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Abstract

The chase is a family of algorithms designed to infer data with the use of on-
tological knowledge, which is encoded in existential rules, a sub-language of
first-order logic. A considerable literature has been devoted to its analysis, ap-
proaching it from a variety of presupposed terminological and notational back-
ground. We define a unifying framework for the specification and study of chase
algorithms. We utilize it to compare and clarify the properties that discern the
different variants of the chase. We particularly focus on studying whether there
is a bound to the maximum length of a chain of interdependent rule applications
(where interdependency means that the output of a rule application is contribut-
ing to triggering the next rule application). This is the problem of boundedness,
or k-boundedness, when the bound k is given. By investigating a number of
intermediate properties, we find that k-boundedness is decidable for several
chase variants. In addition to other secondary results, we define two new chase
variants with the aim of reducing redundant rule applications without heavily
increasing the computation cost.

Résumé

Le « chase » est une famille d’algorithmes conçus pour inférer des données
en utilisant des connaissances ontologiques représentées par des règles exis-
tentielles, un sous-langage de la logique du premier ordre. Une littérature im-
portante concerne son analyse, mais utilise des notations et des terminologies
variées. On définit un cadre unificateur pour la spécification et l’étude des al-
gorithmes du chase. On utilise ce cadre pour expliciter et comparer les pro-
priétés des différentes variantes du chase. On se focalise particulièrement sur
le problème de la "k-saturation-bornée" : k est-elle la taille maximum d’une
chaîne d’applications de règles interdépendantes (où interdépendance signifie
que le résultat d’une application d’une règle contribue au déclenchement de
l’application suivante) ? En définissant des propriétés intermédiaires, on mon-
tre que le problème de la k-saturation-bornée est décidable pour de nombreuses
variantes du chase. Parmi d’autres résultats, nous définissons deux nouvelles
variantes du chase qui réduisent le nombre d’applications de règles redondantes
sans augmenter significativement le temps de calcul.
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1 Introduction

In an era where an abundance of data is available, the development of

formalisms to represent and reason with ontological knowledge (i.e. gen-

eral/abstract information on an application domain) can aid in the manage-

ment and in the utilization of this data. Existential rules [1, 2] are a posi-

tive fragment of first-order logic that is used to represent ontological knowl-

edge. Existential rules are of the form “if body then head”, where the body

and the head are conjunctions of atomic formulas. As an example take the

rule ∀x
(
human(x)→ ∃y human(y) ∧motherOf (y, x)

)
which states that ev-

ery human x has a human mother y. In the following, to simplify notation we

will not mention the universal quantifier “∀” because it is implicit that every

variable that appears in the body of a rule is universally quantified.

Existential rules extend the deductive database language known as Data-

log [3], which is why they are also known as Datalog+. In Datalog, all the

variables that are in the rule head necessarily appear also in the body. Hence

those rules cannot infer the existence of new individuals. A simple example

of such a rule is sibling(x, y) → sibling(y, x). However, in an open domain

perspective, it cannot be assumed that all the relevant individuals are known in

advance. That is why the ability of asserting the existence of unknown individ-

uals has been recognized as a desired feature of ontological languages. Such a

feature is offered by knowledge representation languages like description logics

(even the simplest ones as DL-Lite [4] and EL [5]) as well as existential rules.

Existential rules were initially studied under the name tuple-generating de-

pendencies as database constraints [6], but in the recent years they have at-

tracted interest as an ontological language, mainly used for ontology-mediated



query-answering (see e.g. the survey chapters [7, 8]). In this context a knowl-

edge base comprises a set of existential rules (sometimes also called ontology

since it is expressing general domain knowledge) and a factbase which is an ex-

istentially closed conjunction of atomic formulas (also called atoms) and serves

as a logical abstraction of a database. Given a knowledge base like

sibling(x, y)→ sibling(y, x)

sibling(August, May)

we are interested to know the answer to a query like sibling(May, z), which

asks for all values of z such that sibling(May, z) is true for the knowledge base.

Here, z = August is an answer (notice how the rule is needed in order to

infer this answer). More generally, most work in the area considers conjunc-

tive queries, which are existentially quantified conjunctions of atoms. The free

variables that might occur in a query are the answer variables. Consequently,

the (conjunctive) query answering problem asks, given a knowledge base and

a conjunctive query, whether there is a substitution of the free variables of the

query by constants such that the knowledge base entails the substituted query.

In this thesis we will be interested in a decision problem which is polynomi-

ally equivalent with the (conjunctive) query answering problem [1]: that is the

Boolean conjunctive query (BCQ) answering problem, where the conjunctive

query does not have any free variable (so it is an existentially closed conjunc-

tion) and the answer is yes or no, depending on whether the query is entailed by

the knowledge base. Two examples of BCQs on the previous knowledge base

are sibling(May, August) and ∃w∃z sibling(w, z) ∧ sibling(z, w). Both those

queries are entailed by the knowledge base. However the query ∃z sibling(z, z)

is not entailed.

One of the standard approaches to solving the BCQ problem is known as

materialization or forward chaining (see e.g. [9, 10]). In this approach, we use

the rules to infer more knowledge, expanding the factbase. Then the query can

be directly evaluated with respect to the new factbase. The drawback here is

that forward chaining does not always terminate: this depends on the knowl-

edge base. Indeed it is known that the BCQ answering problem is undecid-

able for the general language of existential rules (from [11] on tuple-generating
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dependencies). As a result, the quest for sub-languages (usually specified by

imposing restrictions on the form of the rules) for which the forward chaining

halts has been a prevailing objective in the research community. As an example,

take the knowledge base

human(x)→ ∃y human(y) ∧motherOf (y, x)

human(April)

By applying the rule on the only atom of our factbase, we entail the expanded

factbase ∃y0

(
human(y0) ∧motherOf (y0, April) ∧ human(April)

)
. Here y0

is a variable that is introduced to our factbase to represent the “mother of”

April. Now our rule is applicable on human(y0), and the application will pro-

duce a new individual (variable) y1, similarly connected to y0 as y0 is connected

to April, i.e. y1 will serve as the “mother of” y0. In this way we can create

a factbase of unlimited size, representing a chain of ancestors of April. It is

evident that in this case the forward chaining does not terminate.

The predominant feature of existential rules is their ability to refer to the

existence of new individuals that fulfill particular properties. But using rules

in the above way to introduce variables to the factbase brings about a certain

inconvenience: the added atoms might not really express new knowledge. It

might be the case that the produced factbase is logically equivalent with the

initial one. If for example we start from the knowledge base

parentOf (x, y)→ ∃z parentOf (z, y) ∧ haveCommonChild(x, z)

haveCommonChild(x, y)→ haveCommonChild(y, x)

parentOf (Venus, April)

then the first rule can be applied, which then allows an application of the second

rule. This first “round” of rule applications does provide new information as it

asserts that there exists a new individual z0 that has had a child (April) with

Venus. Indeed the resulting factbase is

∃z0

(
parentOf (Venus, April) ∧ parentOf (z0, April) ∧ S

S ∧ haveCommonChild(Venus, z0) ∧ haveCommonChild(z0, Venus)
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But if we reapply the first rule on the new atom parentOf (z0, April), we will

produce a new (unknown) individual z1 which will be redundant since it will

have exactly the same properties as Venus. In this way we can continue to

apply the rules to new atoms, without actually producing new information. This

motivates the definition of algorithms that will regulate rule applications with

the aim of avoiding the addition of useless atoms in the factbase.

The algorithms used to perform forward chaining are collectively known

as the chase [12, 13, 14]. Many chase algorithms have been defined, such

as the oblivious chase [15], the semi-oblivious chase (also known as skolem

chase) [16], the restricted chase (also known as the standard chase) [17] and the

core chase [18]. Each variant of the chase imposes restrictions on the choice of

rule applications to be made and the subsequent evolution of the factbase. Most

of the chase variants (and all the chase variants that are presented in this the-

sis) produce logically equivalent results which moreover represent a universal

model of the knowledge base, i.e. a model that can be mapped by homomor-

phism to any other model of the knowledge base. This universal model prop-

erty is key because it allows one to recast the BCQ problem as a classical query

evaluation problem on the factbase produced by the chase (provided that the

considered chase halts). Actually, every chase variant halts under different cir-

cumstances, hence the question rises of whether we can predetermine, based on

some syntactic conditions, whether a particular chase variant will terminate on

a given knowledge base. Unfortunately this has been shown to be undecidable

for all major chase variants [16, 18]. As a consequence there has been interest

in finding properties in sets of rules that guarantee that the chase terminates for

every factbase. Even though again, the general problem is undecidable [1, 19],

there is much literature devoted to finding sufficient conditions for chase termi-

nation (also known as all-instance termination) of particular sub-languages of

existential rules [1, 20, 21, 22, 23].

A decision problem that relates to chase termination is that of boundedness:

A set of rules is bounded if there is a bound to the depth of the chase indepen-

dently of the factbase. This depth corresponds to the maximal depth of a proof

6



sibling(April, August) sibling(August, June) sibling(June, May)

sibling(April, June)

sibling(April, May)

depth = 0

depth = 1

depth = 2

Figure 1.1: A chase graph, illustrating the concept of the depth of the chase.

of an inferred fact. As an example consider the single transitive rule

sibling(x, y) ∧ sibling(y, z)→ sibling(x, z)

and notice that even though this is a datalog rule, i.e. it does not intro-

duce new variables and the chase is necessarily terminating for every fact-

base, it does not constitute a bounded (set of) rule(s): if the initial factbase

is sibling(April, August)∧sibling(August, June) then the only atom that can

be inferred is sibling(April, June), and it will be inferred with one rule appli-

cation directly from the initial factbase, hence the depth of the chase will be 1.

However, starting with the factbase

sibling(April, August) ∧ sibling(August, June) ∧ sibling(June, May)

we can also infer the atom sibling(April, May) by using our rule, the

atom sibling(June, May) which is in the initial factbase and the atom

sibling(April, June) which is inferred at depth 1. In this case the depth of

the chase is 2 (see Figure 1.1). By extending the initial factbase in this man-

ner, we see that there is no bound to the depth of the chase with a transitive

rule, even if the chase always terminates (i.e. chase termination does not imply

boundedness). On the other hand, boundedness ensures chase termination, as

well as several other semantic properties like the first-order rewritability prop-

erty [24] (also known as finite unification set property [1]) which states that the
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query can be rewritten to a first order formula which is entailed by the factbase

if and only if the original query is entailed by the knowledge base. This implies

that many interesting static analysis problems such as query containment under

existential rules are decidable when a set of rules is bounded. Finally, as noted

in some of the first publications that studied boundedness in Datalog [6, 25, 26],

boundedness can be used to measure the extent of recursivity of a ruleset, i.e.

the maximal number of times that we would need to reapply the same cycle of

rules before the chase terminates.

Our Contribution

This dissertation focuses on two major subjects that complement each other:

1 Chase Variants

We define a unifying framework which permits the modelling of all major

known chase variants for existential rules. Using a refined definition of the con-

cept of derivation which encodes with precision a sequence of rule applications

and their effect on the factbase, we are able to formally specify the notion of

chase variant as a class of derivations. This allows the definition of properties

which facilitate the comparison of chase variants and can be used to obtain con-

crete technical results. So while derivations allow us to model forward chaining

in fine detail, we are also able to abstract away when discussing properties of

some hypothetical chase variant X (also called X-chase).

It is known that factbases can be represented as graphs/hypergraphs, and

that graph homomorphisms then correspond to logical entailment [27, 1]. In

this dissertation we exploit the graph-theoretical view of existential rules, by

using exclusively (hyper)graph theory (and elementary set theory) in all proofs

and technical parts. More importantly, we accentuate the connection between

redundancy in the factbase and the existence of a retraction, which is a spe-

cific type of graph homomorphism, from the factbase to a sub-factbase. Con-

sequently, we bring to light the link between chase variants and retractions,

since the main focus of chase variants is the elimination of redundancy which
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is caused by the introduction of new variables to the factbase by the existential

rules. Note that in Datalog this discussion trivially disappears along with the

existential variables because there is no redundancy in factbases that do not in-

clude any variables. However, redundancy in the ruleset remains pertinent in

Datalog but our line of research does not touch on this matter.

The new definition of chase variant trivially facilitates the specification of

“new” chase variants: it suffices to use any random criterion that restricts the

considered derivations to a specific class. Under this definition, a restriction

on the order of rule applications (e.g. the breadth-first approach) or even a

restriction on the rule classes considered (e.g. acyclic rules) can constitute a

different chase variant. This is consistent, since these restrictions can greatly

affect the overall behavior of the chase variant (with respect to termination,

boundedness, etc).

But in this thesis we have also contributed two “really new” chase variants,

the vacuum chase and the local core chase. Both optimize in different ways

the existing chase variants with respect to eliminating redundancy. The first is

an optimization of the frugal chase [28], while the second is an intermediate

algorithm between the breadth-first restricted chase and the core chase. The lo-

cal core chase also seems to behave well with respect to boundedness, although

our time limitations only allowed us to include a conjecture with regard to that

matter in this work.

2 Boundedness

Boundedness has been largely studied in Datalog [29, 30, 31, 25], where it has

been shown to be an undecidable property in the general case. However, in the

domain of existential rules there has been little related work. The first step is

to recognize that boundedness has to be parametrized by the respective chase

variant X. This is because, if X and Y are two different chase variants, a set of

rules might be X-bounded (i.e. bounded with respect to the X-chase) but not

Y-bounded. Then, since we already knew that the question

“given a set of rules, is there a bound k to the depth of the X-chase?”
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is undecidable unless we restrict the rule language (because of its undecidability

in Datalog), we pose the question

“given a set of rules, is the number k a bound to the depth of the X-chase?”

This is the problem of X-k-boundedness, where the bound k is given and part

of the question. Notice that in both cases, we are researching the depth of the

X-chase with a given set of rules and any factbase. In the informal explanatory

parts of the thesis, when we refer to the properties in general and not concerning

a particular X-chase, we still keep the names boundedness and k-boundedness

instead of X-boundedness and X-k-boundedness respectively.

A chase graph is a partial representation of a derivation where the nodes are

all the atoms that appear in the derivation and the edges indicate which atoms

are used in order to produce other atoms. Since boundedness relates to the

depth of the chase, the notion of chase graph is central to obtaining an intuition

of the mechanisms which influence whether a set of rules is bounded or not.

We have largely exploited this perspective. At first we specified a property

called preservation of ancestry which can be understood as the invariance of a

part of the chase graph when we reduce the initial factbase. We showed that

if a chase variant X preserves ancestry, then X-k-boundedness is decidable.

Then we also used some other intermediate properties to finally conclude that

many chase variants (such as the oblivious, the semi-oblivious, the restricted

chase and their breadth-first versions) preserve ancestry. We therefore show

that k-boundedness is decidable for many chase variants, while for all other

chase variants we show that they do not preserve ancestry. This leaves open

the question of boundedness for those chase variants. For the local core chase

however, we hypothesize that a weaker property, named loose preservation of

ancestry is satisfied. And loose preservation of ancestry ensures the decidability

of k-boundedness.

Furthermore, we have also showed that in the case of linear existential rules,

i.e. rules whose body consists of a single atom, when the X-chase preserves

ancestry, it holds that X-chase termination is equivalent with X-boundedness.

This solves the question of boundedness of linear sets of rules for a number

10



of chase variants (namely the oblivious, the semi-oblivious chase and their

breadth-first versions), and shows a way towards answering the question for

other chase variants. Note that here we are talking about boundedness and not

just k-boundedness. Finally, we defined a certain kind of minimality of chase

graphs which leads to a characterization of k-boundedness. This can contribute

to solutions regarding the decidiability of the problem of k-boundedness for the

chase variants that do not (loosely) preserve ancestry.

Apart from the distinct contributions concerning boundedness and the definition

of chase variants, this thesis includes a significant number of secondary results

that relate to the chase. We have made an effort to address or at least mention

as many as possible of the questions that rise when discussing and compar-

ing those chase variants, especially whatever is related to depth. In addition,

there are many examples and counter-examples that demonstrate the variety of

different forward chaining scenarios.
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2 Preliminaries

In this chapter we will formally introduce the main notions which we will be

working on. The first part of the preliminaries is dedicated to the introduction

of the elementary syntactic and semantic concepts on which our research is

focused. Then we go on to present forward and backward chaining with exis-

tential rules. Therein we formulate the concept of boundedness. Throughout

this thesis, we assume that the reader is familiar with the general concepts of

graph theory as well as first-order logic [32].

2.1 The Language of Existential Rules

Our study concerns the sub-language of first-order logic called Positive Existen-

tial Rules or simply Existential Rules1. This language has the very convenient

feature that it can be completely encoded into graph theory. In this section we

will present the basic components of existential rules and link them directly

with the respective graph theoretic notions.

2.1.1 Atomsets & Rulesets

We work with first order formulas whose elementary syntactical entities are

predicates (usually denoted with the letters p, q, r), constants (usually denoted

with a, b, c) and variables (denoted with x, y, z). A term is a variable or a

constant. Each predicate p is associated with a positive integer number, called

the arity of p.
1The term “positive” refers to the absence of negation/negative constraints.



The main syntactical element is an atom, which is of the form p(t1, ..., tn)

where p is a predicate, n is the arity of p and t1, ..., tn are terms. An atomset

is a set of atoms. So given an atomset S, we will use the notation var(S) to

refer to the set variables that appear in S. The set of constants and terms that

appear in the atoms of S are denoted with cnst(S) and term(S) respectively.

In addition, we can use the same operators to refer to a single atom A, i.e. with

var(A), cnst(A) and term(A) we refer to the sets of variables, constants and

terms of A respectively.

Definition 2.1. A factbase is the existential closure of a conjunction of atoms2.

We will usually symbolize a factbase with the letters F and Z. a

Unless otherwise specified, we will always assume a factbase to be fi-

nite. It is very convenient to see factbases simply as atomsets. So for ex-

ample {p(a, x), q(x, b, c)} can represent the existentially closed conjunction

∃x
(
p(a, x) ∧ q(x, b, c)

)
. Hence in this thesis, unless otherwise stated, by

factbase we will refer to the corresponding atomset. Note that factbases like

{p(a, x)} and {p(a, y)} are considered to be different syntactic entities.

Definition 2.2. An existential rule R is a first order formula of the form

∀x̄∀ȳ[B(x̄, ȳ)→ ∃z̄. H(x̄, z̄)], where x̄, ȳ and z̄ are disjoint sets of variables,

andB andH are atomsets called the body and the head of the rule, respectively.

The set of variables x̄ is shared by the body and the head of the rule, and it is

called the frontier of the rule, denoted by fr(R). The set z̄ is called the set of

existential variables of the rule and it is denoted by exv(R). The set x̄∪ ȳ is the

set of universally quantified variables of R. The set x̄∪ ȳ∪ z̄ is called the set of

variables of the rule and it is denoted by var(R). The disappearing variables

of an existential rule are those that are neither existential nor frontier, . We will

call a finite set of existential rules (usually denoted byR) a ruleset. a

Henceforth, unless otherwise specified, rule means existential rule. In the litera-

ture, depending on the context, existential rules are also called tuple generating

dependencies and a ruleset can be found to be referred to as an ontology or a
2i.e. a closed conjunction in prenex form, using only the existential quantifier.
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program [11, 6, 33]. We will maintain the appellation ruleset, in order to avoid

confusion. We will omit the universal quantifiers when representing existential

rules. So for example instead of writing

∀x∀y
((

p(x, y, x) ∧ q(y)
)
→ ∃z

(
r(z, x) ∧ q(z)

))
we will simply write p(x, y, x) ∧ q(y)→ ∃z r(z, x) ∧ q(z).

In the following, it will be sometimes convenient to consider a rule R

simply as a pair of atomsets (B,H). Furthermore, we will use the notation

body(R) = B and head(R) = H . So the above rule can also be represented

with
(
{p(x, y, x), q(y)}, {r(z, x), q(z)}

)
. Of course, var(R) denotes the set of

variables that appear in a rulesetR.

Existential Rules generalize the declarative logic programming language

known as Datalog [3, 6]. In our framework, we say that a ruleset R is said to

be datalog if for all R ∈ R it holds that exv(R) = ∅. Another sub-language

of existential rules which will interest us is that of linear rules. A ruleset R is

called linear if the head of every rule R ∈ R is composed of one single atom.

Although in this thesis we will mainly be working with arbitrary rulesets, the

particular classes of datalog rulesets and linear rulesets will be referenced in

several instances.

2.1.2 Substitutions & Logical Entailment

In this subsection we present the basic terminology with regard to substituting

terms with other terms in an atomset. The significance of this syntactic manip-

ulation is that it has been shown to agree with the first-order logic semantics

of the corresponding formulas. We will elaborate on this point below. In this

dissertation we are employing the usual notation, found in most first order logic

textbooks, for logical entailment (“|=”) and logical equivalence (“≡”).

A substitution σ is a mapping from a finite set of variables (its domain) to a

set of terms with the condition that a variable in the domain cannot be mapped

to itself. However we expand the notation by considering that σ acts as the
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identity to any term that is not in its domain. Hence we can say that for every

substitution σ and variable x it holds that σ(x) = x if and only if x /∈ dom(σ),

where dom(σ) is the domain of σ. A substitution whose domain is empty is

called the identity substitution. The set of σ-images of the domain variables

{σ(x) | x ∈ dom(σ)} is called the codomain of σ and we write codom(σ).

We frequently denote a substitution as a set of mappings, for example

{x 7→ a, y 7→ z} is a substitution with domain {x, y} and codomain {a, z}.
Given two substitutions σ1 and σ2, their composition σ1 ◦ σ2 includes the union

σ1 ∪ σ2 and all the composed mappings x 7→ t where x 6= t and there exists a

variable y such that x 7→ y ∈ σ1 and y 7→ t ∈ σ2 (here t is a term).

Given an atomset F , we denote by σ(F ) the atomset obtained by substitut-

ing each variable in dom(σ) ∩ var(F ) by its σ-image. In addition, the atomset

σ(F ) is called a specialization of F . A variable-renaming, is a bijection be-

tween two sets of variables. Throughout this thesis, apart from greek lowercase

letters like σ, π, τ, µ we will also be using classical function notation f, g and h

for substitutions.

A homomorphism from an atomset F to an atomset F ′ is a substitution

h : var(F ) → term(F ′) such that h(F ) ⊆ F ′. It is known that a factbase F

is logically entailed by a factbase F ′, i.e. F ′ |= F if and only if there exists a

homomorphism from F to F ′ [6, 1]. This property is crucial to our methodol-

ogy, in that we evade any calculus on traditional mathematical logic in order to

attain our results.

Two atomsets F and F ′ are called isomorphic if there exists a variable re-

naming σ such that σ(F ) = F ′. In this case we call σ an isomorphism between

F and F ′. Notice that every isomorphism is a homomorphism whose inverse is

also a homomorphism.

A substitution σ is a unifier of two atomsets F and F ′ with disjoint sets of

variables3 if σ(F ) = σ(F ′). A unifier µ is a most general unifier (mgu) of F and

F ′ if it is a unifier of F and F ′, i.e. µ(F ) = µ(F ′), and for every other unifier σ

of F and F ′ it holds that there exists a substitution θ such that σ = θ ◦µ (where

◦ represents the composition operator for two functions).
3var(F ) ∩ var(F ′) = ∅.
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Given a substitution σ and an atomset F , the restriction of σ on

F , denoted with σF is the substitution which has as domain the set

dom(σF ) = dom(σ) ∩ var(F ) where σF (x) = σ(x) for every x ∈ dom(σF ).

In much of our work, we will be interested in properties of rulesets. Thus we

will want to discuss how a ruleset behaves when interacting with any possible

factbase. To this end, we will need a way to filter out some factbases from our

search space. Consequently, we also define mappings between constants: Let

F and F ′ be atomsets and τ : cnst(F )→ cnst(F ′), σ : var(F )→ var(F ′) be

mappings of constants and variables respectively. If h = τ ∪ σ is a bijection

and has the property that h(F ) = F ′ then h is a quasi-isomorphism from F

to F ′. Since quasi-isomorphism defines an equivalence relation on atomsets,

given a set of factbases F we call quasi-equivalence classes all equivalence

classes with respect to quasi-isomorphism.

2.1.3 Redundancy & Retraction

In this subsection we settle the connection between atomsets and a particular

type of hypergraphs (which can actually also be encoded in labelled directed

graphs). This brings at our disposal an interesting array of handy notions and

relevant results.

A labelled ordered hypergraph is a triple H = (X,E,L), where E is a

family of tuples of elements in X , i.e. a family of totally ordered subsets of X ,

and L is a mapping from X ∪ E to a set of labels. We can consider an atomset

F as a labelled ordered hypergraph H = (X,E,L) where X = term(F ),

E includes for every atom p(t1, ..., tn) in F the tuple (t1, ..., tn) of its terms

labelled by its predicate p, i.e. L
(

(t1, ..., tn)
)

= p, and lastly

L(t) =

NULL t ∈ var(F )

t t ∈ cnst(F )

and as established in [27, 1] there is a total correspondence between (labelled
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ordered) hypergraph homomorphisms and atomset homomorphisms4. The la-

bel “NULL” assures that the actual naming of variables does not matter when

considering atomset homomorphisms. As demonstrated in the following exam-

ple, in figures we will drop this label for convenience and instead will mention

the variable names.

Hypergraphs are useful as intuitive representations of factbases. In this re-

gard, a rule R = (B,H) can also be seen as a pair of hypergraphs (B and H).

In this work we will be utilizing examples with factbases and rulesets of max-

imal arity 2 which correspond to traditional (labelled) graphs, hence are more

easily illustrated.

Example 1: Let F1 = {p(a, x), p(a, y)} and F2 = {p(a, z)} (here a is a con-

stant whereas x, y and z are variables). Here are the labelled graph representa-

tions of those factbases:

a

x

y

p

p a z

p

F1 F2

The substitution {x 7→ z, y 7→ z} is a homomorphism from F1 to F2, whereas

the substitution {z 7→ x} is a homomorphism from F2 to F1. Therefore the

two factbases are logically equivalent. On the other hand there is no variable

renaming that can act as a homomorphism between those two factbases, hence

F1 and F2 are not isomorphic. �

Notice that by applying the substitution {x 7→ y} we can reduce the factbase

{p(a, x), p(a, y)} to {p(a, y)}, which is a subset that is logically equivalent

to the original factbase. This is an important operation and a central concept
4we assume the reader familiar with the notion of graph homomorphism. For this thesis the definition of

factbase homomorphism given above suffices.
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around which our work revolves. A substitution of this sort is called retraction

and it is the main mechanism that can be used to eliminate redundancy from a

factbase, i.e. removing one or several atoms from the factbase without changing

the actual semantics of this factbase.

Definition 2.3. Let F be an atomset. A subset F ′ ⊆ F is a retract of F if there

exists a substitution σ :
(
var(F ) \ var(F ′)

)
→ term(F ′) with σ(F ) = F ′. In

this case σ is said to be a retraction from F to F ′ (we also say that σ acts as a

retraction on F or simply is a retraction on F ). a

Trivially, the identity substitution σ : ∅ → term(F ) is a retraction from F

to F , and F is indeed a retract of F . We can say that F is the trivial retract

of F (this will be needed when we want to specify that a retract is non-trivial).

Throughout this thesis, the term redundancy of an atomset is used to refer to the

existence of (non-trivial) retracts, which means that some of the variables are

indeed redundant, since they represent information that is already expressed by

other terms. When a variable is redundant, it can be identified with another term

in the atomset. This means that all of the atoms where it appears are reduntant

as well.

Retractions are also known as foldings in the literature (although there can

be minor differences in the definitions [34]). A retraction is a particular type

of graph homomorphism (endomorphism). Retractions constitute an advanta-

geous approach to the elimination of redundancy because they have some very

good properties which facilitate their composition and decomposition.

Remark 2.1 (Composition of Retractions).

i) Let g1 be a retraction from F to F1 and g2 be a retraction from F1 to F2.

Then g2 ◦ g1 is a retraction from F to F2.

ii) Let g1 and g2 be retractions on F such that dom(g1) ∩ dom(g2) = ∅ and(
dom(g1) ∪ dom(g2)

)
∩
(
codom(g1) ∪ codom(g2)

)
= ∅. Then g2 ◦ g1 is

a retraction on F . ♣

Evidently there is specific interest in retracts which are minimal.
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Definition 2.4. An atomset F is a core if its only retract is itself. An atomset

F ′ that is a core, is a core of F if it is a retract of F . a

The following two properties are characteristic of cores [27, 35]5:

i) A core of an atomset F is a minimal subset which is homomorphic to F

(hence also logically equivalent to F ).

ii) All cores of an atomset F are isomorphic.

If we look again at the atomset {p(a, x), p(a, y)}, we see that it has two cores:

either we retract y on x, resulting in the core {p(a, x)}, or inversely with the

retraction {x 7→ y} we arrive at {p(a, y)}.
It has been customary to use core as an operator to a factbase F , in order to

obtain what one would call “its” core. While from the point of view of first order

logic and of graph theory, there is sense in considering the core of a factbase

as one unique sub-factbase, in this work we want to be able to differentiate

between different isomorphic factbases. Especially since we consider a factbase

as an atomset, it is indeed common that there is more than one core. Hence in

our setting, it can be a bit misleading to use core as an operator. Nevertheless

when the choice of isomorphic subset of F does not matter, we will use core as

a (non-deterministic) operator. Therefore we will be using core(F ) to choose

any subset of F that is a core. On the other hand, when we want to assert that

a certain predefined subset F ′ of F is indeed a core of F , we will utilize bold

font, writing F ′ ∈ cores(F ), i.e. we denote the set of all (isomorphic) cores of

F with cores(F ).

Finally, we introduce a notion which is crucial when we want to manipulate

atomsets.

Definition 2.5 (Piece[1]). Let F be an atomset. Every atom A ∈ F is con-

nected to itself. Two atoms A,A′ ∈ F are connected (by variables) if there is a

sequence A1, ..., An ∈ F such that A1 = A, An = A′ and for every i < n there

exists a z ∈ var(Ai) ∩ var(Ai+1). A piece in F is a maximal (non empty) set

of connected atoms. a
5Cores are called irredundant graphs in this book.
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Note that for every atomset F , the set of pieces in F is a partition of F . Pieces

are important because they represent the extent of interdependence among vari-

ables in an atomset. This becomes clear when we are investigating the existence

of (non-trivial) retracts of a factbase. If a factbase has two or more different

pieces and we are looking for possible retractions, we can try firstly with only

one of the pieces.

Proposition 2.1 (Retraction by Piece[33]6). Let F be an atomset, σ a retraction

on F and F ′ a piece in F . Let F ′′ = F \ F ′. Then the restrictions σF ′ and

σF ′′ of σ on F ′ and F ′′ respectively are retractions on F . Moreover it holds that

σ = σF ′ ◦ σF ′′. ♣

Example 2: Let F = {p(a, x), p(y, b), p(a, b)}. Then each singleton subset

of F is a piece in F . So F ′ = {p(a, x)} and F ′′ = {p(y, b)} are pieces in

F . Let σ = {x 7→ b, y 7→ a}. We have that σ is a retraction on F , and

in fact σ(F ) = {p(a, b)} is the only core of F . Moreover we can see that

σF ′ = {x 7→ b} and σF ′′ = {y 7→ a} are also retractions on F (but they do not

produce cores). �

2.2 Query Answering over Knowledge Bases

In this section we formalize the (Boolean) query answering problem with exis-

tential rules and present the basic (abstract) methods that lead to solutions.

2.2.1 Knowledge Base & Universal Model

So far in this chapter we have mainly discussed atomsets, which are used to rep-

resent factual knowledge (corresponding roughly to the concept of a database).

Ontological knowledge is represented with existential rules. A pair (R, F ) of

a ruleset and a (finite) factbase is called a knowledge base. We are interested

in whether a knowledge base entails a given atomset which is commonly called

Boolean conjunctive query. In this thesis, with query we will mean Boolean

conjunctive query.
6Pieces correspond to connected components in the Gaifman graph of the nulls [33].
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The Boolean conjunctive query entailment problem is a fundamental prob-

lem of interest in the field of existential rules. It can be formulated as follows:

Given a knowledge base (R, F ) and a boolean conjunctive query Q, is it

true thatR, F |= Q?

In other words, is every model of R ∪ {F} (seen as a logical theory) also

a model of Q? While the boolean conjunctive query entailment problem is

undecidable for general existential rules [11], we can achieve decidability by

restricting the rule language.

A relevant notion is that of a universal model [36, 18]. Practically we can

conceive first-order structures as possibly infinite factbases [8]. In this regard,

a (possibly infinite) atomset S is a model of a knowledge base (F,R) if there is

a homomorphism from F to S and for every rule R = (B,H) ∈ R, if there is

a homomorphism π from B to S can be extended to a homomorphism π′ ⊇ π

from H to S.7 A model U of (F,R) is universal if for every other model S of

(F,R), there is a homomorphism from U to S. So we can regard a universal

model as a “most general” way to expand the initial factbase F so that it satisfies

all the rules of R. If there is a finite universal model of a (F,R), then all the

universal models are isomorphic.

There are two general approaches to solving the Boolean conjunctive query

entailment problem. Either we use the rules to enrich the factbase with all

implicit facts that follow from the knowledge base (with the aim of generating

a universal model) and then we evaluate the query on this enriched factbase, or

we use the knowledge base to rewrite the query in order to arrive at a more easily

(or directly) solvable query. Both approaches can be seen as ways of reducing

the BCQ entailment problem to a simpler problem (like that of answering a

query on a factbase instead of a knowledge base).
7therefore it holds that π′B = π where π′B is the restriction of π on B (as defined in Subsection 2.1.2).
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2.2.2 Forward Chaining

The process of applying rules on a factbase in order to infer more knowledge

is called forward chaining. Forward chaining in existential rules is usually

achieved via a family of algorithms called the chase [37]. The motivation

behind such a process is that the result of any chase algorithm is a universal

model of the knowledge base and hence the boolean conjunctive query entail-

ment problem is equivalent with asking whether there exists a finite subset of

the result of the chase which only by itself logically entails the query [1, 2].

As a consequence, chase termination ensures decidability of the boolean con-

junctive query entailment problem. Forward chaining is primarily based on the

notion of rule application.

Definition 2.6 (Rule Application). Let F be a factbase, R = (B,H) an existen-

tial rule and z̄ a set of fresh variables, i.e. a set of variables that is disjoint with

the set var(F ) ∪ var(R). Then,R is applicable to F if there exists a homomor-

phism π from B to F . Let σ be a variable renaming such that σ(exv(R)) ⊆ z̄

and σ(x) = x for x 6∈ exv(R). Then the factbase α(F,R, π) = F ∪ σ(π(H)),

is called an immediate derivation from F through (R, π). a

Notice that there can be many different immediate derivations from F with a

rule R, since there can be different homomorphisms mapping B to F . This is

why it is significant to note that the application of the rule substantiates through

the pair (R, π). These pairs are called triggers and hold an important position

in this research. Recurring immediate derivation steps, as illustrated in the

following example, constitute what we call forward chaining.

Example “GENERIC” 3: Let F = {p(a, b), p(c, d), r(e)} andR the following

set of rules:

R1 = p(x, y) ∧ r(z)→ p(y, z)

R2 = p(x, y) ∧ p(y, z)→ ∃u p(z, u)

R3 = p(x, y) ∧ p(x, z)→ p(y, z)

Then π1 = {x 7→ a, y 7→ b, z 7→ e} is a homomorphism that maps

the body of R1 to F . Hence an immediate derivation from F through
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(R1, π1) is F1 = F ∪ {p(b, e)}. Then we can apply the rule R2 with

π′ = {x 7→ a, y 7→ b, z 7→ e}, obtaining F2 = F1 ∪ {p(e, u0)} (where u0 is a

fresh variable). Afterwards, we can take π′′ = {x 7→ b, y 7→ e, z 7→ u0} and

reapply R2 to get F3 = F2 ∪ {p(u0, u1}. Subsequently we can either continue

in a similar fashion, by reapplying R2 to the last added atoms, or chose any

suitable pair of atoms of F3 to apply R1 or R3. Evidently, those choices lead to

factbases with different features which can include semantical disagreement if

the forward chaining is not exhaustive.8 �

The apparent non-determinism of this definition of rule application can be re-

duced to a managable scale, if we impose for example a breadth-first prioriti-

zation in the order with which the rules are applied. As presented for instance

in [1, 8, 38], we can extend the operator α to be applicable to a knowledge base,

resulting in the expansion of the initial factbase with all the facts which can be

directly inferred after only one rule application from the ruleset. In particular

given a knowledge base K = (F,R), we define the set of (immediate) triggers

on K as the following set of pairs of rules and homomorphisms:

T(K) :=
{(

(B,H), π
) ∣∣ (B,H) ∈ R, π(B) ⊆ F

}
and using this notion we can define the one-step saturation of F byR as

α(F,R) := F ∪
⋃

((B,H),π)∈T(K)

σsafe
(
π(H)

)
where σsafe is a renaming such that all existential variables of H are mapped to

fresh variables (i.e. variables that do not appear in K and are exclusively used

in one particular rule application). We can then reapply the α-operator to the

obtained result a number of times (possibly infinite), denoting the number of

applications with an index:

8We will formally define exhaustivity in Chapter 4. It refers to applying exhaustively and recursively all
possible rules.
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α0(F,R) := F ,

α1(F,R) := α(F,R), (αn−1(R) and

α2(F,R) := α
(
α(F,R),R

)
,

...

αn(F,R):= α
(
αn−1(F,R),R

)
and

α∞(F,R):=
⋃
n∈N αn(F,R)

We call αi(F,R) the result of forward chaining of depth i on (F,R). And this

procedure can be optimized for algorithmic use by adding the condition that

each pair of rule and homomorphism (i.e. trigger) is used at most once in the

entire (breadth-first) forward chaining process. In Chapter 4 we will define this

mechanism on top of the notion of derivation, which has the additional property

that a particular order of rule applications is specified.

Example “GENERIC” 4 (continued from Example 3): We use again the

knowledge base (F,R) where F = {p(a, b), p(c, d), r(e)} and R comprises

three rules:
R1 = p(x, y) ∧ r(z)→ p(y, z)

R2 = p(x, y) ∧ p(y, z)→ ∃u p(z, u)

R3 = p(x, y) ∧ p(x, z)→ p(y, z)

To provide an intuitive understanding, below we illustrate the labelled graphs

corresponding to α0(F ), α1(F ) and α2(F ).

a b

c d

e
r

a b

c d

e
r

α0(F,R)

α1(F,R)
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a b

c d

e

r

u2

u4

u1

u3

u0

u5

α2(F,R)

We have removed the label p from the edges, since there is no other binary

predicate, for the sake of readability. Blue atoms are part of F , red atoms are

added in α1(F,R) (with two applications ofR1 and two applications ofR3) and

green atoms are added in α2(F,R) (by applying R3 and R2). Notice how in the

second step there is an explosion of new variables, since the existential rule R2

ofR is applicable to α1(F,R) through many different homomorphisms, i.e. R2

is included in many of the (immediate) triggers on (α1(F,R),R).

Finally we can see that the following atomset is a core of α2(F,R):

a b

c d

e
r core

(
α2(F,R)

)

Moreover, by calculating α3(F,R)9 we can see that it has the same core as

α2(F,R), which implies they are logically equivalent, hence all rule applica-

tions on α2(F,R) produce redundant information. �

We conclude this section with the definition of an abstract class of existen-

tial rules, which provides a condition for the termination of forward chaining.
9which amounts to

i. duplicating all atoms that include a variable with twin fresh variables, i.e. for every atom that includes a
variable ux, add a variation of this atom with variable u′x, and

ii. adding for every variable ux of α2(F,R), the three atoms r(ux), p(ux, e) and p(ux, uy), where uy is a new
variable.
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Within this abstract class, the boolean conjunctive query entailement problem

is decidable, however membership of a ruleset in this class is an undecidable

problem [1].

Definition 2.7. A rulesetR is a finite expansion set (fes) if for every factbase F

there is a k ∈ N such that αk(F,R) ≡ αk+1(F,R). a

Notice that since for all k ∈ N, αk(F,R) is a finite factbase, we know that a

knowledge base (F,R) whereR is fes always has a finite universal model.

To circumvent the undecidability of the problem of membership in the

above abstract class, several recognizable subclasses of fes have been identi-

fied, which are almost always based on some notion of acyclicity [39]. This

division into those recognizable classes is not pertinent for this dissertation,

thus we do not present any of them.

A main interest in this work is the exploration of the circumstances under

which a given ruleset enjoys the property of having a general bound on the

depth of forward chaining based on it, independently of the initial factbase.

We will delve into different related notions of boundedness. The concept of

core-boundedness or simply boundedness lies at the root of this research.

Definition 2.8 (Boundedness for Existential Rules[38]). A ruleset R is said

to be bounded if there exists a k ∈ N such that for every factbase F ,

αk(F,R) |= αk+1(F,R). a

As simple “primitive” examples, let us take the singleton rulesets

R1 = {p(x, y)→ q(x, y)} and R2 = {p(x, y) → ∃z p(y, z)}. We can see

thatR1 is bounded because its only rule does not generate any atoms on which

a new rule application can be based. On the other handR2 is not bounded since

if we start from an atom isomorphic with the body of its rule, we can produce

an infinite directed chain of new variables connected with p.

This concept of boundedness, although originally introduced in the context

of the universal relation database model [40], was initially mainly studied in

fragments and variations of datalog [29, 30, 31, 25]. There it was mainly linked

to the potentiality of eliminating recursion: detecting bounded datalog rulesets
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is a robust optimization technique since such a ruleset can be transformed to a

ruleset that completely saturates any factbase with all possible new facts in a

single breadth-first rule-application step. In the next chapter we present some

of the results of this research.

2.2.3 Backward Chaining

The utilization of the knowledge base on the query in order to produce a new

query is called backward chaining. This paradigm can be employed in many

different situations. In our case, we only use the rules to rewrite the query into

a disjunction of conjunctive queries and then verify whether the factbase alone

entails this disjunction (hence at least one of those queries) [4]. This provides a

solution to the boolean conjunctive query entailment problem, when the rewrit-

ing process terminates. We can represent a finite disjunction of conjunctive

queries as a union of atomsets (queries), this is why it is known as a union of

conjunctive queries (UCQ). So starting from a factbase F , a ruleset R and a

query Q, we are searching for a UCQ Q such that F |= Q (where we view the

UCQ as a disjunctive first order logic formula) if and only if F ∪R |= Q. This

is particularly advantageous if we have a big volume of data (big factbase) as

this procedure is independent of the factbase.

Before discussing the rewriting process, we introduce the relevant abstract

class of rules. Obtaining the desired finite disjunction of boolean conjunctive

queries is not possible with any ruleset. A ruleset which always produces finite

UCQs as rewritings of queries is called finite unification set [1, 41]:

Definition 2.9. A ruleset R is a finite unification set (fus) if for every query Q

and factbase F , there exists a (finite) UCQQ such that F ∪R |= Q if and only

if F |= Q. a

The property that a ruleset is fus is also called UCQ-rewritability in the lit-

erature and it is is also known to be equivalent with first-order rewritabil-

ity [42, 43, 44]. A single rewriting of a query intuitively corresponds to a fact-

base which can produce a specialization of the query by a single application

of one rule. In particular, when a single rewriting step produces a query Q′
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from Q by a rule R, it holds that a factbase F entails Q′ if and only if there is

an application of R to F that produces a factbase F ′ that entails Q. A series

of rewritings corresponds to more complex ways (involving more rule applica-

tions) to produce a specialization of the query from some initial factbase.

Example 5: Intuitive Rewriting. We assume our ruleset includes only the

rule R = p(x, y) ∧ p(y, z)→ p(x, z). This rule is the typical example of a

transitive rule. Such rules lead to infinite rewritings. Indeed, if we take

Q = {p(a, b)} as a query and we ask whether there is some factbase which

could produce Q with the application of R, we find that one application of

R on the factbase Q′ = {p(a, z0), p(z0, b)} can produce Q. This establishes

that Q′ = {p(a, z0), p(z0, b)} is a rewriting of Q. However couldn’t Q′ itself

be produced by some other factbase by applying R? Indeed, we find that

Q′′ = {p(a, w0), p(w0, z0), p(z0, b)} is a rewriting of Q′ hence also a rewriting

of Q. Furthermore, Q′ does not entail Q′′. This process can go on forever.

Lastly, we stress that the queryQ can be considered a rewriting of itself. This is

beacuse in the end what we want is to produce all the queries that can be entailed

by a factbase F whenever the knowledge base ({R}, F ) entails Q. Hence, the

first such query is Q itself. 10 �

In the above example we use a rule which does not have any existential variable

in the head. In such a case it is easy to see that rewriting can be formally defined

using most general unifiers (introduced in subsection 2.1.2) of the query with

the head of the rule. However in the general case of existential rules there are

some additional constraints that need to be satisfied in order to achieve a con-

sistent rewriting. In the Appendix (Section (A)) we provide details concerning

how query rewriting works in an existential rule setting.

10The fact that we used the transitivity rule in an example portraying the transitivity of the rewriting relation
(every rewriting of a rewriting is a rewriting) is rather coincidental.
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3 Boundedness in the Liter-
ature

In this chapter we outline the main results of current and past research on the

characterization of boundedness for different fragments of existential rules, in

particular the Datalog fragment .

3.1 Datalog

The datalog language was the first fragment of existential rules to be exten-

sively studied in the context of query answering. It was motivated as a query

language for databases which adds recursivity to the power of relational alge-

bra [6]. We remind that an existential rule is datalog if there is no existentially

quantified variable in the head and a ruleset with datalog rules is a datalog rule-

set. Moreover, we assume every rule to have a single-atom head. This is not a

real constraint, as every set of datalog rules that includes multiple atoms in the

head can be trivially transposed to an equivalent set of rules with just one atom

in the head. That is done by having multiple versions of the rules, one for each

different atom in the head of the original rule while all versions keep the origi-

nal body as is. For example p(x)→ q(x) ∧ r(x) is transformed to p(x)→ q(x)

and p(x)→ r(x).

One major feature that distincts datalog from the rest of the (sub-)languages

of existential rules, is that in forward chaining, the factbase is not enriched with

new individuals. Besides, in the original datalog framework, facts are always

assumed to be grounded, i.e. there are no variables in the factbase. We will



use the term database to refer to a factbase that contains no variables. Hence

when we say datalog knowledge base, it will be implied that the factbase is

indeed a database. Given a datalog ruleset, the predicates found in the head

of some rule are called intentional database (IDB) predicates and the rest of

the predicates are called extentional database (EDB) predicates. Accordingly

the atoms of a rule with an IDB predicate are called its IDB atoms, while all

the rest of the atomic formulas appearing in the ruleset are its EDB atoms. This

distinction of predicates into two categories is important because it gave birth to

two different concepts of boundedness. In the context of datalog research, what

we call boundedness is referred to as uniform boundedness. Thus we will say

that datalog ruleset R is said to be uniformly bounded if there exists a k ∈ N
such that for every factbase F , αk(F,R) = αk+1(F,R). But there is one more

type of boundedness, based on the following notion:

Definition 3.1. LetR be a datalog ruleset. A database F is extentional forR if

only EDB predicates ofR appear in it. a

We see that if a rulesetR is given, only a subset of all the possible databases F

are extentional forR.

Definition 3.2 ([31, 25]). A datalog ruleset R is program bounded if there is

a k ∈ N such that for every database F that is extentional for R, holds that

αk+1(F,R) = αk(F,R). a

By definition it is evident that uniform boundedness of a ruleset implies its

program boundedness. The inverse is not true as can be shown in the following

example:

Example 6: We take the ruleset R = {R1, R2} that contains the rules,

R1 = p(x, y) ∧ p(y, z)→ p(x, z) and R2 = q(x) ∧ q(y) → p(x, y). We find

that R is program bounded since p is IDB and so we can only have q-atoms in

the database. So for any extensional database F , at first R2 will be applied on

all possible q-atom pairs, creating all possible p-atoms, so then any application

of R1 will not produce any new atom. However, since R1 is a transitive rule,

by choosing a chain of 2n atoms with predicate p as database, the breath-first
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forward chaining stops at depth n. So the breadth-first forward chaining does

not have a bound in its depth with an arbitrary database. Therefore the set is not

uniformly bounded. �

Another relevant notion is that of predicate boundedness. In most publications

it is introduced as a sub-problem of program boundedness, however here we

follow the more general, independent definition of predicate boundedness as

in [26], i.e. we present two definitions for program predicate boundedness and

uniform predicate boundedness. For the next definition we use the following

notation: if F is a factbase and p a predicate, we denote with F|p the set of all

the p-atoms of F .

Definition 3.3. Let R be a datalog ruleset. A predicate p is uniformly

bounded in R if there exists a k ∈ N such that for every database

F , αk+1(F,R)|p = αk(F,R)|p. Similarly p is program bounded if there ex-

ists a k ∈ N such that for every database F that is extensional for R,

αk+1(F,R)|p = αk(F,R)|p. a

The subsequent statement follows from the above definition:

Proposition 3.1. A datalog ruleset R is (uniformly) bounded if and only if

every (IDB) predicate p that appears in R is uniformly bounded. Furthermore

R is program bounded if and only if every (IDB) predicate p in R is program

bounded. ♣

At this point we make a summary of the known decidable and undecidable sub-

classes of the boundedness problems. We first note that as a consequence of

proposition 3.1, the problems of deciding program and uniform boundedness

can be reduced to those of program predicate boundedness and uniform predi-

cate boundedness respectively. Furthermore, it can be shown that:

Proposition 3.2 ([45]). The problem of determining whether a datalog ruleset

is uniform bounded can be reduced to the problem of determining whether a

datalog ruleset is program bounded.

Proof: Suppose that we have an algorithm to check program boundedness.

Let R be a datalog ruleset. For every IDB predicate p in R we create a rule
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Rp = p′(x̄)→ p(x̄) where p′ is a fresh predicate that does not appear in R.

Then the ruleset R′ := R ∪ {Rp | p is an IDB predicate ofR} is program

bounded if and only ifR is uniformly bounded. This can be verified by remark-

ing that every chase ofR on F is equivalent with the chase ofR′ on α1(F
′,R),

where F ′ occurs by replacing each predicate p in F with its respective p′. �

Unfortunately boundedness of a datalog ruleset is undecidable in general as

well as for prominent subclasses. But before we refer to the undecidability re-

sults in detail we discuss positive results (i.e. decidability) which have been

shown only for particular restricted languages. We provide the following def-

initions to clarify the decidability results: a rule is called recursive if its body

includes at least one IDB predicate. Note that a datalog ruleset might include

recursive rules while being non-recursive. A datalog rule is datalog linear, or in

short lineard, if its body contains at most one IDB predicate. Notice that what

is called lineard in datalog does not correspond to the definition of linear exis-

tential rules, hence we use the subscript “d” to distinguish the terminology (in

particular a lineard rule is not necessarily a linear existential rule1). A datalog

ruleset is lineard if it only includes lineard rules. A datalog ruleset is monadic

if every IDB predicate is unary. But we call a datalog ruleset binary, ternary or

of arity n if the maximum arity of its predicates is 2,3 or n respectively.

Decidability of program boundedness (and hence uniform boundedness as

well) has been proved for monadic rulesets [31, 46] and for rulesets with a

single lineard recursive rule if the IDB is binary [47]. Furthermore, program

boundedness (and hence uniform boundedness as well) is also decidable for

binary rulesets where each IDB appears only once in the head of a rule [26].

Lastly, program boundedness for chain rulesets2 has been shown to be decid-

able [48].

However undecidability is shown for uniform boundedness of ternary

lineard rulesets and single recursive rule ternary rulesets (which subsume

ternary rulesets in general) [45] and also for single rule rulesets [45]. Pro-
1e.g. p(x, y) ∧ q(x)→ p(y, x) is a lineard rule but not a linear existential rule.
2A chain rule is of the form p1(x̄0, x̄1) ∧ p2(x̄1, x̄2) ∧ · · · ∧ pn(x̄n−1, x̄n)→ q(x̄0, x̄n), where x̄1, x̄2, ..., x̄n

are distinct variables, or distinct tuples of variables of the same arity.
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gram boundedness is shown to be undecidable for lineard binary rulesets [30].

Finally, uniform and program boundedness are undecidable for rulesets con-

sisting of one lineard recursive rule and one non-recursive rule [45]. It is not

yet proven whether the uniform boundedness of binary rulesets, lineard binary

rulesets and rulesets consisting of a single lineard rule is decidable or not.

3.2 Existential Rules

The research around boundedness for Existential Rules is a new field of study,

hence there exist only a few publications, approaching the problem from dif-

ferent angles. At first we must mention that there is a number of studies that

incorporate some form of the term “bounded” in their terminology, whilst be-

ing (semantically) unrelated to our concept of boundedness. In particular, some

publications designate a ruleset “bounded” if the size of skolem terms than can

be created in the factbase is bounded by an integer function whose input is the

size of the ruleset [49, 50]. Therefore they do not include any results directly

related to boundedness as we define it.

A question that arises immediately after discussing the division between

program boundedness and uniform boundedness in datalog, is whether this

could be extended to general existential rules. Interestingly, the data exchange

setting, introduced in [36] makes the same distinction between the EDB and

IDB predicates (albeit calling them source & target schema respectively). There

is a decent volume of research related to the data exchange setting, including

some relevant to our work like [33], which concerns the calculation of the core

of an atomset. However there has been no research on the concept of bounded-

ness in this setting, showing an interesting prospective for further study.

Although our investigation started with the adoption of Definition 2.8 for

boundedness, this is only one of the many ways to extend what is defined as

uniform boundedness in datalog to a corresponding notion for existential rules.

That is because the presence of variables motivates a number of different meth-

ods to manipulate the forward chaining process, all of which are related in one

way or another to reducing redundancy. As mentioned in the previous chapters,
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one of the prevalent perspectives of early research on datalog boundedness is

its connection with recursivity in the ruleset [6, 25, 26]. In existential rules,

some recursive rulesets can be bounded because the rules that can be applied

recursively are redundant with respect to other rules. In this vein, there is an

article [51], which provides preliminary definitions for several forms of bound-

edness for existential rulesets, using the notion of redundancy in the ruleset3.

The framing of boundedness in relation with redundancy in the ruleset seems

as another approach with great potential for future research, however in this

dissertation we follow a different path.

The perspective on which we based our analysis, assumes a random (black-

box) existential ruleset. Our interest concerns the imposition of conditions on

the forward chaining with the goal of reducing redundancy in the resulting fact-

base. To this end, there is a number of different algorithms that have been intro-

duced, collectively called the chase, which employ different techniques to filter

out some of the possible redundant atoms that can be introduced in the forward

chaining process. In the following chapter we will define the oblivious chase,

the semi-oblivious chase, restricted chase and the core chase (among other vari-

ants). Each one of those algorithms relates to a different kind of boundedness4,

but all the different definitions collapse to the same notion when we work in a

datalog setting. Hence, the general undecidability result from datalog propa-

gates to existential rules.

There is one specific class of existential rules, which is by definition

bounded, namely the “acyclic graph of rule dependency” class, in short

aGRD [1]. This class is defined by the acyclicity of a graph (called the graph of

rule dependency) whose nodes are the rules and edges translate the fact that the

application of the first rule may trigger a new application of the second rule. A

ruleset that belongs to the aGRD class is bounded by the length of a maximal

path in its graph of rule dependencies. All other known concrete fes classes

generalize datalog (see [39]). The landscape is less clear concerning concrete

fus classes. One specific fus class for which there are positive results is that of
3What is called strong boundedness in this article corresponds to what we call fus.
4which always concerns a bound to the depth of the forward chaining achievable using a certain ruleset and

any initial factbase.
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linear existential rules, which are rules that have only one atom in the body.

In a brief break from our black-box approach, we will arrive to positive

results concerning boundedness in the special case of linear existential rules.

We will show that with linear rules and for certain chase variants, chase ter-

mination5 and boundedness are equivalent notions. This allows us in a direct

manner to extrapolate results concerning boundedness from results concern-

ing chase termination. And thankfully, chase termination for linear rules has

been researched a lot. We know that oblivious & semi-oblivious [20] and core

chase [21] termination are decidable for linear existential rules. In the case of

extra linear rules, where both body and head comprise of only one atom each,

restricted chase termination is also shown to be decidable [22].

Most of our research focuses on a specialization of the problem of bouded-

ness, called k-boundedness, where the depth k is predetermined. To the best

of our knowledge this is the first research of k-boundedness (except our own

publication [52]6, whose results are incorporated in this thesis).

5The chase termination problem for a ruleset R, asks whether it is true that for every factbase F , the chase
algorithm starting from the knowledge base (F,R) terminates. It is also called all-instance termination.

6There exists an updated revised version of this article [53], but of course the most complete account of this
work is within this thesis.
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4 The Chase

In Section 2.2 we introduced the concept of forward chaining. In this chapter

we focus on the particularities of algorithms designed to carry out this task,

which are collectively called chase algorithms. The chase is a fundamental

tool for reasoning on rule-based knowledge bases and a considerable literature

has been devoted to its analysis, approaching it from a variety of presupposed

terminological and notational background. A central part of this work is the

establishment of a general framework whereby several known chase algorithms

can be represented. In addition, this framework provides a basis for the pos-

sible definition of new chase algorithms. And indeed, as an optimization that

emerges from our research around boundedness, we do define new chase algo-

rithms (in this as well as in the following chapter). The main formal frame-

work is set in Section 4.1, whereas in Sections 4.2 and 4.3 we present several

chase variants. In Section 4.4 we discuss criteria of comparison as well as the

breadth-first approach in relation with the specified chase variants and finally

in Section 4.5 we expand the theoretical tools at our disposal for the analysis

of the chase and we show several fundamental properties of chase algorithms,

which will prove to be valuable in Chapter 5.

4.1 Derivations

In Definition 2.6 we introduce the formal term “immediate derivation”. Here-

after we will get into more detail and we will employ this concept to designate

our framework for the study of the chase. At first we revisit this definition,

adding a little bit more terminology, as well as a very useful syntactic specifi-



cation.

Let F be a factbase and R = (B,H) be an existential rule. Recall that if

there exists a homomorphism π from the body B of R to F , we say that R is

applicable on F via π. Then, the pair (R, π) is called a trigger, usually denoted

with t = (R, π), and we will also say that t is applicable on F . Moreover,

to simplify notation in cases where R, π,B and H are not specified, π(B) is

called the support of t and is denoted with sp(t). And so by definition it holds

that t is applicable on F if and only if sp(t) ⊆ F .

Triggers will play a crucial role in the following of this work. Notably,

each time that we apply a rule, we are applying a trigger. Furthermore, dur-

ing the execution of any chase algorithm, each trigger is applied at most once.

This uniqueness of each trigger in a chase algorithm, can be used as a key to

trace the new variables added to the factbase1. That is achieved as follows: the

application of the rule R = (B,H) to F with trigger t = (R, π) results to

the factbase F ∪ πs(H) which (in accordance with the definition in Chapter 2)

is called an immediate derivation from F through t. With πs we denote an

extension of π which maps all existentially quantified variables in H to fresh

variables which are indexed by the trigger t. In particular, for each existential

variable z in H we have that πs(z) = zt. This fixed way to choose a new fresh

variable allows us to always produce the same atoms when applying the same

trigger on a different context and will be very useful when comparing forward

chaining with the same ruleset but different factbase. Although this method

is not genuinely novel since it follows the skolemization paradigm, to the best

of our knowledge the only work which hints towards a similar approach was

published the previous year [54]. Again, to simplify notation in cases where

R, π,B and H are not specified, πs(H) is called the output of t and is de-

noted with op(t). As a result we can represent an immediate derivation from

F through t as F ∪ op(t). Moreover, the (fresh) variables introduced (and

indexed by) a trigger t are called nulls or new variables. Accordingly, the set

of new variables introduced by t is denoted with nul(op(t)). Lastly, a trigger

1The newly introduced variables are also called “nulls” in the relative literature and in some cases they are
regarded as new constants.
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exicontrigger L
t = (R, π)

op(t) = πs(H)

sp(t) = π(B)

(B,H)

=

is the support of t.

is the output of t.

if R ∈ R, we say that t is fromR.

nul(op(t)) is the set of new variables introduced by t.

if sp(t) ⊆ F , we say that t is applicable on F .

Figure 4.1: The Trigger Lexicon.

(R, π) where R ∈ R is said to be a trigger from R. In Figure 4.1 we have

summed up the main notions related to triggers.

The chase is built upon the notion of derivation, which consists of the re-

peating application of rules from a certain ruleset to a factbase which is evolving

with every rule application. We provide a novel definition of derivation which

is meant to be general enough such that all the chase algorithms that are known

to us and produce universal models of the knowldege base (namely oblivious,

semi-oblivious, restricted, core, parallel, frugal and equivalent chase) can be

expressed as specifications of this definition, i.e. as derivations that satisfy cer-

tain additional constraints. Some of those algorithms remove redundant atoms

from the factbase. Others just avoid the application of certain redundant trig-

gers. Some of the algorithms are sequentially applying the rules, others carry

out parallel rule applications. Therefore our definition of derivation is as gen-

eral as possible and it outlines those central operations of forward chaining,

which is the application of triggers and the expulsion of redundant information.

Here is how a derivation is formed: we start from a knowledge base (F,R).

The primary task is to apply rules from R on an evolving factbase Z which at

first is instantiated as F . Each rule application corresponds to a unique trigger,

so we are not allowed to repeat triggers within the same derivation. After ap-
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plying a trigger t fromR on Z, a new factbase is produced F ′ = Z∪op(t), i.e.

F ′ is the immediate derivation from Z through t. A secondary (optional) task

is to eliminate redundance from our factbase. Therefore we search for a retract

Z ′ of F ′ in order to remove redundant variables (and their respective atoms).

Once we obtain Z ′ we search for a new trigger t′ that is applicable on Z ′ and

the procedure goes on like this. Notice that Z ′ is not necessarily a core of F ′,

but may be any kind of retract.

Those are the main functionalities of a derivation. Yet before presenting a

formal definition, we introduce one more feature which we must include in our

definition. That is the possibility of parallel rule applications: suppose that the

triggers t1, ..., tn are applicable on Z. Then we can apply all of them at once,

producing F ′ = Z ∪ op(t1) ∪ · · · ∪ op(tn). We could of course also apply

some of them, or just one of them (as we said, the purpose of our definition is

that it is as general as possible). After the parallel application of those triggers,

we search again for a retract Z ′ of F ′.

Notice how there are three components in the process described above. A

trigger is applied on an active factbase, producing a transitory factbase, which is

then retracted to form a new active factbase. As a result it is suited to represent

a derivation as a sequence of triples (ti, Fi, Zi) of triggers, transitory factbases

and active factbases. At every step i of the derivation, the transitory factbase

is the immediate derivation from the previous active factbase Zi−1 through ti

and the active factbase Zi is either unaffected (Zi = Zi−1), or it is the image

of a retraction from the union of all the transitory factbases produced from

the previous active factbase Zi−1. This retraction can simply be the identity

(hence retaining the whole union as the new active factbase). Here is the formal

definition:

Definition 4.1 (Derivation). Given a factbase F and a ruleset R, a

derivation D from (F,R), is a (possibly infinite) sequence of triples

D0 = (t0, F0, Z0),D1 = (t1, F1, Z1),D2 = (t2, F2, Z2), . . . where t0 = ∅,
F0 = Z0 = F and for every i > 0 holds that

i) Fi is an immediate derivation from Zi−1 through a new trigger ti (i.e. for
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all i 6= j we have ti 6= tj),

ii) if Zi 6= Zi−1, then Zi is a retract of Zi−1 ∪op(t`+1)∪ · · · ∪op(ti) , where

` is the minimal number with the property that for every j ∈ {`, ..., i− 1}
holds that Zj = Zi−1.2

Each Di is called a derivation triple or an element of D. The atomsets Fi and

Zi are called transitory and active factbases respectively. We denote the set of

atoms produced in D with FD =
⋃
i Fi. If D is finite, then the final active

factbase is denoted with ZD. Given a derivation D as above, the sequence of

triggers associated with D is trig(D) = t1, t2, . . . . Finally, an atom A is

produced by ti (in D) if A ∈ Fi \ Zi−1 and i is minimal for that property3. a

The notation D = (t∗, F∗, Z∗) will be frequently utilized to specify a deriva-

tion. Naturally, if D = D0, D1, ..., Di, Di+1, ... is a derivation, then we call the

derivation D′ = D0, D1, ..., Di a prefix of D, whereas D is an extension of D′.
Additionally, we consider every finite derivation to be a prefix of itself. The

variables introduced in a derivation are referred to as new variables, and for any

subset F ′ of FD we can write nul(F ′) := var(F ′)\var(F ). Depending on the

context, trig(D) might also be considered as a set of triggers (as opposed to a

sequence of triggers). Note that by the above specification every atom A that is

produced by t belongs to the output op(t). However the converse is not true

as the output op(t) might include atoms which are have already been produced

by a previous trigger. And according to Definition 4.1, an atom is produced at

most once (by at most one trigger) in a derivation.

We will represent derivations with tables where each line corresponds to an

element of the derivation. Here is a first example of a derivation:

Example 7: Let F = {r(a)} andR be the following set of rules:

R1 = r(x)→ ∃y p(x, y)

R2 = r(x) ∧ p(x, y)→ p(y, x)

R3 = p(x, y) ∧ p(y, x)→ r(y) ∧ p(y, y)

2i.e. {Z`, Z`+1, ..., Zi−1} is the maximal set of consecutive equal active factbases before
Zi, so Z` = Z`+1 = · · · = Zi−1. Notice that Zi−1 ∪ op(t`+1) · · · ∪ op(ti) can also be written as
Z` ∪ op(t`+1) · · · ∪ op(ti) and also as F`+1 ∪ F`+2 ∪ · · · ∪ Fi.

3i = min{j ∈ N | A ∈ Fj \ Zj−1}.
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The following table outlines the derivation D of length 5 from (F,R) (where

the lines represent the derivation triples D0, D1, D2, D3, D4, D5):

∅ F0 = F Z0 = F0

t1 = (R1, {x 7→ a}) F1 = Z0 ∪ {p(a, yt1)} Z1 = F1

t2 = (R2, {x 7→ a, y 7→ yt1}) F2 = Z1 ∪ {p(yt1, a)} Z2 = F2

t3 = (R3, {x 7→ yt1, y 7→ a}) F3 = Z2 ∪ {p(a, a)} Z3 = F0 ∪ {p(a, a)}

t4 = (R2, {x 7→ a, y 7→ a}) F4 = Z3 Z4 = Z3

t5 = (R3, {x 7→ a, y 7→ a}) F5 = Z3 Z5 = Z3

In the rest of the thesis, we will depict derivations as above. Here is a graphical

representation of FD, where r is represented with a circle and p with arrows:

a
yt1r

Notice that the last two triggers do not produce any atoms. At the

fourth element D3 = (t3, F3, Z3) of D we have that the union of all

the transitory factbases produced by the previous active factbase is simply

F3 = {r(a), p(a, yt1), p(yt1, a), p(a, a)} (since the last time the active factbase

changed is on Z2). The substitution σ = {yt1 7→ a} is a retraction from F3 to

{r(a), p(a, a)}. By applying σ we therefore arrive at the final active factbase

Z3 which is in fact equal to the initial factbase F plus the loop p(a, a). �

After the application of t3 in the above derivation, we arrive almost at the same

factbase that we began with. One could imagine an oscillatory situation, where

we reapply the rules to this new-old active factbase producing the same atoms

over and over. This is prevented by the condition that every trigger is new when

introduced, i.e. it appears at most once in a derivation. In this case there are no

more triggers to apply after t5 and the derivation necessarily stops at this point.

On the other hand, it is important to point out that a derivation does not

need to satisfy any concept of completeness, i.e. it does not necessarily include
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all possible rule applications. To this end, we will introduce the concepts of

exhaustivity and termination with respect to a class of derivations at the end of

this section. As a limit case, we will call the derivation with only one element

D0 = (∅, F, F ), the trivial derivation from (F,R) (where R is any ruleset).

Below is another example of a derivation:

Example “GENERIC” 8 (continued from Examples 3 and 4): We remind that

F = {p(a, b), p(c, d), r(e)} andR is the following set of rules:

R1 = p(x, y) ∧ r(z)→ p(y, z)

R2 = p(x, y) ∧ p(y, z)→ ∃u p(z, u)

R3 = p(x, y) ∧ p(x, z)→ p(y, z)

Here is a derivation D from (F,R):

∅ F0 = F Z0 = F0

t1 = (R1, {x 7→ a, y 7→ b, z 7→ e}) F1 = F ∪ {p(b, e)} Z1 = F1

t2 = (R2, {x 7→ a, y 7→ b, z 7→ e}) F2 = F1 ∪ {p(e, ut2)} Z2 = F2

t3 = (R2, {x 7→ b, y 7→ e, z 7→ ut2}) F3 = F2 ∪ {p(ut2, ut3)} Z3 = F3

t4 = (R1, {x 7→ c, y 7→ d, z 7→ e}) F4 = F3 ∪ {p(d, e)} Z4 = F4

Notice that D can be extended with the addition of more derivation triples. Be-

low we find a representation of FD, where atoms in F are colored blue and

subsequent dependencies are represented by a change of color. This is the con-

cept of rank, which we will soon introduce.

a b

c d

e
r ut3

ut2

Figure 4.2: Example “GENERIC”, derivation D: representation of FD.

Notice also that in every derivation triple Di of D the active factbases Zi are

always equal to the transitory factbases Fi. In other words when an atom is

produced, it remains permanently in the (active) factbase. �
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Definition 4.2. A derivation D = (t∗, F∗, Z∗) is monotonic if for every i holds

that Zi = Fi. a

The characterization of such a derivation as monotonic is due to the fact that

the (transitory) factbase is growing monotonously after each rule application,

i.e. Fi ⊆ Fi+1 for every i.4 The concept of monotonic derivation as is presented

here, despite underlining the role of triggers, agrees with the typical paradigm

of “derivation” in the related literature [1, 55, 8, 56]. However, with the term

“derivation” in this thesis we are specifying a broader notion in an attempt to

define a framework general enough to model many different forward chaining

scenarios. It is easy to verify that from any derivation D, we can construct

a monotonic derivation D′ such that trig(D) = trig(D′), in the following

manner:

Remark 4.1. Let D = (t∗, F∗, Z∗) be a derivation. Then D′ = (t′∗, F
′
∗, Z

′
∗)

where for all i holds that t′i = ti, F ′0 = F0, F ′i = F ′i−1 ∪ Fi and Z ′i = F ′i , is a

monotonic derivation. ♣

It is important to underline that there is no relation between non-monotonic

derivations and non-monotonic logic. That is because all the information that is

removed from the factbase is redundant, therefore the active factbase is seman-

tically equivalent with the set of produced atoms. Indeed, the condition ii) of

the definition of derivation, assures that the union of all the factbases produced

from the previous active factbase (Z`) is logically equivalent to the new active

factbase (Zi).

Observing the derivation D from the previous example, we can see that

trigger t4 is applicable directly on the initial factbase F , and does not require

any other rule application to precede it. In this case we say that t4 is of rank 1,

as it is among the triggers that are applicable on the initial factbase. The concept

of rank applies to triggers, atoms and derivation triples. Below we specify this

with a recursive definition:

4In Subsection 4.3.3 we will discuss the concept of submonotonic derivations, which characterizes the mono-
tonicity in the sequence of active factbases.
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Definition 4.3 (Rank, Depth). Given a derivation D = (t∗, F∗, Z∗), we define

the rank of an atom A ∈ FD as follows: rankD(A) = 0 if A ∈ F0, otherwise

if ti produces A in D, then rankD(A) = 1 + max{rankD(A′) | A′ ∈ sp(ti)}.
This concept is naturally extended to triggers as well as to derivation triples:

• rankD(t) = 1 + max{rankD(A′) | A′ ∈ sp(t)},

• rankD(D0) = 0 and rankD(Di) = rankD(ti) for i > 0.

Moreover, for every t ∈ term(FD) we define:

• rankD(t) = min
{
rankD(A)

∣∣ A ∈ FD , t ∈ term(A)
}

.

The depth of a finite derivation is the maximal rank of all atoms that are

produced in it. a

Notice that if t 6∈ trig(D) but sp(t) ⊆ FD, then the above formula still serves

as a definition for the rank of t in D, i.e. triggers that do not appear in D, but

whose support is inferred with D have well defined ranks in D. When D is

implied by the context, we will simply write rank(·) instead of rankD(·). An

important class of derivations are those where the elements are ordered accord-

ing to rank:

Definition 4.4. A derivation D = D0, D1, ... is rank compatible if for all ele-

ments Di and Dj in D with i < j, the rank of the trigger of Di is smaller or

equal to the rank of the trigger ofDj. Furthermore, in a rank compatible deriva-

tion, every element Di which is the final of its rank (i.e. for every other element

Dj of D, if rankD(Dj) ≤ rankD(Di) then j < i), is called a rank mark. a

In the two examples of derivations that we have presented, we already have

one rank compatible derivation (Example 7) and one that is not rank compat-

ible (Example 3.8). Anyhow, in all the following figures, ranks will be repre-

sented with the same colors, namely blue, red, green, orange, brown and yel-

low for ranks 0 to 5 respectively. In addition, in our tabular representations of

rank compatible derivations, the changes of ranks will be illustrated with thick

blue horizontal lines and we will add a fourth column where the rank of each

rank mark will be indicated (starting from Example 9 in the following section).
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An interesting situation appears when a trigger t in a derivation D does not

produce any atom. This happens when the corresponding rule is a datalog rule,

and all atoms of the output of t are already produced in the current prefix of D
(for instance look at the triggers t4 and t5 in the Example 7). But it is easy to

observe that whenever a trigger does produce at least one atom, then its rank

is equal to the rank of the atoms that it produces. Finally, we remark that it is

impossible for two rank marks to be of the same rank in a derivation.

We can see how a certain class of derivations can be modeled with the

α operator (as introduced in Subsection 2.2.2), but not all. The definition of a

derivation is purposefully general, in order to be able to represent many possible

forward chaining scenarios. Given a knowledge base (F,R), we want to derive

information with forward chaining in the most effective way (where “effective”

depends on context and applications). In the next sections we will demonstrate

several strategies which have different features. The abstract notion of a chase

variant corresponds to a process that builds derivations of a certain kind, usu-

ally with the aim of obtaining a universal model of the knowledge base. Below

is a formal definition:

Definition 4.5. A chase variant is a class of derivations. Given a

chase variant X, each derivation that belongs to X will be called an

X-derivation. In addition, if D = D0, D1, ..., Dn is an X-derivation,

and there exists an X-derivation D′ = D0, D1, ..., Dn, Dn+1 with

Dn+1 = (t, Fn+1, Zn+1), then the trigger t is said to be X-applicable on D. a

Therefore in a formal sense, a chase variant is simply a family (class) of deriva-

tions that can be specified by imposing any kind of restrictions, for example

on which triggers can be applied and when can they be applied, or which kind

of retractions will produce the active factbases5. In the following sections we

will see several examples of chase variants, but here we first define some basic

notions concerning chase variants. The most important are those of termination

and exhaustivity.
5In this thesis we did not need to explicitly demand that every chase variant X is prefix-closed, i.e. if D ∈ X,

then every prefix D′ of D is also in X. This feature can be added without major consequences, if we broaden our
definition of breadth-first variants by including also all their prefixes (see Definition 4.8).
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Definition 4.6. An X-derivation D = (t∗, F∗, Z∗) from (F,R) is terminating if

it is finite and there does not exist a trigger t that is X-applicable on D. a

X-applicability is defined on finite derivations. Can we conceptualize an infinite

derivation where no trigger is X-applicable? Exhaustivity is the property that

no trigger is indefinitely delayed: if a trigger is X-applicable on some prefix

of the X-derivation, then either it is applied at some later point, or it becomes

non-X-applicable at some later point in the derivation. This property applied

on a finite X-derivation leads to termination, since it implies that no triggers are

X-applicable to the derivation6. The formal definition follows:

Definition 4.7. An X-derivation D = (t∗, F∗, Z∗) from (F,R) is exhaustive if

for all prefixes D′ = D1, ..., Di of D, if a trigger t from R is X-applicable on

D′, then there exists a k > i such that one of the following two holds:

1. tk = t or

2. t is not X-applicable on D1, ..., Dk. a

Therefore according to the above definitions, an X-derivation is terminating if

and only if it is finite and exhaustive. Exhaustivity is also known as fairness in

the literature [57, 20].

There can possibly be many very different X-derivations from a particu-

lar knowledge base. For every chase variant X presented in this thesis, a ter-

minating X-derivation from a knowledge base (F,R) produces as the last ac-

tive factbase a universal model of (F,R) [37]. So the question that naturally

rises is whether there are any effective strategies in order to find terminating

X-derivations.

A reasonable approach is to first apply the triggers whose support is in-

cluded in the initial (active) factbase, then the triggers whose support is at most

or rank 1 and so on. It is important to notice that rank compatibility alone

does not ensure that all possible rule applications are made before proceed-

ing to the following rank. This is the case in a breadth-first scenario. The

breadth-first paradigm of forward chaining was introduced using the α operator

in Section 2.2.
6taking into accout that a finite derivation is also a prefix of itself.
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Definition 4.8 (Breadth-first). Let X be a chase variant. An X-derivation

D = D0, D1, ... is breadth-first if it is rank compatible and for every rank mark

Di, there does not exist an X-derivation D′ = D0, D1, ..., Di, D
′
i+1 with

rank(D′i+1) = rank(Di). If every X-derivation is breadth-first then X is called

a breadth-first chase variant. a

The breadth-first approach is the most popular strategy of choosing how to

proceed in a derivation. In Section 4.4 we will examine its efficiency in

different circumstances (i.e. for different chase variants). Before moving

on to present several chase variants, we emphasize a property of finite non-

terminating breadth-first X-derivations: every trigger that is X-applicable on

such a derivation will be of rank strictly higher than all the triggers associated

with it.

Lemma 4.1. LetD = D0, D1, ..., Dn be a finite breadth-first X-derivation. IfD
is not terminating, then every X-derivation D′ = D0, D1, ..., Dn, D

′
n+1 has the

property that rank(D′n+1) > rank(Dn). ♣

As a final observation regarding the notions introduced above, we highlight

that assuming X1 and X2 are two chase variants, a derivation D can be at the

same time an X1-derivation as well as an X2-derivation. Even more, D can be

exhaustive or terminating or breadth-first with respect to X1, but not exhaustive

or not terminating or not breadth-first with respect to X2. In the following

sections we will see such examples.

4.2 Monotonic Chase Variants

A chase variant is usually characterized/defined by a general property that con-

tributes to avoiding some of the possible redundancies in the resulting factbase.

Below we find a simple case where the redundancy is evident. It is also the first

of our examples where an extra column and thick blue lines are added to the

table representing a rank compatible derivation, indicating the corresponding

ranks:

Example 9: Suppose we have the rule R = p(x, y)→ ∃z p(x, z)∧ q(z) and let

F = {p(a, b)}. Here is an n-long derivation from (F, {R}):
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∅ F0 = F Z0 = F0 0

t1 = (R, {x 7→ a, y 7→ b}) F1 = F ∪ {p(a, zt1), q(zt1)} Z1 = F1 1

t2 = (R, {x 7→ a, y 7→ zt1}) F2 = F1 ∪ {p(a, zt2), q(zt2)} Z2 = F2 2

t3 = (R, {x 7→ a, y 7→ zt2}) F3 = F2 ∪ {p(a, zt3), q(zt3)} Z3 = F3 3

... ... ... ... ...

tn = (R, {x 7→ a, y 7→ ztn−1}) Fn = Fn−1 ∪ {p(a, ztn), q(ztn)} Zn = Fn n

a

zt1

zt2

zt3

b

q

q

q

Figure 4.3: Example 9, Evolving factbase.

In Figure 4.3 we see the evolution of the factbase. We can see how a derivation

in this style can be infinite, whereas after the first rule application, all the others

do not contribute to anything new semantically, i.e F1 |= Fi for all i ≤ n. �

The derivation of the above example belongs to the oblivious chase variant,

which corresponds with our definition of monotonic derivation. The obvious

way to tackle the problem illustrated in this example, is to impose a condition

of the form Fi−1 6|= Fi for all i, and then we would have a derivation where

definitely every rule application would add “semantic value”. This is indeed

the case in a chase variant called equivalent, which we will define in the next

paragraph. However it can be computationally costly to test for logical impli-

cation of entire factbases at every step7 and there are other filters which can

deal with certain types of redundancies in a more effective way. For example

in the above case, we notice that the mapping of the non-frontier variable y has

no (semantic) implication on the added information when we apply the rule.

Therefore we can say that we do not need to repeat triggers which share the
7testing for graph homomorphism is NP-complete.
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same rule and the same mapping of frontier variables to the factbase. This is

what the semi-oblivious chase does.

We will present four monotonic chase variants, namely oblivious (O), semi-

oblivous (SO), restricted (R), equivalent chase (E). All the monotonic chase

variants are (monotonic) derivations that comply with some condition of appli-

cability of the triggers.

Definition 4.9 (O-, SO-, R- and E-applicability). Let D be a derivation from

a knowledge base (F,R). A trigger t is called:

1. O-applicable on D if t is applicable on FD and t 6∈ trig(D).

2. SO-applicable on D if t = (R, π) is applicable on FD and for every

trigger t′ = (R, π′) in the sequence of triggers associated with D, the

restrictions of π and π′ to the frontier of R are not equal.

3. R-applicable on D if t is applicable on FD and there does not exist a

retraction from op(t) ∪ FD to FD.

4. E-applicable on D if

(i) t is applicable on FD and there does not exist a homomorphsim

from FD ∪ op(t) to FD, i.e. it holds that FD 6≡ FD ∪ op(t).

(ii) for every t′ that also satisfies property (i), it holds that

rankD(t) ≤ rankD(t′). a

Notice that when X ∈ {O,SO,E}, the X-applicability of the trigger depends

not only on the final factbase FD, but also on the whole derivation D. This is

not the case for R-applicability. This motivates the following definition:

Definition 4.10 (R-applicability on Factbase). A trigger t is R-applicable on

a factbase F if t is applicable on F and F is not a retract of F ∪ op(t). a

The definitions of the monotonic chase variants follow directly the conditions

of applicability that we outlined above.
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Definition 4.11 (Monotonic Chase Variants). Let F be a factbase and R be a

ruleset. We define four monotonic chase variants:

I. An oblivious derivation is any monotonic derivation D from (F,R).

II. A semi-oblivious derivation is any monotonic derivation D from (F,R)

such that for every element Di = (ti, Fi, Zi) of D, the trigger ti is

SO-applicable on the prefix D0, D1, ..., Di−1 of D.

III. A restricted derivation is any monotonic derivation D from (F,R) such

that for every elementDi = (ti, Fi, Zi) ofD, the trigger ti is R-applicable

on the prefix D0, D1, ..., Di−1 of D.

IV. An equivalent derivation is any monotonic derivation D from (F.R)

such that for every element (ti, Fi, Zi) of D, the trigger ti is E-applicable

on the prefix D0, D1, ..., Di−1 of D. a

We will abbreviate the above types of derivations with O-derivation,

SO-derivation, R-derivation, and E-derivation, respectively. Furthermore, the

corresponding classes of derivations, i.e. chase variants, will be called O-chase,

SO-chase, R-chase, and E-chase, respectively. In the following section, we

will present more chase variants.

Proposition 4.1 (Monotonic Chase Hierarchy [37]). The following con-

tainment relation holds between the four monotonic chase variants:

E ⊂ R ⊂ SO ⊂ O. ♣

We now describe those chase variants in more detail. The semi-oblivious

chase [37, 14] was initially defined as a reformulation of the skolem chase [16].

The skolem chase consists of first skolemizing the rules (by replacing exis-

tentially quantified variables with skolem functions whose arguments are the

frontier variables) then running the oblivious chase. This procedure yields iso-

morphic results with the SO-chase as defined above, in the sense that both

generate exactly the same sets of atoms, up to a bijective renaming of the new
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variables by skolem terms. The SO-chase, although it is an evident optimiza-

tion over the O-chase, is not very potent in filtering out redundancy, even in

some seemingly simple cases as the following:

Example 10: Let R = p(x, y) → ∃z p(y, z) ∧ p(z, x) and F = {p(a, b)}. Let

D be the following derivation of length n from (F, {R}):

∅ F0 = F Z0 = F0 0

t1 = (R, {x 7→ a, y 7→ b}) F1 = F ∪ {p(b, zt1), p(zt1, a)} Z1 = F1 1

t2 = (R, {x 7→ b, y 7→ zt1}) F2 = F1 ∪ {p(zt1, zt2), p(zt2, b)} Z2 = F2 2

t3 = (R, {x 7→ zt1, y 7→ zt2}) F3 = F2 ∪ {p(zt2, zt3), p(zt3, zt1)} Z3 = F3 3

... ... ... ... ... ...

tn = (R, {x 7→ ztn−2, y 7→ ztn−1}) Fn = Fn−1 ∪ {p(ztn−1, ztn), p(ztn, ztn−2)} Zn = Fn n

In Figure 4.4 we have a representation of the evolution of the factbase of

D. Since the mapping of the frontier variables changes at every element,

D is a valid SO-derivation. However already after the first rule applica-

tion, we stop to entail new information, i.e. F1 |= Fi for every i ≤ n. The

a b

zt1
zt2

zt3

Figure 4.4: Example 10, evolving factbase.
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SO-oblivious chase cannot detect this redundancy. The R-chase in contrast

does detect it, as for the second rule application there is an extension of

{x 7→ b, y 7→ zt1}, namely {x 7→ b, y 7→ zt1, zt2 7→ a}, which if applied to the

head of R (i.e.{p(y, z), p(z, x)}), results in a subset of F1. Therefore D is not

a R-derivation. In fact the only R-derivation possible from (F, {R}) amounts

to just performing the first rule application of D and then halting. The E-chase

will behave similarly in this case. �

The restricted chase, which is also known as the standard chase, provides a

reasonable local redundancy check, where we verify to see if the new facts

resulting from a possible immediate derivation, are indeed new, meaning that

the new variables cannot be mapped back to terms of the current factbase with

a retraction. This is a plausible and relatively easily verifiable condition, which

stems from the perspective that rules are constraints, and repairing databases

with constraints is commonly done at a local level.

The equivalent chase [55] was initially conceived as a monotonic way to

simulate the core chase [18] with regard to termination. The core chase, which

will be formally presented in the following section, is a chase algorithm that

calculates the finite universal model of the knowledge base if and only if it

exists. It proceeds in a breadth-first manner by performing in parallel all rule

applications according to R-applicability and then it computes a core of the

resulting factbase. We remind that a core of a set of atoms is one of its minimal

equivalent subsets. Hence, the core chase may at some step remove atoms

that were introduced at a former step. In a monotone setting we cannot retain

the core at each step, but we can instead test for logical equivalence. This

follows from the fact that Fi ≡ Fi+1 if and only if core(Fi) is isomorphic to

core(Fi+1) (up to bijective variable renaming). In order to be in accordance

with the core chase, the equivalent chase is designed to run in a breadth-first

manner, which is why E-applicability is satisfied only by triggers of minimal

rank (as specified in Definition 4.9). Indeed, each exhaustive E-derivation is a

breadth-first E-derivation. However, the higher rank of an E-derivation might

be incomplete, i.e. some E-applicable triggers from this rank might be missing.

This is not allowed by our definition of breadth-first X-derivation. Hence we
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can say that:

Remark 4.2. Every E-derivation is a prefix of a breadth-first E-derivation. ♣

Considering this remark, we will generally regard the E-chase as a breadth-first

chase variant (even though technically it includes also the prefixes of breadth-

first E-derivations). Below is an example which serves to show how there are

equivalent chase derivations that terminate on knowledge bases where every

restricted chase derivation does not terminate.

Example “EQUICORE” 11: We have that F = {p(a, b)} andR the following

set of rules:

R1 = p(x, y)→ ∃z p(y, z)

R2 = p(x, y) ∧ p(y, z)→ p(y, y)

Below is the E-derivation D from (F,R):

∅ F0 = F Z0 = F0 0

t1 = (R1, {x 7→ a, y 7→ b}) F1 = F ∪ {p(b, zt1)} Z1 = F1 1

t2 = (R2, {x 7→ a, y 7→ b, z 7→ zt1}) F2 = F1 ∪ {p(b, b)} Z2 = F2 2

Any trigger from R applied on Z2 results in a factbase that is semantically

equivalent with Z2. Hence D is terminating as an E-derivation.

Besides, D is also a R-derivation. But it is not a terminating R-derivation.

Indeed, the trigger t3 = (R1, {x 7→ b, y 7→ zt1}) is R-applicable on Z2. Ac-

tually there does not exist a terminating R-derivation from (F,R), because

starting from (F,R), the loop p(z?, z?) is never added to the end of the p-path,

so R1 will be R-applicable on any resulting factbase. �

As will be discussed in detail in Section 4.4, for X ∈ {O,SO,E}, if there ex-

ists a terminating X-derivation for a given knowledge base, then all exhaustive

X-derivations from this knowledge base are terminating. That holds because

the order in which rules are applied does not affect the detection (or not) of

redundancies. On the other hand the restricted chase does not behave well in

certain cases, as it has an overall much more non-deterministic nature in com-

parison to the rest of the monotonic chase variants. Indeed, it can produce very

different derivations from the same knowledge base. Here is an example:
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Example 12: We have two rules, R1 = p(x, y) → ∃z p(y, z)

and R2 = p(x, y)→ p(y, y) and the factbase is F = {p(a, b)}. Let

π = {x 7→ a, y 7→ b}. Then the triggers t1 = (R1, π) and t2 = (R2, π) are

both R-applicable on F . If t2 is applied first, then none of the rules are appli-

cable to the resulting factbase, which is {p(a, b), p(b, b)}, yielding a terminating

R-derivation. However if we apply t1 first and t2 second, we produce the fact-

base F2 = {p(a, b), p(b, zt1), p(b, b)} and with π′ = {x 7→ b, y 7→ zt1} we have

that t′1 = (R1, π
′) as well as t′2 = (R2, π

′) are again both R-applicable. Con-

sequently, if we always choose to apply R1 before R2 then the corresponding

derivation will be infinite (and exhaustive). �

4.3 Non-monotonic Chase Variants

The main choice when specifying a monotonic chase variant revolves around

the applicability condition. However the degrees of liberty increase drastically

when we have the freedom to choose any way of forming our active factbases,

as long as it is the result of a retraction from the union of the transitory factbases

produced by the previous active factbase (in compliance with Definition 4.1).

Hence, there is a major shift in viewpoint from monotonic to non-monotonic

forward chaining, with the active factbase here being of principal importance

in defining a chase variant. Indeed in all the chase variants that we will present

in this section, namely the vacuum (V), the frugal (F), the parallel (P) and

the core (C) chase, a trigger is applicable on a derivation if it is R-applicable

on the final active factbase. Their variation between them comes from their

behavior towards the active factbase. In the vacuum and the frugal chase, the

application of a trigger can cause several redundant atoms to be removed from

the active factbase. In the parallel chase, the active factbase expands only when

all triggers of the current rank have been applied. The core chase uses the

same mechanism as the parallel chase but only keeps a core as the new active

factbase.
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4.3.1 Vacuum Chase & Frugal Chase

The vacuum chase, which is introduced here for the first time, is inspired by the

frugal chase [28, 58, 59]. Those two chase variants are very similar, hence will

be presented simultaneously. They add an interesting perspective to the whole

chase landscape, by designating a sophisticated mechanism to eliminate more

redundancy than the restricted chase. In Subsection 2.1.3 we introduced the

notion of piece
(
Definition 2.5

)
. The vacuum chase is based on the observation

that there are times when it is easy to verify that the output of a specific trigger

might render a piece in the current factbase redundant. Using this observation

we can improve the R-chase, which sometimes produces infinite derivations

based exactly on those kinds of redundant pieces.

Example “FRUGALPHA” 13: Let F = {r(a)} and R is the following set of

rules:
R1 = r(x)→ ∃z p(x, z)

R2 = p(x, y)→ ∃z p(x, z) ∧ p(z, z)

R3 = p(x, y)→ ∃z p(y, z)

Here is a R-derivation D from (F,R):

∅ F Z0 = F 0

t1 = (R1, {x 7→ a}) F1 = F ∪ {p(a, zt1)} Z1 = F1 1

t2 = (R2, {x 7→ a, y 7→ zt1}) F2 = F1 ∪ {p(a, zt2), p(zt2 , zt2)} Z2 = F2

t3 = (R3, {x 7→ a, y 7→ zt1}) F3 = F2 ∪ {p(zt1 , zt3)} Z3 = F3 2

t4 = (R3, {x 7→ zt1 , y 7→ zt3}) F4 = F3 ∪ {p(zt3 , zt4)} Z4 = F4 3

...
...

...
...

...
...

tn = (R3, {x 7→ ztn−2 , y 7→ ztn−1}) Fn = Fn−1 ∪ {p(ztn−1 , ztn)} Zn = Fn n-1

Below is a representation of the (evolution of the) active factbase:
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The above R-derivation can grow infinitely, however none of the applications

of rule R3 adds anything new to our factbase. Indeed, for all i ≤ n, F2 |= Fi.

Lastly, note that by adding an application of R2 between every two applications

of R3 we can also create an infinite exhaustive R-derivation from (F,R). �

Following the derivation of the above example, we can see how, when t2 is ap-

plied, the atom p(a, zt1) becomes redundant and moreover it holds that op(t2)

is a retract of op(t2)∪{p(a, zt1)}. But the whole chain of rule applications that

results in the non-termination of a derivation like D, is based on the existence

(and “survival”) of this atom after the application of t2. Therefore what we

can do is to scan for possible pieces of the factbase that are homomorphic to a

subset of the output of our current trigger, and remove them from the resulting

factbase. The vacuum chase does this and even more: it also divides the output

of the trigger to pieces, and adds only those which are necessary to be added.

Here we introduce a few notions that are needed to specify the vacuum and

the frugal chase. Let t = (R, π) be a trigger. An output piece of t is a minimal

non-empty subset op(t) ⊆ op(t) with the property that if A ∈ op(t), then

for every A′ ∈ op(t), if the atoms A and A′ have at least one common new

variable, i.e. if nul(op(t)) ∩ var(A) ∩ var(A′) 6= ∅, then it holds that A′ ∈
op(t).

Example “FRUGBETA” 14: Let R = p(x, y) → ∃z∃w p(z, x) ∧ p(y, w),

π = {x 7→ a, y 7→ b} and t = (R, π). Then the pieces in the head of R

are {p(z, x)} and {p(y, w)}, whereas the pieces in op(t) are {p(zt, a)} and

{p(b, wt)}. �
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Now suppose that {op1(t), ...,opn(t)} are the output pieces of a trigger t and

let F be a factbase. The frugal output frop(t, F ) of t with respect to F is the

union of all the pieces opi(t) ⊆ op(t) which have the property that F is not a

retract of F ∪ opi(t).

Example “FRUGBETA” 15 (continued from Example 14):
Let F = {p(a, b), p(b, c)}. We can see that F is a retract of F ∪ {p(b, wt)} (by

mappingwt to c), whereas F ∪ {p(zt, a)} is a core. Therefore the frugal output

of t with respect to F is frop(t, F ) = {p(zt, a)}. �

Finally, suppose that Z ⊆ FD, where D is a derivation. A piece P in Z

is subsumed by frop(t, Z) if there is a retraction σ from frop(t, Z) ∪ P to

frop(t, F ). A piece P in Z is isomorphically subsumed by frop(t, Z) if there

is an isomorphism σ from P to a subset of frop(t, Z) such that σ is also a

retraction from frop(t, Z) ∪ P to frop(t, F ).

Example “FRUGBETA” 16 (continued from Examples 14 and 15): Suppose

that Z = F ∪ {p(zt, a)}. Since only one atom has a variable in Z, each atom

is a piece in Z. Let R′ = p(x, y)→ ∃z p(z, x) ∧ s(z) and t′ = (R′, π). Then

we have only one piece in op(t′) (itself). And frop(t′, Z) = op(t′). Then,

by mapping zt to zt′ we can see that the piece {p(zt, a)} of Z is subsumed by

frop(t′, Z). �

The vacuum chase removes all the pieces that are subsumed by the frugal output

of the current trigger t with respect to the current active factbase Z, while the

frugal chase removes all the pieces that are isomorphically subsumed by the

frugal output of t with respect to Z. In particular, we denote with:

- V(t, Z) the union of all the pieces in Z that are not subsumed by

frop(t, Z).

- F(t, Z) the union of all the pieces in Z that are not isomorphically sub-

sumed by frop(t, Z).

We are now ready to provide the definitions of the vacuum and the frugal chase:

Definition 4.12 (Vacuum & Frugal Chase). LetD = (t∗, F∗, Z∗) be a derivation

from (F,R). D is a vacuum derivation if for all i > 0 holds that
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• the trigger ti is R-applicable to Zi−1 and

• Zi = V(ti, Zi−1) ∪ frop(ti, Zi−1).

D is a frugal derivation if for all i > 0 holds that

• the trigger ti is R-applicable to Zi−1 and

• Zi = F(ti, Zi−1) ∪ frop(ti, Zi−1). a

By definition, for every Z and t holds that V(t, Z) ⊆ F(t, Z), i.e. the vac-

uum chase removes from the active factbase all the redundant atoms that the

frugal chase removes, and even more. But from an algorithmic viewpoint, it

does not seem that calculating V(t, Z) is on average going to be much harder

than calculating F(Z, t).8 So then why choose F(t, Z) and restrict the removal

of redundant atoms? The initial specification of the frugal chase [28, 59], al-

though equivalent with the one presented above, assumes another operational

perspective, from where the progression from frugal chase to vacuum chase is

not at all evident. In the appendix, Section (D), we elaborate on this point.

We will use the abbreviation V- and F-chase for vacuum and frugal chase

and V- and F-derivation for vacuum and frugal derivations respectively. Con-

tinuing on the Example 13, we demonstrate how the frugal and the vacuum

chase will behave in this case:

Example “FRUGALPHA” 17 (continued from Example 13): Here is a

F-derivation D′ from (F,R):

∅ F Z ′0 = F 0

t1 = (R1, {x 7→ a}) F ′1 = F1 = F ∪ {p(a, zt1)} Z ′1 = F ′1 1

t2 = (R2, {x 7→ a, y 7→ zt1}) F ′2 = F ′1 ∪ {p(a, zt2), p(zt2, zt2)} Z ′2 = F ′2 \ {p(a, zt1)} 2

We provide a representation of ZD
′
:

8The complexity of the graph isomorphism problem is in NP, and it has not been shown NP-complete, whereas
retraction is NP-complete.
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We can see thatD′ is terminating since there is no further trigger fromR that is

R-applicable on Z2. Lastly, notice that D′ is also a (terminating) V-derivation,

since in this case V(t1, Z0) = F(t1, Z0) and V(t2, Z1) = F(t2, Z1). �

From the relation V(t, Z) ⊆ F(t, Z) (for every t and Z), we conclude that

every terminating F-derivation (such as the one in the above example) corre-

sponds to a terminating V-derivation from the same knowledge base (by ap-

plying triggers with the same order we produce smaller active factbases). This

observation will be useful when classifying chase variants with respect to ter-

mination in the next section. In our examples we mainly use derivations which

belong to both the frugal & the vacuum chase, because it facilitates the deduc-

tion of several results. Notice however that there is no containment relation

between those two very similar chase variants, i.e. a V-derivation is not neces-

sarily a F-derivation and vice versa.

4.3.2 Parallel Chase & Core Chase

Except from the capability of deleting redundant atoms from the active factbase,

the formalism introduced in Definition 4.1 can also represent an important prop-

erty of potential chase variants, namely the parallel application of rules. This

is particularly useful when combined with a breadth-first prioritization of rule

applications. Therefore we provide the following definition of a synchronous

(breadth-first) derivation, based on R-applicability, which can be seen as a su-

perclass of derivations that can serve as a general platform for the definition of
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different chase algorithms. The choice of R-applicability condition is in accor-

dance with how the parallel and core chase were first introduced in the seminal

paper [18]. We remind that we call rank mark the last element of each rank in

a rank compatible derivation.

Definition 4.13 (Synchronous Derivation). Let D = (t∗, F∗, Z∗) be a deriva-

tion. We call D a synchronous derivation if for every i > 0,

• rank(ti) ≥ rank(ti−1), i.e. D is rank compatible,

• the trigger ti is R-applicable on Zi−1 and

• if there exist at least two different triggers that are R-applicable on Zi−1,

it holds that Zi = Zi−1.

Then, for every two consecutive rank marks Dj and Di in D, we denote the

rank’s union of transitory factbases with F̂i =
⋃
j<`≤i

F`. a

In other words, in a synchronous derivation the active factbase can only change

in the rank marks and is static otherwise. Note that an equal way of specifying

F̂i is as Zj ∪ op(tj+1) ∪ · · · ∪ op(ti). As a result of the conditions stated

above, we cannot change the active factbase unless we have already applied

all R-applicable triggers. This conforms with the concept of a breadth-first

derivation, as we have seen with the α-operator in Section 2.2 (albeit based

on applicability rather than R-applicability), with the E-chase in the previous

section (using E-applicability) and with the general Definition 4.8. Yet in this

case, the concept is enforced by a condition imposed on the active factbase.

Because there is no constraint concerning the treatment of the active fact-

bases in rank marks, the whole class of synchronous derivations constitutes a

chase variant with a rather vague functionality. Nevertheless, it is useful for

classification purposes as all the chase variants that are included in the class of

synchronous derivations have several common properties. It is easy to show the

following:
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Proposition 4.2. Let X be a chase variant contained in the class of synchronous

derivations. Then X is a breadth-first chase variant, i.e. every X-derivation is a

breadth-first X-derivation. ♣

Proof: We use contradiction. LetD be an X-derivation that is not a breadth-first

X-derivation. Then there is a rank k, and a prefix Dk of D which includes all

elements of rank at most k in D such that there is a trigger t of rank k in D
that is X-applicable on Dk. So t is R-applicable on ZD

k

. But since t does not

appear in D, it is not R-applicable on ZD
k−1

. So there is a retraction h from

op(t) ∪ ZDk−1 to ZD
k−1

. Let i be the length of Dk and let g be the retraction

from F̂i to ZD
k

. We know that ZD
k−1 ⊆ F̂i. So we have g ◦ h(op(t)) ⊆ ZD

k

.

Moreover, since sp(t) ∈ ZD
k

we also know that dom(g) ∩ var(sp(t)) = ∅.
Therefore also dom(g ◦ h) ∩ var(sp(t)) = ∅, hence g ◦ h is a retraction from

op(t) ∪ ZDk to ZD
k

. This means that t is not R-applicable on ZD
k

, which is a

contradiction. �

Now we use the the synchronous derivation platform to present two more

non-monotonic chase variants (originally introduced in [18]). When the spec-

ification of the active factbases in the rank marks involves simply adding the

atoms produced at this breadth-first level, the resulting chase is called parallel

chase.

Definition 4.14 (Parallel Chase). A parallel derivation is any synchronous

derivation D = (t∗, F∗, Z∗) from (F,R) where for every rank mark k we have

Zk = F̂k. a

Again, we will mostly be using the abbreviation P-derivation and P-chase

when discussing this chase variant.

Example 18: We have that F = {p(a, b)} andR = {R} where:

R = p(x, y)→ ∃z p(y, z) ∧ p(z, z) ∧ p(z, x)

Below is the P-derivation D from (F,R):

61



∅ F0 = F Z0 = F 0

t1 = (R,{x 7→ a, y 7→ b}) F1 = F ∪ {p(b, zt1), p(zt1, zt1), p(zt1, a)} Z1 = F1 1

t2 = (R,{x 7→ b, y 7→ zt1}) F2 = Z1 ∪ {p(zt1, zt2), p(zt2, zt2), p(zt2, b)} Z2 = Z1

t3 = (R,{x 7→ zt1 , y 7→ a}) F3 = Z1 ∪ {p(a, zt3), p(zt3, zt3), p(zt3, zt1)} Z3 = F2 ∪ F3 2

t4 = (R,{x 7→ zt1 , y 7→ zt2}) F4 = Z3 ∪ {p(zt2, zt4), p(zt4, zt4), p(zt4, zt1)} Z4 = Z3

t5 = (R,{x 7→ zt3 , y 7→ zt1}) F5 = Z3 ∪ {p(zt1, zt5), p(zt5, zt5), p(zt5, zt3)} Z5 = F4 ∪ F5 3

In Figure 4.5 we see a representation of ZD. D is a terminating P-derivation of

a b

zt1
zt2zt3

zt4zt5

Figure 4.5: Example 18, representation of ZD.

depth 3, as there is no trigger fromR that is R-applicable on Z5. �

The parallel chase in itself can be regarded as a deterministic breadth-first ver-

sion of the restricted chase, however its capability of detecting redundancies

is even weaker, as R-derivations have the advantage that applicability is tested

against factbases that include whatever new information was added in the cur-

rent rank. On the other hand, based on the concept of a synchronous derivation,

we can define the chase variant which is known to filter out the most redun-

dancy:

Definition 4.15 (Core Chase). A core derivation is any synchronous deriva-

tion D = (t∗, F∗, Z∗) from (F,R) where for every rank mark k we have

Zk = core(F̂k). a
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We abbreviate with C-derivation and C-chase. To demonstrate how the core

chase works, we resume discussion around Example 3.

Example “GENERIC” 19 (continued from Examples 3, 4 and 8): We will be

working on the same knowledge base, while specifying a different derivation

this time. We remind that F = {p(a, b), p(c, d), r(e)} and R is the following

set of rules:

R1 = p(x, y) ∧ r(z)→ p(y, z)

R2 = p(x, y) ∧ p(y, z)→ ∃u p(z, u)

R3 = p(x, y) ∧ p(x, z)→ p(y, z)

We display a C-derivation D′ from (F,R). Notice that we use the same trig-

gers in D′ as were used in D. But the order of the triggers is different in this

derivation. This results to different factbases, which are denoted with a prime

(e.g. F ′i , Z
′
i), to differentiate with those found in D.

∅ F Z ′0 = F 0

t1 = (R1, {x 7→ a, y 7→ b, z 7→ e}) F ′1 = F ∪ {p(b, e)} Z ′1 = F

t4 = (R1, {x 7→ c, y 7→ d, y 7→ e}) F ′2 = F ′1 ∪ {p(d, e)} Z ′2 = F

t5 = (R3, {x 7→ a, y 7→ b, z 7→ b}) F ′3 = F ′2 ∪ {p(b, b)} Z ′3 = F

t6 = (R3, {x 7→ c, y 7→ d, z 7→ d}) F ′4 = F ′3 ∪ {p(d, d)} Z ′4 = F ′4 1

t2 = (R2, {x 7→ a, y 7→ b, z 7→ e}) F ′5 = Z ′4 ∪ {p(e, ut2)} Z ′5 = Z ′4

t7 = (R2, {x 7→ c, y 7→ d, z 7→ e}) F ′6 = F ′5 ∪ {p(e, ut7)} Z ′6 = Z ′4

t8 = (R1, {x 7→ b, y 7→ e, z 7→ e}) F ′7 = F ′6 ∪ {p(e, e)} Z ′7 = Z ′4 ∪ {p(e, e)} 2

Here Z ′7 is a core of F ′5 ∪ F ′6 ∪ F ′7. In Figure 4.6 we can see FD
′
, where atoms

are colored with respect to rank (blue, red, green) and dotted lines are used

a b

c d

e
r

ut7

ut2

Figure 4.6: Example “GENERIC”, C-chase: representation of FD
′
.
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to represent the two atoms that are produced but not added to the final active

factbase (as they do not belong to the core). �

The C-derivation of the above example is terminating, since there are no more

possible rule applications on Z ′7. Notice that in the core chase, we apply a

trigger if it is R-applicable to the active factbase. When Z is a core and op(t)

an atomset, then there exists a homomorphism from Z ∪op(t) to Z if and only

if there exists a retraction from Z ∪ op(t) to Z. This is why R-applicability is

sufficient.

4.3.3 Submonotonicity

So far we have discussed monotonic and non-monotonic chase variants. There

is however one more characterization, which divides the chase landscape in an-

other fairly interesting and, as it turns out, important manner. A non-monotonic

derivation can nonetheless have the property that the active factbase is increas-

ing monotonically. As we will see in Subsection 5.2.3, several key notions are

related to this property.

Definition 4.16. A derivation D = (t∗, F∗, Z∗) is submonotonic if for every i

holds that Zi ⊆ Zi+1. A chase variant X is submonotonic if every X-derivation

is submonotonic. a

It is obvious that every monotonic derivation is a submonotonic derivation.

Therefore we can say that the O-, SO-, R- and E-chase are submonotonic

chase variants. From the three chase variants that we introduced in this section,

only the P-chase is submonotonic. Indeed from Example 13.17 we can see

that the F-chase and the V-chase are not submonotonic. Furthermore, in the

P-chase by definition we never remove atoms from the active factbase. On the

other hand here is an example showing that the C-chase is not submonotonic:

Example “EQUICORE” 20 (continued from Example 11): We remind that

F = {p(a, b)} andR is the following set of rules:

R1 = p(x, y)→ ∃z p(y, z)

R2 = p(x, y) ∧ p(y, z)→ p(y, y)
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Below is the C-derivation D′ from (F,R):

∅ F ′0 = F Z ′0 = F ′0 0

t1 = (R1,{x 7→ a, y 7→ b}) F ′1 = F ∪ {p(b, zt1)} Z ′1 = F ′1 1

t2 = (R2,{x 7→ a, y 7→ b, z 7→ zt1}) F ′2 = F ′1 ∪ {p(b, b)} Z ′2 = F ′2 \ {p(b, zt1)} 2

We see that the derivation D′ is very similar with the E-derivation D from

(F,R) which is presented in the previous section. Indeed it holds that

trig(D′) = trig(D), F ′i = Fi for every i, Z ′0 = Z0 and Z ′1 = Z1. The only

difference is that there is one element removed from the final factbase Z ′2. We

have that D′ is terminating as a C-derivation, since there is no trigger from R
that is R-applicable on Z ′2. Lastly,D′ is not submonotonic, as the atom p(b, zt1)

belongs to Z ′1 but not to Z ′2. �

4.4 Comparing Chase Variants

Having specified a general platform in which a multitude of chase variants can

be defined, the need to find appropriate criteria of comparison of chase variants

emerges. In the first part of this section we define two such criteria, namely ter-

mination and elimination of redundancy. In the second part we explore whether

the breadth-first approach to forward chaining is sufficient when researching

properties related to depth and termination of derivations. We find that by re-

stricting a chase variant to only breadth-first derivations we obtain a different

behavior towards termination. We conclude that this restriction fundamentally

changes the nature of the chase variant and therefore for every chase variant

X, the chase variant comprised by all breadth-first X-derivations (named bf -X)

merits independent investigation. Figure 4.10, which can be found at the end of

this section, summarizes our findings with regards to termination.

4.4.1 Termination & Elimination of Redundancy

The first intuitive measure of comparison between chase variants relates to ter-

minating derivations. Notice that, as showcased by the Example 12, the fact
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that one R-derivation from a given knowledge base terminates, does not im-

ply that every exhaustive R-derivation from the same knowledge is finite (i.e.

terminating). This observation motivates the first important division between

chase variants:

Definition 4.17. A chase variant X is termination-order independent if for ev-

ery knowledge base (F,R), if there exists a terminating X-derivation D from

(F,R), then every exhaustive X-derivation from (F,R) is terminating. A chase

variant that is not termination-order independent is called termination-order de-

pendent. a

The O-chase is termination-order independent because by definition the choice

of which trigger to apply cannot cancel the applicability of other triggers. In

the Appendix (Section (B)) we show that SO-chase is termination-order in-

dependent. The E-chase and the C-chase terminate if and only if there is a

finite universal model of the knowledge base, so they are termination-order

independent, as is the P-chase where rules can be considered to be applied

synchronously. We have already seen a counter-example9 that shows that the

R-chase is termination-order dependent. And in the next subsection we will

provide a counter-example10 that shows that the F-chase and the V-chase are

termination-order dependent.

In chase variants that are termination-order dependent, the quest for optimal

ways to find a terminating derivation from a knowledge base (if there is one),

has interest and value. But in our study we are focusing in properties related

to when all derivations terminate. So continuing this discussion, the following

definition provides a measure of comparison of chase variants with regard to

termination:

Definition 4.18 (Strength of Termination). Let X and Y be two chase variants.

We say that X is as strong as Y with respect to termination, if for every knowl-

edge base (F,R), if every exhaustive Y-derivation from (F,R) is terminating,

then also every exhaustive X-derivation from (F,R) is terminating. If X is as

9Example 12.
10Example 24.
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strong as Y but Y is not as strong as X wrt termination, we will say that X is

stronger than Y wrt termination. If X is as strong as Y and Y is as strong as X,

we will say that X and Y are equivalent wrt termination. a

We will use the notation X ≥t Y , X >t Y and X ≡t Y to say that X is respec-

tively as strong as Y, stronger than Y and equivalent with Y wrt termination.

It is evident that strength of termination is a transitive relation. The following

proposition delineates the well known classication of the monotonic chase vari-

ants with respect to termination. At the end of this section we will provide a

table with the respective partial order of all the concerned chase variants with

respect to termination.

Proposition 4.3 (Monotonic Chase Termination Classification [37, 55]). It

holds that E-chase >t R-chase >t SO–chase >t O-chase. ♣

Termination is an important aspect of the chase, but it is an incomplete criterion

of comparison of chase variants. That is because in practice, the computational

complexity is related to the length of derivations and the potential expansion of

the (active) factbase. Those two parameters can fluctuate greatly independently

of whether a derivation terminates. Moreover, in a practical setting, we do not

know which derivations terminate, hence we do not only work with terminating

derivations.

All the chase variants presented in this thesis aim towards constructing a

universal model of the knowledge base. Although strength in termination as

defined above does certainly give a measure of the efficiency of chase variants

in constructing universal models, they do not provide information concerning

the length of derivations or the size of resulting factbases. As a more precise

criterion of (computational) comparison of chase variants, we specify the fol-

lowing:

Definition 4.19 (Elimination of Redundancy). Let X and Y be two chase

variants. X is as strong as Y in eliminating redundancy if for every finite

X-derivation D from a knowledge base (F,R), there is a Y-derivation D′ from

(F,R) such that
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i. trig(D) is a subset (not necessarily a subsequence) of trig(D′),

ii. D′ is minimal with the above property, i.e. there is no Y-derivationD′′ with

trig(D) ⊆ trig(D′′) ⊂ trig(D′) and

iii. ZD ⊆ ZD
′
.

If X is as strong as Y but Y is not as strong as X in eliminating redundancy, we

will say that X is stronger than Y (in eliminating redundancy). Lastly if X is as

strong as Y and Y is as strong as X in eliminating redundancy, we will say that

X and Y are equivalent in eliminating redundancy. a

We will use the notation X ≥r Y , X >r Y and X ≡r Y to say that X is

respectively as strong as Y, stronger than Y and equivalent with Y in eliminating

redundancy. So if X is as strong as Y, we know that for every X-derivation there

is a Y-derivation which includes the same rule applications without eliminating

more redundant atoms from the active factbase. But what is the connection

between strength in elimination of redundancy and strength in termination?

Proposition 4.4. Let X, Y be chase variants such that X is stronger than Y wrt

termination. Then Y is not as strong as X in eliminating redundancy. Symboli-

cally, X >t Y implies X 6≤r Y.

Proof: We know that there exists a knowledge base (F,R) such that all

X-derivations from (F,R) are terminating but there is a Y-derivation D
from (F,R) that is not terminating. Let n be the maximum length of any

X-derivation from (F,R). Then the prefix of D of length n + 1, according

to the above definition, provides a counter-example that shows that X is not as

strong as Y in eliminating redundancy. �

Notice that two chase variants can be incomparable with respect to the elimina-

tion of redundancy. In Example 13.17 we specify the F-derivationD′. It is easy

to see that the E-derivation with the same sequence of associated triggers nec-

essarily results in a bigger active factbase. Hence the E-chase is not as strong

as the F-chase in eliminating redundancy. Similarly, we know that E-chase is

stronger than the F-chase wrt termination. Hence from the above proposition

the F-chase is not as strong as the E-chase in eliminating redundancy.

68



Most definitions of chase variants allow for very different derivations from

the same knowledge base. Assuming our goal is to find terminating derivations,

we are looking for optimal strategies towards that goal. These strategies are di-

rected towards narrowing down the class of derivations that we are considering,

hence reducing the chase variant under examination. An intuitive and popular

strategy in such cases is the breadth-first forward chaining.

4.4.2 The Breadth-first Approach

In this subsection we investigate how restricting our interest to breadth-first

derivations affects termination. Informally speaking, a derivation which is not

breadth-first, can be seen as a derivation where the rules are applied with prior-

ity on a subset of the knowledge base. This can have a significant effect, in sev-

eral different occasions. First note that in Datalog all exhaustive O-derivations

have the same length but not necessarily the same depth, as illustrated by the

following example.

Example “DATALOG” 21: Let F = {p(a)} and R = {R1, R2, R3} where

R1 = p(x)→ q(x), R2 = q(x) → r(x), R3 = p(x) → r(x). Here is the

O-derivation D1:

∅ F Z0 = F

t1 = (R1, {x 7→ a}) F1 = F ∪ {q(a)} F1

t2 = (R2, {x 7→ a}) F2 = F1 ∪ {r(a)} F2

t3 = (R3, {x 7→ a}) F2 F2

and here is the O-derivation D2:

∅ F Z0 = F 0

t1 F1 F1

t3 F2 F2 1

t2 F2 F2 2

We can see that both derivations are exhaustive, however the depth of D1 is 2

whereas the depth of D2 is 1. �
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Nevertheless, among all exhaustive X-chase11 derivations in a Datalog setting

(i.e. Datalog ruleset and variable-free factbase), the class of breadth-first deriva-

tions are of minimal depth. We will show that this remains true for the oblivious

and semi-oblivious chase derivations when we expand the setting to existen-

tial rules (i.e. considering any knowledge base of positive existential rules).

But first we provide a definition and discuss several useful properties of the

SO-chase and the O-chase.

Definition 4.20. Let t1 = (R, π), t2 = (R, π′) be two triggers. We say that

t1 and t2 are SO-equivalent if π and π′ agree in their mappings of the frontier

variables of R. a

Hence when constructing a SO-derivation, we are allowed to choose at most

one trigger from the corresponding SO-equivalence class. In particular:

Remark 4.3. The following observations result directly from the above defini-

tion:

i. Let t and t′ be two SO-equivalent triggers. Then there is an isomorphism

τ : nul(op(t))→ nul(op(t′)) from op(t) to op(t′).

ii. Let D be an O-derivation. D is a SO-derivation if and only if for ev-

ery pair of triggers t1 6= t2 where t1, t2 ∈ trig(D) holds that t1 is not

SO-equivalent with t2.

iii. Let t be a trigger that is O-applicable on a derivation D. It holds that

t is also SO-applicable on D if and only if there does not exist a trigger

t′ ∈ trig(D) such that t′ is SO-equivalent with t. ♣

Now we consider the “reshuffling” of a derivation in a rank compatible fashion.

We want to apply this in particular to O- and SO-derivations. Nonetheless we

prove a proposition that concerns any derivation. Notice that every derivation

has a rank compatible prefix, since in the worst case rank compatibility holds

for the first two elements. We show that given a finite derivation, any trigger

of a rank that corresponds to its rank compatible prefix is O-applicable to this
11here X ∈ {O,SO,R,E,P,F,C}.
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D0 D1 Dn

rank compatible prefix D′

prefix D

some derivation

(t, Fm, Zm)

Figure 4.7: Representation of the rank compatible trigger sorting.

prefix, even if it appears much later in the derivation. Furthermore the atoms

produced by this trigger when applied to the prefix will have lower or equal

ranks in comparison with their ranks in the original derivation. Figure 4.7 pro-

vides an intuition of this operation, using the notation of the following propo-

sition. In the general case of an X-chase, we do not know if the trigger is

X-applicable or how its application will affect the active factbase. But for O-

and SO-derivations, we can use this operation repeatedly until we arrive at a

rank compatible derivation.

Proposition 4.5 (Rank compatible trigger sorting). Let D be a finite derivation

with t its last trigger and D′ = D0, D1, ..., Dn a rank compatible prefix of D
such that

i) max
{
rank(t′)

∣∣t′ ∈ trig(D′)
}
≤ rank(t) and

ii) min
{
rank(t′)

∣∣t′ ∈ trig(D) \ trig(D′)
}
≥ rank(t).

Then t is O-applicable on D′ and for any derivation

D′′ = D0, D1, ..., Dn, (t, F
′′
n+1, Z

′′
n+1) holds that rankD′′(A) ≤ rankD(A)

for every A ∈ op(t).

Proof: Let D = (t∗, F∗, Z∗). We know that t is applicable on FD
′

because

all atoms of smaller rank then t are already produced in D′, so sp(t) ⊆ FD
′
.

And also t 6∈ trig(D′), so t is O-applicable on D′. In addition we have that

rankD(t) = rankD′′(t) since the rank of a trigger depends only on the ranks of

its supporting atoms (which does not change here). Then we have three cases:
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· A is produced by t in D. Then A has the same rank in D′′, which is the

rank of t.

· A is produced by a trigger ti where i ≤ n in D. Then A is already

produced by the time t is applied in both D and D′′, and it is produced in

their common prefix, so rankD′′(A) = rankD(A).

· A is produced by a trigger ti where i ≥ n + 1 in D. Then by ii) we

know that rankD(t) ≤ rankD(ti), so also rankD′′(t) ≤ rankD(ti), so

rankD′′(A) ≤ rankD(A).

Hence rankD′′(A) ≤ rankD(A) holds in all cases. �

In accordance with this last result, given an O-derivation that is not rank com-

patible, if we try to rearrange it in a rank compatible manner, by moving all trig-

gers to their respective rank, we will obtain an O-derivation that is of smaller or

equal depth. Following point ii. of Remark 4.3, we can use the same technique

to rearrange SO-derivations. In addition, it is important to recognize that this

process optimizes the depth of derivations. Note that for other chase variants,

rearranging triggers is not as trivial, as there are restrictions in the applicability

of triggers and in the evolution of the active base. Now by employing these

findings, we will show that the breadth-first approach is useful when consid-

ering problems related to termination in the oblivious and the semi-oblivious

chase.

Proposition 4.6. For each terminating O-derivation (respectively

SO-derivation) from (F,R) there exists a breadth-first terminating

O-derivation (respectively SO-derivation) from (F,R) of smaller or equal

depth.

Proof: Case O: Let D be a terminating O-derivation from (F,R). Let T be

a re-ordering of trig(D) according to rank (i.e. rank compatible). By defini-

tion of rank, rearranging the sequence of triggers according to rank compatibil-

ity does not affect O-applicability. Therefore, let D′ be an O-derivation from
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(F,R) such that trig(D′) = T . IfD′ is not terminating, then there is a new trig-

ger t O-applicable on ZD
′
. But ZD

′
= FD

′
= FD = ZD so t is O-applicable

on D as well. Then D is not terminating, but that is a contradiction. There-

fore D′ is terminating. If D′ is not breadth-first, then there is a new trigger

t O-applicable in some intermediate rank on a subset Z ′ of ZD
′
. But then t is

also O-applicable on ZD
′

and following the same argumentation as above we

obtain again that D is not terminating, which is a contradiction. Therefore D′

is breadth-first. And since D′ was obtained based on rank compatible trigger

sorting, from Proposition 4.5, we obtain that it is of smaller or equal depth than

D.

Case SO: Let D be a terminating SO-derivation from (F,R). As

per Remark 4.3.iii, when O-applicability is secured, the condition for

SO-applicability is non-SO-equivalence. Hence, we can rearrange trig(D)

in a rank compatible manner, obtaining T , and then we have a SO-derivation

D′ from (F,R) with trig(D′) = T . So D′ is rank compatible and moreover it

is terminating (otherwise D would also not be terminating). And from Propo-

sition 4.5, we obtain that D′ is of smaller or equal depth than D. However

we do not know if D′ is breadth-first. Nevertheless we can transform it to a

breadth-first derivation. This is achieved by starting from the lowest ranks and

verifying if all SO-applicable triggers are indeed applied. If not, we add the

trigger one by one to the derivation. Each time that we add a trigger, we re-

move a SO-equivalent trigger of a higher rank. Since they do not have exactly

the same output (albeit isomorphic), the following triggers need to change, fol-

lowing the renaming of the new variable. This process can only decrease the

ranks of triggers and atoms and hence also the overall depth. A detailed proof

is given in the Appendix(Section (B)). �

In the previous subsection we discussed termination-order independence and

saw that O-chase and SO-chase have this property. On the other hand, as

demonstrated in Example 12 at the end of Section 4.2, in the restricted chase

the order of application of the rules can have a decisive impact on whether a

derivation will terminate or not. From that example we saw that even chang-
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ing the order of the rule applications within a certain rank, the property of

(non-)termination is influenced. One can have an intuitive tendency to con-

sider the breadth-first approach as the most efficient in forward chaining. This

is a result of the premise that by ignoring a part of the knowledge base, we lose

information that would have been beneficial when performing rule applications

of higher ranks. As we will see, this is not true in general. In some chase

variants there can be atoms which when produced early on in a derivation, they

hinder the detection of redundancies later.

As a corollary of Proposition 4.6 combined with the fact that both the

O-chase as well as the SO-chase are termination-order independent, we con-

clude that it suffices to consider breadth-first derivations when investigating

problems related to the termination and depth of derivations for oblivious and

semi-oblivious chase. In addition, the equivalent chase is by definition breadth-

first, as is every chase variant which is based on the concept of a synchronous

derivation (from Proposition 4.2). This leaves the restricted, the frugal and the

vacuum chase as the chase variants where we have to question the effectiveness

of the breadth-first approach.

Example 22: Let F = {p(a, b)} andR the following set of rules:

R1 = p(x, y)→ ∃z p(y, z)

R2 = p(x, y)→ ∃z q(y, z)

R3 = q(y, z)→ p(y, y)

Here is a terminating R-derivation D from (F,R):

∅ F Z0 = F 0

t1 = (R2, {x 7→ a, y 7→ b}) F1 = F ∪ {q(b, zt1)} Z1 = F1 1

t2 = (R3, {x 7→ b, y 7→ zt1}) F2 = F1 ∪ {p(b, b)} Z2 = F2 2

The trigger t = (R1, {x 7→ a, y 7→ b}) is R-applicable on Z1, and it is of

rank 1, whereas t2 is of rank 2. Therefore, D is not breadth-first. If we would

have made that rule application before applying t2 and then completed all rule

applications up to rank 2 (in order to make it breadth-first) we would obtain D′:
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∅ F Z ′0 = F 0

t1 = (R2, {x 7→ a, y 7→ b}) F ′1 = F ∪ {q(b, zt1)} Z ′1 = F ′1

t = (R1, {x 7→ a, y 7→ b}) F ′2 = F ′1 ∪ {p(b, zt)} Z ′2 = F ′2 1

t2 = (R3, {x 7→ b, y 7→ zt1}) F ′3 = F ′2 ∪ {p(b, b)} Z ′3 = F ′3

t′ = (R1, {x 7→ b, y 7→ zt}) F ′4 = F ′3 ∪ {p(zt, zt′)} Z ′4 = F ′4

t′′ = (R2, {x 7→ b, y 7→ zt}) F ′5 = F ′4 ∪ {q(zt, zt′′)} Z ′5 = F ′5 2

It is easy to see that D′ is not a terminating R-derivation as

t′′′ = (R1, {x 7→ zt, y 7→ zt′}) is R-applicable on ZD
′
. And furthermore,

if we do another round of similar rule applications respecting the breadth-first

conditions, we will be found with a similar non-terminating R-derivation. In

other words, while there exists a terminating R-derivation from (F,R), every

breadth-first R-derivation from (F,R) is non-terminating. �

We exhibited a knowledge base where every exhaustive breadth-first

R-derivation is infinite but there exists a terminating R-derivation. Now we

will show a case where every exhaustive breadth-first R-derivation is terminat-

ing but there exists an infinite exhaustive R-derivation.

Example 23: Let F = {p(a, b)} andR the following set of rules:

R1 = p(x, y)→ q(y)

R2 = p(x, y) ∧ q(y)→ ∃z p(y, z)

R3 = p(x, y)→ p(y, y)

By applying the rules in their order on p(a, b) we obtain the expanded fact-

base {p(a, b), q(b), p(b, zt2), p(b, b)}. Now we can reapply the rules on the new

atom p(b, zt2) producing a similar expansion and this process can be repeated

endlessly producing an infinite exhaustive R-derivation D:
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∅ F Z0 = F

t1 = (R1, {x 7→ a, y 7→ b}) F1 = F ∪ {q(b)} Z1 = F1

t2 = (R2, {x 7→ a, y 7→ b}) F2 = F1 ∪ {p(b, zt2)} Z2 = F2

t3 = (R3, {x 7→ a, y 7→ b}) F3 = F2 ∪ {p(b, b)} Z3 = F3

t4 = (R1, {x 7→ b, y 7→ zt2}) F4 = F3 ∪ {q(zt2)} Z4 = F4

t5 = (R2, {x 7→ b, y 7→ zt2}) F5 = F4 ∪ {p(zt2, zt5)} Z5 = F5

t6 = (R3, {x 7→ b, y 7→ zt2}) F6 = F5 ∪ {p(zt2, zt2)} Z6 = F6

... ... ... ... ... ...

On the other hand, every breadth-first R-derivation from (F,R) includes only

the triggers t1 and t3. That is because their application (in whatever order)

leads to a factbase on which t2 is not R-applicable, guaranteeing termination.

Notice that the above derivation D is also a F-derivation because there is

no point where the (frugal) output of a trigger isomorphically subsumes a piece

of the respective factbase. But D is not a V-derivation, because in such a set-

ting we would have to remove the atom p(b, zt2) when we add p(b, b). We can

however create a similar example for the V-chase, showing that all exhaustive

breadth-first V-derivations are terminating but there exists an infinite exhaus-

tive V-derivation, if we modify our ruleset as follows:

R1 = p(x, y)→ q(y)

R′2 = p(x, y) ∧ q(y)→ ∃z p(y, z) ∧ r(y, z)

R3 = p(x, y)→ p(y, y)

R4 = p(x, y)→ r(y, y)

Let R′ = {R1, R
′
2, R3, R4}. Following a similar strategy like in D, i.e. by ap-

plying the rules in the given order, we create an infinite exhaustive V-derivation

D′ = (t′∗, F
′
∗, Z

′
∗) from (F,R′):
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∅ F Z0 = F

t′1 = (R1, {x 7→ a, y 7→ b}) F ′1 = F ∪ {q(b)} Z ′1 = F ′1

t′2 = (R′2, {x 7→ a, y 7→ b}) F ′2 = F ′1 ∪ {p(b, zt′2), r(b, zt′2)} Z ′2 = F ′2

t′3 = (R3, {x 7→ a, y 7→ b}) F ′3 = F ′2 ∪ {p(b, b)} Z ′3 = F ′3

t′4 = (R4, {x 7→ a, y 7→ b}) F ′4 = F ′3 ∪ {r(b, b)} Z ′4 = F ′4

t′5 = (R1, {x 7→ b, y 7→ zt′2}) F ′5 = F ′4 ∪ {q(zt′2)} Z ′5 = F ′5

t′6 = (R′2, {x 7→ b, y 7→ zt′2}) F ′6 = F ′5 ∪ {p(zt′2, zt′6), r(zt′2, zt′6)} Z ′6 = F ′6

t′7 = (R3, {x 7→ b, y 7→ zt′2}) F ′7 = F ′6 ∪ {p(zt2, zt2)} Z ′7 = F ′7

t′8 = (R4, {x 7→ b, y 7→ zt′2}) F ′8 = F ′7 ∪ {r(zt2, zt2)} Z ′8 = F ′8

... ... ... ... ... ...

Below we find the factbase Z ′8, with the usual colors representing the ranks but

notice that this time the derivation is not rank compatible, so the coloring does

not correspond to the order with which the atoms are produced:

a b zt′2 zt′5
p

r

q

Although D′ is infinite and exhaustive, every exhaustive breadth-first

V-derivation from (F,R′) is terminating since it will necessarily include the

triggers t′1, t
′
3 and t′4, resulting in a factbase on which no trigger from R′ is

R-applicable. �

In the above example we showed that there exist knowledge bases where every

exhaustive breadth-first F- or V-derivation is terminating but there exist infi-

nite exhaustive F- and V-derivations. Now we will show a case where every

exhaustive breadth-first F- or V-derivation is infinite but there exist terminating

F- and V-derivations.

Example “FRUGGAMMA” 24: Let F = {r(a)} and R the following set of

rules:
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R1 = q(x, v) ∧ p(x, y)→ ∃w p(x,w) ∧ t(w)

R2 = r(x)→ ∃y p(x, y)

R3 = r(x) ∧ p(x, y)→ ∃w q(x,w)

R4 = p(x, y)→ ∃z p(y, z)

R5 = t(x)→ p(x, x)

Here is a breadth-first V- and F-derivation D from (F,R):

∅ F Z0 = F 0

t1 = (R2, {x 7→ a}) F1 = F ∪ {p(a, yt1)} Z1 = F1 1

t2 = (R3, {x 7→ a, y 7→ yt1}) F2 = F1 ∪ {q(a, wt2)} Z3 = F3

t3 = (R4, {x 7→ a, y 7→ yt1}) F3 = F2 ∪ {p(yt1, zt3)} Z2 = F2 2

t4 = (R1, {x 7→ a, v 7→ wt2, y 7→ yt1}) F4 = F3 ∪ {p(a, wt4), t(wt4)} Z4 = F4

t5 = (R4, {x 7→ yt1, y 7→ zt3}) F5 = F4 ∪ {p(zt3, zt5)} Z5 = F5 3

t6 = (R5, {x 7→ wt4}) F6 = F5 ∪ {p(wt4, wt4)} Z6 = F6

t7 = (R4, {x 7→ zt3, y 7→ zt5}) F7 = F6 ∪ {p(zt5, zt7)} Z7 = F7 4

t8 = (R4, {x 7→ zt5, y 7→ zt7}) F8 = F7 ∪ {p(zt7, zt8)} Z8 = F8 5

... ... ... ... ... ...

tn = (R4, {x 7→ ztn−2, y 7→ ztn−1}) Fn = Fn−1 ∪ {p(ztn−1, ztn)} Zn = Fn
...

In Figure 4.8 we see the active factbase of D after the application of t8. The

curvy arc represents predicate q, whereas r is represented by a cycle and t by

a square. The dotted lines serve to demonstrate how this kind of procedure can

continue (infinitely). We notice that D behaves exactly like a R-derivation, as

no atoms were removed during the chase, but it is also an infinite exhaustive

a

r

yt1

wt2

zt3

wt4

t zt5

zt7

zt8

Figure 4.8: Example “FRUGGAMMA”, breadth-first D: evolving Zi.
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F- and V-derivation. In addition, it is easy to verify that even if we changed

the ordering of the triggers, by respecting the breadth-first property, we would

not arrive at a terminating derivation. On the other hand, we have this V- and

F-derivation from (F,R), which we call D′:

∅ F Z ′0 = F 0

t1 = (R2, {x 7→ a}) F ′1 = F ∪ {p(a, yt1)} Z ′1 = F ′1 1

t2 = (R3, {x 7→ a, y 7→ yt1}) F ′2 = F ′1 ∪ {q(a, wt2)} Z ′2 = F ′2 2

t4 = (R1, {x 7→ a, v 7→ wt2, y 7→ yt1}) F ′3 = F ′2 ∪
{
p(a,wt4), t(wt4)

}
Z ′3 = F ′3 \{p(a, yt1)} 3

t6 = (R5, {x 7→ wt4}) F ′4 = F ′3 ∪ {p(wt4, wt4)} Z ′4 = F ′4 4

a

r

yt1

wt2

wt4

t

Figure 4.9: Example “FRUGGAMMA”, non-breadth-first D′: factbase FD
′
.

In the above figure we see FD
′
, where the atom that is removed from ZD

′
is

shown with a dashed line. D′ is a terminating F- and V-derivation, as there is

no trigger fromR that is R-applicable after the last rule application. �

In Example 22, we saw that by confining our attention to breadth-first

R-derivations from a given knowledge base, we might “miss” the existence of a

possible terminating R-derivation. On the other hand, we contribute a positive

result concerning the class of rank compatible R-derivations:

Proposition 4.7. For each terminating R-derivation from (F,R) there exists

a rank compatible terminating R-derivation from (F,R) of smaller or equal

depth.

Proof: Let D be a terminating R-derivation from F and R. Let trig(D) be

its sequence of associated triggers and let T be a sorting of trig(D) such that
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the rank of each element is greater or equal to the rank of its predecessors. Let

D′ be the derivation defined by applying, when R-applicable, the triggers using

the order of T . Because of the reordering, some of the triggers in T may no

longer be R-applicable in D′. Nevertheless, D′ respects the rank compatibility

property. We will show that it is a terminating R-derivation. Suppose that there

is a new trigger t /∈ T which is R-applicable on D′, hence it is R-applicable

on FD
′
. Then, since FD

′ ⊆ FD, we have that t is O-applicable on FD. But

because D is a terminating R-derivation, we know that t in not R-applicable

on FD. Let t1, ..., tm be the triggers of trig(D) that do not appear in T . So

FD = FD
′ ∪ op(t1) ∪ · · · ∪ op(tm) (4.1)

Since t is not R-applicable on FD we conclude that there is a substitution

σ : nul(op(t))→ term(FD) such that σ(op(t)) ⊆ FD. And since t1, ..., tm

are not R-applicable in D′ we know that there are substitutions σ1, ..., σm such

that for every i ∈ {1, ...,m} we have σi : nul(op(ti)) → term(FD
′
) and

σi(op(ti)) ⊆ FD
′
. Since new variables are indexed by triggers, the domains

of σ1, ..., σm are pairwise disjoint and we can define the substitution σ̇ =
m⋃
i=1

σi

which has the property that

σ̇
(
FD

′ ∪ op(t1) ∪ · · · ∪ op(tm)
)

= FD
′

(4.2)

Moreover, the domain of σ̇ is disjoint with the variable set var(sp(t)), be-

cause the new variables created from t1, ..., tm are not present in FD
′
. There-

fore the composition σ̇ ◦ σ retains nul(op(t)) as its domain. So by 4.1 and

σ(op(t)) ⊆ FD we can write

σ̇ ◦ σ
(
op(t)

)
⊆ σ̇

(
FD

′ ∪ op(t1) ∪ · · · ∪ op(tm)
)

which with 4.2 becomes

σ̇ ◦ σ
(
op(t)

)
⊆ FD

′
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so FD
′
is a retract of σ̇ ◦ σ

(
op(t)

)
. This implies that t is not R-applicable on

D′. That is a contradiction, which leads us to conclude that no such t exists,

therefore D′ is a terminating R-derivation. �

In the above (counter-)examples we noticed that in the restricted, the frugal

and the vacuum chase, i.e. when X ∈ {R,F,V}, the behavior of breadth-first

X-derivations towards termination is considerably different than the behavior

of X-derivations. We conclude that breadth-first derivations do not suffice for

studying the termination of the restricted, the frugal or the vacuum chase, unlike

the case for any X-chase variant where X ∈ {O,SO,E,P,C}. This implies

that other strategies, different than the breadth-first approach, might provide

good results for certain types of knowledge bases under certain types of chase

variants. This is an important observation in itself, and it is not very evident.

Following this observation it is appropriate to consider the breadth-first ap-

proach to a chase variant which is not by definition breadth-first, as a different

chase variant. After all, we are effectively restricting the class of derivations

in consideration in such a way that changes the overall features of this class.

Therefore we define:

Definition 4.21. Let X be a chase variant. The class of all breadth-first

X-derivations is identified as the bf -X-chase. a

By definition, for every chase variant X it holds that bf -X ≥t X. Seen under

this prism and considering Proposition 4.6 and Example 23, we summarize the

relations of chase variants with their breadth-first sub-classes:

Proposition 4.8. The following relations concerning termination of (breadth-

first) chase variants hold:

· bf -O ≡t O,

· bf -SO ≡t SO,

· bf -R >t R,

· bf -F >t F,
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· bf -V >t V. ♣

Notice that if we denote with rc-R-chase the class of all rank compatible

R-derivations, Proposition 4.7 does not guarantee that the rc-R-chase is equiv-

alent with the R-chase because the R-chase is termination-order dependent.

We will not be exploring the rc-R-chase any further in this thesis, thus this

question will be left open. However the relation between the P-chase and the

bf -R-chase needs a clarification. By definition we can see that the bf -R-chase

is as strong as the P-chase wrt termination. But what about the other direction?

Are the two chase variants equivalent wrt termination? The following example

shows that this is not the case.

Example 25: Let F = {p(a), p(b), p(c)} andR the following ruleset:

R1 = p(x)→ ∃z q(z, z)

R2 = q(x, x) ∧ q(y, y)→ ∃z q(x, z) ∧ q(z, x) ∧ q(z, z) ∧ q(y, z) ∧ q(z, y)

The triggers t1.1 = (R1, {x 7→ a}), t1.2 = (R1, {x 7→ b}) and

t1.3 = (R1, {x 7→ c}) are R-applicable on F . Every bf -R-derivation from

(F,R) is going to apply only one of the three adding the atom q(zt1, zt1) to

the factbase (where t1 ∈ {t1.1, t1.2, t1.3}). After that there are no more triggers

R-applicable to the factbase so the derivation is terminating at rank 1.

However all three t1.1, t1.2 and t1.3 will appear in every P-derivation

from (F,R) producing the atoms q(zt1.1, zt1.1), q(zt1.2, zt1.2) and q(zt1.3, zt1.3)

at the first rank. This explodes the number of triggers R-applicable on

the second rank. The reapplication of R2 in factbases of more than 2 ini-

tial q-loops, leads to infinite P-derivations. Indeed the knowledge base(
{q(c1, c1), q(c2, c2), q(c3, c3)}, {R2}

)
does not even have a finite universal

model. So every exhaustive P-derivation from (F,R) is infinite. �

Therefore the bf -R-chase is stronger than the P-chase wrt termination. In

Figure 4.10 we provide a comprehensive table of the different chase variants

and how they are related with respect to termination.

Much of our research has been done with the premise that the breadth-first

strategy maintains an evident superiority in comparison to other choices of per-

forming chase algorithms. Although there is arguably a lot of support for that
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Figure 4.10: Chase variants and strength of termination. The LC-chase is going
to be defined in Section 5.4.

claim, there are a number of elaborate examples, even from E- and C-chase,

when the demand to perform all rule applications of a certain rank before con-

tinuing to the next rank, prevented redundancies from being detected and stalled

the forward chaining process. We will provide relative examples later (see ex-

amples 37 and 31 in particular). We conclude that there is space for chase algo-

rithms which might produce shorter terminating derivations, i.e. chase variants

that are stronger in eliminating redundancy even from the C-chase (note that

this refers to length and not depth of derivations, as C-derivations always are of

optimal depth). Unfortunately such a quest is beyond the purpose of this study.

Nonetheless, the findings outlined in this section are a step forward in our un-

derstanding of the potential of the forward chaining mechanism on (positive)

existential rules.

4.5 Chase Graphs & Chase Space

In this section we provide some formal tools which can be useful when explor-

ing properties related to derivations, as well as in visualizing particular exam-

ples of derivations. Towards the end of this section, several foundational prop-

erties are demonstrated, which will be crucial to some of the results presented

in the next chapter.
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4.5.1 Ancestors & Descendants

Before we introduce what is a chase graph, we proceed to discuss a notion that

proves to be very useful in the context of derivations. This is the notion of

ancestors and descendants in a derivation, which is employed in most of what

follows in this thesis.

Definition 4.22 (Ancestors). Let D be a derivation from (F,R) and A ∈ FD,

where A is produced12 by t. Then every atom in sp(t) is called a direct an-

cestor of A in D. The (indirect) ancestor relation between atoms is defined as

the transitive closure of the direct ancestor relation, i.e. every direct ancestor of

an atom A is an ancestor of A and if an atom A1 is an ancestor of an atom A2

and A2 is an ancestor of an atom A3, then A1 is also an ancestor of A3. We will

represent the set of ancestors (inD) of a set of atoms Q ∈ FD as AncD(Q). The

inverse of the (direct) ancestor relation is called the (direct) descendant relation,

and the set of descendants of an atomset Q inD is denoted with DescD(Q). Fi-

nally, the ancestors and the descendants of an atomset Q which are of rank i in

D are denoted with AnciD(Q) and DesciD(Q) respectively. a

We accentuate that A ∈ op(t) does not necessarily imply that the atoms of

sp(t) are the direct ancestors of A in every derivation D with t ∈ trig(D).

That is becauseAmight not be produced by t inD, instead it might be produced

by some earlier trigger t′, in which case the atoms of sp(t′) are the direct ances-

tors of A in D. However, if A contains at least one variable from nul(op(t)),

then we know that A belongs uniquely to op(t) and is not found in the output

of any other trigger. Therefore in this case, knowing that t ∈ trig(D) ensures

that A is produced by t in D, hence the direct ancestors of A in D are veritably

the atoms of sp(t).

As we will see the ancestor relation facilitates a lot the analysis of deriva-

tions with respect to depth. Indeed, there is an evident correspondence between

the notion of ancestors and the notions of rank and depth. Even more, the
12We remind that an atom A is produced by a trigger ti in a derivation D = (t∗, F∗, Z∗) if ti is the first trigger

of trig(D) with the property A ∈ Fi \ Zi−1, i.e. only the part of the output of ti that has not been produced
earlier in D is indeed produced by ti in D. This guarantees that each atom is produced by at most one trigger in a
derivation.
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ancestor/descendant relation is linked with O-applicability as shown in the fol-

lowing:

Lemma 4.2. Let D be a derivation from (F,R) and A ∈ FD. Let

F ′ = Anc0
D(A). Let T be the subsequence13 of trig(D) which includes all the

triggers that produce an ancestor of A in D, as well as the trigger that pro-

duces A. Then T defines an O-derivation D′ from (F ′,R) with trig(D′) = T .

Moreover A ∈ F ′D
′
and AncD(A) ⊆ F ′D

′
.

Proof: By induction on the number of the triggers in T . If T = ∅, then D′ is

the trivial derivation from (F ′,R), including only the elementD′0 = (∅, F ′, F ′),

which is indeed an O-derivation. We assume that the lemma holds for all trigger

sequences T with |T | = n.

Let T = t1, ..., tn, tn+1 be a subsequence of trig(D) which comprises all

the triggers that produce an ancestor of an atom A ∈ FD, including the trigger

tn+1 that produces A. Then T ′ = t1, ..., tn is the merging of all the sequences

of triggers that produce the direct ancestors of A (respecting the ordering in

trig(D)). Each one of those sequences is of length at most n, therefore it

defines an O-derivation (by the induction hypothesis). In their merging T ′ no

trigger is repeated (since it is a merging), so T ′ also defines an O-derivationD′′

from (F ′,R). But F ′D
′′

includes all the ancestors of A in D, therefore tn+1 is

O-applicable on F ′D
′′
, producing the derivationD′ with trig(D′) = T . Finally,

A ∈ F ′D
′
and AncD(A) ⊆ F ′D

′
are resulting from the fact that all triggers that

produce these atoms in D are present in D′. �

Every (finite) ruleset has a certain bound b to the number of atoms that appear in

the rules’ bodies. This implies that each atom produced with forward chaining

has at most b direct ancestors. Furthermore, a chain of ancestors cannot exceed

the depth of a derivation. These observations lead to the following lemma:

Lemma 4.3 (The ancestor clue). Let D be a derivation from (F,R), where

max
{
|B|

∣∣(B,H) ∈ R
}

= b. Then for any atom A of rank k in D holds that

|Anc0
D(A)| ≤ bk. ♣

13A sequence S′ is a subsequence of a sequence S if S′ can be obtained from S by deleting some (or none) of
the elements of S, without changing the order of the remaining elements.
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Proof: We proceed by induction. If rank(A) = 1, then the ancestors of A

of rank 0 are exactly the direct ancestors of A, so they are at most b. If the

property holds for all atoms of rank up to k − 1, then an atom A of rank k will

have at most b direct ancestors, which will all be of rank at most k − 1. And

the zero-rank ancestors of A are exactly the zero-rank ancestors of all the direct

ancestors of A, i.e. Anc0
D(A) = Anc0

D(A1)∪ · · · ∪Anc0
D(An) where A1, ..., An

are the direct ancestors of A (n ≤ b). So |Anc0
D(A)| ≤ b · bk−1, which gives the

requested |Anc0
D(A)| ≤ bk. �

This lemma encompasses a simple idea. This idea, combined with the notion

of preservation of ancestry which will be introduced in the next chapter, form

the basis on which our results relating to boundedness are established. In short,

from the above lemma we can easily verify that if an O-derivation D on a

knowledge base (F,R) is of depth k, then by tracking the ancestors of an atom

of rank k in D, we can construct an O-derivation D′ from a knowledge base

(F ′,R), where F ′ ⊆ F and |F ′| ≤ bk, with b being the maximum body size

in R. This bound in the size of the factbase that we need to consider to reach

a certain depth will be a key to establishing the decidability of k-boundedness

of a ruleset (to be introduced in the following chapter). The question is, how

much can we exploit this strategy within a general chase framework? In other

words, does this strategy work on all chase variants? If not then what are the

characteristics that allow it to work? These questions will be answered but as

we will see, when exiting the simple and clear waters of the O-chase, a lot more

detail has to be taken into account before arriving to concrete results.

4.5.2 Chase Graphs

From the concepts of the ancestor and the descendant relations between atoms,

the idea of a chase graph emerges. This is a valuable tool for the study of the

chase. Although the notion has appeared in the literature, it is formalized in

ways which are not always equivalent and we have not based our definition on
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any particular reference.14

Definition 4.23. Let D = (t∗, F∗, Z∗) be a derivation from a knowledge base

(F,R). Let G = (V,E) be the directed acyclic graph where the nodes are

atoms produced inD and edges are added from an atom to its direct descendants

labeled by the respective triggers. Formally,

• V = FD

• E =
{

(A1, A2)
∣∣A2 is a direct descendant of A1 in D

}
and

• there is a labeling function LG : E → trig(D) where LG

(
(A1, A2)

)
= t

if and only if A2 is produced by t in D and A1 ∈ sp(t).

G is said to be the chase graph associated withD (or simply the chase graph of

D). A graph G that is associated with an X-derivation D from (F,R) is called

an X-chase graph on (F,R). a

To properly establish the notions of depth and rank in chase graphs we provide

the following:

Proposition 4.9. Let G = (V,E) be the chase graph of a derivation D from

(F,R). The rank of an atomA ∈ FD in a derivationD is equal to the maximum

length of any path to this atom in the chase graph. The depth of D is equal to

the maximum length of any path in G.

Proof: We only need to prove that the rank of an atom A ∈ FD is equal to the

maximal length of any path to it in G, and the property about the depth then

follows directly. We use induction. If rankD(A) = 0 then there is no path to A,

which corresponds to a path of length 0. Now suppose that for every A′ ∈ FD

with rankD(A′) ≤ n − 1 it holds that the maximal length of any path to this

atom in G is n− 1. Let A ∈ FD with rankD(A) = n. All the direct ancestors

of A in D are of rank at most n − 1, so they fulfill the induction hypothesis.

There is at least one ancestor A′ of A with rankD(A′) = n − 1, so the longest

14There are cases where totally different notions have appeared with this name in the literature, like in [18]
where “chase graph” is a graph that models dependencies between rules.
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path to A′ is of length n− 1. By adding one more edge (namely (A′, A)) to this

path, we obtain a path of length n to A. And we know that there is no longer

path to A since all other ancestors have equal or smaller paths to them. So the

proof is complete. �

As a result we can say that the rank of an atom A ∈ V in a chase graph

G = (V,E), denoted rankG(A), is equal to the maximum length of any path to

A. The depth ofG is the maximum length of any path inG. We will specifically

frequently use the phrasing k-deep (X-)chase graph G, instead of (X-)chase

graph G of depth k.

Example “GENERIC” 26, R-chase & C-chase Graph (continued from Ex-

amples 3, 4, 8 and 19): F = {p(a, b), p(c, d), r(e)} and R is the following set

of rules:

R1 = p(x, y) ∧ r(z)→ p(y, z)

R2 = p(x, y) ∧ p(y, z)→ ∃u p(z, u)

R3 = p(x, y) ∧ p(x, z)→ p(y, z)

We display a R-derivation D′′ from (F,R). Notice that we keep the same

names for the triggers which were also used previously. As a consequence the

order of the triggers does not follow the order of their index numbers.

∅ F Z ′′0 = F 0

t1 = (R1, {x 7→ a, y 7→ b, z 7→ e}) F ′′1 = F ∪ {p(b, e)} Z ′′1 = F ′′1

t4 = (R1, {x 7→ c, y 7→ d, y 7→ e}) F ′′2 = F ′′1 ∪ {p(d, e)} Z ′′2 = F ′′2

t5 = (R3, {x 7→ a, y 7→ b, z 7→ b}) F ′′3 = F ′′2 ∪ {p(b, b)} Z ′′3 = F ′′3

t6 = (R3, {x 7→ c, y 7→ d, z 7→ d}) F ′′4 = F ′′3 ∪ {p(d, d)} Z ′′4 = F ′′4 1

t2 = (R2, {x 7→ a, y 7→ b, z 7→ e}) F ′′5 = F ′′4 ∪ {p(e, ut2)} Z ′′5 = F ′′5

t9 = (R1, {x 7→ d, y 7→ e, z 7→ e}) F ′′6 = F ′′5 ∪ {p(e, e)} Z ′′6 = F ′′6 2

t10 = (R3, {x 7→ e, y 7→ ut2, z 7→ ut2}) F ′′7 = F ′′6 ∪ {p(ut2, ut2)} Z ′′7 = F ′′7

t11 = (R1, {x 7→ e, y 7→ ut2, z 7→ e}) F ′′8 = F ′′7 ∪ {p(ut2, e)} Z ′′8 = F ′′8 3
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Figure 4.11: Example “GENERIC”, R-chase: representation of FD
′′
.

D′′ is a terminating bf -R-derivation. The final factbase FD
′′

is shown in Fig-

ure 4.11, whereas below, in Figure 4.12, we find an illustration of the chase

graph G′′ of D′′.

F

t1
t4

p(a, b) p(c, d) r(e)

p(b, b) p(b, e) p(d, e) p(d, d)

p(e, ut2) p(e, e)

p(ut2, ut2)

t6

t5

t2

t9

t10

p(ut2, e)

t11

Figure 4.12: Example “GENERIC”, R-chase graph G′′ of derivation D′′.

In Section 4.3 (Example 19) we specified the C-derivation D′ on (F,R). It is

interesting to compare the chase graph G′ of D′ with G′′:
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t1
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p(a, b) p(c, d) r(e)

p(b, b) p(b, e) p(d, e) p(d, d)

p(e, ut2) p(e, e) p(e, ut7)

t6t5

t2

t8 t7

Figure 4.13: Example “GENERIC”, C-chase graph G′.

We used dashed boxes to indicate the two atoms that were produced but not

included in the final active factbase ZD
′
. This information is not formally in-

cluded in the chase graph. Notice that the atom p(e, e) is produced in both

derivations, but it is produced by different triggers. �

The notions of ancestors and descendants can now be used in the context of

chase graphs: let G = (V,E) be a chase graph on (F,R). We will symbolize

with V i the set of all the atoms of rank i (where i ∈ {0, ..., k}) in G. An atom

A ∈ V is an ancestor of an atom A′ ∈ V if there is a path from A to A′. And in

this case A′ is a descendant of A. And given S ⊆ V we denote with AncG(S)

the set of all atoms which are ancestors of any atom of S in G. We also note

with AnciG(S) the subset of AncG(S) that contains only atoms of rank i, that

is: AnciG(S) = AncG(S) ∩ V i.

We highlight that every derivation specifies a unique chase graph, but each

chase graph possibly corresponds to more than one derivations. If G is a chase

graph, then we denote with D(G) the class of derivations corresponding to G,

i.e. for everyD ∈ D(G) we have thatG is associated withD. These derivations

can differ a lot in the order of the application of the triggers as well as at how

the active factbase evolves. But they do have a common chase graph, so they
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produce exactly the same set of atoms and the ranks of all atoms are the same,

therefore they are also of the same depth.

Remark 4.4. Let G = (V,E) be a chase graph and D ∈ D(G). Then for all

A ∈ V holds that rankD(A) = rankG(A). ♣

In the previous example we compared a R-chase graph with a C-chase graph

(both on the same knowledge base). Below we do the same with a F-chase

graph and a bf -F-chase graph:

Example “FRUGGAMMA” 27, F-chase Graph (continued from Example 24):
Here we revisit an example from the previous section which served to show

that in frugal chase, breadth-first derivations are not always optimal in terms of

depth. We are working on the following knowledge base: F = {r(a)} and R
is the following set of rules:

R1 = q(x, v) ∧ p(x, y)→ ∃w p(x,w) ∧ t(w)

R2 = r(x)→ ∃y p(x, y)

R3 = r(x) ∧ p(x, y)→ ∃w q(x,w)

R4 = p(x, y)→ p(y, z)

R5 = t(x)→ p(x, x)

Below we depict the (F-)chase graphs G and G′, corresponding to derivations

D and D′ respectively. Actually G corresponds to a prefix of D, since the

derivation is infinite. In G′, we use a dashed box around p(a, yt1) to indicate

that the atom is removed from the final active factbase.
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r(e)

p(a, yt1)

q(a, wt2)p(yt1, zt3)

t6
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p(a, wt4) t(wt4)p(zt3, zt5)
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r(e)

p(a, yt1)

q(a, wt2)

t6

t2

p(a, wt4) t(wt4)

p(wt4, wt4)

Figure 4.14: Example “FRUGGAMMA”, F-chase graphsG (left) andG′ (right).

Notice that trigger t4 produces two atoms, thus formally there are edges to both

of those atoms from their direct ancestors inG andG′. However it is convenient

to represent the rule application with one edge per atom in the support of a

trigger, and then connect the produced atoms with a dashed line as shown in the

figure. This hints to yet another definition of a chase graph, with intermediate

nodes to represent triggers (and connections from support to triggers and from

triggers to produced atoms). For the purposes of this study it is best to formally

handle the chase graph according to Definition 4.23 while using this visual

representation. �
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Chase graphs can greatly facilitate our understanding of the mechanics of

derivations. In this section we already saw two examples where in each we

had two different derivations from the same knowledge base. From looking at

the chase graphs in the last example, it is quite evident that in D′ we avoided

a “path” of rule applications, and this contributed to obtaining a terminating

F-derivation. We already pointed out how this shows that there is a question of

strategy when looking for a terminating X-derivation from a certain knowledge

base (in Section 4.4). But what is more important to stress here is how, given

a particular knowledge base, there appears to be an underlying structure that

defines the possible choices when deciding which rule applications to perform

in forward chaining. In particular the “paths” available are always the same.

Because the triggers available are always the same. The triggers are defined

directly by the knowledge base. What we must do, is to find the right order to

apply them.

4.5.3 The Chase Space

We saw how many relevant notions can be transferred from derivations to chase

graphs. Hereafter we abstract a little more, defining a structure which represents

all the possible choices involved in constructing a derivation from a particular

knowledge base. The chase space corresponds to the union of all the possible

chase graphs starting from a given knowledge base. It can be seen as a board on

which, when performing forward chaining, we are choosing a path (actually a

set of paths) based on specific rules depending on each chase variant. This path

is directed from the atoms of rank 0 towards higher ranks.

The following remark leads us to the definition of the chase space:

Remark 4.5. Every knowledge base (F,R) determines two critical sets:

. The set of all atoms that can be produced by a derivation from (F,R).

We denote this set with FR and we can write

FR = {A ∈ FD | D is a derivation from (F,R)}
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. The set of all triggers that can appear in a derivation from FR. We denote

this set withRF and we can write

RF = {t ∈ trig(D) | D is a derivation from (F,R)}

Thus for every t ∈ RF it holds that sp(t) ∪ op(t) ⊆ FR. ♣

Utilizing the above concepts, the definition of the chase space follows seam-

lessly:

Definition 4.24. Let (F,R) be a knowledge base. The chase space of (F,R),

denoted C(F,R), is a possibly infinite labelled directed graph whose set of

nodes is FR and whose set of edges is the set of pairs of atoms (A1, A2) such

that there exists a trigger t ∈ RF with A1 ∈ sp(t) and A2 ∈ op(t). In this

case (A1, A2) is labelled with t. a

The chase space can be used as a general framework to reason about forward

chaining with positive existential rules. There is a clear connection between

chase space and oblivious chase. And just like every derivation corresponds to

an O-derivation with the same sequence of associated triggers (Remark 4.115),

we find that every chase graph is a subgraph of the respective chase space. In

particular the following lemma is directly deduced:

Lemma 4.4. LetD be an exhaustive O-derivation from (F,R). Then FD = FR

and trig(D) = RF . More generally, if G = (V,E) is an X-chase graph on

(F,R), then G is a subgraph of C(F,R). ♣

In what follows we will correlate the chase space with the bf -O-chase specifi-

cally. But first, as a toy example of a chase space we revisit the Example 21:

Example “DATALOG” 28, Chase Space in Datalog (continued from Exam-

ple 21): We have the factbase F = {p(a)} andR is the following set of rules:

15Considering that every monotonic derivation is an O-derivation (and vice versa of course).
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R1 = p(x)→ q(x)

R2 = q(x)→ r(x)

R3 = p(x)→ r(x)

Below we find C(F,R):

F

t3

p(a)

r(a) q(a)

t1

t2

As we can see, there are incoming edges to r(a) labeled with different triggers.

This signifies that there are different ways to obtain r(a) with forward chaining

in C(F,R). �

At this point we clarify the main difference between chase graphs and chase

spaces: in a chase graph we add an edge between atom A1 and atom A2 if A2

is produced by a trigger that includes A1 in its support. In a chase space we add

an edge between atom A1 and atom A2 if A2 can be produced by a trigger that

includes A1 in its support. On the other hand, in an exhaustive O-derivation

D from (F,R) we necessarily apply all triggers of C(F,R). But the chase

graphG that is associated withD does not include any representation of triggers

that do not produce atoms, nor does it represent the case when an atom appears

in multiple trigger outputs (since the atom is only going to be produced once).

As with chase graphs, we can consider paths in a chase space as a way to

pinpoint possible ancestors or possible descendants of an atom. To circumvent

the fact that edges labeled with different triggers can now be directed to the

same atom, we define the notion of generator of an atom A in a chase space
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C(F,R) to be any maximal set of direct ancestors of A with the same label

(i.e. the support of any trigger which includes A in its output). If an atom

can be obtained by the application of different triggers in different derivations,

then it will have more than one generator. In cases of non-terminating oblivious

chase, some atoms can have an infinite number of generators. Here is a simple

example:

Example 29: We have the factbase F = {p(a, b)} andR is the following set of

rules:

R1 = p(x, y)→ ∃z q(x, z)

R2 = q(x, y)→ ∃z p(x, z)

R3 = q(x, y)→ r(x)

In Figure 4.15 we can see an initial part

of C(F,R) where

t1 =
(
R1, {x 7→ a, y 7→ b}

)
t2 =

(
R2, {x 7→ a, y 7→ zt1}

)
t3 =

(
R3, {x 7→ a, y 7→ zt1}

)
t4 =

(
R1, {x 7→ a, y 7→ zt2}

)
t5 =

(
R2, {x 7→ a, y 7→ zt4}

)
t6 =

(
R3, {x 7→ a, y 7→ zt4}

)
t7 =

(
R1, {x 7→ a, y 7→ zt6}

)
t8 =

(
R2, {x 7→ a, y 7→ zt7}

)
...
...

F

t2

p(a, b)

r(a)

q(a, zt1)

t1

t3

p(a, zt2)

t5

q(a, zt4)

p(a, zt5)

t6 t4

q(a, zt7)

t8 t7

Figure 4.15: Example 29, chase
space with infinite triggers having the
same atom as output.

�
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The chase space is infinite (hence not representable in entirety) but it is easy to

see that there are infinite triggers that can potentially produce r(a) in a deriva-

tion. In this case we can see that t2 and all the triggers ti with i ≥ 4 produce

redundant atoms and indeed, except for the oblivious chase, all other chase

variants terminate after producing q(a, zt1) and r(a). �

After this discussion, we are faced with the question of specifying the rank of an

atom in a chase space. A reasonable solution can be found following a simple

observation:

Lemma 4.5. Let C(F,R) be a chase space, A ∈ FR and t ∈ RF .

If D and D′ are bf -O-derivations from (F,R) with A ∈ FD ∩ FD′

and t ∈ trig(D) ∩ trig(D′), then rankD(A) = rankD′(A) and

rankD(t) = rankD′(t).

Proof: We can do induction on the rank, starting from the first rank, as there

are no triggers of rank 0 anyway, and in both derivations, atoms of rank 0 are

exactly the atoms of F .

Let t ∈ trig(D) with rankD(t) = 1. Then sp(t) ⊆ F . So t will also be of

rank 1 in D′. Let A ∈ FD and rankD(A) = 1. Then there is some t ∈ trig(D)

with rankD(t) = 1 such that A ∈ op(t). Then, as we showed, it holds that

rankD′(t) = 1 as well. So rankD′(A) = 1 (given that both derivations start

from F and A 6∈ F ).

Now suppose that for all t ∈ trig(D) with rankD(t) = n we have that

rankD(t) = rankD′(t) and for all A ∈ FD with rankD(A) = n we have that

rankD(A) = rankD′(A).

Let t ∈ trig(D) with rankD(t) = n + 1. Since all atoms of sp(t) are

of rank at most n, they will have the same rank in D′. In particular sp(t)

includes at least an atom A′ of rank n in D so rankD′(A′) = n as well. Hence

rankD′(t) = n+ 1.

Now letA ∈ FD with rankD(A) = n+1. Then it is produced by a trigger t

with rankD(t) = n+1. As we just showed, this implies that rankD′(t) = n+1.

As a result if A is produced by t in D′, it will have n+ 1 as its rank as well. If

not then it is produced earlier. However it can’t be produced in rank n, because
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from the induction hypothesis, all atoms or rank n in D′ have the same rank in

D. So again A must be of rank n+ 1 in D′ (even if it is not produced by t).

The induction is complete and the statement is shown. �

As a result we can provide the following definition:

Definition 4.25. Let C(F,R) be a chase space and let D be a bf -O-derivation

from (F,R). Then the rank of an atom A ∈ FR in the chase space is specified

as rank(F,R)(A) = rankD(A) and the rank of a trigger t ∈ RF in C(F,R) is

specified as rank(F,R)(t) = rankD(t). a

In support of the above definition, we prove that the rank of an atom or a trigger

in a chase space is the lower limit of the rank of this atom or trigger in any

derivation from the corresponding knowledge base.

Proposition 4.10 (Minimum Rank). Let C(F,R) be a chase space and let

D be a derivation from (F,R). Then for every A ∈ FD holds that

rank(F,R)(A) ≤ rankD(A).

Proof: Let D be a derivation on (F,R). From Remark 4.1 we know that we

can build an oblivious chase derivation D′ which will have exactly the same se-

quence of associated triggers. So the ranks of atoms inD andD′ are the same. If

D′ is not rank compatible, we can sort trig(D′) so that it respects rank compat-

ibility, creating another O-derivation D′′. This is possible because by changing

the order in this manner we do not affect the O-applicability of the triggers. We

can envision this process as a step by step algorithm, where starting from the

beginning of trig(D′), each time we find a trigger of a lower rank appearing

later in the sequence, we place it earlier, just after the rest of the triggers of its

corresponding rank. As shown in Proposition 4.5, this transformation does not

increase the ranks of the produced atoms. So, after a number of such operations

we will obtain the rank compatible D′′ which produces exactly the same atoms

with the same or lower ranks. If D′′ is not breadth-first, we need to apply some

more triggers to complete the ranks, obtaining a bf -O-derivation D′′′ (the ap-

plication of these new triggers again does not influence O-applicability of the
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rest). The addition of the new outputs earlier in the derivation, can again only

decrease the ranks of already present atoms. Therefore fromD we obtainedD′′′

which is a bf -O-derivation, where each common atom has the same or lower

rank. So for every A ∈ FD holds that rank(F,R)(A) ≤ rankD(A). �

Before contributing a proposition concerning the case where we might reduce

or expand a knowledge base, we accentuate that even with the same sequence

of associated triggers, the ranks of a derivation can be affected by a change in

the initial factbase. This is demonstrated by the following example, indicating

that it is sensible to discern the two derivations as being different with different

potential properties:

Example 30: Let F = {p(a), q(a)} andR be the following ruleset:

R1 = p(x)→ q(x)

R2 = p(x) ∧ q(x)→ r(x)

And here is an O-derivation D from (F,R):

∅ F Z0 = F 0

t1 = (R1, {x 7→ a}) F1 = F Z1 = F1

t2 = (R2, {x 7→ a}) F2 = F1 ∪ {r(a)} Z2 = F2 1

Now if we take F ′ = {p(a)} as the initial factbase, we can still apply the same

triggers, obtaining D′:

∅ F ′ Z ′0 = F ′ 0

t1 = (R1, {x 7→ a}) F ′1 = F Z ′1 = F ′1 1

t2 = (R2, {x 7→ a}) F ′2 = F ′1 ∪ {r(a)} Z ′2 = F ′2 2

Next, we illustrate a superposition of C(F,R) and C(F ′,R):

99



F ′

t2

p(a)q(a)

q(a)r(a)

t1t2

F

t1

Notice that rankD(t2) = 2 whereas rankD′(t2) = 1. Correspondingly, r(a)

also has a different rank in the two derivations. �

Altering the factbase is pertinent for the next chapter, where our main technique

in order to arrive at certain results involves isolating a part of the factbase and

applying the same ruleset to the reduced factbase. We can easily prove that re-

ducing the knowledge base can only increase the ranks of the common triggers

in the respective chase space.

Proposition 4.11 (Knowledge Base Reduction). Let C(F,R) and C(F ′,R′)
be two chase spaces. If F ′ ⊆ F and R′ ⊆ R, then C(F ′,R′) is

a subgraph of C(F,R). Moreover, for every A ∈ F ′R
′

it holds that

rank(F,R)(A) ≤ rank(F ′,R′)(A).

Proof: The fact that C(F ′,R′) is a subgraph of C(F,R) is a consequence of

the definition of chase space. In particular, every atom that can be produced

from a knowledge base can surely be produced by a sub-knowledge base and

consequently the same holds for the triggers that can appear in the derivations.

Now concerning the ranks, let A ∈ F ′R′ and D′ be a bf -O-derivation from

(F ′,R′) such that A ∈ F ′D
′
. So rankD′(A) = rank(F ′,R′)(A). Then there

is a derivation D from (F,R) with trig(D) = trig(D′). We will prove by

induction that rankD(A) ≤ rankD′(A).

If rankD′(A) = 0 then A ∈ F ′, so A ∈ F hence rankD(A) = 0.

If the property holds for every rank up to i − 1 and rankD′(A) = i,
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then A is produced by a trigger t in D′ which has the property

that max{rankD′(A′)|A′ ∈ sp(t)} ≤ i− 1. So from the induction hypoth-

esis we know also that max{rankD(A′)|A′ ∈ sp(t)} ≤ i− 1, therefore

rankD(t) ≤ rankD′(t) and correspondingly rankD(A) ≤ rankD′(A), so the

induction is complete.

Now from Proposition 4.10 we have that rankD(A) ≥ rank(F,R)(A). As a

result rank(F ′,R′)(A) ≥ rank(F,R)(A). �

Following the above result, if a chase space C1 is a subgraph of another chase

space C2, we can say that C1 is a subspace of C2.

Every derivation assigns ranks to its atoms and triggers, that are at least

as big as the ranks of the chase space. We know that in bf -O-derivations (by

definition) the ranks of atoms and triggers are equal to those of the chase space.

But can we specify a bigger class of derivations which assigns ranks equal to

those of the chase space? A reasonable candidate would be the class of all

breadth-first chase variants. Interestingly and somewhat counter-intuitively, not

every breadth-first chase variant assigns equal ranks to those of the chase space.

The following (counter-)example concerns the equivalent chase.

Example 31: LetR be the following ruleset:

R1 = p(x)→ q(x)

R2 = q(x)→ p(x)

R3 = q(x)→ r(x)

R4 = p(x)→ r(x)

R5 = r(x)→ s(x)

R6 = r(x)→ p(x)

and let F be the factbase {p(z1), q(z2)}, where z1 and z2 are variables. Then

here is an E-derivation D from (F,R):
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∅ F Z0 = F 0

t1 = (R1, {x 7→ z1}) F1 = F ∪ {q(z1)} Z1 = F1

t2 = (R3, {x 7→ z2}) F2 = F1 ∪ {r(z2)} Z2 = F2

t3 = (R4, {x 7→ z1}) F3 = F2 ∪ {r(z1)} Z3 = F3 1

t4 = (R5, {x 7→ z2}) F4 = F3 ∪ {s(z2)} Z4 = F4

t5 = (R6, {x 7→ z2}) F5 = F4 ∪ {p(z2)} Z5 = F5 2

Notice that the atom p(z2) is of rank 2 in D. But there is also the E-derivation

D′ from (F,R):

∅ F Z ′0 = F 0

t6 = (R2, {x 7→ z2}) F ′1 = F ∪ {p(z2)} Z ′1 = F ′1

t2 = (R3, {x 7→ z2}) F ′2 = F ′1 ∪ {r(z2)} Z ′2 = F ′2 1

t4 = (R5, {x 7→ z2}) F ′3 = F ′2 ∪ {s(z2)} Z ′3 = F ′3 2

In derivation D′, the rank of p(z2) is 1. Both D and D′ are breadth-first, since

anyway the E-chase is a breadth-first chase variant. Thus we have shown that

different breadth-first X-chase derivations from the same knowledge base can

attribute different ranks to the same atom. And we can even produce a sim-

ilar counterexample where the initial factbase does not contain variables, by

adding a rule that would produce a factbase isomorphic with F out of any ini-

tial (ground) atom. �

In order to ensure the equality of ranks of atoms and triggers in X-derivations

with their ranks in the respective chase spaces, we can specify a property which

defines a much larger class than that of the bf -O-derivations. We will do so in

the following chapter, proving that when X ∈
{
O, SO, R, P

}
, every breadth-

first X-derivation assigns ranks to its atoms and triggers which are equal to those

of the chase space.

We have introduced the main theoretical tools that are needed to analyze

depth-related properties of forward chaining with existential rules. We proceed
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now to discuss the different manifestations of boundedness within this frame-

work.
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5 Characterizing
Boundedness in Different
Chase Variants

In this chapter we investigate how chase variants behave with respect to bound-

edness. In Section 1 we define boundedness and k-boundedness of a ruleset

within a particular chase variant. In Section 2 we prove that k-boundedness is

decidable for several chase variants, by demonstrating that they satisfy interme-

diate properties which then guarantee this decidability. In Section 3 we provide

upper bounds for the computational complexity of determining k-boundedness

in the cases where it is shown to be decidable. Then in Section 4 we define a

new chase variant, the local core chase, which is stronger than the breadth-first

restricted chase in eliminating redundancy while we believe that it retains the

property that k-boundedness is decidable. In Section 5 we show the connection

between boundedness and a certain kind of minimality of chase graphs and we

discuss algorithms that generate these minimal chase graphs.

5.1 Boundedness & k-Boundedness

The main motivating problem in this thesis is how to decide whether a ruleset

has an intrinsic structure which guarantees that every derivation with this ruleset

has a bounded depth, independently of the factbase. This necessarily depends

on the chase variant within which we operate. At the beginning of this section



the corresponding definitions are given and examples are discussed. Consider-

ing the hardness of solving boundedness without restricting the rules’ classes

(in fact, as we pointed out in Chapter 3, the general case is undecidable for all

chase variants), most research considering notions similar to boundedness and

termination, is focused on some particular rule classes. We, on the other hand,

turn to the specification of k-boundedness, where the bound is given. This is

advantageous, because, since we do not restrict the rule classes, we approach

the boundedness problem from a different angle, where structural properties of

the chase variants are coming to light. Therefore, we have a double gain, where

the research around k-boundedness provides insight to various mechanics of

chase variants. These will transpire in the following sections.

5.1.1 Boundedness

We consider the question of whether there is a way to predetermine the depth of

X-derivations, especially when a particular ruleset is considered and the initial

factbase can vary. This gives birth to the notion of boundedness parametrized

by a chase variant, which we now define.

Definition 5.1. Let X be a chase variant. A ruleset R is X-bounded if there is

a k ∈ N such that for every factbase F , all X-derivations from (F,R) are of

depth at most k. a

In Section 2.2 we provided a definition of boundedness based on the α-operator

and logical entailment. It is clear that this concept of boundedness is equivalent

with C-boundedness as well as E-boundedness.

It is useful to point out that X-boundedness is a property of a ruleset and

not of a knowledge base. Moreover since for every finite X-derivation, there

is an exhaustive X-derivation of equal or greater depth, and since every infi-

nite derivation is of infinite depth, boundedness of all exhaustive X-derivations

implies boundedness of all X-derivations. Hence, we do not need to explicitly

include a separate definition with the requirement that the bound refers to ex-

haustive X-derivations. The fact that boundedness has to be “tested” against all

possible derivations from all possible factbases, makes it a very strong property.
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On the other hand, a single infinite X-derivation from any factbase suffices to

show that a ruleset is not X-bounded. Indeed, a corollary of the above defini-

tion is that if a rulesetR is X-bounded, then every exhaustive X-derivation with

R, is a terminating X-derivation. Nevertheless it is not at all straightforward to

determine whether a ruleset is bounded.

Example “GENERIC” 32, X-boundedness (continued from Examples 3, 4,

8, 19 and 26): We re-utilize the rulesetR but we rename the variables of R3 for

convenience:
R1 = p(x, y) ∧ r(z)→ p(y, z)

R2 = p(x, y) ∧ p(y, z)→ ∃u p(z, u)

R3 = p(x̄, ȳ) ∧ p(x̄, z̄)→ p(ȳ, z̄)

To show that R is not R-bounded, consider F = {p(a, b), p(b, c)} and the

derivation D from (F,R):

∅ F Z0 = F 0

t1 = (R2, {x 7→ a, y 7→ b, z 7→ c}) F1 = F ∪ {p(c, ut1)} Z1 = F1 1

t2 = (R2, {x 7→ b, y 7→ c, y 7→ ut1}) F2 = F1 ∪ {p(ut1, ut2)} Z2 = F2 3

t3 = (R2, {x 7→ c, y 7→ ut1, y 7→ ut2}) F3 = F2 ∪ {p(ut2, ut3)} Z3 = F3 4

... ... ... ...

... ... ... ...

Here is how the active factbase of D evolves:

a b

c

ut1

ut2

D is an infinite R-derivation from (F,R), thusR is not R-bounded. And every

R-derivation is also an O- and SO-derivation so we conclude thatR is neither
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SO-bounded nor O-bounded. Furthermore, D is also a F- and a V-derivation.

HenceR is also not F-bounded neither V-bounded.

The only rule that creates new variables is R2. Let (R2, π) be a trigger.

Notice that the application of (R3, π̄) before (R2, π), where π̄(x̄) = π(y) and

π̄(ȳ) = π̄(z̄) = π(z), renders op
(
(R2, π)

)
redundant therefore the E-chase and

the C-chase (which operate in a breadth-first manner) will detect this redun-

dancy and future triggers will not include the output of (R2, π) in their support.

We conclude thatR is C-bounded and E-bounded. �

In the following it will frequently be easier to reason on X-chase graphs, instead

of X-derivations. Consequently we provide the following immediate proposi-

tion which is basically a reformulation of the definition 5.1 in terms of X-chase

graphs.

Proposition 5.1. A rulesetR is X-bounded if there exists a k ∈ N such that for

every factbase F , every X-chase graph on (F,R) is of depth at most k. ♣

As already mentioned, boundedness is known to be undecidable for classes of

existential rules like Datalog (see Chapter 3). And it is undecidable even for

a single ternary Datalog recursive rule. This indicates that the X-boundedness

problem is going to be hard to solve even for relatively simple classes of ex-

istential rules. Can we identify recognizable classes of existential rules where

X-boundedness is decidable? An affirmative answer to this question is given

with the class of linear rules1 for some chase variants. We will elaborate on this

point in the following section.

5.1.2 k-Boundedness

We explained how boundedness is probably undecidable for various interesting

classes of existential rules (since we already know that it is undecidable ev-

ery time a “single ternary recursive datalog rule” is permitted). However, the

practical interest of this notion lies more on whether we can find the particu-

lar bound k, rather than knowing that there exists one and thus the ruleset is
1As specified in earlier chapters, linear rules are those whose bodies consist of one single atom.
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bounded. Because even if we cannot know whether a ruleset is bounded or not,

it can be useful to be able to check a particular bound k. To this aim, we define

the notion of k-boundedness where the bound k is predefined.

Definition 5.2 (k-boundedness). Given a chase variant X, a ruleset R is

X-k--bounded if for every factbase F , any X-derivation from (F,R) is of depth

at most k. a

Hence, in terms of chase graphs, we can say that a ruleset R is X-k-bounded

if for every factbase F , every X-chase graph on (F,R) is of depth at most

k. Note that a ruleset which is k-bounded is also bounded, but the converse

is not true. When we discuss about the general concept of X-k-boundedness

without needing to specify any particular chase variant X, we will simply refer

to k-boundedness.

Example 33: Suppose we have the rulesetR:

R1 = p(x, y)→ ∃z q(z, x)

R2 = q(z, x)→ ∃w p(x,w)

Since the rules are linear, atomic factbases suffice in order to test

k-boundedness2. Moreover, all initial factbases result to similar derivations

because of the symmetric form of the ruleset. By repeating applications of R1

andR2 on an initial fact p(a, b) we arrive at an infinite O-derivation, concluding

that R is not O-bounded. On the other hand the SO-chase halts at depth 2 as

we can see in the following SO-derivation D from ({p(a, b)},R):

∅ F0 = F Z0 = F0 0

t1 = (R1, {x 7→ a, y 7→ b}) F1 = F ∪ {q(zt1, a)} Z1 = F1 1

t2 = (R2, {x 7→ a, z 7→ zt1}) F2 = F1 ∪ {p(a, wt2)} Z2 = F2 2

In the following graph, q is represented with the curvy arrow:
2This is formally established for the O-, SO- and R-chase with Proposition 5.2 in the next section, showing

that in linear rules the (atomic factbase) chase termination is equivalent with boundedness.
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a b

zt1

wt2

We conclude that R is 2-SO-bounded, however it is only 1-R-bounded: in-

deed t2 is not R-applicable on Z1 and the result is similar if we use p(a, a),

q(a, a) or q(a, b) as the starting factbase. Consequently it is also 1-F-bounded,

1-V-bounded, 1-C-bounded and 1-E-bounded. �

5.2 Preservation of Ancestry

In this section, we identify a common property that allows us to prove that

k-X-boundedness is decidable for X ∈ {O,bf -O,SO,bf -SO,R,bf -R,P}.
This common property, called preservation of ancestry, ensures that we can

limit the size of the factbases where we need to test X-k-boundedness, which

guarantees the decidability of the problem. However, we do not prove directly

that all these chase variants preserve ancestry. Instead, we basically split those

chase variants into two categories, and we show that they satisfy intermediate

properties, which then imply preservation of ancestry, hence also decidability

of k-boundedness.

The section consists of four parts:

1) We define preservation of ancestry, we prove that it implies decidability

of k-boundedness and we also prove that it implies the equivalence of

all-factbase termination with boundedness in the specific case of linear

rulesets.
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2) We define heredity, we show that the O-, bf -O-, SO- and R-chase vari-

ants are hereditary and then we prove that heredity implies preservation

of ancestry.

3) We define bf -R-compliance and show that bf -R-compliant chase vari-

ants enjoy some convenient properties, which allow us to prove that the

bf -SO-, bf -R- and P-chase variants preserve ancestry.

4) We show that the F-, V-, E- and C-chase do not preserve ancestry.

5.2.1 The Link with k-Boundedness

Here we specify the property which, when satisfied by a chase variant X, im-

plies that we can restrict our attention to a finite number of factbases when

testing X-k-boundedness of a particular rulesetR.

Definition 5.3 (Ancestry). The X-chase is said to preserve ancestry if, for

every X-derivation D from (F,R), for every atom A in FD, there exists

an X-derivation D′ from (Anc0
D(A),R) such that A is produced in D′ and

rankD(A) = rankD′(A). a

It is rather evident that we want to use the notion of ancestry to bound the size

of the factbases that have to be considered, when investigating k-boundedness.

This can be achieved considering the “ancestor clue” (Lemma 4.3). Since the

number of ancestors of an atom of a certain rank is bounded (ancestor clue), if

only the ancestors suffice to produce an atom at a certain rank (preservation of

ancestry), then to know if a rulest can produce atoms with a rank higher than

k (k-boundedness), we only need to test derivations on factbases of a bounded

size.

Theorem 5.1. Determining if a set of rules is X-k-bounded is decidable if the

X-chase preserves ancestry.

Proof: Let X be a chase variant that preserves ancestry. Let R be a ruleset.

Suppose that R is not X-k-bounded. Therefore there is a factbase F and a
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derivation D from (F,R) with depth more than k. So there exists an atom

A ∈ FD with rank(A) = k + 1. Because the X-chase preserves ancestry,

there exists an X-derivation D′ from (Anc0
D(A),R) which produces A with

the same rank as D. Therefore D′ is also of depth more than k. Let b be the

maximum number of atoms in the bodies of the rules ofR. By Lemma 4.3, we

know that Anc0
D has at most bk+1 atoms. We deduce that if a ruleset R is not

X-k-bounded, then there exists a factbase F ′ of at most bk+1 (where b depends

on R) such that there is an X-derivation from (F ′,R) of depth more than k.

The inverse of this statement is trivially true. In conclusion, if X is a chase

variant that preserves ancestry, then a ruleset R (with b maximum body size)

is X-k-bounded if and only if for every factbase F ′ of size at most bk+1, every

X-derivation from (F ′,R) is of depth at most k. Up to quasi-isomorphism,

there is a finite number of factbases smaller than bk+1. Let F be the set of all

factbases of size at most bk+1, i.e. F includes a representative of every quasi-

equivalence class of factbases of size at most bk+1. For every F ∈ F , there is

a finite number of X-derivations from (F,R) with depth at most k + 1. Hence

we can do the following:

· for each F ∈ F , compute all X-derivations from (F,R) with depth at

most k + 1.

· if at least one such X-derivation has depth k + 1, then R is not

X-k-bounded.

· if all such X-derivations have depth at most k, thenR is X-k-bounded.

So we have shown that there exists a sound and complete way to verify whether

R is X-k-bounded or not. �

The preceding theorem suggests investigating preservation of ancestry in order

to assure the decidability of k-boundedness. This research involves starting

from a derivation on a knowledge base, then reducing the factbase and trying to

reproduce an atom in the same rank. That makes the notion of chase space very

pertinent, as we will be comparing different derivations on similar knowledge

bases. Hence the results of Section 4.5 will be valuable in keeping track of the
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changing of ranks of common atoms when we switch from one derivation to

another, or from one knowledge base to a smaller one.

Before investigating which of the known chase variants preserve ancestry,

we show how this property can also lead to results related to boundedness for

linear rulesets. A ruleset is called linear if every one of its rules has a single

atom body. We prove the following:

Proposition 5.2. Let X be a chase variant that preserves ancestry. A linear

rulesetR is X-bounded if and only if it is has the property that for any factbase

F , every exhaustive X-derivation from (F,R) is terminating.

Proof: (⇒:) Let R be a set of linear existential rules. If R is X-bounded

then every X-derivation with R has a bounded depth, and therefore cannot be

infinite. Hence there is no infinite exhaustive X-derivation withR, so for every

factbase F , every exhaustive derivation from (F,R) is terminating.

(⇐:) Let R be such that for any factbase F , every exhaustive X-derivation

from (F,R) is terminating. We define the critical instance to be a collection F
of representatives of the quasi-equivalence classes of all the atomic factbases

whose atom has any predicate that appears in R. Hence F is finite. We will

show that the maximum depth of depth of an X-derivation from (F ′,R) where

F ′ ∈ F , is equal to the maximum depth of any X-derivation with R (indepen-

dently of the factbase).

To show this we chose a random X-derivation D from (F,R), where F

is any factbase. Let k be the depth of D. We will show that there exists an

X-derivation D′ from (F ′,R), where F ′ ∈ F with depth k′ ≥ k. Let A be an

atom that is produced at rank k in D. Let TA be the subsequence of trig(D)

that contains all the triggers that produced any ancestor of A in D, as well as

the trigger that produced A in D.

We know that X preserves ancetry. So there exists an X-derivation D′′ from

Anc0
D(A) which produces A at the same rank as D, therefore D′′ is of depth at

least k. And becauseR is a linear ruleset, we know thatAnc0
D(A) is a singleton

set, i.e. it includes only one atom. Hence Anc0
D(A) is quasi-equivalent to a

representative F ′ ∈ F . Therefore we can can construct an X-derivation D′
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from (F ′,R) with depth k′ ≥ k. �

As we mentioned in Section 3.2, for the class of linear rules it has been

shown that given a ruleset, the all-factbase termination3 of the O- and

SO-chase is decidable. This implies that the cases of the bf -O- and

bf -SO-chase are also decidable. Moreover in extra linear rules (single atom

head), it has been shown that the R-chase all-factbase termination is de-

cidable which implies that the bf -R- and P-chase all-factbase terminations

are also decidable. In this section we will show that the X-chase preserves

ancestry when X ∈ {O,bf -O,SO,bf -SO,P,R,bf -R}. Therefore, given

a linear ruleset, the problem of determining whether it is X-bounded for

X ∈ {O,bf -O,SO,bf -SO} is decidable, whereas if the ruleset is extra linear,

X-boundedness for X ∈ {O,bf -O,SO,bf -SO,P,R,bf -R} is decidable.

The next step is to prove that the aforementioned chase variants preserve

ancestry. We will employ two different methods by identifying two independent

classes of chase variants, which will be used to show that those chase variants

preserve ancestry.

5.2.2 Heredity

The preservation of ancestry can be regarded as a top-down approach to iden-

tifying the part of a derivation that contributes to producing a certain atom.

We find the atom, we trace down its ancestors and we effectively keep the

whole structure in a new derivation which produces the same atom at the same

rank from a smaller factbase. We proved that if we can achieve this, then

k-boundedness is decidable for this chase variant.

But to show that this is possible in some concrete chase variants, we will

actually use an inverse approach (bottom-up), where we show that by selecting

a subset of the factbase, we can reproduce the part of the derivation that stems

from this subset. To this end, we single out the triggers whose support is in the

sub-factbase, or is produced only by that sub-factbase.
3The appellations “chase termination” and “all-instance termination” are fairly common, but with our termi-

nology we should say all-factbase termination to mean “for any factbase F , every exhaustive X-derivation from
(F,R) is terminating”.
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Definition 5.4 (Restriction induced by sub-factbase). A sequence of triggers T
is applicable on a knowledge base (F,R) if there exists a derivation D from

(F,R) with trig(D) = T . Now letD be a derivation from (F,R) and F ′ ⊆ F .

The maximal subsequence of trig(D) which is applicable on (F ′,R) is called

the restriction of trig(D) induced by F ′. a

Note that in the limit case where T = ∅, we can say that T is applicable on any

derivation D = D0, with D0 = (∅, F, Z) (where F is any factbase). Similarly,

the restriction of trig(D) can be empty if it is induced by a subset that does not

include the support of any trigger in D.

Let D be a derivation from (F,R) and F ′ ⊆ F . Since the restriction T
of trig(D) induced by F ′ is an applicable (on F ′) sequence of triggers, this

implies that there exists a derivation D′ from (F ′,R) such that trig(D′) = T .

By enforcing the transitory and the active factbases of every element ofD′ to be

equal (which is trivially possible, see Remark 4.1) we produce an O-derivation

D′ from (F ′,R). This oblivious chase derivation is uniquely defined by T ,

hence we can name it the oblivious restriction of D induced by F ′.

Definition 5.5. Let D be a derivation from (F,R) and F ′ ⊆ F . The

O-derivation D′F whose sequence of associated triggers from (F ′,R) is equal

to the restriction of trig(D) induced by F ′ is called the oblivious restriction of

D induced by F ′. a

In fact the O-derivations are those that allow for more triggers to be applied

(as they do not remove any atoms from the active factbase and they do not

impose any extra condition of applicability). Therefore when searching for

a maximal subsequence of trig(D) to be applicable on a particular knowl-

edge base, we can without loss of generality search only among O-derivations.

And in O-derivations, changing the order of rule applications (when possi-

ble with respect to the ancestor/descendant relations), does not influence the

(O-)applicability of the rest of the triggers. In other words, unlike in almost

all other chase variants, in the oblivious chase, the prioritization of some trig-

gers does not render other triggers non-applicable. From this we can conclude
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that there is always a unique maximal subsequence, i.e. a unique restriction of

trig(D) induced by a particular F ′.

Definition 5.6 (Heredity). A monotonic chase variant X is said to be hereditary

if, for any X-derivation D from (F,R), for every subset F ′ ⊆ F , the oblivious

restriction of D induced by F ′ is an X-derivation. a

So a chase is hereditary if by restricting an X-derivation on a subset of a factbase

we still obtain an X-derivation. This property is fulfilled by the oblivious, the

semi-oblivious and the restricted chase variant.

Proposition 5.3. The X-chase is hereditary for X ∈ {O,bf -O,SO,R}.

Proof: We assume that D is an X-derivation from F and R, and T is the re-

striction of trig(D) induced by F ′ ⊆ F . Let D′ be the oblivious restriction of

D induced by F ′.

Case X=O: Clearly D′ is an O-chase derivation, therefore the O-chase is

hereditary.

Case X=bf -O: Since D is rank compatible and since the ordering of triggers

is preserved in D′, we get that D′ is rank compatible. Moreover, because D is

a bf -O-derivation, all triggers which are descendants of F ′ with rank at most

the depth of D do appear in D. Therefore D′ is also breadth-first, since at every

rank, all possible rule applications (up to its depth) from F ′ are made.

Case X=SO: The condition for SO-applicability is that we do not have two

triggers from the same rule mapping frontier variables in the same way.

We know that trig(D) fulfills this condition, hence so does its subseqence

trig(D′).

Case X=R: The condition for R-applicability imposes that for a trigger

t = (R, π) there is no extension of π that maps the head of R to F . Since

D′ generates a factbase included in the factbase generated by D we conclude

that R-applicability is preserved. �

To conclude this paragraph, we show that heredity implies preservation of an-

cestry:
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Proposition 5.4. Every hereditary chase variant preserves ancestry.

Proof: Let X be a hereditary chase variant. Let D be an X-derivation from

(F,R) and t be a trigger that produces atomA inD. Let F ′ = Anc0
D(A). Since

X is hereditary, there exists an X-derivation D′ from (F ′,R) with trig(D′)
being the restriction of trig(D) induced by F ′. Let TA be the subsequence of

trig(D) which contains all the triggers that produced any ancestor of A in D
as well as the trigger that produced A in D. From Lemma 4.2 we know that

TA is applicable on (F ′,R), therefore it is a subsequence of trig(D′) which is

the maximal subsequence of trig(D) to be applicable on (F ′,R). Therefore

t ∈ trig(D′). Finally we must show that rankD(A) = rankD′(A). At first

notice that a consequence of the fact that trig(D′) is a subsequence of trig(D)

is that since t produces A in D, it must also produce A in D′ (otherwise there

would be a trigger t′ appearing before t in trig(D′) and producing A, but

this same trigger would appear before t also in trig(D), so A would not be

produced by t in D which is a contradiction). We will prove an even more

general statement:

Statement I: For every trigger t ∈ trig(D′), the set At of all the atoms pro-

duced by t in D is a subset of the set A′t of all the atoms that are produced by t

in D′.

Let trig(D) = t1, t2, ..., tm and trig(D′) = t′1, t
′
2, ..., t

′
n. Let 0 ≤ i ≤ n and

suppose that t′i = t`. Then it holds that

A′t′i = op(t′i) \
(
F ′ ∪ op(t′1) ∪ op(t′2) ∪ · · · ∪ op(t′i−1)

)
whereas

At′i
= op(t′i) \

(
F ∪ op(t1) ∪ op(t2) ∪ · · · ∪ op(t`−1)

)
but t′1, t

′
2, ..., t

′
i−1 is a subsequence of t1, t2, ..., t`−1 so

F ′ ∪ op(t′1) ∪ · · · ∪ op(t′i−1) ⊆ F ∪ op(t1) ∪ · · · ∪ op(t`−1)
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therefore At′i
⊆ A′t′i for every i ≤ n, hence we have proved that At ⊆ A′t for

every t ∈ trig(D′). We can use this result to prove that

Statement II: For every pair A1, A2 of ancestors of A in D, if A1 is a direct

ancestor of A2 in D, then A1 is also a direct ancestor of A2 in D′.

The argumentation to show this statement is simpler: let t be the trigger that

produces A2 in D. We have that t ∈ TA so t ∈ trig(D′). Hence, in order to

show that A1 is a direct ancestor of A2 in D′, it suffices to show that t produces

A2 in D′. This holds because At ⊆ A′t and A2 ∈ At.

Let G be the chase graph associated with D and G′ the chase graph associ-

ated with D′. The second statement implies that the subgraphs of G and G′ that

are induced by the ancestors ofA inD andD′ respectively are equal. This guar-

antees that the rank of A in both derivations is the same. We have shown that

there exists a derivation D′ from (Anc0
D(A),R) that produces A in the same

rank as D, hence we conclude that X preserves ancestry. �

Corollary 5.1. X-k-Boundedness is decidable when X ∈ {O,bf -O,SO,R}.♣

5.2.3 bf -R-Compliance

We proved that both oblivious chase and breadth-first oblivious chase are hered-

itary. Does the breadth-first approach affect the property of heredity in the

semi-oblivious and the restricted chase? The answer is yes. Indeed, given some

hereditary chase variant X, if D is a breadth-first X-derivation, then the re-

striction of trig(D) induced by F ′ does not necessarily produce a breadth-first

X-derivation, as shown by the next examples, 34 and 35. The oblivious chase

is the only exception among the chase variants that we study.

Example 34: bf -SO-chase. Let F = {p(a, b), r(a, c)} andR is:

R1 = p(x, y)→ r(x, y)

R2 = r(x, y)→ ∃z q(x, z)

R3 = r(x, y)→ t(y)
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Below is the bf -SO-derivation D from (F,R):

∅ F0 = F Z0 = F0 0

t1 = (R1, {x 7→ a, y 7→ b}) F1 = F ∪ {r(a, b)} Z1 = F1

t2 = (R3, {x 7→ a, y 7→ c}) F2 = F1 ∪ {t(c)} Z2 = F2

t3 = (R2, {x 7→ a, y 7→ c}) F3 = F2 ∪ {q(c, zt3)} Z3 = F3 1

t4 = (R3, {x 7→ a, y 7→ b}) F4 = F3 ∪ {t(b)} Z4 = F4 2

D is a terminating bf -SO-derivation of depth 2. Let F ′ = {p(a, b)}. The re-

striction of D induced by F ′ includes only t1 and t4. Applying those triggers

in a monotonic fashion we obtain D′:

∅ F ′0 = F ′ Z ′0 = F ′0 0

t1 = (R1, {x 7→ a, y 7→ b}) F ′1 = F ′ ∪ {r(a, b)} Z ′1 = F ′1 1

t4 = (R3, {x 7→ a, y 7→ b}) F ′2 = F ′1 ∪ {t(b)} Z ′2 = F ′2 2

D′ is a rank compatible SO-derivation of depth 2 from (F ′,R), however it is

not breadth-first since now t5 = (R2, {x 7→ a, y 7→ b}) is SO-applicable at

rank 2 (from Lemma 4.1). �

Example 35: bf -R-chase. Let F = {p(a, b), q(a, c)} andR is:

R1 = p(x, y)→ r(x, y)

R2 = r(x, y)→ ∃z q(x, z)

R3 = r(x, y)→ t(x)

Let π = {x 7→ a, y 7→ b}. Below is the bf -R-derivation D from (F,R):

∅ F0 = F Z0 = F0 0

t1 = (R1, π) F1 = F ∪ {r(a, b)} Z1 = F1 1

t2 = (R3, π) F2 = F1 ∪ {t(a)} Z2 = F2 2

D is a terminating bf -R-derivation of depth 2. Notice that the trigger

t3 = (R2, π) is SO-applicable on D, but not R-applicable because of the pres-

ence of q(a, c) in ZD.

Let F ′ = {p(a, b)}. In this case the restriction of trig(D) induced by F ′ is

equal to itself! Hence we obtain the similar derivation D′ from (F,R):
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∅ F ′0 = F ′ Z ′0 = F ′0 0

t1 = (R1, π) F ′1 = F ′ ∪ {r(a, b)} Z ′1 = F ′1 1

t2 = (R3, π) F ′2 = F ′1 ∪ {t(a)} Z ′2 = F ′2 2

Again D′ is a R-derivation of depth 2, however it is not breadth-first since now

t3 is R-applicable at rank 2 and thus has to be applied to ensure that we have

exhausted all applications of the final rank (according to Lemma 4.1). �

As we have seen, heredity is a sufficient property to ensure decidability of

k-boundedness. However it is not general enough, as it does not account for

breadth-first derivations or any other kind of prioritization of certain triggers

over others.

On the other hand, several breadth-first chase variants have features that

assure preservation of ancestry. In what follows, we employ the chase space

perspective and pertinent results from Section 4.5. At first we define a class

of chase variants, which comprises various useful features. We introduce

bf -R-compliance as a property on chase variants that guarantees that every

derivation includes at least the triggers that appear in a bf -R-derivation from

the same knowledge base. More formally:

Definition 5.7 (bf -R-compliance). The X-chase is bf -R-compliant if

• it is a breadth-first submonotonic chase variant,

• for every finite X-derivation D, if a trigger t 6∈ trig(D) is R-applicable

on ZD, then t is also X-applicable on D. a

Note that the last element of a breadth-first derivation is necessarily a rank

mark, so the second of the conditions above implies that for every rank mark

of an X-derivation D, every trigger that is R-applicable on the active factbase

at that point, is also X-applicable on the respective prefix of D. Oftentimes, we

will use this statement in contraposition, i.e. if a trigger is not X-applicable at

this point, then neither is it R-applicable on the active factbase. This means that

all the triggers of the current rank that are not applied in the derivation, have

the property that their output can be folded back to the active factbase with a
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retraction. Because this has to be true for all ranks, we are effectively forcing

the derivation to include at least all the triggers that a bf -R-derivation includes.

Directly from their definitions, we can verify that the following chase vari-

ants are bf -R-compliant:

Remark 5.2. If X ∈
{
bf -O, bf -SO, bf -R, P

}
, then the X-chase is

bf -R-compliant. ♣

We will show that k-boundedness is decidable for all these chase variants by

utilizing again preservation of ancestry (of course the case of bf -O-chase has

already been shown with heredity).

Now we will prove several nice properties that stem from bf -R-compliance.

In particular the following four properties (i.e. Theorem 5.3, Corollary 5.2,

Theorem 5.4 and Proposition 5.5) are instrumental to proving the preservation

Retraction Theorem 5.3

Stable Rank Theorem 5.4

Minimal Rank Proposition 4.10 Knowledge Base Reduction
Proposition 4.11

Unaffected Ranks Proposition 5.5

Trigger Finding Corollary 5.2

bfSO-chase preserves ancestry bfR-chase preserves ancestry
P-chase preserves ancestry

Figure 5.1: Properties used to show preservation of ancestry of bf -R-compliant
chase variants.
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of ancestry for the bf -SO-, the bf -R- and the P-chase at the end of this section.

Two more propositions from the previous chapter are also employed and in

Figure 5.1 we illustrate the interdependency of all those properties.

Theorem 5.3 (The Retraction Theorem). Let X be a chase variant that is

bf -R-compliant. Let D be an X-derivation from a knowledge base (F,R). Let

D′ be a derivation from (F,R) with depth less than or equal to the depth of

D. Then there exists a retraction h from ZD
′ ∪ ZD to ZD such that for every

A ∈ ZD′ holds that rankD(h(A)) ≤ rankD′(A).

Proof: In this proof, for any (rank) j, we use the notation Dj to denote the

prefix of derivation D which includes all elements of rank at most j.

It suffices to show that the above theorem holds when D′ is a

bf -O-derivation of depth equal to D. That is because the (final) active fact-

base of any other derivation of equal or smaller depth from (F,R) is a subset of

the final factbase of D′ with greater or equal ranks for the common atoms (by

Proposition 4.10).

Let T = trig(D′) \ trig(D).

We do induction on the depth k of D (and D′).

·
[
Base case: k = 1

]
Every trigger tν ∈ T has to be applicable on F , thus,

we have that sp(tν) ⊆ F . We know that tν is not X-applicable on D,

because it is not in trig(D) and D is breadth-first with depth at least 1.

Therefore, since X is a chase variant that is bf -R-compliant, we have that

tν is not R-applicable on ZD. But it is applicable on ZD, because from

the submonotonicity of the X-chase we know that F ⊆ ZD. Hence there

is a retraction hν : op(tν) ∪ ZD → ZD. As a result for everyA ∈ op(tν)

we also have that rankD(hν(A)) ≤ 1. But for every such A that is pro-

duced by tν in D′, we know that rankD′(A) = 1. This confirms that for

every such A holds rankD′(A) ≥ rankDk(hν(A)). Finally, because if

tν 6= t′ν , then nul(op(tν)) is disjoint with nul(op(t′ν)), we can com-

pose all such retractions hν for every tν ∈ T producing the required h.

·
[
Induction step: we suppose the property holds for some k − 1

]
We sup-

pose that D and D′ are of depth k. Since the property holds for
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k− 1, we know that there exists a retraction h : ZD
′k−1 ∪ ZDk−1 → ZD

k−1

with the property that for every atom A ∈ ZD
′k−1

holds that

rankD′(A) ≥ rankD(h(A)).

Let T̄ =
{
t ∈ trig(D′) \ trig(D)

∣∣ t 6∈ trig(D′k−1)
}

. Let tν ∈ T̄
and tν = (Rν, πν). Since tν is of rank k in D′, tν is applicable on

ZD
′k−1

, so sp(tν) ⊆ ZD
′k−1

. Therefore h(sp(tν)) ⊆ ZD
k−1

. As a re-

sult the trigger t′ν = (Rν, h ◦ πν), is applicable on ZD
k−1

. Notice that

op(t′ν) = sν
(
h(op(tν)

)
, where sν : nul(op(tν)) → nul(op(t′ν)) is a

simple renaming with s(xtν) = xt′ν for every xtν ∈ nul(op(tν)). Again

here we have two cases:

i) t′ν ∈ trig(D). We assume that t′ν is of rank ` in D (so ` ≤ k). In

this case op(t′ν) ∈ FD
`

. By definition (see Definition 4.1), there is

a retraction σ from FD
`

to ZD
`

, so also σ
(
op(t′ν)

)
⊆ ZD

`

. Let σν
be the restriction of σ to var

(
op(t′ν)

)
. The domain of σν is disjoint

with var(ZD
`−1

) because X is submonotonic. Therefore σν only

affects variables of nul
(
op(tν)

)
, so σν ◦ sν ◦ h is a retraction from

op(tν) ∪ ZD to ZD.

ii) t′ν 6∈ trig(D). Because D is breadth-first, we get that t′ν is not

X-applicable on D. So it is not R-applicable on ZD, since X is

bf -R-compliant. Moreover, the submonotonicity of the X-chase

guarantees that t′ν is applicable on ZD. So there is a retraction

σν : op(t′ν) ∪ ZD → ZD. Therefore σν ◦ sν ◦ h is a retraction from

op(tν) ∪ ZD to ZD.

We see that in both cases, there exists a retraction hν = σν ◦ sν from

op(tν) ∪ ZD to ZD. So rankD(h(A′)) ≤ k for every A′ ∈ op(tν). If

A′ is produced by tν in D′ we have rankD′(A′) = k. This assures that

rankD′(A
′) ≥ rankD(h(A′)). Moreover, the domains of all hν (corre-

sponding to each different tν ∈ T̄ ) are pairwise disjoint and (because

they are retractions) they are all disjoint with their codomain, which im-

plies that they can be composed in parallel, so if T̄ = {tν1, tν2, . . . , tνω},
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then h̄ = hν1 ◦ hν2 ◦ · · · ◦ hνω is a well defined substitution whose domain

is in nul
(
ZD

′)\nul(ZD′k−1). So the composition h′ = h̄◦h is also a well

defined substitution from nul
(
ZD

′)\nul(ZD) to term(ZD). Finally, we

have that h′(ZD
′
) ⊆ ZD, so h′ is a retraction from ZD

′ ∪ZD to ZD and it

also holds that rankD′(A′) ≥ rankD(h(A′)) for every A′ produced by a

tν ∈ T in D′.

The induction is complete and so is the proof. �

With the following corollary we extend the previous result, showing that every

trigger of the chase space that does not appear in an X-derivation D (where

X is bf -R-compliant) corresponds to a trigger that is applicable during D, i.e.

whose support is inferred by D.

Corollary 5.2 (Trigger Finding). Let X be a chase variant that is

bf -R-compliant. Let D be an X-derivation on (F,R) of depth at least m0.

Then for every t = (R, π) ∈ RF \ trig(D) with rank(F,R)(t) ≤ m0, there ex-

ists a retraction h from sp(t)∪ZD to ZD such that t′ = (R, h ◦ π) ∈ RF with

rank(F,R)(t
′) ≤ rank(F,R)(t).

Proof: Since the ranks of triggers and atoms in a chase space are those

of a breadth-first oblivious derivation, this proof involves comparing the

X-derivation D from (F,R) with an exhaustive bf -O-derivation D′ from the

same knowledge base.

The derivation D′ must include t, because it is an exhaustive O-derivation.

Let rankD′(t) = rank(F,R)(t) = k+ 1 (so k < m0). We use the notationDk to

represent the prefix ofD including all elements of rank at most k. Respectively,

D′k to represent the prefix of D′ including all elements of rank at most k. Since

Dk is an X-derivation and D′k is of the same depth, we can apply Theorem 5.3

and conclude that there exists a retraction h from ZD
′k ∪ ZDk to ZD

′k
such that

for every A ∈ ZDk it holds that

rankDk(h(A)) ≤ rankD′k(A) (5.1)

We have that sp(t) ⊆ ZD
′k

so h is also a retraction from sp(t) ∪ ZDk to ZD.
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Moreover let t′ = (R, h◦π). We have that sp(t′) = h(sp(t)) so t′ is applicable

on ZD, thus t′ ∈ RF . Finally, from (5.1) we know that the maximum rank

among atoms of sp(t′) is bounded by the maximum rank of atoms in sp(t),

hence rank(F,R)(t
′) ≤ rank(F,R)(t). �

In the end of the previous chapter we discussed the ranks of triggers and atoms

in a chase space and whether we could specify a class of derivations larger

than bf -O-chase, which preserves these ranks. bf -R-compliance is convenient

in this respect. The following theorem, establishes this important connection

between all X-derivations, when X is bf -R-compliant. In Proposition 4.10 we

saw that the ranks of atoms in the chase space are the minimal ranks that can

be achieved by any derivation from this knowledge base. Below we show that

all derivations of bf -R-compliant chase variants necessarily produce atoms at

that minimal rank.

Theorem 5.4 (Stable Rank Theorem). Let X be a chase variant that is

bf -R-compliant. Let C(F,R) be a chase space and let D be an X-derivation

on (F,R). Then for every A ∈ FD holds that rankD(A) = rank(F,R)(A).

Proof: In what follows we will use the notation Di to represent the prefix of D
including all elements of rank up to i. Note that for every atom A0 ∈ FD

i

holds

that rankDi(A0) = rankD(A0).

Since the ranks of triggers and atoms in a chase space are those of a

breadth-first oblivious derivation, this proof involves comparing ranks in the

bf -X-derivation D from (F,R) with ranks in a bf -O-derivation from the same

knowledge base.

We know that the first trigger t1 of trig(D) that produces an atom, is of

rank 1, as all of sp(t1) is in the initial factbase F . So then all of the atoms

produced by t1 are necessarily of rank 1 in C(F,R), as they do not belong to

F but can be produced by the application of one rule on F .

Let t be the first trigger in trig(D) that produces an atom A such that

rankD(A) 6= rank(F,R)(A). But every atom A′ ∈ sp(t) is produced

earlier in D, so rankD(A′) = rank(F,R)(A
′), and so there is an exhaus-

tive bf -O-derivation D′ that produces all sp(t) in the same ranks as D,
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as a result t is applicable on a prefix of D′, hence it appears in D′ and

rankD′(t) = rankD(t). We want to show that rankD′(A) = rankD(A). If

t indeed produces A in D′, then the result follows. Otherwise if t does not

produce A in D′, then there is a trigger t′, which appears before t in trig(D′)
and produces A. We split to two cases:

- If rankD′(t′) = rankD′(t), then because rankD′(A) = rankD′(t
′) and

rankD(t) = rankD(A), we conclude that rankD′(A) = rankD(A).

- For the case of rankD′(t′) < rankD′(t), we will arrive at contradiction.

At first, we know that A does not include any (new) variables indexed by t or

t′, since it appears in the output of both triggers. Let rankD(t) = k + 1. Then

all the variables in A are already created (and present) in ZD
k

. Furthermore,

Proposition 4.10 implies that rankD′(t) ≤ k + 1, hence rankD′(t′) ≤ k. So

A ∈ ZD′k .
From Theorem 5.3 we know that there exists a retraction h from ZD

′k ∪ZDk

to ZD
k

. Because the variables of A appear in ZD
k

, we know that h(A) = A.

But then A ∈ ZDk which contradicts the fact that A is produced by t inD. As a

result we cannot have a trigger of rank lower than that of t, producing A in D′,
so it has to be that rankD′(A) = rankD′(t) therefore rankD′(A) = rankD(A).

The proof is complete. �

In Example 30, we saw that the same triggers have different ranks in dif-

ferent chase spaces. In order to prove the preservation of ancestry for three

bf -R-compliant chase variants, we first provide a proposition which guaran-

tees the preservation of the ranks of the triggers producing the ancestors of an

atom, when we switch from the original chase space to a particular smaller one.

Proposition 5.5 (Unaffected Ranks of Ancestors). Let X be a chase variant that

is bf -R-compliant. LetD be an X-derivation,A ∈ FD and F ′ = Anc0
D(A). Let

TA be the subsequence of trig(D) that contains all the triggers that produced

any ancestor of A in D as well as the trigger that produced A in D. Then

for every trigger t ∈ TA holds that rankD(t) = rank(F ′,R)(t) and for every

A′ ∈ AncD(A) holds that rankD(A) = rank(F ′,R)(A).
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Proof: Let DA be the O-derivation from (F ′,R) such that trig(DA) = TA.

At first we will prove by induction that for every t ∈ TA and

A′ ∈ op(t) ∩ AncD(A) holds that rankD(t) = rankDA(t) and

rankD(A′) = rankDA(A′).

Let TA = t1, t2, ..., tn. Since t1 is the first trigger in trig(D) that produces

an ancestor of A in D, we know that its support is included in Anc0
D(A) and it

is of rank 1 in D . Thus sp(t) ∈ F ′ so in both derivations the rank of t is equal

to 1. Moreover let A′ ∈ op(t) ∩ AncD(A). If A′ is in Anc0
D(A) then it is of

rank 0 in both derivations whereas if A′ 6∈ Anc0
D(A) then it has to be of rank 1

inD′ (because it is produced by t) and also of rank 1 inD (because t is the first

trigger in D that produces an ancestor of A, so A′ cannot have been produced

before).

Suppose now that the equalities are true for triggers t1, t2, ..., ti−1 and all

atoms from AncD(A) that they produce. Because TA includes all the triggers

that produce ancestrors of A in D, we have that

sp(ti) ∈
(
F ′ ∪ op(t1) ∪ op(t2) ∪ · · · ∪ op(ti−1)

)
∩ AncD(A)

therefore the ranks of the atoms in the support of ti are equal in the two

derivations, so it also holds that rankD(ti) = rankDA(ti). Moreover every

A′ ∈ op(ti) ∩ AncD(A) is indeed produced by ti in DA (because if it was

produced by an earlier trigger t′ of TA, it would also have been produced by t′

in D). Hence the induction is complete.

Let t ∈ TA. From Proposition 4.10 we know that the rank of a trigger t in

the chase space C(F ′,R) is the minimal rank that any derivation from (F ′,R)

can achieve for t, so rank(F ′,R)(t) ≤ rankDA(t). By replacing rankDA(t)

with rankD(t) this last equation turns to

rank(F ′,R)(t) ≤ rankD(t) (5.2)

Now notice that since X is bf -R-compliant we have that

rank(F,R)(t) = rankD(t) (this is based on Theorem 5.4). Then, from

Proposition 4.11, we have that rank(F,R)(t) ≤ rank(F ′,R)(t) which gives us
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that

rankD(t) ≤ rank(F ′,R)(t) (5.3)

From (5.3) and (5.2) we conclude the desired rankD(t) = rank(F ′,R)(t). �

In the previous subsection we showed that every hereditary chase variant pre-

serves ancestry. It seems possible that if a chase variant is bf -R-compliant and

produces a universal model, then it preserves ancestry. Nevertheless, this time

we proceed in a less general manner, by showing directly that the chase variants

that concern us preserve ancestry. As exhibited in Figure 5.1, the theorems and

propositions that we proved above are instrumental to this conclusion.

Starting from an X-derivationD which produces an atomA at a certain rank

m, we will show that it is possible to define an X-derivation D′, whose initial

factbase includes only the 0-rank ancestors of A in D, and that also produces

A at rank m. We specify an algorithm that performs this task. The “Unaf-

fected Ranks Proposition” 5.5, combined with the “Stable Rank Theorem” 5.4

guarantee that the ranks of all the ancestors of A in D that appear also in D′

are the same in the two X-derivations. Note that this only holds because X is

bfR-compliant. Finally, in order to verify that all the triggers that produce an-

cestors ofA inD are X-applicable at their respective turn inD′, we will employ

the “Retraction Theorem” 5.3.

Proposition 5.6. The X-chase preserves ancestry when

X ∈ {bf -SO,bf -R,P}.

Proof: We assume that D is an X-derivation from (F,R) and t is a trigger that

produces atom A in D. Let F ′ = Anc0
D(A) and TA = tn1, tn2, ..., tnn be the

subsequence of trig(D) that contains all the triggers that produced any ancestor

of A in D as well as t. So t is the n-th trigger of TA.

Let rankD(A) = m. The algorithm below can be called the “breadth-first

completion” of TA on (F ′,R), because it constructs a derivation by completing

the given sequence of triggers in a breadth-first manner. We will show that its

result is an X-derivation D′ such that TA is a subsequence of trig(D′). We call

the algorithm 1.X, because it is parametrized by the particular chase variant
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X ∈ {bf -SO,bf -R,P}.

ALGORITHM 1.X: Input: (F ′,R), TA = tn1 , tn2 , ..., tnn .

1) Set D′ = (∅, F ′, F ′), Z ′0 = F ′,
i = 1 (where i is the current size of D′),
j = 1 (where j is the index of the next trigger of TA to be added to D′).

2) for (rank) k = 1 to m,

I) while there are at least two different triggers fromR that are X-applicable on D′,

i) if the trigger tnj
of TA is X-applicable on D′,

a) Set t′i = tnj
, F ′i = Z ′i−1 ∪ op(tnj

).

b) j + +.

c) X-dependent step: · if X ∈ {bf -R,bf -SO}, set Zi = Fi.

· if X = P, set Zi = Zi−1.

d) Add (t′i, F
′
i , Z

′
i) to D′.

e) i+ +.

ii) else if there exists a trigger tν 6∈ TA that is X-applicable on D′,

a) Set t′i = tν , F ′i = Z ′i−1 ∪ op(tν).

b) X-dependent step: · if X ∈ {bf -R,bf -SO}, set Zi = Fi.

· if X = P, set Zi = Zi−1.

c) Add (t′i, F
′
i , Z

′
i) to D′.

d) i+ +.

II) if tν is the only trigger that is X-applicable on D′, then

i) Set t′i = tν , F ′i = Z ′i−1 ∪ op(tν),

ii) if tν ∈ TA, j + +.

iii) X-dependent step: · if X ∈ {bf -R,bf -SO}, set Zi = Fi.

· if X = P, set Zi = F̂i.

iv) Add (t′i, F
′
i , Z

′
i) to D′.

v) i+ +.

3) Output D′.

The main idea behind the above algorithm is that for each rank (represented
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with the k-loop of step 2) we test if we can apply the next available trigger

of TA and if this test fails, we search indeterministically for other possible

X-applicable triggers. In fact, we know when the test is going to fail: as es-

tablished by Proposition 5.5, the rank of every trigger of TA in C(F ′,R) is the

same as its rank inD. Therefore the above algorithm will apply at each rank the

corresponding triggers of TA first and then any other X-applicable triggers that

are not in TA. Note that D′ is necessarily an X-derivation, since we only apply

X-applicable triggers, and the treatment of the active factbase is in accordance

with the definition of X-chase for X ∈ {bf -SO,bf -R,P}.
Below we prove that indeed, in every occasion where the X-applicability

test of step 2.I.i fails, it is due to the breadth-first prioritization and thus there

exists an X-derivation that produces A at the same rank asD, starting with only

the zero-rank ancestors of A in D as the initial factbase. We split the proof in

three cases, each with its own self-contained notation.

Case X=bf -SO: By construction, D′ is a bf -SO-derivation. We will verify

that it does indeed include all triggers of TA. Since tn1 is the first trigger in

trig(D) that produces an ancestor of A inD, we know that tn1 is applicable on

F ′, therefore it is also bf -SO-applicable on (∅, F ′, F ′) and applied according to

step 2.I.i of the algorithm. We will prove by contradiction, that all the triggers

of TA are in trig(D′).

Let tnj be the first trigger of TA that does not appear in D′. Therefore

it is SO-equivalent to a trigger t′ that appears earlier in D′. Suppose that

tnj = (R, π) and t′ = (R, π′). The SO-equivalence guarantees that π and π′

agree on the mapping of frontier variables ofR. Those variables are necessarily

mapped by π (so also by π′) to terms of ZD. According to Algorithm 1.SO, for

each rank in D′, triggers of TA appear before any other trigger, so t′ has to be

of a strictly lower rank (in D′) than tnj so

rankD′(t
′) < rankD′(tnj)
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Moreover from Proposition 5.5 and Theorem 5.4

rankD(tnj) = rankD′(tnj)

so we have

rankD′(t
′) < rankD(tnj)

whereas from Theorem 5.4 and Proposition 4.11 we know that

rank(F,R)(t
′) ≤ rankD′(t

′)

so we can use Corollary 5.2 to conclude that that there exists a re-

traction h from sp(t′) ∪ ZD to ZD such that t′′ = (R, h ◦ π′) ∈ RF and

rank(F,R)(t
′′) ≤ rank(F,R)(t

′). Since h does not affect any variables of ZD,

it does not affect the mapping of the frontier variables of R, i.e. for every

x ∈ fr(R), h ◦ π′(x) = π′(x). This implies that t′′ is SO-equivalent with

t′, so also with tnj . Let D′′ be the prefix of D with all elements of rank

strictly less than rankD(tnj). D′′ does not include tnj nor any trigger of

the same SO-equivalence class. But sp(t′′) = h(sp(t′)) ⊆ ZD and from

rank(F,R)(t
′′) ≤ rank(F,R)(t

′) we know in particular that sp(t′′) ⊆ ZD
′′
. So

t′′ is applicable applicable on D′′. But we know that t′′ 6∈ trig(D) because it

is SO-equivalent with tnj . This is a contradiction becauseD is breadth-first, so

t′′ must have been applied at its respective rank.

Therefore we have shown that TA is indeed a subsequence of the sequence

of triggers trig(D′) of the bf -SO-derivation D′ from (F ′,R).

Case X=bf -R: By definition, D′ is a bf -R-derivation. We need to also show

that TA is a subsequence of trig(D′), i.e. that the application of new triggers

inbetween does not cancel the R-applicability of the following the triggers of

TA. We prove this by contradiction.

If there is an element of TA that does not appear in trig(D′), there is surely

the first element of TA that does not appear in trig(D′). We assume that

tnj is the first element of TA that does not appear in trig(D′). Theorem 5.4

assures that rankD′(tnj) = rank(F ′,R)(tnj) and Proposition 5.5 implies that
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rank(F ′,R)(tnj) = rankD(tnj) so we know that rankD′(tnj) = rankD(tnj).

Let D′′ be the prefix of D′ with with all elements of rank strictly smaller than

rankD′(tnj). We denote with F ′′ the resulting factbase after applying all trig-

gers of trig(D′′) as well as any triggers that precede tnj in TA but are of

the same rank as that of tnj in D and in D′ (recall that triggers of TA have

equal ranks in the two chase spaces and hence also in the two breadth-first

R-derivations D and D′ as well). So it holds that

F ′′ = ZD
′′ ∪ op(tni) ∪ · · · ∪ op(tnj−1)

where the (possibly empty) set of triggers {tni, ..., tnj−1} represents the triggers

of TA which are of the same rank as tnj in D.

We have assumed that t is not R-applicable on F ′′ (since it does not appear

in trig(D′)). Hence, by the condition of R-applicability, there exists a homo-

morphism σ : var(op(tnj)) → term(F ′′) with σ(op(tnj)) ⊆ F ′′, whose

domain does not include any variables from sp(tnj), so σ(x) = x for every

x ∈ var(sp(tnj)).

LetDj be the prefix ofD which includes all elements of rank strictly smaller

than rankD(tnj). Notice thatDj is a breadth-first R-derivation and the depth of

D′′ is equal to the depth of Dj. Considering that D′′ corresponds to a derivation

from (F,R) with the same sequence of triggers and possibly lower ranks (by

Proposition 4.11), we can apply the Theorem 5.3 and conclude that there exists

a retraction h from ZD
′′ ∪ ZDj to ZD

j

. The retraction h does not affect any

variables that appear in ZD
j

therefore it does not affect any variables of sp(tnj)

or of op(tni) ∪ · · · ∪ op(tnj−1). So we have

h ◦ σ(op(tnj)) ⊆ h(F ′′)

which means

h ◦ σ(op(tnj)) ⊆ h
(
ZD

′′ ∪ op(tni) ∪ · · · ∪ op(tnj−1)
)
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and finally

h ◦ σ(op(tnj)) ⊆ ZD
j ∪ op(tni) ∪ · · · ∪ op(tnj−1)

But if we denote with D∗ the prefix of D including all triggers up to tnj , we

have that

ZD
j ∪ op(tni) ∪ · · · ∪ op(tnj−1) ⊆ ZD

∗

therefore

h ◦ σ(op(tnj)) ⊆ ZD
∗

but dom(h)∩Zj = ∅, thus h◦σ only affects new variables in op(tnj). We arrive

to the conclusion that tnj is not R-applicable on ZD
∗

which is a contradiction.

Hence it must be the case that tnj is indeed R-applicable on F ′′ and does appear

in trig(D′). Therefore we have shown that TA is indeed a subsequence of the

sequence of triggers trig(D′) of a bf -R-derivation D′ from (F ′,R).

Case X=P: By definition, D′ is a P-derivation. We need to also show that

TA is a subsequence of trig(D′), i.e. that the application of new triggers

inbetween does not cancel the P-applicability (which practically amounts to

R-applicability on the current active factbase) of the rest of the triggers of TA.

We prove this by contradiction.

If there is an element of TA that does not appear in trig(D′), there ex-

ists surely a first element of TA that does not appear in trig(D′). We as-

sume that tnj is the first element of TA that does not appear in trig(D′). Let

rankD′(tnj) = k + 1. Theorem 5.4 assures that rankD′(tnj) = rank(F ′,R)(tnj)

and Proposition 5.5 implies that rank(F ′,R)(tnj) = rankD(tnj), so we know

that rankD′(tnj) = rankD(tnj). We denote with D′k the prefix of D′ with all

elements of rank up to k and with Dk the prefix of D with all elements of rank

up to k, with ZD
′k

and ZD
k

the respective final active factbases.

Let D′′ be the O-derivation from (F,R) with trig(D′′) = trig(D′k). From

Proposition 4.11 and Theorem 5.4, we know that the depth of D′′ is smaller

or equal to the depth of D′k. Note that ZD
′′

= ZD
′k ∪ F . Since D′′ and Dk

are both derivations in C(F,R) and Dk is a breadth-first P-derivation, we can
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apply Theorem 5.3 from which we conclude that there exists a retraction h from

ZD
′k ∪ ZDk to ZD

k

.

We have assumed that tnj is not R-applicable on ZD
′k

(since it does not

appear in trig(D′)). Hence, by the condition of R-applicability, there exists a

retraction σ from op(tnj) ∪ ZD
′k

to ZD
′k

. The domain of σ only includes new

variables of op(tnj). Moreover h does not affect variables of sp(tnj), since

they appear in ZD
k

. So we can compose h and σ and we have:

h ◦ σ(op(tnj)) ⊆ h(ZD
′k
) ⊆ ZD

k

(5.4)

The substitution h ◦ σ has as domain only the set of new variables of op(tnj),

hence it is the identity on all variables of sp(tnj), and from (5.4) we conclude

that tnj is not R-applicable onZD
k

, so it cannot be inD. That is a contradiction,

hence it must be the case that tnj is indeed R-applicable on ZD
′k

and does

appear in trig(D′). Therefore we have shown that TA is indeed a subsequence

of the sequence of triggers trig(D′) of a P-derivation D′ from (F ′,R). �

Corollary 5.3. X-k-Boundedness is decidable when

X ∈ {bf -O,bf -SO,bf -R,P}. ♣

5.2.4 V-, F-, E- and C-Chase Do Not Preserve Ancestry

To conclude this section, we present examples that show that the V-chase, the

F-chase, the C-chase and the E-chase do not preserve ancestry.

Example 36: Vacuum & Frugal Chase. Let F = {r(a), t(a)} and R the

following set of rules:

R1 = r(x)→ p(x, y)

R2 = t(x) ∧ p(x, y)→ s(y)

R3 = p(x, y)→ ∃z p(x, z) ∧ q(z)

R4 = q(u) ∧ p(x, y)→ ∃z p(y, z)

Here is a V- and F-derivation D from (F,R):
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∅ F Z0 = F 0

t1 = (R1, {x 7→ a}) F1 = F ∪ {p(a, zt1)} Z1 = F1 1

t2 = (R2, {x 7→ a, y 7→ zt1}) F2 = F1 ∪ {s(zt1)} Z2 = F2

t3 = (R3, {x 7→ a, y 7→ zt1}) F3 = F2 ∪ {p(a, zt3), q(zt3)} Z3 = F3 2

t4 = (R4, {u 7→ zt3, x 7→ a, y 7→ zt1}) F4 = F3 ∪ {p(zt1, zt4)} Z4 = F4 3

We can represent ZD as follows:

r

t

s

q

a zt1

zt3

zt4

And below is the chase graph associated with D:

t1

t(a)r(a)

p(a, zt1)

s(zt1)

t2

p(a, zt3) q(zt3)

t3

p(zt1, zt4)

t4
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Take the atom A = p(zt1, zt4). Then Anc0
D(A) = {r(a)}. However, starting

only from {r(a)}, in a V- or F-derivation the atom p(a, zt1) will be removed

from the active factbase with the application of t3, because it is isomorphically

subsumed by {p(a, zt3), q(zt3)}. So then t4 will not be applicable because a

part of its support, namely p(a, zt1), will be missing from the active factbase.

Therefore the V-chase and the F-chase do not preserve ancestry. �

Equivalent Chase: As a counterexample for the equivalent chase, we refer to

the Example 41, which is used in the Section 5.5 to introduce k-minimal chase

graphs.

Example 37: Core Chase. Let F = {r(a), t(a)} and R the following set of

rules:

R1 = r(x)→ ∃z p(x, z)

R2 = r(x) ∧ p(x, y)→ p(x, x)

R3 = t(x) ∧ p(x, y)→ q(y)

R4 = p(x, y)→ ∃w p(y, w)

Here is a C-derivation D from (F,R):

∅ F Z0 = F 0

t1 = (R1, {x 7→ a}) F1 = F ∪ {p(a, zt1)} Z1 = F1 1

t2 = (R2, {x 7→ a, y 7→ zt1}) F2 = F1 ∪ {p(a, a)} Z2 = Z1

t3 = (R3, {x 7→ a, y 7→ zt1}) F3 = F2 ∪ {q(zt1)} Z3 = Z1

t4 = (R4, {x 7→ a, y 7→ zt1}) F4 = F3 ∪ {p(zt1, wt4)} Z4 = Z1 ∪ F2 ∪ F3 ∪ F4 2

t5 = (R3, {x 7→ a, y 7→ a}) F5 = F4 ∪ {q(a)} Z5 = Z4

t6 = (R4, {x 7→ zt1, y 7→ wt4}) F6 = F5 ∪ {p(wt4, wt6)} Z6 = F ∪ {p(a, a), q(a)} 3

Below is a representation of FD:

r

t

q
q

a zt1 wt6wt4
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And this is the chase graph associated with D:

t1

t(a)r(a)

p(a, zt1)

q(zt1)

t3

p(zt1, wt4) p(a, a)

t2

q(a)

t5

t4

p(wt4, wt6)

t6

We take the atom p(wt4, wt6), and we see that its only ancestor in the initial

factbase of D is r(a). However from the knowledge base ({r(a)},R), there

does not exist a C-derivation that produces p(wt4, wt6). We conclude that the

C-chase does not preserve ancestry. �

5.3 Complexity Upper Bounds

The goal of this section is to investigate the complexity of the problem of decid-

ing whether a ruleset is X-k-bounded, where X is a chase variant that preserves

ancestry. Here is the precise formulation of the X-k-boundedness problem4:
4We make the usual assumption that integers are unary encoded, which implies here that the size of the encod-

ing of k is k.
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Given a rulesetR and a number k in unary encoding, is it true that for every

factbase F , every X-derivation from (F,R) is of depth at most k?

We will provide upper complexity bounds which follow from the implicit al-

gorithms associated with our decidability arguments. Since our method of as-

suring decidability has been to bound the size of the possible factbases that we

need to consider, it is implied that we do need to actually carry out the forward

chaining process on these factbases. Thus to research complexity of the X-k-

boundedness problem, we need to already know the complexity of constructing

X-derivations of depth k.

Primarily we should discuss depth. Given a knowledge base (F,R), every

exhaustive O-derivation from (F,R) includes the same triggers, namely all

the triggers of C(F,R). However, as shown in Example 21.0, two exhaustive

O-derivations from the same knowledge base can be of different depth. That is

because the order of the application of the triggers affects their ranks. Hence it

is appropriate to separate the chase variants into two classes:

Definition 5.8. A chase variant X is depth-order independent if the existence

of a k-deep X-derivation from the a knowledge base (F,R) implies that every

exhaustive X-derivation from (F,R) is of depth at least k. A chase variant that

is not depth-order independent is called depth-order sensitive. a

A direct consequence of the above definition is that a chase variant is depth-

order independent if and only if all the exhaustive X-derivations from the same

knowledge base are of the same depth. When a chase variant is depth-order

independent we only need to compute one X-derivation from a knowledge

base to know whether there can be k-deep X-derivations from this knowledge

base. Therefore the division of the chase variants into those two classes indi-

cates that the same division takes place with respect to the complexity of the

k-boundedness problem.
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Proposition 5.7. The chase variants bf -O, bf -SO, E, P, C and LC5 are depth-

order independent. The chase variants O, SO, R, bf -R, V, bf -V, F and

bf -F are depth-order sensitive.

Proof: We start the proof with the depth-order sensitive chase variants. For the

O and the SO-chase, the Example 21.0 serves as a counter-example to show

that they are indeed depth-order sensitive. For the R and the bf -R-chase, the

Example 12 serves as a counter-example. For the V, the bf -V, the F and the

bf -F-chase, we modify this last example: LetR be the ruleset:

R1 = p(x, y)→ ∃z p(y, z)

R2 = p(x, y)→ ∃z p(y, z) ∧ p(z, z)

Then with F = {p(a, b)} we see that if we apply R2 first, we create a terminat-

ing V-, bf -V-, F-and bf -F-derivation D of depth 1. On the other hand if we

apply R1 first, then we can create a V-, bf -V-, F-and bf -F-derivation which

will be of depth at least 2.

Now we know that the bf -O-chase is depth-order independent because in

every bf -O-derivation D of depth k, all triggers that have rank at most k in the

corresponding chase space are necessarily present in trig(D) and their ranks

are equal to those of the chase space (shown in Proposition 4.5).

For the bf -SO-chase we refer to the Appendix (Section (B)). For the P-,

C- and LC-chase, depth-order independence results from their definitions as

synchronous derivations, which implies that the order of application of triggers

does not matter. Finally to see that the E-chase is depth-order independent

notice that for every knowledge base (F,R) and every (not necessarily exhaus-

tive) E-derivation D from (F,R) and C-derivation D′ from (F,R), it holds

that if D and D′ are of the same depth then ZD ≡ ZD
′

(this is easy to show

by induction). Hence every terminating E-derivation from (F,R) has the same

depth as any C-derivation from the same knowledge base. �

Theorem 5.5. Let R be a ruleset with at most b atoms in the rules’ bodies and

k ∈ N. The number of quasi-equivalence classes of factbases of size at most bk

is in the worst case double exponential with respect to k.
5The LC-chase will be defined in the next section.
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Proof: Let R include p different predicates of arity at most a. As an upper

bound we can assume that all the predicates have arity a. The maximum number

of different variables that can be included in a factbase of size at most bk is a·bk.
The same holds for the maximum number of different constants. So we can say

that a representative F of a quasi-equivalence class has to choose between 2a·bk

terms for the at most a · bk terms that appear in F . So if F is of size exactly bk,

we can represent it as a word of size bk + a · bk, which includes the predicates’

names (first) and the terms. In this case the number of possible arrangements is

pb
k · (2 · a · bk)a·bk

In our encoding we can add the possibility of the factbase having fewer atoms,

by adding one more predicate (a “null” predicate), but this will only result in

the replacement of p by p+ 1, so it does not change the exponential factor. �

Theorem 5.6. Let (F,R) be a knowledge base and k ∈ N. The length

of a derivation from (F,R) of depth k is at most double exponential with

respect to k.

Proof: In the worst case scenario, we will apply all the triggers of C(F,R)
so the problem is reduced to finding how many those are. Let trigk be the

set of triggers of rank at most k in C(F,R). Let b be the maximal number of

atoms in the bodies of rules of R and let h be the maximal number of atoms

in the heads of rules of R. A trigger is uniquely identified by a rule and a

homomorphism. The number of potential homomorphisms from the body of a

rule to the factbase is bounded by the number of permutations of the potential

supports of the trigger, which include at most b atoms from F . Therefore the

number of applicable triggers fromR on F is bounded by |R|·b!·|F |b. All these

triggers will be of rank 1. Each trigger will contribute at most h atoms to the

(active) factbase, so the atoms of rank at most one will be |F |+ |R| · b! · |F |b ·h.

More generally if F k is the output of all triggers of rank at most k, it holds

that:

|F k| = |F k−1|+ |R| · b! · |F k−1|b · h
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which means that |F k| = O(|F |bk). From this we conclude that also the number

|trigk| of triggers of rank at most k in C(F,R) has a similar upper bound:

|trigk| =
k∑
i=0

|R| · |F i|b = O(|F |bk)

which shows that the length of a derivation from (F,R) of depth k is double

exponential with respect to k (in the worst case). �

Now, to turn to the problem of X-k-boundedness when X preserves ancestry,

suppose thatR is a ruleset with at most b atoms in the body of every rule. Above

we showed that the number of all the possible factbases of size at most bk (see

“Ancestor Clue”-Lemma 4.3) is also double exponential with respect to k and

the vocabulary ofR. So we can conclude that:

Corollary 5.4. Let X be a depth-order independent chase variant that preserves

ancestry. The problem of determining X-k-boundedness of a ruleset R is in

2-EXPTIME. ♣

When a chase variant is depth-order sensitive, in order to be sure whether there

exists a derivation of a certain depth from a given knowledge, we will need (in

the worst case) to compute all the derivations of up to this depth. Below we

count how many they are:

Theorem 5.7. Let (F,R) be a knowledge base and k ∈ N. The number of

all the derivations from (F,R) of depth at most k is in the worst case triple

exponential with respect to k.

Proof: An upper bound to the number of all the X-derivations from (F,R) of

depth at most k, is the number of all the permutations of all the triggers trigk of

rank at most k in C(F,R). In Theorem 5.6 we showed that |trigk| = O(|F |b
k

).

Thus

|trigk|! = O(|F |bk)! = O
((
|F |bk

)|F |bk)
= O

(
|F |bk·|F |b

k)
= O

(
222k)

which finally entails 3-EXPTIME as the corresponding complexity class. �
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As is the case for depth-order independent chase variants, also in depth-order

sensitive chase variants, the generation of all factbases of a bounded size does

not affect the upper bound of the complexity of the problem of determining

k-boundedness:

Corollary 5.5. Let X be a depth-order sensitive chase variant that preserves

ancestry. The problem of determining X-k-boundedness of a ruleset R is in

3-EXPTIME. ♣

5.4 Towards The Limits of bf -R-Compliance

In this section we introduce a new chase variant that encapsulates several im-

provements which, following our approach up to this point, comprise in a rather

evident fashion the next step in the line of research of optimizing the chase, in

terms of detecting more redundancies while preserving ancestry. In the re-

stricted chase, applicability depends on a local retraction check. This is less

costly than computing a core of the whole factbase because heads of rules are

usually small, but it does not trace larger scale redundancies. In the equivalent

chase it is guaranteed that every rule application adds new information to the

factbase, but at the (potentially great) cost of checking for logical entailment of

entire factbases at every step. Lastly the core chase detects all redundancies but

it does so with the computational cost of calculating the core of the factbase at

every rank mark. In comparison, in our chase algorithm the trade-off between

detecting redundancies and computational complexity is more balanced. We

follow the paradigm of a synchronous derivation, but we calculate only a local

partial core of the atoms at the end of a rank, by considering that the atoms of

previous ranks are fixed. We will see that this is stronger than the breadth-first

restricted chase in eliminating redundancy while it is also termination-order

independent. The local core chase was created to push the barrier of chase vari-

ants that preserve ancestry, but as we will demonstrate, this is not the case, i.e.

it does not preserve ancestry. Nonetheless, we believe that it does satisfy a very

similar weaker property which guarantees the decidability of k-boundedness in
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the same manner. Due to limitations of time, we chose not to undertake the

research for a proof of this conjecture.

5.4.1 Local Core Chase

We want to specify minimal retracts of an atomset F that do not affect variables

from a predefined variable set W. To this end we define what we call a partial

core.

Definition 5.9 (Partial Core). Let F be an atomset and W ⊆ var(F ). A set

F ′ ⊆ F is a partial core of F preserving W, which we denote by pcore(F,W),

if and only if the following two hold:

i) F ′ is a retract of F resulting from a retraction σ that does not affect any of

the variables in W, i.e. F ′ = σ(F ) with dom(σ) ∩W = ∅.

ii) σ is minimal for the above property, i.e. every non-trivial retraction from

F ′ affects at least one variable from W. a

To further establish the notion of partial core, we devote a part of the Appendix

(Section (C)) to discuss the freezing and unfreezing operations on variables of

an atomset. Based on the notion of partial core, we are now ready to define

the new chase variant. We remind that in a synchronous derivation D, if Di is a

rank mark, we denote with F̂i the union of the transitory factbases of the current

(ending) rank.

Definition 5.10 (Local Core Chase). A local core derivation is any syn-

chronous derivation D = (t∗, F∗, Z∗) from (F,R) where for every rank

mark Di with i > 0, the active factbase is Zi = pcore(F̂i,W), where

W = {x ∈ var(FD) | rank(x) < rank(Di)}. a

We will abbreviate local core chase with LC-chase. By the definition, we know

that the LC-chase is termination-order independent because it is comprises syn-

chronous derivations with a retraction on every rank mark which is indifferent

to the ordering of the triggers that preceded.
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Example 38: Let F = {r(a), t(a)} andR the following set of rules:

R1 = r(x)→ ∃z ∃w p(x, z) ∧ p(z, x) ∧ q1(z) ∧ p(w, z) ∧ t(w)

R2 = t(x)→ ∃z ∃w p(x, z) ∧ p(z, x) ∧ q2(z) ∧ p(w, z) ∧ r(w)

Here is a LC-derivation D from (F,R):

∅ F Z0 = F 0

t1 = (R1, {x 7→ a}) F1 = F ∪ {p(a, zt1), p(zt1, a), Z1 = F

q1(zt1), p(wt1, zt1), t(wt1)}

t2 = (R2, {x 7→ a}) F2 = F ∪ {p(a, zt2), , p(zt2, a), Z2 = F ∪ {p(a, zt1), p(a, zt2),

q2(zt2), p(wt2, zt2), r(wt2)} p(zt1, a), p(zt2, a), q1(zt1), q2(zt2)} 1

Here is a representation of FD, where the dashed elements do not appear in ZD:

p

t

q1

r

q2

a

zt1
wt1

zt2
wt2

We see that there is no R-applicable trigger on ZD, so D is terminating. On the

other hand, we can verify that when X ∈ {O,SO,R,P,V,F}, every exhaus-

tive X-derivation is infinite. �

The local core chase is by definition stronger than the parallel chase in detecting

redundancies. But as it is a breadth-first algorithm, it fails to detect redundan-

cies of the type that we saw at Example 22, where we showed that the breadth-

first strategy is not always optimal for the restricted chase. However, it is easy

to see that the local core chase reflects the termination of the breadth-first re-

stricted chase. And even more, if there exists a terminating bf -R-derivation

from (F,R), then every exhaustive LC-derivation from (F,R) is terminating.

We proceed now to show that the LC-chase does not preserve ancestry.
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Example “LCANCESTRY” 39: Let F = {q1(b, a), q2(c, a), s(a)} andR is:

R1 = q1(x, y)→ ∃z∃w∃v p(y, z) ∧ p(w, z) ∧ s(w) ∧ q1(v, w)

R2 = s(x)→ ∃z∃w∃v p(x, z) ∧ p(w, z) ∧ q2(v, w)

R3 = s(x) ∧ p(x, y)→ ∃z r(y, z)

Below is the derivation D from (F,R):

∅ F0 = F Z0 = F0 0

t1 = (R1, {x 7→ b, y 7→ a}) F1 = F ∪ {p(a, zt1), p(wt1, zt1), Z1 = F

s(wt1), q1(vt1, wt1)}

t2 = (R2, {x 7→ a}) F2 = F ∪ {p(a, zt2), p(wt2, zt2), Z2 = F ∪ {p(a, zt1)}

q2(vt2, wt2)} 1

t3 = (R3, {x 7→ a, y 7→ zt1}) F3 = Z2 ∪ {r(zt1, zt3)} Z3 = F ∪ {r(zt1, zt3)} 2

D is a terminating LC-chase derivation. Notice that when selecting the par-

tial core in Z2, we chose p(a, zt1) over p(a, zt2). This choice has no semantic

impact on the derivation. However it affects its chase graph, so also the ances-

tors/descendants of the certain atoms. Here is FD where the atoms that do not

appear in ZD are dotted:

p

q1

r

q2

s
a

b

c

zt1 wt1
vt1

zt2 wt2
vt2

zt3

And here is the chase graph associated with D:
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F

t1

t3

q2(c, a)q1(b, a) s(a)

p(wt1, zt1)p(a, zt1)

r(zt1, zt3)

t2

q1(vt1, wt1)s(wt1) p(wt2, zt2)p(a, zt2)q2(vt2, wt2)

We have that Anc0
D
(
r(zt1, zt3)

)
= {q1(b, a), s(a)}. Below is the only termi-

nating LC-derivation from
(
F ′,R

)
, where F ′ = {q1(b, a), s(a)}, which we

call D′:

∅ F ′0 = {q1(b, a), s(a)} Z ′0 = F ′0 0

t1 = (R1, {x 7→ b, y 7→ a}) F ′1 = F ′0 ∪ {p(a, zt1), p(wt1, zt1), Z ′1 = Z ′0

s(wt1), q1(vt1, wt1)}

t2 = (R2, {x 7→ a}) F ′2 = F ′0 ∪ {p(a, zt2), p(wt2, zt2), Z ′2 = Z ′0 ∪ {p(a, zt2),

q2(vt2, wt2)} p(wt2, zt2), q2(vt2, wt2)} 1

t3.1 = (R3, {x 7→ a, y 7→ zt2}) F ′3 = Z ′2 ∪ {r(zt2, zt3.1)} Z ′3 = Z ′2 ∪ {r(zt2, zt3.1)} 2

Below is F ′D
′
where the atoms that do not appear in Z ′D

′
are dotted:

p

q1

r

q2

s

a

b
zt1 wt1

vt1

zt2 wt2
vt2

zt3.1

We see that the atom r(zt1, zt3) is not produced in D′. Therefore the LC-chase

does not preserve ancestry. �
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5.4.2 The Conjecture

As mentioned in the beginning of this section, our aim when defining the

LC-chase was to obtain a chase variant that is stronger in eliminating redun-

dancy than the bf -R-chase while retaining the property of preservation of an-

cestry. The above counter-example did show that this is indeed not the case,

but there is a reason to suspect that this finding does not kill the project. As we

pointed out in the above example, the non-deterministic choice of (partial) core

influences the ancestor/descendant relations in the resulting LC-derivation. In

other words, although all the LC-derivations from a given knowledge base pro-

duce isomorphic results for every rank, the corresponding LC-chase graphs are

not isomorphic. Our presumption is that for each atom in a given active fact-

base, there exists at least one of those LC-chase graphs that has a corresponding

atom that preserves ancestry, meaning that we can indeed reproduce the same

atom from the same rank starting from only its ancestors. If this is the case,

then a weaker form of preservation of ancestry holds for the LC-chase, leading

to the decidability of k-boundedness in exactly the same way as preservation of

ancestry does.

Our work on the subject indicates that a confirmation of this hypothesis is

feasible but outside of the time limits for this thesis. Therefore we will only for-

mulate the weaker property that we suggest that the LC-chase satisfies, leaving

the potential proof for future work. We begin by specifying what are isomor-

phic triggers:

Definition 5.11. Let t = (R, π) and t′ = (R, π′) be two triggers. We

say that t and t′ are isomorphic if there is a variable renaming σ with

dom(σ) ⊆ codom(π) and codom(σ) ∩ codom(π) = ∅, such that π′ = σ ◦ π.

Let σ̇ be the extension of σ created by adding the corresponding existential

variable mappings (xt 7→ xt′). We say that t is isomorphic with t′ by σ̇. a

As a result of the above definition, if t is isomorphic with t′ by σ̇, then it holds

that σ̇(op(t)) = op(t′) and σ̇(sp(t)) = sp(t′).

Now we need to introduce a notion of isomorphic derivations. In this case,

the “isomorphism” is not going to be one mapping, but a sequence of mappings,
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between the elements of the derivations (focusing on triggers and active fact-

bases), which will ensure that the two derivations do in fact evolve in exactly

the same manner.

Definition 5.12. Let D = (t∗, F∗, Z∗) and D′ = (t′∗, F
′
∗, Z

′
∗) be two derivations

from (F,R). We say thatD andD′ are isomorphic if they are of the same length

n (possibly infinite) and there exists a sequence of pairs of variable renamings

(σ0, τ0), (σ1, τ1), ..., (σn, τn) such that

• for every i ≤ n it holds that ti is isomorphic with t′i by σi.

• τ0 ⊆ τ1 ⊆ τ2 ⊆ · · · ⊆ τn, where the substitutions are seen as sets of

mappings.

• for every i ≤ n it holds that Z ′i = τi(Zi).

When D and D′ are isomorphic we say that an atom A produced by ti in D
corresponds to the atom σi(A) produced by t′i in D′ (and vice versa). a

Example “LCANCESTRY” 40 (continued from Example 39): In the previ-

ous subsection we specified the knowledge base (F,R) and a LC-derivation D
from (F,R). We now specify the derivation D′′ from (F,R) which is isomor-

phic with D:

∅ F0 = F Z0 = F0 0

t1 = (R1, {x 7→ b, y 7→ a}) F1 = F ∪ {p(a, zt1), p(wt1, zt1), Z1 = F

s(wt1), q1(vt1, wt1)}

t2 = (R2, {x 7→ a}) F2 = F ∪ {p(a, zt2), p(wt2, zt2), Z ′′2 = F ∪ {p(a, zt2)}

q2(vt2, wt2)} 1

t3.1 = (R3, {x 7→ a, y 7→ zt2}) F ′′3 = Z ′′2 ∪ {r(zt2, zt3.1)} Z ′′3 = F ∪ {r(zt2, zt3.1)} 2

Next, we provide an illustration of FD
′′
, where the atoms that do not appear in

ZD
′′

are dotted:
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p

q1

r

q2

s

a

b

c

zt1 wt1
vt1

zt2 wt2
vt2

zt3.1

As it is expected it holds that FD is isomorphic with FD
′′

and ZD is isomorphic

with ZD
′′
. However the associated chase graphs are not isomorphic. Indeed,

here is the LC-chase graph associated with D′′:

F

t1

t3.1

q2(c, a)q1(b, a) s(a)

p(wt1, zt1)p(a, zt1)

p(zt2, zt3.1)

t2

q1(vt1, wt1)s(wt1) p(wt2, zt2)p(a, zt2)q2(vt2, wt2)

Notice that the atom p(zt1, zt3) inD corresponds to the atom p(zt2, zt3.1) inD′′.
We have that Anc0

D′′
(
r(zt2, zt3.1)

)
= {s(a)}. And in this case we can see that

every exhaustive LC-derivation from ({s(a)},R) produces p(zt2, zt3.1) in the

same rank as D′′. �

As we saw in the above example, the choice of partial core during the local core

chase affects whether our derivation will comply with the preservation of an-

cestry. All the LC-derivations from the same knowledge base are isomorphic.

Our conjecture is, that there should always be one derivation, where the choice

of partial cores is such that ancestry is preserved. This assertion motivates the

definition of another property that will account for those choices.
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Definition 5.13 (Loose Preservation of Ancestry). The X-chase is said to

loosely preserve ancestry if, for every X-derivation D1 from (F,R), for ev-

ery atom A in FD1, there exists an isomorphic X-derivation D2, an atom A′ in

FD2 corresponding toA and an X-derivationD′2 from (Anc0
D2

(A′),R) such that

A′ is produced in D′2 and rankD2
(A′) = rankD′2(A

′). a

In Theorem 5.1 we showed that preservation of ancestry implies the decidabil-

ity of k-boundedness. The proof of this theorem can be modified (in a rather

trivial fashion) so as to show that loose preservation of ancestry also implies

decidability of k-boundedness. We believe that the LC-chase loosely preserves

ancestry. If our conjecture is true, then k-LC-boundedness is decidable.

5.5 k-Minimal Chase Graphs

In this section we link boundedness and k-boundedness with a certain type

of chase graphs, called k-minimal chase graphs. In this way we arrive at an

abstract characterization of k-boundedness, which turns to an algorithmic char-

acterization for chase variants that preserve ancestry since in this case we can

compute the k-minimal chase graphs. For the rest of the chase variants it re-

mains an open problem whether we can compute k-minimal chase graphs. A

positive solution to this problem assures decidability of k-boundedness.

5.5.1 A Characterization of k-Boundedness

Here we examine the question, given a ruleset R and an atomset S, is there a

factbase such that there is an X-derivation on (F,R) that produces an isomor-

phic atomset S̄ at rank k + 1? This is important because it can be used to show

that X-derivations with R can achieve depth equal to k + 1, therefore R is not

X-k-bounded and if it is X-bounded, the bound will have to be more than k.

If there is such a factbase, then surely there is a minimal one. Based on

this observation, and using the chase graph framework to facilitate the view on

rank/depth of derivations, we introduce the following concept:
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Definition 5.14. Let R be an ontology and S an atomset. An X-chase graph

G = (V,E) on (F,R) is called k-minimal for S withR if:

i. there is an atomset S̄ isomorphic with S such that S̄ ∈ V k and

ii. for all F ′ ⊂ F , for every X-chase graph G′ = (V ′, E ′) on (F ′,R), holds

that S̄ 6⊆ V ′k.

iii. there does not exist an X-chase graph G′′ on (F,R) that satisfies the con-

ditions i and ii and is a strict subgraph of G.

The set of all X-chase graphs (equivalence classes up to quasi-isomorphism)

that are k-minimal for S withR is denoted with Bk
X(S,R). a

The “B” notation stems from the remark that we are actually traversing towards

the concept of backward chaining here. Indeed, if we can find a way to compute

k-minimal X-chase graphs for an atomset, then we will have reverse-engineered

the forward chaining process.

Example 41: 2-minimal E-chase graph. LetR be the following set of rules:

R1 = s(x, y) ∧ p(y, y)→ ∃z p(x, z)

R2 = s(x, y)→ p(x, y)

R3 = t(x) ∧ p(x, y)→ q(y)

R4 = p(x, y)→ ∃w p(y, w)

Suppose that we are looking for a 2-minimal E-chase graph with R, for the

atomset {p(x, y)}. In other words, we are looking for an E-derivation with

R which produces an atom A isomorphic to p(x, y) at rank 2, with the extra

property that if we remove any atom from the initial factbase, we loose A from

the atoms produced at rank 2.

Let F = {s(a, b), p(b, b), t(a)}. Here is an E-derivation D from (F,R):
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∅ F Z0 = F 0

t1 = (R1, {x 7→ a, y 7→ b}) F1 = F ∪ {p(a, zt1)} Z1 = F1

t2 = (R2, {x 7→ a, y 7→ b}) F2 = F1 ∪ {p(a, b))} Z2 = F2 1

t3 = (R3, {x 7→ a, y 7→ zt1}) F3 = F2 ∪ {q(zt1)} Z3 = F3

t4 = (R4, {x 7→ a, y 7→ zt1}) F4 = F3 ∪ {p(zt1, wt4)} Z4 = F4

t5 = (R3, {x 7→ a, y 7→ b}) F5 = F4 ∪ {q(b)} Z5 = F5 2

Below we find the graphical representation of Z5:

a

b

zt1 zt2

s
p

t
q

And here is the E-chase graph G associated with D:

F

t1

t4

s(a, b)p(b, b) t(a)

p(a, b)p(a, zt1)

q(b) q(zt1)p(zt1, wt4)

t3
t5

t2

We can verify that G is 2-minimal for p(x, y) with R, since p(zt1, wt4) is iso-

morphic with p(x, y) and if we reduce F by any way, the (E-)application of

trigger t4 at rank 2 will be impossible. Of course G is not the only 2-minimal
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E-chase graph for p(x, y) withR, but it is the one which is interesting to investi-

gate. This derivation also serves as a counterexample to show that the E-chase

does not preserve ancestry: note that Anc0
D(p(zt1, wt4)) = {s(a, b), p(b, b)}.

But starting only from Anc0
D(p(zt1, wt4)), there is no E-derivation that pro-

duces p(zt1, wt4), because t4 is not E-applicable. Hence we can say that the

E-chase does not preserve ancestry. �

Next, we employ this new notion to characterize X-boundedness. Notice that

up to quasi-isomorphism there are a finite number of triggers associated with

every rule of a ruleset. So if a ruleset can produce derivations of depth more

than k, at least one of those triggers appears at rank k. In particular, a subset

S of its output will comprise an atomset which is entirely of rank k. So the

atomset S will have a k-minimal X-chase graph.

We remind that given an atomset S, a specialization of S is any atomset

π(S), which is the image of a substitution π on S.

Theorem 5.8. Let R be a ruleset. R is X-bounded if and only if for every

R = (B,H) ∈ R and for every subset S of a specialization π(H) of the head

of R, there is k ∈ N such that Bk
X(S,R) = ∅.

Proof: IfR is X-bounded then there exists a k ∈ N such that for every F , every

X-chase graph on (F,R) is of depth strictly less than k, hence Bk
X(S,R) = ∅

for any atomset S. So also for S ⊆ π(H), where π is any substitution and H is

the head of any rule fromR.

Suppose that for every set S that is a subset of a specialization π(H) of the

head of a rule R ∈ R, there is k ∈ N such that Bk
X(S,R) = ∅. Let k′ be the

maximum bound for all such sets (they are finite up to quasi-isomorphism). So

it has to be that for any rule R and any subset S of a specialization of the head

of R holds that Bk′

X(S,R) = ∅.
We assume that R is not X-bounded. Then there is a factbase F and an

X-chase graph G = (V,E) on (F,R), such that the depth of G is k′. Then there

is some rule application made at rank k′ inG. So there is a substitution π, a rule

R = (B,H) ∈ R and an atom A ∈ πs(H) with A ∈ V k′. If G is not minimal

wrt {A}, then there exists a minimal k′-deep X-chase graph G′ = (U,E ′) on
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(F ′,R) such that A ∈ Uk′. Then G′ ∈ Bk′

X({A},R) which is a contradiction,

hence there is no k′-deep X-chase graph on (F,R), for any F . SoR is bounded

by k′. �

From Theorem 5.8 we obtain a characterization of k-boundedness:

Corollary 5.6. A ruleset R is X-k-bounded if and only if for every

R = (B,H) ∈ R and for every subset S of a specialization π(H) we have that

Bk
X(S,R) = ∅. ♣

We deduce that the research on (k-)X-boundedness would benefit if there was

an algorithm to generate k-minimal X-chase graphs. We have constructed such

an algorithm for the chase variants that preserve ancestry (see next subsection),

while for other chase variants it is an open question whether there exists such

an algorithm. Even more, it is not clear if the set Bk
X(S,R) is always finite, i.e.

it is possible that for some chase variants there exists a rulesetR, an atomset S

and a number k such that the set of all (S, k)-minimal X-chase graphs with R
is infinite (even considering equivalence classes up to quasi-isomorphism).

5.5.2 Computing k-Minimal X-Chase Graphs

The goal of this section is to examine whether we can compute all possible

k-minimal X-chase graphs for some given atomset S with a rulesetR. We will

show that this is achievable for any chase which preserves ancestry. When a

chase variant does not preserve ancestry, namely for X ∈ {E,C,F}, we can

trace the possible ancestors of a given atomset in some derivation, but it remains

to be seen if this can be used to compute k-minimal X-chase graphs.

We define the notion of generator of an atomset S with a rule R. Our

perspective is an abstraction of the concept of piece-based query rewriting [41,

44] (details in Appendix Section (A)).
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Definition 5.15. Let R be a ruleset and S be an atomset. Let {S1, S2, ..., Sn}
be a partition of S such that there exist triggers t1, t2, ..., tn from R and a

(bijective) renaming

σ : nul
(
op(t1) ∪ · · · ∪ op(tn)

)
→ var(S)

where it holds that

σ
(
op(t1) ∪ · · · ∪ op(tn)

)
= S

Then the atomset sp(t1)∪ sp(t2)∪ · · · ∪ sp(tn) is a generator of S withR. a

The intuition behind the above definition is simple: a generator of an atomset S

with a rulesetR is any factbase from which we can produce S with the parallel

application of some triggers fromR, i.e. in one breadth-first step.

Lemma 5.1. The set of all generators of an atomset S is finite (up to quasi-

isomorphism).

Proof: The number of partitions of S is finite. Furthermore for each given atom-

set S ′ ⊆ S, the number of mappings σ ◦ π from the head of a rule R = (B,H)

in R such that σ ◦ π(H) = S where σ is a renaming with dom(σ) = exv(R)

and dom(π) = fr(R) are also finite. But then we can remove the existential

variable mappings from π and extend it so that it also maps the disappearing6

variables of R to any terms. There are infinite such extentions of π but only fi-

nite up to quasi-isomorphism of π(B). So there finitely many possible triggers

t = (R, π) with the desired properties. �

In Subsection 4.5.3 we defined the notion of generator of an atom in a chase

space, as any maximal set of direct ancestors of this atom with edges of the

same label (trigger). This corresponds to the more general notion that we define

here. In a chase graph (which is a subgraph of the respective chase space) the set

of direct ancestors of an atom is necessarily connected with edges of the same

label, which is the trigger that produced this atom. The following proposition

supports this connection and generalizes for atomsets instead of just one atom:
6i.e. the variables that appear in the body but not in the head of R.
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Proposition 5.8. Let G = (V,E) be a k-deep X-chase graph on (F,R) and

S ⊆ V . The set of direct ancestors of S in G is a generator of S.

Proof: This results from Definition 5.15, since a generator of S is the union of

the supports of the triggers that produce S. �

By definition there is a connection between generator and trigger. Proposi-

tion 5.8 goes a step further, by linking the notion of generator with that of

direct ancestors in a possible derivation/chase graph. Therefore we can argue

that we have obtained an inverse view of the rule application process. A con-

sequent research goal is therefore to expand this inverse view to the whole for-

ward chaining process. Utilizing the notion of k-minimal chase graphs, we will

show that this is certainly achievable in chase variants that preserve ancestry.

It remains to be seen whether the rest of the chase variants can be similarly

reversely engineered.

Definition 5.16 (Ancestor Trees). Let R be a ruleset, S an atomset, θ a vari-

able renaming and G = (V,E) a chase graph of depth k on (V 0,R) such that

θ(S) ⊆ V k. The subgraph of G induced by θ(S)∪AncG
(
θ(S)

)
, is an ancestor

tree of S withR. a

Although we name it tree, an ancestor tree is usually not a tree graph. Rather

it is comprised of multiple trees in superposition, with the atoms of θ(S) as

roots. Moreover the direction of the edges is from the leaves to the root(s).

Two ancestor trees are equivalent if they are quasi-isomorphic. We will use the

symbol T for an equivalence class of ancestor trees and we will usually identify

an ancestor tree with its equivalence class. The depth of an ancestor tree T is

the maximum length of a path in T. We will denote the set of all (equivalence

classes of) ancestor trees of an atomset S with a ruleset R of depth k with

T(S,R, k). So we can naturally also denote with T(S,R) =
⋃
k∈NT(S,R, k)

the set of all ancestor trees of S withR.

Remark 5.9. For every atomset S, rulesetR and number k, the set T(S,R, k)

is finite. ♣
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Example 42: LetR be the following ruleset:

R1 = r(x, y)→ ∃z p(x, z)

R2 = p(x, y) ∧ q(x)→ ∃w p(y, w)

R3 = q(x)→ ∃v r(x, v)

and suppose that S = {p(x, y)}. Below we find two ancestor trees

T1 ∈ T(S,R, 2) and T2 ∈ T(S,R, 3):

t1

q(b)r(b, b)

p(b, zt1)

p(zt1, wt2)

t2

q(d)

r(d, vt13)

p(d, ut17)

t13

p(ut17, wt38)

t38

t17

T1 T2

Notice that the actual variable names do not matter (the renamings according to

the definition are θ1 = {x 7→ zt1, y 7→ wt2} and θ2 = {x 7→ ut17, y 7→ wt38}. �

The algorithm that searches for ancestor trees is directly based on the following

remark:

Remark 5.10. Let S be an atomset, R a ruleset and T ∈ T(S,R). Let S ′ be

a subset of the atoms that are leaves in T and S ′′ a generator of S with R. Let

T′ be the graph obtained by adding S ′′ and the corresponding edges to T. Then

T′ ∈ T(S,R). ♣

At this point we present an algorithm for rewriting ancestor trees:
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ALGORITHM 2: Input: R, T.

1) Choose any set of leaf atoms S of T.

2) Find any generator S ′ of S withR.

3) Add to T all the atoms of S ′, with an edge to the atoms that they generate.

4) Output T.

Proposition 5.9. For any atomset S, rulesetR and number k, the set T(S,R, k)

is computable.

Proof: Lemma 5.1 assures that the set of generators of any atomset is finite up

to quasi-isomorphism. So following also the remarks 5.9 and 5.10, by applying

Algorithm 2 a finite number of times, we can generate all the ancestor trees of

up to a certain depth (k in this case). �

In the previous section we showed that for all the chase variants that preserve

ancestry, it is decidable to determine k-boundedness, by testing only factbases

that include no more atoms than the potential ancestors of an atom produced in

rank k. These factbases would be generated randomly, but their size is bounded

which assures the decidability of the probem. Using the technique presented

here we can actually generate factbases with more accurate potential ancestors,

because the ancestor trees guarantee that the particular factbases can produce

the desired atoms. Then we only need to verify that this can be done in an

X-chase scenario (if we are investigating X-k-boundedness).

The computational cost for this procedure in the worst case is higher than

the random generation of factbases of a limited size based on a given vocab-

ulary. In particular, with a simple adaptation of the proof of Theorem 5.5 we

conclude that the number of quasi-equivalent classes of factbases of a bounded

cardinality, is exponential to that cardinality and to the maximal arity of the

predicates. On the other hand, the number of generators of a single atom is al-

ready exponential to the maximum number of disappearing variables in a rule,
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which suggests that rewriting ancestor trees is multiple times exponential with

respect to the parameters of a given ruleset (considering Algorithm 2). Nev-

ertheless, the generation of ancestor trees could be useful to improve practical

runtime in specific cases, i.e. when the rulesets have convenient characteristics

such as linear rules, few or no disappearing variables, etc.

More importantly, ancestor trees have the advantage that they do not de-

pend on the chase variant. Therefore it is interesting to consider them when re-

searching X-k-boundedness in the case that X does not preserve ancestry. From

Theorem 5.8 and Corollary 5.6 we know that computing k-minimal X-chase

graphs can be a key to determining (k-)X-boundedness. The theorem below

shows that when a chase variant preserves ancestry, it is indeed possible to com-

pute all k-minimal X-chase graphs for a certain atomset with a certain ruleset.

When a chase variant does not preserve ancestry, it is an open question whether

k-minimal chase graphs are computable, and ancestor trees can contribute to

answering this question.

Theorem 5.11. Let X be a chase variant that preserves ancestry, S an atom-

set and R a ruleset. Then the set Bk
X(S,R) of all X-chase graphs that are

k-minimal for S withR is computable.

Proof: Since the X-chase preserves ancestry, every graph G = (V,E) in

Bk
X(S,R) will have the property that V 0 = Anc0

G(S). But then there is a

T ∈ T(S,R, k) such that the leaves of depth k in T comprise exactly V 0. So

by trying to construct X-derivations on V 0, that retain the rest of the structure

of T, we will arrive at G. Thus, in order to generate all the k-minimal X-chase

graphs for S with R, we start from k-deep ancestor trees of S with R, and we

compute X-derivations based on their deeper leaves. If those X-derivations pre-

serve the whole structure of the ancestor tree, then they constitute k-minimal

X-chase graphs. �
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6 Conclusion

In this last chapter we provide an overview of our contributions as well as a

prospective for some future research. We specifically give an acount of a num-

ber of open problems that are waiting to be solved.

6.1 Summary

To the best of our knowledge this is the first work that substantiates the notion

of chase variant in such abstract yet formally concrete terms: we provided

a general definition of a derivation and defined a chase variant as a class of

derivations. In this way we were able to define properties on chase variants

which are helpful in comparing them and getting a deeper understanding of

their structure. In Tables 6.1 and 6.2 there is a comprehensive account of the

most significant properties (as specified in Definitions 4.17, 5.8, 5.6, 5.7, 5.3

and 5.2 respectively) of chase variants, outlining the established results.

O bf -O SO bf -SO R bf -R E

Termination-order independence 3 3 3 3 7 7 3

Depth-order independence 7 3 7 3 7 7 3

Heredity 3 3 3 7 3 7 7

bf -R-Compliance 7 3 7 3 7 3 7

Preservation of Ancestry 3 3 3 3 3 3 7

Decidability of k-Boundedness 3 3 3 3 3 3 ?

Table 6.1: Monotonic chase variants’ properties.



P LC F bf -F V bf -V C

Termination-order independence 3 3 7 7 7 7 3

Depth-order independence 3 3 7 7 7 7 3

Heredity 7 7 7 7 7 7 7

bf -R-Compliance 3 3 7 7 7 7 7

Preservation of Ancestry 3 7 7 7 7 7 7

Decidability of k-Boundedness 3 ? ? ? ? ? ?

Table 6.2: Non-monotonic chase variants’ properties.

A lot of our work concerns the discerning of characteristics of chase vari-

ants and of forward chaining in general which at first sight might appear as

details, but eventually they lead to considerably different behaviors. In this way

we expose the complexity that lies beneath the simple and intuitive idea of the

chase, while we also establish a concrete formal foundation. A prime exam-

ple for the many nuances that we have shed some light on, is the comparison

between bf -R-chase, rc-R-chase and P-chase. The rc-R-chase (rank compat-

ible restricted chase) is not included in Table 6.1 but it satisfies the same three

of those six properties as the R-chase. All the derivations in those three chase

variants use triggers of increasing rank that are R-applicable to the current (ac-

tive) factbase. However the seemingly subtle differences in the definitions lead

to chase variants with very different properties, as we can see in the above ta-

bles.

We used the unique naming of new variables to define the chase space, as

a setting that is useful in comparing different derivations from the same knowl-

edge base. We also took advantage of the unique naming of new variables in

order to accentuate the role of the triggers in forward chaining. The focus on

triggers rather than atoms and rules facilitates a lot of the technical handling

of derivations1. Additionally, we underlined the connection between retraction
1We note that we can reduce further the formalism if we impose a unique naming of variables in the ruleset

(each variable appears in at most one rule), because then the triggers correspond to homomorphisms instead of
pairs of homomorphisms and rules. We did not do that because we chose to simplify the presentation of the rulesets
rather than the derivations.
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and redundancy in the chase, and defined two new chase variants (V-chase &

LC-chase) which optimize some known chase variants with respect to elimina-

tion of redundancy in the factbase and in rule applications.

Since our research team is the first to extensively work on the notion

of boundedness for existential rules, this thesis is the first large-scale pub-

lication devoted to that. We approached the problem incrementally, defin-

ing k-boundedness for which we also provided a theoretical characterization,

utilizing the concept of k-minimal chase graphs. We identified a property

for chase variants that ensures the decidability of the problem of determining

whether a ruleset is k-bounded. This property is preservation of ancestry and

we showed that it happens to also guarantee the decidability of the computation

of k-minimal chase graphs. We showed that a number of chase variants preserve

ancestry, again by using intermediate properties and theoretical results.

6.2 Future Work

The primary purpose of this research is to aid in the development of knowledge

representation systems. Hence an obvious use of our work is to serve as an ab-

stract model for programming forward chaining and developing systems where

k-boundedness and other properties of existential rulesets and knowledge bases

can be tested. The main trade-off when desigining a chase algorithm is be-

tween the rapidity of computing derivations and the strength in eliminating re-

dundancy. It would be interesting to compare the chase variants on real-world

knowledge bases. How does the LC-chase behave in practice compared to

the R-chase and the C-chase with respect to runtime and effective redundancy

elimination? This kind of experimental comparison can lead to a better under-

standing and better solutions for performing robust forward chaining.

On the theoretical side, our research gives rise to a plentiful of new ques-

tions. We present a list (with no particular order) of open questions which are

not necessarily independent. Below we denote with rc-X-chase the class of

rank compatible X-derivations and with lin-X-chase the chase variant that cor-
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responds to the class of X-derivations with a linear ruleset2:

1. Is the problem of X-k-boundedness decidable for the chase variants

X ∈ {E,F,bf -F,V,bf -V,LC,C}?

2. Does the LC-chase loosely preserve ancestry?

(a positive answer would lead to the decidability of LC-boundedness)

3. Characterization of X-k-boundedness with k-minimal X-chase graphs:

Does it hold that X-k-boundedness is decidable if and only if for every

atomset S and rulesetR, the set Bk
X(S,R) of all X-chase graphs that are

k-minimal for S withR is computable?

4. Variation of the Stable Rank Theorem for C-chase: Let C(F,R) be a

chase space and let D be a C-derivation from (F,R). Does it hold that

for every A ∈ FD we have rankD(A) = rank(F,R)(A)?

5. When X ∈ {R,F,V}, is the rc-X-chase equivalent with the X-chase

with respect to termination?

6. Is the all-factbase lin-R-chase termination decidable?

7. Does the lin-C-chase (loosely) preserve ancestry?

Question 7 seems considerably simplified if we consider the sub-variant that

does not include any variables in the initial factbases. Questions 6 and 7 are

motivated by Proposition 5.2: indeed, according to this proposition, the decid-

ability of all-factbase lin-R-chase termination decidable is equivalent the de-

cidability of lin-R-boundedness3. Furthermore, we know that the all-factbase

lin-C-chase termination is decidable [21]. So if the lin-C-chase preserves an-

cestry, then we can use Proposition 5.2 to conclude that lin-C-boundedness
2This is a substantiation of the versatility of the notion of chase variant as introduced in this thesis, as it shows

that syntactic restrictions imposed in the knowledge base can also be represented in chase variants, hence all
properties defined for chase variants can be respectively tested for particular rule classes (datalog, linear, acyclic,
guarded, etc).

3In fact as mentioned in earlier chapters, it has been shown [22] that R-chase termination is decidable for extra
linear rulesets, whose only difference from linear rulesets is in the size of the rule head (where we have only one
atom). And while for the O- and SO-chase, decomposing rule heads does not change any properties with respect
to boundedness and termination, for the R-chase it does.
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is decidable. Moreover the proof of this proposition can be trivially modi-

fied so as to arrive to the same conclusion for chase variants that only loosely

preserve ancestry. So even if the lin-C-chase does not preserve ancestry, if

we prove that it loosely preserves ancestry then we will still have shown that

lin-C-boundedness is decidable.

Those seven questions stem directly from the material presented in Chap-

ter 4 and Chapter 5. However there are several less direct but quite intuitive

extentions to our definitions that merit mentioning and that open another Pan-

dora’s box of new puzzles to be solved.

The most important is a weaker form of boundedness:

Definition 6.1. Let X be a chase variant. A rulesetR is ∃-X-bounded if there is

a k ∈ N such that for every factbase F , there exists a terminating X-derivation

from (F,R) of depth at most k. Respectively, we say thatR is ∃-X-k-bounded

if for every factbase F , there exists a terminating X-derivation from (F,R) of

depth at most k. a

The motivation for the above definition is that given a knowledge base, our

primary interest is to find a finite universal model. And for all the chase vari-

ants that we have presented, terminating derivations produce universal models.

Hence even if not all exhaustive X-derivations are terminating, it is useful to

know if there is some way that the X-chase will terminate. In a broader sense,

given a ruleset, it is useful to know if for every factbase there always exists a

terminating X-derivation of a bounded depth.

In the case depth-order independent chase variants, it is clear that the two

notions of boundedness coincide:

Remark 6.1. Let X be a depth-order independent chase variant. Then a ruleset

R is X-bounded if and only if it is ∃-X-bounded. ♣

So in a trivial way we conclude that ∃-X-k-boundedness is decidable

when X ∈ {bf -O,bf -SO,P}. Moreover from Proposition 4.6 we find

that for X ∈ {O,SO} it holds that ∃-X-k-boundedness is equivalent with

∃-bf -X-k-boundedness. Thus ∃-X-k-boundedness is also decidable when
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X ∈ {O,SO}. Notice that the O-chase and SO-chase are the only chase vari-

ants that we have seen that are depth-order sensitive but termination-order in-

dependent (see Table 6.1).

On the other hand the study of the behavior of termination-order depen-

dent chase variants with respect to ∃-X-boundedness appears interesting and

challenging. Concepts like preservation of ancestry do not appear to lead to

solutions and it seems that a whole different approach might be needed to solve

this problem, which comprises the 8th of our open questions:

8. Is the problem of ∃-X-k-boundedness decidable for the chase variants

X ∈ {R,bf -R,F,bf -F,V,bf -V}?

We turn now to the discussion concerning elimination of redundancy, as intro-

duced in Section 4.4. We mentioned that two chase variants can be independent

with respect to eliminating redundancy and based on a previous example, we

showed that the F-chase and the E-chase are independent with respect to elim-

ination of redundancy. Similarly it holds that the C-chase and the E-chase are

independent with respect to the elimination of redundancy: the knowledge base

of the same example (Example 13) can be used to show that the E-chase is

not as strong as the C-chase in eliminating redundancy. To show the other di-

rection we can use the knowledge base
(
{p(a), p(b)}, {p(x)→ ∃z r(z)}

)
: the

E-chase will terminate after one rule application whereas the C-chase will ter-

minate after two rule applications. In our following 9th open question, by chase

variant we will mean universal chase variant: a chase variant such that every

terminating derivation produces a universal model of the knowledge base.

9. Is there a chase variant which is stronger (in eliminating redundancy) than

the E-chase? Is there a chase variant which is stronger than the C-chase?

Is there a chase variant that is stronger than any other chase variant?

Our intuition says that if there is a universal chase variant that is stronger than

any other universal chase variant, then this will not be a breadth-first chase

variant. It will therefore be interesting to see what kind of trigger prioritization

will be used in order to define this chase variant.

164



Our final question will be less strictly formalized. We start by noting that

the conjunctive query rewriting procedure can be designed in a such a way that

it terminates within k breadth-first steps, where k is the bound for the core

chase [38]. This implies that if we can define a concept of depth of query

rewriting such that a ruleset R will be C-k-bounded if and only if the number

k is a bound to the depth of query rewriting with R. Hence C-boundedness

(which is also equivalent to E-boundedness) characterizes the query rewriting

potential of a ruleset.

10. For every chase variant X, translate X-boundedness to a query rewriting

feature. In other words find a property of query rewriting with a ruleset

R which is equivalent with the X-boundedness ofR.

This concludes our list of future prospective and open problems.
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APPENDIX

(A) Query Rewriting in Existential Rules

At subsection 2.1.3 we introduced the notion of piece in an atomset. This notion

can be extended to heads of rules, by using existential variables as the connect-

ing terms. We present a piece-based query rewriting mechanism which is sound

and complete for existential rules, and terminating for fus rulesets [44, 1].

Definition .2 (Piece). Let R = (B,H) be an existential rule. Every

atom A ∈ H is connected with itself. Two atoms A,A′ ∈ H are con-

nected (by existential variables) if there is a sequence A1, ..., An ∈ H such

that A1 = A, An = A′ and for every i < n holds that there exists a

z ∈ exv(R) ∩ var(Ai) ∩ var(Ai+1). A piece in the head of R is a maximal

(non empty) set of connected atoms. a

The main difference between the notion of piece in a factbase (as specified in

Definition 2.5) and the notion of piece in the head of the rule as defined above,

is that in the latter case the atoms are connected by existential variables whereas

in the former case they are connected by any variables. The notion of piece in

the head of a rule is necessary in order to define query rewriting with existential

rules. The following example motivates the involved definition of piece unifier

which follows.

Example “QUERE” 43: Take the rule R = p(x) → ∃z q(x, z) and let

Q0 = {q(x0, x1), r(x0)} and Q1 = {q(x0, x1), r(x1)}. We want to know if the

queries Q0 and Q1 can be included in a factbase produced by an application of

the rule R to some factbase. It is easy to verify that R can produce an atom



isomorphic to q(x0, x1). But then x1 is a new variable, introduced with this rule

application. Hence it cannot appear in any other atoms of the resulting factbase.

Therefore we know that q(x0, x1) in Q1 cannot result from an application of R.

So we cannot use R to rewrite Q1. On the other hand, Q0 can be produced by

an application of R. In particular if F = {p(x0), r(x0)}, then one application

of R to F produces a factbase that includes Q0. �

Let T be a set of terms and P = {T1, T2, ...} a partition of T . We call P

admissible if all its elements contain at most one constant. Let f : P → T be

an injection such that for all i holds f(Ti) ∈ Ti and if there is a constant c ∈ Ti
then f(Ti) = c. A substitution σ : var(T ) → T is associated with P if there

exists an injection f as specified above such that for every i, if x ∈ Ti then

σ(x) = f(Ti).

Definition .3 (Piece-Unifier[1]). Let R = (B,H) be an existential rule and

Q be a query. Let ∅ 6= Q′ ⊆ Q, H ′ ⊆ H and T = term(Q′ ∪ H ′). A

substitution µ : var(Q′ ∪H ′)→ T associated with an admissible partition of

T is a piece-unifier of Q with R with respect to (Q′, H ′), if µ(Q′) = µ(H ′) and

• for all z ∈ exv(R), µ(z) is not a constant,

• for all z ∈ exv(R) and x ∈ var(Q′ ∪ H ′) with z 6= x, if µ(z) = µ(x)

then x ∈
(
var(Q) \ var(Q \Q′)

)
.

The set of all the piece-unifiers of a query Q with a rule R is symbolized with

pun(Q,R). a

The last condition ensures that each existential variable can be unified only with

variables that appear exclusively in Q′ (and not elsewhere in Q). If µ is a piece

unifier wrt (Q′, H ′) we will say that µ unifies Q′ with H ′. Note that the above

definition can trivially be expanded to unify the body of a rule with the head of

another rule, in order to introduce the notion of composition of rules (which is

beyond the scope of this thesis).

Now using the notion of piece-unifier we can formally define what is a

rewriting of a query with an existential rule:
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Definition .4. Given a query Q, a rule R and a piece-unifier µ of Q with R wrt

(Q′, H ′), the immediate rewriting of Q according to µ, denoted β(Q,R, µ) is

µ(body(R)) ∪ µ(Q \Q′). a

Example “QUERE” 44 (continued from Example 43): Using R and Q0 as

specified above, we have that µ = {x 7→ x0, z 7→ x1} is a piece unifier of Q0

with R with respect to ({q(x0, x1)}, {q(x, z)}). So we can use R to rewrite Q0,

resulting in the rewriting β(Q0, R, µ) = {p(x0), r(x0)}. �

We can expand the notion of immediate rewriting to a breadth-first process

where at each level we produce all the possible rewritings. To that end, given

a ruleset R and a UCQ Q (which we always consider as a set of boolean con-

junctive queries), we can define a “naive” operator β with

β(Q,R) = Q∪
{
β(Q,R, µ)

∣∣ Q ∈ Q, R ∈ R, µ ∈ pun(Q,R)
}

and we denote the repeated applications of β with an index: β0(Q,R) = Q
and βi+1(Q,R) = β(βi(Q,R),R) for all i ≥ 0. Finally we have

β∞(Q,R) :=
⋃
i∈N βi(Q,R). This operator is sound and complete: F∪R |= Q

if and only if there exists Q′ ∈ β∞(Q,R) such that F |= Q′ (or equivalently, if

there is a k ∈ N such that there is a Q′ ∈ βk(Q,R) with F |= Q′). It also has

the following convenient property:

Proposition .1 ([1, 41, 8]). A ruleset R is fus if and only if for every query Q

there is a k ∈ N such that β∞(Q,R) ≡ βk(Q,R) . ♣
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(B) Properties of the Semi-Oblivious Chase

In this section we show that the semi-oblivious chase is closely related to the

oblivious chase in aspects pertaining to termination and depth. By choosing a

different name for the new existential variables, we arrive at a simple and in-

tuitive transformation of the notion of derivation as defined in this thesis, to a

notion of meta-derivation which produces isomorphic results, while making no

distinction between SO-chase and O-chase. But before specifying this trans-

formation, we provide a detailed proof for the SO-case of Proposition 4.6. This

proof serves as an exercise in order to identify the problem that relates with the

naming of existential variables but it is redundant considering the transforma-

tion that we present immediately afterwards:

Proposition .2. For each terminating SO-derivation from (F,R) there exists a

breadth-first terminating SO-derivation from (F,R) of smaller or equal depth.

Proof: Case SO: Let D be a terminating SO-derivation from (F,R).

As per Remark 4.3.iii, when O-applicability is secured, the condition for

SO-applicability is non-SO-equivalence. Hence, we can rearrange trig(D)

in a rank compatible manner, obtaining T , and then we have a SO-derivation

D′ from (F,R) with trig(D′) = T . So D′ is rank compatible and moreover it

is terminating (otherwise D would also not be terminating). And from Proposi-

tion 4.5, we obtain that D′ is of smaller or equal depth than D. However we do

not know if D′ is breadth-first. Nevertheless we can transform it to a breadth-

first derivation. Let m = max{rank(t)|t ∈ trig(D′)}. In what follows we

will use the notation D′k to represent the prefix of D′ that includes all elements

of rank up to k. We define the following algorithm:
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ALGORITHM 3: Input: (F,R), D′

1) for k = 1 to m,

I) while there is a trigger t 6∈ trig(D′) that is SO-applicable on a prefix D′k of D′,

i) find t′ ∈ trig(D′) which is SO-equivalent with t, let
τ : nul(op(t′))→ nul(op(t)) be the isomorphism with
τ(op(t′)) = op(t).

ii) declare a sequence of triggers T̄ and set T̄ = trig(D′k),

iii) add t to T̄ ,

iv) add to T̄ all the triggers t′′ ∈ trig(D′) \ {t′} with the property
k + 1 ≤ rank(t′′) ≤ rank(t′),

v) for i = rank(t′) + 1 to m,

- declare a set of mappings (substitution) τ̄ , initially empty.

- for all triggers ti = (R, π) ∈ trig(D′) with rank(ti) = i,

· set fi := (R, τ ◦ π),

· add fi to T̄ and

· for every x ∈ nul(op(ti)) add {xti 7→ xfi} to τ̄
(if ti = fi then the mapping is the identity).

- Set τ := τ̄ ◦ τ .

vi) reorder T̄ according to rank.

vii) D′′ is the rank compatible SO-derivation from (F,R) with trig(D′′) = T̄ .

viii) set D′ := D′′, go back to step I).

2) Output D′.

In every iteration of the loop which appears in step 1 of Algorithm 3, we detect

one trigger t that is SO-applicable at some intermediate rank k inD′. From Re-

mark 4.3.iii we know that there is a trigger t′ in trig(D′) that is SO-equivalent

with t. And since t′ does not appear in D′k we know that rank(t′) > k. What

we want to do, is to replace t′ with t in D′. After all, their outputs are iso-

morphic. There is nonetheless a technical detail which we have to take care of:

there are other triggers in D′ which depend on t′, i.e. their support includes at

least an atom from the output of t′. The rest of the algorithm is dedicated in
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performing all the renamings coherently so that the swapping of t′ with t does

not change the overall interdependence of triggers and overall functionality of

D′. This is achieved by constructing a new sequence T̄ of triggers which will

specify the altered derivation.

At first we note that the prefix D′k need not change, so we start with

T̄ = trig(D′k). We apply t on D′k and then we can apply all triggers that

are of rank at most rank(t′), since they do not depend on t′. This explains

steps 1.I.iii and 1.I.iv of the algorithm. Let i = rank(t′) + 1. At rank i, we

want to “reorient” the supports of all triggers, from the new variables of op(t′)

to the new variables of op(t). Since there is an isomorphism τ between the

two atomsets, we simply need to compose this isomorphism with each homo-

morphism π in every trigger of rank more than rank(t′). This happens by

transforming every ti to fi in step 1.I.v. of Algorithm 3. In this way the same

rules will be applied, only this time to the (isomorphic) atoms produced by t

instead of t′. The problem that occurs is that then at the following rank (i+ 1),

we will need to reorient not only the triggers that depend on t′ in D′, but also

those that depend on the triggers of rank i which we have altered. This is why

we need to keep track of all the triggers fi introduced in rank i and in particular

we declare the set of mappings τ̄ , where the new variables of the old triggers

are mapped to the new variables of the reoriented triggers. Then, in order to

work on the next rank, we need to compose τ with τ̄ . This kind of repairing

continues until the highest rank m.

Finally at step 1.I.vi we reorder T̄ according to rank. In this way we obtain

a rank compatible SO-derivation D′′ where t is replaced by t′ and subsequent

triggers are “reoriented” accordingly (i.e. swapped with SO-equivalent triggers

applicable to the changed new variables). D′′ is still terminating because for ev-

ery trigger that we removed, we added one that is SO-equivalent, which guaran-

tees also that FD
′
is isomorphic to FD

′′
. Finally, to show that the depth of D′′ is

smaller or equal to that ofD′, note that rankD′′(t) < rankD′(t
′) implies that for

every atom A produced by t in D′′ holds that rankD′′(A) < rankD′′(τ
−1(A)).

And the same holds for all atoms produced by the reoriented triggers fi of step

1.I.v. Furthermore, the rank compatible trigger sorting of step 1.I.vi does not
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augment the depth, as per Proposition 4.5.

After that we set D′ = D′′ and repeat until there are no more triggers

SO-applicable on D′k. To see that the while loop terminates, note that the

set trig(D′) \ trig(D′k) is smaller after each iteration. Lastly, when the algo-

rithm terminates we know that the finalD′ will be breadth-first because at every

rank there are no more SO-applicable triggers. And the final D′ is of smaller

or equal depth than the original D′ since this property is retained with every

iteration of the while loop. �

In the above algorithm, notice the hassle that comes with redefining the trig-

gers in the extention of the SO-derivation each time we replace a trigger with

a SO-equivalent trigger in a lower rank. A way to avoid all this is to declare

a different kind of naming of the new variables. In particular, let f represent

a SO-equivalence class of triggers. We call f a meta-trigger and we can un-

derstand it as a trigger (R, π) whose substitution π does not specify a mapping

for the disappearing variables of the respective rule R. A meta-trigger f is ap-

plicable on a factbase F if there is any trigger t ∈ f that is applicable on F .

Then every existential variable z in the head of R can be named zf, defining

the output of the f, which we denote then with op(f). Using meta-triggers

instead of triggers we construct meta-derivations (as in Definition 4.1). The

notions of rank and depth can then be defined for meta-triggers (and the atoms

they produce in the meta-derivation) as the lowest ranks among the triggers they

include.

Proposition .3. Every SO-derivation can be translated into a meta-derivation

producing isomorphic atoms at the same ranks. Conversely, every meta-

derivation can be specialized into a SO-derivation producing isomorphic atoms

at the same ranks.

Proof: We can replace each trigger of rank 1 with a meta-trigger and then we

follow the recursive tactic as employed in Algorithm 3, to rename all the new

variables and the supported triggers rank by rank. The inverse is also possible

by specifying mappings for the disappearing variables. �

We can define a new chase space based on meta-derivations. This can cause
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up to several SO-equivalence classes of triggers to collapse to a single meta-

trigger (since the common variable name will unite distinct SO-equivalence

classes of higher ranks). With this transformation we effectively reduce the

chase space in such a way that the SO-chase (represented by the class of all

meta-derivations) behaves exactly as the O-chase does in the original chase

space. Notice specifically that the application of a meta-trigger on a meta-

derivation does not cancel the applicability of any other meta-trigger on the

resulting extention. This leads us to conclude that:

Remark .2. Every exhaustive SO-chase derivation from (F,R) necessarily in-

cludes all meta-triggers f that can appear in any meta-derivation from (F,R).

As a result we know that an exhaustive meta-derivation from a knowledge base

(F,R) is terminating if and only if the set of all meta-triggers on (F,R) is

finite. Hence:

Corollary .1. The SO-chase is termination-order independent. ♣

Finally we show the following:

Proposition .4. The bf -SO-chase is depth-order independent.

Proof: Since the application of meta-triggers does not cancel the applicability

of other meta-triggers, we know that all meta triggers applicable to the initial

factbase will be applied at rank 1. Hence every breadth-first meta-derivation of

rank 1 from the same knowlwdge base will infer exactly the same atoms and

include exactly the same triggers. Similarly we reach the same conclusion for

every rank i. Therefore all exhaustive breadth-first meta-derivations will be of

the same depth. �
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(C) Partial Core & Freezing

In this section we connect the notion of partial core (specified in Section 5.4,

Definition 5.9) with the computation of a core of an atomset. This is possible by

freezing the preserved variables, i.e. converting them to constants, and then cal-

culating a core. But to be consistent we need to re-convert the newly introduced

constants to variables after this calculation. To this end we assume that every

variable x in our vocabulary uniquely corresponds to a dedicated constant ax.

Here is how these concepts can be more formally presented:

Definition .5 (Partial Freezing). Let F be an atomset and W ⊆ var(F ). The

W-freezing (denoted W� ) is a substitution that maps every variable x ∈ W to

a dedicated constant ax. So we write W� (F ) to represent the image of the

W-freezing on F (also called W-freezing of F ). The W-unfreezing W
? is the

inverse mapping, from each dedicated constant to its respective variable (and

we write W
? (F )). a

For ease of presentation, when applied on a single symbol, we will drop the

first parentheses for the freezing and unfreezing operators, writing W�F and W
?F

instead of W� (F ) and W
? (F ) respectively. Note that an unfreezing is not a substi-

tution but an injective mapping from constants to variables.

Remark .3 (Properties of Partial Freezing). For every atomset F , retraction h

on F and variable sets W and U it holds that:

i. if W = ∅ we get that W�F = F .

ii. W� (U�F ) = U�(W�F ).

iii. if V = W ∪ U then V�F = W� (U�F ).

iv. if dom(h) ∩W = ∅ then the substitution W�h = W� ◦ h is a retraction on W�F

and it holds that W�h(W�F ) = W� (h(F )). ♣

The core is a minimal retract. Similarly, the partial core is a minimal retract

preserving certain variables. Based on the above notion of partial freezing, we

can give another characterization of the concept of partial core:
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Proposition .5. Let F be an atomset and W ⊆ var(F ). A partial core

of F preserving W is the unfreezing of a core of the W-freezing of F , i.e.

pcore(F,W) = W
? (core(W�F )). ♣

Just as is the case with the core, the partial core is non-deterministic as an opera-

tion on an atomset. In other words, there can be many partial cores of an atomset

preserving a particular variable-set. Hence by specifying pcore(F,W) = F ′,

we are choosing any of the partial cores of F preserving W, and designating it

as F ′. But if F ′ is already defined, it is more accurate to say that it belongs to

the set of partial cores of F preserving W. We use bold notation to denote this

set, i.e. pcores(F,W), so the statement can be writen as F ′ ∈ pcores(F,W).

As already outlined in Chapter 2, we are also using this kind of notation for the

notion of core, so core(F ) denotes any core of F while cores(F ) denotes the

set of all atomsets that are cores of F .

The following remark underlines the direct connection between cores and

partial cores:

Remark .4. Let F , W ⊆ var(F ) and F ′ ⊆ F . Then it holds that

F ′ ∈ pcores(F,W) if and only if W�F
′ ∈ cores(W�F ). ♣

To further establish the notion of partial core, we prove the following property:

Lemma .1. Let F be an atomset and W,U ⊆ var(F ). Let F ′ ⊆ F . Then

F ′ ∈ pcores(F,W ∪ U) if and only if W�F
′ ∈ pcores(W�F,U).

Proof: In this proof we are basically transforming formulas based on the re-

marks .3 and .4.

(⇒:) Let F ′ ∈ pcores(F,W ∪ U). Let V = W ∪ U. So F ′ ∈ pcores(F,V).

Hence V�F
′ ∈ cores(V�F ), which implies U�(W�F

′) ∈ cores(U�(W�F )). So by defi-

nition 5.9, U
?

(
U�(W�F

′)
)

is a partial core of W�F with respect to U. And of course
U
?

(
U�(W�F

′)
)

= W�F
′.

(⇐:) Let W�F
′ ∈ pcores(W�F,U). Therefore U�(W�F

′) ∈ cores
(
U�(W�F )

)
. Let

F ′ ∈ pcores(F,W ∪ U). So we have V�F = W� (U�F ), thus we can write V�F
′ ∈

cores(V�F ). Then by definition V
?(V�F

′) ∈ pcores(F,V), so F ′ ∈ pcores(F,V)

which is F ′ ∈ pcores(F,W ∪ U). �
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(D) Frugal Chase

We first remind our definition of frugal chase, from Chapter 4.

An output piece of a trigger t is a minimal subset op(t) ⊆ op(t) with the

property that if A ∈ op(t), then for every A′ ∈ op(t), if the atoms A and A′

have at least one common new variable, then it holds that A′ ∈ op(t). Now

suppose that {op1(t), ...,opn(t)} are the output pieces of a trigger t and F is

a factbase. The frugal output frop(t, F ) of t with respect to F is the union of

all the pieces opi(t) ⊆ op(t) which have the property that F is not a retract

of F ∪ opi(t). Lastly, let Z ⊆ FD, where D is a derivation. A piece P in Z is

isomorphically subsumed by frop(t, Z) if there is an isomorphism σ from P

to a subset of frop(t, Z) such that σ is also a retraction from frop(t, Z)∪P to

frop(t, F ). Then we denote with F(t, Z) the union of all the pieces in Z that

are not isomorphically subsumed by frop(t, Z).

Definition .6. Let D = (t∗, F∗, Z∗) be a derivation from (F,R). D is a frugal

derivation if for all i > 0 holds that

• the trigger ti is R-applicable to Zi−1 and

• Zi = F(ti, Zi−1) ∪ frop(ti, Zi−1). a

In the original specification of the frugal chase [28, 59], forward chaining is car-

ried out in a monotonic fashion, so no atoms can be removed from the factbase.

However, what happens is that the subset(s) of frop(t, Z) that is (are) isomor-

phic with a piece P in Z, is (are) ignored, and we add the rest of frop(t, Z) by

applying the inverse renaming(s), i.e. if σ is an isomorphism from a (maximal)

union of pieces of Z to a subset S of frop(t, Z), we add σ−1(frop(t, Z) \ S)

to the factbase Z. This inverse renaming is only possible if we consider iso-

morphisms (i.e. bijective renamings), which explains why the frugal chase was

not defined for any kind of retraction. This leads to an isomorphic result with

the one we get using our definition of the frugal chase. But the naming of

the new variables is considerably changing, possibly producing atoms that do

not belong to the respective chase space, i.e. they cannot be produced by any
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derivation (using Definition 4.1). Hence, although the original definition is not

syntactically compatible with our (derivation) framework, it is nevertheless se-

mantically compatible, producing isomorphic results.
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Résumé en Français

On considère le formalisme des règles existentielles [1, 2] qui permet de re-

présenter et de raisonner avec des connaissances ontologiques, i.e. des infor-

mations générales sur un domaine d’application. Ce sont des règles positives

du type “si corps alors tête” où le corps et la tête sont des conjonctions de for-

mules atomiques (des atomes de logique du premier ordre sans fonction). Les

variables du corps sont quantifiées universellement et les variables n’apparais-

sant que dans la tête sont quantifiées existentiellement. Par exemple, la règle

∀x
(
humain(x)→ ∃y (humain(y) ∧mèreDe(y, x))

)
représente la connais-

sance que chaque humain x a une mère humaine y.

Les règles existentielles étendent Datalog [3], le langage des bases de don-

nées déductives, et ainsi sont aussi connues comme Datalog+. En Datalog,

toutes les variables qui apparaissent dans la tête d’une règle, apparaissent aussi

dans le corps. Elles ne contiennent donc pas de variables existentielles et ne

peuvent pas inférer l’existence de nouveaux individus. Un exemple simple

d’une telle règle est ∀x∀y
(
frereOuSoeurDe(x, y)→ frereOuSoeurDe(y, x)

)
.

Dans de nombreux domaines d’application, cette limitation des règles Datalog

n’est pas satisfaisante car on ne peut pas toujours supposer que tous les indi-

vidus pertinents sont connus a priori ; l’inférence de l’existence de nouveaux

individus est ainsi reconnue comme une fonctionnalité désirée des langages on-

tologiques. Une telle fonctionnalité est offerte par de nombreux langages de

représentation d’ontologies comme les logiques de description (même celles

dites légères telles que DL-Lite [4] et EL [5]) ou les règles existentielles.

Les règles existentielles sont également connues sous l’appellation dépen-

dance génératrice de tuples comme des contraintes de bases de données [6],

mais récemment elles ont suscité un regain d’intérêt comme langage ontolo-

gique exploité pour l’interrogation de données médiatisée par une ontologie

(cf. par exemple les chapitres de synthèse dans [7, 8]). Dans ce contexte, une

base de connaissances comprend un ensemble de règles existentielles (parfois

appelé ontologie) et une base de faits qui est une conjonction d’atomes exis-
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tentiellement fermée. La base de faits peut être vue comme une abstraction

logique d’une base de données. Une requête conjonctive Booléenne est aussi

une conjonction d’atomes existentiellement fermée. Le problème central étudié

dans ce cadre est le suivant :

“étant donnée une base de connaissances K et une requête Q, K permet-elle

de déduire Q?”

Une approche classique de résolution de ce problème est connue comme la

matérialisation ou le chaînage avant [9, 10]. Dans cette approche, on utilise

les règles pour inférer de nouvelles connaissances en étendant la base de faits

jusqu’à saturation. La requête Q peut alors être évaluée directement sur la base

de faits saturée. Le problème posé par cette approche est que le chaînage avant

ne termine pas sur toutes les bases de connaissances. Il est en effet connu que le

problème de répondre à une requête conjonctive Booléenne est indécidable en

général pour le langage des règles existentielles [11]. Ceci a conduit à identifier

des sous-langages qui assurent la terminaison du chaînage avant, en imposant

des restrictions syntaxiques sur la forme des règles. Par exemple, si on a la base

de connaissances :

∀x
(
humain(x)→ ∃y (humain(y) ∧mèreDe(y, x))

)
humain(Avril)

on peut appliquer la règle au seul atome en déduisant la base de faits étendue :

∃y0

(
humain(y0) ∧mèreDe(y0, Avril) ∧ humain(Avril)

)
Ici y0 est une variable existentielle qui est introduite pour représenter “la mère

de Avril”. Maintenant la règle est applicable sur l’atome humain(y0). La nou-

velle application va encore produire un nouvel individu (une variable existen-

tielle) y1, relié au y0 de la même façon que y0 est relié à Avril, i.e. y1 désignera

“la mère de y0”. De cette manière on peut créer une base de faits de taille illi-

mitée, en représentant une chaîne d’ancêtres d’Avril. C’est évident que dans

ce cas le chaînage avant ne termine pas. Toutefois il y a certains cas où l’in-

troduction de nouvelles variables dans la base de faits n’exprime pas de nou-

velle connaissance. Par exemple, si la base de faits initiale contient déjà la mère

ii



d’Avril :

humain(Pascale) ∧mèreDe(Pascale, Avril) ∧ humain(Avril)

l’application de notre règle sur l’atome humain(Avril) sera redondante. Ainsi,

il est intéressant de définir des algorithmes qui vont réguler les applications des

règles de telle façon que cela évite l’ajout d’atomes redondants dans la base de

faits.

Les algorithmes qui effectuent le chaînage avant sont collectivement

connus sous l’appellation chase [12, 13, 14]. Il en existe de nombreuses va-

riantes : l’oblivious chase [15], le semi-oblivious chase (appelé aussi le skolem

chase) [16], le restricted chase (appelé aussi le standard chase) [17], le core

chase [18], etc. Chaque variante de chase impose des restrictions sur le critère

d’application des règles et sur l’évolution de la base de faits. Le plupart des

variantes de chase (dont toutes celles qui sont présentées dans cette thèse) pro-

duisent des résultats qui sont logiquement équivalents et de plus constituent un

modèle universel de la base de connaissance, c’est-à-dire un modèle (au sens de

la sémantique de la logique des prédicats) qui peut être homomorphiquement

mappé sur chaque autre modèle de cette base de connaissances. Cependant l’ar-

rêt de chaque chase diffère. Malheureusement le problème de l’arrêt du chase

pour un ensemble de règles donné, que ce soit sur une base de faits donnée

ou quelque soit la base de fait sconsidérée, a été démontré indécidable dans

le cas général [16, 18, 1, 19]. Néanmoins, de nombreux travaux sont dédiés à

la recherche de conditions suffisantes pour la terminaison du chase pour des

sous-langages de règles existentielles [1, 20, 21, 22, 23].

Dans cette thèse on définit un cadre unificateur qui permet de présenter la

plupart des variantes connues du chase. On introduit une nouvelle définition du

concept de dérivation qui encapsule avec précision la suite des applications de

règles et leur effet sur la base de faits. Cela nous permet de définir formellement

la notion de variante de chase comme une classe spécifique de dérivation et

d’introduire des propriétés facilitant la comparaison des différentes variantes

ainsi que l’obtention de résultats techniques concrets.
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Il est connu que les bases de faits peuvent être représentées comme des

graphes/hypergraphes, et que les homomorphismes entre ces graphes corres-

pondent à de la conséquence logique [27, 1]. Nous exploitons cette perspective

“graphe” sur les règles existentielles en utilisant exclusivement la théorie des

(hyper)graphes et la théorie élémentaire des ensembles pour toutes les preuves

et parties techniques. En particulier, on caractérise la redondance dans une base

de faits par l’existence d’une rétraction dans le graphe associé, qui est un type

particulier d’homomorphisme de graphes vers l’un de ses sous-graphes. Ainsi,

on met en lumière les liens entre les variantes du chase et les rétractions, puisque

le principal objectif des différentes variantes est l’élimination des redondances

causées par l’introduction de nouvelles variables dans la base de faits.

Le cadre unificateur de spécification de variantes du chase permet par

ailleurs de définir facilement de nouvelles variantes. En étudiant les variantes

connues, on montre comment de petites modifications peuvent mener à des va-

riantes ayant des propriétés très différentes. Deux nouvelles variantes sont in-

troduites qui optimisent, en terme d’élimination de redondances, des variantes

existantes.

Une propriété en rapport avec la terminaison est celle de l’existence d’une

borne à la profondeur du chase indépendamment de la base de faits pour un

ensemble de règles donné. Les règles sont alors dites à saturation bornée. La

profondeur d’une dérivation est le rang maximal d’un atome inféré, le rang d’un

atome correspondant au nombre d’applications de règles "non-parallèles" ayant

permis d’inférer cet atome. La propriété de saturation bornée entraine plusieurs

autres propriétés sémantiques, en particulier la reformulabilité en requête du

premier ordre [24].

La propriété de saturation bornée a été très étudiée en Datalog [29, 30, 31,

25], et il a été prouvé que c’est une propriété indécidable dans le cas général. Par

contre, pour les règles existentielles, peu de travaux ont été menés. La première

chose à observer est qu’à cause des variables existentielles il faut paramétrer la

propriété de saturation bornée par la variante du chase étudiée. En effet, si X

et Y sont deux variantes différentes de chase, un ensemble de règles peut être

X-borné (i.e. à saturation bornée par rapport au X-chase) mais pas Y-borné.
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La seconde observation est liée au fait que pour chaque sous-langage de règles

existentielles qui contient Datalog, on sait déjà que le problème de l’existence

d’une borne à la profondeur d’un X-chase pour un ensemble de règles donné

est indécidable. Dans cette thèse, on s’est donc intéressé au problème de la

X-k-saturation-bornée où la borne k est donnée :

“étant donné un ensemble de règles et un entier k, k est-il une borne à la

profondeur du X-chase quelque soit la base de faits considérée?”

Notre approche exploite le concept de chase graphe. Le chase graphe est

une représentation partielle d’une dérivation où les sommets sont les atomes qui

apparaissent dans la dérivation et les arcs indiquent quels atomes sont utilisés

pour produire d’autres atomes. L’intuition fournie par le chase graphe est utile

quand on recherche les mécanismes qui influencent la saturation bornée. En par-

ticulier, on introduit une propriété de préservation d’ascendance qui peut être

vue comme l’invariance d’une partie du chase graphe quand on réduit la base de

faits initiale. On montre que si une variante X du chase préserve l’ascendance,

alors le problème de la X-k-saturation-bornée est décidable. On montre alors

que de nombreuses variantes du chase préservent l’ascendance (comme l’obli-

vious, le semi-oblivious et le restricted chase). Enfin, on montre que si on se

restreint aux règles linéaires, i.e. règles dont le corps contient un seul atome, si

le X-chase préserve l’ascendance, alors le problème de la X-saturation-bornée

est équivalent au problème de la terminaison du X-chase indépendamment de

la base de faits.

En plus des résultats précédents concernant la définition de variantes du

chase et l’étude de la propriété de saturation bornée, cette thèse contient un

certain nombre de résultats secondaires ainsi que de nombreuses observations

et exemples qui montrent et éclaircissent les différents scénarios du chaînage

avant sur les règles existentielles.
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