
HAL Id: tel-02408596
https://theses.hal.science/tel-02408596

Submitted on 13 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time decomposition methods for optimal management
of energy storage under stochasticity

Tristan Rigaut

To cite this version:
Tristan Rigaut. Time decomposition methods for optimal management of energy storage un-
der stochasticity. General Mathematics [math.GM]. Université Paris-Est, 2019. English. �NNT :
2019PESC2015�. �tel-02408596�

https://theses.hal.science/tel-02408596
https://hal.archives-ouvertes.fr

école doctorale : mathématiques et sciences
et technologies de l’information et de la communication

Thèse de doctorat
Spécialité : Mathématiques appliquées

présentée par

Tristan Rigaut

Time Decomposition Methods For Optimal
Management Of Energy Storage Under

Stochasticity

Thèse préparée à EFFICACITY
au LISIS (COSYS), IFSTTAR

et au CERMICS, École des Ponts ParisTech

Soutenue le 16 Mai 2019 devant le Jury composé de :

JURY

Rapporteurs : Nadia Oudjane Électricité de France (EDF) R&D
Alois Pichler Technische Universität, Chemnitz

Directeurs : Frédéric Bourquin IFSTTAR
Jean-Philippe Chancelier École des Ponts ParisTech

Examinateurs : Pierre Carpentier ENSTA ParisTech
Pierre Haessig CentraleSupélec
Andy Philpott University of Auckland
Julien Waeytens IFSTTAR

Abstract

The development of energy storage paves the way to innovative methods to manage en-
ergy at a local scale. Micro grids are a novel kind of electrical grids with local production
(renewable and waste energy), local demand, local storage and an Energy Management
System (EMS). A wide literature already studies EMS implementations in micro grids
but the produced methods are not exhaustively framed and compared. One of the main
difficulty in micro grids energy management is to handle the different dynamics of elec-
trical devices. Current variations are lighting fast, solar power changes quickly, different
kind of storage react at different paces and batteries ageing is a slow process. We study
a mathematical framework and algorithms, based on multistage stochastic optimization
theory and Dynamic Programming, to model and solve energy management problems in
micro grids with time decomposition methods.

In the first part of this thesis, Contributions to time decomposition in multistage
stochastic optimization, we present a general framework to decompose temporally large
scale stochastic optimization problems into smaller subproblems. We then classify mul-
tiple existing resolution methods inside this framework.

In the second part, Stochastic optimization of energy storage for management of micro
grids, we compare different methods presented in the first part on realistic applications.
First we control a battery and a ventilation in a subway station recovering subways
braking energy with four different algorithms. Then we present how these results could
be implemented on a real micro grid. We implement a fast online control method to
stabilize the voltage in a simulated islanded DC micro grid connecting solar panels, an
electrical load and two sorts of energy storage: a battery and a supercapacitor. Finally
we apply our time decomposition framework to a problem of long term aging and energy
management of a storage in a micro grid. This last chapter introduces a framework to
model time decomposition of micro grids hierarchical control architectures, as well as two
algorithms to solve temporally large scale stochastic optimization problems.

In the third part, Softwares and experiments, we present DynOpt.jl, a Julia language
package developed to produce all the results of this thesis and more. Then we study an
application of this software to the control of a real test bed: the energy aware temperature
regulation of a real house in the equipment named “Sense City".

2

Remerciements

Cette page conclut mes trois années les plus riches en terme d’éveil scientifique, écologique,
professionnel et amical. Pour respecter la flèche du temps je remercie d’abord mes in-
croyables parents que j’ai rencontré il y a 29 ans et sans qui je n’aurais pas de doigts
pour taper des remerciements. Je remercie également ma sœur que je vais pouvoir voir
plus souvent je l’espère.

Je remercie Alexandre Nassiopoulos, André Pény et mon directeur Frédéric Bourquin.
Sans eux je n’aurais pas intégré Efficacity et son écosystème passionnant un an avant ma
thèse. Avec eux j’ai appris les bases du contrôle, comment freinent les métros et comment
stocker de l’énergie dans des mûrs.

Merci à Pierre Carpentier, Michel De Lara et mon autre directeur Jean-Philippe
Chancelier pour leur encadrement de choc et leur phénoménal sens du partage des sci-
ences, du code, des blagues de matheux et du voyage.

Merci à Julien Waeytens pour sa bonne humeur communicative et pour m’avoir aidé
à faire atterrir les maths et le code jusque dans un chalet de banlieue. Merci aussi à
Alessio Iovine même s’il m’a obligé à faire du matlab. Merci à Mathieu Aveline qui me
rappelle souvent que ça peut peut être aller dans le bon sens.

Mes plus vifs remerciements aux membres du jury de cette thèse, Nadia Oudjane,
Alois Pichler, Pierre Haessig et Andy Philpott pour leurs remarques et leur présence le
16 Mai.

Un grand merci à tous mes collègues d’Efficacity, du CERMICS et mes amis qui
étaient présents le jour J, ou non (comme Deleu) mais à tellement d’autres soirées aussi.

Je remercie chaudement Débiche, Billon, Alexou, Nicobear et c’est granulaire qui
parviennent à mettre l’ambiance n’importe où, même dans leurs quartiers.

Une pensée particulière pour mon cobureau Frapy qui a été une grande source d’inspiration,
jusque dans cette phrase, et avec qui je partage mes meilleurs souvenirs de thésard comme
les caïpirinhas sur une plage d’Ilha Grande ou les heures à coder en Juju, au choix.

Et je finirai par un gros bisous à Anne So qui m’a particulièrement soutenu surtout
dans la dernière ligne droite.

3

Contents

I Contributions to time decomposition in multistage stochas-
tic optimization 30

1 Time blocks decomposition of multistage stochastic optimization prob-
lems 31

2 A template to design online policies for multistage stochastic optimiza-
tion problems 69

II Stochastic optimization of storage energy management in
microgrids 97

3 Energy and air quality management in a subway station using stochastic
dynamic optimization 98

4 Power management for a DC micro grid integrating renewables and
storages 119

5 Algorithms for two-time scales stochastic optimization with applications
to long term management of energy storage 156

III Softwares and experimentations 202

6 DynOpt: a generic library for stochastic dynamic optimization 203

7 Energy aware temperature control of a house using Stochastic Dual
Dynamic Programming: a first testbed implementation 234

4

Contents (detailed)

I Contributions to time decomposition in multistage stochas-
tic optimization 30

1 Time blocks decomposition of multistage stochastic optimization prob-
lems 31
1.1 Introduction . 32
1.2 Stochastic Dynamic Programming with Histories 33
1.3 State Reduction by Time Blocks and Dynamic Programming 40
1.4 Applications of Time Blocks Dynamic Programming 44
1.5 Conclusion and Perspectives . 52
1.6 Technical Details and Proofs . 53
1.7 Dynamic Programming with Unit Time Blocks 61
1.8 The Case of Optimization with Noise Process 62

2 A template to design online policies for multistage stochastic optimiza-
tion problems 69
2.1 Introduction . 70
2.2 Multistage stochastic optimization problems and online policies 71
2.3 A template for lookahead policies . 77
2.4 A template for cost-to-go policies . 84
2.5 Assessment of online policies . 88
2.6 Discussion . 90
2.7 Flows and stochastic kernels . 91

II Stochastic optimization of storage energy management in
microgrids 97

3 Energy and air quality management in a subway station using stochastic
dynamic optimization 98
3.1 Introduction . 99
3.2 Energy system model . 101
3.3 Optimization problem statement . 103
3.4 Computation of online control strategies 107
3.5 Numerical results, assessment and discussion 109
3.6 Conclusions and perspectives . 114

5

4 Power management for a DC micro grid integrating renewables and
storages 119
4.1 Introduction . 120
4.2 Hierarchical control structure . 122
4.3 Power Management Model . 123
4.4 Power Management Controller . 128
4.5 Simulations . 131
4.6 Conclusions . 146

5 Algorithms for two-time scales stochastic optimization with applications
to long term management of energy storage 156
5.1 Introduction . 157
5.2 Stochastic optimization of an energy storage system in a microgrid over

the long term . 159
5.3 Two algorithms for two-time scales stochastic optimal control problems . 166
5.4 Numerical experiments . 177
5.5 Appendix . 192

III Softwares and experimentations 202

6 DynOpt: a generic library for stochastic dynamic optimization 203
6.1 Introduction and review . 204
6.2 Mathematical background: a template to design online policies 205
6.3 Modeling language and algorithms . 208
6.4 Energy management applications . 220
6.5 Conclusion and perspectives . 231

7 Energy aware temperature control of a house using Stochastic Dual
Dynamic Programming: a first testbed implementation 234
7.1 Introduction . 235
7.2 Building energy model and parameters calibration 236
7.3 Optimization problem statement . 240
7.4 Application to a real house . 242
7.5 Conclusion . 252

6

Résumé en français

Résumé général : Méthodes de décomposition temporelle
pour la gestion optimale de stockage d’énergie sous in-
certitudes
L’évolution du stockage d’énergie permet de développer des méthodes innovantes de ges-
tion de l’énergie à une échelle locale. Les micro réseaux électriques sont une forme émer-
gente de petits réseaux électriques munis de production locale (en majorité des éner-
gies renouvelables), de stockage d’énergie et en particulier d’un système de gestion de
l’énergie (EMS pour Energy Management System). De nombreuses études et recherches
scientifiques ont été menées pour proposer diverses stratégies d’implémentations de ces
EMS. Néanmoins il n’existe pas à ce jour d’articulation claire et formelle de ces méth-
odes permettant leur comparaison. L’une des principales difficultés que les EMS ont
a affronté, est la gestion des dynamiques radicalement différentes des systèmes énergé-
tiques. Les variations de courant vont à la vitesse de l’électron, la production d’énergie
solaire photovoltaïque varie au gré des nuages et différentes technologies de stockages
peuvent réagir plus ou moins vite à ces phénomènes imprévisibles. Nous étudions dans
ce manuscrit, un formalisme mathématique et des algorithmes basés sur la théorie de
l’optimisation stochastique multi-étapes et la Programmation Dynamique. Ce formal-
isme permet de modéliser et de résoudre des problèmes de décisions inter-temporelles
en présence d’incertitudes, à l’aide de méthodes de décomposition temporelle que nous
appliquons à des problèmes de gestion de l’énergie.

Dans la première partie de cette thèse Contributions à la décomposition temporelle
en optimisation stochastique multi-étapes nous présentons le formalisme général que nous
utilisons pour décomposer, en temps, les problèmes d’optimisation stochastique avec un
grand nombre de pas de temps. Nous classifions ensuite différentes méthodes de contrôle
optimal au sein de ce formalisme.

Dans la seconde partie optimisation stochastique de stockage d’énergie pour la gestion
des micro réseaux, nous comparons différentes méthodes, introduites dans la première
partie, sur des cas d’application réels. Dans un premier temps nous contrôlons avec
quatre algorithmes différents une batterie ainsi que des ventilations dans une station
de métro récupérant de l’énergie de freinage des trains. Dans un second temps nous
montrons comment ces algorithmes pourraient être implémentés sur un système réel à
l’aide d’une architecture de contrôle hiérarchique d’un micro réseau électrique en courant
continu. Le micro réseau étudié connecte cette fois ci de l’énergie photovoltaïque à une
batterie, une super-capacité et une charge électrique. Enfin nous appliquons le formalisme

7

de décomposition par blocs temporels présenté dans la première partie pour traiter un
problème de gestion de charge de batterie mais aussi de son vieillissement long terme.
Ce dernier chapitre introduit deux algorithmes, basés sur la décomposition par blocs
temporels, qui pourraient être utilisés pour le contrôle hiérarchique de micro grids ou les
problèmes d’optimisation stochastique présentant un grand nombre de pas de temps.

Dans la troisième et dernière partie, Logiciels et expériences nous présentons DynOpt.jl
un paquet développé en langage Julia qui a permis de développer toutes les applications
de cette thèse et bien d’autres. Nous étudions enfin l’utilisation de ce paquet dans un cas
de pilotage réel de système énergétique : la gestion intelligente de la température dans
une maison de l’équipement d’excellence Sense City.

Motivations, contexte et structure de la thèse

Motivations : gestion locale de l’énergie

Les secteurs de l’électricité et de la chaleur représentaient à eux deux 42% des émis-
sions CO2 planétaires en 20161. Les unités de génération au charbon et au fuel sont les
principales responsables des émissions de gaz à effet de serre du secteur de la produc-
tion électrique. Les centrales nucléaires et certaines énergies renouvelables permettent
de diminuer ces émissions de CO2, mais seules ces dernières sont considérées comme des
énergies vertes. La production électrique assurée par les énergies renouvelables est inter-
mittente et imprévisible, elle évolue au gré du vent, qui ne souffle pas constamment, et
de l’ensoleillement qui peut être obscurci par les nuages. Pour assurer en permanence
l’équilibre électrique entre production et demande, il est nécessaire de recourir à des
technologies de stockage. De nombreux pays ont intégré des unités de stockage de grande
échelle dans leur mix énergétique. Mentionnons notamment les barrages hydroélectriques
ou les vallées hydrauliques permettant de pomper de l’eau lorsque la production excède
la demande pour la turbiner plus tard dans le cas inverse.

Ces stockages de grande échelle nécessitent de prendre des décisions de quantité d’eau
pompée/turbinée en temps réel, sans connaître précisément la production ou la demande
future à l’échelle régionale ou nationale. L’optimisation stochastique est la théorie mathé-
matique qui permet de modéliser ces problèmes de décisions dans l’incertain. Les barrages
hydroélectriques sont l’un des cas pratiques historiques des praticiens de l’optimisation
stochastique. Mais ces stockages de grande échelle ne sont pas les seuls moyens pour
équilibrer la production et la demande dans le mix énergétique. Les batteries, volants
d’inerties, systèmes à air comprimé ou beaucoup d’autres technologies innovantes exis-
tent pour stocker l’énergie. Dans ce manuscrit nous nous concentrons sur les batteries
qui sont la plupart du temps de capacité bien plus réduite que des barrages. Elles sont
plus souvent utilisées à une échelle locale : le bâtiment, le quartier, un micro réseau élec-
trique... Ces unités de stockage permettent la gestion locale de l’énergie, autrement dit
à petite échelle. Mais ils sont pour le moment coûteux et leur construction est rarement
écologique. La gestion locale de l’énergie permet également d’utiliser d’autres moyens
de stockage de l’énergie déjà existants mais sous exploités pour le moment. La chaleur
dans les maisons ou les ballons d’eau chaude sont des exemples de stocks d’énergie sous

1https://www.iea.org/statistics/co2emissions/

8

exploités car non optimisés.
Dans cette thèse nous étudions des méthodes de gestion en temps réel de stocks én-

ergétiques dans des petits réseaux électriques que nous appelons micro grids. Ces micro
grids contiennent de la production locale (souvent renouvelable ou fatale), une demande
électrique et différentes sortes de stockage : batteries, super capacités ou la chaleur des
bâtiments. Nous développons des méthodes de gestion basées sur l’optimisation stochas-
tique. Nous résolvons des problèmes de gestion de l’énergie et des stockages en util-
isant cette théorie et nous proposons des extensions permettant de traiter des problèmes
de gestion long terme des équipements en prenant en compte des aspects investisse-
ment, vieillissement et maintenance. La plupart des résultats théoriques de cette thèse
font l’objet d’expérimentations numériques (et/ou réelles) à l’aide d’une bibliothèque
générique d’optimisation stochastique, DynOpt.jl, que nous avons développée.

Contexte

Ce doctorat a été financé par Efficacity2, l’institut de R&D pour la transition énergé-
tique des villes. Il a été dirigé par Frédéric Bourquin de l’IFSTTAR3 et Jean Philippe
Chancelier du CERMICS4, laboratoire de L’École des Ponts ParisTech. Un complément
de supervision a été apporté par Pierre Carpentier de l’ENSTA5, Michel De Lara du
CERMICS et Julien Waeytens de l’IFSTTAR.

Structure

Ce manuscrit est divisé en trois grandes parties, elles-mêmes subdivisées en chapitres.
La première partie est dédiée à la formalisation des méthodes de décomposition en

temps des problèmes d’optimisation stochastique. Cela qualifie les méthodes consistants
à décomposer un problème d’optimisation stochastique multi pas de temps en plusieurs
sous problèmes contenant un nombre inférieur de pas de temps. Elles s’articulent au-
tour de l’équation de Bellman [1]. Le formalisme de décomposition temporelle que nous
développons est ensuite utilisé pour construire un modèle générique pour les politique de
contrôle en ligne de systèmes stochastiques dynamiques.

La seconde partie applique le formalise de la première à des cas d’usages réels de
gestion de l’énergie. Le premier cas étudié est celui d’une station de métro où est récupérée
l’énergie de freinage des trains à l’aide d’une batterie et où la ventilation est contrôlée
pour minimiser sa consommation d’énergie en assurant une bonne qualité de l’air. Le
second cas concerne la stabilisation en tension d’un micro réseau électrique en courant
continu à l’aide d’un algorithme de contrôle prédictif. Le troisième cas étudie la gestion
long terme et temps réel d’une batterie dans un micro réseau électrique.

La troisième partie est divisée en deux chapitres. Le premier présente la bibliothèque
d’optimisation stochastique, DynOpt.jl, développée à Efficacity par François Pacaud et
T.R., et utilisée pour toutes les applications de la seconde partie. Cette bibliothèque
reprend le formalisme de la première partie dans un cadre plus opérationnel. Le second

2https://www.efficacity.com
3https://www.ifsttar.fr
4https://cermics-lab.enpc.fr
5https://uma.ensta-paristech.fr/

9

et dernier chapitre présente un cas de pilotage énergétique réel de la thermique dans
un chalet avec DynOpt. Ce bâtiment, présenté Figure 1, fait partie de l’équipement
d’excellence Sense City.

Figure 1: Équipement Sense City.[9] Source6

L’optimisation pour la gestion de l’énergie à l’échelle
locale

Energy management systems pour micro grids

Dans ce manuscrit nous appelons micro grid un réseau électrique contenant une pro-
duction locale incertaine (photovoltaïque, éolien, énergie de freinage...), une demande
électrique incertaine, et un ou plusieurs stockages. Ce micro réseau électrique peut être
connecté au réseau national ou non. Dans ce dernier cas on le dit en îlotage. Lorsque
le micro réseau est connecté à la grille nationale, il est possible de payer pour importer
de l’électricité. Cela rend plus facile l’équilibrage du réseau lorsque la production ou le
stockage ne sont pas suffisants pour couvrir la demande. L’objectif est alors de minimiser
la facture énergétique du micro réseau. Dans ce manuscrit nous étudions majoritaire-
ment des micro réseaux connectés à la grille nationale, excepté dans le Chapitre 4 où
nous étudions un problème de stabilisation de micro réseau en îlotage.

Contrôle hiérarchique Dans le Chapitre 4 de cette thèse, nous étudions un micro
grid en courant continu (DC). Ces micro réseaux permettent de connecter différents
équipements en courant continu, tels que des panneaux solaires, des LEDs ou des bornes
de recharge de véhicules électriques, sans dispositifs de conversion courant alternatif/con-
tinu. Les micro grids sont en général gérés à l’aide d’une architecture de contrôle hiérar-
chique [12] pour prendre en compte les différentes dynamiques des multiples équipements.
La philosophie de cette implémentation est la suivante : un niveau supérieur calcule des

10

Figure 2: Micro grid DC simple

cibles ou consignes pour un niveau inférieur qui est en charge de suivre ces cibles ou con-
signes. Dans ce manuscrit nous divisons cette architecture en trois niveaux qui répondent
à trois questions formulées simplement.

• Troisième niveau (pas de temps de la minute) : quelle quantité d’énergie doit stocker
la batterie toutes les minutes pour minimiser la facture énergétique sur la journée?

• Deuxième niveau (pas de temps de la seconde) : quelle puissance doit on imposer
à la batterie, gâcher de la production ou consommer sur le réseau national pour
assurer la stabilité en tension du micro réseau tout en atteignant la cible d’énergie
du troisième niveau?

• Premier niveau (pas de temps de la milliseconde) : quel courant doit on soutirer des
équipements toutes les millisecondes pour assurer la consigne du second niveau?

Dans le Chapitre 5 nous ajoutons un quatrième niveau, au pas de temps de la journée,
pour gérer le vieillissement des équipements.

Que contrôle t’on dans un micro réseau électrique? Le premier niveau est sou-
vent ignoré par les praticiens de l’optimisation stochastique qui considèrent qu’il sera
implémenté par des ingénieurs dont c’est la spécialité. Cependant il est important de
comprendre comment chaque équipement d’un micro grid est effectivement piloté pour
modéliser au mieux le problème décisionnel qui se pose pour le gestionnaire du réseau.
Un optimiseur considérera en général que la charge/décharge d’une batterie est directe-
ment contrôlée, ce qui est imprécis. Les équipements contrôlés dans le réseau représenté
Figure 2 sont en général les convertisseurs DC/DC (rectangles de la figure) [11]. De
manière basique ils contiennent des interrupteurs ON/OFF qui sont activés/désactivés

11

à intervalles réguliers de manière à produire le courant requis par le premier niveau de
contrôle. En contrôlant ces convertisseurs il est possible de produire la bonne énergie de
charge/décharge en sortie de la batterie par exemple. Cela permet également de con-
trôler l’énergie consommée sur le réseau national ou gâchée des panneaux solaires, si trop
d’énergie est produite par rapport à la demande. Il est aussi possible de ne pas satis-
faire une partie de la demande, mais ce type d’action est en général à utiliser en dernier
recours pour assurer la stabilité du réseau. Le cercle central contenant l’appellation DC
représente le réseau en courant continu qui connecte tous les équipements entre eux. Il
peut être considéré comme un très petit stockage d’énergie, tellement petit qu’il est ig-
noré au troisième niveau et remplacé par un équilibre des puissances entre les différents
équipements, une loi de Kirchoff.

Optimisation stochastique multi-étapes

Selon les mots, traduits en français, de R. Tyrell Rockafellar7, les problèmes d’optimisation
stochastique sont caractérisés par la nécessité de prendre des décisions sans connaître
précisément leur impact à l’avance8. Cette incertitude peut venir du caractère aléatoire
de phénomènes physiques, financiers, comportementaux ou sociaux qui ne peuvent être
prédits à l’avance.

Programmation Dynamique Stochastique. La Programmation Dynamique Stochas-
tique [17, 2, 6] est une méthode mathématique permettant de résoudre certains problèmes
d’optimisation stochastique multi-étapes. Elle se base sur le principe d’optimalité de
Bellman [1] qui permet de décomposer un problème multi-étapes en une multitude de
problèmes à 2 étapes imbriqués. Nous présentons donc l’équation de Bellman comme
une méthode de décomposition temporelle des problèmes d’optimisation stochastique.
L’un de nos travaux consiste à présenter l’équation de Bellman comme une méthode de
décomposition par blocs temporels dans le formalisme mathématique le plus général pos-
sible. Nous utilisons ce formalisme pour construire un modèle permettant d’agencer les
méthodes existantes de contrôle en ligne de systèmes stochastiques dynamiques.

La malédiction de la dimension. La complexité de l’algorithme de programmation
dynamique stochastique standard, basé sur la discrétisation des espaces des états et des
contrôles puis sur des recherches exhaustives imbriquées (boucles for), est exponentielle
en le nombre de variables d’état, contrôle et d’aléa. C’est la fameuse malédiction de
la dimension introduite par Bellman. De multiples méthodes ont été mises au point
pour affronter cette malédiction de la dimension et calculer des solutions admissibles aux
problèmes d’optimisation stochastique. Citons notamment la programmation stochas-
tique sur arbres de scénarios (SP) [19], le contrôle prédictif (stochastique) (MPC) [3], la
programmation dynamique approchée (ADP) [4], l’algorithme Stochastic Dual Dynamic
Programming (SDDP) [13] ou l’apprentissage par renforcement (RL) [5, 16, 20]. Dans [3]
et [15] les auteurs proposent une classification de toutes ces méthodes montrant qu’elles
sont toutes basées sur l’équation de Bellman et différentes sortes d’approximation.

7http://sites.math.washington.edu/~rtr/mypage.html
8http://sites.math.washington.edu/~rtr/uncertainty.pdf

12

http://sites.math.washington.edu/~rtr/mypage.html
http://sites.math.washington.edu/~rtr/uncertainty.pdf

L’optimisation dans les Energy Management Systems des micro
grids

Les Energy Management Systems (EMS) des micro réseaux requièrent de prendre des
décisions en peu de temps pour contrôler des systèmes aux dynamiques rapides. Nous
présentons dans le Chapitre 4 un exemple où des décisions de puissances d’équipements
sont à prendre toutes les secondes, en moins d’une seconde. Une stratégie de contrôle,
ou politique de contrôle, est dite "en ligne" parce qu’elle prend en compte l’état courant
d’un système en temps réel pour calculer une décision, ou un contrôle.

Nous distinguons deux grandes classes de méthodes pour produire des politiques en
ligne.

1. Totalement en ligne : certaines méthodes nécessitent uniquement de résoudre un
problème d’optimisation mathématique en ligne pour calculer une décision connais-
sant l’état du système. C’est le cas par exemple de SP ou MPC qui remplacent
les aléas par un ou plusieurs scénarios, produits d’une quelconque manière, afin de
poser un problème de programmation mathématique.

2. Hors ligne - En ligne : au contraire d’autres méthodes consistent à pré-calculer,
hors ligne, une certaine quantité de données pour les utiliser par la suite, en ligne,
afin de produire une décision connaissant l’état du système en très peu de temps.
C’est le cas par exemple de SDP, SDDP, ADP, RL...Ces méthodes ont en général
l’avantage de simplifier la résolution du problème en ligne.

Toutes les méthodes que nous avons introduites ont déjà été appliquées, dans de
multiples versions, à des problèmes de gestion de micro réseaux. Peu d’articles comparent
ces méthodes entre elles. Nous présentons un petit état de l’art sur le sujet au Chapitre
3.

Contributions
Ce manuscrit est organisé comme une collection d’articles. Pour organiser la présentation
ces articles sont groupés par parties. Parmi ces articles, deux sont publiés [18, 10], deux
sont envoyés à des revues [8, 7] et les trois derniers sont finalisés comme chapitres de thèse
mais pas en tant qu’articles de revue. Dans cette section nous présentons un résumé de
chaque article.

Décomposition temporelle en contrôle optimal stochastique

Dans cette partie nous présentons un formalisme général de décomposition temporelle en
optimisation stochastique.

Chapitre 1 Les problèmes d’optimisation stochastique multi-étapes sont complexes
par essence car leurs solutions sont paramétrées par les étapes (pas de temps) et les in-
certitudes (scénarios). Leur caractère grande échelle incite à l’utilisation de méthodes
de décomposition. Les méthodes les plus standards sont la décomposition temporelle —
comme la programmation dynamique stochastique en contrôle optimal stochastique — et

13

la décomposition par scénarios — comme le recouvrement progressif en programmation
stochastique. Nous présentons une méthode générale de décomposition des problèmes
d’optimisation stochastique multi-étapes par blocs temporels, ce qui peut permettre de
combiner la programmation stochastique et la programmation dynamique stochastique.
Nous présentons une équation de programmation dynamique avec des fonctions valeurs
définies sur l’espace des histoires (une histoire est une séquence d’incertitudes et de déci-
sions). Nous présentons ensuite des conditions permettant la construction d’une variable
d’état par réduction de l’histoire. Cette réduction est effectuée par blocs temporels, c’est
à dire à des pas de temps qui ne sont pas forcément le pas de temps unitaire du problème.
Cela permet de construire une équation de programmation dynamique réduite. Nous ap-
pliquons cette méthode de réduction à des problèmes à deux échelles de temps et à une
nouvelle classe de problèmes que nous appelons décision-hasard-décision et qui permet de
modéliser un grand nombre de problèmes réels, notamment dans la gestion de stocks. La
méthode de décomposition par blocs temporels suit le schéma suivant : nous appliquons
la programmation dynamique sur des blocs contenant un nombre suffisamment grand de
pas de temps pour supposer l’indépendance entre blocs des aléas du problème. Nous
produisons des fonctions de Bellman par blocs, liées récursivement par l’équation de Bell-
man par blocs. Ces fonctions sont toutes fonction valeur d’un problème d’optimisation
stochastique multi-étapes, plus petit que le problème original, qui peut être résolu par la
méthode de notre choix, programmation dynamique ou stochastique par exemple. Cette
méthode générale permet de ne pas forcément faire d’hypothèse Markovienne à petit pas
de temps mais uniquement entre plusieurs blocs, par exemple entre deux journées mais
pas entre deux minutes.

Chapitre 2 Les solutions de problèmes d’optimisation stochastique multi-étapes sont
des politiques, c’est à dire des applications de l’information passée vers l’espace des déci-
sions, à chaque étape. Les praticiens calculent rarement les politiques complètes mais les
évaluent en ligne à une étape donnée et une information passé donnée. Nous proposons
dans ce chapitre un modèle théorique général permettant de construire des politiques
de contrôle en ligne pour les problèmes d’optimisation stochastique multi-étapes. Notre
approche met en avant le rôle des structures d’information dans la construction des poli-
tiques. Nous utilisons le formalisme du Chapitre 1 pour construire notre modèle théorique
de politiques en ligne. Nous classifions dans ce chapitre, de multiples méthodes de contrôle
existantes (SDP, SP, MPC) au sein de ce modèle théorique.

Méthodes de gestion de stockages pour des applications réelles

Dans cette partie nous présentons trois problèmes réels de gestion de l’énergie dans dif-
férents systèmes : une station de métro, un micro grid DC avec stockage hybride et un
micro grid contenant un stockage pour lequel nous optimisons le vieillissement long terme.

Chapitre 3 Les stations représentent un tiers de la consommation électrique du réseau
métro Parisien. Dans ces stations, la ventilation est l’un des dispositifs les plus énergi-
vores; elle est en générale à débit maximal toute la journée pour assurer une bonne qualité
de l’air et une grande réactivité en cas d’incendies. Nous présentons dans ce chapitre, un
concept de gestion de l’énergie en station permettant de maintenir une qualité de l’air

14

comparable en diminuant la facture énergétique de la station. Ce système comprend une
batterie permettant de récupérer de l’énergie de freinage des métros, une source d’énergie
particulièrement erratique et imprévisible. Nous proposons un EMS qui contrôle les flux
énergétique et la ventilation dans cette station, à petit pas de temps. Nous développons
des algorithmes en mesure de satisfaire en permanence l’équilibre offre/demande tout en
minimisant la facture énergétique. Nous avons donc développé des algorithmes permet-
tant de gérer la variabilité de l’énergie de freinage. Ils sont basés sur le modèle présenté
dans le Chapitre 2. Nous comparons équitablement des méthodes basées sur la program-
mation dynamique stochastique à d’autres basées sur le contrôle prédictif stochastique.
Notre premier résultat est que tous nos algorithmes permettent de diminuer la facture
de la station d’environ 30% en assurant une qualité de l’air comparable. Notre second
résultat montre que dans ce cas, les méthodes basées sur la programmation dynamique
sont plus performantes de quelques pourcents par rapport à celles basées sur le contrôle
prédictif, avec un temps de calcul en ligne plus adapté aux phénomènes rapides.

Chapitre 4 Nous présentons un système de gestion de puissance d’un micro grid DC
en îlotage contenant des panneaux photovoltaïques, des unités de stockage et une charge
électrique. Ce système assure l’équilibre des puissances et la stabilité du réseau même
lorsque la puissance de certains équipements n’est pas directement contrôlable et que
la charge électrique varie de manière imprévisible au cours du temps. L’équilibre des
puissances et la consigne en tension du réseau sont considérées comme des contraintes
à satisfaire. Des simulations et un dispositif expérimental Hardware In the Loop sont
présentés pour montrer l’efficacité du système développé.

Chapitre 5 Dans ce chapitre, nous appliquons la méthode théorique générale présentée
au Chapitre 1 pour un cas réaliste de gestion de stockage énergétique dans un micro grid
en prenant le vieillissement de l’équipement en plus de son comportement temps réel. Les
dispositifs de stockages sont d’une importance majeure pour intégrer les énergies renouve-
lables intermittentes dans le mix énergétique. Malheureusement ces équipements restent
pour le moment coûteux même si le développement du marché des véhicules électriques
et des batteries tend à diminuer leur coût. Nous présentons un modèle d’optimisation
stochastique qui vise à minimiser la facture énergétique d’un micro grid par un pilotage
optimal du stockage, en prenant en compte l’investissement dans le stockage et son vieil-
lissement. Pour une capacité de batterie donnée, il est nécessaire de calculer et d’évaluer
sa politique de contrôle optimal pour minimiser la facture du réseau tout en assurant
un bon vieillissement de l’équipement. Le vieillissement des batteries est un phénomène
lent, sa dynamique est bien moins rapide que la dynamique de charge/décharge. Nous
avons donc recours à des algorithmes multi-échelles de temps afin de prendre en compte
ces dynamiques fondamentalement différentes. Ces algorithmes sont basés sur le for-
malisme du Chapitre 1 et combinent différentes méthodes d’optimisation stochastique
sur un seul problème. Nous les appliquons sur trois exemples numériques différents. Le
premier consiste à minimiser la facture énergétique long terme d’une maison équipée de
photovoltaïque et d’un stockage. Le second consiste à gérer le vieillissement sur une se-
maine d’un équipement tout en minimisant la facture du réseau. Dans ce second cas, le
problème présente une unique échelle de temps mais un grand nombre de pas de temps.
Nous comparons nos résultat à une application directe de SDP et SDDP pour démontrer

15

que nos méthodes permettent de décomposer les problèmes comportant un grand nombre
de pas de temps efficacement. Finalement nous montrons que l’un de nos algorithmes
permet un dimensionnement rapide de systèmes de stockage en prenant en compte leur
stratégie de pilotage optimal.

La boîte à outils DynOpt

Dans cette partie, nous présentons dans le Chapitre 6 la bibliothèque générique d’optimisation
stochastique développée dans le cadre de cette thèse par François Pacaud9 et T.R. Le
Chapitre 7 présente une application de cette bibliothèque sur une expérimentation réelle
: le contrôle de la température dans un chalet.

Chapitre 6 Nous présentons dans ce chapitre une boite à outils d’optimisation stochas-
tique dynamique appelée DynOpt. Une interface de programmation permet à un utilisa-
teur de modéliser un problème d’optimisation stochastique, puis de le résoudre avec l’un
des multiples algorithmes implémentés. A partir d’une instance modélisée, un utilisateur
est en mesure de développer une autre interface de programmation, pour un problème de
gestion de l’énergie bien spécifique, qui peut être déployée pour des applications réelles.
Par exemple, il est possible de construire un programme de dimensionnement et de pi-
lotage optimal de batterie ou un dispositif de pilotage de température dans une maison,
comme présenté dans le Chapitre 7. Cette bibliothèque s’articule autour du formalisme
présenté dans le Chapitre 2 de cette thèse dans un cadre simplifié de contrôle optimal
stochastique. Nous présentons dans un premier temps ce cadre simplifié, puis nous in-
troduisons les différents objets qu’un utilisateur ou développeur potentiel sera amené à
utiliser. Pour finir, nous montrons l’application de DynOpt sur un problème de pilotage
de batterie dans un micro grid. L’efficacité de DynOpt repose fortement sur le concept
de dispatche multiple, l’une des grandes forces du langage Julia.

Chapitre 7 Nous présentons une implémentation sur un cas de pilotage réel de DynOpt.
Nous pilotons la température dans un chalet de l’équipement d’excellence de Sense City
en minimisant la facture du chauffage électrique. Ce dispositif de pilotage utilise un
modèle de la thermique du chalet basé sur une analogie électrique, un modèle RC. Nous
présentons une méthode de calibration de ce modèle RC ne nécessitant aucune inter-
vention d’un utilisateur. Puis nous modélisons le problème avec DynOpt et déployons
une API conteneurisée dans un serveur pour piloter le chauffage dans le chalet. Nous
présentons les résultats de ce pilotage sur une semaine.

Perspectives par chapitres
Nous présentons les perspectives de cette thèse par chapitres.

Chapitre 1 Le formalisme de décomposition temporelle développé dans ce chapitre
permet de mélanger différentes méthodes de contrôle optimal stochastique pour la réso-
lution de problèmes présentant un grand nombre de pas de temps. Nous présentons une

9https://cermics.enpc.fr/ pacaudf/

16

application dans le Chapitre 5 en mélangeant plusieurs méthodes basées sur la program-
mation dynamique stochastique. Il serait intéressant d’effectuer le même travail avec des
méthodes de programmation stochastique, en particulier le recouvrement progressif, qui
ne nécessitent pas d’hypothèse markovienne pour résoudre un problème.

Chapitre 2 Nous avons classifié différentes méthodes existantes de contrôle en ligne de
systèmes stochastiques dynamiques à l’aide de notre modèle théorique. Il est possible de
continuer à intégrer d’autres méthodes, en particulier l’apprentissage par renforcement,
et de faire la lumière sur leur utilisation formelle de l’information en ligne.

Chapitre 3 Nous avons comparé différentes méthodes de contrôle pour la minimisa-
tion de la facture énergétique d’une station sur une journée. Il reste à appliquer les
méthodes du Chapitre 5 pour dimensionner au mieux le stockage d’énergie pour ce genre
d’applications.

Chapitre 4 Nous avons présenté une implémentation de contrôleur en puissance de
réseau DC basé sur du contrôle prédictif permettant de suivre une consigne fournie par
un niveau de contrôle supérieur. Il serait intéressant de comparer cette approche clas-
sique, mais heuristique, à une méthode multi-échelles de temps utilisant les algorithmes
développés dans le Chapitre 5.

Chapitre 5 Nous avons présenté des résultats prometteurs concernant la performance
de nos algorithmes de décomposition temporelle sur les problèmes présentant un grand
nombre de pas de temps. De nombreuses méthodes de résolution ont une efficacité ou
une complexité dépendant fortement du nombre de pas de temps. En particulier la
programmation stochastique sur arbres de scénarios a une complexité exponentielle en
le nombre de pas de temps et des algorithmes comme SDDP ont une convergence et
une qualité de solution dépendant du nombre de pas de temps. Il serait intéressant de
généraliser l’application de nos algorithmes pour améliorer l’efficacité de ces méthodes.

Chapitre 6 Nous avons présenté notre bibliothèque d’optimisation stochastique DynOpt,
qui contient les méthodes présentées dans le Chapitre 2 de cette thèse. Tout comme pour
le Chapitre 2 nous prévoyons d’ajouter des méthodes d’apprentissage par renforcement à
l’arsenal algorithmique de DynOpt.

Chapitre 7 Nous avons appliqué une méthode de contrôle basée sur SDDP pour le
contrôle de la thermique d’une maison et pour montrer la faisabilité d’un déploiement
de DynOpt. Il nous reste à la comparer à un contrôle plus classique, de type PID, et à
effectuer cette comparaison sur une typologie de bâtiments pour déterminer dans quels
cas la méthode est intéressante.

17

Introduction

Motivations, context and structure

Motivations: local energy management

In 2016, electricity and heat sector represented 42% of the world global CO2 emissions 10.
Coal and fuel based generation units are the main responsible for the greenhouse gases
emissions of electricity. Only nuclear power plants and renewable energies can help to
lower these emissions. But only the latter are considered as green energies. As the wind
does not always blow and the sun is sometimes hidden behind clouds, the integration of
renewable energies requires energy storage. Many countries have already integrated large
scale energy storage facilities such as water dams or even hydro valleys. These are used
to balance electricity production and demand at a regional or national scale. As wind or
solar power production is not perfectly predictable, the integration of renewable energies
introduces uncertainty regarding electricity production in the energy mix.

Stochastic optimizers have long worked on water dams management to mitigate this
uncertainty. But dams are not the only way to balance stochastic production and demand.
Batteries, flywheels, compressed air or many other technologies are innovative ways to
storage energy. In this thesis we focus on batteries which are most often significantly
smaller than water dams, in terms of the amount of energy they can store. They are
rarely used at a national or regional scale but rather at a building or neighborhood
scale. Such systems then bring the concept of local energy management, that is energy
management at a small scale. These devices are costly and their construction is rarely
eco-friendly. Local energy management systems bring other opportunities to mitigate
renewables uncertainty at a small scale. Heat in houses or in water heaters, for instance,
is already existing and a not fully exploited energy storage.

In this thesis we study methods to implement energy management systems in small
electrical grids that we call micro grids. These micro grids contain renewable production,
or energy recovery, uncertain electrical demand and different kind of storages: batter-
ies, supercapacitors or temperature in houses. The developed methods are based on
Stochastic Optimization theory. We frame energy management problems as well as stor-
age management methods using this theory and we propose extensions to solve long term
problems so as to improve the economic profitability of costly energy storage systems.
Most of the theoretical results presented in this thesis are implemented in a software
library (called DynOpt.jl) that is used to solve real local energy management problems.

10https://www.iea.org/statistics/co2emissions/

18

Context

This PhD thesis has been financed by Efficacity11 a French Research and Development
institute dedicated to urban energy transition. This PhD thesis has been directed by
Frédéric Bourquin and Jean Philippe Chancelier. It has been supervised as well by Michel
De Lara, Pierre Carpentier, researchers at CERMICS12 and UMA13, for the stochastic op-
timization part. It was also supervised by Julien Waeytens, an IFSTTAR14 researcher, for
the experimental part, that is, the implementation of stochastic optimal control strategies
to a real system.

Structure

Part 1 of this manuscript is dedicated to contributions to a formalization of time decom-
position methods in stochastic optimization problems. By that, we mean methods that
decompose a multistage stochastic optimization problem into smaller problems displaying
a fewer number of time stages. It articulates around the well know Bellman equation [1].
This time decomposition framework is then used to build a template for online control
policies of stochastic dynamical systems. A contribution of the thesis is to classify well
known control methods using this template.

Part 2 uses the Part 1 formalism to model and solve applied energy management
problems. We present different realistic cases where we apply stochastic optimization
methods to improve the energy efficiency of different micro grids. The first realistic
case studied is a subway station with a battery recovering trains braking energy and
intelligent ventilation. The second is an islanded DC micro grid with solar panels, an
electrical load and a hybrid storage system to stabilize the power of the grid and recover
as much renewable energy as possible. The third application is the optimal long term
management of an energy storage system in a micro grid connected to a national grid
with a special focus on the aging of the storage.

Part 3 is divided in two chapters. In Chapter 6 we describe the numerical library
called DynOpt, developed at Efficacity by François Pacaud and T.R., designed according
to the formalism described in Part 1. Note that all the simulations of Part 2 have been
performed using DynOpt. In Chater 7, the mini city demonstrator Sense City, displayed
Figure 3, is presented. A contribution of the thesis is a real life application consisting
of controlling temperature in a building of Sense City demonstrator with the help of
DynOpt.

11https://www.efficacity.com
12https://cermics-lab.enpc.fr
13https://uma.ensta-paristech.fr/
14https://www.ifsttar.fr

19

Figure 3: Sense City demonstrator.[9] Source15

Background in microgrids energy management and op-
timization

Microgrids energy management

In the sequel we call a micro grid a small electrical grid with an uncertain local production,
e.g regenerative braking or solar panels, an uncertain load, e.g a subway station or an
house electrical demand and an electrical storage. This micro grid may or may not be
connected to a national grid. The latter is called islanded mode. When it is connected to
the national grid it is possible to pay electricity to an energy supplier if local production
or storage is not enough to cover demand. In this PhD thesis we mostly study micro
grids connected to a national grid except in Chapter 4 to demonstrate how to stabilize
an islanded micro grid.

Hierarchical control architecture In Chapter 4 of this manuscript we study DC
micro grids, that is, continuous current micro grids. DC micro grids offer the ability
to connect DC systems easily such as solar panels, LEDs or electrical vehicles. Micro
grids are controlled with a hierarchical Energy Management System to manage different
physical phenomena that occur at different paces [12]. The philosophy is that an upper
level computes targets or set-points and sends them to a lower level that aims at respecting
these targets. We divide a micro grid control architecture in three levels answering three
simply formulated questions.

• Third level (minutes): How much energy should we store in the storage every
minutes to minimize national grid energy consumption over the day?

20

Figure 4: A simple DC micro grid

• Second level (seconds): How much power should we charge/discharge in the storage,
curtail from the load, waste from the power source, consume on the national grid,
to ensure grid voltage stability every seconds?

• First level (micro seconds): Which current should we draw from the equipment
every micro-second to follow the set-points of the second level?

In Chapter 5 we add a fourth level with the time step of a day or multiple days to manage
aging of the equipment.

What is controlled in a microgrid? The first level is often ignored by optimizers
assuming it will be handled by electrical engineers. However it is important to understand
how the equipment in a grid is controlled to model upper levels optimization problems
properly. While an optimizer could consider the battery charge/discharge as a control,
it is not totally accurate. The devices that are controlled in the grid presented Figure 4
are the DC/DC converters (rectangles on the figure) [11]. Basically they contain on/off
switches that can be managed so as to let a prescribed current flows from the equipment
to the grid and vice-versa. Controlling these switches, it is then possible to manage the
charge/discharge power of the storage. It also enables to control the amount of power
consumed on the national grid as well as the solar panels. As a consequence it makes
it possible to decide to waste solar power if too much energy is produced. Likewise it is
possible to curtail load from demand, that is provoking an outage on the demand side.
These last two situations are to be avoided at all costs, however when the grid is islanded,
it might be necessary to waste or curtail power to ensure the stability of the grid. Finally

21

the central DC node can be modeled as a small storage, so small that it is ignored at the
third level and replaced by a node with a Kirchoff law, that is an energy supply/demand
balance.

Multistage stochastic optimization

To quote R. Tyrrell Rockafellar 16, stochastic optimization problems “are characterized by
the necessity of making decisions without knowing what their full effects will be"17. That
uncertainty originates from random physical, financial or even behavioral phenomena
that cannot be fully determined in advance.

Stochastic Dynamic programming. Stochastic Dynamic Programming [17, 2, 6]
is a mathematical method to solve multistage stochastic optimization problems. It is
built upon the so called Bellman’s principle of optimality [1] that allows to decompose a
multistage problem into multiple nested two-stages problems. Therefore we see Bellman
equation as a time decomposition method of stochastic optimization problems. One of
our work consists in presenting the Bellman equation as a time blocks decomposition
method in the most general stochastic optimization formalism. We use this framework to
build a template of online control policies that makes it possible to exhibit how classical
control methods relate.

Tackling the curse of dimensionality. The complexity of the most classical Stochas-
tic Dynamic Programming algorithm, based on discretization of search spaces and nested
exhaustive searches (for loops), grows exponentially with the number of state variables
and decision variables. This is the so called curse of dimensionality. Multiple meth-
ods exist to approximately solve multistage stochastic optimization problems, namely:
Stochastic Programming (SP) [19], (Stochastic) Model Predictive Control (MPC) [3],
Approximate Dynamic Programming (ADP) [4], Stochastic Dual Dynamic Programming
(SDDP) [13], Reinforcement Learning (RL) [5, 16, 20]... In [3] and [15] the authors en-
force to classify all these methods showing that all of them are a certain way to solve
approximately the Bellman Equation.

Optimization methods for micro grids energy management sys-
tems

Energy management systems (EMS) for micro grids sometimes require to make control
decisions quickly to handle the fast dynamics of the grid. We present in Chapter 4
an example where we need to compute decisions in less than one second. The control
strategy, also called policy, is said to be "online" as it takes the current state of the
system, in real time, to compute a control decision.

We distinguish two main classes of methods to produce a policy
16http://sites.math.washington.edu/~rtr/mypage.html
17http://sites.math.washington.edu/~rtr/uncertainty.pdf

22

http://sites.math.washington.edu/~rtr/mypage.html
http://sites.math.washington.edu/~rtr/uncertainty.pdf

• Fully online: some methods only require to solve an optimization problem online
once the state of the system is observed. This is the idea of SP or MPC meth-
ods. They model future uncertainties using scenario trees or forecasts, then they
formulate and solve a deterministic optimization problem using mathematical pro-
gramming methods.

• Offline-online: on the contrary some methods require to make some calculations
offline to produce a policy that will be used online. For example SDP, SDDP or
Mixed Integer Dynamic Approximation Scheme (MIDAS) [14] compute functions
offline to produce a policy that will be evaluated online to compute a control. This
policy remains a function of the state, but the offline computation speeds up the
online problem resolution.

All the methods we introduced have already been implemented in an Energy Manage-
ment System for micro grids. However few papers compare the performance of different
methods on a given system. We present some of these papers in Chapter 3.

Contributions
This thesis is organised as a collection of articles. To ease the presentation, the articles are
regrouped in parts. Among these articles two are accepted [18, 10], two are submitted [8,
7], the last three are finalized as thesis chapters but not completely polished as papers.
In this section we detail further the contents of each article.

Time decomposition in stochastic optimal control

In this part we present two chapters within a general formalism for time decomposition
of multistage stochastic optimization problems.

Chapter 1 Multistage stochastic optimization problems are, by essence, complex be-
cause their solutions are indexed both by stages (time) and by uncertainties (scenarios).
Their large scale nature makes decomposition methods appealing. The most common ap-
proaches are time decomposition — and state-based resolution methods, like stochastic
dynamic programming, in stochastic optimal control — and scenario decomposition —
like progressive hedging in stochastic programming. We present a method to decompose
multistage stochastic optimization problems by time blocks, which covers both stochas-
tic programming and stochastic dynamic programming. Once established a dynamic
programming equation with value functions defined on the history space (a history is a
sequence of uncertainties and controls), we provide conditions to reduce the history using
a compressed “state” variable. This reduction is done by time blocks, that is, at stages
that are not necessarily all the original unit stages, and we prove a reduced dynamic
programming equation. Then, we apply the reduction method by time blocks to two
time-scales stochastic optimization problems and to a novel class of so-called decision-
hazard-decision problems, arising in many practical situations, like in stock management.
The time blocks decomposition scheme is as follows: we use dynamic programming at slow
time scale where the slow time scale noises are supposed to be stagewise independent, and

23

we produce slow time scale Bellman functions; then, it remains to solve short time scale
problems (by stochastic programming or dynamic programming), within two consecutive
slow time steps, with the final short time scale cost given by the slow time scale Bellman
functions, and without assuming stagewise independence for the short time scale noises.

Chapter 2. The solutions of multistage stochastic optimization problems are policies,
that is, mappings from past information into the current decision set, at each stage. In
practice, one does not compute the whole policy but produces the value of the policy
for the current argument and stage. We propose a general template to design online
control policies for multistage stochastic optimization problems. Our approach stresses
the role of information structures in the design of online policies. We use Chapter 1
formalism to build the general template of online policies. Then, we frame well known
methods (Stochastic Dynamic Programming, Stochastic Programming, Stochastic Model
Predictive Control) to produce online control policies within this template.

Energy storage management strategies for realistic applications

This part contains three articles that all focus on realistic examples: the energy manage-
ment of a subway station, the control of an islanded DC micro grid and the long term
management of energy storage in a micro grid.

Chapter 3 In the Paris subway system, stations represent about one third of the overall
energy consumption. Within stations, ventilation is among the top consuming devices;
it is operated at maximum airflow all day long, for air quality reasons. We present a
concept of energy system that displays comparable air quality while consuming much
less energy. The system comprises a battery that makes it possible to recover the trains
braking energy, arriving under the form of erratic and strong peaks. We propose an
energy management system (EMS) that, at short time scale, controls energy flows and
ventilation airflow. By using proper optimization algorithms, we manage to match supply
with demand, while minimizing energy daily costs. For this purpose, we have designed
algorithms that take into account the braking variability. They are based on the so-called
Stochastic Dynamic Programming (SDP) mathematical framework. We fairly compare
SDP based algorithms with the widespread Model Predictive Control (MPC) ones. First,
both SDP and MPC yield energy/money operating savings of the order of one third,
compared to the current management without battery (our figure does not include the
cost of the battery). Second, depending on the specific design, we observe that SDP
outperforms MPC by a few percent, with an easier online numerical implementation.

Chapter 4 A power management controller for a DC micro grid containing renewable
energy sources, storage elements and loads is presented. The controller ensures power
balance and grid stability even when some devices are not controllable in terms of their
power output, and environmental conditions and load vary in time. Power balance and
desired voltage level for the DC micro grid are considered as constraints for the controller.
Simulations and an experimental setup are implemented to show the effectiveness of the
proposed control action.

24

Chapter 5 In this chapter, we apply Chapter 1 formalism to design algorithms for two
time scales stochastic optimization problems arising from long term storage management.
Energy storage devices are of major importance to integrate more renewable energies and
demand-side management in a new energy mix. However batteries remain costly even if
recent market developments in the field of electrical vehicles and stationary storage tend
to decrease their cost. We present a stochastic optimization model aiming at minimizing
the investment and maintenance costs of batteries for a house with solar panels. For any
given capacity of battery it is necessary to compute a charge/discharge strategy as well as
maintenance to maximize revenues provided by intraday energy arbitrage while ensuring
an optimal long term aging of the storage devices. Long term aging is a slow process while
charge/discharge control of a storage handles fast dynamics. For this purpose, we have
designed algorithms that take into account this two time scales aspect in the decision
making process. They are based on Chapter 1 time decomposition framework. These
algorithms are applied to three numerical experiments. First one of them is used to control
charge/discharge, aging and renewal of batteries for a house. Results show that it is
economically significant to control aging. Second we apply and compare our algorithms on
a simple charge/discharge and aging problem, that is a multistage stochastic optimization
problem with many time steps. We compare our algorithms to SDP and Stochastic Dual
Dynamic Programming and we observe that they are less computationally costly while
displaying similar performances on the control of a storage. Finally we show how one
of our algorithm can be used for the optimal sizing of a storage taking into account
charge/discharge strategy as well as aging.

The DynOpt toolbox

In this part, in Chapter 6 we present a stochastic optimization toolbox developed by
François Pacaud 18 and T.R. In Chapter 7, its application to a mini city test bed called
Sense City is presented.

Chapter 6 We present in this chapter a stochastic dynamic optimization toolbox called
DynOpt. A user interacts with DynOpt toolbox though an API which enables to build
a stochastic optimization problem and solve it using dedicated algorithms. Moreover
the user is able to build a specialized API for specific energy management problems she
wants to solve. For instance, a user can build a battery sizing utility out of DynOpt
or a house temperature controller as described in Chapter 7. This library is articulated
around the concept of control policies that are distinguished by how they use online
information to compute an optimal control for a stochastic dynamical system. We present
the mathematical background that led to develop DynOpt. Then, we introduce the main
objects for a potential user or a potential developer. Finally, we apply DynOpt on an
energy storage toy problem and discuss the opportunities that it brings for real energy
management applications. It is implemented as a Julia package, leveraging Julia multiple
dispatch design.

18https://cermics.enpc.fr/ pacaudf/

25

Chapter 7 We present the implementation of a control strategy for the temperature
of a real house, minimizing the energy consumption with stochastic thermal gains. We
present a calibration method of an RC model, which models a building thermal behavior.
This calibration method allows to determine some house thermal parameters but also to
build a stochastic model of the thermal gains that are not generated by electrical heaters
but originates from computers or bodies. These calibrated RC model and stochastic
model of the thermal gains are used to build a control policy to minimize the energy
consumption of the house while maintaining a comfortable temperature. This policy is
computed using the SDDP algorithm using DynOpt, the toolbox introduced Chapter 6.
We build a software architecture based on containerized APIs to calibrate the model,
compute the control policy and apply the control policy online from a server or in the
cloud without requiring a human input. We implement this architecture to a real house,
controlling two electrical heaters in two rooms using smart plugs.

Perspectives by chapters
We present the perspectives of this thesis by chapters.

Chapter 1 The time blocks decomposition framework presented in this chapter makes
it possible to mix stochastic programming and dynamic programming techniques to solve
multistage stochastic optimization problems with an important number of time steps.
SDP requires an independence assumption and has a complexity exponential in the num-
ber of state variables while stochastic programming has a complexity exponential in the
number of time stages. Decomposition by time blocks makes it possible to assume ran-
domness stage-wise independence on multiple time steps and not between consecutive
time steps.

Chapter 2 We presented classical control methods in the framework of Chapter 1 with
an online policies template based on Bellman equation. It would be interesting to inte-
grate reinforcement learning techniques in this framework as they are deeply related to
Bellman equation as well and proved efficient in numerous energy management applica-
tions.

Chapter 3 We compared four stochastic optimal control strategies to control energy
storage in a subway station to minimize the energy consumption. The next step of this
study is to apply the two time scales methods presented in Chapter 5 for the optimal
aging and maintenance management of the battery as well as the ventilation.

Chapter 4 We presented a MPC controller to stabilize an islanded DC micro grid. In
this chapter we assume that set-points are provided by an upper level for the state of
charge of the battery. The next step is to apply the two time scales methods developed in
Chapter 5 for the hierarchical control of micro grids. It would distinguish from classical
control architectures of the literature as information between time steps would be ex-
changed through value functions, weights or targets instead of set-points. It could make

26

more efficient the MPC controller implementation and should produce better results as
the control architecture would be based on a theoretical framework instead of a heuristic.

Chapter 5 We presented promising results regarding the mix of different stochastic
dynamic programming techniques to solve multistage stochastic optimization problems
with a large number of time steps. The two algorithms developed essentially made it
possible to parallelize the resolution of a large problem over time. The same kind of
approach could be applied to stochastic programming techniques that have a complexity
exponential in the number of time steps. The weight algorithms presented uses an ex-
haustive search over weights to produce daily value functions, it could be more efficient
to use a gradient based optimization method.

Chapter 6 We presented DynOpt, a toolbox to solve stochastic optimization problems
using the methods introduced in Chapter 2. As in Chapter 2 our next step is to add
reinforcement learning techniques to the toolbox as they are efficient for some energy
management problems.

Chapter 7 We implemented a control strategy on a small house to manage the temper-
ature and minimize the energy consumption. The next step is to generalize the strategy
by applying it to a wide variety of buildings and multiple buildings at the same time.

27

Introduction bibliography

[1] R. Bellman. Dynamic Programming. Princeton University Press, New Jersey, 1957.

[2] D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena Sci-
entific Belmont, MA, third edition, 2005.

[3] D. P. Bertsekas. Dynamic programming and suboptimal control: A survey from ADP
to MPC. European Journal of Control, 11(4-5):310–334, 2005.

[4] D. P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic
Programming. Athena Scientific, fourth edition, 2012.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

[6] P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. Stochastic Multi-
Stage Optimization. At the Crossroads between Discrete Time Stochastic Control
and Stochastic Programming. Springer-Verlag, Berlin, 2015.

[7] P. Carpentier, J.-P. Chancelier, M. De Lara, F. Pacaud, and T. Rigaut. A template
to design online policies for multistage stochastic optimization problems. working
paper, Jan. 2019.

[8] P. Carpentier, J.-P. Chancelier, M. De Lara, and T. Rigaut. Time blocks decompo-
sition of multistage stochastic optimization problem. 2018.

[9] F. Derkx, B. Lebental, T. Bourouina, F. Bourquin, C.-S. Cojocaru, E. Robine,
and H. Van Damme. The Sense-City project. In XVIIIth Symposium on Vibrations,
Shocks and Noise, page 9p, France, July 2012.

[10] A. Iovine, T. Rigaut, G. Damm, E. D. Santis, and M. D. D. Benedetto. Power man-
agement for a dc microgrid integrating renewables and storages. Control Engineering
Practice, 85:59 – 79, 2019.

[11] A. Iovine, S. B. Siad, G. Damm, E. D. Santis, and M. D. D. Benedetto. Nonlinear
control of a dc microgrid for the integration of photovoltaic panels. IEEE Transac-
tions on Automation Science and Engineering, 14(2):524–535, April 2017.

[12] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kaz-
erani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, and R. e. a. Palma-
Behnke. Trends in Microgrid Control. IEEE Trans. Smart Grid, 5(4):1905–1919,
2014.

28

[13] M. V. Pereira and L. M. Pinto. Multi-stage stochastic optimization applied to energy
planning. Mathematical programming, 52(1-3):359–375, 1991.

[14] A. Philpott, F. Wahid, and F. Bonnans. MIDAS: A Mixed Integer Dynamic Approx-
imation Scheme. Research report, Inria Saclay Ile de France, June 2016.

[15] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimen-
sionality, volume 703. John Wiley & Sons, 2007.

[16] W. B. Powell. Clearing the jungle of stochastic optimization. Informs, pages 109–137,
2014.

[17] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1st edition, 1994.

[18] T. Rigaut, P. Carpentier, J. Chancelier, M. D. Lara, and J. Waeytens. Stochastic
optimization of braking energy storage and ventilation in a subway station. IEEE
Transactions on Power Systems, pages 1–1, 2018.

[19] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming:
modeling and theory. SIAM, 2009.

[20] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

29

Part I

Contributions to time decomposition in
multistage stochastic optimization

30

Chapter 1

Time blocks decomposition of
multistage stochastic optimization
problems

This is a joint work with Pierre Carpentier, Jean-Philippe Chancelier and Michel De
Lara.

Chapter Abstract

Multistage stochastic optimization problems are, by essence, complex because
their solutions are indexed both by stages (time) and by uncertainties (sce-
narios). Their large scale nature makes decomposition methods appealing.
The most common approaches are time decomposition — and state-based res-
olution methods, like stochastic dynamic programming, in stochastic optimal
control — and scenario decomposition — like progressive hedging in stochastic
programming. We present a method to decompose multistage stochastic opti-
mization problems by time blocks, which covers both stochastic programming
and stochastic dynamic programming. Once established a dynamic program-
ming equation with value functions defined on the history space (a history
is a sequence of uncertainties and controls), we provide conditions to reduce
the history using a compressed “state” variable. This reduction is done by
time blocks, that is, at stages that are not necessarily all the original unit
stages, and we prove a reduced dynamic programming equation. Then, we
apply the reduction method by time blocks to two time-scales stochastic op-
timization problems and to a novel class of so-called decision-hazard-decision
problems, arising in many practical situations, like in stock management. The
time blocks decomposition scheme is as follows: we use dynamic programming
at slow time scale where the slow time scale noises are supposed to be stage-
wise independent, and we produce slow time scale Bellman functions; then,
it remains to solve short time scale problems (by stochastic programming or
dynamic programming), within two consecutive slow time steps, with the fi-
nal short time scale cost given by the slow time scale Bellman functions, and
without assuming stagewise independence for the short time scale noises.

31

Contents
1.1 Introduction . 32

1.2 Stochastic Dynamic Programming with Histories 33

1.2.1 Background on Stochastic Dynamic Programming 33

1.2.2 Stochastic Dynamic Programming with History Feedbacks . . . 37

1.3 State Reduction by Time Blocks and Dynamic Programming 40

1.3.1 State Reduction on a Single Time Block 40

1.3.2 State Reduction on Multiple Consecutive Time Blocks and Dy-
namic Programming Equations 42

1.4 Applications of Time Blocks Dynamic Programming 44

1.4.1 Two Time-Scales Multistage Optimization Problems 44

1.4.2 Decision-Hazard-Decision Optimization Problems 48

1.5 Conclusion and Perspectives . 52

1.6 Technical Details and Proofs . 53

1.6.1 Histories, Feedbacks and Flows 53

1.6.2 Building Stochastic Kernels from History Feedbacks 54

1.6.3 Proofs . 56

1.7 Dynamic Programming with Unit Time Blocks 61

1.7.1 The General Case of Unit Time Blocks 61

1.7.2 The Case of Time Additive Cost Functions 61

1.8 The Case of Optimization with Noise Process 62

1.8.1 Optimization with Noise Process 63

1.8.2 Two Time-Scales Dynamic Programming 65

1.8.3 Decision-Hazard-Decision Dynamic Programming 66

1.1 Introduction
Multistage stochastic optimization problems are, by essence, complex because their so-
lutions are indexed both by stages (time) and by uncertainties. Their large scale nature
makes decomposition methods appealing. The most common approaches are time decom-
position — and state-based resolution methods, like stochastic dynamic programming, in
stochastic optimal control — and scenario decomposition — like progressive hedging in
stochastic programming.

On the one hand, stochastic programming deals with an underlying random process
taking a finite number of values, called scenarios [30]. Solutions are indexed by a scenario
tree, the size of which explodes with the number of stages, hence generally few in practice.
However, to overcome this obstacle, stochastic programming takes advantage of scenario
decomposition methods (progressive hedging [29]). On the other hand, stochastic control

32

deals with a state model driven by a white noise, that is, the noise is made of a sequence
of independent random variables. Under such assumptions, stochastic dynamic program-
ming is able to handle many stages, as it offers reduction of the search for a solution
among state feedbacks (instead of functions of the past noise) [22, 28].

In a word, dynamic programming is good at handling multiple stages — but at the
price of assuming that noises are stagewise independent — whereas stochastic program-
ming does not require such assumption, but can only handle a few stages. Could we take
advantage of both methods? Is there a way to apply stochastic dynamic programming at
a slow time scale — a scale at which noise would be statistically independent — crossing
over short time scale optimization problems where independence would not hold? This
question is one of the motivations of this paper.

We will provide a method to decompose multistage stochastic optimization problems
by time blocks. In Sect. 1.2, we present a mathematical framework that covers both
stochastic programming and stochastic dynamic programming. First, in §1.2.1, we sketch
the literature in stochastic dynamic programming, in order to locate our contribution.
Second, in §1.2.2, we formulate multistage stochastic optimization problems over a so-
called history space, and we obtain a general dynamic programming equation. Then, we
lay out the basic brick of time blocks decomposition, by revisiting the notion of “state” in
Sect. 1.3. We lay out conditions under which we can reduce the history using a compressed
“state” variable, but with a reduction done by time blocks, that is, at stages that are
not necessarily all the original unit stages. We prove a reduced dynamic programming
equation, and apply it to two classes of problems in Sect. 1.4. In §1.4.1, we detail the case
of two time-scales stochastic optimization problems. In §1.4.2, we apply the reduction
method by time blocks to a novel class consisting of decision-hazard-decision models. In
the appendix, we relegate technical results, as well as the specific case of optimization
with noise process.

1.2 Stochastic Dynamic Programming with Histories
We recall the standard approaches used to deal with a stochastic optimal control problem
formulated in discrete time, and we highlight the differences with the framework used in
this paper.

1.2.1 Background on Stochastic Dynamic Programming

We first recall the notion of stochastic kernel, used in the modeling of stochastic con-
trol problems. Let pX,Xq and pY,Yq be two measurable spaces. A stochastic kernel
from pX,Xq to pY,Yq is a mapping ρ : Xˆ YÑ r0, 1s such that

• for any Y P Y, ρp¨, Y q is X-measurable;

• for any x P X, ρpx, ¨q is a probability measure on Y.

By a slight abuse of notation, a stochastic kernel is also denoted as a mapping ρ : X Ñ
∆pYq from the measurable space pX,Xq towards the space ∆pYq of probability measures
over pY,Yq, with the property that the function x P X ÞÑ

ş

Y
ρpx, dyq is measurable for

any Y P Y.

33

We now sketch the most classical frameworks for stochastic dynamic programming.

Witsenhausen Approach. The most general stochastic dynamic programming prin-
ciple is sketched by Witsenhausen in [32]. However, we do not detail it as its formalism
is too far from the following ones. We present here what Witsenhausen calls an optimal
stochastic control problem in standard form (see [31]). The ingredients are the following:

1. time t “ t0, t0 ` 1, . . . , T ´ 1, T is discrete, with integers t0 ă T ;

2. pXt0 ,Xt0q, . . . , pXT ,XT q are measurable spaces (“state” spaces);

3. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);

4. It is a subfield of Xt, for t “ t0, . . . , T ´ 1 (information);

5. ft : pXtˆUt,XtbUtq Ñ pXt`1,Xt`1q is measurable, for t “ t0, . . . , T´1 (dynamics);

6. πt0 is a probability on pXt0 ,Xt0q;

7. j : pXT ,XT q Ñ R is a measurable function (criterion).
With these ingredients, Witsenhausen formulates a stochastic optimization problem,
whose solutions are to be searched among adapted feedbacks, namely λt : pXt,Xtq Ñ

pUt,Utq with the property that λ´1
t pUtq Ă It for all t “ t0, . . . , T ´ 1. Then, he estab-

lishes a dynamic programming equation, where the Bellman functions are function of the
(unconditional) distribution of the original state xt P Xt, and where the minimization is
done over adapted feedbacks.

The main objective of Witsenhausen is to establish a dynamic programming equation
for nonclassical information patterns.

Evstigneev Approach. The ingredients of the approach developed in [26] are the
following:

1. time t “ t0, t0 ` 1, . . . , T ´ 1 is discrete, with integers t0 ă T ;

2. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);

3. pΩ,Fq is a measurable space (Nature);

4. tFtut0,...,T´1 is a filtration of F (information);

5. P is a probability on pΩ,Fq;

6. j : p
ś

t“t0,...,T´1 UtˆΩ,
Â

t“t0,...,T´1 UtbFq Ñ R is a measurable function (criterion).
With these ingredients, Evstigneev formulates a stochastic optimization problem, whose
solutions are to be searched among adapted processes, namely random processes with
values in

ś

t“t0,...,T´1 Ut and adapted to the filtration tFtut0,...,T´1. Then, he establishes a
dynamic programming equation, where the Bellman function at time t is an Ft-integrand
depending on decisions up to time t (random variables) and where the minimization is
done over Ft-measurable random variables at time t.

The main objective of Evstigneev is to establish an existence theorem for an optimal
adapted process (under proper technical assumptions, especially on the function j, that
we do not detail here).

34

Bertsekas and Shreve Approach. The ingredients of the approach developed in [23]
are the following:

1. time t “ t0, t0 ` 1, . . . , T ´ 1, T is discrete, with integers t0 ă T ;

2. pXt0 ,Xt0q, . . . , pXT ,XT q are measurable spaces (state spaces);

3. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);

4. pWt0 ,Wt0q,. . . , pWT ,WT q are measurable spaces (Nature);

5. ft : pXt ˆ Ut ˆWt,Xt b Ut bWtq Ñ pXt`1,Xt`1q is a measurable mapping, for
t “ t0, . . . , T ´ 1 (dynamics);

6. ρt´1:t : Xt´1 ˆ Ut´1 Ñ ∆pWtq is a stochastic kernel, for t “ t0, . . . , T ´ 1;

7. Lt : Xt ˆ Ut ˆWt`1 Ñ R, for t “ t0, . . . , T ´ 1 and K : XT Ñ R, measurable
functions (instantaneous and final costs).

With these ingredients, Bertsekas and Shreve formulate a stochastic optimization prob-
lem with time additive additive cost function over given state spaces, action spaces and
uncertainty spaces (note that state and action spaces are assumed to be of fixed sizes when
time varies, thus a “state” is a priori given). They introduce the notion of history at time t
which consists in the states and the actions prior to t and study optimization problems
whose solutions (policies) are to be searched among history feedbacks (or relaxed history
feedbacks), namely sequences of mappings Xt0 ˆ

śt´1
s“t0

pUs ˆ Xs`1q Ñ Ut. They identify
cases where no loss of optimality results from reducing the search to (relaxed) Markovian
feedbacks Xt Ñ Ut. Then, they establish a dynamic programming equation, where the
Bellman functions are function of the state xt P Xt, and where the minimization is done
over controls ut P Ut. For finite horizon problems, the mathematical challenge is to set
up a mathematical framework (the Borel assumptions) for which optimal policies exists.

The main objective of Bertsekas and Shreve is to state conditions under which the
dynamic programming equation is mathematically sound, namely with universally mea-
surable Bellman functions and with universally measurable relaxed control strategies in
the context of Borel spaces. The interested reader will find all the subtleties about Borel
spaces and universally measurable concepts in [23, Chapter 7].

Puterman Approach. The ingredients of the approach developed in [28] are the fol-
lowing:

1. time t “ t0, t0 ` 1, . . . , T ´ 1, T is discrete, with integers t0 ă T ;

2. pXt0 ,Xt0q, . . . , pXT ,XT q are measurable spaces (state spaces);

3. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);

4. ρt´1:t : Xt´1 ˆ Ut´1 Ñ ∆pXtq is a stochastic kernel, for t “ t0, . . . , T ´ 1;

5. Lt : Xt ˆ Ut Ñ R, for t “ t0, . . . , T ´ 1 and K : XT Ñ R, measurable functions
(instantaneous and final costs).

35

Puterman shares most of his ingredients with Bertsekas and Shreve, but he does not
require uncertainty sets and dynamics, as he directly considers state transition stochastic
kernels. With these ingredients, Puterman formulates a stochastic optimization problem,
whose solutions are to be searched among history feedbacks, namely sequences of map-
pings Xt0 ˆ

śt´1
s“t0

pUsˆXs`1q Ñ Ut. Then, he establishes a dynamic programming equa-
tion, where the Bellman functions are function of the history ht P Xt0ˆ

śt´1
s“t0

pUsˆXs`1q.
He identifies cases where no loss of optimality results from reducing the search to Marko-
vian feedbacks Xt Ñ Ut. In such cases, the Bellman functions are function of the
state xt P Xt, and the minimization in the dynamic programming equation is done over
controls ut P Ut.

The main objective of Puterman is to explore infinite horizon criteria, average reward
criteria, the continuous time case, and to present many examples.

Approach in this Paper. The ingredients that we will use are the following:

1. time t “ t0, t0 ` 1, . . . , T ´ 1, T is discrete, with integers t0 ă T ;

2. pUt0 ,Ut0q,. . . , pUT´1,UT´1q are measurable spaces (decision spaces);

3. pWt0 ,Wt0q,. . . , pWT ,WT q are measurable spaces (Nature);

4. ρt´1:t : W0ˆ
śt´1

s“0pUsˆWs`1q Ñ ∆pWtq is a stochastic kernel, for t “ t0, . . . , T ´1,

5. j : pW0ˆ
śT´1

s“0 pUsˆWs`1q,W0b
ÂT´1

s“0 pUsbWs`1qq Ñ R is a measurable function
(criterion).

The main features of the framework developed in this paper are the following: the history
at time t consists of all uncertainties and actions prior to time t (rather than states and
actions); the cost is a unique function depending on the whole history, from initial time t0
to the horizon T ; the probability distribution of uncertainty at time t depends on the
history up to time t ´ 1. We will state a dynamic programming equation, where the
Bellman functions are function of the history ht PW0ˆ

śt
s“0pUsˆWs`1q and where the

minimization is done over controls ut P Ut.
Our main objective is to establish a dynamic programming equation with a state, not

at any time t P t0, . . . , T u, but at some specified instants 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T .
The state spaces are not given a priori, but introduced a posteriori as image sets of
history reduction mappings. With this, we can mix dynamic programming and stochastic
programming.

Our framework is rather distant with the one of Evstigneev in [26]. It falls in the
general framework developed by Witsenhausen (see [31] and [24, § 4.5.4]), except for the
stochastic kernels (we are more general) and for the information structure (we are less
general). Finally, our framework is closest to the one found in Bertsekas and Shreve [23]
and Puterman [28], except for the state spaces, not given a priori, and for the criterion,
function of the whole history.

36

1.2.2 Stochastic Dynamic Programming with History Feedbacks

We now present a framework that is adapted to both stochastic programming and stochas-
tic dynamic programming. Time is discrete and runs among the integers t “ 0, 1, 2 . . . , T´
1, T , where T P N˚. For 0 ď r ď s ď T , we introduce the interval pr :sq “ tt P N | r ď t ď su.

Histories and Feedbacks

We first define the basic and the composite spaces that we need to formulate multistage
stochastic optimization problems. Then, we introduce a class of solutions called history
feedbacks.

Histories and History Spaces. For each time t “ 0, 1, 2 . . . , T ´ 1, the decision ut
takes its values in a measurable set Ut equipped with a σ-field Ut. For each time t “
0, 1, 2 . . . , T , the uncertainty wt takes its values in a measurable set Wt equipped with a
σ-field Wt.

For t “ 0, 1, 2 . . . , T , we define the history space Ht equipped with the history field Ht

by

Ht “W0 ˆ

t´1
ź

s“0

pUs ˆWs`1q and Ht “W0 b

t´1
â

s“0

pUs bWs`1q , t “ 0, 1, 2 . . . , T , (1.1)

with the particular case H0 “ W0, H0 “ W0. A generic element ht P Ht is called a
history :

ht “ pw0, pus, ws`1qs“0,...,t´1q “ pw0, u0, w1, u1, w2, . . . , ut´2, wt´1, ut´1, wtq P Ht .

For 1 ď r ď s ď t, we introduce the pr :sq-history subpart

hr:s “ pur´1, wr, . . . , us´1, wsq ,

so that we have ht “ phr´1, hr:tq.

History Feedbacks. When 0 ď r ď t ď T ´ 1, we define a pr : tq-history feedback as a
sequence tγsus“r,...,t of measurable mappings

γs : pHs,Hsq Ñ pUs,Usq .

We call Γr:t the set of pr : tq-history feedbacks.
The history feedbacks reflect the following information structure. At the end of the

time interval rt´ 1, tr, an uncertainty variable wt is produced. Then, at the beginning of
the time interval rt, t` 1r, a decision-maker takes a decision ut, as follows

w0 ù u0 ù w1 ù u1 ù . . . ù wT´1 ù uT´1 ù wT . (1.2)

Optimization with Stochastic Kernels

We introduce a family of optimization problems with stochastic kernels. Then, we show
how such problems can be solved by stochastic dynamic programming.

In what follows, we say that a function is numerical if it takes its values in r´8,`8s
(also called extended or extended real-valued function).

37

Family of Optimization Problems with Stochastic Kernels. To build a family
of optimization problems over the time span t0, . . . , T ´ 1u, we require two ingredients:

• a family tρs´1:su1ďsďT of stochastic kernels

ρs´1:s : pHs´1,Hs´1q Ñ ∆pWsq , s “ 1, . . . , T , (1.3)

that represents the distribution of the next uncertainty ws parameterized by past
history hs´1 (see the chronology in (1.2)),

• a numerical function, playing the role of a cost to be minimized,

j : pHT ,HT q Ñ r0,`8s , (1.4)

assumed to be nonnegative1 and measurable with respect to the field HT .

We define, for any tγsus“t,...,T 1́ P Γt:T 1́, a new family of stochastic kernels

ργt:T : pHt,Htq Ñ ∆pHT q ,

that capture the transitions between histories when the dynamics hs`1 “
`

hs, us, ws`1

˘

is driven by us “ γsphsq for s “ t, . . . , T ´ 1 (see Definition 11 in §1.6.2 for the detailed
construction of ργr:t; note that ργt:T generates a probability distribution on the space HT

of histories over the whole horizon t0, . . . , T u).
We consider the family of optimization problems, indexed by t “ 0, . . . , T ´ 1 and

parameterized by the history ht P Ht:

inf
γt:T´1PΓt:T´1

ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q , @ht P Ht , (1.5)

the integral in the right-hand side of the above equation corresponding to the cost induced
by the feedback γt:T´1 when starting at time t with a given history ht. For all t “
0, . . . , T ´ 1, we define the minimum value of Problem (1.5) by

Vtphtq “ inf
γt:T´1PΓt:T´1

ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q , @ht P Ht , (1.6a)

and we also define

VT phT q “ jphT q , @hT P HT . (1.6b)

The numerical function Vt : Ht Ñ r0,`8s is called the value function at time t.
1We could also consider any j : Ht Ñ R, measurable bounded function, or measurable and uniformly

bounded below function. However, for the sake of simplicity, we will deal in the sequel with measur-
able nonnegative numerical functions. When jphT q “ `8, this materializes joint constraints between
uncertainties and controls.

38

Bellman Operators and Dynamic Programming. We show that the value func-
tions in (1.6) are Bellman functions, in that they are solution of the Bellman or dynamic
programming equation.

For t “ 0, . . . , T , let L0
`pHt,Htq be the space of universally measurable nonnegative

numerical functions over Ht (see [23] for further details). For t “ 0, . . . , T ´ 1, we define
the Bellman operator by, for all ϕ P L0

`pHt`1,Ht`1q and for all ht P Ht,

`

Bt`1:tϕ
˘

phtq “ inf
utPUt

ż

Wt`1

ϕpht, ut, wt`1qρt:t`1pht, dwt`1q . (1.7)

Since ϕ P L0
`pHt`1,Ht`1q, we have that Bt`1:tϕ is a well defined nonnegative numerical

function.
The proof of the following theorem is inspired by [23], and given in §1.6.3.

Theorem 1. Assume that all the spaces introduced in §1.2.2 are Borel spaces, the stochas-
tic kernels in (1.3) are Borel-measurable, and that the criterion j in (1.4) is a nonnegative
lower semianalytic function.

Then, the Bellman operators in (1.7) map L0
`pHt`1,Ht`1q into L0

`pHt,Htq

Bt`1:t : L0
`pHt`1,Ht`1q Ñ L0

`pHt,Htq ,

and the value functions Vt defined in (1.6) are universally measurable and satisfy the
Bellman equation, or (stochastic) dynamic programming equation,

VT “ j , (1.8a)
Vt “ Bt`1:tVt`1 , for t “ T´1, . . . , 1, 0 . (1.8b)

This theorem is mainly inspired by [23], with the feature that the state xt is in our
case the history ht, with the dynamics:

ht`1 “
`

ht, ut, wt`1

˘

. (1.9)

This very general dynamic programming result will be the basis of all future developments
in this paper. In the sequel, we assume that all the assumptions of Theorem 1 are fulfilled,
that is,

• all the spaces (like the ones introduced in §1.2.2) will be supposed to be Borel
spaces,

• all the stochastic kernels (like the ones introduced in (1.3)) will be supposed to be
Borel-measurable,

• all the criteria (like the one introduced in (1.4)) will be supposed to be nonnegative
lower semianalytic functions.

39

1.3 State Reduction by Time Blocks and Dynamic Pro-
gramming

In this section, we consider the question of reducing the history using a compressed “state”
variable. Differing with traditional practice, such a variable may be not available at any
time t P t0, . . . , T u, but at some specified instants 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T . We
have see in the previous section that the history ht is itself a canonical state variable in
our framework with associated dynamics (1.9). However the size of this canonical state
increases with t, which is a nasty feature for dynamic programming.

1.3.1 State Reduction on a Single Time Block

We first present the case where the reduction only occurs at two instants denoted by r
and t:

0 ď r ă t ď T .

Definition 2. Let pXr,Xrq and pXt,Xtq be two measurable state spaces, θr and θt be two
measurable reduction mappings

θr : Hr Ñ Xr , θt : Ht Ñ Xt , (1.10a)

and fr:t be a measurable dynamics

fr:t : Xr ˆHr`1:t Ñ Xt . (1.10b)

The triplet pθr, θt, fr:tq is called a state reduction across pr : tq if we have

θt
`

phr, hr`1:tq
˘

“ fr:t
`

θrphrq, hr`1:t

˘

, @ht P Ht . (1.10c)

The state reduction pθr, θt, fr:tq is said to be compatible with the family tρs´1:sur`1ďsďt of
stochastic kernels (1.3) if

• there exists a reduced stochastic kernel

rρr:r`1 : Xr Ñ ∆pWr`1q , (1.11a)

such that the stochastic kernel ρr:r`1 in (1.3) can be factored as

ρr:r`1phr, dwr`1q “ rρr:r`1

`

θrphrq, dwr`1

˘

, @hr P Hr , (1.11b)

• for all s “ r ` 2, . . . , t, there exists a reduced stochastic kernel

rρs´1:s : Xr ˆHr`1:s´1 Ñ ∆pWsq , (1.11c)

such that the stochastic kernel ρs´1:s can be factored as

ρs´1:s

`

phr, hr`1:s´1q, dws
˘

“ rρs´1:s

´

`

θrphrq, hr`1:s´1

˘

, dws

¯

, @hs´1 P Hs´1 .

(1.11d)

40

Hr ˆHr`1:t Ht

Xr ˆHr`1:t Xt

θr Id

Id

θt

fr:t

Figure 1.1: Commutative diagram in case of state reduction pθr, θt, fr:tq

Hr ˆHr`1:s´1 ∆pWsq

Xr ˆHr`1:s´1

θr Id

ρs´1:s

rρs´1:s

Figure 1.2: Commutative diagram in case of state reduction pθr, θt, fr:tq compatible with
the family tρs´1:sur`1ďsďt

According to this definition, the triplet pθr, θt, fr:tq is a state reduction across pr : tq if
and only if the diagram in Figure 1.1 is commutative; it is compatible if and only if the
diagram in Figure 1.2 is commutative.

We define the Bellman operator across pt :rq Bt:r : L0
`pHt,Htq Ñ L0

`pHr,Hrq by

Bt:r “ Br`1:r ˝ ¨ ¨ ¨ ˝ Bt:t´1 , (1.12)

where the one time step operators Bs:s´1, for r ` 1 ď s ď t are defined in (1.7).
The following proposition, whose proof is given in §1.6.3, is the key ingredient to

formulate dynamic programming equations with a reduced state.

Proposition 3. Suppose that there exists a state reduction pθr, θt, fr:tq that is compatible
with the family tρs´1:sur`1ďsďt of stochastic kernels (1.3) (see Definition 2). Then, there
exists a reduced Bellman operator across pt :rq

rBt:r : L0
`pXt,Xtq Ñ L0

`pXr,Xrq , (1.13)

such that, for all rϕt P L0
`pXt,Xtq, we have that

`

rBt:r rϕt
˘

˝ θr “ Bt:rprϕt ˝ θtq . (1.14)

For all measurable nonnegative numerical function rϕt : Xt Ñ r0,`8s and for all xr P Xr,

41

we have that

`

rBt:r rϕt
˘

pxrq “ inf
urPUr

ż

Wr`1

rρr:r`1pxr, dwr`1q

inf
ur`1PUr`1

ż

Wr`2

rρr`1:r`2pxr, ur, wr`1, dwr`2q . . .

inf
ut´1PUt´1

ż

Wt

rϕt
`

fr:tpxr, ur, wr`1, . . . , ut´1, wtq
˘

rρt´1:tpxr, ur, wr`1, . . . , ut´2, wt´1, dwtq . (1.15)

Proposition 3 can be interpreted as follows. Denoting by θ‹t : L0
`pXt,Xtq Ñ L0

`pHt,Htq

the operator defined by

θ‹t prϕtq “ rϕt ˝ θt , @rϕt P L0
`pXt,Xtq ,

the relation (1.14) rewrites
θ‹r ˝

rBt:r “ Bt:r ˝ θ‹t ,

that is, Proposition 3 states that the diagram in Figure 1.3 is commutative.

L0
`pHt,Htq L0

`pHr,Hrq

L0
`pXt,Xtq L0

`pXr,Xrq

Bt:r

θ‹t

rBt:r

θ‹r

Figure 1.3: Commutative diagram for Bellman operators in case of a compatible state
reduction pθr, θt, fr:tq

1.3.2 State Reduction on Multiple Consecutive Time Blocks and
Dynamic Programming Equations

Proposition 3 can easily be extended to the case of multiple consecutive time blocks
rti, ti`1s, i “ 0, . . . , N ´ 1, where

0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T . (1.16)

Definition 4. Let tpXti ,Xtiqui“0,...,N be a family of measurable state spaces, tθtiui“0,...,N

be a family of measurable reduction mappings θti : Hti Ñ Xti, and

fti:ti`1

(

i“0,...,N´1
be a

family of measurable dynamics fti:ti`1
: Xti ˆHti`1:ti`1

Ñ Xti`1
.

42

The triplet ptXtiui“0,...,N , tθtiui“0,...,N ,

fti:ti`1

(

i“0,...,N´1
q is called a state reduction

across the consecutive time blocks rti, ti`1s, i “ 0, . . . , N´1 if every triplet pθti , θti`1
, fti:ti`1

q

is a state reduction, for i “ 0, . . . , N ´ 1.
The state reduction across the consecutive time blocks rti, ti`1s is said to be com-

patible with the family tρs´1:su1ďsďT of stochastic kernels given in (1.3) if every triplet
pθti , θti`1

, fti:ti`1
q is compatible with the family tρs´1:suti`1ďsďti`1

, for i “ 0, . . . , N ´ 1.

Assuming the existence of a state reduction across the consecutive time blocks rti, ti`1s

compatible with the family of stochastic kernels (1.3), we obtain the existence of a family
of reduced Bellman operators across the consecutive pti`1 : tiq as an immediate consequence
of multiple applications of Proposition 3, that is,

rBti`1:ti : L0
`pXti`1

,Xti`1
q Ñ L0

`pXti ,Xtiq , i “ 0, . . . , N ´ 1 ,

such that, for any function rϕti`1
P L0

`pXti`1
,Xti`1

q, we have that
`

rBti`1:ti rϕti`1

˘

˝ θti “ Bti`1:tiprϕti`1
˝ θti`1

q .

We now consider the family of optimization problems (1.5) and the associated value
functions (1.6). Thanks to the state reductions, we are able to state the following theorem
which establishes dynamic programming equations across consecutive time blocks. Its
proof is an immediate consequence of multiple applications of Theorem 1 and Proposi-
tion 3.

Theorem 5. Suppose that a state reduction ptXtiui“0,...,N , tθtiui“0,...,N ,

fti:ti`1

(

i“0,...,N´1
q

exists across the consecutive time blocks rti, ti`1s, i “ 0, . . . , N ´ 1 as in (1.16), that is
compatible with the family tρs´1:su1ďsďT of stochastic kernels given in (1.3).

Assume that there exists a reduced criterion

rj : XT Ñ r0,`8s ,

such that the cost function j in (1.4) can be factored as

j “ rj ˝ θtN .

We define the family of reduced value functions trVtiui“0,...,N by

rVtN “ rj , (1.18a)
rVti “

rBti`1:ti
rVti`1

, for i “ N ´ 1, . . . , 0 . (1.18b)

Then, the family tVtiui“0,...,N in (1.6) satisfies

Vti “
rVti ˝ θti , i “ 0, . . . , N . (1.18c)

To obtain such a dynamic programming equation across time blocks, we needed the
detour of Sect. 1.2, with a dynamic programming equation over the history space. Thus
equipped, it is now possible to propose a decomposition scheme for optimization problems
with multiple time scales, using both stochastic programming and stochastic dynamic
programming. We detail applications of this scheme in Sect. 1.4.

43

1.4 Applications of Time Blocks Dynamic Program-
ming

We present in this section two applications of the state reduction result stated in Theo-
rem 5.

The first one corresponds to a two time-scales optimization problem. A typical in-
stance of such a problem is to optimize long-term investment decisions (slow time-scale)
— for example the renewal of batteries in an energy system — but the optimal long-term
decisions highly depend on short-term operating decisions (fast time-scale) — for example
the way the battery is operated in real-time.

The second application corresponds to a class of stochastic multistage optimization
problems arising often in practice, especially when managing stocks (dams for instance).
The decision-maker takes two decisions at each time step t: at the beginning of the
time interval rt, t ` 1r, the first decision (quantity of water to be turbinated to produce
electricity for instance) is taken without knowing the uncertainty that will occur during
the time step (decision-hazard framework); at the end of the time interval rt, t ` 1r, an
uncertainty variable wt`1 is produced and the second decision (quantity of water to be
released to avoid dam overflow for instance) is taken once the uncertainty at time step t
is revealed (hazard-decision framework). This new class of problems is called decison-
hazard-decision optimization problems.

1.4.1 Two Time-Scales Multistage Optimization Problems

In this class of problems, each time index t is represented by a couple pd,mq of indices,
with d P t0, . . . , D ` 1u and m P t0, . . . ,Mu: we can think of the index d as an index of
days (slow time-scale), andm as an index of minutes (fast time-scale). The corresponding
set of time indices is thus

T “ t0, . . . , Du ˆ t0, . . . ,Mu Y tpD ` 1, 0qu . (1.19)

At the end of every minute m ´ 1 of every day d, that is, at the end of the time in-
terval

“

pd,m ´ 1q, pd,mq
˘

, 0 ď d ď D and 1 ď m ď M , an uncertainty variable wd,m
becomes available. Then, at the beginning of the minute m, a decision-maker takes a
decision ud,m. Moreover, at the beginning of every day d, an uncertainty variable wd,0 is
produced, followed by a decision ud,0. The interplay between uncertainties and decision
is thus as follows (compare the chronology with the one in (1.2)):

w0,0 ù u0,0 ù w0,1 ù u0,1 ù ¨ ¨ ¨

¨ ¨ ¨ ù w0,M´1 ù u0,M´1 ù w0,M ù u0,M ù w1,0 ù u1,0 ù w1,1 ¨ ¨ ¨

¨ ¨ ¨ ù wD,M ù uD,M ù wD`1,0 .

We assume that a state reduction (as in Definition 4) is available at the beginning of
each day d, so that it becomes possible to write dynamic programming equations by time
blocks as stated by Theorem 5. Such state reductions will be for example available when
the noises of the different days are stochastically independent.

We present the mathematical formalism to handle such type of problems. In this
application, the difficulty to apply Theorem 5 is mainly notational.

44

Time Span. We consider the set T equipped with the lexicographical order

p0, 0q ă p0, 1q ă ¨ ¨ ¨ ă pd,Mq ă pd` 1, 0q ă ¨ ¨ ¨ ă pD,M ´ 1q ă pD,Mq ă pD ` 1, 0q .
(1.20a)

The set T of couples in (1.19) is in one to one correspondence with the (linear) time span
t0, . . . , T u, where

T “ pD ` 1q ˆ pM ` 1q ` 1 , (1.20b)
by the lexicographic mapping τ

τ : t0, . . . , T u Ñ T (1.20c)
t ÞÑ τptq “ pd,mq . (1.20d)

In the sequel, we will denote by pd,mq P T the element of t0, . . . , T u given by τ´1pd,mq “
dˆ pM ` 1q `m:

T Q pd,mq Ø τ´1
pd,mq “ dˆ pM ` 1q `m P t0, . . . , T u . (1.20e)

For pd,mq ď pd1,m1q, as ordered by the lexicographical order (1.20a), we introduce the
time interval ppd,mq :pd1,m1qq “ tpd2,m2q P T | pd,mq ď pd2,m2q ď pd1,m1qu.

History Spaces. For all pd,mq P t0, . . . , Du ˆ t0, . . . ,Mu, the decision ud,m takes its
values in a measurable set Ud,m equipped with a σ-field Ud,m. For all pd,mq P t0, . . . , Duˆ
t0, . . . ,MuY tpD` 1, 0qu, the uncertainty wd,m takes its values in a measurable set Wd,m

equipped with a σ-field Wd,m.
With the identification (1.20e), for all pd,mq P T, we define the history space Hpd,mq

Hpd,mq “W0,0 ˆ U0,0 ˆW0,1 ˆ ¨ ¨ ¨ ˆ Ud,m´1 ˆWd,m , (1.21a)

equipped with the history field Hpd,mq as in (1.1). For all d P t0, . . . , D ` 1u, we define
the slow scale history hd element of the slow scale history space Hd

hd “ hpd,0q P Hd “ Hpd,0q , (1.21b)

equipped with the slow scale history field Hd “ Hpd,0q. For all d P t1, . . . , Du, we define
the slow scale partial history space Hd:d`1

Hd:d`1 “ Hpd,1q:pd`1,0q “ Ud,0 ˆWd,1 ˆ ¨ ¨ ¨ ˆ Ud,M´1 ˆWd,M ˆ Ud,M ˆWd`1,0 , (1.21c)

equipped with the associated slow scale partial history field Hd:d`1, the case d “ 0 being

H0:1 “ Hp1,0q “W0,0 ˆ U0,0 ˆW0,1 ˆ ¨ ¨ ¨ ˆ U0,M´1 ˆW0,M ˆ U0,M ˆW1,0 . (1.21d)

Stochastic Kernels. Because of the jump from one day to the next, we introduce two
families of stochastic kernels2:

• a family

ρpd,Mq:pd`1,0q

(

0ďdďD
of stochastic kernels across consecutive slow scale

steps
ρpd,Mq:pd`1,0q : Hpd,Mq Ñ ∆pWd`1,0q , d “ 0, . . . , D , (1.22a)

• a family

ρpd,m´1q:pd,mq

(

0ďdďD,1ďmďM
of stochastic kernels within consecutive slow

scale steps

ρpd,m´1q:pd,mq : Hpd,m´1q Ñ ∆pWd,mq , d “ 0, . . . , D , m “ 1, . . . ,M . (1.22b)
2These families are defined over the time span t0, . . . , T u ” T by the identification (1.20e) in such a

way that the notation is consistent with the notation (1.3).

45

History Feedbacks. A history feedback at index pd,mq P T is a measurable mapping

γpd,mq : Hpd,mq Ñ Upd,mq .

For pd,mq ď pd1,m1q, as ordered by the lexicographical order (1.20a), we denote by
Γpd,mq:pd1,m1q the set of ppd,mq :pd1,m1qq-history feedbacks.

Slow Scale Value Functions. We suppose given a nonnegative numerical function

j : HD`1 Ñ r0,`8s , (1.23)

assumed to be measurable with respect to the field HD`1 associated to HD`1.
For d “ 0, . . . , D, we build the new stochastic kernels ργ

pd,0q:pD`1,0q : Hd Ñ ∆pHD`1q

(see Definition 11 in §1.6.2 for their construction), and we define the slow scale value
functions

Vdphdq “ inf
γPΓpd,0q:pD,Mq

ż

HD`1

jph1D`1qρ
γ
pd,0q:pD`1,0qphd, dh

1
D`1q , @hd P Hd , (1.24a)

VD`1 “ j . (1.24b)

For d “ 0, . . . , D, we define a family of slow scale Bellman operators across pd` 1:dq

Bd`1:d : L0
`pHd`1,Hd`1q Ñ L0

`pHd,Hdq , d “ 0, . . . , D , (1.25a)

by

Bd`1:d “ Bpd`1,0q:pd,0q “ Bpd,1q:pd,0q ˝ . . . ˝ Bpd,Mq:pd,M´1q ˝ Bpd`1,0q:pd,Mq . (1.25b)

Then, applying repeatedly Theorem 1 leads to the fact that the family tVdud“0,...,D`1 of
slow scale value functions (1.24) satisfies

VD`1 “ j , (1.26a)
Vd “ Bd`1:dVd`1 , for d “ D,D ´ 1, . . . , 0 . (1.26b)

Compatible State Reductions. We now rewrite Definition 4 in the context of the
two time-scales problem.

Definition 6 (Compatible slow scale reduction). Let tpXd,Xdqud“0,...,D`1 be a family of
measurable state spaces, tθdud“0,...,D`1 be family of measurable reduction mappings such
that

θd : Hd Ñ Xd ,

and tfd:d`1ud“0,...,D be a family of measurable dynamics such that

fd:d`1 : Xd ˆHd:d`1 Ñ Xd`1 .

46

The triplet
`

tXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,D

˘

is said to be a slow scale state
reduction if for all d “ 0, . . . , D

θd`1

`

phd, hd:d`1q
˘

“ fd:d`1

`

θdphdq, hd:d`1

˘

, @phd, hd:d`1q P Hd`1 .

The slow scale state reduction
`

tXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,D

˘

is said to
be compatible with the two families

ρpd,Mq:pd`1,0q

(

0ďdďD
and

ρpd,m´1q:pd,mq

(

0ďdďD,1ďmďM

of stochastic kernels defined in (1.22a)–(1.22b) if for any d “ 0, . . . , D, we have that

• there exists a reduced stochastic kernel

rρpd,Mq:pd`1,0q : Xd ˆHpd,0q:pd,Mq Ñ ∆pWd`1,0q ,

such that the stochastic kernel ρpd,Mq:pd`1,0q in (1.22a) can be factored as

ρpd,Mq:pd`1,0qphd,M , dwd`1,0q “ rρpd,Mq:pd`1,0q

`

θdphdq, hpd,0q:pd,Mq, dwd`1,0

˘

, @hd,M P Hpd,Mq ,

• for each m “ 1, . . . ,M , there exists a reduced stochastic kernel

rρpd,m´1q:pd,mq : Xd ˆHpd,0q:pd,m´1q Ñ ∆pWd,mq ,

such that the stochastic kernel ρpd,m´1q:pd,mq in (1.22b) can be factored as

ρpd,m´1q:pd,mqphd,m´1, dwd,mq “ rρpd,m´1q:pd,mq

`

θdphdq, hpd,0q:pd,m´1q, dwd,m
˘

, @hd,m´1 P Hpd,m´1q .

Dynamic Programming Equations. Using the reduced stochastic kernels of Defini-
tion 6, we apply Proposition 3 and obtain a family of slow scale reduced Bellman operators
across pd` 1:dq

rBd`1:d : L0
`pXd`1,Xd`1q Ñ L0

`pXd,Xdq , d “ 0, . . . , D . (1.29)

We are now able to state the main result of this section.

Theorem 7. Assume that there exists a compatible slow scale state reduction
`

tXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,D

˘

and that there exists a reduced criterion

rj : XD`1 Ñ r0,`8s ,

such that the cost function j in (1.23) can be factored as

j “ rj ˝ θD`1 .

We define the family of reduced value functions trVdud“0,...,D`1 by

rVD`1 “ rj , (1.31a)
rVd “ rBd`1:d

rVd`1 , for d “ D, . . . , 0 . (1.31b)

Then, the family tVdud“0,...,D`1 of slow scale value functions (1.24) satisfies

Vd “ rVd ˝ θd , d “ 0, . . . , D . (1.31c)

47

Proof. Since the triplet ptXdud“0,...,D`1 , tθdud“0,...,D`1 , tfd:d`1ud“0,...,Dq is a state reduction
across the time blocks rpd, 0q, pd̀ 1, 0qs, which is compatible with the family

ρpd,0q:pd`1,0q

(

0ďdďD
of stochastic kernels, the proof is an immediate consequence of Theorem 5.

Thanks to Theorem 7, we are able to replace the optimization problem formulated on
the whole time set T by a sequence of D optimization subproblems formulated each on a
single time block rpd, 0q, pd̀ 1, 0qs. Moreover, the numerical burden of the method remains
reasonable provided that the dimensions of the spaces Xd remain small, thus avoiding the
curse of dimensionality. This is the benefit induced by dynamic programming which
makes possible a time decomposition of the problem. However, to make the method
operational, we need to compute the functions rVd, whose expression is available thanks
to Proposition 3:

rVdpxdq “ inf
ud,0PUd,0

ż

Wd,1

rρpd,0q:pd,1qpxd, dwd,1q . . .

inf
ud,M´1PUd,M´1

ż

Wd,M

rρpd,M´1q:pd,Mqpxd, ud,0, wd,1, ¨ ¨ ¨ , wd,M´1, dwd,Mq

inf
ud,MPUd,M

ż

Wd`1,0

rVd`1

`

rfd:d`1pxd, ud,0, wd,1, ¨ ¨ ¨ , ud,M´1, wd,M , ud,M , wd`1,0q
˘

rρpd,Mq:pd`1,0qpxd, ud,0, wd,1, ¨ ¨ ¨ , wd,M , dwd`1,0q .
(1.32)

In many practical situations, this computation is tractable by using stochastic program-
ming. For example, if the stochastic kernels rρpd,mq:pd,m`1q do not depend on the past con-
trols pud,0, ¨ ¨ ¨ , ud,m´1q, then it is possible to approximate the optimization problem (1.32)
by using scenario tree techniques. Note that these last techniques do not require stage-
wise independence of the noises. We are thus able to take advantage of both the dynamic
programming world and the stochastic programming world:

• use dynamic programming at slow time scale across consecutive slow time steps,
when the slow time scale noises are supposed to be stochastically independent;
produce slow time scale Bellman functions;

• use stochastic programming at short time scale, within two consecutive slow time
steps; the final short time scale cost is given by the slow time scale Bellman func-
tions; no stagewise independence assumption is required for the short time scale
noises.

1.4.2 Decision-Hazard-Decision Optimization Problems

We apply the reduction by time blocks to the so-called decision-hazard-decision dynamic
programming.

48

Motivation for the Decision-Hazard-Decision Framework

We illustrate our motivation with a single dam management problem. We can model the
dynamics of the water volume in a dam by

St`1 “ mintS7, St ´ qt ` at`1u , (1.33)

where t “ t0, t0 ` 1, . . . , T ´ 1 and

• S7 is the maximal dam volume,

• St is the volume (stock) of water at the beginning of period rt, t` 1r,

• at`1 is the inflow water volume (rain, etc.) during rt, t` 1r,

• qt is the turbined outflow volume during rt, t` 1r (control variable),

– decided at the beginning of period rt, t` 1r,

– chosen such that 0 ď qt ď St,

– supposed to depend on the stock St but not on the inflow water at`1.

The min operation in Equation (1.33) ensures that the dam volume always remains below
its maximal capacity, but induces a non linearity in the dynamics.

Alternatively, we can model the dynamics of the water volume in a dam by

St`1 “ St ´ qt ´ at`1 ´ rt`1 , (1.34)

where t “ t0, t0 ` 1, . . . , T ´ 1 and

• rt`1 is the spilled volume

– decided at the end of period rt, t` 1r,

– supposed to depend on the stock St and on the inflow water at`1,

– and chosen such that 0 ď St ´ qt ` at`1 ´ rt`1 ď S7.

Thus, with the formulation (1.34), we pay the price to add one control rt`1, but we obtain
a linear model instead of the nonlinear model (1.33). This is especially interesting when
using the stochastic dual dynamic programming (SDDP), for which the linearity of the
dynamics is used to obtain the convexity properties required by the algorithm.

Decision-Hazard-Decision Framework

We consider stochastic optimization problems where, during the time interval between two
time steps, the decision-maker takes two decisions. At the end of the time interval rs ´
1, sr, an uncertainty variable w5s is produced, and then, at the beginning of the time
interval rs, s ` 1r, the decision-maker takes a head decision u7s. What is new is that, at
the end of the time interval rs, s` 1r, when an uncertainty variable w5s`1 is produced, the
decision-maker has the possibility to make a tail decision u5s`1. This latter decision u5s`1

can be thought as a recourse variable for a two stage stochastic optimization problem that
would take place inside the time interval rs, s`1r. We call w70 the uncertainty happening

49

right before the first decision. The interplay between uncertainties and decisions is thus
as follows (compare the chronology with the one in (1.2)):

w70 ù u70 ù w51 ù u51 ù u71 ù w52 ù . . . ù w5S´1 ù u5S´1 ù u7S´1 ù w5S ù u5S .

Let S P N˚. For each time s “ 0, 1, 2 . . . , S ´ 1, the head decision u7s takes values
in a measurable set U7s, equipped with a σ-field U7s. For each time s “ 1, 2 . . . , S, the
tail decision u5s takes values in measurable set U5s, equipped with a σ-field U5s. For each
time s “ 1, 2 . . . , S, the uncertainty w5s takes its values in a measurable set W5

s, equipped
with a σ-field W5

s. For time s “ 0, the uncertainty w70 takes its values in a measurable
set W7

0, equipped with a σ-field W
7

0.
Again, in this application, the difficulty to apply Theorem 5 is mainly notational.

History Spaces. For s “ 0, 1, 2 . . . , S, we define the head history space

H7s “W7

0 ˆ

s´1
ź

s1“0

`

U7s1 ˆW5
s1`1 ˆ U5s1`1

˘

, (1.35a)

and its associated head history field H7
s. We also define, for s “ 1, 2 . . . , S, the tail

history space

H5s “ H7s´1 ˆ U7s´1 ˆW5
s , (1.35b)

and its associated tail history field H5
s.

Stochastic Kernels. We introduce a family of stochastic kernels tρs´1:su1ďsďS, with

ρs´1:s : H7s´1 Ñ ∆pW5
sq . (1.36)

History Feedbacks. For s “ 0, . . . , S ´ 1, a head history feedback at time s is a
measurable mapping

γ7s : H7s Ñ U7s .

We call Γ7s the set of head history feedbacks at time s, and we define Γ7s:S “ Γ7sˆ ¨ ¨ ¨ ˆΓ7S.
We also define, for all s “ 1, 2 . . . , S, a tail history feedback at time s as a measurable
mapping

γ5s : H5s Ñ U5s .

We call Γ5s the set of tail history feedbacks at time s, and we define Γ5s:S “ Γ5s ˆ ¨ ¨ ¨ ˆ Γ5S.

Value Functions. We consider a nonnegative numerical function

j : H7S Ñ r0,`8s , (1.38)

assumed to be measurable with respect to the head history field H
7

S.
For s “ 0, . . . , S , we define value functions by

Vsph
7
sq “ inf

γ7PΓ7s:S´1,γ
5PΓ7s`1:S

ż

H7S

jph1Sqρ
γ7,γ5

s:S ph7s, dh
1
Sq , @h

7
s P H7s , (1.39)

50

where ργ
7,γ5

s:S has to be understood as ργs:S (see Definition 11), with

γsph
7
sq “ γ7sph

7
sq , @h

7
s P H7s , (1.40a)

γs1ph
5
s1q “

´

γ5s1ph
5
s1q, γ

7

s1

`

h5s1 , γ
5
s1ph

5
s1q
˘

¯

, @s1 “ s` 1, . . . , S ´ 1 , @h5s1 P H5s1 , (1.40b)

γSph
5
Sq “ γ5Sph

5
Sq , @h

5
S P H5S . (1.40c)

The following proposition, whose proof has been relegated in 1.6.3, characterizes the
dynamic programming equations in the decision-hazard-decision framework.

Proposition 8. For s “ 0, . . . , S ´ 1, we define the Bellman operator

Bs`1:s : L0
`pH

7

s`1,H
7

s`1q Ñ L0
`pH7s,H7

sq (1.41a)

such that, for all ϕ P L0
`pH

7

s`1,H
7

s`1q and for all h7s P H7s,
`

Bs`1:sϕ
˘

ph7sq “ inf
u7sPU7s

ż

W5s`1

´

inf
u5s`1PU5s`1

ϕph7s, u
7
s, w

5
s`1, u

5
s`1q

¯

ρs:s`1ph
7
s, dw

5
s`1q . (1.41b)

Then the value functions (1.39) satisfy

VS “ j , (1.41c)
Vs “ Bs`1:sVs`1 , @s “ 0, . . . , S ´ 1 . (1.41d)

Compatible State Reductions. We now rewrite Definition 4 in the context of a
decision-hazard-decision problem.

Definition 9 (Compatible state reduction). Let tXsus“0,...,S be a family of state spaces,
tθsus“0,...,S be a family of measurable reduction mappings such that

θs : H7s Ñ Xs ,

and tfs:s`1us“0,...,S´1 be a family of measurable dynamics such that

fs:s`1 : Xs ˆ U7s ˆWs`1 ˆ U5s`1 Ñ Xs`1 .

The triplet
`

tXsus“0,...,S , tθsus“0,...,S , tfs:s`1us“0,...,S´1

˘

is said to be a decision-hazard-
decision state reduction if, for all s “ 0, . . . , S ´ 1, we have that

θs`1

`

phs, u
7
s, ws`1, u

5
s`1q

˘

“ fs:s`1

`

θsphsq, u
7
s, ws`1, u

5
s`1

˘

,

@phs, u
7
s, ws`1, u

5
s`1q P H7s ˆ U7s ˆWs`1 ˆ U5s`1 .

The decision-hazard-decision state reduction is said to be compatible with the family
tρs:s`1u0ďsďS´1 of stochastic kernels in (1.36) if there exists a family trρs:s`1u0ďsďS´1 of
reduced stochastic kernels

rρs:s`1 : Xs Ñ ∆pWs`1q ,

such that, for each s “ 0, . . . , S ´ 1, the stochastic kernel ρs:s`1 in (1.36) can be factored
as

ρs:s`1ph
7
s, dws`1q “ rρs:s`1

`

θsph
7
sq, dws`1

˘

, @h7s P H7s .

51

Dynamic Programming Equations. We state the main result of this section.

Theorem 10. Assume that there exists a decision-hazard-decision state reduction
`

tXsus“0,...,S , tθsus“0,...,S , tfs:s`1us“0,...,S´1

˘

and that there exists a reduced criterion

rj : XS Ñ r0,`8s ,

such that the cost function j in (1.38) can be factored as

j “ rj ˝ θS .

We define a family of reduced Bellman operators across ps` 1:sq

rBs`1:s : L0
`pXs`1,Xs`1q Ñ L0

`pXs,Xsq , s “ 1, . . . , S ´ 1 , (1.45a)

by, for any measurable function rϕ : Xs`1 Ñ r0,`8s,

p rBs`1:srϕqpxsq “ inf
u7sPU7s

ż

Ws`1

´

inf
u5s`1PU5s`1

rϕ
`

fs:s`1pxs, u
7
s, ws`1, u

5
s`1q

˘

¯

rρs:s`1pxs, dws`1q .

(1.45b)
*We define the family of reduced value functions trVsus“0,...,S by

rVS “ rj (1.46a)
rVs “ rBs`1:s

rVs`1 for s “ S ´ 1, . . . , 0 . (1.46b)

Then, the value functions Vs defined by (1.39) satisfy

Vs “ rVs ˝ θs , s “ 0, . . . , S . (1.47)

Proof. It has been shown in the proof of Proposition 8 that the setting of a decision-
hazard-decision problem was a particular kind of two time-scales problem. The proof of
the theorem is then a direct application of Theorem 7.

Theorem 10 allows to develop dynamic programming equations in the decision-hazard-
decision framework. Such equations can be solved using the stochastic dual dynamic pro-
gramming (SDDP) algorithm provided that convexity of the value functions is preserved.
This requires linearity in the dynamics, a feature that may be recovered by modeling the
problem in the decision-hazard-decision framework as illustrated in §1.4.2.

1.5 Conclusion and Perspectives
As said in the introduction, decomposition methods are appealing to tackle multistage
stochastic optimization problems, as they are naturally large scale. The most common
approaches are time decomposition (and state-based resolution methods, like stochastic
dynamic programming, in stochastic optimal control), and scenario decomposition (like
progressive hedging in stochastic programming). One also finds space decomposition
methods [21].

52

This paper is part of a general research program that consists in mixing different de-
composition bricks. Here, we tackled the issue of mixing time decomposition (stochastic
dynamic programming) with scenario decomposition. For this purpose, we have revisited
the notion of state, and have provided a way to perform time decomposition but only ac-
cross specified time blocks. Inside a time block, one can then use stochastic programming
methods, like scenario decomposition. Our time blocks decomposition scheme is espe-
cially adapted to multi time-scales stochastic optimization problems. In this vein, we have
shown its application to two time-scales and to the novel class of decision-hazard-decision
problems.

We are currently working on how to mix time decomposition (stochastic dynamic
programming) with space/units decomposition.

Acknowledgements. We thank Roger Wets for the fruitful discussions about the
possibility of mixing stochastic dynamic programming with progressive hedging. We
thank an anonymous reviewer for challenging our first version of the paper: the current
version has been restructured according to his remarks.

1.6 Technical Details and Proofs
In this section, we provide technical details, constructions and proofs of results in the
paper.

1.6.1 Histories, Feedbacks and Flows

We introduce the notations

Wr:t “

t
ź

s“r

Ws , 0 ď r ď t ď T (1.48a)

Ur:t “

t
ź

s“r

Us , 0 ď r ď t ď T ´ 1 (1.48b)

Hr:t “

t´1
ź

s“r´1

pUs ˆWs`1q “ Ur´1 ˆWr ˆ ¨ ¨ ¨ ˆ Ut´1 ˆWt , 1 ď r ď t ď T . (1.48c)

Let 0 ď r ď s ď t ď T . From a history ht P Ht, we can extract the pr : sq-history
uncertainty part

rhts
W
r:s “ pwr, . . . , wsq “ wr:s PWr:s , 0 ď r ď s ď t , (1.49a)

the pr :sq-history control part (notice that the indices are special)

rhts
U
r:s “ pur´1, . . . , us´1q “ ur´1:s´1 P Ur´1:s´1 , 1 ď r ď s ď t , (1.49b)

and the pr :sq-history subpart

rhtsr:s “ pur´1, wr, . . . , us´1, wsq “ hr:s P Hr:s , 1 ď r ď s ď t , (1.49c)

so that we obtain, for 0 ď r ` 1 ď s ď t,

ht “ pw0, u0, w1, . . . , ur´1, wr
looooooooooooomooooooooooooon

hr

, ur, wr`1, . . . , ut´2, wt´1, ut´1, wt
looooooooooooooooooomooooooooooooooooooon

hr`1:t

q “ phr, hr`1:tq . (1.49d)

53

Flows. Let r and t be given such that 0 ď r ă t ď T . For a pr : t´ 1q-history feedback
γ “ tγsus“r,...,t´1 P Γr:t´1, we define the flow Φγ

r:t by

Φγ
r:t : Hr ˆWr`1:t Ñ Ht (1.50a)

phr, wr`1:tq ÞÑ phr, γrphrq, wr`1, γr`1phr, γrphrq, wr`1q, wr`2, ¨ ¨ ¨ , γt´1pht´1q, wtq ,
(1.50b)

that is,

Φγ
r:tphr, wr`1:tq “ phr, ur, wr`1, ur`1, wr`2, . . . , ut´1, wtq , (1.50c)

with hs “ phr, ur, wr`1, . . . , us´1, wsq , r ă s ď t , (1.50d)
and us “ γsphsq , r ă s ď t´ 1 . (1.50e)

When 0 ď r “ t ď T , we put

Φγ
r:r : Hr Ñ Hr , hr ÞÑ hr . (1.50f)

With this convention, the expression Φγ
r:t makes sense when 0 ď r ď t ď T : when

r “ t, no pr : r ´ 1q-history feedback exists, but none is needed. The mapping Φγ
r:t gives

the history at time t as a function of the initial history hr at time r and of the history
feedbacks tγsus“r,...,t´1 P Γr:t´1. An immediate consequence of this definition are the flow
properties :

Φγ
r:t`1phr, wr`1:t`1q “

´

Φγ
r:tphr, wr`1:tq, γt

`

Φγ
r:tphr, wr`1:tq

˘

, wt`1

¯

, 0 ď r ď t ď T ´ 1 ,

(1.51a)
Φγ
r:tphr, wr`1:tq “ Φγ

r`1:t

`

phr, γrphrq, wr`1q, wr`2:t

˘

, 0 ď r ă t ď T . (1.51b)

1.6.2 Building Stochastic Kernels from History Feedbacks

Definition 11. Let r and t be given such that 0 ď r ď t ď T .

• When 0 ď r ă t ď T , for

1. a pr : t´ 1q-history feedback γ “ tγsus“r,...,t´1 P Γr:t´1,

2. a family tρs´1:sur`1ďsďt of stochastic kernels

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ r ` 1, . . . , t ,

we define a stochastic kernel

ργr:t : Hr Ñ ∆pHtq (1.52a)

54

by, for any ϕ : Ht Ñ r0,`8s, measurable nonnegative numerical function, that is,
ϕ P L0

`pHt,Htq, 3

ż

Ht
ϕph1r, h

1
r`1:tqρ

γ
r:tphr, dh

1
tq “

ż

Wr`1:t

ϕ
`

Φγ
r:tphr, wr`1:tq

˘

t
ź

s“r`1

ρs´1:s

`

Φγ
r:s´1phr, wr`1:s´1q, dws

˘

.

(1.52b)

• When 0 ď r “ t ď T , we define

ργr:r : Hr Ñ ∆pHrq , ρ
γ
r:rphr, dh

1
rq “ δhrpdh

1
rq . (1.52c)

The stochastic kernels ργr:t on Ht, given by (1.52), are of the form

ργr:tphr, dh
1
tq “ ργr:tphr, dh

1
rdh

1
r`1:tq “ δhrpdh

1
rq b %

γ
r:tphr, dh

1
r`1:tq , (1.53)

where, for each hr P Hr, the probability distribution %γr:tphr, dh
1
r`1:tq only charges the

histories visited by the flow from r`1 to t. The construction of the stochastic kernels ργr:t
is developed in [23, p. 190] for relaxed history feedbacks and obtained by using [23,
Proposition 7.45].

Proposition 12. Following Definition 11, we can define a family tργs:turďsďt of stochastic
kernels. This family has the flow property, that is, for s ă t,

ργs:tphs, dh
1
tq “

ż

Ws`1

ρs:s`1

`

hs, dws`1

˘

ργs`1:t

´

`

hs, γsphsq, ws`1

˘

, dh1t

¯

. (1.54)

Proof. Let s ă t. For any ϕ : Ht Ñ r0,`8s, we have that
ż

Ht
ϕph1s, h

1
s`1:tqρ

γ
s:tphs, dh

1
tq (1.55a)

“

ż

Ws`1:t

ϕ
`

Φγ
s:tphs, ws`1:tq

˘

t
ź

s1“s`1

ρs1´1:s1
`

Φγ
s:s1´1phs, ws`1:s1´1q, dws1

˘

by the definition (1.52b) of the stochastic kernel ργs:t,

“

ż

Ws`1:t

ϕ
`

Φγ
s:tphs, ws`1:tq

˘

ρs:s`1

`

hs, dws`1

˘

t
ź

s1“s`2

ρs1´1:s1
`

Φγ
s:s1´1phs, ws`1:s1´1q, dws1

˘

3See Footnote 1.

55

by the property (1.50f) of the flow Φγ
s:s,

“

ż

Ws`1:t

ϕ
`

Φγ
s`1:t

`

phs, γsphsq, ws`1q, ws`2:t

˘˘

ρs:s`1

`

hs, dws`1

˘

t
ź

s1“s`2

ρs1´1:s1
`

Φγ
s`1:s1´1

`

phs, γsphsq, ws`1q, ws`2:s1´1

˘

, dws1
˘

by the flow property (1.51b),

“

ż

Ws`1

ρs:s`1

`

hs, dws`1

˘

ż

Ws`2:t

ϕ
`

Φγ
s`1:t

`

phs, γsphsq, ws`1q, ws`2:t

˘˘

t
ź

s1“s`2

ρs1´1:s1
`

Φγ
s`1:s1´1

`

phs, γsphsq, ws`1q, ws`2:s1´1

˘

, dws1
˘

by Fubini Theorem [27, p.137],

“

ż

Ws`1

ρs:s`1

`

hs, dws`1

˘

ż

Ht
ϕ
`

ph1s, γsph
1
sq, w

1
s`1q, h

1
s`2:t

˘

ργs`1:t

`

phs, γsphsq, ws`1q, dh
1
t

˘

by definition (1.52b) of ργs`1:t,

“

ż

Ht
ϕ
`

ph1s, γsph
1
sq, w

1
s`1q, h

1
s`2:t

˘

ż

Ws`1

ρs:s`1

`

hs, dws`1

˘

ργs`1:t

`

phs, γsphsq, ws`1q, dh
1
t

˘

(1.55b)

by Fubini Theorem and by definition (1.52b) of ργs:t. As the two expressions (1.55a)
and (1.55b) are equal for any ϕ : Ht Ñ r0,`8s, we deduce the flow property (1.54). This
ends the proof.

1.6.3 Proofs

Proof of Theorem 1

Proof. We only give a sketch of the proof, as it is a variation on different results of [23],
the framework of which we follow.

We take the history space Ht for state space, and the state dynamics

f
`

ht, ut, wt`1

˘

“
`

ht, ut, wt`1

˘

“ ht`1 P Ht`1 “ Ht ˆ Ut ˆWt`1 . (1.56)

Then, the family tρs´1:su1ďsďT of stochastic kernels (1.3) gives a family of disturbance
kernels that do not depend on the current control. The criterion to be minimized (1.4)
is a function of the history at time T , thus of the state at time T . Problem (1.5) is thus
a finite horizon model with a final cost and we are minimizing over the so-called state-
feedbacks. Then, the proof of Theorem 1 follows from the results developed in Chap. 7, 8
and 10 of [23] in a Borel setting. Since we are considering a finite horizon model with a
final cost, we detail the steps needed to use the results of [23, Chap. 8].

56

The final cost at time T can be turned into an instantaneous cost at time T ´ 1 by
inserting the state dynamics (1.56) in the final cost. Getting rid of the disturbance in the
expected cost by using the disturbance kernel is standard practice. Then, we can turn
this non-homogeneous finite horizon model into a finite horizon model with homogeneous
dynamics and costs by following the steps of [23, Chap. 10]. Using [23, Proposition
8.2], we obtain that the family of optimization problems (1.5), when minimizing over
the relaxed state feedbacks, satisfies the Bellman equation (1.8); we conclude with [23,
Proposition 8.4] which covers the minimization over state feedbacks.

To summarize, Theorem 1 is valid under the general Borel assumptions of [23, Chap. 8]
and with the specific pF´q assumption needed for [23, Proposition 8.4]; this last assump-
tion is fulfilled here since we have assumed that the criterion (1.4) is nonnegative.

Proof of Proposition 3

Proof. Let rϕt : Xt Ñ r0,`8s be a given measurable nonnegative numerical function, and
let ϕt : Ht Ñ r0,`8s be

ϕt “ rϕt ˝ θt . (1.57)

Let ϕr : Hr Ñ r0,`8s be the measurable nonnegative numerical function obtained by
applying the Bellman operator Bt:r across pt :rq (see (1.12)) to the measurable nonnegative
numerical function ϕt:

ϕr “ Bt:rϕt “ Br`1:r ˝ ¨ ¨ ¨ ˝ Bt:t´1ϕt . (1.58)

We will show that there exists a measurable nonnegative numerical function

rϕr : Xr Ñ r0,`8s

such that
ϕr “ rϕr ˝ θr . (1.59)

First, we show by backward induction that, for all s P tr, . . . , tu, there exists a mea-
surable nonnegative numerical function ϕs such that ϕsphsq “ ϕspθrphrq, hr`1:sq. Second,
we prove that the function rϕr “ ϕr satisfies (1.59).

• For s “ t, we have, by (1.57) and by (1.10c), that

ϕtphtq “ rϕt
`

θtphtq
˘

“ rϕt
`

fr:tpθrphrq, hr`1:tq
˘

,

so that the measurable nonnegative numerical function ϕt is given by rϕt ˝ fr:t.

• Assume that, at s` 1, the result holds true, that is,

ϕs`1phs`1q “ ϕs`1pθrphrq, hr`1:s`1q . (1.60)

Then, by (1.58),

ϕsphsq “
`

Bs`1:sϕs`1

˘

phsq

“ inf
usPUs

ż

Ws`1

ϕs`1

`

phs, us, ws`1q
˘

ρs:s`1phs, dws`1q

57

by definition (1.7) of the Bellman operator

“ inf
usPUs

ż

Ws`1

ϕs`1

`

pθrphrq, phr`1:s, us, ws`1qq
˘

ρs:s`1phs, dws`1q

by induction assumption (1.60)

“ inf
usPUs

ż

Ws`1

ϕs`1

`

pθrphrq, phr`1:s, us, ws`1qq
˘

rρs:s`1

`

pθrphrq, hr`1:sq, dws`1

˘

by compatibility (1.11) of the stochastic kernel

“ ϕs
`

θrphrq, hr`1:s

˘

,

where

ϕs
`

xr, hr`1:s

˘

“ inf
usPUs

ż

Ws`1

ϕs`1

`

pxr, phr`1:s, us, ws`1qq
˘

rρs:s`1

`

pxr, hr`1:sq, dws`1

˘

.

The result thus holds true at time s.

The induction implies that, at time r, the expression of ϕrphrq is

ϕrphrq “ ϕr
`

θrphrq
˘

,

since the term hr`1:r vanishes. Choosing rϕr “ ϕr gives the expected result.

Proof of Proposition 8

Proof. We now show that the setting in §1.4.2 is a particular kind of two time scales prob-
lem as seen in §1.4.1. For this purpose, we introduce a spurious uncertainty variable w7s
taking values in a singleton set W7

s “ tw
7
su, equipped with the trivial σ-field tH,W7

su, for
each time s “ 1, 2 . . . , S. Now, we obtain the following sequence of events:

w70 ù u70 ù w51 ù u51 ù w71 ù u71 ù w52 ù u52 ù w72 ù u72 ù . . .

ù w5S´1 ù u5S´1 ù w7S´1 ù u7S´1 ù w5S ù u5S ù w7S ,

which coincides with a two time scales problem:

w0,0 “ w70 ù u0,0 “ u70 ù w0,1 “ w51 ù u0,1 “ u51
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

slow time cycle

ù

w1,0 “ w71 ù u1,0 “ u71 ù w1,1 “ w52 ù u1,1 “ u52
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

slow time cycle

ù

¨ ¨ ¨ ù wS´1,0 “ w7S´1 ù uS´1,0 “ u7S´1 ù wS´1,1 “ w5S ù uS´1,1 “ u5S
loomoon

slow time cycle

ù wS,0 “ w7S .

58

We introduce the sets

Wd,0 “W7

d, for d P t0, . . . , Su,

Wd,1 “W5
d`1, for d P t0, . . . , S ´ 1u,

Ud,0 “ U7d, for d P t0, . . . , S ´ 1u,

Ud,1 “ U5d`1, for d P t0, . . . , S ´ 1u.

As a consequence, we observe that the two time scales history spaces in §1.4.1 are
in one to one correspondence with the decision-hazard-decision history spaces and fields
in (1.35a)–(1.35b) as follows:

for d “ 0, 1, 2 . . . , S,

Hd,0 “W7

0 ˆ

d´1
ź

d1“0

`

Ud1,0 ˆWd1,1 ˆ Ud1,1 ˆWd1`1,0

˘

“W7

0 ˆ

d´1
ź

d1“0

`

U7d1 ˆW5
d1`1 ˆ U5d1`1 ˆW7

d1`1

˘

”W7

0 ˆ

d´1
ź

d1“0

`

U7d1 ˆW5
d1`1 ˆ U5d1`1

˘

“ H7d ,

for d “ 0, 1, 2 . . . , S,

Hd,0 “W
7

0 b

d´1
â

d1“0

`

U
7

d1 bW5
d1`1 b U5d1`1 bW

7

d1`1

˘

,

for d “ 0, 1, 2 . . . , S ´ 1,

Hd,1 “W7

0 ˆ

d´1
ź

d1“0

`

Ud1,0 ˆWd1,1 ˆ Ud1,1 ˆWd1`1,0

˘

ˆ Ud,0 ˆWd,1

“W7

0 ˆ

d´1
ź

d1“0

`

U7d1 ˆW5
d1`1 ˆ U5d1`1 ˆW7

d1`1

˘

ˆ U7d ˆW5
d`1

”W7

0 ˆ

d´1
ź

d1“0

`

U7d1 ˆW5
d1`1 ˆ U5d1`1

˘

ˆ U7d ˆW5
d`1 “ H5d`1 ,

for d “ 0, 1, 2 . . . , S ´ 1,

Hd,1 “W
7

0 b

d´1
â

d1“0

`

U
7

d1 bW5
d1`1 b U5d1`1 bW

7

d1`1

˘

b U
7

d bW5
d`1 .

For any element h of Hd,0 or Hd,1 we call
“

h
‰7 the element of H7d or H5d corresponding

to h with all the spurious uncertainties removed. By a slight abuse of notation, the

59

criterion j in (1.38) (decision-hazard-decision setting) corresponds to j ˝
“

¨
‰7 in the two

time scales setting in §1.4.1. The feedbacks in the two time scales setting in §1.4.1 are in
one to one correspondence with the same elements in the decision-hazard-decision setting,
namely

γd,0 “ γ7d ˝
“

¨
‰7
, γd,1 “ γ5d`1 ˝

“

¨
‰7
.

Now we define two families of stochastic kernels

• a family

ρpd,0q:pd,1q
(

0ďdďD
of stochastic kernels within two consecutive slow scale

indexes

ρpd,0q:pd,1q : Hd,0 Ñ ∆pWd,1q ,

hd,0 ÞÑ ρd:d`1 ˝
“

¨
‰7
.

• a family

ρpd,1q:pd`1,0q

(

0ďdďD´1
of stochastic kernels across two consecutive slow scale

indexes

ρpd,1q:pd`1,0q : Hd,1 Ñ ∆pWd`1,0q ,

hd,1 ÞÑ δ
w7d`1

p¨q ,

where we recall that Wd`1,0 “W7

d`1 “ tw
7

d`1u.
With these notations, we obtain Equation (1.41b), where only one integral appears

because of the Dirac in the stochastic kernels ρpd,1q:pd`1,0q. Indeed, for any measurable
function ϕ : Hd`1,0 Ñ r0,`8s, we have that

`

Bd`1:dϕ
˘

phd,0q “ inf
ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1q

´

hd,0, dwd,1

¯

inf
ud,1PUd,1

ż

Wd`1,0

ϕ
`

hd,0, ud,0, wd,1, ud,1, wd`1,0

˘

ρpd,1q:pd`1,0q

´

hd,0, hd:d`1, dwd`1,0

¯

.

Now, if there exists rϕ : H7d`1 Ñ r0,`8s such that ϕ “ rϕ ˝
“

¨
‰7, we obtain that

`

Bd`1:dϕ
˘

phd,0q “ inf
ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1q

´

hd,0, dwd,1

¯

inf
ud,1PUd,1

rϕp
“

hd,0
‰7
, ud,0, wd,1, ud,1q

ż

Wd`1,0

ρpd,1q:pd`1,0q

´

hd,0, hd:d`1, dwd`1,0

¯

“ inf
ud,0PUd,0

ż

Wd,1

ρpd,0q:pd,1q

´

hd,0, dwd,1

¯

inf
ud,1PUd,1

rϕp
“

hd,0
‰7
, ud,0, wd,1, ud,1q

by the Dirac probability of the stochastic kernels ρpd,1q:pd`1,0q,

“ inf
u7dPU

7

d

ż

W5d`1

ρpd,0q:pd,1q

´

h7d, dw
5
d`1

¯

inf
u5d`1PU

5
d`1

rϕph7d, u
7

d, w
5
d`1, u

5
d`1q

This ends the proof.

60

1.7 Dynamic Programming with Unit Time Blocks
Here, we recover the classical dynamic programming equations when a state reduction
exists at each time t “ 0, . . . , T ´ 1, with associated dynamics. Following the setting
in §1.2.2, we consider a family tρt´1:tu1ďtďT of stochastic kernels as in (1.3) and a mea-
surable nonnegative numerical cost function j as in (1.4).

1.7.1 The General Case of Unit Time Blocks

First, we treat the general criterion case. We assume the existence of a family of mea-
surable state spaces tXtut“0,...,T and the existence of a family of measurable mappings
tθtut“0,...,T with θt : Ht Ñ Xt. We suppose that there exists a family of measurable
dynamics tft:t`1ut“0,...,T´1 with ft:t`1 : Xt ˆ Ut ˆWt`1 Ñ Xt`1, such that

θt`1

`

pht, ut, wt`1q
˘

“ ft:t`1

`

θtphtq, ut, wt`1

˘

, @pht, ut, wt`1q P Ht ˆ Ut ˆWt`1 . (1.65)

The following proposition is a immediate application of Theorem 5 and Proposition 3.

Proposition 13. Suppose that the triplet ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q, which
is a state reduction across the consecutive time blocks rt, t`1st“0,...,T´1 of the time span, is
compatible with the family tρt´1:tut“1,...,T of stochastic kernels in (1.3) (see Definition 4).

Suppose that there exists a measurable nonnegative numerical function

rj : XT Ñ r0,`8s ,

such that the cost function j in (1.4) can be factored as

j “ rj ˝ θT .

Define the family
!

rVt

)

t“0,...,T
of functions by the backward induction

rVT pxT q “ rjpxT q , @xT P XT , (1.67a)

rVtpxtq “ inf
utPUt

ż

Wt`1

rVt`1

`

ft:t`1pxt, ut, wt`1q
˘

rρt:t`1pxt, dwt`1q , @xt P Xt , (1.67b)

for t “ T ´ 1, . . . , 0.
Then, the family tVtut“0,...,T of value functions defined by the family of optimization

problems (1.6) satisfies
Vt “ rVt ˝ θt , t “ 0, . . . , T . (1.68)

1.7.2 The Case of Time Additive Cost Functions

A time additive stochastic optimal control problem is a particular form of the stochastic
optimization problem presented previously. As in §1.7.1, we assume the existence of a
family of measurable state spaces tXtut“0,...,T , the existence of a family of measurable

61

mappings tθtut“0,...,T , and the existence of a family of measurable dynamics such that
Equation (1.65) is fulfilled.

We then assume that, for t “ 0, . . . , T ´ 1, there exist measurable nonnegative nu-
merical functions (instantaneous cost)

Lt : Xt ˆ Ut ˆWt`1 Ñ r0,`8s ,

and that there exists a measurable nonnegative numerical function (final cost)

K : XT Ñ r0,`8s ,

such that the cost function j in (1.4) writes

jphT q “
T´1
ÿ

t“0

Lt
`

θtphtq, ut, wt`1

˘

`K
`

θT phT q
˘

.

The following proposition is an immediate consequence of the specific form of the cost
function j when applying Proposition 13.

Proposition 14. Suppose that the triplet ptXtut“0,...,T , tθtut“0,...,T , tft:t`1ut“0,...,T´1q, which
is a state reduction across the consecutive time blocks rt, t`1st“0,...,T´1 of the time span, is
compatible with the family tρt´1:tut“1,...,T of stochastic kernels in (1.3) (see Definition 4).

We inductively define the family of functions tpVtut“0,...,T , with pVt : Xt Ñ r0,`8s, by
the relations

pVT pxT q “ KpxT q , @xT P XT (1.70a)

and, for t “ T ´ 1, . . . , 0 and for all xt P Xt,

pVtpxtq “ inf
utPUt

ż

Wt`1

´

Ltpxt, ut, wt`1q ` pVt`1

`

ft:t`1pxt, ut, wt`1q
˘

¯

rρt:t`1pxt, dwt`1q .

(1.70b)

Then, the family tVtut“0,...,T of value functions defined by the family of optimization
problems (1.6) satisfies

Vtphtq “
t´1
ÿ

s“0

Ls
`

θsphsq, us, ws`1

˘

` pVt
`

θtphtq
˘

, t “ 1, . . . , T , (1.71a)

V0ph0q “ pV0

`

θ0ph0q
˘

. (1.71b)

1.8 The Case of Optimization with Noise Process
In this section, the noise at time t is modeled as a random variable Wt. We suppose
given a stochastic process

Wt

(

t“0,...,T
called noise process. Then, optimization with

noise process becomes a special case of the setting in §1.2.2. Therefore, we can apply the
results obtained in Sect. 1.3.

We moreover assume that, for any s “ 0, . . . , T´1, the set Us in §1.2.2 is a separable
complete metric space.

62

1.8.1 Optimization with Noise Process

Noise Process and Stochastic Kernels. Let pΩ,Aq be a measurable space. For t “ 0, . . . , T ,
the noise at time t is modeled as a random variable Wt defined on Ω and taking values
in Wt. Therefore, we suppose given a stochastic process

Wt

(

t“0,...,T
called noise process.

The following assumption is made in the sequel.

Assumption 1. For any 1 ď s ď T , there exists a regular conditional distribution of the
random variableWs knowing the random processW0:s´1, denoted by P

W0:s´1
Ws

pw0:s´1, dwsq.

Under Assumption 1, we can introduce the family tρs´1:su1ďsďT of stochastic kernels

ρs´1:s : Hs´1 Ñ ∆pWsq , s “ 1, . . . , T , (1.72a)

defined by

ρs´1:sphs´1, dwsq “ P
W0:s´1
Ws

`

rhs´1s
W
0:s´1, dws

˘

, s “ 1, . . . , T , (1.72b)

where rhs´1s
W
0:s´1 “ pw0, w1, . . . , ws´1q is the uncertainty part of the history hs´1 (see

Equation (1.49a)).
Then, using Definition 11, the stochastic kernels ργr:t : Hr Ñ ∆pHtq are defined, for

any measurable nonnegative numerical function ϕ : Ht Ñ r0,`8s, by
ż

Ht
ϕph1tqρ

γ
r:tphr, dh

1

tq “

ż

Wr`1:t

ϕ
´

Φγ
r:tphr, wr`1:tq

¯

PW0:r
Wr`1:t

`

rhrs
W
0:r, dwr`1:t

˘

.

“ E
”

ϕ
`

Φγ
r:tphr,Wr`1:tq

˘

ˇ

ˇ

ˇ
W0:r “ rhrs

W
0:r

ı

, (1.73)

where Φγ
r:tphr, wr`1:tq “ phr, γrphrq, wr`1, γr`1phr, γrphrq, wr`1q, wr`2, ¨ ¨ ¨ , γt´1pht´1q, wtq

is the flow induced by the feedback γ (see §1.6.1).

Adapted Control Processes. Let t be given such that 0 ď t ď T ´ 1. We introduce

At:t “ tH,Ωu , At:t`1 “ σpWt`1q , . . . , , At:T´1 “ σpWt`1, . . . ,WT´1q .

Let L0pΩ,At:T´1,Ut:T´1q be the space of A-adapted control processes pUt, . . . ,UT´1q with
values in Ut:T´1, that is, such that

σpUsq Ă At:s , s “ t, . . . , T ´ 1 .

Family of Optimization Problems over Adapted Control Processes. We suppose here that
the measurable space pΩ,Aq is equipped with a probability P, so that pΩ,A,Pq is a prob-
ability space. Following the setting given in §1.2.2, we consider a measurable nonnegative
numerical cost function j as in Equation (1.4).

We consider the following family of optimization problems, indexed by t “ 0, . . . , T´1
and by ht P Ht,

qVtphtq “ inf
pU
t:T´1

qPL0pΩ,At:T´1,Ut:T´1q
E
”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ

ˇ

ˇ
W0:t “ rhts

W
0:t

ı

.

(1.74)

63

Proposition 15. Let t P t0, . . . , T ´ 1u and ht P Ht be given. Problem (1.5) and Prob-
lem (1.74) coincide, that is,

qVtphtq “ Vtphtq , (1.75)

where the family of value functions tVtut“0,...,T is defined by (1.6).

Proof. Let t P t0, . . . , T ´ 1u and ht P Ht be given. We show that Problem (1.74) and
Problem (1.5) are in one-to-one correspondence.

• First, for any history feedback γt:T´1 “ tγsus“t,...,T´1 P Γt:T´1, we define
pUt:T´1q P L

0pΩ,At:T´1,Ut:T´1q by

pUt, . . . ,UT´1q “
“

Φγ
t:T pht,Wt`1, . . . ,WT q

‰U
t`1:T

, (1.76)

where the flow Φγ
t:T has been defined in (1.50) and the history control part r¨sUt`1:T

in (1.49b). By the expression (1.72b) of ρs:s`1ph
1
s, dws`1q and by Definition 11 of

the stochastic kernel ργt:T , we obtain that

E
”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ

ˇ

ˇ
W0:t “ rhts

W
0:t

ı

“ E
”

jpΦγ
t:T pht,Wt`1, . . . ,WT qq

ˇ

ˇ

ˇ
W0:t “ rhts

W
0:t

ı

“

ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q .

(1.77)

As a consequence

inf
pU
t:T´1

qPL0pΩ,At:T´1,Ut:T´1q
E
”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ

ˇ

ˇ
W0:t “ rhts

W
0:t

ı

ď inf
γt:T´1PΓt:T´1

ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q . (1.78)

• Second, we define a pt : T ´ 1q-noise feedback as a sequence λ “ tλsus“t,...,T´1 of
measurable mappings (the mapping λt is constant)

λt P Ut , λs : Wt`1:s Ñ Us , t` 1 ď s ď T ´ 1 .

We denote by Λt:T´1 the set of pt : T ´ 1q-noise feedbacks. Let pUt, . . . ,UT´1q P

L0pΩ,At:T´1,Ut:T´1q. As each set Us is a separable complete metric space, for
s “ t, . . . , T ´1, we can invoke Doob Theorem (see [25, Chap. 1, p. 18]). Therefore,
there exists a pt :T ´ 1q-noise feedback λ “ tλsus“t,...,T´1 P Λt:T´1 such that

Ut “ λt , Us “ λspWt`1:sq , t` 1 ď s ď T ´ 1 .

Then, we define the history feedback γt:T´1 “ tγsus“t,...,T´1 P Γt:T´1 by, for any
history h1r P Hr, r “ t, . . . , T ´ 1:

γtph
1
tq “ λt ,

γt`1ph
1
t`1q “ λt`1

´

“

h1t`1

‰W
t`1:t`1

¯

“ λt`1pw
1
t`1q ,

...

γT´1ph
1
T´1q “ λT´1

´

“

h1T´1

‰W
t`1:T´1

¯

“ λT´1pw
1
t`1, ¨ ¨ ¨ , w

1
T´1q .

64

By the expression (1.72b) of ρs:s`1ph
1
s, dws`1q and by Definition 11 of the stochastic

kernel ργt:T , we obtain that
ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q “ E

”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ

ˇ

ˇ
W0:t “ rhts

W
0:t

ı

.

As a consequence

inf
γt:T´1PΓt:T´1

ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q

ď inf
pUt,...,UT´1

qPL0pΩ,At:T´1,Ut:T´1q
E
”

jpht,Ut,Wt`1, . . . ,UT´1,WT q

ˇ

ˇ

ˇ
W0:t “ rhts

W
0:t

ı

.

(1.79)

Gathering inequalities (1.78) and (1.79) leads to (1.75). This ends the proof.

The following proposition is an immediate consequence of Theorem 1 and Proposi-
tion 15.

Proposition 16. The family
!

qVt

)

t“0,...,T
of functions in (1.74) satisfies the backward

induction

qVT phT q “ jphT q , @hT P HT , (1.80a)

and, for t “ T ´ 1, . . . , 0,

qVtphtq “ inf
ut

ż

Wt`1

qVt`1

`

ht, ut, wt`1

˘

PW0:t
Wt`1

`

rhts
W
0:t, dwt`1

˘

(1.80b)

“ inf
ut

E
“

qVt`1

`

ht, ut,Wt`1

˘
ˇ

ˇ W0:t “ rhts
W
0:t

‰

, @ht P Ht . (1.80c)

1.8.2 Two Time-Scales Dynamic Programming

We adopt the notation of §1.4.1. We suppose given a two time-scales noise process

W
p0,0q:pD`1,0q “

`

W0,0,W0,1, . . . ,W0,M ,W1,0, . . . ,WD,M ,WD`1,0

˘

.

For any d P t0, 1, . . . , Du, we introduce the σ-fields

Ad,0 “ tH,Ωu , Ad,m “ σpW
pd,1q:pd,mqq , m “ 1, . . . ,M .

The proof of the following proposition is left to the reader.

Proposition 17. Suppose that there exists a family tXdud“0,...,D`1 of measurable state
spaces, with X0 “W0,0, and a family tfd:d`1ud“0,...,D of measurable dynamics

fd:d`1 : Xd ˆHd:d`1 Ñ Xd`1 .

65

Suppose that the slow scale subprocessesW
pd,1q:pd`1,0q “

`

Wd,1, ¨ ¨ ¨ ,Wd`1,0

˘

, d “ 0, . . . , D,
are independent (under the probability law P).

For a measurable nonnegative numerical cost function

rj : XD`1 Ñ r0,`8s ,

we define the family
!

rVd

)

d“0,...,D`1
of functions by the backward induction

rVD`1pxD`1q “ rjpxD`1q , (1.81a)

rVdpxdq “ inf
U
pd,0q:pd,Mq

PL0pΩ,Apd,0q:pd,Mq,Upd,0q:pd,Mqq
E
”

rVd`1

`

fd:d`1pxd,Ud,0,Wd,1, ¨ ¨ ¨ ,Ud,M ,Wd`1,0q
˘

ı

.

(1.81b)

Then, the value functions rVd are the solution of the following family of optimization
problems, indexed by d “ 0, . . . , D and by xd P Xd,

rVdpxdq “ inf
Upd,0q:pD,MqPL0pΩ,Apd,0q:pD,Mq,Upd,0q:pD,Mqq

E
“

rjpXD`1q
‰

, (1.82a)

where, for all d1 “ d, . . . , D,

Xd “ xd , Xd1`1 “ fd1:d1`1

`

Xd1 ,Ud1,0,Wd1,1, ¨ ¨ ¨ ,Ud1,M ,Wd1`1,0

˘

. (1.82b)

1.8.3 Decision-Hazard-Decision Dynamic Programming

We adopt the notation of §1.4.2. We suppose given a noise process

W0:S “
`

W 7

0 ,W
5

1 , . . . ,W
5

S

˘

. (1.83)

For any s P t0, 1, . . . , S ´ 1u, we introduce the σ-fields

As “ tH,Ωu , As1 “ σpW 5

s`1:s1q , s
1
“ s` 1, . . . , S . (1.84)

The proof of the following proposition is left to the reader.

Proposition 18. Suppose that there exists a family tXsus“0,...,S of measurable state
spaces, with X0 “W7

0, and a family tfs:s`1us“0,...,S´1 of measurable dynamics

fs:s`1 : Xs ˆ U7s ˆW5
s`1 ˆ U5s`1 Ñ Xs`1 .

Suppose that the noise process

W 5
s

(

s“0,...,S
is made of independent random variables

(under the probability law P).
For a measurable nonnegative numerical cost function

rj : XS Ñ r0,`8s , (1.85)

66

we define the family of functions
!

rVs

)

s“0,...,S
by the backward induction

rVSpxSq “ rjpxSq , (1.86a)

rVspxsq “ inf
u7sPU7s

E
”

inf
u5s`1PU5s`1

rVs`1

´

fs1:s1`1

`

xs, u
7
s,W

5

s`1, u
5
s`1

˘

¯ı

. (1.86b)

Then, the value functions rVs in (1.86) are the solution of the following family of
optimization problems, indexed by s “ 0, . . . , S ´ 1 and by xs P Xs,

rVspxsq “ inf
U
7
s:S´1

PL0pΩ,As:S´1,U7s:S´1q

inf
U5
s`1:S

PL0pΩ,As`1:S ,U5s`1:Sq

E
“

rjpXSq
‰

, (1.87a)

where

Xs1 “ xs , Xs1`1 “ fs1:s1`1

`

Xs1 ,U
7

s1 ,W
5

s1`1,U
5

s1`1

˘

, @s1 “ s, . . . , S ´ 1 . (1.87b)

67

Chapter 1. Bibliography

[21] K. Barty, P. Carpentier, and P. Girardeau. Decomposition of large-scale stochastic
optimal control problems. RAIRO Operations Research, 44(3):167–183, 2010.

[22] R. Bellman. Dynamic Programming. Princeton University Press, New Jersey, 1957.

[23] D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific, Belmont, Massachusetts, 1996.

[24] P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. Stochastic Multi-
Stage Optimization. At the Crossroads between Discrete Time Stochastic Control
and Stochastic Programming. Springer-Verlag, Berlin, 2015.

[25] C. Dellacherie and P. Meyer. Probabilités et potentiel. Hermann, Paris, 1975.

[26] I. V. Evstigneev. Measurable selection and dynamic programming. Mathematics of
Operations Research, 1(3):267–272, 1976.

[27] M. Loève. Probability Theory I. Springer-Verlag, New York, fourth edition, 1977.

[28] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1st edition, 1994.

[29] R. T. Rockafellar and R. J.-B. Wets. Scenarios and policy aggregation in optimization
under uncertainty. Mathematics of operations research, 16(1):119–147, 1991.

[30] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming:
modeling and theory. SIAM, 2009.

[31] H. S. Witsenhausen. A standard form for sequential stochastic control. Mathematical
Systems Theory, 7(1):5–11, 1973.

[32] H. S. Witsenhausen. On policy independence of conditional expectations. Informa-
tion and Control, 28(1):65–75, 1975.

68

Chapter 2

A template to design online policies for
multistage stochastic optimization
problems

This is a joint work with Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara
and François Pacaud.

Chapter Abstract

The solutions of multistage stochastic optimization problems are policies, that
is, mappings from past information into the current decision set, at each stage.
In practice, one does not compute the whole policy but produces the value of
the policy for the current argument and stage. We propose a general template
to design online control policies for multistage stochastic optimization prob-
lems. Our approach stresses the role of information structures in the design
of online policies. We use Chapter 1 formalism to build the general template
of online policies. Then, we frame well known methods (Stochastic Dynamic
Programming, Stochastic Programming, Stochastic Model Predictive Control)
to produce online control policies within this template.

Contents
2.1 Introduction . 70

2.2 Multistage stochastic optimization problems and online poli-
cies . 71

2.2.1 Multistage stochastic optimization problems over history . . . 71

2.2.2 Online policies . 73

2.3 A template for lookahead policies 77

2.3.1 Design of lookahead policies . 77

2.3.2 Classical lookahead methods . 79

2.4 A template for cost-to-go policies 84

2.4.1 Design of cost-to-go policies . 85

2.4.2 Computation of offline cost-to-go functions 85

69

2.4.3 Classical cost-to-go methods . 86

2.5 Assessment of online policies . 88

2.5.1 Simulating the flow induced by a policy along a scenario 89

2.5.2 Comparing policies . 89

2.6 Discussion . 90

2.7 Flows and stochastic kernels . 91

2.7.1 Flows . 91

2.7.2 Building stochastic kernels from history feedback 92

2.7.3 Proof of Proposition 20 . 93

2.1 Introduction
In multistage stochastic optimization problems, the decision maker chooses, at every
stage, a decision in a way that depends at most upon past uncertainties. Once a decision
made, she/he has to wait till the next realization of uncertainty to make a new decision.

The resolution of such problems proves to be difficult. On the one hand, stochastic
programming methods (see [48]) handle the resolution by writing a scenario tree corre-
sponding to realizations of all uncertainties, hence potentially (very) large. On the other
hand, stochastic control methods rely on the dynamic programming principle and look
for solutions as feedback on previous history, but are naturally confronted to the curse
of dimensionality. We refer to [33]—[35]—[45] for an overview of stochastic dynamic
programming methods.

Because exact solutions are out of reach, there is ongoing interest in the design of
approximate resolution algorithms designed to tackle the shortfalls of exact resolution
methods. In theory, one looks for a policy, that is, a mapping from past information into
the current decision set, at each stage. However, in practice, one only needs the single
value of the policy at each stage when evaluated for the current past information. We
will call online policy any mechanism that makes it possible to compute a single decision
(output) on the basis of the current stage and current past information (input).

This is the approach taken by Bertsekas and Powell in their panoramic papers on the
design of online policies. In [34], the emphasis is put on the well-known model predictive
control method. In [35, Chap. 6], a whole chapter is dedicated to approximate dynamic
programming methods. More recently, [44] proposed a framework to categorize different
resolution algorithms in four different classes, with emphasis on approximate dynamic
programming and reinforcement learning methods.

In this paper, we offer a complementary view as our approach stresses the role of
information structures in the design of online policies. We show that well-known classical
methods can be put in a common framework by using variations on the measurability
properties (information patterns) of the ingredients that constitute them. We moreover
explore the links between measurability and discretization for these methods. In Sect. 2.2,
we formulate multistage stochastic programming over a history space and we introduce
two classes of history feedback policies: the so-called cost-to-go policies and lookahead
policies. We sketch theses two classes in the history framework (of increasing size as

70

time goes on) and not in the traditional state space framework as it is usual, at least
for cost-to-go policies. This allows us to use the same notations in both frameworks. In
Sect. 2.3, we focus on lookahead policies and frame well-known existing algorithms in
this class. We show that stochastic programming, open-loop feedback control and model
predictive controls share the same framework. In Sect. 2.4, we describe the cost-to-go
methods and detail the offline computation of cost-to-go. Again, we show that stochastic
dynamic programming, stochastic dual dynamic programming and approximate dynamic
programming share the same framework. Finally, in Sect. 2.5, we present a method
to compare different online policies together, in a fair manner. Technical material is
relegated in the Appendix.

2.2 Multistage stochastic optimization problems and
online policies

We formulate multistage stochastic optimization problems over increasing history spaces
in §2.2.1. Here, a history is made of past noises and controls, differing from histories
in scenario trees and in state space formulations. Thus, solutions are policies which
are mappings from history spaces to control sets. This is discussed in §2.2.2, where we
introduce Bellman recursive equations over increasing history spaces, then discretization
issues for the design of online policies.

2.2.1 Multistage stochastic optimization problems over history

Consider the time span t0, 1, 2 . . . , T ´ 1, T u, with horizon T P N˚. At the end of the
time interval rt´ 1, tq, an uncertainty variable wt is produced. Then, at the beginning of
the time interval rt, t ` 1q, a decision-maker takes a decision ut. The interplay between
uncertainty and decision is w0 ù u0 ù w1 ù u1 ù . . . ù wT´1 ù uT´1 ù

wT . We use the notation Jr, sK “ tr, r ` 1, . . . , s ´ 1, su to denote the integer interval
between r P N and s P N with s ě r.

Histories and history feedback policies

We first define the spaces needed to formulate multistage stochastic optimization prob-
lems. Then, we introduce a class of solutions called history feedback policies.

Histories and history spaces. For each time t P J0, T´1K, the decision ut takes its
values in a measurable set Ut equipped with a σ-field Ut. For each time t P J0, T K, the
uncertainty wt takes its values in a measurable set Wt equipped with a σ-field Wt. We
suppose that all spaces are separable complete metric, a proper assumption to apply a
Doob theorem [39, Chap. 1, p. 18].

For t P J1, T K, we define the history space Ht equipped with the history field Ht

Ht “W0 ˆ

t´1
ź

s“0

pUs ˆWs`1q and Ht “W0 b

t´1
â

s“0

pUs bWs`1q , (2.1)

71

with the particular case H0 “ W0, H0 “ W0. A generic element ht P Ht is called a
history :

ht “
`

w0, pus, ws`1qsPJ0,t´1K
˘

“ pw0, u0, w1, u1, w2, . . . , ut´2, wt´1, ut´1, wtq . (2.2)

For 0 ď r ď t ď T , we introduce the notations

Wr:t “

t
ź

s“r

Ws , Ur:t “

t
ź

s“r

Us , and Hr:t “

t´1
ź

s“r´1

pUs ˆWs`1q , (2.3)

with the specific case H0:t “ Ht. An element hr:t “ pur´1, wr, . . . , ut´1, wtq P Hr:t is called
a partial history.

History feedback policies. When 0 ď r ď t ď T ´ 1, we define a pr : tq-history
feedback policy as a sequence tγsusPJr,tK of measurable mappings

γs : pHs,Hsq Ñ pUs,Usq . (2.4)

We call Γr:t the set of pr : tq-history feedback policies. A generic element of Γr:t will be
denoted γr:t.

Optimization problems formulated with stochastic kernels

To cover both stochastic programming and dynamic programming in the same setting,
we propose to formulate optimization problems by means of history feedbacks, criterion
and stochastic kernels.

We first recall the notion of stochastic kernel. Let pX,X q and pY,Yq be two measurable
spaces. A stochastic kernel from pX,X q to pY,Yq is a mapping ρ : pX,X q ˆ Y Ñ

r0, 1s such that i) for any Y P Y , ρp¨, Y q is X -measurable ii) for any x P X, ρpx, ¨q is
a probability measure on Y . A stochastic kernel is sometimes denoted as a mapping
ρ : pX,X q Ñ ∆pY,Yq from the measurable space pX,X q towards the space ∆pY,Yq of
probability measures over Y , with the property that the function x P X ÞÑ

ş

Y
ρpx, dyq is

X -measurable for any Y P Y .
In what follows, a function taking its values in r´8,`8s is called an extended real-

valued function.

Family of optimization problems with stochastic kernels. To build a family of
optimization problems over the time span t0, . . . , T ´ 1u, we introduce two ingredients:

• a family tρs´1:su1ďsďT of stochastic kernels

ρs´1:s : pHs´1,Hs´1q ˆWs Ñ r0, 1s , s “ 1, . . . , T , (2.5)

• an extended real-valued function, a criterion (playing the role of a cost) to be
minimized,

j : pHT ,HT q Ñ r0,`8s , (2.6)

72

assumed to be nonnegative1 and measurable2 with respect to the field HT .

We define, for any pt :T´1q-history feedback policy tγsusPJt,T 1́K P Γt:T 1́, a new family of
stochastic kernels

ργt:T : pHt,Htq ˆHT Ñ r0, 1s ,

which captures the transitions between histories when the dynamics of the history, that
is, hs`1 “

`

hs, us, ws`1

˘

, is driven by us “ γsphsq for s P Jt, T´1K (see Definition 22 in Ap-
pendix 2.7 for the detailed construction of ργr:t). Thus, ρ

γ
t:T induces a family of probability

distributions on the largest space HT of histories (over the whole span t0, . . . , T u).
We consider the family of optimization problems, indexed by t P J0, T ´1K and pa-

rameterized by the history ht P Ht:

inf
γt:T´1PΓt:T´1

ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q , @ht P Ht , (2.7)

where the integral in the right-hand side of the above equation corresponds to the cost
induced by the feedback γt:T´1 when starting at time t with a given history ht. For all
t P J0, T ´ 1K, we define the minimum value of Problem (2.7) by

Vtphtq “ inf
γt:T´1PΓt:T´1

ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q , @ht P Ht , (2.8a)

and we also define

VT phT q “ jphT q , @hT P HT . (2.8b)

Each function Vt is nonnegative since so is the criterion j in (2.6). The extended real-
valued function Vt : pHt,Htq Ñ r0,`8s is called the value function at time t.

2.2.2 Online policies

In §2.2.2, we write explicitly the solution of multistage stochastic problems via Bellman
recursive equations on the increasing history spaces. Then, in §2.2.2, we use the tools
of partitions and finite subfields to tackle the issue of discretization, indispensable for
the design of algorithms. Finally, we introduce in §2.2.2 two schemes to describe online
policies — the cost-to-go policies and the lookahead policies — that will be developed in
Sect. 2.3.

Stochastic dynamic programming with history feedback policies

We now recall the well-known result that the value functions defined in (2.8) are Bellman
functions, that is, they are solution of the Bellman or dynamic programming equation.
We make the following two assumptions.

1We could also consider any j : Ht Ñ R, measurable bounded function, or measurable and uniformly
bounded below function. When jphT q “ `8, this materializes joint constraints between uncertainties
and controls.

2See [36] for the measurability of an extended real function.

73

Assumption 2 (Measurable function). For all t P J0, T ´ 1K and for all nonnegative
measurable extended real-valued function ϕ : Ht`1 Ñ r0,`8s, the extended real-valued
function

ht ÞÑ inf
utPUt

ż

Wt`1

ϕpht, ut, wt`1qρt:t`1pht, dwt`1q (2.9)

is measurable3 from pHt,Htq to r0,`8s.

Assumption 3 (Measurable selection). For all t P J0, T ´ 1K, there exists a measurable
selection,4 that is, a measurable mapping

γ‹t : pHt,Htq Ñ pUt,Utq (2.10a)

such that
γ‹t phtq P arg min

utPUt

ż

Wt`1

Vt`1pht, ut, wt`1qρt:t`1pht, dwt`1q , (2.10b)

where the extended real-valued function Vt`1 is given by (2.8).

For t P J0, T K, let L0
`pHt,Htq be the space of nonnegative measurable extended real-

valued functions over Ht.

Definition 19. For t P J0, T ´ 1K, we define the Bellman operator

Bt`1:t : L0
`pHt`1,Ht`1q Ñ L0

`pHt,Htq (2.11a)

such that, for all ϕ P L0
`pHt`1,Ht`1q and for all ht P Ht,

`

Bt`1:tϕ
˘

phtq “ inf
utPUt

ż

Wt`1

ϕpht, ut, wt`1qρt:t`1pht, dwt`1q . (2.11b)

Since ϕ P L0
`pHt`1,Ht`1q, we have that Bt`1:tϕ is a well defined nonnegative extended

real-valued function and, by Assumption 2, we know that Bt`1:tϕ is a measurable extended
real-valued function, hence belongs to L0

`pHt,Htq.
We now state a dynamic programming equation, without requiring independence as-

sumption between the uncertainties.

Proposition 20. The value functions in (2.8) satisfy the Bellman equation, also called
(stochastic) dynamic programming equation:

VT “ j , (2.12a)
Vt “ Bt`1:tVt`1 , for t “ T´1, . . . , 0 . (2.12b)

Moreover, a solution to any Problem (2.7) — that is, whatever the index t P J0, T ´ 1K
and the parameter ht P Ht — is any history feedback γ‹ “ tγ‹susPJt,T 1́K defined by the
collection of mappings γ‹s in (2.10).

3This is a delicate issue, treated in [36].
4See [36] and [46] for background on measurable selections.

74

Discretization of measurable spaces with partitions

The numerical implementation of Proposition 20 (stochastic dynamic programming al-
gorithm) often requires the discretization of infinite sets such as the decision sets Ut and
the uncertainty sets Wt (and hence the history sets Ht defined in §2.2.1), as well as their
associated σ-fields. We present here a tool based on quantization in order to obtain such
a discretization (see [38, Chap. 6] for further details).

Let pW,Wq be a measurable space. To discretize pW,Wq, we use the following steps.

• We introduce a measurable mapping Q : pW,Wq Ñ pW,Wq such that its range
QpWq has a finite cardinality N . The mapping Q is called a quantifier and we use
the notation QpWq “ tw1, . . . , wNu.

• Then, we consider the finite partition
`

W 1, . . . ,WN
˘

of W induced by the quan-
tifier Q, that is, W i “ Q´1pwiq for i “ 1, . . . , N , and the associated σ-field
ĂW “ σ

`

W 1, . . . ,WN
˘

of W, made of (finite) unions of the elements of any sub-
family of

`

W 1, . . . ,WN
˘

.

The discretization of the measurable space pW,Wq consists in replacing it by pW,ĂWq.
It is a discretization in the sense that the σ-field ĂW is finitely generated. Moreover, for
any measurable function j : pW,Wq Ñ pR,Bo

Rq, we are able to construct a measurable
function rj : pW,ĂWq Ñ pR,Bo

Rq, namely rj “ j ˝Q, which only involves the values of j on
the finite set tw1, . . . , wNu.

A template to design online policies

The exact resolution of Bellman equations (2.12) is generally out of reach, as is the ex-
act computation of the optimal Bellman policies tγ‹t utPJ0,T´1K given by Proposition 20.
Practioners use Equations (2.8), (2.10) and (2.12) as templates to design online poli-
cies tγtutPJ0,T´1K. By online policy, we mean a tool allowing to compute a decision at
time t knowing the history ht. Here, we sketch two design schemes that lead to two
classes of online policies: the cost-to-go policies and the lookahead policies.

Cost-to-go policies. Cost-to-go policies use Equation (2.10) as a template to compute
a decision ut at time t. For this purpose, three ingredients have to be chosen as follows.

a) A subfield ĂWt`1 of Wt`1, corresponding to noise discretization as introduced in 2.2.2,
from which we build the subfield rHt`1 of Ht`1 by

rHt`1 “ Ht b Ut b ĂWt`1 . (2.13)

b) A measurable cost-to-go function rVt`1 : pHt`1, rHt`1q Ñ r0,`8s.

c) A stochastic kernel rρt:t`1 : pHt, rHtqˆ Ñ r0, 1s.

75

At time t P J0, T ´1K, for a given history ht, the corresponding value of the cost-to-go
policy is obtained as a solution of the following one-stage optimization problem5

γtphtq P arg min
utPUt

ż

Wt`1

rVt`1pht, ut, wt`1qrρt:t`1pht, dwt`1q . (2.14)

Problem (2.14) must be solved each time a decision has to be taken (see Sect. 2.5 for
examples of using a policy). We note that the history ht, belonging to the measurable
space pHt,Htq, only acts as a parameter in Problem (2.14).

Lookahead policies. Whereas cost-to-go policies take inspiration from Equation (2.10),
lookahead policies use directly Equation (2.8) as a template.

For this purpose, five ingredients have to be chosen as follows.

a) A lookahead horizon rT P Jt` 1, T K.

b) A sequence tĂWsusPJt`1, rT K of σ-fields, corresponding to noise discretization as introduced
in 2.2.2, such that ĂWs ĂWs, from which we iteratively build a new sequence of σ-fields
t rHsusPJt`1, rT K by

rHt “Ht , (2.15a)
rHs`1 “ rHs b Us b ĂWs`1 , s “ t, . . . , rT ´ 1 . (2.15b)

By construction, rHs is a subfield of the history field Hs defined in (2.1) for each s P
Jt` 1, rT K.

c) A sequence t rHΓ
s usPJt`1, rT´1K of σ-fields, called policy subfields, such that

rHΓ
s Ă

rHs , @s P Jt` 1, rT ´ 1K , (2.16)

that makes it possible to define the set of admissible history feedback policies

rΓt`1: rT´1 “

!

prγt`1, . . . , rγ rT´1q | rγs : pHs, rHΓ
s q Ñ pUs,Usq ,

rγ´1
s pUsq Ă rHΓ

s , @s P Jt` 1, rT ´ 1K
)

. (2.17)

A generic element of rΓt`1: rT´1 will be denoted rγt`1: rT´1.

d) A sequence of stochastic kernels trρs:s`1usPJt, rT´1K, with

rρs:s`1 : pHs, rHρ
sq ˆ

ĂWs`1 Ñ r0, 1s ,

where t rHρ
susPJt, rT´1K is a sequence of σ-fields such that

rHρ
s Ă

rHs , @s P Jt, rT ´ 1K . (2.18)
5Practitioners often replace the original control set Ut by another set rUt in order to make easier the

minimization in (2.14). This minor modification is not considered in this paper.

76

e) A measurable lookahead cost-to-go function rV
rT : pH

rT ,
rH

rT q Ñ r0,`8s.

Using the first four ingredients, we are able to build the lookahead stochastic kernel

rρrγ
t: rT

: pHt, rHtq ˆ rH
rT Ñ r0, 1s ,

for any admissible history feedback policy rγt`1: rT´1 P
rΓt`1: rT´1 as in (2.17) (see Defini-

tion 22 for this contruction: restricting both the measurability of the admissible policies
by (2.16) and the measurability of the stochastic kernels by (2.18) does not change the
construction).

At time t P J0, T´1K, for a given history ht belonging to the measurable space pHt,Htq,
the corresponding value of the lookahead policy is obtained as the solution of the following
multistage optimization problem:

γtphtq P arg min
utPUt

min
rγ
t`1: rT´1

PrΓ
t`1: rT´1

ż

H
rT

rV
rT pht, ut, wt`1, ht`1: rT qrρ

rγ

t: rT
pht, dh rT q . (2.19)

As in §2.2.2, Problem (2.19) must be solved to take a decision at time t. Again, the
history ht only acts as a parameter in this problem.

2.3 A template for lookahead policies
In Sect. 2.2, we have presented an overview of the different ingredients required to formu-
late and solve stochastic optimization problems, and we have introduced two templates to
design online policies: the class of cost-to-go policies and the class of lookahead policies.

In this section, we focus on lookahead policies. We first depict the general structure
of lookahead policies in §2.3.1, and then frame three classical algorithms (model predic-
tive control, open-loop feedback control and stochastic programming) in §2.3.2 using the
lookahead template.

2.3.1 Design of lookahead policies

We presented in §2.2.2 the ingredients used to devise lookahead policies. We now discuss
these ingredients more in detail.

a) Choosing the lookahead horizon. The lookahead horizon rT belongs to Jt` 1, T K.
Here are two classical choices.

Rolling horizon. We choose a lookahead time step ∆t and we set rT “ mintt `
∆t, T u.

Shrinking horizon. In that case, the chosen lookahead horizon rT does not depend
on t. Most often, practitioners choose rT “ T .

b) Choosing uncertainty subfields and stochastic kernels. The choices for the
sequences of subfields tĂWsusPJt`1, rT K and of stochastic kernels trρs:s`1usPJt, rT´1K model
the views of the decision-maker regarding the uncertainties after time t ` 1. We
present hereunder two classical situations.

77

Finite scenario tree. For each s in the lookahead horizon Jt ` 1, rT K, we discretize
the measurable space pWs,Wsq as follows (see §2.2.2).

• We first choose a quantifier Qs : pWs,Wsq Ñ pWs,Wsq such that its range
has a finite cardinality Ns. This range is denoted QspWsq “ tw

1
s, . . . , w

Ns
s u.

• We then build the σ-field ĂWs “ σpQsq generated by the finite partition
`

W 1
s , . . . ,W

Ns
s

˘

“
`

Q´1
s pw

1
sq, . . . , Q

´1
s pw

Ns
s q

˘

of Ws induced by Qs:

ĂWs “ σpQsq “ σ
`

Q´1
s pw

1
sq, . . . , Q

´1
s pw

Ns
s q

˘

“ σ
`

W 1
s , . . . ,W

Ns
s

˘

. (2.20)

Following Equation (2.15), we build the lookahead history fields

rHs “ Ht b

s´1
â

r“t

`

Ur b ĂWr`1

˘

, s P Jt` 1, rT K . (2.21a)

We also build the following (kernel) subfields rHρ
s of rHs:

rHρ
s “ Ht b

s´1
â

r“t

`

tH,Uru b ĂWr`1

˘

, s P Jt` 1, rT K . (2.21b)

We then choose a sequence of stochastic kernels trρs:s`1usPJt, rT´1K, with

rρs:s`1 : pHs, rHρ
sq ˆ

ĂWs`1 Ñ r0, 1s . (2.22)

Note, on the one hand, that the stochastic kernel rρs:s`1 is only able to measure
sets belonging to the subfield (2.20) generated by the partition

`

W 1
s`1, . . . ,W

Ns`1

s`1

˘

,
and, on the other hand, that the stochastic kernel rρs:s`1 does not depend on the
previous controls put, . . . , us´1q as the result of the choice of the subfield rHρ

s

in (2.21b). This last property is of paramount importance to be able to build a
scenario tree.

Single scenario. It is the case of a finite scenario tree, the range of each quantifierQs

reduces to a singleton twsu. Then, the sequence pwt`1, . . . , w rT q is the unique
scenario of the tree. The partition induced by Qs consists of the set Ws itself,
and the associated σ-field ĂWs is the trivial σ-field tH,Wsu. The lookahead
history field rHs (as in (2.21a)) is, accordingly,

rHs “ Ht b

s´1
â

r“t

`

Ur b tH,Wr`1u
˘

, (2.23a)

and the kernel subfield rHρ
s in (2.21b) is now

rHρ
s “ Ht b

s´1
â

r“t

`

tH,Uru b tH,Wr`1u
˘

. (2.23b)

The stochastic kernel

rρs:s`1 : pHs, rHρ
sq ˆ tH,Ws`1u Ñ r0, 1s , (2.24)

is only able to measure the set Ws`1 (the associated probability weight being
equal to 1), hence representing a deterministic view of the future. It does not
depend on the previous controls put, . . . , us´1q and on the previous uncertainties
pwt`1, . . . , wsq.

78

c) Choosing the set of policies. Here are two examples of sequences of information
fields t rHΓ

s usPJt`1, rT´1K used to define the set of admissible history feedback policies as
in (2.17). We recall that, in (2.16), we imposed the compatibility condition rHΓ

s Ă
rHs,

for any s P Jt` 1, rT ´ 1K.

Open-loop policy. An open-loop policy is made of feedbacks rγs, s P Jt ` 1, rT ´ 1K,
that are measurable w.r.t. the σ-field

rHΓ
s “ Ht b

s´1
â

r“t

`

tH,Uru b tH,Wr`1u
˘

, s P Jt` 1, rT ´ 1K . (2.25)

Otherwise stated, the feedback rγs : pHs, rHΓ
s q Ñ pUs,Usq only depends on ht, that

is, it assigns the same value to all partial histories ht`1:s “ put, wt`1, . . . , us´1, wsq.
This is a way to represent an open-loop control.

Closed-loop policy. A closed-loop policy takes advantage of all information available
at each time step of the lookahead horizon. In that case,

rHΓ
s “

rHs , s P Jt` 1, rT ´ 1K , (2.26)

as in (2.21a). This is a way to represent a closed loop control making use of
maximal past information.

d) Choosing a final cost-to-go. The cost-to-go is a function rV
rT : pH

rT ,
rH

rT q Ñ r0,`8s.
Note that the measurability of rV

rT is given by the σ-field rH
rT in (2.21a), so that rV

rT a
priori depend on the past controls put, . . . , us´1q.

Practitioners often design rV
rT to mimic a final cost at time rT . The function rV

rT may
also be chosen as a penalty to reach a defined target at the end of the lookahead
horizon, for instance rV

rT phq “ αpθphq ´ pxq2 where θ is a function mapping the whole
history into a “state” space X

rT and px P X
rT is the target.

2.3.2 Classical lookahead methods

As detailed in §2.3.1, the design of lookahead policies depends, on the one hand, on the
choice of the two sequences of σ-fields tĂWsusPJt`1, rT K and of stochastic kernels trρs:s`1usPJt, rT´1K,
and, on the other hand, on the choice of the σ-fields t rHΓ

s usPJt`1, rT´1K used to set the mea-
surability of the feedbacks rγs in the set of admissible history feedback policies rΓt`1: rT´1

defined by (2.17).
In the sequel, we specialize the design of lookahead policies to the specific following

cases: stochastic programming (SP), open-loop feedback control (OLFC) and model pre-
dictive control (MPC). The different combinations of σ-fields associated to the stochastic
kernels and to the feedbacks are summarized in Table 2.1.

Stochastic programming

In our framework (§2.3.1), we interpret stochastic programming (SP) (see [48]) as a
lookahead method with finite partitions to model the noise fields tĂWsusPJt`1, rT K (see §2.2.2).
We introduce stochastic kernels compatible with the finite partitions, thus encoding a
scenario tree, with a decision attached to every node of the tree.

79

Open-loop Closed-loop

Kernel rHρ
s

Policy rHΓ
s

s´1
â

r“t

tH,Uru b tH,Wr`1u

s´1
â

r“t

tH,Uru b ĂWr`1

Single scenario
s´1
â

r“t

tH,Uru b tH,Wr`1u MPC H

Scenario tree
s´1
â

r“t

tH,Uru b ĂWr`1 OLFC SP

Table 2.1: Classification of classic lookahead policies according to kernel and policy σ-
fields

Ingredients

a) Horizon. rT P Jt` 1, T K is given. Rolling or shrinking horizons are allowed.

b) Uncertainty subfields and stochastic kernels. The measurable spaces pWs,Wsq are
discretized using quantifiers Qs as described in §2.3.1 for the finite scenario tree case.
This leads to the sequence t rHsusPJt`1, rT K of lookahead σ-fields given by (2.21a). We
also introduce the sequence of subfields t rHρ

susPJt`1, rT K given by (2.21b), namely

rHρ
s “ Ht b

s´1
â

r“t

`

tH,Uru b ĂWr`1

˘

, s P Jt` 1, rT K . (2.27a)

Then, we choose a sequence trρs:s`1usPJt, rT´1K of stochastic kernels as in (2.22). As
already noticed, the stochastic kernel rρs:s`1 does not depend on the past controls.
Moreover, its dependence on the uncertainty wr is measurable w.r.t. the σ-field ĂWr.
As the underlying spaces are separable complete metric, by a Doob theorem [39,
Chap. 1, p. 18], the stochastic kernel rρs:s`1 depends on Qrpwrq rather than wr; by a
slight abuse of notation, we write

rρs:s`1

`

ht, Qt`1pwt`1q, . . . , Qspwsq, dws`1

˘

. (2.27b)

c) Policies. We consider closed-loop policies as in (2.26), that is, with information σ-
fields rHΓ

s equal to rHs as in (2.21a). A standard inductive reasoning shows that the
information given by the σ-field rHΓ

s is the same as the one given by the σ-field rHρ
s

of (2.27a), so that we can limit ourselves to

rHΓ
s “

rHρ
s , (2.27c)

given by (2.27a). Again, using the measurability property of the feedback rγs : pHs, rHΓ
s q Ñ

pUs,Usq (see (2.17)), we are able to represent it as a function only depending on the
past quantified uncertainties:

rγs
`

ht, Qt`1pwt`1q, . . . , Qspwsq
˘

. (2.27d)

d) Final cost-to-go. The final cost rV
rT : pH

rT ,
rH

rT q Ñ r0,`8s is chosen as a measurable
function w.r.t. rH

rT . With the same abuse of notation as for the stochastic kernels, the
cost-to-go is written

rV
rT

`

ht, ut, Qt`1pwt`1q, . . . , u rT´1, Qspw rT q
˘

. (2.27e)

80

Discretized problem. We now write a discretized version of Problem (2.19). Since
Qspwsq P tw

1
s, . . . , w

Ns
s u, all the expressions (2.27) constituting the stochastic program-

ming model only depend on the values wis. We denote by

πs`1pht, Qt`1pwt`1q, . . . , Qspwsq, w
i
s`1q ,

the probability weight rρs:s`1

`

ht, Qt`1pwt`1q, . . . , Qspwsq,W
i
s`1

˘

, whereW i
s`1 is an atom of

the finite partition of Ws`1 generating the σ-field ĂWs`1 as in (2.20). Then Problem (2.19)
is rewritten as

arg min
utPUt

min
rγ
t`1: rT´1

PrΓ
t`1: rT´1

Nt`1
ÿ

it`1“1

πt`1pht, w
it`1

t`1 q . . .

N
rT

ÿ

i
rT
“1

π
rT pht, w

it`1

t`1 , . . . , w
i
rT

rT
q

rV
rT

`

ht, ut, w
it`1

t`1 , rγt`1pht, w
it`1

t`1 q, w
it`2

t`2 , ¨ ¨ ¨ , rγ rT´1pht, w
it`1

t`1 , . . . , w
i
rT´1

rT´1
q, w

i
rT

rT

˘

. (2.28)

The minimization w.r.t. the feedback rγs in (2.28) only involves an expression of the
form rγspht, w

it`1

t`1 , . . . , w
is
s q, namely a control value for each sequence pht, w

it`1

t`1 , . . . , w
is
s q.

Therefore, we are in the situation where the uncertainty is discretized using a scenario
tree, with a decision attached to each node of the tree, that is, the standard stochastic
programming framework. The stochastic programming tree and information structure
are depicted in Figure 2.1.

u0 u1 u2 ut

w1 w2

u2t`1

u1t`1

u3t`1

w2
t`1

w1
t`1

w3
t`1

...

...

...

...

...

...

Past Future

ht

Figure 2.1: SP represents the future as a tree with a decision at each node

Open-loop feedback control

The open-loop feedback control (OLFC) method is described for example in [35, Chap. 6].
In our framework, OLFC is a lookahead method where the uncertainty fields tĂWsusPJt`1, rT K,
and the stochastic kernels trρs:s`1usPJt, rT´1K, as presented in §2.3.1, are chosen as in the
stochastic programming approach in §2.3.2. The major difference between OLFC and SP
is that the decisions are open-loop in OLFC, that is, a decision is attached to each stage
of the tree rather than to each node as in SP.

81

Ingredients

a) Horizon. rT P Jt` 1, T K is given. Rolling or shrinking horizons are allowed.

b) Uncertainty subfields and stochastic kernels. The measurable spaces pWs,Wsq are dis-
cretized as in the stochastic programming model, leading to sequences t rHsusPJt`1, rT K

and t rHρ
susPJt`1, rT K of lookahead σ-fields given by (2.21a) and (2.21b) respectively. The

sequence trρs:s`1usPJt, rT´1K of stochastic kernels is also chosen as in the stochastic pro-
gramming model, that is, as in (2.22), so that the stochastic kernels do not depend
on the past controls, and each can be written in the form

rρs:s`1

`

ht, Qt`1pwt`1q, . . . , Qspwsq, dws`1

˘

. (2.29a)

c) Policies. OLFC uses open-loop policies as in Equation (2.25), with information σ-
fields

rHΓ
s “ Ht ˆ

s´1
â

r“t

`

tH,Uru b tH,Wr`1u
˘

.

From the measurability properties of any admissible policy rγs : pHs, rHΓ
s q Ñ pUs,Usq

we deduce that rγs is a function only depending on ht, giving the control us “ rγsphtq.

d) Final cost-to-go. The final cost rV
rT : pH

rT ,
rH

rT q Ñ r0,`8s is chosen as a measurable
function w.r.t. rH

rT , and is written

rV
rT

`

ht, ut, Qt`1pwt`1q, . . . , u rT´1, Qspw rT q
˘

. (2.29b)

Discretized problem. To write a discretized version of Problem (2.19), we follow
the same path as the one used in the stochastic programming model in §2.3.2. The
only difference is that the minimization w.r.t. the feedbacks rγs in (2.28) only involves
expression of the form rγsphtq, that is, a control value us for each time s. Problem (2.28)
becomes

arg min
utPUt

min
u
t`1: rT´1

PU
t`1: rT´1

Nt`1
ÿ

it`1“1

πt`1pht, w
it`1

t`1 q . . .

N
rT

ÿ

i
rT
“1

π
rT pht, w

it`1

t`1 , . . . , w
i
rT

rT
q

rV
rT

`

ht, ut, w
it`1

t`1 , ut`1, w
it`2

t`2 , . . . , u rT´1, w
i
rT

rT

˘

. (2.30)

Therefore, we are in the situation where the uncertainty is discretized using a scenario
tree, with a decision attached at each stage of the tree, that is, the open-loop feedback
control framework. The open-loop feedback control tree and information structure are
depicted in Figure 2.2.

Model predictive control

Model predictive control (MPC) is a well-known method that tackles uncertainties by
using deterministic forecasts (see [40] and [34]).

82

u0 u1 u2 ut

w1 w2 w2
t`1

w1
t`1

w3
t`1

ut`1
ut`2

Past Future

ht

Figure 2.2: OLFC represents the future as a tree with a decision at each time instant
(node)

Ingredients

a) Horizon. rT P Jt` 1, T K is given. Rolling or shrinking horizons are allowed.

b) Uncertainty subfields and stochastic kernels. The measurable spaces pWs,Wsq are
discretized using constant quantifiers Qs, as described for the single scenario case
in §2.3.1. The subfield ĂWs associated to Qs in (2.20) is thus tH,Wsu. This leads to
the sequence t rHsusPJt`1, rT K of lookahead σ-fields given by (2.23a), namely

rHs “ Ht b

s´1
â

r“t

`

Ur b tH,Wr`1u
˘

,

and we also introduce the sequence of subfields t rHρ
susPJt`1, rT K given by (2.23b), namely

rHρ
s “ Ht b

s´1
â

r“t

`

tH,Uru b tH,Wr`1u
˘

.

We then choose a sequence trρs:s`1usPJt, rT´1K of stochastic kernels as in Equation (2.24).
Each stochastic kernel rρs:s`1 only depends on ht and is trivial, as it only measures the
whole set Ws`1 and the emptyset H.

c) Policies. MPC uses open-loop policies as in Equation (2.25), with information σ-fields

rHΓ
s “ Ht ˆ

s´1
â

r“t

`

tH,Uru b tH,Wr`1u
˘

.

From the measurability properties of the policy rγs : pHs, rHΓ
s q Ñ pUs,Usq we deduce

that rγs is a function only depending on ht, so that the history feedback rγsphtq can be
identified with a value us.

d) Final cost-to-go. The final cost rV
rT : pH

rT ,
rH

rT q Ñ r0,`8s is chosen as a measurable
function w.r.t. rH

rT and thus is written

rV
rT

`

ht, ut, wt`1, . . . , u rT´1, w rT

˘

.

83

Discretized problem. According to the ingredients described above, a discretized
version of Problem (2.19) is obtained from the OLFC discretized Problem (2.30) when
considering a single scenario, that is,

arg min
utPUt

min
u
t`1: rT´1

PU
t`1: rT´1

rV
rT

`

ht, ut, wt`1, ut`1, wt`2, ¨ ¨ ¨ , u rT´1, w rT

˘

. (2.32)

Therefore, we are in the situation where the uncertainty is discretized using a single
scenario, with a decision attached at each time. Problem (2.32) is a deterministic opti-
mization problem, possibly solvable by proper mathematical programming methods. The
MPC scenario and information scheme are depicted in Figure 2.3.

u0 u1 u2 ut ut`1 ut`2 u
rT´1 x

rT

w1 w2 wt`1 wt`2 wT

Past Future

ht

Figure 2.3: MPC models the future with a deterministic forecast

Discussion

In this section, we have detailed a general structure for lookahead optimization problems,
and have presented the stochastic programming model, the open-loop feedback control
model as a restriction of the SP model, and the model predictive control model itself as
a restriction of the OLFC model.

Lookahead algorithms correspond to the implicit cost-to-go approximation presented
in [34], where the future cost rVt`1 is estimated online by restricting the set of admissible
policies rγs. Most algorithms that rely on forecasts are lookahead algorithms. For instance,
we can frame the stochastic model predictive control algorithm either as a open-loop
feedback control or as a stochastic programming method, depending on the information
structure that defines the set of future policies.

In the following section, we deal with cost-to-go policies, corresponding to the explicit
cost-to-go approximation of [34].

2.4 A template for cost-to-go policies
We focus in this section on cost-to-go policies as obtained by solving Problem (2.14).
We first describe the generic template of cost-to-go policies in §2.4.1 and §2.4.2, and
then frame three classical algorithms (Stochastic Dynamic Programming, Stochastic Dual
Dynamic Programming and Approximate Dynamic Programming) with the template of
cost-to-go policies in §2.4.3.

84

Cost-to-go policies are evaluated on the fly, online, but based on offline computations.
This is why, we will put a superscript on orof on some of the mathematical material
introduced in the sequel.

2.4.1 Design of cost-to-go policies

The three ingredients of cost-to-go policies are (see §2.2.2):

a) a subfield ĂWon
t`1 of Wt`1, from which we build the subfield rHon

t`1 “ Ht b Ut b ĂWon
t`1

of Ht`1,

b) a stochastic kernel rρon
t:t`1 : pHt, rHon

t q ˆ
ĂWon
t`1 Ñ r0, 1s,

c) a measurable cost-to-go function rVt`1 : pHt`1, rHt`1q Ñ r0,`8s.

These ingredients are used to compute an online control policy by solving Problem (2.14),
that we recall here for convenience:

γtphtq P arg min
utPUt

ż

Wt`1

rVt`1pht, ut, wt`1qrρ
on
t:t`1pht, dwt`1q . (2.33)

The first and second ingredients (subfield and stochastic kernel) have been discussed
in the description of lookahead policies (see §2.3), and the procedure to design them
is similar for cost-to-go policies. As far as the third ingredient (cost-to-go function) is
concerned, explicit cost-to-go functions rVt`1 : pHt`1, rHt`1q Ñ r0,`8s are required as
input. We now detail how to obtain these functions.

2.4.2 Computation of offline cost-to-go functions

To compute the cost-to-go functions rVt`1 used in §2.4.1, we solve offline backward recur-
sive equations mimicking the Bellman equations (2.12). For this purpose, starting with
a given rVT , we design offline Bellman operators rBof

t`1:t such that

rVt “ rBof
t`1:t

rVt`1 , @ t “ T ´ 1, . . . , 0 . (2.34)

The following four ingredients enter the design of the offline Bellman operators rBof
t`1:t.

1) A sequence of σ-fields tĂWof
t utPJ0,T K, with ĂWof

t ĂWt.

2) A sequence of stochastic kernels trρof
t:t`1utPJ0,T´1K, rρof

t:t`1 : pHt,Htq ˆ ĂWof
t`1 Ñ r0, 1s.

3) A sequence of sets t rLtutPJ0,T K of extended real-valued functions, with rLt Ă L0
`pHt, rHtq,

the space of nonnegative rHt-measurable extended real-valued functions over Ht.

4) A sequence of operators tPtutPJ0,T K, with Pt : L0
`pHt,Htq Ñ rLt

85

For compatibility reasons (justified in the following footnote 6) with the design of the
cost-to-go policies presented in §2.4.1, we assume that

ĂWon
t Ă

ĂWof
t ĂWt . (2.35)

Starting with a given cost-to-go function rVT P rLT at horizon T , the construction in
backward time of the operators

rBt`1:t : rLt`1 Ñ rLt , (2.36)

involves the following two steps at each time t.

• Designing the offline minimization. In this step, we use the function rVt`1, and the
stochastic kernel rρof

t:t`1 to set up the optimization problem:6

rV of
t phtq “ inf

utPUt

ż

Wt`1

rVt`1pht, ut, wt`1qrρ
of
t:t`1pht, dwt`1q . (2.37)

This defines an operator rBof
t`1:t : rLt`1 Ñ L0

`pHt,Htq such that

rV of
t “

rBof
t`1:t

rVt`1 . (2.38a)

• Designing the operator domain. The purpose of this step is to obtain a cost-to-go
function rVt P rLt. This is achieved by using the operator Pt : L0

`pHt,Htq Ñ rLt,
namely

rVt “ Pt
rV of
t . (2.38b)

Thanks to these two steps, we define the operator rBt`1:t : rLt`1 Ñ rLt by
rBt`1:t “ Pt ˝ rBof

t`1:t . (2.39)

Then, we are able to compute the cost-to-go functions trVtutPJ0,T K in a backward manner
using the recursive equation (2.34).

Remark 21. In the above construction, we have introduced the operators Pt and Bof
t`1:t

for the sake of clarity. Most of the time, the computation of the whole function rV of
t

remains out of reach (but Problem (2.37) is such that it is easy to compute the value
of rV of

t for a given value of the history ht). In fact, practitioners compute directly the
composed operator rBt`1:t instead of each operator Pt and rBof

t`1:t separately. This is made
clearer in the examples of the next paragraph.

2.4.3 Classical cost-to-go methods

We show that we are able to frame well-known algorithms (stochastic dynamic program-
ming, stochastic dual dynamic programming and approximate dynamic programming)
only by describing their corresponding operators rBt`1:t.

We sketch the algorithms in the history framework of §2.2.2, and not in the traditional
state space framework. In other words, we replace the state spaces (generally of fixed
dimension) of the traditional approach by history spaces (of increasing dimension). Of
course there is no difficulty to present all the algorithms in the traditional state space
framework.

6Note that the compatibility condition (2.35) ensures that the integral in (2.37) is well defined.

86

Stochastic dynamic programming

The stochastic dynamic programming (SDP) algorithm (see [35]-[45]) computes a set
of cost-to-go functions using a discretization of the history spaces. More precisely, at
time t, SDP chooses a finite grid of size Nt in Ht, that is, a set thituiPJ1,NtK of Nt elements
of Ht. Then, we introduce the trace operator TNtt : L0

`pHt,Htq Ñ
`

Htˆ r0,`8s
˘Nt (that

associates the representation tphit, φtphitqquiPJ1,NtK with any function φt P L0
`pHt,Htq), and

a regression-interpolation operator Rt :
`

Ht ˆ r0,`8s
˘Nt

Ñ rLt (as an operator that
interpolates the values on the grid thituiPJ1,NtK to obtain a function of rLt). Then, we
define the operator Pt (introduced as the fourth ingredient in §2.4.2) by Pt “ Rt ˝ T

Nt
t .

In practice, SDP directly computes TNtt rV of
t , that is, it solves Problem (2.37) at each point

of the grid thituiPJ1,NtK. Then, the regression-interpolation operator Rt usually consists of
building a piecewise constant or piecewise linear function from the Nt available points.

Stochastic dual dynamic programming

Stochastic dual dynamic programming (SDDP) takes advantage of a well-known result in
convex analysis that allows to represent any proper convex l.s.c. function as a supremum
of affine functions. The idea behind SDDP was introduced in [49] and extended further
in [42]. We refer to [47] for a recent overview of the algorithm.

We suppose that the future cost-to-go rVt`1 in (2.34) is convex. Then, SDDP approxi-
mates iteratively the offline Bellman operators (2.37) by a supremum of affine functions.
We accordingly define the sets rLt by

rLt “

φ : pHt, rHtq Ñ r0,`8s | DN P N , Dpλi, βiqiPJ1,NK , φphq “ max
i“1¨¨¨N

@

λi , h
D

` βi
(

.

(2.40)
SDDP computes the approximations of the Bellman value functions rVt defined in (2.34)
by running an alternation of forward and backward passes. At iteration k, we suppose
given a family of cost-to-go functions trV k

t utPJ0,T K. Then, SDDP refines the value functions
as follows.

• Forward pass. Let wk “ pwk0 , . . . , wkT q PW0 ˆ ¨ ¨ ¨ ˆWT be a noise scenario. SDDP
computes a history trajectory hk “ phk0, . . . , hkT q along the scenario wk by using the
cost-to-go policy induced by (2.33) as follows: for t “ 0, . . . , T ´ 1, compute

γkt ph
k
t q P arg min

utPUt

ż

Wt`1

rV k
t`1ph

k
t , ut, wt`1qrρt:t`1ph

k
t , dwt`1q , (2.41)

and set hkt`1 “ ph
k
t , γ

k
t ph

k
t q, w

k
t`1q.

• Backward pass. SDDP refines the approximation along the history trajectory hk,
in a backward manner. Let rV k

T “
rVT be given. For t “ T ´ 1, . . . , 0, the algorithm

computes a new affine minorant of rV of
t “ Bof

t`1:t
rV k
t`1 at point hkt by solving Prob-

lem (2.37). This operator which generates a cut is denoted Stph
k
t q. The update of

the cost-to-go functions consists in adding the new cut to the existing ones:

rV k`1
t “ Pt

rV of
t “ max

rV k
t , Stph

k
t q ˝

rV of
t

(

. (2.42)

87

We observe that at iteration k, the update of the value function (2.42) is written as a
maximum of the previous value function and an affine function. Thus, the value func-
tion rV k`1

t remains in rLt provided that the value function rV k
t at the previous iteration lies

in rLt defined in (2.40).
In practice, SDDP never computes rV of

t “ Bof
t`1:t

rV k
t`1, but only the new cut.

Approximate dynamic programming

Approximate dynamic programming (ADP) approximates the cost-to-go functions in fi-
nite dimension functional spaces. We refer to [37] and [43] for an extensive overview of
ADP. We describe hereafter ADP in the history framework of §2.2.2.

Approximate Dynamic Programming approximates the function rV of
t in Equation (2.37)

by an element of the set of functions rLt “ spantφ1
t , . . . , φ

N
t u spanned by a finite number

of functions φ1
t , . . . , φ

N
t . The functions φit : pHt, rHtq Ñ r0,`8s form a finite basis (e.g.

spline or quadratic functions). The cost-to-go function is rVt “ Pt
rV of
t , with Pt “ proj

rLt ,
namely the projection on the subspace rLt. The projection consists in computing a finite
number of parameters tαituiPJ1,NK such that rVtphtq “

řN
i“1 α

i
tφ
i
tphtq , @ht P Ht.

Difference between offline algorithms

The only difference between the algorithms that compute a set of cost-to-go offline are
the backward operators rBt`1:t used. The different choices are summarized in Table 2.2.

Algo rBt`1:t

SDP Discretize then interpolate
SDDP Accumulate cuts using convex duality
ADP Project on a basis of functions

Table 2.2: The approximate Bellman operators of SDP, SDDP and ADP

2.5 Assessment of online policies
Policies γt : pHt,Htq Ñ pUt,Utq are mappings that take as argument a history ht to
return a decision ut. Depending on the ingredients chosen as explained in §2.2.2, the
performances of policies may differ. We detail hereafter a procedure to compare the
performances of different policies.

Usually, the decision maker has used a sample Wopt “ tw1
opt, . . . , w

M
optu of uncertainty

scenarios to design the online policies (for instance to infer possible probability laws for
the future uncertainties). We will call the scenarios in Wopt optimization scenarios. A
different set of scenarios Wsim “ tw1, . . . , wNu is used during the assessment procedure,
and is called the set of assessment scenarios.

To ensure that the comparison of different policies remains fair, we must ensure that
the set of optimization scenarios does not intersect the set of assessment scenarios. The
assessment procedure is out-of-sample as soon as Wopt XWsim “ H.

88

2.5.1 Simulating the flow induced by a policy along a scenario

We consider a family of history feedbacks γ “ pγ0, . . . , γT´1q P Γ0:T´1, as those given
by (2.14) (cost-to-go policy) or (2.19) (lookahead policy), and an uncertainty scenario
ws “ pws0, . . . , w

s
T q PW0ˆ ¨ ¨ ¨ ˆWT . The simulator computes stage by stage the value of

the flow Φγ
0:T pw

s
0, . . . , w

s
T q P HT along scenario ws (see Appendix 2.7.1 for the definition

of a flow) by

Φγ
0:T pw

s
0, . . . , w

s
T q “

`

ws0, γ0pw
s
0q, w

s
1, γ1pw

s
0, γ0pw

s
0q, w

s
1q, . . . , γT´1ph

s
T´1q, w

s
T

˘

“ hsT .
(2.43)

Then, the cost of policy γ along scenario ws is

jphsT q “ j ˝ Φγ
0:T pw

s
q , (2.44)

where j : HT Ñ R is the cost function in Equation (2.6).

Algorithm 1: Simulation along a scenario
Data: Policy γ “ pγ0, . . . , γT´1q, assessment scenario ws “ pws0, . . . , wsT q
Result: Flow Φγ

0:T pw
sq “ pws0, u

s
0, w

s
1, u

s
1, . . . , u

s
T´1, w

s
T q

hs0 “ ws0 ;
for t P J0, T ´ 1K do

ust “ γtph
s
tq;

hst`1 “ ph
s
t , u

s
t , w

s
t`1q;

end

2.5.2 Comparing policies

Once the flow of a given policy γ computed, we can attach a value (expected cost, etc.)
to the policy γ, so that we can compare it with other policies.

Assessment of a single policy

Assessment procedure. By computing the flow Φγ
0:T for a given policy γ along a single

scenario ws, we are able to associate a cost value j ˝Φγ
0:T pw

sq. By iterating the procedure
alongmultiple scenarios w1, . . . , wN we are able to obtain different values jph1

T q, . . . , jph
N
T q

that can be used to estimate the expected cost of the policy. We depict the assessment
procedure in Algorithm 2.

Algorithm 2: Assessment of a policy γ with N scenarios
Data: Policy γ, assessment scenarios w1, . . . , wN

Result: Cost vector
`

jph1
T q, . . . , jph

N
T q

˘

for ws P pw1, . . . , wNq do
jphsT q “ j ˝ Φγ

0:T pw
sq;

end

It yields a cost vector pjph1
T q, . . . , jph

N
T qq P RN . We can use some metrics µN : RN Ñ R

(such as the average, the median, the variance, etc) to obtain a real number µN
`

jph1
T q, . . . , jph

N
T q

˘

characterizing the performance of the policy.

89

As an illustration, we consider the (quite common) case where µN is the arithmetic

mean, that is, µNpx1, . . . , xNq “
1

N

řN
s“1 x

s. This specific metrics µN opens the way to
assess the policy’s performance by using the law of large numbers and the central limit
theorem. The procedure is as follows.

1. Draw a (large) number N of independent scenarios ws and run Algorithm 2.

2. Compute the sample cost average m “ 1
N

řN
s“1 jph

s
T q and the sample cost standard

deviation σ2 “ 1
N´1

řN
s“1

`

jphsT q ´m
˘2.

3. Use the values m and σ to obtain a confidence interval for E
“

j ˝Φγ
0:T pW0:T q

‰

thanks
to the central limit theorem.

Comparing different policies

We are able to assess M different policies γ1, . . . , γM along the same set of scenarios
w1, . . . , wN and compare them altogether with the same metrics µN . The best policy is
the policy that yields the minimum cost in the vector

"

µN
´

j ˝ Φγm

0:T´1pw
s
q
(

sPJ1,NK

¯

*

mPJ1,MK
. (2.45)

2.6 Discussion
In practice, to solve multistage stochastic optimization problems, one does not need the
whole theoretical solution, but only needs to compute a proper decision on the fly, as
information unfolds. This is the essence of online policies. In this paper, we have offered
a complementary view to existing classifications by emphasizing the role of information
structures in the design of online policies. We have shown that well-known classical
methods can be put in a common framework by using variations on the measurability
properties (information patterns) of the ingredients that constitute them.

We sketch hereafter two other classifications — the classifications introduced in [34]
and in [44] — and compare them with our own taxonomy. We note that our classification
is written with a generic information structure depending on a history process, whereas
the two other classifications rely on a state process.

A comparison with the classification of Bertsekas. In [34], the author introduces a
unifying suboptimal control framework, in which rollout algorithms and model predictive
control stand as a special case of approximate dynamic programming methods. The
author frames existing algorithms in two main classes.

1. Explicit cost-to-go methods compute offline a sequence of cost-to-go trVtutPJ0,T K and
solve online problems similar to (2.14). The author outlines two main classes of
algorithms among these methods.

• Get cost-to-go rVt by applying dynamic programming on a simpler problem.
This is equivalent to define an operator rBt`1:t mimicking the Bellman operators
of the original problem.

90

• Use a parametric approximation to approximate the cost-to-go rVt, then tune
the approximation by some systematic methods.

2. Implicit cost-to-go methods compute online a cost-to-go by solving a problem similar
to (2.19). The author distinguishes three classes of algorithms.

• Rollout algorithm solves Problem (2.19) by using suboptimal/heuristic policies
γt`1, . . . , γ rT´1 up to a given horizon rT .

• Open-loop feedback control (OLFC) solves Problem (2.19) with open-loop poli-
cies.

• Model predictive control (MPC) is a variant of OLFC where the future scenario
is deterministic.

A comparison with the classification of Powell. We exhibit hereafter the link
existing between the cost-to-go and lookahead policies we introduced earlier and the
classification introduced in [44].

Powell states that there exists four classes of algorithms to design online policies. He
frames these four classes as cost-to-go methods or lookahead methods.

1. The policy functions approximation (PFA) directly parameterizes the online policy
γt with a fixed rule or a parametric model depending on history (for instance, γt
may encode a proportional-integral (PI) discrete controller or a ps, Sq policy).

2. The cost function approximation (CFA) minimizes a parameterized cost expression
of the form
γtphtq P arg minutPrUt

ş

Wt`1

`
ř

fPF γ
fΦf

t pht, ut, wt`1q
˘

ρt`1pht, dwt`1q, with tΦf
t ufPF a

set of basis functions. That corresponds to the approximate dynamic programming
(ADP) cost-to-go policies, which use a parametric approximation of the cost-to-go
rVt`1 : Ht`1 Ñ R, as described in §2.4.3.

3. The value function approximation (VFA) approximates the cost-to-go rVt`1 and
defines the corresponding online policies as in (2.14). This is exactly the template
of cost-to-go policies introduced in Sect. 2.4.

4. The lookahead policies optimize a multistage problem over a given horizon rT , yield-
ing exactly the template of the lookahead policies described in Sect. 2.3.

2.7 Flows and stochastic kernels

2.7.1 Flows

We consider two time instants r and t such that

0 ď r ă t ď T .

91

For a given pr : t´ 1q-history feedback γ “ tγsusPJr,t´1K P Γr:t´1, we define the flow Φγ
r:t

by

Φγ
r:t :pHr,Hrq ˆ pWr`1:t,Wr`1:tq Ñ pHt,Htq (2.46a)
phr, wr`1:tq ÞÑ phr, γrphrq, wr`1, γr`1phr, γrphrq, wr`1q, wr`2, . . . , wtq , (2.46b)

that is,
Φγ
r:tphr, wr`1:tq “ phr, ur, wr`1, ur`1, wr`2, . . . , ut´1, wtq , (2.46c)

where us “ γsphsq and hs “ phr, ur, wr`1, . . . , us´1, wsq for r ă s ď t ´ 1. We complete
this definition in the case 0 ď r “ t ď T with the relation

Φγ
r:r : pHr,Hrq Ñ pHr,Hrq (2.46d)

hr ÞÑ hr . (2.46e)

The mapping Φγ
r:t gives the history at time t as a function of the initial history hr

at time r and of the history feedback policies tγsusPJr,t´1K P Γr:t´1. An immediate conse-
quence of this definition are the two following flow properties :

Φγ
r:t`1phr, wr`1:t`1q “

´

Φγ
r:tphr, wr`1:tq, γt

`

Φγ
r:tphr, wr`1:tq

˘

, wt`1

¯

, 0 ď r ď t ď T ´ 1 ,

(2.47a)
Φγ
r:tphr, wr`1:tq “ Φγ

r`1:t

`

phr, γrphrq, wr`1q, wr`2:t

˘

, 0 ď r ă t ď T . (2.47b)

2.7.2 Building stochastic kernels from history feedback

Definition 22. Let r and t be given such that 0 ď r ď t ď T .

• For 0 ď r ă t ď T , let be

1. a pr : t´ 1q-history feedback γ “ tγsus“r,...,t´1 P Γr:t´1,
2. a family tρs´1:sur`1ďsďt of stochastic kernels

ρs´1:s : pHs´1,Hs´1q ˆWs Ñ r0, 1s , s “ r ` 1, . . . , t . (2.48)

We define a stochastic kernel

ργr:t : pHr,Hrq ˆHt Ñ r0, 1s (2.49a)

by, for any ϕ : pHt,Htq Ñ r0,`8s, measurable nonnegative extended real-valued
function,7
ż

Ht
ϕph1r, h

1
r`1:tqρ

γ
r:tphr, dh

1
tq “

ż

Wr`1:t

ϕ
`

Φγ
r:tphr, wr`1:tq

˘

t
ź

s“r`1

ρs´1:s

`

Φγ
r:s´1phr, wr`1:s´1q, dws

˘

.

(2.49b)
7We could also consider any ϕ : Ht Ñ R, measurable bounded function, or measurable and uniformly

bounded below function. However, for the sake of simplicity, we will deal in the sequel with measurable
nonnegative extended real-valued functions.

92

• When 0 ď r “ t ď T , we define

ργr:r : pHr,Hrq ˆHr Ñ r0, 1s , (2.49c)

by: ργr:rphr, dh1rq “ δhrpdh
1
rq.

The stochastic kernels ργr:t given by (2.49) are of the form

ργr:tphr, dh
1
tq “ ργr:tphr, dh

1
rdh

1
r`1:tq “ δhrpdh

1
rq b %

γ
r:tphr, dh

1
r`1:tq , (2.50)

where, for each hr P Hr, the probability distribution %γr:tphr, dh
1
r`1:tq only charges the

histories visited by the flow from r ` 1 to t.

Proposition 23 (Flow property). The family tργs:turďsďt of stochastic kernels. given in
Definition 22, has the flow property, that is, for s ă t,

ργs:tphs, dh
1
tq “

ż

Ws`1

ρs:s`1

`

hs, dws`1

˘

ργs`1:t

´

`

hs, γsphsq, ws`1

˘

, dh1t

¯

. (2.51)

2.7.3 Proof of Proposition 20

Proof. We define, for any tγsusPJt,T 1́K P Γt:T 1́,

V γ
t phtq “

ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q , @ht P Ht . (2.52)

From the definition (2.52), we have for any tγsusPJt,T 1́K P Γt:T 1́,

V γ
t phtq “

ż

HT
jph1T qρ

γ
t:T pht, dh

1
T q

that only depends on tγsusPJt,T 1́K

“

ż

HT
jph1T q

ż

Wt`1

ρt:t`1

`

ht, dwt`1

˘

ργt`1:T

´

`

ht, γtphtq, wt`1

˘

, dh1T

¯

by the flow property (2.51) for stochastic kernels

“

ż

Wt`1

ρt:t`1

`

ht, dwt`1

˘

ż

HT
jph1T qρ

γ
t`1:T

´

`

ht, γtphtq, wt`1

˘

, dh1T

¯

by Fubini Theorem [41, p.137]

“

ż

Wt`1

ρt:t`1

`

ht, dwt`1

˘

V γ
t`1

`

ht, γtphtq, wt`1

˘

93

by definition (2.52) of V γ
t`1

ě

ż

Wt`1

ρt:t`1

`

ht, dwt`1

˘

Vt`1

`

ht, γtphtq, wt`1

˘

by definition (2.8) of the value function Vt`1, and as V γ
t`1 only depends on tγsusPJt`1,T 1́K.

We deduce that

Vtphtq ě inf
ut

ż

Wt`1

ρt:t`1

`

ht, dwt`1

˘

Vt`1

`

ht, ut, wt`1

˘

.

This last inequality is in fact an equality, as seen by using any measurable history feedback
policy γ‹ “ tγ‹susPJt,T 1́K given by Assumption 3.

94

Chapter 2. Bibliography

[33] R. Bellman. Dynamic Programming. Princeton University Press, New Jersey, 1957.

[34] D. P. Bertsekas. Dynamic programming and suboptimal control: A survey from ADP
to MPC. European Journal of Control, 11(4-5):310–334, 2005.

[35] D. P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic
Programming. Athena Scientific, fourth edition, 2012.

[36] D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific, Belmont, Massachusets, 1996.

[37] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

[38] P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. Stochastic Multi-
Stage Optimization. At the Crossroads between Discrete Time Stochastic Control
and Stochastic Programming. Springer-Verlag, Berlin, 2015.

[39] C. Dellacherie and P. A. Meyer. Probabilités et potentiel. Hermann, 1975.

[40] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory and
practice—a survey. Automatica, 25(3):335–348, 1989.

[41] M. Loève. Probability Theory I. Springer Science & Business Media, New York, fourth
edition, 1977.

[42] M. V. Pereira and L. M. Pinto. Multi-stage stochastic optimization applied to energy
planning. Mathematical programming, 52(1-3):359–375, 1991.

[43] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimen-
sionality, volume 703. John Wiley & Sons, 2007.

[44] W. B. Powell. Clearing the jungle of stochastic optimization. Informs, pages 109–137,
2014.

[45] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1st edition, 1994.

[46] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer Science & Busi-
ness Media, Berlin, 1998.

95

[47] A. Shapiro. Analysis of Stochastic Dual Dynamic Programming Method. European
Journal of Operational Research, 209:63–72, 2011.

[48] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming:
modeling and theory. SIAM, 2009.

[49] R. M. Van Slyke and R. Wets. L-shaped linear programs with applications to op-
timal control and stochastic programming. SIAM Journal on Applied Mathematics,
17(4):638–663, 1969.

96

Part II

Stochastic optimization of storage
energy management in microgrids

97

Chapter 3

Energy and air quality management in
a subway station using stochastic
dynamic optimization

This is a joint work with Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara
and Julien Waeytens. It was published in Transactions on Power Systems (IEEE).

Chapter Abstract

In the Paris subway system, stations represent about one third of the overall
energy consumption. Within stations, ventilation is among the top consum-
ing devices; it is operated at maximum airflow all day long, for air quality
reasons. In this paper, we present a concept of energy system that displays
comparable air quality while consuming much less energy. The system com-
prises a battery that makes it possible to recover the trains braking energy,
arriving under the form of erratic and strong peaks. We propose an energy
management system (EMS) that, at short time scale, controls energy flows
and ventilation airflow. By using proper optimization algorithms, we manage
to match supply with demand, while minimizing energy daily costs. For this
purpose, we have designed algorithms that take into account the braking vari-
ability. They are based on the so-called Stochastic Dynamic Programming
(SDP) mathematical framework. We fairly compare SDP based algorithms
with the widespread Model Predictive Control (MPC) ones. First, both SDP
and MPC yield energy/money operating savings of the order of one third,
compared to the current management without battery (our figure does not
include the cost of the battery). Second, depending on the specific design, we
observe that SDP outperforms MPC by a few percent, with an easier online
numerical implementation.

Contents
3.1 Introduction . 99

3.1.1 Context . 99

3.1.2 Literature . 100

98

3.2 Energy system model . 101

3.2.1 Energy storage model . 101

3.2.2 Kirchhoff laws . 102

3.2.3 Air quality model . 102

3.2.4 Considerations on numerical simulations 103

3.3 Optimization problem statement 103

3.3.1 Decisions are taken at discrete times 104

3.3.2 Uncertainties are modelled as random variables 104

3.3.3 Control variables are modelled as random variables 104

3.3.4 Non-anticipativity constraints for control variables 105

3.3.5 State and dynamics . 105

3.3.6 Bound constraints on the state and control variables 105

3.3.7 The objective is an expected daily cost 106

3.3.8 Stochastic optimal control problem formulation 106

3.4 Computation of online control strategies 107

3.4.1 Model Predictive Control (MPC) 107

3.4.2 Stochastic Dynamic Programming (SDP) based algorithms . . 108

3.5 Numerical results, assessment and discussion 109

3.5.1 Common data feeding the algorithms 109

3.5.2 Numerical implementation of the MPC algorithm 110

3.5.3 Numerical implementation of the SDP algorithms 110

3.5.4 Out of sample assessment of strategies 111

3.5.5 Numerical results . 111

3.6 Conclusions and perspectives 114

3.6.1 Deterministic problem resolution 115

3.1 Introduction

3.1.1 Context

Apart from train traction, subway stations themselves represent a significant part (one
third) of the energy consumption of a subway system in cities like Paris. Fortunately,
there is room to reduce their consumption by harvesting some of their unexploited energy
potential. We study here the potential energy recovery of a subway station equipped with
a battery to recover regenerative braking energy of subways. The application to braking
energy storage displays features that go beyond the specific instance: the strong and
abrupt intermittency of energy production bursts requires decisions made at short time
scale, hence fast computing online algorithms.

99

Ventilations are among the most significant energy consuming devices in subway sta-
tions. One of the reason is because train braking produces a lot of particles that need to
be removed by ventilation. By producing regenerative braking energy, trains can dissi-
pate their kinetic energy with a lower bake pads wear. Hence recovering braking energy
improves air quality in stations. It might then be useful to control simultaneously a
ventilation and a battery to maximize the benefits provided by this interaction.

We present and compare hereby two classes of methods to solve optimal control prob-
lems in the presence of uncertainty. The first one is Model Predictive Control which
requires only deterministic optimization tools. The second one is Stochastic Dynamic
Programming based on Bellman equation. We apply two different algorithms in each
class, differing on how online information is used to compute a decision. For SDP, we
compare a state augmentation method, to obtain the best possible performance we can
achieve with SDP, and a more classic one based on a Markovian simplification for the
offline phase of the algorithm. For MPC, we compare a version that models stochasticity
as scenario fans and another one that relies on forecasts. We make a fair comparison of
these methods by Monte Carlo simulation and present the results.

3.1.2 Literature

We survey literature on regenerative braking energy, air quality modelling and energy
storage management.

Regenerative braking energy

in most recent subway systems, trains already produce regenerative energy when they
brake and transmit it to accelerating trains on the same line. However when there is
no accelerating train nearby it is not possible to ensure the electrical supply demand
equilibrium and regenerative braking is impossible. A comprehensive study of all possible
ways to recover that energy is presented in [57]. The authors of [58] conclude that
wayside energy storage is relevant to reduce the energy consumption of subway stations.
The Southeastern Pennsylvania Transportation Authority (SEPTA) successfully installed
wayside batteries to recover braking energy as reported in [56]. SEPTA is about to
generalize the project to multiple stations.

Air quality in buildings and subway stations

an ANSES report [50] about air quality of underground subway stations states that
the concentration of particulate matter whose size is inferior to 10µm (PM10) can be
unhealthy for the workers and maybe users. This is mainly due to ferrous PM10 that
are generated during braking of the trains as stated in [74] and [59]. Subway stations
operators in Paris took measures to monitor the concentration of PM10 [59] that are
openly available online. Many studies used Computational Fluid Dynamics technics to
model the dispersion of pollutants in subway stations to produce predictive models as
did the authors of [53]. These methods are computationally very expensive and could
hardly be integrated in an optimization problem without using reduced basis methods
[69] that are challenging to implement in dynamic environments such as subway stations.
The methods presented in [74] and [70] use zonal models to compute an estimation of

100

the global indoor air quality. These models are much more computationally efficient
but require many approximations. The authors of [73] used MPC to control the energy
consumption of ventilations and the related climate in a subway station. They estimate
that their strategy could save up to 30% of energy while maintaining the same comfort
levels but don’t manage an electrical storage simultaneously.

Energy storage management

most of the litterature apply MPC or Two Stage Stochastic Programming techniques to
short term operation optimization of energy storage with uncertain supply as observed
in [65]. Authors of [66] and [67] present MPC strategies to manage energy in battery
and building climate. In [61], [62] and [60] the authors present SDP strategies to control
batteries in microgrids. In [76] SDP is applied to smart home management with electricle
vehicle battery management. Few papers [72], [68] seem to compare the performance of
different stochastic optimal control strategies.

3.2 Energy system model
We consider the energy system sketched in Figure 3.1. We present the equations describ-
ing its physical evolution in continuous time (denoted by t): energy storage, Kirchhoff
laws and air quality. This energy system model will be the basis to simulate different
management strategies corresponding to different EMS.

3.2.1 Energy storage model

We use a classical simple model of the dynamics of the energy storage system, with the
following variables:

• sptq (%), the state of charge of the battery at time t;

• ubptq (kW), the charge (ubptq ě 0) or discharge (ubptq ď 0) power of the battery at
time t; indeed, we observe on Figure 3.1 that the battery can draw power on the
national grid or provide power to the station.

The dynamics of the state of charge is1:

ds

dt
“ ρcpu

b
ptqq` `

1

ρd
pubptqq´ , (3.1)

with charge/discharge efficiencies ρc and ρd. This simple linear dynamical model is rel-
evant as long as we can ensure, by proper management, that the state sptq of charge is
kept between proper bounds s ď sptq ď s (like 30% and 90% of the capacity), which also
ensures a good ageing of the battery.

1We recall that pxq` “ maxpx, 0q and pxq´ “ minp0, xq.

101

S

U bD

B

U r

U v

Figure 3.1: Electrical network representation

3.2.2 Kirchhoff laws

On Figure 3.1, we observe that all flows must be balanced at the central node, by Kirchhoff
laws. The balance equation writes

dptq ` uvptq ` ubptq “ bptq ` urptq . (3.2)

We comment the different terms:

• the station consumes a purely exogenous power dptq (kW) on the grid at time t;

• the ventilations of the station consume a power uvptq (kW); this energy is control-
lable and we assume that it can be switched between two modes corresponding to
two distinct airflows;

• the trains produce a recoverable power bptq (kW) on the line;

• the difference urptq “ dptq`uvptq`ubptq´ bptq is either the trains braking power in
excess (urptq ď 0) that will be wasted (if there is not enough demand, trains brake
mechanically instead of electrically), or the power in shortage (urptq ě 0) that will
be drawn on the national grid to satisfy the demand of the station and, possibly,
to charge the battery.

3.2.3 Air quality model

In this study we choose to focus only on pariculate matters, based on the French health
agency ANSES report [50], ferrous PM10 is the limiting factor in subway stations. In

102

[70], the authors use a bi-compartiment model in an office building in order to model
the deposition/resuspension phenomenon. Due to the lack of data in subway stations to
calibrate the surface dynamic model, we consider a simple air mass conservation model,
as presented in [74], to model the dynamics of the particulate matters concentration
in the subway station air. As in [74], we assume that the floor is always saturated in
dust particles so as to ignore the particles surface dynamics. Moreover, we assume that
trains arriving in station produce particles by wearing brake pads and wheels, but also
by resuspending particles from the floor. We use the model presented in [74] to model
the relation between trains arrivals and particles generation in the air.

The dynamical equation for the PM10 concentration in the station is

dc

dt
“ αnptq2 `

´ρv
v
uvptq ` βnptq

¯´

coptq ´ cptq
¯

´ δcptq , (3.3)

with the following notations:

• cptq pµg{m3q, PM10 concentration in the station air;

• coptq pµg{m3q, PM10 concentration outside the station;

• v pm3q, volume of the station assimilated as a single zone;

• nptq ph´1q, number of arriving trains per hour;

• α pµgh{m3q, apparent generation rate of particles by braking trains;

• δ ph´1q, apparent deposition rate of particules;

• β, apparent train contribution rate to natural ventilation;

• ρv pm
3{kwhq, energy efficiency of the ventilations.

3.2.4 Considerations on numerical simulations

The equations (3.1) and (3.3) form a system of ordinary differential equations. We tested2

that a forward Euler resolution with T0 “ 24h and ∆ “ 2 min coincides with a 5th
order Tsitouras method using adaptative timestepping with a mean error of 0.06˘0.09%.
This makes it possible to simulate the energy system, driven by given ventilation and
battery control strategies, using a simple discrete time dynamical model. We choose
this 2 minutes time step as it coïncides with the frequency of subways, and consequently,
of braking energy bursts.

3.3 Optimization problem statement
Once we dispose of the energy system dynamical model, we can envisage to simulate
different management strategies and to compare them. They are compared with respect
to the daily costs that they induce, while respecting constraints. To make this statement
more formal and precise, we now formulate a mathematical optimization problem, under
the form of a stochastic optimal control problem.

2We used the Julia [52] package DifferentialEquations.jl [71].

103

3.3.1 Decisions are taken at discrete times

By contrast with the energy system model developed in Sect. 3.2, where time is continu-
ous, we adopt a discrete time frame because decisions are made at discrete steps. Indeed,
we consider a subway station grid equipped with a hierarchical control architecture, as in
most microgrids [64], that needs time to compute and implement a decision. Decisions
are produced every ∆ “ 2 minutes, over an horizon T0 “ 24h; then, they are sent to local
controllers that make decisions at a faster pace.

To make the connection with the variable indexed by continuous time in Sect. 3.2, we
adopt the following convention: for any variable x, we put xt “ xpt∆q for t “ 0, . . . , T “
T0
∆
. In other words, xt denotes the value of the variable x at the beginning of the time

interval rt, t`∆r. This dicretization is compatible with the one discussed in §3.2.4.

3.3.2 Uncertainties are modelled as random variables

We write random variables in capital bold letters, like Z , to distinguish them from
deterministic variables z.

We model energy demand Dt and trains braking energy production Bt, defined when
stating the balance equation (3.2), as random variables. We do the same for the num-
ber Nt of trains arrivals per hour and for the outside air quality Co

t , both defined when
stating the dynamical equation (3.3) for the PM10 concentration in the station.

In the end, we define, for t “ 0, . . . , T , the vector of uncertainties at time step t

Wt “ pDt, Bt, Nt, C
o
t q
J . (3.4)

We call Wt the noise at time t, that is, the uncertainties materialized at the end of the
time interval rt´∆, tq. The noise Wt takes value in the set Wt “ R4.

3.3.3 Control variables are modelled as random variables

As time goes on, the noise variables Wt are progressively unfolded and made available
to the decision-maker. This is why, as decisions depend on observations in a stochastic
optimal control problem, decision variables are random variables: the variables in Sect. 3.2
will now become random variables in capital bold letters.

At time step t, at the beginning of the time interval rt, t ` ∆r, the decision-maker
takes two decisions: the battery charge/discharge power U b

t and the ventilation power
U v
t . Then, at the end of the time interval rt, t ` ∆r), the decision-maker selects the

power U r
t`1, drawn from the national grid, to react to the uncertainties Dt`1 (demand)

and Bt`1 (braking energy) and to ensure the supply demand balance in the grid. This
is made possible by a controlled DC/DC converter and supercapacitors that are not
modelled in this problem. From the (balance equation) constraint (3.2):

U r
t`1 “Dt`1 `U

v
t `U

b
t ´Bt`1 . (3.5)

We group the two decision/control variables in a vector:

Ut “ pU
b
t , U

v
t q . (3.6)

We call Ut “ R2 the set in which the controls take their values.

104

3.3.4 Non-anticipativity constraints for control variables

To express the fact that the decision-maker (here the EMS) cannot anticipate on the
future realizations of the noise, we introduce Ft, the sigma algebra generated by all the
past noises up to time t:

Ft “ σpW0, . . . ,Wtq . (3.7)

The increasing sequence pF0, . . . ,FT q is the natural filtration used to model the informa-
tion flow of the problem. The algebraic non-anticipativity constraint

σpUtq Ă Ft (3.8)

expresses the fact that the decision can only be made knowing no more than the past
uncertainties [54, chap. 4].

We say that the controls satisfying (3.8) are Ft-measurable. Throughout the paper,
a random variable Zt indexed by t is, by convention, Ft-measurable, that is, σpZtq Ă Ft.

3.3.5 State and dynamics

In the energy system model developed in Sect. 3.2, the equations (3.1) and (3.3) form a
system of ordinary differential equations. This is why we introduce two state variables,
the state of charge st and the PM10 concentration ct, making thus a two-dimensional
state variable

Xt “ pSt, Ctq
J . (3.9)

We call Xt “ R2 the state space where the state takes its values.
By sampling the continuous time differential equations (3.1) and (3.3) at discrete time

steps, and by considering that the control variables are piecewise constant between two
steps, we can define a discrete time dynamics ft : XtˆUtˆWt`1 Ñ Xt`1. It is such that

Xt`1 “ ftpXt,Ut,Wt`1q “

ˆ

f st pXt,Ut,Wt`1q

f ct pXt,Ut,Wt`1q

˙

(3.10)

where
f st pxt, ut, wt`1q “ st `∆

´

ρcpu
b
tq
`
` ρ´1

d pu
b
tq
´
¯

, (3.11a)

and

f ct pxt, ut, wt`1q “ ct ´∆δct `∆αn2
t`1 `∆

´ρv
v
uvt ` βnt`1

¯´

cot`1 ´ ct

¯

. (3.11b)

3.3.6 Bound constraints on the state and control variables

As stated when writing the dynamics of the state of charge in (3.1), the state of charge
has to be kept bounded

s ď St ď s . (3.12)

The ventilation airflow can swith between two values, leading to the binary constraint

U v
t P tu

v, uvu , (3.13)

105

and the charge/discharge power is limited, leading to the box constraint

ub ď U b
t ď ub . (3.14)

The bound constraints (3.12)–(3.13)–(3.14), on the state and control variables, can
be summed in the synthetic expression

pXt,Utq P Bt Ă Xt ˆ Ut . (3.15)

3.3.7 The objective is an expected daily cost

We consider the following criterion to be minimized:

E
”

T´1
ÿ

t“0

pt`1

`

U r
t`1

˘`
` λCt`1

ı

. (3.16)

We now comment each term.
The term E stands for the mathematical expectation. By the law of large numbers,

mimimizing the mathematical expectation of costs ensures that the system will perform
at its best over many days.

Inside the expectation, the sum over time represents the cumulated costs. Those are
a mix of two terms.

First, at every time step t, we pay the electricity consumed on the national grid
between t ´ ∆ and t. We call pt pe{kW q the cost of electricity per kW between t ´ ∆
and t, that we assume to be deterministic. Therefore we pay pt ˆ pU r

t q
` peq at time t.

Second, we give a price of discomfort relative to air quality. Ideally, we would like to
keep T´1E

´

řT
t“1Ct

¯

, the expected mean of particles concentration over a day, bounded.
Indeed, this is the indicator used by the World Health Organization for its PM concen-
tration guidelines [75]. To handle this constraint, we fix a marginal price λ pe m3{µgqq of
discomfort associated with this ideal constraint. We have fixed this parameter by trials
and errors, after solving the problem for different values of λ. The cost of discomfort is
then λˆCt peq.

Finally, from (3.16) and (3.5), we define the instantaneous cost Lt : XtˆUtˆWt`1 Ñ R
by

Ltpxt, ut, wt`1q “ ptpdt`1 ` u
v
t ` u

b
t ´ bt`1q

`
` λct`1 . (3.17)

3.3.8 Stochastic optimal control problem formulation

The EMS problem writes as a general Stochastic Optimal Control (SOC) [54] problem in
a risk neutral (expectation) setting

min
X ,U

E
”

T´1
ÿ

t“0

LtpXt,Ut,Wt`1q `KpXT q

ı

(3.18a)

s.t Xt`1 “ ftpXt,Ut,Wt`1q (3.18b)
pXt,Utq P Bt (3.18c)
σpUtq Ă Ft (3.18d)

where K is as final cost function — which is 0 in our case, as we are indifferent of the
state of charge at the end of the day.

106

3.4 Computation of online control strategies
The non anticipativity constraint (3.18d) can be equivalently replaced by its functional
counterpart [54, chap. 3, p86]:

Dπt : W0 ˆ . . .ˆWt Ñ Ut, Ut “ πtpW0, . . . ,Wtq . (3.19)

The mapping πt is called a strategy (more precisely a noise dependent strategy).
In this paper, we restrict the search to solutions among the class of (augmented) state

strategies of the form

πt : Xt ˆWt Ñ Ut, Ut “ πtpXt,Wtq . (3.20)

This is indeed a restriction, as the stateXt is, by the iterated dynamics (3.10), a function
of pW0, . . . ,Wtq.

In practice, we are not interested in knowing πtpxt, wtq for all possible values of pxt, wtq;
we just want to be able to compute, on the fly, the value ut “ πtpxt, wtq when, at
time t, the couple pxt, wtq materializes. This is why, in section 3.4.1 and section 3.4.2, we
present two methods for the online implementation of strategies. Both methods compute
ut “ πtpxt, wtq by solving, online, a optimization problem.

3.4.1 Model Predictive Control (MPC)

Model Predictive Control is a general control strategy that has been used extensively in
numerous applications. We compare two MPC methods, namely Open Loop Feedback
Control (OLFC) and Certainty Equivalent Model Predictive Control (CEC). At time
step t1, the OLFC algorithm takes as inputs the state x of the system and all the pre-
vious uncertainties realizations w0, . . . , wt1 . One way or another, it selects an number S
of “scenarios” p rwst1`1, . . . , rw

s
T qsPt1,...,Su with associated probabilities ppsqsPt1,...,Su and then

solves the following deterministic (open loop) optimal control problem:

min
put1 ,...,uT´1q

S
ÿ

s“1

ps

T´1
ÿ

t“t1

Ltpx
s
t , ut, rw

s
t`1q `Kpx

s
T q (3.21a)

s.t xst`1 “ ftpx
s
t , ut, rw

s
t`1q (3.21b)

pxst , utq P Bt, x
s
t1 “ x (3.21c)

From the optimal controls put1 , . . . , uT´1q thus obtained, the OLFC algorithm only keeps
the first prut1 , . . . , rut`Nmpcq (we call Nmpc the reoptimization step of the OLFC). Then, at
time t1 ` Nmpc, the OLFC algorithm produces new controls by solving problem (3.21)
starting at t1 `Nmpc with an updated forecast.

As it proves delicate to select decent scenarios for all the remaining time horizon
(and as a bad forecast can lead to poor decisions), the online problem horizon T ´ 1
in (3.21a) is often cut at t1`ht1 , with ht1 ě Nmpc. Thus, one obtains problem (3.21) where
the objective (3.21a) is replaced by

řS
s“1 ps

řt1`ht1
t“t1 Ltpx

s
t , u

s
t , rw

s
s`1q. CEC is a popular

version of OLFC where all the future uncertainties are replaced by a single scenario, a
forecast. The sketch of the algorithm is the one of OLFC with S “ 1 and p1 “ 1. CEC
is often casted in the context of deterministic optimization as it requires only to solve
deterministic problems. However it can be used to solve stochastic optimization problems
as it provides noise dependent strategies.

107

3.4.2 Stochastic Dynamic Programming (SDP) based algorithms

A major difference of MPC with the SDP methods is that there is no offline computation
phase. We compare two flavours of SDP algorithms that we call Online (SDPO) and
Augmented (SDPA).

The offline-online SDPO algorithm encompasses two phases

a backward functional recursion performed offline; a forward online optimization by ex-
haustive search.

Offline, the SDPO algorithm computes a sequence of functions rVt by backward induc-
tion as follows:

rVT pxq “ Kpxq (3.22a)

rVtpxq “ min
uPUt

ż

Wt`1

”

Ltpx, u, wt`1q`rVt`1

´

ftpx, u, wt`1q

¯ı

µoft`1pdwt`1q . (3.22b)

Here, each µoft`1 is an (offline) probability distribution on the set Wt`1. The recursion
is often performed by exhaustive search in discretized versions of the state and control
spaces, hence requiring interpolation of the functions Vt. Indeed, xt`1 “ ftpx, u, wq is not
guaranteed to fall on a gridpoint of the discretized version of Xt`1.

Online, at time t, the SDPO algorithm uses the functions Vt and solves (with possibly
a refined discretization of the control space Ut)

ut P arg min
uPUt

ż

Wt`1

”

Ltpx, u, wt`1q` rVt`1

´

ftpx, u, wt`1q

¯ı

µont`1pwt, dwt`1q .

Here, µont`1 is an (online) conditional probability distribution on the set Wt`1, knowing
the previous uncertainty wt. We choose a conditional distribution depending here only
on the last uncertainty realization because we use an order 1 autoregressive model in our
numerical experiment. As the online conditional probability distribution µont`1 depends
on past uncertainties, this method produces state and noise dependent decisions in real
time.

It is well known [51] that the above offline-online SDPO algorithm produces an opti-
mal solution of the SOC problem (3.18) when i) the random variables W0, . . . ,WT are
stagewise independent, ii) µoft is the probability distribution of Wt, iii) µ

on
t “ µoft is the

(unconditional) probability distribution of Wt.
As, in our energy system case, the uncertainties are very likely correlated between

successive time steps, they cannot be modelled by stagewise independent noises. Conse-
quently, the strategy provided by the offline-online SDPO algorithm is not guaranteed to
be optimal.

The offline-online SDPA algorithm follows the SDPO structure, but with

the state x replaced by the couple px,wq; the uncertainty w replaced by a new uncer-
tainty z.

108

The dynamics ftpx, u, wq is also replaced by a dynamics fAt
´

px,wq, u, z
¯

of the form

fAt :
`

Xt ˆWt

˘

ˆ Ut ˆ Zt`1 Ñ
`

Xt`1 ˆWt`1

˘

where

fAt

´

px,wq, u, z
¯

“

´

ftpx, u, f
w
pw, zqq, fwpw, zq

¯

. (3.23)

It is straightforward that the above offline-online SDPA algorithm produces an optimal
solution of the SOC problem (3.18) when there exists a stochastic process Z0, . . . ,ZT

such that i) the random variables Z0, . . . ,ZT are stagewise independent, ii) Wt`1 “

fwpWt,Zt`1q.
The limit of this state augmentation strategy is the well known curse of dimension-

ality. The complexity of SDP grows exponentially with the number of state variables.
Here, we try to handle a memory lag of one time step; but handling dependency between
noises over multiple time steps would be out of reach.

3.5 Numerical results, assessment and discussion
In section 3.4, we outlined three methods to compute online strategies. Now, we detail
how to simulate them on the energy system model developed in section 3.2 and how to
compare their expected daily costs.

3.5.1 Common data feeding the algorithms

All the data used for the article is available on our website 3.

Reference case

We consider a subway station i) where the ventilation is operated at constant airflow
60 m3{s ii) which is not equipped with a battery iii) which does not recover regenerative
braking. With this ventilation strategy, the mean PM10 concentration over a day is
108 µg{m3, while the maximum is 182 µg{m3. The consumption of the station over a
day is 2.160MWh which costs 161 e.

By choosing this reference case, our aim is to measure the daily savings made possible
by investing into a battery and by adopting one of the three strategies outlined in section
3.4. This is a partial analysis, as we do not consider the costs of investment.

Braking energy scenarios for algorithms design

As stated in (3.4), the problem presents four sources of uncertainty. However, we assume
that, in (3.4), the demand Dt, the number Nt of trains per hour, and the outdoor
particles concentration Co

t are deterministic in our numerical experiment. Indeed, most
of the uncertainty comes from the trains energy recovery and, moreover, we can have
pretty accurate forecasts for the variables that we assume deterministic.

A scenario is any possible realization of the noise process pW0, . . . ,WT q written
pw0, . . . , wT q. For the braking energy, we generated 5, 000 so-called optimization sce-
narios by using a rule, provided in the link in appendix A, calibrated on realistic data.

3https://trigaut.github.io/VentilationArticle.html

109

These 5, 000 optimization scenarios are the common input provided to all the optimization
algorithms, so that they can be used to design the features of each algorithm.

3.5.2 Numerical implementation of the MPC algorithm

Scenarios

Knowing a realization wt of the noiseWt, we need to compute a scenarios p rwst`1, . . . , rw
s
T qsPt1,...,Su

of the future uncertainties. The scenarios relies upon the following log-ARp1q model4

logWt`1 “ a logWt `Zt`1 , @t “ 0, . . . , T , (3.24)

with independent residual random variables pZtqt“1,...,T . The coefficient a and the distri-
bution of the residuals are identified using the 5, 000 optimization scenarios. Given a num-
ber of scenarios S, we quantize the residuals producing discrete probability laws pZd

t qt“1,...,T

with support of size S allowing to build a scenario fan with S scenarios.

Deterministic problem resolution

MPC algorithms require to solve the deterministic problem (3.21). We present the reso-
lution method, based on a MILP formulation, in Appendix 3.6.1.

3.5.3 Numerical implementation of the SDP algorithms

The offline-online SDPO algorithm

It requires as input the probability distributions µoft , used to compute the functions Vt
offline, and the conditional probability distributions µont , used to compute the controls
online.

• µoft : we fit discrete probability distributions at each time step by quantizing, using
k-means algorithm, the values taken by the 5, 000 optimization scenarios at this
very time step t.

• µont : knowing the realization wt´1, we obtain the conditional probability distribu-
tions µont by using the formula wt “ wat´1 exppztq (see (3.24)). From the 5, 000
optimization scenarios, we obtain 5, 000 values of zt, hence 5, 000 values of wt by
wt “ wat´1 exppztq.

The offline-online SDPA algorithm

In addition to what is needed for the above SDPO algorithm, it requires as input the
new dynamics fwpw, zqq such thatWt`1 “ fwpWt,Zt`1q. This dynamic is deduced from
Equation (3.24).

4The log transform ensures that we produce non negative scenarios.

110

3.5.4 Out of sample assessment of strategies

We have generated 1, 000 so-called assessment scenarios, to be used only for the assess-
ment phase.

We take good care to distinguish "optimization scenarios" from "assessment scenar-
ios". They are sealed. Optimization scenarios were used to construct items entering the
design of the MPC and SDP algorithms. Assessment scenarios will be used to compare
the strategies produced by these algorithms. This is what we call out of sample assess-
ment. By this sealing, no algorithm can take advantage of the assessment scenarios to be
more fitted to the assessment phase.

The result of the assessment of a given strategy/algorithm is an histogram of all the
1, 000 costs obtained along the assessment scenarios.

3.5.5 Numerical results

The computer used has Core i7, 4.2Ghz ˆ8 processor and 16 Go ram + 12 Go swap SSD
memory.

No battery case

As we neglected all stochasticity except braking energy in this numerical application, all
the agorithms perform similarly regarding the ventilation control without a battery and
braking energy recovery. In this deterministic setting, ventilation control optimization
provides 7 e of economic savings over a day without deterioration of air quality. It
represents a 5% reduction of the station electricity bill.

Comparing the algorithms performance

The results5 are summed up in Table 3.1. We measure the savings with respect to a ref-
erence case with no regenerative braking recovered and ventilation at constant maximum
speed over the day.

Strategy SDPA SDPO CEC OLFC

Offline time 3h47 0h06 0h00 0h00
Online time 0.30 ms 0.04 ms 5.7 ms 54 ms

Saved money
(e)

´74.1
˘4.79

´73.0
˘4.59

´71.4
˘4.35

´72.4
˘4.75

Saved energy
(kWh)

´1050
˘69.1

´970
˘60.22

´942
˘59.2

´960
˘62.31

Mean PM10
pµg{m3q

106˘0.11 107˘0.11 107˘0.08 106˘0.10

Table 3.1: Strategies performances comparison
5The lower the better, as we minimize costs. Results are ˘ the standard deviation.

111

We observe in Table 3.1 that all algorithms provide close results. As we look in
more detail, we see that SDPA outperforms SDPO, CEC and OLFC on average for
the economic savings, the mean PM10 concentration and the saved energy. However,
regarding the economic savings, the differences in mean performance (of order 2 to 3 e)
are lower than standard deviations (of order 4.5 e), which makes it delicate to conclude.
The same analysis goes for the energy savings, although the confidence intervals overlap
less.

In fact, the four algorithms can be ranked as follows: SDPA outperforms SDPO that
outperforms OLFC that outperforms CEC, for the economic and energy savings (and they
are comparable for air quality). To sustain this assertion, one has to look at Figure 3.2
that represents the distribution of the relative performance gap between OLFC and SDPA
for the economic savings (a comparable analysis holds for the energy savings).

Figure 3.2: Relative savings gap between SDPA and OLFC

On Figure 3.2, the positive portion of the distribution testimony in favor of SDPA
for the first three histograms and SDPO for the last one. Our analysis of the assessment
scenarios leads to the following observations: i) SDPA outperforms CEC for 995 out of
the 1, 000 scenarios, ii) SDPA outperforms OLFC for 979 out of the 1, 000 scenarios,
iii) SDPA outperforms SDPO for 928 out of the 1, 000 scenarios, iv) SDPO outperforms
OLFC for 762 out of the 1, 000 scenarios, v) SDPO outperforms CEC for all the scenarios,
vi) OLFC outperforms CEC for 949 out of the 1, 000 scenarios.

Concerning the computation time, Table 3.1 shows that SDPA requires higher offline
computation time than SDPO and MPC algorithms. As the online computation time
for the four methods is way under 2 minutes, the three methods are implementable in
real time (recall that the decision time step is 2 minutes). However, MPC algorithms
differ from SDP algorithms along the following line: MPC requires to solve a MILP
online, so that there is no guarantee to reach the optimum, or a feasible solution, within
the prescribed 2 minutes; by contrast, both SDP algorithms only perfom an exhaustive

112

search over all controls in few milliseconds; they display a faster and more stable online
computation which we consider valuable for applications with strong energy production
bursts.

Energy and air quality results

We display and comment some energy and air quality results based on some of the 1, 000
assessment simulations.

Figure 3.3 displays the state of charge trajectories (in grey) of the battery on the
1, 000 assessment scenarios for each algorithm. We plot in blue the mean state of charge
trajectory over all the scenarios and in red the 0.05 and 0.95 quantiles. We observe that
the battery is more intensively operated by SDP methods, illustrating SDP’s ability to
recover more energy than MPC.

Figure 3.3: Simulations of the state of charge

113

Figure 3.4: Air quality simulations

Figure 3.4 displays the controls of the ventilation (below) and the impact on the PM10
concentration (above) over 1 scenario for both SDPA and OLFC. We recall that, in the
reference case, the ventilation is operated at 60m3{s over the whole day. We observe
that both algorithms decrease the consumption of the ventilation while maintaining a
similar air quality. 6 Outdoor PM10 concentration is higher outside at night. Therefore
ventilation in the reference case deteriorates indoor particles concentration between 2
and 5 a.m.

3.6 Conclusions and perspectives
We have presented a subway station energy system, with a battery recovering trains
braking and smart control of the ventilations. We have investigated methods to develop
and implement an Energy Management System that is able to handle uncertainties related
to energy generation. We have discussed the pros and cons of two popular techniques:
Stochastic Dynamic Programming (SDP) and Model Predictive Control (MPC). For such
a system (with a reasonable number of state variables), we have concluded that SDP is
the best choice, even if MPC is a decent alternative. This is not the case in this paper but
we recall that MPC could require computationally expensive mathematical programming
techniques to solve online deterministic problems.

Our numerical experiments provide encouraging results. It seems that it pays to
optimize to improve the energy efficiency and air quality of subway stations. Indeed,
as seen on Figure 3.4, the ventilations energy consumption can be decreased without
deteriorating the air quality.

6Had we modeled the particles generation reduction due to braking energy recovery, we would have
obtained a sharper decrease in PM10 concentration.

114

Our contribution is a first step towards the analysis of new subway station energy
systems. It needs to be completed by an economic analysis that includes the costs of
batteries and the practical installation of such systems.

3.6.1 Deterministic problem resolution

To solve the MPC deterministic problem, we use Mixed Integer Linear Programming
(MILP) by minimizing over states and control variables. As the ventilation airflow uvt
can switch between two modes, the constraint (3.11b) contains the product of a binary
and a continuous variable uvt ˆ ct. That kind of term can be easily linearized.

The constraint (3.11a) contains positive and negative parts of ubt , introducing non
linearities. To circumvent the problem, we introduce two decision variables, ub`t and ub´t
together with the constraint ub`t ˆ ub´t “ 0. It appears that this latter constraint can be
removed as it always satisfied at optimality. Indeed, there is no interest to flow through
the battery to reach the demand as the battery efficiency coefficients waste power.

To solve this MILP, we use the Julia package JuMP [55] with the commercial solver
Gurobi [63].

115

Chapter 3. Bibliography

[50] Anses. Pollution chimique de l’air des enceintes de transports ferroviaires souterrains
et risques sanitaires associés chez les travailleurs. Technical report, Agence nationale
de sécurité sanitaire de l’alimentation, de l’environnement et du travail, 2015.

[51] D. P. Bertsekas. Dynamic programming and optimal control. Athena Scientific, 1995.

[52] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

[53] F. E. Camelli, G. Byrne, and R. Löhner. Modeling subway air flow using cfd. Tun-
nelling and Underground Space Technology, 43(Supplement C):20 – 31, 2014.

[54] P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. Stochastic Multi-
Stage Optimization. At the Crossroads between Discrete Time Stochastic Control
and Stochastic Programming. Springer-Verlag, Berlin, 2015.

[55] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathemat-
ical optimization. SIAM Review, 59(2):295–320, 2017.

[56] A. J. Gillespie, E. S. Johanson, and D. T. Montvydas. Energy storage in pennsyl-
vania: Septa’s novel and innovative integration of emerging smart grid technologies.
IEEE Vehicular Technology Magazine, 9(2):76–86, 2014.

[57] A. González-Gil, R. Palacin, and P. Batty. Sustainable urban rail systems: Strategies
and technologies for optimal management of regenerative braking energy. Energy
conversion and management, 75:374–388, 2013.

[58] A. González-Gil, R. Palacin, P. Batty, and J. Powell. A systems approach to reduce
urban rail energy consumption. Energy Conversion and Management, 80:509–524,
2014.

[59] D. Grange and S. Host. Pollution de l’air dans les enceintes souterraines de transport
ferroviaire et santé. Technical report, Observatoire régional de santé Île-de-France,
2012.

[60] P. Haessig, T. Kovaltchouk, B. Multon, H. Ben Ahmed, and S. Lascaud. Computing
an optimal control policy for an energy storage. In EuroSciPy 2013, Bruxelles, 2013.

[61] B. Heymann, J. F. Bonnans, P. Martinon, F. J. Silva, F. Lanas, and G. Jiménez-
Estévez. Continuous optimal control approaches to microgrid energy management.
Energy Systems, pages 1–19, 2015.

116

[62] B. Heymann, J. F. Bonnans, F. Silva, and G. Jimenez. A stochastic continuous
time model for microgrid energy management. In Control Conference (ECC), 2016
European, pages 2084–2089. IEEE, 2016.

[63] G. O. Inc. Gurobi Optimizer Reference Manual, 2014. http://www.gurobi.com.

[64] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kaz-
erani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke,
et al. Trends in microgrid control. IEEE Transactions on smart grid, 5(4):1905–
1919, 2014.

[65] A. Papavasiliou, Y. Mou, L. Cambier, and D. Scieur. Application of stochastic dual
dynamic programming to the real-time dispatch of storage under renewable supply
uncertainty. IEEE Transactions on Sustainable Energy, 2017.

[66] A. Parisio, E. Rikos, and L. Glielmo. A model predictive control approach to mi-
crogrid operation optimization. IEEE Transactions on Control Systems Technology,
22(5):1813–1827, Sept 2014.

[67] P. Pflaum, M. Alamir, and M. Y. Lamoudi. Comparison of a primal and a dual de-
composition for distributed MPC in smart districts. In Smart Grid Communications
(SmartGridComm), 2014 IEEE International Conference on, pages 55–60. IEEE,
2014.

[68] W. B. Powell and S. Meisel. Tutorial on stochastic optimization in energy part ii: An
energy storage illustration. IEEE Transactions on Power Systems, 31(2):1468–1475,
March 2016.

[69] C. Prud’Homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera,
and G. Turinici. Reliable Real-Time Solution of Parametrized Partial Differential
Equations: Reduced-Basis Output Bound Methods. Journal of Fluids Engineering,
124(1):70–80, Nov. 2001.

[70] J. Qian, A. R. Ferro, and K. R. Fowler. Estimating the resuspension rate and resi-
dence time of indoor particles. Journal of the Air & Waste Management Association,
58(4):502–516, 2008.

[71] C. Rackauckas and Q. Nie. Differentialequations.jl – a performant and feature-rich
ecosystem for solving differential equations in julia. Journal of Open Research Soft-
ware, 5(1), 2017.

[72] A. N. Riseth, J. N. Dewynne, and C. L. Farmer. A comparison of control strategies
applied to a pricing problem in retail. arXiv preprint arXiv:1710.02044, 2017.

[73] M. Vaccarini, A. Giretti, L. Tolve, and M. Casals. Model predictive energy control
of ventilation for underground stations. Energy and buildings, 116:326–340, 2016.

[74] E. Walther, M. Bogdan, and R. Cohen. Modelling of airborne particulate matter
concentration in underground stations using a two size-class conservation model.
Science of The Total Environment, 607:1313–1319, 2017.

117

[75] WHO. Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Ni-
trogen Dioxide and Sulfur Dioxide. World Health Organization, 2006.

[76] X. Wu, X. Hu, S. Moura, X. Yin, and V. Pickert. Stochastic control of smart home
energy management with plug-in electric vehicle battery energy storage and photo-
voltaic array. Journal of Power Sources, 333:203–212, 2016.

118

Chapter 4

Power management for a DC micro grid
integrating renewables and storages

This is a joint work with Alessio Iovine, Gilney Damm, Elena De Santis and Maria
Domenica Di Benedetto. It was published in Control Engineering Practices (Elsevier).

Chapter Abstract

A power management controller for a DC MicroGrid containing renewable
energy sources, storage elements and loads is presented. The controller ensures
power balance and grid stability even when some devices are not controllable
in terms of their power output, and environmental conditions and load vary
in time. Power balance and desired voltage level for the DC MicroGrid are
considered as constraints for the controller. Simulations and an experimental
setup are implemented to show the effectiveness of the proposed control action.

Contents
4.1 Introduction . 120

4.2 Hierarchical control structure 122

4.2.1 Low-level control system . 122

4.3 Power Management Model . 123

4.3.1 Energy Equations . 123

4.3.2 Assumptions . 125

4.3.3 Constraints . 126

4.4 Power Management Controller 128

4.4.1 Target . 129

4.4.2 Deterministic problem: Mixed Integer Quadratic Program . . . 129

4.5 Simulations . 131

4.5.1 Low level controller implementation 131

4.5.2 Forecast strategy . 132

4.5.3 Power management controller implementation 132

119

4.5.4 Simulations scenarios . 132

4.5.5 Experimental results . 141

4.6 Conclusions . 146

4.1 Introduction
MicroGrids are increasingly being considered in distributed power generation given their
ability to reduce the physical and electrical distance between sources and loads ([89], [101])
and to improve grid resilience and stability when run in islanded mode. In particular,
being able to connect DC power sources such as solar plants to DC loads such as LEDs
and electrical vehicles (see [113]) improves substantially power losses. Hence, a large
effort has been placed into the development of a efficient controllers dedicated to operate
DC MicroGrids ([103], [86], [93], [87], [99], [81]). In this framework, a multilevel scheme
is adopted, where economic aspects and energy or power requirements are treated at
different time scales (see [103]). The power management problem is formulated as a
nonlinear set of equations describing a permanent steady-state regime, neglecting the
transient state ([100], [98], [85]). However, dynamic power management considering load
variability and weather forecasts should be more efficient ([91], [82], [92], [109]).

The development of high-level controllers for MicroGrids has been the focus of recent
research, where all the sources are supposed to be controllable in power, i.e. the controller
provides a desired power output reference to each device assuming that the devices can
achieve this target power output (see [90], [77], [78], [105], [104])). Unfortunately, not all
MicroGrids have direct controllability of each node and the related power output. For
example, in case of dealing with different storage devices in an islanded configuration,
the different characteristics of each device lead to different targets: the one in charge of
controlling uncertainties and unmodeled problems has not its power output imposed a
priori, since it depends on the real-time perturbations taking place with respect to the
ones calculated by the nominal power flow model. Nevertheless, this power output needs
to be monitored and controlled, since it clearly impacts the state of charge of the device.
A management controller needs to take it into account in a different way. It must to be
noticed that to select the right reference for a device means to properly select the needed
amount of power such device must provide or absorb.

In this paper, we consider a DC islanded MicroGrid that includes a battery, a superca-
pacitor, a photovoltaic system and a load. The battery acts as a reservoir of energy, while
the supercapacitor counterbalances transients and unmodeled disturbances, as in [97] and
[95]. As a consequence, the supercapacitor power output is not directly controllable. We
propose a hierarchical control architecture to optimize the power efficiency of the Mi-
croGrid where a higher-level power management controller provides power references to
the elements of the MicroGrids while taking into account the limitations of each device
and the available degrees of freedom. Indeed, since the supercapacitor has not a power
reference to follow, the battery has to be controlled such to indirectly control the state
of charge of the supercapacitor to never be either completely charged nor discharged.
This paper extends the preliminary results described in [94], by considering power losses
and converter efficiency. This extension results in a non linear optimization problem that

120

Figure 4.1: The adopted hierarchical control on two levels and the corresponding time
scales.

can be solved with Mixed Integer Quadratic Programming (MIQP), or a Mixed Integer
Second Order Conic Programming (MISOCP) by using a Model Predictive Controller
(MPC) ([83]).

Our hierarchical scheme involves a high-level controller that deals with an optimization
problem on a power management model, while the low level controller translates the
power reference provided into a voltage or current level. This approach yields a fast
power management controller so that it can be used for adapting the power references to
time-varying conditions. Our approach has a significant advantage over present solutions
that use droop control to adapt to real-time conditions, since they are inefficient in
terms of optimization of the available resources and their management. Having a high
update rate, the proposed scheme allows for an optimization of both the capacity of the
storage devices and their stored energy [103]. Indeed, available optimization techniques
operate with long time steps for the high-level controller, while the adaptation to real time
conditions are left to non optimized techniques as the droop control. The references for
the power management controller are supposed given by an higher Energy Management
System (EMS), which is not modeled here.

Further, comparing to [94], we provide simulation results for a realistic power elec-
tronics setup using SimPowerSystems (see [108]) to simulate the DC MicroGrid with the
proposed controller. The controller is implemented in embedded hardware for low-budget
applications, such as home-owned photovoltaics and battery sets.

The paper is organized as follows. Section 4.2 describes the considered hierarchical
control levels and in Section 4.3 the mathematical model for the power management
is introduced. In Section 4.4 the optimization problem is formulated and the optimal
solution is derived. Simulation and experimental results are offered in Section 4.5.

121

4.2 Hierarchical control structure
In this paper, we propose a hierarchical control architecture:

L) a distributed low level control system is developed for each device composing the
DC grid. The control laws operate according to the device mathematical model in
order to obtain the desired level of power, which is a given reference.

H) a centralized high level controller, which is the considered Power Management Con-
troller, provides the power references for the local low level controllers. According
to a power management model, it uses receding horizon techniques to predict the
future states and calculates the optimal references for ensuring power balance.

The Energy Management System (EMS) at the top of the proposed hierarchical struc-
ture, which is in charge of providing the references for the lower levels, is not considered
in this paper.

The two levels L and H have different time scales, as shown in Fig. 4.1. The low
level controller (L) operates in a range varying from 10´6 to 10´3 seconds, while the high
level one (H) has a range from 100 to 101 seconds. At each high level sampling time,
denoted kT , the controller H provides the references for all low level sampling times
tkT, kT ` τ, ..., kT ` nτ, ..., kT `Nτu. Note that T “ Nτ .

At time k ´ 1 the controller H implements a receding horizon optimization problem
of a power management model in order to predict what will be the needed power at
time k from all branches of the MicroGrid in order to comply with power balance. At
time k, H sends the optimal reference values to the local controllers, so that they can
physically let the devices obtain the requested amount of power. The value at time k is
based on a power management model, on the actual values of the system at time k ´ 1,
which is provided to the higher level controller by the devices operating local control
and sent through a communication channel, and on the calculated system evolution over
the considered prediction horizon of N time steps. Obviously, the iteration provides the
references for k ` 1, k ` 2, etc.

The controllers do not share the state variables. Since H deals with a power manage-
ment model, its state and control input are composed by energy and power levels. On
the contrary, the model of L deals with voltages and currents. The outputs of H will be
the references for L; indeed, given a power reference, the low level controller translates it
into a voltage or current reference according to the device conditions.

4.2.1 Low-level control system

We consider a DC microgrid composed by a renewable source (a photovoltaic array -
PV), two storages acting at different time scales, a capacitor representing the DC grid
and a load (an electric vehicle for example), since this kind of structure composed of a
combination of renewables, loads and different types of storage is presently attracting
much interest (see [79], [96], [97]). The model of the grid is depicted in Fig. 4.2.

Given the specification for the bounds of the voltage of the capacitor C9 and some
desired reference values for the voltages of the capacitors C1 and C4, in [97] a stabilizing

122

Figure 4.2: The low-level control systems

controller was designed, which ensures the asymptotic convergence to the desired refer-
ence values in the nominal case. In this paper, the high level controller is in charge of
computing the low level reference values, which are therefore updated at each step k.

4.3 Power Management Model
In this section, the dynamic power management model is introduced, which is composed
by equations describing energy variations in the devices and the power flow in the DC
grid (see [105], [77], [104], [110]).

Fig. 4.3 depicts the MicroGrid as a set of energy nodes and power edges, from the
Power Management perspective: EB, ES, EDC are the energies stored in the battery,
supercapacitor and DC grid respectively, while DPV ´ PPV , DL ´ PL, P`B , P´B , P`S , P´S ,
are the exchanged powers.

The two storages, a battery and a supercapacitor, have different targets. The battery
can be viewed as a reservoir that acts as a buffer between the flow requested by the net-
work and the flow supplied by the production sources: its voltage is directly controlled by
the DC/DC current converter (highlighted in yellow in Fig. 4.2) applying the reference
provided by the high level controller. On the contrary, the supercapacitor maintains grid
voltage around a desired value: the reference value for the local controller is then not a
consequence of the optimization problem but is dynamically calculated by the low level
controller as a consequence of the microgrid values. The power coming in/out the super-
capacitor is a consequence of the mismatch between the power produced and the power
consumed. Therefore, the optimization problem will consider also the energy quantity
in the supercapacitor, since the role of the supercapacitor is essential for the whole grid
stability and if it is fully charged or discharged, it cannot continue its operations.

4.3.1 Energy Equations

The considered models for the battery and the supercapacitor are standard and represent
them as capacitors (see [104], [106], [77]); they result in a simple impulse response model
which is broadly used due to its simplicity and consequently to the low computational

123

Figure 4.3: The considered framework in a Power Flow scheme represented as a set of
nodes.

effort needed for its solution (see [90]). The objective is to make an approximation to deal
with the energy variation in three capacitances: battery, supercapacitor and DC grid.

Then a dynamical model can be used to describe the power flow generating the energy
variations in the devices. In particular, according to the scheme in Fig. 4.3, the stored
energy into the DC grid, the battery and the supercapacitor will vary depending on the
power flow needed for supplying the load. As described by the following equations, the
energy variations in the battery and the supercapacitor depend only on the power coming
in or out of the devices, while for the DC grid they depend on the power balance between
the produced and the demanded power. Terms representing the efficiency of the physical
devices are also introduced. The dynamical system obtained is:

$

’

’

’

’

&

’

’

’

’

%

EDCpk ` 1q “ EDCpkq ` T
”

ηPV pDPV pkq ´ PPV pkqq ´
1
ηL
pDLpkq ´ PLpkqq

ı

`T
”

ηdBP
`
B pkq ´

1
ηcB
P´B pkq ` η

d
SP

`
S pkq ´

1
ηcS
P´S pkq

ı

EBpk ` 1q “ EBpkq ` T
“

´P`B pkq ` P
´
B pkq

‰

ESpk ` 1q “ p1´ TαSqESpkq ` T
“

´P`S pkq ` P
´
S pkq

‰

(4.1)

where EB, ES, EDC are the energies stored in the battery, supercapacitor and DC grid
respectively. DPV ´PPV is the power produced by the PV array, where DPV is the current
available power and PPV is the calculated quantity to be neglected for stability purposes;
according to the same reasoning, DL ´ PL is the power demanded by the load, with DL

the current demanded power and PL the quantity to be disconnected to ensure effective
feasibility of the optimization problem (load shedding).

P`B , P´B , P`S , P´S , are the powers exchanged by the battery and the supercapacitor,
respectively, where the power absorbed by the storages are P´B and P´S , while the ones
provided are P`B and P`S . This difference is needed to take into account the efficiency

124

and the losses due to the power flow and the power constraints, which could result in
different values in the charge or discharge case. The parameters ηPV ,

1
ηL
, ηdB,

1
ηcB

, ηdS and
1
ηcS

describe the loss in efficiency and the losses due to DPV ´ PPV , DL ´ PL, P`B , P´B ,
P`S , P´S , respectively. The αS parameter allows one to consider the self-discharge ratio
of the supercapacitor taking place in the considered T time interval; the really small
self-discharge ratio of the battery is neglected because of the relative short time span
considered in these two control levels.

The model in (4.1) is used to calculate the optimal amount of power to be demanded
from the battery to correctly feed a load, considering the powers as bounded control inputs
or disturbances. In particular, the load demanded power and the one coming from the
renewables are seen as disturbances, and extra degrees of freedom are introduced to allow
modifications on them in case of unfeasible problems. Our target is to examine a situation
where it is possible to deal with the capability to operate on both such powers, taking
into account future prediction of their values and physical limitations of the different
storage devices.

4.3.2 Assumptions

Proper sizing of each component in a DC microgrid is an important feasibility require-
ment. In order to always satisfy the power requested by the load, the sizing of the PV
array, battery and supercapacitor fits some conditions related to the produced power by
the photovoltaic array DPV , the P`B , P´B , P`S , P´S , power coming from the storages, and
the DL power absorbed by the load:

i)

Assumption 4. the sizing of the photovoltaic array is performed according to total
energy needed in a whole day;

ż D

0

ηPVDPV ptq dt ě

ż D

0

1

ηL
DLptq dt (4.2)

where D is equal to daytime (24 hours) and the quantities represent the worst case
scenario that is considered in this framework, based on previous collected data;

ii)

Assumption 5. the sizing of the battery and the supercapacitor are performed ac-
cording to the energy balance in the T time step, needed for selecting a new reference;

›

›

›

›

›

ż pk`1qT

kT

„

ηPVDPV ptq ` η
d
BP

`
B ptq ´

1

ηcB
P´B ptq ´

1

ηL
DLptq

dt

›

›

›

›

›

ď (4.3)

ď
1

2

ż pk`1qT

kT

rηdSP
`
S ptq ´

1

ηcS
P´S ptqs dt @ k

The last condition can be seen as the ability of the supercapacitor to fulfill the re-
quest to provide enough amount of power in the considered time interval; for sizing the

125

supercapacitor the worst scenario due to current load variations is considered, i.e. the
case where the supercapacitor needs to provide/absorb the maximum available current
for all the time steps.

The exact sizing of the components is considered out of the scope of this work.

4.3.3 Constraints

Here state and input constraints are defined, which represent either physical constraints
(hard constraints) or targets (soft constraints):

• to ensure a certain level of power quality and to avoid problems related to the
connection with the physical devices, the energy stored in the DC grid must be
kept between an interval;

Em
DC ď EDCpkq ď EM

DC , @ k (4.4)

where Em
DC , E

M
DC ě 0;

• the energy in the battery and the supercapacitor must remain in a range of values,
in order not to damage the devices;

Em
B ď EBpkq ď EM

B , @ k (4.5)

Em
S ď ESpkq ď EM

S , @ k (4.6)

where Em
B ě 0, EM

B ě 0, Em
S ě 0, EM

S ě 0;

The match between power in and power out which represents power balance is already
introduced by the equation describing the energy in the DC grid.

Moreover, each control law has different constraints:

• the unavailability to provide more power than the available one from the PV and
the storages is introduced, and the choice not to arbitrarily increase the load if
needed;

PPV pkq ě 0, @ k (4.7)

PLpkq ě 0, @ k (4.8)

• also, the power coming from the PV array and the one consumed by the load are
bounded and cannot be negative;

DPV pkq ´ PPV pkq ě 0, @ k (4.9)

DLpkq ´ PLpkq ě 0, @ k (4.10)

• the power absorbed/provided by the battery and the supercapacitor are bounded;

0 ď P`B pkq ď P
`

B, @ k (4.11)

0 ď P´B pkq ď P
´

B, @ k (4.12)

0 ď P`S pkq ď P
`

S , @ k (4.13)

0 ď P´S pkq ď P
´

S , @ k (4.14)

where P`B ě 0, P´B ě 0, P`S ě 0, P´S ě 0;

126

• saving the battery life time is a priority and to this purpose limitations on its power
variation are imposed;

}P`B pk ` 1q ´ P`B pkq} ď ∆P
`

B, @ k (4.15)

}P´B pk ` 1q ´ P´B pkq} ď ∆P
´

B, @ k (4.16)

where ∆P
`

B ě 0, ∆P
´

B ě 0;

• the power entering and leaving the battery and the supercapacitor cannot take place
at the same time. Conditions similar to the ones in [105] are then implemented as

P`B pkq ˆ P
´
B pkq “ 0, @ k (4.17)

P`S pkq ˆ P
´
S pkq “ 0, @ k (4.18)

So, to avoid the simultaneous charging and discharging of the battery and the
supercapacitor, the following binary variables SB and SS are introduced, such to
modify the limitations on the power as

SBpkq P t0, 1u, @ k (4.19)

SSpkq P t0, 1u, @ k (4.20)

P`B pkq ď SBpkq ¨ P
`

B, @ k (4.21)

P´B pkq ď p1´ SBpkqq ¨ P
´

B, @ k (4.22)

P`S pkq ď SSpkq ¨ P
`

S , @ k (4.23)

P´S pkq ď p1´ SSpkqq ¨ P
´

S , @ k (4.24)

Since the supercapacitor has to ensure voltage stability with respect to the variations
taking place on the grid, its power variations over time are not considered to be bounded.
Indeed, even if in reality they are bounded, these bounds may be established in a worst
case scenario, and according to the considered assumptions they do not impact our prob-
lem. This is the reason why there are no conditions for P`S and P´S as (4.15) and (4.16)
for P`B and P´B .

Considering (4.1), it is then possible to rewrite the whole discrete time dynamical
system as

xpk ` 1q “ Axpkq `Bupkq `Ddpkq (4.25)

where the state is

x “ rEDC EB ESs
1
“ (4.26)

“ rx1 x2 x3s
1

and the input and disturbance vectors are

u “rPPV PL P`B P´B P`S P´S s
1
“ (4.27)

“ ru1 u2 u3 u4 u5 u6s
1

127

d “ rDPV DLs
1
“ (4.28)

“ rd1 d2s
1

The discrete time matrices A, B, D are

A “

»

–

1 0 0
0 1 0
0 0 1´ αST

fi

fl (4.29)

B “ T

»

–

´ηPV
1
ηL

ηdB ´ 1
ηcB

ηdS ´ 1
ηcS

0 0 ´1 1 0 0
0 0 0 0 ´1 1

fi

fl D “ T

»

–

ηPV ´ 1
ηL

0 0
0 0

fi

fl (4.30)

4.4 Power Management Controller
Once the mathematical model of the dynamical system has been defined, it is possible to
define an optimal control problem to formalize the way the Power Management Controller
H computes online targets for L.

Since the Microgrid control architecture is supposed to be able to control the sys-
tem anytime without knowing in advance the future disturbances, the objective function
should be in infinite horizon. Moreover, since the solar power production and the power
demand have a random component, the optimization problem should be supposed to min-
imize an infinite sum of random instantaneous costs, denoted f , with respect to a chosen
risk measure. In this paper, the selected risk measure is the expectation: this choice is
explained in Section 4.5.2. Then, given the initial state, the problem would result in a
stochastic optimal control one, as

min
up¨q

E
8
ÿ

k“0

fpxpkq, upkqq (4.31a)

s.t p4.4q ´ p4.25q (4.31b)

In the studied case, it is reasonable to assume that, over a finite and sufficiently short
time horizon, the high-level system H is able to compute good forecasts of the demand and
solar power. For this reason, a deterministic Model Predictive Control (MPC) (see [84])
strategy seems adequate to compute control policies for problem (4.31). We could consider
other methods such as Stochastic Dynamic Programming, scenario tree based Stochastic
Programming or Stochastic MPC (see [107]). However, they all lack of simplicity. Indeed,
the first one would suffer the curse of dimensionality and would require Approximate
Dynamic Programming techniques (see [111]) that are computationally expensive in the
presence of binary variables. Nevertheless, the second and third methods require to solve
a large scale (many decision variables) deterministic problem at each time step, which
could be too computationally expensive as well in the considered time window of 1 second.

128

4.4.1 Target

The target of the Power Management Controller H is to compute setpoints for the low
level controller while receiving targets from an another upper level EMS.

In reality, a desired voltage level for the DC grid is selected; it is then translated into a
desired energy level, Er

DC “ xr1. The same reasoning applies to the energy in the battery
and supercapacitor, i.e. there exist desired levels Er

B “ xr2 and Er
S “ xr3. These targets

are supposed to be computed by the EMS, but, since it is out of the scope of this paper,
the following considerations are done:

1) the desired state for the battery is to be fully charged, i.e. xr2 “ xM2 ;

2) the reference for the supercapacitor has to be selected to ensure the maximum
capability to operate on the system; it means that it must be able to absorb/provide
the maximum amount of power, and the adopted best trade-off is xr3 “

1
2

`

xm3 ` x
M
3

˘

.

The target vector for the state is therefore

xr “ rEr
DC Er

B Er
Ss (4.32)

and the error state is defined as rx “ x´ xr.

4.4.2 Deterministic problem: Mixed Integer Quadratic Program

Given the initial state x0pkq, which depends on the state of the low level system at time
kT , the online deterministic problem addressed by the MPC strategy at each step k is
the following

129

min
up¨q

1

2

«

rxpk `N qTPrxpk `N q `
k`N´1
ÿ

i“k

rxpiqTQrxpiq ` upiqTRupiq

ff

(4.33a)

s.t rxpiq “ xpiq ´ xrpiq, @ i (4.33b)
xpi` 1q “ Axpiq `Bupiq `Ddpiq, @ i (4.33c)
xpkq “ x0pkq, (4.33d)
xm1 ď x1piq ď xM1 , @ i (4.33e)
xm2 ď x2piq ď xM2 , @ i (4.33f)
xm3 ď x3piq ď xM3 , @ i (4.33g)
SBpiq P t0, 1u, @ i (4.33h)
SSpiq P t0, 1u, @ i (4.33i)
0 ď u1piq ď d1piq, @ i (4.33j)
0 ď u2piq ď d2piq, @ i (4.33k)

0 ď u3piq ď SBpiq ¨ P
`

B, @ i (4.33l)

0 ď u4piq ď p1´ SBpiqq ¨ P
´

B, @ i (4.33m)

0 ď u5piq ď SSpiq ¨ P
`

S , @ i (4.33n)

0 ď u6piq ď p1´ SSpiqq ¨ P
´

S , @ i (4.33o)

}u3pi` 1q ´ u3piq} ď ∆P
`

B, @ i (4.33p)

}u4pi` 1q ´ u4piq} ď ∆P
`

B, @ i (4.33q)

where P,Q,R ě 0 are weight matrices, and the matrices A,B,D are introduced in (4.29)
and (4.30). N is the considered prediction horizon, and it is chosen in a reasonable way as
a trade-off between a better performance using more data and the required computational
time. Penalizations on the inputs are explained with the willing not to waste solar power
or curtail load demand in case of unnecessary conditions.

The problem above is an input-state constrained optimization problem. Since we
are considering a microgrid in islanded mode, Assumptions 1 and 2 are necessary, but
in general not sufficient for the existence of a solution. However, it is clear that an
appropriate sizing of the components always exists such that the constraints can be
fulfilled over an infinite horizon of time. In fact, the PV generation induces a daily
periodicity in the system. Hence, if we consider an oversizing for the battery and the
supercapacitor, it is always possible to control the system in such a way that, for example,
at each sunrise there is sufficient energy stored to cover the mismatch between the power
coming from the PV and the power required by the load (supposed constant, but affected
by a bounded additional disturbance). The question of optimizing the design of the grid,
which minimizes a suitable cost functional, is of great importance and is the object of
future work. Here we will assume feasibility of the optimization problem.

The resulting problem is a Mixed Integer Quadratic Program (MIQP). This kind of
problem is becoming the classical one to be addressed when dealing with energy man-
agement controller, as can be seen by the numerous papers implementing it, for example
[106], [104], [90], [77].

130

To the purpose of implementing the optimization above in a low cost hardware, it is
useful to remark that the MIQP problem can be reformulated as a Mixed Integer Second
Order Cone Program (MISOCP), as presented in [102]. This is motivated by the use
of a conic solver for embeddable applications for the Hardware In the Loop simulation
presented in Section 4.5.3.

The reference values for the low level controller at step k are computed based on the
value uopkq, where uop.q is the optimal sequence of inputs for the above problem. We
are considering negligible with respect to T the time required for the computation of the
optimal solution.

4.5 Simulations
In this section, simulations for the proposed model and the applied optimal control are
introduced. The considered sampling time T is one second, while the simulation time is
180 seconds. A prediction horizon of 10 time steps is utilized.

4.5.1 Low level controller implementation

The output obtained by the optimal control problem at each time k will be sent from H to
L to let it operate grid stability. In particular, the optimal values of PPV , P`B or P´B and
PL must be respected: the low level controller will obtain its reference values from them.
As explained before, the target of the supercapacitor is to maintain a fixed grid voltage
level: then it does not really need a reference power value, since it automatically operates
the needed action as a response to what the other devices do, and any uncertainty or
disturbance on the system. Then the value of P`S and P´S are calculated only to let the
other devices take them into account. The reference for the voltage level of the DC grid
is supposed to be fixed a priori, in general by technological reasons, and as a consequence
the reference coming from EDC is not needed.

The considered DC MicroGrid described in Section 4.2.1 and depicted in Fig. 4.3
has been simulated in SimPowerSystems, a dedicated Matlab toolbox for modeling and
simulating electrical power systems. The nonlinear control algorithms introduced in [97]
are executed, with a time step of 10´5 seconds, according to the description of the L
controller in Section 4.2. Based on such realistic implementation, the DC microgrid is
structured as composed by a 300 kWh battery, a 8 kWh supercapacitor and a PV power
plant of 50 solar panels with installed power of 1 MW. The battery has the capability to
move from 30% to 90% of State Of Charge (SOC) in 90 minutes and from 90% to 30%
in 30 minutes. The limit boundaries of 30% and 90% of SOC are considered in order not
to reduce its lifetime.

The PV power productions are based on solar scenarios which has been generated
using the python library PVLIB (see [112]), based on interpolated real measured hourly
solar radiation scenarios 1. One of the PVLIB referenced solar panel models has then
been used to simulate realistic solar power scenarios with a time step of one second. The
load resistance is considered constant, but the power load suffers of variations due to DC

1Radiation scenarios of Zambia, obtained on the open data website:
https://energydata.info/dataset/zambia-solar-radiation-measurement-data-2015-2017

131

grid voltage variations, since it is directly connected to it. Then, also a simulation with
a more complex power profile is introduced.

4.5.2 Forecast strategy

The MPC control method requires a proper forecast strategy for the near future dis-
turbances. At any given time step k, knowing the last solar production and load, our
forecast strategy is straightforward. Both future solar and load power disturbances over
the MPC rolling horizon are replaced by their last observed value. Hence we consider
solar and load as constant over the next few time steps. More clever forecasting strategies
based on statistical models could be used, but this naive approach provides satisfactory
results. With this forecast strategy, that depends only on the last observed disturbances,
MPC produces current state and last disturbances feedbacks, which are simpler than the
general full disturbances history feedbacks mentioned in Section 4.4.

4.5.3 Power management controller implementation

We compared two different technical implementations of the high level controller. Both
involve deploying a REST API developed in Julia language (see [80]) reachable through
HTTP GET requests. For the first one, the server runs on an office computer with
16Go of RAM and a Intel i7-7700k @4.2 GHz CPU. The deterministic problem (4.33)
is modeled using the Julia optimization modeler JuMP (see [88]) and solved using the
commercial IBM solver CPLEX (see Section 4.5.4). In the second implementation, the
MIQP (4.33) is converted into its Mixed Integer Second Order Cone Program (MISOCP)
equivalent formulation and modeled using JuMP. This allows to use the open source
embeddable conic solver ECOS which possesses a basic implementation of a branch and
bound algorithm (ECOS BB) to solve MISOCP problems. Using an ARM compatible
version of Julia it is possible to deploy the REST API into a Raspberry Pi 2B (RPi) with
an ARM Cortex A7 @900MHz CPU and 1GO SDRAM. We added a time limit feature to
ECOS branch and bound algorithm so as to return the best found admissible suboptimal
solution when a time limit is exceeded2. This functionality ensures that an admissible
control is computed and transmitted by the RPi to the simulation computer, through
ethernet, in less than one second (see Section 4.5.5).

Fig. 4.4 shows the utilized configuration for the tests: the model describing the single
components of the grid is implemented in SimPowerSystems, while the one dealing with
the power flow is implemented in Julia (both in the pc or in the Raspberry Pi), and they
exchange information by the aforementioned ethernet connection.

To the purpose of imitating real conditions in the best way, errors in the efficiency
coefficients values are introduced between the two models and control levels.

4.5.4 Simulations scenarios

Four cases will here be introduced and discussed, in order to consider all the possible
interesting scenarios. A prediction horizon of 10 time steps is utilized for the case studies
1, 2 and 3, while a horizon of 5 time steps is used for case study 4, both for state variables

2This feature is available in the ECOS github fork: https://github.com/trigaut/ecos

132

Figure 4.4: Test configuration.

Reference Value Reference Value
E˚DC 1.39e´5 kWh
E˚B 270 kWh SOC˚B 90 %
E˚S 5 kWh SOC˚S 62.5 %

Table 4.1: References.

and control inputs. Small slack variables have been used in order to relax constraints.
Case study 1 describes the evolution of a situation where initially the supercapacitor has
a level of charge which is higher than its reference, and the introduced controller properly
perform in order to discharge it. Case study 2 is similar to case study 1, but will compare
the evolution of the system in case there is no possibility to reduce the power coming
from the PV panels. Case study 3, as opposed to the other two, will introduce a situation
where the supercapacitor has a level of charge lower than the desired one. Finally, case
study 4 considers a situation where the supercapacitor has a higher than desired initial
state of charge, with a time varying load. For every case, the possibility to reduce the
power demanded by the load if needed is considered. As mentioned in Section 5.1, the
used battery and supercapacitor have 300 kWh and 8 kWh of energy, respectively, and
their references and constraints are introduced in Tables 4.1, 4.2 and 4.3.

Constraint Value
Em
DC 90 % Er

DC

EM
DC 110 % Er

DC

Em
B 90 kWh

EM
B 270 kWh

Em
S 1.41 kWh

EM
S 8 kWh

Table 4.2: Constraints for the states variables.

133

Constraint Value Constraint Value
P
`

B 240 kW P
´

B 180 kW
P
`

S 1000 kW P
´

S 1000 kW
∆P

`

B 20 kW ∆P
´

B 20 kW

Table 4.3: Constraints for the control inputs.

Case study 1

Here a situation where initially the supercapacitor has a level of charge which is higher
than its reference is considered, as can be seen in Fig. 4.9. The power management
controller successfully let it reach the desired value acting on the other components of
the power flow, as it is shown in Fig. 4.5, 4.7 and 4.8. Fig. 4.5 describes the behavior
of PB, which is the difference of P`B and P´B . In particular, it is worth noticing that
the control algorithm combines two actions to let the supercapacitor discharge in the
fastest possible rate: indeed, with respect to the constraints of the battery, the power
management controller selects both the possibility to charge more the battery and not to
let the renewables produce their maximum available power. The figures clearly describe
how the power management controller allows PV power reduction in the meanwhile of
a good charge rate for the battery in order to discharge the supercapacitor and to let it
arrive at the desired reference of SOC (and voltage). Then, considering also the smaller
availability of power from renewables, the controller H describes a situation of discharge
for the battery in order to provide the power for the load. It has to be noticed that the
battery discharge and charge limits are reached; due to the small errors in the modeling
of converters between the two control levels, there can be a steady state error between
the desired battery power flow and the obtained one. The effectiveness of the proposed
controller is verified in Fig. 4.6 indeed, even with an error due to the wrong modeling of
the converter efficiency, the real power output of the supercapacitor follows the predicted
optimal value even if this one is not directly implemented as reference in the low level
controller. Then, the desired level of energy in the supercapacitor is reached as first target
of the power management controller.

Case study 2

Here the same initial situation as in Case study 1 is considered, but to better highlight
controller robustness, the possibility to reduce power produced by the PV is taken into
consideration in the H controller calculation but it is not implemented in the L controller.
Then, the remarkable difference introduced here is depicted in Fig. 4.13, where the desired
value of DPV ´PPV is not tracked by the real value of DPV ´P

r
PV . As a consequence, the

battery will need to take more power for more time with respect to the case 1, as depicted
in Fig. 4.10 compared to Fig. 4.5. Obviously, Fig. 4.11 describing the power output of
the supercapacitor will show an error between its expected value and the calculated one.
Nevertheless, the loss of such degree of freedom does not impact the capability of the
system to bring the level of energy of the supercapacitor to the desired one, as can be
seen in Fig. 4.14.

134

0 20 40 60 80 100 120 140 160 180

Time [s]

-200

-150

-100

-50

0

50

100

150

200

250

P
o

w
e

r
[k

W
]

Case 1: Battery power

P
B

r

P
B

Figure 4.5: Case 1 - The calculated optimal value of P`B and P´B is represented by PB
(dotted red line), and the P r

B implemented by the low level controller in the SimPower-
Systems simulation (blue line).

0 20 40 60 80 100 120 140 160 180

Time [s]

-200

-100

0

100

200

300

400

500

600

P
o

w
e

r
[k

W
]

Case 1: Supercap power

P
S

r

P
S

Figure 4.6: Case 1 - The calculated optimal value of P`S and P´S is represented by PS (dot-
ted red line), and the P r

S implemented by the low level controller in the SimPowerSystems
simulation (blue line).

135

0 20 40 60 80 100 120 140 160 180
400

500

600

700

800

900

P
o

w
e

r
[k

W
]

Case 1: Load power

D
L

0 20 40 60 80 100 120 140 160 180

Time [s]

-1

-0.5

0

0.5

1

P
o

w
e

r
[k

W
]

P
L

Figure 4.7: Case 1 - The power DL demanded by the load and the calculated power PL
to be shut down from it.

0 20 40 60 80 100 120 140 160 180

Time [s]

200

250

300

350

400

450

500

550

600

650

P
o

w
e

r
[k

W
]

Case 1: PV power

D
PV

-P
PV

r

D
PV

-P
PV

D
PV

Figure 4.8: Case 1 - The available power DPV from the renewables (yellow dotted line
with stars), the calculated optimal reference DPV ´ PPV (dotted red line with circles)
and the DPV ´ P r

PV implemented by the low level controller in the SimPowerSystems
simulation (blue line).

136

0 20 40 60 80 100 120 140 160 180
60

65

70

75

S
O

C
 [

%
]

Case 1: Supercap status

SOC
S SOC

S

*

0 20 40 60 80 100 120 140 160 180

Time [s]

1800

1900

2000

2100

2200

2300

V
o

lt
a

g
e

 [
V

]

V
S V

S

*

Figure 4.9: Case 1 - The SOC and voltage of the supercapacitor (blue line) with respect
to their reference values (dotted red line).

0 20 40 60 80 100 120 140 160 180

Time [s]

-200

-150

-100

-50

0

50

100

150

200

250

P
o

w
e

r
[k

W
]

Case 2: Battery power

P
B

r

P
B

Figure 4.10: Case 2 - The calculated optimal value of P`B and P´B is represented by PB
(dotted red line), and the PB implemented by the low level controller in the SimPower-
Systems simulation (blue line).

Case study 3

Here a situation where initially the supercapacitor has a level of charge which is lower
than its reference is considered, as can be seen in Fig. 4.19. With such initial conditions,
the supercapacitor has to be charged; there is no need to curtail power from the PV array,
as shown by Fig. 4.18. For the same reasons, the battery will move to discharge mode and
then, once the level of energy into the supercapacitor is the desired one, it will recharge
itself to reach its desired level of energy. Therefore, it moves to a discharge mode as a
consequence of the decrease of the PV power (see Fig. 4.15). Fig. 4.16 shows the effective
tracking of the supercapacitor power output with respect to its reference, and it ends up
on the reaching and the keeping of the desired level of energy (see Fig. 4.19).

137

0 20 40 60 80 100 120 140 160 180

Time [s]

-200

-100

0

100

200

300

400

P
o

w
e

r
[k

W
]

Case 2: Supercap power

P
S

r

P
S

Figure 4.11: Case 2 - The calculated optimal value of P`S and P´S is represented by PS
(dotted red line), and the PS implemented by the low level controller in the SimPower-
Systems simulation (blue line).

0 20 40 60 80 100 120 140 160 180
400

500

600

700

800

P
o

w
e

r
[k

W
]

Case 2: Load power

D
L

0 20 40 60 80 100 120 140 160 180

Time [s]

-1

-0.5

0

0.5

1

P
o

w
e

r
[k

W
]

P
L

Figure 4.12: Case 2 - The power DL demanded by the load and the calculated power PL
to be shut down from it.

Case study 4

Case study 4 has initial conditions similar to the ones of case studies 1 and 2, with
the state of charge of the supercapacitor which is higher than its desired reference. To
better validate the proposed optimization strategy, a more complex scenario is introduced.
Indeed, both the profiles for PV power and load power are time-varying, and a pulse of
about 50% of the current value is introduced in the load profile. To better underline
the effectiveness of the proposed approach, the prediction horizon for state variables and
control inputs is reduced to 5 time steps. Moreover, a higher penalization is given to the
possibility to curtail the PV power. The proposed load profile is depicted in Fig. 4.22;
in the same figure, it is shown that also in this case study there is no need to partially
cut the demanded load. Fig. 4.20, 4.21 and 4.23 complete the description of the power
profiles of the devices. Fig. 4.24 shows that the proposed optimization strategy fulfill
the target to provide power to the load and in the meanwhile maintain a desired state

138

0 20 40 60 80 100 120 140 160 180

Time [s]

200

250

300

350

400

450

500

550

600

650

P
o

w
e

r
[k

W
]

Case 2: PV power

D
PV

-P
PV

r

D
PV

-P
PV

D
PV

Figure 4.13: Case 2 - The available power DPV from the renewables (yellow dotted line
with stars), the calculated optimal reference DPV ´ PPV (dotted red line with circles)
and the DPV ´ P r

PV implemented by the low level controller in the SimPowerSystems
simulation (blue line).

0 20 40 60 80 100 120 140 160 180
62

64

66

68

70

72

74

S
O

C
 [

%
]

Case 2: Supercap status

SOC
S SOC

S

*

0 20 40 60 80 100 120 140 160 180

Time [s]

1800

1900

2000

2100

2200

2300

V
o

lt
a

g
e

 [
V

]

V
S V

S

*

Figure 4.14: Case 2 - The SOC and voltage of the supercapacitor (blue line) with respect
to their reference values (dotted red line).

of charge in the supercapacitor, even when the profiles of PV and load power generates
more complex scenarios. Indeed, the energy level is not the desired one only when a
high power unbalance takes place and the battery is forced not to have high variations.
However, the optimization strategy succeeds to restore the desired set of circumstances.

Case studies comparison

All the considered cases show the capability of the system to perform well in the possible
range of situations, even in case of errors due to modeling of parameters, as the efficiency,
or of the available degrees of freedom, as in the case of unavailability to curtail PV power.
Fig. 4.25 and 4.27 show the stability of the DC grid, which is ensured by the low level
controllers in each case study: the variations on the value of the power load depends on
the voltage DC grid variations. Except for the start-up, the voltage values are always

139

0 20 40 60 80 100 120 140 160 180

Time [s]

-100

-50

0

50

100

150

200

250

P
o

w
e

r
[k

W
]

Case 3: Battery power

P
B

r

P
B

Figure 4.15: Case 3 - The calculated optimal value of P`B and P´B is represented by PB
(dotted red line), and the PB implemented by the low level controller in the SimPower-
Systems simulation (blue line).

0 20 40 60 80 100 120 140 160 180

Time [s]

-400

-300

-200

-100

0

100

200

300

P
o

w
e

r
[k

W
]

Case 3: Supercap power

P
S

r

P
S

Figure 4.16: Case 3 - The calculated optimal value of P`S and P´S is represented by PS
(dotted red line), and the PS implemented by the low level controller in the SimPower-
Systems simulation (blue line).

inside an accepted limits for the variations, i.e. the expected values plus or minus 10%.
It must to be noticed that the peaks taking place for the power PS in transient time

are due to the fast reply of the implemented low level controllers, simulated in detailed
switched models, with no filters acting to reduce them. A comparison with respect to the
behavior of PB can better highlight how the target to enlarge battery lifetime is reached,
since no overshoot or undershoot that can harm it are introduced in such curves due to
the limitations on power variations. In real situations, other electronic devices acting as
filters will be introduced in case the physical properties of the materials could not support
such spikes.

A point that has to be highlighted is that, thanks to the hypothesis on the correct
sizing of the different components of the DC MicroGrid, there is no need to shut down a
part of the load (see Fig. 4.6, 4.11 and 4.16, 4.21).

140

0 20 40 60 80 100 120 140 160 180
400

450

500

550

600

P
o

w
e

r
[k

W
]

Case 3: Load power

D
L

0 20 40 60 80 100 120 140 160 180

Time [s]

-1

-0.5

0

0.5

1

P
o

w
e

r
[k

W
]

P
L

Figure 4.17: Case 3 - The power DL demanded by the load and the calculated power PL
to be shut down from it.

0 20 40 60 80 100 120 140 160 180

Time [s]

200

250

300

350

400

450

500

550

600

650

P
o

w
e

r
[k

W
]

Case 3: PV power

D
PV

-P
PV

r

D
PV

-P
PV

D
PV

Figure 4.18: Case 3 - The available power DPV from the renewables (yellow dotted line
with stars), the calculated optimal reference DPV ´ PPV (dotted red line with circles)
and the DPV ´ P r

PV implemented by the low level controller in the SimPowerSystems
simulation (blue line).

Finally, the last comparison among the proposed power management controllers is the
needed computation time. As explained in Section 4.5.3, the above described simulations
have been implemented in a rather powerful computer, in charge of both simulations of
the low and the high levels of control. Fig. 4.26 and 4.27 describe the time needed by
the power management to solve the optimization problem at each call. As it is possible
to see, such problem is almost everywhere solved with a computational time that can be
neglected with respect to the considered step time.

4.5.5 Experimental results

As described in Section 4.5.4, the proposed power management controller performs well
when it is implemented in a computer with good performances. Target here will be to
show that it can be implemented also in a low cost hardware, with a reasonable loss

141

0 20 40 60 80 100 120 140 160 180
56

58

60

62

64

S
O

C
 [

%
]

Case 3: Supercap status

SOC
S SOC

S

*

0 20 40 60 80 100 120 140 160 180

Time [s]

1700

1750

1800

1850

1900

V
o

lt
a

g
e

 [
V

]

V
S V

S

*

Figure 4.19: Case 3 - The SOC and voltage of the supercapacitor (blue line) with respect
to their reference values (dotted red line).

0 20 40 60 80 100 120 140 160 180

Time [s]

-200

-150

-100

-50

0

50

100

150

200

250

300

P
o

w
e

r
[k

W
]

Case 4: Battery power

P
B

r

P
B

Figure 4.20: Case 4 - The calculated optimal value of P`B and P´B is represented by PB
(dotted red line), and the PB implemented by the low level controller in the SimPower-
Systems simulation (blue line).

of performances with respect to the challenging considered time steps. As already de-
scribed, the Raspberry Pi in Fig. 4.28 has been chosen to check such controller feasibility.
Fig. 4.28 depicts the whole experimental setup: the Raspberry Pi implements the high
level controller, and it is connected through a LAN and an ethernet cable to another
computer performing simulations of the electrical grid using SimPowerSystems. The low
level controllers are calculated according to the set points received from the higher con-
troller. As mentioned in Section 4.4.2, a MIQP equivalent MISOCP problem is coded for
allowing the Raspberry Pi utilization.

The optimization in the Raspberry Pi is performed in real time, while the simulation
of the electrical grid in Simulink SymPowerSystems is 10 to 100 times slower than the
real time. Except for the initialization step, where the high level controller values are
supposed to be given, in Simulink time (hence 10 to 100 real time seconds) for each step
k of the Raspberry Pi time the measurements of the state are sent to the Raspberry

142

0 20 40 60 80 100 120 140 160 180

Time [s]

-600

-400

-200

0

200

400

600

P
o

w
e

r
[k

W
]

Case 4: Supercap power

P
S

r

P
S

Figure 4.21: Case 4 - The calculated optimal value of P`S and P´S is represented by PS
(dotted red line), and the PS implemented by the low level controller in the SimPower-
Systems simulation (blue line).

0 20 40 60 80 100 120 140 160 180
300

400

500

600

700

800

900

P
o

w
e

r
[k

W
]

Case 4: Load power

D
L

0 20 40 60 80 100 120 140 160 180

Time [s]

-1

-0.5

0

0.5

1

P
o

w
e

r
[k

W
]

P
L

Figure 4.22: Case 4 - The power DL demanded by the load and the calculated power PL
to be shut down from it.

Pi and a clock timer is launched. The optimization is performed in the Raspberry Pi
and the obtained reference values are transmitted back to Simulink: as a consequence,
the aforementioned timer is stopped and its value is stored. Using delay blocks, the
provided references are then applied only after a Simulink time equivalent to the value of
the clock timer, which considers the Raspberry Pi computational and transmission time.
The obtained system is then emulating a real-time one. The choice to let the lower level
system use the references as if the higher level controller was instantaneous has been done
to the purpose to operate a proper comparison among the simulations (where the high
level controller can be considered as instantaneous) and the experimental test. The choice
to impose a maximum value of 0.5 s for the computational time has been done to relax
the constraints on the transmission time, and for allowing not to consider bandwidth
problems since the data exchanged are few bytes through an ethernet connection and the
missing 0.5 s are sufficient to ensure a successful data transmission.

143

0 20 40 60 80 100 120 140 160 180

Time [s]

200

250

300

350

400

450

500

550

600

650

P
o

w
e

r
[k

W
]

Case 4: PV power

D
PV

-P
PV

r

D
PV

-P
PV

D
PV

Figure 4.23: Case 4 - The available power DPV from the renewables (yellow dotted line
with stars), the calculated optimal reference DPV ´ PPV (dotted red line with circles)
and the DPV ´ P r

PV implemented by the low level controller in the SimPowerSystems
simulation (blue line).

0 20 40 60 80 100 120 140 160 180
55

60

65

70

75

S
O

C
 [

%
]

Case 4: Supercap status

SOC
S SOC

S

*

0 20 40 60 80 100 120 140 160 180

Time [s]

1700

1800

1900

2000

2100

2200

V
o

lt
a

g
e

 [
V

]

V
S V

S

*

Figure 4.24: Case 4 - The SOC and voltage of the supercapacitor (blue line) with respect
to their reference values (dotted red line).

The considered scenarios here are the Case Studies 1 and 3, respectively for the
Experimental setup 1 and 2, in order to cover both the case of need of charge and
discharge for the supercapacitor. Upper discharge bounds for the battery are set to 360
kW.

Fig. 4.29 depicts the response time of the power management; as it is possible to
see, most of the time it is below the threshold of 0.5 second (in violet), which has been
set as the maximum limit for the calculations. In case it is reached, the controller then
sends one of the feasible solutions it has found at that time; it is important to be noticed
that it probably is not the optimal one. Taking a look together at Fig. 4.29, 4.32 and
4.37, the correlation between the high step variation in the load power demand and
the related higher computational time clearly appears. As for the simulation results
described in Section 4.5.4, the peaks taking place for the power PS in Fig. 4.31 and 4.36 in

144

0 20 40 60 80 100 120 140 160 180
900

1000

1100

1200

1300

V
o

lt
a

g
e

 [
V

]

DC grid

V
DC V

DC

*

0 20 40 60 80 100 120 140 160 180
900

1000

1100

1200

V
o

lt
a

g
e

 [
V

]
V

DC V
DC

*

0 20 40 60 80 100 120 140 160 180

Time [s]

900

950

1000

1050

1100

V
o

lt
a

g
e

 [
V

]

V
DC V

DC

*

Figure 4.25: The DC grid voltage (blue lines) with respect to its reference (dotted red
lines) in the case studies 1, 2 and 3, respectively.

0 20 40 60 80 100 120 140 160 180
0

0.005

0.01

0.015

T
im

e
 [

s
]

Controller response time

0 20 40 60 80 100 120 140 160 180
0

0.01

0.02

0.03

T
im

e
 [

s
]

0 20 40 60 80 100 120 140 160 180

Call [n]

0

0.05

0.1

0.15

0.2

T
im

e
 [

s
]

Figure 4.26: The power management controller response time for the case studies 1, 2
and 3, respectively, when it has been implemented in a computer with 16Go of RAM and
a Intel i7-7700k @4.2 GHz CPU.

transient time are due to the fast reply of the implemented low level controllers, simulated
in detailed switched models, with no filters acting to reduce them. The choice not to
implement such filters has been done to better validate the proposed power management
controller, which results robust to the fast variation due to the secondary effects as
parasitic currents or perturbation acting on the DC grid. The same small perturbations
acting on the DC grid and creating its voltage variation generate the perturbations on
the DC load, as depicted in Fig. 4.32 and 4.37.

Then, as a consequence, the solution provided in correspondence of such requests are
not optimal, as seen for example in Fig. 4.30 and 4.33, where, around the 40 second, the
controller chooses to curtail PV power while a better option would have been not to do
it in order to increase the power charge ratio. Also, that generates a discharge power
output for the supercapacitor, which then stops its energy level reference tracking (see
Fig. 4.34). Similar error rises in Experimental test 2.

145

0 20 40 60 80 100 120 140 160 180

Time [s]

900

950

1000

1050

1100

1150

1200

V
o

lt
a

g
e

 [
V

]

DC grid

V
DC V

DC

*

0 20 40 60 80 100 120 140 160 180

Call [n]

0

0.05

0.1

0.15

0.2

0.25

T
im

e
 [

s
]

Controller response time

Figure 4.27: The DC grid voltage (blue lines) with respect to its reference (dotted red
lines) in the case study 4 and power management controller response time .

Test PB P S PL P PV SOC CPU
Sim1 Fig. 4.5 Fig. 4.6 Fig. 4.7 Fig. 4.8 Fig. 4.9 Fig. 4.26
Sim2 Fig. 4.10 Fig. 4.11 Fig. 4.12 Fig. 4.13 Fig. 4.14 Fig. 4.26
Sim3 Fig. 4.15 Fig. 4.16 Fig. 4.17 Fig. 4.18 Fig. 4.19 Fig. 4.26
Sim4 Fig. 4.20 Fig. 4.21 Fig. 4.22 Fig. 4.23 Fig. 4.24 Fig. 4.27
Exp1 Fig. 4.30 Fig. 4.31 Fig. 4.32 Fig. 4.33 Fig. 4.34 Fig. 4.29
Exp2 Fig. 4.35 Fig. 4.36 Fig. 4.37 Fig. 4.38 Fig. 4.39 Fig. 4.29

Table 4.4: A summary of the proposed tests with respect to the figures describing them.

In the considered conditions, for both the experimental tests the power management
controller is still able to manage the optimization problem such to recover energy from
the renewable source, to charge/discharge the supercapacitor in order to have the desired
level of energy to ensure the highest degree of controllability for the system, and to charge
the battery in case of available power.

Tables 4.4 and 4.5 help the reader in making a proper comparison among the results
obtained in the different proposed tests. Since the proposed situations differ in initial
condition and acting disturbances, a numerical comparison is not possible: however,
Table 4.4 allows for an easier comparison of the developed test on each single variable,
and Table 4.5 describes how the whole targets are successfully reached in each test.

4.6 Conclusions
In this paper, a dynamic power management controller for a DC MicroGrid is introduced,
to the purpose to calculate the references to be given to the lower level controllers of the
real devices in charge of physically acting on the system ensuring grid stability, both in
voltage and power balance sense. A receding horizon technique is utilized in order to use
prediction of the disturbances acting on the system and to make the state variables reach
the desired values.

146

Sim1 Sim2 Sim3 Sim4 Exp1 Exp2
Problem feasibility X X X X X X
PV: stored power X X X X X X

DC load correctly fed X X X X X X
Supercap: reached reference X X X X X X

DC grid stability X X X X X X

Table 4.5: A summary of the reached targets in the different proposed tests.

Figure 4.28: The experimental setup; a Raspberry Pi implementing the high level con-
troller connected through LAN and an ethernet cable to another computer performing
simulations of the electrical grid using SimPowerSystems and implementing the low level
controllers according to the set points received from the higher controller.

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

T
im

e
 [
s
]

Controller response time

0 20 40 60 80 100 120 140 160 180

Call [n]

0

0.2

0.4

0.6

0.8

T
im

e
 [
s
]

Figure 4.29: The power management controller response time for the considered cases,
respectively, when it has been implemented in the Raspberry Pi.

The developed controller allows to take into account the different characteristics and
constraints of several physical devices composing the grid and to use current and predicted
information about power flowing to load or from renewables. The results show that the
control strategy correctly fits the target to describe and predict the power flow of a DC
MicroGrid and then that the obtained optimized power references can be used by the

147

0 20 40 60 80 100 120 140 160 180

Time [s]

-200

-150

-100

-50

0

50

100

150

200

250

300

P
o
w

e
r

[k
W

]

Exp 1: Battery power

P
B

r

P
B

Figure 4.30: Exp 1 - The calculated optimal value of P`B and P´B is represented by PB
(dotted red line), and the PB implemented by the low level controller in the SimPower-
Systems simulation (blue line).

0 20 40 60 80 100 120 140 160 180

Time [s]

-400

-300

-200

-100

0

100

200

300

400

500

600

P
o
w

e
r

[k
W

]

Exp 1: Supercap power

P
S

r

P
S

Figure 4.31: Exp 1 - The calculated optimal value of P`S and P´S is represented by PS
(dotted red line), and the PS implemented by the low level controller in the SimPower-
Systems simulation (blue line).

0 20 40 60 80 100 120 140 160 180
400

500

600

700

800

P
o
w

e
r

[k
W

]

Exp 1: Load power

D
L

0 20 40 60 80 100 120 140 160 180

Time [s]

-1

-0.5

0

0.5

1

P
o
w

e
r

[k
W

]

P
L

Figure 4.32: Exp 1 - The power DL demanded by the load and the calculated power PL
to be shut down from it.

148

0 20 40 60 80 100 120 140 160 180

Time [s]

200

250

300

350

400

450

500

550

600

650

P
o
w

e
r

[k
W

]

Exp 1: PV power

D
PV

-P
PV

r

D
PV

-P
PV

D
PV

Figure 4.33: Exp 1 - The available power DPV from the renewables (yellow dotted line
with stars), the calculated optimal reference DPV ´ PPV (dotted red line with circles)
and the DPV ´ P r

PV implemented by the low level controller in the SimPowerSystems
simulation (blue line).

0 20 40 60 80 100 120 140 160 180
60

65

70

75

S
O

C
 [
%

]

Exp 1: Supercap status

SOC
S SOC

S

*

0 20 40 60 80 100 120 140 160 180

Time [s]

1800

1900

2000

2100

2200

2300

V
o
lt
a
g
e
 [
V

]

V
S V

S

*

Figure 4.34: Exp 1 - The SOC and voltage of the supercapacitor (blue line) with respect
to their reference values (dotted red line).

low level controller to ensure grid stability. The developed controller is shown to perform
well even when it is implemented in a low cost hardware, which makes it interesting for
a large variety of applications. The obtained good performances allow for a revisiting
of the nowadays adopted primary level controllers, envisaging the possibility to obtain
better results using the optimal control approaches that are only used at higher level.

The proposed scheme fills an important gap of intermediate level controllers happening
now. Most solutions found in literature are based on simple heuristic solutions for power
management that satisfies the power flow, and in general the lifespan of the battery is
neglected, leaving most of the power equilibrium duty to it. The proposed scheme is
fast enough to be implemented between the EMS and the low level controllers, and then
it avoids current oversizing of components that is a consequence of such poor heuristic
schemes. Moreover, H and L controllers together present a stable framework for the EMS
that can then just deal with economic and communicating aspects, without any concern
about physical ones.

149

0 20 40 60 80 100 120 140 160 180

Time [s]

-100

-50

0

50

100

150

200

250

P
o
w

e
r

[k
W

]

Exp 2: Battery power

P
B

r

P
B

Figure 4.35: Exp 2 - The calculated optimal value of P`B and P´B is represented by PB
(dotted red line), and the PB implemented by the low level controller in the SimPower-
Systems simulation (blue line).

0 20 40 60 80 100 120 140 160 180

Time [s]

-400

-300

-200

-100

0

100

200

P
o
w

e
r

[k
W

]

Exp 2: Supercap power

P
S

r

P
S

Figure 4.36: Exp 2 - The calculated optimal value of P`S and P´S is represented by PS
(dotted red line), and the PS implemented by the low level controller in the SimPower-
Systems simulation (blue line).

0 20 40 60 80 100 120 140 160 180
400

450

500

550

600

P
o
w

e
r

[k
W

]

Exp 2: Load power

D
L

0 20 40 60 80 100 120 140 160 180

Time [s]

-1

-0.5

0

0.5

1

P
o
w

e
r

[k
W

]

P
L

Figure 4.37: Exp 2 - The power DL demanded by the load and the calculated power PL
to be shut down from it.

150

0 20 40 60 80 100 120 140 160 180

Time [s]

200

250

300

350

400

450

500

550

600

650

P
o
w

e
r

[k
W

]

Exp 2: PV power

D
PV

-P
PV

r

D
PV

-P
PV

D
PV

Figure 4.38: Exp 2 - The available power DPV from the renewables (yellow dotted line
with stars), the calculated optimal reference DPV ´ PPV (dotted red line with circles)
and the DPV ´ P r

PV implemented by the low level controller in the SimPowerSystems
simulation (blue line).

0 20 40 60 80 100 120 140 160 180
56

58

60

62

64

S
O

C
 [
%

]

Exp 2: Supercap status

SOC
S SOC

S

*

0 20 40 60 80 100 120 140 160 180

Time [s]

1700

1750

1800

1850

1900

V
o
lt
a
g
e
 [
V

]

V
S V

S

*

Figure 4.39: Exp 2 - The SOC and voltage of the supercapacitor (blue line) with respect
to their reference values (dotted red line).

151

Chapter 4. Bibliography

[77] M. R. Almassalkhi and I. A. Hiskens. Model-Predictive Cascade Mitigation in Elec-
tric Power Systems With Storage and Renewables; Part I: Theory and Implementa-
tion. IEEE Transactions on Power Systems, 30(1):67–77, Jan 2015.

[78] M. R. Almassalkhi and I. A. Hiskens. Model-Predictive Cascade Mitigation in Elec-
tric Power Systems With Storage and Renewables; Part II: Case-Study. IEEE Trans-
actions on Power Systems, 30(1):78–87, Jan 2015.

[79] R. F. Bastos, T. Dragicevic, J. M. Guerrero, and R. Q. Machado. Decentralized
control for renewable DC Microgrid with composite energy storage system and UC
voltage restoration connected to the grid. In IECON 2016 - 42nd Annual Conference
of the IEEE Industrial Electronics Society, pages 2016–2021, Oct 2016.

[80] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

[81] A. Bidram, A. Davoudi, F. L. Lewis, and J. M. Guerrero. Distributed Cooperative
Secondary Control of Microgrids Using Feedback Linearization. IEEE Transactions
on Power Systems, 28(3):3462–3470, 2013.

[82] S. Bracco, F. Delfino, F. Pampararo, M. Robba, and M. Rossi. A dynamic
optimization-based architecture for polygeneration microgrids with tri-generation,
renewables, storage systems and electrical vehicles. Energy Conversion and Manage-
ment, 96:511 – 520, 2015.

[83] E. F. Camacho and C. Bordons. Model predictive control. Springer, 2007.

[84] E. F. Camacho, T. Samad, M. Garcia-Sanz, and I. Hiskens. Control for renewable
energy and smart grids. Grand Challenges for Control, 2010.

[85] F. Delfino, R. Minciardi, F. Pampararo, and M. Robba. A Multilevel Approach for
the Optimal Control of Distributed Energy Resources and Storage. IEEE Transac-
tions on Smart Grid, 5(4):2155–2162, July 2014.

[86] T. Dragicevic, X. Lu, J. Vasquez, and J. Guerrero. DC Microgrids-Part II: A Review
of Power Architectures, Applications, and Standardization Issues. Power Electronics,
IEEE Transactions on, 31(5):3528–3549, May 2016.

[87] T. Dragicevic, J. Vasquez, J. Guerrero, and D. Skrlec. Advanced LVDC Electrical
Power Architectures and Microgrids: A step toward a new generation of power
distribution networks. Electrification Magazine, IEEE, 2(1):54–65, March 2014.

152

[88] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathemat-
ical optimization. SIAM Review, 59(2):295–320, 2017.

[89] H. Farhangi. The path of the smart grid. Power and Energy Magazine, IEEE,
8(1):18–28, January 2010.

[90] M. Farina, A. Guagliardi, F. Mariani, C. Sandroni, and R. Scattolini. Model predic-
tive control of voltage profiles in mv networks with distributed generation. Control
Engineering Practice, 34(Supplement C):18 – 29, 2015.

[91] A. Garulli, S. Paoletti, and A. Vicino. Models and Techniques for Electric Load
Forecasting in the Presence of Demand Response. IEEE Transactions on Control
Systems Technology, 23(3):1087–1097, May 2015.

[92] W. Greenwell and A. Vahidi. Predictive Control of Voltage and Current in a
Fuel Cell-Ultracapacitor Hybrid. IEEE Transactions on Industrial Electronics,
57(6):1954–1963, June 2010.

[93] J. Guerrero, J. Vasquez, J. Matas, L. de Vicuna, and M. Castilla. Hierarchical Con-
trol of Droop-Controlled AC and DC Microgrids; A General Approach Toward Stan-
dardization. Industrial Electronics, IEEE Transactions on, 58(1):158–172, Jan 2011.

[94] A. Iovine, G. Damm, E. De Santis, and M. D. Di Benedetto. Management con-
troller for a dc microgrid integrating renewables and storages. IFAC-PapersOnLine,
50(1):90 – 95, 2017. 20th IFAC World Congress.

[95] A. Iovine, M. Jimenez Carrizosa, G. Damm, and P. Alou. Nonlinear control for dc
microgrids enabling efficient renewable power integration and ancillary services for
ac grids. IEEE Transactions on Power Systems, pages 1–1, 2018.

[96] A. Iovine, S. B. Siad, G. Damm, E. De Santis, and M. D. Di Benedetto. Nonlinear
control of an AC-connected DC microgrid. In Industrial Electronics Society, IECON
2016 - 42nd Annual Conference of the IEEE, 24-27 October 2016.

[97] A. Iovine, S. B. Siad, G. Damm, E. D. Santis, and M. D. D. Benedetto. Nonlinear
control of a dc microgrid for the integration of photovoltaic panels. IEEE Transac-
tions on Automation Science and Engineering, 14(2):524–535, April 2017.

[98] E. Jimenez, M. J. Carrizosa, A. Benchaib, G. Damm, and F. Lamnabhi-Lagarrigue.
A new generalized power flow method for multi connected DC grids. International
Journal of Electrical Power and Energy Systems, 74:329 – 337, 2016.

[99] M. Jimenez Carrizosa, F. D. Navas, G. Damm, and F. Lamnabhi-Lagarrigue. Opti-
mal power flow in multi-terminal HVDC grids with offshore wind farms and storage
devices. International Journal of Electrical Power and Energy Systems, 65:291 – 298,
2015.

[100] P. Kundur, N. J. Balu, and M. G. Lauby. Power system stability and control.
McGraw-Hill, 1994.

153

[101] R. H. Lasseter. Microgrids And Distributed Generation. Intelligent Automation and
Soft Computing, 16(2):225–234, 2010.

[102] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-
order cone programming. Linear Algebra and its Applications, 284(1):193 – 228,
1998. International Linear Algebra Society (ILAS) Symposium on Fast Algorithms
for Control, Signals and Image Processing.

[103] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M.
Guerrero. Review on Control of DC Microgrids and Multiple Microgrid Clusters.
IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(3):928–948,
Sept 2017.

[104] D. E. Olivares, C. A. Canizares, and M. Kazerani. A centralized energy management
system for isolated microgrids. IEEE Transactions on Smart Grid, 5(4):1864–1875,
July 2014.

[105] D. E. Olivares, J. D. Lara, C. A. Canizares, and M. Kazerani. Stochastic-predictive
energy management system for isolated microgrids. IEEE Transactions on Smart
Grid, 6(6):2681–2693, Nov 2015.

[106] A. Parisio, E. Rikos, and L. Glielmo. A model predictive control approach to mi-
crogrid operation optimization. IEEE Transactions on Control Systems Technology,
22(5):1813–1827, Sept 2014.

[107] A. Parisio, E. Rikos, and L. Glielmo. Stochastic model predictive control for eco-
nomic/environmental operation management of microgrids: An experimental case
study. Journal of Process Control, 43:24–37, 2016.

[108] V. Perelmuter. Electrotechnical Systems: Simulation with Simulink and SimPower-
Systems. CRC Press, 2012.

[109] I. Prodan and E. Zio. A model predictive control framework for reliable microgrid
energy management. International Journal of Electrical Power and Energy Systems,
61:399 – 409, 2014.

[110] J. Sandoval-Moreno, G. Besançon, and J. J. Martinez. Model predictive control-
based power management strategy for fuel cell/wind turbine/supercapacitor integra-
tion for low power generation system. In Power Electronics and Applications (EPE),
2013 15th European Conference on, pages 1–10, Sept 2013.

[111] H. Shuai, J. Fang, X. Ai, Y. Tang, J. Wen, and H. He. Stochastic optimization of
economic dispatch for microgrid based on approximate dynamic programming. IEEE
Transactions on Smart Grid, PP(99):1–1, 2018.

[112] J. S. Stein, W. F. Holmgren, J. Forbess, and C. W. Hansen. Pvlib: Open source
photovoltaic performance modeling functions for matlab and python. In 2016 IEEE
43rd Photovoltaic Specialists Conference (PVSC), pages 3425–3430, June 2016.

154

[113] L. E. Zubieta. Are microgrids the future of energy?: DC microgrids from concept
to demonstration to deployment. IEEE Electrification Magazine, 4(2):37–44, June
2016.

155

Chapter 5

Algorithms for two-time scales
stochastic optimization with
applications to long term management
of energy storage

This is a joint work with Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara.

Chapter Abstract

In this chapter, we apply Chapter 1 formalism to design algorithms for two
time scales stochastic optimization problems arising from long term storage
management. Energy storage devices are of major importance to integrate
more renewable energies and demand-side management in a new energy mix.
However batteries remain costly even if recent market developments in the field
of electrical vehicles and stationary storage tend to decrease their cost. We
present a stochastic optimization model aiming at minimizing the investment
and maintenance costs of batteries for a house with solar panels. For any given
capacity of battery it is necessary to compute a charge/discharge strategy
as well as maintenance to maximize revenues provided by intraday energy
arbitrage while ensuring a long term aging of the storage devices. Long term
aging is a slow process while charge/discharge control of a storage handles
fast dynamics. For this purpose, we have designed algorithms that take into
account this two time scales aspect in the decision making process. They
are based on Chapter 1 time decomposition framework. These algorithms are
applied to three numerical experiments. First one of them is used to control
charge/discharge, aging and renewal of batteries for a house. Results show
that it is economically significant to control aging. Second we apply and
compare our algorithms one a simple charge/discharge and aging problem,
that is a multistage stochastic optimization problem with many time steps. We
compare our algorithms to SDP and Stochastic Dual Dynamic Programming
and we observe that they are less computationally costly while displaying
similar performances on the control of a storage. Finally we show how one

156

of our algorithm can be used for the optimal sizing of a storage taking into
account charge/discharge strategy as well as aging.

Contents
5.1 Introduction . 157

5.1.1 Context . 157

5.1.2 Literature review . 158

5.2 Stochastic optimization of an energy storage system in a
microgrid over the long term 159

5.2.1 Energy system description and notations 159

5.2.2 Stochastic optimization problem statement 165

5.3 Two algorithms for two-time scales stochastic optimal con-
trol problems . 166

5.3.1 Time blocks decomposition . 166

5.3.2 Stochastic targets decomposition algorithm 168

5.3.3 Stochastic adaptative weights algorithm 172

5.3.4 Producing an online policy using the daily value functions . . . 175

5.4 Numerical experiments . 177

5.4.1 Experimental setup . 177

5.4.2 Long term aging and renewal of batteries 179

5.4.3 Decomposition methods comparison on a simple aging problem 183

5.4.4 Sizing of a battery using targets decomposition and Stochastic
Dual Dynamic Programming 189

5.5 Appendix . 192

5.5.1 An abstract optimization problem 192

5.5.2 Proving monotonicity and linearity of a battery management
problem . 195

5.1 Introduction
We introduce hereby the reasons to study long term management of energy storage prob-
lems and why we use a two time scales stochastic optimization framework to tackle them.
Then we present existing literature on these issues.

5.1.1 Context

The integration of renewable energies is of upmost importance to ensure a clean energy
production mix that can face the perpetually rising electrical demand. These energies
and demand are inherently uncertain as they respectively depend on our environment
and on consumers behavior. Electrical storage is used as a buffer to mitigate uncertain-
ties in new electricity grids. Every battery requires a proper management strategy able

157

to make charge/discharge decisions in an uncertain setting to minimize an economical,
environmental or energy criterion. These systems are costly, have a fast dynamical be-
havior (noticeably changing every minute) but can last multiple years. The revenues they
provide and their lifetime are deeply related as a battery that is never used lasts many
years but does not allow to save energy while a intensively used battery will last a much
smaller amount of years but save more energy every day.

In this chapter we present a two time scales stochastic optimal control formalism
to control systems with fast dynamics that affect long term behavior, as it is the case
for batteries. Using well known results from discrete time stochastic optimal control
and convex analysis theory, we develop two general methods to decompose that kind of
problems by time blocks. Based on these theoretical methods, we develop associated
numerical algorithms. We apply these algorithms to a battery charge/discharge and
renewal management problem, namely two-time scales stochastic dynamic programming
and its dual variant. We also combine one of our method with Stochastic Dual Dynamic
Programming and Linear Programming to solve an aging aware sizing-control problem of
a battery.

5.1.2 Literature review

The management of micro-grids involves different time scales as the dynamic of currents
is faster than the dynamics of voltage/power which is faster than the dynamics of energy
flows. For this reason, micro-grids control architecture is often divided into hierarchical
levels exchanging information at different paces [132]. In this paper we focus on the energy
management level (time step 1 minute) and the long term aging level (time step 1 day).
We survey literature on energy storage operation and long term aging management using
optimization methods.

Stochastic optimization for energy management problems

Stochastic dynamic optimization methods based on the Bellman equation [114] have often
been applied to energy storage management. In [137, 126] or [124] the authors apply
Stochasic Dynamic Programming with discretized state and control spaces to solve an
energy management problem. This method suffers the so called curses of dimensionality
as introduced in [114, 116, 136] or [119]. Moreover it is demonstrated in [115] that the
convergence of the discretization procedure is of course dependent on the number of time
stages.

A major contribution to handle a large number of energy storage for an electricity
system is the well known Stochastic Dual Dynamic Programming (SDDP) algorithm [134].
This method is adapted to problems with linear dynamics and convex costs. It has
been applied to energy management with battery in [133]. Other similar methods have
been developed such as Mixed Integer Dynamic Approximation Scheme (MIDAS) [135]
or Stochastic Dual Dynamic Integer Programming [143] for non convex problems, in
particular those displaying binary variables. These algorithms performance is sensitive
to the number of time steps as stated in [131] and [135].

Other classical Stochastic Programming methods are sensible to the number of time
stages. Solving a multistage stochastic optimization problem on a scenario tree displays

158

a complexity exponential in the number of time steps [142].
We present algorithms to decompose, in time, problems displaying many time stages.

The algorithms are based on a time block application of the Bellman equation [120]. The
motivation is a problem displaying two decisions time scales, but time decomposition also
helps to enhance classical methods and algorithms whose performance is sensitive to the
number of time steps.

Energy storage aging management

Batteries are expensive equipment whose long term management strategy significantly
impacts their economic profitability. The authors of [123] use an energy counting model
to model and manage the aging of the battery. It corresponds to measure the equivalent
number of full cycles Ncycles that a battery makes when it charges and discharges a given
amount of energy, for instance when a 10 kWh battery charges or discharges 3 kWh,
it performs a number of 3

2ˆ10
cycles as a full cycle exchanges the amount of energy of

two times the capacity. The health of the battery is managed in a stochastic infinite
horizon setting using Average-Cost Value Iteration [116, 125] that requires a stationary
assumption. A more detailed model for NaS batteries is developped in [124] that takes
into account depth of discharge (DoD) and temperature in addition to Ncycles. This model
is too detailed to be embedded in an stochastic optimization energy management system.
In [128] the authors first propose an abstract model of battery aging to develop continuous
time deterministic optimal control methods. An overview of heuristic methods to handle
storage aging in a control framework is provided in [127]. In [130] the authors compare
different battery aging models in a stochastic optimal control framework.

In this paper we use the simplest aging model provided in [123]. The main goal is
to design algorithms for discrete time finite horizon optimization problems with many
time steps and two decision time scales, hence without a stationary assumption (contrary
to [123]) and in a stochastic setting (contrary to [127]).

5.2 Stochastic optimization of an energy storage sys-
tem in a microgrid over the long term

We introduce different methods to solve a “novel class” of stochastic optimization prob-
lems, namely two-time scales stochastic optimization problems. Those are optimization
problems displaying stochasticity and decisions that have to be made at different paces.

5.2.1 Energy system description and notations

We consider the system sketched in Figure 5.1. This is a micro-grid with the following
features:

1. an electrical load, or demand, that is uncertain (right),

2. solar panels producing uncertain renewable electricity (left),

3. a connection to the national grid if self production is not enough to provide elec-
tricity to the load (top),

159

4. an electrical storage to ensure supply demand balance (bottom).

All the equipment exchange electricity though a DC grid. The arrows in Figure 5.1
represent the flow of energy: it is bidirectional in the case of the storage as it can charge
and discharge. The central node can be seen as a very small storage on a really fast time
scale (milliseconds).

The scope of the chapter is to propose an Energy Management System (EMS) that
controls both the charge/discharge and health of the battery so as to minimize the elec-
tricity consumption on the national grid while ensuring a good aging for the battery. We
present here a model of this stochastic dynamical system used to design algorithms to
implement the EMS.

Figure 5.1: The schematic representation of the DC micro-grid to be managed

Notations for two-time scales

For a given constant time interval ∆t, let M P N˚ such that M ` 1 is the number of time
steps in a day, e.g. for ∆t “ 60 seconds, M ` 1 “ 1440. The EMS has to make decisions
on two-time scales over a given number of days D P N˚:

1. one battery charge/discharge decision every minutem P t0, . . . ,Mu of every day d P
t0, . . . , Du,

2. one potential renewal of the battery every day d P t0, . . . , D ` 1u.

In order to take into account the two-time scales, we adopt in the sequel the following
notation. A variable z will have two time indexes zd,m if it changes every minute m of
every day d. An index pd,mq belongs to the following set

T “ t0, . . . , Du ˆ t0, . . . ,Mu Y tpD ` 1, 0qu , (5.1)

which is a totally ordered set when equipped with the lexicographical order

pd,mq ă pd1,m1
q ðñ pd ă d1q _

`

d “ d1 ^m ă m1
˘

. (5.2)

160

In the sequel, we also use the following notations for describing sequences of variables.
For pd,mq, and pd,m1q P T with m ď m1:

• the notation zd,m:m1 is used to refer to the sequence pzd,m, . . . , zd,m1´1, zd,m1q,

• the notation Zd,m:m1 is used to refer to the cartesian product
śm1

k“m Zd,k.

The following time-line illustrates how time flows between two days in our model:

d,2d,1d, 0 . . . d,M d` 1, 0
∆t∆t ∆t

Figure 5.2: Time-line

Uncertainties are modelled as random variables

We write random variables in capital bold letters, like Z , to distinguish them from
deterministic variables z.

Let d P t0, . . . , Du be a given day of the whole time span. Every minute m P

t0, . . . ,Mu, two uncertain outcomes materialize at the end of the time interval rpd,m ´
1q, pd,mqq (when m “ 0, the time interval is rpd´ 1,Mq, pd, 0q), namely,

• ES
d,m: the solar production in kWh,

• EL
d,m: the electrical demand (load) in kWh.

Another uncertain outcome realizes once a day at the beginning of the time inter-
val rpd, 0q, pd,Mqq namely,

• P b
d : the price of a battery replacement in e{kWh.

We gather all uncertainties in vectors and build a sequence of random variables
tWd,mupd,mqPT as follows. For all d P t0, . . . , Du we define:

Wd,m “

ˆ

ES
d,m

EL
d,m

˙

, for m P t0, . . . ,M ´ 1u, and Wd,M “

¨

˝

ES
d,M

EL
d,M

P b
d

˛

‚ . (5.3)

We assume in this model that, at the end of the last minute of the day, solar energy
production and demand materialize as well as the price of batteries. We call Wd,m the
uncertainty space where this uncertainty takes its values.

Remark 24. We assume in this model that the “slow" randomness P b
d materializes during

a minute at the same time as one solar and load “fast" randomness pES
d,M ,E

L
d,Mq. We

could add a virtual minute to avoid this.

161

The decision maker take decisions based on observation of uncertainties but he cannot
anticipate on future uncertainties. To describe this non-anticipativity constraint, for each
pd,mq P T, we introduce the σ-algebra Fd,m generated by all the past noises up to time
stage pd,mq

Fd,m “ σ
`

Wd1,m1 ; pd
1,m1

q ď pd,mq
˘

. (5.4)

Throughout the chapter a random variable indexed by pd,mq refers to a Fd,m-measurable
random variable (the measurability being imposed by constraints or derived through
dynamics equations). The filtration tFtutPT models the information flow of the problem
and the non-anticipativity constraints

@pd,mq P T σpUd,mq Ă Fd,m (5.5)

express the fact that random variablesUd,m are adapted to the natural filtration tFd,mupd,mqPT,
i.e Ud,m only depends on uncertainties up to time pd,mq. We define precisely the decision
variables Ud,m in the next paragraph.

Decisions are modelled as random variables

As already mentioned, as time goes on, the noise variables are progressively unfolded and
made available to the decision maker. This is why, as decisions depend on observations
in a stochastic optimal control problem, decision variables are random variables. On
a day d P t0, . . . , Du, the EMS has to make decisions every minute m P t0, . . . ,Mu
regarding the charge/discharge of the battery as well as the electricity consumption on
the national grid. These decisions depend on all the randomness unfolded previously,
that is, all the prices of batteries of the previous days and all the solar production and
load of the previous days and minutes of the day as described in Equation (5.3)). Finally,
these decisions are made at the beginning of the time interval rpd,mq, pd,m` 1qq (when
m “M the time interval is rpd,Mq, pd` 1, 0qq:

• EE
d,m: the import from the national grid in kWh;

• EB
d,m: the battery charge (ě 0) or discharge (ď 0) in kWh.

At the end of the time interval rpd, 0q, pd,Mqq, the decision maker can replace the
battery by a new one after observing the current price of batteries P b

d . The decision
variable is again a random variable as it depends on the randomness that materialized
the previous minutes of previous days:

• Rd: the size of the new battery in kWh.

For all d P t0, . . . , Du, we group all controls in vectors as follows:

for 0 ď m ăM , Ud,m “

ˆ

EE
d,m

EB
d,m

˙

and Ud,M “

ˆ

EE
d,M

Rd

˙

. (5.6)

We assume in this model that at the last minute of the day, the national grid consump-
tion EE

d,M is chosen as well as the potential renewal of the battery Rd. In order to take
into account the renewal of the battery in a simplified way, we assume in the model that

162

there is no battery charge at the end of the day. We call Ud,m the control space where
the control takes its values.

On Figure 5.1, we observe that all flows converge to a central node named "DC". At
a very small time scale (milliseconds), it could be described as a small energy storage to
model the voltage stability problem of the DC micro-grid. In practice, it could be imple-
mented by a controlled DC/DC converter and super-capacitors (see [129] and Chapter 4 of
this PhD thesis). We do not model this part and assume that the balance constraint (5.7)
is ensured in this problem. It states that at a minute time scale we consider that voltage
stability is handled and therefore that we have to ensure energy supply/demand balance
at the central node. This materializes as the following constraint:

EE
d,m`1 `E

S
d,m`1 “ E

B
d,m `E

L
d,m`1 . (5.7)

We observe a difference of indexes between EB
d,m and the other variables. This is due to

the fact that battery charge/discharge is to be implementable on a real system. We need
to be able to provide a charge/discharge target to the battery controller at the beginning
of the minute. The control variable EE

d,m`1 is virtual, it is deduced when voltage stability
is ensured in the grid at a lower control level. Therefore, we can remove this variable
from the optimization problem and replace Equation (5.6) by the following equation:

for 0 ď m ăM , Ud,m “
`

EB
d,m

˘

and Ud,M “
`

Rd

˘

. (5.8)

Charge/discharge impacts state of charge and age dynamics

We use a very simple model to describe charging and aging of the battery. We call ρc P
r0, 1s and ρd P r0, 1s respectively the charge and discharge efficiency of the battery. On
day d P t0, . . . , Du at minute m P t0, . . . ,Mu, we call Bd,m the state of charge of the
battery in kWh and Hd,m the remaining amount of exchangeable energy in the battery.
As we can change a battery only once a day, we call Cd the capacity of the battery. For a
given capacity a battery can make up to NcpCdq cycles before being considered unusable.
At the beginning of the life of the battery with capacity Cd, the formula 2ˆNcpCdqˆCd

gives the maximum health of the battery in kWh. This is the maximum amount of
exchangeable energy for the battery. A cycle represents a full charge of the battery plus
a full discharge, hence two times the capacity. Every-time we charge or discharge the
battery we change its state of charge according to the following dynamical equation.

Bd,m`1 “ Bd,m ´
1

ρd
EB´
d,m ` ρcE

B`
d,m , (5.9a)

where pxq` “ 0^ x and pxq´ “ 0^ p´xq. Moreover, its amount of exchangeable energy
(or health) decreases according to the following dynamical equation:

Hd,m`1 “Hd,m ´E
B´
d,m ´E

B`
d,m . (5.9b)

When the battery health reaches zero, it cannot be used anymore. Hence we have the
following health constraint

0 ďHd,m . (5.10)

163

We constrain the state of charge to remain between two prescribed bounds that are a
percentage of the capacity Cd:

B ˆCd ď Bd,m ď B ˆCd . (5.11)

Using Equations (5.9a) and (5.9b) repeatedly, we obtain that Bd,M (resp. Hd,M) is a
function of pBd,0,Ud,0:M´1q (resp. pHd,0,Ud,0:M´1q) that we call fBd (resp. fHd):

Bd,M “ f
B
d

`

Bd,0,Ud,0:M´1

˘

, (5.12a)

Hd,M “ f
H
d

`

Hd,0,Ud,0:M´1

˘

. (5.12b)

Battery renewal impacts state dynamics

In this paragraph, we model how the decision to renew the battery using the control Ud,M

(“ Rd) affects the slow state dynamics. If, at the end of day d, we replace the battery
with capacity Cd by a new battery of capacity Rd, then the capacity Cd`1 becomes equal
to Rd. Otherwise the capacity remains unchanged. This gives:

Cd`1 “

#

Rd , if Rd ą 0 ,

Cd , otherwise .
(5.13)

The renewal decision affects as well the fast variables Bd,M as a new battery is assumed
empty,

Bd`1,0 “

#

B ˆRd , if Rd ą 0 ,

Bd,M , otherwise ,
(5.14)

and Hd,M as a new battery has a renewed health,

Hd`1,0 “

#

2ˆNcpRdq ˆRd , if Rd ą 0 ,

Hd,M , otherwise .
(5.15)

We group these state variables at the begining of a day d under the name Xd:

Xd “

¨

˝

Cd

Bd,0

Hd,0

˛

‚ . (5.16)

We call Xd the state space where this state takes its values. We build a mapping

fSd : Cd ˆ Bd,M ˆHd,M ˆ Ud,M Ñ Xd`1

pc, b, h, uq ÞÑ

#

pu,Bu, 2Ncpuquq if u ą 0 ,

pc, b, hq otherwise .
(5.17)

164

We thus obtain a state dynamics equation given by

Xd`1 “ fSd
`

Cd,Bd,M ,Hd,M ,Ud,M

˘

using (5.13-5.15) and (5.17) (5.18a)

“ fSd
`

Cd, f
B
d

`

Bd,0,Ud,0:M´1

˘

, f
H
d

`

Hd,0,Ud,0:M´1

˘

,Ud,M

˘

using (5.12) (5.18b)

“ fd
`

Xd,Ud,0:M

˘

(5.18c)

with

fd

´

pcd, bd,0, hd,0q, ud,0:M

¯

“ fSd

´

cd, f
B
d

`

bd,0, ud,0:M´1

˘

, f
H
d phd,0, ud,0:M´1q, ud,M

¯

. (5.18d)

Remark 25. We note that, in our model, the state dynamics does not depend directly on
uncertainties Wt`1.

5.2.2 Stochastic optimization problem statement

We have introduced all the requested features to state a two-time scale stochastic optimal
control problem dynamics. It remains to define the objective function that the EMS seeks
to minimize.

The objective is a discounted expected sum over a finite horizon. We consider the
following objective to be minimized:

E
”

D
ÿ

d“0

γd

´

P b
d ˆRd `

M´1
ÿ

m“0

ped,m ˆ pE
B
d,m `E

L
d,m`1 ´E

S
d,m`1q

`
¯ı

. (5.19)

We now comment each term. Over the whole daily horizon D, the decision maker wants
to minimize a discounted sum of all his expenses, that is, the battery renewals and the
national grid energy consumption. The first term of the sum over days P b

d ˆRd is the
cost incurred by a battery renewal during day d. The second term

řM´1
m“0 p

e
d,m ˆE

E
d,m`1

`

is a sum of the national grid energy consumption every minute of the day, where EE
d,m`1

is eliminated using Equation (5.7). We take the positive part, denoted by `, assuming
that an excessive production of solar energy is wasted. The sum is discounted by a chosen
discount factor γd. In the sequel, the discount factor γd changes once a year to model a
discount rate of τ “ 4.5% every year

γd “
´ 1

1` τ

¯td{365u´1

. (5.20)

Using Equations (5.3) and (5.8), we obtain that the expectation cost given by Equa-
tion (5.19) can be rewritten as

E
”

D
ÿ

d“0

LdpXd,Ud,Wdq `KpXD`1q

ı

(5.21)

“ E
”

D
ÿ

d“0

γd

´

W 3
d,MUd,M `

M´1
ÿ

m“0

ped,m ˆ pUd,m `W
2
d,m`1 ´W

1
d,m`1q

¯ı

,

where the final cost K is null and the intraday cost Ld is given by

Ld : Xd ˆ Ud,0:M ˆWd,0:M Ñ p´8,`8s , (5.22)

pxd, ud, wdq ÞÑ γd

´

w3
d,Mud,M `

M´1
ÿ

m“0

ped,m
`

ud,m ` w
2
d,m`1 ´ w

1
d,m`1

˘

¯

.

165

5.3 Two algorithms for two-time scales stochastic op-
timal control problems

We introduce hereby a generic two-time scales stochastic optimization problem. For the
sake of simplicity we assume that the constraints on states and controls, that are not a
dynamic or a non anticipativity constraint, are placed in the instantaneous costs Ld using
characteristic functions taking the value `8. Gathering all the above equations, we can
state the optimization problem to be solved:

V pxq “ min
X

0:D`1
, U

0:D

E
”

D
ÿ

d“0

LdpXd,Ud,Wdq `KpXD`1q

ı

, (5.23a)

s.t Xd`1 “ fdpXd,Ud,Wdq , (5.23b)
Ud “ pUd,0, . . . ,Ud,m, . . . ,Ud,Mq , (5.23c)

Wd “ pWd,0, . . . ,Wd,m, . . . ,Wd,Mq , (5.23d)

σpUd,mq Ă σ
`

W
d1,m1

; pd1,m1
q ď pd,mq

˘

(5.23e)

X0 “ x . (5.23f)

The daily cost Ld is given by Equation (5.22), the final cost is equal to zero and the
state dynamics between days fd is given by Equation (5.18c). Note that the notation Xd

refers to the state random variable at the minute pd, 0q while the notation Ud and Wd

refer respectively to random decision and uncertainty vectors containing all decisions and
uncertainties of the day d.

As stated in Problem (5.23), the optimization problem is very similar to a classical
discrete time stochastic optimal control problem, except for the non anticipativity con-
straint (5.5) that expresses the fact that the decision vector Ud “ pUd,0, . . . ,Ud,Mq at
every time step d does not display the same measurability for each component (informa-
tion grows every minute).

We present in this part two methods to decompose the two-time scales stochastic
optimal control problem (5.23). We apply the decomposition schemes to design tractable
algorithms to compute suboptimal policies and values for that kind of problems.

5.3.1 Time blocks decomposition

We introduce a daily independence assumption in order to obtain a day by day decom-
position of the optimization problem (5.23), that is, a dynamic programming equation
between days. We assume that the sequence of random vectors

Wd

(

d“0,...,D
is con-

stituted of independent random variables. However, note that we do not assume that
each random vector Wd “ pWd,0, . . . ,Wd,Mq is itself composed of independent random
variables.

Assumption 26. The sequence

Wd

(

d“0,...,D
is a sequence of independent random vec-

tors.

We introduce a sequence of slow time scale value functions, tVdudPt0,...,D`1u, defined
by backward induction as follows. At time D ` 1, we set

VD`1 “ K , (5.24a)

166

and then for d P t0, . . . , Du we define by backward induction

Vdpxq “ min
X
d`1

,X
d
,U
d

E
”

LdpXd,Ud,Wdq ` Vd`1pXd`1q

ı

, (5.24b)

s.t Xd`1 “ fdpXd,Ud,Wdq , (5.24c)
Ud “ pUd,0, . . . ,Ud,m, . . . ,Ud,Mq , (5.24d)

Wd “ pWd,0, . . . ,Wd,m, . . . ,Wd,Mq , (5.24e)

σpUd,mq Ă σpXd,Wd,0:mq , (5.24f)

Xd “ x . (5.24g)

Let d P t0, . . . , Du be fixed. To each given pair pxd,Xd`1q P Xd ˆ L0pΩ,F ,P;Xd`1q,
we associate an optimization problem denoted by Ppd,“q

“

xd,Xd`1

‰

and given by:

Ppd,“q
“

x,X
‰

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

min
X
d
,U
d

E
”

LdpXd,Ud,Wdq

ı

, (5.25a)

s.t fdpXd,Ud,Wdq “X , (5.25b)
Ud “ pUd,0, . . . ,Ud,m, . . . ,Ud,Mq , (5.25c)
Wd “ pWd,0, . . . ,Wd,m, . . . ,Wd,Mq , (5.25d)
σpUd,mq Ă σpXd,Wd,0:mq , (5.25e)
Xd “ x . (5.25f)

The value of the optimization Problem (5.25) is denoted by φpd,“q
`

x,X
˘

and we
call this optimization problem the intraday optimization problem with equality target.
Adopting standard conventions, the value function φpd,“q will take the value `8, when
Problem (5.25) does not have an admissible solution for a given pair px,X q.

Proposition 27. Under Assumption 26, the value function V solution of optimization
problem (5.23) coincides with the value function V0 given by the Bellman equation (5.24).
Moreover, the sequence of value functions given by Equation (5.24) coincides with the
sequence of mappings given by the following backward induction:

VD`1 “ K (5.26a)

@x P Xd, Vdpxq “ min
XPL0pΩ,F ,P;Xd`1q

´

φpd,“q
`

x,X
˘

` E
“

Vd`1pX q
‰

¯

, (5.26b)

s.t σpX q Ă σpWdq . (5.26c)

Proof. Under Assumption 26, the optimal value of Problem (5.23) remains unchanged
when the non anticipativity constraint (5.23e) is replaced by the constraint:

σpUd,mq Ă σpXd,Wd,0:mq . (5.27)

Then, the fact that the backward induction (5.24) is the Bellman equation which gives
the solution of Problem (5.23) is detailed in [120] (Chapter 1 of this thesis). Exploiting
the linearity of the expectation and the fact that minimization can be done sequentially,

167

we rewrite Equation (5.24) as

Vdpxq “ min
X
d`1

PL0pΩ,F ,P;Xd`1q
min
U
d
,X
d

E
“

LdpXd,Ud,Wdq
‰

` E
“

Vd`1pXd`1q
‰

,

s.t p5.24cq-p5.24gq ,

“ min
X
d`1

PL0pΩ,F ,P;Xd`1q

´

φpd,“q
`

x,Xd`1

˘

` E
“

Vd`1pXd`1q
‰

¯

, (5.28)

Moreover, if Xd`1 P dom
`

φpd,“q
`

x, ¨
˘˘

, then Xd`1 is given by Equation (5.24c) and
thus it is a σpWdq-measurable random variable. Therefore, adding Constraint (5.26c) in
the optimization problem (5.28) yields the same optimization problem. This ends the
proof.

5.3.2 Stochastic targets decomposition algorithm

The numerical resolution of intraday problem (5.25) is most of the time out of reach
due to the target constraint (5.25b). In order to compute approximations of the daily
value functions (5.24), we present simplified versions of Problem (5.25). We introduce
a relaxation of the target constraint (5.25b), turning the equality into an inequality.
Furthermore that makes possible to look for deterministic targets instead of stochastic
ones which simplifies the information constraint (5.26c). We apply the general results in
§ 5.5.1 to the slow scale Bellman equation (5.26).

Relaxed intraday optimization problem

For each d P t0, . . . , Du, we introduce a relaxed intraday optimization problem, Ppd,ěq
“

x,X
‰

,
which is obtained by considering the optimization problem (5.25) whith the equality tar-
get (5.25b) replaced by the following inequality target (5.29b):

Ppd,ěq
“

x,X
‰

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

min
X
d
,U
d

E
”

LdpXd,Ud,Wdq

ı

, (5.29a)

s.t fdpXd,Ud,Wdq ěX , (5.29b)
Ud “ pUd,0, . . . ,Ud,m, . . . ,Ud,Mq , (5.29c)
Wd “ pWd,0, . . . ,Wd,m, . . . ,Wd,Mq , (5.29d)
σpUd,mq Ă σpXd,Wd,0:mq , (5.29e)
Xd “ x . (5.29f)

We denote by φpd,ěqpx,X q the value of the relaxed optimization problem Ppd,ěq
“

x,X
‰

.
We associate to the relaxed value function φpd,ěq

`

x,X
˘

a sequence of relaxed Bellman
value functions

Vpd,ěq
(

dPt0,...,D`1u
defined as follows:

VpD`1,ěq “ K , (5.30a)

and for all d P t0, . . . , Du, and for all x P Xd

Vpd,ěqpxq “ min
XPL0pΩ,F ,P;Xd`1q

´

φpd,ěq
`

x,X
˘

` E
“

Vpd`1,ěqpX q
‰

¯

, (5.30b)

s.t σpX q Ă σpWdq . (5.30c)

168

We then consider the case where, in Equation (5.30), the minimization over the space
L0pΩ,F ,P;Xd`1q is replaced by minimization over the constants x P Xd`1; we denote by

Vpd,ě,Xd`1q

(

dPt0,...,D`1u
the associated sequence of Bellman functions.

VpD`1,ě,XD`2q “ K , (5.31a)

and for all d P t0, . . . , Du, and for all x P Xd

Vpd,ě,Xd`1qpxq “ min
XPXd`1

´

φpd,ěq
`

x,X
˘

` Vpd`1,ě,Xd`2qpXq
¯

. (5.31b)

The undefined state space XD`2 in (5.31a) is introduced for consistency with recursive
equation (5.31b). It can be any space as it is not used in Equation (5.31a).

Assumption 28. The value functions tVdud“0,...,D are non-increasing.

We show in Proposition 29, that under Assumption 28, the value functions Vpd,ě,Xd`1q

give upper bounds to the original value functions Vd in (5.28).

Proposition 29. The sequence of relaxed Bellman value functions

Vpd,ěq
(

dPt0,...,D`1u

given by Equation (5.30) gives lower bound to the sequence of value functions

Vd
(

dPt0,...,D`1u

given by Equation (5.24). That is, for all d P t0, . . . , D ` 1u, we have

Vpd,ěq ď Vd . (5.32)

Moreover, under Assumption 28 we have for all d P t0, . . . , Du that

Vd “ Vpd,ěq ď Vpd,ě,Xd`1q . (5.33)

Proof. Let d P t0, . . . , D ´ 1u and a pair pxd,Xd`1q P Xd ˆ L0pΩ,F ,P;Xd`1q given. We
have that

φpd,ěq
`

xd,Xd`1

˘

ď φpd,“q
`

xd,Xd`1

˘

. (5.34)

From Equations (5.28) and (5.30), we obtain by backward induction that for all d P
t0, . . . , D ` 1u

Vpd,ěq ď Vd . (5.35)

Now, given d P t0, . . . , D ´ 1u, since the set of constant random variables taking values
in Xd`1 is a subset of L0pΩ,F ,P;Xd`1q we obtain that Vpd,ěq ď Vpd,ě,Xd`1q. Thus, the
only point to prove is that under Assumption 28 we have the equality Vd “ Vpd,ěq. We
proceed by backward induction. At time D` 1, the two mappings VpD`1,ěq and VD`1 are
both equal to K which is non-increasing. Then, let d be fixed in t0, . . . , Du and assume
that Vpd`1,ěq “ Vd`1 and that these two value functions are non-increasing. We prove
that Vpd,ěq and Vd coincides using Lemma 44 which applies since Xd`1 is a subset of some
finite dimensional space Rnx .

Remark 30. Looking for deterministic targets instead of stochastic targets is made pos-
sible by the fact that we relaxed the almost sure target equality constraint (5.29b) into
an inequality using the value functions monotonicity. An almost sure equality constraint
requires both sides to have the same measurability, we would have to ensure that a random
variable is always equal to a deterministic one which is most of the time impossible.

169

Statement of the algorithm with deterministic targets and periodicity classes

In order to compute the daily value functions upper bounds tVpd,ě,Xd`1qud“0,...,D`1 via
Equation (5.25), we need the value of the relaxed intraday problems φpd,ěq

`

xd, xd`1

˘

for
all d P t0, . . . , D ` 1u and for all pairs ppxd, xd`1q P Xd ˆ Xd`1, where we recall that
φpd,ěq

`

xd, xd`1

˘

is given by

φpd,ěq
`

xd, xd`1

˘

“ min
U
d

E
”

Ldpxd,Ud,Wdq

ı

, (5.36a)

s.t fdpxd,Ud,Wdq ě xd`1 , (5.36b)
σpUd,mq Ă σpWd,0:mq . (5.36c)

The computational cost can be significant as we need to solve a stochastic optimization
problem for every pair pxd, xd`1q P Xd ˆ Xd`1 and for every d in t0, . . . , Du. We present
a simplification exploiting periodicity of the intraproblems.

Lemma 31. Let I Ă t0, . . . , Du. Assume that there exists two sets XI and UI such
that for all d P I, Xd “ XI and Ud “ UI. Assume moreover than there exists two
mappings LI and fI such that for all d P I, Ld “ LI and fd “ fI. Finally assume that the
random variables tWdudPI are independent and identically distributed. Then, there exists
a function φI such that for all d P I

φd “ φI . (5.37)

Proof. The proof is immediate.

The set I introduced in Lemma 31 is called a periodicity class. We call Np the number
of periodicity classes of Problem (5.23) and pI1, . . . , INpq the periodicity classes, that is,
the sets of day indices that satisfy (5.37).

Remark 32. When there is no periodicity, Np “ D ` 1 and the periodicity classes are
singletons. In this case all the intraday problems have to be computed.

Remark 33. A periodicity property often appears in long term energy management prob-
lems with renewable energies, due to seasonality of natural processes such as solar pro-
duction. In these cases Np ă D ` 1 and it is enough to solve only Np intraproblems.

The algorithm to compute daily value functions approximations, with relaxed intraday

170

problems, deterministic targets and periodicity classes, is presented in Algorithm 3.
Algorithm 3: Two-time scales dynamic programming with deterministic targets
and periodicity classes
Data: Periodicity classes pI1, . . . , INpq
Result: Daily value functions approximations pVpd,ě,Xd`1qqd“0,...,D`1

Initialization: VpD`1,ě,XD`2q “ K;
for i “ 1, . . . , Np do

Let d P Ii;
for pxd, xd`1q P Xd ˆ Xd`1 do

Compute φpd,ěqpxd, xd`1q;
end

end
for d “ D,D ´ 1 . . . , 0 do

for xd P Xd do
Solve Vpd,ě,Xd`1qpxdq “ minxd`1PXd`1

φpd,ěqpxd, xd`1q ` Vpd`1,ě,Xd`2qpxd`1q;
end

end

Two further simplifications for the intraday problems computation

Two particular properties can be exploited to lower further the computational burden of
the sequence of intraday problems φpd,ěq.

Initial state, final target pair dimension reduction. We introduce a first particu-
lar property of some problems allowing to lower the computational burden of the
intraproblems by reducing the dimensionality of the initial state/target pair.

Assumption 34.

1. Xd “ Xd`1,

2. Ldpxd,Ud,Wdq “ ldpUd,Wdq,

3. fdpxd,Ud,Wdq “ xd ` gdpUd,Wdq.

Under Assumption 34, it is enough to solve, the optimization problem for all x P
Xd ´ Xd`1 (instead of each pxd, xd`1q P Xd ˆ Xd`1)

φpd,ěqpxq “ min
U
d

E
”

Ldpx,Ud,Wdq

ı

, (5.38a)

s.t fdpx,Ud,Wdq ě 0 , (5.38b)
σpUd,mq Ă σpWd,0:mq . (5.38c)

Convexity and stagewise independence assumption. When the state dynamics fd
are linear and costs Ld and K are convex in px, uq, we can use Stochastic Dual Dy-
namic Programming (SDDP) to solve the intraday problems, assuming stagewise
independence of the intraday noises pWd,0, . . . ,Wd,Mq. We obtain a convex poly-
hedral lower approximation of φpd,ěq. This convex polyhedral lower approximation

171

can be represented by a linear program hence it makes it possible to compute a
piecewise linear lower approximation V pd,ě,Xd`1q

of the daily value functions upper
bounds Vpd,ě,Xd`1q using Linear Programming (LP).

Remark 35. We are not guaranteed that Vpd,ěq ď V pd,ě,Xd`1q
.

Now we can compute efficiently intraday problems and lower bounds for the daily
value functions using a deterministic target decomposition. We present another method
to compute value functions for a two-time scales stochastic optimization problem relying
on a deterministic weights decomposition.

5.3.3 Stochastic adaptative weights algorithm

In this part we investigate an algorithm based on applying Fenchel-Rockafellar dual-
ity [141, 140] to the dynamic programming equation with targets (5.26), in particular to
the target constraint (5.25b). This method is connected to the one developed in [128]
called “adaptative weights", hence the name “ Stochastic Adaptative Weights" (SAWA).
We extend their results in a stochastic setting and a more general framework as we are not
tied to a battery management problem. Furthermore we use well known duality results
to reach similar conclusions.

We introduce the dualized intraday problems, whose value is called ψd for d P t0, . . . , D´
1u, such that for all pxd,λd`1q P Xd ˆ LqpΩ,F ,P; Λd`1q, where Λd`1 is the dual space
of Xd`1 (Λd`1 “ Rnx if Xd`1 “ Rnx):

ψdpxd,λd`1q “ min
X
d
,U
d

E
”

LdpXd,Ud,Wdq ` xλd`1, fdpXd,Ud,Wdqy

ı

, (5.39a)

s.t Ud “ pUd,0, . . . ,Ud,m, . . . ,Ud,Mq , (5.39b)

Wd “ pWd,0, . . . ,Wd,m, . . . ,Wd,Mq , (5.39c)

σpUd,mq Ă σpXd,Wd,0:mq , (5.39d)

Xd “ xd . (5.39e)

We assume that for all d P t0, . . . , Du, for any state xd P Xd, control Ud and uncer-
tainty Wd, the random variable fdpxd,Ud,Wdq belongs to LppΩ,F ,P;Xd`1q with 1 ă
p ă `8 and 1

p
` 1

q
“ 1.

For any state xd, admissible control Ud and uncertaintyWd, fpxd,Ud,Wdq is measur-
able with respect to σpWdq due to the non anticipativity constraint (5.39d). Hence for
any random variable λd`1 P L

qpΩ,F ,P; Λd`1q we have the following equality that make
it possible to restrict the measurability of dual variables [118, Chap. 5.5]:

ψdpxd,λd`1q “ ψd

´

xd,E
”

λd`1|σpWdq

ı¯

. (5.40)

Then, we introduce the following daily value functions,

V D`1 “ K , (5.41a)

172

and, for all d P t0, . . . , Du, and for all xd P Xd,

V dpxdq “ sup
λ
d`1

PΛd`1

ψdpxd,λd`1q ´ E
”

V ‹d`1pλd`1q

ı

, (5.41b)

s.t σpλd`1q Ă σpWdq , (5.41c)

where V ‹d`1 is the Fenchel transform of the function V d`1. We prove, in the next propo-
sition, that the value function V d gives a lower bound to the value function Vd.

Lemma 36. For every d P t0, . . . , Du,

V d ď Vd . (5.42)

Proof. We apply Lemma 47 to φpd,“qpxd, ¨q and E
”

Vd`1

ı

.

Proposition 37. Assume that K is convex and that for d P t0, . . . , Du the instantaneous
costs Ld are jointly convex in x and u and that the dynamics fd are jointly linear in x

and u. If moreover ri
´

dom
`

φpd,“qpxd, ¨q
˘

´dom
`

E
“

Vd`1

‰˘

¯

‰ H, then we have the equality

Vd “ V d . (5.43)

Proof. Under the convexity assumptions we are ensured that for all d, φpd,“q and Vd

are convex. We apply Proposition 48 to φd,“pxd, ¨q and E
”

Vd`1

ı

to obtain that, for all
d P t0, . . . , Du, and for all xd P Xd:

V dpxdq “ sup
λ
d`1

ψdpxd,λd`1q ´

´

E
”

V d`1

ı¯‹

pλd`1q , (5.44a)

where
´

E
“

V d`1

‰

¯‹

pλd`1q “ sup
XPLppΩ,F ,P;Xd`1q

xλd`1,Xy ´ E
“

V d`1

‰

pX q , (5.45)

s.t σpX q Ă σpWdq . (5.46)

Due to the property (5.40), this is equivalent to

V dpxdq “ sup
λ
d`1

ψdpxd,λd`1q ´

´

E
”

V d`1

ı¯‹

pλd`1q , (5.47a)

s.t σpλd`1q Ă σpWdq . (5.47b)

Finally we need to invert Fenchel transform and expectation in (5.47a) to obtain (5.41).
The proof of [122, Prop. 12], using [139] and [138], can be applied straightforwardly.

Deterministic weights simplification

It is computationally costly to compute the function ψd in (5.39) for every d P t0, . . . , Du,
initial state xd P Xd and stochastic weights λ P LqpΩ,F ,P; Λd`1q. As in §5.3.2 we relax the
equality target constraint (5.25b) and restrict the computation to deterministic weights

173

in Λd`1 which corresponds to dualize an expectation target constraint as detailed in the
sequel.

We build by backward induction deterministic weights value functions:

VpD`1,ě,Eq “ K , (5.48a)

and for all d P t0, . . . , Du, and for all xd P Xd,

Vpd,ě,Eqpxdq “ sup
λd`1PΛd`1

ψdpxd, λd`1q ´ V
‹
pd`1,ě,Eqpλd`1q , (5.48b)

λd`1 ď 0 . (5.48c)

Relaxing the target equality constraint (5.25b) into an inequality makes it possible to
constrain to non positive weights in (5.48c).

Remark 38. The notation Vpd,ě,Eq with the expectation in index comes from the connec-
tion with the dualization of the target constraint in the optimization problem Ppd,ěq

“

xd,Xd`1

‰

where the almost sure inequality target constraint is replaced by a constraint in expecta-
tion, see (5.49b). We denote this new optimization problem by Ppd,ě,Eq

“

xd,Xd`1

‰

:

Ppd,ě,Eq
“

xd,Xd`1

‰

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

min
U
d

E
”

Ldpxd,Ud,Wdq

ı

, (5.49a)

s.t E
”

fdpxd,Ud,Wdq ´Xd`1

ı

ě 0 , (5.49b)

Ud “ pUd,0, . . . ,Ud,m, . . . ,Ud,Mq , (5.49c)
Wd “ pWd,0, . . . ,Wd,m, . . . ,Wd,Mq , (5.49d)
σpUd,mq Ă σpWd,0:mq , (5.49e)

That kind of simplification is also applied in [121].

Vpd,ě,Eq is the value of a more constrained maximization problem with unchanged
objective than V d, due to the restriction to deterministic weights. Hence we have the
following inequality

Vpd,ě,Eq ď V d ď Vd . (5.50)

Statement of the SAWA algorithm with deterministic weights and periodicity
classes

To summarize, the algorithm to compute daily value functions approximations for relaxed
intraday problems with deterministic weights is presented in Algorithm 4, once again with

174

periodicity classes as introduced in Lemma 31.
Algorithm 4: Two-time scales dynamic programming with weights
Data: Periodicity classes pI1, . . . , INpq
Result: Daily value functions approximations pVpd,ě,Eqqd“0,...,D`1

Initialization: VpD`1,ě,Eq “ K;
for i “ 1, . . . , Np do

Let d P Ii;
for pxd, λd`1q P Xd ˆ Λd`1 do

Compute ψdpxd, λd`1q;
end

end
for d “ D,D ´ 1 . . . , 0 do

for xd P Xd do
Solve Vpd,ě,Eqpxdq “ supλd`1PΛd`1

ψdpxd, λd`1q ´ V
‹
pd`1,ě,Eqpλd`1q;

end
end

Remark 39. The whole interest of the two algorithms 3 and 4 to compute daily value
functions approximations is that we can solve intraday problems in parallel, or distribute
the resolution of the intraday problems across days. Moreover, we can theoretically apply
any stochastic optimization method to solve the intraday problems. Without stagewise
independence assumption we may use Stochastic Programming techniques (for example
scenario trees) to solve the intraday problems. With the stagewise assumption we may
apply Stochastic Dynamic Programming.

5.3.4 Producing an online policy using the daily value functions

We assume that we have at disposal daily value functions trVdud“0,...,D either obtained by
the targets algorithm (rVd “ Vpd,ě,Xd`1q), or by the weights algorithm (rVd “ Vpd,ě,Eq).

Proposition 40. Under Assumption 28 and Proposition (29), we have the following
inequality

Vpd,ě,Eq ď Vd ď Vpd,ě,Xd`1q . (5.51)

Proof. It is a reminder of Equation (5.50) and Proposition 29.

Now, for each given day d P t0, . . . , Du and given a current state xd P Xd, we can use
the daily value functions rVd as daily value functions approximation in order to state a
new intraday problem on day d as follows:

min
X
d
,U
d

E
”

LdpXd,Ud,Wdq `
rVd

´

fdpXd,Ud,Wdq

¯ı

, (5.52a)

s.t Ud “ pUd,0, . . . ,Ud,m, . . . ,Ud,Mq , (5.52b)

Wd “ pWd,0, . . . ,Wd,m, . . . ,Wd,Mq , (5.52c)

σpUd,mq Ă σpXd,Wd,0:mq , (5.52d)

Xd “ xd . (5.52e)

175

This problem can be solved by any method that provides an online policy as presented
in [119] (see Chapter 2). The presence of a final cost rVd ensures that the long term effect
on battery health of decisions made every minute is taken into account inside the intraday
problem policy.

The simulation of an online policy for a stochastic optimization problem is often made
offline as part of the verification process of a stochastic optimal control problem resolu-
tion. Here it would be time consuming to produce online policies using the resolution
of problem (5.52) for every day of the horizon in simulation. These policies are more
relevant for the real control of the system, hence the resolution of problem (5.52) can be
distributed across days. We present in the next two paragraphs how to simulate two-time
scales policies with targets or weights in a smaller amount of time.

Simulating a policy using targets

In the case we decomposed the problem using deterministic targets, we eventually solved
intraday problems whose values are tφpd,ěqud“0,...,D for every couple of initial state and
deterministic target pxd, xd`1q P Xd ˆ Xd`1. In the process, a policy for every intraday
problem has been computed. For d P t0, . . . , Du and all pxd, xd`1q P Xd ˆ Xd`1, we
call πt

pd,ěqpxd, xd`1q : Wd Ñ Ud,0ˆ, . . . ,Ud,M a policy solving Ppd,ěq
”

xd, xd`1

ı

whose value
is φpd,ěqpxd, xd`1q.

We computed the value φpd,ěq
`

xd, xd`1

˘

only on Xd ˆ Xd`1 as we replaced stochastic
targets by deterministic ones. Therefore, we can only compute a target decision solving
the problem

xtd`1 P arg min
xPXd`1

´

φpd,ěq
`

xd, x
˘

` Vpd`1,ě,Xd`1qpxq
¯

. (5.53a)

A deterministic target xtd`1 is computed and we apply the corresponding intraday pol-
icy πt

pd,ěqpxd, x
t
d`1q to simulate intraday decisions and states drawing a scenario wd out

ofWd. The next state xd`1 at the beginning of day d`1 is then xd`1 “ fd

´

xd, π
t
pd,ěqpxd, x

t
d`1qpwdq, wd

¯

.

Simulating a policy using weights

In the case we decomposed the problem using deterministic weights, we eventually solved
relaxed intraday problems whose values are tψdud“0,...,D for every couple of initial state
and deterministic weight pxd, λd`1q P XdˆΛd`1. In the process, a policy for every relaxed
intraday problems has been computed. For d P t0, . . . , Du and all pxd, λd`1q P XdˆΛd`1,
we call πwd pxd, λd`1q : Wd Ñ Ud,0ˆ, . . . ,Ud,M a policy solving the problem whose value
is ψdpxd, λd`1q.

At the beginning of day d in a state xd P Xd, we compute a weight λwd`1 P Λd`1 solving
the following optimization problem

λwd`1 P argmax
λPΛd`1

´

ψdpxd, λq ´ V
‹
pd`1,ě,Eqpλq

¯

. (5.54a)

Thanks to this deterministic weight λwd`1, we apply the corresponding intraday pol-
icy πwd pxd, λwd`1q to simulate intraday decisions and states drawing a scenario wd out ofWd.
The next state xd`1 at the beginning of day d`1 is then xd`1 “ fd

´

xd, π
w
d pxd, λ

w
d`1qpwdq, wd

¯

.

176

In the next section, we present numerical experiments using the targets and weights
algorithms.

5.4 Numerical experiments
In this section, we apply the previous theoretical results to three long term battery man-
agement problems. First, we describe the realistic data used for the three experiments.
Then, we present the first experiment that consists in solving the battery charge/dis-
charge, aging and renewal management problem introduced in Section 5.2, with targets
decomposition. We compare the results with a daily management approach that ignores
aging. Then, we present a battery aging management without renewal, with fixed ca-
pacity, over a few days. It makes it possible to apply targets and weights decomposition
algorithms and to compare them to a straightforward application of Stochastic Dynamic
Programming and Stochastic Dual Dynamic Programming over the whole horizon. Fi-
nally, we apply targets decomposition with SDDP for the sizing of a battery taking aging
into account.

5.4.1 Experimental setup

We use a realistic instance of the problem: a house with solar panels and battery. The
problem presents three sources of randomness, namely, solar panels production, electrical
demand and prices of batteries per kWh.

Data to model demand and production

We assume that the house is equipped with 12 kW of solar panels. One year scenarios of
solar exposure in Zambia with a time step of 1 minute are openly available1. Using these
solar scenarios, we can generate realistic solar panels production scenarios using Python
library PVlib2. We display in Figure 5.3 the distribution of solar panels production every
hour as a boxplot.

For the demand data we obtained openly available scenarios from Ausgrid3. This is
electrical demand data from a customer in kWh with 1 minute time step as well. We
display in Figure 5.4 the hourly distribution of electrical demand.

1energydata.info/en/dataset/zambia-solar-radiation-measurement-data-2015-2017
2github.com/pvlib/pvlib-python
3www.ausgrid.com.au/datatoshare

177

Figure 5.3: Daily solar panels production hourly distribution (kWh)

Figure 5.4: Daily electrical demand hourly distribution (kWh)

Data to model the cost of batteries and electricity

For the cost of batteries, we obtained a yearly forecast between 2010 and 2030 from
Bloomberg4. We added an arbitrary white gaussian noise to generate synthetic random
batteries prices scenarios. We display in Figure 5.5 on the left, the forecast (in blue)
and the scenarios we generated (in gray). For the price of electricity, we use a realistic
scenario, displayed in Figure 5.5 on the right, based on EDF blue tariff5 for a 6 or 9 kVA
subscription with peak and off-peak hours.

4https://www.bloomberg.com/quicktake/batteries
5https://particulier.edf.fr/en/home/energy-at-home/electricity/blue-tariff.html

178

Figure 5.5: Batteries cost scenarios between 2010 and 2030, and cost of electricity

5.4.2 Long term aging and renewal of batteries

We presented the battery aging and renewal problem in Section 5.2. We recall, with the
problem notations, the expression of the daily Bellman value functions for this particular
problem:

Vdpcd, bd,0, hd,0q “ min
EB
d,0:M

,R
d

E
”

γd

M´1
ÿ

m“0

ped,m ˆE
E
d,m`1 ` γdP

b
d ˆRd

` Vd`1pCd`1,Bd`1,0,Hd`1,0q

ı

, (5.55a)

s.t p5.9aq, p5.9bq , (5.55b)
p5.13q, p5.14q, p5.15q , (5.55c)
σpEB

d,mq Ă σpCd,Bd,Hd,E
S
d,0:mq , (5.55d)

σpRdq Ă σpCd,Bd,Hd,P
b
d q , (5.55e)

Cd “ cd , Bd “ bd,0 , Hd “ hd,0 . (5.55f)

Intuitively, the daily value functions are non-increasing in the state of charge b and
the state of health h because it is always preferable to have a full and healthy battery. We
prove in Appendix 5.5.2 that this problem presents all the features required to apply our
decomposition algorithms, namely, that the value functions Vd are non-increasing in bd
and hd.

Splitting slow and fast decision variables

We introduce the intraday problems for all d P t0, . . . , D ` 1u:

179

φpd,ěqpcd, bd,0, hd,0,B ,H q “ min
EB
d,0:M

E
”

M´1
ÿ

m“0

ped,m ˆE
E
d,m`1

ı

, (5.56a)

s.t p5.9aq, p5.9bq , (5.56b)
Bd,M ě B , Hd,m ěH , (5.56c)

σpEB
d,mq Ă σpCd,Bd,Hd,E

S
d,0:mq , (5.56d)

Cd “ cd , Bd “ bd,0 , Hd “ hd,0 . (5.56e)

There is a small difference in the definition of the intraday problem as compared to
Equation (5.25) because we keep the cost EγdP b

d ˆ Rd outside. It allows to keep the
capacity dynamic (5.13) and its associated target constraint (5.25b) outside the intraday
problem. All the previous results can still be applied, but this decomposition is less
computationally costly. We obtain the following expression for the daily value functions
with the deterministic targets simplification:

Vpd,ě,Xd`1qpcd, bd,0, hd,0q “ min
R
d
,b,h

γdφpd,ěqpcd, bd,0, hd,0, b, hq ` E
”

γdP
b
d ˆRd

` Vd`1pCd`1,Bd`1,0,Hd`1,0q

ı

, (5.57a)

s.t p5.13q, p5.14q, p5.15q , (5.57b)
σpRdq Ă σpCd,Bd,0,Hd,0,P

b
d q , (5.57c)

Cd “ cd , Bd,0 “ bd,0 , Hd,0 “ hd,0 . (5.57d)

It falls down to choose end of the day maximum aging and minimum state of charge
at the beginning of the day as well as battery renewal once price of batteries is observed.
We recall that, due to the dynamics (5.13), (5.14) and (5.15), the random variables Cd`1,
Bd`1,0 and Hd`1,0 depend on b and h in (5.57).

Simplifying the intraday problem

In this application, we are in the situation described in Assumption 34 regarding the
aging dynamics:

φpd,ěqpcd, bd,0, hd,0, bd,M , hd,Mq “ φpd,ěqpcd, bd,0, hd,0 ´ hd,M , bd,M , 0q . (5.58)

Finally, as we want to focus on the aging, we neglect the state of charge target
replacing it by an empty state of charge target. In fact, we assume that the battery is
empty at the end and at the beginning of everyday, which is a pessimistic assumption.
We have to compute the following functions:

rφpd,ěqpcd, hd,0 ´ hd,Mq “ φpd,ěqpcd, 0, hd,0 ´ hd,M , 0, 0q . (5.59)

Then, we can compute the daily value functions approximation Vpd,ě,Xd`1q by exhaus-
tive search in discretized daily states, controls and targets spaces. In our numerical

180

experimentation, we use the same uncertainties model everyday for the noises and we
assume that the prices of electricity are the same everyday. Then we compute only rφp0,ěq.

To compute the function rφp0,ěq, we apply the SDDP algorithm, assume stagewise
independence of the noises, for every possible capacities cd P C, that is, in our case for all
C “ t0, 1 . . . , 19, 20u. Applying SDDP for a capacity cd, we obtain a convex polyhedral
lower approximation of rφp0,ěqpcd, ¨q.

Numerical simulation of a two-time scales policy

To simulate a policy, we draw one scenario of solar production and electrical demand for
every minutes step of the 20 years horizon. We display in Figure 5.6 left, a net production
(solar production minus demand) over one week. We also draw one scenario of cost of
batteries for everyday of the horizon in Figure 5.6 right. We apply the simulation strategy
described in §5.3.4.

Figure 5.6: Net production scenario over one week and price of batteries scenario over 20
years

Our instance has then the following numerical features:

• Horizon: 20 years,

• Number of time steps: 10, 512, 000 minutes,

• Battery capacity: between 0 and 20 kWh,

• One periodicity class: all days are similar.

Comparison of two policies

We compare two policies. One policy is computed using the value functions (5.57) with
the simplification that the state of charge target is restricted to 0, that is, we do not
constrain the state of charge of the battery at the end of every day. We call this strategy
“aging control" or AC. The other policy is computed using the value functions (5.57)
without state of charge constraints as well. However there is another simplification: the
health of the battery at the end of the day has only to remain above 0, that is, there is
no health target every day. This policy is called “without aging control" or WAC. We

181

compare hereby the two policies on one twenty years simulation. The reference case is
just the electricity bill of the house along the drawn scenario and without battery at all.

Figure 5.7: Health decrease comparison

Figure 5.8: Daily state of charge trajectories comparison (kWh)

We observe unsurprisingly in Figure 5.7 that the AC strategy renews the battery one
less time than the WAC strategy. We observe that both strategies buy the same first
capacity, that is a 4 kWh battery. The WAC buys one more 4 kWh battery after about 5
years while the ac ones waits 10 years. At year 10, both strategies buy a 16 kWh battery
that has more health at the end of the horizon with the AC strategy than it does with
the WAC strategy.

We display in Figure 5.8 the impact of both strategies on the state of charge of the
batteries everyday. In red is the mean state of charge. We observe unsurprisingly that
the WAC strategy uses more intensively the battery everyday.

Finally, on this single simulation we obtain the following discounted expenses for
electricity bill and battery purchases:

• Reference case (electricity bill without battery and solar panels): 25404 e,

• Without aging control: 24702 e, minus 3 % compared to reference,

182

• Aging control: 22613 e, minus 11% compared to reference.

On one simulation we observe that the best economical strategy is to buy batteries and
to control their aging, against one particular battery scenario. We should make many
simulations over multiple battery prices to conclude due to the stochasticity of these
battery prices.

Remark 41 (On computation time). The targets decomposition algorithm is here applied
because the problem is way too large to apply SDP straightforwardly (10512000 time steps
with 3 state variables). The computation time would be tremendous even if SDP can
be parallelized and moreover the memory needed is way above the memory of a regular
computer. With the targets decomposition, we display reasonable computation times:
the intraday problem rφp0,ěq took around 1 hour to compute, the daily value functions
around 45 minutes and a simulation around 45 minutes as well. We present a more
rigorous discussion on complexity and computation times in the next experimentation.

5.4.3 Decomposition methods comparison on a simple aging prob-
lem

In this part, we focus on aging of a battery with a given capacity over five days. The
objective is to compare targets and weights decomposition algorithms to the results ob-
tained using SDP, and SDDP, straightforwardly over the whole horizon. We assume that
the house is equipped with a battery with a given capacity c0 that will not change during
the five days. This assumption removes the slow scale renewal decision variable from the
previous experiment (in §5.4.2). In the application of this new paragraph, we demon-
strate that the decomposition algorithms are also efficient to solve stochastic optimization
problems with many time stages but a single scale

Problem instance

We present hereby the different parameters of the problem we solve.

• Horizon: 5 days.

• Time step : 15 minutes.

• Number of time steps : 480.

• Capacity: c0 “ 13 kWh battery.

• Initial health: h0,0 “ 100 kWh of exchangeable energy.

Target daily value functions without renewal

Without battery renewal, we obtain the following daily target value functions defined by
backward induction:

Vpd,ě,Xd`1qpbd,0, hd,0q “ min
b,h

φpd,ěqpc0, bd,0, hd,0, b, hq ` Vpd`1,ě,Xd`2qpb, hq , (5.60a)

183

where φpd,ěq is the intraday problem defined in (5.56).
Once again, we decide to neglect state of charge target to focus on health here. We fix

state of charge target to zero, or empty battery. We also take the same net production
uncertainties model everyday of the five days horizon. As in the previous experimentation,
we then compute the single intraday problem rφp0,ěqpc0, ¨q with only one capacity this time.
In practice, this problem is solved using SDDP provided a polyhedral lower approximation
of rφp0,ěqpc0, ¨, ¨q. We call the target value functions V T

pd,ě,Xd`1q
:

V T
pd,ě,Xd`1q

phd,0q “ min
h

rφpd,ěqpc0, bd,0, hd,0 ´ h, q ` V
T
pd`1,ě,Xd`2q

phq . (5.61a)

As the rφp0,ěqpc0, ¨, ¨q is convex polyhedral, we can solve the backward recursion (5.61a)
using linear programming. Moreover, we can obtain a convex polyhedral lower approxi-
mation of V T

pd,ě,Xd`1q
. In the sequel, when we refer to V T

pd,ě,Xd`1q
, we refer to this polyhedral

approximation.

Weights daily value functions without renewal

As we focus only on aging we do not dualize the whole intraday dynamics here. We
dualize only the aging dynamic. We define the relaxed intraday problem:

ψdpc0, hd,0, λdq “ (5.62a)

min
EB
d,0:M

E
”

M´1
ÿ

m“0

ped,mE
E
d,m`1

ı

` E
”

λd ˆ
M´1
ÿ

m“0

1

ρd
EB´
d,m ´ ρcE

B`
d,m

ı

, (5.62b)

s.t Bd,m`1 “ Bd,m ´
1

ρd
EB´
d,m `

1

ρd
ρcE

B`
d,m , (5.62c)

Bd,M ě B , (5.62d)

σpEB
d,mq Ă σpBd,Hd,E

S
d,0:mq , (5.62e)

Bd “ B , Hd “ hd . (5.62f)

So, as λd deterministic, the objective turns into

E
”

M´1
ÿ

m“0

ped,mE
E
d,m`1 `

λd
ρd
EB´
d,m ´ λdρcE

B`
d,m

ı

. (5.63)

It makes it possible to solve the problem (5.62) using SDDP producing a convex polyhe-
dral approximation of ψdpc0, ¨, λdq. We make the periodicity assumption as in the targets
decomposition.

Then, we compute weights daily value functions solving the backward recursion:

V W
pd,ě,Eqphd,0q “ sup

λPΛd`1

”

ψ0pc0, hd,0, λq `min
hPH

´

´ λ ¨ h` V W
pd`1,ě,Eqphq

¯ı

. (5.64)

In this case we computed many intraday problems value ψ0pc0, ¨, λq for different λ P
r0, 2s. We need to compute the values ψd only for d “ 0 using the periodicity as-
sumption. It appears that, above λ “ 0.08, the mapping λ Ñ ψ0pc0, ¨, λq is constant.

184

Therefore, we perform the maximization (5.64) by exhaustive search in the discrete
space t´0.08,´0.0784, . . . ,´0.0016, 0u, that is, all the weights between ´0.08 and 0 with
step 0.0016, which gives 51 weights. The nested minimization over h in (5.64) is performed
by exhaustive search in the discretized health space as well.

Computing minute value functions

Both targets and weights decomposition methods provide daily value functions V T
pd,ě,Xd`1q

and V W
pd,ě,Eq. Next, we compute intraday value functions using these value functions as

final cost in new intraday problems. For example, in the targets case, we compute the
family of intraday value functions V T

d,m by applying the SDDP algorithm to the problem,
because the final cost V T

pd`1,ě,Xd`2q
is convex polyhedral:

min
EB
d,0:M

E
”

M´1
ÿ

m“0

ped,m ˆE
E
d,m`1 ` V

T
pd`1,ě,Xd`2q

pHd,Mq

ı

, (5.65a)

s.t p5.9aq, p5.9bq , (5.65b)
σpEB

d,mq Ă σpBd,m,Hd,m,E
S
d,mq . (5.65c)

For the weights case, we apply SDP as we computed an approximation of V W
pd`1,ě,Λd`2q

on
a grid.

Two straightforward references

We compare these two daily decomposition methods to two straightforward approaches
because the problem is not too large to apply them. However we will observe that
numerically these classical methods perform poorly to produce the “true" value functions.
We apply SDP and SDDP to the following global problem assuming stagewise (minutes)
independence of the noises:

min
EB
d,0:M

E
”

D´1
ÿ

d“0

M´1
ÿ

m“0

ped,m ˆE
E
d,m`1

ı

, (5.66a)

s.t p5.9aq, p5.9bq , (5.66b)
Bd`1,0 “ Bd,M , Hd`1,0 “Hd,M , (5.66c)

σpEB
d,mq Ă σpBd,m,Hd,m,E

S
d,mq . (5.66d)

With both algorithms, we obtain a family of intraday value functions respectively
called V SDP

d,m and V SDDP
d,m . To be consistent with the two previous methods, at the

beginning of each day in a given state bd,0, hd,0 we force the value function V SDP
0 to

satisfy the equality V SDP
d,0 pbd,0, hd,0q “ V SDP

d,0 p0, hd,0q in order to ignore the state of charge
at the end and beginning of each day as well. We do the same for SDDP.

Numerical results

We now present numerical results comparing the four methods. Figure 5.9 presents in-
sample simulation results with the four algorithms along one scenario. It means that

185

we have drawn one scenario from the uncertainties distribution we used to compute the
daily value functions. We observe that the aging of the battery as well as its state of
charge over the 5 days seems to be the same for all algorithms. We observed the same
fact on 10, 000 scenarios, that are not displayed here.

Figure 5.9: Aging and state of charge simulation over 5 days with different methods

Figure 5.10 presents the distribution of the difference of costs between each pair of
algorithms along 10, 000 scenarios. All the histograms are centered around 0, hence it
seems that all algorithms perform equivalently with a small win for the weights decompo-
sition over the targets decomposition. The mean difference is approximately zero between
all methods.

Figure 5.10: Simulation costs comparison

186

Figure 5.11: Daily value functions comparison

Figure 5.12: Focus on daily value function on day number 3

Figure 5.11 displays the six daily value functions, the sixth one being the final cost
equal to zero. We observe that all methods compute approximately the same daily value
functions. On Figure 5.12 we focus on day 3 and we observe the following order between
value functions: V SDDP

3,0 ď V W
p3,ě,Eq ď V T

p3,ě,X4q
ď V SDP

3,0 . We observe the same thing on all
the days. This is consistent with the fact that SDDP provides a lower approximation of
the true value functions, while SDP, because of discretization of state and control spaces

187

and interpolation, provides an upper approximation. It is surprising to find the value
functions computed using targets and weights decomposition between these two bounds
even with the deterministic weights and targets simplification. We recall that the “true"
value functions Vd satisfy the inequality:

V W
pd,ě,Eq ď Vd ď V T

pd,ě,Xd`1q
. (5.67)

SDP Weights SDDP Targets
Intraday resolution (SDDP) H 51ˆ 14 sec H 14 sec
Daily values functions H 0.15 sec H 0.59 sec
Minute values functions 22.5 min 5ˆ 4.5 min 3.6 min 5ˆ 14 sec
Total CPU time 22.5 min 34.4 min 3.6 min 84.6 sec
Total time (with parallelisation) 22.5 min 5.0 min 3.6 min 24.6 sec
Gap (200ˆ mc´v

mc`v
) 0.91 % 0.32 % 0.90 % 0.28 %

Table 5.1: Algorithms numerical results comparison

Table 5.1 presents the computation times of the algorithms as well as their gap which
is measured as the relative difference between the initial value V0,0p0, 100q computed
by the algorithm and the mean cost obtained by simulation over 10000 scenarios from
state p0, 100q. SDP and SDDP do not display intraday resolution and daily value functions
times as they are applied directly to the global problem, computing both daily and minute
value functions.

• We observe that daily value functions computation for targets and weights algo-
rithms is really fast, but that the intraday problems resolution for weights is costly.
This is due to the exhaustive search in the weights space (of cardinal 51 here). This
time is significantly lower in the targets case because SDDP already explores the
initial state space.

• We observe that targets and weights algorithms have the best gaps. We could
improve the one of SDDP but we did not manage to improve it significantly after
more than 1 hour. The convergence of SDDP (measured with the gap) is sensitive
to the number of time stages [131].

• The time required to compute value functions in the weights case is the same as
SDP, as it computes 5 times a 5 time smaller SDP. However the weights algorithm
permits to parallelize this phase or even to distribute it accross days, which is
impossible with SDP.

Finally, we observe that the targets algorithm, where all the intraday problems are
solved using SDDP is the fastest algorithm. It has the best gap, displays approximately
the same costs and value functions as the other algorithms. Moreover, the resolution of
the intraday problems with final cost can be parallelized or distributed across days. In
fact it is a way to accelerate the resolution of the problem with multiple applications of
SDDP, instead of one straighforward application, when a convex problem displays a high
number of time steps, monotonicity and some good properties. That kind of approach
could be appealing for the algorithm Mixed Integer Dynamic Approximation Scheme [135]
as it is really sensible to the number of time steps and relies on monotonicity as well.

188

5.4.4 Sizing of a battery using targets decomposition and Stochas-
tic Dual Dynamic Programming

In this part, we use the lower convex polyhedral approximations of the intraday target
problems values φpd,ěq provided by SDDP, to compute an optimal capacity for the house.

A sizing problem without battery renewal

We apply the targets decomposition scheme, introduced in §5.3.2 to the same aging
problem without battery renewals to compute the net present value for a given battery
capacity. We introduce the intraday problems:

φpd,ěqpcd, hd,0 ´ hd,Mq “ min
EB
d,0:M

E
”

M´1
ÿ

m“0

ped,m ˆE
E
d,m`1

ı

, (5.68a)

s.t p5.9aq, p5.9bq , (5.68b)
Bd,M ě B , Hd,m ě 0 , (5.68c)

Cd,m “ Cd,m`1 , (5.68d)

σpEB
d,mq Ă σpCd,Bd,0,Hd,0,E

S
d,0:mq , (5.68e)

Cd,0 “ cd , Bd,0 “ B , Hd,0 “ hd,0 ´ hd,M . (5.68f)

The intraday problem remains unchanged compared to the previous experiment 5.4.2
except that we augment the state with a constant dynamic for the capacity, see (5.68d).
We recover the value φpd,ěq as we can eliminate trivially the capacity state using (5.68d).
This trick makes it possible to compute a lower convex polyhedral approximation rφpd,ěq
by applying the SDDP algorithm with a grid of initial states.

It is then possible to apply SDDP to the daily target value functions recursion without
battery renewal:

Vpd,ě,Xd`1qpcd, hd,0q “ min
h

γdφpd,ěqpcd, hd,0 ´ hq ` Vpd`1,ě,Xd`2qpcd, hd,0 ´ hq . (5.69a)

The application of a two-time scale SDDP is relevant only if daily value functions are
required. Here, only the sizing of the battery matters; hence we can just solve a linear
program to compute the optimal capacity as presented in the next section.

We worked on an industrial case where the economic profit was not the only objective.
We had to determine also the rate of self consumption and self production for a given
capacity. For this purpose, we needed to compute daily value functions so as to produce
a simulation policy to evaluate these rates using Monte Carlo simulation.

Computation of the optimal capacity

We obtained a convex polyhedral approximation of φpd,ěq for every relevant d P t0, . . . , Du
possibly using periodicity. We can then compute an optimal capacity at the first day 0

189

by solving the following linear program for a given price of batteries per kWh pb0:

min
cPrc,cs

min
h0,0,...,hD`1,0

pb0 ˆ c`
D
ÿ

d“0

γdφpd,ěqpc, hd,0 ´ hd`1,0q , (5.70a)

s.t h0,0 “ 2Ncycles ˆ c , (5.70b)
hd,0 ě hd`1,0 . (5.70c)

This is a linear program using the convex lower polyhedral approximation of φpd,ěq. The
constraint (5.70c) makes it possible to lower the size of the search space but is implicit
as a negative initial age hd,0 ´ hd`1,0 leads to φpd,ěqpc, hd,0 ´ hd`1,0q “ `8.

Numerical results

We compute the value of Problem (5.68) using SDDP with 500 iterations in 1.7 minute.
We test convergence by MonteCarlo simulation and we reach a gap of 0.1% between the
upper bound, computed by Monte Carlo, and the lower bound, computed by SDDP.
Then, we were able to solve Problem (5.70) for a given horizon and price of batteries
in 1.7 second for a 1 year horizon and 71 seconds for 12 years horizon using CPLEX.
We present numerical results as contour plots on Figure 5.13 and 5.14. The first one
presents the optimal battery capacity (black is 0 kWh, yellow is 20 kWh) as a function
of the investment horizon D and the prices of batteries pb0. The second presents the
corresponding discounted benefit (black is 0 e, yellow is above 2100 e) as a function of
horizon and prices as well. The third one presents the corresponding expected lifetime
for the battery (black is 0 years, yellow is 7 years), as a function of horizon and prices.
We observe that a battery would be economically interesting if we consider the invest-
ment over at least 2 years and below 150 euros per kWh, below the optimal battery has
capacity 0 kWh. Over a 12 years horizon, the best capacity is the largest one, that is 20
kWh capacity, and the expected net benefit would be 2100 euros. We finally observe on
Figure 5.14 that even the largest battery is not expected to last more than 7 years. This
is consistent with the plateau we observe on Figure 5.13 above 7 years.

Figure 5.13: Optimal battery capacity and benefit as a function of prices and horizon

190

Figure 5.14: Expected battery lifetime as a function of prices and horizon

Conclusion
We introduced a two-time scales stochastic optimization problem for a battery charge/dis-
charge, aging and renewal management problem. The motivation for two-time scales
modeling originated from the existence of decisions that have to be made every minute
(charge/dicharge) and decisions that have to be made once a day (renewal). We presented
two algorithmic methods to compute daily value functions to solve these problems with
an important number of time steps and decisions on different time scales. We applied
these algorithms to three realistic applications for the original problem, a simple aging
problem and a sizing problem. We conclude that these methods make it possible to
solve problems with different time scales as well as an important number of time steps.
Moreover, with the aging application (in §5.4.3) we observe that these methods make it
possible to decompose a single time scale long problem in time. Our two algorithms per-
form better on a long problem displaying periodicity than a straightforward use of SDP
or SDDP. It might generally be useful in order to improve algorithms whose convergence
is sensitive to the number of time steps. It makes it possible for example to parallelize
SDP over time, not states, and to speed up the convergence of SDDP.

Algorithms such as Mixed Integer Dynamic Approximation Scheme produce T ˆ ε
optimal solutions for multistage stochastic optimization problems with binary variables,
where T is the number of stages and ε a user tuned parameter. It might be interesting
to apply such time decomposition methods to improve the quality of the solution and to
speed up the convergence of these algorithms.

Theses methods are to be compared to value iteration and policy iteration applied to
infinite horizon problems. Value iteration and policy iteration require both a stationary
assumption. Our methods relax this assumption, proving efficient for problems displaying
periodicity and monotonicity.

Finally, these methods could make it possible to mix Stochastic Programming and
Stochastic Dynamic Programming methods. Stochastic Programming and scenario de-
composition methods display a complexity exponential in the number of time steps. Tar-
gets and weights decomposition could be a way to make these methods more tractable
on problems with an important number of time steps by splitting into subproblems with
less time steps.

191

5.5 Appendix
In this section, we present theoretical results to decompose two-time scales stochastic
optimization problems as well as proofs of monotonicity and convexity of a battery man-
agement problem.

5.5.1 An abstract optimization problem

Let pnv, nuq P N˚ ˆ N˚ be given and two subsets V Ă Rnv and U Ă Rnu equipped
with the element-wise partial order ď. Let two proper extended real valued functions
l : U Ñ p´8,`8s and V : V Ñ p´8,`8s and a mapping f : U Ñ V. We study
different ways to solve or approximate the following optimization problem:

v “ inf
uPU

´

lpuq ` V pfpuqq
¯

(5.71)

where U is a subset of U. We call equation (5.71) an abstract Bellman equation.

Remark 42. We study this general equation for its application in two-time scales dy-
namic programming. We assume that a decision maker has to make one decision every
minute. The function l represents a cost incurred daily by the decision made every minute.
V models a cost of the future incurred by the decision made every minute that change a
state through a dynamic equation f . The decision maker wants to minimize a compromise
between these two costs.

In the whole section, we make a monotonicity assumption to decompose the optimiza-
tion problem (5.71).

Assumption 43. V is a non decreasing function.

Decomposition by targets

For all α P V we introduce the following parametrized problems:

Lp“qpαq “ inf
uPUXf“α

lpuq and Lpďqpαq “ inf
uPUXfďα

lpuq , (5.72)

where the level sets f“α and fďα are respectively given by

f“α “ tu P U|fpuq “ αu (5.73)

and
fďα “ tu P U|fpuq ď αu . (5.74)

In the next lemma, we use the value functions Lp“q and Lď to obtain lower bounds to
the optimization problem (5.71).

Lemma 44. The value vp“q and vď of the two optimization problems

vp“q “ inf
αPV

`

Lp“qpαq ` V pαq
˘

, (5.75)

vpďq “ inf
αPV

`

Lpďqpαq ` V pαq
˘

, (5.76)

192

give lower bounds to the optimization Problem (5.71):

vpďq ď vp“q “ v . (5.77)

Moreover, under the monotonicity Assumption 43 we have that

vpďq “ vp“q “ v . (5.78)

Proof. (vp“q “ v):

vp“q “ inf
αPV

`

Lp“qpαq ` V pαq
˘

“ inf
αPV

inf
uPU

lpuq ` V pαq

s.t fpuq “ α

“ inf
uPU

inf
αPV

lpuq ` V pαq

s.t fpuq “ α

“ inf
uPU

lpuq ` V pfpuqq “ v

(vpďq ď v): Let u P U be given and set α “ fpuq. We successively have

vpďq ď Lpďqpαq ` V pαq (by (5.76))
ď lpuq ` V pαq (u is admissible for Lpďqpαq)
ď lpuq ` V pfpuqq (α “ fpuq)

so finally, as the inequality holds for any u P U :

vpďq ď inf
uPU

`

lpuq ` V pfpuqq
˘

“ v (by (5.71))

(v ď vď under monotonicity assumption). For any ε ą 0 let αε P V be a ε-optimal
solution for the optimization problem vpďq and uε P U be an ε-optimal solution for the
optimization problem Lpďqpαεq.

vpďq ` 2ε ě lpuεq ` V pαεq

ě lpuεq ` V pfpuεqq, (monotonicity of V and admissibility of uε for Lpďq)
ě v

The proof is complete.

Remark 45. The same relation holds between vp“q and vpěq in the converse case where V
is non-increasing.

Decomposition by weights using Fenchel duality

Let pΛ,ďq be a subset of Rnλ equipped with the element-wise partial order ď and x¨, ¨y :
ΛˆVÑ r´8,`8s a bilinear coupling. For all λ P Λ we introduce the following relaxed
version of L“:

Hpλq “ inf
uPU

lpuq ` xλ, fpuqy . (5.79)

We introduce as well the Fenchel conjugate of a function φ.

φ˚pλq “ sup
αPV

xλ, αy ´ φpαq . (5.80)

193

Lemma 46. The following equality holds

Hpλq “ ´L˚“p´λq . (5.81)

Proof. For any function φ we have ´φ˚p´λq “ infαPV φpαq ` xλ, αy.

Hpλq “ inf
uPU

lpuq ` xλ, fpuqy ,

“ inf
uPU

inf
αPV

lpuq ` xλ, αy ,

s.t α “ fpuq ,

“ inf
αPV

inf
uPU

lpuq ` xλ, αy ,

s.t α “ fpuq ,

“ inf
αPV
xλ, αy ` L“pαq “ ´L

˚
“p´λq .

This makes it possible to apply a weak duality theorem to our original problem (5.71).
Without further assumptions we can state the following lemma.

Lemma 47.
v ě sup

λPΛ
Hpλq ´ V ˚pλq . (5.82)

Proof. We recall that v “ infαPV L“pαq ` V pαq. l is proper so L“ is proper as well.
Applying twice Fenchel-Young inequality [117] we know, that for all pλ, αq P Λˆ V,

• L“pαq ě ´L
˚
“p´λq ` x´λ, αy,

• V pαq ě ´V ˚pλq ` xλ, αy.

Therefore, summing the inequalities, we obtain:

L“pαq ` V pαq ě ´L
˚
“p´λq ´ V

˚
pλq “ Hpλq ´ V ˚pλq . (5.83)

This ends the proof.

Proposition 48. If L“ and V are convex and one of the following condition holds

• 0 P rip dom pL“q ´ dom pV qq,

• or the stronger dom pL“q X contpV q ‰ H,

then the following equality holds:

v “ sup
λPΛ

Hpλq ´ V ˚pλq . (5.84)

Proof. We apply Fenchel duality theorem [117, 140].

Proposition 49. Let λ P Λ such that the function xλ, ¨y : α P V ÞÑ xλ, αy is non-
decreasing. Then the following equality holds:

Hpλq “ ´L˚ďp´λq . (5.85)

Proof. It is a direct application of Lemma 44 with V “ xλ, ¨y.

194

5.5.2 Proving monotonicity and linearity of a battery manage-
ment problem

We show in this part that we can linearize a battery control problem with aging, which
is useful to apply Model Predictive Control or SDDP.

We focus on the following problem where the decision variable Ut is the charge dis-
charge of the battery at time t and Wt the uncertain net production of the grid con-
nected to the battery. The objective is to minimize to consumption of power of the
national grid, that is, the charge/discharge minus the net production. We take the pos-
itive part assuming that we cannot sell electricity to the grid. We call x` “ maxp0, xq
the positive part of a variable x and x´ “ ´minp0, xq the negative part. We write
the problem in an hazard-decision setting for the sake of simplicity; the results are the
same in a decision-hazard setting. For the sake of simplicity as well, we assume that
the noises pW0, . . . ,WT q are stagewise independent. It makes it possible to restrict the
search to functions Ut`1pBt,Ht,Wt`1q of the state and the next noise. The problem we
study is the following:

inf
U
t“0,...,T´1

E
”

T´1
ÿ

t“0

ct ˆ
´

Ut`1 ´Wt`1

¯ı`

, (5.86a)

s.t Bt`1 “ Bt ` ρcU
`

t`1 ´ ρ
´1
d U

´

t`1 , (5.86b)
Ht`1 “Ht ´U

`

t`1 ´U
´

t`1 , (5.86c)

B ď Bt ď B , (5.86d)
Ht ě 0 , (5.86e)

U ď Ut ď U , (5.86f)
σpUtq Ă σpBt´1,Ht´1,Wtq , (5.86g)
B0 “ b0 , H0 “ h0 . (5.86h)

First, we prove that the value functions V 7t of problem (5.86) are non increasing in state
of charge b and health h. The value functions satisfy the following backward recursion

V 7T “ 0 , (5.87a)

V 7t pb, hq “ EVtpb, h,W q, @pb, hq P BˆH , (5.87b)

where

Vtpb, h, wq “ inf
u
ct ˆ pu´ wq

`
` V 7t`1pb` ρcu

`
´ ρ´1

d u´, h´ u` ´ u´q , (5.87c)

s.t B ´ b ď ρcu
`
´ ρ´1

d u´ ď B ´ b , (5.87d)
u` ` u´ ď h , (5.87e)

U ď u ď U . (5.87f)

Lemma 50. The value functions tV 7t ut“0,...,T are non-increasing.

Proof. The last value function V 7T is obviously non-increasing.

195

Assume that V 7t`1 is non increasing. Vt is obviously non increasing in h as decreasing h
constrains the problem further and increases the objective as V 7t`1 is non increasing.

Let b1 ě b, let ε ą 0 and let uεb an ε-optimal for Vtpb, h, wq. By definition, we have

ct ˆ pu
ε
b ´ wq

`
` V 7t`1pb` ρcu

ε
b
`
´ ρ´1

d uεb
´, h´ uεb

`
´ uεb

´
q ď Vtpb, h, wq ` ε . (5.88a)

We distinguish two cases.

uεb ď 0: then uεb is admissible for Vtpb1, h, wq because

B ´ b1 ď B ´ b ď ρcu
ε
b
`
´ ρ´1

d uεb
´
“ ρ´1

d uεb ď 0 ď B ´ b1 , (5.88b)

moreover as Vt`1 is non increasing

V 7t`1pb
1
` ρcu

ε
b
`
´ ρ´1

d uεb
´, h´uεb

`
´uεb

´
q ď V 7t`1pb` ρcu

ε
b
`
´ ρ´1

d uεb
´, h´uεb

`
´uεb

´
q ,

(5.88c)
then we have

Vtpb
1, h, wq ď Vtpb, h, wq ` ε . (5.88d)

uεb ą 0: let uεb1 “ minpρ´1
c ˆ pB ´ b1q, uεbq. uεb1 is admissible for Vtpb1, h, wq as

U ď 0 ă uεb1 ď uεb ď U , (5.88e)

B ´ b1 ď 0 ă ρcu
ε
b1 ď ρcρ

´1
c ˆ pB ´ b1q “ B ´ b1 , (5.88f)

uεb1
`
ď uεb

`
ď h . (5.88g)

Moreover we have

b1 ` ρcu
ε
b1 “ b` ρcu

ε
b , (5.88h)

or

b1 ` ρcu
ε
b1 “ B ě b` ρcu

ε
b , (5.88i)

so

b1 ` ρcu
ε
b1 ě b` ρcu

ε
b , (5.88j)

so these inequalities and the fact that Vt`1 in non increasing lead to

ctˆpu
ε
b1´wq

`
`V 7t`1pb`ρcu

ε
b1 , h´u

ε
b1q ď ctˆpu

ε
b´wq

`
`V 7t`1pb`ρcu

ε
b, h´u

ε
bq (5.88k)

Finally
Vtpb

1, h, wq ď Vtpb, h, wq ` ε , (5.88l)

then we conclude that Vt is non increasing.

Now we would like to remove the positive and negative parts from the problem to
apply SDDP or linear programming in a Model Predictive Control method.

196

Lemma 51. The value functions tV 7t ut“0,...,T are convex polyhedral.

Proof. V 7T is trivially convex polyhedral. Assume that V 7t`1 is convex polyhedral. Let B :

V 7t`1 ÞÑ V 7t “ EVt. We prove that this is a linear Bellman operator as it is demonstrated
in [131] from [117] that in this case V 7t is convex polyhedral. We introduce a new equivalent
definition for Vt:

Vtpb, h, wq “ inf
uc,ud,l

l ` V 7t`1pb` ρcuc ´ ρ
´1
d ud, h´ uc ´ udq , (5.89a)

s.t B ´ b ď ρcuc ´ ρ
´1
d ud ď B ´ b , (5.89b)

uc ` ud ď h , (5.89c)

0 ď uc ď U, 0 ď ud ď ´U , (5.89d)
uc ˆ ud “ 0 , (5.89e)
l ě 0 , (5.89f)
l ě ct ˆ puc ´ ud ´ wq

` . (5.89g)

In this new formulation, we introduce three non negative control variables l, uc, ud. The
first non negative one l is used to linearize the objective by adding the constraint (5.89g).
This is a classical trick. The other two puc, udq are used to replace the positive and negative
parts on controls of the original problem but require to introduce the nonlinear (binary)
constraint (5.89e). We show hereby that we can remove this binary constraint (5.89e).

Let pl, uc, udq be an admissible solution to Vtpb, h, wq without the binary constraint
such that uc ˆ ud ą 0. We distinguish two cases.

uc ď ud We introduce a new solution pl1, u1c, u1dq such that u1c “ 0 and u1d “ ud´ uc with l1 “
l ě ct ˆ pu

1
c ´ u1d ´ wq` “ puc ´ ud ´ wq`. This solution satisfies the binary

constraint u1c ˆ u1d “ 0. And this solution is admissible as

0 “ u1c ď U, 0 ď u1d ď ud ď ´U ,

u1c ` u
1
d “ ud ´ uc ď ud ` uc ď h ,

and as ρc ď 1 and ρd ď 1 ,

B ´ b ě 0 ě ρcu
1
c ´ ρ

´1
d u1d “ ρ´1

d uc ´ ρ
´1
d ud ě ρcuc ´ ρ

´1
d ud ě B ´ b .

These inequalities plus the fact that V 7t`1 is non-increasing makes it possible to say
that pl1, u1c, u1dq is admissible and achieves the same cost.

uc ą ud We introduce a new solution pl1, u1c, u1dq such that u1c “ minpuc´ud, ρ
´
c 1pB´ bqq and

u1d “ 0 with l1 ě ct ˆ pu
1
c ´ u1d ´ wq` ď puc ´ ud ´ wq`. So at optimality we have

l ď puc ´ ud ´ wq`. This solution satisfies the binary constraint u1c ˆ u1d “ 0. And
this solution is admissible as

0 ď u1c ď ucU, 0 “ u1d ď ´U ,

u1c ` u
1
d “ uc ´ ud ď uc ` ud ď h ,

B ´ b ě ρcu
1
c ´ ρ

´1
d u1d ě 0 ě B ´ b .

Moreover we have

b` ρcu
1
c “ b` ρcuc ´ ρcud ě b` ρcuc ´ ρ

´1
d ud ,

197

or

b` ρcuc “ B ě b` ρcuc ´ ρ
´1
d ud ,

so as V 7t`1 is non increasing we have an admissible solution that achieves a better
cost.

We conclude that, from any admissible solution without the binary constraint, we can
build an admissible solution satisfying the binary constraint and achieving a lower cost.
We prove recursively that this cost is strictly lower if ρc ă 1 and ρd ă 1. Hence,
we can remove the binary constraint. The function Vt is therefore the value of a linear
program where constraints are linear in the parameters b, h, w. Due to the linearity of
the expectation, we conclude that B is a linear Bellman operator.

Remark 52. In the battery renewal problem, we show that the intraday problems are
also non-increasing in the capacity cd because a lower capacity constrains the problem
further without changing the objective. We prove by backward induction that the daily
value functions are decreasing because in the targets decomposition the instantaneous cost
is decreasing and the value function as well. Moreover the problem does not have any
constraint.

198

Chapter 5. Bibliography

[114] R. Bellman. Dynamic Programming. Princeton University Press, New Jersey, 1957.

[115] D. P. Bertsekas. Convergence of discretization procedures in dynamic programming.
IEEE Transactions on Automatic Control, 20(3):415–419, June 1975.

[116] D. P. Bertsekas. Dynamic programming and optimal control. Vol. I. Athena Scien-
tific, Belmont, MA, fourth edition, 2017.

[117] J. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization: theory
and examples. Springer Science & Business Media, 2010.

[118] P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. Stochastic Multi-
Stage Optimization. At the Crossroads between Discrete Time Stochastic Control
and Stochastic Programming. Springer-Verlag, Berlin, 2015.

[119] P. Carpentier, J.-P. Chancelier, M. De Lara, F. Pacaud, and T. Rigaut. A template
to design online policies for multistage stochastic optimization problems. working
paper, Jan. 2019.

[120] P. Carpentier, J.-P. Chancelier, M. De Lara, and T. Rigaut. Time blocks decompo-
sition of multistage stochastic optimization problem. 2018.

[121] P. Carpentier, J.-P. Chancelier, V. Leclère, and F. Pacaud. Stochastic decomposi-
tion applied to large-scale hydro valleys management. European Journal of Opera-
tional Research, 270(3):1086 – 1098, 2018.

[122] J.-P. Chancelier and M. De Lara. Fenchel-moreau conjugation inequalities with
three couplings and application to stochastic bellman equation. arXiv preprint
arXiv:1804.03034, 2018.

[123] P. Haessig, H. B. Ahmed, and B. Multon. Energy storage control with aging limi-
tation. In PowerTech, 2015 IEEE Eindhoven, pages 1–6. IEEE, 2015.

[124] P. Haessig, B. Multon, H. Ben Ahmed, S. Lascaud, and L. Jamy. Aging-aware NaS
battery model in a stochastic wind-storage simulation framework. In PowerTech
2013, pages 1–6, Grenoble, France, June 2013.

[125] O. Hernández-Lerma and J. B. Lasserre. Discrete-time Markov control processes:
basic optimality criteria, volume 30. Springer Science & Business Media, 2012.

199

[126] B. Heymann, J. Frédéric Bonnans, F. Silva, and G. Jimenez. A Stochastic Con-
tinuous Time Model for Microgrid Energy Management. In ECC2016, Aalborg,
Denmark, June 2016.

[127] B. Heymann and P. Martinon. Optimal Battery Aging : an Adaptive Weights Dy-
namic Programming Algorithm. Journal of Optimization Theory and Applications,
Aug. 2018.

[128] B. Heymann, P. Martinon, and F. Bonnans. Long term aging : an adaptative
weights dynamic programming algorithm. working paper, July 2016.

[129] A. Iovine, S. B. Siad, G. Damm, E. D. Santis, and M. D. D. Benedetto. Non-
linear control of a dc microgrid for the integration of photovoltaic panels. IEEE
Transactions on Automation Science and Engineering, 14(2):524–535, April 2017.

[130] R. Le Goff Latimier. Management and Sizing of an Electric Vehicle Fleet Associated
with a Photovoltaic Plant : Stochastic and Distributed Co-optimizationStationary
Valorisation of Electric Vehicle Batteries taking into account their aging and availi-
bility. Theses, Université Paris-Saclay, Sept. 2016.

[131] V. Leclère, P. Carpentier, J.-P. Chancelier, A. Lenoir, and F. Pacaud. Exact con-
verging bounds for stochastic dual dynamic programming via fenchel duality. 2018.

[132] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kaz-
erani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, and R. e. a. Palma-
Behnke. Trends in Microgrid Control. IEEE Trans. Smart Grid, 5(4):1905–1919,
2014.

[133] F. Pacaud, P. Carpentier, J.-P. Chancelier, and M. De Lara. Stochastic optimal
control of a domestic microgrid equipped with solar panel and battery. preprint,
Jan. 2018.

[134] M. V. Pereira and L. M. Pinto. Multi-stage stochastic optimization applied to
energy planning. Math. Program., 52(1-3):359–375, May 1991.

[135] A. Philpott, F. Wahid, and F. Bonnans. MIDAS: A Mixed Integer Dynamic Ap-
proximation Scheme. page 22, June 2016.

[136] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimen-
sionality, volume 703. John Wiley & Sons, 2007.

[137] T. Rigaut, P. Carpentier, J. Chancelier, M. D. Lara, and J. Waeytens. Stochastic
optimization of braking energy storage and ventilation in a subway station. IEEE
Transactions on Power Systems, pages 1–1, 2018.

[138] R. T. Rockafellar. Integrals which are convex functionals. Pacific J. Math., 24:525–
539, 1968.

[139] R. T. Rockafellar. Integrals which are convex functionals. II. Pacific J. Math.,
39:439–469, 1971.

200

[140] R. T. Rockafellar. Convex analysis. Princeton university press, 2015.

[141] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer
Science & Business Media, 2009.

[142] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming:
modeling and theory. SIAM, 2009.

[143] J. Zou, S. Ahmed, and X. A. Sun. Stochastic dual dynamic integer programming.
Mathematical Programming, Mar 2018.

201

Part III

Softwares and experimentations

202

Chapter 6

DynOpt: a generic library for
stochastic dynamic optimization

This is a joint work with François Pacaud.

Chapter Abstract

We present in this chapter a stochastic dynamic optimization toolbox called
DynOpt. A user interacts with DynOpt toolbox though an API which enables
to build a stochastic optimization problem and solve it using dedicated algo-
rithms. Moreover a user is able to build a specialized API for specific energy
management problems he wants to solve. For instance, a user can build a
battery sizing utility out of DynOpt or a house temperature controller as de-
scribed in Chapter 7. This library is articulated around the concept of control
policies that are distinguished by how they use online information to compute
an optimal control for a stochastic dynamical system. We present the math-
ematical background that led to develop DynOpt. Then, we introduce the
main objects for a potential user or a potential developer. Finally, we apply
DynOpt on an energy storage toy problem and discuss the opportunities that
it brings for real energy management applications. It is implemented as a
Julia package, leveraging Julia multiple dispatch design.

Contents
6.1 Introduction and review . 204

6.2 Mathematical background: a template to design online policies205

6.2.1 Stochastic optimal control problems and solutions 205

6.2.2 Cost-to-go policies . 207

6.2.3 Lookahead policies . 208

6.3 Modeling language and algorithms 208

6.3.1 Formulation of a problem in DynOpt 208

6.3.2 Computing a cost-to-go policy 211

6.3.3 Computing a Model Predictive Control (MPC) policy 218

6.3.4 Assessment of a policy . 218

203

6.4 Energy management applications 220

6.4.1 An energy storage management toy example 220

6.4.2 Two-Time Scales problems . 227

6.4.3 MµGO: Modular Microgrids Optimization 230

6.5 Conclusion and perspectives . 231

6.1 Introduction and review
DynOpt.jl is a Julia 1 package developed at Efficacity 2 to solve multistage stochastic
optimization problems. The aim of the package is to quickly design and solve stochas-
tic optimization problems using a high level language without having to reimplement a
dedicated control algorithm for every application.

DynOpt is implemented in Julia [147], a high level general purpose programming
language that is more and more popular for scientific computing. This choice of Julia
language is motivated by the active community in optimization and the existence of a
high quality optimization modeler, JuMP [152]. Julia provides a just-in-time compiler
particularly appealing for nested for loops that are required to solve stochastic dynamic
programs (SDPs) [161, 145]. Moreover Julia is designed for parallelism which is appealing
to solve SDPs.

We first introduce the mathematical background of DynOpt. Then, we present the
different objects and associated algorithms which have been implemented. Afterwards,
we present how to use the library for energy management oriented applications. Finally,
we discuss the possible short term improvements of DynOpt.

Different packages already exist to solve SDPs. StochDynamicProgramming.jl [157],
SDDP.jl [151], Kokako.jl [150], StOpt [153], BOCOP [148], StructDualDynProg 3, FAST 4...
DynOpt is close to StochDynamicProgramming.jl as it implements 2 of the same algo-
rithms. However contrary to StochDynamicProgramming.jl its structure was thought to
stay very close to the mathematical background in stochastic optimal control. Compared
to the other packages, DynOpt implements more algorithms with a generic interface and
is more stochastic optimal control oriented. The main choice of DynOpt is to remain
generic for stochastic optimal control. It allows to easily express and solve these prob-
lems without an extensive understanding of stochastic optimization. The focus was not
primarily on performances as most of DynOpt algorithms are to be run offline, where
computation time is not critical. DynOpt outputs are however sufficiently efficient to
compute controls for real systems in few milliseconds.

The structure of DynOpt is inspired by the work in suboptimal control and approxi-
mate dynamic programming of [145, 160, 161] and the second chapter of this PhD thesis.

1https://julialang.org
2https://www.efficacity.com
3https://github.com/JuliaStochOpt/StructDualDynProg.jl
4https://web.stanford.edu/ lcambier/fast/

204

6.2 Mathematical background: a template to design
online policies

In this section we detail the kind of problems which can be solved using DynOpt as well
as policies which is a notion of admissible solution. The problems we focus on display
stochasticity, that is random variables. In the sequel, we write random variables in capital
bold letters, like Z , to distinguish them from deterministic variables z. .

6.2.1 Stochastic optimal control problems and solutions

We introduce a general Stochastic Optimal Control (SOC) problem in a risk neutral
(expectation) setting following the formalism introduced in [149]

min
X ,U

E
”

T´1
ÿ

t“0

LtpXt,Ut,Wt`1q `KpXT q

ı

, (6.1a)

s.t Xt`1 “ ftpXt,Ut,Wt`1q , (6.1b)
BtpXt,Ut,Wt`1q ď 0 , (6.1c)
σpUtq Ă σpW0, . . . ,Wtq . (6.1d)

These are the kind of problems that DynOpt is dedicated to solve. We detail in subsec-
tion 6.2.1 the different ingredients of this problem. Formally, these optimization problems
are infinite dimensional and hard to solve, because solutions are random variables. In
some very particular cases, it is possible to solve them exactly using numerical algorithms.
In most real life cases this is however out of reach. DynOpt makes it possible to compute
admissible, and sometimes optimal, solutions and assesses their quality.

Ingredients

We detail the ingredients appearing in Problem (6.1).

Time The index t P N in (6.1) materializes a time stage. It belongs to a discrete
set t0, . . . , T u where T P N is called the horizon of the problem.

Exogenous random variables The sequence of random variables
´

W0, . . . ,WT

¯

is
a discrete stochastic process. Each variable Wt is an exogenous uncertainty influencing
the system to be controlled and takes values in a set Wt.

State variables The sequence
´

X0, . . . ,XT

¯

is a sequence of state variables describing
the state of the system at each time step. It can be the level of water in a dam or the state
of charge of a battery. They are random because they are influenced by the exogenous
random variables Wt, e.g rain in a dam. However, they are endogenous because they
are also influenced by decisions Ut as described below. A variable Xt takes values in the
set Xt.

205

Decisions and non anticipativity constraint The sequence of random variables
´

U0, . . . ,UT´1

¯

is a sequence of decision variables, also named controls. A variable Ut

is random because it depends on all the past uncertainties realization w0, . . . , wt. The
algebraic constraint (6.1d) states that Ut is measurable w.r.t W0, . . . ,Wt. Applying
Doob-Dynckin lemma [149] it can be equivalently restated in an functional manner:

p6.1dq ðñ Dπt : W0 ˆ . . .ˆWt Ñ Ut, Ut “ πtpW0, . . . ,Wtq , (6.2)

where Ut takes values in Ut.

Dynamics, instantaneous and final costs For t P t0, . . . , T ´ 1u the mapping ft :
XtˆUtˆWt`1 Ñ Xt`1 is called the dynamics of the system. It describes how the system
in a state xt switches to the state xt`1 by applying a decision ut and an uncertainty
realization wt. At the same time the function Lt : Xt ˆ Ut ˆWt`1 Ñ p´8,`8s models
the payoff obtained when switching from xt to xt`1. The function K : XT Ñ p´8,`8s
is a cost associated to the final state of the system.

Constraints For t P t0, . . . , T ´ 1u the mapping Bt : Xt ˆ Ut ˆWt`1 Ñ Rnct defines
the nct constraints of the problem at time t. It returns a vector in Rnct that has to remain
below 0 elementwise.

Admissible solutions

As stated previously the admissible decisions of Problem (6.1) satisfy the non-anticipativity
constraint (6.1d) or its functional counter part (6.2). Hence we are looking for solutions
that have the form tπ0, . . . , πT´1u with:

@t P t0, . . . , T ´ 1u, πt : W0 ˆ . . .ˆWt Ñ Ut . (6.3)

The mapping πt is called a policy, more precisely a fully noise dependent policy.
In pratice, it is often out of reach to compute a fully noise dependent policy due to

the size of the cartesian space W0 ˆ . . .ˆWt.
Therefore, we restrict the search to solutions among the class of noises dependent state

feedback policies of the form

πt : Xt ˆWt0ptq ˆ . . .ˆWt Ñ Ut ; (6.4)

where t0ptq P t0, . . . , tu. That kind of policies takes into account only some past uncer-
tainties as well as the state of the system. This is indeed a restriction, as the state Xt

is, by the iterated dynamics (6.1b), a function of pW0, . . . ,Wtq.
In fact when the exogenous uncertainties tW0, . . . ,WT u are stagewise independent it

is enough to restrict the search to state feedbacks πt : Xt Ñ Ut. However in many cases
this so-called Markovian property is not ensured.

In practice, we are not interested in knowing πtpxt, wt0ptq, . . . , wtq for all possible values
of pxt, wt0ptq, . . . , wtq; we just want to be able to compute, on the fly, the value ut “
πtpxt, wt0ptq, . . . , wtq when, at time t, the tuple pxt, wt0ptq, . . . , wtq materializes.

206

This is why, in subsection 6.2.2 and subsection 6.2.3, we present two classes of methods
for the online implementation of strategies. Both classes compute ut “ πtpxt, wt0ptq, . . . , wtq
by solving, online, an optimization problem.

We refer to Chapter 1 of this manuscript for a more formal description of the concept
of admissible solution.

Hazard decision policies

In some cases the non-anticipativity constraint (6.1d) is relaxed to take into account one
more uncertainty. Hazard-Decision solutions have the following form

πt : Xt ˆWt0ptq ˆ . . .ˆWt ˆWt`1 Ñ Ut . (6.5)

These are useful to describe decisions that can react immediately to uncertainty realiza-
tion or to linearize a dynamical equation.

6.2.2 Cost-to-go policies

Cost to go based policies proceed in two parts.

• Offline, the cost-to-go based algorithms compute a sequence of functions rVt by
backward induction as follows:

@x P XT , rVT pxq “ Kpxq (6.6a)

@x P Xt, rVtpxq “ min
uPUt

ż

Wt`1

”

Ltpx, u, wt`1q ` rVt`1

´

ftpx, u, wt`1q

¯ı

µoft`1pdwt`1q .

(6.6b)

Here, each µoft`1 is an (offline) probability distribution on the set Wt`1. The func-
tions rVt are called costs-to-go or value functions in the sequel.

• Online, at time t, the computation of a cost-to-go policy uses the functions rVt and
solves

ut P arg min
uPUt

ż

Wt`1

”

Ltpx, u, wt`1q ` rVt`1

´

ftpx, u, wt`1q

¯ı

µont`1pwt0ptq, . . . , wt, dwt`1q .

(6.7)

Here, µont`1 is an (online) conditional probability distribution on the set Wt`1, know-
ing the previous uncertainties wt0ptq, . . . , wt.

As an example we choose a conditional distribution depending only on the last
uncertainty realization when we use an order 1 auto-regressive model.

Remark 53. In the markovian case where the uncertainties are stagewise independent,
the online distribution is the same as the offline one, with no past uncertainties depen-
dence. Bellman’s principle of optimality guarantees that it produces an optimal policy.

207

6.2.3 Lookahead policies

A lookahead policy method has most often no offline computation part. The most general
form of lookahead policies, with discretized uncertainties, is called Stochastic Program-
ming, we refer the reader to [163] for a general definition. Currently in DynOpt only a
subclass of lookahead policies, which is called open loop feedback control [144], is imple-
mented.

At time step t1, a lookahead policy takes as inputs the state x of the system and
some previous uncertainties realizations wt0pt1q, . . . , wt1 . One way or another, it selects a
number S of “scenarios” p rwst1`1, . . . , rw

s
T qsPt1,...,Su with associated probabilities ppsqsPt1,...,Su

and then solves the following deterministic optimal control problem:

min
put1 ,...,uT´1q

S
ÿ

s“1

ps

T´1
ÿ

t“t1

Ltpx
s
t , ut, rw

s
t`1q `Kpx

s
T q , (6.8a)

s.t xst`1 “ ftpx
s
t , ut, rw

s
t`1q , (6.8b)

Btpx
s
t , ut, w

s
t`1q ď 0 , (6.8c)

xst1 “ x . (6.8d)

From the optimal controls put1 , . . . , uT´1q thus obtained, the lookahead policy only
keeps the first put1 , . . . , ut`Nlpq (we call Nlp the reoptimization step of the lookahead pol-
icy). Then, at time t1 ` Nlp, the OLFC algorithm produces new controls by solving
problem (6.8) starting at t1 `Nlp with updated noises scenarios.

6.3 Modeling language and algorithms
We present in the section the different objects and functionalities implemented in DynOpt.
We describe as well three different algorithms to compute costs-to-go for cost-to-go poli-
cies and how to implement a lookahead policy.

6.3.1 Formulation of a problem in DynOpt

We present hereby the core objects of DynOpt to define a stochastic optimization problem
as well as their associated resolution algorithms and policies. First we introduce the open
source dependencies required to run DynOpt.

Underlying technologies

We list here all the dependencies of DynOpt, i.e Julia packages, which are all open source.

• JuMP 5 and MathProgBase 6: some algorithms require to solve mathematical pro-
grams. For this reason one of the main dependence of DynOpt is JuMP, a Julia
mathematical programming modeler similar to AMPL, Pyomo or GAMS. A JuMP
user can express and solve many kinds of optimization problems as long as a ded-
icated solver is installed on the machine. JuMP is built upon MathProgBase, an
abstract layer to interface with solvers.

5https://github.com/JuliaOpt/JuMP.jl
6https://github.com/JuliaOpt/MathProgBase.jl

208

• Interpolations 7 some algorithms require interpolations of arrays, for example when
a function is only computed on a grid while we need to evaluate it in a continuous
set.

• StatsBase 8: stochastic optimization requires tools to handle random variables.
StatsBase provides basic supports for statistics in Julia.

• Clustering 9: to handle random variables numerically in DynOpt they are regularly
quantized. Clustering provides a k-means algorithm used to quantize the discrete
random variables provided by the user.

• ProgressMeter 10: some algorithms have a deterministic number of iterations. Pro-
gressMeter is used to display a progress bar for such algorithms.

• CutPruners 11: SDDP algorithm presented in paragraph 6.3.2, models costs-to-go
as polyhedral functions. Cut pruning allows to remove cuts that are not active from
polyhedral functions.

• NearestNeighbors 12 and Distances 13 some algorithms require to find the nearest
neighbor to a point in a list in a list of points. NearestNeighbors and Distances
allows to perform efficiently this task using k-dimensional trees.

DynamicOptimizationModel object

The main structure or type of DynOpt is a DynamicOptimizationModel. It contains
all the features required to define a stochastic optimal control problem as detailed in
subsection 6.2.1.

7https://github.com/JuliaMath/Interpolations.jl
8https://github.com/JuliaStats/StatsBase.jl
9https://github.com/JuliaStats/Clustering.jl

10https://github.com/timholy/ProgressMeter.jl
11https://github.com/JuliaPolyhedra/CutPruners.jl
12https://github.com/KristofferC/NearestNeighbors.jl
13https://github.com/JuliaStats/Distances.jl

209

� �
mutable struct DynamicOptimizationModel{T}

stages::Int #Number of decision stages

#cost function L_t(x_t, u_t, w_{t+1})
cost::Union{Function, Void}

#dynamics function that returns the new state f_t(x_t, u_t, w_{t+1})
dynamics::Union{Function, Void}

#dynamics function that changes the new state in place
dynamics!::Union{Function, Void}

#constraints function returning a boolean
constraints::Union{Function, Void}

#constraints function returning a vector that should be lower than 0
constraints_vector::Union{Function, Void}

final_cost::Union{Function, Void} #final cost function K(x_T)

x_mins::Array{T,1} #lower bounds for states
x_maxs::Array{T,1} #upper bounds for states

u_mins::Array{T,1} #lower bounds for controls
u_maxs::Array{T,1} #upper bounds for controls
u_type::Array{Symbol,1} #types of controls Cont or Bin

#anticipativity of the controls, WaitAndSee or HereAndNow
non_anticipativity::Array{DataType,1}

#possible initial states of the problem
initial_states::Union{Void, Array{Float64}}

end� �
Figure 6.1: DynamicOptimizationModel type

Stochastic processes types

A stochastic process is an abstract type in DynOpt, naturally called StochasticProcess.
There are two kinds of stochastic processes that can be modeled in DynOpt. Both are
structures that inherit from the StochasticProcess abstract type.

210

� �
A discrete law with N realizations of dimension W
struct DiscreteMarginalLaw{T}

support::Array{T,2} # W x N support vector of the discrete probability law

probas::StatsBase.ProbabilityWeights # N probalities

end

struct WhiteNoise <: StochasticProcess

A vector a indepent discrete laws
laws::Vector{DiscreteMarginalLaw}

end

struct FunctionalProcess <: StochasticProcess

A vector of functions returning a DiscreteMarginalLaw
laws::Vector{Function}

A law at time t takes as argument
all the past realizations up to time t-maximum_lag
maximum_lag::Int

end� �
Figure 6.2: Types to handle stochastic processes

A stochastic process is used when building a cost-to-go solver that requires aWhiteNoise,
as cost-to-go methods require a Markovian assumption. Both WhiteNoise and Function-
alProcess can be used to build a policy as a policy can take into account stagewise
dependence between random variables.

6.3.2 Computing a cost-to-go policy

To compute the family of costs-to-go trVtut“0,...,T cost-to-go policies require to perform the
backward recursion (6.6).

Numerically, the distributions µoft are quantized one way or another. We call nt the
size of the quantification of µoft , Wd

t “ tw
1
t , . . . , w

nt
t u the realizations of the uncertainty

obtained at time t and p1
t , . . . , p

nt
t the associated probabilities.

A numerical cost-to-go algorithm then solves the following backward recursion:

@x P XT , rVT pxq “ Kpxq , (6.9a)

@x P Xt, rVtpxq “ min
uPUt

nt`1
ÿ

i“1

pit`1

”

Ltpx, u, w
i
t`1q `

rVt`1

´

ftpx, u, w
i
t`1q

¯ı

. (6.9b)

Three challenges remain for the algorithm to be numerically tractable

1. the exploration of the state space Xt at each time step t,

2. the resolution of problem (6.9b) at each time step t,

3. the choice of function class to compute a cost-to-go rVt at each time step t.

211

We first distinguish the four cost-to-go algorithms implemented in DynOpt by the
exploration method of the state space.

State space exhaustive search

The most classical implementation of cost–to-go algorithms perform an exhaustive search
in the discretized spaces Xt. Most often Xt is replaced by a grid Xd

t Ă Xt.

Nested for loops We present hereby the classical Stochastic Dynamic Programming
algorithm [149, 161]. Let t P t0, . . . , T ´ 1u and assume that we have computed @x P
Xd
t`1,

rVt`1pxdq. The algorithm discretizes the control space Ut using a grid Ud
t and solves

the optimization problem (6.9b) for all x P Xd
t by exhaustive search giving an approx-

imate value for rVtpxq. For every u P Ud
t and every wit`1 for i P t1, . . . , nt`1u the next

state ftpx, u, wit`1q is not guaranteed to fall on a grid point of Xd
t`1. For this reason an

interpolation of the finite sequence trVt`1pxquxPXdt`1
is performed over Xt`1. In DynOpt

we use the Julia package Interpolations.jl to perform this interpolation automatically.
This algorithm falls down to discretize state, control and uncertainty spaces and

write four nested for loops, over time (backward), over states, controls and uncertainties.
Assuming that Xd

t is a Cartesian product ofNX discrete spaces withX values, and likewise
for Ud

t and Wd
t then the complexity of the algorithm is OpT ˆXNx ˆ UNu ˆWNwq.

This algorithm displays three curses of dimensionality over the number of state Nx,
control Nu and uncertainty Nw variables. We usually assume that the algorithm is not
tractable above three or four state variables. Even if the loop over state variables is
parallelized, which is the case in DynOpt.

Inner approximation The inner approximation stochastic dynamic programming al-
gorithms is similar to the nested for loops algorithm except in the way the optimization
problem (6.9b) is solved. It can be applied when dynamics and constraints are linear
and the instantaneous and final costs are convex. It relies on manipulation of polyhedral
approximation in convex optimization [146].

At time t P t0, . . . , T ´ 1u the algorithm computes the convex hull of the points
trVt`1px

i
t`1quiPt1,...,nxt`1u

where nxt`1 is the cardinal of Xd
t`1. That is rVt`1 is replaced by

x P Xt`1 ÞÑ min
α1,...,αnxt`1

nxt`1
ÿ

i“1

αirVt`1px
i
t`1q , (6.10)

s.t
nxt`1
ÿ

i“1

αix
i
t`1 “ x , (6.11)

nxt`1
ÿ

i“1

αi “ 1 (6.12)

0 ď αi ď 1 . (6.13)

Using this trick the optimization problem (6.9b) can be solved (approximately) with
convex programming techniques, hence removing the control and uncertainties curses of
dimensionality. However the state curse of dimensionality remains.

212

State space forward backward exploration

Forward-backward algorithms explore the state spaces differently. Instead of an exhaus-
tive search among the state spaces they explore only relevant state, that is states that
are often explored by the controlled system dynamics.

Forward-backward Scheme Forward-backward algorithms improve iteratively the
costs-to-go functions trVtut“0,...,T .

Initialization: At a first iteration an initial value is given to trV 0
t ut“0,...,T . For instance,

we can choose a lower bound like 0 if all the costs are non negative.
Iteration k: Assume that a sequence of costs trV k´1

t ut“0,...,T have been computed at
iteration k ´ 1. We build a cost-go-go policy πk´1

0 , . . . , πk´1
T´1 out of this sequence such

that:

@x P Xt, π
k´1
t pxq P arg min

uPUt

nt`1
ÿ

i“1

pit`1

”

Ltpx, u, w
i
t`1q `

rV k´1
t`1

´

ftpx, u, w
i
t`1q

¯ı

. (6.14)

An initial state xk0 and a scenario wk0 , . . . , wkT are drawn. Then a trajectory of states xk1, . . . , xkT
is generated by plugging the policy πk´1

0 , . . . , πk´1
T´1 in the state dynamics.

xkt “ ftpx
k
t´1, π

k´1
t pxkt´1q, w

k
t`1q . (6.15)

A new sequence of costs-to-go trV k
t ut“0,...,T is obtained by solving (6.6) along the new

explored states.
DynOpt implements this forward-backward scheme in an abstract manner, defining

an abstract type ForwardBackwardSolver. Each Julia structure that inherits from For-
wardBackwardSolver has to define an approximation object for the costs to go, that is a
class of functions, and specific parameters. Then the following Julia functions have to be
specified for each kind of forward backward algorithms:

� �
gives a initial value to value functions
function initialize_value_functions end

returns an approximation object out of a solved JuMP model
function get_approximation_object end

eventually removes non relevent state trajectories
function select_trajectories! end

updates the costs to go
function update_cost_to_go! end

eventually simplifies value functions approximation
function prune! end� �
Figure 6.3: Abstraction layer of forward-backward algorithms

That kind of algorithm leverage mathematical programming techniques to solve (6.9b).
Hence, a function rV k

t`1 is defined as an approximation object and the corresponding pol-
icy πkt as a JuMP model. We detail here two ways to achieve this part in a convex case
and in a monotonic case.

213

Stochastic Dual Dynamic Programming (SDDP) SDDP [158] can be applied in
the same case as inner approximation presented in subsection 6.3.2. That is, the dynamics
and constraints have to be linear and the costs convex. In this case we look for trV k

t u in
the class of convex polyhedral functions. That kind of functions can be evaluated on a
point by solving a linear program:

x P Xt ÞÑ min
θ

θ (6.16)

s.t θ ě λit ¨ x` β
i
t , @i P t1, . . . , c

k
t u , (6.17)

where ckt is the number of cuts of rV k
t , λ1

t , . . . , λ
ckt
t the slopes and βit , . . . , β

ckt
t the constant

terms of the cuts.
The main specificity of SDDP is to update the function V k´1

t at iteration k using
dual multipliers. Using current cuts of V k

t`1 and explored state xkt it solves the following
problem using a convex programming solver for any possible wit`1:

lkt pw
i
t`1q “ min

θ,uPUt,xPXt

”

Ltpx, u, w
i
t`1q ` θ

ı

, (6.18a)

s.t x “ xkt (6.18b)
θ ě λit`1 ¨ ftpx, u, w

i
t`1q ` β

i
t`1, @i P t1, . . . , c

k
t`1u . (6.18c)

ckt is updated to ck´1
t ` 1. Then the dual multiplier λc

k
t
t pw

i
t`1q is extracted by taking the

dual variable of constraint (6.18b) for each realization wit`1 and taking the expectation we
obtain the new slope λc

k
t
t “

řnt`1

i“1 pit`1λ
ckt
t pw

i
t`1q. Finally the new constant term is βc

k
t
t “

řnt`1

i“1 pit`1l
k
t pw

i
t`1q ´ λ

ckt
t ¨ x

k
t . This cut pλ

ckt
t , β

ckt
t q is added to rV k´1

t to produce rV k
t :

V k
t pxq “ maxtV k´1

t pxq, λ
ckt
t ¨ x` β

ckt
t u . (6.19)

We might think that ckt “ k due to the update ckt “ ck´1
t ` 1; however it might be

efficient to remove inactive cuts regularly to speed up the resolution of (6.18).

Mixed Integer Dynamic Approximation Scheme (MIDAS) MIDAS [159] is a
recent algorithm to theoretically solve all kinds of multistage stochastic optimization
problems as long as the value functions are monotonic. MIDAS models value functions as
monotonic step functions. Such functions have the following Mixed Integer Programming
representation:

x P Xt ÞÑ min
θ,ω,z

θ (6.20)

s.t θ ě qit ` pV t ´ q
i
tq ˆ p1´ ωq, @i P t1, . . . , s

k
t u , (6.21)

x ě pxit ´ xtq ¨ z ` δ ` xt, @i P t1, . . . , s
k
t u , (6.22)

1´ ω “
NX
ÿ

i“1

zi , (6.23)

ω P t0, 1u, z P RNx , (6.24)

214

where skt is the number of steps of rV k
t , x1

t , . . . , x
skt
t the breakpoints and qit, . . . , q

ckt
t the

levels of the steps. xt is the lower bound of Xt, V t a lower bound of V k
t and δ is an

arbitrary positive real number that should be chosen small. The major specificity of
MIDAS is to update the function V k´1

t at iteration k by adding a step using the value of
problem (6.25). Using current steps of V k

t`1 and explored state xkt it solves the following
problem using a mixed integer programming solver for any possible wit`1:

mk
t pw

i
t`1q “ min

uPUt,θ,ω,z

”

Ltpx
k
t , u, w

i
t`1q ` θ

ı

, (6.25a)

s.t θ ě qit`1 ` pV t`1 ´ q
i
t`1q ˆ p1´ ωq, @i P t1, . . . , s

k
t`1u , (6.25b)

ftpx
k
t , u, w

i
t`1q ě px

i
t`1 ´ xt`1q ¨ z ` δ ` xt`1, @i P t1, . . . , s

k
t`1u ,
(6.25c)

1´ ω “
NX
ÿ

i“1

zi , (6.25d)

ω P t0, 1u, z P RNx . (6.25e)

skt is updated to sk´1
t ` 1. Finally the level is qs

k
t
t “

řnt`1

i“1 pit`1m
k
t pw

i
t`1q is added to rV k´1

t

at point xkt to produce rV k
t .

As for SDDP we might think that skt “ k due to the update skt “ sk´1
t ` 1 however

if xkt is close enough (with a user tuned parameter) to a previous point in x0
t , . . . , x

k´1
t ,

then the closest point level is updated and no new breakpoint is added.
MIDAS is an experimental algorithm in DynOpt. It is currently not efficient to solve

problems with more than 10 time steps and does not alleviate the curse of dimensionality.
We propose here-under a small trick to speed up MIDAS convergence for stochastic mixed
integer convex programs.

Hotstarting MIDAS with SDDP When the continuous relaxation of stochastic op-
timization problem with monotonous value functions has linear dynamics and constraints
and convex costs, it is possible to hotstart MIDAS with SDDP cuts. The idea is to apply
SDDP to the continuous relaxation, then keep the cuts to initialize the value functions
for MIDAS. As we are minimizing, the value functions of the continuous relaxation are
guaranteed to remain below the true value functions of the problem, hence it gives a lower
bound that MIDAS is able to improve for the original problem. Our numerical results on
a toy example show promising results to speed up the convergence of MIDAS.

Stopping criterion Currently, a simple stopping criterion is implemented in DynOpt.
It is a fixed number of forward-backward iterations. However there are multiple stopping
criterion for SDDP that could be implemented and added to DynOpt [164, 156].

Solver types

We present the four types of cost-to-go solvers implemented in DynOpt. Comments are
provided directly in the code.

215

� �
struct GridDPSolver <: AbstractSolver

X::DiscreteSpace # A discretization of the state space

U::DiscreteSpace # A discretization of the control space

W::WhiteNoise # Discrete random variables stagewise independent

Parallelism is set to True if the loop over states is parallelised
Requires to define the problem in an @everywhere environment
parallelism::Bool

end� �
Figure 6.4: Exhaustive search solver type

� �
struct LinearDP <: AbstractSolver

X::DiscreteSpace # A discretization of the state space

W::WhiteNoise # Discrete random variables stagewise independent

A linear programming solver e.g CplexSolver() or ClpSolver()
lpsolver::MathProgBase.AbstractMathProgSolver

end� �
Figure 6.5: Inner approximation solver type

216

� �
mutable struct SDDPSolver <: ForwardBackwardSolver

max_iter::Int # A maximum number of iterations

max_cuts::Int # A maximum number of cuts, at least max_iter+1

n_pass::Int # A number of forward passes at each iteration

A linear programming solver e.g CplexSolver() or ClpSolver()
lp_solver::MathProgBase.AbstractMathProgSolver

W::WhiteNoise # Discrete random variables stagewise independent

A number of epsilon greedy passes,
if above 0 the first n_greedy_passes forward passes
select random controls with probability epsilon
instead of optimal controls
n_greedy_passes::Int
epsilon::Float64

Every n_pruning passes cut pruning is performed, if set to 0 no pruning
n_pruning::Int

A polyhedral representation of K
polyhedral_final_cost::Union{PolyhedralFunction, Void}

end� �
Figure 6.6: SDDP solver type

217

� �
struct MIDASSolver <: ForwardBackwardSolver

max_iter::Int # A maximum number of iterations

max_steps::Int # A maximum number of steps, at least max_iter+1

n_pass::Int # A number of forward passes at each iteration

delta::Array{Float64,1} # The minimum distance to add a new point

milp_solver # A MILP solver

W::WhiteNoise # Discrete random variables stagewise independent

A number of greedy passes, if > 0 the first n_greedy_passes forward passes
select random controls with probability epsilon instead of optimal controls
greedy_passes::Int
epsilon::Float64

Every n_pruning passes cut pruning is performed, if set to 0 no pruning
n_pruning::Int

If true value functions hostarted with SDDP cuts of continuous relaxation
sddp_hotstart::Bool

An SDDP solver to compute the value functions of continuous relaxation
sddp_solver::AbstractSolver

end� �
Figure 6.7: MIDAS solver type

6.3.3 Computing a Model Predictive Control (MPC) policy

DynOpt provides functions to build automatically a Model Predictive Control [145] policy
by building a JuMP model out of a DynamicOptimizationModel and MPC specific param-
eters. It requires, notably, to define the MPC rolling horizon, the step of re-optimization
as well as a function to build scenarios of future uncertainties based on current state and
previous uncertainties realization.

It could be more efficient to let the user define himself the deterministic optimization
problem MPC requires to solve. The JuMP model is generated automatically from the
cost, dynamics and constraints functions. A user defined deterministic problem could
use more cleverly Mathematical Programming techniques such as disciplined convex pro-
gramming or linear programming reformulations. For instance a problem to be solved
by dynamic programming can be written with non-linear dynamics while an equivalent
linear programming formulation is available introducing new auxiliary decision variables.
We present such a case in subsection 6.4.1.

6.3.4 Assessment of a policy

To assess a policy it must be simulated along multiple scenarios of uncertainties realiza-
tions over the whole time horizon T of the considered problem.

The generic simulation algorithm of a given policy π “ tπ0, . . . , πT´1u with πt :
W0ˆ . . .ˆWt Ñ Ut requires to draw S P N˚ scenarios twst ut“0;...,T, s“1,...,S. Ideally these

218

scenarios should be different to the ones used to build the policy π so as to realize an
out-of-sample assessment of the policy. Otherwise the results could be biased.
Algorithm 5: Simulation algorithm
Data: A DynamicOptimizationProblem m, a policy π, scenarios twst u

s“1,...,S
t“0;...,T , an

initial state x0 P X0

Result: A vector of costs L, an array of states X, an array of controls U
for s “ 1, . . . , S do

Ls “ 0, xs0 “ x0 . for t “ 0, . . . , T ´ 1 do
ust “ πpw

s
0, . . . , w

s
t q ,

Ls` “ Ltpx
s
t , u

s
t , w

s
t`1q ,

xst`1 “ ftpx
s
t , u

s
t , w

s
t`1q .

end
Ls` “ KpxsT q .

end
return L “ tLsus“1,...,S, X “ txstu

s“1,...,S
t“0,...,T , U “ tu

s
tu
s“1,...,S
t“0,...,T´1 .

Then, taking the mean value of the vector L we obtain a Monte Carlo estimation of
the expectation of rewards using the policy π. To compare policies for stochastic optimal
control problems it is mandatory to compare distributions of the costs L so as to state
that a policy is better than another one x% of the time. Finally it can be useful to plot
the states and controls along different scenarios to understand the policy, track mistakes
and compare policies on criteria other than expected reward.

Simulation function

DynOpt provides functions to simulate different kinds of policies. It uses Julia type
disptach design to select the right simulation function for a given policy. A simulation
function prototype is as follows.

� �
function simulation(m::DynamicOptimizationModel, Π::T,

scenario::Array{Float64,3}, x0::Vector{Float64})
where T <: Policy
...

end� �
Figure 6.8: Abstract prototype of a simulation function for a policy

It takes as input a DynamicOptimizationModel, a policy, a set of scenarios for the
uncertainties and an initial state. It returns the costs obtained by simulating the policy
along each scenarios as well as the corresponding sequence of states and controls.

Policies type

We present here the different types of policies implemented in DynOpt.

219

� �
abstract type Policy end

π is function whose arguments are t and x_t
π returns u_t
struct StateFeedback <: Policy

π::Function
end

π is a function whose arguments are t, x_t and w_{t+1}
π returns u_t
struct AnticipativeStateFeedback <: Policy

π::Function
end

π is a function whose arguments are t, x_t and w_{t-past_size},..., w_{t}
π returns u_t
struct HistoryDependentPolicy <: Policy

π::Function
past_size::Int

end

π is a function whose arguments are t, x_t and w_{t-past_size},..., w_{t}
π solves a determinstic optimization problem up to time t+∆h
π returns u_t, ..., u_{t+step}
struct RollingHorizonPolicy <: Policy

π::Function
past_size::Int
∆h::Int
step::Int

end

π is a function whose arguments are t, x_t
π solves a deterministic optimization problem up to time T
π computes a forecast of uncertainties between t and T
π returns u_t
struct RollingForecastPolicy <: Policy

π::Function
forecast::Function

end� �
Figure 6.9: Policies types

We observe that the two first policies contains exactly the same Julia type, a Function.
However we make two different definitions as their simulation is not the same, then we
leverage Julia type dispatch design to efficiently apply the dedicated simulation function.

6.4 Energy management applications
DynOpt has already been applied to energy storage management issues [162] and chapter
4 and 5 of this thesis.

6.4.1 An energy storage management toy example

We explain now how to formulate and solve a simple energy storage management problem
over a one day horizon with DynOpt. We consider a microgrid as displayed Figure 6.10.
We control a 13.5 kWh battery in a house, connected to the national grid, with 6 kW solar

220

panels and uncertain electrical demand of around 20 kWh a day. We want to minimize
the electricity bill over a day with a 15 min time step.

Figure 6.10: A simple microgrid

First, we formulate the mathematical problem. At each time step t, we buy a quan-
tity Et “ pW

1
t ´W

2
t `Utq

` of energy in kWh to the national grid at a price ct in ${kWh.
We take the positive part as we assume that it is not possible to sell electricity to the
grid. The cost of electricity at each hour is assumed to be deterministic and the same
everyday. It is a peak, off-peak hours tariff as displayed Figure 6.14. We present in Fig-
ures 6.12 and 6.13 multiple scenarios of electrical demand and solar production as well
as histograms of total energy consumed and produced every day. With a large time step
of 15 minutes we assume that the controls are in Hazard-Decision (or WaitAndSee) set-
ting. It means that an admissible policy at time t is assumed to be a function of pxt, wtq.

min
X ,U

E
”

T´1
ÿ

t“0

ct ˆ pW
1
t ´W

2
t `Utq

`
ı

, (6.26a)

s.t Bt`1 “ Bt ` ρcU
`

t ´ ρ
´1
d U

´

t , (6.26b)

B ď Bt ď B , (6.26c)
σpUtq Ă σpW0, . . . ,Wtq . (6.26d)

To solve this problem with DynOpt using stochastic dynamic programming, 60 lines
of Julia code (with comments) are used as presented in Figure 6.11. We comment further
the code by lines ranges:

1–8 These lines are used to load data, namely 365 past electrical demand scenarios, 365
solar panels past production scenarios and a single cost of electricity. These have
a 15 min time step and 24 hours horizon hence every scenario has 96 stages.

9–13 define some constants of the problem. The time step in hours useful to calculate
energies, the number of stages and battery efficiency parameters.

221

14–24 format the demand and solar scenarios in a T ˆNsˆNw “ 96ˆ365ˆ2 array. Then
we split it in two stacks: the 182 scenarios that will be used to tune optimization
algorithm and the 183 scenarios to assess the policy. We choose odd and even days
to ensure that both stacks contains scenarios for each months of the year.

25–41 define all the features of a stochastic optimal control problem and build a Dynam-
icOptimizationModel.

42–46 build discrete state and control spaces for exhaustive search algorithm.

47–50 build a white noise for the exhaustive search algorithm. It takes as argument
the 182 optimization scenarios with T “ 96 stages and a integer Nbins. At each
stages in t1, . . . , 96u the 182 equiprobable realizations (with probability 1{182)
model the support of a discrete random variable. This variable is quantized us-
ing k-means algorithm. The resulting discrete random variable has a support of
size lower than Nbins and corresponding probabilities.

51–56 build an exhaustive search solver out of the discrete spaces and white noise, then
compute costs-to-go using this solver and finally we build a policy. This policiy is
anticipative and does not require a model of the noises.

57–60 simulate the policy along the assessment scenarios beginning with a state of charge x0.

222

� �
1 using DynOpt # Importing DynOpt
2
3 # Loading data
4 using JLD # Loading a package to manipulate hdf5 data in Julia
5 const demand_scenarios = load("demands.jld")["D"] # 365 demand scenarios
6 const solar_scenarios = load("solar.jld")["P"] # 365 solar scenarios
7 const c = load("cost.jld")["c"] # Cost of electricity scenario
8
9 const ∆t = 15/60 # Time step of the problem in hours

10 const T = floor(Int, 24/∆t) # Number of time stages
11 const ρd = 1/0.97 # Battery discharge efficiency
12 const ρc = 0.98 # Battery charge efficiency
13
14 # We format the scenarios for DynOpt: stages x Nscenarios x dimension of w
15 noise_scenarios = reshape([demand_scenarios solar_scenarios], T, 365, 2);
16
17 # We split the scenarios in two stacks
18
19 # Odd days: scenarios to tune optimization algorithm
20 optim_scenarios = noise_scenarios[:,1:2:365,:];
21
22 # Even days: scenarios to assess the policy
23 assess_scenarios = noise_scenarios[:,2:2:365,:];
24
25 const xmin = [0.] # Lower bounds for battery soc
26 const xmax = [13.5] # Upper bound for battery soc
27
28 const umin = [-7.].*∆t # Lower bound for battery charge
29 const umax = [5.].*∆t # Upper bounds for battery charge
30 const uanticipativity = [WaitAndSee] # Anticipativity of controls
31
32 # Problem functions, dynamics, cost, constraints, final cost
33 f(new_x, t, x, u, w) = new_x[1] = x[1] + ρc*max(u[1], 0.) + ρd*min(u[1],0.)
34 L(t, x, u, w) = c[t] * max(0, w[1] - w[2] + u[1])
35 B(t, x, u, w) = true # No constraints
36 K(x) = 0 # No final cost
37
38 # Building a DynamicOptimizationModel
39 sp = DynOpt.DynamicOptimizationModel(T, L, f, B, K, xmin, xmax,
40 umin, umax, uanticipativity)
41
42 const ∆x = [0.5] # Step of the states grid
43 const ∆u = [0.1].*∆t # Step of the controls grid
44 const X = DiscreteSpace(xmin, xmax, ∆x); # Building states grid
45 const U = DiscreteSpace(umin, umax, ∆u); # Building controls grid
46
47 # We build a white noise by quantizing the 182 optim_scenarios realizations
48 # at each hour of the day with a maximum of 5 bins
49 const W = WhiteNoise(optim_scenarios, 5);
50
51 solver = GridDPSolver(X, U, W); # Setting an exhaustive search solver
52
53 @time V = solve(sp, solver, risk = Expectation()); # Computing costs-to-go
54
55 Π = Policy(sp, X, U, V) # Computing a cos-to-go policy
56
57 x0 = [0.5] # Choosing a initial battery state of charge
58
59 # Simulating the policy along the assessment scenarios
60 @time L, xres, ures = simulation(sp, Π, assess_scenarios, x0)� �

Figure 6.11: Stochastic Dynamic Programming resolution of a battery problem

223

Figure 6.12: Demand scenarios

Figure 6.13: Solar scenarios

Figure 6.14: Cost of electricity scenario

224

We can compare the policy obtained by dynamic programming to a heuristic policy.
We choose the following intuitive policy

• If solar exceeds demand, store solar up to battery state of charge and battery
maximum charge.

• Otherwise, during peak hours, discharge the battery to fulfill the demand up to
maximum discharge rate up to minimum stage of charge.

• Otherwise, during off-peak hours, charge the battery at maximum rate up to max-
imum state of charge.

It gives the following anticipative policy:

pt, bt, wtq ÞÑif w2
t ą w1

t then minpw2
t ´ w

1
t , ρ

´1
c pB ´ btq, Uq ,

elseif t P peakhours then maxpw2
t ´ w

1
t , U, ρdpB ´ btqq ,

else minpU, ρ´1
c pB ´ btqq .

It is implemented in Julia code as follows:

� �
1 # Stages of the peak hours, we assume that all evening hours are peak hours
2 # so as not to charge the battery at the end of the day
3 const peak_hours = 30:96
4
5 # We define a function for the strategy based on hours of the day
6 π_hours(t,x,w) = (t in peak_hours? max(umin[1], (xmin[1]-x[1])/ρd, w[2]-w[1]) :
7 min(umax[1], (xmax[1]-x[1])/ρc)
8
9 # We define the heuristic strategy that do not wastes solar

10 # then apply the hours based strategy
11 Πheuristic = DynOpt.AnticipativeStateFeedback((t,x,w) -> (w[2]>w[1])?
12 min(w[2]-w[1], (xmax[1]-x[1])/ρc, umax[1]) : π_hours(t,x,w))
13
14 # We simulate the policy along the assessment scenarios
15 Lheuristic, xheuristic, uheuristic = simulation(sp, Πheuristic,
16 assess_scenarios,
17 x0);� �

Figure 6.15: Heuristic policy definition and simulation

We compare the simulation of both policies. It appears on Figure 6.16 and 6.17 that
the policies give pretty different state of charge and charge/discharge trajectories for every
scenario. In particular the SDP strategy does not charge the battery during off-peak hours
which is counter intuitive. The main benefit of the SDP strategy is to charge the battery
when there is solar power at a more appropriate rate than the heuristic strategy. Finally,
Figure 6.18 displays the distribution of relative gaps that is 2 ˆ L´Lheuristic

L`Lheuristic
. As we are

minimizing, when the gap is below zero SDP outperforms the heuristic. We observe the
SDP outperforms the heuristic over almost all scenarios by around 1%, only 2 scenarios
out of 182 are in favor of the heuristic. This toy example shows the interest of DynOpt: it
is as simple to build a SDP policy as to build a heuristic policy. SDP policy outperforms
heuristic policy even with a pretty poor model of uncertainties and coarse discretizations

225

of state, control spaces and quantification of random variables. Finally SDP requires
here 0.27 seconds to compute value functions offline and then computes a decision in
around 2ˆ 10´5 seconds. The heuristic policy does not require offline computation time
and computes a decision online in approximately 10´6 seconds which is faster but with a
time step of 15 minutes both policies are fast enough.

Figure 6.16: Battery state of charge trajectories

Figure 6.17: Battery charge/discharge trajectories

226

Figure 6.18: Histogram of relative gap between policies simulation costs

6.4.2 Two-Time Scales problems

One drawback of this toy example for a real energy management problem is the lack of
a final cost to go K leading to an empty battery at the end of each day, which might
be inefficient for the next day. In general, we need to compute a final value of energy,
that is the economic value of a state of charge at the end of each day. There are different
methods to compute a relevant final cost for such problems. We distinguish methods
based on stationary assumptions, implying that the final cost function is the same for
everyday of an infinite horizon, and non stationary assumptions, implying that the final
cost changing everyday of a finite horizon. In the subsection every variables are indexed
by a day index d P t0, . . . Du, where D in a number of days and the previous intraday
index t P t0, . . . T u. D an be equal to `8.

Stationary case: infinite horizon value iteration

In this part we briefly present infinite horizon two time scales problems and resolution
algorithms. We make the following stationary assumptions:

• the state spaces tXtutPt0,...,T u are the same everyday and X0 “ XT

• the control spaces tUtutPt0,...,T´1u are the same everyday

• the uncertainty spaces tWtutPt0,...,T u are the same everyday

• the costs tLtutPt0,...,T u are the same everyday

• the dynamics tftutPt0,...,T u are the same everyday

• the constaints tBtutPt0,...,T u are the same everyday

• the random variables tWd,0,...,T udPt0,...Du are independent and indentically distributed,
that is the law of Wd,0,...,T “ tWd,0, . . . ,Wd,T u does not depend on d.

227

The whole idea is to view the daily final cost as the value of an infinite horizon discounted
problem. We call γ P r0, 1r the daily discount factor.

@x P X0 “ XT , Kpxq “ min
X ,U

E
”

`8
ÿ

d“0

γ
T´1
ÿ

t“0

LtpXd,t,Ud,t,Wd,t`1q ,
ı

(6.27a)

s.t Xd,t`1 “ ftpXd,t,Ud,t,Wd,t`1q , (6.27b)

BtpXd,t,Ud,t,Wd,t`1q ď 0 , (6.27c)

Xd,0 “Xd´1,T , (6.27d)

σpUd,tq Ă σpXd,0,Wd,0, . . . ,Wd,tq . (6.27e)

With the stationary assumptions K verifies the following fixed point equation:

@x P X0 “ XT , Kpxq “ min
X ,U

E
”

T´1
ÿ

t“0

LtpXt,Ut,Wt`1q ` γKpXT q ,
ı

(6.28a)

s.t Xt`1 “ ftpXt,Ut,Wt`1q , (6.28b)
BtpXd,t,Ud,t,Wt`1q ď 0 , (6.28c)

Xd,0 “Xd´1,T , (6.28d)

σpUd,tq Ă σpW0, . . . ,Wtq , (6.28e)

and we can compute K using a fixed point algorithm, this is a discounted value iteration.
When the discount factor gamma is equal to 1 we can apply the same algorithm but
without a guarantee of convergence. Convergence fully depends on the intraday problem.
This is a total cost value iteration.

It is also possible to view K as an average cost that is:

@x P X0 “ XT , Kpxq “ min
X ,U

E
”

lim
DÑ8

1

D

D
ÿ

d“0

T´1
ÿ

t“0

LtpXd,t,Ud,t,Wd,t`1q ,
ı

(6.29a)

s.t Xd,t`1 “ ftpXd,t,Ud,t,Wd,t`1q , (6.29b)

BtpXd,t,Ud,t,Wd,t`1q ď 0 , (6.29c)

Xd,0 “Xd´1,T , (6.29d)

σpUd,tq Ă σpXd,0,Wd,0, . . . ,Wd,tq . (6.29e)

In this case K does not verify a fixed point equation. However the so-called relative
value K ´Kpx̂q with x̂ P X0 verifies one:

@x P X0 “ XT , Kpxq ´Kpx̂q “ min
X ,U

E
”

T´1
ÿ

t“0

LtpXt,Ut,Wt`1q `KpXT q ´Kpx̂q ,
ı

(6.30a)
s.t Xt`1 “ ftpXt,Ut,Wt`1q , (6.30b)

BtpXt,Ut,Wt`1q ď 0 , (6.30c)
σpUtq Ă σpW0, . . . ,Wtq . (6.30d)

228

We implement three algorithms to compute a final cost to go based on value iteration
as presented in [145] and [155] and applied in [154] for such a kind of problems. DynOpt
provides functions to compute a final cost K iteratively.

� �
1 # A abstract final cost solver
2 abstract type FinalCostSolver end
3
4 struct InfiniteHorizonDiscountedCost{T <: AbstractSolver} <: FinalCostSolver
5
6 subproblem_solver::T # Solver of the intraday problem
7
8 γ::Float64 # Discount factor
9

10 max_iter::Int # Maximum number of iterations
11
12 ε::Float64 # Convergence tolerance
13 end
14
15 struct InfiniteHorizonAverageCost{T <: AbstractSolver} <: FinalCostSolver
16
17 subproblem_solver::T # Solver of the intraday problem
18
19 max_iter::Int # Maximum number of iterations
20
21 ε::Float64 # Convergence tolerance
22 end
23
24 struct InfiniteHorizonTotalCost{T <: AbstractSolver} <: FinalCostSolver
25
26 subproblem_solver::T # Solver of the intraday problem
27
28 max_iter::Int # Maximum number of iterations
29
30 ε::Float64 # Convergence tolerance
31 end� �

Figure 6.19: Final cost solvers

The idea of these solvers is to solve the intraday problem multiple times with an
updated final cost each time. The algorithms stop when a maximum number of iteration
is reached or when the final cost has converged with a given tolerance. The three solvers
are used for type dispatch of a fix point algorithm function. At iteration k with a given
final cost Kpkq the value of the intraday problem V k`1

0 is computed using a DynOpt
algorithm (SDP, SDDP, MIDAS,...). Depending on the type of solver the update rule of
the final cost changes:

• Discounted problems: Kpk`1qpxq “ γV
pk`1q

0 pxq,

• Total cost problems: Kpk`1qpxq “ V
pk`1q

0 pxq,

• Average cost problems: Kpk`1qpxq “ V
pk`1q

0 pxq ´ V
pk`1q

0 px0q.

229

Non stationary case: two time scales stochastic dynamic optimization

Without the stationary assumptions the final cost K should depend on the day. We can
view it as a daily value function of a two time scales problem:

@x P X0 “ XT , min
X ,U

E
”

D
ÿ

d“0

T´1
ÿ

t“0

Ld,tpXd,t,Ud,t,Wd,t`1q ,
ı

(6.31a)

s.t Xd,t`1 “ fd,tpXd,t,Ud,t,Wd,t`1q , (6.31b)

Bd,tpXd,t,Ud,t,Wd,t`1q ď 0 , (6.31c)

Xd,0 “Xd´1,T , (6.31d)

σpUd,tq Ă σpW0,0, . . . ,Wd,tq . (6.31e)

when the random variables tWd,0,...,T udPt0,...Du are independent we can define a daily value
functions Kd verifying the following backward recursion:

@x P Xd,0, Kdpxq “ min
X ,U

E
”

T´1
ÿ

t“0

Ld,tpXd,t,Ud,t,Wd,t`1q `Kd`1pXd,T q ,
ı

(6.32a)

s.t Xd,t`1 “ fd,tpXd,t,Ud,t,Wd,t`1q , (6.32b)

Bd,tpXd,t,Ud,t,Wd,t`1q ď 0 , (6.32c)

σpUd,tq Ă σpWd,0, . . . ,Wd,tq . (6.32d)

We present in chapter 5 of this thesis different ways to compute these daily value functions.
They consist in decomposition the two time scales problem in two mono-scale problem,
hence we can apply DynOpt core functionality to solve them. We do not provide currently
generic DynOpt objects to define this kind of problems and automatically decompose and
solve them using DynOpt. This is one of our perspectives.

6.4.3 MµGO: Modular Microgrids Optimization

DynOpt can be used as a backend for energy management applications. Using Julia
packages Mux.jl 14 and HTTP.jl 15 we are able to build REST APIs to call policies
produced with DynOpt or directly resolution algorithms for a wide variety of energy
management problems under uncertainty. The REST API’s can be deployed in any Linux
machine using Docker16 images. We used such a scheme in the following applications:

• Model Predictive Control of a DC micro-grid simulation: an isolated DC micro-grid
voltage stability problem has been modeled in DynOpt to produce a MPC policy. A
REST API has been built to deploy the strategy in a Raspberry Pi able to control
a Simulink simulation in another computer. This is presented in chapter 4 of this
thesis.

14https://github.com/JuliaWeb/Mux.jl
15https://github.com/JuliaWeb/HTTP.jl
16https://www.docker.com/

230

• Sizing of a battery: we modeled a battery sizing problem for a stationary storage
in a micro-grid using DynOpt. Using two time scales algorithms we are able to
compute an optimal sizing of the battery as well as a maintenance strategy. We
built a REST API and deployed it in the cloud to serve as a back-end for a battery
sizing web-page. This is presented in chapter 5 of this thesis.

• Thermal control of a real building : we modeled a building thermal control problem
using DynOpt and built an API so that a smart plug can receive On-Off instructions
in real time from the produced policy. This is presented in chapter 7 of this thesis.

6.5 Conclusion and perspectives
This paper introduced DynOpt, a Julia package, to model and solve stochastic opti-
mization problems and produce online control policies used for simulations, DynOpt can
be implemented for real time control of systems. We presented the interface as well as
different underlying structure and algorithms.

Thanks to its modular architecture, DynOpt can be easily extended. In particular
we believe it is developer friendly to add new kind of policies or resolution algorithms.
Stochastic Programming methods can therefore easily extend DynOpt. The forward-
backward algorithms abstraction layer allows to easily experiment new ways to approx-
imate value functions, for example it might be interesting to model value functions as
MIPs using MIP representation of multivariate functions introduced in [165]. Adding new
classes of value functions should also easily allow to implement Reinforcement Learning
methods. We think the user interface of DynOpt already makes possible concise modeling
of stochastic optimization problems. We began to implement a higher level user interface
à la JuMP using Julia metaprogramming capabilities. A prototype version is already op-
erational but should be tested for many kind of problems and improved. Risk modeling
contains currently only the expectation. An implementation of the Nested Conditional
Value at Risk has been added but only integrated in the exhaustive search solver. The
integration of risk models in the mathematical programming based policies of DynOpt
(SDDP, MIDAS, Inner Approximation, MPC...) is challenging but should be addressed
shortly.

Finally, DynOpt, is currently being used as a back-end for energy management tools
at Efficacity. It aims at providing a versatile stochastic optimization solver for different
energy management software, even existing commercial ones that could improve their
optimization features. It remains to rigorously test it on different test-beds and demon-
strators so as to improve it and envisage commercial applications.

231

Chapter 6. Bibliography

[144] D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena
Scientific Belmont, MA, third edition, 2005.

[145] D. P. Bertsekas. Dynamic programming and suboptimal control: A survey from
ADP to MPC. European Journal of Control, 11(4-5):310–334, 2005.

[146] D. P. Bertsekas and H. Yu. A unifying polyhedral approximation framework for
convex optimization. SIAM Journal on Optimization, 21(1):333–360, 2011.

[147] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach
to numerical computing. CoRR, abs/1411.1607, 2014.

[148] J. Bonnans, Frederic, D. Giorgi, V. Grelard, B. Heymann, S. Maindrault, P. Mar-
tinon, O. Tissot, and J. Liu. Bocop – A collection of examples. Technical report,
INRIA, 2017.

[149] P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. Stochastic Multi-
Stage Optimization. At the Crossroads between Discrete Time Stochastic Control
and Stochastic Programming. Springer-Verlag, Berlin, 2015.

[150] O. Dowson. The policy graph decomposition of multistage stochastic optimization
problems. Optimization Online, 2018.

[151] O. Dowson and L. Kapelevich. Sddp. jl: a julia package for stochastic dual dy-
namic programming. Optimization Online. URL http://www. optimization-online.
org/DB_HTML/2017/12/6388. html, 2017.

[152] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathe-
matical optimization. SIAM Review, 59(2):295–320, 2017.

[153] H. Gevret, J. Lelong, and X. Warin. STochastic OPTimization library in C++.
Research report, EDF Lab, Sept. 2016.

[154] P. Haessig, H. B. Ahmed, and B. Multon. Energy storage control with aging limi-
tation. In PowerTech, 2015 IEEE Eindhoven, pages 1–6. IEEE, 2015.

[155] O. Hernández-Lerma and J. B. Lasserre. Discrete-time Markov control processes:
basic optimality criteria, volume 30. Springer Science & Business Media, 2012.

232

[156] V. Leclère, P. Carpentier, J.-P. Chancelier, A. Lenoir, and F. Pacaud. Exact con-
verging bounds for stochastic dual dynamic programming via fenchel duality. Op-
timization Online, 2018.

[157] V. Leclère, H. Gérard, F. Pacaud, and T. Rigaut. Stochdynamicprogramming.
jl a julia library for multistage stochastic optimization. https://github.com/
JuliaStochOpt/StochDynamicProgramming.jl, 2017.

[158] M. V. Pereira and L. M. Pinto. Multi-stage stochastic optimization applied to
energy planning. Mathematical programming, 52(1-3):359–375, 1991.

[159] A. Philpott, F. Wahid, and F. Bonnans. MIDAS: A Mixed Integer Dynamic Ap-
proximation Scheme. Research report, Inria Saclay Ile de France, June 2016.

[160] W. B. Powell. Clearing the jungle of stochastic optimization. Informs, pages 109–
137, 2014.

[161] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., 1st edition, 1994.

[162] T. Rigaut, P. Carpentier, J. Chancelier, M. D. Lara, and J. Waeytens. Stochastic
optimization of braking energy storage and ventilation in a subway station. IEEE
Transactions on Power Systems, pages 1–1, 2018.

[163] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming:
modeling and theory. SIAM, 2009.

[164] A. Shapiro, W. Tekaya, J. P. da Costa, and M. P. Soares. Final report for technical
cooperation between georgia institute of technology and ons–operador nacional do
sistema elétrico. Georgia Tech ISyE Report, 2012.

[165] J. P. Vielma. Mixed integer linear programming formulation techniques. SIAM Re-
view, 57:3–57, 2015.

233

https://github.com/JuliaStochOpt/StochDynamicProgramming.jl
https://github.com/JuliaStochOpt/StochDynamicProgramming.jl

Chapter 7

Energy aware temperature control of a
house using Stochastic Dual Dynamic
Programming: a first testbed
implementation

This is a joint work with Frédéric Bourquin and Julien Waeytens.

Chapter Abstract

We present the implementation of a control strategy for the temperature of a
real house, minimizing the energy energy consumption with stochastic ther-
mal gains. We present a calibration method of an RC model, which models
a building thermal behavior. This calibration methods allows to determine
some house thermal parameters but also to build a stochastic model of the
thermal gains that are not generated by electrical heaters. These calibrated
RC model and stochastic model of the thermal gains are used to build a con-
trol policy to minimize the energy consumption of the house while maintaining
a comfortable temperature. This policy is computed using the SDDP algo-
rithm using DynOpt, the toolbox introduced Chapter 6. We build a software
architecture based on containerized APIs to calibrate the model, compute the
control policy and apply the control policy online from a server or in the cloud
without requiring a human input. We implement this architecture to a real
house, controlling two electrical heaters in two rooms using smart plugs.

Contents
7.1 Introduction . 235

7.1.1 Literature on temperature control in houses and experimentation235

7.1.2 Structure of the chapter . 236

7.2 Building energy model and parameters calibration 236

7.2.1 Building thermal model . 237

7.2.2 Model calibration . 237

7.3 Optimization problem statement 240

234

7.3.1 We control heating energy . 240

7.3.2 State and dynamics . 240

7.3.3 Optimal controls are searched as state feedbacks 241

7.3.4 The objective is an expected daily cost 241

7.3.5 Stochastic optimization problem statement 242

7.3.6 Producing a control policy: Stochastic Dual Dynamic Program-
ming . 242

7.4 Application to a real house . 242

7.4.1 Description of the chalet in the equipment Sense City 243

7.4.2 Sensors, database and APIs . 244

7.4.3 Numerical results of the calibration 245

7.4.4 Energy Management System implementation 247

7.4.5 Low level controller implementation 249

7.4.6 Control results . 250

7.5 Conclusion . 252

7.1 Introduction
This chapter describes a test-bed implementation of an online control using stochastic
optimization and in particular the Stochastic Dual Dynamic Programming (SDDP) al-
gorithm implemented in DynOpt, presented in Chapter 6 of this manuscript. The test
bed is a chalet in the mini city demonstrator Sense City [172]. The thermal dynamic of
the chalet is modeled with an RC electrical equivalent model. We introduce a calibration
method that does not require a human input of the model. This calibrated model is
used to apply the SDDP algorithm to minimize the energy consumption of the building
while satisfying thermal comfort constraints with uncertain indoor thermal gains. Fi-
nally we present how to build REST APIs based on DynOpt that can be embedded in
any Linux machine and how we build data pipelines for model calibration and control
of a real stochastic dynamical system. We apply our implementation strategy to control
the temperature of the test bed building and present results.

7.1.1 Literature on temperature control in houses and experi-
mentation

There exists different modeling strategies to simulate the thermal behavior of buildings.
We refer to [168] for an exhaustive comparison and assessment of existing simulation
methods. In this paper we use a RC model relying on an electrical interpretation of a
building thermal dynamic. A comparison of calibration methods for such models are also
presented in [168], the comparison shows that Interior Point method outperforms meta
heuristics. In [166, 171] they present a more detailed physical model of a building and
an associated calibration strategy based on the Levenberg-Marquardt algorithm where
the gradient is computed efficiently using the adjoint of the model. A similar method is

235

applied in [166]. In [173] they present a calibration strategy in two phases combining a
meta heuristic and a physical model based calibration.

In the sequel we combine a meta heuristic to find a first guess of the RC model un-
known parameters and a gradient based algorithm to improve the parameters estimation.

Multiple uncertain phenomena impact buildings thermal behavior namely, outdoor
temperature, door and window openings, indoor thermal gains, solar gains... Control
algorithms such as Model Predictive Control (MPC) and stochastic MPC have been
widely applied to handle uncertainty in thermal control of buildings [177, 182, 175].
In [178] they develop a MPC strategy for a four-storey building and the control strategy
is applied to detailed simulation but not a real test bed. Some MPC applications exist
on real buildings such as [166, 179]. Stochastic Dynamic Programming (SDP) [167,
169] and Approximate Dynamic Programming [170, 180] have been applied on building
simulations, we refer to [174] for an overview of the literature, and sometimes on real test
beds as in [181]. SDP computes value functions offline and then at time t only needs to
solve a small optimization problem using a value function while MPC requires to solve
a possibly large mathematical program with a dedicated solver. SDP suffers the well
known curse of dimensionality. There are two state variables in a monozone RC model,
SDP is limited to at most four state variables. Hence applying SDP to large buildings or
multiple houses is out of reach. When the dynamic is linear in state and control variables
the Stochastic Dual Dynamic Programming algorithm makes it possible to compute value
functions approximations for problems with up to 40 state variables. A thermal control
of a house using SDDP is presented in [176] and compared to a MPC approach. Their
results show that SDDP outperforms MPC on several simulations but no application on
a real test bed is performed.

We present in the sequel a thermal control strategy of a real house with uncertain
thermal gains using SDDP.

7.1.2 Structure of the chapter

In this chapter we first present the building thermal model that we use to optimize its
heating. We emphasize on a model calibration techniques that use only measurements and
does not require a human input. Then we formulate an optimization problem that aims
at minimizing the energy consumption cost of the house while ensuring a decent thermal
comfort. This problem displays stochasticity as some indoor and outdoor thermal gains
are not measured and could not be modeled with physical equations. We also present
how this optimization problem is solved to produce an online control policy. Finally we
present how these calibration and optimization techniques are implemented to control
the electrical heaters of a house, using stochastic optimization, without a human input.

7.2 Building energy model and parameters calibration
We depict in this section the physical equations we use to model the temperature dy-
namics in the house. We present as well the calibration strategy we implement to in-
fer a generic building thermal characteristics without prior physical knowledge. Then
we model some uncontrollable and unforeseeable thermal phenomena occurring inside a
generic building using optimization and a simple statistical model.

236

7.2.1 Building thermal model

We model the thermal behavior of the house so as to control its temperature. We use a
simple model in order to preserve tractability of the eventual optimization algorithms we
will use.

The thermal behavior of the house is modeled using an electrical analogy, a R6C2
model. as introduced in [176, 168]. It consists roughly in representing the walls as an
equivalent homogeneous material exchanging heat with the air represented as a single
zone as well. Let θptq and θwptqq pKq be respectively the temperature of the air and
of the walls at time t. We model the dynamics of these temperature with the following
parametric differential equations:

ci
dθ

dt
“
θwptq ´ θptq

Ri `Rs

`
Rv `Rf

RvRf

´

θoptq ´ θptq
¯

` γqptq ` φiptq (7.1a)

cw
dθw

dt
“
θptq ´ θwptq

Ri `Rs

`
θoptq ´ θwptq

Rm `Ro

` p1´ γqqptq ` φwptq (7.1b)

where ci is the thermal capacity of the zone (air + furniture), cw the thermal capacity
of the walls, γ p%q is the proportion of heat from electrical heater that is transmitted
to the air,p1´ γq is the proportion transmitted to walls and tRi, Rs, Rv, Rf , Rm, Rou are
resistances modeling the building thermal behavior, we refer the reader to [176, 168] for
a more precise definition.

Four time varying variables remain θoptq (K) the outside air temperature, qptq the
heat generated (W) by the electric heaters, φiptq (W) and φwptq respectively the ex-
ogenous indoor thermal gain and the walls thermal gain (solar radiation, people heat,
computers...).

Measured variables, known and unknown variables

In model (7.1) the time varying variables θ, θw, θo, q are assumed measured. The first three
temperatures are measured using 4-wire PT100 probes while q can be measured using
smart plugs for instance. The thermal capacity of the zone can be computed as ci “ cpˆV
where cp is the thermal capacity of the air at 300K, and V is the volume of the zone.
This approximation falls down to consider that the zone is empty. Here we assume that ci
is unknown so that the calibration strategy does not require a human input to define the
volume of the building.

All resistances, cw and γ are unknown and require calibration. The fluxes φ and φw
are unknown as well, we present here under how we dealt with them.

7.2.2 Model calibration

As stated previously θ, θw, θo, q are measured, hence we have historical data to calibrate
model (7.1), which implies finding a value for the unknown parameters in order to simulate
the house thermal behavior properly. We call ∆t the sample rate of the measures, that are
assumed synchronous. Th is the number of past historical data available for calibration.
tpθt, θ

w

t , θ
o

t , qtqut“0,...,Th is the sequence of historical measures.

237

As we do not measure φ and φw we perform a calibration in two phases. For every
sequence of the building constant parameters, resistances, walls capacity cw and γ we
infer the time varying fluxes φ, φw to produce a stochastic model of their evolution.

House parameters calibration

First we group and replace the unknown constant parameters in (7.1) by optimization
variables pp1, . . . , p7q:

p1
dθ

dt
“ p2

´

θwptq ´ θptq
¯

` p3

´

θoptq ´ θptq
¯

` p4qptq ` φt (7.2a)

p5
dθw

dt
“ p6

´

θptq ´ θwptq
¯

` p7

´

θoptq ´ θwptq
¯

` p1´ p4qqptq ` φ
w
t (7.2b)

We discretize these two differential equations using regular forward differentiation
with time step ∆t producing the following fitting problem:

min
p1,...,p7,θt,θwt ,φt,φ

w
t

Th
ÿ

t“0

|θt ´ θt| ` |θ
w
t ´ θ

w

t | , (7.3a)

s.t p1θt`1 “ p1θt `∆t
´

p2

`

θwt ´ θt
˘

` p3

`

θot ´ θt
˘

` p4qt ` φt

¯

, (7.3b)

p5θ
w
t`1 “ p5θ

w
t `∆t

´

p6

`

θt ´ θ
w
t

˘

` p7

`

θot ´ θ
w
t

˘

` p1´ p4qqt ` φ
w
t

¯

,

(7.3c)
0 ď pi ď pmaxi , φt ě 0 φwt ě 0 . (7.3d)

Problem (7.3) has a convex objective however both constraints (7.3b) and (7.3c) contain
bi-linear terms in decision variables. This problem may have multiple local minima and
we would need Non-Linear Programming techniques to compute admissible solutions.
We notice that the exogenous thermal gains φt and φwt for t “ 0, . . . , Th are decision
variables of problem (7.3). It may adds a significant number of decision variable to the
problem is the horizon of calibration Th is large, which is suitable for a good calibration.
We introduce the following optimization problem whose value Vm depends on the model
parameters p1, . . . , p7.

Vmpp1, . . . , p7q “ min
θt,θwt ,φt,φ

w
t

Th
ÿ

t“0

|θt ´ θt| ` |θ
w
t ´ θ

w

t | , (7.4a)

s.t p1θt`1 “ p1θt `∆t
´

p2

`

θwt ´ θt
˘

` p3

`

θot ´ θt
˘

` p4qt ` φt

¯

,

(7.4b)

p5θ
w
t`1 “ p5θ

w
t `∆t

´

p6

`

θt ´ θ
w
t

˘

` p7

`

θot ´ θ
w
t

˘

` p1´ p4qqt ` φ
w
t

¯

,

(7.4c)
φt ě 0 φwt ě 0 . (7.4d)

This problem is linear so we can perform linear programming techniques to solve it

238

efficiently. Moreover problem (7.3) is equivalent to the following problem

min
p1,...,p7

Vmpp1, . . . , p7q , (7.5a)

s.t 0 ď pi ď pmaxi . (7.5b)

on which we can apply non linear programming techniques where the value of the oracle
Vm is computed using linear programming. We present here under our optimization
strategy of problem (7.5) that produces a set of parameters p71, . . . , p

7

7.

Producing an initial guess using Simulated Annealing The classical method to
calibrate RC models is to provide an initial guess of the parameters based on physical
study of the building. However we prefer a generic method that does not require a human
input. From a random initial guess we perform a meta heuristic, the so called simulated
annealing algorithm, to produce a decent initial sequence of parameters. By decent we
mean that the indoor temperature does not reach unrealistic values (e.g more than 50 or
less than ´50 celsius degrees).

Improving parameters using a gradient based method Now that we obtained a
decent initial guess for the parameters we perform a gradient descent based algorithm,
here we chose BFGS, to improve the objective value and obtain the best parameters
possible.

Stochastic model of the exogenous thermal gains

We obtain two sequences of historical exogenous thermal gains tφ0, . . . , φThu and tφ
w

0 , . . . , φ
w

Th
u

by solving problem (7.4) with the sequence of parameters previously computed p71, . . . , p
7

7.
These sequences of historical thermal gains are produced to replace data that we are phys-
ically unable to measure and that is cumbersome to model. Now we can perform a regular
statistical analysis on these two sequences of inferred historical data to produce a stochas-
tic model of the exogenous thermal gains. In the sequel bold uppercase variables X are
random variables while lowercase letters x are used for deterministic variables.

In this Chapter we use an order 1 auto-regressive model (ARp1q) for the exogenous
thermal gains. Φt and Φw

t follow the ARp1q models:

Φt`1 “ aΦt ` b`R , (7.6a)
Φw
t`1 “ awΦw

t ` b
w
`Rw . (7.6b)

Coefficients a, b and aw, bw are computed by performing a linear least square regression
using the sequences of historical thermal gains tφ0, . . . , φThu and tφ

w

0 , . . . , φ
w

Th
u.

The law of the residuals R and Rw is obtained by quantization. For instance, we
consider an uniform discrete random variable with support tφt`1 ´ aφt ´ but“0...Th , that
is each realization has probability 1

Th
. We apply the k-means algorithm to quantize this

random variable to obtain the law of R with a smaller support.

239

7.3 Optimization problem statement
We design an Energy Management System for the electrical heaters of the house to
minimize the heating electrical consumption while ensuring a good thermal comfort.
This EMS implementation assumes that good outside temperature forecasts are available
but considers that the exogenous thermal gains are unpredictable.

We adopt a discrete time frame to model the optimization problem as heating decisions
will be made at discrete times (e.g every 15 minutes). As previously we call ∆t the
time step, T is the number of time stages during which we make heating decisions. We
formulate a discrete time stochastic optimization problem based on the physical model
we presented.

7.3.1 We control heating energy

The electrical heaters can produce heat up to a maximum power Qmax in Watts (W). We
call Ut (Wh) the heat produced during the time interval rt, t`∆tr. This energy should be
maintained below the threshold Qmaxˆ∆t to remain achievable by the electrical heaters.
Ut is the decision variable of the problem and Ut the admissible set.

The sequence of decisions tU0, . . . ,UT´1u is a stochastic process. As time goes the
random exogenous thermal gains Φt and Φw

t materializes. We call It “ pΦt,Φ
w
t q

T . Φt`1

the thermal gain vector. It`1 is the exogenous thermal gain during the interval rt, t`∆r.
As a decision Ut is taken knowing all the previous thermal gains realizations pw0, . . . , wtq,
it is a random variable.

7.3.2 State and dynamics

The system is described by two physical state variables, the indoor air temperature Θt

and the walls temperature Θw
t , both assumed constant during rt, t`∆tr. As introduced in

equations (7.6) the thermal gains display a statistical dynamic equation. They constitute
an informational state. We call

Wt “ pRt,R
w
t q

T , (7.7)

the vector of residuals, also called exogenous noise, which has the same law as pR,Rwq

with support Wt.
And we introduce the state of the system at time stage t,

Xt “ pΘt,Θ
w
t ,Φt,Φ

w
t q

T , (7.8)

that belongs to the set Xt. Finally we define the dynamic ft : Xt ˆ Ut ˆWt`1 Ñ Xt`1

such that for all px, u, wq P Xt ˆ Ut ˆWt`1,

ftpx, u, wq “

¨

˚

˚

˚

˚

˝

θt `
∆t
ci

´

p1

`

θwt ´ θt
˘

` p2

`

θot ´ θt
˘

`
p3
∆t
ut ` aφt ` b` rt

¯

θwt `∆t
´

p4

`

θt ´ θ
w
t

˘

` p5

`

θot ´ θ
w
t

˘

`
p6
∆t
ut ` a

wφwt ` b
w ` rwt

¯

aφt ` b` rt
awφwt ` b

w ` rwt

˛

‹

‹

‹

‹

‚

.

(7.9)

240

7.3.3 Optimal controls are searched as state feedbacks

We introduce Ft the sigma algebra generated by all the past exogenous noises at time
step t:

Ft “ σpW0, . . . ,Wtq . (7.10)
To model the fact that the decision maker takes decisions knowing only past uncertainties
realization we introduce the so called non anticipativity constraint

σpUtq Ă σpW0, . . . ,Wtq , (7.11a)

or its equivalent functional form

Dπt : W0, . . . ,Wt, Ut “ πtpW0, . . . ,Wtq . (7.11b)

When the exogenous random variables are stage-wise independent it is enough to
restrict the search to state feedback that is function of the state of the system Xt:

σpUtq Ă σpXtq , (7.12a)

or equivalently
Dπt : Xt Ñ Ut, Ut “ πtpXtq . (7.12b)

This is the so called Markov condition. In this instance we modeled the exogenous
random variables R and Rw in (7.6) making a stationary assumption as we quantified
all the occurrences observed in the available measures.

7.3.4 The objective is an expected daily cost

The objective is to minimize the cost of electricity consumed by the heater over a day
while maintaining the temperature within a comfort zone (around θref “ 295K). We
consider an electricity tariff known in advance ct to be in euros{kWh. The objective is
the following

min
U0,...,UT´1

E
”

T
ÿ

t“0

ct ˆUt

ı

. (7.13)

To simplify the computation we consider that the temperature constraint is soft,
mathematically it materializes as a constraint in expectation as follows

E
´

T
ÿ

t“0

|Θt ´ θref | ´M
¯

ď 0 , (7.14)

with an arbitrary constant M . This constraint states that during the day we don’t want
to be too far from the reference temperature θref . We dualize this constraint to solve
the problem. A better way would be to find the optimal multiplier associated to the
constraint. However to simplify the instance, we fix a marginal price λ of temperature
by trial and errors. It finally leads to the following objective

min
U0,...,UT´1

E
”

T´1
ÿ

t“0

ct ˆUt ` λ|Θt ´ θref | ` λ|ΘT ´ θref |
ı

. (7.15)

We call LtpXt,Ut,Wt`1q “ ct ˆUt ` λ|Θt ´ θref | and KpXT q “ λ|ΘT ´ θref |. Now we
have all the ingredients to state a stochastic optimization problem.

241

7.3.5 Stochastic optimization problem statement

Gathering all the above equations we state a stochastic optimal control problem:

min
U PU

E
”

T
ÿ

t“0

LtpXt,Ut,Wt`1q `KpXT q

ı

, (7.16a)

s.t Xt`1 “ ftpXt,Ut,Wt`1q , (7.16b)
σpUtq Ă σpXtq . (7.16c)

7.3.6 Producing a control policy: Stochastic Dual Dynamic Pro-
gramming

Problem (7.16) has a linear objective and linear dynamics, therefore we can apply the
SDDP algorithm to compute a lower convex polyhedral approximation of the Bellman
value functions of problem (7.16), we refer the reader to [176] or Chapter 6 of this
manuscript for a broader description of SDDP. We call trVtut“0,...,T these approximated
value functions.

At time t we observe the state of the system xt. We compute a control solving the
small optimization problem (7.17) with rVt`1 precomputed and x observed

πtpxq P arg min
uPUt

E
”

LtpXt, u,Wt`1q `
rVt`1

´

ftpXt, u,Wt`1q

¯ı

. (7.17)

As rVt`1 is convex polyhedral this problem can be solved using linear programming.
pπ0, . . . , πT´1q is the control policy of the house. To implement this policy on a real
system we need essentially four features:

1. a storage of the cost functions tLtut“0,...,T´1,

2. a storage of the control spaces tUtut“0,...,T´1,

3. a storage of the value functions trVtut“0,...,T ,

4. a linear programming solver to solve (7.17) online.

We now describe how to implement this control policy as well as our calibration strategy
on a real house.

7.4 Application to a real house
We apply the calibration and optimal control strategy to a real house. This house is
located inside the Facility of Excellence, Sense City, located near Paris in France. Sense
City is a mini city that aims at testing novel instrumentation strategies for future cities. It
provides a test bed for experiments such as monitoring of urban dynamics and control of
urban environment. Sense City contains a moving climate chamber that covers a surface
of 400m2. It can cover an empty space of a "mini city" area containing a 2 floors building
and a house (see Figure 7.1). The climate chamber can produce any requested weather
in therms of solar irradiance, outside temperature, humidity and so on.

242

Figure 7.1: Equipment of Excellence “Sense City”

7.4.1 Description of the chalet in the equipment Sense City

As a first step we control the temperature inside the chalet. We display here under a
photo of the chalet as well as a schematic representation of the relevant devices inside
and outside.

Figure 7.2: The controlled house

On right picture of Figure 7.2 we display a schematic representation of the inside of
the house from above. We detail here the signification of colors:

1. Black for the walls,

2. Blue for the windows and door,

3. Red for the electrical heaters,

4. Orange for the computers,

5. Green for temperature sensors.

243

There are two rooms, each one is equipped with a heater. Each heater is connected to a
smart plug that we can switch on or off from the cloud with a GET HTTP request. Each
heater produces 800W when it is switched on. The smart plugs are also power sensors,
hence when a heater is switched on it indicates 800W

There is one air temperature sensor in each room, four surface temperature sensors
on inside and outside faces of the walls and two outside temperature sensors.

In our experiment we provided a week scenario for the temperature inside the climate
chamber. The temperature is therefore known in advance. Herein, we reproduce from
RT2012 weather file a simplified climate of the region of Carpentras in France during one
week in December. However in the house we did not know when people would open the
door, stay in the house, use the computers (from the house or from the cloud) or when
the solar lights of the chamber would be turned on. That makes the stochastic modeling
of exogenous thermal gains relevant in this experiment.

We display on Figure 7.3 the general implementation of our experiment. We detail in
the sequel all the components of this implementation.

Figure 7.3: Schematic representation of the implementation

7.4.2 Sensors, database and APIs

The temperatures sensors are 4-wire PT100 probes with a precision of about 0.5 Celsius
degree. The temperatures inside and outside the chalet is measured every 15 minutes.
Then, we consider the smart plugs SONOFF Pow R2 with a Tasmota firmware developed
by Powerlan. The smart plugs measure the heating power every minutes. These data are
acquired using a PEGASE cardboard, which is a micro computer similar to a Rasberry
Pi for industrial applications. These data are sent to a sensors database located in a

244

Sense City server, we refer to it as the cloud as it is possible to reach it from outside the
Sense City network.

The smart plugs use a wifi to send data and receive On of Off commands.

7.4.3 Numerical results of the calibration

We perform the calibration strategy introduced in Section 7.2 with ∆t “ 900s and Th “ 7
days. The calibration problem (7.5) is modeled in Julia using the Non Linear Program-
ming package Optim.jl. It requires to solve the linear program (7.4) at each call of the
oracle. This linear program is modeled using the Mathematical Programming modeler
JuMP and solved with the IBM solver Cplex. The simulated annealing first guess is
produced in less than 1 second. The BFGS phase then takes approximately 10 minutes
with a Core i7 ´ 7700k CPU @ 4.20 GHz ˆ8. Both algorithms are implemented in Op-
tim.jl. We call pp71, . . . , p

7

7q the parameters obtained after the calibration whose values
are t100W.K´1.s, 100W.K´1 , 7.28W.K´1, 69.8%, 50.2W.K.s, 89.2W.K´1, 10.0W.K´1u. We
present in Figure 7.4 the indoor air temperature measurements used for calibration and
compare with a simulation over 10, 080 minutes, that is 7 days, of the indoor air tem-
perature using the calibrated parameters pp71, . . . , p

7

7q and the associated thermal gains
computed solving (7.4) with these parameters.

Figure 7.4: In sample assessment of model calibration

We perform the same comparison but this time the reference is measured temperature
data that was not used during calibration. Doing so we ensure that the comparison is
not biased by an assessment over a training data-set.

245

Figure 7.5: Out of sample assessment of model calibration

In both cases the two curves seem indistinguishable, the biggest gap between simu-
lated and measured temperature at the same time step is under 0.5K which we consider
satisfactory for our experiment as this is the order of the measurement error. We display
on Figure 7.6 the computed exogenous thermal gains as well as the heating power within
the out-of-sample data-set.

Figure 7.6: Out of sample exogenous thermal gains

We observe that the thermal gains reach a maximum of 150W which could be the

246

thermal gain of humans or computers in the room. Sometimes the variation of the ther-
mal gains is significantly correlated with the one of heating power, even if exogenous
thermal gains power remains under 7% of electrical heating power. This is due to dis-
crepancies between the calibrated model (7.2) and real data. Hence modeling exogenous
thermal gains as stochastic variables is also relevant to take into account stochastic model
discrepancies.

7.4.4 Energy Management System implementation

As depicted in Section 7.3 the control policy is produced using the SDDP algorithm.
Problem (7.16) is modeled using the package DynOpt presented in Chapter 6 of this
manuscript. We distinguish two phases for the software implementation of the control of
the house:

1. the offline phase is dedicated to the calibration of model (7.1) and the computa-
tion of the exogenous thermal gains model (7.6). These parameters and this model
is then used to compute the value functions of Problem (7.16) using the SDDP al-
gorithm. For instance this phase can be repeated every weeks using any computer
that can access the sensors database.

2. the online phase at time step t uses the temperatures and power measurements
at t´1 and t, namely pθt, θwt , qtq. Doing so it is possible to estimate the last internal
gains pφt, φwt q by solving Problem (7.4) over two time steps with the last calibrated
parameters pp71, . . . , p

7

7q. Then the obtained state xt “ pθt, θwt , φt, φwt q is used to solve
the online Problem (7.17) and compute an heating energy for the next 15 minutes.

We present on Figure 7.7 the data pipelines within and between these two phases.

247

Figure 7.7: Offline and online pipelines

We emphasize that these two phases can be implemented in different computers as
long as both machines access a common value functions database. The offline phase
requires significant computing performance to calibrate model (7.1) and produce value
functions. We used the IBM CPLEX 1 solver to solve problems (7.4) and compute value
functions of (7.16) using SDDP. The online phase requires to solve two really small linear
programs every 15 minutes, one for the exogenous thermal gains estimation solving (7.4)
over two steps and one to compute a control solving (7.17). We use the embeddable
conic solver ECOS 2 to solve these problems. With this architecture the offline phase is
implemented in a desktop computer while the online phase can be implemented in any
Linux based computer even with poor performances.

All our programs are implemented using the Julia language. Every square on Fig-
ure 7.7 is a REST API built with the Joseki 3 package and containerized in a Docker 4

image to be deployed in any Linux based computer.
Currently the orchestration of the online phase is performed using a simple Bash script

but we are working on a scalable production version orchestrated by Pachyderm 5 and
Kubernetes 6.

1https://www.ibm.com/analytics/cplex-optimizer
2https://www.embotech.com/ecos
3https://github.com/amellnik/Joseki.jl
4https://www.docker.com/
5https://www.pachyderm.io/
6https://kubernetes.io/

248

7.4.5 Low level controller implementation

The online pipeline at time step t provides a heating energy ut that should be produced
by the two 800W electrical heaters in the next 15 minutes. To avoid high variations of
temperature during the 15 minutes we control the On/Off switch of the heaters every
minutes. We compute ∆on

t “ ut
2ˆ800

the amount of time during which the two heaters
should be turned on to release the required amount of energy ut within the 15 minutes,
hence ∆on

t ď 15 ˆ 60 “ 900s. Then every minutes we switch on the two heaters dur-
ing ∆on

t

15
ď 60s to dispatch the heating energy evenly across the 15 minutes. We present

in Figure 7.4.5 a simplified version of this controller implemented as a bash script.

� �
#!/bin/sh
while true
do

CURRENT_DATE=$(date +'%s')
NEXT_DATE=$((CURRENT_DATE / 900 * 900 + 900))

PLUG_TIME=$(curl -s $IP_API/control_sddp/?ti=$START_DATE |
jq ".result")

ON_MINUTE_TIME=$((PLUG_TIME / 15))
CURRENT_DATE=$(date +'%s')

while [$CURRENT_DATE -le $NEXT_DATE]
do

curl "$PLUG_IP/cm?cmnd=Power%20on"
sleep $ON_MINUTE_TIME
curl "$PLUG_IP/cm?cmnd=Power%20off"

CURRENT_DATE=$(date +'%s')
sleep $((CURRENT_DATE / 60 * 60 + 60 - CURRENT_DATE))

done
done� �

Figure 7.8: Low level controller bash script

We now comment each line:

1–3 The first two lines ensures that the script is perpetually executed by Bash.

4–6 The variable CURRENT_DATE contains the date in seconds in Unix style. NEXT_DATE contains
the next date which has a number of minutes multiple of 15 minutes. For instance
if CURRENT_DATE is the Unix style date 12 february 2019 10h37 then NEXT_DATE is in Unix
style 12 february 2019 10h45.

7–9 The cURL 7 command sends a GET request to the EMS API (see §7.4.4) deployed in
a machine whose IP, and exposed port, is stored in the variable IP_API. The control_sddp

endpoint solves Problem (7.17) to compute the amount of energy required for the
next 15 minutes and returns the number of second the 1600 W heaters should
be turned ON within the next 15 minutes to produce this energy. This value is
stored in the PLUG_TIME variable. The endpoint requires the value ti=START_DATE which is

7https://github.com/curl/curl

249

the initial date from which we computed value functions with the Offline pipeline
depicted in § 7.4.4. The EMS API returns data as JSON, hence we use jq 8, a
command line JSON parser.

10–12 The variable ON_MINUTE_TIME contains a number of seconds between 0 and 60 seconds
during which the heaters should be turned ON within a minute. CURRENT_DATE is
updated to take into account the EMS computation time.

13–15 Until the NEXT_DATE where we will compute a new energy for 15 minutes executes the
following code.

16–18 Turns ON the smart plug (the heaters) with the first cURL command. Waits ON_MINUTE_TIME

seconds then turns OFF the smart plug with the second cURL command.

19–21 Waits until the end of the current minute.

We present in the next paragraph, real results showing that this low level controller and
EMS combination is able to maintain a prescribed temperature efficiently.

7.4.6 Control results

We display in Figure 7.9 a 24 hour scenario where the house is controlled by our software
presented above. In this experiment the temperature should be maintained around 23
Celsius degrees while minimizing the energy consumption to ensure this constraint.

Figure 7.9: Temperature controlled

We observe that the temperature is effectively maintained at the prescribed thermal
comfort set-point we chose, 23 Celsius degrees. We present in Figure 7.10 the correspond-
ing heat generated by the heaters every 15 minutes.

8https://stedolan.github.io/jq/

250

Figure 7.10: Heating energy

This heating strategy consumes 16.8 kWh over 24 hours which costs 2.29 euros with
the cost of electricity displayed on the left on Figure 7.11. This cost in based on EDF
blue tariff (with off peak hours and peak hours) in 2018 9. On the right of Figure 7.11
we present the cumulative expenses during the day.

Figure 7.11: Cost of electricity and cumulative expenses

These results demonstrates that the strategy we implemented is able to control the
temperature in a house. Now it remains to compare control results with the SDDP
algorithm to a regular control strategy such as PID control or a more intelligent one
which is Model Predictive Control. We plan to make such a comparison on a same
outdoor temperature climate using Sense City climate chamber.

9https://particulier.edf.fr/fr/accueil/offres/electricite/tarif-bleu.html

251

7.5 Conclusion
We presented a method to implement an energy management system for the heating of
a house taking into account stochastic thermal gains. Our approach is based on a RC
model of the building thermal behaviour with a dedicated calibration strategy that does
not require a human input. This calibration strategy provides RC model parameters as
well as a stochastic model of the thermal gains that are not related to electrical heaters.
Using this calibrated RC model and stochastic model of thermal gains we were able
to compute a stochastic optimal control policy to minimize the energy consumption of
the house while maintaining an acceptable thermal comfort. We used the Stochastic
Dual Dynamic Programming algorithm to compute this policy. We built a software
architecture able to reproduce this calibration and policy computation automatically
based on sensors data every now and then. We built as well an API hosted in a private
cloud to implement this control policy on smart plugs that operate on/off switches on
the electrical heaters of the house. We presented results showing the effectiveness of
the approach to control a real house temperature in the Equipment “Sense-City” with
the SDDP algorithm without a human input. It remains to compare to regular control
methods to demonstrate economical and environmental benefits. This study is a first step
toward building a plug and play energy management system for the heating of buildings.
We need to implement and assess the approach on a wide variety of buildings with longer
datasets to continue developing this work. The advantage of the SDDP algorithm is to
be much more efficient than a regular SDP for problems with numerous state variables.
Our next step is to implement such a strategy on multiple buildings to control the energy
of a whole small neighborhood.

252

Chapter 7. Bibliography

[166] N. Artiges. From instrumentation to optimal predictive control towards buildings
energy efficiency. Theses, Université Grenoble Alpes, Jan. 2016.

[167] R. Bellman. Dynamic Programming. Princeton University Press, New Jersey, 1957.

[168] T. Berthou. Development of building models for load curve forecast and design of en-
ergy optimization and load shedding strategies. Theses, Ecole Nationale Supérieure
des Mines de Paris, Dec. 2013.

[169] D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena
Scientific Belmont, 1995.

[170] D. P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dy-
namic Programming. Athena Scientific, fourth edition, 2012.

[171] J. Brouns. Development of numerical tools for building energy audit. Theses, Uni-
versité Paris-Est, Dec. 2014.

[172] F. Derkx, B. Lebental, T. Bourouina, F. Bourquin, C.-S. Cojocaru, E. Robine, and
H. Van Damme. The Sense-City project. In XVIIIth Symposium on Vibrations,
Shocks and Noise, page 9p, France, July 2012.

[173] A. Le Mounier. Meta-optimisation for automatic calibration for building energetic
models in order to proceed to anticipative management. Theses, Université Grenoble
Alpes, June 2016.

[174] D. Lee, S. Lee, P. Karava, and J. Hu. Approximate dynamic programming for
building control problems with occupant interactions. In 2018 Annual American
Control Conference (ACC), pages 3945–3950, June 2018.

[175] F. Oldewurtel, A. Parisio, C. N. Jones, M. Morari, D. Gyalistras, M. Gwerder,
V. Stauch, B. Lehmann, and K. Wirth. Energy efficient building climate control
using stochastic model predictive control and weather predictions. In Proceedings
of the 2010 American Control Conference, pages 5100–5105, June 2010.

[176] F. Pacaud, P. Carpentier, J.-P. Chancelier, and M. De Lara. Stochastic optimal
control of a domestic microgrid equipped with solar panel and battery. preprint,
Jan. 2018.

253

[177] A. Parisio, M. Molinari, D. Varagnolo, and K. H. Johansson. Energy Management
Systems for Intelligent Buildings in Smart Grids, pages 253–291. Springer Interna-
tional Publishing, Cham, 2018.

[178] A. Parisio and S. Pacheco Gutierrez. Distributed model predictive control for build-
ing demand side management. In European Control Conference, 2 2018.

[179] P. Pflaum. Energy management strategies for smart grids. Theses, Gipsa-Lab ;
Schneider Electric, Jan. 2017.

[180] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimen-
sionality, volume 703. John Wiley & Sons, 2007.

[181] M. Robillart. Study of real time control strategies for energy efficient buildings.
Theses, Ecole Nationale Supérieure des Mines de Paris, Sept. 2015.

[182] M. Robillart, P. Schalbart, F. Chaplais, and B. Peuportier. Model reduction and
model predictive control of energy-efficient buildings for electrical heating load shift-
ing. Journal of Process Control, Apr. 2018.

254

Conclusion

Contributions
Our main contributions are the following, ordered by chapters.

Chapter 1 presents an abstract formalism for time decomposition of multi-stage stochas-
tic optimization problems. It first introduces the most general way to define such a
problem. Then it presents a time blocks decomposition method deeply inspired by Bell-
man equation. It is an opportunity to formally decompose two novel classes of problems
namely, two time scales and decision-hazard-decision problems. These time blocks de-
composition methods provide an abstract formalism that could allow to mix different
Stochastic Dynamic Programming (SDP) [184] methods with the Stochastic Program-
ming (SP) [188] ones. This chapter opens the door to the following ones as they all make
use of time decomposition in a way or another.

Chapter 2 frames different methods to compute online control policies for stochastic
dynamical systems. These methods are classified around the Bellman equation, that is a 1
stage time decomposition. Our main contribution is to exhibit the link between different
well known methods such as SDP, Model Predictive Control (MPC) [183] or SP. It brings
a special view on how information is used both offline and online to produce and compute
online policies.

Chapter 3 compares different stochastic optimal control methods on a realistic energy
management example. Its main purposes is to show that SDP methods are easier to
implement and perform better than classical MPC methods. It also shows a way to in-
crease the energy efficiency of subway stations by recovering unexploited energy (subways
regenerative braking) and controlling an energy consuming equipment (ventilation) in a
demand-side management fashion.

Chapter 4 present a MPC strategy to stabilize the voltage in a DC micro-grid. It
is in particular an opportunity to introduce extensively the hierarchical architecture of
micro grids and an high level Energy Management System interacts effectively with the
equipment of a micro grid.

Chapter 5 present time decomposition algorithms that can be used to solve two time
scales problems but also regular problems with a large number of time steps. We present
three different application on a battery long term aging problem. The first one shows the
economical benefits of controlling long term aging of a battery in a micro grid. The second
one shows how the developed algorithms can be used to solve mono scale problems with a
large number of time steps where classical SDP or Stochastic Dual Dynamic Programming
(SDDP) [185] are limited. Finally the last one shows how one of the algorithms associated
with SDDP can be used to compute efficiently an optimal battery sizing.

255

Chapter 6 presents the Stochastic Optimization Julia library developed during this
PhD to solve all the previous energy management problems. Its purpose is to make the
library accessible to potential developers and display how it can be used for real energy
management applications or existing software.

Chapter 7 shows how we can apply technically stochastic optimization algorithms to
control the temperature in a real house.

Perspectives
We present hereunder different perspectives that can follow our work.

As we did for MPC and SDP in Chapter 3, it would be interesting to compare Re-
inforcement Learning methods to the stochastic optimization ones we implemented for
energy management.

In chapter 4 we apply MPC to voltage stability of a DC micro grid. This MPC
solves a Mixed Integer Quadratic Program, minimizing the gap between variables of the
system and set-points that are assumed provided by an upper level controller. The binary
variables come from the constraint forbidding simultaneous charge and discharge of the
battery. With an economic objective we prove in chapter 5 that this constraint can be
removed. It would be interesting to apply a MPC without set-points but with value
functions computed by a upper level to remove this constraint. Moreover it would be
consistent with the two time scales modeling that we introduce in chapter 5.

The batteries aging model we use in chapter 5 only accounts for the cycles that the
battery makes. It does not take into account calendar aging as well as temperature and
depth of discharge. More precise models are required for a more accurate sizing and
management of the equipment. It would probably be more challenging to apply our two
time scales algorithms to these more detailed models.

In chapter 5 we state that our two time scales algorithms could be useful to improve the
performance of time sensitive algorithms such as SDP, SDDP and stochastic programming
methods such as Progressive Hedging [187]. To validate this point we should perform more
extensive numerical experiments.

We applied chapter 5 methods to a real project in simulation. We would like to
apply our energy management strategies to a real collective self consumption project and
validate our sizing with detailed micro grid simulation software.

Chapter 5 presents time decomposition methods for problems with a large number of
time steps. Under some stationary assumption we could compare our methods to infinite
horizon value and policy iterations ones. We made some numerical experiments suggesting
that the value functions obtained with Average Cost Value Iteration are pretty similar to
the value functions obtained with our methods on a problem with a large number of time
steps. However our methods allow to compute value functions in a deterministic time
and with a relaxation of the stationary assumption. It would be interesting to exhibit a
formal link between our methods and infinite horizon value iteration.

Chapter 6 introduces the Mixed Integer Dynamic Approximation Scheme (MIDAS) [186]
implemented in DynOpt and a method to speed up its convergence with SDDP. We would
like to apply the time decomposition algorithms introduced in chapter 5 to speed up fur-
ther this algorithm. We would also like to extend it with other MIP representations of

256

nonlinear functions.
In chapter 7 we apply our control strategy to a small building. We will apply it to

wider micro grid demonstrators.

257

Conclusion bibliography

[183] D. P. Bertsekas. Dynamic programming and suboptimal control: A survey from
ADP to MPC. European Journal of Control, 11(4-5):310–334, 2005.

[184] P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. Stochastic Multi-
Stage Optimization. At the Crossroads between Discrete Time Stochastic Control
and Stochastic Programming. Springer-Verlag, Berlin, 2015.

[185] M. V. Pereira and L. M. Pinto. Multi-stage stochastic optimization applied to
energy planning. Mathematical programming, 52(1-3):359–375, 1991.

[186] A. Philpott, F. Wahid, and F. Bonnans. MIDAS: A Mixed Integer Dynamic Ap-
proximation Scheme. Research report, Inria Saclay Ile de France, June 2016.

[187] R. T. Rockafellar and R. J.-B. Wets. Scenarios and policy aggregation in optimiza-
tion under uncertainty. Mathematics of operations research, 16(1):119–147, 1991.

[188] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming:
modeling and theory. SIAM, 2009.

Table of bibliographies

Bibliography Page number
Introduction p. 28
Chapter 1 p. 68
Chapter 2 p. 95
Chapter 3 p. 116
Chapter 4 p. 152
Chapter 5 p. 199
Chapter 6 p. 232
Chapter 7 p. 253
Conclusion p. 258

Figure 7.12: Table of bibliographies

258

General bibliography

‚ M. R. Almassalkhi and I. A. Hiskens. Model-Predictive Cascade Mitigation in Electric
Power Systems With Storage and Renewables; Part I: Theory and Implementation.
IEEE Transactions on Power Systems, 30(1):67–77, Jan 2015.

‚ M. R. Almassalkhi and I. A. Hiskens. Model-Predictive Cascade Mitigation in Electric
Power Systems With Storage and Renewables; Part II: Case-Study. IEEE Transactions
on Power Systems, 30(1):78–87, Jan 2015.

‚ Anses. Pollution chimique de l’air des enceintes de transports ferroviaires souterrains
et risques sanitaires associés chez les travailleurs. Technical report, Agence nationale
de sécurité sanitaire de l’alimentation, de l’environnement et du travail, 2015.

‚ N. Artiges. From instrumentation to optimal predictive control towards buildings energy
efficiency. Theses, Université Grenoble Alpes, Jan. 2016.

‚ K. Barty, P. Carpentier, and P. Girardeau. Decomposition of large-scale stochastic
optimal control problems. RAIRO Operations Research, 44(3):167–183, 2010.

‚ R. F. Bastos, T. Dragicevic, J. M. Guerrero, and R. Q. Machado. Decentralized control
for renewable DC Microgrid with composite energy storage system and UC voltage
restoration connected to the grid. In IECON 2016 - 42nd Annual Conference of the
IEEE Industrial Electronics Society, pages 2016–2021, Oct 2016.

‚ R. Bellman. Dynamic Programming. Princeton University Press, New Jersey, 1957.

‚ T. Berthou. Development of building models for load curve forecast and design of energy
optimization and load shedding strategies. Theses, Ecole Nationale Supérieure des Mines
de Paris, Dec. 2013.

‚ D. P. Bertsekas. Convergence of discretization procedures in dynamic programming.
IEEE Transactions on Automatic Control, 20(3):415–419, June 1975.

‚ D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific
Belmont, MA, third edition, 2005.

‚ D. P. Bertsekas. Dynamic programming and suboptimal control: A survey from ADP
to MPC. European Journal of Control, 11(4-5):310–334, 2005.

‚ D. P. Bertsekas. Dynamic Programming and Optimal Control: Approximate Dynamic
Programming. Athena Scientific, fourth edition, 2012.

259

‚ D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete-Time Case.
Athena Scientific, Belmont, Massachusetts, 1996.

‚ D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1996.

‚ D. P. Bertsekas and H. Yu. A unifying polyhedral approximation framework for convex
optimization. SIAM Journal on Optimization, 21(1):333–360, 2011.

‚ J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing. CoRR, abs/1411.1607, 2014.

‚ J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast dynamic language
for technical computing. arXiv preprint arXiv:1209.5145, 2012.

‚ A. Bidram, A. Davoudi, F. L. Lewis, and J. M. Guerrero. Distributed Cooperative
Secondary Control of Microgrids Using Feedback Linearization. IEEE Transactions on
Power Systems, 28(3):3462–3470, 2013.

‚ J. Bonnans, Frederic, D. Giorgi, V. Grelard, B. Heymann, S. Maindrault, P. Martinon,
O. Tissot, and J. Liu. Bocop – A collection of examples. Technical report, INRIA, 2017.

‚ J. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization: theory and
examples. Springer Science & Business Media, 2010.

‚ S. Bracco, F. Delfino, F. Pampararo, M. Robba, and M. Rossi. A dynamic optimization-
based architecture for polygeneration microgrids with tri-generation, renewables, stor-
age systems and electrical vehicles. Energy Conversion and Management, 96:511 – 520,
2015.

‚ J. Brouns. Development of numerical tools for building energy audit. Theses, Université
Paris-Est, Dec. 2014.

‚ E. F. Camacho and C. Bordons. Model predictive control. Springer, 2007.

‚ E. F. Camacho, T. Samad, M. Garcia-Sanz, and I. Hiskens. Control for renewable
energy and smart grids. Grand Challenges for Control, 2010.

‚ F. E. Camelli, G. Byrne, and R. Löhner. Modeling subway air flow using cfd. Tunnelling
and Underground Space Technology, 43(Supplement C):20 – 31, 2014.

‚ P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. Stochastic Multi-Stage Op-
timization. At the Crossroads between Discrete Time Stochastic Control and Stochastic
Programming. Springer-Verlag, Berlin, 2015.

‚ P. Carpentier, J.-P. Chancelier, M. De Lara, F. Pacaud, and T. Rigaut. A template to
design online policies for multistage stochastic optimization problems. working paper,
Jan. 2019.

‚ P. Carpentier, J.-P. Chancelier, M. De Lara, and T. Rigaut. Time blocks decomposition
of multistage stochastic optimization problem. 2018.

260

‚ P. Carpentier, J.-P. Chancelier, V. Leclère, and F. Pacaud. Stochastic decomposition
applied to large-scale hydro valleys management. European Journal of Operational Re-
search, 270(3):1086 – 1098, 2018.

‚ J.-P. Chancelier and M. De Lara. Fenchel-moreau conjugation inequalities with
three couplings and application to stochastic bellman equation. arXiv preprint
arXiv:1804.03034, 2018.

‚ F. Delfino, R. Minciardi, F. Pampararo, and M. Robba. A Multilevel Approach for the
Optimal Control of Distributed Energy Resources and Storage. IEEE Transactions on
Smart Grid, 5(4):2155–2162, July 2014.

‚ C. Dellacherie and P. Meyer. Probabilités et potentiel. Hermann, Paris, 1975.

‚ F. Derkx, B. Lebental, T. Bourouina, F. Bourquin, C.-S. Cojocaru, E. Robine, and
H. Van Damme. The Sense-City project. In XVIIIth Symposium on Vibrations, Shocks
and Noise, page 9p, France, July 2012.

‚ O. Dowson. The policy graph decomposition of multistage stochastic optimization prob-
lems. Optimization Online, 2018.

‚ O. Dowson and L. Kapelevich. Sddp. jl: a julia package for stochastic dual dy-
namic programming. Optimization Online. URL http://www. optimization-online.
org/DB_HTML/2017/12/6388. html, 2017.

‚ T. Dragicevic, X. Lu, J. Vasquez, and J. Guerrero. DC Microgrids-Part II: A Review
of Power Architectures, Applications, and Standardization Issues. Power Electronics,
IEEE Transactions on, 31(5):3528–3549, May 2016.

‚ T. Dragicevic, J. Vasquez, J. Guerrero, and D. Skrlec. Advanced LVDC Electrical Power
Architectures and Microgrids: A step toward a new generation of power distribution
networks. Electrification Magazine, IEEE, 2(1):54–65, March 2014.

‚ I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical
optimization. SIAM Review, 59(2):295–320, 2017.

‚ I. V. Evstigneev. Measurable selection and dynamic programming. Mathematics of
Operations Research, 1(3):267–272, 1976.

‚ H. Farhangi. The path of the smart grid. Power and Energy Magazine, IEEE, 8(1):18–
28, January 2010.

‚ M. Farina, A. Guagliardi, F. Mariani, C. Sandroni, and R. Scattolini. Model predic-
tive control of voltage profiles in mv networks with distributed generation. Control
Engineering Practice, 34(Supplement C):18 – 29, 2015.

‚ C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory and
practice—a survey. Automatica, 25(3):335–348, 1989.

261

‚ A. Garulli, S. Paoletti, and A. Vicino. Models and Techniques for Electric Load Fore-
casting in the Presence of Demand Response. IEEE Transactions on Control Systems
Technology, 23(3):1087–1097, May 2015.

‚ H. Gevret, J. Lelong, and X. Warin. STochastic OPTimization library in C++. Re-
search report, EDF Lab, Sept. 2016.

‚ A. J. Gillespie, E. S. Johanson, and D. T. Montvydas. Energy storage in pennsylvania:
Septa’s novel and innovative integration of emerging smart grid technologies. IEEE
Vehicular Technology Magazine, 9(2):76–86, 2014.

‚ A. González-Gil, R. Palacin, and P. Batty. Sustainable urban rail systems: Strate-
gies and technologies for optimal management of regenerative braking energy. Energy
conversion and management, 75:374–388, 2013.

‚ A. González-Gil, R. Palacin, P. Batty, and J. Powell. A systems approach to reduce
urban rail energy consumption. Energy Conversion and Management, 80:509–524, 2014.

‚ D. Grange and S. Host. Pollution de l’air dans les enceintes souterraines de transport
ferroviaire et santé. Technical report, Observatoire régional de santé Île-de-France,
2012.

‚ W. Greenwell and A. Vahidi. Predictive Control of Voltage and Current in a Fuel Cell-
Ultracapacitor Hybrid. IEEE Transactions on Industrial Electronics, 57(6):1954–1963,
June 2010.

‚ J. Guerrero, J. Vasquez, J. Matas, L. de Vicuna, and M. Castilla. Hierarchical Control
of Droop-Controlled AC and DC Microgrids; A General Approach Toward Standard-
ization. Industrial Electronics, IEEE Transactions on, 58(1):158–172, Jan 2011.

‚ P. Haessig, H. B. Ahmed, and B. Multon. Energy storage control with aging limitation.
In PowerTech, 2015 IEEE Eindhoven, pages 1–6. IEEE, 2015.

‚ P. Haessig, T. Kovaltchouk, B. Multon, H. Ben Ahmed, and S. Lascaud. Computing
an optimal control policy for an energy storage. In EuroSciPy 2013, Bruxelles, 2013.

‚ P. Haessig, B. Multon, H. Ben Ahmed, S. Lascaud, and L. Jamy. Aging-aware NaS
battery model in a stochastic wind-storage simulation framework. In PowerTech 2013,
pages 1–6, Grenoble, France, June 2013.

‚ O. Hernández-Lerma and J. B. Lasserre. Discrete-time Markov control processes: basic
optimality criteria, volume 30. Springer Science & Business Media, 2012.

‚ B. Heymann, J. F. Bonnans, P. Martinon, F. J. Silva, F. Lanas, and G. Jiménez-
Estévez. Continuous optimal control approaches to microgrid energy management. En-
ergy Systems, pages 1–19, 2015.

‚ B. Heymann, J. F. Bonnans, F. Silva, and G. Jimenez. A stochastic continuous time
model for microgrid energy management. In Control Conference (ECC), 2016 Euro-
pean, pages 2084–2089. IEEE, 2016.

262

‚ B. Heymann and P. Martinon. Optimal Battery Aging : an Adaptive Weights Dynamic
Programming Algorithm. Journal of Optimization Theory and Applications, Aug. 2018.

‚ B. Heymann, P. Martinon, and F. Bonnans. Long term aging : an adaptative weights
dynamic programming algorithm. working paper, July 2016.

‚ G. O. Inc. Gurobi Optimizer Reference Manual, 2014. http://www.gurobi.com.

‚ A. Iovine, G. Damm, E. De Santis, and M. D. Di Benedetto. Management controller
for a dc microgrid integrating renewables and storages. IFAC-PapersOnLine, 50(1):90
– 95, 2017. 20th IFAC World Congress.

‚ A. Iovine, M. Jimenez Carrizosa, G. Damm, and P. Alou. Nonlinear control for dc
microgrids enabling efficient renewable power integration and ancillary services for ac
grids. IEEE Transactions on Power Systems, pages 1–1, 2018.

‚ A. Iovine, T. Rigaut, G. Damm, E. D. Santis, and M. D. D. Benedetto. Power man-
agement for a dc microgrid integrating renewables and storages. Control Engineering
Practice, 85:59 – 79, 2019.

‚ A. Iovine, S. B. Siad, G. Damm, E. De Santis, and M. D. Di Benedetto. Nonlinear
control of an AC-connected DC microgrid. In Industrial Electronics Society, IECON
2016 - 42nd Annual Conference of the IEEE, 24-27 October 2016.

‚ A. Iovine, S. B. Siad, G. Damm, E. D. Santis, and M. D. D. Benedetto. Nonlinear
control of a dc microgrid for the integration of photovoltaic panels. IEEE Transactions
on Automation Science and Engineering, 14(2):524–535, April 2017.

‚ E. Jimenez, M. J. Carrizosa, A. Benchaib, G. Damm, and F. Lamnabhi-Lagarrigue.
A new generalized power flow method for multi connected DC grids. International
Journal of Electrical Power and Energy Systems, 74:329 – 337, 2016.

‚ M. Jimenez Carrizosa, F. D. Navas, G. Damm, and F. Lamnabhi-Lagarrigue. Optimal
power flow in multi-terminal HVDC grids with offshore wind farms and storage devices.
International Journal of Electrical Power and Energy Systems, 65:291 – 298, 2015.

‚ P. Kundur, N. J. Balu, and M. G. Lauby. Power system stability and control. McGraw-
Hill, 1994.

‚ R. H. Lasseter. Microgrids And Distributed Generation. Intelligent Automation and
Soft Computing, 16(2):225–234, 2010.

‚ R. Le Goff Latimier. Management and Sizing of an Electric Vehicle Fleet Associated
with a Photovoltaic Plant : Stochastic and Distributed Co-optimizationStationary Val-
orisation of Electric Vehicle Batteries taking into account their aging and availibility.
Theses, Université Paris-Saclay, Sept. 2016.

‚ A. Le Mounier. Meta-optimisation for automatic calibration for building energetic mod-
els in order to proceed to anticipative management. Theses, Université Grenoble Alpes,
June 2016.

263

‚ V. Leclère, P. Carpentier, J.-P. Chancelier, A. Lenoir, and F. Pacaud. Exact converging
bounds for stochastic dual dynamic programming via fenchel duality. 2018.

‚ V. Leclère, H. Gérard, F. Pacaud, and T. Rigaut. Stochdynamicprogramming. jl a julia
library for multistage stochastic optimization. https://github.com/JuliaStochOpt/
StochDynamicProgramming.jl, 2017.

‚ D. Lee, S. Lee, P. Karava, and J. Hu. Approximate dynamic programming for build-
ing control problems with occupant interactions. In 2018 Annual American Control
Conference (ACC), pages 3945–3950, June 2018.

‚ M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order
cone programming. Linear Algebra and its Applications, 284(1):193 – 228, 1998. Inter-
national Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control,
Signals and Image Processing.

‚ M. Loève. Probability Theory I. New York, fourth edition, 1977.

‚ L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero.
Review on Control of DC Microgrids and Multiple Microgrid Clusters. IEEE Journal
of Emerging and Selected Topics in Power Electronics, 5(3):928–948, Sept 2017.

‚ F. Oldewurtel, A. Parisio, C. N. Jones, M. Morari, D. Gyalistras, M. Gwerder,
V. Stauch, B. Lehmann, and K. Wirth. Energy efficient building climate control using
stochastic model predictive control and weather predictions. In Proceedings of the 2010
American Control Conference, pages 5100–5105, June 2010.

‚ D. E. Olivares, C. A. Canizares, and M. Kazerani. A centralized energy management
system for isolated microgrids. IEEE Transactions on Smart Grid, 5(4):1864–1875,
July 2014.

‚ D. E. Olivares, J. D. Lara, C. A. Canizares, and M. Kazerani. Stochastic-predictive
energy management system for isolated microgrids. IEEE Transactions on Smart Grid,
6(6):2681–2693, Nov 2015.

‚ D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kaz-
erani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, and R. e. a. Palma-
Behnke. Trends in Microgrid Control. IEEE Trans. Smart Grid, 5(4):1905–1919, 2014.

‚ F. Pacaud, P. Carpentier, J.-P. Chancelier, and M. De Lara. Stochastic optimal control
of a domestic microgrid equipped with solar panel and battery. preprint, Jan. 2018.

‚ A. Papavasiliou, Y. Mou, L. Cambier, and D. Scieur. Application of stochastic dual
dynamic programming to the real-time dispatch of storage under renewable supply
uncertainty. IEEE Transactions on Sustainable Energy, 2017.

‚ A. Parisio, M. Molinari, D. Varagnolo, and K. H. Johansson. Energy Management
Systems for Intelligent Buildings in Smart Grids, pages 253–291. Springer International
Publishing, Cham, 2018.

264

https://github.com/JuliaStochOpt/StochDynamicProgramming.jl
https://github.com/JuliaStochOpt/StochDynamicProgramming.jl

‚ A. Parisio and S. Pacheco Gutierrez. Distributed model predictive control for building
demand side management. In European Control Conference, 2 2018.

‚ A. Parisio, E. Rikos, and L. Glielmo. A model predictive control approach to mi-
crogrid operation optimization. IEEE Transactions on Control Systems Technology,
22(5):1813–1827, Sept 2014.

‚ A. Parisio, E. Rikos, and L. Glielmo. Stochastic model predictive control for eco-
nomic/environmental operation management of microgrids: An experimental case
study. Journal of Process Control, 43:24–37, 2016.

‚ M. V. Pereira and L. M. Pinto. Multi-stage stochastic optimization applied to energy
planning. Mathematical programming, 52(1-3):359–375, 1991.

‚ V. Perelmuter. Electrotechnical Systems: Simulation with Simulink and SimPowerSys-
tems. CRC Press, 2012.

‚ P. Pflaum. Energy management strategies for smart grids. Theses, Gipsa-Lab ; Schnei-
der Electric, Jan. 2017.

‚ P. Pflaum, M. Alamir, and M. Y. Lamoudi. Comparison of a primal and a dual de-
composition for distributed MPC in smart districts. In Smart Grid Communications
(SmartGridComm), 2014 IEEE International Conference on, pages 55–60. IEEE, 2014.

‚ A. Philpott, F. Wahid, and F. Bonnans. MIDAS: A Mixed Integer Dynamic Approxi-
mation Scheme. Research report, Inria Saclay Ile de France, June 2016.

‚ W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimension-
ality, volume 703. John Wiley & Sons, 2007.

‚ W. B. Powell. Clearing the jungle of stochastic optimization. Informs, pages 109–137,
2014.

‚ W. B. Powell and S. Meisel. Tutorial on stochastic optimization in energy part ii: An
energy storage illustration. IEEE Transactions on Power Systems, 31(2):1468–1475,
March 2016.

‚ I. Prodan and E. Zio. A model predictive control framework for reliable microgrid
energy management. International Journal of Electrical Power and Energy Systems,
61:399 – 409, 2014.

‚ C. Prud’Homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera,
and G. Turinici. Reliable Real-Time Solution of Parametrized Partial Differential
Equations: Reduced-Basis Output Bound Methods. Journal of Fluids Engineering,
124(1):70–80, Nov. 2001.

‚ M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1st edition, 1994.

265

‚ J. Qian, A. R. Ferro, and K. R. Fowler. Estimating the resuspension rate and resi-
dence time of indoor particles. Journal of the Air & Waste Management Association,
58(4):502–516, 2008.

‚ C. Rackauckas and Q. Nie. Differentialequations.jl – a performant and feature-rich
ecosystem for solving differential equations in julia. Journal of Open Research Software,
5(1), 2017.

‚ T. Rigaut, P. Carpentier, J. Chancelier, M. D. Lara, and J. Waeytens. Stochastic op-
timization of braking energy storage and ventilation in a subway station. IEEE Trans-
actions on Power Systems, pages 1–1, 2018.

‚ A. N. Riseth, J. N. Dewynne, and C. L. Farmer. A comparison of control strategies
applied to a pricing problem in retail. arXiv preprint arXiv:1710.02044, 2017.

‚ M. Robillart. Study of real time control strategies for energy efficient buildings. Theses,
Ecole Nationale Supérieure des Mines de Paris, Sept. 2015.

‚ M. Robillart, P. Schalbart, F. Chaplais, and B. Peuportier. Model reduction and model
predictive control of energy-efficient buildings for electrical heating load shifting. Jour-
nal of Process Control, Apr. 2018.

‚ R. T. Rockafellar. Integrals which are convex functionals. Pacific J. Math., 24:525–539,
1968.

‚ R. T. Rockafellar. Integrals which are convex functionals. II. Pacific J. Math., 39:439–
469, 1971.

‚ R. T. Rockafellar. Convex analysis. Princeton university press, 2015.

‚ R. T. Rockafellar and R. J.-B. Wets. Scenarios and policy aggregation in optimization
under uncertainty. Mathematics of operations research, 16(1):119–147, 1991.

‚ R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer Science & Business
Media, Berlin, 1998.

‚ R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer Science
& Business Media, 2009.

‚ J. Sandoval-Moreno, G. Besançon, and J. J. Martinez. Model predictive control-based
power management strategy for fuel cell/wind turbine/supercapacitor integration for
low power generation system. In Power Electronics and Applications (EPE), 2013 15th
European Conference on, pages 1–10, Sept 2013.

‚ A. Shapiro. Analysis of Stochastic Dual Dynamic Programming Method. European
Journal of Operational Research, 209:63–72, 2011.

‚ A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming:
modeling and theory. SIAM, 2009.

266

‚ A. Shapiro, W. Tekaya, J. P. da Costa, and M. P. Soares. Final report for techni-
cal cooperation between georgia institute of technology and ons–operador nacional do
sistema elétrico. Georgia Tech ISyE Report, 2012.

‚ H. Shuai, J. Fang, X. Ai, Y. Tang, J. Wen, and H. He. Stochastic optimization of
economic dispatch for microgrid based on approximate dynamic programming. IEEE
Transactions on Smart Grid, PP(99):1–1, 2018.

‚ J. S. Stein, W. F. Holmgren, J. Forbess, and C. W. Hansen. Pvlib: Open source
photovoltaic performance modeling functions for matlab and python. In 2016 IEEE
43rd Photovoltaic Specialists Conference (PVSC), pages 3425–3430, June 2016.

‚ R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

‚ M. Vaccarini, A. Giretti, L. Tolve, and M. Casals. Model predictive energy control of
ventilation for underground stations. Energy and buildings, 116:326–340, 2016.

‚ R. M. Van Slyke and R. Wets. L-shaped linear programs with applications to op-
timal control and stochastic programming. SIAM Journal on Applied Mathematics,
17(4):638–663, 1969.

‚ J. P. Vielma. Mixed integer linear programming formulation techniques. SIAM Review,
57:3–57, 2015.

‚ E. Walther, M. Bogdan, and R. Cohen. Modelling of airborne particulate matter con-
centration in underground stations using a two size-class conservation model. Science
of The Total Environment, 607:1313–1319, 2017.

‚ WHO. Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Nitro-
gen Dioxide and Sulfur Dioxide. World Health Organization, 2006.

‚ H. S. Witsenhausen. A standard form for sequential stochastic control. Mathematical
Systems Theory, 7(1):5–11, 1973.

‚ H. S. Witsenhausen. On policy independence of conditional expectations. Information
and Control, 28(1):65–75, 1975.

‚ X. Wu, X. Hu, S. Moura, X. Yin, and V. Pickert. Stochastic control of smart home en-
ergy management with plug-in electric vehicle battery energy storage and photovoltaic
array. Journal of Power Sources, 333:203–212, 2016.

‚ J. Zou, S. Ahmed, and X. A. Sun. Stochastic dual dynamic integer programming.
Mathematical Programming, Mar 2018.

‚ L. E. Zubieta. Are microgrids the future of energy?: DC microgrids from concept to
demonstration to deployment. IEEE Electrification Magazine, 4(2):37–44, June 2016.

267

	Coverpage
	Contents
	Contents (detailed)

	I Contributions to time decomposition in multistage stochastic optimization
	Time blocks decomposition of multistage stochastic optimization problems
	Introduction
	Stochastic Dynamic Programming with Histories
	State Reduction by Time Blocks and Dynamic Programming
	Applications of Time Blocks Dynamic Programming
	Conclusion and Perspectives
	Technical Details and Proofs
	Dynamic Programming with Unit Time Blocks
	The Case of Optimization with Noise Process

	A template to design online policies for multistage stochastic optimization problems
	Introduction
	Multistage stochastic optimization problems and online policies
	A template for lookahead policies
	A template for cost-to-go policies
	Assessment of online policies
	Discussion
	Flows and stochastic kernels

	II Stochastic optimization of storage energy management in microgrids
	Energy and air quality management in a subway station using stochastic dynamic optimization
	Introduction
	Energy system model
	Optimization problem statement
	Computation of online control strategies
	Numerical results, assessment and discussion
	Conclusions and perspectives

	Power management for a DC micro grid integrating renewables and storages
	Introduction
	Hierarchical control structure
	Power Management Model
	Power Management Controller
	Simulations
	Conclusions

	Algorithms for two-time scales stochastic optimization with applications to long term management of energy storage
	Introduction
	Stochastic optimization of an energy storage system in a microgrid over the long term
	Two algorithms for two-time scales stochastic optimal control problems
	Numerical experiments
	Appendix

	III Softwares and experimentations
	DynOpt: a generic library for stochastic dynamic optimization
	Introduction and review
	Mathematical background: a template to design online policies
	Modeling language and algorithms
	Energy management applications
	Conclusion and perspectives

	Energy aware temperature control of a house using Stochastic Dual Dynamic Programming: a first testbed implementation
	Introduction
	Building energy model and parameters calibration
	Optimization problem statement
	Application to a real house
	Conclusion

