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Time-resolved multispectral optical
tomography for reconstruction of

depth-resolved changes in oxy- and
deoxyhemoglobin

David ORIVE-MIGUEL

Thesis director: Prof. Jérôme MARS
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José Ortega y Gasset, Unas lecciones de Metaf́ısica.

Drawing by the Spanish scientist Santiago 
Ramón y Cajal of a pyramidal neuron. Those 
neurons are found in different areas of the 
brain such as the cerebral cortex, the  
hippocampus and the amygdala.





Acknowledgements

First things first, I would like to acknowledge the European Union for funding this thesis. I
really appreciate the effort that is being done by the European Union member countries to
make European research stronger. Namely, I would like to note that this thesis has received
funding from the European Union’s Horizon 2020 Marie Sk lodowska–Curie Innovative Train-
ing Networks (ITN–ETN) programme, under grant agreement no. 675332 BitMap.

BitMap ITN programme was an invaluable opportunity for me. Under this project, I could
do research, receive high–level training and assist to many conferences around the world.
Particularly, I would like to thank to Prof. Hamid Dehghani from University of Birmingham
for accepting me at his lab during two intense weeks. I would also like to acknowledge Dr.
Heidrun Wabnitz for admitting me at Physikalisch–Technische Bundesanstalt in Berlin for
two weeks and having many interesting discussions about so many aspects of diffuse optics.
Thanks also to PicoQuant company and its members for giving me training in company
management and intellectual property topics. Moreover, I would like to thank to all the
people from the Department of Biomedical Optics at Politecnico di Milano; in particular,
to Dr. Laura Di Sieno and Dr. Alberto Dalla Mora for helping me so much during the
experiments (Grazie mille ragazzi!). I do not forget the main actors from BitMap: the PhD
students! It was very rewarding to collaborate and discuss with you about science. But
even better was to share so many experiences (and beers ;) and have so much fun with you.
Thank you for everything!

En ce qui concerne mon laboratoire au CEA–Leti, je voudrais remercier le soutien que j’ai
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Chapter 1
Introduction

T
HIS doctoral thesis manuscript is a summary of my activity as a researcher appren-

tice over three years at CEA–Leti laboratories. In this part, I briefly introduce the
reader to the content of diffuse optics field, its significance and most promising

applications. After, I put my thesis in the framework of BitMap European project. I also
describe the state-of-the-art of the community and CEA–Leti labs before my arrival and the
open problems/questions that they were facing at that time. Finally, I introduce the content
in each of the chapters, I explain the logical connection between them and I describe how
the research presented in those chapters try to shed some light on the open questions I had
to face at the beginning of my research journey.

The European Commission (EC) has selected photonics and its biomedical applications as
one of the Key Enabling Technologies to improve the competitiveness of European Union in
the markets [168]. In this context, big efforts are being done by European labs working at
different biophotonic fields. Diffuse optics spectroscopy and imaging is one of those promising
young research fields. Although, first works were published in the seventies, the foundations
of the field were built in the nineties and the beginning of this century. Since those days,
a lot of progress have been made and diffuse optics technology has improved considerably
both in terms of hardware and data analysis. Regarding the former, now there are faster
pulsed sources, larger area detectors with improved accuracy or wearable devices, just to
mention a few. About the latter, quantification of optical properties have been improved,
apriori information has been incorporated, sensitivity to superficial layers have been corrected
and algorithms are much faster, among other improvements. Moreover, clinical applications
have been widely investigated, where continuous and non-invasive neuromonitoring of adult
and newborn patients is one of the most promising.

BitMap (Brain injury and trauma monitoring using advanced photonics) is an Initial Training
Network supported by the EC [137] in accordance with the motivations explained above.
The network is composed of 15 Early Stage Researchers, funded with Marie Sk lodowska–
Curie fellowships, working at leading European academic, industrial and clinical institutions.
The core idea of the network is to gather PhD students with diverse backgrounds and to
collaborate together to address the key technological and clinical challenges in photonic–
based neurocritical care. The students have been working in different aspects of diffuse
optics for neuromonitoring such as hardware development, data analysis or clinical validation.
Myself, I had the opportunity to be part of this network and to contribute to improve data
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2 Chapter 1. Introduction

analysis and tomographic reconstruction in diffuse optics. As I will show in the next chapters,
during part of my research work, I collaborated with several partners from the network.

I did most of my work at CEA–Leti laboratories in Grenoble (France). Before my arrival,
CEA–Leti had already done an outstanding work in the field of tomographic reconstruction
using diffuse optical technology. They have an important presence in the field and are well-
known because of their huge efforts in the development of time-resolved and fluorescence
tomography [101, 181, 100, 26] and important advancements in small animal imaging [120,
119, 49]. They also did some preclinical tests on macaque brains for white matter lesion
detection [172]. Nevertheless, they did not have experience in the application of diffuse
optical tomography technology for human brain imaging. Contrary to what one may think,
I found this situation very stimulating because I had a lot of freedom to do research, try
new ideas and apply some of the techniques already developed at CEA–Leti into a new
domain. During my PhD research, I had to face the following challenging open questions
and problems:

1. Can the state-of-the-art of diffuse optical tomography algorithms be improved in terms
of absorption quantification and resolution in depth? Although Mellin–Laplace mo-
ments are widely used in time-resolved diffuse optical tomography, their main weak-
nesses are the correlation and low temporal resolution that they have at high orders.
Are there other datatypes that can be computed fast and dismish those drawbacks?

2. As it is known in the functional near-infrared spectroscopy community, one of the
most common problem in brain imaging is the influence that scalp layer has on the
measurements. Since this layer is very close to the sources and detectors it has a big
influence in the measurements. The questions that arise are: how can be compensated
the larger sensitivity of shallow layers? What are the different approaches to normalize
the sensitivity in depth? How can these methods be applied for brain tomographic
imaging without losing important information about brain activation?

3. The developed instruments and algorithms need to be adapted for brain imaging.
But, what probe geometries are better for brain imaging? How can the algorithms be
adapted to reconstruct the hemoglobin oxygenation and deoxygenation in the brain at
deep layers? What assumption can be done and what type of regularization methods
can be applied in this problem? Moreover, although brain conditions are not constant
over time due to the diverse physiological processes that take place, can brain resting
periods be used to regularize the problem in time?

4. The last topic of my thesis concerns about the translation of academic research into
the clinics and industry. In the European Union, huge effort is being done to push
those technologies into the market through promotion of standardization. Therefore,
some of the questions that arise are: can standardization of instruments assessment
drive biophotonics technologies into the clinics? How can standardization be promoted
in the field? Could the publishing of Open Data promote standardization? How Open
Data needs to be published to promote its reusability in the long-term?

In this manuscript, I try to answer these questions and to open new paths for future research.
The manuscript is organized in six chapters, including this introduction. In the second
chapter, I introduce to the reader into the biomedical photonics world. First, I give an
introduction to biomedical imaging and the role that biomedical optics has on it. After, I
describe the physics of light in diffusive media and the different photon propagation models
that are used in the literature. Then, the mathematics behind numerical methods for photon
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propagation models and diffuse optical tomography are explained. I also discuss about the
different types of instrumentation that are found in diffuse optics labs. At the end of the
chapter, I describe three major applications of diffuse optics into the clinics.

In the third chapter, I report the analysis I did about different kind of datatypes for time-
resolved diffuse optical tomography. First, I propose a novel and efficient technique for
computing a larger set of temporal windows. Then, I analyze the Gaussian and Tukey
windows by computing their dispersion levels at time and frequency domains. These new
temporal windows are compared against the well-known Mellin–Laplace moments and Fourier
transform datatype. Moreover, I perform a theoretical analysis of the noise correlation that
arises from these datatypes. At the end, some numerical results are presented for spherical
inclusions at different depth levels.

In the fourth chapter, I describe the work I did in collaboration with PhD student Wenqi
Lu and her supervisor Dr. Iain Styles from the University of Birmingham. In this work, we
study the effect of total–variation regularization in diffuse optical tomography. We proposed
two different approaches to impose total–variation solutions into diffuse optical tomography
problems. One of them is based on finite element approach and the other in a graph based
method. First, both methods mathematical background is described in detail. Then, the
regularization methods are validated in numerical simulations using a head model. Finally,
the methods are tested against experimental measurements from a cylindrical phantom using
a continuous–wave system.

In the fifth chapter, I apply the techniques and algorithms developed at previous chapters
into in–vivo experiments. First, I describe the dual–wavelength (670 nm and 820 nm) optical
instrument composed by two probes containing three fibers and four silicon photomultiplier
detectors each. Then, I show the tomographic simulations I performed to analyse the best
geometry of source–detector positions in terms of tomographic localization and resolution.
After, I detail the data analysis and tomographic reconstruction techniques for in–vivo imag-
ing. Later, I describe arm occlusion experiments that I performed to validate the proposed
optical system. Finally, I show the results for brain motor cortex action experiments with
three human subjects. The results show that it is possible to monitor with one-second res-
olution the motor cortex activation and that spatial and in depth information can also be
retrieved.

In the sixth chapter, I detail the effort that BitMap network is doing to promote standard-
ization of diffuse optics and promote Open Data philosophy in the field. I describe the work
that was done to measure up to 28 instruments from 8 different European institutions using
three well–agreed international protocols. After, I detail my ongoing work on gathering all
the measurements from different institutions and building an Open Data dataset with those
measurements. I describe which format I am using to organize all the data and I highlight
the importance of making this dataset findable, accesible, interoperable and reusable in the
long-term.

After the main chapters, I included an appendix where I list the work I published both in
journals and conferences during these three years. Moreover, I also mention the papers that
I have in the pipeline. After, a few more appendices are included that support the work I
presented in the previous chapters.
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Chapter 2
Background

I
N this chapter, I will describe the mathematical and physical foundations that

were used during my Ph.D. research. Emphasis is put on the numerical modelling
of photon propagation in diffusive medium. An analysis of already developed

reconstruction techniques is also given. The techniques described here were also put in their
scientific and clinical context in order to capture the whole picture and potential applications
of this thesis work.

2.1. Optical technology: an invaluable tool for physicians

When a retrospective view of last century medicine is taken, undoubtedly many of the
greatest contributions are related to imaging. Before the discover of X-radiation in 1895
by the German physicist Wilhelm Röntgen [188] physicians could only make a non-invasive
prognosis of broken bones, musculoskeletal pain or tumor detection based on palpation.
Therefore, since most manual techniques depend highly on the experience of the physicians,
that made the accuracy of such prognosis very uncertain. The other possibility was to go
inside the patient to observe directly the source of the illness but in most cases this was
risky and patient recovery took longer.

After the appearing of X-rays, the context of medicine changed dramatically; bone structure
and some tissues could be seen in great detail without the need of making any incision. Sixty
years after, ultrasound based medical imaging systems [115] were developed to image soft
tissues like organs, muscles and blood vessels. Around the seventies, mathematical methods
and advances in computer sciences were used to create new imaging techniques. A great
example is computed tomography (CT), first developed by Sir Godfrey Hounsfield [104],
that reconstructs patient 3D images using X-rays projections taken at different angles in
combination with the mathematical theory of the Radon transform. Magnetic resonance
imaging (MRI) is another example of a medical imaging technique that relies on mathemat-
ics and computing to recover 3D images. Approximately at the same time as computing was
introduced to medical imaging, new techniques based on injecting external chemical agents
were also developed; the idea is to attach that agents into tumors or organs in order to en-
hance their image quality. Examples of this technology are single-photon emission computed
tomography (SPECT), positron emission tomography (PET) and fluorescence imaging that
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6 Chapter 2. Background

uses radioisotopes, positron emitting isotope and fluorescent stains, respectively, in order to
build a 3D image of human body parts.

Nowadays, medical imaging is in constant development, not only by the improvement of cur-
rent imaging devices, but also by including new technologies that will help physicians to make
more accurate decisions. In the former case, improvements are done in terms of increasing
the spatial and temporal resolution of already existing techniques [224, 191, 232, 246, 176].
Moreover, multi-modal imaging is also supported, that is, to include several already existing
imaging tools into one device so the strengths of one technology can overcome the weakness
of the other one and vice versa; for example, ultrasound technology have been included
into diffuse optical tomography systems to predict the outcome of chemotherapy into breast
cancer patients [255, 242] or to assess thyroid tissue [132]. Huge effort is also being done
to accelerate the processing of images by including high performance GPUs [204, 66] and
improving the reconstruction algorithms [158, 41]. Regarding the development of novel
technologies, several quantitative biomarkers associated with various diseases are being in-
vestigated [180, 2]. Great advances are also being made by applying artificial intelligence
to, for example, perform automatic segmentation of organs or to support clinicians in the
classification of benign and malignant tumors [86, 236]. In addition, since current medical
systems allow to record a large amount of medical data from a patient, Big Data approaches
can also be included into the artificial intelligence algorithms [153, 252]. Finally, important
improvements are being done in the development of image-guided surgery systems. Those
systems do not only make easier and more precise the work of surgeons, but also permit to
do small incisions, thanks to minimal invasive surgeries (also known as keyhole surgeries),
which consist on an endoscopy tube with a video camera and small surgical tools, that way
the risks of infection or times of recovery are decreased significantly [212, 184].

On a daily basis of hospitals and medical centers, a large range of medical imaging tech-
nologies are used: from a simple X-ray radiography to assess how badly a bone is broken, to
detect breast cancer thanks to mammographies or to investigate how different parts of the
brain work, by using functional MRI (fMRI). These technologies have different properties
and characteristics which make them suitable depending on the clinical situation. The main
characteristics that a medical imaging technology can have are the following:

Spatial resolution: It is defined as the minimum distance where two objects close
to each other can still be recognized as separated. Some typical values for different
imaging techniques are shown at Table 2.1. Note that these values are dependent on
several factors like individual characteristics of the system, artifacts or post-processing
algorithms that were used.

Contrast resolution: It is the ability to distinguish between intensity differences of an
image. Contrast is important to discriminate between different tissues. Performance in
terms of contrast resolution for several medical imaging systems are given at Table 2.1.

Temporal resolution: This property determines how fast a system is performing an
acquisition. For technologies applied to real-time situations, this is a critical aspect
since the temporal resolution should be as high as possible. A paradigmatic case is
fMRI where different areas of brain activation should be recorded in delays of a few
seconds in order to determine how the brain behaves when a patient performs a given
task. Approximated values for several systems are given at Table 2.1.

Cost: Unfortunately, the price of medical technologies is an important point when the
availability of a technology is assessed. Some technologies like MRI, CT or SPECT are
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expensive and their availability is not only compromised in third-world countries but
also in some local hospitals of developed countries. For that reason, alternative imaging
technologies have been developed, such as ultrasonography or optical tomography,
which have a lower cost and are largely available to the population.

Counter-indications: Although the frequency of use is limited by the cost of the tech-
nology it can also be restricted by intrinsic or patient-dependant counter-indications.
Classic examples are X-rays or SPECT technologies which are not recommended to be
applied to a given patient on a constant basis due to health issues that large amounts
of radiation can lead to. Moreover, for some patients like newborn babies special
restrictions are applied such as motion artifacts or radiation tolerance.

Complexity: Some technologies such as CT or MRI are so sophisticated they require
highly trained technicians not only for the maintenance but also for results analysis and
use. This complexity can be tolerated for some technologies since the intervention of
the physicians is not required, e.g. CT or MRI. Nevertheless, this does not hold for all
techniques; for example, the technology used for real-time fluorescence image-guided
surgeries has to be controlled by the surgeons during the intervention and, therefore,
it must be easy to use.

Technology Spatial resol. Contrast resol. Temporal resol.

CT 0.1-0.6 mm Low to moderate 100 ms
MRI 0.1-2 mm High 50 ms
PET 4-10 mm Very high 5 min
SPECT 4-15 mm Very high 15 min
Ultrasonography 2-3 mm Low to moderate 40 ms
Photoacoustic imaging 20-100 µm Very high 100 µs
DOT 0.5-3 cm Very high 100 µs

Table 2.1: Comparison of most used medical imaging techniques based on spatial, contrast
and temporal resolution. Data was obtained from [131, 231] and from personal experience.

Medical imaging technologies are based on different physical phenomena that are well un-
derstood and, therefore, they can also being exploited for the benefit of the society. For
example, MRI technology is based on the understanding of magnetic fields, radio waves,
and how atomic nuclei behave under strong magnetic gradients. The knowledge of these
fields makes it possible for the society to exploit and use them for its own benefit. Light is
one of those physical phenomena that has been studied since the Ancient Greece and large
advances have been made from the XVII century to nowadays. The knowledge of classical
optics allowed to create the first glasses to correct several conditions of the eye. Since then,
the theory behind optics has been applied to support physicians in different ways. One of
the first medical tools with optical technology was the otoscope, which is used to visualize
the ear canal and eardrum and was started to be commercialized around the nineteenth
century. After the otoscope, the opthalmoscope and the retinoscope were invented in order
to examine the interior of the eyeball and the retina respectively. Around the sixties, optical
fibers were developed to carry light and images from places that were far away. Optical
fibers were rapidly applied to medicine, since they are small and flexible, so they can be
easily fitted into the human body. Glass optical fibers can be assembled together; these
set of optical fibers can be incoherent or coherent. In the first case, their position at the



8 Chapter 2. Background

beginning of the bundle and at the end is random (usually they do not coincide) therefore
they are used for illumination or transmission of signals. On the coherent case, each fiber
has the same relative position at the beginning and the end of the bundle so this type of op-
tical fiber bundles can be used for real-time image transmission. Nowadays, endoscopes are
constructed using these fiber optics bundles and allow the clinician to visually inspect several
organs and body cavities in real-time (see Figure 2.1a and Figure 2.1b for a bronchoscopy
and stomach endoscopy cases respectively). Another application of optical technology into
medicine is near-infrared lasers to measure blood oxygenation and cardiac frequency; these
devices are commonly known as oxymeters. Lasers at different wavelengths have also been
used for cancer diagnosis and treatment. They have many applications in dentistry and
plastic surgery. High-power lasers can also be used as a high precision ablation and cutting
tools. Finally, one of the most cutting-edge technologies are optical coherence tomography
(OCT) and fluorescence guided surgery. In the first case, near-infrared light is used to obtain
micrometer resolution images; it has been applied in ophthalmology, cardiology and oncology
among many other medical fields. In the second case, fluorescent molecules are attached to
tumors to better mark out the area of malign tissue.

As it was shown before, clinics is full of optical based medical devices, from the simple pulse
oxymeter that measures oxygen saturation in the blood based on Beer-Lambert law to the
fluorescence technology that labels different tissues during an oncology surgery. Optical
based systems can be used both for imaging and to treat some diseases. The advantages of
optics based medical systems are the following:

Scalability, portability and flexibility: Most of the optical systems are highly scalable
so its size can be adapted to the clinical constraints. Moreover, since the development
of optical fibers, many of those systems are very flexible and they can be introduced
safely into human body to reach several organs and human body cavities. In some
cases, portable or wearable devices can also be developed.

Interaction with tissue: Since photons have energy, they will interact with human
tissue via different process such as absorption, scattering or fluorescence. Those phys-
ical interactions can be analyzed and processed in order to provide physicians with
valuable biological information about a given disease or tissue.

Multi-modality: Most of the optical systems can be used in combination with other
medical imaging techniques. The main reason is to take advantage of optical imaging
high sensitivity. For example, multi-modal systems with CT [241], PET [196], nuclear
imaging [3], fluorescence and photoacoustic imaging [12, 133] have been developed.

Cost: The cost of most optical-based technology is usually low compared with other
medical imaging modalities. This property makes many optical technologies suitable
also for underdeveloped countries. Moreover, many parts of the optical systems are
reusable and disposable parts are usually not expensive. In fact, some companies are
commercializing cheap enough totally disposable endoscopes.

High temporal resolution: Optical systems are fast and image processing perfor-
mance have improved considerably since the appearance of GPUs and new high com-
puting capacities. Therefore, most of optical imaging techniques are suitable for real-
time in-vivo applications due to its high temporal resolution rates.

Safety: There are no major counter-indications when applying a light source, such as
lasers, into the human body up to a power limit. In addition, optical systems are easy
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to sterilize so most of their parts can be reused or, in some cases, their low cost makes
them fully disposable.

Training: For most of the systems there is no need of large training in order to use
the devices properly. Moreover, usually no specific assistant is needed to manipulate
the instrument.

(a) Clinician doing a bron-
choscopy.

(b) Image from a stomach en-
doscopy.

(c) Sarcoma imaged using
OCT.

Figure 2.1: Examples of optical technology used in the clinics. (All photos are in public
domain and taken from Wikimedia Commons).

2.2. Optics in diffusive media

As was explained in the previous section, many light based technologies have been already
implemented successfully into the clinics. In near-infrared spectroscopy (NIRS) field pio-
neering work was done in 1977 by Frans F. Jöbsis [112, 113] who monitored Cytochrome c
oxidase in-vivo using infrared transillumination. After that, diffuse optics field has evolved
considerably and many new ideas have been developed. In the following subsections theo-
retical background on the physics of light in high scattering media will be given, as well as
the biochemical composition of human tissue and how it affects to light will be discussed.
Further on, different ways of modelling photon propagation in tissue will be addressed.

2.2.1. Light physics in biological tissue

It is well-known that human tissue is a highly scattering medium. In diffuse optics, scattering
is defined by two parameters: (1) the frequency a photon scatters and (2) the average
of the scattering angle cosine. Mathematically this can be modelled using the parameter
µs [mm−1] that expresses on average how many scattering events a photon suffers when
it travels a distance of one millimeter (its inverse defines on average how much distance
the photon travels without having a scattering event) and g [unitless], also known as the
anisotropy factor, that takes a value from negative to positive one and determines the
direction distribution of a photon after a scattering event. The anisotropy factor is modelled
as

g =

∫
4π

cos θ p(θ) dΩ, (2.1)
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where p(θ)[sr−1] is the normalized phase function that represents the probability per unit
solid angle that a photon scatters at angle θ relative to the incident direction. Since it is
normalized, the integral over all the solid angle is one. For isotropic particles the anisotropic
factor expression is simplified to

g = 2π

∫ π

0
cos θ p(θ) dθ. (2.2)

Usually the phase function is modelled by the Henyey-Greenstein function [98] (see Fig-
ure 2.2),

p(θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
, (2.3)

which has been proved valid for human tissue [23].
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Figure 2.2: Henyey-Greenstein phase function for several anisotropic factor values. It is
assumed that the photon goes from left to right though the x-axis.

The anisotropy factor of human tissue is around g = 0.9, which implies that mainly forward
scattering takes place. These two parameters can be merged in one called reduced scattering
parameter µ′s = µs(1− g). It can be understood as an effective scattering parameter, that
is, it describes diffusion of photons assuming isotropic scattering. Regarding scattering
dependence on wavelength, in human tissue it has been validated experimentally that it
follows a power law [154, 256, 243] and theoretical models, such as Mie theory, predict this
relationship. Usually it is described as,

µ′s(λ) = µ′s(λs)

(
λ

λs

)−γ
, (2.4)

where λs = 1000 nm and γ is a parameter that depends on the size of the scattering
particles. A larger value of γ corresponds to smaller scattering particles and a lower value
γ values to bigger particles. In [256], a summary of experimentally determined γ values for
different human tissues can be found. At Figure 2.3, the power law dependence for several
γ values is given.

A photon, apart from scattering, can also be absorbed when it collides with a chromophore
that absorbs light at visible and near-infrared wavelengths. When a photon collides with a
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chromophore, its energy is converted, usually, into thermal energy. In that case, the photon
is ‘lost’ and the measured intensity will decrease. Absorption of a medium with just one type
of compound is defined as µa = Cε where C [M = mol/L] is the molar concentration of a
compound and ε [mm−1/M] is the molar extinction coefficient. If the medium is composed
of N compounds then the absorption is computed by the mixture law, defined as:

µa =

N∑
j=1

Cj εj . (2.5)

The human body is composed of several chromophores. Hemoglobine is one of the most
important chromophores efficient for the visible spectrum. It is located at the red blood
cells and its main task is to transport oxygen through human body. Hemoglobine can be
expressed in two states: oxygenated or deoxygenated; in the former case, hemoglobin is
carrying oxygen molecules and is known as oxy-hemoglobin (O2Hb), in the latter case the
hemoglobin is free of oxygen and is called deoxy-hemoglobin (HHb). Oxygen saturation is
defined as the percentage of oxyhemoglobin compared to the total quantity of hemoglobin,
O2Hb/(O2Hb + HHb). Detailed studies have been done to characterize the absorption of
each hemoglobine state. At the end of the 20th century, Scott Prahl compiled molar ex-
tinction coefficients from several sources and did an estimation of each spectrum [178, 110]
(see Figure 2.4a). The absorption of hemoglobin at shorter wavelengths is quite large. Nev-
ertheless, at the range 600-900 nm, the absorption decreases significantly and the difference
between oxy- and deoxy-hemoglobin is evident; that range is usually called the optical win-
dow or therapeutic window. At this range, light is not highly absorbed and the separation
allows to deduce the concentration of each state of hemoglobin by using Beer-Lambert
law [22].

Figure 2.3: Power law dependence of scattering on the wavelength described by Equation 2.4
for two γ values. For the blue line in-vitro dermis properties obtained at [190, 202] were
used, µ′s(1000 nm) = 1.8 and γ = 0.9. For the orange line in-vivo forearm properties
from [140, 60, 221] were taken, µ′s(1000 nm) = 0.7 and γ = 1.11.

Although water is not considered a chromophore, it is still an absorber. Its absorption is
quite low but since the human body has high quantities of water, the absorption can be
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significant at some wavelengths. In Figure 2.4b the absorption spectrum of water is shown;
at the visible spectrum (400-700 nm wavelength) the absorption is low, nevertheless at near-
infrared range (> 700 nm) the absorption is much stronger and it can decrease significantly
the number of detected photons.

Light can penetrate large distances (in the order of meters) into the human tissue, however it
is known that the probability for such an event to happen is very small and noise would hide
any information that those photons could carry. The high scattering nature of human tissue
constraints the average penetration depth into a few centimeters [138] in the best case.
This fact imposes some limitations into the clinical applications of diffuse optics technology.
However, there are still very interesting applications such as brain cortex blood oxygenation
estimation [63, 146, 71], breast cancer detection [222, 223, 99, 72] or analysis of thyroid
nodules [132, 122] where the needed penetration is just a few centimeters. In addition,
diffuse optics technology can also be applied to small animal imaging [88, 24, 25].

200 400 600 800 1000

Wavelengthb[nm]

102

103

104

105

106

M
ol

ar
be

xt
in

ct
io

nb
co

ef
fic

ie
nt

b[c
m

-1
/M

]

HbO
Hb

(a) Molar extinction coefficient of oxy and
deoxyhemoglobin at visible spectrum. Data
taken from [178].

(b) Absorption of clear natural water. Data
taken from [205].

Figure 2.4: Absorption spectra of hemoglobin and water at 200-800 nm wavelength.

In order to overcome the constraint that multiple scattering imposes into the penetration of
light, some researchers are working on shaping the wavefront of light [247]. The basic idea
is to modify the wavefront shape to suppress or control the multiple scattering of photons
in order to focus light at deeper tissue layers. This is done by receiving some feedback
from fluorescence or photoacoustic signals and shaping the wavefront based on a given
criteria [226]. At first stages, this was achieved for static phantoms, that is, phantoms whose
optical properties were constant and scattering particles did not change their position [134,
143]. Now, the wavefront shaping can be done in real-time, so light is focused on dynamic
mediums where scattering particles are changing constantly [161, 53]; examples of light
focusing for in-vivo tissues cases can be found at [164, 183, 165].

Beer-Lambert law

Between the 18th and 19th century, the physicists Johann Lambert and August Beer con-
cluded independently that if a beam of light is passed through a homogeneous and non-
scattering medium then, the attenuation maintains a logarithmic relation with the absorption
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of the medium. Mathematically, the decrease of light by an infinitesimal thick medium is
described as:

dI = −Iµa dx, (2.6)

where dx is the infinitesimal thickness of the layer and I, the intensity of light. After
integrating through all the thickness the intensity is,

I = I0 e
−µaL, (2.7)

where I0 is the initial intensity of the beam.

This law can also be applied to non-absorbant and low scattering mediums (single scattering
is assumed, µs L� 1),

I = I0 e
−µs L. (2.8)

Neither Equation 2.7 nor Equation 2.8 account for high scattering mediums since when
multiple scattering occurs the path that photons travel is not the straight path L but a
much larger one. For that reason, at the end of the eighties David Thomas Delpy proposed
a modified version of Beer-Lambert law [57] where he introduced the mean optical path-
length 〈L〉 parameter which represents the average of the distance traveled by each photon.
〈L〉 parameter depends on the scattering and can be determined by time-resolved optical
technology. Therefore, the modified expression is,

I = I0 e
−µa〈L〉. (2.9)

Absorption measurements at different wavelengths can be used to determine the concentra-
tion of chromophores such as oxy and deoxyhemoglobin. As was expressed before, absorption
due to N compounds is defined as:

µa(λj) =

N∑
i=1

εi(λj)Ci, (2.10)

where, obviously, µa and ε depend on the wavelength j and Ci is the concentration of
compound i. If several measurements are done at different wavelengths in order to make
the system determined then Ci can be retrieved. By looking at Figure 2.4a, it is clear that
picking wavelengths around λ1 = 660 nm and λ2 = 900 nm would be optimal selections. The
concentration at 800 nm wavelength is called an isobestic point since the molar extinction
coefficient is the same for oxy and deoxyhemoglobin. Although this wavelength is not useful
for deriving the concentration of each hemoglobin it gives easily the total concentration and
many systems include it. The system to solve is[

µa(λ1)
µa(λ2)

]
=

[
ε1(λ1) ε2(λ1)
ε1(λ2) ε2(λ2)

] [
C1

C2

]
(2.11)

or, equivalently,

−

 1
〈L〉λ1

ln
(
I(λ1)
I0(λ1)

)
1

〈L〉λ2
ln
(
I(λ2)
I0(λ2)

) =

[
ε1(λ1) ε2(λ1)
ε1(λ2) ε2(λ2)

] [
C1

C2

]
. (2.12)

where ε1 and ε2 are obtained experimentally. Equation 2.10 assumes that the measurement
of µa was not influenced by µ′s, which usually does not hold. In such cases, the relative
measurement ∆µa can be computed as:

∆µa(λj) =

N∑
i=1

ε(λj)∆Ci, (2.13)



14 Chapter 2. Background

so only the relative concentrations will be calculated, that is, the difference in concentration
between the measurements done at starting time and after. In this case it is assumed that
scattering is constant along measurements.

2.2.2. Photon propagation models

In this subsection, I define physical quantities of light and the most popular photon propa-
gation models. The Ph.D. work presented here is highly rooted in those models.

Physical quantities

Radiance, L(x, ŝ, t), is defined as the radiant power per unit normal area per unit solid angle,
[Wm−2sr−1] that depends on six variables: space (x, three spatial variables), orientation
(ŝ, two variables) and time (t, one variable), see Figure 2.5 where the radiance received by
a detector is shown.

Source Detector

nθ

dA

dΩ

Figure 2.5: Radiant power received by a detector within a differential area dA and subtending
a differential solid angle dΩ with the source.

The fluence rate is defined as:

Φ(x, t) =

∫
4π
L(x, ŝ, t) dΩ [Wm−2], (2.14)

which is the radiance integrated over the entire solid angle.

Radiative Transfer Equation

The Radiative Transfer Equation (RTE) is derived from the conservation of energy principle
by neglecting coherence, polarization and non-linearity. The derivation presented here is
based on the one described in [234].

Applying the conservation of energy inside a volume element, the following four terms must
be considered. In the first place, when light beam is not collimated, the divergence of power
in a unit volume element per unit time is

dP1 =
∂L(x, ŝ, t)

∂s
dΩ dV = ŝ · ∇L(x, ŝ, t) dΩ dV, (2.15)

where dΩ and dV are the differentials of solid angle and volume respectively.

The second term is related to the power loss due to absorption of photons or scattering into
another direction,

dP2 = (µa + µs) L(x, ŝ, t) dΩ dV = µt L(x, ŝ, t) dΩ dA, (2.16)
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where dA is the differential area and µt = µa + µs.

Regarding the third term, scattering can decrease power in a given direction (modelled by
the second term previously seen) but can also increase when the scattered photons from
other directions that take the considered direction after a scattering event,

dP3 = (Ns dV )

[∫
4π
L(x, ŝ′, t) p(ŝ′, ŝ)σs dΩ′

]
dΩ, (2.17)

where Ns is the density of scatterers, Ns dV denotes the number of scatterers in a differential
volume, σs is the scattering cross-section of a scatterer and p(ŝ′, ŝ) is the phase function
denoting the probability that a photon with direction ŝ′ will be scattered to direction ŝ. Of
course, the function is normalized, ∫

4π
p(ŝ′, ŝ) dΩ′ = 1. (2.18)

Moreover, since usually the phase function does not depend on the directions but on the
angle between them, it can be simplified to

p(ŝ′, ŝ) = p(cos θ), (2.19)

where θ is the angle between directions. Now, realizing that µs = Nsσs it follows that

dP3 = (µs dV )

[∫
4π
L(x, ŝ′, t) p(ŝ′ · ŝ) dΩ′

]
dΩ. (2.20)

The last element that can produce power are the sources in the domain with units [Wm−3 sr−1],

dP4 = S(x, ŝ, t) dV dΩ. (2.21)

It is also known that the change of energy in a volume unit element is given by:

dPtot =
1

c

∂L(x, ŝ′, t)

∂t
dV dΩ, (2.22)

where c is the speed of light in the medium. Therefore, the principle of energy conservation
states that

1

c

∂L(x, ŝ, t)

∂t
=− ŝ · ∇L(x, ŝ, t)− µt L(x, ŝ, t)

+ µs

∫
4π
L(x, ŝ′, t) p(ŝ′ · ŝ) dΩ′ + S(x, ŝ, t).

(2.23)

which is known as the Radiative Transfer Equation.

Diffusion approximation

The Radiative Transfer Equation (Equation 2.23) is an integro-differential equation with six
dimensions. This equation is usually solved using Monte-Carlo methods, which are very time-
consuming (see Subsection 2.4.1). Consequently, a common approximation is to represent
radiance using spherical harmonics and to assume that (1) reduced scattering coefficient is
much greater than absorption (µ′s � µa) and (2) that detectors are sufficiently far from light
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sources. After the introduction of spherical harmonics and making the previous assumptions,
the obtained partial derivative equation (PDE) is given by:

1

c

∂φ(x, t)

∂t
−∇ · (D(x)∇φ(x, t)) + µa(x)φ(x, t) = S(x, t), (2.24)

where φ is the fluence rate, D = (3(µa + µ′s))
−1 is the diffusion coefficient and S(~r, t)

is the source function. A detailed derivation can be found at [234]. In the literature, the
time-dependant fluence rate φ(t) is usually known as the temporal point spread function
(TPSF). In this work, the signal computed by the Diffusion Approximation equation will be
denoted as TPSF. Meanwhile, the arrival of photons histogram obtained from experiments
and Monte-Carlo method will be written as photon time-of-flight distribution (DTOF). Note
that under normalization, both curves are equivalent.

Every PDE must have initial and boundary conditions. For the former, zero fluence rate is
assumed φ(x, 0) = 0, and for the latter a Robin type boundary condition is applied (see [195]
for computational validation),

φ(x, t)− 2CRD(x)
∂φ(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0, (2.25)

where CR =
(
2/(1−R0)− 1 + | cos θc|3

)
/
(
1− | cos θc|2

)
is a parameter derived by the

Fresnel laws being θc = arcsin (1/nr) and R0 = (nr − 1)2/(nr + 1)2 where nr is the
refraction index and ∂Ω is the boundary of the domain.

Equation 2.24 models the time-resolved case. This equation can be easily transform to
frequency domain by Fourier transforming,[

iω

c
+ µa

]
φ̂(x, ω)−∇ ·

(
D∇φ̂(x, ω)

)
= Ŝ(x, ω), (2.26)

where ω is the angular frequency, φ̂ and Ŝ represent the Fourier transform of φ and S
respectively, i is the imaginary number and x0 is the position of the source.

For the continuous-wave case, the Equation 2.24 simplifies to,

−∇ · (D(x)∇φ(x)) + µa(x)φ(x) = S(x). (2.27)

2.3. Diffuse optics systems and instrumentation

Diffuse optics spectroscopy and imaging is a promising biophotonics research field. Although,
first works were published in the seventies, the foundations of the field were built in the late
eighties, nineties and the beginning of this century. During the last twenty years, technology
has evolved in order to improve the sensitivity to (1) deeper layers of the tissue and (2)
absorption changes. In the following sections different technologies will be described and
their main advantages and drawbacks will be assessed.

The main difference between diffuse optics technologies is based on the type of light source
used. Continuous-wave (CW) based technology was the first system to be used in the
clinics; its main characteristic is that the intensity of the source of light is constant over
time and only the decrease of such intensity is measured (see Figure 2.6 left). By using the
modified Beer-Lambert law [57] blood oxygenation can be estimated by near-infrared (NIR)
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spectroscopy. Nevertheless, single source-detector distance CW technology suffers from two
disadvantages. First, absorption and scattering cannot be decoupled. Second, superficial
and deep layers cannot be distinguished from each other. Although multi-distance systems
can overcome these problems by encoding depth using several source-detector distances.
This technology could not be feasible in some clinical environments where maximum source-
detector separation distances are constrained.

In order to overcome the first drawback, frequency domain (FD) technology appeared on
the scene (see Figure 2.6 center). FD light source is frequency modulated usually at MHz
order. Then, detectors measure not only the attenuation but also the phase change. This
technology permits to decouple absorption from scattering in the inverse problem.

In the late eighties and early nineties, first time-domain or time-resolved (TR) system were
developed [36, 57, 46]. In this case, the source is a pulse of light that can be mathematically
modeled as a Dirac delta pulse (see Figure 2.6 right). The idea is to measure the photons
distribution time-of-flight (DTOF), since the photons arrival times can be probabilistically
associated with the penetration depth in the media.
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Figure 2.6: Diffuse optics systems. (Left) Continuous-wave system; only attenuation of
light is measured, I ′ < I. (Middle) Frequency domain system; attenuation and dephasing
are measured. (Right) Time-resolved system; the time of flight distribution of the arriving
photons are measured. Image was inspired by [79].

Technology Uniqueness (1) Cost (2) Clinics (3)

CW No Low Yes
FD Yes Medium Yes
TR Yes High Starting

Table 2.2: Comparison of state-of-the-art diffuse optical technologies. (1) Uniqueness of
the solution based on [6] and assuming refraction index is known; (2) relative comparison
between diffuse optical technologies; (3) based on the daily basis clinical use and available
industrial products.

2.3.1. Light sources

Diffuse optical systems do not require polarized light sources or high levels of directionality,
since large scattering mediums make these properties go quickly to zero. Coherence is neither
a useful property in diffuse optics systems. The most important properties of light sources
at diffuse optics systems are: wavelength bandwidths, temporal profile and intensity.

For diffuse spectroscopy, the number of wavelengths used should be at least as many as the
number of chromophores to be measured (this property follows from the Beer-Lambert law
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and linear algebra theory). The bandwidth of sources does not need to be monochromatic
because of the broad extinction spectrum of chromophores. Therefore, laser diodes with few
nanometers bandwidth fulfill by far the requirements of diffuse spectroscopy systems [31,
156]. Even LED diodes that have spectral bandwidths of tens nanometers can still be used in
practice [249, 253]. Lasers such as titanium-doped sapphire (Ti:sapphire) that can be tuned
in 650-1100 nm range are also suitable [177, 253, 19]. Recently, supercontinuum lasers with
wavelength selection systems have also been used [257].

The temporal profile is also a critical aspect of the light source. For TR systems light
source must be pulsed at a frequency of maximum 80 MHz, that is, 12.5 ns of separation
between light peaks to guarantee that no photon overlapping while occur between photon
arrival profiles. Ti:shappire laser is suited for time-resolved systems since it is intrinsically
pulsed.

2.3.2. Optical detectors

Although there are many types of optical detectors, all of them are based on the same
concept: convert photons into electrons and measure the electrical current that is generated.
Detectors can be divided in two types based on the physical process that takes place. The
first type uses photon induced emission of electrons from a photocathode; basically photons
hit a photocathode and some of those photons will collide with electrons transferring to them
their energy. The hit electrons will gain kinematic energy which will be measured by the
detectors. Examples of such detectors are streak cameras and photomultiplier tubes (PMT).
PMTs are build with several dynodes to multiply the generations of electrons, see Figure 2.7.
The second type of detectors are based on the excitation of electrons into the conduction
band of a semiconductor. Solid-state photodiodes (PD), avalanche photodiodes (APD),
single photon avalanche diodes (SPAD) and charge-coupled devices (CDD) are examples of
this kind of detectors.

Incident
photon

Photocathode

Focusing
electrode

Electrical 
connectors

Anode

Scintillator

Light
photon

Electrons

Dynode

e

Photomultiplier tube (PMT)

Figure 2.7: Scheme of a standard photomultiplier. Dynodes multiply the generation of
electrons from a single photon. (Modified figure taken from Wikimedia Commons).

The main performance characteristics of a detector are the following:

Spectral sensitivity: The sensitivity of a detector to a given wavelength depends
mostly on the material that is used. For example, detectors such as PMT are suited
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for 200-900 nm wavelength. However, PD and APD detectors detect deeper in near-
infrared wavelengths than PMT. Moreover, CDD have a limitation up to 1000 nm [22].

Dynamic range and linearity: To achieve quantitative results the response of the
detector should be linear. Moreover, the dynamic range of detectors must be as high
as possible because the light power decreases exponentially with distance. Usually
dynamic ranges are expressed in decibels due to the large range of light intensity ratios
a detector measures. The range where the detectors behaves linearly is usually known
as the linear dynamic range.

Instrumental response function: The physics and the electronics of the detector will
determine how much time it will take since a photon hits the detector until voltage
signal is received. This process is not instantaneous since photons have to be converted
into electrons and their charge measured. This delay can be considered as random
and depends on the type of detector used, see Figure 2.8.

Responsivity: It is defined as the ratio between the incident radiant energy in the
detector (watts, W ) and the generated current (amperes, A). Responsivity is wave-
length dependant and is usually defined as R = ηe/(hf) where η is the quantum
efficiency (conversion efficiency of photons into electrons), e is the electron electric
charge, h is the Planck’s constant and f is the frequency of the arriving photons.
Units of responsivity are defined as the ration between amperes and watts.
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Figure 2.8: Instrumental response functions of several detector types. (FG-SPAD) Fast-gated
SPAD. (SiPM) Silicon Photomultiplier. (Hybrid) SiPM and SPAD. These measurements
were taken at Politecnico di Milano labs.

2.3.3. Noise

Classically, diffuse optics measurements are contaminated by several sources of noise. In the
next sections I will describe the two main sources of these inaccuracies and their intrinsic
nature.
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Shot noise

Shot noise, also known as photon noise, is an uncertainty related with the measurement of
light. The number of photons reaching a detector is always an integer number because light
is made up of photons which could be seen as discrete particles. Because of their discrete
nature and the random fluctuations of arriving photons if the average number of detected
photons is a decimal number the detector will not be able to express it and the detected
value will fluctuate between integer numbers. This phenomenon is more evident when the
intensity of light is low.

Shot noise depends on the signal magnitude and constitutes one of the biggest sources of
noise when measuring light. Shot noise is not additive but is applied to the signal, that is,
it depends on the intensity of the signal. As the number of detected photons must be an
integer value the arrival of photons to a detector can be considered as a Poisson process.
The modelling would be

Pr(N = k) =
e−λt(λt)k

k!
, (2.28)

where λ is the number of arriving photons in a unit time interval and t is a time interval.
Although for high light intensities noise can be modelled as Gaussian with intensity dependant
variance. A widely known property of a Poisson distribution is that its expected value is
equal to its variance. Therefore, the bigger the intensity of the signal the greater the noise
in absolute terms. However, the signal-to-noise ratio (SNR) of the signal will increase with√
N where N is the number of arriving photons. This shows that this noise plays a bigger

role at low intensity levels, for example at late arrival photons in time-resolved systems.
A conclusion taken from this is that in order to reduce the effect of shot noise, a higher
intensity should be used; in fact if one wants the SNR to be increased by 10 then intensity
must be increased by 100.

Shot noise can be interpreted as a lower bound of the noise a signal can have, that is, as
shot noise is inherited from the quantum nature of photons that noise will also exist even
if an ideal detector is used. Therefore, in the best case the signal will suffer from shot
noise.

Dark noise

Dark noise, also known as dark current, is a type of noise that happens even when there are
no photon in the environment. It occurs because some electrons are thermally generated
and are mistaken with the electrons generated by photoelectric effect. Dark noise is difficult
to avoid and increases with the sensor time of exposure because it heats up. It also follows a
Poisson distribution but usually is negligible in comparison with other types of noise.

2.3.4. Time-resolved systems revisited

The main components of a time-resolved system are a pulsed laser and a detection system to
capture the arrival time of each photon. There are two types of detection methods: streak
cameras and time-correlated single-photon counting systems.
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Streak camera

Streak cameras provide the highest temporal resolution; for most commercial systems it
is around 1-10 ps which is far enough for diffuse optical applications since latest photons
arrive at the order of nanoseconds. The operating principle of streak cameras is based on a
deflector that deviates entering photons depending on their arrival times and location. The
result is a two-dimensional streak image where light intensity is mapped into space and time
axes. A typical setup for a streak camera is shown at Figure 2.9. The light pulse is divided
in three parts to inject it into the medium, to synchronize the streak camera with a sync
signal and to set the laser pulse emission time (t0).

Although, streak cameras have the highest temporal resolution they are quite expensive and
bulky, they suffer from low sensitivity and their dynamic range is not sufficient in some
situations.

Pulsed laser Streak camera
Sampled 
medium

t0
sync

Figure 2.9: Standard setup for time-resolved systems based on streak cameras.

Time-correlated single photon counting

Since streak cameras are bulky they are not suitable for clinical environments. As an al-
ternative, time-correlated single photon counting (TCSPC) technology have been proposed.
TCSPC technology allows to use PMT, hybrid-PMT or SPAD detectors which are smaller
and cheaper than streak cameras. The use of Silicon photomultipliers (SiPM) detectors has
also been reported [139, 185, 152]. Moreover, TCSPC cards can be easily integrated in a
personal computer making it much easier to implement into a system.

The idea behind TCSPC is to send light pulses with attenuated intensity so that at most
one photon reaches the detector for each pulse. Each photon arrival time will be recorded
and after several millions of pulses a histogram will be created. The histogram represents
the DTOF. The main difference between streak cameras and TCSPC is that the former
measures a DTOF for each pulse and adds up all of them and the latter detects at most the
arrival time of one photon for each pulse and finally builds a DTOF histogram from all of
recorded times.

If more than one photon from the same pulse arrives to the detector, only the first photon will
be detected. In that case, early photons will be over-represented and the DTOF histogram
will not be correct. For that reason, it is important to impose that at most one photon
reaches a detector for each pulse. Two conditions are needed to make this possible. First,
laser power must be adjusted (that is, the number of photons launched must be low) so that
a detector counts a photon only for 1 to 10% of the laser pulses. Second, the pulse frequency
should be low enough to (1) prevent photon overlapping and to (2) wait for detectors dead-
time. Overlapping takes place when a photon arrives to the detector after the next pulse has
already been flashed. Detector dead-time is the time it takes to electronics to recover from
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a photon detection [230]. An 80 MHz repetition frequency is usually far enough to avoid
overlapping.

A typical TCSPC based time-resolved system is shown at Figure 2.10. The level trigger
receives the sync signal from the laser pulse to record when the pulse was flashed. The
Constant Fraction Discriminator (CFD) computes the photon arrival time. In this case
a classic level trigger could not be used because for some detectors, such as PMT, the
amplitude of the detected voltage changes at each detection (this happens due to the physics
of PMT. When a photon hits the detector a bunch of electrons are generated whose quantity
varies from detection to detection). Therefore, CFD discriminates noise and adjusts photon
arrival time depending on these factors. The Time to Amplitude Converter (TAC) transforms
the time difference between the pulse and photon arrival time to a voltage. Then, the
Analog to Digital Converter (ADC) retrieves the digital timing value of the photon arrival
time. Finally, a field-programmable gate array will compute the histogram with all timing
values.

Pulsed laser Sampled 
medium

Attenuator

Single photon
detector

CFDTrigger
sync

TAC

Histogram ADC

t0 t
t-t0

Figure 2.10: Standard setup for time-resolved systems based on TCSPC technology. CFD
stands for Constant Fraction Discriminator, TAC for Time to Amplitude converter and ADC
for Analog to Digital Converter.

2.4. Numerical methods for photon propagation models

As models described at Subsection 2.2.2 (see Equations 2.23 and 2.24) can be solved numer-
ically using a computer, there are several numerical methods to solve them. Monte-Carlo
method is usually used to solve the Radiative Transfer equation and the Finite Element
method for the Diffusion equation. In the following subsections a technical description of
both methods is given and some implementation remarks are pointed out.

2.4.1. Monte-Carlo method

Let us assume that a Monte-Carlo simulation is performed in a N -layer model with arbitrary
shape. For simplicity it will be assumed that there are no void regions, although it would
be straightforward to include that possibility in the method. Launching M photons, the
workflow will be the following:

1. Starting point: Each photon is launched from the source point with the direction to
which the light source is pointing (usually perpendicular to the boundary).
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2. Each photon will travel a distance of

d = − ln ε

µs
, (2.29)

where ε ∈ Unif[0, 1] is a uniformly distributed random number. For each photon a
different pseudo-random number will be generated. See derivation of Equation 2.29
at Appendix B.

3. Check if the photon has left the domain. If yes, then update the distance that it has
travelled in each layer and stop simulating that photon, if not then go to next step.

4. After each photon has travelled a distance then it will scatter to a direction. To
determine the direction of scattering, the phase function and anisotropic factor have
to be used. As was stated previously, the Henyey-Greenstein phase function with an
anisotropic factor of g = 0.9 is a good approximation for human tissue. Therefore, to
calculate a random number that follows Henyey-Greenstein distribution the following
equation has to be used (see Derivation at Appendix B),

cos θ =
1

2g

[
1 + g2 −

(
1− g2

1 + gε

)]
, (2.30)

where ε ∈ Unif[0, 1] is a uniformly distributed random number. The azimuth angle
follows,

ϕ = 2πε, (2.31)

since it is assumed to be isotropic in that coordinate.

5. For each photon, update the distance that it has travelled in each layer.

6. Go to step 2 until all photons have left the computational domain.

7. Ending point: Calculate M uniformly distributed random numbers, Ui ∈ Unif[0, 1].
For each photon calculate

Wi = 1−
N∑
j=1

e−µa,jLi,j (2.32)

where i is the index of each photon, j is the index of each layer, µa,j indicates the
absorption at layer j and Li,j is the distance travelled by photon i at layer j. If the
random number Ui is greater than Wi then photon i survives, if not it is assumed
that it was absorbed. Finally, the simulated DTOF histogram for each detector will
be generated using the photons that survived.

Although there are several ways of implementing the Monte-Carlo method for photon prop-
agation, the method explained here has the following advantages:

Since photons are simulated until they leave the domain and for each of them, the
distance travelled at each layer is recorded, then the simulation is absorption indepen-
dent. In other words, the effect of absorption is computed after the simulation, so
if the absorption distribution is changed the simulation has not to be redone. This
property does not hold for scattering changes [234].

It is easy to parallelize because each photon is assumed to be independent and they
do not have interaction with each other [69, 4].
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The open-source code MMCLAB [68] follows the scheme described here. MMCLAB models
the domain using a tetrahedral mesh so it can be applied to complex structures like a human
head or limb. The MCX version also supports GPU computing and can be run in MATLAB
or GNU Octave [151].

2.4.2. Finite Element method (FEM)

First, a detailed derivation of Finite Element Method (FEM) for Diffusion Approximation
equation is given. The weak formulation of the equation is derived and its associated linear
systems in time, frequency and continuous-wave versions are presented. After, computational
and implementation details of FEM are discussed.

The FEM formulation of the Diffusion approximation

Let us define the time-resolved Diffusion Approximation problem as:
1

c

∂φ(x, t)

∂t
−∇ · (D(x)∇φ(x, t)) + µa(x)φ(x, t) = S(x, t), x ∈ Ω, t > 0

φ(x, t)− 2CRD
∂φ(x, t)

∂n
= 0, x ∈ ∂Ω, t > 0

φ(x, t) = 0, x ∈ Ω, t = 0
(2.33)

where S(x, t) is an arbitrary source function, Ω represents the space domain and ∂Ω the
boundary.

The solution of the PDE defined at Equation 2.33 must be in the space Ck(Ω) defined
as

Ck(Ω) =

{
u ∈ C(Ω) ∩ ∂i+ju

∂ix∂jy
∈ C(Ω)

}
, (2.34)

where i, j ≥ 0, i + j ≤ k and C(Ω) is a continuous function at domain Ω. The equality
of the PDE still holds if both parts are multiplied by an arbitrary function ψ and integrated
over the whole domain,∫

Ω

1

c

∂φ

∂t
ψ −∇ · (D∇φ)ψ + µaφ ψ dx =

∫
Ω
Sψ dx. (2.35)

If φ holds for a particular ψ, it cannot be said that it also holds for Equation 2.33. Never-
theless, let us define a ball of radius δ,

Bδ(x
′) =

{
x ∈ Ω | ‖x− x′‖2 < δ

}
, (2.36)

where x′ is the center of the ball and ψ ∈ C2(Ω) follows the properties:

ψ(x) > 0 if x ∈ Bδ,

ψ(x) = 0 if x 6∈ Bδ,∫
ψ dx = 1.
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When δ → 0, the ψ function will converge to a Dirac delta distribution which implies that
Equation 2.35 must be true at point (x′, t) for t ∈ [0,∞). Imposing that Equation 2.35
must be fulfilled for any function ψ ∈ Ck(Ω), implies that Equation 2.35 will be fulfilled at
every point (x′, t) which is equivalent to state that Equation 2.35 has the same solution as
the boundary value problem (BVP) of Equation 2.33.

The chain rule ∇· (D∇φ ψ) = ∇· (D∇φ)ψ+D∇φ ·∇ψ and the Gauss/divergence theorem
(see Appendix C) converts Equation 2.35 to:

1

c

∫
Ω

∂φ

∂t
ψ dΩ−

∫
∂Ω
D
∂φ

∂n
ψ dΩ +

∫
Ω
D∇φ · ∇ψ dΩ +

∫
Ω
µaφ ψ dΩ =

∫
Ω
Sψ dΩ. (2.37)

Applying the boundary conditions the following equation holds,

1

c

∫
Ω

∂φ

∂t
ψ dΩ−

∫
∂Ω

φ

2CR
ψ dΩ +

∫
Ω
D∇φ∇ψ dΩ +

∫
Ω
µaφ ψ dΩ =

∫
Ω
Sψ dΩ. (2.38)

Looking at the equation above it is clear that the function requirements are ψ ∈ H1(Ω) and
φ ∈ S, where

L2(Ω) = {ψ :

∫
Ω
ψ2 dΩ <∞}

H1(Ω) =

{
ψ ∈ L2(Ω) :

∂ψ

∂x
,
∂ψ

∂y
∈ L2(Ω)

}
,

S([0, T ]) =
{
φ : φ(·, t) ∈ H1(Ω), t ∈ [0, T ]

}
,

(2.39)

Taking into account all aspects described previously, the weak formulation of the BVP at
Equation 2.33 is

For any t ∈ [0, T ] find φ ∈ S such that

1

c

∫
Ω

∂φ

∂t
ψ dΩ−

∫
∂Ω

φ

2CR
ψ dΩ +

∫
Ω
D∇φ∇ψ dΩ +

∫
Ω
µaφ ψ dΩ =

∫
Ω
Sψ dΩ,

∀ψ ∈ H1(Ω).

(2.40)

Since Equation 2.40 must be fulfilled for all ψ ∈ H1(Ω) then it is assured that the BVP is
equivalent to the weak formulation. This formulation is called weak since less restrictions are
posed to the solution compared to the original BVP; note how the solution at BVP should
be twice derivable but at the weak formulation only squared integrability is assumed.

The weak formulation can be rewritten as

For any t ∈ [0, T ] find φ ∈ S such that

a(φ, ψ) = l(ψ), ∀ψ ∈ H1(Ω) (2.41)
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where

a(φ, ψ) =
1

c

∫
Ω

∂φ

∂t
ψ dΩ−

∫
∂Ω

φ

2CR
ψ dΩ +

∫
Ω
D∇φ∇ψ dΩ +

∫
Ω
µaφ ψ dΩ,

l(ψ) =

∫
Ω
Sψ dΩ,

(2.42)

and a(φ, ψ) is bilinear and l(ψ) linear.

Let us approximate V = H1(Ω) and W = S spaces using the n-dimensional subspaces
Vn ⊂ V and Wn ⊂W . Now, problem formulation is:

For any t ∈ [0, T ] find φn ∈Wn such that

a(φn, ψn) = l(ψn), ∀ψn ∈ Vn, (2.43)

which is known as the Galerkin formulation.

The Galerkin orthogonality principle (see Section 3 of [82]) ensures that φn is the best
approximation of the solution φ at space Vn.

Let {ϕi}ni=1 be a basis of the subspace Vn. Equation 2.43 is satisfied for all ψn ∈ Vn if
and only if it is satisfied for each basis ϕi (this can be proven by using the linearity of the
equation and realizing that any ψn can be represented by a linear combination of the linear
basis). Therefore, using the linear combination ψn =

∑n
i=1 αi ϕi where αi is a scalar, the

problem of Equation 2.43 transforms to

n∑
j=1

αj a(φn, ϕj) =
n∑
j=1

αj l(ϕj), (2.44)

which implies that equation is satisfied if

a(φn, ϕj) = l(ϕj), ∀j = 1, ..., n. (2.45)

Approximation to the solution φn can also be represented using the linear combination
φn(x, t) =

∑n
i=1 Ψi(t)ϕi(x) where the basis functions are not dependent on time. It follows

that
n∑
i=1

a(Ψiϕi, ϕj) = l(ϕj), ∀j = 1, ..., n. (2.46)

Equation 2.46 is a linear system where Ψj(t) are the unknowns. In the case of time-resolved
Diffusion Approximation the linear system is:

n∑
i=1

∂Ψi

∂t

1

c

∫
Ω
ϕiϕj dΩ− Ψi

2CR

∫
∂Ω
ϕiϕj dΩ + Ψi

∫
Ω
D∇ϕi∇ϕj dΩ + Ψi

∫
Ω
µaϕi ϕj dΩ

=

∫
Ω
Sϕj dΩ, ∀j = 1, ..., n.

(2.47)
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The above formulation can be described in matrix form by defining

H =
1

c

∫
Ω
ϕiϕj dΩ

M =

∫
Ω
D∇ϕi∇ϕj dΩ

K =

∫
Ω
µaϕi ϕj dΩ

N =
1

2CR

∫
∂Ω
ϕiϕj dΩ

s =

∫
Ω
Sϕj dΩ

(2.48)

and the linear system of Equation 2.47 is equivalent to

H
∂Ψ

∂t
+ [M + K + N]Ψ = s, (2.49)

where Ψ = [Ψ1, ...,Ψn]T . Equation above is the most general form of the discretized
version for the Diffusion Approximation. In the subsections below, the time (in)dependent
and frequency cases are described separately.

Time-independent case

When the source is constant over time, the time derivative is zero. Therefore, for the
time-independent case, the linear system to solve is:

[M + K + N]Ψ = s. (2.50)

It should be noted that the time-independent solution is equivalent to the time-dependent
solution integrated in time,

H

∫ ∞
0

∂Ψ

∂t
dt + [M + K + N]

∫ ∞
0

Ψ(t) dt =

∫ ∞
0

s(t) dt. (2.51)

The first term is equal to zero because∫ ∞
0

∂Ψ

∂t
dt = lim

t→∞

∫ t

0

∂Ψ

∂t′
dt′ = lim

t→∞
[Ψ(t)]t0 = 0, (2.52)

since Ψi(0) = 0 and Ψi(t) tends to zero at infinity. The source term is a Dirac delta,∫ ∞
0

s(t) dt = lim
t→∞

∫ t

0
s(t′) dt′ = lim

t→∞

∫ t

0
δ(x− xs)δ(t

′ − ts) dt′ = δ(x− xs). (2.53)

Therefore, Equation (2.51) is

[M + K + N]

∫ ∞
0

Ψ(t) dt = δ(x− xs), (2.54)

and
∫∞

0 Ψ(t) dt is the solution for continuous-wave case.
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Time-dependent case

The time derivative appearing in Equation (2.49) has to be discretized. A good option is
to use the θ-scheme with θ = 1/2, also known as Crank-Nicolson scheme. Applying the
θ-scheme to Equation (2.49) it holds,

Ψk+1 −Ψk

∆t
H + θΨk+1[M + K + N] + (1− θ)Ψk[M + K + N] = θΨk+1s + (1− θ) Ψks.

(2.55)
The θ = 0 case stands for an explicit sheme and the θ = 1 case for an implicit scheme. For
the Crank-Nicolson case (θ = 1/2) the following system should be solved,[

1

∆t
H +

1

2
(M + K + N)

]
Ψk+1 +

[
1

2
(M + K + N)− 1

∆t
H

]
Ψk =

sk+1 + sk

2
=

sk

2
,

(2.56)
where the term sk+1 = 0, because the short time pulse is only nonzero in the first time
interval. Therefore, taking into account that Ψ0 = 0, because at the beginning of the
experiment there is no light, the first time step is,

UΨ1 =
s0

2
, k = 0 (2.57)

and in the following
UΨk+1 = VΨk, ∀k ≥ 1, (2.58)

where U = 1
∆tH + 1

2(M + K + N) and V = 1
∆tH−

1
2(M + K + N).

Frequency-dependent case

After applying the Fourier transform to the time-dependant case, the linear system to solve
is [

iω

c
H + M + K + N

]
Ψ̂ = ŝ, (2.59)

where Ψ̂ is the Fourier transform of Ψ and ω the angular frequency.

2.4.3. Computational and implementation details of FEM

Now, once the mathematical theory behind FEM has being described, I will give the nitty-
gritty details of its computational implementation.

Let us define a two-dimensional irregular mesh with M elements and N nodes. Most used
two-dimensional elements are triangles and rectangles, in Figure 2.11 left an example of a
triangular mesh in a circular domain is shown. A limited support basis function is assigned
to each node to minimize the number of nonzero elements in the matrices, (see Figure 2.11
right). The linear basis functions for each node are defined as

ϕi(xj) =

{
1 if i = j

0 if i 6= j
, (2.60)

where xj is the position of node j. The polynomials ϕi can be of any order, the larger the
order the better the approximation.
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Figure 2.11: (Left) Two-dimensional triangular mesh of a circumference. (Right) Linear
basis function associated to a mesh node.

Reference triangle

Let us examine the case where two basis function are associated to nodes in the same
element, (see Figure 2.12). For an arbitrary triangle τ with vertices at

v1 = (x1, y1)

v2 = (x2, y2)

v3 = (x3, y3)

(2.61)

(2.62)

(2.63)

there are three basis function φ1, φ2 and φ3 associated to each node. One way to compute∫
φ1φ2 dx is to do it directly in the arbitrary triangle, nevertheless this method will get more

complicated for higher dimensions and standard numerical integration techniques must be
adapted accordingly. For these reasons, it is better to compute the integral in a reference
triangle τ ′ with nodes at 

v′1 = (1, 0)

v′2 = (0, 1)

v′3 = (0, 0).

(2.64)

(2.65)

(2.66)

The explicit form of an affine transformation F : τ ′ → τ that maps the reference triangle
into an arbitrary triangle element τ is,

F(x′) = ATx′ + b, (2.67)

where

A =

[
x1 − x3 y1 − y3

x2 − x3 y2 − y3

]
, b =

[
x3

y3

]
(2.68)

and x′ is a point inside the reference triangle.

For a function u defined in the arbitrary triangle and its equivalent function u′ in the reference
triangle, the following relationship holds:

u′(x′) = u
(
F(x′)

)
, (2.69)
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whose gradient is

∇′u′ = A∇u. (2.70)

The equivalence of the integrals are,∫
τ
φ1φ2 dx =

∫
τ ′
φ′1φ

′
2 |det(A)|dx′,∫

τ
∇φ1 · ∇φ2 dx =

∫
τ ′

(
A−1∇′φ′1

)
·
(
A−1∇′φ′2

)
|det(A)|dx′,

(2.71)

where dx = |det(A)| dx′ due to the change of variables.

Figure 2.12: Graphical representation of two overlapping basis functions. The integral ob-
tained from the multiplication of those two basis functions is only non-zero when the basis
functions overlap; for linear basis functions, this only occur when they are adjacent.

Gaussian quadrature

Integrals need to be computed numerically, since absorption and diffusion coefficient are
just defined at node positions. Gaussian quadrature is one of the most popular numerical
integration techniques for triangular and tetrahedral meshes. Gaussian quadrature approx-
imates the integral of a function f(x, y) over a reference triangle with a discrete weighted
summation, ∫

τ ′
f(x, y) dx ≈

n∑
i=1

wif(xi, yi), (2.72)

where (xi, yi) are selected points in the reference triangle and wi are the weights associated
to those points. The goal is to obtain a set of positions and weights that can approximate
the integral as accurately as possible. Discrete points have to be symmetrical in order to
promote stability of the method. Commonly, quadrature rules are assigned a degree N to
represent up to what polynomial order the numerical integration is exact. That is, Gaussian
quadrature defined at Equation 2.72 is said to be exact up to degree N when

∫
τ ′
PN (x, y) dx =

D(N)∑
i=1

wiPN (xi, yi), (2.73)

where PN is a polynomial up to order N and D(N) is the number of discrete points for the
quadrature rule of order N .
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The first order Gaussian quadrature for triangles must be exact for polynomials f(x, y) = 1,
f(x, y) = x and f(x, y) = y. A practical identity to compute Gaussian quadrature points
is: ∫

τ ′
xiyj dx =

i!j!

(i+ j + 2)!
. (2.74)

That is, using previous identity for first degree polynomials the following equalities must
hold:

1

2
=

D(1)∑
i=1

wi,
1

6
=

D(1)∑
i=1

wi xi, and
1

6
=

D(1)∑
i=1

wi yi. (2.75)

In this case, it is clear that D(1) = 1 and w1 = 1/2, xi = 1/3 and yi = 1/3. Therefore, since
the only discrete point is at the barycentre, the quadrature is symmetric in this case.

For second degree polynomials (f(x, y) =
{

1, x, y, xy, x2, y2
}

), the equalities that must
hold are:

1

2
=

D(2)∑
i=1

wi,
1

6
=

D(2)∑
i=1

wi xi,
1

6
=

D(2)∑
i=1

wi yi,

1

24
=

D(2)∑
i=1

wi xiyi,
1

12
=

D(2)∑
i=1

wi x
2
i ,

1

12
=

D(2)∑
i=1

wi y
2
i .

(2.76)

There exists a solution for D(2) = 2, however the discrete points will not be symmetric,
which is not a good property. For this reason, D(2) = 3 will be used whose discrete points
are (x1, y1) = (1/6, 1/6), (x2, y2) = (2/3, 1/6) and (x3, y3) = (1/6, 2/3). Associated
weights are w1 = w2 = w3 = 1/6.

For the following orders, the same procedure must be followed. In [62] exact Gaussian
quadrature rules up to order twenty are presented. For tetrahedral geometries [251, 248]
present techniques based on the same concepts explained above.

Sparsity and symmetry

One of the main advantages of FEM is that matrices of the linear system are sparse and
symmetric. This follows because basis function have a limited support and for most (i, j)
pairs the expressions ϕiϕj and ∇ϕi∇ϕj will be null at all the domain. At Figure 2.13 the
sparsity pattern of matrices H and N are shown.
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nnz(N)/numel(N) = 0.000426
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Figure 2.13: (Left) Sparsity pattern of H matrix; note that matrices M and K have the
same pattern. Due to the large number of nodes that the mesh has the sparsity cannot be
fully appreciated in the image; nevertheless, non-zero values percentage is around 0.04%.
(Right) Sparsity pattern of N matrix, the matrix that implements the boundary conditions.
Non-zero values percentage is around 0.006%.

Most of these matrices are maintained constant over all computations. For example, at
Equation 2.58 the matrix U is constant over all time steps. Therefore, it may be factorized
to solve the linear systems much faster. Same property holds for standard and Mellin–
Laplace datatypes that will be presented in the next section; the matrix of the system is
always constant and by factorizing it the process can be made much faster. In practice, LU -
factorization [83] is one of the most used methods and customized algorithms have been
developed for large sparse matrices [30]. LU decomposition maintains a good ratio between
the amount of saved time to solve linear systems and its computing time complexity.

2.5. Diffuse optical tomography

During the early development of diffuse optics, most of the research was focused on quanti-
fying several physiological parameters such as blood oxygenation, saturation or flow volume
using just a few sources and detectors. When the understanding of the physical principles
behind diffuse optics were better, the computation capacity was improved and the instru-
mentation cost reduced researchers started to develop mathematical methods for computing
two and three dimensional maps of optical and physiological properties. The basic idea is
to recover the optical properties inside a volumetric medium by injecting light from the sur-
face and collecting backscattered photons with detectors located at different positions. The
measured photon arrivals are introduced in a tomographic algorithm and three-dimensional
optical properties reconstruction is performed (see Figure 2.14). This approach is known as
diffuse optical tomography (DOT).
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SourceDetector #1 Detector #2
Number of photons 
reached detector #1

Number of photons 
reached detector #2
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Figure 2.14: Typical setup of a time-resolved diffuse optical tomography problem. Sources
and detectors are located at the surface of the tissue. Light is injected in the medium and
some photons will scatter until they reach a detector. The diffuse medium will have some
absorption and scattering (µa, µ

′
s) inhomogeneities.

Mathematically, DOT can be posed as an inverse problem. That is, from the photons
backscattered to the detectors, one wants to retrieve the optical properties inside the
medium; this is the opposite of the forward process (see Figure 2.15).

Inverse problems are not well-posed in terms of Hadamard properties, that is, a solution
may not exist, it could be non-unique and may differ significantly for small changes in the
initial conditions. Moreover, when such problems are discretized and linearized, the resulting
systems are highly ill-conditioned and underdetermined. Due to these reasons regularization
is usually needed in order to obtain physically feasible results.

Forward problem

Input
 - Source and detectors
positions
 - Optical properties inside 
the medium

Output

 - Photons backscattered 
to detectors

Inverse problem

Input
 - Source and detectors
positions
 - Photons backscattered 
to detectors

Output

 - Optical properties inside 
the medium

Figure 2.15: Comparison of the forward and inverse problems. In the first case the developed
model will try to simulate the propagation of photons in a diffuse medium. For the latter
an inverse model recovers the optical properties of the medium given the data collected at
detectors.

In the following subsections, I will introduce the mathematical basics to solve the DOT
inverse problem, derive the Born and Rytov approximations and sketch the structure of
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a reconstruction algorithm. After, I will describe the reconstructions techniques used for
continuous-wave, frequency- and time-resolved technologies.

2.5.1. Basics of optical properties reconstruction

In this section, I will focus on the time-resolved case since it can be seen as a generaliza-
tion of other technologies. However, results can be easily derived for continuous-wave and
frequency-resolved technologies.

Let us define a non-homogeneous linear PDE,

Lφ(x, t) = f(x, t), (2.77)

where L is a linear operator, f(x, t) is the source function and φ(x, t) is the unknown
solution.

The Green function is defined as the solution to,

LG(x,xs; t, ts) = δ(x− xs; t− ts), (2.78)

where G(x,xs; t, ts) is the Green function for a Dirac delta distribution located at xs that
burst at time ts which is defined as,

δ(x− xs; t− ts) =

{
∞, if xs = x ∩ t = ts

0, if xs 6= x ∪ t 6= ts
,

∫ T

0

∫
Ω
δ(x− xs; t− ts) dxdt = 1,

(2.79)
assuming T > ts.

Therefore,∫ T

0

∫
Ω
LG(x,x′; t, t′)f(x′, t′) dx′ dt′ =

∫ T

0

∫
Ω
δ(x− x′; t− t′)f(x′, t′) dx′ dt′ = f(x, t),

(2.80)
and because L operator only applies to variables x and t it follows,

L

∫ T

0

∫
Ω
G(x,x′; t, t′)f(x′, t′) dx′ dt′ = f(x, t). (2.81)

The last equation implies that the solution to Equation 2.77 can be expressed as,

φ(x, t) =

∫ T

0

∫
Ω
G(x,x′; t, t′)f(x′, t′) dx′ dt′. (2.82)

The solution derived at Equation 2.82 can be applied to Equation 2.33 obtaining,

φ(x, t) =

∫ T

0

∫
Ω
G(x,x′; t, t′)S(x′, t′) dx′ dt′. (2.83)

where the Green function must fulfill the prescribed boundary conditions.

Now, let us subtract the Diffusion Approximation equation for an arbitrary absorption dis-
tribution with the Diffusion Approximation equation for a slightly perturbed absorption dis-
tribution,

1

c

∂ δφ

∂t
−∇ · (D∇δφ) + µaφ− µa,0 φ0 = 0, (2.84)
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where µa,0 and µa are the arbitrary and slightly changed absorption distributions (δµa =
µa − µa,0), φ0 and φ are their respective fluence rates and δφ = φ − φ0. Acknowledging
that

µaφ− µa,0φ0 = µaφ− µa,0(φ− δφ) = δµaφ+ µa,0 δφ, (2.85)

Equation 2.84 transforms to

1

c

∂δφ

∂t
−∇ · (D∇δφ) + µa,0 δφ = −δµaφ. (2.86)

The solution of Equation 2.86 is:

δφ(x,xs; t) = −
∫ T

0

∫
Ω
G0(x,x′; t, t′)δµa(x

′)φ(x′,xs; t
′) dx′dt′, (2.87)

where xs is the source position and G0 is the Green’s function for Diffusion Approximation
with µa,0. At detector position xd the difference in the fluence rate is,

δφ(xd,xs; t) = −
∫ T

0

∫
Ω
G0(xd,x

′; t, t′)δµa(x
′)φ(x′,xs; t

′) dx′dt′. (2.88)

The last equation may be rewritten as

φ(xd,xs; t) = φ0(xd,xs; t)−
∫ T

0

∫
Ω
G0(xd,x

′; t, t′)δµa(x
′)φ(x′,xs; t

′) dx′dt′, (2.89)

where last term from right side integral can be expanded:

φ(xd,xs; t) =φ0(xd,xs; t)−
∫ T

0

∫
Ω
G0(xd,x

′; t, t′)δµa(x
′)φ0(x′,xs; t

′) dx′dt′

+

∫ T

0

∫
Ω

∫ T

0

∫
Ω
G0(xd,x

′; t, t′)δµa(x
′)G0(x′,x′′; t′, t′′)δµa(x

′′)

φ(x′′,xs; t
′′) dx′′dt′′dx′dt′.

(2.90)

This expansion can be performed infinitely to get an infinite series which is known as Born
series. In the following derivations two series truncation will be developed: Born and Rytov
approximations.

Born approximation

By truncating δµa second and higher order terms of the Born series from Equation 2.90, the
Born approximation is obtained:

δφ(x,xs; t) ≈ −
∫ T

0

∫
Ω
G0(x,x′; t, t′)δµa(x

′)φ0(x′,xs; t
′) dx′dt′

= −
∫ T

0

∫
Ω
G0(x,x′; t− t′) δµa(x′) φ0

s(x
′, t′) dx′dt′

= −
∫

Ω
[G0(x,x′) ∗ φ0

s(x
′)](t) δµa(x

′) dx′,

(2.91)

where φ0(x′,xs; t
′) = φ0

s(x
′, t′).
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Born approximation can be interpreted as the first order approximation of the Born series.
At detector position the Born approximation is,

δφsd ≈ −
∫ T

0

∫
Ω
G0(xd,x

′; t− t′) δµa(x′) φ0
s(x
′, t′) dx′dt′

= −
∫

Ω
[G0

d(x
′) ∗ φ0

s(x
′)](t) δµa(x

′) dx′,

(2.92)

where δφsd = δφ(xd,xs; t) and G0
d(x
′) = G0(xd,x

′) = G0(x′,xd) because of symmetry of
Green’s function and ∗ is the convolution operator.

Born approximation can also be extended for diffusion coefficient heterogeneities (see Ap-
pendix E.1),

δφsd ≈ −
∫

Ω
(φ0
s ∗G0

d) δµa dx−
∫

Ω
(∇φ0

s ∗ ∇G0
d) δD dx. (2.93)

This equation is the cornerstone of DOT; it tells us how much absorption and diffusion
coefficient distribution should be changed, δµa(x) and δD(x), based on the detector sig-
nal difference between unknown and simulated medium, δφsd. This approximation can be
discretized and solved for δµa and D,

δφ11

δφ12
...

δφNsNd

 ≈


. . .
. . .

. . .




(δµa)1

(δµa)2
...

(δµa)M

+


. . .

. . .
. . .




(δD)1

(δD)2
...

(δD)M

 , (2.94)

which can be combined into a single linear system:


δφ11

δφ12
...

δφNsNd

 ≈


. . .
. . .

. . .
. . .

. . .
. . .





(δµa)1

(δµa)2
...

(δµa)M
(δD)1

(δD)2
...

(δD)M


. (2.95)

Rytov approximation

For any single variable function f it holds,

ln(f(x+ h))− ln(f(x)) = ln

(
f(x+ h)

f(x)

)
= ln

(
f(x) + δf

f(x)

)
= ln

(
1 +

δf

f(x)

)
. (2.96)

The Taylor expansion of the exponential function around x = 0 is

ex = 1 + x+
x2

2!
+ · · · , (2.97)
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and from its natural logarithm it follows that

x = ln

(
1 + x+

x2

2!
+ · · ·

)
= ln (1 + x) +O(x2). (2.98)

If x is very small, second order terms can be neglected (see Figure 2.16),

x ≈ ln (1 + x) . (2.99)

Therefore, equation

ln(f(x+ h))− ln(f(x)) = ln

(
1 +

δf

f(x)

)
, (2.100)

can be approximated by

ln(f(x+ h))− ln(f(x)) ≈ δf

f(x)
, (2.101)

assuming δf/f is small.
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Figure 2.16: Validity of x ≈ ln(1 + x) approximation.

Using the approximation above, the Born approximation can be converted to the well-known
Rytov approximation,

δφsd
φ0
sd

= − 1

φ0
sd

∫
Ω

[G0
d(x
′) ∗ φ0

s(x
′)](t) δµa(x

′) dx′

⇒ ln

(
φsd
φ0
sd

)
≈ − 1

φ0
sd

∫
Ω

[G0
d(x
′) ∗ φ0

s(x
′)](t) δµa(x

′) dx′,

(2.102)

Rytov approximation can be interpreted as an approach to model the second and higher
order terms of the Born series expansion using the natural logarithm.
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Pseudocode of the reconstruction algorithm

The linearization of the Born approximation described at Equation 2.92 is,

δφsd = Jδµa, (2.103)

where matrix J is known as the jacobian or sensitivity matrix and is a discretization of
−(Gd ∗φs) multiplied by voxel volume factors. An iterative reconstruction algorithm can be
developed as follows:

Nmax = maximum number of iterations

Set initial guess of absorption coefficient µ0
a(x) (usually uniform)

For loop (k = 0 : Nmax):

1. Solve forward problem with µka(x) from iteration k-th.

2. Set δφsd: signal difference between unknown and simulated medium.

3. Compute the jacobian matrix J.

4. Solve linear system δφsd = Jδµa by applying some regularization.

5. µk+1
a (x) = µka(x) + δµka(x)

If ‖µk+1
a − µka‖2/‖µk+1

a ‖2 < ε then convergence has been reached and the algorithm is
stopped.

As can be seen, Born approximation is used iteratively until convergence is reached. That is,
at first iteration absorption is estimated by µ1

a(x) = µ0
a(x) + δµ0

a(x). After, if convergence
is not reached then δµ1

a is computed and absorption updated again. This procedure is
processed until the absorption relative update is smaller than threshold ε, or the maximum
number of iterations has been completed.

2.5.2. Reconstruction using continuous-wave systems

In the continuous-wave case, the measurements are constant over time. The Born approxi-
mation simplifies to

φsd ≈ φ0
sd −

∫
Ω
φ0
s(x)G0

d(x)δµa(x) dx. (2.104)

If the approximation is discretized in voxels, the explicit form of the linear system is,
δφ11

δφ12
...

δφSD

 = −


V1φ

0
1(x1)G0

1(x1) V2φ
0
1(x2)G0

1(x2) · · · VMφ
0
1(xM )G0

1(xM )
V1φ

0
1(x1)G0

2(x1) V2φ
0
1(x2)G0

2(x2) · · · VMφ
0
1(xM )G0

2(xM )
...

... · · ·
...

V1φ
0
S(x1)G0

D(x1) V2φ
0
S(x2)G0

D(x2) · · · VMφ
0
S(xM )G0

D(xM )




(δµa)1

(δµa)2
...

(δµa)M


(2.105)

where J ∈ R(S·D)×M , δµa ∈ RM and δφsd ∈ R(S·D) being S · D the number of source-
detectors pairs and M the number of voxels in the domain. The term Vi corresponds to the
area (or volume in 3D) of voxel i-th.
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The jacobian matrix J is usually ill-posed and not squared. By multiplying both parts of the
equation by the transpose JT ,

JTJδµa = JT δφsd, (2.106)

a square matrix is obtained. The matrix is still ill-posed and regularization has to be applied.
A commonly used and easy to implement method is the Tikhonov regularization [102],
applied by the normal equation,

JTJ(δµa + λI) = JT δφsd, (2.107)

where λ is the regularization parameter and I is the identity matrix. Note that the normal
equation is equivalent to the equation solved by the Levenberg-Marquardt algorithm. The
jacobian matrix can be computed using the adjoint form [5] which needs to solve Ns +Nd

different forward problems. For noisy measurements, the linear system has to be multiplied
by a weight matrix, in order not to overfit the result. The jacobian could be redefined as

J = WJ where W is diagonal matrix with components Wii = 1/
√
σ2
i where σi is the

standard deviation of measurement i-th.

2.5.3. Reconstruction using frequency-resolved systems

Frequency-resolved systems measure the magnitude and phase at different frequencies. The
linear system to solve is:

Mag [δφsd(ω1)]
Pha [δφsd(ω1)]
Mag [δφsd(ω2)]
Pha [δφsd(ω2)]

...
Mag [δφsd(ωN )]
Pha [δφsd(ωN )]


=



Mag [Jsd(ω1, x1)] · · · Mag [Jsd(ω1, xM )]
Pha [Jsd(ω1, x1)] · · · Pha [Jsd(ω1, xM )]
Mag [Jsd(ω2, x1)] · · · Mag [Jsd(ω2, xM )]
Pha [Jsd(ω2, x1)] · · · Pha [Jsd(ω2, xM )]

...
Mag [Jsd(ωN , x1)] · · · Mag [Jsd(ωN , xM )]
Pha [Jsd(ωN , x1)] · · · Pha [Jsd(ωN , xM )]



 (δµa)1
...

(δµa)M

 ,

(2.108)
where Jsd(·, ·) and δφsd(·) ∈ CS·D and Mag [·] and Pha [·] are the magnitude and phase at
angular frequency ω. In this case the system matrix size is (2N · S · D) ×M where N is
the number of angular frequencies used. (Note that continuous-wave is the specific ω = 0
case).

2.5.4. Reconstruction using time-resolved systems

Equation 2.92 can be directly discretized into a time-resolved linear system,
δφsd(t1)
δφsd(t2)

...
δφsd(tN )

 =


Jsd(t1, x1) Jsd(t1, x2) · · · Jsd(t1, xM )
Jsd(t2, x1) Jsd(t2, x2) · · · Jsd(t2, xM )

...
Jsd(tN , x1) Jsd(tN , x2) · · · Jsd(tN , xM )



δµa,1
δµa,2

...
δµa,M

 , (2.109)

where Jsd(·, ·) and δφsd(·) ∈ RS·D.

In this case the system matrix size is (N · S ·D)×M , where N is the number of time bins
considered. Posing the reconstruction directly in terms of time has two main drawbacks:
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(1) the number of time bins is quite high (usually around one thousand), which makes the
system very large and (2) it is necessary to compute the TPSF for each source and detector
which is highly time-consuming. Due to these drawbacks usually datatypes (also known
as temporal filters or windows) [193] are used instead. These datatypes are just windows
that are applied to the DTOF in order to compress the information and to promote fast
computing. In the literature mainly three kind of datatypes are used: standard moments,
Mellin–Laplace windows and Fourier transform. The former two will be addressed in the
following subsections, the latter was introduced in the previous subsection.

Standard moments

The n-th moment of a function f(t) is defined as

[f(t)]n =

∫ ∞
−∞

f(t)tn dt, (2.110)

which are known as standard moments. Since the n-th moment of a convolution of two
functions is

[f(t) ∗ g(t)]n =
n∑
k=0

(
n

k

)
[f(t)]k[g(t)]n−k, (2.111)

where
(
n
k

)
= n!/(k!(n− k)!) the n-th moment of Born approximation is

[δφsd(t)]
n ≈ −

∫
Ω

n∑
k=0

(
n

k

)
[φs(x, t)]

k[Gd(x, t)]
n−kδµa(x) dx. (2.112)

Standard moments can be computed directly without computing explicitly the TPSF. The
following derivation is based on the calculations developed at [7]. The n-th derivative of a
Fourier transform is

∂n

∂ωn

∫ ∞
−∞

f(t)e−iωt dt = (−i)n
∫ ∞
−∞

tnf(t)e−iωt dt. (2.113)

If only the frequency ω = 0 is taken and using the identity in(−i)n = 1, the previous
equation transforms to

in
∂n

∂ωn
f̂(ω)

∣∣∣∣
ω=0

= [f(t)]n, (2.114)

where [f(t)]n is the n-th moment of function f(t) and f̂ is its Fourier transform. The Fourier
transform of the time-dependant linear system (Equation 2.49) is

[iωH + M + K + N]Ψ̂ = ŝ, (2.115)

where Ψ̂ represents the Fourier transform of function Ψ. Imposing a pulse source,

[iωH + M + K + N]Ĝ = δ(x− xs)e
−iωts = δ(x− xs), (2.116)

is obtained. Its n-th derivative with respect to to ω is,

[M + K + N]
∂nĜ

∂ωn
+ inH

∂n−1Ĝ

∂ωn−1
+ iωH

∂nĜ

∂ωn
= 0. (2.117)
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Moreover, if only the ω = 0 frequency is taken, both sides are multiplied by in and identity
from Equation 2.114 is used the following linear system is obtained,

(M + K + N)[G(x, t)]n = nH[G(x, t)]n−1. (2.118)

Therefore, the linear system above computes directly the n-th standard moment of Green’s
function by using the (n − 1)-th moment. This implies that standard moments can be
computed iteratively without computing explicitly the TPSF.

Mellin–Laplace moments

The Mellin–Laplace (ML) transform of a function f(t) is defined as

[f(t)](n,p) =
pn

n!

∫ ∞
0

f(t)tne−pt dt, n ∈ N, p ∈ R. (2.119)

The ML moment of a convolution is given by:

[f(t) ∗ g(t)](n,p) =

n∑
k=0

[f(t)](k,p)[g(t)](n−k,p), (2.120)

and for a given moment n and a value p the Born approximation transforms to

[δφsd]
(n,p) = −

∫
Ω

n∑
k=0

[φs(x, t)]
(k,p)[Gd(x, t)]

(n−k,p)δµa(x)dx. (2.121)

Mellin–Laplace moments can also be computed using FEM matrices without computing
explicitly the TPSF signal. Similar procedure as with standard moments can be used. The
n-th derivative of a Laplace transform is,

dn

dρn

∫ ∞
0

f(t)e−ρt dt = (−1)n
∫ ∞

0
tnf(t)e−ρt dt, (2.122)

and after some algebra, the Mellin–Laplace transform is equal to,

ρn

n!(−1)n
dn

dρn

∫ ∞
0

f(t)e−ρt dt =
ρn

n!

∫ ∞
0

tnf(t)e−ρt dt = f (p,n). (2.123)

The Laplace transform of the time-dependant linear systems is,

[ρH + M + K + N]Ψ̃ = s̃. (2.124)

where Ψ̃ is the Laplace transform of function Ψ.

If the n-th derivative is applied to Equation (2.124) and Dirac delta source is assumed,
then

[M + K + N]
dnG̃

dρn
+ nH

dn−1G̃

dρn−1
+ ρH

dnG̃

dρn
= 0. (2.125)

Multiplying by ρn/(n!(−1)n) and using the identity from Equation 2.123, the following linear
system is derived

[M + K + N + ρH]G(ρ,n) = ρHG(ρ,n−1), (2.126)

where G(ρ,0) is the Laplace transform of G, that is, the solution to Equation (2.124) for a
pulse source. Therefore, G(ρ,n) is given by solving the linear system with G(ρ,n−1).
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2.5.5. Measurements into the reconstruction algorithms

The measurements need to be introduced into the Born approximation described at Equa-
tion 2.92. Measurements can be defined as,

Msd = Gsd ∗ S(t) ∗D(t) + η(t) (2.127)

where Gsd(t) is the theoretical signal (free of noise and instrumental factors; the source is
assumed to be a Dirac’s delta distribution), S(t) accounts for source instrumental factors
(time delays, power and broadness), D(t) accounts for detector instrumental factors (time
delays and detection efficiency) and η(t) is the noise term. For simplicity, the noise influence
will be ignored from now (in Chapter 3 is given an extensive analysis of noise, its influence
and treatment for tomography problems).

The experimental factors can be included into the Born approximation as follows:

δGsd ∗ S(t) ∗D(t) ≈ −S(t) ∗D(t) ∗
∫ T

0

∫
Ω
G0(xd,x

′; t− t′) δµa(x′) G0
s(x
′, t′) dx′dt′,

(2.128)
where φ was made equal to G∗S(t)∗D(t) since it was assumed that the differences between
the Dirac’s delta and light pulse were included inside S(t).

From Equation 2.128, there exist two different approaches to perform the reconstruction: (1)
to use the cross approach described in [101] where a known medium is used as reference and
(2) to deconvolve instrumental factors from the signals. Here, I will describe both techniques,
where in both cases it can be assumed that the IRF is unknown if a measurement is done in
a reference medium. In Chapter 3, I will explain a different reconstruction technique which
deconvolves the instrumental factors directly.

To apply the cross-Born approximation two types of measurements will be considered: MA
sd

where A indicates the reference medium which optical properties are known and MB
sd where

B indicates the target unknown medium (see Figure 2.17).

A B
Figure 2.17: (Left) Reference medium which optical properties are known; usually an ho-
mogeneous medium is used. (Right) Target medium whose optical properties are unknown;
the red circle represents an absorption heterogeneity.

Using some algebra,

MB
sd ∗GAsd −MA

sd ∗G
B(k)
sd = GBsd ∗GAsd ∗ S ∗D︸ ︷︷ ︸

MA
sd

−GB(k)
sd ∗GAsd ∗ S ∗D︸ ︷︷ ︸

MA
sd

= (GBsd −G
B(k)
sd )︸ ︷︷ ︸

δGBsd

∗MA
sd = δGBsd ∗MA

sd,
(2.129)
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where G
B(k)
sd denotes the simulated signal for the absorption recovered at iteration k-th

assuming a Dirac’s delta distribution as source.

So, the relationship

MB
sd ∗GAsd −MA

sd ∗G
B(k)
sd = δGBsd ∗MA

sd, (2.130)

can be introduced at Born approximation (Equation 2.128) obtaining

MB
sd ∗GAsd −MA

sd ∗G
B(k)
sd = −MA

sd ∗
∫

Ω

[
GB(k)
s (x, t) ∗GB(k)

d (x, t)
]
δµa(x) dx, (2.131)

which is known as the cross-Born approximation. Since Born approximation and measure-
ments have been related in a single equation, now reconstruction can be performed from
experimental data. Nevertheless, measurements and simulations were convolved which im-
plies that some information will be lost as proven in Chapter 3. Noise factor can be overcome
by using the generalized least squares method (see Appendix D) in combination with the
covariance matrix.

A second approach, that does not convolve the data, is to first deconvolve the instrumental
factors S ∗D from the measurements and introduce them into the plain Born approximation.
The technique explained below assumes that S ∗D is unknown. Mellin–Laplace transform
can be applied to the reference measurement

MA
sd = GAsd ∗ S ∗D

M-L
==⇒ [MA

sd]
(n,p) =

n∑
i=0

[GAsd]
(i,p)[S ∗D](n−i,p) (2.132)

and rewritten in matrix form by using a Toeplitz matrix
[MA

sd]
(0,p)

[MA
sd]

(1,p)

[MA
sd]

(2,p)

...

[MA
sd]

(n,p)

 =


[GAsd]

(0,p) 0 0 · · · 0

[GAsd]
(1,p) [GAsd]

(0,p) 0 · · · 0

[GAsd]
(2,p) [GAsd]

(1,p) [GAsd]
(0,p) · · · 0

...

[GAsd]
(n,p) [GAsd]

(n−1,p) [GAsd]
(n−2,p) · · · [GAsd]

(0,p)




[S ∗D](0,p)

[S ∗D](1,p)

[S ∗D](2,p)

...

[S ∗D](n,p)

 .
(2.133)

Mellin–Laplace moments of S ∗D can be computed by solving this linear system. Measure-
ments for medium B can also be represented by a Toeplitz matrix,

[MB
sd]

(0,p)

[MB
sd]

(1,p)

[MB
sd]

(2,p)

...

[MB
sd]

(n,p)

 =


[GBsd]

(0,p) 0 0 · · · 0

[GBsd]
(1,p) [GBsd]

(0,p) 0 · · · 0

[GBsd]
(2,p) [GBsd]

(1,p) [GBsd]
(0,p) · · · 0

...

[GBsd]
(n,p) [GBsd]

(n−1,p) [GBsd]
(n−2,p) · · · [GBsd]

(0,p)




[S ∗D](0,p)

[S ∗D](1,p)

[S ∗D](2,p)

...

[S ∗D](n,p)

 ,
(2.134)

where, in this case, the Toeplitz matrix is unknown but it can be computed by solving each
equation from the top to the bottom sequentially.

That is,

[GBsd]
0 =

[MB
sd]

0

[S ∗D]0
(2.135)

[GBsd]
1 =

[MB
sd]

1 − [GBsd]
0[S ∗D]1

[S ∗D]0
(2.136)
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which can be generalized to

[GBsd]
n =

[MB
sd]

n −
∑n

i=1[GBsd]
n−i[S ∗D]i

[S ∗D]0
. (2.137)

As can be seen, the main drawback of this method is that noise is propagated along each
order (see Equation 2.137).

2.6. Clinical perspectives: applications to neuromonitoring

After presenting the fundamentals and basics of diffuse optics, it is important to consider
the potential clinical applications. Frans Jöbsis in 1977 was the first to measure oxy and
deoxyhemoglobin changes in a mammal [112] by using near-infrared spectroscopy (NIRS).
After, the scientific community has studied these hemoglobin changes at different human
organs in order to diagnose or monitorize several diseases such as thrombosis [125], different
types of cancer [121], flap monitoring [37, 58, 173] or brain imaging [228]. Moreover, NIRS
have also been used to monitor patients during surgeries, for example cerebral tissue oxygen
saturation was measured in cardiac operations [35, 78, 155]. Nevertheless, there is still an
ongoing debate about NIRS benefits during cardiac surgery [20, 199, 157] and, therefore
more research have to be done in the clinics.

In the next subsections, I will introduce three neuromonitoring applications that have a large
potential to be used systematically in the clinics of the future. In fact, some of them have
already been tested in some clinical situations with promising results.

2.6.1. Traumatic brain injuries

NIRS has a big potential in the context of traumatic brain injury (TBI). The clinicians identify
two cases where NIRS could be used successfully [52]: 1) as a bedside continuous monitoring
tool for the detection of secondary brain injuries (primary brain injuries are generated by the
concussion or accident and secondary are a produced by the increase of intracraneal pressure
due to the primary hematoma) and 2) as a tool for initial diagnostic in primary care settings
or emergency situations. It must be noted that the idea is not to replace the well-established
CT or MRI imaging techniques, since they are still the best choice at secondary and tertiary
care settings. The plan is to use NIRS technology for doing a fast pre-evaluation just after the
injury has occurred (e.g. sport related concussions [75]) or to do a continuous monitoring
where CT and MRI are not affordable or appropriate. In this context, the detection of
acute intracraneal hematomas right after the injury has occurred (usually at out-of-hospital
situations or in non-specialized medical centers) would be very helpful for doctors in order
to decide if a patient should be send to a secondary care setting or not [52, 198].

Several attempts have been done to detect hematomas by using NIRS [186, 114, 187], all
of them showed high sensitivity and specifity levels. Moreover, Infrascanner device has been
commercialized recently for screening in-situ the presence of brain hematomas [124]; Infras-
canner was used by the German army in Afghanistan [27]. However, some of the expectations
have been decreased due to several practical limitations [235, 198], such as contamination of
signal by extracraneal tissue (scalp, skull and cerebrospinal fluid), the difficulty of obtaining
absolute values or inaccuracies when hematomas exist in both hemispheres. Therefore, there
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are still many issues that need to be addressed before fully applying NIRS into the clinics for
TBI monitoring and assessment.

2.6.2. Newborn hypoxia

Hypoxic ischemic encephalopathies, such as cerebral palsy [225], are one of the leading
causes of death and long-term neurological deficits in neonates. Although MRI or CT are
gold standard techniques in adult patients these tools are difficult or even risky to use in
few-days old babies [11, 16]. For these reasons, there is a need of a technology that could
allow to perform bedside, continuous, non-invasive and safe brain monitoring in newborn
patients. Among the technologies that fulfill these properties optical based systems are one
of the most promising techniques.

NIRS technology was one of the first methods to be proposed [240, 209] as an alternative
technique for neonates since their skull and scalp are less thick than in adults and therefore
measurements are less noisy. Moreover, some studies have validated NIRS in neonates by
reporting a good correlation with MRI [238]. NIRS have also been proposed as an alternative
for the monitoring of neonatal brain injuries [13, 149]. Nowadays, although there are many
commercial devices that measure the trends of cerebral oxygen saturation the absolute values
are still a challenge [59] and are the major obstacle to fully implement NIRS into the newborn
health care system. Therefore, in this field there is still a lot of space for improvement that
could be exploited by, for example, finding some protocols or standards to homogenize the
diverse results in terms of absolute oxygen saturation values.

2.6.3. Functional imaging

NIRS can also be used to analyze brain activity. When a part of the brain is activated
the cerebral blood flow in that region will increase due to neurovascular coupling. The
quantity of oxygenated blood that the flow carries is greater than the activated neurons
need. Therefore, not all the oxygenated blood will be consumed and the local concentration
of oxygenated blood will increase in overall. At the same time the blood flow increases in
the active region the deoxygenated blood will decrease slightly. That is, when neural activity
takes place, the concentration of oxygenated blood will increase but the concentration of
deoxygenated blood will decrease slightly. Usually, these changes of concentration do not
occur immediately but with a couple of seconds of delay. Functional imaging methods that
measure these hemoglobin changes are known as blood-oxygen-level dependent imaging
techniques or BOLD imaging techniques.

There already exist many well-established brain function imaging methods such as functional
MRI (fMRI), electro encephalography (EEG) or magneto encephalography (MEG). fMRI is
a BOLD imaging technique, but it measures the magnetic susceptibility of oxy and deoxy-
genated blood instead of the absorption. However, EEG and MEG are not BOLD techniques
since they measure the neural activity in the brain by recording the electrical or magnetic
potentials of neurons. Although all these methods are well-established in research and clinics
they still require the patient to be restrained since any movement could produce artifacts in
the measurements [189]. Nevertheless, several studies used NIRS to analyze brain activa-
tion of walking subjects, e.g. in healthy population [213], ederly population [93] or subject
that suffered a stroke [147]. Moreover, since NIRS systems are quite inexpensive, small and
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can be used in environments with high radiation or strong magnetic fields its usefulness at
neuroscientific research is large and well-rooted.

In the next chapter, I develop a generalized theory for temporal windows datatypes. Strong
emphasis is put on analysing different windows and how they are influence by instrumental
factors. I consider that the work presented in following chapter could be applied to the
clinical neuromonitoring devices that will be commercialized in the future.



Chapter 3
Theoretical study of datatypes for
time-resolved diffuse optical
tomography

D
iffuse optical tomography recovers the optical properties of an unknown diffu-

sive medium by solving an ill-posed inverse problem. In time-resolved technology,
reconstructions based on datatypes (e.g. temporal windows) are usually used be-

cause they are faster to compute than the fluence rate. Nevertheless, neither theoretical nor
numerical studies assessing different datatypes have been clearly expressed.

In this chapter, I propose an overview and a new process to compute efficiently a long set of
temporal windows in order to perform diffuse optical tomography. I carried out a theoretical
comparison of these large set of temporal windows including also Fourier transform datatypes.
I also did simulations in a reflectance geometry with a spherical inclusion at different depths.
The results are presented in terms of inclusion localization and its absorption coefficient
recovery. I show that (1) the new windows computed with the developed method perform
better than the state-of-the-art windows for inclusions deeper than 2.5 cm, (2) in some
cases these windows can be equivalent to frequency based reconstruction at GHz order and
(3) deconvolving the instrumental response function of the measurements has a superior
performance compared to the cross–Born inverse problem approach.

3.1. Introduction

With time-resolved diffuse optical technology the concentrations of several physiological
chromophores such as hemoglobin, lipid or collagen can be measured in-vivo. Successful
measurements have been done at different human body locations such as brain [235, 44],
breast [215] or thyroid [132]. An interesting extension of this technology is to perform
diffuse optical tomography [203, 9] by computing three-dimensional maps of oxy- and deoxy-
hemoglobin; in this approach, photon propagation is modeled in a computer and results are
compared with experimental measurements. Then, optical parameters in the model are
updated by solving an ill-posed inverse problem until the difference between the model and

47
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the data is negligible.

In order to have accurate results, it is important to have a realistic model for photon prop-
agation in tissues. The most accurate approach is to use the integro-differential Radiative
Transfer Equation (RTE) described at Subsection 2.2.2. Although RTE has some analyt-
ical solutions [130, 128, 129] these just hold for simple geometries and cannot be applied
to more complex environments, such as an human head or breast models, without making
strong assumptions. Apart from classical Monte-Carlo simulations [233, 68], new numerical
methods have been proposed, some of which are the one-way RTE [84] or hybrid RTE [216];
nevertheless, they are still highly time-consuming for real-time applications.

Due to the previous reasons, usually the first-order time-dependant Diffusion Approximation,
described at Equation 2.24 from Subsection 2.2.2, is used. This approximation, based on
spherical harmonics [234], is valid assuming that (1) the reduced scattering coefficient is
much greater than absorption (µ′s � µa) and that (2) detectors are sufficiently far from
light sources (> 1/µ′s). These assumptions hold in most practical cases and although higher
order approximations have also been suggested [40, 136, 244] the extra computational cost
usually does not compensate the small gain in accuracy.

The time-dependant Diffusion Approximation equation can be solved using Finite Element
Method [10] but it is still a slow process since time has to be discretized in short steps in
order to guarantee stability and convergence. For this reason, several authors have proposed
to use temporal windows datatypes since they are faster to compute than the fluence rate
itself [101, 7]. Nevertheless, as indicated in [5], the temporal windows datatypes are faster to
compute than the fluence rate if they have the form w(t) = tne−pt, where n ∈ N is in the set
of natural numbers and p ∈ C is in the set of complex numbers. This formula incorporates
the Fourier transform (when n = 0 and p is an imaginary number), Laplace transform (when
n = 0 and p is a complex number), standard moments (when n is an integer and p = 0)
and Mellin–Laplace moments (when n is an integer and p is a real number).

Some authors prefer to use Fourier Transform (FT) datatypes. In [44] the magnitude and
phase of 100 MHz frequency from a time-resolved signal was used for the reconstruction. A
similar approach was published in [208] to retrieve the fluorescence lifetime distribution. A
related idea is to directly use frequency-domain technology [55, 175, 89] to retrieve optical
properties or fluorescence lifetime [207, 148]. These reconstruction approaches based on
solving the inverse problem in frequency domain are a good alternative to temporal windows
but are not equivalent since only MHz order frequencies are used.

In the next sections, I propose a new technique for computing fluence rate temporal win-
dows datatypes without constraining ourselves to w(t) = tne−pt form and preserving low
computing times. I analyse different types of windows in terms of temporal selectivity, noise
influence and computational efficiency. I also compare through simulations the datatypes
with respect to the state-of-the-art reconstruction techniques. Finally, I reformulate the new
method as a frequency based reconstruction using up to GHz order.

3.2. Theoretical development and analysis of new temporal
windows

In this section, I will give a short review to datatypes-based reconstruction and I will describe
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a new method for computing temporal windows. Further on, I will analyse different temporal
windows and I will also study the noise influence on reconstruction methods.

3.2.1. A short review of datatype-based reconstruction

As was explained in section 2.5 of Chapter 2 time-resolved diffuse optical tomography can
be posed in terms of time bins or datatypes. Absorption of the medium can be recovered
by using iteratively the linearized Born approximation,

δφsd(t) =

∫
Ω

[
φ(k)
s ∗G

(k)
d

]
(r, t) δµ(k)

a (r) dr, (3.1)

where δφsd = φsd−φksd is the fluence rate difference at detector d when source at position s

was activated; in φsd the experimental factors are included. G
(k)
d (r, t) indicates the value of

the Green function at every point in the domain assuming the source is located at position
d. φks(r, t) is the fluence rate at every point in the domain for a source located at s. δµa(r)
is the absorption update at each iteration. The superscript indicates that absorption values
obtained at iteration k were used; see a simplified sketch of the reconstruction procedure at
Figure 3.1. Equation 3.1 can also be extended to include changes in scattering.

In the case of full-time resolved reconstruction approach (see Subsection 2.5.4) the system
matrix size is N ·S ·D×M where N is the number of time bins considered (usually between
one and four thousand), S is the number of sources, D is the number of detectors and M
is the number of mesh nodes. Expressing the reconstruction in terms of time has two main
drawbacks: (1) the number of time bins is high (usually around one thousand), which makes
the system very large and (2) it is needed to simulate the distribution of photon time of
flight (DTOF) for each source and detector (which is very time-consuming).

Due to previous reasons, it is better to solve the problem of Equation 3.1 in terms of
datatypes. A datatype is a filter that is applied to the DTOF to reduce the size of the
problem. For example, when a temporal window filter is applied to the DTOF, the problem
is reduced to

Lsd(w1)
Lsd(w2)

...
Lsd(wW )

 =


Jsd(w1, r1) Jsd(w1, r2) · · · Jsd(w1, rM )
Jsd(w2, r1) Jsd(w2, r2) · · · Jsd(w2, rM )

...
Jsd(wW , r1) Jsd(wW , r2) · · · Jsd(wW , rM )



δµa(r1)
δµa(r2)

...
δµa(rM )

 , (3.2)

whose matrix size is W · S · D ×M , where W is the number of windows filters used. In
practice, this system will be much smaller than the system of Equation 2.109 since only a
few dozens of windows are usually needed.

The Fourier transform is also a datatype that converts the reconstruction problem to
Lsd(f1)
Lsd(f2)

...
Lsd(fF )

 =


Jsd(f1, r1) Jsd(f1, r2) · · · Jsd(f1, rM )
Jsd(f2, r1) Jsd(f2, r2) · · · Jsd(f2, rM )

...
Jsd(fF , r1) Jsd(fF , r2) · · · Jsd(fF , rM )



δµa(r1)
δµa(r2)

...
δµa(rM )

 , (3.3)

where the matrix and the vector on the left hand side are complex. The matrix size is
F ·S·D×M , where F is the number of frequency bins. It is interesting to notice that although
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frequency based systems use frequencies in the range of MHz, in time-resolved systems, after
applying the FT, the frequencies extend to the range of GHz. As it will be shown later,
frequencies of GHz order provide important information for deep inclusions.

Mathematical model

Solve linearized 
Born Equation

Has convergence 
been reached?

Experimental data 

μa at iteration k-th
μa

(k) = μa
(k-1) + δμa  

 

μa at k-th
is the 

solution

Yes No

Recompute
math. model

 with μa
(k).

Set k = k +1.

k = iteration number

Figure 3.1: Absorption reconstruction algorithm based on linearized Born equation (Eq. 3.1).

For the following discussion, it is important to note the difference between FT- and temporal
windows-based reconstruction. In the first case, the reconstruction is done directly in the
frequency domain. However, in the second case, the reconstruction is performed by using
temporal windows, which are proposed to be computed in the frequency domain, due to
computational efficiency reasons.

3.2.2. A novel method to compute temporal windows

Let us define u(t) as the DTOF simulated at a detector and w(t) as an arbitrary shaped
temporal window. A datatype Γ is defined as∫ ∞

0
u(t)w(t) dt = Γ, (3.4)

since u(t) = 0 for t < 0. If w(t) = tne−pt then Γ can be calculated directly without
computing u(t) explicitly [8]. However, until now, no method has been published that uses
a different window shape without computing explicitly u(t) for each time step. The approach
described in this chapter, proposes to compute the datatypes in the frequency domain; this
can be done by using the Plancherel theorem as follows:

Γ =

∫ ∞
−∞

u(t)w(t) dt =

∫ ∞
−∞

U(f)W (f) df, (3.5)

where uppercase denotes the Fourier transform defined as U(f) =
∫∞
−∞ u(t)e−2πift dt and

W (f) denotes the conjugate of W (f). If W (f) or U(f) are non-zero at a small interval
of the frequency domain, the integral of Equation 3.5 can be approximated numerically by
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using small range of frequencies, see Figure 3.2. This new approach allows fast computation
of a larger set of temporal windows.
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Figure 3.2: (Left) DTOF u(t) and temporal window w(t) in time domain. (Right) Magnitude
of the Fourier transforms of u(t) and w(t); it is feasible to approximate numerically the
integral in frequency domain since spectra decay rapidly.

To approximate Γ using few frequencies, it is important to ensure that window spectra
decay rapidly. Dispersion of the windows after applying Fourier transform can be controlled
by using the uncertainty principle. This principle states that the narrower a function g(t) is,
the more spread its Fourier transform G(f) will be. That is, if one wants to have a sharp
window in time domain then the integral in frequency domain will be more spread around
the zero frequency. Defining the dispersion of a function as

D0(g) =

∫∞
−∞ t

2|g(t)|2 dt∫∞
−∞ |g(t)|2 dt

, D0(G) =

∫∞
−∞ f

2|G(f)|2 df∫∞
−∞ |G(f)|2 df

(3.6)

the uncertainty principle states that if g(t) is absolutely continuous and the functions tg(t)
and g′(t) are square integrable (i.e. they are in L2 space) then [171]

D0(g)D0(G) ≥ 1

16π2
, (3.7)

where G is the Fourier transform of g(t) and the equality holds only for the Gaussian density
function centered at t = 0.

Computational aspects

The reported technique has to be much faster to compute than the resolution of time-
dependant Diffusion Approximation equation in order to be useful in practice. In the follow-
ing section, some important computational aspects related to the time complexity will be
shown.

First, to compute φ(r, tn) in Equation 2.24, it is needed to know the previous values of
φ(r, tn−i), where tn is the n-th discrete time bin and tn−i < tn. This implies that to
compute φ(r, tn) previously n−1 linear systems have to be solved. However, in the frequency
resolved version of Equation 2.24, there is no such restriction, since the fluence rate at
any frequency can be computed independently. This is the main reason why the integral
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of Equation 3.5 is faster to compute in the frequency domain. Therefore, the described
technique is easily parallelizable and could be implemented in GPU hardware. Some labs have
already implemented state-of-the-art photon propagation models using GPU technology [61,
192].

Another important property is that for real functions, Fourier transform coefficients will
have symmetric real part and anti-symmetric imaginary part. From this follows that only
positive (or negative) frequencies must be computed and only half of the integral needs to
be approximated,∫ ∞

−∞
U(f)W (f) df = 2

∫ ∞
0

U(f)W (f) df ≈ 2

N∑
i=0

U(fi)W (fi) ∆f, (3.8)

where N frequencies were used in the approximation.

However, the proposed method also suffers from one limitation. When computing temporal
windows with shape w(t) = tne−pt, the linear system to solve has the form Ax = b(n) +
x(n−1), that is, as the order n of the window is increased, only the right part of the systems
changes, but the matrix system is constant. This encourages to use, for example, LU
factorization of the matrix A to solve all the systems quickly. However, when solving the
Diffusion Approximation equation at frequency domain, the systems have the form A(f)x =
b where f is the frequency. In this case, the matrix A needs to be factorized for each
frequency, which implies an increase in the computational cost. Nevertheless, Diffusion
Approximation at frequency domain is highly parallelizable because of the independence
between frequencies. Therefore, unlike for model of windows w(t) = tne−pt the equations
at each frequency-domain could be fastly solved in parallel with a GPU.

3.2.3. Temporal windows analysis

In the following subsections, state-of-the-art temporal windows (standard and Mellin–Laplace
moments) and proposed windows for the novel method (Gaussian, Tukey and Poisson win-
dows) are analysed in time and frequency domain. An analysis regarding their optimality for
numerical integration is also included in the last subsection.

Standard moments

Standard moments have been used to retrieve the optical properties of homogeneous me-
dia [126] and layered models [127]. Standard moments windows are defined as w(t) =
tnH(t), where n ∈ N and H(t) is the Heaviside step function. These types of windows can
be computed fast with state-of-the-art techniques [7]. The Fourier transform of standard
moment window is

W (f) =
n!

(i2πf)n+1
, (3.9)

whose magnitude is n! · (2πf)−(n+1). Therefore, the standard moments in time domain are
equivalent to∫ ∞

−∞
u(t) tnH(t) dt =

∫ ∞
0

u(t) tn dt =

∫ ∞
−∞

U(f) (i2πf)−n−1n! df, (3.10)
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where the term (i2πf)−n−1n! can be considered as a window in frequency domain. This
window magnitude tends to a Dirac delta distribution as n goes to infinity, which is obvious
since tnH(t) will approach a step function with infinity value at t >= 0 and the only non-
zero magnitude frequency in the spectrum will be the zero frequency. Therefore, the higher
the order, the smaller the frequency range covered by the windows.

If the standard moments are centralized by the time of flight 〈t〉 =
∫∞
−∞ u(t) tH(t) dt

then ∫ ∞
−∞

u(t) (t− 〈t〉)nH(t) dt =

∫ ∞
0

u(t)(t− 〈t〉)n dt

=

∫ ∞
0

u(t)
n∑
k=0

(
n

k

)
(−1)n−ktk〈t〉n−k dt

=
n∑
k=0

(
n

k

)
(−1)n−k〈t〉n−k

∫ ∞
0

u(t)tk dt,

(3.11)

which is a weighted sum of standard moments. Now, I introduce the state-of-the-art windows
known as Mellin–Laplace moments.

Mellin–Laplace moments

Mellin–Laplace windows are defined as w(t) = tne−ptH(t) where p > 0 and n ∈ N. These
windows can also be computed fast [101]. Their Fourier transform is given by

W (f) =
n!

(p+ i2πf)n+1
. (3.12)

In Figure 3.3 and 3.4, the windows for different n orders and p values are shown. The
higher the Mellin–Laplace order n the narrower the window magnitude will be in frequency
domain. As expected from the uncertainty principle, the higher the p value the more spread
the window will be in frequency domain.
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Figure 3.3: (Left) Different n orders of Mellin–Laplace windows for p = 2. (Right) Mag-
nitude of the Fourier transform of those windows; as the order n of the Mellin–Laplace
moment is increased, its spectrum magnitude is narrower and has less dispersion.
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Figure 3.4: (Left) Fifth order (n = 4) Mellin–Laplace window with different p values.
(Right) Magnitude of the Fourier transform of those windows; as the p value is increased,
the magnitude of the Mellin–Laplace window spectrum is more spread.

Zero order Mellin–Laplace datatypes are Laplace transforms for different p values. Recently,
an optical system system was proposed [95], which computes Laplace datatypes without
the need of measuring the complete DTOF. The system described by Hasnain et al. [95] is
quite interesting, since it is much faster than typical time-resolved systems. Nevertheless,
Laplace datatypes have poor temporal selectivity (they cover a broad range of time) and are
highly correlated, which does not make them the best candidates in terms of tomography
capabilities.

Generalized Gaussian window

The Gaussian function and its Fourier transform are

w(t) = e−t
2/(2σ2) ←→W (f) = σ

√
2πe−2σ2π2f2 . (3.13)

As expected from the uncertainty principle, the higher σ, the more spread the window
at time domain will be and, therefore, the narrower it will be in the frequency domain,
see Figure 3.5. Note that the centralized Gaussian windows gives the lower bound of the
uncertainty principle.

The Laplacian or exponential window (see Figure 3.6) are defined as

w(t) = exp(−p|t|)←→W (f) =
2p

p2 + (2πf)2
, (3.14)

where p is a parameter.

Both Gaussian and Laplacian windows can be described by the generalized Gaussian window
(also known as the generalized normal window),

w(t) =
β

2σΓ(1/β)
e−(|t|/σ)β ←→W (f) = Γ−1

(
1

β

) ∞∑
n=0

(−1)nπ2nf2n

(2n)!
σ2nΓ

(
2n+ 1

β

)
.

(3.15)
where β is a free parameter and Γ is the gamma function. If β = 2 the function is Gaussian
and if β = 1 is Laplacian. As β →∞ the window converges to a square window.
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Figure 3.5: (Left) Several Gaussian functions with different σ values. (Right) Spectrum
magnitude of previous Gaussian functions. The more spread the Gaussian function, the
narrower its Fourier transform magnitude.
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Figure 3.6: (Left) Several Laplacian windows with different p values. (Right) Spectrum
magnitude of previous functions.

Tukey window

The centralized Tukey window [94] is defined as

w(t) =


1, 0 ≤ |t| ≤ αt∗

0.5

[
1 + cos

(
π

t− sign(t)αt∗

sign(t) (t∗ − αt∗)

)]
, α t∗ ≤ |t| ≤ t∗,

0, elsewhere,

(3.16)

where t∗ is the limit of the window and 0 ≤ α ≤ 1 parameter controls the smoothness of
the window.

If α = 1 the Tukey window is rectangular and its Fourier transform is defined as

w(t) = rect(t/τ)←→W (f) = τsinc(πfτ). (3.17)

These windows have a high selectivity of photon arrival time. The spectrum magnitude of
rectangular function (α = 1) is a sinc function with infinite oscillations, which can make



56 Chapter 3. Study of datatypes for time-resolved diffuse optical tomography

difficult to integrate them numerically. Nevertheless, as the α value decreases, the oscillations
at high frequencies disappear without losing much temporal selectivity.
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Figure 3.7: (Left) Several Tukey functions with different α values. (Right) Magnitude of
the Fourier transforms of Tukey functions.

Trade-off between temporal selectivity and computation complexity

An optimal temporal window is the one that is easy to compute (it has few oscillations
and small dispersion at frequency domain) and at the same time its temporal selectivity
is good enough. For some windows, optimality can be described by D∗0 = D0(g)D0(G)
(see Subsection 3.2.2). The D∗0 of a window quantifies the trade-off between the temporal
selectivity and easiness to compute as expressed by uncertainty principle. The lower the
value D∗0 is for a given window, the better the window temporal selectivity will be and the
less frequencies will be needed to perform the numerical integration.

In Appendix F the dispersion of each window was calculated. In Table 3.1, the main opti-
mality results were summarized.

Window D∗0

Mellin–Laplace 1
16π2

(2n+2)!
(2n)!

(
2n

2n−1 − 1
)
, (n ≥ 1)

Gaussian 1/(16π2)
Exponential 1/(8π2)

Table 3.1: D∗0 for each analyzed window. Standard moments and Tukey windows are not
L2 integrable.

The Gaussian is the window that has the lowest D∗0 value; this was expected from the
uncertainty principle theorem and this is what makes the Gaussian window one of the most
promising windows. The exponential window has a twice bigger value compared to the
Gaussian window; this means that the numerical integral could be a bit more difficult to
compute but it is still a good candidate. Mellin–Laplace windows will increase its D∗0 value
almost linearly for increasing orders although it is independent of p value. Expression D∗0 is
not in L2 space for Tukey windows, nevertheless from Figure 3.7 it is evident that for some
α values is still feasible to perform numerical integration at frequency domain. Standard
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moments are neither L2 integrable, but since by nature they are highly correlated they will
not be used in this work.

A point that should also be considered is the shift theorem of the Fourier transform. It
states that given a function g(t), if this function is shifted an amount of t0, then its Fourier
transform is

Gt−t0(f) = G(f)e−i2πft0 , (3.18)

where Gt−t0(f) indicates the Fourier transform of shifted function g(t− t0) = g(t)∗δ(t− t0)
and the complex exponential does not affect the spectral magnitude, since |e−i2πft0 | = 1,
but it affects the phase. This theorem implies that as temporal windows are shifted to later
times, more oscillations will appear. However, in practice this phenomenon did not prevent
us to perform the numerical integration accurately.

The new method to compute temporal windows is also useful for windows with the form
w(t) = tne−pt, such as Mellin–Laplace or standard moments. Both of these moments
suffer from an important handicap if traditional computation methods are used: in order to
compute the n-th order window then all the previous orders, 1, ..., n− 1, must be computed
(in the case of Mellin–Laplace if p parameter is modified then all orders must be computed
again). These problem can be critical in the case of Mellin–Laplace since as the order of the
moments increase, the window temporal selectivity decreases (see Figure 3.3 (left)). If it is
wanted to have better sensitivity to later photons (i.e. photons that probabilistically have go
deeper into the tissue) then higher p values must be used. There are two ways of doing it: the
first option is to use the same p value for all windows; but the main drawback is that many
orders will have to be calculated, since a higher p value shifts windows average time-of-flight
to earlier photons (see Figure 3.4). The second option implies to use windows with different
p values (e.g. a low p value for early windows and high p values for late windows) which
is not computationally efficient since if the p value is changed then all orders up to n will
have to be computed again as explained before. Nevertheless, the new approach presented
in this chapter does not suffer from these bottlenecks since Mellin–Laplace moments can be
computed for each p and n value independently (same for n order in the case of standard
moments). Therefore, one of the biggest advantages of the presented method is not only
that new windows can be computed but also that Mellin–Laplace windows for different p
values can be computed more efficiently.

3.2.4. Noise influence

Since DTOF signals are transformed to datatypes space, the noise will also suffer changes.
In this part, noise transformations and correlations are analysed to understand noise influ-
ence.

The DTOF signal measured by a detector is theoretically described as

u(t) = x(t) + ε(x(t)), (3.19)

where x(t) is the noiseless signal and ε is the noisy term which depends on x(t) magni-
tude, uncorrelated (that is, Cov(ε(x(t)), ε(x(t′))) = 0 for t 6= t′) and follows a Poisson
distribution. Applying the Fourier transform to u(t) yields,

U(f) = X(f) + Υ(f)

=

∫ ∞
−∞

x(t)e−i2πft dt+

∫ ∞
−∞

ε(x(t))e−i2πft dt,
(3.20)



58 Chapter 3. Study of datatypes for time-resolved diffuse optical tomography

where the second term in the right part is the noisy contribution and U(f) can be considered a
random variable. As stated before, in time domain, the noise at each time bin is independent,
however after applying the Fourier transform this property does not hold anymore. For
example, the covariance between two different frequencies is,

E
[
U(f1) · U(f2)

]
− E [U(f1)] · E

[
U(f2)

]
= E

[∫ ∞
−∞

u(t)e−i2πf1t dt ·
∫ ∞
−∞

u(t)e−i2πf2t dt

]

− E
[∫ ∞
−∞

u(t)e−i2πf1t dt

]
· E

[∫ ∞
−∞

u(t)e−i2πf2t dt

]

=

∫ ∞
−∞

∫ ∞
−∞

(
E
[
u(t) · u(t′)

]
− E [u(t)] · E

[
u(t′)

])
e−i2πf1tei2πf2t

′
dtdt′

(Due to TR signal noise independence) =

∫ ∞
−∞

E [u(t)] e−i2π(f1−f2)t dt

(E [u(t)] = x(t), due to shot/Poisson noise) =

∫ ∞
−∞

x(t) e−i2π(f1−f2)t dt

= X(f1 − f2),

(3.21)

so the covariance of Fourier transform signal at two different frequencies is equal to the
Fourier coefficient of the noiseless signal at frequency f1− f2. An alternative derivation can
be seen at Appendix G.

From this result, the covariance between any temporal window datatypes can be determined.
Let us define a window datatype shifted kt0 in time as,

Mk,t0 =

∫ ∞
0

u(t)w(t− kt0) dt =

∫ ∞
−∞

U(f)W (f)ei2πfkt0 df, (3.22)

where t0 is the shift unit length and k is the number of shifts steps that are taken. Then,
the covariance between shifted window datatypes is,

Cov(Mk,Ml) = E

[∫ ∞
−∞

U(f)W (f)ei2πfkt0 df ·
∫ ∞
−∞

U(f)W (f)ei2πflt0 df

]

− E
[∫ ∞
−∞

U(f)W (f)ei2πfkt0 df

]
· E

[∫ ∞
−∞

U(f)W (f)ei2πflt0 df

]

=

∫ ∞
−∞

∫ ∞
−∞

(
E
[
U(f) · U(f ′)

]
− E [U(f)] · E

[
U(f ′)

])
W (f) ei2πfkt0 W (f ′) e−i2πf

′lt0 df df ′

=

∫ ∞
−∞

∫ ∞
−∞

X(f − f ′)W (f)W (f ′) ei2π(kt0f−lt0f ′) df df ′.

(3.23)

From Equation 3.23, the covariance and correlation matrices of any window can be obtained.
Note that for standard (and Mellin–Laplace) moments the shift is already fixed by n (and
p) value. In Figure 3.8, an example of the typical correlation matrices of Mellin–Laplace,
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Gaussian and Tukey windows are shown. It is evident that, for a fixed p value, as the order
n of Mellin–Laplace window increases, its get more and more correlated with neighbour
windows (see Figure 3.3 to get an intuitive idea). However, for Gaussian and Tukey windows,
the correlation can be minimized by separating them far enough; in the example given the
Gaussian windows are not correlated with any other windows, because the windows did not
overlap. The same thing could have been done with Tukey windows.

(a) Mellin–Laplace (b) Gaussian (c) Tukey

Figure 3.8: Correlation matrices of Mellin–Laplace (first 50 orders, p = 7), Gaussian (t0 =
0.16 ns shifts, σ = 0.05), and Tukey windows (t0 = 0.16 ns shifts, α = 0.25 and t∗ = 0.2
ns).

In time-domain reconstruction, the heteroscedasticity [14] is present in the noise, that is,
the noise at each time bin has different variance but they are not correlated with each other
(this is due to photon noise physics). After applying overlapping windows, such as Mellin–
Laplace or Fourier transform, non-zero covariance values will appear. Therefore, in these
cases, Least Squares (LS) will not be a Best Linear Unbiased Estimator (BLUE) anymore.
Nevertheless, Generalized Least Squares (GLS) (also known as Aitken’s estimator) can be
used instead, which is also a BLUE [14]. In theory, LS and GLS will reach the same solution
for different noise realizations, however since for GLS the inverse of covariance matrix must
be computed, some problems could arise if it is ill-posed. So, noise correlations should be
avoided whenever possible.

3.3. Methods

The setup of the simulations, optical properties and numerical parameters are presented.

3.3.1. Numerical simulations

To analyze the reconstruction improvements that could be obtained with the decorrelated
windows, some numerical simulations were performed. The used computational phantom
was a three-dimensional volume with a spherical inclusion at different depths. This phantom
can be consider as an approximation to functional near-infrared spectroscopy experiments
where the inclusion represents the activation in the cortex. The computational phantom had
a size of 9 × 9 × 5 cm3 and was discretized using around 33 and 180 thousand nodes and
elements respectively. Numerical simulations were performed in a reflectance geometry by
solving the time-domain Diffusion Approximation up to 10 ns; the boundary conditions were
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implemented as described in [195]. Each simulated curve contained up to 2× 105 photons,
were convoluted with the instrumental response function of a single photon avalanche diode
detector (SPAD, FWHM ≈ 160 ps) and corrupted by Poisson noise, see Figure 3.9.

-2 0 2 4 6 8 10
10-6

10-4

10-2

100
SPAD IRF

Sig. + conv. IRF + noise

Sig.
Sig. + conv. IRF

N
or

m
al

iz
ed

 i
n
te

n
si

ty

t (ns)

Figure 3.9: (Left) Instrumental response function of a SPAD detector (blue line). Normalized
simulated signal without IRF neither noise (red line). Normalized simulated signal convoluted
with the IRF (yellow line). Normalized simulated signal convoluted with IRF and corrupted
with Poisson noise (black line). (Right) Tetrahedral mesh used for simulations; it had a size
of 9×9×5 cm3 and was discretized using around 33 and 180 thousand nodes and elements
respectively.

In this work, only absorption inhomogeneities were considered, although it can be easily
extended to scattering inhomogeneities. Background absorption was set to µa = 0.018 cm−1

and the reduced scattering was µ′s = 14.7 cm−1 over all the domain. An inclusion of 0.5 cm
radius was included whose optical properties were µa = 0.337 cm−1 and µ′s = 14.7 cm−1

(these values were taken from the experiment performed at [257] using 550 nm wavelength
light and are of similar order as found at several types of human tissue).
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Figure 3.10: (Left) Scheme of the numerical phantom. Simulated signals were con-
volved with the IRF of a SPAD and corrupted by Poisson noise. (Right) Source posi-
tions; red crosses. Detector positions; blue dots. Note that for each source only the
signal at two detectors were considered; 3 cm right and 3 cm down. For example, for
source at position (−2.62, 2.25)cm only the signal at detectors x1 = (0.38, 2.25) cm and
x2 = (−2.62,−0.75) cm was used.
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The setup of source and detectors was moved along the top boundary to scan the phantom
at multiple positions. The distance between the source and detectors was 3 cm at orthogonal
directions, see Figure 3.10. The scan of the computational phantom with the inclusion was
done at 30 different source positions (6 shifts in x-direction separated by 0.75 cm and 5 shifts
in y-direction separated by 0.75 cm). The inclusions were set from 2 to 3.5 cm depth.

During the reconstruction, to avoid large sensitivities in the surface nodes the sensitivity of
each node was normalized by a diagonal weight matrix with values proportional to nodes
depth. A flowchart of the used algorithm is shown at Figure 3.11. Simulations and recon-
structions were done using a laptop with an Intel Core i7 processor and 4 GB RAM.

Experimental measurement

or simulations + IRF

Φsd(t)

Compute window transforms
(e.g. Tukey, Gauss)

Φsd(w)

ITERATION k

Solve direct model at different
frequencies: f1,f2,...,fn

Gs(f)
Gd(f)

Compute windows from G(f)
as in Equation 7.

Solve Born equation using 
G(w), Φ(w) and sensitivity

Gs(w)
Gd(w)

Update absorption 
μa(k+1) = μa(k) + δμa

δμa

Convergence reached? 

If k = 1:

μa(0)

If k > 1:

μa(k)

NO

μa(k+1) is the solution
YES

normalization matrix

Figure 3.11: Reconstruction algorithm flowchart.

3.3.2. Quantitative evaluation metrics

Three different evaluation metrics (localization error, average contrast and relative recovered
volume) were used to measure the reconstructions quality from different points of view.

Localization error is defined as Euclidean distance between the center of mass of simulated
inclusion xs and the center of mass of the reconstructed inclusion xr. If the reconstructed
optical properties are identical to the truth, the localization error is zero. The recovered
inclusion is determined by selecting the reconstructed absorption changes that are greater
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than a given threshold defined later.

Localization error = ‖xs − xr‖2. (3.24)

The average contrast evaluation metric is based on the mean value of the region of interest
(i.e. inclusion volume):

Average contrast =

∑
i∈Nr µi

|Nr|µ̂
(3.25)

where µi denotes the reconstructed absorption at node i, Nr represents the set of nodes at
the region of interest, |Nr| denotes the number of nodes within the set and µ̂ is the truth
values of absorption at the region of interest. If the reconstructed absorption is identical to
the truth, the average contrast value is one.

The last evaluation metric is the relative reconstructed volume (VRRV ) which is defined
as

VRRV = Vr/Vs × 100% (3.26)

where Vr and Vs are the volume of the reconstructed inclusion and simulated case respec-
tively. The volume of the reconstructed inclusion, Vr, is computed by thresholding the
recovered absorption changes and computing the volume of those elements. If the recon-
structed absorption is identical to the truth, the relative reconstructed volume is one.

3.4. Results and discussion

In this section, the simulations results are given in order to analyze the performance of tomog-
raphy algorithms based on temporal windows and Fourier transform datatypes. Subsequently,
different perspectives of the same problem are given and results are discussed.

3.4.1. Comparing state–of–the–art windows with Tukey and Gaussian win-
dows

The purpose of the first simulations is to check whether Tukey or Gaussian windows improve
the reconstruction in depth compared to w(t) = tne−pt state–of–the–art windows.
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(a) Mellin–Laplace
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(b) Gaussian
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Figure 3.12: Black curve represents a simulated DTOF. (Left) Mellin–Laplace windows
(p = 3, 35 moments), note that they are highly overlapped. (Middle) Gaussian windows
(σ = 0.3). (Right) Tukey windows (α = 0.25, t∗ = 0.3 ns).
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For the Mellin–Laplace reconstruction p = 3 and the first 35 moments were used (Figure 3.12
Left). For Gaussian windows, the value of σ was set to 0.3 and their centers were located
from 0.3 to 9.6 ns in steps of 0.3 ns (32 windows in total, Figure 3.12 Middle). For the
Tukey windows, the same centers were used and the parameters were set to α = 0.25 and
t∗ = 0.3 ns (Figure 3.12 Right). The given parameters were selected so that in all cases the
windows totally covered the simulated signal and the number of windows were similar (35
for Mellin–Laplace and 32 for Tukey and Gaussian). The computed frequencies ranged from
0 to 2 GHz in steps of 200 MHz.

Figure 3.13: Absorption, µa, reconstructions using Mellin–Laplace, Tukey and Gaussian
windows for inclusions from 1 cm to 2.5 cm deep. The red circle indicates the correct
location of the inclusion.

The Figure 3.13 shows reconstruction using Melin-Laplace, Tukey and Gaussian temporal
windows for inclusions that ranged from 1 to 2.5 cm deep (in steps of 0.5 cm). In Figure 3.14,
the reconstructions for inclusions from 3 cm to 4 cm deep is given. In Figure 3.15, the
evaluation metrics results are shown for each method. For inclusions that are 3 cm or
shallower the reconstruction in terms of localization does not depend significantly on the
types of windows that are used since localization error is below 0.25 cm for all windows.
However, absorption quantification is constantly underestimated by Mellin-Laplace windows,
see how average contrast metric decreases exponentially and the contrast of Tukey and
Gaussian windows is always greater than state-of-the-art Mellin-Laplace windows. For an
inclusion that is 3.5 cm depth Mellin–Laplace windows reconstruction is significantly worse
in terms of inclusion localization; note that localization error for Mellin-Laplace windows
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dramatically increases getting bigger than 1.5 cm for inclusions 3.5 cm deep; these results
are in agreement with [181] which shows the same problem beyond 2 cm depth. Moreover,
the relative reconstructed volume also increases due to the fact that Mellin-Laplace loses the
inclusion localization and absorption quantification, and therefore, it tries to compensate it
by reconstructing higher volume inclusions. This phenomenon occurs due to the diffusion
of photons inside the medium. In contrast, the results also show that Tukey and Gaussian
windows give very similar reconstructions and their localization error is always less than
0.5 cm.

Figure 3.14: Absorption, µa, reconstructions using Mellin–Laplace, Tukey and Gaussian
windows for inclusions from 3 cm to 4 cm deep. The red circle indicates the correct location
of the inclusion.

(a) Localization error (b) Average contrast
(c) Relative reconstructed vol-
ume

Figure 3.15: Mellin-Laplace (blue), Tukey (red) and Gaussian (yellow). Quantitative evalu-
ation metric values for each window and inclusion depth. For localization error and relative
reconstructed volume, the standard error shadows indicate the uncertainty given by selecting
interest regions whose thresholds range from 60% to 80% of maximum absorption.

The fact that proposed windows outperform Mellin-Laplace state-of-the-art windows for deep
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inclusions can be explained by the theoretical analysis shown in the previous sections. First,
Mellin–Laplace windows have a poor late-arrival photon selectivity and windows are highly
correlated. This implies that each Mellin–Laplace window has very little new information by
itself. As the order of the Mellin–Laplace window increases the new information that it carries
decreases. That implies that a huge amount of window should be used to include all the
available information in the DTOFs. This evidence demonstrate the superior performance
of Gaussian and Tukey window compared to Mellin–Laplace because of the better photon
time arrival selectivity and less noise correlation.

Regarding the computation time of the reconstructions, in Table 2 the number of seconds
per iteration is given for each method. To compute windows with form tne−pt is much faster
than the proposed approach and full-time reconstruction. Specifically, tne−pt windows are
around eight times faster to compute than the proposed approach because LU factorization
can be used. However, for the proposed method factorization is not efficient since the matrix
changes at each frequency. Full–time resolved approach is nineteen times slower than tne−pt

windows and more than twice slower than the proposed approach. These results shows the
trade-off of the proposed method: more information in depth is obtained but computation
time is larger than tne−pt windows. However, it should also be taken into account that novel
method approach is highly parallelizable, that is, the Diffusion Approximation equation can be
solve independently for each frequency. Note that this property does not hold for the direct
computation of tne−pt windows [7] and full–time approach. Therefore, the computation
time of novel approach should considerably improve with GPU usage due to its intrinsic
parallelizable nature. In Figure 3.16(a), the number of computed iterations until convergence

is given. Convergence was reached when relative error δµa/µ
(k)
a < 5× 10−3. It can be seen

that Mellin–Laplace windows converge faster mainly because it underestimates absorption
quantification.

Figure 3.16 & Table 2: (a) Number of iterations until convergence for Mellin–Laplace and
Gaussian windows. (b) Seconds per iteration for Mellin–Laplace windows, novel approach
(with Gaussian) and full–time resolved approach.

As explained before, the simulated DTOFs were convolved with an SPAD IRF and corrupted
with photon noise. These DTOFs were deconvoluted with a Wiener filter before performing
the reconstruction. In some papers, such as [101], a different approach is proposed: DTOFs
from a reference medium A and objective medium B are used. The optical properties of
medium A are already known because an homogeneous medium is taken as reference and it
includes implicitly all the information regarding instrumental factors. The medium B is the
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medium to be reconstructed. Absorption of medium B can be recovered by using iteratively
the linearized cross–Born equation,

GAsd(r, t)∗MB
sd(r, t)−MA

sd(r, t)∗G
B(k)
sd (r, t) = −MA

sd(r, t)∗
∫

Ω

[
GB(k)
s ∗GB(k)

d

]
(r, t) δµa dr,

(3.27)
where ∗ is the convolution operator, MA

sd and MB
sd indicate the measurement obtained at

reference and to be reconstructed media by detector d when source s was activated, k

indicates the iteration number, GAsd and G
B(k)
sd is the simulated Green’s function (free of

noise and instrumental factors) from source s at detector d by using the photon propagation

mathematical model described in Equation 2.24 and G
B(k)
s indicates the Green’s function

value at every point in the domain given by the propagation model.
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Figure 3.17: (a) Reconstructions for Mellin–Laplace and Tukey windows from same simulated
data as 3.13; cross–Born approach was used to deal with instrumental factors such as IRF
or photon noise. The red circle indicates the correct location of the inclusion. (b,c,d)
Quantitative metrics for cross-Born based reconstructions.

The cross–Born equation offers the ease of not having to deal with instrumental factors
directly (no deconvolution of the measurements is needed). However, it also implies to
convolve the data and lose some information in the process. In Figure 3.17 (a), reconstruc-
tions using Mellin–Laplace and Tukey windows with the cross–Born approach are shown. We
chose Tukey windows since they give very similar results to Gaussian windows. In Figure 3.17
(b,c,d), the quantitative metrics for those simulations are given. Results for inclusions as
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deep as 3 cm are very similar to the deconvolution approach, but for inclusion deeper or
equal to 3.5 cm the localisation accuracy is lost, see Figure 3.17 (b). Moreover, the con-
trast is lower than previous reconstructions; although, slight differences are seen between
Mellin-Laplace and Tukey windows even using cross-Born equation, see Figure 3.17 (c). The
relative recovered volume increases considerably for both methods (Figure 3.17, d). These
results show that when the cross–Born approach is used, some information in depth is lost
for inclusions deeper than 3 cm and to take full advantage of not overlapping datatypes (e.g.
Tukey or Gaussian windows), experimental data must be deconvoluted before performing a
reconstruction.

From a different point of view, this theoretical analysis can also be viewed as an explanation of
full time–resolved tomography limits. That is, Tukey windows–based reconstruction can be
seen as an intermediate step between correlated windows–based reconstruction and full time–
resolved reconstruction (i.e. reconstruction based on using each time bin as a datatype).
In fact, in the last years several labs [61, 192], have developed photon propagation models
for Graphics Processing Units (GPU). One of the goals of using GPU is to compute the
full DTOF curve and to fit it entirely as described in Equation 2.109. To fit the entire
DTOF curve is the limiting case of very narrow Tukey windows; if windows are shrinked to
time bin size it will converge to DTOF curve fitting. Therefore, some of the questions that
arise from this theoretical work is, how much benefit can be obtained by using full time–
resolved reconstructions? Does the computational cost of computing the full curve outweighs
the gain of some information? Moreover, since the computation of decorrelated windows,
such as Tukey or Gaussian, are easily parallelizable and adaptable to GPU hardware, the
authors believe that this computation method is an efficient substitute to full time–resolved
reconstructions.

3.4.2. Comparing windows and frequency-based reconstruction

One of the question that could arise now is why not to apply the Fourier transform to DTOFs
signals and perform the frequency based reconstruction described at Equation 3.3. To answer
this question, reconstructions were also performed using Fourier transform datatypes for an
inclusion 3.5 cm deep with the same optical values in the previous section.

On the left figure, complex numbers obtained from the Fourier transform were used for the
reconstruction. In Figure 3.18 (e) the frequency magnitude obtained at first detector is
given. The used frequencies started from 0 MHz up to a maximum value which ranged from
300 MHz to 2 GHz, the frequencies were equally spaced in steps of 100 MHz.

The results show that using frequencies up to 1 GHz (see Figures 3.18 b) yields the best
reconstruction in terms of absorption quantification and localization; this agrees with the
results of [239] that suggest that useful information can be found at GHz order. Nevertheless,
no improvement was obtained by using frequencies up to 2 GHz (see Figure 3.18 a). When
only frequencies up to 500 MHz are used (see Figure 3.18 c), the absorption quantification is
slightly underestimated, but most of the information is still there, as reported in [109]. If only
frequencies up to 300 MHz are included (see Figure 3.18 d) in the reconstruction algorithm,
the absorption quantification is highly underestimated compared to previous reconstructions.
If only the magnitude of the Fourier transform is used (Figure 3.18 f) the inclusion localization
and absorption are highly underestimated; the phase term was not used since it resulted in
huge artifacts.
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Figure 3.18: (a-d) Absorption reconstructions for 3.5 cm deep inclusion. Maximum used
frequencies were 2 GHz, 1GHz, 500 MHz and 300 MHz. (e) Magnitude of the signal at
frequency space. (f) Reconstructions using only the magnitude of the Fourier transform.
The same optical properties as in previous sections were used.

The equivalence of frequency and windows based results can be understood by realizing that
in both cases, the complex numbers associated to each frequency are fitted. In the case
of Fourier transform datatype, this is done directly, but for temporal windows, this is done
by windowing the frequency domain. Nevertheless, there are some important differences.
First, as was shown in Subsection 3.2.4, by applying the Fourier transform to a noisy signal
the noise becomes correlated. This does not occur when not overlapping time windows
such as Tukey windows are used. Second, when reconstruction is done directly in frequency
domain, the linear system to solve is complex while in the temporal windows case it is real.
Third, temporal window-based reconstruction is more intuitive to understand, since it is
associated to photon arrival times. Therefore, in some cases, a weight matrix could be built
in order to weight some windows over other ones, depending on how noisy they are. Last,
in the same fashion as the paper published by Hasnain et al. [95], a system that directly
measures a gated DTOF (e.g. using rectangular gates) instead of the full curve could be
faster than nowadays time-resolved systems. Moreover, those gated DTOFs could be used
in the developed reconstruction process since they are equivalent to Tukey windows. Such
a system could be potentially faster than state-of-the-art systems without compromising
reconstruction quality.

3.5. Conclusions

In this chapter, a new method has been proposed for computing temporal windows. The
technique consists in computing the temporal windows in the frequency domain instead of
in time domain. The main advantage is that better temporal selectivity and non-correlated
windows can be used, without compromising computational efficiency considerably. To
illustrate the method, Tukey and Gaussian windows were used. The obtained results in a
numerical phantom are evidence that these new class of windows have better photon time-
arrival selectivity and do not correlate the noise. As a result, the new developed method
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could potentially improve the localization and absorption quantification of inclusions as deep
as 3.5 centimeters in a reflectance geometry. These results have been demonstrated to be
theoretically equivalent, under certain conditions, to frequency-based reconstruction, when
frequencies up to GHz order are used.

In the next chapter, I will approach diffuse optical tomography from regularization perspec-
tive. Regularization is a critical aspect when solving ill-posed inverse problems. It makes
the results stable by applying some assumptions in the reconstruction problem. In this case,
I will analyse the performance of total variation regularization applied to diffuse optical
tomography problems when the reconstruction mesh is irregular.
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Chapter 4
Total variation regularization for diffuse
optical tomography

J
acques Salomon Hadamard was an important French mathematician who did

an outstanding analysis of partial differential equations. In his work, he defined
well-posed mathematical problems as problems with a unique solution that changes

continuously with initial conditions [91]. He believed that mathematical problems arising
from physical processes had to fulfill these requirements. During the first half of the 20th
century, Hadamard was proven to be wrong since many problems from fields such as quan-
tum scattering theory, geophysics or astronomy [87, 206] were not well-posed. Nowadays,
problems that are not well-posed problems in terms of Hadamard properties are known as
ill-posed problems [92]. These problems have multiple solutions and are highly sensitive to
initial condition perturbations.

For these reasons, in order to solve ill-posed problems, uniqueness has to be forced by making
some assumptions. This technique is known as regularization and there exist several well-
known assumptions, such as to promote smoothness or sparsity of the solution, to force
piecewise constant solutions and so on. The suitability of each regularization technique
depends on a specific problem and the validity of the assumption.

In this chapter, I will explain how to perform total variation regularization for Diffuse Optical
Tomography (DOT) inverse problems on irregular meshes. Most of the content of this chap-
ter is the result of a collaboration I did with PhD student Wenqi Lu and her thesis director
PhD Iain Styles from the University of Birmingham. As a result from this collaboration, we
published a paper in Biomedical Optics Express journal [135]. This chapter is mainly based
on the work described in that paper.

4.1. Regularization for DOT inverse problem

The main characteristic of ill-posed problems is that they are very sensitive to perturbations
in the initial conditions. Due to this reason, solutions to ill-posed problems are usually
regularized by adding some smoothing requirement. In the case of DOT the linear system
to solve is known to be an ill-posed problem since the sensitivity matrix is ill-conditioned.

71
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DOT linear system can be approached as an optimization problem by adding a regularizing
term as follows:

min
u
‖Au− b‖22 + λR(û + u), (4.1)

where A is the sensitivity matrix, b is the difference between measurements and simulations,
û ∈ RN is the optical property value defined in a mesh with N nodes, u ∈ RN represents the
change of the optical property, R(û+u) is the regularization term and λ is the regularization
weight.

In DOT, Tikhonov regularization [102] is commonly used due to its implementation easiness
but it smears sharp edges of solutions [245]. Sparsity solutions have also been used although
its validity to image human tissue has been brought into question [201, 15, 116]. Lp regu-
larization has also been used to promote sparsity [179, 162] but its nonconvexity makes the
problem harder to optimize.

Apart from previous techniques, total variation (TV) is one of the most used regularization
techniques for image reconstruction [163]. However, its performance on anatomical com-
plex domains has not been analysed in the context of DOT. Total variation regularization
minimizes the l1 norm of the gradient, which promotes piecewise constant solutions. The
gradient operator is well-defined in continuous media. However, for discretized domains the
gradient operator has to be redefined. A full discussion can be read at [42] for structured
meshes, that is, meshes with regular connectivity where neighborhood relationships are well
defined. For not structured meshes, as shown at Figure 4.1 (Left), the gradient operator
has to be redefined in a different way.

4.2. The gradient operator in unstructured meshes: two dif-
ferent approaches

In this section, I describe the two different approaches we proposed to define the gradient
operator for unstructured meshes: the finite element and graph-based approaches [45]. For
each approach, I will develop the isotropic and anisotropic version of TV regularization.

4.2.1. Finite element representation

As was seen in Subsection 2.4.2, in the finite element representation, the geometry is dis-
cretized using triangular and tetrahedral elements for two and three-dimensional geometries,
respectively. Those elements are composed by a set of vertices and edges and do not overlap
with each other. For example, in Figure 4.1 (left) the two-dimensional circumference was
discretized using irregular triangles. As shown by the highlighted red triangle, each triangular
element is composed by three edges and three vertices.

The finite element representation assumes that infinite-dimensional spaces can be approx-
imated by n-dimensional subspaces, see Subsection 2.4.2. That is, an infinite-dimensional
function can be approximated by the continuous and piecewise-polynomial function U(x, y) :
Ω→ R

U(x, y) =

N∑
i=1

ui φi(x, y), (4.2)
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where Ω is the computational domain, N is the number of nodes in the mesh, ui represents
the optical property value at node i and φi is the linear basis function associated to node
i.

1v

2v

3v

Figure 4.1: (Left) A two-dimensional geometry modelled using finite elements. (Right)
Graph-based representation. (Figure taken from [135]).

Using the definition of the U(x, y) function, the continuous TV form can be represented in
discrete form as∫

Ω

∣∣∣∣∂U∂x
∣∣∣∣+

∣∣∣∣∂U∂y
∣∣∣∣ dx dy = ‖Dxu‖1 + ‖Dyu‖1, (anisotropic)

∫
Ω

√(
∂U

∂x

)2

+

(
∂U

∂y

)2

dx dy =

M∑
i=1

√
|(Dxu)i|

2 +
∣∣(Dyu)i

∣∣2, (isotropic)

(4.3)

where M is the number of elements in the mesh, Dx and Dy ∈ RM×N are linear operators
that map a vector u ∈ RN into its partial derivatives. The first equation is the anisotropic
version since it promotes directions along the x and y axes. The second equation is the
isotropic version because it does not favor any particular direction, see Figure 4.2.

Anisotropic
Isotropic

π/2 π 3π/4 2π0 ϴ

ϴ

Figure 4.2: Comparison of anisotropic and isotropic norms in a unit circle. The anisotropic
norm (|x|+ |y|) has four minima corresponding to 0, π/2, π and 3π/4 angles. The isotropic
norm (

√
x2 + y2) has minima everywhere since it is constant.
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A partial derivative matrix Dx or Dy for a triangular irregular mesh can be built using an
approach similar to the one used to build finite element matrices. For simplicity, I will assume
a two-dimensional mesh, although the extension to three dimensions is straightforward.

Given an arbitrary triangle τ with vertices at
v1 = (x1, y1)

v2 = (x2, y2)

v3 = (x3, y3)

(4.4)

there exists three linear basis functions φi
φ1(x, y) = a1x+ b1y + c1,

φ2(x, y) = a2x+ b2y + c2,

φ3(x, y) = a3x+ b3y + c3,

(4.5)

where a1 = (y2 − y3) /(2AT ), b1 = (x3 − x2) /(2AT ), c1 = (x2y3 − x3y2) /(2AT ), a2 =
(y3 − y1) /(2AT ), b2 = (x1 − x3) /(2AT ), c2 = (x3y1 − x1y3) /(2AT ), a3 = (y1 − y2) /(2AT ),
b3 = (x2 − x1) /(2AT ) and c3 = (x1y2 − x2y1) /(2AT ). AT denotes the triangular area of
T , which is computed as AT = |x1 (y2 − y3) + x2 (y3 − y1) + x3 (y1 − y2)| /2. The point
(x, y) is assumed to be inside the triangle T .

Moreover, taking into account that∫
Ω

∣∣∣∣∂U∂x
∣∣∣∣ dx dy =

M∑
i=1

∫
Ti

∣∣∣∣∂U∂x
∣∣∣∣dx dy =

M∑
i=1

∫
Ti

∣∣∣∣∣∣
N∑
j=1

uj
∂φj
∂x

∣∣∣∣∣∣dx dy

=
M∑
i=1

ATi |ai,1ui,1 + ai,2ui,2 + ai,3ui,3|

=

M∑
i=1

|(Dxu)i| = ‖Dxu‖1,

(4.6)

the derivative matrix Dx can be built with the following pseudocode:

Starting point: Fill the matrix Dx with all zeros.

For each element i in the mesh:

1. Compute the coefficients a1, a2 and a3.

2. Multiply each coefficient by the area of the element ATi .

3. Go to i-th row of Dx and fill the columns corresponding to the three vertices
of the element.

Ending point: After iterating over all elements the partial derivative matrix has
been completed.

It works similarly for y dimension and its extension to three-dimensions is straightforward.
The resulting derivative matrices are sparse.

In the next section, I will introduce graph representation of gradient operator and derive the
isotropic and anisotropic TV regularization forms.
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4.2.2. Graph-based representation

An unstructured domain Ω can be discretized by a weighted graph G = (V,E,w), see
Figure 4.1 (right). The graph G contains a finite set of vertices V = {Vk}Nk=1 and a finite
set of weighted edges E ∈ V × V . In this work, I assume that G is an undirected simple
graph, that is, there are not multiple edges between two vertices. I also define (i, j) ∈ E as
the edge of E that connects the vertices i and j.

The graph based discrete differential operators are defined based on nonlocal methods [81].
The nonlocal gradient operator applied to element i of vector u is

∇Wui = (uj − ui)
√
Wij : V → RN . (4.7)

For a vertex i ∈ V , the ∇Wui is a vector with length N . The weight Wij : V × V → R+

represents a weighted link between nodes i and j. The matrix W is symmetric and non-
negative.

In this work, the weight between nodes was chosen to be the inverse of the Euclidean distance
between each pair of nodes (if i = j → Wij = 0) because the further the nodes, the lower
the influence they have on the gradient. The main difference between finite elements and
graph representation is that in the former the gradient has two directions in 2D (x and y)
and three in 3D (x, y and z), whereas the latter has as many dimensions as edges connected
to the node.

The anisotropic graph TV regularization is

N∑
i=1

N∑
j=1

∣∣∣(uj − ui)√Wij

∣∣∣ , (4.8)

and the isotropic version
N∑
i=1

√√√√ N∑
j=1

(uj − ui)2Wij . (4.9)

Graph representation allows to use the fully connected version of the graph, that is, that each
node is connected with the rest of the nodes. Nevertheless, computationally, this approach
is very time-consuming, since the number of edges grows in the order of N(N−1)/2. In the
literature, spectral graph theory [18, 145] and nearest neighbour [67, 28] have been applied
to limit the number of nodes used. In this work, it was decided to use the same connectivity
between vertices as the mesh used in finite element representation. Using that configuration
the graph is sparsified and only neighbour nodes are taken into consideration. Therefore,
regularization terms described in Equations 4.8 and 4.9 are converted to

N∑
i=1

∑
j∈Ni

∣∣∣(uj − ui)√Wij

∣∣∣ , (4.10)

and
N∑
i=1

√∑
j∈Ni

(uj − ui)2Wij , (4.11)

where Ni = {j ∈ V : (i, j) ∈ E}.
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After presenting the two different approaches to tackle the total variation problem for
unstructured meshes, in the next section I will pose their respective optimization prob-
lems.

4.3. Minimization of TV-regularized DOT inverse problems

TV-regularized inverse problems are not straightforward to minimize since the TV regular-
ization term is not differentiable everywhere. Moreover, standard techniques to minimize L1

norm problems such as FISTA [17] are not applicable due to the existence of the gradient
operator. In the paper, we proposed an algorithm based on Alternating Direction Method
of Multipliers (ADMM) algorithm. This algorithm has been widely studied in the last ten
years and has been applied into different problems. It consists on splitting the optimization
problem in two dual variables and minimize them independently and alternating between
each variable, see our paper [135]. Nevertheless, in this chapter, I will describe a differ-
ent algorithm based on majorize-minimize technique, which approximates the optimization
problem with successive quadratic functions. Before starting my collaboration with Wenqi,
I have already developed majorize-minimize algorithms, because they can be applied to a
larger set of problems without making big changes in the code (later I will show how to
adapt the algorithm for sparsity problems). Note that the results are not dependent on the
optimization algorithm but only on the used gradient representation.

4.3.1. The optimization problem

The regularization term R(û + u) of Equation 4.1 has four different forms: the isotropic
and anisotropic version of finite element and graph representation, see Table 4.1. In the
next section, I describe the application of majorize-minimize algorithm for TV regularization
problems using finite element representation. However, the formulas given can be easily
applied to TV forms using graph representation.

Name Formulation

A-FETV u∗ = argmin
u

{
‖Au− b‖22 + λ‖Dx(û+ u)‖1 + λ‖Dy(û+ u)‖1

}
I-FETV u∗ = argmin

u

{
‖Au− b‖22 + λ

M∑
i=1

√∣∣(Dx(û+ u))i
∣∣2 + ∣∣(Dy(û+ u))i

∣∣2}

A-GTV u∗ = argmin
u

{
‖Au− b‖22 + λ

N∑
i=1

∑
j∈Ni

∣∣((û+ u)j − (û+ u)i)
√
Wij

∣∣}

I-GTV u∗ = argmin
u

{
‖Au− b‖22 + λ

N∑
i=1

√ ∑
j∈Ni

((û+ u)j − (û+ u)i)
2Wij

}

Table 4.1: TV regularization problems using finite element and graph-based approaches.
A-FETV, I-FETV, A-GTV and I-GTV respectively represent anisotropic finite element to-
tal variation, isotropic finite element total variation, anisotropic graph total variation and
isotropic graph total variation.



Chapter 4. Total variation regularization for diffuse optical tomography 77

4.3.2. Majorize-minimize algorithm

The developed algorithm is designed using the conjugate gradient (CG) algorithm to find the
solution to the minimization problem and approximating L1 terms by the majorize-minimize
approach. This setup allows to solve TV and sparsity problems without making big code
changes.

CG method is a well-known optimization technique. Although its linear version is the most
popular it can also be applied to nonlinear cases. A simple sketch of CG algorithm is as
follows:

1. Set a initial x0.

2. Calculate G0 = −∇f(x0).

3. Calculate σ that minimizes f(x0 + σG0).

4. Update xi = x0 + σG0.

5. Calculate Gi = −∇f(xi).

6. Use a conjugate formula to obtain βi (for example Fletcher-Reeves formula).

7. Update the conjugate gradient Si = Gi + βiSi−1 where (S0 = G0).

8. Calculate σ that minimizes f(xi + σSi).

9. Update position xi+1 = xi + σSi.

10. If convergence is reached then stop; if not go to step 5.

Anisotropic form using majorize-minimize technique

I will develop the majorize-minimize approach for the anisotropic form of TV. The anisotropic
version is equivalent to

ε = ‖Ax− b‖22 + λ‖B(û + x)‖1 (4.12)

= ‖Ax− b‖22 + λ
∑
i=1

√√√√√
∑
j=1

Bij(ûj + xj)

2

, (4.13)

where A is the sensitivity matrix, û is a constant vector, B is the gradient matrix whose
rows 1 to M are Gx and rows M + 1 to 2M are Gy, and the second equality arises from
the definition of the L1-norm. Note that I have denoted u = x to promote clarity in the
following equations.

If the vector x is perturbed by δx where δxi � xi for all i components, then the function
value changes by δε,

ε+ δε = ‖A(x + δx)− b‖22 + λ‖B(û + x + δx)‖1 (4.14)

= ‖A(x + δx)− b‖22 + λ
∑
i=1

√√√√√
∑
j=1

Bij(ûj + xj + δxj)

2

. (4.15)



78 Chapter 4. Total variation regularization for diffuse optical tomography

Then, using the equality |x + δx| = |x|+ x δx |x|−1 = |x|+ sign(x)δx the perturbation of
the function can be expressed as

δε = 2δxTATAx− 2δxTATb + δxTATAδx + λ
∑
i=1

(∑
j=1Bij(ûj + xj)

)(∑
j=1Bijδxj

)
√(∑

j=1Bij(ûj + xj)
)2

.

(4.16)

Moreover, dismissing second order terms and writing Eii =

√(∑
j=1Bij(ûj + xj)

)2
as a

diagonal matrix the perturbation is as follows

δε ≈ 2δxTATAx− 2δxTATb + λ
∑
i=1

(∑
j=1Bij(ûj + xj)

)(∑
j=1Bijδxj

)
Eii

(4.17)

= 2xTATA δx− 2bTAδx + λ
(
(û + x)TBTE−1B δx

)
(4.18)

= dT δx, (4.19)

where the approximation of the gradient is d = 2ATAx−2ATb+λBTE−1B(û + x).

Once the gradient is known, the next step is to compute the conjugate direction s with
Fletcher-Reeves or Polak-Ribière formulas. After, the optimal step length in the direction of
descent must be estimated. That is, the following function must be minimized,

f(σ) = ε(x + σs) = ‖A(x + σs)− b‖22 + λ‖B(û + x + σs)‖1
= xTATAx + 2σxTATAs− 2xTATb + σ2sTATAs

− 2σsTATb + bTb + λ‖B(û + x + σs)‖1.
(4.20)

The last term of the function is not derivable at all points; majorize-minimize method
approximates the absolute value by a quadratic function H(x,x0) (majorizing approximation)
with the following properties [108]:

H(x,x0) ≥ |x|,∀x0,x ∈ Rn,

H(x0,x0) = |x0|,∀x0 ∈ Rn,

which implies that |x1| ≤ H(x1,x0) ≤ |x0| where x1 = arg minxH(x,x0).

In this case, the quadratic function will also have the same derivative value as the absolute
function at points −x0 and x0. The majorizing approximation for one-dimensional case
is

|x| ≤ 1

2
|x0|+

1

2

x2

|x0|
. (4.21)

In Figure 4.3, I plotted the absolute value function and several majorizing approxima-
tions.



Chapter 4. Total variation regularization for diffuse optical tomography 79

-5 0 5

x

0

1

2

3

4

5

|x|
H(x,5)
H(x,1)
H(x,0.5)
H(x,0.1)

Figure 4.3: Absolute value function and majorizing approximation at different |x0| values.

Using the majorizing approximation, the term ‖B(u + x + σs)‖1 can be approximated
as,

‖B(û + x + σs)‖1 =
∑
i=1

√√√√√
∑
j=1

Bij(ûj + xj + σsj)

2

≤ 1

2

∑
i=1

√√√√√
∑
j=1

Bij(ûj + xj)

2

+
∑
i=1

(∑
j=1Bij(ûj + xj + σsj)

)2

2

√(∑
j=1Bij(ûj + xj)

)2

=
∑
i=1

√√√√√
∑
j=1

Bij(ûj + xj)

2

+
∑
i=1

σ2
(∑

j=1Bijsj

)2
+ 2σ

(∑
j=1Bij(ûj + xj)

)(∑
j=1Bijsj

)
2

√(∑
j=1Bij(ûj + xj)

)2

= ‖B(û + x)‖1 + σ(B(û + x))TE−1Bs +
σ2

2
(Bs)TE−1Bs.

(4.22)

So,

f(σ) = ‖A(x + σs)− b‖22 + λ ‖B(û + x + σs)‖1

≤ ‖A(x + σs)− b‖22 + λ

(
‖B(û + x)‖1 + σ(B(û + x))TE−1Bs +

σ2

2
(Bs)TE−1Bs

)
= F (σ).

(4.23)
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Therefore, taking the derivative with respect to σ:

∂F (σ)

∂σ
= 2xTATAs− 2sTATb + λ(B(û + x))TE−1Bs + σ

(
2sTATAs + λ(Bs)TE−1Bs

)
= sT s + σ

(
2sTATAs + λ(Bs)TE−1Bs

)
= 0,

(4.24)
and the optimal step length is approximated as

σ =
−sT s

2sTATAs + λ(Bs)TE−1Bs
. (4.25)

This is the algorithm for the anisotropic case when derivatives with respect to x and y are
managed as separate entities. In the next section, I will develop the isotropic form.

Isotropic form using majorize-minimize technique

The isotropic norm for a matrix A ∈ Rm×n is defined as:

‖A‖1,2 =
n∑
i=1

 m∑
j=1

a2
ij

1/2

, (4.26)

which is known as the L2,1 matrix norm.

For the TV problem, the norm is defined as

‖Du‖1,2 =
M∑
i=1

 N∑
j=1

(Dx)i,juj

2

+

 N∑
j=1

(Dy)i,juj

21/2

. (4.27)

where Dx, Dy ∈ RM×N are the gradient matrices for x and y components respectively.

Then, isotropic version of the TV problem is equivalent to

min
x
‖Ax− b‖22 + λ‖D(û + x)‖1,2. (4.28)

Performing similar mathematical operations as for the anisotropic form, the gradient for the
isotropic norm is:

dT = 2(Ax− b)TA + λDT
xE−1Dx(û + x) + λDT

y E−1Dy(û + x) (4.29)

and the step is

σ =
−sT s

2sTATAs + λ (Dxs)TE−1Dxs + λ (Dys)TE−1Dys
, (4.30)

where s is the conjugate direction and

Eii =

√√√√√
∑
j=1

(Dx)i,j ûj

2

+

∑
j=1

(Dy)i,j ûj

2

. (4.31)
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Sparsity form

It should be noted that for the anisotropic norm when B = I, the sparsity form arises.
Therefore, the gradient and optimal steps length are:

min
δµa
‖Ax− b‖22 + λ‖û + x‖1. (4.32)

Then, the direction of descent and optimal step length are

dT = 2(Ax− b)TA + λ(û + x)TE−1, (4.33)

σ =
−sT s

2sTATAs + λsTE−1s
, (4.34)

where

Eii =

√
(ûi + xi)

2. (4.35)

As can be seen, the main advantage of this technique is that different optimization can
be solved without having to adapt significantly the code. Moreover, it is also possible to
perform optimization adding total variation and sparsity terms at the same time.

4.4. Experiments

In this section, I make a qualitative and quantitative comparison of the finite element and
graph-based approaches. First, I describe four different evaluation metrics to quantify the
quality of the reconstructed images. Then, to answer the scientific objectives, I show the
numerical simulations we did in a circular 2D domain and 3D head model, see Figures 4.4 (a)
and (b) respectively. Finally, I describe the experiments performed in a cylindrical phantom,
see Figure 4.4 (c). In 2D, the mesh was composed by triangular elements (see Figure 4.4
(d)) and in 3D by tetrahedral elements (see Figure 4.4 (e)).

The simulations were performed using the NIRFAST package [54] in Matlab R2017a. They
were all based on single-wavelength continuous-wave technology and were corrupted by Gaus-
sian noise; ten repetitions were performed to represent the variability of the results.

4.4.1. Quantitative evaluation metrics

There were used four different evaluation metrics: the localization error, average contrast,
peak signal-to-noise ratio and relative recovered volume. These metrics allow to measure
the reconstructions quality from different points of view.

Localization error is defined as Euclidean distance between the center of mass of simulated
activation region xs and the center of mass of the recovered activation region xr. If the
reconstructed image is identical to the ground truth image, the localization error is zero.
The recovered activation region is determined by selecting the recovered changes that are
greater than 60% of the maximum recovered changes,

Localization error = ‖xs − xr‖2. (4.36)
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Figure 4.4: (a)-(c): Discrete computational domain of the three geometries. (d) Example
of mesh composition for a 2D geometry in the finite element and graph representation
respectively. (e): Example of mesh composition for a 3D geometry in the finite element and
graph representation respectively. (Figure taken from [135]).

The average contrast evaluation metric is based on the mean value of the region of inter-
est:

Average contrast =

∑
i∈Nr µi

|Nr|µ̂
, (4.37)

where µi denotes the recovered optical property at node i, Nr represents the set of nodes
at the region of interest, |Nr| is the cardinality of the set and µ̂ is the ground truth values
of the optical property at the region of interest. If the reconstructed image is identical to
the ground truth image, the average contrast value is one.

The third evaluation metric is the peak signal to noise ratio (PSNR). PSNR is defined as
follows:

PSNR = 10 · log10

(
(max(µ))2/MSE

)
, (4.38)

where MSE is the mean squared error between the recovered and ground truth images, that
is, MSE =

∑N
i=1(µi − µ̂i)2/N . Usually, the larger the value of PSNR the less difference

between the recovered and ground truth. Nevertheless, as this metric can poorly perform
for high value outliers it should be taken with a pinch of salt.

The last evaluation metric is the relative recovered volume (VRRV ) which is defined as

VRRV = Vr/Vs × 100%, (4.39)
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where Vr and Vs are the volume of the activation region for recovered and simulated cases.
The volume of the recovered region, Vr, is computed by thresholding the recovered changes
based on 60% of the maximum and computing the volume of those elements. If the re-
constructed image is identical to the ground truth image, the relative recovered volume is
one.

4.4.2. Two-dimensional simulations

The objective of the two-dimensional simulations is to test the accuracy of finite element and
graph approaches. Moreover, since the number of nodes and elements in two-dimensional
space is significantly lower than three-dimensional domains it can also be tested for high
resolution meshes.

First, the TV anisotropic version of both approaches using two different mesh resolutions
was used. After, identical tests were performed using the isotropic TV version.

Anisotropic TV regularization

Anisotropic TV assumes that the shape of the reconstructed object is orientated with the
coordinate axis. That is, it promotes horizontal and vertical structures, since oblique objects
increase the TV measure [85]. This assumption may not be accurate for DOT problems since
usually inclusions are not blocks. Nevertheless, it will be interesting to see the differences
between the two approaches and how they manage the same problem.

The two-dimensional circular geometry (Figure 4.4 (a)) had a radius of 43 mm. At position
(−10 mm, 10 mm) an inclusion of radius 10 mm was placed. Around the boundary sixteen
source-detector fibers separated equidistantly were placed. The light sources were assumed
to have a constant intensity over time, that is, they were continuous-wave sources. When
one of the fibers is switch-on as a source the rest are assumed to be detectors leading to
240 total boundary data points per wavelength. Sources were placed 1/µ′s in the domain
due to their spherically isotropic behaviour in Diffusion Approximation equation.

Two meshes with different resolutions were used in the simulation. The coarser mesh had
1785 nodes and 3418 linear triangle elements with the average element size 0.6977 mm2

(Figure 4.5 (a)) while the finer one had 5133 nodes and 10013 elements with the average el-
ement size 0.5801 mm2 (Figure 4.5 (d)). The background absorption coefficient µa is set as
0.1 cm−1 and for the anomaly is 0.3 cm−1 (Figure 4.5 (b) and (e)). Reduced scattering co-
efficient µ′s remained constant as 10 cm−1. The measurements were corrupted with normally
distributed Gaussian noise ranging from 0% to 3% at 1% steps of percentage noise.

Reconstructed absorption values are shown in Figure 4.5 (c) and (f). A-FETV reconstructs
the inclusion by preserving the blocky shape aligned with the coordinates. This is the
expected behaviour when anisotropic TV is used. Nevertheless, A-GTV reconstructs the
inclusion by preserving the original shape, it has no bias to any direction. This behaviour
is logical since graph representation does not uses the concept of direction but it adapts
the gradient depending on the edges. That is the reason why reconstructed object shape
changes with the resolution of the mesh. Although, the outcome is better than for A-FETV
this is not how an anisotropic norm should behave. Therefore, if blocky reconstructions are
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preferred finite element representation should be used since it preserves the anisotropy of
the norm.

Figure 4.5: (a): Two-dimensional mesh with low spatial resolution. Red points in the bound-
ary indicate the sources and detectors positions. (b): Original absorption distribution for
low resolution mesh. (c) Absorption reconstructions with low spatial resolution mesh using
anisotropic TV. First and second row use finite element and graph approaches respectively.
Columns represent measurements with different levels of noise corruption. (d): High spatial
resolution two-dimensional mesh. (e): Original absorption distribution for high resolution
mesh. (f): Absorption reconstructions with high spatial resolution mesh using anisotropic
TV. (Figure taken from [135]).

Isotropic TV regularization

The same setup as for previous case was used. In this case, isotropic TV regularization
was performed and Tikhonov regularization was included as baseline. In Figure 4.6 the two
dimensional case for isotropic TV norm is shown. Tikhonov regularization tends to over-
smooth the solutions and create some oscillatory artifacts in the background. When the
reconstruction mesh has a low resolution (Figure 4.6 (c)) the difference between I-FETV
and I-GTV approaches is very small. However, when the mesh has a larger resolution the I-
FETV method performs better than I-GTV, see Figure 4.6 (f). Similar findings are obtained
from cross sections results shown at Figure 4.7. Tikhonov regularization reconstructs a peak
solution with over-smoothed boundaries. However, TV techniques reconstruct piecewise
constant images, which converge to the solution as the resolution of the mesh is larger. It
must be noted that finite element based solution (blue curve) adapts much better to the
corners than the graph based solution (red line) for high resolution mesh. In Figure 4.8 the
quantitative metrics results are shown; the areas represent the 25% to 75% value among
the ten repetitions. It is seen that the performance of I-FETV improves with an increase of
mesh resolution: by 25% in localization error, 26% in average contrast and 11% in PSNR,
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meanwhile the performance of I-GTV is independent of the mesh resolution. These results
show that I-FETV is affected considerably by the mesh resolution, the better the resolution
the better the reconstructions. However, I-GTV shows more independence to the mesh
resolution. As will be shown later, for 3D cases this factor will be of great advantage when
I-GTV is used.

Figure 4.6: Same setup as Figure 4.5 but using isotropic TV regularization. Tikhonov
regularization was also added in the first row as reference. (Figure taken from [135]).

4.4.3. Three dimensional head simulations

The TV isotropic regularization techniques were also tested in a realistic 3D head model.
This model represents a physically realistic head and its resolution is not very large since the
number of nodes increases drastically the computational time of simulations. The model
was built from T1-weighted MPRAGE scans [64] in combination with Statistical Parametric
Mapping (SPM) software [166] to perform parametric segmentation of head tissues (scalp,
skull, cerebrospinal fluid (CSF), gray matter, white matter). SPM result was processed
with NIRFAST [111] to create a volumetric FEM mesh based on tetrahedra. The mesh
consisted of 50721 nodes and 287547 tetrahedral elements, with an average element size of
9.2676 mm3. Each node was labelled with a head tissue type. Absorption coefficients of
each head tissue were obtained from an in-vivo study [211, 48, 21] using 750 nm wavelength
laser, see Table 4.2.
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Scalp Skull CSF Grey Matter White Matter

µa (cm−1) 0.17 0.12 0.04 0.18 0.17
µ′s (cm−1) 7.4 9.4 3 8.4 11.9

Table 4.2: Head tissue optical properties. Data taken from in-vivo studies [211, 48, 21]
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Figure 4.7: One dimensional cross section of absorption distributions recovered at Figure 4.6
(cross-section was performed at the blue line shown at Figure 4.6 (b,e)). First and second
column correspond to low and high resolution meshes respectively. Meanwhile, first to forth
row correspond to 0%, 1%, 2% and 3% levels of Gaussian noise. The shadow areas represent
the 25% to 75% value among the ten repetitions. (Figure taken from [135]).

A high-density imaging array with 158 sources and 166 detectors (see Figure 4.10 Left) was
placed over the whole head. The source-detector separation distances ranged from 1.3 to
4.8 cm, see Figure 4.9. In this work, 3478 differential measurements per wavelength were
used to image absorption changes. Both frontal and back anomalies were placed in the brain,
each of them with 15 mm radius. The absorption coefficient of the anomalies were calculated
by taking into account that in traumatic brain injury cases the tissue oxygen saturation
(StO2) is normally between 50% and 75% [107]. In this case it was asummed that StO2
was 55%. In order to provide realistic simulations in accordance with in vivo measurements,
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0.12%, 0.15%, 0.41% and 1.42% Gaussian random noise was added to first (13mm), second
(30mm), third (40mm) and forth (48mm) nearest neighbor (NN) measurements [56], see
Figure 4.9. Reconstructed absorption images are displayed in Figure 4.10.

Low resolution High resolution

Figure 4.8: Evaluation metrics comparing the performance of Tikhonov (green), isotropic
finite element TV (blue) and isotropic graph TV (red) regularization techniques. Left column
corresponds to the reconstructions with low resolution mesh in Figure 4.6. Right column
corresponds to high resolution mesh in Figure 4.6. The shadow areas represent 25% to 75%
value among ten repetitions. (Figure taken from [135]).
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Figure 4.9: Source detector setup. For each nearest neighbor distance a Gaussian random
noise of 0.12%, 0.15%, 0.41% and 1.42% was added to first (13mm), second (30mm), third
(40mm) and fourth (48mm) distance respectively.

The Tikhonov regularization leads to many artifacts close to the boundary (see the slices
of the head shown at Figures 4.11 and 4.12). Moreover, anomalies are not well localized
between the boundaries because of the over-smoothing that Tikhonov imposes. I-FETV
and I-GTV do not suffer from these surface artifacts and tightly localize the anomalies.
Although, from reconstructed images there is no obvious difference between I-FETV and I-
GTV approaches, the evaluation metrics displayed at Figure 4.13 show that I-GTV achieves
the lowest localization error, largest peak signal-to-noise ratio and a better average contrast.
These results confirm the conclusions we obtained from two-dimensional experiment: I-GTV
performs sligthly better than I-FETV when the resolution of the mesh is low.

Figure 4.10: In the first column it is shown the source and detector distribution located in the
head (158 sources, red dots and 166 detectors, white dots). The positions and absorption
values of simulated anomalies are shown in second column. Reconstructed absorption images
with Tikhonov, I-FETV and I-GTV are shown in third, forth and fifth columns respectively.
(Figure taken from [135]).
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Figure 4.11: Two-dimensional slices for the anomaly located at the forehead. The true
anomaly location was highlighted with a white boundary. The absorption and scattering of
the anomaly at different brain layers is given at Table 4.2. Note that colorbar values were
rounded up to first three decimal digits. (Figure taken from [135]).

Figure 4.12: Two-dimensional slices for the anomaly located at the back-head. The true
anomaly location was highlighted with a white boundary. (Figure taken from [135]).

4.4.4. Solid phantoms

The TV regularization methods were also tested on experimental data. This data was
measured from a solid plastic cylindrical phantom using a non-contact CW-DOT system. The
length of the phantom is 50 mm and it has a radius of 12.3 mm. 35 sources and 99 detectors
are positioned on the underside and top of the phantom respectively (Figure 4.14 (a)). The
absorbing dye within the phantom was treated as a chromophore that has unit concentration
in the bulk of the phantom. A cylindrical rod was placed at the depth of 5 mm to simulate
the heterogeneous inclusion of the phantom (Figure 4.14 (a)). The inclusion rod has a length
of 50 mm and a radius of 3 mm and provides a 2:1 contrast in dye concentration compared to
background. The system uses five different wavelengths (650 nm, 710 nm, 730 nm, 830 nm
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and 930 nm). The reconstruction mesh consists of 9082 nodes and 48099 linear tetrahedral
elements with the average tetrahedral elements size 0.4218 mm3. The ground truth data and
reconstructed images using different methods are shown in Figure 4.14 (c). These results
and the metrics at Table 4.3 confirm the conclusions from previous simulations. In this case
only the central part of the rod was reconstructed since the sources and detectors had very
low sensitivity to absorption changes outside the central part. Tikhonov regularization shows
artifacts close to the sources and detectors and tends to create less uniform solutions outside
the inclusion. Meanwhile, TV based regularization shows a more uniform reconstruction with
fewer artifacts. Specially, I-GTV recovers a very homogeneous solution outside the anomaly
boundaries.

Figure 4.13: Evaluation metrics comparing the performance of different methods on a 3D
head model. Left and right column represents the results obtained for forehead and back-
head anomaly respectively. (Figure taken from [135]).
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Figure 4.14: (a) Cylindrical geometry with sources and detectors. (b) The different view
plans. (c) From top to bottom: ground truth, Tikhonov, I-FETV and I-GTV. The columns
represent each view planes. (Figure taken from [135]).

Localization
error [mm]

Average
contrast [-]

PSNR [-]
Relative

recovered volume [%]

Tikhonov 2.90 0.74 13.74 40
I-FETV 2.81 0.69 14.77 48
I-GTV 3.16 0.79 16.71 46

Table 4.3: Evaluation metrics values for the cylindrical phantom.

4.5. Conclusions

In this chapter, I introduced TV regularization for diffuse optical tomography problems. As
part of this collaboration, we proposed two different approaches to represent the gradient
in an irregular mesh: the finite element and graph-based approaches. In this work, we also
tested the anisotropic and isotropic version of TV. It was shown that the anisotropic TV
leads to blocky reconstructions for finite element representation. However, in the graph
representation this effect did not have happen since directions are dependant on the mesh
edges orientations. The numeric and experimental results for isotropic TV give the same
conclusions: (1) Tikhonov regularization tends to oversmooth solution and create oscillatory
artifacts, (2) I-GTV creates better constant piecewise solutions than I-FETV for coarse
meshes and (3) I-FETV converges faster to ground truth when the mesh resolution is large
enough.

In the next chapter, I perform reconstruction from in-vivo measurements obtained in collab-
oration with Politecnico di Milano. In this experimental work, I performed arm cuff occlusion
and motor cortex activation experiments with three different volunteers. As will be shown
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later, some regularization techniques will be needed to perform the reconstructions of such
experiments.



Chapter 5
Motor cortex activation experiments with
a tomographic time–resolved diffuse
optical system

D
uring March–April 2019, I had the opportunity to stay for one month at the

Department of Physics from Politecnico di Milano. The goal of my stay at Milan
was to perform in–vivo measurements with a recently developed time–resolved

diffuse optical system. One of the greatest features of this lab prototype is that the light
input is automatically switched between eight fibers in less than 30 ms. Moreover, it also
has eight silicon photomultiplier detectors. These characteristics make the system ideal for
performing continuous and in-vivo brain tomography of human subjects.

The core idea of the collaboration was to perform diverse in–vivo measurements with Po-
litecnico’s device and to apply the developed diffuse optical tomography algorithms. In
this chapter, I first describe the time–resolved optical system that was used for in–vivo ex-
periments. Then, I analyse the tomographic capabilities of different source–detector probe
geometries. I also explain the data analysis and tomographic reconstruction that were used.
After, the instrument and algorithms are validated by performing venous and arterial arm
occlusion experiments. Finally, the performed motor cortex activation experiments are de-
scribed and a detailed data analysis and tomographic reconstructions are given at the end
of the chapter.

5.1. Experimental setup

The system is based on two wavelengths (670 and 820 nm) pig-tailed laser diode which
are driven by the same laser driver (PDL 800, Picoquant GmbH, Germany). Each output is
equipped with its collimation stage which hosts also the variable optical attenuator to change
the laser power injected in the fiber (100µm core diameter). For each laser output, the
output fiber was hold on a tilting holder (for aligning purposes) and then one plano-convex
lens (f = 30 mm, diameter 1 inch, Thorlabs GmbH, Germany) was inserted to collimate the
beam exiting from the fiber. To have both wavelengths into the same path, a dichroic mirror

93
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at 45 degrees, with cut off wavelength at 805 nm was put. The 820 nm beam was reflected
by the dichroic mirror while the 670 nm was transmitted. For this reason, the two output
fiber were disposed accordingly and the length of the laser fiber output was chosen to have
the two wavelengths one after the other with few nanoseconds difference (first: 820 nm;
second: 670 nm). The beam exiting from the dichroic mirror was then focused onto the
100 um core-input fiber of the 1 × 9 switch using the same plano-convex lens as before to
obtain a 1:1 imaging. The 1× 9 switch (PiezosystemJena GmbH, Germany) fastly switches
(< 30 ms) the input on one among the 9 outputs (one of them serving as a stop channel)
and it is software controlled. Each of the 8 outputs corresponds to one injection point
although only 6 of them were used (three per probe, see Subsection 5.1.1). In the same
way, in each probe there were 4 detectors to detect the re-emitted photons. Each detector
is a Silicon Photomultiplier (SiPM) with an active area of 1.3× 1.3 mm2 which can be put
directly in contact with the sample, see Figure 5.1 for a schematic view of the optical system.
The fibers and detectors were arranged in two separate probes. Details about the detector
and its read-out electronics can be find in [70]. The building of the histogram is done
by an 8-channel Time-to-Digital (TDC) converter (SC-TDC-1000, Surface Concept GmbH,
Germany) featuring an average bin size of 82.2 ps. Other details about the pre-processing
of the histogram generated by the TDC can be found in [70, 72].
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Figure 5.1: The optical system used in arm occlusion and motor cortex activation experi-
ments. It consists of two probes with three fibers and four detectors each.

5.1.1. Probe geometry analysis

As was described in the previous section, the optical system has up to eight light fibers and
eight SiPM detectors. One of the first challenges to face is which source–detector geometry
provides better reconstruction results. To answer this question, I performed simulations using
four different geometries. The simulation domain had a size of 8× 8× 4 cm3. The optical
properties of the background were µa = 0.1 cm−1 and µ′s = 10 cm−1. A spherical inclusion
of radius 0.5 cm with optical properties µa = 0.3 cm−1 and µ′s = 10 cm−1 was located at a
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depth of 1.5 cm; the goal was to simulate a brain cortex activation. The inclusion was located
at four different positions: x1 = (x, y, z) = (1, 0, 1.5), x2 = (0, 0, 1.5), x3 = (−1, 0, 1.5)
and x4 = (−1, 1, 1.5) cm. The tested geometries are shown in Figure 5.2.
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Figure 5.2: Geometry of the four prototypes tested in the simulations. Red dots indicates
sources while blue dots are detector positions.

In Figures 5.3, 5.4, 5.5 and 5.6 the inclusion absorption reconstructions are shown at a z =
1.5 cm plane. The green circle indicates the inclusion position and the red/blue dots indicate
the source/detector positions at the surface. Reconstructions were performed using Mellin–
Laplace moments with p = 9 and up to n = 30 orders. Nodes sensitivity was normalized
using the approach described at Subsection 5.2.3. For all probe geometries the minimum
distance between source and detector was 2 cm. In the reconstructions, curves obtained
from distances greater than 2 cm were not used because in the experimental measurements
the obtained curves were usually very noisy.

In Figure 5.3, the results for first prototype are shown. It can be seen that inclusion is
well localized for all positions. Nevertheless, when inclusion is located at position x3, the
reconstructed inclusion is much bigger than the original and the maximum is not located at
the exact position. The reason is that position x3 is a “blind spot” of the probe geometry.
A blind spot is defined as a location where the probability of many photons travelling from
any source to any detector and passing through that area is low. Note that the highest
probability zones are the areas in between a source and a detector, e.g. location x1. The
blind points of first probe are the positions in between any couple of detectors, such as
position of inclusion x3. In Figure 5.7 the blind spots of all geometries are shown. A 0.5 cm
thick layer was located in between 1 to 1.5 cm depth. As can be seen, the areas that are
not reconstructed are known as blind spots. For prototype 1 and 2, the center point is also
a blind spot.

At Figure 5.4 the reconstructions for second prototype are shown. Here the conclusions are
similar to previous geometry. At position x3 there is a blind spot. Results for this geometry
are a little bit worse because for inclusion at position x2 the location is slightly shifted.

The results of third geometry are shown at Figure 5.5. It can be seen that a blind spot is
located at position x2. The reconstructed x2 inclusion is much broader than the original
one. Moreover, when inclusion is located under a detector the reconstruction are also quite
broad, see reconstruction for inclusion located at x4. At Figure 5.6 the results for fourth
geometry are shown. As expected, the blind spot is located at position x4.
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Figure 5.3: Reconstructions for first probe prototype. At first row, the red/blue dots indicate
source/detector positions. The green circle indicates the position of the spherical inclusion
at z = 1.5 cm plane. At second row, the absorption reconstructions at z = 1.5 cm plane
are shown. The red circle indicates the original inclusion position. Colorbars quantify the
reconstructed absorption. For visualization purposes, the size of the x− y plane was cut to
3× 3 cm size.

All the geometries analysed have blind spots. Those cannot be avoided unless several source–
detector distances are used. In this case, this was not possible due to the low signal-to-noise
ratio (SNR) at far distances. Between the geometries shown in this work, I decided to select
the first geometry prototype (see Figure 5.8) because of the following reasons:

It has only three blind spots, e.g. the positions in between the center detector and
periphery detectors. Although, for large inclusions a blind spot can appear below the
central detector. This is also true for the second and third geometry.

Four detectors are used and not three such as for second geometry. This is important
because in some cases a detector could not be fully attached to the surface tissue or
count rate is not enough. Therefore, the more detectors there are, the less significant
it will be to lose information from one of the detectors.

The geometry covers a more localized area in comparison with third probe. The motor
cortex activation areas are well localized in the brain, therefore the first geometry
covers better these areas. Nevertheless, the third probe covers a rectangular area
which does not fit so naturally on motor cortex positions. Moreover, the geometry of
fourth prototype is less intuitive and it is not clear how to orientate it in the head.

For first probe prototype, three detectors corresponded to each source, that is, the
number of source–detector pairs are equally distributed for each source. However, for
the rest of prototypes, this is not fulfilled.
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Figure 5.4: Reconstructions for second probe prototype. Colorbars quantify the reconstructed
absorption.

Figure 5.5: Reconstructions for third probe prototype. Colorbars quantify the reconstructed
absorption.
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Figure 5.6: Reconstructions for fourth probe prototype. Colorbars quantify the reconstructed
absorption.

Figure 5.7: Reconstructions for each prototype where a ∆µa = 0.2 cm−1 and 0.5 cm thick
layer was located in between 1 to 1.5 cm depth.
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Figure 5.8: (Left) One of the probes located at the surface of a solid switchable phantom.
(Right) Probe located at the arm of one of the subjects during arm occlusion experiment.
Green and black probes are sources and detectors respectively.

5.2. Methods

In this section, I will describe the data preprocessing, analysis and tomographic reconstruc-
tions that I used to process the data obtained from the experiments.

5.2.1. Data preprocessing

Before starting with data preprocessing part, I would like to define some terminology. The
in-vivo experiments were divided in several repetitions or blocks, that is, for arm occlu-
sion experiments each protocol was repeated three times and for motor cortex activation
experiments there were done five repetitions, see Sections 5.3 and 5.4 respectively. The
experiments were repeated to improve the signal-to-noise ratio and to validate the repro-
ducibility of the physiological phenomenon measured. For each experiment, the instrument
performed several cycles of 0.96 s duration. Within each cycle, 16 DTOFs were measured
which were averaged as explained in the next paragraph.

For this system, data preprocessing is a critical step to perform before doing data analysis
or tomography. The first issue to be addressed is the fact that light switching is done
automatically by a switcher which it is not synchronized with the detectors, that is, in the
preprocessing it has to be detected when the switching occurred. In Figure 5.9 (Left), the
distributed time of flight (DTOF) curves measured at a given detector at a given cycle for
an arm occlusion experiment are shown. It can be seen that first two curves (blue and red)
are background noise and the switching started after second curve was measured. The count
rate of the third curve (yellow) is lower than the next curves, therefore it was discarded. To
be safe, the fourth curve was also discarded. After, the average of remaining twelve curves
is performed, see Figure 5.9 (Right), and background noise was subtracted.

The second part of data preprocessing consist on trimming the curves using the 3%-5% rule,
that is, curves are trimmed at the left of the maximum peak where number of detected
photons are less than 3% of the maximum and from the right when are less than 5%.
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Figure 5.9: (Left) The sixteen measured DTOFs at an arbitrary cycle in an arm occlusion
experiment. Switching started after the second DTOF curve; in this case, first four curves
are discarded. Rest of the curves are averaged. (Right) Resulting DTOF curve from the
average after discarding first four curves.
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Figure 5.10: (Left) The blue line represents the intensity of DTOF curves at an arbitrary
detector for a 60 seconds motor cortex activation experiment where finger tapping was
performed between seconds 20 and 40. The red line is the down trend of the intensity
represented by fitting a line to the rest and recovery period (in this case 0 − 20 s and
50 − 60 s). (Right) Intensity of DTOF curves after trending correction using the red line
linear approximation.

The third part of data processing takes into account that measurements have also to be
detrended in some cases due to thermal drift and other experimental factors. For each
repetition the intensity of the DTOF curves is computed and a linear approximation is
calculated by fitting the resting and recovery periods, see Figure 5.10 (Left). The resulting
detrended intensity is shown at Figure 5.10 (Right).

5.2.2. Data analysis

Before performing tomographic reconstructions, I did a preliminary analysis using standard
spectroscopy data analysis approaches. With those approaches neither spatial nor depth
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information is obtained but they are useful to validate the tomographic reconstruction ap-
proaches.

For arm occlusion experiments, I integrated the time–resolved curves to get the continuous–
wave (CW) signal. The justification for using CW signals is that forearm muscles are very
close to the surface since fat layer is not very thick (just a few millimeters), therefore there
is no need of using moments with higher sensitivity to deeper layers.

The absorption for CW signals was recovered using modified Beer–Lambert law,

− 1

〈L〉
ln

(
I

I0

)
= ∆µa, (5.1)

where 〈L〉 is the differential path length factor. After, the oxygenated and deoxygenated
hemoglobin values are obtained using standard procedures explained in Subsection 2.2.1.

Regarding motor cortex activation experiments, I decided to use time-of-flight moment since
they are more sensitive to deep layers [127]. The absorption from time-of-flight moment can
be obtained using a monolayer version of Equation 15 in [210],

∆〈t〉 =

(
〈L〉〈t〉 − 〈L

2〉
c

)
∆µa, (5.2)

where 〈L2〉 = c2 (Var(DTOF )−Var(IRF )) + 〈L〉2, being c the speed of light in the
medium, IRF the instrumental response function and ∆〈t〉 = 〈t〉 − 〈t〉0 where 〈t〉0 is the
time–of–flight during resting period.

5.2.3. Tomographic reconstructions

Tomographic reconstruction were performed using algorithms based on Mellin–Laplace mo-
ments (see Chapter 2). Reconstructions were also performed with Tukey windows (see Chap-
ter 3) using deconvolution techniques but no improvements could be obtained compared to
Mellin–Laplace moments. The reason is that, as was shown in Chapter 3, improvements
are only seen for inclusion that are at least 2.5 cm depth. However, as will be shown in the
next sections, motor cortex activation happened at a depth in between 1.5 to 2 cm, which
is not deep enough to see differences between both methods, see Figure 5.13 for a compar-
ison of Mellin–Laplace and Tukey windows in a phantom with an inclusion at 1.5 cm depth.
Since Mellin–Laplace moments are still faster to compute, I decided to use them for the
reconstructions that are shown below.

The algorithms were initialized using the optical properties estimated from fitting the DTOF
curves corresponding to resting period. For example, for motor cortex activation experiments
the curves corresponding to first 15 seconds (3/4 of resting period) were fitted using a semi-
infinite halfspace model corrected with the instrumental response function of the system.
The algorithm was initialized using the average of absorption and scattering values obtained
from the fitting of those DTOFs.

Regarding the discretization of the inverse problem, the linear system was weighted with a
diagonal matrix. The components of that matrix were 1/

√
Var(Mi) where Mi represents

the value of moment i-th and Var(·) is the variance of moments during resting period.
The motivation is to introduce into the system, the uncertainty of the moments due to
physiological phenomena not related to the occlusion or motor cortex activation.
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For the inverse problem, Laplacian regularization was also used. The justification for using
such regularization is that there exist some blind spots in the probe geometry as explained
in Subsection 5.1.1. Those blind spots cannot be reconstructed by the algorithm, therefore
three-dimensional Laplacian regularization is imposed to force reconstruction of those parts
with a smooth solution. To implement Laplacian regularization the techniques described
in Chapter 4 were used; note that ∇ · ∇ = ∇2 and therefore gradient matrices developed
at Chapter 4 can be applied. In this case, total variation regularization does not apply
since it will not reconstruct the blind spots but promote piecewise constant solutions. In
Figure 5.11 a comparison between using or not Laplacian regularization is shown. One
of the biggest difference is that quantification of ∆O2Hb is much smaller when Laplacian
regularization is used. This effect occurs because Laplacian operator induces a diffusion of
the solution and therefore the quantification of ∆O2Hb is distributed over a larger volume.
However, for not Laplacian regularized case, there are more heterogeneities which tend to
create larger quantification differences. For example, at 1 cm depth the quantification is as
big as ∆O2Hb = 10 but for z = 1.5 cm negative values are reached which try to compensate
large positive values at shallow layers.

In [38], it was reported the use of Laplacian regularization to retrieve the depth of brain
activity using diffuse optical tomography. Nevertheless, they propose to use the regularization
term ‖Lδµa‖22 where L is the Laplacian operator. This term imposes Laplacian regularization
in the absorption update, δµa, but not in the solution. For this reason, in this work, I
decided to use the regularizing term ‖L(µa + δµa)‖22 that imposes a Laplacian regularized
solution.

Figure 5.11: Qualitative example of oxygenated hemoglobin reconstruction for a motor cortex
activation experiment with and without Laplacian regularization. In the first row, Laplacian
regularization was not used and probe blind spots can be clearly seen. In the second row,
same case but using Laplacian regularization.

Finally, another critical aspect is to deal with the high sensitivity of shallow layers. A small
absorption in surface layers has a large influence in the simulations, therefore the reconstruc-
tion algorithm tends to project the absorption reconstructions to the surface. To avoid that
effect, the standard practice in the literature is to weight deep nodes to normalize the sen-



Chapter 5. In-vivo experiments with a time–resolved diffuse optical system 103

sitivity trough all the domain: for example, using a layer-based sigmoid adjustment [254], a
radial distance penalty [174, 47] or a depth compensation term [160, 159]. In this work, I nor-
malised the sensitivity of nodes by weighting them with a value proportional to the distance
to the surface. The proportionality hyperparameter was selected by performing reconstruc-
tion for measurements performed in a switchable phantom [170] with a ∆µa = 0.16 cm−1

inclusion at a 1.5 cm depth, the reconstruction is shown at Figure 5.13. The proportionality
hyperparameter was also validated in simulations giving accurate localization results for in-
clusions up to 2 cm deep, see Figure 5.12. For inclusions at z = 2.5 cm the reconstruction
is projected to z = 2 cm (see last row from Figure 5.12).

Figure 5.12: Reconstructions from simulations of a cylindrical inclusion of 5 mm diameter,
5 mm length located at x = (0,−1, 1 to 2.5) cm with ∆µa = 0.2 cm. Between 1 cm to 2 cm
depth the reconstruction locates precisely the inclusion.

Nevertheless, even normalizing the sensitivity still shallow layers will affect considerably the
reconstruction. For human brain measurements, this effect is critical since hemodynamics
are constantly changing in the scalp tissue and they contaminate the brain activation signals.
To avoid these issues, the approach that I took in this work, was to reconstruct the domain
from bottom to the surface. This method works as follows: in each iteration, reconstruction
is performed only from a given depth value to the bottom. For example, for a zmax =
5 cm cubic domain with a starting value of 0.4 cm depth and an increase of 0.2 cm, the
reconstruction iterations will be: (1) at first iteration the reconstruction is performed for
nodes between 0.4 cm and 5 cm depth, (2) at second iteration the reconstruction is performed
for nodes between 0.2 cm and 5 cm, (3) at third and next iterations the reconstruction
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is performed in all the domain until convergence is reached. This approach forces the
algorithm, during the first iterations, to perform the reconstruction at deeper layers without
using superficial nodes. Up to my knowledge, this approach was not reported before in
the literature. In the following reconstruction, an initial starting value of 0.8 cm was used
and steps were of 0.2 cm thickness. Therefore, at fifth iteration the algorithm starts to
reconstruct the whole domain.

Figure 5.13: Reconstructions of a cylindrical inclusion of 5 mm diameter, 5 mm length
located at x = (0,−1, 1.5) cm depth inside a solid phantom. The equivalent absorption for
670 nm was ∆µa = 0.16 cm−1; for further details refer to [170]. (First row) Reconstruction
performed Mellin–Laplace moments. (Second row) Reconstruction performed using Tukey
windows. No significant differences are seen.

5.3. Arm occlusion experiments

Arm occlusion experiments are easy to perform and the physiological process behind them is
well known. Therefore, these experiments are ideal to use as a validation test. Two different
types of arm occlusion experiments were performed: venous and arterial occlusion. The
difference stands in the pressure that was input to the cuff and the physiological consequences
that it has. The occlusion tests were performed to three different subjects (two men and
one female).

The vasculature of human arm is composed of arteries and veins, see Figure 5.14. Mean-
while, the veins are closer to the surface of the arm the arteries are deeper. Arteries are in
charge of transporting oxygenated blood to the arm. After, the muscles take the oxygenated
blood from the arteries and consume the oxygen molecules transforming the blood to a
deoxygenated state. Finally, the veins carry the deoxygenated blood to the heart.

In the next subsections, I will explain the physiological process that takes place in venous
and arterial occlusion and I will show the data analysis and tomography reconstructions I
performed.

5.3.1. Venous occlusions

The physiological process during a venous occlusion goes as follows: the pressure of the cuff
is increased up to levels slightly below the systolic pressure of the subject. For the three
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subjects the systolic pressure was between 120− 130 mmHg and the arm cuff pressure was
increased up to 100 mmHg. When cuff pressure is not increased above systolic pressure only
veins are blocked since they are closer to the surface. However, arteries are not blocked
because the cuff pressure is not large enough. Therefore, the arm output blood flow is
blocked meanwhile the arteries are still open. Hemoglobin quantity at the occluded arm will
increase since blood can enter the arm but not escape. In overall, both oxy/deoxygenated
hemoglobin will increase in the arm during the occlusion but oxygenated hemoglobin quantity
will be higher than deoxygenated since the rate of consumption of oxygenated blood by the
arm is lower than the oxygenated input blood flow from arteries.

Veins

Arteries

Figure 5.14: Arteries and veins in the human arm. Arteries/veins carry oxy-
genated/deoxygenated blood toward/away from the arm. (Modified figure taken from Wiki-
media Commons).

The venous occlusion protocol consisted in 60 s of resting, 30 s of occlusion at 100 mmHg and
finally 90 s of recovery. The protocol was repeated three times, see Figure 5.15 (Left).

Venous occlusion protocol

Rest

Occlusion

Recovery

0 60 180

seconds

90

Rest Occlusion Recovery

0 60 180 300

Arterial occlusion protocol

seconds

Figure 5.15: (Left) Venous occlusion protocol. (Right) Arterial occlusion protocol. Both
protocols were repeated three times for all the subjects.

In Figure 5.16 it is shown where the probes were located for all subjects. The orientation of
the probes was the same for all subjects and the cuff was always wore at the left arm.

For all arm occlusion experiments, CW data analysis was used to obtain the time series
results. In Figure 5.17, the time series of oxygenated and deoxygenated blood for Subject 1
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occluded arm during venous occlusion experiment is shown. As expected, both oxy and
deoxygenated blood are increasing during the occlusion (60 s− 90 s); increase of oxygenated
blood is higher because the rate of consumption of muscles is slower than the input flow
of oxygenated blood. At some source–detector couples (e.g. 2–5, 4–5, 4–7,4–8) the slope
of the increase is steeper, such differences can be explained because the inhomogeneous
presence of veins and arteries in the arm. After occlusion, oxy/deoxygenated blood levels
return to preocclusion values quickly. The values at reference arm (see Figure 5.18) are
stable along the whole experiment. Similar conclusions are reached regarding Subject 3, see
Figures 5.21 and 5.22.

Figure 5.16: Location of the two probes during arm occlusion experiments. The probes were
equally orientated for all the subjects. Notice that the green cuff is located at the left arm.
Right arm was consider as reference.

For Subject 2, the Figure 5.19 shows an anormal behaviour of hemoglobin values after real-
ising the cuff pressure. This behaviour occurred in the three repetitions. It is also interesting
to notice that for reference arm, see Figure 5.20, abnormal variation of oxygenated blood
happened after occlusion times. These results suggest that the cuff release induced a phys-
iological response in the subject body which altered the hemoglobin values in the occluded
arm for one minute – after sixty seconds the values return to pre–occlusion levels.

From the results, it is also clear that ∆O2Hb measurements have larger uncertainty, that is,
the standard deviation is greater. This phenomenon is explained by the specific absorption
matrix associated to 670 nm and 820 nm wavelengths,

A =

[
6.43 0.67
1.59 2.1

]
× 10−3

[
cm−1 µM

]
(5.3)

where first and second row correspond to specific absorption values for 670 nm and 820 nm
wavelengths for deoxy and oxygenated hemoglobin. Let assume that the covariance of our
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measurements is independent and equal, that is, the covariance matrix M is,

M =

[
1 0
0 1

]
. (5.4)

When transforming the measurements to oxy and deoxygenated hemoglobin values by solving
the linear system (see Subsection 2.2.1) the new covariance matrix M ′ is,

M ′ =
(
(ATA)−1AT

)
M
(
(ATA)−1AT

)T
=

[
0.31 0.49
0.49 2.84

]
. (5.5)

Therefore, from the previous covariance matrix it can be deduced that the uncertainty of
O2Hb will always be greater than the uncertainty of HHb.

The tomographic reconstructions videos for venous occlusions can be found at [74]. The
videos were obtained by reconstructing each set of measurements and averaging over the
three repetitions, that is, at a given time the reconstructions were performed for the three
repetitions and the results were averaged. The reconstructions clearly validate the data
analysis. Moreover, it can also be seen that most of changes occur at surface tissue, that
is, between layers from 0 to 1 cm.

For Subject 1, reconstructions show a huge increase of hemoglobin concentration at positions
were source 2 and 4 are located. The increase of deoxygenated blood is also seen at the
video but the color intensity is around 8µM lower. These results are in accordance with
Figure 5.17.

Subject 2 presents a normal increase of O2Hb concentration although it is also seen an abnor-
mal decrease of HHb. This abnormal behaviour could be a consequence of the hemoglobin
concetration instabilities that were observed for this subject.

For Subject 3, reconstruction are more localized at positions of sources 2 and 6, as expected
from Figure 5.21. In this case, maximum values were located at 1 cm depth, that is, deeper
than for Subject 1. A possible explanation is that this subject had a thicker surface skin and
fat layer in the arm.

5.3.2. Arterial occlusions

For arterial occlusions the cuff pressure is at least twice higher than the systolic pressure
of the subjects. In this case, veins and arteries are blocked, therefore the blood inflow and
outflow is totally blocked at the arm. Ideally, hemoglobin quantity will be constant during
the occlusion. In overall, oxygenated hemoglobin quantity will decrease since it is consumed
by the arm muscles and it will be transformed to deoxygenated hemoglobin.

The arterial occlusion protocol consisted in 60 s of resting, 120 s of occlusion at 250 mmHg
and finally 120 s of recovery, see Figure 5.15 (Right).
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In Figure 5.23, the time series of oxygenated and deoxygenated hemoglobin for Subject 1
occluded arm during arterial occlusion experiment is shown. The results are in accor-
dance with the physiological behaviour explained before; during arterial occlusion the dex-
oygenated blood increases and oxygenated blood decreases at equal rates. Moreover, the
total hemoglobin is maintained constant. Few seconds after releasing cuff pressure, the con-
centration of oxygenated blood increases dramatically since arteries are suddenly opened.
Similar phenomenon happens with deoxygenated blood but in the opposite way, that is, the
concentration of deoxygenated blood dramatically decreases. After one minute, the concen-
trations of oxygenated blood return to baseline values; deoxygenated blood also tends to
recover baseline values although still needs a few more seconds. It must be noted that for
some channels (e.g. 2–5, 4–5, 4–7 or 4–8) at the beginning of the occlusion the oxygenated
blood increases briefly. This happens because the increase of cuff pressure to 250 mmHg
value is not immediate and therefore at the beginning a venous occlusion takes places (note
that in this case the total hemoglobin also increases). This effect only happens during the
first 10 seconds after occlusion starts. For values at reference arm, see Figure 5.24, a slight
increase/decrease of oxygenated/deoxygenated blood close to the end of the occlusion is
seen but is not significant.

For Subject 2, see Figure 5.25, the increase/decrease of deoxy/oxygenated hemoglobin is
also observed. However, the variability of the hemoglobin quantification is greater depending
on the channel (e.g. compare channels 2–5 and 6–6). It is also seen the same phenomenon
after releasing cuff occlusion as for venous occlusion.

The Figure 5.27 shows the times series for Subject 3 during arterial occlusion experiments.
For channels 4–5, 4–7 and 4–8 the results are very similar to Subject 1. For the rest of the
channels, it can be seen a huge increase of oxygenated blood during the first five seconds
after occlusion started. The explanation is the same as given for previous subjects – when
cuff pressure is increased the 250 mmHg value is not reached immediately and during the
first seconds venous occlusion is also induced. Nevertheless, after the first five seconds the
decrease of oxygenated blood and increase of deoxygenated blood is as expected. The values
for reference arm are stable during the experiments, see Figure 5.28.

The tomographic reconstructions videos for arterial occlusions are found at [74]. These
reconstructions also validate the data analysis. For Subject 1, the increase of deoxygenated
hemoglobin concentration during the occlusion and the decrease of oxygenated hemoglobin
concentration is clearly seen. As for venous occlusions, higher concentration variabilities are
seen at positions close to source 2 and 4. Moreover, after releasing the cuff pressure, the
concentration values swap rapidly and during the recovery period they approach ∆Hb = 0.
Although, for deoxygenated blood preocclusion values are not totally recovered as explained
in the time-series analysis.

For Subject 2, results are less clear because the increase of oxygenated hemoglobin concen-
tration during the first seconds of occlusion. However, the expected decrease of oxygenated
hemoglobin concentration during occlusion is seen. The deoxygenated hemoglobin concen-
tration increase is barely seen.

For Subject 3, an interesting observation is seen for oxygenated blood: at positions of
sources 2 and 6, it increases during firsts seconds and for positions close to source 4 it
decreases. This phenomenon (explained in time–series data analysis section) is in agreement
with Figure 5.27. The oxygenated hemoglobin decreases after the first seconds of occlusion.
Again, for Subject 3 the reconstruction is deeper.
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5.4. Motor cortex activation experiments

After the system has been validated in arm occlusion tests, it is time to perform motor
cortex activation experiments. The validity of fNIRS techniques for brain activation imaging
has been proven in several studies. For example in [76], finger opposition experiments,
with tactile and electrical nerve stimulation were reported. In this paper, the authors
demonstrated an increase in the concentration of oxygenated hemoglobin and a decrease
of deoxygenated hemoglobin in the contralateral hemisphere in agreement with functional
Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET) studies.
This study also stressed the robustness and reproducibility of the results for different sub-
jects. After, other works have validated fNIRS technique for brain imaging and neuroscience
research [90, 105, 29, 103, 73]. Since the beginning, time–resolved diffuse optics technology
has also been used to measure cortical activation [150, 182, 211, 197]. Most advanced
systems had up to 64 collection points with a minimum acquisition time of 5 ms per chan-
nel [43], with capabilities to measure both brain hemispheres at the same time.

Soon after, first brain cortex tomography approaches were reported [96, 97, 80]. In the
second decade of the century, some labs started to image the whole human brain using a
high density of source–detectors probes with continuous–wave technology [64, 142]. More
recently, in [39], a continuous–wave HD–DOT wearable system is presented. However, in
my point of view, one of the main weaknesses of some of these tomographic studies is that
they do not take advantage of fNIRS temporal resolution.

In this work, I will present series of time-frame tomographic reconstructions, that will show
the evolution of motor cortical activation in depth. Up to my knowledge, this is the first
time that, using diffuse optics technology, a continuous flow of tomographic reconstructions
frames from a cortical activation are shown.

In the next sections, I will describe the motor cortex activation experiments, the data analysis
and the performed tomographic reconstructions.

5.4.1. Experiment description

For these experiments, the subjects performed the finger tapping sequence described in
Figure 5.29. The sequence goes as follows: (1) thumb touches the index finger, (2) thumb
touches the ring finger, (3) thumb touches the middle finger and (4) thumb touches the
pinkie finger. This sequence is done cyclically during the finger tapping period; it is complex
enough so the subject has to be focused on the movement to do it correctly. The subject
should do it as fast as possible but maintaining the correct order of the sequence during the
whole experiment.

The finger tapping sequence induces changes in oxy/deoxygenated hemoglobin at C3 and
C4 positions, see Figure 5.30 (Left). It is known that the left hemisphere of the brain
controls the right side of the body, and the right hemisphere controls the left side of the
body. Therefore, C3 activation implies right hand movement and C4 activation makes left
hand to move.
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(a) First step (b) Second step (c) Third step (d) Fourth step

Figure 5.29: Finger tapping protocol to induce changes in oxy/deoxygenated hemoglobin at
C3 and C4 motor cortex positions.

The protocol performed by the subjects was divided in three tests. For all the tests, the
subject remained lying in a comfortable bed. In the first test, the subject stays without
moving for 20 seconds. After, the subject was told to start performing finger tapping with
the right hand. 20 seconds after, the subjects was told to stop tapping. The subject stayed
for 20 seconds recovering, see Figure 5.31 (Left). The activity was repeated for five times
in a row. In the second test, the same protocol was used but the subject had to finger
tap with the left hand. In the third test, the subject did not perform finger tapping for 60
seconds, nevertheless after 20 seconds and 40 seconds it was told to start and stop tapping
respectively. This test was used as control measurement and was repeated for five times,
see Figure 5.31 (Right). Between the three activities, the subjects rested in the bed for ten
minutes.

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2

Figure 5.30: (Left) Theoretical C3 and C4 positions in the human head. (Modified figure
taken from Wikimedia Commons). (Right) Placement of the probes for a human subject.

A 10–20 system electroencephalography (EEG) adult cap was used to localize C3 and C4
positions. First, the distance from nasion and inion and the length of bitragion coronal arc
was measured, see Figure 5.32. Then, the CZ position was localized as the intersection of
nasion–inion and bitragion coronal arc lines. The probes were located above the C3 and C4
position and slightly shifted to the side to avoid putting the center detector exactly above
the cortical positions. This was done to avoid the center blind spot shown at Figure 5.7. In



Chapter 5. In-vivo experiments with a time–resolved diffuse optical system 123

Figure 5.33 probe location and orientation for each subject is shown.
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Figure 5.31: (Left) Finger tapping protocol for left and right hand. (Right) Protocol for no
finger tapping case. Each of the protocols was repeated for five times to improve the SNR.

Nasion

Inion

Figure 5.32: (Left) Red line indicates the distance from nasion to inion. (Right) Bitragion
coronal arc.

The expected evoked response from finger tapping should increase the blood flow at the
respective motor cortex position. In these responses, both oxygenated hemoglobin and total
hemoglobin increase due to the increase of blood flow and volume at the motor cortex
region. The physiological changes are related to the neurovascular coupling, that is, the
activation of neurons induces bloods vessels dilatation around the brain activation area [32]
and therefore blood flow and volume is increased. The increase in the arterial blood flow
also causes deoxygenated hemoglobin to decrease, this phenomenon is known as washout
effect [106]. At the same time, an increase in neural activity also induces an increase
in the cerebral oxygen metabolism (CMRO2) which converts oxygenated hemoglobin into
deoxygenated. However, the increase in blood flow compensates this effect and the net
result is that blood oxygen saturation is increased in the activation area [77]. Therefore,
the expected result from a motor activation is an increase of oxygenated and a decrease of
deoxygenated hemoglobin.
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(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 5.33: Probes locations for each of the subjects. Each probe has four detectors (blue
dots) and three light fibers (red dots).

5.4.2. Results and discussion

One of the critical aspects to measure brain activation in human heads is to have a good
count rate at most detectors. For this reason, the selected volunteers (three male) had
naturally few hair in the head and it was shaved before performing the experiments. In
Figure 5.34, the average count rate over the three protocols for each wavelength and subject
is shown. At first glance, it is evident that Subject 1 has a larger count rate for most channels
in comparison with rest of subjects. The other subjects only have a good enough count rate
for few channels.

Figure 5.34: Average count rate over the three finger tapping cases. Each column represents
one subject and first and second row represent 820 nm and 670 nm wavelengths respectively.

For motor cortex experiments, the time series results were obtained using time-of-flight
analysis explained at Subsection 5.2.2. In Figure 5.35, the time series results for Subject 1
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during left hand tapping experiment at right hemisphere are shown. For channels 1–1, 1–
2, 1–3, 5–2, 5–3 and 5–4 it is clearly seen the increase of oxygenated hemoglobin during
finger tapping and the expected decrease of deoxygenated hemoglobin. Moreover, the total
hemoglobin also increases during activation as expected. It can also be seen a delay of
five to seven seconds between the start of the finger tapping and the maximum changes
of oxy/deoxygenated hemoglobin, this delay is in accordance with the results published
in [33, 144]. Quantification levels of hemoglobin concentration changes are also very similar
to results published in [220, 39]. As expected, no activation effect is seen at left hemisphere,
see Figure 5.36. For right hand tapping experiment, activation is also clearly appreciated
at channels 4–7, 4–8, 6–7 and 6–8, see Figure 5.37. In this case, the values of hemoglobin
differences are lower compared to left hand tapping. Asymmetries in brain morphology,
handedness and activation differences between the two hemispheres during motor–related
tasks are a wide field of research. The results for this particular (right handed) subject
could suggest that more activation is seen at right hemisphere because left (non dominant)
hand movements require more concentration. Nevertheless, in several studies [117, 51, 214],
evidence was given that left motor cortex is activated substantially for right handed subjects
in comparison with right hemisphere. No activation was measured at right hemisphere as
expected, see Figure 5.38. The results for no hand tapping were included in Appendix H to
avoid over-saturating the main text – as expected, no activation is appreciated.

For Subject 2, some activation is seen for left hand tapping in the right hemisphere, see
channels 1–1, 1–3 and 3–1 at Figure 5.39. However, the activation values are lower compared
to Subject 1. A possible explanation is that the count rate for this subject was lower than for
Subject 1, see Figure 5.34. As expected, no activation is seen for left hemisphere when left
hand tapping is performed. For right hand tapping no activation is seen, see Figures H.3 and
H.4 – a possible explanation is that the count rate for detectors at left hemisphere were very
low (except for detector 8 which, by the way, was furthest from C3 position). No activation
is seen for no hand tapping protocol, see Figures H.5 and H.6.

For Subject 3 activation is not clearly seen in any of the protocols. At channel 1–1 from
right hemisphere at left hand tapping (Figure H.8) some activation may be guessed but the
significance is not sufficient enough. The results for this subject are understandable taking
into account the very low count rate that it had. Time series of Subject 3 for during the
rest of protocols can be seen at Appendix H.

The tomographic reconstructions for motor cortex activation experiments can be found
at [74]. As with arm occlusion experiments, the reconstructions for each time frame were
averaged over the five repetitions.
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For Subject 1, activation can be clearly seen for left and right hand tapping (please, go
to motor cortex experiments and see S1 Hb left-tap.avi and S1 Hb right-tap.avi

videos to observe both hemispheres at the same time, see videos
S1 Hb left-tap right-hemi thres.avi and S1 Hb right-tap left-hemi thres.avi

which were thresholded). In Figure 5.41, activation during left hand tapping is shown. In-
crease of O2Hb and decrease of HHb is clearly seen. The position of the activation is more
biased to the center of the brain rather than the boundary. To test if the activation is localized
at the same position during all repetitions, in folder motor cortex experiments/repeatability,
I included some videos showing the increase of O2Hb and decrease of HHb concentration
for each of the repetitions performed by Subject 1 (particularly interesting are
S1 O2Hb hemi-right left-tap.avi, S1 HHb hemi-right left-tap.avi). At right hemi-
sphere for left hand tapping the decrease of HHb concentration is at the same location during
the five repetitions, see Figure 5.42. At the same time, O2Hb concentration is also increas-
ing for all repetitions, see Figure 5.43. The activation is located between 1.5 to 2 cm depth
which is the expected activation depth for an adult subject [105].

Figure 5.41: Tomographic reconstruction of activation at right hemisphere during left hand
tapping experiment performed by Subject 1.

For right hand tapping, see Figure 5.44, activation is also clearly seen at left hemisphere
(see video S1 Hb right-tap.avi). The activation position is more shifted to the cen-
ter of the brain and constant for most repetitions, see Figures 5.46 and 5.45 (see videos
S1 O2Hb hemi-left right-tap.avi, S1 HHb hemi-left right-tap.avi). Depth values
are similar to left hand tapping. An increase of oxygenated blood is also seen at ipsilateral
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(right) hemisphere although there is no decrease of deoxygenated blood – for left hand tap-
ping this effect could also be slightly seen. A similar phenomenon was also reported in [141];
the authors discuss that complex hand movements with dominant hand or simple hand move-
ments with non–dominant hand tend to require more cortical activity and they also recruit
some activity from ipsilateral hemisphere. Similar conclusions are reached at [219], although
they suggest that these differences disappear when subjects are overtrained.

Figure 5.42: Tomographic reconstruction at t = 33.6 s of HHb concentration at right hemi-
sphere for left hand tapping experiment during the five repetitions performed by Subject 1.

An important difference between time–series data analysis and tomographic reconstructions
is that for the latter the hemoglobin concentration changes values are very similar between
right and left–hand tapping (note that for the time–series analysis the activation was larger
for left–hand tapping). One interpretation is that the spatial and in–depth information
obtained from tomography manages to balance better the changes in hemoglobin concen-
tration, resulting in better estimations. Nevertheless, further experiments have to be done
to confirm this hypothesis.
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Figure 5.43: Tomographic reconstruction at t = 33.6 s of O2Hb concentration at right hemi-
sphere for left hand tapping experiment during the five repetitions performed by Subject 1.

Figure 5.44: Tomographic reconstruction of activation at left hemisphere during right hand
tapping experiment performed by Subject 1.
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Videos of Subject 2 can also be found in the same repository. From the averaged reconstruc-
tions no activation could be seen. The reconstructions for each repetition with left hand
tapping at right hemisphere are interesting (videos S2 O2Hb hemi-right left-tap.avi

and S2 HHb hemi-right left-tap.avi). The decrease pattern of HHb at right hemi-
sphere is repeated several times (see Figure 5.47) although the concentration difference is
very low (around ∆HHb = −0.6) and therefore is difficult to appreciate in the averaged
results. For this subject, the decrease of HHb is located shallower than for first subject,
maximums are between 1 to 1.5 cm depth.

For third subject, similar results as for Subject 2 are obtained. The reconstructions av-
eraged over all repetitions (see LC Hb left-tap.avi and LC Hb right-tap.avi) do not
show a decrease of HHb concentration, although there is a significant increase of O2Hb
in the contralateral hemisphere for left hand tapping and ipsilateral hemisphere for right
hand tapping, that is, for right hemisphere (where best count rate for Subject 3 is ob-
tained, see Figure 5.34). However, when the results for each repetitions are shown (inter-
esting are results for right hemisphere are shown at LC HHb hemi-right left-tap.avi,
LC HHb hemi-right right-tap.avi) a common decrease of HHb during finger tapping
is clearly seen, see Figure 5.48 and 5.50. Although, the decrease is one magnitude order
lower than O2Hb increase (see Figure 5.49 and 5.51), the repeatibility for all repetitions is
significant. The decrease of HHb is located at similar depth to Subject 2, maximums are
between 1 to 1.5 cm depth.

Figure 5.45: Tomographic reconstruction at t = 33.6 s of HHb concentration at left hemi-
sphere for right hand tapping experiment during the five repetitions performed by Subject 1.
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Figure 5.46: Tomographic reconstruction at t = 33.6 s of O2Hb concentration at left hemi-
sphere for right hand tapping experiment during the five repetitions performed by Subject 1.

Figure 5.47: Tomographic reconstruction at t = 38.4 s of HHb concentration at right hemi-
sphere for left hand tapping experiment during the five repetitions performed by Subject 2.
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Figure 5.48: Tomographic reconstruction at t = 34.6 s of HHb concentration at right hemi-
sphere for left hand tapping experiment during the five repetitions performed by Subject 3.

Figure 5.49: Tomographic reconstruction at t = 34.6 s of O2Hb concentration at right hemi-
sphere for left hand tapping experiment during the five repetitions performed by Subject 3.
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Figure 5.50: Tomographic reconstruction at t = 34.6 s of HHb concentration at right hemi-
sphere for right hand tapping experiment during the five repetitions performed by Subject 3.

Figure 5.51: Tomographic reconstruction at t = 34.6 s of O2Hb concentration at right hemi-
sphere for right hand tapping experiment during the five repetitions performed by Subject 3.
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5.5. Conclusions

A fast-switching time–resolved diffuse optical system was validated with arm occlusion and
motor cortex activation experiments. The data analysis and tomographic reconstruction
performed using arm occlusion measurements validated the performance of the system.
After, the lab prototype was also tested in motor cortex activation experiments. Due to
the simple probe attachment system that was used, only for one out of three subjects the
count rate was good enough to measure cortex activation consistently. For this subject,
motor cortex activation at contralateral hemisphere was clearly seen for left and right hand
tapping. I performed tomographic reconstructions for all the measurements obtained during
the experiment, from which I obtained 63 frames (0.96 s duration each) of tomographic
reconstructions from which the evolution of motor cortex activation is seen. The results
show that the activation position is constant during the experiment, both spatially and in
depth. Up to my knowledge, this is the first time that, using diffuse optics technology in
combination with tomographic algorithms the evolution of brain activation is shown during
a whole experiment.
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Chapter 6
The BitMap open dataset on performance
assessment of diffuse optics instruments

O
pen Science movement has increased in popularity during the last years. Its goal

is to make scientific research open to all the society by openly publishing not just
the results but also the data and software used during research. Open source

software has already been quite popular since the appearance of software development on-
line hosts; for example, in diffuse optics community there exist several open source software
such as NIRFAST [54], NeuroDOT [65] or TOAST [194]. Moreover, to publish the acquired
experimental data is growing in popularity between the research community. In some scien-
tific fields like particle physics, Open Data approach is already well established within the
community, where is some cases more than one petabyte of well-documented information
is freely available [34]. However, there is still a lot of work to do since data publication is
not in the standard workflow of many research labs yet. For example, in the diffuse optical
spectroscopy and imaging communities, the Open Data approach is still not fully developed.
Data from experiments are scattered across the Internet, difficult to compare due to the lack
of metadata/documented information or simply not available. Moreover, the lack of public
data on standard phantoms also makes standardization of diffuse optics instruments much
harder to accomplish since it is difficult to assess and compare the performance of diffuse
optics instruments at labs and hospitals. That is, a repository with documented diffuse
optical data following well-defined standards is still missing.

Here, I present the dataset obtained from a performance assessment campaign where sev-
eral European diffuse optics instruments were involved [123]. In this campaign, PhD student
from BITMAP–ITN network moved to these laboratories and performed three European
protocols using a consistent set of phantoms. The obtained dataset will be organized and
uploaded to an Open Data repository in companion with detailed metadata and documen-
tation. A standardized data format, promoted by the Society for Functional Near Infrared
Spectroscopy [200], was used to organize the measurements, instrumentation technical in-
formation and metadata. This dataset will contain measurements from the largest set of
diffuse optics instruments published until now.

In this chapter, I give an introduction to FAIR research data approach and the motivations
that made European Commission to encourage its use. After, I describe the measurement
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campaign that was carried within the BitMap partners and how I organise those measure-
ments using SNIRF format. Finally, I give some brief conclusions about the project.

6.1. Open Data management and FAIR principles

Recently, the European Commission (EC) has indicated that up to 10.2 billion euros per year
could be saved by using FAIR research data [218]. The report takes into account not only
the cost due to time wasted performing similar experiments but also the wasted money due
to cost storage of redundant copies, license prices, research retraction, double funding, lack
of interdisciplinary research and loss in potential economic growth. To promote the share
of scientific data with the society, the EC have given some recommendations and business
models so laboratories can implement FAIR data approaches and sustain them [217]. The EC
encourages to make data open to different communities but at the same time it acknowledges
that in some projects is not feasible due to intellectual property, privacy issues or project
jeopardizing risks. That is, the data of European laboratories must be as open as possible
and as closed as necessary.

Open Data has two main goals: first, to promote transparent data in order to achieve a more
transparent research and improve the quality of the science; second, to make data open to
all citizens in order to encourage innovation and improve the return of investment of science.
To make this possible, it is necessary to enhance reusability of data holdings, that is, to plan
the dataset management in the long term. It must be noted that good data management
is not a goal in itself but a tool to make data useful for researchers and communities.
FAIR guidelines are designed to promote the findability, accessibility, interoperability and
reusability of datasets.

FAIR principles were reported in 2016 by stakeholders from different backgrounds such as
academia, industry, funding agencies or publishers [237]. FAIR guidelines acknowledge that
humans and machines face distinct barriers and therefore it puts specific emphasis on machine
readability and enhancing ability to automatically find and use data by machines. The FAIR
principles can be summarised as follows:

Findable: Machine-readable rich metadata are indispensable for automatic discovery
of datasets. That way data and metadata will be easier to find for humans and
machines. Data and metadata need a globally unique and persistent identifier. In
addition, metadata and data have to be indexable.

Accessible: How and who can access that data must be clearly defined. The protocols
to access the data have to be open, free and universally implementable.

Interoperable: Datasets usually will be integrated with other data. Therefore, datasets
must be syntactically parseable and semantically understandable.

Reusable: Since the ultimate goal of data is to be resused by other researchers and
communities then it must be sufficiently described so it can be reused, replicated or
integrated with other data. Moreover, it must be shared with clear and least restrictive
licenses as possible and meet the standards of the field.

FAIR data is not always open. Open data must be available to everyone to access, use and
share without licenses, copyright or patents. However, FAIR data must be accessible by
appropriate people, at an appropriate time, in a appropriate way. For example, when new
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experimental data is measured, first it will be accessible by the researcher generator of the
data. Then, the researcher shares the raw data with partners from the consortia and that
data it will be accessible to them. Finally, data is shared with the public upon publication.
During all the process the data was accessible since it was well defined who and how data
can be access. Nevertheless, only in the last step the data was open to the public. Moreover,
FAIR data has also to be findable, interoperable and reusable. That is, FAIR data does not
only focus on the accessibility of the data but also on other key aspects.

The BitMap network decided that the dataset will be open and will follow the standards of
FAIR guidelines. From the network, we believe that the publication of this dataset will give
a broad picture of the current situation of diffuse optics instruments in Europe and it will
help to push the standardization of the field and improve the competitiveness of European
Union in biophotonics market.

In the next section, I will speak about standardization and how it can benefit the industri-
alization and commercialization of biophotonics devices.

6.2. Standardization

To translate a lab prototype into its commercialization for clinical use is a path full of pitfalls.
There are usually two valleys of death in that journey: (1) to get authorization to validate
the system in the clinics and (2) to convince clinicians that the systems is reliable enough
to use on a regular basis on the clinics. To overcome the first valley a lot of paperwork
must be done and security requirements must be fulfilled. Regarding the second valley, it
has been one of the principal impediments to adopt optical imaging technologies in the
clinics since there have been many difficulties to provide absolute physiological parameters.
Even if repeatibility of the system is very accurate, the recovered parameters are system
specific. Therefore, the adoption of shared procedures for performance assessment of diffuse
optics devices, by using international consensus standards, is a must. That is, standardized
protocols and phantoms must be used to prove the reliability of biophotonics systems. Once
systems have been proven to be reliable in the lab, it can be brought to the clinics. That
way research quality will improve and commercialization cost will decrease.

To overcome the previously discussed issue many researchers from the European Union are
making a big effort to push standarization of biophotonics devices. For example, during
October 2018, an European workshop on Performance Assessment and Standardization in
BioPhotonics was held in Brussels [167]. Most of the discussion hinged on how to trans-
late biophotonics technologies to the medical industry and when/how standardization can
be useful for that goal. Some the conclusions that were reached can be summarised as
follows [167]:

Biophotonics technologies are bringing outstanding possibilities due to chemical speci-
ficity and functional information. Moreover, since most of them are non-invasive and
potentially scalable it makes them a key technology for the healthcare future.

The adoption of shared and agreed standards for performance assessment of devices
can stimulate the development of novel biophotonic techniques for clinical use by
increasing the reliability and reproducibility of results.

Many researchers from different fields of biophotonics have a strong desire for stan-
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dardization as research moves into clinical trials. They reported that this step is critical
for European competitiveness.

To facilitate the use of Open Data can enable the use of Machine Learning technologies
due to the supply of validated data. Moreover, it can encourage interdisciplinary
research.

6.3. The diffuse optics systems campaign

As was explained before, the idea of the campaign is twofold: first, to draw a picture of the
current state of European instruments in diffuse optics, that is, to show the different kinds
of systems that are being used and to check perform variability in standardized phantoms.
It should be pointed out that the goal is not to compare one instrument against other but to
have a whole picture of the current state of the field. The second goal is to create an open
dataset so researchers working on data processing can test different techniques to retrieve
optical properties.

The campaign was carried out by one researcher from BitMap network. This researcher went
to 10 institutions and performed measurements using 29 different instruments by applying
three internationally agreed protocols (BIP, MEDPHOT and nEUROPt protocol, see next
section). This researcher carried with him the same phantoms to every institution, that is,
the measured phantoms were the same for all instruments. This huge work was conducted
in approximately two months to guarantee that conditions of the experiment were the same
in all the cases.

In the next section, I will describe each of the three protocols that were used in the campaign.
After, I will give a brief summary of the instruments that took part in the campaign.

6.3.1. The European diffuse optics standards

As was discussed previously, the use of standardized protocols for instrumentation perfor-
mance assessment is a key step to bring biophotonics devices to the clinics. During the last
fifteen years, three well-agreed international protocols have been develop in diffuse optics
field [229, 169, 227]. These three protocols were followed during the BitMap campaign. The
objectives of each protocol can be summarised as follows:

1. BIP protocol [229]: It focuses on the characteristics of the system at its basic level.
Therefore, neither samples nor data analysis methods are used during the protocol. In
particular, BIP protocol addresses several parameters of the system source, the respon-
sivity of the detection system, the differential nonlinearity of the timing electronics and
the stability, shape and background of the instrumental response function (IRF).

2. MEDPHOT protocol [169]: It assess the capabilities of instruments to measure
homogeneous optical properties (µa and µ′s) in turbid media. In this protocol, the
system is consider as a black-box and specifications are not took into consideration,
in other words, MEDPHOT is a high-level protocol since it assess the instrument as
a whole, including also the data analysis tools. The different test done measure the
accuracy, linearity, stability, reproducibility and noise on optical properties recovering.
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3. nEUROPt protocol [227]: It is also a high-level protocol but it assess the capabilities
of instruments to measure absorption inhomogenities in turbid media. It was designed
to simulate brain activation in the cortex and to evaluate the ability of systems to
detect, localize, and quantify absorption changes in the brain.

The set of phantoms were sequentially sent to all laboratories. In this campaign, only solid
phantoms were used due to their stability, reproducibility and easy-to-use characteristics.
For BIP protocol responsivity phantom [229] was used. A set of 32 homogeneous solid
phantoms [169] that cover a wide range of scattering and absorption properties were used
for MEDPHOT protocol. Finally, a solid switchable phantom [170] was used for nEUROPT
protocol.

6.3.2. The instruments involved in the campaign

The idea of the campaign is to include a wide spectrum of state-of-the-art instruments
from European laboratories. The institutions that took part in the campaign are Politecnico
di Milano (POLIMI) in Italy, Physikalisch-Technische Bundesanstalt (PTB) in Germany,
University Hospital of Birmingham (UHB) in United Kingdom, University of Birmingham
(UoB) in United Kingdom, Nalecz Institute of Biocybernetics and Biomedical Engineering
(IBIB) in Poland, University College London (UCL) in United Kingdom, Instituto de Ciencias
Fotónicas (ICFO) in Spain, Hospital Universitario Valle de Hebrón (VdH) in Spain, ICube in
France and University of Strasbourg (UoS) in France.

The participating instruments can be classified using the following characteristics:

Development phase: Some of the instruments are lab prototypes which have not
been taken out of the university. Other instruments have already been tested in the
clinics and others are commercial instruments with “Conformité Européenne” label or
FDA approval.

Technologies: Continuous-wave (CW), frequency domain (FD) and time-resolved
(TR) instruments were included in the campaign.

Specifications: The range of specifications is very broad containing for example
multi-wavelength instruments (some of them broadband), multi-detector systems (e.g.
OCTOPUS system uses eight detectors to perform tomography) and multi-modality
system such as LUCA which uses diffuse optics in combination with ultrasound tech-
nology.

Purpose: Most of the instruments are oximeters or spectrometers with several appli-
cations into the clinics such as adult/newborn brain imagers, hemodynamics monitors,
thyroid node analysers, mammographers and fetus imagers. There is also one spec-
trometer that is used to measure fruit and vegetable quality.

Institutions: All institutions were part of the European Union, precisely from Italy,
Germany, United Kingdom, Poland and Spain.

In Table 6.1, the characteristics of each instrument are briefly summarized.
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6.4. Open Data action organization

The campaign to measure the instruments can be considered as the first part of the BitMap
project on standardization. The second part involves to collect all the raw data and to
organize it in a format with enough metadata so it follows the FAIR standards. I was in
charge of this second part, see Figure 6.1 for a summary of the project timeline.

Data1
organization

and
formating

Measurements
tour

Project1planification
Raw1data
gathering

Data
publication

Lorem1ipsum1

dolor1sit1amet,1

consectetuer1

adipiscing1elit.

Lorem1ipsum

2018

1

Jan.
2019

2

July
2019

3

Sept.
2019

4

Nov.
2019

5

Part11 Part12

Figure 6.1: Timeline of the whole BitMap standardization and Open Data project.

6.4.1. The coordination of institutions

After the first part of the project has been finished, that is, when all the measurements and
protocols have been performed, the second part consists on gathering all the data from the
different institutions and organizing and publishing it. This is not a trivial aspect since each
institution uses different instruments and saves data in different formats. For that reason,
what I planned with all partners was to store the data in several MATLAB matrices for each
protocol. With this approach, I managed to put an interface between their own data format
and SNIRF format (see next section), which made the process easier for them.

The gathering of raw data phase ended at the beginning of July 2019, see Figure 6.1. During
September 2019 all the data will be converted to SNIRF format and between October and
November the data will be published to the public domain.
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6.4.2. Shared Near Infrared File (SNIRF) Format Specification

As was discussed previously, the diffuse optics field is experiencing a lack of standardization
that is preventing it to fully develop clinical systems. This lack standardization is not only in
terms of instruments assessment but also how data is stored (e.g. the byte stream, the header
size, etc). Until now, each laboratory was saving raw data in their own format which make
difficult and tedious to share it with other colleges. For that reason, several stakeholders
from academia and industry both in software and hardware fields have join forces to push a
new data sharing format [200].

ID System Lab Technique Application TRL

1 Clinical broadband spectrometer POLIMI TR Spectrometer 5
2 3mm SiPM POLIMI TR Oximeter 3
3 HPM based spectrometer PTB TR Spectrometer 4
4 NIRO 200NX UHB/UoB CW Oximeter 8
5 ISS OXIPLEX-TS UHB/UoB FD Oximeter 8
6 ISS IMAGENT UHB/UoB FD Oximeter 8
7 Multiwavelength system IBIB TR Spectrometer 5/6
8 TD-DCS system IBIB TR Perfusion 4
9 SRS based CW system UCL CW Spectrometer 6
10 TRS-DCS FLOWer ICFO/VdH TR Oximeter 7
11 MCP based system PTB TR Spectrometer 4
12 Fetus clinical instrument, HC1 ICFO/VdH TR Oximeter 6
13 Clinical TD oximeter IBIB TR Oximeter 6
14 8 channel system IBIB TR Oximeter 6
15 MAESTROS UCL TR Spectrometer 4
16 LUCA POLIMI TR Spectrometer 6
17 TD oximeter POLIMI TR Oximeter 6
18 clinical TD oximeter POLIMI TR Oximeter 6
19 wearable TD device POLIMI TR Spectrometer 5
20 Artinis POLIMI CW Oximeter 8
21 Mammograph POLIMI TR Imaging 6
22 Multiwavelength ”Fruit” spectrometer POLIMI TR Spectrometer 4
23 OCTOPUS POLIMI TR Spectrometer 4
24 Laboratory Spectrometer System POLIMI TR Spectrometer 6
25 Laboratory broadband spectrometer POLIMI TR Spectrometer 6
26 Lab TD-DCS POLIMI TR Spectrometer 4
27 Mammograph MH POLIMI TR Imaging 6
28 SFD Imager ICube/UoS FD Imaging 4
29 APD based Spectrometer ICube/UoS TR Spectrometer 4

Table 6.1: Characteristics of the instruments that were used during the campaign. TRL =
Technology Readiness Level of the system under test (e.g. TRL3 = component/subsystem,
TRL4 = laboratory prototype, TRL5 = clinical prototype, TRL6 = clinical system already
demonstrated in clinics, TRL8 = commercial clinical device).
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The data format is named Shared Near Infrared File (SNIRF) Format Specification. SNIRF
files use the extension *.snirf but are HDF5 format files. HDF5 is a format file designed
to store, organize and manipulate large amount of data. It can be accessed from different
operative systems and there are available many open-source libraries to manipulate HDF5
files from different programming languages, including Java, MATLAB, Python, R and For-
tran.

Therefore, HDF5 files are accessible and interoperable in terms of FAIR guidelines. In general
terms, HDF5 format uses two primary data organization and storage classes: (1) the group

which can be consider as folders and (2) the datasets which are multidimensional arrays
of a homogeneous type.

SNIRF format supports measurements from CW, FD and TR technologies including fluores-
cence measurements. Moreover, Diffuse Correlation Spectroscopy measurements can also be
saved in SNIRF format. A schematic view of SNIRF format for BitMap campaign is shown
at Figure 6.2.

From nirs(0), three main groups can be distinguished:

data group: It contains one block of measurements. It can extended to many groups

by extending the index number. The data contained at the group is:

– dataTimeSeries: Macro-time of the whole experiment.

– time: Micro-time for each DTOF curve.

– measurementList: It contains information about the source, detector and wave-
length indexes, the datatype used (e.g. continuous-wave, frequency domain,
time-resolved gates and moments) and several characteristics of the instruments.
Note that indexes point to the probe group.

stim group: It describes a stimulus condition. For BitMap campaign the stimulus
are the phantoms. Several stimulus can be included in one SNIRF file. The data
contained in the group is:

– name: String with the name of the phantom.

– data: It defines stimulus time course. In this case, the phantoms are constant
over time.

probe group: This group contains the probe geometry. Only one probe group is
allowed per SNIRF file. The datasets are:

– wavelengths: The list of wavelengths used.

– sourcePos: Position of the sources.

– detectorPos: Position of the detectors.

– frequencies: List of frequencies used.

It is worth noting that the datasets of the groups described here do not describe the full
list. There is a larger set of datasets which are useful for different systems. Here I only
described the most common ones.

For the BitMap open dataset one snirf file will be created, for each instrument and for
each protocol test; for example, in MEDPHOT protocol there will be one snirf file for
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accuracy/linearity, reproducibility, stability and noise tests. Special mention should be given
to how store the IRF of time-resolved instruments. The SNIRF format does not allow to
store the IRF of instruments with the measurements. For that reason, I decided to store IRF
files in separate snirf files. This decision gives enough flexibility since in some tests the
IRF was not measured.

6.4.3. The open data repository

The open dataset will be uploaded to Zenodo open-access repository. Zenodo is supported
by the European OpenAIRE programme and is managed by CERN [1]. Zenodo encourages
to use FAIR principles in the uploaded datasets. For that reason, all the uploaded datasets
are automatically assigned a Digital Object Identifier (DOI) to make the content citable,
shareable and findable. It is possible to upload newer version of the dataset but original data
can never be modified [250].

6.5. Conclusions and ongoing work

In this chapter, I presented the effort that BitMap network have done to push standardization
and Open Data in the field of diffuse optics. The first step was to assess the performance
of several instruments from European institutions by using three internationally agreed pro-
tocols. Those measurements were carried out by the same researcher with the same set of
phantoms. The goal of this first step was to draw a global picture of the current state of Eu-
ropean labs in diffuse optics and to promote the standardization of instrument performance
assessment.

The second part consists on gathering all the data, organize it using the agreed protocol
SNIRF and to make it public to the society. The purpose of this second action is to make
research more transparent and to encourage the innovation in data analysis. I was in charge
of the whole second step and the dataset will be made public at the end of the year.
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Final conclusions and perspectives

The work presented in this thesis had as main goal to study time–resolved diffuse optical
tomography algorithms for the estimation of hemoglobin concentration at the human brain
cortex.

First, I analyzed the current state–of–the–art of time–resolved diffuse optical tomography
theory and algorithms (see Chapter 3). In that chapter, I stressed the drawbacks that
commonly used datatypes have in terms of noise correlation and time selectivity. I proposed
a novel technique that computes uncorrelated datatypes in the Fourier space. With this new
approach, a large set of uncorrelated windows can be used without increasing dramatically
the computational time. In this chapter, I proposed to use Tukey or Gaussian windows
because of their few oscillations at Fourier space and the decorrelation at time domain. The
results on a numerical phantom gave evidence of the superior performance of those windows
for inclusions as deep as 3.5 cm due to the improved time selectivity for late times.

In Chapter 4, I tackled another critical aspect of diffuse optical tomography: the inverse
problem regularization. In collaboration with the diffuse optics lab from the University of
Birmingham, I showed the feasibility of applying total–variation regularization methods into
diffuse optical tomography problems defined at irregular meshes. I proposed two different
techniques based on finite elements (Section 4.2.1) and graphs approaches (Section 4.2.2).
The performed study revealed the improved performance of total–variation techniques com-
pared to Tikhonov regularization. Moreover, within the two proposed methods, graph ap-
proach was more stable in coarse meshes than finite elements. This last point, is a critical as-
pect to take into account when three–dimensional meshes are used since usually fine meshes
are not computationally manageable for big models such as an adult human head.

After studying and analyzing different algorithmic aspects of diffuse optical tomography, in
Chapter 5, I applied the acquired knowledge into two different in–vivo experiments: arm
occlusion (Section 5.3) and motor cortex activation experiments (Section 5.4). The experi-
ments were performed using a time–resolved diffuse optical system, developed at Politecnico
di Milano, composed by two probes of three light sources and four silicon photomultiplier de-
tectors each. The system had an optical switcher which switched the optical input among the
six light outputs in less than 30 ms. For the experimentation, first arm occlusion experiments
were used as validation test for the algorithms; the obtained results were in agreement with
previous studies in the literature. After, motor cortex activation experiments were performed
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based on finger tapping protocols. Due to the low count rate obtained for two subjects, only
results for one subject could be provided. Nevertheless, for this subject, a time–dependant to-
mographic reconstruction was obtained. Up to my knowledge, the presented time–dependant
tomographic reconstructions were never shown in the literature before. These results, are
evidence of the feasibility of diffuse optical tomography techniques, to image brain activation
with less than one–second time resolution.

The work shown in this thesis brings some new knowledge to the field of diffuse optical
tomography. I tried to fill some gaps that I thought were interesting for the community.
Nevertheless, as in any scientific work, there are still many questions that need to be answer.
In the following paragraphs, I discuss what aspects should be further researched.

Regarding to the theoretical work developed at Chapter 3, I think that there are three points
that would be interesting to work on in the future. First, experimental validation have to
be performed regarding the extra information that is acquired with the proposed technique.
Although, in theory, the information is there, it is still to be proven that the extra information
is not lost due to experimental factors. Secondly, it would be interesting to analyze Tukey
windows as a limit to full time-resolved tomography reconstructions. In particular, how much
new information can be acquired by solving the full DTOF curve. Some question that could
arise are: does simulating the full DTOF curve provides new information? Does it make
sense to spend computational time on that aspect? Is equivalent information obtained by
retrieving the value for some decorrelated datatypes? Lastly, it would be very attractive to
build a system that directly measures a gated DTOF. Such system would be considerably
faster than state-of-the-art time-resolved systems and, at the same time, the gated DTOF
could be used in the proposed reconstruction process since it is equivalent to compute the
Tukey windows of a DTOF.

About the performed in–vivo experiments, there are also many aspect to be improved.
The system was a lab prototype which was not totally fitted for human brain imaging.
It was evident from the count rate values that probe attachment to the scalp was far
from optimal in at least two of the subjects. For future studies, a dedicated probe for
human brain imaging would ameliorate considerably these aspects and could even provide
good count rate values for subjects with dense hair density, see for example [50, 64, 118].
Moreover, the development of a similar time–resolved system with a high density of source
and detectors could provide similar results to the gold standard of brain imaging, functional
magnetic resonance. Now, with the presented tomographic algorithms, it is feasible to
provide clinicians and neuroscientist with time dependant tomographic reconstruction based
on diffuse optics technology.
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Marc Dinten. Development of time-domain multispectral optical tomography al-
gorithm for brain trauma monitoring. Journée des doctorants (JDD) EEATS, 2017,
Grenoble, France. Talk and poster.

A.2. Papers in the pipeline

David Orive-Miguel, Lionel Hervé, Laurent Condat, and Jérôme Mars. A theo-
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Appendix B
Implementation details for photon
transport Monte-Carlo method

B.1. Pseudo-random number generation following Henyey-Greenstein
distribution

The inverse probability integral transform is the tool usually used to generate a pseudo-
random number that follows distribution f(X). As prerequisite it is needed to know its
cumulative distribution function FX . The idea is to find the operator T that maps the
random variable U that follows a uniform distribution from zero to one, U ∼ Unif [0, 1]
into the arbitrary distribution f(X). To calculate the operator let us take u ∈ Unif [0, 1]
so,

FX(u) = Pr (X ≤ u)

= Pr (T (U) ≤ u)

= Pr
(
U ≤ T−1(u)

)
= T−1(u) (Because U ∼ Unif [0, 1]).

(B.1)

Therefore, it follows that,

T (u) = F−1
X (u), (B.2)

that is, the operator that transform a uniformly distributed random number into an arbitrary
distribution is the inverse of the arbitrary distribution cumulative function.

If the change of variable w = cos θ is performed into Equation 2.3 then the new phase
function is,

p(w) =
1

2

1− g2

(1 + g2 − 2gw)3/2
(B.3)

which is normalized, ∫ 1

−1
p(w) dw = 1. (B.4)
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The cumulative distribution of this phase function is,

Cp(w) =
1

2

∫ w

−1

1− g2

(1 + g2 − 2gw)3/2
dw

=
1− g2

2g

[
(1 + g2 − 2gw)−1/2 − (1 + g)−1

]
,

(B.5)

and its inverse function is,

v = Cp(C
−1
p (v))

=
1− g2

2g

[
(1 + g2 − 2gC−1

p (v))−1/2 − (1 + g)−1
]

⇒ C−1
p (v) =

1

2g

[
1 + g2 −

(
1− g2

1− g + 2gv

)2
]

= cos θ.

(B.6)

Therefore, the operator C−1
p (v) generates a number that follows an Henyey-Greenstein dis-

tribution when v ∈ Unif [0, 1].

B.2. Photon travelling step size

The probability that a photon travels a distance L without having an scattering event is
given by p(L) = µse

−µsL (note that the probability density function p(L) is normalized).
The cumulative density function is,

Cp(L) = µs

∫ L

0
e−µsx dx = 1− e−µsL. (B.7)

Using the inverse probability integral transform and being v ∈ Unif[0, 1],

v = Cp(C
−1
p (v))

= 1− e−µsC
−1
p (v)

⇒ C−1
p (v) = − ln(1− v)

µs
= − ln v

µs
,

(B.8)

where the last equality holds since v ∈ Unif[0, 1] and therefore (1− v) ∈ Unif[0, 1].



Appendix C
Brief notes on vector calculus

The divergence theorem states that∫
Ω
∇ · u(x) dΩ =

∫
∂Ω
u(x) · ~n d∂Ω (C.1)

where u(x) is a scalar function, x ∈ Ω and ∂Ω denotes the boundary of the domain, Ω.
The first Green identity can be derived by substituting ∇ · u(x) by ∇ · (u∇v) where v(x) is
another scalar function, then∫

Ω
∇ · (u∇v) dΩ =

∫
∂Ω
u
∂v

∂n
d∂Ω, (C.2)

and by applying the identity ∇ · (u∇v) = ∇u · ∇v + u∇2v the first Green’s identity is
retrieved ∫

Ω
∇u · ∇v + u∇2v dΩ =

∫
∂Ω
u
∂v

∂n
d∂Ω. (C.3)

A new equation is obtained by intechanging u and v in Equation (C.3), if that new equation
is substracted from Equation (C.3) then the Green’s second identity is derived,∫

Ω
u∇2v − v∇2u dΩ =

∫
∂Ω
u
∂v

∂n
− v ∂u

∂n
d∂Ω. (C.4)
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Appendix D
Generalized least squares and datatypes

Let us define a random vector Z with a covariance matrix cov[Z]. After applying a linear
transformation A to the random vector the covariance matrix is,

cov[AZ] = Acov[Z]AT , (D.1)

where the covariance matrix is always semi-positive definite.

D.1. From ordinary generalized least squares

When using ordinary least squares it is assumed that the data has noise with equal variance,
that is, that the covariance matrix is the identity matrix multiplied by a constant,

C = σ2I. (D.2)

The least squares solution is,
x = (ATA)−1ATy. (D.3)

However, if the data has uncorrelated noise but with different variance for each measure
then weighted least squares (WLS) should be used,

x = (ATW2A)−1ATW2y, (D.4)

where W = diag(1/σi) and σi the noise standard deviation for acquisition i-th. Then, WLS
makes the covariance matrix identity, C = Wdiag(σ2

i )W
T = I.

In the worst case data noise can be correlated with other measurements. In this case, the
covariance matrix is not diagonal anymore so to make the covariance matrix identity and
apply ordinary least squares it must be multiplied by, C−1/2

C−1/2CC−1/2 = I. (D.5)

The solution is,

x = (AT(C−1/2)TC−1/2A)−1AT(C−1/2)TC−1/2y. (D.6)
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Appendix E
Diffusion equation and Born
approximation revisited

E.1. Born approximation for diffusion coefficient heterogeneities

A small perturbation is introduced into the diffusion coefficient of Equation 2.33, D(x) →
D(x) + δD(x) where δD(x) � D(x); in consequence the solution is going to vary a little
bit, φ(x, t)→ φ(x, t) + δφ(x, t), where also δφ(x, t)� φ(x, t).

After introducing the new terms to the diffusion approximation equation

1

c

∂(φ+ δφ)

∂t
−∇ · ((D + δD)∇(φ+ δφ)) + µa(φ+ δφ) = S(x, t), (E.1)

Simplifying the source term S(~r, t) with φ(x, t) terms

1

c

∂δφ(x, t)

∂t
−∇ · (D∇δφ(x, t)) + µa(x) δφ(x, t) = ∇ · (δD∇ (φ+ δφ)) . (E.2)

The solution to Equation (E.2) is

δφ(x, t) =

∫ T

0

∫
Ω
G0(x,x′; t− t′) ∇ · (δD∇ (φ+ δφ)) dx′dt′ (E.3)

and taking into account that δφ� φ, the source is a Dirac pulse and measurement is taken
at detector position the equation converts to,

δφ(xd, t) =

∫ T

0

∫
Ω
G0(xd,x

′; t− t′) ∇ ·
(
δD∇G0(x′,xs; t− t′)

)
dx′dt′

=

∫ T

0

∫
Ω
G0
d δD∇2G0

s dx′dt′ +

∫ T

0

∫
Ω
G0
d

(
∇δD · ∇G0

s

)
dx′dt′.

(E.4)
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Applying first Green’s identity to the first integral,

δφ(xd, t) =

∫ T

0

∫
Ω
G0
d δD∇2G0

s dx′dt′ +

∫ T

0

∫
Ω
G0
d

(
∇δD · ∇G0

s

)
dx′dt′

=

∫ T

0

∫
δΩ
G0
d δD

∂G0
s

∂n
dx′ −

∫ T

0

∫
Ω
∇
(
G0
d δD

)
· ∇G0

s dx′dt′

+

∫ T

0

∫
Ω
G0
d

(
∇δD · ∇G0

s

)
dx′dt′,

(E.5)

where the surface integral is null at far boundaries. Second integral can still be devel-
oped,

δφ(xd, t) = −
∫ T

0

∫
Ω
∇
(
G0
d δD

)
· ∇G0

s dx′dt′ +

∫ T

0

∫
Ω
G0
d

(
∇δD · ∇G0

s

)
dx′dt′,

= −
∫ T

0

∫
Ω
δD

(
∇G0

d · ∇G0
s

)
dx′dt′

(E.6)

which is the Born approximation for diffusion coefficient heterogeneities.

E.2. Dirac delta shift effect

The diffusion approximation equation with a Dirac delta as a source function is

1

c

∂φ(x, τ)

∂τ
−∇ · (D∇φ(x, τ)) + µa(x)φ(x, τ) = δ(x, τ), x ∈ Ω, τ > 0. (E.7)

By performing the change of variables τ = t − t′ where t′ is a constant and by the chain
rule,

∂

∂τ
=
∂t

∂τ

∂

∂t
+
∂t′

∂τ

∂

∂t′
=

∂

∂t

so the new equation will be

1

c

∂φ(x, t− t′)
∂t

−∇·(D∇φ(x, t−t′))+µa(x)φ(x, t−t′) = δ(x, t−t′), x ∈ Ω, t−t′ > 0.

(E.8)



Appendix F
Dispersion calculations for several
temporal windows

F.1. Gaussian window

∫ ∞
−∞
|g(t)|2 dt =

∫ ∞
−∞

∣∣∣e−t2/(2σ2)
∣∣∣2 dt

=

∫ ∞
−∞

e−t
2/σ2

dt

= σ

∫ ∞
−∞

e−x
2

dx

= σ
√
π.

(F.1)

∫ ∞
−∞

t2|g(t)|2 dt =

∫ ∞
−∞

t2e−t
2/σ2

dt

=

∫ ∞
−∞

t
(
t · e−t2/σ2

)
dt

=

[
t ·
(
−σ

2

2
e−t

2/σ2

)]∞
−∞
−
∫ ∞
−∞
−σ

2

2
e−t

2/σ2
dt

=
σ3

2

√
π.

(F.2)

∫ ∞
−∞
|F [g(t)]|2 df = 2πσ2

∫ ∞
−∞

e−4σ2π2f2 df

= 2πσ2

√
π

2σπ
= σ
√
π.

(F.3)
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∫ ∞
−∞

f2|F [g(t)]|2 df = 2πσ2

∫ ∞
−∞

f2e−4σ2π2f2 df

= 2πσ2

∫ ∞
−∞

f
(
f · e−4σ2π2f2

)
df

= 2πσ2

[
f ·
(
− 1

8σ2π2
e−4σ2π2f2

)]∞
−∞
− 2πσ2

∫ ∞
−∞
− 1

8σ2π2
e−4σ2π2f2 dt

=
1

8σπ3/2
.

(F.4)

D0(g)D0(F [g]) =
σ2

2
· 1

8σ2π2
=

1

16π2
. (F.5)

F.2. Laplacian distribution

∫ ∞
−∞
|g(t)|2 dt =

∫ ∞
−∞

∣∣∣e−p|t|∣∣∣2 dt

= 2

∫ ∞
0

e−2pt dt

=
2

−2p

[
e−2pt

]∞
0

=
1

p
.

(F.6)

∫ ∞
−∞

t2|g(t)|2 dt = 2

∫ ∞
0

t2e−2pt dt

= 2

(
1

−2p

[
t2e−2pt

]∞
0

+
2

2p

∫ ∞
0

te−2pt dt

)
=

2

p

∫ ∞
0

te−2pt dt

=
2

p

(
1

−2p

[
te−2pt

]∞
0

+
1

2p

∫ ∞
0

e−2pt dt

)
=

1

2p3
.

(F.7)

∫ ∞
−∞
|F [g(t)]|2 df =

∫ ∞
−∞

∣∣∣∣ 2p

p2 + (2πf)2

∣∣∣∣2 df

=
4

(2π)2
γ2

∫ ∞
−∞

1

f4 + 2γ2f2 + γ4
df (where γ = p/(2π))

=
4

(2π)2
γ2 π

2|γ|3
=

1

p
.

(F.8)
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∫ ∞
−∞

f2|F [g(t)]|2 df =

∫ ∞
−∞

f2

∣∣∣∣ 2p

p2 + (2πf)2

∣∣∣∣2 df

=
4

(2π)2
γ2

∫ ∞
−∞

f2

f4 + 2γ2f2 + γ4
df (where γ = p/(2π))

=
4

(2π)2
γ2

∫ ∞
−∞

f2

(f2 + γ2)2
df

=
4

(2π)2
γ2

∫ ∞
−∞

1

f2 + γ2
− γ2

(f2 + γ2)2
df

=
4

(2π)2
γ2

[
π

γ
− π

2γ

]
=

p

(2π)2
.

(F.9)

D0(g)D0(F [g]) =
1

2p2
· p2

(2π)2
=

1

8π2
. (F.10)

F.3. Rectangle function

∫ ∞
−∞
|g(t)|2 dt =

∫ ∞
−∞
|rect(t/τ)|2 dt = τ. (F.11)

∫ ∞
−∞

t2|g(t)|2 dt =

∫ ∞
−∞

t2 |rect(t/τ)|2 dt

= 2

∫ ∞
0

t2 |rect(t/τ)|2 dt

= 2

∫ τ/2

0
t2 dt = 2

[
t3

3

]τ/2
0

=
τ3

12
.

(F.12)

∫ ∞
−∞
|F [g(t)]|2 df =

∫ ∞
−∞
|τsinc(πτf)|2 df

= τ2

∫ ∞
−∞
|sinc(πτf)|2 df

=
τ

π

∫ ∞
−∞
|sinc(x)|2 dx = τ.

(F.13)

∫ ∞
−∞

f2|F [g(t)]|2 df =

∫ ∞
−∞

f2 |τsinc(πτf)|2 df

=
1

π3τ

∫ ∞
−∞

x2 |sinc(x)|2 dx

= diverges so it is not square integrable.

(F.14)
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F.4. Mellin-Laplace moments

∫ ∞
−∞
|g(t)|2 dt =

∫ ∞
−∞

∣∣tne−ptH(t)
∣∣2 dt

=

∫ ∞
0

t2ne−2pt dt =
(2n)!

(2p)2n+1
.

(F.15)

∫ ∞
−∞

t2|g(t)|2 dt =

∫ ∞
−∞

t2
∣∣tne−ptH(t)

∣∣2 dt

=

∫ ∞
0

t2n+2e−2pt dt =
(2n+ 2)!

(2p)2n+3
.

(F.16)

∫ ∞
−∞
|F [g(t)]|2 df =

∫ ∞
−∞

∣∣∣∣ n!

(p+ i2πf)n+1

∣∣∣∣2 df

=
n!2

2π|p|2n+1

∫ π/2

−π/2

sec2 x

|(p+ i tanx)|2n+2 dx (2πf = p tanx)

=
n!2

2π|p|2n+1

∫ π/2

−π/2
cos2n x dx

=
n!2

π|p|2n+1

∫ π/2

0
cos2n x dx

=
n!2

π|p|2n+1
W2n.

(F.17)

∫ ∞
−∞

f2|F [g(t)]|2 df =

∫ ∞
−∞

f2

∣∣∣∣ n!

(p+ i2πf)n+1

∣∣∣∣2 df

=
(n! p)2

(2π)3|p|2n+1

∫ π/2

−π/2

tan2 x sec2 x

|(p+ i tanx)|2n+2 dx (2πf = p tanx, n ≥ 1)

=
(n! p)2

(2π)3|p|2n+1

∫ π/2

−π/2
tan2 x cosn x dx

=
(n! p)2

(2π)3|p|2n+1

∫ π/2

−π/2
sin2 x cos2n−2 x dx

=
(n! p)2

(2π)3|p|2n+1

(∫ π/2

−π/2
cos2n−2 x dx−

∫ π/2

−π/2
cos2n x dx

)

=
(n! p)2

(2π)3|p|2n+1
(2W2n−2 − 2W2n) (n ≥ 1).

(F.18)
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D0(g) =
(2n+ 2)!

(2p)2n+3
· (2p)2n+1

(2n)!
=

(2n+ 2)!

(2n)!
· 1

(2p)2
. (F.19)

D0(F [g]) =
(n! p)2

(2π)3|p|2n+1
(2W2n−2 − 2W2n) · π|p|

2n+1

n!2W2n

=
p2

4π2

(
W2n−2

W2n
− 1

)
=

p2

4π2

(
2n

2n− 1
− 1

)
.

(F.20)

D0(g)D0(F [g]) =
1

16π2

(2n+ 2)!

(2n)!

(
2n

2n− 1
− 1

)
, (n ≥ 1). (F.21)

Therefore,
1

16π2

(2n+ 2)!

(2n)!

(
2n

2n− 1
− 1

)
>

1

16π2
, (n ≥ 1). (F.22)
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Appendix G
Fourier transform influence on noise

This approach is inspired by the book written by P.C. Hansen [92]. Let us call F ∈ CM×M
the discrete Fourier transform matrix, which is Hermitian and complex. In the following, we
analyze how the noise propagates after applying the Fourier transform.

In the case the data is contaminated by independent Gaussian noise with constant variance,
the covariance matrix C is,

C = σ2I.

If the Fourier transform is applied then the covariance matrix transforms to

C ′ = σ2FF ∗ = mσ2I.

Now, let us assume that the variance of the noise is identical to the signal value sexact; the
new covariance matrix is

C = diag(sexact),

where diag(u) indicates a diagonal matrix whose diagonal contains vector u. After applying
the Fourier transform, the covariance matrix transforms to

C ′ = Fdiag(sexact)F
∗,

and its is known that Fdiag(sexact)F
∗ is a circulant matrix with its first column as Fsexact,

the Fourier transform of sexact. If the exact signal is dominated by low frequencies, then the
largest components of the first column Fsexact will be located at the top and the covariance
matrix would be almost diagonal with some nonzero covariance terms near the diagonal.
This equation is equivalent to Equation 3.21 in Chapter 3.
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Appendix H
Extra time series results for motor cortex
activation experiments

In this appendix the rest of time series for motor cortex activation experiments are in-
cluded.
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[91] J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique.
Princeton University Bulletin, pages 49–52, 1902.

[92] P. C. Hansen. Discrete inverse problems: Insight and algorithms. SIAM, 2010.

[93] T. Harada, I. Miyai, M. Suzuki, and K. Kubota. Gait capacity affects cortical acti-
vation patterns related to speed control in the elderly. Experimental Brain Research,
193(3):445–454, 2009.

[94] F. J. Harris. On the use of windows for harmonic analysis with the discrete Fourier
transform. Proc. IEEE, 66(1):51–83, 1978.

[95] A. Hasnain, K. Mehta, X. Zhou, H. Li, and N. Chen. Laplace-domain diffuse optical
measurement. Sci. Rep., 8(1):12134, 2018.

[96] J. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. Delpy, S. R. Arridge,
J. Meek, and J. Wyatt. Imaging changes in blood volume and oxygenation in the
newborn infant brain using three-dimensional optical tomography. Physics in Medicine
& Biology, 49(7):1117, 2004.

[97] J. Hebden, A. Gibson, R. Yusof, N. Everdell, E. Hillman, D. Delpy, S. R. Arridge,
T. Austin, J. Meek, and J. Wyatt. Three-dimensional optical tomography of the
premature infant brain. Physics in Medicine & Biology, 47(23):4155, 2002.

[98] L. G. Henyey and J. L. Greenstein. Diffuse radiation in the galaxy. Astrophysical
Journal, 93:70–83, 1941.



192 Bibliography

[99] M. Herranz and A. Ruibal. Optical imaging in breast cancer diagnosis: The next
evolution. Journal of Oncology, 2012:863747, 2012.
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Résumé en français

La surveillance non invasive des patients est essentielle pour l’avenir des dispositifs d’imagerie
médicale. Dans ce contexte, la biophotonique est un domaine qui suscite beaucoup d’intérêt
dans le domaine médical car sa technologie est intrinsèquement non invasive, miniaturis-
able, portable, sûre et abordable. Pour ces raisons, la Commission Européenne (CE) a
récemment choisi la photonique et ses applications biomédicales comme l’une des technolo-
gies clés et d’avenir permettant d’améliorer la compétitivité de l’Union européenne sur les
marchés [218].

Dans ce contexte, des laboratoires européens intensifie leur travail dans les différents do-
maines de la biophotonique. La spectroscopie d’optique diffuse et l’imagerie basée sur la
lumière proche infrarouge sont l’un de ces domaines de recherche prometteurs. Pour étudier
les applications de l’optique diffuse pour le suivi des paramètres neurologiques, la CE a ap-
porté un soutien financier au réseau de formation initiale BitMap (Brain injury and trauma
monitoring using advanced photonics) [137]. L’idée centrale de ce réseau est de rassembler
des équipes, des chercheurs des doctorants, de divers horizons (électronique, photonique,
mathématiques et essais cliniques), de les faire collaborer pour relever les principaux défis
technologiques et cliniques des soins d’urgence neurologique à base de photonique. Par
ce travail de thèse j’ai fait partie de ce réseau et contribué à améliorer la reconstruction
tomographique basée sur la technologie optique diffuse.

Cette technique de tomographie optique diffuse dans le proche infrarouge (DOT : Diffuse
Optical Tomography) permet de sonder de manière non invasive et en profondeur le tissu
humain en reconstituant les paramètres de la composition des tissus biologiques tels que les
concentrations d’hémoglobine oxygénée et désoxygénée dans le sang.

Dans ce manuscrit de thèse, je décris les nouvelles améliorations que j’ai développées
dans le domaine des algorithmes DOT à résolution temporelle. Après un premier chapitre
d’introduction et de positionnement, dans le deuxième chapitre, je détaille les bases de
l’imagerie dans le proche infrarouge et l’état actuel des techniques de tomographie op-
tique diffuse. Dans le chapitre suivant, je présente une nouvelle méthode de calcul des
((datatypes)) pour la reconstruction tomographique de mesures résolues dans le temps. Les
résultats montrent qu’avec cette nouvelle approche, le bruit des ((datatypes)) est décorrélé
et la résolution en profondeur des reconstructions est améliorée de manière significative par
rapport aux algorithmes de l’état de l’art. Dans le quatrième chapitre, je me concentre
sur la régularisation du problème de tomographie et je décris deux approches différentes
pour effectuer la régularisation de la variation totale sur des maillages irréguliers. Les al-
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gorithmes développés sont le résultat d’une collaboration avec l’Université de Birmingham.
Le cinquième chapitre est consacré à la vérification des résultats théoriques et numériques
développées précédemment. Des mesures expérimentales sur des fantômes solides et des
expériences in vivo sur des sujets humains ont été réalisées. En collaboration avec Politec-
nico di Milano, j’ai testé un système tomographique à double longueur d’onde à résolution
temporelle avec deux sondes de trois sources et quatre détecteurs de photomultiplicateurs en
silicium. Des expériences réelles sur sujet humain, d’occlusion de bras ont été effectuées pour
valider le système. Ensuite, j’ai effectué des expériences d’activation du cortex moteur basées
sur le tapotement des doigts sur trois sujets adultes différents. Les résultats montrent qu’il
est possible de surveiller avec une résolution temporelle d’une seconde l’activation du cortex
moteur sur les deux hémisphères et que les informations spatiales et en profondeur peuvent
également être récupérées. Enfin, au sixième chapitre, je présente au lecteur les efforts
déployés par le réseau BitMap pour promouvoir la normalisation du domaine de l’optique
diffuse. Je décris le travail que j’ai effectué pour construire un jeu de données ouvert avec
les mesures effectuées sur 28 instruments de huit institutions européennes différentes à l’aide
de trois protocoles européens validés.

Ci-après, je résume les résultats présentés dans cette thèse.

Chapitre 2. Contexte

Tous les jours, dans les hôpitaux et les centres médicaux, une large gamme de technologies
d’imagerie médicale est utilisée: d’une simple radiographie à rayons X à une IRM fonc-
tionnelle plus sophistiquée. Toutes ces technologies sont basées sur différents phénomènes
physiques et ont des propriétés et des caractéristiques différentes qui les rendent appropriées
en fonction de la situation clinique. Par exemple, la résolution spatiale, par contraste et
temporelle peut aller de plusieurs ordres de grandeur. De plus, le coût, les contre-indications
et la complexité du système sont également des caractéristiques essentielles pour déterminer
le succès d’une technologie dans les cliniques. La lumière est l’un de ces phénomènes
physiques largement utilisés dans les environnements cliniques. Par exemple, la tomographie
par cohérence optique est l’une de ces réussites. Les principaux avantages des systèmes
médicaux à base optique sont leur évolutivité, leur portabilité et leur flexibilité. Souvent, ils
peuvent être combinés avec d’autres technologies d’imagerie médicale, leur coût est faible
comparé aux technologies d’imagerie actuelles et est assez sûr. En outre, les technologies
basées sur l’optique peuvent potentiellement obtenir des informations chimiques à partir de
l’interaction des photons avec les tissus.

En ce qui concerne la résolution spatiale, la lumière peut pénétrer dans le tissu humain
sur de grandes distances (de l’ordre de quelques mètres). Cependant, il est connu que la
probabilité qu’un tel événement se produise est très faible et que le bruit masquerait toute
information que ces photons pourraient véhiculer. Autrement dit, la nature très diffusive du
tissu humain limite la profondeur moyenne de pénétration à quelques centimètres dans le
meilleur des cas. Le corps humain composé de plusieurs chromophores contient évidemment
beaucoup d’hémoglobine qui est l’un des chromophores les plus importants. Il se situe
au niveau des globules rouges et sa tâche principale est de transporter l’oxygène dans le
corps humain. L’hémoglobine existe dans deux états: oxygéné ou désoxygéné ; dans le
premier cas, l’hémoglobine contient des molécules d’oxygène et est connue sous le nom
d’oxyhémoglobine (O2Hb); dans le dernier cas, l’hémoglobine est exempte d’oxygène et est
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appelée désoxyhémoglobine (HHb). Ce chromophore dans ces deux états est très visible.
Plusieurs études ont été publiées qui caractérisent l’absorption de chaque état d’hémoglobine
(voir Figure *1). L’absorption de l’hémoglobine à des longueurs d’onde courtes (< 600 nm)
est importante. Néanmoins, entre 600 et 900 nm, l’absorption diminue considérablement et
la différence entre l’oxy- et la désoxy-hémoglobine est évidente; cette plage est généralement
appelée fenêtre optique ou fenêtre thérapeutique. Dans cette plage, la lumière n’est pas très
absorbée et la séparation permet de déduire la concentration de chaque état d’hémoglobine
en utilisant la loi de Beer-Lambert.
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Figure *1: Coefficient d’extinction molaire de l’oxy- et de la déoxyhémoglobine dans le
spectre visible. Données extraites de [178].

Au cours des vingt dernières années, la technologie optique diffuse a évolué afin d’améliorer
la sensibilité aux (1) couches plus profondes du tissu et (2) aux changements d’absorption.
Dans cette thèse, seuls les systèmes résolus en temps ont été considérés. L’idée centrale
de ces systèmes est de mesurer le temps de vol de la distribution des photons (DTOF),
car le temps d’arrivée des photons peut être associé de manière probabiliste à une pro-
fondeur de pénétration dans le milieu et, par conséquent, permet de coder l’information de
profondeur.

Pour résoudre ce problème de reconstruction, la tomographie optique diffuse fait appel à
des algorithmes et méthodes de calcul. Ils sont composés de deux parties: les modèles
directs et inverses. Les modèles directs simulent le comportement photonique au niveau
du tissu humain. Ces modèles doivent être précis et efficaces car ils constituent une partie
essentielle de l’algorithme de reconstruction. Dans la littérature, deux modèles principaux
sont utilisés: l’équation de transfert radiatif et l’approximation de diffusion. La première
est une équation intégro-différentielle qui est résolue via les méthodes de Monte-Carlo. La
deuxième est une équation différentielle partielle dépendant du temps qui peut être résolue
par les méthodes des éléments finis ou des volumes finis. La deuxième partie d’un algorithme
de tomographie diffuse est le modèle inverse. Dans ce travail, j’ai utilisé l’approximation de
Born pour retrouver les propriétés optiques du milieu. Un schéma d’un algorithme typique
est présenté à la Figure *2.
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Figure *2: Algorithme de reconstruction par absorption basé sur l’équation de Born linéarisée.

Dans le chapitre suivant, je décris une nouvelle méthode de calcul des ((datatypes)) pour
effectuer une reconstruction tomographique. Cette méthode améliorera la résolution en
profondeur et la quantification d’absorption des reconstructions tomographiques.

Chapitre 3. Etude de ((datatypes)) pour la tomographie optique
diffuse à résolution temporelle

Le modèle direct est un élément clé du processus de reconstruction. L’équation d’approximation
de diffusion en fonction du temps est le modèle le plus largement utilisé sur le terrain car
elle peut être résolue à l’aide de la méthode des éléments finis. Cependant, le processus est
encore lent, car le temps doit être discrétisé en petites étapes afin de garantir la stabilité et
la convergence. Pour cette raison, plusieurs auteurs ont proposé d’utiliser des ((datatypes))
de fenêtres temporelles de la forme w(t) = tne−pt car ils sont plus rapides à calculer que le
débit de fluence lui-même.

Les ((datatypes)) de la forme w(t) = tne−pt, bien que rapides à calculer, sont très corrélés.
Pour cette raison, une des priorités dans mon travail a été de proposer de calculer des
((datatypes)) en utilisant le théorème de Plancherel,

Γ =

∫ ∞
−∞

u(t)w(t) dt =

∫ ∞
−∞

U(f)W (f) df,

calculant les ((datatypes)) dans le domaine fréquentiel. Les avantages de cette méthode
sont que les ((datatypes)) ne sont pas limités à la forme w(t) = tne−pt et qu’un plus grand
ensemble de fonctions peut être utilisé. La Figure *3 ci dessous montre les matrices de
corrélation pour les fenêtres de Mellin-Laplace, w(t) = tne−pt, gaussienne et Tukey. Les
fenêtres de Mellin-Laplace sont de plus en plus corrélées à mesure que l’ordre augmente.
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Toutefois, les fenêtres gaussienne et Tukey ne se chevauchent pas et, par conséquent, ne
sont pas corrélées.

(a) Mellin–Laplace (b) Gaussian (c) Tukey

Figure *3: Matrices de corrélation de Mellin–Laplace (50 premières ordres, p = 7), Gaussi-
enne (t0 = 0.16 ns décalés, σ = 0.05) et de fenêtres Tukey (t0 = 0.16 ns décalés, α = 0.25
et t∗ = 0.2 ns).

Les avantages de ces nouveaux ((datatypes)) sont illustrés à la Figure *4 ci dessous; on voit
qu’avec les ((datatypes)) Mellin-Laplace, il est impossible de localiser une inclusion profonde
(> 3.0 cm). Par contre, en utilisant les fenêtres Gaussienne ou de type Tukey, on est
capable de déterminer avec précision la profondeur de la sphère. De plus, la quantification
d’absorption est bien meilleure qu’avec les ((datatypes)) Mellin-Laplace.

Figure *4: Absorption, µa, reconstructions utilisant des fenêtres de Mellin - Laplace, Tukey
et Gaussian pour des inclusions de 3 cm à 4 cm deep. Le cercle rouge indique l’emplacement
correct de l’inclusion.

Par conséquent, ces nouveaux ((datatypes)) n’améliorent pas seulement la reconstruction dans
les couches profondes des tissus. Mais sont également plus efficaces que la résolution directe
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de l’approximation de diffusion en fonction du temps. Il pourrait être possible à l’avenir de
construire un système qui calcule directement les fenêtres des signaux optiques à la place
des courbes résolues en temps. Ce système hypothétique pourrait être potentiellement plus
rapide que les systèmes actuels sans compromettre la précision tomographique.

Chapitre 4. Régularisation à variation totale pour tomographie
optique diffuse

Le modèle inverse issu du DOT est connu pour être un problème mal posé. La principale car-
actéristique des problèmes mal posés est qu’ils sont très sensibles aux perturbations des con-
ditions initiales. Pour cette raison, les solutions aux problèmes mal posés sont généralement
régularisées en ajoutant certaines exigences de lissage. La variation totale (TV) est l’une des
techniques de régularisation les plus utilisées pour la reconstruction d’images. Cependant,
ses performances sur les domaines complexes anatomiques n’ont pas été analysées dans le
contexte de la DOT. La régularisation de la variation totale minimise la norme l1 du gra-
dient, ce qui favorise des solutions constantes par morceaux. L’opérateur de gradient est
bien défini dans un support continu. Cependant, pour les domaines discrétisés, l’opérateur
de gradient doit être redéfini.

Figure *5: (a) Géométrie cylindrique avec sources et détecteurs. (b) Les différents plans
de vue. (c) De haut en bas: vérité au sol, Tikhonov, I-FETV et I-GTV. Les colonnes
représentent chaque plan de vue. (Figure tirée de [135]).

En collaboration avec l’université de Birmingham, j’ai développé deux approches différentes
pour définir l’opérateur de gradient pour les maillages non structurés: les approches à
éléments finis (FETV) et à base de graphes (GTV). Dans le FETV, la géométrie est discrétisée
en utilisant des éléments triangulaires et tétraédriques pour les géométries bidimensionnelles
et tridimensionnelles, respectivement. Ces éléments sont composés d’un ensemble de som-
mets et d’arêtes et ne se chevauchent pas. Cependant, en GTV, le domaine est discrétisé par
un graphe pondéré dans lequel chaque nœud peut être connecté au reste des nœuds.
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Les simulations numériques et les fantômes expérimentaux montrent que FETV offre de
meilleures performances pour les maillages haute résolution. Toutefois, lorsque la résolution
du maillage est faible (par exemple, pour des maillages tridimensionnels de grande taille),
GTV a des artefacts plus faibles aux bords du maillage. La Figure *5 montre une comparaison
entre la régularisation de Tikhonov (classique) et les techniques développées à la pointe de la
technologie. On peut voir que la régularisation de Tikhonov est sujette aux artefacts proches
des bords. Au contraire, les approches GTV et FETV ne présentent pas ces artéfacts. On
remarque aussi qu’avec l’approche GTV, on obtient une solution plus homogène qu’avec
l’approche FETV.

Chapitre 5. Expériences in vivo avec un système optique diffus
résolu en temps

La prochaine étape de mon travail consistait à tester les algorithmes de tomographie optique
diffuse développés sur des données expérimentales. Pour cette raison, j’ai collaboré avec
Politecnico di Milano qui a proposé d’effectuer des mesures avec un système résolu en temps
et à double longueur d’onde (670 et 820 nm) fourni par deux sondes à trois fibres et quatre
détecteurs photomultiplicateurs au silicium.

La première partie de ce travail a consisté à tester le système optique et les algorithmes dans
un fantôme solide avec une inclusion à une profondeur de 1.5 cm. Ensuite, des expériences
d’occlusion de bras ont été effectuées chez des sujets adultes afin de valider le système. Les
expériences d’occlusion sont faciles à réaliser et le processus physiologique qui les sous-tend
est bien connu. Deux types d’expériences d’occlusion de bras ont été réalisées: occlusions
veineuse et artérielle. La différence réside dans la pression exercée sur le brassard et ses
conséquences physiologiques. Pour l’occlusion veineuse, lorsque la pression du brassard
ne dépasse pas la pression systolique, seules les veines sont bloquées. Par conséquent, le
flux sanguin de sortie du bras est bloqué pendant que les artères sont encore ouvertes ; on
observe l’augmentatation à la fois de l’hémoglobineoxygénée et désoxygénée dans le bras lors
de l’occlusion, et que la quantité d’oxygène hémoglobineux est supérieure à celle désoxygénée
puisque le taux de consommation de sang oxygéné par le bras est inférieur au débit sanguin
oxygéné des artères. Pour les occlusions artérielles, la pression du brassard est au moins deux
fois supérieure à la pression systolique des sujets. Dans ce cas, les veines et les artères sont
bloquées. L’entrée et la sortie de sang sont donc totalement bloquées au niveau du bras.
Dans l’ensemble, la quantité d’hémoglobine oxygénée diminuera car elle est consommée par
les muscles des bras et elle sera transformée en hémoglobine désoxygénée. Pour les trois
sujets, les résultats physiologiques étaient tels que prévus.

Après la validation avec des tests d’occlusion du bras, des expériences d’activation du cortex
moteur ont été réalisées à l’aide d’un test de tapotement des doigts. Le protocole était
le suivant: repos de 20 s – tapotement de doigts de 20 s – repos de 20 s, qui était répété
cinq fois par sujet. La séquence du tapotement des doigts effectuée était la suivante: (1) le
pouce touche l’index, (2) le pouce touche l’annulaire, (3) le pouce touche le majeur et (4)
le pouce touche l’auriculaire.

La Figure *6 montre l’activation au niveau de l’hémisphère controlatéral lors du tapote-
ment de la main gauche pour l’un des sujets. L’activation est décrite par une augmen-
tation de l’hémoglobine oxygénée et une légère diminution de l’hémoglobine désoxygénée
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(généralement un tiers de l’hémoglobine oxygénée). Ces résultats confirment qu’il est pos-
sible de surveiller l’activité du cortex cérébral chez des sujets adultes avec une résolution
inférieure à une seconde en utilisant une technologie à résolution temporelle avec des
détecteurs SiPM.

Figure *6: Reconstruction tomographique de l’activation de l’hémisphère droit lors d’une
expérience de tapotement à la main gauche réalisée par un sujet adulte.

Chapitre 6. Le BitMap Open Data

Le mouvement Open Science a gagné en popularité au cours des dernières années. Son objec-
tif est de rendre la recherche scientifique ouverte à toute la société en publiant non seulement
les résultats, mais également les données et les logiciels utilisés au cours de la recherche. Dans
les communautés de spectroscopie optique diffuse et d’imagerie, l’approche Open Data n’est
pas encore complètement développée. Les données provenant d’expériences sont dispersées
sur Internet, difficiles à comparer en raison du manque de métadonnées / d’informations
documentées ou tout simplement indisponibles. De plus, le manque de données publiques
sur les fantômes standards rend également la normalisation des instruments d’optique diffuse
beaucoup plus difficile à réaliser. Par conséquent, un référentiel avec des données optiques
diffuses documentées, conformes à des normes bien définies, fait toujours défaut.
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ID Système Labo Technique Application TRL

1 Clinical broadband spectrometer POLIMI TR Spectromètre 5
2 3mm SiPM POLIMI TR Oxymètre 3
3 HPM based spectrometer PTB TR Spectromètre 4
4 NIRO 200NX UHB/UoB CW Oxymètre 8
5 ISS OXIPLEX-TS UHB/UoB FD Oxymètre 8
6 ISS IMAGENT UHB/UoB FD Oxymètre 8
7 Multiwavelength system IBIB TR Spectromètre 5/6
8 TD-DCS system IBIB TR Perfusion 4
9 SRS based CW system UCL CW Spectromètre 6
10 TRS-DCS FLOWer ICFO/VdH TR Oxymètre 7
11 MCP based system PTB TR Spectromètre 4
12 Fetus clinical instrument, HC1 ICFO/VdH TR Oxymètre 6
13 Clinical TD oximeter IBIB TR Oxymètre 6
14 8 channel system IBIB TR Oxymètre 6
15 MAESTROS UCL TR Spectromètre 4
16 LUCA POLIMI TR Spectromètre 6
17 TD oximeter POLIMI TR Oxymètre 6
18 clinical TD oximeter POLIMI TR Oxymètre 6
19 wearable TD device POLIMI TR Spectromètre 5
20 Artinis POLIMI CW Oxymètre 8
21 Mammograph POLIMI TR Imagerie 6
22 Multiwavelength ”Fruit” spectrometer POLIMI TR Spectromètre 4
23 OCTOPUS POLIMI TR Spectromètre 4
24 Laboratory Spectromètre System POLIMI TR Spectromètre 6
25 Laboratory broadband spectrometer POLIMI TR Spectromètre 6
26 Lab TD-DCS POLIMI TR Spectromètre 4
27 Mammograph MH POLIMI TR Imagerie 6
28 SFD Imager ICube/UoS FD Imagerie 4
29 APD based Spectromètre ICube/UoS TR Spectromètre 4

Table *1: Caractéristiques des instruments utilisés pendant la campagne. TRL = Niveau
de préparation technologique du système testé (par exemple, TRL3 = composant / sous-
système, TRL4 = prototype de laboratoire, TRL5 = prototype clinique, TRL6 = système
clinique déjà mis en évidence dans des cliniques, TRL8 = dispositif clinique commercial).

Dans cette thèse, j’ai présenté l’ensemble de données obtenu lors d’une campagne d’évaluation
des performances impliquant plusieurs instruments européens d’optique diffuse. L’idée de la
campagne était double : premièrement, brosser un tableau de l’état actuel des instruments
européens en optique diffuse, c’est-à-dire illustrer les différents types de systèmes utilisés et
décrire la variabilité des résultats. Deuxièmement, créer un ensemble ouvert de données afin
que les chercheurs travaillant dans le traitement de données puissent tester différentes tech-
niques permettant de récupérer les propriétés optiques. La campagne a été réalisée par un
chercheur du réseau BitMap. Ce chercheur s’est rendu dans 10 institutions et a effectué des
mesures à l’aide de 29 instruments différents (voir la Table *1) en appliquant trois protocoles
internationalement reconnus (protocole BIP, MEDPHOT et nEUROPt).

Mon travail a consisté à collecter toutes les données brutes et à les organiser dans un format
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contenant suffisamment de métadonnées et les publier sur l’internet. Le format de données
utilisé était la spécification de format SNIRF (Shared Near Infrared File), basée sur le format
HDF5.

Je termine ce travail en proposant une conclusion qui reprend l’ensemble des travaux et des
perspectives d’amélioration et de poursuite d’études.



Abstract

Noninvasive and continuous monitoring of patients are key features in the future of medical imag-
ing. Biophotonics is a field that is attracting a lot of interest because its technology is intrinsically
noninvasive and potentially miniaturizable and wearable. Regarding the imaging of human tissue
using photonics, it has been proven that near-infrared diffuse optical tomography (DOT) permits to
probe noninvasively and in depth the human tissue by reconstructing parameters of the composition
of biological tissues such as the concentrations of oxygenated and deoxygenated hemoglobin in the
blood. In this thesis, I describe the novel improvements I developed in the field of time-resolved DOT
algorithms. First, I introduce a novel method to compute datatypes for tomographic reconstruction
of time-resolved measurements. The results show that with this new approach the noise of datatypes
are decorrelated and resolution in depth of reconstructions is improved significantly for inclusions
deeper than 2.5 centimeters. After, I describe two different approaches to perform total variation
regularization for DOT reconstruction on irregular meshes. The knowledge developed in previous
parts was applied to in-vivo experiments on human subjects. In collaboration with Politecnico di
Milano, I tested a time-resolved tomographic system with two probes of three source fibers and four
silicon photomultiplier detectors each. Arm occlusion experiments were performed to validate the
technology. After, I did motor cortex activation experiments on three different subjects. The results
show that it is possible to monitor with one-second resolution the motor cortex activation and that
spatial and in depth information can also be retrieved. Finally, I introduce the reader to the effort
that is being done at BitMap network to push the standardization of diffuse optics field. I describe
the work I did to build an open dataset with the measurements performed at twenty-eight instruments
from eight different European institutions using three validated European protocols.

Keywords: diffuse optical tomography, inverse problem, functional near infrared spectroscopy

Résumé

La surveillance non invasive et continue des patients est un élément clé de l’avenir de l’imagerie
médicale. La biophotonique est un domaine qui suscite beaucoup d’intérêt, car sa technologie est in-
trinsèquement non invasive, potentiellement miniaturisable et portable. En ce qui concerne l’imagerie
de tissus humains en photonique, il a été prouvé que la tomographie optique diffuse dans le proche in-
frarouge (DOT) permettait de sonder de manière non invasive et en profondeur les tissus humains en
reconstruisant des paramètres de la composition des tissus biologiques, tels que les concentrations en
hémoglobine oxygénée et désoxygénée du sang. Dans cette thèse, je décris les nouvelles améliorations
que j’ai développées dans le domaine des algorithmes DOT sur des acquisitions résolues en temps.
Premièrement, je présente une nouvelle méthode de calcul des types de données pour la reconstruc-
tion tomographique de mesures résolues en temps. Les résultats montrent qu’avec cette nouvelle
approche, le bruit des nouveaux types de données est décorrélé et la résolution en profondeur des
reconstructions est améliorée de manière significative pour les inclusions plus profondes que 2,5 cen-
timètres. Ensuite, je décris deux approches différentes pour effectuer la régularisation ((variation
totale))pour la reconstruction DOT sur des maillages irréguliers. Les connaissances développées dans
les parties précédentes ont été appliquées à des expériences in vivo sur des sujets humains. En collab-
oration avec Politecnico di Milano, j’ai testé un système tomographique à résolution temporelle avec
deux sondes de trois sources et quatre détecteurs (photomultiplicateurs en silicium). Des expériences
d’occlusion de bras ont été réalisées pour valider la technologie. Après, j’ai fait des expériences
d’activation du cortex moteur sur trois sujets différents. Les résultats montrent qu’il est possible de
surveiller l’activation du cortex moteur avec une résolution d’une seconde et que des informations
spatiales et en profondeur peuvent également être récupérées. Enfin, je présente au lecteur les efforts
déployés par le réseau BitMap pour pousser la normalisation du domaine de l’optique diffuse. Je
décris le travail que j’ai effectué pour construire un jeu de données public avec les mesures effectuées
sur 28 instruments de huit institutions européennes différentes à l’aide de trois protocoles européens
validés.

Mots-clés: tomographie optique diffuse, problème inverse, spectroscopie fonctionnelle proche infrarouge
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