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thèse exceptionnel. Pascal, merci pour ton enthousiasme, tes conseils et ta disponibilité,
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Mes remerciements vont également à William Guyot-Lénat qui par sa bonne humeur,
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variés au quotidien avec des collègues doctorants. Merci Antoine et Alexis pour ces capti-
vantes et uniques discussions, ainsi que pour ces promenades inatendues dans le campus.
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moments régénérateurs.
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CHAPTER 1

Introduction

In this thesis, we study distributed computations in the cloud following the MapReduce
paradigm. We start this first chapter with a brief history of cryptography, and present
cloud cryptography’s challenges. Then, we introduce the concept of distributed computa-
tions following the MapReduce paradigm. Finally, we list the contributions of this thesis.

1.1 A Brief History of Cryptography

Cryptography, from Ancient Greek κρψπτός (hidden, secret) and γράπηειν (to write) or
λογία (study), etymologically refers to the science of secret. Historically, its aim is to
guarantee the confidentiality of sensitive data, e.g., for military use. For instance, the
Spartan army used an encryption technique based on the scytale to deliver secret messages
during military campaigns. A scytale is a tool used to perform a transposition cipher,
consisting of a cylinder with a strip of parchment wound around it on which is written
a message. The recipient uses a rod of the same diameter on which the parchment is
wrapped to read the message. An other example, is the use of substitution cipher in the
16th century by Mary, Queen of Scots, for the Babington Plot in order to assassinate
Queen Elizabeth I†.

Century after century, techniques have been improved. However, it was not until the
World War II, with the Enigma machine used by Nazi Germany, for the appearance of
automated encryption techniques allowing to have a faster encryption without human-
errors. However, the Enigma machine was not perfect. The Allies, with the help of
prodigious mathematicians and linguists (whose Alan Turing), succeeded in the crack of
the machine. The consequences on the end of the war were decisive [Koz84].

In the late of 1940s, the mathematician Claude Shannon introduced the theoretical
foundations of cryptography by formally defining secrecy and authentication [Sha49], two
fundamental principles of cryptography. This has given rise to the modern cryptography.
Few years later, in 1975, the first symmetric encryption standard called Data Encryption
Standard (DES) has been officially published [SSW77]. A symmetric encryption scheme
requires the same secret key to encrypt and decrypt a message. Hence, a sender and a
receiver must agree on this key, which can be delicate in real situations. The DES stan-
dard has been developed by IBM and used by governments and companies during decades,
until it became obsolete in 2000 and was replaced by the new standard called Advanced

†The history is fond of cryptography, for the curious reader, the author recommends the reading of The
Code Book by Simon Singh.
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2 CHAPTER 1. INTRODUCTION

Encryption Standard (AES), proposed by Daemen and Rijmen [DR98]. In parallel, Diffie
and Hellman invented in 1976, a technique to share a secret between two users with no
initial shared knowledge; asymmetric cryptography was born [DH76]. Two years later,
Rivest, Shamir, and Adelman proposed the first asymmetric encryption scheme allowing
two users to safely exchange encrypted messages [RSA78]. They also introduce the concept
of homomorphic encryption allowing arbitrary computations on encrypted data. Before
the first construction of such a fully homomorphic encryption (FHE) scheme proposed by
Gentry [Gen09] thirty years later, several partially homomorphic schemes have been de-
signed. A partially homomorphic encryption scheme allows to perform a specific operation
from ciphertexts. Such a scheme is the Paillier’s cryptosystem [Pai99] that is additive-
homomorphic, i.e., it allows to compute the encryption of the sum of two plaintexts from
their respective encryption.

Naturally, FHE schemes are a powerful tool in cloud computing. However, currently
known FHE schemes are yet impractical for real applications [CGGI16]. In recent years,
somewhat homomorphic encryption (SHE) schemes, initially used as a building block for
FHE construction have attracted a lot of attention from the community [BGV12, FV12a,
BLLN13, LTV12]. Although SHE schemes can support only a limited number of additions
and multiplications, they are much faster and more compact than FHE schemes. There-
fore SHE schemes can give a practical solution in wide applications, and it is coming to
attention to research on applications with SHE schemes [NLV11].

If cryptography was mainly used by governments and companies before the 20th cen-
tury, the emergence of computers and of the Internet in our everyday life allows us to be
actors (or at less users) of it. In fact, the cryptography allows Internet users to seclude
themselves, or information about themselves, and thereby express themselves selectively:
what is called privacy‡. One of the first solution is Pretty Good Privacy [CDF+07], an
encryption program developed by Paul Zimmermann in 1991 that provides privacy and
authentication for data communication. It is used for signing, encrypting, and decrypt-
ing texts, e-mails, files, directories, and whole disk partitions and to increase the secu-
rity of e-mail communications. Its free-software replacement named GnuPG [Pro19] can
be used easily by everyone to encrypt and sign e-mails via the Thunderbird’s extension
Enigmail [SB19]. Moreover, since Edward Snowden’s revelations in 2013§ and various
data scandals including the one with Facebook and Cambridge Analytica in early 2018¶,
the general public realized that it was important to take control of its digital life with
the help of cryptographic tools. In addition to the encryption of e-mails, the Tor web
browser [TTP19] solution is more and more adopted by journalists or regular internauts
to browse privately.

All this proves the importance of the cryptography in history and societal and political
problems of today’s world, as well as the various applications of this science of secret.

1.2 Cloud Computing Challenges

As seen above, cryptography can be used for different goals: confidentiality, authentication,
anonymity, etc. This thesis focuses on the privacy-preserving cloud applications.

During the last decade, a plethora of cloud computing service providers appeared, e.g.,
Amazon Web Services, Microsoft Azure, Google Cloud Platform, or IBM Cloud. They
propose to manage data centers to the users in order they have only to deal with the

‡What Is Privacy? https://www.privacyinternational.org/video/1625/video-what-privacy
§For further details, the author recommends the documentary film Citizenfour directed by Laura

Poitras, and the non-fiction book No Place to Hide: Edward Snowden, the NSA, and the U.S. Surveillance
State by Glenn Greenwald.
¶https://www.theguardian.com/news/series/cambridge-analytica-files

https://www.privacyinternational.org/video/1625/video-what-privacy
https://www.theguardian.com/news/series/cambridge-analytica-files
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application-side. On the positive side, using such a cloud computing provider makes data
processing accessible to users who cannot afford to build their own clusters. A recent
real-world example is the use of Microsoft Azure by the European search engine Qwant‖

to compute a part of the web indexation∗. However, outsourcing data and computations
to a cloud computing provider involves inherent security and privacy concerns. Indeed,
such a computation delegation invokes two threats.

1. A cloud computing service provider can receive data to process in a plain form.
Hence, it is able to learn information (possibly sensitive) on its clients.

2. Cloud users must trust the infrastructure’s security for the safety of their data.
Indeed, if some security breaches exist, an adversary can exploit them and steal the
plain data.

Furthermore, more and more Internet applications deal with a huge amount of data, these
applications are called data-mining applications or “big-data” analysis. In practice, the
processing of the data must be fast. In many of these applications, the structure of the
data is regular allowing to use parallelism in order to manage the data quickly. Classic
computation uses only one processor, with its main memory, cache, and local disk. In
the past, parallel processing, such as large scientific computations, was performed on very
expensive and specific machine with many processors and specialized hardware. Due to
the prevalence of large-scale Web services and the cost of such machine, computations
are more and more performed on thousands of compute nodes connected by Ethernet
cables and switches. These new computing facilities have given rise to a new generation
of programming systems. These systems take advantage of the power of parallelism and
at the same time avoid the reliability problems that arise when the computing hardware
consists of thousands of independent components, any of which could fail at any time.

In summary, new cloud applications have to deal, on the one hand, with the software
side by considering the privacy of data user, and on the other hand, with the hardware
side by considering the architecture of the data centers.

1.3 The MapReduce Paradigm

This thesis focus on the MapReduce paradigm to deal with the cloud service provider’s
architecture composed of thousands of compute nodes. To deal with applications on
such architectures, a new software stack has evolved. The software stack begins with
a new form of file system, called a distributed file system which features much larger
units than the disk blocks in a conventional operating system. Distributed file systems
also provide replication of data or redundancy to protect against media failures that occur
when data is distributed over thousands of low-cost compute nodes. Before explaining how
computations are performed using the MapReduce paradigm, we recall some elements of
databases domain.

1.3.1 Vocabulary and Notations

MapReduce deals with relations. A relation is a table with column headers called at-
tributes. Rows of the relation are called tuples. The set of attributes of a relation is
called its schema. We represent by R(A1, . . . , An) a relation whose name is R and having
A1, . . . , An as attributes. We give such an example in Figure 1.1.

‖https://www.qwant.com/
∗https://standblog.org/blog/post/2019/05/19/Qwant-Microsoft-et-Vivatech

https://www.qwant.com/
https://standblog.org/blog/post/2019/05/19/Qwant-Microsoft-et-Vivatech
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From To

url11 url12
url21 url22
url31 url32

... ...

Figure 1.1: Relation Links(From,To) consists of the set of pairs of URLs, such that the
first has one or more links to the second.

1.3.2 MapReduce

MapReduce is a style of computing. It has been developed by Google in 2004 in order to
efficiently compute the ranking of Web pages [DG04]. Moreover, it has been implemented
in different systems as, Google’s internal implementation (simply called MapReduce) and
the open-source implementation Apache Hadoop R© [Fou19b], used in this thesis. Apache
Hadoop R© is widely used by companies such as Facebook with a 1,100-machine cluster
for analytics and machine learning or Spotify with a 1,650-machine cluster for data ag-
gregation∗∗. These implementations allow to manage many large-scale computations that
are tolerant to hardware faults. Only two functions, called Map and Reduce, must be
implemented while the system manages the parallel execution, coordination of tasks that
execute Map or Reduce, and also deals with the possibility that one of these tasks fails to
execute. To sum up, MapReduce computations execute as follows:

1. Map tasks are given one or more chunks. The Map tasks transform the chunk into
a sequence of key-value pairs depending on the code written in the Map function.

2. The key-value pairs emitted by each Map task are aggregated by a master controller
and sorted by key. Key-value pairs sharing the same key are then sent to the same
Reduce task.

3. The Reduce tasks work on one key at a time and combine all the values associated
with that key depending on the code written in the Reduce function.

We illustrate this mechanism in Figure 1.2.

The Map Tasks. Map tasks take as input elements which can be a tuple or a document.
A chunk is a collection of elements. Inputs and outputs of Map and Reduce functions are
of the key-value pair form. The Map function written by the user takes as input element
as its argument and produces zero or more key-value pairs. The types of keys and values
are each arbitrary. We stress that keys do not have to be unique, in fact Map task can
produce several key-value pairs with the same key, even from the same element.

Grouping by Key. Once the Map tasks have finished successfully, all generated key-
value pairs are grouped by key. For a given key, all associated values produce a list of
values. Regardless of what the Map and the Reduce tasks do, the grouping is produced
by the system. Depending on the number of Reduce tasks there will be, the MapReduce
system picks a hash function that applies to keys and produces the corresponding number
of buckets. Hence, each key outputted by the Map tasks is hashed and its key-value pair
is sent to the Reduce tasks according to the hash value. We stress that the used hash
function does not have to be a cryptographic hash function. To perform the grouping

∗∗https://wiki.apache.org/hadoop/PoweredBy

https://wiki.apache.org/hadoop/PoweredBy
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Figure 1.2: Schematic of a MapReduce computation.

by key and distribution to the Reduce tasks, the master controller merges the files from
each Map task that are destined for a particular Reduce task and feeds the merged file to
that process as a sequence of key-list-of-values pairs. In other words, for each key k, the
input to the Reduce task that handles key k is a pair of the form (k, [v1, . . . , vn]), where
(k, v1), . . . , (k, vn) are the key-values pairs coming from the Map tasks.

The Reduce Tasks. The Reduce function’s input is a pair constituted of a key and a
list of associated values. The output of the Reduce function is a sequence of zero or more
key-values pair. We refer to the application of the Reduce function to a single key and its
associated list of values as a reducer. A Reduce task receives one or more keys and their
associated value lists. In other terms, a Reduce task can execute several reducers. When
the Reduce tasks have finished, all the outputs are merged into a single file and stored on
the file system of the cloud computing service provider.

1.4 Algorithms Using MapReduce

In this thesis, we focus on two categories of computation: the first one concerns the matrix
multiplication, and the second one relates to the relational-algebra operations.

1.4.1 Matrix Multiplication

If M is a matrix with element mi,j in row i and column j, and N is a matrix with element
nj,k in row j and column k, then the product MN is the matrix P with element pi,k in
row i and column k, where

pi,k :=
∑
j

mi,j · nj,k .

Matrix multiplication is a mathematical tool of various problems spanning over a
plethora of domains, e.g., statistical analysis, medicine, image processing, machine learning
or web ranking. Indeed, Markov chains applications on genetics and sociology [Cha12], or
applications such that computation of shortest paths [SZ99, Zwi98], convolutional neural
network [KSH17] deal with data processed as matrix multiplication. In such applications,
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the size of the matrices to be multiplied is often very large. The matrix multiplication is
also the original purpose for which the Google implementation of MapReduce was created.
Indeed, such multiplications are needed by Google in the computation of the PageRank
algorithm [DG04].

1.4.2 Relational-Algebra Operations

This thesis focuses on the three following relational-algebra operations.

1. Intersection. This well-known set operation applies to the sets of tuples in two or
more relations that have the same schema.

2. Grouping and Aggregation. Tuples of a relation are partitioned according to their
values in one set of attributes, called the grouping attributes. For each group, the
values in certain other attributes, called the aggregation attributes, are aggregated.
The normally permitted aggregation operations are SUM, COUNT, AVG, MIN,
and MAX, with the natural meanings. Note that SUM and AVG require that the
type allows arithmetic operations, while MIN and MAX operations require that the
aggregated values have a type that can be compared. The results of this aggregation
operation is one tuple for each group. That tuple has a component for each of the
grouping attributes, with the value common to tuples of that group. It also has a
component for each aggregation attribute, with the aggregated value for that group.

3. Natural Join. Given two relations, this operation compares each pair of tuples,
one from each relation, on all the attributes that are common to the two schemas.
If values of these attributes agree, then it produces a tuple that has components
for each of the attribute in either schema and agrees with the two tuples on each
attribute.

These relational-algebra operations have obvious real-world applications.

1.5 Contributions

This thesis addresses the problem of how to perform secure distributed matrix multiplica-
tion and relational-algebra operations in a public cloud using the MapReduce paradigm.
We propose the following contributions.

• In the first part of this manuscript, we consider matrix multiplication. We pro-
pose two secure approaches [BCGL17] enhancing the standard MapReduce matrix
multiplication [LRU14] with privacy preservation (cf. Chapter 3). Based on this
work, we propose a protocol to compute the Strassen-Winograd matrix multiplica-
tion, one of the most efficient matrix multiplication algorithm, using the MapReduce
paradigm. Moreover, we design a secure approach allowing to compute the Strassen-
Winograd matrix multiplication in a privacy-preserving way using the MapReduce
paradigm [CGLY19b] (cf. Chapter 4). Our new protocols rely on the Paillier’s
cryptosystem [Pai99].

• In the second part, we deal with relational-algebra operations, in particular inter-
section, grouping and aggregation, and natural join operations. For each of these
three operations, we design a privacy-preserving approach [CGLY19a, CGLY18,
BCG+18] of the corresponding standard MapReduce protocol [LRU14]. We respec-
tively present these three secure improvements in Chapter 5, 6, and 7.
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All protocols assume a semi-honest cloud service provider, i.e., it dutifully executes
the considered protocol but tries to learn as much information as possible. Moreover, we
also assume that all communications are performed over secure channels, i.e., transferred
data is resistant to eavesdropping.

Finally, we give experimental results for each protocol using the open-source framework
Apache Hadoop R© 3.2.0 [Fou19b] implementing the MapReduce paradigm. All computa-
tions have been done on a computer having an Intel R© CoreTM i7-4790 CPU cadenced at
3.60 GHz, 16 GB of RAM, and running on the GNU/Linux distribution Ubuntu 16.04.
We use the Hadoop streaming interface and implement the Map and Reduce functions in
Go 1.6.2 [GPT10].

1.6 Related Work

We present the related work on both parties of the manuscript, namely matrix multipli-
cation and relational-algebra operations.

1.6.1 Matrix Multiplication

Distributed matrix multiplication has been thoroughly investigated in the secure multi-
party computation model (MPC) [DA01, DLOP16, DLOP17, DLF+19, AE07, WSZ+09],
whose goal is to allow different nodes to jointly compute a function over their private
inputs without revealing them. The aforementioned works on secure distributed matrix
multiplication have different assumptions compared to the MapReduce paradigm: (i) they
assume that nodes contain entire vectors, whereas the division of the initial matrices in
chunks as done in MapReduce does not have such assumptions, and (ii) in MapReduce,
the functions specified by the user [DG04] are limited to Map (process a key-value pair to
generate a set of intermediate key-value pairs) and Reduce (merge all intermediate values
associated with the same intermediate key), and the matrix multiplication is done in one or
two communication rounds [LRU14]. On the other hand, the works in the MPC model as-
sume arbitrary numbers of communication rounds, relying on more complex functions than
Map and Reduce. Moreover, generic MPC protocols [MD08, CDN01] allow several nodes
to securely evaluate any function. Such protocols could be used to secure MapReduce.
However, due to their generic nature, they are inefficient and require a lot of interactions
between parties. Our goal is to design optimized protocols to secure the standard and
the Strassen-Winograd matrix multiplication using the MapReduce paradigm, and the
additive-homomorphic Paillier’s cryptosystem [Pai99].

In a different way, homomorphic encryption allows to perform operations on encrypted
data. The concept of homomorphic encryption has been introduced by Rivest et al. in
1978 [RSA78] while the first scheme of fully homomorphic encryption (FHE) that supports
arbitrary operations on encrypted data was proposed by Gentry in 2009 [Gen09]. Since
this pioneer work, a lot of effort has been done to propose and improve FHE schemes in
both theory and practice [ACC+18]. At present, some ring-LWE-based FHE schemes such
as BGV [BGV12] or FV [FV12a] and its variant BFV are efficient and useful for matrix
multiplication. However, when several matrix multiplications are performed between k ≥ 2
square matrices M (i) (with i ∈ J1, kK) of order n ∈ N∗, i.e., the computation of

Mj0,jk :=

n∑
jk−1=1

(
· · ·
( n∑
j2=1

( n∑
j1=1

M
(1)
j0,j1
·M (2)

j1,j2

)
·M (3)

j2,j3

)
· · ·
)
·M (k)

jk−1,jk
,

where Mj0,jk is the matrix element of the result of coordinates (j0, jk) with j0, jk ∈ J1, nK,
the performance might be considerably slower since it implies the use of huge parameters
or techniques such as relinearization and modulus switching [BV11]. Our methods use
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Paillier’s cryptosystem [Pai99] that is more practical for multiple matrix multiplications.
In Figure 1.3, we show the running time for multiple matrix multiplications using the
Paillier’s cryptosystem and the BFV scheme. We use a 1024-bit RSA modulus for the
Paillier’s cryptosystem while parameters for the BFV scheme are presented in Table 1.1.
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Figure 1.3: Running time vs the number of matrix multiplications using Paillier’s cryp-
tosystem [Pai99] and the BFV [FV12a] scheme.

Table 1.1: Parameters for the BFV scheme to compute multiple matrix multiplications.

# matrix mul. Degree of polynomial Coefficient mod. Plaintext mod.

1 2048 2048 8
2 2048 4096 8
3 4096 4096 12
4 4096 8192 16
5 8192 16384 19

On the other hand, several optimization for matrix multiplication over ring-based
homomorphic encryption have been realized. Based on the idea of Yasuda et al. [YSK+15a,
YSK+15b], Duong et al. [DMY16] proposed a new method consisting in packing an entire
matrix into a single polynomial and then encrypt the polynomial over the homomorphic
scheme. Following this work, Mishra et al. [MRDY18] generalized the method of Duong
et al. to multiple matrix multiplications. If these methods reduce both the ciphertext size
and the computation cost, they remain difficult to apply with big-data matrices which
require large parameters.

1.6.2 Relational-Algebra Operations

Since the seminal MapReduce paper [DG04], different protocols have been proposed to
perform relational-algebra operations in a privacy-preserving manner [DDGS16] such as
search [BPMÖ12, MBC13], count [VBN15] or joins [DLS16]. We present related work on
the intersection, grouping and aggregation, and natural join relational-algebra operations
on which we focus in this thesis.

Intersection. Private Set Intersection (PSI) is a well-known cryptographic primitive where
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two parties compute the intersection of their respective sets, such that minimal information
is revealed in the process. It was introduced by Freedman et al. [FNP04]. The aim of
this primitive is to allow the two parties to learn the elements common to both sets and
nothing else. Such primitives where neither party has any advantage over the other and
where all parties know the intersection are called mutual PSI [CKT10]. On the contrary,
primitives where only one party learns the intersection of the two sets while the other
learns nothing are called one-way PSI [CKT10]. A natural PSI extension is called PSI
with Data Transfer (PSI-DT) [JL10]. In PSI-DT, one or both parties have data associated
with each element of their respective sets.

Many secure MPC protocols computing the set intersection have been proposed [KS05,
HN10, HEK12, DCW13] in the literature. However, each protocol follows either the mu-
tual or the one-way model, and do not consider a model where an external user may receive
the intersection, which our protocol proposes. Also, using the MapReduce paradigm, our
proposal only requires the two functions Map and Reduce.

Grouping and Aggregation. Bonawitz et al. [BIK+17] provides a technique to compute
secure aggregation, while relying on Shamir’s secret sharing [Sha79] to compute the sum
of values coming from different sources. Similarly, Alghamdi et al. [AWK17] provides
a technique to compute secure aggregation for wireless sensor networks. Contrary to
us, these two approaches do not consider the MapReduce paradigm and they cannot be
easily adapted for MapReduce because values of shared attributes are encrypted in a non-
deterministic way. This is not a suitable choice for MapReduce keys that need to be equal
in order to aggregate the key-value pairs on the same reducer.

Moreover, Dolev et al. [DLS16] proposed a technique for executing MapReduce on the
count aggregation in a public cloud while preserving data owner privacy. They use the
Shamir’s secret sharing and accumulating automata [DGL15]. The count computation is
done on secret-shares in the public cloud, and at the end, the user performs the interpo-
lation on the outputs. On the other hand, in our setting, the user has only to decrypt the
final query result, contrary to the need of doing interpolations in the paper of Dolev et
al. [DGL15].

In a different way, several papers use trusted hardware-based systems to securely com-
pute aggregation [TNP16, DSC+15, SCF+15]. This thesis does not rely on such system
but studies security on the application-side.

Natural Join. Emekçi et al. [EAEG06] proposed protocols to perform joins in a privacy-
preserving manner using Shamir’s secret sharing [Sha79]. Contrary to us, they do not
consider the MapReduce paradigm and their approach cannot be trivially adopted in
MapReduce because values of shared attributes are encrypted in a non-deterministic way.
Indeed, the MapReduce paradigm requires that data satisfying a certain property must be
mapped to the same reducer which is not possible with a probabilistic encryption scheme.
In the same way, Laur et al. [LTW13] also proposed a protocol to compute joins using
secret sharing, in addition to only consider two relations, their approach cannot be easily
used with the MapReduce paradigm. Chow et al. [CLS09] introduced a generic model that
uses two non-colluding servers to perform join computation between an arbitrary number
relations in a privacy-preserving manner but did not consider the MapReduce paradigm.
Moreover, we assume a more general setting where the public cloud servers collude.

Finally, Popa et al. [PRZB11] proposed a system, called CryptDB, that is closely
related to our work. CryptDB provides practical and provable confidentiality for applica-
tions backed by SQL databases. It works by executing SQL queries over encrypted data,
such as natural join, aggregation, and search. Contrary to us, they do not consider the
intersection operations and do not follow MapReduce programming model.
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1.7 Publications

We recall the papers about the works presented in this manuscript, and we list the papers
about other works that were conducted throughout this thesis.

1.7.1 Presented in this Manuscript

The five following papers summarize the works that are presented in this manuscript.

1. Secure Matrix Multiplication with MapReduce
By Xavier Bultel, Radu Ciucanu, Matthieu Giraud, and Pascal Lafourcade. Pub-
lished in proceedings of the 12th International Conference on Availability, Reliability
and Security (ARES 2017) [BCGL17].

2. Secure Strassen-Winograd Matrix Multiplication with MapReduce
By Radu Ciucanu, Matthieu Giraud, Pascal Lafourcade, and Lihua Ye. Published in
proceedings of the 16th International Joint Conference on e-Business and Telecom-
munications (SECRYPT 2019) [CGLY19b].

3. Secure Intersection with MapReduce
By Radu Ciucanu, Matthieu Giraud, Pascal Lafourcade, and Lihua Ye. Published in
proceedings of the 16th International Joint Conference on e-Business and Telecom-
munications (SECRYPT 2019) [CGLY19a].

4. Secure Grouping and Aggregation with MapReduce
By Radu Ciucanu, Matthieu Giraud, Pascal Lafourcade, and Lihua Ye. Published in
proceedings of the 15th International Joint Conference on e-Business and Telecom-
munications (SECRYPT 2018) [CGLY18].

5. Secure Joins with MapReduce
By Xavier Bultel, Radu Ciucanu, Matthieu Giraud, Pascal Lafourcade, and Lihua
Ye. Published in proceedings of the 11th International Symposium on Foundations
and Practice of Security (FPS 2018) [BCG+18].

1.7.2 Other Publications

We list exhaustively the other papers published during the thesis, and we give a short
abstract for each of them.

1. Formal Analyze of a Private Access Control Protocol to a Cloud Storage
By Mouhebeddine Berrima, Matthieu Giraud, Pascal Lafourcade, and Narjes Ben
Rajeb. Published in proceedings of the 14th International Joint Conference on e-
Business and Telecommunications (SECRYPT 2017) [BLGR17].

Abstract: Storing data in the cloud makes challenging data’s security and users’
privacy. To address these problems cryptographic protocols are usually designed.
Cryptographic primitives have to guarantee some security properties such as data
and user privacy or authentication. Attribute-Based Signature (ABS) and Attribute-
Based Encryption (ABE) are very suitable for storing data on an untrusted remote
entity. In this work, we formally analyze the Ruj et al. [RSN12] protocol of cloud
storage based on ABS and ABE schemes. We model the protocol and its security
properties with ProVerif, an automatic tool for the verification of cryptographic
protocols. We discover an unknown attack against user privacy. We propose a cor-
rection, and automatically prove the security of the corrected protocol with ProVerif.
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2. Practical Passive Leakage-Abuse Attacks Against Symmetric Searchable Encryption
By Alexandre Anzala-Yamajako, Olivier Bernard, Matthieu Giraud, and Pascal
Lafourcade. Published in proceedings of the 14th International Joint Conference
on e-Business and Telecommunications (SECRYPT 2017) [GABL17].

Abstract: Symmetric Searchable Encryption (SSE) schemes solve efficiently the prob-
lem of securely outsourcing client data with search functionality. These schemes are
provably secure with respect to an explicit leakage profile; however, determining
how much information can be inferred in practice from this leakage remains difficult.
First, we recall the leakage hierarchy introduced in 2015 by Cash et al. [CGPR15].
Second, we present complete practical attacks on SSE schemes of L4, L3, and L2
leakage profiles which are deployed in commercial cloud solutions. Our attacks are
passive and only assume the knowledge of a small sample of plaintexts. Moreover,
we show their devastating effect on real-world data sets since, regardless of the leak-
age profile, an adversary knowing a mere 1% of the document set is able to retrieve
90% of documents whose content is revealed over 70%. Then, we further extend the
analysis of existing attacks to highlight the gap of security that exists between L2-
and L1-SSE and give some simple countermeasures to prevent our attacks.

3. Verifiable Private Polynomial Evaluation
By Xavier Bultel, Manik Lal Das, Hardik Gajera, David Gérault, Matthieu Giraud,
and Pascal Lafourcade. Published in proceedings of the 11th International Confer-
ence on Provable Security (ProvSec 2017) [BDG+17].

Abstract: Delegating the computation of a polynomial to a server in a verifiable way
is challenging. An even more challenging problem is ensuring that this polynomial
remains hidden to clients who are able to query such a server. In this work, to tackle
this problem, we formally define the notion of Private Polynomial Evaluation (PPE)
and present rigorous security models, along with relations between the different
security properties. Particularly, we define the “indistinguishability against chosen
function attack” (IND-CFA) where the attacker tries to guess which polynomial is
used among two polynomials of his choice. Then we show that the existing schemes
of the literature are not IND-CFA secure. We are able to break two of them by
learning the secret polynomial used by the server. Finally, we design PIPE, the first
IND-CFA secure PPE scheme and prove its IND-CFA security under the decisional
Diffie-Hellman assumption in the random oracle model.

4. No Such Thing as a Small Leak: Leakage-Abuse Attacks Against Symmetric Search-
able Encryption
By Alexandre Anzala-Yamajako, Olivier Bernard, Matthieu Giraud, and Pascal
Lafourcade. Published in volume 990 of the Communications in Computer and
Information Science journal (CCIS 2019) [ABGL17].

Abstract: Symmetric Searchable Encryption (SSE) schemes enable clients to securely
outsource their data while maintaining the ability to perform keywords search over
it. The security of these schemes is based on an explicit leakage profile, has initiated
the investigation into how much information could be deduced in practice from this
leakage. In this work, after recalling the leakage hierarchy introduced in 2015 by
Cash et al. [CGPR15] and the passive attacks of Giraud et al. [GABL17] on SSE
schemes, we demonstrate the effectiveness of these attacks on a wider set of real-
world datasets than previously shown. On the other hand, we show that the attacks
are inefficient against some types of datasets. Finally, we use what we learn from
the unsuccessful datasets to give insight into future countermeasures.

5. Security Analysis and Psychological Study of Authentication Methods with Personal
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Identifier Number Codes
By Xavier Bultel, Jannik Dreier, Matthieu Giraud, Marie Izaute, Timothée Kheyr-
khah, Pascal Lafourcade, Dounia Lakhzoum, Vincent Marlin, and Ladislav Moták.
Published in proceedings of the 12th International Conference on Research Chal-
lenges in Information Science (RCIS 2018) [BDG+18].

Abstract: Touch screens have become ubiquitous in the past few years, for instance
in smartphones and tablets. These devices are often the entry door to numerous
information systems, hence having a secure and practical authentication mechanism
is crucial. In this work, we examine the complexity of different authentication meth-
ods specifically designed for such devices. We study the widely spread technology
to authenticate a user using a Personal Identifier Number (PIN) code. Entering the
code is a critical moment where there are several possibilities for an attacker to dis-
cover the secret. We consider the three attack models: a Bruteforce Attack model,
a Smudge Attack model, and an Observation Attack model where the attacker sees
the user logging in on his device. The aim of the intruder is to learn the secret
code. Our goal is to propose alternative methods to enter a PIN code. We compare
such different methods in terms of security. Some methods require more intentional
resources than other, this is why we performed a psychological study on the different
methods to evaluate the users’ perception of the different methods and their usage.

1.8 Outline

In Chapter 2 we introduce the notations and mathematical notions we use through the
thesis, as well as the cryptographic primitives that we use and their security properties.
In Chapter 3, we present our secure protocols to compute standard matrix multiplication
using the MapReduce paradigm. The research problem that these protocols aim to solve
is how to combine practical distributed computation of matrix multiplication and privacy.
In Chapter 4, we pursue studies on distributed computation of secure matrix multiplica-
tion and focus on the Strassen-Winograd algorithm, one of the most efficient algorithms
to compute matrix multiplication. This gives rise to two MapReduce protocols. In Chap-
ter 5, we relational-algebra operations by considering the intersection between relations.
We propose a privacy-preserving MapReduce protocol that computes intersection of an
arbitrary number of relations. Chapter 6 presents privacy-preserving protocols for group-
ing and aggregations operations using the MapReduce paradigm. In particular, we focus
on the COUNT, SUM, AVG, MIN, and MAX aggregations. Finally, in Chapter 7, we
present a secure MapReduce approach, for both state-of-the-art algorithms computing the
natural join between relations, namely the cascade and the hypercube algorithms.



CHAPTER 2

Technical Introduction

We start by presenting the notations that we use throughout this thesis and recall some
required mathematical background. Then, we present cryptographic tools and notions.
Finally, based on these tools and notations, we define cryptographic primitives along with
their corresponding security properties that will be used in the first and second part of
this thesis.

Contents

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Cryptographic Background . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Cryptographic Tools . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Hardness Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Hash Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Pseudo-Random Function . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.4 Asymmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

13



14 CHAPTER 2. TECHNICAL INTRODUCTION

2.1 Notations

We define the notations that we use through the thesis.

a‖b Concatenation of two strings a and b

x
$← E Uniformly random choice of a value x from the set E

lcm(a, b) Least common multiple of two integers a and b
a := b+ c Set the result of b+ c into a
Sa×b Matrix of a rows and b columns with elements in S
A×B Cartesian product between A and B
ε Empty string

2.2 Mathematical Background

We recall the definition of a prime number playing a fundamental role in cryptography.

Definition 1 (Prime number [HW08]). Let p ∈ N∗, p is a prime number if p > 1 and if
p cannot be divided by any other number except itself and the number 1.

We now recall some fundamental algebra objects playing an important role in cryp-
tography, namely groups and cyclic groups.

Definition 2 (Group [Gri15]). A group is a couple (G, ·) where G is a set of elements
and · is a binary operation of G2 → G that combines any (a, b) ∈ G2 to an element of G
denoted a · b such that the three following properties hold:

1. Associativity. For all (a, b, c) ∈ G3, (a · b) · c = a · (b · c).

2. Identity element. There exists a unique element of G denoted 1, and called the
identity element, such that for all a ∈ G, 1 · a = a · 1 = a.

3. Inverse element. For all a ∈ G, there exists a unique element b ∈ G denoted a−1

such that a · a−1 = a−1 · a = 1.

Moreover, we way that a group is commutative (or abelian) when for any (a, b) ∈ G2, it
holds that a · b = b ·a. A group is said to be finite when G has a finite number of elements.
The number of elements of G is called the order of the group and is denoted by |G|. When
it is clear in the context, we denote by G the group (G, ·).

Definition 3 (Subgroup [Gri15]). Let (G, ·) be a group. Let H be a subset of G, H is
called a subgroup of G if H also forms a group under the operation ·.

Some finite groups have the particularity they can be described using only one element
of the group. Such a group is called cyclic while the element describing the group is called
the generator. We give the definition of such a cyclic group below.

Definition 4 (Cyclic group and generator [Gri15]). Let (G, ·) be a finite group. Without
the loss of generality, we denote by gx the x applications of · over g where g ∈ G and
x ∈ Z such that

gx = g · g · · · · · g︸ ︷︷ ︸
x times

.

We say that g is a generator of (G, ·) when G := {gx : x ∈ J1, |G|K}. A group having a
generator is called a cyclic group.

In this thesis, we consider multiplicative groups, i.e., the binary operator · corresponds
to the multiplication. Note that we indistinctly use the symbol · for multiplication between
elements of a multiplicative group and for the scalar multiplication while we omit for the
multiplication between matrices.
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2.3 Cryptographic Background

In this section, we recall the cryptographic tools, the cryptographic assumptions, and the
cryptographic primitives used throughout this thesis.

2.3.1 Cryptographic Tools

We start by recalling some cryptographic tools.

Negligible Function

We start by defining the notion of negligible function used throughout this thesis.

Definition 5 (Negligible function [KL14]). A function µ : N→ R+ is called negligible if
for every positive polynomial p(·) there exists Np ∈ N such that for all integers x > Np,
we have µ(x) < 1/p(x).

Security Parameter and Adversaries

In order to formalize security notions, we need to bound the computing power of an adver-
sary. Indeed, an arbitrary adversary can always break cryptosystems using a large enough
computer and spending an exponential amount of time. We first define a polynomial-time
algorithm.

Definition 6 (Polynomial-Time Algorithm [KL14]). Let λ ∈ N. An algorithm A is said
to run in polynomial-time if there exists a polynomial p(·) such that for every input x ∈
{0, 1}λ, the execution time of A(x) is bounded by p(λ) steps.

In cryptography, we restrict cryptosystems protection against a reasonable adversary
represented by an algorithm A. To do so, we use the notion of security parameter, denoted
λ ∈ N. The security parameter is passed as input to the adversary, under its unary
form and indicates that the running time of the adversary is polynomial in λ and whose
computation success probability is non-negligible in λ, i.e., significantly high.

Moreover, when a polynomial-time algorithm A is allowed to “throw coins”, we said
that A is a probabilistic polynomial-time algorithm. In the following, ppt(λ) denotes the
set of probabilistic algorithms that are bounded in the security parameter λ.

Experiments

Security property of a cryptosystem can be proven using an experiment (or game). We
call an experiment, an algorithm that proposes some challenge to an adversary (i.e., a
probabilistic polynomial-time algorithm). The challenge can be considered as an algorith-
mic problem that the adversary tries to solve. If the adversary successfully resolves the
challenge, we say that the adversary wins the experiment.

In order to have concrete adversary model, the adversary may have access to black-
box algorithms (sometimes with some restrictions), called oracles. An oracle allows the
adversary to learn some information that she cannot obtain by herself in order to solve the
experiment. For instance, an oracle can be an algorithm that decrypts some ciphertexts
using a key that the adversary does not know. This oracle models the famous lunch time
attack [CS98]. At the end of the experiment, the output of the adversary is defined as the
output of the experiment. In this thesis, we denote by AOracle to mean that the adversary
A has access to the oracle denoted Oracle.

When there is no such an adversary that wins the experiment with a non-negligible
probability in polynomial-time, then we say that the cryptosystem is secure according to
the considered property.
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Computational Indistinguishability

We first recall that a distribution ensemble is a sequence of random variables indexed by a
countable set. In the context of secure computation, this sequence of random variables are
indexed by I ∈ I where I is the set of all inputs of parties, and by the security parameter
λ ∈ N, i.e., X0 := {X(I, λ)}I∈I,λ∈N.

Definition 7 (Computational indistinguishability [Lin17]). Let X0 := {X(I, λ)}I∈I,λ∈N
and Y0 := {Y (I, λ)}I∈I,λ∈N be two distribution ensembles. We say that X0 and Y0 are
computationally indistinguishable if for every probabilistic polynomial algorithm D out-
putting a single bit, there exists a negligible function µ(·) such that for every I ∈ I and
every λ ∈ N, we have∣∣Pr[D(X(I, λ)) = 1]− Pr[D(Y (I, λ) = 1]

∣∣ ≤ µ(λ) .

We call the algorithm D a distinguisher, and we denote by X0
c≡ Y0 two computationally

indistinguishable distribution ensembles.

Simulation-based Proofs

Many of the security proofs given in this thesis follow the ideal/real simulation paradigm
introduced by Goldreich et al. [GMW87]. In other terms, proofs are based on the in-
distinguishability of two different distribution ensembles X0 and X1. However, in many
cases it is infeasible to directly prove this indistinguishability. Instead, we use the hybrid
argument consisting in the construction of simulators that generate a sequence of distribu-
tions ensembles, starting with X0, and ending with X1. Then, we prove that consecutive
distribution ensembles are indistinguishable. The indistinguishability between X0 and X1

is therefore obtained by transitivity.

Secure Multiparty Computation

Some cryptographic protocols involve several participants, called parties, in order to jointly
compute a function over their inputs while keeping those inputs private. This model is
called multiparty computation and was formally introduced by Yao [Yao82]. Unlike tradi-
tional cryptosystems where the adversary is outside of the system and tries, for instance,
to break the confidentiality or the integrity of communication, the adversary in this model
controls one of the parties. In this thesis, we only consider semi-honest (or honest-but-
curious) adversaries [Gol01]. Such an adversary controls one of the parties and follows the
protocol specification exactly. However, it may try to learn more information than allowed
by looking at the transcript of message that it received and its internal state. A protocol
that is secure in the presence of semi-honest adversaries does guarantee that there is no
inadvertent leakage of information.

Intuitively, a multiparty protocol is secure if whatever can be computed by a party
participating in the protocol can be computed based on its input and output only. This
idea is formalized according to the simulation paradigm by requiring the existence of a
simulator who generates the view of a party, i.e., all values received, computed, and sent
by this party during an execution of the protocol. More formally, the view is defined as
follows:

Definition 8 (View [Lin17]). Let λ ∈ N be a security parameter, and π be a n-party
protocol. The view of the party Pi, for all i ∈ J1, nK, during an execution of π on I =
(Ii)i∈J1,nK is denoted viewπ

Pi
(I, λ) and equals (Ii,Mi, Oi), where Ii is the input of Pi, Mi

represents messages sent by other parties and received by Pi, and Oi is the output of Pi
computed from Ii and Mi during the protocol execution.
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We denote by viewπ
Pi,Pj

(I, λ) = (viewπ
Pi

(I, λ), viewπ
Pj

(I, λ)), with i, j ∈ J1, nK, the joint
view of a collusion between parties Pi and Pj.

Since the parties have input and output, the simulator must be given a party’s input
and output in order to generate its view. Thus, the security is formalized by saying that
there exists a simulator that simulates a party’s view in a protocol execution given its
input and output. The formalization implies that a party cannot extract any information
from her view during the protocol execution beyond what they can derive from their input
and prescribed output.

We now formally define the security of a multiparty protocol with respect to static
semi-honest adversaries.

Definition 9 (Security with respect to static semi-honest adversary [Lin17]). Let π be
a n-party protocol that computes the function f = (fi)i∈J1,nK for parties (Pi)i∈J1,nK using
inputs I = (Ii)i∈J1,nK ∈ I and security parameter λ ∈ N. We say that π securely computes
f in the presence of static semi-honest adversaries if there exists, for each party Pi with
i ∈ J1, nK, a probabilistic polynomial-time simulator Si such that

SPi(1λ, Ii, fi(I))
c≡ viewπ

Pi(I, λ) .

We say that π is secure against collusions between parties Pi and Pj with i, j ∈ J1, nK, if
there exists probabilistic polynomial-time simulators SPi,Pj such that

SPi,Pj ((1λ, Ii, fi(I)), (1λ, Ij , fj(I)))
c≡ viewπ

Pi,Pj (I, λ) .

The Random Oracle Model

The Random Oracle Model (ROM), formally introduced by Bellare and Rogaway [BR93],
is a computational model where all parties of a protocol have access to a public random
oracle. Such an oracle outputs a random value chosen from uniform distribution according
to the considered domain for every new input it is given. Proofs that use this model are
said to be done in the random oracle model while those that do not use it are said to be
done in the standard model.

In practice, random oracles cannot exist since they would require an infinite description.
The random oracle model is widely accepted and widely used since there is no convincing
evidence that protocols based on ROM have practical security weaknesses. However, from
a theoretical point of view, a proof of security in the standard model is stronger (and more
difficult to obtain) than a proof in the random oracle model that leads to much debate
among cryptographers on the quality of ROM as an abstraction to analyze the security of
cryptosystems [KM15].

2.3.2 Hardness Assumptions

Cryptographic primitives rely on the hardness of some mathematical problems. We de-
scribe the one that is used to prove the security of such primitives presented in this thesis.

Decisional Composite Residuosity Assumption

Before defining the Decisional Composite Residuosity (DCR) problem, we define the notion
of N -residue modulo N , with N ∈ N∗.

Definition 10 (N -residue modulo N). Let q be an integer in J0, N − 1K, we say that q is
a N -residue modulo N if there exists a x ∈ N such that

xN ≡ q mod N .
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Solving the decisional composite residuosity problem for a given composite N ∈ N and
q ∈ N, consists in deciding if q is a N -residue modulo N2.

We say that the decisional composite residuosity problem is hard for (q,N) if for any
A ∈ ppt(λ), the probability that A solves the decisional composite residuosity problem is
negligible in λ. In practice, the decisional composite residuosity problem is believed to be
hard when N is a product of two large prime numbers. We formalize this notion in the
following definition.

Definition 11 (Decisional Composite Residuosity assumption [Pai99]). Let N be the prod-
uct of two prime numbers p and q generated according to a security parameter η ∈ N. The
decisional composite residuosity assumption states that there exists a negligible function
µ(·) such that for any A ∈ ppt(λ), we have∣∣Pr[y

$← N : A(1λ, yN mod N2) = 1]− Pr[z
$← J0, N − 1K : A(1λ, z) = 1]

∣∣ ≤ µ(λ) .

2.4 Cryptographic Primitives

We now present cryptographic primitives that we use throughout this thesis.

2.4.1 Hash Function

A hash function transforms a given bit-string of arbitrary size into an other bit-string of
a given length ` that we call the hash value. Such a function is secure when it is hard to
inverse it, and when it is hard to find two bit-strings having the same hash value.

Definition 12 (Hash function [MvOV96]). A hash function is a deterministic function
H : {0, 1}∗ → {0, 1}`. Such a function is said to be secure for the security parameter λ ∈ N
when H verifies the three following properties:

1. Pre-image resistance. For any adversary A ∈ ppt(λ), there exists a negligible func-
tion µ(·) such that

Pr[h
$← {0, 1}`;m := A(1λ, H, h) : H(m) = h] ≤ µ(λ) .

2. Second pre-image resistance. For any adversary A ∈ ppt(λ), there exists a negligible
function µ(·) such that

Pr[m
$← {0, 1}∗;h := H(m);m′ := A(1λ, H, h) : H(m′) = h ∧m′ 6= m] ≤ µ(λ) .

3. Collusion resistance. For any adversary A ∈ ppt(λ), there exists a negligible func-
tion µ(·) such that

Pr[(m0,m1) := A(1λ, H) : H(m0) = H(m1)] ≤ µ(λ) .

In practice, families hash functions as SHA-2 [Dan15] and SHA-3 [Dwo15] are consid-
ered secure.

Frequently, the random oracle used in the ROM (cf. Section 2.3.1) is instantiated using
a hash function. Unfortunately, many hash functions share undesirable properties (e.g.,
length extension attacks) that make them unfit for such direct use as a random oracle.
Instead, we use the HMAC construction [BCK96] with a known key as a random oracle. For
a hash function H and a key K, HMAC is defined as HMAC(K,x) = H((K⊕opad)‖H((K⊕
ipad)‖x)), where opad and ipad are two constants defined in the RFC 2104 [KBC97].
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2.4.2 Pseudo-Random Function

A pseudo-random function (PRF) F is a deterministic algorithm that takes as input a key
k from the key space K and an input data block x from the input space X , and outputs
the output data block y equals to F (k, x) that belongs to the output space Y. Note that
K, X , and Y are finite spaces. We say that F is defined over (K,X ,Y).

Intuitively, a PRF is said to be secure if for a randomly chosen key k ∈ K, an adversary
A cannot distinguish the function F (k, ·) from a randomly chosen function f ∈ Func[X ,Y],
i.e., the set of all functions from X to Y.

In order to formally define the security of a pseudo-random function F defined over
(K,X ,Y), we introduce in Figure 2.1 the pseudo-random function distinguishing experi-
ment, that we call the PRF experiment, for F against a q-query adversary A, with q ∈ N∗
and b ∈ {0, 1}.

Experiment: Expprf-b
F,q,A(λ)

if b = 0 then

k
$← K, fb := F (k, ·)

if b = 1 then

fb
$← Func[X ,Y]

{x1, . . . , xq} := A(1λ, q,X )
for i ∈ J1, qK do

yi := fb(xi)
b∗ := A(1λ, y1, . . . , yq)
return b∗

Figure 2.1: PRF experiment.

We define the pseudo-random function distinguishing advantage of a q-query adversary
A with respect to F as

Advprf
F,q,A(λ) :=

∣∣∣Pr[Expprf-1
F,q,A(λ) = 1]− Pr[Expprf-0

F,q,A(λ) = 1]
∣∣∣ .

Definition 13 (Secure pseudo-random function). Let λ ∈ N be a security parameter, and
F be a pseudo-random function F defined over (K,X ,Y). We say that F is a secure
pseudo-random function if for any q ∈ N∗, there exists a negligible function µ(·) such that

max
A∈ppt(λ)

{
Advprf

F,q,A(λ)
}
≤ µ(λ) .

In the rest of this thesis, we will simply denote Expprf-b
F,q,A (resp. Advprf

F,q,A) by Expprf-b
F,A

(resp. Advprf
F,A).

2.4.3 Symmetric Encryption

A symmetric encryption scheme is an encryption scheme in which the same key is used
for encryption and decryption.

Symmetric Encryption Scheme

We give the formal definition of a symmetric encryption scheme.

Definition 14 (Symmetric Encryption). Let λ ∈ N be a security parameter. A symmetric
encryption scheme (SE) is a triple of polynomial-time algorithms (G,E,D) such that
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• G(1λ) is a probabilistic algorithm that takes as input the security parameter λ, and
outputs a key K from the key space K, a plaintext space M, and a ciphertext space
C.

• E(K,m) is a deterministic or probabilistic algorithm that takes as input a key K ∈ K
and a plaintext m ∈M, and outputs a ciphertext c ∈ C.

• D(K, c) is a deterministic algorithm that takes as input key K ∈ K and a ciphertext
c ∈ C, and outputs either a plaintext m ∈ M or a special reject value (distinct from
all messages).

In the following, we only consider correct symmetric encryption schemes, that is
schemes such that, for any λ ∈ N, we have

Pr
[
(K,M, C) := G(1λ);m

$←M; c := E(K,m);m′ := D(K, c) : m = m′
]

= 1 .

In practice, a symmetric encryption scheme combines a block cipher encrypting a
message of a determined length and a block cipher mode of operation allowing to process
message of arbitrary length with a block cipher. Hence, we suppose that K = {0, 1}λ, and
M = C = {0, 1}∗, unless otherwise specified. Also, the G algorithm consists in picking a
key in K uniformly at random.

Order-Preserving Encryption Scheme

Order-preserving symmetric encryption (OPE) is a deterministic symmetric encryption
scheme whose encryption function preserves numerical ordering of the plaintexts. This
primitive was introduced in the database community by Agrawal et al. [AKSX04].

We first define an order-preserving function.

Definition 15 (Order-Preserving Function [BCLO09]). For A,B ⊆ N, a function f : A→
B is order-preserving if for all x, y ∈ A, f(x) < f(y) if and only if x > y.

Definition 16 (Order-Preserving Encryption [BCLO09]). We say that a symmetric en-
cryption scheme defined by three polynomial-time algorithms (G,E,D) with key space K,
plaintext space M, and ciphertext space C is an order-preserving encryption if E(K, ·) is
an order-preserving function from M to C for all key K ∈ K.

The standard security definition for order-preserving encryption is the indistinguisha-
bility security against ordered chosen plaintext attacks [BCLO09].

For a given order-preserving encryption scheme Π = (G,E,D) defined over (M, C), and
for an adversary A ∈ ppt(λ), we define in Figure 2.2 the IND-OCPA experiment with
b ∈ {0, 1}.

Experiment: Expindocpa-b
Π,A (λ)

(X0, X1) := A(1λ) where |X0| = |X1| = n and ∀1 ≤ i, j ≤ n, x0,i < x0,j ⇔ x1,i < x1,j

K := G(1λ)
foreach i ∈ J1, nK do

yb,i := E(K,xb,i)
b∗ := A(1λ, yb,1, . . . , yb,n)
return b∗

Figure 2.2: IND-OCPA experiment.

We define the advantage of the adversary A with respect to Π as

Advindocpa
Π,A (λ) :=

∣∣∣Pr[Expindocpa-1
Π,A (λ) = 1]− Pr[Expindocpa-0

Π,A (λ) = 1]
∣∣∣ .
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Definition 17 (Indistinguishability against Ordered Chosen-Plaintext Attack [MRS17]).
Let λ ∈ N be a security parameter. An order-preserving encryption scheme Π achieves
the indistinguishability security against ordered chosen-plaintext attack if there exists a
negligible function µ(·) such that

max
A∈ppt(λ)

{
Advindocpa

Π,A (λ)
}
≤ µ(λ) .

It is well known that OPE scheme that achieves the indistinguishability security
against ordered chosen-plaintext attack leak an important amount information on the
plaintexts [DDC16, GMN+16, GSB+17, NKW15]. However, Maffei et al. [MRS17] show
that the stronger security notion of indistinguishability against frequency-analyzing ordered
chosen plaintext attack proposed by Kerschbaum [Ker15] leads to a contradiction. Hence,
we consider in this thesis basic OPE schemes that achieves the indistinguishability security
against ordered chosen-plaintext attack (IND-OCPA).

2.4.4 Asymmetric Encryption

An asymmetric encryption (or a public-key encryption) scheme allows a user to encrypt
messages to another user using her public key. This public key is available for everyone, it
can be for instance stored on a Web server. To decrypt such message, the corresponding
secret key (only know by the owner of the public key) is required.

We give the formal definition of an asymmetric encryption scheme.

Definition 18 (Asymmetric Encryption). Let λ ∈ N be a security parameter. An asym-
metric encryption scheme is a triple of polynomial-time algorithms (G, E ,D) such that

• G(1λ) is a probabilistic algorithm that takes as input the security parameter λ, and
outputs a private key sk from the secret key space Ks, a public key pk from the public
key space Kp, a plaintext space M, and a ciphertext message C.

• E(pk,m) is a deterministic or probabilistic algorithm that takes as input a public key
pk ∈ Kp and a plaintext m ∈M, and outputs a ciphertext c ∈ C.

• D(sk, c) is a deterministic algorithm that takes as input a secret key sk ∈ Ks and
a ciphertext c ∈ C, and outputs either a plaintext m ∈ M or a special reject value
(distinct from all messages).

In the following, we only consider correct asymmetric encryption schemes, that is
schemes such that, for any λ ∈ N, we have

Pr
[
(sk, pk,M, C) := G(1λ);m

$←M;m′ := D(sk,m) : m = m′
]

= 1 .

Indistinguishability Under Chosen Plaintext Attack

The indistinguishability under chosen plaintext attack is a fundamental security property
for asymmetric encryption schemes. Intuitively, this security notion implies that two
different plaintexts can be distinguished by their respective ciphertext. In other terms, a
ciphertext leaks no information about its corresponding plaintext.

Consider an adversary that chooses a couple of plaintexts (m0,m1), and that receives
the encryption of one of the two plaintexts. If such an adversary is not able to guess the
chosen message with a non-negligible probability, then the asymmetric encryption scheme
achieves the indistinguishability security under chosen plaintext attack.

The basic definition of indistinguishability under chosen plaintext attack allows one
adversary to submit a couple of plaintexts only one time. However, Bellare et al. [BBM00]
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show that the indistinguishability security under chosen plaintext attack is equivalent to
the indistinguishability security under multiple chosen plaintexts attack in a multi-user
setting. That means the adversary can receive several public keys and choose several
couples of plaintexts (m0,m1). For each of these couples, the adversary receives the
encryption of mb for the different public keys, where the same b ∈ {0, 1} is used each time.

More precisely, we use the Left-Or-Rigth definition given by Bellare et al. [BBM00].
Let Π = (G, E ,D) be an asymmetric encryption scheme, A ∈ ppt(λ), and (α, β) ∈ N2.
For all i ∈ J1, βK, the oracle E(pki, (LoRb(·, ·), α)) takes as input a couple of plaintexts
(m0,m1), and returns E(pki,mb). Moreover, this oracle cannot be called more than α
times.

We define the (α, β)-indistinguishability under chosen plaintext attack (IND-CPA)

experiment, denoted Exp
indcpa-bα,β
Π,A for the adversary A against Π in Figure 2.3.

Experiment: Exp
indcpa-bα,β
Π,A (λ)

foreach i ∈ J1, βK do
(ski, pki,Mi, Ci) := G(λ)

b∗ := AE(pk1,(LoRb(·,·),α)),...,E(pkβ ,(LoRb(·,·),α))(λ)
return b∗

Figure 2.3: IND-CPA experiment.

We define the advantage of the adversary A with respect to Π as follows

Adv
indcpaα,β
Π,A (λ) :=

∣∣∣Pr
[
Exp

indcpa-1α,β
Π,A (λ) = 1

]
− Pr

[
Exp

indcpa-0α,β
Π,A (λ) = 1

]∣∣∣ .
Definition 19 (Indistinguishability under multiple chosen plaintexts attack [BBM00]).
Let λ ∈ N be a security parameter. An asymmetric encryption scheme Π achieves the
(α, β)-indistinguishability security under multiple chosen plaintexts attack, if there exists
a negligible function µ(·) such that

max
A∈ppt(λ)

{
Adv

indcpa-bα,β
Π,A (λ)

}
≤ µ(λ) .

In the rest of this thesis, we will denote by Expindcpa-b
Π,A the IND-CPA experiment.

Homomorphic Encryption

An asymmetric homomorphic encryption scheme is an asymmetric encryption scheme
allowing to manipulate some ciphertexts c1, . . . , cn without the secret key in order to
obtain the encryption of f(m1, . . . ,mn) where c1, . . . , cn are the respective ciphertexts of
plaintexts m1, . . . ,mn.

We say that the asymmetric encryption scheme is a fully homomorphic encryption
scheme when any function f(·) can be computed from the ciphertexts. In his seminal paper,
Gentry [Gen09] proves that such a fully homomorphic encryption schemes exists. Since,
several fully homomorphic encryption schemes have been developed as the Brakerski-
Gentry-Vaikuntanathan (BGV) cryptosystem [BGV12], the Gentry-Sahai-Waters (GSW)
cryptosystem [GSW13], and the Cheon-Kim-Kim-Song (CKKS) cryptosystem [CKKS17].
Two major libraries SEAL [MR19] and HElib [HS19] implement CKKS and BGV cryp-
tosystems respectively.

Due to the “fully” characteristic, such asymmetric encryption schemes are not yet
efficient enough to be used in everyday life for arbitrary operations. Two other families of
homomorphic encryption schemes exist:
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• Somewhat homomorphic encryption. It supports homomorphic operations with ad-
ditions and multiplications but allows only a limited number of operations.

• Partially homomorphic encryption. It supports only one type of operation: addition
or multiplication.

In the following, we present the Paillier cryptosystem that is an asymmetric partially
homomorphic encryption scheme with regard to the addition operation.

Paillier’s Cryptosystem

Paillier’s cryptosystem is an asymmetric encryption scheme. It is well known due to its
homomorphic properties described in the following.

Definition 20 (Paillier’s cryptosystem [Pai99]). Let λ ∈ N be a security parameter.
The Paillier cryptosystem is an asymmetric encryption scheme defined by a triple of
polynomial-time algorithms (G, E ,D) such that:

• G(1λ) generates two prime numbers p and q according to the security parameter λ,
sets n := p ·q and Λ := lcm(p−1, q−1), generates the group (Z∗n2 , ·), randomly picks
g ∈ Z∗n2 such that M := (L(gΛ mod n2))−1 mod n exists, with L(x) := (x− 1)/n.
It sets sk := (Λ,M), pk := (n, g), M := Zn, and C := Z∗n2. Finally, it outputs
((sk, pk),M, C).

• E(pk,m) randomly picks r ∈ Z∗n, computes c := gm · rn mod n2, and outputs c.

• D(sk, c) computes m := L(cΛ mod n2) ·M mod n, and outputs m.

Theorem 1 ([Pai99]). Paillier’s cryptosystem achieves the indistinguishability security
against chosen plaintext attack under the DCR assumption.

The proof is given by Paillier [Pai99].
Now, we present the homomorphic properties of Paillier’s cryptosystem.

Homomorphic Addition of Plaintexts. Let m1 and m2 be two plaintexts in Zn.
The product of the two associated ciphertexts with the public key pk = (n, g), denoted
c1 := E(pk,m1) = gm1 · rn1 mod n2 and c2 := E(pk,m2) = gm2 · rn2 mod n2, is the
encryption of the sum of m1 and m2. Indeed, we have:

E(pk,m1) · E(pk,m2) = c1 · c2 mod n2

= (gm1 · rn1 ) · (gm2 · rn2 ) mod n2

= (gm1+m2 · (r1 · r2)n) mod n2

= E(pk,m1 +m2 mod n) .

We also remark that E(pk,m1) · E(pk,m2)−1 = E(pk,m1 −m2).

Specific Homomorphic Multiplication of Plaintexts. Let m1 and m2 be two plain-
texts in Zn and c1 ∈ Z∗n2 be the ciphertext of m1 with the public key pk, i.e., c1 :=
E(pk,m1). With Paillier’s cryptosystem, c1 raised to the power of m2 is the encryption of
the product of the two plaintexts m1 and m2. Indeed, we have:

E(pk,m1)m2 = cm2
1 mod n2

= (gm1 · rn1 )m2 mod n2

= (gm1·m2 · rn·m2
1 ) mod n2

= E(pk,m1 ·m2 mod n) .
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P2 P1

c1 := E(pk,m1)
c2 := E(pk,m2)

δ1, δ2
$← Zn

α1 := c1 · E(pk, δ1)

D(sk, α1) = m1 + δ1 mod n
α1,α2←−−−− α2 := c2 · E(pk, δ2)

D(sk, α2) = m2 + δ2 mod n

c := E(pk, (m1 + δ1) · (m2 + δ2) mod n)
c−−−−→ E(pk,m1 ·m2 mod n)

Figure 2.4: Paillier interactive multiplicative homomorphic protocol [CDN01].

Interactive Homomorphic Multiplication of Ciphertexts. Cramer et al. [CDN01]
show that a two-party protocol makes possible to perform multiplication over ciphertexts
using additive homomorphic encryption schemes as Paillier’s cryptosystem. More pre-
cisely, P1 knows two ciphertexts c1, c2 ∈ Z∗n2 of the plaintexts m1,m2 ∈ Zn encrypted
using the public key pk of P2, she wants to obtain the ciphertext corresponding to m1 ·m2

without revealing to P2 the plaintexts m1 and m2. In order to do that, P1 has to in-
teract with P2 as described in Figure 2.4. First, P1 randomly picks δ1, δ2 ∈ Zn and
sends to Alice α1 := c1 · E(pk, δ1) and α2 := c2 · E(pk, δ2). By decrypting respectively α1

and α2, P2 recovers respectively m1 + δ1 mod n and m2 + δ2 mod n. She sends to P1

c := E(pk, (m1 + δ1) · (m2 + δ2) mod n). Then, P1 can deduce the value of E(pk,m1 ·m2

mod n) by computing c · (E(pk, δ1 · δ2 mod n) · cδ11 · c
δ2
2 )−1.

Indeed, E(pk, (m1 + δ1) · (m2 + δ2) mod n) = E(pk,m1 · m2 mod n) · E(pk,m1 · δ2

mod n) · E(pk,m2 · δ1 mod n) · E(pk, δ1 · δ2 mod n).

2.5 Conclusion

We have defined the mathematical background and cryptographic primitives along their
security properties that are required for the sequel of this thesis.
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CHAPTER 3

Secure Matrix Multiplication with MapReduce

We propose four secure multiparty protocols to compute standard matrix multiplication
using the MapReduce paradigm. We address the inherent security and privacy concerns
that occur when outsourcing to a public cloud. Our goal is to enhance the two state-of-
the-art protocols [LRU14] for MapReduce matrix multiplication with privacy guarantees
such as: none of the nodes storing an input matrix can learn the other input matrix or
the output matrix, and moreover, none of the nodes computing an intermediate result can
learn the input or the output matrices. We consider two different approaches. The first
one, called Secure-Private, assumes that cluster’s nodes do not collude. On the contrary,
the second one, called Collision-Resistant-Secure-Private assumes that cluster’s nodes may
collude. For each approach, we design secure versions of the two state-of-the-art protocols.
This work has been conducted in collaboration with Xavier Bultel, Radu Ciucanu, and
Pascal Lafourcade, and has been published in the paper “Secure Matrix Multiplication
with MapReduce” [BCGL17] at ARES 2017 conference.
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3.1 Introduction

We address the fundamental problem of MapReduce matrix multiplication from a privacy-
preserving perspective, i.e., we develop protocols for which the public cloud cannot learn
neither the input nor the output data. The matrix multiplication is also the original pur-
pose for which the Google implementation of MapReduce was created. Indeed, such mul-
tiplications are needed by Google in the computation of the PageRank algorithm [DG04].
The standard protocols for MapReduce matrix multiplication, presented by Leskovec et
al. [LRU14], use either two or one MapReduce rounds, where each round is composed of
Map and Reduce functions. Their communication and computation cost analysis have
been thoroughly analyzed [LRU14].

3.1.1 Problem Statement

Two distinct data owners respectively hold compatible matrices M and N such that M ∈
Ra×b and N ∈ Rb×c where (a, b, c) ∈ (N∗)3. A user, that we call the MapReduce’s user,
does not know the matrices M and N , and wants their product P := M × N . First, M
and N are sent to the distributed file system of some public cloud provider. We assume
that the matrix M is initially spread over a set M of nodes of the public cloud, each of
them storing a chunk of M , i.e., a set of elements of M . Similarly, the matrix N is initially
spread over a set N of nodes of the public cloud. In the case of the protocol using one
MapReduce round, the final result P is computed over a set R of nodes before it is sent to
the user’s nodes P; in the case of the protocol using two MapReduce rounds, intermediate
results are spread over a set R1 of nodes and the final result P is computed over a set
R2 of nodes before it is sent to the user’s nodes P. We assume that data owners and the
MapReduce’s user are trustworthy while the cloud service provider is semi-honest, i.e.,
it dutifully executes the protocol but tries to deduce as much as possible information on
matrices’ elements. Moreover, we assume the public cloud and the MapReduce’s user do
not collude. We illustrate the architecture of the MapReduce matrix multiplication for
one round in Figure 3.1 and for two rounds in Figure 3.2.
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Figure 3.1: One Round.
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Figure 3.2: Two Rounds.

We expect the following properties.

1. The MapReduce’s user cannot learn any information about input matrices M and
N .

2. Set of nodes M and N cannot learn any information about matrices M , N and P .
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3. Set of nodes R (for one MapReduce round), or R1 and R2 (for two MapReduce
rounds) cannot learn any information about matrices M , N , and P .

The second condition state that none of the nodes storing an input matrix can learn the
other input matrix or the output matrix, whereas the third condition states that none
of the public cloud’s nodes storing intermediate or final result can learn the input or the
output matrices.

3.1.2 Contributions

We propose protocols that extend the two standard protocols for MapReduce matrix multi-
plication (as found in Chapter 2 from [LRU14]) while ensuring data privacy, and remaining
efficient from both computational and communication points of view. Our technique is
based on the well-known Paillier’s cryptosystem [Pai99], which is additive-homomorphic.
The integration of this cryptosystem into the standard MapReduce protocols for matrix
multiplication is not trivial. Indeed, Paillier’s cryptosystem does not allow to execute
directly in the encrypted domain the multiplications that are needed for matrix multipli-
cation.

We propose the following contributions.

• Assuming that the public cloud’s nodes do not collude, we design the Secure-Private
(SP) approach. In this approach, our secure protocol using two MapReduce rounds
is called SP-2R while the one using one MapReduce round is called SP-1R. Protocol
SP-2R satisfies all aforementioned conditions. However, we show that if nodes N
collude with nodes R2, then R2 can retrieve all elements of matrix N . On the
contrary, protocol SP-1R only satisfies the first condition. Indeed, nodes of N and
of R learn the content of matrix N since only the matrix M is encrypted.

• The second approach designs a sophisticated protocol that relies on additional com-
munications to overcome these risks of collusions; this idea leds to our Collision-
Resistant-Secure-Private (CRSP) approach, which satisfies all conditions enumer-
ated in the problem statement even if the public cloud’s nodes collude. In this
approach, our secure protocol using two communications rounds is called CRSP-2R
and the one using one communication round is called CRSP-1R.

• For each protocol, we give experimental results using Apache Hadoop R© [Fou19b]
open-source MapReduce implementation, and provide a security proof in the stan-
dard model.

3.1.3 Outline

We start by recalling the two state-of-the-art protocols for MapReduce matrix multipli-
cation in Section 3.2. Then, we present and analyse our secure protocols for SP and
CRSP approaches in Section 3.3. In Section 3.4, we show an experimental evaluation of
the standard protocols and of our secure protocols using Hadoop [Fou19b], the Apache
MapReduce implementation. Before to conclude, we prove in Section 3.5 the security of
our protocols in the standard model.

3.2 Matrix Multiplication with MapReduce

We recall the two state-of-the-art protocols proposed by Leskovec et al. [LRU14]. Let M
and N be two compatible matrices such that M ∈ Ra×b and N ∈ Rb×c where (a, b, c) ∈
(N?)3. We denote by mi,j the element of the matrix M which is in the i-th row and the
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j-th column with i ∈ J1, aK and j ∈ J1, bK. In the same way, we denote by nj,k the element
of the matrix N which is in the j-th row and k-th column with j ∈ J1, bK and k ∈ J1, cK.
Moreover, we denote by P the product MN , and by pi,k the element of the matrix P
which is in the i-th row and the k-th column with i ∈ J1, aK and k ∈ J1, cK.

3.2.1 Matrix Multiplication with Two MapReduce Rounds

The standard matrix multiplication with two MapReduce rounds protocol [LRU14] is
denoted MM-2R and composed of four functions: first Map function, first Reduce function,
second Map function and second Reduce function. These four functions are given in
Figure 3.3.

1st Map function:

Input: (key , value)
// key : id of a chunk of M or N
// value: collection of (i, j,mij) or (j, k, nj,k)
foreach (i, j,mi,j) ∈ value do

emitM→R1(j, (M, i,mi,j))
foreach (j, k, nj,k) ∈ value do

emitN→R1(j, (N, k, nj,k))

1st Reduce function:

Input: (key , values)
// key : j ∈ J1, bK
// values: collection of (M, i,mi,j) or (N, k, nj,k)
foreach (M, i,mi,j) ∈ values do

foreach (N, k, nj,k) ∈ values do
emitR1→R2((i, k), (mi,j · nj,k))

2nd Reduce function:

Input: (key , values)
// key : (i, k) ∈ J1, aK× J1, cK
// values: collection of v := mi,j · nj,k
emitR2→P

(
(i, k),

∑
v∈values v

)
Figure 3.3: Map and Reduce functions for MM-2R protocol.

• The First Map Function. It consists of rewriting each element of matrices M and N
in the form of key-value pairs such that elements needed to compute each element
of the product MN share the same key. Hence, when nodes M receive chunks of
matrix M from the data owner, they create pairs of the form (j, (M, i,mi,j)), where
i ∈ J1, aK and j ∈ J1, bK, and send them to the set of nodes R1. In the same way,
when nodes N receive chunks matrix N from the data owner, they create pairs of
the form (j, (N, k, nj,k)) where j ∈ J1, bK and k ∈ J1, cK, and send them to the set of
nodes R1. We stress that M and N in the values are the names of matrices, that can
be encoded with a single bit, and not the matrices themselves.

• The First Reduce Function. To compute elements pi,k of P with i ∈ J1, aK and
k ∈ J1, cK, the first step is to compute each product mi,j · nj,k for j ∈ J1, bK. Hence,
from key-values pairs sent by the first Map function executed by nodes M and N ,
the Reduce function executed on nodes R1 creates key-values pairs and sends them
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to nodes R2 where for a key (i, k) with i ∈ J1, aK and k ∈ J1, cK, values are mi,j ·nj,k
for j ∈ J1, bK.

• The Second Map Function. In this second round, the Map function is only the
identity function. We further omit it from the analysis of the computation cost.

• The Second Reduce Function. It is executed by nodes R2 and aggregates all values
with the same key send by nodesR1 to obtain key-value pairs ((i, k),

∑b
j=1mi,j ·nj,k).

These key-value pairs corresponds to the elements pi,k of matrix P with i ∈ J1, aK
and k ∈ J1, cK, and are sent to the MapReduce user’s nodes P.

3.2.2 Matrix Multiplication with One MapReduce Round

The standard matrix multiplication with one MapReduce round protocol [LRU14] is de-
noted MM-1R and is composed of two functions: the Map function and the Reduce func-
tion. The two functions are given in Figure 3.4.

Map function:

Input: (key , value)
// key : id of a chunk of M or N
// value: collection of (i, j,mi,j) or (j, k, nj,k)
foreach (i, j,mi,j) ∈ value do

foreach k ∈ J1, cK do
emitM→R((i, k), (M, j,mi,j))

foreach (j, k, nj,k) ∈ value do
foreach i ∈ J1, aK do

emitN→R((i, k), (N, j, nj,k))

Reduce function:

Input: (key , values)
// key : (i, k) ∈ J1, aK× J1, cK
// values: collection of (M, j,mi,j) or (N, j, nj,k)

emitR→P
(
(i, k), (

∑b
j=1mi,j · nj,k)

)
Figure 3.4: Map and Reduce functions for the MM-1R protocol.

• The Map Function. It is executed by nodesM and N , and creates the sets of matrix
elements that are needed to compute each element of matrix P , i.e., the product of
MN . Since an element of M or N is used for many elements of the final result, the
output of the Map function sent to nodes R gives key-value pairs where keys are
(i, k) where i ∈ J1, aK is the row of M and k ∈ J1, cK is the column of N , and values
are of the form (M, j,mi,j) and (N, j, nj,k).

• The Reduce Function. With the previous Map function, we obtain for a key (i, k),
with i ∈ J1, aK and k ∈ J1, cK, a set of values of the form (M, j,mi,j) and (N, j, nj,k)
with j ∈ J1, bK. Then, the Reduce function executed by nodes R computes the sum
of mi,j · nj,k with j ∈ J1, bK for each key (i, k). These results are paired to the keys
(i, k) corresponding to elements pi,k for i ∈ J1, aK and k ∈ J1, cK, and sent to the
MapReduce user’s nodes P.
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3.3 Secure Matrix Multiplication with MapReduce

The standard MapReduce matrix multiplication with one and two rounds, presented in the
previous Section, reveals all intermediate results to each set of nodes of the public cloud.
For instance, when matrix multiplication is performed with two MapReduce rounds, nodes
R1 know all elements of matrices M and N . We describe below MapReduce protocols
with SP and CRSP approaches. We assume that MapReduce’s user has a Paillier public
key denoted pk which is available to the data owners and the public cloud. Since we use
Paillier’s cryptosystem, the matrix multiplication is computed modulo n, where n is the
modulo of pk.

3.3.1 Preprocessing for Secure Matrix Multiplication

Instead of outsourcing the two matrices in clear to the public cloud for privacy reasons,
each data owner performs a preprocessing on its own matrix according to the considered
approach and the number of MapReduce rounds. The aim of these preprocessings is
to allow the public cloud to compute the matrix multiplication while required privacy
constraints are satisfied (cf. Section 3.1.1). To run a preprocessing algorithm, data owners
need the Paillier public key pk of the MapReduce’s user where pk := (n, g), where n is
the product of two prime numbers generated according to a security parameter λ, and
g ∈ Z∗n2 .

Two preprocessing algorithms, namely Preprocessing I and Preprocessing II, are pre-
sented in Figure 3.5. Preprocessing I algorithm has for input the Paillier public key
pk := (n, g) of the user and a matrix A ∈ Zu×vn with (u, v) ∈ (N∗)2. It computes the
encrypted matrix A∗ ∈ Zu×v

n2 using the Paillier public key pk of the user such that each el-
ement a∗i,j ∈ A∗ is the Paillier encryption of element ai,j ∈ A, with i ∈ J1, uK and j ∈ J1, vK.
Preprocessing I algorithm is used in each protocol of SP and CRSP approaches. However,
if both matrices are encrypted using it, it implies the public cloud must run the Paillier
interactive multiplicative homomorphic protocol (cf. Figure 2.4 on page 24) to compute
elements of the final result. The resulted communication overhead is tolered for the CRSP
approach since we assume that public cloud’s nodes can collude but is too much costly for
the SP approach assuming that public cloud’s nodes do not collude.

Therefore, Preprocessing II algorithm uses the idea of adding a random mask to ensure
privacy of elements of the matrix. Preprocessing II algorithm has for input the Paillier
public key pkR2 := (n′, g′) of public cloud’s nodes R2 such that n′ < n, and a matrix
A ∈ Zu×vn with (u, v) ∈ (N∗)2. It computes the encrypted matrix A∗ ∈ (Zn × Zn′2)u×v

using a random mask and the Paillier public key pkR2 . Each element a∗i,j ∈ A∗, with
i ∈ J1, uK and j ∈ J1, vK, is a tuple whereas the first term is the addition of element ai,j ∈ A
with a random mask modulo n, and where the second term is the Paillier encryption of
the random mask using pkR2 . Preprocessing II algorithm is used only for the SP approach
with two MapReduce rounds.

Finally, considering matrix of dimension u·v, Preprocessing I algorithm has a complex-
ity of O(u·v ·CE) and Preprocessing II algorithm has a complexity of O(u·v ·(C++CE+C$)),
where C+ is the cost for an addition, C$ is the cost to pick a random element, and CE is
the cost for a Paillier encryption.

3.3.2 SP Matrix Multiplication with MapReduce

The SP matrix multiplication with MapReduce uses the Paillier’s cryptosystem and the
idea of adding a random mask to ensure privacy of elements of matrices. However, this is
only possible when the computation uses two MapReduce rounds and when nodes of the
public cloud do not collude.
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Preprocessing I:

Input: pk,A ∈ Zu×vn

foreach i ∈ J1, uK do
foreach j ∈ J1, vK do

a∗i,j := E(pk, ai,j)

A∗ := (a∗i,j)i∈J1,uK,j∈J1,vK
return A∗

Preprocessing II:

Input: pkR2 , A ∈ Zu×vn

foreach i ∈ J1, uK do
foreach j ∈ J1, vK do

τi,j
$← Zn′

a∗i,j := (ai,j + τi,j , E(pkR2 , τi,j))

A∗ := (a∗i,j)i∈J1,uK,j∈J1,vK
return A∗

Figure 3.5: Preprocessing algorithms for secure matrix multiplication.

SP Matrix Multiplication with Two MapReduce Rounds

The SP-2R protocol is composed of four functions: the first Map function, the first Reduce
function, the second Map function and the second Reduce function. The four functions
are given in Figure 3.6. For this protocol, the data owner of matrix M perfoms the
Preprocessing I algorithm while the data owner of matrix N performs the Preprocessing
II algorithm given in Figure 3.5. Assignments of the Preprocessing I algorithm to the
owner of matrix M and of the Preprocessing II algorithm to the owner of matrix N is
arbitrary and may switch.

• The First SP Map Function. It is executed by nodes M and N . It consists in
rewriting each element of matrices M∗ and N∗ sent by data owners in the form of
key-value pairs such that elements needed to compute each encryption of element
of P share the same key. Hence, nodes M creates pairs of the form (j, (M, i,m∗i,j)),
where i ∈ J1, aK and j ∈ J1, bK, and are sent to the set of nodes R1. In the same way,
nodes N creates pairs of the form (j, (N, k, n∗j,k)) where j ∈ J1, bK and k ∈ J1, cK, and
are sent to the set of nodes R1.

• The First SP Reduce Function. It is executed on the set of nodes R1. As we have
seen in the standard MapReduce, the first Reduce function produces key-value pairs
where the key is equal to (i, k), with i ∈ J1, aK and k ∈ J1, cK, and values is equal to
mi,j ·nj,k for j ∈ J1, bK. In the SP approach, keys are also equal to (i, k) but values are
tuples equal to (E(pk,mi,j)

nj,k+τj,k , E(pk,mi,j), E(pkR2 , τj,k)). Thus, nodes R1 can
compute E(pk,mi,j · nj,k) · E(pk,mi,j)

τj,k using homomorphic properties of Paillier’s
cryptosystem which is equal to E(pk,mi,j)

nj,k+τj,k in the tuple. The mask removal
is later on done in nodes R2.

• The Second SP Map Function. As for MM-2R protocol, the second Map function of
the SP approach is the identity function.

• The Second SP Reduce Function. It is executed on R2, and multiplies all values
associated to the same key (i, k). Moreover, nodesR2 remove all masks for each value
using E(pk,mi,j) and E(pkR2 , τj,k) emitted by R1. In fact, to compute E(pk,mi,j ·
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1st Map function:

Input: (key , value)
// key : id of a chunk of M∗ or N∗

// value: collection of (i, j, E(pk,mi,j)) or (j, k, (nj,k + τj,k, E(pkR2 , tj,k)))
foreach (i, j, E(pk,mi,j)) ∈ value do

emitM→R1(j, (M, i, E(pk,mi,j)))
foreach (j, k, (nj,k + τj,k, E(pkR2 , tj,k))) ∈ value do

emitN→R1(j, (N, k, (nj,k + τj,k, E(pkR2 , tj,k))))

1st Reduce function:

Input: (key , values)
// key : j ∈ J1, bK
// values: collection of (M, i, E(pk,mi,j)) or (N, k, (nj,k + τj,k, E(pkR2 , τj,k)))
foreach (M, i, E(pk,mi,j)) ∈ values do

foreach (N, k, (nj,k + τj,k, E(pkR2 , τj,k))) ∈ values do
emitR1→R2((i, k), (E(pk,mi,j)

nj,k+τj,k , E(pk,mi,j), E(pkR2 , τj,k)))

2nd Reduce function:

Input: (key , values)
// key : (i, k) ∈ J1, aK× J1, cK
// values: collection of (v1, v2, v3) := (E(pk,mi,j)

nj,k+τj,k , E(pk,mi,j), E(pkR2 , τj,k))

emitR2→P

(
(i, k),

∏
(v1,v2,v3)∈values v1 ·

(
v
D(skR2

,v3)

2

)−1
)

Figure 3.6: Map and Reduce functions for the SP-2R protocol.

nj,k), nodes R2 compute

E(pk,mi,j)
nj,k+τj,k ·

(
E(pk,mi,j)

D(skR2
,E(pkR2

,τj,k))
)−1

=

= E(pk,mi,j)
nj,k · E(pk,mi,j)

τj,k ·
(
E(pk,mi,j)

τj,k
)−1

= E(pk,mi,j · nj,k) .

SP Matrix Multiplication with One MapReduce Round

The SP-1R protocol is composed of two functions: the Map function, and the first Reduce
function. The two functions are given in Figure 3.7. For this protocol, the data owner of
matrix M perfoms the Preprocessing I algorithm while the data owner of matrix N does
not perform any preprocessing. Assignment of the Preprocessing I algorithm to the owner
of matrix M is arbitrary and can be inverted with the data owner of the matrix N .

• The SP Map Function. It is executed by nodes M and N . It consists in rewriting
each element of matrices M∗ and N sent by data owners in the form of key-value
pairs such that elements needed to compute each encryption of element of P share
the same key. Hence, nodesM create pairs of the form ((i, k), (M, j,m∗i,j)) and nodes
N creates pairs of the form ((i, k), (N, j, nj,k)) for i ∈ J1, aK, j ∈ J1, bK, and k ∈ J1, cK.
Nodes M and N send these key-value pairs to the set of nodes R.

• The SP Reduce Function. It is executed by nodesR, and uses homomorphic property
of Paillier’s cryptosystem. In fact, instead to summing all products mi,j · nj,k; it
mutltiplies, for each key (i, k) with i ∈ J1, aK and k ∈ J1, cK, all encrypted values
E(pk,mi,j)

nj,k corresponding to E(pk,mi,j · nj,k).
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Map function:

Input: (key , value)
// key : id of a chunk of M∗ or N
// value: collection of (i, j, E(pk,mi,j)) or (j, k, nj,k)
foreach (i, j, E(pk,mi,j)) ∈ value do

foreach k ∈ J1, bK do
emitM→R((i, k), (M, j, E(pk,mi,j)))

foreach (j, k, nj,k) ∈ value do
foreach i ∈ J1, aK do

emitN→R((i, k), (N, j, nj,k))

Reduce function:

Input: (key , values)
// key : (i, k) ∈ J1, aK× J1, cK
// values: collection of (M, j, E(pk,mi,j)) or (N, j, nj,k)

emitR→P
(
(i, k), (

∏b
j=1 E(pk,mi,j)

nj,k)
)

Figure 3.7: Map and Reduce functions for SP-1R protocol.

3.3.3 CRSP Matrix Multiplication with MapReduce

In order to keep the content of both matrices private, the CRSP matrix multiplication
with MapReduce uses the Paillier’s cryptosystem along with the Paillier interactive mul-
tiplicative homomorphic protocol presented in Figure 2.4 on page 24.

CRSP Matrix Multiplication with Two MapReduce Rounds

The CRSP-2R protocol is composed of four functions: the first Map function, the first
Reduce function, the second Map function and the second Reduce function. The four
functions are given in Figure 3.8.

• The First Map Function. Unlike the first Map function of the SP approach, elements
of both matrices M and N are encrypted. The first Map function executed on nodes
M and N works as for the SP approach but on encrypted elements of both matrices.
It produces key-values pairs (j, (M, i,m∗i,j)) and (j, (N, k, n∗j,k)) where i ∈ J1, aK, j ∈
J1, bK, and k ∈ J1, cK, sent to the set of nodes R1. Hence, nodes M and N learn
nothing about elements of matrices M and N .

• The First Reduce Function. It has to perform multiplications of encrypted values
having the same key on R1, i.e., for a key (i, k) with i ∈ J1, aK and k ∈ J1, cK,
R1 multiplies E(pk,mi,j) by E(pk, nj,k) for j ∈ J1, bK. We use the Paillier interactive
multiplicative protocol to perform mutiplication of two ciphertexts with the Paillier’s
cryptosystem. This protocol is denoted Paillier.Inter and presented in Figure 2.4 on
page 24. Hence, nodes R1 interacts with the client’s set of nodes P to perform the
multiplications. It sends key-values pairs to the set of nodes R2.

• The Second Map Function. It consists in the identity function.

• The Second Reduce Function. Since nodes R2 receives key-value pairs where values
v is equal to E(pk,mi,j ·nj,k), nodes R2 uses the homomorphic property of Paillier’s
cryptosystem to compute the sum of all encrypted values associated to the same key
(i, k) with i ∈ J1, aK and k ∈ J1, cK. Precisely, it computes

∏
v∈values v for a key (i, k)

which represents E(pk,
∑

jmi,j · nj,k).
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1st Map function:

Input: (key , value)
// key : id of a chunk of M∗ or N∗

// value: collection of (i, j, E(pk,mi,j)) or (j, k, E(pk, nj,k))
foreach (i, j, E(pk,mi,j)) ∈ value do

emitM→R1(j, (M, i, E(pk,mi,j)))
foreach (j, k, E(pk, nj,k))) ∈ value do

emitN→R1(j, (N, k, E(pk, nj,k)))

1st Reduce function:

Input: (key , values)
// key : j ∈ J1, bK
// values: collection of (M, i, E(pk,mi,j)) or (N, k, E(pk, nj,k))
foreach (M, i, E(pk,mi,j)) ∈ values do

foreach (N, k, E(pk, nj,k)) ∈ values do
emitR1→R2((i, k),Paillier.Inter(E(pk,mi,j), E(pk, nj,k)))

2nd Reduce function:

Input: (key , values)
// key : (i, k) ∈ J1, aK× J1, cK
// values: collection of v := E(pk,mi,j · nj,k)
emitR2→P

(
(i, k),

∏
v∈values v

)
Figure 3.8: Map and Reduce functions for the CRSP-2R protocol.

CRSP Matrix Multiplication with One MapReduce Round

Finally, we present the CRSP-1R protocol composed of two functions: the Map function
and the Reduce function. The two functions are given in Figure 3.9.

Map function:

Input: (key , value)
// key : id of a chunk of M∗ or N∗

// value: collection of (i, j, E(pk,mi,j)) or (j, k, E(pk, nj,k))
foreach (i, j, E(pk,mi,j)) ∈ value do

foreach k ∈ J1, cK do
emitM→R((i, k), (M, j, E(pk,mi,j)))

foreach (j, k, E(pk, nj,k)) ∈ value do
foreach i ∈ J1, aK do

emitN→R((i, k), (N, j, E(pk, nj,k)))

Reduce function:

Input: (key , values)
// key : (i, k) ∈ J1, aK× J1, cK
// values: collection of (M, j, E(pk,mi,j)) or (N, j, E(pk, nj,k))

emitR→P((i, k), (
∏b
j=1 Paillier.Inter(E(pk,mi,j), E(pk, nj,k))))

Figure 3.9: Map and Reduce functions for the CRSP-1R protocol.

• The Map Function. It is executed by nodes M and N . As for the Map function
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of the SP-1R protocol, it consists in rewritting each element of M∗ and N∗ sent by
data owners. NodesM create pairs of the form ((i, k), M, j,m∗i,j) and nodes N create
pairs of the form ((i, k), N, j, n∗j,k) for i ∈ J1, aK, j ∈ J1, bK, and k ∈ J1, cK. Nodes M
and N send pairs to the set of nodes R. Hence, M, N and R cannot learn any
information on elements of matrices M and N .

• The Reduce Function. It is executed by the set of nodes R. For a key (i, k), with
i ∈ J1, aK and k ∈ J1, cK, it takes as input values of the form (M, j, E(pk,mi,j)) and

(N, j, E(pk, nj,k)), for j ∈ J1, bK. To compute
∑b

j=1mi,j · nj,k from these encrypted
values, the Reduce function uses the Paillier interactive multiplicative homomorphic
protocol denoted Paillier.Inter and presented in Figure 2.4 on page 24.

3.3.4 Complexity Comparison

In Table 3.1, we summarize the computation and the communication costs for our two
approaches using one or two communication rounds and the two standard MapReduce
protocols for two square matrices of order n. In the computation cost, we quantify by 1
the cost to read a key-value pair. In our communication cost analysis, we measure the
total size of the data that is emitted from public cloud nodes and quantify by 1 the cost
to send a key-value pair. The CRSP approach satisfies all privacy constraints and resists
to collusions but requires a communication overhead.

Table 3.1: Computation and communication costs (big-O) analysis of MapReduce matrix
multiplication protocols. Let C× (resp. C+, Cexp, CE , CD, Cinv, C$) be the cost of multi-
plication (resp. addition, exponentiation, encryption, decryption, inversion, sampling).

Protocols Computation cost Comm. cost

MM-2R
(C× + C+) · n3 n3 + 3 · n2

MM-1R 2 · n3 + n2

SP-2R (2C× + 2Cexp + CD + Cinv) · n3 3 · n3 + 4 · n2

SP-1R (C× + Cexp) · n3 2 · n3 + n2

CRSP-2R
(4 · CE + 7 · C× + 2 · CD + 2 · Cexp + 2 · C$ + Cinv) · n3 3 · n3 + 3 · n2

CRSP-1R 5 · n3 + n2

3.4 Experimental Results

We present the experimental results for the two state-of-the-art protocols [LRU14], and
for our secure SP and CRSP approaches.

3.4.1 Dataset and Settings

For each experiment, we generate two random matrices composed of elements in J0, 10K.
We measure the CPU time of the matrix multiplication for matrices’ dimension from 90 to
450 for the two state-of-the-art protocols, and from 90 to 300 for our secure approaches,
in steps of 30.

As mentionned in Section 3.3, both secure approaches are based on the Paillier’s cryp-
tosystem. We use Gaillier†, a Go implementation of the Paillier’s cryptosystem. Note that
Gaillier is not an optimized implementation. Hence, we use it with a 64-bit RSA modulus
as proof of concept.

†https://github.com/actuallyachraf/gomorph

https://github.com/actuallyachraf/gomorph
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3.4.2 Results
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Figure 3.10: CPU time vs the matrices’ dimension for the two state-of-the-art proto-
cols [LRU14] computing the matrix multiplication.
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Figure 3.11: CPU time vs the matrices’ dimension for our SP and CRSP approaches
computing the matrix multiplication.

Figure 3.10 presents experimental results of the two state-of-the-art protocols [LRU14]
while Figure 3.11 presents those for our SP and CRSP approaches.

First, we observe in Figure 3.10 that the MM-2R protocol is more efficient than the
MM-1R protocol. The trend is visible when matrices’ dimension is larger than 180. This is
reasonable since MM-1R requires more communication than MM-2R. Moreover, MM-2R
uses two MapReduce rounds, hence Apache Hadoop R© has to execute twice as many disk
operations.

In Figure 3.11, we remark than the protocol SP-1R is much faster than the protocol
SP-2R. Indeed, SP-2R has more privacy guarantee than SP-1R and requires the public
cloud to perform a Paillier decryption, which is computationally expensive. Finally, the
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CPU time of CRSP approach is much important since it uses Paillier interactive multi-
plicative homomorphic protocol which implies extra Paillier encryptions and decryptions.

3.5 Security Proofs

We provide formal security proof for CRSP-2R, CRSP-1R, SP-2R, and SP-1R protocols.
We use the standard multiparty computations definition of security against semi-honest
adversaries [Lin17].

3.5.1 Security Proof for CRSP-2R and CRSP-1R Protocols

The CRSP approach assumes that public cloud’s nodes may collude, hence in a security
point of view, the security proofs of CRSP-2R and CRSP-1R protocols are the same. In
fact, the only difference between the two protocols is that the public cloud has sets of
nodes M, N , R1, and R2 for the two rounds case, and has sets of nodes M, N , and R
for the one round case. Hence, these sets of nodes is considered as a unique set of nodes
in both cases when they collude.

We model both protocols (i.e., CRSP-2R and CRSP-1R protocols) with four parties
PM , PN , PC , and PP using respective inputs I := (IM , IN , IC , IP) ∈ I and a function
g := (gM , gN , gC , gP) such that

• PM is the data owner of M . It has the input IM := (M,pk), where M is its private
matrix and pk is the Paillier’s public key of the user. PM returns gM (I) := ⊥ because
it does not learn anything.

• PN is the data owner of N . It has the input IN := (N, pk), where N is its private
matrix and pk is the Paillier’s public key of the user. PN returns gN (I) := ⊥ because
it does not learn anything.

• PC is the public cloud’s nodes that represents the collusion between sets of nodesM,
N , R1, and R2 for the two-rounds protocol, and between sets of nodes M, N , and
R for the one-round protocol. It has the input IC := pk, where pk is the Paillier’s
public key of the user. PC returns gC(I) := (a, b, c) ∈ (N∗)3 because it learns M , N ,
and P ’s dimensions.

• PP is the set nodes P of the user. It has the input IP := (pk, sk), where (pk, sk) is
the Paillier’s key pair of the MapReduce user. PP returns gP(I) := P because the
user obtains the result of the matrix multiplication at the end of both protocols.

Note that for the sake of clarity, we consider that PC sends the product of the encrypted
matrices to PP instead of storing them in a database.

The security of CRSP protocols is given by Theorem 2.

Theorem 2. Assume Paillier’s cryptosystem is IND-CPA, then CRSP protocols securely
compute the matrix mutiplication in the presence of semi-honest adversaries even if public
cloud’s nodes collude.

The security proof for CRSP protocols (Theorem 2) is decomposed in Lemma 1 for
parties PM and PN , Lemma 2 for party PC , and Lemma 3 for party PP .

Lemma 1. There exists probabilistic polynomial-time simulators SCRSP
M and SCRSP

N such
that {

SCRSP
M (1λ, IM , gM (I))

}
I∈I,λ∈N

c≡
{

viewCRSP
M (I, λ)

}
I∈I,λ∈N ,{

SCRSP
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{

viewCRSP
N (I, λ)

}
I∈I,λ∈N .
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Proof. The view of PM contains M∗ (the encryption of M) obtained from Preprocessing
I algorithm and that is sent to PC . Simulator SCRSP

M has input (M,pk). It encrypts each
element of M using pk to build M∗, the encryption of M . Hence, SCRSP

M performs exactly
the same computation as real CRSP protocols and describes exactly the same distribution
as viewCRSP

M (I, λ). Building the simulator SCRSP
N in the same way, it describes exactly the

same distribution as viewCRSP
N (I, λ).

Lemma 2. Assume Paillier’s cryptosystem is IND-CPA, then there exists a probabilistic
polynomial-time simulator SCRSP

C such that{
SCRSP
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{

viewCRSP
C (I, λ)

}
I∈I,λ∈N .

Simulator: SCRSP
C (1λ, pk,⊥)

foreach i ∈ J1, aK do
foreach j ∈ J1, bK do

αi,j
$← Zn

M∗ :=
(
E(pk, αi,j)

)
i∈J1,aK,j∈J1,bK

foreach j ∈ J1, bK do
foreach k ∈ J1, cK do

βj,k
$← Zn

N∗ :=
(
E(pk, βj,k)

)
j∈J1,bK,k∈J1,cK

foreach i ∈ J1, aK do
foreach k ∈ J1, cK do

foreach j ∈ J1, bK do

(ri,j,k, si,j,k, ti,j,k)
$← (Zn)3

xi,j,k := E(pk, αi,j) · E(pk, ri,j,k)
yi,j,k := E(pk, βj,k) · E(pk, si,j,k)
zi,j,k := E(pk, ti,j,k)

p∗ik :=
∏b
j=1 zi,j,k

view :=
(
M∗, N∗, {(xi,j,k, yi,j,k), zi,j,k}i∈J1,aK,j∈J1,bK,k∈J1,cK, {p∗ik}i∈J1,aK,k∈J1,cK

)
return view

Figure 3.12: Simulator SCRSP
C for the proof of Lemma 2.

Proof. We recall that PC is the collusion of set of nodesM, N , R1, R2 for the two rounds
protocol, and the collusion of M, N , R for the one round protocol. In CRSP protocols,
PC receives M∗ and N∗ from the data owners. Moreover, R1 (for the two rounds case) or
R (for the one round case) sends couples of ciphertexts (xi,j,k, yi,j,k) to PP and receives all
corresponding ciphertexts zi,j,k returned by PP to compute multiplication on encrypted
coefficients, where i ∈ J1, aK, j ∈ J1, bK, and k ∈ J1, cK. It also contains all values p∗ik of
the encrypted matrix P ∗ sent by R2 (for the two rounds case) or by R (for the one round
case) to PP . Simulator of PR is given in Figure 3.12.

Let λ ∈ N be a security parameter. Assume there exists a polynomial-time distin-
guisher D such that for all inputs I ∈ I, we have∣∣Pr[D(SCRSP

C (1λ, IC , gC(I))) = 1]− Pr[D(viewCRSP
C (I)) = 1]

∣∣ = µ(λ) ,

where µ is a non-negligible function in λ. We show how to build a probabilistic polynomial-
time adversary A such that A has a non-negligible advantage to win the IND-CPA ex-
periment on the Paillier’s cryptosystem. Then we conclude the proof by contraposition.
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Adversary: AE(pk,LoRb(·,·))

foreach i ∈ J1, aK do
foreach j ∈ J1, bK do

mi,j
$← Zn

M := (mi,j)i∈J1,aK,j∈J1,bK
foreach j ∈ J1, bK do

foreach k ∈ J1, cK do

nj,k
$← Zn

N := (nj,k)j∈J1,bK,k∈J1,cK
foreach i ∈ J1, aK do

foreach k ∈ J1, cK do
foreach j ∈ J1, bK do

(vi,j,k, wi,j,k, θi,j,k)
$← (Zn)3

xi,j,k := E(pk, vi,j,k)
yi,j,k := E(pk,wi,j,k)
zi,j,k := E

(
pk, LoRb(mi,j · nj,k, θi,j,k)

)
p∗ik :=

∏b
j=1 zi,j,k

foreach i ∈ J1, aK do
foreach j ∈ J1, bK do

µi,j
$← Zn

m∗i,j := E
(
pk, LoRb(mi,j , µi,j)

)
M∗ := (m∗i,j)i∈J1,aK,j∈J1,bK

for j ∈ J1, bK do
for k ∈ J1, cK do

δj,k
$← Zn

n∗j,k := E
(
pk, LoRb(nj,k, δj,k)

)
N∗ := (n∗j,k)j∈J1,bK,k∈J1,cK

view :=
(
M∗, N∗, {(xi,j,k, yi,j,k), zi,j,k})i∈J1,aK,j∈J1,bK,k∈J1,cK, {p∗ik}i∈J1,aK,k∈J1,cK

)
b∗ := D(view)
return b∗

Figure 3.13: Adversary AE(pk,LoRb(·,·)) for the proof of Lemma 2.

Adversary A is presented in Figure 3.13. At the end of its execution, A uses the distin-
guisher D to compute the bit b∗ before returning it. First, we remark that

Pr
[
Expindcpa-0

Paillier,A(λ) = 1
]

= Pr
[
D(viewCRSP

C (I, λ)) = 1
]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in real CRSP
protocols. Then the probability that the experiment returns 1 is equal to the probability
that the distinguisher returns 1 on inputs computed as in real protocols. On the other
hand, we have

Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]

= Pr
[
D(SCRSP

C (1λ, IC , gC(I))) = 1
]
.

When b = 1, the view that A uses as input for D is computed as in the simulator SC .
Then the probability that the experiment returns 1 is equal to the probability that the
distinguisher returns 1 on inputs computed as in the simulator. Finally, we evaluate the
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probability that A wins the experiment, i.e., b∗ = b

Advindcpa
Paillier,A(λ) =

∣∣Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]
− Pr

[
Expindcpa-0

Paillier,A(λ) = 1
]∣∣

=
∣∣Pr

[
D(SCRSP

C (1λ, IC , gC)) = 1
]
− Pr

[
D
(
viewCRSP

C (I, λ) = 1
]∣∣

= µ(λ) ,

which is non-negligible and concludes the proof by contradiction.

Lemma 3. There exists a probabilistic polynomial-time simulator SCRSP
P such that

{
SCRSP
P (1λ, IP , gP(I))

}
I∈I,λ∈N

c≡
{

viewCRSP
P (I, λ)

}
I∈I,λ∈N .

Simulator: SCRSP
P (1λ, (pk, sk), P )

for i ∈ J1, aK do
for k ∈ J1, cK do

for j ∈ J1, bK do

(ri,j,k, si,j,k)
$← (Zn)2

xi,j,k := E(pk, ri,j,k)
yi,j,k := E(pk, si,j,k)
zi,j,k := E(pk, ri,j,k · si,j,k)

P ∗ := (E(pk, pik))i∈J1,aK,k∈J1,cK
view :=

(
{(xi,j,k, yi,j,k), zi,j,k}i∈J1,aK,j∈J1,bK,k∈J1,cK, P

∗)
return view

Figure 3.14: Simulator SCRSP
P for the proof of Lemma 3.

Proof. Simulator SCRSP
P is presented in Figure 3.14. The view of PP contains the couple of

ciphertexts (xi,j,k, yi,j,k) sent by PC and the answer zi,j,k sent by PP to PC that contains the
encryption of the multiplication of xi,j,k and yi,j,k, for i ∈ J1, aK, j ∈ J1, bK, and k ∈ J1, cK.
Since xi,j,k and yi,j,k are randomized by PC , there are indistinguishable to random cipher-
texts in the PP point of view. The view of PP also contains P ∗ := (E(pk, pi,j))i∈J1,aK,k∈J1,cK
that is sent by PC . Finally, SCRSP

P (1λ, (pk, sk), P ) describes exactly the same distribution
as viewCRSP

P (I, λ), which concludes the proof.

3.5.2 Security Proof for the SP-2R Protocol

We start by modeling the SP-2R protocol. The SP approach assumes that public cloud’s
nodes do not collude, hence we consider each set of nodes of the public cloud as an
individual party. We model the SP-2R protocol with seven parties PM , PN , PM, PN ,
PR1 , PR2 , and PP . They use respective inputs I := (IM , IN , IM, IN , IR1 , IR2 , IP) ∈ I and
a function g := (gM , gN , gM, gN , gR1 , gR2 , gP) such that

• PM is the data owner of M . It has the input IM := (M,pk), where M is its private
matrix and pk is the Paillier’s public key of the user. PM returns gM (I) := ⊥ because
it does not learn anything.

• PN is the data owner of N . It has the input IN := (N, pkR2), where N is its private
matrix and pkR2 is the Paillier’s public key of the set of nodes R2 of the public
cloud. PN returns gN (I) := ⊥ because it does not learn anything.
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• PM is the set of nodes M of the public cloud. It has the input IM := pk where pk
is the Paillier’s public key of the user, and returns gM(I) := (a, b) ∈ (N∗)2 because
PM learns the size of M .

• PN is the set of nodes N of the public cloud. It has the input IN := (pk, pkR2)
where pk (resp. pkR2) is the Paillier’s public key of the user (resp. of the set of
nodes R2 of the public cloud). It returns gN (I) := (b, c) ∈ (N∗)2 because PN learns
the size of N .

• PR1 is the set of nodes R1 of the public cloud. It has the input IR1 := pk where pk
is the Paillier’s public key of the user, and returns gR1(I) := (a, b, c) ∈ (N∗)3 because
PR1 learns the size of M and N .

• PR2 is the set of nodesR2 of the public cloud. It has the input IR2 := (pk, pkR2 , skR2)
where pk is the Paillier’s public key of the user, and (skR2 , pkR2) is the Paillier’s key
pair of R2. It returns gR2(I) := (a, b, c) ∈ (N∗)3 because PR2 learns the size of M
and N .

• PP is the set of nodes P of the user. It has the input IP := (pk, sk) where (pk, sk)
is the Paillier’s key pair of the user. It returns gP(I) := P because the user learns
the result of the matrix multiplication at the end of the protocol.

As for the CRSP protocols, we consider that PR2 sends the product of the encrypted
matrices to PP instead of storing them in a database.

The security of SP-2R protocol is given by Theorem 3.

Theorem 3. Assume Paillier’s cryptosystem is IND-CPA, then the SP-2R protocol se-
curely computes the matrix mutiplication in the presence of semi-honest adversaries if
public cloud’s nodes do not collude.

The security proof for the SP-2R protocol is decomposed in Lemma 4 for PM and PN ,
Lemma 5 for PM and PN , Lemma 7 for PR1 , Lemma 8 for PR2 , and Lemma 9 for PP .

Lemma 4. There exists probabilistic polynomial-time simulators SSP-2R
M and SSP-2R

N such
that {

SSP-2R
M (1λ, IM , gM (I))

}
I∈I,λ∈N

c≡
{

viewSP-2R
M (I, λ)

}
I∈I,λ∈N ,{

SSP-2R
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{

viewSP-2R
N (I, λ)

}
I∈I,λ∈N .

Proof. In SP-2R protocol, PM has input (M,pk) and sends M∗ (the encryption of M) to
PM using Preprocessing I algorithm presented in Figure 3.5 on page 34. Hence, simulator
SSP-2R
M performs the same computation that Preprocessing I algorithm using M and pk

and describes exactly the same distribution as viewSP-2R
M (I, λ). In the same way, the view

of PN contains the encryption of N that is sent to N . Hence, simulator SSP-2R
N performs

the same computation that Preprocessing II algorithm 3.5 and describes exactly the same
distribution as viewSP-2R

N (I, λ).

Lemma 5. There exists probabilistic polynomial-time simulator SSP-2R
M such that{

SSP-2R
M (1λ, IM, gM(I))

}
I∈I,λ∈N

c≡
{

viewSP-2R
M (I, λ)

}
I∈I,λ∈N .

Proof. In the SP-2R protocol, PM receives the encryption of M from PM , and sends it to
R1 by rewriting each element in the form of key-value pairs. Hence, the view of PM only
contains the encryption of M . Simulator SSP-2R

M is given in Figure 3.15.
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Simulator: SSP-2R
M (1λ, pk, (a, b))

foreach i ∈ J1, aK do
foreach j ∈ J1, bK do

αi,j
$← Zn

M∗ := (E(pk, αi,j))i∈J1,aK,j∈J1,bK
viewM := M∗

return viewM

Figure 3.15: Simulator SSP-2R
M for the proof of Lemma 5.

Adversary: AE(pk,LoRb(·,·))

for i ∈ J1, aK do
for j ∈ J1, bK do

(mi,j , αi,j)
$←
(
Zn
)2

m∗i,j := E(pk, LoRb(mi,j , αi,j))

M∗ := (m∗i,j)i∈J1,aK,j∈J1,bK
viewM := M∗

b∗ := D(viewM)
return b∗

Figure 3.16: Adversary AE(pk,LoRb(·,·)) for the proof of Lemma 5.

Let λ ∈ N be the security parameter used for the Paillier’s cryptosystem. Assume there
exists a polynomial-time distinguisher D and a non-negligible function µ(·) such that for
all I ∈ I, we have∣∣Pr[D(SSP-2R

M (1λ, IM, gM(I))) = 1]− Pr[D(viewSP-2R
M (I, λ)) = 1]

∣∣ = µ(λ) .

We build a probabilistic polynomial-time adversary A such that it has a non-negligible
advantage to win the IND-CPA experiment on the Paillier’s cryptosystem. Then we
conclude the proof by contraposition. A is given in Figure 3.16. At the end of its execution,
it uses D to compute the bit b∗ before returning it.

First, we remark that

Pr
[
Expindcpa-0

Paillier,A(λ) = 1
]

= Pr
[
D(viewSP-2R

M (I, λ)) = 1
]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in the real protocol
SP-2R. Then the probability that the experiment returns 1 is equal to the probability that
the distinguisher returns 1 on inputs computed as in the real protocol.

On the other hand, we have

Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]

= Pr
[
D(SSP-2R

M (1λ, IM, gM(I))) = 1
]
.

When b = 1, the view that A uses as input for D is computed as in the simulator SSP-2R
M .

Then the probability that the experiment returns 1 is equal to the probability that the
distinguisher returns 1 on inputs computed as in the simulator.

Finally, the probability that A wins the IND-CPA experiment, i.e., b∗ = b, is equal to

Advindcpa
Paillier,A(λ) =

∣∣Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]
− Pr

[
Expindcpa-0

Paillier,A(λ) = 1
]∣∣

=
∣∣Pr

[
D(SSP-2R

M (1λ, IM, gM)) = 1
]
− Pr

[
D(viewSP-2R

M (I, λ)) = 1
]∣∣

= µ(λ) ,

which is non-negligible and concludes the proof by contradiction.
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Lemma 6. There exists probabilistic polynomial-time simulator SSP-2R
N such that{

SSP-2R
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{

viewSP-2R
N (I, λ)

}
I∈I,λ∈N .

Simulator: SSP-2R
N (1λ, pk, (b, c))

foreach i ∈ J1, bK do
foreach j ∈ J1, cK do

(βj,k, γjk)
$← (Zn)2

N∗ := (βj,k, E(pk, γj,k))j∈J1,bK,k∈J1,cK
viewN := N∗

return viewN

Figure 3.17: Simulator SSP-2R
N for the proof of Lemma 6.

Adversary: AE(pk,LoRb(·,·))

for j ∈ J1, bK do
for k ∈ J1, cK do

(βj,k, τj,k, γj,k)
$←
(
Zn
)3

n∗i,j := (βj,k, E(pk, LoRb(τj,k, γj,k)))

N∗ := (n∗i,j)j∈J1,bK,k∈J1,cK
viewN := N∗

b∗ := D(viewN )
return b∗

Figure 3.18: Adversary AE(pk,LoRb(·,·)) for the proof of Lemma 6.

Proof. In the SP-2R protocol, PN uses the Preprocessing II algorithm (cf. Figure 3.5 on
page 34) to compute the encryption of N sent to PN , then PN sends it to R1 by rewriting
each element in the form of key-value pairs. Hence, the view of PN only contains the
encryption of N .

Let λ ∈ N be the security parameter used for the Paillier’s cryptosystem. Assume there
exists a polynomial-time distinguisher D and a non-negligible function µ(·) such that for
all I ∈ I, we have∣∣Pr[D(SSP-2R

N (1λ, IM, gM(I))) = 1]− Pr[D(viewSP-2R
N (I, λ)) = 1]

∣∣ = µ(λ) .

We build a probabilistic polynomial-time adversary A such that it has a non-negligible
advantage to win the IND-CPA experiment on the Paillier’s cryptosystem. Then we
conclude the proof by contraposition. A is given in Figure 3.18. At the end of its execution,
it uses D to compute the bit b∗ before returning it.

First, we remark that

Pr
[
Expindcpa-0

Paillier,A(λ) = 1
]

= Pr
[
D(viewSP-2R

N (I, λ)) = 1
]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in the real protocol
SP-2R. Then the probability that the experiment returns 1 is equal to the probability that
the distinguisher returns 1 on inputs computed as in the real protocol.

On the other hand, we have

Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]

= Pr
[
D(SSP-2R

N (1λ, IM, gM(I))) = 1
]
.
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When b = 1, the view that A uses as input for D is computed as in the simulator SSP-2R
N .

Then the probability that the experiment returns 1 is equal to the probability that the
distinguisher returns 1 on inputs computed as in the simulator.

Finally, the probability that A wins the IND-CPA experiment, i.e., b∗ = b, is equal to

Advindcpa
Paillier,A(λ) =

∣∣Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]
− Pr

[
Expindcpa-0

Paillier,A(λ) = 1
]∣∣

=
∣∣Pr

[
D(SSP-2R

N (1λ, IN , gN )) = 1
]
− Pr

[
D(viewSP-2R

N (I, λ)) = 1
]∣∣

= µ(λ) ,

which is non-negligible and concludes the proof by contradiction.

Lemma 7. There exists probabilistic polynomial-time simulator SSP-2R
R1

such that{
SSP-2R
R1

(1λ, IR1 , gR1(I))
}
I∈I,λ∈N

c≡
{

viewSP-2R
R1

(I, λ)
}
I∈I,λ∈N .

Simulator: SSP-2R
R1

(1λ, (pk, pkR2), (a, b, c))

foreach i ∈ J1, aK do
foreach j ∈ J1, bK do

αi,j
$← Zn

m∗i,j := E(pk, αi,j)

foreach j ∈ J1, bK do
foreach c ∈ J1, cK do

(βj,k, γj,k)
$← (Zn)2

tj,k := E(pkR2 , γj,k)
n∗j,k := (βj,k, tj,k)

M∗ := (m∗i,j)i∈J1,aK,j∈J1,bK
N∗ := (n∗j,k)j∈J1,bK,k∈J1,cK

foreach i ∈ J1, aK do
foreach j ∈ J1, bK do

foreach k ∈ J1, cK do
xi,j,k := (m∗i,j)

βj,k

yi,j,k := m∗i,j
zi,j,k := tj,k

viewR1 :=
(
M∗, N∗, {(xi,j,k, yi,j,k, zi,j,k)}i∈J1,aK,j∈J1,bK,k∈J1,cK

)
return viewR1

Figure 3.19: Simulator SSP-2R
R1

for the proof of Lemma 7.

Proof. In the SP-2R protocol, PR1 receives the encryption of M from PM, the encryption
of N from PN , and sends tuples (xi,j,k, yi,j,k, zi,j,k) to PR2 where i ∈ J1, aK, j ∈ J1, bK, and
k ∈ J1, cK that correspond to key-value pairs emited by the first Reduce function executed
by PR1 . The simulator for PR1 , denoted SSP-2R

R1
, is given in Figure 3.19.

Let λ ∈ N be the security parameter used for the Paillier’s cryptosystem. Assume there
exists a polynomial-time distinguisher D and a non-negligible function µ(·) such that for
all I ∈ I, we have∣∣Pr[D(SSP-2R

R1
(1λ, IM, gM(I))) = 1]− Pr[D(viewSP-2R

R1
(I, λ)) = 1]

∣∣ = µ(λ) .

We build a probabilistic polynomial-time adversary A such that it has a non-negligible
advantage to win the IND-CPA experiment on the Paillier’s cryptosystem. Then we
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Adversary: AE(pk,LoRb(·,·)),E(pkR2
,LoRb(·,·))

for i ∈ J1, aK do
for j ∈ J1, bK do

(mi,j , αi,j)
$←
(
Zn
)2

m∗i,j := E(pk, LoRb(mi,j , αi,j))

for j ∈ J1, bK do
for k ∈ J1, cK do

(βj,k, τj,k, γj,k)
$←
(
Zn
)3

tj,k := E(pkR1 , LoRb(τj,k, γj,k))
n∗j,k := (βj,k, tj,k)

M∗ := (m∗i,j)i∈J1,aK,j∈J1,bK
N∗ := (n∗j,k)j∈J1,bK,k∈J1,cK

for i ∈ J1, aK do
for j ∈ J1, bK do

for k ∈ J1, cK do
xi,j,k := (m∗i,j)

βj,k

yi,j,k := m∗i,j
zi,j,k := tj,k

viewR1 :=
(
M∗, N∗, {(xi,j,k, yi,j,k, zi,j,k)}i∈J1,aK,j∈J1,bK,k∈J1,cK

)
b∗ := D(viewR1)
return b∗

Figure 3.20: Adversary AE(pk,LoRb(·,·)),E(pkR2
,LoRb(·,·)) for the proof of Lemma 7.

conclude the proof by contraposition. A is given in Figure 3.20. At the end of its execution,
it uses D to compute the bit b∗ before returning it.

First, we remark that

Pr
[
Expindcpa-0

Paillier,A(λ) = 1
]

= Pr
[
D(viewSP-2R

R1
(I, λ)) = 1

]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in the real protocol
SP-2R. Then the probability that the experiment returns 1 is equal to the probability that
the distinguisher returns 1 on inputs computed as in the real protocol.

On the other hand, we have

Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]

= Pr
[
D(SSP-2R

R1
(1λ, IM, gM(I))) = 1

]
.

When b = 1, the view that A uses as input for D is computed as in the simulator SSP-2R
R1

.
Then the probability that the experiment returns 1 is equal to the probability that the
distinguisher returns 1 on inputs computed as in the simulator.

Finally, the probability that A wins the IND-CPA experiment, i.e., b∗ = b, is equal to

Advindcpa
Paillier,A(λ) =

∣∣Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]
− Pr

[
Expindcpa-0

Paillier,A(λ) = 1
]∣∣

=
∣∣Pr

[
D(SSP-2R

R1
(1λ, IR1 , gR1)) = 1

]
− Pr

[
D(viewSP-2R

R1
(I, λ)) = 1

]∣∣
= µ(λ) ,

which is non-negligible and concludes the proof by contradiction.

Lemma 8. There exists probabilistic polynomial-time simulator SSP-2R
R2

such that{
SSP-2R
R2

(1λ, IR2 , gR2(I))
}
I∈I,λ∈N

c≡
{

viewSP-2R
R2

(I, λ)
}
I∈I,λ∈N .
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Simulator: SSP-2R
R2

(1λ, (pk, pkR2 , skR2), (a, b, c))

for i ∈ J1, aK do
for j ∈ J1, bK do

αi,j
$← Zn

m∗i,j := E(pk, αi,j)

for j ∈ J1, bK do
for k ∈ J1, cK do

(βj,k, τj,k)
$←
(
Zn
)2

tj,k := E(pkR2 , τj,k)
n∗j,k := (βj,k, tj,k)

M∗ := (m∗i,j)i∈J1,aK,j∈J1,bK
N∗ := (n∗j,k)j∈J1,bK,k∈J1,cK

for i ∈ J1, aK do
for k ∈ J1, cK do

for j ∈ J1, bK do
xi,j,k := (m∗i,j)

βj,k

yi,j,k := m∗i,j
zi,j,k := tj,k

p∗ik :=
∏b
j=1 xi,j,k ·

(
y
D(skR2

,zi,j,k)

i,j,k

)−1

P ∗ := (p∗ik)i∈J1,aK,j∈J1,bK,k∈J1,cK
viewR2 :=

(
M∗, N∗, {(xi,j,k, yi,j,k, zi,j,k)}i∈J1,aK,j∈J1,bK,k∈J1,cK, P

∗)
return viewR2

Figure 3.21: Simulator SSP-2R
R2

for the proof of Lemma 8.

Proof. In the SP-2R protocol, PR2 receives tuples (xi,j,k, yi,j,k, zi,j,k), where i ∈ J1, aK,
i ∈ J1, aK, and i ∈ J1, aK, computed by the first Reduce function and sent by PR1 . PR2

sends the encryption of P , denoted P ∗. The simulator for PR2 , denoted SSP-2R
R2

, is given
in Figure 3.21.

Let λ ∈ N be the security parameter used for the Paillier’s cryptosystem. Assume there
exists a polynomial-time distinguisher D and a non-negligible function µ(·) such that for
all I ∈ I, we have∣∣Pr[D(SSP-2R

R2
(1λ, IM, gM(I))) = 1]− Pr[D(viewSP-2R

R2
(I, λ)) = 1]

∣∣ = µ(λ) .

We build a probabilistic polynomial-time adversary A such that it has a non-negligible
advantage to win the IND-CPA experiment on the Paillier’s cryptosystem. Then we
conclude the proof by contraposition. A is given in Figure 3.22. At the end of its execution,
it uses D to compute the bit b∗ before returning it.

First, we remark that

Pr
[
Expindcpa-0

Paillier,A(λ) = 1
]

= Pr
[
D(viewSP-2R

R2
(I, λ)) = 1

]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in the real protocol
SP-2R. Then the probability that the experiment returns 1 is equal to the probability that
the distinguisher returns 1 on inputs computed as in the real protocol.

On the other hand, we have

Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]

= Pr
[
D(SSP-2R

R2
(1λ, IM, gM(I))) = 1

]
.

When b = 1, the view that A uses as input for D is computed as in the simulator SSP-2R
R2

.
Then the probability that the experiment returns 1 is equal to the probability that the
distinguisher returns 1 on inputs computed as in the simulator.
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Adversary: AE(pk,LoRb(·,·)),E(pkR2
,LoRb(·,·))

for i ∈ J1, aK do
for j ∈ J1, bK do

(mi,j , αi,j)
$←
(
Zn
)2

m∗i,j := E(pk, LoRb(mi,j , αi,j))

for j ∈ J1, bK do
for k ∈ J1, cK do

(βj,k, τj,k, γj,k)
$←
(
Zn
)3

tj,k := E(pkR2 , LoRb(τj,k, γj,k))
n∗j,k := (βj,k, tj,k)

M∗ := (m∗i,j)i∈J1,aK,j∈J1,bK
N∗ := (n∗j,k)j∈J1,bK,k∈J1,cK

for i ∈ J1, aK do
for k ∈ J1, cK do

for j ∈ J1, bK do
xi,j,k := (m∗i,j)

βj,k

yi,j,k := m∗i,j
zi,j,k := tj,k

p∗ik :=
∏b
j=1 xi,j,k ·

(
y
D(skR2

,zi,j,k)

i,j,k

)−1

P ∗ := (p∗ik)i∈J1,aK,k∈J1,cK
viewR2 :=

(
M∗, N∗, {(xi,j,k, yi,j,k, zi,j,k)}i∈J1,aK,j∈J1,bK,k∈J1,cK, P

∗)
b∗ := D(viewR2)
return b∗

Figure 3.22: Adversary AE(pk,LoRb(·,·)),E(pkR2
,LoRb(·,·)) for the proof of Lemma 8.

Finally, the probability that A wins the IND-CPA experiment, i.e., b∗ = b, is equal to

Advindcpa
Paillier,A(λ) =

∣∣Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]
− Pr

[
Expindcpa-0

Paillier,A(λ) = 1
]∣∣

=
∣∣Pr

[
D(SSP-2R

R2
(1λ, IR2 , gR2)) = 1

]
− Pr

[
D(viewSP-2R

R2
(I, λ)) = 1

]∣∣
= µ(λ) ,

which is non-negligible and concludes the proof by contradiction.

Lemma 9. There exists a probabilistic polynomial-time simulator SSP-2R
P such that{

SSP-2R
P (1λ, IP , gP(I))

}
I∈I,λ∈N

c≡
{

viewSP-2R
P (I, λ)

}
I∈I,λ∈N .

Simulator: SSP-2R
P (1λ, (pk, sk), P )

(pi,k)iJ1,aK,k∈J1,cK := P
P ∗ := (E(pk, pi,k))iJ1,aK,k∈J1,cK
viewP := P ∗

return viewP

Figure 3.23: Simulator SSP-2R
P for the proof of Lemma 9.

Proof. Simulator SSP-2R
P is presented in Figure 3.23. The view of PP only contains the

encryption of elements of matrix P sent by PR2 . Hence, SSP-2R
P describes exactly the same

distribution as viewSP-2R
P (I, λ), which concludes the proof.



3.5. SECURITY PROOFS 51

3.5.3 Security Proof for the SP-1R Protocol

We start by modeling the SP-1R. The SP assumes that public cloud’s nodes do not collude,
hence we consider each set of nodes of the public cloud as an individual party. We model
the SP-1R protocol with six parties PM , PN , PM, PN , PR, and PP . They use respective
inputs I := (IM , IN , IM, IN , IR, IM) ∈ I and a function g := (gM , gN , gM, gN , gR, gP)
such that

• PM is the data owner of M . It has the input IM := (M,pk), where M is its private
matrix and pk is the Paillier’s public key of the user. PM returns gM (I) := ⊥ because
it does not learn anything.

• PN is the data owner of N . It has the input IN := (N, pk), where N is its private
matrix and pk is the Paillier’s public key of the user. PN returns gN (I) := ⊥ because
it does not learn anything.

• PM is the set of nodes M of the public cloud. It has the input IM := pk where pk
is the Paillier’s public key of the user, and returns gM(I) := (a, b) ∈ (N∗)2 because
PM learns the size of M .

• PN is the set of nodes N of the public cloud. It has the input IN := pk where
pk is the Paillier’s public key of the user, and returns gN (I) := (N, a, b) where
(a, b) ∈ (N∗)2 because PN learns the matrix N .

• PR is the set of nodes R of the public cloud. It has the input IR := pk where pk
is the Paillier’s public key of the user. It returns gR(I) := (N, a, b, c) because PR
learns the matrix N and dimensions of matrices M and N .

• PP is the set of nodes P of the user. It has the input IP := (pk, sk) where (pk, sk)
is a Paillier’s key pair of the user, and returns gP(I) := P because the user learns
the result of the matrix multiplication at the end of the protocol.

The security of the SP-1R protocol is given by Theorem 4.

Theorem 4. Assume Paillier’s cryptosystem is IND-CPA, then the SP-1R protocol se-
curely computes the matrix mutiplication in the presence of semi-honest adversaries.

The proof for Theorem 4 is decomposed in Lemma 10 for PM , Lemma 11 for PN ,
Lemma 12 for PM, Lemma 13 for PN , Lemma 14 for PR, and Lemma 15 for PP .

Lemma 10. There exists probabilistic polynomial-time simulator SSP-1R
M such that{

SSP-1R
M (1λ, IM , gM (I))

}
I∈I,λ∈N

c≡
{

viewSP-1R
M (I, λ)

}
I∈I,λ∈N .

Proof of Lemma 10 is the same than Lemma 1.

Lemma 11. There exists probabilistic polynomial-time simulator SSP-1R
N such that{

SSP-1R
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{

viewSP-1R
N (I, λ)

}
I∈I,λ∈N .

Proof. In the SP-1R protocol, PN as for input the matrix N . PN does not perform
preprocessing on N , and sends it to PN . Hence, SSP-1R

N is the identity function and
describes exactly the same distribution as viewSP-1R

N (I, λ).

Lemma 12. There exists probabilistic polynomial-time simulator SSP-1R
M such that{

SSP-1R
M (1λ, IM, gM(I))

}
I∈I,λ∈N

c≡
{

viewSP-1R
M (I, λ)

}
I∈I,λ∈N .
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Proof of Lemma 12 is the same than Lemma 5.

Lemma 13. There exists probabilistic polynomial-time simulator SSP-1R
N such that{

SSP-1R
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{

viewSP-1R
N (I, λ)

}
I∈I,λ∈N .

Proof. In the SP-1R protocol, PN receives N from PN , and executes the Map function
(cf. Figure 3.7 on page 36) to send output to PR by rewriting each element of N in the
form of key-value pairs. Hence, the view of PN only contains N . Therefore, SSP-1R

N is the
identity function and describes exactly the same distribution as viewSP-1R

N (I, λ).

Lemma 14. There exists probabilistic polynomial-time simulator SSP-1R
R such that{

SSP-1R
R (1λ, IR, gR(I))

}
I∈I,λ∈N

c≡
{

viewSP-1R
R (I, λ)

}
I∈I,λ∈N .

Simulator: SSP-1R
R (1λ, pk, (N, a, b, c))

foreach i ∈ J1, aK do
foreach j ∈ J1, bK do

αi,j
$← Zn

m∗i,j := E(pk, αi,j)

M∗ := (m∗i,j)i∈J1,aK,j∈J1,bK

foreach j ∈ J1, bK do
foreach k ∈ J1, cK do

nj,k
$← Zn

N := (nj,k)j∈J1,bK,k∈J1,cK
foreach i ∈ J1, aK do

foreach k ∈ J1, cK do
foreach j ∈ J1, bK do

xi,j,k := (m∗i,j)
nj,k

p∗ik :=
∏b
j=1 xi,j,k

P ∗ := (p∗ik)i∈J1,aK,k∈J1,cK
viewR := (M∗, N, P ∗)
return viewR

Figure 3.24: Simulator SSP-1R
R for the proof of Lemma 14.

Proof. In the SP-1R protocol, PR receives M∗ (the encryption of M) from PM , and N
from PN that corresponds to the output of the Map function (cf. Figure 3.7 on page 36).
Hence, it learns N , and dimensions of M and N . It sends P ∗ (the encryption of P ) to
PP . Simulator SSP-1R

R for PR is given in Figure 3.24.

Let λ ∈ N be a security parameter used for the Paillier’s cryptosystem. Assume there
exists a polynomial-time distinguisher D and a non-negligible function µ(·) such that for
all I ∈ I, we have∣∣Pr[D(SSP-1R

R (1λ, IR, gR(I))) = 1]− Pr[D(viewSP-1R
R (I)) = 1]

∣∣ = µ(λ) .

We build a probabilistic polynomial-time adversary A such that A has a non-negligible
advantage to win the IND-CPA experiment on the Paillier’s cryptosystem. Then we
conclude the proof by contraposition. Adversary A is presented in Figure 3.25. At the
end of its execution, A uses the distinguisher D to compute the bit b∗ before returning it.
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Adversary: AE(pk,LoRb(·,·))

foreach i ∈ J1, aK do
foreach j ∈ J1, bK do

(mi,j , αi,j)
$←
(
Zn
)2

m∗i,j := E(pk, LoRb(mi,j , αi,j))

M∗ := (m∗i,j)i∈J1,aK,j∈J1,bK

foreach j ∈ J1, bK do
foreach k ∈ J1, cK do

nj,k
$← Zn

N := (nj,k)j∈J1,bK,k∈J1,cK
foreach i ∈ J1, aK do

foreach k ∈ J1, cK do
foreach j ∈ J1, bK do

xi,j,k := (m∗i,j)
nj,k

p∗ik :=
∏b
j=1 xi,j,k

P ∗ := (p∗ik)i∈J1,aK,k∈J1,cK
viewR := (M∗, N, P ∗)
b∗ := D(viewR)
return b∗

Figure 3.25: Adversary AE(pk,LoRb(·,·)),E(pkR2
,LoRb(·,·)) for the proof of Lemma 14.

First, we remark that

Pr
[
Expindcpa-0

Paillier,A(λ) = 1
]

= Pr
[
D(viewSP-1R

R (I, λ)) = 1
]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in the real protocol
SP-1R. Then the probability that the experiment returns 1 is equal to the probability that
the distinguisher returns 1 on inputs computed as in the real protocol.

On the other hand, we have

Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]

= Pr
[
D(SR(1λ, IR, gR(I))) = 1

]
.

When b = 1, the view that A uses as input for D is computed as in the simulator SR.
Then the probability that the experiment returns 1 is equal to the probability that the
distinguisher returns 1 on inputs computed as in the simulator.

Finally, the probability that A wins the IND-CPA experiment, i.e., b∗ = b, is equal to

Advindcpa
Paillier,A(λ) =

∣∣Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]
− Pr

[
Expindcpa-0

Paillier,A(λ) = 1
]∣∣

=
∣∣Pr

[
D(SSP-1R

R (1λ, IR, gR)) = 1
]
− Pr

[
D
(
viewSP-1R

R (I, λ) = 1
]∣∣

= µ(λ) ,

which is non-negligible and concludes the proof by contradiction.

Lemma 15. There exists a probabilistic polynomial-time simulator SSP-1R
P such that

{
SSP-1R
P (1λ, IP , gP(I))

}
I∈I,λ∈N

c≡
{

viewSP-1R
P (I, λ)

}
I∈I,λ∈N .

Proof of Lemma 15 is the same than Lemma 9.



54 CHAPTER 3. SECURE MATRIX MULTIPLICATION WITH MAPREDUCE

3.6 Conclusion

We have presented efficient protocols for MapReduce matrix multiplication that enjoy
privacy guarantees such as: none of the nodes storing an input matrix can learn the
other input matrix or the output matrix, and moreover, none of the nodes computing
an intermediate result can learn the input or the output matrices. To achieve our goal,
we have relied on Paillier’s cryptosystem and we developed two different approaches: one
resisting to collusions between public cloud’s nodes called CRSP for Collision-Resistant-
Secure-Private, and another which does not require communication overhead called SP for
Secure-Private. We have thoroughly compared these two approaches with respect to three
fundamental criteria: computation cost, communication cost, and privacy guarantees.

Looking forward to future work, we aim to investigate the matrix multiplication with
privacy guarantees in different big data systems (such as Spark or Flink) whose users also
tend to outsource data and computations similarly to MapReduce.



CHAPTER 4

Secure Strassen-Winograd Matrix Multiplication with MapReduce

We propose a secure multiparty protocol to compute matrix multiplication with the
Strassen-Winograd algorithm using the MapReduce paradigm. The Strassen-Winograd
algorithm (SW) is one of the most efficient matrix multiplication algorithm. Our first
contribution is to redesign SW algorithm with the MapReduce programming model that
allows to process big data sets in parallel on a cluster. Moreover, our main contribution is
to address the inherent security and privacy concerns that occur when outsourcing data
to a public cloud. We propose a secure approach of SW with MapReduce denoted S2M3,
for Secure Strassen-winograd Matrix Multiplication with Mapreduce. This work has been
conducted in collaboration with Radu Ciucanu, Pascal Lafourcade, and Lihua Ye, and
has been published in the paper “Secure Strassen-Winograd Matrix Multiplication with
MapReduce” at SECRYPT 2019 conference.

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Strassen-Winograd Algorithm . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Strassen-Winograd Algorithm for 2-Power Size Matrices . . . . . 58

4.2.2 Padding and Peeling: On a Quest for All Dimensions . . . . . . . 59

4.3 Strassen-Winograd Matrix Multiplication . . . . . . . . . . . . . 60

4.3.1 Strassen-Winograd MapReduce Protocol . . . . . . . . . . . . . . 60

4.3.2 Strassen-Winograd MapReduce Protocol with the Dynamic Padding
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 Strassen-Winograd MapReduce Protocol with the Dynamic Peel-
ing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Secure Strassen-Winograd Matrix Multiplication . . . . . . . . 67

4.4.1 Preprocessing for Secure Strassen-Winograd Matrix Multiplication 67

4.4.2 Secure Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Secure Strassen-Winograd Matrix Multiplication Protocol . . . . 69

4.4.4 Secure Strassen-Winograd Matrix Multiplication with the Dy-
namic Padding Method . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.5 Secure Strassen-Winograd Matrix Multiplication with the Dy-
namic Peeling Method . . . . . . . . . . . . . . . . . . . . . . . . 71

55



56 CHAPTER 4. SECURE STRASSEN-WINOGRAD MATRIX MULTIPLICATION

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Dataset and Settings . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Security Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6.1 Security Proof for S2M3 Protocol . . . . . . . . . . . . . . . . . . 77

4.6.2 Security Proof for S2M3-Pad Protocol . . . . . . . . . . . . . . . 81

4.6.3 Security Proof for S2M3-Peel Protocol . . . . . . . . . . . . . . . 82

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



4.1. INTRODUCTION 57

4.1 Introduction

Many of applications deal with matrices whose size is often very large. Whereas a naive
matrix multiplication algorithm has cubic complexity, many research efforts have been
made to propose more efficient algorithms. One of the most efficient algorithms is Strassen-
Winograd [Mac16] (denoted as SW in the sequel), the first sub-cubic time algorithm, with
an exponent log2 7 ≈ 2.81. The best algorithm known to date [Gal14] has an exponent
≈ 2.38. Although many of the sub-cubic algorithms are not necessarily suited for practical
use as their hidden constant in the big-O notation is huge, the SW algorithm and its
variants emerged as a class of matrix multiplication algorithms in widespread use.

4.1.1 Problem Statement

Two distinct data owners respectively hold compatible square matrices M and N of di-
mension d ∈ N∗. A user (who does not know the matrices M and N) wants their product
P := MN . M and N are sent to the distributed file system of some public cloud provider.
We assume that the matrices M (resp. N) is initially spread over a set M (resp. N ) of
nodes of the public cloud storing a chunk of M (resp. N), i.e., a set of elements of M
(resp. N). The final result P is computed over sets of nodes D1, . . . ,D`, C1, . . . , C` before
it is sent to the user’s nodes P, where ` depends on the dimension d. Moreover, we assume
that data owners (resp. the user) cannot collude with the public cloud and the user (resp.
the public cloud and data owners). We illustrate the architecture of Strassen-Winograd
matrix multiplication with MapReduce in Figure 4.1.

M

N

M

N

D1 . . . D` C1 . . . C` P

Data owners Public Cloud User

Figure 4.1: Architecture of Strassen-Winograd matrix multiplication with MapReduce.

We expect the following properties:

1. the user cannot learn any information about input matrices M and N ,

2. public cloud’s nodes cannot learn any information about matrices M , N , and P .

4.1.2 Contributions

We redesign the Strassen-Winograd algorithm for the MapReduce paradigm model, and
propose a secure approach that satisfies our aforementioned problem statement. More
precisely:

• Our first contribution is a MapReduce version of the SW matrix multiplication
algorithm. We call our protocol SM3 for Strassen-Winograd Matrix Multiplication
with MapReduce. It improves the efficiency of the computation compared to the
standard matrix multiplication with MapReduce, as found in Chapter 2 of [LRU14].

• Our second contribution is a privacy-preserving version of the aforementioned pro-
tocol. Our new protocol S2M3 (for Secure Strassen-Winograd Matrix Multiplication
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with MapReduce) relies on the MapReduce paradigm and on Paillier-like public-key
cryptosystem. The public cloud performs the multiplication on the encrypted data.
At the end of the computation, the public cloud sends the result to the user that
queried the matrix multiplication result. The user has just to decrypt the result to
discover the matrix multiplication result. The public cloud cannot learn none of the
input or output matrices. We formally prove, using the standard security model,
that our S2M3 protocol satisfies the aforementioned security property. Moreover,
we assume that cloud’s nodes may collude that give us the possibility to avoid the
recursivity in the security proof.

• To show the practical efficiency of SM3 and S2M3 protocols, we present a proof-of-
concept using the Apache Hadoop [Fou19b] open-source implementation of MapRe-
duce.

4.1.3 Outline

We start by recalling the Strassen-Winograd algorithm in Section 4.2. Then, we present
our MapReduce protocol for Strassen-Winograd algorithm in Section 4.3. In Section 4.4,
we present our secure approach for Strassen-Winograd matrix multiplication with MapRe-
duce. In Section 4.5, we show an experimental evaluation of our two MapReduce protocols
(with and without security) using Hadoop [Fou19b], the Apache MapReduce implemen-
tation. Before to conclude, we prove in Section 4.6 the security of our protocol in the
standard model.

4.2 Strassen-Winograd Algorithm

We recall the Strassen-Winograd algorithm. Let M and N two compatible matrices such
that M ∈ Ra×b and N ∈ Rb×c with (a, b, c) ∈ (N∗)3. We denote by mi,j the element of the
matrix M which is in the i-th row and the j-th column with i ∈ J1, aK and j ∈ J1, bK. In
the same way, we denote by nj,k the element of the matrix N which is in the j-th row and
k-th column with j ∈ J1, bK and k ∈ J1, cK. Moreover, we denote by P the product MN ,
and by pi,k the element of the matrix P which is in the i-th row and the k-th column with
i ∈ J1, aK and k ∈ J1, cK.

4.2.1 Strassen-Winograd Algorithm for 2-Power Size Matrices

The Strassen-Winograd matrix multiplication algorithm is denoted SW. It works with
two square matrices of same dimension. We assume that M,N ∈ Rd×d where d := 2k and
k ∈ N∗.

First, the SW algorithm splits matrices M and N into four quadrants of equal dimen-
sion such that

M :=

[
M11 M12

M21 M22

]
, and N :=

[
N11 N12

N21 N22

]
.

Using these 8 quadrants, SW performs the computation presented below.

• 8 additions

S1 := M21 +M22 ,
S2 := S1 −M11 ,
S3 := M11 −M21 ,
S4 := M12 − S2 ,

T1 := N12 −N11 ,
T2 := N22 − T1 ,
T3 := N22 −N12 ,
T4 := T2 −N21 .

• 7 recursive SW matrix multiplications
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R1 := M11N11 ,
R2 := M12N21 ,
R3 := S4N22 ,
R4 := M22T4,

R5 := S1T1 ,
R6 := S2T2 ,
R7 := S3T3 .

• 7 final additions

P1 := R1 +R2 ,
P2 := R1 +R6 ,
P3 := P2 +R7 ,
P4 := P2 +R5,

P5 := P4 +R3 ,
P6 := P3 −R4 ,
P7 := P3 +R5 .

Then, the final result is P :=

[
P1 P5

P6 P7

]
.

This algorithm works only if the dimension of M and N is equal to a 2-power integer.
However, two methods exist to use SW algorithm with any dimension.

4.2.2 Padding and Peeling: On a Quest for All Dimensions

Three methods, namely static padding, dynamic padding and dynamic peeling [HJJ+96]
allow to perform Strassen-Winograd matrix multiplication with two compatible square
matrices of arbitrary dimension, i.e., dimension that is equal to a 2-power integer or not.

Static Padding

The static padding method checks if the dimension of original matrix M and N is even
or not. If not, it pads both matrices with zeros to obtain matrix order that is equal to
a 2-power integer. Hence SW can run on these two padded matrices. At the end of the
computation, extra rows and columns of zeros are removed.

Dynamic Padding

The dynamic padding method checks if the dimension of original matrices M and N is
even or not. If not, it pads matrices with an extra column and and extra row of zeros. In
that way, SW is able to produce the four quadrants of equal dimension and the 8 additions
as described in Section 4.2.

For each of the 7 recursive multiplications, this method checks the parity of matrices
to multiply. If the matrices already have an even dimension, then nothing is done since the
algorithm can split them in four quadrants. However, if matrices have an odd dimension,
then an extra row column and an extra row of zeros are added to them before to split the
matrix in four quadrants.

Once the computation of the multiplication of padded matrices is done, the extra row
and column are removed.

Dynamic Peeling

Instead of adding an extra row and an extra column to make matrices even sized as in the
dynamic padding method, the dynamic peeling method removes a row and a column. Let
M and N be two square matrices of size d. If d is an odd number, the dynamic peeling
builds four quadrants for each matrix as illustrated in Figure 4.2.

Since d is an odd number, quadrants M11 := (mi,j)i,j∈J1,d−1K and N11 := (ni,j)i,j∈J1,d−1K
are square matrices of even size. Moreover, we define M12 := (mi,d)i∈J1,d−1K, M21 :=
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M =


m1,1 . . . m1,d−1 m1,d

...
. . .

...
...

md−1,1 . . . md−1,d−1 md−1,d

md,1 . . . md,d−1 md,d

 , N =


n1,1 . . . n1,d−1 n1,d

...
. . .

...
...

nd−1,1 . . . nd−1,d−1 nd−1,d

nd,1 . . . nd,d−1 nd,d

 .

Figure 4.2: Dynamic peeling for matrices M and N .

(md,j)j∈J1,d−1K, M22 := md,d, N12 := (ni,d)i∈J1,d−1K, N21 := (nd,j)j∈J1,d−1K, and N22 := nd,d.
Hence, the multiplication of M with N is given using blocks multiplication

MN :=

[
M11N11 +M12N21 M11N12 +M12N22

M21N11 +M22N21 M21N12 +M22N22

]
,

where the product M11N11 is computed using the SW and the dynamic peeling method
if needed, while other block multiplications are computed using standard matrix multipli-
cation.

4.3 Strassen-Winograd Matrix Multiplication with MapRe-
duce

We present our three MapReduce protocols that compute the multiplication of square
matrices M and N using the Strassen-Winograd algorithm. The first one is the Strassen-
Winograd matrix multiplication, denoted SM3, and assumes that matrices’ dimension is a
2-power integer. The second one (resp. third one) denoted SM3-Pad (resp. SM3-Peel) is
the Strassen-Winograd matrix multiplication using the dynamic padding (resp. dynamic
peeling) method and considers square matrices of any dimension.

Each protocol is decomposed in two phases: (i) the deconstruction phase, and (ii) the
combination phase. The aim of the deconstruction phase is to divide recursively M and N
until the recursive Strassen-Winograd matrix multiplications have an order that is equal
to 1. The aim of the combination phase is to combine all results of scalar multiplications
to build P := MN . Each phase is composed of a Map function and of a Reduce function.
Due to the recursive nature of the Strassen-Winograd algorithm, each phase is run several
times depending on the protocol. At the last round of the combination phase of each
protocol, the public cloud obtains P := MN and sends it to the user.

4.3.1 Strassen-Winograd MapReduce Protocol

The Strassen-Winograd matrix multiplication protocol, denoted SM3, assumes that M
and N are two matrices such that M,N ∈ Rd×d and ` := log2(d) ∈ N∗.

Deconstruction Phase

We present the deconstruction phase of SM3. The Map function (resp. the Reduce
function) of the deconstruction phase is presented in Figure 4.3 (resp. Figure 4.4).

• The Map Function. It is run only during the first MapReduce round of the decon-
struction phase by sets of nodes M and N . It consists in rewritting each matrix
element sent by data owners in the form of key-value pair such that they share the
same key initialized to 0. Hence, when the set of nodes M receives chunks of M
from the owner, the Map function creates for each matrix element mi,j the key-value
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Map function:

Input: (key , value)
// key : id of a chunk of M or N
// value: collection of (i, j,mi,j) or (k, l, nk,l)
foreach (i, j,mi,j) ∈ value do

emitM→D1(0, (M, i, j,mi,j , d))
foreach (k, l, nk,l) ∈ value do

emitN→D1(0, (N, k, l, nk,l, d))

Figure 4.3: Map function for the deconstruction phase of the SM3 protocol.

Reduce function:

Input: (key , values)
// key : t ∈ {0, 7}`
// values: collection of (M, i, j,mi,j , δ) or (N, k, l, nk,l, δ)

// Build M and N from values

M := (mi,j)(M,i,j,mi,j ,δ)∈values
N := (nk,l)(N,k,l,nk,l,δ)∈values

// Split M and N into four quadrants of equal dimension[
M11 M12

M21 M22

]
:= M ,

[
N11 N12

N21 N22

]
:= N

// Build submatrices according to the Strassen-Winograd algorithm

S1 := M21 +M22

S2 := S1 −M11

S3 := M11 −M21

S4 := M12 − S2

T1 := N12 −N11

T2 := N22 − T1

T3 := N22 −N12

T4 := T2 −N21

// Create a list L containing couple of matrices

L :=
[
[M11, N11], [M12, N21], [S4, N22], [M22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

δ′ := δ/2
`′ := log2(d/δ′)
foreach u ∈ J1, 7K do

(m′v,w)v,w∈J1,δ′K := L[u][0]
(n′v,w)v,w∈J1,δ′K := L[u][1]

foreach (v, w) ∈ J1, δ′K2 do
emitD`′−1→D`′ (t‖u, (M, v, w,m

′
v,w, δ

′))
emitD`′−1→D`′ (t‖u, (N, v, w, n

′
v,w, δ

′))

else
foreach u ∈ J1, 7K do

emitD`→C1(t, (u, 1, 1, L[u][0] · L[u][1], 1))

Figure 4.4: Reduce function for the deconstruction phase of the SM3 protocol.

pair (0, (M, i, j,mi,j , d)), where d is the dimension of M . Likewise, when the set of
nodes N receives chunks of N from the owner, the Map function creates for each
matrix element nk,l the key-value pair (0, (N, k, l, nk,l, d)). We stress that M and N in
the values are the names of matrices, that can be encoded with a single bit, and not
the matrices themselves. During other rounds of the deconstruction phase, the Map
function is the identity function.

• The Reduce Function. It is executed by nodes Ds, with s ∈ J1, `K. Each key is
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associated to two matrices sent from previous nodes. When s = 1, matrices are
M and N and are sent by nodes M and N . When s ∈ J2, `K, the two matrices
correspond to a recursive matrix multiplication and are sent by Ds−1. The Reduce
function follows the Strassen-Winograd algorithm using these two matrices. Since
the Strassen-Winograd algorithm needs to compute 7 recursive matrix multiplica-
tions, the Reduce function produces key-value pairs for 7 different keys where each
key is associated to a pair of submatrices to multiply. These key-value pairs are
sent to the next nodes of the deconstruction phase Ds+1. For the last round of the
deconstruction phase, i.e., when s = `, matrix multiplications are degenerated into
scalar multiplications. Hence, the Reduce function produces key-values pairs with
the result of scalar multiplications and sends them to the set of nodes C1.

Combination Phase

We present the combination phase of SM3. In this phase, the Map function is just the
identity function. The Reduce function of the combination phase is presented in Figure 4.5.

Reduce function:

Input: (key , values)
// key : t0 . . . te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, i, j, ri,j , δ) such that u ∈ J1, 7K and i, j ∈ J1, δK

// Build matrices Ru from values with u ∈ J1, 7K
foreach u ∈ J1, 7K do

Ru := (ri,j)(u,i,j,ri,j ,δ)∈values

P1 := R1 +R2

P2 := R1 +R6

P3 := P2 +R7

P4 := P2 +R5

P5 := P4 +R3

P6 := P3 −R4

P7 := P3 −R5

(pv,w)v,w∈J1,2·δK :=

[
P1 P5

P6 P7

]
if δ < d then

δ′ := 2 · δ
`′ := log2(δ′)
foreach (v, w) ∈ J1, 2 · δ′K2 do

emitD`′→D`′+1
(t0 . . . te−1, (te, i, j, pv,w, 2 · δ′))

else
foreach (v, w) ∈ J1, dK2 do

emitD`→P((v, w), pv,w)

Figure 4.5: Reduce function for the combination phase of the SM3 protocol.

• The Map Function. The Map function corresponds to the identity function.

• The Reduce Function. It is executed by each set of nodes Cs with s ∈ J1, `K. For
the first round of the combination phase, i.e., when s = 1, each key is associated
to 7 values corresponding to the scalar multiplications sent by D`. The Reduce
function follows the Strassen-Winograd algorithm and combines all these values to
build matrices of dimension 2 that is sent to the next nodes C2. Other rounds of the
combination phase work in the same way but in this case, each key is associated to 7
matrices of dimension δ and produces a matrix of dimension 2 · δ. At the last round,
i.e., s = `, the Reduce function produces key-value pairs corresponding to the final
result P = MN and send them to the user’s set of nodes P.
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4.3.2 Strassen-Winograd MapReduce Protocol with the Dynamic Pad-
ding Method

The Strassen-Winograd matrix multiplication protocol with dynamic padding using the
MapReduce paradigm is denoted SM3-Pad. It assumes that M and N are two square
matrices such that M,N ∈ Rd×d and d ∈ N∗. In other terms, SM3-Pad consider two
compatible square matrices of arbitrary dimension.

Deconstruction Phase

We present the deconstruction phase of SM3-Pad. The difference compared to the SM3
protocol is the use of the dynamic padding in the Reduce function. Hence, each time it
is required, the Reduce function adds an extra column and an extra row of zeros to both
matrices in order they have an even size dimension. The Map function (resp. the Reduce
function) of the deconstruction phase is presented in Figure 4.6 (resp. Figure 4.7).

Map function:

Input: (key , value)
// key : id of a chunk of M or N
// value: collection of (i, j,mi,j) or (k, l, nk,l)

pad := ε // ε denotes the empty string

foreach (i, j,mi,j) ∈ value do
emitM→D1(0, (M, i, j,mi,j , d, ε))

foreach (k, l, nk,l) ∈ value do
emitN→D1(0, (N, k, l, nk,l, d, ε))

Figure 4.6: Map function for the deconstruction phase of the SM3-Pad protocol.

• The Map Function. It is executed only during the first MapReduce round of the
deconstruction phase by the set of nodes D1. The only difference with the Map
function of SM3 is the adding of the padding flag denoted pad and initialized to the
empty string ε. For other rounds, the Map function is the identity function.

• The Reduce Function. It is executed during each MapReduce round of the decon-
struction phase. The difference with the Reduce function of SM3 is that before to
split both matrices formed from received key-value pairs, it checks if the matrices’
dimension is odd or not. If that is the case, the padding flag pad is updated, i.e., it
concatenates the character P (for padding), otherwise it concatenated the character
E (for even). Moreover, when the matrices’ dimension is odd, the Reduce function
adds an extra column and an extra row of zeros to both matrices. Hence, matrices
have an even dimension and can be splitted as in the Reduce function of SM3. Since,
the Reduce function adds an extra dimensions to matrices when their dimension is
odd, the deconstruction phase runs on dlog2(d)e MapReduce rounds.

Combination Phase

We present the combination phase of SM3-Pad. This phase deals with the extra column
and the extra row added during the deconstruction phase using the padding flag pad

introduced in the deconstruction phase. Indeed, when two padded matrices are multiplied,
the result has also an extra column and an extra row. In this phase, the Map function is
just the identity function. The Reduce function of the combination phase is presented in
Figure 4.8.
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Reduce function:

Input: (key , values)
// key : t0 . . . te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (M, i, j,mi,j , δ, pad) or (N, k, l, nk,l, δ, pad)

// Build M and N from values

M := (mi,j)(M,i,j,mi,j ,δ,pad)∈values
N := (nk,l)(N,k,l,nk,l,δ,pad)∈values

// Apply dynamic padding if dimension is odd

if δ 6≡ 0 (mod 2) then
pad := pad‖P
δ := δ + 1

M ′ :=

 M 0
...

0 · · · 0

 , N ′ :=

 N 0
...

0 · · · 0


else

pad := pad‖E
M ′ := M , N ′ := N

// Split M ′ and N ′ into four quadrants of equal dimension[
M11 M12

M21 M22

]
:= M ′ ,

[
N11 N12

N21 N22

]
:= N ′

// Build submatrices according to the Strassen-Winograd algorithm

S1 := M21 +M22

S2 := S1 −M11

S3 := M11 −M21

S4 := M12 − S2

T1 := N12 −N11

T2 := N22 − T1

T3 := N22 −N12

T4 := T2 −N21

// Create a list L containing couple of matrices

L :=
[
[M11, N11], [M12, N21], [S4, N22], [M22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

δ′ := δ/2
`′ := log2(d/δ′)
foreach u ∈ J1, 7K do

(m′v,w)v,w∈J1,δ′K := L[u][0]
(n′v,w)v,w∈J1,δ′K := L[u][1]

foreach (v, w) ∈ J1, δ′K2 do
emitD`′−1→D`′ (t‖u, (M, v, w,m

′
v,w, δ

′, pad))
emitD`′−1→D`′ (t‖u, (N, v, w, n

′
v,w, δ

′, pad))

else
foreach u ∈ J1, 7K do

emitD`→C1(t, (u, 1, 1, L[u][0] · L[u][1], 1, pad))

Figure 4.7: Reduce function for the deconstruction phase of the SM3-Pad protocol.

• The Reduce Function. It works as the Reduce function of SM3, however the Reduce
function checks at each round the value of the last character of the padding tag pad.
If it is equal to P it means that the obtained matrix is padded. Hence, the Reduce
function removes the extra column and the extra row. Moreover, it updates the
padding tag by removing the last character. Since matrices are padded when their
dimension is odd, the Reduce function is performed dlog2(d)e times.
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Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, i, j, ri,j , δ, p0 . . . ps) such that u ∈ J1, 7K, i, j ∈ J1, δK, s ∈ J0, `K
// and ps ∈ {P, E}

// Build matrices Ru from values with u ∈ J1, 7K
foreach u ∈ J1, 7K do

Ru := (ri,j)(u,i,j,ri,j ,δ,p0...ps)∈values

P1 := R1 +R2

P2 := R1 +R6

P3 := P2 +R7

P4 := P2 +R5

P5 := P4 +R3

P6 := P3 −R4

P7 := P3 −R5

(pk,l)k,l∈J1,2·δK :=

[
P1 P5

P6 P7

]
if ps = P then

δ′ := 2 · δ − 1
else

δ′ := 2 · δ
if δ′ < d then

`′ := log2(2 · δ)
foreach (k, l) ∈ J1, δ′K2 do

emitD`′→D`′+1
(t0 · · · te−1, (te, k, l, pk,l, δ

′, p0 . . . ps−1))

else
foreach (k, l) ∈ J1, dK2 do

emitD`→P((k, l), pk,l)

Figure 4.8: Reduce function for the combination phase of the SW-Pad protocol.

4.3.3 Strassen-Winograd MapReduce Protocol with the Dynamic Peel-
ing Method

The Strassen-Winograd matrix multiplication protocol with dynamic peeling using the
MapReduce paradigm is denoted SM3-Peel. As for SM3-Pad, it considers two compatible
square matrices of arbitrary dimension, i.e., M,N ∈ Rd×d and d ∈ N∗.

Deconstruction Phase

We present the deconstruction phase of SM3-Peel. When it is required, i.e., when matri-
ces’ dimension is odd, it uses the dynamic peeling to split the two matrices. The Map
function is exactly the same than the Map function of the deconstruction phase of the
SM3 protocol and is presented in Figure 4.3. The Reduce function of the deconstruction
phase is presented in Figure 4.15.

• The Map Function. It is executed only during the first MapReduce round of the
deconstruction phase, i.e., by set of nodes D1. It works as the Map function of SM3
protocol. The Map function for other rounds of the deconstruction phase is the
identity function.

• The Reduce Function. It is executed during each MapReduce round of the decon-
struction phase, i.e., by sets of nodes Ds with s ∈ J1, `K where ` := blog2(d)c. When
Ds receives for a certain key the two matrices to multiply denoted M0 and N0, it
checks the parity of their dimension. If it is odd, the Reduce function splits M0 and
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Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 6K for z ∈ J0, eK
// values: collection of (M, i, j,mij , δ) or (N, j, k, njk, δ) or (P, j, k, pjk, δp)

foreach (P, i, j, pij , δp) ∈ values do
emit(t0 · · · te, (Q, i, j, pij , δp))

M := (mij)(M,i,j,mij ,δ)∈values
N := (njk)(N,j,k,njk,δ)∈values

if δ 6≡ 0 (mod 2) then[
M ′ M12

M21 M22

]
:= M ,

[
N ′ N12

N21 N22

]
:= N ,

such that


M ′ := (mij)i,j∈J1,δ−1K

M12 := (mij)i∈J1,δ−1K,j=δ

M21 := (mij)i=δ,j∈J1,δ−1K

M22 := (mij)i=δ,j=δ

, and


N ′ := (nij)i,j∈J1,δ−1K

N12 := (nij)i∈J1,δ−1K,j=δ

N21 := (nij)i=δ,j∈J1,δ−1K

N22 := (nij)i=δ,j=δ

(qi,j)i,j∈J1,δK :=

[
M12N21 M ′N12 +M12N22

M21N
′ +M22N21 M21N22 +M22N21

]
δ′ := (δ − 1)/2
foreach (i, j) ∈ J1, δK2 do

emit(t0 . . . te, (Q, i, j, qi,j , δ
′))

else
M ′ := M , N ′ := N
δ′ := δ/2

// Split M ′ and N ′ into four quadrants of equal dimension[
M ′11 M ′12

M ′21 M ′22

]
:= M ′ ,

[
N ′11 N ′12

N ′21 N ′22

]
:= N ′

S1 := M ′21 +M ′22

S2 := S1 −M ′11

S3 := M ′11 −M ′21

S4 := M ′12 − S2

T1 := N ′12 −N ′11

T2 := N ′22 − T1

T3 := N ′22 −N ′12

T4 := T2 −N ′21

L :=
[
[M ′11, N

′
11], [M ′12, N

′
21], [S4, N

′
22], [M ′22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

`′ := log2(d/δ′)
foreach u ∈ J0, 6K do

(m′v,w)i,j∈J1,δ′K := L[u][0]
(n′v,w)j,k∈J1,δ′K := L[u][1]

foreach (v, w) ∈ J1, δ′K2 do
emitD`′→D`′+1

(t‖u, (M, v, w,m′v,w, δ′))
emitD`′→D`′+1

(t‖u, (N, v, w, n′v,w, δ′))
else

foreach u ∈ J0, 6K do
emitD`→C1(t, (u, 1, 1, L[u][0] · L[u][1], 1))

Figure 4.9: Reduce function for the deconstruction phase of the SW-Peel protocol.

N0 using the dynamic peeling method and obtains

M0 :=

[
M ′ M12

M21 M22

]
, N0 :=

[
N ′ N12

N21 N22

]
.

Then, it follows the Strassen-Winograd algorithm for the multiplication between M ′
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and N ′ blocks, and compute standard matrix multiplication for other blocks.

Otherwise, the Reduce function follows the Strassen-Winograd algorithm with ma-
trices M0 and N0.

Combination Phase

We present the combination phase of SM3-Peel. This phase combines results of recursive
matrix multiplications to compute matrix P := MN . As for the combination phase of
the SM3-Pad protocol, it has to deal with the dynamic peeling method used during the
deconstruction phase. In this phase, the Map function is just the identity function. The
Reduce function of the combination phase is presented in Figure 4.10.

• The Reduce Function. It is executed by nodes Cs with s ∈ J1, `K where ` := blog2(d)c.
For the same key t ∈ {0, 7}`, three different cases are possible depending on the
associated values.

1. If values are only of the form (u, v, w, rv,w, δ) where u ∈ J1, 7K, rv,w ∈ R,
δ ∈ N∗, v, w ∈ J1, δK, then the Reduce function combines values to build ma-
trices R1, . . . , R7 sent by Cs−1 if s 6= 1, D` otherwise, and follows the Strassen-
Winograd algorithm. It emits key-value pairs consisting in the elements of the
result of the recursive matrix multiplication.

2. If values are only of the form (Q, i, j, qi,j , δq) where δq ∈ N∗, i, j ∈ J1, δqK, and
qi,j ∈ R, then the Reduce function consists in the identity function and sends
key-value pairs of the form (Q, i, j, qi,j , δq) to next set of nodes. Note that it is
impossible to have this case during the last round of the combination phase,
i.e., for the set of nodes C`.

3. If values are of the form (u, v, w, rv,w, δ) and of the form (Q, i, j, qi,j , δq), it means
that the dynamic peeling has been applied and must be considered to compute
the result of the recursive matrix multiplication. First, the Reduce function
combines values of the form (u, v, w, rv,w, δ) to build matrices R1, . . . , R7 and
follows the Strassen-Winograd algorithm. Moreover, it uses values of the form
(Q, i, j, qi,j , δq) corresponding to matrix blocks multiplication to obtain the result
of the recursive matrix multiplication. Finally, all elements of the obtained
matrix are sent to the next set of nodes under the form of key-value, as in SM3.

4.4 Secure Strassen-Winograd Matrix Multiplication with
MapReduce

Protocols SM3, SM3-Pad, and SM3-Peel presented in the previous Section reveal both
matrices, intermediate results, and the product of M by N to the public cloud. For
instance, nodes M and N learn respectively M and N , while the last set of nodes of the
combination phase learns P := MN . Below, we describe these protocols with a secure
approach.

We assume that the MapReduce’s user has a Paillier public key denoted pk which is
available to the data owners and the public cloud. Since we use Paillier’s cryptosystem,
the matrix multiplication is computed modulo n, where n is the modulo of pk.

4.4.1 Preprocessing for Secure Strassen-Winograd Matrix Multiplica-
tion

In order to avoid the public cloud from learning the content of the two matrices and the
result of their product, each data owner performs a preprocessing on its own matrix. This
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Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 6K for z ∈ J0, eK
// values: collection of (u, v, w, rv,w, δ) or (Q, i, j, qi,j , δq) such that u ∈ J0, 6K, i, j ∈ J1, δK
if ∃

(
(Q, i, j, qi,j , δq) ∧ (u, v, w, rv,w, δ)

)
∈ values then

Q := (qi,j)(Q,i,j,qi,j ,δq)∈values
foreach u ∈ J0, 6K do

Ru := (rv,w)(u,v,w,rv,w,δ)∈values
C1 := R0 +R1

C2 := R0 +R5

C3 := C2 +R6

C4 := C2 +R4

C5 := C4 +R2

C6 := C3 −R3

C7 := C3 −R4

(ci,j)i,j∈J1,2·δK :=

[
C1 C5

C6 C7

]
c′i,j :=

{
ci,j + qi,j if i, j ∈ J1, 2 · δK
qi,j if maxi,j∈J1,2·δ+1K(i, j) = 2 · δ + 1

δ′ := 2 · δ + 1
if δ′ < d then

foreach (i, j) ∈ J1, δ′K2 do
emitC→C(t0 · · · te−1, (te, i, j, c

′
i,j , δ

′))

else
foreach (i, j) ∈ J1, dK2 do

emitC→C((i, j), c
′
i,j)

else if
{
∃(Q, i, j, qi,j , δq) ∈ values

}
∧
{
@(u, v, w, rv,w, δ) ∈ values

}
then

foreach (Q, i, j, qi,j , δq) ∈ values do
emit(t0 · · · te, (Q, i, j, qi,j , δq))

else if
{
@(Q, i, j, qi,j , δq) ∈ values

}
∧
{
∃(u, v, w, rv,w, δ) ∈ values

}
then

foreach u ∈ J0, 6K do
Ru := (rv,w)(u,v,w,rv,w,δ)∈values

C1 := R0 +R1

C2 := R0 +R5

C3 := C2 +R6

C4 := C2 +R4

C5 := C4 +R2

C6 := C3 −R3

C7 := C3 −R4

(ci,j)i,j∈J1,2·δK :=

[
C1 C5

C6 C7

]
δ′ := 2 · δ
if δ′ < d then

foreach (i, j) ∈ J1, δ′K2 do
emitC→C(t0 · · · te−1, (te, i, j, c

′
i,j , δ

′))

else
foreach (i, j) ∈ J1, dK2 do

emitC→C((i, j), c
′
i,j)

Figure 4.10: Reduce function for the combination phase of the SW-Peel protocol.

preprocessing is done in a way allowing the public cloud to perform the same computation,
as in protocols presented in the previous Section, in a partially homomorphic way while
privacy constraints are satisfied. To run the preprocessing, data owners use the Paillier
public key pk of the MapReduce’s user where pk := (n, g), and n being the product of two
prime numbers generated according to a security parameter λ, and g ∈ Z∗n2 .
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The preprocessing is simple. It consists in the encryption of each element of the matrix
owned by the data owner using the Paillier’s cryptosystem with the public key pk of the
MapReduce’s user. At the end of the encryption, it outputs the corresponding encrypted
matrix. In the following, we denote by a star an encrypted matrix, i.e., M∗ is the encrypted
matrix associated to M . Moreover, elements of M∗ are denoted m∗i,j for i, j ∈ J1, dK, where
d is the dimension of the square matrix M .

4.4.2 Secure Approach

The secure approach for SM3 protocol (resp. SM3-Pad, SM3-Peel) is denoted S2M3 (resp.
S2M3-Pad, S2M3-Peel). The three secure protocols use the Paillier’s cryptosystem and its
partial homorphic properties to ensure privacy of elements of matrices and to allow the
public cloud to compute the matrix multiplication.

In our secure approach, we assume that the MapReduce’s user and the public cloud
do not collude, i.e., the public cloud does not know the secret key sk of the MapReduce’s
user. Indeed, if that is the case then the public cloud is able to decrypt all ciphertexts,
and then to learn the content of both matrices and the result of the matrix multiplication.

The three secure protocols are similar to protocols presented in the previous Section.
Each protocol is also decomposed into the deconstruction phase and the combination
phase. Moreover, secure approaches have the same number of rounds for each phase than
their plain version.

For the sake of clarity, we define the two following functions used in secure approaches.

• Paillier.Add(pk,A,B). This function takes matrices A := (E(pk, ai,j))i,j∈J1,dK and

B := (E(pk, bi,j))i,j∈J1,dK as input such that A,B ∈ (Z∗n2)d×d. For each (i, j) ∈ J1, dK2,
the function computes ci,j := E(pk, ai,j)·E(pk, bi,j) and outputs the encrypted matrix
C := (ci,j)i,j∈J1,dK that correspond to the encryption of the sum of A and B.

• Paillier.Sub(pk,A,B). This function takes matrices A := (E(pk, ai,j))i,j∈J1,dK and

B := (E(pk, bi,j))i,j∈J1,dK as input such that A,B ∈ (Z∗n2)d×d. For each (i, j) ∈ J1, dK2,
the function computes ci,j := E(pk, ai,j) · E(pk, bi,j)

−1 and outputs the encrypted
matrix C := (ci,j)i,j∈J1,dK that correspond to the encryption of the subtraction of B
to A.

Moreover, secure approaches use the Paillier interactive multiplicative homomorphic
protocol denoted Paillier.Inter and presented in Figure 2.4 on page 24.

4.4.3 Secure Strassen-Winograd Matrix Multiplication Protocol

The secure Strassen-Winograd matrix multiplication protocol, denoted S2M3, assumes
that M and N are two matrices such that M,N ∈ Zd×dn and ` := log2(d) ∈ N∗.

Deconstruction Phase

We present the deconstruction phase of S2M3. The Map function is the same than for
SM3 protocol presented in Figure 4.3. The only difference is that it operates on encrypted
matrices M∗ and N∗ sent by data owners after the preprocessing.

The Reduce function is presented in Figure 4.11. Since it operates on encrypted
matrices, we use functions Paillier.Add and Paillier.Sub to add or subtract two matrices.
Moreover, it uses the Paillier interactive multiplicative homomorphic protocol Paillier.Inter
during the last round of the decomposition phase to the encryption of the multiplication
of two elements.
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Reduce function:

Input: (key , values)
// key : t ∈ {0, 7}`
// values: collection of (M, i, j,m∗i,j , δ) or (N, k, l,n∗k,l, δ)

// Build M∗ and N∗ from values

M∗ := (m∗i,j)(M,i,j,m∗i,j ,δ)∈values
N∗ := (n∗k,l)(N,k,l,n∗k,l,δ)∈values

// Split M∗ and N∗ into four quadrants of equal dimension[
M∗11 M∗12

M∗21 M∗22

]
:= M∗ ,

[
N∗11 N∗12

N∗21 N∗22

]
:= N∗

// Build submatrices according to the Strassen-Winograd algorithm

S1 := Paillier.Add(pk,M∗21,M
∗
22)

S2 := Paillier.Sub(pk, S1,M
∗
11)

S3 := Paillier.Sub(pk,M∗11,M
∗
21)

S4 := Paillier.Sub(pk,M∗12, S2)

T1 := Paillier.Sub(pk,N∗12, N
∗
11)

T2 := Paillier.Sub(pk,N∗22, T1)
T3 := Paillier.Sub(pk,N∗22, N

∗
12)

T4 := Paillier.Sub(pk, T2, N
∗
21)

// Create a list L containing couple of matrices

L :=
[
[M∗11, N

∗
11], [M∗12, N

∗
21], [S4, N

∗
22], [M∗22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

δ′ := δ/2
`′ := log2(d/δ′)
foreach u ∈ J1, 7K do

(m′v,w)v,w∈J1,δ′K := L[u][0]
(n′v,w)v,w∈J1,δ′K := L[u][1]

foreach (v, w) ∈ J1, δ′K2 do
emitD`′−1→D`′ (t‖u, (M, v, w,m

′
v,w, δ

′))
emitD`′−1→D`′ (t‖u, (N, v, w, n

′
v,w, δ

′))

else
foreach u ∈ J1, 7K do

emitD`→C1(t, (u, 1, 1,Paillier.Inter(L[u][0], L[u][1]), 1))

Figure 4.11: Reduce function for the deconstruction phase of the S2M3 protocol.

Combination Phase

As for SM3 protocol, the Map function of the combination phase is the identity function.
The Reduce function of the combination phase is presented in Figure 4.12. The only
difference compared to S2M3 protocol is the use of Paillier.Add and Paillier.Sub functions
for addition and subtraction of encrypted matrices.

4.4.4 Secure Strassen-Winograd Matrix Multiplication with the Dy-
namic Padding Method

The secure Strassen-Winograd matrix multiplication protocol with dynamic padding using
the MapReduce paradigm is denoted S2M3-Pad. It consider two square matrices of same
dimension M and N such that M,N ∈ Zd×dn and d ∈ N∗.

Deconstruction Phase

The Map function is the same than for SM3-Pad protocol presented in Figure 4.6. The
only difference is that it operates on encrypted matrices M∗ and N∗ sent by data owners
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Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, i, j, r∗i,j , δ) such that u ∈ J1, 7K and i, j ∈ J1, δK

// Build matrices Ru from values with u ∈ J1, 7K
foreach u ∈ J1, 7K do

Ru := (ri,j)(u,i,j,r∗i,j ,δ)∈values

P1 := Paillier.Add(pk,R1, R2)
P2 := Paillier.Add(pk,R1, R6)
P3 := Paillier.Add(pk, P2, R7)
P4 := Paillier.Add(pk, P2, R5)

P5 := Paillier.Add(pk, P4, R3)
P6 := Paillier.Add(pk, P3, R4)
P7 := Paillier.Sub(pk, P3, R5)

(pv,w)v,w∈J1,2·δK :=

[
P1 P5

P6 P7

]
if δ < d then

δ′ := 2 · δ
`′ := log2(δ′)
foreach (v, w) ∈ J1, 2 · δ′K2 do

emitD`′→D`′+1
(t0 · · · te−1, (te, i, j, pv,w, 2 · δ′))

else
foreach (v, w) ∈ J1, dK2 do

emitD`→P((v, w), pv,w)

Figure 4.12: Reduce function for the combination phase of the S2M3 protocol.

after the preprocessing.

The Reduce function is presented in Figure 4.13. Note that it pads matrices with
encryption of zero instead of zero as for SM3-Pad protocol. Since it operates on encrypted
matrices, we use Paillier.Add and Paillier.Sub functions to add or subtract two encrypted
matrices. Moreover, it uses the Paillier interactive multiplicative homomorphic protocol
Paillier.Inter during the last round of the deconstruction phase to the encryption of the
multiplication of two elements.

Combination Phase

As for SM3-Pad, the Map function of the combination phase is the identity function.
The Reduce function is presented in Figure 4.14. It works as the Reduce function of the
combination phase of SM3-Pad protocol.

4.4.5 Secure Strassen-Winograd Matrix Multiplication with the Dy-
namic Peeling Method

The secure Strassen-Winograd matrix multiplication protocol with dynamic peeling using
the MapReduce paradigm is denoted S2M3-Peel. It considers two square matrices M and
N such that M,N ∈ Zd×dn and d ∈ N∗.

Deconstruction Phase

The Map function is the same than for SM3-Peel protocol presented in Figure 4.3. The
only difference is that it operates on encrypted matrices M∗ and N∗ sent by data owners
after the preprocessing.
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Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 6K for z ∈ J0, eK
// values: collection of (M, i, j,m∗i,j , δ, pad) or (N, k, l,n∗k,l, δ, pad)

// Build M and N from values

M∗ := (m∗i,j)(M,i,j,m∗i,j ,δ,pad)∈values
N∗ := (n∗k,l)(N,k,l,n∗k,l,δ,pad)∈values

// Apply dynamic padding if dimension is odd

if δ 6≡ 0 (mod 2) then
pad := pad‖P
δ := δ + 1

M ′ :=

 M ∗ E(pk, 0)
...

E(pk, 0) · · · E(pk, 0)

 , N ′ :=

 N ∗ E(pk, 0)
...

E(pk, 0) · · · E(pk, 0)


else

pad := pad‖E
M ′ := M∗ , N ′ := N∗

// Split M ′ and N ′ into four quadrants of equal dimension[
M11 M12

M21 M22

]
:= M ′ ,

[
N11 N12

N21 N22

]
:= N ′

// Build submatrices according to the Strassen-Winograd algorithm

S1 := Paillier.Add(pk,M21,M22)
S2 := Paillier.Sub(pk, S1,M11)
S3 := Paillier.Sub(pk,M11,M21)
S4 := Paillier.Sub(pk,M12, S2)

T1 := Paillier.Sub(pk,N12, N11)
T2 := Paillier.Sub(pk,N22, T1)
T3 := Paillier.Sub(pk,N22, N12)
T4 := Paillier.Sub(pk, T2, N21)

// Create a list L containing couple of matrices

L :=
[
[M11, N11], [M12, N21], [S4, N22], [M22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

δ′ := δ/2
`′ := log2(d/δ′)
foreach u ∈ J1, 7K do

(m′v,w)v,w∈J1,δ′K := L[u][0]
(n′v,w)v,w∈J1,δ′K := L[u][1]

foreach (v, w) ∈ J1, δ′K2 do
emitD`′−1→D`′ (t‖u, (M, v, w,m

′
v,w, δ

′, pad))
emitD`′−1→D`′ (t‖u, (N, v, w, n

′
v,w, δ

′, pad))

else
foreach u ∈ J1, 7K do

emitD`→C1(t, (u, 1, 1,Paillier.Inter(L[u][0], L[u][1]), 1, pad))

Figure 4.13: Reduce function for the deconstruction phase of the S2M3-Pad protocol.

The Reduce function is presented in Figure 4.15. Since it operates on encrypted
matrices, it uses Paillier.Add and Paillier.Sub functions to add or subtract two encrypted
matrices. Moreover, it uses the Paillier interactive multiplicative homomorphic protocol
during the last round of the decomposition phase since the multiplication is performed
over encrypted values.
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Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, i, j, ri,j , δ, p0 . . . ps) such that u ∈ J1, 7K, i, j ∈ J1, δK, s ∈ J0, `K
// and ps ∈ {P, E}

// Build matrices Ru from values with u ∈ J1, 7K
foreach u ∈ J1, 7K do

Ru := (ri,j)(u,i,j,ri,j ,δ,p0...ps)∈values

P1 := Paillier.Add(pk,R1, R2)
P2 := Paillier.Add(pk,R1, R6)
P3 := Paillier.Add(pk, P2, R7)
P4 := Paillier.Add(pk, P2, R5)

P5 := Paillier.Add(pk, P4, R3)
P6 := Paillier.Add(pk, P3, R4)
P7 := Paillier.Sub(pk, P3, R5)

(pk,l)k,l∈J1,2·δK :=

[
P1 P5

P6 P7

]
if ps = P then

δ′ := 2 · δ − 1
else

δ′ := 2 · δ
if δ′ < d then

`′ := log2(2 · δ)
foreach (k, l) ∈ J1, δ′K2 do

emitD`′→D`′+1
(t0 · · · te−1, (te, k, l, pk,l, δ

′, p0 . . . ps−1))

else
foreach (k, l) ∈ J1, dK2 do

emitD`→P((k, l), pk,l)

Figure 4.14: Reduce function for the combination phase of the S2M3-Pad protocol.

Combination Phase

The Map function of the combination phase for the S2M3-Peel protocol is the identity
function. The Reduce function of S2M3-Peel protocol is presented in Figure 4.16. It
works as the Reduce function of the SM3-Peel protocol.

4.5 Experimental Results

We present the experimental results for our SM3 and S2M3 protocols.

4.5.1 Dataset and Settings

For each experiment, we generate two random square matrices and of order d such that
240 ≤ d ≤ 450 for no-secure protocols, and 90 ≤ d ≤ 300 for secure protocols. Elements of
both matrices are in J0, 10K. For each order d, we perform matrix multiplication with SM3
and S2M3 protocols using static padding, dynamic padding, and dynamic peeling methods.
We also compare the results to the standard matrix multiplication using one MapReduce
round [LRU14] and the secure approach denoted CRSP-1R presented in Section 3.3.3 of
the previous chapter.

For each experiment, we stop the Strassen-Winograd recursive matrix multiplication
when the dimension of matrices is less than 16. Then, we use the MM-1R protocol for the
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Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (M, i, j,m∗i,j , δ) or (N, j, k,n∗j,k, δ) or (P, j, k,p∗a,z, δp)

foreach (P, i, j,p∗a,z, δp) ∈ values do
emit(t0 · · · te, (P, i, j,p∗a,z, δp))

M∗ := (m∗i,j)(M,i,j,mi,j ,δ)∈values
N∗ := (n∗k,l)(N,k,l,nk,l,δ)∈values

if δ 6≡ 0 (mod 2) then[
M ′ M12

M21 M22

]
:=M∗ ,

[
N ′ N12

N21 N22

]
:=N∗ ,

such that


M ′ := (mij)i,j∈J1,δ−1K

M12 := (mij)i∈J1,δ−1K,j=δ

M21 := (mij)i=δ,j∈J1,δ−1K

M22 := (mij)i=δ,j=δ

, and


N ′ := (nij)i,j∈J1,δ−1K

N12 := (nij)i∈J1,δ−1K,j=δ

N21 := (nij)i=δ,j∈J1,δ−1K

N22 := (nij)i=δ,j=δ

(qi,j)i,j∈J1,δK :=

[
M12N21 M ′N12 +M12N22

M21N
′ +M22N21 M21N22 +M22N21

]
δ′ := (δ − 1)/2
foreach (a, z) ∈ J1, δK2 do

emit(t0 · · · te, (P, i, j,q∗a,z, δ′))
else

M ′ := M∗ , N ′ := N∗

δ′ := δ/2

// Split M ′ and N ′ into four quadrants of equal dimension[
M ′11 M ′12

M ′21 M ′22

]
:= M ′ ,

[
N ′11 N ′12

N ′21 N ′22

]
:= N ′

S1 := Paillier.Add(pk,M ′21,M
′
22)

S2 := Paillier.Sub(pk, S1,M
′
11)

S3 := Paillier.Sub(pk,M ′11,M
′
21)

S4 := Paillier.Sub(pk,M ′12, S2)

T1 := Paillier.Sub(pk,N ′12, N
′
11)

T2 := Paillier.Sub(pk,N ′22, T1)
T3 := Paillier.Sub(pk,N ′22, N

′
12)

T4 := Paillier.Sub(pk, T2, N
′
21)

L :=
[
[M ′11, N

′
11], [M ′12, N

′
21], [S4, N

′
22], [M ′22, T4], [S1, T1], [S2, T2], [S3, T3]

]
if δ > 2 then

`′ := log2(d/δ′)
foreach u ∈ J0, 6K do

(a′ij)i,j∈J1,δ′K := L[u][0]
(b′jk)j,k∈J1,δ′K := L[u][1]

foreach (v, w) ∈ J1, δ′K2 do
emitD`′→D`′+1

(t‖u, (M, v, w, a′ij , δ′))
emitD`′→D`′+1

(t‖u, (N, v, w, b′ij , δ′))
else

foreach u ∈ J0, 6K do
emitD`→C1(t, (u, 1, 1,Paillier.Sub(L[u][0], L[u][1]), 1))

Figure 4.15: Reduce function for the deconstruction phase of the S2M3-Peel protocol.

no-secure approach, and the CRSP-1R protocol for the secure approach. Both protocols
are presented in the previous chapter.
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Reduce function:

Input: (key , values)
// key : t0 · · · te such that e ∈ J0, `K and tz ∈ J0, 7K for z ∈ J0, eK
// values: collection of (u, v, w,r∗v,w, δ) or (P, a, z,p∗a,z, δp) such that u ∈ J1, 7K

if ∃
(
(P, a, z,p∗a,z, δp) ∧ (u, v, w,r∗v,w, δ)

)
∈ values then

P := (p∗a,z)(P,a,z,p∗a,z ,δp)∈values

foreach u ∈ J1, 7K do
Ru := (r∗v,w)(u,v,w,r∗v,w,δ)∈values

P1 := Paillier.Add(pk,R0, R1)
P2 := Paillier.Add(pk,R0, R5)
P3 := Paillier.Add(pk, P2, R6)
P4 := Paillier.Add(pk, P2, R4)

P5 := Paillier.Add(pk, P4, R2)
P6 := Paillier.Sub(pk, P3, R3)
P7 := Paillier.Sub(pk, P3, R4)

(ρi,j)i,j∈J1,2·δK :=

[
P1 P5

P6 P7

]
ρ′i,j :=

{
ρi,j+p

∗
i,j if i, j ∈ J1, 2 · δK

p∗i,j if maxi,j∈J1,2·δ+1K(i, j) = 2 · δ + 1

δ′ := 2 · δ + 1
if δ′ < d then

foreach (i, j) ∈ J1, δ′K2 do
emitC→C(t0 · · · te−1, (te, i, j, ρ

′
i,j , δ

′))

else
foreach (i, j) ∈ J1, dK2 do

emitC→C((i, j), ρ
′
i,j)

else if
{
∃(P, a, z,p∗a,z, δp) ∈ values

}
∧
{
@(u, v, w,r∗v,w, δ) ∈ values

}
then

foreach (P, a, z,p∗a,z, δp) ∈ values do
emit(t0 · · · te, (P, a, z,p∗a,z, δp))

else if
{
@(P, a, z,p∗a,z, δp) ∈ values

}
∧
{
∃(u, v, w,r∗v,w, δ) ∈ values

}
then

foreach u ∈ J1, 7K do
Ru := (r∗v,w)(u,v,w,r∗v,w,δ)∈values

P1 := Paillier.Add(pk,R1, R2)
P2 := Paillier.Add(pk,R1, R6)
P3 := Paillier.Add(pk, P2, R7)
P4 := Paillier.Add(pk, P2, R5)

P5 := Paillier.Add(pk, P4, R3)
P6 := Paillier.Sub(pk, P3, R4)
P7 := Paillier.Sub(pk, P3, R5)

(ρi,j)i,j∈J1,2·δK :=

[
P1 P5

P6 P7

]
δ′ := 2 · δ
if δ′ < d then

foreach (i, j) ∈ J1, δ′K2 do
emitC→C(t0 · · · te−1, (te, i, j, ρi,j , δ

′))

else
foreach (i, j) ∈ J1, dK2 do

emitC→C((i, j), ρi,j)

Figure 4.16: Reduce function for the combination phase of the S2M3-Peel protocol.

Our secure protocols are based on the Paillier’s cryptosystem. We use Gaillier†, a
Go implementation of the Paillier’s cryptosystem. Note that Gaillier is not an optimized
implementation. Hence, we use it with a 64-bit RSA modulus as proof of concept.

†https://github.com/actuallyachraf/gomorph

https://github.com/actuallyachraf/gomorph
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4.5.2 Results

In Figure 4.17, we present CPU times for the no-secure SM3 protocols using the static
padding method denoted SM3-sPad, the dynamic padding method denoted SM3-Pad,
or the dynamic peeling method denoted SM3-Peel. Moreover, we compare them to the
standard matrix multiplication using one MapReduce round [LRU14] presented in the
previous chapter and denoted CRSP-1R.
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Figure 4.17: CPU time vs order of matrices for the state-of-the-art MM-1R protocol
using one MapReduce round [LRU14] and for our SM3 protocols using static and dynamic
padding methods, and dynamic peeling method.

First we observe that without any security, our SM3-Pad and SM3-Peel protocols
perform the matrix multiplication faster than the standard matrix multiplication for the
largest dimensions. This trend can be seen when matrices’ dimension is larger than 300.
Moreover, we remark that our protocol SM3-sPad is more efficient than the state-of-the-
art protocol MM-1R when matrices’ dimension tend to a 2-power integer. Indeed, we
note that SM3-sPad is faster than MM-1R when matrices’ dimension is between 450 and
512 = 28.

We present in Figure 4.18, CPU times for secure protocols computing the Strassen-
Winograd matrix multiplication. We compare them to our secure standard matrix multi-
plication protocol CRSP-1R using one MapReduce round and presented in Section 3.3.3
of the previous chapter.

Same observations than no-secure protocols can be done for secure protocols. Indeed,
we also remark that our S2M3-Pad and S2M3-Peel protocols perform the matrix multipli-
cation faster than our protocol CRSP-1R.

Finally, for both no-secure and secure protocols, we remark that the protocol using
the dynamic peeling method is always faster than the protocol using the dynamic padding
method. As we have seen previously, the deconstruction phase and the combination phase
use dlog2(d)eMapReduce rounds for the dynamic padding method, while they use blog2(d)c
MapReduce rounds for the dynamic peeling method, where d is matrices’ dimension.

4.6 Security Proofs

We provide formal security proof for S2M3, S2M3-Pad, and S2M3-Peel protocols. We use
the standard multiparty computations definition of security against semi-honest adver-
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Figure 4.18: CPU time vs order of matrices for the CRSP-1R protocol presented in Chap-
ter 3 and for our S2M3 protocols using static and dynamic padding methods, and dynamic
peeling method.

saries [Lin17].

4.6.1 Security Proof for S2M3 Protocol

S2M3 protocol assumes that the public cloud’s nodes may collude, hence in a security
point of view, all sets of nodes are considered as a unique set of nodes when they collude.

We model S2M3 protocol with four parties PM , PN , PC , and PP using respective inputs
I := (IM , IN , IC , IP) ∈ I, and a function g := (gM , gN , gC , gP) such that:

• PM is the data owner of M . It has the input IM := (M,pk), where M is its private
matrix and pk is the Paillier’s public key of the MapReduce’s user. PM returns
gM (I) := ⊥ because it does not learn anything.

• PN is the data owner of N . It has the input IN := (N, pk), where N is its private
matrix and pk is the Paillier’s public key of the MapReduce’s user. PN returns
gN (I) := ⊥ because it does not learn anything.

• PC is the public cloud’s nodes that represents the collusion between all sets of nodes of
the deconstruction phase and of the combination phase. It has the input IC := (pk),
where pk is the Paillier’s public key of the user. PC returns gC(I) := d ∈ N∗ because
it learns matrices dimensions.

• PP is the set of nodes P of the MapReduce’s user. It has the input IP := (pk, sk),
where (pk, sk) is the Paillier’s key pair of the MapReduce’s user PP returns gP(I) :=
P because the user obtains the result of the matrix multiplication at the end of the
protocol.

Note that for the sake of clarity, we consider that PC sends the product of the encrypted
matrices to PP instead of storing them in a database.

The security of S2M3 protocol is given in Theorem 5.

Theorem 5. Assume Paillier’s cryptosystem is IND-CPA, then S2M3 securely computes
the matrix multiplication in the presence of semi-honest adversaries even if public cloud’s
nodes collude.
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The security proof for S2M3 protocol (Theorem 5) is decomposed in Lemma 16 for
parties PM and PN , Lemma 17 for party PC , and Lemma 18 for party PP .

Lemma 16. There exists probabilistic polynomial-time simulators SS2M3
M and SS2M3

N such
that: {

SS2M3
M (1λ, IM , gM (I))

}
I∈I,λ∈N

c≡
{

viewS2M3
M (I, λ)

}
I∈I,λ∈N ,{

SS2M3
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{

viewS2M3
N (I, λ)

}
I∈I,λ∈N .

Proof. The view of PM contains M∗ (the encryption of M) obtained from the prepro-
cessing and that is sent to PC . Simulator SS2M3

M has input (M,pk). It encrypts each
element of M using pk to build M∗. Hence, SS2M3

M performs exactly the same compu-
tation as S2M3 protocol and describes exactly the same distribution as viewS2M3

M (I, λ).
Building the simulator SS2M3

N in the same way, it describes exactly the same distribution
as viewS2M3

N (I, λ).

Lemma 17. Assume Paillier’s cryptosystem is IND-CPA, then there exists a probabilistic
polynomial-time simulator SS2M3

C such that:{
SS2M3
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{

viewS2M3
C (I, λ)

}
I∈I,λ∈N .

Function: SW-Deconstruction
SW-Deconstruction(A,B,U, view, pk):[
A11 A12

A21 A22

]
:= A ,

[
B11 B12

B21 B22

]
:= B

S1 := Paillier.Add(pk,A21, A22)
S2 := Paillier.Sub(pk, S1, A11)
S3 := Paillier.Sub(pk,A11, A21)
S4 := Paillier.Sub(pk,A12, S2)

T1 := Paillier.Sub(pk,B12, B11)
T2 := Paillier.Sub(pk,B22, T1)
T3 := Paillier.Sub(pk,B22, B12)
T4 := Paillier.Sub(pk, T2, B21)

L :=
[
[A11, B11], [A12, B21], [S4, B22], [A22, T4], [S1, T1], [S2, T2], [S3, T3]

]
foreach [A0, B0] ∈ L do

if dim(A0) = dim(B0) = 1 then
U := U ∪ {[A0, B0]}

else
view := view ∪ {[A0, B0]}
SW-Deconstruction(A0, B0, U, view, pk)

Figure 4.19: Function SW-Deconstruction for simulator SS2M3
C presented in Figure 4.21.

Proof. We recall that PC is the collusion of sets of nodes of the public cloud, i.e., M, N ,
Di and Ci for i ∈ J1, `K. PC receives M∗ and N∗ from the data owners.

Simulator of PC is given in Figure 4.21. Function SW-Deconstruction presented in
Figure 4.19 simulates the public cloud’s view during the deconstruction phase. The view
contains all submatrices corresponding the recursive matrices multiplications. Moreover,
the last set of nodes of the deconstruction phase D` sends couples of ciphertexts (xi, yi),

with i ∈ J1, 7`K, to PP and receives all corresponding ciphertexts R
(`)
i returned by PP to

compute multiplication on encrypted coefficients.
Function SW-Combination presented in Figure 4.20 simulates the public cloud’s view

during one round of the combination phase. For each round, it combines submatrices
according the SW algorithm.
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Function: SW-Combination
SW-Combination(R1, . . . , R7, view, pk):
P1 := Paillier.Add(pk,R1, R2)
P2 := Paillier.Add(pk,R1, R6)
P3 := Paillier.Add(pk, P2, R7)
P4 := Paillier.Add(pk, P2, R5)

P5 := Paillier.Add(pk, P4, R3)
P6 := Paillier.Add(pk, P3, R4)
P7 := Paillier.Add(pk, P3, R5)

P :=

[
P1 P5

P6 P7

]
view := view ∪ {P}
return (P, view)

Figure 4.20: Function SW-Combination for simulator SS2M3
C presented in Figure 4.21.

Simulator: SS2M3
C (1λ, pk, d)

U := ∅
view := ∅
foreach (i, j) ∈ J1, dK2 do

(αi,j , βi,j)
$← (Zn)2

M∗ :=
(
E(pk, αi,j)

)
i,j∈J1,dK , N∗ :=

(
E(pk, βi,j)

)
i,j∈J1,dK

SW-Deconstruction(M∗, N∗, U, view, pk)

foreach i ∈ J1, 7`K do

(ri, si, ti)
$← (Zn)3

xi := E(pk, ri)
yi := E(pk, si)

R
(`)
i := E(pk, ti)

view := view ∪ {R(`)
i }

foreach k ∈ J`, 1K do
foreach j ∈ J1, 7k−1K do

(R
(k−1)
j , view′) := SW-Combination(R

(k)
7·j−6, . . . , R

(k)
7·j )

view := view ∪ view′
return view

Figure 4.21: Simulator SS2M3
C for the proof of Lemma 17.

Let λ ∈ N be a security parameter. Assume there exists a polynomial-time distin-
guisher D such that for all inputs I ∈ I, we have:∣∣Pr[D(SS2M3

C (1λ, IC , gC(I))) = 1]− Pr[D(viewS2M3
C (I)) = 1]

∣∣ = µ(λ) ,

where µ is a non-negligible function in λ. We show how to build a probabilistic polynomial-
time adversary A such that A has a non-negligible advantage to win the IND-CPA ex-
periment on the Paillier’s cryptosystem. Then we conclude the proof by contraposition.
Adversary A is presented in Figure 4.22. At the end of its execution, A uses the distin-
guisher D to compute the bit b∗ before returning it. First, we remark that:

Pr
[
Expindcpa-0

Paillier,A(λ) = 1
]

= Pr
[
D(viewS2M3

C (I, λ)) = 1
]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in real S2M3
protocol. Then the probability that the experiment returns 1 is equal to the probability
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Adversary: AE(pk,LoRb(·,·))

U := ∅
view := ∅
foreach i ∈ J1, dK do

foreach j ∈ J1, dK do

(mi,j , ni,j)
$← (Zn)2

(αi,j , βi,j)
$← (Zn)2

M∗ :=
(
E(pk,LoRb(mi,j , αi,j))

)
i,j∈J1,dK

N∗ :=
(
E(pk,LoRb(ni,j , βi,j))

)
i,j∈J1,dK

SW-Deconstruction(M∗, N∗, U, view, pk)

foreach i ∈ J1, 7`K do

(ri, si, ti)
$← (Zn)3

xi := E(pk, ri)
yi := E(pk, si)

R
(`)
i := E(pk,LoRb(U [i− 1][0] · U [i− 1][1], ti))

view := view ∪ {R(`)
i }

foreach k ∈ J`, 1K do
foreach j ∈ J1, 7k−1K do

(R
(k−1)
j , view′) := SW-Combination(R

(k)
7·j−6, . . . , R

(k)
7·j )

view := view ∪ view′
return view

Figure 4.22: Adversary AE(pk,LoRb(·,·)) for the proof of Lemma 17.

that the distinguisher returns 1 on inputs computed as in real protocol. On the other
hand, we have:

Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]

= Pr
[
D(SS2M3

C (1λ, IC , gC(I))) = 1
]
.

When b = 1, the view that A uses as input for D is computed as in the simulator
SS2M3
C . Then the probability that the experiment returns 1 is equal to the probability

that the distinguisher returns 1 on inputs computed as in the simulator SS2M3
C . Finally,

we evaluate the probability that A wins the IND-CPA experiment:

Advindcpa
Paillier,A(λ) =

∣∣Pr
[
Expindcpa-1

Paillier,A(λ) = 1
]
− Pr

[
Expindcpa-0

Paillier,A(λ) = 1
]∣∣

=
∣∣Pr

[
D(SS2M3

C (1λ, IC , gC)) = 1
]
− Pr

[
D
(
viewS2M3

C (I, λ) = 1
]∣∣

= µ(λ) ,

which is non-negligible and concludes the proof by contradiction.

Lemma 18. There exists a probabilistic polynomial-time simulator SS2M3
P such that:{

SS2M3
P (1λ, IP , gP(I))

}
I∈I,λ∈N

c≡
{

viewS2M3
P (I, λ)

}
I∈I,λ∈N .

Proof. Simulator SS2M3
P is presented in Figure 4.23. The view of PP contains the couple of

ciphertexts (xi, yi) sent by the set of nodes D` during the deconstruction phase run by PC
and the answer zi sent by PP to PC that contains the encryption of the multiplication of
xi and yi, for i ∈ J1, 7`K. Since xi and yi are randomized by PC , there are indistinguishable
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Simulator: SS2M3
P (1λ, (pk, sk), P )

foreach i ∈ J1, 7`K do

(ri, si)
$← (Zn)2

xi := E(pk, ri)
yi := E(pk, si)
zi := E(pk, ri · si)

P ∗ := (E(pk, pi,j))i,j∈J1,dK
view :=

(
{(xi, yi), zi}i∈J1,7`K, P

∗)
return view

Figure 4.23: Simulator SS2M3
P for the proof of Lemma 18.

to random ciphertexts in the PP point of view. The view of PP also contains P ∗ :=
(E(pk, pi,j))i,j∈J1,dK that is sent by PC . Finally, SS2M3

P (1λ, (pk, sk), P ) describes exactly the

same distribution as viewS2M3
P (I, λ), which concludes the proof.

4.6.2 Security Proof for S2M3-Pad Protocol

S2M3-Pad protocol is modeled as the S2M3 protocol by parties PM , PN , PC , and PP . The
security of S2M3-Pad protocol is given in Theorem 6.

Theorem 6. Assume Paillier’s cryptosystem is IND-CPA, then S2M3-Pad securely com-
putes the matrix multiplication in the presence of semi-honest adversaries even if public
cloud’s nodes collude.

The security proof for S2M3-Pad protocol (Theorem 6) is decomposed in Lemma 19
for parties PM and PN , Lemma 20 for party PC , and Lemma 21 for party PP .

Lemma 19. There exists two probabilistic polynomial-time simulators SS2M3-Pad
M and

SS2M3-Pad
N such that:{

SS2M3-Pad
M (1λ, IM , gM (I))

}
I∈I,λ∈N

c≡
{

viewS2M3-Pad
M (I, λ)

}
I∈I,λ∈N ,{

SS2M3-Pad
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{

viewS2M3-Pad
N (I, λ)

}
I∈I,λ∈N .

Proof. Since the view of PM and PN are exactly the same than for the S2M3 protocol,
the proof is the same than Lemma 16.

Lemma 20. Assume Paillier’s cryptosystem is IND-CPA, then there exists a probabilistic
polynomial-time simulator SS2M3-Pad

C such that:{
SS2M3-Pad
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{

viewS2M3-Pad
C (I, λ)

}
I∈I,λ∈N .

Proof. The only difference with the S2M3 protocol is the adding of the padding (with
encryption of zeros) during the deconstruction phase, and the removing of the padding
during the combination phase. In the security point of view, it is equivalent to deal with
padded encrypted matrices or not. Hence, the proof is the same than Lemma 17.

Lemma 21. There exists a probabilistic polynomial-time simulator SS2M3-Pad
P such that:{

SS2M3-Pad
P (1λ, IP , gP(I))

}
I∈I,λ∈N

c≡
{

viewS2M3-Pad
P (I, λ)

}
I∈I,λ∈N .

Proof. The proof is exactly the same than Lemma 18.
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4.6.3 Security Proof for S2M3-Peel Protocol

S2M3-Peel protocol is modeled as the S2M3 and S2M3-Pad protocols by parties PM , PN ,
PC , and PP . The security of S2M3-Peel protocol is given in Theorem 7.

Theorem 7. Assume Paillier’s cryptosystem is IND-CPA, then S2M3-Peel securely com-
putes the matrix multiplication in the presence of semi-honest adversaries even if public
cloud’s nodes collude.

The security proof for S2M3-Peel protocol (Theorem 7) is decomposed in Lemma 22
for parties PM and PN , Lemma 23 for party PC , and Lemma 24 for party PP .

Lemma 22. There exists two probabilistic polynomial-time simulators SS2M3-Peel
M and

SS2M3-Peel
N such that:{

SS2M3-Peel
M (1λ, IM , gM (I))

}
I∈I,λ∈N

c≡
{

viewS2M3-Peel
M (I, λ)

}
I∈I,λ∈N ,{

SS2M3-Peel
N (1λ, IN , gN (I))

}
I∈I,λ∈N

c≡
{

viewS2M3-Peel
N (I, λ)

}
I∈I,λ∈N .

Proof. Since the view of PM and PN are exactly the same than for the S2M3 protocol,
the proof is the same than Lemma 16.

Lemma 23. Assume Paillier’s cryptosystem is IND-CPA, then there exists a probabilistic
polynomial-time simulator SS2M3-Peel

C such that:{
SS2M3-Peel
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{

viewS2M3-Peel
C (I, λ)

}
I∈I,λ∈N .

Proof. The only difference with the S2M3 protocol is that encrypted matrices are splitted
according to the dynamic peeling during the deconstruction phase when it is required.
Moreover, blocks multiplications are performed during the deconstruction phase and used
during the combination phase to build the corresponding matrix. In the security point of
view, these blocks multiplications do not give any information to the adversary. Hence
we can consider only the blocks multiplication corresponding to the standard Strassen-
Winograd matrix multiplication. Therefore, the security proof is the same than Lemma 17.

Lemma 24. There exists a probabilistic polynomial-time simulator SS2M3-Peel
P such that:{

SS2M3-Peel
P (1λ, IP , gP(I))

}
I∈I,λ∈N

c≡
{

viewS2M3-Peel
P (I, λ)

}
I∈I,λ∈N .

Proof. The proof is exactly the same than Lemma 18.

4.7 Conclusion

We have presented SM3, a protocol to compute the Strassen-Winograd matrix multipli-
cation using the MapReduce paradigm. Moreover, we extend this protocol to SM3-Pad
and SM3-Peel protocols using respectively the dynamic padding and the dynamic peel-
ing methods allowing square matrix multiplication of arbitrary dimension. We have also
presented a secure approach for these three protocols denoted S2M3, S2M3-Pad, and
S2M3-Peel satisfying privacy guarantees such that the public cloud does not learn any in-
formation on input matrices and on the output matrix. To achieve our goal, we have relied
on the well-known Paillier’s cryptosystem and on its homomorphic properties. We have
compared our three no-secure protocols (resp. secure protocols) with the state-of-the-art
MapReduce protocol of Leskovec et al. [LRU14] (with the CRSP protocol proposed by
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Bultel et al. [BCGL17]) computing matrix multiplication, and shown that our protocols
are more efficient.

Looking forward to future work, we aim to investigate the matrix multiplication with
privacy guarantees in different big data systems (e.g., Spark, Flink) whose users also tend
to outsource data and computations as MapReduce.
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CHAPTER 5

Secure Intersection with MapReduce

In this chapter, we present our secure multiparty protocol called SI, for Secure Inter-
section, computing the intersection of n ≥ 2 relations using the MapReduce paradigm.
Our protocol relies on classic cryptographic primitives such as pseudo-random function,
and asymmetric encryption scheme. The protocol allows an external user to query the
intersection of n ≥ 2 relations owned by n different data owners. At the end of the
protocol the user only learns the intersection of the n relations even if she colludes with
the public cloud. This work has been conducted in collaboration with Radu Ciucanu,
Pascal Lafourcade, and Lihua Ye and has been published in the paper “Secure Intersec-
tion with MapReduce” [CGLY19a] at the 16th International Conference on Security and
Cryptography (SECRYPT, 2019).
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5.1 Introduction

We consider the problem of intersection of an arbitrary number of relations, each of them
belonging to a different data owner. We rely on the popular MapReduce [DG04] paradigm
for outsourcing data and computations to a semi-honest public cloud. Our goal is to
compute the intersection of these relations while preserving the data privacy of the data
owners. We design a protocol based on asymmetric cryptography where each data owner
performs some computation on their respective relation. The resulted relations, called
encrypted relations are sent to the public cloud. The public cloud cannot learn neither the
input nor the output data, it learns only the cardinal of each relation, and the cardinal of
the intersection of these relations. At the end of the computation, the public cloud sends
the result to the final user who just has to decrypt the received data using her secret key.
Moreover, if the cloud and the user collude, i.e., the cloud knows the user’s secret key,
then they cannot learn other information than the relation intersection result still known
by the user.

5.1.1 Intersection with MapReduce

A protocol to compute the intersection between two relations with MapReduce is presented
in Chapter 2 of [LRU14]. We stress that intersection between relations can be viewed as
intersection between sets where elements of these sets correspond to the tuples of relations
having the same schema. In Chapter 2 of [LRU14], the public cloud receives two relations
from their respective owner. A collection of cloud nodes has chunks of these two relations.
The Map function creates for each tuple t a key-value pair (t, t) where key and value are
equal to the tuple. Then, the key-value pairs are grouped by key, i.e., key-value pairs
output by the map phase which have the same key are sent to the same reducer. For each
key, the Reduce function checks if the considered key is associated to two values. If it is the
case, i.e., tuple t is present in both relations, then the public cloud produces and sends the
pair (−, t) to the user. The dash value “−” corresponds to the empty value, we use it to
be consistent with the MapReduce paradigm. If it is not useful in this chapter, we need it
in Chapters 3 and 4 since we run several rounds of MapReduce. Hence, all tuples received
by the user correspond to the tuples that are in both relations. We keep the key-value
pair notation in order to be consistence with the MapReduce paradigm. However, the key
is irrelevant at the end of the protocol, so we omit to write it. We illustrate this approach
with the following example considering three relations.

Example. We consider three relations: NSA, GCHQ, and Mossad. Each relation is owned
by their respective data owner. These three relations have the same schema composed of
only one attribute, namely “Suspect’s Identity”. They are defined in Figure 5.1.

Relation NSA

Suspect’s Identity

F654

U840

X098

Relation GCHQ

Suspect’s Identity

F654

M349

P027

Relation Mossad

Suspect’s Identity

F654

M349

U840

Figure 5.1: Relations NSA, GCHQ, and Mossad.

An external user, called Interpol, wants to receive the intersection of these three re-
lations denoted Interpol. We illustrate the execution of intersection computation with
MapReduce for this setting in Figure 5.8. First, each data owner outsources their respec-
tive relation into the public cloud. Then, the public cloud runs the map function on each
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relation and sends the output to the master controller in order to sort key-value pairs
by key. Then, the master controller sends key-value pairs sharing the same key to the
same reducer. In our example, we obtain 5 reducers since there are 5 different suspect’s
identities. The reducer associated to the key F654 has three values since the identity F654

is present in the three relations NSA, GCHQ, and Mossad. The reducer associated to the
key M349 has two values since the identity M349 is only present in relations GCHQ and
Mossad. Other reducers are associated to only one value since the corresponding suspect’s
identity is present in only one relation. For each reducer, the public cloud runs the reduce
function and sends the tuple (−, ID) to the user if the suspect’s identity ID is present is the
three relations, else the public cloud sends nothing. In our example, we observe that the
user Interpol only receives the pair (−, F654) since the suspect’s identity F654 is present
in the three relations NSA, GCHQ, and Mossad.

Data owners

Relations

NSA

GCHQ

Mossad

Map
NSA

GCHQ

Mossad

M
a
st

er
C

o
n
tr

o
ll
er

Public cloud

Key F654

Values
F654

F654

F654

Key M349

Values
M349

M349

Key P027

Value P027

Key U840

Value U840

Key X098

Value X098

Reduce

User

Relation Interpol

(−, F654)

Figure 5.2: Example of intersection with MapReduce between three relations. First, data
owners outsource their respective relation on the public cloud. The public cloud runs the
Map function, then the Reduce function verifies if a key is associated to a list of three
values. If that is the case, the public cloud produces and sends tuples corresponding to
the intersection to the user.

5.1.2 Problem statement

We assume n + 2 parties: n data owners, a public cloud, and a user that we call the
MapReduce’s user. This user is authorized to query the intersection of the relations of the
data owners.

First, each data owner outsources its respective relation Ri, with i ∈ J1, nK, to the
distributed file system of some public cloud provider. We assume that each relation Ri is
initially spread over a set Ri of nodes of the public cloud, each of them storing a chunk
of Ri, i.e., a set of tuples of Ri. Then, the result of the intersection ∩ni=1Ri is computed
over a set C of nodes before it is sent to the user’s nodes U . We illustrate the architecture
in Figure 5.3.

We assume that data owners are trustworthy while the cloud service provider is semi-
honest [Lin17], i.e., it dutifully executes the protocol but tries to deduce as much as possible
information on relations and on the result of the intersection. Moreover, we assume that
the public cloud can collude with the user, i.e., they share all their respective private
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R1

R2
...

Rn

R1

R2

...

Rn

C U

Map tasks

Reduce tasks ∩ni=1Ri

Data owners Public cloud MapReduce’s user

Figure 5.3: The system architecture.

information. We want that the user that queried the intersection of these n relations
along the public cloud learn nothing else than the intersection of the n relations.

In the original protocol [LRU14], tuples of each relation are not encrypted, hence the
public cloud learns all the content of each relation and the result of the intersection that
it sends to the user as illustrated in Figure 5.8. In order to preserve the privacy of data
owners, the cloud should not learn any plain input data, contrary to what happens for the
original protocol.

5.1.3 Contributions

We revisit the standard protocol for the computation of intersection with MapReduce
(cf. Chapter 2 from [LRU14]) and propose a new protocol called SI (for Secure Intersection
with MapReduce) that satisfies our aforementioned problem statement. More precisely:

• Our protocol SI guarantees that the user who queries the intersection of the n re-
lations learns only the final result, i.e., tuples that are present in the n relations.
Moreover, the public cloud does not learn information about the input data that be-
longs to the data owners, it learns only the cardinal of each relation and the cardinal
of the intersection. SI also satisfies the problem setting in the presence of collusion
between the user and the public cloud.

• To show the practical scalability of SI, we present experimental results using the
MapReduce open-source implementation Apache Hadoop R© 3.2.0 [Fou19b].

• We give a security proof of our secure protocol in the random oracle model.

5.1.4 Outline

We first recall the standard protocol [LRU14] and present our secure protocol SI in Sec-
tion 5.2. In Section 5.3, we show experimental evaluations of SI considering intersection
between two relations on different number of tuples, and considering intersection between
different number of relations. Before concluding this chapter, we prove in Section 5.4 the
security properties of SI in the random oracle model.

5.2 Standard and Secure Intersection with MapReduce

We consider n ≥ 2 data owners, each of them owning a relation. These n relations have
the same schema and are denoted R1, . . . , Rn. We first recall in Section 5.2.1 the standard
MapReduce protocol to perform the intersection of n relations, i.e., a simple generalization
of the binary protocol presented in Chapter 2 of [LRU14]. This protocol obviously does
not satisfy privacy properties of our problem setting since the public cloud learns all
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tuples of each relation sent by the respective data owner, and the intersection of these n
relations sent to the user. Then we present in Section 5.2.2 our secure protocol denoted SI
computing the intersection of n relations using the MapReduce paradigm. We prove that
contrary to the standard protocol our protocol SI guarantees that the public cloud learns
only cardinals of relations Ri for i ∈ J1, nK. Moreover, if the public cloud and the user
collude, then they learn the intersection of these n relations that the user already knows,
and cardinals of relations Ri for i ∈ J1, nK that the public cloud already knows.

5.2.1 Standard Intersection with MapReduce

In the protocol given by Leskovec et al. [LRU14], the Map function creates for each tuple
t of each relation Ri, with i ∈ J1, nK, a key-value pair where the key and the value are
equal to the tuple t. For a key t, the associated reducer receives a list of tuples a collection
of tuples t. Hence, if a tuple t is only present in one relation, the reducer receives a
collection only composed of one tuple t. On the contrary, if a tuple t′ is present in all the
n relations, the reducer receives a collection of n tuples equal to t′. If a key t is associated
to a collection of n tuples t, then the Reduce function produces the key-value pair (−, t)
and sends it to the user. Otherwise, it produces nothing. All key-value pairs outputted
by the Reduce function constitute the result of the intersection of the n relations. We
present the protocol of Leskovec et al. [LRU14] computing the intersection protocol with
MapReduce in Figure 5.4.

Map function:
// key : id of a chunk of Ri
// value: collection of tuples t ∈ Ri
foreach t ∈ Ri do

emitRi→C(t, t)

Reduce function:
// key : tuple t ∈ ∪ni=1Ri
// values: collection of tuples t
if |values| = n then

emitC→U (−, t)

Figure 5.4: MapReduce protocol to compute the intersection of n relations.

We now consider a semi-honest public cloud performing the intersection of n relations
with MapReduce. In such a scenario, the public cloud learns all the content of each relation
along with the intersection of these n relations.

5.2.2 Secure Intersection with MapReduce

In order to perform intersection computation with MapReduce in a privacy-preserving way
between n ≥ 2 relations, our protocol needs a pseudo-random function and an asymmetric
encryption scheme. The pseudo-random function is denoted F and defined over (K,X ,Y),
while the asymmetric encryption scheme is denoted Π := (G, E ,D). We assume that F is
a secure pseudo-random function as defined in Definition 13 on page 19 and Π is an IND-
CPA asymmetric encryption scheme as defined in Definition 19 on page 22. Furthermore,
we assume that the length of the output pseudo-random values and the length of ciphertext
output by the asymmetric encryption scheme match.

We start by presenting the preprocessing algorithm of our secure MapReduce protocol
named SI for Secure Intersection.
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Preprocessing for SI Protocol

Before outsourcing their relation to the public cloud, data owners perform a key setup and
a preprocessing on their respective relation Ri to obtain an encrypted relation denoted R∗i ,
with i ∈ J1, nK.

First, we need a secret key k1 ∈ K that is shared between all the n data owners.
Moreover we need n−1 other secret keys ki ∈ K with i ∈ J2, nK such that ki 6= kj for i 6= j.
Key ki with i ≥ 2 is shared between the owner of relation R1 and the owner of relation
Ri. Hence, the owner of relation R1 has a set of n secret keys equal to {k1, k2, . . . , kn}
while the owner of relation Ri, for 2 ≤ i ≤ n, has a set of secret keys equals to {k1, ki}.
We stress that the choice of owner of relation R1 knowing all the secret keys is arbitrary,
and we call the associated relation, i.e., R1, the main relation.

We now present the preprocessing algorithm in Figure 5.5.

Preprocessing:

Input: Ri with i ∈ J1, nK
R∗i := ∅
if i = 1 then

foreach t ∈ R1 do
M := ⊕nj=2F (kj , t)
R∗1 := R∗1 ∪ {(F (k1, t), E(pk, t)⊕M)}

else
foreach t ∈ Ri do

R∗i := R∗i ∪ {(F (k1, t), F (ki, t))}
return R∗i

Figure 5.5: Preprocessing algorithm of SI protocol.

The aim of this preprocessing is to protect relations in order to avoid the public cloud
to learn tuples of each relation and the result of the intersection sent to the MapReduce’s
user. Moreover, this preprocessing is in agreement with the MapReduce paradigm. Indeed,
each encrypted relation R∗i is composed of tuples under the key-value pair form.

First of all, each key of pairs of R∗i is a pseudo-random evaluation of a tuple using the
secret key k1 known by each data owner. Since a pseudo-random function is deterministic,
equal tuples share the same value of key. Hence, the map phase sends these key-value
pairs to the same reducer as expected.

Moreover, each value of key-value pairs of the encrypted relation R∗1 is equal to the
encryption of the tuple using the asymmetric encryption scheme Π with the user public key
pk xored by n−1 pseudo-random evaluations of the tuple using secret keys k2, . . . , kn. More
precisely, for each tuple t ∈ R1, the preprocessing computes the key-value pair equals to
(F (k1, t), E(pk, t)⊕ (⊕nj=2F (kj , t))). Hence, when the public cloud receives such key-value
pairs and colludes with the user, it cannot learn the value of tuples since the asymmetric
encryption is protected by pseudo-random evaluations, and secret keys k1, . . . , kn are not
known by the public cloud.

The complexity of the preprocessing algorithm of our secure approach is O(N · CE +
N · (3 ·n− 2) · CF ), where n is the number of relations, N := maxi∈J1,nK |Ri|, CE is the cost
of encryption, and CF is the cost of a pseudo-random evaluation.

Map and Reduce Phases of SI Protocol

The preprocessing presented in Figure 5.5 outputs an encrypted relation whose tuples are
of the key-value pair form. Hence, once the public cloud receives the n encrypted relations
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R∗i (for i ∈ J1, nK) from the data owners, it runs the Map function that is simply the
identity function.

After the grouping by key, the Reduce function checks if the current key F (k1, t), for
t ∈ ∪Ni=1Ri, is associated to a list of n values. If that is the case, it means that the n
relations contain the tuple associated to the current key. Then the Reduce function uses
these n values to perform an exclusive or, and obtains the asymmetric encryption of the
tuple E(pk, t) due the property of the exclusive or.

Map function:
// key : id of a chunk of R∗i with i ∈ J1, nK
// values: collection of (F (k1, t), E(pk, t)⊕ (⊕nj=2F (kj , t))) or (F (k1, t), F (kj , t))
// with j ∈ J2, nK
foreach (k, v) ∈ values do

emitRi→C(k, v)

Reduce function:
// key : F (k1, t) such that t ∈ ∪ni=1Ri
// values: collection of E(pk, t)⊕ (⊕nj=2F (kj , t)) or F (kj , t) with j ∈ J2, nK
L := {v : v ∈ values}
if |L| = n then
E(pk, t) := E(pk, t)⊕ (⊕nj=2F (kj , t))⊕ (⊕nj=2F (kj , t))
emitC→U (−, E(pk, t))

Figure 5.6: Map and Reduce functions of our secure approach SI.

Finally, the Reduce function produces the key-value pair (−, E(pk, t)) and sends it to
the user. The output of the Reduce function is in a key-value form to be consistent with
the MapReduce paradigm since at the end of the SI protocol keys are irrelevant. All key-
value pairs outputted by the Reduce function constitute the intersection of the n relations.
The user has only to decrypt each value of key-value pair using her secret key in order to
obtain the intersection in plain form. Our protocol SI is described in Figure 5.6.

Example. We illustrate our SI protocol following the example presented in Section 5.1.
First, we perform the preprocessing on relations: NSA, GCHQ, and Mossad. We consider
relation NSA as the main relation. The three data owners share the secret key k1, data
owners of relations NSA and GCHQ share a secret key k2, and data owners of relations
NSA and Mossad share a secret key k3. Hence, after the preprocessing phase, we obtain
three encrypted relations denoted NSA∗, GCHQ∗, and Mossad∗ as illustrated in Figure 5.7.

We now illustrate the execution of intersection computation with MapReduce using
our secure protocol SI in Figure 5.7.

Before giving the experimental results of the original protocol [LRU14] and of our
secure protocol SI, we give a proof of correctness of SI.

5.2.3 Proof of Correctness

We say that the protocol SI is correct if for n ≥ 2 relations R1, R2, . . . Rn, SI returns the
correct intersection of the n ≥ 2 relations, i.e., the encrypted relation composed of pairs
(−, E(pk, t)) such that t ∈ R, where R := ∩ni=1Ri.

Lemma 25. Assume that the pseudo-random function family F perfectly emulates a ran-
dom oracle, then protocol SI is correct.
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Relation NSA∗ (Owner knows secret keys k1, k2, and k3.)

Suspect’s Identity

(F (k1, F654), E(pk, F654)⊕ F (k2, F654)⊕ F (k3, F654))
(F (k1, U840), E(pk, U840)⊕ F (k2, U840)⊕ F (k3, U840))
(F (k1, X098), E(pk, X098)⊕ F (k2, X098)⊕ F (k3, X098))

Relation GCHQ∗ (Owner knows secret keys k1 and k2.)

Suspect’s Identity

(F (k1, F654), F (k2, F654))
(F (k1, M349), F (k2, M349))
(F (k1, P027), F (k2, P027))

Relation Mossad∗ (Owner knows secret keys k1 and k3.)

Suspect’s Identity

(F (k1, F654), F (k3, F654))
(F (k1, M349), F (k3, M349))
(F (k1, U840), F (k3, U840))

Figure 5.7: Encrypted relations NSA∗, GCHQ∗, and Mossad∗ after the preprocessing phase
of our secure protocol SI.
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Figure 5.8: Example of intersection with MapReduce between three relations using our
secure protocol SI. First, data owners outsource their respective encrypted relation on the
public cloud. The public cloud runs the Map function, then the Reduce function verifies
if keys are associated to a list of three values. In that case, the public cloud produces and
sends encrypted tuples corresponding to the intersection to the user. In the example, the
user obtains the tuples (−, E(pk, F654)) equals to (−, (E(pk, F654)⊕ (⊕3

j=2F (kj , F654))⊕
(⊕3

j=2F (kj , F654)))).

Proof. Let R1, R2, . . . Rn be n relations. Let R∗1, R
∗
2, . . . R

∗
n be the corresponding encrypted

relations computed by the preprocessing phase of SI. We set R := ∩ni=1Ri.

For each tuple t ∈ R, there exists a key-value pair in the main relation R∗1 of the form
(F (k1, t), E(pk, t) ⊕ (⊕ni=2F (ki, t))), and a key-value pair in relation R∗j , with 2 ≤ j ≤ n,
of the form (F (k1, t), F (kj , t)). Following the MapReduce paradigm, the n values are sent
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to the same reducer that sums the corresponding values. Thus, for each key F (k1, t), with
t ∈ R, we obtain

E(pk, t)⊕ (⊕ni=2F (ki, t))⊕ (⊕ni=2F (ki, t)) = E(pk, t) .

Hence, for each t ∈ R, reducer associated to the key F (k1, t) emits the pair (−, E(pk, t))
to the user. Moreover, for each t ∈

(
∪ni=1 Ri

)
\ R, the reducer associated to the key

F (k1, t) does not output the pair (−, E(pk, t)) since it is associated to less than n values.
Finally, SI produces pairs (−, E(pk, t)) such that t ∈ R corresponding to the intersection
of relations R1, R2, . . . , Rn which concludes the proof.

5.2.4 Complexity of Original and Secure Protocols

Our secure protocol SI is efficient from both computation and communication points of
view. The overhead for the computation complexity is linear in the number of tuples
by relation while the communication complexity is the same as in the standard pro-
tocol [LRU14]. We summarize in Figure 5.1 the trade-offs between computation and
communication costs for our secure protocol SI vs the standard MapReduce protocol com-
puting the intersection of n ≥ 2 relations. We consider that the cost to access to one tuple
in the relation is equal to 1. In our communication cost analysis, we measure the total
size of the data that is emitted from a map or reduce node.

Table 5.1: Summary of results. Let N = max(|R1|, . . . , |Rn|) be the biggest cardinal of
relations Ri with i ∈ J1, nK. Let C⊕ be the computation cost of a bitwise exclusive OR
operation).

Protocol Computation cost (big-O) Communication cost (big-O)

Standard 2 · n ·N (n+ 1) ·N
SI 2 · n ·N + (n− 1) ·N · C⊕ (n+ 1) ·N

5.3 Experimental Results

We present the experimental results for the MapReduce protocol [LRU14], and for our
secure protocol SI computing the intersection of relations with MapReduce. We run two
types of experiments: the experiment on the number of tuples, and the experiment on the
number of intersected relations.

5.3.1 Settings

According to SI protocol, we need a pseudo-random function and an asymmetric encryp-
tion scheme.

For the asymmetric encryption scheme, we use the RSA-OAEP asymmetric encryption
scheme [BR94, KS98] implemented in Go package rsa† with a 1024-bit RSA modulus. Note
that we can also use an other asymmetric encryption scheme such as ElGamal [Gam85],
however ElGamal ciphertexts are twice longer for the same security and we do not use it
for communication cost reason.

Concerning the pseudo-random function, we use the HMAC-SHA256 keyed-hash mes-
sage authentication code [BCK96] implemented in Go package hmac‡ to compute key of

†https://golang.org/pkg/crypto/rsa/
‡https://golang.org/pkg/crypto/hmac/

https://golang.org/pkg/crypto/rsa/
https://golang.org/pkg/crypto/hmac/
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key-value pairs, i.e., for the pseudo-random function that uses key k1. For the pseudo-
random function used in values evaluations, we use AES [DR98] with Cipher Block Chain-
ing (CBC) mode of operation [EMST78]. Indeed, we need the length of the pseudo-random
evaluations to be equal to the length of the RSA-OAEP ciphertexts; which is possible with
CBC mode. Note that we must consider a unique initial vector (IV) for each secret key;
moreover, these IV are shared between the corresponding data owner and the data owner
of the main relation.

5.3.2 Varying the Number of Tuples

In the experiment on the number of tuples, we consider two relations of the same schema
composed of only one attribute whose values are integers. These two relations have the
same cardinal C and share C/2 elements. Tuples of the first relation consist in all integers
from 1 to C, while tuples of the second relation consist in all integers from C/2 to C+C/2.
We run the original protocol [LRU14] and our secure protocol SI on couples of relations
of cardinal 500, 000 to 3, 000, 000, by step of 250, 000.
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Figure 5.9: CPU time vs the number of tuples for the standard MapReduce proto-
col [LRU14] and our secure approach SI computing the intersection between two relations.

We run this experiment with the original protocol and our secure protocol SI, and
show its results in Figure 5.9. We observe that the computation complexity of our secure
protocol is linear as determined in the complexity study (cf. Figure 5.1)

5.3.3 Varying the Number of Intersected Relations

In this experiment, we consider intersection between different number of relations of the
same schema composed of only one attribute whose values are integers. We start by
computing the intersection between 2 relations to finish with the intersection between
10 relations. In each case, relations have 500, 000 tuples and shares 250, 000 tuples. In
practice, for the intersection of n ∈ J2, 10K relations, tuples of the first relation consist in
integers from 1 to 500, 000, and tuples of the i-th relation with i ∈ J2, nK consist in integers
from 1 to 250, 000 and integers from i · 250, 000 + 1 to (i+ 1) · 250, 000.

We run the standard protocol [LRU14] and our secure protocol SI for the experiment
on the number of intersected relations. We remark in Figure 5.10 that the computation
complexity of our secure protocol is linear as determined in the complexity study (cf.
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Figure 5.10: CPU time vs the number of intersected relations for the standard MapReduce
protocol [LRU14] and our secure approach SI computing the intersection between two
relations.

Figure 5.1). We observe that the computation complexity is less compared to the exper-
iment on the number of tuples. Indeed, when we run the SI protocols with 10 relations
of 500, 000 tuples (i.e., a total of 5, 000, 000 tuples), the CPU time is approximately equal
to 550 seconds while the CPU time for the intersection of 2 relations of 2 millions (i.e., a
total of 4, 000, 000 tuples) is approximately equal to 1, 500 seconds. This is due to number
of common elements of each relation. In the case of the intersection of 10 relations (each
composed of 500, 000 tuples), relations share 250, 000 while in the case of the intersection
of the 2 relations (each composed of 2, 000, 000 tuples), relations share 1, 000, 000 tuples.
Hence, the Reduce function has to perform a large number of exclusive or on 2048-bits
strings.

5.4 Security Proof

In this section, we provide a formal security proof of our SI protocol by considering a
semi-honest public cloud that may collude with the MapReduce’s user. We assume n ≥ 2
data owners respectively possessing a relation Ri, with iJ1, nK, such that Ri is constituted
of Ni unique tuples. The public cloud computes the intersection of the n relation denoted
R, such that |R| = N . In other terms, the n relations share N tuples, i.e., R := ∩ni=1Ri
with |R| = N .

5.4.1 Modeling of our SI Protocol

We start by modeling our SI protocol that computes the intersection of n relations by n+2
parties. The owner of the main relation R1 is denoted PR1 , while other owners are denoted
PRi for i ∈ J2, nK respectively. The public cloud is denoted PC , and the MapReduce’s user
is denoted by PU . Parties use respective inputs I := (IR1 , . . . , IRn , IC , IU ) ∈ I and a
function g = (gR1 , . . . , gRn , gC , gU ) such that:

• PR1 has the input IR1 := (pk, k1, . . . , kn, R1) where pk is a public key of the cryp-
tosystem Π , ki ∈ K for i ∈ J1, nK are secret keys for the pseudo-random function F ,



98 CHAPTER 5. SECURE INTERSECTION WITH MAPREDUCE

and R1 is the relation owned by PR1 . The party PR1 outputs gR1(I) = ⊥ (where ⊥
means that the function returns nothing) since it does not learn any information.

• PRi for i ∈ J2, nK has the input IR1 := (pk, k1, ki, Ri) where pk is a public key of the
cryptosystem Π, k1 ∈ K and ki ∈ K are secret keys for the pseudo-random function
F , and Ri is the relation owned by PRi . The party PRi outputs gRi(I) = ⊥ since it
does not learn any information.

• PC has the input IC := pk where pk is a public key the cryptosystem Π. It returns
gC(I) = (N1, . . . , Nn, N) because the party PC learns the number of tuples in each
relation Ri for i ∈ J1, nK and the number of tuples common to these n relations.

• PU has the input IU := (pk, sk) where (pk, sk) is a key pair of the cryptosystem Π.
It returns gU (I) = R where R = ∩ni=1Ri, i.e., the result of intersection between the
n relations computed by the public cloud.

5.4.2 Proof

We prove that our protocol SI securely computes the intersection of n relations in the
presence of a semi-honest adversaries even if the two parties PC and PU collude, i.e., if
the public cloud and the MapReduce’s user share all their respective public and private
information. In other terms, we prove that the public cloud and the MapReduce’s user
do not learn extra information than they have even if the MapReduce’s user shares her
secret key sk with the public cloud. The security proof is given in Theorem 8.

Theorem 8. Assume F is a secure pseudo-random function and that Π is an IND-CPA
asymmetric encryption scheme, then the SI protocol securely computes the intersection of
n relations in the presence of semi-honest adversaries even if parties PC and PU collude.

The security proof for Theorem 8 is decomposed in Lemma 26 for parties PRi (with
i ∈ J1, nK), and in Lemma 27 for the collusion between parties PC and PU .

Lemma 26. There exist probabilistic polynomial-time simulators and SSIRi for i ∈ J1, nK
such that {

SSIRi(1
λ, IRi , gRi(I))

}
λ∈N,I∈I

c≡
{

viewSI
Ri(I, λ)

}
λ∈N,I∈I .

Proof. We assume that PRi , with i ∈ J1, nK, is corrupted. We observe that Ri receives no
output and no incoming message from other parties. Thus, we merely need to show that
a simulator can generate the view of party PRi from its inputs.

In the protocol, PR1 receives the public key pk of the MapReduce’s user, the n secret
keys k1, . . . , kn used with the pseudo-random function F , and the relation R1. Parties
PRi , with i ∈ J2, nK, receives the public key pk of the user, the secret keys k1 and ki
for the pseudo-random function F , and the corresponding relation Ri Simulators SSI

Ri , for
i ∈ J1, nK, work exactly as the preprocessing phase presented in Figure 5.5.

Hence, we remark that SRi , for all i ∈ J1, nK, uses exactly the same algorithm as the
real protocol SI, then it describes the same distribution as viewSI

Ri(I, λ), which concludes
the proof.

Lemma 27. Assume F is a secure pseudo-random function and Π is an IND-CPA asym-
metric encryption scheme, then there exists a probabilistic polynomial-time simulator SSIC,U
such that{

SSIC,U ((1λ, IC , gC(I)), (1λ, IU , gU (I)))
}
λ∈N,I∈I

c≡
{

viewSI
C,U (I, λ)

}
λ∈N,I∈I .
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Proof. Let λ ∈ N be a security parameter. Before building SSI
C,U that computes a distribu-

tion that can be simulated perfectly, we use the hybrid argument to build hybrid simulators
denoted SHi-SI

C,U for each i ∈ J1, nK. The simulator, SHi-SI
C,U works as SI but each evaluation

of the pseudo-random function performed by parties Rj for j ∈ J1, iK are substituted using
the random oracle OPRF presented in Figure 5.11.

OPRF(j, x) :
if T [j, x] = ∅ then

T [j, x]
$← {0, 1}|Y|

return T [j, x]

Figure 5.11: Random oracle OPRF.

We start by presenting the simulator SH1-SI
C,U in Figure 5.12.

Simulator: SH1-SI
C,U (1λ, pk, (N1, . . . , Nn, N))

R := ∅;R∗ := ∅
// Generate intersection result.

while |R| < N do

r
$← N

if r /∈ R then
R := R ∪ {r}

// Generate the n relations sharing only elements of R.
for i ∈ J1, nK do

ki
$← K

Ri := R
while |Ri| < Ni do

r
$← N

Ri := Ri ∪ {r}
Ri := Ri \

(
∪i−1
j=1 Rj \R

)
// Generate protected relation R∗1 using oracle OPRF evaluations with k1.

R∗1 := ∅
foreach r ∈ R1 do

r∗ := E(pk, r)
R∗1 := R∗1 ∪ {(OPRF(k1, r), (r

∗ ⊕ F (k2, r)⊕ · · · ⊕ F (kn, r)))}
if r ∈ R then

R∗ := R∗ ∪ {r∗}
// Generate protected relations R∗2 to R∗n using oracle OPRF evaluations

// with k1.

for i ∈ J2, nK do
R∗i := ∅
foreach r ∈ Ri do

R∗i := R∗i ∪ {(OPRF(k1, r), F (ki, r))}
view := (R∗1, . . . , R

∗
n, R,R

∗)

Figure 5.12: Simulator SH1−SI
C,U for the proof of Lemma 27.

Assume by contradiction that there exists a distinguisher D ∈ ppt(λ) such that for all
inputs I, we have∣∣Pr[D(SH1-SI

C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))) = 1]− Pr[D(viewSI
C,U (I, λ)) = 1]

∣∣ = µ(λ) ,
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where µ is a non-negligible function in λ.

We construct a guessing adversary A ∈ ppt(λ) that uses D to win the PRF experiment
against the pseudo-random function family F defined in Figure 2.1 on page 19. Adversary
A is presented in Figure 5.13.

Adversary: A(pk)

R := ∅;R∗ := ∅
while |R| < N do

r
$← N

if r /∈ R then
R := R ∪ {r}

for i ∈ J1, nK do

ki
$← K

Ri := R
while |Ri| < Ni do

r
$← N

Ri := Ri ∪ {r}
Ri := Ri \

(
∪i−1
j=1 Rj \R

)
R∗1 := ∅
foreach r ∈ R1 do

r∗ := E(pk, r)
R∗1 := R∗1 ∪ {(fb(r), (r∗ ⊕ F (k2, r)⊕ · · · ⊕ F (kn, r)))}
if r ∈ R then

R∗ := R∗ ∪ {r∗}
for i ∈ J2, nK do

R∗i := ∅
foreach r ∈ Ri do

R∗i := R∗i ∪ {(fb(r), F (ki, r))}
view := (R∗1, . . . , R

∗
n, R,R

∗)
b∗ := D(view)
return b∗

Figure 5.13: Adversary A(pk).

First, when b = 0, we remark that

Pr[Expprf-0
F,A (λ) = 1] = Pr[D(viewSI

C,U (I, λ)) = 1] .

Indeed, when b = 0 the view that A uses as input for D is computed as in the real protocol
SI. Then the probability that the experiment Expprf-0

F,A returns 1 is equal to the probability
that the distinguisher D returns 1 on input computed by the real protocol.

On the other hand, when b = 1, we have

Pr[Expprf-1
F,A (λ) = 1] = Pr[D(SH1-SI

C,U ((1λ, IC , gC(I)), (1λ, IU , gU (I)))) = 1] .

When b = 1, the view that A uses as input for D is computed as in the simulator SH1-SI
C,U .

Then the probability that the experiment Expprf-1
F,A returns 1 is equal to the probability

that the distinguisher D returns 1 on input computed by the simulator SH1-SI
C,U .
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It therefore follows that

Advprf
F,A(λ) =

∣∣Pr[Expprf-1
F,A (λ) = 1]− Pr[Expprf-0

F,A (λ) = 1]
∣∣

=
∣∣Pr[D(SH1-SI

C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))) = 1]

− Pr[D(viewSI
C,U (I, λ)) = 1]

∣∣
= µ(λ) ,

which is non-negligible. However, we assume that F is a secure pseudo-random function,
hence, it does not exist D such that∣∣Pr[D(SH1-SI

C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))) = 1]− Pr[D(viewSI
C,U (I, λ)) = 1]

∣∣ ,
is non-negligible. Hence, we have{

SH1-SI
C,U ((IC , gIC(I, λ)), (IU , gIU (I, λ)))

}
λ∈N,I∈I

c≡
{

viewSI
C,U (I, λ)

}
λ∈N,I∈I .

The construction of simulators SHi-SI
C,U for i ∈ J2, nK is very similar. The only difference

is that evaluations of the pseudo-random function F are replaced using the oracle OPRF
presented in Figure 5.11. We prove as previous we have for λ ∈ N, I ∈ I, and i ∈ J1, n−1K

SHi-SI
C,U ((1λ, IC , gC(I)), (1λ, IU , gU (I)))

c≡ SHi+1-SI
C,U ((1λ, IC , gC(I)), (1λ, IU , gU (I))) .

Finally, we show how to build the simulator SSI
C,U . The difference between SHn-SI

C,U and

SSI
C,U is that SSI

C,U substitutes Π encryption of real values by Π encryption of random values

of the same size. More formally, SSI
C,U is presented in Figure 5.14.

Now we show that for λ ∈ N and I ∈ I, we have

SHn-SI
C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))

c≡ SSI
C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I))) .

Assume there exists a distinguisher D ∈ ppt(λ) such that for all inputs I, we have∣∣Pr[D(SSI
C,U ((1λ,IC , gIC(I)), (1λ, IU , gIU (I)))) = 1]

− Pr[D(SHn-SI
C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))) = 1]

∣∣ = µ(λ) ,

where µ(·) is a non-negligible function in λ.
We construct a guessing adversary B ∈ ppt(λ) that uses D to win the IND-CPA

experiment. Adversary B is presented in Figure 5.15.
First, we remark that

Pr[Expindcpa-0
Π,B (λ) = 1] = Pr[D(SHn-SI

C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))) = 1] .

When b = 0, the view that B uses as input for D is computed as in the simulator SHn-SI
C,U .

Then the probability that the IND-CPA experiment returns 1 is equal to the probability
that the distinguisher D returns 1 on inputs computed as in the simulator SHn-SI

C,U . On the
other hand, we have

Pr[Expindcpa-1
Π,B (λ) = 1] = Pr[D(SSI

C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))) = 1] .

Indeed, when b = 1 the view that B uses as input for D is computed as in the simula-
tor SSI

C,U . Then the probability that the IND-CPA experiment returns 1 is equal to the
probability that the distinguisher D returns 1 on inputs computed as in the simulator
SSI
C,U .



102 CHAPTER 5. SECURE INTERSECTION WITH MAPREDUCE

Simulator: SSI
C,U (1λ, pk, (N1, . . . , Nn, N))

R := ∅;R∗ := ∅
while |R| < N do

r
$← N

if r /∈ R then
R := R ∪ {r}

for i ∈ J1, nK do

ki
$← K

Ri := R
while |Ri| < Ni do

r
$← N

Ri := Ri ∪ {r}
Ri := Ri \

(
∪i−1
j=1 Rj \R

)
R∗1 := ∅
foreach r ∈ R1 do

if r ∈ R then
r∗ := E(pk, r)
R∗ := R∗ ∪ {r∗}
R∗1 := R∗1 ∪ {(OPRF(k1, r), (r

∗ ⊕ OPRF(k2, r)⊕ · · · ⊕ OPRF(kn, r)))}
else

r′
$← N

r∗ := E(pk, r′)
R∗1 := R∗1 ∪ {(OPRF(k1, r), (r

∗ ⊕ OPRF(k2, r)⊕ · · · ⊕ OPRF(kn, r)))}
for i ∈ J2, nK do

R∗i := ∅
foreach r ∈ Ri do

R∗i := R∗i ∪ {(OPRF(k1, r),OPRF(ki, r))}
view := (R∗1, . . . , R

∗
n, R,R

∗)

Figure 5.14: Simulator SSI
C,U for the proof of Lemma 27.

Finally, we evaluate the probability that B wins the experiment

Advindcpa
Π,B (λ) =

∣∣Pr[Expindcpa-1
Π,B (λ) = 1]− Pr[Expindcpa-0

Π,B (λ) = 1]
∣∣

=
∣∣Pr[D(SSI

C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))) = 1]

− Pr[D(SHn-SI
C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))) = 1]

∣∣
= µ(λ) ,

which is non-negligible. However, we assume that Π is IND-CPA. Hence, for λ ∈ N and
I ∈ I, we have

SHn-SI
C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))

c≡ SSI
C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I))) .

By transitivity, we have

{
SSI
C,U ((1λ, IC , gIC(I)), (1λ, IU , gIU (I)))

}
λ∈N,I∈I

c≡
{

viewSI
C,U (I, λ)

}
λ∈N,I∈I ,

which concludes the proof.
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Adversary: B(pk)

R := ∅;R∗ := ∅
while |R| < N do

r
$← N

if r /∈ R then
R := R ∪ {r}

for i ∈ J1, nK do

ki
$← K

Ri := R
while |Ri| < Ni do

r
$← N

Ri := Ri ∪ {r}
Ri := Ri \

(
∪i−1
j=1 Rj \R

)
R∗1 := ∅
foreach r ∈ R1 do

if r ∈ R then
r∗ := E(pk, r)
R∗ := R∗ ∪ {r∗}
R∗1 := R∗1 ∪ {(OPRF(k1, r), (r

∗ ⊕ OPRF(k2, r)⊕ · · · ⊕ OPRF(kn, r)))}
else

r′
$← N

r∗ := E(pk, LoRb(r, r
′))

R∗1 := R∗1 ∪ {(OPRF(k1, r), (r
∗ ⊕ OPRF(k2, r)⊕ · · · ⊕ OPRF(kn, r)))}

for i ∈ J2, nK do
R∗i := ∅
foreach r ∈ Ri do

R∗i := R∗i ∪ {(OPRF(k1, r),OPRF(ki, r))}
view := (R∗1, . . . , R

∗
n, R,R

∗)
b∗ := D(view)
return b∗

Figure 5.15: Adversary B for the proof of Lemma 27.

5.5 Conclusion

We have presented an efficient privacy-preserving protocol called SI (for Secure Intersec-
tion) using the MapReduce paradigm to compute the intersection between an arbitrary
number of relations. In fact, in the protocol proposed by Leskovec et al. [LRU14], the
public cloud performing the computation learns all tuples of the data owners along the
intersection result that it sends to the MapReduce’s user. In our protocol SI, the public
cloud cannot learn information on the input sets. Moreover, if the cloud and the user
collude, i.e., the cloud knows the secret key of the asymmetric encryption scheme used by
the user, then they cannot learn more than the final result of the intersection. If no such
a collusion exists, then the public cloud only learns cardinals of the relations sent by the
data owner, the cardinal of their intersection, and relations sharing a common element
(but not the element itself).

To achieve our goal, we have relied on pseudo-random functions, asymmetric encryp-
tion and bitwise exclusive OR operations. We have compared the standard and our secure
approach SI with respect to three fundamental criteria: computation cost, communication
cost, and privacy guarantees. We also implemented SI protocol with the Apache Hadoop R©
framework [Fou19b] showing the scalability of our secure approach.
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Looking forward to future work, we plan to study secure intersection with MapReduce
considering a malicious public cloud, i.e., the public cloud can perform any operations on
data that it process. We would like also to hide to the public cloud the information about
common elements that are shared between relations. Additionally, we aim to investigate
the computation of a secure relation difference using the MapReduce paradigm.



CHAPTER 6

Secure Grouping and Aggregation with MapReduce

We propose secure multiparty protocols computing grouping and aggregation operations
on a relation using the MapReduce paradigm. We focus on a scenario where the data owner
outsources her relation on an semi-honest public cloud. More specifically, we evaluate
grouping and aggregation with COUNT, SUM, AVG, MIN, and MAX operations. At the
end of the computation, the public cloud sends the final result to an external user. We
assume that the public cloud does not know user’s private information, i.e., the public
cloud and the user do not collude. This work has been conducted in collaboration with
Radu Ciucanu, Pascal Lafourcade, and Lihua Ye, and has been published in the paper
“Secure Grouping and Aggregation with MapReduce” [CGLY18] at the 15th International
Conference on Security and Cryptography (SECRYPT, 2018).
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6.1 Introduction

We address the fundamental problem of how to group and aggregate data from a relation
in a privacy-preserving manner using the MapReduce paradigm [DG04]. We assume that
the data is externalized in a public cloud by the data owner and there is a user, called
MapReduce’s user, that queries it. We consider the following five aggregation operations,
which are precisely those included in the Structured Query Language (SQL) standard:
COUNT, SUM, AVG, MIN, and MAX. We recall that COUNT operation counts the
number of rows in a relation that matches a specified criteria, SUM operations computes
the total sum of a numeric column, AVG operation computes the average value of a numeric
column, while MIN (resp. MAX) computes the smallest (resp. the largest) value of the
selected column.

We start by a running example to present the concepts of grouping and aggregation and
of MapReduce computations. Then, we present our problem statement and illustrate with
the same example the privacy issues related to grouping and aggregation with MapReduce.

Example 1. Assume there is a university storing a relation R corresponding to the list
of professors with their associated department and salary. The grouping and aggregation
operation on the relation R, in the case where we assume one group attribute and one
aggregate function, is denoted by γA,θ(B)(R), where A is the grouping attribute and θ is one
of the five aggregation operations applied on the attribute B different from the grouping
attribute. In this example (Figure 6.1), we consider the attribute “Department” as the
grouping attribute and SUM is the aggregation operation applied on attribute “Salary”.
Hence, for each department we sum all the associated salaries. Since Alice and Bob are
in the Computer Science department, the sum of salaries associated to the Computer
Science department is 1, 900 + 1, 800 = 3, 700. In the same way, we sum the salaries of
Mallory and Oscar from the Mathematics department. Since Eve is the only one in the
Physics department, the sum corresponds to the salary of Eve which is equal to 2, 000.
For the query γDepartment,SUM(Salary)(R), we obtain the relation presented in Figure 6.2.
Aggregation operations COUNT, AVG, MIN, or MAX work similarly.

Name Department Salary

Alice Computer Science 1,900

Mallory Mathematics 1,750

Bob Computer Science 1,800

Eve Physics 2,000

Oscar Mathematics 1,600

Figure 6.1: Relation R.

Department SUM (salary)

Computer Science 3,700

Physics 2,000

Mathematics 3,350

Figure 6.2: Result of γDepartment,SUM(Salary)(R).

6.1.1 Grouping and Aggregation with MapReduce

A protocol to perform grouping and aggregation with MapReduce is presented by Leskovec
et al. [LRU14, Chapter 2]. First, a set of nodes of the public cloud has chunks of the
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relation. The Map function creates for each tuple of the relation a key-value pair where
key is equal to the value of the grouping attribute in the considered tuple, and value is
equal to the value of the aggregation attribute of the considered tuple. Then, key-value
pairs are grouped by key, i.e., key-value pairs output by the Map phase which have the
same key are sent to the same reducer. For each key, the Reduce function applies the
aggregate function on the associated values of the considered key.

Example 2. Following Example 6.1, we perform grouping and aggregation with MapRe-
duce on the relation R where the grouping attribute is the attribute “Department”, the
aggregation attribute is the attribute “Salary”, and the operation is the SUM operation.
We start grouping and aggregation with MapReduce by applying the map function. Since
the grouping attribute is the attribute “Department” and that the aggregation attribute
is the attribute “Salary”, the map function emits the pairs: (Computer Science, 1, 900),
(Mathematics, 1, 750), (Computer Science, 1, 800), (Physics, 2, 000), (Mathematics, 1, 600).
Pairs sharing the same key (i.e., same value of the grouping attribute) are sent on the same
reducer via the master controller. Then, the reduce function performs on each reducer the
aggregation, consisting here of the sum, and we obtain the pairs (Computer Science, 3, 700)
since 1, 900 + 1, 800 = 3, 700, (Mathematics, 3, 350) since 1, 750 + 1, 600 = 3, 350, and
(Physics, 2, 000). The final result is presented in Figure 6.2.

6.1.2 Problem Statement

We assume three entities: a data owner of a relation R, a public cloud, and a user that we
call the MapReduce’s user. This user that does not know the schema of R is authorized
to query a grouping and aggregation operation on R.

First, R is outsourced by the data owner to the distributed file system of some public
cloud provider. We assume that the relation R is initially spread over a set R1 of nodes
of the public cloud, each of them storing a chunk of R, i.e., a set of tuples of R. Then,
the result of the query, denoted γA,θ(B)(R), is computed over a set R2 of nodes before it
is sent to the user’s nodes U .

We assume that the data owner and the MapReduce’s user are trustworthy while the
cloud service provider is semi-honest [Lin17], i.e., it dutifully executes the protocol but
tries to deduce as much as possible information on the relation. Moreover, we assume the
public cloud and the MapReduce’s user do not collude, but that public cloud sets of nodes
may collude. We illustrate the architecture of the MapReduce grouping and aggregation
in Figure 6.3.

R R1 R2 U

Map tasks Reduce tasks γA,θ(B)(R)

Data owner Public cloud MapReduce’s user

Figure 6.3: The system architecture.

In order to preserve the privacy of the data owner, the public cloud should not learn
any plain input data, contrary to what happens for original protocols [LRU14, Chapter 2]
and exemplified above. Indeed, the public cloud receives the original relation R from the
data owner, hence it learns the content of all tuples of the relation R and the result of the
query that it sends to the user.
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We expect the public cloud sets of nodes R1 and R2 cannot learn any information
about the relation R apart from repetitions of tuples within relation.

6.1.3 Contributions

We propose the following contributions.

• We revisit the original protocols for MapReduce grouping and aggregation [LRU14,
Chapter 2] to guarantee the privacy of the data owner by designing a secure ap-
proach, called SGA (for Secure Grouping Aggregation), for each of the considered
five aggregation operations, i.e., COUNT, SUM, AVG, MIN, and MAX. We denote
by SGACOUNT, SGASUM, SGAAVG, SGAMIN, and SGAMAX the corresponding pro-
tocols in this secure approach. In each case, the secure approach is efficient from both
computational and communication points of view, in the sense that the overhead is
linear for each of the two complexity measures. Our technique is essentially based
on two types of encryption schemes: (i) the well-known additive-homomorphic Pail-
lier’s cryptosystem [Pai99] used for COUNT, SUM, and AVG operations, and (ii)
the order-preserving symmetric encryption scheme [AKSX04] for MIN and MAX
operations.

• For each aggregation operation, we give experimental results for the original protocol
and our secure approach. Experiments are run using the open-source MapReduce
implementation Apache Hadoop R© [Fou19b].

• We give security proofs of our secure approach in the random oracle model.

6.1.4 Outline

We first recall the original protocols to perform grouping and aggregation with operations
COUNT, SUM, AVG, MIN, and MAX [LRU14]. Then, we present our secure protocols in
Section 6.2. In Section 6.4, we show an experimental evaluation of original and our secure
protocols using Apache Hadoop R© [Fou19b] which provides a MapReduce implementation.
Before to conclude this chapter, we prove in Section 6.5 the security properties of our secure
protocols in the random oracle model.

6.2 Grouping and Aggregation with MapReduce

We recall original protocols proposed by Leskovec et al. [LRU14, Chapter 2] that compute
the grouping and aggregation with COUNT, SUM, AVG, MIN, and MAX aggregation
operations.

For each operation, we denote by A the grouping attribute, and by B the aggregation
attribute. Note that MIN operation requires that the aggregated attribute have a type
that can be compared, e.g., numbers or strings, while SUM and AVG require that the
types allow arithmetic operations. We recall that we denote a grouping and aggregation
operation on a relation R by γA,θ(B)(R), where A is the grouping attribute, θ is one of the
five aggregation operations such as SUM, and B is the aggregation attribute. Moreover,
we denote by πA(t) the component for the attribute A of the tuple t.

6.2.1 MapReduce Grouping and Aggregation with COUNT Operation

The Map and Reduce functions for the grouping and aggregation with COUNT operation
are presented in Figure 6.4.
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• The Map Function. For each tuple of a relation R, it produces a key-value pair
where the key is equal to the grouping attribute value and the value is equal to 1.

• The Reduce Function. For a specified key, the Reduce function sums all associated
values 1 to obtain the number of tuples in R sharing the same grouping attribute
value.

Map function:

Input: (key , value)
// key : id of a chunk of R
// value: collection of t ∈ R
foreach t ∈ R do

emitR1→R2(πA(t), 1)

Reduce function:

Input: (key , values)
// key : πA(t) for t ∈ R
// values: collection of 1
count := 0
foreach 1 ∈ values do

count := count + 1
emitR2→U (πA(t), count)

Figure 6.4: Map and Reduce functions for the COUNT protocol.

6.2.2 MapReduce Grouping and Aggregation with SUM Operation

The Map and Reduce function for the MapReduce grouping and aggregation with SUM
operation are presented in Figure 6.5.

• The Map Function. For each tuple of a relation R, it produces a key-value pair
where the key is equal to the grouping attribute value and the value is equal the
aggregation attribute value.

• The Reduce Function. For a specified key, the Reduce function sums all associated
values to obtain the sum of aggregation attribute values in R sharing the same
grouping attribute value.

6.2.3 MapReduce Grouping and Aggregation with AVG Operation

The Map and Reduce functions for the MapReduce grouping and aggregation with AVG
operation are presented in Figure 6.7.

• The Map Function. It works as the Map function for SUM operation. For each tuple
of a relation R, it produces a key-value pair where the key is equal to the grouping
attribute value and the value is equal the aggregation attribute value.

• The Reduce Function. It combines the Reduce function of COUNT and SUM opera-
tions. For a specified key, the Reduce function sums all associated values. Moreover,
it counts the numbers of summed values. Hence, it can compute the average of
aggregation attribute values in R sharing the same grouping attribute value.
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Map function:

Input: (key , value)
// key : id of a chunk of R
// value: collection of t ∈ R
foreach t ∈ R do

emitR1→R2(πA(t), πB(t))

Reduce function:

Input: (key , values)
// key : πA(t) for t ∈ R
// values: collection of πB(t) with t ∈ R
sum← 0
foreach πB(t) ∈ values do

sum := sum + πB(t)
emitR2→U (πA(t), sum)

Figure 6.5: Map and Reduce functions for the SUM protocol.

Map function:

Input: (key , value)
// key : id of a chunk of R
// value: collection of t ∈ R
foreach t ∈ R do

emitR1→R2(πA(t), πB(t))

Reduce function:

Input: (key , values)
// key : πA(t) for t ∈ R
// values: collection of πB(t) with t ∈ R
cpt := 0
sum := 0
foreach πB(t) ∈ values do

cpt := cpt + 1
sum := sum + πB(t)

emitR2→U (πA(t), sum/cpt)

Figure 6.6: Map and Reduce functions for the AVG protocol.

6.2.4 MapReduce Grouping and Aggregation with MIN Operation

The Map and Reduce functions for the MapReduce grouping and aggregation with MIN
operation are presented in Figure 6.7.

• The Map Function. It works as the Map function for SUM and AVG operation. For
each tuple of a relation R, it produces a key-value pair where the key is equal to the
grouping attribute value and the value is equal the aggregation attribute value.

• The Reduce Function. For the considered key, the Reduce function determines the
minimum of associated values. Hence, it can compute the minimum of aggregation
attribute values in R sharing the same grouping attribute value.

The Map and Reduce functions for the MAX operation are very similar to the Map and
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Map function:

Input: (key , value)
// key : id of a chunk of R
// value: collection of t ∈ R
foreach t ∈ R do

emitR1→R2(πA(t), πB(t))

Reduce function:

Input: (key , values)
// key : πA(t) for t ∈ R
// values: collection of πB(t) with t ∈ R
min

$← values
foreach πB(t) ∈ values do

if πB(t) < min then
min := πB(t)

emitR2→U (πA(t),min)

Figure 6.7: Map and Reduce functions for the MIN protocol.

Reduce functions of the MIN operation so we do not present them. The only difference is
in the Reduce function which checks the maximum of values associated to the considered
key, instead of the minimum.

6.3 Secure Grouping and Aggregation with MapReduce

We present our secure protocols that computes the MapReduce grouping and aggregation
for COUNT, SUM, AVG, MIN, and MAX operations. We call these protocols SGACOUNT,
SGASUM, SGAAVG, SGAMIN, and SGAMAX respectively, where SGA stands for Secure
Grouping Aggregation.

In order to compute MapReduce grouping and aggregation with these five operations
in a privacy-preserving way, we need a pseudo-random function denoted F and defined
over (K,X ,Y), an additive-homomorphic asymmetric encryption scheme Π := (G, E ,D),
and an order-preserving encryption scheme Π := (G,E,D), defined in Definition 16 on
page 20.

We start by presenting the preprocessing algorithm of our secure MapReduce protocols.

6.3.1 Preprocessing for SGA Protocols

Before the data owner outsources its relation R to the public cloud, it performs a prepro-
cessing on R to obtain a protected relation denoted R∗. In order to build this protected
relation, the data owner picks randomly a secret k ∈ K for the pseudo-random function F ,
and a secret K for the order-preserving encryption scheme Π. Moreover, the data owner
has to get user’s public key pk back for the additive-homomorphic asymmetric encryption
scheme Π.

This preprocessing has two goals: (i) it protects owner’s data in order to avoid the
public cloud to learn tuples of the relation R, (ii) it allows the public cloud to perform
the grouping and aggregation operations without revealing the content of the result to the
public cloud. We present the preprocessing algorithm in Figure 6.8.

For each tuple t ∈ R, the preprocessing generates a key-value pair in the encrypted
relation R∗. We denote by A the grouping attribute, and we denote by B the aggregation
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Preprocessing:

Input: R
R∗ := ∅
foreach t ∈ R do

R∗ := R∗ ∪ {(F (k, πA(t)), (E(pk, πA(t)), E(pk, πB(t)),Eope(K,πB(t))))}
return R∗

Figure 6.8: Preprocessing algorithm of SGA protocols.

attribute. For a tuple t ∈ R, value of the grouping attribute, i.e., πA(t), is evaluated using
F (k, ·). These deterministic pseudo-random function evaluations allow the public cloud to
perform equality checks between values of grouping attributes. Hence, tuples having same
values of grouping attribute are sent to the same reducer. In addition to these pseudo-
random evaluations, the preprocessing algorithm also encrypts, for each tuple t ∈ R, the
value of the grouping attribute with the public key pk of the user using the asymmetric
encryption scheme Π. These encryptions allow the user to retrieve the value of grouping
attributes associated to the aggregation value. Indeed, pseudo-random evaluations are
non-inversible.

Moreover, for COUNT, SUM and AVG operations, the data owner encrypts each
value of the aggregation attribute with the additive-homomorphic asymmetric encryption
scheme Π using the user public key pk in order to allow the public cloud to perform the
aggregation computation in encrypted values. For the MIN and MAX operations, the data
owner also encrypts value of aggregation attribute of each tuple with an order-preserving
encryption scheme with the secret key K.

If the relation R is made of N tuples, then the complexity of the preprocessing algo-
rithm is equal to O((CF + 2 · CE + CE) ·N), where CF (resp. CE , CE) is the cost of pseudo-
random evaluation (resp. additive-homomorphic encryption, order-preserving encryption).
In order to illustrate computation over encrypted data, we consider in the following the
Paillier’s cryptosystem (cf. Section 2.4.4 on page 23) for the additive-homomorphic en-
cryption scheme Π.

In the preprocessing algorithm presented in Figure 6.8, we compute all encryptions
that are required for the five aggregation operations. Indeed, we can assume that the
MapReduce’s user is allowed to perform these five aggregation operations on the considered
relation. However, if the data owner knows the aggregation operation that will be queried,
then the preprocessing algorithm can be adapted. For the COUNT operation, only pseudo-
random evaluations and encryption of the grouping attribute values are required. For the
SUM and AVG operations, we also need to compute the encryption of the aggregation
attribute values using an additive-homomorphic encryption scheme. Finally, the MIN and
MAX operations require all encryptions and the preprocessing corresponds to the one
presented in Figure 6.8.

6.3.2 Secure MapReduce Grouping and Aggregation with COUNT Op-
eration

We denote by SGACOUNT our protocol that computes the secure MapReduce grouping and
aggregation with COUNT operation. The Map and Reduce functions for the SGACOUNT

protocol are presented in Figure 6.9.

• The Map Function. For each tuple of the relation R∗ sent by the data owner to the
public cloud, the Map function keeps the key and sends only the Paillier encryption
of the grouping attribute as value of the key-value pair.
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• The Reduce Function. The Reduce function works as for the no-secure protocol
and computes the count of tuples sharing the same value of the grouping attribute.
An inherent limitation of the SGACOUNT protocol is that the public cloud always
can count the number of loop applied in the Reduce function, hence we do not
encrypt values 1. Moreover, the preprocessing algorithm keeps the repetitions of
the relation. Since we assume that sets of nodes of the public cloud collude, the
count value can also be determined. However, we stress that value of the grouping
attribute associated to a count remains unkown to the public cloud. Indeed, it
remains protected through the Paillier’s cryptosystem.

Map function:

Input: (key , value)
// key : id of a chunk of R∗

// value: collection of (F (k, πA(t)), (E(pk, πA(t)), E(pk, πB(t)),E(K,πB(t)))) ∈ R∗
// with t ∈ R
foreach (key, (val1, val2, val3)) ∈ R∗ do

emitR1→R2(key, val1)

Reduce function:

Input: (key , values)
// key : F (k, πA(t)) with t ∈ R
// values: collection of E(pk, πA(t)) with t ∈ R
count := 0
foreach E(pk, πA(t)) ∈ values do

count := count + 1
emitR2→U (E(pk, πA(t)), count)

Figure 6.9: Map and Reduce functions for the SGACOUNT protocol.

6.3.3 Secure MapReduce Grouping and Aggregation with SUM Opera-
tion

We present the Map and Reduce functions of our secure MapReduce grouping and aggre-
gation protocol for the SUM operation in Figure 6.10. This protocol is called SGASUM for
Secure Grouping Aggregation.

• The Map Function. For each tuple of the relation R∗ sent by the data owner to
the public cloud, the Map function produces the key-value pair where the key is the
pseudo-random evaluation of the grouping attribute and value is the couple made of
the Paillier encryption of the grouping attribute value and the Paillier encryption of
aggregation attribute value allowing to compute the sum.

• The Reduce Function. Due to the homomorphic property of the Paillier’s cryptosys-
tem, the Reduce function uses all Paillier encryptions of the aggregation attribute
values to compute the sum associated to the grouping attribute value.

6.3.4 Secure MapReduce Grouping and Aggregation with AVG Opera-
tion

We present the Map and Reduce functions of our secure MapReduce grouping and aggre-
gation protocol for the AVG operation in Figure 6.11. This protocol is called SGAAVG for
Secure Grouping Aggregation.



6.3. SECURE GROUPING AND AGGREGATION WITH MAPREDUCE 115

Map function:

Input: (key , value)
// key : id of a chunk of R∗

// value: collection of (F (k, πA(t)), (E(pk, πA(t)), E(pk, πB(t)),E(K,πB(t)))) ∈ R∗
// with t ∈ R
foreach (key, (val1, val2, val3)) ∈ R∗ do

emitR1→R2(key, (val1, val2))

Reduce function:

Input: (key , values)
// key : F (k, πA(t)) with t ∈ R
// values: collection of (E(pk, πA(t)), E(pk, πB(t))) with t ∈ R
sum := E(pk, 0)
foreach (E(pk, πA(t)), E(pk, πB(t)) ∈ values do

sum := sum · E(pk, πB(t))
emitR2→U (E(pk, πA(t)), sum)

Figure 6.10: Map and Reduce functions for the SGASUM protocol.

• The Map Function. It works exactly as the Map function of the SGASUM protocol.

• The Reduce Function. It combines the Reduce function of the SGACOUNT and the
SGASUM protocols. For each considered key, the Reduce function emits a triplet with
the asymmmetric encryption of the grouping attribute (corresponding to the current
key value), the asymmetric encryption of the sum of the aggregation attribute values,
and the count. In this way, the MapReduce’s user is allowed to compute the average.

Map function:

Input: (key , value)
// key : id of a chunk of R∗

// value: collection of (F (k, πA(t)), (E(pk, πA(t)), E(pk, πB(t)),E(K,πB(t)))) ∈ R∗
// with t ∈ R
foreach (key, (val1, val2, val3)) ∈ R∗ do

emitR1→R2(key, (val1, val2))

Reduce function:

Input: (key , values)
// key : F (k, πA(t)) with t ∈ R
// values: collection of (E(pk, πA(t)), E(pk, πB(t))) with t ∈ R
count := 0
sum := E(pk, 0)
foreach (E(pk, πA(t)), E(pk, πB(t)) ∈ values do

count := count + 1
sum := sum · E(pk, πB(t))

emitR2→U (E(pk, πA(t)), sum, count)

Figure 6.11: Map and Reduce functions for the SGAAVG protocol.
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6.3.5 Secure MapReduce Grouping and Aggregation with MIN Opera-
tion

We present the Map and Reduce functions of our secure MapReduce grouping and aggre-
gation protocol for the MIN operation in Figure 6.12. This protocol is called SGAMIN for
Secure Grouping Aggregation.

• The Map Function. It produces key-value pairs such that value of pairs contains the
asymmetric encryption of the grouping attribute value, the asymmetric encryption
and the order-preserving symmetric encryption of the aggregation attribute value.

• The Reduce Function. Using the property of order-preserving symmetric encryption,
each reducer computes the minimum value associated to the considered value of the
grouping attribute value. Since the MapReduce’s user does not know the secret key
K used with the order-preserving symmetric encryption scheme, she uses asymmetric
encryption in order to know the value of the minimum.

Map function:

Input: (key , value)
// key : id of a chunk of R∗

// value: collection of (F (k, πA(t)), (E(pk, πA(t)), E(pk, πB(t)),E(K,πB(t)))) ∈ R∗
// with t ∈ R
foreach (key, (val1, val2, val3)) ∈ R∗ do

emitR1→R2(key, (val1, val2, val3))

Reduce function:

Input: (key , values)
// key : F (k, πA(t)) with t ∈ R
// values: collection of (E(pk, πA(t)), E(pk, πB(t)),E(K,πB(t))) with t ∈ R
min

$← {val3 : (val1, val2, val3) ∈ values}
foreach (val1, val2, val3) ∈ values do

if val3 < min then
encA := val1

encB := val2

min := val3
emitR2→U (encA, encB, min)

Figure 6.12: Map and Reduce functions for the SGAMIN protocol.

6.3.6 Proof of Correctness

We say that the protocol SGACOUNT (resp. SGASUM, SGAAVG, MIN, MAX) is correct if
it returns the correct count (resp. sum, average, minimum, maximum) for each value of
the grouping attribute.

Lemma 28. Assume that the pseudo-random function family F perfectly emulates a ran-
dom oracle, then protocol SGACOUNT (resp. SGASUM,SGAAVG, SGAMIN, SGAMAX) is
correct.

Proof. Let R be a relation, and R∗ be the corresponding protected relation computed by
the preprocessing algorithm presented in Figure 6.8.
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For each t ∈ R, there exists a key-value pair in relation R∗ of the form

(F (k, πA(t)), (E(pk, πA(t)), E(pk, πB(t)),E(K,πB(t)))) .

Since the pseudo-random function F perfectly emulates a random oracle, tuples sharing
the same value of grouping attribute are sent to the same reducer. Indeed, we recall that
F is a deterministic algorithm. Hence, each reducer associated to a key F (k, πA(t)) with
t ∈ R has a collection of values of the form

• (E(pk, πA(t)), 1) for the COUNT operation,

• (E(pk, πA(t)), E(pk, πB(t))) for the SUM and AVG operations,

• (E(pk, πA(t)), E(pk, πB(t)),E(K,πB(t))) for the MIN and MAX operations.

For the COUNT operation, the cardinal number of the collection corresponds to the result
of the COUNT operation of the considered key. For the SUM operation, the reducer uses
the additive-homomorphic property of the Paillier’s cryptosystem to compute the result
of the SUM operation of the considered key. Concerning the AVG operation, the reducer
computes the cardinal number of the collection, and uses the additive-homomorphic prop-
erty of the Paillier’s cryptosystem to compute the sum of aggregation attribute values
associated to the considered key allowing the MapReduce’s user to compute the average.
Finally for the MIN and MAX operations, the reducer associated to the considered key
uses the property of the order-preserving encryption scheme to determine the minimum
or the maximum of the aggregation attribute value.

This concludes the proof.

6.3.7 Complexity of Originals and SGA Protocols

We summarize in Table 6.1 the computation cost and the communication cost for original
protocols [LRU14, Chapter 2] and our SGA protocols. In our communication cost analysis,
we measure the total size of the data that is emitted from a map or reduce node, and
quantify by 1 the transmission of an attribute value of a tuple.

We remark that in each case, our SGA protocols are efficient from both computational
and communication points of view, in the sense that the overhead is linear for each of the
two complexity measures.

Table 6.1: Complexity of original MapReduce grouping and aggregation protocols and of
our SGA protocols. Let N1 be the number of tuples of the relation R. Let C+ (resp.
C×mod

, CE , C÷, Ccomp) be the cost of addition (resp. modular multiplication, asymmetric
encryption, division, comparison).

Operation Protocol Computation cost (big-O) Communication cost (big-O)

COUNT
Original C+ ·N1 4 ·N1

SGA C+ ·N1 4 ·N1

SUM
Original C+ ·N1 4 ·N1

SGA (C×mod
+ CE) ·N1 5 ·N1

AVG
Original (2 · C+ + C÷) ·N1 4 ·N1

SGA (C+ + CE) ·N1 6 ·N1

MIN / MAX
Original Ccomp ·N1 4 ·N1

SGA Ccomp ·N1 7 ·N1
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6.4 Experimental Results

We present experimental results for the original MapReduce protocols that compute the
grouping and aggregation with the COUNT, SUM, AVG, MIN operations [LRU14, Chap-
ter 2] and for our corresponding SGA protocols. We do not give results for the MAX
operation since they are the same as the MIN operation.

6.4.1 Dataset and Settings

We use the real-world MovieLens 10M Dataset [HK16] which contains 10, 000, 054 of
anonymous ratings of movies made by MovieLens users. There are 10, 681 different movies,
and 71, 567 different users. All users had rated at least 20 movies. We denote the dataset
R(A,B) where attribute A is the movie ID and attribute B is the rating. A movie ID is an
integer, and the ratings are made on a 5-star scale (whole-star ratings only). To perform
grouping and aggregation operations, we first randomly pick samples of R(A,B), ranging
from 1, 000, 000 to 10, 000, 000 tuples in steps of 1, 000, 000. We run all the protocols on
these 10 relations.

According to our secure protocols, we use as pseudo-random function the HMAC-
SHA256 keyed-hash message authentication code [BCK96] implemented in Go package
hmac†. Moreover, we use the RSA-OAEP asymmetric encryption scheme [BR94, KS98]
implemented in Go package rsa‡ with a 1024-bit RSA modulus for encryption of grouping
attribute values. Indeed, this encryption does not require additive-homomorphic property.
However, encryption of aggregation attribute values needs the additive-homomorphic prop-
erty for SGACOUNT, SGASUM, and SGAAVG protocols, hence we use a Go implementation
of the Paillier’s cryptosystem called Gaillier§. Note that Gaillier is not an optimized im-
plementation. Hence, we use it with a 64-bit RSA modulus as proof of concept. Finally,
SGAMIN and SGAMAX protocols are based on OPE schemes which are not yet imple-
mented in Go language. Hence, we implemented a prototype of the summation of random
numbers scheme [AKSX04].

We can note that, instead of using RSA-OAEP cryptosystem, we could use another
asymmetric encryption scheme such as the ElGamal cryptosystem [Gam85]. However
for the same security, ElGamal ciphertexts are twice longer compared to RSA-OAEP
ciphertexts, hence we do not use it for communication considerations.

6.4.2 Results

We first report wall clock times of the preprocessing algorithm for the 10 relations we used
in Table 6.2.

CPU times are presented in Figure 6.13. First, as expected by the complexity study 6.1,
we observe that the CPU time for the four operations of original protocols are the same.

We remark that complexity of our secure protocols remain linear. The overhead com-
pared to the original protocols is due to the size of the encrypted data. Moreover, we
observe two tendencies for secure protocols. Indeed, our secure protocols for the SUM
and AVG operations require an encryption for each grouping attribute value in order to
compute the encrypted sum of the aggregation attribute values, while operations COUNT
and MIN do not need such encryption.

†https://golang.org/pkg/crypto/hmac/
‡https://golang.org/pkg/crypto/rsa/
§https://github.com/actuallyachraf/gomorph

https://golang.org/pkg/crypto/hmac/
https://golang.org/pkg/crypto/rsa/
https://github.com/actuallyachraf/gomorph
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Table 6.2: Wall clock times of the secure protocols preprocessing.

Number of tuples / relation Wall clock time

1,000,000 63.526 s

2,000,000 130.162 s

3,000,000 196.391 s

4,000,000 263.213 s

5,000,000 326.961 s

6,000,000 390.763 s

7,000,000 449.211 s

8,000,000 524.712 s

9,000,000 575.996 s

10,000,000 644.523 s
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Figure 6.13: CPU time vs the number of tuples for no-secure and secure protocols which
perform grouping and aggregation with the COUNT, SUM, AVG, and MIN operations.

6.5 Security Proof

We now give the security proof of our protocol SGASUM (respectively SGAMIN) that
securely computes the grouping and aggregation with the SUM operation (respectively
with the MIN operation). Security proofs for SGACOUNT and SGAAVG protocols are
similar to the security proof of SGASUM protocol, and security proof for SGAMAX protocols
is similar to the security proof of SGAMIN protocol so we omit them. In the following, we
recall that we denote by A the grouping attribute, and we denote by B the aggregation
attribute.

We first give the proof for the SGASUM protocol in Theorem 9. Then, we give the
security proof for the SGAMIN protocol in Theorem 10.

6.5.1 Modeling of SGASUM Protocol

We start by modeling our SGASUM protocol. The data owner owning the relation R is
denoted PR. The public cloud is denoted PC , and the user is denoted PU . Parties use
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respective inputs I := (IR, IC , IU ) and a function g := (gR, gC , gU ) that computes the
grouping and aggregation with the SUM operation. We describe these three parties as
follows

• PR has the input IR := (pk, k,R) where pk is a public key of the Paillier’s cryp-
tosystem, k ∈ K is a secret key for the pseudo-random function family F , and R is
a relation such that |R| = N1. The party R outputs gR(I) := ⊥ (where ⊥ denotes
that the function returns nothing) since it does not learn any information.

• PC has the input IC := pk where pk is a public key of the Paillier’s cryptosystem. It
returns gC(I) := (N1, N2, τ) where N1 is the number of tuples in relation R, and N2

is the number of tuples in the result of the query γA,SUM(B)(R), i.e., the number of
distinct values for the grouping attribute. Moreover, since a pseudo-random function
is deterministic, the public cloud learns the occurrence for each value of the grouping
attribute, i.e., τ := {(i, ρi)}i∈J1,N2K, where ρi is the occurrence of the πA(ti) grouping
attribute value such that ti ∈ R.

• PU has the input IU := (pk, sk) where (pk, sk) is a key pair of the Paillier’s cryptosys-
tem. It returns gU (I) := γA,SUM(B)(R), i.e., the result of grouping and aggregation
on relation R with the SUM operation computed by the public cloud.

6.5.2 Security Proof of SGASUM Protocol

We give the security proof of our SGASUM protocol in Theorem 9.

Theorem 9. Assume F is a secure pseudo-random function family and that Paillier’s
cryptosystem is an IND-CPA asymmetric encryption scheme, then the SGASUM protocol
securely computes the grouping and aggregation with the SUM operation in the presence
of semi-honest adversaries if parties PC and PU do not collude.

The security proof for Theorem 9 is decomposed in Lemma 29 for the party PR, in
Lemma 30 for the party PC , and in Lemma 31 for the party PU .

Lemma 29. There exists probabilistic polynomial-time simulator SSGASUM
R such that

{
SSGASUM
R (1λ, IR, gR(I))

}
I∈I,λ∈N

c≡
{

viewSGASUM
R (I, λ)

}
I∈I,λ∈N .

Proof. Consider that R is corrupted, we observe that PR receives no output and no in-
coming message from other parties. Thus, we merely need to show that a simulator can
generate the view of party PR from its inputs. For the sake of simplicity, we assume that
PR runs the preprocessing algorithm without considering encryption of the aggregation
attribute values and the order-preserving encryption since they are useless.

Hence, PR receives the public key pk of the user, the secret key k used for the pseudo-
random function family F , and the relation R. Simulator SSGASUM

R runs the preprocessing
algorithm 6.8 to obtain the encrypted relation R∗ associated to the relation R.

We remark that SSGASUM
R uses exactly the same algorithm as the real protocol SGASUM,

then it describes the same distribution as viewSGASUM
R (I) which concludes the proof.

Lemma 30. If F is a secure pseudo-random function family and Paillier’s cryptosystem is
an IND-CPA asymmetric encryption scheme, then there exists a probabilistic polynomial-
time simulator SSGASUM

C such that

{
SSGASUM
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{

viewSGASUM
C (I, λ)

}
I∈I,λ∈N .
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Proof. Let λ ∈ N be a security parameter. Before to build SSGASUM
C that computes a

distribution that can be simulated perfectly, we use the hybrid argument to build an
hybrid simulator denoted SH-SGASUM

C . Simulator SH-SGASUM
C works as SGASUM protocol

but each evaluation of the pseudo-random function is substituted using the random oracle
OPRF presented in Figure 6.14.

OPRF(x) :
if T [x] = ∅ then

T [x]
$← {0, 1}|Y|

return T [x].

Figure 6.14: Random oracle OPRF.

We start by presenting the simulator SH-SGASUM
C in Figure 6.15.

Simulator: SH−SGASUM
C (1λ, pk, (N1, N2, τ))

R∗ := ∅
R∗γ := ∅
for i ∈ J1, N2K do

t
$← A

for j ∈ J1, ρiK do

t′j
$← B

R∗ := R∗ ∪ {(OPRF(t), E(pk, t′j))}
R∗γ := R∗γ ∪ {(OPRF(t), E(pk,

∑ρi
j=1 t

′
j))}

view := (R∗, R∗γ)

Figure 6.15: Simulator SH-SGASUM
C for the proof of Lemma 30.

Assume by contradiction that there exists a non-uniform probabilistic-polynomial time
distinguisher D such that for all inputs I, we have∣∣Pr[D(viewSGASUM

C (I, λ)) = 1]− Pr[D(SH-SGASUM
C (1λ, IC , gIC(I))) = 1]

∣∣ = µ(λ) ,

where µ is a non-negligible function in λ.

We construct a non-uniform probabilistic-polynomial time guessing algorithm A that
uses D to win PRF experiment Expprf-b

F,A with b ∈ {0, 1} against the pseudo-random function
family F . Adversary A is presented in Figure 6.16.

First, we remark that

Pr[Expprf-0
F,A (λ) = 1] = Pr[D(SH-SGASUM

C (1λ, IC , gC(I))) = 1] .

Indeed, when b = 0 the view that A uses as input for D is computed as in the simulator
SH-SGASUM
C . Then the probability that the experiment PRF experiment returns 1 is equal

to the probability that the distinguisher D returns 1 on input computed by the simulator
SH-SGASUM
C . On the other hand, we have

Pr[Expprf-1
F,A (λ) = 1] = Pr[D(viewSGASUM

C (I, λ)) = 1] .

When b = 1, the view that A uses as input for D is computed as in the real proto-
col SGASUM. Then the probability that the PRF experiment returns 1 is equal to the
probability that the distinguisher D returns 1 on input computed as in the real protocol.
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Adversary: A(pk)

R∗ := ∅
R∗γ := ∅
for i ∈ J1, N2K do

t
$← A

for j ∈ J1, ρiK do

t′j
$← B

R∗ := R∗ ∪ {(fb(t), E(pk, t′j))}
R∗γ := R∗γ ∪ {(OPRF(t), E(pk,

∑ρi
j=1 t

′
j))}

view := (R∗, R∗γ)
b∗ := D(view)
return b∗

Figure 6.16: Adversary A for the proof of Lemma 30.

It therefore follows that

Advprf
F,A(λ) =

∣∣Pr[Expprf-1
F,A (λ) = 1]− Pr[Expprf-0

F,A (λ) = 1]
∣∣

=
∣∣Pr[D(viewSGASUM

C (I, λ)) = 1]− Pr[D(SH-SGASUM
C (1λ, IC , gIC(I))) = 1]

∣∣
= µ(λ) ,

which is non-negligible. However, we assume that F is a secure pseudo-random function,
hence, it does not exist D such that∣∣Pr[D(viewSGASUM

C (I, λ)) = 1]− Pr[D(SH-SGASUM
C (1λ, IC , gIC(I))) = 1]

∣∣ ,
is non-negligible. Hence, we have

viewSGASUM
C (I, λ)

c≡ SH-SGASUM
C (IC , gIC(I, λ)) .

Finally, we show of to build the simulator SSGASUM
C . The difference between SH-SGASUM

C
and SSGASUM

C is that SSGASUM
C substitutes Paillier encryption of real values by Paillier

encryption of random values of the same size. More formally, SSGASUM
C is presented in

Figure 6.17.

Simulator: SSGASUM
C (1λ, pk, (N1, N2, τ))

R∗ := ∅
R∗γ := ∅
for i ∈ J1, N2K do

t
$← A

for j ∈ J1, ρiK do

t′
$← B

R∗ := R∗ ∪ {(OPRF(t), E(pk, t′))}
t′

$← B
R∗γ := R∗γ ∪ {(OPRF(t), E(pk, t′))}

view := (R∗, R∗γ)

Figure 6.17: Simulator SSGASUM
C for the proof of Lemma 30.

Now we show that we have

SH-SGASUM
C (1λ, IC , gIC(I))

c≡ SSGASUM
C (1λ, IC , gIC(I)) .
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Let λ ∈ N be the security parameter. Assume there exists a non-uniform probabilistic-
polynomial time distinguisher D such that for all inputs I, we have∣∣Pr[D(SH-SGASUM

C (1λ, IC , gIC(I))) = 1]− Pr[D(SSGASUM
C (1λ, IC , gIC(I))) = 1]

∣∣ = µ(λ) ,

where µ is a non-negligible function in λ.

We construct a non-uniform probabilistic-polynomial time guessing algorithm B that
uses D to win the IND-CPA experiment Expindcpa-b

Paillier,B for b ∈ {0, 1} against Paillier cryp-
tosystem. Adversary B is presented in Figure 6.18.

Adversary: B(pk)

R∗ := ∅
R∗γ := ∅
for i ∈ J1, N2K do

t
$← A

for j ∈ J1, ρiK do

t′j
$← B

R∗ := R∗ ∪ {(OPRF(t), E(pk, t′j))}
t′

$← B
R∗γ := R∗γ ∪ {(OPRF(t), E(pk, LoRb(

∑ρi
j=1 t

′
j , t
′)))}

view := (R∗, R∗γ)
b∗ := D(view)
return b∗

Figure 6.18: Adversary B for the proof of Lemma 30.

First, we remark that

Pr[Expind-cpa-0
Paillier,B(λ) = 1] = Pr[D(SSGASUM

C (1λ, IC , gIC(I))) = 1] .

When b = 0, the view that B uses as input for D is computed as in the simulator SSGASUM
C .

Then the probability that the IND-CPA experiment returns 1 is equal to the probability
that the distinguisher D returns 1 on inputs computed as in the simulator SSGASUM

C . On
the other hand, we have

Pr[Expind-cpa-1
Paillier,B(λ) = 1] = Pr[D(SH-SGASUM

C (1λ, IC , gIC(I))) = 1] .

Indeed, when b = 1 the view that B uses as input for D is computed as in the simulator
SH-SGASUM
C . Then the probability that the IND-CPA experiment returns 1 is equal to the

probability that the distinguisher D returns 1 on inputs computed as in the simulator
SH-SGASUM
C .

Finally, we evaluate the probability that B wins the experiment

Advindcpa
Paillier,B(λ) =

∣∣Pr[Expind-cpa-1
Paillier,B(λ) = 1]− Pr[Expind-cpa-0

Paillier,B(λ) = 1]
∣∣

=
∣∣Pr[D(SH-SGASUM

C (1λ, IC , gIC(I))) = 1]

− Pr[D(SSGASUM
C (1λ, IC , gIC(I))) = 1]

∣∣
= µ(λ) ,

which is non-negligible. However, we assume that Paillier is IND-CPA. Hence, we have

SH-SGASUM
C (1λ, IC , gIC(I))

c≡ SSGASUM
C (1λ, IC , gIC(I)) .
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By transitivity, we have

viewSGASUM
C (I, λ)

c≡ SSGASUM
C (1λ, IC , gIC(I)) .

which concludes the proof.

Lemma 31. There exists a probabilistic polynomial-time simulator SSGASUM
U such that{

SSGASUM
U (1λ, IR, gR(I))

}
λ∈N,I∈I

c≡
{

viewSGASUM
U (I, λ)

}
λ∈N,I∈I .

Proof. The view of U contains the relation γA,SUM(B)(R). For each pair t ∈ γA,SUM(B)(R),
SU uses the public key pk and produces the pair (E(pk, πA(t)), E(pk, πB(t))) constituting
the result sent by the public cloud.

Hence, SU ((sk, pk), γA,SUM(B)(R)) describes exactly the same distribution as, which
concludes the proof.

We now give the security proof of our secure protocol SGAMIN in Theorem 10.

6.5.3 Modeling of SGAMIN Protocol

We start by modeling our SGAMIN protocol that computes the grouping and aggregation
with the MIN operation. The data owner, the public cloud, and the user use respective
inputs I := (IR, IC , IU ) and a function g := (gR, gC , gU ). We describe the three parties as
follows:

• R has the input IR := (pk, k,K,R) where pk is a public key of an asymmetric
encryption scheme Π, k ∈ K is a secret key for the pseudo-random function family
F , K is a secret key for the order-preserving symmetric encryption scheme Πope, and
R is a relation owned by R. The party R outputs gR(I) = ⊥ (where ⊥ denotes that
the function returns nothing) since R does not learn any information.

• C has the input IC := pk where pk is a public key of a asymmetric encryption scheme
Π. It returns gC(I) = (N1, N2, τ) where N1 is the number of tuples in relation R, and
N2 is the number of tuples in γA,MIN(B)(R), i.e., the number of distinct values for
the grouping attribute. Moreover, since a pseudo-random function is deterministic,
the public cloud learns the occurrence for each value of the grouping attribute, i.e.,
τ := {(i, ρi)}i∈J1,N2K, where ρi is the occurrence of the πA(ti) grouping attribute
value such that ti ∈ R.

• U has the input IU := (pk, sk) where (pk, sk) is a key pair of an asymmetric encryp-
tion scheme Π. It returns gU (I) := γA,MIN(B)(R), i.e., the result of grouping and
aggregation on relation R with the MIN operation computed by the public cloud.

6.5.4 Security Proof of SGAMIN Protocol

We give the security proof of our SGAMIN protocol in Theorem 10.

Theorem 10. Assume F is a secure pseudo-random function family, Π is an IND-CPA
asymmetric encryption scheme, and Πope is an IND-OCPA order-preserving symmetric
encryption scheme, then the SGAMIN protocol securely computes the grouping and aggre-
gation with the MIN operation in the presence of semi-honest adversaries if parties C and
U do not collude.

The security proof for Theorem 10 is decomposed in Lemma 32 for the party R, in
Lemma 33 for the party C, and in Lemma 34 for the party U .
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Lemma 32. Let λ ∈ N be a security parameter. There exists probabilistic polynomial-time
simulator SSGAMIN

R such for all inputs I = (IR, IC , IU ), we have

SSGAMIN
R (1λ, IR, gR(I))

c≡ viewSGAMIN
R (I, λ) .

Proof. Consider thatR is corrupted, we observe thatR receives no output and no incoming
message from other parties. Thus, we merely need to show that a simulator can generate
the view of party R from its inputs.

In the protocol SGAMIN, R receives the public key pk of the user, the secret key k
used with the pseudo-random function family F , the secret key K used with the order-
preserving symmetric encryption scheme Πope, and the relation R. Formally, SSGAMIN

R is

given (pk, k,K,R), and runs the preprocessing phase 6.8 on input (pk, k,K,R). SSGAMIN
R

obtains the encrypted relation R∗ associated to the relation R.
We remark that SSGAMIN

R uses exactly the same algorithm as the real protocol SGAMIN,

then it describes the same distribution as viewSGAMIN
R (I, λ), i.e., we have

SSGAMIN
R (1λ, IR, gR(I))

c≡ viewSGAMIN
R (I, λ) ,

which concludes the proof.

Lemma 33. If F is a secure pseudo-random function family, Π is an IND-CPA asymmet-
ric encryption scheme, and Πope is an IND-OCPA order-preserving symmetric encryption
scheme, then there exists a probabilistic polynomial-time simulator SSGAMIN

C such for all
inputs I = (IR, IC , IU ), we have

SSGAMIN
C (1λ, IC , gC(I))

c≡ viewSGAMIN
C (I, λ) .

Proof. Let λ ∈ N be a security parameter. Before to build SSGAMIN
C that computes a

distribution that can be simulated perfectly, we use the hybrid argument to build hybrid
simulators denoted SH1-SGAMIN

C and SH2-SGAMIN
C . The simulator, SH1-SGAMIN

C works as
SGAMIN but each evaluation of the pseudo-random function performed by the party R
is substituted using the random oracle OPRF presented in Figure 6.14. We start by
presenting the simulator SH1-SGAMIN

C in Figure 6.19.

Simulator: SH1-SGAMIN
C (1λ, pk, (N1, N2, τ))

R∗ := ∅
R∗γ := ∅
for i ∈ J1, N2K do

t
$← A

for j ∈ J1, ρiK do

t′
(i)
j

$← B

R∗ := R∗ ∪ {(OPRF(t), (E(pk, t), E(pk, t′
(i)
j ),Eope(K, t′

(i)
j )))}

R∗γ := R∗γ ∪ {(OPRF(t), (E(pk, t), E(pk,minj t
′(i)
j ),Eope(K,minj t

′(i)
j )))}

view := (R∗, R∗γ)

Figure 6.19: Simulator SH1-SGAMIN
C for the proof of Lemma 33.

Assume by contradiction that there exists a non-uniform probabilistic-polynomial time
distinguisher D such that for all inputs I, we have

Pr[D(SH1-SGAMIN
C (1λ, IC , gIC(I))) = 1]−

∣∣Pr[D(viewSGAMIN
C (I, λ)) = 1]

∣∣ = µ(λ) ,
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where µ is a non-negligible function in λ.
We construct a non-uniform probabilistic-polynomial time guessing algorithm A that

uses D to win the pseudo-random function distinguishing experiment Expprf-b
F,A (with b ∈

{0, 1}) against the pseudo-random function family F . Adversary A is presented in Fig-
ure 6.20.

Adversary: A(pk)

R∗ := ∅
R∗γ := ∅
for i ∈ J1, N2K do

t
$← A

for j ∈ J1, ρiK do

t′
(i)
j

$← B

R∗ := R∗ ∪ {(fb(t), (E(pk, t), E(pk, t′
(i)
j ,E

ope(K, t′
(i)
j )))}

R∗γ := R∗γ ∪ {(OPRF(t), (E(pk, t), E(pk,minj t
′(i)
j ,E

ope(K,minj t
′(i)
j )))}

view := (R∗, R∗γ)
b∗ := D(view)
return b∗

Figure 6.20: Adversary A for the proof of Lemma 33.

First, we remark that

Pr[Expprf-0
F,A (λ) = 1] = Pr[D(viewSGAMIN

C (I, λ)) = 1] .

Indeed, when b = 0 the view that A uses as input for D is computed as in the real
protocol SGAMIN. Then the probability that the experiment Expprf-0

F,A returns 1 is equal to
the probability that the distinguisher D returns 1 on input computed by the real protocol.
On the other hand, we have

Pr[Expprf-1
F,A (λ) = 1] = Pr[D(SH1-SGAMIN

C (1λ, IC , gC(I))) = 1] .

When b = 1, the view that A uses as input for D is computed as in the simulator
SH1-SGAMIN
C . Then the probability that the experiment Expprf-1

F,A returns 1 is equal to
the probability that the distinguisher D returns 1 on input computed by the simulator
SH1-SGAMIN
C . It therefore follows that

Advprf
F,A(λ) =

∣∣Pr[Expprf-1
F,A (λ) = 1]− Pr[Expprf-0

F,A (λ) = 1]
∣∣

=
∣∣Pr[D(SH1-SGAMIN

C (1λ, IC , gIC(I))) = 1]− Pr[D(viewSGAMIN
C (I, λ)) = 1]

∣∣
= µ(λ) ,

which is non-negligible. However, we assume that F is a secure pseudo-random function
family, hence, it does not exist D such that∣∣Pr[D(viewSGAMIN

C (I, λ)) = 1]− Pr[D(SH1-SGAMIN
C (1λ, IC , gIC(I))) = 1]

∣∣
is non-negligible. Hence, we have

viewSGAMIN
C (I, λ)

c≡ SH1-SGAMIN
C (IC , gIC(I, λ)) .

We now build the simulator SH2-SGAMIN
C . The difference between SH1-SGAMIN

C and

SH2-SGAMIN
C is that SH2-SGAMIN

C substitutes asymmetric encryption of real values by asym-

metric encryption of random values of the same size. We present more formally SH2-SGAMIN
C

in Figure 6.21.
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Simulator: SH2-SGAMIN
C (1λ, pk, (N1, N2, τ))

R∗ := ∅
R∗γ := ∅
for i ∈ J1, N2K do

t
$← A

for j ∈ J1, ρiK do

t′
(i)
j

$← B

R∗ := R∗ ∪ {(OPRF(t), (E(pk, t), E(pk, t′
(i)
j ),Eope(K, t′

(i)
j )))}

t1
$← B

t2
$← B

R∗γ := R∗γ ∪ {(OPRF(t), (E(pk, t1), E(pk, t2),Eope(K,minj t
′(i)
j )))}

view := (R∗, R∗γ)

Figure 6.21: Simulator SH2-SGAMIN
C for the proof of Lemma 33.

Now we show that we have

SH2-SGAMIN
C (1λ, IC , gIC(I))

c≡ SH1-SGAMIN
C (1λ, IC , gIC(I)) .

Let λ ∈ N be the security parameter. Assume there exists a non-uniform probabilistic-
polynomial time distinguisher D such that for all inputs I, we have∣∣Pr[D(SH2-SGAMIN

C (1λ, IC , gIC(I))) = 1]− Pr[D(SH1-SGAMIN
C (1λ, IC , gIC(I))) = 1]

∣∣ = µ(λ) ,

where µ is a non-negligible function in λ.
We construct a non-uniform probabilistic-polynomial time guessing algorithm B that

uses D to win the experiment Expindcpa-b
Π,B for b ∈ {0, 1} against the asymmetric encryption

scheme Π. Algorithm B is presented in Figure 6.22.

Adversary: B(pk)

R∗ := ∅
R∗γ := ∅
for i ∈ J1, N2K do

t
$← A

for j ∈ J1, ρiK do

t′
(i)
j

$← B

R∗ := R∗ ∪ {(OPRF(t), (E(pk, t), E(pk, t′
(i)
j ,E

ope(K, t′
(i)
j )))}

t1
$← B

t2
$← B

x1 := E(pk, LoRb(t, t1))

x2 := E(pk, LoRb(minj t
′(i)
j , t2))

R∗γ := R∗γ ∪ {(OPRF(t), (x1, x2,E
ope(K,minj t

′(i)
j )))}

view := (R∗, R∗γ)
b∗ := D(view)
return b∗

Figure 6.22: Adversary B for the proof of Lemma 33.

First, we remark that

Pr[Expindcpa-0
Π,B (λ) = 1] = Pr[D(SH1-SGAMIN

C (1λ, IC , gIC(I))) = 1] .
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When b = 0, the view that B uses as input for D is computed as in the simulator
SH1-SGAMIN
C . Then the probability that the IND-CPA experiment returns 1 is equal to

the probability that the distinguisher D returns 1 on inputs computed as in the simulator
SH1-SGAMIN
C . On the other hand, we have

Pr[Expindcpa-1
Π,B (λ) = 1] = Pr[D(SH2-SGAMIN

C (1λ, IC , gIC(I))) = 1] .

Indeed, when b = 1 the view that B uses as input for D is computed as in the simulator
SH2-SGAMIN
C . Then the probability that the IND-CPA experiment returns 1 is equal to the

probability that the distinguisher D returns 1 on inputs computed as in the simulator
SH2-SGAMIN
C .

Finally, we evaluate the probability that B wins the experiment

Advindcpa
Π,B (λ) =

∣∣Pr[Expindcpa-1
Π,B (λ) = 1]− Pr[Expindcpa-0

Π,B (λ) = 1]
∣∣

=
∣∣Pr[D(SH2-SGAMIN

C (1λ, IC , gIC(I))) = 1]

− Pr[D(SH1-SGAMIN
C (1λ, IC , gIC(I))) = 1]

∣∣
= µ(λ) ,

which is non-negligible. However, we assume that Π is IND-CPA. Hence, we have:

SH2-SGAMIN
C (1λ, IC , gIC(I))

c≡ SH1-SGAMIN
C (1λ, IC , gIC(I)) .

Finally, we show how to build the simulator SSGAMIN
C that perfectly simulates our

SGAMIN protocol. The difference between SH2-SGAMIN
C and SSGAMIN

C is that SSGAMIN
C

substitutes order-preserving encryption of real values by order-preserving encryption of
random values having the same distribution. However, values of SH2-SGAMIN

C are still

picked randomly so the simulator SSGAMIN
C is the same.

Now we show that we have

SSGAMIN
C (1λ, IC , gIC(I))

c≡ SH2-SGAMIN
C (1λ, IC , gIC(I)) .

Let λ ∈ N be the security parameter. Assume there exists a non-uniform probabilistic-
polynomial time distinguisher D such that for all inputs I, we have∣∣Pr[D(SSGAMIN

C (1λ, IC , gIC(I))) = 1]− Pr[D(SH2-SGAMIN
C (1λ, IC , gIC(I))) = 1]

∣∣ = µ(λ) ,

where µ is a non-negligible function in λ.
We construct a non-uniform probabilistic-polynomial time guessing algorithm D that

uses D to win the experiment Expindocpa-b
Π,D for b ∈ {0, 1} against the order-preserving

symmetric encryption scheme Πope. Algorithm D works is presented in Figure 6.23.
First, we remark that

Pr[Expindocpa-0
Πope,D (λ) = 1] = Pr[D(SH2-SGAMIN

C (1λ, IC , gIC(I))) = 1] .

When b = 0, the view that D uses as input for D is computed as in the simulator
SH2-SGAMIN
C . Then the probability that the IND-OCPA experiment returns 1 is equal to

the probability that the distinguisher D returns 1 on inputs computed as in the simulator
SH2-SGAMIN
C . On the other hand, we have

Pr[Expindocpa-1
Πope,D (λ) = 1] = Pr[D(SSGAMIN

C (1λ, IC , gIC(I))) = 1] .

Indeed, when b = 1 the view that B uses as input for D is computed as in the simulator
SSGAMIN
C . Then the probability that the IND-OCPA experiment returns 1 is equal to the
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Adversary: D(pk)

R∗ := ∅
R∗γ := ∅
for i ∈ J1, N2K do

t
$← A

(t′
(i)
1 , . . . , t′(i)ρi )

$← Bρi such that t′(i)v ≤ t′
(i)
w if v ≤ w

(u′
(i)
1 , . . . , u′(i)ρi )

$← Bρi such that u′(i)v ≤ u′
(i)
w if v ≤ w

for j ∈ J1, ρiK do

t
(i)
1

$← A

t
(i)
2

$← B

R∗ := R∗ ∪ {(OPRF(t), (E(pk, t
(i)
1 ), E(pk, t

(i)
2 ),Eope(K, LoRb(t

′(i)
j , u

′(i)
j ))))}

R∗γ := R∗γ ∪ {R∗[1 +
∑i−1

j=1 ρj ]}
view := (R∗, R∗γ)
b∗ := D(view)
return b∗

Figure 6.23: Adversary D for the proof of Lemma 33.

probability that the distinguisher D returns 1 on inputs computed as in the simulator
SSGAMIN
C .

Finally, we evaluate the probability that D wins the experiment

Advindocpa
Πope,D (λ) =

∣∣Pr[Expindocpa-1
Πope,D (λ) = 1]− Pr[Expindocpa-0

Πope,D (λ) = 1]
∣∣

=
∣∣Pr[D(SSGAMIN

C (1λ, IC , gIC(I))) = 1]

− Pr[D(SH2-SGAMIN
C (1λ, IC , gIC(I))) = 1]

∣∣
= µ(λ) ,

which is non-negligible. However, we assume that Πope is IND-OCPA. Hence, we have

SH2-SGAMIN
C (1λ, IC , gIC(I))

c≡ SSGAMIN
C (1λ, IC , gIC(I)) .

By transitivity, we have

viewSGAMIN
C (I, λ)

c≡ SSGAMIN
C (1λ, IC , gIC(I)) .

Lemma 34. Let λ ∈ N be a security parameter. There exists a probabilistic polynomial-
time simulator SSGAMIN

U such for all inputs I = (IR, IC , IU ), we have

SSGAMIN
U (1λ, IR, gR(I))

c≡ viewSGAMIN
U (I, λ) .

Proof. The view of U contains the relation γA,MIN(B)(R). For each pair t ∈ γA,MIN(B)(R),
SU , simulator SU uses the public key pk and produces the pair (E(pk, πA(t)), E(pk, πB(t))).
Hence, SU ((sk, pk), γA,MIN(B)(R)) describes exactly the same distribution as, which con-
cludes the proof.

6.6 Conclusion

We have presented efficient algorithms for grouping and aggregation operations with
MapReduce that enjoy privacy guarantees such as none of the nodes of the public cloud
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computing can learn the input or the output relation. To achieve our goal, we relied on
Paillier’s cryptosystem and on Order-Preserving encryption. We developed an efficient
approach on the computation cost side as the communication cost side. We have com-
pared this approach to the standard algorithm with respect to three fundamental criteria:
computation cost, communication cost, and privacy guarantees.

Looking forward to future work, we plan to study the practical performance of our algo-
rithms in an open-source system that implements the MapReduce paradigm as Hadoop¶.
Additionally, we aim to investigate the grouping and aggregation computation with pri-
vacy guarantees in different big data systems (such as Spark or Flink) whose users also
tend to outsource data and computations similarly to MapReduce.

¶Apache Hadoop: https://hadoop.apache.org/

https://hadoop.apache.org/


CHAPTER 7

Secure Joins with MapReduce

In this chapter, we propose a secure approach for the two standard protocols of join
computation using the MapReduce paradigm: the cascade protocol and the hypercube
protocol. The secure approach relies on classic cryptographic primitives such that pseudo-
random function and asymmetric encryption scheme. Both protocols allow an external
user, called the MapReduce’s user, to query the join of n ≥ 2 relations owned by n
different data owners. At the end of the protocol the MapReduce’s user only learns the
join of the n relations assuming that the public cloud and the MapReduce’s user do not
collude. This work has been conducted in collaboration with Xavier Bultel, Radu Ciucanu,
Pascal Lafourcade, and Lihua Ye, and has been published in the paper “Secure Joins with
MapReduce” at the 11th International Symposium on Foundations & Practice of Security
(FPS, 2018) [BCG+18].
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7.1 Introduction

We address the fundamental problem of computing relational joins between an arbitrary
number of relations in a privacy-preserving manner using the MapReduce programming
model. We assume that the data, i.e., the content of relations, is externalized into the
public cloud by the data owner and there is a MapReduce’s user that is allowed to query
it as shown in Figure 7.1. This standard model has been used recently by Dolev et
al. [DLS16].

Ri . . . Rn

Data owner

Public Cloud

R1 ./ . . . ./ Rn

MapReduce’s user

Figure 7.1: The system architecture.

We next present via a running example the concept of relational joins. Then, we present
MapReduce computations, our problem statement, and illustrate the privacy issues related
to joins computation with MapReduce.

Example 3. The data owner is a hospital storing relations R1, R2, R3 cf. Figure 7.2.
The natural join of these relations, denoted R1 ./ R2 ./ R3, is the relation whose tuples
are composed of tuples of R1, R2 and R3 that agree on shared attributes. In our case, the
attribute Name is shared between R1 and R2. Moreover, the attribute Disease is shared
between intermediate join result (R1 ./ R2) and relation R3. In Figure 7.2, we give both
the intermediate result (R1 ./ R2) and the final result (R1 ./ R2) ./ R3. We observe that
tuple (Alice,NYC) from relation R1, tuple (Bob,Diabetes) from relation R2, and tuple
(Bob,London,Diabetes) from relation R1 ./ R2 do not participate to the final result.

R1

Name City
Alice NYC
Bob London
Eve Tokyo

R2

Name Disease
Bob Diabetes
Bob AIDS
Eve Cancer

R1 ./ R2

Name City Disease
Bob London Diabetes
Bob London AIDS
Eve Tokyo Cancer

R3

Disease Specialist
AIDS Hopkins

Cancer Jude

R1 ./ R2 ./ R3

Name City Disease Specialist
Bob London AIDS Hopkins
Eve Tokyo Cancer Jude

Figure 7.2: Joins between relations R1, R2 and R3.
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7.1.1 Joins with MapReduce

Two protocols for computing relational joins with MapReduce are presented in the lit-
erature: the Cascade protocol (i.e., a generalization of the binary join from Chapter 2
of [LRU14]) and the Hypercube protocol [AU10, CBS15].

Cascade Protocol

To compute an n-ary join (n ≥ 2), the cascade protocol uses n − 1 MapReduce rounds,
i.e., a sequence of n − 1 binary joins. A binary join works as follows: first, it applies the
Map function on the first two relations R1 and R2 that are spread over sets of nodes R1

and R2 of the public cloud, respectively. The Map function creates for each tuple of each
relation a key-value pair where key is equal to values of shared attributes between the
two relations, and value is equal to non-shared values of the tuple as well as the name
of the relation. Then, the key-value pairs are grouped by key, i.e., all key-value pairs
output by the map phase which have the same key are sent to the same reducer. For each
key and from the associated values coming from these two relations, the Reduce function
creates all possible tuples corresponding to the joins of these two relations. We obtain
as intermediate result a new relation denoted Q2 that is spread over a set of nodes Q2.
This first step defines the first round of the cascade protocol. We illustrate this process in
Figure 7.3.

R1

R2

R3 R4 Rn

R1

R2

Q2

R3

Q3

R4

Qn−1

Rn

Qn P

R1 ./ . . . ./ Rn

Public Cloud User’s Domain

1st round2nd round n-1th round

Figure 7.3: Cascade of joins with MapReduce between n relations.

Example 3 continued. To compute (R1 ./ R2) ./ R3 with MapReduce following the
cascade protocol, we start by joining R1 and R2. Relations R1 and R2 share attribute
Name. Hence from R1, the Map function produces the following key-value pairs: (Alice,
(R1, NYC)), (Bob, (R1, London)), and (Eve, (R1, Tokyo)). These key-value pairs are
sent to three different reducers depending on the key value. From relation R2, the Map
function produces key-value pairs (Bob, (R2, Diabetes)), (Bob, (R2, AIDS)), and (Eve,
(R2, Cancer)). We stress that values of pairs (Bob, (R2, Diabetes)) and (Bob, (R2, AIDS))
are sent to the same reducer as the pair (Bob, (R1, London)) since all these pairs have
the same key. Similarly, (Eve, (R2, Cancer)) and (Eve, (R1, Tokyo)) are sent to the same
reducer. The pair (Alice, (R1, NYC)) does not participate in the join result since no other
pair shares the same key. Then, from values (R1, London), (R2, Diabetes), and (R2, AIDS)
present on the reducer associated to the key Bob, the reduce creates all possible tuples with
values coming from different relations i.e., (Bob, London, Diabetes) and (Bob, London,
AIDS). Similarly, the reducer associated to the key Eve produces (Eve, Tokyo, Cancer).
These tuples correspond to the relation (R1 ./ R2) cf. Figure 7.2. We apply the Map
and the Reduce functions on relations (R1 ./ R2) and R3 sharing the attribute Disease.
From (R1 ./ R2), the Map function produces key-value pairs: (Diabetes, (R1 ./ R2, Bob,
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London)), (AIDS, (R1 ./ R2, Bob, London)), and (Cancer, (R1 ./ R2, Eve, Tokyo)).
From R3, the Map function produces: (AIDS, (R3, Hopkins)), and (Cancer, (R3, Jude)).
Finally, the Reduce function step produces tuples (Bob, London, AIDS, Hopkins) and
(Eve, Tokyo, Cancer, Jude) corresponding to relation (R1 ./ R2) ./ R3 cf. Figure 7.2.

Hypercube Protocol

Contrarily to cascade, the hypercube computes the join of all n relations in only one
MapReduce round. The hypercube has dimension d (where d is the number of join at-
tributes). There are p :=

∏
j∈J1,dK αj reducers denoted Hi (for i ∈ J1, pK), where αj is

the number of buckets associated with the jth attribute. Hence, each reducer Hi can be
uniquely identified by a point in the hypercube. For each relation Ri spread over a set of
nodes Ri, the Map function computes the image of all tuples on the d dimensions of the
hypercube to decide to which reducers Hi the tuple should be sent. Then, each reducer
computes all possible combinations of input tuples that agree on shared attributes, only
if all n relations are represented on the same reducer. All these combinations correspond
to the final result of the n-ary join.
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(1, 1)
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(R1, t3) (R3, t7)

(R1, t3)

(R2, t6) (R3, t8)

(R1, t1)

(R1, t2) (R3, t8)

(R2, t4) (R2, t5)

(R1, t1) (R1, t2)

(R3, t7)

From relation R1:

• t1 = (Alice,NYC)
• t2 = (Bob,London)
• t3 = (Eve,Tokyo)

From relation R2:

• t4 = (Bob,Diabetes)
• t5 = (Bob,AIDS)
• t6 = (Eve,Cancer)

From relation R3:

• t7 = (AIDS,Hopkins)
• t8 = (Cancer, Jude)

Figure 7.4: Running example with hypercube protocol. Underlined tuples correspond to
tuples that participate to the final join result.

Example 3 continued. We have two join attributes (Name and Disease), hence two
hash functions hN and hD for attributes Name and Disease, respectively. For instance, as-
sume 4 reducers establishing a 2×2 square cf. Figure 7.4, where hN (Eve) = 0, hN (Alice) =
hN (Bob) = 1, hD(Diabetes) = hD(AIDS) = 0, and hD(Cancer) = 1. For each tuple of
each relation, we compute the value of the Name component (if there exists) with the
hash function hN and the value of the Disease component (if there exists) with the hash
function hD. For instance, the tuple t6 = (Eve,Cancer) of the relation R2 is sent to the
reducer of coordinates (0, 1) since hN (Eve) = 0 and hD(Cancer) = 1 (cf. Figure 7.4). If one
of these two attributes is missing in a tuple, then the tuple is replicated over all reducers
associated to the different values of the missing attributes of the tuple. For example, tuple
t1 = (Alice,NYC) of relation R1 has no attribute Disease, and consequently, is sent to
reducers (1, 0) and (1, 1). In such a situation we may write (1, ?) to simplify presentation.
Finally, each reducer performs all possible combinations over tuples that agree on join
attributes of the three relations R1, R2, and R3. We obviously obtain the same final result
as for cascade protocol.
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7.1.2 Problem statement

We assume three participants: the data owner, the public cloud, and the MapReduce’s
user (cf. Figure 7.1). The data owner externalizes n relations Ri with i ∈ J1, nK to the
public cloud. We assume that the public cloud is semi-honest, i.e., it executes dutifully
the computation tasks but tries to learn the maximum of information on tuples of each
relation. In order to preserve privacy of data owner and to allow the join computation
between relations, we want that the public cloud learns nothing about input data or join
result. Moreover, we want that the user who queries the join result learns nothing else
than the final join result, i.e., she does not learn information on tuples of relations that
do not participate to the final result.

We denote by Ri the set of attributes of a relation Ri, for i ∈ J1, nK. In the case of the
cascade protocol, we denote by Qi the set of attributes of relation Qi for i ∈ J1, nK, where
Q1 := R1 and Qi := Qi−1 ./ Ri for i ∈ J2, nK. Finally we denote by X the set of shared
attributes between the n relations, i.e., X := | ∪i,j∈J1,nK;i 6=j Ri ∩ Rj |.

We expect the following security properties:

1. The MapReduce’s user learns nothing else than result R1 ./ . . . ./ Rn, i.e., she does
not learn tuples from the input relation that do not participate in the result.

2. Neither a set of nodes Ri nor data owner learn final result data.

3. A set of nodes Qi (resp. Hi) cannot learn owner’s data and final result.

Example 3 continued. Looking at the three security properties of the problem state-
ment, we see that the cascade and the hypercube protocols do not respect properties (1),
(2), and (3). In fact, both protocols reveal to the public cloud all tuples of relations R1, R2

and R3 since they are not encrypted. Moreover, if the MapReduce’s user colludes with
the intermediate set of nodes R1 ./ R2, then she learns tuples that she should not, in this
case the tuple (Bob,London,Diabetes) as shown in Figure 7.2.

7.1.3 Contributions

We propose a secure approach that extend the two aforementioned join protocols while
ensuring the desired security properties, and remaining efficient from both computational
and communication points of view.

• The secure approach assumes that the public cloud and the user do not collude.
We encrypt all values of each tuple using a public key encryption scheme with the
MapReduce’s user public key denoted pk. To be able to perform the equality joins
between relations we rely on secure pseudo-random functions.

• We give experimental results of our secure approach for both cascade and hy-
percube protocols using Apache Hadoop R© 3.2.0 [Fou19b] on the Higgs Twitter
Dataset [DLMM] that has been built by Domenico et al. [DLMM13] after monitoring
the spreading processes on Twitter before, during and after the announcement of
the discovery of a new particle with the features of the elusive Higgs boson on 4th

July 2012.

• We prove that our secure approach for both protocols satisfies the security properties
using the random oracle model. We also notice a limitation regarding learning
repetitions between pseudo-random values which seems to us inherent because we
need to perform equality checks.
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7.1.4 Outline

We present in Section 7.2 the cascade and hypercube protocols for the n-ary join com-
putation with the MapReduce paradigm. Then, we present our secure approach for both
protocols in Section 7.3. In Section 7.4, we compare experimentally the performance of
our secure approach vs the insecure original protocols. Then, we give security proofs for
our both secure protocols in Section 7.5. Finally, we outline conclusion and future work
in Section 7.6.

7.2 n-ary Joins with MapReduce

We formally present the standard protocols for computing n-ary joins Q := R1 ./ · · · ./ Rn
with MapReduce: cascade protocol denoted CAS, i.e., a sequence of n−1 rounds of binary
joins [LRU14] and hypercube protocol denoted HYP, i.e., a single round doing all the n−1
joins [AU10]. We have already presented examples for both protocols in Section 7.1.1.

7.2.1 Cascade Protocol

We recall that the ith round of the cascade protocol takes action between sets of nodes
Qi and Ri+1 storing relations Qi and Ri+1 respectively, with i ∈ J1, n − 1K such that
Q1 := R1. Moreover, R denotes the schema of the relation R, i.e., the set of attributes of
the relation R.

Map function:

Input: (key , value)
// key : id of chunk of Qi or Ri+1

// value: collection of tq ∈ Qi or tr ∈ Ri+1

foreach tq ∈ Qi do
emit(πQi∩Ri+1(tq), (Qi, tq))

foreach tr ∈ Ri+1 do
emit(πQi∩Ri+1(tr), (Ri+1, tr))

Reduce function:

Input: (key , values)
// key : πQi∩Ri+1(t) with t ∈ Qi ∪Ri+1

// values: collection of (Qi, tq) or (Ri+1, tr)
foreach (Qi, tq) ∈ values do

foreach (Ri+1, tr) ∈ values do
emit(−, tq ./ tr)

Figure 7.5: Map and Reduce functions for CAS protocol.

To compute join between n relations R1, . . . , Rn, we apply n − 1 times the Map and
the Reduce functions of the cascade protocol presented in Figure 7.5. The final relation
Qn corresponds to Q := R1 ./ · · · ./ Rn.

7.2.2 Hypercube Protocol

We assume we have an hypercube of dimension

d := |X| = |{X1, . . . , Xd}| = | ∪i,j∈J1,nK;i 6=j Ri ∩ Rj | .

In other terms, d is the number of join attributes.
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Map function:

Input: (key , value)
// key : id of a chunk of Ri, with i ∈ J1, nK
// value: collection of t ∈ Ri
foreach t ∈ Ri do

for ` ∈ J1, dK do
if X` ∈ Ri then

x` := h`(πX`(t))
else

x` := ?
emit((x1, . . . , xd), (Ri, t))

Reduce function:

Input: (key , values)
// key : (x1, . . . , xd), with x` ∈ J0, α`K and ` ∈ J1, dK
// values: collection of (Ri, t), with i ∈ J1, nK and t ∈ Ri
for i ∈ J1, nK do

R′i :=
⋃

(Ri,t)∈values{t}
for t ∈ R′1 ./ · · · ./ R′n do

emit(−, t)

Figure 7.6: Map and Reduce functions for HYP protocol.

Moreover, we assume that we have d non-cryptographic hash functions, i.e., they do
not necesseraly satisfy security properties given in Definition 12 on page 18. These d
hash functions are denoted h` for ` ∈ J1, dK, such that h` : X` → J0, α`K where α` ∈ N∗
is the number of buckets for the attribute X`. Hence, the hypercube is composed of∏d
i=1 αi reducers where each reducer is uniquely identified by a d-tuple (x1, . . . , xd) with

x` ∈ J0, α`K for ` ∈ J1, dK.
We present in Figure 7.6 the Map and the Reduce functions of the hypercube protocol

for the join computation with MapReduce between n relations R1, . . . , Rn. The Map
function sends the pair to the corresponding reducer of the hypercube associated to the
coordinates of the key-value pair’s key where the star ? in the `-th coordinate means that
we duplicate the tuple t on all the α` buckets of the `-th dimension of the hypercube.
Then, if the same reducer of the hypercube has at least one tuple coming from all the n
relations and that these tuples agree on their shared attributes then the Reduce function
produces all possible key-values pairs of the form (−, t1 ./ · · · ./ tn) where ti ∈ Ri, with
i ∈ J1, nK, and where the − symbol refers to the empty string since keys are irrelevant at
the end of the computation.

7.3 Secure n-ary Joins with MapReduce

We present our secure approach for CAS and HYP protocols to compute joins between
n > 2 relations with MapReduce, denoted SCAS and SHYP, respectively. We recall we
assume that the public cloud and the MapReduce’s user do not collude.

7.3.1 Preprocessing for Secure Protocols

To prevent the public cloud from learning the content of relations, the data owner protects
each relation Ri for i ∈ J1, nK before outsourcing. The protected relation obtained from
Ri is denoted R∗i and is sent to the public cloud by the data owner.
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The data owner protects relations in two ways. First, it uses a secure pseudo-random
function F (k, ·) where k is the data owner’s secret key. The data owner applies F (k, ·)
on values of shared attributes of each tuples of relations Ri for i ∈ J1, nK. Since a secure
pseudo-random function is deterministic, it allows the cloud to perform equality checks
between values of join attributes. On other hand, the data owner encrypts each component
of tuples with an IND-CPA asymmetric encryption scheme (e.g., ElGamal [Gam85], RSA-
OAEP [BR94]) using the public key pk of the MapReduce’s user. Hence the encrypted
values of non-shared attributes do not give any information to an adversary, e.g., to a
curious public cloud provider. Values of shared attributes are also encrypted using the
public scheme encryption since we want the MapReduce’s user can decrypt them.

Preprocessing: Input: (R1, . . . , RN )

visited := ∅
for i ∈ J1, NK do

R∗i := ∅
Rfi := {Af |A ∈ Ri ∩ X}
REi := {AE |A ∈ Ri \ visited}
R∗i := Rfi ∪ REi
foreach t ∈ Ri do

tf :=×A∈Rfi
F (k, πA(t))

tE :=×A∈REi
E(pk, πA(t))

R∗i := R∗i ∪ {tf × tE}
visited := visited ∪ Ri

Figure 7.7: Preprocessing of relations.

We present the preprocessing algori thm in Figure 7.7. The set visited prevents the
data owner from encrypting several times the same values. We note that Af and AE are
just notations making explicit the correspondences between initial and outsourced data.
For instance, if a relation R has one attribute “Name” that is shared with another relation,
then this attribute in the protected relation will be denoted “Namef”; we apply in the
same way the notation AE . Moreover R∗i is the schema of the protected relation R∗i . We
give an example for the cascade protocol in Figure 7.8 using the running example from
the Introduction (cf. Section 7.1.1).

For both protocols, we remark that the public cloud knows when components of same
attribute are equal since a secure pseudo-random function is deterministic. We see in
Figure 7.8 that the public cloud knows that R∗2 and R∗3 share two same values of disease
since values 18 and 99 are present in both relations. However, we notice that only the
data owner knows the secret key k used for the pseudo-random function evaluations.

7.3.2 Secure n-ary Joins with MapReduce and Cascade Protocol

If a relation participating at the i-th round contains an attribute that will participate
to the join in a following round, the protocol must anticipate the pseudo-random values
of the shared attribute to perform joins. In the original cascade protocol presented in
Section 7.2.1, tuples are not encrypted and the anticipation is not necessary since each
tuple value is available. In the secure approach of the cascade protocol, we add in value of
key-value pairs the pseudo-random evaluations of all needed pseudo-random evaluations
allowing joins in other rounds. This is possible since the preprocessing performed by the
data owner outsources protected relations containing pseudo-random evaluations of values
of join attributes.
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R∗1
Namef NameE CityE

41 {Alice} {NYC}
23 {Bob} London}
36 {Eve} {Tokyo}

R∗2
Namef Diseasef DiseaseE

23 87 {Diabetes}
23 18 {AIDS}
36 99 {Cancer}

R∗1 ./ R
∗
2

Namef Diseasef NameE CityE DiseaseE

23 87 {Bob} {London} {Diabetes}
23 18 {Bob} {London {AIDS}
36 99 {Eve} {Tokyo} {Cancer}

R∗3
Diseasef SpecialistE

18 {Hopkins}
99 {Jude}

R∗1 ./ R
∗
2 ./ R

∗
3

NameE CityE DiseaseE SpecialistE

{Bob} {London} {AIDS} {Hopkins}
{Eve} {Tokyo} {Cancer} {Jude}

Figure 7.8: Intuition of the secure approach of the cascade protocol. We denote ciphertexts
of an IND-CPA encryption scheme by {·}, and pseudo-random evaluations by integers.

Map function:

Input: (key , value)
// key : id of chunk of Q∗i or R∗i+1

// value: collection of t ∈ Q∗i or t ∈ R∗i+1

if i = 1 then
foreach t ∈ Q∗1 do

emit (πQf1∩R
f
2
(t), (Q1, t))

foreach t ∈ R∗i+1 do
emit (πQfi ∩R

f
i+1

(t), (Ri+1, t))

Reduce function:

Input: (key , values)
// key : πQi∩Ri+1(t) with t ∈ Qi or t ∈ Ri+1

// values: collection of (Qi, tq) or (Ri+1, tr)
for (Q, tq) ∈ values do

for (R, tr) ∈ values do
t := tq × tr
if i 6= n− 1 then

emit (πQfi+1∩R
f
i+2

(t), t)

else
emit (−, t)

Figure 7.9: Map and Reduce functions for SCAS protocol.

Map and Reduce functions for the secure n-ary joins with MapReduce and cascade
protocol are presented in Figure 7.9. For the i-th round, we recall that we have Q∗i :=
Q∗i−1 ./ R

∗
i and Q∗1 := R∗1.

7.3.3 Secure n-ary Joins with MapReduce and Hypercube Protocol

We present the Map and Reduce functions of the secure n-ary joins with MapReduce and
hypercube protocol in Figure 7.10. The main difference compared to the insecure approach
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is that the Map function receives encrypted tuples from the data owner. As for the secure
approach with the cascade protocol, we add pseudo-random evaluations in value of each
pair allowing the Reduce function to check correspondences of tuples on join attributes.
We recall that the symbol ? in the Map function means that coordinate x` takes all values
of J0, α`K.

Map function:

Input: (key , value)
// key : id of a chunk of R∗i , with i ∈ J1, nK
// value: collection of t ∈ R∗i
foreach t ∈ R∗i do

for ` ∈ J1, dK do

if Xf
` ∈ Rfi then
x` := h`(πXf

`
(t))

else
x` := ?

emit((x1, . . . , xd), (Ri, t))

Reduce function:

Input: (key , values)
// key : (x1, . . . , xd), with x` ∈ J0, α`K, and ` ∈ J1, dK
// values: collection of (Ri, t), with i ∈ J1, nK and t ∈ R∗i
for i ∈ J1, nK do

R′i :=
⋃

(Ri,t)∈values{t}
A := ∪ni=1REi
for t ∈ R′1 ./ · · · ./ R′n do

t′ :=×A∈A πA(t)
emit(−, t′)

Figure 7.10: Map and Reduce functions for SHYP protocol.

7.4 Experimental Results

We present experimental results for the original MapReduce approach computing the
natural join with the cascade and the hypercube protocols, and we respectively compare
them to our secure approach.

7.4.1 Dataset and Settings

We use the real-world Higgs Twitter Dataset [DLMM, DLMM13] that we denote by re-
lation R(A,B) and encoding followee-follower relation on Twitter. The relation R(A,B)
has 14, 855, 842 tuples.

To perform natural joins with this dataset, we first randomly pick samples of R(A,B),
ranging from 500, 000 to 2, 000, 000 tuples in steps of 250, 000. Then, for each sample,
we generate two relations S(B,C) and T (C,A) that are copies of the sample. The join
query used in our experiments is R(A,B) ./ S(B,C) ./ T (C,A), consisting on all directed
triangles of the Higgs Twitter Dataset. Using such a dataset and query is a standard
practice in the database community literature to evaluate the performance of join query
algorithms, as recently done, e.g., by Chu et al. [CBS15].

As mentioned in Section 7.3, our secure approach requires a pseudo-random function
and an asymmetric encryption scheme. For the pseudo-random function, we use the
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HMAC-SHA256 keyed-hash message authentication code [BCK96] implemented in Go
package hmac†. Moreover, we use the RSA-OAEP asymmetric encryption scheme [BR94,
KS98] implemented in Go package rsa‡ with a 1024-bit RSA modulus. As mentioned
in the previous chapter, we can also use an other asymmetric encryption scheme such as
ElGamal [Gam85] instead of RSA-OAEP. However, for communication cost reason we do
not use it since ElGamal ciphertexts are twice longer for the same security.

7.4.2 Results

We first report wall clock times of the secure protocols preprocessing in Table 7.1.

Table 7.1: Wall clock times of the secure protocols preprocessing.

Number of tuples / relation Wall clock time

500, 000 38.271 s

750, 000 58.735 s

1, 000, 000 79.133 s

1, 250, 000 97.410 s

1, 500, 000 116.744 s

1, 750, 000 137.618 s

2, 000, 000 157.392 s

We present in Figure 7.11 running times for CAS and HYP protocols and their respec-
tive secure approach, namely SCAS and SHYP protocols. We report average times over
eight runs. We consider size up to 2,000,000 tuples because after such a size, our machine
gives out-of-memory errors hence we cannot compare meaningful results for all protocols.
For HYP and SHYP protocols, we use four buckets for each of the three dimensions defined
by attributes A, B, and C, hence a total number of 43 = 64 reducers.
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Figure 7.11: CPU time vs the number of tuples per relation for CAS and HYP protocols,
and their respective secure approach.

We observe that HYP protocol seems better for the largest input data sizes. We also
remark that CPU times of no-secure and secure approaches are very similar. Indeed,

†https://golang.org/pkg/crypto/hmac/
‡https://golang.org/pkg/crypto/rsa/

https://golang.org/pkg/crypto/hmac/
https://golang.org/pkg/crypto/rsa/
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secure approaches deal with encrypted data but its encryption is done by data owners.
However, wall clock times are different. For instance, it takes 191 s for the CAS protocol
to compute the triangle join between three relations of 1,250,000 tuples while the SCAS
protocol takes 768 s for the same querie. The difference comes from Apache Hadoop R©
which has to write on the disk the intermediate relation composed of larger encrypted
data.

7.5 Security Proofs

We provide formal security proofs for SCAS and SHYP protocols. We use the standard
multiparty computations definition of security against semi-honest adversaries [Lin17]. We
assume that the join computation is performed between n ≥ 2 relations. Each relation
Ri, with i ∈ J1, nK, is made of σi ∈ N∗ tuples.

In the following, we denote by T := [t1, . . . , t∑n
i=1 σi

], the ordered list composed of
tuples from the n relations, from R1 to Rn. Hence, t1 ∈ T corresponds to the first tuple
of R1, tσ1 corresponds to the last tuple of R1, tσ1+1 corresponds to the first tuple of R2,
and so forth. Using T , we build T̄ as the ordered sublist of T made of the first occurence
for each different tuple. We also define Ti, with i ∈ J1, |T̄ |K, as the vector composed of
indexes of ti in T . Finally, we denote by γi ∈ N∗, with i ∈ J2, nK, the number of tuples of
the intermediate relation Qi := Qi−1 ./ Ri.

7.5.1 Security Proof for SCAS Protocol

Our secure approach assumes that the public cloud nodes may collude. Hence, in a security
point of view, all sets of nodes of type R and Q are considered as a unique set of nodes
when they collude, denoted C.

We model the SCAS protocol with n + 2 parties PR1 , . . . , PRn , PC , and PU using
respective inputs I := (IR1 , . . . , IRn , IC , IU ) ∈ I, and a function g := (gR1 , . . . , gRn , gC , gU )
such that:

• PRi , for i ∈ J1, nK, is the data owner of relation Ri. It has the input IRi :=
(Ri,X, k, pk), where Ri is its private relation, X is the set of common attributes
between relations, k is the PRF secret key shared between data owners, and pk is
the public key of the MapReduce’s user. PRi returns gRi(I) := ⊥ because it does
not learn anything.

• PC is the public cloud nodes that represents the collusion between all its sets of
nodes. It has the input IC := pk, where pk is the public key of the user. PC returns

gC(I) :=
(
{σi}i∈J1,nK, {γi}i∈J2,nK, |T̄ |, {Ti}i∈J1,|T̄ |K

)
,

because it learns the cardinal of relations {Ri}ni=1 and {Qi}ni=2, and cross-column
correlations.

• PU is the set of nodes U of the MapReduce’s user. It has the input IU := (pk, sk),
where (pk, sk) is the key pair of the MapReduce’s user. PU returns gU (I) := R1 ./
· · · ./ Rn because the MapReduce’s user obtains the result of the join at the end of
the protocol.

The security of SCAS protocol is given in Theorem 11.

Theorem 11. Assume F is a secure pseudo-random function and that Π is an IND-CPA
asymmetric encryption scheme, then SCAS securely performs the join computation in the
presence of semi-honest adversaries.
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The security proof for Theorem 11 is decomposed in Lemma 35 for parties PRi (with
i ∈ J1, nK), in Lemma 36 for the party PC , and in Lemma 37 for the party U .

Lemma 35. There exists probabilistic polynomial-time simulators SSCAS
Ri for i ∈ J1, nK

such that {
SSCAS
Ri (1λ, IRi , gRi(I))

}
I∈I,λ∈N

c≡
{

viewSCAS
Ri (I, λ)

}
I∈I,λ∈N .

Proof. We assume that Ri (with i ∈ J1, nK) is corrupted. We observe that PRi receives
no output and no incoming message from other parties. Thus, we merely need to show
that a simulator can generate the view of party PRi from its inputs. Simulator SSCAS

Ri
has input (Ri,X, k, pk). It encrypts each tuple of the relation following the preprocessing
algorithm presented in Figure 7.7 on page 138 to build R∗i . Hence, SSCAS

Ri performs exactly
the same computation as SCAS protocol and describes exactly the same distribution as
viewSCAS

Ri (I, λ).

Lemma 36. Assume F is a secure pseudo-random function and that Π is an IND-CPA
asymmetric encryption scheme, then there exists probabilistic polynomial-time simulator
SSCAS
C such that{

SSCAS
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{

viewSCAS
C (I, λ)

}
I∈I,λ∈N .

Proof. Let λ ∈ N be a security parameter. Before to build SSCAS
C that computes a dis-

tribution that can be simulated perfectly, we use the hybrid argument to build hybrid
simulators denoted SH-SCAS

C . The simulator, SH−SCAS
C works as SCAS but each evalua-

tion of the pseudo-random function performed by parties Ri for i ∈ J1, nK are replaced
using the random oracle OPRF presented in Figure 7.12. Simulator SH-SCAS

C is, as for it,
presented in Figure 7.13. The view contains all encrypted relations sent by data owners.
It also contains intermediate encrypted relations computed by the public cloud, and the
join of all encrypted relations sent by the public cloud to the MapReduce’s user.

OPRF(x) :
if T [x] = ∅ then

T [x]
$← {0, 1}|Y|

return T [x].

Figure 7.12: Random oracle OPRF.

Assume there exists a polynomial-time distinguisher D such that for all inputs I ∈ I,
we have ∣∣Pr[D(SH-SCAS

C (1λ, IC , gC(I))) = 1]− Pr[D(viewSCAS
C (I)) = 1]

∣∣ = µ(λ) ,

where µ is a non-negligible function in λ. We show how to build a probabilistic polynomial-
time adversary A such that A has a non-negligible advantage to win the pseudo-random
function distinguishing experiment Eprf-b

F,A (with b ∈ {0, 1}) against the pseudo-random
function family F . Then we conclude the proof by contraposition. Adversary A is pre-
sented in Figure 7.14. At the end of its execution, A uses the distinguisher D to compute
the bit b∗ before returning it. First, we remark that

Pr
[
Expprf-0

F,A (λ) = 1
]

= Pr
[
D(SH-SCAS

C (1λ, IC , gC(I))) = 1
]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in the simulator
SH-SCAS
C . Then the probability that the experiment returns 1 is equal to the probability
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Simulator: SH-SCAS
C (1λ, pk, (X, {σi}∗i=1, {γi}ni=2, |T̄ |, {Ti}

|T̄ |
i=1))

for i ∈ J1, |T̄ |K do

ti
$←×A∈XA

visited := ∅
for i ∈ J1, nK do

R∗i := ∅
REi := {A : A ∈ Ri \ visited}
for j ∈ J1, |T̄ |K do

tf :=×A∈Ri∩X OPRF(πA(tj))

for l ∈ J1, Tj [i− 1]K do

t
$←×A∈REi

A

tE :=×A∈REi
E(pk, πA(t))

R∗i := R∗i {tf × tE}
visited := visited ∪ Ri

Q∗1 := R∗1
for i ∈ J1, n− 1K do

Q∗i+1 := Q∗i ./ R
∗
i+1

view := {(R∗1, . . . , R∗n), (Q∗2, . . . , Q
∗
n)}

Figure 7.13: Simulator SH-SCAS
C for the proof of Lemma 36.

Adversary: A(pk)

for i ∈ J1, |T̄ |K do

ti
$←×A∈XA

visited := ∅
for i ∈ J1, nK do

R∗i := ∅
REi := {A : A ∈ Ri \ visited}
for j ∈ J1, |T̄ |K do

tf :=×A∈Ri∩X fb(πA(tj))

for l ∈ J1, Tj [i− 1]K do

t
$←×A∈REi

A

tE :=×A∈REi
E(pk, πA(t))

R∗i := R∗i {tf × tE}
visited := visited ∪ Ri

Q∗1 := R∗1
for i ∈ J1, n− 1K do

Q∗i+1 := Q∗i ./ R
∗
i+1

view := {(R∗1, . . . , R∗n), (Q∗2, . . . , Q
∗
n)}

b∗ := D(view)
return b∗

Figure 7.14: Adversary A for the proof of Lemma 36.

that the distinguisher returns 1 on inputs computed as in the simulator SH-SCAS
C . On the

other hand, we have

Pr
[
Expprf-1

F,A (λ) = 1
]

= Pr
[
D(viewSCAS

C (I, λ)) = 1
]
.

When b = 1, the view that A uses as input for D is computed as in real protocol SCAS.
Then the probability that the experiment returns 1 is equal to the probability that the
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distinguisher returns 1 on inputs computed as in real protocol. Finally, we evaluate the
probability that A wins the PRF experiment

Advprf
F,A(λ) =

∣∣Pr
[
Expprf-1

F,A (λ) = 1
]
− Pr

[
Expprf-0

F,A (λ) = 1
]∣∣

=
∣∣Pr

[
D
(
viewSCAS

C (I, λ) = 1
]
− Pr

[
D(SH-SCAS

C (1λ, IC , gC)) = 1
]∣∣

= µ(λ) ,

which is non-negligible. However, we assume that F is a secure pseudo-random function,
hence, it does not exist D such that∣∣Pr[D(SH-SCAS

C (1λ, IC , gIC(I))) = 1]− Pr[D(viewSCAS
C (I, λ)) = 1]

∣∣ ,
is non-negligible. Hence, we have

SH-SCAS
C (IC , gIC(I, λ))

c≡ viewSCAS
C (I, λ) .

Finally, we show how to build the simulator SSCAS
C . The difference between SH-SCAS

C
and SSCAS

C is that SSCAS
C substitutes Π encryption of real values by Π encryption of random

values of the same size. However, simulator SH-SCAS
C still picks random values, hence we

do not formally present SSCAS
C and assume that random values are rewritten by other

random values.
Now we show that we have

SH-SCAS
C,U (1λ, IC , gIC(I))

c≡ SSCAS
C (1λ, IC , gIC(I)) .

Let λ be the security parameter. Assume there exists a distinguisher D ∈ ppt(λ) such
that for all inputs I, we have∣∣Pr[D(SSCAS

C (1λ, IC , gIC(I)) = 1]− Pr[D(SH-SCAS
C (1λ, IC , gIC(I)) = 1]

∣∣ = µ(λ) ,

where µ(·) is a non-negligible function in λ.
We construct a guessing adversary B ∈ ppt(λ) that uses D to win the IND-CPA

experiment. Adversary B is presented in Figure 7.15.
First, we remark that

Pr[Expindcpa-0
Π,B (λ) = 1] = Pr[D(SH-SCAS

C (1λ, IC , gIC(I))) = 1] .

When b = 0, the view that B uses as input for D is computed as in the simulator
SH-SCAS
C . Then the probability that the IND-CPA experiment returns 1 is equal to the

probability that the distinguisher D returns 1 on inputs computed as in the simulator
SH-SCAS
C . On the other hand, we have

Pr[Expindcpa-1
Π,B (λ) = 1] = Pr[D(SSCAS

C (1λ, IC , gIC(I))) = 1] .

Indeed, when b = 1 the view that B uses as input for D is computed as in the simulator
SSCAS
C . Then the probability that the IND-CPA experiment returns 1 is equal to the

probability that the distinguisher D returns 1 on inputs computed as in the simulator
SSCAS
C .

Finally, we evaluate the probability that B wins the experiment

Advindcpa
Π,B (λ) =

∣∣Pr[Expindcpa-1
Π,B (λ) = 1]− Pr[Expindcpa-0

Π,B (λ) = 1]
∣∣

=
∣∣Pr[D(SSCAS

C (1λ, IC , gIC(I))) = 1]− Pr[D(SH-SCAS
C (1λ, IC , gIC(I))) = 1]

∣∣
= µ(λ) ,
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Adversary: B(pk)

for i ∈ J1, |T̄ |K do

ti
$←×A∈XA

visited := ∅
for i ∈ J1, nK do

R∗i := ∅
REi := {A : A ∈ Ri \ visited}
for j ∈ J1, |T̄ |K do

tf :=×A∈Ri∩X fb(πA(tj))

for l ∈ J1, Tj [i− 1]K do

t1
$←×A∈REi

A

t2
$←×A∈REi

A

tE :=×A∈REi
E(pk, LoRb(πA(t1), πA(t2)))

R∗i := R∗i {tf × tE}
visited := visited ∪ Ri

Q∗1 := R∗1
for i ∈ J1, n− 1K do

Q∗i+1 := Q∗i ./ R
∗
i+1

view := {(R∗1, . . . , R∗n), (Q∗2, . . . , Q
∗
n)}

b∗ := D(view)
return b∗

Figure 7.15: Adversary B for the proof of Lemma 36.

which is non-negligible. However, we assume that Π is IND-CPA. Hence, we have

SSCAS
C (1λ, IC , gIC(I))

c≡ SH-SCAS
C (1λ, IC , gIC(I)) .

By transitivity, we have

SSCAS
C (1λ, IC , gIC(I))

c≡ viewSCAS
C (I, λ) ,

which concludes the proof.

Lemma 37. There exists a probabilistic polynomial-time simulator SSCAS
U such that{

SSCAS
U (1λ, IU , gU (I))

}
I∈I,λ∈N

c≡
{

viewSCAS
U (I, λ)

}
I∈I,λ∈N .

Simulator: SSCAS
U (1λ, (sk, pk), R)

R∗ := ∅
foreach t ∈ R do

R∗ := R∗ ∪
{×A∈R E(pk, πA(t))

}
view := R∗

Figure 7.16: Simulator SSCAS
U for the proof of Lemma 37.

Proof. Simulator SSCAS
U is presented in Figure 7.16. The view of U only contains the

encryption of the join query that is sent by the public cloud to the MapReduce’s user. Each
tuple value of the result is encrypted using the IND-CPA cryptosystem Π and the user’s
public key. We remark that SSCAS

U describes exactly the same distribution as viewSCAS
U ,

which concludes the proof.
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7.5.2 Security Proof for SHYP Protocol

The SHYP protocol runs in only one MapReduce round. Our secure approach assumes
that the public cloud nodes (i.e., the set of nodes executing the Map function and the set
of nodes executing the Reduce function) may collude. Hence, in a security point of view,
all sets of nodes are considered as a unique set of nodes when they collude, denoted C.

We model SHYP protocol with n+2 parties PR1 , . . . , PRn , PC , and PU using respective
inputs I := (IR1 , . . . , IRn , IC , IU ) ∈ I, and a function g := (gR1 , . . . , gRn , gC , gU ) such that:

• PRi , for i ∈ J1, nK, is the data owner of relation Ri. It has the input IRi :=
(Ri,X, k, pk), where Ri is its private relation, X is the set of shared attributes be-
tween data owners, k is the PRF secret key shared between data owners, and pk is
the public key of the MapReduce’s user. PRi returns gRi(I) := ⊥ because it does
not learn anything.

• PC is the public cloud nodes. It has the input IC := pk, where pk is the public key
of the user. PC returns

gC(I) := ({σi}i∈J1,nK, |T̄ |, {Ti}i∈J1,|T̄ |K) ,

because it learns the cardinal of each relation {Ri}i∈J1,nK and cross-column correla-
tions.

• PU is the set of nodes U of the MapReduce’s user. It has the input IU := (pk, sk),
where (pk, sk) is the key pair of the MapReduce’s user. PU returns gU (I) := R1 ./
· · · ./ Rn because the user obtains the result of the join at the end of the protocol.

The security of SHYP protocol is given in Theorem 12.

Theorem 12. Assume F is a secure pseudo-random function and that Π is an IND-CPA
asymmetric encryption scheme, then SHYP securely performs the join computation in the
presence of semi-honest adversaries.

The security proof for Theorem 12 is decomposed in Lemma 38 for parties PRi (with
i ∈ J1, nK), in Lemma 39 for the party PC , and in Lemma 40 for the party U .

Lemma 38. There exists probabilistic polynomial-time simulators SSHYP
Ri for i ∈ J1, nK

such that {
SSHYP
Ri (1λ, IRi , gRi(I))

}
I∈I,λ∈N

c≡
{

viewSHYP
Ri (I, λ)

}
I∈I,λ∈N .

The proof of Lemma 38 is the same than the proof of Lemma 35 on page 143.

Lemma 39. Assume F is a secure pseudo-random function and that Π is an IND-CPA
asymmetric encryption scheme, then there exists probabilistic polynomial-time simulator
SSHYP
C such that{

SSHYP
C (1λ, IC , gC(I))

}
I∈I,λ∈N

c≡
{

viewSHYP
C (I, λ)

}
I∈I,λ∈N .

Proof. Let λ ∈ N be a security parameter. Before to build SSHYP
C that computes a

distribution that can be simulated perfectly, we use the hybrid argument to build hybrid
simulators denoted SH-SHYP

C . The simulator, SH−SHYP
C works as SHYP but each evaluation

of the pseudo-random function performed by partiesRi for i ∈ J1, nK are replaced using the
random oracle OPRF presented in Figure 7.12. Simulator SH-SHYP

C is, as for it, presented
in Figure 7.17. The view contains all encrypted relations sent by data owners. It also
contains all encrypted relations computed by each reducer of the public cloud forming the
join of the relations that is sent to the MapReduce’s user.
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Simulator: SH-SHYP
C

(
1λ, pk, ({σi}i∈J1,nK, |T̄ |, {Ti}i∈J1,|T̄ |K

)
for i ∈ J1, |T̄ |K do

ti
$←×A∈XA

visited := ∅
for i ∈ J1, nK do

R∗i := ∅
R∗Hi := ∅
REi := {A : A ∈ Ri \ visited}
for j ∈ J1, |T̄ |K do

tf :=×A∈Rfi
OPRF(πA(tj))

for ` ∈ J1, dK do

if X` ∈ Rfi then
x` := h`(πX`(tf ))

else
x` := ?

K := K ∪ {(x1, . . . , xd)}
for l ∈ J1, Tj [i− 1]K do

t
$←×A∈REi

A

tE :=×A∈REi
E(pk, πA(t))

R∗i := R∗i ∪ {tf × tE}
R∗Hi := R∗Hi ∪ {((x1, . . . , x`), (Ri, tf × tE))},

visited := visited ∪ Ri
foreach κ ∈ K do

for i ∈ J1, nK do
R̄∗i :=

⋃
(κ,(Ri,t))∈∪j∈J1,nKR

∗
i
{t}

Qκ := R̄∗1 ./ · · · ./ R̄∗n
view :=

(
{R∗i }i∈J1,nK, {R∗Hi}i∈J1,nK, {Qκ}κ∈K

)
Figure 7.17: Simulator SH-SHYP

C for the proof of Lemma 39.

Assume there exists a polynomial-time distinguisher D such that for all inputs I ∈ I,
we have ∣∣Pr[D(SH-SHYP

C (1λ, IC , gC(I))) = 1]− Pr[D(viewSHYP
C (I)) = 1]

∣∣ = µ(λ) ,

where µ is a non-negligible function in λ. We show how to build a probabilistic polynomial-
time adversary A such that A has a non-negligible advantage to win the pseudo-random
function distinguishing experiment Expprf-b

F,A (with b ∈ {0, 1}) against the pseudo-random
function family F . Then we conclude the proof by contraposition. Adversary A is pre-
sented in Figure 7.18. At the end of its execution, A uses the distinguisher D to compute
the bit b∗ before returning it. First, we remark that

Pr
[
Expprf-0

F,A (λ) = 1
]

= Pr
[
D(SH-SHYP

C (1λ, IC , gC(I))) = 1
]
.

Indeed, when b = 0, the view that A uses as input for D is computed as in the
simulator SH-SHYP

C . Then the probability that the pseudo-random function distinguishing

experiment Expprf-b
F,A experiment returns 1 is equal to the probability that the distinguisher

returns 1 on inputs computed as in the simulator SH-SHYP
C . On the other hand, we have

Pr
[
Expprf-1

F,A (λ) = 1
]

= Pr
[
D(viewSHYP

C (I, λ)) = 1
]
.

When b = 1, the view that A uses as input for D is computed as in real SHYP protocol.
Then the probability that the experiment returns 1 is equal to the probability that the
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Adversary: A(pk)

for i ∈ J1, |T̄ |K do

ti
$←×A∈XA

visited := ∅
for i ∈ J1, nK do

R∗i := ∅
R∗Hi := ∅
REi := {A : A ∈ Ri \ visited}
for j ∈ J1, |T̄ |K do

tf :=×A∈Rfi
fb(πA(tj))

for ` ∈ J1, dK do

if X` ∈ Rfi then
x` := h`(πX`(tf ))

else
x` := ?

K := K ∪ {(x1, . . . , xd)}
for l ∈ J1, Tj [i− 1]K do

t
$←×A∈REi

A

tE :=×A∈REi
E(pk, πA(t))

R∗i := R∗i ∪ {tf × tE}
R∗Hi := R∗Hi ∪ {((x1, . . . , x`), (Ri, tf × tE))},

visited := visited ∪ Ri
foreach κ ∈ K do

for i ∈ J1, nK do
R̄∗i :=

⋃
(κ,(Ri,t))∈∪j∈J1,nKR

∗
i
{t}

Qκ := R̄∗1 ./ · · · ./ R̄∗n
view :=

(
{R∗i }i∈J1,nK, {R∗Hi}i∈J1,nK, {Qκ}κ∈K

)
b∗ := D(view)
return b∗

Figure 7.18: Adversary A for the proof of Lemma 39.

distinguisher returns 1 on inputs computed as in real protocol. Finally, we evaluate the
probability that A wins the PRF experiment

Advprf
F,A(λ) =

∣∣Pr
[
Expprf-1

F,A (λ) = 1
]
− Pr

[
Expprf-0

F,A (λ) = 1
]∣∣

=
∣∣Pr

[
D
(
viewSHYP

C (I, λ) = 1
]
− Pr

[
D(SH-SHYP

C (1λ, IC , gC)) = 1
]∣∣

= µ(λ) ,

which is non-negligible. However, we assume that F is a secure pseudo-random function,
hence, it does not exist D such that:∣∣Pr[D(SH-SHYP

C (1λ, IC , gIC(I))) = 1]− Pr[D(viewSHYP
C (I, λ)) = 1]

∣∣ ,
is non-negligible. Hence, we have

SH-SHYP
C (IC , gIC(I, λ))

c≡ viewSHYP
C (I, λ) .

Finally, we show how to build the simulator SSHYP
C . The difference between SH-SHYP

C
and SSHYP

C is that SSHYP
C substitutes Π encryption of real values by Π encryption of

random values of the same size. However, simulator SH-SHYP
C still picks random values,
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hence we do not formally present SSHYP
C and assume that random values are rewritten by

other random values.
Now we show that we have

SH-SHYP
C (1λ, IC , gIC(I))

c≡ SSHYP
C (1λ, IC , gIC(I)) .

Let λ be the security parameter. Assume there exists a distinguisher D ∈ ppt(λ) such
that for all inputs I, we have∣∣Pr[D(SSHYP

C (1λ, IC , gIC(I)) = 1]− Pr[D(SH-SHYP
C (1λ, IC , gIC(I)) = 1]

∣∣ = µ(λ) ,

where µ(·) is a non-negligible function in λ.
We construct a guessing adversary B ∈ ppt(λ) that uses D to win the IND-CPA

experiment. Adversary B is presented in Figure 7.19.

Adversary: B(pk)

for i ∈ J1, |T̄ |K do

ti
$←×A∈XA

visited := ∅
for i ∈ J1, nK do

R∗i := ∅
R∗Hi := ∅
REi := {A : A ∈ Ri \ visited}
for j ∈ J1, |T̄ |K do

tf :=×A∈Rfi
fb(πA(tj))

for ` ∈ J1, dK do

if X` ∈ Rfi then
x` := h`(πX`(tf ))

else
x` := ?

K := K ∪ {(x1, . . . , xd)}
for l ∈ J1, Tj [i− 1]K do

t1
$←×A∈REi

A

t2
$←×A∈REi

A

tE :=×A∈REi
E(pk, LoRb(πA(t1), πA(t2))

R∗i := R∗i ∪ {tf × tE}
R∗Hi := R∗Hi ∪ {((x1, . . . , x`), (Ri, tf × tE))},

visited := visited ∪ Ri
foreach κ ∈ K do

for i ∈ J1, nK do
R̄∗i :=

⋃
(κ,(Ri,t))∈∪j∈J1,nKR

∗
i
{t}

Qκ := R̄∗1 ./ · · · ./ R̄∗n
view :=

(
{R∗i }i∈J1,nK, {R∗Hi}i∈J1,nK, {Qκ}κ∈K

)
b∗ := D(view)
return b∗

Figure 7.19: Adversary B for the proof of Lemma 39.

First, we remark that

Pr[Expindcpa-0
Π,B (λ) = 1] = Pr[D(SH-SHYP

C (1λ, IC , gIC(I))) = 1] .

When b = 0, the view that B uses as input for D is computed as in the simulator
SH-SHYP
C . Then the probability that the IND-CPA experiment returns 1 is equal to the
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probability that the distinguisher D returns 1 on inputs computed as in the simulator
SH-SHYP
C . On the other hand, we have

Pr[Expindcpa-1
Π,B (λ) = 1] = Pr[D(SSHYP

C (1λ, IC , gIC(I))) = 1] .

Indeed, when b = 1 the view that B uses as input for D is computed as in the simulator
SSHYP
C . Then the probability that the IND-CPA experiment returns 1 is equal to the

probability that the distinguisher D returns 1 on inputs computed as in the simulator
SSHYP
C .

Finally, we evaluate the probability that B wins the experiment

Advindcpa
Π,B (λ) =

∣∣Pr[Expindcpa-1
Π,B (λ) = 1]− Pr[Expindcpa-0

Π,B (λ) = 1]
∣∣

=
∣∣Pr[D(SSHYP

C (1λ, IC , gIC(I))) = 1]− Pr[D(SH-SHYP
C (1λ, IC , gIC(I))) = 1]

∣∣
= µ(λ) ,

which is non-negligible. However, we assumed that Π is IND-CPA. Hence, we have

SSHYP
C (1λ, IC , gIC(I))

c≡ SH-SHYP
C (1λ, IC , gIC(I)) .

By transitivity, we have

SSHYP
C (1λ, IC , gIC(I))

c≡ viewSHYP
C (I, λ) ,

which concludes the proof.

Lemma 40. There exists a probabilistic polynomial-time simulator SSHYP
U such that{

SSHYP
U (1λ, IU , gU (I))

}
I∈I,λ∈N

c≡
{

viewSHYP
U (I, λ)

}
I∈I,λ∈N .

The proof for Lemma 40 is the same than the proof for Lemma 37 on page 146.

7.6 Conclusion

We presented an efficient secure approach for computing joins with MapReduce. This se-
cure approach, namely Secure-Private (SP), is applied on the two state-of-the-art methods
to compute natural join, i.e., the cascade [LRU14] and the hypercube [AU10] methods.
This secure approach assumes that the public cloud and the MapReduce’s user do not
collude. We have thoroughly compared this secure approach with respect to their privacy
guarantees and their practical performance using a standard real-world dataset.

As future work, we plan to integrate our secure join protocols in a secure query op-
timizer system based on the MapReduce paradigm. We also aim at designing a protocol
that is secure in the standard model, and that it remains secure in case of collusion be-
tween the public cloud and the MapReduce’s user. Finally, we would like to investigate the
use of Apache Spark R© [ASF19] framework to study the practical impact on computation
performances, specifically on the wall clock time.
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CHAPTER 8

Conclusion

In this thesis, we have presented several secure distributed protocols based on the MapRe-
duce programming model. These protocols have a significant impact for practical applica-
tions of cloud computing since they allow computation over encrypted data and therefore
preserve the user’s confidentiality. Indeed, using insecure protocols, a public cloud can
learn all information that is in transit. On the other hand, these protocols are practi-
cal with regard to current cloud computing platforms (e.g., Amazon EMR [Ama19]) that
propose to run big data frameworks such as Apache Hadoop.

Most of our protocols rely on the additive-homomorphic Paillier’s cryptosystem [Pai99].
Indeed, if huge progress has been realized on the practical efficiency of homomorphic
encryption schemes, they remain slower than partial homomorphic encryption schemes as
observed in Section 1.6.1 of this thesis. We model each of our protocol as a multiparty
protocol. We have considered one or several data owners (depending on the protocol)
outsourcing their respective data into a semi-honest public cloud that performs calculation
for an external MapReduce’s user.

Summary

We sum up the contributions presented in this thesis.

Contributions of the First Part

We first recall the contributions of the first part of this thesis in which we consider the
matrix multiplication using the MapReduce paradigm.

Secure Standard Matrix Multiplication. In Chapter 3, we recalled the two state-
of-the-art protocols to compute matrix multiplication with the MapReduce paradigm that
has been proposed by Leskovec et al. [LRU14]. The first protocol named MM-1R uses one
MapReduce round while the second protocol uses two MapReduce rounds. We have defined
two secure approaches based on the additive-homomorphic Paillier’s cryptosystem [Pai99].

The first one is called Secure-Private (SP), it assumes that the public cloud nodes
do not collude, i.e., they do not share their information. Following the SP approach, we
have designed two protocols based on MM-1R and MM-2R protocols, respectively called
SP-1R and SP-2R. The protocol SP-1R considers the one-sided model, i.e., only one of
the two matrices sent to the public cloud is encrypted. The protocol SP-2R considers

153
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the two-sided model where both matrices sent to the public cloud are encrypted. In this
second protocol a set of nodes have to decrypt random masks, used to protect one of the
two matrices. However, since the SP approach assumes that public cloud nodes do not
collude, others sets of nodes of the public cloud do not learn these elements.

The second proposed approach is called Collision-Resistant-Secure-Private (CRSP).
Contrary to the SP approach, it assumes that public cloud’s nodes may collude, i.e., they
can share all their information. Based on this approach and the two original protocols
MM-1R and MM-2R, we designed the CRSP-1R protocol using one MapReduce round
and the CRSP-2R protocol using two MapReduce rounds. Our two CRSP protocols
consider the two-sided model. In order to allow the public cloud to compute needed
Paillier’s ciphertexts multiplications for the matrix multiplication, our CRSP protocols
use the Paillier interactive multiplicative homomorphic protocol proposed by Cramer et
al. [CDN01] applied between the public cloud and the MapReduce’s user.

Secure Strassen-Winograd Matrix Multiplication. In Chapter 4, we focus on the
Strassen-Winograd algorithm, one of the most efficient algorithms to compute matrix
multiplication. First, we have proposed a MapReduce protocol for the Strassen-Winograd
matrix multiplication. The protocol, denoted SM3, is made of two phases: the deconstruc-
tion phase, and the combination phase. Like the original Strassen-Winograd algorithm,
our MapReduce protocol requires that the two matrices to be multiplied to have 2-power
integer size. We have also proposed two variants using the dynamic padding and the
dynamic peeling methods that allow to perform Strassen-Winograd matrix multiplication
with compatible matrices of arbitrary size using the MapReduce paradigm.

Moreover, we have proposed a secure approach of the SM3 protocol (denoted S2M3)
and of its variants. We have supposed that the public cloud’s nodes may collude. On the
contrary, we require that the MapReduce’s user does not collude with the public cloud
or the data owners. The secure protocol S2M3 considers the two-sided model where both
matrices to multiply are encrypted. In order to compute the needed Paillier’s cipher-
texts multiplications, we also rely on the Paillier interactive multiplicative homomorphic
protocol [CDN01].

For both standard matrix multiplication and Strassen-Winograd matrix multiplication,
we have proved that our protocols securely compute matrix multiplication in the presence
of semi-honest adversaries in the standard model.

Contributions of the Second Part

We now recall the contributions of the second part that focus on relational-algebra oper-
ations using the MapReduce paradigm.

Secure Intersection with MapReduce. We have considered in Chapter 5 the inter-
section of relations in the MapReduce paradigm. We started by recalling the state-of-the-
art MapReduce protocol proposed by Leskovec et al. [LRU14]. Then, we have proposed a
secure approach denoted SI allowing a public cloud to perform intersection between n ≥ 2
relations following the MapReduce paradigm. Then, the result of the computation is sent
to the MapReduce’s user. Our protocol SI relies on standard cryptographic primitives such
as asymmetric encryption scheme, pseudo-random functions and the bitwise exclusive OR
operator.

We also prove in the random oracle model that our protocol remains secure even if the
user and the public cloud collude, i.e., they share all their information even the private
one.
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Secure Grouping and Aggregation with MapReduce. In Chapter 6 we studied
the grouping and aggregation operation on several relations. More specifically, we focus
on the COUNT, SUM, AVG, MIN, and MAX aggregations. MapReduce protocols for
these aggregations have been proposed by Leskovec et al. [LRU14]. We have proposed a
secure approach for each of these five aggregations assuming that the public cloud and the
MapReduce’s user do not collude.

Aggregations COUNT, SUM, and AVG rely on the additive-homomorphic property of
Paillier’s cryptosystem [Pai99], while aggregations MIN and MAX rely on order-preserving
symmetric encryption [AKSX04].

Secure Join with MapReduce. Finally, we focus in Chapter 7 on the computation
of natural join between an arbitrary number of relations. We have first presented the two
standard algorithms of join computation for MapReduce: the cascade algorithm [LRU14],
and the hypercube algorithm [AU10].

Thereafter, we have designed for both algorithms a secure approach. Our secure ap-
proach assumes that the MapReduce’s user and the public cloud do not collude, and
only requires as cryptographic primitives a pseudo-random function and an asymmetric
encryption scheme.

Finally, we have realized implementations of all designed protocols using the Apache
Hadoop framework [Fou19b] to demonstrate their feasibility.

Future Work

We propose possible research directions that stem from the results presented in this thesis.

Generally speaking, all presented protocols consider a semi-honest public cloud, i.e.,
it dutifully follows protocol rules but tries to learn as much information as possible about
data and the result of the computation. We would like to adjust our protocols to a
malicious public cloud that is allowed to perform any operations on the data.

Furthermore, it would be interesting to investigate the use of different big data open-
source frameworks such as Apache SparkTM [ASF19] or Apache FlinkR© [Fou19a] that also
implement the MapReduce programming model in order to study the practical impact
on computation performances. The main difference between Spark and Hadoop is Spark
can process data in RAM while Hadoop has to read from and write to a disk. As a
result, the speed of processing differs significantly, e.g., Spark may be up to 100 times
faster. In the case of Strassen-Winograd matrix multiplication or natural join computation
demanding several MapReduce rounds, Spark may be the best framework since it avoids
disk operations for each MapReduce round. However, the volume of data processed also
differs: Hadoop is able to work with far larger data sets than Spark. Moreover, Flink
can provide a purer stream-processing capability with lower latency compared to Hadoop
that can only batch process one job at a time. Hence, it would be interesting to observe
practical impact depending on the used framework for the same computation.

Matrix Multiplication. During the first part of this thesis, we have considered matrix
multiplication with standard and Strassen-Winograd algorithms. The main open problem
is that we currently assume that the MapReduce’s user and the public cloud do not collude.
Otherwise, the public cloud may learn both matrices and their product using the secret
key of the MapReduce’s user. On the user-side, she may learn both original matrices in
addition to the result corresponding to the matrix multiplication.

For both standard matrix multiplication and Strassen-Winograd matrix multiplication
with MapReduce, the Paillier interactive multiplicative homomorphic protocol implies an
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important communication cost. This problem can be solved by using somewhat homo-
morphic encryption schemes such that the Brakerski/Fan-Vercauteren scheme [FV12b]
implemented in the SEAL library [MR19]. However, the latter remains more computation-
nally expensive for multiple matrix multiplications than the use of Paillier’s cryptosystem.
A very interesting solution would be to design a MapReduce protocol using the packing
method for secure matrix multiplication proposed by Duong et al. [DMY16]. Such a pack-
ing method allows to pack a matrix into a single ciphertext so that it also enables efficient
matrix multiplication over the packed ciphertexts. However, it would require very large
parameters for matrices used in the big data world.

Relational-Algebra Operations. In the second part of this thesis, we dealt with
relational-algebra operations such as intersection, grouping and aggregation, and natu-
ral join. All proposed protocols are considered in the Random Oracle Model since they
require pseudo-random functions. This security model is not optimal and it would be in-
teresting to design equivalent protocols in the standard model. Pseudo-random functions
are used to correctly map each key-value pair to the corresponding reducer. This implies
possible frequency-count attacks that we would like to prevent.

Moreover, security for our protocols for grouping and aggregation, with COUNT, SUM,
AVG, MIN, and MAX aggregations, as well as for our protocols for natural join computa-
tion do not resist in case of collusion between the public cloud and the MapReduce’s user.
Indeed, if the public cloud knows the secret key of the MapReduce’s user, it can decrypt
all encrypted data sent by data owners that has been encrypted using the public key of the
MapReduce’s user. We would like to design protocols such as the one presented for the in-
tersection computation that remains secure even if the public cloud and the MapReduce’s
user collude.

In conclusion, the works presented in this manuscript solve some concrete problems
of secure distributed computations in the cloud. Nevertheless, some protocols can still
be improved in terms of security and efficiency. Thereby, this thesis leaves some open
problems and future works perspectives in the field of cloud cryptography for distributed
computations.
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[EAEG06] Fatih Emekçi, Divyakant Agrawal, Amr El Abbadi, and Aziz Gulbeden. Pri-
vacy Preserving Query Processing Using Third Parties. In Proceedings of the
22nd International Conference on Data Engineering (ICDE), page 27, 2006.
https://doi.org/10.1109/ICDE.2006.116.

[EMST78] William Friedrich Ehrsam, Carl H. W. Meyer, John Lynn Smith, and Wal-
ter Leonard Tuchman. Message Verification and Transmission Error Detection
by Block Chaining. US Patent 4074066, February 1978.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient Private
Matching and Set Intersection. In Proceedings of the International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT),
pages 1–19, 2004. https://doi.org/10.1007/978-3-540-24676-3_1.

[Fou19a] Apache Software Foundation. Apache Flink (release 1.8.0). https://flink.
apache.org/, April 2019.

[Fou19b] Apache Software Foundation. Apache Hadoop (release 3.2.0). https:

//hadoop.apache.org/, January 2019.

[FV12a] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomor-
phic Encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[FV12b] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
https://eprint.iacr.org/2012/144.

[GABL17] Matthieu Giraud, Alexandre Anzala-Yamajako, Olivier Bernard, and Pas-
cal Lafourcade. Practical Passive Leakage-abuse Attacks Against Symmetric
Searchable Encryption. In Proceedings of the 14th International Joint Confer-
ence on e-Business and Telecommunications (ICETE), pages 200–211, 2017.
https://doi.org/10.5220/0006461202000211.

[Gal14] François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In Pro-
ceedings of the International Symposium on Symbolic and Algebraic Compu-
tation (ISSAC), pages 296–303, 2014. https://doi.org/10.1145/2608628.
2608664.

[Gam85] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. IEEE Transactions on Information Theory,
31(4):469–472, 1985. https://doi.org/10.1109/TIT.1985.1057074.

https://doi.org/10.1007/10721064_26
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dinh
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dinh
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1109/ICDE.2006.116
https://doi.org/10.1007/978-3-540-24676-3_1
https://flink.apache.org/
https://flink.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://eprint.iacr.org/2012/144
https://doi.org/10.5220/0006461202000211
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1109/TIT.1985.1057074


BIBLIOGRAPHY 169

[Gen09] Craig Gentry. Fully Homomorphic Encryption using Ideal Lattices. In
Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing (STOC), pages 169–178, 2009. https://doi.org/10.1145/1536414.

1536440.

[GMN+16] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart,
and Vitaly Shmatikov. Breaking Web Applications Built On Top of Encrypted
Data. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 1353–1364, 2016. https://doi.org/
10.1145/2976749.2978351.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), pages 218–229, 1987. https://doi.org/10.1145/28395.28420.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Appli-
cations. Cambridge University Press, 2001. ISBN: 9780521830843.

[GPT10] Robert Griesemer, Rob Pike, and Ken Thompson. Go (release 1.12.6). https:
//golang.org/, June 2010. The Go Authors.
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