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2 List of Abbreviations

area of around 73km2 (Ørsted, 2017). The largest onshore WF is the Gansu

WF in China, which comprises around 7000 WTs (Vyas, 2018).

Usually, a WT is equipped with a Supervisory Control and Data Acquisi-

tion (SCADA) system. It can also be monitored using Condition Monitoring

(CM) and/or Structural Health Monitoring (SHM) systems. The data ac-

quired and sent by these systems is usually transmitted through copper

cables, inside each WT. Although no official statistic could be found, it can

be reasonably assumed that the number of signals transmitted inside each

WT is, at least, in the order of hundreds. Therefore, when considering the

number of WTs of the previously mentioned WFs, the cost generated by the

installation and maintenance of the cables becomes significant.

Moreover, WF operators need to remotely monitor their assets. Thus,

fiber-optic cables are laid between the different WTs in a WF, and from the

gateway of the WF to the operator. These data transmission lines run along

the three-phase power cables (in case of AC transmission) which are laid

from the WF to the grid. The dedicated line used for the communication

between the dispatch center and the WF is maintained by a separate com-

pany, for a fee. This tax is relatively high, and depending on the availability

and redundancy requirements, it can amount to tens of thousands of euros

per year.

Although DDWTs are more reliable nowadays than those in previous gen-

erations, they can still break down, so they require automatic diagnosis sys-

tems. The different components which can fail in a DDWT are the blades,

the generator, the main shaft, the hydraulic systems, etc., (Qiao and Lu,

2015a). These impairments can lead to lower power generation, asset dam-

age and even downtime. The generator is considered in this work, as it is

responsible for almost 25% of the total downtime of a DDWT. The distribu-

tion of faults and downtime, due to each component of a DDWT is shown in

Table 1.

Objectives

The PMSG of the DDWT should be diagnosed, and the most common

faults which can affect it should be detected and isolated. These impair-

ments should be detected as early as possible, even in incipient stages.

The Fault Detection and Identification (FDI) tools should be precise, but

also simple to use and implement. Therefore, the accent should lie on sim-

pler methods which can be understood and utilized by engineers with only

bachelor-level studies.

The feasibility of using Wireless Sensor Networks (WSNs), to eliminate the

wired communication network, should be investigated. The current com-

munication architecture of a WT should be studied, together with different
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TABLE 1: Failure Percentages of WT Systems (Pinar Pérez et
al., 2013).

Component Failures [%] Downtime [%]

Hub 10.08 17.76

Pitch and Yaw 17.22 8.88

Generator 14.7 24.42

Electronic Subsystems 35.7 25.53

Shaft and Bearings 3.36 8.88

Sensors 8.4 3.98

Brake 0 0

Hydraulics 0.84 0.56

Other 9.7 9.99

wireless communication technologies. A short guide should be developed,

to help choose a suitable wireless protocol for a given application.

Description of the Chapters

The state of the art, related to the diagnosis and to surveys of wireless

communication, is presented in Chapter I.

The mathematical model of the PMSG is presented in Chapter II. Its

mathematical model is continuous and non-linear, therefore it is difficult

to discretize. A comparison is made between different discretization tech-

niques. A continuous model with a discrete integrator is shown to be the

best solution. Then, the nominal closed-loop control of the WT is presented.

In Chapter III, there is presented a new method to compute the covari-

ance matrix of the process noise. This procedure is shown in the context

of an Extended Kalman Filter (EKF). However, it does not use any of the

matrices of the filter and is therefore independent of it. The method uses a

constant covariance matrix for the measurement noise and, at each itera-

tion, it re-computes the values of the process noise covariance matrix. The

proposed method and two other ones, selected from the scientific literature,

are tested to estimate the current generated by the PMSG. All three methods

are tested in the context of the EKF. The obtained results are compared and

discussed to highlight the strengths and weaknesses of the proposed ap-

proach. Then, the Kalman Filter (KF), the Extended Kalman Filter (EKF) and

the Unscented Kalman Filter (UKF) are compared. The results are presented

and it is shown that the EKF is the most suitable one for this application.

This is followed by a discussion regarding the behavior of the filters, where

all are shown to act like proportional controllers.
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The different faults which can affect a PMSG are shown in Chapter IV.

The most common ones are the rotor demagnetization, eccentricity (static,

dynamic and mixed) and inter-turn short circuit. Their effect is notice-

able on the spectrum of the stator currents, which is computed using the

Fast Fourier Transform (FFT). However, for a WT, the spectrum of the cur-

rents changes with the wind speed. Therefore, the obtained results may

not be accurate. In this chapter, the residuals, computed using the cur-

rents estimated with the EKF and the measured ones, are proposed to be

used for FDI, together with the FFT. The spectrum of the residuals is in-

variant to changes in the wind speed, but sensitive to faults. However, the

FFT computes the whole spectrum, while the number of possible faults and

the number of introduced harmonics is very low. The Goertzel Algorithm

(GA), implemented as a filter - the Goertzel Filter (GF), is also presented in

this chapter as a more efficient alternative to the FFT. The GF was tested

and simulation results prove that it can return the squared magnitude of

these harmonics. This information can be used to set thresholds for fault

detection, within a FDI algorithm.

WFs can be located in isolated areas, or the WTs may be distributed

geographically. Therefore, the necessary communication infrastructure can

be expensive to install and maintain. In Chapter V, WSNs and the Internet of

Things (IoT) are presented as solutions for these problems. WSNs are quick

to install, easy to maintain and they scale up easily. The requirements

for a potential WSN, for both a WT and a WF, are studied in this chapter.

Different wireless communication technologies are thoroughly compared.

Both long-range low-power protocols and short-range high-speed ones are

considered. A possible LoRa-based architecture of a WF communication

system is presented. The integration of a power generation facility in the IoT

raises security concerns. Potential dangers and vulnerabilities are listed, to

increase awareness of the necessity of security in Industrial Communication

Systems (ICS).
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• Supervisory Control and Data Acquisition (SCADA) system, which is

used to:

– acquire the data required by the control systems;

– process the information according to some algorithms;

– send the resulting commands to the different actuators;

• Condition Monitoring (CM) system, which gathers information used to

determine the health-state of the equipment (e.g. the generator, the

converter, the transformers, etc.);

• Structural Health Monitoring (SHM) system, which acquires data and

asses the state of the structural elements of the WT (e.g. the blades,

the tower, the foundation, etc.);

• Safety system, which is not considered in this work. This system can

stop the WT if a catastrophic failure occurs.

According to the survey in (Yang et al., 2014), there are more than 15

commercially available SCADA systems specifically designed to monitor a

WT. The number of CM systems, for a WT, available for purchase is 23.

The survey was published in 2014, so the number of commercially available

systems is expected to have increased. Not all CM systems supervise the

whole WT - most of them are designed to monitor a specific component,

such as the generator or the main bearing (which connects the rotor to the

main shaft). Although it is not mentioned in (Yang et al., 2014) whether the

different systems use wireless communication or not, they are assumed to

be wired. Considering that "wireless" is a strong selling point and that the

use of this technology would be interesting from a scientific and industrial

point of view, the lack of any mention means that cables are used.

Since more than a decade ago, different proposals have surfaced in the

literature about the possibility of using wireless communication for the dif-

ferent systems of a WT. Such proposals can be seen in (Xingzhen et al.,

2008), (Meng and Gong, 2012) and (A. Ahmed and E. Ahmed, 2016). How-

ever, no experimental implementation has been reported.

The first step towards an experimental demonstration lies in studying

the requirements of such a system and the different available solutions. Be-

cause the information about different industrial systems is confidential, the

requirements have to be estimated from the publicly available information

(e.g. the one from (Enjie, 2018)). On the other hand, information about

different wireless technologies is widespread.

In (B. K. Singh et al., 2013) it is presented a short survey on communi-

cation technologies, which can be used for WF installations. The focus is on

wired protocols such as Modbus, Profibus, fiber optics, etc. and only three
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wireless technologies are discussed: Wi-Fi, Zigbee and WiMAX (the latter

now being obsolete). However, no comparison is made between the differ-

ent communication technologies. The standard communication architecture

of a WF is also not presented - just various experimental implementations

shown in different papers. In the conclusions of the article, the need for a

comprehensive review of new communication technologies is highlighted.

The design procedure for a WF communication system, and a possible

structure for a data package which would be used in this Industrial Com-

munication System (ICS), are shown in (M. A. Ahmed and Kim, 2014). The

proposed multi-level communication network is based on wired protocols

like CAN or Ethernet Passive Optical Network, while wireless protocols (like

Zigbee) are mentioned as back-up solutions. The focus is on the link layer

of the OSI model. Again, this paper stressed the need for a thorough com-

parison of communication technologies.

Two communication technologies for long distance transmission using

low power are compared in (Sinha, Wei, and S. H. Hwang, 2017). These are

LoRa and NB-IoT, which is currently under roll-out.

WirelessHART and other protocols are shown in (Queiroz et al., 2017).

This paper is mostly focused on wireless standards and on classifications.

Therefore, no technical specifications are presented.

Different wireless technologies, for smart grid communication, are pre-

sented in (Mahmood, Javaid, and Razzaq, 2015). The considered technolo-

gies are ZigBee, Wi-fi, Bluetooth, 6LowPan, Z-wave, WiMAX and cellular

networks. A brief comparison is made between them, to recommend the

best one.

The survey from (Ali et al., 2017) is more detailed. It presents both long-

range communication technologies such as Lora, NB-IoT, Sigfox, WiMAX

and LTE, but also short-range high-speed ones, such as Zigbee, Wi-Fi and

Bluetooth. However, more protocols are reviewed in this work and the re-

sults are summarized, to lower the time necessary for a comparison.

In (Moness and Moustafa, 2016), both WTs and WFs are presented as

cyber-physical systems, being made up of physical components such as the

blades, generator, nacelle etc. and cyber components such as the SCADA

and CM systems. Their integration in the Internet of Energy is also dis-

cussed. The authors focused on presenting concepts, without many rec-

ommendations for practical implementations. There is no discussion about

different communication technologies, just a very brief mention of general

security aspects for cyber-physical systems.

Different attack vectors directed against WFs are presented in (Staggs,

Ferlemann, and Shenoi, 2017). The emphasis is on physical attacks, i.e.

destroying or adding equipment. A Raspberry PI is added to the ICS to ac-

quire data from it and to serve as an entry-point in the system. The authors
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give several recommendations at the end of the paper, to help mitigate these

risks.

Security aspects are also considered in this thesis. Due to the connect-

edness of industrial systems and the internet, attackers can take control of

equipment and shut it down, with serious consequences. These aspects are

mentioned, to increase awareness about the dangers, and the methods to

mitigate them.

1.3 Fault Detection and Identification

According to (Venkatasubramanian, Rengaswamy, Yin, et al., 2003) there

are three types of diagnostic methods:

1. qualitative model-based, which consider the interconnections between

the different components to identify the faulty one and the cause of the

fault;

2. process history based, which use signal processing or artificial intelli-

gence.

3. quantitative model-based, which use observers and state estimators;

1.3.1 Qualitative-Model Based Methods

In (Kang, Sun, and Guedes Soares, 2019) is presented a Fault Tree Anal-

ysis (FTA) for offshore WTs. Only the structure, the pitch and hydraulic

systems, the gearbox and the generator were considered in the paper. How-

ever, the common generator faults were not mentioned. All the causes of

the failures were external, like human error, anchor failure, storm, plane

crash, etc. No FTA could be found in the literature for a Permanent Magnet

Synchronous Machine (PMSM).

Faults were detected in (Badoud et al., 2014) using Bond Graphs and

Analytic Redundancy Relations (ARRs). A DDWT equipped with a PMSG

was selected as a case study. However, only sensor faults were considered.

In (Echavarria et al., 2008) is presented a model of an offshore WT. This

model was obtained using qualitative physics, which describe, abstractly,

the behavior of the WT without modelling it according to specific laws of

physics. A WT equipped with a gearbox was considered, and, again, the

focus was on sensor faults.

It is difficult to use qualitative model-based methods for FDI. Firstly, a

WT is a complex system, which consists of multiple interconnected subsys-

tems. Moreover, this approach requires very good knowledge of the func-

tioning of a WT, which is nigh impossible to obtain without working in a
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company which produces WTs. Therefore, attention was turned towards

methods based on the history of the process.

1.3.2 The Case for Using the Fast Fourier Transform

Diagnosis based on signal processing is common for PMSMs. The usual

tools of diagnosis are the Discrete Fourier Transform (DFT), through the

Fast Fourier Transform (FFT) algorithm. Other methods used in the litera-

ture are the Wavelet Decomposition (Gritli et al., 2012), the Hilbert-Huang

Transform (Espinosa et al., 2010), Wiegner-Ville Distribution and Empirical

Mode Decomposition (Zhifu et al., 2014), among others.

The Fast Fourier Transform (FFT) is the most used signal processing

technique. It is recommended when faults introduce additional harmonics

into the signals acquired from the process. However, it is also not precise.

The spectrum of the currents changes with wind speed, so the threshold val-

ues used for a FFT-based detection algorithm might not be sensitive enough

for different wind speeds (Faiz and Nejadi-Koti, 2016).

The latter methods previously mentioned are insensitive to variations in

the wind speed, but at the same time they are more complex and require

more computational power.

The cyclostationarity (Napolitano, 2016) of the process can be used to

enable the usage of the FFT. The spectrum of the currents changes with

wind speed, but the same wind speed determines a similar spectrum in the

currents. However, this approach suffers from several drawbacks:

• The wind speed is stochastic, because it is affected by noise. This per-

turbation might introduce unwanted harmonics, which could trigger

false-positive alarms;

• Because the spectrum of the generated currents can change with the

physical parameters of the WT (i.e. blade span, etc.) the fault detection

threshold should be different for each type of WT;

• The variation of the wind speed should be split into intervals, where the

spectrum of the currents remains (almost) constant. Then, detection

thresholds should be defined on each interval. The number of intervals

could be large, and problems might arise when the speed of the wind

changes from one interval to another.

Classification algorithms (Duviella, Serir, and Sayed-Mouchaweh, 2013)

are used to estimate the operating point of each turbine in a park. When

the operating point of one or more turbines strays too far away from the

expected estimation, a fault is detected. The exact fault is discovered by

applying the parity space method on the residuals obtained between the real

output and the one estimated using a nonlinear model. A similar approach
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was developed for only one turbine (Fernandez-Canti et al., 2013), but the

model is computed within a Bayesian framework.

Data mining techniques can be used for FDI, as they search for specific

patterns or values, in data. The behavior of the process can be described us-

ing weighted support vector machines (W-SVM) (Lopez Pulgarin and Sofrony

Esmeral, 2016). The operating point of the process is again estimated. When

it strays outside a hyperplane, a fault is detected. One set of W-SVMs is uti-

lized for fault detection, while another set for isolation. The histogram of the

data can also be analyzed (S. Wang et al., 2016) for offline FDI.

A probabilistic change detection method, such as the Dynamic Cumula-

tive Sum algorithm can also be used (Borcehrsen, Larsen, and Stoustrup,

2014). Faults are detected by monitoring the power output of each turbine

and of the whole farm. Other similar methods, which may be employed, are

the Page – Hinkley Test and the Generalized Likelihood Ratio.

Diagnosis based on Artificial Intelligence (AI) is not commonly used to

diagnose WT or PMSM faults, due to the following disadvantages:

• The AI should be trained using data acquired in both healthy and faulty

scenarios. Due to the high cost of a WT, companies prefer not to dam-

age them;

• Researchers do not know exactly what happens during the function-

ing of some AI algorithms, such as neural-networks (Reddi, Kale, and

Kumar, 2019). Accordingly, they are reluctant to use them in critical

applications.

The problems of the FFT can be solved if the spectrum of the signal, is

constant regardless of the different wind speeds. During this work, it was

discovered that the spectrum of the residuals, computed between the gen-

erated currents and an estimation obtained using model-based approaches,

can be considered constant.

1.3.3 The Case for the Goertzel Filter

Although the FFT is widely used as a signal processing technique, its

performance can be overshadowed, in certain circumstances, by the Go-

ertzel Algorithm (GA) (Goertzel, 1958). The GA is usually implemented as a

two-stage filter, called the Goertzel Filter (GF). If the number of frequencies

of interest, that should be monitored using the FFT, is very low, then the GA

is a better alternative.

In (Bocca et al., 2011), wireless nodes are used to monitor the accelera-

tion of a structure. The FFT would normally be used to monitor changes in

the spectrum, due to faults. Because the sensors are battery-powered, they

should use very efficient algorithms to minimize the amount of energy that
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they require. The GA is presented as a replacement for the FFT, because the

number of frequencies of interest is very low.

The GA is also used in (Koziy, Bei, and Aslakson, 2013) to compute the

Total Harmonics Distortion (THD) of the electrical current flowing through

a section of a smart grid. Only a few supplementary harmonics can appear,

so the FFT would be inefficient in that application. The GA is implemented

on a low power smart meter.

A fault tolerant implementation of the GA is shown in (Gao et al., 2014).

Two GAs are used in parallel and they run on different equipment, in case

one hardware unit breaks down. In this case, the GAs are not used for

FDI, but this implementation may be useful in critical applications such as

nuclear power plants, where equipment redundancy is mandatory.

In (Reljic, Tomic, and Kanovic, 2015), the GA is used to find eccentricity-

type faults for a three-phase induction motor. The application is similar to

the one presented in this paper, as the authors also used Machine Current

Signature Analysis (MCSA). However, in this work, five faults are considered

(compared to three in (Reljic, Tomic, and Kanovic, 2015) and they will affect

a PMSG.

In (Sapena-Bano et al., 2018), the FFT is replaced by a sliding-window

FFT (SWFFT), its design being based on the GA. The SWFFT computes the

magnitude for just one frequency component of the signal, as does the GA.

The SWFFT is again used to diagnose eccentricity-type faults which can

appear in an induction motor.

1.3.4 The Case for Using the Extended Kalman Filter

Different model-based approaches can be used to obtain the residuals

needed for the signal-processing based diagnosis.

Nonlinear parameter varying equations can be used to model the pro-

cess (Blesa, Jimenez, et al., 2014). They are used to extract residuals for

the parity space method. The equations define NARMAX models. The static

characteristic of each turbine is split into regions, and a model is computed

for each one. The models are identified by minimizing a constrained op-

timization problem (Gliga, Mihai, et al., 2015) (Gliga, Mihai, et al., 2017)

around each operating point. An approach using linear equations also ex-

ists (Chouiref et al., 2015), where the models are of type ARMAX.

A set of MISO fuzzy models can be obtained for the wind farm (Simani,

Farsoni, and Castaldi, 2015). A group of Takagi – Sugeno observers are used

to estimate the output of each WT. Luenberger interval observers can also

be used (Blesa, Nejjari, et al., 2013). Each observer is valid on an interval

around an operating point.
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Different types of state observers may be used, such as the sliding-mode

observer (Y. Feng et al., 2009), the unknown input observer (Alahakoon et

al., 2013) and the Luenberger observer mentioned earlier.

However, the decision was taken to use a Kalman-type filter for residual

generation, namely the Extended Kalman Filter, because:

• these are widely used in the monitoring of PMSMs (e.g. (Dhaouadi, Mo-

han, and Norum, 1991) and (Foo, X. Zhang, and M. D. Vilathgamuwa,

2013));

• they are widely taught in universities worldwide;

• they have proven their capabilities (e.g. their usage in the Apollo 11

guidance computer, in the localization system on smartphones, etc.).

Current Methods to Estimate the Process Noise Covariance

Even in such an old algorithm as a Kalman-type filter, there are still

problems that can be addressed. Among them, is the classical challenge of

selecting the covariance matrices for the process and for the measurement

noise. While a constant matrix can be selected for the measurement noise

(Levy, 2016), the estimation of the other matrix is more difficult.

In the scientific literature, different methods are presented to estimate

the covariance matrix of the noise affecting a process. However, most of

them are designed for the linear Kalman Filter (KF), and they are not usable

in an EKF. In other cases, their design limits their applicability.

A similar estimation procedure, to the one proposed in this work, is pre-

sented in (B. Feng et al., 2014). That method is explicitly derived for the

KF, and it is not applicable for the EKF. Moreover, the authors of (B. Feng

et al., 2014) used the following equation to compute the covariance of the

estimation error:

ˆcov (ǫk+1, ǫk+1) =
k

k + 1
ˆcov (ǫk, ǫk) +

1

k + 1
ǫk+1ǫ

T
k+1, (1.1)

where ǫ ∈ R
ny is the error between the real outputs of the process and the

estimated outputs of the model and ˆcov(ǫk, ǫk) ∈ R
ny∗ny is the covariance

matrix of the error at the kth time step. In (1.1) it is assumed that the mean

of the noise is zero. The new method presented in this work also considers

non-zero average values for the noise. Therefore is can be used when sensor

faults are present, namely bias Gliga, Chafouk, et al., 2017.

The authors of (Z. Liu and He, 2017) present an iterative procedure to

compute the covariance matrices of the process and of the measurement
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noises. The method is simple to implement, and it is designed for the EKF:

Sk =
1

N

k
∑

j=k−N+1

ǫkǫ
T
k , (1.2)

Qk = KkSkK
T
k , (1.3)

Rk = Sk +HkPkH
T
k , (1.4)

where Kk is the Kalman gain obtained in the update phase of the EKF. N

is chosen arbitrarily, with no suggestion being provided in (Z. Liu and He,

2017). Different values were tested, from the set {1, 10, 100, 1000, 10000}, to

find the most suitable one. There is no universal value, and it should be

changed according to the uncertainty affecting the process.

Another iterative method, shown in (Akhlaghi, Zhou, and Huang, 2017),

can be used to compute the process and the measurement noises covari-

ances. This procedure is similar to an optimization method with a forgetting

factor:

Qk = αQk−1 + (1− α)
(

Kkdkd
T
kK

T
k

)

, (1.5)

Rk = αRk−1 + (1− α)
(

ǫkǫ
T
k +HkPkH

T
k

)

, (1.6)

where α ∈ [0, 1] is the forgetting factor and dk = yk − h (x̂k) is the a priori

estimation error. ǫk = yk − h (x̂∗k) is the a posteriori estimation error. In

the rest of this work, the phrase "estimation error" refers to the a posteriori

estimation error.

In (Xi et al., 2018), a procedure is presented to compute the covariance

of the process noise. It only uses the estimation error and its covariance.

However, the authors assume that the diagonal elements of the covariance

matrix of the process noise are equal. In practice, there is no guarantee that

the noise has the same linear behavior across all measurement channels.

Moreover, the amplitude of the noises might be different, thus the resulting

variances - the diagonal elements of the covariance matrix, might not be

equal. For example, the engine of a car is influenced differently by the

quality of the fuel and the ruggedness of the road.

Another method, shown in (Qiu, Qian, and G. Wang, 2018), is used to

determine the covariance matrix of the process noise. The authors assume

that the covariance matrix is split, by the anti-diagonal, into two halves:

each half has equal elements on its first diagonal, but the values are differ-

ent between the two halves. While this is a generalization from the previous

case, it is still a particular one.

An EKF with three stages is presented in (Xiao et al., 2018). The second

and the third stages are used to improve the estimation obtained from the

first one. The method used to compute the process noise covariance matrix
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has no constraints, compared to the previous two approaches. However, it

is very complex as there are three EKFs connected in series. The process

and measurement noises covariances are estimated in each stage. As it will

be shown in Chapter III, even one EKF is very accurate, so the increase in

complexity is not necessary (at least for a PMSG).

The procedure presented in this work was compared with the methods

presented in (Z. Liu and He, 2017) and (Akhlaghi, Zhou, and Huang, 2017).

The algorithm to estimate the measurement noise covariance is not pub-

lished in a peer-reviewed scientific paper. The authors decided to test it,

together with the proposed method, against the established ones.

1.4 Contributions

A new procedure to estimate the covariance matrix of the process noise

is presented in Chapter III. It only uses information related to the model

of the process, and therefore it can be utilized for any state estimator and

observer. Moreover, when compared with other methods from the literature,

it is proven to be faster and just as precise.

In Chapter IV, an EKF is used to estimate the generated currents. The

spectrum of the residuals computed between this estimation and the real

currents is nearly constant. Therefore, simpler signal processing tools, such

as the Fast Fourier Transform, can be used. In the same chapter, the FFT

is replaced by the Goetzel Filter, which is more efficient when the number of

frequencies of interest is low.

In Chapter V, many wireless communication technologies are compared.

This can help engineers quickly choose the most suitable one for their ap-

plication.
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Chapter 2

Generator Modelling and

Nominal Control

2.1 Introduction

A
S it was previously presented, a Wind Turbine (WT) is made up of a

multitude of components. The behavior of the WT has to be represented

using a mathematical model, which can then be used in simulations.

The mechanical part of the wind turbine, which comprises the rotor hub

and the rotor shaft, can be modeled using the equations shown in Appendix

B. The parameters of this model are shown in Appendix A, together with the

other parameters used in the simulations.

In this chapter, the model of the Permanent Magnet Synchronous Gen-

erator (PMSG) is presented in Section 2.2. Because the model is nonlinear

and continuous, it must be approximated by a discrete one. The discretiza-

tion is presented in Section 2.3. Before any fault symptoms are introduced

and any diagnosis is performed, the WT should be controlled, in nominal

operation. The control of the WT is presented in Section 2.4.

2.2 The Model of the Generator

The PMSG is simulated in Matlab, Simulink, using the Simscape/Power

Systems toolbox. The equations of the PMSG are (Gliga, Chafouk, et al.,

2018a):

ˆ̇Id(t) = −
RsId(t)

Ls
+

npωm(t)LsIq(t)

Ls
+

Vd(t)

Ls
, (2.1)

ˆ̇Iq(t) = −
RsIq(t)

Ls
−

npωm(t)LsId(t)

Ls
−

npωm(t)φ

Ls
+

Vq(t)

Ls
, (2.2)

where Id, Iq, Vd and Vq are the currents (in A) and the voltages (in V) in the

dq0 rotor frame. Rs and Ls are the stator resistance (in Ω) and inductance

(in H) in the dq0 frame. ωm is the angular velocity of the generator shaft
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(in rpm), and φ is flux linkage between the permanent magnet rotor and the

stator (in Wb).

The states of the model are the currents, and the inputs are the voltages

and the angular velocity. The model is nonlinear due to the product between

a state and an input, in each state equation. The equipment was simulated

in nominal operation, when no faults are present.

Another equation can be added in the model, to capture the behavior of

the angular velocity. The complete model is (Pillay and Krishnan, 1989):

İd(t) =
Vd(t)−RsId(t) + nPωm(t)LsIq(t)

Ls
,

İq(t) =
Vq(t)−RsIq(t)− nPωm(t)LsId(t)

Ls
−

npωm(t)φ

Ls
,

ω̇m(t) =
Te(t)− Tm(t)−B ∗ ωm(t)

J
,

(2.3)

where B is the viscous damping of the generator shaft and J is the inertia

coefficient of the rotor. Te is the electrical torque

Te(t) = 1.5nPφIq(t), (2.4)

and Tm is the mechanical torque, which can be estimated using the equa-

tions from Appendix B.

The PMSG is connected to a system which simulates the small capacity

wind turbine, as shown in Appendix D. The generator is connected to the

grid through a two-level back-to-back converter and an RL filter. The trans-

former was not considered in this work, because it does not directly affect

the PMSG.

A word of caution when using the SimScape Power Systems library in

Simulink. Although the recommended solver is ode23tb, the simulation

might return different results on minor modifications done to the code. This

problem can be avoided by using a fixed-step solver with a very low time

step. For the simulations presented in this work, the authors utilized the

ode1 solver (MathWorks, 2018) with a time step of 10−6.

2.3 Model Discretization

It is difficult to discretize a nonlinear function. So, the most suitable

option is to use the Taylor Series Expansion (TSE) to obtain a linear model
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(Morel et al., 2009)





idk+1

iqk+1



 = Fk ∗





idk

iqk



+Gk ∗





Vdk

Vqk



+Hk (2.5)

where

Fk =





1− RsTs

Ls
TsnPωmk

−TsnPωmk
1− RsTs

Ls





Gk =





Ts

Ls
0

0 Ts

Ls



 and Hk =





0

−TsnPωk

Ls
φ





and Ts is the sampling period.

However, any linearization may introduce errors in the model. In (Shahri-

ari et al., 2016), it is suggested to use the continuous model, but with the

following discrete integrator

xk = xk−1 + ẋ ∗ Ts;

where x is the state vector of the process.

However, this integrator differs from the one used in Simulink, in the

Power Systems Toolbox. There, when the PMSG is simulated in discrete

mode, the continuous model is used with a Forward Euler Integrator (FEI)

(TransÉnergie Technologies Inc, 2003)

yk = xk

xk+1 = xk + Ts ∗ uk

where y is the output of the integrator, x is its internal state and u is its

input, i.e. the derivative of the system states.

The simulation results are presented in Table 2.1. The errors obtained

with the continuous integrator and the FEI are similar, because the sam-

pling period was chosen to be very small, 10−6. This is to prevent numerical

instability in the simulation. In Fig. 2.3 and Fig. 2.4, the methods appear to

return the same results, but this is out of coincidence. The simulations was

checked, and the same results were obtained. Although Fig. 2.1 and 2.2 are

identical, they show that the discrete integrator behaves like the continuous

one, for the chosen sampling period (10−6 s).

A small error appears in the case of the continuous model with a con-

tinuous integrator, because of how Simulink compiles the schematic. Any

collection of Power Systems blocks is approximated by a state space model

(TransÉnergie Technologies Inc, 2003).



20 Chapter 2. Generator Modelling and Nominal Control

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4
x 10

−12

Time [s]

A
m

p
lit

u
d
e
 [
A

]

Estimation error

FIGURE 2.1: The continuous model with a continuous integra-
tor.
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FIGURE 2.2: The continuous model with the discrete FEI.

2.4 Nominal Control of the Wind Turbine

There are multiple Control Systems (CSs) used to control a WT (Yan et

al., 2014):

• the pitch CS, which changes the angle-of-attack of each blade;

• the yaw CS, which changes the orientation of the nacelle, to align the

propeller according to the direction the wind is blowing;

• the rectifier CS, which is used to control the angular velocity/torque of

the shaft, and through it the generated currents;

• the inverter CS, which controls the active and reactive powers of the

energy injected into the grid;

• the cooling system of the nacelle;
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TABLE 2.1: Comparison of the discretization methods.

Model Integrator type Order of error

Continuous Continuous ≈ 10−13

Continuous Discrete - FEI ≈ 10−13

Continuous Discrete - from (Shahriari et al., 2016) ≈ 4

Linearised N/A ≈ 4
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FIGURE 2.3: The continuous model with the discrete integrator
from (Shahriari et al., 2016).
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FIGURE 2.4: The linearized model.
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FIGURE 2.6: The generated currents in the dq0 frame.

The rectifier and the inverter receive the gate control signals from a

Space-Vector Pulse-Width Modulation block. The input of the block are the

voltages, in the alpha-beta frame, which point to the desired location of the

voltage phasor (Mohan, 2012).

The PI controller which assured a certain angular velocity was designed

considering the third equation from (2.3). However, the other two were tuned

using Ziegler-Nichols (Popescu et al., 2006).

Feedforward control is sufficient for the inverter. As long as it operates in

the nominal mode, its behavior does not directly influence the generator. It

only considers the grid-side voltages and currents. Therefore, it would react

to grid disturbances, not to changes in the wind speed. The three-phase

setpoints selected for the inverter were AC currents with an amplitude of

230V and a frequency of 50Hz.

The currents obtained in the dq0 frame, using the rectifier and inverter

control systems described earlier, are shown in Figure 2.6.

2.5 Conclusions

In the first part of this chapter, it was proven the necessity for using a

nonlinear model, in the case of a PMSG. A nonlinear model has an insignif-

icant estimation error, while a linear one has an error with a amplitude

around four. Moreover, it was shown that using a discrete integrator with

a continuous model is the best approach to discretize the PMSG. Therefore,

the resulting system is hybrid, having both a continuous part (the model)

and a discrete one (the state estimator).

Among the different control systems which are present in a WT, feedback

control system was implemented for the rectifier and feedforward control for
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the inverter. The generated currents, transformed in the dq0 frame, are

stable, proving the effectiveness of the control structure.
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Chapter 3

State Estimation

3.1 Introduction

S
TATE estimators are one of the two possible approaches to assure sen-

sor redundancy - the other being state observers. This redundancy is

critical for the monitoring of sensors and different equipment, and for con-

structing residuals which may be later used in fault diagnosis. The purpose

of this chapter is to lay a foundation for the latter.

The main difference between state observers and estimators is that the

latter consider the statistical properties of the process. They can use the

covariance matrices of the process and the measurement noises. They also

do not require a priori knowledge of the process uncertainties or the impact

of faults. They can also be more insensitive to noises.

The best-known state estimator is the Kalman Filter (KF). It is an opti-

mal estimator for linear systems affected by Gaussian noises, and is widely

used. The Extended Kalman Filter (EKF) is the first nonlinear extension of

the classical KF. It is widely used in localization and navigation, being the de

facto standard. The Unscented Kalman Filter (UKF) is a further nonlinear

extension of the Kalman Filter. It is used in military and aeronautic appli-

cations, as it can have superior performance to the EKF, in the presence of

strong nonlinearities (Kulikov and Kulikova, 2017).

The objective of this chapter is to study the differences between these

three state estimators. The selected case study is the Permanent Magnet

Synchronous Generator (PMSG). These are used in direct drive wind tur-

bines (Gliga, Lupu, et al., 2017), and their motor counterparts are widely

used in hybrid electric vehicles Alameh et al., 2015. Multiple faults can

affect such a machine (Alameh et al., 2015) (Niu and S. Liu, 2018), the

most common being inter-turn short circuit, rotor demagnetization and ec-

centricity. These faults are usually detected and identified through signal

processing techniques, by monitoring the vibrations of the generator shaft

or of the stator. Nonetheless, dedicated sensors raise the cost of the equip-

ment. Research was conducted on generator fault diagnosis and perfor-

mance monitoring via currents or voltages (Ogidi, Barendse, and Mohamed
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A. Khan, 2016) (Q. Zhang, Tan, and Xu, 2018), to eliminate the need for ded-

icated sensors. However, these electrical signals are affected by the change

in wind speed and the results obtained from signal processing methods like

the Fast Fourier Transform can be erroneous (Faiz and Nejadi-Koti, 2016).

A possible solution is to generate residuals between the real currents

and the estimated ones Gliga, Chafouk, et al., 2018b. A state estimator can

be used to ensure the required redundancy. The challenge, when using a

state estimator, is to find out the covariance matrices for the process and

for the measurement noises. If the matrices are not properly chosen, the

estimated states might not converge to the real ones. The values of these

matrices must be close to the real covariances to ensure the consistency

of the estimation. The covariance matrix of the measurement noise can be

easily found out using the procedure presented in (Levy, 2016). It is diffi-

cult to select a constant matrix for the process noise, since it is very hard,

if not impossible, to estimate the process noise. Even if a good constant

covariance matrix could be chosen, one which would guarantee the consis-

tency of the estimated states, it would only be suited for certain values of

the noise. If the environmental conditions or the degradation of the equip-

ment would change the intrinsic uncertainties of the process, the covariance

would change, and the estimation consistency would no longer be ensured.

The proposed solution is to use an iterative method which could be im-

plemented online. The covariance matrix would be automatically adapted

to always ensure the consistency of the estimated states. The method is

simple to utilize, but its usage is constrained to certain non-linear systems.

Its advantages and limitations are discussed in the conclusions.

This chapter is organized as follows: The algorithms of the KF, EKF and

UKF are presented in Section 3.2. The estimation method is explained in

Section 3.3, together with the obtained results. The three Kalman filters are

compared in Section 3.4. The conclusions close this chapter.

3.2 Kalman Filters

3.2.1 The Kalman Filter

Although the linear model from (2.5) introduces significant modelling er-

rors, it is interesting to see if a KF, which integrates this model, would

achieve better results. The Kalman Filter uses a linear model of the form

x̂k+1 = Ak ∗ x̂k +Bk ∗ uk,

ŷk = C ∗ x̂k ,
(3.1)

where x ∈ R
nx are the states of the process. u ∈ R

nu are the inputs and

y ∈ R
ny are the outputs of the process. A ∈ R

nx∗nx is the state matrix, B ∈
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R
nx∗nu is the input matrix and C ∈ R

ny∗nx is the output matrix. The number

of states is nx, the number of inputs is nu and the number of measurements

is ny. The sampling time is k. The "^" denotes an estimation.

The model from (2.5) can be put into this form by combining the matrices

G and H and using a vector with three elements for the inputs,





idk+1

iqk+1



 = Ak ∗





idk

iqk



+Bk ∗











Vdk

Vqk

φ











, (3.2)

where

Ak = Fk =





1− RsTs

Ls
TsnPωk

−TsnPωk 1− RsTs

Ls



 ,

Bk =





Ts

Ls
0 0

0 Ts

Ls
−TsnPωk

Ls



 ,

C =





1 0

0 1



 .

Then, the classical KF algorithm can be used (S, tefănoiu and Culit, ă,

2009)

• Prediction phase:

P̂k = AkP̂
∗
kA

T
k +Qk; (3.3)

• Update phase:

Kk = P̂kC
T (CP̂kC

T +Rk)
−1; (3.4)

x̂∗k+1 = x̂k +Kk(yk − Cx̂k); (3.5)

P̂ ∗
k = (I −KkC)P̂k; (3.6)

where P ∈ R
nx∗nx is the covariance matrix of the estimation error, Q ∈ R

nx∗nx

and R ∈ R
ny∗ny are the covariance matrices of the process and the measure-

ment noises. K ∈ Rnx∗ny is the Kalman gain and y ∈ Rny are the measure-

ments acquired from the process. The "∗" denotes the corrected estimation.

3.2.2 The Extended Kalman Filter

The EKF also introduces a linearization, through the Taylor Series Ex-

pansion (TSE) of the state function. This linearization is used to estimate

the covariance matrix of the estimation error. However, these linearizations

are computed only around the current estimated state, so the introduced

error should be small.
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The EKF uses the most general formulation of a nonlinear model

x̂k+1 = f(x̂k, uk), (3.7)

yk = h(x̂k), (3.8)

where the state function is f : Rnx+nu → R
nx and the measurement function

is h : Rnx → R
ny . For the EKF, the model presented in (2.3) is already written

in the required form. The algorithm of the EKF is (Foo, X. Zhang, and D. M.

Vilathgamuwa, 2013):

• Prediction phase:

P̂k = FkP̂k−1F
T
k +Qk; (3.9)

• Update phase:

Kk = P̂kH
T
k (HkP̂kH

T
k +Rk)

−1; (3.10)

x̂∗k = x̂k +Kk ∗ (yk − ŷk); (3.11)

P̂ ∗
k = (I −KkHk)P̂k; (3.12)

where F ∈ R
nx∗nx and H ∈ R

ny∗nx are the Jacobians of the state and mea-

surement functions.

3.2.3 The Unscented Kalman Filter

The UKF uses the Unscented Transform (UT) (Althof and Ferber, 2017)

to account for the nonlinearity in the model. The current estimation of the

state is treated as the mean value of a probability distribution, which has the

same covariance as the estimation error. Depending on the implementation,

either 2nx+1 (for a full order UT) or nx+1 (for a reduced order UT) points are

chosen around the current mean. Each sigma point has a certain weight

associated with it. There are multiple ways to choose the sigma points (Van

der Merwe and Wan, 2001) (Terejanu, 2008).

The UKF uses the same model shown in (2.3). The chosen (sigma) points

are propagated through the state function. The new points are used to

compute the new estimate of the mean, i.e. the state, and its covariance.

The new points are also propagated through the measurement function, and

their mean is the estimated output of the system (Van der Merwe and Wan,

2001). The next steps are similar, in concept, to the algorithm of the EKF.

The classical formulation of the UKF uses the square root of the co-

variance matrix of the estimation error to compute the sigma points. To

calculate the square root, the covariance matrix must be at least positive

semi-definite, which is not guaranteed by the algorithm. A more stable ver-

sion of the UKF, with a similar degree of complexity is the Square Root UKF

(SRUKF). Its algorithm is (Van der Merwe and Wan, 2001):
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• Choose the sigma points:

– Select the weights of the sigma points, (Terejanu, 2008)

Wi =
1−W0

2nx
, (3.13)

where W0 is chosen arbitrarily. A positive value moves the sigma

points further away from the previous estimate of the state, while a

negative one brings them closer to the previous average. However,

the weights must obey the condition

2nx
∑

i=0

Wi = 1.

– Compute the scaling parameters

ηi =

√

nx

1−Wi
. (3.14)

– Choose the actual sigma points

, χk−10|k = x̂∗k−1, (3.15)

χk−1i|k = x̂∗k−1 + ηiŜ
∗
k−1, (3.16)

where i = 1, nx

χk−1i|k = x̂∗k−1 − ηiŜ
∗
k−1, (3.17)

where i = nx + 1, 2nx;

• Prediction phase:

– Propagate the sigma points through the state function

χki|k = f(χk−1i|k); (3.18)

– Compute the new state estimation

x̂k =

2nx
∑

i=0

Wiχki|k; (3.19)

– Calculate and then update the square root of the state covariance

matrix

Ŝxk
= qr([

√

Wi(χki|k − x̂k)
√

Qk]); (3.20)

for i = 1, 2nx. "qr" refers to the QR decomposition.

Ŝxk
= cholupdate(Sxk

, χk0|k − x̂k, sign(W0)); (3.21)
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"cholupdate" is the rank 1 update. The rank update formula is

A1 = A± x ∗ xT where A is the matrix obtained through a Cholesky

factorization (replaced by a QR one in this case) and x is a column

vector. The sign to be used in the update is the one of W0.

– Propagate the "state" sigma points through the measurement func-

tion

Yki = h(χki|k); (3.22)

– Compute the new measurement estimation

ŷk =

2nx
∑

i=0

WiYki ; (3.23)

• Update phase

– Compute and then update the square root of the output covariance

matrix

Ŝyk = qr([
√

Wi(Yki − ŷk)
√

Rk]); (3.24)

for i = 1, 2nx

Ŝyk = cholupdate(Syk ,Yk0 − ŷk, sign(W0)); (3.25)

– Calculate the covariance between the states and the measure-

ments

P̂xyk =

2nx
∑

i=0

Wi(χki|k − x̂k)(Yki − ŷk)
T ; (3.26)

– Find out the Kalman gain

Kk = (P̂xkyk/Ŝ
T
yk
)/Ŝyk ; (3.27)

– Update the state estimation

x̂∗k = x̂k +Kk(yk − ŷk); (3.28)

– Correct the square root of the state covariance matrix

Sxk
= cholupdate(Sxk

,KkSŷk ,−1). (3.29)

3.3 Covariance Estimation

The measurement noise covariance matrix can be easily estimated (Levy,

2016). The measurement noise affects the data through the sensors. In-

formation about this perturbation is available in the sensor datasheet, as
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the sensor tolerance or precision. This is the standard deviation of the mea-

surements of the sensor. Thus, the covariance matrix can be computed as:

R =

















σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
n

















,

where σi, i = {1, 2, ..., ny} is the standard deviation on each measurement

channel. This matrix is diagonal because there is a single sensor on each

measurement channel. Therefore, the data acquired by each sensor is only

affected by the noise which perturbs that channel.

One possible counter argument to the above reasoning might be that R

is constant and the noise covariance might change due to sensor faults or

degradation of the equipment. Firstly, sensors are routinely calibrated, at

intervals specified by the legislation of each country, or by the manufac-

turer. This calibration frequency is also mentioned in international stan-

dards, such as ISO:9001 (DNV GL, 2015). Therefore, the tolerance should

remain within the limits specified on the datasheet and the covariance ma-

trix should be constant. Secondly, if the sensor is faulty, it should be re-

placed. A sensor fault can be quickly diagnosed using an EKF (Idrissi, El

bachtiri, and Chafouk, 2017).

Thus, only the process noise covariance matrix Q remains to be com-

puted. The nonlinear state-space model of the real process is

xk = f (xk−1, uk) + wk, (3.30)

yk = h (xk) + vk, (3.31)

where wk ∈ R
nx is the noise or uncertainty which affects the process and

vk ∈ R
ny is the perturbation of the measurements. These noises are as-

sumed to be independent and normally distributed. The lack of symbols

over the variables means that all of them are the real states and outputs of

the process.

The estimation error is

ǫk = yk − ŷk = h (xk) + vk − h (x̂k) , (3.32)

which can be re-written as

ǫk = h (f (xk−1, uk) + wk) + vk − h
(

f
(

x̂∗k−1, uk
))

. (3.33)

Assumption 1: h : Rnx → Rny is a linear function defined as h (x) = Ax+b,
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where A ∈ Rny∗nx is an invertible matrix and b ∈ Rny is a vector. Since A is

invertible, it is a square matrix and ny = nx. For simplicity, A and b will be

considered constant.

This assumption is restrictive. The number of measurements is usually

higher than the number of states and the measurement function is generally

nonlinear. There are workarounds around these constraints, which will be

the focus of future research. The possible solutions are:

• For a linear measurement function with a non-invertible matrix A, the

pseudoinverse can replace the inverse of the matrix;

• A non-linear measurement function can be approximated using Taylor

Series Expansion (TSE). For simplicity, it can be linearized by consid-

ering only the first term of the TSE, namely the Jacobian matrix. The

same reasoning was used to design the EKF. If the Jacobian is not in-

vertible, its pseudoinverse can be used. This Jacobian can be either

pre-computed or estimated online using cvasi-Newton methods.

Equation (3.33) becomes

ǫk = h (f (xk−1, uk)) + h (wk) + vk − h
(

f
(

x̂∗k−1, uk
))

. (3.34)

Assumption 2: The estimation error between the real and the estimated

states tends to zero, i.e. limk→inf (xk − x̂k) = 0.

This assumption is also restrictive, since it implies that the covariance

matrix of the error tends to zero. However, in usual applications, the co-

variance may tend to a non-zero value or even non-constant values. In the

second case, it would oscillate around a certain set of values for its elements,

and the amplitude and frequency of these oscillations would depend on the

uncertainties affecting the process. Therefore, the system should have a

high observability index, in order to use this method.

Equation (3.34) can be reduced to

ǫk = h (wk) + vk. (3.35)

The covariance matrix of the error can be computed as

ˆcov (ǫk, ǫk) = ˆcov (h (wk) + vk, h (wk) + vk) , (3.36)

ˆcov(ǫk, ǫk) = ˆcov(Awk + vk + b, Awk + vk + b). (3.37)

b is a constant vector, therefore

ˆcov (ǫk, ǫk) = ˆcov (Awk + vk, Awk + vk) . (3.38)
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The previous equation can be re-written using the bilinearity property of

the covariance (Culit, ă and S, tefănoiu, 2008)

ˆcov (ǫk, ǫk) = ˆcov (Awk, Awk) + ˆcov (vk, vk) + ˆcov (Awk, vk) + ˆcov (vk, Awk) . (3.39)

The noises are independent even when they are propagated through the

linear transformation A. Therefore, the covariance of the estimation error is

equal to

ˆcov (ǫk, ǫk) = ˆcov (Awk, Awk) + ˆcov (vk, vk) . (3.40)

The previous equation can be rewritten as

ˆcov (ǫk, ǫk) = A · ˆcov (wk, wk) ·A
T + ˆcov (vk, vk) , (3.41)

which can be reformulated using the specific notations of the EKF

ˆcov (ǫk, ǫk) = AQkA
T +R. (3.42)

The estimation of the process noise covariance matrix is

Qk = A−1 ( ˆcov (ǫk, ǫk)−R)
(

A−1
)T

. (3.43)

The covariance matrix of the estimation error can be computed online

using (Burkholder, 2013)

ˆcov (ǫk, ǫk) = ˆcov (ǫk−1, ǫk−1)−
ˆcov (ǫk−1, ǫk−1)− (ǫk − ǭk) (ǫk − ǭk)

T

k
, (3.44)

where ǭk is the mean of the estimation error, computed at sampling time k.

3.3.1 Simulation of the proposed method

The proposed method was tested for an EKF, which was used to estimate

the currents generated by the PMSG of a direct drive wind turbine. To use

(2.1) and (2.2) in the EKF, the authors used the continuous model with

a discrete-time integrator, as shown in Chapter II. This approach is also

used by the Simscape/Power Systems toolbox to discretize the model of the

generator, when the user selects a discrete-time simulation.

The proposed method was compared with two other ones from the liter-

ature, namely the ones presented in (Z. Liu and He, 2017) and (Akhlaghi,

Zhou, and Huang, 2017).

In a real implementation, the noise cannot be directly measured. The

quantifiable measure of performance is the error between the generated and

the estimated currents.
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FIGURE 3.1: The profile of the wind speed

In the simulation, the wind speed changes from 8m/s to 12m/s, and it is

disturbed by a gaussian noise with a mean of zero and a variance of 0.2.

The profile of the wind speed is shown in Figure 3.1.

To test the proposed method, the sensor noise covariance matrix was

initialized with the values

R =





0.0001 0

0 0.0001



 ,

and was kept constant throughout the simulations. These values corre-

spond to a current sensor with a tolerance of 1% (LEM, n.d.). The EKF was

implemented to estimate the currents in the dq0 reference frame. However,

the estimation error is presented in the abc reference frame.

Initially, no noise was added to the measurements and the parameters

of the model were considered constant. The results obtained are shown in

Figures 3.2, 3.3, and 3.4.

There is a small error around 10−13 for all the three methods, due to the

way Simscape Power Systems library works: the electrical model is approx-

imated with either a state space model (for continuous or discrete simula-

tions) or with a transfer function model (for phasor simulation) (TransÉn-

ergie Technologies Inc, 2003).

Due to the limitations of the Simscape/Power System toolbox, the pa-

rameters of the blocks, which are used to model the electrical components

such as the generator, cannot be changed while the simulation is running.

Therefore, all possible 27 combinations of parameter values were considered

- maximum, minimum and nominal for each one, in the absence of pertur-

bations. The results are similar for many combinations. The system was

simulated when Rs is 10% lower, Ls is 7% higher and Φ is 2.5% lower than

their nominal values, and no noise is added.
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FIGURE 3.2: The estimation error using the EKF with the pro-
posed method.
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FIGURE 3.3: The estimation error using the EKF with the
method from (Z. Liu and He, 2017).
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FIGURE 3.4: The estimation error using the EKF with the
method from (Akhlaghi, Zhou, and Huang, 2017).
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FIGURE 3.5: The estimation error using the EKF with the pro-
posed method. The parameters are different from the nominal

case.
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FIGURE 3.6: The estimation error using the EKF with the
method from (Z. Liu and He, 2017). The parameters are dif-

ferent from the nominal case.
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FIGURE 3.7: Zoom in on the estimation error computed using
the EKF with the method from (Z. Liu and He, 2017). The

parameters are different than in the nominal case.

The results obtained, when the parameters of the process are different
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FIGURE 3.8: The estimation error using the EKF with the
method from (Akhlaghi, Zhou, and Huang, 2017). The param-

eters are different from the nominal case.

than the ones of the model, are shown in Figures 3.5, 3.6 and 3.8. Due

to the large estimation error of the method from (Z. Liu and He, 2017), a

zoomed in version is shown in Figure 3.7. During a 10 sec simulation, the

output is continuously increasing, therefore the simulation duration was

changed to 30 sec, to completely observe the behavior. Because of the very

low sampling period, 10−6, the computer would run out of memory for longer

simulations.

When the process has different parameters than the model, the EKF

which uses the proposed method has the lowest error, less than 0.1A. It is

followed by the EKF which utilizes the procedure from (Akhlaghi, Zhou, and

Huang, 2017). The method from (Z. Liu and He, 2017) causes the EKF to

become unstable.

Zero-Mean Noises (ZMNs) was added to the signals used by the EKFs.

These noises were introduced by the sensors measuring the voltages, the

angular velocity of the shaft and the currents. The voltage was perturbed

by a noise with a variance of 2, to correspond to a sensor tolerance of 0.5%

(LEM, 2013). The noise affecting the current had a variance of 3.5, as a

sensor with a tolerance of 1% (LEM, n.d.). The angular velocity was affected

by a perturbation with a variance of 14, to simulate a sensor with a tolerance

of 1%. The values of the variances were chosen using the assumed tolerance

and the maximum amplitudes of these signals. The results are presented in

Figures 3.9, 3.10, and 3.11.

In Figures 3.12 to 3.15 are presented the estimation errors in the pres-

ence of Non-Zero Mean Noises (NZMN). The noise affecting the voltages has

a mean of 1, the one perturbing the angular velocity has a mean of 2 and

the current perturbation has a mean of 3. Although these values were cho-

sen arbitrarily, they can represent sensor biases. In this case, there is a



38 Chapter 3. State Estimation

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

Estimation Error

Time [s]

A
m

p
li

tu
d

e
 [

A
]

FIGURE 3.9: The estimation error using the EKF with the pro-
posed method, in the presence of zero mean noises.
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FIGURE 3.10: The estimation error using the EKF with the
method from (Z. Liu and He, 2017), in the presence of zero

mean noises.

DC component in the error in this case. The mean of the error can be used

to detect sensor faults. Machine faults can be detected through signal pro-

cessing techniques applied on the residuals.

The results of all the simulations are summarized in Table 3.1.

None of the methods seems to be affected by the variation in the wind

speed. The only significant difference between them is the speed. The pro-

posed method is the fastest. It is followed by the one from (Akhlaghi, Zhou,

and Huang, 2017) and then the procedure from (Z. Liu and He, 2017). The

speed of each method was found out by observing the increments of the sim-

ulation time, in Simulink. Their values were: 10 for the proposed method, 2

for the one from (Z. Liu and He, 2017) and 6.66 for the one from (Akhlaghi,

1Zero Mean Noises
2Non-Zero Mean Noises
3Different Parameters
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FIGURE 3.11: The estimation error using the EKF with the
method from (Akhlaghi, Zhou, and Huang, 2017), in the pres-

ence of zero mean noises.

TABLE 3.1: Comparison of the different methods.

Method
RMS Error in presence of

Speed [%] Applicability
no noise ZMNs 1 NZMNs 2 DP 3

Proposed ≈ 10−14 3.5004 11.0669 ≈ 10−6 100 Any Algorithm

(Z. Liu and He, 2017) ≈ 10−14 3.5051 347.9036 ≈ 10+3 20 Only the EKF

(Akhlaghi, Zhou, and Huang, 2017) ≈ 10−14 3.5004 11.0669 ≈ 10−4 66.6 Only the EKF

Zhou, and Huang, 2017). They were later converted to percentage of the

speed of the proposed method. These results were obtained using the "Nor-

mal" simulation mode in Simulink.

The maximum amplitude of the generated current is around 400 Am-

peres. In the presence of noises, the proposed method has an estimation

error of 3.68%, as the one from (Akhlaghi, Zhou, and Huang, 2017).

The proposed method is very easy to implement, but it requires the co-

variance matrix of the measurement noise. It is at least as precise as the

method from (Akhlaghi, Zhou, and Huang, 2017), but it is faster, because

of the lower complexity. Moreover, it is completely independent of the EKF,

and can be used for any algorithm. The potential disadvantage of the pro-

posed method is its reliance on the precomputed covariance matrix of the

measurement noise. If this matrix does not closely approximate the real

covariance, the estimation of the EKF might not be accurate and precise.

The procedure from (Z. Liu and He, 2017) is the slowest. Its accuracy

and precision are lower than the other two. It can only be applied for the

EKF.

The method from (Akhlaghi, Zhou, and Huang, 2017) can be used only

for the EKF. In simulation, the forgetting factor α was chosen equal to 0.5.
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FIGURE 3.12: The estimation error using the EKF with the
proposed method, in the presence of non-zero mean noises.
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FIGURE 3.13: The estimation error using the EKF with the
method from (Z. Liu and He, 2017), in the presence of non-

zero mean noises.
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FIGURE 3.14: Zoom in on the estimation error using the EKF
with the method from (Z. Liu and He, 2017), in the presence of

non-zero mean noises.
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FIGURE 3.15: The estimation error using the EKF with the
method from (Akhlaghi, Zhou, and Huang, 2017), in the pres-

ence of non-zero mean noises.

The frequency of the errors is mainly due to the very small sampling

period used for the simulation, 10−6. In the simulation, noise is generated

at each sampling moment, while the parameters of the process have their

nominal values. Due of the lack of a filter, the noise was directly propagated

in the current. Moreover, the simulation duration is 10s, and the frequency

of the generated current is 50Hz. In each figure, expect Figures 3.5 to 3.8,

are shown three phases, therefore 5000 oscillations of the currents.

The estimations of the noise covariance matrices, in the nominal case,

are:

• For the simulations without perturbations:

– The proposed method:

* The elements on the main diagonal of Q have negative values

in the order of 10−4 while the elements on the anti-diagonal

have negative values in the order of 10−25.

– The method from (Z. Liu and He, 2017):

* The elements of Q are zero.

* The elements of R have values in the order of 10−35 on the

diagonal and in the order of 10−36 on the anti-diagonal.

– The method from (Akhlaghi, Zhou, and Huang, 2017):

* The elements on the main diagonal of Q have positive values

in the order of 10−24 and 10−22, while the elements on the anti-

diagonal have positive values in the order of 10−23.

* The elements of R have values in the order of 10−3 on the diag-

onal and a negative element in the order of 10−23 together with

another positive one in the order of 10−24 on the anti-diagonal.
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• For the simulations with zero mean noises:

– The proposed method:

* The elements on the main diagonal of Q have positive values in

the order of 105 while the elements on the anti-diagonal have

negative values in the order of 105.

– The method from (Z. Liu and He, 2017):

* The elements on the main diagonal of Q have positive values in

the order of 1011 while the elements on the anti-diagonal have

negative values in the order of 109.

* The elements of R have values in the order of 101, namely 10.4

and 33.46 on the main diagonal and 18.65 on the anti-diagonal.

– The method from (Akhlaghi, Zhou, and Huang, 2017):

* The elements on the main diagonal of Q have positive values in

the order of 106 while the elements on the anti-diagonal have

negative values in the order of 106.

* The elements of R have values in the order of 10−3, with nega-

tive elements, of the same order, on the anti-diagonal.

• For the simulations with non-zero mean noises:

– The proposed method:

* The elements on the main diagonal of Q have positive values in

the order of 1010 while the elements on the anti-diagonal have

negative values in the order of 1010.

– The method from (Z. Liu and He, 2017):

* The elements on the main diagonal of Q have positive values in

the order of 1011 while the elements on the anti-diagonal have

negative values in the order of 108.

* The elements of R have the values 0.7655 and 40.26 on the di-

agonal, respectively 5.552 on the anti-diagonal.

– The method from (Akhlaghi, Zhou, and Huang, 2017):

* The elements on the main diagonal of Q have positive values in

the order of 1011 while the elements on the anti-diagonal have

negative values in the order of 1011.

* All the elements of R have values in the order of 10−1, with a

negative element on the anti-diagonal.

• For the simulation without perturbations, but with different parame-

ters for the process:

– The proposed method:
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* The elements on the main diagonal of Q are ≈ 1018 and ≈ 1012,

while the elements on the anti-diagonal are both ≈ 1015.

– The method from (Z. Liu and He, 2017):

* Both Q and R have values that are not numbers (NaNs in Mat-

lab), hence the instability of the EKF which uses this method.

– The method from (Akhlaghi, Zhou, and Huang, 2017):

* The elements on the main diagonal of Q have positive values

in the order of 1019 and 1014, while the elements on the anti-

diagonal have negative values in the order of 1017.

* The elements of the first row of R are ≈ −107 and ≈ −104, while

the elements on the second row are −1215 and −4735.

The results of the proposed method are very similar the ones obtained

using the procedure presented in (Akhlaghi, Zhou, and Huang, 2017). The

values of the process noise covariance matrices tend to have similar orders

of magnitude. The measurement noise covariance matrix estimated using

the method from (Akhlaghi, Zhou, and Huang, 2017) tends to have lower

values than the constant covariance matrix used in the proposed method.

This may explain their similar behaviors and results.

3.4 Comparison between the state estimators

The results of the comparison are shown and Figures 3.16 - 3.18 and

they are summarized in Table 3.2. No noises were introduced, to test their

behavior in the ideal case.

The initial error of the SRUKF is not zero but is close to 10−4. However,

in time it quickly converges to ≈ 10−13. This is due to improper initialization,

so the initial error is ignored.

As complexity, the KF and the EKF are the same. This is because the

Jacobian of the state function can be computed in advance. It depends on

ωmk
, but so does the state matrix of the linear model. The SRUKF is by far

the most complex.

The EKF is the fastest of the three filters, being closely followed by the

KF and then, by a large margin, the SRUKF. The sigma point selection,

the propagation of the 2nx + 1 points through the state function, the QR

decompositions and the Cholesky rank update slow it down considerably.

The slowdown of the KF might seem surprising. The linear model requires

the computation of more mathematical operations - 27, in comparison with

the nonlinear one - 21. As the rest of the algorithms are the same, the

slowdown is due only to the model.

All filter present oscillations. While the EKF and UKF assure a very low

modelling error, the KF is plagued by rather large spikes. To understand
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FIGURE 3.16: Estimation error using the Kalman Filter.
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FIGURE 3.17: Estimation error using the Extended Kalman
Filter.
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FIGURE 3.18: Estimation error using the Square Root Un-
scented Kalman Filter.
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FIGURE 3.19: Zoom in of the estimation error using the KF.

what is happening, a zoomed in view of the estimation error of the KF is

presented in Figure 3.19.

Before the large spike, the error of the KF oscillates but fairly slow, with

certain pauses between each oscillation. In time, due to accumulation of

energy, large oscillations appear, like the great spikes. After the large spike,

the oscillation frequency has increased, so all the energy causing the pre-

vious large spikes is dissipated more quickly. A similar phenomenon can

be seen for the EKF and UKF, where very small oscillation are present, but

with a very high frequency.

The cause of these oscillations is the approximation made by Simulink.

The electrical model of the wind turbine was made using the Simscape /

PowerSystems toolbox. When the Simulink diagram is compiled, the elec-

trical model is approximated by a state space model. This introduces dif-

ferences between the model used in the state estimators and the one used

by Simulink. All filters try to compensate for this difference in a similar

manner, as a P controller. As the KF uses a linearized model which is even

further away from the one used by Simulink, it is harder for it to achieve

and maintain a null error. However, because both the state matrix used

by the KF and the Jacobian of the state function used by the EKF depend

TABLE 3.2: Comparison of the state estimators.

Estimator Speed [% of EKF] Maximum error Complexity

KF 97.5 ≈ 194 Low

EKF 100 ≈ 10−13 Low

SRUKF 40 ≈ 10−13 High
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on time, together with the intrinsic design (varying amplification and state

covariance matrix) of the two filters, they manage to minimize the error. The

UT transform helps the SRUKF to minimize the error. The EKF and SRUKF,

as they use the nonlinear model, are better.

One might argue that both the EKF and the nonlinear model with a dis-

crete integrator produce a similar estimation error (in the order of 10−12 and

10−13), so the added complexity of the EKF is useless. However, when noise

is added, the utility of the EKF is obvious (Figures 3.20 and 3.21). Zero

mean noise with a variance of one was added to the measurement of the

voltages, which are used as inputs for the model.
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FIGURE 3.20: Estimation error using the nonlinear model, in
the presence of gaussian noise.
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FIGURE 3.21: Estimation error using the EKF, in the presence
of gaussian noise.
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3.5 Conclusions

A new method, for the estimation of the process noise covariance matrix,

was presented in this chapter. Although it is shown in the context of an EKF,

is it independent from it and can be used with any other type of algorithm. It

only uses the measured and estimated signals, and the model of the process.

The procedure only needs an estimation of the covariance matrix of the

measurement noise. This can be easily obtained from the datasheets of the

sensors, by considering the sensor tolerance as the standard deviation of

the data acquired on each channel.

The proposed method was compared with two other ones, and the sim-

ulation results proved its effectiveness. The procedure is simple, fast and

precise. The estimation error can be lowered if the measurement signals

are filtered before they are input in the EKF. Filters were not used in the

simulation.

Moreover, this method can be used for linear systems.

The disadvantages of the proposed method are:

• The measurement function has to be linear, of the form h (x) = Ax + b

where the matrix A has to be invertible;

• The number of inputs has to be equal to the number of states;

• The internal states have to be observable.

Three state estimators were compared: the KF, the EKF and the SRUKF.

The EKF is about 2.5 times faster than the SRUKF and its error is in the

order of 10−13, as the SRUKF, which can be reasonably approximated by 0.

The KF could not compensate completely for the linearization of the model.

Because the new model required more mathematical operations, it was also

slower than the EKF.

The behavior of the different filters in the presence of the uncertainties

generated by the functioning of Simulink and of the Simscape/PowerSys-

tems toolbox was also examined. It was shown that the behaviors of the

filters are similar to a proportional controller.
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Chapter 4

Diagnosis of the Permanent

Magnet Synchronous

Generator

4.1 Introduction

D
IRECT Drive Wind Turbines (DDWTs) are widely used in the renewable

energy industry, especially in offshore installations. They eliminate the

need for a gearbox, which is the component most prone to faults (Qiao

and Lu, 2015a). They are usually equipped with Permanent Magnet Syn-

chronous Generators (PMSGs) (Gliga, Lupu, et al., 2017), a type of Perma-

nent Magnet Synchronous Machines (PMSMs). PMSMs are widely used as

motors in electric vehicles (Alameh et al., 2015).

Most of the research is focused on Permanent Magnet Synchronous Mo-

tors (PMSMs), which, physically, are identical to PMSGs. Because there will

be used results from the research on motors, the terms PMSG and PMSM

will be used interchangeably.

Although a great deal of research was conducted on the fault diagnosis

and identification of PMSMs, they are still prone to faults. PMSG faults

represent 14.7% of all faults in a WT, and they account for 24.42% of the

downtime (Pinar Pérez et al., 2013).

Fault Diagnosis and Identification (FDI) methods are usually split into

three large categories, depending on what approach they are based on: sig-

nal processing, mathematical modelling and artificial intelligence (Venkata-

subramanian, Rengaswamy, Yin, et al., 2003), (Venkatasubramanian, Ren-

gaswamy, Kavuri, and Yin, 2003), (Venkatasubramanian, Rengaswamy, and

Kavuri, 2003). This work will focus on FDI methods based on signal pro-

cessing, as they are used in commercial Condition Monitoring (CM) and

Structural Health Monitoring (SHM) systems for wind turbine installations

(Yang et al., 2014).

Signal processing is commonly used in the diagnosis of PMSM faults

(Qiao and Lu, 2015b) (Riera-Guasp, Antonino-Daviu, and Capolino, 2015).
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Spectrum analysis of the stator currents is a common diagnosis method,

through The Fast Fourier Transform (FFT). However the diagnosis is hin-

dered, because the harmonics of the current change with the wind speed

(Faiz and Nejadi-Koti, 2016), and so does the spectrum. The Wavelet Trans-

form or the Hilbert Transform are some of the methods used to solve this

problem (Alameh et al., 2015), but they are computationally intensive and

more complex.

The Extended Kalman Filter (EKF) is presented in this chapter, as a so-

lution to enable the use of the FFT. If the residuals between the estimated

currents, using the EKF, have the same spectrum regardless of the change

in wind speed, they can be used for signal processing-based diagnosis. How-

ever, the impact of the faults must be noticeable in the residuals or in their

spectrum.

The FFT computes the spectrum of a given signal over all possible fre-

quencies, which is not efficient when only few frequencies are of interest. To

counteract this drawback, the authors turned to the Goertzel Algorithm (GA)

(Goertzel, 1958). It is implemented using a Finite Impulse Response (FIR)

filter connected in series with an Infinite Impulse Response (IIR) filter. The

GA can be used to evaluate the magnitude of a signal at a specific frequency.

The GA is used in voice communication, in dual-tone multi-frequency sig-

naling (DMTF), to recognize the key which was pressed by the user on the

phone, when dialling a number (R. G. Lyons, 2010), (Oppenheim, Schafer,

and Buck, 1999). Because of the low number of frequencies of interest in

the diagnosis of a PMSG, it is appropriate for this application as well.

In this chapter, the GA will be tested for the FDI of a PMSG. A diagno-

sis procedure is also presented, which can detect and identify the different

faults which can affect a PMSG.

The methodology which will be followed in this chapter is:

1. Find out the possible faults which can affect a PMSG;

2. List the symptoms they induce into the generated currents;

3. Simulate the functioning of a DDWT cloat different wind speeds;

4. Introduce the symptoms of the faults in the generated currents;

5. Estimate the currents using an EKF;

6. Compute the residuals between the estimations and the measured cur-

rents;

7. Apply the FFT to calculate the spectrum of the residuals;

8. Check if the spectrum remains constant at different wind speeds and

if the faults influence the spectrum;
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9. Construct a bank of Goertzel Filters (GFs) to monitor the harmonic

content inside different frequency bins;

10. Analyze the outputs of the GFs to determine if they can be used for

FDI.

In Section 4.2, the most common generator faults will be described, to-

gether with the fault signature matrix and the symptoms they induce into

the generator currents. In Section 4.3, the generation of the residuals, using

the EKF, will be presented. The effect of the different faults on the spectrum

of the residuals will also be shown. The Goertzel Algorithm will be presented

in Section 4.4. The FDI procedure for a PMSG will be explained in Section

4.5. Simulation results and their discussion will follow in section 4.6. The

conclusions will be presented at the end of this chapter.

4.2 PMSG Faults

The most common faults which can affect a PMSM are the demagneti-

zation of the rotor, eccentricity and inter-turn short circuit (Alameh et al.,

2015).

Demagnetization Fault (DMF) (Faiz and Nejadi-Koti, 2016) means that

the rotor loses some or all of the residual magnetic flux. The main factors

which contribute to DMF are high temperatures or cracks which had ap-

peared during the manufacturing process. Another possible cause can even

be the magnetic field of the stator. The stator currents and voltages are con-

trolled to maintain a certain angular velocity or/and a torque in the rotor.

When the rotor is slowed slowed down, the magnetic field of the stator acts

like a brake. This effect can damage the rotor. There are 2 types of DMF:

• Partial DMF means that just parts (or areas) of the rotor are affected;

• Complete DMF means that the whole rotor is affected.

Inter-turn Short Circuit Fault (ISCF) (Hang et al., 2015) appears when an

unwanted current passes between two turns of the stator winding, usually

of the same phase. It is produced by faulty insulation, high temperatures

or high voltages which can affect the stator. This is considered an incipient

fault, as it can lead to inter-phase short circuits and DMFs.

The Eccentricity Fault (Ebrahimi et al., 2014) means that the rotation

axis of the rotor is deviated from the center. This deviation means that the

air gap between the stator and the rotor is not uniform. This fault can

lead to unbalanced voltages and currents in the different phases and, if left

unchecked, can allow the rotor and the stator to rub against each other. It

is a mechanical fault, which can appear during the manufacturing process,
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FIGURE 4.1: The ISCF (Sahraoui et al., 2014).

FIGURE 4.2: The different types of eccentricity faults (Marché,
2017).

during the installation or during operation (because of an unbalanced load,

i.e. the rotor). The different types of eccentricity faults are:

• Static Eccentricity Fault (SEF) - the deviation in the air gap is constant

in time;

• Dynamic Eccentricity Fault (DEF) - the deviation in the air gap changes

in time;

• Mixed Eccentricity Fault (MEF) - both of the above.

TABLE 4.1: PMSG Fault Signature Matrix for MCSA.

Faults
Frequencies

(1± 3

nP

)fs (1± 1

nP

)fs (1± 3

nP

)fs & (1± 1

nP

)fs (1± 2k−1

nP

)fs (2k ± 1)fs

SEF x x x x

DEF x x x

MEF x x

DMF x x x x

ISCF x

All the previous faults affect different signals acquired from the gener-

ator, namely the torque, voltages, currents, temperature, vibrations, etc.

Therefore, diagnosis through signal processing is a common.

Although widely used, vibrations measurements require the presence of

accelerometers. Their elimination would lower the costs of WT installation

and maintenance. The temperature inside the generator tends to change
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slowly. Therefore, if the FDI system would monitor it, incipient or fault

evolving faults might be hidden.

Together with the voltages, currents are signals acquired by the Super-

visory Control and Data Acquisition (SCADA) system of the WT (Schlechtin-

gen, Santos, and Achiche, 2013). Therefore, no additional sensors are nec-

essary. The focus on this work will lay on Machine Current Signature Anal-

ysis (MCSA), as it is a well-proven technique for the diagnosis of electrical

machines (Qiao and Lu, 2015b).

According to (Hang et al., 2015) (Ebrahimi et al., 2014) (Roux, Harley,

and Habetler, 2007) (Faiz and Nejadi-Koti, 2016) (Yassa and Rachek, 2018)

the previous faults introduce different harmonics into the ABC currents.

This is summarized in the fault signature matrix, shown in Table 4.1. There,

fs is the fundamental frequency of the signal and k is an integer.

4.3 Diagnosis using the EKF and the FFT

The EKF can be used to estimate the generated currents. In Chapter III

it is shown that it is as good as the Unscented Kalman Filter to estimate the

currents generated by a PMSG, but it is faster. The signal which is proposed

to be used for diagnosis is made up of the residuals between the estimated

and the simulated currents.

The EKF and the computed residuals were tested to see if they are usable

for diagnosis. The following steps were taken:

1. Check if the spectrum of the residuals is constant when the wind speed

changes;

2. Introduce faults in the model and check if the EKF does not hide them.

The behavior of the residuals, for different wind speeds, is shown in

Figures 4.3 and 4.4. The wind speeds are perturbed with a Gaussian noise

of zero mean and with a variance equal to 1. For both wind speeds, the

residuals are similar, in the range of 10−14, so they can be approximated by

0. The values of the wind speed were chosen to account for both zones of

the WT power curves: the transient increase in generated power and the

stationary one.

Because the PMSM block of the Simscape/Power Systems library is used,

the PMSG is modelled in the dq0 reference frame. Therefore, the faults can-

not be simulated directly, i.e. introduced in the model. Instead, the symp-

toms of the faults are introduced in the signals "acquired" from the simu-

lated process. The EKF uses the fault-affected signals, and the residuals

are computed using the perturbed signals.

The SEF fault is simulated by introducing a harmonic at the frequency

fSE = 25Hz and with an amplitude of 0.1. The results are shown in Fig. 4.5
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FIGURE 4.3: Spectrum of the residuals for a wind speed
around 10m/s.

FIGURE 4.4: Spectrum of the residuals for a wind speed
around 18m/s.

and 4.6. The harmonic is visible in the frequency domain, although it is

attenuated by the EKF.

A harmonic with a frequency of fDE = 58.3333Hz and an amplitude of 0.2

is introduced in each phase of the ABC current, to simulate the DEF fault.

The effect can be seen in Fig. 4.7 and 4.8. Again, the harmonic is clearly

visible in the frequency domain.

The amplitude in the frequency domain seems to depend linearly on the

amplitude of a harmonic, with a inverse ratio of 2.5.

Until now, harmonics were introduced only in the current. According to

(Faiz and Nejadi-Koti, 2016), the DMF fault affects the currents, voltages,

torque and magnetic flux. The symptoms which can be simulated in a dq0

model are the harmonics in the current, the zero-sequence voltage compo-

nent (ZSVC) and the harmonics in the torque. Because of the limitation of

the model in the dq0 reference frame, the effect on the magnetic flux and
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FIGURE 4.5: Spectrum of the residuals for the SEF.
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FIGURE 4.6: Zoomed in spectrum of the residuals for the SEF.

electromotive force cannot be simulated. The torque is affect by harmonics

with the frequency

(λ±
ǫ

nP

)fs, (4.1)

where λ and ǫ are arbitrarily chosen integers.

In the simulation, λ = 2 and ǫ = 4, so the frequency of the harmonic

added to the torque is fDMT
= 133.33Hz. The amplitude of the harmonic is

0.3. The zero sequence voltage component (ZSVC) is also modified.

ZSV C =
1

3
(Va + Vb + Vc) (4.2)

A constant value of 10 is used to simulate a ZSVC introduced by a DMF

fault. A harmonic with an amplitude of 0.1 is added to the current, at

the frequency fSE = 25Hz, because the DMF and eccentricity-type faults

introduce the same harmonics into the current. The results are presented

in Fig. 4.9 and 4.10.
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FIGURE 4.7: Spectrum of the residuals for the DEF.

48 50 52 54 56 58 60 62 64 66
0

0.02

0.04

0.06

0.08

Spectrum of ABC Estimation Error

Frequency [Hz]

A
m

p
lit

u
d

e
 [

A
]

 

 

A
B
C

FIGURE 4.8: Zoomed in spectrum of the residuals for the DEF.
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FIGURE 4.9: Spectrum of the residuals for the DMF.

It can be seen from Fig. 4.10 and 4.6 that the DMF and SEF faults com-

pletely overlap, and cannot be distinguished from one another. No signifi-

cant change happens in the spectrum of the currents, although the voltage



4.4. The Goertzel Algorithm 57

0 5 10 15 20 25 30 35 40

Frequency [Hz]

0

0.01

0.02

0.03

0.04

A
m

p
lit

u
d
e
 [
A

]
Spectrum of ABC Estimation Error

A

B

C

FIGURE 4.10: Zoomed in spectrum of the residuals for the
DMF.

and the torque are also modified. Therefore, currents cannot be used to

identify these faults. The results were identical to the ones predicted using

the fault signature matrix, so the simulation methodology was correct.

The ISCF fault was simulated by introducing a harmonic in the current

at the frequency fISC = 250Hz, with an amplitude of 0.05. However, it was

introduced together with the DM fault, to check if simultaneous faults hide

each other.
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FIGURE 4.11: Spectrum of the residuals for the DMF and ISCF.

The effects of both faults can be distinguished separately, and each of

them can be identified from the other using MCSA.

4.4 The Goertzel Algorithm

The GA is used to compute the Discrete Fourier Transform (DFT) inside

a single frequency bin, i.e., an interval between two frequencies.
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FIGURE 4.12: Zoomed in spectrum of the residuals for the
DMF and ISCF.

The basic form of the GA is (R. G. Lyons, 2010)

HGA(z
−1) =

1

1− ej2π
k
N z−1

, (4.3)

where N is the number of frequency bins and k is the bin of interest, i.e.,

the interval which contains the frequency of the harmonic of interest; N

is also the resolution of the DFT and the block size which will be used to

compute it (unlike the FFT, it does not need to be a power of two, nor an

integer (Sysel and Rajmic, 2012)). This transfer function has one pole which

lies on the unit circle, at ej2π
k
N , so it is only marginally stable. Because

of the finite-precision representation of numbers in digital computers and

microprocessors, the poles of the filter might lie outside the unit circle (R. G.

Lyons, 2010) and it might become unstable.

An improved version of the GA, where the stability problem is solved,

is obtained when the previous fraction is multiplied and simplified by (1 −

e−j2π k
N z−1) (R. G. Lyons, 2010), respectively

HGA(z
−1) =

1− e−j2π k
N z−1

(1− ej2π
k
N z−1)(1− e−j2π k

N z−1)
, (4.4)

which leads to

HGA(z
−1) =

1− e−j2π k
N z−1

1− 2 cos
(

2π k
N

)

z−1 + z−2
. (4.5)

Another form of this transfer function is (Bocca et al., 2011)

HGA(z
−1) =

1− e
2π

fi
fs z−1

1− 2 cos
(

2π fi
fs

)

z−1 + z−2

, (4.6)
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where fs is the sampling frequency and fi is the frequency of interest.

The transfer function from (4.5) will be used throughout this work, as

that is the standard representation. It has one zero at e−j2π k
N and two con-

jugate poles located at e±j2π k
N . One of the poles is cancelled by the zero.

All poles and zeros are located on the unit circle. A common misconception

is that (4.5) is marginally stable and can become unstable if the numerical

precision used for implementation is low - the same problem as with (4.3).

However, it can be proven that the filter is always stable (Sysel and Rajmic,

2012), (R. Lyons, 2015) and only large round-off errors (which can appear

when filtering a very large number of samples) can destabilize it.

The GA is implemented as a two stage discrete-time filter. Its difference

equations are

v[n] = 2 cos

(

2π
k

N

)

v[n− 1]− v[n− 2] + x[n], (4.7)

y[n] = v[n]− e−j2π k
N v[n− 1], (4.8)

where v is an internal variable, x is the input signal, y is the output of the

filter and n is the current sampling moment. Equation (4.7) describes an IIR

filter, while (4.8) shows a FIR filter.

The intermediate variable has to be computed at every sampling moment,

but the output of the filter is equal to the result of an equivalent single-bin

DFT only at every N th sample

y[n]|n=N = X(k), (4.9)

where X[k] is the result of the DFT computed in the kth frequency bin for the

x input signal. Therefore, (4.8) can be computed more rarely.

The discrete transfer functions of (4.7) is

v[n]

x[n]
=

1

1− 2 cos
(

2π k
N

)

z−1 + z−2
, (4.10)

which is equal to

v[n]

x[n]
=

1

(1− ej2π
k
N z−1)(1− e−j2π k

N z−1)
. (4.11)

The discrete transfer function of (4.8) is

y[n]

z[n]
= 1− e−j2π k

N z−1. (4.12)

If (4.11) would be multiplied by (4.12), to compute the equivalent series

filter, the obtained result would be equal to (4.4), the stable GA. This short

demonstration was given as it is frequently skipped in works introducing
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the GA, such as (R. G. Lyons, 2010) and (Oppenheim, Schafer, and Buck,

1999).

To eliminate the complex number multiplication from (4.8), the output of

the filter is modified to compute the square of the magnitude from the bin

of interest.

First, (4.8) is rewritten to compute the magnitude of the frequencies from

the kth bin, respectively

y[n]|n=N = v[n]− v[n− 1] cos

(

2π
k

N

)

+

+ jv[n− 1] sin

(

2π
k

N

)

, (4.13)

and the square of the magnitude will be

y[n]|n=N = v2[n− 1] + v2[n]−

− 2v[n− 1]v[n] cos

(

2π
k

N

)

. (4.14)

The implementation of the GA using the difference equations, which de-

scribe two filters connected in series, is called the Goertzel Filter (GF). To

preserve the stability of the filter when processing a very large numbers of

samples, the internal variable of the GF is reset to 0 after each computation

of its output.

4.5 The FDI Procedure

In MCSA, the FFT is used to monitor the harmonics introduced, by faults,

into the generated currents. However, the previously described GF can also

be used. Specifically, a bank of GFs must be used, one GF for each fre-

quency of interest (Idrissi, El bachtiri, and Chafouk, 2017). Three filters

have to be utilized: one to monitor the harmonic introduced by the SEF,

another one for the sinusoid inserted by the DEF and a last one for the

harmonic introduced by the ISCF.

An algorithm which can identify the previously discussed faults can be

formalized as follows:

1. Design the GFs and mark the sampling periods when each of their

output equals the output of the equivalent single-bin DFT.

2. While the PMSG is running, count the sampling moments:

(a) At the correct sampling moment, check the magnitude of the har-

monic which may be introduced by the SEF.
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i. If it is lower than a threshold, the SEF is not present.

ii. Else, the PMSG is affected by the SEF. If DEF is also present,

then the actual fault is the MEF.

(b) At the right sampling moment, check the magnitude of the har-

monic which may be introduced by the DEF.

i. If it is lower than a threshold, the DEF is not present.

ii. Else, the PMSG is affected by the DEF.

(c) If a SEF or MEF is present, check the DC component of the voltage.

i. If it is zero, the DMF is not present.

ii. Else, the PMSG is actually affected by the DMF, and not by

SEF or MEF.

(d) At the correct sampling moment, check the magnitude of the har-

monic which may be introduced by the ISCF.

i. If it is lower than a threshold, the ISCF is not present.

ii. Else, the PMSG is affected by the ISCF.

Between steps (2.a) and (2.d), the results of the algorithm should be

hidden from the operator. A possible change in the detected fault, e.g., from

SEF to DMF, might confuse the user.

This algorithm only allows the identification of DEF from DMF, but it

cannot detect SEF or MEF when they appear together with the DMF. Another

downside of the algorithm is that when SEF is present, DEF can no longer

be detected. However, it can detect any fault which appears while the PMSG

is affected by the ISCF.

SEF can be identified by monitoring only the first harmonic presented in

Table 4.1 . DEF can be identified by monitoring the first two harmonics from

Table 4.1, but it does not cause a significant change in the first harmonic.

When both the previous faults are present, it means that the MEF affects

the PMSG. Both the previous harmonics appear during DM faults. So, the

DM fault cannot be distinguished from eccentricity-type faults.

The ISCF can be detected by monitoring harmonics of the type (2k+1)fs,

so ISCF faults can be discerned from the rest.

4.6 Simulation and Results

The symptoms which were introduced by the faults are the same as in

the previous case.

Several constants were precomputed to fasten the GFs:

• The sampling period was chosen to be 1e−6 sec to ensure the stability

of the electrical model of the wind turbine (a constraint imposed by the

Simscape/Power Systems toolbox).
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• Different numbers of frequency bins were selected for the different im-

pairments:

– N = 100000 bins were used for SEF and DEF. Each resulting bin

contains 10 frequencies which can be represented by integers;

– N = 10000 bins were used for ISCF. Each resulting bin covers 100

frequencies which can be represented by integers.

• The bins of interest were selected at k =
[

0.5 + N∗fi
fs

]

, where k is rounded

to the nearest integer.

• The cosine from (4.7) was precomputed, as its value depends only on

the number of frequency bins and the bin of interest.

The results obtained from the simulation when SEF is introduced in the

PMSG are presented in Figures 4.13 to 4.15. The squared magnitude of the

introduced harmonic is very visible on the output of the GF dedicated to

SEF detection, where its value is almost 1500. The other two filters of the

bank report a squared magnitude of only around 150 and almost 30.

FIGURE 4.13: The output of the GF designed for SEF, when
the PMSG is affected by SEF.
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FIGURE 4.14: The output of the GF designed for DEF, when
the PMSG is affected by SEF.

The outputs of the bank of GFs, when the PMSG is affected by DEF, are

presented in Figures 4.16 to 4.18. The output of the second GF is in the
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FIGURE 4.15: The output of the GF designed for ISCF, when
the PMSG is affected by SEF.

order of thousands, while the other two filters show squared magnitudes of

hundreds and respectively tens of Ampers.
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FIGURE 4.16: The output of the GF designed for SEF, when
the PMSG is affected by DEF.
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FIGURE 4.17: The output of the GF designed for DEF, when
the PMSG is affected by DEF.

The ISCF was simulated together with the DEF, to test the FDI algorithm

presented in Section 4.5. While the first GF from the bank reports a squared

magnitude in the order of hundreds, the output of the second one is in the

order of thousands, while the output of the third one is in the order of

hundreds.
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FIGURE 4.18: The output of the GF designed for ISCF, when
the PMSG is affected by DEF.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

Output of GF designed for SEF, in the case of DEF & ISCF detection

Time [s]

S
q
u
a
re

d
 M

a
g
n
it
u
d
e
 [
A

2
]

FIGURE 4.19: The output of the GF designed for SEF, when
the PMSG is affected by both DEF and ISCF.
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FIGURE 4.20: The output of the GF designed for DEF, when
the PMSG is affected by both DEF and ISCF.

Therefore, appropriate thresholds for fault detection are around 1000 for

SEF and DEF, and around 100 for ISCF, in the case of these harmonics.

The behavior of the last GF of the bank was peculiar, because it showed a

rising trend. The output of the other two seemed constant or near constant.

A longer simulation was carried out, in the presence of only the ISCF, as
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FIGURE 4.21: The output of the GF designed for ISCF, when
the PMSG is affected by both DEF and ISCF.

that fault determined an increase in the filter’s output. The result of this

simulation is presented in Figure 4.22. It seems the output is modulated

in amplitude by a sinusoid with a very low frequency. The authors tried to

simulate for longer periods of time, to see if this behavior persists, but due

to the low sampling frequency, the computer would run out of memory.
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FIGURE 4.22: The output of the GF designed for ISCF, when
the PMSG is affected by ISCF.

The mean of the generated voltage can be easily computed over a period

of the signal. Because it is not related to the GF and the difficulty is trivial,

no simulations are presented. However, it must be considered that this

mean can only be known at the end of each period of the signal.

The stimulus signal for the bank of GFs was made of the residuals com-

puted between the simulated currents and an EKF.

4.7 Conclusions

The fault signature matrix of the PMSG was constructed after a survey

of the literature. The most common types of faults which affect such a

generator are the SEF, DEF, MEF, DMF and ISCF. The DMF and eccentricity-

type faults are detectable, but cannot be isolated from each other. The
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ISCF can always be isolated. The different faults were simulated using the

symptoms described in the literature.

The EKF can be used to compute the residuals between the estimated

and the measured stator currents. Thus, the effect of the wind speed is

negated. Although there is a slight difference between the spectrums com-

puted at different wind speeds, the order of magnitude is the same - 10−14.

This means that global thresholds can be used to detect the faults, and

these thresholds are valid for all wind speeds. Moreover, the spectrum of

the residuals is close to zero, so all the harmonics introduced by the differ-

ent faults are noticeable, via the FFT.

The Goertzel Filter was presented as a candidate to replace the FFT in

FDI. The algorithm was explained, and it was tested on a simulated DDWT,

more specifically on its PMSG. Multiple faults affect this generator, and they

introduce different harmonics into the currents. Therefore, a bank of GFs

was neccesary, where the first filter looks for the harmonic introduced by

SEF, the second one monitors the harmonic introduced by DEF and the

third one looks for the harmonic introduced by ISCF.

The simulation results showed that the square magnitude of the different

harmonics introduced by the faults may be extracted by the bank of GFs.

These outputs can be compared with pre-defined thresholds, and can be

used in a FDI algorithm. Such a procedure was presented in this chapter,

which can isolate different faults of the PMSG.

The FDI cannot be performed in real-time, i.e., at each sampling moment.

The output of each filter and the mean value of the voltage can only be

known at certain sampling moments. Therefore, this FDI approach must be

implemented using a supervisor.

Although the sampling rate used in the simulations is 1 MHz, the GF

can be used for signals sampled less often, e.g. sampling rates of kHz. The

1 MHz frequency was used to assure the stability of the Simscape/Power

Systems blocks, namely the PMSG.
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FDI. In (Deekshit Kompella, Venu Gopala Rao, and Srinivasa Rao, 2017),

the generated currents are used to monitor both the generator and its main

bearing. Therefore, even the bearing faults could be traced back, possibly to

rotor faults.

Costs can also be lowered by eliminating cables. The installation and

maintenance of cables is often more expensive than the actual sensors used

in a WT. The solution is to use a Wireless Sensor Network (WSN) to monitor

the WT, and by extension, the whole Wind Farm (WF) (Gliga, Lupu, et al.,

2017).

WSNs are already used in smart cities (e.g. Barcelona, Amsterdam, Sin-

gapore and Alba Iulia). A multitude of sensors are used to cover a very large

area and to acquire big data. However, in smart cities WSNs are only used to

gather data relevant for constructing operational histories of different sys-

tems (transport, parking, lightning), for later processing. They are not used

for critical real-time applications. This is different from industrial appli-

cations, where real-time requirements must be satisfied. WSNs are used in

agriculture, to monitor the land and the animal shelters, but, in these cases,

the sampling times are so large that the latency is negligible. However, due

to advances in wireless communication technology, a WSN may form the

backbone of an Industrial Communication System (ICS).

An important technology to consider is the Internet of Things (Jaradat

et al., 2015). Companies currently use dedicated networks to connect to

the industrial equipment. This means either laying kilometers of cables

or using local supervision stations. IoT could help in connecting the local

network of the WF (in the case of this work) to the internet, to enable remote

operation. Moreover, the WTs could coordinate locally between themselves,

if they could communicate in real-time with one another.

In this chapter, WSN technologies are compared to select a most suitable

one for the monitoring of a WF. Because different technologies work better

in different situations, offshore and onshore installations are considered.

The onshore installations are further split into ones residing in rural areas,

and others located in cities.

The connection between the WSN and the internet is discussed. The

internet connection to the ICS can be a weak point, from a security stand-

point. Therefore, security aspects are also presented.

In Section 5.2, the motivation for using a WSN and the IoT, in the case of

a WF, is presented. A description of the monitoring requirements for a wind

turbine and for a WF are shown in Section 5.3. The different communication

technologies are examined in Section 5.4. A possible communication archi-

tecture, using LoRa, is shown in Section 5.5. A short review on industrial

communication security is presented in Section 5.6. The conclusions close

this chapter.
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5.2 Motivation for a WSN and IoT in a Wind Farm

5.2.1 Wireless Sensor Networks

In remote WFs, a power cable runs from the farm to the place where it is

connected to the grid. Together with the cables for the three phases (or the

high voltage direct current in some cases) there is a fiber optic cable, which

is used for communication. These remote WFs can be placed both onshore

and offshore, so the distances can be great. Moreover, inside any WF, there

are kilometers of copper cables connecting each sensor and actuator to the

control equipment, located inside the nacelle. All these cables cost money

and require a long time to be installed.

The majority of them can be eliminated by using a WSN. Then, the in-

stallation and the maintenance of the equipment would be easier, cheaper

and faster. Because the data transmission is wireless, it cannot be affected

by animals, vehicles and accidents caused by workers.

WSNs have several characteristics, which make them useful in a WF (Z.

Liu and He, 2017):

• Low energy nodes would decrease the energy consumption of the whole

ICS. More energy could be sold on the electrical energy market, which

would increase revenue.

• Self-organization is needed when one or more nodes go offline. If one

sensor is faulty and shuts down, the rest of the sensors can still com-

municate, because the network would re-organize itself without the

intervention of the operator.

• The ICS would be scalable, as new sensors could be easily added and

the network would self-organize to include them. Thus, sensors could

be easily replaced.

The possible disadvantages of WSNs are:

• All the nodes should use the same communication protocol, and even

the different versions must be compatible. A node which uses Wi-Fi

cannot communicate with a node that only supports Bluetooth. How-

ever, this is not a new disadvantage: wired industrial networks are

under the same constraint: a Modbus network cannot communicate

with another one based on HART, if there is no adapter.

• WSN communication can be influenced by weather conditions and by

obstacles (e.g. trees). The sensors should be arranged judiciously or

the chosen communication technology should assure interference pro-

tection.
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5.2.2 Internet of Things

In industrial applications, IoT can be seen as potentially unnecessary,

unsecured and unreliable.

Firstly, the IoT can reduce costs. Instead of using a dedicated commu-

nication network from the WF to the power plant operator, which is very

expensive, the data can be transmitted via wireless to the closest internet

gateway. It would then be transmitted through the internet infrastructure.

On the other hand, IoT-ready communication infrastructures could be used

to transmit the data.

Secondly, such an interconnection between the different wind turbines

would grant the WF a local intelligence. This would allow it to quickly reor-

ganize itself automatically, in case of sudden faults or happenings. If a wind

turbine would go off-line or lower its production, the others could quickly

coordinate to compensate, as in network-controlled systems (Park et al.,

2018).

Another advantage of IoT would be the integration of distributed energy

resources (Vijitha and Selvan, 2013). Even if WTs would be far apart from

each other, they could still be operated as a single WF and they would re-

spond better to the demand.

Because the security aspect is critical for an energy plant, such as a WF,

it is thoroughly discussed in Section VI.

5.3 Wind Farm Monitoring Requirements

Both Horizontal Axis Wind Turbines (HAWTs) and Vertical Axis ones

(VAWTs) are considered in this work. HAWTs are placed offshore or on-

shore, but in isolated rural areas. VAWTs are assumed to be placed in cities

or other populated areas, namely where there is 4G coverage. These con-

siderations play an important role in choosing the communication technolo-

gies. Because 5G networks are just being installed, they are not considered

in this work.

Furthermore, both types of WTs are equipped with Permanent Magnet

Synchronous Generators (PMSGs), to consider the current trend towards

Direct Drive Wind Turbines (DDWTs).

The SCADA, CM and SHM systems are considered to be the same for a

HAWT and for a VAWT.

5.3.1 Wind Turbine Monitoring Requirements

The most important systems in a WT, from the point of view of automatic

control, are the SCADA, the CM and the SHM systems.
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A WT SCADA system samples data at short time intervals and it trans-

mits the information to the control equipment (PLCs or microcontrollers),

which is usually located inside the nacelle. A SCADA system also trans-

mits commands for the pitch and yaw motors, power converter transistors,

hydraulic brake, etc.

The WT components which are monitored by a CM system are the blades,

the main bearing, the main shaft, the generator, the converter, the trans-

former and the nacelle. Commercially available systems may employ tem-

perature sensors, oil particle counters, accelerometers, ammeters, hall sen-

sors and fiber optic strain gauges.

A SHM system (Adams et al., 2011) oversees the structural elements of

the WT, mainly the foundation, the tower and the structural integrity of the

nacelle. These are crucial for offshore WTs, especially those which are not

anchored to the sea bottom.

Only the results of the data processed by these systems, which are useful

for creating a history of the WT, are send further to the WF operator. This

design ensures fast data rates and low latency between the WF and the

power plant operator, while it also lowers the technical requirements of the

ICS. This architecture is well suited for long range communication. The local

intelligence autonomously takes care of the WT, and it reports only relevant

data to monitor its performance. A WSN can use the same architecture.

The coverage requirements of a WSN can be estimated by considering

the worst-case scenario. For the current largest wind turbine, the V164-

10.0MW manufactured by Vestas, the length of the nacelle is 20.7 meters,

the width is 8.8 m and the height is 9.3 m (Vestas, 2017). If the worst-case

scenario is to be assumed, where sensors from opposite ends of the nacelle

should communicate, the distance would be 24.35 m. If a WSN would be

used to transmit the data, 24.35 m would have to be its minimum coverage

(to minimize signal loss) and to allow communication between all sensors.

VAWTs, which are used in cities, are smaller. They can reach heights of

around 10 – 15 meters and can sweep an area of 2 – 3 meters. There are very

high HAWT designs used in remote areas, but these are still in experimental

phases.

The amount of data transmitted from a WT to the operator can be es-

timated by inspecting the real data acquired from the Haute Borne WF in

France (Enjie, 2018). The data is transmitted by a WF with WTs equipped

with Doubly-Fed Induction Generators (DFIGs). For the purpose of this

work, all the data acquired from the gearbox, together with the rotor cur-

rents and voltages, is ignored. The remaining information are all floating-

point numbers which indicate the reactive power, wind speed and its direc-

tion (a set for each of the two anemometers and wind vanes of each WT),

temperature of the generator stator, outdoor temperature, temperature of
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the nacelle, grid frequency and its voltage, torque of the shaft, angular ve-

locity of the shaft, yaw angle, pitch angle, temperature of the hub, active

power, power factor, temperatures of the main bearing (measured in two dif-

ferent locations) and the temperature of the rotor’s bearing. Control signals

are also sent to the WT, like pitch and yaw set points.

The number of signals acquired by a CM system depends on the manu-

facturer (Yang et al., 2014). For example, a commercial system might use

only 8 accelerometers.

All these systems can have very high sampling rates. Data must be

continuously transferred between the sensor and the station where it is

processed. The sampling rate is in the order of milliseconds.

There are around 50 (also considering the signals necessary for diagnosis

and other control signals) floating point numbers to be transmitted to the

WF operator. If single precision format is assumed, the size of the data is

100 bytes (assuming a single precision representation of 16 bits). which

must be transmitted every 10 minutes to the WF operator. The number of

signals that is transferred locally inside a wind turbine can be in the order of

hundreds. However, no relevant information could be found in this regard.

It is important to acknowledge that some sampling rates are so low (e.g.

the commands for the transistors in the power converter are send with a

frequency between 10 and 100 kHz) that cannot be realistically supported

by current wireless communication.

5.3.2 Extension to a Wind Farm

The size of the WF must also be considered. The largest offshore WF has

175 wind turbines (London Array Limited, 2018) and onshore WFs can have

up to 100 wind turbines. The number of VAWTs which might reside in cities

is also very high (B. K. Singh et al., 2013).

The current architecture used for the communication infrastructure of a

WF is shown in Figure ArchCom. There are three types of communication

lanes:

• Very fast communication, where data must be transmitted every sev-

eral microseconds (µs);

• Fast communication, where sensors acquire the data with sampling

periods in the order of milliseconds (ms) to seconds (sec);

• Slow communication, where the data is transmitted at intervals of sev-

eral minutes (min).

The first two types of lanes are local to each WT. The slow communication

takes place between the different WTs, the WF and its operator.
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Most LPWA protocols only use the star topology, as it requires less power.

LoRaWAN (Long Range Wide Area Network) is a wireless technology de-

veloped by the LoRa Alliance (Silva et al., 2017). LoRa transmits data in

the sub 1Ghz unlicensed spectrum bands, so long-distance communication

does not require a lot of power and it is resilient against physical obstacles.

It also provides very good coverage. LoRa networks support three different

classes of devices:

• Class A, or battery powered devices, consume the least amount of

power but they have the highest latency. They can be used to trans-

mit data to the wind farm operator, once every ten minutes (as current

SCADA data) or when necessary (the alarms from the SCADA or CM

systems).

• Class B devices are used for periodic communication. These devices

can be used for sensors which do not need to transmit data very of-

ten (e.g. accelerometers on the tower and/or foundation of the wind

turbine). These devices assure lower latency.

• Class C devices consume the most amount of power, but they offer the

lowest latency, as their radio is always turned on.

For securing the communication, LoRa uses:

• Network Session Keys for the communication between the nodes and

the network

• Application Session Keys to encrypt the payload using AES (Advanced

Encryption Standard) 128bit encryption

• A Device Address for each node, to allow the network to correctly orga-

nize and protect itself.

LoRa nodes are relatively cheap, so the infrastructure is not expensive to

build. The downside of LoRa is the low data transfer. The maximum latency

and quality of service are not assured. Moreover, because it operates in unli-

censed bands, LoRa has a duty cycle of only 1% (imposed by EU regulations),

so the number of messages which can be transmitted every day is limited.

This can be avoided by changing to other sub-bands of the transmission

spectrum.

NB-IoT (Sinha, Wei, and S. H. Hwang, 2017), or Narrow Band Internet of

Things, is a communication protocol developed by the 3rd Generation Part-

nership Project. It uses the LTE (Long Term Evolution) infrastructure for the

physical layer. It offers very high data rates (both uplink and downlink) and

excellent coverage. The devices who use this protocol consume more cur-

rent, but at the same time the latency is lower, and the data rate is higher
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than LoRa. NB-IoT is very well suited for a WSN in places where 4G coverage

exists. It uses the existing 4G equipment, so the wind farm operator does

not need to concern itself with the communication infrastructure, as this is

already installed and operated by a mobile carrier. The security measures

are the ones already used for cellular networks (like 4G), which include:

message encryption, session authentication and unique identifiers for each

device. More security can be added by the mobile carrier. The infrastruc-

ture operator may ask for a periodic fee, but the total cost should be much

lower than the price of installing and maintaining the equipment necessary

for a dedicated network. However, this advantage is quickly turned to a

disadvantage when considering WFs located in remote areas, such as rural

or offshore. No 4G infrastructure exists there, so it is cheaper to deploy a

dedicated LoRa network than a NB-IoT one.

LTE-M (Ali et al., 2017), or Long-Term Evolution for Machines, is another

technology developed by the 3GPP, for Machine to Machine (M2M) communi-

cation. Compared with the previous ones, it offers lower latency and higher

transfer speeds. As NB-IoT, it uses the existing LTE infrastructure and the

same security methods. However, the current (and therefore the power)

consumption is much higher, so this technology is not suitable for battery

powered sensors or low power devices. Again, because it uses the LTE in-

frastructure, its deployment is not feasible in offshore or rural areas. Urban

usage could be limited by the high-power consumption. The data rate is

too high for the application discussed in this work, but the latency is low

enough for real-time implementations.

Sigfox (Ali et al., 2017) is a proprietary technology developed by the

French company with the same name. It was the first LPWA protocol de-

veloped for IoT, and it was successfully deployed in many industrial ap-

plications. The power consumption is very low. It ensures data security

through encryption, session authentication, device authentication and https

encrypted interfaces. Sigfox is also resistant to interference. However, it has

a very low data rate. Even more, Sigfox operates in unlicensed spectrum

bands, so it is also limited by the 1% duty cycle ratio imposed by regula-

tions.

EC-GSM-IoT (Ali et al., 2017) is another technology developed by the

3GPP, which is based on the existing GSM network. Instead of using the

newer LTE communication network, it uses the old GSM ones (like 2G), so it

allows their recycling. There are currently no commercially available mod-

ules using this protocol, but it should cover a large area, have low latency

and a good data transfer rate. Because it uses the mesh topology, it is ex-

pected to use more power than other technologies. It has the same security

features found in GSM networks. It may be considered in the future, once

deployment starts.
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DigiMesh ((Osiegbu2015)) is a proprietary protocol developed for a wide

range of applications. It supports very long communication, high speeds

and multiple topologies. For close range, the communication speed is good,

but the power consumption is high. It has multiple security features like

AES128 and 256-bit encryption and network lock-down capabilities. Inter-

ference protection differs depending on the operating frequency band: fre-

quency hopping for unlicensed spectrum bands or Direct Sequence Spread

Spectrum (DSSS) for the 2.4GHz band. The data rate depends on the fre-

quency band.

Other LPWA protocols are WiMAX, WeightLess (Ali et al., 2017) and RPMA

(Ingenu, 2016).

WiMAX (Worldwide Interoperability for Microwave Access) was a competi-

tor against 4G, but it lost. Its usage is limited to some countries, and even

there it is dwindling. Because of its deprecating support, it is not recom-

mended for future implementations.

The WeightLess Special Interest Group created three different standards

for IoT communication: W, N and P. WeightLess W uses the TV white space

frequency bands. It was developed by a company named Neul which, in the

meantime, was bought by Huawei. Since the acquisition, they are working

on technology for NB-IoT. WeightLess N was developed by a company called

Nwave Technologies, however it was superseded by WeightLess P, developed

by a company called Ubiik. Since then, the WeightLess N standard has been

rebranded as Nwave (Nwave, 2017), but not sufficient data could be found

for a complete characterization. The company uses it for smart parking. The

same is applicable to the WeightLess P, developed by Ubiik. The WeightLess

N and P technologies are supposed to have a coverage of at least several

kilometers and to support high data rates. There are claims that they have

high levels of security and interference protection.

RPMA (Random Phase Multiple Access) is a proprietary solution of the

Ingenu Company. It operates in the 2.4 GHz band and it boasts a coverage

of 52.8 square kilometers. It doesn’t use an IP address for the devices.

It ensures message confidentiality and integrity, replay protection, device

anonymity and mutual authentication. However, no more information could

be found.

From the previous LPWA protocols, LoRa is recommended for implemen-

tation in the case of offshore or onshore, but remote, WFs. A backup solu-

tion would be Sigfox. NB-IoT and LTE-M are recommended for areas with 4G

coverage. LTE-M can even be used in real-time systems and is best suited

for cities. DigiMesh is a jack of all trades, which may be used either for long

and short distance communication.
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Local Area IoT Technologies

The different LAIoT technologies are compared in Table 5.2.

ANT (Ali et al., 2017) is a communication technology developed by Sam-

sung, while ANT+ is its interoperability function. ANT is mainly used in

fitness trackers, healthcare products and is also present in high-end smart-

phones. It has low power consumption but has very low data rate and rela-

tively low coverage. The protocol was created to transfer data from a sensor

to a processing unit, so it does not support downlink communication. Its

only security measure is data encryption.

IEEE 802.11b (Ali et al., 2017) is an older standard for Wi-Fi, which can

be used for Machine to Machine (M2M) communication. It offers very high

data rates and good coverage, but the energy consumption is high. The

latency is very low, so it can be used in real-time applications. Even if the

data rate is lowered, the energy consumption remains the same, because

the radio of the chip is always turned on. Its security should be enhanced

if it were to be used in a sensitive application such as a power plant - Wi-Fi

network attacks are very common and easy to perform.

Wi-Fi HaLow or IEEE 802.11ah (Bankov et al., 2017) is a low-power ver-

sion of Wi-Fi designed for the IoT. It uses the unlicensed spectrum bands

to decrease costs and to improve the interference protection against phys-

ical obstacles. Currently, there are no chips for this technology, so the

latency and the current consumption cannot be estimated. It is a promis-

ing technology, but as it is still not tested, it cannot be recommended for

implementation.

BLE version 5 (Collotta et al., 2018) (Bluetooth Low Energy) is a widely

used low power communication technology. BLE has very long transmission

range, excellent data rate (depending on the selected physical mode) and

very low latency, which even allows real-time implementations. It supports

different topologies. The chips which implement it use very little power

and they are relatively cheap. It has interference protection and it uses

encryption, data integrity checks and device trust policies for ensuring the

security of the network.

Bluetooth 5 is the “regular power” variant of Bluetooth and the counter-

part of BLE. It has good range, very high data rates and low latency. It also

consumes very little electrical energy. It is very similar to BLE. However, the

low-power version is more suitable for this application because it is more

energy efficient and the very high data rates of Bluetooth are not useful.

Zigbee (Ali et al., 2017) is a widely used technology for ICSs. It has good

coverage and high data rates. It assures data security (though it was repeat-

edly cracked in the past). Zigbee PRO also ensures interference protection.

Its power consumption is relatively high. Zigbee can use the Message Queu-

ing Telemetry Transport (MQTT) to ensure a reliable communication.
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IrDA (Val, Peyrard, and Misson, 2003) is best known for having been

used to transfer files between mobile phones before Bluetooth replaced it. It

has very high speed, low power consumption and excellent interference pro-

tection. However, it requires LOS between devices and the communication

range is very small.

NFC (Prauzek et al., 2016) is mostly used for payments or identification.

The devices must be in very close proximity (a few centimeters) to commu-

nicate between them.

Z-Wave (Ali et al., 2017) is a home automation technology developed by

the Z-Wave Alliance. It offers good security features (encryption, device au-

thentication) and it has good range. However, the data rate is relatively low,

and its latency is high.

RFID (Khemmar et al., 2014) is a tag based communication system,

widely used in product tracking and personal identification documents. Pas-

sive or active tags, which can incorporate sensors, are attached to different

objects. RFID has good range, good speed but its topology is point to point.

The tags do not establish communication links, but they are read, individ-

ually, by a dedicated device called a reader. The protocol does not incorpo-

rate security – the tags can be read by any reader. Only the data can be

encrypted.

DASH7 (Grabia et al., 2017) was developed by the DASH7 Alliance. It

has great range and low latency. Its data rate depends on the transmission

range. It supports various security measures. It operates in many frequency

ranges (depending on the country), and it has interference avoidance mech-

anisms.

WirelessHART (S. M. Hassan et al., 2017) is one of the oldest wireless

communication technologies. It has good range, good transfer speed and

low latency. It supports various security mechanisms (data encryption and

integrity check, device authentication and failed access attempt notifica-

tions) and interference protection through channel hopping. It is a very

mature technology which is already used in various real-time applications.

Wireless MBus (Zeman et al., n.d.) is used in smart meters and other

monitoring devices. It transmits data using the 169/433/868 frequencies.

It utilizes the star topology. The latency cannot be estimated, as all systems

using it are closed proprietary solutions.

Another wireless communication system was developed by Nike for its

Nike+ sport accessories. It transmits data every 1 s.

Thread (Thread Group, 2017) is a home automation technology devel-

oped by a consortium of companies. It is advertised to work in the 2.4 GHz

frequency band, and to support mesh topology. However, no more details

could be obtained.
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• an electrical power sensor;

The actuators are two servo-motors. They are used to simulate the yaw

system and the mechanical brake of the rotor shaft. The measurements

(from the sensors) and control signals (to the motors) were used to test the

proof of concept of real-time wireless communication. The wind turbine

contains a DC motor. Its rotor is turned by the rotor to generate DC.

All the sensors transmit the data through analogue, digital and Inter-

Integrated Circuit (I2C) communication to an Arduino board. Because the

board is not designed to handle wireless communication, a Raspberry PI

(RPI) (Subhashini and Rao, n.d.) single-board computer is used for this role.

The Arduino and the RPI communicate through USB. The Arduino also con-

trols the servomotor, through PWM pulses. It acts similar to the Input/Out-

put (I/O) and control modules of a Programmable Logic Controller (PLC).

The RPI can be seen as the communication module of a PLC.

The RPI communicates with a LoRa transceiver, which is a Nemeus

MK002-xx-EU USB (Remote) Stick. The transceiver supports both LoRa

and Sigfox technologies - the second one can be used as a back-up. The

transceiver can be used as a class A or class C LoRa device.

Another LoRa transceiver connects the command post (computer) to the

wireless network. This transceiver is connected to the computer through

USB. A Web application was developed, which incorporates a Human Ma-

chine Interface (HMI), to show the status of the simulated wind turbine. The

data received via the LoRa network is transferred to a MySQL database via

a JSON file.

As preliminary results, the LoRa transceivers can communicate with one

another, over three kilometers, through Radio Frequency (RF) transmission.

The Arduino can be used to control the servo-motors. The wind turbine can

communicate with the computer every few seconds.

5.6 Industrial Communication Security

In the past, ICSs were not connected to the internet, and they were less

common - except in industrial settings. Their security was based on isola-

tion and anonymity. Now, ICSs are everywhere, from cars to air conditioners

and homes. Many are connected to the internet through Virtual Private Net-

works (VPNs) to allow remote monitoring. These VPNs provide a certain

degree of protection. But the ICS itself it not secured. And this vulnerability

leaves room for attacks.

There have been several high-profile attacks against SCADA systems:
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• A disgruntled former employee, which was a software developer, at-

tacked a sewage water treatment plant in Australia, releasing hundreds

of thousands of liters of sewage water into rivers and parks.

• An attack in 2009-2010, against Iran, destroyed about 1000 of the

centrifuges used to enrich uranium. A worm named Stuxnet (Kushner,

2013) was developed to infect the Siemens Step7 Programmable Logic

Controllers (PLCs). The worm used to randomly change the speed of

the turbines which were enriching uranium. By increasing and then

decreasing the angular velocity, vibrations were induced in the equip-

ment and some of the turbines malfunctioned.

• The cyber-attack on the Ukrainian power grid in 2015 left about 230

000 people without electricity, after attackers shut down multiple dis-

tribution stations. Many files stored on the computers of the electrical

energy distribution company were erased. A malware named BlackEn-

ergy (Styczynski, Beach-Westmoreland, and Stables, 2016) was used

for this attack. It included a Remote Access Terminal (RAT) through

which the attackers reprogrammed the firmware of the control equip-

ment of the substations.

• Another attack against a water treatment plant was carried out in Aus-

tralia. The hackers changed the concentrations of the chemicals used

to treat tap water.

• The 2016 cyber-attack against the Ukrainian power grid cut off 20% of

the population of Kiev from electrical power. A malware named Indus-

troyer (Cherepanov, 2017) was used in this attack. It targeted ICSs,

and the OLE (Object Linking and Embedding) for Process Control Data

Access, to hijack the communication network and to send commands

to the PLCs.

• An attack took place in December 2017 against Saudi Arabia, where

the security systems of several nuclear, oil and gas plants were tar-

geted. At least one plant was shut down.

These attacks targeted industrial facilities, including electrical plants

and the power grid itself. With the ever-increasing connectedness between

industrial systems and the internet, these attacks will become more com-

mon and the risks associated with them will be more severe. Electrical

grids and power plants are tempting targets for both lone wolves or groups

of hackers who wish to prove themselves. These systems are also a very

tempting target for countries. Attacks on the power grid can severely cripple

a city or even a country and can produce economic and social problems.

According to (Minhaj Ahmad Khan and Salah, 2018), a network based

on IoT should meet the following security requirements:
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• The data has to be confidential - the content has to be known only by

the WF operator and by authorized third parties. Moreover, the data

must not be copied or transferred without the consent of the operator.

The content of the data should remain constant from the moment it is

acquired until it will be no longer needed.

• Access to the data and to the network must be controlled and verified,

through means of authentication. Only authorized personnel should

have access. Their usage of the data and of the network resources

should be monitored. The same requirements are valid for the different

nodes in the network: sensors, gateways, switches, etc. They should

use the network resources in a transparent manner (to the operating

company) and only for the purposes which they should fulfilled.

• The service, in this case being the supply of electrical energy to the

end users, must always be available (when environmental conditions

permit).

• Any network should not rely on single points of failure. There must

always be a back-up for critical devices (e.g. gateways).

According to (ThreatLabZ, 2017), the most common software vulnera-

bilities in IoT devices are weak passwords, unencrypted communications

(mainly HTTP requests) and outdated firmware (without patches for newly

found exploits. Hackers can use the following tools to gain access to a net-

work (Zaabi, 2016):

• Rootkits are software designed to remotely access and control a com-

puter.

• Spyware are used to gather sensitive information (credentials, confi-

dential data, files) which are then transmitted to the attackers.

• Viruses spread by copying themselves and travel by attaching to files,

programs and web applications. They are used to steal information,

cause damage to computers and networks, etc.

• Worms are like viruses, but they can spread themselves automatically

through the network, without the need of human intervention.

Most malware connect to a Command and Control (C&C) center to receive

commands, to send reports, and even to update itself.

Malicious software is usually delivered through:

• Trojans, which disguise themselves are legitimate files or programs.

They try to trick users into downloading and running them. They grant

the attackers a foothold in the system, from where other malware can

be installed.
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• Exploit kits target vulnerabilities in certain programs (web browsers

and their extensions) to gain access to the computer and to deliver

their payload (worms, viruses, etc).

5.6.1 Attacks Against ICSs

There are different types of attacks against IoT devices. Depending on

the objective, the attacker may try to collect information, gain control of

equipment or attempt to render the device unusable.

Man in The Middle attacks (S. S. Hassan et al., 2018) take place when a

third party with malicious intents (adversary) has access to the communica-

tion channel. It is positioned between the transmitter and the receiver. This

third party can read the messages (eavesdropping attacks) or even modify

their content (relay attacks). The communicating parties do not know that

the attacker is intercepting their communications.

Sinkhole attacks happen when an adversary tricked a great number of

network nodes to send their data traffic through it. The data is received, but

it is never re-transmitted to the intended receiver.

Denial of Service (DoS) is probably the most well-known attack (S. S. Has-

san et al., 2018). The attacker tries to render a device or service unusable.

Usually, it is carried out by spamming a target with huge amounts of traffic

(requests, messages, etc.). Distributed DoS (DDoS) attacks use many nodes

to generate the spam. The attackers first infect the devices with malware, to

turn them into bots. The malware either communicates with a C&C center

to receive instructions when to start the attack, or the date and time are

hardcoded. Then, the devices are used in the actual attack, without the

knowledge of their users. DoS attacks can be used to deplete the battery of

wireless sensors or render servers unavailable.

Sybil attacks (Bazzi and Konjevod, 2007) are probably one of the most

dangerous types of attacks. An adversary presents itself (or his group of

bots) as legitimate nodes in a network. The attacker can thus gain access to

a network or/and can exert influence in the network (by changing routing

paths, data flows, etc.)

Backdoors (S. S. Hassan et al., 2018) are specific vulnerabilities in soft-

ware, which are usually introduced intentionally either by the developer (for

maintenance purposes) or by other entities. They can be used to gain control

of the software and act as entry points into secured networks and devices.

Brute-force attacks (Minhaj Ahmad Khan and Salah, 2018) happen when

an attacker simply tries all the possible encryption and/or password com-

binations to get access to a protected network.

Jamming attacks (Tayebi, Berber, and Swain, 2013) can target the differ-

ent layers of the network. An attacker can use a RF emitter to disrupt the

signal between two or more nodes. He can also target the synchronization
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signals between the nodes (e.g. the acknowledgement). A jamming attack

can also change the bits of data packets.

HELLO flooding (V. P. Singh, Jain, and Singhai, 2010) is carried out when

the network is being set up. The nodes send "HELLO" packets to discover

their neighbors and to create their routing tables. An adversary node with

a high transmission range and high processing power floods the network

with "HELLO" messages. It tries to trick the nodes in accepting it into the

network, and to slow down the set up. As the nodes have limited processing

power, they require a longer time to process the high number of messages.

Node tampering (Becher, Benenson, and Dornseif, 2006) can be danger-

ous in a WSN because there is no way to know the physical condition of a

node, without visual inspection. An attacker can physically access a node

and try to hack it to obtain access keys. The network would continue to see

the node as trustworthy, while it may duplicate, forward, or even inject data

into the network.

5.6.2 Attack vectors

An attack vector is the mean through which an attacker gains access

inside a secured network, and the way the attack is carried out afterwards.

According to (European Union Agency for Network and Information Se-

curity, 2017), attacks usually commence through an employee of the target

company. Either the person is an attacker (an inside attack), or he is a

victim (outside attack).

Inside Attacks are very dangerous, and very easy to be carried out. The

employee already knows the network infrastructure and the security mea-

sures. Most likely, this attacker also has the credentials to bypass any

protection. These attacks are very hard to detect and investigate. Possible

countermeasures are:

• Users should have unique access credentials, to ensure the traceability

of their actions. Each person should hold on to their username and

passwords and each employee should be trained to not share them

with others.

• Users should be permitted to access the systems on a "need to know"

basis.

• After contractors have finished their work in the company, their ac-

cess rights should be suspended (unless they are responsible for the

maintenance of the equipment).

• The company should train the employees to be aware of the secu-

rity aspects. They should know the possible consequences of security

breaches - towards the community, the environment, themselves and
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the company). They should be taught basic notions about network

security.

• The company should gain the trust of its employees and create a good

working environment. No preventive measure can ever be effective if

the employees are disgruntled.

External Attacks are much more common, although they are harder to

carry out. Attackers usually monitor the enterprise looking for vulnerabil-

ities in the software. When they find weak points, they design a special

malware to make use of them. Attackers rely on weak protection of the

company’s network or on zero-day vulnerabilities in the software. The soft-

ware designed for the attack must be injected in the network. This can be

achieved in two ways:

• The attackers find a person in the organization with a unsafe behaviour

on the internet. They design special emails or messages for that per-

son, which contain infected attachments or links to compromised web-

sites. When that employee opens an attachment while being connected

to the corporate network, the malware will be set free in the network.

• A malware can be used to retrieve the credentials of at least one em-

ployee. Then, the attackers use them to access the network. Again, the

targeted employees must have an unsafe behaviour on the internet.

There are protection measures which can help mitigate the risks:

• The users of the company have to be trained to have good habits while

on the internet. They not should access suspicious websites, open

emails and email attachments from unknown sources.

• The company should invest in malware protection, firewall software,

encryption equipment, etc. The operating system and all other software

should always be updated to the latest versions.

• The connection between the SCADA systems and the internet must be

secure. This connection should never be direct, but through secure

applications and software interfaces.

On the hardware side, each device should only have as many ports as

needed. The ports should be protected against unauthorized access.

5.7 Conclusions

The standard ICS architecture should be maintained. All the sensors

inside a WT should connect to a processing station located in the nacelle of
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the WT, to reduce the latency and to increase the reliability and availability

of the network. For local communication, the best protocol is BLE, followed

by DASH7 and WirelessHART. Zigbee is also suitable.

Data and alarms (especially for SCADA) should also be transmitted to

the wind farm operator, to help the company keep track of its assets. The

current SCADA implementation which sends data at 10-minute time inter-

vals is appropriate. LoRa can be used for offshore and onshore WTs which

are located in areas without 4G coverage, and NB-IoT or LTE-M can be used

for turbines which reside in areas covered by a LTE network.

A potential architecture for a communication system based on LoRa was

also presented. Data can be acquired and transmitted from the WT at spe-

cific time intervals. Commands can also be send to control the test stand.

Attackers can target industrial installations, and the consequences can

be severe. Different attacks were presented, to raise awareness about the

security requirements of ICSs.
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Maximum overage [km] Date rate [kbps] Maximum latency a [s] Topology Frequency band [MHz] Peak Current b [mA] Duplex mode Security Interference protection

LoRa 15 - 20 0.29 - 50 60 star 433 / 868 / 915 40 Half Yes Yes

NB-IoT 35 250 10 star LTE bands 120 - 300 Half Yes Yes

LTE-M 11 1024 0.015 star LTE bands 500 Half Yes Yes

Sigfox 30 - 50 (with LOS c) 0.3 60 star 868 / 915 51 Half Yes Yes

EC-GSM-IoT 15 474 N/A mesh 900 / 2.4 * 10
3 N/A Half Yes Yes

Digi Mesh 14.5 250 5 mesh 868 / 900 / 2.4 * 10
3 300 Half Yes Yes

TABLE 5.1: LPWA Communication Technologies

aEstimated from existing implementations.
bEstimated from existing implementations
cLOS stands for "Line of Sight"
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Maximum overage [km] Date rate [kbps] Maximum latency a [s] Topology Frequency band [MHz] Peak Current b [mA] Duplex mode Security Interference protection

ANT(+) 30 0.02 0 peer to peer / star / mesh 2.4 17 N/A Yes Yes

Wi-fi (802.11b) 150 11 1.5 star / tree 2.4 116 half Yes No

Wi-fi HaLoW 1000 347 N/A star / tree 0.9 N/A half Yes Yes

BLE (v. 5) 10 - 600 0.125 - 2 2.5 point to point / mesh 2.4 5.9 half Yes Yes

Bluetooth (v. 5) 40 - 400 (with LOS c) 1 - 3 15 point to point / mesh 2.4 7.5 full Yes Yes

Zigbee 250 0.25 20 mesh 2.4 40 half Yes Yes

IrDA 1 1024 25 point to point N/A 10.2 half Yes Yes

NFC 0.04 0.424 1000 point to point 0.01356 15 half No No

Z-Wave 40 0.04 3000 mesh 0.9 40 half Yes Yes

RFID 200 0.64 400 point to point 2.4 / 5 40 half No No

DASH7 100 - 5000 0.167 (lower with distance) 15 point to point / star / tree 0.433 / 0.868 / 0.915 160 half Yes Yes

Wireless HART 225 0.25 20 mesh 2.4 12 half Yes Yes

Wireless M-Bus 2000 0.1 N/A star 0.169 / 0.433 / 0.868 37 half Yes Yes

TABLE 5.2: LAIoT Communication Technologies

aEstimated from existing implementations.
bEstimated from existing implementations
cLOS stands for "Line of Sight"
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Chapter 6

General Conclusions and

Perspectives

6.1 Conclusions

The objective of this work was the Fault Detection and Identification (FDI)

of the different failures which can affect a Permanent Magnet Synchronous

Generator (PMSG). This type of electrical machine is used in Direct Drive

Wind Turbines (DDWT). The most common impairments of the PMSG, which

were considered in this work, are the:

• Static Eccentricity Fault (SEF);

• Dynamic Eccentricity Fault (DEF);

• Mixed Eccentricity Fault (MEF);

• DeMagnetization Fault (DMF);

• Inter-turn Short Circuit Fault (ISCF).

These impairments are found using a mix of methods based on signal

processing and state estimators. They are detected and identified by only

monitoring the signals which are usually acquired by the SCADA system.

In this case, these signals are the generated currents, the voltages of the

generated electrical energy and the angular velocity of the rotor shaft.

Between the different tools used in signal processing, the Fast Fourier

Transform (FFT) was selected due to its widespread use. However, the spec-

trum of the generated current changes with the wind speed, and thus it is

more difficult to set thresholds for FDI. The Extended Kalman Filter (EKF) is

used as a software sensor, to ensure redundancy. A new method to estimate

the covariance matrix of the process noise is proposed, which is indepen-

dent of the EKF. This procedure was compared with other methods from the

literature and it was proven to be effective. The spectrum of the residuals

computed between the generated currents and the estimated ones is shown

to be constant with respect to changes in the wind speed.



92 Chapter 6. General Conclusions and Perspectives

The FFT is used to compute the spectrum over all the possible frequen-

cies. However. there is a small number of frequencies of interest. The

Goertzel Filter (GF) replaced the FFT, due to its higher efficiency and lower

computational requirements. The GF can substitute the FFT only in this

case, when the number of frequencies of interest is small. A bank of GFs

is used - each one would monitor a certain frequency bin. The obtained

results prove the effectiveness of the proposed approach.

Many different wireless communication technologies were compared, to

highlight the most suitable ones for a real-time implementation. They can

partially replace the wired communication network which exists inside Wind

Turbines (WTs), thus lowering the installation and maintenance costs and

speeding up the laying out of the cables.

6.2 Perspectives

Sensorless Estimation

The inputs of the first model of the PMSG, presented in Chapter II, are

the angular speed of the rotor shaft and the voltages in the dq0 frame. Thus,

the only measurements which remain to be used for the state update are the

currents. The authors tried to find ways to eliminate the need for current

measurement, i.e. to only use the generator speed as an input and the volt-

ages for the state correction. It is possible, but one would have to model the

rest of the electrical circuit (back-to-back converter, transformer, the grid-

side filter and the infinite bus). The generator would serve a current source

and the voltage drop across the rest of the circuit should be calculated and

used to estimate the current in the prediction step of the EKF. The mea-

sured voltages would then be used in the update step of the filter. However,

such a model might be too computationally heavy to be implemented on a

microcontroller and/or a PLC, i.e. in a real-time environment. However, a

simplified model might be usable.

Elimination of the constraints imposed by the assumptions

The first assumption presented in Chapter III is very restrictive. There

are solutions to avoid it, such as using the pseudo-inverse for non-invertible

matrices or estimating the Jacobian of nonlinear measurement functions.

The second assumption is also restrictive, as the system must have a

high observability index.

The assumption should be changed to allow the usage of this method

even for less observable systems. Possible solutions will be the focus of

future research.
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Covariance Estimation

The method proposed in Chapter III requires knowledge about the co-

variance matrix of the measurement noise. This necessity can be eliminated

by combining the proposed method with the one from (Akhlaghi, Zhou, and

Huang, 2017). The covariance matrix of the measurement noise could be es-

timated with the method presented in (Akhlaghi, Zhou, and Huang, 2017),

and the process noise covariance matrix may be evaluated as it was pro-

posed in Chapter III (or vice-versa). So, no a priori knowledge of any noise

would be necessary. Moreover, the complexity of the method from (Akhlaghi,

Zhou, and Huang, 2017) would decrease, without sacrificing precision. Nev-

ertheless, the resulting procedure would be tied to the EKF.

Method Stability for LTV Systems

The inductances and the resistances of the different stator phases can

change in the case of inter-turn short circuit faults. A study of the result-

ing system, i.e. its stability, should be conducted to check if the proposed

method could be used for systems with time-varying parameters.

Isolation of DEF and SEF from each other

To ensure the isolability of DEF and SEF, the magnitude of the Side-Band

Components (SBCs) of the harmonics, introduced by the impairments, must

be monitored. The speed with which this magnitude changes can be used

to isolate one fault from the other Ebrahimi et al., 2014.

Fault Tree Analysis for the Generator

The GF will be used in a FDI algorithm based on Fault Tree Analysis

(FTA) Ruijters and Stoelinga, 2015, to look for the specific cause of a fault.

E.g., for ISCF, this new algorithm should point to the affected phase of the

current and, if possible, to the pole pair which is affected by the fault.
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Appendix A

Simulation Parameters

A.1 Parameters of the Wind Energy Conversion Chain

TABLE A.1: Wind Turbine Parameters

Parameter Notation Value Unit

Radius of the propeller R 21 m

Air Density ρair 1.225 kg/m3

Stator dq Resistance Rs 0.4418 Ω

Stator dq Inductance Ls 1.4 · 10−5 H

Flux Linkage φ 1.0118−11 V · s

Moment of Inertia J 0.0295 kg/m2

Viscous Damping B 0.0004924 N/m/s

Number of Pole Pairs nP 6 N/A

Fundamental frequency fs 50 Hz

Generator-side Capacitor Cgen 0.001 F

PWM Frequency fPSM 100 000 Hz

DC-link Capacitor CDC 30 F

RL Filter Resistance RRL 0.4418 Ω

RL Filter Inductance LRL 0.0017 H

Grid Voltage Vgrid 230 V

Grid Frequency fgrid 50 Hz

The values of the parameters of the generator were initially taken from

(Alameh, 2017). Some were modified later, after repeated simulations.

The values of the parameters of the electrical chain (e.g. IGBT bridge

snubber resistance) were the default values from Matlab.
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Appendix B

Model of the Mechanical Part

of the Wind Turbine

B.1 Mechanical Model of the Wind Turbine

The mechanical model of the Wind Turbine (WT) was simulated using the

equations from (Pintea, Popescu, and Borne, 2010) and (Rolan et al., 2009).

According to these publications, the mechanical torque (Tm) generated by

the rotor is

Tm =
Pm

ωm
=

0.5 · ρair · π ·R2 · vwind · Cp

ωm
, (B.1)

where Pm is the mechanical power of the WT (in N · m), ωm is the angular

velocity of the rotor shaft (in rpm), ρair is the density of air (in kg/m3), R is

the radius of the propeller (in m), vwind is the speed of the wind (in m/s) and

Cp is the power coefficient of the WT.

The power coefficient is computed as

Cp (λ, β) = c1 ·

(

c2
λi

− c3 · β − c4

)

· e
−c5
λi + c6 · λ (B.2)

where the coefficients ci, i = ¯1, 6, have the values c1 = 0.5175, c2 = 116, c3 = 0.4,

c4 = 5, c5 = 21, c1 = 0.0068 and β is the pitch angle. λ is the tip-speed ratio

λ =
ωm ·R

vwind

, (B.3)

and λi is computed using

1

λi
=

1

λ+ 0.08 · β
−

0.035

β3 + 1
. (B.4)
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Appendix C

Useful Transforms

C.1 The Clarke Transform

The Clarke, also called alpha-beta, transform is used to convert three-

phase AC currents/voltages into two-phase AC ones (Mohan, 2012). The

mathematical relation that describes the power invariant Clarke Transform

(which preserves the values of the active and reactive powers in both sys-

tems) is
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where iα(t), iβ(t), i0(t) are the currents in the two-phase alpha-beta frame

and ia(t), ib(t), ic(t) are the currents in the three-phase abc frame. In a bal-

anced system, i0(t) = 0, hence the name.

The the power invariant version of the Inverse Clarke Transform, is
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The Clarke Transform and its inverse can be deduced geometrically. The

alpha axis should be aligned with the a axis, while the beta axis is perpen-

dicular on the alpha one. The transforms are deduced through projecting

the phasor, in the abc system, on the alpha-beta axes.

C.2 The Park Transform

The Park, also called direct-quadrature, transform is used to convert

three-phase AC currents/voltages into two-phase DC ones (Mohan, 2012).

The mathematical relation that describes the power invariant Park Trans-

form (which preserves the values of the active and reactive powers in both
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systems) is
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where id, iq, i0 are the currents in the dq0 frame and θ is the angle between

the phasor, in the abc frame, and the a axis.

The power invariant version of the Inverse Park Transform, is
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The Park and Inverse Park Transforms previously presented can be de-

duced geometrically. The dq axes rotate in the abc frame. The projections

of the three-phase currents/voltages phasor on the dq axis are computed

using the previous equations.
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Appendix D

Matlab Code and Simulink

Schematics

D.1 Matlab Code

The implementation of the Goertzel Filter for Static Eccentricity Fault

Detection:

function Amp = myGoertzel (u)

persistent N Q1 Q2 coef f Fs Ft k

i f isempty (N)

N = 0; %frequency resolut ion

Q1 = [0 ; 0; 0 ] ;

Q2 = [0 ; 0; 0 ] ;

Fs = 1000000; %sampling frequency

Ft = 25; %target grequency

k = round (0.5 + 100000 * Ft / Fs ) ;

coe f f = 2 * cos (2 * pi * k / 100000);

end

Q0 = coef f * Q1 − Q2 + u;

Q2 = Q1;

Q1 = Q0;

i f N == 100000

Amp = sqrt (Q1 .^ 2 + Q2 .^ 2 − Q1 . * Q2 * coef f ) ;

N = −1;

Q1 = [0 ; 0; 0 ] ;

Q2 = [0 ; 0; 0 ] ;

else

Amp = [0 ; 0; 0 ] ;

end

N = N + 1;

end

D.2 Simulink Schematics
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Appendix E

Summary in English

Context

W
IND Farm (WF) numbers are on the rise in the European Union. From

the potential electrical energy generation capacity, using wind power,

of about 500GW, only 178.8GW are currently harvested using Wind En-

ergy Conversion Systems (WECS) (Walsh and Pineda, 2019). Wind Turbines

(WTs) are expected to become the primary source of electrical energy in the

EU by 2019. They offer a very good combination between power generation

capacity and cost. Therefore, they are attractive to investors. With this fu-

ture growth in perspective, there are certain challenges that still need to be

solved.

There are different types of WTs, depending on the generator type and

on the presence or lack of a gearbox. Direct Drive Wind Turbines (DDWTs)

are considered in this work. They do not have a gearbox and are usually

equipped with Permanent Magnet Synchronous Generators (PMSG). They

are widely used in offshore installations and their market share is increasing

in both offshore and onshore WFs, due to their higher energy yield and

reliability (Carroll, McDonald, and McMillan, 2015).

Monitoring of WFs is not trivial. Offshore WFs can lie several kilometers

away from the shore and they can be made of hundreds of WTs. The largest

offshore WF in the world, which is currently under extension, is the Walney

Offshore WF, in the United Kingdom. It comprises 189 WTs which cover an

area of around 73km2 (Ørsted, 2017). The largest onshore WF is the Gansu

WF in China, which comprises around 7000 WTs (Vyas, 2018).

Usually, a WT is equipped with a Supervisory Control and Data Acquisi-

tion (SCADA) system. It can also be monitored using Condition Monitoring

(CM) and/or Structural Health Monitoring (SHM) systems. The data ac-

quired and sent by these systems is usually transmitted through copper

cables, inside each WT. Although no official statistic could be found, it can

be reasonably assumed that the number of signals transmitted inside each

WT is, at least, in the order of hundreds. Therefore, when considering the
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number of WTs of the previously mentioned WFs, the cost generated by the

installation and maintenance of the cables becomes significant.

Moreover, WF operators need to remotely monitor their assets. Thus,

fiber-optic cables are laid between the different WTs in a WF, and from the

gateway of the WF to the operator. These data transmission lines run along

the three-phase power cables (in case of AC transmission) which are laid

from the WF to the grid. The dedicated line used for the communication

between the dispatch center and the WF is maintained by a separate com-

pany, for a fee. This tax is relatively high, and depending on the availability

and redundancy requirements, it can amount to tens of thousands of euros

per year.

Although DDWTs are more reliable nowadays than those in previous gen-

erations, they can still break down, so they require automatic diagnosis sys-

tems. The different components which can fail in a DDWT are the blades,

the generator, the main shaft, the hydraulic systems, etc., (Qiao and Lu,

2015a). These impairments can lead to lower power generation, asset dam-

age and even downtime. The generator is considered in this work, as it is

responsible for almost 25% of the total downtime of a DDWT.

Objectives

The objective of this work is the Fault Diagnosis and Identification (FDI)

of the different faults which can affect a PMSG. The most common faults,

which can affect the PMSG, are (Alameh et al., 2015):

• Static eccentricity fault;

• Dynamic eccentricity fault;

• Mixed eccentricity fault;

• Demagnetization fault;

• Inter-turn short-circuit fault.

These impairments should be detected as early as possible, even in in-

cipient stages. The Fault Detection and Identification (FDI) tools should be

precise, but also simple to use and implement. Therefore, the accent should

lie on simpler methods which can be understood and utilized by engineers

with only bachelor-level studies.

The feasibility of using Wireless Sensor Networks (WSNs), to eliminate the

wired communication network, should be investigated. The current com-

munication architecture of a WT should be studied, together with different

wireless communication technologies. A short guide should be developed,

to help choose a suitable wireless protocol for a given application.
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Description of the Chapters

The state of the art, related to the diagnosis and to surveys of wireless

communication, is presented in Chapter I.

The mathematical model of the PMSG is presented in Chapter II. Its

mathematical model is continuous and non-linear, therefore it is difficult

to discretize. A comparison is made between different discretization tech-

niques. A continuous model with a discrete integrator is shown to be the

best solution. Then, the nominal closed-loop control of the WT is presented.

In Chapter III, there is presented a new method to compute the covari-

ance matrix of the process noise. This procedure is shown in the context

of an Extended Kalman Filter (EKF). However, it does not use any of the

matrices of the filter and is therefore independent of it. The method uses a

constant covariance matrix for the measurement noise and, at each itera-

tion, it re-computes the values of the process noise covariance matrix. The

proposed method and two other ones, selected from the scientific literature,

are tested to estimate the current generated by the PMSG. All three methods

are tested in the context of the EKF. The obtained results are compared and

discussed to highlight the strengths and weaknesses of the proposed ap-

proach. Then, the Kalman Filter (KF), the Extended Kalman Filter (EKF) and

the Unscented Kalman Filter (UKF) are compared. The results are presented

and it is shown that the EKF is the most suitable one for this application.

This is followed by a discussion regarding the behavior of the filters, where

all are shown to act like proportional controllers.

The different faults which can affect a PMSG are shown in Chapter IV.

The most common ones are the rotor demagnetization, eccentricity (static,

dynamic and mixed) and inter-turn short circuit. Their effect is notice-

able on the spectrum of the stator currents, which is computed using the

Fast Fourier Transform (FFT). However, for a WT, the spectrum of the cur-

rents changes with the wind speed. Therefore, the obtained results may

not be accurate. In this chapter, the residuals, computed using the cur-

rents estimated with the EKF and the measured ones, are proposed to be

used for FDI, together with the FFT. The spectrum of the residuals is in-

variant to changes in the wind speed, but sensitive to faults. However, the

FFT computes the whole spectrum, while the number of possible faults and

the number of introduced harmonics is very low. The Goertzel Algorithm

(GA), implemented as a filter - the Goertzel Filter (GF), is also presented in

this chapter as a more efficient alternative to the FFT. The GF was tested

and simulation results prove that it can return the squared magnitude of

these harmonics. This information can be used to set thresholds for fault

detection, within a FDI algorithm.

WFs can be located in isolated areas, or the WTs may be distributed
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geographically. Therefore, the necessary communication infrastructure can

be expensive to install and maintain. In Chapter V, WSNs and the Internet of

Things (IoT) are presented as solutions for these problems. WSNs are quick

to install, easy to maintain and they scale up easily. The requirements

for a potential WSN, for both a WT and a WF, are studied in this chapter.

Different wireless communication technologies are thoroughly compared.

Both long-range low-power protocols and short-range high-speed ones are

considered. A possible LoRa-based architecture of a WF communication

system is presented. The integration of a power generation facility in the IoT

raises security concerns. Potential dangers and vulnerabilities are listed, to

increase awareness of the necessity of security in Industrial Communication

Systems (ICS).

Conclusions

These impairments were found using a mix of methods based on signal

processing and state estimators. They were detected and identified by only

monitoring the signals which are usually acquired by the SCADA system.

In this case, these signals are the generated currents, the voltages of the

generated electrical energy and the angular velocity of the rotor shaft.

Between the different tools used in signal processing, the Fast Fourier

Transform (FFT) was selected due to its widespread use. However, the spec-

trum of the generated current changes with the wind speed, and thus it is

more difficult to set thresholds for FDI. The Extended Kalman Filter (EKF) is

used as a software sensor, to ensure redundancy. A new method to estimate

the covariance matrix of the process noise is proposed, which is indepen-

dent of the EKF. This procedure was compared with other methods from the

literature and it was proven to be effective. The spectrum of the residuals

computed between the generated currents and the estimated ones is shown

to be constant with respect to changes in the wind speed.

The FFT is used to compute the spectrum over all the possible frequen-

cies. However. there is a small number of frequencies of interest. The

Goertzel Filter (GF) replaced the FFT, due to its higher efficiency and lower

computational requirements. The GF can substitute the FFT only in this

case, when the number of frequencies of interest is small. A bank of GFs

is used - each one would monitor a certain frequency bin. The obtained

results prove the effectiveness of the proposed approach.

Many different wireless communication technologies were compared, to

highlight the most suitable ones for a real-time implementation. They can

partially replace the wired communication network which exists inside Wind

Turbines (WTs), thus lowering the installation and maintenance costs and

speeding up the laying out of the cables.
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Résumé en Français

Contexte

L
E secteur de l’énergie éolienne en Union Européenne (UE) est en forte

croissance depuis quelques années. La capacité potentielle de produc-

tion d’énergie électrique à partir de l’énergie éolienne est d’environ 500 GW,

dont 178,8 GW sont actuellement exploités par des systèmes de conver-

sion de l’énergie éolienne (SCEE) (Walsh and Pineda, 2019). Cette énergie

devraient devenir la principale source d’énergie électrique dans l’UE, de-

vançant ainsi le charbon, le nucléaire puis le gaz. Elle est une énergie

renouvelable et elle offre une très bonne combinaison entre la capacité de

production d’électricité et le coût, ce qui rend ce secteur plus attrayant pour

les investisseurs. Le secteur de l’éolien est en plein développement mais il

reste encore certains défis à relever.

Il existe différents types de Turbines Éoliennes(TEs), en fonction du type

de générateur et de la présence ou non d’une boîte de vitesses. Les Tur-

bines Éoliennes à Entraînement Direct (TEED) sont considérées dans ce

travail. Elles n’ont pas de boîte de vitesses et sont généralement équipées

de générateurs synchrones á aimants permanents (GSAP). Elles sont large-

ment utilisées dans les installations offshore et onshore, en raison de leur

rendement énergétique et de leur fiabilité plus élevée (Carroll, McDonald,

and McMillan, 2015).

La surveillance des Parcs Éoliens (PEs) n’est pas facile. Ceux qui sont

offshore peuvent se trouver à plusieurs kilomètres de la côte et peuvent être

constitués de centaines des éoliennes. Le plus grand PE offshore du monde,

actuellement en cours d’extension, est l’Offshore Walney, au Royaume-Uni.

Il comprend 189 TEs qui couvrent une surface d’environ 73km2 (Ørsted,

2017). Le plus grande PE onshore est celui de Gansu en Chine, qui com-

prend environ 7000 éoliennes (Vyas, 2018).

En général, une TE est équipée d’un système SCADA (Supervisory Con-

trol and Data Acquisition). Elle peut également être surveillé à l’aide de

systèmes de Condition Monitoring (CM) et/ou de Structural Health Mon-

itoring (SHM). Les données acquises et envoyées par ces systèmes sont
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généralement transmises par des câbles en cuivre, à l’intérieur de chaque

turbine. Bien qu’aucune statistique officielle n’ait pu être trouvée, on peut

raisonnablement supposer que le nombre de signaux transmis à l’intérieur

de chaque TE est, au moins, de l’ordre de centaines. Par conséquent, si

on considère le nombre de TEs des PEs, le coût généré par l’installation et

l’entretien des câbles devient significatif.

De plus, les opérateurs d’un PÉ doivent surveiller leurs actifs à distance.

Ainsi, des câbles en fibre optique sont installées entre les différentes TEs

d’un PE, et de la passerelle du réseau du PE vers l’opérateur. Ces lignes de

transmission de données longent les câbles d’alimentation triphasés (dans

le cas d’une transmission CA) qui sont posés du PE vers le réseau. La ligne

spécialisée utilisée pour la communication entre le centre de surveillance

et le parc est maintenue par une société lucrative distincte. La taxe est

relativement élevée et, selon les besoins de disponibilité et de redondance,

elle peut s’élever à des dizaines de milliers d’euros par an.

Bien que les TEED soient aujourd’hui plus fiables que celles des généra-

tions précédentes, elles peuvent encore tomber en panne et nécessitent donc

des systèmes de diagnostic automatique. Les différents composants qui

peuvent tomber en panne dans une TEED sont les pales, le générateur,

l’arbre principal, les systèmes hydrauliques, etc. (Qiao and Lu, 2015a). Ces

déficiences peuvent entraîner une baisse de la production d’électricité, des

dommages aux biens et même des temps d’arrêt. Le générateur est consid-

éré dans ce travail, car il est responsable de près de 25% du temps d’arrêt

total d’une TEED.

Objectifs

L’objectif de ce travail est la Détection et l’Identification des Défauts (DID)

des différentes défaillances qui peuvent affecter un GSAP. Ce type de ma-

chine électrique est utilisé dans les Éoliennes à Entraînement Direct (EED).

Les déficiences les plus courantes du GSAP, sont le (Alameh et al., 2015) :

• Défaut d’excentricité statique ;

• Défaut d’excentricité dynamique ;

• Défaut d’excentricité mixte ;

• Défaut de désaimantation ;

• Défaut court-circuit inter-tour.

Ces déficiences doivent être détectées le plus tôt possible. Les outils de

détection et d’identification des défaillances doivent être précis, mais aussi

simples à utiliser et à mettre en œuvre. Par conséquence, l’accent devrait
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être mis sur des méthodes plus simples qui peuvent être comprises et util-

isées par les ingénieurs qui n’ont que des études de niveau licence.

La faisabilité de l’utilisation de Réseaux de Capteurs sans Fil (RCF), pour

éliminer le réseau de communication filaire, devrait être étudiée. L’architecture

de communication d’une TE devrait être étudiée, ainsi que les différentes

technologies de communication sans fil. Un petit guide devrait être élaboré

pour aider à choisir un protocole sans fil adapté à une application donnée.

Description du Chapitres

L’état de l’art en matière de diagnostic et d’enquêtes sur les communica-

tions sans fil est présenté au Chapitre I.

Le modèle mathématique du GSAP est présenté au Chapitre II. Son mod-

èle mathématique est continu et non linéaire - il est donc difficile de dis-

crétiser. Une comparaison est faite entre les différentes techniques de dis-

crétisation. Un modèle continu avec un intégrateur discret s’avère être la

meilleure solution. Ensuite, la régulation nominale du TEED est présentée.

Le Chapitre III présente une nouvelle méthode de calcul de la matrice de

covariance du bruit du processus. Cette procédure est illustrée par la mise

en œuvre du filtre de Kalman étendu (FKE). Cependant, elle n’utilise aucune

des matrices du filtre et est donc indépendante de celle-ci. La méthode

utilise une matrice de covariance constante pour la mesure du bruit et, à

chaque itération, elle recalcule les valeurs de la matrice de covariance du

bruit de processus. La méthode proposée et deux autres, sélectionnées de

la littérature scientifique, sont testées pour estimer le courant généré par le

GSAP. Les trois méthodes sont testées dans le cadre du FKE. Les résultats

obtenus sont comparés et discutés afin de mettre en évidence les forces et

les faiblesses de l’approche proposée. Ensuite, le Filtre de Kalman (FK),

Filtre de Kalman Étendu (FKE) et le Filtre de Kalman (FKU) sont comparés.

Les résultats sont présentés, et il est démontré que le FKE est la méthode la

plus appropriée pour cette application. Ceci est suivi d’une discussion sur

le comportement des filtres, où il est prouvé que tous agissent comme des

régulateurs proportionnels.

Les différents défauts qui peuvent affecter un GSAP sont présentés en

Chapitre IV. Les plus courantes sont la démagnétisation du rotor, l’excentricité

(statique, dynamique et mixte) et le court-circuit inter-tour. Leur effet est

visible sur le spectre des courants statoriques, qui est calculé à l’aide de

la Transformée de Fourier Rapide (TFR). Cependant, pour une TE, le spec-

tre des courants change avec la vitesse du vent. Par conséquence, les ré-

sultats obtenus peuvent ne pas être précis. Dans ce chapitre, il est pro-

posé d’utiliser les résidus, calculés à l’aide des courants estimés avec l’FKE

et ceux mesurés, pour le DID, conjointement avec la TFR. Le spectre des
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résidus est invariant aux changements de la vitesse du vent, mais sensible

aux défauts. Cependant, la TFR calcule l’ensemble du spectre, tandis que le

nombre de défauts possibles et le nombre d’harmoniques introduites sont

très faibles. L’Algorithme de Goertzel (AG), est mis en œuvre comme un filtre

- le Filtre de Goertzel (FG), est également présenté dans ce chapitre comme

une alternative plus efficace au TFR. Le FG a été testé et les résultats de la

simulation prouvent qu’il peut restituer la magnitude de ces harmoniques,

au carré. Ces informations peuvent être utilisées pour définir des seuils de

détection de défauts, dans le cadre d’un algorithme de DID.

Les PEs peuvent être situées dans des zones isolées, ou les TEs peu-

vent être distribués géographiquement. Par conséquent, l’infrastructure de

communication nécessaire peut être coûteuse à installer et à entretenir. En

Chapitre V, les Réseaux des Capteurs sans Fil (RCFs) et l’Internet des Ob-

jets (IdO) sont présentés comme des solutions à ces problèmes. Les RCFs

sont rapides à installer, faciles à entretenir et à mettre à l’échelle facilement.

Les exigences d’une éventuelle RCF, tant pour une TE que pour un PE, sont

étudiées dans ce chapitre. Différentes technologies de communication sans

fil sont comparées. Les protocoles à longue-portée et à faible consommation

d’énergie, ainsi que les protocoles à courte portée et à haute vitesse sont

considérés. Une architecture possible basée sur la technologie LoRa est

présentée. L’intégration d’une installation de production d’électricité dans

l’IdO pose des problèmes de sécurité. Les dangers potentiels et les vulnéra-

bilités sont répertoriés, afin de sensibiliser à la nécessité de la sécurité dans

les Systèmes de Communication Industrielle (SCI).

Conclusions

Les déficiences ont été constatées à l’aide d’une combinaison de méth-

odes basées sur le traitement du signal et des estimateurs d’état. Elles ont

été détectés et identifiés en surveillant uniquement les signaux générale-

ment acquis par le système SCADA. Dans ce cas, ces signaux étaient les

courants générés, les tensions de l’énergie électrique générée et la vitesse

angulaire de l’arbre du rotor.

Parmi les différents outils utilisés dans le traitement du signal, la Trans-

formée de Fourier Rapide (TFR) a été choisie en raison de son utilisation

généralisée. Toutefois, le spectre du courant généré change en fonction de

la vitesse du vent, et il est donc plus difficile de fixer des seuils pour les DID.

Le Filtre de Kalman Étendu (FKE) est utilisé comme capteur logiciel pour as-

surer la redondance. Une nouvelle méthode d’estimation de la matrice de

covariance du bruit du processus est proposée, qui est indépendante du

FKE. Cette procédure a été comparée à d’autres méthodes de la littérature

et s’est révélée efficace. Le spectre des résidus calculés entre les courants
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générés et les courants estimés s’avère constant par rapport aux variations

de la vitesse du vent.

La TFR est utilisée pour calculer le spectre sur toutes les fréquences pos-

sibles. Cependant, il y a un petit nombre de fréquences d’intérêt. Le Filtre

de Goertzel (FG) a remplacé la TFR, en raison de son efficacité plus élevée et

de ses exigences de calcul plus faibles. Le FG ne peut substituer la TFR que

lorsque le nombre de fréquences d’intérêt est faible. Une banque de FGs est

utilisée - chacun d’eux surveillerait un certain intervalle de fréquence. Les

résultats obtenus prouvent l’efficacité de l’approche proposée.

De nombreuses technologies de communication sans fil différentes ont

été comparées, afin de mettre en évidence les plus appropriées pour une

mise en œuvre en temps-réel. Ils peuvent remplacer partiellement le réseau

de communication filaire qui existe à l’intérieur des éoliennes, réduisant

ainsi les coûts d’installation et de maintenance, et accélérant la pose des

câbles.
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Abstract: Direct Drive Wind Turbines (DDWTs) are equipped with Permanent Magnet Syn-

chronous Generators (PMSGs). Their three most common failures are demagnetization, ec-

centricity (static, dynamic and mixed) and inter-turn short circuit. Machine Current Signa-

ture Analysis is often used to look for generator problems, as these impairments introduce

additional harmonics into the generated currents. The Fast Fourier Transform (FFT) is

utilized to compute the spectrum of the currents. However, the FFT calculates the whole

spectrum, while the number of possible faults and the number of introduced harmonics is

low. The Goertzel algorithm, implemented as a filter (the Goertzel filter), is presented as a

more efficient alternative to the FFT. The spectrum of the currents changes with the wind

speed, and thus the detection is made more difficult. The Extended Kalman Filter (EKF) is

proposed as a solution. The spectrum of the residuals, computed between the estimated

and the generated current, is constant, regardless of the wind speed. However, the effect of

the faults is visible in the spectrum. When using the EKF, one challenge is to find out the

covariance matrix of the process noise. A new method was developed in this regard, which

does not use any of the matrices of the filter. DDWTs are either placed in remote areas or in

cities. For the monitoring of a DDWT, tens or hundreds of kilometers of cables are necessary.

Wireless Sensor Networks (WSNs) are suited to be used in the communication infrastructure

of DDWTs. WSNs have lower initial and maintenance costs, and they are quickly installed.

Moreover, they can complement wired networks. Different wireless technologies are com-

pared - both wide area ones, as well as short range technologies which support high data

rates.

Keywords: Direct Drive Wind Turbines; Permanent Magnet Synchronous Generator; Ex-

tended Kalman Filter; Process Covariance Estimation; Fast Fourier Transform; Goertzel Fil-

ter; Wireless Sensor Networks.

Résume: Les Éoliennes à Entraînement Direct (ÉED) sont équipées de Générateurs Syn-

chrones à Aimants Permanents (GSAP). Leurs trois plus courantes défaillances sont la dé-

magnétisation, l’excentricité (statique, dynamique et mixte) et le court-circuit inter-tour.

L’analyse de la signature du courant de la machine est souvent utilisée pour rechercher

des problèmes du générateur, car ces altérations introduisent des harmoniques supplémen-

taires dans les courants générés. La Transformée de Fourier Rapide (TFR) est utilisée pour

calculer le spectre des courants. Cependant, la TFR permet de calculer l’ensemble du spec-

tre, tandis que le nombre de défauts possible et le nombre d’harmoniques introduites sont

faibles. L’algorithme de Goertzel, mis en œuvre sous forme de filtre (le filtre de Goertzel),

est présenté comme une alternative plus efficace au TFR. Le spectre des courants change

avec la vitesse du vent, ce qui rend la détection plus difficile. Le Filtre de Kalman Étendu

(FKÉ) est proposé comme solution. Le spectre de résidus, calcule entre les courants estimés

et les courants générés, est constant, quelle que soit la vitesse du vent. Cependant, l’effet

des défauts est visible dans leur spectre. Lors de l’utilisation de l’FKÉ, un défi consiste à

estime la matrice de covariance pour le bruit du processus. Une nouvelle méthode était

développée pour ça, qui n’utilise aucune de maîtrise du filtre. Les ÉED sont placés soit dans

des zones éloignées, soit dans des villes. Pour la surveillance des ÉED, des dizaines ou des

centaines de kilomètres de câbles sont nécessaires. Les Réseaux de Capteurs sans Fil (RCF)

sont bien adaptés pour être utilisés dans l’infrastructure de communication des ÉED. RCF

ont des coûts initiaux et d’entretien plus faibles et leurs installations sont rapides. De plus,

ils peuvent compléter les réseaux câblés. Différentes technologies sans fil sont comparées :

les technologies à grande surface, ainsi que les technologies à courte portée qui supportent

des débits de données élevés.

Mots clé: Éoliennes à Entraînement Direct; Générateur Synchrones à Aimants Permanents;

Filtre de Kalman Étendu; Estimation du Covariance du Bruit du Processus; Transformée de

Fourier; Filtre de Goertzel; Réseaux de Capteurs sans Fil.



Rezumat: Turbinele Eoliene cu Act, ionare Directă (TEAD) sunt echipate cu Generatoare

Sincrone cu Magnet, i Permanent, i (GSMP). Cele mai comune defecte ale acestora sunt de-

magnetizarea, excentricitatea (statică, dinamică s, i mixtă) s, i scurtcircuitul inter spire. Anal-

iza Semnăturii Curent, ilor Mas, inii (ASCM) este deseori folosită pentru a căuta probleme ale

generatorului, deoarece aceste defecte introduc armonici suplimentare în curent, ii generat, i.

Transformarea Fourier Rapidă (TFR) este utilizată pentru a calcula spectrul curent, ilor. Dar,

TFR calculează întregul spectru, pe când numărul de defecte posibile, s, i numărul de ar-

monici introduse, este mic. Algoritmul lui Goertzel, implementat ca un filtru (filtrul Goetzel),

este presentat ca o alternativă mai eficientă la TFR. Spectrul curent, ilor se schimbă cu viteza

vântului, iar detect, ia este mai dificilă. Filtrul Kalman Extins (FKE) este propus ca o solut, ie.

Spectrul reziduurilor, calculat între curent, ii estimat, i s, i cei generat, i, este constant, indiferent

de viteza vântului. Totus, i, efectul defectelor este vizibil în acest spectru. O provocare, în uti-

lizarea FKE-ului, este aflarea matricei de covariant, ă a zgomotului de proces. O nouă metodă

a fost concepută în acest sens, care nu utilizează niciuna dintre matricele filtrului. TEAD

sunt amplasate în zone rurale sau în oras, e. Pentru monitorizare unor TEAD, sunt necesari

zeci sau sute de kilometrii de cabluri. Ret,elele de Sensori fără Fir (RSF) sunt adecvate pen-

tru a fi folosite în infrastructura de comunicat, ie a unor TEAD. RSF au costuri init, iale s, i de

instalare sunt mai mici, s, i pot fi rapid instalate. Mai mult, ele pot complementa ret,elele cu

fir. Diferite tehnologii fără fir sunt comparate - atât cele cu acoperire mare, cât s, i cele care

oferă viteze mari dar acoperire mai mică.

Cuvinte cheie: Turbine Eoliene cu Act, ionare Directă; Generator Sincron cu Magnet, i Perma-

nent, i; Filtrul Kalman Extins; Estimarea Covariant,ei Procesului; Transformarea Fourier Rapi-

dă; Filtrul Goertzel; Ret,ele de Senzori fără Fir.
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