Évelyne D Patrick 
  
R Sébastien 
  
J Stéphane 
  
H Pierre 
  
F Laura 
  
M Victor 
  
M Yann 
  
D Nathan 
  
J Lou 
  
B Christian 
  
B Martin 
  
B Alain 
  
C Mathieu 
  
A Jean-Michel 
  
F Éric 
  
D Kévin 
  
Chakib El 
  
J Anaël 
  
A Camille 
  
C Gabriel De La 
  
G Christine 
  
G Guy 
  
B Vincent 
  
B Emmanuel 
  
H Luc 
  
H Kilian 
  
R Cédric 
  
L Natacha 
  
S Florent 
  
M Olivier 
  
D Emmanuel 
  
C Ahmad 
  
El S Martin 
  
T Xavier 
  
L Abdelhakim 
  
S Salam 
  
K Cam 
  
P Thomas 
  
N Jérémie 
  
G Vincent 
  
P Sten 
  
M Boris 
  
A Romain 
  
G Sandrine 
  
R.-R Élodie 
  
D Anouchka 
  
L Anne 
  
B Luc 
  
M Laurent 
  
H Amélie 
  
T Abraham 
  
S Florestan 
  
L Jean-David 
  
P Lucie 
  
B Frédéric 
  
K Marion 
  
S Vivien 
  
D Adrien 
  
P Frédéric 
  
H Sebastian 
  
H Martin 
  
  
  
Keywords: 

Non-zero constant mean curvature surfaces are mathematical models for physical interface problems with non-zero pressure dierence. They are described by partial dierential equations and can be constructed from holomorphic data via a Weierstrass-type representation, called "the DPW method". In this thesis, we use the DPW method and prove two main results. The rst one states that perturbations of the DPW data for Delaunay unduloidal ends generate embedded annuli. This can be used to prove the embeddedness of surfaces constructed via the DPW method. The second result is the construction of n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n Delaunay ends.

Résumé

Les surfaces à courbure moyenne constante non-nulle apparaissent en physique comme solutions à certains problèmes d'interface entre deux milieux de pressions diérentes. Elles sont décrites mathématiquement par des équations aux dérivées partielles et sont constructibles à partir de données holomorphes via une représentation similaire à celle de Weierstrass pour les surfaces minimales. On présente dans cette thèse deux résultats s'appuyant sur cette représentation, dite méthode DPW. Le premier indique que les données donnant naissance à un bout Delaunay de type onduloïde induisent encore un anneau plongé après perturbation. Cette propriété sert notamment à démontrer que certaines surfaces construites par la méthode DPW sont plongées. Le second résultat est la construction, dans l'espace hyperbolique, de n-noïdes : surfaces plongées, de genre zéro, à courbure moyenne constante et munies de n bouts de type Delaunay.

Mots clés : Surfaces à courbure moyenne constante Représentation de Weierstrass généralisée Méthode DPW Bouts Delaunay Géométrie hyperbolique. Figure 1 The catenoid (on the left) is a minimal surface, the sphere (on the right) is a CMC surface. The mean value between the greatest and the lowest curvatures is the same at every point of these surfaces.

Table des matières

Constructing minimal surfaces is easier since the 1860s when Enneper and Weierstrass came up with a nice way of parametrising them [START_REF] Weierstrass | Über die Flächen, deren mittlere Krümmung überall gleich Null ist[END_REF]. The Enneper-Weierstrass parametrisation takes for input data a couple of meromorphic functions dening three dierential INTRODUCTION forms to integrate on a Riemann surface S. Taking the real part of these complex integrals gives the three coordinate functions for a minimal immersion of S into Euclidean space.

The nice point is that every minimal surface can locally be obtained this way. More than a hundred years later, Dorfmeister, Pedit and Wu came up with a Weierstrass-type representation for CMC surfaces, called the DPW method [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF]. The DPW method takes for input data a matrix-valued holomorphic potential dening on S a linear Cauchy problem.

Performing a matrix decomposition of the solution to the Cauchy problem induces a moving frame for a CMC immersion of S. Again, the nice point is that every CMC surface can locally be obtained this way. This thesis uses the DPW method to construct CMC surfaces. Chapter 1 introduces the basic tools that are necessary to the exposition of the original DPW method, explained in more details in Chapter 2. Some classic extensions and choices of conventions are introduced in Chapter 3.

G(u)=1, H(u)= 1 u ------------→ Figure 2
The Weierstrass parametrisation is an ecient tool for constructing minimal surfaces. Its equivalent for CMC surfaces is the DPW method.

One key feature of children soap bubbles is that they are embedded CMC surfaces.

Actually, Alexandrov proved in 1958 that any compact embedded CMC surface must be a round sphere [START_REF] Aleksandrov | Uniqueness theorems for surfaces in the large V[END_REF]. Thus, complete and properly embedded CMC surfaces must have ends.

The rst examples of such surfaces (beside the cylinder) were constructed by Delaunay in 1841 [START_REF] Delaunay | Sur la surface de révolution dont la courbure moyenne est constante[END_REF]. The embedded Delaunay surfaces (called unduloids) form a one-parameter family of surfaces of revolution starting from the cylinder and edging towards a chain of spheres. The family then goes on and consists in non-embedded Delaunay surfaces, called nodoids (see Figure 3). In 1989, Korevaar, Kusner and Solomon [START_REF] Korevaar | The structure of complete embedded surfaces with constant mean curvature[END_REF], stimulated by a previous result of Meeks [START_REF] Meeks | The topology and geometry of embedded surfaces of constant mean curvature[END_REF], showed that any annular end of any complete properly embedded CMC surface must be of unduloidal type. The status of Delaunay surfaces is thus paramount in the study of embedded CMC surfaces, and Chapter 4 of this thesis is devoted to them. We consider the DPW data giving rise to an unduloid and perturb it. Under natural assumptions on the perturbation, we show that the perturbed resulting surface is still an embedding of a uniform punctured disk.

Two dierent techniques have been used to construct new CMC surfaces: a glu-INTRODUCTION Figure 3 The Delaunay family: cylinder unduloid chain of spheres nodoid.

ing method and the Lawson correspondence. The gluing method was notably used by [START_REF] Kapouleas | Complete Constant Mean Curvature Surfaces in Euclidean Three-Space[END_REF] and resulted in a breakthrough [START_REF] Kapouleas | Complete Constant Mean Curvature Surfaces in Euclidean Three-Space[END_REF]. Starting from stacks and chains of spheres, he constructed innitely many CMC surfaces with any number k ≥ 2 of ends and any genus g ∈ [0, ∞]. All of these surfaces are close to a stack of spheres and some are embedded. With a slightly dierent gluing technique, Mazzeo and Pacard showed in 2001 how to construct CMC surfaces out of two types of building blocks: half-unduloids and minimal k-noids [START_REF] Mazzeo | Constant mean curvature surfaces with Delaunay ends[END_REF]. Another strategy has been to use the Lawson correspondence [START_REF] Lawson | Complete Minimal Surfaces in S3[END_REF]:

the denition of mean curvature applies not only in Euclidean space but also in Spherical and Hyperbolic spaces and it turns out that there exist some strong relationships between CMC or minimal surfaces in Euclidean space and CMC or minimal surfaces in Hyperbolic or Spherical space. For example, any simply connected CMC surface in Euclidean space possesses a minimal isometric cousin in Spherical space. This relationship allowed Grosse-Brauckmann, Kusner and Sullivan to construct and classify all the CMC triunduloids in Euclidean space [START_REF] Groÿe-Brauckmann | Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero[END_REF] and all genus zero CMC k-unduloids with coplanar ends [START_REF] Grosse-Brauckmann | Coplanar constant mean curvature surfaces[END_REF] by constructing their minimal cousins in the three-sphere.

Figure 4 Alexandrov-embedded 4-noids with unduloidal ends (as seen in [START_REF] Grosse-Brauckmann | Coplanar constant mean curvature surfaces[END_REF])

Naturally, the DPW method gives a third way of constructing new CMC surfaces.

Kilian, McIntosh and Schmitt used it in 2000 to produce new CMC cylinders [START_REF] Kilian | New Constant Mean Curvature Surfaces[END_REF], and had experimental evidences that perturbations of Delaunay ends in the DPW data still give Delaunay ends to the perturbed surface. In 2008, Kilian, Rossman and Schmmitt proved that it is indeed the case [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF]. In 2007, Dorfmeister and Wu gave the general form of the DPW data for trinoids [START_REF] Dorfmeister | Construction of constant mean curvature n-noids from holomorphic potentials[END_REF]. The resulting surfaces have been proved to have embedded ends, but until the construction of Traizet in 2017 [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF], they were never proved to be entirely INTRODUCTION Figure 5 An embedded 7-noid with small necks in Hyperbolic space (ball model). This surface can be constructed using Chapter 5 of this thesis.

embedded (or Alexandrov-embedded). Traizet perturbs the DPW data giving rise to a sphere with the data giving rise to half-unduloids and uses the Implicit Function Theorem to recover DPW data inducing a well-dened CMC k-unduloid. He then shows that the whole surface is embedded, using our contributions in Chapter 4 of the present work. This is the main achievement of this thesis: it allows, for the rst time, to prove that non-trivial examples constructed via the DPW method are embedded. Extensions of the original DPW method have been made in order to construct CMC or minimal surfaces in various non-Euclidean spaces [START_REF] Heller | Higher genus minimal surfaces in S 3 and stable bundles[END_REF][START_REF] Hauswirth | Finite type minimal annuli in S 2 × R[END_REF]. We use the extension of [START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF] and the techniques of Chapter 4 and [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF][START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] to construct in Chapter 5 CMC H > 1 complete, properly Alexandrov-embedded surfaces with genus zero and any number of ends in Hyperbolic three-space. These new examples constitute the second achievement of this thesis.

Part I

Introduction to the DPW method Chapter 1

The method in a nutshell

In this chapter, we introduce the basic tools (Section 1.1) required to apply the DPW method (Section 1.2) to a simple example (Section 1.3).

Preliminaries

The DPW method constructs maps that take values in matrix loops S 1 -→ SU [START_REF] Bobenko | Constant mean curvature surfaces and integrable equations[END_REF].

These loops are dened in Section 1.1.2 and are interpreted as rotations of Euclidean space. Hence the use of su [START_REF] Bobenko | Constant mean curvature surfaces and integrable equations[END_REF] as a model for R 3 , presented in Section 1.1.1.

su(2) model of R 3

Dene Ψ : R 3 → su(2) as Ψ(x 1 , x 2 , x 3 ) := -i 2

x 3 x 1 -ix 2 x 1 + ix 2 -x 3 .
Recall that R 3 equipped with the cross product is a Lie algebra. Dene for all X ∈ su(2)

X 2 := 4 det X.

Thanks to Proposition 1, one can identify the three-dimensional Euclidean space with the Lie algebra su(2).

Proposition 1. The map Ψ is an isometric homomorphism between Lie algebras.

PRELIMINARIES

Consider the Pauli matrices

σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 . (1.1)
Then the canonical basis of R 3 induces via Ψ the following direct orthonormal basis of su(2):

B := -i 2 σ 1 , -i 2 σ 2 , -i 2 σ 3 . (1.2)
Under the identication of Proposition 1, the Lie group SU(2) acts on R 3 as linear isometries via:

F • X := F XF -1 , X ∈ su(2), F ∈ SU(2)
.

(1.

3)

The action is transitive, hence the following proposition.

Proposition 2. For all X ∈ su [START_REF] Bobenko | Constant mean curvature surfaces and integrable equations[END_REF] and for all direct orthonormal bases (u, v, w) of the tangent space T X su(2) su( 2), there exists P ∈ SU [START_REF] Bobenko | Constant mean curvature surfaces and integrable equations[END_REF] such that

(u, v, w) = P • B
where B is as in (1.2).

Loop groups and algebras

In the DPW method, most of the objects dealt with are smooth maps dened for a spectral parameter λ ∈ S 1 . The standard reference is [START_REF] Pressley | Loop Groups[END_REF]. In order to take advantage of the diagonal+o-diagonal decomposition of gl(2, C), it is convenient to dene the following involution: • The group of smooth maps Φ : S 1 -→ G such that for all λ ∈ S 1 , σ(Φ(λ)) = Φ(-λ)

is denoted ΛG σ . Its elements are called loops and ΛG σ is called a loop group.

• If G is complex, Λ ≥0 G σ denotes the subgroup of ΛG σ consisting of maps that holomorphically extend to D.

• The algebra of smooth maps ϕ : S 1 -→ g such that for all λ ∈ S 1 , σ(ϕ(λ)) = ϕ(-λ)

is denoted Λg σ . It is called a loop algebra.

• If g is complex, Λ ≥0 g σ denotes the subalgebra of Λg σ consisting of maps that holomorphically extend to D.

• Λ + SL(2, C) σ denotes the subgroup of Λ ≥0 SL(2, C) σ consisting of maps B such that (after extension to D) B(0) is upper-triangular.

• Λ R + SL(2, C) σ denotes the subgroup of Λ + SL(2, C) σ consisting of loops such that B(0

)
has positive elements on the diagonal.

Remark 1. The fact that σ(B(λ)) = B(-λ) for B ∈ Λ + SL(2, C) σ implies that B(0) is diagonal. However, we keep the above denition for reasons to be clear in Section 3.1.

An important step of the DPW method relies upon the following theorem (see [START_REF] Pressley | Loop Groups[END_REF] and [START_REF] Mcintosh | Global solutions of the elliptic 2d periodic Toda lattice[END_REF]), which is a generalisation to loop groups of the QR decomposition.

Theorem 1. The multiplication map

× : ΛSU(2) σ × Λ R + SL(2, C) σ -→ ΛSL(2, C) σ (F, B) -→ F B
is bijective. Its inverse map is called Iwasawa decomposition and is denoted:

Iwa : ΛSL(2, C) σ -→ ΛSU(2) σ × Λ R + SL(2, C) σ Φ -→ (Uni Φ, Pos Φ).
Finally, note that because of the following Proposition 3, the loops in Denition 1 are often called twisted loops. Proposition 3. Let X : S 1 -→ gl(2, C) be a smooth map with Fourier series

X(λ) = i∈Z X i λ i .
Then X ∈ Λgl(2, C) σ if, and only if X i is diagonal for even values of i and o-diagonal for odd values of i.

The recipe

We present the DPW method as a recipe to build CMC H = 0 surfaces in R 3 . The ingredients are introduced in Section 1.2.1 and the instructions are given in Section 1.2.2.

DPW data

The main ingredient is dened as follows.

Denition 2. Let Σ be a Riemann surface and let ξ ∈ Ω (1,0) (Σ, Λsl(2, C) σ ) be a holomorphic 1-form dened on Σ and taking values in Λsl(2, C) σ . For all z ∈ Σ, expanding ξ(z) in its Fourier series

ξ(z, λ) = i∈Z A i (z)λ i dz, (1.4) 
the 1-form ξ is called an admissible DPW potential if A i = 0 for all i < -1.

Note the abuse of notation "ξ(z, λ)" instead of "ξ(z)(λ)". We will often identify the set of real analytic maps f :

Σ × S 1 -→ G satisfying σ(f (•, λ)) = f (•, -λ) for all λ with the set of real analytic maps f : Σ -→ ΛG σ .
The ingredients of the recipe are

• A simply connected Riemann surface Σ. Note that under suitable conditions, the DPW method can also produce immersions of non-simply-connected surfaces. See Section 3.2 for more details.

• An admissible DPW potential ξ (as in Denition 2) dened on Σ.

• An initial point z 0 ∈ Σ.

• An initial condition φ 0 ∈ ΛSL(2, C) σ .
Such a family (Σ, ξ, z 0 , φ 0 ) is called a set of DPW data.

DPW method

Let (Σ, ξ, z 0 , φ 0 ) be a set of DPW data. The DPW method consists of the following three steps.

1. Solve for z ∈ Σ the Cauchy problem

dΦ = Φξ, Φ(z 0 ) = φ 0 (1.5)
in order to dene the holomorphic frame

Φ : Σ -→ ΛSL(2, C) σ . 2. For all z ∈ Σ, Iwasawa decompose Φ(z) (see Theorem 1) into F (z) := Uni Φ(z) ∈ ΛSU(2) σ and B(z) := Pos Φ(z) ∈ Λ R + SL(2, C) σ .
3. Choose H = 0 and dene f λ : Σ -→ su(2) via the Sym-Bobenko formula:

f λ (z) := 1 2H -iλ ∂F (z, λ) ∂λ F (z, λ) -1 + F (z, λ) • -i 2 σ 3 (1.6)
where the dot denotes the action of Equation (1.3).

Then, for all λ ∈ S 1 , the map f λ is a conformal real analytic CMC H immersion of Σ into R 3 su(2). (More details in Section 2, especially Theorem 3).

In order to simplify notations, let us set for any smooth map F : S 1 -→ SU(2)

Sym λ F := -iλ ∂F (λ) ∂λ F (λ) -1 (1.7)
and with the action of (1.3),

Nor λ F := F (λ) • -i 2 σ 3 , (1.8) 
so that Equation (1.6) reads

f λ (z) = 1 2H (Sym λ F (z) + Nor λ F (z)) .

A useful example

In this Section, we use the DPW method to construct a simple non-zero constant mean curvature surface of R 3 . It will be needed in Section 2.3.1 to produce rigid motions of R 3 using the Sym-Bobenko formula.

Consider the following DPW data:

Σ = C, ξ(z, λ) = 0 λ -1 0 0 dz, z 0 = 0, φ 0 = I 2 .
Solving the Cauchy problem (5.5) gives

Φ(z, λ) = 1 λ -1 z 0 1 .
Iwasawa decomposition is explicit:

1 λ -1 z 0 1 Φ(z)∈ΛSL(2,C) σ = 1 1 + |z| 2 1 λ -1 z -λz 1 
F (z)∈ΛSU(2) σ × 1 1 + |z| 2 1 0 λz 1 + |z| 2 B(z)∈Λ R + SL(2,C) σ .

A USEFUL EXAMPLE

One can thus compute:

Sym λ F (z) = i 1 + |z| 2 |z| 2 λ -1 z λz -|z| 2 , (1.9) Nor λ F (z) = -i 2 1 1 + |z| 2 1 -|z| 2 -2λ -1 z -2λz -1 + |z| 2
and the induced immersion is given for any H = 0 by

f λ = -i 2H 1 1 + |z| 2 1 -|z| 2 -2λ -1 z -2λz |z| 2 -1 + -1 2 0 0 1 2 .
For all λ ∈ S 1 , the identication su(2) R 3 of Section 1.1.1 makes f λ (C) a sphere centered at (0, 0, -1 2H ) with radius 1 H , which is indeed a CMC surface.

Remark 2. Note that Sym λ F gives a sphere of radius 1 centered at (0, 0, -1). This fact will be used in Section 2.3.1.

Chapter 2

Why does it work?

Example of Section 1.3 seems to be a twisted way of constructing a sphere. This is because the link between the DPW data and the resulting immersion is not yet obvious.

This chapter exhibit this link. Section 2.1 is a necessary digression to understand what is really constructed by the DPW method: solutions to a certain type of Lax pairs. Section 2.2 explains how the method constructs these solutions whereas Section 2.3 is devoted to the fact that all CMC surfaces can be obtained this way.

The integrable systems framework

This section recalls how the surfaces we consider can be encoded by a pair of nonlinear partial dierential equations (Section 2.1.1). We then introduce the moving frame method (Section 2.1.2), transforming these fundamental equations into a pair of matrix dierential equations (Section 2.1.3). Finally we show how to retrieve a CMC immersion from a solution to these linear systems (Section 2.1.4).

Fundamental equations

In the DPW method, a whole one-parameter family of immersions is constructed, each of which corresponding to a constant mean curvature surface. These surfaces are linked by their fundamental forms. Let Σ be a simply connected domain of C with coordinate z = x + iy. Let f be a conformal real-analytic immersion of Σ into R 3 . Then the rst and second fundamental forms of f can be written as follows:

I = 4e 2u |dz| 2 , II = Qdz 2 + 4e 2u H|dz| 2 + Qdz 2 (2.1)
where u, H : Σ -→ R and Q : Σ -→ C are real analytic functions. The rst fundamental form is the metric of f , the function H is its mean curvature and the dierential form Qdz 2 is called the Hopf dierential of f . They satisfy the Gauss and Codazzi equations:

4u z z -|Q| 2 e -2u + 4H 2 e 2u = 0, Q z = 2e 2u H z (2.2)
where the index variables denote the partial derivatives with respect to these variables.

Conversely, let u, H : Σ -→ R and Q : Σ -→ C satisfy the Gauss and Codazzi equations (2.2). Then Bonnet's theorem states that there exists locally (and more broadly, on simply connected domains) an immersion f : Σ -→ R 3 whose rst and second fundamental forms read as in (2.1). This immersion is unique up to rigid motions of R for all λ ∈ S 1 .

The condition of f being conformal and real-analytic is no restriction because any CMC surface admits locally such a parametrisation. The Hopf dierential of f λ reads λ -2 Qdz 2

and not λQdz 2 for reasons that are specic to the DPW method, as we shall see in Section 2.2.

Moving frames

Let f : Σ -→ R 3 be a real-analytic immersion. Suppose that f is conformal. Then for all z ∈ Σ, the tangent vectors f x and f y are orthogonal and the normal map of f is given by

N = f x × f y f x × f y .
We denote by e x , e y the normalised tangent vectors of f , so that F := (e x , e y , N ) is a direct orthonormal basis of R 

X : Ω -→ SL(n, C) holomorphic. Dening the holomorphic maps U, V : Ω -→ sl(n, C) as U := X -1 X z , V := X -1 X w , (2.3) 
The system (2.3) is called the Lax pair for X. Symmetry of second derivatives for X are encoded into the Maurer-Cartan equation:

U w -V z = [U, V ].
(2.4)

An elementary proof of the following theorem can be found in [START_REF] Fujimori | Loop Group Methods for Constant Mean Curvature Surfaces[END_REF] (Proposition 3.1.2).

It states that the Maurer-Cartan equation is not only necessary, but also sucient for the Lax pair to admit a solution. Proposition 4. Let f : Σ -→ R 3 be a CMC H immersion with associated family (f λ )

and P : Σ × S 1 -→ SU(2) be an extended unitary frame for f . Then P satises the Lax pair

P -1 dP = 1 2 -u z λ -2 Qe -u -2He u u z dz + 1 2 u z 2He u -λ 2 Qe -u -u z dz (2.5)
with u, Q and H as in (2.1). Moreover, the Maurer-Cartan equation for this Lax pair is equivalent to the Gauss and Codazzi equations (2.2) for the associated family (f λ ).

Remark 3. The terminology Lax pair is used in Proposition 4 in the following sense:

P (z) = X(z, z, λ) where X : C 2 × S 1 -→ SU(2) satises the Lax pair X -1 dX = 1 2 -u z λ -2 Qe -u -2He u u z dz + 1 2 u w 2He u -λ 2 Qe -u -u w dw.

Retrieving the immersion

The extended frame P has been dened by dierentiating the associated family (f λ ),

and it is natural to think that in order to retrieve the immersions from the extend frame one has to integrate it. Fortunately, Sym [START_REF] Sym | Soliton surfaces and their applications (soliton geometry from spectral problems)[END_REF] and Bobenko [START_REF] Bobenko | Constant mean curvature surfaces and integrable equations[END_REF] have found a way to bypass this step:

Proposition 5. In the setting of Proposition 4 and if H = 0, up to a rigid motion of R 

Constructing solutions to Lax pairs

We are now ready to understand why the DPW method induces associated families of CMC immersions. For any admissible DPW potential ξ expanded in its Fourier series as in (1.4), write

A -1 (z) = 0 α(z) β(z) 0 .
(2.7)

For any holomorphic frame Φ :

Σ -→ ΛSL(2, C) σ , write Pos Φ(z) | λ=0 = b(z) 0 0 b(z) -1 .
(2.8) Theorem 3. Let (Σ, ξ, z 0 , φ 0 ) be a set of DPW data and H = 0. Let Φ, F , B and f λ dened via the DPW method applied to (Σ, ξ, z 0 , φ 0 ) (see Section 1.2). Then for all λ ∈ S 1 , f λ is a CMC H real analytic conformal immersion with metric

I = 4b 4 |α| 2 H 2 |dz| 2 (2.9)
and Hopf dierential 

II (2,0) = -2λ -2 αβ H dz
df λ (z) = F (z, λ) • ib(z) 2 H 0 λ -1 α(z)dz λα(z)dz 0 . (2.11)
Sketch of the proof: An elementary proof can be found in [START_REF] Fujimori | Loop Group Methods for Constant Mean Curvature Surfaces[END_REF], whereas a more theoretical one can be found in [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF]. The idea is to compute the Lax Pair associated to F . Writing F = ΦB -1 gives using (1.5)

F -1 dF = BξB -1 -(dB)B -1 .
(2.12)

But F -1 dF ∈ Λsu(2) σ , B is holomorphic with respect to λ and ξ is an admissible potential (see Denition 2). Using these facts, one can write the series expansion of F -1 dF as

F -1 dF = η -λ -1 + η 0 + η + λ ∈ Ω(Σ, Λsu(2) σ ).
Compute η -and η 0 using the series expansion of (2.12) to get the Lax pair

F -1 dF = b -1 b z λ -1 b 2 α λ -1 b -2 β -b -1 b z dz + -b -1 b z -λb -2 β -λb 2 ᾱ b -1 b z dz.
(2.13)

Dierentiating the Sym-Bobenko formula (1.6) with respect to z and z using this Lax pair gives the expected results.

Remark 4. Instead of dierentiating the Sym-Bobenko formula, one could have noticed

that setting dw = -α H dz, u = 2 log b, Q = -2H β α ,
and dening

P (w, λ) := g(λ) -1 • F (w, λ), with g(λ) := -i 0 1 √ λ √ λ 0 , (2.14) 
the map P satises the Lax pair (2.5) for the coordinate w and is thus the extended frame of an associated family of CMC H immersions.

We will often say that the DPW method gives rise to a CMC immersion f , instead of a one-parameter family (f λ ). In these cases, it is assumed that the Sym-Bobenko formula

(1.6) is evaluated at λ = 1.

Surjectivity

In order to explain why any CMC H = 0 surface can locally be obtained via the DPW method (section 2.3.2), we need to introduce in Section 2.3.1 two operations on the DPW data.

Gauging and dressing

Let (Σ, ξ, z 0 , φ 0 ) be a set of DPW data giving rise to Φ, F and B via the DPW method and inducing an associated family (f λ ) of CMC H immersions. We introduce two changes in the data that result into simple geometric changes on the surface. 

(Σ, ξ, z 0 , φ 0 ) -→ (Σ, ξ • G, z 0 , φ 0 G)
is called gauging the data.

Note that G is not necessary in Λ R + SL(2, C) σ . Thus, using Remark 1, it has the form 

G = ρe iθ 0 0 ρ -1 e -iθ + O(λ) (ρ, θ : Σ -→ R * + ). ( 2 
f λ = J(λ) • f λ + Sym λ J.
(2.17)

In order to apply a rotation to f λ , it then suces to dress the data (Σ, ξ, z 0 , φ 0 ) by a λindependent factor that can be explicitly computed (see Lemma 3.3. in [START_REF]On the Associated Family of Delaunay Surfaces[END_REF]). Translations can be explicitly computed using the example of the sphere in Section 1.3 and the following Proposition.

Proposition 8. Let (Σ, ξ, z 0 , φ 0 ) be a set of DPW data. Let Q : Ω -→ ΛSU(2) σ and

p ∈ Ω ∩ Σ. Dene J(λ) := Q(p, λ)Q(p, 1) -1 .
Then the immersion f = f 1 induced by the dressed data (Σ, ξ, z 0 , Jφ 0 ) satises for all z ∈ Σ

f (z) = f (z) + Sym 1 Q(p).

Constructing all CMC immersions

Given a mean curvature H = 0, the DPW method induces a map from the set of admissible DPW data to the set of CMC immersions in R 3 . This map is surjective: any CMC H immersion can be locally obtained this way.

Theorem 4. For any f : Σ -→ R 3 conformal real analytic CMC H = 0 immersion, there exist DPW data (Σ, ξ, z 0 , φ 0 ) inducing f via the DPW method.

Sketch of the proof: Without loss of generality, one can suppose by applying a homothety that H = 1. Dene P : Σ × S 1 -→ SU(2) as the solution to the Lax pair (2.5) with initial condition P (z 0 ) = I 2 and set F := g • P : Σ -→ ΛSU(2) σ with g as in Equation (2.14).

Then F satises the Lax pair

F -1 dF = 1 2 u z -2λ -1 He u λ -1 Qe -u -u z dz + 1 2 -u z -λ Qe -u 2λHe u u z dz.
(2.18)

Now solve for B : Σ -→ Λ + SL(2, C) σ the ∂ problem:

(F B) z = 0, so that Φ := F B is holomorphic on Σ and takes values in ΛSL(2, C) σ . Then ξ := Φ -1 dΦ is a holomorphic 1-form on Σ and the series expansion of F -1 dF shows that ξ is an admissible DPW potential. Let φ 0 := Φ(z 0 ) and apply the DPW method to the DPW data (Σ, ξ, z 0 , φ 0 ) to retrieve Φ. Iwasawa decomposition gives

Iwa Φ = (F Uni B, Pos B)
where Uni B = e iθ 0 0 e -iθ , θ : Σ -→ R.

Thus,

Sym • Uni Φ = SymF and Nor • Uni Φ = NorF. Compute Symg = i 2 σ 3 to get SymF = Sym(g • P ) = Symg + g • SymP -(g • P ) • Symg = i 2 σ 3 + g • SymP + NorF. Compute g(λ) -1 σ 3 g(λ) = -σ 3 ∀λ ∈ S 1 to get NorF = -g • NorP.
The induced immersion is then 

f λ = 1 2H (Sym λ F + Nor λ F ) = g(λ) • 1 2H (

Untwisting the loops

Twistedness of loops is not essential to the DPW method, and some papers (such as [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF][START_REF] Kilian | Dressing CMC n -Noids[END_REF][START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF][START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]) use loop groups that are not twisted. In their case, untwisting the loops simplify the proofs and formulae. For any group or algebra G, let ΛG denote the set of smooth maps S 1 -→ G.

Denition

Let M ∈ Λgl(2, C) σ be a twisted loop and dene for all λ in the double cover of S 1

M (λ) := 1 √ λ 0 0 √ λ M (λ) √ λ 0 0 1 √ λ .
Then M is well-dened on S 1 and M ∈ Λgl(2, C). Moreover, M is an even function of λ.

One can thus dene

M (λ) := M ( √ λ).
Denition 9. Applying the map

κ : Λgl(2, C) σ -→ Λgl(2, C) M -→ M
dened above is called untwisting the loop M .

Formally,

M (λ) = a(λ 2 ) λb(λ 2 ) λ -1 c(λ 2 ) d(λ 2 ) =⇒ κ(M )(λ) = a(λ) b(λ) c(λ) d(λ) .
The denition of untwisted loop groups and algebras is exactly the same as in Section 1 without the condition σ(X(λ)) = X(-λ) (and Remark 1 should now make sense). We denote them by dropping the "σ" and write, for example, Λsl(2, C) for the untwisted version of Λsl(2, C) σ .

Untwisting the recipe

One can adapt the DPW method so that it works with untwisted loop groups. The important changes are in the denition of admissible potentials and in the Sym-Bobenko formula (which is simpler in the untwisted framework).

Denition 10. Let Σ be a Riemann surface and let ξ ∈ Ω (1,0) (Σ, Λsl(2, C)) be a holomorphic 1-form dened on Σ and taking values in Λsl(2, C). For all z ∈ Σ, expanding ξ(z) in its Fourier series as in (1.4), the 1-form ξ is called an admissible DPW potential (in the untwisted setting) if A i = 0 for all i < -1 and if A -1 is of the form

A -1 (z) = 0 α(z) 0 0 . (3.1) 
A set of DPW data in the untwisted setting is a family (Σ, ξ, z 0 , φ 0 ) where ξ is an admissible potential in the untwisted setting and φ 0 ∈ ΛSL(2, C).

The three steps of the DPW method in the untwisted setting are basically the same provided that one changes twisted loop groups into untwisted loop groups. First, solve for Φ(z) ∈ ΛSL(2, C) the Cauchy problem (5.5). Then Iwasawa decompose Φ into (F, B)

using the following untwisted Iwasawa decomposition.

Theorem 5. The multiplication map

× : ΛSU(2) × Λ R + SL(2, C) -→ ΛSL(2, C) (F, B) -→ F B
is bijective. Its inverse map is called Iwasawa decomposition and is denoted:

Iwa : ΛSL(2, C) -→ ΛSU(2) × Λ R + SL(2, C) Φ -→ (Uni Φ, Pos Φ).
Finally, for any H = 0, dene the induced CMC H immersions f λ via the Sym-Bobenko formula

f λ := 1 H Sym λ F. (3.2)
Theorem 6. Let (Σ, ξ, z 0 , φ 0 ) be a set of untwisted DPW data and H = 0. Let Φ, F , B and f λ be dened via the DPW method applied to (Σ, ξ, z 0 , φ 0 ). Then for all λ ∈ S 1 , f λ is a CMC H real analytic conformal immersion with metric given by (2.9) and Hopf dierential

II (2,0) = -2λ -1 αβ H dz 2 ,
where α is as in (3.1), β is the lower-left entry of A 0 and b is the upper-left entry of B | λ=0 .

Its normal map reads N λ = -Nor λ F and its dierential is as in (2.11).

Note that dressing and gauging with untwisted loops give the same results as in the twisted setting (see Section 2.3.1). In particular, Equation (2.17) describing the dressing action with unitary loops as isometries is the same in the untwisted setting.

As stated before, some authors work in the untwisted framework and the others in the twisted framework. Whenever the choice is not explicitly stated, a simple look at the loop groups denitions makes it clear. Moreover, one can translate one setting into another.

Let (Σ, ξ, z 0 , φ 0 ) be a set of admissible DPW data in the twisted setting, giving rise to the twisted maps Φ, F , B, and to the CMC H = 0 immersion f = f 1 . Use Denition 9 to untwist the potential and the initial condition, giving rise to a set (Σ, ξ, z 0 , φ 0 ) of DPW untwisted data, inducing the maps Φ, F , B and the CMC H immersion f = f 1 .

Proposition 9. With the above notations and κ as in Denition 9,

Φ = κ(Φ), F = κ(F ), B = κ(B) and f = f - 1 2H -i 2 σ 3 .
A good way to test Proposition 9 is to apply it to the example of Section 1.3 in which untwisting the data does not change it, thus simplifying the computations. Suppose that Σ is not simply connected and let Σ be its universal cover with z 0 ∈ Σ above z 0 . One can use the DPW method on the data ( Σ, ξ, z 0 , φ 0 ) because Σ is simply connected: let Φ, F , B and f be the induced maps. The immersion f is a CMC immersion of Σ into R 3 , but nothing ensures that it descends to a well-dened immersion of Σ.

Denition 11. For any deck transformation τ ∈ Deck( Σ/Σ), the loop

M τ (Φ) := Φ(τ ( z)) × Φ( z) -1 ∈ ΛSL(2, C) (3.3) 
does not depend on z ∈ Σ (but only on the choice of z 0 above z 0 ) and is called the monodromy of Φ with respect to τ .

Proposition 10. Suppose that ∀τ ∈ Deck( Σ/Σ),

     M τ (Φ) ∈ ΛSU(2), M τ (Φ)(1) = ±I 2 ,
dMτ (Φ) dλ

(1) = 0.

(3.4)

Then the immersion f : Σ -→ R 3 induced by Φ descends to a well-dened immersion of Σ.

Equation (3.4) is called the monodromy problem in R 3 . Equation (3.3) shows that deck transformations act on the DPW data as dressing (see Section 2.3.1), and Proposition 10 states that if this dressing represents the identity isometry, then the immersion is welldened on Σ.

Hyperbolic space

The DPW method can be used to construct CMC H > 1 immersions into Hyperbolic space. One rst need to extend the denition of loops to annuli, and this is the chance to equip the groups with a simple Banach structure, as in Section 3.3.1. After introducing a suitable matrix model of H 3 in Section 3.3.2, we briey describe the method in the untwisted framework (Section 3.3.3). The ideas are the same as in Euclidean space, which is why we do not give proofs.

Extending the loops

In order to dene dierentiable maps between loop groups and algebras, one might want to equip them with a Banach structure. Let | • | be a sub-multiplicative norm on gl(2, C). Let R > 1 and dene for all f ∈ Λgl(2, C)

f R := i∈Z |f i |R |i| (3.5)
where f i λ i is the Fourier expansion of f . For any loop group or algebra ΛG dened in Section 5.1.2, dene

ΛG R := {f ∈ ΛG | f R < ∞} . Then Λgl(2, C) R is a Banach algebra. Moreover, ΛSL(2, C) R , ΛSU(2) R and Λ R + SL(2, C) R
are Banach manifolds and Iwasawa decomposition is a smooth dieomorphism: Theorem 7. [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] For all R > 1, the multiplication map ΛSU(2

) R × Λ R + SL(2, C) R -→ ΛSL(2, C) R is a smooth dieomorphism between Banach manifolds.
This Banach structure is used to construct CMC immersions in Hyperbolic space via the DPW method. It has been introduced in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] and diers from the one used in [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF], which would be less convenient to use for the purposes of this thesis.

Matrix model

The matrix model we use is the same as in [START_REF] Bryant | Surfaces of mean curvature one in hyperbolic space, Théorie des variétés minimales et applications[END_REF]. Let R 1,3 denote the vector space R 4 equipped with the Lorentzian metric

x, x = -x 2 0 + x 2 1 + x 2 2 + x 2 3 , x = (x 0 , x 1 , x 2 , x 3 ) ∈ R 4 .
The Hyperbolic space H 3 is the Riemannian sub-manifold of R 1,3 dened by

H 3 = x ∈ R 1,3 | x, x = -1 .
The point (1, 0, 0, 0) ∈ H 3 will play the role of an origin and is thus denoted by 0. The tangent space T 0 H 3 = {0} × R 3 is identied with its projection on R 3 equipped with the cross product, which makes T 0 H 3 a real Lie algebra.

Denition 12. For all p, q ∈ H 3 , the map Γ q p : T p H 3 -→ T q H 3 denotes the parallel transport of vectors from p to q along the geodesic joining p to q. It is an isomorphism between vector spaces and it is the one we use to identify T p H 3 with T 0 H 3 for all p ∈ H 3 . Let H denote the real Lie algebra of 2 × 2 Hermitian matrices equipped with the Lie bracket and Lorentzian metric

[X, Y ] := i 2 (XY -Y X), X, X := -det X.
Let Ψ : R 1,3 -→ H dened by

Ψ(x 0 , x 1 , x 2 , x 3 ) = x 0 + x 3 x 1 + ix 2 x 1 -ix 2 x 0 -x 3 .
Proposition 11. The map Ψ is an isometric isomorphism between real vector spaces and

Ψ(H 3 ) = {F F * | F ∈ SL(2, C)}
where M * := M t for all M ∈ gl(2, C). Moreover,

dΨ 0 : T 0 H 3 -→ H ∩ sl(2, C) v -→ Ψ(v)
is an isometric homomorphism between Lie algebras.

Proposition 11 provides an identication between H 3 and Ψ(H 3 ). Under this identication, the Lie group SL(2, C) acts on R 1,3 as linear Lorentzian isometries via

F • X := F XF * , X ∈ H, F ∈ SL(2, C). (3.6)
The following proposition relies upon the polar decomposition in SL(2, C) and is proved in Chapter 5.

Proposition 12. For all x ∈ H 3 and for all direct orthonormal bases (u, v, w) of the

tangent space T x H 3 T 0 H 3 , there exists F ∈ SL(2, C) such that (x, u, v, w) = F • B where B = Ψ(B 0 ) is the image of the canonical basis of R 4 .
Inspired by the Euclidean case, one can get the following denitions and propositions for Hyperbolic space.

Denition 13. The moving frame of f : Σ -→ H 3 is dened as F := (f, e x , e y , N ). A special frame for f is a map P : Σ -→ SL(2, C) such that F = P • B. An extended frame for f is a map P : Σ -→ ΛSL(2, C) such that for all λ ∈ S 1 , P (•, λ) is a special frame for the associated CMC immersion f λ .

Proposition 13. Let P be a special frame for f : Σ -→ H 3 . Then P satises the Lax pair:

P -1 dP = 1 2 u z 2(H + 1)e u -Qe -u -u z dz + 1 2 -u z Qe -u -2(H -1)e u u z dz (3.7)
with u, Q and H dened via (2.1). Moreover, the Maurer-Cartan equation for this Lax pair is equivalent to the Gauss and Codazzi equations in H 3 :

4u z z -|Q| 2 e -2u + 4(H 2 -1)e 2u = 0, Q z = 2e 2u H z .
(3.8)

The (untwisted) DPW method for CMC H > 1 surfaces in H 3

In this section, we introduce a DPW method with untwisted data that leads to CMC H > 1 immersions of a simply connected domain Σ into Hyperbolic space. Let q = arcoth H > 0 and R = e q . Denition 14. In Hyperbolic space and untwisted setting, a set of admissible DPW data is given by (Σ, ξ, z 0 , φ 0 ) admissible in the sense of Denition 10 and such that φ 0 ∈ ΛSL(2, C) R and ξ takes values in Λsl(2, C) R .

Remark 5. In Chapter 5, R is taken greater than e q . This is not essential to the method, but allows us to get control formulas that are essential to our purpose.

Given a set of admissible data in the sense of Denition 14, the three steps of the DPW method are the following. First, solve for Φ(z) ∈ ΛSL(2, C) R the Cauchy problem (5.5). Then Iwasawa decompose Φ into (F, B) using Theorem 7. Finally, dene f via the Sym-Bobenko formula

F (•, e -q ) • I 2 (3.9)
with the action of (3.6).

Proposition 14. The map f : Σ -→ H 3 dened above is a CMC H immersion. With α as in (3.1), β the lower-left entry of A 0 and b the upper-left entry of B | λ=0 , the metric of

f is I = 4b 4 |α| 2 H 2 -1 |dz| 2 , its Hopf dierential is II (2,0) = -2αβ √ H 2 -1 dz 2
and its normal map is given by

N = F (•, e -q ) • σ 3 .
Moreover, its dierential reads

df = 2b 2 √ H 2 -1 F (•, e -q ) • 0 αdz ᾱdz 0 .
Remark 6. Proposition 14 only constructs one member of the associated family (f λ ).

This constraint is not essential to the DPW method in H 3 and has been introduced only to simplify the notation. Furthermore, Chapter 5 only deals with single members of the associated families.

As in R 3 , every CMC H > 1 immersion can be obtained locally and up to an isometry via the DPW method.

Gauging, dressing, isometries, monodromy

Denitions 7 and 8 of gauging and dressing (adapted to the untwisted framework) are the same in H 3 , and gauging the potential does not change the immersion induced by formula (3.9). Therefore, Proposition 6 holds in H 3 . The eect of dressing is exactly the same: some dressing act as rigid motions.

Proposition 15. Let (Σ, ξ, z 0 , Jφ 0 ) be a set of dressed data (in the untwisted setting).

Then the dressed CMC H > 1 immersion f : Σ -→ H 3 has the same Hopf dierential as the original immersion f . Moreover, if J(z) ∈ ΛSU(2) for all z ∈ Σ, then for all λ ∈ S 1 , f and f dier by a rigid motion of H 3 :

f = J(e -q ) • f (3.10)
for the action dened in (3.6).

Finally, monodromy is dened in H 3 as in Denition 11, but the expression of the monodromy problem diers from R 3 , because the isometric action of dressing is not the same in H 3 . Thus, the monodromy problem in H 3 reads:

∀τ ∈ Deck( Σ/Σ), M τ (Φ) ∈ ΛSU(2) R , M τ (Φ)(e -q ) = ±I 2 .

Introduction

Beside the sphere, the simplest non-zero constant mean curvature (CMC) surface is the cylinder, which belongs to a one-parameter family of surfaces generated by the revolution of an elliptic function: the Delaunay surfaces, rst described in [START_REF] Delaunay | Sur la surface de révolution dont la courbure moyenne est constante[END_REF]. Like the cylinder, Delaunay surfaces have two annular type ends, and Delaunay ends are the only possible embedded annular ends for a non-zero CMC surface. Indeed, as proven in [START_REF] Korevaar | The structure of complete embedded surfaces with constant mean curvature[END_REF] by Korevaar, Kusner and Solomon, if M ⊂ R 3 is a proper, embedded, non-zero CMC surface of nite topological type, then every annular end of M is asymptotic to a Delaunay surface and if M has exactly two ends which are of annular type, then M is a Delaunay surface. Thus, the status of Delaunay surfaces for non-zero CMC surfaces is very much alike the catenoid position in the study of minimal surfaces (see the result of Schoen in [START_REF] Schoen | Uniqueness, symmetry, and embeddedness of minimal surfaces[END_REF]), and one has to understand the behaviour of Delaunay ends in order to construct examples of non-compact CMC surfaces with annular ends, as Kapouleas did in 1990 [START_REF] Kapouleas | Complete Constant Mean Curvature Surfaces in Euclidean Three-Space[END_REF].

1. This chapter is the rst paper of the thesis. It has been accepted in Indiana University Mathematics Journal and is available at www.iumj.indiana.edu/IUMJ/Preprints/8123.pdf For an immersion, having a constant mean curvature and having a harmonic Gauss map are equivalent. This is why the Weierstrass type representation of Dorfmeister, Pedit and Wu [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF] has been used since the publication of their article to construct CMC surfaces.

The DPW method can construct any conformal non-zero CMC immersion in R 3 , H 3 or S 3 with three ingredients: a holomorphic potential which takes its values in a loop algebra, a loop group factorisation, and a Sym-Bobenko formula. Several examples of CMC surfaces with annular ends, like n-noids and bubbletons, have been made by Dorfmeister, Wu, Kilian, Kobayashi, McIntosh, Rossman, Schmitt and Sterling [START_REF] Dorfmeister | Construction of constant mean curvature n-noids from holomorphic potentials[END_REF][START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF][START_REF] Kilian | Constant mean curvature cylinders[END_REF][START_REF] Kilian | New Constant Mean Curvature Surfaces[END_REF][START_REF] Kobayashi | Bubbletons in 3-dimensional space forms[END_REF][START_REF] Schmitt | Constant Mean Curvature Trinoids[END_REF]. These constructions often rely on a holomorphic perturbation of the holomorphic potential giving rise to a Delaunay surface via the DPW method, and Kilian, Rossman and Schmitt [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] have proven that such perturbations always induce asymptotically a Delaunay end.

More precisely, any Delaunay embedding can be obtained with a holomorphic potential of the form ξ D = Az -1 dz where

A = 0 rλ -1 + s rλ + s 0 .
The main result of [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] states that any immersion obtained from a perturbed potential of the form ξ = ξ D + O(z 0 ) is asymptotic to an embedded half-Delaunay surface in a neighbourhood of z = 0, provided that the monodromy problem is solved. In this paper, we allow the perturbed potential to move in the family of Delaunay potentials by introducing a real parameter t, proportional to the weight (or neck-size) of the model Delaunay surface, and consider ξ t = ξ D t + O t (z 0 ) where ξ D t is a Delaunay potential of weight 8πt. The main theorem of [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] states that for every t > 0, there exists a small neighbourhood of the origin on which the surface produced by the potential ξ t is embedded and asymptotic to a half Delaunay surface. Unfortunately, without further hypotheses, this neighbourhood vanishes into a single point as t tends to zero. Adding a few assumptions, we prove here that there exists a uniform neighbourhood of the origin upon which the surfaces induced by the family ξ t are all embedded and asymptotic to a half Delaunay surface for t > 0 small enough.

Hence, the point of our paper is not to show that the ends of the perturbed unduloid family are embedded (which is what [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] does), but that all the immersions of this family are embedded on a uniform punctured disk. Equipped with our result, Martin Traizet (in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] and [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]) showed for the rst time how the DPW method can be used to both construct CMC n-noids without symmetries and prove that they are Alexandrov embedded.

The theorem we prove is the following one (denitions and notations are claried in Section 4.1): Theorem 8. Let Φ t be a holomorphic frame arising from a perturbed Delaunay potential ξ t dened on a punctured neighbourhood of z = 0. Suppose that Φ 0 (1, λ) = I 2 and that the monodromy of Φ t is unitary. Then, if f t denotes the immersion obtained via the DPW method,

• There exists a family f D t of Delaunay immersions such that for all α < 1 and |t| small enough,

f t (z) -f D t (z) R 3 ≤ C α |t||z| α
on a uniform neighbourhood of z = 0.

• If t > 0 is small enough, then f t is an embedding of a uniform neighbourhood of z = 0.

• The limit axis of f D t as t tends to 0 can be made explicit.

An outline of the proof is given in Section 4.1.9, together with an explanation of why the convergence of t to 0 forbids us from using several key results of [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF].

4.1

The DPW method

Loop groups

Our maps will often depend on a spectral parameter λ that can be in one of the following subsets of C (R > 1):

D R = {λ ∈ C, |λ| < R} , A R = λ ∈ C, 1 R < |λ| < R , D 1 = {λ ∈ C, |λ| < 1} , A 1 = {λ ∈ C, |λ| = 1} .
For the coordinate z, we will note ( > 0):

D = {z ∈ C, |z| < } , S = {z ∈ C, |z| = } .
Let us dene the following (untwisted) loop groups and algebras:

• ΛSL 2 C is the set of smooth maps Φ : A 1 -→ SL 2 C. • ΛSU 2 ⊂ ΛSL 2 C is the set of maps F ∈ ΛSL 2 C such that F (λ) ∈ SU 2 for all λ ∈ A 1 . • Λ + SL 2 C ⊂ ΛSL 2 C is the set of maps G ∈ ΛSL 2 C that can be holomorphically extended to D 1 and such that G(0) is upper triangular. • Λ R + SL 2 C ⊂ Λ + SL 2 C is the set of maps B ∈ Λ + SL 2 C such that B(0) has positive
elements on the diagonal.

• Λsl 2 C is the set of smooth maps A :

A 1 -→ sl 2 C. • Λsu 2 is the set of maps m ∈ Λsl 2 C such that m(λ) ∈ su 2 for all λ ∈ A 1 . • Λ + sl 2 C ⊂ Λsl 2 C
is the set of maps g ∈ Λsl 2 C that can be holomorphically extended to D 1 and such that g(0) is upper triangular.

• Λ R + sl 2 C ⊂ Λ + sl 2 C is the set of maps b ∈ Λ + sl 2 C such that b(0) has real elements on the diagonal.
We also use the following notation:

O(t α , z β , λ γ ) = t α z β λ γ f (t, z, λ)
where f , on its domain of denition, is continuous with respect to (t, z, λ) and holomorphic with respect to (z, λ) for any t. If one variable is not specied, its exponent is assumed to be 0.

One step of the DPW method relies on the following Iwasawa decomposition (Theorem 8.1.1. in [START_REF] Pressley | Loop Groups[END_REF] and Proposition 6.2. in [START_REF] Mcintosh | Global solutions of the elliptic 2d periodic Toda lattice[END_REF]):

Theorem 9 (Iwasawa decomposition). Any element Φ ∈ ΛSL 2 C can be uniquely factorised into a product

Φ = F × B where F ∈ ΛSU 2 and B ∈ Λ R + SL 2 C. Moreover, the map ΛSL 2 C -→ ΛSU 2 × Λ R + SL 2 C is a C ∞ dieomorphism
for the intersection of the C k topologies (see [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF]).

The Iwasawa decomposition of a map Φ will often be written:

Φ = Uni (Φ) × Pos (Φ) ,
where Uni (Φ) is called the unitary factor of Φ and Pos (Φ) is the positive factor of Φ.

Using Corollary 4 of Section 4.6, note that if Φ is holomorphic on A R , then its unitary factor holomorphically extends to A R and its positive factor holomorphically extends to D R .

The su 2 model of R 3

In the DPW method, immersions are given in a matrix model. The euclidean space R 3 is thus identied with the Lie algebra su 2 by

x = (x 1 , x 2 , x 3 ) X = -i 2 -x 3 x 1 + ix 2 x 1 -ix 2 x 3 .
The canonical basis of R 3 identied as su 2 is denoted (e 1 , e 2 , e 3 ). In this model, the euclidean norm is given by x 2 = 4 det(X). Linear isometries are represented by the conjugacy action of SU 2 on su 2 :

H • X = HXH -1 .

The recipe

The DPW method takes for input data:

• A Riemann surface Σ;

• A Λsl 2 C-valued holomorphic 1-form ξ = ξ(z, λ) on Σ called the DPW potential
which extends meromorphically to D 1 with a pole only at λ = 0, and which must be of the form

ξ(z, λ) = ∞ j=-1 ξ j (z)λ j
where each matrix ξ j (z) depends holomorphically on z and all the entries of ξ -1 (z)

are zero except for the upper right entry which must never vanish;

• A base point z 0 ∈ Σ;

• An initial condition Φ z 0 ∈ ΛSL 2 C.
Given such data, here are the three steps of the DPW method for constructing CMC-1 surfaces in R 3 (in the untwisted setting):

1. Solve for Φ the Cauchy problem with parameter λ ∈ A 1 :

d z Φ(z, λ) = Φ(z, λ)ξ(z, λ), Φ(z 0 , λ) = Φ z 0 (λ). The solution Φ(z, •) ∈ ΛSL 2 C is called the holomorphic frame of the surface. In general, Φ(•, λ) is only dened on the universal cover Σ of Σ (see Section 4.1.6). Note that if ξ(z, •) can be holomorphically extended to A R (R > 1), then Φ(z, •) can also be holomorphically extended to A R provided that Φ z 0 is holomorphic on A R . 2. For all z ∈ Σ, Iwasawa decompose Φ(z, λ) = F (z, λ)B(z, λ).
The decomposition is done pointwise in z, but F (z, λ) and B(z, λ) depend real-analytically on z. The map F is called the unitary frame of the surface.

3. Dene f : Σ -→ su 2 by the Sym-Bobenko formula:

f (z) = Sym(F ) = i ∂F ∂λ (z, 1)F (z, 1) -1 .
The map f is then a conformal CMC-1 immersion whose normal map is given by

N (z) = -i 2 F (z, 1) 1 0 0 -1 F (z, 1) -1 . (4.2)
Its metric and Hopf dierential are

ds = 2ρ 2 |ξ 12 -1 ||dz|, Q = -2ξ 12 -1 ξ 21 0 dz 2
where ξ kl j is the (k, l)-entry of the matrix ξ j (z) and ρ is the upper-left entry of B(z, 0).

The theory states that every conformal CMC-1 immersion can be obtained this way.

Rigid motions of the surface

Let ξ be a DPW potential and Φ ∈ ΛSL 2 C a solution of dΦ = Φξ. Take a loop H ∈ ΛSU 2 that does not depend on z. Then Φ = HΦ also satises d Φ = Φξ and gives rise to a rigid motion of the original surface given by Φ.

Let f = Sym • Uni(Φ) and f = Sym • Uni( Φ). Then, f (z) = H(1) • f (z) + Sym(H).
This leads us to extend the action of section 4.1.2 to ane isometries by

H(λ) • X = H(1)XH(1) -1 + i ∂H ∂λ (1)H(1) -1 .
Note that ΛSU 2 also acts on the tangent bundle of R 3 via:

H • (p, v) = (H • p, H(1) • v) . (4.3)
This action will be useful to follow the axis of our surfaces: oriented ane lines are generated by pairs (p, v) and the action of ΛSU 2 on a given oriented ane line corresponds to the action (4.3) on its generators.

Gauging

Let (Σ, ξ, z 0 , Φ z 0 ) be a set of DPW data with dΦ = Φξ. Let G(z, λ) be a holomorphic map with respect to z ∈ Σ such that G(z, •) ∈ Λ + SL 2 C (such a map is called an admissible gauge). If we dene Φ = ΦG, then Φ and Φ give rise to the same immersion f . This operation is called gauging and one can retrieve Φ by applying the DPW method to the

data (Σ, ξ • G, z 0 , Φ z 0 G(z 0 , •)) where ξ • G = G -1 ξG + G -1 dG
is the action of gauges on potentials.

The monodromy problem

Since Φ is dened as the solution of a Cauchy problem on Σ, it is only dened on the universal cover Σ of Σ. For any deck transformation τ of Σ, we dene the monodromy matrix M τ (Φ) ∈ ΛSL 2 C as follow:

Φ(τ (z), λ) = M τ (Φ)(λ)Φ(z, λ).
Note that M τ (Φ) does not depend on z. The standard sucient condition for the immersion f to be be well-dened on Σ is the following set of equations, called the monodromy

problem in R 3 :      M τ (Φ) ∈ ΛSU 2 , (i) M τ (Φ)(1) = ±I 2 , (ii) ∂ ∂λ M τ (Φ)(1) = 0. (iii)
Remark 7. In this paper, the Riemann surface Σ will always be a punctured neighbourhood D * of z = 0. Thus, all the deck transformations τ will be associated to a closed loop around z = 0 and we will write M(Φ) instead of M τ (Φ).

Remark 8. Let Φ :

C * -→ ΛSL 2 C such that M (Φ) ∈ ΛSU 2 . Let Φ = H (h * Φ) • G where H ∈ ΛSL 2 C, G : C -→ Λ + SL 2 C is holomorphic at z = 0 and h : C -→ C is a Möbius transformation that leaves z = 0 invariant. Then M( Φ) = HM (Φ) H -1 .
Thus, if the monodromy problem for Φ is solved, a sucient condition for the monodromy problem for Φ to be solved is that H ∈ ΛSU 2 .

The Delaunay family

Delaunay surfaces come in a one-parameter family: for all t ∈ -∞, 1 16 \ {0}, there exists a unique Delaunay surface, whose weight (as dened in [START_REF] Korevaar | The structure of complete embedded surfaces with constant mean curvature[END_REF]) is 8πt. As shown in [START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF], the DPW method can retrieve these surfaces using the following data:

Σ = C * , ξ t (z, λ) = A t (λ)z -1 dz, z 0 = 1, Φ z 0 = I 2 , where A t (λ) = 0 rλ -1 + s rλ + s 0 and r, s are functions of t ∈ -∞, 1 16 satisfying      r, s ∈ R, r + s = 1 2 , rs = t. (4.4)
Note that the system (4.4) admits two solutions, whether r ≥ s or r ≤ s. For a xed value of t, these two solutions give two dierent parametrisations of the same surface (up to a translation). If r ≥ s, the unit circle of C * is mapped onto a parallel circle of maximal radius: a bulge of the Delaunay surface. If r ≤ s, the unit circle of C * is mapped onto a parallel circle of minimal radius: a neck of the Delaunay surface. As t tends to 0 and in the case r ≥ s, the immersions tend towards the parametrisation of a sphere on every compact subset of C * , which is why we call this setting the spherical case. On the other hand, when r ≤ s and t tends to 0, the immersions degenerate into a point on every compact subset of C * . Nevertheless, we call this setting the catenoidal case because applying a blowup to the immersions makes them converge towards a catenoid on every compact subset of C * (see [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] for further details).

In any case, the corresponding holomorphic frame is explicit:

Φ t (z, λ) = z At(λ)
as is its monodromy around z = 0:

M (Φ t ) (λ) = exp (2iπA t (λ)) = cos (2πµ t (λ)) I 2 + i sin (2πµ t (λ)) µ t (λ) A t (λ) (4.5)
where

µ t (λ) 2 = -det A t (λ) = 1 4 + tλ -1 (λ -1) 2 . (4.6)
Note that the conditions (4.4) have been chosen in order for the monodromy problem of Section 4.1.6 to be solved. The axis of the surface is given by {(x, 0, -2r), x ∈ R} and its weight is 8πt. Thus, the induced surface is an unduloid if t > 0 and a nodoid if t < 0.

Remark 9. In order to deal with a single-valued square root of µ t (λ) 2 and to avoid some resonance cases in Section 4.3, we set T > 0 and R > 1 small enough for

µ t (λ) 2 - 1 4 < 1 4
to hold for all (t, λ) ∈ (-T, T ) × A R .

Perturbed Delaunay DPW data

We take a Delaunay potentials family as in section 4.1.7 and we perturb it for z in a small uniform neighbourhood of 0:

Denition 15 (Perturbed Delaunay potential). Let > 0. A perturbed Delaunay potential is a one-parameter family {ξ t } t∈(-T,T ) of DPW potentials, holomorphic on D * × A R and of the form

ξ t (z, λ) = A t (λ)z -1 dz + R t (z, λ)dz
where A t is a Delaunay residue as in Section 4.1.7 and R t (z, λ) ∈ C 2 with respect to (t, z, λ), is holomorphic on D × A R for all t and satises R 0 (z, λ) = 0.

The following set of hypotheses will be used to make sure that our holomorphic frames have a C 0 regularity, are holomorphic with respect to (z, λ), and solve the monodromy problem:

Hypotheses 1. Let ξ t be a perturbed Delaunay potential. Let Φ t be a holomorphic frame associated to it. We suppose that

• For all t ∈ (-T, T ) and z ∈ D * , Φ t (z, •) is holomorphic on A R , • Φ t (z, λ) is continous with respect to (t, z, λ),
• The monodromy is unitary: M(Φ t ) ∈ ΛSU 2 .

Remark 10. When needed, one can replace R > 1 by a smaller value in order for Φ t to be holomorphic on A R and continuous on A R .

The theorem we prove in this paper is the following:

Theorem 10. Let ξ t be a perturbed Delaunay potential and Φ t a holomorphic frame associated to ξ t satisfying Hypotheses 1 and such that Φ 0 (1, λ) = I 2 . Let f t = Sym (Uni(Φ t )).

Then,

1. For all α < 1 there exist constants > 0, T > 0 and C > 0 such that for all 0 < |z| < and |t| < T ,

f t (z) -f D t (z) R 3 ≤ C|t||z| α
where f D t is a Delaunay immersion of weight 8πt.

2. There exist T > 0 and > 0 such that for all 0 < t < T , f t is an embedding of {0 < |z| < }.

3. If r ≥ s, the limit axis as t tends to 0 of f D t is the oriented line generated by

(-e 3 , -e 1 ).

If r ≤ s, the limit axis as t tends to 0 of f D t is the oriented line generated by (0, -e 1 ).

Remark 11. We do not have to assume that 1 ∈ D for Φ 0 to be dened at z = 1. This only comes from the fact that ξ 0 is dened on C * , which implies that Φ 0 is dened on the universal cover C * .

4.1.9 Outline of the proof and comparison with [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] In Section 4.3 we start the proof of Theorem 10 by gauging the potential and changing coordinates. Starting from

ξ t = A t z -1 dz + O(t, z 0 )dz
we gain an order on z and obtain the following new potential:

ξ t = A t z -1 dz + O(t, z)dz.
We then use the Fröbenius method and the new holomorphic frame is

Φ t = M t z At I 2 + O(t, z 2 ) .
In Section 4.4, we use the above estimate on Φ t to prove the convergence of the immersions:

f t (z) -f D t (z) R 3 ≤ C|t||z| α , α < 1
where f D t is a Delaunay immersion whose axis can be explicitly computed. To do so, we need to know the asymptotic behaviour of the positive part Pos( Φ t ), which we compute using the fact that f D t (C * ) is a surface of revolution.

Finally, Section 4.5 proves that perturbations of unduloids are embedded on a uniform neighbourhood of the origin. Although the method of this paper is inspired by what Kilian, Rossman and Schmitt did in [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF], their results cannot be used to prove our theorem. This is mainly because the asymptotics given in [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] for a xed value of our parameter t do not hold as t tends to 0.

As an example, consider the proof of Lemma 2.5 in [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF]: with our hypotheses, the constant they call κ becomes a function of t such that (with our notation of Section 4.3.2)

κ | t=0 = c 12 (0, 0) 4 = 0.
Later in the proof, computing the determinant of the linear map L 1 gives

det L 1 = O(t)
and their gauged potential is then of the form

ξ t = A t z -1 dz + O(t -1 , z)dz,
the corresponding holomorphic frame being

Φ t = M t z At I 2 + O(t -1 , z 2 ) .
Applying the Sym-Bobenko formula would give at best

f t (z) -f D t (z) R 3 ≤ C 1 |t| |z| α , α < 1 (4.7)
which is not enough to show the convergence of the immersions on the compact sets of C * as t tends to 0. Note that gaining one order on |t| in the estimate (4.7) is still not enough to show the embeddedness of f t , since the rst catenoidal neck of f D t , which has a size of the order of t, is attained for |z| ∼ |t| as t tends to 0.

Finally, some bounds used in [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] such as (see Lemma 1.11 in [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF])

c 1 (λ) = max x∈[0,ρ) B(x, λ)
depend on t in our framework and may explode as t tends to 0.

An application

Before proving Theorem 10, we must take account of the fact that one of its hypotheses is too restrictive. Indeed, Φ 0 (1, λ) = I 2 has no reason to hold when one wants to construct examples, as Martin Traizet did in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] and [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]. We thus show here on a specic example how to ensure this hypothesis by gauging the potential and changing coordinates.

In all the section, ξ t is a perturbed Delaunay potential with r ≥ s and Φ t is a holomorphic frame associated to ξ t , satisfying Hypotheses 1 and such that Φ 0 (1, λ) = M (λ)

where

M (λ) = a bλ -1 cλ d ∈ ΛSL 2 C (a, b, c, d ∈ C). (4.8) 
After some simplication, we will be able to apply Theorem 10 even though Φ 0 (1, λ) = I 2 . The only dierence in the conclusion will be in the third point: as t tends to 0, the limit axis of the model Delaunay surface f D t will be the oriented line generated by Q • (0, e 3 )

where

Q = Uni [M H] (4.9)
with

H(λ) = 1 √ 2 1 -λ -1 λ 1 .
(4.10)

The method involves gauging, changing coordinates and applying an isometry, and relies on the fact that one can explicitly compute the Iwasawa decomposition of M H. Indeed, for all a, b, c, d ∈ C such that ad -bc = 1,

a bλ -1 cλ d = 1 |b| 2 + |d| 2 d bλ -1 -bλ d × 1 |b| 2 + |d| 2 1 0 ab + cd λ |b| 2 + |d| 2 (4.11)
is the Iwasawa decomposition of the left-hand side term. Note that if the matrix M is explicit, then this formula makes both the matrix Q in Equation (4.9) and the limit axis of f D t explicit because M H and M have the same form.

Lemma 1. Let ξ t be a perturbed Delaunay potential as in Denition 15 with r ≥ s.

Let Φ t be a holomorphic frame associated to it, satisfying Hypotheses 1 and such that Φ 0 (1, λ) = M (λ) as in (4.8). Then there exists a Möbius transformation that leaves z = 0 invariant and a gauge G such that: 

1. the new potential ξ t = (h * ξ t ) • G is
ξ t = G -1 A t h -1 dh + (h * R t )dh G + G -1 dG.
The Möbius transformation we are looking for satises h(0) = 0 and thus

h -1 dh = z -1 dz + O(z)dz.
Wanting ξ t to have a simple pole at z = 0, we look for a gauge G that is holomorphic at z = 0. Wanting the residue of ξ t to be A t , we suppose that G(0, λ) = I 2 . These two conditions together with ξ 0 = A 0 z -1 dz lead us to solve the following Cauchy problem:

dG = GA 0 z -1 dz -A 0 Gh -1 dh G(0) = I 2 .
(4.12)

If we write

h(z) = z pz + q , p ∈ C, q ∈ C * so that h -1 dh = z -1 dz - pdz pz + q ,
then the only solution of (4.12) is given (by Maple) by:

G(z, λ) =   q pz+q 0 λpz √ q(pz+q) pz+q q  
and a straightforward computation allows us to check that G satises (4.12). Setting 0 < < with < |q| |p| if necessary, this proves the rst point of the lemma.

In order to prove the second point, diagonalise A 0 = HDH -1 with H as in (4.10) and compute

Φ 0 (1, λ) = M (λ)H(λ) h(1) D H(λ) -1 G(1, λ)H(λ) H(λ) -1 (4.13)
where

D = 1 2 0 0 -1 2 .
Hence Φ 0 (1, •) is holomorphic on A R . Moreover, the fact that ξ t is C 2 in (t, z, λ) together with remark 8 imply that Φ t satises Hypotheses 1. Finally, compute

h(1) D H(λ) -1 G(1, λ)H(λ) = 1 √ q 0 λ p √ q
√ q and, using Equation (4.11),

Pos (M H) = ρ 0 λµ ρ -1 where ρ = √ 2 |b -a| 2 + |d -c| 2 , µ = 1 √ 2 × (a + b)( b -ā) + (c + d)( d -c) |b -a| 2 + |d -c| 2 .
Then, setting p = -ρµ, q = ρ 2 , Equation (4.13) becomes (Q is dened in (4.9))

Φ 0 (1, λ) = QH -1 ∈ ΛSU 2 because H ∈ ΛSU 2 .
If one wants to apply Theorem 10, it then suces to set

Φ t = HQ -1 Φ t
where Φ t is constructed by Lemma 1. Let f D t be the model Delaunay immersion towards which the immmersion Sym Uni( Φ t ) converges. Theorem 10 then states that the limit axis as t tends to 0 of f D t is the oriented line generated by (-e 3 , -e 1 ). Compute H -1 • (-e 3 , -e 1 ) = (-e 3 , e 3 ) (0, e 3 )

to prove that Sym (Uni(Φ t )) converges to a model Delaunay surface whose limit axis as t tends to 0 is Q • (0, e 3 ). The following corollary summarises this section:

Corollary 2. Let ξ t be a perturbed Delaunay potential with r ≥ s and Φ t a holomorphic frame associated to ξ t satisfying Hypotheses 1 and such that Φ 0 (1, λ) is of the form given by (4.8). Let f t = Sym (Uni(Φ t )). Then, 1. For all α < 1 there exist constants > 0, T > 0 and C > 0 such that for all 0 < |z| < and |t| < T ,

f t (z) -f D t (z) R 3 ≤ C|t||z| α
where f D t is a Delaunay immersion of weight 8πt. 2. There exist T > 0 and > 0 such that for all 0 < t < T , f t is an embedding of {0 < |z| < }.

3. The limit axis as t tends to 0 of f D t is the oriented line generated by Q • (0, e 3 ) where Q is given by Equation (4.9).

4.3

The z A P form of Φ t Let us start the proof of Theorem 10: let ξ t be a perturbed Delaunay potential and Φ t a holomorphic frame associated to ξ t satisfying Hypotheses 1 and such that Φ 0 (1, λ) = I 2 .

In this section, we want to apply the Fröbenius method and write Φ t in a z A P form.

Unfortunately, the underlying Fuchsian system seems to admit resonance points. Our goal is to avoid them and to gain an order of convergence in the matrix P of the z A P form. We will obtain the following result: Proposition 16. There exist a change of coordinate h t and a gauge G t such that, denoting

Φ t = h * t (Φ t G t )
and

ξ t = h * t (ξ t • G t ) ,
ξ t is a perturbed Delaunay potential and Φ t is a holomorphic frame associated to ξ t satisfying Hypotheses 1 and such that Φ 0 (1, λ) = I 2 . Moreover,

Φ t (z, λ) = M t (λ)z At(λ) P t (z, λ) (4.14) 
where M t ∈ ΛSL 2 C is continuous and holomorphic on A R for all t and P t :

D -→ ΛSL 2 C
is C 2 , holomorphic on D × A R for all t and satises P t (z, λ) = I 2 + O(t, z 2 ).

Extending to the resonance points

In this section, we use the Fröbenius method to write Φ t in a z A P form, and extend this form to the resonance points. We will thus prove:

Proposition 17. There exist M t ∈ ΛSL 2 C continuous and holomorphic on A R for all t and P t : D -→ ΛSL 2 C continuous and holomorphic on D × A R for all t satisfying P t (0, λ) = I 2 and

Φ t (z, λ) = M t (λ)z At(λ) P t (z, λ).
Let us rst recall the Fröbenius method in the non-resonant case (see [START_REF] Teschl | Ordinary Dierential Equations and Dynamical Systems[END_REF] and [START_REF] Taylor | Introduction to Dierential Equations[END_REF]).

Let

> 0 and ξ be a holomorphic 1-form from D * to M 2 (C) dened by

ξ(z) = Az -1 dz + k∈N C k z k dz. For all k ∈ N, let P k solve    P 0 = I 2 , L k+1 (P k+1 ) = i+j=k P i C j (4.15)
where for all n ∈ N,

L n : M 2 (C) -→ M 2 (C) X -→ [A, X] + nX.
Then P (z) = k∈N P k z k is holomorphic on D and Φ(z) = z A P (z) is holomorphic on the universal cover D * of D * and solves dΦ = Φξ.

Let us now recall Lemma 2.2 of [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] in our framework: 

Lemma 2. Let A ∈ sl 2 C such that A 2 = µ 2 I 2 . Then for all n ∈ N, det L n = n 2 n 2 -4µ 2 (4.16) and L -1 n (X) = 1 n X - 1 n 2 -4µ 2 (nI 2 -2A) [A, X]
3. Let L t,n (X) = [A t (λ), X] + nX. • For all n ≥ 2, L t,n is invertible on (t, λ) ∈ (-T, T ) × D * R . • For n = 1, L t,1 is invertible on (t, λ) ∈ (-T, T ) \{0} × D * R \{1}.
Remark 12. If we use the Ansatz given by the Fröbenius method and write

Φ t (z, λ) = M t (λ)z At(λ) P t (z, λ) (4.18) 
where

P t (z, λ) = ∞ k=0 P t,k (λ)z k ,
note that the resonance points only occur in the computation of P t,1 (λ) because L t,n is invertible on (t, λ) ∈ (-T, T ) × A R for all n ≥ 2. Thus, we only need to extend P t,1 (λ) at t = 0 and λ = 1 to extend the z A P form of Φ t . Let us write

tC t (λ)dz := ξ t (z, λ) -A t (λ)z -1 dz | z=0 .
According to (4.15),

P t,1 (λ) = L -1 t,1 (tC t (λ)) (4.19)
and the form of det L t,1 shows that P t,1 has at most a pole of order 2 at λ = 1. Moreover, det L t,1 = O(t) and tC t = O(t), so we already know that P t (and as a consequence, M t ) extends to t = 0.

It remains to extend the z A P form (4.18) to λ = 1. To do this, we adapt the techniques used in Lemma 2.5 of [START_REF] Schmitt | Constant Mean Curvature Trinoids[END_REF] to prove the following unitary × commutator lemma: Lemma 3. Let M : A R \{1} -→ SL 2 C holomorphic on A R \{1} with at most a pole at λ = 1. Let t = 0, Q = exp (2iπA t ) ∈ ΛSU 2 and suppose that for all λ ∈ A 1 \{1}, M QM -1 ∈ SU 2 . Then there exist U ∈ ΛSU 2 and K :

A R \{1} -→ SL 2 C holomorphic such that M = U K [A t , K] = 0.
Proof. We rst apply Lemma 2.5 of [START_REF] Schmitt | Constant Mean Curvature Trinoids[END_REF] to construct U and K satisfying M = U K and

[Q, K] = 0 on A 1 \{1}. The map U is holomorphic on a small neighbourhood of A 1 .
Without loss of generality, let this neighbourhood be A R . Then, K is meromorphic on A R \{1} with at most a pole at λ = 1. Hence the map λ -→ [Q(λ), K(λ)] is holomorphic on A R \{1} and vanishes on A 1 \{1}. Thus, for all λ ∈ A R \{1},

[Q(λ), K(λ)] = 0. (4.20)
Recalling Equation (4.5),

Q = cos(2πµ t )I 2 + i sin(2πµ t ) µ t A t .
Hence Equation (4.20) implies that [A t , K] = 0 wherever µ t (λ) 2 = 1 4 . Using (4.6),

[A t (λ), K(λ)] = 0 for all (t, λ) ∈ (-T, T ) \{0} × A R \{1}.

We can now extend the z A P form of Φ t to λ = 1. For t = 0 and λ ∈ A 1 \{1}, use Lemma 3 to write

Φ t (z, λ) = U t (λ)z At(λ) K t (λ)P t (z, λ).
Let > 0 small enough for P t (•, λ) to be dened on D . On S × A 1 \{1}, Φ t and z At are bounded. Then the map (z, λ) -→ K t P t is bounded on S × A 1 \{1} and holomorphic on

D × A 1 \{1}, so it is bounded on D × A 1 \{1}. But P t (0, λ) = I 2 , so K t is bounded on A 1 \{1}. Thus, P t is bounded on D × A 1 \{1}. But P t is holomorphic on D × A R \{1}
with at most a pole at λ = 1, so P t is holomorphic on D × A R and M t is holomorphic on A R . This ends the proof of Proposition 17.

A property of ξ t

The fact that there exists a holomorphic frame Φ t associated to ξ t such that M (Φ t ) ∈ ΛSU 2 and Φ 0 (1, λ) = I 2 gives us a piece of information on the potential ξ t . Let C t (λ) ∈ sl 2 C so that Proof. First, note that Φ 0 (1, λ) = I 2 implies that Φ 0 (z, λ) = z A 0 (λ) , and thus M(Φ 0 ) = -I 2 . Let γ ⊂ D * be a closed loop around 0. Apply Proposition 20 of Section 4.7 to get (X denotes the derivative of X at t = 0 and R t is the holomorphic part of ξ t )

ξ t (z, λ) = A t (λ)z -1 dz + tC t (λ)dz + O(t, z)dz
M(Φ t ) = γ z A 0 ξ z -A 0 × M(Φ 0 ) = - γ z A 0 A z -1 z -A 0 dz - γ z A 0 R z -A 0 dz = M(z At ) - γ z A 0 R z -A 0 dz. But M(Φ t ), M(z At ) ∈ ΛSU 2 and M(Φ 0 ) = M(z A 0 ) = -I 2 . Thus, M(Φ t ) , M(z At ) ∈ Λsu 2 and γ z A 0 R z -A 0 dz ∈ Λsu 2 .
(4.23)

Diagonalise A 0 = HDH -1 with D = 1 2 0 0 -1 2 
and H ∈ ΛSU 2 to be expressed later. Then

z D = 1 √ z z 0 0 1 and γ z A 0 R z -A 0 dz = γ Hz D H -1 (C 0 + O(z)) Hz -D H -1 = H Res z=0 z D H -1 C 0 Hz -D H -1 .
Equation (4.23) and H ∈ ΛSU 2 imply that Two cases can occur:

Res z=0 z D H -1 C 0 Hz -D ∈ Λsu 2 .
• If r ≥ s, H = 1 √ 2 1 -λ -1 λ 1 ∈ ΛSU 2 and computation gives c(λ) = -λ c 11 (0, λ) + c 12 (0, λ) 2 + c 21 (0, λ) 2 .
Using Equation (4.25), c 21 (0, 0) = 0 and p 0 = 0.

• If r ≤ s, the same reasoning applies with

H(λ) = 1 √ 2 1 -1 1 1 and c(λ) = -λ -1 c 12 (0, λ) 2 + c 21 (0, λ) 2 -c 11 (0, λ).
Thus, c 12 (0, 0) = 0 and p 0 = 0.

Gaining an order of convergence

We can now prove Proposition 16 by following the method used in Section 2.2 of [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF]:

gauging the potential. The gauge we will use is of the following form:

G t (z, λ) = exp (g t (λ)z) (4.26)
which is an admissible gauge provided that g t ∈ Λ + sl 2 C. This is why we need the following lemma:

Lemma 5. Let

g t (λ) = p t A t (λ) -P t,1 (λ) 
where P t,1 is dened in Equation (4. [START_REF] Kilian | New Constant Mean Curvature Surfaces[END_REF]). Then 1. The map g t is in Λ + sl 2 C.

2. The map g t extends to t = 0 with g 0 = 0.

Proof. To prove the rst point, let t = 0 and use Equations (4.19), (4.21), (4.17) and (4.22) to compute (this is a tedious calculation)

P t,1 (λ) = λ -1 0 rp t 0 0 + λ 0 sp t + O(λ).
Thus,

g t (λ) = p t A t (λ) -P t,1 (λ) = λ -1 0 0 0 0 + λ 0 0 + O(λ).
For the second point, use Equations (4.19) and (4.17) to write for t = 0:

P t,1 = tL -1 t,1 (C t ) = t C t - 1 1 -4µ 2 t (I 2 -2A t ) [A t , C t ] .
Note that C t is continuous at t = 0 because ξ t ∈ C 2 and that 1 -4µ 2 t = O(t) to extend P t,1 to t = 0. Moreover, recall Lemma 4, Equation (4.6) and diagonalise A 0 = HDH -1 to get:

g 0 = -λ 4(λ -1) 2 H (I 2 -2D) D, H -1 C 0 H H -1 .
A straightforward computation gives

(I 2 -2D) D, H -1 C 0 H = 0 0 -2c(λ) 0
with c(λ) as in Equation (4.25). Hence g 0 = 0.

Let G t be the gauge dened by (4.26). Then the gauged potential has the form

ξ t • G t (z, λ) = A t (λ)z -1 dz + ([A t (λ), g t (λ)] + g t (λ) + tC t (λ)) dz + O(t, z)dz + O(g 2 t z)dz = A t (λ)z -1 dz + (L t,1 (g t (λ)) + tC t (λ)) dz + O(t, z)dz = A t (λ)z -1 dz + p t A t (λ)dz + O(t, z)dz,
because of Equation (4.19). This gauge has been chosen to t with the following change of coordinate:

h t (z) = z 1 + p t z .
The resulting potential (dened in Proposition 16) is then

ξ t = A t dz 1 + p t z + p t A t dz (1 + p t z) 2 + O(t, z)dz = A t z -1 dz + O(t, z)dz
because p 0 = 0. Apply the Fröbenius method to ξ t to obtain (4.14) and choose ≤ such that for all t = 0, < |p t | -1 to end the proof of Proposition 16.

Convergence of immersions

In this section, we prove the rst and third points of Theorem 10. In the end, we want

to compare Φ t (z, λ) = M t (λ)z At(λ) I 2 + O(t, z 2 ) to Φ D t (z, λ) = M t (λ)z At(λ) .
We will denote

F D t = Uni(Φ D t )
and

f D t = Sym(F D t ).
We rst want to make sure that Φ D t induces a Delaunay surface for all t. For this purpose, recall Lemma 1.12 in [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF], which implies that f D t is a Delaunay surface of weight 8πt. Hence, there exists a rigid motion φ of R 3 such that φ • f D t has the following parametrisation:

φ • f D t : Σ -→ R 3 z = e x+iy -→ (τ t (x), σ t (x) cos y, σ t (x) sin y)
where (τ t (x), σ t (x)) is the prole curve of the surface. Recalling that the coordinates are isothermal gives the following metric:

ds 2 t = σ 2 t |dz| 2 |z| 2 . (4.27)
Let us compare the asymptotic behaviours of the unitary parts of Φ t and Φ D t for λ ∈ A 1 using, as in [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF], a Cauchy formula. We will use the following norms:

For v = (v 1 , v 2 ) ∈ C 2 , |v| = |v 1 | 2 + |v 2 | 2 1 2 . For M ∈ M 2 (C), M = sup |v|=1 |M v|. For Ψ : E -→ M 2 (C), Φ E = sup λ∈E Ψ(λ) .
Lemma 6. For all α < 1 there exist constants > 0, T > 0 and C > 0 such that for all 0 < |z| < and |t| < T ,

F D t -1 F t -I 2 A 1 ≤ C|t||z| α (4.28)
and

∂ ∂λ F D t -1 F t A 1 ≤ C|t||z| α . (4.29)
Proof. The rst step is to estimate the norm of the positive part B D t of Φ D t . We rst estimate Φ D t for |z| < 1: noting that A t is diagonalisable, that its eigenvalues tend to ±1/2 as t → 0, and recalling that M t is continuous at t = 0 ensure that for all α < 1 there exists (T, R) and C 1 > 1 such that for all |t| < T ,

Φ D t (z, λ) A R ≤ C 1 |z| -1 2 -1-α 4 .
We 

F D t (z, λ) A R ≤ C 2 F D t (1, λ) A R × exp (R -1) 2 γ |σ t (log |z|)| |z| .
But σ t is uniformly bounded because so is the distance between the prole curve and the axis of a Delaunay surface. Moreover, the unitary frame at z = 1 is also bounded. Hence the existence, for R > 1 small enough, of a constant C 3 ≥ 1 such that

F D t (z, λ) A R ≤ C 3 |z| -1-α 4 .
We can now estimate the positive factor: for all α < 1 there exist T > 0, R > 1 and C 4 ≥ 1

such that for all |t| < T and |z| < 1

B D t (z, λ) A R ≤ F D t (z, λ) -1 A R × Φ D t (z, λ) A R ≤ C 4 |z| α 2 -1 .
We then dene

Φ t := F D t -1 F t × B t B D t -1 = B D t Φ D t -1 Φ t B D t -1 =: F t × B t with F t ∈ ΛSU 2 and B t ∈ Λ R + SL 2 C and thus have Φ t (z, λ) -I 2 A R = B D t (z, λ) (P t (z, λ) -I 2 ) B D t (z, λ) -1 A R ≤ B D t (z, λ) 2 A R O(t, |z| 2 ) ≤ C|t||z| α .
Let n k denote the seminorms

n k (X) = k j=0 ∂ k X ∂λ k A 1
.

Apply Cauchy formula with λ ∈ ∂A R to get

n k Φ t -I 2 ≤ c k |t||z| α , ∀k ∈ N where c k > 0 are uniform constants. But Uni( Φ t ) = F t = F D t -1 F t and Iwasawa decom- position is a C 1 -dieomorphism, so n 0 F t -I 2 ≤ C|t||z| α and n 1 F t -I 2 ≤ C|t||z| α .
We then have (4.28) and (4.29).

The asymptotic behaviour of ∂ Ft ∂λ allows us to prove the convergence of immersions as stated in the rst point of Theorem 10. The Sym-Bobenko formula for R 3 implies that (we omit the index t)

iF (z, 1) ∂(F -1 F D ) ∂λ (z, 1)F D (z, 1) -1 = i ∂F D ∂λ (z, 1)F D (z, 1) -1 -i ∂F ∂λ (z, 1)F (z, 1) -1 = f D (z) -f (z).
We can then compute

f t (z) -f D t (z) 2 R 3 = 4 det f t (z) -f D t (z) = -4 det ∂(F -1 t F D t ) ∂λ (z, 1) ≤ C 2 2 t 2 |z| 2α .
And then for all α < 1 there exist constants > 0, T > 0 and C > 0 such that for all 0 < |z| < and |t| < T ,

f t (z) -f D t (z) R 3 ≤ C|t||z| α . (4.30)
To prove the third point of Theorem 10, use (4.4) and note that M 0 = I 2 . So the axis of f D t as t → 0 is the same that the axis of the unperturbed Delaunay surface induced by z At .

In order to prove that the surface is embedded, we will need the convergence of the normal maps: Proposition 18. For all α < 1 there exist constants > 0, T > 0 and C > 0 such that for all 0 < |z| < and |t| < T ,

N t (z) -N D t (z) R 3 ≤ C|t||z| α
Proof. Use the denition of the normal maps in Equation (4.2) to write

N t (z) -N D t (z) = -i 2 F D t (z, 1) AM A + AM + M A F D t (z, 1) -1
where

A = F D t (z, 1) -1 F t (z, 1) -I 2 = O(t, |z| α ), A = F t (z, 1) -1 F D t (z, 1) -I 2 = O(t, |z| α ) and M = 1 0 0 -1 .
Use equation (4.1) to get the conclusion.

It remains to show that the surface is embedded if t > 0.

Embeddedness

We suppose in this section that 0 < t < T . The asymptotic behaviour of f t and the fact that f D t is an embedding for all t allow us to show that f t is an embedding of a suciently small uniform neighbourhood of z = 0 for t small enough. We rst give a general result of embeddedness and then apply this result to show that our surfaces are embedded.

Proposition 19. Let f R n : C * -→ M R n = f R n (C * ) ⊂ R 3 
be a sequence of complete immersions with normal maps N R n and an end at z = 0. Suppose that for all n there exists r n > 0 such that the tubular neighbourhood Tub rn M R n of M R n is embedded. Suppose that for all > 0 there exists 0 < < such that for all n ∈ N, x ∈ S and y ∈ D * ,

f R n (x) -f R n (y) R 3 > 2r n . (4.31) 
Let U * ⊂ C * be a punctured neighbourhood of z = 0 and f n : U * -→ R 3 a sequence of immersions with normal maps N n satisfying

sup n∈N f n (z) -f R n (z) R 3 r n -→ z→0 0 (4.32)
and

sup z∈U * N n (z) -N R n (z) R 3 -→ n→∞ 0. (4.33)
Then there exist > 0 and N ∈ N such that for all n ≥ N , f n is an embedding of D * .

Proof. Let us split the proof in several steps.

• Claim 1: there exists > 0 such that the map

ϕ n : D * -→ M R n z -→ π n • f n (z) (where π n is the projection from Tub rn M R n onto M R n ) is well-dened and satises ϕ n (z) -f R n (z) R 3 < r n (4.34)
for all z ∈ D * .

To prove this rst claim, use Hypothesis (4.32): there exists > 0 such that for all 

n ∈ N and z ∈ D * f n (z) -f R n (z) R 3 < r n 2 .
* ϕ n (z) -f R n (z) R 3 ≤ ϕ n (z) -f n (z) R 3 + f n (z) -f R n (z) R 3 < r n
and Equation (4.34) holds. We x and so that Equation (4.31) is satised.

• Claim 2 : there exists N ∈ N such that for all n ≥ N , ϕ n is a local dieomorphism on D * .

Let z ∈ D * . In order to show that ϕ n is a local dieomorphism, we show that

N ϕn (z), N n (z) > 0 (4.36)
where N ϕn is dened by Use Hypothesis (4.33) to choose a uniform N ∈ N such that for all n ≥ N ,

N ϕn : D * -→ S 2 ⊂ R 3 z -→ η R n (ϕ n (z)) and η R n is the Gauss map of M R n . First, let γ ⊂ M R n be a path joining ϕ n (z) to f R n (z). Using the fact that Tub rn M R n is embedded, one has dη R n ≤ 1 r n and N ϕn (z) -N R n (z) R 3 ≤ 1 r n × |γ|. Let σ(t) = (1 -t)f n (z) + tf R n (z), t ∈ [0, 1]. Then, σ(t) -f R n (z) R 3 ≤ (1 -t) f n (z) -f R n (z) R 3 < r n 2 (4.
N ϕn (z) -N n (z) ≤ N ϕn (z) -N R n (z) + N R n (z) -N n (z) < √ 2,
which proves Equation (4.36) and this second claim. We x such N and n.

• Claim 3 : the restriction

ϕ n : ϕ -1 n ϕ n (D * ) ∩ D * -→ ϕ n D * z -→ ϕ n (z)
is a covering map.

It suces to show that ϕ n is a proper map. Let

(x i ) i∈N ⊂ ϕ -1 n ϕ n (D * ) ∩ D * such that ( ϕ n (x i )) i∈N converges to p ∈ ϕ n D * . Then (x i ) i converges to x ∈ D . Using Equation (4.34
) and the fact that f R n has an end at 0,

x = 0. If x ∈ ∂D , denoting x ∈ D * such that ϕ n ( x) = p, one has f R n (x) -f R n ( x) R 3 < f R n (x) -p R 3 + f R n ( x) -ϕ n ( x) R 3 < 2r n
which contradicts the denition of . Thus, ϕ n is a proper local dieomorphism between locally compact spaces, i.e. a covering map.

• Claim 4 : this covering map is one-sheeted.

To compute the number of sheets, let γ : [0, 1] -→ D * be a loop of winding number 1 around 0, Γ = f R n (γ) and Γ = ϕ n (γ) ⊂ M R n and let us construct a homotopy between Γ and Γ. Let

σ t : [0, 1] -→ R 3 s -→ (1 -s) Γ(t) + sΓ(t).
For all t, s ∈ [0, 1],

σ t (s) -Γ(t) R 3 < r n which implies that σ t (s) ∈ Tub rn M R n because M R
n is complete. One can thus dene the following homotopy between Γ and Γ

H : [0, 1] 2 -→ M R n (s, t) -→ π n • σ t (s)
where π n is the projection from Tub rn M R n to M R n . Using the fact that f R n is an embedding, the degree of Γ is one, and the degree of Γ is also one. Hence, ϕ n is one-sheeted.

• Conclusion: the map ϕ is a dieomorphism, so f n D * is a graph over M R n contained in its embedded tubular neighbourhood and f n D * is thus embedded.

We can now apply Proposition 19 to each case. Let (t n ) be any sequence in (-T, T ) such that t n → 0.

• If r ≥ s, we set f R n = f D tn and f n = f tn . We aim to apply Proposition 19 on f R n and f n . The tubular radius r n is of the order of 4t n and Hypothesis (4.31) is satised because f R n tends to an immersion of a sphere. Equation (4.30) and Proposition 18 ensure that Hypotheses (4.32) and (4.33) hold.

• If r ≤ s, we set f R n = 1 tn f D tn and f n = 1 tn f tn . We aim to apply Proposition 19 on f R n and f n . The tubular radius r n is of the order of 4 and Hypothesis (4.31) is satised because f R n tends to an immersion of a catenoid (see [38]). Equation (4.30) and Proposition 18 ensure that Hypotheses (4.32) and (4.33) hold.

The second point of our theorem is then proved.

4.6. IWASAWA EXTENDED

Iwasawa extended

In this section, we set

A 1 R ,1 = λ ∈ C : 1 R < |λ| < 1 . Lemma 7. Let F : A 1 R ,1 -→ SL 2 C
be a holomorphic map that can be continuously extended to the circle A 1 and such that F (λ) ∈ SU 2 for all λ ∈ A 1 . Then F holomorphically extends to A R into a map that satises

t F 1 λ = F (λ) -1 ∀λ ∈ A R . (4.38) 
Proof. Apply Schwarz reexion principle on each coecient of the matrix

F (λ) = F 11 (λ) + F 22 (λ) F 12 (λ) -F 21 (λ) i (F 12 (λ) + F 21 (λ)) i (F 11 (λ) -F 22 (λ))
where F ij denote the entries of F . The fact that F (λ) ∈ SU 2 for all λ ∈ A 1 ensures that Im F = 0 on A 1 . Thus, F holomorphically extends to A R and satises for all λ ∈ A R

F 1 λ = F (λ).
Hence, F holomorphically extends to A R and satises Proof. Write F = ΦB -1 to holomorphically extend F to A 1 R ,1 . Apply Lemma 7 to holo- morphically extend F to A R , and write B = F -1 Φ to holomorphically extend B to D R .

Derivative of the monodromy

The following proposition, used in Section 4.3, is derived from Proposition 8 in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF].

Proposition 20. Let ξ t be a C 1 family of matrix-valued 1-forms on a Riemann surface Σ, dened for t in a neighbourhood of t 0 ∈ R. Let Σ be the universal cover of Σ. Fix a point z 0 in Σ and let z 0 be a lift of z 0 to Σ. Let Φ t be a continuous family of solutions of dΦ t = Φ t ξ t on Σ such that for all t,

M(t 0 ), Φ t 0 (z 0 )Φ t (z 0 ) -1 = 0, (4.39) 
where M(t) is the monodromy of Φ t with respect to some γ ∈ π 1 (Σ, z 0 ). Let γ be the lift of γ to Σ such that γ(0) = z 0 . Then M is dierentiable at t 0 and

M (t 0 ) = γ Φ t 0 ∂ξ t ∂t | t=t 0 Φ -1 t 0 × M(t 0 ).
In particular, if M(t 0 ) = ±I 2 or if Φ t (z 0 ) is constant, then (4.39) is satised.

Proof. Proposition 8 in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] is proved in the case where Φ t (z 0 ) is constant. Let Φ t (z) = Φ t (z 0 ) -1 Φ t (z), so that d Φ t = Φ t ξ t and Φ t (z 0 ) = I n . Let M(t) be the monodromy of Φ t along γ. Then Proposition 5 of [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] applies and

M (t 0 ) = γ Φ t 0 (z) ∂ξ t (z) ∂t | t=t 0 Φ t 0 (z) -1 × M(t 0 ).
On the other hand,

M(t) = Φ t (z 0 ) M(t)Φ t (z 0 ) -1
and because of Equation (4.39),

M(t 0 ) = Φ t (z 0 ) M(t 0 )Φ t (z 0 ) -1 .
Thus, M is dierentiable at t 0 and

M (t 0 ) = Φ t 0 (z 0 ) M (t 0 )Φ t 0 (z 0 ) -1
which proves the proposition.

A control formula on the unitary frame

The following proposition is used in Section 4.4.

Proposition 21. Let (Σ, ξ, z 0 , Φ z 0 ) be a set of untwisted DPW data, holomorphic for

λ ∈ A R with R ≥ 1. Then for all z 1 , z 2 ∈ Σ and γ ⊂ Σ joining z 1 to z 2 , F (z 1 , λ) A R ≤ C F (z 2 , λ) A R × exp (R -1) γ ρ 2 (w)|a -1 (w)||dw|
where C is a uniform positive constant, a -1 (z)dz is the λ -1 factor of ξ and ρ(z) is the upper-left entry of Pos(Φ)(z, 0).

Proof. Write ξ(z, λ) = λ -1 0 a -1 (z) 0 0 dz + λ 0 c 0 (z) a 0 (z) b 0 (z) -c 0 (z) dz + O(λ).
Let Φ = F B be the Iwasawa decomposition of Φ. Computing formula (4.40) of [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF] in an explicit form and in the untwisted setting gives dF = F L where

L(z, λ) = ρ -1 ρ z λ -1 ρ 2 a -1 b 0 ρ -2 -ρ -1 ρ z dz + -ρ -1 ρ z -b 0 ρ -2 -λρ 2 a -1 ρ -1 ρ z dz. Let F (z, λ) = F z, λ |λ| so that F (z, λ) ∈ SU 2 for all λ ∈ A R . Then d F = F L where L(z, λ) = L z, λ |λ| .
Using the variation of constants method, for all z 1 , z 2 ∈ Σ (we ommit the variable λ),

F (z 1 ) = F (z 2 ) F (z 2 ) -1 F (z 1 ) + z 1 z 2 F (w) L(w) -L(w) F (w) -1 F (z 1 ). But L(w, λ) -L(w, λ) = ρ 2 (w) 0 a -1 (w)λ -1 (1 -|λ|) dw -a -1 (w)λ 1 -|λ| -1 d w 0 so there exists a uniform constant C such that L(w, λ) -L(w, λ) A R ≤ C(R -1)ρ 2 (w)|a -1 (w)||dw|
and the result follows from Gronwall's inequality (Lemma 2.7 in [START_REF] Teschl | Ordinary Dierential Equations and Dynamical Systems[END_REF]) using the fact that F ∈ SU 2 for all λ ∈ A R .

As an application, recall that in the untwisted R 3 setting, if f = Sym(F ), then f is a CMC 1 conformal immersion whose metric is given by ds = 2ρ 2 |a -1 ||dz|.

F (z 1 , λ) A R ≤ C F (z 2 , λ) A R exp (R -1) 2 |γ| .
(4.40)

Introduction

In [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF], Dorfmeister, Pedit and Wu introduced a loop group method (the DPW method)

for constructing harmonic maps from a Riemann surface into a symmetric space. As a consequence, their method provides a Weierstrass-type representation of constant mean curvature surfaces (CMC) in Euclidean space R 3 , three-dimensional sphere S 3 , or hyperbolic space H 3 . Many examples have been constructed (see for example [START_REF] Kilian | New Constant Mean Curvature Surfaces[END_REF][START_REF] Dorfmeister | Construction of constant mean curvature n-noids from holomorphic potentials[END_REF][START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF][START_REF] Dorfmeister | Constant mean curvature surfaces in hyperbolic 3-space via loop groups[END_REF][START_REF] Heller | Higher genus minimal surfaces in S 3 and stable bundles[END_REF][START_REF]Lawson's genus two surface and meromorphic connections[END_REF]).

Among them, Traizet [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF][START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] showed how the DPW method in R 3 can construct genus zero n-noids with Delaunay ends (as Kapouleas did with partial dierential equations techniques in [START_REF] Kapouleas | Complete Constant Mean Curvature Surfaces in Euclidean Three-Space[END_REF]) and glue half-Delaunay ends to minimal surfaces (as did Mazzeo and Pacard in [START_REF] Mazzeo | Constant mean curvature surfaces with Delaunay ends[END_REF], also with PDE techniques). A natural question is whether these constructions can be carried out in H 3 . Although properly embedded CMC annuli of mean curvature H > 1 in H 3 are well-known since the work of Korevaar, Kusner, Meeks and Solomon [START_REF] Korevaar | Constant Mean Curvature Surfaces in Hyperbolic Space[END_REF], no construction similar to [START_REF] Kapouleas | Complete Constant Mean Curvature Surfaces in Euclidean Three-Space[END_REF] or [START_REF] Mazzeo | Constant mean curvature surfaces with Delaunay ends[END_REF] can be found in the literature. This paper uses the DPW method in H 3 to construct these surfaces. The two resulting theorems are as follows.

Theorem 11. Given a point p ∈ H 3 , n ≥ 3 distinct unit vectors u 1 , • • • , u n in the tangent 1. This chapter is the second paper of the thesis. It has been assigned the arXiv number 1905.09096 but has not been submitted yet. 2. Denoting by ∆ i,t the axis of the i-th Delaunay end, ∆ i,t converges to the oriented geodesic through the point p in the direction of u i .

3. If all the weights τ i are positive, then M t is Alexandrov-embeddedd.

4. If all the weights τ i are positive and if for all i = j ∈ [1, n], the angle θ ij between u i and u j satises

sin θ ij 2 > √ H 2 -1 2H , (5.2) 
then M t is embedded.

Theorem 12. Let M 0 ⊂ R 3 be a non-degenerate minimal n-noid with n ≥ 3 and let H > 1. There exists a smooth family of CMC H surfaces (M t ) 0<|t|<T in H 3 such that 1. The surfaces M t have genus zero and n Delaunay ends.

2. After a suitable blow-up, M t converges to M 0 as t tends to 0.

3. If M 0 is Alexandrov-embedded, then all the ends of M t are of unduloidal type if t > 0 and of nodoidal type if t < 0. Moreover, M t is Alexandrov-embedded if t > 0.

Following the proofs of [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF][START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] gives an eective strategy to construct the desired CMC surfaces M t . This is done in Sections 5.3 and 5.4. However, showing that M t is Alexandrovembedded requires a precise knowledge of its ends. This is the purpose of the main theorem (Section 5.2, Theorem 14). We consider a family of holomorphic perturbations of the data giving rise via the DPW method to a half-Delaunay embedding f 0 :

D * ⊂ C -→ H 3 and
show that the perturbed induced surfaces f t (D * ) are also embedded. Note that the domain on which the perturbed immersions are dened does not depend on the parameter t, which is stronger than f t having an embedded end, and is critical for showing that the surfaces M t are Alexandrov-embedded. The essential hypothesis on the perturbations is that they do not occasion a period problem on the domain D * (which is not simply connected). The proof relies on the Fröbenius method for linear dierential systems with regular singular Figure 5.1 Theorem 11 ensures the existence of n-noids with small necks. For H > 1 small enough (H 1.5 on the picture), there exist coplanar embedded n-noids with more than six ends.

points. Although this idea has been used in R 3 by Kilian, Rossman, Schmitt [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] and [START_REF] Raujouan | On Delaunay Ends in the DPW Method[END_REF], the case of H 3 generates two extra resonance points that are unavoidable and make their results inapplicable. Our solution is to extend the Fröbenius method to loop-group-valued dierential systems.

5.1

Delaunay surfaces in H 3 via the DPW method This Section xes the notation and recalls the DPW method in H 3 .

Hyperbolic space

Matrix model. Let R 1,3 denote the space R 4 with the Lorentzian metric x, x = -x 2 0 + x 2 1 +x 2 2 +x 2 3 . Hyperbolic space is the subset H 3 of vectors x ∈ R 1,3 such that x, x = -1 and x 0 > 0, with the metric induced by R 1,3 . The DPW method constructs CMC immersions into a matrix model of H 3 . Consider the identication 

x = (x 0 , x 1 , x 2 , x 3 ) ∈ R 1,3 X = x 0 + x 3 x 1 + ix 2 x 1 -ix 2 x 0 -x 3 ∈ H 2 where H 2 := {M ∈ M(2, C) | M * = M } denotes
H 3 = {F F * | F ∈ SL(2, C)} .
Setting

σ 1 = 0 1 1 0 , σ 2 = 0 i -i 0 , σ 3 = 1 0 0 -1 , (5.3) 
gives us an orthonormal basis (σ 1 , σ 2 , σ 3 ) of the tangent space T I 2 H 3 of H 3 at the identity matrix. We choose the orientation of H 3 induced by this basis.

Rigid motions. In the matrix model of H 

A • p := ApA * ∈ H 3 .
This action extends to tangent spaces:

for all v ∈ T p H 3 , A • v := AvA * ∈ T A•p H 3 .
The DPW method takes advantage of this fact and contructs immersions in H 3 with the moving frame method.

Geodesics. Let p ∈ H 3 and v ∈ U T p H 3 . Dene the map geod(p, v) : R -→ H 3 t -→ p cosh t + v sinh t.

(5.4) Then geod(p, v) is the unit speed geodesic through p in the direction v. The action of SL(2, C) extends to oriented geodesics via:

A • geod(p, v) := geod(A • p, A • v).
Parallel transport. Let p, q ∈ H 3 and v ∈ T p H 3 . We denote the result of parallel transporting v from p to q along the geodesic of H 3 joining p to q by Γ q p v ∈ T q H 3 . The parallel transport of vectors from the identity matrix is easy to compute with Proposition 22.

Proposition 22. For all p ∈ H 3 and v ∈ T I 2 H 3 , there exists a unique S ∈ H

++ 2 ∩ SL(2, C) such that p = S • I 2 . Moreover, Γ p I 2 v = S • v.
Proof. 

S(t) := exp (t log S) , γ(t) := S(t) • I 2 , v(t) := S(t) • v. Then v(t) ∈ T γ(t) H 3 because v(t), γ(t) = S(t) • I 2 , S(t) • v = I 2 , v = 0 and S • v = v(1) ∈ T p H 3 .
Suppose that S is diagonal. Then

S(t) = e at 2 0 0 e -at 2 
(a ∈ R)

and using equations (5.3) and (5.4),

γ(t) = e at 0 0 e -at = geod(I 2 , σ 3 )(at) is a geodesic curve. Write v = v 1 σ 1 + v 2 σ 2 + v 3 σ 3 and compute S(t) • σ i to nd v(t) = v 1 σ 1 + v 2 σ 2 + v 3 e at 0 0 -e -at . Compute in R 1,3 Dv(t) dt = dv(t) dt T = av 3 (γ(t)) T = 0
to see that v(t) is the parallel transport of v along the geodesic γ.

If S is not diagonal, write S = QDQ -1 where Q ∈ SU(2) and D ∈ H ++ 2 ∩ SL(2, C) is diagonal. Then, S • v = Q • D • Q -1 • v = Q • Γ D•I 2 I 2 (Q -1 • v). But for all A ∈ SL(2, C), p, q ∈ H 3 and v ∈ T p H 3 , A • Γ q p v = Γ A•q A•p A • v and thus S • v = Γ p I 2 v.

The DPW method for CMC H > 1 surfaces in H 3

Loop groups. In the DPW method, a whole family of surfaces is constructed, depending on a spectral parameter λ. This parameter will always be in one of the following subsets of C (ρ > 1):

S 1 = {λ ∈ C | |λ| = 1} , A ρ = λ ∈ C | ρ -1 < |λ| < ρ , D ρ = {λ ∈ C | |λ| < ρ} .
Any smooth map f : S 1 -→ M(2, C) can be decomposed into its Fourier series

f (λ) = i∈Z f i λ i . Let | • | denote a norm on M(2, C
). Fix some ρ > 1 and consider

f ρ := i∈Z |f i |ρ |i| .
Let G be a Lie group or algebra of M(2, C). We dene

• ΛG as the set of smooth functions f : S 1 -→ G.

• ΛG ρ ⊂ ΛG as the set of functions f such that f ρ is nite. If G is a group (or an algebra) then (ΛG ρ , • ρ ) is a Banach Lie group (or algebra).

• ΛG ≥0 ρ ⊂ ΛG ρ as the set of functions f such that f i = 0 for all i < 0.

• Λ + G ρ ⊂ ΛG ≥0 ρ as the set of functions such that f 0 is upper-triangular.

• Λ R + SL(2, C) ρ ⊂ Λ + SL(2, C) ρ as the set of functions that have positive elements on the diagonal.

We also dene ΛC as the set of smooth maps from S 1 to C, and ΛC ρ and ΛC ≥0 ρ as above.

Note that every function of ΛG ρ holomorphically extends to A ρ and that every function of ΛG ≥0 ρ holomorphically extends to D ρ .

We will use the Fröbenius norm on M(2, C):

|A| :=   i,j |a ij | 2   1 2
.

Recall that this norm is sub-multiplicative. Therefore, the norm • ρ is sub-multiplicative.

Moreover, for all A ∈ ΛSL(2, C) ρ ,

A -1 ρ = A ρ and for all A ∈ ΛM(2, C) ρ and λ ∈ A ρ , |A(λ)| ≤ A ρ .
The DPW method relies on the Iwasawa decomposition. The following theorem is proved in [START_REF] Mcintosh | Global solutions of the elliptic 2d periodic Toda lattice[END_REF] and is cited with our notation in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF].

Theorem 13. The multiplication map ΛSU(2

) ρ ×Λ R + SL(2, C) ρ -→ ΛSL(2, C) ρ is a smooth
dieomorphism between Banach manifolds. Its inverse map is called Iwasawa decomposition and is denoted for Φ ∈ ΛSL(2, C) ρ :

Iwa(Φ) = (Uni(Φ), Pos(Φ)) .
The ingredients. Let H > 1, q = arcoth H > 0 and ρ > e q . The DPW method takes for input data:

• A Riemann surface Σ.

• A holomorphic 1-form on Σ with values in Λsl(2, C) ρ of the following form:

ξ = α λ -1 β γ -α
where α, β, γ are holomorphic 1-forms on Σ with values in ΛC ≥0 ρ . The 1-form ξ is called the potential.

• A base point z 0 ∈ Σ.

• An initial condition φ ∈ ΛSL(2, C) ρ .
The recipe. The DPW method consists in the following steps:

1. Let z 0 be any point above z 0 in the universal cover Σ of Σ. Solve on Σ the following Cauchy problem:

dΦ = Φξ Φ( z 0 ) = φ.
(5.5)

Then Φ : Σ -→ ΛSL(2, C) ρ is called the holomorphic frame.

2. Compute pointwise on Σ the Iwasawa decomposition of Φ:

(F (z), B(z)) := Iwa Φ(z).

The unitary part F of this decomposition is called the unitary frame.

3. Dene f : Σ -→ H 3 via the Sym-Bobenko formula:

f (z) = F (z, e -q )F (z, e -q ) * =: Sym q F (z)

where F (z, λ 0 ) := F (z)(λ 0 ).

Then f is a CMC H > 1 (H = coth q) conformal immersion from Σ to H 3 . Its Gauss map (in the direction of the mean curvature vector) is given by

N (z) = F (z, e -q )σ 3 F (z, e -q ) * =: Nor q F (z)
where σ 3 is dened in (5.3). The dierential of f is given by

df (z) = 2 sinh(q)b(z) 2 F (z, e -q ) 0 β(z, 0) β(z, 0) 0 F (z, e -q ) * (5.6)
where b(z) > 0 is the upper-left entry of B(z) | λ=0 . The metric of f is given by

ds f (z) = 2 sinh(q)b(z) 2 |β(z, 0)|
and its Hopf dierential reads -2β(z, 0)γ(z, 0) sinh q dz 2 .

(5.7)

Remark 13. The results of this paper hold for any H > 1. We thus x now H > 1 and q = arcoth H. Hence,

e -q = H -1 H + 1 .
Rigid motions. Let H ∈ ΛSL(2, C) ρ and dene the new holomorphic frame Φ = HΦ with unitary part F and induced immersion f = Sym q F . If H ∈ ΛSU(2) ρ , then F = HF and Φ gives rise to the same immersion as Φ up to an isometry of H 3 :

f (z) = H(e -q ) • f (z).
If H / ∈ ΛSU(2) ρ , this transformation is called a dressing and may change the surface.

Gauging. Let G : Σ -→ Λ + SL(2, C) ρ and dene the new potential:

ξ = ξ • G := G -1 ξG + G -1 dG.
The potential ξ is a DPW potential and this operation is called gauging. The data (Σ, ξ, z 0 , φ) and Σ, ξ, z 0 , φ G(z 0 ) give rise to the same immersion.

The monodromy problem. Since the immersion f is only dened on the universal cover Σ, one might ask for conditions ensuring that it descends to a well-dened immersion on Σ. For any deck transformation τ ∈ Deck Σ/Σ , dene the monodromy of Φ with respect to τ as:

M τ (Φ) := Φ(τ (z))Φ(z) -1 ∈ ΛSL(2, C) ρ .
This map is independent of z ∈ Σ. The standard sucient conditions for the immersion f to be well-dened on Σ is the following set of equations, called the monodromy problem in

H 3 : ∀τ ∈ Deck Σ/Σ , M τ (Φ) ∈ ΛSU(2) ρ , M τ (Φ)(e -q ) = ±I 2 .
(5.8)

Use the point z 0 dened in step 1 of the DPW method to identify the fundamental group π 1 (Σ, z 0 ) with Deck( Σ/Σ). Let {γ i } i∈I be a set of generators of π 1 (Σ, z 0 ). Then the problem (5.8) is equivalent to ∀i ∈ I,

M γ i (Φ) ∈ ΛSU(2) ρ , M γ i (Φ)(e -q ) = ±I 2 .
(5.9)

Example: the standard sphere. The DPW method can produce spherical immersions of Σ = C ∪ {∞} with the potential ξ S (z, λ) = 0 λ -1 dz 0 0

and initial condition Φ S (0, λ) = I 2 . The potential is not regular at z = ∞ because it has a double pole there. However, the immersion will be regular at this point because ξ S is gauge-equivalent to a regular potential at z = ∞. Indeed, consider on C * the gauge

G(z, λ) = z 0 -λ 1 z .
The gauged potential is then

ξ S • G(z, λ) = 0 λ -1 z -2 dz 0 0 which is regular at z = ∞. The holomorphic frame is Φ S (z, λ) = 1 λ -1 z 0 1 (5.10)
and its unitary factor is

F S (z, λ) = 1 1 + |z| 2 1 λ -1 z -λz 1 .
The induced CMC-H immersion is

f S (z) = 1 1 + |z| 2 1 + e 2q |z| 2
2z sinh q 2z sinh q 1 + e -2q |z| 2 .

It is not easy to see that f S (Σ) is a sphere because it is not centered at I 2 . To solve this problem, notice that F S (z, e -q ) = R(q) F S (z)R(q) -1 where

R(q) := e q 2 0 0 e -q 2 ∈ SL(2, C) (5.11) 
and

F S (z) := 1 1 + |z| 2 1 z -z 1 ∈ SU(2).
Apply an isometry by setting

f S (z) := R(q) -1 • f S (z) and compute f S (z) = 1 1 + |z| 2 e -q + e q |z| 2
2z sinh q 2z sinh q e q + e -q |z| 2 = (cosh

q)I 2 + sinh q 1 + |z| 2 |z| 2 -1 2z 2z 1 -|z| 2 i.e.
f S (z) = geod(I 2 , v S (z))(q)

(5.12)

with geod dened in (5.4) and where in the basis (σ

1 , σ 2 , σ 3 ) of T I 2 H 3 , v S (z) := 1 1 + |z| 2 2 Re z, 2 Im z, |z| 2 -1 (5.13)
describes a sphere of radius one in the tangent space of H 3 at I 2 (it is the inverse stereographic projection from the north pole). Hence, f S (Σ) is a sphere centered at I 2 of hyperbolic radius q and f S (Σ) is a sphere of same radius centered at geod(I 2 , σ 3 )(q).

One can compute the normal map of f S :

N S (z) := Nor q F S (z) = R(q) • N S (z)
where

N S (z) := Nor q F S (z) = 1 1 + |z| 2 e -q -e q |z| 2 -2z cosh q -2z cosh q e -q |z| 2 -e q = -(sinh q)I 2 -(cosh q)v S (z) = -ġeod (I 2 , v S (z)) (q).
Note that this implies that the normal map Nor q is oriented by the mean curvature vector.

Delaunay surfaces

Constant mean curvature H > 1 surfaces of revolution in H 3 have been described in the DPW framework in [START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF]. We recall here the basic facts needed to our purpose.

The data. Let

Σ = C * , ξ r,s (z, λ) = A r,s (λ)z -1 dz where A r,s (λ) := 0 rλ -1 + s rλ + s 0 , r, s ∈ R, λ ∈ S 1 , (5.14) 
and initial condition Φ r,s (1) = I 2 . With these data, the holomorphic frame reads Φ r,s (z) = z Ar,s .

The unitary frame F r,s can be expressed in terms of elliptic functions (see [START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF]) and the DPW method states that the map f r,s = Sym q (F r,s ) is a CMC H immersion from the

universal cover C * of C * into H 3 .
Monodromy. Computing the monodromy along γ(θ) = e iθ for θ ∈ [0, 2π] gives M (Φ r,s ) := M γ (Φ r,s ) = exp (2iπA r,s ) .

Recall that r, s ∈ R to see that iA r,s ∈ Λsu(2) ρ , and thus M (Φ r,s ) ∈ ΛSU(2) ρ : the rst equation of (5.9) is satised. To solve the second one, one can determine r and s such that A r,s (e -q ) 2 = 1 4 I 2 , which will imply that M (Φ r,s ) (e -q ) = -I 2 . This condition is equivalent to r 2 + s 2 + 2rs cosh q = 1 4 .

(

Seeing this equation as a polynomial in r and computing its discriminant (1 + 4s 2 sinh 2 q > 0) ensures the existence of an innite number of solutions: given a couple (r, s) ∈ R 2 solution to (5.15), f r,s is a well-dened CMC H immersion from C * into H 3 .

Surface of revolution. Let (r, s) ∈ R 2 satisfying (5.15) and let θ ∈ R. Then, Φ r,s e iθ z = exp (iθA r,s ) Φ r,s (z).

Using iA r,s ∈ Λsu(2) ρ and diagonalising A r,s (e -q ) gives f r,s e iθ z = exp iθA r,s (e

-q ) • f r,s (z) = H r,s exp (iθD) H -1 r,s • f r,s (z) 
where

H r,s = 1 √ 2 1 -2 (re -q + s) 2 (re q + s) 1 , D = 1 2 0 0 -1 2 .
Noting that exp (iθD) acts as a rotation of angle θ around the axis geod(I 2 , σ 3 ) and that H r,s acts as an isometry of H 3 independent of θ shows that exp (iθA r,s (e -q )) acts as a rotation around the axis H r,s • geod(I 2 , σ 3 ) and that f r,s is CMC H > 1 immersion of revolution of C * into H 3 and by denition (as in [START_REF] Korevaar | Constant Mean Curvature Surfaces in Hyperbolic Space[END_REF]) a Delaunay immersion.

The weight as a parameter. For a xed H > 1, CMC H Delaunay surfaces in H 3 form a family parametrised by the weight. This weight can be computed in the DPW framework: given a solution (r, s) of (5.15), the weight w of the Delaunay surface induced by the DPW data (C * , ξ r,s , 1, I 2 ) reads w = 2π × 4rs sinh q

(5.16)

(see [START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF] or [START_REF] Fujimori | Loop Group Methods for Constant Mean Curvature Surfaces[END_REF] for details).

Lemma 8. Writing t := w 2π and assuming t = 0, equations (5.15) and (5.16) imply that

     t ≤ T 1 , r 2 = 1 8 1 -2Ht ± 2 √ T 1 -t √ T 2 -t , s 2 = 1 8 1 -2Ht ± 2 √ T 1 -t √ T 2 -t (5.17) 
with

T 1 = tanh q 2 2 < 1 2 tanh q 2 = T 2 .
Proof. First, note that (5.15) and (5.16) imply

r 2 + s 2 = 1 4 (1 -2t coth q) = 1 4 (1 -2Ht) and thus t ≤ H 2 < T 2 .
(5.18)

If r = 0, then t = 0. Thus r = 0 and s = t 4r sinh q .

Equation (5.15) is then equivalent to

r 2 + t 2 16r 2 sinh 2 q + Ht 2 = 1 4 ⇐⇒ r 4 - 1 -2Ht 4 r 2 + t 2 16 sinh 2 q = 0.
Using coth q = H, the discriminant of this quadratic polynomial in r 2 is

∆(t) = 1 16 1 -4Ht + 4t 2
which in turn is a quadratic polynomial in t with discriminant

∆ = H 2 -1 16 > 0 because H > 1. Thus ∆(t) = (T 1 -t)(T 2 -t) 4 
because H = coth q. Using (5.18), ∆(t) ≥ 0 if, and only if t ≤ T 1 and

r 2 = 1 8 1 -2Ht ± 2 (T 1 -t)(T 2 -t) .
By symmetry of equations (5.15) and (5.16), s 2 is as in (5.17).

We consider the two continuous parametrisations of r and s for t ∈ (-∞, T 1 ) such that (r, s) satises equations (5.15) and (5.16) with w = 2πt:

   r(t) := ±1 2 √ 2 1 -2Ht + 2 √ T 1 -t √ T 2 -t 1 2 , s(t) 
:= t 4r(t) sinh q .

(5.19)

Choosing the parametrisation satisfying r > s maps the unit circle of C * onto a parallel circle of maximal radius, called a bulge of the Delaunay surface. As t tends to 0, the immersions tend towards a parametrisation of a sphere on every compact subset of C * , which is why we call this family of immersions the spherical family. When r < s, the unit circle of C * is mapped onto a parallel circle of minimal radius, called a neck of the Delaunay surface. As t tends to 0, the immersions degenerate into a point on every compact subset of C * . Nevertheless, we call this family the catenoidal family because applying a blowup to the immersions makes them converge towards a catenoidal immersion of R 3 on every compact subset of C * (see Section 5.4.1 for more details). In both cases, the weight of the induced surfaces is given by w = 2πt.

Perturbed Delaunay immersions

In this section, we study the immersions induced by a perturbation of Delaunay DPW data with small non-vanishing weights in a neighbourhood of z = 0. Our results are the same whether we choose the spherical or the catenoidal family of immersions. We thus drop the index r, s in the Delaunay DPW data and replace it by a small value of t = 4rs sinh q in a neighbourhood of t = 0 such that t < T max := tanh q

2 2 = 1 2 H -H 2 -1 .
For all > 0, we denote

D := {z ∈ C | |z| < } , D * := D \ {0} .
Denition 16 (Perturbed Delaunay potential). Let ρ > e q , 0 < T < T max and > 0. A perturbed Delaunay potential is a continuous one-parameter family

(ξ t ) t∈(-T,T ) of DPW potentials dened for (t, z) ∈ (-T, T ) × D * by ξ t (z) = A t z -1 dz + C t (z)dz
where A t ∈ Λsl(2, C) ρ is a Delaunay residue as in (5.14) satisfying (5.19) and C t (z) ∈ sl(2, C) ρ is C 1 with respect to (t, z), holomorphic with respect to z for all t and satises C 0 (z) = 0 for all z.

Theorem 14. Let ρ > e q , 0 < T < T max , > 0 and ξ t be a perturbed Delaunay potential C 2 with respect to (t, z). Let Φ t be a holomorphic frame associated to ξ t for all t via the DPW method. Suppose that the family of initial conditions φ t is C 2 with respect to t, with φ 0 = z A 0 0 , and that the monodromy problem (5.9) is solved for all t ∈ (-T, T ). Let f t = Sym q (Uni Φ t ). Then, 1. For all δ > 0, there exist 0 < < , T > 0 and C > 0 such that for all z ∈ D * and t ∈ (-T , T )\{0},

d H 3 f t (z), f D t (z) ≤ C|t||z| 1-δ
where f D t is a Delaunay immersion of weight 2πt.

2. There exist T > 0 and > 0 such that for all 0 < t < T , f t is an embedding of D * .

3. The limit axis as t tends to 0 of the Delaunay immersion f D t oriented towards the end at z = 0 is given by:

1 √ 2 
1 -e q e -q 1

• geod (I 2 , -σ 3 ) in the spherical family (r > s), geod (I 2 , -σ 1 ) in the catenoidal family (r < s).

Let ξ t and Φ t as in Theorem 14 with ρ, T and xed. This Section is dedicated to the proof of Theorem 14.

The C 2 -regularity of ξ t essentially means that C t (z) is C 2 with respect to (t, z). Together with the C 2 -regularity of φ t , it implies that Φ t is C 2 with respect to (t, z). Thus M(Φ t ) is also C 2 with respect to t. These regularities and the fact that there exists a solution Φ t solving the monodromy problem are used in Section 5.2.1 to deduce an essential piece of information about the potential ξ t (Proposition 24). This step then allows us to write in Section 5.2.2 the holomorphic frame Φ t in a M z A P form given by the Fröbenius method (Proposition 25), and to gauge this expression, in order to gain an order of convergence with respect to z (Proposition 26). During this process, the holomorphic frame will loose one order of regularity with respect to t, which is why Theorem 14 asks for a C 2 -regularity of the data. Section 5.2.3 is devoted to the study of dressed Delaunay frames M z A in order to ensure that the immersions f t will converge to Delaunay immersions as t tends to 0, and to estimate the growth of their unitary part around the end at z = 0. Section 5.2.4

proves that these immersions do converge, which is the rst point of Theorem 14. Before proving the embeddedness in Section 5.2.6, Section 5.2.5 is devoted to the convergence of the normal maps. Finally, we compute the limit axes in Section 5.2.7.

A property of ξ t

We begin by diagonalising A t in a unitary basis (Proposition 23) in order simplify the computations in Proposition 24, in which we use the Fröbenius method for a xed value of λ = e ±q . This will ensure the existence of the C 1 map P 1 ∈ ΛSL(2, C) ρ that will be used in Section 5.2.2 to dene the factor P in the M z A P form of Φ t .

Proposition 23. There exist e q < R < ρ and 0 < T < T such that for all t ∈ (-T , T ),

A t = H t D t H -1 t with H t ∈ ΛSU(2) R and iD t ∈ Λsu(2) R .
Moreover, H t and D t are smooth with respect to t.

Proof. For all λ ∈ S 1 ,

-det A t (λ) = 1 4 + tλ -1 (λ -e q )(λ -e -q ) 4 sinh q (5.20) = 1 4 + t 4 sinh q λ + λ -1 -2 cosh q ∈ R.
Extending this determinant as a holomorphic function on A ρ , there exists T > 0 such that

-det A t (λ) - 1 4 < 1 4 ∀(t, λ) ∈ (-T , T ) × A ρ
With this choice of T , the function µ t : A ρ -→ C dened as the positive-real-part square root of (-det A t ) is holomorphic on A ρ and real-valued on S 1 . Note that µ t is also the positive-real-part eigenvalue of A t and thus

A t = H t D t H -1 t with H t (λ) = 1 √ 2 1 -(rλ -1 +s) µt(λ) rλ+s µt(λ) 1 , D t (λ) = µ t (λ) 0 0 -µ t (λ) .
(5.21) Let e q < R < ρ. For all t ∈ (-T , T ), µ t ∈ ΛC R and the map t → µ t is smooth on (-T , T ). Moreover, H t ∈ ΛSU(2) R , iD t ∈ Λsu(2) R and these functions are smooth with respect to t.

Remark 14. The bound t < T ensures that that 4 det A t (λ) is an integer only for t = 0 and λ = e ±q . These points make the Fröbenius system resonant, but they are precisely the points that bear an extra piece of information due to the hypotheses on M(Φ t )(e q ) and Φ 0 . Allowing the parameter t to leave the interval (-T , T ) would bring other resonance points and make Section 5.2.2 invalid. This is why Theorem 14 does not state that the end of the immersion f t is a Delaunay end for all t.

Remark 15. At t = 0, the change of basis H t in the diagonalisation of A t takes dierent values whether r > s (spherical family) or r < s (catenoidal family). One has:

H 0 (λ) = 1 √ 2 1 -λ -1 λ 1 in the spherical case, (5.22) 
H 0 (λ) = 1 √ 2 1 -1 1 1
in the catenoidal case.

(5.23)

In both cases, µ 0 = 1 2 , and thus D 0 is the same.

A basis of ΛM(2, C) ρ . Let R and T given by Proposition 23. Identify ΛM(2, C) ρ with the free ΛC ρ -module M(2, ΛC ρ ) and dene for all t ∈ (-T , T ) the basis

B t = H t (E 1 , E 2 , E 3 , E 4 ) H -1 t =: (X t,1 , X t,2 , X t,3 , X t,4
)

where

E 1 = 1 0 0 0 , E 2 = 0 1 0 0 , E 3 = 0 0 1 0 , E 4 = 0 0 0 1 . For all t ∈ (-T , T ), write C t (0) = tc 1 (t) λ -1 tc 2 (t) tc 3 (t) -tc1(t) = 4 j=1
t c j (t)X t,j .

(

The functions c j , c j are C 1 with respect to t ∈ (-T , T ) and take values in ΛC R . Moreover, the functions c i (t) holomorphically extend to D ρ .

Proposition 24. There exists a continuous function c 3 : (-T , T ) -→ ΛC R such that for all λ ∈ S 1 and t ∈ (-T , T ), c 3 (t) = t(λ -e q )(λ -e -q ) c 3 (t).

Proof. It suces to show that c 3 (0) = 0 and that the holomorphic extension of c 3 (t)

satises c 3 (t, e ±q ) = 0 for all t.

To show that c 3 (0) = 0, recall that the monodromy problem (5.9) is solved for all t and note that M(Φ 0 ) = -I 2 , which implies that, as a function of t, the derivative of M(Φ t ) at t = 0 is in Λsu(2) ρ . On the other hand, Proposition 20 in Chapter 4 ensures that

dM(Φ t ) dt | t=0 = γ Φ 0 dξ t dt | t=0 Φ -1 0 M(Φ 0 )
where γ is a generator of π 1 (D * , z 0 ). Expanding the right-hand side gives

- γ z A 0 dA t dt | t=0 z -A 0 z -1 dz - γ z A 0 dC t (z) dt | t=0 z -A 0 dz ∈ Λsu(2) ρ .
Using Proposition 20 of Chapter 4 once again, note that the rst term is the derivative of M(z At ) at t = 0, which is in Λsu(2) ρ because M(z At ) ∈ ΛSU(2) ρ and M(z A 0 ) = -I 2 .

Therefore, the second term is also in Λsu(2) ρ . Diagonalising A 0 with Proposition 23 and

using H 0 ∈ ΛSU(2) R gives 2iπ Res z=0 z D 0 H -1 0 d dt C t (z) | t=0 H 0 z -D 0 ∈ Λsu(2) R .
But using Equation (5.24),

z D 0 H -1 0 d dt C t (z) | t=0 H 0 z -D 0 = z D 0 H -1 0   4 j=1 c j (0)X 0,j   H 0 z -D 0 = 4 j=1 c j (0)z D 0 E j z -D 0 = c 1 (0) z c 2 (0) z -1 c 3 (0) c 4 (0) . Thus 2iπ 0 0 c 3 (0) 0 ∈ Λsu(2) R
which gives c 3 (0) = 0.

Let λ 0 ∈ {e q , e -q } and t = 0. Using the Fröbenius method (Theorem 4.11 of [START_REF] Teschl | Ordinary Dierential Equations and Dynamical Systems[END_REF] and Lemma 11.4 of [START_REF] Taylor | Introduction to Dierential Equations[END_REF]) at the resonant point λ 0 ensures the existence of > 0, B, M ∈ M(2, C) and a holomorphic map P : D -→ M(2, C) such that for all z ∈ D * ,

           Φ t (z, λ 0 ) = M z B z At(λ 0 ) P (z), B 2 = 0, P (0) = I 2 , [A t (λ 0 ), d z P (0)] + d z P (0) = C t (0, λ 0 ) -B.
Compute the monodromy of Φ t at λ = λ 0 :

M(Φ t )(λ 0 ) = M exp(2iπB)z B exp(2iπA t (λ 0 ))z -B M -1 = -M exp(2iπB)M -1 .
Since the monodromy problem (5.9) is solved, this quantity equals -I 2 . Use B 2 = 0 to show that B = 0 and thus

     Φ t (z, λ 0 ) = M z At(λ 0 ) P (z), P (0) = I 2 , [A t (λ 0 ), d z P (0)] + d z P (0) = C t (0, λ 0 ).
Diagonalise A t (λ 0 ) with Proposition 23 and write d z P (0) = p j X t,j to get for all 1 ≤ j ≤ 4

p j ([D t (λ 0 ), E j ] + E j ) = t c j (t, λ 0 )E j .
In particular, using µ t (λ 0 ) = 1/2,

t c 3 (t, λ 0 ) = p 3 ([D t (λ 0 ), E 3 ] + E 3 ) = 0.
Note that with the help of equations (5.24) and (5.22) or (5.23), and one can compute the series expansion of c 3 (0):

c 3 (0) = -λ -1 2 c 2 (0, 0) + O(λ 0 ) if r < s, c 3 (0) = 1 2 c 3 (0, 0) + O(λ) if r > s.
Hence, sc 2 (t, 0) + rc 3 (t, 0) -→ t→0 0.

(5.25)

The following map will be useful in the next section:

t ∈ (-T , T ) -→ P For all t, Proposition 24 ensures that the map P 1 (t, λ) holomorphically extends to A R .

Taking a smaller value of R if necessary, P 1 (t) ∈ ΛM(2, C) R for all t. Moreover, tr P 1 (t) = t c 1 (t) + t c 4 (t) = tr C t (0) = 0.

Thus P 1 ∈ C 1 ((-T , T ), Λsl(2, C) R ).

The z A P form of Φ t

The map P 1 dened above allows us to use the Fröbenius method in a loop group framework and in the non-resonant case, that is, for all t (Proposition 25). The techniques used in [START_REF] Raujouan | On Delaunay Ends in the DPW Method[END_REF] will then apply in order to gauge the M z A P form and gain an order on z (Proposition 26).

Proposition 25. There exists > 0 such that for all t ∈ (-T , T ) there exist M t ∈ ΛSL(2, C) R and a holomorphic map P t : D -→ ΛSL(2, C) R such that for all z ∈ D * , Φ t (z) = M t z At P t (z).

Moreover, M t is C 1 with respect to t, M 0 = I 2 , P t (z) is C 1 with respect to (t, z), P 0 (z) = I 2 for all z and P t (0) = I 2 for all t.

Proof. For all k ∈ N * and t ∈ (-T , T ), dene the linear map

L t,k : ΛM(2, C) ρ -→ ΛM(2, C) ρ X -→ [A t , X] + kX.
Use the bases B t and restrict L t,k to ΛM(2, C) R to get

Mat Bt L t,k =       k 0 0 0 0 k + 2µ t 0 0 0 0 k -2µ t 0 0 0 0 k       . Note that det L t,k = k 2 (k 2 -4µ 2 t ).
Thus for all k ≥ 2, det L t,k is an invertible element of ΛC R , which implies that L t,k is invertible for all t ∈ (-T , T ) and k ≥ 2.

Write C t (z) = k∈N C t,k z k .
With P 0 := I 2 and P 1 as in Equation (5.26), dene for all k ≥ 1:

P k+1 (t) := L -1 t,k+1   i+j=k P i (t)C t,j   .
so that the sequence (P k ) k∈N ⊂ C 1 ((-T , T ), Λsl(2, C) ρ ) satises the following recursive system for all t ∈ (-T , T ):

P 0 (t) = I 2 ,
L t,k+1 (P k+1 (t)) = i+j=k P i (t)C t,j .

With P t (z) := P k (t)z k , the Fröbenius method ensures convergence for all t (see [START_REF] Teschl | Ordinary Dierential Equations and Dynamical Systems[END_REF]).

Restricting to a compact interval in (-T , T ) if necessary, there exists > 0 such that for all z ∈ D * and t ∈ (-T , T ), Φ t (z, λ) = M t z At P t (z) 

where M t ∈ ΛSL(2, C) R is C
h t : D -→ D z -→ z 1+ptz .
Then, 

ξ t := h * t (ξ t • G t ) = A t z -1 dz + C t (z)dz
ξ t (z) = A t z -1 dz + C t (z)zdz.
Note that C t (z) ∈ sl(2, C) R is now C 1 with respect to (t, z). The monodromy problem (5.9) is solved for Φ t and for any z 0 in the universal cover D * , Φ 0 ( z 0 ) = z A 0 0 . Moreover, writing f t := Sym q (Uni Φ t ) and f t := Sym q (Uni Φ t ), then f t = h * t f t with h 0 (z) = z. Hence in order to prove Theorem 14 it suces to prove the following proposition.

Proposition 27. Let ρ > e q , 0 < T < T max , > 0 and ξ t be a perturbed Delaunay potential as in Denition 16. Let Φ t be a holomorphic frame associated to ξ t for all t via the DPW method. Suppose that the monodromy problem (5.9) is solved for all t ∈ (-T, T )

and that

Φ t (z) = M t z At P t (z)
where M t ∈ ΛSL(2, C) ρ is C 1 with respect to t, satises M 0 = I 2 , and P t : D -→ ΛSL(2, C) ρ is a holomorphic map such that for all t and z,

P t (z) -I 2 ρ ≤ C|t||z| 2
where C > 0 is a uniform constant. Let f t = Sym q (Uni Φ t ). Then the three points of Theorem 14 hold for f t .

We now reset the values of ρ, T and and suppose that we are given a perturbed Delaunay frame ξ t and a holomorphic frame Φ t associated to it and satisfying the hypotheses of Proposition 27.

Let us diagonalise K = QDQ -1 where Q ∈ SU(2) and D = x 0 0 x -1 , x > 0.

Hence Equation (5.28) now reads

D exp Q -1 AQ D -1 ∈ SU(2).
(5.29)

But Q ∈ SU(2) and A ∈ su(2), so Q -1 AQ ∈ su(2) and exp Q -1 AQ ∈ SU(2). Let us write exp Q -1 AQ = p -q q p , |p| 2 + |q| 2 = 1
so that Equation (5.29) is now equivalent to

x = 1 or q = 0.

If x = 1 then K = I 2 and [K, A] = 0. If q = 0 then Q -1 AQ is diagonal and A is Q-diagonalisable.
Thus K and A are simultaneously diagonalisable and [K, A] = 0.

Corollary 5. There exists T > 0 such that for all t ∈ (-T , T ),

Φ t (z) = U t z At K t where U t ∈ ΛSU(2) R and K t ∈ ΛSL(2, C) R for any e q < R < ρ. Proof. Write M Φ D t = M t exp (A t ) M -1 t with A t := 2iπA t ∈ Λsu(2) ρ continuous on (-T, T ). The map M -→ √ M * M = exp 1 2 log M * M is a dieomorphism from a neighbourhood of I 2 ∈ ΛSL(2, C) ρ to another neighbourhood of I 2 .
Using the convergence of M t towards I 2 as t tends to 0, this allows us to use Lemma 9 pointwise on A ρ and thus construct K t := M * t M t ∈ ΛSL(2, C) R for all t ∈ (-T , T ) and any e q < R < ρ.

Let U t := M t K -1 t ∈ ΛSL(2, C) R and compute U t U * t to show that U t ∈ ΛSU(2) R . Use Lemma 9 to show that [K t (λ), A t (λ)] = 0 for all λ ∈ S 1 . Hence [K t , A t ] = 0 and thus Φ D t = U t z At K t .
Returning to the proof of Proposition 28, let θ ∈ R, z ∈ C * and e q < R < ρ. Apply Corollary 5 to get

Φ D t (e iθ z) = U t exp(iθA t )U -1 t Φ D t (z) and note that U t ∈ ΛSU(2) R , iA t ∈ Λsu(2) R imply R t (θ) := U t exp(iθA t )U -1 t ∈ ΛSU(2) R .
(5.30)

Hence

F D t (e iθz ) = R t (θ)F D t (z)
and Restricting to a meridian. Note that for all t ∈ (-T , T ) and z ∈ C * ,

f D t (e iθ z) = R t (θ, e -q ) • f D t (z).
F D t (z) R ≤ C F D t (|z|) R where C = sup R t (θ) R | (t, θ) ∈ (-T , T ) × [0, 2π]
depends only on R. We thus restrict

F D t to R * + with F D t (x) := F D t (|z|) (x = |z|).
Grönwall over a period. Recalling the Lax Pair associated to F D t (see Section 4.8 in Chapter 4), the restricted map where S t > 0 is the period of the prole curve of f t . Thus

F D t satises d F D t = F D t W t dx with W t (x, λ) = 1 x 0 λ -1 rb 2 (x) -sb -2 (x) sb -2 (x) -λrb 2 (x
e S t 1 |rb 2 (x)x -1 |dx = π 2 = e S t 1 |sb -2 (x)x -1 |dx. Using W t (x) R = √ 2 sb -2 (x)x -1 + 2R rb 2 (x)x -1 ,
we deduce

e S t 1 W t (x) R dx = π 2 (2R + √ 2) < C (5.31)
where C > 0 is a constant depending only on ρ and T . Applying Grönwall's lemma to the inequality (5.32)

F D t (x) R ≤ F D t (1) R + x 1 F D t (u) R W t (u) R |du| gives F D t (x) R ≤ F D t (1) 
Control over the periodicity matrix. Let t ∈ (-T , T ) and Γ t := F D t (xe St ) F D t (x) -1 ∈ ΛSU(2) R for all x > 0. The periodicity matrix Γ t does not depend on x because W t (xe St ) = W t (x) (by periodicity of the metric in the log coordinate). Moreover, 

Γ t R = F D t (e St ) F D t (1) -1 R ≤ F D t (e St ) R F D t (1) 
F D t (x) R ≤ Γ -k t R F D t (ζ) R ≤ C k+1 . Writing k = log ζ S t - log x S t , one gets C k = exp log ζ S t log C exp -log C S t log x ≤ Cx -δt
where δ t = log C St does not depend on x and tends to 0 as t tends to 0 (because S t -→ t→0 +∞).

Returning back to F D t , we showed that for all δ > 0 there exist T > 0 and C > 0 such that for all t ∈ (-T , T ) and 0 < |z| < 1,

F D t (z) R ≤ C|z| -δ
and Proposition 28 is proved.

Convergence of the immersions

In this section, we prove the rst point of Theorem 14: the convergence of the immersions f t towards the immersions f D t . Our proof relies on the Iwasawa decomposition being a dieomorphism in a neighbourhood of I 2 .

Behaviour of the Delaunay positive part. Let z ∈ D * 1 . The Delaunay positive part satises

B D t (z) ρ = F D t (z) -1 M t z At ρ ≤ F D t (z) ρ M t ρ z At ρ . Diagonalise A t = H t D t H -1 t
as in Proposition 23. By continuity of H t and M t , and according to Proposition 28, there exists C, T > 0 such that for all t ∈ (-T , T )

B D t (z) R ≤ C|z| -δ z -µt R .
Recall Equation (5.20) and extend µ

2 t = -det A t to A R with ρ > R > R. One can thus assume that for t ∈ (-T , T ) and λ ∈ A R , |µ t (λ)| < 1 2 + δ, which implies that z -µt(λ) ≤ |z| -1 2 -δ .
This gives us the following estimate in the ΛC R norm (using Cauchy formula and R > R):

z -µt R ≤ C|z| -1 2 -δ and B D t (z) R ≤ C|z| - 1 
2 -2δ .

(5.34)

Behaviour of a holomorphic frame. Let

Φ t := B D t Φ D t -1 Φ t B D t -1 .
Recall Proposition 26 and use Equation (5.34) to get for all t ∈ (-T , T ) and z ∈ D * :

Φ t (z) -I 2 R = B D t (z) (P t (z) -I 2 ) B D t (z) -1 R ≤ C|t||z| 1-4δ .
Behaviour of the perturbed immersion. Note that

Φ t = B D t Φ D t -1 Φ t B D t -1 = F D t -1 F t × B t B D t -1
and recall that the Iwasawa decomposition is dierentiable at the identity to get

F D t (z) -1 F t (z) -I 2 R = Uni Φ t (z) -Uni I 2 R ≤ C|t||z| 1-4δ .
The map

F t (z) := F D t (z, e -q ) -1 F t (z, e -q ) ∈ SL(2, C) satises F t (z) -I 2 ≤ F D t (z) -1 F t (z) -I 2 R ≤ C|t||z| 1-4δ .
(5.35) Lemma 10. There exists a neighbourhood V ⊂ SL(2, C) of I 2 and C > 0 such that for all

A ∈ SL(2, C), A ∈ V =⇒ |tr (AA * ) -2| ≤ C |A -I 2 | 2 . Proof. Consider exp : U ⊂ sl(2, C) -→ V ⊂ SL(2, C) as a local chart of SL(2, C) around I 2 . Let A ∈ V . Write f : SL(2, C) -→ R X -→ tr (XX * ) and a = log A ∈ U to get |f (A) -f (I 2 )| ≤ df (I 2 ) • a + C|a| 2 .
Moreover, denoting by Q t and Q D t the unitary parts of F t (e q ) and F D t (e q ) in their polar decomposition and using Lemma 12 together with Corollary 7 and Equation (5.35),

Γ I 2 ft(z) N t (z) -Γ I 2 f D t (z) N D t (z) = Q t (z) • σ 3 -Q D t (z) • σ 3 T I 2 H 3 ≤ C F D t (z) 2 R F D t (z) -1 F D t (z) -I 2 R ≤ C|t||z| 1-3δ .

Embeddedness

In this section, we prove the second point of Theorem 14. We thus assume that t > 0.

We suppose that C, , T, δ > 0 satisfy Proposition 29 and the rst point of Theorem 14.

Lemma 13. Let r t > 0 such that the tubular neighbourhood of f D t (C * ) with hyperbolic radius r t is embedded. There exists T > 0 and 0 < < such that for all 0 < t < T , x ∈ ∂D and y ∈ D * ,

d H 3 f D t (x), f D t (y) > 4r t .
Proof. The convergence of f D t (C * ) towards a chain of spheres implies that r t tends to 0 as t tends to 0. If f D t does not degenerate into a point, then it converges towards the parametrisation of a sphere, and for all 0 < < there exists T > 0 satisfying the inequality. If f D t does degenerate into a point, then a suitable blow-up makes it converge towards a catenoidal immersion on the punctured disk D * (see Section 5.4.1). This implies that for > 0 small enough, there exists T > 0 satisfying the inequality.

We can now prove embeddedness with the same method than in Chapter 4. Let D t := f D t (C * ) ⊂ H 3 be the image Delaunay surface of f D t . We denote by η D t : D t -→ T H 3 the Gauss map of D t . We also write M t = f t (D * ) and η t : M t -→ T H 3 . Let r t be the maximal value of α such that the following map is a dieomorphism:

T : (-α, α) × D t -→ Tub α D t ⊂ H 3 (s, p) -→ geod p, η D t (p) (s).
According to Lemma 18, the maximal tubular radius satises r t ∼ t as t tends to 0. 

z ∈ D * , Γ ft(z) ϕt(z) η D t (ϕ t (z)) -N t (z) < 1.
(5.37)

Using Lemma 11 (we drop the variable z to ease the notation),

Γ ft ϕt η D t (ϕ t ) -N t ≤ A + Γ f D t ϕt η D t (ϕ t ) -Γ f D t ft N t
where A is the area of the triangle f t , f D t , ϕ t . Recall the isoperimetric inequality in H 2

(see [START_REF] Teufel | The isoperimetric inequality and the total absolute curvature of closed curves in spheres[END_REF]):

P 2 ≥ 4πA + A 2 from which we deduce A ≤ P 2 ≤ 2d H 3 f t , f D t + 2d H 3 ϕ t , f D t 2 ≤ (6αr t ) 2
which uniformly tends to 0 as t tends to 0. Using the triangular inequality and Proposition 29,

Γ f D t ϕt η D t (ϕ t ) -Γ f D t ft N t ≤ Γ f D t ϕt η D t (ϕ t ) -N D t + C|t||z| 1-δ
and the second term of the right-hand side uniformly tends to 0 as t tends to 0. Because α satises Lemma 19 in Section 5.5,

Γ f D t ϕt η D t (ϕ t ) -N D t < 1 
which implies Equation (5.37).

Let

> 0 given by Lemma 13. The restriction

ϕ t : ϕ -1 t ϕ t (D * ) ∩ D * -→ ϕ t D * z -→ ϕ t (z)
is a covering map because it is a proper local dieomorphism between locally compact spaces. To show this, proceed by contradiction as in R 3 (see [START_REF] Raujouan | On Delaunay Ends in the DPW Method[END_REF]): let

(x i ) i∈N ⊂ ϕ -1 t ϕ t (D * ) ∩ D * such that ( ϕ t (x i )) i∈N converges to p ∈ ϕ t D * . Then (x i ) i converges to x ∈ D . Using
Equation (5.36) and the fact that f D t has an end at 0,

x = 0. If x ∈ ∂D , denoting x ∈ D * such that ϕ t ( x) = p, one has d H 3 f D t (x), f D t ( x) < d H 3 f D t (x), p + d H 3 f D t ( x), ϕ t ( x) < 4αr t < 4r t
which contradicts the denition of .

Let us now prove as in Chapter 4 that ϕ t is a one-sheeted covering map. Let γ : [0, 1] -→ D * be a loop of winding number 1 around 0, Γ = f D t (γ) and Γ = ϕ t (γ) ⊂ D t and let us construct a homotopy between Γ and Γ. For all s ∈ [0, 1], let σ s : [0, 1] -→ H 3 be a geodesic arc joining σ s (0) = Γ(s) to σ s (1) = Γ(s). For all s, r ∈ [0, 1], d H 3 (σ s (r), Γ(s)) ≤ αr t which implies that σ s (r) ∈ Tub rt D t because D t is complete. One can thus dene the following homotopy between Γ and Γ H

: [0, 1] 2 -→ D t (r, s) -→ π t • σ s (r)
where π t is the projection from Tub rt D t to D t . Using the fact that f D t is an embedding, the degree of Γ is one, and the degree of Γ is also one. Hence, ϕ t is one-sheeted.

Finally, the map ϕ t is a one-sheeted covering map and hence a dieomorphism, so f t D * is a normal graph over D t contained in its embedded tubular neighbourhood and f t D * is thus embedded, which proves the second point of Theorem 14.

Limit axis

In this section, we prove the third point of Theorem 14 and compute the limit axis of f D t as t tends to 0. Recall that f D t = Sym q Uni M t z At where M t tends to I 2 as t tends to 0. Hence, the limit axis of f D t and f D t := Sym q Uni z At are the same. Two cases can occur, whether r > s or r < s.

Spherical family. At t = 0, r = 1 2 and s = 0. The limit potential is thus

ξ 0 (z, λ) = 0 λ -1 2 λ 2 0 z -1 dz. Consider the gauge G(z, λ) = 1 √ 2z 1 0 λ 2z .
The gauged potential is then

ξ 0 • G(z, λ) = 0 λ -1 dz 0 0 = ξ S (z, λ)
where ξ S is the spherical potential as in Section 5.1.2. Let Φ := z A 0 G be the gauged holomorphic frame and compute

Φ(1, λ) = G(1, λ) = 1 √ 2 1 0 λ 2 = 1 √ 2 1 -λ -1 λ 1 1 λ -1 0 1 = H(λ)Φ S (1, λ)
where Φ S is dened in (5.10) and H = H 0 as in (5.22). This means that Φ = HΦ S , Uni Φ = HF S and Sym q (Uni Φ) = H(e -q )•f S because H ∈ ΛSU(2) R . Thus using equations (5.12) and (5.13),

f D 0 (∞) = Sym q (Uni Φ)(∞) = H(e -q ) • f S (∞) = H(e -q )R(q) • geod (I 2 , σ 3 ) (q)
= H(e -q ) • geod (I 2 , σ 3 ) (2q).

And with the same method, f D 0 (0) = H(e -q ) • geod (I 2 , σ 3 ) (0).

This means that the limit axis of f D t as t → 0, oriented from z = ∞ to z = 0 is given in the spherical family by

H(e -q ) • geod (I 2 , -σ 3 ) .

Catenoidal family. We cannot use the same method as above, as the immersion f D t degenerates into the point I 2 . Use Proposition 32 of Section 5.4.1 to get

f := lim t→0 1 t (f t -I 2 ) = ψ ⊂ T I 2 H 3
where ψ is the immersion of a catenoid of axis oriented by -σ 1 as z → 0. This suces to show that the limit axis oriented from the end at ∞ to the end at 0 of the catenoidal family f D t converges as t tends to 0 to the oriented geodesic geod(I 2 , -σ 1 ).

Gluing Delaunay ends to hyperbolic spheres

In this section, we follow step by step the method Martin Traizet used in R 3 ([39])

to construct CMC H > 1 n-noids in H 3 and prove Theorem 11. This method relies on the Implicit Function Theorem and aims to nd a pair (ξ t , Φ t ) satisfying the hypotheses of Theorem 14 around each pole of an n-punctured sphere. More precisely, the Implicit Function Theorem is used to solve the monodromy problem around each pole and to ensure that the potential is regular at z = ∞. The set of equations characterising this problem at t = 0 is the same as in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF], and the partial derivative with respect to the parameters is the same as in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] at t = 0. Therefore, the Implicit Function Theorem can be used exactly as in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] and we do not repeat it here. Showing that the surface has Delaunay ends involves slightly dierent computations, but the method is the same as in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF], namely, nd a suitable gauge and change of coordinates around each pole of the potential in order to retrieve a perturbed Delaunay potential as in Denition 16. One can then apply Theorem 14. Finally, we show that the surface is Alexandrov-embedded (and embedded in some cases) by adapting the arguments of [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] to the case of H 3 .

The DPW data

Let H > 1, q = arcoth H and ρ > e q . Let n ≥ 3 and u 1 , • • • , u n unitary vectors of T I 2 H 3 .

Suppose, by applying a rotation, that u

i = ±σ 3 for all i ∈ [1, n]. Let v S : C ∪ {∞} -→ S 2
dened as in Equation (5.13) and π

i := v -1 S (u i ) ∈ C * . Consider 3n parameters a i , b i , p i ∈ ΛC ≥0
ρ assembled into a vector x which stands in a neighbourhood of a central value x 0 so that the central values of a i and p i are τ i and π i . Introduce a real parameter t in a neighbourhood of 0 and dene β t (λ) := t (λ -e q ) λ -e -q .

The potential we use is

ξ t,x (z, λ) := 0 λ -1 dz β t (λ)ω x (z, λ) 0 
Now write ω t := ω x(t) , ξ t := ξ t,x(t) and apply the DPW method to dene the holomorphic frame Φ t associated to ξ t on the universal cover Ω of Ω with initial condition Φ t (0) = I 2 . Let F t := Uni Φ t and f t := Sym q F t . The monodromy problem for Φ t being solved, f t descends to a well-dened CMC H immersion on Ω. Use Theorem 3 and Corollary 1 of [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] to extend f t to Σ t := C ∪ {∞} \ {p 1,t (0), . . . , p n,t (0)} and dene M t = f t (Σ t ).

Moreover, with the same proof as in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] (Proposition 4, point ( 2)), a i,t is a real constant with respect to λ for all i and t. 

     rs = ta i,t , r 2 + s 2 + 2rs cosh q = 1 4 , r > s.
For all t and λ, dene ψ i,t,λ (z) := z + p i,t (λ) and

G t (z, λ) :=   √ z √ r+sλ 0 -λ 2 √ z √ r+sλ √ r+sλ √ z   .
For T small enough, one can thus dene on a uniform neighbourhood of 0 the potential ξ i,t (z, λ) := ((ψ In order to show that M t is embedded, we will use the techniques of [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]. We thus begin by lifting M t to R 3 with the exponential map at the identity exp I 2 : R 3 -→ H 3 . This map is a dieomorphism, so M t is Alexandrov-embedded if, and only if its lift M t to R 3

given by the immersion

f t := exp -1 I 2 •f t : Σ t -→ R 3
is Alexandrov-embedded.

Let T, > 0 such that f t (and hence f t ) is an embedding of D * (p i,t , ) for all i ∈ [1, n] and let f D i,t : C\{p i,t } -→ H 3 be the Delaunay immersion approximating f t in D * (p i,t , ). Let f D i,t := exp -1 I 2 •f D i,t . Apply an isometry of H 3 so that the limit immersion f 0 maps Σ 0 to a n-punctured geodesic sphere of hyperbolic radius q centered at I 2 . Then f 0 (Σ 0 ) is a Euclidean sphere of radius q centered at the origin. Dene N t : Σ t -→ S 2 z -→ d(exp -1 I 2 )(f t (z))N t (z).

At t = 0, N 0 is the normal map of f 0 (by Gauss Lemma), but not for t > 0 because the Euclidean metric of R 3 is not the metric induced by exp I 2 .

Let

h i : R 3 -→ R x -→
x, -N 0 (p i,0 )

be the height function in the direction of the limit axis.

As in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF], one can show that Claim 1. There exist δ < δ and 0 < < such that for all i ∈ [1, n] and 0 < t < T , max C(p i,t , )

h i • f t < δ < min C(p i,t , ) h i • f t ≤ max C(p i,t , ) h i • f t < δ .
Dene for all i and t:

γ i,t := z ∈ D * p i,t , | h i • f t (z) = δ , γ i,t := z ∈ D * p i,t , | h i • f t (z) = δ .
From their convergence as t tends to 0, Claim 2. 

f t (Σ t \ (D 1,t ∪ • • • D n,t )) ∪ ∆ 1,t ∪ • • • ∪ ∆ n,t
is the boundary of a topological ball W 0,t ⊂ R 3 . Take

W t := W 0,t ∪ W 1,t ∪ • • • ∪ W n,t
to show that M t , and hence M t is Alexandrov-embedded for t > 0 small enough. Lemma 16. Let S ⊂ H 3 be a sphere of hyperbolic radius q centered at p ∈ H 3 . Let n ≥ 2 and {u i } i∈[1,n] ⊂ T p H 3 . Let {p i } i∈ [1,n] dened by p i = S ∩ geod(p, u i )(R + ). For all i ∈ [1, n], let S i ⊂ H 3 be the sphere of hyperbolic radius q such that S ∩ S i = {p i }. For all (i, j) ∈ [1, n] 2 , let θ ij be the angle between u i and u j .

If for all i = j, θ ij > 2 arcsin 1 2 cosh q then S i ∩ S j = ∅ for all i = j.

Proof. Without loss of generality, we assume that p = I 2 . We use the ball model of H 2. For all t ∈ I, Φ t solves the monodromy problem (5.8).

3. Φ 0 (z, λ) is independent of λ:

Φ 0 (z, λ) = a(z) b(z) c(z) d(

z) .

Let f t = Sym q (Uni(Φ t )) : Σ -→ H 3 be the CMC H = coth q immersion given by the DPW method. Then, identifying T I 2 H 3 with R 3 via the basis (σ 1 , σ 2 , σ 3 ) dened in (5.3),

lim t→0 1 t (f t -I 2 ) = W
where W is a (possibly branched) minimal immersion with the following Weierstrass data: g(z) = a(z) c(z) , ω(z) = -4(sinh q)c(z) 2 ∂ξ (-1)

t,12 (z) ∂t | t=0 .

The limit is for the uniform C 1 convergence on compact subsets of Σ.

Proof. With the same arguments as in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF], (t, z) → Φ t (z), (t, z) → F t (z) and (t, z) → B t (z)

are C 1 maps into ΛSL(2, C) ρ , ΛSU(2) ρ and Λ R + SL(2, C) ρ respectively. At t = 0, Φ 0 is constant. Thus F 0 and B 0 are constant with respect to λ: Thus F 0 (z, e -q ) ∈ SU(2) and f 0 (z) degenerates into the identity matrix. Let b t := B t,11 | λ=0 and β t the upper-right residue at λ = 0 of the potential ξ t . Recalling Equation (5.6), df t (z) = 2b t (z) 2 sinh qF t (z, e -q ) 0 β t (z) β t (z) 0 F t (z, e -q ) * .

Hence (t, z) → df t (z) is a C 1 map. At t = 0, ξ 0 = Φ -1 0 dΦ 0 is constant with respect to λ, so β 0 = 0 and df 0 (z) = 0. Dene f t (z) := 1 t (f t (z) -I 2 ) for t = 0. Then d f t (z) extends at t = 0, as a continuous function of (t, z) by Writing g = a c and ω = -4c 2 β sinh q gives: f 0 (z) = f 0 (z 0 ) + Re

z z 0 1 2 (1 -g 2 )ω, i 2 
(1 + g 2 )ω, gω .

As a useful example for Proposition 31, one can show the convergence of Delaunay surfaces in H 3 towards a minimal catenoid.

Proposition 32. Let q > 0, A t = A r,s as in (5.14) with r ≤ s satisfying (5.19). Let Φ t (z) := z At and f t := Sym q (Uni Φ t ). Then f := lim (1 -g 2 )ω, i 2 (1 + g 2 )ω, gω t in a neighbourhood of 0 and write β t (λ) := t(λ -e q )(λ -e -q ) 4 sinh q .

The potential we use is taken at z 0 ∈ Ω away from the poles and zeros of g and ω. Let Φ t,x be the holomorphic frame arising from the data (Ω, ξ t,x , z 0 , φ) via the DPW method and f t,x := Sym q (Uni Φ t,x ).

Follow Section 6 of [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] to show that the potential ξ t,x is regular at the zeros of B x and to solve the monodromy problem around the poles at p i,0 for i ∈ [1, n -1]. The Implicit Function Theorem allows us to dene x = x(t) in a small neighbourhood (-T, T ) of t = 0 satisfying x(0) = x 0 and such that the monodromy problem is solved for all t. We can thus drop from now on the index x in our data. As in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF], f t descends to Ω and analytically extends to C ∪ {∞}\ {p (z ω i,t (z, λ)).

Use Proposition 5, Claim 1 of [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] to show that for T small enough, α i,t is real and does not depend on λ. Set      rs = tα i,t 4 sinh q , r 2 + s 2 + 2rs cosh q = 1 4 , r < s and

G t (z, λ) =   √ rλ+s √ z -1 2 √ rλ+s √ z 0 √ z √ rλ+s   .
Dene the gauged potential ξ i,t (z, λ) := (ψ * i,t,λ ξ t ) • G t (z, λ)

and compute its residue to show that it is a perturbed Delaunay potential as in Denition 16.

Applying Theorem 14. At t = 0 and z = 1, writing π i := g(p i,0 ) to ease the notation,

Φ i,0 (1, λ) = i (1 + π i ) i i 0 1 √ 2 -1 √ 2 0 √ 2 = i √ 2 1 + π i 1 -π i 1 -1 =: M i ,
and thus ξ i,0 (z) = M i z A 0 . Recall (5.21) and let

H := H 0 = 1 √ 2 1 -1 1 1 ∈ ΛSU(2) ρ
and Q i := Uni M i H -1 . Using Lemma 1 in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF], Q i can be made explicit and one can nd a change of coordinates h and a gauge G such that Φ i,t := (Q i H) -1 h * Φ i,t G solves d Φ i,t = Φ i,t ξ i,t where ξ i,t is a perturbed Delaunay potential and Φ i,0 (z) = z A 0 . One can thus apply Theorem 14 on ξ i,t and Φ i,t , which proves the existence of the family (M t ) -T <t<T of CMC H surfaces of genus zero and n Delaunay ends, each of weight (according to Equation (5.16))

w i,t = 8πrs sinh q = 2πtα i,t , which proves the rst point of Theorem 12. Let f i,t := Sym q Uni Φ i,t and let f D i,t be the Delaunay immersion given by Theorem 14. = π.

In the same manner with the changes of variables v = e -σ , y = √ a -1 -v 2 and x =

y √ a -1 -b -1 , S 0 ds τ e σ(s) = -2 τ √ H 2 -1 b -1/2 a -1/2 dv v √ b -v -2 √ v -2 -a = 2 τ 2 √ H 2 -1 √ a -1 -b -1 0 dy b -a -aby 2 = 2 τ 2 √ H 2 -1 √ ab 1 0 dx √ 1 -x 2 = π τ 2
because ab = Proof. The quantity r t is the inverse of the maximal geodesic curvature of the surface.

This maximal curvature is attained for small values of t on the points of minimal distance between the prole curve and the axis. Checking the direction of the mean curvature vector at this point, the maximal curvature curve is not the prole curve but the parallel curve.

Hence r t is the minimal hyperbolic distance between the prole curve and the axis. A study of the prole curve's equation as in Proposition 33 shows that r t = sinh -1 (τ exp (σ min )) = sinh -1 τ a(τ ) .

be the polar decomposition on SL(2, C). This map is dierentiable and satises the following proposition.

Proposition 34. For all A ∈ SL(2, C), dPol 2 (A) ≤ |A|.

Proof. We rst write the dierential of Pol 2 at the identity in an explicit form. Writing 

dPol 2 (S 0 Q 0 ) • M = pol 2 S -1 0 M Q -1 0 Q 0 .
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 1112 Introduction to the DPW method 1 The method in a nutshell 1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . model of R 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Children (and grown-ups) enjoy enclosing pressurised volumes of air inside soap spheres. Together with the shimmering colours and the poetic fragility of the oating interface, they are undoubtedly also amazed by the mean curvature function dened at each point of their soap bubbles and often exclaim `it is constant!' Indeed, the physical property of soap lms minimising surface tension can be translated into a mathematical property of surfaces having the same mean curvature at every point. If the mean curvature is null everywhere on a surface, mathematicians call it minimal and physicists can use it to model soap lms without pressure constraints. Planes and catenoids are examples of minimal surfaces. If the mean curvature is constant but not zero, mathematicians tend to call the surface CMC (short for constant mean curvature), and physicists can use it to model soap lms with pressure constraints. Spheres and cylinders are examples of CMC surfaces but most of surfaces are not CMC nor minimal. Mathematicians have been looking for new examples and found many since the 18th century. This thesis is a contribution to the construction of CMC surfaces.

σ : gl( 2 ,M -→ σ 3 M σ 3 where σ 3 Denition 1 .

 2331 C) -→ gl(2, C) is dened in Equation (1.1). Formally, Let G be a Lie group and g a Lie algebra. Let S 1 ⊂ C denote the unit circle and let D ⊂ C denote the open unit disk.

Denition 7 .

 7 Let G : Σ -→ Λ + SL(2, C) σ holomorphic and set ξ • G := G -1 ξG + G -1 dG.

(2. 15 )

 15 Equation (2.15) denes a right-action called gauging the potential and the map

3. 2 .

 2 NON-TRIVIAL FUNDAMENTAL GROUP: THE MONODROMY PROBLEM 3.2 Non-trivial fundamental group: the monodromy problem Let ξ : Σ -→ Λsl(2, C) be an admissible DPW potential, z 0 ∈ Σ and φ 0 ∈ ΛSL(2, C).

Sections 4 .

 4 6 to 4.8 are appendices.

( 4 . 17 )

 417 Corollary 3 follows from Remark 9 and Equation (4.16).

Corollary

  

  and writeC t (λ) = c 11 (t, λ) λ -1 c 12 (t, λ) c 21 (t, λ) -c 11 (t, λ) .

  sc 12 (t, 0) + rc 21 (t, 0) 2 .

(4. 22 )Lemma 4 .

 224 The quantity p t vanishes at t = 0.

(4. 24 )

 24 Denoting by c(λ) the bottom-left entry of H -1 C 0 H and looking at the product z D (H-1 C 0 H)z -D , ) = H -1 C 0 H 21 ≡ 0 (4.[START_REF] Lawson | Complete Minimal Surfaces in S3[END_REF] 

(4. 35 )

 35 So f n (D * ) ⊂ Tub rn 2 M Rn and ϕ n is well-dened. Moreover, using (4.35) and the triangle inequality, for all z ∈ D

37 ) 2 M R n and restricting π n to Tub rn 2 M R n gives dπ n ≤ r n r n -rn 2 = 2

 372222 because of Equation(4.35). Let γ = π n • σ. Note that Equation (4.37) implies that σ ⊂ Tub rn and thus |γ| < r n . Hence, N ϕn (z) -N R n (z) < 1.

  21 (λ) which implies Equation (4.38) because F (λ) ∈ SL 2 C.Corollary 4. Let Φ : A R -→ SL 2 C be a holomorphic map and let F B be the Iwasawa decomposition of its restriction to A 1 . Then F holomorphically extends to A R , satises Equation (4.38), and B holomorphically extends to D R .

space of H 3

 3 at p and n non-zero real weights τ 1 , • • • , τ n satisfying the balancing condition n i=1 τ i u i = 0 (5.1) and given H > 1, there exists a smooth 1-parameter family of CMC H surfaces (M t ) 0<t<T with genus zero, n Delaunay ends and the following properties: 1. Denoting by w i,t the weight of the i-th Delaunay end, lim t→0 w i,t t = τ i .

2|r|b 2

 2 ) 0 where b(x) is the upper-left entry of B D t (x) | λ=0 . Recall Section 5.1.2 and dene g t (x) = 2 sinh q|r|b(x) 2 x -1 so that the metric of f D t reads g t (x)|dz|. Let f D t := exp * f D t . Then the metric of f D t satises d s 2 = 4r 2 (sinh q) 2 b 4 (e u )(du 2 + dθ 2 ) at the point u + iθ = log z. Using Proposition 33 of Section 5.5 gives St 0 (e u )du = π and St 0 du 2 sinh q|r|b 2 (e u ) = π |t|

R exp x 1 W

 1 t (u) R |du| . Use Equation (5.31) together with the fact that F D 0 (0) = F D 0 (1) = I 2 and the continuity of Iwasawa decomposition to get C, T > 0 such that for all t ∈ (-T , T ) and x ∈ [1, e St ]

(5. 33 )

 33 Conclusion. Let x < 1. Then there exist k ∈ N * and ζ ∈ 1, e St such that x = ζe -kSt . Thus using equations (5.32) and (5.33),

F 0 = 1 |a| 2 + |c| 2 a -c c ā , B 0 = 1 |a| 2 + |c| 2 |a| 2 +

 1221222 |c| 2 āb + cd 0 1 .

  q -acβ -acβ a 2 β -c 2 β a 2 β -c 2 β acβ + acβ where β = d dt β t | t=0 . In T I 2 H 3 , this gives d f 0 = 4 sinh q Re 1 2 β (a 2 -c 2 ), -i 2 β (a 2 + c 2 ), -acβ .

t→0 1 t

 1 (f t -I 2 ) = ψwhere ψ : C * -→ R 3 is the immersion of a catenoid centered at (0, 0, 1), of neck radius 1 and of axis orientd by the positive x-axis in the direction from z = 0 to z = ∞. in order to apply Proposition 31 and get f (z) = f (1) + Re

ξ

  t,x (z, λ) = 0 λ -1 β t (λ)ω x (z, λ) d z g x (z, λ) 0 dened for (t, x) suciently close to (0, x 0 ) on Ω = {z ∈ C | ∀i ∈ [1, n] , |z -p i,0 | > } ∪ {∞} where > 0 is a xed constant such that the disks D(p i,0 , 2 ) are disjoint. The initial condition is φ(λ) = ig x (z 0 , λ) i i 0

dPol 2 ( 4 |b -c| 2 + c -b 2 ≤ |M | 2 - 1 2 |b + c| 2 ≤ |M | 2 .

 2422222 I 2 ) : sl(2, C) Im a .Note that for all M ∈ sl(2C),|pol 2 (M )| 2 = 2 (Im a) 2 + 1We then compute the dierential of Pol 2 at any point of SL(2, C). Let (S 0 , Q 0 ) ∈ SL (2, C) ++ × SU(2). Consider the dierentiable mapsφ : SL(2, C) -→ SL(2, C) A -→ S 0 AQ 0 and ψ : SU(2) -→ SU(2) Q -→ QQ 0 . Then ψ • Pol 2 • φ -1 = Pol 2 and for all M ∈ T S 0 Q 0 SL(2, C),

Finally, let A ∈ SL( 2 ,

 2 C) with polar decomposition Pol(A) = (S, Q). Then for all M ∈ T A SL(2, C), |dPol 2 (A) • M | = pol 2 S -1 M Q -1 Q ≤ |S| × |M | * ) gives dPol 2 (A) ≤ |S| ≤ |A| .

  3 . An extended unitary frame for f is a real-analytic map P : Σ × S 1 -→ SU[START_REF] Bobenko | Constant mean curvature surfaces and integrable equations[END_REF] such that for all λ ∈ S 1 , P (•, λ) is a unitary frame for f λ .

	2.1.3 Lax pairs

Denition 4. The map F : Σ -→ SO(3, R) dened above is called the moving frame of f . A unitary frame for f is a real-analytic map P : Σ -→ SU

[START_REF] Bobenko | Constant mean curvature surfaces and integrable equations[END_REF] 

such that F = P • B with B as in Equation (1.2).

As seen with Denition 3, CMC surfaces come in a one-parameter family. Hence the following denition. Denition 5. Let f : Σ -→ R 3 be a CMC H immersion with associated family (f λ ).

With the moving frames point of view, the Gauss and Codazzi equations (2.2) become a pair of linear dierential systems, as stated by Proposition 4 below. Denition 6. Let n ∈ N * , Ω be an open subset of C 2 with coordinates (z, w) and

  and b as in (2.7) and (2.8). Its normal map reads N λ = -Nor λ F and its dierential is given by

	(2.10)
	with α, β

2 , 

  (Σ, ξ, z 0 , Jφ 0 ) be a set of dressed data. Then the induced CMC H immersions f λ have the same Hopf dierential as f λ . Moreover, if J ∈ ΛSU(2) σ , then for all λ ∈ S 1 , f λ and f λ dier by a rigid motion of R 3 :

	F	e iθ 0 e -iθ 0
	(with θ dened in (2.16)). The induced CMC H immersions are unchanged: they equal f λ
	for all λ ∈ S 1 .	
	Denition 8. Let J ∈ ΛSL(2, C) σ . The map
	(Σ, ξ, z 0 , φ 0 ) -→ (Σ, ξ, z 0 , Jφ 0 )
	is called dressing the data. The dressed holomorphic frame is the frame JΦ induced
	by the dressed data.	
	Proposition 7.	
		.16)
	Proposition 6. Let (Σ, ξ • G, z 0 , φ 0 G) be a set of gauged data. Then the induced holo-

Let 

  1 with respect to t, P t (z) is C 1 with respect to t and z, and for all t, P t : D -→ ΛSL(2, C) R is holomorphic and satises P t (0) = I 2 . Moreover, the map P 1 dened in (5.26) vanishes at t = 0 and thus P 0 (z) = I 2 for all z ∈ D , which implies that M 0 = I 2 .Proposition 26. There exists > 0 such that for all t ∈ (-T , T ) there exist an admissible gauge G t :D -→ Λ + SL(2, C) R , a change of coordinates h t : D -→ D , a holomorphic map P t : D -→ ΛSL(2, C) R and M t ∈ ΛSL(2, C) R such that for all z ∈ D * , h * t (Φ t G t ) (z) = M t z At P t (z). , M t is C 1 with respect to t, M 0 = I 2 and there exists a uniform C > 0 such that for all t and z, P t (z) -I 2 := p t A t -P 1 (t) ∈ Λ + sl(2, C) Rand recall Equation (5.25) together with P 0 = I 2 to show that g 0 = 0. ThusG t := exp (g t z) ∈ Λ + SL(2, C) Ris an admissible gauge. Let < |p t | -1 for all t ∈ (-T , T ). Dene

	MoreoverProof. The proof goes as in Section 4.3.3 of Chapter 4. Expand P 1 (t) given by Equation
	(5.26) as a series to get (this is a tedious but simple computation):	
	P 1 (t, λ) =	0 stc 2 (t,0)+rtc 3 (t,0) 2r	stc 2 (t,0)+rtc 3 (t,0) 2s 0	λ -1	+	O(λ 0 ) O(λ 0 ) O(λ) O(λ 0 )	.
	Dene						
		p t := 2 sinh q(sc 2 (t, 0) + rc 3 (t, 0))		
	so that						
		g					

ρ ≤ C|t||z| 2 . t

  is a perturbed Delaunay potential as in Denition 16 such that C t (0) = 0 for all t ∈ (-T , T ). The holomorphic frameΦ t := h * t (Φ t G t ) satises d Φ t = Φ t ξ t . With C t (0) = 0,one can apply the Fröbenius method on ξ t to get Φ t (z) = M t z At P t (z) Conclusion. The new frame Φ t is associated to a perturbed Delaunay potential ( ξ t ) t∈(-T ,T ) , dened for z ∈ D * , with values in Λsl(2, C) R and of the form

	with M 0 = I 2 and		
	P t (z) -I 2	R	≤ C|t||z| 2 .

  Use Section 5.1.3 and note that U t does not depend on θ to see that f D t is a CMC immersion of revolution and hence a Delaunay immersion. Its weight can be read from its Hopf diferential, which in turn can be read from the potential ξ D t (see Equation (5.7)). Thus f D t is a CMC H Delaunay immersion of weight 2πt, which proves the rst point of Proposition 28.

  Usingthe rst point of Theorem 14, we thus assume that on D * , π t be the projection from Tub rt D t to D t . Then the map Lemma 14. For t > 0 small enough, ϕ t is a local dieomorphism on D * .

	ϕ t : D * -→	D t
	z -→ π t • f t (z)
	is well-dened and satises	
	d H 3 ϕ t (z), f D t (z) ≤ 2αr t	(5.36)
	because of the triangular inequality.	

d H 3 f t (z), f D t (z) ≤ αr t

where α < 1 is given by Lemma 19 of Section 5.5.

Let

Proof. It suces to show that for all

  Note that by denition of r, s and β t , (z, λ) = A t (λ)z -1 dz + C t (z, λ)dz with A t as in Equation (5.14) satises Equation (5.19) and C t as in Denition 16. The potential ξ i,t is thus a perturbed Delaunay potential as in Denition 16. Moreover, using Theorem 3 of [39], the induced immersion f i,t satises f i,t = ψ * i,t,0 f t . W and a local isometry F : W -→ H 3 extending F such that the tubular neighbourhood Tub r S is embedded in W .

	βt(λ) r+sλ (ψ * i,t,λ ω t (z))z 2 + λ 4(r+sλ)	0	z -1 dz.
	(r + sλ) (rλ + s) =	λ 4	+ β t (λ)a i,t
	and thus		
	ξ i,t		

* i,t,λ ξ t ) • G t )(z, λ) = 0 rλ -1 + s containing

  The regular curves γ i,t and γ i,t are topological circles around p i,t . Dene D i,t , D i,t as the topological disks bounded by γ i,t , γ i,t , and ∆ i,t , ∆ i,t as the topo-logical disks bounded by f t (γ i,t ), f t (γ i,t ).Let A i,t := D i,t \D i,t . Then f t (A i,t ) is a graph over the plane {h i (x) = δ}. Moreover, for all z ∈ D * i,t , h i • f t (z) ≥ δ > δ. Thus Claim 3. The intersection f t (D * i,t ) ∩ ∆ i,t is empty. Dene a sequence (R i,t,k ) such that f t (D * i,t ) transversally intersects the planes {h i (x) = R i,t,k }. Dene γ i,t,k := z ∈ D * i,t | h i • f i,t (z) = R i,t,k , and the topological disks ∆ i,t,k ⊂ {h i (x) = R i,t,k } bounded by f t (γ i,t,k ). Dene A i,t,k as the annuli bounded by γ i,t and γ i,t,k . Dene W i,t,k ⊂ R 3 as the interior of f t (A i,t,k )∪∆ i,t ∪∆ i,t,k Claim 4. The union f t (D * i,t ) ∪ ∆ i,t is the boundary of a topological punctured ball W i,t ⊂ R 3 .

	Hence,
	The union

and

W i,t := k∈N W i,t,k .

  Proposition 31. Let Σ be a Riemann surface, (ξ t ) t∈I a family of DPW potentials on Σ and (Φ t ) t∈I a family of solutions to dΦ t = Φ t ξ t on the universal cover Σ of Σ, where I ⊂ R is a neighbourhood of 0. Fix a base point z 0 ∈ Σ and ρ > e q > 1. Assume that 1. (t, z) → ξ t (z) and t → Φ t (z 0 ) are C 1 maps into Ω 1 (Σ, Λsl(2, C) ρ ) and ΛSL(2, C) ρ respectively.

			3
	equipped with its metric		
	ds 2 B (x) =	4ds 2 E 1 -x 2 E	2

  1,0 , . . . , p n,0 }. This denes a smooth family (M t ) -T <t<T of CMC H surfaces of genus zero with n ends in H 3 . -I 2 ) towards the minimal n-noid M 0 (point 2 of Theorem 12) is a straightforward application of Proposition 31 together withΦ 0,11 (z) Φ 0,21 (z) = g(z), -4 (sinh q) (Φ 0,21 (z)) 2 ∂ξDelaunay residue. To show that ξ t is a perturbed Delaunay potential around each of its poles, let i ∈ [1, n] and follow Section 5.3.2 with ψ i,t,λ (z) = g -1 t (z + g t (p i,t (λ))) .

	The convergence of	1 t (M (-1) t,12 (z) ∂t	= ω(z).

t Dene ω i,t (z, λ) := ψ * i,t,λ ω t (z) and α i,t (λ) := Res z=0

  D t be a Delaunay surface in H 3 of constant mean curvature H > 1 and weight 2πt > 0 with Gauss map η t . Let r t be the maximal value of R such that the map Tub rt ⊂ H3 (r, p) -→ geod(p, η t (p))(r)is a dieomorphism. Then r t ∼ t as t tends to 0.

1 H 2 -1 . Lemma 18. Let T : (-R, R) × D t -→

4.8. A CONTROL FORMULA ON THE UNITARY FRAMESo let z 1 , z 2 ∈ Σ and γ ⊂ Σ be a path joining f (z 1 ) to f (z 2 ). Then,

Using the DPW method, we construct genus zero Alexandrov-embedded constant mean curvature (greater than one) surfaces with any number of Delaunay ends in hyperbolic space.

Remerciements

Part II

Constant Mean Curvature Surfaces in Euclidean and Hyperbolic Spaces Chapter 5 Constant mean curvature n-noids in Hyperbolic space

Dressed Delaunay frames

In this section we study dressed Delaunay frames arising from the DPW data ( C * , ξ D t , 1, M t ), where C * is the universal cover of C * and ξ D t (z) := A t z -1 dz with A t as in (5.14) satisfying (5.19), and M t as in Proposition 26. The induced holomorphic frame is

Note that the fact that the monodromy problem (5.9) is solved for Φ t implies that it is solved for Φ D t because P t is holomorphic on D . Let D * 1 be the universal cover of D * 1 and let

In this section, our goal is to prove the following proposition.

Proposition 28. The immersion f D t is a CMC H Delaunay immersion of weight 2πt for |t| small enough. Moreover, for all δ > 0 and e q < R < ρ there exists C, T > 0 such that

for all (t, z) ∈ (-T , T ) × D * 1 .

Delaunay immersion. We will need the following lemma, inspired by [START_REF] Schmitt | Constant Mean Curvature Trinoids[END_REF]. Lemma 9. Let M ∈ SL(2, C) and A ∈ su [START_REF] Bobenko | Constant mean curvature surfaces and integrable equations[END_REF] such that M exp(A)M -1 ∈ SU(2).

(5.27)

Then there exist U ∈ SU(2) and K ∈ SL(2, C) such that M = U K and [K, A] = 0.

be a polar decomposition of M . The matrix K is then hermitian and positive-denite because det M = 0. Moreover, U ∈ SU [START_REF] Bobenko | Constant mean curvature surfaces and integrable equations[END_REF] and Equation (5.27) is then equivalent to K exp (A) K -1 ∈ SU(2).

(5.28)

Notice that for all a ∈ sl(2, C), df (I 2 ) • a = tr(a + a * ) = 0

to end the proof.

Corollary 6. There exists a neighbourhood V ⊂ SL(2, C) of I 2 and C > 0 such that for all F 1 , F 2 ∈ SL(2, C),

where

and that

where F = F -1 2 F 1 . Apply Lemma 10 and use cosh -1 (1 + x) ∼ √ 2x as x → 0 to end the proof.

Without loss of generality, we can suppose from (5.35) that C|t||z| 1-4δ is small enough for F t (z) to be in V for all t and z. Apply Corollary 6 to end the proof of the rst point in Theorem 14:

Convergence of the normal maps

Before starting the proof of the second point of Theorem 14, we will need to compare the normal maps of our immersions. Let N t := Nor q F t and N D t := Nor q F D t be the normal maps associated to the immersions f t and f D t . This section is devoted to the proof of the following proposition.

Proposition 29. For all δ > 0 there exist , T , C > 0 such that for all t ∈ (-T , T ) and

The following lemma measures the lack of euclideanity in the parallel transportation of unitary vectors.

Lemma 11. Let a, b, c ∈ H 3 , v a ∈ T a H 3 and v b ∈ T b H 3 both unitary. Let A be the hyperbolic area of the triangle (a, b, c).

Proof. Just use the triangular inequality and Gauss-Bonnet formula in H 2 to write:

Lemma 12 below claries how the unitary frame encodes the immersion and the normal map.

Lemma 12. Let f = Sym q F and N = Nor q F . Denoting by (S(z),

Proof. The formula for f is straightforward after noticing that QQ * = I 2 and S * = S. The formula for N is a direct consequence of Proposition 22.

Proof of Proposition 29. Let δ > 0, t ∈ (-T , T ) and z ∈ D * . Using Lemma 11,

where A is the hyperbolic area of the triangle I 2 , f t (z), f D t (z) . Using Heron's formula in H 2 (see [START_REF]Geometry II: Spaces of Constant Curvature[END_REF], p.66), Proposition 28 and the rst point of Theorem 14,

where

dz.

The initial condition is the identity matrix, taken at the point z 0 = 0 ∈ Ω where

> 0 is a xed constant such that the disks D(π i , 2 ) ⊂ C are disjoint and do not contain 0. Although the poles p 1 , . . . , p n of the potential ξ t,x are functions of λ, ξ t,x is well-dened on Ω for x suciently close to x 0 . We thus dene Φ t,x as the solution to the Cauchy problem (5.5) with data (Ω, ξ t,x , 0, I 2 ).

The main properties of this potential are the same as in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF], namely: it is a perturbation of the spherical potential ξ 0,x and the factor (λ -e -q ) in β t ensures that the second equation of the monodromy problem (5.8) is solved.

Let {γ 1 , • • • , γ n-1 } be a set of generators of the fundamental group π 1 (Ω, 0) and dene

Noting that λ ∈ S 1 =⇒ λ -1 (λ -e q ) λ -e -q = -2 (cosh q -Re λ) ∈ R, the unitarity of the monodromy is equivalent to

Note that at t = 0, the expression above takes the same value as in [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF], and so does the regularity conditions. One can thus apply Propositions 2 and 3 of [START_REF]Construction of constant mean curvature n-noids using the DPW method[END_REF] which we recall in Proposition 30 below.

Proposition 30. For t in a neighbourhood of 0, there exists a unique smooth map t →

, the monodromy problem and the regularity problem are solved at (t, x(t)) and the following normalisations hold:

Moreover, at t = 0, x 0 is a constant with a i real and such that

Applying Theorem 14. The holomorphic frame Φ i,t := Φ t G i,t associated to ξ i,t satises the regularity and monodromy hypotheses of Theorem 14, but at t = 0 and z = 1,

and thus Φ i,0 (z) = M i z A 0 . Recall (5.21) and let 

One can thus apply Theorem 14 on ξ i,t and Φ i,t , which proves the existence of the family (M t ) 0<t<T of CMC H surfaces of genus zero and n Delaunay ends, each of weight (according to Equation (5.16))

which proves the rst point of Theorem 11 (after a normalisation on t). Let f i,t := Sym q (Uni Φ i,t ) and f D i,t the Delaunay immersion given by Theorem 14.

Limit axis. In order to compute the limit axis of f t at the end around p i,t , let ∆ i,t be the oriented axis of f D i,t at w = 0. Then, using Theorem 14,

and thus

where N S is the normal map associated to Φ S . Using Equation (5.11), f S (z) = R(q) • f S (z)

and N S (z) = R(q) • N S (z) where N S is the normal map of f S . Using Equation (5.12) and the fact that f S is a spherical immersion gives

and thus

Apply the isometry given by R(q) -1 and note that R(q) does not depend on i to prove point 2 of Theorem 11.

Embeddedness

We suppose that t > 0 and that all the weights τ i are positive, so that the ends of f t are embedded. Recall the denition of Alexandrov-embeddedness (as stated in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]): 

The following lemma is proved in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] in R 3 and for surfaces with catenoidal ends, but the proof is the same in H 3 for surfaces with any type of embedded ends. For any oriented surface M with Gauss map N and any r > 0, the tubular map of M with radius r is dened by

Lemma 15. Let M be an oriented Alexandrov-embedded surface of H 3 with n embedded ends. Let r > 0 and suppose that the tubular map of M with radius r is a local dieomorphism. With the notations of Denition 17, there exist a hyperbolic 3-manifold W

where ds E is the euclidean metric and x E is the euclidean norm. In this model, the sphere S is centered at the origin and has euclidean radius R = tanh q 2 . For all i ∈ [1, n], the sphere S i has euclidean radius

2 cosh q -1 .

Let j = i. In order to have S i ∩ S j = ∅, one must solve

which gives the expected result.

In order to prove the last point of Theorem 11, just note that

Suppose that the angle θ ij between u i and u j satises Equation (5.2) for all i = j. Then for t > 0 small enough, the proper immersion F t given by Denition 17 is injective (because of the convergence towards a chain of spheres) and hence M t is embedded.

Remark 16. This means for example that in hyperbolic space, one can construct embedded CMC n-noids with seven coplanar ends or more.

Gluing Delaunay ends to minimal n-noids

Again, this section is an adaptation of Traizet's work in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] applied to the proof of Theorem 12. We rst give in Section 5.4.1 a blow-up result for CMC H > 1 surfaces in Hyperbolic space. We then introduce in Section 5.4.2 the DPW data giving rise to the surface M t of Theorem 12 and prove the convergence towards the minimal n-noid. Finally, using the same arguments as in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF], we prove Alexandrov-embeddedness in Section 5.4.3.

A blow-up result

As in R 3 (see [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]), the DPW method accounts for the convergence of CMC H > 1

surfaces in H 3 towards minimal surfaces of R 3 (after a suitable blow-up). We work with the following Weierstrass parametrisation:

where

Note that Φ t (1) = I 2 for all t to show that f (1) = 0 and get

Integrating gives for (x, y) ∈ R × [0, 2π]:

f (e x+iy ) = ψ(x, y)

where

-→ (x, cosh(x) sin(y), 1 -cosh(x) cos(y))

and hence the result.

The DPW data

In this Section, we introduce the DPW data inducing the surface M t of Theorem 12.

The method is very similar to Section 5.3 and to [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF], which is why we omit the details.

The data. Let (g, ω) be the Weierstrass data (for the parametrisation dened in (5.38))

of the minimal n-noid M 0 ⊂ R 3 . If necessary, apply a Möbius transformation so that g(∞) / ∈ {0, ∞}, and write

Let H > 1, q > 0 so that H = coth q and ρ > e q . Consider 3n parameters a i , b i , p i ∈ ΛC ρ

The vector x is chosen in a neighbourhood of a central value x 0 ∈ C 3n so that A x 0 = A, B x 0 = B and ω x 0 = ω. Let p i,0 denote the central value of p i . Introduce a real parameter Limit axis. In order to compute the limit axis of f t at the end around p i,t , let ∆ i,t be the oriented axis of f D i,t at z = 0. Then, using Theorem 14, ∆ i,0 = geod (I 2 , -σ 1 ) .

And using

and thus

.

where N 0 is the normal map of the minimal immersion.

Type of the ends. Suppose that t is positive. Then the end at p i,t is unduloidal if, and only if its weight is positive; that is, α i,t is positive. Use Proposition 5 of [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] to show that if the normal map N 0 of M 0 points toward the inside, then α i,0 = τ i where 2πτ i N 0 (p i,0 )

is the ux of M 0 around the end at p i,0 (α i,0 = -τ i for the other orientation). Thus if M 0 is Alexandrov-embedded, then the ends of M t are of unduloidal type for t > 0 and of nodoidal type for t < 0.

Alexandrov-embeddedness

In order to show that M t is Alexandrov-embedded for t > 0 small enough, one can follow the proof of Proposition 6 in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]. Note that this proposition does not use the fact that M t is CMC H, but relies on the fact that the ambient space is R 3 . This leads us to lift f t to R 3 via the exponential map at the identity, hence dening an immersion f t : Σ t -→ R 3 which is not CMC anymore, but is Alexandrov-embedded if, and only if f t is Alexandrov-embedded. Let ψ : Σ 0 -→ M 0 ⊂ R 3 be the limit minimal immersion. In order to adapt the proof of [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] and show that M t is Alexandrov-embedded, one will need the following Lemma.

Lemma 17. Let f t := 1 t f t . Then f t converges to ψ on compact subsets of Σ 0 .

Proof. For all z,

Therefore, using Proposition 32,

5.5

Appendix: CMC surfaces of revolution in H 

where w is the weight of X, as dened in [START_REF] Korevaar | Constant Mean Curvature Surfaces in Hyperbolic Space[END_REF].

Proof. According to Equation ( 11) in [START_REF] Jleli | Bifurcating Nodoids in Hyperbolic Space[END_REF], writing τ =

where ι ∈ {±1} is the sign of w. The solutions σ are periodic with period S > 0. Apply an isometry and a change of the variable s ∈ R so that σ (0) = 0 and σ(0) = min s∈R σ(s). With these notations, Equation (5.39) can be written in a factorised form as

.

In order to compute the rst integral, change variables v = e σ , y = √ b -v 2 and x = y √ b-a But using Equation (5.41), as τ tends to 0, a ∼ τ 2 = |t|, which gives the expected result.

Lemma 19. Let D t be a Delaunay surface in H 3 of weight 2πt > 0 with Gauss map η t and maximal tubular radius r t . There exist T > 0 and α < 1 such that for all 0 < t < T and p, q ∈ D t satisfying d H 3 (p, q) < αr t , Γ q p η t (p) -η t (q) < 1.

Proof. Let t > 0. Then for all p, q ∈ D t ,

where II t is the second fundamental form of D t , γ t ⊂ D t is any path joining p to q and (γ t ) is the hyperbolic length of γ t . Using the fact that the maximal geodesic curvature κ t of D t satises κ t ∼ coth r t as t tends to zero, there exists a uniform constant C > 0 such that sup s∈Dt II t (s) < C coth r t .

Let 0 < α < (1 + C) -1 < 1 and suppose that d H 3 (p, q) < αr t . Let σ t : [0, 1] → H 3 be the geodesic curve of H 3 joining p to q. Then σ t ([0, 1]) ⊂ Tub αrt and thus the projection π t : σ t ([0, 1]) → D t is well-dened. Let γ t := π t • σ t . Then

as t tends to zero.

Appendix: Remarks on the polar decomposition

Let SL (2, C) ++ be the subset of SL(2, C) whose elements are hermitian positive denite.

Let

Corollary 7. Let 0 < q < log ρ and F 1 , F 2 ∈ ΛSU(2) ρ with unitary parts Q i = Pol 2 (F i (e -q )).

Let > 0 such that

If is small enough, then there exists a uniform C > 0 such that for all v ∈ T I 2 H 3 ,

Proof. Let v ∈ T I 2 H 3 and consider the following dierentiable map

where C > 0 is a uniform constant. But writing A i = F i (e -q ) ∈ SL(2, C),

Suppose now that is small enough for log to be a dieomorphism from D(I 2 , ) ∩ SL(2, C)

where C, C > 0 are uniform constants. Using Proposition 34 gives

and inserting this inequality into (5.42) gives

Résumé :

Les surfaces à courbure moyenne constante non-nulle apparaissent en physique comme Abstract :

Non-zero constant mean curvature surfaces are mathematical models for physical interface problems with non-zero pressure dierence. They are described by partial dierential equations and can be constructed from holomorphic data via a Weierstrass-type representation, called "the DPW method". In this thesis, we use the DPW method and prove two main results. The rst one states that perturbations of the DPW data for Delaunay unduloidal ends generate embedded annuli. This can be used to prove the embeddedness of surfaces constructed via the DPW method. The second result is the construction of n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n