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Résumé

Les surfaces & courbure moyenne constante non-nulle apparaissent en physique comme
solutions & certains problémes d’interface entre deux milieux de pressions différentes. Elles
sont décrites mathématiquement par des équations aux dérivées partielles et sont construc-
tibles & partir de données holomorphes via une représentation similaire a celle de Weiers-
trass pour les surfaces minimales. On présente dans cette thése deux résultats s’appuyant
sur cette représentation, dite «méthode DPW». Le premier indique que les données don-
nant naissance & un bout Delaunay de type onduloide induisent encore un anneau plongé
aprés perturbation. Cette propriété sert notamment & démontrer que certaines surfaces
construites par la méthode DPW sont plongées. Le second résultat est la construction,
dans l’espace hyperbolique, de n-noides : surfaces plongées, de genre zéro, & courbure
moyenne constante et munies de n bouts de type Delaunay.

Mots clés :  Surfaces & courbure moyenne constante — Représentation de Weierstrass
généralisée — Méthode DPW — Bouts Delaunay — Géométrie hyperbolique.
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Abstract

Non-zero constant mean curvature surfaces are mathematical models for physical inter-
face problems with non-zero pressure difference. They are described by partial differential
equations and can be constructed from holomorphic data via a Weierstrass-type represen-
tation, called "the DPW method". In this thesis, we use the DPW method and prove
two main results. The first one states that perturbations of the DPW data for Delaunay
unduloidal ends generate embedded annuli. This can be used to prove the embeddedness
of surfaces constructed via the DPW method. The second result is the construction of
n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n
Delaunay ends.

Keywords:  Constant Mean Curvature Surfaces — Generalized Weierstrass Representa-
tion — DPW Method — Delaunay Ends — Hyperbolic Geometry.
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Introduction

Children (and grown-ups) enjoy enclosing pressurised volumes of air inside soap spheres.
Together with the shimmering colours and the poetic fragility of the floating interface, they
are undoubtedly also amazed by the mean curvature function defined at each point of their
soap bubbles and often exclaim ‘it is constant!” Indeed, the physical property of soap films
minimising surface tension can be translated into a mathematical property of surfaces
having the same mean curvature at every point. If the mean curvature is null everywhere
on a surface, mathematicians call it “minimal” and physicists can use it to model soap
films without pressure constraints. Planes and catenoids are examples of minimal surfaces.
If the mean curvature is constant but not zero, mathematicians tend to call the surface
“CMC” (short for “constant mean curvature”), and physicists can use it to model soap films
with pressure constraints. Spheres and cylinders are examples of CMC surfaces but most
of surfaces are not CMC nor minimal. Mathematicians have been looking for new examples
and found many since the 18th century. This thesis is a contribution to the construction
of CMC surfaces.

Figure 1 — The catenoid (on the left) is a minimal surface, the sphere (on the right) is a
CMC surface. The mean value between the greatest and the lowest curvatures is the same
at every point of these surfaces.

Constructing minimal surfaces is easier since the 1860s when Enneper and Weierstrass
came up with a nice way of parametrising them [41]. The Enneper-Weierstrass parametri-

sation takes for input data a couple of meromorphic functions defining three differential

13



INTRODUCTION

forms to integrate on a Riemann surface S. Taking the real part of these complex integrals
gives the three coordinate functions for a minimal immersion of § into Euclidean space.
The nice point is that every minimal surface can locally be obtained this way. More than
a hundred years later, Dorfmeister, Pedit and Wu came up with a Weierstrass-type repre-
sentation for CMC surfaces, called the “DPW method” [7]. The DPW method takes for
input data a matrix-valued holomorphic potential defining on S a linear Cauchy problem.
Performing a matrix decomposition of the solution to the Cauchy problem induces a mov-
ing frame for a CMC immersion of §. Again, the nice point is that every CMC surface
can locally be obtained this way. This thesis uses the DPW method to construct CMC
surfaces. Chapter 1 introduces the basic tools that are necessary to the exposition of the
original DPW method, explained in more details in Chapter 2. Some classic extensions

and choices of conventions are introduced in Chapter 3.

Hiernach kann man, wenn man mit u, irgend einen
bestimmten Werth von #, und mit z,, y,, 2, die Coordinaten
des zugehérigen Punktes von 13 bezeichnet, die Gleichungen
(4) in folgender Gestalt darstellen:

» VI ERJ/.(GQ(u) —II?(u)) du

Uy
(B) y=y, +%R '/; (G?(u) e II’(u)) i
U,

=z + % /'z G(w) H(w) du

ud

Figure 2 — The Weierstrass parametrisation is an efficient tool for constructing minimal
surfaces. Its equivalent for CMC surfaces is the DPW method.

One key feature of children soap bubbles is that they are embedded CMC surfaces.
Actually, Alexandrov proved in 1958 that any compact embedded CMC surface must be a
round sphere [1]. Thus, complete and properly embedded CMC surfaces must have ends.
The first examples of such surfaces (beside the cylinder) were constructed by Delaunay
in 1841 [4]. The embedded Delaunay surfaces (called “unduloids”) form a one-parameter
family of surfaces of revolution starting from the cylinder and edging towards a chain of
spheres. The family then goes on and consists in non-embedded Delaunay surfaces, called
“nodoids” (see Figure 3). In 1989, Korevaar, Kusner and Solomon [24], stimulated by
a previous result of Meeks [28], showed that any annular end of any complete properly
embedded CMC surface must be of unduloidal type. The status of Delaunay surfaces is
thus paramount in the study of embedded CMC surfaces, and Chapter 4 of this thesis
is devoted to them. We consider the DPW data giving rise to an unduloid and perturb
it. Under natural assumptions on the perturbation, we show that the perturbed resulting

surface is still an embedding of a uniform punctured disk.

Two different techniques have been used to construct new CMC surfaces: a glu-
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INTRODUCTION

Figure 3 — The Delaunay family: cylinder — unduloid — chain of spheres — nodoid.

ing method and the Lawson correspondence. The gluing method was notably used by
Kapouleas in 1990 and resulted in a breakthrough [16]. Starting from stacks and chains
of spheres, he constructed infinitely many CMC surfaces with any number k& > 2 of ends
and any genus g € [0, 00]. All of these surfaces are close to a stack of spheres and some are
embedded. With a slightly different gluing technique, Mazzeo and Pacard showed in 2001
how to construct CMC surfaces out of two types of building blocks: half-unduloids and
minimal k-noids [26]. Another strategy has been to use the Lawson correspondence [25]:
the definition of mean curvature applies not only in Euclidean space but also in Spherical
and Hyperbolic spaces and it turns out that there exist some strong relationships between
CMC or minimal surfaces in Fuclidean space and CMC or minimal surfaces in Hyper-
bolic or Spherical space. For example, any simply connected CMC surface in Euclidean
space possesses a minimal isometric cousin in Spherical space. This relationship allowed
Grosse-Brauckmann, Kusner and Sullivan to construct and classify all the CMC triundu-
loids in Euclidean space [10] and all genus zero CMC k-unduloids with coplanar ends [11]

by constructing their minimal cousins in the three-sphere.

\

Figure 4 — Alezandrov-embedded 4-noids with unduloidal ends (as seen in [11])

Naturally, the DPW method gives a third way of constructing new CMC surfaces.
Kilian, McIntosh and Schmitt used it in 2000 to produce new CMC cylinders [19], and had
experimental evidences that perturbations of Delaunay ends in the DPW data still give
Delaunay ends to the perturbed surface. In 2008, Kilian, Rossman and Schmmitt proved
that it is indeed the case [20]. In 2007, Dorfmeister and Wu gave the general form of the
DPW data for trinoids [8]. The resulting surfaces have been proved to have embedded ends,

but until the construction of Traizet in 2017 [39], they were never proved to be entirely

15



INTRODUCTION

Figure 5 — An embedded 7-noid with small necks in Hyperbolic space (ball model). This
surface can be constructed using Chapter 5 of this thesis.

embedded (or Alexandrov-embedded). Traizet perturbs the DPW data giving rise to a
sphere with the data giving rise to half-unduloids and uses the Implicit Function Theorem
to recover DPW data inducing a well-defined CMC k-unduloid. He then shows that the
whole surface is embedded, using our contributions in Chapter 4 of the present work. This
is the main achievement of this thesis: it allows, for the first time, to prove that non-trivial
examples constructed via the DPW method are embedded. Extensions of the original DPW
method have been made in order to construct CMC or minimal surfaces in various non-
Euclidean spaces [13, 12]. We use the extension of [32] and the techniques of Chapter 4 and
[39, 38| to construct in Chapter 5 CMC H > 1 complete, properly Alexandrov-embedded
surfaces with genus zero and any number of ends in Hyperbolic three-space. These new

examples constitute the second achievement of this thesis.
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Part 1

Introduction to the DPW method
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Chapter 1

The method in a nutshell

In this chapter, we introduce the basic tools (Section 1.1) required to apply the DPW
method (Section 1.2) to a simple example (Section 1.3).

1.1 Preliminaries

The DPW method constructs maps that take values in matrix loops S — SU(2).
These loops are defined in Section 1.1.2 and are interpreted as rotations of Fuclidean

space. Hence the use of su(2) as a model for R3, presented in Section 1.1.1.

1.1.1 su(2) model of R?

Define ¥ : R? — su(2) as

—1 T3 Il —’iCBQ
U(z1,z0,23) := - ( ) .

r1 + 119 —I3
Recall that R? equipped with the cross product is a Lie algebra. Define for all X € su(2)
| X% := 4det X.

Thanks to Proposition 1, one can identify the three-dimensional FEuclidean space with the

Lie algebra su(2).

Proposition 1. The map V is an isometric homomorphism between Lie algebras.

19



1.1. PRELIMINARIES

Consider the Pauli matrices

01 0 — 1 0
O‘1=<1 0), JZ:(@' 0), 03:<0 _1>. (1.1)

Then the canonical basis of R? induces via ¥ the following direct orthonormal basis of

su(2): . . .
B:= (_;al, ;02, _;ag> . (1.2)

Under the identification of Proposition 1, the Lie group SU(2) acts on R? as linear isometries

via:

F-X:=FXF'| Xesu?), FecSU?2). (1.3)

The action is transitive, hence the following proposition.

Proposition 2. For all X € su(2) and for all direct orthonormal bases (u,v,w) of the
tangent space Txsu(2) ~ su(2), there exists P € SU(2) such that

(u,v,w)=P-B

where B is as in (1.2).

1.1.2 Loop groups and algebras

In the DPW method, most of the objects dealt with are smooth maps defined for a
spectral parameter A € S!. The standard reference is [29]. In order to take advantage of
the diagonal+off-diagonal decomposition of gl(2, C), it is convenient to define the following

involution:

o : gl(2,C) — gl(2,C)
M — UgMO’g

where o3 is defined in Equation (1.1). Formally,

b —b
M= — oM)=[ " .
c d —c d
Definition 1. Let G be a Lie group and g a Lie algebra. Let S! € C denote the unit circle

and let D C C denote the open unit disk.

e The group of smooth maps ® : S! — G such that for all A € S!, o(®()\)) = &(—))
is denoted AG?. Its elements are called loops and AG? is called a loop group.

20



1.2. THE RECIPE

o If G is complex, A>oG” denotes the subgroup of AG? consisting of maps that holo-
morphically extend to D.

e The algebra of smooth maps ¢ : S! — g such that for all A € S', o(p()\)) = (—N)
is denoted Ag?. It is called a loop algebra.

e If g is complex, A>og? denotes the subalgebra of Ag? consisting of maps that holo-
morphically extend to D.

e A;SL(2,C)? denotes the subgroup of A>¢SL(2,C)? consisting of maps B such that

(after extension to D) B(0) is upper-triangular.

o ARSL(2,C)? denotes the subgroup of A+SL(2, C)? consisting of loops such that B(0)

has positive elements on the diagonal.

Remark 1. The fact that o(B(\)) = B(—A\) for B € A;SL(2,C)? implies that B(0) is

diagonal. However, we keep the above definition for reasons to be clear in Section 3.1.

An important step of the DPW method relies upon the following theorem (see [29] and
[27]), which is a generalisation to loop groups of the QR decomposition.

Theorem 1. The multiplication map

x : ASU(2)7 x ARSL(2,C)” — ASL(2,C)°
(F,B) — FB

is bijective. Its inverse map is called Iwasawa decomposition and is denoted:

Iwa : ASL(2,C) — ASU(2)? x ARSL(2,C)°
P — (Uni ®, Pos ®).

Finally, note that because of the following Proposition 3, the loops in Definition 1 are

often called twisted loops.

Proposition 3. Let X : S — gl(2,C) be a smooth map with Fourier series

X() =) X\

1€EZ
Then X € Agl(2,C)? if, and only if X; is diagonal for even values of ¢ and off-diagonal for

odd values of 3.

1.2 The recipe

We present the DPW method as a recipe to build CMC H # 0 surfaces in R?. The

ingredients are introduced in Section 1.2.1 and the instructions are given in Section 1.2.2.
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1.2. THE RECIPE

1.2.1 DPW data

The main ingredient is defined as follows.

Definition 2. Let ¥ be a Riemann surface and let £ € Q10(2 Asl(2,C)?) be a holomor-
phic 1-form defined on ¥ and taking values in Asl(2,C)?. For all z € ¥, expanding &(z) in

1ts Fourler series

§(2,0) =) Ai(z)Ndz, (1.4)

1EZ
the 1-form ¢ is called an admissible DPW potential if A; =0 for all i < —1.

Note the abuse of notation "&(z, \)" instead of "¢(2)(A)". We will often identify the
set of real analytic maps f : ¥ x St — G satisfying o(f(-,\)) = f(-, =) for all A\ with
the set of real analytic maps f: ¥ — AG°.

The ingredients of the recipe are
e A simply connected Riemann surface 3. Note that under suitable conditions, the

DPW method can also produce immersions of non-simply-connected surfaces. See

Section 3.2 for more details.
e An admissible DPW potential £ (as in Definition 2) defined on .
e An initial point zg € X.
e An initial condition ¢¢ € ASL(2,C)?.

Such a family (3, €, zo, ¢) is called a set of DPW data.

1.2.2 DPW method

Let (3,€, 20, ¢0) be a set of DPW data. The DPW method consists of the following
three steps.

1. Solve for z € ¥ the Cauchy problem

{ % = &, (1.5)

D(20) = ¢o
in order to define the holomorphic frame ® : ¥ — ASL(2,C)“.

2. For all z € ¥, Twasawa decompose ®(z) (see Theorem 1) into F(z) := Uni®(z) €
ASU(2)? and B(z) := Pos ®(z) € ARSL(2,C)°.
3. Choose H # 0 and define fy : ¥ — su(2) via the Sym-Bobenko formula:

H(z) = % <—i/\aF§;’/\>F(z,)\)l + F(z,A) - (;03>> (1.6)

22



1.3. A USEFUL EXAMPLE

where the dot denotes the action of Equation (1.3).

Then, for all A € S', the map fy is a conformal real analytic CMC H immersion of ¥
into R? ~ su(2). (More details in Section 2, especially Theorem 3).

In order to simplify notations, let us set for any smooth map F : St — SU(2)

Sym, F := —i)\aF(A)F(A)_l (1.7)
E)\
and with the action of (1.3),
NoryF = F()) - (;la?,) : (1.8)

so that Equation (1.6) reads

fA(2) = 577 (SymyF(2) + NoraF(2)).

1.3 A useful example

In this Section, we use the DPW method to construct a simple non-zero constant mean
curvature surface of R3. It will be needed in Section 2.3.1 to produce rigid motions of R3

using the Sym-Bobenko formula.

Consider the following DPW data:

0 At

Y¥=C, =N = <0 0

) dZ, 20 — O, ¢0 == 12.

Solving the Cauchy problem (5.5) gives

~1,
@(z,/\)_<(1) A1 )

Iwasawa decomposition is explicit:

I A Loaz)y 1 1 0
0o 1 )] Vi+]zP\-xz 1 VIF2 \ Az 1+22)°

®(2)eASL(2,C)° F(2)eASU(2)e B(z)eAESL(2,C)e

23



1.3. A USEFUL EXAMPLE

One can thus compute:

i |22 A1z
SymAF<z>=1+|z|2(Az Cap) (1.9)

—i -z —2x7!
NoryF(z) = i1 ( 12 Z)

21422\ 2 14 ||

and the induced immersion is given for any H # 0 by

_ b
- 2H

1 1—1z)2 —2271z N 5
L+ [z[2\ =20z |2)2 -1 0
For all A € S', the identification su(2) ~ R? of Section 1.1.1 makes fy(C) a sphere centered
at (0,0, %) with radius %, which is indeed a CMC surface.

o

I

D[

Remark 2. Note that Sym, F' gives a sphere of radius 1 centered at (0,0,—1). This fact
will be used in Section 2.3.1.
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Chapter 2

Why does 1t work?

Example of Section 1.3 seems to be a “twisted” way of constructing a sphere. This is
because the link between the DPW data and the resulting immersion is not yet obvious.
This chapter exhibit this link. Section 2.1 is a necessary digression to understand what is
really constructed by the DPW method: solutions to a certain type of Lax pairs. Section
2.2 explains how the method constructs these solutions whereas Section 2.3 is devoted to
the fact that all CMC surfaces can be obtained this way.

2.1 The integrable systems framework

This section recalls how the surfaces we consider can be encoded by a pair of non-
linear partial differential equations (Section 2.1.1). We then introduce the moving frame
method (Section 2.1.2), transforming these fundamental equations into a pair of matrix
differential equations (Section 2.1.3). Finally we show how to retrieve a CMC immersion

from a solution to these linear systems (Section 2.1.4).

2.1.1 Fundamental equations

In the DPW method, a whole one-parameter family of immersions is constructed, each
of which corresponding to a constant mean curvature surface. These surfaces are linked
by their fundamental forms. Let X be a simply connected domain of C with coordinate
2z = x +14y. Let f be a conformal real-analytic immersion of 3 into R3. Then the first and

second fundamental forms of f can be written as follows:
I =4e*dz?, 11 = Qdz* + 4" H|dz|* + Qdz* (2.1)
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2.1. THE INTEGRABLE SYSTEMS FRAMEWORK

where u, H : ¥ — R and @ : ¥ — C are real analytic functions. The first fundamental
form is the metric of f, the function H is its mean curvature and the differential form Qdz>

is called the Hopf differential of f. They satisfy the Gauss and Codazzi equations:
duy; — |QPe ™ +4H?* =0, Q;=2e*"H, (2.2)

where the index variables denote the partial derivatives with respect to these variables.

Conversely, let u, H : ¥ — Rand Q : ¥ — C satisfy the Gauss and Codazzi equations
(2.2). Then Bonnet’s theorem states that there exists locally (and more broadly, on simply
connected domains) an immersion f : ¥ — R3 whose first and second fundamental forms
read as in (2.1). This immersion is unique up to rigid motions of R3. Now suppose that the
mean curvature H is constant on X. Reading back the Gauss and Codazzi equations, one
can note that for all t € R, the triple (u, H, Q) satisfies the Gauss and Codazzi equations
(2.2). Bonnet’s theorem ensures that this new triple produces a one-parameter family of
CMC H immersions.

Definition 3. Let f : ¥ — R3 be a real analytic CMC H immersion with metric and
Hopf differential as in (2.1). The associated family of f is the one parameter family
(f\)aest of CMC H immersions with the same metric as f and Hopf differential A=2Qdz?
for all A € S'.

The condition of f being conformal and real-analytic is no restriction because any CMC
surface admits locally such a parametrisation. The Hopf differential of fy reads A2Qdz>
and not \Qdz? for reasons that are specific to the DPW method, as we shall see in Section
2.2.

2.1.2 Moving frames

Let f: ¥ — R? be a real-analytic immersion. Suppose that f is conformal. Then for
all z € ¥, the tangent vectors f, and f, are orthogonal and the normal map of f is given
by

N — f.r X fy )

1fa > fyll

We denote by e, e, the normalised tangent vectors of f, so that F := (e, ey, N) is a direct

orthonormal basis of R3.

Definition 4. The map F : ¥ — SO(3,R) defined above is called the moving frame of
f. A unitary frame for f is a real-analytic map P : ¥ — SU(2) such that ¥ = P - B
with B as in Equation (1.2).
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As seen with Definition 3, CMC surfaces come in a one-parameter family. Hence the

following definition.

Definition 5. Let f: % — R3 be a CMC H immersion with associated family (f)). An
extended unitary frame for f is a real-analytic map P : ¥ x S' — SU(2) such that for
all A € St, P(-,\) is a unitary frame for f).

2.1.3 Lax pairs

With the moving frames point of view, the Gauss and Codazzi equations (2.2) become

a pair of linear differential systems, as stated by Proposition 4 below.

Definition 6. Let n € N*, Q be an open subset of C? with coordinates (z,w) and
X : Q — SL(n,C) holomorphic. Defining the holomorphic maps U,V : Q@ — sl(n,C)

as

{ U:=X"1X,, 23)

Vi=X"1X,,

The system (2.3) is called the Lax pair for X. Symmetry of second derivatives for X are

encoded into the Maurer-Cartan equation:
Uy —V.=[U,V]. (2.4)

An elementary proof of the following theorem can be found in [9] (Proposition 3.1.2).
It states that the Maurer-Cartan equation is not only necessary, but also sufficient for the

Lax pair to admit a solution.

Theorem 2. Let U,V : Q@ — sl(n, C) holomorphic. The Lax pair (2.3) together with the
initial condition X (zp,wp) € SL(n,C) admits a solution if, and only if the Maurer-Cartan
equation (2.4) holds.

Proposition 4. Let f : ¥ — R3? be a CMC H immersion with associated family (fy)
and P : X x St — SU(2) be an extended unitary frame for f. Then P satisfies the Lax

pair
1 —u, A72Qe™™ 1 2 2He"
plap=-| A R “)az (2.5)
2 \ —2He" Uy 2\ —\2Qe™™  —us

with u, @ and H as in (2.1). Moreover, the Maurer-Cartan equation for this Lax pair is

equivalent to the Gauss and Codazzi equations (2.2) for the associated family (fy).
Remark 3. The terminology “Lax pair” is used in Proposition 4 in the following sense:
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2.2. CONSTRUCTING SOLUTIONS TO LAX PAIRS

P(2) = X(2,2,)) where X : C? x S' — SU(2) satisfies the Lax pair

o —2 —u u
Xlgx =L Tw ATee) L e 2He)
2\ —2Hev Uy 2\ =N2Qe™™  —uy,

2.1.4 Retrieving the immersion

The extended frame P has been defined by differentiating the associated family (fy),
and it is natural to think that in order to retrieve the immersions from the extend frame
one has to integrate it. Fortunately, Sym [34] and Bobenko [2] have found a way to bypass
this step:

Proposition 5. In the setting of Proposition 4 and if H # 0, up to a rigid motion of R3
and for all A € S,

fr S5 (Sym, P — 2Nor, P) (2.6)

with Sym and Nor defined in Equations (1.7) and (1.8).

Corollary 1. Let P : ¥ x S' — SU(2) real-analytic satisfying the Lax pair (2.5) for some
u:X — R Q:¥X — Cand H # 0. Then P is the extended frame of an associated
family of CMC H immersions (f)).

Equation (2.6) is close to the Sym-Bobenko fomula (1.6) of the DPW method. It is not
exactly the same because the map F' defined in Section 1.2 does not satisfy the Lax pair
(2.5). We will address this remark in Section 2.2.

2.2 Constructing solutions to Lax pairs

We are now ready to understand why the DPW method induces associated families of
CMC immersions. For any admissible DPW potential £ expanded in its Fourier series as
in (1.4), write

[ 0 a(z)
A_q(2) = (5(2) 0 ) : (2.7)

For any holomorphic frame ® : ¥ — ASL(2,C)?, write
Pos ®(z) |x=0= (b(oz) b(z(;_1> . (2.8)

Theorem 3. Let (3, 20, ¢0) be a set of DPW data and H # 0. Let ®, F, B and f)
defined via the DPW method applied to (2, &, 20, ¢o) (see Section 1.2). Then for all A € S,
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2.2. CONSTRUCTING SOLUTIONS TO LAX PAIRS

fris a CMC H real analytic conformal immersion with metric

|dz|? (2.9)

and Hopf differential

—2)\ 2
1720 — Taﬁsz, (2.10)
with «, § and b as in (2.7) and (2.8). Its normal map reads N, = —Nor)F and its
differential is given by
ib(2)? 0 M la(z)dz
df\(z) =F(z,\) - —— | —— . 2.11
(z) = Fz, ) - (Mz)dz ! .11

Sketch of the proof: ~ An elementary proof can be found in [9], whereas a more theoretical
one can be found in [7]. The idea is to compute the Lax Pair associated to F. Writing
F = ®B~! gives using (1.5)

F~ldF = BéB™' — (dB)B™L. (2.12)

But F~'dF € Asu(2)?, B is holomorphic with respect to A and ¢ is an admissible potential

(see Definition 2). Using these facts, one can write the series expansion of F~dF as
FYF =n X714+ ned € Q(3, Asu(2)7).

Compute 7 and 1y using the series expansion of (2.12) to get the Lax pair

b~ 1b A 1h2a —b7t; b2
-1 . z z _
F~dF = (/\_1[)_2/8 —b_lbz> dz + (—/\b2a —— dz. (2.13)

Differentiating the Sym-Bobenko formula (1.6) with respect to z and Z using this Lax pair
gives the expected results.
O

Remark 4. Instead of differentiating the Sym-Bobenko formula, one could have noticed
that setting

dw = —dz, u = 2logb, Q=-2H—,
H o

and defining
P(wa )‘) = g()‘)_l ’ F(’Uj, >‘))
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with

0o L
g(A) = —i < ﬁ) : (2.14)

the map P satisfies the Lax pair (2.5) for the coordinate w and is thus the extended frame

of an associated family of CMC H immersions.

We will often say that the DPW method gives rise to a CMC immersion f, instead of
a one-parameter family (f)). In these cases, it is assumed that the Sym-Bobenko formula
(1.6) is evaluated at A = 1.

2.3 Surjectivity

In order to explain why any CMC H # 0 surface can locally be obtained via the DPW
method (section 2.3.2), we need to introduce in Section 2.3.1 two operations on the DPW
data.

2.3.1 Gauging and dressing

Let (X,€, 20, ¢0) be a set of DPW data giving rise to ®, F' and B via the DPW method
and inducing an associated family (fy) of CMC H immersions. We introduce two changes

in the data that result into simple geometric changes on the surface.
Definition 7. Let G : ¥ — A SL(2,C)? holomorphic and set
£-G:=G%G+G7da. (2.15)
Equation (2.15) defines a right-action called gauging the potential and the map
(3,& 20, 00) — (5, - G, 20, 9o G)

is called gauging the data.

Note that G is not necessary in A[_%SL(Q, C)?. Thus, using Remark 1, it has the form

peie 0
G = Y s O\ (p,0:X—RY). (2.16)
0 p e

Proposition 6. Let (X,¢ - G, 20, p0G) be a set of gauged data. Then the induced holo-
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morphic frame is ®G and the induced unitary frame is

(with 6 defined in (2.16)). The induced CMC H immersions are unchanged: they equal fy
for all \ € St.

Definition 8. Let J € ASL(2,C)?. The map

(2,&,20,00) — (X,€, 20, J o)

is called dressing the data. The dressed holomorphic frame is the frame J® induced
by the dressed data.

Proposition 7. Let (3,&, 29, J¢p) be a set of dressed data. Then the induced CMC H
immersions fy have the same Hopf differential as fy. Moreover, if J € ASU(2)?, then for
all A € S, f, and f, differ by a rigid motion of R3:

Fr=J) - fr+ Sym,J. (2.17)

In order to apply a rotation to f, it then suffices to dress the data (X, &, 20, ¢9) by a A-
independent factor that can be explicitly computed (see Lemma 3.3. in [18]). Translations
can be explicitly computed using the example of the sphere in Section 1.3 and the following

Proposition.

Proposition 8. Let (3,¢&, 20, $0) be a set of DPW data. Let @ : © — ASU(2)? and
p € QN X. Define

J()‘) = Q(pa )‘)Q(pa 1)_1'

Then the immersion ]? = fl induced by the dressed data (3,&, 2z, J¢p) satisfies for all
z€EX

~

f(z) = f(2) + Sym Q(p).

2.3.2 Constructing all CMC immersions

Given a mean curvature H # 0, the DPW method induces a map from the set of
admissible DPW data to the set of CMC immersions in R3. This map is surjective: any
CMC H immersion can be locally obtained this way.

Theorem 4. For any f : ¥ — R? conformal real analytic CMC H # 0 immersion, there
exist DPW data (3, &, 20, ¢o) inducing f via the DPW method.
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Sketch of the proof: ~ Without loss of generality, one can suppose by applying a homothety
that H = 1. Define P : ¥ x St — SU(2) as the solution to the Lax pair (2.5) with initial
condition P(zp) = Iz and set F' := ¢g- P : ¥ — ASU(2)? with g as in Equation (2.14).

Then F satisfies the Lax pair

. oA lHe —us
Flap— 1 " Nazy 2
2 \ A\ 1Qe —u, 2 \2\He"

Now solve for B : ¥ — A;SL(2,C)° the d problem:

(FB): =0,

_Aée_u) dz. (2.18)

Uz

so that ® := FB is holomorphic on ¥ and takes values in ASL(2,C)?. Then ¢ := &~ 1d®
is a holomorphic 1-form on ¥ and the series expansion of F~'dF shows that & is an
admissible DPW potential. Let ¢g := ®(29) and apply the DPW method to the DPW

data (X, &, 20, ¢o) to retrieve ®. Iwasawa decomposition gives

Iwa® = (F Uni B, Pos B)

NorF.

where ‘
) 610 0
Uni B = o | 0:%—R.
0 e
Thus,
Symo Uni® = SymF and NoroUni® =
Compute _
Symg = %0’3
to get
SymF = Sym(g - P)
= Symg + ¢ - SymP — (g - P) - Symg
= %Ug + g -SymP + NorF.
Compute
g\ Losg(\) = —o3 VA es!
to get

NorF = —g - NorP.
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The induced immersion is then
-~ 1
f)\ = ﬁ (SymAF + NOI‘)\F)
1

4H

which gives at A = 1, up to a rigid motion, the immersion f (Use Equation (2.6) to identify
fr). Apply a well chosen isometry by dressing the data (see Section 2.3.1) to retrieve f.
]
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Chapter 3
Further options

Now that the basic tools of the DPW method are introduced, one can adjust it in
many ways, depending on what one wants to do with it. For example, untwisting the loops
(Section 3.1) makes the Sym-Bobenko formula and the loop groups simpler to deal with,
without changing the fundamental idea behind the method. One can also build surfaces
with topology and assume that X is not simply connected, provided that an extra condition
on the data is satisfied (Section 3.2). Finally, the Lawson correspondence between CMC
surfaces in Fuclidean and Hyperbolic spaces provides a DPW method for constructing
CMC H > 1 surfaces in H? (Section 3.3).

3.1 Untwisting the loops

Twistedness of loops is not essential to the DPW method, and some papers (such as
[20, 21, 39, 38]) use loop groups that are not twisted. In their case, untwisting the loops
simplify the proofs and formulae. For any group or algebra G, let AG denote the set of
smooth maps S' — G.

3.1.1 Definition

Let M € Agl(2,C)° be a twisted loop and define for all X in the double cover of S

1
—~ - 0 A0
M) = V™ M(\) VA L
0 VA 0 =
Then M is well-defined on S! and M € Agl(2,C). Moreover, M is an even function of A,

One can thus define
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Definition 9. Applying the map

K Agl(2,C) — Agl(2,C)

M — M

defined above is called untwisting the loop M.

Formally,

a0 ) b
M) = (A‘lc()\2) d()\2)> — ”(Mm)_(c(x) d(A))‘

The definition of untwisted loop groups and algebras is exactly the same as in Section 1
without the condition o(X(A)) = X(—A) (and Remark 1 should now make sense). We
1"

denote them by dropping the "o" and write, for example, Asl(2,C) for the untwisted
version of Asl(2,C)7.

3.1.2 Untwisting the recipe

One can adapt the DPW method so that it works with untwisted loop groups. The
important changes are in the definition of admissible potentials and in the Sym-Bobenko

formula (which is simpler in the untwisted framework).

Definition 10. Let ¥ be a Riemann surface and let £ € Q9 (X, Asl(2, C)) be a holomor-
phic 1-form defined on ¥ and taking values in Asl(2,C). For all z € ¥, expanding £(2) in
its Fourier series as in (1.4), the 1-form £ is called an admissible DPW potential (in
the untwisted setting) if A; = 0 for all ¢ < —1 and if A_; is of the form

Aq(2) = (8 O‘é”) . (3.1)

A set of DPW data in the untwisted setting is a family (X, ¢, 2o, ¢9) where £ is an
admissible potential in the untwisted setting and ¢o € ASL(2,C).

The three steps of the DPW method in the untwisted setting are basically the same
provided that one changes twisted loop groups into untwisted loop groups. First, solve
for ®(z) € ASL(2,C) the Cauchy problem (5.5). Then Iwasawa decompose ¢ into (F, B)

using the following untwisted Iwasawa decomposition.

Theorem 5. The multiplication map

x : ASU(2) x ASL(2,C) — ASL(2,C)
(F,B) — FB

36



3.1. UNTWISTING THE LOOPS

is bijective. Its inverse map is called Iwasawa decomposition and is denoted:

Iwa : ASL(2,C) — ASU(2) x AFSL(2,C)
¢ — (Uni @, Pos @).

Finally, for any H # 0, define the induced CMC H immersions f) via the Sym-Bobenko
formula

1
= ESym)\F. (3.2)

Theorem 6. Let (3,€, 29, ¢9) be a set of untwisted DPW data and H # 0. Let ®, F,
B and f) be defined via the DPW method applied to (X, &, 29, ¢o). Then for all A € St
fa is a CMC H real analytic conformal immersion with metric given by (2.9) and Hopf

differential )
—2\7
1120 = =22 0 g2,
where « is as in (3.1), (3 is the lower-left entry of Ay and b is the upper-left entry of B |y—o.
Its normal map reads Ny = —Nor) F' and its differential is as in (2.11).

Note that dressing and gauging with untwisted loops give the same results as in the
twisted setting (see Section 2.3.1). In particular, Equation (2.17) describing the dressing
action with unitary loops as isometries is the same in the untwisted setting.

As stated before, some authors work in the untwisted framework and the others in the
twisted framework. Whenever the choice is not explicitly stated, a simple look at the loop
groups definitions makes it clear. Moreover, one can translate one setting into another.
Let (3,€, 20, o) be a set of admissible DPW data in the twisted setting, giving rise to the
twisted maps ®, F', B, and to the CMC H # 0 immersion f = f;. Use Definition 9 to
untwist the potential and the initial condition, giving rise to a set (X, 5, 20, qbo) of DPW
untwisted data, inducing the maps <I> F B and the CMC H immersion f f1

Proposition 9. With the above notations and x as in Definition 9,

and

A good way to test Proposition 9 is to apply it to the example of Section 1.3 in which

untwisting the data does not change it, thus simplifying the computations.
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3.2 Non-trivial fundamental group: the monodromy problem

Let £ : ¥ — Asl(2,C) be an admissible DPW potential, zg € X and ¢y € ASL(2,C).
Suppose that X is not simply connected and let 3 be its universal cover with 2o € ¥ above
zp. One can use the DPW method on the data (f], &, 20, ¢o) because Y is simply connected:
let ®, F', B and f be the induced maps. The immersion f is a CMC immersion of S into

R3, but nothing ensures that it descends to a well-defined immersion of 3.

Definition 11. For any deck transformation 7 € Deck(3/X), the loop
M (@) := ®(7(2)) x ®(2)"! € ASL(2,C) (3.3)

does not depend on Z € & (but only on the choice of Zy above zy) and is called the

monodromy of ® with respect to 7.

Proposition 10. Suppose that

M, (®) € ASU(2),

V7 € Deck(3/%), MA(®)(1) = =+, (3.4)
dMT(<I>)(1) .
d\

Then the immersion f : Y — R3 induced by ® descends to a well-defined immersion of
3.

Equation (3.4) is called the monodromy problem in R3. Equation (3.3) shows that
deck transformations act on the DPW data as dressing (see Section 2.3.1), and Proposition
10 states that if this dressing represents the identity isometry, then the immersion is well-
defined on X.

3.3 Hyperbolic space

The DPW method can be used to construct CMC H > 1 immersions into Hyperbolic
space. One first need to extend the definition of loops to annuli, and this is the chance to
equip the groups with a simple Banach structure, as in Section 3.3.1. After introducing
a suitable matrix model of H? in Section 3.3.2, we briefly describe the method in the
untwisted framework (Section 3.3.3). The ideas are the same as in Euclidean space, which

is why we do not give proofs.
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3.3.1 Extending the loops

In order to define differentiable maps between loop groups and algebras, one might
want to equip them with a Banach structure. Let |- | be a sub-multiplicative norm on
gl(2,C). Let R > 1 and define for all f € Agl(2,C)

Il =D 1fil R (3:5)

1EZL

where 3° f;\! is the Fourier expansion of f. For any loop group or algebra AG defined in
Section 5.1.2, define
AGri={f € AG | |[fll5 < o}

Then Agl(2,C)g is a Banach algebra. Moreover, ASL(2,C)g, ASU(2)g and AFSL(2,C)g

are Banach manifolds and Iwasawa decomposition is a smooth diffeomorphism:

Theorem 7. [38] For all R > 1, the multiplication map ASU(2)g x A¥SL(2,C)r —
ASL(2,C)g is a smooth diffeomorphism between Banach manifolds.

This Banach structure is used to construct CMC immersions in Hyperbolic space via
the DPW method. It has been introduced in [39] and differs from the one used in |7], which
would be less convenient to use for the purposes of this thesis.

3.3.2 DMatrix model

The matrix model we use is the same as in [3]. Let RY3 denote the vector space R*

equipped with the Lorentzian metric
(x,2) = —23 + 22 + 23 + 22 x = (20,21, 29, 23) € RL.
The Hyperbolic space H? is the Riemannian sub-manifold of R"? defined by
H? = {z e RY® | (z,2) = -1} .

The point (1,0,0,0) € H? will play the role of an origin and is thus denoted by 0. The
tangent space ToH? = {0} x R3 is identified with its projection on R? equipped with the

cross product, which makes ToH? a real Lie algebra.

Definition 12. For all p,q € H?, the map I} : TpH3 — TqH3 denotes the parallel
transport of vectors from p to ¢ along the geodesic joining p to ¢. It is an isomorphism

between vector spaces and it is the one we use to identify TpH3 with ToH? for all p € H?.
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Let ‘H denote the real Lie algebra of 2 x 2 Hermitian matrices equipped with the Lie

bracket and Lorentzian metric
[X,Y] = %(XY ~YX), (X, X):=—detX.

Let U : RY3 — H defined by

To+ 3 11+ QT
U(xg, 21,2, 23) = ( ) .

T1 — T2 To — T3

Proposition 11. The map ¥ is an isometric isomorphism between real vector spaces and
U(H3) = {FF* | F € SL(2,C)}

where M* := M for all M € gl(2,C). Moreover,

d¥o : ToH?® — HNsl(2,C)
v U(v)

is an isometric homomorphism between Lie algebras.
Proposition 11 provides an identification between H?® and W(H3). Under this identifi-
cation, the Lie group SL(2,C) acts on R as linear Lorentzian isometries via

F-X:=FXF*,  XeM, FeSL2C0C). (3.6)

The following proposition relies upon the polar decomposition in SL(2,C) and is proved in
Chapter 5.

Proposition 12. For all z € H? and for all direct orthonormal bases (u,v,w) of the
tangent space T,H? ~ ToH?, there exists F' € SL(2,C) such that

(x,u,v,w)=F B

where B = W(By) is the image of the canonical basis of R*.

Inspired by the Euclidean case, one can get the following definitions and propositions

for Hyperbolic space.

Definition 13. The moving frame of f : ¥ — H3 is defined as F := (f, ez, e, N). A
special frame for f is a map P : ¥ — SL(2,C) such that 7 = P - B. An extended
frame for f is a map P : ¥ — ASL(2,C) such that for all A € S', P(-,)) is a special

frame for the associated CMC immersion f).

40



3.3. HYPERBOLIC SPACE

Proposition 13. Let P be a special frame for f : ¥ — H?. Then P satisfies the Lax

> 2(H 4+ 1)e" —uz de "\
plap= 1 (H+Le) ) 1 v A e e
2\ —Qe™ —u, 2\—-2(H-1)e" wuz

with u, @ and H defined via (2.1). Moreover, the Maurer-Cartan equation for this Lax

pair:

pair is equivalent to the Gauss and Codazzi equations in H?:

duyz — |Q)Pe ™ +4(H? — 1)e* =0, Qs =2¢*H,. (3.8)

3.3.3 The (untwisted) DPW method for CMC H > 1 surfaces in H?

In this section, we introduce a DPW method with untwisted data that leads to CMC
H > 1 immersions of a simply connected domain ¥ into Hyperbolic space. Let ¢ =
arcoth H > 0 and R = ef.

Definition 14. In Hyperbolic space and untwisted setting, a set of admissible DPW
data is given by (X,¢, 20, ¢o) admissible in the sense of Definition 10 and such that ¢g €
ASL(2,C) g and & takes values in Asl(2,C)xg.

Remark 5. In Chapter 5, R is taken greater than e?. This is not essential to the method,

but allows us to get control formulas that are essential to our purpose.

Given a set of admissible data in the sense of Definition 14, the three steps of the
DPW method are the following. First, solve for ®(z) € ASL(2,C)g the Cauchy problem
(5.5). Then Iwasawa decompose ® into (F, B) using Theorem 7. Finally, define f via the
Sym-Bobenko formula

F(e™) -1, (3.9)

with the action of (3.6).

Proposition 14. The map f : ¥ — H? defined above is a CMC H immersion. With «
as in (3.1), S the lower-left entry of Ay and b the upper-left entry of B |y—o, the metric of

fis

4b*|a|?
I = H2 1 |dZ‘27
its Hopf differential is
1720 = 208 ;.
H? -1

and its normal map is given by
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Moreover, its differential reads

2
df = 2b F( ). 0 «adz ‘
H?2 -1 adz 0

Remark 6. Proposition 14 only constructs one member of the associated family (fy).
This constraint is not essential to the DPW method in H? and has been introduced only
to simplify the notation. Furthermore, Chapter 5 only deals with single members of the

associated families.

As in R3, every CMC H > 1 immersion can be obtained locally and up to an isometry
via the DPW method.

3.3.4 Gauging, dressing, isometries, monodromy

Definitions 7 and 8 of gauging and dressing (adapted to the untwisted framework) are
the same in H?, and gauging the potential does not change the immersion induced by
formula (3.9). Therefore, Proposition 6 holds in H®. The effect of dressing is exactly the

same: some dressing act as rigid motions.

Proposition 15. Let (X,&, z0, Jog) be a set of dressed data (in the untwisted setting).
Then the dressed CMC H > 1 immersion fA: ¥ — H3 has the same Hopf differential as
the original immersion f. Moreover, if J(z) € ASU(2) for all z € ¥, then for all A € S!, f
and fdiffer by a rigid motion of H?:

f=Jd)-f (3.10)
for the action defined in (3.6).

Finally, monodromy is defined in H? as in Definition 11, but the expression of the
monodromy problem differs from R?, because the isometric action of dressing is not the

same in H3. Thus, the monodromy problem in H? reads:

M- (®) € ASUQ2)g,

VTGDeCk(i/E)v {M (q))(e*Q) = =+I.
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Chapter 4

On Delaunay Ends in the DPW
method

We consider constant mean curvature 1 surfaces in R? arising via the DPW method
from a holomorphic perturbation of the standard Delaunay potential on the punctured
disk. Kilian, Rossman and Schmitt have proven that such a surface is asymptotic to a
Delaunay surface. We consider families of such potentials parametrised by the necksize of
the model Delaunay surface and prove the existence of a uniform disk on which the surfaces

are close to the model Delaunay surface and are embedded in the unduloid case.

Introduction

Beside the sphere, the simplest non-zero constant mean curvature (CMC) surface is the
cylinder, which belongs to a one-parameter family of surfaces generated by the revolution
of an elliptic function: the Delaunay surfaces, first described in [4]. Like the cylinder,
Delaunay surfaces have two annular type ends, and Delaunay ends are the only possible
embedded annular ends for a non-zero CMC surface. Indeed, as proven in [24]| by Korevaar,
Kusner and Solomon, if M C R? is a proper, embedded, non-zero CMC surface of finite
topological type, then every annular end of M is asymptotic to a Delaunay surface and if
M has exactly two ends which are of annular type, then M is a Delaunay surface. Thus,
the status of Delaunay surfaces for non-zero CMC surfaces is very much alike the catenoid
position in the study of minimal surfaces (see the result of Schoen in [33]), and one has to
understand the behaviour of Delaunay ends in order to construct examples of non-compact
CMC surfaces with annular ends, as Kapouleas did in 1990 [16].

1. This chapter is the first paper of the thesis. It has been accepted in Indiana University Mathematics
Journal and is available at www.iumj.indiana.edu/IUMJ/Preprints/8123.pdf
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For an immersion, having a constant mean curvature and having a harmonic Gauss
map are equivalent. This is why the Weierstrass type representation of Dorfmeister, Pedit
and Wu [7] has been used since the publication of their article to construct CMC surfaces.
The DPW method can construct any conformal non-zero CMC immersion in R3, H? or S3
with three ingredients: a holomorphic potential which takes its values in a loop algebra, a
loop group factorisation, and a Sym-Bobenko formula. Several examples of CMC surfaces
with annular ends, like n-noids and bubbletons, have been made by Dorfmeister, Wu,
Kilian, Kobayashi, McIntosh, Rossman, Schmitt and Sterling [8, 32, 17, 19, 22, 31]|. These
constructions often rely on a holomorphic perturbation of the holomorphic potential giving
rise to a Delaunay surface via the DPW method, and Kilian, Rossman and Schmitt [20]

have proven that such perturbations always induce asymptotically a Delaunay end.

More precisely, any Delaunay embedding can be obtained with a holomorphic potential
of the form &P = Az~ 'dz where

A= 0 rA 4+ s .
rA+ s 0

The main result of [20] states that any immersion obtained from a perturbed potential
of the form & = ¢P + O(2%) is asymptotic to an embedded half-Delaunay surface in a
neighbourhood of z = 0, provided that the monodromy problem is solved. In this paper, we
allow the perturbed potential to move in the family of Delaunay potentials by introducing
a real parameter ¢, proportional to the weight (or neck-size) of the model Delaunay surface,
and consider & = &P + O4(2°) where £P is a Delaunay potential of weight 87¢. The main
theorem of [20] states that for every ¢ > 0, there exists a small neighbourhood of the origin
on which the surface produced by the potential & is embedded and asymptotic to a half
Delaunay surface. Unfortunately, without further hypotheses, this neighbourhood vanishes
into a single point as ¢ tends to zero. Adding a few assumptions, we prove here that there
exists a uniform neighbourhood of the origin upon which the surfaces induced by the family

& are all embedded and asymptotic to a half Delaunay surface for ¢t > 0 small enough.

Hence, the point of our paper is not to show that the ends of the perturbed unduloid
family are embedded (which is what [20] does), but that all the immersions of this family
are embedded on a uniform punctured disk. Equipped with our result, Martin Traizet (in
[39] and |38|) showed for the first time how the DPW method can be used to both construct
CMC n-noids without symmetries and prove that they are Alexandrov embedded.

The theorem we prove is the following one (definitions and notations are clarified in
Section 4.1):

Theorem 8. Let ®; be a holomorphic frame arising from a perturbed Delaunay potential
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4.1. THE DPW METHOD

& defined on a punctured neighbourhood of z = 0. Suppose that ®¢(1,\) = Iy and that
the monodromy of ®; is unitary. Then, if f; denotes the immersion obtained via the DPW
method,

e There exists a family f of Delaunay immersions such that for all a < 1 and |¢| small
enough,
1£e(z) = P (2) s < Caltll2]*
on a uniform neighbourhood of z = 0.

e If £ > 0 is small enough, then f; is an embedding of a uniform neighbourhood of
z=0.

e The limit axis of P as t tends to 0 can be made explicit.

An outline of the proof is given in Section 4.1.9, together with an explanation of why

the convergence of ¢ to 0 forbids us from using several key results of [20].

4.1 The DPW method

4.1.1 Loop groups

Our maps will often depend on a spectral parameter A that can be in one of the following
subsets of C (R > 1):

Dr={AeC, [N <R}, Ap={N€C, :<|[\<R},
Di={AeC, N <1}, A ={\eC, [\ =1}.

For the coordinate z, we will note (e > 0):
De={z€C, |z| <€}, Sc={z€C, |z|=¢€}.

Let us define the following (untwisted) loop groups and algebras:
e ASL,C is the set of smooth maps ® : 4; — SLyC.
e ASU; C ASL,C is the set of maps F' € ASLoC such that F(\) € SUy for all A € Aj;.

e A,SLL,C C ASL,C is the set of maps G € ASLsC that can be holomorphically
extended to D; and such that G(0) is upper triangular.

e ABSL,C C A;SLyC is the set of maps B € AySLoC such that B(0) has positive

elements on the diagonal.
e AslC is the set of smooth maps A : A1 — slbC.
o Asuy is the set of maps m € AslyC such that m(\) € sup for all A € A;.
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4.1. THE DPW METHOD

e A slbC C AslyC is the set of maps g € AsloC that can be holomorphically extended
to D1 and such that ¢g(0) is upper triangular.

° AEslg(ﬁ C AyslpC is the set of maps b € A;slpC such that b(0) has real elements on
the diagonal.

We also use the following notation:
o(t*, 28, AT) = tazﬁ)\”’f(t, z,\)

where f, on its domain of definition, is continuous with respect to (¢, z, A) and holomorphic
with respect to (z,A) for any ¢. If one variable is not specified, its exponent is assumed to
be 0.

One step of the DPW method relies on the following Iwasawa decomposition (Theorem
8.1.1. in [29] and Proposition 6.2. in |27]):

Theorem 9 (Iwasawa decomposition). Any element ® € ASLyC can be uniquely factorised
into a product
d=FxB

where ' € ASU; and B € AESLQC. Moreover, the map ASLoC — ASUy X AESLQC is a
C> diffeomorphism for the intersection of the C* topologies (see [20]).

The Iwasawa decomposition of a map ® will often be written:
® = Uni (®) x Pos (),

where Uni (®) is called “the unitary factor” of ® and Pos (®) is “the positive factor” of ®.
Using Corollary 4 of Section 4.6, note that if ® is holomorphic on Ag, then its unitary

factor holomorphically extends to Ag and its positive factor holomorphically extends to
Dr.

4.1.2 The su, model of R?

In the DPW method, immersions are given in a matrix model. The euclidean space R?

is thus identified with the Lie algebra sus by

—1 —I3 1 + 122
x = (11,12, 23) 2~ X = — . .
1 — X9 T3

The canonical basis of R? identified as sus is denoted (eq,e2,e3). In this model, the
euclidean norm is given by

|z||* = 4det(X). (4.1)
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4.1. THE DPW METHOD

Linear isometries are represented by the conjugacy action of SUs on sus:

H-X=HXH!'

4.1.3 The recipe

The DPW method takes for input data:
e A Riemann surface ¥;

e A AslyC-valued holomorphic 1-form & = £(z,A) on X called “the DPW potential”
which extends meromorphically to D; with a pole only at A = 0, and which must be

of the form

§(2,0) = ) &)V

j=—1

where each matrix £;(z) depends holomorphically on z and all the entries of £_1(z)

are zero except for the upper right entry which must never vanish;
e A base point zg € X;
e An initial condition ®,, € ASL,C.

Given such data, here are the three steps of the DPW method for constructing CMC-1

surfaces in R? (in the untwisted setting):

1. Solve for ® the Cauchy problem with parameter \ € Ajy:

{dztﬁ(z,/\) = (2, NE(z, ),
B(20,\) = Doy(N).

The solution ®(z,-) € ASLeC is called the “holomorphic frame” of the surface. In
general, ®(-, \) is only defined on the universal cover & of X (see Section 4.1.6). Note
that if £(z,-) can be holomorphically extended to Ag (R > 1), then ®(z,-) can also
be holomorphically extended to Apg provided that &, is holomorphic on Ag.

2. For all z € %, Iwasawa decompose ®(z,\) = F(z, \)B(z,A). The decomposition is
done pointwise in z, but F'(z, A) and B(z, A) depend real-analytically on z. The map

F ' is called the “unitary frame” of the surface.

3. Define f : Y — suy by the Sym-Bobenko formula:

f(z) = Sym(F) = Z?)];(Z’ DF(z,1)7 L
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The map f is then a conformal CMC-1 immersion whose normal map is given by

N(z) = %iF(z, 1) ((1) _01> F(z1)L (4.2)

Its metric and Hopf differential are
ds = 20%(¢'3|dz],

Q- —2ga
where fjl?l is the (k,[)-entry of the matrix £;(2) and p is the upper-left entry of B(z,0).

The theory states that every conformal CMC-1 immersion can be obtained this way.

4.1.4 Rigid motions of the surface

Let £ be a DPW potential and & € ASLyC a solution of d® = ®£. Take a loop
H € ASU, that does not depend on z. Then ® = H® also satisfies dd = Ci{ and gives

rise to a rigid motion of the original surface given by ®. Let f = Sym o Uni(®) and
f: Sym o Uni((i). Then,

f(z) =H(1)- f(z) + Sym(H).
This leads us to extend the action of section 4.1.2 to affine isometries by

H\)-X=H1)XH1) ™'+ iaail(l)H(l)_l.

Note that ASUsy also acts on the tangent bundle of R? via:
H-(p,5) = (H -p,H() - 7). (4.3)

This action will be useful to follow the axis of our surfaces: oriented affine lines are gener-
ated by pairs (p,¥) and the action of ASUs on a given oriented affine line corresponds to

the action (4.3) on its generators.

4.1.5 Gauging

Let (X,£, 20, ®2,) be a set of DPW data with d® = ®£. Let G(z, A) be a holomorphic
map with respect to z € ¥ such that G(z,-) € A;SLyC (such a map is called an “admissible
gauge”). If we define o = &G, then @ and d give rise to the same immersion f. This
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4.1. THE DPW METHOD

operation is called “gauging” and one can retrieve o by applying the DPW method to the
data (X,¢ - G, 20, ,,G(20,)) where

£-G=G%G+G G

is the action of gauges on potentials.

4.1.6 The monodromy problem

Since @ is defined as the solution of a Cauchy problem on X, it is only defined on the
universal cover 3 of ¥. For any deck transformation 7 of f], we define the monodromy
matrix M (®) € ASLyC as follow:

D(7(2),A) = M (2)(A)2(z,A).

Note that M, (®) does not depend on z. The standard sufficient condition for the immer-
sion f to be be well-defined on ¥ is the following set of equations, called the monodromy

problem in R3:
M-(®) € ASUy,  (d)

M (®)(1) = +I, (i)
IM(®)(1) = 0. (ii1)

Remark 7. In this paper, the Riemann surface . will always be a punctured neighbour-
hood DY of z = 0. Thus, all the deck transformations 7 will be associated to a closed loop
around z = 0 and we will write M(®) instead of M (P).

Remark 8. Let ® : C* — ASLyC such that M (®) € ASUs. Let & = H (h*®) - G where
H € ASLyC, G : C — A SLoC is holomorphic at z = 0 and h : C — C is a Md&bius

transformation that leaves z = 0 invariant. Then
M(®)=HM (®)H L.
Thus, if the monodromy problem for ® is solved, a sufficient condition for the monodromy

problem for ® to be solved is that H € ASUs.

4.1.7 The Delaunay family

Delaunay surfaces come in a one-parameter family: for all ¢t € (—oo, 15| \ {0}, there

exists a unique Delaunay surface, whose weight (as defined in [24]) is 87¢t. As shown in
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[32], the DPW method can retrieve these surfaces using the following data:

2= (C*’ gt(Z,A) = At()\)Z_le, 20 = 17 (I)ZO = 127

0 AT+ s
A(A) = (r)\ + s 0 )

L
) 16

where

and r, s are functions of t € (—oo ] satisfying

r,s € R,
7”—|—s:%, (4.4)

rs =1t.

Note that the system (4.4) admits two solutions, whether r > s or r < s. For a fixed value
of ¢, these two solutions give two different parametrisations of the same surface (up to a
translation). If » > s, the unit circle of C* is mapped onto a parallel circle of maximal
radius: a bulge of the Delaunay surface. If r < s, the unit circle of C* is mapped onto a
parallel circle of minimal radius: a neck of the Delaunay surface. Ast tends to 0 and in the
case r > s, the immersions tend towards the parametrisation of a sphere on every compact
subset of C*, which is why we call this setting the “spherical case”. On the other hand,
when r < s and ¢ tends to 0, the immersions degenerate into a point on every compact
subset of C*. Nevertheless, we call this setting the “catenocidal case” because applying
a blowup to the immersions makes them converge towards a catenoid on every compact
subset of C* (see [38] for further details).

In any case, the corresponding holomorphic frame is explicit:
(I)t(za )‘) = ZAt(A)

as is its monodromy around z = 0:

M (D)) (N) = exp (2imAi(N)) = cos 2mue(N)) 1o + WA%A) (4.5)
where
(V)% = —det A;(\) = i + AT = 1)2 (4.6)

Note that the conditions (4.4) have been chosen in order for the monodromy problem of
Section 4.1.6 to be solved. The axis of the surface is given by {(z,0, —2r), x € R} and its
weight is 8rt. Thus, the induced surface is an unduloid if £ > 0 and a nodoid if ¢ < 0.

Remark 9. In order to deal with a single-valued square root of y(\)? and to avoid some
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resonance cases in Section 4.3, we set T' > 0 and R > 1 small enough for

1

pue(N)? — 1

AN

<
to hold for all (¢,\) € (=T,T) x Apg.

4.1.8 Perturbed Delaunay DPW data

We take a Delaunay potentials family as in section 4.1.7 and we perturb it for z in a

small uniform neighbourhood of 0:

Definition 15 (Perturbed Delaunay potential). Let € > 0. A perturbed Delaunay poten-
tial is a one-parameter family {&;};e(—77) of DPW potentials, holomorphic on D} x Ag

and of the form
(2, ) = Ay(V\)z7 dz + Re(z, \)dz

where A, is a Delaunay residue as in Section 4.1.7 and R;(z, \) € C? with respect to (¢, z, \),
is holomorphic on D, x Ap for all ¢ and satisfies Ro(z, ) = 0.

The following set of hypotheses will be used to make sure that our holomorphic frames
have a C” regularity, are holomorphic with respect to (z,)), and solve the monodromy

problem:
Hypotheses 1. Let & be a perturbed Delaunay potential. Let ®; be a holomorphic frame
associated to it. We suppose that

e Forallt € (—T,T) and z € D}, ®,(z,-) is holomorphic on Ag,

e ¥(z, ) is continous with respect to (t,z, \),

e The monodromy is unitary: M(®;) € ASUs,.

Remark 10. When needed, one can replace R > 1 by a smaller value in order for &, to

be holomorphic on Ag and continuous on Ag.

The theorem we prove in this paper is the following:

Theorem 10. Let & be a perturbed Delaunay potential and ®; a holomorphic frame asso-
ciated to & satisfying Hypotheses 1 and such that ®¢(1,\) = I. Let f; = Sym (Uni(®Py)).
Then,

1. For all @ < 1 there exist constants ¢ > 0, 7' > 0 and C > 0 such that for all
0<|z|]<eand |t| <T,

I£(2) = fP(2)llgs < Clt]]2]*
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where fP is a Delaunay immersion of weight 87t.

2. There exist 7" > 0 and ¢ > 0 such that for all 0 < ¢t < T’, f; is an embedding of
{0 < |z] < €}.

3. If r > s, the limit axis as ¢ tends to 0 of fP is the oriented line generated by
(—e3, —€1).

If 7 < s, the limit axis as ¢ tends to 0 of fP is the oriented line generated by (0, —€3).

Remark 11. We do not have to assume that 1 € D, for ®g to be defined at z = 1. This
only comes from the fact that & is defined on C*, which implies that ®¢ is defined on the

universal cover C*.

4.1.9 Outline of the proof and comparison with [20]

In Section 4.3 we start the proof of Theorem 10 by gauging the potential and changing
coordinates. Starting from
& = Az ldz + O(t, 2%)dz

we gain an order on z and obtain the following new potential:
& = Az Yz + O(t, 2)dz.
We then use the Frobenius method and the new holomorphic frame is

<AI;t = ]\ZzAt (Ig + O(t, z2)) )

In Section 4.4, we use the above estimate on &)t to prove the convergence of the immer-

sions:

Hft(z) - ﬁ”(z)HRg < COltl|z|*, a<1

where j:D is a Delaunay immersion whose axis can be explicitly computed. To do so, we
need to know the asymptotic behaviour of the positive part Pos(cit), which we compute

using the fact that ftD(C*) is a surface of revolution.
Finally, Section 4.5 proves that perturbations of unduloids are embedded on a uniform
neighbourhood of the origin.

Sections 4.6 to 4.8 are appendices.

Although the method of this paper is inspired by what Kilian, Rossman and Schmitt
did in [20], their results cannot be used to prove our theorem. This is mainly because the
asymptotics given in [20] for a fixed value of our parameter ¢ do not hold as ¢ tends to 0.

As an example, consider the proof of Lemma 2.5 in [20]: with our hypotheses, the constant
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they call k becomes a function of ¢ such that (with our notation of Section 4.3.2)

C12 O, 0
= 200 4
Later in the proof, computing the determinant of the linear map £ gives
det El = O(t)

and their gauged potential is then of the form

& = Azt dz + Ot 2)dz,
the corresponding holomorphic frame being

(/I\)t = ]/\ZtZAt (12 + O(til, 22)) .

Applying the Sym-Bobenko formula would give at best

1
<Oz, a<1 (4.7)
R3 |t]

|fi2) - 7P|

which is not enough to show the convergence of the immersions on the compact sets of C*
as t tends to 0. Note that gaining one order on |¢| in the estimate (4.7) is still not enough
to show the embeddedness of ﬁ, since the first catenoidal neck of ﬁ), which has a size of

the order of ¢, is attained for |z| ~ [t| as ¢ tends to 0.
Finally, some bounds used in [20] such as (see Lemma 1.11 in [20])

c1(A) = max [|B(z,A)||
z€[0,p)

depend on ¢ in our framework and may explode as t tends to 0.

4.2 An application

Before proving Theorem 10, we must take account of the fact that one of its hypotheses
is too restrictive. Indeed, ®¢(1, A) = I» has no reason to hold when one wants to construct
examples, as Martin Traizet did in [39] and [38]. We thus show here on a specific example

how to ensure this hypothesis by gauging the potential and changing coordinates.

In all the section, & is a perturbed Delaunay potential with r > s and ®; is a holo-

morphic frame associated to &, satisfying Hypotheses 1 and such that ®¢(1,\) = M(A)
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where

a b1
M) = € ASLyC (a,b,c,d € C). (4.8)
cA d
After some simplification, we will be able to apply Theorem 10 even though ®o(1, \) #
I5. The only difference in the conclusion will be in the third point: as ¢ tends to 0, the limit
axis of the model Delaunay surface fP will be the oriented line generated by @ - (0, €3)
where

Q = Uni[MH] (4.9)

HO) = — (1 _A_1> . (4.10)

with

A 1

The method involves gauging, changing coordinates and applying an isometry, and relies
on the fact that one can explicitly compute the Iwasawa decomposition of M H. Indeed,
for all a,b,c,d € C such that ad — bc =1,

a b\ 1 d 1 1 0
e d ) PP FdP \-br d VIOZ+1d]2 \ (ab+cd) A |b]? + |d)?
(4.11)

is the Iwasawa decomposition of the left-hand side term. Note that if the matrix M is
explicit, then this formula makes both the matrix @ in Equation (4.9) and the limit axis
of fP explicit because M H and M have the same form.

Lemma 1. Let & be a perturbed Delaunay potential as in Definition 15 with r > s.
Let ®; be a holomorphic frame associated to it, satisfying Hypotheses 1 and such that
Do(1,\) = M(A) as in (4.8). Then there exists a Mobius transformation that leaves z = 0

invariant and a gauge G such that:

1. the new potential Et = (h*&) - G is also a perturbed Delaunay potential with the

same residue as &,

2. the holomorphic frame ®, associated to 5 satisfies Hypotheses 1 with 50(1,)\) €
ASUs,.

Proof. Let A; and Ry be as in Definition 15. Then
& = G (Ah7rdh + (h*Ry)dh) G + GdG.
The Mgbius transformation we are looking for satisfies A(0) = 0 and thus
hldh = 27z + O(2)dz.
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Wanting Et to have a simple pole at z = 0, we look for a gauge G that is holomorphic
at z = 0. Wanting the residue of {: to be Ay, we suppose that G(0,\) = Iy. These two
conditions together with a) = Agz~'dz lead us to solve the following Cauchy problem:

= Aoz~ tdz — AgGh~tdh
dG GAyz'dz oGh™d (4.12)
G(0) = I.
If we write
h(z) = ,peC, qeC*
(2) vita P q
so that J
hldh = 2 Yds — P22
pz+q

then the only solution of (4.12) is given (by Maple) by:

q
pz+q 0

G(Z7 )‘) - by
pz [pztq
Valpz+q) q

and a straightforward computation allows us to check that G satisfies (4.12). Setting

0 <€ <ewith € < % if necessary, this proves the first point of the lemma.
In order to prove the second point, diagonalise Ag = HDH ! with H as in (4.10) and
compute

Bo(1,\) = MNHN) (R(OPHN) TGO, N HN)) HN) ™! (4.13)

N
0 =

Hence &;0(1, -) is holomorphic on Ag. Moreover, the fact that é is C? in (t, z, \) together
with remark 8 imply that Cf)t satisfies Hypotheses 1. Finally, compute

where

1
R)PHON) TG, NH(N) = ( vi ! )

)\% Va
and, using Equation (4.11),
Pos (MH) = (A”M p(_)1>
where
V2 1 (a+b)(b—a)+ (c+d)(d—¢)

p

= s = —— X
Vh—aP+id-p T2 Vb —aP +1d—cP

57



4.3. THE ZAP FORM OF &,

Then, setting
p=—pu, q=p*
Equation (4.13) becomes (Q is defined in (4.9))

Do(1,\) = QH ' € ASU,
because H € ASUs. O

If one wants to apply Theorem 10, it then suffices to set
o= HQ ',

where ;I;t is constructed by Lemma 1. Let ftD be the model Delaunay immersion towards

which the immmersion Sym (Uni(:I;t)) converges. Theorem 10 then states that the limit
axis as t tends to 0 of fZD is the oriented line generated by (—es, —€j). Compute

H . (—es, —€1) = (—es,€3) ~ (0,€3)

to prove that Sym (Uni(®;)) converges to a model Delaunay surface whose limit axis as ¢

tends to 0 is @ - (0, €3). The following corollary summarises this section:

Corollary 2. Let & be a perturbed Delaunay potential with r > s and ®; a holomorphic
frame associated to & satisfying Hypotheses 1 and such that ®¢(1,\) is of the form given
by (4.8). Let f; = Sym (Uni(®;)). Then,
1. For all a < 1 there exist constants ¢ > 0, 7" > 0 and C > 0 such that for all
0<|z]<eand |t| < T,

1£:(2) = £ ()]s < Clt]]2]*

where fP is a Delaunay immersion of weight 87t.

2. There exist 7" > 0 and ¢ > 0 such that for all 0 < t < T’, f; is an embedding of
{0 < |z] < €}.

3. The limit axis as ¢ tends to 0 of fP is the oriented line generated by @ - (0, €3) where
@ is given by Equation (4.9).

4.3 The z4P form of &,

Let us start the proof of Theorem 10: let & be a perturbed Delaunay potential and
a holomorphic frame associated to & satisfying Hypotheses 1 and such that ®¢(1,\) = I.
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4.3. THE ZAP FORM OF &,

In this section, we want to apply the Frobenius method and write ®; in a 24P form.
Unfortunately, the underlying Fuchsian system seems to admit resonance points. Our goal
is to avoid them and to gain an order of convergence in the matrix P of the 24P form. We

will obtain the following result:

Proposition 16. There exist a change of coordinate h; and a gauge G such that, denoting
B, = hj (B,G,)

and

& =hi (& Gy),

é is a perturbed Delaunay potential and &)t is a holomorphic frame associated to Et satis-

fying Hypotheses 1 and such that ®((1, ) = I. Moreover,
Dy(z,\) = My(N) 2N Py(z,\) (4.14)

where ]\Z € ASL,C is continuous and holomorphic on Ag for all ¢t and ﬁt : Do — ASL,C
is €2, holomorphic on I, x Ap for all ¢ and satisfies P,(z, \) = I + O(t, 22).

4.3.1 Extending to the resonance points

In this section, we use the Frébenius method to write ®; in a z4P form, and extend

this form to the resonance points. We will thus prove:

Proposition 17. There exist M; € ASL>;C continuous and holomorphic on Ag for all
t and P, : D — ASL2C continuous and holomorphic on D, x Apg for all ¢ satisfying
P,(0,\) =1z and

By (2, \) = My(N) 2N Pz, \).

Let us first recall the Frobenius method in the non-resonant case (see [36] and [35]).
Let € > 0 and £ be a holomorphic 1-form from D¥ to My(C) defined by

£(2) = Az Mz + Z Cp2"dz.

keN
For all k£ € N, let P solve
Py = I
Lri1(Pey1) = > PG (4.15)
it+j=k
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4.3. THE ZAP FORM OF &,

where for all n € N,
L, : MyC) — My (C)
X —  [A, X] 4+ nX.

Then P(z) = 3 4oy Pe2" is holomorphic on D, and @(z) = 24 P(2) is holomorphic on the
universal cover ]T)E of D! and solves d® = ®&.
Let us now recall Lemma 2.2 of |20] in our framework:

Lemma 2. Let A € sl,C such that A% = ;?I. Then for all n € N,
det £, = n* (n* — 4p?) (4.16)

and

LX) = % <X - 712—14u2 (nl — 24) [4, X]> (4.17)

Corollary 3 follows from Remark 9 and Equation (4.16).
Corollary 3. Let L, (X) = [4:(N), X] +nX.

e For all n > 2, L, is invertible on (t,\) € (=T,T) x Dj,.

e For n =1, Ly is invertible on (¢,\) € (=T,7T)\{0} x Dy \{1}.

Remark 12. If we use the Ansatz given by the Frébenius method and write
®y(z,\) = My(N)zA N Pz, \) (4.18)

where

Pz, ) =) _ PN,
k=0

note that the resonance points only occur in the computation of P;1(\) because Ly, is
invertible on (¢,\) € (=T,T) x Ag for all n > 2. Thus, we only need to extend P;;(\) at
t=0and A\ =1 to extend the 24P form of ®,. Let us write

tCy(N)dz == (&(2,A) — A4 (N)z71dz) |.=0 -
According to (4.15),
Pra(XN) = L] (tC(N)) (4.19)

and the form of det £;; shows that P;; has at most a pole of order 2 at A = 1. Moreover,
det £;1 = O(t) and tC; = O(t), so we already know that P; (and as a consequence, M)
extends to t = 0.

It remains to extend the z4 P form (4.18) to A = 1. To do this, we adapt the techniques

used in Lemma 2.5 of [31] to prove the following unitary X commutator lemma:
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4.3. THE ZAP FORM OF &,

Lemma 3. Let M : Ap\{1} — SL2C holomorphic on Agr\{1} with at most a pole
at A = 1. Let t # 0, Q = exp(2imrA;) € ASUs and suppose that for all A € A;\{1},
MQM~! € SUy. Then there exist U € ASUs and K : Ag\{1} — SL2C holomorphic

such that
{ M=UK
[

Ay, K] = 0.

Proof. We first apply Lemma 2.5 of [31] to construct U and K satisfying M = UK and
[Q,K] = 0 on A;\{1}. The map U is holomorphic on a small neighbourhood of A;.
Without loss of generality, let this neighbourhood be Agr. Then, K is meromorphic on
Ar\{1} with at most a pole at A = 1. Hence the map A — [Q(\), K ()] is holomorphic
on Ar\{1} and vanishes on A;\{1}. Thus, for all A € Ar\{1},

[Q(A), K(A)] = 0. (4.20)

Recalling Equation (4.5),

isin(2mp)

Q = cos(2mp)la +
Mt

Ay.
Hence Equation (4.20) implies that [4;, K] = 0 wherever p(A\)? # 1. Using (4.6),
[A;(\), K(X\)] =0 for all (t,\) € (—=T,T)\{0} x Ar\{1}. O

We can now extend the z4P form of ® to A = 1. For t # 0 and A € A;\{1}, use
Lemma 3 to write

®(2,\) = Uy(N) 2NV EK (N Py(z, \).

Let € > 0 small enough for P;(-,\) to be defined on D.. On S, x A;\{1}, ® and 2 are
bounded. Then the map (z,\) — K;P; is bounded on S, x A4;\{1} and holomorphic on
De x A1\{1}, so it is bounded on D. x A;\{1}. But P(0,\) = Iy, so K; is bounded on
A1\{1}. Thus, P, is bounded on D, x A;\{1}. But P; is holomorphic on D, x Ag\{1}
with at most a pole at A = 1, so P; is holomorphic on D, x Ar and M; is holomorphic on

Apg. This ends the proof of Proposition 17.

4.3.2 A property of &

The fact that there exists a holomorphic frame ®; associated to & such that M (®;) €
ASUj and (1, \) = I, gives us a piece of information on the potential . Let C()) € sl,C
so that

(2, \) = Ay(\)2z 7 dz + tC(\)dz + O(t, 2)dz
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4.3. THE ZAP FORM OF &,

and write
) = (ell(t,A) )\—1012(75,)\)) | (421)
ca1(t,\)  —cii(t, N
Define sci2(t,0) + repr(t, 0)
Py = 5 . (4.22)

Lemma 4. The quantity p; vanishes at ¢ = 0.

Proof. First, note that ®o(1,\) = I implies that ®¢(z,A) = 24N and thus M(®g) =
—Iy. Let v C D} be a closed loop around 0. Apply Proposition 20 of Section 4.7 to get
(X’ denotes the derivative of X at t = 0 and R; is the holomorphic part of &)

M(®y) = / A0g =40 5 M ()
v
= —/zAO (A'z_l) 2 Aoy —/ZAOR’z_AOdz
.

~

= Mz —/ZAOR’zAOdz.
g

But M(®;), M(24t) € ASUy and M(®g) = M(240) = —I5. Thus, M(®,)", M(2) €
Asuy and
/zAOR'z_AOdz € Asuy. (4.23)
7

Diagonalise Ag = HDH ! with

and

/ AR Ady = | HZPH™Y (Co+ O(2)) Hz"PH™!
gl

S~

H (Res,—oz” H 'CoHz"P)H".
Equation (4.23) and H € ASU, imply that
Res,—o (:PH'CoHz") € Asuy. (4.24)
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4.3. THE ZAP FORM OF &,

Denoting by ¢(A) the bottom-left entry of H~'CoH and looking at the product 2P (H~1CoH)z~P,

Equation (4.24) gives
0 0
€ Asuy
c¢(\) 0

c(\) = (H'CoH), =0 (4.25)

and thus,

Two cases can occur:

o If r > s,

1 (1 =21
H=— € ASU
\/§<)\ 1 > 2

and computation gives

c(\) = =\ (011(07)\) n 012(3, /\)> N (:21(;)7 /\).

Using Equation (4.25), ¢21(0,0) = 0 and py = 0.

o If r < s, the same reasoning applies with

V2l 1 2 2

Thus, ¢12(0,0) = 0 and py = 0.

H(\) = 7 <1 _1> and e(}) = 122 + ad) _ c11(0, A).

4.3.3 Gaining an order of convergence

We can now prove Proposition 16 by following the method used in Section 2.2 of [20]:

gauging the potential. The gauge we will use is of the following form:
Gi(z,A) = exp (g:(N)z) (4.26)

which is an admissible gauge provided that g € A;slbC. This is why we need the following

lemma:

Lemma 5. Let
9t(A) = peA(N) — Pra(N)

where P, ; is defined in Equation (4.19). Then

1. The map g; is in A;slC.
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4.3. THE ZAP FORM OF &,

2. The map g; extends to t = 0 with gg = 0.

Proof. To prove the first point, let ¢ # 0 and use Equations (4.19), (4.21), (4.17) and (4.22)

to compute (this is a tedious calculation)
0
Pay =210 P a7 ) o).
0 0 spr  *

9t(A) = prAe(N) — Pia(A) = A~ (8 8) + A <; :) +O(N).

For the second point, use Equations (4.19) and (4.17) to write for ¢ # 0:
—— (I — 24) [Ay, C’t]> .

Note that C is continuous at t = 0 because & € C* and that 1 —4u? = O(t) to extend P
to t = 0. Moreover, recall Lemma 4, Equation (4.6) and diagonalise Ag = HDH ™! to get:

A

-1 -1
go = mH(I2 —2D)[D,H 'CoH| H .

A straightforward computation gives

G =20 D H00H) = <—2S(/\) 8)

with ¢()) as in Equation (4.25). Hence gg = 0. O

Let G be the gauge defined by (4.26). Then the gauged potential has the form

& - Gi(z,\) = Ai( Nzt dz 4 ([Ad(N), g:(N)] + ge(N) +tCy (V) dz + O(t, 2)dz + O(g2z)dz
= ANz dz + (Li1(g:(N)) + tCL(N)) dz + O(t, 2)dz
= ANz Nz + piAy(N)dz + O(t, 2)dz,

because of Equation (4.19). This gauge has been chosen to fit with the following change

of coordinate:
z

- 1+ pz

ht(Z)
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4.4. CONVERGENCE OF IMMERSIONS

The resulting potential (defined in Proposition 16) is then

dz dz _1
T oor +ptAt( 5 +O(t,2)dz = Az dz + O(t, 2)dz

F_ 4 d
S ! 14+ pi2)

because pg = 0. Apply the Frobenius method to Et to obtain (4.14) and choose € < € such
that for all t # 0, € < |p¢|~! to end the proof of Proposition 16.

4.4 Convergence of immersions

In this section, we prove the first and third points of Theorem 10. In the end, we want
to compare ®;(z, \) = My(\)z4W (I + O(t, 22)) to

P (2, \) = My(\)z4 W),
We will denote
EP = Uni(®P)

and
ftD = Sym(FtD)'

We first want to make sure that @? induces a Delaunay surface for all ¢. For this purpose,
recall Lemma 1.12 in [20], which implies that f7 is a Delaunay surface of weight 87¢. Hence,

there exists a rigid motion ¢ of R? such that ¢ o fP has the following parametrisation:

gZ)oftD : by — R3

z =" (1y(x),0(x) cosy, o (x) siny)

where (7:(x),0¢(x)) is the profile curve of the surface. Recalling that the coordinates are

isothermal gives the following metric:

(4.27)

Let us compare the asymptotic behaviours of the unitary parts of ®; and ®P for A € A;

using, as in [20], a Cauchy formula. We will use the following norms:
1
— For v = (v1,v2) € C?, |v| = (Jv1]? + |v2]?) 2.

— For M € My(C), | M|| = sup |Mwv|.
lv|=1

— For U : & — My(C), [|®| = iulg [Nl
€
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4.4. CONVERGENCE OF IMMERSIONS

Lemma 6. For all o < 1 there exist constants ¢ > 0, T" > 0 and C' > 0 such that for all
0<|z|<eand |t| <T,
H (FP) ' F, - IQHA < Clt]|2]* (4.28)
1

and

H;A [(FZ’)_IFJ < Cltf]z|*. (4.29)

A

Proof. The first step is to estimate the norm of the positive part BP of ®P. We first
estimate ®F for |z| < 1: noting that A, is diagonalisable, that its eigenvalues tend to 41,2
as t — 0, and recalling that M, is continuous at ¢ = 0 ensure that for all & < 1 there exists
(T, R) and Cy > 1 such that for all |¢t| < T,

11—«

8P (2, \)|| . < Calz| 7275,

M ar

We then estimate FP: let ¥ C C* be a path from z to 1, use Equation (4.40) of Section
4.8 and Equation (4.27) to get

D D (R—1) [ |ov(log|z])]
IEPG Nl < o [Py, e (52 [ 1HREEDD),
But oy is uniformly bounded because so is the distance between the profile curve and the
axis of a Delaunay surface. Moreover, the unitary frame at z = 1 is also bounded. Hence

the existence, for R > 1 small enough, of a constant C5 > 1 such that

[FP (2, \)|| . < Calz| 5"

M
We can now estimate the positive factor: for all « < 1 there exist T'> 0, R > 1 and Cy > 1
such that for all |t| < T and |2] < 1

HBtD(z, A

<[[FP N4, X 1272 M) 4, < Calzl2 7

M 4z M
We then define

& = ((F7)'F) x (B.(BP)") =8P (eF) '@ (8P)"!
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with F; € ASU; and B, € ARSL,C and thus have

H&Dt(z, ) — 12(

An HB}’(;;,)\) (Pi(z,A) — 1) (BF(Z’A))_IHAR

< ||BP(=, N[5, O |2)

< C|t]|=|*.
Let nj denote the seminorms

D¢

k
ne(X) = | 5f
2| oxF ||,

Apply Cauchy formula with X\ € 0 AR to get
m (B —T2) < cplt][2]”, Yk € N

where ¢, > 0 are uniform constants. But Uni(ZI;t) = ﬁt = (FtD)_1 F; and Iwasawa decom-
position is a C!-diffeomorphism, so ng (ﬁt - 12) < C|t|]z]* and nq (E - 12) < Clt]]z]*.
We then have (4.28) and (4.29).

The asymptotic behaviour of % allows us to prove the convergence of immersions as
stated in the first point of Theorem 10. The Sym-Bobenko formula for R? implies that (we

omit the index t)

—1 1D D
iF(z, 1)8(F€))\F)(z, DFP(z, 1) = ia(,i\ (z, )FP(z,1)7! = ig};(z, DF(z 1)t
= fP(2) - f(2).

We can then compute

| £:(2) = FP(2)||2s = 4det (fi(2) — fP(2))

OF'FP) .

= —4det B\ (2,1)

< C2t%| 2],

And then for all @ < 1 there exist constants ¢ > 0, T > 0 and C' > 0 such that for all
0<|z|<eand |t| <T,
1fe(z) = P (2)|[Rs < Clt]|2]. (4.30)

To prove the third point of Theorem 10, use (4.4) and note that My = I5. So the axis
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4.5. EMBEDDEDNESS

of fP ast — 0 is the same that the axis of the unperturbed Delaunay surface induced by

24t

In order to prove that the surface is embedded, we will need the convergence of the

normal maps:

Proposition 18. For all o < 1 there exist constants € > 0, 7' > 0 and C' > 0 such that
forall 0 < |z| < eand |t| < T,

[NVe(2) = NP (2) s < Cltl]2|°
Proof. Use the definition of the normal maps in Equation (4.2) to write

—1

M&%ﬂ?@%:—EW@UPMﬁ+MW+MZP?@D*

2
where
A=FP(z,1) Fy(2,1) — Iy = O(t, |2|*),
A=F(2,1)7'FP(z,1) — I, = O(t, |2])
and
1
M = 0 .
0 -1
Use equation (4.1) to get the conclusion. O

It remains to show that the surface is embedded if ¢ > 0.

4.5 Embeddedness

We suppose in this section that 0 < ¢t < T'. The asymptotic behaviour of f; and the fact
that fP is an embedding for all ¢ allow us to show that f; is an embedding of a sufficiently
small uniform neighbourhood of z = 0 for ¢ small enough. We first give a general result of

embeddedness and then apply this result to show that our surfaces are embedded.

Proposition 19. Let fF : C* — MR = fR(C*) c R? be a sequence of complete
immersions with normal maps AJ¥ and an end at z = 0. Suppose that for all n there exists
7, > 0 such that the tubular neighbourhood Tub,, M® of M is embedded. Suppose that
for all € > 0 there exists 0 < € < e such that for all n € N, z € S¢ and y € DY,

Hff(v’ﬂ) - ff(y)HRs > 21y, (4.31)
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Let U* C C* be a punctured neighbourhood of z = 0 and f, : U* — R? a sequence of

immersions with normal maps N, satisfying

oy 172(2) = I s

— 0 (4.32)
neEN Tn z—0
and
sup [N (2) = N (2)||gs — 0. (4.33)
zeU* n—o0

Then there exist ¢ > 0 and N € N such that for all n > N, f,, is an embedding of D.

Proof. Let us split the proof in several steps.

e Claim 1: there exists € > 0 such that the map

on : Df — MR

€

z +— mpo fu(2)

(where m, is the projection from Tub,, MR onto MR) is well-defined and satisfies

H(pn(z) — f;;(z)HRg <7y (4.34)
for all z € D}.

To prove this first claim, use Hypothesis (4.32): there exists € > 0 such that for all
n € N and z € D
r
an(z) - f??(z)HRfs < En
So fn(D}) C Tub%rzMZL?' and ¢y, is well-defined. Moreover, using (4.35) and the triangle
inequality, for all z € D}

(4.35)

[en(2) = fX(2)|lgs < llon(2) = fa(2)llps + | £a(2) = £¥(2)||gs < m

and Equation (4.34) holds. We fix € and € so that Equation (4.31) is satisfied.

e (Claim 2: there exists N € N such that for all n > N, ¢, is a local diffeomorphism

on D?.
Let z € Df. In order to show that ¢, is a local diffeomorphism, we show that

(N, (2), Nu(2)) > 0 (4.36)
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4.5. EMBEDDEDNESS

where N, is defined by

Ny, : Df — S2CR3

€

2 (en(2)

and 7% is the Gauss map of M. TFirst, let v C MF be a path joining ¢, (2) to fR(2).
Using the fact that Tub,, MZ is embedded, one has

1
[dnf|| < —
Tn
and )
[N (2) = MR s < = % [l

Let o(t) = (1 — t) fu(2) + tfR(2), t € [0,1]. Then,

Tn

lo(®) = £ ()gs < (=) [ fa(2) = ¥ (D) [ga < 5

IN

(4.37)

because of Equation (4.35). Let v = m, o 0. Note that Equation (4.37) implies that
o C Tub%/\/l;2 and restricting m, to Tub%/\/lﬁ gives

Tn
T'n
no2

=2

ldmnl| <
T

and thus |y| < r,. Hence,
[N, (2) = N ()| < 1.

Use Hypothesis (4.33) to choose a uniform N € N such that for all n > N,
Wi () = Na@l| < Wi (2) = NR(2) | + [INR(2) = Nal2)]| < V3,

which proves Equation (4.36) and this second claim. We fix such N and n.

o Claim 8: the restriction

Gn = ont (pa(DH)NDE — o, (DF)
Z — gOn(Z)

is a covering map.

It sufices to show that @, is a proper map. Let (2;)ien C ¢, (¢n(DF)) NDF such that
(&n(xi));en converges to p € ¢y, (D%). Then (z;); converges to x € D,. Using Equation
(4.34) and the fact that fX has an end at 0, z # 0. If z € dD,, denoting Z € D such that
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©n(Z) = p, one has

15 (@) = fFR@)||gs < [ FR (@) = pllgs + | FR@) = @n(@)]|gs < 2rn

which contradicts the definition of ¢/. Thus, @, is a proper local diffeomorphism between

locally compact spaces, i.e. a covering map.
e Claim 4: this covering map is one-sheeted.

To compute the number of sheets, let v : [0,1] — D¥ be a loop of winding number 1
around 0, I' = fR(~) and I = @n(y) € M and let us construct a homotopy between T

and T. Let
o : [0,1] — R3

s +— (1=9)(t)+ sT'(t).

For all ¢,s € [0,1],
loe(s) = T(#)llgs <

which implies that o(s) € Tub,,, M® because M% is complete. One can thus define the
following homotopy between I' and r

H : 0,12 — MR~
(s,t) +——= mpoos)

where 7, is the projection from Tub,, M= to MZ. Using the fact that £ is an embedding,

the degree of I' is one, and the degree of T is also one. Hence, ¢, is one-sheeted.

e Conclusion: the map ¢ is a diffeomorphism, so f, (]D)Z,) is a graph over M* contained
in its embedded tubular neighbourhood and f, (]D):,) is thus embedded.

O]

We can now apply Proposition 19 to each case. Let (¢,) be any sequence in (=7,T)

such that ¢, — 0.
o If r > s, we set f?} = fte and ﬁl = fi,. We aim to apply Proposition 19 on ﬁ’f and
fn. The tubular radius ry, is of the order of 4t, and Hypothesis (4.31) is satisfied

because ﬁ’f tends to an immersion of a sphere. Equation (4.30) and Proposition 18
ensure that Hypotheses (4.32) and (4.33) hold.

o If r < s, we set f:’f = ifte and fn = iftn. We aim to apply Proposition 19 on ﬁ’f
and fA‘n The tubular radius r, is of the order of 4 and Hypothesis (4.31) is satisfied
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4.5. EMBEDDEDNESS

because f?f tends to an immersion of a catenoid (see [38]). Equation (4.30) and
Proposition 18 ensure that Hypotheses (4.32) and (4.33) hold.

The second point of our theorem is then proved.
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4.6 Iwasawa extended

In this section, we set A%’I ={AeC : 5 <|A<1}.

Lemma 7. Let F : .A% ; — SLoC be a holomorphic map that can be continuously
extended to the circle A; and such that F(A\) € SU;y for all A € A;. Then F holomorphically

extends to Ap into a map that satisfies
t 1 -1
F ()\) =F(\) VA e Ag. (4.38)

Proof. Apply Schwarz reflexion principle on each coefficient of the matrix

Fl\) = Fii(N) + Faa(N) Fia(X) — For(N)
i (F12(A) + Far(A)) i (Fii(A) — Faz(N))

where Fj; denote the entries of F. The fact that F(A\) € SU; for all A € A; ensures that
ImF =0 on A;. Thus, F holomorphically extends to Ag and satisfies for all A € Ag

Hence, F' holomorphically extends to Ag and satisfies

() (3)-

which implies Equation (4.38) because F'(\) € SLyC. O

Corollary 4. Let ® : Ap — SLoC be a holomorphic map and let F'B be the Iwasawa
decomposition of its restriction to A;. Then F holomorphically extends to Ag, satisfies

Equation (4.38), and B holomorphically extends to Dg.

Proof. Write F = ®B~! to holomorphically extend F to A L Apply Lemma 7 to holo-
morphically extend F to Ag, and write B = F~1® to holomorphically extend B to Dgr. [

4.7 Derivative of the monodromy

The following proposition, used in Section 4.3, is derived from Proposition 8 in [39].

Proposition 20. Let & be a C! family of matrix-valued 1-forms on a Riemann surface
3., defined for ¢ in a neighbourhood of ¢ty € R. Let 3 be the universal cover of X. Fix a
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point zg in ¥ and let zy be a lift of zy to Y. Let ®; be a continuous family of solutions of
dd; = & on Y such that for all t,

[M(to), 4, (20)®¢(20) "] =0, (4.39)

where M(t) is the monodromy of ®; with respect to some v € 71(%, z9). Let ¥ be the lift
of 7 to ¥ such that 5(0) = Zp. Then M is differentiable at ¢y and

133 _
_/\/l/(to) = </ (I)thftt ’t=to CI’tol) X M(to).
v
In particular, if M(tg) = %Iz or if ®;(20) is constant, then (4.39) is satisfied.

Proof. Proposition 8 in [39] is proved in the case where ®;(zg) is constant. Let ®;(z) =
®;(20) 14 (2), so that d:ﬁt = &)tft and &)t(zo) =1,. Let Mv(t) be the monodromy of &%
along v. Then Proposition 5 of [39] applies and

R t0) = ((f F02) g hets Bl ) Kt

On the other hand,
M(t) = @4(20) M (1) Py (20) "

and because of Equation (4.39),
M(to) = ®4(20) M(to)®¢(20) .
Thus, M is differentiable at ¢y and

M'(to) = Py, (20) M’ (t0) Py, (20)

which proves the proposition. ]

4.8 A control formula on the unitary frame

The following proposition is used in Section 4.4.

Proposition 21. Let (3,€, 20, ®,,) be a set of untwisted DPW data, holomorphic for
A€ Ar with R > 1. Then for all 21,25 € ¥ and v C X joining 21 to 2o,

1Pz M, < C1F G2 VLo, x exp ((R -/ p2<w>|a1<w>r|dw|)
Y
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where C' is a uniform positive constant, a_j(z)dz is the A~! factor of ¢ and p(z) is the

upper-left entry of Pos(®)(z,0).

Proof. Write

(20 = A7 (8 a‘if”) dz+ N0 (CO(Z) 20(2) > dz +O()).

bo(2) —co(2)

Let ® = F'B be the Iwasawa decomposition of ®. Computing formula (4.40) of |7] in an

explicit form and in the untwisted setting gives dF = F'L where
-1 120 R B N
T A e R O 2
bop P Pz —Apa_1 ppz

F(z,\)=F (z i,)

so that F(z,\) € SUy for all A € Ap. Then dF = FL where

L(z,\) =L <z, |i|> .

Using the variation of constants method, for all z1, 29 € ¥ (we ommit the variable \),

Let

F(z1) = F(22)F(2) " F(21) + ( / " Pw) (L(w) - E(w)) ﬁ(w)—1> F(z1).

22

But

7 a_1 (WA (1 — w
L(w,)\)—L(w,)\):pZ(w)< 0 1(w)A™ (1= [A])d >

—a_(w)A (1= A7) dw 0
so there exists a uniform constant C such that

< O(R = 1)p*(w) a1 (w)]|dw|

R

HL(w,)\) - Z(w,)\)HA

and the result follows from Gronwall’s inequality (Lemma 2.7 in [36]) using the fact that
F € SU, for all A € Ag. O

As an application, recall that in the untwisted R? setting, if f = Sym(F), then f is a

CMC 1 conformal immersion whose metric is given by
ds = 2p%|a_1||dz|.
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So let 21,29 € ¥ and v C ¥ be a path joining f(z1) to f(z2). Then,

PGVl < OGN Ly e (L5201 (4.40)
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Chapter 5

Constant mean curvature n-noids 1n

Hyperbolic space

L Using the DPW method, we construct genus zero Alexandrov-embedded constant
mean curvature (greater than one) surfaces with any number of Delaunay ends in hyperbolic

space.

Introduction

In [7], Dorfmeister, Pedit and Wu introduced a loop group method (the DPW method)
for constructing harmonic maps from a Riemann surface into a symmetric space. As a
consequence, their method provides a Weierstrass-type representation of constant mean
curvature surfaces (CMC) in Euclidean space R3, three-dimensional sphere S3, or hyper-
bolic space H®. Many examples have been constructed (see for example [19, 8, 32, 6, 13, 14]).
Among them, Traizet [39, 38] showed how the DPW method in R3 can construct genus
zero n-noids with Delaunay ends (as Kapouleas did with partial differential equations tech-
niques in [16]) and glue half-Delaunay ends to minimal surfaces (as did Mazzeo and Pacard
in [26], also with PDE techniques). A natural question is whether these constructions can
be carried out in H3. Although properly embedded CMC annuli of mean curvature H > 1
in H3 are well-known since the work of Korevaar, Kusner, Meeks and Solomon [23], no
construction similar to [16] or [26] can be found in the literature. This paper uses the

DPW method in H® to construct these surfaces. The two resulting theorems are as follows.

Theorem 11. Given a point p € H?, n > 3 distinct unit vectors uy, - - - ,u, in the tangent

1. This chapter is the second paper of the thesis. It has been assigned the arXiv number 1905.09096
but has not been submitted yet.
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space of H? at p and n non-zero real weights 71, - - - , 7, satisfying the balancing condition

and given H > 1, there exists a smooth 1-parameter family of CMC H surfaces (M)

Zﬂ'ui =0 (5.1)
i=1

0<t<T

with genus zero, n Delaunay ends and the following properties:

1.

Denoting by w;; the weight of the i-th Delaunay end,

. Wit
lim =T
t—0 t

. Denoting by A;; the axis of the i-th Delaunay end, A;; converges to the oriented

geodesic through the point p in the direction of w,.

. If all the weights 7; are positive, then M, is Alexandrov-embeddedd.

. If all the weights 7; are positive and if for all i # j € [1,n], the angle 6;; between u;

and u; satisfies

0, VH? -1
sin =L > ———— (5.2)
2 2H

then M; is embedded.

Theorem 12. Let My C R? be a non-degenerate minimal n-noid with n > 3 and let

H > 1. There exists a smooth family of CMC H surfaces (M)
1.
2.
3.

0<[t|<T in H? such that

The surfaces M; have genus zero and n Delaunay ends.

After a suitable blow-up, M; converges to My as t tends to 0.

If My is Alexandrov-embedded, then all the ends of M; are of unduloidal type if ¢t > 0
and of nodoidal type if ¢ < 0. Moreover, M; is Alexandrov-embedded if ¢ > 0.

Following the proofs of [39, 38] gives an effective strategy to construct the desired CMC

surfaces My. This is done in Sections 5.3 and 5.4. However, showing that M; is Alexandrov-

embedded requires a precise knowledge of its ends. This is the purpose of the main theorem

(Section 5.2, Theorem 14). We consider a family of holomorphic perturbations of the data
giving rise via the DPW method to a half-Delaunay embedding fo : D* ¢ C — H? and
show that the perturbed induced surfaces f;(D*) are also embedded. Note that the domain

on which the perturbed immersions are defined does not depend on the parameter ¢, which

is stronger than f; having an embedded end, and is critical for showing that the surfaces

M; are Alexandrov-embedded. The essential hypothesis on the perturbations is that they

do not occasion a period problem on the domain D* (which is not simply connected). The

proof relies on the Frébenius method for linear differential systems with regular singular
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5.1. DELAUNAY SURFACES IN H?® VIA THE DPW METHOD

Figure 5.1 — Theorem 11 ensures the existence of n-noids with small necks. For H > 1
small enough (H ~ 1.5 on the picture), there exist coplanar embedded n-noids with more
than siz ends.

points. Although this idea has been used in R? by Kilian, Rossman, Schmitt [20] and [30],
the case of H? generates two extra resonance points that are unavoidable and make their
results inapplicable. Our solution is to extend the Frobenius method to loop-group-valued

differential systems.

5.1 Delaunay surfaces in H? via the DPW method

This Section fixes the notation and recalls the DPW method in H3.

5.1.1 Hyperbolic space

Matrix model. Let R'? denote the space R* with the Lorentzian metric (z,z) = —23 +
23 +x3+23. Hyperbolic space is the subset H? of vectors z € R such that (z,z) = —1 and
xo > 0, with the metric induced by R"3. The DPW method constructs CMC immersions

into a matrix model of H3. Consider the identification

o+ T3 X1+ 129
x = (zo, 21,72, 23) € RV ~ X = . € Ho
Tr1 —1xre2 X9 — I3

where Hg := {M € M(2,C) | M* = M} denotes the Hermitian matrices. In this model,
(X,X) = —det X and H? is identified with the set H5 * N SL(2,C) of Hermitian positive
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5.1. DELAUNAY SURFACES IN H?® VIA THE DPW METHOD

definite matrices with determinant 1. This fact leads us to write

H? = {FF* | F € SL(2,C)}.

0 1 0 i 10
Ul_(l o)’ U2_<i 0)’ 03_<0 1>’ 53

gives us an orthonormal basis (o1, 02, 03) of the tangent space T1,H? of H? at the identity

Setting

matrix. We choose the orientation of H? induced by this basis.

Rigid motions. In the matrix model of H3, SL(2, C) acts as rigid motions: for all p € H?
and A € SL(2,C), this action is denoted by

A-p:= ApA* € H3.

This action extends to tangent spaces: for all v € T,H?, A -v = AvA* € TA.pH3. The
DPW method takes advantage of this fact and contructs immersions in H? with the moving

frame method.

Geodesics. Let p € H3 and v € UT,H3. Define the map

geod(p,v) : R —» H3 (5.4)
t +—— pcosht+ vsinht. '

Then geod(p, v) is the unit speed geodesic through p in the direction v. The action of

SL(2,C) extends to oriented geodesics via:

A - geod(p,v) :=geod(A - p, A -v).
Parallel transport. Let p,¢ € H3 and v € TpH3. We denote the result of parallel
transporting v from p to g along the geodesic of H? joining p to ¢ by Tjv € TqH3. The

parallel transport of vectors from the identity matrix is easy to compute with Proposition
22.

Proposition 22. For all p € H? and v € T}, H3, there exists a unique S € H;+ NSL(2,C)
such that p = S - I. Moreover, I'T v = S - v.

Proof. The point p is in H? identified with ”H;Jr NSL(2,C). Define S as the unique square
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root of p in H4 T N SL(2,C). Then p = S - 1. Define for ¢ € [0, 1]:
S(t) :=exp (tlogs), y(t) == S(t) - Ia, v(t) == S(¢) - v.

Then v(t) € Ty H? because

and S - v =0(1) € T,H3.
Suppose that S is diagonal. Then

v(t) = (6; eoat> = geod(Iy, 03)(at)

is a geodesic curve. Write v = vlo] + v209 + v303 and compute S(t) - oy to find

at 0
v(t) = vloy + vioy +0? (e :

0 _e—at

Compute in RY3

Du(t) <dv(t)

T
il = (M) —at T =0

to see that v(t) is the parallel transport of v along the geodesic 7.
If S is not diagonal, write S = QDQ~! where Q € SU(2) and D € HJ T N SL(2,C) is
diagonal. Then,
Sv=Q (D-(Q"v)=Q-TP=Q " ).

But for all A € SL(2,C), p,q € H? and v € T,H?,
A
A-ng:FA‘gA'v

and thus
S-v=TI7v.
2
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5.1. DELAUNAY SURFACES IN H?® VIA THE DPW METHOD

5.1.2 The DPW method for CMC H > 1 surfaces in H*

Loop groups. Inthe DPW method, a whole family of surfaces is constructed, depending
on a spectral parameter \. This parameter will always be in one of the following subsets
of C (p>1):

S'={ eC|N=1}, A,={ eC|p'<[N<p}, D,={NeC||)<p}.
Any smooth map f : S' — M(2,C) can be decomposed into its Fourier series

O = 3

1€EZ
Let |- | denote a norm on M(2,C). Fix some p > 1 and consider
1£1, =D Ifilo'™.
1€EZL

Let G be a Lie group or algebra of M(2,C). We define
e AG as the set of smooth functions f: S' — G.

e AG, C AG as the set of functions f such that ||f[|, is finite. If G is a group (or an
algebra) then (AG), |-||,) is a Banach Lie group (or algebra).

AGEO C AG, as the set of functions f such that f; =0 for all ¢ < 0.

ALG, C AG%O as the set of functions such that fy is upper-triangular.

ARSL(2,C), € A4SL(2,C), as the set of functions that have positive elements on
the diagonal.

We also define AC as the set of smooth maps from S! to C, and AC, and A(CEO as above.
Note that every function of AG, holomorphically extends to A, and that every function of
AG%O holomorphically extends to D,.

We will use the Frébenius norm on M (2, C):
Al =D Jag)?
1,J

Recall that this norm is sub-multiplicative. Therefore, the norm ||-|| , is sub-multiplicative.
Moreover, for all A € ASL(2,C),,

1471, =t
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5.1. DELAUNAY SURFACES IN H?® VIA THE DPW METHOD

and for all A € AM(2,C), and A € A,

(AN < (1A, -

The DPW method relies on the Iwasawa decomposition. The following theorem is

proved in [27] and is cited with our notation in [38].

Theorem 13. The multiplication map ASU(2), x A¥SL(2,C), — ASL(2,C), is a smooth
diffeomorphism between Banach manifolds. Its inverse map is called “Iwasawa decomposi-
tion” and is denoted for ® € ASL(2,C),:

Iwa(®) = (Uni(®), Pos(®)) .

The ingredients. Let H > 1, ¢ = arcoth H > 0 and p > e?. The DPW method takes

for input data:
e A Riemann surface X.

e A holomorphic 1-form on ¥ with values in Asl(2,C), of the following form:

a A8

v -«
where «, 8, v are holomorphic 1-forms on ¥ with values in A(C%O. The 1-form £ is
called “the potential”.

e A base point zg € X.
e An initial condition ¢ € ASL(2,C),.

The recipe. The DPW method consists in the following steps:

1. Let Zg be any point above 2y in the universal cover S of . Solve on ¥ the following

{ de = ¢ (5.5)
®(z0) = ¢

Then @ : ¥ — ASL(2, C),, is called “the holomorphic frame”.

Cauchy problem:

2. Compute pointwise on Y the Iwasawa decomposition of ®:
(F(z),B(2)) :=Iwa®(z2).
The unitary part F' of this decomposition is called “the unitary frame”.
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3. Define f : Y — H3 via the Sym-Bobenko formula:
f(z) = F(z,e ) F(z,e7 1) = Sym, F(z)

where F(z, \g) := F(2)(Xo).

Then f is a CMC H > 1 (H = cothq) conformal immersion from 3 to H3. Its Gauss map

(in the direction of the mean curvature vector) is given by
N(z) = F(z,e %)o3F(z,e79)" =: Nor,F(z)

where o3 is defined in (5.3). The differential of f is given by

= 2sin 2)°F(z,e7? 0 f(z0) z,e )"
df (2) = 2sinh(q)b(2)* F (2, )(M 0 >F( e ?) (5.6)

where b(z) > 0 is the upper-left entry of B(z) |x—o. The metric of f is given by
ds (=) = 2sinh(@)b(=)* |32, 0)|
and its Hopf differential reads
—26(z,0)7(z,0) sinh ¢ d2>. (5.7)

Remark 13. The results of this paper hold for any H > 1. We thus fix now H > 1 and
q = arcoth H. Hence,

Rigid motions. Let H € ASL(2,C), and define the new holomorphic frame ®=H
with unitary part F and induced immersion f = Squﬁ. If H € ASU(2),, then F=HF

and ® gives rise to the same immersion as ® up to an isometry of H?>:

f(z) = H(e ) - f(2).

If H ¢ ASU(2),, this transformation is called a “dressing” and may change the surface.

Gauging. Let G: % — A, SL(2, C), and define the new potential:
E=¢-G:=G %G+ G dG.
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The potential §A is a DPW potential and this operation is called “gauging”. The data
(3, &, 20, ¢) and (Z,E, 20, ¢ G(z0)> give rise to the same immersion.

The monodromy problem. Since the immersion f is only defined on the universal
cover i, one might ask for conditions ensuring that it descends to a well-defined immersion
on Y. For any deck transformation 7 € Deck (f] / E), define the monodromy of ® with
respect to 7 as:

M (®) := ®(7(2))®(2) "' € ASL(2,C),.

This map is independent of z € 3. The standard sufficient conditions for the immersion f
to be well-defined on ¥ is the following set of equations, called the monodromy problem in
H?:

M. (®) € ASU(2),,

, (5.8)
M (®)(e~9) = +L,.

V1 € Deck (i/E) , {

Use the point zy defined in step 1 of the DPW method to identify the fundamental group
T1(3, 20) with Deck(3/%). Let {7i}ticr be a set of generators of 71 (3, 20). Then the
problem (5.8) is equivalent to

Viel, { M, (2) € ASU(2),, (5.9)
Moy (®)(e0) = 415,

Example: the standard sphere. The DPW method can produce spherical immersions
of ¥ = CU {00} with the potential

—1

and initial condition ®g(0,A) = Io. The potential is not regular at z = oo because it has
a double pole there. However, the immersion will be regular at this point because g is

gauge-equivalent to a regular potential at z = co. Indeed, consider on C* the gauge

G(z,A)-(Z )

-\
0 N 12724z
Gz =
&s - G(z,\) (0 0 )

N= O

The gauged potential is then
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which is regular at z = oco. The holomorphic frame is

Ds(z,A) = <(1) Al ) (5.10)

and its unitary factor is

1 1 At
Fs(z,\) = —— i )
VI+zP\-z2 1
The induced CMC-H immersion is

1 (1 +e2|z|?  2zsinhgq )

s(2) =
fs(2) 1422 \ 2zZsinhg 14 e 2|z

It is not easy to see that fs(X) is a sphere because it is not centered at Iy. To solve this
problem, notice that Fy(z,e™9) = R(q)Fs(z)R(q)~! where

0 ez

R(q) = <62 0q> € SL(2,C) (5.11)

and

and compute

~ 1 (e 9+ez*  2zsinhg sinhg (|z2—1 2z
2) = = (coshq)lz +
fs(2) 1+ |z|? ( 2zsinhq e+ e 9|z (cosh )Tz 1+ [z 2z 1—z?

fs(2) = geod(Iz, vs(2))(q) (5.12)

with geod defined in (5.4) and where in the basis (o1, 02, 03) of T1,H?,

vs(2) 1= ——

= TR (2Rez,2Imz, |2|* — 1) (5.13)
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describes a sphere of radius one in the tangent space of H? at Iy (it is the inverse stere-
ographic projection from the north pole). Hence, fg(E) is a sphere centered at Iy of
hyperbolic radius g and fs (X) is a sphere of same radius centered at geod(I2, 03)(q).

One can compute the normal map of fs:

Ns(z) := NorgFs(z) = R(q) - Ns(z)

where

- B 1 e”9—ellz|> —2zcoshgq
Ng(z) := Nor (F z ) =
s(2) a (£5(2) 1+ |2]? < —2zcoshq e 9z|* — ¢!

= —(sinh ¢)I — (cosh q)vs(z) = —geod (Iz, vs(2)) (¢).

Note that this implies that the normal map Nor, is oriented by the mean curvature vector.

5.1.3 Delaunay surfaces

Constant mean curvature H > 1 surfaces of revolution in H? have been described in

the DPW framework in [32]. We recall here the basic facts needed to our purpose.
The data. Let ¥ = C*, & 4(2,\) = A, 5(\)271dz where

0 A1
Ars(N) = TATES) L seR Aes (5.14)
rA+ s 0

and initial condition ®, 4(1) = Io. With these data, the holomorphic frame reads
@ps(z) = 20,

The unitary frame F, , can be expressed in terms of elliptic functions (see [32]) and the
DPW method states that the map f,s = Squ(Fr,s) is a CMC H immersion from the

universal cover C* of C* into H?.

Monodromy. Computing the monodromy along v(8) = €% for 6 € [0, 2] gives
M (D, 5) =M, (Pr ) = exp (2imA,5) .

Recall that 7, s € R to see that i4, s € Asu(2),, and thus M (®,) € ASU(2),: the first

equation of (5.9) is satisfied. To solve the second one, one can determine r and s such that
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A, s(e7)? = 115, which will imply that M (®,5) (e™9) = —I,. This condition is equivalent
to )
72 + 5% + 2rscoshq = 7 (5.15)

Seeing this equation as a polynomial in 7 and computing its discriminant (1 + 4s? sinh? ¢ >
0) ensures the existence of an infinite number of solutions: given a couple (r,s) € R?
solution to (5.15), fs is a well-defined CMC H immersion from C* into H?.

Surface of revolution. Let (r,s) € R? satisfying (5.15) and let § € R. Then,
D, (eiaz> = exp (i0A, 5) Pr(2).
Using 14, s € Asu(2), and diagonalising A, s(e™?) gives

frs (eiez> = exp (i@Am(e_q)) - frs(2)
= (Hysexp (i0D) H,}) - frs(2)

Hrs:i 1 —2(re 4+ 5s) ’ D 5 0 '
T V2 \2(re? +5) 1 0

Noting that exp (i0D) acts as a rotation of angle 6 around the axis geod(I2, 03) and that

where

H, s acts as an isometry of H? independent of 6 shows that exp (i0A, s(e79)) acts as a
rotation around the axis H, s - geod(Iz,03) and that f, s is CMC H > 1 immersion of

revolution of C* into H? and by definition (as in [23]) a Delaunay immersion.

The weight as a parameter. For a fixed H > 1, CMC H Delaunay surfaces in H3
form a family parametrised by the weight. This weight can be computed in the DPW
framework: given a solution (r, s) of (5.15), the weight w of the Delaunay surface induced
by the DPW data (C*, &, s, 1,12) reads

w = 27w X 4rssinh g (5.16)
(see [32] or [9] for details).

w

Lemma 8. Writing ¢ := > and assuming t # 0, equations (5.15) and (5.16) imply that

t < T17
rt=1(1-2Ht+2yT1 —tvTr — 1), (5.17)
s?=3(1-2Ht+ 2Ty —tvT2 — 1)
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with
_ tanh % 1

T —
! 2 <2tanh%

=T5.

Proof. First, note that (5.15) and (5.16) imply

1 1
r? s = 1 (1= 2tcothg) = (1 - 2H1)
and thus
H
t§§<Tg. (5.18)
If r =0, then t =0. Thus r # 0 and
t
§=—F—.
4r sinh ¢
Equation (5.15) is then equivalent to
t2 Ht 1 1—2H¢t t2
2 4 2
Pt == = - r? 4+ — 0.
16r2sinh?q = 2 4 4 16 sinh? ¢

Using coth g = H, the discriminant of this quadratic polynomial in 72 is

A(t) = % (1 —4Ht + 4t%)

which in turn is a quadratic polynomial in ¢ with discriminant

~ H?—1

A
16 >0

because H > 1. Thus
(Th —t)(1x — 1)

4
because H = cothq. Using (5.18), A(t) > 0 if, and only if t < Ty and

At) =

r? =

(1 —9Ht + 2\/(Ty — t)(T — t)) .

oo =

By symmetry of equations (5.15) and (5.16), s? is as in (5.17). O

We consider the two continuous parametrisations of  and s for ¢ € (—oo,T1) such that
(r, s) satisfies equations (5.15) and (5.16) with w = 27t:

1
r(t) == 2i71§ (1-2Ht+2yT1 —tVT, — 1)*,

t (5.19)
S(t) = 4r(t)sinhg"
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Choosing the parametrisation satisfying r > s maps the unit circle of C* onto a parallel
circle of maximal radius, called a “bulge” of the Delaunay surface. As ¢ tends to 0, the
immersions tend towards a parametrisation of a sphere on every compact subset of C*,
which is why we call this family of immersions “the spherical family”. When r < s, the
unit circle of C* is mapped onto a parallel circle of minimal radius, called a “neck” of the
Delaunay surface. Ast tends to 0, the immersions degenerate into a point on every compact
subset of C*. Nevertheless, we call this family the “catenoidal family” because applying a
blowup to the immersions makes them converge towards a catenoidal immersion of R3 on
every compact subset of C* (see Section 5.4.1 for more details). In both cases, the weight

of the induced surfaces is given by w = 27t.

5.2 Perturbed Delaunay immersions

In this section, we study the immersions induced by a perturbation of Delaunay DPW
data with small non-vanishing weights in a neighbourhood of z = 0. Our results are the
same whether we choose the spherical or the catenoidal family of immersions. We thus drop
the index r, s in the Delaunay DPW data and replace it by a small value of t = 4rssinh g
in a neighbourhood of ¢ = 0 such that

tanh %
t < Thax := 5

1

— - (H _VH?- 1) .
2

For all € > 0, we denote

De:={z€C||z| <€}, D?:=DA{0}.

€

Definition 16 (Perturbed Delaunay potential). Let p > €9, 0 < T < Tiax and € > 0. A
perturbed Delaunay potential is a continuous one-parameter family (gt)te(—TI) of DPW
potentials defined for (¢,2) € (=71,T) x D} by

&(2) = Az Ndz + Cy(2)dz

where A; € Asl(2,C), is a Delaunay residue as in (5.14) satisfying (5.19) and Cy(z) €
5l(2,C), is C! with respect to (¢,z), holomorphic with respect to z for all ¢ and satisfies
Co(z) = 0 for all z.

Theorem 14. Let p > €9, 0 < T < Tax, € > 0 and & be a perturbed Delaunay potential
C? with respect to (¢,z). Let ®; be a holomorphic frame associated to & for all ¢ via the

DPW method. Suppose that the family of initial conditions ¢; is C? with respect to t,
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with ¢g = Z‘;‘U, and that the monodromy problem (5.9) is solved for all ¢t € (=7,T). Let
ft = Sym, (Uni ®;). Then,
1. For all § > 0, there exist 0 < € <€, 7" > 0 and C' > 0 such that for all z € D}, and
t e (=1, T")\{0},

dys (fi(2), fP(2)) < O]z

where fP is a Delaunay immersion of weight 27t.
2. There exist 77 > 0 and € > 0 such that for all 0 < ¢t < T", f; is an embedding of D7,

3. The limit axis as ¢ tends to 0 of the Delaunay immersion fP oriented towards the
end at z = 0 is given by:

1 1 —ef
7 ( . 16 ) -geod (Iz, —o3) in the spherical family (r > s),
e

geod (Ig, —op) in the catenoidal family (r < s).

Let & and ®; as in Theorem 14 with p, T" and € fixed. This Section is dedicated to the
proof of Theorem 14.

The C%-regularity of & essentially means that Cy(2) is C? with respect to (¢, z). Together
with the C2-regularity of ¢y, it implies that ®; is C? with respect to (¢, z). Thus M(®;) is
also C? with respect to t. These regularities and the fact that there exists a solution ®;
solving the monodromy problem are used in Section 5.2.1 to deduce an essential piece of
information about the potential & (Proposition 24). This step then allows us to write in
Section 5.2.2 the holomorphic frame ®; in a Mz P form given by the Frébenius method
(Proposition 25), and to gauge this expression, in order to gain an order of convergence
with respect to z (Proposition 26). During this process, the holomorphic frame will loose
one order of regularity with respect to ¢, which is why Theorem 14 asks for a C2-regularity
of the data. Section 5.2.3 is devoted to the study of dressed Delaunay frames Mz in order
to ensure that the immersions f; will converge to Delaunay immersions as ¢ tends to 0,
and to estimate the growth of their unitary part around the end at z = 0. Section 5.2.4
proves that these immersions do converge, which is the first point of Theorem 14. Before
proving the embeddedness in Section 5.2.6, Section 5.2.5 is devoted to the convergence of

the normal maps. Finally, we compute the limit axes in Section 5.2.7.

5.2.1 A property of &

We begin by diagonalising A; in a unitary basis (Proposition 23) in order simplify the

computations in Proposition 24, in which we use the Frébenius method for a fixed value of
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A = e*%. This will ensure the existence of the C! map P; € ASL(2,C), that will be used
in Section 5.2.2 to define the factor P in the Mz4P form of ®,.

Proposition 23. There exist ¢ < R < p and 0 < T” < T such that for all t € (=77, T"),
Ay = HtDth_l with H; € ASU(2)g and ¢D; € Asu(2)g. Moreover, H; and Dy are smooth

with respect to .

Proof. For all X\ € S,

1 tA T A —e) (N —e 1
—det A¢(\) = 1 + ( 4Sinil(q ) (5.20)
1+4sinhq ()\—i-)\ —QCoshq)E]R.

Extending this determinant as a holomorphic function on A,, there exists 7" > 0 such that
1 1 P

With this choice of 7", the function py : A, — C defined as the positive-real-part square
root of (—det A;) is holomorphic on A, and real-valued on S'. Note that p; is also the
positive-real-part eigenvalue of A; and thus A, = H; D, H,” U with

1 (1 e ()0
Ht(A)_ﬂ<m§ I e U E (5.21)

Let e < R < p. Forall t € (-T",7"), iy € ACg and the map ¢t — p; is smooth on
(=T",T"). Moreover, Hy € ASU(2)g, iD; € Asu(2)r and these functions are smooth with
respect to t. [

Remark 14. The bound ¢ < 7" ensures that that 4 det A;()\) is an integer only for ¢t = 0
and \ = e*9. These points make the Frébenius system resonant, but they are precisely the
points that bear an extra piece of information due to the hypotheses on M(®;)(e?) and
®y. Allowing the parameter ¢ to leave the interval (—=7",T") would bring other resonance
points and make Section 5.2.2 invalid. This is why Theorem 14 does not state that the end

of the immersion f; is a Delaunay end for all ¢.

Remark 15. At t = 0, the change of basis H; in the diagonalisation of A; takes different

values whether r > s (spherical family) or r < s (catenoidal family). One has:

1 (1 =t
Hy(\) = 7 <>\ ) > in the spherical case, (5.22)
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1 ({1 -1
Hy(A\) = — in the catenoidal case. (5.23)
v2 1l 1

In both cases, ug = %, and thus Dy is the same.

A basis of AM(2,C),. Let R and T’ given by Proposition 23. Identify AM(2,C), with
the free AC,-module M(2,AC,) and define for all ¢ € (=T",T") the basis

B, = Hy (B, B2, E3, Ey) H7 ' =: (X1, X12, X1.3, X1.4)

where

For all t € (=71",T"), write

_ 4
Ct(0> _ <tCl (t) A 1tC2(§)> _ Zt/c\j(t)Xt,j~ (5.24)
j=1

tes(t) —tel(t

The functions c;,¢; are C! with respect to t € (—7",T") and take values in ACg. Moreover,

the functions ¢;(t) holomorphically extend to ID,.

Proposition 24. There exists a continuous function ¢z : (=7",7") — ACp such that for
al A€ Stand t € (-T",T"),

&) =t — 1) (A — e~ )33 (1),

Proof. Tt suffices to show that ¢3(0) = 0 and that the holomorphic extension of ¢3(t)
satisfies 3 (¢, ) = 0 for all t.

To show that ¢3(0) = 0, recall that the monodromy problem (5.9) is solved for all ¢ and
note that M(®g) = —Ia, which implies that, as a function of ¢, the derivative of M(®;) at
t = 0is in Asu(2),. On the other hand, Proposition 20 in Chapter 4 ensures that

dM(® d
d(tt) |t=0: </7 @0% |t:0 (I)al> M(Cbo)

where v is a generator of 71 (D}, zp). Expanding the right-hand side gives

dA d
_/ondt li=o s Ao~ _/ZAOCt(Z) li=0 Ao, Asu(2),,.
’ t ~ dt

Using Proposition 20 of Chapter 4 once again, note that the first term is the derivative
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of M(2t) at t = 0, which is in Asu(2), because M(z*1*) € ASU(2), and M(z10) = —I,.
Therefore, the second term is also in Asu(2),. Diagonalising Ay with Proposition 23 and
using Hy € ASU(2) g gives

1 d

2w Rfﬁg <ZD0HO_ $Ct(2) ‘t:() H()ZDO> € Aﬁu(2)R.

But using Equation (5.24),

4
d ~ _
ZDOHO_I Ct(2> ’t:O H()Z_DO = ZDOH()_l E Cj(O)X()Vj Hoz Do
j=1

dt

Thus

which gives ¢3(0) = 0.

Let A\g € {e?,e71} and t # 0. Using the Frobenius method (Theorem 4.11 of [36] and
Lemma 11.4 of [35]) at the resonant point A9 ensures the existence of ¢ > 0, B,M €
M(2,C) and a holomorphic map P : Dy — M(2,C) such that for all z € D,

Dy(z,Ng) = M2B2A:0) P(2),

B2 =0,

P(0) =1y,

[Ai(Xo), d.P(0)] 4+ d.P(0) = C(0,\g) — B.

Compute the monodromy of ®; at A = Ag:
M(®:)(No) = M exp(2imB) 25 exp(2imA;(N\o))z BM ™! = —M exp(2in BYM ™.

Since the monodromy problem (5.9) is solved, this quantity equals —Iy. Use B2 = 0 to
show that B = 0 and thus

D4z, \g) = M 24N P(2),
P(0) =1,
[A¢(Ao), d=P(0)] + d.P(0) = C¢(0, Ao).
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Diagonalise A;()\g) with Proposition 23 and write d,P(0) = Y p;j X; jtogetforalll < j <4
pj ([Di(Xo), Ejl + Ej) = t¢j(t, M) Ejj.
In particular, using pt(Ag) = 1/2,

t/C\3<t, /\0) = P3 ([l)t()\())7 Eg] + E3) =0.

Note that with the help of equations (5.24) and (5.22) or (5.23), and one can compute
the series expansion of ¢3(0):
2!

c3(0) = ) c2(0,0) + O\ if r < s,

1
c3(0) = 563(0,0) +0O) if r>s.

Hence,
sca(t,0) + res(t,0) — 0. (5.25)
t—0

The following map will be useful in the next section:

teo(t tes(t
62( ) Xio+ 037())(1573 + t/C\4(t)Xt74. (5.26)

te (=T, T") — PYt) := te1(t) X1 +
( ) (t) 1(t) Xt T2 2 T T,

For all ¢, Proposition 24 ensures that the map P!(¢,)\) holomorphically extends to Ag.
Taking a smaller value of R if necessary, P'(t) € AM(2,C)g for all t. Moreover,

tr PL(t) = te(t) + teu(t) = tr C(0) = 0.

Thus P! € CY((~T",T"), Asl(2,C)R).

5.2.2 The 24P form of &,

The map P! defined above allows us to use the Frébenius method in a loop group
framework and in the non-resonant case, that is, for all ¢ (Proposition 25). The techniques
used in [30] will then apply in order to gauge the Mz4P form and gain an order on z
(Proposition 26).

Proposition 25. There exists ¢ > 0 such that for all ¢ € (=T",T") there exist M; €
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ASL(2,C)g and a holomorphic map P; : Do — ASL(2,C)g such that for all z € D,
Dy(2) = Mz Py(2).

Moreover, M, is C! with respect to t, My = Iy, Pi(z) is C! with respect to (¢, 2), Py(z) = Is

for all z and P;(0) = I for all ¢.

Proof. For all k € N* and t € (—T",T"), define the linear map

Lir : AM(2,C), — AM(2,C),
X —  [Ag, X] + EX.

Use the bases B; and restrict £, to AM(2,C)g to get

k 0 0 0
0 k+2m 0 0
0 0 k—2u 0
0 0 0 k

Mat[gt Enk =

Note that
det Ly j, = k*(k* — 44}).

Thus for all £ > 2, det £;; is an invertible element of ACg, which implies that L, is
invertible for all ¢t € (=7",7") and k > 2.

Write
Ci(z) = Z C’t7kzk.

keN

With P?:=15 and P! as in Equation (5.26), define for all k > 1:
PR = Lo | D PO
itj=k

so that the sequence (P¥)geny C CH((=T',T"),Asl(2,C),) satisfies the following recursive
system for all t € (=717, T"):

{ PO(t) = Iy,
Logp1(PE() = 30,4 o PH(Cry-

With Py(z) := 3. P¥(t)2*, the Frobenius method ensures convergence for all ¢ (see [36]).

Restricting to a compact interval in (—7",T") if necessary, there exists ¢’ > 0 such that for
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all z€ DY and t € (=T, T"),
Dy(2,\) = Mz Py(2)

where M; € ASL(2,C)g is C! with respect to ¢, P;(z) is C* with respect to t and z, and for
all t, P, : Do — ASL(2,C)p is holomorphic and satisfies P;(0) = Is. Moreover, the map
P! defined in (5.26) vanishes at t = 0 and thus Py(z) = Iy for all 2 € D, which implies
that My = I. O

Proposition 26. There exists ¢ > 0 such that for all t € (=T, T") there exist an admissi-
ble gauge Gy : D. — A4 SL(2, C)g, a change of coordinates h; : D¢ — D,, a holomorphic
map P; : Dy — ASL(2,C)g and M; € ASL(2,C) such that for all z € D,

R (®,Gy) (2) = Mzt Py(z).

Moreover, ]\Z is C! with respect to t, ]\70 = I and there exists a uniform C' > 0 such that

for all £ and z,
Hﬁt(z) _ 12H elIER
P

Proof. The proof goes as in Section 4.3.3 of Chapter 4. Expand P!(t) given by Equation

(5.26) as a series to get (this is a tedious but simple computation):

0 stea(t0)+rtca(t.0) y -1 O(\%) O(\)
Pl (t) )\) = StCQ(t,O)+7‘tCS(t70) ’ 0 + O 0 ‘
et )it N o)
Define
pt := 2sinh q(sca(t, 0) 4+ res(t, 0))
so that

gt 1= ptAt — Pl(t) S A+5[(2, (C)R
and recall Equation (5.25) together with Py =I5 to show that gy = 0. Thus
Gy = exp(g1z) € A4 SL(2,C)p
is an admissible gauge. Let ¢ < |p¢|~* for all t € (—=T",T"). Define

ht : D€/ — DE

z
z o T

Then,
& =R (& - Gy) = Azl dz + Cy(2)dz
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is a perturbed Delaunay potential as in Definition 16 such that 6}(0) = 0 for all ¢t €
(=T',T"). The holomorphic frame

&% = h: ((I)th)

satisfies d®; = 513t§~t With C~’t(0) = 0, one can apply the Frobenius method on gNt to get

®y(z) = Mz Py(z)

with MQ =1y and
Hf’t(z) _ IQHR < C|t]|2|2.

O]

Conclusion. The new frame @, is associated to a perturbed Delaunay potential (gﬁ)te(_Tl7T/)’
defined for z € D7, with values in Asl(2,C)g and of the form

&(2) = Az dz + Cy(2)zdz.

Note that Cy(z) € sl(2,C)g is now C! with respect to (¢,z). The monodromy problem
(5.9) is solved for EIVJt and for any zp in the universal cover 152‘/, 50(50) = 5640. Moreover,
writing f; := Sym, (Uni Cf)t) and f; := Sym,(Uni ®;), then fi = h¥ fy with ho(z) = z. Hence

in order to prove Theorem 14 it suffices to prove the following proposition.

Proposition 27. Let p > €9, 0 < T < Thax, € > 0 and & be a perturbed Delaunay
potential as in Definition 16. Let ®; be a holomorphic frame associated to & for all ¢ via
the DPW method. Suppose that the monodromy problem (5.9) is solved for all ¢t € (=T7,T)
and that

By (2) = Mz Py(2)

where M; € ASL(2,C), is C' with respect to t, satisfies My = Iy, and P, : D, —
ASL(2,C), is a holomorphic map such that for all ¢ and z,

1P(2) = 2|, < Clt]|=|*

where €' > 0 is a uniform constant. Let f; = Sym, (Uni®;). Then the three points of
Theorem 14 hold for f;.

We now reset the values of p, T' and € and suppose that we are given a perturbed De-
launay frame & and a holomorphic frame ®; associated to it and satisfying the hypotheses

of Proposition 27.
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5.2.3 Dressed Delaunay frames

In this section we study dressed Delaunay frames arising from the DPW data ((E*, ¢P,1, My),

where C* is the universal cover of C* and
eP(2) == Az tdz

with Ay as in (5.14) satisfying (5.19), and M; as in Proposition 26. The induced holomor-
phic frame is
P (2) = Mz,

Note that the fact that the monodromy problem (5.9) is solved for ®; implies that it is
solved for ®F because P; is holomorphic on D,. Let IN){ be the universal cover of D] and
let

FP:=Uni®’, B :=Pos®’,  fP:=Sym/F".

In this section, our goal is to prove the following proposition.

Proposition 28. The immersion fP is a CMC H Delaunay immersion of weight 27t for
|t| small enough. Moreover, for all § > 0 and e? < R < p there exists C,T" > 0 such that

HFtD(Z)HR < C|Z’_6-

for all (t,2) € (=1",T") x D3.

Delaunay immersion. We will need the following lemma, inspired by [31].
Lemma 9. Let M € SL(2,C) and A € su(2) such that

M exp(A)M~! e SU(2). (5.27)
Then there exist U € SU(2) and K € SL(2,C) such that M = UK and [K, A] = 0.

Proof. Let
K=VvVM*M, U=MK"

be a polar decomposition of M. The matrix K is then hermitian and positive-definite
because det M # 0. Moreover, U € SU(2) and Equation (5.27) is then equivalent to

Kexp(A)K~! € SU(2). (5.28)
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Let us diagonalise K = QDQ~! where Q € SU(2) and

Hence Equation (5.28) now reads
D exp (Q_IAQ) D™t eSU(2). (5.29)

But @ € SU(2) and A € su(2), so Q1 AQ € su(2) and exp (@1 AQ) € SU(2). Let us

write

_ P —q
exp (QTTAQ) = ) P le? =1
qg D
so that Equation (5.29) is now equivalent to
r=1o0rq=0.

If z = 1then K = Iy and [K,A] = 0. If ¢ = 0 then Q71AQ is diagonal and A is
Q)-diagonalisable. Thus K and A are simultaneously diagonalisable and [K,.A] = 0. O

Corollary 5. There exists 7" > 0 such that for all t € (=T7",7"),
(I)t(Z) = UtZAth
where U; € ASU(2) and K; € ASL(2,C)g for any e? < R < p.

Proof. Write M (®P) = M;exp (A;) My ! with Ay = 2imA; € Asu(2), continuous on
(=T,T). The map

1
M — VM*M = exp (210gM*M)

is a diffeomorphism from a neighbourhood of I € ASL(2,C), to another neighbourhood
of Iy. Using the convergence of M, towards Is as t tends to 0, this allows us to use Lemma
9 pointwise on A, and thus construct K; := \/M;M; € ASL(2,C)p for all t € (=T",T")
and any e? < R < p. Let Uy := Mth_l € ASL(2,C)r and compute U, U} to show that
U, € ASU(2)g. Use Lemma 9 to show that [K;()\), A;(\)] = 0 for all A € S'. Hence
(K, Af] = 0 and thus ®P = Uz K. O

Returning to the proof of Proposition 28, let § € R, z € C* and e¢? < R < p. Apply
Corollary 5 to get
dP(e2) = Uy exp(i0A) U P (2)
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and note that U; € ASU(2)p, i4; € Asu(2)g imply
Ri(0) := U exp(i0A;)U; ' € ASU(2)p. (5.30)

Hence
FP(e"%) = Ry(0)FP(2)

and
fP(€%2) = Ry(0,e79) - fP(2).

Use Section 5.1.3 and note that U; does not depend on 6 to see that fF is a CMC immersion
of revolution and hence a Delaunay immersion. Its weight can be read from its Hopf
diffferential, which in turn can be read from the potential ¥ (see Equation (5.7)). Thus fP

is a CMC H Delaunay immersion of weight 27t, which proves the first point of Proposition
28.

Restricting to a meridian. Note that for all ¢t € (=77,7") and z € C*,
IEP @)l < CIFEP D]

where

C =sup {||R:(O)| x| (t,0) € (T, T") x [0, 2]}

depends only on R. We thus restrict £ to R* with ﬁtD(ZL‘) = FP(|z]) (z = |2]).

Gronwall over a period. Recalling the Lax Pair associated to FP (see Section 4.8 in
Chapter 4), the restricted map ﬁtD satisfies dﬁtp = ﬁtDWtdaE with

— 1 0 A Lrb? (x) — sb72(z)
Walw,A) = x <5b‘2(93) — \rb?(z) 0 )

where b(x) is the upper-left entry of BP(x) [x—o. Recall Section 5.1.2 and define
gi(z) = 2sinh g|r|b(z)?z "

so that the metric of f2 reads gi(x)|dz|. Let fP := exp* fP. Then the metric of fP
satisfies
ds® = 4r%(sinh q)*b* (") (du® + db?)
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at the point u 4 26 = log z. Using Proposition 33 of Section 5.5 gives

Sy St du ™
20r|b?(e*)du = d ]
/0 [r|b"(e")du =7 an /0 2sinh g|r[b?(ev) — [t|

where S; > 0 is the period of the profile curve of ﬁ Thus

St St

/ [rb? (x)z ™Y |de = g = / |sb™2(z)z ! |d.
1 1

H/Wt(ﬂC)HR = \f?‘sb_Q(x)x—1‘ LoR ‘Tb2($)x_1

et
/1

where C' > 0 is a constant depending only on p and T. Applying Gronwall’s lemma to the

Using

we deduce

/Wt(x)HRdx - g(2R+ V2) < C (5.31)

inequality

7@, < |pwl,+ [ [Pl [Tl e

el < Ew oo ([ 7], ).

Use Equation (5.31) together with the fact that ﬁOD(O) = FP(1) = I and the continuity
of Iwasawa decomposition to get C,T > 0 such that for all t € (—=7",7") and z € [1, e%]

gives

Hﬁtp(x)HR <c. (5.32)

Control over the periodicity matrix. Lett € (=T',T') and Ty := FP(ze5)FP(2)"! €
ASU(2)g for all z > 0. The periodicity matrix I'; does not depend on z because Wt(xest) =
/Wt(x) (by periodicity of the metric in the log coordinate). Moreover,

Il = || FP (e EP)Y| < |EPe)

#ol,
‘RHt()R

and using Equation (5.32),
Tl p < C. (5.33)

Conclusion. Let x < 1. Then there exist £ € N* and ( € [1, eSt) such that z = (e 5,
Thus using equations (5.32) and (5.33),

Gl P L Y )

Ix
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Writing
o — log¢ logx

S Sy

one gets
1 —logC
CF = exp 08¢ log C | exp o8 logz | < Cx™%
St S
where §; = 1°§tc does not depend on = and tends to 0 as ¢ tends to 0 (because Sy P +00).
—

Returning back to F}P, we showed that for all § > 0 there exist 77 > 0 and C' > 0 such
that for all t € (=7",7") and 0 < |2] < 1,

IFP ()| < Clal™°

and Proposition 28 is proved.

5.2.4 Convergence of the immersions

In this section, we prove the first point of Theorem 14: the convergence of the immer-
sions f; towards the immersions fP. Our proof relies on the Iwasawa decomposition being

a diffeomorphism in a neighbourhood of Is.

Behaviour of the Delaunay positive part. Let z € ﬁ’f The Delaunay positive part
satisfies
IBPG), = I[P ()~ Mgz, < |[EP ()], el |11,

Diagonalise A; = ]'1T75D1J1T{1 as in Proposition 23. By continuity of H; and M;, and accord-
ing to Proposition 28, there exists C,T” > 0 such that for all t € (=7",7")
1B ()| < Cla™ |27 .-

Recall Equation (5.20) and extend pf = —det Ay to Ag with p > R > R. One can thus
assume that for ¢ € (=7",T') and X € A,

1
I < 5 +6,

which implies that
‘z‘“t(’\)‘ < !z|_71_5.

This gives us the following estimate in the ACx norm (using Cauchy formula and R > R):
7l < €Iz
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and
BP(2)||,, < Clz| 7 2. (5.34)
R

Behaviour of a holomorphic frame. Let

&, := BP (@P) ' &, (BP) .

Recall Proposition 26 and use Equation (5.34) to get for all t € (=T, T") and z € D¥:

|@u(2) — 1| = [[BP ) (Fi(2) 1) BP(:) 7| < Clel|=l' .

Behaviour of the perturbed immersion. Note that
~ -1 -1
¢, = BP (7)) @ (BY)

— (FP)'Fy x B, (BP)™

and recall that the [wasawa decomposition is differentiable at the identity to get
|FP(2) " Fy(z) — | , = Hum &,(2) — UniIQHR < O]z
The map
Fy(z):= FP(z,e79) ' Fy(z,e7%) € SL(2,C)
satisfies

\E(z) - 12| < |FP(z) " Fi(z) = L[, < CJt]]2 . (5.35)

Lemma 10. There exists a neighbourhood V' C SL(2,C) of I and C' > 0 such that for all
A e SL(2,C),
AcV = |tr(AA") —2| < C|A-T)*.

Proof. Consider exp : U C sl(2,C) — V C SL(2,C) as a local chart of SL(2,C) around

I5. Let A € V. Write
f + SL(2,C) — R
— tr (XX*)

and a =log A € U to get
If(A) = f(I2)| < df(T2) - a + Claf*.
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Notice that for all a € sl(2,C),
df(I2) -a=tr(a+a*) =0

to end the proof. O

Corollary 6. There exists a neighbourhood V' C SL(2,C) of Iy and C' > 0 such that for
all Fi, Fs € SL(Q,(C),

F2_1F1 eV — dHB (fl,fg) <C |F2_1F1 -1y

)

where f; = F; - Iy € H3.

Proof. Just note that

ds (f1, fo) = cosh ™! (= (f1, f2)) = cosh™! <; tr(f51f1)>

and that
tr (fz_lfl) =tr ((F2F2*)_1 F1F1*) —tr FF*

where F = F2*1F1. Apply Lemma 10 and use cosh™'(1 + 2) ~ v/2z as z — 0 to end the
proof. O

Without loss of generality, we can suppose from (5.35) that C|t||z|'~*° is small enough
for E(z) to be in V for all t and z. Apply Corollary 6 to end the proof of the first point

in Theorem 14:
digs (fi(2), 1P (2)) < CJtl]2*.

5.2.5 Convergence of the normal maps

Before starting the proof of the second point of Theorem 14, we will need to compare
the normal maps of our immersions. Let N; := Nor,F; and NP := Nor,FP be the normal
maps associated to the immersions f; and fP. This section is devoted to the proof of the

following proposition.

Proposition 29. For all § > 0 there exist €/, 7",C > 0 such that for all t € (=7, T") and
ze D,
P 3
[ M) - 52, < el

The following lemma measures the lack of euclideanity in the parallel transportation of

unitary vectors.
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Lemma 11. Let a,b,c € H3, v, € T,H? and v, € TyH? both unitary. Let A be the
hyperbolic area of the triangle (a, b, c). Then

Proof. Just use the triangular inequality and Gauss-Bonnet formula in H? to write:

|

b
Lovg — vy

o < AT D500 = Tiunlr

v, — vy T 0, — TS0,

T,H3 ‘ H3

<]

a

rr$rbo, — v,

TR TS vy o e
a

< A+ [TGva — Tyop|lp,ps -

Lemma 12 below clarifies how the unitary frame encodes the immersion and the normal

map.

Lemma 12. Let f = Sym,F and N = Nor,F. Denoting by (5(2),Q(z)) € Hy ™ N
SL(2,C) x SU(2) the polar decomposition of F(z,e™9),

f=58* and N=T{(Q03).

Proof. The formula for f is straightforward after noticing that QQ* = Is and S* = 5. The

formula for N is a direct consequence of Proposition 22. O

Proof of Proposition 29. Let 6 >0, t € (—7",7") and z € D},. Using Lemma 11,
fD
[P N(z) = NP | < A+ |0 Niz) = T NP

where A is the hyperbolic area of the triangle (I, fi(z), fP(z)). Using Heron’s formula in
H? (see [40], p.66), Proposition 28 and the first point of Theorem 14,

A < dys (fi(2), fP(2)) x digs (I, fP(2)) < Clt]]2]°.
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Moreover, denoting by Q; and QP the unitary parts of Fi(e9) and FP(e?) in their polar
decomposition and using Lemma 12 together with Corollary 7 and Equation (5.35),

[y M2) = Do NP )| = 1@u(2) -5 = QP (=) -
<C HFtD<Z)H; HFtD(Z)ilFtD(Z) — Iy

< O]z,

I

5.2.6 Embeddedness

In this section, we prove the second point of Theorem 14. We thus assume that ¢ > 0.
We suppose that C,e, T, > 0 satisfy Proposition 29 and the first point of Theorem 14.

Lemma 13. Let r, > 0 such that the tubular neighbourhood of fP(C*) with hyperbolic
radius r; is embedded. There exists T' > 0 and 0 < € < € such that for all 0 < ¢t < T,
x € 0D, and y € DY,

dgps (f2(2), [P (y)) > Ary.

Proof. The convergence of fP(C*) towards a chain of spheres implies that r; tends to 0
as t tends to 0. If fP does not degenerate into a point, then it converges towards the
parametrisation of a sphere, and for all 0 < € < e there exists T' > 0 satisfying the
inequality. If fP does degenerate into a point, then a suitable blow-up makes it converge
towards a catenoidal immersion on the punctured disk D} (see Section 5.4.1). This implies

that for € > 0 small enough, there exists T' > 0 satisfying the inequality. O

We can now prove embeddedness with the same method than in Chapter 4. Let Dy :=
fP(C*) ¢ H? be the image Delaunay surface of fP. We denote by nP : D; — TH?
the Gauss map of D;. We also write M; = fi(D}) and n; : My — TH®. Let r; be the

maximal value of « such that the following map is a diffeomorphism:

T : (—a,0) xDy —> Tub, D; C H3
(s,p) — geod (p,nF (p)) (s).

According to Lemma 18, the maximal tubular radius satisfies 7 ~ ¢ as ¢ tends to 0. Using

the first point of Theorem 14, we thus assume that on D},

dis (fu(2), 7 (2)) < oy
where oo < 1 is given by Lemma 19 of Section 5.5.
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Let 7 be the projection from Tub,, D; to D;. Then the map

©r DY — Dt

€

z > mo fi(2)

is well-defined and satisfies
dygs (th(z)vftp(z)) < 2ary (5.36)

because of the triangular inequality.

Lemma 14. For ¢t > 0 small enough, ¢; is a local diffeomorphism on D .

Proof. 1t suffices to show that for all z € D},
[rEnP ei=) = Nz | < 1. (5.37)
Using Lemma 11 (we drop the variable z to ease the notation),
gt -] < 4+ e

where A is the area of the triangle (ft, fr, Lpt). Recall the isoperimetric inequality in H?
(see [37]):
P2 > An A+ A?

from which we deduce
A<P? < (2dys (fir [7) + 2ds ((Pt7ftD))2 < (6ar)?

which uniformly tends to 0 as ¢ tends to 0. Using the triangular inequality and Proposition
29,
|cEnP (o0 =T || < ||rlnP (o) = NP|| + Cltlo 2

and the second term of the right-hand side uniformly tends to 0 as t tends to 0. Because

« satisfies Lemma 19 in Section 5.5,
H LnPen) - NP <1
which implies Equation (5.37). O
Let ¢ > 0 given by Lemma 13. The restriction

oo ¢ oo (e(DR)ND: — o (Dy)
2 — pe(2)
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is a covering map because it is a proper local diffeomorphism between locally compact
spaces. To show this, proceed by contradiction as in R? (see [30]): let (2;)ien C o5 * (ee(DE))N
D¢ such that (@;(x;));cy converges to p € ¢ (D}). Then (x;); converges to z € D.. Using
Equation (5.36) and the fact that f7 has an end at 0, z # 0. If z € 8D, denoting & € D,
such that ¢;(Z) = p, one has

dys (fP (), fP (@) < dys (fP(x),p) + dus (£ (2), (7)) < dary < 47y

which contradicts the definition of ¢’.

Let us now prove as in Chapter 4 that ¢, is a one-sheeted covering map. Let «y : [0, 1] —
D? be a loop of winding number 1 around 0, I' = fP(v) and I = i(v) C D, and let us
construct a homotopy between I and I. Forall s € [0,1], et o : [0,1] — H? be a geodesic
arc joining 05(0) = I'(s) to o4(1) = I'(s). For all s, € [0,1], dgs (05(r),[(s)) < ar; which
implies that os(r) € Tub,, D; because D; is complete. One can thus define the following
homotopy between I' and r

H : [0,1? — Dy
(r,s) +—— moos(r)

where m; is the projection from Tub,, D; to D;. Using the fact that fP is an embedding,
the degree of I' is one, and the degree of T is also one. Hence, ¢; is one-sheeted.

Finally, the map ¢; is a one-sheeted covering map and hence a diffeomorphism, so
[t (D:,) is a normal graph over D; contained in its embedded tubular neighbourhood and
It (D:,) is thus embedded, which proves the second point of Theorem 14.

5.2.7 Limit axis

In this section, we prove the third point of Theorem 14 and compute the limit axis of
fP as t tends to 0. Recall that fP = Sym,, (Uni (MtzAf)) where M tends to I as ¢ tends
to 0. Hence, the limit axis of f7 and ﬁD = Sym,, (Uni (zAt)) are the same. Two cases can

occur, whether r > s or r < s.

Spherical family. At¢t=0,r = % and s = 0. The limit potential is thus

AL
&o(z,A) = ( 8 ) 2z tdz.

N> O
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Consider the gauge

The gauged potential is then

A ld
go-G(Z,)\) = (8 0 Z) :gg(Z,)\)

where &5 is the spherical potential as in Section 5.1.2. Let ® = 240G be the gauged

holomorphic frame and compute

=G(1,\)

where ®g is defined in (5.10) and H = Hp as in (5.22). This means that ® = Hdsg,
Uni ® = HFs and Sym,,(Uni ®) = H(e™4)- fs because H € ASU(2)z. Thus using equations
(5.12) and (5.13),

3 (00) = Sym, (Uni ®)(00) = H(e ™) - f5(c0)
= (H(e"")R(q)) - geod (I2, 03) (q)
= H(e %) - geod (Iz,03) (2q).

And with the same method,
f3(0) = H(e™9) - geod (I, 3) (0).

This means that the limit axis of ftD as t — 0, oriented from z = 0o to z = 0 is given in
the spherical family by
H(e ) - geod (Iz,—03) .

Catenoidal family. We cannot use the same method as above, as the immersion ]?tD

degenerates into the point Is. Use Proposition 32 of Section 5.4.1 to get
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where 1) is the immersion of a catenoid of axis oriented by —o1 as z — 0. This suffices
to show that the limit axis oriented from the end at oo to the end at 0 of the catenoidal

family :thD converges as t tends to 0 to the oriented geodesic geod (I, —071).

5.3 Gluing Delaunay ends to hyperbolic spheres

In this section, we follow step by step the method Martin Traizet used in R? ([39])
to construct CMC H > 1 n-noids in H? and prove Theorem 11. This method relies on
the Implicit Function Theorem and aims to find a pair (&, ®;) satisfying the hypotheses
of Theorem 14 around each pole of an n-punctured sphere. More precisely, the Implicit
Function Theorem is used to solve the monodromy problem around each pole and to ensure
that the potential is regular at z = oco. The set of equations characterising this problem
at t = 0 is the same as in [39], and the partial derivative with respect to the parameters
is the same as in [39] at ¢ = 0. Therefore, the Implicit Function Theorem can be used
exactly as in [39] and we do not repeat it here. Showing that the surface has Delaunay
ends involves slightly different computations, but the method is the same as in [39], namely,
find a suitable gauge and change of coordinates around each pole of the potential in order to
retrieve a perturbed Delaunay potential as in Definition 16. One can then apply Theorem
14. Finally, we show that the surface is Alexandrov-embedded (and embedded in some

cases) by adapting the arguments of [38] to the case of H®.

5.3.1 The DPW data

Let H > 1, ¢ = arcoth H and p > e?. Let n > 3 and uy, - - , u, unitary vectors of Tj,H?>.
Suppose, by applying a rotation, that u; # +o3 for all i € [1,n]. Let vs : CU {c0} — S?
defined as in Equation (5.13) and m; := vg'(u;) € C*. Consider 3n parameters a;, b;,
i € A(szo assembled into a vector x which stands in a neighbourhood of a central value
Xo so that the central values of a; and p; are 7; and 7;. Introduce a real parameter ¢ in a
neighbourhood of 0 and define

Bi(N) i=t(A—e?) (A —e9).

The potential we use is

gt,x(Z, A) :

I
VR

0 A‘ldz>
Br(Nwx (2, A) 0
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where

R ai(\) bi(\)
wx(z,A) == Z <(z i) + /\)> dz.

i=1 = pi

The initial condition is the identity matrix, taken at the point z5 = 0 € ) where
N={z€C|Vie[l,n],|z —m| >¢€}

and € > 0 is a fixed constant such that the disks D(m;,2¢) C C are disjoint and do not
contain 0. Although the poles p1,...,p, of the potential § x are functions of A, & « is
well-defined on € for x sufficiently close to xo. We thus define ®; x as the solution to the
Cauchy problem (5.5) with data (€2, & x,0,I2).

The main properties of this potential are the same as in [39], namely: it is a perturbation
of the spherical potential £y x and the factor (A — e™?) in 3; ensures that the second equation

of the monodromy problem (5.8) is solved.

Let {v1, - ,vn—1} be a set of generators of the fundamental group m(£2,0) and define
for all i € [1,n — 1]
M;(t,x) == M, (Prx).

Noting that
AeSt = AT (A —e?) (A—e %) =—2(coshg— Re)) € R,

the unitarity of the monodromy is equivalent to

~ A
M;(t,x)(N) == = log M;(t,x)(\) € Asu(2),.

Bi(A)
Note that at ¢ = 0, the expression above takes the same value as in [39], and so does the
regularity conditions. One can thus apply Propositions 2 and 3 of [39] which we recall in

Proposition 30 below.

Proposition 30. For t in a neighbourhood of 0, there exists a unique smooth map ¢t —
x(t) = (ait, bit, Pit)i<i<n € (Wgo)g‘ such that x(0) = x, the monodromy problem and

the regularity problem are solved at (t,x(t)) and the following normalisations hold:
Vie[l,n—1], Re(ait) x=o=7i and p;¢ |rx=0= 7.
Moreover, at t = 0, Xg is a constant with a; real and such that

_ —2(11']71'
1+ |pil?

i

and Z a;vs(p;) = 0.
i=1
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Now write wy = wy(y), & = & x(r) and apply the DPW method to define the holo-
morphic frame ®; associated to & on the universal cover Q of Q with initial condition
®4(0) = Io. Let Fy := Uni®; and f; := Sym, F;. The monodromy problem for ®; being
solved, f; descends to a well-defined CMC H immersion on ). Use Theorem 3 and Corol-
lary 1 of [39] to extend f; to ¥y := CU{oo} \ {p1,:(0),...,pnt(0)} and define M; = fi(3;).
Moreover, with the same proof as in [39] (Proposition 4, point (2)), a;+ is a real constant

with respect to A for all ¢ and t.

5.3.2 Delaunay ends

Perturbed Delaunay potential. Let i € [1,n]. We are going to gauge & around its
pole p; +(0) and show that the gauged potential is a perturbed Delaunay potential as in
Definition 16. Let (r,s) : (—=T,7) — R? be the continuous solution to (see Section 5.1.3
for details)

rs = tag,

r2 4+ 52 4+ 2rscoshq = i,

r > S.

For all t and A, define ;4 z(2) := z + pi+(\) and

0
Gi(z,A) = w2 s

2y/z\/r+s\ vz

For T small enough, one can thus define on a uniform neighbourhood of 0 the potential

~ 0 )\—1
Eit(z,N) = (V5 1060) - Go) (2, ) = (Bt()\) Tt S) 2"z,

* A
TS\ (¢i,t,Awt(z))22 + ey 0

Note that by definition of 7, s and (3,

A
(r+sA\) (rA+s) = 1 + Be(N)aiy
and thus
g-;,t(zu A) = At()\)zfldz + Ci(z,\)dz

with A; as in Equation (5.14) satisfies Equation (5.19) and C} as in Definition 16. The
potential é,t is thus a perturbed Delaunay potential as in Definition 16. Moreover, using

Theorem 3 of [39], the induced immersion ﬁt satisfies

fi7t = @bzt,oft'
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Applying Theorem 14. The holomorphic frame <T>Z-,t = ;G associated to Em satisfies
the regularity and monodromy hypotheses of Theorem 14, but at t =0 and z = 1,

- (1 @m) A (V20N 1 (1w Ahmat
D;0(1,A) = (0 ) )(\_/% iﬁ) _\/5( _A . >—. M;(N),

and thus EIVDZ-7O(Z) = M;z4. Recall (5.21) and let

1 (1 =X\1
H:=Hy=— € ASU(2

and @Q; := Uni(M;H). Using Lemma 1 in Chapter 4, @; can be made explicit and one
can find a change of coordinates h and a gauge G such that ;I\DM = HQ;l(h*§i7t)G solves
d@,t = Cf%-,t&t where é’\i,t is a perturbed Delaunay potential and &)i’o(z) = z40 Explicitely,

1 1 )\_1771'
Qi(\) = N e <—)\7T¢ ) )

and

1+ |m|?)z 1 1 0
h(z) = ———", G(z,\) = —— .
(2) 11—z (2,4) VI—Tiz \ -Amz 1-—T2

One can thus apply Theorem 14 on é;t and </152-7t, which proves the existence of the family
(My) ey of CMC H surfaces of genus zero and n Delaunay ends, each of weight (according

to Equation (5.16))
87Tt(li7t

w; = 8mrssinhq = T

which proves the first point of Theorem 11 (after a normalisation on t). Let fi’t =

Sym,, (Uni @lt) and ]?th the Delaunay immersion given by Theorem 14.

Limit axis. In order to compute the limit axis of f; at the end around p; 4, let ﬁi’t be

the oriented axis of fﬁ at w = 0. Then, using Theorem 14,
A;jo=H(e?) - geod (g, —03) .

And using ﬁ,t(w) = H(e ) Qi(e™) ™1 (h* fi(2)),
Aio=H(Ee D)Qi(e™) ™ Ayg

and thus
Ao = Qi(e_q) . geod(Ig, —03).

)
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Computing M;H = ®s(m;) as in (5.10), one has Q; = Fs(m;). Hence
Ao = geod (fs(m;), —Ns(ms))

where Ny is the normal map associated to ®g. Using Equation (5.11), fs(z) = R(q) - fs(2)
and Ns(z) = R(q) - Ns(z) where Ng is the normal map of fs. Using Equation (5.12) and

the fact that .]?S is a spherical immersion gives
Ns(z) = I (—us(2))
and thus

Ao = geod (R(q) - fo(m), ~R(q) - Ns(m))
= R(q) - geod (fs(m), D™ us(m))
= R(q) - geod (I, u;) .

Apply the isometry given by R(q)~! and note that R(q) does not depend on i to prove
point 2 of Theorem 11.

5.3.3 Embeddedness

We suppose that ¢t > 0 and that all the weights 7; are positive, so that the ends of f;
are embedded. Recall the definition of Alexandrov-embeddedness (as stated in [38]):

Definition 17. A surface M? C M?3 of finite topology is Alexandrov-embedded if M
is properly immersed, if each end of M is embedded, and if there exists a compact 3-
manifold W with boundary W = S, n points p1,--- ,p, € S and a proper immersion
F:W =W\{p1, - ,pn} — M whose restriction to S = S\{p1,---,pn} parametrises
M.

The following lemma is proved in [38] in R? and for surfaces with catenoidal ends, but
the proof is the same in H? for surfaces with any type of embedded ends. For any oriented
surface M with Gauss map N and any r > 0, the tubular map of M with radius r is
defined by

T : (=rr)xM — Tub, M
(s,p) = geod(p,N(p))(s).

Lemma 15. Let M be an oriented Alexandrov-embedded surface of H? with n embedded
ends. Let » > 0 and suppose that the tubular map of M with radius r is a local diffeo-
morphism. With the notations of Definition 17, there exist a hyperbolic 3-manifold W’
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containing W and a local isometry F’ : W’ — H? extending F such that the tubular
neighbourhood Tub, S is embedded in W’.

In order to show that M is embedded, we will use the techniques of [38]. We thus
begin by lifting M; to R? with the exponential map at the identity expy, : R3 — H3. This
map is a diffeomorphism, so M; is Alexandrov-embedded if, and only if its lift ]\/Zt to R3
given by the immersion

ﬁ = epr_Qloft Y, — R?
is Alexandrov-embedded.

Let T, e > 0 such that f; (and hence ﬁ) is an embedding of D*(p;,€) for all i € [1,n]
and let fl?t : C\{pi+} — H3 be the Delaunay immersion approximating f; in D*(p; s, €).
Let J?th 1= expy, Lo th Apply an isometry of H? so that the limit immersion fo maps X
to a n-punctured geodesic sphere of hyperbolic radius g centered at Iy. Then fy(Xg) is a

Euclidean sphere of radius ¢ centered at the origin. Define

~

Ny - X — S2
z d(expil)(ft(z))Nt(z).

At t =0, No is the normal map of fo (by Gauss Lemma), but not for ¢ > 0 because the

Euclidean metric of R? is not the metric induced by expr, -

Let
hi : R —» R

v (rRolpun)
be the height function in the direction of the limit axis.

As in [38], one can show that

Claim 1. There exist 6 < ¢’ and 0 < €’ < € such that for all i € [1,n] and 0 <t < T,

max h;of; <8< min h;jof; < max h;jofi <J.
C(pit-€) C(pi,t,e') C(pi,te')

Define for all ¢ and t¢:
Y= {2 €D} o filz) =0}, A= {zeD} olhiofiz) =}
From their convergence as t tends to 0,
Claim 2. The regular curves v; ; and ’yg,t are topological circles around p; ;.
Define D; ¢, D;, as the topological disks bounded by i,/ ;, and A; ¢, A, as the topo-
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logical disks bounded by ﬁ(vi,t),ﬁ(’yat). Let A;; = Di,t\D;t. Then ft(Ai,t) is a graph
over the plane {h;(z) = d}. Moreover, for all z € D}, h; o fi(z) > & > 6. Thus

Claim 3. The intersection ﬁ(th) N A;; is empty.

Define a sequence (R; ;) such that ﬁ(th) transversally intersects the planes {h;(z) =
Ri,t,k}~ Define
Vitk = {Z € D}y | hio fir(2) = Rz’,t,kz} )

and the topological disks A; s, C {hi(x) = R; 1} bounded by ]?t(fyltk) Define A; ; 1, as the
annuli bounded by 7; ¢ and v; + g Define W; ¢, C R3 as the interior of ft(Ai,t’k)UAi’tUAi’t’k
and

Wie = | Wit
keN

Hence,

Claim 4. The union ﬁ(th) U A; is the boundary of a topological punctured ball W;; C
R3.
The union

Fr (B (D1g U Dpg)) UAL U U Ay

is the boundary of a topological ball Wy ; C R3. Take
Wt = WO,t U Wl,t J---u Wnﬂg

to show that ]\Z, and hence M; is Alexandrov-embedded for ¢t > 0 small enough.

Lemma 16. Let S C H? be a sphere of hyperbolic radius ¢ centered at p € H?. Let
n > 2 and {ui}icp ) C T,H3. Let {pi}icp,n defined by p; = S N geod(p, u;)(Ry.). For all
i € [1,n], let S; C H3 be the sphere of hyperbolic radius ¢ such that SN.S; = {p;}. For all
(i,7) € [1,n)?, let 0;; be the angle between u; and u;.

If for all i # 7,
. 1
0;; > 2 arcsin <200shq>

then S; N.S; =0 for all ¢ # j.

Proof. Without loss of generality, we assume that p = Iy. We use the ball model of H3

equipped with its metric
4d82E

(1-121)’
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where dsp is the euclidean metric and ||z|| is the euclidean norm. In this model, the
sphere S is centered at the origin and has euclidean radius R = tanh . For all i € [1,n],

the sphere .S; has euclidean radius

1 3q q tanh £
== (tanh = —tanh2 ) = —— 2
" z(an o — 2) 2coshq — 1

Let j # ¢. In order to have S; N S; = (), one must solve
.04
(R—l—r)sm7 >,
which gives the expected result. O

In order to prove the last point of Theorem 11, just note that

H—cothg — — - VI —1
- conhd 2coshq  2H

Suppose that the angle ;; between u; and u; satisfies Equation (5.2) for all ¢ # j. Then for
t > 0 small enough, the proper immersion F} given by Definition 17 is injective (because

of the convergence towards a chain of spheres) and hence M, is embedded.

Remark 16. This means for example that in hyperbolic space, one can construct embed-

ded CMC n-noids with seven coplanar ends or more.

5.4 Gluing Delaunay ends to minimal n-noids

Again, this section is an adaptation of Traizet’s work in [38] applied to the proof of
Theorem 12. We first give in Section 5.4.1 a blow-up result for CMC H > 1 surfaces in
Hyperbolic space. We then introduce in Section 5.4.2 the DPW data giving rise to the
surface M; of Theorem 12 and prove the convergence towards the minimal n-noid. Finally,

using the same arguments as in [38], we prove Alexandrov-embeddedness in Section 5.4.3.

5.4.1 A blow-up result

As in R? (see [38]), the DPW method accounts for the convergence of CMC H > 1
surfaces in H? towards minimal surfaces of R? (after a suitable blow-up). We work with

the following Weierstrass parametrisation:

W(2) = W(z0) + Re/z <;(1 = P, %(1 + 92)w7gw> (5.38)
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Proposition 31. Let ¥ be a Riemann surface, (&)icr a family of DPW potentials on X
and (®;)scr a family of solutions to d®; = ®;& on the universal cover S of Y, where I C R

is a neighbourhood of 0. Fix a base point zg € 3 and p > e?>1. Assume that

1. (t,2) — &(2) and t — ®4(z) are C! maps into Q'(X, Asl(2,C),) and ASL(2,C),

respectively.
2. For all t € I, ®; solves the monodromy problem (5.8).

3. ®g(z, ) is independent of A:

Let f, = Sym, (Uni(®;)) : & — H? be the CMC H = cothg immersion given by the
DPW method. Then, identifying 71, H? with R3 via the basis (01,02, 03) defined in (5.3),

o1
fm g e —To) =W

where W is a (possibly branched) minimal immersion with the following Weierstrass data:

L0672 (2)
ot

g(z) = w(z) = —4(sinh q)c(2) lt=o -

The limit is for the uniform C' convergence on compact subsets of X.

Proof. With the same arguments as in [38], (¢, z) — ®4(z), (t,2) — Fi(z) and (¢, 2) — By(2)
are C! maps into ASL(2,C),, ASU(2), and AFSL(2,C), respectively. At t = 0, & is

constant. Thus Fy and By are constant with respect to A:

o 1 a —¢ B _ 1 la|? +|c|* ab+cd
T VPt \e a) T VeR+]P\ 0 1)

Thus Fy(z,e %) € SU(2) and fy(z) degenerates into the identity matrix. Let b :=
Bi11 [x=0 and B; the upper-right residue at A = 0 of the potential &. Recalling Equa-
tion (5.6),
0 x
dfi(z) = 2by(2)? sinh ¢Fy(z,e79) | _ fulz) Fi(z,e7 ).
Be(2) 0
Hence (t,2) + dfi(z) is a C! map. At t =0, & = @516@0 is constant with respect to A,
s0 Bo = 0 and dfy(z) = 0. Define f(z) := 2 (fi(2) —Ip) for t # 0. Then dfy(z) extends at
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t =0, as a continuous function of (¢, z) by

I
no
121
B
=
()
N
o
Q
o
@
|
Q
o
@

aB — c2p
a2B — 2B acB + ach

where 3/ = %/Bt li—o. In T1,H3, this gives

- 1 i
dfo = 4sinhqRe <25/(a2 — ), %ﬁ/(cﬁ + ), —acﬁ/> .

Writing g = ¢ and w = —4c¢? sinh g gives:

fale) = Foo) + e [

20

(501 - e 50+ o)

As a useful example for Proposition 31, one can show the convergence of Delaunay

surfaces in H? towards a minimal catenoid.

Proposition 32. Let ¢ > 0, Ay = A, as in (5.14) with r» < s satisfying (5.19). Let

®y(2) := 24 and f; := Sym,, (Uni ®;). Then

Fomlim = (fi - 1) =

where ¢ : C* — R3 is the immersion of a catenoid centered at (0,0, 1), of neck radius 1

and of axis orientd by the positive z-axis in the direction from z = 0 to z = oc.

Proof. Compute

and

in order to apply Proposition 31 and get
7 ry (1 2y, ¢ 2
f(z):f(l)—i—Re 5(1_9 )w7§(1+g )w7gw
1
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where

z+1 1 (z-1)\?
g(z)—z_1 and w(z)—2< . )dz.

Note that ®;(1) = Iy for all ¢ to show that f(1) =0 and get

z o 1
flz) = Re/ (wldw, ?Z(l + w2)w*2dw7 5(1 — w2)w2dw> .
1
Integrating gives for (z,y) € R x [0, 27]:

F(e ) = p(a,y)

where
v Rx[0,2n] — R3
—

(z,9) (x, cosh(x) sin(y), 1 — cosh(zx) cos(y))

and hence the result. O

5.4.2 The DPW data

In this Section, we introduce the DPW data inducing the surface M; of Theorem 12.
The method is very similar to Section 5.3 and to [38], which is why we omit the details.

The data. Let (g,w) be the Weierstrass data (for the parametrisation defined in (5.38))
of the minimal n-noid My C R3. If necessary, apply a Mobius transformation so that
g(00) ¢ {0, 00}, and write

B(2)%dz
I[2 (2 = pio)*

Let H > 1, ¢ > 0 so that H = cothq and p > e?. Consider 3n parameters a;, b;,p; € AC,

w(z) =

(i € [1,n]) assembled into a vector x. Let

Ax(2,0) =) ai(N)2"1, By(z,A) =) bi(A)2"!
1=1 ]

=1
and (Z )\) B M . (z )\) _ Bx(Z,)\)QdZ
SEN=g Gy VT oo

The vector x is chosen in a neighbourhood of a central value xg € C3" so that Ay, = A,

By, = B and wx, = w. Let p; o denote the central value of p;. Introduce a real parameter
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t in a neighbourhood of 0 and write

t(A—e?)(\— e_q).

Bi(A) = 4sinh q

The potential we use is

0 A8, (Nwx (2, A))

x(2: 1) = (dzgx@z,x) 0

defined for (¢,x) sufficiently close to (0,x¢) on
Q={zeC|Vie[l,n],|z—pio| > e} U{oo}

where € > 0 is a fixed constant such that the disks D(p; o, 2¢) are disjoint. The initial

d(\) = (iQX(ZO7)‘) Z)

condition is

) 0

taken at zg € 2 away from the poles and zeros of g and w. Let ®; x be the holomorphic frame
arising from the data (€2, & x, 20, ¢) via the DPW method and f; x := Sym, (Uni ®; x).

Follow Section 6 of [38] to show that the potential & x is regular at the zeros of Bx and
to solve the monodromy problem around the poles at p;o for ¢ € [1,n —1]. The Implicit
Function Theorem allows us to define x = x(t) in a small neighbourhood (=7, T) of t =0
satisfying x(0) = x¢ and such that the monodromy problem is solved for all t. We can thus
drop from now on the index x in our data. As in [38], f; descends to €2 and analytically
extends to CU {oco}\ {p1,0,...,Pn0}. This defines a smooth family (M;)_7<t<7 of CMC

H surfaces of genus zero with n ends in H?.
The convergence of + (M; —Ip) towards the minimal n-noid My (point 2 of Theorem
12) is a straightforward application of Proposition 31 together with
-1
2 %1 (2)

=g(z), —4(sinhq)(Po21(2)) — = w(z).

D11(2)
®p.21(2)

Delaunay residue. To show that & is a perturbed Delaunay potential around each of

its poles, let i € [1,n] and follow Section 5.3.2 with

iea(2) = g (2 + g (pir(N)) .-

Define

Wi t(z,A) == wzt,xwt(z)
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and
a;t(A) = Rgg(z&i7t(z, A)).

Use Proposition 5, Claim 1 of [38] to show that for 7" small enough, «;; is real and does

not depend on \. Set

_ togy
rs = 4sinh ¢’
r?2 + 2+ 2rscoshqg =+
q - 4
r<s
and
VrA+s —1
_ vz 2vVrAtsyz
Gt(z7 )‘) - 0 ﬁ
VTrA+s

Define the gauged potential

G2 0) 1= (Pen&) - Gi) (2, N)

and compute its residue to show that it is a perturbed Delaunay potential as in Definition
16.

Applying Theorem 14. At ¢ =0 and z = 1, writing m; := g(pi0) to ease the notation,

~ il+m) i\ [+ 2 i (14w 1-m
D, o(1,N) = V2V2 ) = =: M,
o1, 3) ( ; 0) (o V2] v2 1

and thus @,O(z) = M;2z?0. Recall (5.21) and let

H = Hy = \}i G 11> € ASU(2),
and @; := Uni (Minl). Using Lemma 1 in [38], @; can be made explicit and one can
find a change of coordinates h and a gauge G such that @i,t = (Q:H)™! (h*:ﬁm) G solves
c@i,t = @,t@’t where g@t is a perturbed Delaunay potential and ii,o(z) = 240, One can thus
apply Theorem 14 on Ei,t and @7,5, which proves the existence of the family (M;)_p 1 of
CMC H surfaces of genus zero and n Delaunay ends, each of weight (according to Equation
(5.16))

w; ¢ = 8mrssinh g = 2mtoy ¢,

which proves the first point of Theorem 12. Let ﬁ-,t = Squ (Uni Cfnt> and let ]‘:Dt be the

Delaunay immersion given by Theorem 14.
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Limit axis. In order to compute the limit axis of f; at the end around p; 4, let ﬁijt be

the oriented axis of fg at z = 0. Then, using Theorem 14,
Ai,o = geod (I3, —071) .
And using fi,t(z) = (Q:H)™' - (h* fi(2)),
ANio = (Q:H)™"- A,

and thus
Aio=(QH) - geod(Iz, —oy).

Compute H - (—01) = o3 and note that M; H~! = ®(7;) to get
Aj o = geod (I, No(pio))

where Nj is the normal map of the minimal immersion.

Type of the ends. Suppose that ¢ is positive. Then the end at p;; is unduloidal if, and
only if its weight is positive; that is, a; ¢ is positive. Use Proposition 5 of [38] to show that
if the normal map Ny of My points toward the inside, then oo = 7 where 277, No(pio)
is the flux of My around the end at p;o (a;0 = —7; for the other orientation). Thus if
My is Alexandrov-embedded, then the ends of M, are of unduloidal type for ¢ > 0 and of
nodoidal type for t < 0.

5.4.3 Alexandrov-embeddedness

In order to show that M; is Alexandrov-embedded for ¢t > 0 small enough, one can
follow the proof of Proposition 6 in [38]. Note that this proposition does not use the
fact that M; is CMC H, but relies on the fact that the ambient space is R®. This leads
us to lift f; to R? via the exponential map at the identity, hence defining an immersion
ft : ¥t — R3 which is not CMC anymore, but is Alexandrov-embedded if, and only if f;
is Alexandrov-embedded. Let v : g — My C R3 be the limit minimal immersion. In
order to adapt the proof of [38] and show that M, is Alexandrov-embedded, one will need

the following Lemma.

Lemma 17. Let ﬁ = %ft Then ]?t converges to 1 on compact subsets of 3.

Proof. For all z,
expy, (fo(2)) = fo(z) = Lo,
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SO fo(z) = 0. Thus
lim f;(z) = %ﬁ(z) le=o -

t—0

Therefore, using Proposition 32,

¥(z) = lim + (fi() o)

= lim% (epr (ﬁ(Z)) — €Xpr, (ﬁ)(@))

t—0

= 9 p, (=) leo

dt
d ~
= dexpy,(0) - aft(z) lt=0

:%i_{%ﬁ(z).
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5.5 Appendix: CMC surfaces of revolution in H?

Following Sections 2.2 and 2.3 of [15],

Proposition 33. Let X : R x [0,27] — H? be a conformal immersion of revolution with
metric g2(s) (d32 + d02). If X is CMC H > 1, then g is periodic and denoting by S its
period,

S S 2
\/H2—1/ g(s)ds =m and / ds 2
0 0

g9(s)  |wl
where w is the weight of X, as defined in [23].

Proof. According to Equation (11) in [15], writing 7 = fv‘;‘ and g = 7e?,
(0/)2 =1-7? ((Heg + Lefg)2 — 62U> (5.39)

where ¢ € {£1} is the sign of w. The solutions o are periodic with period S > 0. Apply

an isometry and a change of the variable s € R so that

o' (0)=0 and o(0)= iréié}o(s).

By symmetry of Equation (5.39), one can thus define

2000) — mine?®  and b= e2°(3) = maxe?7(),

seR seER

a:=e

With these notations, Equation (5.39) can be written in a factorised form as

(0')2 =72(H? - 1)e % (b— 62(’) (62" —a) (5.40)
with )
1—2u7°H — /1 —472(LH — 72
- LT vV 72(1 72) (5.41)
272(H? — 1)
and
b 1—20m2H + /1 — 472 H — 72)
B 272(H? — 1) ‘
In order to compute the first integral, change variables v = €7, y = vVb — v? and = = \/51_7
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and use Equation (5.40) to get

S Vb
VH? - 1/ 7 ds = 2/H? — 1/ Tvdv
0 va

TVH?2 —1vVb— 0212 —a
I dy
o /\/m\/b—a—gf
—2/16133
o V1—zx?

= .

In the same manner with the changes of variables v = ¢77, y = Va= ! —v2 and = =
y
Va 151’
/S ds -2 b1/ dv
o 77 VH?Z =1 Jom12 oWb— 02V 2 —a
_ 2/“““’1 Ay
T2VH?2 -1 Jo Vb — a — aby?
B 2 L da
72V H? —1vab Jo V1 — 22
s
=7
because ab = —5—. O

H2-1

Lemma 18. Let D; be a Delaunay surface in H? of constant mean curvature H > 1 and

weight 27t > 0 with Gauss map 7;. Let r; be the maximal value of R such that the map

T : (-R,R)xD; —  Tub,, C H3
(r,p) — geod(p,:(p))(r)

is a diffeomorphism. Then r; ~ ¢ as ¢ tends to 0.

Proof. The quantity r; is the inverse of the maximal geodesic curvature of the surface.
This maximal curvature is attained for small values of ¢ on the points of minimal distance
between the profile curve and the axis. Checking the direction of the mean curvature vector
at this point, the maximal curvature curve is not the profile curve but the parallel curve.
Hence r; is the minimal hyperbolic distance between the profile curve and the axis. A

study of the profile curve’s equation as in Proposition 33 shows that
ry = sinh ™! (7 exp (Opnin)) = sinh ™! (T\/CL(T)) .
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But using Equation (5.41), as 7 tends to 0, a ~ 72 = |t|, which gives the expected result. []

Lemma 19. Let D; be a Delaunay surface in H? of weight 27t > 0 with Gauss map n;
and maximal tubular radius r;. There exist 7' > 0 and o < 1 such that forall0 <t < T
and p, ¢ € Dy satisfying ds (p, q) < ary,

[T (p) = me(a)|| <1

Proof. Let t > 0. Then for all p,q € Dy,
T3 (P) = me(@)]| < sup |12 (s)] > L)
SEYt

where I1; is the second fundamental form of Dy, 7 C Dy is any path joining p to ¢ and
£(y¢) is the hyperbolic length of +;. Using the fact that the maximal geodesic curvature k;
of D, satisfies k; ~ cothry as t tends to zero, there exists a uniform constant C' > 0 such
that

sup || I1(s)|| < C cothry.
s€Dy

Let 0 < a < (1+C)~! < 1 and suppose that dys (p,q) < ar;. Let oy : [0,1] — H? be

the geodesic curve of H? joining p to ¢. Then o4([0,1]) C Tubg,, and thus the projection
0¢([0,1]) — Dy is well-defined. Let ~y; := m; 0 0y. Then

IT97:(p) — m(q)|| < C cothry x sup ||dm(s)]|
Ciste

< Ccothry x  sup ||dm(s)| % dys (p, q)
sET‘ubart

tanh r
< C'cothry x ¢ X Qary
tanh r, — tanh(ary)

Cary Cuo <1
~ tanhr — tanh(ar;) 11—«

as t tends to zero. O

5.6 Appendix: Remarks on the polar decomposition

Let SL (2,C)*™ be the subset of SL(2, C) whose elements are hermitian positive definite.

Let
Pol : SL(2,C) — SL(2,C)"* xSU(2)

A+~  (Poly(A),Poly(A))
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be the polar decomposition on SL(2,C). This map is differentiable and satisfies the follow-

ing proposition.

Proposition 34. For all A € SL(2,C), ||dPoly (A)]| < |A].

Proof. We first write the differential of Poly at the identity in an explicit form. Writing

dPOlQ(Ig) : 5[(2,@) — 511(2)
M —  poly(M)

a b iIma b;zz
poly =1 . ) .
c —a S i Ima

Note that for all M € s[(2C),

gives

We then compute the differential of Poly at any point of SL(2,C). Let (Sp, Qo) €
SL (2,C)*" x SU(2). Consider the differentiable maps

6 ¢ SLR2C) — SLRC) @ : SUER) — SUR)
A —  SpAQo Q — QQo.

Then 1 o Poly 0 =1 = Poly and for all M € Ts,q,SL(2,C),
dPols (SoQo) - M = pol, (S ' MQy™) Qo.

Finally, let A € SL(2,C) with polar decomposition Pol(4) = (5,Q). Then for all
M € T4SL(2,C),

|dPoly(A) - M| = |poly (ST'MQ™) Q| < |S]| x | M|

and thus using
1
S =exp (2 log (AA*))

gives

[dPoly(A)]| < [S] < |A].
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O

Corollary 7. Let 0 < ¢ < log p and F, F> € ASU(2), with unitary parts Q; = Pola(Fj(e™9)).
Let € > 0 such that
B F =L, <e

If € is small enough, then there exists a uniform C > 0 such that for all v € T3, H?,
1Q2 v~ Q1 vllgy s < C P2l e
Proof. Let v € T;,H? and consider the following differentiable map

¢ : SU(2) — Ti,H3
Q — Q.

Then

HQ2 v — Q1 'U||TI2H3 = H¢(Q2) - (Q1)||TI2H3

IN

sup [ldb(+(1))]] x / 5 dt

t€[0,1]

where 7 : [0,1] — SU(2) is a path joining Q2 to Q1. Recalling that SU(2) is compact
gives

Q20— Q- vlly o < ClQ2 — 1l (5.42)
where C' > 0 is a uniform constant. But writing A; = F;(e™ %) € SL(2,C),
|Q2 — Q1| = [Polz(A2) — Pola (A1)

sup |[|[dPola(v(2))]| x /\’y )| dt
te[0,1]

IN

where 7 : [0, 1] — SL(2,C) is a path joining Ay to A;. Take for example
v(t) := Ay exp (tlog (A3 Ay)).

Suppose now that € is small enough for log to be a diffeomorphism from D(I3,€) NSL(2,C)
to D(0,€') Nsl(2,C). Then

|44~ b < R o], <

implies

()] < ClAz| and  [5(1)] < OC |Az|e
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where C , C > 0 are uniform constants. Using Proposition 34 gives
Q2 — Q1] < COC? Az e
and inserting this inequality into (5.42) gives

1Q2 v = Q1 - vllgy o < CCC? | A e < COC? | By e
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Résumé :

Les surfaces & courbure moyenne constante non-nulle apparaissent en physique comme
solutions & certains problémes d’interface entre deux milieux de pressions différentes. Elles
sont décrites mathématiquement par des équations aux dérivées partielles et sont construc-
tibles a partir de données holomorphes via une représentation similaire & celle de Weiers-
trass pour les surfaces minimales. On présente dans cette thése deux résultats s’appuyant
sur cette représentation, dite «méthode DPW». Le premier indique que les données don-
nant naissance & un bout Delaunay de type onduloide induisent encore un anneau plongé
aprés perturbation. Cette propriété sert notamment & démontrer que certaines surfaces
construites par la méthode DPW sont plongées. Le second résultat est la construction,
dans l’espace hyperbolique, de n-noides : surfaces plongées, de genre zéro, & courbure
moyenne constante et muni de n bouts de type Delaunay.

Mots clés :

Surfaces a courbure moyenne constante — Représentation de Weierstrass généralisée —
Méthode DPW — Bouts Delaunay — Géométrie hyperbolique.

Abstract :

Non-zero constant mean curvature surfaces are mathematical models for physical inter-
face problems with non-zero pressure difference. They are described by partial differential
equations and can be constructed from holomorphic data via a Weierstrass-type represen-
tation, called "the DPW method". In this thesis, we use the DPW method and prove
two main results. The first one states that perturbations of the DPW data for Delaunay
unduloidal ends generate embedded annuli. This can be used to prove the embeddedness
of surfaces constructed via the DPW method. The second result is the construction of
n-noids in Hyperbolic space: genus 0, embedded, constant mean curvature surfaces with n
Delaunay ends.

Keywords:

Constant Mean Curvature Surfaces — Generalized Weierstrass Representation — DPW
Method — Delaunay Ends — Hyperbolic Geometry.



