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Monte Carlo microdosimetry of charged-particle 

microbeam irradiations 

 

Abstract 

 
The interaction of charged-particles with matter leads to a localized energy deposits in sub-

micrometric tracks. This unique property makes this type of ionizing radiation particularly 

interesting for deciphering the radiation-induced molecular mechanisms at the cell scale. 

Charged-particle microbeams (CPMs) provide the ability to target a given cell compartment at 

the micrometer scale with a controlled dose down to single particle. My work focused on 

irradiations carried out with the CPM at the AIFIRA facility in the CENBG (Applications 

Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine). This microbeam delivers 

protons and α-particles and is dedicated to targeted irradiation in vitro (human cells) and in 

vivo (C. elegans). 

In addition to their interest for experimental studies, the energy deposits and the interactions 

of charged-particles with matter can be modeled precisely along their trajectory using track 

structure codes based on Monte Carlo methods. These simulation tools allow a precise 

characterization of the micro-dosimetry of the irradiations from the detailed description of the 

physical interactions at the nanoscale to the prediction of the number of DNA damage, their 

complexity and their distribution in space. 

During my thesis, I developed micro-dosimetric models based on the Geant4-DNA modeling 

toolkit in two cases. The first concerns the simulation of the energy distribution deposited in a 

cell nucleus and the calculation of the number of different types of DNA damage (single and 

double strand breaks) at the nanometric and micrometric scales, for different types and 

numbers of delivered particles. These simulations are compared with experimental 

measurements of the kinetics of GFP-labeled (Green Fluorescent Protein) DNA repair 

proteins in human cells. The second is the dosimetry of irradiation of a multicellular organism 

to study the genetic instability in a living organism during development (C. elegans). I 

simulated the distribution of the energy deposited in different compartments of a realistic 3D 

model of a C. elegans embryo following proton irradiations. Finally, and in parallel with these 

two studies, I developed a protocol to characterize the AIFIRA microbeam using fluorescent 

nuclear track detector (FNTD) for proton and α-particle irradiations. This type of detector 

makes it possible to visualize in 3D the incident particle tracks with a resolution of about 200 

nm and to examine the quality of the cellular irradiations carried out by the CPM. 

 

Keywords: Charged-particle microbeam, targeted irradiation, Monte Carlo, Geant4-DNA, 

microdosimetry, radiobiology.  



 
 

 
 

 

  



 
 

 
 

Micro-dosimétrie d'irradiations par microfaisceau 

d'ions par méthodes Monte-Carlo 

 

Résumé 
 

L’interaction des particules chargées avec la matière conduit à un dépôt d’énergie très localisé 

dans des traces de dimensions sub-micrométriques. Cette propriété unique rend ce type de 

rayonnement ionisant particulièrement intéressant pour disséquer les mécanismes 

moléculaires radio-induits à l’échelle de la cellule. L’utilisation de microfaisceaux de 

particules chargées offre en outre la capacité d’irradier sélectivement à l’échelle du 

micromètre avec une dose contrôlée jusqu’à la particule unique. Mon travail a porté sur des 

irradiations réalisées avec le microfaisceau de particules chargées de la plateforme AIFIRA 

(Applications Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine) du CENBG. Ce 

microfaisceau délivre des protons et particules α et est dédié aux irradiations ciblées in vitro 

(cellules humains) et in vivo (C. elegans). 

En complément de l’intérêt qu’elles présentent pour des études expérimentales, les dépôts 

d’énergie et les interactions des particules chargées avec la matière peuvent être modélisés 

précisément tout au long de leur trajectoire en utilisant des codes de structures de traces basés 

sur des méthodes Monte-Carlo. Ces outils de simulation permettent une caractérisation 

précise de la micro-dosimétrie des irradiations allant de la description détaillée des 

interactions physiques à l’échelle nanométrique jusqu’à la prédiction du nombre de 

dommages à l’ADN et leurs distributions dans l’espace. 

Au cours de ma thèse, j’ai développée des modèles micro-dosimétriques basés sur l’outil de 

modélisation Geant4-DNA dans deux cas. Le premier concerne la simulation de la 

distribution d’énergie déposée dans un noyau cellulaire et le calcul du nombre des différents 

types de dommages ADN (simple et double brin) aux échelles nanométrique et 

micrométrique, pour différents types et nombres de particules délivrées. Ces résultats sont 

confrontés à la mesure expérimentale de la cinétique de protéines de réparation de l’ADN 

marquées par GFP (Green Fluorescent Protein) dans des cellules humaines. Le second 

concerne la dosimétrie de l’irradiation d’un organisme multicellulaire dans le cadre d’études 

de l’instabilité génétique dans un organisme vivant au cours du développement (C. elegans). 

J’ai simulé la distribution de l’énergie déposée dans différents compartiments d’un modèle 

réaliste en 3D d’un embryon de C. elegans suite à des irradiations par protons. Enfin, et en 

parallèle de ces deux études, j’ai développé un protocole pour caractériser le microfaisceau 

d'AIFIRA à l’aide de détecteurs de traces fluorescent (FNTD) pour des irradiations par 

protons et par particules α. Ce type de détecteur permet en effet de visualiser les trajectoires 

des particules incidentes avec une résolution de l’ordre de 200 nm et d’examiner la qualité des 

irradiations cellulaires réalisées par le microfaisceau. 

 

Mots-clés : Microfaisceau d'ions, micro-irradiation ciblée, Monte-Carlo, Geant4-DNA, 

microdosimetrie, radiobiologie.   
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Résumé substantiel 
 

Les études des interactions entre les rayonnements ionisants (RI) et les tissus vivants jouent 

un rôle important dans de nombreux domaines, tels que les risques de santé associés à 

l'exposition aux RIs de sources naturelles (rayons cosmiques, radioactivité naturelle…), dans 

les environnements de travail (production d'énergie, usages industriels…) ou des applications 

médicales (médecine nucléaire et radiothérapie). L'interaction des RIs avec la matière est 

caractérisée par un transfert d'énergie du rayonnement incident aux atomes/molécules et à un 

ou plusieurs électrons présents dans le milieu exposé. Ce transfert d'énergie résulte d'une suite 

d'événements physiques dépendant du type de rayonnement.  

Comparées à d'autres types de RIs, les particules chargées sont caractérisées comme des RIs 

directs qui transfèrent leur énergie directement à la matière contrairement aux particules 

neutres (rayonnements électromagnétiques et neutrons) qui transfèrent leur énergie 

indirectement. Les particules chargées ont un transfert d'énergie linéique (TEL) plus élevé, 

induisant des dépôts d'énergie localisés le long des traces de particules. Ils interagissent 

principalement avec les électrons et provoquent l'ionisation et/ou l'excitation du nuage 

électronique des atomes. Ces particules chargées peuvent être produites naturellement à partir 

de la radioactivité (particules α) et du rayonnement cosmique (principalement des protons et 

des noyaux d'hélium) et artificiellement à l'aide des accélérateurs. Les particules chargées 

produites par les accélérateurs sont utilisées pour des applications biomédicales 

(protonthérapie et hadronthérapie) et pour la recherche (études radiobiologies, physique des 

particules et nucléaire, cosmologie et astrophysique…). 

Les travaux présentés ici sont focalisés sur les micro-irradiations d’échantillons biologiques 

avec le microfaisceau de particules chargées sur la plateforme AIFIRA (Applications 

Interdisciplinaires de Faisceaux d’Ions en Région Aquitaine) au CENBG (Centre d’Études 

Nucléaires de Bordeaux-Gradignan) et plus spécifiquement sur les questions de 

microdosimétrie liées à cette approche expérimentale. Les particules chargées présentes sur 

AIFIRA sont des protons (TEL = 12 keV.µm-1) et des particules α (TEL = 148 keV.µm-1) 

ayant une énergie de l’ordre du MeV et ont des TELs élevés induisant des lésions 

moléculaires très complexes lors du dépôt de leur énergie dans la matière vivante. Du point de 

vue expérimental, les particules chargées présentent des caractéristiques uniques pour générer 

des lésions moléculaires localisées dans les cellules vivantes et pour étudier les conséquences 

moléculaires et biologiques des lésions clustérisées. Lorsqu'elles se propagent dans la matière, 

http://www.cenbg.in2p3.fr/?lang=fr
http://www.cenbg.in2p3.fr/?lang=fr
http://www.cenbg.in2p3.fr/?lang=fr
http://www.cenbg.in2p3.fr/?lang=fr
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elles déposent leur énergie le long des traces presque linéaires qui peuvent être modélisées en 

détails par des codes de structure de trace basés sur les calculs Monte-Carlo. Ceci constitue 

l'un des principaux atouts de leur utilisation par rapport aux techniques de micro-irradiation 

plus courantes basées sur les lasers ou les microspots UV. 

Avant ma thèse, le groupe iRiBio du CENBG avait développé des techniques et des 

méthodologies expérimentales en utilisant le microfaisceau sur AIFIRA pour micro-irradier 

des cellules biologiques, d’une façon reproductible, avec un nombre précis de particules, 

focalisées à l’échelle micrométriques et dans des compartiments cellulaires spécifiques. Ces 

développements ont commencé à être appliqués ces dernières années à la mesure 

expérimentale des effets biologiques d'organismes de l’échelle cellulaire jusqu’à l’échelle 

multicellulaire. 

En effectuant des irradiations ciblées avec le microfaisceau, l’énergie déposée est localisée 

dans une structure cellulaire/sub-cellulaire et les réponses aux RIs dépendent de sa 

distribution stochastique, qui à son tour dépend du type et de l'énergie des particules et de la 

taille de la cible (différents compartiments de l'échantillon irradié). Pour les échantillons 

biologiques, la cible principale est l'ADN et sa taille est inférieure à l'extension latérale du 

nuage d'ionisation entourant la majorité des particules chargées utilisées dans les expériences 

radiobiologies. En conséquence, la structure de trace, basée sur le concept de la 

microdosimétrie, est considérée très essentielle pour comprendre et expliquer des résultats 

qui, apparemment, n’ont pas d’explication appropriée, en considérant uniquement les 

grandeurs moyennes comme la dose absorbée.  

Dans nos études par microfaisceau de particules chargées, les grandeurs dosimétriques 

d'intérêt ne sont pas mesurables directement lors de la micro-irradiation. Néanmoins, les 

caractéristiques physiques de la structure de trace des ions peuvent être mesurées avant ou 

après l’irradiation à l'aide de détecteurs de traces et les grandeurs physiques peuvent être 

simulées à l'aide de codes de Monte-Carlo.  

Mon travail de thèse visait à développer des modèles microdosimétriques permettant de 

mesurer ou de simuler des grandeurs physiques qui ne peuvent pas être mesurées directement 

lors des micro-irradiations effectuées sur AIFIRA. L’idée était de corréler ces grandeurs, 

principalement l’énergie déposée, l’énergie spécifique et le nombre des dommages de l’ADN 

aux effets observés lorsque les cellules étaient irradiées avec le microfaisceau de particules 

chargées. Ceci a été réalisé en mesurant les caractéristiques physiques du microfaisceau de 

particules chargées en utilisant de nouveaux détecteurs de trace à haute résolution et en 

simulant les interactions des protons et des particules α focalisés à l’échelle micrométriques 
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allant des premières énergies déposées jusqu’à la prédiction des dommages à l’ADN en 

utilisant le code de structure de trace Geant4 -DNA.  

La première partie de ce travail consistait à développer une méthodologie permettant d’utiliser 

le détecteur de trace FNTD (Fluorescent Nuclear Track Detectors) pour le contrôle qualité du 

microfaisceau sur la plateforme AIFIRA, notamment pour visualiser expérimentalement ses 

différentes caractéristiques. Les FNTDs ont été micro-irradiés avec des protons et des 

particules α suivant des motifs de particules uniques et d’un nombre croissant de particules. 

Les traces uniques de protons et de particules α de l’ordre du MeV ont été détectées sans 

ambiguïté et la taille de la tache fluorescente correspondante aux impacts des particules est 

inférieure à 1 micromètre. Lors de l'irradiation avec plusieurs traces de particules dans un 

point de faisceau micrométrique, l'intensité de la fluorescence augmente linéairement avec la 

dose avant de saturer au-dessus d'environ 20 particules/point. Grâce à cette intensité de 

fluorescence, la taille du microfaisceau a été mesurée donnant des valeurs comparables avec 

des valeurs estimées en utilisant les simulation Monte-Carlo.  Par rapport au détecteur de trace 

nucléaire CR39 utilisé jusqu’à présent, les FNTDs ne nécessitent aucun traitement chimique 

pour la lecture, cette lecture se fait en utilisant simplement la microscopie confocale. Ces 

FNTDs offrent des fonctionnalités intéressantes telles qu'une résolution spatiale élevée, une 

plage dynamique étendue de mesures d’énergie déposée et des informations de trace 

tridimensionnelles. Pour cela, les FNTD seront utilisées en routine dans l'avenir pour assurer 

le contrôle qualité du microfaisceau pour les expériences d'irradiation cellulaire avec des 

particules uniques. 

Ensuite, le microfaisceau AIFIRA a été utilisé pour étudier les mécanismes de réparation de 

l’ADN dans des cellules micro-irradiées avec un nombre croissant de protons ou de particules 

α. La cinétique in vitro de la réponse de deux protéines marquées en GFP (Green Fluorescent 

Protein) impliquée dans la reconnaissance, la signalisation et la réparation de dommages à 

l'ADN induit par un rayonnement a été étudiée. Les deux protéines sont GFP-XRCC1 

(cassures simple brin et voies BER / NER) et GFP-RNF8 (cassures doubles brins). La 

cinétique d'accumulation de ces protéines sur les sites endommagés a été mesurée au cours 

d’un travail précédant ma thèse grâce à la vidéo microscopie. La réponse précoce de ces 

protéines (secondes à quelques minutes) fournit des informations intéressantes sur la relation 

entre les lésions physiques initiales et les voies de réparation de l'ADN.  

J'ai contribué aux calculs microdosimétriques des énergies déposées et des dommages directs 

induits à l'ADN. La structure de trace d'un proton et d’une particule α ont été reconstruites à 

partir de données simulées en utilisant Geant4-DNA afin de comparer la distribution de 
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l'énergie déposée par les 2 types de particules. Pour comparer les réponses temporelles de 

recrutement des protéines après irradiation avec les 2 types de particules des noyaux 

cellulaires, j’ai simulé la distribution de l'énergie dans un cube d'eau liquide homogène de 6 

µm d'épaisseur correspondant à l'épaisseur moyenne d’une cellule humaine. Ensuite pour 

prédire le nombre de dommages à l’ADN (cassures simple brin (SSB), cassures double brins 

(DSB) et cassures de brin complexe (CSB)), j’ai clustérisé ces dépôts d’énergie en se basant 

sur l’exemple « Clustering » de Geant4-DNA. La clusterisation des dommages a également 

été effectuée à l'échelle de la sous-structure de la chromatine (échelle du micromètre) afin 

d'étudier leur distribution spatiale et de déterminer leur complexité. 

 Le nombre de particules délivrées, l’énergie déposée et le nombre prédit de dommages à 

l'ADN ont ensuite été corrélés aux profils cinétiques de ces protéines. Les résultats indiquent 

une cohérence entre la fonction de la protéine, la distribution de l’énergie déposée et sa 

clusterisation en différents types de dommages à l'ADN. Cependant, l'interprétation complète 

des résultats biologiques nécessitera de surmonter quelques limitations liées aux calculs 

microdosimétriques. C'est notamment le cas de la clusterisation des lésions de l'ADN. La 

cluterisation à l'échelle nanométrique n'a été calculé que pour les effets directs dans un cube 

d'eau homogène. Cela pourrait être amélioré en prenant en compte les géométries réalistes de 

l'ADN dans les cellules humaines afin de permettre le calcul des dommages à l'ADN dus à des 

effets directs et indirects. Un exemple de Geant4-DNA permettant ces calculs devrait être 

disponible prochainement. Du point de vue expérimental, le lien entre la cinétique des 

protéines et le nombre de lésions induites par l'ADN pourrait également être décrit par une 

modélisation théorique du comportement des protéines après des micro-irradiations à 

particules chargées et par leur diffusion vers les sites des dommages. Ces sites endommagés 

peuvent être modélisés comme des sites de piégeage de protéines avec une probabilité de 

fixation en fonction du nombre de lésions à l'ADN évaluées par des simulations de Monte-

Carlo. 

Enfin, une méthodologie permettant de micro-irradier de manière reproductible un organisme 

vivant, C. elegans, à un stade spécifique et d'observer en temps réel les effets radio-induits sur 

AIFIRA a été validée avant le début du présent travail. Ce simple stade du cycle de vie de C. 

elegans avec 2 cellules permettait de suivre plus facilement la cellule irradiée pendant les 

premières divisions cellulaires après l’irradiation. Cette approche ouvre des perspectives 

d'irradiation sélective et ciblée de cellules dans un organisme en développement avec des 

doses spécifique (jusqu'à une particule/cellule). Néanmoins, l’étude de la relation dose-effet 

avec une telle irradiation pose la question de la dose réellement délivrée aux différents 
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compartiments de cet organisme. En effet, ce type d’échantillon a une géométrie sensiblement 

différente de celle des cellules adhérentes et son développement rapide implique une variation 

de la géométrie des cellules et de la condensation de la chromatine à des échelles de temps 

comparables au temps requis pour l’irradiation. Pour cela, il était nécessaire de calculer 

l’énergie déposée dans des volumes 3D réalistes de l’embryon de C. elegans au stade 2 

cellules. Les simulations microdosimétriques développées lors de ma thèse ont été effectués 

dans des fantômes 3D réalistes des embryons stade 2 cellules en se basant sur l’imagerie 

confocale. Ces simulations ont permis de calculer l’énergie déposée dans 3 compartiments de 

l’embryon (la chromatine, le volumes nucléaire et la totalité de l’embryon) et de quantifier la 

fraction d'énergie transmise à la chromatine compte tenu de sa condensation suivant les 

différentes phases de la division cellulaire (prophase et métaphase). Ces résultats ont été 

publiés récemment dans “Torfeh, E. et al. 2019”. Dans l’avenir, cette méthodologie pourra 

être appliquée à d’autres stades de développement et à des faibles doses, ouvrant ainsi un 

cadre complet de radiobiologie comprenant un ciblage précis et reproductible du 

rayonnement, des méthodes de microdosimétrie avancées à base de Monte-Carlo en open 

source, ainsi qu’un modèle approprié pour étudier la réponse biologique précoces jusqu’aux 

effets transgénérationnels. 
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Acronyms/Abbreviations 

 

BNCD  Boron-doped Nano-Crystalline Diamond 

cDSBS  clustered DSB 

C. elegans  Caenorhabditis elegans  

CLSM  Confocal Laser Scanning Microscopy 

CPM  Charged-Particle Microbeam 

CSB   Complex Strand Breaks 

DBSCAN Density Base Spatial Clustering of Applications with Noise 

DSB  Double Strand Break 

ED  Energy deposit  

FNTD  Fluorescent Nuclear Track Detector 

GFP  Green Fluorescent Protein 

HR   Homologous Recombination 

HyD   Hybrid Detector 

iDSB  isolated DSB 

IR   Ionizing Radiations  

IRIF   Ionizing Radiation-Induced Foci  

LET   Linear Energy Transfer  

LMI   micro-irradiation 

NHEJ   Non-Homologous End Joining 

PNTD  Plastic Nuclear Track Detector 

PMT   PhotoMultiplier Tube 

RBE  Relative biological effectiveness 

scCVD  single-crystal Chemical-Vapor-Deposited 

SRIM  Stopping and Range of Ions in Matter 

SSB  Single Strand Break 
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The knowledge of the interactions between ionizing radiations (IR) and living tissues has an 

important role in many fields, such as health risks associated to the exposure to IR from 

natural sources (cosmic rays, natural radioactivity …), working environment (energy 

production, industrial uses…) or medical applications (nuclear medicine and radiation 

therapies). IR can be defined as a radiation having enough energy (above 13.6 eV) to snatch 

an electron (named secondary electron) from an atom or a molecule, thereby ionizing it. The 

interaction of IRs with matter is characterized by a transfer of energy from the incident 

radiation to the atoms/molecules and to one or several electrons present in the exposed 

medium. This energy transfer is the result of a sequence of physical events depending on the 

type of radiation1.  

Compared with other types of IR, charged-particles are characterized as direct IRs which 

transfer their energy directly to matter contrary to neutral particles (electromagnetic radiations 

and neutrons) that cause indirect ionizations. Charged-particles have the higher Linear Energy 

Transfer (LET), inducing localized energy deposits along the particle tracks. Charged-

particles interact mainly with electrons, via Coulomb diffusion and cause the ionization and/or 

the excitation of the electronic cloud of atoms. Charged-particles can be produced naturally 

from radioactivity (α-particles) and cosmic radiation (mainly protons and helium nuclei), and 

artificially using accelerators. Charged-particles produced by accelerators are used for 

biomedical applications (proton therapy and hadrons therapy) and research applications 

(radiobiological study, particle and nuclear physics, cosmology and astrophysics…). The 

work presented here will focus on charged-particle irradiations. 

 

I. A few definitions to characterize IR interactions with matter 

 

In the following and before detailing charged-particle tools used for radiobiology studies, it is 

necessary to define useful physical quantities to characterize IR interactions that will be used 

throughout this manuscript. 

 

Energy deposit (ED) 

IRs interact with matter at points in space where a discrete amount of energy is transferred to 

the medium. This will be referred to as energy deposit (ED) and it is typically measured in 

electron volt (eV). 
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Linear Energy Transfer (LET) 

The energy loss of charged-particles or photons in matter is characterized by the Linear 

Energy Transfer (LET), defined by the International Commission on Radiological Protection 

(ICRP) 2 as the ratio of the mean energy transferred locally in the medium, dE, (by charged-

particle or photons), per unit length dl. Generally given in keV.μm-1, the LET depends on the 

target material, the particle type and the incident energy. Based on the LET values, IRs can be 

separated into sparsely IRs with low LET (X-Rays, 𝛾-Rays and electrons) and densely IRs 

with high LET (ions and neutrons radiations). A LET value of 10 keV.μm-1 is defined as a 

threshold between low and high LET radiations2–4. 

A good knowledge of this LET allows to estimate the energy loss along the track of an 

ionizing particle. Charged-particles with lower energy have higher LET values that fluctuate 

along the particle track (Part I, Fig.10). For example, the energy lost by protons and heavier 

charged-particles during the interaction with matter rapidly increases after a short distance, 

generating the so-called Bragg peak, and particles are then stopped. This is not the case for 

photons 2–5.  

 

Absorbed dose 

Biological effects are related to the amount of energy that is deposited by the radiation per 

unit of mass of tissue. The amount or the quantity of energy transferred to the material during 

exposure to IRs is characterized by the absorbed dose. The absorbed dose at a point is the 

ratio of the averaged energy absorbed (in joules) in an elementary volume centered at that 

point to the mass of that elementary volume (in kilograms). It is expressed in Gray (Gy), and 

1 Gy corresponds to an ED of 1 joule per kilogram of irradiated matter (1 Gy = 1 J.kg-1)6. 

 

Specific energy 

Absorbed dose, especially used when macroscopic volumes (such as organs or tumors) are 

irradiated in a homogeneous manner, cannot represent the stochastic discrete nature of energy 

transfers at the micro or nanometer scale7. This becomes a problem particularly when the size 

of the target volumes is of the order of cell nuclei or DNA molecule. This has prompted the 

introduction of microdosimetric formalism. When single cells are irradiated, it is more 

appropriate to use the microdosimetric quantity “specific energy” instead of the macroscopic 

“absorbed dose”8. The specific energy is defined as the direct ratio of ɛ divided by m. ɛ called 

imparted energy being the sum of the energy transferred to the medium via all the interactions 

with atoms of the medium of the primary particle and its secondaries. m being the mass of the 
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microscopic volume of interest9, 10. ICRU has reported the concept of specific energy as the 

ratio of the energy imparted to the mass of the volume of interest3. 

 

II. Charged-particles for Radiobiological study 

 

Apart from the studies aiming at understanding their biological effects related to radio activity 

or medical applications (protons, α-particles or carbon ions), charged-particles have unique 

features for micro-irradiation experiments. They deposit their energy along tiny tracks and 

their interaction with matter can be simulated in detail.  

Localized DNA lesions in a given cell compartment can be triggered using various micro-

irradiation techniques. UV micro-irradiation has been used to target sub-nuclear areas and to 

visualize the recruitment of proteins involved in DNA repair, DNA damage response, 

chromatin remodeling and histone modifications without any specialized equipment11,12. 

Laser based micro-irradiation is the most commonly used method as it presents the great 

advantage of being based on the same microscope  to perform irradiation and observation of 

the cellular response13–17. It does not require the use of complex instrumentation and can be 

relatively easily installed in a biology lab. One of the limitation of this approach is the wide 

variety of different lesions (such as DNA single strand breaks and double strand breaks) that 

can be induced depending on the wavelength, energy and exposure time18. Moreover, the 

observed effect cannot be easily related to a radiation dose. Charged-particles are more 

representative of the IRs than laser beams and with direct access to charged particle beams it 

provide more well-behaved energy deposition equally distributed over all molecular species 

19,20.  

When absorbed by living cells, IR can interact directly with the DNA structure and produce 

physical and molecular changes known as “direct effects”. It can also interact indirectly 

through water radiolysis and generate reactive chemical species (free radicals) that may 

damage the DNA structure by chemical reactions. These phenomena are called “indirect 

effects”2.  

The study of charged-particles effects on living organisms requires tools, methods and models 

passing from physics to biology, to perform the exposures of biological samples to IRs and to 

visualize and follow in real time the consequences. 

There are various irradiation modes to expose biological cells to charged-particles. The 

simplest way, in terms of instrumentation and implementation, is the use of radioactive 
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sources allowing a homogeneous irradiation of a large number of cells. However, this 

irradiation mode is limited to α-particles.  

Ion beam accelerators allow to deliver parallel beams with various types of ions of different 

LETs. Ion beams present the advantage to irradiate thousands of cells almost instantly. This 

irradiation mode was used in a large number of studies to measure the effects of global 

irradiation on the cellular survival of a cell population to determine the relative biological 

effectiveness of irradiations 21–27.  

Using these two classical irradiation modes (broad beam or radioactive sources), the number 

of delivered particles cannot be controlled at the single cell scale. For a cell population 

irradiated with low dose, the number of impacts per cell follows a  statistical distribution 

(normal distribution at high doses and Poisson distribution at low doses)28. These two 

irradiation modes reach their limits for radiobiological studies at the cellular and subcellular 

scale. To overcome these limits and to observe the charged-particle effects at the micrometric 

scale, Charged-Particle Microbeams (CPMs) were created for the targeted irradiation of single 

cells with a controlled dose.  

 

III. Charged-particle microbeams 

 

Micro-irradiation at the cellular scale  

At the end of 1990s, CPMs were developed specifically to investigate the effects of low doses 

of IRs on living samples29, 30. Thanks to the technological innovations and developments in 

particle delivery, focusing and detection, image processing and recognition, computer control, 

and on the basis of the experience acquired along the years, the features of microbeam 

facilities have been changing over the years with respect to the first facilities born in the 

nineties31, 32. 

CPM systems are designed to deliver a controlled number of charged-particles (one or many) 

with a positioning accuracy of a few micrometers in targeted biological cells. This allows the 

study of biological responses to charged-particles at both single cell and subcellular levels 

(nucleus or cytoplasm). In brief, CPMs stand out for 3 main characteristics: (i) the micrometer 

spatial resolution (ii) the time resolution, i.e. the precise knowledge of the irradiation time and 

(iii) the dose resolution controlled by active detectors allowing to deliver a precise number of 

particles at the cellular scale. 
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Fig. 1. Characteristics of microbeam features for the irradiation of biological samples. Microbeam allows an 

absolute control of the number of delivered particles in a cell. In addition, thanks to the focalization and scanning 

system, microbeam allows to irradiate selectively a given sub-cellular compartment or a specific cell or area 

within a cellular organism with one spot or regular pattern. 

 

To date, a few microbeams are routinely used for targeted cellular irradiation. Reviews of the 

various applications of microbeams for radiobiological applications (Fig. 1) are summarized 

in18,33. 

The main CPM characteristic is the ability to deliver single ions to individual cell. This 

unique feature has been used to measure the effect of a single particle track on oncogenic 

transformation34, cellular toxicity, nuclear DNA mutagenesis 35, micro- nuclei formation and 

genomic instability 36. In addition, CPM micrometer targeting accuracy and exact control of 

the irradiation timing provide the opportunity to study the radiation sensitivity of sub-cellular 

compartments such as cytoplasm37, mitochondria38, nucleus and even various parts of the 

nuclear chromatin39.  

In the 2010’s, several CPMs have been coupled to immunostaining, GFP-tagging (Green 

Fluorescent Protein), high resolution fluorescence microscopy and time-lapse imaging to 

study the DNA signaling and repair mechanisms 19,40. As an example, Hable et al. used the 

microbeam facility SNAKE41 to shown that the recruitment of the MDC1 and RAD52 

proteins depend on the complexity of the damage generated, i.e. the LET, which is not the 
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case for 53BP142. At the IMP heavy ion microbeam facility, the repair dynamic of XRCC1 

protein in the early stage of DNA damage after irradiation with single high energy nickel ion 

have been studied using online live cell imaging system43. The PTB microbeam also 

investigated 53BP1 and MDC1 dynamics after irradiations at low and high LETs44.  

CPM are also used to deliver the particles on geometrical patterns, providing a way to 

investigate i.e. the diffusion behavior of DNA double strand breaks. Irradiation according to 

geometric patterns have been used to analyze the effects of sequential micro-irradiations and 

to highlight a competition effect for the recruitment of the 53BP1 protein45. Girst et al. have 

taken advantage of the ability of ion microbeams to perform micro-irradiations in a regular 

pattern to follow MDC1 foci movement. Mobility following a phenomenon of sub-diffusion 

has been highlighted by this work46. 

 

From cellular to Multicellular  

Data from in cellulo experiments on monolayers are very useful to understand fundamental 

radiation-induced biological mechanisms but are difficult to extrapolate and understand the in 

vivo response. Three-dimensional tissue models can be used in combination with microbeam 

irradiation to overcome these limitations. Several microbeam studies have been performed 

with reconstructed human epidermis47–50. Organotypic slice culture methods have been also 

recently used as an ex vivo model for radiation biology applications as they mimic the tissues’ 

natural three-dimensional cyto-architecture and they can be used to study the radiation effect 

on several kinds of human tissues51. As part of the study of new modes of cancer treatment by 

proton therapy, Schmid et al. sought to compare the EBR, on a model of reconstructed human 

skin, with two modes of microbeam irradiation of 20 MeV protons: a continuous mode and a 

pulsed mode (1 ns per pulse). The irradiation took place at SNAKE in Munich. EBR was 

evaluated from the formation of radio-induced micronuclei. No significant difference could be 

demonstrated between the two irradiation modes52. 

CPM have been extended to irradiate small multicellular models compatible with charged-

particle irradiations. Fukamoto et al. have developed a method to target Silkworm larvae 

(Bombyx mori) by a heavy ion microbeam for microsurgical studies. In particular, they 

studied the suppression of an abnormal cell multiplication phenotype after irradiation with 

220 MeV carbon ions53. Zebrafish Danio rerio embryos have been used to investigate the 

effects of low doses of IR54, 55. There are several studies that use the combination of CPMs 

and the Caenorhabditis elegans (C. elegans) which made it the most widely used 

multicellular organism for ion microbeam irradiation56–58. Buonanno et al. have demonstrated 
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the formation of the Rad51 foci in C. elegans worms, a protein involved in the repair of 

double-stranded DNA cases by homologous recombination, after 4.5 MeV proton microbeam 

irradiation59. More recently, Suzuki et al. demonstrate that the responsible mechanisms for 

reducing the nematode mobility after whole-body irradiation is the body wall muscle cells 

rather than the central nervous system by irradiating independently 3 regions of adult 

nematodes (head region, mid region around the intestine and uterus, and tail region) with 18.3 

MeV/u carbon ions at TIARA microbeam facility in Japan60.  

 

IV. Charged-particle Microbeam at the AIFIRA facility 

 

Since the early 2000s, a microbeam system for the targeted micro-irradiation of living 

biological samples have been developed at CENBG (Centre d’Études Nucléaires de 

Bordeaux-Gradignan). This tool was initially developed by Barberet et al.61. A new version 

has been commissioned in 2012 on a dedicated beamline at the AIFIRA facility. 

 

 
 

Fig. 2. Scheme of the micro-irradiation line set-up and microscopic system at AIFIRA. Charged-particles beam 

(in red) is collimated in two stages and then focused in a micrometric spot using triplet of magnetic lenses under 

vacuum. The beam is extracted to air through a 150 nm thick Si3N4 window (in yellow). The cells are kept in 

their culture medium and placed vertically in front of the extraction window. Electrostatic scanning plates, 

placed just before the extraction window, allow to position the beam on the target. A fluorescence microscope 

(Zeiss AxioObserver Z1) equipped with a CCD camera is placed at the end of the beam line to visualize the 

sample, to locate and target the region of interest, and perform online time-lapse imaging. 

 

The microbeam characteristics 

The microbeam line (Fig. 2), described in Bourret et al., has been designed to study the 

biological responses to MeV protons and α-particles at cellular and subcellular scales (nucleus 
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and cytoplasm) for single and multiple cells irradiations40. The beam is focused to a 1.5 µm 

beam spot (full width at half maximum FWHM). The beam is positioned by electrostatic 

means allowing very fast beam motions form one target to the other (µs time scale). This 

microbeam setup allows the exposure of cells to LET values of 12 keV/µm (protons) and 148 

keV/µm (α-particles), leading to a maximum range in liquid water of 148 µm and 18 µm, 

respectively. The delivered specific energy can be either controlled by counting the particles 

with a detector that replaces the Si3N4 window or by adjusting the beam opening time. In the 

latter case, the mean number of particles (N) hitting cells is linearly related to the opening 

time and the relative statistical fluctuation in the number of traversals delivered decreases as 

N increases (
∆𝑁

𝑁
=  

1

√𝑁
). 

For the precise counting of α-particles, each particle is detected upstream the sample with a 

BNCD (Boron-doped Nano-Crystalline Diamond) from which secondary electrons are 

collected using a channeltron electron multiplier62. In the case of protons, the secondary 

electrons production yield is too low and Barberet et al. designed a self-supported thin single-

crystal chemical-vapor-deposited (scCVD) diamond membrane detector63. This detector is 

approximately 2-3 µm in thickness and is usable as a vacuum window. It has a counting 

efficiency close to 100% for 3 MeV protons63. 

 

Microscopy end-station 

The irradiation end-station is constituted of a fluorescence microscopy system based on 

dedicated sample holder and an inverted fluorescence microscope (Zeiss AxioObserver™ 

Z1), positioned horizontally at the end of the beam line. A fully motorized microscope was 

chosen to automate the irradiation and time-lapse imaging processes. In a typical experiment, 

several fields of view (containing about 10 to 20 cells) can be positioned in front of the beam, 

irradiated and imaged at regular time intervals during several minutes.   

The imaging capabilities have been completed recently with a commercially available laser 

diode (Roper Scientific, iLas2TM) coupled to a galvo-scanned mirror have been installed on 

the microscope. This set-up allows performing fluorescence recovery after photobleaching 

(FRAP) measurements in combination with charged-particle irradiations (Fig. 2).  

 

Studies achieved using the microbeam at the AIFIRA facility 

To validate the cellular micro-irradiation and the online monitoring system at the AIFIRA 

microbeam, Bourret et al., showed the first measurements of the re-localization of the GFP-
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XRCC1 protein at the damage sites in transfected Hela cells using online time-lapse imaging 

in the first minutes after irradiation40. More recently, to investigate the spatio-temporal 

properties of the DNA damage response to single charged-particle of GFP-RNF8 transfected 

cells, the BNCD thin membrane was developed to allow reliable single α-particle detection 

and single cell irradiation with negligible beam scattering. Post-irradiation analyses showed 

that GFP-RNF8 accumulates continuously at single α-particle track during the first 30 minutes 

after irradiation62. 

Another recent study that used the AIFIRA microbeam aimed to study the effects of charged-

particles on mitochondrial membrane. Single and clusters of mitochondria were irradiated 

with 3 MeV protons at the AIFIRA microbeam facility and with 55 MeV carbon ions at the 

SNAKE facility in Munich. They showed for the first time that highly localized targeted 

mitochondrial irradiation using charged-particles induces mitochondrial membrane potential 

loss38. 

In 2017, Barberet et al. developed and validated an ultra-thin diamond proton detector at the 

AIFIRA microbeam facility compatible with micro-irradiation and online fluorescence time-

lapse imaging. The detector is made of a thin scCVD diamond membrane63.  

In addition to the studies already mentioned, others coupling the AIFIRA microbeam cellular 

irradiations to physical and biological samples have been carried out and will be detailed in 

this thesis report. 

 

Experimental characterization of the AIFIRA CPM using a track detector 

Fluorescent Nuclear Track Detectors (FNTDs)64 were used to characterize the microbeam 

quality (size and intensity) and targeting accuracy at cellular scale for single and several 

particle tracks. FNTD detectors were irradiated with focalized protons and α-particle. Single 

proton and α-particle track have been investigated in 3D after confocal laser scanning 

microscopy acquisitions (CLSM), which allows us to access to LET value, to track length and 

particle spot lateral size (detector response). Pattern with more than a particle per spot allow 

us to establish a relationship between the intensity variation and the ED.  

 

Cellular micro-irradiation: Kinetic study of DNA repair proteins 

The kinetic dynamics of two stable cell lines expressing GFP-tagged protein (Green 

Fluorescent Protein) involved in the recognition, signaling and repair of radiation-induced 

DNA damage, were investigated. The two proteins are GFP-XRCC1 (Single Strand Breaks 

and BER/NER pathways) and GFP-RNF8 (Double Strand Breaks ligase protein), details were 
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published previously in 65. The two cell lines nuclei were micro-irradiated with an increasing 

number of 3 MeV α-particles and protons using the AIFIRA microbeam. These proteins 

accumulate at DNA damage sites and form large nuclear aggregates that appear as Ionizing 

Radiation-Induced Foci (IRIF)66. These IRIF are highly dynamic structures and subject to 

precise spatio-temporal regulation. The kinetics of how these lesions are processed and 

resolved after irradiations can be provided by the precise order and timing of protein 

recruitments67. The kinetics profiles of these proteins were then correlated to the number of 

delivered particles, the ED, the particle LET, and the predicted number of DNA damage. 

 

Multicellular micro-irradiation: Radio-induced effect in vivo 

Two different stages of a living organism, C. elegans, were irradiated in vivo.  

To validate the experimental procedure to micro-irradiate a multicellular living organism in 

development using the AIFIRA microbeam and to observe the radio-induced effects and the 

transmission of damage signaling in real time, a specific cell from two cell stage embryos 

were irradiated with protons. The first cell division was followed using time-lapse imaging 

system. IRIF and chromosomal aberrations were observed in the irradiated cell nucleus and 

also in the daughter cells. A synchronization disruption of cell divisions within the 4-cell 

stage was also observed. 

To study chronic induced stress response after exposure to IRs, C.elegans L1 larvae have 

been chosen to be irradiated because of the presence of the two somatic gonad precursor cells 

at this stage. These 2 cells give rise to the entire somatic gonad responsible of the production 

of gametes (called testes in male and ovaries in female)68. 

To determine the specific contribution of these cells in the stress response of IR, they were 

irradiated with 3 MeV protons using AIFIRA microbeam. The challenge was to perform the 

irradiation of these 2 small cells (3.32 µm diameter) in a living organism that moves using the 

AIFIRA microbeam. To overcome this challenge, the dose must be delivered homogeneously 

to the area around the 2 cells by using CPM irradiation. C. elegans L1 larvae stage were 

irradiated with 0.3 Gy, 3 Gy and 30 Gy to compare the results with a second irradiation 

strategy where the whole larvae is irradiated with the 3 different cumulative doses of gamma 

rays performed at the MIRE platform69 (collaboration with the IRSN).  
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V. Microdosimetry 

 

Microdosimetry is the theoretical or experimental investigation of imparted energy probability 

distributions in a cellular or sub-cellular volume of matter that is traversed by an ionizing 

particle. This original approach was founded by Harald H. Rossi, when he recognized the 

fundamental difference between macroscopic absorbed dose and the fluctuation of ED in 

microscopic structures described by stochastic variables70,71. Using this concept, physical 

quantities can be calculated with a full theoretical body, which describe the radiation 

interaction with the matter, or measured with specific detectors72. 

Performing targeted irradiations with a microbeam, ED is localized in a cellular/sub-cellular 

structure and the responses to IRs depends on its stochastic distribution, which in turn, 

depends on the type and energy of particles and on the target size (different compartments of 

the irradiated sample). For biological samples, the main target of IR is the DNA and its size is 

smaller than the lateral extension of the ionization cloud surrounding the majority of charged-

particles used in radiobiological experiments. It is therefore reasonable to think that the 

ionization fluctuations, and hence the biological effectiveness, depend on the position of the 

site within the particle track. Therefore, the track structure, based on the microdosimetry 

concept, is believed to be very important to understand and explain results that apparently 

have no suitable explanation by considering only average quantities like absorbed dose. Track 

structure relates to the manner or pattern in which energy is deposited in a medium by tracks 

of particles as they slow down.  

In our CPM studies, the dosimetric quantities of interest are not measurable directly during 

micro-irradiation. Nevertheless, physical characteristics of the ion track structure can be 

measured offline by using track detectors and physical quantities can be simulated by using 

Monte Carlo codes. 

 

Track detectors 

Microdosimetry detectors have been used widely for qualitatively and quantitatively 

analyzing and detecting radiation. Traditionally, the Tissue Equivalent Proportional Counters 

(TEPC) has been used to estimate microdosimetrical quantities. They are based on gas 

proportional counters with a rigid wall made of tissue equivalent plastic surrounding a gas 

filled cavity. TEPC present several limits (spatial resolution, time response, need of a gas 

supply and a high voltage…) which make it non-useful in many applications73. In contrast, 
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semiconductor detectors are widely used in radiation detection because they are small, have a 

high energy resolution in particle detection, a low bias voltage, and a fast response time. Over 

the 20 last years, the Center for Medical Radiation Physics (CMRP) at the University of 

Wollongong (Australia) has developed semiconductor microdosimeter and the most current 

Silicon on Insulator (SOI) detectors (five generations) for RBE (Relative biological 

effectiveness) characterization in different radiation fields of hadron therapy facilities74. 

Another example of active microdosimeter is the prototypes of scCVD diamond membrane 

based microdosimeters for hadron therapy developed for more than 10 years at the Diamond 

Sensors Laboratory of CEA-LIST (France). These detectors are characterized by using 2 MeV 

protons at the AIFIRA microbeam and 16.6 MeV carbons at the IRB Croatia (Institute Ruđer 

Bošković )75. 

Apart from the active microdosimetry detectors already mentioned, passive microdosimetry 

detectors that do not provide direct readouts of the recorded ED of the incident radiation are 

also available. Track detectors are part of passive microdosimetry detectors that allow to 

measure and visualize particle track structures experimentally. The size and the shape of these 

tracks yield information about the particle energy and its physical processes distribution. In 

general, we can distinguish between gas track structure detectors76 and solid track structure 

detectors. The most common solid track detectors are CR39 Plastic Nuclear Track Detectors 

(PNTDs) and Fluorescent Nuclear Track Detectors (FNTD).  

CR39 PNTDs have been widely used for more than 30 years for various common applications 

(radon monitoring77, neutron dosimetry78, the radiotherapy dosimetry 79…). Additionally, they 

can be used as LET spectrometers allowing to estimate the quality of irradiation80, 81. Ionizing 

particles leave narrow trails of damage referred to as latent tracks fixed by chemical etching 

and observed under an optical microscope.  

FNTDs are novel track detectors based on Al2O3:C,Mg single crystals allowing the detection 

and visualization of highly localized EDs of individual charged-particle tracks through its 

volume with sub-micrometer resolution and a full 3D resolution. FNTDs contain aggregate 

color centers (F-center) exhibiting radio-chromatic transformation under IR. These 

transformed centers produce high yield fluorescence when stimulated with confocal laser 

scanning microscopy (CLSM), enabling non-destructive read-out with the intensity signal 

depending on the local ED82–85. 
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Monte Carlo simulation codes : Geant4/Geant4-DNA 

IR interactions at the micrometer and sub-micrometer scales have a fundamental role in the 

initial formation of biological DNA damage. However, experimental data of ionization yield 

in condensed DNA material are not directly measurable during irradiation with the currently 

available techniques.  

Theoretical simulations using Monte Carlo techniques and methods allow their calculation 

and quantification in well-defined conditions (beam extraction and focalization, realistic 

phantom of cellular volume…). These codes reproduce the stochastic nature of the interaction 

of elementary particles with matter using random draws. 

Several Monte Carlo codes based on macroscopic description of the particle transport like 

Fluka86, MCNP/MCNPX87, Penelope88 and, Geant489, 90 were developed originally for 

modeling physics experiments of radiation-matter interactions (nuclear physics and particle 

physics). Some of them are extended for biophysics, dosimetry and microdosimetry, clinical 

radiotherapy, and radiation protection applications. Monte Carlo codes that characterize the 

primary properties of radiation tracks and microdosimetric quantities are referred to as track 

structure codes. Track structure codes allow to calculate the physical interactions and the EDs 

of ionizing particles within biological matter by modeling particle tracks “step-by-step” at the 

nanometric scale and low energy. Some codes are limited to the simulation of the physical 

interactions, while others include the simulation of the physical, the physico-chemical and 

chemical stages as well as the biological damage and repair processes quantification91, 92. The 

main references are the KURBUC code93,94, the PARTRAC code95,96, the open source toolkit 

Geant4-DNA97,98 and the Geant4-DNA based MC code TOPAS-nBio99.  

Since 2007, the Geant4-DNA project was developed to extend the Geant4 toolkit (an open-

source and publicly available simulation platform) to molecular level simulations97,98,100,101. It 

has been widely adopted as investigation tool in the radiobiology102–108 and radiation therapies 

community109–111. Regardless of the physics models chosen in Geant4-DNA, all 

electromagnetic interactions of particles (electrons, α-particles, protons and neutral hydrogen 

atoms) with their surrounding medium (liquid water) are discrete. For α-particles, protons and 

neutral hydrogen atoms these interactions are nuclear scattering, ionization, electronic 

excitation or charge exchange. For electrons the interactions are elastic scattering, electronic 

excitation, vibrational excitation, ionization or molecular attachment. This permits the 

simulation to achieve a very high spatial accuracy, down to the nanometer scale, whilst the 

statistical nature of the Monte Carlo simulations ensures quantum limits are not violated112. 

The physics modeling in Geant4-DNA takes place rapidly compared to other events and is 
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typically said to have terminated within 1 fs. The propagation of particles takes place in liquid 

water (validation data is frequently based upon data coming from the vapor or solid phases of 

water, due to the experimental difficulties of measuring interaction cross- sections in liquid). 

Particles are tracked down to energies around 8 eV, where they are solvated or thermalized97. 

The electron interactions were modeled down to eV energies since 50% of all ionizations are 

produced by electrons with energy less than 1 keV in the case of irradiation with proton 

beam113.  

The iRiBio (ionizing Radiation interactions and Biology) group has initiated a simulation 

activity based on the Geant4 simulation toolkit in order to develop models for track structure 

calculation of IR traversals through living biological specimens and to compare prediction 

results with experimental data114. The Geant4-DNA tracking capabilities at the sub-

micrometer scale were first extended and validated by the group, allowing to propose a 

complete simulation platform for the design of specific micron and sub-micron beam 

irradiation115. Barberet et al. developed a methodology to provide microdosimetric quantities 

calculated from realistic cellular volumes for two types of irradiation protocols: the 3 MeV α-

particle microbeam at AIFIRA used for targeted irradiation and a 239Pu alpha source used for 

large angle random irradiation102. A correlation between the ED along the ion tracks and the 

DNA damage signaling proteins obtained by using immunocytofluorescence has been shown 

for 239Pu alpha source. For microbeam irradiations, the damaged areas showed a bigger 

diameter compared to the area where the energy is deposited according to the simulation. This 

was explained by the beam scattering, the targeting accuracy of the microbeam and the 

influence of the biological processes such as chromatin mobility 102. 

These setups allow for example a precise control of delivered ionizing doses by a microbeam 

to living organisms. In this manner the total energy distribution after microbeam irradiation 

can be calculated and early biological damage induced by IRs at the DNA scale can be 

estimated. 

In this context, during the PhD my efforts were dedicated to developed microdosimetric 

models for measuring or simulating physical quantities that cannot be measured directly 

during irradiations at the AIFIRA microbeam facility. Using the toolkit Geant4 and Geant4-

DNA track structure code, the link between the physical characterization of IR and its 

biological effects at the cellular scale have been established relying on the microdosimetric 

quantities. The idea was to correlate these quantities, mainly ED, specific energy and DNA 

damage with the effects observed when cells were irradiated with CPM. 
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This manuscript is structured in three main parts. 

 

• PART I: Experimental characterization of the charged-particles microbeam 

using FNTDs 

In this part, we developed a protocol (i) to set up the irradiation of Fluorescent Nuclear 

Track Detector (FNTD) with protons and α-particles at the AIFIRA CPM and (ii) to 

read-out the trajectories of single and multiple charged-particles throughout the 

detector volume with sub-micrometer resolution and full 3D information using 

confocal laser scanning microscopy. We used FNTD detectors to visualize 

experimentally the different characteristics of the ion microbeam, such as the size, the 

intensity (as function of the number of the delivered particles) and the positioning 

accuracy of the system for different proton and α-particle LETs. Preliminary results of 

FNTD test irradiations with single tracks and increasing number of proton and α-

particle are presented. It shows the capability of FNTDs to provide detailed 

characterization of the CPM beam spot (size and positioning accuracy) the detection 

efficiency with sub-micrometer resolution with full 3D information. It allows the 

reconstruction of the particle tracks in relation with the particles LET. 

 

• PART II: Kinetic study of detection and repair of DNA damage proteins after 

irradiations at cellular scale 

For the analysis of the dynamics of GFP-labeled proteins (GFP-XRCC1 and GFP-

RNF8) involved in signaling and repair of DNA damage after irradiations with an 

increasing number of 3 MeV α-particles and protons, first, the track structure of one α-

particle and one proton are reconstructed from simulated data to compare the ED 

distribution for the 2 types of particles. 

To compare the proteins recruitment time responses after irradiations with the 2 types 

of particles in a cell nucleus, I simulated the energy distribution in a homogeneous 

liquid water cube of 6µm in thickness corresponding to the average thickness of 

human cell and then clustered them based on the “Clustering” example of Geant4-

DNA to predict the number of 3 types of DNA damage (Single Strand Breaks (SSBs), 

Double Strand Breaks (DSBs) and Complex Strand Breaks (CSB))116,98. The 

clustering of the DNA damage was performed also at the chromatin sub-structure 

scale (micrometer scale) to investigate their spatial distribution and to determine their 

complexities. 
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• PART III: Multicellular micro-irradiation: Biological radio-induced effects by 

ionizing radiations in vivo 

To characterize the irradiation of C. elegans embryo with 3 MeV protons for studying 

the radio-induced effects at the DNA scale during the first cell division, I simulated 

the ED distribution in a C. elegans embryo modeled as realistic phantom based on 

high resolution confocal imaging102, 114. The energy distribution was simulated in 3 

different compartments of the C. elegans embryo (chromatin, nuclear volume and the 

whole embryo) using a 3D cellular “phantom”. These “phantoms” allow high-

resolution modeling of the embryo geometries and a realistic estimation of the ED 

enabling to consider the chromatin condensation state during embryos development. 

Several embryo nuclei having different chromatin condensations were tested to 

investigate if the chromatin condensation had an impact on the ED during our 

irradiation. 

For the study of chronic induced stress response after exposure to IRs of C.elegans L1 

larvae69, and to compare the two irradiation strategies (at MIRE and AIFIRA) for the 3 

doses (0.3 Gy, 3 Gy and 30 Gy), the aim of my contribution was to model the micro-

irradiation of C. elegans L1 larva with 3 MeV protons in Geant4 and to find a way to 

deliver homogeneously the 3 selective doses to the area around the 2 somatic gonad 

precursor cells by using the CPM at the AIFIRA facility. Several patterns and 

microbeam sizes were tested to choose the most adequate configuration.  
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Introduction 

 

The physical characteristics of the ion track structure and physical quantities of interest for 

radiation response studies (ED, specific energy and particles LET) are usually assessed either 

by numerical simulations or measured with detectors.   
Measurements can be conducted by different complementary approaches using either active 

or passive detectors. Active detectors provide a direct readout of the recorded EDs in 

micrometric volumes. They are based on ionizing chambers filled with tissue equivalent gases 

or on semiconducting materials as silicon1or scCVD diamond membrane2. Passive detectors 

accumulate particle tracks for long periods and can be readout offline. Amongst the various 

types of passive detectors, track detectors can be used to measure and visualize 

experimentally charged-particle track structure characteristics. The particle incoming energy 

and its distribution can be extrapolated from the size and the shape of these tracks. CR39 

detectors and Fluorescent Nuclear Track Detectors FNTDs are the most commonly used solid 

track detectors. 

CR39 Plastic Nuclear Track Detectors (PNTDs) are used as solid track etches detectors3. 

Energetic particles colliding with the detector structure leave a trail of damage referred to 

latent tracks. After chemical etching these tracks can be observed and measured under an 

optical microscope. The resulting etched plastic contains a permanent record of not only the 

location of the radiation on the plastic but also gives spectroscopic information about the 

source. CR39 have been used widely for more than 30 years for several applications such as 

radon monitoring4, dosimetry on board of aircrafts5, the dosimetry in radiotherapy6 and the 

estimation of the quality and the physical characterization of radiation. CR39 detectors are 

also frequently used to characterize ion microbeams7,8. At the AIFIRA facility, the 

characteristics of the CPM, such as its size, positioning accuracy and targeting accuracy were 

evaluated so far using CR399,10. The use of such detector presents limitations. First, the 

precise measurement of single or several particle track sizes is tedious because such 

measurements depend highly on the chemical etching conditions (concentrations, 

temperature…). Second, CR39 detectors have a LET detection threshold limiting its use for 

particles with low LET, such as 3 MeV protons at the AIFIRA CPM. 

In the last decade, FNTDs have been developed by Landauer, Inc.11 to overcome some of 

CR39 limitations. FNTDs are based on Al2O3:C,Mg single crystals allowing the detection and 

visualization of highly localized EDs of individual charged-particle tracks with sub-
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micrometer and a full 3D resolution12–14. Compared to CR39 detectors, FNTDs exhibit a 

superior spatial resolution and do not require chemical treatment for the read-out13. The major 

advantage of using FNTD is its capability of being read out by confocal laser scanning 

microscopy (CLSM) commonly used in life science15. FNTDs show a high detection 

efficiency (close to 100%)16, a wide range of LET sensitivity17 and depth information in 3D18. 

FNTDs have been used so far for radiotherapy and heavy ion therapies research15,19, for 

spectroscopic radionuclide analysis20,21, and for fluence determination in ion beams16,22.  It 

has been also used more recently for microbeam characterization. Greubel et al. have 

characterized beam spot of low LET 20 MeV proton using FNTDs to correlate spot size with 

measured cell survival in unstained cells23.  

In this study, we used FNTDs to visualize experimentally the different characteristics of the 

CPM at the AIFIRA facility. We developed a protocol to micro-irradiate FNTDs with protons 

and α-particles and to read-out their trajectories using CLSM. Pattern irradiations with single 

particles and increasing number of delivered particles were performed to investigate: 

• The capability of FNTDs to provide detailed characterization of the CPM beam spot: 

size and positioning accuracy. 

• The FNTD detection efficiency with sub-micrometer resolution of single particle track 

especially for low LET particles. 

• The exploitation of the full 3D information allowing the reconstruction of the particles 

tracks in relation with the particles LET and incoming energy. 

• If a relationship exists between the size of detector response fluorescent spots and the 

LET of the particles. 

• The relationship between the fluorescent intensity and the delivered dose / energy in 

terms of number of delivered particles per irradiated spot. 
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Methods 

 

I. Fluorescent Nuclear Track Detectors (FNTDs) 1 

 

FNTDs are single aluminum oxide crystals doped with both carbon and magnesium impurities 

(Al2O3: C, Mg) giving them a characteristic yellow-green color.  FNTDs are developed by the 

Crystal Growth Division of Landauer Inc., Glenwood, Illinois, USA. These crystals have been 

provided as samples with a dimension of 4 x 8 x 0.5 mm3 (Fig. 3.a) *. One of the large sides is 

engraved with letters (Fig 3.b) and the other side is polished to obtain an optically transparent 

surface. Al2O3: C, Mg based FNTD allows the detection and the visualization of individual 

charged-particle tracks thought its volume with a sub-micrometer spatial resolution giving full 

3D information and high-resolution ED patterns17. These detectors are non-destructive read-

out detectors, insensitive to room light before and after the irradiation and stable up to 600˚C. 

 

Fig. 3. a. FNTDs dimensions 4 x 8 x 0.5 mm3. b. Microscopic image acquisition of the engraved side of the 

FNTD with 10x lens. Scale bar 1 mm.  

 

Mg-doped Al2O3 crystals have green coloration and contain high concentrations of F2
2+ (2Mg) 

aggregate defects color centers (F-centers), responsible for the blue absorption band (435 nm). 

Al2O3: C used in thermally and optically stimulated luminescence dosimetry shows an 

excellent dosimetric property which is the very long luminescence lifetime (35 ms) of the F-

centers. These color centers undergo radiochromic transformations when exposed to IR, 

produce high yield fluorescence at 750 nm when stimulated at 620 nm with a short life time 

(75±5 ns)13. 

 

                                                           
*We would like to thank Dr. Brahim MORENO, Landauer Inc. Paris for providing the samples and for his courtesy. 
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II. CPM irradiation of FNTDs 

 

The FNTDs irradiations were carried out using the CPM at the AIFIRA facility. 

First the FNTDs were cleaned using lens paper tissues soaked with ethanol. To facilitate the 

irradiation and the read-out microscopy after irradiation, the FNTDs were fixed from the 

engraved side on a glass slide using epoxy glue (Fig. 4).  

 

 

 

Fig. 4. Experimental set-up of CPM irradiation at the AIFIRA platform. The FNTD is glued on a microscope 

glass slide placed on the sample holder. The FNTD is positioned as close as possible to the exit window which is 

the diamond detectors. Downstream the sample, an inverted microscope installed at the end of the beam line is 

used for the visualization of the FNTD and to choose the irradiation position according to the engraved letters. 

 

The glass slide was mounted on the irradiation line vertically using the same sample holder 

used for the biological irradiation experiments (Fig. 4). The letters engraved on the detector 

were used as reference for the irradiation positioning and the microscopy read-out. At the 

microbeam end-station, an inverted microscope is installed to visualize the samples and to 

choose the irradiation position according to the engraved letters. The detectors are mounted to 

position the polished side as close as possible to the beam exit window. They were irradiated 

with protons and α-particles of 1.5 MeV and 3 MeV (Fig. 4.b). Preliminary measurements 

were performed to study the suitability of FNTDs for single ion detection. For this purpose, 

irradiations, with 1 particle per point (ppp) were produced. The number of ion hits was 

precisely controlled by means of an ultra-thin transmission detector positioned upstream the 

sample : a thin single-crystal chemical-vapor-deposited (scCVD) diamond membrane24 for 
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protons and a BNCD thin membrane2 for α-particles. Irradiation patterns with increasing 

number of particles per points were then produced to establish the relationship between the 

detector response in terms of fluorescence intensity and the number of delivered particles 

(dose). 

 

III. FNTDs read-out using confocal laser scanning microscopy 

 

The FNTDs read-out was performed using a confocal laser scanning microscope (CLSM) 

Leica DM6 confocal microscope CFS TCS SP8 at the Bordeaux Imaging Center (BIC).  

The irradiated patterns were located using the engraved letters as positioning references. 

However, the choice of the first stack slice corresponding to the detector surface is inaccurate, 

since this polished side is unmarked and difficult to spot. To overcome this problem, the 

images were acquired at 2 to 3 slices below the detector surface to ensure that the acquisition 

position is located in the detector body. A 63x oil immersion lens (Leica HC PL APO CS2 

63x, numerical aperture NA = 1.4, XY resolution of about 150 nm and Z resolution of about 

535 nm), 600 Hz scan speed and 96 lines averaging was used for images and z-stacks 

acquisition. The images pixel size in (x, y) was chosen as 0.1 µm x 0.1 µm, and the distance 

between 2 z-stack slices was 0.4 µm. A 638 nm laser diode with 100% intensity was used for 

the FNTD excitation. The fluorescence emission was detected using a photomultiplier tube 

(PMT) with a wavelength range between 652 nm - 800 nm and a maximum gain to detect the 

single particle tracks. 

 

IV. Confocal Images processing using ImageJ 

 

The confocal images were analyzed using the ImageJ software (http://rsbweb.nih.gov/ij/). The 

intensity profiles of the irradiated spots were measured by selecting the region around the 

particle impacts then by using the plot profile function of ImageJ as shown in Fig.5.  

The fluorescent spot intensity profile has a Gaussian distribution. To access the intensity and 

the spot size, the measured data was fitted in Python with a Gaussian + linear function (Fig. 

5.b):  

𝐼 (𝑎. 𝑢. ) =  𝐴. 𝑒
−(𝑥−𝜇)2

2.𝜎2 + 𝑎𝑥 + 𝑏                    (1) 

Some of the image acquisitions had a background noise with a non-homogeneous intensity 

values described by the linear equation added to the fit function. 
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Fig. 5. a. ImageJ analyzing of selected fluorescent spot after irradiation with 12 protons of 3 MeV. b. The 

intensity profile of the selected area in (a) is plotted in red. The blue plot shows the Gaussian fit (in Python) with 

a max intensity value A = 1263 a.u. and a FWHM = 1.5 µm according to the equation (2). Scale bar = 5 µm. 

 

The fit provides 2 parameters: A is the max intensity value and σ the standard deviation. The 

A value is an intensity value with an arbitrary unit depending on the microscope 

configuration, and the spot size is given by the Full Width at Half Maximum: 

𝐹𝑊𝐻𝑀 = 2.35 ×  𝜎 (𝜇𝑚)                (2) 

The track length through the detector body was measured from the z-stack acquisitions of 

single particle using the z-axis profile function in ImageJ. These z-stacks acquisitions are also 

exploited for the 3D particle tracks reconstruction as a surface rendering using the 

Image3DViewer plugin of ImageJ. 

 

V. SRIM simulations 

 

The SRIM (Stopping and Range of Ions in Matter) 2013 toolkit25 was used to calculate the 

different particle LETs, and the energy deposition depth profile (Bragg curves) of the 4 

particle LETs through the detector depth. 

These simulations were carried out in Aluminum oxide (alpha) material with a density of 3.98 

g/cm3. The Bragg curves (dE/dx (keV/µm)) were calculated as the average ED depth profile 

of 1000 incident particles. 
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Results 

 

I. Single proton and α-particle tracks  

 

I.1. Single particle 3D visualization 

 

The 3D single tracks distribution of 1.5 MeV α-particles and 1.5 MeV protons are presented 

in Fig. 6.a and 6.b respectively. These 3D tracks are reconstructed as a surface rendering of 

the intensity of the stack slices using the Image3DViewer plug-in of ImageJ. We observed that 

the particle tracks get thicker while entering the detector volume. Some of the tracks contain 2 

particles and we can observe the diffusion of the 2 particles through the detector (Fig. 6.b 

white arrow).  

Unlike the CR39, FNTDs make it possible to distinguish tracks containing 2 particles from 

tracks with one particle.  

 

Fig. 6. A 3D surface rendering of the microscopic stack images measured for 7 single tracks distant of 2 µm with 

a CLSM in a FNTD after irradiation with (a) 1.5 MeV α-particles and (b) 1.5 MeV protons. The apparent length 

of the tracks is 4.5 µm for the α-particles and 17.3 µm for the protons averaged over 10 tracks measurements. 

 

Single particle irradiations performed with 3 MeV α-particles and protons according to the 

pattern in Fig. 7.a and Fig. 8.a respectively, are shown in Fig. 7.b and Fig. 8.b. The mean 

single particle spot size was estimated by averaging the values obtained from 100 spots. We 

obtained a FWHM of 0.84 ± 0.04 µm for 3MeV α-particles and 0.58 ± 0.04 µm for 3 MeV 

protons.  
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Fig. 7. Single 3 MeV α-particles detection using FNTD. (a) Scheme of the pattern 10 x 10 points used for the 

irradiation of the FNTD with 3 MeV α-particles at the AIFIRA microbeam. (b) Zoom on 4x4 pattern of the 

microscopic image acquisition using CLSM of the FNTD irradiated. Scale bar = 10 µm.  

 

Fig. 8. Single 3 MeV protons detection using FNTD. (a) Scheme of the pattern 10 x 10 points used for the 

irradiation of the FNTD with 3 MeV protons at the AIFIRA microbeam. (b) Zoom on 4x4 pattern of the 

microscopic image acquisition using CLSM of the FNTD after irradiation. Scale bar = 15 µm. 

 

I.2. Single particle track length measurements 

 

The track length of 3 MeV and 1.5 MeV protons and α-particles were measured using the z-

stack acquisitions of single tracks. Fig. 9 shows the depth profiles of the fluorescence 

intensity of single tracks averaged over 10 different tracks measurements. The intensity values 

are arbitrary depending on the microscope acquisition configuration. Using these profiles, we 

measured a track length at the maximum intensity value of 4.5 µm for 1.5 MeV α-particles 
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(Fig. 9.a), 6.7 µm for 3 MeV α-particles (Fig. 9.b), 17.3 µm for 1.5 MeV protons (Fig. 9.c) 

and 42.1 µm for 3 MeV protons (Fig. 9.d). The 10 values of the max intensity for each 

particle type and energy are located in the same stack slice and at the same depth position. 

 

 

Fig. 9. Depth profiles of fluorescence intensity of single 3 MeV and 1.5 MeV protons and α-particles in the 

FNTD. The measurements show a track length at the maximum intensity value of (a) 4.5 µm for 1.5 MeV α-

particles, (b) 6.7 µm for 3 MeV α-particles, (c) 17.3 µm for 1.5 MeV protons, and (d) 42.1 µm for 3 MeV 

protons. 

 

We also simulated these track lengths averaged over 1000 particles in Aluminum oxide 

(alpha) material using the SRIM 2013 toolkit25. We obtained a track length of 2.96 µm (1.52 

µm at max intensity value) for 1.5 MeV α-particles, 6.53 µm (5.25 µm at max intensity value) 

for 3 MeV α-particles, 16.7 µm (16.2 µm at max intensity value) for 1.5 MeV protons, and 

50.4 µm (49.5 µm at max intensity value) for 3 MeV protons (Fig. 10). 
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Fig. 10. SRIM 2013 simulations of energy loss average for 1000 protons and α-particles of 3 MeV and 1.5 MeV 

in Aluminum oxide (alpha) with a density of 3.98 g/cm3. Simulations show that 1.5 MeV α-particles pass 

through 2.96 ± 0.12 μm, 3 MeV α-particles pass through 6.53 ± 0.15 μm, 1.5 MeV protons pass through 16.7 ± 

0.45 μm, and 3 MeV protons pass through 50.4 ± 0.90 μm of Al2O3 before losing all their energy. 

 

 

Compared to the simulated value, the track length of single particles measured using the 

FNTD are overestimated. For instance, the difference between the measured and the 

simulated averaged track length for 1.5 MeV protons (Fig. 11) can be estimated to 1µm to 2 

µm (corresponding to 3 to 5 slices). This overestimation could be due to the poorly choice of 

the stack first slices.  

 

Fig. 11. Comparison of track amplitude as a function of depth in FNTD (red curve) and the Bragg curve 

calculated using SRIM-2003 and normalized to the measured intensity max value (blue curve) for 1.5 MeV 

proton. 

                FNTD 

                SRIM-2003 
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I.3. Single track spot sizes as function of particle LETs 

 

As the single-track irradiations were tested for 2 types of charged-particles and 2 energies, we 

investigated the variation of the single spot size as function of the particles LETs. The spot 

sizes (FWHM in µm) were averaged over 15 spots and are shown in Fig. 12. The uncertainties 

on the track length due to the choice of the first stack slice are represented in the LET error 

bars. For protons, the spot sizes increase with the LET values (negligible uncertainties). For 

α-particles, the spot sizes variations as function of the LET don’t have the same behavior. The 

highest LET value corresponding to 1.5 MeV α-particle have smaller spot size. In fact, the 

track length of 1.5 MeV α-particles in the FNTD is so short and induce a large LET error bar 

value at first microns depth, thus the choice of the stack slice where the FWHM were 

measured may be inaccurate.  

 

Fig. 12. FWHM mean values measured for single tracks with the FNTD as function of the LET of the incident 

particle. 

 

II. FNTD intensity response as function of delivered dose 

 

To establish a relation between the numbers of delivered particles (dose) and the intensity of 

the fluorescent spot and to measure the microbeam size, patterns with an increasing number of 

particles (Fig. 13.a) were used for the irradiations. Image acquisitions using the CLSM after 

irradiation with the patterns are presented in Fig. 13.b and Fig. 13.(c&d) for 3 MeV α-

particles and protons respectively. For α-particles, the full pattern was acquired in one image. 

For protons the pattern didn’t fit into one image acquisition and it was splitted into two 

images with different microscope parameters since the high and low doses don’t have the 
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same dynamic range of the fluorescent. For this reason, the column of 14 protons per point 

was acquired in the 2 images as reference for the intensity values to allow the comparison of 

the spot intensities.  

 
Fig. 13. (a) Scheme of the pattern used for the irradiation of the FNTD with an increasing number of particles 

repeated 15 times at the AIFIRA microbeam. Microscopic image acquisition using CLSM of the FNTD after 

irradiations with (b) 3 MeV α-particles and (c, d) 3MeV protons. Scale bar = 15 µm. 
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The intensities and the FWHM of each spot were extracted from data measured using ImageJ 

and then fitted with a Gaussian function using Python. The intensity for each dose is 

calculated as the mean intensity of the 15 values of each column. Fig. 14 shows the 

experimental data of the relative intensity with respect to the intensity of a single particle 

impact as function of the dose in terms of number of delivered (a) α-particles and (b) protons.  

 
Fig. 14.  The mean relative intensity of the measured spots as function of the number of delivered (a) α-particles 

and (b) protons. 

 

The particle spot intensity determination assumes that the detector shows a linear response up 

to fifty particles and tends towards an exponential above it. The relative intensity curves 

reveal a non-linear response of the detectors. The fluorescence intensity seems to saturate for 

doses above 50 α-particles and 60 protons.  The quantitative measurements of the microbeam 

size (FWHM) can be sensitive to this saturation effects.  

 

 
Fig. 15.  The mean relative intensity of the measured spots as function of the number of delivered particles from 

(a) 10 to 20 α-particles and (b) 10 to 20 protons, fitted with a linear function I (a.u.) = a . n + b. 
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For the measurement of the microbeam size, only the number of delivered particles from 10 to 

20 where the relative intensity was considered. In this interval, the intensity of the fluorescent 

spots increases linearly with the number of delivered particles (Fig. 15).  

The linear fit shows that one α-particle increases the fluorescent intensity by 9% while one 

proton increases it by 6%.  

 

III. Beam size measurement 

 

The beam size was measured using the data from fluorescent spots after delivering 10 to 20 

particles per spot deconvoluted from the detector response to one particle using:  

𝐹𝑊𝐻𝑀𝑚𝑖𝑐𝑟𝑜𝑏𝑒𝑎𝑚 =  √𝐹𝑊𝐻𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 −  𝐹𝑊𝐻𝑀𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑟𝑎𝑐𝑘

2                 (3) 

 

 

Fig. 16. Microbeam size measurements deconvoluted from the detector response of 1 particle as a function of the 

number of delivered particles from (a) 10 to 20 3 MeV α-particles and (b) 10 to 20 3 MeV protons. The mean 

FWHM measured value is 1.18 ± 0.37 µm after irradiation with α-articles and 1.40 ± 0.27 µm after irradiation 

with protons. These values are similar to the Geant4 simulation results with 0.97 µm for α-particles and 1.46 µm 

for protons. 

 

The beam size averaged over 15 spot measurements for each number of delivered particles 

between 10 and 20 are shown in Fig. 16. After irradiations with α-particles the mean value of 

the beam size is 1.18 µm and after irradiations with protons the mean value of the beam size 

is 1.40 µm. These measurements of the beam size are comparable to the Geant4 simulation 

values of 0.97 µm for α-particles and 1.46 µm for protons, and to measured values in 

biological cells10 of approximately 1.5 µm. 
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Discussion 

 

Nuclear track detectors present interesting features for quality assurance in microbeam cell 

irradiation. This type of detectors is used since many years to validate the beam spot size and 

the positioning accuracy at the micrometer scale. As they provide a clear visualization of 

single particle tracks, they are also widely used to validate the dose delivery in terms of 

number of traversals.  

In this study, we investigated the use of FNTDs to measure the characteristics of the CPM at 

the AIFIRA facility. Compared to the common CR39 nuclear track detector, FNTDs present 

interesting features such as a high spatial resolution, wide dynamic range of ED 

measurements, three-dimensional particle information, do not require chemical treatment for 

the read-out, and the measurements depend only on the irradiations. 

Single tracks of MeV protons and α-particles are unambiguously detected, and the size of the 

fluorescent spot is below one micrometer. To this respect, FNTDs are more efficient than 

CR39 for which single proton tracks are difficult to distinguish.  

Moreover, by deconvoluting the detector response to a single particle and the response to 

several particles, it was possible to measure precisely the microbeam spot size in air. This 

could be achieved by delivering 10 to 20 particles per spot to avoid the response non-linearity 

at higher doses. The value obtained using this approach (1.18 ± 0.37 µm for α-articles and 

1.40 ± 0.27 µm for protons) is consistent with Monte Carlo simulations and the use of 

FNTDs is to date the most reliable approach for measuring the beam spot size. The measured 

microbeam size is different for the 2 types of particles due to the difference in thickness of the 

diamond detector placed at the microbeam exit before reaching the FNTD.  

Above 50 delivered particles, the detector intensity response presents nonlinearity as function 

of the delivered number of particles, showing intensity saturation. The saturation of the 

fluorescent spots may be due to the limited number of color centers available in the actual 

track core where very high energy densities can occur16,26. 

In addition to the spatial information about the particle delivery, the fluorescence intensity 

was investigated to check whether this parameter could be related to physical parameters such 

as LET, energy and range.  

The values obtained for the track lengths are in most cases overestimated by 1 to 2 µm   

compared to SRIM simulations. This discrepancy is mainly due to the inaccuracy in 

determining the exact position of the FNTD surface on CLSM images. Indeed, the polished 



Part I - Discussion                                                                                                                                                             
 

66 
 

surface cannot be unambiguously distinguished on such images. For more accurate 

measurement, this limitation could be solved by marking the polished surface of the detector 

with a reference mark as described in 26. 

According to the measurement of the single-track spot sizes, it is difficult to relate the FWHM 

of these spots with the particle LET. In some cases, the FWHM seems to increase with the 

LET, which is in agreement with other studies16,26. Nevertheless, it is not the case for all 

measured conditions and especially for the highest LET value (1.5 MeV α-particles). This 

interesting property of the FNTD response to charged-particles does not seem to be preserved 

for particles presenting a very short range in the detector.  

Apart from this limitation, the results reported in this preliminary study shows that the FNTD 

provides a reliable technique to characterize precisely the CPM at the AIFIRA facility.  
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Introduction 

 

To study radiation-induced DNA repair mechanisms, charged-particle beams have been used 

to generate extremely localized DNA damage along the particle tracks. Combined with the 

development of fluorescent protein marker techniques and to time lapse imaging, these 

systems have been used to study the dynamics of DNA repair proteins. Such systems have 

been set up, firstly on the beamline at GSI1,2. Using the GSI irradiation beamline, Tobias et al. 

studied the recruitment and binding kinetics of early damage response NBS1, MDC1 and 

53BP1 proteins at increasing lesions clustering (C- and V-ion irradiation). They have shown 

that the recruitment of the NBS1 and MDC1 proteins accelerate with increasing lesion 

density. 53BP1 recruitment was found to be almost identical for the 2 ion types indicating that 

it is independent of LET3. 

In the last decade, the use of CPMs have been extended to study the in vitro kinetics of 

proteins response involved in different DNA damage signaling and repair pathways4. Indeed, 

microbeams present unique features to perform this type of measurements: 

•  A micrometer precision for targeting cellular or subcellular compartments. 

•  The delivery of a precise number of particles per cell down to a single particle.  

• The choice of different particle types and energies allowing to cover a wide range of 

LETs. This parameter is of particular importance for studying the impact of clustered 

or complex damage. 

• The irradiation following geometrical patterns.  

• Their easy coupling to beamline microscopy to visualize the accumulation of GFP-

tagged proteins in living cells expressing immediately after irradiation. 

The combination of all these features opens the possibility to investigate the protein dynamics 

as a function of their role, time, delivered dose and particle LETs. A few research groups 

worldwide have used CPM combined to time-lapse imaging to study radiation-induced DNA 

repair mechanisms. At the PTB microbeam, Mosconi et al. studied and compared the kinetic 

formation of 53BP1 and MDC1 after irradiation with α-particles or protons. It has been shown 

that, with both high TEL and low TEL particles, the generated foci 53BP1 and MDC1 are of 

similar size, with a slight difference in kinetics depending on the type of particle. They 

showed in all cases the presence of time lags between the recruitment of MDC1 and that of 

53BP1, confirming the hierarchical nature of these two proteins.5 Hable et al. studied the 

recruitment kinetics of MDC1, 53BP1 and RAD52 proteins after micro-irradiation with two 
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type ions (carbon ions and protons) having different LETs and inducing different types of 

DNA damage. Using the microbeam facility SNAKE6, they have shown that the recruitments 

of MDC1 and RAD52 proteins depend on the complexity of the damage generated, which is 

not the case for 53BP17.  

Apart from studying DNA repair mechanisms, the combination of fluorescence time lapse 

imaging with microbeam irradiation provides the opportunity to visualize the cell early 

response to localized DNA damage in the first seconds/minutes post-irradiation. The 

correlation of the response dynamics with the damage complexity can provide useful 

information on the impact of the physical parameters of the irradiation on the nature of the 

radiation-induced DNA damage. 

The properties of radiation tracks and microdosimetric quantities can be characterized using 

specific Monte Carlo codes, referred to track structure codes. Track structure codes allow to 

calculate the ED at the DNA scale by modeling particle tracks “step-by-step” and predict the 

number of different types of DNA damage. This is in particular the case of Geant4-DNA that 

provides dedicated tools for investigating such effects in open access8,9,10. 

The dosimetry associated to cell micro-irradiation with charged-particles raises a number of 

challenging questions: 

• What is the number of the different type of DNA lesions? 

• What is the spatial distribution of the DNA lesions? 

• How do these parameters relate to the particles LET? 

• Is the damage complexity influenced by the beam focusing and the potential overlap 

of single tracks?  

• How to consider the clustering of the DNA damage at the ion track scale (nm) and the 

chromatin sub-structure scale (µm)? 

In this study, the AIFIRA CPM was used to micro-irradiate single cell nuclei from 2 different 

cell lines expressing GFP-tagged DNA repair proteins and measure the kinetics of the DNA 

damage response of these proteins. Irradiations were performed with α-particles and protons 

having LETs of 12 keV.µm-1 and 140 keV.µm-1 respectively. The first protein, XRCC1, is 

known as essential scaffold protein, recruited immediately after irradiation and involved in 

DNA SSBs repair11–13. The second protein is RNF8, a ring-finger ubiquitin ligase and one of 

the first proteins rapidly recruited at DNA DSBs14,15. These two proteins were chosen for their 

fast accumulation at damage sites which allows the visualization of the early response after 
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irradiations and because they are involved in the repair of different types of DNA lesions 

(SSB and DSB).  

In the following, I will present the experimental methodology to micro-irradiate cell nuclei of 

the 2 cell lines and to follow the accumulation of XRCC1 and RNF8 proteins at the damage 

sites. The measurement of the fluorescent intensity and the recruitment time for various 

physical parameters (LETs and doses) will be given. Then, a detailed description of my 

contribution for this study to develop the microdosimetry modeling of these irradiations using 

the toolkit Geant4-DNA will be presented. It consists on simulating the energy distribution 

deposited by the 2 charged-particles in a cell nucleus and to predict the different type and 

amount of DNA damage induced after the different irradiation conditions at the nanometric 

and micrometric scales.  
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Methods 

 

I. Experimental cellular micro-irradiation using CPM 

 

I.1. Cell lines expressing GFP-XRCC1 and GFP-RNF8 proteins 

 

The GFP-expressing cells are widely used to monitor genes expression and proteins 

localization in living cell16. For this study, two cell lines expressing GFP-tagged proteins 

involved in different DNA repair pathways have been developed previously17. The selected 

protein are GFP-XRCC118 and GFP-RNF819. 

 

• GFP-XRCC1 protein: Base Excision and Single Strand Break Repair 

DNA single-strand breaks (SSB) are one of the most frequent DNA lesions produced by 

endogenous reactive oxygen species or generated by IR or through base hydrolysis20. This 

lesion can be defined as a nick in the sugar-phosphate backbone of one strand of the DNA 

double helix. The base excision repair (BER) is the repair pathway for SSBs21. When SSB 

occurs, one of the first events induced to bind it is the activation of the enzyme poly 

(ADP-ribose) polymerase-1 (PARP-1). A critical component of SSB repair recruited by 

PARP-1 is the protein XRCC1. It is an essential scaffold protein required for the 

coordination of different repair pathways and associated with SSB Repair (SSBR) 

pathway22–24. XRCC1 is considered to act as a central loading platform in SSB repair, 

which plays the role of a matchmaker for recruitment of other proteins involved in SSB 

repair25,26.  

• GFP-RNF8 protein: Double Strand Break Repair 

Double strand breaks (DSBs) are the most lethal lesions since they can cause cell death if 

unrepaired and, they can result in the etiology of carcinogenesis if misrepaired27. This 

lesion can be defined as a rupture in the double stranded of DNA molecule disrupting the 

sugar–phosphate backbone on both strands at sites located directly opposite each other 

and just a few nucleotides apart (up to ∼10 bp). There is two major pathways to repair 

DSBs, which differ in the fidelity and template requirement: non-homologous end joining 

(NHEJ)28 or homologous recombination (HR)29. NHEJ modifies the broken DNA ends 

and ligates them together using Ku protein without regard for any homologous template 

generating deletions or insertions. In contrast, HR uses an undamaged homologous 
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sequence of DNA template to repair the break, leading to the reconstitution of the original 

sequence. When DSBs occurs, the ATM (ataxia telangiectasia mutated) protein is 

recruited and activated. A very early step in the cellular response to DSBs is the 

phosphorylation of the histone H2AX by the ATM resulting in discrete 𝛾-H2AX 

(phosphorylated-H2AX) foci at the DNA damage sites (4). This phosphorylation 

generates binding sites for adaptor proteins such as RNF8. RNF8 is among the first 

proteins to accumulate at the DSBs sites. RNF8, acting as an ubiquitin ligase to tether 

DNA repair molecules at DNA lesions in HR pathway30–32. 

 

I.2. Cells micro-irradiation and time lapse imaging 

 

The GFP-XRCC1 and GFP-RNF8 cells were platted in the dedicated microbeam cell dish33. 

During irradiation and time-lapse imaging, the cells were maintained in FluoroBriteTM 

DMEM medium (GIBCO, ThermoFisher Scientific) to ensure a low fluorescence background. 

The cell culture well is mounted in vertical position on the microbeam line as shown in 

Fig.17.  

 

 

Fig. 17. Scheme of the irradiation end-station. The cells adhere on a 4 µm-thick polypropylene foil and are 

maintained vertically. The nucleus of each cell is targeted with 3 MeV protons or α-particles. The microbeam is 

extracted threw a diamond detector or Si3N4 window. The irradiated cell nuclei were then followed using online 

fluorescence microscopy. 
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Cell nuclei were targeted with increasing numbers of 3 MeV protons or α-particles from 1 to 

several thousands of particles per cell. In the case of α-particle irradiation the exact number of 

delivered particles was detected upstream the sample with a BNCD-coated extraction window 

coupled to a channeltron electron multiplier. In the case of protons, the number of delivered 

ions N was chosen by adjusting the beam opening time leading to a statistical fluctuation 

of √𝑁. The proteins re-localization at the damaged sites was followed for 30 min using the 

inverted fluorescent microscope equipped with a 63x objective (LD Plan-Neofluar 63x/0.75, 

Optical resolution of about 400 nm, Carl Zeiss MicroImaging GmbH) and a 14 bits Rolera 

EM-C2TM Camera (QImaging) positioned horizontally at the end of the beam line. 

 

I.3. Fluorescent images treatment and data fitting models 

 

The fluorescence images were treated using the ImageJ software (http://rsbweb.nih.gov/ij/). The 

fluorescence intensity was measured in a region of interest (ROI) delimiting the irradiated 

areas. This intensity was corrected by subtracting the background intensity.  Photo bleaching 

was corrected using the fluorescence signal of non-irradiated cells present in each image. The 

fluorescent intensity increase relative to the initial value before irradiation was then fitted 

using mathematical models to access relevant parameters: the recruitment time T (s) and the 

amplitude of the intensity A (u.a.).  

For the GFP-RNF8 protein, the fluorescent intensity distribution was fitted using a first order 

step response as described in Luka et al.34:  

𝐼𝑟𝑒𝑙 = 1 + 𝐴 (1 − 𝑒
(𝑡−𝑡0)

T ) (1) 

T (s) represents the mean recruitment time of the protein at the damage site. A (a.u.) 

represents the highest fluorescent intensity value. t0 is the irradiation time relative to the 

beginning of the video. 

For the GFP-XRCC1 protein, the fluorescent intensity distribution was fitted using the model 

used by Hable et al.7: 

𝐼𝑟𝑒𝑙 = 1 + 𝐴 (1 − 𝑒
(𝑡−𝑡0)

T ) ∗  𝑒
(𝑡−𝑡0)

T2  (2) 

The first part of the function is the same as the one used previously, as well as the T, A and t0 

parameters. However, the intensity decreases over longer periods and it is described by the 

second part of the function. The parameter T2 (s) represent the mean decay time when the 

fluorescent intensity decreases as already done in other studies7,11. 
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All these parameters are determined for each cell separately, and then a statistical distribution 

in the form of box plot is calculated for each irradiation condition (type and number of 

delivered charged-particles). 

II. Microdosimetry of the cellular ion microbeam irradiations 

 

When targeting biological cells with a CPM, the charged-particles interact with these cells in 

a sequence of complex events that can be separated in 4 consecutive temporal stages: 

physical, physicochemical, chemical and biological stages. For this study, my efforts were 

dedicated to develop the physical stage from the calculation of the ED to the prediction of the 

number of different DNA damage using the Geant4-DNA version of the toolkit Geant435, 36. It 

will include only the direct DNA damage. The indirect damage corresponding to the 

physicochemical stage is not included since its calculation requires a real DNA structure not 

available in the current Geant4-DNA version.  

 

II.1. Simulation of track structures and energy distributions   

 

First, the track structures of one α-particle and one proton having 2 different LETs were 

simulated in a cell nucleus using the same experimental irradiation conditions.  For these 

calculations, the cell nucleus was modeled with a homogeneous water cube of 6 µm side 

corresponding to the average thickness of a human nucleus cell. Since the calculation in 

Geant4-DNA takes place in liquid water, the ion beam was delivered at the entry of the water 

cube volume. To consider all the material traversed by the ions, the microbeam was modeled 

as a Gaussian beam with FWHM of 1.5 µm and mono-energetic with energy 3 MeV for 

protons and of 2.5 MeV for α-particle taking into account the energy loss before reaching the 

target. A Geant4-DNA Physics list based on the recommended “G4EmDNAPhysics_option4” 

constructor was used37. The Geant4-DNA processes are all step-by step processes; as such, 

they simulate explicitly all the physical interactions of ionizing particles in the irradiated 

medium and do not use any production cut-off. 

For each physical interaction, the ED, the particle position and the interaction name were 

recorded. The 3D track structure of α particles and protons were reconstructed using the 

dataset that considers the physical interactions having non-zero ED (nuclear scattering, 

electronic excitation, ionization, and charge exchange) as shown in Fig. 18.  
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The energy distribution for the different irradiation conditions will be presented with 2D 

histogram projected along the z-axis (the volume depth) with a binning of 0.2 x 0.2 µm2 

similar to the pixel size of the microscope fluorescent images. 

 

Fig. 18. Track structure simulation of single 3 MeV α-particle/proton in 1 µm water. When (a) one α-

particle and (b) one proton traverse 1 µm of liquid water, the density of physical interactions (ionizations and 

excitations) and the ED is 10 times higher for α-particle than for proton, due to the α-particle’s higher LET.  

 

 II.2. Clustering of DNA damage 

 

II.2.1. Calculation of the induction of Strand breaks  

 

The position and the EDs of the physical interaction can be used to predict DNA stand breaks 

(SBs) induced after the different irradiation conditions. Strand breaks have been assumed to 

occur by defining 3 parameters. 

 

• A uniform probability that defines if an interaction is situated in a sensitive zone or not 

(SPointsProb). The sensitive location is composed of a volume containing the DNA 

double helix plus a virtual aura surrounding it. I chose a SPointsProb value of 0.2 as 

the value used by Bernal et al.38. 

 

• To take into account that not all interactions induce DNA SB, a probability of damage 

induction is defined as a linear function increasing with the value of the ED. I used a 

function similar to that used by Friedland et al. with a linear probability of damage 

induction increases from zero at EMinDamage = 5 eV to 1 at EMaxDamage = 37.5 eV 

(Fig. 19)39. 
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Fig. 19. The probability of DNA damage induction. It is a linear function varying from 0 to 1 for a ED 

between 5 ev to 37.5 ev.  

 

II.2.2. Clustering of DNA damage 

 

Based on the “Clustering” example of Geant4-DNA, the number and the position of DNA 

SBs can be calculated and then clustered into 3 types of DNA damage (SSBs, DSBs and 

CSBs). The “Clustering” example of Geant4-DNA is based on the DBSCAN (Density Base 

Spatial Clustering of Applications with Noise) algorithm that relies on density-base notion of 

clusters and groups points that are closely packed together in the space to form clusters of 

arbitrary shapes (Fig. 20). Density-based clusters are dense areas in the data space separated 

from each other by sparser areas40. The DBSCAN algorithm uses two main parameters for 

data clustering: the minimum number of points to form a cluster (MinPts) and the maximum 

distance between 2 points to form a cluster (esp). 

 

Fig. 20. Diagram of the DBSCAN data clustering algorithm concept. The 2 required parameters of DBSCAN 

for this diagram are the minimum number of point to form a cluster setted to 2 and the maximum distance 

between 2 points to be considered in the same cluster setted to esp. The red points and the yellow points are core 

points of 2 separated clusters (A and B), since these points are within an esp radius area containing at least 2 

points. The points i and ii are not core points but they are reachable from A (via other core points) and thus 

belong to the cluster A as well. The points N are noise points that are neither core points nor directly reachable. 
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To perform the simulations for the different irradiation conditions using this Geant4-DNA 

example, the MinPts number was set to 2 since the induction of DSB takes at least 2 SSBs (2 

points). For the maximum distance between 2 points, an eps value of 3.4 nm which 

corresponds to 10 base pairs was chosen8,38,41. 

Beside the definition of the “Clustering” parameters, I modified the code to calculate the 

damage numbers at the end of the run for the contribution of all the tracks together and not 

track by track. This could help also to test if there is a focusing effect of the microbeam at the 

micron scale (1.5 µm) where tracks can overlap and influence the damage complexity and 

change the proportion of each DNA damage type. The clustering example outputs are the 3 

types of DNA damage and their size in term of number of damage grouped in the same 

cluster. 

 

• SSBs (Single Strand Breaks): correspond to a localized interaction in a sensitive 

location and having an energy verifying the probability of damage induction. This type 

of damage corresponds to noise points in the DBSCAN algorithm that does not belong 

to a cluster. 

 

• DSBs (Double Strand Breaks): correspond to clusters formed of 2 SSBs of less than 

esp, of which at least 1 is located on an opposite strand. To determine on which strand 

is located the SSB, each SSBs have a flag value either 0 or 1 corresponding to the first 

strand if it is touched or the second strand. 

 

• CSBs (Complex Strand Breaks): correspond to clusters formed of more than 2 SSBs 

that are distant by less than esp. 

 

II.3. DSBs clustering at the micron scale 

 

Apart from the number of each DNA damage, I added to the output data of the clustering 

example the 3 DNA damage positions allowing the visualization of their spatial distribution 

within the cell nucleus volume (water cube). These positions allow damage clustering at 

different level other than the basic DNA damage at the nanometer scale. The micrometer scale 

is often associated to a higher severity of the induced damage, and thus to a prolonged 

persistence and enhanced lethality. At the micron scale the DNA damage can interact with 
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further proximate bps distance or other DNA damage such as DSB-DSB interaction revealing 

more complex damage42,43. To compare the behavior of the DNA-repair proteins for the 2 

types of particles especially for GFP-RNF8 involved in DSBs, it is important to investigate 

such interactions. 

Since the modified “Clustering” code of Geant4-DNA gives access to the position of the 

DNA damage (DSBs) in 3D dimensional space the DBSs spatial distribution was investigated 

at the micron scale by clustering these damage within chromatin loops (30 nm) of the DNA 

fiber using the DBSCAN method from the Scikit-learn library in python. The inputs for this 

method are the positions (x, y, z) of each DSB, the minimum number of DSBs to form a 

cluster, and the maximum distance between 2 DSBs to be considered in the same cluster. A 

min number of 2 and a max distance of 30 nm corresponding to chromatin loop of the DNA 

fiber was chosen41,42,43. The clustering of the DSBs at the micron scale was calculated for the 

2 LETs of particles, and for the different number of delivered particles. The outputs of the 

calculation are (i) the number of 2 classes of DSBs namely isolated DSBs (iDSBs) and 

clustered DSBs (cDSBS) according to weather one or more than one DSB are simultaneously 

included in the same cluster respectively, (ii) the barycenter for each cluster, (iii) the clusters 

size (in term of DSBs number), and (iv) the cluster spatial size using the maximal distance 

between the 2 DBSs within it.  
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Results 

 

I. Experimental results 

 

It is known that the DNA damage complexity, i.e. the formation of SSBs or DSBs, increases 

with particle LETs44. The AIFIRA CPM gives the opportunity of delivering controlled 

number of 3 MeV α-particles and protons having respectively a LET of 148 and 12 keV.µm-1. 

Therefore, it permits to study the XRCC1 and RNF8 proteins responses dependency with the 

particle LET and/or its ED. 

 

I.1. Recruitment kinetics of GFP-XRCC1 protein to DNA damage sites after  

α-particle and proton irradiations 

 

To study the recruitment kinetic of GFP-XRCC1 at DNA damage sites, GFP-XRCC1 cells 

were irradiated with increasing numbers of α-particles (10, 50, 100 and 1000) and protons 

(100 ± 10, 500 ± 22 and 1000 ± 32), then followed using online live cell microscopy. Images 

were taken before, during, and up to 30 minutes after irradiation. The microscopic 

acquisitions were then used to measure the intensity of the fluorescent spot corresponding to 

the accumulation of GFP-XRCC1 during time at the damage site as shown in Fig. 21.a. At 

t=0 min,  the GFP-XRCC1 protein is distributed homogeneously in the nucleus giving it this 

homogeneous green color. For all irradiation conditions, the formation of GFP-XRCC1 

radiation-induced foci appeared within 10 seconds. The protein recruitment kinetic was 

quantified using the normalized fluorescence intensity curves as function of time after 

irradiation (Fig. 21.b). It is characterized by the recruitment time T, the decay time T2, and the 

amplitude of the fluorescent intensity A. These parameters are obtained by fitting the data 

using equation 2.  

The T2 values presented large data dispersion that can be due to several causes such as the 

individual capacity of cells to repair damage, the cell cycle position, and the amount of DNA 

damaged or the GFP-level expression. For these reasons the T2 parameter is not discussed in 

this study, but it was used to fit correctly the model function. The results were shown for the 

recruitment time T and the maximum fluorescent intensity A calculated for at least 16 cell 

nuclei per irradiation condition (Fig .22). 
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Fig. 21. Real time recruitment of GFP-XRCC1 to the micro-irraidated area. (a) Cell nucleus irradiated with 

100 α-partcles. The time at which the cell is hit by particles is set as t = 0. At t=0 min,  the GFP-XRCC1 protein 

is distributed homogeneously in the nucleus giving it this homogeneous green color. Selected time points, 

covering the signal of the fluorescent spot corresponding to the accumulation of GFP-XRCC1 at the irradiated 

site are shown. Scale bar: 10 µm. (b) Kinetics curve showing the normalized data from the cell nucleus in panel 

a, fitted using a double-exponential curve and croped at 15 min. The distribution of the GFP-XRCC1 protein is 

recorded at 1 s intervals during 300 s, then at 10 min, 15 min et 30 min during 100 s to minimize the GFP 

photobleaching. 

 

Fig. 22.a shows that T does not vary significantly between 10 and 50 α-particles (p-value of 

0.8 with significant level at 5%). This may be due to a weak fluorescent signal or to reaching 

the detection limit of the system. After irradiations with 50, 100 and 1000 α-particles, the 

recruitment time decreased significantly as a function of the number of delivered particles (p-

value < 10-7). In the same manner, a decrease in the mean recruitment time is observed when 

the number of delivered protons is increased from 100 to 1000 (p-value < 10-5). Considering 

the 2 LETs, T is similar for the same ED by α-particles and protons. For instance, the 

recruitment time after 10 α-particles and 100 protons is the same (p-value of 0.46), as well as 

for 50 α-particles and 500 protons (p-value of 0.22), and 100 α-particles and 1000 protons (p-

value of 0.15) for which the mean ED is similar (0.9 MeV/α-particle and 0.7 MeV/proton). 

Fig. 22.b shows that A increased significantly as a function of the number of delivered 

particles following irradiations from 10 to 1000 α-particles (p-value of 0.1) and 100 to 1000 

protons (p-value of 0.4). The number of DNA damage increases with the number of delivered 

particles which will cause an increase of the amount of GFP-XRCC1 protein at the damage 

site producing greater fluorescent intensity. Comparing the 2 LETs, A is similar for the same 

ED by α-particles and protons. For instance, A remains the same after irradiations with 10 α-

particles and 100 protons (p-value of 0.07), as well as for 50 α-particles and 500 protons (p-

value of 0.1). 
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Fig. 22. Mean recruitment time () and amplitude of the fluorescent intensity (A) of GFP-XRCC1 after 

proton and -particle irradiations. (a) Box plots representing the distribution of recruitment times (T) of GFP-

XRCC1 cells after irradiation with increasing numbers of -particles (green) and protons (blue). T decreases 

with increasing numbers of deliverd particles independently from their type and LET. (b) Box plots representing 

the amplitude of the GFP-XRCC1 intensity with increasing numbers of -particles (green) and protons (blue). A 

increases, indicating that the amount of  GFP-XRCC1 also increases with the increasing of the number of 

deliverd particles. Considering the two parameter T and A together for (c) α-particles and (d) protons, T increses 

while A decreases when the number of delivered particles increases.  
 

Considering the two parameters, Fig. 22.c and Fig. 22.d show that T varies linearly with A for 

all number of delivered particles. While increasing the number of delivered particles, the 

recruitment time T decreases and the amplitude of the fluorescent intensity increases in the 

same manner for the 2 LET values.  
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I.2. Recruitment kinetics of GFP-RNF8 protein at DNA damage sites after 

CPM irradiations 

 

Irradiations performed with charged-particles are known to be more effective than photons in 

damaging biological systems (higher RBE). Their capacity to induce clustered DNA damage, 

especially DSBs, are the main cause of this greater effectiveness45. For this reason, we used a 

cell line expressing the GFP-RNF8 protein, a ubiquitin ligase that accumulates at DSB sites. 

To study the kinetic accumulation of RNF8 at DNA damage sites, cells expressing GFP-

RNF8 protein were irradiated with increasing number of α-particles (1, 10, and 100) and 

protons (100 ± 10 and 1000 ± 32), and then followed using online live cell microscopy. At 

t=0 min, the GFP-RNF8 protein is distributed homogeneously in the nucleus. The formation 

of GFP-RNF8 radiation-induced foci became visible within 2 min for all the irradiation 

conditions. The fluorescent spot corresponding to the accumulation of GFP-RNF8 at the 

damage site was measured and normalized using the same method as for XRCC1 (Fig. 23.a). 

The normalized fluorescence intensity was plotted as a function of time after irradiation in 

form of a curve characterized by the recruitment time constant T and the fluorescent intensity 

amplitude A, obtained using equation 1 (Fig. 23.b). The 2 parameters T and A were calculated 

after integrating at least 16 cells per irradiation condition. 

 

Fig. 23. Real time recruitment of GFP-RNF8 to the micro-irraidated area. (a) Cell nucleus irradiated with 

100 α-particles. The time at which the cell is hit by particles is set as t = 0. At t=0 min,  the GFP-RNF8 protein is 

distributed homogeneously in the nucleus. Selected time points, covering the signal of the fluorescent spot 

corresponding to the accumulation of GFP-RNF8 at the irradiated site are shown. Scale bar: 10 µm. (b) Kinetics 

curve showing the normalized data from the cell nucleus in the fig. a, fitted to a model for the first-order 

response. The distribution of the GFP-RNF8 protein is recorded at 1 s intervals during 300 s, then at 10 min, 15 

min et 30 min during 100 s to minimize the GFP photobleaching. 

 
Fig. 24.a. shows that the recruitment time T of the GFP-RNF8 does not significantly change 

after increasing the number of incident particles from 1 to 10 α-particles (p-value of 0.15). By 

contrast, when 100 α-particles are delivered the recruitment time decreases significantly 



Part II - Results                                                                                                                                                             
 

88 
 

compared to that obtained after 10 α-particles (p-value < 10-7). When 100 and 1000 protons 

are delivered, the mean time does not change significantly (p-value of 0.18). Comparing 

different particle LETs with similar ED (i.e. 10 α-particles and 100 protons) the mean 

recruitment time is shorter when cells are irradiated with α-particles with respect to the mean 

recruitment time of cells irradiated with protons (p-value of 0.02). This tendency is also 

observed when cells are irradiated with 100 α-particles and 1000 protons (p-value < 10-10).  

 

Fig. 24. Recruitment time (T) and amplitude of the fluorescent intensity (A) of GFP-RNF8 after proton 

and α-particle irradiations. (a) Box plots representing the recruitment times (T) of GFP-RNF8 cells after 

irradiation with increasing numbers of α-particles (green) and protons (blue). T changes as a function of the ED 

when α-particles are increased from 10 to 100; it does not significantly change for the other irradiation condition. 

GFP-RNF8 protein is faster when cells are irradiated with α -particles with respect to protons. (b) Box plots 

representing the amplitude of the GFP- RNF8 intensity in cell nuclei after irradiation with increasing numbers of 

α -particles (green) and protons (blue). A doesn’t change significantly with the increasing of the number of 

deliverd particles. Considering the two parameter T and A together for (c) α-particles and (d) protons, there is no 

dependecy between T and A by increasing the number of delivered particles. 
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Fig. 24.b. shows that the amplitude of the intensity A of the GFP-RNF8 does not significantly 

change after increasing the number of incident particles from 1 to 100 α-particles and 100 to 

1000 protons. Comparing different particle LETs with similar ED (i.e. 100 α-particles and 

1000 protons), there is no significant difference in the statistical distribution of the A values.  

Considering the 2 parameters, Fig. 24.c and Fig. 24.d show T and A are independent for all 

number of delivered particles. While increasing the number of delivered particles, the 

recruitment time T present no dependency with the amplitude of the fluorescent intensity for 

the 2 LET values. 

 

II. Modelling results using Geant4-DNA 

 

II.1. Track structure and energy distributions of α-particles and protons after 

CPM irradiations 

 

The first step of the microdosimetric study was to simulate the track structure of single 3 MeV 

α-particle and proton. It is presented as a spatial distribution of the physical interactions in the 

target volume with highly localized ED along the particle path: the charged-particles 

ionizations, the secondary electrons ionizations, and the excitations events. Fig. 18 presents 

3D track structures of (a) one α-particle and (b) one proton in 1 µm with the physical 

interactions having non-zero EDs. The EDs by all the events correspond to the particle LET 

value (keV/µm). The data shows that one α-particle produces 10 times more physical 

interactions per unit length than one proton. This ratio of 10 corresponds to the one between 

the two particles LETs. Comparing the spatial distribution of the physical interactions, for α-

particle the events are distributed around the track core while for proton the events are more 

dispersed from the particle track. In fact, protons are lighter than α-particles. When entering 

the water volume, protons are faster than α-particles for the same initial energy (3 MeV). 

Therefore, the secondary electrons produced (delta-rays) by protons have higher velocity than 

those produced by α-particles which results in physical interactions of electron farther from 

the particle track. 
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Fig. 25. Geant4 simulations of the EDs and the physical interaction distributions in a homogeneous cubic 

nucleus. (a, b) The ED is calculated in this volume with 6 µm in thick. The 2D histograms represent the sum of 

the EDs along the z-axis with 0.2 x 0.2 µm2 binning corresponding to the resolution of the experimental 

microscopic fluorescent images. Similar mean total ED is recorded when (a) 10 α-particles (9.74 MeV) and (b) 

100 protons (7.08 MeV) are delivered, but the spatial distribution of the EDs is different. For α-particles, the EDs 

are projected into one saturated bin, while for protons the EDs are more dispersed in a continuous way. (c, d) 

The distributions of the physical interactions in 3D corresponding to the EDs in panels a and b are calculated in 

similar volume but with 30 nm thick (visualization memory limit constraints). The charged-particles are 

delivered at the entry of the water volume along the z-axis (from left to right). The 3D scatter-plot grey points 

correspond to physical interactions having non-zero EDs. (c) For α-particles, the physical interactions are 

concentrated around the particle tracks and the 10 α-particles are presented as 10 individual particle tracks while 

for protons the physical interactions are more dispersed. 

  

The second step of the microdosimetric study was to compare the energy distribution by the 2 

particle types for the similar EDs (ratio of 10). Similar mean total EDs per beam spot were 

reached after 10 -particles or 100 protons and after 100 -particles or 1000 protons (0.9 

MeV/ α-particle, 0.07 MeV/proton). Fig. 25.a and 25.b present 2D histogram of the EDs by 

10 α-particles and 100 protons projected along the z-axis (6 µm depth) respectively with a 

binning of 0.2 x 0.2 µm (x and y axis). The chosen binning corresponds to the pixel size of the 

microscope fluorescent images acquired during the experimental cellular micro-irradiation. 

To compare the spatial distribution in 3D of the EDs by 10 -particles and 100 protons, the 
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physical interaction with non-zero EDs are presented respectively in Fig. 25.c and 25.d. These 

physical interactions are simulated in a homogeneous water cube with 30 nm in thick. This 

thickness was chosen to be able to visualize the 3D distribution because of the memory limit 

constraints for thicker water volume. The 10 -particles delivered in 1.5 m FWHM can be 

considered as 10 individual single tracks in close vicinity (Fig. 25.c). When 100 protons are 

delivered in 1.5 m FWHM, the distributions of physical interactions and the EDs are more 

dispersed in a continuous way.  

 

II.2. DNA damages prediction and distribution based on clustering calculation 

at the nanometric scale 

 

The difference in the distribution of the EDs at the nanometer scale between α-particles and 

protons can induce a difference in the number of each type of DNA damage. In addition, 

beam focusing may lead to an overlap of particle tracks and also change the proportion of 

each DNA damage type. For these reasons, based on the “Clustering” example available in 

Geant4-DNA, I calculated the number of 3 types of DNA damages, including SSBs, DSBs 

and CSBs, after the different irradiation conditions at the nanometric scales. Fig. 26 show the 

total number of DNA damages after α-particles (green bars) and protons (blue bars) 

irradiations for different numbers of incident particles. The number of lesions increases 

linearly with the delivered number of incident particles independently from their types.  

The proportion of each type of DNA damage with respect to the number of total damages is 

56% SSBs, 31% DSBs and 13% CSBs for α-particles , and 86% SSBs, 8% DSBs and 6% 

CSBs for protons. Despite the increasing number of incident particles, the proportion of each 

damage type does not change which means that even with a microbeam focused at 1.5µm, 

there is no focusing effect on the number of induced DNA damages.  

The (CSBs+DSBs)/SSBs ratio values are 0.78 for α-particles and 0.15 for protons, indicating 

that α-particles induce mostly DSBs and CSBs, and protons induce mostly SSBs. In addition, 

the clustering example gives access to the clusters size, corresponding to the number of SSBs 

in each cluster. Comparing similar EDs, the clusters size is bigger after irradiations with α-

particles with respect to protons. The clusters sizes calculated after irradiation with α-particles 

are between 2 and 26 SSBs while for protons are between 2 and 6 SSBs, showing that the 

DNA damage induced after α-particle irradiations are more complex. 
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Fig. 26. Calculation of the number of different type of DNA damage based on the clustering algorithm of 

Geant4-DNA. The number of SSBs, DSBs and CSBs was calculated for a-particles (green) and protons (blue) 

after irradiations with increasing number of incident particles. For all the numbers of delivered α-particles, the 

ratio (CSBs+DSBs)/SSBs value is 0.78, and for the protons is 0.15. The proportion of each type of DNA damage 

with respect to the number of total damage is 56% SSBs, 31% DSBs and 13% CSBs for α-particles , and 86% 

SSBs, 8% DSBs and 6% CSBs for protons.  
 

II.3. DSBs clustering at the micron scale 

 

A further step was to investigate the spatial interaction of the clustered DSBs at the 

micrometer scale within a chromatin domain (30 nm) leading to more complex  DNA lesions, 

where the complexity refers to additional lesions within some nm distance42,43. Comparing the 

spatial distribution of DSBs for similar EDs (for example 10 apha-particles and 100 protons, 

Fig. 27), the DSBs induced after irradiations with α-particles are more concentrated around 

the particle tracks while for protons the DSBs are more dispersed. 

After the simulation of the number and the position of DSBs, once again DSBs were clustered 

using DBSCAN algorithm40 with a maximum distance between 2 DSBs to be clustered of 30 

nm corresponding to the value of a chromatin domain. 
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Fig. 27. Three-dimensional spatial distribution of isolated DSBs (iDSBs) and clustered DSBs (cDSBs) 

calculated using DBSCAN algorithm. A cDSB is defined as a cluster formed by 2 DSBs distant by 30 nm 

corresponding to the value of a chromatin domain. (a)  For α-particles, we obtained a value of 30 cDSBs/track 

and 5 iDSBs/track, and (b) for protons 1 cDSBs/track and 13 iDSBs/track. The color dots correspond to 

clustered DSBs belonging to the same cluster (cDSBs) and the black dots correspond to iDSBs.  

 

 

The results are shown in Fig. 28. For α-particles, we obtained a value of 30 cDSBs/track and 5 

iDSBs/track, and for protons 1 cDSBs/track and 13 iDSBs/track. In addition, considering the 

size of these cDSBs (in term of numbers of DSBs), the cluster sizes calculated are 

considerably larger when irradiated with α-particles (between 2 and 450 DSBs) than with 100 

protons (between 2 and 6 DSBs).  

 

 

Fig. 28. Calculation of isolated DSBs (iDSBs) and clustered DSBs (cDSBs) using DBSCAN algorithm. After 

the simulation of the number and the position of DSBs, once DSBs were clustered using DBSCAN algorithm 

with a maximum distance between 2 DSBs to be clustered is 30 nm corresponding to the value of a chromatin 

domain. 
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Discussion 

 

In the present work, we combine experimental measurements of the kinetics of DNA repair 

proteins with track structure simulation. The main goal is to investigate whether experimental 

observables such as the recruitment time and the amount of recruited protein are correlated to 

the nature, the quantity and the localization in space of the DNA damage sites extracted from 

the simulations. The micro-irradiation experiments were conducted at the AIFIRA microbeam 

with increasing numbers of protons and α-particles. The impact of both LET and the number 

of delivered particles (dose) on the in situ recruitment kinetics of the GFP-tagged proteins 

RNF8 and XRCC1 have been investigated.  

The XRCC1 protein is considered to act as a central loading platform in SSB repair and 

BER25,26. GFP-XRCC1 recruitment occurs a few seconds after irradiations. Compared to other 

studies, immediate and fast recruitment of XRCC1 was observed by all authors11–13. While 

increasing the number of delivered particles in micrometric spots, (i) the maximum 

fluorescent intensity increases suggesting that the amount of XRCC1 proteins accumulated at 

damaged sites increases, and (ii) the recruitment time decreases which means the XRCC1 

proteins is recruited faster at damaged sites. When similar energies are deposited by α-

particles (LET of 140 keV.µm-1) or protons (LET of 12 keV.µm-1), the recruitment time and 

the fluorescent intensity do not vary significantly. Compared to studies in the literature using 

particles having higher LET, XRCC1 showed a fast recruitment to DNA damage similar to 

the kinetic results obtained in our study. For instance, after irradiation with 0.36 GeV nickel 

ions (LET of 3873 keV.µm-1) XRCC1 was recruited within 20 s at the ion hit positions in 

cells and it reached a maximum at about 200 s post-irradiation46. Likewise after irradiations 

with xenon (LET of 8900 keV.µm-1) or uranium (LET of 14300 keV.µm-1), fast recruitment 

kinetics of XRCC1 accumulation in human cell nuclei were recorded 17 s after irradiation.12 

Therefore, the recruitment of XRCC1 seems to be independent from the particle LET and 

depends mainly on the amount of ED. 

The RNF8 protein has recently been shown to be a key regulator of DNA repair complexes 

foci and is mainly involved in the DNA ubiquitination of DSBs14,15,47,48. When 1 or 10 α-

particles are delivered the GFP-RNF8 recruitment time does not change but a significant 

decrease was observed with 100 α-particles. These responses can be influenced by the 

microscopic spatial distributions of physical interactions and EDs49. We did not observe 

changes of GFP-RNF8 recruitment time after increasing the number of delivered protons. 
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Considering the fluorescent intensity of the protein accumulation spots, no significant 

variation has been recorded for all the number of delivered α-particles and protons which 

could indicate that the amount of proteins at the DNA damage sites doesn’t change while it 

accumulates faster. These results suggest that the recruitment time of GFP-RNF8 to radiation-

induced DNA damages is mainly dependent on the type of the incident particles (LETs) and 

the density, the complexity and amount of DNA DSBs.  

The microdosimetric simulations provide the spatial distribution of physical interactions and 

EDs. For protons, they are more dispersed than for α-particles for which they are densely 

distributed around the particle track. For α-particle, Fig. 25 shows clearly that 10 α-particle 

tracks are distributed as discrete events at the scale considered in microscopy experiments and 

can be considered as single impacts with respect to 100 α-particles that cover almost all the 

irradiated area. In fact, the difference of spatial distribution reflects the complexity of the 

induced DNA damage50. Indeed, based on the clustering calculations, protons generate sparse, 

simple damage events (mainly SSBs) while α-particles induce mainly DSBs. While increasing 

the number of delivered particles in a 1.5 µm spot, the proportion of each type of DNA 

damage remains the same, which means the DNA damage complexity is not influenced by the 

beam focusing, at least at the nanometer scale. At the micrometer scale, Fig. 27 shows that the 

spatial distribution of DSBs remains more concentrated around the particle tracks leading to a 

large number of clustered DSBs forming more complex DNA lesions after α-particle 

irradiations, while for protons these DSBs are more dispersed leading to a large number of 

isolated DSBs. 

The role of XRCC1 is a loading platform for other proteins after DNA damage. It is recruited 

with the same kinetic after irradiations with 2 different LETs for which the microdosimetric 

calculation show different damage complexity for the 2 particle LETs. This suggests that 

XRCC1 is independent of damage complexity. It depends mainly on the amount of ED and 

the DNA damage. This probably means that cells recognize DNA damage independently of 

its complexity, and recruit XRCC1, and then cells recruit specific proteins, such as RNF8, that 

act to repair complex DNA damage, as underlined by its dependency on particle LET. For 

RNF8, as its role is mainly involved in DSBs repair, it is recruited faster to damage sites when 

α-particles are used to irradiate cells inducing mainly DSBs rather than protons inducing 

mainly SSBs. 

The full interpretation of the biological results reported in this study may require overcoming 

a few limitations related to the microdosimetric calculations. It is in particular the case for the 

clustering of the DNA lesions. The clustering at nanometer scale was calculated only for 
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direct effects in a homogeneous water cube. According to recent studies, indirect effects due 

to free radicals contribute up to 60% of the total induced SBs10,41. The indirect effect 

calculations are approximate and depend on the choice of different parameters: the probability 

to induce a strand break, the maximum distance to kill all chemical species created away from 

any DNA molecules, and the range cut (in ns) to stop simulation after diffusion started. Based 

on the results obtained by 10,41, there is no significant difference of the number of SBs from 

indirect effects induced by the α-particles (140 keV.µm-1) and protons (12 keV.µm-1). 

Taking into account these effects would require more complex modelling of the chromatin 

structure. Such models are under development in Geant4-DNA and will soon be available. As 

an example, Sakata et al. recently developed a fully integrated MC simulation that calculates 

early single strand breaks (SSBs) and double strand breaks (DSBs) in a fractal chromatin 

based human cell nucleus model using Geant4-DNA10. This complete model open perspective 

to simulate the different DNA damage with realistic models of DNA starting from nucleotides 

to the nucleus. 

Apart from these limitations, the different DNA damage types and complexity dependency 

with particle LETs show an agreement with other studies7,42,50,51. The lesions induced by 𝛼-

particles (140 keV.µm-1) are mostly DSBs and complex damage and the lesions induced by 

protons (12 keV.µm-1) are mostly SSBs and individual well separated DSBs. However, the 

number of SSBs and DSBs presented in the present work and based on “Clustering” example 

of Geant4-DNA are 3 times higher than the results reported by Francis et al.8 for the same 

simulations conditions (geometry and clustering parameters). This difference may be due to 

the choice of the physic list used for the calculation. The physic lists have been evolved with 

the updated versions of Geant4-DNA. The “G4EmDNAPhysics_option4” used in our 

calculations may differ from the physic list used in Francis et al. In addition, the yields of the 

different DNA damage were expressed in (Gy-1.Da-1) that depends on the cell nucleus volume 

considered in the simulations. Therefore, the difference of the nuclear volume thickness used 

in the calculations of Francis et al. (0.5 µm) and in this work (6 µm) may also be at the origin 

of these discrepancies. 

Compared to other studies using real DNA geometries, the amount of these damage are as 

well over-estimated42,43,10. The number of SBs considered to be clustered as SSBs and DSBs 

are overestimated. Using a real structure of the DNA, only SBs separated at least by one base-

pair are considered as two distinct SBs which is not possible to be taken into account using 

homogeneous water cube. In addition, when the DNA structure is ruptured several times in 
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near vicinity, these several lesions are counted as one DNA damage. This cannot be 

controlled without a real structure of the DNA.  

Shortly the Geant4-DNA example allowing the calculation of DNA damage from direct and 

indirect effects in complex DNA geometries as found in human cells will be open access10. 

The use of this example will improve the clustering calculation and the DNA damage number 

prediction in this study. 
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Introduction  

 

The ability of CPM to deliver a precise number of particles per cell makes it a relevant tool to 

study the risks associated to low doses exposure of IR on living organisms. If in vitro cell 

models are mostly used for the characterization of radiation-induced biological mechanisms, 

the transposition of the results obtained using such models to in vivo responses cannot be done 

directly because the complex tissue responses can intervene. The CPM irradiation of 

multicellular models can provide a better understanding of these phenomena. Such 

irradiations have been developed slowly, mainly because of  technological challenges that 

they introduce1, 2, 3. CPM has been gradually extended from the irradiation of monolayers in 

cellulo experiments to the irradiation of three-dimensional tissue models and small 

multicellular specimens. The definition and the choice of biological models are usually 

restricted by the limited range of the particles used at CPMs. The first attempts were 

performed by Belyakov et al. to study bystander effects on three-dimensional human tissues 

irradiated with 7.2 MeV α particles using the Colombia University CPM4. Other tissue model 

like slice culture preparations from humans and rodents were used as a new model system for 

studying effects of X-rays and heavy ions (Carbon and Xenon) within normal and tumor 

tissues5. So far, several studies focused on small multicellular organisms as biological models 

such as silkworm larvae6, zebrafish embryos7,8, and Caenorhabditis elegans (C. elegans)9, 10, 

11. Among these models, C. elegans is the most used living organism for CPM irradiation. 

C.elegans is a free-living transparent nematode that presents numerous advantages justifying 

its use for in vivo investigation of radiation effects. C. elegans have a fixed number of cells 

(959 cells at the adult stage) and is small enough to be compatible with CPM irradiation (the 

adult body is 50 µm in diameter and 1 mm in length). Its transparent body allows visualizing, 

directly, specific tissues especially for studying the production and the transfer of damage 

signals in a whole organism during its development. It has a fast life cycle, simple culture 

conditions and maintenance, and its cell division is invariant between the nematodes allowing 

its irradiation in different stages of development. 

The microbeam irradiation of this nematode represents a challenge because it requires the 

targeting of a specific cell within a living and moving multicellular organism. Video 

microscopy and targeting techniques must therefore be adapted in order to allow precise 

irradiation. There are several studies that use the combination between the CPM and the C. 

elegans which made it the most widely used multicellular organism for ion microbeam 
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irradiation. The first work of this type was carried out by Taknami et al., who combined the 

use of ion beams with C. elegans to demonstrate the formation of chromosomal aberrations in 

the germ cells of adult nematodes after irradiation with 125 MeV carbon ions and 95 MeV 

Argon ions12. Bertucci et al. developed a new technique to expose specific site of C. elegans 

young adult to 3 MeV protons using the Colombia University RARAF charged-particle 

accelerator10. Later they developed a microfluidic tool and they implanted it to the microbeam 

irradiation of C. elegans. The device allows the immobilization of C. elegans worms, without 

the use of anesthesia to minimize the stress, for a rapid and controlled microbeam irradiation 

of multiple samples in parallel11. More recently, at TIARA microbeam facility in Japan adult 

nematodes were irradiated with 18.3 MeV/u carbon ions in 3 independent regions (head 

region, mid region around the intestine and uterus, and tail region) to study the responsible 

mechanisms for reducing the nematode mobility13.  

In this study, C. elegans was chosen as biological model for the CPM irradiations with 

protons of 3 MeV at the AIFIRA facility. It presents numerous advantages to perform 

investigations on late effects of IRs. The protocols and the experimental procedures for micro-

irradiate C. elegans were carried out within a previous thesis work in the group iRiBio before 

my integration into it14. Two stages of C. elegans were selected for 2 different studies: 2-cell 

stage embryos and L1 larvae.  

All the studies using CPM to irradiate C. elegans are performed either on larvae or adults. To 

validate the experimental procedure to reproducibly micro-irradiate this organism and observe 

the IR effects at the AIFIRA platform, 2-cell stage C.elegans embryos was chosen as 

biological target. This simple stage of C. elegans life cycle with 2 cells allowed following 

more easily the irradiated cell in the first cell divisions following irradiation.  

In contrary to the irradiation of adherent cells in vitro that are at a defined and stable stage of 

the cell cycle for the considered time scale, the early embryos of C. elegans have a much 

faster division cycle. A 2-cell stage embryo passes to the 4-cell stage in less than 20 minutes. 

The challenge was thus to be able to irradiate rapidly dividing cells at a well-defined stage of 

the cell cycle, i.e. the 2-cell stage, and to follow the radiation induced response throughout the 

first cell divisions. For this purpose, online time lapse fluorescence microscopy was used. 

Using this approach, it is possible to determine precisely the moment at which the irradiation 

must take place and the position in the nucleus that will be irradiated. The nucleus of the AB 

cell of 2-cell stage embryo was irradiated at the beginning of mitosis, at a specific stage of 

chromatin condensation (prophase).  
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The first aim was to maintain the embryos on the CPM irradiation line and to visualize 

directly the formation of DNA damages in the irradiated cell nucleus. For this purpose, the 

WS1433 (opIs34 [hus-1::GFP]) transgenic C. elegans strain carrying HUS-1::GFP 

fluorescent protein has been chosen. This protein is expressed in early stage embryo 

homogenously distributed in the cell nucleus. Following irradiation, it accumulates at the 

DNA damaged sites. In order to irradiate the embryos at the beginning of mitosis of the cell 

cycle, the GZ264 (isIs17 [pGZ265:pie-1::GFP-pcn-1(W0D2.4)]) transgenic C. elegans strains 

was used. The PCN-1::GFP protein allowed the visualization of the S-phase in early embryos 

and during nuclear cycles. A third C. elegans strains, MG152 (xsIs3 [HisH2B::GFP; rol-

6(su1006)]), was chosen to study the impact of irradiations on chromatin dynamics during the 

embryo cell divisions. The MG152 strain expresses the histone H2B::GFP protein that enables 

highly sensitive chromatin detection in all phases of the mitosis.  

The microbeam at the AIFIRA facility15 presents a Gaussian distribution with 1.5 µm full 

width at half maximum (FWHM) at the target position. The locally radiation-induced DNA 

damages in specific steps of the cell nucleus division were observed, in situ, and the radiation-

induced consequences in the early stages of the embryo development were determined.  

Such selective irradiations lead to a localized ED at the micron scale within the exposed cell 

while the surrounding area is not irradiated. Consequently, the commonly used 

macrodosimetric quantity such as the absorbed dose reaches its limits to describe the ED 

quantity. The descriptions of IR interactions at the micrometer scale using microdosimetric 

model are more valuable in such situations. At this scale, the concept of specific energy is 

preferred over the absorbed dose. It is defined as the ratio of the energy imparted to the mass 

of the volume of interest16, 17. Several tools have been developed  for microdosimetric 

calculations18. At this scale, most existing codes seek to evaluate the ED of particles in the 

main cell compartments (nucleus and cytoplasm) and to perform calculations in cellular 

models made of simple geometries, based on the combination of basic mathematical volumes 

(spheres, ellipsoids, cylinders…)19, 20. 

However, these geometric models do not consider the variety of geometries encountered in a 

typical cell population (morphological variations, variations according to the cell cycle, 

chromatin condensation…). To overcome this limitation, several approaches have been 

proposed. Douglass et al. developed an algorithm producing cellular models spatial 

coordinates and random sizes. The position of the subcellular compartments within each cell 

(nucleus, nucleolus, endoplasmic reticulum) is also partially random21. However, this model 

remains based on simple ellipsoidal volumes. Incerti et al. modeled, using Geant4, the 
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irradiation of a realistic model of epithelial cell by an ion microbeam. This approach takes 

advantage of the possibility, in Geant4, of importing voxelized geometries (so-called 

parametrized volumes). This cellular model is based on fluorescence confocal imaging22.  

Miller et al. have also shown the interest of using confocal microscopy to model electron 

microbeam irradiation of a three-dimensional multicellular tissue23. It allows more realistic 

calculations of energy and dose deposit, particularly in the case of irradiation with particles 

where the influence of the variations of cellular geometry has a significant impact on the ED. 

This tool also makes it possible to characterize the spatial distribution of the ED s. More 

recently, Barberet et al. extended this model to the irradiation of a cell monolayer by ion 

microbeam or by radioactive sources in order to highlight the influence of the morphological 

variability of the cells in a population on the calculation of the absorbed dose24.  

Based on this latest methodology, the aim of my contribution for this study was dedicated to: 

• Develop microdosimetric models to simulate the spatial distribution of protons, and to 

calculate the ED and the specific energy, unmeasurable during the irradiation, in 

different compartment of 2-cell stage C. elegans embryo (chromatin, nuclear volume 

and embryo). These calculations were performed with the Geant4-DNA version of 

Geant4 for the modeling of the early biological damage-induced by IR at the DNA 

scale simulating each interaction in details25. I used a realistic 3D geometry of the 2-

cell stage embryo reconstructed from images acquired by confocal microscopy at the 

Bordeaux Imaging Center (BIC).  

• Verify if the chromatin condensation at the moment of irradiation had an impact on 

the ED, since the early stage C. elegans embryos have a fast division cycle and the 

chromatin condensation can differ and affect the energy distribution. For this purpose, 

I modeled 40 cells of 2-cell stage embryos and calculated the energy distribution in the 

different compartments. 

 

In parallel to this work, a second project named “ECHOS” (Etude de la réponse au stress 

radio-induit CHrOnique ou ciblée chez le modèle biologique C. eleganS) was undertook to 

study chronic induced stress response after exposure to IR. Several studies demonstrated that 

chronic exposure to IR impacts significantly the organism reproduction which is an essential 

biological function for maintaining populations26,27. Buisset-Goussen et al. show that chronic 

exposure of C. elegans nematode at a dose of 50 mGy/h results in a decrease in the 

cumulative number of larvae produced per organism. This effect is comparable after 200h 

(from the embryo stage until the end of the reproduction period) and 65h (from the embryo to 
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the adult stage) of irradiation28. This last result suggests that the effects induced by the 

irradiation could depend on the dose received by the organisms exclusively during the period 

of development of gonads and / or gametogenesis which is the L1 larva stage.  

In this context, C. elegans L1 larvae, more precisely the two somatic gonad precursor cells 

present at this stage, have been chosen to be irradiated. These 2 cells give rise to the entire 

somatic gonad responsible of the production of gametes (called testes in male and ovaries in 

female). Knowing that these 2 cells, within a living organism that can move, have a small size 

of 3.32μm as diameter comparable to the beam size (1.5µm), the use of CPM to targeted 

individual cells could induce variation in the delivered dose between the larvae with a 

probability of not hitting inside the cell. This assumes a specific configuration to perform the 

irradiation using the AIFIRA CPM. The dose must be delivered homogeneously to the zone 

around the 2 cells without irradiating the whole larvae to determine the specific contribution 

of these cells in the stress response of IR.  

• The aim of my contribution in this part is to model the C. elegans L1 larva irradiations 

with protons using the Geant4 toolkit to define a strategy to deliver homogeneously 3 

selective and controlled doses of 0.3 Gy, 3 Gy and 30 Gy to the zone around the 2 

cells using the CPM. These 3 irradiations have been carried out to be compared with 

whole larvae exposure for several days with the 3 different cumulative doses of 

gamma rays (0.3 Gy, 3 Gy and 30 Gy) at the MIRE platform in IRSN29. 
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Methods 

 

I. Micro-irradiation of a multicellular living organism: C. elegans 

 

Passing from in vitro cell models to multicellular models in vivo was one of the challenges of 

microbeam irradiation. Protocols were developed to carry out a targeted micro-irradiation of 

early embryos of C. elegans. In addition, the CPM coupled to online fluorescence time-lapse 

microscopy was used to track first cell divisions and their evolution for several tens of 

minutes after irradiation. This section consists to resume the experimental procedures 

established in a previous thesis work within the group iRiBio in 201514.  

 

I.1. C. elegans transgenic strains  

 

Well characterized transgenic strains of C. elegans are available at the Caenorhabditis 

Genetics Center (CGC, University of Minnesota, USA). These strains are designed to express 

one or more proteins of interest coupled to one or more fluorochromes. Here, the nucleus of 

one of the two cells from 2-cell stage C. elegans embryo was irradiated. The chosen strains 

express fluorescent proteins (coupled to GFP) present in the cell nucleus, related to chromatin 

visualization, damage recognition, and cell cycle. The three strains used in these works are 

WS1433, GZ264 and MG152. 

 

• The WS1433 strain expresses the histone HUS-1::GFP fusion protein in early embryos 

and the adult germline homogeneously distributed and limited to the interphase 

nucleus. This protein is involved in DNA damage checkpoint acting as a DNA damage 

sensor and stopping cell cycle. It has been shown that this protein is accumulated at 

the damaged DNA sites30. Thus, in this work, this strain was used to visualize the 

formation of DNA damage relocated in the irradiated embryo cell nucleus in distinct 

foci that overlap chromatin. 

• The GZ264 strain expresses the GFP::PCN-1 (Proliferating Cell Nuclear Antigen1) 

fusion protein, which is involved in DNA replication and cell cycle regulation. In 

phase S, this protein is exclusively localized in the nucleus whereas it is more 

localized within the cytoplasm during the mitosis31. In addition, it has been shown that 
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this protein is a marker of cell cycle and especially of the S-phase32. For this work, the 

GZ264 strain was used to selectively irradiate the beginning of mitosis embryo cells. 

 

• The MG152 strain expresses the histone H2B::GFP fusion protein which is involved 

in the formation of the necessary nucleosomes for chromatin condensation during the 

different phases of cell divisions (mitotic chromosomes and interphase chromatin). 

This strain was first used to visualize and to target selectively the embryo cell nuclei. 

In a second step, it was used to study the impact of irradiations in chromatin dynamics 

during embryo cell division. 

 

 

Fig. 29. a. Microscopic fluorescence image acquisition of a control 2-cell stage embryo of the C. elegans GZ264 

strain with the expression of GFP::PCN-1 that marks the cell nucleus. b. Schematic representation of the 2-cell 

stage embryo showing the dimensions of the different compartments. The embryo represented by an ellipse of 45 

μm x 25 μm as a major and a minor axis respectively with 2 cell nuclei of 7 μm diameter. Scale bar 10 μm.  

 

I.2. Preparation of culture wells for irradiation 

 

The 2-cell stage embryos having the particularity to be formed of 2 cells well distinct and 

easily identifiable in microscopy were chosen to be micro-irradiated. They are composed of 

an AB cell and a P1 cell oriented along an anteroposterior axis (Fig. 29). The preparation of 

the culture dish used for the irradiations is summarized in 3 steps as shown in Fig. 30. 

Embryos extracted and selected at early stage are deposited between two foils of 

polypropylene 4 microns thick in the presence of a thin layer of culture medium (M9 Buffer) 

to prevent dehydration. All these steps should be done in less than 20 min, which takes an 

average of 2-cell embryos to reach the 4-cell stage. 
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Fig. 30. Schematic representation of the montage of the irradiation well for of C. elegans embryos. The early 

stage embryos are selected from a population of embryos extracted by chemical treatment. Step 1: a 4 μm thick 

polypropylene foil is placed on the base of the irradiation well. Step 2: early embryos are deposited on the 

polypropylene with a micropipette. Step 3: a second foil of polypropylene is then placed on the embryos. The 

embryos are therefore maintained in culture medium, between the two sheets of polypropylene. These are 

stretched thanks to the ring which is finally placed on the base of the irradiation well. 

 

I.3. Irradiation and video microscopy  

 

The protocol used for the irradiation of C. elegans embryos can be described by 3 stages: 

visualization of embryos, the selection of embryos to be irradiated, and irradiation and video 

microscopy. The culture well containing embryos is placed vertically between the extraction 

window of the CPM and the objectives of the microscope (Fig. 31).  
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The difference in size between the two cells (AB and P1) is used to differentiate them easily.  

The AB cell nuclei were irradiated with 3 MeV protons. The path of these particles in liquid 

water of about 150 µm is indeed enough to irradiate embryos that have a thickness of about 

30 µm and to count the particles downstream the sample as well. For this purpose, a silicon 

detector positioned on the microscope objective wheel was used. 

The targeting of the embryos and the image acquisition were carried out with a 63x objective. 

In order to keep a good compromise between the duration of the video acquisition and the 

number of irradiated samples, images were acquired for a maximum duration of one hour. 

Thus, the embryo passes from the 2-cell stage to the 8-cell stage. 

 

 

Fig. 31. Scheme of the irradiation end-station. The embryos are maintained between two thin polypropylene foils 

(4 µm thickness) and the AB nucleus is targeted using online fluorescence microscopy. The beam is positioned 

on the targeted cell by means of electrostatic deflection and an exact throw a Si3N4 window. 

 

II. Micro-dosimetry of C.elegans embryo ion microbeam irradiations 

 

In this section, I present a detailed overview of my contributions to develop a microdosimetric 

study to model the experimental irradiations by CPM of a realistic multicellular model, C. 

elegans.  

The experimental approach using CPM is complementary to the well-established laser micro-

irradiation (LMI). Both CPM irradiation and LMI allow the deposition of localized energy in 

a nuclear volume. The interest of using CPM is that it reproduces better the effects of IRs.  
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To understand the biological phenomena observed during micro-irradiations of C. elegans 

embryos, the ED and the specific energy in different compartment must be precisely 

characterized. 

The dose received by specific compartments of C. elegans 2-cell stage embryos cannot be 

easily extrapolated from the data usually obtained for adherent mammalian cells. When 

targeting subcellular structures using a microbeam, the dose is delivered in micrometric areas. 

The usual dosimetry methods are not relevant in this configuration because the irradiation is 

very inhomogeneous spatially. This poses difficulties in defining the volume of interest and 

therefore the concept of absorbed dose is of limited use. For this, the ICRU introduced the 

concept of specific energy which is defined as the ratio of the energy transmitted and the mass 

of the volume concerned17. This ED by the charged-particles significantly depends on the 

geometry and composition of the target. 

For this purpose, by using the Monte Carlo Geant4 modeling tool, the irradiations were 

modeled in realistic phantom of the C. elegans embryo based on voxelized geometry.  

 

II.1. Modeling of the C. elegans embryo with a realistic phantom 

 

When targeting a cellular or sub-cellular compartment of living biological specimens using a 

CPM, the physical interactions of the charged-particles inside the compartment cannot be 

measured directly, and the specific energy absorbed in specific compartments (chromatin, 

nucleus and cytoplasm) is usually estimated by calculations based on cell geometry modeled 

using simple mathematical volumes. Since in this study we focused on the radio-induced 

DNA effects, modeling the embryo and the nuclear volume of the embryo as homogeneous 

volumes is not enough. It doesn’t give access to the calculation of the ED in specific 

compartment of the nucleus such as the chromatin.  

For this purpose, I used realistic geometries of the 2 cell-stage embryos reconstructed from 

high resolution images acquired by confocal microscopy to provide the Monte Carlo 

simulations.  

The originality of this method is that it allows microdosimetric calculations on a realistic 

three-dimensional cellular geometry of the C. elegans embryo. This geometry is simulated in 

form of a voxel arrangement determined from the confocal microscopy images. In the 

following, the realistic model of C. elegans 2-cell stage embryo is called "phantom", by 

analogy with the human phantoms used in the field of medical physics and dosimetry. 
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II.1.1. Preparation of embryo samples for confocal microscopy 

 

The preparation of embryo samples for confocal microscopy is composed of 2 parts:  

The first part is the extraction of C. elegans embryo populations. For this first part, embryos 

were isolated from synchronized populations of young gravid hermaphrodites using the 

bleaching method for which the worms are sensitive to bleach solution while the egg shell 

protects the embryos from it. Here are the different steps of the extraction protocol: 

• Collect synchronized populations of well-fed young gravid hermaphrodites with M9 

buffer (3 g/l KH2PO4, 6 g/l Na2HPO4, 5 g/l NaCl, 1 mM MgSO4). 

• Wash the collected populations three times with sterile water to remove bacteria.  

• Pellet worms via centrifugation (2 min., 2000 rpms, room temperature). 

• Add a freshly prepared alkaline hypochlorite solution (1.5 % (v/v) NaOCl, 1M NaOH) 

and swirl every 2 minutes with vortex-mixing (~6 min.). 

• Pellet the released embryos via centrifugation at 2000 rpms for 2 minutes.  

• Wash the embryos three times with M9 buffer followed by centrifugation at 2000 

rpms for 2 min with discarding carefully the supernatant. 

The second part is immunofluorescence staining of the embryos that can be described by the 

following steps: 

• Fixe immediately the freshly extracted embryo populations in cold 4% (w/v) 

paraformaldehyde and their eggshells were freeze-cracked by placing at -20°C during 

15 min.  

• Pellet the embryos via centrifugation (2 min., 2000 rpms, RT) and replacing the 

paraformaldehyde by cold acetone for permeabilization (2 min, - 20°C) and, finally 

washed twice in M9.  

• Remove the M9 and replacing it by a freshly prepared solution of phalloidin (10:1000 

(v/v), Molecular Probes) and Hoecsht33342 (2:5000 (v/v), Molecular Probes). 

• Incubate the embryos overnight at RT under gentle agitation. 

• Wash the embryos the next day via two series of centrifugation (2min. 2000 rpms) 

with M9 with discarding the supernatant. 

• Suspend the pelleted embryos in 2-3 drops of Prolong Gold Antifade reagent 

(Molecular Probes)  

• Transfer the pelleted embryos by pipetting for mounting between glass slides using 

ProLong™ Antifade Gold Reagent (Invitrogen).   
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II.1.2. Confocal fluorescence microscopy 

 

Confocal microscopy is a specialized form of standard fluorescence microscopy that uses 

particular optical components to generate high-resolution images of material stained with 

fluorescent probes. Instead of illuminating the whole sample at once, laser light is focused 

onto a defined spot at a specific depth within the sample. This leads to the emission of 

fluorescent light at exactly this point. A pinhole inside the optical pathway cuts off signals 

that are out of focus, thus allowing only the fluorescence signals from the illuminated spot to 

enter the light detector. By scanning the specimen in a raster pattern, images of one single 

optical plane are created. 3D objects can be visualized by scanning several optical planes and 

stacking them using suitable microscopy deconvolution software (z-stack). It is also possible 

to analyze multicolor immunofluorescence staining using state-of-the-art confocal 

microscopes that include several lasers and emission/excitation filters. 

Three-dimensional images of 2-cell stage embryos were acquired with a Leica DM6 confocal 

microscope CFS TCS SP8 at the Bordeaux Imaging Center (BIC). 

The acquisition of the images was done with a 40x oil immersion lens. The size of the images 

was 512 x 512 pixels with a pixel size in (x, y) of about 0.1 μm x 0.1 μm. The distance 

between 2 planes was 0.3 μm (z-size) with an average of 80 planes per embryo stack (Fig. 

32.a & 32.b). We chose this z-step value to have a good resolution in an optimal acquisition 

time. 

 

 

Fig. 32. a-b. Images of z-axis projection of a confocal microscopy stack acquisition of a C. elegans 2-cell stage 

embryo labeled with phalloidin (in red) and Hoechst33342 (in blue). c. The chromatin (in blue), the embryo (in 

red) and the nuclear volume (in green) are defined using these 2 staining by applying a threshold of intensity to 

separate them. Scale bar 5μm. 
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In the table below, I summarize the parameters of the lasers and detectors used in the image 

acquisition sequences. We used 2 types of laser, Optically Pumped Semiconductor Laser 

(OPSL) and diode, and 2 detectors PhotoMultiplier Tubes (PMT) and Hybrid Detector (HyD). 

 

Staining Laser λL (nm) Intensity (%) Detector λd (nm) 

Phalloïdin OPSL 552 55 PMT 583 - 657 

Hoechst33342 Diode 408 1 HyD 410 - 488 

 

Table 1. Parameters of the lasers and the detectors used for confocal image acquisitions 

 

II.1.3. Creation of the three-dimensional phantom using ImageJ 

 

The methodology for converting confocal image data into a three-dimensional phantom has 

been previously described in Barberet et al. 201224. 

Images acquired by confocal microscopy are transferred to ImageJ, which is public access 

software (http://rsbweb.nih.gov/ij/) for 3D phantom reconstruction. At first, the images were 

edited by adjusting the brightness and contrast to reduce background noise especially for 

Hoechst33342 marking. An intensity threshold was then applied for each color to separate the 

fluorescent objects (ex. chromatin) from the background in each slice of the stack. According 

to the 2 staining colors, 3 volumes were defined: the chromatin from the labeling in 

Hoechst33342 (in blue), the embryo volume from the phalloidin labeling (in red), and the 

nuclear volume (in green). In fact, the blue images were saturated and used to define manually 

the nuclear volume (in green) (Fig. 32.c). 

An ImageJ macro was developed to transform the confocal images to a data file containing 

the phantom parameters. The macro makes it possible to create 3 parametrized volumes from 

each color R, G and B according to the order of priority indicated for the volumes of interest. 

The priority order defines in the case of overlapping volumes the voxels belong to which one. 

In our case the order of priority is B, G, R corresponding to the chromatin first, and then the 

nuclear volume and last the embryo. The macro scans the images a first time to count the 

number of voxels in each channel and a second time to store the value of each voxel of the 

phantom. By using this ImageJ macro, a text file called "phantom.dat" is created from these 

digital images in RGB format. This file contains the total number of voxels for each color 

channel (RGB), the size of the voxel according to the 3 dimensions (x, y, z), a positional shift 
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for (x, y, z) expressed in pixels to center the phantom with the other volumes defined in 

Geant4 (ex. the liquid water volume) at the irradiation source position, the density of the 

voxels for each color and the list of positions and compositions (belonging to which color) of 

each voxel (Fig.33). 

 

 

Fig. 33. Example of a "phantom.dat" file showing its format that was read in the CellParameterization class in 

Geant4. 

 

II.1.4. Implementation of the phantom in Geant4-DNA  

 

The implementation of cellular phantoms in Geant4 is described by Incerti et al. 200922. In 

this approach which is purely parameterized, the phantom consisted of multiple identical 

copies of a voxel having the size indicated in the file "phantom.dat". This file is read in the 

class CellParametrisation in Geant4 developed by Incerti et al. 2009. Each voxel contains 

information of its position within the phantom and its composition (belonging to which 

volume). The cellular phantom used in the C. elegans 2-cell stage embryo modeling is 

represented in Fig. 34 with a very low resolution (32x32 pixels) so that it can be showed in 

the Geant4 visualization interface. 

The simulations of realistic C. elegans phantoms were performed with the Geant4-DNA 

extended version of the public version Geant4.10.2.p02 of Geant4. Geant4-DNA simulate 

explicitly all the physical interactions of ionizing particles in the irradiated medium and do 

not use any production cut-off33. Protons and secondary electrons are tracked down to a 

lowest energy limit of 0 eV and about 10 eV respectively. In the MeV range, the dominant 

physical processes affecting protons are nuclear scattering, electronic excitation, ionization, 
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and charge exchange. Nuclear scattering was simulated using the G4DNAElastic class, 

electronic excitation was simulated using G4DNAExcitation class and ionization was 

simulated using the G4DNAIonisation class. Further details on these classes can be found in 

the Geant4 documentation (http://geant4-dna.org/)22.Calculation of EDs and doses in Geant4-

DNA can only be done in liquid water. For this reason, the irradiations were done at the 

entrance of the water volume encompassing the embryo. The target AB cell was irradiated 

with microbeam modeled as a mono-energetic proton beam of 3 MeV having a Gaussian 

distribution with a FWHM of 1.5 μm (the size of the microbeam affected by all the material 

traversed) (Fig. 34). 

During irradiation, the EDs above 0 in each voxel is calculated and then stored in a table 

declared in the RunAction class. At the end of the simulation, I had 3 output files containing 

the energy values in each of the red, green and blue color channels. All dosimetric data can 

then be calculated from these 3 files. For example, the specific energy deposit in the embryo 

can be calculated from the ratio between the total energy ED in the 3 color channels (the sum 

of the 3 output files) and the mass of the set of all parallelepiped voxels constituting the 

embryo (value marked in the header of the file "phantom.dat"). The calculations were done 

for 103 and 104 incident protons. Experimentally, the embryos were irradiated first with 104 

protons corresponding to an energy ED high enough to see the irradiation effects and then the 

embryos were irradiated with a lower energy with 103 protons. 

 

 

Fig. 34. Top view of low resolution voxelized phantom of the 2-cell stage embryo in Fig. 32 irradiated with 20 

incident protons of 3 MeV. The embryo is illustrated as red voxels phantom, the nuclear volumes illustrated with 

green voxels, and the nuclei illustrated with blue voxels. The incident protons trajectories are represented by blue 

lines. The red lines show the trajectory of the secondary electrons generated in the air. 
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II.2. Modeling 40 embryo cells with different chromatin stages 

 

In order to study the effects of IR in a multicellular organism, I have irradiated selectively 2-

cell stage C. elegans embryos formed of the AB and P1 cells. The division of these cells are 

fast, it takes only 20 minutes to pass from the 2-cell stage to the 4-cell stage. The irradiated 

AB cells can be in different states depending on their cell cycle (with different chromatin 

densities) during the irradiation time. To verify if there is an impact of the biological 

conditions of the chromatin on the energy imparted to it at the time of our irradiations, I 

investigate various chromatin condensation states during embryos development. 

The aim is to simulate the energy distribution in the nuclei of C. elegans embryos having 

different condensation levels of chromatin. For this purpose, 20 C. elegans embryos 2-cell 

stage were selected from the confocal microscopy images stained with phalloidin (in red) and 

Hoechst33342 (in blue), thus 40 nuclei with different chromatin condensation levels (Fig. 35). 

 

 

Fig. 35. Set of 40 nuclei of C. elegans 2-cell stage embryo with different chromatin shapes and densities. Each 

image corresponds to the z-projection of the stack slices of the blue channel. 

 

Embryos were modeled and implanted in Geant4 using the same methodology explained in 

Part I.2. Each nucleus of the 40 cells was irradiated with 103 protons of 3 MeV focused on 1.5 

µm. The specific energy and the ED in the chromatin, nuclear volume and embryo volumes 

were calculated. 
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III. Micro-dosimetry of C.elegans L1 larvae  

 

To study the chronic induced stress response after exposer to IRs, L1 C. elegans larvae, more 

precisely the 2 somatic gonad precursor cells, were selected to be irradiated with 3 MeV 

protons using CPM (Fig. 36). Since the 2 cells have a small size of about 3.32 µm as diameter 

comparable to our microbeam (AIFIRA) size at the sample position (1.5 µm) and they are 

included in a moving living organism, a targeted irradiation induced a heterogeneous dose 

distribution in these 2 cells with a probability not hitting the cell. Therefore, the dose had to 

be delivered homogenously around the cells without irradiating the whole larva, as shown in 

the area corresponding to the red square in Fig. 36.a. The aim of the microdosimetric study is 

to find a way to deliver a homogenous dose to the zone around the 2 cells using CPM. 

 

 Modeling C. elegans L1 larva with simple geometric shapes 

 

In order to deliver the dose homogeneously using a CPM to the zone corresponding to the red 

square, I developed a simple geometric model describing the C. elegans L1 larva for testing 

different irradiation pattern dimensions (5x5; 6x6; 11x11) and different microbeam 

distributions (FWHM of 0.5, 4, 5 and 10 μm). The L1 larva was modeled as a cut torus 

containing two spherical cells, confined in a liquid water medium (equivalent of the M9 

buffer medium) between two foils of polypropylene (Fig. 36.b). The dimensions of the larva 

and the cells were evaluated from fluorescence images taken by the microscope (Fig.36.a). I 

used a diameter of 11.7 μm for the torus and a diameter of 3.32 μm for the two spherical cells 

separated by a distance of 5.3 μm.  
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Fig. 36. a. Microscopic image of a L1 larva with the 2 somatic gonad precursor cells in green fluorescence. The 

red square corresponds to the irradiated area of the larva. b. Modeling with Geant4 of the C.elegans larva L1 

(brown) with 2 somatic gonad precursor cells (green) confined in liquid water (blue) between 2 polypropylene 

foils (gray). Scale = 50 μm. 

 

The irradiations with the microbeam were modeled as a mono-energetic proton beam of 3 

MeV having different Gaussian distributions with FWHM of 0.5, 4, 5 and 10 μm. The specific 

energy and the ED in each cell and the whole larva were calculated for the different 

irradiation configuration (pattern dimension and microbeam distribution). The 

Geant4.10.2.p02 was used with a physics list based on the physical constructor 

"G4EmLivermorePhysics". During the irradiations the L1 larva are fixed but alive and can 

move. To take into account the position of the gonads in the larva, the calculations were done 

for 4 different positions of the gonads (top, bottom, front and back). 

Once the pattern dimension and the beam distribution are chosen, doses are calculated as 

function of the particle LET and fluence to determine the number of protons to delivered per 

pattern dot to have a homogenous dose in the 2 cells of 0.3, 3 and 30 Gy in order to compare 

it to whole larva irradiation at the MIRE platform (IRSN).  

 

 

 

 

b 

 

a 
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Results 

The first section of the following chapter gives a brief summary of the experimental results 

obtained from the irradiations of 3 different transgenic strains of C. elegans nematodes, which 

have been performed during a previous study14. In section II, I present in detail the modeling 

results of my microdosimetric study carried out by numerical calculations in order to 

characterize the ED and the specific energy in the different compartments of the embryo. 

 

I. Experimental results 

 

I.1. Visualization of the consequences of CPM irradiations 

 

Micro-irradiation of MG152 embryos 

In order to irradiate the embryos, it is necessary to define the optimal conditions for 

visualization of the early stages of cell division in an early C. elegans embryo. For this, 

embryos of the MG152 transgenic strain were used. These embryos express histone H2B 

fused to GFP, allowing to visualize the chromatin and its different stages of condensation 

during mitosis34, 35. The cell divisions are followed directly online using time-lapse 

fluorescence microscopy. Well-established irradiation techniques based on the CPM, use 

previously developed for in vitro culture studies were adopted36. To obtain high-quality time-

lapse movies in healthy embryos, the acquisition rates should be fast enough to capture 

dynamic changes during the development process without illuminating too much the embryos 

to avoid photobleaching and phototoxicity. For this, images with 200 ms exposure time were 

taken with 10 seconds intervals allowing to follow both irradiated and sham-irradiated 

(control) embryos during up to 40 minutes. 

An anomaly in the AB cell nucleus division was shown after irradiation with 104 protons of 3 

MeV. At the beginning of the metaphase, the chromosomes align correctly on their division 

plane, but their separation does not take place correctly, and they seem to be linked by 

chromosomal bridge. This phenomenon persists in the next stages of division as a 

consequence of the irradiation of the nucleus AB before it enters division. Regarding the P1 

nucleus, which has not been irradiated, no chromosomal abnormalities appeared during the 

division. 
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Micro-irradiation of WS1433 embryos 

In order to directly observe the radiation-induced DNA damage, the transgenic strain 

WS1433, which expresses the HUS-1::GFP fusion protein in the nuclei of germ cells and 

early embryos was used. It has been shown that after the DNA-induced damage in adult worm 

germ cells, HUS-1::GFP protein accumulates at damaged DNA sites30. This protein expresses 

homogeneously in a non-irradiated nucleus, and during cell division, and more particularly 

during metaphase, the nuclear membranes disintegrate, and the protein is then released in the 

cytoplasm of embryonic cells. During anaphase, and the reformation of nuclear membranes, 

the protein accumulates in the daughter nuclei, and is again visible homogeneously in the 

nuclei at the end of the mitosis. Swiftly after irradiation with 104 protons of 3 MeV, 

accumulation of the HUS-1::GFP protein appear within the irradiated AB nucleus sites in 

distinct foci that overlap chromatin. This accumulation persists during the division of the AB 

nucleus and remains present in the daughter nuclei. The accumulation of HUS-1::GFP protein 

indicates the presence of radio-induced DNA breaks in the irradiated nucleus. On the other 

hand, no abnormal accumulation of the HUS-1::GFP protein within the P1 nucleus or its 

daughter nuclei was detected. 

Micro-irradiation of GZ264 embryos 

To visualize the S-phase in early embryos and during subsequent cell or nuclear cycles, the 

GZ264 strain, which express the GFP::PCN-1 protein fusion within the nuclei of embryonic 

cells was used. The GFP::PCN-1 protein has previously been used as a marker of S-phase 

during embryonic cell division32, 37. The GFP::PCN-1 protein is expressed within the cell 

nucleus, diffuses into the cytoplasm at the beginning of mitosis, and relocates to the nuclei at 

the end of the mitosis. This allowed to carry out targeted irradiation of early embryonic nuclei 

in prophase which is the first phase of the mitosis. Thus, AB cell nuclei of GZ264 embryos 

were irradiated with 103 or 104 protons of 3 MeV at the center of the cell, just before their 

division. After irradiation, the nuclei enter mitosis, which is visible by the disappearance of 

the signal GFP::PCN-1. During anaphase, the protein accumulates again within the newly 

formed nuclei. When the AB nucleus is irradiated with 104 protons, the ABa and ABp 

daughter nuclei have an abnormal morphology and appear to be connected with chromosomal 

bridge. This structure strongly resembles the chromosomal bridges radially induced 

previously described with the MG152 strain. This type of anomaly was not observed after 

irradiation of the AB nucleus with 103 protons.  

These results are showed and discussed with more details in the article38 joined to this 

manuscript here after. 
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II. Modelling results 

 

II.1. C. elegans embryo modeling with voxelized realistic phantom 

 

To calculate the EDs in different compartments of the C. elegans 2-cell stage embryo (the 

chromatin, the nuclear volume and the whole embryo), I used the 3D geometry reconstructed 

from confocal microscopy. This methodology provides the total amount of ED in the 3 

compartments as well as its distribution in space. Fig. 37 shows the energy distribution in the 

chromatin (Fig. 37.a & 37.b) and in the whole embryo (Fig. 37.c & 37.d) after irradiation with 

103 and 104 protons of 3 MeV. The data obtained using this approach are summarized in table 

2. I calculated the corresponding specific energy as the ratio of the absorbed energy to the 

sum of the masses of voxels constituting the target (chromatin, nuclear volume or embryo). 

The mass of the different compartments has been extrapolated by multiplying the sum of 

voxels volume constituting each compartment by liquid water density. 

 

Fig. 37 a-b. Distribution of ED calculated using Geant4-DNA in the chromatin after irradiation with 103 protons 

(total ED of 0.4 pJ) and 104 protons (total ED of 3.8 pJ) of 3 MeV presented in 2D (x, y) as the sum of the ED 

along z-axis. c-d. Distribution of ED calculated using Geant4-DNA in the whole embryo after irradiation with 

103 (total ED of 29.7 pJ) protons and 104 protons (total ED of 305.2 pJ) of 3 MeV presented in 2D (x, y) as the 

sum of the ED along the z-axis. The white dashed lines correspond to the outlines of the 3 volumes of interest 

extract from z-projection image of all the acquisition slices. It is noted that the energy is exclusively localized in 
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the irradiated nucleus AB. The non-irradiated nucleus P1 does not receive any ED. The energy scale is 

logarithmic and corresponds to the total ED by (x, y) position. Scale bar 5µm. 

 

 Energy deposit per 

proton (fJ) 

Mass (Kg) Specific energy for 103 

protons (Gy) 

Chromatin 0.4 2.2 × 10−14 18.2 

Nuclear volume 9.5 2.1 × 10−13 45.2 

Whole embryo 29.8 1.3 × 10−11 2.3 

Table 2. Summary of the calculated and simulated data on realistic 3D-rendering of a 2-cell stage C. elegans 

embryo. 

 

The ED is localized in the irradiated nucleus of the cell AB and there is no ED in the non-

irradiated nucleus of the cell P1.  

Since the cell division in C. elegans embryos is a rather fast process (20 minutes to pass from 

2-cell stage to 4-cell stage) and since the methodology used for Monte Carlo simulations is 

based on realistic geometries that can consider the variety of different chromatin condensation 

state, I investigated the impact of the DNA/chromatin condensation level on the energy 

imparted to the chromatin. 

 

II.2. Effect of chromatin condensation on energy deposits in 40 embryo cells 

 

For this part, 40 embryo cells having different chromatin condensation states were selected. 

For each cell nucleus, the EDs by all particles are calculated and recorded in the 3 volumes 

(chromatin, nuclear volume and all the embryo) after irradiation with 103 3 MeV protons. The 

volumes of the chromatin, the nucleus and the embryo were calculated as the sum of voxels 

constituting them. According to the chromatin condensation status throughout the cell cycle 

progression of the AB cell (t=0 to 4 min), 5 distinct chromatin distributions, representative of 

distinct mitosis progression states, could be discriminated from confocal imaging (Fig. 38).  
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Fig. 38. Classification of the 40 embryo cell chromatins into 5 different chromatin condensation stages observed 

form confocal images using Hoechst33342 stain (blue). 

 

The calculated mean ED value in the whole embryo is 34.1 ± 8.4 pJ (Fig. 39.a). The small 

difference of the mean ED in the embryos can be explain by the thickness (number of slices) 

of the stacks acquisition used to reconstruct the embryo volume (Fig. 39.a). The calculated 

ED in the chromatin is different depending on the chromatin distribution observed in the stage 

prophase or metaphase. The values obtained for the ED in the chromatin are coherent with the 

geometric shapes and volumes of the simulated chromatins. As illustrated in Fig. 39.c, even if 

some variation of the chromatin distribution is found in prophase, it does not affect the ED in 

the chromatin (0.5 +/- 0.15 pJ). By contrast, in metaphase a significant different of the ED in 

the chromatin was found with respect to prophase stage. 

Fig. 39.b shows that the total ED in the nuclear volume for 40 C. elegans embryo cells have a 

mean value of 10.5 ± 2.9 pJ. 

Despite the similar mean ED in the nuclear volume, the distribution of the energy between the 

chromatin and the rest of the nuclear volume is different. Only 2% to 5% of the ED is 

localized in the chromatin when the cells are irradiated in prophase. This ratio increases from 

25% to 60% in metaphase where the chromatin is more condensate and centered in the 

nucleus, i.e. on the particles track path. 

Considering the video microscopy acquisition on the microbeam line, the first cell division of 

2-cell stage embryos revealed that the chromatin condensation during irradiations 
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corresponding to prophase stage, which means at our irradiation time conditions, limited 

variations in terms of energy imparted to the chromatin is expected between samples

 

Fig. 39. Monte Carlo calculation of the ED in chromatin, the nuclear volume and the embryo of 40 C. elegans 

cell embryos in 2-cell stage having different chromatin condensations using the same methodology described 

above. a. The total ED in the hole embryo had a mean value of 34.1 ± 8.4 pJ after irradiation with 103 protons. b. 

The ED in the nuclear volume having a mean value of 10.5 ± 2.9 pJ after irradiation with 103 protons. c. The 

total ED (for 103 protons) for each chromatin according to its condensation stages along the mitosis. 2D-

projections of 5 different chromatin distributions revealed by Hoechst33342 (blue) and recorded in 40 embryonic 

cells by confocal microscopy. Scale bar: 3 µm. d. The energy proportion between chromatin and nuclear volume 

for the 5 condensation states of chromatin were calculated. It shows that for the same ED in the nuclear volume, 

only 2% to 5% of the ED is localized in the chromatin in prophase while this ratio increases from 25% to 60% in 

metaphase. 
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II.3. C. elegans L1 larva modeling and irradiation 

 

After testing different pattern dimensions and proton microbeam distributions, the final 

irradiation was carried out with a Gaussian beam having FWHM of 4 µm delivered in a 

pattern of 16x16 µm formed of 5x5 points with a step of 4 µm between 2 points (Fig. 40).  

 

 

Fig. 40. Irradiation pattern of 16 x 16μm dimension with a step of 4μm 

 

A beam size of 4 µm increase the probability to hit the cells of 3.2 µm diameter without 

irradiating the whole larva. Before reaching the sample, a 2 µm thick diamond detector is 

placed at the exit of the beam to count the particles passing through it. The distance between 

the sample and the detector was 350 µm. Fig. 41 shows the irradiation of the 2 somatic gonad 

precursor cells of L1 larva simulated in Geant4 according to the conditions mentioned above.  

At the exit of the detector, the 5 points of the irradiation pattern are visibly spaced, but after 

their passage through the air, the protons reach the larva in a dispersed manner, delivering a 

homogeneous distributed dose in the zone around the 2 cells and in the larva. After testing the 

4 cell positions, I obtained mean specific energy values of 2.7 ± 0.2 Gy for the larva, 2.9 ± 0.4 

Gy for the cell1 and 2.6 ± 0.2 Gy for the cell2, which means that the specific energy is 

distributed homogenously in the 3 compartments and is not impacted by the cell positions in 

case the larva move during the irradiation. 
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Fig. 41. a. Setup simulation of L1 larva irradiation in Geant4 irradiated with 3 MeV protons in the form of a 5 x 

5 pattern with 5 protons/point. Their trajectories are represented by blue lines. The red lines show the trajectory 

of the secondary electrons generated. b. The energy distribution of protons at the entry of the first polypropylene 

foil when the sample is placed at 2 µm from the detector. The 5 x 5 points of the irradiation pattern are visibly 

spaced. c. The energy distribution of protons at the entry of the first polypropylene foil when the sample is 

placed at 350 µm from the detector. The protons reach the larva in a dispersed manner, delivering an almost 

homogeneous dose. The histograms binning is 0.5 µm.  

 

To calculate the proton number per point for the different doses, I used an elementary area of 

16 µm2 (4 µm x 4 µm). The fluence, F, value, the number of protons per point and the total 

number of delivered protons calculated for each specific energy are summarized in the table 3. 

 

Specific energy (Gy) F (p /µm2) Number of p/point Total number of p 

0.3 0.1589 16x F = 2 5 x 5x 2 = 50 

3 1.589 16 x F = 25 5 x 5 x 25 = 625 

30 15.89 16 x F = 254 6350 

 

Table 3. Summary of the calculated data on simple geometric shapes of C. elegans L1 larva. 
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After choosing the optimum configuration (Fig. 40) to irradiate the zone around the 2 somatic 

gonad precursor cells with a homogeneous dose, we tested the irradiation with the 16 µm x 16 

µm pattern on C. elegans GZ264 strain L1 larva (Fig.42). Even though the larvae were fixed 

during irradiation on agarose pads, movements especially in the tail were observed. 

 

Fig. 42. Microscopic fluorescence image acquisition of C. elegans GZ264 strain L1 larva with the expression of 

GFP::PCN-1 that marks the 2 somatic gonad precursor cells. a. The red crosses correspond to the barycenter of 

the irradiation pattern. b. The red squares correspond to the irradiated zone around the 2 somatic gonad precursor 

cells. Scale bar = 50 µm. 
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Discussion  

 

Laser micro-irradiation and CPM techniques have been widely used within the scope of 

radiobiological studies for their capability to induce localized damages in cellular or sub-

cellular compartments39. For over 40 years, laser microirradiation offers a powerful tool for 

targeted cellular damage with a range of wavelengths allowing the induction of specific 

damages such as SSBs, base lesions and DSBs. The advantage in performing such irradiations 

is that the same microscope equipped with suitable laser and optics can be used for the 

irradiation and the visualization of the cells40. CPM irradiation is more complex to be 

performed since the observation of the cells and their irradiation cannot be done with the same 

equipment. However, their advantage relies on their ability to control both target irradiations 

and delivered dose in term of number of particles down to a single particle, which make their 

contributions very important in radiobiological study.   

In this work, single cell nucleus in a developing multi-cellular organism, 2-cell stage C. 

elegans embryos were selectively irradiated and followed-up cell divisions by time-lapse 

imaging. DNA damages are visualized as radiation-induced foci with the HUS-1::GFP protein 

of the WS1433 strain in the irradiated nucleus. Chromosome instability were also observed, 

which results in chromosomal bridge during mitosis causing temporal and morphological 

disorganization of the irradiated embryo for the 2 strains MG152 (H2B::GFP) and 

GZ264(GFP::PCN-1). These effects were showed for the first cell division in C. elegans early 

stage embryos. Interestingly, these consequences are also observed in the daughter cells of the 

irradiated cell nucleus for the 3 strains, indicating a transmission of altered DNA through the 

division.  

Based on the microdosimetric study developed during my PhD, the generation of DNA 

bridges and genomic instability observed experimentally require an ED in the chromatin of at 

least 4 pJ after irradiations with 104 protons. Micro-irradiations with lowest specific energy 

(103 protons), do not systematically produces the same visible damages. This could be due to 

the limited sensitivity of our fluorescent markers or the lack of specificity for the detection of 

the radiation-induced damage or the existence of a dose-threshold below it no sufficient 

radiation-induced effect would be produced on genomic DNA during the first cell division of 

AB. Based on the simulation in 3D phantoms of the ED in the embryo compartments 

(chromatin and nucleus), we clearly observed that, (i) no ED is found in the non-targeted 

nucleus and cell (P1); (ii) the biological effects appear at rather high specific energies, i.e. 180 
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Gy in the chromatin of the targeted nucleus (AB); (iii) the fraction of energy imparted to the 

chromatin shows large fluctuations considering the chromatin condensations in various phases 

of the division, going from only 4 % in prophase to about 60 % in metaphase, (iv) limited 

variations in terms of ED in the chromatin, depending on its condensation states, is expected 

between samples at the time of irradiation.  

As a first step, high doses irradiations were performed to clearly observe direct effects. 

Nevertheless, this approach opens perspectives for selective irradiation at lower doses (down 

to one particle / cell) of specific cells in an organism in development.  

Since only 4 % of the ED in the nuclear volume is imparted to the chromatin, the use of other 

C. elegans strains that mark other nuclear compartment is important to study the effect of IRs 

in these compartments. For instance, the SA250 strain expressing the histone H2B and the 

tubulin-𝛾 associated to the red fluorescent protein mCherry marks the chromosomes, and the 

tubulin-𝛽 coupled to GFP marks the microtubules that form the mitotic spindle41.  

In addition, using such C. elegans strain allows the Monte Carlo simulation in the realistic 

phantoms to be extended in more compartments in the embryo cells. To improve the 

calculation in such micro-cellular compartments, image acquisition with super-resolution 

microscopy such confocal STED (Stimulated emission depletion) microscopy can be used. 

The calculation of the ED and the specific energy in the cell compartments can be extended to 

new geometries including the DNA structure and composition in the framework of the 

Geant4-DNA project42. This enhances the prediction of DNA damage including SSBs and 

DSBs induced by direct effect on the DNA molecules or indirect effects caused by free-

radical species after radiolysis of water surrounding the cell DNA43.  

 

For the study of chronic induced stress response of C. elegans L1 larva, CPM irradiations in a 

regular pattern of 16x16 µm formed of 5x5 points with a Gaussian beam having FWHM of 4 

µm allow delivering a homogeneous energy distribution into the zone around the 2 somatic 

gonad precursor cells. However, the irradiations were limited by the fixation problem of the 

larvae that moved during irradiation. Several techniques provide an efficient immobilization 

of the larvae such as the hydrogel for a gentle, rapid, inexpensive way to immobilize the C. 

elegans larva for continuous long-term experiments44 and microfluidic tool for a fast and 

controlled microbeam irradiation of multiple samples in parallel11. 
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The work presented here is focused on charged-particle micro-irradiations of biological 

samples and more specifically on microdosimetry questions related to this experimental 

approach.  Charged-particles in the MeV energy range have high LETs and induce highly 

complex molecular lesions when depositing their energy in living matter. They are present in 

natural radiation background (from telluric or cosmic origins) and more and more used in 

radiation therapy. From the experimental point of view, charged-particles present unique 

features to generate localized molecular lesions in living cells and study molecular and 

biological consequences of clustered lesions. When propagating in matter, charged-particles 

deposit their energy along almost linear tracks that can be modeled in great details by Monte 

Carlo track structure codes. This constitute one of the main strengths of their use compared to 

more common micro-irradiation techniques based on lasers or UV microspots.    

By designing dedicated beam lines (CPM), charged-particles can be easily focused to 

micrometer spots and steered precisely to target specific cell compartments and study online 

the early cell response.  

Prior to my PhD, the iRiBio group at CENBG developed experimental techniques and 

methodologies to micro-irradiate reproducibly biological cells with counted protons and α-

particles using the CPM at the AIFIRA facility. These developments have started to be 

applied in the last years to the experimental measurement of biological effects from cellular to 

multicellular organisms.  

My thesis work aimed at developing microdosimetric models of the micro-irradiations 

performed at AIFIRA. This was achieved by measuring physical characteristics of the CPM 

using novel high-resolution track detectors and by simulating the interaction of protons and α-

particles in micro-focused spots from the initial EDs to the prediction of DNA damage using 

the open source track structure toolkit Geant4-DNA. 

The first part of this work focused on the development of a methodology to use FNTDs for 

quality control of the CPM at the AIFIRA facility. Compared to the commonly used CR39 

nuclear track detector, FNTDs do not require chemical treatment for the read-out and offer 

interesting features such as a high spatial resolution, wide dynamic range of ED 

measurements and three-dimensional track information. Single tracks of MeV protons and α-

particles are unambiguously detected, and the size of the fluorescent spot is below one 

micrometer. When irradiating with several traversals in a micrometric beam spot, the 

fluorescence intensity increases linearly with the dose before saturating above about 20 

particles/spot. Unfortunately, the single-track diameter could not be correlated to the LET of 
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the particles used in this work. Nevertheless, FNTDs will be used in routine in the future to 

insure quality check in single particle irradiation experiments.  

Then, the AIFIRA microbeam was used to investigate repair processes activated by micro-

irradiating cells with increasing numbers of protons (LET = 12 keV.µm-1) or α-particles (LET 

= 148 keV.µm-1). The kinetics of accumulation at damaged sites of the GFP-RNF8 and GFP- 

XRCC1 proteins were measured.  The early response of these proteins (seconds to minutes) 

provide interesting insights in the relation between the initial physical lesions and the DNA 

repair pathways. I contributed to the microdosimetric calculations of the EDs and the induced 

direct DNA damage. The calculated DNA damage types and complexity dependency with 

particle LETs show a good agreement with other studies. The results indicate a coherence 

between the protein function, the EDs distribution and its clustering into different types of 

DNA damage. However, the full interpretation of the biological results will require to 

overcome a few limitations related to the microdosimetric calculations. It is in particular the 

case for the clustering of the DNA lesions. The clustering at nanometer scale was calculated 

only for direct effects in a homogeneous water cube. This could be improved by considering 

the DNA geometries in human cells to allow the calculation of DNA damage from direct and 

indirect effects. A Geant4-DNA example allowing these calculations should be available 

soon. From the experimental point of view, the link between the protein kinetics and the 

amount of induced DNA lesions could as well be described by theoretical modeling of the 

protein behavior after charged-particle micro-irradiations and its diffusion to damage sites. 

These damaged sites can be modeled as protein trapping sites with a fixation probability 

depending on the amount of DNA lesions assessed by Monte Carlo simulations. 

Finally, a methodology to reproducibly micro-irradiate a living organism, C. elegans, at a 

specific stage and to observe in real time the radiation-induced effects at the AIFIRA facility 

was validated before the beginning of the present work. This simple stage of C. elegans life 

cycle with 2 cells allowed following more easily the irradiated cell in the first cell divisions 

after irradiation. This approach opens perspectives for selective irradiation at lower doses 

(down to one particle / cell) of specific cells in an organism in development. Nevertheless, 

studying dose-effect relationship with such irradiation raises the question of the dose. Indeed, 

this type of sample has a geometry significantly different from adherent cells and its rapid 

development involves variation of the cell’s geometry and chromatin condensation within 

times scales comparable to the time required for irradiation. Monte Carlo simulation in 3D 

realistic phantoms of C.elegans was required in the case of the 2-cell stage embryos to 

characterize the EDs. In the future, this methodology can be extended to other stages of 
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development and much lower doses opening a complete radiobiology framework including a 

precise and reproducible radiation targeting, advanced Monte Carlo based and open source 

microdosimetry methods and an appropriate model to study the biological response from the 

early response to trans-generational effects. 

 

 

 

 

 

 

 

 

 

  



 

 
 

 

 



  

 
 

 

 

  



 

 
 

Micro-dosimétrie d'irradiations par microfaisceau d'ions par méthodes Monte-Carlo 

L’interaction des particules chargées avec la matière conduit à un dépôt d’énergie très localisé dans des traces 
de dimensions sub-micrométriques. Cette propriété unique rend ce type de rayonnement ionisant 
particulièrement intéressant pour disséquer les mécanismes moléculaires radio-induits suite à l’échelle de la 
cellule. L’utilisation de microfaisceaux de particules chargées offre en outre la capacité d’irradier sélectivement à 
l’échelle du micromètre avec une dose contrôlée jusqu’à la particule unique. Mon travail a porté sur des 
irradiations réalisées avec le microfaisceau de particules chargées de la plateforme AIFIRA (Applications 
Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine) du CENBG. Ce microfaisceau délivre des protons 
et particules α et est dédié aux irradiations ciblées in vitro (cellules humains) et in vivo (C. elegans). 
En complément de l’intérêt qu’elles présentent pour des études expérimentales, les dépôts d’énergie et les 
interactions des particules chargées avec la matière peuvent être modélisés précisément tout au long de leur 
trajectoire en utilisant des codes de structures de traces basés sur des méthodes Monte-Carlo. Ces outils de 
simulation permettent une caractérisation précise de la micro-dosimétrie des irradiations allant de la description 
détaillée des interactions physiques à l’échelle nanométrique jusqu’à la prédiction du nombre de dommages à 
l’ADN et leurs distributions dans l’espace. 
Au cours de ma thèse, j’ai développée des modèles micro-dosimétriques basés sur l’outil de modélisation 
Geant4-DNA dans deux cas. Le premier concerne la simulation de la distribution d’énergie déposée dans un 
noyau cellulaire et le calcul du nombre des différents types de dommages ADN (simple et double brin) aux 
échelles nanométrique et micrométrique, pour différents types et nombres de particules délivrées. Ces résultats 
sont confrontés à la mesure expérimentale de la cinétique de protéines de réparation de l’ADN marquées par 
GFP (Green Fluorescent Protein) dans des cellules humaines. Le second concerne la dosimétrie de l’irradiation 
d’un organisme multicellulaire dans le cadre d’études de l’instabilité génétique dans un organisme vivant au 
cours du développement (C. elegans). J’ai simulé la distribution de l’énergie déposée dans différents 
compartiments d’un modèle réaliste en 3D d’un embryon de C. elegans suite à des irradiations par protons. 
Enfin, et en parallèle de ces deux études, j’ai développé un protocole pour caractériser le microfaisceau d'AIFIRA 
à l’aide de détecteurs de traces fluorescent (FNTD) pour des irradiations par protons et par particules α. Ce type 
de détecteur permet en effet de visualiser les trajectoires des particules incidentes avec une résolution de l’ordre 
de 200 nm et d’examiner la qualité des irradiations cellulaires réalisées par le microfaisceau. 

Mots-clés : Microfaisceau d'ions, micro-irradiation ciblée, Monte-Carlo, Geant4-DNA, microdosimetrie, 
radiobiologie. 
 
Monte Carlo microdosimetry of charged-particle microbeam irradiations  

The interaction of charged-particles with matter leads to a localized energy deposits in sub-micrometric tracks. 
This unique property makes this type of ionizing radiation particularly interesting for deciphering the radiation-
induced molecular mechanisms at the cell scale. Charged-particle microbeams (CPMs) provide the ability to 
target a given cell compartment at the micrometer scale with a controlled dose down to single particle. My work 
focused on irradiations carried out with the CPM at the AIFIRA facility in the CENBG (Applications 
Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine). This microbeam delivers protons and α-particles 
and is dedicated to targeted irradiation in vitro (human cells) and in vivo (C. elegans). 
In addition to their interest for experimental studies, the energy deposits and the interactions of charged-particles 
with matter can be modeled precisely along their trajectory using track structure codes based on Monte Carlo 
methods. These simulation tools allow a precise characterization of the micro-dosimetry of the irradiations from 
the detailed description of the physical interactions at the nanoscale to the prediction of the number of DNA 
damage, their complexity and their distribution in space. 
During my thesis, I developed micro-dosimetry models based on the Geant4-DNA modeling toolkit in two cases. 
The first concerns the simulation of the energy distribution deposited in a cell nucleus and the calculation of the 
number of different types of DNA damage (single and double strand breaks) at the nanometric and micrometric 
scales, for different types and numbers of delivered particles. These simulations are compared with experimental 
measurements of the kinetics of GFP-labeled (Green Fluorescent Protein) DNA repair proteins in human cells. 
The second is the dosimetry of irradiation of a multicellular organism to study the genetic instability in a living 
organism during development (C. elegans). I simulated the distribution of the energy deposited in different 
compartments of a realistic 3D model of a C. elegans embryo following proton irradiations. Finally, and in parallel 
with these two studies, I developed a protocol to characterize the AIFIRA microbeam using fluorescent nuclear 
track detector (FNTD) for proton and α-particle irradiations. This type of detector makes it possible to visualize in 
3D the incident particle tracks with a resolution of about 200 nm and to examine the quality of the cellular 
irradiations carried out by the CPM. 

Keywords: Charged-particle microbeam, targeted irradiation, Monte Carlo, Geant4-DNA, microdosimetry, 
radiobiology. 
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