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NOTATIONS

In the thesis, a vector is expressed either as a lower-case bold letter (e.g. f) or as an

upper-case italic letter (e.g. F ). A matrix is expressed as an upper-case bold letter (e.g. R).

The variables with a subscript containing the letter L (e.g. coordinate xLb or force com-

ponent fLbx) indicates that these variables are expressed in the local cable frame. The vari-

ables without subscription letter L are expressed in global frame.

C DPR Cable-Driven Parallel Robots

I K P Inverse Kinetostatic Problem

‖u‖,‖K‖ The 2-norm of a vector or a matrix

13×3 Identity matrix

03×3 Null matrix

(u)× Cross-product matrix of vector u

(x1 x2) , [x1 x2]T Column vectors

[x1 x2] Row vectors

m The number of cables

Ai The base frame exit point of cable i

Bi The anchor point of cable i , onto the mobile platform

Op The origin of the local frame attached to the mobile platform

ui Unit vector that direct the cable force at the cable i anchor point

bi Position vector of Bi expressed in mobile platform frame <Op >
C The center of mass of the mobile platform

R Rotation matrix of the mobile platform

S Matrix that maps angular velocities

onto the time derivative of Euler angle vector

X = (P,Φ) Pose vector of the mobile platform

Xc Home pose

Xd Desired pose

d X = (dP,dΦ) Infinitesimal displacement vector

dP = (d x,d y,d z) Displacement vector in Cartesian space

X



XI

dΦ= (
dθx ,dθy ,dθz

)
Displacement vector in orientation space

fe External wrench applied by the cable on the mobile platform

d XH Homogeneous infinitesimal displacement vector

dfeH Homogeneous infinitesimal wrench

mp Mass of the mobile platform

W CDPR wrench matrix (general case)

Wx CDPR wrench matrix (simplified cable model case)

W+,W+
x Pseudo inverse matrices of wrench matrices

N,Nx Null-space matrices of wrench matrices

τb The vector of cable tensions at anchor points Bi

τa ,τb Cable tensions at cable end points A,B

τs Cable tension at a point with cable coordinate s

τmin,τmax Lower bound and upper bound on cable tensions

FBi ,FAi Cable force vector at end points Bi , Ai

ap Acceleration vector of the origin Op of the mobile platform frame

α Angular acceleration vector

ω Angular velocity vector

K Stiffness matrix of 6-DOF CDPR

KB Stiffness matrix of one cable

J CDPR Jacobian matrix

KH Homogeneous stiffness matrix

E Cable Young’s modulus

A0 Cable cross-section area

w Cable self-weight

L0 Cable unstrained length

αT Thermal expansion coefficient

T0 Reference temperature

µs Static friction coefficient between pulley and cable

Γ f Loss torque due to frictional effect

L(P,Q)
0 Cable unstrained length between two end points P,Q

r = (r1,r2, ...) Vector of reconfiguration parameters

rmin,rmax Lower and upper bound vectors on the reconfiguration parameters

Cr Set of reconfiguration parameters that satisfy all constraints

ropt Optimal reconfiguration (planning) solution

4r Maximum step size of reconfiguration parameters

being updated online



XII NOTATIONS

fΣ Sum of cable tensions index, wrt. a given workspace

σM Normalized upper bound on the infinitesimal displacement vector

of the mobile platform
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1.1 Thesis Context

CABLEBOT

The research leading to the results presented in this thesis is associated with the Cable-

BOT project 1, an European Community’s Seventh Framework Programme project under

grant agreement No. NMP2-SL-2011-285404.

The main objective of the CableBOT project is to develop a new generation of modular

and reconfigurable CDPRs that are capable to perform many different steps in the life-cycle

stages of large-scale structures.

1. http://www.cablebot.eu

1
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Within CableBOT two fields of application were targeted in close cooperation to indus-

try: Aircraft life-cycle maintenance in the aerospace industry and the construction beams

post-production handling.

Several issues were addressed in the project:

– Design of reconfigurable CDPRs: Preferred implementations of reconfigurable CD-

PRs were proposed as solutions to the two targeted industrial applications. Powerful

software tools have been developed to deal with the design and reconfigurations of

CDPRs.

– CDPR simulation tools: A C++ framework has been developed allowing to create sim-

ulation scenes of CDPRs composed of elementary components such as winches, pul-

leys, cables and mobile platform. This software framework can be used in the design

and control of CDPRs.

– CDPR control modules: Control schemes and algorithms have been developed and

applied on different CDPR prototypes, providing solutions to various application

scenarios.

THESIS GOAL

The main objectives of the thesis are directly related to the CableBOT project goals. We

seek for possible solutions of using reconfigurable CDPR to replace conventional methods

of handling large and heavy parts in a workshop.

A reconfigurable CDPR can change its geometry by adjusting the cable exit points po-

sitions or by reordering or changing the positions of the cable attachment points onto the

mobile platform. Reconfigurability should enable the robot to adapt to a variety of tasks

and dimensions. A reconfigurable CDPR should thus fulfil several requirements, e.g. hav-

ing suitable architectures (geometries) that satisfy the following typical constraints, which

represent robot capabilities:

– All poses of a given workspace can be reached.

– Workspace is singularity free.

– Adequate degrees of freedom are kept across the whole workspace.

– Cable tensions satisfy minimum and maximum values.

– Workspace is collision free (no cable interferences, no collision with objects in the

workspace,...).

– Ability to balance varying reaction forces due to carried devices (e.g. robot arm) or

workers.

– Desired additional constraints (load, acceleration,...) can be achieved.
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To this end, we aim to develop a fundamental framework for reconfigurable CDPRs. It

consists of several topics:

1. The general architecture of the studied reconfigurable CDPR family is required. This

architecture should enable the CDPRs to achieve most of the desired tasks and its

implementation in the assigned environment should be feasible (e.g. in a factory

workshop or in an airplane maintenance workshop).

2. Analysis tools that can aid the design and control of reconfigurable CDPRs.

3. Methods and tools to solve the CDPR reconfiguration problem efficiently.

1.2 CDPRs: an Overview

CDPRs have been an active research topic in the past decades in favor of their appeal-

ing advantages such as light-weight, simple in design, easy to reconfigure and implement,

high payload to weight ratio and relatively low cost. Compared to parallel manipulators

with rigid links which are limited to work in small work cells, CDPRs use cables to position

their mobile platform (end-effector) directly by controlling the length of each cable and

can thus be adapted to very large workspaces. However, the use of cables can also have

some peculiar drawbacks. Firstly, cables can transmit tension forces but not compression

forces. Thus, all the cables driving the mobile platform should be under tension such that

the tension value lies in an admissible tension range. Secondly, the nonlinear characteris-

tics of the cables might affect the robot performance. These factors increase the difficulty

of important issues such as the CDPR kinematic and dynamic modeling, tension distribu-

tion, workspace analysis and control schemes. In other words, most of the methods related

to rigid-link parallel manipulators have to be modified for CDPRs.

Possible applications of CDPRs are positioning and handling of large and heavy parts

across wide workspaces such as for structure construction [1, 2], rescue operation [3, 4],

rehabilitation [5, 6, 7], aerial transportation [8, 9], astronomical observation [10].

CLASSIFICATION OF CDPR

The first general classification of CDPRs was given by Ming and Higuchi [11]. Based on

the number of cables (m) and the number of degrees of freedom (n), cable-driven parallel

robots were classified into two categories, namely the incompletely restrained position-

ing mechanisms - IRPM (m < n +1), the completely restrained positioning mechanisms -

CRPM (m = n +1) . In [12], Verhoeven introduced one more category which is the redun-

dantly restrained positioning mechanisms - RRPM (m > n +1).
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In terms of force-closure (wrench-closure), CDPRs are classified into two main cate-

gories: fully constrained and under-constrained. For the first category, there exists at least

one mobile pose having force-closure, for which any wrench applied on the platform can

be balanced through tension forces in the cables [13]. Notable examples are the FALCON

prototype [14] and the SEGESTA prototype [15]. On the contrary, for under-constrained

CDPRs, the cables cannot balance any external wrench because to this end, they might

have to push on the platform. Gravity is then used to keep the cables under tension. The

latter case can be referred to as suspended CDPRs (all the cables are “above" the mobile

platform), e.g. the NIST ROBOCRANE [16] or the CoGiRo prototype [17].

KINETOSTATIC MODELING OF CDPR

In the kinematic modeling of CDPRs, different cable models were used in previous

works, including massless elastic model (straight line) [14, 18, 19, 20, 21, 22], simplified

model (parabolic model) [23], and catenary model [24]. The massless elastic cable model

is sufficient in many CDPR case studies. However, the effect of cable sagging due to cable

mass and elasticity, especially for large-dimension CDPRs, may have great impact on the

robot performance and thus should be considered in the kinematic modeling. Ottaviano

presented an analysis of the effects of the cable mass and elasticity on the end-effector of a

planar 2-DOF CDPR in [25]. The studies in [26, 27] specifically discuss the difference in the

CDPR workspace when using the simplified or catenary cable model compared to massless

elastic cable model.

Tension distribution is another important issue, especially in the case of redundant

CDPRs. Several real-time capable tension distribution methods have been developed

[15, 18, 19, 28, 29, 30, 31, 32, 33]. Two main approaches are applied. The first approach uti-

lizes fast optimization tools to obtain the tension distribution in optimizing certain criteria.

For example, Lim et al. in [31] use a gradient projection method to compute the solutions.

Meanwhile, the authors in [29, 34] address the same problem by using minimization of the

Euclidean norm of the cable tensions and p-norm of the relative cable tensions to avoid

cable tension discontinuities that may be caused by linear programming. In the second

approach, e.g. in [32, 33], the solutions of cable tensions are found for redundantly ac-

tuated CDPRs based on geometric considerations applied to the two-dimensional convex

polytope of feasible cable tension distributions. This polytope is defined as the intersec-

tion between the set of inequality constraints on the cable tension values and the affine

space of tension solutions to the mobile platform static or dynamic equilibrium. The so-

lutions also guarantee the continuity of cable tensions in a continuous trajectory of the

CDPR mobile platform.



1.2. CDPRS: AN OVERVIEW 5

Regarding the workspace analysis, a number of studies on the determination of CDPR

workspaces have been made [1, 27, 35, 36, 37, 38]. In [39], an interval analysis based tool is

developed to compute the Wrench-Feasible Workspace (WFW) of a CDPR. Several studies

quantified the CDPR workspaces based on classical criteria which were used for rigid-link

parallel manipulators. For example, in [40] Hay analyzed the CDPR dexterous workspace,

which refers to the intersection of orientation workspaces with a range of rotation angles.

The workspace “quality" of a CDPR can also be evaluated based on indices derived from its

stiffness matrix (which can be used to account for the CDPR stability) [41, 42, 43].

In term of CDPR dynamics, most of previous studies consider only the dynamics of

the mobile platform and the winches. Cable dynamics has rarely been addressed due to

its complexity. Du et al. [44] evaluated the effect of cable vibration on the positioning

accuracy of the end-effector of a large-dimension CDPR by using finite element method.

In [45], Yuan et al. analyzed the elastodynamic of a 6-DOF suspended CDPR. They con-

struct the dynamic stiffness matrix of a sagging cable and study the natural frequency of

the CDPR mobile platform. They showed that the cable dynamics should be considered

when it comes to perform high speed applications. In a more recent work [46], Weber

made an analysis on the cable dynamics and proposed a method to reduce the vibration

effect at the mobile platform of a 2-DOF CDPR.

CDPR CONTROL PROBLEM

Many control schemes used for rigid-link parallel manipulators may be adapted to

cable-driven parallel robots. The most common approach is to drive the mobile platform

by means of controlling the cable lengths or the required torques. A feedback control loop

allows the realization of desired cable lengths corresponding to a desired position and ori-

entation of the mobile platform, or of the motor torque corresponding to a desired CDPR

dynamics. In [47], Fang et al. proposed nonlinear feedforward control laws in the joint

space, taking the advantage of an optimal tension distribution. Williams et al. [48] pro-

posed a computed torque controller using the encoder feedback for each cable length.

Motion convergence using simple control laws (e.g. PD feedback controller) in the joint

space was proven with a Lyapunov function and a "vector closure" analysis by Kawamura

et al. [49]. Kino et al. [50] proposed a robust PD controller with an adaptive compensa-

tion for fully constrained CDPRs. In recent studies, Lamaury applied a dual-space feedfor-

ward controller [17] (which was previously successfully implemented on rigid-link parallel

robots [51]). This control scheme was also implemented with a PID control law and an

adaptive control law considering the use of an effective tension distribution method [32].

Similar approaches have been applied by Bruckmann et al. [15, 33].
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Controlling CDPRs in the joint space sometimes face the difficulty in accomplishing ac-

curate pose of the end-effector mainly due to the use of simplified cable models. Attempts

to control CDPRs in the task space have been carried out such as with visual servoing and

using real-time forward kinematic modeling. Dallej et al. [52] proposed a 3D pose visual

servoing and developed a vision-based computed torque control. In a recent study, Chellal

et al. [53] also proposed a vision-based position control for a 6-DOF CDPR.

Keeping all the cables under tensions during operation is another issue of CDPR con-

trol problems. The constraints set upon cable tensions make control of CDPRs a lot more

challenging than their counterpart rigid-link parallel robots. Effective tension distribution

methods can be used in the CDPR control schemes [15, 18, 19, 28, 29, 30, 31, 32, 33] .

Taking the advantage of such methods, several control strategies were proposed to meet

the conditions of positive cable tensions. Alp and Agrawal [54] described the structures

of Lyapunov based controller and feedback linearizing controller that guarantee positive

cable tensions. Oh and Agrawal [55, 56] proposed techniques to estimate the admissible

workspace of set-point control for a cable-suspended robot under disturbances and input

constraints based on a sliding mode controller. Alikhani [57] proposed a propagation algo-

rithm in order to generate feasible set points for the end-effector motion while satisfying

constraints on control inputs. In [58], Khosravi formulated a robust PID position control

in task space and used a corrective term to ensure positive cable tensions.

NOTABLE CDPR PROTOTYPES AND APPLICATIONS

Since the 1980s, various CDPR prototypes have been built and studied. Early in 1989

the NIST Robocrane system for large-scale handling [16, 59, 60] is one of the first CDPR

prototypes (Fig. 1.1). NIST implemented ROBOCRANE to carry on a series of application

research on assembly, lifting, spraying, and building with cable robots [61, 62, 63, 64].

Later, an ultrahigh speed cable robot FALCON (Fig. 1.2), a 7-cable 6-DOF CDPR, was

designed in Japan. One can say it was the first CDPR prototype for very fast pick-and-place

applications [14, 49].

DeltaBot [65], a rigid-cable hybrid ultra-high-speed cable robot, was developed by Amir

Khajepour at the University of Waterloo, Canada (Fig. 1.3).

SEGESTA (Fig. 1.4), another lightweight prototype, was developed at the University of

Duisburg-Essen, Germany. A number of studies have been made with SEGESTA on the

kinematic modeling, workspace calculation, tension distribution, and trajectory planning

issues [15, 18, 28, 66, 67].
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Figure 1.1: The NIST Robocrane

Figure 1.2: The FALCON prototype
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Figure 1.3: The DeltaBot prototype

Figure 1.4: The SEGESTA prototype
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Figure 1.5: The IPAnema CDPR family

Figure 1.6: The ReelAx8 prototype

The IPAnema family of cable robots (Fig. 1.5) is developed by Fraunhofer IPA, Germany

for medium to large scale inspection, handling, and assembly operations [2, 19, 30, 68].

LIRMM and Tecnalia France developed two redundantly actuated 8-cable CDPR pro-

totypes: the small-medium workspace CDPR ReelAx8 (Fig. 1.6) and the large-dimension

suspended CDPR CoGiRo (Fig. 1.7) [17, 32, 69, 70].

The CDPR prototype MARIONET crane (Fig. 1.8) for rescue and personal assistance was

developed at INRIA in France [71].

The 500-meter Aperture Spherical radio Telescope (FAST), which is currently under

construction in the Karst region of Guizhou Province, China [72, 73, 74] would be the

world’s largest cable robot. The FAST is composed of the active main reflector and the

feed support system. The huge CDPR and the feed cabin constitute the feed support sys-
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Figure 1.7: The CoGiRo prototype

Figure 1.8: The MARIONET crane prototype

Figure 1.9: The FAST project
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Figure 1.10: Spidercam

Figure 1.11: Skycam

tem. The CDPR with the radius of 600m is driven with six steel cables, providing receivers

with large workspace (Fig. 1.9).

Spidercam in Germany [75] (Fig. 1.10) and Skycam in USA [76] (Fig. 1.11) are two suc-

cessful applications of CDPRs used to carry a camera over a very large area (e.g. in a soccer

stadium), allowing the camera to be positioned at different angles and positions.
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1.3 Recent Developments of Reconfigurable CDPRs

Most of the studies on CDPRs in the past decades have been focused on fixed config-

uration CDPRs where the cable exit points and attachment points are fixed at pre-defined

locations. The properties of a CDPR in general can be easily changed by re-adjusting its

cable layout, e.g. by adjusting the locations of the cable exit points or by changing the

attachment order or positions of the cables connected to the mobile platform (or to the

end-effector). For example, one can transform a fully constrained CDPR (e.g. IPAnema

prototype in Fig. 1.5) into an under constrained suspended CDPR (e.g. CoGiRo prototype

in Fig. 1.7) simply by moving the cable exit points to any positions where all the cables are

above the mobile platform.

Recent studies [4, 77, 78, 79] deal with reconfigurable CDPRs where the geometry of

the CDPRs can be reconfigured by changing its cable layout. Reconfigurability of a CDPR

could greatly increase its capability (compared to fixed configuration CDPR), but at the

same time, it adds redundancy and increases the complexity of the system . For the design

of such CDPRs, in [77], Rosati introduced the concept of adaptive cable-driven systems. He

discussed a systematic procedure to determine the design solution for planar cable-driven

systems which minimizes or maximizes some local performance indices such as cable ten-

sion based criteria and dexterity of the CDPRs. Later on, Xiaobo Zhou in [78] presented an

analysis framework for cooperating cable mobile robots. The proposed method to solve

the reconfiguration problem is similar to that of Rosati in the sense that the solutions were

derived from optimizing certain criteria. In [79], Zhou et al. proposed a generalized mod-

eling framework for systematic design and analysis of cooperative mobile cable robots.

They dealt with the redundancy resolution by optimally repositioning the mobile bases to

maximize the so-called tension factor which is the ratio between minimal and maximal

values of cable tensions along a given trajectory. However, all these previous studies only

consider planar robot systems where important constraints such as cable interferences are

not taken into account. Moreover, critical issues while using standard optimization tools

to solve the redundancy of the robot system such as the continuity of the performance in-

dices with respect to the deciding parameters and the continuity and differentiability of the

constraints have not been addressed. In fact, the continuity of the tension based perfor-

mance indices can be dealt with by using tension distribution methods such as the one

in [32]. However, it is difficult to address the second issue since there are different types

of constraints including wrench feasibility (continuous nonlinear constraints) and cable

interferences (non-differentiable constraints). Furthermore, the problem becomes more

complex for a highly redundant CDPR. Addressing these issues of reconfigurable CDPRs is

one of our main objectives in the present thesis.
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1.4 On the Use of Large-Dimension Reconfigurable CDPRs

in Two Targeted Industrial Applications

Cable-driven parallel robots possess many appealing advantages. The use of cables

provides great potential to CDPRs such as a wide workspace and high payload to weight

ratio. We shall give a brief discussion of two possible applications for which CDPRs could

replace conventional methods of handling large and heavy parts across wide workspaces.

These two applications were considered in the framework of the CableBOT project.

1.4.1 Factory Workshop

Fig. 1.12 shows conventional methods to handle large and heavy parts in a workshop.

In the left (Fig. 1.12a), one or multiple overhead cranes are used to manipulate the parts.

Each crane offers one degree of freedom along the vertical axis and one or two degrees of

freedom in lateral directions. This solution has several drawbacks including limited flexi-

bility and reduced orientation capabilities. Most of the time when the operation requires a

change of orientation of the part, there is a need of involving workers which causes safety

issues. For tasks that require several degrees of freedom of the part, such traditional meth-

ods may not be sufficient. When lifting devices need more than one degree of freedom,

they are complemented with other mechanisms that provide extra DOFs. As shown in

Fig. 1.12b, the crane need an extra device to enable its rotational capability for some tasks

that require rotational DOFs.

In those cases, using a CDPR would be much more convenient. By simply connecting

(a) Manipulating heavy part using multiple cranes (b) Crane with 10t vacuum prehension, 5 DOF  

Figure 1.12: Handling heavy parts using cranes
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the cables directly to the parts, the CDPR can execute the tasks that require up to 6-DOF

movements.

REQUIREMENTS

In a workshop, examples of tasks are the displacement of heavy structure elements (dis-

place structure components from one place to another within the workshop) or position-

ing of structure elements for assembly. Expected CDPR performances can be foreseen as

follows:

– Number of degrees of freedom required by the tasks: For positioning tasks, the

CDPR should have at least 4-DOF: translations in all directions and rotation around

the vertical axis (e.g. up to±90o). For assembly tasks, six DOFs are generally required.

– Workspace: The robot must fit into the workshop area. Depending on the layout of

a workshop, a CDPR is expected to cover a certain area or several connected sections

in the workshop.

– Required speed or cycle time: The speed of the movements depends highly on the

weight to be displaced. For light weight part, high speed motions can be used. For

heavy payload (several tons), slow motion is expected. However, in both cases, the

CDPR should be able to achieve a given desired performance in terms of maximum

acceleration and velocity.

– Required accuracy and stiffness: Positioning structure elements may require a weak

accuracy. However, in assembly tasks, high precision and high stiffness at the end-

effector could be required. These factors could be attainable by using suitable con-

figuration of the CDPR.

– Requirements on reconfigurability of the CDPR: The geometry and weight of the

structures elements can change. Therefore, the CDPR has to be somehow recon-

figurable, in order to fulfill the task requirements. When the CDPR uses its mobile

platform to handle the part, an additional fastening device may be required to attach

the part to the mobile platform. Alternatively, in the case the structure part itself be-

comes the mobile platform of the CDPR, a suitable strategy to attach the cables to

the part is required. On the other hand, the geometry of the CDPR may need to be

reconfigurable in order to fulfill different task requirements (e.g. obtaining a larger

orientation range within a specific area).
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PROPOSED CDPR ARCHITECTURES

It is common to use overhead bridge cranes to span all area in a workshop. As an

evolution of this solution, it could be convenient to construct CDPRs using these cranes.

Fig. 1.13 shows the first solution where each crane carries one CDPR. The mobile platform

can be the structure part (load) itself - on which several anchor points are pre-defined to

connect the cables. The winches may move freely on the overhead bridge to ensure maxi-

mum flexibility. The number of winches in this case can be varied depending on the actual

need. It is to be noted that 6 winches and, hence, 6 cables may be necessary to avoid com-

plex motions resulting from under-constraining the 6 degrees of freedom of the load. In

this solution, the CDPR workspace is limited. It is not much different from a conventional

crane except that it provides more rotational capability.

In a second implementation (Fig. 1.14), the CDPR is constructed by using two overhead

bridge cranes. This solution should offer more flexibility in terms of workspace and in

handling large structure parts.

One can imagine different approaches to positioning the cable exit points of the CDPR

in order to enable its reconfigurability. Fig. 1.15 shows a possible implementation of a re-

dundant 8-cable 6-DOF CDPR where the cable exit points can move by pairs along different

directions. There are two pairs mounted on side rails attached to the wall of the workshop.

This solution is not necessarily feasible because the walls may have to sustain large lateral

forces. One way to overcome this problem is to add extra beams that connect the two over-

head bridge cranes. The cable exit points can then move along these additional beams as

Figure 1.13: All winches are mounted on one overhead bridge crane
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shown in Fig. 1.16. In this way, the lateral forces acting on the side walls of the workshop

are minimized. This approach offers great reconfigurability to the CDPR. However, the

workspace is still limited which is depended on the length of the extra beams. Moreover, it

is not trivial to design such a system.

Fig. 1.17 shows a preferred scenario where the four pairs of cable exit points of the CD-

PRs are constrained to move along two overhead bridge cranes.

Figure 1.14: A CDPR on two overhead bridge cranes

Figure 1.15: All winches can move: two pairs on overhead bridge cranes, two pairs on side
rails attached to the walls
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Figure 1.16: All winches can move: two pairs on overhead bridge cranes, two pairs on beams
connecting the two bridge cranes

Figure 1.17: Preferred Scenario: 8-cable suspended reconfigurable CDPR, all winches are
mounted on two overhead bridge cranes
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PREFERRED SCENARIOS

Fig. 1.18 shows possible solutions to enable reconfigurability of a CDPR. The second

case represents a more practical solution. It consists in only changing the position of the

cable exit points. The winches are fixed at predefined locations on the overhead bridge

crane.

The following figures Fig.1.19-1.21 detail several preferred CDPR architectures. In these

solutions, the cable exit points are moving by pairs on each overhead bridge crane. To

enable modularity of the system, all the cranes are similar to each other. Each of the crane

can constitute a suspended CDPR. Furthermore, any two overhead bridge cranes can be

used in collaboration to form a CDPR with 6 cables or 8 cables with a larger workspace and

larger orientation capabilities. Fig. 1.22 shows a scenario where multiple CDPRs are used

to work in different sections in a factory workshop.

Moving winches 

Fixed winches 
Cable exit points can move 

Figure 1.18: Concept of cable-driven systems
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Figure 1.19: Case 6-Cable CDPR: All pairs of winches can move freely on overhead bridge
cranes

Figure 1.20: Case 8-Cable CDPR: All pairs of winches can move freely on overhead bridge
cranes
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Figure 1.21: Case 8-Cable CDPR: on each overhead bridge crane, 1 pair of winches (or cable
exit points) is fixed at the middle, the other two pairs can move (within a restricted range).
Additional movable beams might be used to sustain lateral forces exerted on the two cranes.

Figure 1.22: Using multiple CDPRs in a factory workshop
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1.4.2 Airplane Maintenance Workshop

In the second targeted industrial application, CDPRs may be used to replace conven-

tional methods to perform maintenance tasks in an airplane workshop. Fig. 1.23 shows the

general method where several telescopic platforms are used to carry the workers across the

airplane fuselage. Each telescopic platform offers 4 degrees of freedom (three translations

in Cartesian space and one rotation around the vertical z-axis) which allows the task to be

done quite efficiently. However, this solution has some disadvantages. Firstly, each tele-

scopic platform weights from 9 to 11 tons which implies high costs for the building con-

struction to sustain such heavy systems. Secondly, the workers sometimes need to work in

hazardous environment where the operation requires to use chemical material like paint

or stripping products. In the latter case, using CDPRs to automatically handle the tasks

could be a more preferable solution.

REQUIREMENTS

To be able to replace conventional methods in an airplane maintenance workshop,

there are different requirements that the CDPRs must strictly follow:

– Number of degrees of freedom required by the tasks: Depending on specific tasks

(painting, cleaning, inspection...), the number of degrees of freedom of the mobile

platform is variable. It also depends on the tools or mechanical devices embedded

on the CDPR mobile platform.

Chemical paint stripping Painting 

Figure 1.23: Conventional method of carrying workers in an airplane maintenance work-
shop
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– Workspace: The CDPRs are expected to reach all parts of the airplane body. Depend-

ing on the size of the airplane, several CDPRs must be used to cover different areas

of the workspace simultaneously. The airplane has to be approached by the CDPRs

without any shock or collision.

– Required speed or cycle time: In some maintenance tasks (e.g. painting), fast po-

sitioning of the mobile platform is required (e.g. velocity is greater than 0.6m/s) in

order to complete the tasks within a strictly given time limit.

– Required accuracy and stiffness: High accuracy is mainly required for automatic

operation mode. In most use cases, it is preferable to have high stiffness at the mobile

platform (e.g. carrying workers or carrying tools).

– Requirements on reconfigurability of CDPRs: Because of the complex shape of the

airplane body, in order to reach all parts and avoid collisions, each CDPR should

be able to change its cable layout (e.g. by changing the positions of the cable exit

points). Suspended type CDPRs are preferable to avoid cable collisions. Reaching the

upper part of the airplane body can be achieved. However, lower parts of the airplane

fuselage are difficult to reach. In the latter case, suitable modifications of the mobile

platform are required (e.g. by increasing the reachable range of the mobile platform

or embedded tools to access the lower parts of the airplane fuselage).

PROPOSED CDPR ARCHITECTURE

Several solutions are proposed which have been inspired from the experiences of part-

ners in the CableBOT project. In the first approach (Fig. 1.24), several CDPRs are used to

cover the airplane body (at least 4 CDPRs). Possible locations to place the cable exit points

of each CDPR can be set on top of the airplane body or on the ground. The geometric

structure of the CDPRs can be reconfigured by switching the cables at the beginning of

each task.

In a second approach, the winches can move along rails preferably positioned on the

ceiling as shown in Fig. 1.25. Four CDPRs can be used to work in four separate sections

according to the shape of the airplane, and to satisfy the constraint of having no cable

running above the airplane due to strict requirements in some maintenance tasks (e.g. in

painting tasks, the above areas of the airplane fuselage must be clean, having cables across

these areas may bring dust and unwanted substances falling down on the painting sur-

face). The main drawbacks of this solution are that the cable lengths might be quite long to

span a large area and the mobile platform has to move near the boundary of the workspace.

Furthermore, the building has to sustain large lateral forces exerted by the cables.
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In a third scenario (Fig. 1.26), the winches of each CDPR can move freely on two over-

head bridge cranes. These cranes can move along other perpendicular rails directed along

the airplane main dimension (on the right-side of the figure). This solution is quite flexible

since we can find optimal way to update the positions of the winches to achieve appro-

priate performances. On the left-side of the figure, a more complicated implementation

is proposed. The directions of the rails can be oriented differently. But, in order to adapt

the system to various airplanes, these rail directions have probably to be changed which

makes this second solution difficult to implement and costly.

Figure 1.24: Using grid of winches to reconfigure CDPRs in 4 sections over the airplane body

Figure 1.25: All pairs of winches can move on fixed rails along the airplane body
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Note that in all scenarios, it is possible to have variable implementations in order to

change each CDPR property (e.g. from under constrained type into fully constrained type),

thereby providing more flexible solutions. Fig. 1.27 shows a solutions where there are avail-

able winches on the ground. Each suspended CDPR can then be transformed into a fully

constrained CDPR.

Figure 1.26: All pairs of winches can move on reconfigurable rails (this solution is similar to
factory workshop use case)

Figure 1.27: Fully constrained CDPRs: 4 winches can move on the rails on top of the airplane
body, the other 4 winches can be switched among a grid of winches on the ground
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PREFERRED SCENARIOS

Fig. 1.28 and 1.29 show a preferred scenario of using 4 reconfigurable CDPRs in an

airplane maintenance workshop. This solution is similar to the ones proposed in factory

workshop use case. The cable exit points move by pairs on the two overhead bridge cranes

which can slide along parallel rails attached to the side walls of the workshop. In this setup,

all four CDPRs can simultaneously perform required tasks in four given sections of the

workshop.

Figure 1.28: Solution of using 4 CDPRs in an airplane maintenance workshop: covered areas

Figure 1.29: Solution of using 4 CDPRs in an airplane maintenance workshop: perspective
view
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To overcome the difficulty of reaching all the parts of the airplane body, suitable means

are required, e.g. by adjusting the design of the mobile platform to increase its reachable

range to access the lower parts of the airplane body. A possible solution (Fig. 1.30 and

1.31) is to keep the shape of the mobile platform similar to that of telescopic platforms

used in conventional methods (Fig. 1.23). It is then required to find suitable locations for

the cable anchor points that connect the cables to the CDPR platform in order to have a

good counter-balance design that could maintain the stability of the platform taking into

account the presence of workers working onboard.

Figure 1.30: Modified mobile platform: perspective view

Figure 1.31: Modified mobile platform: elongate the platform working area to reach the
lower part of airplane body
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1.5 Contributions and Content of the Thesis

The main objective of this thesis being to develop a framework for reconfigurable CD-

PRs, the first step has been presented in Section 1.4 in which several general architectures

of reconfigurable CDPRs were proposed (some of the solutions were inspired by the experi-

ences from the partners in the CableBOT project). In the following chapters, I will detail my

two main contributions. The first achievement is an extensive study on the CDPR model-

ing, including cable models suitable for large-dimension CDPRs. The second contribution

consists of systematic procedures to deal with the reconfiguration (planning) problem of a

family of reconfigurable CDPRs.

Chapter 2 presents the state of the art of CDPR kinematic, dynamic and elastostatic

modeling. The inverse kinematics problem, the tension distribution problem and the

derivation of the stiffness matrix of general 6-DOF CDPRs are addressed in detail. Several

collision detection algorithms are also presented. All of these are useful for design, motion

planning and control of reconfigurable CDPRs. The solutions of the inverse kinematics and

tension distribution problems are used in the robot control system. In the design or plan-

ning phase, tension distribution solutions are used to verify wrench feasibility conditions

guaranteeing that all cables could remain tensed while not exceeding maximum allowed

cable tension values. Collision detection algorithms are needed to verify that the CDPR

workspace is collision free, especially for spatial CDPRs with a large number of cables.

Chapter 3 details the extended modeling of CDPRs. The corresponding models con-

sider most of the factors that could affect the CDPR performances such as: cable char-

acteristics (cable mass, cable elasticity), thermal effect (the change of environment tem-

perature), friction (between cables and pulleys, in the gear box of the winch...) and the

influence of pulley kinematics. The CoGiRo prototype 2, an 8-cable large-dimension sus-

pended CDPR, is used to illustrate the procedure in simulations and experiments. Our

study shows that one should take into account those factors in order to improve the CDPR

performance, especially its positioning accuracy.

Finally, Chapter 4 deals with the CDPR reconfiguration problem. In the scope of this

thesis, we consider the reconfiguration problem as a general nonlinear optimization prob-

lem. The reconfigurability of the CDPR corresponds to the ability to adjust the positions

of the cable exit points, thereby enabling the CDPR to adapt its performances. The fo-

cus of our study is on the methods to formulate the optimization problems into standard

forms. It allows one to use any available (suitable) optimization software to find the op-

timal reconfiguration solutions. Two case studies are discussed. In the first case study,

2. http://www.lirmm.fr/cogiro/
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the CDPR reconfiguration problem is considered as a single-objective optimization prob-

lem. A systematic procedure is proposed to solve this problem using fast optimization

tools (e.g. gradient-based optimization) which enable real-time capable resolutions. It can

be implemented both in offline and online CDPR operation modes. However, optimizing

only one objective function to derive the CDPR reconfiguration solution may be not satis-

factory enough in some cases. Thus, in the second case study, we consider the CDPR re-

configuration problem as a multi-objective optimization in which the solution is found by

optimizing several performance indices. A systematic procedure is presented to formulate

this problem and transform it into standard forms that could be solved with readily avail-

able optimization softwares. The proposed approach offers more reliable motion planning

solutions for the CDPR while efficiently dealing with the tradeoff between several criteria.
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This chapter is dedicated to the modeling of a general CDPR. Several aspects, funda-

mental to the design, motion planning and control of CDPRs, are presented. The well-

known CDPR inverse kinetostatic problem (IKP) is discussed in Section 2.1. Section 2.2

presents the procedure to derive a simplified cable model which takes into account the

cable mass and longitudinal elasticity. Section 2.3 briefly reminds the cable tension distri-

bution problem of a general 6-DOF CDPR. The derivation of the stiffness matrix of a CDPR

is then detailed in Section 2.4. This derivation is based on the elastic catenary cable model.

Lastly, Section 2.5 discusses collision detection issues for CDPRs.

29
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2.1 General CDPR Modeling

2.1.1 Kinetostatic Modeling

Fig. 2.1 shows a general m-cable CDPR where Ai and Bi (i = 1, ..,m) are the cable i exit

point and anchor point, respectively. FBi
(

fbi x , fbi y , fbi z
)

and τbi are the force and tension

in cable i at anchor point Bi
(
xbi , ybi , zbi

)
. All the terms are expressed in the base frame of

the robot (global frame).

The modeling of a CDPR, in general, is based on a cable model and the CDPR equilib-

rium equations. In [80], Irvine presents the well-known cable model known as the elastic

catenary which takes the cable mass and elasticity into account. In [81], a cable catenary

model in 3D Cartesian space is introduced. A fully 3D cable catenary model can be ex-

pressed in the following form:

xbi = f1i
(
L0i , fbi x , fbi y , fbi z

)
(2.1a)

ybi = f2i
(
L0i , fbi x , fbi y , fbi z

)
(2.1b)

zbi = f3i
(
L0i , fbi x , fbi y , fbi z

)
(2.1c)

where L0i is the cable i unstrained length and f j i are non-linear functions [81].

In the case of inverse kinematic problem, given the pose of the mobile platform then

in (2.1), the coordinates of point Bi are determined. One need to find four unknown terms

(which are the cable unstrained length and cable force components). The number of un-

known variables is larger than the number of equations, thus it is necessary to consider the

massless
cables hefty 

cables
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u

Figure 2.1: General m-cable CDPR
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equilibrium equations of the mobile platform:

Wτb + fe = 0 (2.2)

subject to:

τmin ≤ τbi ≤ τmax
(
i = 1,m

)
(2.3)

and where

W =
[

u1 u2 · · · um

Rb1 ×u1 Rb2 ×u2 · · · Rbm ×um

]

τb =
[
τb1 τb2 · · · τbm

]T

fe =
[

fx fy fz mx my mz

]T

Here, fe is the wrench applied by the cables on the mobile platform, bi is the position vector

of the anchor point Bi with respect to the origin of the mobile platform frame with origin

Op and ui is the unit vector directing the cable force FBi . τmin and τmax are the minimum

and maximum admissible limits on the cable tensions. R is the rotation matrix from the

global frame to the mobile platform frame.

The condition (2.3) is to ensure the cables are always under tension (τmin ≥ 0) and the

cable tensions are smaller than a maximum acceptable value. These conditions on the

cable tensions make a CDPR different from a rigid-link parallel manipulator. The inequatl-

ities in (2.3) introduce complexity in solving the kinetostatic problems of CDPRs (inverse

kinematic and tension distribution problems).

2.1.2 Dynamic Modeling

In this thesis, only the dynamics of the mobile platform is considered. Cable dynamics

is neglected. The center of mass of the mobile platform is denoted C . The coordinates of C

in the mobile platform frame <Op > are (xc yc zc ). We consider that the mobile platform

moves with acceleration ap (of the origin Op ), angular velocityω and angular acceleration

α. Here, the dynamics of the cables and the dynamics of the systems that drive the cable

exit points, if any, are neglected.

According to Newton-Euler equations, one can write the equation of motions of the

mobile platform as follows:[
F

Mp

]
+

[
mp G

d×mp G

]
+Wτb = 0 (2.4)
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where F and Mp are the inertia forces and moments acting on the mobile platform, and

mp is the total mass of the mobile platform. W and τb are defined in (2.30), G = (0 0 g )

with g = 9.81m/s2, and d = R ·−−−→OpC is the projection of vector
−−−→
OpC onto the global frame.

Because the center of mass C is distinct from Op , we have:

F = mp
[
ap +α×d+ω× (ω×d)

]
(2.5)

Mp = mp d×ap + Ipα+ω× (
Ipω

)
(2.6)

where Ip is the moment of inertia about the reference point Op of the mobile platform

expressed in the global frame:

Ip = R Ic RT +mp
[(

dT d
) ·13×3 −d dT ]

(2.7)

Here, Ic is the polar moment of inertia (or matrix of inertia about the center of mass) of the

mobile platform and 13×3 is the identity matrix.

Depending on the context, either static modeling or dynamic modeling of the CDPR

will be used. In fact, for control or motion planning, either (2.2) or else (2.4) will be used

to compute the inverse kinematics solution (the cable unstrained lengths) and the desired

cable tensions.

2.2 Cable Modeling

According to the previous section, to solve the inverse kinematics problem of a m-cable

6-DOF CDPR, there are 4m unknown terms
(
L0i , fbi x , fbi y , fbi z

)
(i = 1, ..,m) and a total of

3m +6 equations, including 3m cable equations (2.1) and the equilibrium equations (2.2)

or (2.4). We need numerical methods to solve the inverse kinematics problem as well as

the tension distribution problem since these two problems are non-linear and coupled

together [24]. It becomes more complicated especially for the case of redundantly actuated

CDPRs driven by more than 6 cables. However, such methods are usually time consuming

and may be impractical in real-time control schemes. Simpler cable models are thus of

interest to reduce the complexity of the problem.

Different approaches to avoid using the catenary cable model in modeling CDPRs have

been proposed. In many previous studies on CDPRs, all cables have been considered mass-

less. For robots of reasonable size and carrying light payloads massless cable models can

be used, but for large-dimension robots or for robots that carry heavy payloads, the cable

mass may have to be taken into account [23]. In [80], Irvine presents a parabolic cable
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model. This cable model is valid if the sagging of the cable is small enough. However,

the suggested validity condition is not explicitly derived. In [23], the parabolic hefty cable

model is reintroduced in a simplified static analysis of large-dimension CDPRs which gives

a linear relation between the cable horizontal and vertical force components. This relation

helps to transform the cable tension distribution problem into one that is similar in form

to the case of CDPRs with massless cables, from which one can apply advanced methods

to find the cable tensions such as [18, 19, 32]. A nonlinear version of the relation between

the cable horizontal and vertical force components is derived in [82] based on the catenary

model. Knowing the cable tension, the cable unstrained length can be computed. In [24],

Kozak gives an expression for the cable unstrained length, which takes into account the

cable mass but without considering the cable elasticity. Later, an approximation of that

expression is obtained by Rui Yao et al. in [83].

In this section, we shall give a discussion on the simplification of cable model as well

as the determination of the cable unstrained length (solution to the inverse kinematics of

a CDPR) as published in [69].

2.2.1 Cable Profile

Let us consider a steel cable that has unstrained length L0 (m), self-weight w (N /m),

elastic modulus E (Pa) and cable cross-section area A0 (m2).

Fig. 2.2 shows the relevant coordinates and parameters of a cable lying in a vertical

plane in static equilibrium. The cable is fixed between two end-points A (xLa , zLa) and

M(xL, zL; p; s) 

A 

B 

zL 
xL 

FB 

fLbx 

fLbz 

β 

g 

( w , E, A0 ) 

L0 

Figure 2.2: Diagram of a sagging cable in 2D (cable local frame)
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B (xLb , zLb) 1. All the coordinates are in the local frame attached to the vertical plane con-

taining the cable. The term ∆L represents the strain of the cable.

A point M along the strained cable has Cartesian coordinates xL and zL . The variable p

represents the strained length of the cable segment as measured from the end-point A of

the cable to the point M . The variable s will be used to denote the unstrained length of the

same cable segment. In Fig.2.2, the origin of the local frame will be placed at the end-point

A. Thus, the variable s lies in the range: 0 ≤ s ≤ L0 with M(s = 0) ≡ A and M(s = L0) ≡ B .

The well-known catenary equations can be written as follows [80]:

xL(s) = xLb +
fLbx(s −L0)

E A0
+ fLbx

w
ln

[
τs + fLbz +w(s −L0)

τb + fLbz

]
(2.8a)

zL(s) = zLb +
fLbz(s −L0)

E A0
+ w(s −L0)2

2E A0
+ 1

w
(τs −τb) (2.8b)

where fLbx , fLbz are the cable horizontal and vertical force components at point B and

τs ,τb are the tensions in the cable at point M and B , respectively:

τs =
√

f 2
Lbx +

[
fLbz +w(s −L0)

]2 (2.9)

τb =
√

f 2
Lbx + f 2

Lbz (2.10)

The shape of the cable must satisfy the geometric constraint:(
d xL

d p

)2

+
(

d zL

d p

)2

= 1 (2.11)

which implies:

d p

d xL
=

√
1+

(
d zL

d xL

)2

(2.12)

At point M , the force balance for the segment of the cable between points M and B can be

written as follows:

τs

(
d xL

d p

)
= fLbx (2.13a)

τs

(
d zL

d p

)
= fLbz +w(s −L0) (2.13b)

The cable tension at point M is considered to satisfy Hooke’s law:

τs = E A0

(
d p

d s
−1

)
(2.14)

1. the subscript L indicates the term are expressed in cable local frame
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The relationship between coordinates xL and zL which does not depend explicitly on the

variable s can be derived from (2.12), (2.13) and (2.14):

d 2zL

d x2
L

= w

fLbx
· E A0

E A0 +τs
·
√

1+
(

d zL

d xL

)2

(2.15)

Let us assume that τs ¿ E A0. Then, the cable elasticity has a very little influence on the

cable shape since (2.15) can be reduced to the simpler expression:

d 2zL

d x2
L

= w

fLbx
·
√

1+
(

d zL

d xL

)2

(2.16)

The solution of (2.16) is:

zL(xL) = fLbx

w
cosh

(
w

fLbx
xL +C1

)
+C2 (2.17)

which must satisfy the following boundary conditions:

zL(xLa) = zLa (2.18a)

zL(xLb) = zLb (2.18b)

As the origin of the local cable frame has been chosen at point A, xLa = 0 and zLa = 0, then:

C2 =− 1

µ
cosh(C1) (2.19)

zLb = 1

µ

[
cosh

(
µxLb +C1

)−cosh(C1)
]

(2.20)

where

µ= w

fLbx
(2.21)

The term C1 can be found by solving (2.20)

C1 = ln


√
µ2z2

Lb +eµxLb +e−µxLb −2+µzLb

eµxLb −1

 (2.22)

The conditions to achieve (2.22) are:

xLb > 0 (2.23a)

fLbx > 0 (2.23b)
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(2.23a) is verified by definition of the local cable frame. (2.23b) is always true because the

cable can only pull on the mobile platform. Note that (2.22) is the only solution of (2.20)

because conditions (2.23a) and (2.23b) are always verified. The tangent at point B of the

cable is then computed as:

tan(β) = d zL

d xL

∣∣∣
xL=xLb

= fLbz

fLbx
= sinh

(
µxLb +C1

)
(2.24)

Relationship (2.24) is similar to the one presented in [82]. Note that the simplifying as-

sumption (E A0 À τs) and the validity conditions (2.23a) and (2.23b) are not explicited in

[82].

2.2.2 Linearization

In the case of CDPRs with massless cables, several methods have been developed to

solve important issues such as the tension distribution problem for 6-DOF CDPRs with

a number of cables m ≥ 6, e.g. in [18] and [32]. To take advantage of such methods, as

presented in [23], in case of CDPRs with cables of non-negligible mass, one must achieve a

linear relationship between the horizontal and vertical cable force components in order to

transform the equilibrium equations of the mobile platform into ones similar to the case of

CDPRs with massless cables. From (2.24), since tan(β) is a function of the cable horizontal

force component fLbx , the relationship between the cable force components at end-point

B is a nonlinear relationship
(

fLbz = tan(β) · fLbx
)
. Hence, simplification of the term tan(β)

needs to be performed in a proper way. To this end, one can consider the Taylor series

expansion of (2.24) in term of the variable µ defined in (2.21).

In fact, choosing µ as the expansion variable is reasonable since, in the case of a CDPR

with steel cables carrying heavy payloads, µ is relatively small and depends only on the

cable self-weight w and the cable horizontal force component fLbx . The Taylor series ex-

pansion of tan(β) around the expansion point µ= 0 up to order of 3 is:

tan(β) = −sinh(H)+ 1

2
xLb cosh(H)µ

−

x2
Lb zLb cosh(H)

24
√

x2
Lb + z2

Lb

+ 1

8
x2

Lb sinh(H)

µ2 (2.25)

+

 1

48
x3

Lb cosh(H)+ x3
Lb zLb sinh(H)

48
√

x2
Lb + z2

Lb

µ3 +O
(
µ4)
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where

H = ln

 xLb√
x2

Lb + z2
Lb + zLb


In order to achieve a linear relationship between the cable force components fLbx and

fLbz , only expansion of order 1 in (2.25) is to be considered:

tan(β) = −sinh(H)+ 1

2
xLb cosh(H)µ

= zLb

xLb
+ 1

2

√
x2

Lb + z2
Lb µ (2.26)

Finally, we obtain the linear relationship:

fLbz = tan(β0) · fLbx +
w L

2
(2.27)

where tan(β0) = zLb/xLb and L = ‖AB‖ =
√

x2
Lb + z2

Lb .

Relationship (2.27) is the same as the simplified cable model presented in [23].

In summary, we have rigorously detailed the simplifications to the elastic catenary ca-

ble modeling which lead to a linear relationship between the horizontal fLbx and vertical

fLbz cable force components in (2.27). This linear relationship is the basis of the simplified

static analysis introduced in [23]. The first assumption τs ¿ E A0 was made in (2.15). If

verified, it means that the cable elasticity has no real influence on the cable shape. The

second assumption states that the variable µ defined in (2.21) is small enough. Depending

on the context, the validity of these two assumptions may be an issue so that they should

be carefully checked.

2.2.3 A Limitation of the Simplified Cable Model

In the linearization procedure presented in Section 2.2.2, if the expansion variable is

chosen as ν = µxb instead of µ, and the Taylor series expansion of tan(β) is performed

around the expansion point ν = 0, we obtain the same linear relationship (2.27). Hence,

the accuracy of the approximation of tan(β) should also be justified in term of the variable

ν since ν > µ for large-dimension CDPR (xb can be large). Equation (2.27) is valid if ν is

small enough:

0 ≤ ν≤ νmi n (2.28)
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where νmi n is a chosen small value. This condition leads to the following constraint on the

cable horizontal force component:

w xLb

νmi n
≤ fLbx (2.29)

The validation of condition (2.29) gives an insight into the limitation of the simplified

cable model. To illustrate this point, let us consider the problem which consists in de-

termining the wrench-feasible workspace (WFW ) [39] of a CDPR driven by m cables. The

WFW is the set of poses of the mobile platform for which, for any wrench f in Wr eq , there ex-

ists a vector of cable horizontal force components fLbx which is a solution to the equilibrium

equations:

Wx τLbx + f = 0 (2.30)

and verifies:

τmin ≤ τbxi ≤ τmax
(
i = 1,m

)
(2.31)

Here, Wr eq is the required set of wrenches that the cables must apply at the reference point

Op of the mobile platform. Equation (2.30) is the modified equilibrium equations of the

mobile platform obtained with the simplified static analysis presented in [23] which as-

sumes that (2.27) is valid. For a given CDPR geometry, the wrench matrix W depends only

on the pose of the mobile platform. If the required set of wrenches Wr eq is also known,

then the size of the WFW is determined by condition (2.31).

For the simplified static analysis of [23] to be valid accross the WFW, the lower bound

of (2.31) must not be smaller than:

τmin = w xLb

νmi n
(2.32)

The size of the WFW depends on the admissible range [τmin, τmax] of the cable horizon-

tal force component. In fact, the upper bound on the cable forces is always determined

by safety considerations. Hence, with a fixed upper bound on the cable horizontal force

component (τmax = const ), the size of the part of the WFW in which the simplified ca-

ble model is valid is reduced when τmin increases. That makes the size of this workspace

inversely proportional to xLb (and also to the cable self-weight w).

In practice, it is preferable to have a large WFW. For a given set of wrenches and in

a large prescribed workspace, condition (2.29) may be violated in some areas. Thus, it is

expected to get large errors in the approximation of the term tan(β). Such errors lead to a

poor accuracy in solving the cable tension distribution problem with the simplified static

analysis of [23], i.e., the WFW determination based on (2.30) is not valid. The problem is

even more involved since the assumption τs ¿ E A0 may be questioned if fLbx is large.
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2.2.4 Computation of the Cable Unstrained Length

Starting from (2.14), one can derive:

d p =
(
1+ τs

E A0

)
d s =

(
1+ fLbx

E A0
· d p

d xL

)
d s

d p

d xL
=

(
1+ fLbx

E A0
· d p

d xL

)
d s

d xL
(2.33)

Substitute d p/d x from (2.12) into (2.33) to obtain:

d s

d xL
=

√
1+

(
d zL

d xL

)2

1+ fLbx

E A0

√
1+

(
d zL

d xL

)2
(2.34)

If we use the solution of zL(xL) from (2.17) and since:√
1+

(
d zL

d xL

)2

= cosh
(
µxL +C1

)
(2.35)

where C1 is given in (2.22), then (2.34) becomes:

d s

d xL
= E A0

fLbx

(
1− 1

1+R

)
(2.36)

where

R = fLbx

E A0
cosh

(
µxL +C1

)
The close form solution of L0 is given as follows:

L0 =
∫ L0

0
d s =

∫ xLb

xLa=0

E A0

fLbx

(
1− 1

1+R

)
d xL

= E A0

fLbx

∫ xLb

xLa=0
d xL − E A0

µ fLbx

∫ Rb

Ra

1

(1+R)
p

R2 −a
dR

= E A0

fLbx

[
xLb −

1

µ
(Ha −Hb)

]
(2.37)
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where

Hb =
ln(1+Rb)− ln

(
a +Rb −

p
1−a

√
R2

b −a
)

p
1−a

Ha =
ln(1+Ra)− ln

(
a +Ra −

p
1−a

√
R2

a −a

)
p

1−a

Rb = fLbx

E A0
cosh

(
µxLb +C1

)
Ra = fLbx

E A0
cosh(C1)

a = f 2
Lbx

E 2 A2
0

In order to see clearly the effect of the cable mass and elasticity on the cable unstrained

length, we use Taylor series expansion to find an approximation of d s/d xL around the ex-

pansion point R = 0 (R ¿ 1 because we assume that fLbx ¿ E A0) as follows:

d s

d xL
= E A0

fLbx

[
R −R2 +R3 +O

(
R4)] (2.38)

The cable unstrained length is thus computed as:

L0 =
∫ L0

0
d s =

∫ xLb

xLa=0

E A0

fLbx

[
R −R2 +R3

]
d xL

= 1

µ

[
sinh(Cb)− sinh(C1)

]
− fLbx

4E A0µ

[
2µxb − sinh(2C1)+ sinh(2Cb)

]
− f 2

Lbx

12E 2 A2
0µ

[
9sinh(C1)−9sinh(Cb)

+sinh(3C1)− sinh(3Cb)
]

(2.39)

with Cb =µxLb +C1.

In (2.39), if the series expansion of d s/d xL up to order 1 of R is only considered, the

expression of L0 is the same as the one presented in [24] where only the cable mass is taken

into account (elasticity neglected). The expression of L0 with a higher order of R takes into

account both the cable mass and elasticity.

The unstrained cable length as given in (2.37) or in (2.39) is the one needed for the

inverse kinematics and thus for the trajectory planning part in a control scheme of a CDPR.
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2.3 The Tension Distribution Problem

Let us consider the m-cable CDPR shown in Fig. 2.1. At a given pose of the mobile

platform, the coordinates of the cable exit point and anchor point of cable i are determined

Ai (xai , yai , zai ) and Bi (xbi , ybi , zbi ). The CDPR tension distribution problem is to find the

cable forces FBi = ( fbi x fbi y fbi z ) at the cable anchor points Bi (i = 1,m). In fact FBi

are found by solving the equilibrium equations of the CDPR.

In the case of CDPRs with massless cable model (e.g. massless elastic cable model),

the equilibrium equations are the same as (2.2) where the unit vectors ui that direct the

cable forces FBi are given as follows:

ui = Bi − Ai

‖Bi − Ai‖
(2.40)

(it means that each cable is assumed to be a straight line).

The solution for (2.2) in the case of a number of cables m = 6 is:

τb =−W−1 fe (2.41)

For redundantly actuated CDPRs with a number of cables m > 6, the solution for τ is:

τb =τp +Nλ (2.42)

where

τp = −W+ fe (2.43)

W+ = pinv(W) (pseudo− inverse of W)

N = Null(W) (Nullspace basis matrix of W of size [m × (m −6)])

andλ is a vector of size [(m −6)×1].

The problem results into solving a sub-problem: “findλ that minimizes a performance

index and satisfies {τmin −τp ≤ Nλ≤ τmax −τp }". This sub-problem can be solved e.g. by

methods presented in [18, 32, 33].

In the case of CDPRs with simplified cable model, because of the influence of the cable

mass, the cable sags under its own weight (the cable is not a straight line). Thus, one need

to reformulate the equilibrium equations (2.2) [23]. The linear relationship (2.27) in the

cable local frame:

fLbi z = tan
(
β0i

)
fLbi x +

Li w

2
(i = 1,m) (2.44)
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where tan
(
β0i

) = zLbi /xLbi and Li =
√

x2
Lbi + z2

Lbi , is needed to decouple the mobile plat-

form static equilibrium equations from the cable model equations.

The force FBi could be expressed in term of fLbi x :

FBi =
[

fbi x fbi y fbi z
]T = qi fLbi x + fi (2.45)

where

qi = [
cos

(
γi

)
sin

(
γi

)
tan

(
β0i

)]T (2.46)

fi =
[

0 0
Li w

2

]T

(i = 1,m) (2.47)

γi = atan2(ybi − yai , xbi −xai ) (2.48)

The equilibrium equation (2.2) could be rewritten as follows: [23]

Wx τx + fcab + fe = 0 (2.49)

where

Wx =
[

q1 q2 · · · qm

Rb1 ×q1 Rb2 ×q2 · · · Rbm ×qm

]
τx =

(
fLb1x fLb2x · · · fLbmx

)
fcab =

m∑
i=1

[
fi

Rbi × fi

]

When the wrench matrix Wx is known, the solution of (2.49) in the case of a number of

cables m = 6 is:

τx =−W−1
x (fe + fcab) (2.50)

For redundantly actuated CDPRs with a number of cables m > 6, the solution for τx is:

τx =τpx +Nxλx (2.51)

where

τpx = −W+
x (fe + fcab)

W+
x = pinv(Wx) (pseudo− inverse of Wx)

Nx = Null(Wx) (Nullspace basis matrix of Wx of size [m × (m −6)])

andλx is a vector of size [(m −6)×1].

Knowing τx , the force vectors FBi are obtained directly from (2.45).



2.4. STIFFNESS MATRIX OF CDPRS 43

2.4 Stiffness Matrix of CDPRs

2.4.1 Stiffness Matrix of One Cable

Let us consider a steel cable that has unstrained length L0 (m), self-weight w (N /m),

elastic modulus E (Pa) and cable cross-section area A0 (m2). Figure 2.3 shows the relevant

coordinates and parameters of a cable in static equilibrium (in three dimensions). The ca-

ble is fixed between two end-points A (xa , ya , za) and B (xb , yb , zb) (expressed in the global

frame). The term ∆L represents the strain of the cable. fbx , fby and fbz are the cable hori-

zontal and vertical force components at point B and:

τa =
√

f 2
bx + f 2

by +
(

fbz −w L0
)2 (2.52)

τb =
√

f 2
bx + f 2

by + f 2
bz (2.53)

are the tensions in the cable at points A and B , respectively.

According to the well-known elastic catenary equations [80, 81], we obtain the relation

between the coordinates of points A and B :

xb = xa + fbx L0

E A0
− fbx

w
ln

[
τa + fbz −w L0

τb + fbz

]
(2.54a)

yb = ya +
fby L0

E A0
− fby

w
ln

[
τa + fbz −w L0

τb + fbz

]
(2.54b)

zb = za + fbz L0

E A0
− w L2

0

2E A0
− 1

w
(τa −τb) (2.54c)

If the coordinates of point A are known, then the coordinates of point B can be com-

A 

B 

z 
x 

g 

( w , E, A0 ) 

L0 

y 

FB 

fbx 

fbz 

fby 

Figure 2.3: Sketch of a sagging cable in 3D



44 CHAPTER 2. PRELIMINARIES

puted from the cable force components and the cable unstrained length L0

B = f ( fbx , fby , fbz ,L0) (2.55)

Differentiating both sides of (2.55) and applying the chain rule, we have:

dB = ∂B

∂FB
·dFB + ∂B

∂L0
·dL0

⇒ dFB = KB ·dB −KL ·dL0 (2.56)

Here, the vector du denotes an infinitesimal change in vector u. FB is the cable force at

point B as shown in Figure 2.3. KB is the stiffness matrix of the cable at point B :

KB =
(
∂B

∂FB

)−1

(2.57)

The vector KL in (2.56) is

KL =
(
∂B

∂FB

)−1

·
(
∂B

∂L0

)
= KB ·FA ·

(
1

E A0
+ 1

τa

)
(2.58)

where FA = [
fbx fby

(
fbz −wL0

)]T is the force applied by the cable at point A.

The partial derivative elements of matrices
∂B

∂FB
and

∂B

∂L0
are given as follows:

∂xb

∂ fbx
= L0

E A0
+ 1

w
ln

(
τb + fbz

τa + fbz −wL0

)
+ f 2

bx

w

[
1(

τb + fbz
)
τb

− 1(
τa + fbz −wL0

)
τa

]
∂xb

∂ fby
= fbx fby

w

[
1(

τb + fbz
)
τb

− 1(
τa + fbz −wL0

)
τa

]
∂xb

∂ fbz
= fbx

w

(
1

τb
− 1

τa

)

∂yb

∂ fbx
= ∂xb

∂ fby

∂yb

∂ fby
= L0

E A0
+ 1

w
ln

(
τb + fbz

τa + fbz −wL0

)
+

f 2
by

w

[
1(

τb + fbz
)
τb

− 1(
τa + fbz −wL0

)
τa

]
∂yb

∂ fbz
= fby

w

(
1

τb
− 1

τa

)
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∂zb

∂ fbx
= ∂xb

∂ fbz

∂zb

∂ fby
= ∂yb

∂ fbz

∂zb

∂ fbz
= L0

E A0
+ 1

w

[
fbz

τb
− fbz −wL0

τa

]

∂xb

∂L0
= fbx

(
1

E A0
+ 1

τa

)
∂yb

∂L0
= fby

(
1

E A0
+ 1

τa

)
∂zb

∂L0
= (

fbz −wL0
)( 1

E A0
+ 1

τa

)

2.4.2 Stiffness Matrix of 6-DOF CDPRs

Let us consider the CDPR shown in Figure 2.1. FBi is the force applied by the mobile

platform on the cable i at its end point Bi . Hence, the resultant wrench applied by the

cables on the mobile platform is:

fc =
[ m∑

i=1
−FBi ,

m∑
i=1

− (Rbi ×FBi )
]T

(2.59)

Assume that an infinitesimal external wrench dfe is applied on the mobile platform. Then,

in static equilibrium:

dfe = d (−fc) =


m∑

i=1
dFBi

m∑
i=1

d (Rbi ×FBi )

 (2.60)

We have:

dFBi = KBi ·dBi −KLi ·dL0i

= KBi ·d (Rbi +P )−KLi ·dL0i

= KBi ·
(
− (Rbi )× ·dΦ+dP

)
−KLi ·dL0i

= KBi ·
[
13×3, − (Rbi )×

] ·d X −KLi ·dL0i (2.61)

where X = (
x y z θx θy θz

)
defines the mobile platform pose, P = (x y z) is the po-

sition vector in Cartesian space of point Op , θ = (
θx θy θz

)
is a vector of Euler angles,
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dP = (d x d y d z) is the position displacement vector, dΦ= S ·dθ is the rotation displace-

ment vector with dθ = (
dθx dθy dθz

)
and d X = (dP, dΦ) is the infinitesimal displace-

ment vector of the mobile platform. The term (u)× indicates the cross product matrix of

vector u, 13×3 is the identity matrix. The rotation matrix R and the transformation matrix

S (which maps the time derivative of the vector of ZYX Euler angles to the mobile platform

angular velocity vector) are given as follows:

R =


CyCz CzSy Sx −SzCx CzSyCx +SzSx

Cy Sz SzSy Sx +CzCx SzSyCx −CzSx

−Sy Cy Sx CyCx

 , S =


CyCz −Sz 0

Cy Sz Cz 0

−Sy 0 1

 (2.62)

with Cx = cos(θx) , Sx = sin(θx) , Cy = cos
(
θy

)
, ...

Moreover, we have:

d (Rbi ×FBi ) = d (Rbi )×FBi + (Rbi )×dFBi

= (FBi )T
× · (Rbi )T

× ·dΦ + (Rbi )×dFBi

= [
(Rbi )× ·KBi , Hi − (Rbi )× ·KBi · (Rbi )×

] ·d X

− (Rbi )× ·KLi ·dL0i (2.63)

Here, the matrix Hi is defined as:

Hi = (FBi )T
× · (Rbi )T

× (2.64)

Finally, from (2.60), (2.61), (2.63) we obtain:

dfe = K ·d X −KL ·dL0 (2.65)

where

K =



m∑
i=1

KBi −
m∑

i=1
KBi · (Rbi )×

m∑
i=1

(Rbi )× ·KBi

m∑
i=1

Hi −
m∑

i=1
(Rbi )× ·KBi · (Rbi )×

 (2.66)

and

KL =
 KL1 KL2 . . . KLm

(Rb1)× ·KL1 (Rb2)× ·KL2 . . . (Rbm)× ·KLm

 (2.67)

where KLi (i = 1,m) is given in (2.58).
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If when the infinitesimal wrench dfe is applied on the mobile platform all the cable un-

strained lengths are assumed to be unchanged (dL0 = 0), then we obtain K as the stiffness

matrix of the CDPR at the mobile platform.

Note that, as an additional merit of (2.65), at the equilibrium state (dfe = 0), we also

obtain the Jacobian matrix of the CDPR:

J = K−1 ·KL (2.68)

2.5 On the Collision Detection Problems

For CDPRs, collisions happen in several cases:

– Interferences between cables and cables

– Interferences between cables and the mobile platform

– Interferences between the mobile platform and its surrounding environment

– Interferences between cables and their surrounding environment

Efficient methods to detect such collisions become necessary, especially for spatial

CDPR having a large number of cables (e.g. m ≥ 6) such as the NIST robot crane [16],

the Marionet CDPR [4, 71] and the CoGiRo prototype [32]. These methods could be used

in two main situations:

– Design/motion planning: required to check the capability of CDPR (e.g. compute

the bounds on the orientation and Cartesian spaces within which there is no cable

interference).

– Control: required to guarantee safety issues in operating CDPR in real-time.

In most situations, the latter case can be avoided if all the safety constraints are dealt with

from checking the capability of CDPR over a desired workspace. In this section, we mainly

discuss the verification of collision free conditions for a CDPR in the design or offline plan-

ning phases.

In fact, the cable interference problem has not been extensively addressed. Studies on

this topic can be listed as [84, 85, 86, 87, 88, 89, 90].

About the collisions between cables or between the CDPR mobile platform with its sur-

rounding environment, one can use AABB or OOBB tree methods [91]. These methods are

fast and effective for large and complex shape objects (triangulations of the mobile plat-

form and obstacles may consist of a lot of vertices). One can also find an efficient method

in [90] to deal with these two collision detection problems.

For CDPRs with light-weight cables, the cables can be considered as straight lines. For

CDPRs using hefty cables, the mobile platform weight is expectedly large, the cable sag-
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Figure 2.4: A general m-cable CDPR

ging effects may not really affect the algorithms, thus it may also be sufficient enough to

consider the cables as straight lines. In either cases, the interferences between cables and

cables can be treated as interferences between straight line segments. The interferences

between cables and the CDPR mobile platform can be considered as collisions between

straight line segments and triangles (the latter triangulating the surface of the CDPR mo-

bile platform). Usual methods [91] can be applied to detect such interferences. However,

these methods are only suited for real-time situations and are not satisfactory enough to

verify the cable interference free conditions for a prescribed Cartesian workspace and a

given set of orientation ranges. In [85], Merlet discussed algorithms to detect interferences

between cables and cables as well as between cables and the mobile platform. However,

the proposed methods were only applied to constant platform orientation cases and did

not apply for a range of orientations. In [89], Perreault presented an analysis of the cable

interference-free workspace of CDPR. The analysis was also mainly applied to the cases of

CDPR with constant orientation.

In this section, we discuss some algorithms that could improve the efficiency of the

verification of collision free operation with respect to given CDPR Cartesian workspace and

orientation workspace. These algorithms concern only the interferences between cables

and cables, and cables and the CDPR mobile platform.

2.5.1 Interferences between Cables and Cables

Let us consider a m-cable CDPR as shown in Fig. 2.4. We will consider the interference

between two cables Ai Bi and A j B j (i �= j ).

Fig. 2.5 illustrates a general method to detect the collision between two cables. In the

first case (Fig. 2.5a), the two cables i and j are not colliding since the distance between
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the two cables di j is greater than a given small value ε (this value can be chosen as the

cable diameter). In the second case (Fig. 2.5b) when the cable i moves toward the cable j ,

according to the collision condition di j < ε, the two cables collide. Note that, in this state,

the cable j is “behind" the plane
(

Ai Bi B j
)
. In this case, one can say that the two cables are

going to collide but a real collision has not yet happened. In the third case (Fig. 2.5c), the

same collision condition is valid. However, the cable j is “in front of" the plane
(

Ai Bi B j
)
.

In this case, a real collision between the two cables i and j has occurred. This algorithm

can be formalized as follows [84, 87, 89]:

A real collision between the two cables i and j will occur if the two following conditions are

met

i ) the distance between the two cables is very small: di j < ε

i i ) the position of the cable j (or the cable exit point A j ) with respect to the plane(
Ai Bi B j

)
changes sign (e.g. switch from “behind" position to “in front of" position)

It is enough to use this algorithm for real-time collision detection where the positions of ca-

ble exit point Ai and cable anchor point Bi are updated online in each sample time (while

the mobile platform is following a trajectory). The computation of di j can be found in [91].

However, in the design phase, where the collision free conditions need to be verified

with respect to a range of orientations and a volume of Cartesian space, this usual method

may not be really effective.

In fact, to check the cable interferences, it could be enough to consider the second

condition (i i ) (in the usual algorithm) while neglecting the first condition (i ) (di j < ε). The

two cables i and j can be far away (the distance di j can be large) but their relative positions

will tell us whether or not there was a collision when the mobile platform “moved" from an

arbitrary pose Xp to another pose Xq in the CDPR workspace.

Figure 2.5: Usual method to check interference between two cables
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Fig. 2.6 illustrates the method proposed to detect the interference between the two ca-

bles i and j . Suppose that the CDPR mobile platform moves from an initial pose Xp to an

arbitrary pose Xq where a rotation and/or a translation occur. In the first case (Fig. 2.6a),

when the mobile platform “moves" from pose Xp to pose Xq , the cable j is always “behind"

the plane
(

Ai Bi B j
)
. There should be no collision between the two cables i and j . In the

second case (Fig. 2.6b), the position of cable j with respect to the plane
(

Ai Bi B j
)

changed

sign so that a collision probably occurred between the two cables.

The collision detection algorithm between the two cables consists of the following

steps:

– Step 1. At pose Xp , compute the position of A j B j with respect to plane
(

Ai Bi B j
)

and

store it in the variable si j (Xp ):





si j (Xp ) = 1, if A j B j is “in front of" the plane
(

Ai Bi B j
)

si j (Xp ) = 0, if A j B j lies on the plane
(

Ai Bi B j
)

si j (Xp ) =−1, if A j B j is “behind" the plane
(

Ai Bi B j
)

(2.69)

with

si j = sign

((−−−→
Ai Bi ×−−−→

Ai B j

)T ·−−−→Ai A j

)
(2.70)

Here, the two cable exit points Ai and A j must not be coincident: Ai �= A j .

– Step 2. At pose Xq , compute the projection image A
′
j B j of cable A j B j onto the plane(

Ai Bi B j
)
:

A
′
j = A j − t ∗n (2.71)

Figure 2.6: Checking interference between two cables
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with
n =−−−→

Ai Bi ×−−−→
Ai B j

t = nT ·−−−→Ai A j

nT n
– Step 3. At pose Xq , compute the position of A j B j with respect to plane

(
Ai Bi B j

)
and

store it in the variable si j (Xq ) by using (2.70).

If si j (Xq ) == si j (Xp ), then no collision should have occurred.

If si j (Xq ) 6= si j (Xp ) and A
′
j B j is not intersecting Ai Bi , then no collision should have

occurred.

If si j (Xq ) 6= si j (Xp ) and A
′
j B j is intersecting Ai Bi , then we consider that a collision

between the two cables i and j occurred.

In this algorithm, for a m-cable CDPR, step 1 requires to compute si j in (2.70) Ncc

times:

Ncc = m · (m −1)

2
(2.72)

The algorithm stops if there exists any i , j for which a collision occurs (thus, the times of

performing steps 2 and 3 is N2,3 ≤ Ncc ).

This algorithm considers that given the two arbitrary poses Xp and Xq , if a collision is

detected, then there exists no collision free trajectory that allows the CDPR mobile plat-

form to move from pose Xp to pose Xq (regardless of any trajectory planning method).

2.5.2 Interferences between Cables and the CDPR Mobile Platform

METHOD 1

Suppose that the CDPR mobile platform is triangulated into N4 triangles. The first ap-

proach to detect the interferences between cables and the CDPR mobile platform is quite

straightforward using the method to detect collision between line segments and triangles

[91].

At pose Xp , for each cable i , we check for the interferences between cable i and all the

triangles that do not belong to the planes which contain the cable end point Bi . If there is

a collision then we stop the checking process and give out a warning.

Fig. 2.7 shows an example of the collision between cables i and the mobile platform.

The computational time in this case depends on the number of vertices of the mobile

platform as well as the number of cables. This method is time consuming and not really
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Figure 2.7: Interferences between cables and the CDPR mobile platform

Figure 2.8: Simplification of the mobile platform shape

effective if the mobile platform has a complex shape (triangulated with a large number of

triangles N� � 1). To avoid excessive computational time, we can approximate the mobile

platform shape by a simple convex shape whose number of triangles is reduced consid-

erably, e.g. in Fig. 2.8 (the simplified shape should enclose the CDPR mobile platform).

METHOD 2

Although the first method to detect the interferences between cables and the mobile

platform is simple, the issue of computational time may remain if the mobile platform has

a complex shape and the simplification procedure cannot significantly reduce the number

of its vertices.

We propose a heuristic method which consists in checking whether or not the cable

Ai Bi belongs to the subspace (convex cone) spanned by its nearest edges. Fig. 2.9 shows an

illustrating example of this approach.

The algorithm is given in the following steps:

– Step 1. Perform a simplification of the mobile platform to transform it into a simpler
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Figure 2.9: Detecting collision between cable i and the mobile platform

convex shape while keeping important vertices. This simplified convex shape should

enclose the CDPR mobile platform.

– Step 2. Determine the nearest neighbor vertices Di k (k = 1, NBi ) of anchor points Bi

in such a way that the convex cone spanned by the vectors (
−−−→
Bi Di 1,

−−−→
Bi Di 2, ...,

−−−→
Bi Di NBi )

includes the CDPR mobile platform. NBi should be the minimum number of such

nearest neighbor vertices of Bi .

– Step 3. Compute the positions (or the signs) of an arbitrary point M lying within the

mobile platform shape with respect to the planes
(
Bi Di k Di (k+1)

)
and store them into

vector SBi of size [NBi ×1]:

SBi (k) = sign

((−−−→
Bi Di k ×−−−→

Bi Di (k+1)

)T ·−−−−→Di k M

)
(2.73)

For instance, the point M can be chosen as the origin of the local frame attached to

the mobile platform or as the platform center of mass. Note that all the cases where

SBi (k) = 0 in (2.73) are considered invalid (the point M must lie strictly inside the

mobile platform shape).

– Step 4. At an arbitrary pose Xp , compute the signs S Ai of the cable exit point Ai with

respect to the NBi planes
(
Bi Di k Di (k+1)

)
(vector S Ai is of size [NBi ×1]):

S Ai (k) = sign

((−−−→
Bi Di k ×−−−→

Bi Di (k+1)

)T ·−−−−→Di k Ai

)
(2.74)

If ∃ i and ∃ k (i = 1,m, k = 1, NBi ) such that S Ai (k) = 0, then the cable Ai Bi is consid-

ered to be colliding with the mobile platform.

If S Ai ≡ SBi , then the cable Ai Bi is considered to be colliding with the mobile plat-

form.

If S Ai �= SBi and S Ai (k) �= 0 (∀ k), then there is no collision.

Note that the steps 1-3 could only be done at the initial step of a sequence of execution

of the algorithm (for instance during an optimization of along a trajectory of the mobile
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platform). Then, step 4 will be used to check the interferences between the cables and the

mobile platform for each considered robot configuration.

This approach utilizes the fact that the positions of a point lying within the mobile plat-

form with respect to the planes
(
Bi Di k Di (k+1)

)
never change. One only need to evaluate

(2.74) Ncp times to check the collision, where:

Ncp =
m∑

i=1
NBi (2.75)

This method is fast and reliable. However, there are still a few limitations to this ap-

proach. The algorithm only works under the condition that the mobile platform has a con-

vex shape. In case the mobile platform shape is concave, a pre-process (Step 1) is needed

to convert it into a convex object (with a number of vertices as small as possible) in order to

apply the algorithm. Currently, we are not aware of an efficient (fast) method of selecting

the right number of the nearest neighbor vertices Di k of anchor point Bi . One still has to

manually select the vertices Di k . The process of simplifying the mobile platform shape to

reduce its complexity can be done with available CAD softwares e.g. [92].

2.5.3 Checking that a Given Workspace is Collision Free

Let us consider an application where one want to verify the cable interferences of a

CDPR with respect to a given Cartesian workspace and platform orientation range. The

CDPR workspace is given as follows:

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

zmin ≤ z ≤ zmax

θx min ≤ θx ≤ θx max

θy min ≤ θy ≤ θy max

θz min ≤ θz ≤ θz max

where X = (x y z, θx θy θz) denotes the mobile platform pose. Assume that the Cartesian

workspace is discretized into a finite set of Np points and the orientation workspace is

discretized into a finite set of Nq points (these points can be chosen as extreme points

which lie on the workspace boundaries). Let us take an arbitrary pose Xc of the given

workspace where we assume that there is no cable interference:

Xc =
(
xc yc zc , θxc θyc θzc

)
(2.76)



2.5. ON THE COLLISION DETECTION PROBLEMS 55

The verification of the absence of collisions in the assigned workspace is illustrated in

the following pseudocode:

Compute si j (Xc ) in (2.70);

Simplify the CDPR mobile platform shape (if it is necessary);

Determine the NBi nearest neighbor vertices Di k of Bi ;

Compute SBi (Xc ) in (2.73);

OK = 1;(there is no collision)

for k = 1 : Np

for l = 1 : Nq

X = (xk yk zk , θxl θyl θzl );

OK = Check the interferences between cables and cables;

i f (OK == 0) br eak;

OK = Check the interferences between cables and the mobile platform;

i f (OK == 0) br eak;

end;

end;

In short, we perform the verification process at each discrete points in Cartesian space and

orientation space. The reference (initial) state of the mobile platform is computed at the

pose Xc . In the step checking the interferences between cables and cables, the initial pose

is always Xc , and the destination pose is X . This means that when the mobile platform

“moves" from pose Xc to pose X , the checking process stops if there is any interference de-

tected. In the step checking the interferences between the cables and the mobile platform,

the second approach is used. There is no collision if the returned value of the checking

variable is OK = 1.

In this way, the collision free condition of the CDPR with respect to a given workspace is

verified in the sense that, when OK = 1 is returned, there should always exist one collision

free path starting from the home pose Xc to any pose (among the considered discrete set of

poses) in the workspace. When OK = 0 is returned, there very probably exists no collision

free trajectory that allows the mobile platform to move freely within the given workspace

(regardless of any path planning method).

Currently, this approach has only been validated on examples. One can select just one

home pose Xc to check whether or not a prescribed workspace is collision free (Xc can be

chosen as the center pose of the given workspace). To increase the reliability, we can apply
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the algorithm to a set of Nc home poses Xc and with large numbers of discrete poses (Np

and Nq are large) but the computational time is proportional to Nc ×Np ×Nq .

2.5.4 Example

Let us consider the 8-cable CDPR shown in Fig. 2.10. The mobile platform is a cube with

8 vertices. In this example, we show the computation time for each function call to check

the collisions between cables and cables, and between cables and the CDPR mobile plat-

form (using method 1 and method 2) while assuming that the mobile platform moves from

the home pose Xc to the destination pose Xd . The home pose is Xc = (0 0 0, 0 0 0) (m, r ad).

The destination pose is varied. The results are given in Table 2.1. We use MATLAB to run

the simulation on a PC with CPU core i7-2620M 2.7GHz.

In the case of checking the collision between cables and cables, the number of cables is

m = 8. The computation time is quite large. The maximum computation time for checking

the collision is around tcc ≈ 4.65 ms.

In the case of checking the collision between the cables and the CDPR mobile platform

using the first method, the mobile platform surface is triangulated into 12 triangles. For

each cable, one need to verify potential collision with a maximum of 6 triangles. The max-

imum number of calls of the primitive test used to detect the collision between a line seg-

ment and a triangle is 6×m = 48. The maximum computation time is around tcp1 ≈ 5.3 ms.

On the other hand, in the second method, the mobile platform has a convex shape. For

Figure 2.10: Example of an 8-cable CDPR
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Table 2.1: Collision detection computation times

Destination pose Cables-Cables Cables-Platform (method 1) Cables-Platform (method 2)
Xd (m, r ad) (ms) (ms) (ms)

(0 0 0, 0 0 −π/4) 4.63 4.61 0.74
(no collision) (collision) (collision)

(2 0 1, π/3 −π/3 0) 4.57 4.79 0.92
(collision) (collision) (collision)

(0 0 0, 0 −π/3 −π/4) 4.54 4.50 0.39
(collision) (collision) (collision)

(0 0 1, 0 0 π/4) 4.65 5.28 1.47
(no collision) (no collision) (no collision)

(0 2 0, 0 0 0) 4.61 5.30 1.46
(no collision) (no collision) (no collision)

(0 0 2, π/4 0 0) 4.63 5.27 1.44
(no collision) (no collision) (no collision)

each vertex Bi , there are a minimum of 3 neighboring vertices. The computation time in

this case is significantly reduced compared to the first method. The maximum computa-

tion time is around tcp2 ≈ 1.47 ms

Assume that one want to verify the CDPR capability over a given workspace where the

Cartesian workspace is discretized into Np = 20 points and the orientation workspace is

discretized into the minimum number Nq = 8 points (taking only the extreme values of

each angle into account). The number of considered home poses is Nc = 10 points. If we

choose to use the second method to check the collision between the cables and the CDPR

mobile platform, the maximum computation time to verify the collision free collision con-

dition for the given workspace is around:

tmax = Nc ×Np ×Nq × (tcc + tcp2) = 10×20×8× (4.65+1.47) ms = 9.792 s

Currently, it is up to the user to choose appropriate values of Nc , Np and Nq , considering

the trade off between reliability of the result and computation time. It is worth noting that,

by using parallel computing (taking the advantages of both powerful CPU and GPU), one

can also greatly reduce the computation times of the presented methods.

In summary, several algorithms to detect the cable interferences of a CDPR have been

discussed. The presented heuristic approaches improve the usual methods of detecting

cable collisions in term of efficiency. Two types of cable interferences have been consid-

ered: collisions between cables and cables as well as collisions between cables and the

CDPR mobile platform. The application of these tools was illustrated by an example of

checking the collision free condition of a CDPR with respect to given Cartesian workspace

and orientation workspace. The proposed approach offers the user a fast method to check

collisions.
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As a perspective, it may be possible to prove the presented algorithms with respect to

certain family types of CDPR under some geometric constraints.

Conclusion

In this chapter, several preliminary tools to deal with the CDPR modeling were pre-

sented. The inverse kinematics problem, tension distribution problems, stiffness of CDPRs

as well as collision detection tools were discussed. These tools are useful to motion control

of CDPRs (cable model, inverse kinematics, tension distribution) and to determine CDPR

reconfigurations (CDPR modeling, tension distribution, CDPR stiffness, collision detec-

tion).
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Despite having many advantages over rigid-link manipulators, there are challenging

issues in using CDPRs. One significant drawback of CDPRs is their low positioning accu-

racy. Firstly, because cables are used to position the end-effector, CDPRs are much more

compliant than rigid link manipulators. Secondly, the nonlinear nature of the cable behav-

ior makes it difficult to effectively solve important problems of CDPRs such as the inverse

kinematic and tension distribution problems. Thus, different simplified cable models may

have to be used in order to reduce the complexity of these problems.

In many previous studies, only a part of the cable (the cable segment Ai Bi ) is consid-

ered in the modeling of a CDPR. The influences of pulleys as well as other factors such

as friction and cable dynamics are neglected or compensated by a constant value added

to the cable unstrained length (which is then used in the CDPR control scheme). These

59
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Figure 3.1: Winch and cable transmission components of the CoGiRo prototype

simplifications might have a great impact on the CDPR performances. In [68, 93], A. Pott

and V. Schmidt addressed the influence of pulley kinematics on CDPRs. However, only the

massless elastic cable model was used.

Nevertheless, there is always a tradeoff between the computation time and perfor-

mance when a simplified cable model is used, e.g., when a simplification is made to the

elastic catenary cable model [80, 81]. In this chapter, the main goal is to find a cable model

that could improve substantially the CDPR positioning accuracy, taking into account most

of the factors that could affect the CDPR performance such as thermal effect on the cable,

friction (between the cable and the pulleys/drums, in the winch), cable mass and cable

elasticity.

This chapter is thus dedicated to the extended modeling of CDPRs. In Section 3.1, an

extended model taking into account the influence of pulleys and friction is presented. Only

a static analysis is considered (we neglected cable dynamics). This model corresponds in

fact to the current implementation of the CoGiRo prototype which consists of 8 cables and

8 routing pulleys (Fig. 3.1). The control scheme of the CoGiRo robot is also presented and

we explain how the IKP solution is used and how to compensate the loss of torque due to

the friction in the winches. Then, we present in Section 3.2 equations describing the ca-

ble profile taking into account thermal effect, cable mass and cable elasticity. Section 3.3

details the extended modeling including the computation of the cable unstrained length



3.1. THE MODELING AND CONTROL OF THE COGIRO CDPR 61

with respect to each part of the cable based on the catenary cable equations. An analysis

of the error sensitivity of the cable length is given afterward in Section 3.5 which compares

the differences in cable unstrained length between massless cable model, simplified cable

model and the elastic catenary cable model. Two case studies are given in section 3.6. In

the first case study, the positioning accuracies obtained by using different cable models

are compared, in simulation and experiment on the CoGiRo robot (the influence of pulley

kinematics is neglected). In the second case study, an experiment with the CoGiRo pro-

totype is presented, in which we show the impact of the extended modeling (taking into

account the pulley kinematics and friction in the winch) on the CDPR positioning accu-

racy.

3.1 The Modeling and Control of the CoGiRo CDPR

3.1.1 Assumptions

Several segments of a cable of a CDPR connect the cable exit point to the drum, the

cable passing through one or several pulleys. The elongation of the cable along those seg-

ments should be taken into account. Fig. 3.1 shows the cable-driven system of each winch

of the CoGiRo prototype [17].

In order to fully describe the behavior of the cable one should consider all the effects

that cause the cable deformation such as friction contact (between cable and pulley, in the

winch and in the motor), environment temperature, deformation of the base frame of the

whole robot system. However, in practice, it is difficult to include all these factors in the

modeling. Thus, to reduce the complexity of the corresponding extended CDPR model, we

make the following assumptions:

– The friction between the cables and the pulleys are neglected. This assumption is

usually valid when the number of transmission pulleys is small (e.g. 1 or 2 pulleys for

each cable) and the pulley is well lubricated. If there is a large number of pulleys in

each cable routing system, pulley friction should be taken into account.

– There are no deformation of the cable segments that mount on the pulley and on the

drum of the winch.

– The deformations of the CDPR supporting frame are neglected. This assumption is

not always valid, especially for CDPRs with light weight supporting frame. In prac-

tice, it is possible to have a bulky design of the supporting frame so that the deforma-

tion is minimized. In the case of the CoGiRo prototype, the deformation of the sup-

porting frame does have a certain impact on the position of the upper pulleys from
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which the cable extends toward the mobile platform. However, the impact is small

and negligible (the measured error on the pulley position lies within 1−1.5mm while

carrying a weight of 200kg with large movements of the mobile platform across the

workspace).

Let us denote L(P,Q)
0 the cable unstrained length between any two points P and Q. For

the CoGiRo prototype, the total cable unstrained length (from the drum to the cable anchor

point B) is computed as follows:

LT =O (L0)+L(D,P )
0 +L(P,A)

0 +L(A,B)
0 (3.1)

where O (L0) is the cable deformation due to undetermined uncertainties. L(D,P )
0 is the

cable unstrained length between the drum and the pulley. L(P,A)
0 is the cable unstrained

length of the cable segment that mount on the pulley. L(A,B)
0 is the cable unstrained length

of the cable segment between the pulley and the cable anchor point B .

Assume that LD is the cable unstrained length that mount on the drum, then:

LT +LD = Ltot al = const (3.2)

where Ltot al is the total length of each cable (and should be constant).

By our assumption, we have:

O (L0) = 0 (3.3)

L(P,A)
0 = ØPA = rp θ (3.4)

where rp is the radius of the pulleys and θ is the angle of the arc ØPA.

The cable tensions τp and τa at points P and A satisfy the following relation (if static

friction is considered) [94]:

τa = eµs θ τp (3.5)

where µs is the static friction coefficient between the cable and the pulley surface (when

µs θ < 0, τp > τa , the winch is pulling the cable and vice versa). According to our assump-

tion for CoGiRo, µs = 0 which means that the cable tension is the same on both sides of the

pulley (τa = τp ).

The cable unstrained length from the drum to the cable anchor point B is thus com-

puted as follows:

LT = rp θ+L(D,P )
0 +L(A,B)

0 (3.6)

Suitable cable models are then needed to compute the two terms L(D,P )
0 and L(A,B)

0 .
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3.1.2 Using the Inverse Kinematics Solution in the CDPR Control

Scheme

Fig. 3.2 shows the control scheme of the CoGiRo prototype that we used in our exper-

iments. Before each experiment, the coordinates of all the pulley tangent points P are

measured by a laser tracker and projected into a pre-defined fixed frame < OLaser >. The

coordinates of the anchor points B are also determined (with respect to the origin Op of

the mobile platform) using the same measurement system.

At the initial pose X0 (the home pose), all the cables are tensed. The position of the

point Op of the mobile platform is determined using the laser tracker. This location of

Op is then set as the origin of the global frame < OG > in which the CDPR workspace is

defined. Afterward, the unstrained length LT 0 of the cable segment from the tangent point

between the cable and the drum to the anchor point B needs to be determined. There

are two methods to get LT 0. In the first method, we detach each cable from the mobile

platform and measure the exact value of LT 0. It is important to measure LT 0 accurately. In

the second method, we compute LT 0 from (3.6) using the elastic catenary cable model. We

suggest to use the latter since it is fast and helps to minimize measurement errors.

At the home pose X0, the motor angular position is set to be zero (qd = 0). At a given

pose Xd of the CDPR mobile platform, the cable unstrained length LT d of each cable will

be computed according to (3.6). Thus, the desired motor position will be:

qd = LT d −LT 0

rq
(3.7)

CoGiRo prototype

Laser
tracker

Dual-space feed-forward controller
LT

Mobile Platform

eye 
sockets

Measure Xc

ffΓ

Figure 3.2: Control scheme of the CoGiRo prototype used in the experiments
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where rq is a ratio to convert a cable length into a motor angular displacement (rq depends

on the drum radius and on the gear or belt transmission ratio).

Through the PID controller (Fig. 3.2), the required torques are created for the motors to

reach the desired position qd . The total desired motor torque including the compensations

from the feed-forward terms is given as follows:

Γd = Γqd +Γ f f (3.8)

whereΓqd is the total desired torque created from the joint space and a compensation from

the moment caused by the mobile platform dynamics, in other words, it is the torque that

balances the mobile platform at the desired pose. Γ f f is the desired torque that compen-

sate for the loss of torque due to friction in the winch and due to the inertia of the motor

and drum.

3.1.3 Modeling of Friction

In practice, if the pulleys are well lubricated, the friction between the cable and pulley

can be neglected. However, the friction in the winch and in the motor must be considered.

It is important to note that in the winches of CoGiRo, a timing belt is used to transfer the

drive torque. With proper pre-tension (by using the idler pulley), the timing belt provides

a no-slip operation which minimizes uncertain frictional effect due to slippage.

In the control scheme, the loss of torque due to friction (Γ f ) and the inertia moment of

the rotor and drum is compensated by using a feed-forward term:

Γ f f = IΣ q̈ +Γ f (3.9)

where IΣ is the total inertia of the rotor and drum “seen" at the motor shaft.

When the rotor rotates at constant speed, the angular acceleration is q̈ = 0, which gives

Γ f f = Γ f . To determine the friction torque Γ f , we use the following expression (which is

adapted from friction force equation in [95, 96]):

Γ f =

Γc + (Γs −Γc )e
−

( |q̇ |
q̇s

)δ sign(q̇)+Cv q̇ (3.10)

where Γc is the Coulomb friction torque, Γs is the static friction torque, q̇ is the angular

speed or the rotor, q̇s is the so-called Stribeck velocity (which indicates the velocity range

in which the Stribeck effect is effective) and Cv is the viscous friction coefficient. The ex-

ponent δ is a tuning parameter.
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Figure 3.3: Measured output torque of the motor

In fact, in [96], Bender indicates that (3.10) is the steady-state value of the friction

torque at constant velocity. Please refer to [96] for more details of the full friction model

(namely the Generalized Maxwell-Slip Model).

The five unknown parameters in (3.10) are found by solving a least-square optimization

problem which minimizes the means square of the friction torque errors:

minimize
1

N

N∑
i=1

[
Γ f (i )−Γ f m(i )

]2 (3.11)

where N is the number of the data samples and Γ f m is the measured friction torque.

To measure the loss of torque due to friction, we performed a test with one winch of

the CoGiRo prototype and measured the torque output of the motor Γq during a simple

pulling (positive direction) and releasing (negative direction) of a payload (56kg) at differ-

ent constant speeds of the motor. The results show that there is a substantial difference in

the torques required for pulling and for releasing (Fig. 3.3).

In the steady state (the motor rotates at constant velocity), the measured motor torque

(Γq ) accounts for balancing the payload (Γload ) and the friction in the winch (Γ f m):

Γq = Γl oad +Γ f m (3.12)

The term Γl oad can be computed from the payload and the torque transmission ratio rt :

Γl oad = ΓD

rt
= ml oad g rD

rt
(3.13)
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Table 3.1: Loss of torque due to friction in the winch

Speed Γ f m(r elease) Speed Γ f m(pul l )
q̇ (r ad/s) (N m) q̇ (r ad/s) (N m)
−0.00707 −2.3829 +0.00707 +2.3829
−0.0707 −2.1816 +0.0707 +2.2128
−0.1414 −2.2034 +0.1414 +2.2143
−0.1697 −2.2203 +0.1697 +2.2224
−0.2121 −2.2582 +0.2121 +2.2466
−0.2828 −2.2917 +0.2828 +2.2917
−0.4214 −2.3822 +0.4214 +2.3819

Figure 3.4: Steady-state values of the friction torque

where mload = 56(kg ), g = 9.81(m/s2), rt = 3 and rD = 0.0675(m) is the radius of the drum.

Thus we can compute Γ f m = Γq −Γload . Table 3.1 shows the resultant loss of torque due to

friction in the winch.

In the optimization problem (3.11), we selected three decision parameters (Γs , Γc , Cv ).

The value range of q̇s can be guessed easily from the experiment curve. The parameter δ

can be tuned. At each value of δ, a set of solution is found. The procedure is repeated until

a good approximation of the experimental curve is obtained. In the experiments made

on the CoGiRo robot, the values are found as follows: q̇s = 0.025(r ad/s), δ = 0.5, Γc =
2.0459(N m), Γs = 2.6062(N m), Cv = 0.7879(N ms/r ad). Fig. 3.4 shows the experiment

results and approximation curve.

Let us note that during our experiments to determine the friction effects, we performed

a test where we measured the absolute positioning accuracy of the mobile platform at a

static equilibrium pose in two cases: with and without friction compensation (the total

carried weight is 195kg ). The results showed that there is a difference of up to 3− 4mm
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in the positioning accuracy between the two cases. This means the friction in the winch

should be taken into account in the CDPR control system.

3.2 Cable Profile with Thermal Effect

Assume that the cable segment AB has unstrained length L0 (m), self-weight w (N /m),

elastic modulus E (Pa) and cable cross-section area A0 (m2). Fig. 3.1 shows the relevant

coordinates and parameters of AB lying in a vertical plane in static equilibrium. The origin

of the local frame is placed at the end-point A (this point is important).

3.2.1 Catenary Equation with Thermal Effect

Assume that the thermal effect on the cable length linearly depends on the uniform

temperature change. Then, the cable tension at a point M on the cable is considered to

satisfy Hooke’s law [97]:

τs = E A0

(
d p

d s
−CT

)
(3.14)

where CT = 1+αT (T −T0), where αT is the thermal expansion coefficient, T is the tem-

perature of the environment at the current state and T0 is the reference temperature. We

choose T0 = 25(oC ) and αT = 1e −5(oC−1) (standard value for steel material lies in a range

of (10−13)e −6 oC−1) 1.

Note that with CT = 1, relation (3.14) becomes (2.14) in Section 2.2.1 ( thermal effect is

neglected).

The catenary cable equations [80] with thermal effect are:

xL(s) = xLb +
fLbx(s −L0)

E A0
+ CT fLbx

w
ln

[
τs + fLbz +w(s −L0)

τb + fLbz

]
(3.15a)

zL(s) = zLb +
fLbz(s −L0)

E A0
+ w(s −L0)2

2E A0
+ CT

w
(τs −τb) (3.15b)

From (3.15), one can easily derive the cable unstrained length between any two points

P, Q for massless elastic cable (w = 0) as follows:

L(P,Q)
0 = ‖P −Q‖

CT + τb

E A0

(3.16)

1. http://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html
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When the cable mass is considered (w 6= 0) simplified cable model is used to compute

L(P,Q)
0 .

3.2.2 Linear Relationship between Cable Force Components

Following a procedure similar to the one presented in Section 2.2, the tangent at point

B of the cable can be found:

tan(β) = fLbz

fLbx
= sinh

(
µT xLb +C1

)
(3.17)

where

µT = w

CT fLbx
(3.18)

C1 = ln


√
µ2

T z2
Lb +eµT xLb +e−µT xLb −2+µT zLb

eµT xLb −1

 (3.19)

Using Taylor series expansion around the expansion point νT = µT xLb = 0, one can

obtain a linear relationship between the vertical and horizontal cable force components at

the cable end point B :

fLbz = tan(β0) · fLbx +
w L

2CT
(3.20)

where tan(β0) = zLb/xLb and L = ‖AB‖ =
√

x2
Lb + z2

Lb .

Relation (3.20) is necessary in order to solve the tension distribution problem of the

CDPR. It is valid if the two following conditions are verified:

τs ¿ E A0 (3.21)

0 ≤ νT ¿ 1 (3.22)

3.3 CDPR Extended Modeling

3.3.1 Cable Segment between the Drum and the Pulley

Let us consider the cable segment between the drum and the pulley as shown in Fig. 3.1.

α is the tilt angle of the cable with respect to the vertical axis, αmax is the maximum tilt



3.3. CDPR EXTENDED MODELING 69

angle of the cable and, by design of the winch, it is less than a small angle (αmax ≤ 1.5o). c

is the step of the helix of the part of the cable wound on the drum and t (r ad) is the total

rotation angle of the helix. rD is the radius of the drum. D is the tangent point between

the cable and the drum. Dmin and Dmax are the tangent points between the cable and the

drum when the cable are at a vertical position (α = 0) and at the most tilt angle position

(α=αmax), respectively.

The part of the cable wound on the drum can be consider as a helix with radius rD and

pitch 2πc. Its total length is computed as:

L(D)
0 =

√
r 2

D + c2 · t (3.23)

If the elastic cable model is used, then the cable unstrained length of the cable segment

PD can be computed as follows:

L(D,P )
0 =

√
d 2

w +d 2
t

CT + τp

E A0

(3.24)

where dw is the vertical distance between the tangent point on the pulley and the drum

center point, and dt is the distance from the cable tangent point on the drum to the vertical

axis position (see Fig. 3.1):

dt = c · |t0 − t | (3.25)

where t0 is the total angle of the helix when the cable reaches a vertical position.

For CoGiRo, in most cases, because the angle between the cable and the vertical axis is

small α≤αmax = 1.5o , we have dt << dw . Thus, to reduce the complexity of the computa-

tion, we assume that PD ≈ dw = 5.15(m), i.e., the cable segment between the pulley and

drum is in vertical position. The cable unstrained length between the pulley and the drum

can be computed as:

L(D,P )
0 = dw

CT + τp

E A0

(3.26)

The difference in cable unstrained length of the segment PD when the cable is in the

vertical position and in the most tilt angle position is:

4D = PDmax −PDmi n

CT + τp

E A0

= dw [1/cos(αmax)−1]

CT + τp

E A0

≈ 1.76(mm)

CT + τp

E A0

(3.27)

4D is the maximum error in computing the cable unstrained length while assuming

the cable is in vertical position.
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3.3.2 Cable Segment between the Pulley and the Cable Anchor Point

Fig. 3.5 shows the cable segment AB . FLa
(

fLax , fLaz
)

and FLb
(

fLbx , fLbz
)

are the cable

forces at points A(xLa , zLa) and B(xLb , zLb) (expressed in the cable local frame). In this

case, we only know the location of a fixed point of the pulley (normally the tangent point P

is fixed). The position of the cable exit point A depends on the angle θa . The relation (2.27)

now becomes (all the terms are expressed in the frame attached to the pulley tangent point

P ) [98]:

fLbz =
<A>zLb
<A>xLb

· fLbx +
w L

2CT

=
<P>zLb −<P> zLa
<P>xLb −<P> xLa

· fLbx +
w L

2CT

=
<P>zLb − rp sin(θa)

<P>xLb − rp [1+cos(θa)]
· fLbx +

w L

2CT
(3.28)

where

θa = −atan2( fLax , fLaz)

= −atan2( fLbx , fLbz −w L(A,B)
0 ) (3.29)

(
θa > 0, fLax > 0, fLaz < 0

)

Because the angle θa is a function of the cable force components in (3.29), Eq. (3.28) does

not establish a linear relationship between the cable force components. Consequently,

B

z

x

FLb

fLbx

fLbz

β

≅ pA A

FLa

fLax

( ),
0
A BL

P

fLaz massless cable

θa
pr

Figure 3.5: Cable segment AB
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we cannot use the method presented in Section 2.2 to find L(A,B)
0 . In order to use a linear

relationship similar to (3.20), the position of the cable exit point A must be independent

from fLbz and fLbx . We propose to select a point Ap (xLap , zLap ) instead of A in a way such

that the line Ap B is tangent to the pulley at point Ap . In other words, Ap is the position of

A when the cable is a straight line segment (massless cable model).

The coordinates of the point Ap depend only on the coordinates of the cable anchor

point B . In the pulley frame < P >:

<P>zLap =
zLb r 2

p + rp |xLb − rp |
√

z2
Lb +

(
xLb − rp

)2 − r 2
p

z2
Lb +

(
xLb − rp

)2 (3.30a)

<P>xLap = rp +
√

r 2
p − z2

Lap (3.30b)

Note that in this case, the z-coordinate of point Ap is always positive (the determination of

Ap is detailed in Appendix A.2).

The coordinates of Ap in the global frame are computed as follows:

Ap = P + [<P>xLap cos(γ), <P>xLap sin(γ), <P>zLap
]T

(3.31)

where

γ= atan2(yb − yp , xb −xp ) (3.32)

being given the coordinates of point P (xp , yp , zp ) and point B (xb , yb , zb) in the global

frame.

When the massless elastic cable model is used, the cable unstrained length L
(Ap ,B)
0 is

computed from (3.16):

L
(Ap ,B)
0 = ‖Ap −B‖

CT + τp

E A0

(3.33)

We can now compute the total cable unstrained length from the winch to the point B :

LT = dw +‖Ap −B‖
CT + τp

E A0

+ rp
(
π−θap

)
(3.34)

where

θap = asin

(<P>zLap

rp

)
(3.35)
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When the simplified cable model is used , we need (3.20) to find the cable force com-

ponents first, then, the cable unstrained length L
(Ap ,B)
0 is computed as follows:

L
(Ap ,B)
0 =

∫ L0

0
d s =

∫ xLb

xLap=0

E A0

fLbx

(
1− 1

1+R

)
d xL

= E A0

fLbx

∫ xLb

xLap=0
d xL − E A0

µT fLbx

∫ Rb

Ra

1

(1+R)
p

R2 −a
dR

= E A0

fLbx

[
xLb −

1

µT
(Ha −Hb)

]
(3.36)

where

R = fLbx

CT E A0
cosh

(
µT xL +C1

)
Hb =

ln(1+Rb)− ln
(
a +Rb −

p
1−a

√
R2

b −a
)

p
1−a

Ha =
ln(1+Ra)− ln

(
a +Ra −

p
1−a

√
R2

a −a

)
p

1−a

Rb = fLbx

CT E A0
cosh

(
µT xLb +C1

)
Ra = fLbx

CT E A0
cosh(C1)

a = f 2
Lbx

C 2
T E 2 A2

0

It is important to note that in (3.19) and (3.36), xLb andzLb are the coordinates of point

B expressed in the local frame < Ap >. In other words, we have

xLb =<Ap> xLb =<P> xLb −<P> xLap (3.37a)

zLb =<Ap> zLb =<P> zLb −<P> zLap (3.37b)

In our experience, to implement (3.36) (in C/C++,...) one should be careful with nu-

merical issues (e.g. round off errors). We suggest to use double precision floating point

numbers (double) to prevent such issues (instead of using single precision numbers, e.g.

float).
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The cable unstrained length from the winch to the cable anchor point B can now be

computed as follows:

LT = dw

CT + τp

E A0

+ rp
(
π−θap

)

+ E A0

fLbx

[
xLb −

1

µT
(Ha −Hb)

]
(3.38)

3.4 Solving the Inverse Kinetostatic Problem Using the

Catenary Cable Model

Let us consider again the general inverse kinetostatic problem (IKP) of Section 2.2. As

mentioned before, from (2.1) and (2.2), we have 3m + 6 equations to find 4m unknown

variables. When the number of cables is m ≤ 6, if it exists, the solution should be unique.

In the case of redundantly actuated CDPR with m > 6, there are an infinite number of

solutions. It is necessary to compute a solution of the CDPR IKP problem using the elastic

catenary cable model in order to validate the solutions obtained with the massless elastic

cable model and the simplified cable model (and also to determine the initial state of the

CDPR in the control system).

In the following, we propose an iterative method to compute the cable unstrained

lengths and force components using the elastic catenary cable model. The method con-

siders only the cable segments between the pulleys and the cable anchor points (segments

Ai Bi ) taking into account the influence of the pulleys. For the other part of the cable, one

can use (3.26) to compute the unstrained length of the segment from the pulley to the

drum.

Let us consider a pose of the mobile platform X = [ x y z θx θy θz ]T , the ca-

ble parameters (w,E , A0), the thermal constant CT , the coordinates of Ai and Bi and the

wrench vector fe . Define two vectors:

Hi = [ fbi x fbi y fbi z L0i ]T (3.39)

Vi = [ xbi ybi zbi τbi ]T (3.40)

with τbi =
√

f 2
bi x + f 2

bi y + f 2
bi z

The catenary cable equations in three dimensions including the thermal effect can be
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Figure 3.6: Solving the CDPR inverse kinetostatic problem using catenary cable

formulated as follows:

xbi = xai + fbi x L0i

E A0
− CT fbi x

w
ln

[
τai + fbi z −w L0i

τbi + fbi z

]
(3.41a)

ybi = yai +
fbi y L0i

E A0
− CT fbi y

w
ln

[
τai + fbi z −w L0i

τbi + fbi z

]
(3.41b)

zbi = zai + fbi z L0i

E A0
− w L2

0i

2E A0
− CT

w
(τai −τbi ) (3.41c)

An algorithm to compute the cable unstrained length L(Ai ,Bi )
0 and the cable force FBi

will now be described (Fig. 3.6).
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BEGIN Algorithm

Step 1: Compute an initial estimation of the solution by solving the IKP problem with

massless elastic cable model or simplified cable model:

Hi (k = 0) = SolveIKP(CDPR)

Update all necessary terms:

Ai k = cmpA(i )

Bi k = cmpB(i )

dVi = [Bi −Bi k ;0]

dB =
m∑

i=1
‖dVi‖

where cmpA(i ) and cmpB(i ) denote the functions to compute the new coordinates of the

cable exit points Ai and the anchor points Bi .

Step 2: If dB < ε then stop, else move to Step 3

Step 3: Update the vector Hi and unit vector ui (that directs cable force vector FBi ) for

each cable:

Ji = cmpJ(i )

d Hi = J−1
i dVi

Hi = Hi +d Hi

ui = FBi

‖FBi‖

where cmpJ(i ) denotes the function to compute the jacobian matrix Ji . The components

of Ji are defined after the algorithm description.

Step 4: Solve the tension distribution problem via (2.2), take redundancy into account

if necessary (e.g. using the method presented in [32]):

τb = SolveIKP(CDPR)

Step 5: Re-update the cable forces with the new tension values, Ai k , Bi k and dB , then



76 CHAPTER 3. EXTENDED MODELING - APPLICATION TO THE COGIRO CDPR

come back to Step 2:

Ai k = cmpA(i )

FBi = ui τbi

Bi k = cmpB(i )

dVi = [Bi −Bi k ;0]

dB =
m∑

i=1
‖dVi‖

END Algorithm

In each iteration, the coordinates of the anchor points Bi are updated using (3.41). The

routine to update the coordinates of the cable exit points Ai is given as follows:

θai = atan2
(√

f 2
bi x + f 2

bi y , | fbi z −wL0i |
)

(3.42)

xLai = rp [1+cos(θai )] (3.43)

zLai = rp sin(θai ) (3.44)

Ai k = Pi +
[
xLai cos

(
γi

)
, xLai sin

(
γi

)
, zLai

]T (3.45)

where

γi = atan2
(
ybi − ypi , xbi −xpi

)
(3.46)

In the algorithm given above, the Jacobian matrix Ji is computed as follows:

Ji = ∂Vi

∂Hi
=



∂xbi

∂ fbi x

∂xbi

∂ fbi y

∂xbi

∂ fbi z

∂xbi

∂L0i
∂ybi

∂ fbi x

∂ybi

∂ fbi y

∂ybi

∂ fbi z

∂ybi

∂L0i
∂zbi

∂ fbi x

∂zbi

∂ fbi y

∂zbi

∂ fbi z

∂zbi

∂L0i
∂τbi

∂ fbi x

∂τbi

∂ fbi y

∂τbi

∂ fbi z

∂τbi

∂L0i


(3.47)

where

∂xbi

∂ fbi x
= L0i

E A0
+ CT

w
ln

(
τbi + fbi z

τai + fbi z −wL0i

)
+ CT f 2

bi x

w

[
1(

τbi + fbi z
)
τbi

− 1(
τai + fbi z −wL0i

)
τai

]
∂xbi

∂ fbi y
= CT fbi x fbi y

w

[
1(

τbi + fbi z
)
τbi

− 1(
τai + fbi z −wL0i

)
τai

]
∂xbi

∂ fbi z
= CT fbi x

w

(
1

τbi
− 1

τai

)
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∂ybi

∂ fbi x
= ∂xbi

∂ fbi y

∂ybi

∂ fbi y
= L0i

E A0
+ CT

w
ln

(
τbi + fbi z

τai + fbi z −wL0i

)

+
CT f 2

bi y

w

[
1(

τbi + fbi z
)
τbi

− 1(
τai + fbi z −wL0i

)
τai

]
∂ybi

∂ fbi z
= CT fbi y

w

(
1

τbi
− 1

τai

)

∂zbi

∂ fbi x
= ∂xbi

∂ fbi z

∂zbi

∂ fbi y
= ∂ybi

∂ fbi z

∂zbi

∂ fbi z
= L0i

E A0
+ CT

w

[
fbi z

τbi
− fbi z −wL0i

τai

]

∂xbi

∂L0i
= fbi x

(
1

E A0
+ CT

τai

)
∂ybi

∂L0i
= fbi y

(
1

E A0
+ CT

τai

)
∂zbi

∂L0i
= (

fbi z −wL0i
)( 1

E A0
+ CT

τai

)

∂τbi

∂ fbi x
= fbi x

τbi

∂τbi

∂ fbi y
= fbi y

τbi

∂τbi

∂ fbi z
= fbi z

τbi

∂τbi

∂L0i
= 0

In (2.1) or (3.41), there are only 3 equations but 4 unknown variables in vector Hi .

In usual iterative methods, a [3 × 4] jacobian matrix is formed by taking the derivative

∂Bi /∂Hi . One then need to compute the pseudo inverse of this rectangular matrix, which

in our experience leads to poor convergence. By introducing the vector Vi , a squared full-

rank Jacobian matrix is formulated in (3.47). The last term τbi in vector Vi plays the role

of a virtual term (we only know the coordinates of the end-points Bi ). When updating the
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error vector dVi , the last element of this vector is set to dτbi = 0 since it always ensures

a true statement (at the convergence solution, we have dVi = 0 ). These changes greatly

increase the convergence rate of the algorithm. In fact, in our experience, this algorithm

often converges within 5 or 6 iterations with the precision ε= 1e −10.

It is important to note that this algorithm greatly depends on the method used to solve

the tension distribution problem of the CDPR. Indeed, each tension distribution solving

method computes a local solution of the IKP problem. For example, we use the principle

solution τp (pseudo-inverse solution) from (2.43) with the massless elastic cable model as

the initial starting point for H0. The algorithm used in this case should guarantee that the

solution obtained with the catenary cable model is the local minimum around the initial

guess H0. Even with the simplified cable model if we use the same pseudo-inverse solu-

tion as the initial guess for the cable tensions, the algorithm gives the same convergence

solution obtained with the elastic catenary cable model.

Let us note that in the control system of a CDPR, it is better to avoid using differ-

ent methods to solve the tension distribution problem. For example, we use method 1

(pseudo-inverse solution) and method 2 (e.g. method presented in [32]) to solve the ten-

sion distribution problem in real-time control. At some poses one can find feasible solu-

tions (for cable tensions) by using method 1 but fail to find feasible solutions with method

2. Thus, both methods are used in the control system in order to increase the probability

of obtaining a feasible solution (for the cable tensions). However, because two different

methods generate two different solutions, it may lead to discontinuities along a trajectory

followed by the CDPR mobile platform. In most cases, a sudden discontinuity could be

harmful for the CDPR. Therefore, it is preferable to implement only one method to solve

the IKP problem in order to obtain consistent solutions.

3.5 Error Analysis

In this section, several tests are presented to analyze the impact of thermal effect, ca-

ble Young’s modulus and tension distribution method on the cable unstrained length. We

perform these tests in simulation for the CoGiRo prototype. In all the tests, the total weight

of the mobile platform is 195kg . Steel cables are used. The characteristics of the cables are

given as follows:

– Cable Young’s modulus: E = 35e +9(Pa)

– Cable cross-section area: A0 = 8.2051e −06(m2)

– Cable self-weight: w = 0.6278(N /m)
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Figure 3.7: The change in the cable unstrained length at different temperatures

We compute the error in the cable unstrained length LT between its value under the

effect of a certain factor and its value in a reference state.

3.5.1 Impact of Thermal Effect

In order to see the impact of the temperature, we compute the change in the cable

unstrained length from the winch to the anchor point B of a cable of the CoGiRo prototype

at various temperatures. Fig. 3.7 shows the difference in the cable unstrained length LT at

difference temperatures compared to its value at the reference temperature (T0 = 25oC ):

dL(T ) = LT (T )−LT (T0).

We use the simplified cable model (taking into account the pulley kinematics) and the

method in [32] to solve the tension distribution problem. The solution is computed at the

home pose X0 = (0 0 0, 0 0 0)(m,r ad) and at different values of dT = T −T0. The cable

unstrained length at the reference temperature (T0 = 25oC ) is LT (T0) = 15.15m.

It can be seen that, there is a substantial change in the cable unstrained length with

respect to a large change of temperature. For example, at 0oC (dT = −25oC ), there is a

difference of 4−5 mm in the cable unstrained length. In other words, the thermal effect

should be considered if the CDPR is working in an environment with large changes of tem-

perature.



80 CHAPTER 3. EXTENDED MODELING - APPLICATION TO THE COGIRO CDPR

Figure 3.8: The change of cable unstrained length due to the change of the cable Young’s
modulus

3.5.2 Impact of Cable Characteristics

Among the three given cable parameters, the cable self-weight can be identified ac-

curately. However it is not easy to justify the cable Young’s modulus and the cable cross-

section area. These factors indeed play important roles in deriving the CDPR IKP solution.

In this test, we keep the value of the cable cross-section area and change the value of the

cable Young’s modulus to see its effect on the cable unstrained length.

We compute the change in the cable unstrained length with respect to difference values

of E , in a manner similar to Section 3.5.1. The temperature remains constant dT = 0oC .

The mobile platform is at the home position X0. We compute dL(E) = LT (E)−LT (Er e f ).

Fig. 3.8 shows the change in LT at different values of E compared to the reference value

Er e f = 3.5e+10(Pa), using the simplified cable model (taking into account the pulley kine-

matics). The change of the cable unstrained length is quite sensitive to the change of

the cable Young’s modulus. Only 10% in difference in Er e f could results in a difference

of 4−5mm in the cable unstrained length.

In practice, the term E (and also A0) is in fact not a constant value, due to various uncer-

tainties (e.g. cable rotation, increased temperature at contact point with pulley or drum,

etc...). It can be assumed that the values of E lies within a range (Emin, Emax). From a char-

acteristic curve such as the one shown in Fig. 3.8, one can estimate the error in the cable

unstrained length LT due to a change of E . In order to have good solutions for the CDPR

IKP problem, it is important to identify the range of possible values of E accurately.
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3.5.3 Impact of the Method to Solve the CDPR Tension Distribution

Problem

So far, to our best knowledge, there is no study that addresses the issue of using different

tension distribution methods in solving the CDPR IKP problem. It is an issue since the

obtained cable tensions directly affect the IKP solution.

In this section, we will compare the results of solving the IKP problem using two dif-

ferent methods to solve the CDPR tension distribution. The first method consists in using

the pseudo-inverse solution τp . The second method is the one presented in [32] (we call

this method as the “barycentric method"). The massless elastic cable model and the sim-

plified cable model are considered, taking into account the pulley kinematics. The cable

unstrained length LT obtained with each of these two cable models is compared to the

value of LT obtained with the catenary cable model.

We compute the maximum difference in the cable unstrained length LT of each ca-

ble model and the one obtained with the catenary cable model (2.8) (among the 8 ca-

bles) across a prescribed workspace (discretized into a finite number of equilibrium poses

- Fig. 3.9):

dLmax = max |LT (model )−LT (catenar y)| (3.48)

The results are shown in Fig. 3.10. In the case of the pseudo-inverse solution (“pinv

method"), significant differences in the values of LT are obtained when using the simpli-

fied cable model compared to the massless elastic cable model. When a “better" tension

Figure 3.9: The CoGiRo CDPR
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Figure 3.10: Maximum errors of the cable unstrained length computed from different tension
distribution methods

distribution method is used (in this case, the “barycentric method"), the best results are

obtained when using the simplified cable model.

This example shows that when using the simplified cable model, a suitable tension

distribution method should be used.

3.6 Case Study

3.6.1 Case 1: Neglecting the Influence of the Pulleys and of Friction

The validation of the simplified cable model with the cable length expression (2.39) was

performed in simulation and experimentally on the CoGiRo prototype [69]. The character-

istics of the steel cables driving the mobile platform were chosen as:

◦ E = 35e9 (Pa)

◦ A0 = 8.2051e-06 (m2)

◦ w = 0.62784 (N /m)
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SIMULATION

The reference point Op of the mobile platform of the robot follows a prescribed tra-

jectory in the Cartesian space X t = (xt yt zt ) with constant orientation αx,y,z = (0 0 0)

(X-Y-Z Euler angle convention). The total mass of the mobile platform and the payload is

mp = 500kg . X t is the position of Op at time t . Smoothed trapezoidal velocity method [99]

is used to generate the desired trajectory. The robot is simulated using the massless cable

model (L0i M assless = ‖Ai Bi‖), the elastic cable model (where only elasticity and not mass

is considered) and the simplified hefty cable model with different expressions of cable un-

strained length corresponding to Taylor series expansion of L0 up to order 1 and 2 of R in

(2.39). The cable unstrained lengths of the elastic cable model are computed as follows:

L0i El ast i c =
L0i M assless

1+ τi

E A0

(i = 1,m) (3.49)

where τi is the cable tension of the i-th cable obtained in the case of the massless cable

model.
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Different criteria are used to evaluate the results:

dL = max
1≤i≤m

|L0i −L0iC atenar y | (3.50)

d XModel = ‖X t Model −X t‖ (3.51)

where L0i is the unstrained length of the i-th cable in the cases of the massless (no elastic),

massless elastic and simplified hefty cable models. L0iC atenar y is the unstrained length of

the i-th cable in case of the elastic catenary cable model. X t Model is the simulated position

of Op at time t obtained for the CDPR with a given cable model.

The variable ν (introduced in Section 2.2.3) is computed in case of the simplified hefty

cable models to illustrate the discussion of Section IV:

νmax = max
1≤i≤m

w xLbi

fLbxi
(3.52)

To check the assumption τs ¿ E A0, we compute also the ratio

ηmax = max
1≤i≤m

τi

E A0
(3.53)

The method presented in [32] is used to solve the tension distribution problem in case

of the massless cable model and the simplified static analysis [23]. The results are then
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compared to the one obtained by means of the elastic catenary cable model which is con-

sidered to be the reference.

Figure 3.11 shows that the hefty cable models lead to improve the results of the inverse

kinematics solving (unstrained cable length computation) in comparison to the massless

cable model. The massless (no elastic) cable model and simplified hefty cable model which

has expression of L0i with order 1 of R in (2.39) (SimplifiedR1 in Fig. 3.11) have a similar ac-

curacy. The simplified cable model which uses the expression of L0i with order 2 of R in

(2.39) (considering both cable mass and cable elasticity, SimplifiedR2 in Fig. 3.11) gives the

best accuracy. Note that, in term of solving the inverse kinematics, the massless elastic

cable model and SimplifiedR2 give similar results. It means that the elasticity has a large

impact on the cable lengths. This is reasonable for the steel cables with the given charac-

teristics (the term E A0 is relatively small).

In the second test, the reference point of the mobile platform of the robot is fixed at

Op = (0 0 0) in the Cartesian space. The total mass of the mobile platform and the pay-

load is varied in the range 100 ≤ mp ≤ 800kg . Figure 3.12 shows that the cable model

SimplifiedR2 gives the best results. The impact of elasticity becomes more visible when the

payload increases.

Now, let us consider the two assumptions suggested in Section 2.2.3 for the simplified

cable models to be valid. The evolutions of the two variables νmax and ηmax in Fig. 3.12

reveal a tradeoff of the simplified models. When the payload is small, ηmax is small, thus

the first assumption τs ¿ E A0 is valid butνmax is large, hence the second assumptionν¿ 1

is violated and vice versa. According to this example, it can be seen that the validity of a

simplified cable model is a difficult issue when solving kinetostatic problem of CDPRs.

EXPERIMENT on CoGiRo

In our tests, the sagging of the cables is only considered between the points Ai and Bi

(Fig. 3.13). The cable segments from points Ai to the winch drums are vertical (no sagging)

and assumed unstressed (the elongations are compensated by adding some offsets to the

cable lengths). The total mass of the mobile platform in our tests is mp = 210kg . The

position of the reference point Op of the mobile platform is measured by a laser tracker.

The tension distribution problem is solved by using the method in [32] based on the static

analysis of [23].

The control scheme of CoGiRo is shown in Fig. 3.13 [17]. We used (2.39) to compute the

desired cable unstrained lengths.
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• E = 35e+09 (Pa) 
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• Payload: mp = 210 kg 

Figure 3.13: CoGiRo control scheme: Without the influence of pulley kinematics

The robot positioning accuracy is evaluated at several static equilibrium poses inside its

workspace. Figure 3.14 shows the positions of these points (top view). The criteria (3.51),

(3.52) and (3.53) are used to verify the results. In Tab. 3.2, XL , XE , XR1, XR2 are the mea-

sured positions of the center of mass of the mobile platform in case of the massless, elastic,

SimplifiedR1 and SimplifiedR2 cable models, respectively.

Table 3.3 shows that the cable model SimplifiedR2 gives the best results. The massless

elastic cable model has accuracies quite close to SimplifiedR2. The massless (no elastic)

cable model and SimplifiedR1 provide similar results with a lower accuracy. This is reason-
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Table 3.2: Measured positions of the mobile platform of CoGiRo at several static equilibrium
poses - Case study 1

Static poses XL XR1 XE XR2

(xc , yc , zc ) (m) (xc , yc , zc ) (m) (xc , yc , zc ) (m) (xc , yc , zc ) (m) (xc , yc , zc ) (m)
P1(0.0,0.0,1.0) (−0.001,0.000,0.881) (−0.001,0.000,0.882) (−0.001,−0.002,0.979) (−0.000,−0.002,0.997)
P2(0.0,−2.0,1.3) (0.001,−1.991,1.161) (0.001,−1.990,1.161) (−0.002,−1.993,1.275) (−0.001,−1.993,1.294)
P3(−3.0,2.0,0.2) (−2.997,1.993,0.142) (−2.998,1.994,0.143) (−2.989,1.990,0.194) (−2.988,1.988,0.203)
P4(5.0,3.5,0.5) (4.999,3.493,0.444) (4.999,3,489,0.448) (4.987,3.490,0.478) (4.987,3.492,0.483)
P5(4.0,0.0,0.7) (3.999,0.003,0.610) (4.001,0.001,0.616) (3.988,0.003,0.672) (3.988,0.005,0.679)
P6(4.0,−3.6,1.0) (4.006,−3.594,0.907) (4.007,−3.598,0.911) (3.987,−3.595,0.960) (3.987,−3.591,0.964)
P7(−4.0,3.0,0.8) (−4.006,−2.990,0.732) (−4.003,−2.995,0.727) (−3.993,−2.990,0.771) (−3.993,−2.989,0.775)
P8(−5.0,3.0,1.1) (−4.996,2.995,1.044) (−4.994,2.994,1.046) (−4.984,2.988,1.081) (−4.985,2.987,1.083)
P9(0.0,3.5,0.9) (−0.004,3.481,0.816) (−0.003,3.481,0.824) (−0.001,3.490,0.902) (−0.002,3.490,0.904)
P10(2.0,1.0,1.0) (1.999,0.995,0.896) (1.997,0.994,0.900) (1.989,0.995,0.976) (1.992,0.993,0.983)
P11(−1.5,−0.5,0.8) (−1.499,−0.503,0.705) (−1.499,−0.502,−0.706) (−1.495,−0.502,0.778) (−1.495,−0.505,0.782)
P12(−2.0,1.0,0.6) (−2.003,0.989,0.518) (−2.002,0.990,0.521) (−1.997,0.990,0.583) (−1.996,0.987,0.585)

Table 3.3: Positioning accuracy of CoGiRo at several static equilibrium poses - Case study 1

Static poses dXL dXR1 dXE dXR2 νmax ηmax

(xc , yc , zc ) (m) (cm) (cm) (cm) (cm)
P1(0.0,0.0,1.0) 11.89 11.83 2.08 0.32 0.004 0.006
P2(0.0,−2.0,1.3) 13.91 13.90 2.61 0.93 0.006 0.008
P3(−3.0,2.0,0.2) 5.86 5.76 1.66 1.72 0.013 0.005
P4(5.0,3.5,0.5) 5.65 5.28 2.71 2.33 0.020 0.005
P5(4.0,0.0,0.7) 9.05 8.38 3.03 2.49 0.011 0.005
P6(4.0,−3.6,1.0) 9.37 8.98 4.25 3.96 0.015 0.007
P7(−4.0,3.0,0.8) 6.85 7.35 3.12 2.85 0.013 0.006
P8(−5.0,3.0,1.1) 5.63 5.48 2.73 2.65 0.013 0.006
P9(0.0,3.5,0.9) 8.61 7.82 1.01 1.08 0.018 0.008
P10(2.0,1.0,1.0) 10.40 10.07 2.70 2.05 0.007 0.007
P11(−1.5,−0.5,0.8) 9.55 9.43 2.21 1.91 0.007 0.005
P12(−2.0,1.0,0.6) 8.25 7.95 1.98 2.01 0.008 0.005

able since we obtained similar results in simulation for the inverse kinematics (Fig. 3.11,

"Differences in cable unstrained length"). In the case of the considered CDPR (CoGiRo pro-

totype), these experimental results confirm the strong impact of the cable elasticity on the

robot accuracy (d XE in Tab. 3.3), notably when compared to the cable mass alone (d XR1).

It remains that the best results are obtained by considering both cable mass and elasticity

(d XR2).

In Tab. 3.3, at equilibrium points that are close to the center of the practical workspace

(νmax is small), the position accuracy is good (e.g. at points P1 and P2). As it could be

expected, the accuracy of the robot reduces when the mobile platform is positioned near

the workspace boundary (e.g. at points P4 −P8). Indeed, the value of the variable νmax

increases when Pc approaches the workspace boundary (when xc and yc are large) which

creates expected errors in solving the inverse kinematic problem. In addition, the variable

ηmax has relatively large values, which reduces the accuracy of the simplified cable models.
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This fact confirms our analysis of the limitation of the simplified cable model in Section

2.2.3.

3.6.2 Case 2: CoGiRo with Extended CDPR Modeling

To illustrate the impact of the extended CDPR modeling (Section 3.3), we performed

some experiments with the CoGiRo prototype taking into account the influence of pulleys

and of friction. The simplified cable model with the cable length expression (3.36) and

the massless elastic cable model are compared. To see the impact of different methods in

solving the tension distribution problem, the pseudo-inverse solution and the barycentric

method [32] were used. The characteristics of the steel cables driving the mobile platform

are:

◦ E = 100e9 (Pa)

◦ A0 = 8.2051e-06 (m2)

◦ w = 0.62784 (N /m)

The control scheme of CoGiRo in this case is shown in Fig. 3.15.

In this experiment, we revised our estimation of the cable Young’s modulus as E =
100e9(Pa) (which is much larger than the value used in the previous experiment). Note

also that, as shown in Fig. 3.15, the friction model is not the same as the one used in the

first experiment (without influence of pulley kinematics). It is replaced by a better model

obtained from the identification procedure in Section 3.1.3.
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Figure 3.15: CoGiRo control scheme: Including the influence of pulley kinematics
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The robot positioning accuracy is evaluated at several static equilibrium poses inside

its workspace Xd = (Pd ,Φd ) (m,r ad). Figure 3.16 shows the positions of these points (top

view). In Tab. 3.4, XE (pi nv), XS(pi nv), XE (bar y), XS(bar y) are the measured positions

and orientations of the mobile platform in case of the massless elastic cable model and

the simplified hefty cable model with the solutions to the tension distribution problem

obtained using the pseudo-inverse (’pinv’) and the barycentric method (’bary’). At several

poses, we purposely set some “non-zero" orientation of the mobile platform.

We compute the positioning accuracy in the Cartesian space and the orientation space

to validate the performances of the two cable models. The results are shown in Tab. 3.5.

We however only looked at the positioning accuracy in the Cartesian space. The per-

formances of the CDPR in the case of using the barycentric method is better than those

obtained when using the pseudo-inverse to solve the tension distribution. The simplified

cable model (dPS(bar y)) performs slightly better than the massless elastic cable model

(dPE (bar y)). These results reflect our analysis in Section 3.5.

If we compare the results in this experiment with the one obtained in the first case

study (which neglects the influence of pulleys and friction), one can see that the maximum

positioning errors are smaller. In the first case study, maximum errors lie within the range

of 3− 4cm for the simplified cable models and 3− 4.25cm for the massless elastic cable

model (Tab. 3.3), whereas in the second case study, the maximum errors lie within the

range of 1− 2cm for the simplified cable model and 1.5− 2.5cm for the massless elastic

cable model (Tab. 3.5). These numbers show a significant improvement.

Figure 3.16: Static equilibrium poses in the workspace of CoGiRo - Case study 2
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Table 3.4: Measured positions of the mobile platform of CoGiRo at several static equilibrium
poses - Case study 2

Testing poses XE(pinv) XS(pinv) XE(bary) XS(bary)
Pd (xc , yc , zc ) (m) (xc , yc , zc ) (m) (xc , yc , zc ) (m) Pd (xc , yc , zc ) (m) (xc , yc , zc ) (m)
Φd (θx , θy , θz) (r ad) (θx , θy , θz) (r ad) (θx , θy , θz) (r ad) (θx , θy , θz) (r ad) (θx , θy , θz) (r ad)

Pd1(4.463,2.485,0) (4.4480,2.4855,−0.0047) (4.4476,2.4867,−0.0063) (4.4465,2.4870,−0.0057) (4.4512,2.4897,−0.0059)
Φd1(0,−0.1745,−0.785) (−0.0036,−0.1764,−0.7821) (−0.0029,−0.1759,−0.7821) (−0.0027,−0.1753,−0.7814) (−0.0043,−0.1765,−0.7854)
Pd2(0,0,1.3) (−0.0045,0.00182,1.2822) (−0.0053,0.0024,1.28) (−0.0044,0.0013,1.2856) (−0.0043,0.0031,1.2868)
Φd2(0,−0.1745,0) (0.0007,−0.1712,−0.0018) (0.0013,−0.1707,−0.0017) (0.0006,−0.1703,−0.0019) (0.0009,−0.1698,−0.0020)
Pd3(4,−3.6,1) (3.9945,−3.589,0.9810) (3.9940,−3.5893,0.9796) (3.9940,−3.5882,0.9808) (3.9944,−3.5887,0.9844)
Φd3(0,0,0) (0.0033,−0.0009,0.0003) (0.0036,−0.0003,0.0006) (0.0031,0.0005,0.0011) (0.0027,0.0004,0.0006)
Pd4(−4,3,0.8) (−4.0035,2.9956,0.7866) (−4.0034,2.9957,0.7867) (−4.0026,2.9949,0.7854) (−3.9979,2.9957,0.7836)
Φd4(0,0,0) (−0.0017,0.0040,−0.0027) (−0.0018,0.004,−0.0026) (−0.0017,0.0038,−0.003) (−0.0053,0.0012,−0.0025)
Pd5(0,−2,1.3) (−0.0054,−1.9939,1.2816) (−0.0089,−1.9936,1.2786) (−0.0059,−1.9922,1.2769) (−0.0083,−1.9905,1.2823)
Φd5(−0.1745,0,−0.5236) (−0.1738,−0.0006,−0.5236) (−0.1707,0.0017,−0.5236) (−0.1713,−0.0021,−0.5223) (−0.1693,0.0036,−0.5229)
Pd6(5,3.5,0.5) (4.9907,3.4973,0.4897) (4.9910,3.4977,0.4900) (4.9900,3.4999,0.4897) (4.9955,3.4995,0.4908)
Φd6(0.0873,0.0873,0) (0.082,0.0841,−0.0015) (0.0816,0.0843,−0.0013) (0.0840,0.0811,−0.0017) (0.0814,0.0802,−0.0026)
Pd7(−3,2,0.2) (−3.0079,1.9978,0.1906) (−3.0078,1.9979,0.1908) (−3.0065,1.9980,0.1963) (−3.0019,1.9981,0.1936)
Φd7(0,0,−0.6981) (−0.0009,0.0015,−0.7007) (−0.0010,0.0015,−0.7007) (−0.0014,−0.0011,−0.6986) (−0.0033,−0.0001,−0.6988)
Pd8(4,0,0.7) (3.9935,0.0008,0.6837) (3.9937,0.0008,0.6842) (3.9933,0.0027,0.6863) (3.9980,0.0010,0.6863)
Φd8(0,0,0) (−0.0019,−0.0004,−0.0020) (−0.0018,−0.0002,−0.0019) (−0.0010,−0.0034,−0.0018) (−0.0047,−0.0033,−0.0018)
Pd9(−5,−3,1.1) (−5.0072,−2.9940,1.0809) (−5.0075,−2.9941,1.0810) (−5.0059,−2.9928,1.0825) (−5.0014,−2.9939,1.0811)
Φd9(−0.0873,0,−0.3491) (−0.08473,0.0037−0.3531) (−0.0850,0.0039,−0.3533) (−0.0838,0.0034,−0.3527) (−0.0854,0.0028,−0.3503)
Pd10(2,1,−1) (1.9938,1.0027,−1.0051) (1.9938,1.0028,−1.0052) (1.9933,1.0016,−1.0043) (1.9966,1.0017,−1.0043)
Φd10(0,0,0) (−0.0024,0.0005,−0.0005) (−0.0021,0.0006,−0.0005) (−0.0017,0.0002,−0.0014) (−0.0048,−0.0002,0.0019)
Pd11(−2,1,0) (−2.0090,1.0044,−0.0069) (−2.0091,1.0044,−0.0068) (−2.007,1.0033,−0.0029) (−2.0051,1.0027,−0.0059)
Φd11(0,0,−0.8727) (0.0001,0.00002,−0.8752) (0.0003,−0.0002,−0.8753) (−0.0007,−0.0010,−0.8772) (−0.0028,0.0003,−0.8719)
Pd12(−2.5,−2,0.8) (−2.5063,−1.9915,−0.8076) (−2.5064,−1.9916,−0.8079) (−2.5051,−1.9913,−0.8037) (−2.5049,−1.9917,−0.8043)
Φd12(0,−0.0873,−0.3491) (0.0023,−0.087,−0.3478) (0.0026,−0.087,−0.3479) (0.0027,−0.0871,−0.3523) (0.0005,−0.0837,−0.3477)

Table 3.5: Positioning accuracy of CoGiRo at several static equilibrium poses - Case study 2

Pd (xc , yc , zc ) (m) dPE(pinv)(mm) dPS(pinv)(mm) dPE(bary)(mm) dPS(bary)(mm)
Φd (θx , θy , θz) (r ad) dΦE(pinv)(mr ad) dΦS(pinv)(mr ad) dΦE(bary)(mr ad) dΦS(bary)(mr ad)

Pd1(4.463,2.485,0) 15.6993 16.7616 17.5846 14.0480
Φd1(0,−0.1745,−0.785) 4.9860 4.3106 4.6098 4.7756
Pd2(0,0,1.3) 18.4234 20.8449 15.1539 14.2637
Φd2(0,−0.1745,0) 3.8616 4.3737 4.5990 5.1738
Pd3(4,−3.6,1) 22.4270 23.7317 23.3493 20.0499
Φd3(0,0,0) 3.4101 3.7038 3.3140 2.7673
Pd4(−4,3,0.8) 14.4960 14.4507 15.6484 17.0568
Φd4(0,0,0) 5.1295 5.1235 5.1447 5.9435
Pd5(0,−2,1.3) 20.1114 24.0037 25.1016 21.7530
Φd5(−0.1745,0,−0.5236) 0.9368 4.1603 4.0021 6.3743
Pd6(5,3.5,0.5) 14.1395 13.6078 14.2851 10.2288
Φd6(−0.1745,0,−0.5236) 6.3748 6.5605 7.1813 9.6099
Pd7(−3,2,0.2) 12.4303 12.2175 7.6817 6.9286
Φd7(0,0,−0.6981) 3.1670 3.1149 1.8791 3.4077
Pd8(4,0,0.7) 17.6281 17.0452 15.5182 13.8284
Φd8(0,0,0) 2.7873 2.6624 4.0068 6.0516
Pd9(−5,−3,1.1) 21.2280 21.3024 19.8761 19.9265
Φd9(−0.0873,0,−0.3491) 5.9939 6.1447 6.0876 3.6321
Pd10(2,1,−1) 8.4207 8.5410 8.1781 5.7620
Φd10(0,0,0) 2.4809 2.2692 2.2629 5.1441
Pd11(−2,1,0) 12.1749 12.1749 8.5239 8.2562
Φd11(0,0,−0.8727) 2.4735 2.5990 4.6947 2.8833
Pd12(−2.5,−2,0.8) 13.0189 13.2190 10.7415 10.5490
Φd12(0,−0.0873,−0.3491) 2.6618 2.8216 4.1952 3.9351
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Conclusions

This chapter detailed an extended modeling of CDPRs. The influence of pulley kine-

matics, friction, thermal effect as well as cable characteristics (cable mass and elasticity)

have been discussed. Indeed, these factors have a significant impact on the CDPR position-

ing accuracy. Depending on the method used to solve the tension distribution problem,

the massless elastic cable model or simplified hefty cable models lead to the best results.

Our experiments with the CoGiRo prototype showed us that it is important to deter-

mine correctly the initial state of the CDPR at the home pose (in our case, the initial un-

strained length LT 0). One can compute LT 0 by using the algorithm presented in Section

3.4. After knowing the desired tension and unstrained length for each cable, a cable tens-

ing step is needed to tune the motor of each winch so that the actual state of the CDPR is

close to the theoretically computed state. To this end, it is necessary to resort to a parame-

ter identification procedure given that we have good measurements of the CDPR geomet-

ric parameters (the positions of the fixed point on each pulley Pi , the cable anchor points

Bi ,...). Such calibration of a CDPR at the initial state must be accordant to the results ob-

tained by using a particular tension distribution strategy.

Moreover, to improve the CDPR positioning accuracy, one should carefully address the

possible changes in the environment temperature (thermal effect). There will be signifi-

cant changes in the cable lengths if the CDPR is working in a very cold environment or in a

very hot one. Besides, friction should also have a non-negligible impact on the CDPR per-

formances. Periodical maintenance (e.g. lubricate pulleys, gear box, transmission belt,...)

is necessary to reduce the torques (or forces) loss due to friction.
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Summary
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 CDPR Reconfiguration as a Single-Objective Optimization Problem . . . . 96

4.3 CDPR Reconfiguration as a Multi-Objective Optimization Problem . . . . 107

In this chapter, we discuss two case studies of CDPR reconfiguration. In the first case

study, the reconfiguration of a CDPR is considered as a single-objective optimization prob-

lem which can be solved by using gradient-based optimization tools. A systematic proce-

dure is proposed. It consists in dividing the CDPR reconfiguration problem into two opti-

mization sub-problems. The first sub-problem aims at finding the bounds on the reconfig-

uration parameters in which all the nonlinear constraints including wrench feasibility and

geometric constraints are satisfied. The CDPR reconfiguration is thereby transformed into

a classical box-constrained problem which can be solved with standard optimization tools.

Two reconfiguration strategies are considered: offline reconfiguration and online reconfig-

uration. Two criteria are introduced to quantify the robot performance related to energy

consumption: the sum of cable tensions (used in offline reconfiguration) and minimal en-

ergy consumption of the CDPR (used in online reconfiguration). The procedure provides

a straightforward approach which is familiar to engineers and could be implemented in

real-time software environments.

In the second case study, the reconfiguration of a CDPR is considered as a multi-

objective optimization problem. A systematic procedure to derive the reconfiguration

92
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planning solution is presented. Two criteria are used to quantify the CDPR performances:

the sum of cable tensions and the normalized upper bound on the infinitesimal displace-

ment of the mobile platform. The first criterion is related to the CDPR energy consumption.

The second one is a new performance index used here to quantify the CDPR stiffness. This

multi-objective optimization approach offers the end-users a set of CDPR reconfiguration

solutions where the tradeoff between different performance indices is efficiently taken into

account.

The chapter is organized as follows. Section 4.1 presents the general architecture of

a reconfigurable CDPR considered in this chapter. It corresponds to one of the large-

dimension reconfigurable suspended CDPRs introduced in Chapter 1 as a possible means

to replace the conventional methods of handling large and heavy parts across a wide

workspace. Then, Section 4.2 and Section 4.3 discuss the first and second case studies

of the CDPR reconfiguration, respectively.

4.1 Introduction

4.1.1 Large-Dimension Reconfigurable Suspended CDPR Architecture

Fig. 4.1 shows the general concept of large-dimension reconfigurable suspended CD-

PRs considered in this thesis to replace conventional cranes or telescopic platforms. The

winches that drive the cables are attached onto two overhead bridge cranes to form a large-

dimension CDPR. The positions of the winches or cable exit points can be changed by mo-

bile bases moving along the crane beams. The overhead bridge cranes can move along the

side walls of the workshop building. In this way, each CDPR should cover any area in the

workshop. Depending on the size of the workshop, multiple CDPRs can be used to perform

different tasks across wide workspaces.

In fact, this idea is derived originally from the experiences of partners involved in the

CableBOT project consortium. Firstly, the general suspended architecture of the recon-

figurable CDPR is similar to that of the fixed-configuration redundant suspended CDPR

CoGiRo prototype [17] since CoGiRo’s geometry structure has shown some great poten-

tial. Secondly, the moving cranes are adapted from the overhead bridge crane systems

that carry heavy parts in workshops. By attaching the winches on the cranes, there will

be mostly vertical forces acting on the two side walls of the building. Lateral force com-

ponents created by cables tensions which are orthogonal to the side walls are minimized.

However, horizontal force components in the cables that tend to bring the two overhead

bridge cranes together may need to be avoided. One solution is to connect the two cranes
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with some support beams to sustain these lateral horizontal forces. In this manner, the

robot system loses one degree of redundancy but, in return, becomes more stable.

In the general scenario, the 6-DOF mobile platform of the CDPR is driven by 8 cables

and two overhead bridge cranes. Each cable exit point is driven by an actuator. If all the

cable exit points could move freely along the bridge cranes, the number of total actuators

would be 18 (where 10 actuators are used to reconfigure the robot geometry structure). It

results in a highly redundant robot system. We propose to move the cable exit points by

pairs along the bridges to reduce the total number of actuator from 18 to 14. If we fix the

cable exit points and also the positions of two overhead bridge cranes, the total number

of actuators that drive the mobile platform is reduced to 8. In the latter case, the CDPR

becomes one similar to a fixed-configuration redundantly actuated CDPR (e.g. CoGiRo

prototype).

In the most complex case, the reconfigurability of the proposed CDPR is determined

by a maximum of 6 actuators that drive the 4 pairs of cable exit points (r1, ...,r4) and the 2

overhead bridge cranes (r5,r6), as shown in Fig. 4.1. Hence, (r1,r2, ...,r6) are the reconfigu-

ration parameters. Note that the positions of the two overhead bridge cranes can be fixed

r1 

r2 

r3 

r4 r5 

r6 

r1

Figure 4.1: Solution using large-dimension reconfigurable suspended CDPR to replace con-
ventional cranes
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in order for the CDPR to perform at specific areas in the workshop. In such cases, there are

only four reconfiguration parameters r1,r2,r3 and r4.

It is worth noting that, by keeping the general suspended redundantly actuated archi-

tecture similar to the CoGiRo prototype [32] (using 8 cables to drive the mobile platform),

the Cartesian workspace and orientation workspace of the CDPR are increased substan-

tially, compared to 6-cable CDPRs such as the AMP [100]. Furthermore, reconfigurability

should improve the CDPR performances and offers more flexible choices to the end-users

(in the present work, reconfigurability means the ability to change the locations of the ca-

ble exit points of the CDPR).

The CDPR can operate in two modes, offline reconfiguration and online reconfigura-

tion. In offline reconfiguration, appropriate positions of the cable exit points are deter-

mined offline. Thereby, the cable layout of the CDPR is adapted to a specified task. After

the reconfiguration of cable exit points has been performed, the cable exit point positions

are fixed and the robot starts the given tasks. Meanwhile, online reconfiguration consists

in changing the positions of the cable exit points along a trajectory followed by the CDPR

mobile platform and/or during the execution of a task.

4.1.2 The General Problem of CDPR Reconfiguration

In our view, the reconfigurability of a CDPR is the capability of changing its cable layout

to increase flexibility, i.e., obtain better performances under certain constraints. It can be

formulated as the following nonlinear constrained optimization problem:

"Find a set of reconfiguration parameters r which minimizes several performance cri-

teria f(r) = ( f1(r), f2(r), ...):

ropt = min{f(r1,r2, ..,rp )} (4.1)

subjects to

rmin ≤ r ≤ rmax

r ∈ Cr

where rmin and rmax are the lower and upper bounds on the reconfiguration parameters

r. Each criterion fi is computed with respects to one or several platform poses. Cr is the

set of reconfiguration parameters that satisfy all nonlinear constraints including geometric

constraints and wrench feasibility constraints."
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In this general problem, there are two types of constraints. The first ones are geometric

constraints which are the limitations on Cartesian workspace and orientation workspace

of the CDPR. Satisfying these constraints means for instance that the CDPR pose at hand

is collision free and that the cable lengths smaller than their maximum possible value. The

second type are tension based constraints which involve the dynamic modeling of the mo-

bile platform to compute the cable tensions of the CDPR.

4.2 CDPR Reconfiguration as a Single-Objective

Optimization Problem

As a single-objective optimization problem, the objective function f(r1,r2, ..,rp ) in the

general problem (4.1) consists of one performance index only. In this thesis, this criterion

is used to quantify the CDPR energy consumption.

Since we aim to use gradient-based optimization tools to solve the CDPR reconfigu-

ration problem, necessary conditions must be met. In order to achieve real-time capable

solving, the general problem (4.1) is divided into two optimization sub-problems. The first

sub-problem is to find a feasible set of reconfiguration parameters in which all the non-

linear constraints (which are time-consuming to handle) are removed. This sub-problem

transforms the general problem into a standard box-constrained optimization problem

which can be solved by any available standard optimization software.

In the following sub-sections, after the introduction of the two performance indices

(which are used as the objective function of the optimization problem in offline reconfig-

uration mode and online reconfiguration mode), the procedure to solve the CDPR recon-

figuration is detailed and illustrated in an example.

4.2.1 Performance Indices

Let us consider a CDPR driven by m cables in a configuration defined by r. At an equi-

librium pose of the mobile platform, by solving the tension distribution problem, we ob-

tain desired cable tensions τi , i = 1,2, ...,m.
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SUM OF CABLE TENSIONS

In offline reconfiguration, we choose the sum of the cable tensions as the objective

function:

f (r) =
m∑

i=1
τi (r) (4.2)

This index directly relates to the power consumption of the CDPR. In case of the proposed

suspended CDPR architecture (Fig. 4.1), minimizing this performance index leads gener-

ally to the optimal solution which coincides with the upper bounds on the reconfiguration

parameters (an illustrating example is given in Section 4.2.5). The solution are found using

Matlab optimization toolbox or NLopt package [101].

ENERGY CONSUMPTION

In online reconfiguration, we compute the minimal energy consumption that is

needed to move the mobile platform along a given trajectory, neglecting friction between

cables and pulleys or drums and between the mobile bases and the overhead bridge cranes

(thus, also neglecting the energy needed to move the cable exit points):

E (s)
on =

m∑
i=1

τ(s)
i .4l (s)

i (4.3)

where τ(s)
i is the tension of the i-th cable (assuming that τ(s)

i = const during the s-th sample

time period) and 4l (s)
i is the incremental change of the i-th cable length.

To verify the results, the total energy consumption along a given trajectory of the mobile

platform is computed as

Etot al =
Ns−1∑
s=1

E (s)
on (4.4)

where Ns is the number of discrete via-points.

4.2.2 Step 1: Define Desired CDPR Performances

In practice, for a certain task, the prescribed CDPR workspace and desired perfor-

mances should be defined beforehand as a set of:

– positions in Cartesian space

– orientations

– velocities
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– accelerations

– wrenches

which verifies collision-free and wrench feasibility conditions.

The nonlinear constraints corresponding to r ∈ Cr are defined by these desired perfor-

mances.

4.2.3 Step 2: Formulate Two Optimization Sub-Problems

DETERMINE THE BOUNDS ON THE RECONFIGURATION PARAMETERS

The goal of this step is to find the lower bounds and upper bounds on the reconfigura-

tion parameters by solving the following optimization problems:

rmin = min{r} , rmax = max{r} (4.5)

subject to:

r ∈ Cr

This step is important since it eliminates the geometric constraints and tension based

constraints, thus enabling the use of standard gradient-based optimization tools to solve

the general problem (4.1) more effectively.

The method to solve this problem will be discussed later in more detail in Section 4.2.6.

BOX-CONSTRAINED OPTIMIZATION PROBLERM

Let us assume that the bounds on the reconfiguration parameters were found. Thereby,

the general optimization problem (4.1) is transformed into a box-constrained optimization

problem which is much simpler to solve:

ropt = min{ f (r1,r2, ...,rp ) | r ∈ Br } (4.6)

where

Br = {r | rmin ≤ r ≤ rmax} (4.7)
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4.2.4 Step 3: Determining the CDPR Reconfiguration

OFFLINE RECONFIGURATION

The aim of offline reconfiguration is to find a set of reconfiguration parameters (locally)

optimal with respect to a performance index over the assigned workspace and for given re-

quired performances. Let us take an example. Assume that one want the CDPR to reach

any pose in a given workspace at any acceleration in a given range, while keeping the ca-

ble tensions within prescribed limits. Offline reconfiguration can consist in finding “the

best" locations for the cable exit points allowing the CDPR to do so with minimal energy

consumption.

To optimize the performance index with respect to the whole workspace, we discretize

the latter into a finite set of N equilibrium poses. This procedure is time consuming if

there are a lot of poses to be evaluated in the resulting finite set. In fact, it is generally

satisfactory enough to evaluate the objective function at poses that lie on the boundary of

the assigned workspace. Then, the global criterion method [102] is used to find the optimal

reconfiguration according to the following steps.

– Step 1: Find the optimal configuration r∗k , k = 1,2, ..., N for the k-th equilibrium pose

by solving the box constrained optimization problem:

r∗k = min{ f (r) | r ∈ Br } (4.8)

where Br is defined in (4.7) and f is the considered criterion. N is the total number

of equilibrium poses considered in the given workspace.

– Step 2: Find the optimal configuration ropt of the following box-constrained opti-

mization problem:

Minimize F (r) = 1

N

N∑
k=1

[
f (r∗k )− f (r)

f (r∗k )

]2

(4.9)

subject to r ∈ Br

Offline reconfiguration as treated here is in fact a multi-objective optimization prob-

lem. A specificity of the problem at hand is that in usual multi-objective optimization

there are more than one objective function to be evaluated at a specific pose whereas, in

offline reconfiguration, there is only one objective function to be evaluated at many differ-

ent poses. Furthermore, evaluating the objective function at a pose has the same priority

as at any other pose which eliminates the difficulty of choosing suitable priority factors for

each objective function as in the usual case of a multi-objective optimization.
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ONLINE RECONFIGURATION

In online reconfiguration, we aim to find “the best" CDPR reconfigurations along a

given trajectory. The locations of the cable exit points are updated at each sample time

in such a way that minimizes a certain performance index.

Because of the real-time constraint, online reconfiguration should be treated as a

single-objective optimization problem. At each sample time, we aim at solving the opti-

mization problem in a few iterations. The number of iterations will be limited by the total

computation time (normally, we could only allow 1, 2 or 3 iterations).

In online reconfiguration, the box constrained optimization problem (4.6) is defined as

follows: At the s − th sample time, find the new values of the reconfiguration parameters

r(s)
opt = min{ f (r1,r2, ...,rp ) | r ∈ B4} (4.10)

where

B4 = {r | r(s−1)
opt −4r ≤ r ≤ r(s−1)

opt +4r } (4.11)

which also satisfies

B4 ⊂ Br (4.12)

4r is the maximum step size of the reconfiguration parameters allowed at each sample

time.

One can initialize the procedure with a starting point taken as the optimal solution

found from offline reconfiguration with respect to the same performance index since it

reduces the probability of converging to a poor local minimum.

In online reconfiguration mode, two issues must be addressed carefully. Firstly, at each

sample time, the new reconfiguration parameters r(s)
opt must not exceed a certain value

because of the limitations of the actuators that drive the cable exit points and the cable

lengths:

| r (s)
i opt − r (s−1)

i opt |≤4r , i = 1, p (4.13)

Secondly, the movement of the cable exit points and the changes of the cable lengths are

coupled together. Because of these issues, the constraint (4.11) is added in order to help

maintaining the synchronization in driving the cable exit points Ai and the cable lengths

in the control system.
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4.2.5 Case Study

Let us consider a situation where several CDPRs are working in a workshop. Each CDPR

has to position a heavy platform in several areas which are shown in Fig. 4.2. In this situa-

tion, at each working cell, the positions of the two cranes are fixed. Support beams are used

to sustain the lateral horizontal forces created by the cable tensions that tend to bring the

two cranes together. The distance between the two cranes is constant and calculated with

respect to the size of the working cell. It means that the number of active actuators which

reconfigure the positions of the cable exit points is 4 (the 8 cable exit points are moved by

pairs). After finishing its works in an area, the CDPR moves to the next area.

Assume that the CDPR is operating in a given working cell. The size of the CDPR is

22m×14m×6.4m (l ×w ×h). The distance between the two cable exit points within a pair

mounted on an overhead bridge crane is 2m. The mobile platform is a cube of size length

2m and weighting 2000kg . Its center of mass C coincides with the origin of the local frame

Op (which means d = −−−→
OpC = 0). The characteristics of the steel cables driving the mobile

platform are:

◦ Young modulus E = 120e +09 (Pa)

◦ Cross-section area A0 = 4.3937e −05 (m2)

◦ Self-weight w = 3.3955 (N /m)

Figure 4.2: Example of a scenario in a workshop
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The desired performances of the CDPR are given as:

mp = 2000 (kg )

−4 ≤ xp ≤ 4 (m)

−5 ≤ yp ≤ 3 (m)

0 ≤ zp ≤ 2.5 (m)

θx = const = 0 (deg )

−5 ≤ θy ≤ 0 (deg )

0 ≤ θz ≤ 70 (deg )

−0.7 ≤ ax,y,z ≤ 0.7 (m/s2)

−0.7 ≤ αx,y,z ≤ 0.7 (r ad/s2)

100 ≤ τ≤ 3.1e +04 (N )

The considered discretization in position, orientation, accelerations, and angular accelera-

tions results in total of 18×8×8×8 = 9216 CDPR states to be checked to verify the cable

tension constraints and collision constraints.

OFFLINE RECONFIGURATION

Fig. 4.3 shows the results of finding the bounds on the reconfiguration parameters r =
(r1, r2, r3, r4). The equilibrium poses are selected on the edges of the assigned workspace

as also shown in Fig. 4.3.

The solution of minimizing the sum of cable tensions with respect to the given

workspace coincides with the upper bounds on the reconfiguration parameters:

ropt ≡ rmax = (r1max, r2max, r3max, r4max) (4.14)

ONLINE RECONFIGURATION

In this case, we only present the results assuming that the robot system performs under

ideal conditions (e.g. without loss due to friction, perfect synchronization in the control

system while updating online the cable lengths and the cable exit point positions). The

starting point for online reconfiguration is ropt given in (4.14). The objective is to minimize

the energy consumption along a trajectory. The maximum step size of the reconfiguration

parameters allowed at each iteration is 4r = 0.005m.
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Smoothed trapezoidal velocity method [99] was used to generate the desired trajectory.

The via-points are given in Cartesian workspace and orientation workspace (ZYX Euler an-

gle convention) X = (x y z, θx θy θz) (m,deg ):

X1 = (−4.0 1.0 0.0, 0 0 0)

X2 = (1.0 −5.0 2.0, 0 −5 30)

X3 = (0.0 −2.0 2.5, 0 −5 70)

X4 = (4.0 3.0 0.5, 0 0 0)

The maximum accelerations and orientation accelerations along the trajectory are

amax x,y,z = (0.7 0.7 0.7) (m/s2) and αmax x,y,z = (0.7 0.7 0.7) (r ad/s2). The time cor-

responding to the maximum velocity is tv max = 0.5s and the sample time is d t = 0.01s.

Fig. 4.4 shows the trajectory generated. The evolution of the reconfiguration pa-

rameters and of the energy consumptions (4.3) along the trajectory are shown in

Fig. 4.5. EO f f M is the minimal energy consumption of the CDPR in configuration

r = rmin = (r1min, r2min, r3min, r4min), EO f f l i ne is the minimal energy consumption of

the CDPR in configuration ropt given in (4.14) and EOnli ne is the minimal energy con-

sumption for reconfiguration parameters updated online along the trajectory. The total

(top view) (3D view) 

r1min 

r2min 

r4min 

r4max 

r3min 
r3max 

Equilibrium poses 

Assigned workspace 

r1max 

r2max 

Figure 4.3: Bounds on reconfiguration parameters and desired Cartesian workspace
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Figure 4.4: Desired trajectory

energy consumption (4.4) in the three cases is computed as:

E∑
O f f M = 4.5556e +05 (J )

E∑
O f f l i ne = 3.8618e +05 (J )

E∑
Onli ne = 3.7955e +05 (J )

The energy saving between offline configuration at ropt and rmin is 15.23%. When switch-

ing to online reconfiguration, the energy saving is 1.7187%. These results show that offline

reconfiguration may provide a good solution in term of minimizing energy consumption.

Under the ideal conditions considered in this case (no friction, etc.), online reconfiguration

mode also reduces the total energy consumption of the CDPR but only slightly compared

to offline mode.

Note that the optimization tool LBFGS [103] in the nonlinear optimization package

[101] was used to solve the boxed constrained optimization problems (4.6) - (4.7) in offline

and online reconfiguration modes since this method is fast and provides stable results.
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Figure 4.5: Results of online reconfiguration

4.2.6 Remark on the Methodology

In our study, we used a heuristic method to speed up the computation of the upper

bounds on the reconfiguration parameters in problem (4.5). This method takes advantage

of the particular characteristics of the reconfigurable CDPR family considered here. We

may clarify this point as follows.

First of all, let us emphasize that:

– The cable exit points that reconfigure the CDPR cable exit points are constrained to

move along the overhead bridge cranes, i.e., along only one direction.

– The considered CDPRs are suspended (all cable exit points are located above the mo-

bile platform).

Hence, by minimizing the sum of the cable tensions, the cable exit points will tend to move

to the positions where the cables are as vertical as possible while balancing the mobile

platform weight. This behavior implies the fact that the optimal solution found in offline
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Figure 4.6: Solution for the upper bounds on the reconfiguration parameters

reconfiguration should coincide with the upper bounds on the reconfiguration parameters

as shown in Fig. 4.3.

Knowing that fact beforehand, we solve the problem (4.5) as follows. We are looking

for the solution that gives the minimum sum of cable tensions, which also means finding

the maximum value of the upper bound vector rmax. Fig. 4.6a shows the optimal solution,

whereas Fig. 4.6b shows a solution for the upper bound vector where we try to increase

the value of r2max which results in reducing the values of r3max substantially. It is due to

the fact that, in order to satisfy the conditions of wrench feasibility and the geometric con-

straints, the span of the cable exit points (the polygon C1C2C3C4) should cover the assigned

workspace (the rectangle box). The changes in r2max and r3max shown in Fig. 4.6b result

in increasing the value of the sum of cable tensions. Therefore, updating the values of the

pairs of reconfiguration parameters (r1,r4) and (r2,r3) along the directions that keep the

line C1C4 and C2C3 orthogonal to the overhead bridge cranes should lead us to the opti-

mal solution. This heuristic helps a lot to reduce the computation time needed to solve

the optimization sub-problem (4.5). In fact, in the examples shown in Section 4.2.5, while

solving problem (4.5), we set the maximum displacement of updating the reconfiguration

values in each iteration to �r = 0.1m. The time needed to find the sole upper bound vec-

tor rmax is around 2mi n (which is quite fast). However, the total time needed to find the

lower bound vector rmin (including checking all the constraints at all discretized poses)

is around 40−50mi n. In online reconfiguration, the time estimated for each iteration is

around 30−40ms. We use MATLAB on a PC with core i 7−2.7G H z to run the simulations.
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4.3 CDPR Reconfiguration as a Multi-Objective

Optimization Problem

In the previous section, we have discussed a systematic procedure to find optimal re-

configurations where the energy consumption of the reconfigurable CDPR (over a given

workspace) is minimized. The reconfiguration of the CDPR is divided into two optimiza-

tion sub-problems. The first one is a vector optimization problem [104] to find the bounds

on the reconfiguration parameters where the nonlinear constraints include wrench feasi-

bility constraints and non-differentiable constraints (cable interferences or geometric con-

straints). The general nonlinear optimization problem is then transformed into a single-

objective box-constrained problem that can be solved with readily available gradient-

based optimization tools [101]. This approach offers fast solution computations and can

be used in both offline or online (real-time) CDPR reconfiguration. However, several is-

sues have to be dealt with. Firstly, the vector optimization problem that aims at finding the

bounds on the reconfiguration parameters is complicated. Although a heuristic approach

was presented to solve it, the optimal solution greatly depends on specific use cases. Sec-

ondly, only one criterion was considered (the minimization of the energy consumption of

the CDPR). In some cases, this solution may not be satisfactory enough.

In this section, we discuss the CDPR reconfiguration as a multi-objective optimization

problem. The optimal reconfiguration of the robot is found by optimizing several per-

formance indices. In this thesis, two performances indices are considered. To illustrate

the proposed method, we study a use case where a CDPR carries workers in an airplane

maintenance workshop. The general architecture of the CDPR is similar to the one in Fig.

4.1. The mobile platform is shown in Fig. 4.7. One drawback of this solution is that the

CDPR is much more compliant than conventional telescopic platforms (which consist of

rigid links). If only one performance index is used, for example, minimizing the power

consumption of the CDPR as presented in the previous section, the mobile platform may

become unstable at the optimal solution where all the cables tend to be as vertical as pos-

sible (like a pendulum). During operation, a strict condition is probably that the platform

remains as stable as possible in order to allow the workers to work safely and efficiently.

Hence, the optimal solution (found by minimizing the energy consumption) may violate

this condition.

Therefore, in order to obtain appropriate CDPR reconfiguration solutions, we take into

account two objectives. The first objective is to minimize the energy consumption while

the second one is to maximize the stiffness of the CDPR at its mobile platform. The re-

configuration of the CDPR becomes a multi-objective (or vector) optimization problem
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Figure 4.7: CDPR Mobile platform

with both continuous and non-differentiable nonlinear constraints. The optimal reconfig-

uration is a Pareto optimal point [105] among a set of possible solutions representing the

tradeoff between the two considered criteria.

As the first objective function, we select the sum of cable tensions since this index is

directly related to the energy consumption of the CDPR. As a second objective function,

we introduce a new performance index which is the normalized upper bound on the in-

finitesimal displacement of the mobile platform as a means to quantify the stiffness of the

CDPR. The derivation of this index is based on both the homogeneous CDPR stiffness ma-

trix presented in [41] and the kinematic sensitivity analysis of very large-dimension CDPRs

presented in [43].

Among other possible ones, there are two possible suitable optimization tools to de-

termine the CDPR reconfiguration. If one considers the problem as a vector optimiza-

tion problem, methods presented e.g. in [104] or in [106, 107] can be used to compute

the Pareto front (the set of Pareto optimal solutions). However, these methods can deal

efficiently with problems that have only linear constraints. Another possibility is to use

efficient scalarization methods to govern all the criteria into one objective function and

then use available optimization tools to solve this single-objective optimization prob-

lem. We choose the global criterion method and bounded objective function method (or

ε−constrained method) [102] to scalarize multi-performance indices. In order to deal effi-

ciently with the non-differentiable constraints (related to cable collisions), a derivative-free

optimization tool can be used, e.g., direct search in MATLAB global optimization toolbox

[107].
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4.3.1 Performance Indices

SUM OF THE CABLE TENSIONS

Let us consider a CDPR driven by m cables in a configuration defined by the vector r of

the reconfiguration parameters. At an equilibrium pose of the mobile platform, by solving

the tension distribution problem, we obtain desired cable tensions τi , i = 1,2, ...,m. One

can compute the sum of the cable tensions at an equilibrium pose:

fτ(r) =
m∑

i=1
τi (r) (4.15)

To govern this criteria over a given workspace, we propose to discretized the assigned

workspace into N equilibrium poses. In general, as in Section 4.2 it is enough to select

N extreme points and several internal points in the workspace (e.g. divide the workspace

into several boxes and only select the vertices and the center points of these boxes). The

average sum of cable tensions with respect to a given workspace can be then computed as:

fΣ(r) = 1

N

N∑
k=1

m∑
i=1

τi k (r) (4.16)

where τi k is the tension in cable i (at the end point Bi ) at the equilibrium pose k.

Another way to formulate the performance index in this case is to use the global criteria

method, similar to (4.9) in Section 4.2.4.

NORMALIZED UPPER BOUND ON THE INFINITESIMAL DISPLACEMENT VECTOR OF

THE MOBILE PLATFORM

Let us consider again the CDPR shown in Fig. 2.4. In order to quantify the stiffness

of the CDPR, a performance index meaningful to our application of interest is needed.

In this work, among a set of reconfiguration solutions, the one which has the “smaller"

infinitesimal displacement d X (with respect to any disturbance wrench dfe) is considered

to lead to the highest stiffness. The disturbance wrench can be caused, e.g., by the workers

on the platform (see in Fig. 4.7). From the relation:

K ·d X = dfe (4.17)

one can derive:

σmin = 1

‖K−1‖ ≤ ‖dfe‖
‖d X ‖ ≤ ‖K‖ =σmax (∀d X 6= 0) (4.18)
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Figure 4.8: Displacements of Op and M at the mobile platform of a CDPR

where σmin and σmax are the minimum and maximum singular values of the stiffness ma-

trix K, and ‖.‖ denotes the 2-norm of a vector or a matrix.

In this sense, the stiffness of the CDPR can be quantified by the singular values of the

stiffness matrix (specifically σmin and σmax) regardless of the magnitude or direction of the

infinitesimal wrench dfe. However, the term ‖dfe‖ and ‖d X ‖ become meaningful only if

dfe and d X are homogeneous.

Suppose that from an equilibrium pose, a small disturbance force dFe is applied on

the mobile platform at a point M . This force creates an infinitesimal wrench at Op , dfe =
(dFe , rM ×dFe )

(
rM =−−−→

Op M
)
. From (4.17), one can derive:

KH ·d XH = dfeH (4.19)

where

SH =
[

13×3 03×3

03×3 ‖rM‖ ·13×3

]

dfeH =
[

dFe

uM ×dFe

]

d XH = SH ·d X (4.20)

KH = S−1
H ·K ·S−1

H (4.21)

and uM is the unit vector
rM

‖rM‖ .
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In (4.19), the terms d XH and dfeH are homogeneous (the units are meters and New-

tons, respectively). The matrix SH transforms the stiffness matrix K into its homogeneous

form KH . The characteristic length used in this transformation is Lc = ‖rM‖.

Obviously, the choice of the characteristic length Lc plays an important role in provid-

ing a useful physical meaning for KH . The matrix K can be considered homogeneous with

the trivial characteristic length Lc = ‖rM‖ = 1 (m). One can then “safely" take the 2-norm of

the infinitesimal displacement vector d X . However, even if d XH (or d X ) is homogeneous,

its components dPH (= dOp ) and dΦH (= ‖rM‖·dΦ) still represent different quantities (po-

sition and orientation). Taking the norm of the two terms together in ‖d XH‖ and utilize

(4.18) may not be really meaningful. We shall give an interpretation for dPH and dΦH as

follows.

Let us consider the simple example shown in Figure 4.8. An infinitesimal wrench dfe

applied on the mobile platform at point M creates an infinitesimal displacement d XH =
(dPH , dΦH ). Let us consider the infinitesimal changes in the positions of points Op and

M under the action of dfe. One can write:

M =Op + (M −Op ) =Op + rM

⇒‖d M‖ = ‖dOp +dΦ× rM‖
⇒‖d M‖ ≤ ‖dOp‖+‖dΦ‖ ·‖rM‖

= ‖dPH‖+‖dΦH‖ (4.22)

The magnitude of the displacement at Op is ‖dPH‖ whereas the magnitude of the displace-

ment at M (with respect to the local mobile platform frame) is bounded by ‖dΦH‖.

With this interpretation of the homogeneous infinitesimal displacement vector d XH ,

we propose to quantify separately the two terms dPH and dΦH . From (4.19), we can write:

d XH = K−1
H ·dfeH

⇒
dPH = CP ·dfeH

dΦH = CΦ ·dfeH

(4.23)

where K−1
H = [

CT
P , CT

Φ

]T
.
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From (4.22) and (4.23), we have:

‖dPH‖
‖dfeH‖ ≤ ‖CP‖ =σP max (4.24)

‖dΦH‖
‖dfeH‖ ≤ ‖CΦ‖ =σΦmax (4.25)

⇒ ‖d M‖
‖dfeH‖ ≤σM =σP max +σΦmax (4.26)

where σP max and σΦmax are the maximum singular values of the matrices CP and CΦ, re-

spectively.

The term σM is the normalized upper bound on the infinitesimal displacement of the

mobile platform and can be used as a means to quantify the stiffness of the CDPR.

To govern this performance index over a given workspace (discretized into N equilib-

rium poses), we propose to compute the maximum value of σMk (k = 1, N ):

σM (r) = max
1≤k≤N

{σMk (r)} (4.27)

whereσMk is the normalized upper bound on the infinitesimal displacement of the mobile

platform at the equilibrium pose k.

By minimizing σM (r), one can obtain an optimal reconfiguration solution where the

potential displacement of the mobile platform at the point M over a given workspace is

minimized.

Note that we use the “max-norm" in this case as a fast means to compute the perfor-

mance index. An alternative way (which is much more time-consuming but more reliable)

is using the global criterion method to govern the criterion over the given workspace, sim-

ilar to (4.9) in Section 4.2.4.

4.3.2 Scalarization of the Performance Indices

Suppose that f ∗
Σ is the optimal value obtained by minimizing fΣ(r) in (4.16) (indepen-

dently of minimizing σM (r) in (4.27)) and σ∗
M is the optimal value obtained by minimizing

σM (r) in (4.27).

SCALARIZATION USING THE GLOBAL CRITERION METHOD

When the two performance indices have the same priority, we propose to use the

global criteron method [102]. The reconfiguration can be classically formulated as a single-
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objective optimization problem as follows:

minimize f (r) = [
(1−δΣ)s + (1−δM )s]1/s (4.28)

subject to:

rmin ≤ r ≤ rmax

r ∈ Cr

where

δΣ = fΣ(r)

f ∗
Σ

, δM = σM (r)

σ∗
M

(4.29)

and rmin and rmax are the lower and upper bounds on the reconfiguration parameters. Cr

is the set of reconfiguration parameters that satisfy all nonlinear constraints including geo-

metric constraints and wrench feasibility constraints. s is a normalized factor (usually one

chooses s = 2).

In this way, the tradeoff between the two criteria is managed “automatically".

SCALARIZATION USING THE BOUNDED OBJECTIVE FUNCTION METHOD

When the two performance indices have different priorities, we propose to use the

bounded objective function method [102] to scalarize the two criteria. One criterion is

kept as the objective function while the other criterion is transformed into a nonlinear

constraint. For example, assume that there is a strict constraint set upon the energy con-

sumption of the CDPR. Then, we can convert fΣ(r) into a nonlinear constraint and keep

σM (r) as the objective function. The reconfiguration problem in this case becomes:

minimize σM (r) (4.30)

subject to:

rmin ≤ r ≤ rmax

r ∈ Cr

δΣ(r) ≤ δ

where δ is a given value.

In this way, the tradeoff between the two criteria is managed by the term δ.
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4.3.3 Systematic Procedure to Solve a Reconfiguration Problem

The procedure to find optimal CDPR reconfigurations while optimizing the two objec-

tive functions is given in the following steps.

– Step 1: Assign desired CDPR performances including Cartesian workspace and ori-

entation ranges of the mobile platform and bounds on cable tensions (nonlinear

constraints r ∈ Cr ). Set the limitations of the actuators that drive the cable exit points

and the two overhead bridge cranes (linear constraints).

– Step 2: Determine the CDPR reconfiguration parameters. The choice of the recon-

figuration parameters depends on the use cases.

– Step 3: Determine the characteristic length Lc (which transforms the stiffness matrix

into its homogeneous form) in order to compute the index σM in (4.27).

– Step 4a: Find the optimal value f ∗
Σ by solving the single-objective optimization prob-

lem:

minimize fΣ(r) = 1

N

N∑
k=1

m∑
i=1

τi k (r) (4.31)

subject to:
rmin ≤ r ≤ rmax

r ∈ Cr

– Step 4b: Find the optimal value σ∗
M by solving the single-objective optimization

problem:

minimize σM (r) = max
1≤k≤N

{σMk (r)} (4.32)

subject to:
rmin ≤ r ≤ rmax

r ∈ Cr

– Step 5a: If the two performance indices have the same priority, solve the optimiza-

tion problem (4.28) to find the Pareto optimal reconfiguration solution for the CDPR.

– Step 5b: If the priorities of the two performance indices are different, solve the op-

timization problem (4.30) to find the Pareto optimal reconfiguration solution for the

CDPR. The additional nonlinear constraint (e.g., δΣ(r) ≤ δ) should be formulated us-

ing the relative ratios given in (4.29). In case fΣ(r) is chosen as the objective function,

step 4a can be removed. In case σM (r) is chosen as the objective function, step 4b

can be removed.

Note that the nonlinear constraints r ∈ Cr can be reformulated into a standard form as

follows:

g (r) = 0.5−1.0∗h(r) ≤ 0 (4.33)
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where

h(r) =




1, if r ∈ Cr

0, if r ∉ Cr

(4.34)

Here, h(r) consists of routines that verify geometric constraints (collision detections) and

wrench feasibility constraints.

4.3.4 Case Study

Let us consider the application of using large-dimension reconfigurable suspended

CDPR to replace gantry nacelles in an airplane maintenance workshop, e.g., for the Air-

bus A380 family (Fig. 4.9). One can use 4 CDPRs to cover the workshop divided into four

sections across the airplane as shown in Fig. 4.9. The desired typical trajectory of the mo-

bile platform is to move along the airplane fuselage or along the two wings while carrying

2-3 workers to perform certain maintenance tasks. We will consider the example of one

CDPR working in one section of the workshop.

Section 1 Section 2 

Section 3 Section 4 

y 

x 5r 6r
1r

2r 3r

4r

Desired workspace 

Figure 4.9: Using CDPRs to replace gantry nacelles in an airplane workshop
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STEP 1: ASSIGN DESIRED CDPR PERFORMANCES

In this application, the desired Cartesian workspace consists mainly of the closed area

along the airplane fuselage and its wings as shown in Fig. 4.9. This workspace can be

divided into several parts in each of which the mobile platform moves with a constant

orientation. We will consider one part of the workspace as shown in Fig. 4.10. Each bridge

crane is of 40m in length and 28m in height. The distance between the two cable exit

points within a pair mounted on an overhead bridge crane is 2m. The mobile platform

is shown in Fig. 4.7. Its working area (for the workers) is 4.4m long. The mobile platform

weighs 3000kg and can carry up to 2-3 persons (total mass of 200kg ). Steel cables are used

with Young’s modulus E = 120e +09Pa, cross-section area A0 = 4.4375e −05m2 and self-

weight w = 3.3955 N /m. The desired CDPR performances are given as (only quasi-static

analysis is considered, the dynamics of the mobile platform was ignored):

3000 ≤ mp ≤ 3200 (kg )

10.0 ≤ xp ≤ 20.0 (m)

6.5 ≤ yp ≤ 9.0 (m)

1.4 ≤ zp ≤ 8.8 (m)

θx = θy = θz = 0 (deg )

100 ≤ τi ≤ 3.104e +04 (N )

where mp is the total carried mass (CDPR mobile platform and workers), (xp , yp , zp ) is the

Cartesian position of the origin Op of the mobile platform frame and τi is the tension in

cable i at the end point Bi .

This Cartesian workspace is discretized into N = 18 equilibrium poses. The bounds

[ri min, ri max] on the parameter ri are given in such a way that the assigned workspace lies

within the span of the polygon C1C2C3C4:

0 ≤ r1,4 ≤ 4.5 (m)

0 ≤ r2,3 ≤ 31 (m)

−10 ≤ r5 ≤ 9 (m)

21 ≤ r6 ≤ 40 (m)
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Figure 4.10: Reconfiguration parameters

STEP 2: DETERMINATION OF THE RECONFIGURATION PARAMETERS

There are a maximum of 6 parameters to configure the cable exit points Ai of the re-

configurable CDPR considered in this thesis (Fig. 4.1). Here, we consider only one use case

where the number of reconfiguration parameters is nr = 4. Fig. 4.10 shows the reconfigura-

tion parameters p1, p2, p3 and p4. Two pairs of cable exit points C1 (A1, A2) and C4 (A7, A8)

are reconfigured by p1 (r1,4 = p1), while C2 (A3, A4) and C3 (A5, A6) are reconfigured by p2

(r2,3 = p2). The reconfiguration parameters p3 and p4 determine the positions of the two

overhead bridges (r5 = p3, r6 = p4).

Note that after each update of pi , a normalization of the parameters ri is needed:

ri = min(max(ri ,ri min) ,ri max) (i = 1,6) (4.35)

The corresponding bounds on the reconfiguration parameters pi can be determined by

using (4.35).

STEP 3: DETERMINATION OF THE CHARACTERISTIC LENGTH Lc

It can be seen that the homogeneous stiffness matrix KH of a CDPR presented in Sec-

tion 4.3.1 depends greatly on the choices of:

– The position of the origin Op of the local frame attached to the mobile platform.

– The characteristic length Lc (or the choice of point M to be analyzed).
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We propose to choose Op as the center of mass C of the mobile platform. In this case,

because of the uncertainties on the position of C (due for example to the workers moving

on the mobile platform), C falls into a set of possible points UC (Fig. 4.7), thus Op (and also

the center of mass C ) is chosen as the center point of UC .

To choose Lc , we propose first to define an area of interest UM of point M which con-

sists of the most unstable standing positions for the workers. UM can be chosen as the

nearest edge of the mobile platform to the airplane fuselage (the line segment M1M2).

Then, Lc is computed as the average distance from Op to the points in UM as follows:

Lc =
∫ 1

0
‖M1 + (M2 −M1) · t‖ d t (4.36)

Here, M1 and M2 are expressed in the local mobile platform frame.

By solving (4.36) we obtain Lc = 5.89021m.

STEPS 4 AND 5: SOLVING THE CDPR RECONFIGURATION PROBLEM

We used the pattern search algorithm in MATLAB global optimization toolbox [107]

to solve the optimization problems defined in steps 4a, 4b, 5a and 5b (section 4.3.3). This

method handles optimization problems with nonlinear, linear, and bound constraints, and

does not require functions to be differentiable or continuous.

The mobile platform weight is 3200 kg (fully loaded). We only consider static equilib-

rium poses of the CDPR while neglecting the dynamics of the mobile platform, cables and

overhead bridge cranes. In step 5b, σM (r) is chosen as the objective function with the ad-

ditional constraint δΣ(r) ≤ δ= 1.1. It means that the energy consumption is constrained to

be less than 110% of the optimal value ( fΣ(r) ≤ 1.1 f ∗
Σ ).

In step 4a, we set the initial value ri ni t (or pi ni t ) of the reconfiguration parameters in

the optimization problem as the extreme values (ri max or ri min) where the locations of the

cable exit points Ai are closest to the assigned workspace [108]. In the following steps (4b,

5a, 5b) ri ni t is chosen as the optimal configuration found from step 4a.

Fig. 4.11 shows the optimal reconfiguration solutions in the four steps. It is interest-

ing to note that, in the reconfiguration solution which minimizes the sum of cable ten-

sions, the cables tend to be as vertical as possible (Fig. 4.11a) [108]. On the contrary, by

minimizing the normalized upper bound on the infinitesimal displacement index, we ob-

tain optimal solutions where the cables tend to become horizontal (Fig. 4.11b). This fact

emphasizes the reason why we considered the CDPR reconfiguration as a multi-objective

optimization problem.
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Table 4.1: Results obtained by solving the different optimization problems

Steps
[
p1, p2, p3, p4

]
(m) fΣ (N ) σM (m/N ) f δΣ δM

Step 4a [2.20, 28.50, 6.75, 22.95] 3.6271e +04 5.8890e −04 11.4263 1.0 12.4263
Step 4b [0, 15.80, 1.25, 34.62] 4.5953e +04 4.7391e −05 0.2669 1.2669 1.0
Step 5a [0, 19.44, 3.38, 28.78] 4.1947e +04 5.1384e −05 0.1777 1.1564 1.0843
Step 5b [1.97, 23.54, 4.77, 28.07] 3.9641e +04 6.8734e −05 0.4598 1.0929 1.4503

To illustrate the tradeoff between the two criteria in the four cases, we compute their

values and their relative ratios given in (4.29). The results are shown in Table 4.1 (here, f is

the objective function defined in (4.28)). In step 5a, the values of δΣ and δM are quite close

to 1 since we assign equal priorities for the two criteria. Meanwhile, in step 5b, although

we obtain a relatively large value of δM (because of the constraint set upon δΣ), this value

is still much smaller than the value obtained in step 4a.

. Minimize ( )fΣa r

1.1δΣ ≤

 Step 4a  Step 4b

 Step 5a  Step 5b

. Minimize ( )Mσb r

. Minimize ( )fc r . Minimize ( )Mσd r

Figure 4.11: Reconfiguration solutions in case nr = 4
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Conclusion

This chapter discussed the CDPR reconfiguration problem. A family of large-

dimension reconfigurable suspended CDPRs was considered. In a first study, the CDPR

configuration problem is considered as a single-objective optimization problem. By trans-

forming the general complex problem into more simple optimization sub-problems, one

can take advantage of readily available tools to determine an optimal solution. As a benefit

of using gradient-based optimization tools, real-time reconfiguration planning (online

reconfiguration) of a CDPR could be achieved. In situations where there is no reliable

method to handle difficult issues in online reconfiguration, offline reconfiguration offers

a more reliable choice. Furthermore, the presented method to determine offline reconfig-

urations can be applied to specific cases such as finding the optimal solution for a given

trajectory.

In a second study, the optimal reconfigurations of the considered CDPR family are

found by solving a multi-objective optimization problem. A systematic procedure to deter-

mine the CDPR reconfiguration was presented and illustrated by a case study. It offers the

end-users a set of possible solutions where the tradeoffs between the criteria are explicitly

taken into consideration.

Although the use of derivative-free algorithms to solve the CDPR reconfiguration may

be time consuming (compared to gradient-based methods), one could effectively handle

non-differentiable nonlinear constraints (geometric constraints), and thus obtain more re-

liable solutions.

The approaches presented in this chapter could be extended to solve reconfiguration

problems of other families of reconfigurable CDPRs.
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CONCLUSION

In this thesis, we have developed a fundamental framework for reconfigurable cable-

driven parallel robots. Several topics have been discussed in detail.

GENERAL RECONFIGURABLE ARCHITECTURES

General architectures of large-dimension reconfigurable CDPRs have been proposed.

They can be used to replace conventional methods of handling large and heavy parts

across a wide workspace. These solutions were illustrated in the context of two targeted in-

dustrial applications: using large-dimension reconfigurable CDPRs in a factory workshop

and in an airplane maintenance workshop.

PRELIMINARY ANALYSIS TOOLS

Analysis tools that can aid the design and control of (reconfigurable) CDPRs were pre-

sented. Various problems were addressed including the kinetostatic, dynamic and elasto-

static modeling, collision detections and hefty cable modeling.

CDPR kinetostatic and dynamic modeling allowed us to evaluate the CDPR perfor-

mances notably by means of cable tension based criteria and to test wrench-feasibility

conditions. Thanks to the derivation of the stiffness matrix of a general 6-DOF CDPR (us-

ing the elastic catenary cable model), it was possible to define a CDPR stiffness based cri-
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terion. This new index quantifying the CDPR stiffness was used in the solving of the CDPR

reconfiguration problem.

Two algorithms to detect cable interferences were also proposed. They can be used to

verify collision free conditions for a given prescribed Cartesian workspace and a given set

of orientation ranges. These tools are especially useful to deal with geometric constraints

in a design problem or in a CDPR reconfiguration planning problem.

One of the main contribution of the thesis is the analysis of different cable models that

could be used for large-dimension CDPRs. We have shown that among different cable

models, the massless elastic cable model (taking into account only the cable elasticity)

and the simplified cable model (considering both cable mass and elasticity) give the best

performance for the CDPR in terms of positioning accuracy. Taking a further step, we car-

ried out a CDPR extended modeling that takes into account various factors impacting the

CDPR performances such as: the influence of pulley kinematics, thermal effect, friction,

tension distribution methods and cable characteristics (Young’s modulus and cable mass).

The CoGiRo prototype was used to illustrate our analysis in simulation and experiments.

From these results, we can conclude that all those factors may have to be considered in

the modeling of a CDPR. It is suggested that the cable model used includes cable mass,

elasticity and thermal effect, appropriate friction model and tension distribution method.

CDPR RECONFIGURATION PROBLEM

Moreover, systematic procedures to deal with the CDPR reconfiguration problem have

been proposed. The reconfiguration problem is considered as a general nonlinear opti-

mization problem. We focused on methods to formulate the optimization problems into

standard forms in such a way that:

– It can be solved by using any available (suitable) optimization software.

– The resultant reconfiguration solutions are reasonable with respect to desired CDPR

performances.

Two approaches have been proposed to formulate the reconfiguration problem. In the

first approach, the CDPR reconfiguration problem is considered as a single-objective opti-

mization problem and it is solved with fast optimization tools, which offer real-time capa-

ble reconfiguration planning solutions. Energy consumption indices were selected as the

objective function to derive the optimal reconfiguration solution.

In the second approach, the CDPR reconfiguration problem is considered as a multi-

objective optimization problem. The optimal planning solutions are derived by optimizing

two criteria: one index (the sum of cable tension) accounts for the energy consumption,



123

and the other index (the normalized upper bound on the infinitesimal displacement vector

of the CDPR mobile platform) accounts for the CDPR stiffness. This approach offers a more

reliable resolution where the tradeoff between different criteria are efficiently taken into

account.

Perspectives

Within the 3-year time frame of this thesis, I have only been able to address a number

of issues related to large-dimension reconfigurable CDPRs.

In the modeling of CDPRs, I dealt mainly with static analysis. The dynamics of the

cable is neglected. In fact, studying the impact of the dynamics of the cables on the CDPR

performances is still an open and difficult issue. Having knowledge of dynamic behavior

of the cables (e.g. natural frequency, vibration) can be useful in order to improve the CDPR

performances. Besides, the deformation of the CDPR base frame structure should also be

investigated.

About the control system, it would be desirable to have a more extensive study on the

impact of various tension distribution methods on the CDPR performances. We have seen

that it is critical to develop a good calibration procedure that includes the identification of

all cable characteristics (notably the effective range of the cable Young’s modulus and ther-

mal effect), the identification of the parameters defining the CDPR initial state (which sig-

nificantly impact the CDPR positioning accuracy) and the identification of friction model

(friction in the winches, friction between cable and the pulley...).

Regarding the methodology to solve the CDPR reconfiguration problem, I have mainly

discussed procedures to solve it as an optimization problem in the case of (continuously)

positioning cable exit points. In a general case, reconfiguring a CDPR consists in changing

its cable exit point positions as well as changing the positions or order of the attachment

points that connect the cables to the mobile platform. The latter case is to find optimal re-

configuration of the cable layout among a finite set of configurations for the cable-platform

attachment points. On the one hand, one can use the same steps proposed in our approach

to deal with such integer optimization problems, specifically in the method of formulating

the objective functions based on one criterion or multiple criteria. On the other hand,

it would also be interesting to develop tools that could give very fast reconfiguration so-

lutions in the cases a CDPR is used in tasks that require to carry different parts having

different geometries.
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Nevertheless, many unsolved problems on cable-driven parallel robots are still lying

somewhere in the future, waiting for enthusiasm researchers to break through them. Hope-

fully, what I have done in this thesis will become a stepping stone that can aid further studies

on CDPRs.
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A.1 Extended Modeling: a General Case

In a general case, there are several segments of the cable that connect the cable exit

point to the drum, passing through several pulleys. Fig. A.1 shows an example of a ca-

ble routing system including three transmission pulleys. The pulleys are aligned in such

order that any two consecutive pulleys are horizontally aligned or vertically aligned. For

the sake of simplification, we will consider only the cable routing system shown in Fig. A.1

(the method can be easily adapted to any N -pulley cable routing system). The total cable

unstrained length (from the drum to the cable anchor point B) is computed as follows:

LT =O (L0)+L(D,P1a )
0 +L(P1a ,P1b )

0

+...+L(Pk−1b ,Pka )
0 +L(Pka ,Pkb )

0

+L(Pkb ,Pk+1a )
0 + ...+L(PN b ,B)

0 (k = 2, ..., N ) (A.1)

where O (L0) is the cable deformation due to undetermined uncertainties(e.g., temper-

ature). L(D,P1a )
0 is the cable unstrained length between the drum and the first pulley.

L
(Pkb ,P(k+1)a )
0 is the cable unstrained length between the two pulleys k and (k +1). L(Pka ,Pkb )

0

is the cable unstrained length of the cable segment that mount on the pulley k. L(PN b ,B)
0 is

the cable unstrained length of the cable segment between the last pulley N and the cable

anchor point B .
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Figure A.1: Drum and cable transmission components: a general case

The total cable unstrained length of each cable is a constant value (LD is the unstrained

length of the part of the cable wound on the drum):

LT +LD = Ltot al = const (A.2)

The cable segment mounted on each pulley is computed as follows:

L(Pka ,Pkb )
0 = �PkaPkb = rp θk (A.3)

where θk is the angle of the arc �PkaPkb .

The computation of the term L(D,P1a )
0 depends on the design of the winch/drum. The

approach to compute L(PN b ,B)
0 is similar to the one presented in Section 3.3.2.

In the following sections, we will detail the computation of the unstrained length of the

cable segments in additional cases (which have not been discussed before).
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A.1.1 Cable Segment between Two Vertically Aligned Pulleys

Fig. A.2 shows the cable segment between two pulleys 2 and 3 which are vertically

aligned. In this case, the two tangent points P2b and P3a have the same x-coordinate. The

lateral horizontal force components in the cable at points P2b and P3a are zero ( fLx = 0),

and the cable tensions at these points satisfy τ2b = τ3a −wL(P2b ,P3a )
0 . The vertical distance

between the two tangent points is dV .

From the catenary equations (3.15), one can derive the analytical expression for the

cable unstrained length:

zP3a = zP2b −
fLz L0

E A0
+ w L2

0

2E A0
+ CT

w
(τ3a −τ2b)

⇒ w

2E A0
L2

0 +
τ3a −w L0

E A0
L0 +CT L0 + zP2b − zP3a = 0

⇒ w

2E A0
L2

0 −
(
CT + τ3a

E A0

)
L0 +dV = 0

⇒ L(P2b ,P3a )
0 = 2dV

CT + τ3a

E A0
+

√(
CT + τ3a

E A0

)2

− 2w dV

E A0

(A.4)
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Figure A.2: Cable segment between two vertically aligned pulleys
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If the massless elastic cable model is used then:

L(P2b ,P3a )
0 = dV

CT + τ3a

E A0

(A.5)

Note that the cable tension at point P3a is computed from the belt friction equation:

τ3a = τ3beµs θ3 (A.6)

The difference in unstrained length of the vertical cable segment using (A.4) and (A.5)

is very small, thus we can use (A.5) to compute L(P2b ,P3a )
0 as described in Section 3.3.1.

A.1.2 Cable Segment between Two Horizontally Aligned Pulleys

Fig. A.3 shows the cable segment between two pulleys 1 and 2 which are horizontally

aligned. In this case, the two tangent points P1b and P2a have the same z-coordinate. As-

sume that the cable frame is attached to the point P1b . From the catenary cable equations,

one can derive:

τ1b = τ2a

xP1b −xP2a =− fLx L0

E A0
+ CT fLx

w
ln

(
τ2a −w L0/2

τ2a +w L0/2

)

⇒ dH = fLx L0

E A0
+ CT fLx

w
ln

(
τ2a +w L0/2

τ2a −w L0/2

)
(A.7)
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Figure A.3: Cable segment between two horizontally aligned pulleys
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where

L0 = L(P1b ,P2a )
0

γ= atan2( fLz , fLx)

fLz = w L0

2

fLx =
√
τ2

2a −
w 2L2

0

4

and dH is the distance between the two pulleys (dH = P1P2).

The cable tension at point P2a can be computed from the belt friction equation:

τ2a = τ2beµs θ2 (A.8)

There is no analytical expression for L0 from (A.7). One can use iterative method to get

L(P1b ,P2a )
0 , e.g. initialize with L0 = dH and use the Newton-Raphson method to compute L0.

Although the method is quite fast, there is no guarantee that the algorithm will converge

within a few iterations in all the cases. In fact, we can alternatively use the massless elastic

cable model to compute the unstrained length of the cable horizontal segment (since the

difference in the cable unstrained length is very small compared to the numerical solution

obtained with the catenary cable model):

L(P1b ,P2a )
0 = dH

CT + τ2a

E A0

(A.9)

with

τ2a = τ2beµs π/2 (θ2 =π/2−γ≈π/2)

τ2b = τ3a −w L(P2b ,P3a )
0

A.1.3 Cable Segment between the Drum and the First Pulley

Fig. A.4 shows the cable segment between the drum and the first pulley. c is the step of

the helix of the part of the cable wound on the drum and t (r ad) is the total rotation angle

of the helix. rD is the radius of the drum. D is the tangent point between the cable and the

drum.

As mentioned before, the computation of the unstrained length of the cable segment in

this case depends on the design of the winch. In this section, we consider again the winch
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Figure A.4: Cable segment between the drum and the first pulley

design of the CoGiRo prototype. The case when the maximum tilt angle of the cable αmax

is less than a small value was discussed in Section 3.3.1. However, when the tilt angle α

is non-negligible (the cable segment is not in a vertical position), the modeling becomes

more complicated.

Let us assume that at the initial pose of the mobile platform (the home pose), we know

the unstrained length LT 0 of the cable from the drum to the anchor point B . At a sample

time k, a desired motor angular displacement qd is generated. We have:

LT 0 + rq qd = L(D,P1)
0 (k)+L(P1,B)

0 (k)

=
√

d 2
w +d 2

t

CT + τ1a

E A0

+L(P1,B)
0 (k) (A.10)

Let us define L0d = L(P1,B)
0 (k) and M =CT + τ1a

E A0
.

The value of L0d can be computed from the corresponding unstrained lengths of all the

cable segments between any two consecutive pulleys, wound on each pulley, and between

the last pulley and the cable anchor point B .
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In (A.10):

dt = d0 + rL qd (A.11)

where d0 is the distance from the cable tangent point D to the vertical axis position when

the mobile platform is at the home pose and rL is a conversion ratio. In the case of the

CoGiRo CDPR we have:

rq =
2π

√
r 2

D + c2

3000
(A.12)

rL = 2πc

3000
(A.13)

Substituting (A.11) into (A.10) we have:

(
LT 0 + rq qd

)
M =

√
d 2

w + (
d0 + rL qd

)2 +L0d M

⇒
(
M 2 r 2

q − r 2
L

)
q2

d +2
[
rq (LT 0 −L0d ) M 2 −d0 rL

]
qd

+M 2 (LT 0 −L0d )2 − (
d 2

w +d 2
0

)= 0 (A.14)

Solving (A.14), we obtain two possible solutions for qd :

qd = rL d0 − rq (LT 0 −L0d ) M 2 ±p4
M 2 r 2

q − r 2
L

(A.15)

where 4= M 2
[
rL (LT 0 −L0d )− rq d0

]2 +
(
M 2 r 2

q − r 2
L

)
d 2

w .

When d0 = 0 and rL = 0 (the cable segment is assumed to be in a vertical position), we

get the same solution as the one obtained with the massless elastic cable model:

LT 0 + rq qd = dw

M
+L0d

⇒ qd = − (LT 0 −L0d )

rq
+ dw

M rq
(A.16)

This solution corresponds to the general case:

qd = rL d0 − rq (LT 0 −L0d ) M 2 +p4
M 2 r 2

q − r 2
L

(A.17)

To implement (A.17) in a control scheme, it is important to “precisely" determine the val-

ues of d0 and LT 0 at the initial state of the CDPR (when the mobile platform is at the home

pose).
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A.2 Tangent Point between a Line and a Circle

Fig. A.5 shows the tangent point between a straight line and a circle. The problem is

to find the coordinates of the tangent point A(xa , za) being given the coordinates of the

point B(xb , zb) in the local frame attached to the origin P and the radius of the circle. The

coordinates of the point A must satisfy the circle equation and the tangent line equation:

(
xA − rp

)2 + z2
A = r 2

p (A.18)
(
xA − rp

)(
xb − rp

)+ zA zb = r 2
p (A.19)

⇒ xA − rp =
r 2

p − zA zb

xb − rp
(A.20)

Substituting (A.20) into (A.18) we have:

(
r 2

p − zA zb

xb − rp

)2

+ z2
A = r 2

p

⇒
[

z2
b +

(
xb − rp

)2
]

z2
A −2 zb r 2

p · zA + r 4
p − r 2

p

(
xb − rp

)2 = 0

⇒ zA =
zb r 2

p ±	�
z2

b +
(
xb − rp

)2 (A.21)

where �=
[

z2
b +

(
xb − rp

)2 − r 2
p

]
r 2

p

(
xb − rp

)2.

In Fig. A.5, zA > 0, thus we obtain the solution:

zA =
zb r 2

p + rp |xb − rp |
√

z2
b +

(
xb − rp

)2 − r 2
p

z2
b +

(
xb − rp

)2 (A.22)

xA = rp +
√

r 2
p − z2

A (A.23)
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Figure A.5: Tangent line from a fixed point to a circle
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Résumé

Cette thèse propose un cadre d’étude des robots parallèles à câbles (RPC) reconfigu-

rables. Sa contribution se décompose en trois parties.

1. Proposition d’architectures de RPC reconfigurables de grande dimension - Ces ar-

chitectures sont destinées à remplacer certains moyens classiques de manipulation

de pièces lourdes et/ou volumineuses au travers d’un vaste espace de travail, par

exemple dans un atelier d’usine ou dans un hangar de maintenance d’avions.

2. Outils d’analyse utiles à la conception et à la commande de RPC (reconfigurables) -

Diverses problématiques sont abordées tels que les modélisations cinématique, dy-

namique et élasto-statique des RPC et la détection de collisions de câbles.

3. Méthodes et outils de résolution efficace du problème de la reconfiguration d’un RPC

- Considéré comme un problème d’optimisation non linéaire, l’étude se concentre

sur des méthodes de reformulation du problème sous des formes standards. Les

reconfigurations optimales du RPC peuvent alors être déterminées à l’aide de mé-

thodes classiques d’optimisation.

Mots clefs : Robots parallèles à câbles, reconfiguration, modélisation

Abstract

In this thesis, a fundamental framework for reconfigurable cable-driven parallel robots

(CDPR) is developed. It consists of three main parts:

1. Propositions of general architectures of large-dimension reconfigurable CDPRs

which can be used to replace conventional means of handling large and heavy parts

across a wide workspace, e.g., in a factory workshop or in an airplane maintenance

workshop.

2. Analysis tools that can aid the design and control of a general (reconfigurable) CDPR.

Various issues are addressed including kinematic, dynamic and elastostatic model-

ing, collision detections and cable modeling.

3. Methods and tools to solve the CDPR reconfiguration problem efficiently. This prob-

lem is considered as a general nonlinear optimization problem. The thesis focuses

on methods to formulate this optimization problem into standard forms which can

be solved by using available (suitable) optimization software in order to obtain opti-

mal CDPR reconfigurations.

Keywords: Cable-driven parallel robots, reconfiguration, kinetostatic models

LIRMM — 161, rue Ada — 34095 Montpellier cedex 5 — France


	Cover

	Front-en

	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Notations
	Introduction
	Thesis Context
	CDPRs: an Overview
	Recent Developments of Reconfigurable CDPRs
	On the Use of Large-Dimension Reconfigurable CDPRs in Two Targeted Industrial Applications
	FactoryWorkshop
	Airplane Maintenance Workshop

	Contributions and Content of the Thesis

	Preliminaries
	General CDPR Modeling
	KinetostaticModeling
	Dynamic Modeling

	Cable Modeling
	Cable Profile
	Linearization
	A Limitation of the Simplified Cable Model
	Computation of the Cable Unstrained Length

	The Tension Distribution Problem
	Stiffness Matrix of CDPRs
	Stiffness Matrix of One Cable
	Stiffness Matrix of 6-DOF CDPRs

	On the Collision Detection Problems
	Interferences between Cables and Cables
	Interferences between Cables and the CDPR Mobile Platform
	Checking that a Given Workspace is Collision Free
	Example


	Extended Modeling - Application to the CoGiRo CDPR
	The Modeling and Control of the CoGiRo CDPR
	Assumptions
	Using the Inverse Kinematics Solution in the CDPR ControlScheme
	Modeling of Friction

	Cable Profile with Thermal Effect
	Catenary Equation with Thermal Effect
	Linear Relationship between Cable Force Components

	CDPR Extended Modeling
	Cable Segment between the Drum and the Pulley
	Cable Segment between the Pulley and the Cable Anchor Point

	Solving the Inverse Kinetostatic Problem Using the Catenary Cable Model
	Error Analysis
	Impact of Thermal Effect
	Impact of Cable Characteristics
	Impact of the Method to Solve the CDPR Tension Distribution Problem

	Case Study
	Case 1: Neglecting the Influence of the Pulleys and of Friction
	Case 2: CoGiRo with Extended CDPR Modeling


	The CDPR Reconfiguration Problem
	Introduction
	Large-Dimension Reconfigurable Suspended CDPR Architecture
	The General Problem of CDPR Reconfiguration

	CDPR Reconfiguration as a Single-Objective Optimization Problem
	Performance Indices
	Step 1: Define Desired CDPR Performances
	Step 2: Formulate Two Optimization Sub-Problems
	Step 3: Determining the CDPR Reconfiguration
	Case Study
	Remark on the Methodology

	CDPR Reconfiguration as a Multi-Objective Optimization Problem
	Performance Indices
	Scalarization of the Performance Indices
	Systematic Procedure to Solve a Reconfiguration Problem
	Case Study


	Conclusion
	Publications
	Conferences

	Complementary Modeling
	Extended Modeling: a General Case
	Cable Segment between Two Vertically Aligned Pulleys
	Cable Segment between Two Horizontally Aligned Pulleys
	Cable Segment between the Drum and the First Pulley

	Tangent Point between a Line and a Circle


