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Résumé

Les surfaces à courbure moyenne constante non-nulle apparaissent en physique comme
solutions à certains problèmes d'interface entre deux milieux de pressions di�érentes. Elles
sont décrites mathématiquement par des équations aux dérivées partielles et sont construc-
tibles à partir de données holomorphes via une représentation similaire à celle de Weiers-
trass pour les surfaces minimales. On présente dans cette thèse deux résultats s'appuyant
sur cette représentation, dite �méthode DPW�. Le premier indique que les données don-
nant naissance à un bout Delaunay de type onduloïde induisent encore un anneau plongé
après perturbation. Cette propriété sert notamment à démontrer que certaines surfaces
construites par la méthode DPW sont plongées. Le second résultat est la construction,
dans l'espace hyperbolique, de n-noïdes : surfaces plongées, de genre zéro, à courbure
moyenne constante et munies de n bouts de type Delaunay.

Mots clés : Surfaces à courbure moyenne constante � Représentation de Weierstrass
généralisée � Méthode DPW � Bouts Delaunay � Géométrie hyperbolique.
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Abstract

Non-zero constant mean curvature surfaces are mathematical models for physical inter-
face problems with non-zero pressure di�erence. They are described by partial di�erential
equations and can be constructed from holomorphic data via a Weierstrass-type represen-
tation, called "the DPW method". In this thesis, we use the DPW method and prove
two main results. The �rst one states that perturbations of the DPW data for Delaunay
unduloidal ends generate embedded annuli. This can be used to prove the embeddedness
of surfaces constructed via the DPW method. The second result is the construction of
n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n
Delaunay ends.

Keywords: Constant Mean Curvature Surfaces � Generalized Weierstrass Representa-
tion � DPW Method � Delaunay Ends � Hyperbolic Geometry.
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Introduction

Children (and grown-ups) enjoy enclosing pressurised volumes of air inside soap spheres.

Together with the shimmering colours and the poetic fragility of the �oating interface, they

are undoubtedly also amazed by the mean curvature function de�ned at each point of their

soap bubbles and often exclaim `it is constant!' Indeed, the physical property of soap �lms

minimising surface tension can be translated into a mathematical property of surfaces

having the same mean curvature at every point. If the mean curvature is null everywhere

on a surface, mathematicians call it �minimal� and physicists can use it to model soap

�lms without pressure constraints. Planes and catenoids are examples of minimal surfaces.

If the mean curvature is constant but not zero, mathematicians tend to call the surface

�CMC� (short for �constant mean curvature�), and physicists can use it to model soap �lms

with pressure constraints. Spheres and cylinders are examples of CMC surfaces but most

of surfaces are not CMC nor minimal. Mathematicians have been looking for new examples

and found many since the 18th century. This thesis is a contribution to the construction

of CMC surfaces.

Figure 1 � The catenoid (on the left) is a minimal surface, the sphere (on the right) is a
CMC surface. The mean value between the greatest and the lowest curvatures is the same
at every point of these surfaces.

Constructing minimal surfaces is easier since the 1860s when Enneper and Weierstrass

came up with a nice way of parametrising them [41]. The Enneper-Weierstrass parametri-

sation takes for input data a couple of meromorphic functions de�ning three di�erential

13



INTRODUCTION

forms to integrate on a Riemann surface S. Taking the real part of these complex integrals

gives the three coordinate functions for a minimal immersion of S into Euclidean space.

The nice point is that every minimal surface can locally be obtained this way. More than

a hundred years later, Dorfmeister, Pedit and Wu came up with a Weierstrass-type repre-

sentation for CMC surfaces, called the �DPW method� [7]. The DPW method takes for

input data a matrix-valued holomorphic potential de�ning on S a linear Cauchy problem.

Performing a matrix decomposition of the solution to the Cauchy problem induces a mov-

ing frame for a CMC immersion of S. Again, the nice point is that every CMC surface

can locally be obtained this way. This thesis uses the DPW method to construct CMC

surfaces. Chapter 1 introduces the basic tools that are necessary to the exposition of the

original DPW method, explained in more details in Chapter 2. Some classic extensions

and choices of conventions are introduced in Chapter 3.

G(u)=1, H(u)= 1
u−−−−−−−−−−−−→

Figure 2 � The Weierstrass parametrisation is an e�cient tool for constructing minimal
surfaces. Its equivalent for CMC surfaces is the DPW method.

One key feature of children soap bubbles is that they are embedded CMC surfaces.

Actually, Alexandrov proved in 1958 that any compact embedded CMC surface must be a

round sphere [1]. Thus, complete and properly embedded CMC surfaces must have ends.

The �rst examples of such surfaces (beside the cylinder) were constructed by Delaunay

in 1841 [4]. The embedded Delaunay surfaces (called �unduloids�) form a one-parameter

family of surfaces of revolution starting from the cylinder and edging towards a chain of

spheres. The family then goes on and consists in non-embedded Delaunay surfaces, called

�nodoids� (see Figure 3). In 1989, Korevaar, Kusner and Solomon [24], stimulated by

a previous result of Meeks [28], showed that any annular end of any complete properly

embedded CMC surface must be of unduloidal type. The status of Delaunay surfaces is

thus paramount in the study of embedded CMC surfaces, and Chapter 4 of this thesis

is devoted to them. We consider the DPW data giving rise to an unduloid and perturb

it. Under natural assumptions on the perturbation, we show that the perturbed resulting

surface is still an embedding of a uniform punctured disk.

Two di�erent techniques have been used to construct new CMC surfaces: a glu-

14



INTRODUCTION

Figure 3 � The Delaunay family: cylinder � unduloid � chain of spheres � nodoid.

ing method and the Lawson correspondence. The gluing method was notably used by

Kapouleas in 1990 and resulted in a breakthrough [16]. Starting from stacks and chains

of spheres, he constructed in�nitely many CMC surfaces with any number k ≥ 2 of ends

and any genus g ∈ [0,∞]. All of these surfaces are close to a stack of spheres and some are

embedded. With a slightly di�erent gluing technique, Mazzeo and Pacard showed in 2001

how to construct CMC surfaces out of two types of building blocks: half-unduloids and

minimal k-noids [26]. Another strategy has been to use the Lawson correspondence [25]:

the de�nition of mean curvature applies not only in Euclidean space but also in Spherical

and Hyperbolic spaces and it turns out that there exist some strong relationships between

CMC or minimal surfaces in Euclidean space and CMC or minimal surfaces in Hyper-

bolic or Spherical space. For example, any simply connected CMC surface in Euclidean

space possesses a minimal isometric cousin in Spherical space. This relationship allowed

Grosse-Brauckmann, Kusner and Sullivan to construct and classify all the CMC triundu-

loids in Euclidean space [10] and all genus zero CMC k-unduloids with coplanar ends [11]

by constructing their minimal cousins in the three-sphere.

Figure 4 � Alexandrov-embedded 4-noids with unduloidal ends (as seen in [11])

Naturally, the DPW method gives a third way of constructing new CMC surfaces.

Kilian, McIntosh and Schmitt used it in 2000 to produce new CMC cylinders [19], and had

experimental evidences that perturbations of Delaunay ends in the DPW data still give

Delaunay ends to the perturbed surface. In 2008, Kilian, Rossman and Schmmitt proved

that it is indeed the case [20]. In 2007, Dorfmeister and Wu gave the general form of the

DPW data for trinoids [8]. The resulting surfaces have been proved to have embedded ends,

but until the construction of Traizet in 2017 [39], they were never proved to be entirely

15



INTRODUCTION

Figure 5 � An embedded 7-noid with small necks in Hyperbolic space (ball model). This
surface can be constructed using Chapter 5 of this thesis.

embedded (or Alexandrov-embedded). Traizet perturbs the DPW data giving rise to a

sphere with the data giving rise to half-unduloids and uses the Implicit Function Theorem

to recover DPW data inducing a well-de�ned CMC k-unduloid. He then shows that the

whole surface is embedded, using our contributions in Chapter 4 of the present work. This

is the main achievement of this thesis: it allows, for the �rst time, to prove that non-trivial

examples constructed via the DPWmethod are embedded. Extensions of the original DPW

method have been made in order to construct CMC or minimal surfaces in various non-

Euclidean spaces [13, 12]. We use the extension of [32] and the techniques of Chapter 4 and

[39, 38] to construct in Chapter 5 CMC H > 1 complete, properly Alexandrov-embedded

surfaces with genus zero and any number of ends in Hyperbolic three-space. These new

examples constitute the second achievement of this thesis.
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Chapter 1

The method in a nutshell

In this chapter, we introduce the basic tools (Section 1.1) required to apply the DPW

method (Section 1.2) to a simple example (Section 1.3).

1.1 Preliminaries

The DPW method constructs maps that take values in matrix loops S1 −→ SU(2).

These loops are de�ned in Section 1.1.2 and are interpreted as rotations of Euclidean

space. Hence the use of su(2) as a model for R3, presented in Section 1.1.1.

1.1.1 su(2) model of R3

De�ne Ψ : R3 → su(2) as

Ψ(x1, x2, x3) :=
−i
2

(
x3 x1 − ix2

x1 + ix2 −x3

)
.

Recall that R3 equipped with the cross product is a Lie algebra. De�ne for all X ∈ su(2)

‖X‖2 := 4 detX.

Thanks to Proposition 1, one can identify the three-dimensional Euclidean space with the

Lie algebra su(2).

Proposition 1. The map Ψ is an isometric homomorphism between Lie algebras.
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1.1. PRELIMINARIES

Consider the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.1)

Then the canonical basis of R3 induces via Ψ the following direct orthonormal basis of

su(2):

B :=

(
−i
2
σ1,
−i
2
σ2,
−i
2
σ3

)
. (1.2)

Under the identi�cation of Proposition 1, the Lie group SU(2) acts on R3 as linear isometries

via:

F ·X := FXF−1, X ∈ su(2), F ∈ SU(2). (1.3)

The action is transitive, hence the following proposition.

Proposition 2. For all X ∈ su(2) and for all direct orthonormal bases (u, v, w) of the

tangent space TXsu(2) ' su(2), there exists P ∈ SU(2) such that

(u, v, w) = P · B

where B is as in (1.2).

1.1.2 Loop groups and algebras

In the DPW method, most of the objects dealt with are smooth maps de�ned for a

spectral parameter λ ∈ S1. The standard reference is [29]. In order to take advantage of

the diagonal+o�-diagonal decomposition of gl(2,C), it is convenient to de�ne the following

involution:
σ : gl(2,C) −→ gl(2,C)

M 7−→ σ3Mσ3

where σ3 is de�ned in Equation (1.1). Formally,

M =

(
a b

c d

)
=⇒ σ(M) =

(
a −b
−c d

)
.

De�nition 1. Let G be a Lie group and g a Lie algebra. Let S1 ⊂ C denote the unit circle

and let D ⊂ C denote the open unit disk.

• The group of smooth maps Φ : S1 −→ G such that for all λ ∈ S1, σ(Φ(λ)) = Φ(−λ)

is denoted ΛGσ. Its elements are called loops and ΛGσ is called a loop group.

20



1.2. THE RECIPE

• If G is complex, Λ≥0G
σ denotes the subgroup of ΛGσ consisting of maps that holo-

morphically extend to D.

• The algebra of smooth maps ϕ : S1 −→ g such that for all λ ∈ S1, σ(ϕ(λ)) = ϕ(−λ)

is denoted Λgσ. It is called a loop algebra.

• If g is complex, Λ≥0g
σ denotes the subalgebra of Λgσ consisting of maps that holo-

morphically extend to D.

• Λ+SL(2,C)σ denotes the subgroup of Λ≥0SL(2,C)σ consisting of maps B such that

(after extension to D) B(0) is upper-triangular.

• ΛR
+SL(2,C)σ denotes the subgroup of Λ+SL(2,C)σ consisting of loops such that B(0)

has positive elements on the diagonal.

Remark 1. The fact that σ(B(λ)) = B(−λ) for B ∈ Λ+SL(2,C)σ implies that B(0) is

diagonal. However, we keep the above de�nition for reasons to be clear in Section 3.1.

An important step of the DPW method relies upon the following theorem (see [29] and

[27]), which is a generalisation to loop groups of the QR decomposition.

Theorem 1. The multiplication map

× : ΛSU(2)σ × ΛR
+SL(2,C)σ −→ ΛSL(2,C)σ

(F,B) 7−→ FB

is bijective. Its inverse map is called Iwasawa decomposition and is denoted:

Iwa : ΛSL(2,C)σ −→ ΛSU(2)σ × ΛR
+SL(2,C)σ

Φ 7−→ (Uni Φ,Pos Φ).

Finally, note that because of the following Proposition 3, the loops in De�nition 1 are

often called twisted loops.

Proposition 3. Let X : S1 −→ gl(2,C) be a smooth map with Fourier series

X(λ) =
∑
i∈Z

Xiλ
i.

Then X ∈ Λgl(2,C)σ if, and only if Xi is diagonal for even values of i and o�-diagonal for

odd values of i.

1.2 The recipe

We present the DPW method as a recipe to build CMC H 6= 0 surfaces in R3. The

ingredients are introduced in Section 1.2.1 and the instructions are given in Section 1.2.2.
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1.2. THE RECIPE

1.2.1 DPW data

The main ingredient is de�ned as follows.

De�nition 2. Let Σ be a Riemann surface and let ξ ∈ Ω(1,0)(Σ,Λsl(2,C)σ) be a holomor-

phic 1-form de�ned on Σ and taking values in Λsl(2,C)σ. For all z ∈ Σ, expanding ξ(z) in

its Fourier series

ξ(z, λ) =
∑
i∈Z

Ai(z)λ
idz, (1.4)

the 1-form ξ is called an admissible DPW potential if Ai = 0 for all i < −1.

Note the abuse of notation "ξ(z, λ)" instead of "ξ(z)(λ)". We will often identify the

set of real analytic maps f : Σ × S1 −→ G satisfying σ(f(·, λ)) = f(·,−λ) for all λ with

the set of real analytic maps f̃ : Σ −→ ΛGσ.

The ingredients of the recipe are

• A simply connected Riemann surface Σ. Note that under suitable conditions, the

DPW method can also produce immersions of non-simply-connected surfaces. See

Section 3.2 for more details.

• An admissible DPW potential ξ (as in De�nition 2) de�ned on Σ.

• An initial point z0 ∈ Σ.

• An initial condition φ0 ∈ ΛSL(2,C)σ.

Such a family (Σ, ξ, z0, φ0) is called a set of DPW data.

1.2.2 DPW method

Let (Σ, ξ, z0, φ0) be a set of DPW data. The DPW method consists of the following

three steps.

1. Solve for z ∈ Σ the Cauchy problem{
dΦ = Φξ,

Φ(z0) = φ0

(1.5)

in order to de�ne the holomorphic frame Φ : Σ −→ ΛSL(2,C)σ.

2. For all z ∈ Σ, Iwasawa decompose Φ(z) (see Theorem 1) into F (z) := Uni Φ(z) ∈
ΛSU(2)σ and B(z) := Pos Φ(z) ∈ ΛR

+SL(2,C)σ.

3. Choose H 6= 0 and de�ne fλ : Σ −→ su(2) via the Sym-Bobenko formula:

fλ(z) :=
1

2H

(
−iλ∂F (z, λ)

∂λ
F (z, λ)−1 + F (z, λ) ·

(
−i
2
σ3

))
(1.6)
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1.3. A USEFUL EXAMPLE

where the dot denotes the action of Equation (1.3).

Then, for all λ ∈ S1, the map fλ is a conformal real analytic CMC H immersion of Σ

into R3 ' su(2). (More details in Section 2, especially Theorem 3).

In order to simplify notations, let us set for any smooth map F : S1 −→ SU(2)

SymλF := −iλ∂F (λ)

∂λ
F (λ)−1 (1.7)

and with the action of (1.3),

NorλF := F (λ) ·
(
−i
2
σ3

)
, (1.8)

so that Equation (1.6) reads

fλ(z) =
1

2H
(SymλF (z) + NorλF (z)) .

1.3 A useful example

In this Section, we use the DPW method to construct a simple non-zero constant mean

curvature surface of R3. It will be needed in Section 2.3.1 to produce rigid motions of R3

using the Sym-Bobenko formula.

Consider the following DPW data:

Σ = C, ξ(z, λ) =

(
0 λ−1

0 0

)
dz, z0 = 0, φ0 = I2.

Solving the Cauchy problem (5.5) gives

Φ(z, λ) =

(
1 λ−1z

0 1

)
.

Iwasawa decomposition is explicit:(
1 λ−1z

0 1

)
︸ ︷︷ ︸

Φ(z)∈ΛSL(2,C)σ

=
1√

1 + |z|2

(
1 λ−1z

−λz̄ 1

)
︸ ︷︷ ︸

F (z)∈ΛSU(2)σ

× 1√
1 + |z|2

(
1 0

λz̄ 1 + |z|2

)
︸ ︷︷ ︸

B(z)∈ΛR
+SL(2,C)σ

.
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1.3. A USEFUL EXAMPLE

One can thus compute:

SymλF (z) =
i

1 + |z|2

(
|z|2 λ−1z

λz̄ −|z|2

)
, (1.9)

NorλF (z) =
−i
2

1

1 + |z|2

(
1− |z|2 −2λ−1z

−2λz̄ −1 + |z|2

)
and the induced immersion is given for any H 6= 0 by

fλ =
−i
2H

[
1

1 + |z|2

(
1− |z|2 −2λ−1z

−2λz̄ |z|2 − 1

)
+

(
−1
2 0

0 1
2

)]
.

For all λ ∈ S1, the identi�cation su(2) ' R3 of Section 1.1.1 makes fλ(C) a sphere centered

at (0, 0, −1
2H ) with radius 1

H , which is indeed a CMC surface.

Remark 2. Note that SymλF gives a sphere of radius 1 centered at (0, 0,−1). This fact

will be used in Section 2.3.1.

24



Chapter 2

Why does it work?

Example of Section 1.3 seems to be a �twisted� way of constructing a sphere. This is

because the link between the DPW data and the resulting immersion is not yet obvious.

This chapter exhibit this link. Section 2.1 is a necessary digression to understand what is

really constructed by the DPW method: solutions to a certain type of Lax pairs. Section

2.2 explains how the method constructs these solutions whereas Section 2.3 is devoted to

the fact that all CMC surfaces can be obtained this way.

2.1 The integrable systems framework

This section recalls how the surfaces we consider can be encoded by a pair of non-

linear partial di�erential equations (Section 2.1.1). We then introduce the moving frame

method (Section 2.1.2), transforming these fundamental equations into a pair of matrix

di�erential equations (Section 2.1.3). Finally we show how to retrieve a CMC immersion

from a solution to these linear systems (Section 2.1.4).

2.1.1 Fundamental equations

In the DPW method, a whole one-parameter family of immersions is constructed, each

of which corresponding to a constant mean curvature surface. These surfaces are linked

by their fundamental forms. Let Σ be a simply connected domain of C with coordinate

z = x+ iy. Let f be a conformal real-analytic immersion of Σ into R3. Then the �rst and

second fundamental forms of f can be written as follows:

I = 4e2u|dz|2, II = Qdz2 + 4e2uH|dz|2 + Q̄dz̄2 (2.1)
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2.1. THE INTEGRABLE SYSTEMS FRAMEWORK

where u,H : Σ −→ R and Q : Σ −→ C are real analytic functions. The �rst fundamental

form is the metric of f , the function H is its mean curvature and the di�erential form Qdz2

is called the Hopf di�erential of f . They satisfy the Gauss and Codazzi equations:

4uzz̄ − |Q|2e−2u + 4H2e2u = 0, Qz̄ = 2e2uHz (2.2)

where the index variables denote the partial derivatives with respect to these variables.

Conversely, let u,H : Σ −→ R andQ : Σ −→ C satisfy the Gauss and Codazzi equations

(2.2). Then Bonnet's theorem states that there exists locally (and more broadly, on simply

connected domains) an immersion f : Σ −→ R3 whose �rst and second fundamental forms

read as in (2.1). This immersion is unique up to rigid motions of R3. Now suppose that the

mean curvature H is constant on Σ. Reading back the Gauss and Codazzi equations, one

can note that for all t ∈ R, the triple (u,H, eitQ) satis�es the Gauss and Codazzi equations

(2.2). Bonnet's theorem ensures that this new triple produces a one-parameter family of

CMC H immersions.

De�nition 3. Let f : Σ −→ R3 be a real analytic CMC H immersion with metric and

Hopf di�erential as in (2.1). The associated family of f is the one parameter family

(fλ)λ∈S1 of CMC H immersions with the same metric as f and Hopf di�erential λ−2Qdz2

for all λ ∈ S1.

The condition of f being conformal and real-analytic is no restriction because any CMC

surface admits locally such a parametrisation. The Hopf di�erential of fλ reads λ−2Qdz2

and not λQdz2 for reasons that are speci�c to the DPW method, as we shall see in Section

2.2.

2.1.2 Moving frames

Let f : Σ −→ R3 be a real-analytic immersion. Suppose that f is conformal. Then for

all z ∈ Σ, the tangent vectors fx and fy are orthogonal and the normal map of f is given

by

N =
fx × fy
‖fx × fy‖

.

We denote by ex, ey the normalised tangent vectors of f , so that F := (ex, ey, N) is a direct

orthonormal basis of R3.

De�nition 4. The map F : Σ −→ SO(3,R) de�ned above is called the moving frame of

f . A unitary frame for f is a real-analytic map P : Σ −→ SU(2) such that F = P · B
with B as in Equation (1.2).
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2.1. THE INTEGRABLE SYSTEMS FRAMEWORK

As seen with De�nition 3, CMC surfaces come in a one-parameter family. Hence the

following de�nition.

De�nition 5. Let f : Σ −→ R3 be a CMC H immersion with associated family (fλ). An

extended unitary frame for f is a real-analytic map P : Σ×S1 −→ SU(2) such that for

all λ ∈ S1, P (·, λ) is a unitary frame for fλ.

2.1.3 Lax pairs

With the moving frames point of view, the Gauss and Codazzi equations (2.2) become

a pair of linear di�erential systems, as stated by Proposition 4 below.

De�nition 6. Let n ∈ N∗, Ω be an open subset of C2 with coordinates (z, w) and

X : Ω −→ SL(n,C) holomorphic. De�ning the holomorphic maps U, V : Ω −→ sl(n,C)

as {
U := X−1Xz,

V := X−1Xw,
(2.3)

The system (2.3) is called the Lax pair for X. Symmetry of second derivatives for X are

encoded into the Maurer-Cartan equation:

Uw − Vz = [U, V ]. (2.4)

An elementary proof of the following theorem can be found in [9] (Proposition 3.1.2).

It states that the Maurer-Cartan equation is not only necessary, but also su�cient for the

Lax pair to admit a solution.

Theorem 2. Let U, V : Ω −→ sl(n,C) holomorphic. The Lax pair (2.3) together with the

initial condition X(z0, w0) ∈ SL(n,C) admits a solution if, and only if the Maurer-Cartan

equation (2.4) holds.

Proposition 4. Let f : Σ −→ R3 be a CMC H immersion with associated family (fλ)

and P : Σ × S1 −→ SU(2) be an extended unitary frame for f . Then P satis�es the Lax

pair

P−1dP =
1

2

(
−uz λ−2Qe−u

−2Heu uz

)
dz +

1

2

(
uz̄ 2Heu

−λ2Qe−u −uz̄

)
dz̄ (2.5)

with u, Q and H as in (2.1). Moreover, the Maurer-Cartan equation for this Lax pair is

equivalent to the Gauss and Codazzi equations (2.2) for the associated family (fλ).

Remark 3. The terminology �Lax pair� is used in Proposition 4 in the following sense:
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2.2. CONSTRUCTING SOLUTIONS TO LAX PAIRS

P (z) = X(z, z̄, λ) where X : C2 × S1 −→ SU(2) satis�es the Lax pair

X−1dX =
1

2

(
−uz λ−2Qe−u

−2Heu uz

)
dz +

1

2

(
uw 2Heu

−λ2Qe−u −uw

)
dw.

2.1.4 Retrieving the immersion

The extended frame P has been de�ned by di�erentiating the associated family (fλ),

and it is natural to think that in order to retrieve the immersions from the extend frame

one has to integrate it. Fortunately, Sym [34] and Bobenko [2] have found a way to bypass

this step:

Proposition 5. In the setting of Proposition 4 and if H 6= 0, up to a rigid motion of R3

and for all λ ∈ S1,

fλ '
1

2H
(SymλP − 2NorλP ) (2.6)

with Sym and Nor de�ned in Equations (1.7) and (1.8).

Corollary 1. Let P : Σ×S1 −→ SU(2) real-analytic satisfying the Lax pair (2.5) for some

u : Σ −→ R, Q : Σ −→ C and H 6= 0 . Then P is the extended frame of an associated

family of CMC H immersions (fλ).

Equation (2.6) is close to the Sym-Bobenko fomula (1.6) of the DPW method. It is not

exactly the same because the map F de�ned in Section 1.2 does not satisfy the Lax pair

(2.5). We will address this remark in Section 2.2.

2.2 Constructing solutions to Lax pairs

We are now ready to understand why the DPW method induces associated families of

CMC immersions. For any admissible DPW potential ξ expanded in its Fourier series as

in (1.4), write

A−1(z) =

(
0 α(z)

β(z) 0

)
. (2.7)

For any holomorphic frame Φ : Σ −→ ΛSL(2,C)σ, write

Pos Φ(z) |λ=0=

(
b(z) 0

0 b(z)−1

)
. (2.8)

Theorem 3. Let (Σ, ξ, z0, φ0) be a set of DPW data and H 6= 0. Let Φ, F , B and fλ

de�ned via the DPW method applied to (Σ, ξ, z0, φ0) (see Section 1.2). Then for all λ ∈ S1,

28



2.2. CONSTRUCTING SOLUTIONS TO LAX PAIRS

fλ is a CMC H real analytic conformal immersion with metric

I =
4b4|α|2

H2
|dz|2 (2.9)

and Hopf di�erential

II(2,0) =
−2λ−2αβ

H
dz2, (2.10)

with α, β and b as in (2.7) and (2.8). Its normal map reads Nλ = −NorλF and its

di�erential is given by

dfλ(z) = F (z, λ) · ib(z)
2

H

(
0 λ−1α(z)dz

λα(z)dz̄ 0

)
. (2.11)

Sketch of the proof: An elementary proof can be found in [9], whereas a more theoretical

one can be found in [7]. The idea is to compute the Lax Pair associated to F . Writing

F = ΦB−1 gives using (1.5)

F−1dF = BξB−1 − (dB)B−1. (2.12)

But F−1dF ∈ Λsu(2)σ, B is holomorphic with respect to λ and ξ is an admissible potential

(see De�nition 2). Using these facts, one can write the series expansion of F−1dF as

F−1dF = η−λ
−1 + η0 + η+λ ∈ Ω(Σ,Λsu(2)σ).

Compute η− and η0 using the series expansion of (2.12) to get the Lax pair

F−1dF =

(
b−1bz λ−1b2α

λ−1b−2β −b−1bz

)
dz +

(
−b−1bz̄ −λb−2β̄

−λb2ᾱ b−1bz̄

)
dz̄. (2.13)

Di�erentiating the Sym-Bobenko formula (1.6) with respect to z and z̄ using this Lax pair

gives the expected results.

Remark 4. Instead of di�erentiating the Sym-Bobenko formula, one could have noticed

that setting

dw =
−α
H
dz, u = 2 log b, Q = −2H

β

α
,

and de�ning

P (w, λ) := g(λ)−1 · F (w, λ),
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2.3. SURJECTIVITY

with

g(λ) := −i

(
0 1√

λ√
λ 0

)
, (2.14)

the map P satis�es the Lax pair (2.5) for the coordinate w and is thus the extended frame

of an associated family of CMC H immersions.

We will often say that the DPW method gives rise to a CMC immersion f , instead of

a one-parameter family (fλ). In these cases, it is assumed that the Sym-Bobenko formula

(1.6) is evaluated at λ = 1.

2.3 Surjectivity

In order to explain why any CMC H 6= 0 surface can locally be obtained via the DPW

method (section 2.3.2), we need to introduce in Section 2.3.1 two operations on the DPW

data.

2.3.1 Gauging and dressing

Let (Σ, ξ, z0, φ0) be a set of DPW data giving rise to Φ, F and B via the DPW method

and inducing an associated family (fλ) of CMC H immersions. We introduce two changes

in the data that result into simple geometric changes on the surface.

De�nition 7. Let G : Σ −→ Λ+SL(2,C)σ holomorphic and set

ξ ·G := G−1ξG+G−1dG. (2.15)

Equation (2.15) de�nes a right-action called gauging the potential and the map

(Σ, ξ, z0, φ0) 7−→ (Σ, ξ ·G, z0, φ0G)

is called gauging the data.

Note that G is not necessary in ΛR
+SL(2,C)σ. Thus, using Remark 1, it has the form

G =

(
ρeiθ 0

0 ρ−1e−iθ

)
+O(λ) (ρ, θ : Σ −→ R∗+). (2.16)

Proposition 6. Let (Σ, ξ · G, z0, φ0G) be a set of gauged data. Then the induced holo-
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2.3. SURJECTIVITY

morphic frame is ΦG and the induced unitary frame is

F

(
eiθ 0

0 e−iθ

)

(with θ de�ned in (2.16)). The induced CMC H immersions are unchanged: they equal fλ
for all λ ∈ S1.

De�nition 8. Let J ∈ ΛSL(2,C)σ. The map

(Σ, ξ, z0, φ0) 7−→ (Σ, ξ, z0, Jφ0)

is called dressing the data. The dressed holomorphic frame is the frame JΦ induced

by the dressed data.

Proposition 7. Let (Σ, ξ, z0, Jφ0) be a set of dressed data. Then the induced CMC H

immersions f̂λ have the same Hopf di�erential as fλ. Moreover, if J ∈ ΛSU(2)σ, then for

all λ ∈ S1, fλ and f̂λ di�er by a rigid motion of R3:

f̂λ = J(λ) · fλ + SymλJ. (2.17)

In order to apply a rotation to fλ, it then su�ces to dress the data (Σ, ξ, z0, φ0) by a λ-

independent factor that can be explicitly computed (see Lemma 3.3. in [18]). Translations

can be explicitly computed using the example of the sphere in Section 1.3 and the following

Proposition.

Proposition 8. Let (Σ, ξ, z0, φ0) be a set of DPW data. Let Q : Ω −→ ΛSU(2)σ and

p ∈ Ω ∩ Σ. De�ne

J(λ) := Q(p, λ)Q(p, 1)−1.

Then the immersion f̂ = f̂1 induced by the dressed data (Σ, ξ, z0, Jφ0) satis�es for all

z ∈ Σ

f̂(z) = f(z) + Sym1Q(p).

2.3.2 Constructing all CMC immersions

Given a mean curvature H 6= 0, the DPW method induces a map from the set of

admissible DPW data to the set of CMC immersions in R3. This map is surjective: any

CMC H immersion can be locally obtained this way.

Theorem 4. For any f : Σ −→ R3 conformal real analytic CMC H 6= 0 immersion, there

exist DPW data (Σ, ξ, z0, φ0) inducing f via the DPW method.

31



2.3. SURJECTIVITY

Sketch of the proof: Without loss of generality, one can suppose by applying a homothety

that H = 1. De�ne P : Σ× S1 −→ SU(2) as the solution to the Lax pair (2.5) with initial

condition P (z0) = I2 and set F := g · P : Σ −→ ΛSU(2)σ with g as in Equation (2.14).

Then F satis�es the Lax pair

F−1dF =
1

2

(
uz −2λ−1Heu

λ−1Qe−u −uz

)
dz +

1

2

(
−uz̄ −λQ̄e−u

2λHeu uz̄

)
dz̄. (2.18)

Now solve for B : Σ −→ Λ+SL(2,C)σ the ∂̄ problem:

(FB)z̄ = 0,

so that Φ := FB is holomorphic on Σ and takes values in ΛSL(2,C)σ. Then ξ := Φ−1dΦ

is a holomorphic 1-form on Σ and the series expansion of F−1dF shows that ξ is an

admissible DPW potential. Let φ0 := Φ(z0) and apply the DPW method to the DPW

data (Σ, ξ, z0, φ0) to retrieve Φ. Iwasawa decomposition gives

Iwa Φ = (F UniB,PosB)

where

UniB =

(
eiθ 0

0 e−iθ

)
, θ : Σ −→ R.

Thus,

Sym ◦Uni Φ = SymF and Nor ◦Uni Φ = NorF.

Compute

Symg =
i

2
σ3

to get

SymF = Sym(g · P )

= Symg + g · SymP − (g · P ) · Symg

=
i

2
σ3 + g · SymP + NorF.

Compute

g(λ)−1σ3g(λ) = −σ3 ∀λ ∈ S1

to get

NorF = −g ·NorP.
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2.3. SURJECTIVITY

The induced immersion is then

f̂λ =
1

2H
(SymλF + NorλF )

= g(λ) ·
[

1

2H
(SymλP − 2NorλP )

]
+

i

4H
σ3

which gives at λ = 1, up to a rigid motion, the immersion f (Use Equation (2.6) to identify

fλ). Apply a well chosen isometry by dressing the data (see Section 2.3.1) to retrieve f .
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Chapter 3

Further options

Now that the basic tools of the DPW method are introduced, one can adjust it in

many ways, depending on what one wants to do with it. For example, untwisting the loops

(Section 3.1) makes the Sym-Bobenko formula and the loop groups simpler to deal with,

without changing the fundamental idea behind the method. One can also build surfaces

with topology and assume that Σ is not simply connected, provided that an extra condition

on the data is satis�ed (Section 3.2). Finally, the Lawson correspondence between CMC

surfaces in Euclidean and Hyperbolic spaces provides a DPW method for constructing

CMC H > 1 surfaces in H3 (Section 3.3).

3.1 Untwisting the loops

Twistedness of loops is not essential to the DPW method, and some papers (such as

[20, 21, 39, 38]) use loop groups that are not twisted. In their case, untwisting the loops

simplify the proofs and formulae. For any group or algebra G, let ΛG denote the set of

smooth maps S1 −→ G.

3.1.1 De�nition

Let M ∈ Λgl(2,C)σ be a twisted loop and de�ne for all λ in the double cover of S1

M̃(λ) :=

(
1√
λ

0

0
√
λ

)
M(λ)

(√
λ 0

0 1√
λ

)
.

Then M̃ is well-de�ned on S1 and M̃ ∈ Λgl(2,C). Moreover, M̃ is an even function of λ.

One can thus de�ne

M̂(λ) := M̃(
√
λ).
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3.1. UNTWISTING THE LOOPS

De�nition 9. Applying the map

κ : Λgl(2,C)σ −→ Λgl(2,C)

M 7−→ M̂

de�ned above is called untwisting the loop M .

Formally,

M(λ) =

(
a(λ2) λb(λ2)

λ−1c(λ2) d(λ2)

)
=⇒ κ(M)(λ) =

(
a(λ) b(λ)

c(λ) d(λ)

)
.

The de�nition of untwisted loop groups and algebras is exactly the same as in Section 1

without the condition σ(X(λ)) = X(−λ) (and Remark 1 should now make sense). We

denote them by dropping the "σ" and write, for example, Λsl(2,C) for the untwisted

version of Λsl(2,C)σ.

3.1.2 Untwisting the recipe

One can adapt the DPW method so that it works with untwisted loop groups. The

important changes are in the de�nition of admissible potentials and in the Sym-Bobenko

formula (which is simpler in the untwisted framework).

De�nition 10. Let Σ be a Riemann surface and let ξ ∈ Ω(1,0)(Σ,Λsl(2,C)) be a holomor-

phic 1-form de�ned on Σ and taking values in Λsl(2,C). For all z ∈ Σ, expanding ξ(z) in

its Fourier series as in (1.4), the 1-form ξ is called an admissible DPW potential (in

the untwisted setting) if Ai = 0 for all i < −1 and if A−1 is of the form

A−1(z) =

(
0 α(z)

0 0

)
. (3.1)

A set of DPW data in the untwisted setting is a family (Σ, ξ, z0, φ0) where ξ is an

admissible potential in the untwisted setting and φ0 ∈ ΛSL(2,C).

The three steps of the DPW method in the untwisted setting are basically the same

provided that one changes twisted loop groups into untwisted loop groups. First, solve

for Φ(z) ∈ ΛSL(2,C) the Cauchy problem (5.5). Then Iwasawa decompose Φ into (F,B)

using the following untwisted Iwasawa decomposition.

Theorem 5. The multiplication map

× : ΛSU(2)× ΛR
+SL(2,C) −→ ΛSL(2,C)

(F,B) 7−→ FB
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3.1. UNTWISTING THE LOOPS

is bijective. Its inverse map is called Iwasawa decomposition and is denoted:

Iwa : ΛSL(2,C) −→ ΛSU(2)× ΛR
+SL(2,C)

Φ 7−→ (Uni Φ,Pos Φ).

Finally, for any H 6= 0, de�ne the induced CMC H immersions fλ via the Sym-Bobenko

formula

fλ :=
1

H
SymλF. (3.2)

Theorem 6. Let (Σ, ξ, z0, φ0) be a set of untwisted DPW data and H 6= 0. Let Φ, F ,

B and fλ be de�ned via the DPW method applied to (Σ, ξ, z0, φ0). Then for all λ ∈ S1,

fλ is a CMC H real analytic conformal immersion with metric given by (2.9) and Hopf

di�erential

II(2,0) =
−2λ−1αβ

H
dz2,

where α is as in (3.1), β is the lower-left entry of A0 and b is the upper-left entry of B |λ=0.

Its normal map reads Nλ = −NorλF and its di�erential is as in (2.11).

Note that dressing and gauging with untwisted loops give the same results as in the

twisted setting (see Section 2.3.1). In particular, Equation (2.17) describing the dressing

action with unitary loops as isometries is the same in the untwisted setting.

As stated before, some authors work in the untwisted framework and the others in the

twisted framework. Whenever the choice is not explicitly stated, a simple look at the loop

groups de�nitions makes it clear. Moreover, one can translate one setting into another.

Let (Σ, ξ, z0, φ0) be a set of admissible DPW data in the twisted setting, giving rise to the

twisted maps Φ, F , B, and to the CMC H 6= 0 immersion f = f1. Use De�nition 9 to

untwist the potential and the initial condition, giving rise to a set (Σ, ξ̂, z0, φ̂0) of DPW

untwisted data, inducing the maps Φ̂, F̂ , B̂ and the CMC H immersion f̂ = f̂1.

Proposition 9. With the above notations and κ as in De�nition 9,

Φ̂ = κ(Φ), F̂ = κ(F ), B̂ = κ(B)

and

f̂ = f − 1

2H

(
−i
2
σ3

)
.

A good way to test Proposition 9 is to apply it to the example of Section 1.3 in which

untwisting the data does not change it, thus simplifying the computations.
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3.2. NON-TRIVIAL FUNDAMENTAL GROUP: THE MONODROMY PROBLEM

3.2 Non-trivial fundamental group: the monodromy problem

Let ξ : Σ −→ Λsl(2,C) be an admissible DPW potential, z0 ∈ Σ and φ0 ∈ ΛSL(2,C).

Suppose that Σ is not simply connected and let Σ̃ be its universal cover with z̃0 ∈ Σ̃ above

z0. One can use the DPW method on the data (Σ̃, ξ, z̃0, φ0) because Σ̃ is simply connected:

let Φ, F , B and f be the induced maps. The immersion f is a CMC immersion of Σ̃ into

R3, but nothing ensures that it descends to a well-de�ned immersion of Σ.

De�nition 11. For any deck transformation τ ∈ Deck(Σ̃/Σ), the loop

Mτ (Φ) := Φ(τ(z̃))× Φ(z̃)−1 ∈ ΛSL(2,C) (3.3)

does not depend on z̃ ∈ Σ̃ (but only on the choice of z̃0 above z0) and is called the

monodromy of Φ with respect to τ .

Proposition 10. Suppose that

∀τ ∈ Deck(Σ̃/Σ),


Mτ (Φ) ∈ ΛSU(2),

Mτ (Φ)(1) = ±I2,
dMτ (Φ)

dλ (1) = 0.

(3.4)

Then the immersion f : Σ̃ −→ R3 induced by Φ descends to a well-de�ned immersion of

Σ.

Equation (3.4) is called the monodromy problem in R3. Equation (3.3) shows that

deck transformations act on the DPW data as dressing (see Section 2.3.1), and Proposition

10 states that if this dressing represents the identity isometry, then the immersion is well-

de�ned on Σ.

3.3 Hyperbolic space

The DPW method can be used to construct CMC H > 1 immersions into Hyperbolic

space. One �rst need to extend the de�nition of loops to annuli, and this is the chance to

equip the groups with a simple Banach structure, as in Section 3.3.1. After introducing

a suitable matrix model of H3 in Section 3.3.2, we brie�y describe the method in the

untwisted framework (Section 3.3.3). The ideas are the same as in Euclidean space, which

is why we do not give proofs.
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3.3.1 Extending the loops

In order to de�ne di�erentiable maps between loop groups and algebras, one might

want to equip them with a Banach structure. Let | · | be a sub-multiplicative norm on

gl(2,C). Let R > 1 and de�ne for all f ∈ Λgl(2,C)

‖f‖R :=
∑
i∈Z
|fi|R|i| (3.5)

where
∑
fiλ

i is the Fourier expansion of f . For any loop group or algebra ΛG de�ned in

Section 5.1.2, de�ne

ΛGR := {f ∈ ΛG | ‖f‖R <∞} .

Then Λgl(2,C)R is a Banach algebra. Moreover, ΛSL(2,C)R, ΛSU(2)R and ΛR
+SL(2,C)R

are Banach manifolds and Iwasawa decomposition is a smooth di�eomorphism:

Theorem 7. [38] For all R > 1, the multiplication map ΛSU(2)R × ΛR
+SL(2,C)R −→

ΛSL(2,C)R is a smooth di�eomorphism between Banach manifolds.

This Banach structure is used to construct CMC immersions in Hyperbolic space via

the DPW method. It has been introduced in [39] and di�ers from the one used in [7], which

would be less convenient to use for the purposes of this thesis.

3.3.2 Matrix model

The matrix model we use is the same as in [3]. Let R1,3 denote the vector space R4

equipped with the Lorentzian metric

〈x, x〉 = −x2
0 + x2

1 + x2
2 + x2

3, x = (x0, x1, x2, x3) ∈ R4.

The Hyperbolic space H3 is the Riemannian sub-manifold of R1,3 de�ned by

H3 =
{
x ∈ R1,3 | 〈x, x〉 = −1

}
.

The point (1, 0, 0, 0) ∈ H3 will play the role of an origin and is thus denoted by 0. The

tangent space T0H3 = {0} × R3 is identi�ed with its projection on R3 equipped with the

cross product, which makes T0H3 a real Lie algebra.

De�nition 12. For all p, q ∈ H3, the map Γqp : TpH3 −→ TqH3 denotes the parallel

transport of vectors from p to q along the geodesic joining p to q. It is an isomorphism

between vector spaces and it is the one we use to identify TpH3 with T0H3 for all p ∈ H3.
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3.3. HYPERBOLIC SPACE

Let H denote the real Lie algebra of 2 × 2 Hermitian matrices equipped with the Lie

bracket and Lorentzian metric

[X,Y ] :=
i

2
(XY − Y X), 〈X,X〉 := −detX.

Let Ψ : R1,3 −→ H de�ned by

Ψ(x0, x1, x2, x3) =

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
.

Proposition 11. The map Ψ is an isometric isomorphism between real vector spaces and

Ψ(H3) = {FF ∗ | F ∈ SL(2,C)}

where M∗ := M
t
for all M ∈ gl(2,C). Moreover,

dΨ0 : T0H3 −→ H ∩ sl(2,C)

v 7−→ Ψ(v)

is an isometric homomorphism between Lie algebras.

Proposition 11 provides an identi�cation between H3 and Ψ(H3). Under this identi�-

cation, the Lie group SL(2,C) acts on R1,3 as linear Lorentzian isometries via

F ·X := FXF ∗, X ∈ H, F ∈ SL(2,C). (3.6)

The following proposition relies upon the polar decomposition in SL(2,C) and is proved in

Chapter 5.

Proposition 12. For all x ∈ H3 and for all direct orthonormal bases (u, v, w) of the

tangent space TxH3 ' T0H3, there exists F ∈ SL(2,C) such that

(x, u, v, w) = F · B

where B = Ψ(B0) is the image of the canonical basis of R4.

Inspired by the Euclidean case, one can get the following de�nitions and propositions

for Hyperbolic space.

De�nition 13. The moving frame of f : Σ −→ H3 is de�ned as F := (f, ex, ey, N). A

special frame for f is a map P : Σ −→ SL(2,C) such that F = P · B. An extended

frame for f is a map P : Σ −→ ΛSL(2,C) such that for all λ ∈ S1, P (·, λ) is a special

frame for the associated CMC immersion fλ.
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3.3. HYPERBOLIC SPACE

Proposition 13. Let P be a special frame for f : Σ −→ H3. Then P satis�es the Lax

pair:

P−1dP =
1

2

(
uz 2(H + 1)eu

−Qe−u −uz

)
dz +

1

2

(
−uz̄ Q̄e−u

−2(H − 1)eu uz̄

)
dz̄ (3.7)

with u, Q and H de�ned via (2.1). Moreover, the Maurer-Cartan equation for this Lax

pair is equivalent to the Gauss and Codazzi equations in H3:

4uzz̄ − |Q|2e−2u + 4(H2 − 1)e2u = 0, Qz̄ = 2e2uHz. (3.8)

3.3.3 The (untwisted) DPW method for CMC H > 1 surfaces in H3

In this section, we introduce a DPW method with untwisted data that leads to CMC

H > 1 immersions of a simply connected domain Σ into Hyperbolic space. Let q =

arcothH > 0 and R = eq.

De�nition 14. In Hyperbolic space and untwisted setting, a set of admissible DPW

data is given by (Σ, ξ, z0, φ0) admissible in the sense of De�nition 10 and such that φ0 ∈
ΛSL(2,C)R and ξ takes values in Λsl(2,C)R.

Remark 5. In Chapter 5, R is taken greater than eq. This is not essential to the method,

but allows us to get control formulas that are essential to our purpose.

Given a set of admissible data in the sense of De�nition 14, the three steps of the

DPW method are the following. First, solve for Φ(z) ∈ ΛSL(2,C)R the Cauchy problem

(5.5). Then Iwasawa decompose Φ into (F,B) using Theorem 7. Finally, de�ne f via the

Sym-Bobenko formula

F (·, e−q) · I2 (3.9)

with the action of (3.6).

Proposition 14. The map f : Σ −→ H3 de�ned above is a CMC H immersion. With α

as in (3.1), β the lower-left entry of A0 and b the upper-left entry of B |λ=0, the metric of

f is

I =
4b4|α|2

H2 − 1
|dz|2,

its Hopf di�erential is

II(2,0) =
−2αβ√
H2 − 1

dz2

and its normal map is given by

N = F (·, e−q) · σ3.
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Moreover, its di�erential reads

df =
2b2√
H2 − 1

F (·, e−q) ·

(
0 αdz

ᾱdz̄ 0

)
.

Remark 6. Proposition 14 only constructs one member of the associated family (fλ).

This constraint is not essential to the DPW method in H3 and has been introduced only

to simplify the notation. Furthermore, Chapter 5 only deals with single members of the

associated families.

As in R3, every CMC H > 1 immersion can be obtained locally and up to an isometry

via the DPW method.

3.3.4 Gauging, dressing, isometries, monodromy

De�nitions 7 and 8 of gauging and dressing (adapted to the untwisted framework) are

the same in H3, and gauging the potential does not change the immersion induced by

formula (3.9). Therefore, Proposition 6 holds in H3. The e�ect of dressing is exactly the

same: some dressing act as rigid motions.

Proposition 15. Let (Σ, ξ, z0, Jφ0) be a set of dressed data (in the untwisted setting).

Then the dressed CMC H > 1 immersion f̂ : Σ −→ H3 has the same Hopf di�erential as

the original immersion f . Moreover, if J(z) ∈ ΛSU(2) for all z ∈ Σ, then for all λ ∈ S1, f

and f̂ di�er by a rigid motion of H3:

f̂ = J(e−q) · f (3.10)

for the action de�ned in (3.6).

Finally, monodromy is de�ned in H3 as in De�nition 11, but the expression of the

monodromy problem di�ers from R3, because the isometric action of dressing is not the

same in H3. Thus, the monodromy problem in H3 reads:

∀τ ∈ Deck(Σ̃/Σ),

{
Mτ (Φ) ∈ ΛSU(2)R,

Mτ (Φ)(e−q) = ±I2.
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Constant Mean Curvature Surfaces

in Euclidean and Hyperbolic Spaces
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Chapter 4

On Delaunay Ends in the DPW

method

1We consider constant mean curvature 1 surfaces in R3 arising via the DPW method

from a holomorphic perturbation of the standard Delaunay potential on the punctured

disk. Kilian, Rossman and Schmitt have proven that such a surface is asymptotic to a

Delaunay surface. We consider families of such potentials parametrised by the necksize of

the model Delaunay surface and prove the existence of a uniform disk on which the surfaces

are close to the model Delaunay surface and are embedded in the unduloid case.

Introduction

Beside the sphere, the simplest non-zero constant mean curvature (CMC) surface is the

cylinder, which belongs to a one-parameter family of surfaces generated by the revolution

of an elliptic function: the Delaunay surfaces, �rst described in [4]. Like the cylinder,

Delaunay surfaces have two annular type ends, and Delaunay ends are the only possible

embedded annular ends for a non-zero CMC surface. Indeed, as proven in [24] by Korevaar,

Kusner and Solomon, if M ⊂ R3 is a proper, embedded, non-zero CMC surface of �nite

topological type, then every annular end ofM is asymptotic to a Delaunay surface and if

M has exactly two ends which are of annular type, thenM is a Delaunay surface. Thus,

the status of Delaunay surfaces for non-zero CMC surfaces is very much alike the catenoid

position in the study of minimal surfaces (see the result of Schoen in [33]), and one has to

understand the behaviour of Delaunay ends in order to construct examples of non-compact

CMC surfaces with annular ends, as Kapouleas did in 1990 [16].

1. This chapter is the �rst paper of the thesis. It has been accepted in Indiana University Mathematics

Journal and is available at www.iumj.indiana.edu/IUMJ/Preprints/8123.pdf
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For an immersion, having a constant mean curvature and having a harmonic Gauss

map are equivalent. This is why the Weierstrass type representation of Dorfmeister, Pedit

and Wu [7] has been used since the publication of their article to construct CMC surfaces.

The DPW method can construct any conformal non-zero CMC immersion in R3, H3 or S3

with three ingredients: a holomorphic potential which takes its values in a loop algebra, a

loop group factorisation, and a Sym-Bobenko formula. Several examples of CMC surfaces

with annular ends, like n-noids and bubbletons, have been made by Dorfmeister, Wu,

Kilian, Kobayashi, McIntosh, Rossman, Schmitt and Sterling [8, 32, 17, 19, 22, 31]. These

constructions often rely on a holomorphic perturbation of the holomorphic potential giving

rise to a Delaunay surface via the DPW method, and Kilian, Rossman and Schmitt [20]

have proven that such perturbations always induce asymptotically a Delaunay end.

More precisely, any Delaunay embedding can be obtained with a holomorphic potential

of the form ξD = Az−1dz where

A =

(
0 rλ−1 + s

rλ+ s 0

)
.

The main result of [20] states that any immersion obtained from a perturbed potential

of the form ξ = ξD + O(z0) is asymptotic to an embedded half-Delaunay surface in a

neighbourhood of z = 0, provided that the monodromy problem is solved. In this paper, we

allow the perturbed potential to move in the family of Delaunay potentials by introducing

a real parameter t, proportional to the weight (or neck-size) of the model Delaunay surface,

and consider ξt = ξDt +Ot(z0) where ξDt is a Delaunay potential of weight 8πt. The main

theorem of [20] states that for every t > 0, there exists a small neighbourhood of the origin

on which the surface produced by the potential ξt is embedded and asymptotic to a half

Delaunay surface. Unfortunately, without further hypotheses, this neighbourhood vanishes

into a single point as t tends to zero. Adding a few assumptions, we prove here that there

exists a uniform neighbourhood of the origin upon which the surfaces induced by the family

ξt are all embedded and asymptotic to a half Delaunay surface for t > 0 small enough.

Hence, the point of our paper is not to show that the ends of the perturbed unduloid

family are embedded (which is what [20] does), but that all the immersions of this family

are embedded on a uniform punctured disk. Equipped with our result, Martin Traizet (in

[39] and [38]) showed for the �rst time how the DPW method can be used to both construct

CMC n-noids without symmetries and prove that they are Alexandrov embedded.

The theorem we prove is the following one (de�nitions and notations are clari�ed in

Section 4.1):

Theorem 8. Let Φt be a holomorphic frame arising from a perturbed Delaunay potential
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4.1. THE DPW METHOD

ξt de�ned on a punctured neighbourhood of z = 0. Suppose that Φ0(1, λ) = I2 and that

the monodromy of Φt is unitary. Then, if ft denotes the immersion obtained via the DPW

method,

• There exists a family fDt of Delaunay immersions such that for all α < 1 and |t| small

enough,

‖ft(z)− fDt (z)‖R3 ≤ Cα|t||z|α

on a uniform neighbourhood of z = 0.

• If t > 0 is small enough, then ft is an embedding of a uniform neighbourhood of

z = 0.

• The limit axis of fDt as t tends to 0 can be made explicit.

An outline of the proof is given in Section 4.1.9, together with an explanation of why

the convergence of t to 0 forbids us from using several key results of [20].

4.1 The DPW method

4.1.1 Loop groups

Our maps will often depend on a spectral parameter λ that can be in one of the following

subsets of C (R > 1):

DR = {λ ∈ C, |λ| < R} , AR =
{
λ ∈ C, 1

R < |λ| < R
}
,

D1 = {λ ∈ C, |λ| < 1} , A1 = {λ ∈ C, |λ| = 1} .

For the coordinate z, we will note (ε > 0):

Dε = {z ∈ C, |z| < ε} , Sε = {z ∈ C, |z| = ε} .

Let us de�ne the following (untwisted) loop groups and algebras:

• ΛSL2C is the set of smooth maps Φ : A1 −→ SL2C.

• ΛSU2 ⊂ ΛSL2C is the set of maps F ∈ ΛSL2C such that F (λ) ∈ SU2 for all λ ∈ A1.

• Λ+SL2C ⊂ ΛSL2C is the set of maps G ∈ ΛSL2C that can be holomorphically

extended to D1 and such that G(0) is upper triangular.

• ΛR
+SL2C ⊂ Λ+SL2C is the set of maps B ∈ Λ+SL2C such that B(0) has positive

elements on the diagonal.

• Λsl2C is the set of smooth maps A : A1 −→ sl2C.

• Λsu2 is the set of maps m ∈ Λsl2C such that m(λ) ∈ su2 for all λ ∈ A1.
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• Λ+sl2C ⊂ Λsl2C is the set of maps g ∈ Λsl2C that can be holomorphically extended

to D1 and such that g(0) is upper triangular.

• ΛR
+sl2C ⊂ Λ+sl2C is the set of maps b ∈ Λ+sl2C such that b(0) has real elements on

the diagonal.

We also use the following notation:

O(tα, zβ, λγ) = tαzβλγf(t, z, λ)

where f , on its domain of de�nition, is continuous with respect to (t, z, λ) and holomorphic

with respect to (z, λ) for any t. If one variable is not speci�ed, its exponent is assumed to

be 0.

One step of the DPW method relies on the following Iwasawa decomposition (Theorem

8.1.1. in [29] and Proposition 6.2. in [27]):

Theorem 9 (Iwasawa decomposition). Any element Φ ∈ ΛSL2C can be uniquely factorised

into a product

Φ = F ×B

where F ∈ ΛSU2 and B ∈ ΛR
+SL2C. Moreover, the map ΛSL2C −→ ΛSU2 × ΛR

+SL2C is a

C∞ di�eomorphism for the intersection of the Ck topologies (see [20]).

The Iwasawa decomposition of a map Φ will often be written:

Φ = Uni (Φ)× Pos (Φ) ,

where Uni (Φ) is called �the unitary factor� of Φ and Pos (Φ) is �the positive factor� of Φ.

Using Corollary 4 of Section 4.6, note that if Φ is holomorphic on AR, then its unitary

factor holomorphically extends to AR and its positive factor holomorphically extends to

DR.

4.1.2 The su2 model of R3

In the DPW method, immersions are given in a matrix model. The euclidean space R3

is thus identi�ed with the Lie algebra su2 by

x = (x1, x2, x3) ' X =
−i
2

(
−x3 x1 + ix2

x1 − ix2 x3

)
.

The canonical basis of R3 identi�ed as su2 is denoted (e1, e2, e3). In this model, the

euclidean norm is given by

‖x‖2 = 4 det(X). (4.1)
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4.1. THE DPW METHOD

Linear isometries are represented by the conjugacy action of SU2 on su2:

H ·X = HXH−1.

4.1.3 The recipe

The DPW method takes for input data:

• A Riemann surface Σ;

• A Λsl2C-valued holomorphic 1-form ξ = ξ(z, λ) on Σ called �the DPW potential�

which extends meromorphically to D1 with a pole only at λ = 0, and which must be

of the form

ξ(z, λ) =
∞∑

j=−1

ξj(z)λ
j

where each matrix ξj(z) depends holomorphically on z and all the entries of ξ−1(z)

are zero except for the upper right entry which must never vanish;

• A base point z0 ∈ Σ;

• An initial condition Φz0 ∈ ΛSL2C.

Given such data, here are the three steps of the DPW method for constructing CMC-1

surfaces in R3 (in the untwisted setting):

1. Solve for Φ the Cauchy problem with parameter λ ∈ A1:{
dzΦ(z, λ) = Φ(z, λ)ξ(z, λ),

Φ(z0, λ) = Φz0(λ).

The solution Φ(z, ·) ∈ ΛSL2C is called the �holomorphic frame� of the surface. In

general, Φ(·, λ) is only de�ned on the universal cover Σ̃ of Σ (see Section 4.1.6). Note

that if ξ(z, ·) can be holomorphically extended to AR (R > 1), then Φ(z, ·) can also

be holomorphically extended to AR provided that Φz0 is holomorphic on AR.

2. For all z ∈ Σ̃, Iwasawa decompose Φ(z, λ) = F (z, λ)B(z, λ). The decomposition is

done pointwise in z, but F (z, λ) and B(z, λ) depend real-analytically on z. The map

F is called the �unitary frame� of the surface.

3. De�ne f : Σ̃ −→ su2 by the Sym-Bobenko formula:

f(z) = Sym(F ) = i
∂F

∂λ
(z, 1)F (z, 1)−1.
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The map f is then a conformal CMC-1 immersion whose normal map is given by

N (z) =
−i
2
F (z, 1)

(
1 0

0 −1

)
F (z, 1)−1. (4.2)

Its metric and Hopf di�erential are

ds = 2ρ2|ξ12
−1||dz|,

Q = −2ξ12
−1ξ

21
0 dz

2

where ξklj is the (k, l)-entry of the matrix ξj(z) and ρ is the upper-left entry of B(z, 0).

The theory states that every conformal CMC-1 immersion can be obtained this way.

4.1.4 Rigid motions of the surface

Let ξ be a DPW potential and Φ ∈ ΛSL2C a solution of dΦ = Φξ. Take a loop

H ∈ ΛSU2 that does not depend on z. Then Φ̃ = HΦ also satis�es dΦ̃ = Φ̃ξ and gives

rise to a rigid motion of the original surface given by Φ. Let f = Sym ◦ Uni(Φ) and

f̃ = Sym ◦Uni(Φ̃). Then,

f̃(z) = H(1) · f(z) + Sym(H).

This leads us to extend the action of section 4.1.2 to a�ne isometries by

H(λ) ·X = H(1)XH(1)−1 + i
∂H

∂λ
(1)H(1)−1.

Note that ΛSU2 also acts on the tangent bundle of R3 via:

H · (p,~v) = (H · p,H(1) · ~v) . (4.3)

This action will be useful to follow the axis of our surfaces: oriented a�ne lines are gener-

ated by pairs (p,~v) and the action of ΛSU2 on a given oriented a�ne line corresponds to

the action (4.3) on its generators.

4.1.5 Gauging

Let (Σ, ξ, z0,Φz0) be a set of DPW data with dΦ = Φξ. Let G(z, λ) be a holomorphic

map with respect to z ∈ Σ such that G(z, ·) ∈ Λ+SL2C (such a map is called an �admissible

gauge�). If we de�ne Φ̃ = ΦG, then Φ and Φ̃ give rise to the same immersion f . This
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operation is called �gauging� and one can retrieve Φ̃ by applying the DPW method to the

data (Σ, ξ ·G, z0,Φz0G(z0, ·)) where

ξ ·G = G−1ξG+G−1dG

is the action of gauges on potentials.

4.1.6 The monodromy problem

Since Φ is de�ned as the solution of a Cauchy problem on Σ, it is only de�ned on the

universal cover Σ̃ of Σ. For any deck transformation τ of Σ̃, we de�ne the monodromy

matrixMτ (Φ) ∈ ΛSL2C as follow:

Φ(τ(z), λ) =Mτ (Φ)(λ)Φ(z, λ).

Note thatMτ (Φ) does not depend on z. The standard su�cient condition for the immer-

sion f to be be well-de�ned on Σ is the following set of equations, called the monodromy

problem in R3: 
Mτ (Φ) ∈ ΛSU2, (i)

Mτ (Φ)(1) = ±I2, (ii)
∂
∂λMτ (Φ)(1) = 0. (iii)

Remark 7. In this paper, the Riemann surface Σ will always be a punctured neighbour-

hood D∗ε of z = 0. Thus, all the deck transformations τ will be associated to a closed loop

around z = 0 and we will writeM(Φ) instead ofMτ (Φ).

Remark 8. Let Φ : C∗ −→ ΛSL2C such thatM (Φ) ∈ ΛSU2. Let Φ̃ = H (h∗Φ) ·G where

H ∈ ΛSL2C, G : C −→ Λ+SL2C is holomorphic at z = 0 and h : C −→ C is a Möbius

transformation that leaves z = 0 invariant. Then

M(Φ̃) = HM (Φ)H−1.

Thus, if the monodromy problem for Φ is solved, a su�cient condition for the monodromy

problem for Φ̃ to be solved is that H ∈ ΛSU2.

4.1.7 The Delaunay family

Delaunay surfaces come in a one-parameter family: for all t ∈
(
−∞, 1

16

]
\ {0}, there

exists a unique Delaunay surface, whose weight (as de�ned in [24]) is 8πt. As shown in
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[32], the DPW method can retrieve these surfaces using the following data:

Σ = C∗, ξt(z, λ) = At(λ)z−1dz, z0 = 1, Φz0 = I2,

where

At(λ) =

(
0 rλ−1 + s

rλ+ s 0

)
and r, s are functions of t ∈

(
−∞, 1

16

]
satisfying

r, s ∈ R,
r + s = 1

2 ,

rs = t.

(4.4)

Note that the system (4.4) admits two solutions, whether r ≥ s or r ≤ s. For a �xed value

of t, these two solutions give two di�erent parametrisations of the same surface (up to a

translation). If r ≥ s, the unit circle of C∗ is mapped onto a parallel circle of maximal

radius: a bulge of the Delaunay surface. If r ≤ s, the unit circle of C∗ is mapped onto a

parallel circle of minimal radius: a neck of the Delaunay surface. As t tends to 0 and in the

case r ≥ s, the immersions tend towards the parametrisation of a sphere on every compact

subset of C∗, which is why we call this setting the �spherical case�. On the other hand,

when r ≤ s and t tends to 0, the immersions degenerate into a point on every compact

subset of C∗. Nevertheless, we call this setting the �catenoidal case� because applying

a blowup to the immersions makes them converge towards a catenoid on every compact

subset of C∗ (see [38] for further details).

In any case, the corresponding holomorphic frame is explicit:

Φt(z, λ) = zAt(λ)

as is its monodromy around z = 0:

M (Φt) (λ) = exp (2iπAt(λ)) = cos (2πµt(λ)) I2 +
i sin (2πµt(λ))

µt(λ)
At(λ) (4.5)

where

µt(λ)2 = −detAt(λ) =
1

4
+ tλ−1(λ− 1)2. (4.6)

Note that the conditions (4.4) have been chosen in order for the monodromy problem of

Section 4.1.6 to be solved. The axis of the surface is given by {(x, 0,−2r), x ∈ R} and its

weight is 8πt. Thus, the induced surface is an unduloid if t > 0 and a nodoid if t < 0.

Remark 9. In order to deal with a single-valued square root of µt(λ)2 and to avoid some
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resonance cases in Section 4.3, we set T > 0 and R > 1 small enough for∣∣∣∣µt(λ)2 − 1

4

∣∣∣∣ < 1

4

to hold for all (t, λ) ∈ (−T, T )×AR.

4.1.8 Perturbed Delaunay DPW data

We take a Delaunay potentials family as in section 4.1.7 and we perturb it for z in a

small uniform neighbourhood of 0:

De�nition 15 (Perturbed Delaunay potential). Let ε > 0. A perturbed Delaunay poten-

tial is a one-parameter family {ξt}t∈(−T,T ) of DPW potentials, holomorphic on D∗ε × AR
and of the form

ξt(z, λ) = At(λ)z−1dz +Rt(z, λ)dz

where At is a Delaunay residue as in Section 4.1.7 and Rt(z, λ) ∈ C2 with respect to (t, z, λ),

is holomorphic on Dε ×AR for all t and satis�es R0(z, λ) = 0.

The following set of hypotheses will be used to make sure that our holomorphic frames

have a C0 regularity, are holomorphic with respect to (z, λ), and solve the monodromy

problem:

Hypotheses 1. Let ξt be a perturbed Delaunay potential. Let Φt be a holomorphic frame

associated to it. We suppose that

• For all t ∈ (−T, T ) and z ∈ D∗ε , Φt(z, ·) is holomorphic on AR,
• Φt(z, λ) is continous with respect to (t, z, λ),

• The monodromy is unitary: M(Φt) ∈ ΛSU2.

Remark 10. When needed, one can replace R > 1 by a smaller value in order for Φt to

be holomorphic on AR and continuous on AR.

The theorem we prove in this paper is the following:

Theorem 10. Let ξt be a perturbed Delaunay potential and Φt a holomorphic frame asso-

ciated to ξt satisfying Hypotheses 1 and such that Φ0(1, λ) = I2. Let ft = Sym (Uni(Φt)).

Then,

1. For all α < 1 there exist constants ε > 0, T > 0 and C > 0 such that for all

0 < |z| < ε and |t| < T ,

‖ft(z)− fDt (z)‖R3 ≤ C|t||z|α
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where fDt is a Delaunay immersion of weight 8πt.

2. There exist T ′ > 0 and ε′ > 0 such that for all 0 < t < T ′, ft is an embedding of

{0 < |z| < ε′}.

3. If r ≥ s, the limit axis as t tends to 0 of fDt is the oriented line generated by

(−e3,−~e1).

If r ≤ s, the limit axis as t tends to 0 of fDt is the oriented line generated by (0,−~e1).

Remark 11. We do not have to assume that 1 ∈ Dε for Φ0 to be de�ned at z = 1. This

only comes from the fact that ξ0 is de�ned on C∗, which implies that Φ0 is de�ned on the

universal cover C̃∗.

4.1.9 Outline of the proof and comparison with [20]

In Section 4.3 we start the proof of Theorem 10 by gauging the potential and changing

coordinates. Starting from

ξt = Atz
−1dz +O(t, z0)dz

we gain an order on z and obtain the following new potential:

ξ̃t = Atz
−1dz +O(t, z)dz.

We then use the Fröbenius method and the new holomorphic frame is

Φ̃t = M̃tz
At
(
I2 +O(t, z2)

)
.

In Section 4.4, we use the above estimate on Φ̃t to prove the convergence of the immer-

sions: ∥∥∥f̃t(z)− f̃Dt (z)
∥∥∥
R3
≤ C|t||z|α, α < 1

where f̃Dt is a Delaunay immersion whose axis can be explicitly computed. To do so, we

need to know the asymptotic behaviour of the positive part Pos(Φ̃t), which we compute

using the fact that f̃Dt (C∗) is a surface of revolution.

Finally, Section 4.5 proves that perturbations of unduloids are embedded on a uniform

neighbourhood of the origin.

Sections 4.6 to 4.8 are appendices.

Although the method of this paper is inspired by what Kilian, Rossman and Schmitt

did in [20], their results cannot be used to prove our theorem. This is mainly because the

asymptotics given in [20] for a �xed value of our parameter t do not hold as t tends to 0.

As an example, consider the proof of Lemma 2.5 in [20]: with our hypotheses, the constant
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they call κ becomes a function of t such that (with our notation of Section 4.3.2)

κ |t=0=
c12(0, 0)

4
6= 0.

Later in the proof, computing the determinant of the linear map L1 gives

detL1 = O(t)

and their gauged potential is then of the form

ξ̂t = Atz
−1dz +O(t−1, z)dz,

the corresponding holomorphic frame being

Φ̂t = M̂tz
At
(
I2 +O(t−1, z2)

)
.

Applying the Sym-Bobenko formula would give at best∥∥∥f̂t(z)− f̂Dt (z)
∥∥∥
R3
≤ C 1

|t|
|z|α, α < 1 (4.7)

which is not enough to show the convergence of the immersions on the compact sets of C∗

as t tends to 0. Note that gaining one order on |t| in the estimate (4.7) is still not enough

to show the embeddedness of f̂t, since the �rst catenoidal neck of f̂Dt , which has a size of

the order of t, is attained for |z| ∼ |t| as t tends to 0.

Finally, some bounds used in [20] such as (see Lemma 1.11 in [20])

c1(λ) = max
x∈[0,ρ)

‖B(x, λ)‖

depend on t in our framework and may explode as t tends to 0.

4.2 An application

Before proving Theorem 10, we must take account of the fact that one of its hypotheses

is too restrictive. Indeed, Φ0(1, λ) = I2 has no reason to hold when one wants to construct

examples, as Martin Traizet did in [39] and [38]. We thus show here on a speci�c example

how to ensure this hypothesis by gauging the potential and changing coordinates.

In all the section, ξt is a perturbed Delaunay potential with r ≥ s and Φt is a holo-

morphic frame associated to ξt, satisfying Hypotheses 1 and such that Φ0(1, λ) = M(λ)
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where

M(λ) =

(
a bλ−1

cλ d

)
∈ ΛSL2C (a, b, c, d ∈ C). (4.8)

After some simpli�cation, we will be able to apply Theorem 10 even though Φ0(1, λ) 6=
I2. The only di�erence in the conclusion will be in the third point: as t tends to 0, the limit

axis of the model Delaunay surface fDt will be the oriented line generated by Q · (0, ~e3)

where

Q = Uni [MH] (4.9)

with

H(λ) =
1√
2

(
1 −λ−1

λ 1

)
. (4.10)

The method involves gauging, changing coordinates and applying an isometry, and relies

on the fact that one can explicitly compute the Iwasawa decomposition of MH. Indeed,

for all a, b, c, d ∈ C such that ad− bc = 1,(
a bλ−1

cλ d

)
=

1√
|b|2 + |d|2

(
d bλ−1

−bλ d

)
× 1√

|b|2 + |d|2

(
1 0(

ab+ cd
)
λ |b|2 + |d|2

)
(4.11)

is the Iwasawa decomposition of the left-hand side term. Note that if the matrix M is

explicit, then this formula makes both the matrix Q in Equation (4.9) and the limit axis

of fDt explicit because MH and M have the same form.

Lemma 1. Let ξt be a perturbed Delaunay potential as in De�nition 15 with r ≥ s.

Let Φt be a holomorphic frame associated to it, satisfying Hypotheses 1 and such that

Φ0(1, λ) = M(λ) as in (4.8). Then there exists a Möbius transformation that leaves z = 0

invariant and a gauge G such that:

1. the new potential ξ̃t = (h∗ξt) · G is also a perturbed Delaunay potential with the

same residue as ξt,

2. the holomorphic frame Φ̃t associated to ξ̃t satis�es Hypotheses 1 with Φ̃0(1, λ) ∈
ΛSU2.

Proof. Let At and Rt be as in De�nition 15. Then

ξ̃t = G−1
(
Ath

−1dh+ (h∗Rt)dh
)
G+G−1dG.

The Möbius transformation we are looking for satis�es h(0) = 0 and thus

h−1dh = z−1dz +O(z)dz.
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Wanting ξ̃t to have a simple pole at z = 0, we look for a gauge G that is holomorphic

at z = 0. Wanting the residue of ξ̃t to be At, we suppose that G(0, λ) = I2. These two

conditions together with ξ̃0 = A0z
−1dz lead us to solve the following Cauchy problem:{

dG = GA0z
−1dz −A0Gh

−1dh

G(0) = I2.
(4.12)

If we write

h(z) =
z

pz + q
, p ∈ C, q ∈ C∗

so that

h−1dh = z−1dz − pdz

pz + q
,

then the only solution of (4.12) is given (by Maple) by:

G(z, λ) =


√

q
pz+q 0

λpz√
q(pz+q)

√
pz+q
q


and a straightforward computation allows us to check that G satis�es (4.12). Setting

0 < ε′ < ε with ε′ < |q|
|p| if necessary, this proves the �rst point of the lemma.

In order to prove the second point, diagonalise A0 = HDH−1 with H as in (4.10) and

compute

Φ̃0(1, λ) = M(λ)H(λ)
(
h(1)DH(λ)−1G(1, λ)H(λ)

)
H(λ)−1 (4.13)

where

D =

(
1
2 0

0 −1
2

)
.

Hence Φ̃0(1, ·) is holomorphic on AR. Moreover, the fact that ξ̃t is C2 in (t, z, λ) together

with remark 8 imply that Φ̃t satis�es Hypotheses 1. Finally, compute

h(1)DH(λ)−1G(1, λ)H(λ) =

(
1√
q 0

λ p√
q

√
q

)

and, using Equation (4.11),

Pos (MH) =

(
ρ 0

λµ ρ−1

)
where

ρ =

√
2√

|b− a|2 + |d− c|2
, µ =

1√
2
× (a+ b)(b̄− ā) + (c+ d)(d̄− c̄)√

|b− a|2 + |d− c|2
.
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Then, setting

p = −ρµ, q = ρ2,

Equation (4.13) becomes (Q is de�ned in (4.9))

Φ̃0(1, λ) = QH−1 ∈ ΛSU2

because H ∈ ΛSU2.

If one wants to apply Theorem 10, it then su�ces to set

Φ̂t = HQ−1Φ̃t

where Φ̃t is constructed by Lemma 1. Let f̂Dt be the model Delaunay immersion towards

which the immmersion Sym
(

Uni(Φ̂t)
)
converges. Theorem 10 then states that the limit

axis as t tends to 0 of f̂Dt is the oriented line generated by (−e3,−~e1). Compute

H−1 · (−e3,−~e1) = (−e3, ~e3) ' (0, ~e3)

to prove that Sym (Uni(Φt)) converges to a model Delaunay surface whose limit axis as t

tends to 0 is Q · (0, ~e3). The following corollary summarises this section:

Corollary 2. Let ξt be a perturbed Delaunay potential with r ≥ s and Φt a holomorphic

frame associated to ξt satisfying Hypotheses 1 and such that Φ0(1, λ) is of the form given

by (4.8). Let ft = Sym (Uni(Φt)). Then,

1. For all α < 1 there exist constants ε > 0, T > 0 and C > 0 such that for all

0 < |z| < ε and |t| < T ,

‖ft(z)− fDt (z)‖R3 ≤ C|t||z|α

where fDt is a Delaunay immersion of weight 8πt.

2. There exist T ′ > 0 and ε′ > 0 such that for all 0 < t < T ′, ft is an embedding of

{0 < |z| < ε′}.

3. The limit axis as t tends to 0 of fDt is the oriented line generated by Q · (0, ~e3) where

Q is given by Equation (4.9).

4.3 The zAP form of Φt

Let us start the proof of Theorem 10: let ξt be a perturbed Delaunay potential and Φt

a holomorphic frame associated to ξt satisfying Hypotheses 1 and such that Φ0(1, λ) = I2.

58



4.3. THE ZAP FORM OF Φt

In this section, we want to apply the Fröbenius method and write Φt in a zAP form.

Unfortunately, the underlying Fuchsian system seems to admit resonance points. Our goal

is to avoid them and to gain an order of convergence in the matrix P of the zAP form. We

will obtain the following result:

Proposition 16. There exist a change of coordinate ht and a gauge Gt such that, denoting

Φ̃t = h∗t (ΦtGt)

and

ξ̃t = h∗t (ξt ·Gt) ,

ξ̃t is a perturbed Delaunay potential and Φ̃t is a holomorphic frame associated to ξ̃t satis-

fying Hypotheses 1 and such that Φ̃0(1, λ) = I2. Moreover,

Φ̃t(z, λ) = M̃t(λ)zAt(λ)P̃t(z, λ) (4.14)

where M̃t ∈ ΛSL2C is continuous and holomorphic on AR for all t and P̃t : Dε′ −→ ΛSL2C
is C2, holomorphic on D′ε ×AR for all t and satis�es P̃t(z, λ) = I2 +O(t, z2).

4.3.1 Extending to the resonance points

In this section, we use the Fröbenius method to write Φt in a zAP form, and extend

this form to the resonance points. We will thus prove:

Proposition 17. There exist Mt ∈ ΛSL2C continuous and holomorphic on AR for all

t and Pt : Dε −→ ΛSL2C continuous and holomorphic on Dε × AR for all t satisfying

Pt(0, λ) = I2 and

Φt(z, λ) = Mt(λ)zAt(λ)Pt(z, λ).

Let us �rst recall the Fröbenius method in the non-resonant case (see [36] and [35]).

Let ε > 0 and ξ be a holomorphic 1-form from D∗ε toM2(C) de�ned by

ξ(z) = Az−1dz +
∑
k∈N

Ckz
kdz.

For all k ∈ N, let Pk solve  P0 = I2,

Lk+1(Pk+1) =
∑

i+j=k

PiCj
(4.15)
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where for all n ∈ N,
Ln : M2(C) −→ M2(C)

X 7−→ [A,X] + nX.

Then P (z) =
∑

k∈N Pkz
k is holomorphic on Dε and Φ(z) = zAP (z) is holomorphic on the

universal cover D̃∗ε of D∗ε and solves dΦ = Φξ.

Let us now recall Lemma 2.2 of [20] in our framework:

Lemma 2. Let A ∈ sl2C such that A2 = µ2I2. Then for all n ∈ N,

detLn = n2
(
n2 − 4µ2

)
(4.16)

and

L−1
n (X) =

1

n

(
X − 1

n2 − 4µ2
(nI2 − 2A) [A,X]

)
(4.17)

Corollary 3 follows from Remark 9 and Equation (4.16).

Corollary 3. Let Lt,n(X) = [At(λ), X] + nX.

• For all n ≥ 2, Lt,n is invertible on (t, λ) ∈ (−T, T )×D∗R.
• For n = 1, Lt,1 is invertible on (t, λ) ∈ (−T, T ) \{0} × D∗R\{1}.

Remark 12. If we use the Ansatz given by the Fröbenius method and write

Φt(z, λ) = Mt(λ)zAt(λ)Pt(z, λ) (4.18)

where

Pt(z, λ) =

∞∑
k=0

Pt,k(λ)zk,

note that the resonance points only occur in the computation of Pt,1(λ) because Lt,n is

invertible on (t, λ) ∈ (−T, T )×AR for all n ≥ 2. Thus, we only need to extend Pt,1(λ) at

t = 0 and λ = 1 to extend the zAP form of Φt. Let us write

tCt(λ)dz :=
(
ξt(z, λ)−At(λ)z−1dz

)
|z=0 .

According to (4.15),

Pt,1(λ) = L−1
t,1 (tCt(λ)) (4.19)

and the form of detLt,1 shows that Pt,1 has at most a pole of order 2 at λ = 1. Moreover,

detLt,1 = O(t) and tCt = O(t), so we already know that Pt (and as a consequence, Mt)

extends to t = 0.

It remains to extend the zAP form (4.18) to λ = 1. To do this, we adapt the techniques

used in Lemma 2.5 of [31] to prove the following unitary × commutator lemma:
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Lemma 3. Let M : AR\{1} −→ SL2C holomorphic on AR\{1} with at most a pole

at λ = 1. Let t 6= 0, Q = exp (2iπAt) ∈ ΛSU2 and suppose that for all λ ∈ A1\{1},
MQM−1 ∈ SU2. Then there exist U ∈ ΛSU2 and K : AR\{1} −→ SL2C holomorphic

such that {
M = UK

[At,K] = 0.

Proof. We �rst apply Lemma 2.5 of [31] to construct U and K satisfying M = UK and

[Q,K] = 0 on A1\{1}. The map U is holomorphic on a small neighbourhood of A1.

Without loss of generality, let this neighbourhood be AR. Then, K is meromorphic on

AR\{1} with at most a pole at λ = 1. Hence the map λ 7−→ [Q(λ),K(λ)] is holomorphic

on AR\{1} and vanishes on A1\{1}. Thus, for all λ ∈ AR\{1},

[Q(λ),K(λ)] = 0. (4.20)

Recalling Equation (4.5),

Q = cos(2πµt)I2 +
i sin(2πµt)

µt
At.

Hence Equation (4.20) implies that [At,K] = 0 wherever µt(λ)2 6= 1
4 . Using (4.6),

[At(λ),K(λ)] = 0 for all (t, λ) ∈ (−T, T ) \{0} × AR\{1}.

We can now extend the zAP form of Φt to λ = 1. For t 6= 0 and λ ∈ A1\{1}, use
Lemma 3 to write

Φt(z, λ) = Ut(λ)zAt(λ)Kt(λ)Pt(z, λ).

Let ε > 0 small enough for Pt(·, λ) to be de�ned on Dε. On Sε × A1\{1}, Φt and zAt are

bounded. Then the map (z, λ) 7−→ KtPt is bounded on Sε ×A1\{1} and holomorphic on

Dε × A1\{1}, so it is bounded on Dε × A1\{1}. But Pt(0, λ) = I2, so Kt is bounded on

A1\{1}. Thus, Pt is bounded on Dε × A1\{1}. But Pt is holomorphic on Dε × AR\{1}
with at most a pole at λ = 1, so Pt is holomorphic on Dε ×AR and Mt is holomorphic on

AR. This ends the proof of Proposition 17.

4.3.2 A property of ξt

The fact that there exists a holomorphic frame Φt associated to ξt such thatM (Φt) ∈
ΛSU2 and Φ0(1, λ) = I2 gives us a piece of information on the potential ξt. Let Ct(λ) ∈ sl2C
so that

ξt(z, λ) = At(λ)z−1dz + tCt(λ)dz +O(t, z)dz
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and write

Ct(λ) =

(
c11(t, λ) λ−1c12(t, λ)

c21(t, λ) −c11(t, λ)

)
. (4.21)

De�ne

pt =
sc12(t, 0) + rc21(t, 0)

2
. (4.22)

Lemma 4. The quantity pt vanishes at t = 0.

Proof. First, note that Φ0(1, λ) = I2 implies that Φ0(z, λ) = zA0(λ), and thus M(Φ0) =

−I2. Let γ ⊂ D∗ε be a closed loop around 0. Apply Proposition 20 of Section 4.7 to get

(X ′ denotes the derivative of X at t = 0 and Rt is the holomorphic part of ξt)

M(Φt)
′ =

∫
γ
zA0ξ′z−A0 ×M(Φ0)

= −
∫
γ
zA0

(
A′z−1

)
z−A0dz −

∫
γ
zA0R′z−A0dz

=M(zAt)′ −
∫
γ
zA0R′z−A0dz.

But M(Φt),M(zAt) ∈ ΛSU2 and M(Φ0) = M(zA0) = −I2. Thus, M(Φt)
′,M(zAt)′ ∈

Λsu2 and ∫
γ
zA0R′z−A0dz ∈ Λsu2. (4.23)

Diagonalise A0 = HDH−1 with

D =

(
1
2 0

0 −1
2

)
and H ∈ ΛSU2 to be expressed later. Then

zD =
1√
z

(
z 0

0 1

)

and ∫
γ
zA0R′z−A0dz =

∫
γ
HzDH−1 (C0 +O(z))Hz−DH−1

= H
(
Resz=0z

DH−1C0Hz
−D)H−1.

Equation (4.23) and H ∈ ΛSU2 imply that

Resz=0

(
zDH−1C0Hz

−D) ∈ Λsu2. (4.24)
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Denoting by c(λ) the bottom-left entry ofH−1C0H and looking at the product zD(H−1C0H)z−D,

Equation (4.24) gives (
0 0

c(λ) 0

)
∈ Λsu2

and thus,

c(λ) =
(
H−1C0H

)
21
≡ 0 (4.25)

Two cases can occur:

• If r ≥ s,

H =
1√
2

(
1 −λ−1

λ 1

)
∈ ΛSU2

and computation gives

c(λ) = −λ
(
c11(0, λ) +

c12(0, λ)

2

)
+
c21(0, λ)

2
.

Using Equation (4.25), c21(0, 0) = 0 and p0 = 0.

• If r ≤ s, the same reasoning applies with

H(λ) =
1√
2

(
1 −1

1 1

)
and c(λ) = −λ−1 c12(0, λ)

2
+
c21(0, λ)

2
− c11(0, λ).

Thus, c12(0, 0) = 0 and p0 = 0.

4.3.3 Gaining an order of convergence

We can now prove Proposition 16 by following the method used in Section 2.2 of [20]:

gauging the potential. The gauge we will use is of the following form:

Gt(z, λ) = exp (gt(λ)z) (4.26)

which is an admissible gauge provided that gt ∈ Λ+sl2C. This is why we need the following

lemma:

Lemma 5. Let

gt(λ) = ptAt(λ)− Pt,1(λ)

where Pt,1 is de�ned in Equation (4.19). Then

1. The map gt is in Λ+sl2C.
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2. The map gt extends to t = 0 with g0 = 0.

Proof. To prove the �rst point, let t 6= 0 and use Equations (4.19), (4.21), (4.17) and (4.22)

to compute (this is a tedious calculation)

Pt,1(λ) = λ−1

(
0 rpt

0 0

)
+ λ0

(
? ?

spt ?

)
+O(λ).

Thus,

gt(λ) = ptAt(λ)− Pt,1(λ) = λ−1

(
0 0

0 0

)
+ λ0

(
? ?

0 ?

)
+O(λ).

For the second point, use Equations (4.19) and (4.17) to write for t 6= 0:

Pt,1 = tL−1
t,1 (Ct) = t

(
Ct −

1

1− 4µ2
t

(I2 − 2At) [At, Ct]

)
.

Note that Ct is continuous at t = 0 because ξt ∈ C2 and that 1− 4µ2
t = O(t) to extend Pt,1

to t = 0. Moreover, recall Lemma 4, Equation (4.6) and diagonalise A0 = HDH−1 to get:

g0 =
−λ

4(λ− 1)2
H (I2 − 2D)

[
D,H−1C0H

]
H−1.

A straightforward computation gives

(I2 − 2D)
[
D,H−1C0H

]
=

(
0 0

−2c(λ) 0

)

with c(λ) as in Equation (4.25). Hence g0 = 0.

Let Gt be the gauge de�ned by (4.26). Then the gauged potential has the form

ξt ·Gt(z, λ) = At(λ)z−1dz + ([At(λ), gt(λ)] + gt(λ) + tCt(λ)) dz +O(t, z)dz +O(g2
t z)dz

= At(λ)z−1dz + (Lt,1(gt(λ)) + tCt(λ)) dz +O(t, z)dz

= At(λ)z−1dz + ptAt(λ)dz +O(t, z)dz,

because of Equation (4.19). This gauge has been chosen to �t with the following change

of coordinate:

ht(z) =
z

1 + ptz
.
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The resulting potential (de�ned in Proposition 16) is then

ξ̃t = At
dz

1 + ptz
+ ptAt

dz

(1 + ptz)2
+O(t, z)dz = Atz

−1dz +O(t, z)dz

because p0 = 0. Apply the Fröbenius method to ξ̃t to obtain (4.14) and choose ε′ ≤ ε such
that for all t 6= 0, ε′ < |pt|−1 to end the proof of Proposition 16.

4.4 Convergence of immersions

In this section, we prove the �rst and third points of Theorem 10. In the end, we want

to compare Φt(z, λ) = Mt(λ)zAt(λ)
(
I2 +O(t, z2)

)
to

ΦDt (z, λ) = Mt(λ)zAt(λ).

We will denote

FDt = Uni(ΦD
t )

and

fDt = Sym(FDt ).

We �rst want to make sure that ΦDt induces a Delaunay surface for all t. For this purpose,

recall Lemma 1.12 in [20], which implies that fDt is a Delaunay surface of weight 8πt. Hence,

there exists a rigid motion φ of R3 such that φ ◦ fDt has the following parametrisation:

φ ◦ fDt : Σ −→ R3

z = ex+iy 7−→ (τt(x), σt(x) cos y, σt(x) sin y)

where (τt(x), σt(x)) is the pro�le curve of the surface. Recalling that the coordinates are

isothermal gives the following metric:

ds2
t = σ2

t

|dz|2

|z|2
. (4.27)

Let us compare the asymptotic behaviours of the unitary parts of Φt and ΦDt for λ ∈ A1

using, as in [20], a Cauchy formula. We will use the following norms:

� For v = (v1, v2) ∈ C2, |v| =
(
|v1|2 + |v2|2

) 1
2 .

� For M ∈M2(C), ‖M‖ = sup
|v|=1
|Mv|.

� For Ψ : E −→M2(C), ‖Φ‖E = sup
λ∈E
‖Ψ(λ)‖.
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Lemma 6. For all α < 1 there exist constants ε > 0, T > 0 and C > 0 such that for all

0 < |z| < ε and |t| < T , ∥∥∥(FDt )−1
Ft − I2

∥∥∥
A1

≤ C|t||z|α (4.28)

and ∥∥∥∥ ∂∂λ [(FDt )−1
Ft

]∥∥∥∥
A1

≤ C|t||z|α. (4.29)

Proof. The �rst step is to estimate the norm of the positive part BDt of ΦDt . We �rst

estimate ΦDt for |z| < 1: noting that At is diagonalisable, that its eigenvalues tend to ±1/2

as t→ 0, and recalling that Mt is continuous at t = 0 ensure that for all α < 1 there exists

(T,R) and C1 > 1 such that for all |t| < T ,

∥∥ΦDt (z, λ)
∥∥
AR
≤ C1|z|−

1
2
− 1−α

4 .

We then estimate FDt : let γ ⊂ C∗ be a path from z to 1, use Equation (4.40) of Section

4.8 and Equation (4.27) to get

∥∥FDt (z, λ)
∥∥
AR
≤ C2

∥∥FDt (1, λ)
∥∥
AR
× exp

(
(R− 1)

2

∫
γ

|σt(log |z|)|
|z|

)
.

But σt is uniformly bounded because so is the distance between the pro�le curve and the

axis of a Delaunay surface. Moreover, the unitary frame at z = 1 is also bounded. Hence

the existence, for R > 1 small enough, of a constant C3 ≥ 1 such that

∥∥FDt (z, λ)
∥∥
AR
≤ C3|z|−

1−α
4 .

We can now estimate the positive factor: for all α < 1 there exist T > 0, R > 1 and C4 ≥ 1

such that for all |t| < T and |z| < 1

∥∥BDt (z, λ)
∥∥
AR
≤
∥∥FDt (z, λ)−1

∥∥
AR
×
∥∥ΦDt (z, λ)

∥∥
AR
≤ C4|z|

α
2
−1.

We then de�ne

Φ̃t :=
((
FDt
)−1

Ft

)
×

(
Bt
(
BDt
)−1
)

= BDt
(
ΦDt
)−1

Φt

(
BDt
)−1

=: F̃t × B̃t
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with F̃t ∈ ΛSU2 and B̃t ∈ ΛR
+SL2C and thus have∥∥∥Φ̃t(z, λ)− I2

∥∥∥
AR

=
∥∥∥BDt (z, λ) (Pt(z, λ)− I2)

(
BDt (z, λ)

)−1
∥∥∥
AR

≤
∥∥BDt (z, λ)

∥∥2

AR
O(t, |z|2)

≤ C|t||z|α.

Let nk denote the seminorms

nk(X) =
k∑
j=0

∥∥∥∥∂kX∂λk
∥∥∥∥
A1

.

Apply Cauchy formula with λ ∈ ∂AR to get

nk

(
Φ̃t − I2

)
≤ ck|t||z|α, ∀k ∈ N

where ck > 0 are uniform constants. But Uni(Φ̃t) = F̃t =
(
FDt
)−1

Ft and Iwasawa decom-

position is a C1-di�eomorphism, so n0

(
F̃t − I2

)
≤ C|t||z|α and n1

(
F̃t − I2

)
≤ C|t||z|α.

We then have (4.28) and (4.29).

The asymptotic behaviour of ∂F̃t∂λ allows us to prove the convergence of immersions as

stated in the �rst point of Theorem 10. The Sym-Bobenko formula for R3 implies that (we

omit the index t)

iF (z, 1)
∂(F−1FD)

∂λ
(z, 1)FD(z, 1)−1 = i

∂FD

∂λ
(z, 1)FD(z, 1)−1 − i∂F

∂λ
(z, 1)F (z, 1)−1

= fD(z)− f(z).

We can then compute

∥∥ft(z)− fDt (z)
∥∥2

R3 = 4 det
(
ft(z)− fDt (z)

)
= −4 det

∂(F−1
t FDt )

∂λ
(z, 1)

≤ C2
2 t

2|z|2α.

And then for all α < 1 there exist constants ε > 0, T > 0 and C > 0 such that for all

0 < |z| < ε and |t| < T ,

‖ft(z)− fDt (z)‖R3 ≤ C|t||z|α. (4.30)

To prove the third point of Theorem 10, use (4.4) and note that M0 = I2. So the axis
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of fDt as t→ 0 is the same that the axis of the unperturbed Delaunay surface induced by

zAt .

In order to prove that the surface is embedded, we will need the convergence of the

normal maps:

Proposition 18. For all α < 1 there exist constants ε > 0, T > 0 and C > 0 such that

for all 0 < |z| < ε and |t| < T ,

∥∥Nt(z)−NDt (z)
∥∥
R3 ≤ C|t||z|α

Proof. Use the de�nition of the normal maps in Equation (4.2) to write

Nt(z)−NDt (z) =
−i
2
FDt (z, 1)

[
AMÃ+AM +MÃ

]
FDt (z, 1)−1

where

A = FDt (z, 1)−1Ft(z, 1)− I2 = O(t, |z|α),

Ã = Ft(z, 1)−1FDt (z, 1)− I2 = O(t, |z|α)

and

M =

(
1 0

0 −1

)
.

Use equation (4.1) to get the conclusion.

It remains to show that the surface is embedded if t > 0.

4.5 Embeddedness

We suppose in this section that 0 < t < T . The asymptotic behaviour of ft and the fact

that fDt is an embedding for all t allow us to show that ft is an embedding of a su�ciently

small uniform neighbourhood of z = 0 for t small enough. We �rst give a general result of

embeddedness and then apply this result to show that our surfaces are embedded.

Proposition 19. Let fRn : C∗ −→ MRn = fRn (C∗) ⊂ R3 be a sequence of complete

immersions with normal maps NRn and an end at z = 0. Suppose that for all n there exists

rn > 0 such that the tubular neighbourhood TubrnMRn ofMRn is embedded. Suppose that

for all ε > 0 there exists 0 < ε′ < ε such that for all n ∈ N, x ∈ Sε and y ∈ D∗ε′ ,∥∥fRn (x)− fRn (y)
∥∥
R3 > 2rn. (4.31)
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Let U∗ ⊂ C∗ be a punctured neighbourhood of z = 0 and fn : U∗ −→ R3 a sequence of

immersions with normal maps Nn satisfying

sup
n∈N

∥∥fn(z)− fRn (z)
∥∥
R3

rn
−→
z→0

0 (4.32)

and

sup
z∈U∗

∥∥Nn(z)−NRn (z)
∥∥
R3 −→

n→∞
0. (4.33)

Then there exist ε′ > 0 and N ∈ N such that for all n ≥ N , fn is an embedding of D∗ε′ .

Proof. Let us split the proof in several steps.

• Claim 1: there exists ε > 0 such that the map

ϕn : D∗ε −→ MRn
z 7−→ πn ◦ fn(z)

(where πn is the projection from TubrnMRn ontoMRn ) is well-de�ned and satis�es

∥∥ϕn(z)− fRn (z)
∥∥
R3 < rn (4.34)

for all z ∈ D∗ε .

To prove this �rst claim, use Hypothesis (4.32): there exists ε > 0 such that for all

n ∈ N and z ∈ D∗ε ∥∥fn(z)− fRn (z)
∥∥
R3 <

rn
2
. (4.35)

So fn(D∗ε ) ⊂ Tub rn
2
MRn and ϕn is well-de�ned. Moreover, using (4.35) and the triangle

inequality, for all z ∈ D∗ε∥∥ϕn(z)− fRn (z)
∥∥
R3 ≤ ‖ϕn(z)− fn(z)‖R3 +

∥∥fn(z)− fRn (z)
∥∥
R3 < rn

and Equation (4.34) holds. We �x ε and ε′ so that Equation (4.31) is satis�ed.

• Claim 2 : there exists N ∈ N such that for all n ≥ N , ϕn is a local di�eomorphism

on D∗ε .

Let z ∈ D∗ε . In order to show that ϕn is a local di�eomorphism, we show that

〈Nϕn(z),Nn(z)〉 > 0 (4.36)
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where Nϕn is de�ned by

Nϕn : D∗ε −→ S2 ⊂ R3

z 7−→ ηRn (ϕn(z))

and ηRn is the Gauss map of MRn . First, let γ ⊂ MRn be a path joining ϕn(z) to fRn (z).

Using the fact that TubrnMRn is embedded, one has

∥∥dηRn ∥∥ ≤ 1

rn

and ∥∥Nϕn(z)−NRn (z)
∥∥
R3 ≤

1

rn
× |γ|.

Let σ(t) = (1− t)fn(z) + tfRn (z), t ∈ [0, 1]. Then,

∥∥σ(t)− fRn (z)
∥∥
R3 ≤ (1− t)

∥∥fn(z)− fRn (z)
∥∥
R3 <

rn
2

(4.37)

because of Equation (4.35). Let γ = πn ◦ σ. Note that Equation (4.37) implies that

σ ⊂ Tub rn
2
MRn and restricting πn to Tub rn

2
MRn gives

‖dπn‖ ≤
rn

rn − rn
2

= 2

and thus |γ| < rn. Hence, ∥∥Nϕn(z)−NRn (z)
∥∥ < 1.

Use Hypothesis (4.33) to choose a uniform N ∈ N such that for all n ≥ N ,

‖Nϕn(z)−Nn(z)‖ ≤
∥∥Nϕn(z)−NRn (z)

∥∥+
∥∥NRn (z)−Nn(z)

∥∥ < √2,

which proves Equation (4.36) and this second claim. We �x such N and n.

• Claim 3 : the restriction

ϕ̃n : ϕ−1
n

(
ϕn(D∗ε′)

)
∩ D∗ε −→ ϕn

(
D∗ε′
)

z 7−→ ϕn(z)

is a covering map.

It su�ces to show that ϕ̃n is a proper map. Let (xi)i∈N ⊂ ϕ−1
n

(
ϕn(D∗ε′)

)
∩D∗ε such that

(ϕ̃n(xi))i∈N converges to p ∈ ϕn
(
D∗ε′
)
. Then (xi)i converges to x ∈ Dε. Using Equation

(4.34) and the fact that fRn has an end at 0, x 6= 0. If x ∈ ∂Dε, denoting x̃ ∈ D∗ε′ such that
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ϕ̃n(x̃) = p, one has

∥∥fRn (x)− fRn (x̃)
∥∥
R3 <

∥∥fRn (x)− p
∥∥
R3 +

∥∥fRn (x̃)− ϕ̃n(x̃)
∥∥
R3 < 2rn

which contradicts the de�nition of ε′. Thus, ϕ̃n is a proper local di�eomorphism between

locally compact spaces, i.e. a covering map.

• Claim 4 : this covering map is one-sheeted.

To compute the number of sheets, let γ : [0, 1] −→ D∗ε′ be a loop of winding number 1

around 0, Γ = fRn (γ) and Γ̃ = ϕ̃n(γ) ⊂ MRn and let us construct a homotopy between Γ

and Γ̃. Let
σt : [0, 1] −→ R3

s 7−→ (1− s)Γ̃(t) + sΓ(t).

For all t, s ∈ [0, 1],

‖σt(s)− Γ(t)‖R3 < rn

which implies that σt(s) ∈ TubrnMRn because MRn is complete. One can thus de�ne the

following homotopy between Γ and Γ̃

H : [0, 1]2 −→ MRn
(s, t) 7−→ πn ◦ σt(s)

where πn is the projection from TubrnMRn toMRn . Using the fact that fRn is an embedding,

the degree of Γ is one, and the degree of Γ̃ is also one. Hence, ϕ̃n is one-sheeted.

• Conclusion: the map ϕ̃ is a di�eomorphism, so fn
(
D∗ε′
)
is a graph overMRn contained

in its embedded tubular neighbourhood and fn
(
D∗ε′
)
is thus embedded.

We can now apply Proposition 19 to each case. Let (tn) be any sequence in (−T, T )

such that tn → 0.

• If r ≥ s, we set f̂Rn = fDtn and f̂n = ftn . We aim to apply Proposition 19 on f̂Rn and

f̂n. The tubular radius rn is of the order of 4tn and Hypothesis (4.31) is satis�ed

because f̂Rn tends to an immersion of a sphere. Equation (4.30) and Proposition 18

ensure that Hypotheses (4.32) and (4.33) hold.

• If r ≤ s, we set f̂Rn = 1
tn
fDtn and f̂n = 1

tn
ftn . We aim to apply Proposition 19 on f̂Rn

and f̂n. The tubular radius rn is of the order of 4 and Hypothesis (4.31) is satis�ed
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because f̂Rn tends to an immersion of a catenoid (see [38]). Equation (4.30) and

Proposition 18 ensure that Hypotheses (4.32) and (4.33) hold.

The second point of our theorem is then proved.
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4.6 Iwasawa extended

In this section, we set A 1
R
,1 =

{
λ ∈ C : 1

R < |λ| < 1
}
.

Lemma 7. Let F : A 1
R
,1 −→ SL2C be a holomorphic map that can be continuously

extended to the circleA1 and such that F (λ) ∈ SU2 for all λ ∈ A1. Then F holomorphically

extends to AR into a map that satis�es

tF

(
1

λ

)
= F (λ)−1 ∀λ ∈ AR. (4.38)

Proof. Apply Schwarz re�exion principle on each coe�cient of the matrix

F̃ (λ) =

(
F11(λ) + F22(λ) F12(λ)− F21(λ)

i (F12(λ) + F21(λ)) i (F11(λ)− F22(λ))

)

where Fij denote the entries of F . The fact that F (λ) ∈ SU2 for all λ ∈ A1 ensures that

ImF̃ = 0 on A1. Thus, F̃ holomorphically extends to AR and satis�es for all λ ∈ AR

F̃

(
1

λ

)
= F̃ (λ).

Hence, F holomorphically extends to AR and satis�es

F11

(
1

λ

)
= F22(λ), F12

(
1

λ

)
= −F21(λ)

which implies Equation (4.38) because F (λ) ∈ SL2C.

Corollary 4. Let Φ : AR −→ SL2C be a holomorphic map and let FB be the Iwasawa

decomposition of its restriction to A1. Then F holomorphically extends to AR, satis�es
Equation (4.38), and B holomorphically extends to DR.

Proof. Write F = ΦB−1 to holomorphically extend F to A 1
R
,1. Apply Lemma 7 to holo-

morphically extend F to AR, and write B = F−1Φ to holomorphically extend B to DR.

4.7 Derivative of the monodromy

The following proposition, used in Section 4.3, is derived from Proposition 8 in [39].

Proposition 20. Let ξt be a C1 family of matrix-valued 1-forms on a Riemann surface

Σ, de�ned for t in a neighbourhood of t0 ∈ R. Let Σ̃ be the universal cover of Σ. Fix a
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point z0 in Σ and let z̃0 be a lift of z0 to Σ̃. Let Φt be a continuous family of solutions of

dΦt = Φtξt on Σ̃ such that for all t,

[
M(t0),Φt0(z0)Φt(z0)−1

]
= 0, (4.39)

whereM(t) is the monodromy of Φt with respect to some γ ∈ π1(Σ, z0). Let γ̃ be the lift

of γ to Σ̃ such that γ̃(0) = z̃0. ThenM is di�erentiable at t0 and

M′(t0) =

(∫
γ

Φt0

∂ξt
∂t
|t=t0 Φ−1

t0

)
×M(t0).

In particular, ifM(t0) = ±I2 or if Φt(z0) is constant, then (4.39) is satis�ed.

Proof. Proposition 8 in [39] is proved in the case where Φt(z0) is constant. Let Φ̃t(z) =

Φt(z0)−1Φt(z), so that dΦ̃t = Φ̃tξt and Φ̃t(z0) = In. Let M̃(t) be the monodromy of Φ̃t

along γ. Then Proposition 5 of [39] applies and

M̃′(t0) =

(∫
γ

Φ̃t0(z)
∂ξt(z)

∂t
|t=t0 Φ̃t0(z)−1

)
× M̃(t0).

On the other hand,

M(t) = Φt(z0)M̃(t)Φt(z0)−1

and because of Equation (4.39),

M(t0) = Φt(z0)M̃(t0)Φt(z0)−1.

Thus,M is di�erentiable at t0 and

M′(t0) = Φt0(z0)M̃′(t0)Φt0(z0)−1

which proves the proposition.

4.8 A control formula on the unitary frame

The following proposition is used in Section 4.4.

Proposition 21. Let (Σ, ξ, z0,Φz0) be a set of untwisted DPW data, holomorphic for

λ ∈ AR with R ≥ 1. Then for all z1, z2 ∈ Σ and γ ⊂ Σ joining z1 to z2,

‖F (z1, λ)‖AR ≤ C ‖F (z2, λ)‖AR × exp

(
(R− 1)

∫
γ
ρ2(w)|a−1(w)||dw|

)
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where C is a uniform positive constant, a−1(z)dz is the λ−1 factor of ξ and ρ(z) is the

upper-left entry of Pos(Φ)(z, 0).

Proof. Write

ξ(z, λ) = λ−1

(
0 a−1(z)

0 0

)
dz + λ0

(
c0(z) a0(z)

b0(z) −c0(z)

)
dz +O(λ).

Let Φ = FB be the Iwasawa decomposition of Φ. Computing formula (4.40) of [7] in an

explicit form and in the untwisted setting gives dF = FL where

L(z, λ) =

(
ρ−1ρz λ−1ρ2a−1

b0ρ
−2 −ρ−1ρz

)
dz +

(
−ρ−1ρz̄ −b0ρ−2

−λρ2a−1 ρ−1ρz̄

)
dz̄.

Let

F̃ (z, λ) = F

(
z,

λ

|λ|

)
so that F̃ (z, λ) ∈ SU2 for all λ ∈ AR. Then dF̃ = F̃ L̃ where

L̃(z, λ) = L

(
z,

λ

|λ|

)
.

Using the variation of constants method, for all z1, z2 ∈ Σ (we ommit the variable λ),

F (z1) = F (z2)F̃ (z2)−1F̃ (z1) +

(∫ z1

z2

F (w)
(
L(w)− L̃(w)

)
F̃ (w)−1

)
F̃ (z1).

But

L(w, λ)− L̃(w, λ) = ρ2(w)

(
0 a−1(w)λ−1 (1− |λ|) dw

−a−1(w)λ
(
1− |λ|−1

)
dw̄ 0

)

so there exists a uniform constant C̃ such that∥∥∥L(w, λ)− L̃(w, λ)
∥∥∥
AR
≤ C̃(R− 1)ρ2(w)|a−1(w)||dw|

and the result follows from Gronwall's inequality (Lemma 2.7 in [36]) using the fact that

F̃ ∈ SU2 for all λ ∈ AR.

As an application, recall that in the untwisted R3 setting, if f = Sym(F ), then f is a

CMC 1 conformal immersion whose metric is given by

ds = 2ρ2|a−1||dz|.
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So let z1, z2 ∈ Σ and γ ⊂ Σ be a path joining f(z1) to f(z2). Then,

‖F (z1, λ)‖AR ≤ C ‖F (z2, λ)‖AR exp

(
(R− 1)

2
|γ|
)
. (4.40)
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Chapter 5

Constant mean curvature n-noids in

Hyperbolic space

1 Using the DPW method, we construct genus zero Alexandrov-embedded constant

mean curvature (greater than one) surfaces with any number of Delaunay ends in hyperbolic

space.

Introduction

In [7], Dorfmeister, Pedit and Wu introduced a loop group method (the DPW method)

for constructing harmonic maps from a Riemann surface into a symmetric space. As a

consequence, their method provides a Weierstrass-type representation of constant mean

curvature surfaces (CMC) in Euclidean space R3, three-dimensional sphere S3, or hyper-

bolic spaceH3. Many examples have been constructed (see for example [19, 8, 32, 6, 13, 14]).

Among them, Traizet [39, 38] showed how the DPW method in R3 can construct genus

zero n-noids with Delaunay ends (as Kapouleas did with partial di�erential equations tech-

niques in [16]) and glue half-Delaunay ends to minimal surfaces (as did Mazzeo and Pacard

in [26], also with PDE techniques). A natural question is whether these constructions can

be carried out in H3. Although properly embedded CMC annuli of mean curvature H > 1

in H3 are well-known since the work of Korevaar, Kusner, Meeks and Solomon [23], no

construction similar to [16] or [26] can be found in the literature. This paper uses the

DPW method in H3 to construct these surfaces. The two resulting theorems are as follows.

Theorem 11. Given a point p ∈ H3, n ≥ 3 distinct unit vectors u1, · · · , un in the tangent

1. This chapter is the second paper of the thesis. It has been assigned the arXiv number 1905.09096

but has not been submitted yet.
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space of H3 at p and n non-zero real weights τ1, · · · , τn satisfying the balancing condition

n∑
i=1

τiui = 0 (5.1)

and given H > 1, there exists a smooth 1-parameter family of CMC H surfaces (Mt)0<t<T

with genus zero, n Delaunay ends and the following properties:

1. Denoting by wi,t the weight of the i-th Delaunay end,

lim
t→0

wi,t
t

= τi.

2. Denoting by ∆i,t the axis of the i-th Delaunay end, ∆i,t converges to the oriented

geodesic through the point p in the direction of ui.

3. If all the weights τi are positive, then Mt is Alexandrov-embeddedd.

4. If all the weights τi are positive and if for all i 6= j ∈ [1, n], the angle θij between ui
and uj satis�es ∣∣∣∣sin θij2

∣∣∣∣ >
√
H2 − 1

2H
, (5.2)

then Mt is embedded.

Theorem 12. Let M0 ⊂ R3 be a non-degenerate minimal n-noid with n ≥ 3 and let

H > 1. There exists a smooth family of CMC H surfaces (Mt)0<|t|<T in H3 such that

1. The surfaces Mt have genus zero and n Delaunay ends.

2. After a suitable blow-up, Mt converges to M0 as t tends to 0.

3. IfM0 is Alexandrov-embedded, then all the ends ofMt are of unduloidal type if t > 0

and of nodoidal type if t < 0. Moreover, Mt is Alexandrov-embedded if t > 0.

Following the proofs of [39, 38] gives an e�ective strategy to construct the desired CMC

surfacesMt. This is done in Sections 5.3 and 5.4. However, showing thatMt is Alexandrov-

embedded requires a precise knowledge of its ends. This is the purpose of the main theorem

(Section 5.2, Theorem 14). We consider a family of holomorphic perturbations of the data

giving rise via the DPW method to a half-Delaunay embedding f0 : D∗ ⊂ C −→ H3 and

show that the perturbed induced surfaces ft(D∗) are also embedded. Note that the domain

on which the perturbed immersions are de�ned does not depend on the parameter t, which

is stronger than ft having an embedded end, and is critical for showing that the surfaces

Mt are Alexandrov-embedded. The essential hypothesis on the perturbations is that they

do not occasion a period problem on the domain D∗ (which is not simply connected). The

proof relies on the Fröbenius method for linear di�erential systems with regular singular
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Figure 5.1 � Theorem 11 ensures the existence of n-noids with small necks. For H > 1
small enough (H ' 1.5 on the picture), there exist coplanar embedded n-noids with more
than six ends.

points. Although this idea has been used in R3 by Kilian, Rossman, Schmitt [20] and [30],

the case of H3 generates two extra resonance points that are unavoidable and make their

results inapplicable. Our solution is to extend the Fröbenius method to loop-group-valued

di�erential systems.

5.1 Delaunay surfaces in H3 via the DPW method

This Section �xes the notation and recalls the DPW method in H3.

5.1.1 Hyperbolic space

Matrix model. Let R1,3 denote the space R4 with the Lorentzian metric 〈x, x〉 = −x2
0 +

x2
1+x2

2+x2
3. Hyperbolic space is the subset H3 of vectors x ∈ R1,3 such that 〈x, x〉 = −1 and

x0 > 0, with the metric induced by R1,3. The DPW method constructs CMC immersions

into a matrix model of H3. Consider the identi�cation

x = (x0, x1, x2, x3) ∈ R1,3 ' X =

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
∈ H2

where H2 := {M ∈ M(2,C) | M∗ = M} denotes the Hermitian matrices. In this model,

〈X,X〉 = −detX and H3 is identi�ed with the set H++
2 ∩ SL(2,C) of Hermitian positive
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5.1. DELAUNAY SURFACES IN H3 VIA THE DPW METHOD

de�nite matrices with determinant 1. This fact leads us to write

H3 = {FF ∗ | F ∈ SL(2,C)} .

Setting

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 i

−i 0

)
, σ3 =

(
1 0

0 −1

)
, (5.3)

gives us an orthonormal basis (σ1, σ2, σ3) of the tangent space TI2H3 of H3 at the identity

matrix. We choose the orientation of H3 induced by this basis.

Rigid motions. In the matrix model of H3, SL(2,C) acts as rigid motions: for all p ∈ H3

and A ∈ SL(2,C), this action is denoted by

A · p := ApA∗ ∈ H3.

This action extends to tangent spaces: for all v ∈ TpH3, A · v := AvA∗ ∈ TA·pH3. The

DPW method takes advantage of this fact and contructs immersions in H3 with the moving

frame method.

Geodesics. Let p ∈ H3 and v ∈ UTpH3. De�ne the map

geod(p, v) : R −→ H3

t 7−→ p cosh t+ v sinh t.
(5.4)

Then geod(p, v) is the unit speed geodesic through p in the direction v. The action of

SL(2,C) extends to oriented geodesics via:

A · geod(p, v) := geod(A · p,A · v).

Parallel transport. Let p, q ∈ H3 and v ∈ TpH3. We denote the result of parallel

transporting v from p to q along the geodesic of H3 joining p to q by Γqpv ∈ TqH3. The

parallel transport of vectors from the identity matrix is easy to compute with Proposition

22.

Proposition 22. For all p ∈ H3 and v ∈ TI2H3, there exists a unique S ∈ H++
2 ∩ SL(2,C)

such that p = S · I2. Moreover, ΓpI2v = S · v.

Proof. The point p is in H3 identi�ed with H++
2 ∩ SL(2,C). De�ne S as the unique square
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5.1. DELAUNAY SURFACES IN H3 VIA THE DPW METHOD

root of p in H++
2 ∩ SL(2,C). Then p = S · I2. De�ne for t ∈ [0, 1]:

S(t) := exp (t logS) , γ(t) := S(t) · I2, v(t) := S(t) · v.

Then v(t) ∈ Tγ(t)H3 because

〈v(t), γ(t)〉 = 〈S(t) · I2, S(t) · v〉 = 〈I2, v〉 = 0

and S · v = v(1) ∈ TpH3.

Suppose that S is diagonal. Then

S(t) =

(
e
at
2 0

0 e
−at
2

)
(a ∈ R)

and using equations (5.3) and (5.4),

γ(t) =

(
eat 0

0 e−at

)
= geod(I2, σ3)(at)

is a geodesic curve. Write v = v1σ1 + v2σ2 + v3σ3 and compute S(t) · σi to �nd

v(t) = v1σ1 + v2σ2 + v3

(
eat 0

0 −e−at

)
.

Compute in R1,3

Dv(t)

dt
=

(
dv(t)

dt

)T
= av3 (γ(t))T = 0

to see that v(t) is the parallel transport of v along the geodesic γ.

If S is not diagonal, write S = QDQ−1 where Q ∈ SU(2) and D ∈ H++
2 ∩ SL(2,C) is

diagonal. Then,

S · v = Q ·
(
D ·
(
Q−1 · v

))
= Q · ΓD·I2I2

(Q−1 · v).

But for all A ∈ SL(2,C), p, q ∈ H3 and v ∈ TpH3,

A · Γqpv = ΓA·qA·pA · v

and thus

S · v = ΓpI2v.
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5.1.2 The DPW method for CMC H > 1 surfaces in H3

Loop groups. In the DPW method, a whole family of surfaces is constructed, depending

on a spectral parameter λ. This parameter will always be in one of the following subsets

of C (ρ > 1):

S1 = {λ ∈ C | |λ| = 1} , Aρ =
{
λ ∈ C | ρ−1 < |λ| < ρ

}
, Dρ = {λ ∈ C | |λ| < ρ} .

Any smooth map f : S1 −→M(2,C) can be decomposed into its Fourier series

f(λ) =
∑
i∈Z

fiλ
i.

Let | · | denote a norm onM(2,C). Fix some ρ > 1 and consider

‖f‖ρ :=
∑
i∈Z
|fi|ρ|i|.

Let G be a Lie group or algebra ofM(2,C). We de�ne

• ΛG as the set of smooth functions f : S1 −→ G.

• ΛGρ ⊂ ΛG as the set of functions f such that ‖f‖ρ is �nite. If G is a group (or an

algebra) then (ΛGρ, ‖·‖ρ) is a Banach Lie group (or algebra).

• ΛG≥0
ρ ⊂ ΛGρ as the set of functions f such that fi = 0 for all i < 0.

• Λ+Gρ ⊂ ΛG≥0
ρ as the set of functions such that f0 is upper-triangular.

• ΛR
+SL(2,C)ρ ⊂ Λ+SL(2,C)ρ as the set of functions that have positive elements on

the diagonal.

We also de�ne ΛC as the set of smooth maps from S1 to C, and ΛCρ and ΛC≥0
ρ as above.

Note that every function of ΛGρ holomorphically extends to Aρ and that every function of

ΛG≥0
ρ holomorphically extends to Dρ.

We will use the Fröbenius norm onM(2,C):

|A| :=

∑
i,j

|aij |2
 1

2

.

Recall that this norm is sub-multiplicative. Therefore, the norm ‖·‖ρ is sub-multiplicative.

Moreover, for all A ∈ ΛSL(2,C)ρ, ∥∥A−1
∥∥
ρ

= ‖A‖ρ
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5.1. DELAUNAY SURFACES IN H3 VIA THE DPW METHOD

and for all A ∈ ΛM(2,C)ρ and λ ∈ Aρ,

|A(λ)| ≤ ‖A‖ρ .

The DPW method relies on the Iwasawa decomposition. The following theorem is

proved in [27] and is cited with our notation in [38].

Theorem 13. The multiplication map ΛSU(2)ρ×ΛR
+SL(2,C)ρ 7−→ ΛSL(2,C)ρ is a smooth

di�eomorphism between Banach manifolds. Its inverse map is called �Iwasawa decomposi-

tion� and is denoted for Φ ∈ ΛSL(2,C)ρ:

Iwa(Φ) = (Uni(Φ),Pos(Φ)) .

The ingredients. Let H > 1, q = arcothH > 0 and ρ > eq. The DPW method takes

for input data:

• A Riemann surface Σ.

• A holomorphic 1-form on Σ with values in Λsl(2,C)ρ of the following form:

ξ =

(
α λ−1β

γ −α

)

where α, β, γ are holomorphic 1-forms on Σ with values in ΛC≥0
ρ . The 1-form ξ is

called �the potential�.

• A base point z0 ∈ Σ.

• An initial condition φ ∈ ΛSL(2,C)ρ.

The recipe. The DPW method consists in the following steps:

1. Let z̃0 be any point above z0 in the universal cover Σ̃ of Σ. Solve on Σ̃ the following

Cauchy problem: {
dΦ = Φξ

Φ(z̃0) = φ.
(5.5)

Then Φ : Σ̃ −→ ΛSL(2,C)ρ is called �the holomorphic frame�.

2. Compute pointwise on Σ̃ the Iwasawa decomposition of Φ:

(F (z), B(z)) := Iwa Φ(z).

The unitary part F of this decomposition is called �the unitary frame�.
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3. De�ne f : Σ̃ −→ H3 via the Sym-Bobenko formula:

f(z) = F (z, e−q)F (z, e−q)
∗

=: SymqF (z)

where F (z, λ0) := F (z)(λ0).

Then f is a CMC H > 1 (H = coth q) conformal immersion from Σ̃ to H3. Its Gauss map

(in the direction of the mean curvature vector) is given by

N(z) = F (z, e−q)σ3F (z, e−q)
∗

=: NorqF (z)

where σ3 is de�ned in (5.3). The di�erential of f is given by

df(z) = 2 sinh(q)b(z)2F (z, e−q)

(
0 β(z, 0)

β(z, 0) 0

)
F (z, e−q)∗ (5.6)

where b(z) > 0 is the upper-left entry of B(z) |λ=0. The metric of f is given by

dsf (z) = 2 sinh(q)b(z)2 |β(z, 0)|

and its Hopf di�erential reads

−2β(z, 0)γ(z, 0) sinh q dz2. (5.7)

Remark 13. The results of this paper hold for any H > 1. We thus �x now H > 1 and

q = arcothH. Hence,

e−q =

√
H − 1

H + 1
.

Rigid motions. Let H ∈ ΛSL(2,C)ρ and de�ne the new holomorphic frame Φ̃ = HΦ

with unitary part F̃ and induced immersion f̃ = SymqF̃ . If H ∈ ΛSU(2)ρ, then F̃ = HF

and Φ̃ gives rise to the same immersion as Φ up to an isometry of H3:

f̃(z) = H(e−q) · f(z).

If H /∈ ΛSU(2)ρ, this transformation is called a �dressing� and may change the surface.

Gauging. Let G : Σ̃ −→ Λ+SL(2,C)ρ and de�ne the new potential:

ξ̂ = ξ ·G := G−1ξG+G−1dG.
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The potential ξ̂ is a DPW potential and this operation is called �gauging�. The data

(Σ, ξ, z0, φ) and
(

Σ, ξ̂, z0, φ G(z0)
)
give rise to the same immersion.

The monodromy problem. Since the immersion f is only de�ned on the universal

cover Σ̃, one might ask for conditions ensuring that it descends to a well-de�ned immersion

on Σ. For any deck transformation τ ∈ Deck
(

Σ̃/Σ
)
, de�ne the monodromy of Φ with

respect to τ as:

Mτ (Φ) := Φ(τ(z))Φ(z)−1 ∈ ΛSL(2,C)ρ.

This map is independent of z ∈ Σ̃. The standard su�cient conditions for the immersion f

to be well-de�ned on Σ is the following set of equations, called the monodromy problem in

H3:

∀τ ∈ Deck
(

Σ̃/Σ
)
,

{
Mτ (Φ) ∈ ΛSU(2)ρ,

Mτ (Φ)(e−q) = ±I2.
(5.8)

Use the point z̃0 de�ned in step 1 of the DPW method to identify the fundamental group

π1(Σ, z0) with Deck(Σ̃/Σ). Let {γi}i∈I be a set of generators of π1 (Σ, z0). Then the

problem (5.8) is equivalent to

∀i ∈ I,

{
Mγi(Φ) ∈ ΛSU(2)ρ,

Mγi(Φ)(e−q) = ±I2.
(5.9)

Example: the standard sphere. The DPW method can produce spherical immersions

of Σ = C ∪ {∞} with the potential

ξS(z, λ) =

(
0 λ−1dz

0 0

)

and initial condition ΦS(0, λ) = I2. The potential is not regular at z = ∞ because it has

a double pole there. However, the immersion will be regular at this point because ξS is

gauge-equivalent to a regular potential at z =∞. Indeed, consider on C∗ the gauge

G(z, λ) =

(
z 0

−λ 1
z

)
.

The gauged potential is then

ξS ·G(z, λ) =

(
0 λ−1z−2dz

0 0

)
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which is regular at z =∞. The holomorphic frame is

ΦS(z, λ) =

(
1 λ−1z

0 1

)
(5.10)

and its unitary factor is

FS(z, λ) =
1√

1 + |z|2

(
1 λ−1z

−λz 1

)
.

The induced CMC-H immersion is

fS(z) =
1

1 + |z|2

(
1 + e2q|z|2 2z sinh q

2z sinh q 1 + e−2q|z|2

)
.

It is not easy to see that fS(Σ) is a sphere because it is not centered at I2. To solve this

problem, notice that FS(z, e−q) = R(q)F̃S(z)R(q)−1 where

R(q) :=

(
e
q
2 0

0 e
−q
2

)
∈ SL(2,C) (5.11)

and

F̃S(z) :=
1√

1 + |z|2

(
1 z

−z 1

)
∈ SU(2).

Apply an isometry by setting

f̃S(z) := R(q)−1 · fS(z)

and compute

f̃S(z) =
1

1 + |z|2

(
e−q + eq|z|2 2z sinh q

2z sinh q eq + e−q|z|2

)
= (cosh q)I2 +

sinh q

1 + |z|2

(
|z|2 − 1 2z

2z 1− |z|2

)

i.e.

f̃S(z) = geod(I2, vS(z))(q) (5.12)

with geod de�ned in (5.4) and where in the basis (σ1, σ2, σ3) of TI2H3,

vS(z) :=
1

1 + |z|2
(
2 Re z, 2 Im z, |z|2 − 1

)
(5.13)
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describes a sphere of radius one in the tangent space of H3 at I2 (it is the inverse stere-

ographic projection from the north pole). Hence, f̃S(Σ) is a sphere centered at I2 of

hyperbolic radius q and fS (Σ) is a sphere of same radius centered at geod(I2, σ3)(q).

One can compute the normal map of fS:

NS(z) := NorqFS(z) = R(q) · ÑS(z)

where

ÑS(z) := Norq

(
F̃S(z)

)
=

1

1 + |z|2

(
e−q − eq|z|2 −2z cosh q

−2z cosh q e−q|z|2 − eq

)
= −(sinh q)I2 − (cosh q)vS(z) = − ˙geod (I2, vS(z)) (q).

Note that this implies that the normal map Norq is oriented by the mean curvature vector.

5.1.3 Delaunay surfaces

Constant mean curvature H > 1 surfaces of revolution in H3 have been described in

the DPW framework in [32]. We recall here the basic facts needed to our purpose.

The data. Let Σ = C∗, ξr,s(z, λ) = Ar,s(λ)z−1dz where

Ar,s(λ) :=

(
0 rλ−1 + s

rλ+ s 0

)
, r, s ∈ R, λ ∈ S1, (5.14)

and initial condition Φr,s(1) = I2. With these data, the holomorphic frame reads

Φr,s(z) = zAr,s .

The unitary frame Fr,s can be expressed in terms of elliptic functions (see [32]) and the

DPW method states that the map fr,s = Symq(Fr,s) is a CMC H immersion from the

universal cover C̃∗ of C∗ into H3.

Monodromy. Computing the monodromy along γ(θ) = eiθ for θ ∈ [0, 2π] gives

M (Φr,s) :=Mγ (Φr,s) = exp (2iπAr,s) .

Recall that r, s ∈ R to see that iAr,s ∈ Λsu(2)ρ, and thus M (Φr,s) ∈ ΛSU(2)ρ: the �rst

equation of (5.9) is satis�ed. To solve the second one, one can determine r and s such that
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Ar,s(e
−q)2 = 1

4 I2, which will imply thatM (Φr,s) (e−q) = −I2. This condition is equivalent

to

r2 + s2 + 2rs cosh q =
1

4
. (5.15)

Seeing this equation as a polynomial in r and computing its discriminant (1+4s2 sinh2 q >

0) ensures the existence of an in�nite number of solutions: given a couple (r, s) ∈ R2

solution to (5.15), fr,s is a well-de�ned CMC H immersion from C∗ into H3.

Surface of revolution. Let (r, s) ∈ R2 satisfying (5.15) and let θ ∈ R. Then,

Φr,s

(
eiθz

)
= exp (iθAr,s) Φr,s(z).

Using iAr,s ∈ Λsu(2)ρ and diagonalising Ar,s(e−q) gives

fr,s

(
eiθz

)
= exp

(
iθAr,s(e

−q)
)
· fr,s(z)

=
(
Hr,s exp (iθD)H−1

r,s

)
· fr,s(z)

where

Hr,s =
1√
2

(
1 −2 (re−q + s)

2 (req + s) 1

)
, D =

(
1
2 0

0 −1
2

)
.

Noting that exp (iθD) acts as a rotation of angle θ around the axis geod(I2, σ3) and that

Hr,s acts as an isometry of H3 independent of θ shows that exp (iθAr,s(e
−q)) acts as a

rotation around the axis Hr,s · geod(I2, σ3) and that fr,s is CMC H > 1 immersion of

revolution of C∗ into H3 and by de�nition (as in [23]) a Delaunay immersion.

The weight as a parameter. For a �xed H > 1, CMC H Delaunay surfaces in H3

form a family parametrised by the weight. This weight can be computed in the DPW

framework: given a solution (r, s) of (5.15), the weight w of the Delaunay surface induced

by the DPW data (C∗, ξr,s, 1, I2) reads

w = 2π × 4rs sinh q (5.16)

(see [32] or [9] for details).

Lemma 8. Writing t := w
2π and assuming t 6= 0, equations (5.15) and (5.16) imply that
t ≤ T1,

r2 = 1
8

(
1− 2Ht± 2

√
T1 − t

√
T2 − t

)
,

s2 = 1
8

(
1− 2Ht± 2

√
T1 − t

√
T2 − t

) (5.17)
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with

T1 =
tanh q

2

2
<

1

2 tanh q
2

= T2.

Proof. First, note that (5.15) and (5.16) imply

r2 + s2 =
1

4
(1− 2t coth q) =

1

4
(1− 2Ht)

and thus

t ≤ H

2
< T2. (5.18)

If r = 0, then t = 0. Thus r 6= 0 and

s =
t

4r sinh q
.

Equation (5.15) is then equivalent to

r2 +
t2

16r2 sinh2 q
+
Ht

2
=

1

4
⇐⇒ r4 − 1− 2Ht

4
r2 +

t2

16 sinh2 q
= 0.

Using coth q = H, the discriminant of this quadratic polynomial in r2 is

∆(t) =
1

16

(
1− 4Ht+ 4t2

)
which in turn is a quadratic polynomial in t with discriminant

∆̃ =
H2 − 1

16
> 0

because H > 1. Thus

∆(t) =
(T1 − t)(T2 − t)

4

because H = coth q. Using (5.18), ∆(t) ≥ 0 if, and only if t ≤ T1 and

r2 =
1

8

(
1− 2Ht± 2

√
(T1 − t)(T2 − t)

)
.

By symmetry of equations (5.15) and (5.16), s2 is as in (5.17).

We consider the two continuous parametrisations of r and s for t ∈ (−∞, T1) such that

(r, s) satis�es equations (5.15) and (5.16) with w = 2πt: r(t) := ±1
2
√

2

(
1− 2Ht+ 2

√
T1 − t

√
T2 − t

) 1
2 ,

s(t) := t
4r(t) sinh q .

(5.19)
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Choosing the parametrisation satisfying r > s maps the unit circle of C∗ onto a parallel
circle of maximal radius, called a �bulge� of the Delaunay surface. As t tends to 0, the

immersions tend towards a parametrisation of a sphere on every compact subset of C∗,
which is why we call this family of immersions �the spherical family�. When r < s, the

unit circle of C∗ is mapped onto a parallel circle of minimal radius, called a �neck� of the

Delaunay surface. As t tends to 0, the immersions degenerate into a point on every compact

subset of C∗. Nevertheless, we call this family the �catenoidal family� because applying a

blowup to the immersions makes them converge towards a catenoidal immersion of R3 on

every compact subset of C∗ (see Section 5.4.1 for more details). In both cases, the weight

of the induced surfaces is given by w = 2πt.

5.2 Perturbed Delaunay immersions

In this section, we study the immersions induced by a perturbation of Delaunay DPW

data with small non-vanishing weights in a neighbourhood of z = 0. Our results are the

same whether we choose the spherical or the catenoidal family of immersions. We thus drop

the index r, s in the Delaunay DPW data and replace it by a small value of t = 4rs sinh q

in a neighbourhood of t = 0 such that

t < Tmax :=
tanh q

2

2
=

1

2

(
H −

√
H2 − 1

)
.

For all ε > 0, we denote

Dε := {z ∈ C | |z| < ε} , D∗ε := Dε\ {0} .

De�nition 16 (Perturbed Delaunay potential). Let ρ > eq, 0 < T < Tmax and ε > 0. A

perturbed Delaunay potential is a continuous one-parameter family (ξt)t∈(−T,T ) of DPW

potentials de�ned for (t, z) ∈ (−T, T )×D∗ε by

ξt(z) = Atz
−1dz + Ct(z)dz

where At ∈ Λsl(2,C)ρ is a Delaunay residue as in (5.14) satisfying (5.19) and Ct(z) ∈
sl(2,C)ρ is C1 with respect to (t, z), holomorphic with respect to z for all t and satis�es

C0(z) = 0 for all z.

Theorem 14. Let ρ > eq, 0 < T < Tmax, ε > 0 and ξt be a perturbed Delaunay potential

C2 with respect to (t, z). Let Φt be a holomorphic frame associated to ξt for all t via the

DPW method. Suppose that the family of initial conditions φt is C2 with respect to t,
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5.2. PERTURBED DELAUNAY IMMERSIONS

with φ0 = z̃A0
0 , and that the monodromy problem (5.9) is solved for all t ∈ (−T, T ). Let

ft = Symq (Uni Φt). Then,

1. For all δ > 0, there exist 0 < ε′ < ε, T ′ > 0 and C > 0 such that for all z ∈ D∗ε′ and
t ∈ (−T ′, T ′)\{0},

dH3

(
ft(z), f

D
t (z)

)
≤ C|t||z|1−δ

where fDt is a Delaunay immersion of weight 2πt.

2. There exist T ′ > 0 and ε′ > 0 such that for all 0 < t < T ′, ft is an embedding of D∗ε′ .

3. The limit axis as t tends to 0 of the Delaunay immersion fDt oriented towards the

end at z = 0 is given by:

1√
2

(
1 −eq

e−q 1

)
· geod (I2,−σ3) in the spherical family (r > s),

geod (I2,−σ1) in the catenoidal family (r < s).

Let ξt and Φt as in Theorem 14 with ρ, T and ε �xed. This Section is dedicated to the

proof of Theorem 14.

The C2-regularity of ξt essentially means that Ct(z) is C2 with respect to (t, z). Together

with the C2-regularity of φt, it implies that Φt is C2 with respect to (t, z). ThusM(Φt) is

also C2 with respect to t. These regularities and the fact that there exists a solution Φt

solving the monodromy problem are used in Section 5.2.1 to deduce an essential piece of

information about the potential ξt (Proposition 24). This step then allows us to write in

Section 5.2.2 the holomorphic frame Φt in a MzAP form given by the Fröbenius method

(Proposition 25), and to gauge this expression, in order to gain an order of convergence

with respect to z (Proposition 26). During this process, the holomorphic frame will loose

one order of regularity with respect to t, which is why Theorem 14 asks for a C2-regularity

of the data. Section 5.2.3 is devoted to the study of dressed Delaunay framesMzA in order

to ensure that the immersions ft will converge to Delaunay immersions as t tends to 0,

and to estimate the growth of their unitary part around the end at z = 0. Section 5.2.4

proves that these immersions do converge, which is the �rst point of Theorem 14. Before

proving the embeddedness in Section 5.2.6, Section 5.2.5 is devoted to the convergence of

the normal maps. Finally, we compute the limit axes in Section 5.2.7.

5.2.1 A property of ξt

We begin by diagonalising At in a unitary basis (Proposition 23) in order simplify the

computations in Proposition 24, in which we use the Fröbenius method for a �xed value of
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λ = e±q. This will ensure the existence of the C1 map P1 ∈ ΛSL(2,C)ρ that will be used

in Section 5.2.2 to de�ne the factor P in the MzAP form of Φt.

Proposition 23. There exist eq < R < ρ and 0 < T ′ < T such that for all t ∈ (−T ′, T ′),
At = HtDtH

−1
t with Ht ∈ ΛSU(2)R and iDt ∈ Λsu(2)R. Moreover, Ht and Dt are smooth

with respect to t.

Proof. For all λ ∈ S1,

−detAt(λ) =
1

4
+
tλ−1(λ− eq)(λ− e−q)

4 sinh q
(5.20)

=
1

4
+

t

4 sinh q

(
λ+ λ−1 − 2 cosh q

)
∈ R.

Extending this determinant as a holomorphic function on Aρ, there exists T ′ > 0 such that∣∣∣∣−detAt(λ)− 1

4

∣∣∣∣ < 1

4
∀(t, λ) ∈ (−T ′, T ′)× Aρ

With this choice of T ′, the function µt : Aρ −→ C de�ned as the positive-real-part square

root of (−detAt) is holomorphic on Aρ and real-valued on S1. Note that µt is also the

positive-real-part eigenvalue of At and thus At = HtDtH
−1
t with

Ht(λ) =
1√
2

(
1 −(rλ−1+s)

µt(λ)
rλ+s
µt(λ) 1

)
, Dt(λ) =

(
µt(λ) 0

0 −µt(λ)

)
. (5.21)

Let eq < R < ρ. For all t ∈ (−T ′, T ′), µt ∈ ΛCR and the map t 7→ µt is smooth on

(−T ′, T ′). Moreover, Ht ∈ ΛSU(2)R, iDt ∈ Λsu(2)R and these functions are smooth with

respect to t.

Remark 14. The bound t < T ′ ensures that that 4 detAt(λ) is an integer only for t = 0

and λ = e±q. These points make the Fröbenius system resonant, but they are precisely the

points that bear an extra piece of information due to the hypotheses on M(Φt)(e
q) and

Φ0. Allowing the parameter t to leave the interval (−T ′, T ′) would bring other resonance

points and make Section 5.2.2 invalid. This is why Theorem 14 does not state that the end

of the immersion ft is a Delaunay end for all t.

Remark 15. At t = 0, the change of basis Ht in the diagonalisation of At takes di�erent

values whether r > s (spherical family) or r < s (catenoidal family). One has:

H0(λ) =
1√
2

(
1 −λ−1

λ 1

)
in the spherical case, (5.22)
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5.2. PERTURBED DELAUNAY IMMERSIONS

H0(λ) =
1√
2

(
1 −1

1 1

)
in the catenoidal case. (5.23)

In both cases, µ0 = 1
2 , and thus D0 is the same.

A basis of ΛM(2,C)ρ. Let R and T ′ given by Proposition 23. Identify ΛM(2,C)ρ with

the free ΛCρ-moduleM(2,ΛCρ) and de�ne for all t ∈ (−T ′, T ′) the basis

Bt = Ht (E1, E2, E3, E4)H−1
t =: (Xt,1, Xt,2, Xt,3, Xt,4)

where

E1 =

(
1 0

0 0

)
, E2 =

(
0 1

0 0

)
, E3 =

(
0 0

1 0

)
, E4 =

(
0 0

0 1

)
.

For all t ∈ (−T ′, T ′), write

Ct(0) =

(
tc1(t) λ−1tc2(t)

tc3(t) −tc1(t)

)
=

4∑
j=1

tĉj(t)Xt,j . (5.24)

The functions cj , ĉj are C1 with respect to t ∈ (−T ′, T ′) and take values in ΛCR. Moreover,

the functions ci(t) holomorphically extend to Dρ.

Proposition 24. There exists a continuous function c̃3 : (−T ′, T ′) −→ ΛCR such that for

all λ ∈ S1 and t ∈ (−T ′, T ′),

ĉ3(t) = t(λ− eq)(λ− e−q)c̃3(t).

Proof. It su�ces to show that ĉ3(0) = 0 and that the holomorphic extension of ĉ3(t)

satis�es ĉ3(t, e±q) = 0 for all t.

To show that ĉ3(0) = 0, recall that the monodromy problem (5.9) is solved for all t and

note thatM(Φ0) = −I2, which implies that, as a function of t, the derivative ofM(Φt) at

t = 0 is in Λsu(2)ρ. On the other hand, Proposition 20 in Chapter 4 ensures that

dM(Φt)

dt
|t=0=

(∫
γ

Φ0
dξt
dt
|t=0 Φ−1

0

)
M(Φ0)

where γ is a generator of π1(D∗ε , z0). Expanding the right-hand side gives

−
∫
γ
zA0

dAt
dt
|t=0 z

−A0z−1dz −
∫
γ
zA0

dCt(z)

dt
|t=0 z

−A0dz ∈ Λsu(2)ρ.

Using Proposition 20 of Chapter 4 once again, note that the �rst term is the derivative
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ofM(zAt) at t = 0, which is in Λsu(2)ρ becauseM(zAt) ∈ ΛSU(2)ρ andM(zA0) = −I2.

Therefore, the second term is also in Λsu(2)ρ. Diagonalising A0 with Proposition 23 and

using H0 ∈ ΛSU(2)R gives

2iπRes
z=0

(
zD0H−1

0

d

dt
Ct(z) |t=0 H0z

−D0

)
∈ Λsu(2)R.

But using Equation (5.24),

zD0H−1
0

d

dt
Ct(z) |t=0 H0z

−D0 = zD0H−1
0

 4∑
j=1

ĉj(0)X0,j

H0z
−D0

=

4∑
j=1

ĉj(0)zD0Ejz
−D0

=

(
ĉ1(0) zĉ2(0)

z−1ĉ3(0) ĉ4(0)

)
.

Thus

2iπ

(
0 0

ĉ3(0) 0

)
∈ Λsu(2)R

which gives ĉ3(0) = 0.

Let λ0 ∈ {eq, e−q} and t 6= 0. Using the Fröbenius method (Theorem 4.11 of [36] and

Lemma 11.4 of [35]) at the resonant point λ0 ensures the existence of ε′ > 0, B,M ∈
M(2,C) and a holomorphic map P : Dε′ −→M(2,C) such that for all z ∈ D∗ε′ ,

Φt(z, λ0) = MzBzAt(λ0)P (z),

B2 = 0,

P (0) = I2,

[At(λ0), dzP (0)] + dzP (0) = Ct(0, λ0)−B.

Compute the monodromy of Φt at λ = λ0:

M(Φt)(λ0) = M exp(2iπB)zB exp(2iπAt(λ0))z−BM−1 = −M exp(2iπB)M−1.

Since the monodromy problem (5.9) is solved, this quantity equals −I2. Use B2 = 0 to

show that B = 0 and thus
Φt(z, λ0) = MzAt(λ0)P (z),

P (0) = I2,

[At(λ0), dzP (0)] + dzP (0) = Ct(0, λ0).
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DiagonaliseAt(λ0) with Proposition 23 and write dzP (0) =
∑
pjXt,j to get for all 1 ≤ j ≤ 4

pj ([Dt(λ0), Ej ] + Ej) = tĉj(t, λ0)Ej .

In particular, using µt(λ0) = 1/2,

tĉ3(t, λ0) = p3 ([Dt(λ0), E3] + E3) = 0.

Note that with the help of equations (5.24) and (5.22) or (5.23), and one can compute

the series expansion of ĉ3(0):

ĉ3(0) =
−λ−1

2
c2(0, 0) +O(λ0) if r < s,

ĉ3(0) =
1

2
c3(0, 0) +O(λ) if r > s.

Hence,

sc2(t, 0) + rc3(t, 0) −→
t→0

0. (5.25)

The following map will be useful in the next section:

t ∈ (−T ′, T ′) 7−→ P 1(t) := tĉ1(t)Xt,1 +
tĉ2(t)

1 + 2µt
Xt,2 +

tĉ3(t)

1− 2µt
Xt,3 + tĉ4(t)Xt,4. (5.26)

For all t, Proposition 24 ensures that the map P 1(t, λ) holomorphically extends to AR.
Taking a smaller value of R if necessary, P 1(t) ∈ ΛM(2,C)R for all t. Moreover,

trP 1(t) = tĉ1(t) + tĉ4(t) = trCt(0) = 0.

Thus P 1 ∈ C1((−T ′, T ′),Λsl(2,C)R).

5.2.2 The zAP form of Φt

The map P 1 de�ned above allows us to use the Fröbenius method in a loop group

framework and in the non-resonant case, that is, for all t (Proposition 25). The techniques

used in [30] will then apply in order to gauge the MzAP form and gain an order on z

(Proposition 26).

Proposition 25. There exists ε′ > 0 such that for all t ∈ (−T ′, T ′) there exist Mt ∈
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ΛSL(2,C)R and a holomorphic map Pt : Dε′ −→ ΛSL(2,C)R such that for all z ∈ D∗ε′ ,

Φt(z) = Mtz
AtPt(z).

Moreover, Mt is C1 with respect to t, M0 = I2, Pt(z) is C1 with respect to (t, z), P0(z) = I2

for all z and Pt(0) = I2 for all t.

Proof. For all k ∈ N∗ and t ∈ (−T ′, T ′), de�ne the linear map

Lt,k : ΛM(2,C)ρ −→ ΛM(2,C)ρ

X 7−→ [At, X] + kX.

Use the bases Bt and restrict Lt,k to ΛM(2,C)R to get

MatBtLt,k =


k 0 0 0

0 k + 2µt 0 0

0 0 k − 2µt 0

0 0 0 k

 .

Note that

detLt,k = k2(k2 − 4µ2
t ).

Thus for all k ≥ 2, detLt,k is an invertible element of ΛCR, which implies that Lt,k is

invertible for all t ∈ (−T ′, T ′) and k ≥ 2.

Write

Ct(z) =
∑
k∈N

Ct,kz
k.

With P 0 := I2 and P 1 as in Equation (5.26), de�ne for all k ≥ 1:

P k+1(t) := L−1
t,k+1

 ∑
i+j=k

P i(t)Ct,j

 .

so that the sequence (P k)k∈N ⊂ C1 ((−T ′, T ′),Λsl(2,C)ρ) satis�es the following recursive

system for all t ∈ (−T ′, T ′):{
P 0(t) = I2,

Lt,k+1(P k+1(t)) =
∑

i+j=k P
i(t)Ct,j .

With Pt(z) :=
∑
P k(t)zk, the Fröbenius method ensures convergence for all t (see [36]).

Restricting to a compact interval in (−T ′, T ′) if necessary, there exists ε′ > 0 such that for
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all z ∈ D∗ε′ and t ∈ (−T ′, T ′),
Φt(z, λ) = Mtz

AtPt(z)

where Mt ∈ ΛSL(2,C)R is C1 with respect to t, Pt(z) is C1 with respect to t and z, and for

all t, Pt : Dε′ −→ ΛSL(2,C)R is holomorphic and satis�es Pt(0) = I2. Moreover, the map

P 1 de�ned in (5.26) vanishes at t = 0 and thus P0(z) = I2 for all z ∈ Dε′ , which implies

that M0 = I2.

Proposition 26. There exists ε′ > 0 such that for all t ∈ (−T ′, T ′) there exist an admissi-

ble gauge Gt : Dε −→ Λ+SL(2,C)R, a change of coordinates ht : Dε′ −→ Dε, a holomorphic

map P̃t : Dε′ −→ ΛSL(2,C)R and M̃t ∈ ΛSL(2,C)R such that for all z ∈ D∗ε′ ,

h∗t (ΦtGt) (z) = M̃tz
AtP̃t(z).

Moreover, M̃t is C1 with respect to t, M̃0 = I2 and there exists a uniform C > 0 such that

for all t and z, ∥∥∥P̃t(z)− I2

∥∥∥
ρ
≤ C|t||z|2.

Proof. The proof goes as in Section 4.3.3 of Chapter 4. Expand P 1(t) given by Equation

(5.26) as a series to get (this is a tedious but simple computation):

P1(t, λ) =

(
0 stc2(t,0)+rtc3(t,0)

2s λ−1

stc2(t,0)+rtc3(t,0)
2r 0

)
+

(
O(λ0) O(λ0)

O(λ) O(λ0)

)
.

De�ne

pt := 2 sinh q(sc2(t, 0) + rc3(t, 0))

so that

gt := ptAt − P 1(t) ∈ Λ+sl(2,C)R

and recall Equation (5.25) together with P0 = I2 to show that g0 = 0. Thus

Gt := exp (gtz) ∈ Λ+SL(2,C)R

is an admissible gauge. Let ε′ < |pt|−1 for all t ∈ (−T ′, T ′). De�ne

ht : Dε′ −→ Dε

z 7−→ z
1+ptz

.

Then,

ξ̃t := h∗t (ξt ·Gt) = Atz
−1dz + C̃t(z)dz
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is a perturbed Delaunay potential as in De�nition 16 such that C̃t(0) = 0 for all t ∈
(−T ′, T ′). The holomorphic frame

Φ̃t := h∗t (ΦtGt)

satis�es dΦ̃t = Φ̃tξ̃t. With C̃t(0) = 0, one can apply the Fröbenius method on ξ̃t to get

Φ̃t(z) = M̃tz
AtP̃t(z)

with M̃0 = I2 and ∥∥∥P̃t(z)− I2

∥∥∥
R
≤ C|t||z|2.

Conclusion. The new frame Φ̃t is associated to a perturbed Delaunay potential (ξ̃t)t∈(−T ′,T ′),

de�ned for z ∈ D∗ε′ , with values in Λsl(2,C)R and of the form

ξ̃t(z) = Atz
−1dz + Ĉt(z)zdz.

Note that C̃t(z) ∈ sl(2,C)R is now C1 with respect to (t, z). The monodromy problem

(5.9) is solved for Φ̃t and for any z̃0 in the universal cover D̃∗ε′ , Φ̃0(z̃0) = z̃A0
0 . Moreover,

writing f̃t := Symq(Uni Φ̃t) and ft := Symq(Uni Φt), then f̃t = h∗t ft with h0(z) = z. Hence

in order to prove Theorem 14 it su�ces to prove the following proposition.

Proposition 27. Let ρ > eq, 0 < T < Tmax, ε > 0 and ξt be a perturbed Delaunay

potential as in De�nition 16. Let Φt be a holomorphic frame associated to ξt for all t via

the DPW method. Suppose that the monodromy problem (5.9) is solved for all t ∈ (−T, T )

and that

Φt(z) = Mtz
AtPt(z)

where Mt ∈ ΛSL(2,C)ρ is C1 with respect to t, satis�es M0 = I2, and Pt : Dε −→
ΛSL(2,C)ρ is a holomorphic map such that for all t and z,

‖Pt(z)− I2‖ρ ≤ C|t||z|
2

where C > 0 is a uniform constant. Let ft = Symq (Uni Φt). Then the three points of

Theorem 14 hold for ft.

We now reset the values of ρ, T and ε and suppose that we are given a perturbed De-

launay frame ξt and a holomorphic frame Φt associated to it and satisfying the hypotheses

of Proposition 27.
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5.2.3 Dressed Delaunay frames

In this section we study dressed Delaunay frames arising from the DPW data (C̃∗, ξDt , 1,Mt),

where C̃∗ is the universal cover of C∗ and

ξDt (z) := Atz
−1dz

with At as in (5.14) satisfying (5.19), and Mt as in Proposition 26. The induced holomor-

phic frame is

ΦDt (z) = Mtz
At .

Note that the fact that the monodromy problem (5.9) is solved for Φt implies that it is

solved for ΦDt because Pt is holomorphic on Dε. Let D̃∗1 be the universal cover of D∗1 and

let

FDt := Uni ΦDt , BDt := Pos ΦDt , fDt := SymqF
D
t .

In this section, our goal is to prove the following proposition.

Proposition 28. The immersion fDt is a CMC H Delaunay immersion of weight 2πt for

|t| small enough. Moreover, for all δ > 0 and eq < R < ρ there exists C, T ′ > 0 such that

∥∥FDt (z)
∥∥
R
≤ C|z|−δ.

for all (t, z) ∈ (−T ′, T ′)× D̃∗1.

Delaunay immersion. We will need the following lemma, inspired by [31].

Lemma 9. Let M ∈ SL(2,C) and A ∈ su(2) such that

M exp(A)M−1 ∈ SU(2). (5.27)

Then there exist U ∈ SU(2) and K ∈ SL(2,C) such that M = UK and [K,A] = 0.

Proof. Let

K =
√
M∗M, U = MK−1

be a polar decomposition of M . The matrix K is then hermitian and positive-de�nite

because detM 6= 0. Moreover, U ∈ SU(2) and Equation (5.27) is then equivalent to

K exp (A)K−1 ∈ SU(2). (5.28)
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Let us diagonalise K = QDQ−1 where Q ∈ SU(2) and

D =

(
x 0

0 x−1

)
, x > 0.

Hence Equation (5.28) now reads

D exp
(
Q−1AQ

)
D−1 ∈ SU(2). (5.29)

But Q ∈ SU(2) and A ∈ su(2), so Q−1AQ ∈ su(2) and exp
(
Q−1AQ

)
∈ SU(2). Let us

write

exp
(
Q−1AQ

)
=

(
p −q
q p

)
, |p|2 + |q|2 = 1

so that Equation (5.29) is now equivalent to

x = 1 or q = 0.

If x = 1 then K = I2 and [K,A] = 0. If q = 0 then Q−1AQ is diagonal and A is

Q-diagonalisable. Thus K and A are simultaneously diagonalisable and [K,A] = 0.

Corollary 5. There exists T ′ > 0 such that for all t ∈ (−T ′, T ′),

Φt(z) = Utz
AtKt

where Ut ∈ ΛSU(2)R and Kt ∈ ΛSL(2,C)R for any eq < R < ρ.

Proof. Write M
(
ΦDt
)

= Mt exp (At)M−1
t with At := 2iπAt ∈ Λsu(2)ρ continuous on

(−T, T ). The map

M 7−→
√
M∗M = exp

(
1

2
logM∗M

)
is a di�eomorphism from a neighbourhood of I2 ∈ ΛSL(2,C)ρ to another neighbourhood

of I2. Using the convergence of Mt towards I2 as t tends to 0, this allows us to use Lemma

9 pointwise on Aρ and thus construct Kt :=
√
M∗tMt ∈ ΛSL(2,C)R for all t ∈ (−T ′, T ′)

and any eq < R < ρ. Let Ut := MtK
−1
t ∈ ΛSL(2,C)R and compute UtU∗t to show that

Ut ∈ ΛSU(2)R. Use Lemma 9 to show that [Kt(λ),At(λ)] = 0 for all λ ∈ S1. Hence

[Kt,At] = 0 and thus ΦDt = Utz
AtKt.

Returning to the proof of Proposition 28, let θ ∈ R, z ∈ C∗ and eq < R < ρ. Apply

Corollary 5 to get

ΦDt (eiθz) = Ut exp(iθAt)U
−1
t ΦDt (z)

100
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and note that Ut ∈ ΛSU(2)R, iAt ∈ Λsu(2)R imply

Rt(θ) := Ut exp(iθAt)U
−1
t ∈ ΛSU(2)R. (5.30)

Hence

FDt (eiθz) = Rt(θ)F
D
t (z)

and

fDt (eiθz) = Rt(θ, e
−q) · fDt (z).

Use Section 5.1.3 and note that Ut does not depend on θ to see that fDt is a CMC immersion

of revolution and hence a Delaunay immersion. Its weight can be read from its Hopf

di�ferential, which in turn can be read from the potential ξDt (see Equation (5.7)). Thus fDt
is a CMC H Delaunay immersion of weight 2πt, which proves the �rst point of Proposition

28.

Restricting to a meridian. Note that for all t ∈ (−T ′, T ′) and z ∈ C∗,

∥∥FDt (z)
∥∥
R
≤ C

∥∥FDt (|z|)
∥∥
R

where

C = sup
{
‖Rt(θ)‖R | (t, θ) ∈ (−T ′, T ′)× [0, 2π]

}
depends only on R. We thus restrict FDt to R∗+ with F̂Dt (x) := FDt (|z|) (x = |z|).

Grönwall over a period. Recalling the Lax Pair associated to FDt (see Section 4.8 in

Chapter 4), the restricted map F̂Dt satis�es dF̂Dt = F̂Dt Ŵtdx with

Ŵt(x, λ) =
1

x

(
0 λ−1rb2(x)− sb−2(x)

sb−2(x)− λrb2(x) 0

)

where b(x) is the upper-left entry of BDt (x) |λ=0. Recall Section 5.1.2 and de�ne

gt(x) = 2 sinh q|r|b(x)2x−1

so that the metric of fDt reads gt(x)|dz|. Let f̃Dt := exp∗ fDt . Then the metric of f̃Dt
satis�es

ds̃2 = 4r2(sinh q)2b4(eu)(du2 + dθ2)
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at the point u+ iθ = log z. Using Proposition 33 of Section 5.5 gives∫ St

0
2|r|b2(eu)du = π and

∫ St

0

du

2 sinh q|r|b2(eu)
=

π

|t|

where St > 0 is the period of the pro�le curve of f̃t. Thus∫ eSt

1
|rb2(x)x−1|dx =

π

2
=

∫ eSt

1
|sb−2(x)x−1|dx.

Using ∥∥∥Ŵt(x)
∥∥∥
R

=
√

2
∣∣sb−2(x)x−1

∣∣+ 2R
∣∣rb2(x)x−1

∣∣ ,
we deduce ∫ eSt

1

∥∥∥Ŵt(x)
∥∥∥
R
dx =

π

2
(2R+

√
2) < C (5.31)

where C > 0 is a constant depending only on ρ and T . Applying Grönwall's lemma to the

inequality ∥∥∥F̂Dt (x)
∥∥∥
R
≤
∥∥∥F̂Dt (1)

∥∥∥
R

+

∫ x

1

∥∥∥F̂Dt (u)
∥∥∥
R

∥∥∥Ŵt(u)
∥∥∥
R
|du|

gives ∥∥∥F̂Dt (x)
∥∥∥
R
≤
∥∥∥F̂Dt (1)

∥∥∥
R

exp

(∫ x

1

∥∥∥Ŵt(u)
∥∥∥
R
|du|

)
.

Use Equation (5.31) together with the fact that F̃D0 (0) = FD0 (1) = I2 and the continuity

of Iwasawa decomposition to get C, T > 0 such that for all t ∈ (−T ′, T ′) and x ∈ [1, eSt ]∥∥∥F̂Dt (x)
∥∥∥
R
≤ C. (5.32)

Control over the periodicity matrix. Let t ∈ (−T ′, T ′) and Γt := F̂Dt (xeSt)F̂Dt (x)−1 ∈
ΛSU(2)R for all x > 0. The periodicity matrix Γt does not depend on x because Ŵt(xe

St) =

Ŵt(x) (by periodicity of the metric in the log coordinate). Moreover,

‖Γt‖R =
∥∥∥F̂Dt (eSt)F̂Dt (1)−1

∥∥∥
R
≤
∥∥∥F̂Dt (eSt)

∥∥∥
R

∥∥∥F̂Dt (1)
∥∥∥
R
,

and using Equation (5.32),

‖Γt‖R ≤ C. (5.33)

Conclusion. Let x < 1. Then there exist k ∈ N∗ and ζ ∈
[
1, eSt

)
such that x = ζe−kSt .

Thus using equations (5.32) and (5.33),∥∥∥F̂Dt (x)
∥∥∥
R
≤
∥∥∥Γ−kt

∥∥∥
R

∥∥∥F̂Dt (ζ)
∥∥∥
R
≤ Ck+1.
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Writing

k =
log ζ

St
− log x

St
,

one gets

Ck = exp

(
log ζ

St
logC

)
exp

(
− logC

St
log x

)
≤ Cx−δt

where δt = logC
St

does not depend on x and tends to 0 as t tends to 0 (because St −→
t→0

+∞).

Returning back to FDt , we showed that for all δ > 0 there exist T ′ > 0 and C > 0 such

that for all t ∈ (−T ′, T ′) and 0 < |z| < 1,

∥∥FDt (z)
∥∥
R
≤ C|z|−δ

and Proposition 28 is proved.

5.2.4 Convergence of the immersions

In this section, we prove the �rst point of Theorem 14: the convergence of the immer-

sions ft towards the immersions fDt . Our proof relies on the Iwasawa decomposition being

a di�eomorphism in a neighbourhood of I2.

Behaviour of the Delaunay positive part. Let z ∈ D̃∗1. The Delaunay positive part

satis�es ∥∥BDt (z)
∥∥
ρ

=
∥∥FDt (z)−1Mtz

At
∥∥
ρ
≤
∥∥FDt (z)

∥∥
ρ
‖Mt‖ρ

∥∥zAt∥∥
ρ
.

Diagonalise At = HtDtH
−1
t as in Proposition 23. By continuity of Ht andMt, and accord-

ing to Proposition 28, there exists C, T ′ > 0 such that for all t ∈ (−T ′, T ′)

∥∥BDt (z)
∥∥
R
≤ C|z|−δ

∥∥z−µt∥∥
R
.

Recall Equation (5.20) and extend µ2
t = − detAt to A

R̃
with ρ > R̃ > R. One can thus

assume that for t ∈ (−T ′, T ′) and λ ∈ A
R̃
,

|µt(λ)| < 1

2
+ δ,

which implies that ∣∣∣z−µt(λ)
∣∣∣ ≤ |z|−1

2
−δ.

This gives us the following estimate in the ΛCR norm (using Cauchy formula and R̃ > R):

∥∥z−µt∥∥
R
≤ C|z|

−1
2
−δ
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and ∥∥BDt (z)
∥∥
R
≤ C|z|

−1
2
−2δ. (5.34)

Behaviour of a holomorphic frame. Let

Φ̃t := BDt
(
ΦDt
)−1

Φt

(
BDt
)−1

.

Recall Proposition 26 and use Equation (5.34) to get for all t ∈ (−T ′, T ′) and z ∈ D∗ε :∥∥∥Φ̃t(z)− I2

∥∥∥
R

=
∥∥BDt (z) (Pt(z)− I2)BDt (z)−1

∥∥
R
≤ C|t||z|1−4δ.

Behaviour of the perturbed immersion. Note that

Φ̃t = BDt
(
ΦDt
)−1

Φt

(
BDt
)−1

=
(
FDt
)−1

Ft ×Bt
(
BDt
)−1

and recall that the Iwasawa decomposition is di�erentiable at the identity to get

∥∥FDt (z)−1Ft(z)− I2

∥∥
R

=
∥∥∥Uni Φ̃t(z)−Uni I2

∥∥∥
R
≤ C|t||z|1−4δ.

The map

F̃t(z) := FDt (z, e−q)−1Ft(z, e
−q) ∈ SL(2,C)

satis�es ∣∣∣F̃t(z)− I2

∣∣∣ ≤ ∥∥FDt (z)−1Ft(z)− I2

∥∥
R
≤ C|t||z|1−4δ. (5.35)

Lemma 10. There exists a neighbourhood V ⊂ SL(2,C) of I2 and C > 0 such that for all

A ∈ SL(2,C),

A ∈ V =⇒ |tr (AA∗)− 2| ≤ C |A− I2|2 .

Proof. Consider exp : U ⊂ sl(2,C) −→ V ⊂ SL(2,C) as a local chart of SL(2,C) around

I2. Let A ∈ V . Write
f : SL(2,C) −→ R

X 7−→ tr (XX∗)

and a = logA ∈ U to get

|f(A)− f(I2)| ≤ df(I2) · a+ C|a|2.
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Notice that for all a ∈ sl(2,C),

df(I2) · a = tr(a+ a∗) = 0

to end the proof.

Corollary 6. There exists a neighbourhood V ⊂ SL(2,C) of I2 and C > 0 such that for

all F1, F2 ∈ SL(2,C),

F−1
2 F1 ∈ V =⇒ dH3 (f1, f2) < C

∣∣F−1
2 F1 − I2

∣∣ ,
where fi = Fi · I2 ∈ H3.

Proof. Just note that

dH3 (f1, f2) = cosh−1 (−〈f1, f2〉) = cosh−1

(
1

2
tr(f−1

2 f1)

)
and that

tr
(
f−1

2 f1

)
= tr

(
(F2F2

∗)−1 F1F1
∗
)

= tr F̃ F̃ ∗

where F̃ = F−1
2 F1. Apply Lemma 10 and use cosh−1(1 + x) ∼

√
2x as x → 0 to end the

proof.

Without loss of generality, we can suppose from (5.35) that C|t||z|1−4δ is small enough

for F̃t(z) to be in V for all t and z. Apply Corollary 6 to end the proof of the �rst point

in Theorem 14:

dH3

(
ft(z), f

D
t (z)

)
≤ C|t||z|1−4δ.

5.2.5 Convergence of the normal maps

Before starting the proof of the second point of Theorem 14, we will need to compare

the normal maps of our immersions. Let Nt := NorqFt and NDt := NorqF
D
t be the normal

maps associated to the immersions ft and fDt . This section is devoted to the proof of the

following proposition.

Proposition 29. For all δ > 0 there exist ε′, T ′, C > 0 such that for all t ∈ (−T ′, T ′) and
z ∈ D∗ε , ∥∥∥Γ

fDt (z)

ft(z)
Nt(z)−NDt (z)

∥∥∥
TH3
≤ C|t||z|1−δ.

The following lemma measures the lack of euclideanity in the parallel transportation of

unitary vectors.
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Lemma 11. Let a, b, c ∈ H3, va ∈ TaH3 and vb ∈ TbH3 both unitary. Let A be the

hyperbolic area of the triangle (a, b, c). Then∥∥∥Γbava − vb
∥∥∥
TbH3

≤ A+ ‖Γcava − Γcbvb‖TcH3 .

Proof. Just use the triangular inequality and Gauss-Bonnet formula in H2 to write:∥∥∥Γbava − vb
∥∥∥
TbH3

=
∥∥∥ΓacΓ

c
bΓ
b
ava − ΓacΓ

c
bvb

∥∥∥
TaH3

≤
∥∥∥ΓacΓ

c
bΓ
b
ava − va

∥∥∥
TaH3

+ ‖va − ΓacΓ
c
bvb‖TaH3

≤ A+ ‖Γcava − Γcbvb‖TcH3 .

Lemma 12 below clari�es how the unitary frame encodes the immersion and the normal

map.

Lemma 12. Let f = SymqF and N = NorqF . Denoting by (S(z), Q(z)) ∈ H++
2 ∩

SL(2,C)× SU(2) the polar decomposition of F (z, e−q),

f = S2 and N = ΓfI2(Q · σ3).

Proof. The formula for f is straightforward after noticing that QQ∗ = I2 and S∗ = S. The

formula for N is a direct consequence of Proposition 22.

Proof of Proposition 29. Let δ > 0, t ∈ (−T ′, T ′) and z ∈ D∗ε′ . Using Lemma 11,∥∥∥Γ
fDt (z)

ft(z)
Nt(z)−NDt (z)

∥∥∥ ≤ A+
∥∥∥ΓI2

ft(z)
Nt(z)− ΓI2

fDt (z)
NDt (z)

∥∥∥
where A is the hyperbolic area of the triangle

(
I2, ft(z), f

D
t (z)

)
. Using Heron's formula in

H2 (see [40], p.66), Proposition 28 and the �rst point of Theorem 14,

A ≤ dH3

(
ft(z), f

D
t (z)

)
× dH3

(
I2, f

D
t (z)

)
≤ C|t||z|1−δ.
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Moreover, denoting by Qt and QDt the unitary parts of Ft(eq) and FDt (eq) in their polar

decomposition and using Lemma 12 together with Corollary 7 and Equation (5.35),∥∥∥ΓI2
ft(z)

Nt(z)− ΓI2
fDt (z)

NDt (z)
∥∥∥ =

∥∥Qt(z) · σ3 −QDt (z) · σ3

∥∥
TI2H

3

≤ C
∥∥FDt (z)

∥∥2

R

∥∥FDt (z)−1FDt (z)− I2

∥∥
R

≤ C|t||z|1−3δ.

5.2.6 Embeddedness

In this section, we prove the second point of Theorem 14. We thus assume that t > 0.

We suppose that C, ε, T, δ > 0 satisfy Proposition 29 and the �rst point of Theorem 14.

Lemma 13. Let rt > 0 such that the tubular neighbourhood of fDt (C∗) with hyperbolic

radius rt is embedded. There exists T > 0 and 0 < ε′ < ε such that for all 0 < t < T ,

x ∈ ∂Dε and y ∈ D∗ε′ ,
dH3

(
fDt (x), fDt (y)

)
> 4rt.

Proof. The convergence of fDt (C∗) towards a chain of spheres implies that rt tends to 0

as t tends to 0. If fDt does not degenerate into a point, then it converges towards the

parametrisation of a sphere, and for all 0 < ε′ < ε there exists T > 0 satisfying the

inequality. If fDt does degenerate into a point, then a suitable blow-up makes it converge

towards a catenoidal immersion on the punctured disk D∗ε (see Section 5.4.1). This implies

that for ε′ > 0 small enough, there exists T > 0 satisfying the inequality.

We can now prove embeddedness with the same method than in Chapter 4. Let Dt :=

fDt (C∗) ⊂ H3 be the image Delaunay surface of fDt . We denote by ηDt : Dt −→ TH3

the Gauss map of Dt. We also write Mt = ft(D
∗
ε ) and ηt : Mt −→ TH3. Let rt be the

maximal value of α such that the following map is a di�eomorphism:

T : (−α, α)×Dt −→ TubαDt ⊂ H3

(s, p) 7−→ geod
(
p, ηDt (p)

)
(s).

According to Lemma 18, the maximal tubular radius satis�es rt ∼ t as t tends to 0. Using

the �rst point of Theorem 14, we thus assume that on D∗ε ,

dH3

(
ft(z), f

D
t (z)

)
≤ αrt

where α < 1 is given by Lemma 19 of Section 5.5.
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Let πt be the projection from Tubrt Dt to Dt. Then the map

ϕt : D∗ε −→ Dt
z 7−→ πt ◦ ft(z)

is well-de�ned and satis�es

dH3

(
ϕt(z), f

D
t (z)

)
≤ 2αrt (5.36)

because of the triangular inequality.

Lemma 14. For t > 0 small enough, ϕt is a local di�eomorphism on D∗ε .

Proof. It su�ces to show that for all z ∈ D∗ε ,∥∥∥Γ
ft(z)
ϕt(z)

ηDt (ϕt(z))−Nt(z)
∥∥∥ < 1. (5.37)

Using Lemma 11 (we drop the variable z to ease the notation),∥∥∥Γftϕtη
D
t (ϕt)−Nt

∥∥∥ ≤ A+
∥∥∥Γ

fDt
ϕt η

D
t (ϕt)− Γ

fDt
ft
Nt

∥∥∥
where A is the area of the triangle

(
ft, f

D
t , ϕt

)
. Recall the isoperimetric inequality in H2

(see [37]):

P2 ≥ 4πA+A2

from which we deduce

A ≤ P2 ≤
(
2dH3

(
ft, f

D
t

)
+ 2dH3

(
ϕt, f

D
t

))2 ≤ (6αrt)
2

which uniformly tends to 0 as t tends to 0. Using the triangular inequality and Proposition

29, ∥∥∥Γ
fDt
ϕt η

D
t (ϕt)− Γ

fDt
ft
Nt

∥∥∥ ≤ ∥∥∥Γ
fDt
ϕt η

D
t (ϕt)−NDt

∥∥∥+ C|t||z|1−δ

and the second term of the right-hand side uniformly tends to 0 as t tends to 0. Because

α satis�es Lemma 19 in Section 5.5,∥∥∥Γ
fDt
ϕt η

D
t (ϕt)−NDt

∥∥∥ < 1

which implies Equation (5.37).

Let ε′ > 0 given by Lemma 13. The restriction

ϕ̃t : ϕ−1
t

(
ϕt(D

∗
ε′)
)
∩D∗ε −→ ϕt

(
D∗ε′
)

z 7−→ ϕt(z)
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is a covering map because it is a proper local di�eomorphism between locally compact

spaces. To show this, proceed by contradiction as in R3 (see [30]): let (xi)i∈N ⊂ ϕ−1
t

(
ϕt(D

∗
ε′)
)
∩

D∗ε such that (ϕ̃t(xi))i∈N converges to p ∈ ϕt
(
D∗ε′
)
. Then (xi)i converges to x ∈ Dε. Using

Equation (5.36) and the fact that fDt has an end at 0, x 6= 0. If x ∈ ∂Dε, denoting x̃ ∈ D∗ε′
such that ϕ̃t(x̃) = p, one has

dH3

(
fDt (x), fDt (x̃)

)
< dH3

(
fDt (x), p

)
+ dH3

(
fDt (x̃), ϕ̃t(x̃)

)
< 4αrt < 4rt

which contradicts the de�nition of ε′.

Let us now prove as in Chapter 4 that ϕ̃t is a one-sheeted covering map. Let γ : [0, 1] −→
D∗ε′ be a loop of winding number 1 around 0, Γ = fDt (γ) and Γ̃ = ϕ̃t(γ) ⊂ Dt and let us

construct a homotopy between Γ and Γ̃. For all s ∈ [0, 1], let σs : [0, 1] −→ H3 be a geodesic

arc joining σs(0) = Γ̃(s) to σs(1) = Γ(s). For all s, r ∈ [0, 1], dH3 (σs(r),Γ(s)) ≤ αrt which
implies that σs(r) ∈ Tubrt Dt because Dt is complete. One can thus de�ne the following

homotopy between Γ and Γ̃

H : [0, 1]2 −→ Dt
(r, s) 7−→ πt ◦ σs(r)

where πt is the projection from Tubrt Dt to Dt. Using the fact that fDt is an embedding,

the degree of Γ is one, and the degree of Γ̃ is also one. Hence, ϕ̃t is one-sheeted.

Finally, the map ϕ̃t is a one-sheeted covering map and hence a di�eomorphism, so

ft
(
D∗ε′
)
is a normal graph over Dt contained in its embedded tubular neighbourhood and

ft
(
D∗ε′
)
is thus embedded, which proves the second point of Theorem 14.

5.2.7 Limit axis

In this section, we prove the third point of Theorem 14 and compute the limit axis of

fDt as t tends to 0. Recall that fDt = Symq

(
Uni

(
Mtz

At
))

where Mt tends to I2 as t tends

to 0. Hence, the limit axis of fDt and f̃Dt := Symq

(
Uni

(
zAt
))

are the same. Two cases can

occur, whether r > s or r < s.

Spherical family. At t = 0, r = 1
2 and s = 0. The limit potential is thus

ξ0(z, λ) =

(
0 λ−1

2
λ
2 0

)
z−1dz.
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Consider the gauge

G(z, λ) =
1√
2z

(
1 0

λ 2z

)
.

The gauged potential is then

ξ0 ·G(z, λ) =

(
0 λ−1dz

0 0

)
= ξS(z, λ)

where ξS is the spherical potential as in Section 5.1.2. Let Φ̃ := zA0G be the gauged

holomorphic frame and compute

Φ̃(1, λ) = G(1, λ)

=
1√
2

(
1 0

λ 2

)
=

1√
2

(
1 −λ−1

λ 1

)(
1 λ−1

0 1

)
= H(λ)ΦS(1, λ)

where ΦS is de�ned in (5.10) and H = H0 as in (5.22). This means that Φ̃ = HΦS,

Uni Φ̃ = HFS and Symq(Uni Φ̃) = H(e−q)·fS because H ∈ ΛSU(2)R. Thus using equations

(5.12) and (5.13),

f̃D0 (∞) = Symq(Uni Φ̃)(∞) = H(e−q) · fS(∞)

=
(
H(e−q)R(q)

)
· geod (I2, σ3) (q)

= H(e−q) · geod (I2, σ3) (2q).

And with the same method,

f̃D0 (0) = H(e−q) · geod (I2, σ3) (0).

This means that the limit axis of f̃Dt as t → 0, oriented from z = ∞ to z = 0 is given in

the spherical family by

H(e−q) · geod (I2,−σ3) .

Catenoidal family. We cannot use the same method as above, as the immersion f̃Dt

degenerates into the point I2. Use Proposition 32 of Section 5.4.1 to get

f̂ := lim
t→0

1

t
(ft − I2) = ψ ⊂ TI2H3
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where ψ is the immersion of a catenoid of axis oriented by −σ1 as z → 0. This su�ces

to show that the limit axis oriented from the end at ∞ to the end at 0 of the catenoidal

family f̃Dt converges as t tends to 0 to the oriented geodesic geod(I2,−σ1).

5.3 Gluing Delaunay ends to hyperbolic spheres

In this section, we follow step by step the method Martin Traizet used in R3 ([39])

to construct CMC H > 1 n-noids in H3 and prove Theorem 11. This method relies on

the Implicit Function Theorem and aims to �nd a pair (ξt,Φt) satisfying the hypotheses

of Theorem 14 around each pole of an n-punctured sphere. More precisely, the Implicit

Function Theorem is used to solve the monodromy problem around each pole and to ensure

that the potential is regular at z = ∞. The set of equations characterising this problem

at t = 0 is the same as in [39], and the partial derivative with respect to the parameters

is the same as in [39] at t = 0. Therefore, the Implicit Function Theorem can be used

exactly as in [39] and we do not repeat it here. Showing that the surface has Delaunay

ends involves slightly di�erent computations, but the method is the same as in [39], namely,

�nd a suitable gauge and change of coordinates around each pole of the potential in order to

retrieve a perturbed Delaunay potential as in De�nition 16. One can then apply Theorem

14. Finally, we show that the surface is Alexandrov-embedded (and embedded in some

cases) by adapting the arguments of [38] to the case of H3.

5.3.1 The DPW data

LetH > 1, q = arcothH and ρ > eq. Let n ≥ 3 and u1, · · · , un unitary vectors of TI2H3.

Suppose, by applying a rotation, that ui 6= ±σ3 for all i ∈ [1, n]. Let vS : C ∪ {∞} −→ S2

de�ned as in Equation (5.13) and πi := v−1
S (ui) ∈ C∗. Consider 3n parameters ai, bi,

pi ∈ ΛC≥0
ρ assembled into a vector x which stands in a neighbourhood of a central value

x0 so that the central values of ai and pi are τi and πi. Introduce a real parameter t in a

neighbourhood of 0 and de�ne

βt(λ) := t (λ− eq)
(
λ− e−q

)
.

The potential we use is

ξt,x(z, λ) :=

(
0 λ−1dz

βt(λ)ωx(z, λ) 0

)
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where

ωx(z, λ) :=

n∑
i=1

(
ai(λ)

(z − pi(λ))2
+

bi(λ)

z − pi(λ)

)
dz.

The initial condition is the identity matrix, taken at the point z0 = 0 ∈ Ω where

Ω = {z ∈ C | ∀i ∈ [1, n] , |z − πi| > ε}

and ε > 0 is a �xed constant such that the disks D(πi, 2ε) ⊂ C are disjoint and do not

contain 0. Although the poles p1, . . . , pn of the potential ξt,x are functions of λ, ξt,x is

well-de�ned on Ω for x su�ciently close to x0. We thus de�ne Φt,x as the solution to the

Cauchy problem (5.5) with data (Ω, ξt,x, 0, I2).

The main properties of this potential are the same as in [39], namely: it is a perturbation

of the spherical potential ξ0,x and the factor (λ− e−q) in βt ensures that the second equation
of the monodromy problem (5.8) is solved.

Let {γ1, · · · , γn−1} be a set of generators of the fundamental group π1(Ω, 0) and de�ne

for all i ∈ [1, n− 1]

Mi(t,x) :=Mγi(Φt,x).

Noting that

λ ∈ S1 =⇒ λ−1 (λ− eq)
(
λ− e−q

)
= −2 (cosh q − Reλ) ∈ R,

the unitarity of the monodromy is equivalent to

M̃i(t,x)(λ) :=
λ

βt(λ)
logMi(t,x)(λ) ∈ Λsu(2)ρ.

Note that at t = 0, the expression above takes the same value as in [39], and so does the

regularity conditions. One can thus apply Propositions 2 and 3 of [39] which we recall in

Proposition 30 below.

Proposition 30. For t in a neighbourhood of 0, there exists a unique smooth map t 7→
x(t) = (ai,t, bi,t, pi,t)1≤i≤n ∈ (W≥0

R )3 such that x(0) = x0, the monodromy problem and

the regularity problem are solved at (t,x(t)) and the following normalisations hold:

∀i ∈ [1, n− 1], Re(ai,t) |λ=0= τi and pi,t |λ=0= πi.

Moreover, at t = 0, x0 is a constant with ai real and such that

bi =
−2aipi

1 + |pi|2
and

n∑
i=1

aivS(pi) = 0.
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Now write ωt := ωx(t), ξt := ξt,x(t) and apply the DPW method to de�ne the holo-

morphic frame Φt associated to ξt on the universal cover Ω̃ of Ω with initial condition

Φt(0) = I2. Let Ft := Uni Φt and ft := SymqFt. The monodromy problem for Φt being

solved, ft descends to a well-de�ned CMC H immersion on Ω. Use Theorem 3 and Corol-

lary 1 of [39] to extend ft to Σt := C∪{∞}\ {p1,t(0), . . . , pn,t(0)} and de�ne Mt = ft(Σt).

Moreover, with the same proof as in [39] (Proposition 4, point (2)), ai,t is a real constant

with respect to λ for all i and t.

5.3.2 Delaunay ends

Perturbed Delaunay potential. Let i ∈ [1, n]. We are going to gauge ξt around its

pole pi,t(0) and show that the gauged potential is a perturbed Delaunay potential as in

De�nition 16. Let (r, s) : (−T, T ) −→ R2 be the continuous solution to (see Section 5.1.3

for details) 
rs = tai,t,

r2 + s2 + 2rs cosh q = 1
4 ,

r > s.

For all t and λ, de�ne ψi,t,λ(z) := z + pi,t(λ) and

Gt(z, λ) :=

 √
z√

r+sλ
0

−λ
2
√
z
√
r+sλ

√
r+sλ√
z

 .

For T small enough, one can thus de�ne on a uniform neighbourhood of 0 the potential

ξ̃i,t(z, λ) := ((ψ∗i,t,λξt) ·Gt)(z, λ) =

(
0 rλ−1 + s

βt(λ)
r+sλ(ψ∗i,t,λωt(z))z

2 + λ
4(r+sλ) 0

)
z−1dz.

Note that by de�nition of r, s and βt,

(r + sλ) (rλ+ s) =
λ

4
+ βt(λ)ai,t

and thus

ξ̃i,t(z, λ) = At(λ)z−1dz + Ct(z, λ)dz

with At as in Equation (5.14) satis�es Equation (5.19) and Ct as in De�nition 16. The

potential ξ̃i,t is thus a perturbed Delaunay potential as in De�nition 16. Moreover, using

Theorem 3 of [39], the induced immersion f̃i,t satis�es

f̃i,t = ψ∗i,t,0ft.
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Applying Theorem 14. The holomorphic frame Φ̃i,t := ΦtGi,t associated to ξ̃i,t satis�es

the regularity and monodromy hypotheses of Theorem 14, but at t = 0 and z = 1,

Φ̃i,0(1, λ) =

(
1 (1 + πi)λ

−1

0 1

)(√
2 0
−λ√

2
1√
2

)
=

1√
2

(
1− πi (1 + πi)λ

−1

−λ 1

)
=: Mi(λ),

and thus Φ̃i,0(z) = Miz
A0 . Recall (5.21) and let

H := H0 =
1√
2

(
1 −λ−1

λ 1

)
∈ ΛSU(2)ρ

and Qi := Uni (MiH). Using Lemma 1 in Chapter 4, Qi can be made explicit and one

can �nd a change of coordinates h and a gauge G such that Φ̂i,t := HQ−1
i (h∗Φ̃i,t)G solves

dΦ̂i,t = Φ̂i,tξ̂i,t where ξ̂i,t is a perturbed Delaunay potential and Φ̂i,0(z) = zA0 . Explicitely,

Qi(λ) =
1√

1 + |πi|2

(
1 λ−1πi

−λπi 1

)

and

h(z) =
(1 + |πi|2)z

1− πiz
, G(z, λ) =

1√
1− πiz

(
1 0

−λπiz 1− πiz

)
.

One can thus apply Theorem 14 on ξ̂i,t and Φ̂i,t, which proves the existence of the family

(Mt)0<t<T of CMCH surfaces of genus zero and n Delaunay ends, each of weight (according

to Equation (5.16))

wi,t = 8πrs sinh q =
8πtai,t√
H2 − 1

,

which proves the �rst point of Theorem 11 (after a normalisation on t). Let f̂i,t :=

Symq(Uni Φ̂i,t) and f̂Di,t the Delaunay immersion given by Theorem 14.

Limit axis. In order to compute the limit axis of ft at the end around pi,t, let ∆̂i,t be

the oriented axis of f̂Di,t at w = 0. Then, using Theorem 14,

∆̂i,0 = H(e−q) · geod (I2,−σ3) .

And using f̂i,t(w) = H(e−q)Qi(e
−q)−1 · (h∗ft(z)),

∆̂i,0 = H(e−q)Qi(e
−q)−1 ·∆i,0

and thus

∆i,0 = Qi(e
−q) · geod(I2,−σ3).

114



5.3. GLUING DELAUNAY ENDS TO HYPERBOLIC SPHERES

Computing MiH = ΦS(πi) as in (5.10), one has Qi = FS(πi). Hence

∆i,0 = geod (fS(πi),−NS(πi))

where NS is the normal map associated to ΦS. Using Equation (5.11), fS(z) = R(q) · f̃S(z)

and NS(z) = R(q) · ÑS(z) where ÑS is the normal map of f̃S. Using Equation (5.12) and

the fact that f̃S is a spherical immersion gives

ÑS(z) = Γ
f̃S(z)
I2

(−vS(z))

and thus

∆i,0 = geod
(
R(q) · f̃S(πi),−R(q) · ÑS(πi)

)
= R(q) · geod

(
f̃S(πi),Γ

f̃S(πi)
I2

vS(πi)
)

= R(q) · geod (I2, ui) .

Apply the isometry given by R(q)−1 and note that R(q) does not depend on i to prove

point 2 of Theorem 11.

5.3.3 Embeddedness

We suppose that t > 0 and that all the weights τi are positive, so that the ends of ft
are embedded. Recall the de�nition of Alexandrov-embeddedness (as stated in [38]):

De�nition 17. A surface M2 ⊂ M3 of �nite topology is Alexandrov-embedded if M

is properly immersed, if each end of M is embedded, and if there exists a compact 3-

manifold W with boundary ∂W = S, n points p1, · · · , pn ∈ S and a proper immersion

F : W = W\{p1, · · · , pn} −→ M whose restriction to S = S\{p1, · · · , pn} parametrises

M .

The following lemma is proved in [38] in R3 and for surfaces with catenoidal ends, but

the proof is the same in H3 for surfaces with any type of embedded ends. For any oriented

surface M with Gauss map N and any r > 0, the tubular map of M with radius r is

de�ned by
T : (−r, r)×M −→ TubrM

(s, p) 7−→ geod(p,N(p))(s).

Lemma 15. Let M be an oriented Alexandrov-embedded surface of H3 with n embedded

ends. Let r > 0 and suppose that the tubular map of M with radius r is a local di�eo-

morphism. With the notations of De�nition 17, there exist a hyperbolic 3-manifold W ′
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containing W and a local isometry F ′ : W ′ −→ H3 extending F such that the tubular

neighbourhood Tubr S is embedded in W ′.

In order to show that Mt is embedded, we will use the techniques of [38]. We thus

begin by liftingMt to R3 with the exponential map at the identity expI2 : R3 −→ H3. This

map is a di�eomorphism, so Mt is Alexandrov-embedded if, and only if its lift M̂t to R3

given by the immersion

f̂t := exp−1
I2
◦ft : Σt −→ R3

is Alexandrov-embedded.

Let T, ε > 0 such that ft (and hence f̂t) is an embedding of D∗(pi,t, ε) for all i ∈ [1, n]

and let fDi,t : C\{pi,t} −→ H3 be the Delaunay immersion approximating ft in D∗(pi,t, ε).

Let f̂Di,t := exp−1
I2
◦fDi,t. Apply an isometry of H3 so that the limit immersion f0 maps Σ0

to a n-punctured geodesic sphere of hyperbolic radius q centered at I2. Then f̂0(Σ0) is a

Euclidean sphere of radius q centered at the origin. De�ne

N̂t : Σt −→ S2

z 7−→ d(exp−1
I2

)(ft(z))Nt(z).

At t = 0, N̂0 is the normal map of f̂0 (by Gauss Lemma), but not for t > 0 because the

Euclidean metric of R3 is not the metric induced by expI2 .

Let
hi : R3 −→ R

x 7−→
〈
x,−N̂0(pi,0)

〉
be the height function in the direction of the limit axis.

As in [38], one can show that

Claim 1. There exist δ < δ′ and 0 < ε′ < ε such that for all i ∈ [1, n] and 0 < t < T ,

max
C(pi,t,ε)

hi ◦ f̂t < δ < min
C(pi,t,ε′)

hi ◦ f̂t ≤ max
C(pi,t,ε′)

hi ◦ f̂t < δ′.

De�ne for all i and t:

γi,t :=
{
z ∈ D∗pi,t,ε | hi ◦ f̂t(z) = δ

}
, γ′i,t :=

{
z ∈ D∗pi,t,ε′ | hi ◦ f̂t(z) = δ′

}
.

From their convergence as t tends to 0,

Claim 2. The regular curves γi,t and γ′i,t are topological circles around pi,t.

De�ne Di,t, D
′
i,t as the topological disks bounded by γi,t, γ′i,t, and ∆i,t,∆

′
i,t as the topo-
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logical disks bounded by f̂t(γi,t), f̂t(γ′i,t). Let Ai,t := Di,t\D′i,t. Then f̂t(Ai,t) is a graph

over the plane {hi(x) = δ}. Moreover, for all z ∈ D∗i,t, hi ◦ f̂t(z) ≥ δ′ > δ. Thus

Claim 3. The intersection f̂t(D∗i,t) ∩∆i,t is empty.

De�ne a sequence (Ri,t,k) such that f̂t(D∗i,t) transversally intersects the planes {hi(x) =

Ri,t,k}. De�ne
γi,t,k :=

{
z ∈ D∗i,t | hi ◦ f̂i,t(z) = Ri,t,k

}
,

and the topological disks ∆i,t,k ⊂ {hi(x) = Ri,t,k} bounded by f̂t(γi,t,k). De�ne Ai,t,k as the
annuli bounded by γi,t and γi,t,k. De�neWi,t,k ⊂ R3 as the interior of f̂t(Ai,t,k)∪∆i,t∪∆i,t,k

and

Wi,t :=
⋃
k∈N

Wi,t,k.

Hence,

Claim 4. The union f̂t(D∗i,t)∪∆i,t is the boundary of a topological punctured ball Wi,t ⊂
R3.

The union

f̂t (Σt\ (D1,t ∪ · · ·Dn,t)) ∪∆1,t ∪ · · · ∪∆n,t

is the boundary of a topological ball W0,t ⊂ R3. Take

Wt := W0,t ∪W1,t ∪ · · · ∪Wn,t

to show that M̂t, and hence Mt is Alexandrov-embedded for t > 0 small enough.

Lemma 16. Let S ⊂ H3 be a sphere of hyperbolic radius q centered at p ∈ H3. Let

n ≥ 2 and {ui}i∈[1,n] ⊂ TpH3. Let {pi}i∈[1,n] de�ned by pi = S ∩ geod(p, ui)(R+). For all

i ∈ [1, n], let Si ⊂ H3 be the sphere of hyperbolic radius q such that S ∩ Si = {pi}. For all
(i, j) ∈ [1, n]2, let θij be the angle between ui and uj .

If for all i 6= j,

θij > 2 arcsin

(
1

2 cosh q

)
then Si ∩ Sj = ∅ for all i 6= j.

Proof. Without loss of generality, we assume that p = I2. We use the ball model of H3

equipped with its metric

ds2
B(x) =

4ds2
E(

1− ‖x‖2E
)2
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where dsE is the euclidean metric and ‖x‖E is the euclidean norm. In this model, the

sphere S is centered at the origin and has euclidean radius R = tanh q
2 . For all i ∈ [1, n],

the sphere Si has euclidean radius

r =
1

2

(
tanh

3q

2
− tanh

q

2

)
=

tanh q
2

2 cosh q − 1
.

Let j 6= i. In order to have Si ∩ Sj = ∅, one must solve

(R+ r) sin
θij
2
≥ r,

which gives the expected result.

In order to prove the last point of Theorem 11, just note that

H = coth q =⇒ 1

2 cosh q
=

√
H2 − 1

2H
.

Suppose that the angle θij between ui and uj satis�es Equation (5.2) for all i 6= j. Then for

t > 0 small enough, the proper immersion Ft given by De�nition 17 is injective (because

of the convergence towards a chain of spheres) and hence Mt is embedded.

Remark 16. This means for example that in hyperbolic space, one can construct embed-

ded CMC n-noids with seven coplanar ends or more.

5.4 Gluing Delaunay ends to minimal n-noids

Again, this section is an adaptation of Traizet's work in [38] applied to the proof of

Theorem 12. We �rst give in Section 5.4.1 a blow-up result for CMC H > 1 surfaces in

Hyperbolic space. We then introduce in Section 5.4.2 the DPW data giving rise to the

surface Mt of Theorem 12 and prove the convergence towards the minimal n-noid. Finally,

using the same arguments as in [38], we prove Alexandrov-embeddedness in Section 5.4.3.

5.4.1 A blow-up result

As in R3 (see [38]), the DPW method accounts for the convergence of CMC H > 1

surfaces in H3 towards minimal surfaces of R3 (after a suitable blow-up). We work with

the following Weierstrass parametrisation:

W (z) = W (z0) + Re

∫ z

z0

(
1

2
(1− g2)ω,

i

2
(1 + g2)ω, gω

)
(5.38)
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Proposition 31. Let Σ be a Riemann surface, (ξt)t∈I a family of DPW potentials on Σ

and (Φt)t∈I a family of solutions to dΦt = Φtξt on the universal cover Σ̃ of Σ, where I ⊂ R
is a neighbourhood of 0. Fix a base point z0 ∈ Σ̃ and ρ > eq > 1. Assume that

1. (t, z) 7→ ξt(z) and t 7→ Φt(z0) are C1 maps into Ω1(Σ,Λsl(2,C)ρ) and ΛSL(2,C)ρ

respectively.

2. For all t ∈ I, Φt solves the monodromy problem (5.8).

3. Φ0(z, λ) is independent of λ:

Φ0(z, λ) =

(
a(z) b(z)

c(z) d(z)

)
.

Let ft = Symq (Uni(Φt)) : Σ −→ H3 be the CMC H = coth q immersion given by the

DPW method. Then, identifying TI2H3 with R3 via the basis (σ1, σ2, σ3) de�ned in (5.3),

lim
t→0

1

t
(ft − I2) = W

where W is a (possibly branched) minimal immersion with the following Weierstrass data:

g(z) =
a(z)

c(z)
, ω(z) = −4(sinh q)c(z)2

∂ξ
(−1)
t,12 (z)

∂t
|t=0 .

The limit is for the uniform C1 convergence on compact subsets of Σ.

Proof. With the same arguments as in [38], (t, z) 7→ Φt(z), (t, z) 7→ Ft(z) and (t, z) 7→ Bt(z)

are C1 maps into ΛSL(2,C)ρ, ΛSU(2)ρ and ΛR
+SL(2,C)ρ respectively. At t = 0, Φ0 is

constant. Thus F0 and B0 are constant with respect to λ:

F0 =
1√

|a|2 + |c|2

(
a −c̄
c ā

)
, B0 =

1√
|a|2 + |c|2

(
|a|2 + |c|2 āb+ c̄d

0 1

)
.

Thus F0(z, e−q) ∈ SU(2) and f0(z) degenerates into the identity matrix. Let bt :=

Bt,11 |λ=0 and βt the upper-right residue at λ = 0 of the potential ξt. Recalling Equa-

tion (5.6),

dft(z) = 2bt(z)
2 sinh qFt(z, e

−q)

(
0 βt(z)

βt(z) 0

)
Ft(z, e

−q)
∗
.

Hence (t, z) 7→ dft(z) is a C1 map. At t = 0, ξ0 = Φ−1
0 dΦ0 is constant with respect to λ,

so β0 = 0 and df0(z) = 0. De�ne f̃t(z) := 1
t (ft(z)− I2) for t 6= 0. Then df̃t(z) extends at
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t = 0, as a continuous function of (t, z) by

df̃0 =
d

dt
dft |t=0 = 2 sinh q

(
a −c
c a

)(
0 β′

β′ 0

)(
a c

−c a

)

= 2 sinh q

(
−acβ′ − acβ′ a2β′ − c2β′

a2β′ − c2β′ acβ′ + acβ′

)

where β′ = d
dtβt |t=0. In TI2H3, this gives

df̃0 = 4 sinh qRe

(
1

2
β′(a2 − c2),

−i
2
β′(a2 + c2),−acβ′

)
.

Writing g = a
c and ω = −4c2β′ sinh q gives:

f̃0(z) = f̃0(z0) + Re

∫ z

z0

(
1

2
(1− g2)ω,

i

2
(1 + g2)ω, gω

)
.

As a useful example for Proposition 31, one can show the convergence of Delaunay

surfaces in H3 towards a minimal catenoid.

Proposition 32. Let q > 0, At = Ar,s as in (5.14) with r ≤ s satisfying (5.19). Let

Φt(z) := zAt and ft := Symq (Uni Φt). Then

f̃ := lim
t→0

1

t
(ft − I2) = ψ

where ψ : C∗ −→ R3 is the immersion of a catenoid centered at (0, 0, 1), of neck radius 1

and of axis orientd by the positive x-axis in the direction from z = 0 to z =∞.

Proof. Compute

Φ0(z, λ) =

cosh
(

log z
2

)
sinh

(
log z

2

)
sinh

(
log z

2

)
cosh

(
log z

2

)
and

∂ξ
(−1)
t,12 (z)

∂t
|t=0=

z−1dz

2 sinh q

in order to apply Proposition 31 and get

f̃(z) = f̃(1) + Re

∫ z

1

(
1

2
(1− g2)ω,

i

2
(1 + g2)ω, gω

)
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where

g(z) =
z + 1

z − 1
and ω(z) =

−1

2

(
z − 1

z

)2

dz.

Note that Φt(1) = I2 for all t to show that f̃(1) = 0 and get

f̃(z) = Re

∫ z

1

(
w−1dw,

−i
2

(1 + w2)w−2dw,
1

2
(1− w2)w−2dw

)
.

Integrating gives for (x, y) ∈ R× [0, 2π]:

f̃(ex+iy) = ψ(x, y)

where
ψ : R× [0, 2π] −→ R3

(x, y) 7−→ (x, cosh(x) sin(y), 1− cosh(x) cos(y))

and hence the result.

5.4.2 The DPW data

In this Section, we introduce the DPW data inducing the surface Mt of Theorem 12.

The method is very similar to Section 5.3 and to [38], which is why we omit the details.

The data. Let (g, ω) be the Weierstrass data (for the parametrisation de�ned in (5.38))

of the minimal n-noid M0 ⊂ R3. If necessary, apply a Möbius transformation so that

g(∞) /∈ {0,∞}, and write

g(z) =
A(z)

B(z)
, ω(z) =

B(z)2dz∏n
i=1(z − pi,0)2

.

Let H > 1, q > 0 so that H = coth q and ρ > eq. Consider 3n parameters ai, bi, pi ∈ ΛCρ
(i ∈ [1, n]) assembled into a vector x. Let

Ax(z, λ) =
n∑
i=1

ai(λ)zn−1, Bx(z, λ) =
n∑
i=1

bi(λ)zn−1

and

gx(z, λ) =
Ax(z, λ)

Bx(z, λ)
, ωx(z, λ) =

Bx(z, λ)2dz∏n
i=1(z − pi(λ))2

.

The vector x is chosen in a neighbourhood of a central value x0 ∈ C3n so that Ax0 = A,

Bx0 = B and ωx0 = ω. Let pi,0 denote the central value of pi. Introduce a real parameter
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t in a neighbourhood of 0 and write

βt(λ) :=
t(λ− eq)(λ− e−q)

4 sinh q
.

The potential we use is

ξt,x(z, λ) =

(
0 λ−1βt(λ)ωx(z, λ)

dzgx(z, λ) 0

)

de�ned for (t,x) su�ciently close to (0,x0) on

Ω = {z ∈ C | ∀i ∈ [1, n] , |z − pi,0| > ε} ∪ {∞}

where ε > 0 is a �xed constant such that the disks D(pi,0, 2ε) are disjoint. The initial

condition is

φ(λ) =

(
igx(z0, λ) i

i 0

)
taken at z0 ∈ Ω away from the poles and zeros of g and ω. Let Φt,x be the holomorphic frame

arising from the data (Ω, ξt,x, z0, φ) via the DPW method and ft,x := Symq (Uni Φt,x).

Follow Section 6 of [38] to show that the potential ξt,x is regular at the zeros of Bx and

to solve the monodromy problem around the poles at pi,0 for i ∈ [1, n− 1]. The Implicit

Function Theorem allows us to de�ne x = x(t) in a small neighbourhood (−T, T ) of t = 0

satisfying x(0) = x0 and such that the monodromy problem is solved for all t. We can thus

drop from now on the index x in our data. As in [38], ft descends to Ω and analytically

extends to C ∪ {∞}\ {p1,0, . . . , pn,0}. This de�nes a smooth family (Mt)−T<t<T of CMC

H surfaces of genus zero with n ends in H3.

The convergence of 1
t (Mt − I2) towards the minimal n-noid M0 (point 2 of Theorem

12) is a straightforward application of Proposition 31 together with

Φ0,11(z)

Φ0,21(z)
= g(z), −4 (sinh q) (Φ0,21(z))2 ∂ξ

(−1)
t,12 (z)

∂t
= ω(z).

Delaunay residue. To show that ξt is a perturbed Delaunay potential around each of

its poles, let i ∈ [1, n] and follow Section 5.3.2 with

ψi,t,λ(z) = g−1
t (z + gt(pi,t(λ))) .

De�ne

ω̃i,t(z, λ) := ψ∗i,t,λωt(z)
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and

αi,t(λ) := Res
z=0

(zω̃i,t(z, λ)).

Use Proposition 5, Claim 1 of [38] to show that for T small enough, αi,t is real and does

not depend on λ. Set 
rs =

tαi,t
4 sinh q ,

r2 + s2 + 2rs cosh q = 1
4 ,

r < s

and

Gt(z, λ) =

√rλ+s√
z

−1
2
√
rλ+s

√
z

0
√
z√

rλ+s

 .

De�ne the gauged potential

ξ̃i,t(z, λ) :=
(
(ψ∗i,t,λξt) ·Gt

)
(z, λ)

and compute its residue to show that it is a perturbed Delaunay potential as in De�nition

16.

Applying Theorem 14. At t = 0 and z = 1, writing πi := g(pi,0) to ease the notation,

Φ̃i,0(1, λ) =

(
i (1 + πi) i

i 0

)(
1√
2

−1√
2

0
√

2

)
=

i√
2

(
1 + πi 1− πi

1 −1

)
=: Mi,

and thus ξ̃i,0(z) = Miz
A0 . Recall (5.21) and let

H := H0 =
1√
2

(
1 −1

1 1

)
∈ ΛSU(2)ρ

and Qi := Uni
(
MiH

−1
)
. Using Lemma 1 in [38], Qi can be made explicit and one can

�nd a change of coordinates h and a gauge G such that Φ̂i,t := (QiH)−1
(
h∗Φ̃i,t

)
G solves

dΦ̂i,t = Φ̂i,tξ̂i,t where ξ̂i,t is a perturbed Delaunay potential and Φ̂i,0(z) = zA0 . One can thus

apply Theorem 14 on ξ̂i,t and Φ̂i,t, which proves the existence of the family (Mt)−T<t<T of

CMC H surfaces of genus zero and n Delaunay ends, each of weight (according to Equation

(5.16))

wi,t = 8πrs sinh q = 2πtαi,t,

which proves the �rst point of Theorem 12. Let f̂i,t := Symq

(
Uni Φ̂i,t

)
and let f̂Di,t be the

Delaunay immersion given by Theorem 14.
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Limit axis. In order to compute the limit axis of ft at the end around pi,t, let ∆̂i,t be

the oriented axis of f̂Di,t at z = 0. Then, using Theorem 14,

∆̂i,0 = geod (I2,−σ1) .

And using f̂i,t(z) = (QiH)−1 · (h∗ft(z)),

∆̂i,0 = (QiH)−1 ·∆i,0,

and thus

∆i,0 = (QH) · geod(I2,−σ1).

Compute H · (−σ1) = σ3 and note that MiH
−1 = Φ0(πi) to get

∆i,0 = geod (I2, N0(pi,0))

where N0 is the normal map of the minimal immersion.

Type of the ends. Suppose that t is positive. Then the end at pi,t is unduloidal if, and

only if its weight is positive; that is, αi,t is positive. Use Proposition 5 of [38] to show that

if the normal map N0 of M0 points toward the inside, then αi,0 = τi where 2πτiN0(pi,0)

is the �ux of M0 around the end at pi,0 (αi,0 = −τi for the other orientation). Thus if

M0 is Alexandrov-embedded, then the ends of Mt are of unduloidal type for t > 0 and of

nodoidal type for t < 0.

5.4.3 Alexandrov-embeddedness

In order to show that Mt is Alexandrov-embedded for t > 0 small enough, one can

follow the proof of Proposition 6 in [38]. Note that this proposition does not use the

fact that Mt is CMC H, but relies on the fact that the ambient space is R3. This leads

us to lift ft to R3 via the exponential map at the identity, hence de�ning an immersion

f̂t : Σt −→ R3 which is not CMC anymore, but is Alexandrov-embedded if, and only if ft
is Alexandrov-embedded. Let ψ : Σ0 −→ M0 ⊂ R3 be the limit minimal immersion. In

order to adapt the proof of [38] and show that Mt is Alexandrov-embedded, one will need

the following Lemma.

Lemma 17. Let f̃t := 1
t f̂t. Then f̃t converges to ψ on compact subsets of Σ0.

Proof. For all z,

expI2(f̂0(z)) = f0(z) = I2,
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so f̂0(z) = 0. Thus

lim
t→0

f̃t(z) =
d

dt
f̂t(z) |t=0 .

Therefore, using Proposition 32,

ψ(z) = lim
t→0

1

t
(ft(z)− I2)

= lim
t→0

1

t

(
expI2(f̂t(z))− expI2(f̂0(z))

)
=

d

dt
expI2(f̂t(z)) |t=0

= d expI2(0) · d
dt
f̂t(z) |t=0

= lim
t→0

f̃t(z).
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5.5 Appendix: CMC surfaces of revolution in H3

Following Sections 2.2 and 2.3 of [15],

Proposition 33. Let X : R× [0, 2π] −→ H3 be a conformal immersion of revolution with

metric g2(s)
(
ds2 + dθ2

)
. If X is CMC H > 1, then g is periodic and denoting by S its

period, √
H2 − 1

∫ S

0
g(s)ds = π and

∫ S

0

ds

g(s)
=

2π2

|w|

where w is the weight of X, as de�ned in [23].

Proof. According to Equation (11) in [15], writing τ =

√
|w|√
2π

and g = τeσ,

(
σ′
)2

= 1− τ2
((
Heσ + ιe−σ

)2 − e2σ
)

(5.39)

where ι ∈ {±1} is the sign of w. The solutions σ are periodic with period S > 0. Apply

an isometry and a change of the variable s ∈ R so that

σ′(0) = 0 and σ(0) = min
s∈R

σ(s).

By symmetry of Equation (5.39), one can thus de�ne

a := e2σ(0) = min
s∈R

e2σ(s) and b := e2σ(S2 ) = max
s∈R

e2σ(s).

With these notations, Equation (5.39) can be written in a factorised form as

(
σ′
)2

= τ2(H2 − 1)e−2σ
(
b− e2σ

) (
e2σ − a

)
(5.40)

with

a =
1− 2ιτ2H −

√
1− 4τ2(ιH − τ2)

2τ2(H2 − 1)
(5.41)

and

b =
1− 2ιτ2H +

√
1− 4τ2(ιH − τ2)

2τ2(H2 − 1)
.

In order to compute the �rst integral, change variables v = eσ, y =
√
b− v2 and x = y√

b−a
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and use Equation (5.40) to get

√
H2 − 1

∫ S

0
τeσ(s)ds = 2

√
H2 − 1

∫ √b
√
a

τvdv

τ
√
H2 − 1

√
b− v2

√
v2 − a

= −2

∫ 0

√
b−a

dy√
b− a− y2

= 2

∫ 1

0

dx√
1− x2

= π.

In the same manner with the changes of variables v = e−σ, y =
√
a−1 − v2 and x =

y√
a−1−b−1

,

∫ S

0

ds

τeσ(s)
=

−2

τ
√
H2 − 1

∫ b−1/2

a−1/2

dv

v
√
b− v−2

√
v−2 − a

=
2

τ2
√
H2 − 1

∫ √a−1−b−1

0

dy√
b− a− aby2

=
2

τ2
√
H2 − 1

√
ab

∫ 1

0

dx√
1− x2

=
π

τ2

because ab = 1
H2−1

.

Lemma 18. Let Dt be a Delaunay surface in H3 of constant mean curvature H > 1 and

weight 2πt > 0 with Gauss map ηt. Let rt be the maximal value of R such that the map

T : (−R,R)×Dt −→ Tubrt ⊂ H3

(r, p) 7−→ geod(p, ηt(p))(r)

is a di�eomorphism. Then rt ∼ t as t tends to 0.

Proof. The quantity rt is the inverse of the maximal geodesic curvature of the surface.

This maximal curvature is attained for small values of t on the points of minimal distance

between the pro�le curve and the axis. Checking the direction of the mean curvature vector

at this point, the maximal curvature curve is not the pro�le curve but the parallel curve.

Hence rt is the minimal hyperbolic distance between the pro�le curve and the axis. A

study of the pro�le curve's equation as in Proposition 33 shows that

rt = sinh−1 (τ exp (σmin)) = sinh−1
(
τ
√
a(τ)

)
.
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But using Equation (5.41), as τ tends to 0, a ∼ τ2 = |t|, which gives the expected result.

Lemma 19. Let Dt be a Delaunay surface in H3 of weight 2πt > 0 with Gauss map ηt
and maximal tubular radius rt. There exist T > 0 and α < 1 such that for all 0 < t < T

and p, q ∈ Dt satisfying dH3 (p, q) < αrt,∥∥Γqpηt(p)− ηt(q)
∥∥ < 1.

Proof. Let t > 0. Then for all p, q ∈ Dt,∥∥Γqpηt(p)− ηt(q)
∥∥ ≤ sup

s∈γt
‖IIt(s)‖ × `(γt)

where IIt is the second fundamental form of Dt, γt ⊂ Dt is any path joining p to q and

`(γt) is the hyperbolic length of γt. Using the fact that the maximal geodesic curvature κt
of Dt satis�es κt ∼ coth rt as t tends to zero, there exists a uniform constant C > 0 such

that

sup
s∈Dt
‖IIt(s)‖ < C coth rt.

Let 0 < α < (1 + C)−1 < 1 and suppose that dH3 (p, q) < αrt. Let σt : [0, 1] → H3 be

the geodesic curve of H3 joining p to q. Then σt([0, 1]) ⊂ Tubαrt and thus the projection

πt : σt([0, 1])→ Dt is well-de�ned. Let γt := πt ◦ σt. Then∥∥Γqpηt(p)− ηt(q)
∥∥ ≤ C coth rt × sup

s∈σt
‖dπt(s)‖

≤ C coth rt × sup
s∈Tubαrt

‖dπt(s)‖ × dH3 (p, q)

≤ C coth rt ×
tanh rt

tanh rt − tanh(αrt)
× αrt

≤ Cαrt
tanh rt − tanh(αrt)

∼ Cα

1− α
< 1

as t tends to zero.

5.6 Appendix: Remarks on the polar decomposition

Let SL (2,C)++ be the subset of SL(2,C) whose elements are hermitian positive de�nite.

Let
Pol : SL(2,C) −→ SL (2,C)++ × SU(2)

A 7−→ (Pol1(A),Pol2(A))
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be the polar decomposition on SL(2,C). This map is di�erentiable and satis�es the follow-

ing proposition.

Proposition 34. For all A ∈ SL(2,C), ‖dPol2 (A)‖ ≤ |A|.

Proof. We �rst write the di�erential of Pol2 at the identity in an explicit form. Writing

dPol2(I2) : sl(2,C) −→ su(2)

M 7−→ pol2(M)

gives

pol2

(
a b

c −a

)
=

(
i Im a b−c

2
c−b̄

2 −i Im a

)
.

Note that for all M ∈ sl(2C),

|pol2(M)|2 = 2 (Im a)2 +
1

4

(
|b− c|2 +

∣∣c− b∣∣2)
≤ |M |2 − 1

2
|b+ c|2

≤ |M |2 .

We then compute the di�erential of Pol2 at any point of SL(2,C). Let (S0, Q0) ∈
SL (2,C)++ × SU(2). Consider the di�erentiable maps

φ : SL(2,C) −→ SL(2,C)

A 7−→ S0AQ0

and
ψ : SU(2) −→ SU(2)

Q 7−→ QQ0.

Then ψ ◦ Pol2 ◦ φ−1 = Pol2 and for all M ∈ TS0Q0SL(2,C),

dPol2 (S0Q0) ·M = pol2
(
S−1

0 MQ−1
0

)
Q0.

Finally, let A ∈ SL(2,C) with polar decomposition Pol(A) = (S,Q). Then for all

M ∈ TASL(2,C),

|dPol2(A) ·M | =
∣∣pol2

(
S−1MQ−1

)
Q
∣∣ ≤ |S| × |M |

and thus using

S = exp

(
1

2
log (AA∗)

)
gives

‖dPol2(A)‖ ≤ |S| ≤ |A| .
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Corollary 7. Let 0 < q < log ρ and F1, F2 ∈ ΛSU(2)ρ with unitary partsQi = Pol2(Fi(e
−q)).

Let ε > 0 such that ∥∥F−1
2 F1 − I2

∥∥
ρ
< ε.

If ε is small enough, then there exists a uniform C > 0 such that for all v ∈ TI2H3,

‖Q2 · v −Q1 · v‖TI2H3 ≤ C ‖F2‖2ρ ε.

Proof. Let v ∈ TI2H3 and consider the following di�erentiable map

φ : SU(2) −→ TI2H3

Q 7−→ Q · v.

Then

‖Q2 · v −Q1 · v‖TI2H3 = ‖φ(Q2)− φ(Q1)‖TI2H3

≤ sup
t∈[0,1]

‖dφ(γ(t))‖ ×
∫ 1

0
|γ̇(t)| dt

where γ : [0, 1] −→ SU(2) is a path joining Q2 to Q1. Recalling that SU(2) is compact

gives

‖Q2 · v −Q1 · v‖TI2H3 ≤ C |Q2 −Q1| (5.42)

where C > 0 is a uniform constant. But writing Ai = Fi(e
−q) ∈ SL(2,C),

|Q2 −Q1| = |Pol2(A2)− Pol2(A1)|

≤ sup
t∈[0,1]

‖dPol2(γ(t))‖ ×
∫ 1

0
|γ̇(t)| dt

where γ : [0, 1] −→ SL(2,C) is a path joining A2 to A1. Take for example

γ(t) := A2 exp
(
t log

(
A−1

2 A1

))
.

Suppose now that ε is small enough for log to be a di�eomorphism from D(I2, ε)∩SL(2,C)

to D(0, ε′) ∩ sl(2,C). Then

∥∥A−1
2 A1 − I2

∥∥ ≤ ∥∥F−1
2 F1 − I2

∥∥
ρ
< ε

implies

|γ(t)| ≤ C̃ |A2| and |γ̇(t)| ≤ C̃Ĉ |A2| ε
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where C̃, Ĉ > 0 are uniform constants. Using Proposition 34 gives

|Q2 −Q1| ≤ ĈC̃2 |A2|2 ε

and inserting this inequality into (5.42) gives

‖Q2 · v −Q1 · v‖TI2H3 ≤ CĈC̃2 |A2|2 ε ≤ CĈC̃2 ‖F2‖2ρ ε.
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Résumé :

Les surfaces à courbure moyenne constante non-nulle apparaissent en physique comme
solutions à certains problèmes d'interface entre deux milieux de pressions di�érentes. Elles
sont décrites mathématiquement par des équations aux dérivées partielles et sont construc-
tibles à partir de données holomorphes via une représentation similaire à celle de Weiers-
trass pour les surfaces minimales. On présente dans cette thèse deux résultats s'appuyant
sur cette représentation, dite �méthode DPW�. Le premier indique que les données don-
nant naissance à un bout Delaunay de type onduloïde induisent encore un anneau plongé
après perturbation. Cette propriété sert notamment à démontrer que certaines surfaces
construites par la méthode DPW sont plongées. Le second résultat est la construction,
dans l'espace hyperbolique, de n-noïdes : surfaces plongées, de genre zéro, à courbure
moyenne constante et muni de n bouts de type Delaunay.

Mots clés :

Surfaces à courbure moyenne constante � Représentation de Weierstrass généralisée �
Méthode DPW � Bouts Delaunay � Géométrie hyperbolique.

Abstract :

Non-zero constant mean curvature surfaces are mathematical models for physical inter-
face problems with non-zero pressure di�erence. They are described by partial di�erential
equations and can be constructed from holomorphic data via a Weierstrass-type represen-
tation, called "the DPW method". In this thesis, we use the DPW method and prove
two main results. The �rst one states that perturbations of the DPW data for Delaunay
unduloidal ends generate embedded annuli. This can be used to prove the embeddedness
of surfaces constructed via the DPW method. The second result is the construction of
n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n
Delaunay ends.

Keywords:

Constant Mean Curvature Surfaces � Generalized Weierstrass Representation � DPW
Method � Delaunay Ends � Hyperbolic Geometry.


