature space.

d 1=σ(∑ j
β j
1 xi , j−θ

1
)

1

2 3
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1−d 3

μ
1
=1

μ3=d 1
θ
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θ
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(1−d 6)d 1(1−d 3)

Figure 4.7: This image shows one tree of the hybrid random forests and neural networks.

4.3.3 Online learning with recursive backpropagation

The basis provided by the two previous sections is now going to be used to develop

the online learning framework we will use in this chapter. For this, the work presented

in [109] will be implemented, which suggests a two-step optimization procedure: first

the split nodes are optimized using Stochastic Gradient Descent (SGD) and recursive

backpropagation, from the bottom to the root of the trees. Then, the leaf nodes are

jointly optimized for all trees in the forest using least-square minimization while the split

nodes are left untouched. However, the latter step requires using all the samples at once,

and therefore does not allow online training. Thus, in our case, we solely update the split

nodes and the prediction nodes ylt remain constant during training. We found that such

optimization was sufficient to obtain satisfying accuracy on a variety of classification

and regression benchmarks, while enabling a faster, fully-online learning procedure.
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The training phase is performed by sequentially presenting the feature vectors Si of

randomly picked training instances i. A forward pass through the trees provides the

values of the probabilities µn(Si) and activation dn(Si) for every node n and tree t.

Particularly, the prediction error εlt for a leaf node l of tree t can be computed as the

cross-entropy loss between this ground truth value y∗i,k and the leaf prediction ylt stored

in that leaf. The prediction error for the whole tree is thus equal to:

εt(Si) =
∑
l

µl(Si)ε
l
t (4.4)

Hence, for any parameter φn (i.e. a feature weight βnj or the threshold value θn), the

parameter update is given by equation (4.5) (with α the learning rate hyperparameter).

φn ← φn − α∂εt(Si)
∂φn

(4.5)

Moreover, the derivatives of εt w.r.t. parameter φn can be calculated recursively:

∂εt(Si)

∂φn
= µn(Si)

∂dn(Si)

∂φn
(εn+(Si)− εn−(Si)) (4.6)

with εn−(Si) and εn+(Si) the errors for the left and right subtrees, respectively:


∂dn(Si)
∂θn = −dn(Si)(1− dn(Si))

∂dn(Si)
∂βn

j
= Sijd

n(Si)(1− dn(Si))
(4.7)

And, the error backpropagated up to node n is:

εn = dn(Si)ε
n
+(Si) + (1− dn(Si))ε

n
−(Si) (4.8)

Thus, the error can be backpropagated from the bottom to the tree root and the hyper-

planes corresponding to each split node can be updated accordingly.

4.3.4 Sequential training

Traditionally, offline training of the learning algorithm is implemented in shape iden-

tification. In this technique, the whole recognition model is trained from scratch every

time a new shape is to be recognized. Instead, we propose to implement a sequential
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learning technique. For a NF, since the structure of the trees is fixed a priori and the

leaf node prediction settings ylt for binary classification do not depend on the number

of shapes K, it is fairly easy to update an existing model for the recognition of a novel

shape. Formally, let’s assume that we trained a NF collection for the purpose of discrim-

inating K shapes, and that we now want to add one shape, transforming our problem

into a K + 1 recognition problem. In order to do so, we have to:

1. Train a new NF to discriminate the shape K + 1 from the K previous ones

2. Fine-tune the K existing binary classifiers to specifically discriminate shape K

against shape K + 1.

Step 1 can be directly performed by using the procedure described above. Step 2 is

done by applying a number Nu of class-wise balanced SGD updates, using equations

(4.4), (4.5), (4.6), (4.7) and (4.8), thus adapting the oblique hyperplanes to the new

class distributions.

4.4 Experimental set-up

Contact normals are used to perform shape identification with the framework proposed

in this chapter. Therefore, the following section will present the procedure to collect the

data corresponding to the contact normals. After that, is presented how iterations will

be made in the sequential training.

4.4.1 Data

In order to test the proposed sequential training, both simulated and real data were

used. The simulated data was obtained following the data collection procedure presented

in chapter 2. The contact normals at the fingertips were measured with the simulated

model of the ATI-nano 17 (See Appendix B). The same shapes as in previous chapters

were used. The cone and cylinder were rotated 90◦ about the Z-axis so that the hand

grasps them on their ends. This counted as new shapes which made a total of 7 different

shapes (Fig. 4.8). Positions and sizes of these shapes were varied as indicated in chapter

2.
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Figure 4.8: Illustration of the shape rotation with respect to the z-axis of the hand. From
left to right: 90◦-Rotated Cylinder, 90◦-Rotated Cone.

For the data obtained with the real platform, the set of objects used for these exper-

iments is shown in figure 4.9. Some objects of this set are also contained in Set 1 and

Set 2 from chapter 2. The data collection procedure for the real platform presented in

chapter 2 was used. Each object was grasped between 10 and 12 times.

Figure 4.9: Objects used for tests with the real platform.

4.4.2 Setting up the NF

Two NFs were generated, one for batch training and the other one for sequential

training. For the results to be comparable regardless of the training approach, the

hyperparameters of both NF were set so that an equal amount of updates is applied to

the sequential and offline learning models. Therefore, for each object, a forest of 10 trees

with a depth of 6 was used. As the shapes were added to the training set, the amount

of updates was increased as indicated by (4.9). The starting number of updates was set

to 1715 for two shapes. This number corresponds to the minimum number of updates

needed to reach an average recognition rate higher than 90% for two classes.

Updatesnew = Updateold

(
1

nbShapes
+ 1

)
(4.9)

where Updatesnew is the amount of updates to be performed for each tree as a new

shape is added to the training set, Updatesold corresponds to the number of updates

made before this new shape was added, and nbShapes is the amount of shapes present
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in the training set before the new one was added. This equation ensures that every tree

is updated the same amount of times for each shape.

4.5 Results and Discussion

In this section, the set of experiments carried out will be presented. First, we will an-

alyze the performance obtained with different haptic inputs. Analogies with the human

haptic system will be formulated. The NF used for this experiment is trained offline.

After, the sequential training will be compared with the batch training. This compar-

ison will be based on the recognition rates and the time taken for both techniques to

complete the training. Finally, deeper analysis on the performance of the sequential

training will be done. Results obtained with the real platform will be presented at the

end of this section.

4.5.1 Unimodal vs. multimodal shape recognition

The performance of the zeroth- and first-order information for robotic shape identifi-

cation was tested on NF. Each type of information was used individually (unimodal) as

input for the NF. An offline training was performed to focus on the performance of the

haptic inputs only. Fig. 4.10 shows the confusion matrices depicting the performance

of NF for each input. The number of samples for each shape is different. Hence, 10

confusion matrices are computed using the same amount of samples for all shapes and

then averaged.
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Figure 4.10: Average confusion matrices obtained using NF. Recognition rates are shown in
%.
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Results showed that the torus is highly confused with the hyperboloid and cylinder

when the contact normals are used as inputs. In the case of the hyperboloid, the con-

fusion can be attributed to the fact that the torus located in lower positions generates

the same contact normals as an hyperboloid. Thus, it is confirmed that contact nor-

mals measured only at the fingertips do not offer enough information to discriminate

3D shapes with similar curvature profiles. The confusion of these two shapes with sig-

natures was expected since similar results were obtained in chapter 2. However, results

depict that proprioception offers enough information to double the recognition rate of

the contact normals.

The confusion between the cylinder and hyperboloid when zeroth-order information

(proprioceptive signatures) continues to happen (Fig. 4.10b). The differences with

respect with the results obtained in chapter 2 are due to the absence of the integrate

of the signature in the feature vector. This relates to the fact that proprioception

is not capable of discriminating low curvatures. On the other hand, contact normals

discriminate these two shapes with high accuracy (Fig. 4.10a). This is because these

two shapes present different curvature profile, which allows contact normals measured

at the fingertips to be sufficient for discrimination.

To some extent, zeroth- and first-order information are complementary to each other.

To prove this, a new RF was trained using both types of information concatenated in

the same feature vector (multimodal). This resulted in a 36-element feature vector. The

confusion matrix in Fig. 4.11 shows the obtained results. As expected, recognition rates

increased for almost all shapes. Torus continued to be confused with the hyperboloid

and cylinder. However, its recognition rate was brought up to 75,6%. It is important

to note that these results include the positions that were discarded by the ranges of

accuracy of the signatures in chapter 2.

4.5.2 Offline vs. sequential training

This section is dedicated to evaluating and comparing the performance of offline and

sequential training techniques for object shape identification using multimodal infor-

mation. For this, objects were sequentially added to the training set in ten randomly

chosen orders starting from two objects up to seven. Results (Fig. 4.12) showed that

both techniques performed similarly for most cases and converged to the same result as

the amount of objects increased.

These results make sequential training advantageous because an existing identification

model can be retrained to identify a new object without needing the complete original

training set.
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Figure 4.11: Confusion matrix for multimodal shape identification. Zeroth- and first-order
information were concatenated in the feature vectors.
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Figure 4.12: Recognition rate (%) obtained by computing the mean of ten tests. For each
test, the order in which the objects were added to the training set was varied randomly. The
tree corresponding to each object is updated 1500 times at the end of the training. Variance

of the results is also shown. Outliers are shown in red for both training strategies.

In order to compare the time each training technique took to be completed, see Fig.

4.13. As one can notice, sequential training takes less time to be completed. This is

because it allows to update the model as new shapes are added to the training set. Also,

the distance between these two curves increases with the amount of object, indicating

that the more objects there are, the more advantageous sequential training is.

4.5.3 Shape identification with sequential training

Fig. 4.14 shows the confusion matrix obtained using a sequentially trained NF. This

confusion matrix shows the identification rates for each shape once all shapes have been

added to the training set. To compute these recognition rates, ten tests were made in

which the order of adding the objects to the training set was different and randomly
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Figure 4.13: Number of updates per tree vs. the number of objects for offline (all-at-once)
and online (sequential) training.

chosen. Results are comparable to those obtained with the offline training technique

(Fig. 4.11) confirming that the proposed method performs as well as traditional training

methods for object shape identification.
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Figure 4.14: Average confusion matrices obtained using NF and sequential training.

We thought it would be interesting to see how the recognition rates of each shape

changes as new shapes are added to the training set. This allowed us to determine how

each shape affects the recognition rate of the others during the sequential training. Fig.

4.15 illustrates the results of this experiment. The positive values in the matrix depict

an increase of the recognition rate. Analogously, a decrease in the recognition rate is

depicted by a negative value. The disturbances correspond to the newly added shape

while disturbed correspond to the shapes that were already present in the training set.

In most cases no significant changes were detected and less than 10% changes are

reported. The exceptional cases where large perturbations were detected correspond

to: first, the shapes generating similar zeroth- and first-order information (e.g. the
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Figure 4.15: Matrix of recognition rate disturbances between shapes. Shapes on the vertical
axis (Disturbances) are the new shapes being added to the training set. Shapes on the
horizontal axis (Disturbed) are the shapes already present in the set being affected (Best

view in color).

sphere, the 90◦-R cone and the 90◦-R cylinder), and second, shapes generating similar

zeroth-order information (e.g. the hyperboloid and the cylinder). Regardless of these

perturbations, the performance of the sequential training was still similar to the ones

obtained with the offline training technique (see section 4.5.2).

4.5.4 Real hand results

For the experiments with the real hand, a sequentially trained NF was used. Training

of this NF was based on simulated data only. Results are shown in Fig. 4.16. The trees

corresponding to the 90◦-R cone and the 90◦-R cylinder were neglected so that the same

shapes as in chapter 2 were present in the confusion matrix.

When compared with results obtained with SVM in chapter 2, some differences can

be noticed. The sphere is no longer confused with the torus. This can be particularly

attributed to the use of a first-order information. The torus reduced its recognition rate,

and the reasons for that were discussed in section 4.5.1.

4.6 Conclusion

A method was presented for object shape identification using Neural Forest (NF)

Collection sequentially trained. The methodology presented in this chapter aimed to

address the challenges faced by tactile object recognition in realistic environments.



Chapter 4. Sequential Recognition of In-Hand Object Shape 94

90.0 10.0 0 0 0

0 63.6 0 36.4 0

0 0 100.0 0 0

0 0 0 100.0 0

0 0 0 25.0 75.0

C
one

Torus

Sphere

H
yperboloid

C
ylinder

Output

Cone

Torus

Sphere

Hyperboloid

Cylinder

In
p
u
t

Figure 4.16: Confusion matrix obtained with a sequentially trained NF. Training was per-
formed using simulated data. Data for testing was collected with the real Shadow hand.

In order to mitigate the impact of dealing with a large amount of objects, a multimodal

approach for global shape identification was presented. The haptic data used in this

approach was chosen based on an analysis of the functioning of the human haptic system.

This analysis demonstrated that first-order information was the most robust source of

information for curvature discrimination. For this reason, it was decided to include this

information in the shape representation.

For the shape representation based on contact normal information, the raw values

of the orientation of the contact normal vectors were used and the NF performed the

statistical representations. This representation performed well for every shape present

in the training set, except for the torus. This particular outcome results from the fact

that contact normal information was measured at the fingertips only. Thus, only 2D

features (curvature) can be detected, not 3D features (shape). This limitation is not

due to the representation, but to the amount of information present in it. If contact

normals were measured on other points of the hand, this limitation would certainly be

overcome.

The proprioceptive signatures continued to be used for shape identification in this

chapter. Regardless of this information being judged as the least robust for curvature

discrimination in haptic literature, we concluded that this information is of usefulness

in the context of this research. Results in chapter 2 further proved it.

By comparing results obtained with this data in an unimodal shape identification

approach, it was shown how both information complement each other. When com-

bined, an improvement of the recognition rates was achieved. Furthermore, unimodal

results showed certain similarities with the human haptic system, i.e., contact normals
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performed better than proprioception in discriminating shapes with smooth curvatures,

such as the hyperboloid with respect to the cylinder.

The challenge of the dynamic training set in realistic environment was approached by

working on the training technique. Sequential training was implemented. This differs

to most approaches which use batch training. When these training techniques were

compared, sequential training showed an advantage over batch training as it allowed to

considerably reduce the training time with respect to batch training. With respect to

recognition rates, both gave similar results. Globally speaking, they both converged to

approximately the same recognition rate for 7 objects. We presented an analysis on how

the recognition rates were affected by adding new shapes to the training set. Results

showed that only shapes generating similar zeroth- and first-order information affect

each other. Otherwise, the disturbances are less significant.

NF sequentially trained with simulated data showed to work well in identifying shapes

described by data obtained with the real platform. Some minor differences were found

with results reported in chapter 2 using SVM and explanation of those differences were

presented. However, the overall performance is similar, proving sequentially trained NF

to be usable for shape identification. This training technique allows reducing the training

time as new objects are added, which is usually the case in realistic environments.



Chapter 5

Conclusions and future work

For robotic hands to reproduce the human dexterity in manipulation tasks, they

require to count on perception systems that allow them to identify certain properties

of the objects they are handling. Besides the sensors, these perception systems are

composed by robust representations of the objects.

This thesis focused on creating representations needed for robotic hands to collect

information from haptic inputs. Such information refers to both the global shape of the

object and its location within the hand. The considered scenario consisted in a robotic

hand receiving and grasping a solid non-deformable object.

The robotic hand used the sensor information it collected during its interaction with the

object to create a haptic representation. Even if both tactile and proprioceptive inputs

were utilized, a great portion of the presented work was dedicated to the exploitation of

the proprioception. Chapter 2 and 3 presented how proprioceptive data was exploited.

5.1 Proprioception for object-related information extrac-

tion

The proprioception was at the core of the research presented in this thesis. A repre-

sentation of the proprioceptive data of a robotic hand was created. This representation

mimics some of the principles of human proprioception, such as, the hand kinematics

topology. By doing so, the possibility of implementing it for more than just shape iden-

tification purposes was targeted. Moreover, a method was presented to use both static

and dynamic data obtained from the hand during the grasp execution process.

96
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5.1.1 Static proprioceptive data

Chapter 2 focused on static proprioceptive data. Once the hand had grasped the

object, it used proprioceptive data to generate the proprioceptive shape signatures. Since

we wanted to focus on parameters that could actually be used for manipulation tasks,

we designed a signature enhancement process to make it invariant to the size and pose

of the objects within the hand.

An evaluation of the quality of the signatures measured in both simulated and real

environments proved that signature invariance is achieved within large ranges of sizes

and poses. We also examined the capabilities of the signatures to give accurate estima-

tions of the rotation of the object within the hand. With these results, we proceeded

to evaluate the signature performance for shape identification. These results depicted

object recognition rates up to 90%.

Further work on proprioceptive shape signatures

Proprioceptive shape signatures are generated under the condition that enclosure

grasping is used. In [2], it was demonstrated that this exploration procedure was used

for both global shape and volume identification. Therefore, further exploitation of the

signature involves object size estimation.

To estimate the size of the objects based on the signatures, a data-driven model

approach could be used. With this approch, kinematic information of the hand would

not be required. Instead, only the generated signatures would be used to build the

model.

This model should employ signatures that have not gone through the enhancement

procedure. The vertical shift and distance between both lines of the signatures contain

information about the size of the object. The enhancement procedure eliminates and

normalize those parameters, which is why enhanced signatures cannot be used for size

estimation.

The vertical shift and the separation between the lines of non-enhanced signatures

change with respect to the vertical position and the size of the grasped object. Data

shows a proportional correspondence between those pairs of parameters. In other words,

for a given radius and a vertical position, the vertical shift and the separation between

the lines of the signatures will remain the same. This is independent of the shape of the

object.
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Figure 5.1: Signatures measured in simulation for each one of the shapes used. The blue
markers depict the points on the signatures. Those points correspond to the fingers that

adapted to the same radius at the same position.

5.1.2 Dynamic proprioceptive data

As discussed in chapter 3, dynamic information from the grasping process was ex-

tracted and a tool was proposed to interpret it. The application given to this tool

consisted of the detection of the non-contact fingers. This is an important issue in the

object-shape identification field since most of the methods neglect to consider that this

situation might occur. The consequences of using a shape representation with erroneous

information from non-contact fingers could highly affect the recognition rates of the

learning algorithms.

Two methods were presented for non-contact finger detection. The first one, which is

position-based, took into account the movements of the fingers during the hand grasping

process. The second one, defined as dynamic-based, analyzed the movements in real time

and predicted the non-contact fingers before the grasping process was over.

Experiments, also carried out in simulated and real environments, showed that both

methods performed well. However, the dynamic-based method had an advantage over

the position-based one, since it saves time by predicting the non-contact fingers before

the grasp execution process ends. Experiments were carried out to test the advantages

of detecting the non-contact fingers for shape identification. Results showed that by

dropping out the non-contact fingers the capacity of the signatures to perform well was

extended.

Dynamic proprioceptive data for shape identification
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As stated in chapter 3, shape information can potentially be extracted from dynamic

data generated during the grasping process. The applications for this data are comple-

mentary to the static data. Thus, these perspectives are more related to improvements

of the work presented in the previous chapters.

The signatures proved to successfully identify the shapes of objects. Information

coming from the dynamic phase of the enclosure grasping should also be usable for

tactile shape identification. To prove this, consider the examples of the images Gbin

shown in Fig. 5.2. Each one of these images corresponds to one of the five shapes

considered in this thesis work. As can be visually observed, both the position and the

size of the white areas in the images Gbin show different patterns.

Figure 5.2: Images Gbin obtained for the different shapes in a simulated environment. From
left to right: cone, torus, sphere, hyperboloid, cylinder.

5.2 Sequential shape identification using multi-modal in-

puts

In chapter 4, a framework was presented to sequentially train a collection of neural

forests. This framework allowed to include new shapes into the set of identifiable shapes

without needing to train the model from scratch. Instead, the model was updated as

new shapes were added, making it possible to reduce the training time with respect to

batch training techniques.

Both proprioceptive shape signatures and contact normals were used as inputs for this

algorithm. The contact normals were measured at the fingertips of the robotic hand.

Analogies with the human haptic system were made based on the results obtained with

these inputs. In the case of the signatures, the confusion of the hyperboloid with the

cylinder was attributed to its low curvature along its main axis. Similarly, a human

would not be able to identify low curvatures using proprioception only. Contact normals

are the main source of information in this case. This same scenario reproduced itself

with the robotic hand: contact normal information was efficient in discriminating the

hyperboloid from the cylinder.

The sequential training performed similarly to the batch training technique in terms

of recognition accuracy. However, it reduced the training time by approximately 75%,

in the case of having seven shapes in the training set. This represents an important
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advantage of the sequential training method since, in realistic environments, new objects

might always appear and the system should be able to incorporate them in its set of

identifiable objects. Moreover, when there is a vast amount of objects, it would make a

batch training technique extremely time consuming if implemented.

In future work, it would be interesting to integrate sensor array readings to the

inputs of this algorithm. That would increase the complexity of the shapes that can

be identified. Furthermore, information obtained by grasping each shape from different

angles could be put in the same instances.

5.3 Summary

This research was intended to broaden understandings of robotic tactile object recogni-

tion. The solutions proposed here were meant to provide both shape and pose estimation

of the object. The capacities of proprioception as source of information for this task

were proved. A tool was created to endow robotic anthropomorphic hands with proper

representations of their proprioception. Based on this tool, both static and dynamic pro-

prioceptive information during a grasp execution were exploited for different purposes.

The static information, measured after finishing the grasping process, was exploited

to create the proprioceptive shape signatures. This descriptor made it possible to iden-

tify global shapes of objects independently of their size and position within the hand.

Signatures also made it possible to measure the rotation angle of the object within the

robotic hand.

In this thesis, it was shown that information collected during the grasping process

also contains information about a given object. Thus, a tool was developed to extract

information from that process and detect non-contact fingers. Our results revealed the

benefits of this tool for shape identification by enhancing the generation of the signatures

with static information.

Finally, this thesis proposes a framework to sequentially train a Random Forest

algorithm. Results showed that this training strategy offers similar results as the tradi-

tionally used batch training but training time was considerably reduced with respect to

the batch training strategy.

The work presented in this thesis could still be further developed and its applica-

tion could be in manipulation tasks, object size and pose estimation, robotic prosthesis

feedback design, multimodal object recognition and so on.



Appendix A

From joint angles to central

angles

This appendix shows how central from a grasped circle are equivalent to the angle

subtended by the are formed by the contact points between the finger and the circle. In

the Fig. A.1, points O,A,B and C define a quadrilateral. The sum of its internal angles

is equal to 360◦.

Figure A.1: Tangents l1 and l2 and the cords OA and OC forming a quadrilateral.

∠O + ∠A+ ∠B + ∠C = 360◦ (1)

Let l1 and l2 be tangents to the circle O at the points A and C. Hence, the cords OA

and OC are orthogonal to l1 and l2, respectively and

∠O + ∠B = 180◦ (2)

Because ∠B′ and ∠B are supplementary angles,

∠B′ + ∠B = 180◦ (3)
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Substituting (2) in (3) demonstrates that

∠O = ∠B′ (3)



Appendix B

Shadow Hand

In this appendix, we will be describing the experimental setups that will be used for

all the experiments to test the methods proposed in this manuscript. Except in cases

of modifications for specific purposes, all chapters refer to this appendix for practical

experiments explanations.

Most of the experiments were carried in both simulated and real environments. There-

fore, the information about both environments will be given here. Furthermore, the

procedures followed in each environment for the data collection process will also be

explained.

B.1 Shadow Dexterous Hand

The Shadow Dexterous Hand was used in experiments (Fig. B.3). This hand [42] is a

24-DOF system that reproduces closely the kinematics of the human hand. All fingers of

the robotic hand are the same length, however, they are not aligned. Each one of them

is located at a different height with respect to the forearm. The thumb has a different

length and kinematics from the rest of the fingers. Just like the human hand, the middle

and distal phalanges are coupled so that the middle joint has always a greater or equal

angle to the angle of the distal joint. The kinematics of the hand are optimized so that

it resembles the human kinematics as much as possible. Table 1.1 shows the limits of

each one of the joints.
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Figure B.1: Shadow Hand used in experiments.

Table B.1: Maximum and minimum joint angles that the joints from the index, middle, ring
and little finger can reach. The other DOF of this hand are not shown here because they are

set to a particular value. If needed, they will be specified in the corresponding chapters.

Joints
Degrees

Notes
Minimum Maximum

Proximal joint 0◦ 90◦

Middle joint 0◦ 90◦
coupled

Distal joint 0◦ 90◦

B.1.1 Sensors

Sensors play an important role in object shape identification since they provide with

the information of the environment that can be used later to extract information about

the grasp objects. The Shadow hand is equipped with several types of sensors allowing

to measure different parameters.

B.1.1.1 Joint angle sensors

The Shadow Hand is equipped with absolute encoders based on magnetic principles:

a hall sensor measures the intensity of magnetic field of a magnetic disk and sends the

data in a raw form to the computer. The raw data is then transformed at the host

to determine the position of the joints based on a calibration previously made. The

resolution of these sensors is approximately 0.2◦.
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B.1.1.2 Joint force sensors

The transmission from the motors to move the fingers is made through tendons. A

individual force sensor measures the force on each pair of sensors and it measures the

difference of tension between the two sensors and not the absolute tension.

B.1.1.3 Tactile sensors

The Shadow Hand is also equipped with 6-axis force/torque ATI nano 17 sensors

[110]. These sensors are located in the fingertips of the hand (Fig. B.2a). These sensors

have been convered with an ellipsoidal solid core covered with deformable rubber skin

(Fig. B.2b). Liu et al. [111] developed an algorithm to estimate contact location,

the direction and the magnitude of the friction and normal forces and the local torque

generated at the surface of the rubber skin based on the information coming from the

ATI nano 17. This algorithm works for single point contact only and it showed an error

mean squared error inferior to 0.55mm. Thus, the data coming from it is reliable for

shape identification.

(a) Real ATI nano sensors (b) Layers put onto the ATI nano sensor to
make it look like a fingertip.

Figure B.2: ATI nano 17 sensors adapted to the shadow hand.

B.1.2 Control system

Grasping is important to get usable data for tactile shape identification. Thus, hand

controllers are important to be known to plan a suitable grasping strategy. This hand

can be controlled via ROS. Smart Motors are used to actuate the joints and they are

driven by PWM. A PID controller is used and it can be set to control force control or

position controller. More complex controllers can be implemented via Robotic Operating

System (ROS). The joints of the hand are controllable to ±1◦.
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B.2 Shadow Hand Simulation Model

For experiments in simulation, the model of the Shadow Hand on Gazebo [112] was

used. This model has mostly they same characteristics of the real hand in term of dimen-

sions. However, it presents small differences. One of them regards the kinematics. The

coupling between the middle and distal phalanges does not always fulfill the expected

behavior. The distal joint angles may be larger than that of the middle phalanx.

Figure B.3: Gazebo model of the Shadow Hand.

This hand does not count on joint force sensors, therefore, force control cannot be

made on this hand. The 6D force/torque sensors on the fingertip are simulated. For

this, the contacts detected on the fingertip by the simulator are averaged in direction

and magnitude. Thus, a single contact is given by this model as well. It is also possible

to detect contacts on all links of the hand. In spite of having this information available,

they are recorded as raw values.
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