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The estimation error using the EKF with the method from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF] Ørsted, 2017). The largest onshore WF is the Gansu WF in China, which comprises around 7000 WTs [START_REF] Vyas | The 11 Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint[END_REF].

Usually, a WT is equipped with a Supervisory Control and Data Acquisition (SCADA) system. It can also be monitored using Condition Monitoring (CM) and/or Structural Health Monitoring (SHM) systems. The data acquired and sent by these systems is usually transmitted through copper cables, inside each WT. Although no official statistic could be found, it can be reasonably assumed that the number of signals transmitted inside each

WT is, at least, in the order of hundreds. Therefore, when considering the number of WTs of the previously mentioned WFs, the cost generated by the installation and maintenance of the cables becomes significant.

Moreover, WF operators need to remotely monitor their assets. Thus, fiber-optic cables are laid between the different WTs in a WF, and from the gateway of the WF to the operator. These data transmission lines run along the three-phase power cables (in case of AC transmission) which are laid from the WF to the grid. The dedicated line used for the communication between the dispatch center and the WF is maintained by a separate company, for a fee. This tax is relatively high, and depending on the availability and redundancy requirements, it can amount to tens of thousands of euros per year.

Although DDWTs are more reliable nowadays than those in previous generations, they can still break down, so they require automatic diagnosis systems. The different components which can fail in a DDWT are the blades, the generator, the main shaft, the hydraulic systems, etc., [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis-Part I: Components and Subsystems[END_REF]. These impairments can lead to lower power generation, asset damage and even downtime. The generator is considered in this work, as it is responsible for almost 25% of the total downtime of a DDWT. The distribution of faults and downtime, due to each component of a DDWT is shown in Table 1.

Objectives

The PMSG of the DDWT should be diagnosed, and the most common faults which can affect it should be detected and isolated. These impairments should be detected as early as possible, even in incipient stages.

The Fault Detection and Identification (FDI) tools should be precise, but also simple to use and implement. Therefore, the accent should lie on simpler methods which can be understood and utilized by engineers with only bachelor-level studies.

The feasibility of using Wireless Sensor Networks (WSNs), to eliminate the wired communication network, should be investigated. The current communication architecture of a WT should be studied, together with different 

Description of the Chapters

The state of the art, related to the diagnosis and to surveys of wireless communication, is presented in Chapter I.

The mathematical model of the PMSG is presented in Chapter II. Its mathematical model is continuous and non-linear, therefore it is difficult to discretize. A comparison is made between different discretization techniques. A continuous model with a discrete integrator is shown to be the best solution. Then, the nominal closed-loop control of the WT is presented.

In Chapter III, there is presented a new method to compute the covariance matrix of the process noise. This procedure is shown in the context of an Extended Kalman Filter (EKF). However, it does not use any of the matrices of the filter and is therefore independent of it. The method uses a constant covariance matrix for the measurement noise and, at each iteration, it re-computes the values of the process noise covariance matrix. The proposed method and two other ones, selected from the scientific literature, are tested to estimate the current generated by the PMSG. All three methods are tested in the context of the EKF. The obtained results are compared and discussed to highlight the strengths and weaknesses of the proposed approach. Then, the Kalman Filter (KF), the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) are compared. The results are presented and it is shown that the EKF is the most suitable one for this application.

This is followed by a discussion regarding the behavior of the filters, where all are shown to act like proportional controllers.

The different faults which can affect a PMSG are shown in Chapter IV.

The most common ones are the rotor demagnetization, eccentricity (static, dynamic and mixed) and inter-turn short circuit. Their effect is noticeable on the spectrum of the stator currents, which is computed using the Fast Fourier Transform (FFT). However, for a WT, the spectrum of the currents changes with the wind speed. Therefore, the obtained results may not be accurate. In this chapter, the residuals, computed using the currents estimated with the EKF and the measured ones, are proposed to be used for FDI, together with the FFT. The spectrum of the residuals is invariant to changes in the wind speed, but sensitive to faults. However, the FFT computes the whole spectrum, while the number of possible faults and the number of introduced harmonics is very low. The Goertzel Algorithm (GA), implemented as a filter -the Goertzel Filter (GF), is also presented in this chapter as a more efficient alternative to the FFT. The GF was tested and simulation results prove that it can return the squared magnitude of these harmonics. This information can be used to set thresholds for fault detection, within a FDI algorithm.

WFs can be located in isolated areas, or the WTs may be distributed geographically. Therefore, the necessary communication infrastructure can be expensive to install and maintain. In Chapter V, WSNs and the Internet of Things (IoT) are presented as solutions for these problems. WSNs are quick to install, easy to maintain and they scale up easily. The requirements for a potential WSN, for both a WT and a WF, are studied in this chapter.

Different wireless communication technologies are thoroughly compared.

Both long-range low-power protocols and short-range high-speed ones are considered. A possible LoRa-based architecture of a WF communication system is presented. The integration of a power generation facility in the IoT raises security concerns. Potential dangers and vulnerabilities are listed, to increase awareness of the necessity of security in Industrial Communication Systems (ICS).

Existing Monitoring Systems for Wind Turbines

• Supervisory Control and Data Acquisition (SCADA) system, which is used to:

acquire the data required by the control systems;

process the information according to some algorithms;

send the resulting commands to the different actuators;

• Condition Monitoring (CM) system, which gathers information used to determine the health-state of the equipment (e.g. the generator, the converter, the transformers, etc.);

• Structural Health Monitoring (SHM) system, which acquires data and asses the state of the structural elements of the WT (e.g. the blades, the tower, the foundation, etc.);

• Safety system, which is not considered in this work. This system can stop the WT if a catastrophic failure occurs.

According to the survey in [START_REF] Yang | Wind turbine condition monitoring: technical and commercial challenges[END_REF], there are more than 15 commercially available SCADA systems specifically designed to monitor a WT. The number of CM systems, for a WT, available for purchase is 23.

The survey was published in 2014, so the number of commercially available systems is expected to have increased. Not all CM systems supervise the whole WT -most of them are designed to monitor a specific component, such as the generator or the main bearing (which connects the rotor to the main shaft). Although it is not mentioned in [START_REF] Yang | Wind turbine condition monitoring: technical and commercial challenges[END_REF] whether the different systems use wireless communication or not, they are assumed to be wired. Considering that "wireless" is a strong selling point and that the use of this technology would be interesting from a scientific and industrial point of view, the lack of any mention means that cables are used.

Since more than a decade ago, different proposals have surfaced in the literature about the possibility of using wireless communication for the different systems of a WT. Such proposals can be seen in [START_REF] Xingzhen | Design of Wireless Sensor Network in SCADA system for wind power plant[END_REF], [START_REF] Meng | Design of SCADA System Based on Wireless Communication for Offshore Wind Farm[END_REF]) and (A. Ahmed and E. Ahmed, 2016). However, no experimental implementation has been reported.

The first step towards an experimental demonstration lies in studying the requirements of such a system and the different available solutions. Because the information about different industrial systems is confidential, the requirements have to be estimated from the publicly available information (e.g. the one from (Enjie, 2018)). On the other hand, information about different wireless technologies is widespread.

In (B. K. [START_REF] Singh | Survey on communication architectures for wind energy integration with the smart grid[END_REF] Two communication technologies for long distance transmission using low power are compared in (Sinha, Wei, and S. H. Hwang, 2017). These are LoRa and NB-IoT, which is currently under roll-out.

WirelessHART and other protocols are shown in [START_REF] Queiroz | Survey and systematic mapping of industrial Wireless Sensor Networks[END_REF].

This paper is mostly focused on wireless standards and on classifications.

Therefore, no technical specifications are presented.

Different wireless technologies, for smart grid communication, are presented in [START_REF] Mahmood | A review of wireless communications for smart grid[END_REF]. The considered technologies are ZigBee, Wi-fi, Bluetooth, 6LowPan, Z-wave, WiMAX and cellular networks. A brief comparison is made between them, to recommend the best one.

The survey from [START_REF] Ali | Technologies and challenges in developing Machine-to-Machine applications: A survey[END_REF]) is more detailed. It presents both longrange communication technologies such as Lora, NB-IoT, Sigfox, WiMAX and LTE, but also short-range high-speed ones, such as Zigbee, Wi-Fi and Bluetooth. However, more protocols are reviewed in this work and the results are summarized, to lower the time necessary for a comparison.

In [START_REF] Moness | A Survey of Cyber-Physical Advances and Challenges of Wind Energy Conversion Systems: Prospects for Internet of Energy[END_REF], both WTs and WFs are presented as cyber-physical systems, being made up of physical components such as the blades, generator, nacelle etc. and cyber components such as the SCADA and CM systems. Their integration in the Internet of Energy is also discussed. The authors focused on presenting concepts, without many recommendations for practical implementations. There is no discussion about different communication technologies, just a very brief mention of general security aspects for cyber-physical systems.

Different attack vectors directed against WFs are presented in [START_REF] Staggs | Wind farm security: attack surface, targets, scenarios and mitigation[END_REF]. The emphasis is on physical attacks, i.e.

destroying or adding equipment. A Raspberry PI is added to the ICS to acquire data from it and to serve as an entry-point in the system. The authors give several recommendations at the end of the paper, to help mitigate these risks.

Security aspects are also considered in this thesis. Due to the connectedness of industrial systems and the internet, attackers can take control of equipment and shut it down, with serious consequences. These aspects are mentioned, to increase awareness about the dangers, and the methods to mitigate them.

Fault Detection and Identification

According to (Venkatasubramanian, Rengaswamy, Yin, et al., 2003) there are three types of diagnostic methods:

1. qualitative model-based, which consider the interconnections between the different components to identify the faulty one and the cause of the fault;

2. process history based, which use signal processing or artificial intelligence.

3. quantitative model-based, which use observers and state estimators;

Qualitative-Model Based Methods

In [START_REF] Kang | Fault Tree Analysis of floating offshore wind turbines[END_REF] is presented a Fault Tree Analysis (FTA) for offshore WTs. Only the structure, the pitch and hydraulic systems, the gearbox and the generator were considered in the paper. However, the common generator faults were not mentioned. All the causes of the failures were external, like human error, anchor failure, storm, plane crash, etc. No FTA could be found in the literature for a Permanent Magnet Synchronous Machine (PMSM).

Faults were detected in [START_REF] Badoud | Bond Graph Algorithms for Fault Detection and Isolation in Wind Energy Conversion[END_REF] using Bond Graphs and Analytic Redundancy Relations (ARRs). A DDWT equipped with a PMSG was selected as a case study. However, only sensor faults were considered.

In [START_REF] Echavarria | Fault diagnosis system for an offshore wind turbine using qualitative physics[END_REF]) is presented a model of an offshore WT. This model was obtained using qualitative physics, which describe, abstractly, the behavior of the WT without modelling it according to specific laws of physics. A WT equipped with a gearbox was considered, and, again, the focus was on sensor faults.

It is difficult to use qualitative model-based methods for FDI. Firstly, a

WT is a complex system, which consists of multiple interconnected subsystems. Moreover, this approach requires very good knowledge of the functioning of a WT, which is nigh impossible to obtain without working in a company which produces WTs. Therefore, attention was turned towards methods based on the history of the process.

The Case for Using the Fast Fourier Transform

Diagnosis based on signal processing is common for PMSMs. The usual tools of diagnosis are the Discrete Fourier Transform (DFT), through the Fast Fourier Transform (FFT) algorithm. Other methods used in the literature are the Wavelet Decomposition [START_REF] Gritli | Demagnetizations diagnosis for Permanent Magnet Synchronous Motors based on advanced Wavelet Analysis[END_REF], the Hilbert-Huang

Transform [START_REF] Espinosa | Fault Detection by Means of Hilbert-Huang Transform of the Stator Current in a PMSM With Demagnetization[END_REF], Wiegner-Ville Distribution and Empirical

Mode Decomposition [START_REF] Zhifu | A review of Permanent Magnet Synchronous Motor fault diagnosis[END_REF], among others.

The Fast Fourier Transform (FFT) is the most used signal processing technique. It is recommended when faults introduce additional harmonics into the signals acquired from the process. However, it is also not precise.

The spectrum of the currents changes with wind speed, so the threshold values used for a FFT-based detection algorithm might not be sensitive enough for different wind speeds [START_REF] Faiz | Demagnetization Fault Indexes in Permanent Magnet Synchronous Motors-An Overview[END_REF].

The latter methods previously mentioned are insensitive to variations in the wind speed, but at the same time they are more complex and require more computational power.

The cyclostationarity [START_REF] Napolitano | Cyclostationarity: New trends and applications[END_REF] of the process can be used to enable the usage of the FFT. The spectrum of the currents changes with wind speed, but the same wind speed determines a similar spectrum in the currents. However, this approach suffers from several drawbacks:

• The wind speed is stochastic, because it is affected by noise. This perturbation might introduce unwanted harmonics, which could trigger false-positive alarms;

• Because the spectrum of the generated currents can change with the physical parameters of the WT (i.e. blade span, etc.) the fault detection threshold should be different for each type of WT;

• The variation of the wind speed should be split into intervals, where the spectrum of the currents remains (almost) constant. Then, detection thresholds should be defined on each interval. The number of intervals could be large, and problems might arise when the speed of the wind changes from one interval to another.

Classification algorithms [START_REF] Duviella | An evolving classification approach for fault diagnosis and prognosis of a wind farm[END_REF] are used to estimate the operating point of each turbine in a park. When the operating point of one or more turbines strays too far away from the expected estimation, a fault is detected. The exact fault is discovered by applying the parity space method on the residuals obtained between the real output and the one estimated using a nonlinear model. A similar approach was developed for only one turbine [START_REF] Fernandez-Canti | Nonlinear set-membership identification and fault detection using a Bayesian framework: Application to the wind turbine benchmark[END_REF], but the model is computed within a Bayesian framework.

Data mining techniques can be used for FDI, as they search for specific patterns or values, in data. The behavior of the process can be described using weighted support vector machines (W-SVM) (Lopez Pulgarin and Sofrony

Esmeral, 2016). The operating point of the process is again estimated. When it strays outside a hyperplane, a fault is detected. One set of W-SVMs is utilized for fault detection, while another set for isolation. The histogram of the data can also be analyzed (S. [START_REF] Wang | Wind turbines abnormality detection through analysis of wind farm power curves[END_REF] for offline FDI.

A probabilistic change detection method, such as the Dynamic Cumulative Sum algorithm can also be used [START_REF] Borcehrsen | Fault Detection and Load Distribution for the Wind Farm Challenge[END_REF]. Faults are detected by monitoring the power output of each turbine and of the whole farm. Other similar methods, which may be employed, are the Page -Hinkley Test and the Generalized Likelihood Ratio.

Diagnosis based on Artificial Intelligence (AI) is not commonly used to diagnose WT or PMSM faults, due to the following disadvantages:

• The AI should be trained using data acquired in both healthy and faulty scenarios. Due to the high cost of a WT, companies prefer not to damage them;

• Researchers do not know exactly what happens during the functioning of some AI algorithms, such as neural-networks [START_REF] Reddi | On the Convergence of Adam and Beyond[END_REF]. Accordingly, they are reluctant to use them in critical applications.

The problems of the FFT can be solved if the spectrum of the signal, is constant regardless of the different wind speeds. During this work, it was discovered that the spectrum of the residuals, computed between the generated currents and an estimation obtained using model-based approaches, can be considered constant.

The Case for the Goertzel Filter

Although the FFT is widely used as a signal processing technique, its performance can be overshadowed, in certain circumstances, by the Goertzel Algorithm (GA) [START_REF] Goertzel | An Algorithm for the Evaluation of Finite Trigonometric Series[END_REF]. The GA is usually implemented as a two-stage filter, called the Goertzel Filter (GF). If the number of frequencies of interest, that should be monitored using the FFT, is very low, then the GA is a better alternative.

In [START_REF] Bocca | Structural Health Monitoring in Wireless Sensor Networks by the Embedded Goertzel Algorithm[END_REF], wireless nodes are used to monitor the acceleration of a structure. The FFT would normally be used to monitor changes in the spectrum, due to faults. Because the sensors are battery-powered, they should use very efficient algorithms to minimize the amount of energy that they require. The GA is presented as a replacement for the FFT, because the number of frequencies of interest is very low.

The GA is also used in [START_REF] Koziy | A Low-Cost Power-Quality Meter With Series Arc-Fault Detection Capability for Smart Grid[END_REF] to compute the Total Harmonics Distortion (THD) of the electrical current flowing through a section of a smart grid. Only a few supplementary harmonics can appear, so the FFT would be inefficient in that application. The GA is implemented on a low power smart meter.

A fault tolerant implementation of the GA is shown in [START_REF] Gao | A fault tolerant implementation of the Goertzel algorithm[END_REF].

Two GAs are used in parallel and they run on different equipment, in case one hardware unit breaks down. In this case, the GAs are not used for FDI, but this implementation may be useful in critical applications such as nuclear power plants, where equipment redundancy is mandatory.

In [START_REF] Reljic | Application of the Goertzel's algorithm in the airgap mixed eccentricity fault detection[END_REF], the GA is used to find eccentricitytype faults for a three-phase induction motor. The application is similar to the one presented in this paper, as the authors also used Machine Current Signature Analysis (MCSA). However, in this work, five faults are considered (compared to three in [START_REF] Reljic | Application of the Goertzel's algorithm in the airgap mixed eccentricity fault detection[END_REF] and they will affect a PMSG.

In [START_REF] Sapena-Bano | Using the Goertzel Algorithm Over Disjoint Narrow Frequency Bands for Fault Diagnosis of Induction Motors[END_REF], the FFT is replaced by a sliding-window FFT (SWFFT), its design being based on the GA. The SWFFT computes the magnitude for just one frequency component of the signal, as does the GA.

The SWFFT is again used to diagnose eccentricity-type faults which can appear in an induction motor.

The Case for Using the Extended Kalman Filter

Different model-based approaches can be used to obtain the residuals needed for the signal-processing based diagnosis.

Nonlinear parameter varying equations can be used to model the process [START_REF] Blesa | An Interval NLPV Parity Equations Approach for Fault Detection and Isolation of a Wind Farm[END_REF]. They are used to extract residuals for the parity space method. The equations define NARMAX models. The static characteristic of each turbine is split into regions, and a model is computed for each one. The models are identified by minimizing a constrained optimization problem [START_REF] Gliga | Adaptive -Robust control a computational efficient real time simulation[END_REF] (Gliga, Mihai, et al., 2017) around each operating point. An approach using linear equations also exists [START_REF] Chouiref | LPV model-based fault detection: Application to wind turbine benchmark[END_REF], where the models are of type ARMAX.

A set of MISO fuzzy models can be obtained for the wind farm [START_REF] Simani | Fault Diagnosis of a Wind Turbine Benchmark via Identified Fuzzy Models[END_REF]. A group of Takagi -Sugeno observers are used to estimate the output of each WT. Luenberger interval observers can also be used [START_REF] Blesa | Robust fault detection and isolation of wind turbines using interval observers[END_REF]. Each observer is valid on an interval around an operating point.

Different types of state observers may be used, such as the sliding-mode observer (Y. [START_REF] Feng | Hybrid Terminal Sliding-Mode Observer Design Method for a Permanent-Magnet Synchronous Motor Control System[END_REF], the unknown input observer [START_REF] Alahakoon | Unknown input sliding mode functional observers with application to sensorless control of permanent magnet synchronous machines[END_REF] and the Luenberger observer mentioned earlier.

However, the decision was taken to use a Kalman-type filter for residual generation, namely the Extended Kalman Filter, because:

• these are widely used in the monitoring of PMSMs (e.g. [START_REF] Dhaouadi | Design and implementation of an extended Kalman filter for the state estimation of a permanent magnet synchronous motor[END_REF] and (Foo, X. Zhang, and M. D. Vilathgamuwa, 2013));

• they are widely taught in universities worldwide;

• they have proven their capabilities (e.g. their usage in the Apollo 11 guidance computer, in the localization system on smartphones, etc.).

Current Methods to Estimate the Process Noise Covariance

Even in such an old algorithm as a Kalman-type filter, there are still problems that can be addressed. Among them, is the classical challenge of selecting the covariance matrices for the process and for the measurement noise. While a constant matrix can be selected for the measurement noise [START_REF] Levy | The Extended Kalman Filter: An Interactive Tutorial for Non-Experts[END_REF], the estimation of the other matrix is more difficult.

In the scientific literature, different methods are presented to estimate the covariance matrix of the noise affecting a process. However, most of them are designed for the linear Kalman Filter (KF), and they are not usable in an EKF. In other cases, their design limits their applicability.

A similar estimation procedure, to the one proposed in this work, is presented in (B. [START_REF] Feng | Kalman Filter With Recursive Covariance Estimation-Sequentially Estimating Process Noise Covariance[END_REF]. That method is explicitly derived for the KF, and it is not applicable for the EKF. Moreover, the authors of (B. [START_REF] Feng | Kalman Filter With Recursive Covariance Estimation-Sequentially Estimating Process Noise Covariance[END_REF] used the following equation to compute the covariance of the estimation error:

ĉ ov (ǫ k+1 , ǫ k+1 ) = k k + 1 ĉ ov (ǫ k , ǫ k ) + 1 k + 1 ǫ k+1 ǫ T k+1 , (1.1)
where ǫ ∈ R ny is the error between the real outputs of the process and the estimated outputs of the model and ĉ ov(ǫ k , ǫ k ) ∈ R ny * ny is the covariance matrix of the error at the k th time step. In (1.1) it is assumed that the mean of the noise is zero. The new method presented in this work also considers non-zero average values for the noise. Therefore is can be used when sensor faults are present, namely bias [START_REF] Gliga | Fault Detection and Identification for Fire and Explosion Detection[END_REF] The authors of (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF] present an iterative procedure to compute the covariance matrices of the process and of the measurement noises. The method is simple to implement, and it is designed for the EKF:

S k = 1 N k j=k-N +1 ǫ k ǫ T k , (1.2) Q k = K k S k K T k , (1.3) R k = S k + H k P k H T k , (1.4)
where K k is the Kalman gain obtained in the update phase of the EKF. N is chosen arbitrarily, with no suggestion being provided in (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF]. Different values were tested, from the set {1, 10, 100, 1000, 10000}, to find the most suitable one. There is no universal value, and it should be changed according to the uncertainty affecting the process.

Another iterative method, shown in [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF], can be used to compute the process and the measurement noises covariances. This procedure is similar to an optimization method with a forgetting factor:

Q k = αQ k-1 + (1 -α) K k d k d T k K T k , (1.5) R k = αR k-1 + (1 -α) ǫ k ǫ T k + H k P k H T k , (1.6) 
where α ∈ [0, 1] is the forgetting factor and

d k = y k -h (x k ) is the a priori estimation error. ǫ k = y k -h (x * k )
is the a posteriori estimation error. In the rest of this work, the phrase "estimation error" refers to the a posteriori estimation error.

In [START_REF] Xi | Detection of power quality disturbances using an adaptive process noise covariance Kalman filter[END_REF], a procedure is presented to compute the covariance of the process noise. It only uses the estimation error and its covariance.

However, the authors assume that the diagonal elements of the covariance matrix of the process noise are equal. In practice, there is no guarantee that the noise has the same linear behavior across all measurement channels. Moreover, the amplitude of the noises might be different, thus the resulting variances -the diagonal elements of the covariance matrix, might not be equal. For example, the engine of a car is influenced differently by the quality of the fuel and the ruggedness of the road.

Another method, shown in (Qiu, Qian, and G. Wang, 2018), is used to determine the covariance matrix of the process noise. The authors assume that the covariance matrix is split, by the anti-diagonal, into two halves: each half has equal elements on its first diagonal, but the values are different between the two halves. While this is a generalization from the previous case, it is still a particular one.

An EKF with three stages is presented in [START_REF] Xiao | An adaptive three-stage extended Kalman filter for nonlinear discrete-time system in presence of unknown inputs[END_REF]. The second and the third stages are used to improve the estimation obtained from the first one. The method used to compute the process noise covariance matrix 1.4. Contributions has no constraints, compared to the previous two approaches. However, it is very complex as there are three EKFs connected in series. The process and measurement noises covariances are estimated in each stage. As it will be shown in Chapter III, even one EKF is very accurate, so the increase in complexity is not necessary (at least for a PMSG).

The procedure presented in this work was compared with the methods presented in (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF] and [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF].

The algorithm to estimate the measurement noise covariance is not published in a peer-reviewed scientific paper. The authors decided to test it, together with the proposed method, against the established ones.

Contributions

A new procedure to estimate the covariance matrix of the process noise is presented in Chapter III. It only uses information related to the model of the process, and therefore it can be utilized for any state estimator and observer. Moreover, when compared with other methods from the literature, it is proven to be faster and just as precise.

In Chapter IV, an EKF is used to estimate the generated currents. The spectrum of the residuals computed between this estimation and the real currents is nearly constant. Therefore, simpler signal processing tools, such as the Fast Fourier Transform, can be used. In the same chapter, the FFT is replaced by the Goetzel Filter, which is more efficient when the number of frequencies of interest is low.

In Chapter V, many wireless communication technologies are compared. This can help engineers quickly choose the most suitable one for their application.

Chapter 2

Generator Modelling and Nominal Control

Introduction

A

S it was previously presented, a Wind Turbine (WT) is made up of a multitude of components. The behavior of the WT has to be represented using a mathematical model, which can then be used in simulations.

The mechanical part of the wind turbine, which comprises the rotor hub and the rotor shaft, can be modeled using the equations shown in Appendix B. The parameters of this model are shown in Appendix A, together with the other parameters used in the simulations.

In this chapter, the model of the Permanent Magnet Synchronous Generator (PMSG) is presented in Section 2.2. Because the model is nonlinear and continuous, it must be approximated by a discrete one. The discretization is presented in Section 2.3. Before any fault symptoms are introduced and any diagnosis is performed, the WT should be controlled, in nominal operation. The control of the WT is presented in Section 2.4.

The Model of the Generator

The PMSG is simulated in Matlab, Simulink, using the Simscape/Power Systems toolbox. The equations of the PMSG are (Gliga, Chafouk, et al., 2018a):

Îd (t) = - R s I d (t) L s + n p ω m (t)L s I q (t) L s + V d (t) L s , (2.1)
Îq (t) = - R s I q (t) L s - n p ω m (t)L s I d (t) L s - n p ω m (t)φ L s + V q (t) L s , (2.2)
where I d , I q , V d and V q are the currents (in A) and the voltages (in V) in the dq0 rotor frame. R s and L s are the stator resistance (in Ω) and inductance (in H) in the dq0 frame. ω m is the angular velocity of the generator shaft (in rpm), and φ is flux linkage between the permanent magnet rotor and the stator (in W b).

The states of the model are the currents, and the inputs are the voltages and the angular velocity. The model is nonlinear due to the product between a state and an input, in each state equation. The equipment was simulated in nominal operation, when no faults are present.

Another equation can be added in the model, to capture the behavior of the angular velocity. The complete model is [START_REF] Pillay | Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive[END_REF]:

İd (t) = V d (t) -R s I d (t) + n P ω m (t)L s I q (t) L s , İq (t) = V q (t) -R s I q (t) -n P ω m (t)L s I d (t) L s - n p ω m (t)φ L s , ωm (t) = T e (t) -T m (t) -B * ω m (t) J , (2.3)
where B is the viscous damping of the generator shaft and J is the inertia coefficient of the rotor. T e is the electrical torque

T e (t) = 1.5n P φI q (t), (2.4) 
and T m is the mechanical torque, which can be estimated using the equations from Appendix B.

The PMSG is connected to a system which simulates the small capacity wind turbine, as shown in Appendix D. The generator is connected to the grid through a two-level back-to-back converter and an RL filter. The transformer was not considered in this work, because it does not directly affect the PMSG.

A word of caution when using the SimScape Power Systems library in Simulink. Although the recommended solver is ode23tb, the simulation might return different results on minor modifications done to the code. This problem can be avoided by using a fixed-step solver with a very low time step. For the simulations presented in this work, the authors utilized the ode1 solver (MathWorks, 2018) with a time step of 10 -6 .

Model Discretization

It is difficult to discretize a nonlinear function. So, the most suitable option is to use the Taylor Series Expansion (TSE) to obtain a linear model [START_REF] Morel | A Comparative Study of Predictive Current Control Schemes for a Permanent-Magnet Synchronous Machine Drive[END_REF])

  i d k+1 i q k+1   = F k *   i d k i q k   + G k *   V d k V q k   + H k (2.5)
where

F k =   1 -RsTs Ls T s n P ω m k -T s n P ω m k 1 -RsTs Ls   G k =   Ts Ls 0 0 Ts Ls   and H k =   0 -Tsn P ω k Ls φ  
and T s is the sampling period.

However, any linearization may introduce errors in the model. In [START_REF] Shahriari | Dynamic state estimation of a permanent magnet synchronous generator-based wind turbine[END_REF], it is suggested to use the continuous model, but with the following discrete integrator

x k = x k-1 + ẋ * T s;
where x is the state vector of the process.

However, this integrator differs from the one used in Simulink, in the Power Systems Toolbox. There, when the PMSG is simulated in discrete mode, the continuous model is used with a Forward Euler Integrator (FEI) (TransÉnergie Technologies Inc, 2003)

y k = x k x k+1 = x k + T s * u k
where y is the output of the integrator, x is its internal state and u is its input, i.e. the derivative of the system states.

The simulation results are presented in Table 2.1. The errors obtained with the continuous integrator and the FEI are similar, because the sampling period was chosen to be very small, 10 -6 . This is to prevent numerical instability in the simulation. In Fig. 2.3 and Fig. 2.4, the methods appear to return the same results, but this is out of coincidence. The simulations was checked, and the same results were obtained. Although Fig. 2.1 and 2.2 are identical, they show that the discrete integrator behaves like the continuous one, for the chosen sampling period (10 -6 s).

A small error appears in the case of the continuous model with a continuous integrator, because of how Simulink compiles the schematic. Any collection of Power Systems blocks is approximated by a state space model (TransÉnergie Technologies Inc, 2003). 

Nominal Control of the Wind Turbine

There are multiple Control Systems (CSs) used to control a WT [START_REF] Yan | Control of a grid-connected direct-drive wind energy conversion system[END_REF]):

• the pitch CS, which changes the angle-of-attack of each blade;

• the yaw CS, which changes the orientation of the nacelle, to align the propeller according to the direction the wind is blowing;

• the rectifier CS, which is used to control the angular velocity/torque of the shaft, and through it the generated currents;

• the inverter CS, which controls the active and reactive powers of the energy injected into the grid;

• the cooling system of the nacelle; The rectifier and the inverter receive the gate control signals from a Space-Vector Pulse-Width Modulation block. The input of the block are the voltages, in the alpha-beta frame, which point to the desired location of the voltage phasor [START_REF] Mohan | Electric power systems : a first course[END_REF].

The PI controller which assured a certain angular velocity was designed considering the third equation from (2.3). However, the other two were tuned using Ziegler-Nichols [START_REF] Popescu | Automaticȃ Industrialȃ. Bucures , ti: Agir[END_REF].

Feedforward control is sufficient for the inverter. As long as it operates in the nominal mode, its behavior does not directly influence the generator. It only considers the grid-side voltages and currents. Therefore, it would react to grid disturbances, not to changes in the wind speed. The three-phase setpoints selected for the inverter were AC currents with an amplitude of 230V and a frequency of 50Hz.

The currents obtained in the dq0 frame, using the rectifier and inverter control systems described earlier, are shown in Figure 2.6.

Conclusions

In the first part of this chapter, it was proven the necessity for using a nonlinear model, in the case of a PMSG. A nonlinear model has an insignificant estimation error, while a linear one has an error with a amplitude around four. Moreover, it was shown that using a discrete integrator with a continuous model is the best approach to discretize the PMSG. Therefore, the resulting system is hybrid, having both a continuous part (the model) and a discrete one (the state estimator).

Among the different control systems which are present in a WT, feedback control system was implemented for the rectifier and feedforward control for the inverter. The generated currents, transformed in the dq0 frame, are stable, proving the effectiveness of the control structure.

Chapter 3

State Estimation

Introduction

S

TATE estimators are one of the two possible approaches to assure sensor redundancy -the other being state observers. This redundancy is critical for the monitoring of sensors and different equipment, and for constructing residuals which may be later used in fault diagnosis. The purpose of this chapter is to lay a foundation for the latter.

The main difference between state observers and estimators is that the latter consider the statistical properties of the process. They can use the covariance matrices of the process and the measurement noises. They also do not require a priori knowledge of the process uncertainties or the impact of faults. They can also be more insensitive to noises.

The best-known state estimator is the Kalman Filter (KF). It is an optimal estimator for linear systems affected by Gaussian noises, and is widely used. The Extended Kalman Filter (EKF) is the first nonlinear extension of the classical KF. It is widely used in localization and navigation, being the de facto standard. The Unscented Kalman Filter (UKF) is a further nonlinear extension of the Kalman Filter. It is used in military and aeronautic applications, as it can have superior performance to the EKF, in the presence of strong nonlinearities [START_REF] Kulikov | Do the Cubature and Unscented Kalman Filtering Methods Outperform Always the Extended Kalman Filter ?[END_REF].

The objective of this chapter is to study the differences between these three state estimators. The selected case study is the Permanent Magnet Synchronous Generator (PMSG). These are used in direct drive wind turbines [START_REF] Gliga | Innovations in fault detection and tolerant control for a wind farm, using Wireless Sensor Networks[END_REF] the Fast Fourier Transform can be erroneous [START_REF] Faiz | Demagnetization Fault Indexes in Permanent Magnet Synchronous Motors-An Overview[END_REF].

A possible solution is to generate residuals between the real currents and the estimated ones Gliga, Chafouk, et al., 2018b. A state estimator can be used to ensure the required redundancy. The challenge, when using a state estimator, is to find out the covariance matrices for the process and for the measurement noises. If the matrices are not properly chosen, the estimated states might not converge to the real ones. The values of these matrices must be close to the real covariances to ensure the consistency of the estimation. The covariance matrix of the measurement noise can be easily found out using the procedure presented in [START_REF] Levy | The Extended Kalman Filter: An Interactive Tutorial for Non-Experts[END_REF]. It is difficult to select a constant matrix for the process noise, since it is very hard, if not impossible, to estimate the process noise. Even if a good constant covariance matrix could be chosen, one which would guarantee the consistency of the estimated states, it would only be suited for certain values of the noise. If the environmental conditions or the degradation of the equipment would change the intrinsic uncertainties of the process, the covariance would change, and the estimation consistency would no longer be ensured.

The proposed solution is to use an iterative method which could be implemented online. The covariance matrix would be automatically adapted to always ensure the consistency of the estimated states. The method is simple to utilize, but its usage is constrained to certain non-linear systems.

Its advantages and limitations are discussed in the conclusions.

This chapter is organized as follows: The algorithms of the KF, EKF and UKF are presented in Section 3.2. The estimation method is explained in Section 3.3, together with the obtained results. The three Kalman filters are compared in Section 3.4. The conclusions close this chapter.

Kalman Filters

The Kalman Filter

Although the linear model from (2.5) introduces significant modelling errors, it is interesting to see if a KF, which integrates this model, would achieve better results. The Kalman Filter uses a linear model of the form

xk+1 = A k * xk + B k * u k , ŷk = C * xk , (3.1)
where x ∈ R nx are the states of the process. u ∈ R nu are the inputs and y ∈ R ny are the outputs of the process. A ∈ R nx * nx is the state matrix, B ∈ R nx * nu is the input matrix and C ∈ R ny * nx is the output matrix. The number of states is n x , the number of inputs is n u and the number of measurements is n y . The sampling time is k. The "^" denotes an estimation.

The model from (2.5) can be put into this form by combining the matrices G and H and using a vector with three elements for the inputs,

  i d k+1 i q k+1   = A k *   i d k i q k   + B k *      V d k V q k φ      , (3.2) 
where

A k = F k =   1 -RsTs Ls T s n P ω k -T s n P ω k 1 -RsTs Ls   , B k =   Ts Ls 0 0 0 Ts Ls -Tsn P ω k Ls   , C =   1 0 0 1   .
Then, the classical KF algorithm can be used (S , tefȃnoiu and Culit , ȃ,

2009)

• Prediction phase:

Pk = A k P * k A T k + Q k ; (3.3)
• Update phase:

K k = Pk C T (C Pk C T + R k ) -1 ; (3.4) x * k+1 = xk + K k (y k -C xk ); (3.5) P * k = (I -K k C) Pk ; (3.6) where P ∈ R nx * nx is the covariance matrix of the estimation error, Q ∈ R nx * nx
and R ∈ R ny * ny are the covariance matrices of the process and the measurement noises. K ∈ R nx * ny is the Kalman gain and y ∈ R ny are the measurements acquired from the process. The " * " denotes the corrected estimation.

The Extended Kalman Filter

The EKF also introduces a linearization, through the Taylor Series Expansion (TSE) of the state function. This linearization is used to estimate the covariance matrix of the estimation error. However, these linearizations are computed only around the current estimated state, so the introduced error should be small.

Chapter 3. State Estimation

The EKF uses the most general formulation of a nonlinear model

xk+1 = f (x k , u k ), (3.7 
)

y k = h(x k ), (3.8)
where the state function is f : R nx+nu → R nx and the measurement function is h : R nx → R ny . For the EKF, the model presented in (2.3) is already written in the required form. The algorithm of the EKF is (Foo, X. Zhang, and D. M.

Vilathgamuwa, 2013):

• Prediction phase:

Pk = F k Pk-1 F T k + Q k ;
(3.9)

• Update phase:

K k = Pk H T k (H k Pk H T k + R k ) -1 ; (3.10) x * k = xk + K k * (y k -ŷk ); (3.11) P * k = (I -K k H k ) Pk ; (3.12)
where F ∈ R nx * nx and H ∈ R ny * nx are the Jacobians of the state and measurement functions.

The Unscented Kalman Filter

The UKF uses the Unscented Transform (UT) [START_REF] Althof | Efficient uncertainty analysis of wind farms in the time domain using the Unscented Transform[END_REF] to account for the nonlinearity in the model. The current estimation of the state is treated as the mean value of a probability distribution, which has the same covariance as the estimation error. Depending on the implementation, either 2n x + 1 (for a full order UT) or n x + 1 (for a reduced order UT) points are chosen around the current mean. Each sigma point has a certain weight associated with it. There are multiple ways to choose the sigma points (Van der Merwe and Wan, 2001) [START_REF] Terejanu | Unscented Kalman Filter Tutorial[END_REF].

The UKF uses the same model shown in (2.3). The chosen (sigma) points are propagated through the state function. The new points are used to compute the new estimate of the mean, i.e. the state, and its covariance.

The new points are also propagated through the measurement function, and their mean is the estimated output of the system (Van der [START_REF] Van Der Merwe | The square-root unscented Kalman filter for state and parameter-estimation[END_REF]. The next steps are similar, in concept, to the algorithm of the EKF.

The classical formulation of the UKF uses the square root of the covariance matrix of the estimation error to compute the sigma points. To calculate the square root, the covariance matrix must be at least positive semi-definite, which is not guaranteed by the algorithm. A more stable version of the UKF, with a similar degree of complexity is the Square Root UKF (SRUKF). Its algorithm is (Van der Merwe and Wan, 2001):

• Choose the sigma points:

-Select the weights of the sigma points, [START_REF] Terejanu | Unscented Kalman Filter Tutorial[END_REF])

W i = 1 -W 0 2n x , (3.13)
where W 0 is chosen arbitrarily. A positive value moves the sigma points further away from the previous estimate of the state, while a negative one brings them closer to the previous average. However, the weights must obey the condition

2nx i=0 W i = 1.
-Compute the scaling parameters

η i = n x 1 -W i . (3.14) -Choose the actual sigma points , χ k-1 0 |k = x * k-1 , (3.15) χ k-1 i |k = x * k-1 + η i Ŝ * k-1 , (3.16 
)

where i = 1, n x χ k-1 i |k = x * k-1 -η i Ŝ * k-1 , (3.17) 
where i = n x + 1, 2n x ;

• Prediction phase:

-Propagate the sigma points through the state function

χ k i |k = f (χ k-1 i |k ); (3.18) -Compute the new state estimation xk = 2nx i=0 W i χ k i |k ; (3.19)
-Calculate and then update the square root of the state covariance matrix

Ŝx k = qr([ W i (χ k i |k -xk ) Q k ]); (3.20)
for i = 1, 2n x . "qr" refers to the QR decomposition.

Ŝx k = cholupdate(S x k , χ k 0 |k -xk , sign(W 0 )); (3.21)
"cholupdate" is the rank 1 update. The rank update formula is

A1 = A ± x * x T
where A is the matrix obtained through a Cholesky factorization (replaced by a QR one in this case) and x is a column vector. The sign to be used in the update is the one of W 0 .

-Propagate the "state" sigma points through the measurement function

Y k i = h(χ k i |k ); (3.22) -Compute the new measurement estimation ŷk = 2nx i=0 W i Y k i ; (3.23)
• Update phase -Compute and then update the square root of the output covariance matrix

Ŝy k = qr([ W i (Y k i -ŷk ) R k ]); (3.24) for i = 1, 2n x Ŝy k = cholupdate(S y k , Y k 0 -ŷk , sign(W 0 )); (3.25)
-Calculate the covariance between the states and the measurements

Pxy k = 2nx i=0 W i (χ k i |k -xk )(Y k i -ŷk ) T ; (3.26)
-Find out the Kalman gain

K k = ( Px k y k / ŜT y k )/ Ŝy k ; (3.27) -Update the state estimation x * k = xk + K k (y k -ŷk ); (3.28)
-Correct the square root of the state covariance matrix

S x k = cholupdate(S x k , K k S ŷk , -1).
(3.29)

Covariance Estimation

The measurement noise covariance matrix can be easily estimated [START_REF] Levy | The Extended Kalman Filter: An Interactive Tutorial for Non-Experts[END_REF]. The measurement noise affects the data through the sensors. Information about this perturbation is available in the sensor datasheet, as the sensor tolerance or precision. This is the standard deviation of the measurements of the sensor. Thus, the covariance matrix can be computed as:

R =         σ 2 1 0 . . . 0 0 σ 2 2 . . . 0 . . . . . . . . . . . . 0 0 . . . σ 2 n         ,
where σ i , i = {1, 2, ..., n y } is the standard deviation on each measurement channel. This matrix is diagonal because there is a single sensor on each measurement channel. Therefore, the data acquired by each sensor is only affected by the noise which perturbs that channel.

One possible counter argument to the above reasoning might be that R is constant and the noise covariance might change due to sensor faults or degradation of the equipment. Firstly, sensors are routinely calibrated, at intervals specified by the legislation of each country, or by the manufacturer. This calibration frequency is also mentioned in international standards, such as ISO:9001 (DNV GL, 2015). Therefore, the tolerance should remain within the limits specified on the datasheet and the covariance matrix should be constant. Secondly, if the sensor is faulty, it should be replaced. A sensor fault can be quickly diagnosed using an EKF [START_REF] Idrissi | A Bank of Kalman Filters for Current Sensors Faults Detection and Isolation of DFIG for Wind Turbine[END_REF].

Thus, only the process noise covariance matrix Q remains to be computed. The nonlinear state-space model of the real process is

x k = f (x k-1 , u k ) + w k , (3.30) y k = h (x k ) + v k , (3.31) 
where w k ∈ R nx is the noise or uncertainty which affects the process and v k ∈ R ny is the perturbation of the measurements. These noises are assumed to be independent and normally distributed. The lack of symbols over the variables means that all of them are the real states and outputs of the process.

The estimation error is

ǫ k = y k -ŷk = h (x k ) + v k -h (x k ) , (3.32)
which can be re-written as

ǫ k = h (f (x k-1 , u k ) + w k ) + v k -h f x * k-1 , u k . (3.33) Assumption 1: h : R nx → R ny is a linear function defined as h (x) = Ax+b,
where A ∈ R ny * nx is an invertible matrix and b ∈ R ny is a vector. Since A is invertible, it is a square matrix and n y = n x . For simplicity, A and b will be considered constant.

This assumption is restrictive. The number of measurements is usually higher than the number of states and the measurement function is generally nonlinear. There are workarounds around these constraints, which will be the focus of future research. The possible solutions are:

• For a linear measurement function with a non-invertible matrix A, the pseudoinverse can replace the inverse of the matrix;

• A non-linear measurement function can be approximated using Taylor

Series Expansion (TSE). For simplicity, it can be linearized by considering only the first term of the TSE, namely the Jacobian matrix. The same reasoning was used to design the EKF. If the Jacobian is not invertible, its pseudoinverse can be used. This Jacobian can be either pre-computed or estimated online using cvasi-Newton methods.

Equation (3.33) becomes

ǫ k = h (f (x k-1 , u k )) + h (w k ) + v k -h f x * k-1 , u k . (3.34)
Assumption 2: The estimation error between the real and the estimated states tends to zero, i.e. lim k→inf (x k -xk ) = 0.

This assumption is also restrictive, since it implies that the covariance matrix of the error tends to zero. However, in usual applications, the covariance may tend to a non-zero value or even non-constant values. In the second case, it would oscillate around a certain set of values for its elements, and the amplitude and frequency of these oscillations would depend on the uncertainties affecting the process. Therefore, the system should have a high observability index, in order to use this method. Equation (3.34) can be reduced to

ǫ k = h (w k ) + v k .
(3.35)

The covariance matrix of the error can be computed as

ĉ ov (ǫ k , ǫ k ) = ĉ ov (h (w k ) + v k , h (w k ) + v k ) , (3.36) ĉ ov(ǫ k , ǫ k ) = ĉ ov(Aw k + v k + b, Aw k + v k + b). (3.37) b is a constant vector, therefore ĉ ov (ǫ k , ǫ k ) = ĉ ov (Aw k + v k , Aw k + v k ) . (3.38)
The previous equation can be re-written using the bilinearity property of the covariance (Culit , ȃ and S , tefȃnoiu, 2008)

ĉ ov (ǫ k , ǫ k ) = ĉ ov (Aw k , Aw k ) + ĉ ov (v k , v k ) + ĉ ov (Aw k , v k ) + ĉ ov (v k , Aw k ) . (3.39)
The noises are independent even when they are propagated through the linear transformation A. Therefore, the covariance of the estimation error is equal to

ĉ ov (ǫ k , ǫ k ) = ĉ ov (Aw k , Aw k ) + ĉ ov (v k , v k ) . (3.40)
The previous equation can be rewritten as

ĉ ov (ǫ k , ǫ k ) = A • ĉ ov (w k , w k ) • A T + ĉ ov (v k , v k ) , (3.41)
which can be reformulated using the specific notations of the EKF

ĉ ov (ǫ k , ǫ k ) = AQ k A T + R. (3.42)
The estimation of the process noise covariance matrix is

Q k = A -1 ( ĉ ov (ǫ k , ǫ k ) -R) A -1 T . (3.43)
The covariance matrix of the estimation error can be computed online using [START_REF] Burkholder | Online Covariance[END_REF])

ĉ ov (ǫ k , ǫ k ) = ĉ ov (ǫ k-1 , ǫ k-1 ) - ĉ ov (ǫ k-1 , ǫ k-1 ) -(ǫ k -ǭk ) (ǫ k -ǭk ) T k , (3.44)
where ǭk is the mean of the estimation error, computed at sampling time k.

Simulation of the proposed method

The proposed method was tested for an EKF, which was used to estimate the currents generated by the PMSG of a direct drive wind turbine. To use (2.1) and (2.2) in the EKF, the authors used the continuous model with a discrete-time integrator, as shown in Chapter II. This approach is also used by the Simscape/Power Systems toolbox to discretize the model of the generator, when the user selects a discrete-time simulation.

The proposed method was compared with two other ones from the literature, namely the ones presented in (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF] and [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF].

In a real implementation, the noise cannot be directly measured. The quantifiable measure of performance is the error between the generated and the estimated currents. Due to the limitations of the Simscape/Power System toolbox, the parameters of the blocks, which are used to model the electrical components such as the generator, cannot be changed while the simulation is running.

Therefore, all possible 27 combinations of parameter values were considered -maximum, minimum and nominal for each one, in the absence of perturbations. The results are similar for many combinations. The system was simulated when R s is 10% lower, L s is 7% higher and Φ is 2.5% lower than their nominal values, and no noise is added. FIGURE 3.6: The estimation error using the EKF with the method from (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF]. The parameters are different from the nominal case. When the process has different parameters than the model, the EKF which uses the proposed method has the lowest error, less than 0.1A. It is followed by the EKF which utilizes the procedure from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF]. The method from (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF] causes the EKF to become unstable.

Zero-Mean Noises (ZMNs) was added to the signals used by the EKFs.

These noises were introduced by the sensors measuring the voltages, the angular velocity of the shaft and the currents. The voltage was perturbed by a noise with a variance of 2, to correspond to a sensor tolerance of 0.5% (LEM, 2013). The noise affecting the current had a variance of 3.5, as a sensor with a tolerance of 1% (LEM, n.d.). The angular velocity was affected by a perturbation with a variance of 14, to simulate a sensor with a tolerance of 1%. The values of the variances were chosen using the assumed tolerance and the maximum amplitudes of these signals. The results are presented in FIGURE 3.10: The estimation error using the EKF with the method from (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF], in the presence of zero mean noises.

DC component in the error in this case. The mean of the error can be used to detect sensor faults. Machine faults can be detected through signal processing techniques applied on the residuals.

The results of all the simulations are summarized in Table 3.1.

None of the methods seems to be affected by the variation in the wind speed. The only significant difference between them is the speed. The proposed method is the fastest. It is followed by the one from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF] and then the procedure from (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF]. The speed of each method was found out by observing the increments of the simulation time, in Simulink. Their values were: 10 for the proposed method, 2

for the one from (Z. Liu and He, 2017) and 6.66 for the one from (Akhlaghi, FIGURE 3.11: The estimation error using the EKF with the method from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF], in the presence of zero mean noises. Zhou, and Huang, 2017). They were later converted to percentage of the speed of the proposed method. These results were obtained using the "Normal" simulation mode in Simulink.

The maximum amplitude of the generated current is around 400 Amperes. In the presence of noises, the proposed method has an estimation error of 3.68%, as the one from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF].

The proposed method is very easy to implement, but it requires the covariance matrix of the measurement noise. It is at least as precise as the method from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF], but it is faster, because of the lower complexity. Moreover, it is completely independent of the EKF, and can be used for any algorithm. The potential disadvantage of the proposed method is its reliance on the precomputed covariance matrix of the measurement noise. If this matrix does not closely approximate the real covariance, the estimation of the EKF might not be accurate and precise.

The procedure from (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF] is the slowest. Its accuracy and precision are lower than the other two. It can only be applied for the EKF.

The method from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF]) can be used only for the EKF. In simulation, the forgetting factor α was chosen equal to 0.5. FIGURE 3.15: The estimation error using the EKF with the method from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF], in the presence of non-zero mean noises.

The frequency of the errors is mainly due to the very small sampling period used for the simulation, 10 -6 . In the simulation, noise is generated at each sampling moment, while the parameters of the process have their The estimations of the noise covariance matrices, in the nominal case, are:

• For the simulations without perturbations:

-The proposed method:

* The elements on the main diagonal of Q have negative values in the order of 10 -4 while the elements on the anti-diagonal have negative values in the order of 10 -25 .

-The method from (Z. Liu and He, 2017):

• For the simulations with zero mean noises:

-The proposed method:

* The elements on the main diagonal of Q have positive values in the order of 10 5 while the elements on the anti-diagonal have negative values in the order of 10 5 .

-The method from (Z. [START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF]):

* The elements on the main diagonal of Q have positive values in the order of 10 11 while the elements on the anti-diagonal have negative values in the order of 10 9 .

* The elements of R have values in the order of 10 1 , namely 10.4 and 33.46 on the main diagonal and 18.65 on the anti-diagonal.

-The method from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF]):

* The elements on the main diagonal of Q have positive values in the order of 10 6 while the elements on the anti-diagonal have negative values in the order of 10 6 .

* The elements of R have values in the order of 10 -3 , with negative elements, of the same order, on the anti-diagonal.

• For the simulations with non-zero mean noises:

- * All the elements of R have values in the order of 10 -1 , with a negative element on the anti-diagonal.

• For the simulation without perturbations, but with different parameters for the process:

-The proposed method:

* The elements on the main diagonal of Q are ≈ 10 18 and ≈ 10 12 , while the elements on the anti-diagonal are both ≈ 10 15 .

-The method from (Z. Liu and He, 2017):

* Both Q and R have values that are not numbers (NaNs in Matlab), hence the instability of the EKF which uses this method.

-The method from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF]):

* The elements on the main diagonal of Q have positive values in the order of 10 19 and 10 14 , while the elements on the antidiagonal have negative values in the order of 10 17 .

* The elements of the first row of R are ≈ -10 7 and ≈ -10 4 , while the elements on the second row are -1215 and -4735.

The results of the proposed method are very similar the ones obtained using the procedure presented in [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF]. The values of the process noise covariance matrices tend to have similar orders of magnitude. The measurement noise covariance matrix estimated using the method from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF] tends to have lower values than the constant covariance matrix used in the proposed method.

This may explain their similar behaviors and results.

Comparison between the state estimators

The results of the comparison are shown and Figures 3.16 -3.18 and they are summarized in Table 3.2. No noises were introduced, to test their behavior in the ideal case.

The initial error of the SRUKF is not zero but is close to 10 -4 . However, in time it quickly converges to ≈ 10 -13 . This is due to improper initialization, so the initial error is ignored.

As complexity, the KF and the EKF are the same. This is because the Jacobian of the state function can be computed in advance. It depends on ω m k , but so does the state matrix of the linear model. The SRUKF is by far the most complex.

The EKF is the fastest of the three filters, being closely followed by the Before the large spike, the error of the KF oscillates but fairly slow, with certain pauses between each oscillation. In time, due to accumulation of energy, large oscillations appear, like the great spikes. After the large spike, the oscillation frequency has increased, so all the energy causing the previous large spikes is dissipated more quickly. A similar phenomenon can be seen for the EKF and UKF, where very small oscillation are present, but with a very high frequency.

The cause of these oscillations is the approximation made by Simulink.

The electrical model of the wind turbine was made using the Simscape / PowerSystems toolbox. When the Simulink diagram is compiled, the electrical model is approximated by a state space model. This introduces differences between the model used in the state estimators and the one used by Simulink. All filters try to compensate for this difference in a similar manner, as a P controller. As the KF uses a linearized model which is even further away from the one used by Simulink, it is harder for it to achieve and maintain a null error. However, because both the state matrix used by the KF and the Jacobian of the state function used by the EKF depend One might argue that both the EKF and the nonlinear model with a discrete integrator produce a similar estimation error (in the order of 10 -12 and 10 -13 ), so the added complexity of the EKF is useless. However, when noise is added, the utility of the EKF is obvious (Figures 3.20 and 3.21). Zero mean noise with a variance of one was added to the measurement of the voltages, which are used as inputs for the model. 

Conclusions

A new method, for the estimation of the process noise covariance matrix, was presented in this chapter. Although it is shown in the context of an EKF, is it independent from it and can be used with any other type of algorithm. It only uses the measured and estimated signals, and the model of the process.

The procedure only needs an estimation of the covariance matrix of the measurement noise. This can be easily obtained from the datasheets of the sensors, by considering the sensor tolerance as the standard deviation of the data acquired on each channel.

The proposed method was compared with two other ones, and the simulation results proved its effectiveness. The procedure is simple, fast and precise. The estimation error can be lowered if the measurement signals are filtered before they are input in the EKF. Filters were not used in the simulation.

Moreover, this method can be used for linear systems.

The disadvantages of the proposed method are:

• The measurement function has to be linear, of the form h (x) = Ax + b

where the matrix A has to be invertible;

• The number of inputs has to be equal to the number of states;

• The internal states have to be observable.

Three state estimators were compared: the KF, the EKF and the SRUKF.

The EKF is about 2.5 times faster than the SRUKF and its error is in the order of 10 -13 , as the SRUKF, which can be reasonably approximated by 0.

The KF could not compensate completely for the linearization of the model.

Because the new model required more mathematical operations, it was also slower than the EKF.

The behavior of the different filters in the presence of the uncertainties generated by the functioning of Simulink and of the Simscape/PowerSystems toolbox was also examined. It was shown that the behaviors of the filters are similar to a proportional controller.

Chapter 4

Diagnosis of the Permanent Magnet Synchronous Generator

Introduction

D

IRECT Drive Wind Turbines (DDWTs) are widely used in the renewable energy industry, especially in offshore installations. They eliminate the need for a gearbox, which is the component most prone to faults [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis-Part I: Components and Subsystems[END_REF]. They are usually equipped with Permanent Magnet Synchronous Generators (PMSGs) [START_REF] Gliga | Innovations in fault detection and tolerant control for a wind farm, using Wireless Sensor Networks[END_REF], a type of Permanent Magnet Synchronous Machines (PMSMs). PMSMs are widely used as motors in electric vehicles [START_REF] Alameh | Vibration-based Fault Diagnosis Approach for Permanent Magnet Synchronous Motors[END_REF].

Most of the research is focused on Permanent Magnet Synchronous Motors (PMSMs), which, physically, are identical to PMSGs. Because there will be used results from the research on motors, the terms PMSG and PMSM will be used interchangeably.

Although a great deal of research was conducted on the fault diagnosis and identification of PMSMs, they are still prone to faults. PMSG faults represent 14.7% of all faults in a WT, and they account for 24.42% of the downtime (Pinar [START_REF] Pérez | Wind turbine reliability analysis[END_REF].

Fault Diagnosis and Identification (FDI) methods are usually split into three large categories, depending on what approach they are based on: signal processing, mathematical modelling and artificial intelligence (Venkatasubramanian, Rengaswamy, Yin, et al., 2003), [START_REF] Venkatasubramanian | A review of process fault detection and diagnosis: {Part} {III}: {Process} history based methods[END_REF], (Venkatasubramanian, Rengaswamy, and Kavuri, 2003). This work will focus on FDI methods based on signal processing, as they are used in commercial Condition Monitoring (CM) and

Structural Health Monitoring (SHM) systems for wind turbine installations [START_REF] Yang | Wind turbine condition monitoring: technical and commercial challenges[END_REF].

Signal processing is commonly used in the diagnosis of PMSM faults (Qiao and Lu, 2015b) (Riera-Guasp, [START_REF] Riera-Guasp | Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art[END_REF].

Spectrum analysis of the stator currents is a common diagnosis method, through The Fast Fourier Transform (FFT). However the diagnosis is hindered, because the harmonics of the current change with the wind speed [START_REF] Faiz | Demagnetization Fault Indexes in Permanent Magnet Synchronous Motors-An Overview[END_REF], and so does the spectrum. The Wavelet Transform or the Hilbert Transform are some of the methods used to solve this problem [START_REF] Alameh | Vibration-based Fault Diagnosis Approach for Permanent Magnet Synchronous Motors[END_REF], but they are computationally intensive and more complex.

The Extended Kalman Filter (EKF) is presented in this chapter, as a solution to enable the use of the FFT. If the residuals between the estimated currents, using the EKF, have the same spectrum regardless of the change in wind speed, they can be used for signal processing-based diagnosis. However, the impact of the faults must be noticeable in the residuals or in their spectrum.

The FFT computes the spectrum of a given signal over all possible frequencies, which is not efficient when only few frequencies are of interest. To counteract this drawback, the authors turned to the Goertzel Algorithm (GA) [START_REF] Goertzel | An Algorithm for the Evaluation of Finite Trigonometric Series[END_REF]. It is implemented using a Finite Impulse Response (FIR)

filter connected in series with an Infinite Impulse Response (IIR) filter. The GA can be used to evaluate the magnitude of a signal at a specific frequency.

The GA is used in voice communication, in dual-tone multi-frequency signaling (DMTF), to recognize the key which was pressed by the user on the phone, when dialling a number (R. G. [START_REF] Lyons | Understanding Digital Signal Processing[END_REF], [START_REF] Oppenheim | Discretetime signal processing[END_REF]. Because of the low number of frequencies of interest in the diagnosis of a PMSG, it is appropriate for this application as well.

In this chapter, the GA will be tested for the FDI of a PMSG. A diagnosis procedure is also presented, which can detect and identify the different faults which can affect a PMSG.

The methodology which will be followed in this chapter is:

1. Find out the possible faults which can affect a PMSG;

2. List the symptoms they induce into the generated currents;

3. Simulate the functioning of a DDWT cloat different wind speeds;

4. Introduce the symptoms of the faults in the generated currents;

5. Estimate the currents using an EKF;

6. Compute the residuals between the estimations and the measured currents;

7. Apply the FFT to calculate the spectrum of the residuals;

8. Check if the spectrum remains constant at different wind speeds and if the faults influence the spectrum;

9. Construct a bank of Goertzel Filters (GFs) to monitor the harmonic content inside different frequency bins;

10. Analyze the outputs of the GFs to determine if they can be used for FDI.

In Section 4.2, the most common generator faults will be described, together with the fault signature matrix and the symptoms they induce into the generator currents. In Section 4.3, the generation of the residuals, using the EKF, will be presented. The effect of the different faults on the spectrum of the residuals will also be shown. The Goertzel Algorithm will be presented in Section 4.4. The FDI procedure for a PMSG will be explained in Section 4.5. Simulation results and their discussion will follow in section 4.6. The conclusions will be presented at the end of this chapter.

PMSG Faults

The most common faults which can affect a PMSM are the demagnetization of the rotor, eccentricity and inter-turn short circuit [START_REF] Alameh | Vibration-based Fault Diagnosis Approach for Permanent Magnet Synchronous Motors[END_REF].

Demagnetization Fault (DMF) [START_REF] Faiz | Demagnetization Fault Indexes in Permanent Magnet Synchronous Motors-An Overview[END_REF] means that the rotor loses some or all of the residual magnetic flux. The main factors which contribute to DMF are high temperatures or cracks which had appeared during the manufacturing process. Another possible cause can even be the magnetic field of the stator. The stator currents and voltages are controlled to maintain a certain angular velocity or/and a torque in the rotor.

When the rotor is slowed slowed down, the magnetic field of the stator acts like a brake. This effect can damage the rotor. There are 2 types of DMF:

• Partial DMF means that just parts (or areas) of the rotor are affected;

• Complete DMF means that the whole rotor is affected.

Inter-turn Short Circuit Fault (ISCF) [START_REF] Hang | Online Interturn Fault Diagnosis of Permanent Magnet Synchronous Machine Using Zero-Sequence Components[END_REF] appears when an unwanted current passes between two turns of the stator winding, usually of the same phase. It is produced by faulty insulation, high temperatures or high voltages which can affect the stator. This is considered an incipient fault, as it can lead to inter-phase short circuits and DMFs.

The Eccentricity Fault [START_REF] Ebrahimi | Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis[END_REF] means that the rotation axis of the rotor is deviated from the center. This deviation means that the air gap between the stator and the rotor is not uniform. This fault can lead to unbalanced voltages and currents in the different phases and, if left unchecked, can allow the rotor and the stator to rub against each other. It is a mechanical fault, which can appear during the manufacturing process, during the installation or during operation (because of an unbalanced load, i.e. the rotor). The different types of eccentricity faults are:

• Static Eccentricity Fault (SEF) -the deviation in the air gap is constant in time;

• Dynamic Eccentricity Fault (DEF) -the deviation in the air gap changes in time;

• Mixed Eccentricity Fault (MEF) -both of the above. Faults Frequencies

(1 ± 3 n P )fs (1 ± 1 n P )fs (1 ± 3 n P )fs & (1 ± 1 n P )fs (1 ± 2k-1 n P )fs (2k ± 1)fs SEF x x x x DEF x x x MEF x x DMF x x x x ISCF x
All the previous faults affect different signals acquired from the generator, namely the torque, voltages, currents, temperature, vibrations, etc.

Therefore, diagnosis through signal processing is a common.

Although widely used, vibrations measurements require the presence of accelerometers. Their elimination would lower the costs of WT installation and maintenance. The temperature inside the generator tends to change slowly. Therefore, if the FDI system would monitor it, incipient or fault evolving faults might be hidden.

Together with the voltages, currents are signals acquired by the Supervisory Control and Data Acquisition (SCADA) system of the WT (Schlechtingen, Santos, and Achiche, 2013). Therefore, no additional sensors are necessary. The focus on this work will lay on Machine Current Signature Analysis (MCSA), as it is a well-proven technique for the diagnosis of electrical machines (Qiao and Lu, 2015b).

According to [START_REF] Hang | Online Interturn Fault Diagnosis of Permanent Magnet Synchronous Machine Using Zero-Sequence Components[END_REF]) [START_REF] Ebrahimi | Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis[END_REF]) [START_REF] Roux | Detecting Rotor Faults in Low Power Permanent Magnet Synchronous Machines[END_REF]) [START_REF] Faiz | Demagnetization Fault Indexes in Permanent Magnet Synchronous Motors-An Overview[END_REF]) [START_REF] Yassa | Modeling and detecting the stator winding inter turn fault of permanent magnet synchronous motors using stator current signature analysis[END_REF] the previous faults introduce different harmonics into the ABC currents. This is summarized in the fault signature matrix, shown in Table 4.1. There, f s is the fundamental frequency of the signal and k is an integer.

Diagnosis using the EKF and the FFT

The EKF can be used to estimate the generated currents. In Chapter III it is shown that it is as good as the Unscented Kalman Filter to estimate the currents generated by a PMSG, but it is faster. The signal which is proposed to be used for diagnosis is made up of the residuals between the estimated and the simulated currents.

The EKF and the computed residuals were tested to see if they are usable for diagnosis. The following steps were taken:

1. Check if the spectrum of the residuals is constant when the wind speed changes;

2. Introduce faults in the model and check if the EKF does not hide them.

The behavior of the residuals, for different wind speeds, is shown in A harmonic with a frequency of f DE = 58.3333Hz and an amplitude of 0.2 is introduced in each phase of the ABC current, to simulate the DEF fault.

The effect can be seen in Fig. 4.7 and 4.8. Again, the harmonic is clearly visible in the frequency domain.

The amplitude in the frequency domain seems to depend linearly on the amplitude of a harmonic, with a inverse ratio of 2.5.

Until now, harmonics were introduced only in the current. According to [START_REF] Faiz | Demagnetization Fault Indexes in Permanent Magnet Synchronous Motors-An Overview[END_REF], the DMF fault affects the currents, voltages, electromotive force cannot be simulated. The torque is affect by harmonics with the frequency

Spectrum of ABC Estimation Error

(λ ± ǫ n P )f s , (4.1) 
where λ and ǫ are arbitrarily chosen integers.

In the simulation, λ = 2 and ǫ = 4, so the frequency of the harmonic added to the torque is f DM T = 133.33Hz. The amplitude of the harmonic is 0.3. The zero sequence voltage component (ZSVC) is also modified.

ZSV C = 1 3 (V a + V b + V c ) (4.2)
A constant value of 10 is used to simulate a ZSVC introduced by a DMF fault. A harmonic with an amplitude of 0.1 is added to the current, at the frequency f SE = 25Hz, because the DMF and eccentricity-type faults introduce the same harmonics into the current. The results are presented in Fig. 4.9 and 4.10. and the torque are also modified. Therefore, currents cannot be used to identify these faults. The results were identical to the ones predicted using the fault signature matrix, so the simulation methodology was correct.

Spectrum of ABC Estimation Error

Spectrum of ABC Estimation Error

The ISCF fault was simulated by introducing a harmonic in the current at the frequency f ISC = 250Hz, with an amplitude of 0.05. However, it was introduced together with the DM fault, to check if simultaneous faults hide each other. The effects of both faults can be distinguished separately, and each of them can be identified from the other using MCSA.

Spectrum of ABC Estimation Error

The Goertzel Algorithm

The GA is used to compute the Discrete Fourier Transform (DFT) inside a single frequency bin, i.e., an interval between two frequencies. 

Spectrum of ABC Estimation Error

Frequency

[Hz] Amplitude [A] A B C FIGURE 4
.12: Zoomed in spectrum of the residuals for the DMF and ISCF.

The basic form of the GA is (R. G. Lyons, 2010)

H GA (z -1 ) = 1 1 -e j2π k N z -1 , (4.3)
where N is the number of frequency bins and k is the bin of interest, i.e., the interval which contains the frequency of the harmonic of interest; N is also the resolution of the DFT and the block size which will be used to compute it (unlike the FFT, it does not need to be a power of two, nor an integer [START_REF] Sysel | Goertzel algorithm generalized to non-integer multiples of fundamental frequency[END_REF]). This transfer function has one pole which lies on the unit circle, at e j2π k N , so it is only marginally stable. Because of the finite-precision representation of numbers in digital computers and microprocessors, the poles of the filter might lie outside the unit circle (R. G. [START_REF] Lyons | Understanding Digital Signal Processing[END_REF] and it might become unstable.

An improved version of the GA, where the stability problem is solved, is obtained when the previous fraction is multiplied and simplified by (1 - [START_REF] Lyons | Understanding Digital Signal Processing[END_REF], respectively

e -j2π k N z -1 ) (R. G.
H GA (z -1 ) = 1 -e -j2π k N z -1 (1 -e j2π k N z -1 )(1 -e -j2π k N z -1 ) , (4.4)
which leads to

H GA (z -1 ) = 1 -e -j2π k N z -1 1 -2 cos 2π k N z -1 + z -2 . (4.5)
Another form of this transfer function is [START_REF] Bocca | Structural Health Monitoring in Wireless Sensor Networks by the Embedded Goertzel Algorithm[END_REF])

H GA (z -1 ) = 1 -e 2π f i fs z -1 1 -2 cos 2π f i fs z -1 + z -2 , (4.6)
where f s is the sampling frequency and f i is the frequency of interest.

The transfer function from (4.5) will be used throughout this work, as that is the standard representation. It has one zero at e -j2π k N and two conjugate poles located at e ±j2π k N . One of the poles is cancelled by the zero. All poles and zeros are located on the unit circle. A common misconception is that (4.5) is marginally stable and can become unstable if the numerical precision used for implementation is low -the same problem as with (4.3).

However, it can be proven that the filter is always stable [START_REF] Sysel | Goertzel algorithm generalized to non-integer multiples of fundamental frequency[END_REF], (R. [START_REF] Lyons | Correcting an Important Goertzel Filter Misconception[END_REF] and only large round-off errors (which can appear when filtering a very large number of samples) can destabilize it.

The GA is implemented as a two stage discrete-time filter. Its difference equations are

v[n] = 2 cos 2π k N v[n -1] -v[n -2] + x[n], (4.7) y[n] = v[n] -e -j2π k N v[n -1], (4.8)
where v is an internal variable, x is the input signal, y is the output of the filter and n is the current sampling moment. Equation (4.7) describes an IIR filter, while (4.8) shows a FIR filter.

The intermediate variable has to be computed at every sampling moment, but the output of the filter is equal to the result of an equivalent single-bin DFT only at every N th sample

y[n]| n=N = X(k), (4.9)
where X[k] is the result of the DFT computed in the k th frequency bin for the x input signal. Therefore, (4.8) can be computed more rarely.

The discrete transfer functions of (4.7) is

v[n] x[n] = 1 1 -2 cos 2π k N z -1 + z -2 , (4.10) which is equal to v[n] x[n] = 1 (1 -e j2π k N z -1 )(1 -e -j2π k N z -1 ) . (4.11)
The discrete transfer function of (4.8) is

y[n] z[n] = 1 -e -j2π k N z -1 . (4.12)
If (4.11) would be multiplied by (4.12), to compute the equivalent series filter, the obtained result would be equal to (4.4), the stable GA. This short demonstration was given as it is frequently skipped in works introducing the GA, such as (R. G. [START_REF] Lyons | Understanding Digital Signal Processing[END_REF] and [START_REF] Oppenheim | Discretetime signal processing[END_REF].

To eliminate the complex number multiplication from (4.8), the output of the filter is modified to compute the square of the magnitude from the bin of interest.

First, (4.8) is rewritten to compute the magnitude of the frequencies from the k th bin, respectively

y[n]| n=N = v[n] -v[n -1] cos 2π k N + + jv[n -1] sin 2π k N , (4.13)
and the square of the magnitude will be

y[n]| n=N = v 2 [n -1] + v 2 [n]- -2v[n -1]v[n] cos 2π k N . (4.14)
The implementation of the GA using the difference equations, which describe two filters connected in series, is called the Goertzel Filter (GF). To preserve the stability of the filter when processing a very large numbers of samples, the internal variable of the GF is reset to 0 after each computation of its output.

The FDI Procedure

In MCSA, the FFT is used to monitor the harmonics introduced, by faults, into the generated currents. However, the previously described GF can also be used. Specifically, a bank of GFs must be used, one GF for each frequency of interest [START_REF] Idrissi | A Bank of Kalman Filters for Current Sensors Faults Detection and Isolation of DFIG for Wind Turbine[END_REF]. Three filters have to be utilized: one to monitor the harmonic introduced by the SEF, another one for the sinusoid inserted by the DEF and a last one for the harmonic introduced by the ISCF.

An algorithm which can identify the previously discussed faults can be formalized as follows:

1. Design the GFs and mark the sampling periods when each of their output equals the output of the equivalent single-bin DFT.

2. While the PMSG is running, count the sampling moments:

(a) At the correct sampling moment, check the magnitude of the harmonic which may be introduced by the SEF.

i. If it is lower than a threshold, the SEF is not present.

ii. Else, the PMSG is affected by the SEF. If DEF is also present, then the actual fault is the MEF.

(b) At the right sampling moment, check the magnitude of the harmonic which may be introduced by the DEF.

i. If it is lower than a threshold, the DEF is not present.

ii. Else, the PMSG is affected by the DEF.

(c) If a SEF or MEF is present, check the DC component of the voltage.

i. If it is zero, the DMF is not present.

ii. Else, the PMSG is actually affected by the DMF, and not by SEF or MEF.

(d) At the correct sampling moment, check the magnitude of the harmonic which may be introduced by the ISCF.

i. If it is lower than a threshold, the ISCF is not present.

ii. Else, the PMSG is affected by the ISCF.

Between steps (2.a) and (2.d), the results of the algorithm should be hidden from the operator. A possible change in the detected fault, e.g., from SEF to DMF, might confuse the user.

This algorithm only allows the identification of DEF from DMF, but it cannot detect SEF or MEF when they appear together with the DMF. Another downside of the algorithm is that when SEF is present, DEF can no longer be detected. However, it can detect any fault which appears while the PMSG is affected by the ISCF.

SEF can be identified by monitoring only the first harmonic presented in Table 4.1 . DEF can be identified by monitoring the first two harmonics from Table 4.1, but it does not cause a significant change in the first harmonic.

When both the previous faults are present, it means that the MEF affects the PMSG. Both the previous harmonics appear during DM faults. So, the DM fault cannot be distinguished from eccentricity-type faults.

The ISCF can be detected by monitoring harmonics of the type (2k + 1)f s , so ISCF faults can be discerned from the rest.

Simulation and Results

The symptoms which were introduced by the faults are the same as in the previous case.

Several constants were precomputed to fasten the GFs:

• The sampling period was chosen to be 1e -6 sec to ensure the stability of the electrical model of the wind turbine (a constraint imposed by the Simscape/Power Systems toolbox).

• Different numbers of frequency bins were selected for the different impairments:

-N = 100000 bins were used for SEF and DEF. Each resulting bin contains 10 frequencies which can be represented by integers;

-N = 10000 bins were used for ISCF. Each resulting bin covers 100 frequencies which can be represented by integers.

• The bins of interest were selected at k = 0.5 + N * f i fs , where k is rounded to the nearest integer.

• The cosine from (4.7) was precomputed, as its value depends only on the number of frequency bins and the bin of interest.

The results obtained from the simulation when SEF is introduced in the PMSG are presented in Figures 4.13 order of thousands, while the other two filters show squared magnitudes of hundreds and respectively tens of Ampers. The ISCF was simulated together with the DEF, to test the FDI algorithm presented in Section 4.5. While the first GF from the bank reports a squared magnitude in the order of hundreds, the output of the second one is in the order of thousands, while the output of the third one is in the order of hundreds. Therefore, appropriate thresholds for fault detection are around 1000 for SEF and DEF, and around 100 for ISCF, in the case of these harmonics.

The behavior of the last GF of the bank was peculiar, because it showed a rising trend. The output of the other two seemed constant or near constant.

A longer simulation was carried out, in the presence of only the ISCF, as The mean of the generated voltage can be easily computed over a period of the signal. Because it is not related to the GF and the difficulty is trivial, no simulations are presented. However, it must be considered that this mean can only be known at the end of each period of the signal.

The stimulus signal for the bank of GFs was made of the residuals computed between the simulated currents and an EKF.

Conclusions

The fault signature matrix of the PMSG was constructed after a survey of the literature. The most common types of faults which affect such a generator are the SEF, DEF, MEF, DMF and ISCF. The DMF and eccentricitytype faults are detectable, but cannot be isolated from each other. The ISCF can always be isolated. The different faults were simulated using the symptoms described in the literature.

The EKF can be used to compute the residuals between the estimated and the measured stator currents. Thus, the effect of the wind speed is negated. Although there is a slight difference between the spectrums computed at different wind speeds, the order of magnitude is the same -10 -14 .

This means that global thresholds can be used to detect the faults, and these thresholds are valid for all wind speeds. Moreover, the spectrum of the residuals is close to zero, so all the harmonics introduced by the different faults are noticeable, via the FFT.

The Goertzel Filter was presented as a candidate to replace the FFT in FDI. The algorithm was explained, and it was tested on a simulated DDWT, more specifically on its PMSG. Multiple faults affect this generator, and they introduce different harmonics into the currents. Therefore, a bank of GFs was neccesary, where the first filter looks for the harmonic introduced by SEF, the second one monitors the harmonic introduced by DEF and the third one looks for the harmonic introduced by ISCF.

The simulation results showed that the square magnitude of the different harmonics introduced by the faults may be extracted by the bank of GFs.

These outputs can be compared with pre-defined thresholds, and can be used in a FDI algorithm. Such a procedure was presented in this chapter, which can isolate different faults of the PMSG.

The FDI cannot be performed in real-time, i.e., at each sampling moment.

The output of each filter and the mean value of the voltage can only be known at certain sampling moments. Therefore, this FDI approach must be implemented using a supervisor.

Although the sampling rate used in the simulations is 1 MHz, the GF can be used for signals sampled less often, e.g. sampling rates of kHz. The 1 MHz frequency was used to assure the stability of the Simscape/Power Systems blocks, namely the PMSG.

FDI. In (Deekshit [START_REF] Kompella | Bearing fault detection in a 3 phase induction motor using stator current frequency spectral subtraction with various wavelet decomposition techniques[END_REF], the generated currents are used to monitor both the generator and its main bearing. Therefore, even the bearing faults could be traced back, possibly to rotor faults.

Costs can also be lowered by eliminating cables. The installation and maintenance of cables is often more expensive than the actual sensors used in a WT. The solution is to use a Wireless Sensor Network (WSN) to monitor the WT, and by extension, the whole Wind Farm (WF) [START_REF] Gliga | Innovations in fault detection and tolerant control for a wind farm, using Wireless Sensor Networks[END_REF].

WSNs are already used in smart cities (e.g. Barcelona, Amsterdam, Singapore and Alba Iulia). A multitude of sensors are used to cover a very large area and to acquire big data. However, in smart cities WSNs are only used to gather data relevant for constructing operational histories of different systems (transport, parking, lightning), for later processing. They are not used for critical real-time applications. This is different from industrial applications, where real-time requirements must be satisfied. WSNs are used in agriculture, to monitor the land and the animal shelters, but, in these cases, the sampling times are so large that the latency is negligible. However, due to advances in wireless communication technology, a WSN may form the backbone of an Industrial Communication System (ICS).

An important technology to consider is the Internet of Things [START_REF] Jaradat | The internet of energy: Smart sensor networks and big data management for smart grid[END_REF]. Companies currently use dedicated networks to connect to the industrial equipment. This means either laying kilometers of cables or using local supervision stations. IoT could help in connecting the local network of the WF (in the case of this work) to the internet, to enable remote operation. Moreover, the WTs could coordinate locally between themselves, if they could communicate in real-time with one another.

In this chapter, WSN technologies are compared to select a most suitable one for the monitoring of a WF. Because different technologies work better in different situations, offshore and onshore installations are considered.

The onshore installations are further split into ones residing in rural areas, and others located in cities.

The connection between the WSN and the internet is discussed. The internet connection to the ICS can be a weak point, from a security standpoint. Therefore, security aspects are also presented.

In Section 5.2, the motivation for using a WSN and the IoT, in the case of a WF, is presented. A description of the monitoring requirements for a wind 

Motivation for a WSN and IoT in a Wind Farm

Wireless Sensor Networks

In remote WFs, a power cable runs from the farm to the place where it is connected to the grid. Together with the cables for the three phases (or the high voltage direct current in some cases) there is a fiber optic cable, which is used for communication. These remote WFs can be placed both onshore and offshore, so the distances can be great. Moreover, inside any WF, there are kilometers of copper cables connecting each sensor and actuator to the control equipment, located inside the nacelle. All these cables cost money and require a long time to be installed.

The majority of them can be eliminated by using a WSN. Then, the installation and the maintenance of the equipment would be easier, cheaper and faster. Because the data transmission is wireless, it cannot be affected by animals, vehicles and accidents caused by workers.

WSNs have several characteristics, which make them useful in a WF (Z.

Liu and He, 2017):

• Low energy nodes would decrease the energy consumption of the whole ICS. More energy could be sold on the electrical energy market, which would increase revenue.

• Self-organization is needed when one or more nodes go offline. If one sensor is faulty and shuts down, the rest of the sensors can still communicate, because the network would re-organize itself without the intervention of the operator.

• The ICS would be scalable, as new sensors could be easily added and the network would self-organize to include them. Thus, sensors could be easily replaced.

The possible disadvantages of WSNs are:

• All the nodes should use the same communication protocol, and even the different versions must be compatible. A node which uses Wi-Fi cannot communicate with a node that only supports Bluetooth. However, this is not a new disadvantage: wired industrial networks are under the same constraint: a Modbus network cannot communicate with another one based on HART, if there is no adapter.

• WSN communication can be influenced by weather conditions and by obstacles (e.g. trees). The sensors should be arranged judiciously or the chosen communication technology should assure interference protection.

Internet of Things

In industrial applications, IoT can be seen as potentially unnecessary, unsecured and unreliable.

Firstly, the IoT can reduce costs. Instead of using a dedicated communication network from the WF to the power plant operator, which is very expensive, the data can be transmitted via wireless to the closest internet gateway. It would then be transmitted through the internet infrastructure.

On the other hand, IoT-ready communication infrastructures could be used to transmit the data.

Secondly, such an interconnection between the different wind turbines would grant the WF a local intelligence. This would allow it to quickly reorganize itself automatically, in case of sudden faults or happenings. If a wind turbine would go off-line or lower its production, the others could quickly coordinate to compensate, as in network-controlled systems [START_REF] Park | Wireless Network Design for Control Systems: A Survey[END_REF].

Another advantage of IoT would be the integration of distributed energy resources [START_REF] Vijitha | Performance analysis of distribution network with optimally sized WTGS based DGs considering wind speed variation[END_REF]. Even if WTs would be far apart from each other, they could still be operated as a single WF and they would respond better to the demand.

Because the security aspect is critical for an energy plant, such as a WF, it is thoroughly discussed in Section VI.

Wind Farm Monitoring Requirements

Both Horizontal Axis Wind Turbines (HAWTs) and Vertical Axis ones (VAWTs) are considered in this work. HAWTs are placed offshore or onshore, but in isolated rural areas. VAWTs are assumed to be placed in cities or other populated areas, namely where there is 4G coverage. These considerations play an important role in choosing the communication technologies. Because 5G networks are just being installed, they are not considered in this work.

Furthermore, both types of WTs are equipped with Permanent Magnet Synchronous Generators (PMSGs), to consider the current trend towards Direct Drive Wind Turbines (DDWTs).

The SCADA, CM and SHM systems are considered to be the same for a HAWT and for a VAWT.

Wind Turbine Monitoring Requirements

The most important systems in a WT, from the point of view of automatic control, are the SCADA, the CM and the SHM systems.

A WT SCADA system samples data at short time intervals and it transmits the information to the control equipment (PLCs or microcontrollers), which is usually located inside the nacelle. A SCADA system also transmits commands for the pitch and yaw motors, power converter transistors, hydraulic brake, etc.

The WT components which are monitored by a CM system are the blades, the main bearing, the main shaft, the generator, the converter, the transformer and the nacelle. Commercially available systems may employ temperature sensors, oil particle counters, accelerometers, ammeters, hall sensors and fiber optic strain gauges.

A SHM system [START_REF] Adams | Structural health monitoring of wind turbines: Method and application to a HAWT[END_REF] oversees the structural elements of the WT, mainly the foundation, the tower and the structural integrity of the nacelle. These are crucial for offshore WTs, especially those which are not anchored to the sea bottom.

Only the results of the data processed by these systems, which are useful for creating a history of the WT, are send further to the WF operator. This design ensures fast data rates and low latency between the WF and the power plant operator, while it also lowers the technical requirements of the ICS. This architecture is well suited for long range communication. The local intelligence autonomously takes care of the WT, and it reports only relevant data to monitor its performance. A WSN can use the same architecture.

The coverage requirements of a WSN can be estimated by considering the worst-case scenario. For the current largest wind turbine, the V164-10.0MW manufactured by Vestas, the length of the nacelle is 20.7 meters, the width is 8.8 m and the height is 9.3 m [START_REF] Vestas | Innovations Offshore Wind Turbines[END_REF]. If the worst-case scenario is to be assumed, where sensors from opposite ends of the nacelle should communicate, the distance would be 24.35 m. If a WSN would be used to transmit the data, 24.35 m would have to be its minimum coverage (to minimize signal loss) and to allow communication between all sensors.

VAWTs, which are used in cities, are smaller. They can reach heights of around 10 -15 meters and can sweep an area of 2 -3 meters. There are very high HAWT designs used in remote areas, but these are still in experimental phases.

The amount of data transmitted from a WT to the operator can be estimated by inspecting the real data acquired from the Haute Borne WF in France (Enjie, 2018). The data is transmitted by a WF with WTs equipped with Doubly-Fed Induction Generators (DFIGs). For the purpose of this work, all the data acquired from the gearbox, together with the rotor currents and voltages, is ignored. The remaining information are all floatingpoint numbers which indicate the reactive power, wind speed and its direction (a set for each of the two anemometers and wind vanes of each WT), temperature of the generator stator, outdoor temperature, temperature of the nacelle, grid frequency and its voltage, torque of the shaft, angular velocity of the shaft, yaw angle, pitch angle, temperature of the hub, active power, power factor, temperatures of the main bearing (measured in two different locations) and the temperature of the rotor's bearing. Control signals are also sent to the WT, like pitch and yaw set points.

The number of signals acquired by a CM system depends on the manufacturer [START_REF] Yang | Wind turbine condition monitoring: technical and commercial challenges[END_REF]. For example, a commercial system might use only 8 accelerometers.

All these systems can have very high sampling rates. Data must be continuously transferred between the sensor and the station where it is processed. The sampling rate is in the order of milliseconds.

There are around 50 (also considering the signals necessary for diagnosis and other control signals) floating point numbers to be transmitted to the WF operator. If single precision format is assumed, the size of the data is 100 bytes (assuming a single precision representation of 16 bits). which must be transmitted every 10 minutes to the WF operator. The number of signals that is transferred locally inside a wind turbine can be in the order of hundreds. However, no relevant information could be found in this regard.

It is important to acknowledge that some sampling rates are so low (e.g.

the commands for the transistors in the power converter are send with a frequency between 10 and 100 kHz) that cannot be realistically supported by current wireless communication.

Extension to a Wind Farm

The size of the WF must also be considered. The largest offshore WF has 175 wind turbines (London Array Limited, 2018) and onshore WFs can have up to 100 wind turbines. The number of VAWTs which might reside in cities is also very high (B. K. [START_REF] Singh | Survey on communication architectures for wind energy integration with the smart grid[END_REF].

The current architecture used for the communication infrastructure of a WF is shown in Figure ArchCom. There are three types of communication lanes:

• Very fast communication, where data must be transmitted every several microseconds (µs);

• Fast communication, where sensors acquire the data with sampling periods in the order of milliseconds (ms) to seconds (sec);

• Slow communication, where the data is transmitted at intervals of several minutes (min).

The first two types of lanes are local to each WT. The slow communication takes place between the different WTs, the WF and its operator.

Most LPWA protocols only use the star topology, as it requires less power.

LoRaWAN (Long Range Wide Area Network) is a wireless technology developed by the LoRa Alliance [START_REF] Silva | LoRaWAN -A Low Power WAN Protocol for Internet of Things: a Review and Opportunities[END_REF]. LoRa transmits data in the sub 1Ghz unlicensed spectrum bands, so long-distance communication does not require a lot of power and it is resilient against physical obstacles.

It also provides very good coverage. LoRa networks support three different classes of devices:

• Class A, or battery powered devices, consume the least amount of power but they have the highest latency. They can be used to transmit data to the wind farm operator, once every ten minutes (as current SCADA data) or when necessary (the alarms from the SCADA or CM systems).

• Class B devices are used for periodic communication. These devices can be used for sensors which do not need to transmit data very often (e.g. accelerometers on the tower and/or foundation of the wind turbine). These devices assure lower latency.

• Class C devices consume the most amount of power, but they offer the lowest latency, as their radio is always turned on.

For securing the communication, LoRa uses:

• Network Session Keys for the communication between the nodes and the network • Application Session Keys to encrypt the payload using AES (Advanced Encryption Standard) 128bit encryption • A Device Address for each node, to allow the network to correctly organize and protect itself.

LoRa nodes are relatively cheap, so the infrastructure is not expensive to build. The downside of LoRa is the low data transfer. The maximum latency and quality of service are not assured. Moreover, because it operates in unlicensed bands, LoRa has a duty cycle of only 1% (imposed by EU regulations), so the number of messages which can be transmitted every day is limited. This can be avoided by changing to other sub-bands of the transmission spectrum.

NB-IoT (Sinha, Wei, and S. H. Hwang, 2017), or Narrow Band Internet of Things, is a communication protocol developed by the 3rd Generation Partnership Project. It uses the LTE (Long Term Evolution) infrastructure for the physical layer. It offers very high data rates (both uplink and downlink) and excellent coverage. The devices who use this protocol consume more current, but at the same time the latency is lower, and the data rate is higher than LoRa. NB-IoT is very well suited for a WSN in places where 4G coverage exists. It uses the existing 4G equipment, so the wind farm operator does not need to concern itself with the communication infrastructure, as this is already installed and operated by a mobile carrier. The security measures are the ones already used for cellular networks (like 4G), which include: message encryption, session authentication and unique identifiers for each device. More security can be added by the mobile carrier. The infrastructure operator may ask for a periodic fee, but the total cost should be much lower than the price of installing and maintaining the equipment necessary for a dedicated network. However, this advantage is quickly turned to a disadvantage when considering WFs located in remote areas, such as rural or offshore. No 4G infrastructure exists there, so it is cheaper to deploy a dedicated LoRa network than a NB-IoT one. [START_REF] Ali | Technologies and challenges in developing Machine-to-Machine applications: A survey[END_REF], or Long-Term Evolution for Machines, is another technology developed by the 3GPP, for Machine to Machine (M2M) communication. Compared with the previous ones, it offers lower latency and higher transfer speeds. As NB-IoT, it uses the existing LTE infrastructure and the same security methods. However, the current (and therefore the power) consumption is much higher, so this technology is not suitable for battery powered sensors or low power devices. Again, because it uses the LTE infrastructure, its deployment is not feasible in offshore or rural areas. Urban usage could be limited by the high-power consumption. The data rate is too high for the application discussed in this work, but the latency is low enough for real-time implementations.

LTE-M

Sigfox [START_REF] Ali | Technologies and challenges in developing Machine-to-Machine applications: A survey[END_REF] is a proprietary technology developed by the French company with the same name. It was the first LPWA protocol developed for IoT, and it was successfully deployed in many industrial applications. The power consumption is very low. It ensures data security through encryption, session authentication, device authentication and https encrypted interfaces. Sigfox is also resistant to interference. However, it has a very low data rate. Even more, Sigfox operates in unlicensed spectrum bands, so it is also limited by the 1% duty cycle ratio imposed by regulations.

EC-GSM-IoT [START_REF] Ali | Technologies and challenges in developing Machine-to-Machine applications: A survey[END_REF] is another technology developed by the 3GPP, which is based on the existing GSM network. Instead of using the newer LTE communication network, it uses the old GSM ones (like 2G), so it allows their recycling. There are currently no commercially available modules using this protocol, but it should cover a large area, have low latency and a good data transfer rate. Because it uses the mesh topology, it is expected to use more power than other technologies. It has the same security features found in GSM networks. It may be considered in the future, once deployment starts.

DigiMesh ((Osiegbu2015)) is a proprietary protocol developed for a wide range of applications. It supports very long communication, high speeds and multiple topologies. For close range, the communication speed is good, but the power consumption is high. It has multiple security features like AES128 and 256-bit encryption and network lock-down capabilities. Interference protection differs depending on the operating frequency band: frequency hopping for unlicensed spectrum bands or Direct Sequence Spread Spectrum (DSSS) for the 2.4GHz band. The data rate depends on the frequency band.

Other LPWA protocols are WiMAX, WeightLess [START_REF] Ali | Technologies and challenges in developing Machine-to-Machine applications: A survey[END_REF] and RPMA [START_REF] Ingenu | HOW RPMA WORKS: The Making of RPMA[END_REF].

WiMAX (Worldwide Interoperability for Microwave Access) was a competitor against 4G, but it lost. Its usage is limited to some countries, and even there it is dwindling. Because of its deprecating support, it is not recommended for future implementations.

The WeightLess Special Interest Group created three different standards for IoT communication: W, N and P. WeightLess W uses the TV white space frequency bands. It was developed by a company named Neul which, in the meantime, was bought by Huawei. Since the acquisition, they are working on technology for NB-IoT. WeightLess N was developed by a company called Nwave Technologies, however it was superseded by WeightLess P, developed by a company called Ubiik. Since then, the WeightLess N standard has been rebranded as Nwave [START_REF] Nwave | Smart Parking Technology That Will Change The World[END_REF], but not sufficient data could be found for a complete characterization. The company uses it for smart parking. The same is applicable to the WeightLess P, developed by Ubiik. The WeightLess N and P technologies are supposed to have a coverage of at least several kilometers and to support high data rates. There are claims that they have high levels of security and interference protection.

RPMA (Random Phase Multiple Access) is a proprietary solution of the Ingenu Company. It operates in the 2.4 GHz band and it boasts a coverage of 52.8 square kilometers. It doesn't use an IP address for the devices.

It ensures message confidentiality and integrity, replay protection, device anonymity and mutual authentication. However, no more information could be found.

From the previous LPWA protocols, LoRa is recommended for implementation in the case of offshore or onshore, but remote, WFs. A backup solution would be Sigfox. NB-IoT and LTE-M are recommended for areas with 4G coverage. LTE-M can even be used in real-time systems and is best suited for cities. DigiMesh is a jack of all trades, which may be used either for long and short distance communication.

Local Area IoT Technologies

The different LAIoT technologies are compared in Table 5.2.

ANT [START_REF] Ali | Technologies and challenges in developing Machine-to-Machine applications: A survey[END_REF] is a communication technology developed by Samsung, while ANT+ is its interoperability function. ANT is mainly used in fitness trackers, healthcare products and is also present in high-end smartphones. It has low power consumption but has very low data rate and relatively low coverage. The protocol was created to transfer data from a sensor to a processing unit, so it does not support downlink communication. Its only security measure is data encryption. IEEE 802.11b [START_REF] Ali | Technologies and challenges in developing Machine-to-Machine applications: A survey[END_REF] is an older standard for Wi-Fi, which can be used for Machine to Machine (M2M) communication. It offers very high data rates and good coverage, but the energy consumption is high. The latency is very low, so it can be used in real-time applications. Even if the data rate is lowered, the energy consumption remains the same, because the radio of the chip is always turned on. Its security should be enhanced if it were to be used in a sensitive application such as a power plant -Wi-Fi network attacks are very common and easy to perform.

Wi-Fi HaLow or IEEE 802.11ah [START_REF] Bankov | Fast centralized authentication in Wi-Fi HaLow networks[END_REF]) is a low-power version of Wi-Fi designed for the IoT. It uses the unlicensed spectrum bands to decrease costs and to improve the interference protection against physical obstacles. Currently, there are no chips for this technology, so the latency and the current consumption cannot be estimated. It is a promising technology, but as it is still not tested, it cannot be recommended for implementation.

BLE version 5 [START_REF] Collotta | Bluetooth 5: A Concrete Step Forward toward the IoT[END_REF] Bluetooth 5 is the "regular power" variant of Bluetooth and the counterpart of BLE. It has good range, very high data rates and low latency. It also consumes very little electrical energy. It is very similar to BLE. However, the low-power version is more suitable for this application because it is more energy efficient and the very high data rates of Bluetooth are not useful.

Zigbee [START_REF] Ali | Technologies and challenges in developing Machine-to-Machine applications: A survey[END_REF]) is a widely used technology for ICSs. It has good coverage and high data rates. It assures data security (though it was repeatedly cracked in the past). Zigbee PRO also ensures interference protection.

Its power consumption is relatively high. Zigbee can use the Message Queuing Telemetry Transport (MQTT) to ensure a reliable communication.

IrDA [START_REF] Val | Study and simulation of the infrared WLAN IrDA: An alternative to the radio[END_REF] is best known for having been used to transfer files between mobile phones before Bluetooth replaced it. It has very high speed, low power consumption and excellent interference protection. However, it requires LOS between devices and the communication range is very small. NFC [START_REF] Prauzek | NFC Interface for Standalone Data Acquisition Device[END_REF] is mostly used for payments or identification. The devices must be in very close proximity (a few centimeters) to communicate between them. [START_REF] Ali | Technologies and challenges in developing Machine-to-Machine applications: A survey[END_REF] is a home automation technology developed by the Z-Wave Alliance. It offers good security features (encryption, device authentication) and it has good range. However, the data rate is relatively low, and its latency is high.

Z-Wave

RFID [START_REF] Khemmar | The Application of RFID Technology in a Port[END_REF] is a tag based communication system, widely used in product tracking and personal identification documents. Passive or active tags, which can incorporate sensors, are attached to different objects. RFID has good range, good speed but its topology is point to point.

The tags do not establish communication links, but they are read, individually, by a dedicated device called a reader. The protocol does not incorporate security -the tags can be read by any reader. Only the data can be encrypted.

DASH7 [START_REF] Grabia | Design of a DASH7 low power wireless sensor network for Industry 4.0 applications[END_REF] Wireless MBus (Zeman et al., n.d.) is used in smart meters and other monitoring devices. It transmits data using the 169/433/868 frequencies.

It utilizes the star topology. The latency cannot be estimated, as all systems using it are closed proprietary solutions. Another wireless communication system was developed by Nike for its Nike+ sport accessories. It transmits data every 1 s.

Thread (Thread Group, 2017) is a home automation technology developed by a consortium of companies. It is advertised to work in the 2.4 GHz frequency band, and to support mesh topology. However, no more details could be obtained.

• an electrical power sensor;

The actuators are two servo-motors. They are used to simulate the yaw system and the mechanical brake of the rotor shaft. The measurements (from the sensors As preliminary results, the LoRa transceivers can communicate with one another, over three kilometers, through Radio Frequency (RF) transmission.

The Arduino can be used to control the servo-motors. The wind turbine can communicate with the computer every few seconds.

Industrial Communication Security

In the past, ICSs were not connected to the internet, and they were less common -except in industrial settings. Their security was based on isolation and anonymity. Now, ICSs are everywhere, from cars to air conditioners and homes. Many are connected to the internet through Virtual Private Networks (VPNs) to allow remote monitoring. These VPNs provide a certain degree of protection. But the ICS itself it not secured. And this vulnerability leaves room for attacks.

There have been several high-profile attacks against SCADA systems:

• A disgruntled former employee, which was a software developer, attacked a sewage water treatment plant in Australia, releasing hundreds of thousands of liters of sewage water into rivers and parks.

• An attack in 2009-2010, against Iran, destroyed about 1000 of the centrifuges used to enrich uranium. A worm named Stuxnet [START_REF] Kushner | The Real Story of Stuxnet[END_REF] was developed to infect the Siemens Step7 Programmable Logic Controllers (PLCs). The worm used to randomly change the speed of the turbines which were enriching uranium. By increasing and then decreasing the angular velocity, vibrations were induced in the equipment and some of the turbines malfunctioned.

• The cyber-attack on the Ukrainian power grid in 2015 left about 230 000 people without electricity, after attackers shut down multiple distribution stations. Many files stored on the computers of the electrical energy distribution company were erased. A malware named BlackEnergy [START_REF] Styczynski | C _ %7DAllen / Industrial%7B%5C_%7DCybersecurity%7B%5C_%7D%7B%5C%%7D5C% 7B % 5C % %7D5CThreat % 7B % 5C _ %7DBriefing . pdf ? t % 7B % 5C % %7D5C = 1473881858278[END_REF] was used for this attack. It included a Remote Access Terminal (RAT) through which the attackers reprogrammed the firmware of the control equipment of the substations.

• Another attack against a water treatment plant was carried out in Australia. The hackers changed the concentrations of the chemicals used to treat tap water.

• The 2016 cyber-attack against the Ukrainian power grid cut off 20% of the population of Kiev from electrical power. A malware named Industroyer [START_REF] Cherepanov | WIN32/INDUSTROYER: A new threat for industrial control systems[END_REF] was used in this attack. It targeted ICSs, and the OLE (Object Linking and Embedding) for Process Control Data Access, to hijack the communication network and to send commands to the PLCs.

• An attack took place in December 2017 against Saudi Arabia, where the security systems of several nuclear, oil and gas plants were targeted. At least one plant was shut down.

These attacks targeted industrial facilities, including electrical plants and the power grid itself. With the ever-increasing connectedness between industrial systems and the internet, these attacks will become more common and the risks associated with them will be more severe. Electrical grids and power plants are tempting targets for both lone wolves or groups of hackers who wish to prove themselves. These systems are also a very tempting target for countries. Attacks on the power grid can severely cripple a city or even a country and can produce economic and social problems.

According to (Minhaj Ahmad [START_REF] Khan | IoT security: Review, blockchain solutions, and open challenges[END_REF], a network based on IoT should meet the following security requirements:

• The data has to be confidential -the content has to be known only by the WF operator and by authorized third parties. Moreover, the data must not be copied or transferred without the consent of the operator.

The content of the data should remain constant from the moment it is acquired until it will be no longer needed.

• Access to the data and to the network must be controlled and verified, through means of authentication. Only authorized personnel should have access. Their usage of the data and of the network resources should be monitored. The same requirements are valid for the different nodes in the network: sensors, gateways, switches, etc. They should use the network resources in a transparent manner (to the operating company) and only for the purposes which they should fulfilled.

• The service, in this case being the supply of electrical energy to the end users, must always be available (when environmental conditions permit).

• Any network should not rely on single points of failure. There must always be a back-up for critical devices (e.g. gateways).

According to (ThreatLabZ, 2017), the most common software vulnerabilities in IoT devices are weak passwords, unencrypted communications (mainly HTTP requests) and outdated firmware (without patches for newly found exploits. Hackers can use the following tools to gain access to a network [START_REF] Zaabi | Android device hacking tricks and countermeasures[END_REF]):

• Rootkits are software designed to remotely access and control a computer.

• Spyware are used to gather sensitive information (credentials, confidential data, files) which are then transmitted to the attackers.

• Viruses spread by copying themselves and travel by attaching to files, programs and web applications. They are used to steal information, cause damage to computers and networks, etc.

• Worms are like viruses, but they can spread themselves automatically through the network, without the need of human intervention.

Most malware connect to a Command and Control (C&C) center to receive commands, to send reports, and even to update itself.

Malicious software is usually delivered through:

• Trojans, which disguise themselves are legitimate files or programs.

They try to trick users into downloading and running them. They grant the attackers a foothold in the system, from where other malware can be installed.

• Exploit kits target vulnerabilities in certain programs (web browsers and their extensions) to gain access to the computer and to deliver their payload (worms, viruses, etc).

Attacks Against ICSs

There are different types of attacks against IoT devices. Depending on the objective, the attacker may try to collect information, gain control of equipment or attempt to render the device unusable.

Man in The Middle attacks (S. S. [START_REF] Hassan | Security threats in Bluetooth technology[END_REF] take place when a third party with malicious intents (adversary) has access to the communication channel. It is positioned between the transmitter and the receiver. This third party can read the messages (eavesdropping attacks) or even modify their content (relay attacks). The communicating parties do not know that the attacker is intercepting their communications.

Sinkhole attacks happen when an adversary tricked a great number of network nodes to send their data traffic through it. The data is received, but it is never re-transmitted to the intended receiver.

Denial of Service (DoS) is probably the most well-known attack (S. S. [START_REF] Hassan | Security threats in Bluetooth technology[END_REF]. The attacker tries to render a device or service unusable.

Usually, it is carried out by spamming a target with huge amounts of traffic (requests, messages, etc.). Distributed DoS (DDoS) attacks use many nodes to generate the spam. The attackers first infect the devices with malware, to turn them into bots. The malware either communicates with a C&C center to receive instructions when to start the attack, or the date and time are hardcoded. Then, the devices are used in the actual attack, without the knowledge of their users. DoS attacks can be used to deplete the battery of wireless sensors or render servers unavailable.

Sybil attacks [START_REF] Bazzi | On the establishment of distinct identities in overlay networks[END_REF] are probably one of the most dangerous types of attacks. An adversary presents itself (or his group of bots) as legitimate nodes in a network. The attacker can thus gain access to a network or/and can exert influence in the network (by changing routing paths, data flows, etc.) Backdoors (S. S. [START_REF] Hassan | Security threats in Bluetooth technology[END_REF] are specific vulnerabilities in software, which are usually introduced intentionally either by the developer (for maintenance purposes) or by other entities. They can be used to gain control of the software and act as entry points into secured networks and devices.

Brute-force attacks (Minhaj Ahmad [START_REF] Khan | IoT security: Review, blockchain solutions, and open challenges[END_REF] happen when an attacker simply tries all the possible encryption and/or password combinations to get access to a protected network.

Jamming attacks [START_REF] Tayebi | Wireless Sensor Network attacks: An overview and critical analysis[END_REF] can target the different layers of the network. An attacker can use a RF emitter to disrupt the signal between two or more nodes. He can also target the synchronization signals between the nodes (e.g. the acknowledgement). A jamming attack can also change the bits of data packets.

HELLO flooding (V. P. [START_REF] Singh | Hello Flood Attack and its Countermeasures in Wireless Sensor Networks[END_REF] is carried out when the network is being set up. The nodes send "HELLO" packets to discover their neighbors and to create their routing tables. An adversary node with a high transmission range and high processing power floods the network with "HELLO" messages. It tries to trick the nodes in accepting it into the network, and to slow down the set up. As the nodes have limited processing power, they require a longer time to process the high number of messages.

Node tampering [START_REF] Becher | Tampering with Motes: Real-World Physical Attacks on Wireless Sensor Networks[END_REF]) can be dangerous in a WSN because there is no way to know the physical condition of a node, without visual inspection. An attacker can physically access a node and try to hack it to obtain access keys. The network would continue to see the node as trustworthy, while it may duplicate, forward, or even inject data into the network.

Attack vectors

An attack vector is the mean through which an attacker gains access inside a secured network, and the way the attack is carried out afterwards.

According to (European Union Agency for Network and Information Security, 2017), attacks usually commence through an employee of the target company. Either the person is an attacker (an inside attack), or he is a victim (outside attack).

Inside Attacks are very dangerous, and very easy to be carried out. The employee already knows the network infrastructure and the security measures. Most likely, this attacker also has the credentials to bypass any protection. These attacks are very hard to detect and investigate. Possible countermeasures are:

• Users should have unique access credentials, to ensure the traceability of their actions. Each person should hold on to their username and passwords and each employee should be trained to not share them with others.

• Users should be permitted to access the systems on a "need to know" basis.

• After contractors have finished their work in the company, their access rights should be suspended (unless they are responsible for the maintenance of the equipment).

• The company should train the employees to be aware of the security aspects. They should know the possible consequences of security breaches -towards the community, the environment, themselves and the company). They should be taught basic notions about network security.

• The company should gain the trust of its employees and create a good working environment. No preventive measure can ever be effective if the employees are disgruntled.

External Attacks are much more common, although they are harder to carry out. Attackers usually monitor the enterprise looking for vulnerabilities in the software. When they find weak points, they design a special malware to make use of them. Attackers rely on weak protection of the company's network or on zero-day vulnerabilities in the software. The software designed for the attack must be injected in the network. This can be achieved in two ways:

• The attackers find a person in the organization with a unsafe behaviour on the internet. They design special emails or messages for that person, which contain infected attachments or links to compromised websites. When that employee opens an attachment while being connected to the corporate network, the malware will be set free in the network.

• A malware can be used to retrieve the credentials of at least one employee. Then, the attackers use them to access the network. Again, the targeted employees must have an unsafe behaviour on the internet.

There are protection measures which can help mitigate the risks:

• The users of the company have to be trained to have good habits while on the internet. They not should access suspicious websites, open emails and email attachments from unknown sources.

• The company should invest in malware protection, firewall software, encryption equipment, etc. The operating system and all other software should always be updated to the latest versions.

• The connection between the SCADA systems and the internet must be secure. This connection should never be direct, but through secure applications and software interfaces.

On the hardware side, each device should only have as many ports as needed. The ports should be protected against unauthorized access.

Conclusions

The standard ICS architecture should be maintained. All the sensors inside a WT should connect to a processing station located in the nacelle of the WT, to reduce the latency and to increase the reliability and availability of the network. For local communication, the best protocol is BLE, followed by DASH7 and WirelessHART. Zigbee is also suitable. Data and alarms (especially for SCADA) should also be transmitted to the wind farm operator, to help the company keep track of its assets. The current SCADA implementation which sends data at 10-minute time intervals is appropriate. LoRa can be used for offshore and onshore WTs which are located in areas without 4G coverage, and NB-IoT or LTE-M can be used for turbines which reside in areas covered by a LTE network.

A potential architecture for a communication system based on LoRa was also presented. Data can be acquired and transmitted from the WT at specific time intervals. Commands can also be send to control the test stand.

Attackers can target industrial installations, and the consequences can be severe. Different attacks were presented, to raise awareness about the security requirements of ICSs. General Conclusions and Perspectives

Conclusions

The objective of this work was the Fault Detection and Identification (FDI)

of the different failures which can affect a Permanent Magnet Synchronous Generator (PMSG). This type of electrical machine is used in Direct Drive

Wind Turbines (DDWT). The most common impairments of the PMSG, which were considered in this work, are the:

• Static Eccentricity Fault (SEF);

• Dynamic Eccentricity Fault (DEF);

• Mixed Eccentricity Fault (MEF);

• DeMagnetization Fault (DMF);

• Inter-turn Short Circuit Fault (ISCF).

These impairments are found using a mix of methods based on signal processing and state estimators. They are detected and identified by only monitoring the signals which are usually acquired by the SCADA system.

In this case, these signals are the generated currents, the voltages of the generated electrical energy and the angular velocity of the rotor shaft.

Between the different tools used in signal processing, the Fast Fourier Transform (FFT) was selected due to its widespread use. However, the spectrum of the generated current changes with the wind speed, and thus it is more difficult to set thresholds for FDI. The Extended Kalman Filter (EKF) is used as a software sensor, to ensure redundancy. A new method to estimate the covariance matrix of the process noise is proposed, which is independent of the EKF. This procedure was compared with other methods from the literature and it was proven to be effective. The spectrum of the residuals computed between the generated currents and the estimated ones is shown to be constant with respect to changes in the wind speed.

The Clarke, also called alpha-beta, transform is used to convert threephase AC currents/voltages into two-phase AC ones [START_REF] Mohan | Electric power systems : a first course[END_REF]. The mathematical relation that describes the power invariant Clarke Transform (which preserves the values of the active and reactive powers in both sys-

tems) is      i α (t) i β (t) i 0 (t)      = 2 3 •      1 -1 2 -1 2 0 √ 3 2 -sqrt3 2 1 √ 2 1 √ 2 1 √ 2           i a (t) i b (t) i c (t)      , (C.1)
where i α (t), i β (t), i 0 (t) are the currents in the two-phase alpha-beta frame and i a (t), i b (t), i c (t) are the currents in the three-phase abc frame. In a balanced system, i 0 (t) = 0, hence the name.

The the power invariant version of the Inverse Clarke Transform, is

     i a (t) i b (t) i c (t)      = 2 3 •      1 0 1 √ 2 -1 √ 2 √ 3 2 1 √ 2 -1 2 -sqrt3 2 1 √ 2           i α (t) i β (t) i 0 (t)      . (C.2)
The Clarke Transform and its inverse can be deduced geometrically. The alpha axis should be aligned with the a axis, while the beta axis is perpendicular on the alpha one. The transforms are deduced through projecting the phasor, in the abc system, on the alpha-beta axes.

C.2 The Park Transform

The Park, also called direct-quadrature, transform is used to convert three-phase AC currents/voltages into two-phase DC ones [START_REF] Mohan | Electric power systems : a first course[END_REF]. where i d , i q , i 0 are the currents in the dq0 frame and θ is the angle between the phasor, in the abc frame, and the a axis.

The power invariant version of the Inverse Park Transform, is Abstract: Direct Drive Wind Turbines (DDWTs) are equipped with Permanent Magnet Synchronous Generators (PMSGs). Their three most common failures are demagnetization, eccentricity (static, dynamic and mixed) and inter-turn short circuit. Machine Current Signature Analysis is often used to look for generator problems, as these impairments introduce additional harmonics into the generated currents. The Fast Fourier Transform (FFT) is utilized to compute the spectrum of the currents. However, the FFT calculates the whole spectrum, while the number of possible faults and the number of introduced harmonics is low. The Goertzel algorithm, implemented as a filter (the Goertzel filter), is presented as a more efficient alternative to the FFT. The spectrum of the currents changes with the wind speed, and thus the detection is made more difficult. The Extended Kalman Filter (EKF) is proposed as a solution. The spectrum of the residuals, computed between the estimated and the generated current, is constant, regardless of the wind speed. However, the effect of the faults is visible in the spectrum. When using the EKF, one challenge is to find out the covariance matrix of the process noise. A new method was developed in this regard, which does not use any of the matrices of the filter. 

     i a (t) i b (t) i c (t)      = 2 3 •      sin (θ) cos (θ)
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  FIGURE 2.1: The continuous model with a continuous integrator.

FIGURE

  FIGURE 2.4: The linearized model.
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 26 FIGURE 2.6: The generated currents in the dq0 frame.

  , and their motor counterparts are widely used in hybrid electric vehicles[START_REF] Alameh | Vibration-based Fault Diagnosis Approach for Permanent Magnet Synchronous Motors[END_REF] Multiple faults can affect such a machine[START_REF] Alameh | Vibration-based Fault Diagnosis Approach for Permanent Magnet Synchronous Motors[END_REF] (Niu and S. Liu, 2018), the most common being inter-turn short circuit, rotor demagnetization and eccentricity. These faults are usually detected and identified through signal processing techniques, by monitoring the vibrations of the generator shaft or of the stator. Nonetheless, dedicated sensors raise the cost of the equipment. Research was conducted on generator fault diagnosis and performance monitoring via currents or voltages[START_REF] Ogidi | Fault diagnosis and condition monitoring of axial-flux permanent magnet wind generators[END_REF]) (Q.[START_REF] Zhang | Evaluating transient performance of servo mechanisms by analysing stator current of PMSM[END_REF], to eliminate the need for dedicated sensors. However, these electrical signals are affected by the change in wind speed and the results obtained from signal processing methods like

FIGURE 3

 3 FIGURE 3.1: The profile of the wind speed

  FIGURE 3.2: The estimation error using the EKF with the proposed method.

FIGURE 3

 3 FIGURE 3.3: The estimation error using the EKF with the method from (Z.[START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF].

  FIGURE 3.5: The estimation error using the EKF with the proposed method. The parameters are different from the nominal case.

FIGURE 3

 3 FIGURE 3.7: Zoom in on the estimation error computed using the EKF with the method from (Z.[START_REF] Liu | Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[END_REF]. The parameters are different than in the nominal case.

Figures 3

 3 Figures3.9, 3.10, and 3.11. In Figures 3.12 to 3.15 are presented the estimation errors in the presence of Non-Zero Mean Noises (NZMN). The noise affecting the voltages has a mean of 1, the one perturbing the angular velocity has a mean of 2 and the current perturbation has a mean of 3. Although these values were chosen arbitrarily, they can represent sensor biases. In this case, there is a

  FIGURE 3.12: The estimation error using the EKF with the proposed method, in the presence of non-zero mean noises.

  nominal values. Due of the lack of a filter, the noise was directly propagated in the current. Moreover, the simulation duration is 10s, and the frequency of the generated current is 50Hz. In each figure, expect Figures 3.5 to 3.8, are shown three phases, therefore 5000 oscillations of the currents.

-

  The proposed method: * The elements on the main diagonal of Q have positive values in the order of 10 10 while the elements on the anti-diagonal have negative values in the order of 10 10 . -The method from (Z. Liu and He, 2017): * The elements on the main diagonal of Q have positive values in the order of 10 11 while the elements on the anti-diagonal have negative values in the order of 10 8 . * The elements of R have the values 0.7655 and 40.26 on the diagonal, respectively 5.552 on the anti-diagonal. The method from (Akhlaghi, Zhou, and Huang, 2017): * The elements on the main diagonal of Q have positive values in the order of 10 11 while the elements on the anti-diagonal have negative values in the order of 10 11 .

  KF and then, by a large margin, the SRUKF. The sigma point selection, the propagation of the 2n x + 1 points through the state function, the QR decompositions and the Cholesky rank update slow it down considerably. The slowdown of the KF might seem surprising. The linear model requires the computation of more mathematical operations -27, in comparison with the nonlinear one -21. As the rest of the algorithms are the same, the slowdown is due only to the model. All filter present oscillations. While the EKF and UKF assure a very low modelling error, the KF is plagued by rather large spikes. To understand
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 3 FIGURE 3.16: Estimation error using the Kalman Filter.
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 3 FIGURE 3.20: Estimation error using the nonlinear model, in the presence of gaussian noise.
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 3 FIGURE 3.21: Estimation error using the EKF, in the presence of gaussian noise.
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 4 FIGURE 4.1: The ISCF[START_REF] Sahraoui | Detection of inter-turn short-circuit in induction motors using Park-Hilbert method[END_REF].
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 4 FIGURE 4.2: The different types of eccentricity faults[START_REF] Marché | Electric Rotating Machine Eccentricities Faults Analysis with Flux[END_REF].

Figures 4 .

 4 Figures 4.3 and 4.4. The wind speeds are perturbed with a Gaussian noise of zero mean and with a variance equal to 1. For both wind speeds, the residuals are similar, in the range of 10 -14 , so they can be approximated by 0. The values of the wind speed were chosen to account for both zones of the WT power curves: the transient increase in generated power and the stationary one.Because the PMSM block of the Simscape/Power Systems library is used, the PMSG is modelled in the dq0 reference frame. Therefore, the faults cannot be simulated directly, i.e. introduced in the model. Instead, the symptoms of the faults are introduced in the signals "acquired" from the simulated process. The EKF uses the fault-affected signals, and the residuals are computed using the perturbed signals.The SEF fault is simulated by introducing a harmonic at the frequency f SE = 25Hz and with an amplitude of 0.1. The results are shown in Fig.4.5
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 43 FIGURE 4.3: Spectrum of the residuals for a wind speed around 10m/s.
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 44 FIGURE 4.4: Spectrum of the residuals for a wind speed around 18m/s.

  FIGURE 4.5: Spectrum of the residuals for the SEF.

Frequency

  FIGURE 4.6: Zoomed in spectrum of the residuals for the SEF.

  FIGURE 4.7: Spectrum of the residuals for the DEF.
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  FIGURE 4.8: Zoomed in spectrum of the residuals for the DEF.
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  FIGURE 4.9: Spectrum of the residuals for the DMF.

Frequency

  FIGURE 4.11: Spectrum of the residuals for the DMF and ISCF.

  to 4.15. The squared magnitude of the introduced harmonic is very visible on the output of the GF dedicated to SEF detection, where its value is almost 1500. The other two filters of the bank report a squared magnitude of only around 150 and almost 30.
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 4 FIGURE 4.13: The output of the GF designed for SEF, when the PMSG is affected by SEF.

  FIGURE 4.16: The output of the GF designed for SEF, when the PMSG is affected by DEF.

19 :

 19 FIGURE 4.18: The output of the GF designed for ISCF, when the PMSG is affected by DEF.

  FIGURE 4.21: The output of the GF designed for ISCF, when the PMSG is affected by both DEF and ISCF.

  turbine and for a WF are shown in Section 5.3. The different communication technologies are examined in Section 5.4. A possible communication architecture, using LoRa, is shown in Section 5.5. A short review on industrial communication security is presented in Section 5.6. The conclusions close this chapter.

  (Bluetooth Low Energy) is a widely used low power communication technology. BLE has very long transmission range, excellent data rate (depending on the selected physical mode) and very low latency, which even allows real-time implementations. It supports different topologies. The chips which implement it use very little power and they are relatively cheap. It has interference protection and it uses encryption, data integrity checks and device trust policies for ensuring the security of the network.

  was developed by the DASH7 Alliance. It has great range and low latency. Its data rate depends on the transmission range. It supports various security measures. It operates in many frequency ranges (depending on the country), and it has interference avoidance mechanisms. WirelessHART (S. M. Hassan et al., 2017) is one of the oldest wireless communication technologies. It has good range, good transfer speed and low latency. It supports various security mechanisms (data encryption and integrity check, device authentication and failed access attempt notifications) and interference protection through channel hopping. It is a very mature technology which is already used in various real-time applications.

  ) and control signals (to the motors) were used to test the proof of concept of real-time wireless communication. The wind turbine contains a DC motor. Its rotor is turned by the rotor to generate DC. All the sensors transmit the data through analogue, digital and Inter-Integrated Circuit (I2C) communication to an Arduino board. Because the board is not designed to handle wireless communication, a Raspberry PI (RPI) (Subhashini and Rao, n.d.) single-board computer is used for this role. The Arduino and the RPI communicate through USB. The Arduino also controls the servomotor, through PWM pulses. It acts similar to the Input/Output (I/O) and control modules of a Programmable Logic Controller (PLC). The RPI can be seen as the communication module of a PLC. The RPI communicates with a LoRa transceiver, which is a Nemeus MK002-xx-EU USB (Remote) Stick. The transceiver supports both LoRa and Sigfox technologies -the second one can be used as a back-up. The transceiver can be used as a class A or class C LoRa device. Another LoRa transceiver connects the command post (computer) to the wireless network. This transceiver is connected to the computer through USB. A Web application was developed, which incorporates a Human Machine Interface (HMI), to show the status of the simulated wind turbine. The data received via the LoRa network is transferred to a MySQL database via a JSON file.

  The mathematical relation that describes the power invariant Park Transform (which preserves the values of the active and reactive powers in both systems

  Inverse Park Transforms previously presented can be deduced geometrically. The dq axes rotate in the abc frame. The projections of the three-phase currents/voltages phasor on the dq axis are computed using the previous equations. être mis sur des méthodes plus simples qui peuvent être comprises et utilisées par les ingénieurs qui n'ont que des études de niveau licence.La faisabilité de l'utilisation de Réseaux de Capteurs sans Fil (RCF), pour éliminer le réseau de communication filaire, devrait être étudiée. L'architecture de communication d'une TE devrait être étudiée, ainsi que les différentes technologies de communication sans fil. Un petit guide devrait être élaboré pour aider à choisir un protocole sans fil adapté à une application donnée.Description du ChapitresL'état de l'art en matière de diagnostic et d'enquêtes sur les communications sans fil est présenté au Chapitre I. Le modèle mathématique du GSAP est présenté au Chapitre II. Son modèle mathématique est continu et non linéaire -il est donc difficile de discrétiser. Une comparaison est faite entre les différentes techniques de discrétisation. Un modèle continu avec un intégrateur discret s'avère être la meilleure solution. Ensuite, la régulation nominale du TEED est présentée. Le Chapitre III présente une nouvelle méthode de calcul de la matrice de covariance du bruit du processus. Cette procédure est illustrée par la mise en oeuvre du filtre de Kalman étendu (FKE). Cependant, elle n'utilise aucune des matrices du filtre et est donc indépendante de celle-ci. La méthode utilise une matrice de covariance constante pour la mesure du bruit et, à chaque itération, elle recalcule les valeurs de la matrice de covariance du bruit de processus. La méthode proposée et deux autres, sélectionnées de la littérature scientifique, sont testées pour estimer le courant généré par le GSAP. Les trois méthodes sont testées dans le cadre du FKE. Les résultats obtenus sont comparés et discutés afin de mettre en évidence les forces et les faiblesses de l'approche proposée. Ensuite, le Filtre de Kalman (FK), Filtre de Kalman Étendu (FKE) et le Filtre de Kalman (FKU) sont comparés. Les résultats sont présentés, et il est démontré que le FKE est la méthode la plus appropriée pour cette application. Ceci est suivi d'une discussion sur le comportement des filtres, où il est prouvé que tous agissent comme des régulateurs proportionnels. Les différents défauts qui peuvent affecter un GSAP sont présentés en Chapitre IV. Les plus courantes sont la démagnétisation du rotor, l'excentricité (statique, dynamique et mixte) et le court-circuit inter-tour. Leur effet est visible sur le spectre des courants statoriques, qui est calculé à l'aide de la Transformée de Fourier Rapide (TFR). Cependant, pour une TE, le spectre des courants change avec la vitesse du vent. Par conséquence, les résultats obtenus peuvent ne pas être précis. Dans ce chapitre, il est proposé d'utiliser les résidus, calculés à l'aide des courants estimés avec l'FKE et ceux mesurés, pour le DID, conjointement avec la TFR. Le spectre des générés et les courants estimés s'avère constant par rapport aux variations de la vitesse du vent. La TFR est utilisée pour calculer le spectre sur toutes les fréquences possibles. Cependant, il y a un petit nombre de fréquences d'intérêt. Le Filtre de Goertzel (FG) a remplacé la TFR, en raison de son efficacité plus élevée et de ses exigences de calcul plus faibles. Le FG ne peut substituer la TFR que lorsque le nombre de fréquences d'intérêt est faible. Une banque de FGs est utilisée -chacun d'eux surveillerait un certain intervalle de fréquence. Les résultats obtenus prouvent l'efficacité de l'approche proposée. De nombreuses technologies de communication sans fil différentes ont été comparées, afin de mettre en évidence les plus appropriées pour une mise en oeuvre en temps-réel. Ils peuvent remplacer partiellement le réseau de communication filaire qui existe à l'intérieur des éoliennes, réduisant ainsi les coûts d'installation et de maintenance, et accélérant la pose des câbles.

TABLE 1 :

 1 Failure Percentages of WT Systems (Pinar[START_REF] Pérez | Wind turbine reliability analysis[END_REF].

	Component	Failures [%] Downtime [%]
	Hub	10.08	17.76
	Pitch and Yaw	17.22	8.88
	Generator	14.7	24.42
	Electronic Subsystems	35.7	25.53
	Shaft and Bearings	3.36	8.88
	Sensors	8.4	3.98
	Brake	0	0
	Hydraulics	0.84	0.56
	Other	9.7	9.99
	wireless communication technologies. A short guide should be developed,

to help choose a suitable wireless protocol for a given application.

TABLE 2 .

 2 1: Comparison of the discretization methods.

	Model	Integrator type	Order of error
	Continuous	Continuous	≈ 10 -13
	Continuous	Discrete -FEI	≈ 10 -13
	Continuous Discrete -from (Shahriari et al., 2016)	≈ 4
	Linearised	N/A	≈ 4

FIGURE 2.3: The continuous model with the discrete integrator from

[START_REF] Shahriari | Dynamic state estimation of a permanent magnet synchronous generator-based wind turbine[END_REF]

.

TABLE 3 .

 3 1: Comparison of the different methods.

	Method	RMS Error in presence of no noise ZMNs 1 NZMNs 2	DP 3	Speed [%] Applicability
	Proposed	≈ 10 -14	3.5004	11.0669	≈ 10 -6	100	Any Algorithm
	(Z. Liu and He, 2017)	≈ 10 -14	3.5051	347.9036 ≈ 10 +3	20	Only the EKF
	(Akhlaghi, Zhou, and Huang, 2017) ≈ 10 -14	3.5004	11.0669	≈ 10 -4	66.6	Only the EKF

TABLE 3 .

 3 2: Comparison of the state estimators. High on time, together with the intrinsic design (varying amplification and state covariance matrix) of the two filters, they manage to minimize the error. The UT transform helps the SRUKF to minimize the error. The EKF and SRUKF, as they use the nonlinear model, are better.

	Estimator Speed [% of EKF] Maximum error Complexity
	KF	97.5	≈ 194	Low
	EKF	100	≈ 10 -13	Low
	SRUKF	40	≈ 10 -13	

TABLE 4

 4 

.1: PMSG Fault Signature Matrix for MCSA.

TABLE 5

 5 

		Maximum overage [km]	Date rate [kbps]	Maximum latency a [s]	Topology	Frequency band [MHz] Peak Current b [mA] Duplex mode Security Interference protection
	ANT(+)	30	0.02	0	peer to peer / star / mesh	2.4	17	N/A	Yes	Yes
	Wi-fi (802.11b)	150	11	1.5	star / tree	2.4	116	half	Yes	No
	Wi-fi HaLoW	1000	347	N/A	star / tree	0.9	N/A	half	Yes	Yes
	BLE (v. 5)	10 -600	0.125 -2	2.5	point to point / mesh	2.4	5.9	half	Yes	Yes
	Bluetooth (v. 5)	40 -400 (with LOS c )	1 -3	15	point to point / mesh	2.4	7.5	full	Yes	Yes
	Zigbee	250	0.25	20	mesh	2.4	40	half	Yes	Yes
	IrDA	1	1024	25	point to point	N/A	10.2	half	Yes	Yes
	NFC	0.04	0.424	1000	point to point	0.01356	15	half	No	No
	Z-Wave	40	0.04	3000	mesh	0.9	40	half	Yes	Yes
	RFID	200	0.64	400	point to point	2.4 / 5	40	half	No	No
	DASH7	100 -5000	0.167 (lower with distance)	15	point to point / star / tree 0.433 / 0.868 / 0.915	160	half	Yes	Yes
	Wireless HART	225	0.25	20	mesh	2.4	12	half	Yes	Yes
	Wireless M-Bus	2000	0.1	N/A	star	0.169 / 0.433 / 0.868	37	half	Yes	Yes
				TABLE 5.2: LAIoT Communication Technologies				

.1: LPWA Communication Technologies a Estimated from existing implementations. b Estimated from existing implementations c LOS stands for "Line of Sight" a Estimated from existing implementations. b Estimated from existing implementations c LOS stands for "Line of Sight" Chapter 6

  DDWTs are either placed in remote areas or in cities. For the monitoring of a DDWT, tens or hundreds of kilometers of cables are necessary. Wireless Sensor Networks (WSNs) are suited to be used in the communication infrastructure of DDWTs. WSNs have lower initial and maintenance costs, and they are quickly installed. Moreover, they can complement wired networks. Different wireless technologies are compared -both wide area ones, as well as short range technologies which support high data rates. Les Éoliennes à Entraînement Direct (ÉED) sont équipées de Générateurs Synchrones à Aimants Permanents (GSAP). Leurs trois plus courantes défaillances sont la démagnétisation, l'excentricité (statique, dynamique et mixte) et le court-circuit inter-tour. L'analyse de la signature du courant de la machine est souvent utilisée pour rechercher des problèmes du générateur, car ces altérations introduisent des harmoniques supplémentaires dans les courants générés. La Transformée de Fourier Rapide (TFR) est utilisée pour calculer le spectre des courants. Cependant, la TFR permet de calculer l'ensemble du spectre, tandis que le nombre de défauts possible et le nombre d'harmoniques introduites sont faibles. L'algorithme de Goertzel, mis en oeuvre sous forme de filtre (le filtre de Goertzel), est présenté comme une alternative plus efficace au TFR. Le spectre des courants change avec la vitesse du vent, ce qui rend la détection plus difficile. Le Filtre de Kalman Étendu (FKÉ) est proposé comme solution. Le spectre de résidus, calcule entre les courants estimés et les courants générés, est constant, quelle que soit la vitesse du vent. Cependant, l'effet des défauts est visible dans leur spectre. Lors de l'utilisation de l'FKÉ, un défi consiste à estime la matrice de covariance pour le bruit du processus. Une nouvelle méthode était développée pour ça, qui n'utilise aucune de maîtrise du filtre. Les ÉED sont placés soit dans des zones éloignées, soit dans des villes. Pour la surveillance des ÉED, des dizaines ou des centaines de kilomètres de câbles sont nécessaires. Les Réseaux de Capteurs sans Fil (RCF) sont bien adaptés pour être utilisés dans l'infrastructure de communication des ÉED. RCF ont des coûts initiaux et d'entretien plus faibles et leurs installations sont rapides. De plus, ils peuvent compléter les réseaux câblés. Différentes technologies sans fil sont comparées : les technologies à grande surface, ainsi que les technologies à courte portée qui supportent des débits de données élevés.
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Chapter 6. General Conclusions and Perspectives

The FFT is used to compute the spectrum over all the possible frequencies. However. there is a small number of frequencies of interest. The Goertzel Filter (GF) replaced the FFT, due to its higher efficiency and lower computational requirements. The GF can substitute the FFT only in this case, when the number of frequencies of interest is small. A bank of GFs is used -each one would monitor a certain frequency bin. The obtained results prove the effectiveness of the proposed approach.

Many different wireless communication technologies were compared, to highlight the most suitable ones for a real-time implementation. They can partially replace the wired communication network which exists inside Wind Turbines (WTs), thus lowering the installation and maintenance costs and speeding up the laying out of the cables.

Perspectives Sensorless Estimation

The inputs of the first model of the PMSG, presented in Chapter II, are the angular speed of the rotor shaft and the voltages in the dq0 frame. Thus, the only measurements which remain to be used for the state update are the currents. The authors tried to find ways to eliminate the need for current measurement, i.e. to only use the generator speed as an input and the voltages for the state correction. It is possible, but one would have to model the rest of the electrical circuit (back-to-back converter, transformer, the gridside filter and the infinite bus). The generator would serve a current source and the voltage drop across the rest of the circuit should be calculated and used to estimate the current in the prediction step of the EKF. The measured voltages would then be used in the update step of the filter. However, such a model might be too computationally heavy to be implemented on a microcontroller and/or a PLC, i.e. in a real-time environment. However, a simplified model might be usable.

Elimination of the constraints imposed by the assumptions

The first assumption presented in Chapter III is very restrictive. There are solutions to avoid it, such as using the pseudo-inverse for non-invertible matrices or estimating the Jacobian of nonlinear measurement functions.

The second assumption is also restrictive, as the system must have a high observability index.

The assumption should be changed to allow the usage of this method even for less observable systems. Possible solutions will be the focus of future research.

Covariance Estimation

The method proposed in Chapter III requires knowledge about the covariance matrix of the measurement noise. This necessity can be eliminated by combining the proposed method with the one from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF]. The covariance matrix of the measurement noise could be estimated with the method presented in [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF], and the process noise covariance matrix may be evaluated as it was proposed in Chapter III (or vice-versa). So, no a priori knowledge of any noise would be necessary. Moreover, the complexity of the method from [START_REF] Akhlaghi | Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[END_REF] would decrease, without sacrificing precision. Nevertheless, the resulting procedure would be tied to the EKF.

Method Stability for LTV Systems

The inductances and the resistances of the different stator phases can change in the case of inter-turn short circuit faults. A study of the resulting system, i.e. its stability, should be conducted to check if the proposed method could be used for systems with time-varying parameters.

Isolation of DEF and SEF from each other

To ensure the isolability of DEF and SEF, the magnitude of the Side-Band Components (SBCs) of the harmonics, introduced by the impairments, must be monitored. The speed with which this magnitude changes can be used to isolate one fault from the other [START_REF] Ebrahimi | Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis[END_REF].

Fault Tree Analysis for the Generator

The GF will be used in a FDI algorithm based on Fault Tree Analysis (FTA) [START_REF] Ruijters | Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools[END_REF], to look for the specific cause of a fault. E.g., for ISCF, this new algorithm should point to the affected phase of the current and, if possible, to the pole pair which is affected by the fault.

Scientific Production

Papers published in international journals:

• L. I. 

Papers presented in international conferences:

• A. Abdelkarim, H. Chafouk, L. I. The values of the parameters of the generator were initially taken from [START_REF] Alameh | Contribution au diagnostic et a l'analyse de défauts d'une machine synchrone à aimants permanents[END_REF]. Some were modified later, after repeated simulations.

The values of the parameters of the electrical chain (e.g. IGBT bridge snubber resistance) were the default values from Matlab.

Appendix B

Model of the Mechanical Part of the Wind Turbine

B.1 Mechanical Model of the Wind Turbine

The mechanical model of the Wind Turbine (WT) was simulated using the equations from [START_REF] Pintea | Robust control for wind power systems[END_REF] and [START_REF] Rolan | Modeling of a variable speed wind turbine with a Permanent Magnet Synchronous Generator[END_REF].

According to these publications, the mechanical torque (T m ) generated by the rotor is

where P m is the mechanical power of the WT (in N • m), ω m is the angular velocity of the rotor shaft (in rpm), ρ air is the density of air (in kg/m 3 ), R is the radius of the propeller (in m), v wind is the speed of the wind (in m/s) and C p is the power coefficient of the WT.

The power coefficient is computed as

where the coefficients c i , i = 1 , 6, have the values c 1 = 0.5175, c 2 = 116, c 3 = 0.4, c 4 = 5, c 5 = 21, c 1 = 0.0068 and β is the pitch angle. λ is the tip-speed ratio

and λ i is computed using are widely used in offshore installations and their market share is increasing in both offshore and onshore WFs, due to their higher energy yield and reliability [START_REF] Carroll | Reliability Comparison of Wind Turbines with DFIG and PMG Drive Trains[END_REF].

Monitoring of WFs is not trivial. Offshore WFs can lie several kilometers away from the shore and they can be made of hundreds of WTs. The largest offshore WF in the world, which is currently under extension, is the Walney Offshore WF, in the United Kingdom. It comprises 189 WTs which cover an area of around 73km 2 (Ørsted, 2017). The largest onshore WF is the Gansu WF in China, which comprises around 7000 WTs [START_REF] Vyas | The 11 Biggest Wind Farms and Wind Power Constructions That Reduce Carbon Footprint[END_REF].

Usually, a WT is equipped with a Supervisory Control and Data Acquisition (SCADA) system. It can also be monitored using Condition Monitoring (CM) and/or Structural Health Monitoring (SHM) systems. The data acquired and sent by these systems is usually transmitted through copper cables, inside each WT. Although no official statistic could be found, it can be reasonably assumed that the number of signals transmitted inside each

WT is, at least, in the order of hundreds. Therefore, when considering the number of WTs of the previously mentioned WFs, the cost generated by the installation and maintenance of the cables becomes significant.

Moreover, WF operators need to remotely monitor their assets. Thus, fiber-optic cables are laid between the different WTs in a WF, and from the gateway of the WF to the operator. These data transmission lines run along the three-phase power cables (in case of AC transmission) which are laid from the WF to the grid. The dedicated line used for the communication between the dispatch center and the WF is maintained by a separate company, for a fee. This tax is relatively high, and depending on the availability and redundancy requirements, it can amount to tens of thousands of euros per year.

Although DDWTs are more reliable nowadays than those in previous generations, they can still break down, so they require automatic diagnosis systems. The different components which can fail in a DDWT are the blades, the generator, the main shaft, the hydraulic systems, etc., [START_REF] Qiao | A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis-Part I: Components and Subsystems[END_REF]. These impairments can lead to lower power generation, asset damage and even downtime. The generator is considered in this work, as it is responsible for almost 25% of the total downtime of a DDWT.

Objectives

The objective of this work is the Fault Diagnosis and Identification (FDI)

of the different faults which can affect a PMSG. The most common faults, which can affect the PMSG, are [START_REF] Alameh | Vibration-based Fault Diagnosis Approach for Permanent Magnet Synchronous Motors[END_REF]:

• Static eccentricity fault;

• Dynamic eccentricity fault;

• Mixed eccentricity fault;

• Demagnetization fault;

• Inter-turn short-circuit fault.

These impairments should be detected as early as possible, even in incipient stages. The Fault Detection and Identification (FDI) tools should be precise, but also simple to use and implement. Therefore, the accent should lie on simpler methods which can be understood and utilized by engineers with only bachelor-level studies.

The feasibility of using Wireless Sensor Networks (WSNs), to eliminate the wired communication network, should be investigated. The current communication architecture of a WT should be studied, together with different wireless communication technologies. A short guide should be developed, to help choose a suitable wireless protocol for a given application.

Description of the Chapters

The state of the art, related to the diagnosis and to surveys of wireless communication, is presented in Chapter I.

The mathematical model of the PMSG is presented in Chapter II. Its mathematical model is continuous and non-linear, therefore it is difficult to discretize. A comparison is made between different discretization techniques. A continuous model with a discrete integrator is shown to be the best solution. Then, the nominal closed-loop control of the WT is presented.

In Chapter III, there is presented a new method to compute the covariance matrix of the process noise. This procedure is shown in the context of an Extended Kalman Filter (EKF). However, it does not use any of the matrices of the filter and is therefore independent of it. The method uses a constant covariance matrix for the measurement noise and, at each iteration, it re-computes the values of the process noise covariance matrix. The proposed method and two other ones, selected from the scientific literature, are tested to estimate the current generated by the PMSG. All three methods are tested in the context of the EKF. The obtained results are compared and discussed to highlight the strengths and weaknesses of the proposed approach. Then, the Kalman Filter (KF), the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) are compared. The results are presented and it is shown that the EKF is the most suitable one for this application.

This is followed by a discussion regarding the behavior of the filters, where all are shown to act like proportional controllers.

The different faults which can affect a PMSG are shown in Chapter IV.

The most common ones are the rotor demagnetization, eccentricity (static, dynamic and mixed) and inter-turn short circuit. Their effect is noticeable on the spectrum of the stator currents, which is computed using the Fast Fourier Transform (FFT). However, for a WT, the spectrum of the currents changes with the wind speed. Therefore, the obtained results may not be accurate. In this chapter, the residuals, computed using the currents estimated with the EKF and the measured ones, are proposed to be used for FDI, together with the FFT. The spectrum of the residuals is invariant to changes in the wind speed, but sensitive to faults. However, the FFT computes the whole spectrum, while the number of possible faults and the number of introduced harmonics is very low. The Goertzel Algorithm (GA), implemented as a filter -the Goertzel Filter (GF), is also presented in this chapter as a more efficient alternative to the FFT. The GF was tested and simulation results prove that it can return the squared magnitude of these harmonics. This information can be used to set thresholds for fault detection, within a FDI algorithm.

WFs can be located in isolated areas, or the WTs may be distributed geographically. Therefore, the necessary communication infrastructure can be expensive to install and maintain. In Chapter V, WSNs and the Internet of Things (IoT) are presented as solutions for these problems. WSNs are quick to install, easy to maintain and they scale up easily. The requirements for a potential WSN, for both a WT and a WF, are studied in this chapter.

Different wireless communication technologies are thoroughly compared.

Both long-range low-power protocols and short-range high-speed ones are 

Conclusions

These impairments were found using a mix of methods based on signal processing and state estimators. They were detected and identified by only monitoring the signals which are usually acquired by the SCADA system.

In this case, these signals are the generated currents, the voltages of the generated electrical energy and the angular velocity of the rotor shaft.

Between the different tools used in signal processing, the Fast Fourier Transform (FFT) was selected due to its widespread use. However, the spectrum of the generated current changes with the wind speed, and thus it is more difficult to set thresholds for FDI. The Extended Kalman Filter (EKF) is used as a software sensor, to ensure redundancy. A new method to estimate the covariance matrix of the process noise is proposed, which is independent of the EKF. This procedure was compared with other methods from the literature and it was proven to be effective. The spectrum of the residuals computed between the generated currents and the estimated ones is shown to be constant with respect to changes in the wind speed.

The FFT is used to compute the spectrum over all the possible frequencies. However. there is a small number of frequencies of interest. The Goertzel Filter (GF) replaced the FFT, due to its higher efficiency and lower computational requirements. The GF can substitute the FFT only in this case, when the number of frequencies of interest is small. A bank of GFs is used -each one would monitor a certain frequency bin. The obtained results prove the effectiveness of the proposed approach.

Many different wireless communication technologies were compared, to highlight the most suitable ones for a real-time implementation.