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1 FRENCH ABSTRACT 

Titre : Hypothèse d'une fonction non-SNARE de la syntaxine-5 

Mots clés : Syntaxin-5, GPP130, Retro-2, Sec16A, transport rétrograde, Shiga toxine 

Abstract : 

L’introduction commence avec la description de toxines d’origines bactérienne et végétale, en 
particulier la toxine Shiga ainsi que les toxines de la même famille (chapitre 9.1.2). Les petites 
molécules inhibitrices de ces toxines sont ensuite résumées dans le chapitre 9.1.3, en particulier le 
composé Retro-2. L’efficacité de ces toxines à atteindre leurs cibles reposant sur le trafic 
intracellulaire, un aperçu général de l’endocytose et du trafic endosomal sont présentés (chapitre 
9.2). Puis, l’entrée de la voie rétrograde est décrite (chapitre 9.2.5), avec un intérêt particulier porté 
sur la clathrine, le rétromère et GPP130, une protéine qui circule de manière continue entre le Golgi, 
la membrane plasmique et les endosomes. Les protéines SNARE, en particulier la syntaxine-5 et le 
syntaxine-16, sont ensuite introduites (chapitre 9.2.6). Après une brève section sur les micro-ARNs 
de la famille 199 (chapitre 9.3), l’introduction se termine avec la description des techniques clés 
utilisées au cours de mon travail, tels que la chimie click bio-orthogonale, la synchronisation du trafic 
antérograde par rétention grâce à des hameçons spécifiques (RUSH), et la ligation par proximité basé 
sur des anticorps (chapitre 9.4). 

Ci-inclus, mon article en cours de soumission ouvre la partie résultats (chapitre 10.1), dans laquelle 
je présente l’intérêt de la chimie click bio-orthogonale pour identifier les cibles cellulaires de Retro-
2. Je décris un des candidats potentiels, Sec16A, et illustre comment grâce à la technique de RUSH, 
perturber la fonction de Sec16A conduit à la relocalisation partielle de la syntaxin-5 au niveau du 
reticulum endoplasmique via l’inhibition du transport antérograde de la syntaxine-5. La seconde 
partie de l’article décrit comment la relocalisation de la syntaxine-5 induit l’inhibition du trafic de la 
toxine Shiga des endosomes au TGN. Je présente une nouvelle interaction entre la syntaxine-5 et la 
protéine TGN GPP130, qui ont déjà été caractérisées en relation avec le trafic de la toxine Shiga. Mon 
travail connecte à la fois les facteurs de trafic avec le trafic rétrograde au niveau de l’interface 
endosome-TGN. De manière frappante, cette interaction est très probablement basée sur une 
fonction non-SNARE de la syntaxine-5 car le domaine de fixation sur GPP130 est structurellement 
non lié à toute fonction SNARE. 

En collaboration avec Juan Francisco Aranda et Carlos Fernandez aux Etats-Unis, nous avons placés 
des micro-ARNs dans un contexte de régulation endogène du trafic rétrograde de la toxine Shiga 
(chapitre 11.2). Une discussion plus approfondie sera apportée dans le chapitre 12. 

Enfin, une vue d’ensemble des projets en cours est apportée dans la section des perspectives 
(chapitre 12), dans laquelle les collaborations plus approfondies sont mises en lumière. 

 

Mots clés : transport rétrograde, toxine Shiga, toxine de la famille Shiga, STxB, syntaxin-5, Sec16A, 
GPP130, Retro-2, Retro-2.1, chimie click sans cuivre, identification des cibles de petites molécules, 
spétrométrie de masse, function non-SNARE, inhibition du trafic antérograde, miARN, miR199, 
rétromère, VPS26 
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2 ENGLISH ABSTRACT 

Title: Hypothesis on a non-SNARE-Function of Syntaxin-5 

Keywords: Syntaxin-5, GPP130, Retro-2, Sec16A, retrograde transport, Shiga toxin 

Abstract: 

The introduction of my PhD manuscript starts with describing plant and bacterial toxins (chapter 
9.1), in particular Shiga toxin and Shiga-like toxins (SLTs) (chapter 9.1.2). Small molecule 
inhibitors of these toxins are summarized afterwards in chapter 9.1.3, notably the Retro-2 
compound. Since these toxins rely on intracellular trafficking to reach their molecular targets, a 
general overview of endocytosis and endosomal trafficking is provided (chapter 9.2). Next, the 
retrograde route entry is presented (chapter 9.2.5), with focus on clathrin, the retromer and 
GPP130, a protein that constantly cycles between Golgi, plasma membrane, and endosomes. 
SNARE proteins, particularly syntaxin-5 and syntaxin-16, are then introduced (chapter 9.2.6). 
After a brief section of the micro RNA family 199 (chapter 9.3), the introduction finishes with the 
description of some salient techniques that were used in my work, such as - bio-orthogonal Click-
Chemistry, anterograde trafficking synchronization with the retention using selective hooks 
(RUSH) assay, and the antibody-based proximity ligation assay (chapter 10.6.1, 0, 10.11.1). 

Herein, my submitted publication opens the results part (chapter 11.1), in which I present the 
utility of biorthogonal click chemistry for the search of the cellular targets of Retro-2, a small 
molecule inhibitor that was previously shown to protect cells and animals against Shiga toxin 
and ricin. I describe that Sec16A is a likely cellular target candidate, and illustrate using the RUSH 
approach how interfering with Sec16A functions leads to the partial relocalization of syntaxin-5 
to the endoplasmic reticulum (ER) by slowing-down its anterograde transport. The second part 
of the paper describes how syntaxin-5 relocalization causes the inhibition of Shiga toxin 
trafficking from endosomes to the TGN. I present a novel interaction between syntaxin-5 and 
the Golgi protein GPP130, which both have been already described in relation to Shiga toxin 
trafficking. My work connects both trafficking factors in retrograde trafficking at the endosomes-
TGN interface. Strikingly, I demonstrate that this interaction is most probably based on a non-
SNARE function of syntaxin-5. 

In collaboration with Juan Francisco Aranda and Carlos Fernandez in the US, we put micro RNAs 
into an endogenous regulation context of Shiga toxin retrograde trafficking (chapter 11.2). An 
extended discussion will be given in chapter 12. 

Last, a general outlook of ongoing projects is given in the perspectives section (chapter 13), in 
which further collaborations are highlighted. 

 

Keywords: Retrograde transport, Shiga toxin, Shiga-like toxin (SLT), STxB, syntaxin-5, Sec16A, 
GPP130, Retro-2, Retro-2.1, azide-functionalized Retro-2, copper-free click chemistry, small 
molecule target identification, mass spectrometry, non-SNARE function, anterograde trafficking 
inhibition, miRNA, miR199, retromer, VPS26 
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adopted from (Johannes et al., 2016). ................................................................. 31 

Figure 18: Model of actin-driven scission. After SLT binding on to Gb3, membrane curvature 

is induced, leading to the clathrin independent formation of PM invaginations. 

Actin polymerization causes scission through membrane reorganization 

(Römer et al., 2010) ............................................................................................... 32 

Figure 19: Gal3-driven membrane bending. (Johannes et al., 2015) ...................................... 33 

Figure 20: A schematic representation of the ‘tubular endosomal network’ (TEN). Endocytic 

vesicles are delivered to clathrin-coated early endosomes, which start to 

mature involving progressive acidification of their lumen. The TEN contains 

various domains (labeled in different colors) and the necessary machinery to 

sort cargoes to their various destinations. - (Bonifacino and Rojas, 2006) ........ 34 

Figure 21: The generation of multi-vesicular bodies, leading to lysosomes. The degradation 

pathway is shown by solid arrows. Membrane invaginations and internal 

vesicles are shown in red, highlighting multi-vesicular regions in EE and LE. The 

recycling pathways (slow and fast) are shown by dashed arrows. - (Gruenberg 

and Stenmark, 2004) ............................................................................................. 36 

Figure 22: Schematic drawing of retrograde trafficking entry points. The retrograde 

transport step from endosomes to the TGN can originate from several points: 

recycling (blue), early (green) or late (red) endosomes. - (Johannes and 

Wunder, 2011b) ..................................................................................................... 37 

Figure 23: Schematic presentation of a speculative model of the retromer coat on a 

membrane tubule. SNX dimer in purple. - (Hierro et al., 2007) .......................... 39 

Figure 24: SNARE proteins form a four-helical bundle complex that drives membrane 

fusion. (a) VAMP (blue) on the vesicle interacts with syntaxin (red) and SNAP-

25 (green) on the plasma membrane to form a four-helix bundle that zips up 

concomitant with bilayer fusion. (b) The backbone of the SNARE complex is 
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shown on the left, with the central ionic layer (red) and 15 hydrophobic layers 

(black) that mediate the core interactions. Top-down views of side-chain 

interactions are shown on the right, with the four SNARE helices that are 

represented as ribbons. The ball-and-stick structures represent the indicated 

amino acids; the dotted lines represent hydrogen bonds or salt bridges that 

stabilize interactions between SNAREs. Q-SNAREs and R-SNAREs are 

characterized by a glutamine (Q) or arginine (R) residue, respectively, in the 

central layer of the SNARE complex. (SNARE; soluble NSF attachment protein 

receptor, where NSF stands for N-ethyl-maleimide-sensitive fusion protein; 

SNAP-25, 25 kDa synaptosome-associated protein; VAMP, vesicle-associated 

membrane protein). - (Chen and Scheller, 2001) .................................................40 

Figure 25: Model of SNARE-mediated lipid fusion. (a) The two membranes are in the vicinity 

of each other but the SNAREs are not yet in contact. (b) SNARE complexes start 

zipping from the amino-terminal end, which draws the two membranes 

further towards each other. (c) Zipping proceeds, causing increased curvature 

and lateral tension of the membranes, exposing the bilayer interior. 

Spontaneous hemi fusion occurs as the separation is sufficiently reduced. (d) 

The highly unfavorable void space at the membrane junction in (c) causes the 

establishment of contacts between the distal membrane leaflets. (e) The 

lateral tension in the trans-bilayer contact area induces membrane 

breakdown, yielding a fusion pore. (f) The fusion pore expands and the 

membrane relaxes. - (Chen and Scheller, 2001) ...................................................41 

Figure 26: Schematic summary of known mammalian SNARE complexes and their site(s) of 

action in the exocytic and/or endocytic pathways. The potential v-SNAREs are 

indicated in red. - (Hong, 2005) .............................................................................42 

Figure 27: Proposed model of regulation of receptor-mediated endocytosis by dynamin 

and miR-199a/b. Sense strands of the dynamin genes are transcribed and 

translated to synthetize dynamin proteins that are involved in endosome 

trafficking. miR-199a- 5p is transcribed in the nucleus from the antisense 

strand of introns in the DNM2 and DNM3 genes and regulates receptor-
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mediated endocytosis and intracellular cholesterol levels by balancing the 

post-transcriptional levels of genes involved in endocytosis such as LDLR, CLTC, 

Cav-1, Rab5A and Rab21. - (Aranda et al., 2015) ................................................. 44 

Figure 28: Design and synthesis of Cu-free click chemistry reagents. (A) The copper-

catalyzed azide–alkyne cycloaddition. (B) The Cu-free click reaction of azides 

and DIFOs. (C) Single step synthesis of DIFO. (D) Derivatives of DIFO and a 

linear alkyne (alk) containing Alexa Fluor 488, Alexa Fluor 568, or biotin. - 

(Baskin et al., 2007) ............................................................................................... 50 

Figure 29: Detection of protein-protein proximity with the proximity ligation assay (PLA). 

(a) Schematic presentation of proximity probe-templated DNA circularization 

and subsequent rolling circle amplification (RCA) and detection. If two 

proximity probes bind close to each other, such as by binding two proteins 

present in the same complex, then subsequently added linear connector 

oligonucleotides are guided to form a circular structure covalently joined by 

enzymatic DNA ligation. After ligation, RCA is initiated using one of the 

proximity probes as a primer. The RCA product is detected through 

hybridization of fluorescence-labeled oligonucleotides complementary to a 

tag sequence in the RCA product. The green line in the circle that forms the 

proximity ligation reaction giving rise to multiple copies of complementary 

sequence in the RCA product (blue). This motif is detected by hybridizing 

fluorescence-labeled detection oligonucleotides (green).- (Söderberg et al., 

2006)....................................................................................................................... 52 

Figure 30: The RUSH system. (a) A schematic of the principle illustrates that the reporter is 

retained in the donor compartment via its interaction with the hook. This 

interaction is mediated by the core streptavidin and the SBP. Release is 

induced by addition of biotin to allow trafficking of the reporter to its acceptor 

compartment. A fluorescent protein is fused to the reporter. (b) Schematics of 

hooks containing STIM1-NN, Ii or KDEL for ER retention, or Golgin-84 for Golgi 

retention fused to streptavidin, and of reporters containing SBP fusions with 

Golgi proteins ST, ManII, GalT or Golgin-84, plasma membrane proteins 
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VSVGwt, E-cadherin, TNFα or EGFP-GPI and secreted protein SBP-ssEGFP. HA, 

hemagglutinin tag; FP, fluorescent protein. (c) Schematics of genes coding for 

the hook and the reporter, expressed under the same CMV promoter (pCMV), 

separated by a synthetic intron (IVS, intervening sequence) and an internal 

ribosome entry site (IRES). - (Boncompain et al., 2012) .......................................54 

Figure 31: Sec16A is involved in Retro-2 binding on cells. (A) Scheme of biorthogonal Click 

chemistry adapted to Retro-2. The clickable Retro-2 probe, based on Retro-2.1 

(Gupta et al., 2014) was coupled via a DIBO moiety to biotin, or a fluorophore. 

(B) In two independent pull-down experiments with the clickable Retro-2-

biotin probe, Sec16A was identified as the top hit. When indicated, non-

clickable Retro-2 was used in excess to compete with clickable Retro-2. DMSO 

without clickable Retro-2 was used as a control condition. (C) anti-Sec16A 

Western blots of a representative Retro-2 pull-down (with the clickable Retro-

2-probe). Shown are bands on the level of the 250 kDa marker. (D) Confocal 

acquisitions of Click-staining of a Retro-2-fluorophore-probe on mock-siRNA 

treated cells (=control), or Sec16A-depleted cells (=Sec16A). DNA was stained 

with DAPI. (E) Quantification (~100 cells per condition) of the fluorescence 

intensity of the Retro-2-fluorophore-probe (normalized to 100 ± 9.118 %). The 

intensity of the fluorescence-probe only (=probe) was set to 0 % intensity. The 

intensity of Retro-2-fluorophore-probe upon Sec16A depletion resulted in 

21.5 ± 6.248 % intensity. *** = <0.0001. ..............................................................62 

Figure 32: Depletion of Sec16A affects Shiga toxin trafficking similar to Retro-2 treatment. 

(A) HeLa cells were transfected for 72 hours with the indicated siRNAs 

(scrambled or against Sec16A). After 30 min of pre-incubation with Retro-2 (or 

DMSO for control), cells were incubated for another 45 minutes at 37°C with 

STxB-Cy3 (green). The Golgi was immuno-labeled with an anti-rabbit-Giantin 

antibody (red); DNA was marked with DAPI (blue). The scale bar represents 

10 µm. (B) Quantifications (~100 cells per condition of two independent 

experiments) of STxB-Cy3 intensity in the Golgi in the region indicated 

conditions. Control = 91.43 ± 0.9767 %, Retro-2 = 71.17 ± 2.289 %, siSec16A = 

60.54 ± 2.309 %, siSec16A + Retro-2 = 46.17 ± 1.683 %. P value of T tests = *** 
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= <0.0001. (C) Intoxication of Hela cells with STx1 in the indicated conditions. 

EC50siControl = 0.06178 ng/ml, EC50siSec16A = 0.3733 ng/ml, protection factor = 

6.042-fold. .............................................................................................................. 64 

Figure 33: Depletion of Sec16A affects STX5 localization similar to Retro-2 treatment. (A) 

HeLa cells were incubated for 30 min at 37°C with Retro-2 (or DMSO as 

control). STX5 was immuno-labeled with a rabbit antibody (green); the Golgi 

was immuno-labeled with an anti-goat-TGN antibody (red); DNA was marked 

with DAPI (blue). The scale bar represents 10 µm. (B) Quantifications (~50 cells 

per condition of two independent experiments) of STX5 intensity in the Golgi. 

Control = 69.4 ± 1.543 %, Retro-2 = 33.11 ± 0.9788 %, siSec16A =: 44.06 ± 

2.739 %, siSec16A + Retro-2 = 31.49 ± 1.27 %. P value of T tests = *** = 

<0.0001. .................................................................................................................. 65 

Figure 34: Retro-2 treatment slows the anterograde transport of STX5. (A) Confocal 

acquisitions of HeLa cells that expressed the STX5-RUSH construct. The cells 

were pre-treated for 60 min at 37°C with Retro-2, or DMSO as control (steady 

state). Trafficking was initiated upon addition of biotin, followed by incubation 

for 20 min at 37°C. STX5-GFP is shown in green; the Golgi (giantin) is shown in 

red; the scale bar represents 10 µm. (B) Quantification (four independent 

experiments, 60 cells per experiment) of STX5-GFP intensity in the Golgi area. 

Steady state: 17.93 ± 2.494 %, 20 min release in control conditions: 100 %, 20 

min release in the presence of Retro-2: 68.15 ± 5.298 %, P value of T tests = 

*** = 0.0010. (C) Trafficking of the ManII-RUSH construct (green) was analyzed 

as in (B). (D) Quantifications (~50 cells per condition) of ManII-GFP intensity in 

the Golgi. Steady state: 17.15 ± 1.531 %, 20 min trafficking: 94.12 ± 1.967 %, 

20 min trafficking + Retro-2: 91.18 ± 4.609 %, P value of T tests = NS = not 

significant. .............................................................................................................. 67 

Figure 35 (previous page): STX5-SNARE complexes are not affected upon Retro-2 

treatment. (A) Representative confocal acquisitions of the cellular distribution 

of STX5, GS27, and GS28 in either control (DMSO) or Retro-2 treated cells. (B) 

Quantification (~110 cells per condition) of Golgi-localized fluorescent signal 
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of STX5, GS27, and GS28. TGN46 immuno-labeling was used as a Golgi mask. 

STX5: 56 ± 1 %, STX5 + Retro-2: 28.32 ± 1.0 %, P value of T tests = *** = 

<0.0001. GS27 = 64.47 ± 1.0 %, GS27 + Retro-2 = 61.18 ± 1.7 %, P value of T 

tests = NS = 0.09. GS28: 82.58 ± 0.9 %, GS28 + Retro-2: 81.14 ± 0.9 %, P value 

of T tests = NS = 0.2774. (C) Table for STX5 interacting proteins that are not 

competed for by Retro-2 treatment of cells. #-cis-Golgi STX5 SNARE complex 

proteins, *-trans-Golgi STX5 SNARE complex proteins. (D) anti-GFP, GS27 and 

GS28 Western blots of a representative eGFP-STX5 pull-down via GFP-trap 

beads. Controls were un-transfected cells or eGFP transfected cells. eGFP-

STX5 cells were treated either with DMSO (control) or Retro-2. (D) anti-GFP, 

GS27 and GS28 Western blots of a representative eGFP-STX5 pull-down via 

GFP-trap beads. Controls were un-transfected cells or eGFP transfected cells. 

eGFP-STX5 cells were treated either with DMSO (control) or Retro-2. (E) 

Representative confocal acquisitions of STX5-PLA with either GS27 or GS28 

upon DMSO (control) or Retro-2 treatment. One cell per picture is shown. (F) 

Quantification of PLA between STX5 and GS27. Number of dots were 

normalized by µm². P value of T tests = NS = 0.4766 (G) Quantification of PLA 

between STX5 and GS28. Number of dots were normalized by µm². P value of 

T tests = NS = 0.9543. .............................................................................................70 

Figure 36: The cytosolic domain of GPP130 interacts with STX5. (A) Table of Retro-2-

competed interacting proteins of STX5. (B) anti-GFP and GPP130 Western 

blots of a representative eGFP-STX5 pull-down via GFP-trap beads. Controls 

were un-transfected cells or eGFP transfected cells. eGFP-STX5 cells were 

treated either with DMSO (control), Retro-2, siRNA against STX5, siRNA against 

GPP130, or manganese (leading to GPP130 degradation). (C) SDS-Page analysis 

of purified STX5 (residues 202-355). The indicated amount (Load) of purified 

STX5 was incubated with GST, GST-GPP1301-108 (WT), GST- GPP1301-108 with a 

substituted cytosolic domain from DPPIV (DGG), or GST- GPP1301-108 with 

KR11,12AA alanine substitution in the cytosolic domain. Anti-GST-beads were 

used to collect the complexes and after washing, recovery of STX5 (Bound) 
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was determined by Coomassie staining of SDS-PAGE gels and (D) quantified 

(n=6±SD). ................................................................................................................ 72 

Figure 37 (previous page): STX5 binding site in GPP130 is required for its Golgi retrieval and 

Shiga toxin trafficking. (A) Protein neo-biosynthesis was measured via the 

incorporation of S35-radiolabeled methionine in function of increasing toxin 

concentration after one hour of STx1 intoxication. Cells were pretreated either 

with scrambled siRNA or siRNA against GPP130 72 hours before intoxication. 

EC50siControl = 2.851 ng/ml, EC50siGPP130 = 27.47 ng/ml, protection factor 

= 9.6352. (B) STxB-Cy3 trafficking. Quantifications (~50 cells per condition of 

two independent experiments) of STxB-Cy3 intensity in the Golgi region after 

45 min. Control = scrambled siRNA: 86.39 ± 1.488 %, siGPP130: 63.23 ± 

2.475 %, WT rescue after GPP130 depletion: 83.23 ± 1.796 %, KR-AA mutant 

retransfection after GPP130 depletion: 57.08 ± 3.95 %. P value of T tests = *** 

= <0.0001, NS = non-significant. (C) Representative acquisitions of (D). (D) 

Gene-edited cells lacking GPP130 were transfected with either HA-GPP130 

(WT) or an identical construct with the KR11,12AA alanine substitution (KR-AA) 

that blocks binding to STX5. The cells were then untreated, treated with 

monensin for 1 hour to redistribute GPP130 to endosomes, or monensin-

treated and then subjected to a 3-hour washout incubation. Only the GPP130 

staining is shown to localize the GPP130 constructs, but giantin staining of the 

same cells indicated the position of the Golgi. Quantification of the washout 

was carried out by counting cells with primarily Golgi-localized, a mix of Golgi- 

and endosome-localized, or primarily endosome-localized GPP130 (n=9±SEM, 

about 50 cells counted per experiment).. Shown is the cellular distribution of 

the re-transfected GPP130 constructs (WT or KR-AA) upon control = untreated 

(left column), monensin treatment (middle column), or monensin washout 

(right column). The scale bar represents 10 µm. ................................................. 75 

Figure 38: Western blot against VPS26. Loading from left to right: molecular weight marker 

(top to bottom in kDa: 100, 75, 55, 35, 25, 15), scrambled miR transfected cells 

(miRCM), miR199 transfected cells, cell lysate (input). Expected size: 38 kDa. . 80 
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Figure 39: Quantification STxB-Cy3 trafficking in mock or miR199-treated cells. 

Quantifications (~25 cells per condition) of STxB-Cy3 intensity in the Golgi 

region after 45 min of incubation. miRCM = scrambled miR: 52.46 ± 3.489, and 

miR199 treatment: 33.92 ± 2.713. Shown is the mean and the SD. P value of T 

tests = *** = <0.0001. ............................................................................................81 

Figure 40: Representative intoxication curves upon STx1 treatment. Points = control = 

scrambled miR, triangles = miR199, cubes = siRNAVPS26, protection factors 

are shown in Figure 39. ..........................................................................................82 

Figure 41: Quantifications of 3 independent STx1 intoxication experiments. Shown are 

protection factors. Control = scrambled miR: 1-fold protection, miR199: 3.68 

± 0.8648 fold protection and siRNAVPS26 treatment: 4.507 ± 1.329 fold 

protection. The difference between miR199 and siRNAVPS26 was not 

significant (P = 0.6181) ...........................................................................................82 
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7 ABBREVIATIONS 

A 
AP Adaptor protein 
AP180 Adaptor protein 180 
Arf ADP-ribosylation Factor GTPase 
 
B 
BFA Brefeldin A 
 
C 
CALM Clathrin assembly lymphoid myeloid leukaemia 
CCP Clathrin-coated pit 
CCV Clathrin-coated vesicle 
CDC Centers for Disease Control and Prevention 
CD-MPR Cation-dependent mannose-6-phosphate receptor 
CMV Human cytomegalovirus 
COP I Coatomer protein complex I 
COP II Coatomer protein complex II 
CTx Cholera toxin 
CTxB B-subunit of cholera toxin 
 
D 
 
E 
EC50 50 % effective toxin concentration 
EE Early endosomes 
EE-TGN Early endosomes-Trans Golgi Network interface 
EGF Epidermal growth factor 
eGFP enhanced green fluorescent protein 
EGFR Epidermal growth factor receptor 
EpsinR Epsin related 
ER Endoplasmic reticulum 
ERAD ER-associated protein degradation 
ERES ER exit site(s) 
ERGIC ER-Golgi intermediate compartment 
ESCRT Endosomal sorting complex required for transport 
 
F 
 
G 
GAP GTPase activating factor 
GBF1 Golgi-associated Brefeldin A-resistant factor 1 
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Gb3 Globotriaosyl ceramide 
GCA Golgicide A 
GEEC GPI-anchored protein enriched early endosomal compartment 
GEF Guanine-nucleotide exchange factor 
GFP Green fluorescent protein 
GP73 Golgi membrane protein GP73 (Golgi membrane protein 1) 
GPI-AP Glycosylphosphatidylinositol-anchored proteins 
GPP130 Golgi-localized phosphoprotein of 130 kDa (Golgi integral membrane protein 4) 
GS15 Golgi SNARE of 15 kDa 
GS28 Golgi SNARE of 28 kDa 
 
H 
HSC70 Heat shock cognate 70 
HTS High throughput screening 
HUS Hemolytic uremic syndrome 
 
I 
IL2R Interleukin-2 receptor 
 
J 
 
K 
 
L 
LDL Low-density lipoprotein 
LDLR Low-density lipoprotein receptor 
 
M 
MHC Major histocompatibility complex 
miR micro interfering RNA 
MPR Mannose 6-phosphate receptor 
MVB Multivesicular body 
 
N 
 
O 
 
P 
PLA Proximity ligation assay 
PM Plasma membrane 
 
Q 
 
R 
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Rab Ras-like protein in brain 
Rho Ras homologous 
RIP Ribosome inactivating protein 
RME receptor-mediated endocytosis 
RME-8 Receptor-mediated endocytosis-8 
RNA Ribonucleic acid 
rRNA Ribosomal RNA 
RT Room temperature 
RTx Ricin holotoxin 
RUSH Retention using selective hooks 
 
S 
siRNA Small interfering RNA 
SLT Shiga-like toxins (Escherichia coli) 
SNAP Soluble N-ethylmaleimid sensitive factor (NSF) attachment protein 
SNAP-25 Synaptosome-associated protein of 25 kDa 
SNARE Soluble N-ethylmaleimid sensitive factor attachment protein (SNAP) receptor 
SNX Sorting nexin 
SNX-PX Sorting nexin-phox homology domain 
STEC  Shiga-like-toxin producing Escherichia coli 
STx  Shiga toxin; holotoxin (Shigella dysenteriae) 
STxA  A-subunit of Shiga toxin (Shigella dysenteriae) 
STxB  B-subunit of Shiga toxin (Shigella dysenteriae); identical to Stx1B 
Stx1  Shiga-like toxin 1; holotoxin (Escherichia coli) 
Stx2  Shiga-like toxin 2; holotoxin (Escherichia coli) 
STX5  Syntaxin-5 
SV40  Simian virus 40 
 
T 
TEN  Tubular endosomal network 
Tf  Transferrin 
TfR  Transferrin receptor 
TGN  Trans-Golgi network 
TGN46 Trans-Golgi network protein 46 
t-SNARE targetSoluble N-ethylmaleimid sensitive factor attachment protein (SNAP) 
receptor 
 
U 
 
V 
VAMP  Vesicle-associated membrane protein (also called synaptobrevin) 
 
  



 

22 

8 SUMMARY 

The introduction of my PhD manuscript starts with describing plant and bacterial toxins (chapter 9.1), 

in particular Shiga toxin and Shiga-like toxins (SLTs) (chapter 9.1.2). Small molecule inhibitors of these 

toxins are summarized afterwards in chapter 9.1.3, notably the Retro-2 compound. Since these toxins 

rely on intracellular trafficking to reach their molecular targets, a general overview of endocytosis and 

endosomal trafficking is provided (chapter 9.2). Next, the retrograde route entry is presented (chapter 

9.2.5), with focus on clathrin, the retromer and GPP130, a protein that constantly cycles between Golgi, 

plasma membrane, and endosomes. SNARE proteins, particularly syntaxin-5 and syntaxin-16, are then 

introduced (chapter 9.2.6). After a brief section of the micro RNA family 199 (chapter 9.3), the 

introduction finishes with the description of some salient techniques that were used in my work, such 

as - bio-orthogonal Click-Chemistry, anterograde trafficking synchronization with the retention using 

selective hooks (RUSH) assay, and the antibody-based proximity ligation assay (chapter 10.6.1, 0, 

10.11.1). 

Herein, my submitted publication opens the results part (chapter 11.1), in which I present the utility of 

biorthogonal click chemistry for the search of the cellular targets of Retro-2, a small molecule inhibitor 

that was previously shown to protect cells and animals against Shiga toxin and ricin. I describe that 

Sec16A is a likely cellular target candidate, and illustrate using the RUSH approach how interfering with 

Sec16A functions leads to the partial relocalization of syntaxin-5 to the endoplasmic reticulum (ER) by 

slowing-down its anterograde transport. The second part of the paper describes how syntaxin-5 

relocalization causes the inhibition of Shiga toxin trafficking from endosomes to the TGN. I present a 

novel interaction between syntaxin-5 and the Golgi protein GPP130, which both have been already 

described in relation to Shiga toxin trafficking. My work connects both trafficking factors in retrograde 

trafficking at the endosomes-TGN interface. Strikingly, I demonstrate that this interaction is most 

probably based on a non-SNARE function of syntaxin-5. 

In collaboration with Juan Francisco Aranda and Carlos Fernandez in the US, we put micro RNAs into 

an endogenous regulation context of Shiga toxin retrograde trafficking (chapter 11.2). An extended 

discussion will be given in chapter 12. 

Last, a general outlook of ongoing projects is given in the perspectives section (chapter 13), in which 

further collaborations are highlighted. 



 

23 

Keywords: Retrograde transport, Shiga toxin, Shiga-like toxin (SLT), STxB, syntaxin-5, Sec16A, GPP130, Retro-2, 
Retro-2.1, azide-functionalized Retro-2, copper-free click chemistry, small molecule target identification, mass 
spectrometry, non-SNARE function, anterograde trafficking inhibition, miRNA, miR199, retromer, VPS26 





 

1 

9 INTRODUCTION
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9.1 PLANT AND BACTERIAL RIBOSOMAL INACTIVATING PROTEIN-TOXINS 

The description of ribosome-inactivating proteins (RIPs) has been applied to plant proteins that 

enzymatically damage ribosomes in a catalytic manner, thus inhibiting protein biosynthesis (Desmyter 

et al., 2003; Peumans et al., 2001; Nielsen and Boston, 2001; Barbieri et al., 1993). The first identified 

RIPs were two potent toxins, known for more than a century: ricin, from the seeds of Ricinus communis, 

and abrin, from the seeds of Abrus precatorius. 

Later, further RIPs were discovered and classified into 3 types. Type 1 RIPs are single-chain proteins of 

around 30 kDa. Type 2 RIPs are built of two subunits: an A-subunit of about 30 kDa that provides the 

enzymatic activity, and a B-subunit with lectin activity, able to bind to oligosaccharides containing 

galactose. The third type of RIPs has been attributed to a maize b-32 RIP, regrouping RIPs with a 

proenzyme stage that get activated after cleavage of a short internal peptide, creating two fragments 

of 16.5 and 8.5 kDa (Walsh et al., 1991). For RIP JIP60, one of the two pieces is analog to a type 1 RIP, 

whereas the functions of the other part remains unknown (Reinbothe et al., 1994). Arguably, type 1 

and 2 RIPs represent the majority of RIPs. Structural schemes of both classes are shown in Figure 1. 

 

 
Figure 1: Structure of ribosome-inactivating proteins (RIP) type 1 and 2 (Barbieri et al., 1993). The number of binding sites per 
B-subunit of Type 2 RIPs can vary. The B-subunit of Shiga toxin provides in total 15 binding sites (3 binding sites per monomer) 
(Ling et al., 1998). 
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The unique characteristic of type 2 RIPs is the binding capacity of the B-subunit, which interacts with 

carbohydrate residues on cell membranes. Moreover, this binding results in the uptake of the toxins. 

A prominent member of the type 2 RIPs is ricin, which binds to mannose type glycans (Simmons et al., 

1986). The endocytosis and intracellular trafficking of type 2 RIPs has been well studied. 

Characteristically, type 2 RIPs, such as ricin and Shiga toxin, undergo retrograde trafficking. The key 

step is the arrival to the Golgi and further the endoplasmic reticulum (ER) (Mallard et al., 1998; Sandvig 

et al., 1992; Sandvig and van Deurs, 2000; Johannes and Goud, 1998), from where their A-subunits are 

retrotranslocated into the cytosol to reach their molecular targets: the ribosomes. In the cytosol, the 

A-subunits cleave an adenine base on position 4,324 within the 28S-subunit of ribosomes (Endo et al., 

1988; Saxena et al., 1989) (Figure 2). Through the catalytic cleavage, elongation factors are not 

recruited anymore, disabling ribosomes, inhibiting protein biosynthesis, and leading to cell death. 

 

 
Figure 2: Schematic presentation of the biochemical action of ribosome-inactivating proteins (RIPs), such as ricin and Shiga 
toxin. The A-subunit targets the α-sarcin site on the large (28S) subunit of ribosomes, which results in an inhibition of protein 
biosynthesis. (Stirpe, 2005) 
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9.1.1 Bioterrorism, bio threat agents and biodefense 

For the last decades, health emergencies due to infectious diseases have increased (E. coli O104:H4, 

Ebola virus, H1N1 influenza virus, etc.) (Morens et al., 2004; Jones et al., 2008). A recent outbreak that 

happened back in 2011 in central Europe, mainly Germany, demonstrated the overwhelming potential 

of toxins as bio-threats (King et al., 2012; Nr et al., 2011). The relative ease with which toxins are 

produced has enabled bioterroristic assaults (anthrax letters in 2001, or ricin letters to former US 

president Barak Obama), which kept bioterrorism on the political agenda throughout the years 

(Bekerman and Einav, 2015; Gottron and Shea, 2010; Gonzales et al., 2006; Council, 2007). As defined 

by the U.S. Centers for Disease Control and Prevention (CDC), the intended release of toxins, bacteria, 

viruses or other harmful biological agents to damage or kill people, animals, or plants is considered as 

a bioterrorist attack (Sciences et al., 2016). Biodefense is defined as the means or methods of 

preventing, detecting, or managing an attack involving biological weapons.  

The discovery of effective and direct medical agents against biological threats is clearly important. In 

the past decade, high-throughput screenings (HTS) have been performed by the French Commission 

for Alternative Energies and Atomic Energy (CEA - Commissariat à l'énergie atomique et aux énergies 

alternatives) and the Curie institute in Paris. This will be discussed in chapter 9.1.3. 

9.1.2 Shiga toxin and its Shiga-like toxins 

In the following text, I will mainly focus on Shiga toxin and its isoforms. Shiga toxin was characterized 

by and named after Kiyoshi Shiga (Trofa et al., 1999; Konowalchuk et al., 1977). Shiga toxins are 

members of a family that includes Shiga toxin, produced by Shigella dysenteriae and Shiga-like toxins 

(SLTs), produced by enterohemorrhagic strains (EHEC) of Escherichia coli (or Shiga-like toxin producing 

(STEC) strains) ( 
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Table 1) (Johannes and Römer, 2010; O’Brien et al., 1984). The production of these toxins by E. coli has 

been directly linked to the development of hemolytic uremic syndrome (HUS), which can have deadly 

outcome (Karmali et al., 1983). The enterohemorrhagic E. coli strains with the serotypes O157:H7 and 

O104:H4 are most common sources for SLTs. No direct treatments exist against EHEC-induced HUS, 

and the application of the anti-C5 complement component antibody eculizumab® remains 

questionable (Karpman, 2012). Furthermore, a treatment with conventional antibiotics seems to 

increase toxin release from bacteria and worsens the outcome (Agger et al., 2015). 

 

Figure 3: Shiga toxin structures. (A) Schematic drawing of the Shiga holotoxin, catalytic A-subunit (STxA); five B-fragment 
monomers that form the homopentameric B-subunit (STxB). (B) A ribbon diagram of Shiga toxin, illustrating the binding sites 
on STxB for globotriaosylceramide (Gb3). Gb3 is shown in a ball-and-stick representation. (C) A zoom into the furin cleavage 
(Arg248-Val-Ala-Met251) site of STxA; the disulfide bond (between Cys242 and Cys261) is shown in yellow. (D) A ribbon diagram 
of a STxB from below, pointing out the three Gb3-binding sites. Gb3 is shown as a ball-and-stick representation. (Johannes 
and Römer, 2010) 

 

Structurally and functionally, SLTs share many characteristics with other type 2 RIPs. Figure 3 

schematically shows the molecular set up of SLTs (Johannes and Römer, 2010). SLTs are built of a 

catalytic A-subunit (STxA) and a homo-pentameric B-subunit (STxB). STxA inhibits protein biosynthesis 

through ribosomal RNA N-glycosidase activity, as mentioned above in chapter 9.1.  

In the process of cellular trafficking, STxA can be cleaved into two fragments by the trans-Golgi-

network-(TGN)-localized enzyme furin, which specifically recognizes an Arg-X-X-Arg sequence (Molloy 

et al., 1992) (Figure 3 C). Specifically, the cleavage occurs in the positions Arg248-Val-Ala-Met251 and 

requires low pH for cell intoxication (Sandvig, 2001; Garred et al., 1995). This leads to the production 

of the STxA1 (28 kDa) and STxA2 (4 kDa) fragments. Both fragments remain connected via a disulfide 

bond between Cys242 and Cys261 until they reach the ER. 
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Table 1: Shiga toxin and isoforms (Johannes and Römer, 2010) 
 

Organism Toxin 

Sequence similarity to 
Shiga toxin [%] 

Characteristics Synonyms 
Cellular 
receptors A-subunit B-subunit* 

Shigella 
dysemterae 

Shiga 
toxin 

100 100 N/A N/A Gb3 

STEC STx1 97 98 N/A SLTI & VT1 Gb3 

 STx1c 97 98 N/A SLTIc and VT1c Gb3 

 STx2 53 64 Associated with serve disease in humans SLTII and VT2 Gb3 
 STx2c 53 61 N/A SLTIIc and VT2c Gb3 
 STx2d 54 61 N/A SLTIId and VT2d Gb3 
 STx2e 53 61 Associated with the piglet edema disease SLTIIe and VT2e Gb3 & Gb4 
 STx2f 54 60 N/A SLTIIf and VT2f Gb3 

Gb3, Globotriaosylceramide; N/A, not applicable; SLT, Shiga-like toxin; STEC, Shigella toxin-producing Escherichia coli; Stx1, Shiga toxin 
1; VT: Vero toxin. *This is the sequence similarity for mature B-fragments, without signal sequences. 

 

Strikingly, STxB (except STxB2e, Table 1) binds specifically the glycosphingolipid globotriaosylceramide 

(Gb3 or CD77) (Jacewicz et al., 1986; Waddell et al., 1990; Lindberg et al., 1987). Crystal structures 

revealed three binding sites per monomer, resulting in 15 binding sites per STxB (Ling et al., 1998). 

After binding to Gb3, SLTs were found in clathrin coated pits (Sandvig et al., 1989). Still, the depletion 

of clathrin only partially affects the uptake of Shiga toxin (maximally 35 % inhibition), suggesting that 

these toxins mostly enter cells through clathrin-independent endocytosis (CIE) (Lauvrak, 2004; Saint-

Pol et al., 2004; Nichols et al., 2001). After endocytosis, SLTs traffic through the retrograde route, from 

early endosomes (EE) to the Golgi and the ER (Sandvig et al., 1992) (Figure 6, page 9). Chapter 9.2 is 

going to introduce this intracellular trafficking in further detail. 

9.1.3 Small molecule inhibitors of the retrograde route 

One major strategy in developing a direct treatment against plant and bacterial toxins, such as ricin and 

Shiga toxin is small molecule HTS of chemical libraries. Since the beginning of the 21st century, several 

inhibitory small molecule compounds have been found that protect cells and animals against toxins 

through perturbation of their intracellular trafficking (Barbier et al., 2012). A recent review describes 

the latest development of new compounds that target the intracellular retrograde transport process 

(Gupta et al., 2017). In the upcoming chapter I am going to dissect their characteristics in further detail. 

9.1.3.1 Retro compounds 

In prior to 2010, my host laboratory collaborated with the CEA that had screened more than 16,000 

small molecules for inhibitory effects against ricin, and found two protecting small molecules, called 

Retro1 and Retro-2 (structures are shown in Figure 4). 
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Figure 4: Structures of Retro compounds. 
 

Ricin and SLT share the retrograde trafficking route. Therefore, those two compounds were also tested 

for their protective effect against intoxication of cells by SLTs, revealing an even higher protection 

factors (shown in Table 2), Moreover, it seemed that Retro-1 and Retro-2 affected only one out of 26 

tested trafficking factors that were known to be involved in endosomes-to-Golgi trafficking: Syntaxin-

5 (STX5) was relocalized out of the Golgi without dispersing the Golgi itself (Stechmann et al., 2010), 

pointing to the possibility that the Retro compounds might be of interest for pharmaceutical 

developments. A proper introduction into intracellular trafficking is given in chapter 9.2, on page 18.  

 

Table 2: Retro-1 and Retro-2 protection factors on HeLa cells against Ricin, Stx1, and Stx2. Protection factors calculated over 
the indicated number of experiments. Means ± SEM are shown. (Stechmann et al., 2010) 
 

Retro-1  Retro-2 

 Protection factor 

 

 Protection factor 

Ricin, 4 h 3.6 ± 0.1 (n=2) Ricin, 4 h 2.7 ± 0.1 (n=2) 

STx1, 1 h 37 ± 10 (n=6) STx1, 1 h 42 ± 9 (n=4) 

STx1, 4 h 24 ± 2 (n=2) STx1, 4 h 22 ± 12 (n=3) 

STx2, 1 h 75 ± 25 (n=2) STx2, 1 h >100 (n=2) 

STx2, 4 h >100 (n=2) STx2, 4 h 65 ± 35 (n=2) 

 

 

Remarkably, even in mice Retro-2 was effective against ricin, shown in Figure 5. Furthermore, Retro-2 

was also effective in a more clinically relevant scenario in mice, an E. coli O104:H4 infection (Secher et 

al., 2015). On the cellular level, the Retro compounds blocked Shiga toxin trafficking in endosomal 

structures and delayed its entry into the Golgi, as illustrated in Figure 6 (Stechmann et al., 2010) 
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Figure 5: Retro-2 protects mice against ricin challenge. Comparison of survival curves from mice that were treated with single 
intraperitoneal dose of Retro-2 with indicated concentrations one hour before toxin exposure. Ricin was administered to mice 
via the nasal route (2 mg/kg). The control group received only the vehicle in prior to ricin exposure. The curves for treated 
animals are statistically different from control as measured by the log rank test (p < 0.0001 for 2 µg/kg of Retro-2, orange; p 
= 0.015 for 10 mg/kg, brown; p = 0.031 for 20 mg/kg, purple; p = 0.0007 for 200 mg/kg, red). (Stechmann et al., 2010) 

 

 
Figure 6: Illustration of the retrograde trafficking of Shiga toxin and site of action of Retro-2 (Gupta et al., 2017). Toxins (e.g. 
ricin and SLTs) traffic via the retrograde route, starting from the plasma membrane through endosomes and Golgi to the ER 
(Johannes and Popoff, 2008). Retro-2 inhibits the toxin trafficking step from endosomes to the Golgi 

 

Moreover, very recent studies have shown that Retro-2 protected against Leishmania, poxviruses, 

filoviruses and Chlamydiales (Nonnenmacher et al., 2015; Gupta et al., 2017). Together with ricin and 
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STEC, poxviruses, filoviruses and Chlamydiales are listed on the NIAID emerging disease list (National 

Institute of Allergy and Infectious Disease, 2017) and the CDC bioterrorism bio threat agent list (CDC, 

2017). While Leishmania are not mentioned on those lists, a study from 2009 to 2012 showed that 

Leishmania was reemerging in Madrid, Spain, thus representing an emerging health risk (Arce et al., 

2013). 

9.1.3.1.1 Structural evolution of Retro-2 

The original Retro-2 molecule was found to inhibit toxin trafficking (Stechmann et al., 2010). In 2012, 

it was shown that the actual active configuration of Retro-2 is a cyclic compound that forms 

spontaneously (Park et al., 2012). The groups of D. Gillet and J.-C. Cintrat optimized Retro-2 by 

performing a structure-activity relationship (SAR) study (Noel et al., 2013), which yielded a molecule 

that was termed Retro-2.1. After thereby improving the protection potency against SLTs by a factor of 

500 when compared to the original hit compound (Noel et al., 2013), Retro-2.1 has been chemically 

functionalized with an azide group, herein referred to as “clickable Retro-2” (Figure 31) with the goal 

of identifying the cellular target of the molecule. As part of a target pull down strategy, this azide 

derivate enables biorthogonal click chemistry, which will be introduced in further detail in chapter 

10.6.1 on page 49. A summary of the structural evolution of Retro-2 is illustrated in Figure 7. 

 

 
Figure 7: Structural evolution of Retro-2. Structures A and B show the original hit compound Retro-2 (Stechmann et al., 2010). 
Structure B illustrates how the spontaneous cyclisation to molecule C (Retro-2cyclic) may take place (Park et al., 2012). Structure 
D shows the optimized molecule of Retro-2 based on C, called Retro2.1 (Noel et al., 2013). Additional structural groups are 
highlighted in blue. Molecule E is the azide-functionalized Retro-2.1, called “clickable Retro-2”, due to its potential to be used 
in a biorthogonal click chemistry approach (see chapter 0). The azide is marked in red. 
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Dihydro-quinazolinone analogs of Retro-2cycl showed a protective effect in monkey and human 

polyoma- and papillomavirus infection in vitro (Carney et al., 2014; Nelson et al., 2013). Hence, the 

demonstrated protective effects of Retro-2 in vitro and in vivo turn the optimized derivatives into 

promising antidotes against many bio threats, including plant and bacterial toxins, viruses, intracellular 

parasites and bacteria. 

9.1.3.1.2 Retro-2 effect on viral infections 

Viruses are known to enter their host cells through different routes (Harper et al., 2013). Enveloped 

viruses dock and fuse directly with the plasma membrane (PM) and translocate their nucleo-capsid 

directly into the cytosol. Yet, non-enveloped viruses and others have to be taken up first, and then 

traffic through the host cell before the release into the cytosol. Some viruses even undergo retrograde 

trafficking (Grove and Marsh, 2011) which led to the idea that Retro-2 might protect against those 

viruses as well. 

Adeno-associated viruses (AAV) have shown promising biomedical potential in gene therapy, and their 

evaluation for the treatment of various diseases is still ongoing. The retrograde trafficking of AAV is 

essential to reach the nucleus. Thus, its TGN arrival is a critical step, which has been shown to be 

syntaxin-5 (STX5) dependent and could be inhibited by Retro-2 (Nonnenmacher et al., 2015). Hence, 

Retro-2 could be exploited in anti-viral disease treatments. 

As members of non-enveloped DNA viruses, polyomaviruses (PyV) (including human papillomaviruses 

(HPVs)) cause severe diseases in immunocompromised patients. BKPyV is the causative agent of 

polyomavirus-induced nephropathy and hemorrhagic cystitis, and JCPyV is the causative agent of the 

fatal demyelinating disease progressive multifocal leukoencephalopathy. Thus far, no vaccine or 

antiviral therapy for these viruses has been found (De Gascun and Carr, 2013). HPVs have been put in 

context with cancer development in the uterine cervix and oropharynx. Although vaccination showed 

success against some types of HPVs, many HPVs infections remain present and still are of public health 

concern (Carney et al., 2014). It has been shown that Retro-2 (c = 100µM) inhibited JCPyV, BKPyV and 

simian virus 40 (also a PyV) infections on tissue cells in average by around 30 %. Retro-2 blocked the 

PyVs’ arrival to the ER, which is strictly required for infection (Nelson et al., 2013). These results were 

confirmed in cell culture for PyVs. Additionally, Retro-2 protected cells also against HPVs (Carney et al., 

2014). 

As filamentous enveloped viruses, Ebola and Marburg filoviruses (FV) are members of the family 

Filoviridae, which cause viral hemorrhagic fevers in humans resulting in a high mortality rate of up to 
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90 % (Bausch et al., 2006; Feldmann and Geisbert, 2011). Thus far, only few drugs (favipiravir) have 

been tried in animals or humans, without promising results. Furthermore, no vaccination strategy is 

yet available (Sissoko et al., 2016), resulting in a biosafety level-4 classification for FVs. Recently, the 

growth of a new Ebola virus variant in West Africa has alerted health authorities. Favipiravir is the only 

small molecule drug that was tested in mice, showing an IC50 of 67 µM (Oestereich et al., 2014). 

Unpublished data of our collaborators at the CEA have shown that Retro-2 protected in vitro against 

an Ebola virus and Marburg virus infection (article in revision).  

Two independent high throughput siRNA screens of Vaccinia virus (VACV) identified proteins of the 

endosomes-to-Golgi retrograde transport step to be pro-viral host factors (Sivan et al., 2013; Beard et 

al., 2014). Recently, further studies demonstrated that Retro-2 reduced spreading of VACV and Monkey 

pox viruses in cell cultures by interfering with their replication (Sivan et al., 2016; Harrison et al., 2016). 

The Retro-2 effect relied on a membrane wrapping process during late stages of virion maturation 

(Smith et al., 2002). Two viral proteins, involved in the maturation process, rely on retrograde 

trafficking from endosomes to the TGN. Retro-2 miss-localizes these proteins, and thus, blocks the 

maturation process. 

In summary, Retro-2 shows significant potential in antiviral treatment, relying on its capacity to block 

retrograde trafficking. 

9.1.3.1.3 Retro-2 effect on intracellular parasites 

Leishmania is an intracellular parasite and causes leishmaniosis, affecting about twelve million people 

with two million new cases per year worldwide. Although Leishmania is not classified as a bioterrorism 

agent, the Leishmania outbreak from 2009 to 2012 in Madrid, Spain, affected 446 individuals (Arce et 

al., 2013). Current treatments against Leishmania are either toxic or lead to the emergence of drug 

resistant strains, resulting in a strong need for new treatments against Leishmania (No, 2016; Sundar 

et al., 2014; Mansueto et al., 2014). Leishmania are internalized by macrophages into intracellular 

compartments called Leishmania parasitophorous vacuoles (LPVs), similar to phagosomes. Previous 

studies suggested that STX5 is involved in the creation of those LPVs. Consistently with the effect of 

Retro-2 on STX5 localization (see chapter 11.1.4.2, page 63), Retro-2 inhibited the development of LPVs 

in Leishmania amazonensis infected cells. Moreover, Retro-2 protected mice form L. amazonensis 

infections, without showing any toxicity by itself (Canton and Kima, 2012). Retro-2 also protected 

against L. donovani in vitro and in vivo. Thus, Retro-2 affects parasites inside and outside their host. 
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9.1.3.1.4 Retro-2 effect on intracellular bacteria 

Simkania negevensis is an obligate intracellular Gram-negative bacterium that belongs to the family of 

Chlamydiales. Although its natural host remains unknown, S. negevensis is common among humans, 

where it has been related to infections of the upper respiratory tract. S. negevensis grows in 

membrane-bound vesicular ER contact sites (ERES). In 2016, it has been shown that Retro-2 inhibited 

bacterial replication in either a primary and consecutive infection (Herweg et al., 2016). Remarkably, 

Retro-2 treated S. negevensis offsprings were significantly less infectious. The morphology of S. 

negevensis–containing vacuoles seemed to affected, resulting in replication deficiencies of the bacteria 

(Herweg et al., 2016) 

9.1.3.1.5 Bio threats that are not affected by Retro-2 

Diphtheria toxin (DT), Clostridium botulinum neurotoxin A (BoNT/A), dengue virus serotype 4 (DENV-

4), chikungunya virus (CHIKV) and Venezuelan equine encephalitis virus (VEEV) were not affected upon 

Retro-2 treatment. Briefly, the missing effect of Retro-2 on DT and BoNT/A could readily be explained, 

as these toxins do not depend on the retrograde trafficking route. After the internalization of DT into 

endosomes, the catalytic domain is translocated to the cytosol, exploiting a strong pH decrease that 

occurs in toxin containing endosomal compartments (Gillet et al., 2015). For BoNT/A, the toxin traffics 

directly in synaptic vesicles or clathrin-coated vesicles in the nerve terminus, where similar to DT, 

acidification causes the translocation of the catalytic subunit into the cytosol (Gillet et al., 2015). 

In the case of DENV-4, CHIKV and VEEV the available data suggests that the envelop maturation does 

not rely on the retrograde route. It has been suggested that DENV-4 is translocated from lysosomes, 

after trafficking through Rab5-positive early endosomes and Rab7-positive late endosomes (Van Der 

Schaar et al., 2008; Acosta et al., 2012). Alphaviruses, CHIKV and VEEV are most probably taken up 

through receptor-mediated endocytosis (RME), followed by acidification of endosomes (Li et al., 2010; 

White and Helenius, 1980). Another hypothesis is direct entry through the plasma membrane (Vancini 

et al., 2013). 

9.1.3.2 Other small molecules 

In addition to Retro-2, other small molecule inhibitors have been found that protect cells against plant 

and bacterial toxins. For some, the cellular targets have been identified (Figure 8), whereas for the 

others, including Retro-2, this is not yet the case (Figure 9). 
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9.1.3.2.1 Inhibitors with identified target 

 

 

Figure 8: Chemical structures of inhibitors of SLTs for which the cellular target is already known. 
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9.1.3.2.1.1 Ilimaquinone (IQ) 

IQ (Figure 8) is a sesquiterpenoid quinone metabolite isolated from marine sponges, which on Vero 

cells reversibly protects against ricin, DT and other toxins (Nambiar, 1995). IQ disrupts the Golgi into 

small vesicles (Takizawa et al., 1993; Lu et al., 2007), due to its interaction with enzymes that are 

involved in the methyl cycle. It has been suggested that S-adenosyl-methionine synthetase, S-adenosyl-

homocysteinase, and methyl transferases communicate with small GTPases (Radeke et al., 1999). 

9.1.3.2.1.2 Brefeldin A (BFA) 

BFA (Figure 8) is an isoprenoid fungal metabolite that protects cells against ricin and SLTs (Yoshida et 

al., 1991; Thompson et al., 1995; Donta et al., 1995). Similar to IQ, BFA disrupts the Golgi structure and 

function, thereby perturbing intracellular protein trafficking and secretion (Klausner et al., 1992). By 

targeting specifically guanine nucleotide exchange factors (GEFs), BFA inactivates the ADP-ribosylation 

factor (Arf) family (Donaldson et al., 1992). GEFs regulate Arf GTPases by catalyzing the exchange of 

GDP (inactive) to GTP (active), abling the interaction with effectors (Peyroche et al., 1999; Mossessova 

et al., 2003b). 

Arf1 has been described to be involved in the regulation of anterograde and retrograde trafficking in 

eukaryotic cells (Donaldson et al., 2005; Donaldson and Honda, 2005), by recruiting the coatamer 

complex at the level of the cis-Golgi, which assembles COPI vesicles. On the level of the trans-Golgi and 

endosomes, Arf1 recruits the clathrin adapter proteins. 

The GEFs GBF1 (mainly cis-Golgi), Brefeldin A-inhibited GEP 1 (BIG1), and Brefeldin A-inhibited GEP 2 

(BIG2), both localized at the trans-Golgi, are sensitive to BFA. They share a Sec7 domain, which is 

needed for guanine nucleotide exchange. By acting as an uncompetitive inhibitor, BFA binds and thus, 

disables the Arf1-GDP-Sec7 domain GEF complex (Peyroche et al., 1999). GBF1 regulates COPI vesicle 

formation, which traffic form the Golgi towards the ER (Bonifacino and Glick, 2004). BIG1 and BIG2 are 

involved in the recruitment of clathrin adaptors (AP-1 and AP-3) and non clathrin dependent adaptor 

(AP-4) to the Golgi. These adaptors are involved in the trafficking between endosomes and the Golgi 

(Robinson, 2004; Mattera et al., 2015). 

Since its discovery 40 years ago, BFA is arguably one of the best understood small molecule, and its 

study has led to the general concept of interfacial inhibition. Yet, its high toxicity excludes BFA from 

being used as a pharmaceutical compound.  
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9.1.3.2.1.3 Exo2 and LG186 

Initially, Exo2 (Figure 8) was found in a chemical genetics study as an inhibitor of the 

anterograde/secretory pathway (Feng et al., 2003; Yarrow et al., 2003). Afterwards, it has been shown 

that Exo2 inhibits anterograde trafficking from the ER to the Golgi. Hence, it leads to the disruption of 

the Golgi. Further, Exo2 was used to explore Golgi function and retrograde toxin trafficking (Feng et al., 

2004; Spooner et al., 2008). Exo2 had no inhibitory effect on cholera toxin (CT) (Feng et al., 2004). In 

contrast, Exo2 significantly inhibited SLT trafficking to the ER, by disrupting the TGN, in a similar way as 

BFA. However, Exo2 did not fuse and tabulate TGN and endosomes (Spooner et al., 2008). Besides, 

Exo2 dissociated COPI compounds from membranes, without affecting AP-1. It was proposed that this 

is due to a selective inhibition of GBF1, without affecting BIG1 and BIG2. Still, other phenotypical 

changes cannot be explained by the inhibition of ArfGEFs (Boal et al., 2010). 

LG186, a derivate of Exo2, was found to enhance the selectivity of Exo2 towards GBF (Boal et al., 2010). 

The cyclohexenyl ring was changed into a cyclooctenyl ring (Figure 8). Due to this molecular change, 

LG186 became capable of perturbing the Golgi even in MDCK cells by removing COPI from vesicle 

membranes. The cyclooctenyl ring of LG186 could interact with the M832L residue of GBF1 (Boal et al., 

2010). Nonetheless, LG186 seems to inhibit further ArfGEFs. Other Exo2 derivates were designed to 

lower cytotoxicity, without losing their protective capacities against SLTs (Guetzoyan et al., 2010a; b). 

Compared to BFA, Exo2 and its derivatives proved to be more selective tools to decode membrane 

trafficking. 

9.1.3.2.1.4 Golgicide A (GCA) 

GCA (Figure 8) was found in a cell based HTS designed for bacterial toxin inhibition (Saenz et al., 2007). 

GCA strongly protected Vero cells from SLTs, and was found to be a potent reversible inhibitor GBF1 

without affecting BIG1 or BIG2. As other trafficking inhibitors, GCA disperses the Golgi by interfering at 

the Arf1 and Sec7 domain of GBF1 (Sáenz et al., 2009). As previously mentioned, the inhibition of GBF1 

results in the dissociation of COPI vesicles on the level of Golgi to ER trafficking, leading to the 

disassembly of the Golgi. 
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9.1.3.2.2 Compounds with unknown target 

 

Figure 9: Chemical structures of inhibitors of SLTs for which the cellular target is still unknown, including the Retro compounds. 

 

Figure 9 shows the chemical structures of other small molecules that protect against several bacterial 

and plant toxins. Retro-1 and Retro-2 were found in HTS on ricin intoxication, and have already been 

described above (chapter 9.1.3.1) (Stechmann et al., 2010). For Retro-1, no cellular target has been 

found, and for Retro-2, this matter will be addressed in chapter 11.1.4.1. Remarkably, the Retro 

compounds protected cells without dispersing the Golgi apparatus (Stechmann et al., 2010). 

Similar to the Retro compounds, compounds 75 and 134 protect Vero cells against ricin and SLTs (Saenz 

et al., 2007), by disrupting their intracellular trafficking along the retrograde route. Compound 75 also 

inhibits DT, whereas compound 134 remained inactive against DT. Thus, compound 75 most probably 

acts early at the level of EE, whereas compound 134 might act at a later stage of the retrograde route. 

Indeed STxB was blocked in EE upon treatment of cells with compound 75 (Saenz et al., 2007), whereas 

it was found in perinuclear recycling endosomes (RE) upon compound 134 treatment. Moreover, only 

compound 75 partially blocked secretion from the TGN, confirming that they most likely have different 

mechanisms of action. Both compounds did not affect toxin binding to cells, toxin endocytosis, or the 

anterograde pathway. However, both compounds change the morphology of the Golgi in a reversible 

manner. Sulfation assays (Mallard and Johannes, 2003) showed that the trafficking of toxins to the TGN 
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was reduced (Saenz et al., 2007). Yet, the cellular targets of these two compounds remain to be 

identified. Their pharmaceutical value remains questionably due to their interference with the Golgi 

morphology. 

The compounds 2, 3, and 4 (Figure 9) were found in HTS based on ricin intoxication (Wahome et al., 

2010). Little is known about these compounds. 

All the small molecules that were discussed in this chapter need further characterization. Regardless of 

whether they are of pharmaceutical value, they remain of high interest for research, helping to 

understand bio threats better and uncover cellular trafficking processes. 

9.2 INTRACELLULAR TRAFFICKING 

Intracellular trafficking deals with the movement of vesicular or tubular carriers between membrane-

bounded compartments. In this chapter, I will discuss the biosynthetic/secretory or anterograde 

pathway (chapter 9.2.1), with an emphasis on COPII vesicle formation (chapter 9.2.1.1.1). I will then 

discuss trafficking processes that lead to the entry of extracellular materials into cells. These endocytic 

processes (chapter 9.2.2) will be further dissected into clathrin-mediated endocytosis (CME, chapter 

9.2.2.1) and clathrin-independent endocytosis (CIE, chapter 9.2.2.2). At the level of endosomes, the 

recycling (chapter 9.2.3), lysosomal (chapter 9.2.4), and retrograde (chapter 9.2.5) pathways will be 

addressed. Due to its importance for my PhD work, retrograde trafficking between endosomes and the 

TGN will be dissected in further detail. The role of clathrin (9.2.5.2), retromer (chapter 9.2.5.3), and 

SNAREs (chapter 9.2.6) will be discussed, followed by introducing a Golgi protein that cycles via the 

retrograde route, termed GPP130 (chapter 9.2.5.1). 

The basic steps in intracellular membrane transport are (Bonifacino and Glick, 2004): 

 carrier formation from a donor compartment 

 translocation of transport intermediates to a target compartment 

 tethering of transport intermediates with the target compartment 

 and, finally, carrier fusion with the target compartment 

9.2.1 Anterograde trafficking via the biosynthetic/secretory pathway 

Cell growth and survival depends on interaction with their environment, mediated by PM receptors 

and their ligands. Both, receptors and ligands are synthesized in the ER, and are then transported to 

the PM. Every third protein of the mammalian proteome is involved in the biosynthetic/secretory 
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pathway (Sharpe et al., 2010). The vesicular transport hypothesis stated in the 1970s that transport 

between organelles of the biosynthetic/secretory pathway occurred through vesicular intermediates 

that bud from a donor compartment and then fuse with an acceptor compartment (Palade, 1975). In 

the 1980, screening in yeast for genes that were required for protein secretion allowed to identify 23 

“Sec” genes (Novick et al., 1980; Spang, 2015). The exit out of the ER and trafficking towards the Golgi 

are the first steps of the anterograde pathway, which is initiated by the formation of COPII vesicles 

(chapter 9.2.1.1.1) (Bonifacino and Glick, 2004). In the Golgi, proteins and lipids are modified (e.g. 

sulfation, glycosylation…).  

Three main hypothesis have been proposed to explain how molecules pass through the Golgi (Figure 

10): 

 

 

 
Figure 10: Models for intra-Golgi vesicular transport. Cargo synthesized in the ER and transported through the secretory 
pathway is shown in yellow; Golgi processing enzymes are shown in blue. Arrows indicate the direction of trafficking: From 
left to right: The model of cisternae maturation – the vesicular transport model – the rapid-partitioning model (Jackson, 2009) 
– Blue dots are Golgi localized enzymes; yellow dots are cargo; blue areas are glycero-phospholipid-enriched membranes; 
green areas are sphingolipid-enriched membranes; green circles within each Golgi stack are sphingolipid-enriched export 
domains 

 

The model of cisternae maturation views the Golgi as a rather dynamic structure, in which the cisternae 

as such move and mature forward passively (Bonfanti et al., 1998). The vesicular transport model claims 

that Golgi cisternae are stationary and therefore vesicles move from one cisternae to another (Orci et 

al., 1997). The latest proposed model, termed the ‘rapid partitioning model’, proposes that cargos 
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traffic from the ER to the cis-Golgi, where they can move in-between the Golgi-stacks and depart the 

Golgi from any Golgi stack based on a specific lipid-protein-combination (Patterson et al., 2008). 

After leaving the Golgi, secretory vesicles will fuse with the PM, leading to secretion of soluble vesicular 

components, or to the delivery to the PM of lipids or transmembrane proteins (e.g. receptors, 

transporters, or enzymes). Post-Golgi trafficking also connects to the endocytic pathway to deliver 

lipids, enzymes, and other cargoes to late endosomes and lysosomes. 
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9.2.1.1 ER Exit Sites (ERES) 

Newly synthesized proteins that are supposed to leave the ER depart from dedicated sites that are 

termed ER exit sites (ERESs, or transitional ER sites (tER)). Characteristically, these are ribosome-free 

regions in the ER (also referred as the ER cup; (Bannykh et al., 1996) with COPII-coated components on 

buds and vesicles that contain anterograde cargoes (Lee et al., 2004) (Figure 11). COPII vesicles then 

fuse with the ER–Golgi intermediate compartment (ERGIC), from where proteins are processed and 

further directed to the Golgi. 

 

 

Figure 11: A schematic representation of an ER exit site (ERES) showing the ER cup lacking ribosomes, forming COPII-coated 
vesicles. 
 

The assembly of the COPII coat requires 6 key factors: 

 The transmembrane protein Sec12 

 The small GTPase Sar1 

 Sec23 and Sec24, which form the inner coat heterodimer 

 Sec13 and Sec31, which form the outer coat heterodimer 

Sec23 has GAP activity towards Sar1, whereas Sec24 has several binding sites to carry cargoes out of 

the ER. Their discovery was rewarded with the Nobel Prize in Physiology and Medicine in 2013 to Randy 

Scheckman (Miller and Barlowe, 2010). After their assembly, COPII vesicles bud from the ER and uncoat, 

by the conversion of Sar1-GTP to its inactive GDP-bound form, mediated by Sec23 (Yoshihisa et al., 

1993). 
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9.2.1.1.1 Sec16A and the COPII coat 

In vitro experiments have shown that purified Sec23/24, Sec13/31 and a GTP-locked form of Sar1 are 

sufficient to coat liposomes and drive the formation of buds and small vesicles (Matsuoka et al., 1998). 

Nonetheless, at the level of the ERES many more proteins are involved, suggesting that other factors 

help during this process (Supek et al., 2002; Matsuoka et al., 1998). 

Sec16 has been associated with a clear role in COPII coat dynamics. It was found in a screening in 

Saccharomyces cerevisiae where it appeared to be essential for the function of the early secretory 

pathway (Supek et al., 2002; Matsuoka et al., 1998). Despite the fact that there is a major subgroup of 

unicellular organisms lacking Sec16A, called Excavata (Neumann et al., 2010), Sec16A is relatively 

conserved in many species, including S. cerevisiae, (Kaiser and Schekman, 1990), Pichia pastoris 

(Connerly et al., 2005), Caenorhabditis elegans (Witte et al., 2011), Trypanosoma brucei (Sealey-

Cardona et al., 2014) and Drosophila (Ivan et al., 2008). Sec16A is a rather big hydrophilic protein of 

approximately 240 kDa, having various isoforms. With Sec16A (large, ~230 kDa) and Sec16B (short, 

~115 kDa), mammals have two genes encoding homologous Sec16 proteins. The B homologue was first 

identified as regucalcin, a gene promoter region-related protein (Bhattacharyya and Glick, 2007; 

Hughes et al., 2009; Budnik et al., 2011). Sec16 is strongly associated to ER membranes, and Triton X-

100 with high salt concentrations or high pH is needed to extract it. 

Sec16 interacts with the COPII coat components. The best characterized interactions have been 

described in S. cerevisiae (Shaywitz et al.; Espenshade et al., 1995; Gimeno et al., 1996), many of which 

then have also been established biochemically.  

9.2.1.1.2 COPII coat dynamics: Two models for Sec16A function 

Sec16 being an essential factor for proper COPII vesicle formation, a loss of Sec16 function has been 

shown to result in perturbed ERES organization and protein export (Espenshade et al., 1995; Yorimitsu 

and Sato, 2012). A temperature sensitive mutation in Sec16 leads to the disappearance of ERES, and 

the loss of the Sec23-Sec13 interaction (Shindiapina and Barlowe, 2010). In Drosophila, Sec16A 

depletion strongly reduces cell proliferation (Ivan et al., 2008), and in T. brucei the size of ERES is 

dysregulated (Sealey-Cardona et al., 2014). Mammalian Sec16A and B have overlapping (Bhattacharyya 

and Glick, 2007; Watson et al., 2006) and non-redundant functions (Budnik et al., 2011). For instance, 

the non-conserved C-terminus of Sec16B is involved in peroxisome biogenesis (Shindiapina and 

Barlowe, 2010). Generally, Sec16 is involved in both the initiation of COPII budding and in the 
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uncoating/release of COPII vesicles. Although they seem to be contradictory, these two roles are not 

mutually exclusive. They lead arguably to two different theories. 
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9.2.1.1.2.1 Model one: Sec16 as a scaffolding protein 

The first model suggests that Sec16 works as a scaffolding protein for COPII assembly (Connerly et al., 

2005). A scaffolding protein assembles other proteins (Figure 12) (Whittle and Schwartz, 2010). Hence, 

according to this model, Sec16 initiates COPII recruitment, coat formation, and ERES biogenesis. For 

this, Sec16 has to localize properly in an independent manner. This hypothesis was tested in drosophila 

S2 cells, in which the localization of Sec16 was analyzed in the absence of the COPII components Sec23, 

Sec24 and Sar1. It was found that the protein indeed remained properly localized in budded structures 

(Ivan et al., 2008). Similar effects were observed in human cells (Hughes et al., 2009; Watson et al., 

2006). Overexpression and depleting Sar1 did not cause any miss-localization of Sec16 either. 

On the other hand, depletion of Sec16 affected Sar1 localization, suggesting that Sec16 scaffolds Sar1 

recruitment (Ivan et al., 2008). An overexpression of Sec16 generates ERES even without Sar1 (Watson 

et al., 2006). In vitro, it has been shown that liposome-bound Sec16 recruits COPII vesicles to 

membranes in a Sar1 and nucleotide-independent manner (Supek et al., 2002). These data strongly 

suggest that Sec16 operates upstream of Sar1 and the other COPII components. 

In vitro experiments weaken this model, since Sec16 needs Sar1 to operate on neutral liposomes 

(Supek et al., 2002) and microsomal membranes (Yonekawa et al., 2011). Moreover, a miss-localization 

of Sec16 in P. pastoris did not lead to the relocalization of other COPII components (Bharucha et al., 

2013). Thus, whether the principal role of Sec16 is in scaffolding remains to be proven, at least in yeast. 
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Figure 12: Model for assembly of the COPII coat complex, describing Sec16 as a scaffolding protein. The common model for 
assembly of the COPII coat complex is modified to include the role of Sec16. For simplicity, cargo molecules are omitted. (1) 
The Sec13–Sec16 tetramer is stably associated with the ER membrane and binds the integral membrane protein Sed4 or its 
homologue Sec12. Sar1 becomes associated with the membrane, when it is converted from the GDP- to GTP-bound state. 
Concentration of membrane-associated proteins begins to bend membrane. (2) Sec13–Sec16 and Sar1 collaborate to recruit 
the cargo adaptor Sec23–Sec24 dimer. (3) A precoat self-associates into higher-order oligomers. (4) Sec13–Sec16 and Sec23–
Sec24–Sar1 form independent interactions with Sec13–Sec31, causing it to assemble near and/or in place of Sec16. (5) The 
forming coat contains progressively more Sec13–Sec31 and less Sec13–Sec16. Hand-off of Sec23–Sec24–Sar1 from Sec16 to 
Sec31 sets the stage for GTP hydrolysis by Sar1. (6) A final COPII coat is formed, and vesicle budding is complete. Sec13–Sec16 
remains mostly associated with the ER. - (Whittle and Schwartz, 2010) 
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9.2.1.1.2.2 Model two: Sec16A as a regulator of COPII vesicle release 

As opposed to the first model, the second one suggests that Sec16 acts downstream of Sar1 and the 

assembly of the COPII coat. Here, Sec16 would have a regulatory function in the release of COPII 

vesicles (Figure 13). Sec16 affects the GTP cycle of Sar1 (Supek et al., 2002). Earlier, it has been 

demonstrated that Sec23/24 have GAP activity on Sar1 that occurs after Sec13/31 binding (Yoshihisa 

et al., 1993; Antonny et al., 2001). The regulatory effect of Sec16 is not due to a stabilization of Sar1 

(Espenshade et al., 1995). Rather, Sec16 inhibits the stimulatory effect of Sec23 on COPII release 

(Yorimitsu and Sato, 2012). In the case of S. cerevisiae, this Sec16 function seems to be stimulated by 

Sec24. A perturbation would lead to smaller vesicles, meaning that Sec24 engages Sec16 to inhibit the 

Sar1 GTPase activity (Bharucha et al., 2013; Kung et al., 2012). Comparing Sec16 in yeast and 

metazoans, it seems possible that Sar1 regulation is well conserved, and that a further scaffolding 

function was added during evolution. Further data will be needed to validate this possibility. 

 

 

Figure 13: Structure and assembly of the COPII coat. The guanine nucleotide exchange factor, Sec12 (McMahon et al., 2012) 
catalyzes GTP loading on Sar1, which switches from a cytosolic GDP-bound form (Huang et al., 2001) to a membrane-
associated GTP-bound form (Bi et al., 2002) through exposure of an N-terminal amphipathic a-helix. Membrane-associated 
Sar1 recruits Sec23/Sec24 (Bi et al., 2002). Sec24 provides cargo-binding function by directly interacting with sorting signals 
on transmembrane clients. The Sar1/Sec23/Sec24 ‘pre-budding’ complex in turn recruits Sec13/Sec31 (Fath et al., 2007). 
Sec13/Sec31 self-assembles into a polyhedral cage (Stagg et al., 2006) that at least in part drives membrane curvature and 
contributes to vesicle scission. Sec23 is the GTPase-activating protein for Sar1, with Sec31 further contributing to hydrolysis 
via a proline-rich domain that extends across the surface of Sec23/Sar1. Sec16 is a peripheral component that binds to Sec13 
(Whittle and Schwartz, 2010), modulates GTPase activity by preventing Sec31 action and otherwise contributes to vesicle 
formation in poorly understood ways. - (Miller and Schekman, 2013) 
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9.2.2 Endocytosis 

Endocytosis is required for nutrients uptake, signals transduction, and the processing of extracellular 

molecules. This includes a range of activities from receptor uptake, antigen processing by immune cells, 

to lipid homeostasis. Several different endocytic processes have been described (Figure 14). These vary 

in cargoes, protein machinery, and size and morphology of endocytic carriers. Classically, one 

differentiates between clathrin-mediated and clathrin-independent endocytosis (CME vs CIE). Both are 

often used by pathogens to enter their host cells. In the next chapters, I describe the differences and 

similarities between CIE and CME. 

 

 

Figure 14: Pathways of entry into cells. Large particles can be taken up by phagocytosis, whereas fluid uptake occurs by macro-
pinocytosis. Both processes appear to be triggered by and are dependent on actin-mediated re-modelling of the plasma 
membrane at a large scale. Compared with the other endocytic pathways, the size of the vesicles formed by phagocytosis and 
macro-pinocytosis is much larger. Numerous cargoes can be endocytosed by mechanisms that are independent of the coat 
protein clathrin and the fission GTPase, dynamin. Some of these clathrin-independent pathways are also dynamin 
independent. Most internalized cargoes are delivered to the early endosome via vesicular (clathrin- or caveolin-coated 
vesicles) or tubular intermediates (known as clathrin-independent carriers (CLICs)) that are derived from the plasma 
membrane. Some pathways may first traffic to intermediate compartments, such as the caveosome or 
glycosylphosphatidylinositol-anchored protein enriched early endosomal compartments (GEEC), en route to the early 
endosome. - (Mayor and Pagano, 2007) 
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9.2.2.1 Clathrin-mediated endocytosis (CME) 

Clathrin-mediated endocytosis (CME) is arguably the most studied and best understood entry pathway. 

Many proteins and ligands are endocytosed via clathrin-coated vesicles (CCV). Most prominent 

members are the transferrin receptor (TfR) and low-density lipoprotein receptor (LDLR). Clathrin-

coated pits (CCP) were initially described as bristle-like structures in yolk protein uptake by mosquito 

oocytes (Roth and Porter, 1964). Later, a large protein of around 180 kDa, named clathrin heavy chain 

(CHC), was found to be the mayor component of these vesicles (Pearse, 1976). Clathrin forms ‘spider-

like triskelion’ cages (Figure 15) (Kirchhausen, 2000). Three CHC together with clathrin light chains (CLC) 

form a three dimensional lattice without needing other components (Kirchhausen and Harrison, 1981). 

 

 

Figure 15: Model for the assembly and disassembly of a clathrin coat. The drawing indicates the direction of the rotational 
movement (counterclockwise) that is required to lock a relatively rigid clathrin triskelion into the lattice. The reverse process 
would be required to disassemble the coat. - (Kirchhausen, 2000) 

 

CCV include nonstructural adaptor proteins (AP), which are involved in cargo recruitment, coat 

assembly, and the recruitment of uncoating machinery (Kirchhausen et al., 2014). CME represents a 

highly orchestrated process, starting with nucleation, cargo selection, coat assembly, scission, and 

ending with uncoating (McMahon and Boucrot, 2011). Yet, form the beginning to the end, everything 

will happen in less than one minute. 

More recently, the F-BAR domain-containing Fer/Cip4 homology domain-only proteins 1 and 2 

(FCHo1/2) have been put forward as initiators of CCV formation (Henne et al., 2010). Yet, this function 

is not fully established, and FCHo1/2 may not be CCP initiators in all cell types (Cocucci et al., 2012; 

Umasankar et al., 2012). FCHo2 binds and recruits directly the epidermal growth factor receptor 
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pathway substrate 15 (eps15) and intersectin, which will then initiate CCP maturation and AP-2 

recruitment. Additionally, CPP could be formed by random nucleation and stabilization in presence of 

cargo (Ehrlich et al., 2004). Since clathrin does not bind directly to the PM, the APs were described to 

(A) bind and recruit clathrin for CCP initiation, and (B) to bind short sorting signal regions in the cytosolic 

tails of PM receptors (Boehm and Bonifacino, 2001; Owen, 2004). AP-2 mainly acts on the level of PM, 

whereas AP-1, AP-3, and AP-4 mediate sorting-events on the level of endosomes and/or the TGN. All 

APs are built from two large subunits (for AP-1 and AP-2 these are γ and β1 or α and β2, respectively), 

a medium subunit (μ1 or μ2), and a small (1σ or 2σ) subunit (Kirchhausen, 1999). The μ2 chain of AP-2 

has been described in internalization events of transferrin (Tf) and epidermal growth factor (EGF) by 

binding to a Yppϕ motif in the cytosolic tails of their respective receptors (Boll et al., 1995; Collawn et 

al., 1990; Sorkin et al., 1996). The β2 chain connects with clathrin and supports the CCV formation 

(Gallusser and Kirchhausen, 1993). Synaptogamin and the phosphoinositide PtdIns(4,5)P2 were shown 

to be needed for AP-2 association at the PM (Zhang et al., 1994). Further players have been described 

to be involved in the organization of CCPs: β-arrestins, epsin, AP180/CALM (clathrin assembly lymphoid 

myeloid leukemia), Dab2, and ARH (autosomal assembly lymphoid myeloid leukemia). Espsin and 

AP180/CALM bind clathrin, AP-2, and PtdIns(4,5)P2 (Ford, 2001). 

AP180/CALM regulates the size of CCVs by binding to AP-2. The GTPase dynamin (DNM) is needed for 

the scission of CCVs, likely involving its interaction with Src homology 3 domain (SH3)-containing 

proteins, such as amphiphysin, endophilin, SNX9 (sorting nexin 9), and intersecting (McMahon and 

Boucrot, 2011). DNM has been described as a ‘pinchase’ that constricts the opposing sites of the 

endocytic pit until the CCV is released (Sweitzer and Hinshaw, 1998).  

Through their concave structure and an amphipathic helix, amphiphysin, endophilin, SNX9 (members 

of the BAR (Bin/amphiphysin/Rvs)-domain protein family) are able to sense curved membranes and 

control pit formations (Peter, 2004). 

After scission, the clathrin coat is dissembled for subsequent fusion with the target compartment 

(McMahon and Boucrot, 2011). The uncoating process is mediated by an ATPase, the heat shock 

cognate 70 (HSC70) and its cofactor, auxilin (Schlossman et al., 1984; Ungewickell et al., 1995). 

One full circle of a CCV formation is shown in Figure 16. The role of clathrin in the process of retrograde 

transport is introduced in further detail in chapter 9.2.5.2. 
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Figure 16: Clathrin-mediated endocytosis. (a) Stages of clathrin-mediated endocytosis. Step 1: FCHo protein mediated 
nucleation. Step 2: Cargo recruitment by AP-2. Step 3: Coat assembly. Step 4: Dynamin-mediated scission. Step 5: Un-coating. 
(b) Network of interacting partners involved in CME. (c) Depletion of FCHo proteins, AP-2, clathrin, and dynamin and their 
effect on CCP formation (McMahon and Boucrot, 2011). 

 

9.2.2.2 Clathrin-independent Endocytosis (CIE) 

Clathrin-independent endocytosis (CIE), or non clathrin endocytosis (NCE), was observed in the 1980s 

when the bacterial cholera toxin (Montesano et al., 1982) and the plant toxin ricin (Moya et al., 1985) 

were shown to still be able to enter their host cells after inhibiting CME. Further, CIE has been described 

to act in parallel to CME (Doherty and McMahon, 2009; Johannes et al., 2015; Mayor et al., 2014). CIE 

mediates uptake related to quicker responses, such as receptor hyper stimulation, stress hormone 

uptake for fight-or-flight responses, chemotaxis and compensatory endocytosis for membrane 

hemostasis (Watanabe and Boucrot, 2017). Several viruses, prions, bacteria and their bacterial toxins 

use CIE to enter their host cells (Yamauchi and Helenius, 2013). Thus, a variety of apparently 

heterogeneous endocytic events are regrouped under the term of CIE. 

For many years, CIE was seen as a single, non-selective, bulk uptake process, which was called either 

macro- or micro-pinocytosis, regarding the size of the vesicles that were created. Yet, the classification 

by size and shape, trying to create a morphology-based nomenclature does not seem to be fully 

satisfactory, since clathrin independent carriers (CLICs) are 50 to 200 nm in size, while macro-

pinosomes can reach several microns, due to their creation by membrane ruffles folding back onto the 

PM (Maldonado-Báez et al., 2013). 
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Another approach to further dissect CLICs was by their cargo, resulting in a classification that is not fully 

satisfactory, as some cargos are only expressed by some cell types (interleukin 2 receptor - IL2R). 

Furthermore, in many cases cargos are not exclusively endocytosed by only one endocytic mechanism. 

Equally, the effort to find a specific relation to exclusive GTPases (dynamin, Arf6, Cdc42 and Rac1) was 

not fruitful either, since these have broader functions, and are not limited to only one type of endocytic 

event. Furthermore, relating trafficking factors to certain endocytic structures is not operational either, 

as the latter often merge into the same endosomal compartments, which makes it difficult to track 

down their origin. 

My host lab has suggested that one overarching mechanism to explain a number of CIE events is based 

on the lectin-driven extracellular clustering of glycosylated lipids and cargo proteins, leading to the 

formation of tubular membrane invagination and the biogenesis of co-called clathrin-independent 

carriers. This mechanism is termed the GL-Lect-hypothesis (Johannes et al., 2016). 

 

 

Figure 17: (a) STxB-driven membrane invagination in interaction with the GSL Gb3. – adopted from (Johannes et al., 2016). 

 

For toxins, such as SLTs or CT, for the polyomavirus SV40, and for norovirus, it has been shown that 

glycosphingolipids (GSL) not only function as a cellular receptors. Their binding also results in cargo 

clustering and the creation of tubular membrane invaginations, as shown on model membranes and 

cells. For SLTs, their B-subunits (termed STxB) are lectins that bind to the cellular toxin receptor, the 

GSL Gb3 (Figure 17). The 15 binding sites of each STxB homo-pentamer are arranged in a way such that 

as to drive spontaneous membrane bending. This orchestrated GSL/lectin-mediated curvatures lead to 

the formation of narrow membrane invaginations, not depending on the cytosolic clathrin machinery 
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(Römer et al., 2007; Ewers et al., 2010; Rydell et al., 2013; Pezeshkian et al., 2016). Moreover, this 

process seems to be temperature and cholesterol dependent (Römer et al., 2010). On the inner side of 

the membrane, actin was enriched on SLT invaginations illustrating their role in the reorganization and 

the scission process. Figure 18 illustrates the model of clathrin-independent SLT-driven membrane 

invagination stressing the role of actin in the scission process (Römer et al., 2010). 

 

 
Figure 18: Model of actin-driven scission. After SLT binding on to Gb3, membrane curvature is induced, leading to the clathrin 
independent formation of PM invaginations. Actin polymerization causes scission through membrane reorganization (Römer 
et al., 2010) 

 

This hypothesis has been extended to endogenous cargos. The galectin family appears to drive the 

formation of tubular membrane invagination from which clathrin-independent carriers are formed. 

This process occurs in interaction with glycosylated cargo proteins such as α5β1-integin and CD44, and 

glycosphingolipids (Lakshminarayan et al., 2014) (Figure 19). 
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Figure 19: Gal3-driven membrane bending. (Johannes et al., 2015) 

 

Caveolae uptake was often portrayed as one example of dynamin-dependent CIE. Caveolae (Latin for 

“little caves”) are relatively small (50 to 100 nm) flask-shaped invaginations at the PM (Yamada, 1955) 

that are rich in caveolins, sphingolipids, and cholesterol. Caveolin-1 and caveolin-2 are expressed in 

non-muscles cells, and caveolin-3 in muscle cells (Parton and del Pozo, 2013). Caveolae are mostly 

expressed in cells that are submitted to mechanical stress such as stretching and swelling, including 

muscle cells, endothelial cells, and adipocytes. Upon mechanical stress, Caveolae flatten out and 

function as a membrane reservoir to protect cells against mechanical rupture (Sinha et al., 2011). It 

seems likely that the major function of caveolae is in mechano-protection and mechano-signaling 

(Nassoy and Lamaze, 2012). In contrast, the endocytic function of caveolae has been called into 

question. Simian 40 virus (SV40) may be taken as an example to illustrate this point. It was initially put 

forward that SV40 is internalized by caveolae-mediated endocytosis (Pelkmans et al., 2001). However, 

it was then found that the SV40 uptake was if anything increased in the absence of caveolae (Damm et 

al., 2005). Similar observations were made for other presumed cargo proteins of caveolae endocytosis. 

The IL2R requires dynamin, without needing clathrin or caveolins-1 (Lamaze et al., 2001) and the IL2R 

uptake is regulated through Rho family GTPases and coractin (Grassart et al., 2008; Lamaze et al., 2001). 
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9.2.3 The recycling pathways 

Recycling between endosomes and the plasma membrane regulates diverse processes such as 

cytokinesis, cell adhesion, morphogenesis, cell fusion, as well as learning and memory, and is thought 

to occur either via a rapid (direct) or slow (indirect) pathways (Grant and Donaldson, 2009). 

 

 

Figure 20: A schematic representation of the ‘tubular endosomal network’ (TEN). Endocytic vesicles are delivered to clathrin-
coated early endosomes, which start to mature involving progressive acidification of their lumen. The TEN contains various 
domains (labeled in different colors) and the necessary machinery to sort cargoes to their various destinations. - (Bonifacino 
and Rojas, 2006) 
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9.2.3.1 Fast recycling – direct pathway 

The fast recycling pathway (from EE or an earlier endocytic step) initially emerged from Tf studies 

(Harding et al., 1983) (Figure 20). Tf binds iron and mediates its cellular uptake through binding to the 

Tf receptor (TfR). After CME, Tf traffics to EE where iron dissociate from Tf due to a decrease in pH. 

Afterwards the TfR shuttles Tf back to the PM. This process has been suggested to be regulated by the 

small GTPase Rab4, and may apply to TfR, β-adrenogenic receptor, and class A (fast-recycling) G-

protein-coupled receptors (GPCR) (Seachrist, 2000; van der Sluijs et al., 1992). Rab35 was likewise 

associated with the fast recycling pathway. Upon its inhibition, many endocytic markers accumulate 

within endosomal structure without cycling back to the PM (Kouranti et al., 2006). Furthermore, the 

GTPase ADP-ribosylation factor-6 (Arf 6) and the JNK-interacting proteins 3 and 4 (JIP3 and JIP4) have 

been associated with fast recycling pathway of Tf (Montagnac et al., 2011). 

9.2.3.2 Slow recycling – Rab11 mediated 

Slow recycling describes the cargo transport from EE through the juxta-nuclear endocytic recycling 

compartment (ERC) back to the PM (Grant and Donaldson, 2009). The ERC is defined by EHD1, Rab11 

and a tubular shape (Sönnichsen et al., 2000). Rab11 is found in RE and the TGN where it regulates the 

slow recycling process (Figure 20). 

9.2.4 The lysosomal/degradation pathway 

Cargoes intended to be degraded traffic into multi-vesicular bodies (MVBs) and end up in lysosomes 

(Gruenberg and Stenmark, 2004) (Figure 21). MVB arise by inward budding of vesicles from endosomal 

compartments (Piper and Katzmann, 2007). A mayor degradation signal for cargos is ubiquitination. 

The endosomal sorting complexes required for transport I, II, and III (ESCRT I-III) recognize ubiquitinated 

cargos and initiate MVB formation. The degradation of the epidermal growth factor receptor (EGFR) is 

well-studied. After CME endocytosis, the EGFR is sorted to lysosomes and degraded. This leads to the 

reduction of the receptor pool at the PM and thus used to modulate the stimulatory signal (Felder et 

al., 1990; Futter et al., 1996; Haigler et al., 1979). This was confirmed in electron microscopy, in which 

was shown that the EGFR is found in MVB (Futter et al., 1996). In the process of antigen presentation, 

MVBs are important for the loading of major histocompatibility complex class II (MHC II) receptors with 

antigenic peptides (Murk et al., 2002; Kleijmeer et al., 2001). 
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Figure 21: The generation of multi-vesicular bodies, leading to lysosomes. The degradation pathway is shown by solid arrows. 
Membrane invaginations and internal vesicles are shown in red, highlighting multi-vesicular regions in EE and LE. The recycling 
pathways (slow and fast) are shown by dashed arrows. - (Gruenberg and Stenmark, 2004) 

 

9.2.5 Retrograde trafficking 

Newly synthesized proteins and lipids are transported anterogradely from the ER to the PM (chapter 

9.2.1). For membrane homeostasis, the secretory transport is compensated by retrograde trafficking 

(Johannes and Popoff, 2008; Bonifacino and Rojas, 2006). For this, cargo proteins and lipids can be 

transported from different endosomal sub-compartments back to the Golgi (Figure 22), and in some 

cases to the ER, as shown for the first time for Shiga toxin (Sandvig et al., 1992). 

Historically, the retrograde transport route was discovered by studying toxins (read more in chapter 

9.1) (Gonatas et al., 1975). The TfR was the first endogenous cargo for which retrograde trafficking 

could be shown (Snider and Rogers, 1985). Later, mannose 6-phosphate receptors (MPRs) were shown 

to rely on retrograde trafficking as part of their functional cycle (Duncan and Kornfeld, 1988). Lysosomal 

enzymes shuttle through MPRs from the TGN to endosomes. Afterwards, empty MPRs cycle back to 

the TGN. Many physiological functions depend on the retrograde trafficking (Burd, 2011). In case of 

malfunction of retrograde transport, it has also been demonstrated that the amount of amyloid β-

peptides is increased (Burgos et al., 2010).  

 



 

37 

 

Figure 22: Schematic drawing of retrograde trafficking entry points. The retrograde transport step from endosomes to the 
TGN can originate from several points: recycling (blue), early (green) or late (red) endosomes. - (Johannes and Wunder, 2011b) 

 

MPRs are a historical example for late endosomes-to-TGN trafficking (Lombardi et al., 1993). The 

existence of a trafficking interface between EE and the TGN was pioneered with Shiga toxin (Mallard et 

al., 1998). It was then also suggested that Shiga toxin could traffic from RE to the TGN (Lieu and Gleeson, 

2010). Thus, several retrograde trafficking routes may exist in parallel, as summarized in Figure 22 

(Johannes and Wunder, 2011b). 

9.2.5.1 GPP130: A cycling Golgi protein involved in Shiga toxin trafficking. 

GPP130 is a homo-dimeric type II single pass transmembrane protein. The major part of the protein is 

oriented intra-luminal, and has a predicted coiled-coil domain and an unstructured acidic domain 

(Linstedt et al., 1997). GPP130 constantly cycles between the cis-Golgi and the PM. Thus, it 

constitutively undergoes retrograde trafficking. Further, GPP130 cycles through the direct EE to Golgi 

pathway (Puri et al., 2002). Upon minor increases in intra-Golgi manganese (Mn) concentrations, 

GPP130 relocates from the Golgi to MVBs and lysosomes for degradation (Mukhopadhyay et al., 2010). 

This redistribution is Rab5, DNM and microtubule-independent, but Rab7-dependent. Additionally, 

neither endocytosis nor early endosome trafficking are involved (Mukhopadhyay et al., 2010). Recently, 
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it has been shown that the redistribution is caused by an oligomerization through Mn (Tewari et al., 

2014, 2015). The predicted coiled-coil domain of GPP130 holds distinct Golgi and post-Golgi endosomal 

targeting regions, enabling its trafficking between cis-Golgi and endosomes (Bachert et al., 2001; Puri 

et al., 2002) and its Mn induced clustering (Mukhopadhyay et al., 2010). The main function(s) of 

GPP130 still remain(s) unclear. However, no other Golgi protein has been described to be degraded 

upon a Mn stimulus (Mukhopadhyay et al., 2010). 

GPP130 has been shown to bind Shiga toxin and SLT1s (Mukhopadhyay et al., 2013). Furthermore, Mn-

induced depletion of GPP130 protects cells against Shiga toxin (Mukhopadhyay and Linstedt, 2012). 

Still, how exactly GPP130 is involved in Shiga toxin trafficking to the Golgi has to be further investigated. 

9.2.5.2 Clathrin 

Clathrin has been found on endosomes (Stoorvogel et al., 1996). Clathrin does not bind directly to 

membranes and requires adaptor proteins (see chapter 9.2.2.1). Instead of PM-localized AP-2, different 

studies have provided evidence for a function of AP-1 in retrograde trafficking from endosomes to the 

TGN (Fölsch et al., 2001; Mallard et al., 1998; Meyer et al., 2000). Further, AP-1 co-localizes with STxB 

(Mallard et al., 1998; Saint-Pol et al., 2004), and interacts with the adaptor protein EpsinR, which 

further interacts with clathrin and the phosphatidylinositol lipid PtdIns(4)P (Mills et al., 2003; Hirst et 

al., 2003; Kalthoff et al., 2002). Strikingly, while the endocytosis of STxB still occurs after clathrin 

depletion, its Golgi arrival seems to strongly depend on clathrin (Saint-Pol et al., 2004). 

9.2.5.3 Retromer 

Retromer is a pentameric complex that is localized on endosomes where it sorts cargos for retrograde 

trafficking. It is composed of two sub-complexes: the vacuolar protein sorting trimer 

VPS26/VPS29/VPS35 sub-complex, and a sorting nexins dimer (SNX) sub-complex (Rojas et al., 2008; 

Hierro et al., 2007). Historically, it was proposed that the trimeric VPS-sub-complex recruits cargoes via 

VPS35 and VPS26 (Seaman, 2004) (Figure 23). The retromer complex interacts with GTP-activated 

Rab7, and binds to combinations of SNX dimers (out of SNX1, SNX2, SNX5 and/or SNX6), thus leading 

to membrane bending, tubule formation, and trafficking to the TGN (Rojas et al., 2008; van Weering et 

al., 2012). The scission mechanism is still unclear. At the level of the TGN, the tethering factors GARP 

and EARP (Schindler et al., 2015; Perez-Victoria and Bonifacino, 2009), SNARE complexes involving 

syntaxin-16 (Mallard et al., 2002; Ganley et al., 2008), and the GTPase Rab6 (Mallard et al., 2002)will 

mediate the fusion. It should be mentioned that various recent studies suggest that SNX proteins may 

also participate in cargo sorting (reviewed in (Johannes and Wunder, 2011a)). 
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Figure 23: Schematic presentation of a speculative model of the retromer coat on a membrane tubule. SNX dimer in purple. - 
(Hierro et al., 2007) 

 

The depletion of Vps26 inhibits the TGN arrival of STxB. STxB-containing tubules are likely processed by 

retromer, even if the exact mechanism remains elusive (Popoff et al., 2007). The actions of clathrin and 

retromer appear to be interconnected by RME-8 (receptor-mediated endocytosis-8) and Hrs 

(hepatocyte growth factor-regulated tyrosine kinase substrate), which interacts with SNX1 (Popoff et 

al., 2009). Moreover, RME-8 binds to the ATPase HSC70 that uncoats clathrin. RME and HSC70 

depletions affects retrograde trafficking between EE and the TGN. 
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9.2.6 SNAREs 

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) function in the last 

step of vesicles fusion with the target compartment (Söllner et al., 1993; McNew et al., 2000; Hu, 2003). 

Functionally, SNAREs can be classified into vesicle located v-SNAREs and target compartment-located 

t-SNAREs. 

The v-SNARE (or R-SNARE) contributes a single SNARE motif and is localized on carriers, whereas t-

SNAREs (or Q-SNAREs) are structurally composed of two or three polypeptides that localize on target 

compartments (Fukuda et al., 2000). A heterodimeric t-SNARE is built from one member of the syntaxin 

(STX) family, which contributes with one SNARE motif, and one member of the SNAP-25 family, which 

contributes two SNARE motifs. A heterotrimeric t-SNARE is made out of 3 STX proteins. Upon v-SNARE-

t-SNARE interaction, a trans-SNARE complex is formed, in which four SNARE motifs assemble as a 

twisted parallel four-helical bundle, leading to the apposition and fusion of the vesicle with the target 

compartment (Sutton et al., 1998; Antonin et al., 2002; Weber et al., 1998) (Figure 24). 

 
Figure 24: SNARE proteins form a four-helical bundle complex that drives membrane fusion. (a) VAMP (blue) on the vesicle 
interacts with syntaxin (red) and SNAP-25 (green) on the plasma membrane to form a four-helix bundle that zips up 
concomitant with bilayer fusion. (b) The backbone of the SNARE complex is shown on the left, with the central ionic layer (red) 
and 15 hydrophobic layers (black) that mediate the core interactions. Top-down views of side-chain interactions are shown 
on the right, with the four SNARE helices that are represented as ribbons. The ball-and-stick structures represent the indicated 
amino acids; the dotted lines represent hydrogen bonds or salt bridges that stabilize interactions between SNAREs. Q-SNAREs 
and R-SNAREs are characterized by a glutamine (Q) or arginine (R) residue, respectively, in the central layer of the SNARE 
complex. (SNARE; soluble NSF attachment protein receptor, where NSF stands for N-ethyl-maleimide-sensitive fusion protein; 
SNAP-25, 25 kDa synaptosome-associated protein; VAMP, vesicle-associated membrane protein). - (Chen and Scheller, 2001) 
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9.2.6.1 The general mode of vesicle fusion 

 

 

Figure 25: Model of SNARE-mediated lipid fusion. (a) The two membranes are in the vicinity of each other but the SNAREs are 
not yet in contact. (b) SNARE complexes start zipping from the amino-terminal end, which draws the two membranes further 
towards each other. (c) Zipping proceeds, causing increased curvature and lateral tension of the membranes, exposing the 
bilayer interior. Spontaneous hemi fusion occurs as the separation is sufficiently reduced. (d) The highly unfavorable void 
space at the membrane junction in (c) causes the establishment of contacts between the distal membrane leaflets. (e) The 
lateral tension in the trans-bilayer contact area induces membrane breakdown, yielding a fusion pore. (f) The fusion pore 
expands and the membrane relaxes. - (Chen and Scheller, 2001) 

 

The general mode of action of SNAREs in carrier-mediated transport is highlighted in Figure 25. First, 

the v-SNARE is packaged together with other cargo proteins into the budding vesicle so that the 

resulting transport intermediate is competent to fuse with the target compartment (Figure 25 a). 

SNAREs also play a role in the formation of carriers via the direct interaction with coat proteins, as 

shown for COPII formation at the level of the ER (Mossessova et al., 2003a; Miller et al., 2003), for COPI 

(Rein et al., 2002), and the interaction of Vti1b with EpsinR in endosomes-to-TGN trafficking (Hirst et 

al., 2004). Next, various tethering factors (Gillingham and Munro, 2003; Whyte and Munro, 2002) 

position the incoming carriers, preparing them for docking. The tethering factors act over longer 

distances than pairs of v-SNARE and t-SNAREs (Shorter et al., 2002). Afterwards, the formation of the 

trans-SNARE complex causes docking, and zipping-up leads to fusion (Chen and Scheller, 2001; Jahn et 

al., 2003). Indeed, the unstructured SNARE motifs zip and become highly organized into a four-helical 

bundle (Figure 24, Figure 25 b). The energy released during the SNARE complex assembly (which 

functions like a zipper; zippering starts from the N-terminal ends, and progresses toward the C-termini) 

overcomes the energy barrier that opposes the process of bringing the carrier and target compartment 
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membranes in fusion-compatible distances (Figure 25 b to d). After fusion, the 4 SNARE motifs are now 

in a cis-SNARE complex in the target compartment. The disassembly of cis-SNARE complexs is mediated 

by -SNAP (soluble N-ethylmaleimide-sensitive factor attachment protein) and NSF (N-ethylmaleimide-

sensitive factor), the latter of which is an ATPase (Hohl et al., 1998; Brunger and DeLaBarre, 2003; Furst 

et al., 2003; Wimmer et al., 2001). 

Known mammalian SNARE complexes throughout the cell are shown in Figure 26. 

 

 

Figure 26: Schematic summary of known mammalian SNARE complexes and their site(s) of action in the exocytic and/or 
endocytic pathways. The potential v-SNAREs are indicated in red. - (Hong, 2005)  
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9.2.6.2 Syntaxin-5 (STX5) 

Out of the 12 SNARE proteins that are associated with the Golgi, Syntaxin-5 (STX5, Sed5p in yeast, 33 % 

identity) is one of the best characterized (Nichols and Pelham, 1998). STX5 has been shown in several 

SNARE complexes, mainly in the trafficking towards the Golgi. STX5 assembles with four other t-SNARE 

proteins: GS28 (trans-Golgi), GS27 (cis-Golgi), Sec22b (cis-Golgi) and Ykt6 (trans-Golgi). Further, two 

different v-SNAREs have been proposed: GS15 (Xu, 2002) for retrograde trafficking, and Bet1 (Hay et 

al., 1998) for anterograde trafficking (Figure 26). The STX5/GS28/Ykt6/GS15 complex has been reported 

to be involved in STxB trafficking to the Golgi (Tai et al., 2004).  

STX5 has two isoforms: a short (35 kDa, Golgi localized) and a long isoform (42 kDa), which has a type-

II ER retention signal at its N-terminus. These are translation products from the same mRNA (Hui et al., 

1997). The short isoform is involved all reported SNARE complexes, whereas the long isoform has been 

found only in the cis-Golgi SNAREs (Nichols and Pelham, 1998) (Figure 26). 

9.2.6.3 Syntaxin-16 

Syntaxin-16 (STX16) is a t-SNARE that functions in endosomes-to-TGN trafficking (Mallard et al., 2002). 

It forms a SNARE complex with the t-SNAREs Syntaxin-6 (STX6) and Vti1a and the endosomal v-SNARE, 

VAMP4 (Tang et al., 1998; Hirst et al., 2004). The reason for bringing up STX16 in this manuscript is that 

this protein has been reported to be involved in retrograde trafficking of STxB, CTxB, ricin, and MPR, 

similar to STX5 (Amessou et al., 2007; Tai et al., 2004; Mallard et al., 2002). It remains unclear how the 

functions of these SNARE proteins are articulated in retrograde endosomes-to-Golgi trafficking. Do they 

have redundant functions? Or have we missed something about the full scope of their activities? The 

work in my PhD has allowed to address this aspect.  
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9.3 MICRO INTERFERING RNA FAMILY MIR199 

It has been generally established, that short non-coding RNAs, known as microRNAs (miRNAs), regulate 

many cellular processes (Bushati and Cohen, 2007). miRs bind normally to 3′ untranslated regions 

(3′UTRs) of target mRNAs, promoting their degradation and thus interfering with the translation 

process (Bartel, 2009; Filipowicz et al., 2008; Ambros, 2004). Around half of the miRNA genes are 

located in intergenic regions or introns and are usually close to their host gene (Saini et al., 2007) and 

often get co-transscribed (van Rooij et al., 2009; Rayner et al., 2010; Rodriguez et al., 2004). 

Interestingly, the miR199 family members are encoded within introns of the DNM genes in the opposite 

orientation to the host gene. The family is composed of three members, miR199a1, miR199a2, and 

miR199b, that are located within the DNM2, DNM3 and DNM1 genes, respectively. miR199 gene 

sequences are highly conserved across species and potentially target the same group of genes. Through 

bio-informatics, Rab5A, Rab21, LDLR, and Cav1, all endocytic proteins, have been identified as putative 

targets of the miR199 family (Aranda et al., 2015). The miR199s have indeed been reported to regulate 

endocytic processes (Figure 27). 

 

Figure 27: Proposed model of regulation of receptor-mediated endocytosis by dynamin and miR-199a/b. Sense strands of the 
dynamin genes are transcribed and translated to synthetize dynamin proteins that are involved in endosome trafficking. miR-
199a- 5p is transcribed in the nucleus from the antisense strand of introns in the DNM2 and DNM3 genes and regulates 
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receptor-mediated endocytosis and intracellular cholesterol levels by balancing the post-transcriptional levels of genes 
involved in endocytosis such as LDLR, CLTC, Cav-1, Rab5A and Rab21. - (Aranda et al., 2015)
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10 MATERIAL AND METHODS
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10.1 CELL LINES 

HeLa cells were maintained at 37°C under 5 % CO2 in DMEM/GlutaMAX©/4,5 g l-1 glucose (Invitrogen, 

Waltham, MA, USA), supplemented with 10 % heat-inactivated fetal bovine serum (Invitrogen, origin: 

Australia), 0.01 % penicillin-streptomycin (Invitrogen), and 1 mM pyruvate (Invitrogen). For Shiga toxin 

intoxication, a HeLa cell clones was selected for a homogenous expression of the Gb3-receptor and 

cultured as above. A stable cell line expressing KDEL-SNAP-fusion-protein, referred to as “ER-SNAP” 

cells, was produced from HeLa cells and was cultured as above, including 0,5 mg ml-1 G418. ER-SNAP 

cells were used for the ELISA assays. 

10.2 ANTIBODIES AND REAGENTS 

Polyclonal rabbit antibodies against STX5 was obtained from Synaptic Systems (Goettingen, Germany). 

The TGN46 antibodies and SDS-Page pre-casted gels were purchased from BioRad (Hercules, CA, USA). 

The CHC, GS27 and GS28 antibodies were purchased from BD Biosciences. The rabbit giantin antibody 

was purchased from the protein platform of the Curie Institute (Paris, France). The rabbit antibody 

against Vps26 was obtained from Abcam. The rabbit anti-Sec16A antibody was bought from 

Proteintech Europe (Manchester, UK). The plasmid encoding STX5-EGFP was a gift from Jeffrey E. Pessin 

(The University of Iowa, USA). The plasmid encoding Sec16A-GFP was a gift for David Stephens 

(University of Bristol, England), and the RUSH and the mCherry-KDEL constructs were provided by the 

group of Franck Perez (Institut Curie, Paris, France). STxB-Cy3 was produced in-house, as described in 

(Mallard et al., 1998).  
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10.3 RNA INTERFERENCE 

siRNAs against Sec16A, GP73, TGN46 or GPP130 were purchased from Qiagen. siRNA pools were 

composed of one, two or four different oligonucleotides. Scrambled siRNA was used as a control. 

150.000 HeLa cells were plated overnight in 35 mm well dishes (6 well plates), and transfected with 

25 pmol siRNA, 7,5 µl Lipofectamine® RNAiMAX transfection reagent (Invitrogen). Experiments were 

performed 72 hours after transfection. 

For miR experiments, HeLa cells were transfected with 40 nM miR199 using RNAimax (Invitrogen). All 

experimental control samples were treated with an equal concentration of a non-targeting control 

mimic sequence (CM). Verification of miR-199a-5p over-expression and inhibition was determined 

using Western blotting against Vps26. 

10.4 CALCIUM PHOSPHATE–DNA CO-PRECIPITATION 

HeLa cells were plated overnight in complete medium supplemented with 25 mM HEPES (pH7,2 - 7,4) 

to reach a confluency of 50 to 80 %. A solution of 10 µl of 2.5 M CaCl2 and the optimized amount of 

plasmid DNA was diluted in 90 µl TE buffer (1 mM Tris–HCl, 0.1 mM EDTA, pH 7.6) to a final volume of 

100 µl. The Ca/DNA/TE mix was added dropwise to an equal volume of 2× HeBS solution (160 mM NaCl, 

1.5 mM Na2HPO4, 50 mM HEPES, pH 7.05 at 23°C). This  transfection solution was added dropwise 

onto cells in a 1:10 dilution (Jordan et al., 1996). 

10.5 RETRO-2 TREATMENTS 

Retro-2 (2-([(5-methyl-2-thienyl)methylene]amino)-N-phenylbenzamide) was purchased from Sigma 

Aldrich (St. Louis, MO, USA) and stored at 50 mM in DMSO at -20°C. Cells were pre-treated at 37°C 

either 30 minutes for Shiga toxin intoxication and STx trafficking, or 60 minutes for the STX5-RUSH 

assay and STX5-co-immunolabeling experiments with 25 µM Retro-2, diluted in complete growth 

medium. DMSO at a concentration of 0,05 % in complete growth medium was used as control.  
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10.6 CLICK CHEMISTRY LABELING 

Copper-free click reactions were essentially performed as per the manufacturer’s recommendations. 

Briefly, HeLa cells were treated with the clickable Retro-2 compound (c = 25 µM) for 30 minutes at 5 % 

CO2 and 37°C. The copper free click-reaction was performed on cells with DIBO-probes (Invitrogen, 

Click-iT reagents, c = 10 µM) for 1 hour at room temperature and covered from light. For fluorescence 

labeling, cells were fixed for 10 min at room temperature with 4 % paraformaldehyde. For silver gel, 

Western blot, and mass spectrometry analysis, the cells were lyses for 30 min, at 4°C with a TNE buffer 

containing 1 % NP-40 and proteinase inhibitor cocktail. 

10.6.1 METHODOLOGY ASPECTS: Bio-orthogonal Click chemistry 

Azides do not naturally occur in biological systems as functional groups. Therefore, azide groups can 

be exploited for bio-orthogonal chemistry to covalently modify biomolecules with selected probes. The 

azide can be specifically reacted with bio-orthogonal alkynes and forms a triazole product. This reaction 

is also known as click chemistry. Moreover, since its discovery in 1961 (Wittig and Pohlke, 1961; 

Hueisgen, 1961), the 1,3-cyclo-addition has been shown to occur under various conditions: Two groups 

simultaneously showed that a copper-catalyzed click reaction would happen very efficiently under mild 

reaction conditions (Figure 28 A) (Rostovtsev et al., 2002; Tornøe et al., 2002). For biological 

applications, copper is highly toxic (Nutr and Sandstead, 2016). In 2004, further developments showed 

that by restraining the alkyne chemically, the use of copper could be avoided (Figure 28 B) (Agard et 

al., 2004). Thus, click chemistry could be performed in biological systems at low temperatures (room 

temperature, or 37°C), in cellulo (Ning et al., 2008) and in living organisms (Baskin et al., 2007). Further 

studies optimized the copper-free click chemistry and created other reactive alkynes. In this study, 4-

dibenzocyclooctynol-based (DIBO) probes have been used for highly stable conjugations and for 

shorter reaction times (Ning et al., 2008). We performed a copper-free click chemistry approach 

coupled to mass spectrometry for the identification of proteins that interact with Retro-2. 
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Figure 28: Design and synthesis of Cu-free click chemistry reagents. (A) The copper-catalyzed azide–alkyne cycloaddition. (B) 
The Cu-free click reaction of azides and DIFOs. (C) Single step synthesis of DIFO. (D) Derivatives of DIFO and a linear alkyne 
(alk) containing Alexa Fluor 488, Alexa Fluor 568, or biotin. - (Baskin et al., 2007)  
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10.7 IMMUNOPRECIPITATION 

Retro-2 sensitive interacting partners of STX5 were identified in a stable HeLa cell lines expressing a 

STX5-GFP fusion protein. The clickable Retro-2 pull-down was performed on HeLa cells. Cells were lysed 

for 30 min on ice in lysis buffer (100 mM PBS, 150 mM NaCl, 1 % NP-40, PIC). NeutrAvidin® beads (for 

clickable Retro-2 pull-down) or GFP-trap beads (for STX5-GFP pull-down) were equilibrated in lysis 

buffer. The beads purification was done by centrifugation (5 min, 500 x g) or magnet collection, 

following the manufacturer’s instructions. The respective beads were incubated with cell lysates over 

night at 4°C on an end-over-end rotation device. Retro-2 treatment was performed to determine 

binding partners (clickable version), or to detect interactions that are sensitive to this compound (non-

clickable version). Vehicle alone (DMSO, w/o Retro-2) was used as control. After three washing steps, 

interacting proteins were eluted in Laemmli buffer (0.1 % 2-mercaptoethanol, 0.5 ‰ bromophenol 

blue, 10 % glycerol, 2 % SDS, 63 mM Tris-HCl, pH 6.8) for 10 min at 95°C. The samples were analyzed 

by SDS-PAGE and either silver stained, Western blotted against indicated proteins, or digested for mass 

spectrometry analysis. 

10.8 SHIGA TOXIN TRAFFICKING 

HeLa cells, either DMSO or Retro-2 treated, were incubated with 2 µM (0.85 µg/ml) STxB-Cy3 on ice 

for 30 minutes. After the removal of unbound STxB-Cy3, its trafficking was initiated and followed for 

45 minutes at 37°C in the presence of DMSO, or Retro-2 respectively. Cells were fixed for 10 minutes 

at RT with 4 % paraformaldehyde (PFA), permeabilized with 0.25 mg/ml saponin, and immune-labeled 

with the indicated antibodies. 

10.9 PROXIMITY LIGATION ASSAY (PLA) 

The PLA was adopted from the Landegren group (Söderberg et al., 2006). HeLa cells were incubated 

for 30 min at 37°C with Retro-2 (c =25µM) in complete medium, fixed with 4 % PFA for 10 min at room 

temperature, permeabilized with 0.25 mg/ml saponin, and immunostained for 30 min for STX5 and 

GS28 or GS27, respectively, after which PLA was performed according to the manufacturer’s 

instructions (Duolink In Situ Orange Starter kit Mouse/Rabbit; Sigma-Aldrich). For quantification, at 

least 25 cells per experiment from two independent ones were quantified in each condition. 
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10.9.1 METHODOLOGY ASPECTS: Proximity ligation assay 

The proximity ligation assay (PLA) is based on traditional immunoassays, detecting proximity between 

proteins or their post-translational modifications with high specificity and sensitivity, as long as 

appropriate antibodies are available. Two proteins of interest (or their possible post-translational 

modifications) are labeled with appropriate primary antibodies that were raised in different species. 

Matching species-specific secondary antibodies are labeled with PLA probes. PLA probes are composed 

of unique short DNA strands. If the PLA probes are in close proximity (20 to 40 nm), the DNA strands 

align and thereby become substrates for rolling circle DNA synthesis, which thereby creating a many-

hundredfold amplification of the DNA circle. Fluorescent nucleotides are then attached onto the 

amplified DNA. The corresponding fluorescent signals are detected by epifluorescence or confocal 

microscopy Figure 29) (Söderberg et al., 2006). 

 

 
Figure 29: Detection of protein-protein proximity with the proximity ligation assay (PLA). (a) Schematic presentation of 
proximity probe-templated DNA circularization and subsequent rolling circle amplification (RCA) and detection. If two 
proximity probes bind close to each other, such as by binding two proteins present in the same complex, then subsequently 
added linear connector oligonucleotides are guided to form a circular structure covalently joined by enzymatic DNA ligation. 
After ligation, RCA is initiated using one of the proximity probes as a primer. The RCA product is detected through hybridization 
of fluorescence-labeled oligonucleotides complementary to a tag sequence in the RCA product. The green line in the circle 
that forms the proximity ligation reaction giving rise to multiple copies of complementary sequence in the RCA product (blue). 
This motif is detected by hybridizing fluorescence-labeled detection oligonucleotides (green).- (Söderberg et al., 2006) 
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10.10 CONFOCAL IMAGING 

Samples were imaged on an inverted microscope Nikon Ti-E with motorized XY stage (for Ti-E/Ni-E) 

fitted with a confocal A1R system, using a 60x oil immersion objective. Nikon NIS software, version 

3.2.6 (Minato, Tokyo, Japan), and ImageJ software, version 2.0.0 (National Institutes of Health, 

Bethesda, MD), were used for image acquisition and processing, respectively. Single stacks of 

approximately 200 nm thickness were used to analyze co-localization. 

I would like to greatly acknowledge the Cell and Tissue Imaging (PICT-IBiSA) and Nikon Imaging Centre, 

Institut Curie, member of the French National Research Infrastructure France-BioImaging (ANR10-

INBS-04). 

10.11 RETENTION USING SELECTIVE HOOKS (RUSH) 

The RUSH system was invented by the group of Franck Perez (Boncompain et al., 2012). Briefly, the 

STX5-SBP-eGFP gene was cloned into a RUSH construct with the AscI and XbaI restriction sites. After 

overnight transfection, cells were treated with Retro-2 or DMSO, as described above. Trafficking was 

initiated with 40 µM biotin in complete medium. The cells were kept 20 min at 37°C, before being fixed 

with PFA for 10 min at room temperature with PFA. Immune labeling were performed as indicated. 

10.11.1 METHODOLOGY ASPECTS: Retention Using Selective Hooks (RUSH) 

To investigate secretory traffic, the retention using selective hooks (RUSH) system was used. RUSH is 

based on the interaction of an immobile hook protein (here KDEL) in a donor compartment (here the 

ER), fused to a core streptavidin. A reporter protein of interest (here STX5) is fused to a streptavidin-

binding peptide (SBP) and a fluorophore (here eGFP). In the non-induced state, the hook protein 

prevents cellular trafficking of the reporter (here: STX5 is retained in the ER). Upon biotin treatment 

(induction), the reporter is released from the hook and synchronously traffics to acceptor 

compartment(s) (here from the ER to the Golgi) (Figure 30) (Boncompain et al., 2012). 
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Figure 30: The RUSH system. (a) A schematic of the principle illustrates that the reporter is retained in the donor compartment 
via its interaction with the hook. This interaction is mediated by the core streptavidin and the SBP. Release is induced by 
addition of biotin to allow trafficking of the reporter to its acceptor compartment. A fluorescent protein is fused to the 
reporter. (b) Schematics of hooks containing STIM1-NN, Ii or KDEL for ER retention, or Golgin-84 for Golgi retention fused to 
streptavidin, and of reporters containing SBP fusions with Golgi proteins ST, ManII, GalT or Golgin-84, plasma membrane 
proteins VSVGwt, E-cadherin, TNFα or EGFP-GPI and secreted protein SBP-ssEGFP. HA, hemagglutinin tag; FP, fluorescent 
protein. (c) Schematics of genes coding for the hook and the reporter, expressed under the same CMV promoter (pCMV), 
separated by a synthetic intron (IVS, intervening sequence) and an internal ribosome entry site (IRES). - (Boncompain et al., 
2012) 

 

10.12 INTOXICATION ASSAY 

STx1 intoxication was performed on of specific or scrambled siRNA-treansfected HeLa cells (Stechmann 

et al., 2010). Briefly, 20.000 HeLa cells per well were seeded into flat-bottomed 96-well optical plates 

(Nunc) and grown overnight at 37°C. After pretreatment with Retro-2 or DMSO, cells were incubated 

with increasing doses of STx1 from 0,005 to 10 ng/ml for one hour at 37°C. After the washes with PBS, 

1 μCi [35S]-methionine (Perkin Elmer) was added to each well for 60 min at 37°C. Radiolabeled proteins 

were precipitated by washing cells three times with 4°C-cold 5 % trichloroacetic acid (TCA). Before 

liquid scintillation measurements, TCA was removed by three washes with PBS. Normalized duplets 

were used to determine the mean percentage of protein biosynthesis. The Prism software, version 7 

(GraphPad, CA, USA) was used to fit and calculate the 50 % effective toxin concentration (EC50) from 

sigmoidal dose response fitting. Protection factors are shown as EC50drug, EC50siRNA and EC50control. 



 

55 

10.13 WESTERN BLOT ANALYSIS 

Cells on a thermo-shaker were lysed for 10 min at 95°C in Laemmli buffer (see chapter 10.7). Samples 

were size separated via SDS-Page. Protein were transferred onto nitrocellulose membranes with 

Pierce™ Power blotter (Thermo Fisher Scientific, Waltham, MA, USA). The following antibody 

concentrations were used: Vps26A (1:1500), STX5 (1:1000), GS27 (1:1000), GS28 (1:1000), CHC 

(1:5000) and GFP (1:1000). Corresponding HRP-coupled secondary antibodies (1:5000, Jackson 

ImmunoResearch Laboratories, West Grove, PA, USA) were used. Protein bands were visualized with 

SuperSignal (Thermo Scientific), and analyzed on a Fusion S Western blot imager (Vilber Lourmat, 

Marne-la-Vallée, France). Densitometry analysis of the gels was carried out using ImageJ software from 

the NIH. 

10.14 STATISTICS 

All data are presented as mean ± SD. Unpaired Student’s t tests were used to determine the statistical 

significance of possible differences between two data sets. A value of P≤0.05 was considered as 

significant. GraphPad Prism Software Version 7.03 (GraphPad, San Diego, CA) was used to illustrate the 

graphs and perform the analysis. *P≤0.05, **P≤0.01, ***P≤0.001, NS = not significant. 

 



 

56 

11 RESULTS
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11.1.1 Abstract 

The small molecule compound Retro-2 protects cells and mice against bacterial Shiga-like toxins and 

the plant toxin ricin. The molecular mechanisms by which this protective effect is achieved have 

remained unknown. Here, we provide evidence that Retro-2 targets the COPII component Sec16A, and 

reduces the anterograde transport specifically of syntaxin-5, leading to its relocalization from the Golgi 

to the endoplasmic reticulum. While the formation of SNARE complexes involving syntaxin-5 is not 

affected in Retro-2-treated cells, the discovery of novel syntaxin-5 binding partners, GPP130, GP73 and 

TGN46 is described for which it is found that they are displaced under Retro-2 incubations conditions. 

Strikingly, these proteins have previously been found to cycle between Golgi, plasma membrane and 

endosomes, and for GPP130, a function in retrograde trafficking of Shiga toxin had been documented. 

We show here that GPP130 must indeed interact with syntaxin-5 to drive Shiga toxin transport from 

endosomes to the Golgi. Our findings strongly suggest a non-SNARE function for syntaxin-5 at the 

endosomes-Golgi interface, in interaction with retrograde cycling proteins. 

11.1.2 Author contributions 

LJ and DG conceived and designed the study. SJR, HFR, and MDGC performed click chemistry 

immunofluorescence, and MDGC mass spectrometry experiments with the help of RR. SJN performed 

SNARE PLA, SNARE re-localization, STX5-RUSH, and GPP130 rescue analysis. Intoxication assays were 

done by SRN, MDGC, and JB. The purification of STX5 and GPP130 variants, the monensin study and 

the in vitro STX5-pulldown of the GPP130 variants were performed by CB and AL. SJR, VC, AF, and XH 

performed HPF-CLEM with the help of GR. SJR and MDGC performed Sec16A and syntaxin-5 proteomics 

analysis, immunofluorescence. AF performed the Sec23 kinetic studies. AC and JCC designed and 

performed the chemical synthesis of azide-functionalized Retro-2 derivatives. SJR and LJ wrote the 

paper. JCC, JB, DG, and GR critically revised the manuscript as well as aided in the design and analysis 

of experiments. 

 

  



 

59 

11.1.3 Introduction 

Shigella dysenteriae and enterohemorrhagic strains of Escherichia coli (EHEC) produce the bacterial 

Shiga toxin and Shiga-like toxins (SLT), respectively (Johannes and Römer, 2010). Notably, SLTs of E. coli 

strain O157:H7 are responsible for pathological manifestations that can lead to hemolytic-uremic 

syndrome (HUS), the leading cause for pediatric renal failure in the world. These toxins are also a threat 

to adults as it became apparent in 2011, when an outbreak with E. coli strain O104:H4 in Germany and 

neighboring countries claimed dozens of adult victims, and thousands of adult patients who were 

hospitalized with severe symptoms. The most life-threatening extra-intestinal disease manifestations 

are renal failure and central nervous system complications. To date, no specific treatment options exist, 

and clinical management of HUS remains purely supportive (Tarr et al., 2005). 

Shiga toxin and the SLTs are type 2 ribosome inactivating proteins (RIPII) with an AB5 type of molecular 

structure. The catalytic A-subunit is responsible for the cleavage of an adenine base on position 4,324 

of 28S ribosomal RNA (rRNA)(Endo et al., 1988; Saxena et al., 1989). It is non-covalently associated with 

a homopentameric B-subunit (STxB)(Fraser et al., 1994; Stein et al., 1992). STxB binds the cellular toxin 

receptor, a glycosylated lipid termed globotriaosylceramide (Gb3, or CD77), with 15 binding sites per 

STxB homopentamer (Ling et al., 1998). After receptor binding and clustering, Shiga toxin is internalized 

by clathrin-dependent (Sandvig et al., 1989)and independent (Römer et al., 2007) endocytosis. From 

early and maturing endosomes, the toxin is then transported via the retrograde route to the TGN 

(Mallard et al., 1998) and the endoplasmic reticulum (ER) (Sandvig et al., 1992), from where the 

catalytic A-subunit is translocated to the cytosol (Spooner and Lord, 2012). 

Retrograde sorting of Shiga toxin on early and maturing endosomes has been extensively studied 

(Johannes and Popoff, 2008). Key players are clathrin (Lauvrak, 2004; Saint-Pol et al., 2004) and the 

retromer complex (Bujny et al., 2007; Popoff et al., 2007; Utskarpen et al., 2007). Furthermore, GPP130 

was shown to be involved in retrograde transport of Shiga toxin and SLT1 (Mukhopadhyay and Linstedt, 

2012), but not that of SLT2 (Mukhopadhyay et al., 2013). 

Two Golgi-localized SNARE complexes have been identified to be involved in Shiga toxin trafficking: one 

composed of syntaxin-16, syntaxin-6 and Vti1, and VAMP4 (Mallard et al., 2002); and a second one 

composed of syntaxin-5 (STX5), GS28, Ykt6, and GS15 (Tai et al., 2004). How the activities of these 

SNARE complexes are articulated remains unexplored at this stage. Indeed, while VAMP4 is localized 

on early endosomes and clearly can function as a vSNARE for fusion of endosomal retrograde transport 

carriers with TGN membranes, the constituents of the STX5/GS28/Ykt6/GS15 complex are all Golgi-
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localized only. STX5 has been described to cycle between the Golgi and the ER (Sengupta et al., 2015; 

Hui et al., 1997; Miyazaki et al., 2012), involving COPII vesicles for its anterograde transport (Mancias 

and Goldberg, 2008). 

Small molecule inhibitors have been developed against Shiga toxin. The Retro compounds stand out as 

they have been shown to protect mice against the plant toxin ricin (Stechmann et al., 2010) and against 

SLT1 (Secher et al., 2015). Furthermore, these compounds have activities against pathogens as diverse 

as Leishmania species, Ebola, Marburg poxviruses, and Chlamydiales (Gupta et al., 2017). Retro-2 

variants with improved activity were obtained in structure-activity relationship studies (Noel et al., 

2013)(Gupta et al., 2014; Dai et al., 2017; Noel et al., 2013). 

At the cellular level, Retro-2 leaves compartment morphology intact, but induces the redistribution of 

STX5 from the Golgi to the ER, and the accumulation of Shiga toxin in early endosomes (Stechmann et 

al., 2010). Whether and how these events are linked has remained unexplored. 

In this study, we used biorthogonal click chemistry to identify Retro-2 interaction partners. The COPII 

component Sec16A came up as a prime candidate. Our data show that in agreement with an effect on 

Sec16A activity, Retro-2 treatment leads to a partial redistribution of STX5 to the ER by reducing the 

anterograde flow of STX5, and a concomitant loss of STX5 Interaction with GPP130. Furthermore, we 

demonstrate that interaction of STX5 with GPP130 is required for the latter to foster retrograde 

endosomes-to-Golgi trafficking of Shiga toxin. Thereby, we build a chain of arguments that link the 

presumed site of action of Retro-2 in the ER with the site of toxin accumulation in early endosomes of 

cells that are treated with this compound. Furthermore, we provide evidence for a non-SNAERE 

function of STX5 in interaction with GPP130.  
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11.1.4 Results 

11.1.4.1 Retro-2 targets the COPII machinery. 

The intercellular targets or Retro-2 remain unknown. A clickable version of Retro-2 (Figure 31 A) was 

incubated with HeLa cells for 30 min at 37°C, than bio-orthogonally reacted on cells with a biotin 

compound, and pull down with streptavidin-beads was performed after cell lysis. Analysis by mass 

spectrometry from 2 independent experiments revealed the COPII component Sec16A as the top hit 

(Figure 31 B). In another configuration of the experiment, the incubation with clickable Retro-2 was 

performed in the presence of a 5-fold molar excess of non-clickable Retro-2. Under these conditions, 

the Sec16A signal largely disappeared from the pull down (Figure 31 B), which confirmed the specificity 

of the finding. The result of a pull down of Sec16A with clickable Retro-2 was also confirmed by Western 

blotting (Figure 31 C). Interestingly, STX5 was not found amongst the presumed Retro-2 interacting 

partners, suggesting that its relocalization from the Golgi may be an indirect effect. 

The clickable version of Retro-2 was then used for biorthogonal labeling with a fluorophore to 

document the intracellular distribution of the small molecule compound. Under control conditions 

(scrambled siRNA transfection), Retro-2 was localized to dotted perinuclear structures (Figure 31 D). 

Upon depletion of Sec16A, Retro-2-specific labeling was strongly diminished. The quantification of 

fluorescence intensities showed a highly significant reduction to 21.5 ± 6.248 % on Sec16A-depleted 

cells (Figure 31 E), demonstrating that Sec16A expression was needed for Retro-2 binding to cells. 

Whether Retro-2 directly interacts with Sec16A needs to be further investigated. 
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Figure 31: Sec16A is involved in Retro-2 binding on cells. (A) Scheme of biorthogonal Click chemistry adapted to Retro-2. The 
clickable Retro-2 probe, based on Retro-2.1 (Gupta et al., 2014) was coupled via a DIBO moiety to biotin, or a fluorophore. (B) 
In two independent pull-down experiments with the clickable Retro-2-biotin probe, Sec16A was identified as the top hit. When 
indicated, non-clickable Retro-2 was used in excess to compete with clickable Retro-2. DMSO without clickable Retro-2 was 
used as a control condition. (C) anti-Sec16A Western blots of a representative Retro-2 pull-down (with the clickable Retro-2-
probe). Shown are bands on the level of the 250 kDa marker. (D) Confocal acquisitions of Click-staining of a Retro-2-
fluorophore-probe on mock-siRNA treated cells (=control), or Sec16A-depleted cells (=Sec16A). DNA was stained with DAPI. 
(E) Quantification (~100 cells per condition) of the fluorescence intensity of the Retro-2-fluorophore-probe (normalized to 
100 ± 9.118 %). The intensity of the fluorescence-probe only (=probe) was set to 0 % intensity. The intensity of Retro-2-
fluorophore-probe upon Sec16A depletion resulted in 21.5 ± 6.248 % intensity. *** = <0.0001. 
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11.1.4.2 Depletion of Sec16A phenocopies Retro-2 treatment  

One of the salient phenotypes of Retro-2 treatment is the inhibition of retrograde transport of STxB 

between early endosomes and the TGN (Stechmann et al., 2010). We found here that the depletion of 

Sec16A also led to a retention of STxB in early endosomes of cells that were incubated with STxB for 45 

min at 37°C (Figure 32 A). The effect was quantified by measuring the fluorescence signal of STxB within 

the Golgi region, as marked by anti-giantin immunolabeling, over total cellular STxB signal. This fraction 

was reduced to 71.17 ± 2.289 % upon Retro-2 treatment, to 60.54 ± 2.309 % upon Sec16A depletion 

and to 46.17 ± 1.683 % upon concomitant Retro-2 treatment and Sec16A depletion (Figure 32 B). After 

measuring Sec16A expression by Western blot, we could detect a significant but not complete 

depletion of the protein (reduction to 7 % ± 2). The apparently additive effects between Retro-2 

treatment and Sec16A depletion might have originated from the fact that both inhibitions were partial. 

Alternatively, Sec16A depletion may affect additional intracellular functions that are not targeted when 

Sec16A activity is inhibited by Retro-2. 

Retro-2 treatment also protects cells from intoxication by Shiga toxin (Stechmann et al., 2010), which 

is measured via the incorporation of radiolabeled methionine into neosynthesized proteins. Similar to 

Retro-2 treatment, depletion of Sec16A resulted in a 6.042-fold protection of cells (Figure 32 C), which 

indicated that the toxin reached membranes of the ER from where the catalytic A-subunit in 

translocated to the cytosol less efficiently. 

Retro-2 finally induces the redistribution of STX5 to the ER (Stechmann et al., 2010). Here again, we 

found that this phenotype was reproduced upon Sec16A depletion. The fraction of STX5 in the Golgi 

area was determined as described above for STxB. When compared to control conditions, the fraction 

of Golgi localized STX5 was reduced to 33.11 ± 0.9788 % in Retro-2 treated cells, to 44.06 ± 2.739 % in 

Sec16A depleted cells, and to 31.49 ± 1.27 % under combined treatment conditions (Figure 33 A and 

B). The fact that Sec16A depletion did not increase the amplitude of redistribution of the Retro-2 

treatment condition indicates that for STX5 localization, the small molecule inhibitor affects the full 

scope of Sec16A activities that are required for this phenotype. 

Taken together, these findings support the idea that Sec16A is the direct or indirect target of Retro-2. 
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Figure 32: Depletion of Sec16A affects Shiga toxin trafficking similar to Retro-2 treatment. (A) HeLa cells were transfected for 
72 hours with the indicated siRNAs (scrambled or against Sec16A). After 30 min of pre-incubation with Retro-2 (or DMSO for 
control), cells were incubated for another 45 minutes at 37°C with STxB-Cy3 (green). The Golgi was immuno-labeled with an 
anti-rabbit-Giantin antibody (red); DNA was marked with DAPI (blue). The scale bar represents 10 µm. (B) Quantifications 
(~100 cells per condition of two independent experiments) of STxB-Cy3 intensity in the Golgi in the region indicated conditions. 
Control = 91.43 ± 0.9767 %, Retro-2 = 71.17 ± 2.289 %, siSec16A = 60.54 ± 2.309 %, siSec16A + Retro-2 = 46.17 ± 1.683 %. P 
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value of T tests = *** = <0.0001. (C) Intoxication of Hela cells with STx1 in the indicated conditions. EC50siControl = 0.06178 
ng/ml, EC50siSec16A = 0.3733 ng/ml, protection factor = 6.042-fold. 

 

 

 

 

 

 

 

 

Figure 33: Depletion of Sec16A affects STX5 localization similar to Retro-2 treatment. 
(A) HeLa cells were incubated for 30 min at 37°C with Retro-2 (or DMSO as control). 
STX5 was immuno-labeled with a rabbit antibody (green); the Golgi was immuno-
labeled with an anti-goat-TGN antibody (red); DNA was marked with DAPI (blue). The 
scale bar represents 10 µm. (B) Quantifications (~50 cells per condition of two 
independent experiments) of STX5 intensity in the Golgi. Control = 69.4 ± 1.543 %, 
Retro-2 = 33.11 ± 0.9788 %, siSec16A =: 44.06 ± 2.739 %, siSec16A + Retro-2 = 31.49 
± 1.27 %. P value of T tests = *** = <0.0001.  
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11.1.4.3 Retro-2 slows the anterograde transport of STX5 

As part of the COPII machinery, Sec16A has functions in the biosynthetic/secretory transport of 

proteins out of the ER. To test whether Retro-2 affects the anterograde transport of STX5, we adapted 

the Retention Using Selective Hook (RUSH) approach (Boncompain et al., 2012) to this SNARE protein. 

For this, we fused STX5 to the streptavidin-binding peptide (SBP) and eGFP, and co-expressed a KDEL-

core-streptavidin fusion protein, which operates the retention of STX5 in the ER. After addition of 

biotin, STX5 is released and resumes trafficking. TGN46 was used to define the Golgi in 

immunofluorescence experiments, and the fraction of STX5 (and other cargoes) in the Golgi was 

determined as described above. Following release in control conditions, more than 90 % of STX5 was 

found in the Golgi within 20 min of incubation at 37°C (Figure 34 A). Upon Retro-2 treatment, the 

amount of STX5 within the Golgi was reduced to 68.15 ± 5.298 % (Figure 34 B). In contrast, the 

anterograde trafficking of mannosidase II (ManII) (Figure 34 C and D), sialyltransferase (ST), and 

galactose-1-phosphate uridylyltransferase (GalT) (data not shown) was not affected by Retro-2 

treatment. 

These findings suggested that the redistribution of STX5 to the ER that is observed upon incubation of 

cells with Retro-2 results from a reduced rate of anterograde ER-to-Golgi transport. This effect appears 

to be specific for STX5, as 3 other endogenous cargoes (this study) and one heterologous (Stechmann 

et al., 2010) were not affected. The molecular reasons for this specificity remain unexplored at this 

stage. This specificity may explain, however, why Retro-2 is little toxic for cells and animals. 
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Figure 34: Retro-2 treatment slows the anterograde transport of STX5. (A) Confocal acquisitions of HeLa cells that expressed 
the STX5-RUSH construct. The cells were pre-treated for 60 min at 37°C with Retro-2, or DMSO as control (steady state). 
Trafficking was initiated upon addition of biotin, followed by incubation for 20 min at 37°C. STX5-GFP is shown in green; the 
Golgi (giantin) is shown in red; the scale bar represents 10 µm. (B) Quantification (four independent experiments, 60 cells per 
experiment) of STX5-GFP intensity in the Golgi area. Steady state: 17.93 ± 2.494 %, 20 min release in control conditions: 100 %, 
20 min release in the presence of Retro-2: 68.15 ± 5.298 %, P value of T tests = *** = 0.0010. (C) Trafficking of the ManII-RUSH 
construct (green) was analyzed as in (B). (D) Quantifications (~50 cells per condition) of ManII-GFP intensity in the Golgi. Steady 
state: 17.15 ± 1.531 %, 20 min trafficking: 94.12 ± 1.967 %, 20 min trafficking + Retro-2: 91.18 ± 4.609 %, P value of T tests = 
NS = not significant.  
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11.1.4.4 STX5 SNARE complexes remain unchanged upon Retro-2 treatment 

STX5 forms two Golgi-localized SNARE complexes: STX5/GS27/Bet1/Sec22b at the cis-Golgi, and 

STX5/GS15/GS28/Ykt6 at medial-to-trans-Golgi (Xu, 2002; Chen and Scheller, 2001; Hong, 2005; 

Amessou et al., 2007). A function of the latter in endosomes-to-Golgi trafficking of Shiga toxin has been 

hypothesized (Tai et al., 2004). We therefore analyzed whether the SNARE partners of STX5 were 

relocalized upon Retro-2 treatment, as observed for STX5 itself. For this, immunolabeling of STX5, 

GS27, and GS28 in the Golgi area was determined, as described above. Remarkably, the Golgi fraction 

of GS27 and GS28 remained unaltered upon Retro-2 treatment, whereas the Golgi labeling of STX5 was 

reduced to half (Figure 35 A and B). Very clearly, the Retro-2 effect was limited to STX5. 

We next analyzed the stability of the SNARE complexes involving STX5 in Retro-2 treated cells. HeLa 

cells were transfected with GFP-tagged STX5, and co-immunoprecipitated proteins were analyzed by 

mass spectrometry. The SNARE partners of STX5 were readily detected (Figure 35 C; SNARE partners 

are indicated by # and *). The treatment of cells with Retro-2 prior to immunoprecipitation did not 

affect the pull down of the SNARE partners (Figure 35 C), despite the redistribution of STX5 under these 

conditions (see above). This surprising result was confirmed by Western blotting for co-

immunoprecipitated GS27 and GS28 (Figure 35 D). This surprising result was confirmed by Western 

blotting for co-immunoprecipitated GS27 and GS28 (Figure 35 D). 

The Proximity Ligation Assays (PLA) was used as a further approach to sample for possible changes 

upon Retro-2 treatment in the proximity between STX5 and its SNARE partners GS27 or GS28. The 

number of dots per µm2 was not affected by the small molecule drug (Figure 35 E-G), which provided 

another strong argument in favor of an unaltered formation of STX5 SNARE complexes under Retro-2 

incubation conditions. 

Several convergent lines of evidence thus suggested that despite the partial relocalization of STX5 to 

the ER, the formation of its SNARE complexes was not affected. It therefore appeared unlikely that the 

inhibition of retrograde transport of Shiga toxin from endosomes to the Golgi was due to an altered 

SNARE function.  
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Figure 35 (previous page): STX5-SNARE complexes are not affected upon Retro-2 treatment. (A) Representative confocal 
acquisitions of the cellular distribution of STX5, GS27, and GS28 in either control (DMSO) or Retro-2 treated cells. (B) 
Quantification (~110 cells per condition) of Golgi-localized fluorescent signal of STX5, GS27, and GS28. TGN46 immuno-
labeling was used as a Golgi mask. STX5: 56 ± 1 %, STX5 + Retro-2: 28.32 ± 1.0 %, P value of T tests = *** = <0.0001. GS27 = 
64.47 ± 1.0 %, GS27 + Retro-2 = 61.18 ± 1.7 %, P value of T tests = NS = 0.09. GS28: 82.58 ± 0.9 %, GS28 + Retro-2: 81.14 ± 
0.9 %, P value of T tests = NS = 0.2774. (C) Table for STX5 interacting proteins that are not competed for by Retro-2 treatment 
of cells. #-cis-Golgi STX5 SNARE complex proteins, *-trans-Golgi STX5 SNARE complex proteins. (D) anti-GFP, GS27 and GS28 
Western blots of a representative eGFP-STX5 pull-down via GFP-trap beads. Controls were un-transfected cells or eGFP 
transfected cells. eGFP-STX5 cells were treated either with DMSO (control) or Retro-2. (D) anti-GFP, GS27 and GS28 Western 
blots of a representative eGFP-STX5 pull-down via GFP-trap beads. Controls were un-transfected cells or eGFP transfected 
cells. eGFP-STX5 cells were treated either with DMSO (control) or Retro-2. (E) Representative confocal acquisitions of STX5-
PLA with either GS27 or GS28 upon DMSO (control) or Retro-2 treatment. One cell per picture is shown. (F) Quantification of 
PLA between STX5 and GS27. Number of dots were normalized by µm². P value of T tests = NS = 0.4766 (G) Quantification of 
PLA between STX5 and GS28. Number of dots were normalized by µm². P value of T tests = NS = 0.9543. 
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11.1.4.5 STX5 binds to GPP130 in a Retro-2 sensitive manner 

Several proteins were identified that were lost from the list of STX5 interacting partners upon 

incubation of cells with Retro-2 (Figure 36 A). Three of these, TGN46, GP73 and GPP130, are proteins 

that have previously been shown to cycle between TGN, PM and endosomes (Reaves et al., 1993; Puri 

et al., 2002), and for GPP130, a function in Shiga toxin trafficking between endosomes and the TGN has 

been demonstrated (Mukhopadhyay and Linstedt, 2012; Natarajan and Linstedt, 2004). For GPP130, 

the interaction results obtained by mass spectrometry were confirmed by Western blotting, in which 

incubation with manganese that was shown previously to lead to GPP130 degradation in lysosomes 

(Mukhopadhyay and Linstedt, 2012), siRNA-mediated depletion of GPP130, or Retro-2 treatment led 

to the loss of GPP130 from immunoprecipitates with GFP-tagged STX5 (Figure 36 B). 

STX5 has a luminal domain of only one amino acid. It therefore seemed likely that the interaction of 

STX5 with GPP130 occurred via the cytosolic domains of both proteins, which for GPP130 is of only 12 

amino acids. To test this hypothesis, the GST-tagged cytosolic domain of GPP130 and the non-tagged 

cytosolic domain of STX5 (residues 202 to 355) were purified, and pull down assays were performed 

on glutathione beads. Proteins of the pull downs were quantified by Coomassie blue staining of SDS-

PAGE gels (Figure 36 C). For GPP130, the KR11,12AA mutant, an unrelated sequence from the cytosolic 

domain of the dipeptidyl peptidase-4 (DPPIV, also known as adenosine deaminase complexing 

protein 2, or CD26), and GST were included in this analysis. The dipeptidyl peptidase-4 domain is 

referred to as DGG. Wild-type GST-tagged cytosolic domain of GPP130 bound 30.5 ± 7.9 % of STX5 

cytosolic domain that was present in the incubation, whereas only 2.6 ± 1.4 % of STX5 was pulled down 

on pure GST (negative control) (Figure 36 D). The pull down of STX5 cytosolic domain was equally 

inefficient on GST-tagged KR11,12AA or DGG (DGG: 5.4 ± 1.2 % and KR11,12AA: 4.8 ± 1.2 %, respectively). 

It could be concluded that the interaction between GPP130 and STX5 is direct, efficient, and that it can 

be prevented by the KR11,12AA mutation on GPP130. It was then tested whether this interaction was 

functionally required for Shiga toxin trafficking. 
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Figure 36: The cytosolic domain of GPP130 interacts with STX5. (A) Table of Retro-2-competed interacting proteins of STX5. 
(B) anti-GFP and GPP130 Western blots of a representative eGFP-STX5 pull-down via GFP-trap beads. Controls were un-
transfected cells or eGFP transfected cells. eGFP-STX5 cells were treated either with DMSO (control), Retro-2, siRNA against 
STX5, siRNA against GPP130, or manganese (leading to GPP130 degradation). (C) SDS-Page analysis of purified STX5 (residues 
202-355). The indicated amount (Load) of purified STX5 was incubated with GST, GST-GPP1301-108 (WT), GST- GPP1301-108 with 
a substituted cytosolic domain from DPPIV (DGG), or GST- GPP1301-108 with KR11,12AA alanine substitution in the cytosolic 
domain. Anti-GST-beads were used to collect the complexes and after washing, recovery of STX5 (Bound) was determined by 
Coomassie staining of SDS-PAGE gels and (D) quantified (n=6±SD).  
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11.1.4.6 The GPP130-STX5 interaction is required for STxB trafficking to the Golgi 

As described before (Natarajan and Linstedt, 2004), GPP130 expression is required for efficient 

intoxication of cells (Figure 37 A) and retrograde transport of STxB to the Golgi (Figure 37 B). To test 

for the importance of the interaction between GPP130 with STX5 for the retrograde transport function, 

GPP130 depleted cells were re-transfected with wild-type GPP130 or the KR11,12AA mutant. Upon an 

incubation for 45 min at 37°C with HeLa cells, 86,4 ± 1,5 % of STxB reached the Golgi area under control 

conditions. GPP130 depletion reduced the presence of STxB in the Golgi area to 63.23 ± 2.475 % (Figure 

37 B). Upon re-transfection of wild-type GPP130, this value went up to 83.23 ± 1.796 % again, indicating 

that GPP130 activity was efficiently rescued. In contrast, when the KR11,12AA construct was expressed, 

only 57.08 ± 3.95 % of STxB was found in the Golgi area, which is similar to the GCC130 depletion 

condition. The KR11,12AA thus failed to rescue GPP130 function in retrograde trafficking of STxB, 

indicating that the interaction with STX5 was important for this activity. 

Monensin has been described to disperse trans-Golgi network determinants (Ledger et al., 1980) due 

to its ionophoric properties (Bergen and Bates, 1984; Mollenhauer et al., 1990). Upon monensin 

treatment, wild-type GPP130 and the KR11,12AA mutant relocalized out of the Golgi into endosomal 

structures (Figure 37 C and D, middle panel). Upon washout of monensin, GPP130 is retrieved back to 

the Golgi. After three hours, wild-type GPP130 was mainly localized back in the Golgi, whereas the 

majority of the KR11,12AA mutant population was still in endosomal or intermediate structures, showing 

that the retrieval was strongly delayed and that the cytosolic domain was physiologically involved in 

the proper distribution of GPP130 due to its binding capacities to STX5 (Figure 37 C and D, right panel). 

The STxB transport assay and the Golgi retrieval assay strongly implied the physiological importance of 

the GPP130-STX5 interaction for efficient retrograde STxB trafficking between endosomes and the 

Golgi, and for proper GPP130-distribution. 
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Figure 37 (previous page): STX5 binding site in GPP130 is required for its Golgi retrieval and Shiga toxin trafficking. (A) Protein 
neo-biosynthesis was measured via the incorporation of S35-radiolabeled methionine in function of increasing toxin 
concentration after one hour of STx1 intoxication. Cells were pretreated either with scrambled siRNA or siRNA against GPP130 
72 hours before intoxication. EC50siControl = 2.851 ng/ml, EC50siGPP130 = 27.47 ng/ml, protection factor = 9.6352. (B) STxB-
Cy3 trafficking. Quantifications (~50 cells per condition of two independent experiments) of STxB-Cy3 intensity in the Golgi 
region after 45 min. Control = scrambled siRNA: 86.39 ± 1.488 %, siGPP130: 63.23 ± 2.475 %, WT rescue after GPP130 
depletion: 83.23 ± 1.796 %, KR-AA mutant retransfection after GPP130 depletion: 57.08 ± 3.95 %. P value of T tests = *** = 
<0.0001, NS = non-significant. (C) Representative acquisitions of (D). (D) Gene-edited cells lacking GPP130 were transfected 
with either HA-GPP130 (WT) or an identical construct with the KR11,12AA alanine substitution (KR-AA) that blocks binding to 
STX5. The cells were then untreated, treated with monensin for 1 hour to redistribute GPP130 to endosomes, or monensin-
treated and then subjected to a 3-hour washout incubation. Only the GPP130 staining is shown to localize the GPP130 
constructs, but giantin staining of the same cells indicated the position of the Golgi. Quantification of the washout was carried 
out by counting cells with primarily Golgi-localized, a mix of Golgi- and endosome-localized, or primarily endosome-localized 
GPP130 (n=9±SEM, about 50 cells counted per experiment).. Shown is the cellular distribution of the re-transfected GPP130 
constructs (WT or KR-AA) upon control = untreated (left column), monensin treatment (middle column), or monensin washout 
(right column). The scale bar represents 10 µm.  
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Table 3: supplementary information: Full mass-spectrometry tables of GFP-STX5 pulldown. 
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11.1.5 Discussion 

Studies in mice have shown that the small molecule inhibitor Retro-2 protects against the plant toxin 

ricin (Stechmann et al., 2010) and the bacterial Shiga-like toxins (Secher et al., 2015). The molecular 

mechanism of action of the compound had remained unknown. Here we provide evidence for the COPII 

component Sec16A as a likely target of Retro-2. Sec16A function in the anterograde transport of the 

Golgi SNARE protein syntaxin 5 (STX5) appears to be disturbed by Retro-2, thereby leading to partial 

relocalization of the SNARE to the ER. Concomitantly with this relocalization, the interaction of STX5 

with the endosomal cycling protein GPP130 is lost. Our functional interaction data strongly suggest that 

this STX5-GPP130 interaction is required for efficient Shiga toxin trafficking from endosomes to the 

Golgi. This chain of events provides a solid model on how Retro-2 causes a toxin trafficking block at the 

levels of endosomes, and provides a fresh perspective on a possible non-SNARE function of STX5 in 

interaction with GPP130. 

Based on structural arguments, it has been predicted that STX5 binds the COPII component Sec24 

(Mossessova et al., 2003a). Since the Sec23/Sec24 dimer interacts with Sec16A in the progress of COPII 

vesicle formation (Whittle and Schwartz, 2010), it might be speculated that Retro-2 interferes with 

COPII vesicle formation. The fact that from the different anterograde cargoes that we have analyzed, 

only STX5 was affected points to the possibility that such interfering effect would be cargo specific. The 

multi-domain nature of Sec16A might be compatible with the hypothesis of cargo-specific functions 

(Campbell and Schekman, 1997). 

Our initial hypothesis was that STX5 itself would be the target of Retro-2, and that Retro-2’s effect on 

Shiga toxin trafficking would come from the perturbation of the SNARE function of this molecule. It was 

therefore a surprise when several convergent lines of evidence demonstrated that the integrity of STX5 

SNARE complexes was not affected. At first sight, these findings on unperturbed SNARE complex 

formation appear to be in contradiction with the 50 % reduction of STX5 labeling to the Golgi area of 

Retro-2-treated cells. However, some STX5 still remains present in the Golgi, and these remaining levels 

are likely sufficient to maintain SNARE activity. 

The interaction between STX5 and the Golgi-plasma membrane-endosomes cycling proteins TGN46, 

GPP130, and GP73 represents another discovery of our study. For GPP130, a function in Shiga toxin 

trafficking has clearly been established (Natarajan and Linstedt, 2004; Mukhopadhyay and Linstedt, 

2012), which is quite exciting in the context of the current study. Whether also TGN46 and GP73 are 
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trafficking chaperons remains to be tested directly. For TGN46, a function in anterograde trafficking of 

α5β1 integrin from the Golgi to the plasma membrane has been suggested (Wang and Howell, 2000). 

At this stage, by which mechanism(s) the interaction between STX5 and GPP130 translates into function 

remains unknown. Since binding occurs at the level of the cytosolic domains, one might invoke some 

type of trans-interaction. Yet, a role as tethering factors appears unlikely when one considers the short 

length of GPP130’s cytosolic domain. More work needs to be done to elucidate this aspect. It is not 

clear either why Retro-2-induced STX5 relocalization leads to a loss of the SNARE’s interaction with 

GPP130. Most likely, STX5 is depleted from the trans-most cisternae of the Golgi upon Retro-2 

treatment, where TGN46, GPP130, and GP73 are trafficking back and forth between plasma membrane 

and endosomes. 

In conclusion, the current study breaks new ground for the investigation of the Retro-2 effect on cells, 

and suggests a non-SNARE function for STX5 in interaction with GPP130. Further mechanistic details 

will need to be worked out in future studies. 
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11.2 THE EFFECT OF MIR199 ON RETROGRADE SHIGA TOXIN TRAFFICKING 

11.2.1 Objectives and summary. 

The data that are presented below contributed to a study in collaboration with Juan F. Aranda in the 

group of Carlos Fernández-Hernando at Yale University School of Medicine in New Haven, Connecticut, 

USA. My work addressed the role of the miR199 in the retrograde trafficking of STxB upon miR199 

treatment. A manuscript is currently in revision at Molecular and Cell Biology (MCB). 

 

Retrograde transport allows the retrieval of receptors and other cellular cargoes to the Golgi 

contributing to the maintenance of cellular homeostasis. This transport route is also commonly used 

by several bacterial toxins to exert their deleterious actions on eukaryotic cells. While the retrograde 

transport process has been well characterized, the contribution of microRNAs (miRNAs) in regulating 

this cellular transport mechanism remains poorly explored. Here, we found that the intronic miRNA 

family, miR199, coordinate genes regulating retrograde transport and endosome trafficking. In 

particular, we demonstrate that miR199 attenuates the expression of the retromer component VPS26, 

the GTPase Rab9B and the shuttling receptor M6PR, thereby controlling retrograde transport from 

endosomes to Trans Golgi network (TGN). Importantly, we found that overexpression of a VPS26 

construct that is resistant to the miRNA action abolish the effect of miR199 on retrograde trafficking. 

Finally, we demonstrate that miR199 transfection attenuates STxB-mediated inhibition of protein 

biosynthesis. In summary, our work identifies the first non-coding RNA that influences retrograde 

trafficking and suppresses the cytotoxicity caused by bacterial toxins.  
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11.2.2 Results 

11.2.2.1 MiR199 down regulates retromer expression 

In the submitted paper, our collaborator showed that the miR199 family targets the expression of 

VPS26, Rab9B and M6PR. For reproduction of the results obtained by our collaborators and as a 

surrogate control for the fact that my experimental observations were due to the miR199 treatment, I 

measured by Western blotting the expression of the retromer compartment VPS26. Indeed, miR199 

successfully downregulated VPS26, as shown in Figure 38. 

 

 
Figure 38: Western blot against VPS26. Loading from left to right: molecular weight marker (top to bottom in kDa: 100, 75, 
55, 35, 25, 15), scrambled miR transfected cells (miRCM), miR199 transfected cells, cell lysate (input). Expected size: 38 kDa. 

 

11.2.2.2 MiR199 impairs retrograde transport of STxB 

As part of the retromer, VPS26 has been previously reported to be involved in retrograde trafficking of 

Shiga toxin (Popoff et al., 2007) (read more in chapter 9.2.5.3). To test whether miR199 regulates the 

retrograde transport route, STxB-Cy3 trafficking was measured for 45 min at 37°C in scrambled and 

miR199 transfected HeLa cells by determining the fraction of STxB in the Golgi area over the total cell-

associated STxB signal (see section 10.8 for the method).  
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Figure 39: Quantification STxB-Cy3 trafficking in mock or miR199-treated cells. Quantifications (~25 cells per condition) of 
STxB-Cy3 intensity in the Golgi region after 45 min of incubation. miRCM = scrambled miR: 52.46 ± 3.489, and miR199 
treatment: 33.92 ± 2.713. Shown is the mean and the SD. P value of T tests = *** = <0.0001. 

 

As shown in Figure 39, STxB was efficiently internalized after 45 min at 37°C of incubation under control 

conditions. However, its accumulation in the Golgi was significantly reduced by 1.56-fold in miR199 

treated cells. By co-labeling with EEA1, our collaborator has shown that STxB remained in EE under 

these conditions (see (Aranda et al., 2017), Annex chapter 15.1.2, from page D). 
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11.2.2.3 MiR199 inhibits SLT intoxication. 

Given that miR199 inhibited STxB trafficking to the Golgi, I further tested whether miR199 protected 

cells against SLT intoxication. Protein biosynthesis was measured as described in Section 10.12 via the 

incorporation of [35S]-labeled methionine into neosynthesized proteins. In miR199-transfected cells, 

significant more toxin was needed to obtain the same level of protein biosynthesis inhibition, which 

indicated that the cells were partially protected (Figure 40). The protection factors observed on 

miR199-transfected or VPS26-depleted cells were similar (Figure 41), in agreement with the effect of 

miR199 on VPS26 expression. These results clearly are consistent with the hypothesis that miR199 

regulates retrograde transport. 
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Figure 40: Representative intoxication curves upon STx1 treatment. Points = control = scrambled miR, triangles = miR199, 
cubes = siRNAVPS26, protection factors are shown in Figure 39.  
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Figure 41: Quantifications of 3 independent STx1 intoxication experiments. Shown are protection factors. Control = scrambled 
miR: 1-fold protection, miR199: 3.68 ± 0.8648 fold protection and siRNAVPS26 treatment: 4.507 ± 1.329 fold protection. The 
difference between miR199 and siRNAVPS26 was not significant (P = 0.6181)
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12 DISCUSSION 

After identifying Sec16A as the likely cellular target of Retro-2 (chapter 11.1.4.1), we showed that cells 

lacking Sec16A exhibited similar phenotypes than Retro-2-treated cells, such as STX5 relocalization out 

of the Golgi, and inhibition of retrograde STxB-Cy3 trafficking to the Golgi and intoxication of cells by 

STx1 (chapter 11.1.4.2). In a chemical biology approach, we used biorthogonal click chemistry in 

combination with optimized small molecules to determine drug targets and localization, similar to 

previously studies (Rodriguez and Miller, 2014; Bagert et al., 2014; Mai et al., 2017). 

By targeting Sec16A, Retro-2 slows down STX5 anterograde trafficking to the Golgi (chapter 11.1.4.3), 

explaining its delocalization out of the Golgi, likely due to dis-equilibrated anterograde and retrograde 

trafficking rates (Miles et al., 2001; Ward et al., 2001; Sengupta et al., 2015). Unexpectedly, Retro-2 

specifically affects the anterograde transport of only STX5, and not of ManII, ST, or GalT. This stresses 

the need for further examination of the mechanism by which Retro-2 affects the activity of Sec16A. 

Since STX5 has a putative binding sequence for Sec24 (Mossessova et al., 2003a), and Sce23/Sec24 

interacts with Sec16A, Retro-2 might interfere with either COPII vesicle formation or prevent COPII 

vesicle release (Sprangers and Rabouille, 2015). How cargo specificity is achieved in this context 

remains to be determined. 

Several novel STX5 interacting proteins were found in our experiments: TGN38/46 (Luzio et al., 1990; 

Puri et al., 2002; Reaves et al., 1992), GP73 (Puri et al., 2002; Bachert et al., 2007)and GPP130 (Linstedt 

et al., 1997; Natarajan and Linstedt, 2004). These have all been shown to cycle between Golgi, PM, and 

endosomes. GPP130 has been already described in SLT trafficking and has been suggested as a 

intracellular receptor of Shiga toxin (Mukhopadhyay et al., 2013). Here, we provide direct evidence that 

STX5 and GPP130 directly interact with each other via their cytosolic domains (chapter 11.1.4.5). 

Whether this mechanism extends the number of retrograde trafficking routes between endosomes 

and the Golgi, or whether the GPP130-STX5 interaction is part of the various described routes 

(Johannes and Wunder, 2011b), remains to be further analyzed. 

Regarding the miR199 study, our data confirm the importance of retromer in the retrograde transport 

of SLTs. Our collaborators’ findings identified miR199 as a novel regulator of retrograde trafficking. 

miR199 regulates the expression of proteins that are involved in retrograde transport, such as VPS26 

and Rab9, and cargoes such as M6PR. Mechanistically, we demonstrate that miR199 influences SLT 

trafficking by downregulating Vps26. These findings might point at an endogenous protection 
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mechanism against bacterial, viral and/or other pathogens that use the retrograde route to enter into 

cells. Future studies will clarify whether miR199 also acts against other pathogens (McGourty et al., 

2012).Whether miR199 interferes with the trafficking of GPP130 to the Golgi not been addressed yet. 

While our study establishes miR199 as a novel regulator of the retrograde route, further experiments 

will be important to elucidate the molecular mechanism that controls the endogenous expression of 

miR199. 
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13 PERSPECTIVES 

Together with the Raposo team in UMR144, we are addressing the question to which compartment(s) 

STX5 exactly relocalizes upon Retro-2 treatment (ER, cis/medial/trans-Golgi…). High pressure freezing 

(HPF) correlative light and electron microscopy (CLEM) is used to address this question on eGFP-STX5 

expressing cells. The comparison of mock and Retro-2-treated cells should reveal changes in the 

localization of STX5, and possible changes in compartment structures, as previously published for other 

experimental systems (Delevoye et al., 2016).  

Furthermore, we are in the process of studying COPII dynamics. Together with Alison Forrester (post-

doc in our team, previously at the TIGEM, Italy) and the Nikon imaging facility at the Curie Institute, live 

cell imaging of GFP-Sec23 recruitment and release within living cells shall allow us to test whether 

Retro-2 perturbs COPII kinetics. 

With the group of Daniel Gillet (CEA, France), we follow up on the purification of fragments of Sec16A. 

A crystal structure would help in proving Retro-2 binding to Sec16A, and would allow to further improve 

the chemical development of next generation inhibitors based on structure guided design. Thus far, 

Sec16A has not been purified from mammalian sources. A co-crystal has been published of Sec13 with 

a Sec16 fragment from yeast (Whittle and Schwartz, 2010). 

Until now, only Shiga toxin has been identified as a cargo of GPP130. In collaboration with Adam 

Linstedt’s group (Pittsburgh, USA), we are exploring the possible existence of endogenous Sec16A 

interacting partner, and their dependency on the GPP130-STX5 interaction for retrograde trafficking. 
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ABSTRACT 

Antigen presenting cells have the remarkable capacity to transfer exogenous antigens to the 

cytosol for processing by proteasomes and subsequent presentation on MHC-I molecules, a 

process termed cross-presentation. It is the target of biomedical approaches that aim to trigger a 

therapeutic immune response. The receptor-binding B-subunit of Shiga toxin (STxB) is developed 

as an antigen delivery tool for such immunotherapy applications. In this study, we have analyzed 

pathways and trafficking factors that are involved in this process. A covalent conjugate between 

STxB and saporin was generated to quantitatively sample the membrane translocation step to the 

cytosol in differentiated monocyte-derived THP-1 cells. We have found that retrograde trafficking 

to the Golgi apparatus was not required for STxB-saporin translocation to the cytosol or for STxB-

dependent antigen cross-presentation. Depletion of endosomal Rab7 inhibited, and lowering 

membrane cholesterol levels favored STxB-saporin translocation. Interestingly, experiments with 

reducible and non-reducible linker arm STxB conjugates led to the conclusion that after 

translocation, STxB remained associated with the cytosolic membrane leaflet. In summary, we 

report novel facets of the endosomal escape process bearing relevance to antigen cross-

presentation. 
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ABSTRACT 

Retrograde transport allows cells the retrieval of receptors and other cellular cargoes to the Golgi 

contributing to the maintenance of cellular homeostasis. This transport route is also commonly 

used by several bacterial toxins to exert their deleterious actions on eukaryotic cells. While the 

retrograde transport process has been well characterized, the contribution of microRNAs (miRNAs) 

in regulating this cellular transport mechanism remains unknown. Here, we identified that the 

intronic miRNA family, miR-199a/b, coordinate genes regulating retrograde transport (RT) and 

endosome trafficking. In particular, we demonstrate that miR-199a-5p attenuates the expression 

Vps26A, Rab9B and M6PR, thereby controlling RT from endosomes to Trans Golgi network (TGN). 

Importantly, we found that overexpression of Vps26A construct resistant to the miRNA action 

abolish the effect of miR-199a-5p on RT. Finally, we demonstrate that miR-199-5p transfection 

attenuates shiga toxin (STxB)-mediated inhibition of protein biosynthesis. In summary, our work 

identifies the first non-coding RNA that influences RT and suppresses the cytotoxicity caused by 

bacterial toxins.   

 

INTRODUCTION 

The endosomal system homeostasis is crucial for intracellular functions such as development, 

metabolism and signaling. Endocytic internalization and recycling routes have been studied 

mechanistically in some detail. For maintenance of proper protein and cargo sorting cells need to 

coordinate intracellular trafficking through functioning of endosomes. To do so, retrograde 

transport (RT) route allows trafficking of proteins and lipids cargo from endosomes to trans-Golgi 

network and plasma membrane (Amessou et al., 2008; Bonifacino and Rojas, 2006; Johannes and 

Popoff, 2008). It thus regulates the abundance and intracellular distribution of its cargo within cells. 

Using this pathway, intracellular resident proteins such TGN46, furin or cation-independent 

mannose-6-phosphate receptor (CI-M6PR) (Arighi et al., 2004; Chia et al., 2011; Shiba et al., 2010) 

evade degradative trafficking by being retrieved from endosomes to the trans- Golgi Network 

(TGN). Also, numerous viruses and bacterial toxins utilize RT to enter the cell and reach the 

endoplasmic reticulum (ER). RT route converges with the forward biosynthetic pathway (exit route) 

at the Trans-Golgi network (TGN). Retrograde trafficking can be initiated at different levels of the 

endosome (early, late and recycling endosomes) in a process that is termed retrograde sorting (Liu 

et al., 2012; Popoff et al., 2007). Exit of cargo molecules is mediated by different retrograde sorting 
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proteins to reach the TGN and Golgi where a diverse set of tethering factors are acting on acceptor 

membranes(Chia and Gleeson, 2011; Hierro et al., 2015). 

A number of proteins with previously reported roles in endocytosis and intracellular trafficking 

have been shown to participate in retrograde transport (RT) including Clathrin, AP-1, OCRL, etc, 

(Popoff et al., 2007; Shiba et al., 2013; van Rahden et al., 2012). Interestingly, there are a set of 

proteins that have specific roles in RT, among them the evolutionary conserved Retromer complex 

that mediates sorting from endosomes to the TGN. This protein complex is highly selective and 

involves two protein subcomplexes. The mammalian retromer is a pentameric complex that 

consists in the vacuolar protein sorting trimer VPS26/VPS29/VPS35 subcomplex and the less-

defined sorting nexins dimer (SNX) in the other subcomplex (Hierro et al., 2007; Rojas et al., 2007). 

Retrograde transport is initiated by the core trimer responsible of cargo recognition, binding and 

selection through binding of cytosolic domains of cargo molecules to VPS35 and VPS26 (Seaman, 

2004). The resulting nucleation complex also interacts with GTP-activated Rab7. Several SNX (SNX1, 

SNX2, SNX5 and SNX6) can associate in dimers to this nascent nucleation retromer complex 

facilitating endosomal membrane curvature to produce tubules/vesicles (Rojas et al., 2008; van 

Weering et al., 2012). Once the cargo carriers are matured, Dynamin-2 (DNM2) catalyzed the 

excision of vesicles. Finally the fusion of RT intermediates with the TGN requires tethering factors 

such as Golgin-97, SNARE complexes and Rab GTPases (Laufman et al., 2011; Lieu et al., 2007; 

Sohda et al., 2010). 

Many proteins are known to traffic between endosomes and the TGN including the acid hydrolase 

sorting receptor Mannose 6 phosphate receptor (M6PR). In the biosynthetic/secretory pathway, 

newly synthesized acid hydrolase precursor proteins binds to M6PR in TGN membranes and are 

transferred to endocytic pathways. At endosome compartment, the low acidic pH in late 

endosome-lysosome results in the uncoupling of receptor-ligand complexes. M6PR are then 

recycled back to TGN by means of RT in which the retromer is acting to initiate a new round of 

delivery (Perez-Victoria et al., 2008). CI-M6PR may follow a more complex route to traffic from 

plasma membrane to TGN.  Alternatively, retrieval of CI-M6PR from late endosomes appears to 

progress through a TIP/Rab9 dependent pathway that is independent of Retromer (Chia et al., 

2011; Dong et al., 2013). In addition to endogenous proteins, several pathogens such as Shigella 

dysenteriae secrete extracellular toxins such as Shiga toxin (STxB) and cholera toxin that exploit the 
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intracellular RT to enter ER of host cells and be delivered to cytosol by retrotranslocation where 

they exert their toxic effects (Sandvig et al., 1992).  

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression at 

posttranscriptional level. A single miRNA can control the expression of numerous genes associated 

to the same physiological pathway. They have been implicated in regulating multiple physiological 

processes ranging from development, senescence, tumor biology and metabolism amongst others. 

miRNAs. The membrane fission GTPase DNM is a key regulator during intracellular trafficking 

having a critical role in endocytosis from plasma membrane. DNMs are encoded by three separate 

genes in mammalian genomes, and interestingly miR-199 family of miRNAs reside within intronic 

regions of DNM genes (Aranda et al., 2015). Interestingly, we identified here an important role for 

miR-199-5p in regulating RT. miR-199-5p overexpression markedly inhibits the expression of genes 

associated to RT including Vps26A, Rab9B and M6PR and protects against STxB-induced protein 

biosynthesis inhibition. Most importantly, we elucidate a novel molecular mechanism by which a 

miRNA family (miR-199-5p) and the host genes where they are encoded (DNM), jointly regulates 

different genes/proteins involved in the RT intracellular trafficking pathway.  

 

RESULTS 

MiR-199a-5p regulates the expression of genes associated to retrograde transport.  

 We and others have previously shown the intriguing genomic localization of miR-199 

miRNA family within intronic sequences of DNM genes (Aranda et al., 2015) (Fig. 1a). Since intronic 

miRNAs are known to regulate similar cellular functions of the gene where they are encoded, we 

performed a number of bioinformatics analysis searching for potential mRNA target genes 

[Targetscan (http://www.targetscan.org) and miRanda (http://www.microrna.org)]. Interestingly, 

we found among the highest scored miR-199-5p target genes several key regulators of RT pathway 

such as Vps26A, SNX6, Rab9B and Rab7A, but also cargo proteins including M6PR, which mediates 

the transport of hydrolases to the lysosomes (Fig. 1b). Vps26A, SNX6, Rab9B and Rab7A 3’UTR have 

predicted binding sites for miR-199-5p that are highly conserved across species (Data not shown). 

To determine whether miR-199a-5p binds directly Vps26A, SNX6, Rab9B and Rab7A 3’UTR, we 

generated reporter constructs with the luciferase coding sequence fused to the 3'UTR of these 

genes. The results show that miR-199a-5p markedly repressed Vps26A, SNX6 and Rab9B 3’UTR 

luciferase activity, demonstrating that the expression of these genes is directly regulated by miR-



 

H 

199a-5p (Fig. 1c). Importantly, mutations in the miRNA seed sequence binding sites (Fig. 1c-d), 

release the repression of Vps26A and Rab9B 3’UTR activity, consistent with a direct interaction of 

miR-199a-5p with these sites. Surprisingly, miR-199a-5p did not repress Rab7A 3’UTR activity 

despite the presence of a putative specific binding site and the decreased mRNA levels upon miR-

199a-5p mimics transfection (Fig. 1c). We next determined whether miR-199-5p levels influence 

Vps26A, Rab9B and Rab7A mRNA and protein expression levels. To this end, we transfected HeLa 

cells with miR-199a-5p mimics or scramble control mimic (CM) and assessed Vps26A, Rab9B and 

Rab7A mRNA and protein expression by qRT-PCR and Western blotting respectively. As expected 

by the inhibitory effect of miR-199-5p on 3’UTR luciferase activity, miR-199a-5p overexpression 

significantly attenuated Vps26A and Rab9B mRNA and protein expression (Fig. 1e and Fig. 1f). In 

addition to Vps26 and Rab9B, we observed that miR-199b-5p overexpression also decreases Rab7A 

mRNA and protein expression, suggesting that miR-199a-5p might influence Rab7A expression by 

an indirect mechanism.  We further assessed whether miR-199-5p inhibition enhances Vps26A, 

Rab9B, Rab7A and SNX6 mRNA expression. Importantly, we found that miR-199a-5p antagonism in 

vitro increase the expression of these genes, suggesting that the endogenous expression of miR-

199b-5p influences Vps26A, Rab9B, Rab7A and SNX6 expression (Fig. 1g). Taken together, these 

results suggest that miR-199a-5p might regulate retrograde transport by controlling directly the 

expression of Vps26A, Rab9B, Rab7A and SNX6. 

 

MiR-199a-5p impairs intracellular retrograde transport.  

Vps26A and SNX6 as part of the retromer (Popoff et al., 2007; Wassmer et al., 2007) and Rab9B 

and Rab7 in regulating endosome trafficking have been previously reported to have a role in RT 

(Deinhardt et al., 2006). A number of bacterial toxins including Shiga toxin B (STxB) use RT to enter 

into the cell (Sandvig et al., 1994). STxB binds to the glycolipid globotriaosylceramide (Gb3), its 

cellular receptor, and it is further internalized from endosomes to TGN, Golgi and finally locating 

at Endoplasmic Reticulum (ER). To assess whether miR-199a-5p controls retrograde transport 

pathway, we transfected HeLa cells with either miR-199a-5p or CM and assessed the internalization 

of fluorophore-tagged STxB (Cy3-STxB). As seen in Fig. 2a upper panel, STxB appears to be 

efficiently internalized after 30 min at 37°C of incubation with HeLa cells transfected with CM or 

miR-199a-5p. However, its accumulation in the TGN-Golgi region was markedly reduced in miR-

199a-5p transfected cells, and the protein remained associated with peripheral structures, even 
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after 60 min of incubation (Fig. 2a lower panel, and fig. 2c). We next characterize the intracellular 

localization of STxB in cells transfected with miR-199-5p mimics and found that miR-199a-5p 

enhances the co-localization of Cy3-STxB with EEA1, an early endosome marker, suggesting that 

miR-199a-5p impairs the transport from early endosomes to the Golgi (Fig. 2b and d). Interestingly, 

when we analyzed the Golgi structure in miR-199a-5p transfected cells, we observed an increased 

Golgi fragmentation compared with CM treated cells (Fig. 2a, arrowheads). This effect was 

quantified by measuring the number of independent GM130 stained structures in each condition 

(Fig. 2e). Since miRNAs might inhibit expression of many genes, we measured endogenous levels 

of EEA1 and the Golgi protein, GM130. As shown in fig. 2f, miR-199a-5p impaired trafficking of STxB 

is not due to changes of EEA1 and GM130 protein levels. 

 

MiR-199a-5p overexpression markedly attenuates STxB-mediated inhibition of protein 

biosynthesis.  

Given that miR-199a-5p impairs trafficking of STxB via retrograde route, we next tested whether 

miR-199a-5p might attenuate the inhibitory effect of STxB on protein biosynthesis. To this end, we 

transfected HeLa cells with CM or miR-199a-5p, then treated with increasing concentrations of 

STxB and assessed protein biosynthesis by measuring radiolabeled methionine into neosynthesized 

polypeptides. As seen in Fig. 2g, miR-199a-5p overexpression protects against the inhibitory effect 

of STxB on protein synthesis as early as 1 hr after toxin exposure. At this time, miR-199a-5p protects 

cells against Stx1 compared with CM treated cells with an observed protection factor of 3. This 

value is in close proximity to the observed when we treated HeLa cells with Vps26A siRNA (Fig. 2h). 

Together with our previous observations, these results strongly demonstrate that miR-199a-5p 

impairs retrograde transport. 

 

Vps26A expression rescues retrograde transport and Golgi structure maintenance in miR-199a-5p 

overexpressing HeLa cells.  

Vps26A plays a role in the organization of the retromer (Lieu and Gleeson, 2010) therefore, to gain 

insights into the molecular mechanism by which miR-199a-5p controls RT, we assessed whether 

Vps26A overexpression could rescue the effect of miR-199a-5p on RT. To this end, we transfected 

HeLa cells with vector-GFP (control) or Vps26A-GFP that lacked the 3’ UTR sequence, thus resistant 
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to miR-199a-5p inhibitory action. The results showed that both GFP and Vps26A-GFP expressing 

cells transfected with CM internalized Cy3-STxB and accumulated in perinuclear membranes that 

were labeled by GM130 (Fig. 3a, upper panels). As seen before (fig. 2a), STxB accumulation in the 

Golgi area was also reduced in miR-199a-5p transfected cells that only expressed GFP. In contrast, 

expression of Vps26A-GFP rescued the inhibitory effect on RT in cells transfected with miR-199a-

5p (Fig. 3a, lower panels and fig.3b). We also noticed that miR-199a-5p transfected cells that 

expressed Vps26A-GFP showed a compacted Golgi structure similar to CM transfected cells 

suggesting that restoration with ectopic Vps26A leads to a proper Golgi architecture maintenance 

(fig. 3c).These results suggest that Vps26A expression is a major determinant in the effect of miR-

199a-5p in regulating RT.  

 

Vps26A regulates subcellular localization and glycosylation state of TGN46      

Next, we wondered whether miR-199a-5p might also influence the RT of an endogenous protein. 

Therefore, we tested whether miR-199a-5p influences the intracellular trafficking of TGN46, a 

transmembrane glycosylated protein that is localized to the TGN and cycles between the TGN and 

the plasma membrane (Ganley et al., 2008). In CM transfected cells, TGN46 is predominantly 

localized in the perinuclear Golgi as co-labeled with GM130 (Fig 4a, panel 1). We also observed that 

steady-state localization of ectopic Vps26A-GFP is perinuclear but also in endosomes (Fig 4a, panel 

2). In contrast to cells transfected with CM, miR-199a-5p overexpression results in TGN46 and 

GM130 dispersion in the cell periphery, confirming Golgi fragmentation (Fig. 4a, panel 3). Because 

Vps26A was able to partially restore Golgi location of resident proteins such as GM130 and 

bacterial STxB retrograde cargo, we assessed whether Vps26A could also rescue the trafficking of 

endogenous cargoes such as TGN46. Of note, we found that transfection of Vps26A-GFP in miR-

199a-5p overexpressing cells restored TGN46 perinuclear localization and Golgi architecture 

compared with Vps26-GFP non-transfected cells (Fig. 4a, panel 3 and 4).  

We next studied the glycosylation pattern of TGN46. TGN46 has a molecular mass of 46 kDa, but 

as a result of various glycosylation processes occurring at the ER and the Golgi complex (Prescott 

et al., 1997), the mature protein has an apparent molecular mass of ~110 kDa (Fig. 4b). 

Interestingly, we found that miR-199a-5p overexpression results in a significant reduction of TGN46 

molecular weight (~80 kDa), suggesting that miR-199a-5p impairs TGN46 transport between ER to 

Golgi, and leading to a reduced glycosylation (Fig. 4b, second line and 4d). More important, the 
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effect of miR-199a-5p overexpression on TGN46 glycosylation was partially restored when we 

transfected HeLa cells with a Vps26A construct resistant to miR-199a-5p inhibitory action (Fig. 4b, 

right line and 4d). Taken together, these results demonstrate that miR-199a-5p controls retrograde 

transport and Golgi homeostasis mainly by regulating the expression of Vps26A, an essential 

component of the retromer complex.  

 

MiR-199a-5p controls the expression of M6PR and the lysosome function. 

M6PR cycles between the plasma membrane, lysosomes and TGN/Golgi, in the latter M6PR binds 

to newly synthesized hydrolases that will be transported all the way to lysosomes (Kuliawat et al., 

1997; Ludwig et al., 1993). It has been well established that this receptor uses RT to return from 

late endosomes/lysosomes to TGN and initiates a new cycle of delivery (Medigeshi and Schu, 2003). 

Interestingly, we found that M6PR is a predicted target for miR-199a-5p in our previous 

bioinformatic analysis (Fig. 1c). To directly demonstrate that M6PR is a bona fide miR-199a-5p 

target gene, we cloned the 3´UTR of M6PR in a luciferase reporter construct and measure luciferase 

activity in HeLa cells transfected with miR-199a-5p or CM. The results showed that miR-199a-5p 

markedly reduces luciferase activity (Fig. 5a). Most importantly, mutation in the two miR-199a-5p 

predicted binding sites within the 3´UTR of M6PR abolished the miR-199a-5p inhibitory action, thus 

confirming the direct binding of miR-199a-5p to the M6PR 3´UTR (Fig. 5a). We next evaluated the 

effect of miR-199a-5p overexpression on MP6R expression and functionality in HeLa cells. As seen 

in Fig. 5b and c, overexpression of miR-199a-5p significantly downregulated M6PR mRNA and 

protein expression compared to CM transfected cells. Moreover, miR-199a-5p largely decreased 

CI-M6PR internalization and intracellular distribution in live HeLa cells, suggesting thatM6PR was 

not properly transported to lysosomes for degradation but accumulated in TGN (Fig. 5d).  

M6PR dissociates from its ligands upstream of lysosomes allowing them to move to lysosomes, and 

M6PR is recycled back to the TGN.  To assess the potential effect of miR-199a-5p on lysosome 

function, we assessed the colocalization of CD63, a lysosomal protein, with Lysotracker, a red 

fluorescence probe used for labeling acidic organelles in live cells. Interestingly, the results showed 

that miR-199a-5p attenuate the colocalization between CD63 and Lysotracker compared to CM 

cells (Fig. 6a). In addition to an impaired localization of Lysotracker in lysosomes, we also analyzed 

the internalization of Lysotracker Red fluorescence in control and transfected miR-199a-5p HeLa 

cells during 30 and 60 min. As shown in fig. 6b lower levels of Lysotracker Red in miR-199a-5p cells 
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suggest the inhibition in the lysosome acidification. We further analyzed the endolysosomal 

trafficking by assessing DQ red BSA (DQ-BSA), a fluorogenic probe that traffics through the 

endosomal pathway that undergoes quenching following proteolytic cleavage in the lysosome. As 

seen in Fig. 6c, HeLa cells treated with miR-199a-5p mimics had decreased lysosomal DQ-BSA 

degradation compared with CM cells, suggesting that the endolysosomal trafficking is also affected 

by miR-199a-5p. Because retromer functions in the RT of the M6PR from endosomes to the TGN, 

we wondered whether interfering of RT by overexpressing miR-199a-5p in HeLa cells would alter 

the trafficking of the receptors, leading to missorting of newly synthesized acid hydrolases. To test 

this hypothesis, we examined the expression of the precursors and mature form of cathepsin D by 

Western blotting. We found that in control mimic (CM) transfected cells most of the cathepsin D 

occurred as the 31-kDa mature form with small amounts of the 53-kDa precursor and 47-kDa 

intermediate forms (Fig. 6d). We also observed a reduced amount of the precursor forms in the 

conditional media isolated from CM transfected cells (Fig. 6d). This efficient processing and 

intracellular retention of mature cathepsin D form reflects the integrity of the normal mechanism 

for trafficking of the enzyme from the TGN to lysosomes. In contrast to the results obtained in CM 

transfected cells, miR-199a-5p overexpression increased the amount of intracellular cathepsin D 

precursors and intermediate forms (Fig. 6d). Moreover, the precursor form of cathepsin D was 

markedly increased in the conditional media of HeLa cells overexpressing miR-199a-5p (Fig. 6d, 

quantified in lower panel), suggesting that miR-199a-5p impairs the transport of cathepsin D to 

lysosomes. We also examined the degradation kinetics of epidermal growth factor receptor (EGFR), 

as the receptor-ligand complex is internalized from the cell surface into endosomes, which 

ultimately fuse with lysosomes for degradation (Ceresa and Bahr, 2006). The results showed that 

the total levels of EGFR protein were unaffected in cells with augmented miR-199a-5p levels (Fig. 

6e, quantified in right panel). However, the degradation of EGFR was markedly delayed in miR-

199a-5p transfected HeLa cells compared with CM transfected cells when examining the EGF-

stimulation-mediated endocytic transport of EGFR to lysosomes (Fig. 6g, quantified in right panel). 

Collectively these results are consistent with the role of miR-199a-5p in regulating retromer 

function and CI-MPR sorting to lysosomes.  

Because autophagic and endocytic pathways converge at the endosome prior to lysosome-

mediated degradation (Huotari and Helenius, 2011), we finally asked whether miR-199a-5p plays 

a role in the autophagy pathway by means of regulation of endolysosomal transport. Upon 

autophagy induction, soluble microtubule-associated protein light chain 3 (LC3-I) is converted to a 
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lipidated form (LC3-II) that preferentially associates with the growing autophagosome membrane 

in puncta formations (Kabeya et al., 2000). Interestingly, we found that the expression of LC3-II and 

p62/SQSTM, an autophagic substrate, were increased in miR-199a-5p overexpressing cells 

compared to CM transfected cells (Fig. 6e, quantified in right panel and fig.6f). These results 

collectively indicate that autophagosomes are substantially accumulated upon the increased 

expression of miR-199a-5p. 

 

DISCUSSION 

MiR-199a-5p has been shown to be involved in a wide variety of cellular processes such as various 

cancer development and progression, cardiomyocytes protection or skeletal formation. In 

particular, many genes associated with these biological processes have been identified as predicted 

targets of miR-199a-5p and only a few have been functionally validated and mechanistically 

characterized. The results of this work identify the first microRNA, miR-199a-5p, that collectively 

exerts its action in a complete set of mRNAs that are related with intracellular RT, thus regulating 

the abundance of RT protein machinery, specifically Vps26A and Rab9B, but also cargoes such as 

M6PR. MiR-199a-5p controls RT in HeLa cells at different levels. Firstly, miR-199a-5p is acting at 

the retromer functioning through diminishing levels of one of its component, Vps26A. Secondly, 

miR-199a-5p also inhibits the expression of Rab9b, a small GTPase involved in the RT from late 

endosomes/lysosomes to TGN that is independent of retromer complex. As a consequence of the 

miR-199a-5p impaired retrograde transport, the entry of bacterial toxins, such as STxB that follow 

classically the retromer route, is severally impaired. In fact, we demonstrated that miR-199a5p 

expression was able to protect cells against STxB intoxication. siRNA-mediated knockdown of 

Vps26A phenocopied the effect of miR-199a-5p during the STxB intoxication, strongly suggesting 

that miR-199a-5p may exert its protective function via this target. So we hypothesized that miR-

199a-5p expression could trigger a first defense against virus and/or other pathogens preventing 

entry and consequently limiting infection.  

Given the inhibitory role of miR-199a-5p over intracellular transport, future studies will clarify 

whether or not miR-199a-5p could also regulate the internalization of other pathogens such as 

Salmonella that utilizes RT to enter intracellular compartments (McGourty et al., 2012), but new 

investigations to address this point need to be done. miRNAs mainly function by translational 

repression and/ or mRNA degradation (Baek et al, 2008; Guo et al, 2010) MicroRNAs can exert their 
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actions due to perfect match within the small binding sequence in their targets mainly in the 3’ 

UTR of mRNA, but we cannot exclude unexpected effects in other binding regions in the mRNAs, 

such as 5’ UTR and coding sequences (Lytle et al., 2007), nor viral RNAs, like the case of miR-122 

that is able to promote degradation of HBV through 5’ UTR binding of (Thibault et al., 2015)  

One important finding of this work is the fact of Vps26A expression was able to restore several 

defects upon miR-199a-5p overexpression in HeLa cells. Despite of microRNA can exert multiple 

effects by their ability to bind to hundreds of targets mRNA in several pathways, we tested the 

hypothesis of whether Vps26A was able to restore the different miR-199a-5p trafficking defects in 

the cell. By using a Vps26A-GFP form in a rescue of function experiment we demonstrated that 

STxB is efficiently transported to Golgi in cells regardless the elevated levels of miR-199a-5p, 

highlighting a key role of the retromer Vps26A component in the binding of of cargoes and 

subsequent transport to TGN. Given the overall effect of miR-199a-5p in intracellular trafficking we 

expect that miR-199a-5p has direct and indirect effects in RT. As an example, we can speculate that 

the observed disassembly of Golgi structure in miR-199a-5p cells occurs because of impaired traffic 

to TGN from endosomes. More importantly, we noticed that some defects in Golgi structure 

caused by miR-199a-5p expression was also partially restored using the rescue of function strategy, 

although we cannot exclude the possibility of direct effect of miR-199a-5p in the expression of 

multiple Golgi resident proteins, involved in both maintenance of Golgi structure, but also in 

glycosylation. In fact, our bioinformatics analysis showed a group of mRNA candidates coding for 

several glycosylation enzymes located in the Golgi with highly miR-199a-5p conserved binding sites 

(data not shown). And not only had that, the miR-199a-5p overexpression in HeLa cells caused de-

glycosylation of endogenous RT cargoes such as TGN46. Although we have not explore the 

mechanism behind this effect, either for direct inhibition of any glycosylase/s or by indirect effect 

through disorganization of Golgi and hence glycosylation malfunctioning, we observed that Vps26A 

expression is sufficient to partially restore glycosylation levels in TGN46 probably due to improved 

RT to TGN.  

Other interesting finding is that miR-199a-5p not only regulates RT protein machinery, but also 

target directly to natural RT cargo such as M6PR mRNA, thus it suggests that miR-199a-5p controls 

the entire endolysosomal functioning. Our results demonstrated that HeLa cells with elevated 

levels of miR-199a-5p showed reduced internalization of M6PR from plasma membrane and 

therefore affecting the normal function of lysosomes as shown by impaired trafficking of 
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Lysotracker and protein cleavage. Overexpression of miR-199a-5p caused missorting of hydrolase 

cathepsin D as similar extent that depletion of both Rab7 (Rojas et al., 2008) or Vps26A (Seaman, 

2004). Other proof that Lysosomal function is compromised is the fact of EGFR degradation is 

delayed when high expression of miR-199a-5p remains in the cell. The effects of miR-199a-5p in 

lysosome functioning might be due not only to direct targeting to M6PR, but also to inhibition of 

RT and endocytosis as has been described previously (Aranda et al., 2015). In fact, it cannot be 

ruled out as in the case of other microRNAs, that miR-199a-5p regulates both processes together 

to coordinate a joint response. Lastly, because lysosomes are the final destination for degradation 

of endocytic cargoes, such as intracellular components delivered for macroautophagy, our results 

also showed a blockage of autophagosomal degradation as seen by increased levels of LC3 and p62 

in miR-199a-5p overexpressed HeLa cells. This effect in autophagy is mediated most likely because 

of impaired endocytic trafficking through inhibition of Rab5, Rab7 and Rab9 GTPases, all of them 

has been reported to have a role in the regulation of autophagy (Jager et al., 2004; Nishida et al., 

2009) (Ravikumar et al., 2008). In fact, it has been described recently a role of miR-199a-5p by 

direct targeting of autophagic regulators such as ATG7, ATGL14 and Beclin-1 (Xu et al., 2012; Yi et 

al., 2013). The latter could explain the observed indirect effect of miR-199a-5p over Rab5 and Rab7 

downregulated expression. In addition to this perturbed endosomal trafficking, miR-199a-5p 

expression lead to a defective retrograde transport that also may account the lysosome 

malfunction and ultimately autophagy blockage.  

In conclusion, the current study has identified miR-199a-5p as a new regulator of RT pathway 

mainly through Vps26A and has ascribed functions to this protein in the context of enhanced miR-

199a-5p expression. Future studies should be done to determine which physiological and/or 

pathological conditions trigger changes in miR-199a-5p expression and therefore may influence 

endosomal trafficking.  

 

EXPERIMENTAL PROCEDURES 

Materials 

Chemicals were obtained from Sigma-Aldrich unless otherwise noted. EGF was obtained from 

EMD/Calbiochem (Gibbstown, NJ, USA). Mouse monoclonal antibodies against HSP90, GM130 and 

EEA1 were purchased from BD Bioscience. The Rabbit antibodies against Vps26A, EGFR and TGN46 

were from Abcam. The rabbit polyclonal antibodies to Rab9, LC3-II and p62 were purchased from 
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Cell Signaling Technology. M6PR monoclonal antibody was purchase from Calbiochem. A rabbit 

antibody to Cathepsin D was from Epitomics. The monoclonal anti-actin antibody was from Sigma. 

Red-Lysotracker, Red-DQ-BSA and Secondary fluorescently labeled antibodies were from 

Molecular Probes (Invitrogen). MiRNA mimics and inhibitors were obtained from Dharmacon. The 

Vps26A-GFP plasmid was kindly provided by Prof. Juan Bonifacino (Bethesda, NIH). Cy3-STxB was 

obtained as described in (Mallard et al., 1998).  

  

Cell culture 

Cervix carcinoma (HeLa) and monkey kidney fibroblast (COS7) cells were obtained from American 

Type Tissue Collection (ATCC) and were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 

containing 10 % fetal bovine serum (FBS) and 2 % penicillin-streptomycin in 10 cm2 dishes at 37°C 

and 5 % CO2. For EGFR degradation assay, subconfluent cultures of HeLa cells transfected with CM 

or miR-199a-5p were switched to serum-free medium and cultured for approximately 12 h. For 

EGF stimulation, recombinant EGF (EMD) was added to the medium at a final concentration of 100 

ng/ml, and cells were cultured further for the indicated lengths of time. 

 

Bioinformatic analysis of miRNA target genes.  

Target mRNA for hsa-miR-199a/b were identified and compared using the online target prediction 

algorithm, miRWalk (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/), which provides 

target interaction information from eight different prediction algorithms. Specifically, the programs 

miRanda, miRWalk and TargetScan were used. The putative targets produced by all three of these 

algorithms for miR-199a-5p were uploaded into the gene classification system, PANTHER v8.0 

(http://www.pantherdb.org) to identify gene targets that were mapped to the transport process 

(GO:0006810). The functional interactions of these predicted mRNA targets for miR-199a/b-5p 

described in STRING v9.05 (http://string-db.org) were then combined with the functional 

annotation groups described in DAVID. Matlab and Cytoscape v2.8.3 were used to create the 

visualization networks, as previously described (Huang da et al., 2009). STRING interactions with a 

confidence score of 0.4 or higher were added and highlighted in bold. Smaller annotation clusters 

and unconnected genes were left out of the visualization due to space constraints. 
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miRNA mimic/inhibitor transfections 

HeLa cells were transfected with 40 nM miRIDIAN miRNA mimics (miR-199a-5p) or with 60 nM 

miRIDIAN miRNA inhibitors (Inh-199a-5p) (Dharmacon) using RNAimax (Invitrogen) or 

Lipofectamine 2000 (Invitrogen) for co-transfection experiments with the Vps26A-GFP plasmid. All 

experimental control samples were treated with an equal concentration of a non-targeting control 

mimic sequence (CM) or inhibitor negative control sequence (CI). Verification of miR-199a-5p over-

expression and inhibition was determined using qRT-PCR, as described below. 

 

RNA isolation and quantitative real-Time PCR 

Total RNA was isolated using TRIzol reagent (Invitrogen) according to the manufacturer’s protocol. 

For mRNA quantification, cDNA was synthesized using iScript RT Supermix (Bio-Rad), following the 

manufacturer’s protocol. Quantitative real-time PCR (qRT-PCR) analysis was performed in triplicate 

using iQ SYBR green Supermix (BioRad) on an iCycler Real-Time Detection System (Eppendorf). The 

mRNA level was normalized to GAPDH (glyceraldehyde-3-phosphate dehydrogenase) as a house 

keeping gene. The human primer sequences used were: GAPDH, 5’-TTGATTTTGGAGGGATCTCG-3’ 

and 5’-CAATGACCCCTTCATTGACC-3’; SNX6, 5’- GAAGCCCCATGCCGCCTGTC -3’ and 5’- 

GGTGCACTGTCTGAGCACGGG -3’; M6PR 5’- GTGTGCCGGGAAGCTGGCAA -3’ and 5’- 

CCACGCTCCTCAGACACAGGGT -3’; Rab9B 5’- AGCCAGAACTGGGACCCCACA -3’ and 5’- 

AGGCCCCAGGTCTCATGCACT -3’; Vps26A 5’- TGCTTGTTGATGAGGAAGACCGGAG -3’ and 5’- 

GCCTTTTTCCGCCCCCTCCA -3’; Rab7A 5’- GGGGCTGCTTTTCTAACCCA -3’ and 5’- 

TTTGCTAGGTCGGCCTTGTT -3’.   

 

Western blot analysis 

Western blot analysis was performed as we previously described (Aranda et al., 2015), briefly, cells 

were lysed in ice-cold buffer containing 50 mM Tris-HCl, pH 7.5, 125 mM NaCl, 1 % NP-40, 5.3 mM 

NaF, 1.5 mM NaP, 1 mM orthovanadate and 1 mg/ml of protease inhibitor cocktail (Roche) and 

0.25 mg/ml AEBSF (Roche). Then, cell lysates were rotated at 4ºC for 1 h before the insoluble 

material was removed by centrifugation at 12000 x g for 10 min. After normalizing for equal protein 

concentration, cell lysates were resuspended in SDS sample buffer before separation by SDS-PAGE. 

Following overnight transfer of the proteins onto nitrocellulose membranes, the membranes were 
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probed with the following antibodies: Vps26A (1:1000), Rab7 (1:500), Rab9 (1:1000), EEA-1 

(1:1000), GM130 (1:1000), TGN46 (1:1000), actin (1:1000) and HSP90 (1:1000). Protein bands were 

visualized using the Odyssey Infrared Imaging System (LI-COR Biotechnology). Densitometry 

analysis of the gels was carried out using ImageJ software from the NIH (http://rsbweb.nih.gov/ij/).   

 

Fluorescence microscopy    

For M6PR-Ab internalization HeLa cells were grown on coverslips and transfected with a miR-199a-

5p mimic and a negative control mimic (CM) in DMEM containing 10 % FBS. 48h post transfection, 

cells were cooled to 4ºC for 20 min to stop membrane internalization. Cells were then incubated 

with M6PR mAb (2G11) (Calbiochem) for 40 min at 4ºC. Following incubation, cells were gently 

washed twice with cold medium and shifted to 37ºC to allow for internalization of both M6PR-Ab 

complexes for the indicated times and fixed with 4 % PFA. After 5 min of Triton X-100 0.2 % 

permeabilization and 15 min of blocking (PBS-BSA 3 %), cells were stained with anti-mouse Alexa 

488 (Molecular Probes) Alexa-594-Phalloidin and TO-PRO 3 (Life Technologies) for 1h at room 

temperature. After this, cells were washed twice with 1x PBS and mounted on glass slides with 

Prolong-Gold (Life Technologies).  

For Vps26A-GFP rescue experiments, HeLa cells were grown on coverslips and co-transfected with 

1 g Vps26A-GFP and 40 nM of a control mimic CM or miR-199a-5p mimic. 48h post transfection 

cells were incubated or not with StxB-Cy3 as described. Then, cells were washed twice with 1x PBS, 

fixed with 4 % PFA, and blocked (3 % BSA in 1x PBS) for 15 min. Following this, cells were washed 

twice and mounted on glass slides with Prolong-Gold (Life Technologies). All images were analyzed 

using confocal microscopy (Leica SP5 II) equipped with a 63X Plan Apo Lenses. All gains for the 

acquisition of comparable images were maintained constant. Analysis of different images was 

performed using ImageJ (NIH) and Adobe Photoshop CS5. 

 

Image Analysis and Quantification 

MacBiophotonics ImageJ was used for image quantification and analysis. To quantify the 

morphology of the Golgi apparatus, the immunofluorescence of GM130 was recorded as a digital, 

8-bit gray-scale, 1024x1024 resolution images. The Golgi labeling image threshold was set at 90 on 

a 0–255 black to white scale (all pixels with a value under 90 are excluded from the quantification) 
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to remove background pixels from measurement. A region of interest was defined for each cell, 

and the number of individual Golgi fragments with a minimum area of three pixels was measured. 

To quantify colocalization between STxB-Cy3 and GM130 or EEA1 we used the intensity correlation 

analysis plug in developed for the ImageJ 1.36b software (National Institutes of Health). After image 

thresholding, the extent of colocalization was obtained by calculating the Pearson coefficients (R1) 

and the corresponding standard deviation (Bolte and Cordelieres, 2006).  

 

3’UTR luciferase reporter assays 

cDNA fragments corresponding to the entire 3’UTR of human Vps26A, Rab9B, SNX6, Rab7A and 

M6PR were amplified by RT-PCR from total RNA extracted from Huh7 cells with XhoI and NotI 

linkers. The PCR product was directionally cloned downstream of the Renilla luciferase open 

reading frame of the psiCHECK2TM vector (Promega) that also contains a constitutively expressed 

firefly luciferase gene, which is used to normalize transfections. Point mutations in the seed region 

of the predicted miR-199a binding sites within all the above 3’UTR were generated using the 

Multisite-Quickchange Kit (Stratagene), according to the manufacturer’s protocol. All constructs 

were confirmed by sequencing.  COS7 cells were plated into 12-well plates (Costar) and co-

transfected with 1 μg of the indicated 3’UTR luciferase reporter vectors and miR-199a-5p mimics, 

or control mimics (CM) (Dharmacon) utilizing Lipofectamine 2000 (Invitrogen). Luciferase activity 

was measured using the Dual-Glo Luciferase Assay System (Promega). Renilla luciferase activity was 

normalized to the corresponding firefly luciferase activity and plotted as a percentage of the 

control (cells co-transfected with the corresponding concentration of control mimic). Experiments 

were performed in triplicate wells of a 12-well plate and repeated at least three times.  

 

Lysotracker internalization assay 

For analysis of Red Lysotracker internalization cells were incubated for 30 and 60 min at 37°C in 

serum-free DMEM. Firstly, cells were first incubated on serum-free media for 30 min. Cells were 

washed to remove non-internalized Lysotracker and analyzed by FACS experiments or fixed in 4 % 

PFA 15 min for fluorescence microscopy analysis. 

 

DQ-BSA-green degradation assay  
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To measure the lysosomal degradation of soluble proteins we used a DQ-BSA-green degradation 

assay. DQ-BSA-green is a BSA labeled with a self-quenching fluorescent dye. The hydrolysis of the 

DQ-BSA-green into single dye-labeled peptides by lysosomal proteases relieves self-quenching, 

thus allowing us to measure the lysosomal DQBSA-green transport. The assay was done according 

to the manufacturer’s protocol (Molecular Probes/Invitrogen, Eugene, OR). Briefly, mock- or siRNA-

treated HeLa cells were loaded with 200 μg/ml DQ-BSA-green for 1 h at 37°C. Cells were then 

washed to remove extracellular DQ-BSA-green and incubated at 37°C for 2 h. The fluorescence of 

DQ-BSA-green was then monitored by flow cytometry 

 

Statistics 

All data are expressed as mean ±SEM. Statistical differences were measured using an unpaired 

Student’s t test. A value of P≤0.05 was considered statistically significant. Data analysis was 

performed using GraphPad Prism Software Version 6.03 (GraphPad, San Diego, CA). *P≤0.05. 
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Figure 1. MiR-199a is encoded in DNM loci genomic location regulates the expression of genes associated to the 
retrograde transport. (A) Schematic representation of genomic location of DNM2 gene and intronic miR-199a1. (B) Gene 
ontology analysis of the predicted miR-199a/b target genes using Panther software. A protein–protein interaction 
analysis scheme of selected predicted miR-199a-5p target genes using String 9.1 software and Navigator 2.2. is shown. 
Retrograde transport protein coding genes are highlighted in red  (C-D) Luciferase reporter activity in COS7 cells 
transfected with control mimic or miR-199a-5p mimic and the indicated human 3′ UTR containing or not (wild-type, WT) 
the indicated point mutation in the target miR-199a-5p-binding sites. (E) Gene expression analyses (qRT-PCR) of Vps26A, 
Rab9B, Rab7A and SNX6 expression in HeLa cells transfected with non-targeting control mimic (CM) and miR-199a-5p 
mimic (F). Western blot analysis of Vps26A, Rab9B and Rab7A in HeLa cells transfected with control mimic or miR-199a-
5p mimic (left panel). Hsp90 was used as a loading control. (G) Gene expression analyses (qRT-PCR) of Vps26A, Rab9B, 
Rab7A and SNX6 expression in HeLa cells transfected with control inhibitor (CI) or miR-199a-5p inhibitor. Results are 
mean±SEM for three experiments. In C, data are expressed as percentage of 3′UTR activity of control mimic (±SEM) and 
are representative of ≥3 experiments performed in triplicate. In E, data are expressed as a mean±SEM, and representative 
of ≥3 experiments in triplicate. *P≤0.05. 
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Figure 2. miR-199a-5p regulates Shiga toxin internalization and protect against intoxication in HeLa cells. (A) CM and miR-
199a-5p transfected cells during 48 h were incubated with Cy3-STxB (5 μg/mL) on ice, which were then shifted to 37°C 
for 30 min (upper panel) and 60 min (lower panel). (B) HeLa cells treated as (A) and incubated with Cy3-STxB (5 μg/mL) 
on ice, which were then shifted to 37°C for 30 min. In A and B cells were fixed and labeled for GM130 (A), EEA1 (B) and 
DAPI (A-B) and Z-projections of confocal stacks are shown. Note that in miR-199a-5p overexpressing cells, increased 
accumulation of STxB in peripheral membranes was observed. Magnification inset are shown in right panels. (C-D) 
Quantification of the colocalization manders coefficients of Cy3-STxB localized in the Golgi (GM130) or early endosomes 
(EEA1) in experiments as shown in (A) and (B) respectively. (E) Quantification of Golgi fragments in CM and miR-199a-5p 
transfected cells showed in A. Arrowheads show Golgi dispersed structures (F). Western blot analysis of GM130, EEA1 
and Vps26A in cells transfected with CM and miR-199a-5p. Quantification of the relative amounts of proteins on 
experiments is shown in right panel. The means±SEM of three independent experiments are shown. (G) HeLa cells were 
transfected 48 h with CM (black data points) and miR-199a-5p (red data points) before addition of Shiga toxin 1h. 
Intoxication of HeLa cells is shown. Each point corresponds to the mean±SEM of a representative experiment out of two 
to three determinations. (H) Protection factors calculated over the indicated number of experiments. Means±SEM are 
shown. The p-Value was calculated using the t-test. *P≤0.05 Scale bars=15 μM 
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Figure 3. Vps26A is necessary for Shiga toxin internalization and Golgi maintenance structure in miR-199a-5p 
overexpressing HeLa cells. (A) HeLa cells co-transfected as indicated, CM and GFP or Vps26A-GFP in upper panel and 
miR-199a-5p with GFP or Vps26A-GFP in lower panel during 48 h. Live cells were incubated with Cy3-STxB (5 μg/mL) on 
ice, which were then shifted to 37°C for 60 min; After internalization assay cells were fixed and labeled for GM130 and 
DAPI and Z-projections of confocal stacks are shown. Arrow indicates miR-199a-5p overexpressing cell with increased 
accumulation of STxB in peripheral membranes and arrowheads show Vps26A-GFP cells that efficiently accumulates StxB 
in Golgi area as labeled with GM130. (B) Quantification of the colocalization coefficient of Cy3-STxB and GM130 in the 
different observed conditions of three independent experiments are shown. (C) Quantification of Golgi fragments in the 
different observed conditions of three independent experiments are shown. Arrowheads show Golgi dispersed 
structures. Data are expressed as mean± SEM. *P≤0.05 and # P>0.05. 
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Figure 4. Vps26A is necessary for TGN46 Retrograde transport. (A) HeLa cells co-transfected as indicated, CM and 
Vps26A-GFP in upper panel and miR-199a-5p and Vps26A-GFP in lower panel during 48 h. Cells were fixed and labeled 
for GM130 and DAPI and their steady state localization were observed and shown in Z-projections of confocal stacks. (B) 
HeLa cells transfected as indicated (CM/EGFP, miR-199a-5p/EGFP, CM/Vps26A-GFP and miR-199a-5p/Vps26A-GFP) were 
analyzed by western blot for TGN46, GM130 and Vps26A expression. Actin and Hsp90 were used as loading control. (C) 
Quantification of mature TGN46 is as percentage ot total . Data are expressed as % mean of the total TGN46 ± SEM. 
*P≤0.05 and # P>0.05. 
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Figure 5. MiR-199a-5p regulates M6PR expression and subcellular localization. (A) Luciferase reporter activity in COS7 
cells transfected with control mimic or miR-199a-5p mimic and M6PR 3′ UTR containing or not (wild-type, WT) the 
indicated point mutation in the target miR-199a-5p-binding sites. (B). qRT-PCR expression analysis of M6PR expression 
in HeLa cells transfected with non-targeting control mimic (CM) and miR-199a-5p mimic. (C) Flow cytometry analysis of 
M6PR protein expression in HeLa cells treated as in (B). (D) Confocal microscopy immunofluorescence showing HeLa cells 
transfected with CM or miR-199a-5p and incubated with anti-M6PR antibody for 60 min at 4ºC before fixing and then 
staining with anti-mouse Alexa 488 for M6PR antibody (first and third panel) or treated as above and then allowed to 
internalize antibody complexes for 30 min at 37ºC, PFA fixed and then stained with anti-mouse Alexa 488 (second and 
forth panel). To visualize the F-actin fibers and nuclei, phalloidin-red and DAPI were used respectively. In A, data are 
expressed as a percentage of 3′UTR activity of control mimic (±SEM) and are representative of ≥3 experiments performed 
in triplicate. In B data are expressed as mean±s.e.m and representative of ≥3 experiments in triplicate. *P≤0.05. 
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Figure 6. MiR-199a-5p regulate endolysosomal trafficking. (A) Confocal microscopy inmunofluorescence images showing 
subcellular localization of CD63 (green) subjected to 30 min Red-Lysotracker internalization at 37ºC in HeLa cells 
transfected as indicated. Magnification insets are shown in the right panel. (B) Flow cytometry analysis Red-Lysotracker 
internalization at 37ºC in HeLa cells treated as in (A). Data are expressed as Gmean of three independent experiments. 
(C) Flow cytometry of CM or miR-199a-5p transfected HeLa cells that were cultured in presence of 200 μg/ml 
fluorescence DQ-BSA-green for 1 h at 37°C and incubated at 37°C for 2 h. Data are expressed as fold change of 
Gmean±SEM. (D) HeLa cells were treated transfected with CM and miR-199a-5p. 24 h after transfection, cells were rinsed 
with PBS and incubated in serum-free culture medium for 24 h. The medium was collected and precipitated with 
trichloroacetic acid (TCA), and the resulting pellets were analyzed by 4 – 20 % acrylamide gradient SDS-PAGE and 
immunoblotted with rabbit polyclonal antibody against cathepsin D. Blots were also probed with antibody to Hsp90 as a 
loading control. The positions of molecular mass markers (KDa) and of the precursor (pCatD), intermediate (iCatD), and 
mature (mCatD) forms of cathepsin D are indicated. Quantification of 3 independent experiments is shown in histograms 
in the lower panel. (E) Western blot analysis of EGFR, p62, LC3B-I/LC3B-II and Vps26A proteins levels in CM and miR-
199a-5p transfected cells. Quantification is shown in right panel. (F) Confocal immunofluorescence analysis of LC3 in 
HeLa cells treated as indicated. (G) EGFR degradation assay in EGF-stimulated HeLa cells transfected with CM and miR-
199a-5p. Quantification is shown in right panel. (H) Proposed model of regulation of retrograde transport by DNM/miR-
199a-5p. *P≤0.05 
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