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École doctorale 397: physique et chimie des matériaux
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Rapporteur André THIAVILLE Directeur de recherche - LPS

Rapporteur Ferran MACIA Research scientist - UB, Espagne

Examinateur Olivier FRUCHART Directeur de recherche - SPINTEC

Examinateur Liza HERRERA-DIEZ Chargée de recherche - C2N

Examinateur Andrea GAUZZI Professeur - UPMC
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Résumé

Récemment, beaucoup d’efforts ont été consacrés au contrôle de l’aimantation dans les

nanostructures par d’autres moyens qu’un champ magnétique externe. En effet, le but est

de miniaturiser les dispositifs et il est difficile d’imposer un champ magnétique présentant de

faibles dimensions latérales. D’autre part, les ondes de spin ouvrent actuellement de nouvelles

perspectives dans le traitement de l’information. Les avantages qu’elles présentent sont les

suivants: longueurs d’onde nanométriques, à comparer à celles des ondes électromagnétiques

dans la même gamme de fréquences (GHz-THz), et absence de chauffage par effet Joule.

Une possibilité de controle réside dans l’utilisation d’ondes acoustiques de surface pour in-

duire la dynamique de l’aimantation ou pour contrôler les ondes de spin. En d’autres termes

le contrôle de l’aimantation s’exerce alors via une déformation dynamique. Ceci est rendu

possible grâce à une propriété fondamentale des corps magnétiques, le couplage magnéto-

élastique, c’est-à-dire le couplage entre aimantation et déformation.

Cette thèse porte sur la phénoménologie de l’interaction magnéto-élastique dans les couches

minces épitaxiées magnétostrictives de Fe0.8Ga0.2. Nous avons effectué une étude expérimentale

systématique des interactions magnéto-élastiques dans des films minces de différentes épaisseurs

et structures magnétiques. Nous avons aussi développé deux modèles phénoménologiques,

pour interpréter nos expériences. Nous obtenons le résultat important suivant: il est possible

d’extraire, d’une étude acoustique, les constantes magnéto-élastiques ainsi que les constantes

d’anisotropie magnétique.

La thèse a aussi une forte composante technologique. Un des buts était d’exciter efficacement

des ondes acoustiques de surface dans la gamme de fréquences de quelques GHz (1-5 GHz)

sur substrat piézoélectrique de GaAs dans le but d’observer l’interaction résonante avec les

ondes de spin thermiques. Nous avons aussi cherché à exciter des ondes de spin, dans des

couches minces épitaxiées, avec des antennes RF afin d’observer l’interaction résonante. Nous

présentons des expériences préliminaires sur cette interaction, qui ont été réalisées en diffusion

Brillouin (BLS) et en diffusion micro Brillouin, en collaboration avec le laboratoire GHOST

à Pérouse, en Italie.





Abstract

Recently, lot of efforts have been devoted to control the magnetization in nanostruc-

tures by means other than external magnetic field to achieve device miniaturization, as it is

difficult to handle the magnetic field at low lateral dimensions. On the other hand, a new road

emerged towards the wave based computing by employing spin waves (SWs). The advantages,

that SWs offer for the data processing are nm wavelength as compared to the electromagnetic

waves in the same frequency range (GHz-THz) and the absence of Joule heating.

A possibility exists to use Surface Acoustic Waves (SAWs), in other words, dynamic strain,

to induce magnetization dynamics or to control spin waves. This is possible due to a very

fundamental property of magnetic bodies, the magneto-elastic coupling, that is when magne-

tization orientation and strain are coupled.

This thesis focuses on the phenomenology of the magneto-elastic interaction in thin epitaxied

films of magnetostrictive Fe0.8Ga0.2. We performed a systematic experimental study of the

magneto-elastic interactions in thin films of different thicknesses and magnetic structures.

We also developed two phenomenological models in order to interpret our results. An impor-

tant result of this study is that we are able to extract the magneto-elastic and the magnetic

anisotropy constants by acoustic means.

The thesis has also a strong technological component. One aim was to efficiently excite surface

acoustic waves in GHz frequency range (1-5 GHz) on GaAs piezoelectric substrates in order

to observe the resonant interaction with thermal spin waves. We also managed to excite spin

waves in thin epitaxied magnetostrictive layers, using RF antennas. We report preliminary

measurements on this interaction that were performed with Brillouin light scattering (BLS)

and micro BLS techniques in collaboration with the GHOST laboratory in Perugia, Italy.





“ ... So they took it as a working hypothesis that happiness lay in gaining perpetually

new insights into the unknown and the meaning of life was to be found in the same process.

Every man is a magus in his inner soul, but he becomes one only when he begins to think

less about himself and more about others, when it becomes more interesting for him to work

than to recreate himself in the ancient meaning of the word. ”

“Monday begins on Saturday”

A. & B. Strougazki





Introduction

The properties and the physics of magnetic materials comprise a formidably rich area

of research where subtle effects emerging from quantum mechanics and relativity, such as

spin-orbit effect and crystal field, merge with macroscopic and classical phenomena, like

shape induced magnetic anisotropy, remanent magnetization and dipolar spin waves. This

richness has also led to a number of applications that followed fundamental discoveries within

a remarkably short span of time. This is particularly true in the field of modern magnetism,

called spintronics, whose commonly accepted beginning is the independent discovery by Albert

Fert and Peter Grünberg of the Giant Magnetoresistance (GMR) in 1988 ([1], [2]). Few years

later, millions of GMR-based spin valves were flying few nanometers above magnetic hard

disks exploiting subtle quantum transport phenomena. The electrical resistance of these

devices, constituted of two ferromagnetic (FM) layers separated by a non-FM thin metallic

layer, is strongly affected by the stray field produced by granular media, possessing an overall

magnetization corresponding to a bit. A similar success was found in the fundamental research

concerning TMR (Tunnel Magnetoresistance). Here, very thin ‘quantum’ tunnel barrier filters

selectively majority and minority spin conduction channels leading, similar to the GMR spin

valves, to a high susceptibility with respect to the local magnetic field. The applications in

data storage and magnetic field sensing have been immediate. This rapid development of

spintronic devices led to the first challenge for today’s magnetic community that we would

mention in this introduction: the drastic miniaturization of the size of bits in magnetic

recording media led to problems in handling with magnetic field at low lateral dimensions,

especially in the ‘writing’ operation in hard disks. Nevertheless, the spintronic community

took up the challenge and understood that other ways to reverse magnetizations, avoiding

direct application of the field, were needed. Today there exist many new tools to trigger

magnetization dynamics. An in-exhaustive list of examples is given in the figure below.
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Figure 1: Available methods to trigger magnetization dynamics.

In this context, it’s worthwhile to report that E. Beaurepaire et al. first demonstrated in

1996 the ultrafast demagnetization in Ni thin films by a femtosecond (fs) laser pulse [3]. Since

then ultra-fast magnetization dynamics became an intense research field, for example, the fs

laser pulses were used to generate phonons to induce magnetization precession in Ni [4] and

in Fe0.81Ga0.19 alloys [5]. In 2007, an all optical magnetization switching (AOS) was realized

for the first time in rare-earth ferrimagnetic alloys GdFeCo [6], followed by experimental in-

vestigations in other materials, such as rare-earth orthoferrite (SmPr)FeO3 [7], ferrimagnetic

alloys of different compositions TbxCo1−x [8], ferromagnetic FePt [9]. Using a femtosecond

pulse of circularly polarized light, AOS makes it possible to induce magnetization reversal at

a picosecond time scale.

Other examples include magnetization reversal by spin-polarized current in magnetic tunnel

junctions or pillar structures via spin-transfer-torque [10], generation of pure spin current via

temperature gradient (spin Seebeck effect) [11], electric field assisted magnetization switching

in Mn-doped III-IV ferromagnetic semiconductors ( (In,Mn)As , (Ga,Mn)As, (Ga,Mn)(As,P))

via modulation of magnetic anisotropy [12],[13], voltage-dependent domain wall motion in fer-

romagnetic junctions with perpendicular magnetic anisotropy, Co/AlOx and CoB/TaOx [14]

and etc.

Recently, lot of efforts have been devoted to control of magnetization in nanostructures by ex-

ternal stress and acoustic means. This is the so-called domain of straintronics [15]. Indeed,

it was claimed that spintronics devices whose magnetization is switched by strain rather than

by inductive means may lead to significant reduction in energy dissipation, [15], [16]. In par-

ticular, the possibility to control magnetization via Surface Acoustic Waves (SAWs) has

been reported, for example: elastically driven ferromagnetic resonance [17], [18], irreversible

[19] and precessional magnetization switching [20], strong reduction of coercivity [21], acous-

tically assisted magnetic recording [22], domain wall propagation [23] and etc.

All these examples are possible because of a very fundamental property of ferromagnetic bod-

ies, namely magneto-elastic coupling, meaning that magnetization orientation and strain

are coupled. This can be seen from the examples of direct and inverse magnetostriction [24].

In the first case, under applied magnetic field magnetostrictive materials change their shape

or dimension (Joule effect (1842)). Vice versa, an external stress can cause magnetization

reorientation (Villari effect (1865)). A beautiful experimental manifestation of the magneto-
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elastic interaction is the SAWs’ coupling to the ferromagnetic resonance (FMR) mode to

induce precessional switching [20] on one hand, and generation of SAWs by induced FMR

[25], on the other.

It should be stressed, that this research topic spans already about six decades. It dates back

to 1950s, when C. Kittel [26], A.I. Akhiezer et al. [27] studied theoretically the coupling

between magnons and phonons. The elastically driven FMR, or magneto acoustic resonance

(MAR) as it was referred to in the past, was already experimentally observed by E.G. Spencer

and R.C. LeCraw [28] (1958), H. Bömmel and K. Dransfeld [29] (1959), M. Pomerantz [30]

(1961), R.J. Ikola [31] (1965) etc.

The second challenge for the magnetism community that we would like to mention concerns

data processing assisted by magnetic tools. For a long period, CMOS electronics did not have

any magnetic device in proximity. Nowadays, STT-MRAM (Spin Tranfer Torque Magnetic

RAM) is considered to be well suited for many mainstreams applications, such as storage tech-

nology. Magnetism could be useful even for logic operations as attested by recent advances

in magnonics with a goal to control and manipulate collective magnetization excitations, i.e.

spin waves or magnons. Interestingly, logic operations could be performed by waves rather

than by electron transport. Since these are waves, any phenomenon inherent to the waves

of different origins, will also be inherent to SWs. The fundamental wave properties such as,

the excitation and propagation, reflection and refraction, interference and diffraction etc. can

be exploited [32], [33]. For example, Mach-Zehnder interferometer can be realized, basically

using any type of waves: light, magnons or matter waves. The advantages, that SWs can

offer for the data processing are nm wavelength as compared to the electromagnetic waves

in the same frequency range, GHz-THz frequency range and the absence of Joule heating

[34]. This opens up the possibilities for device miniaturization, increase in data transfer rate,

decrease in power dissipation and the wave based computing, where the information can

be encoded or processed, employing both wave amplitude and phase [35], [36]. However,

one should be sure, that the SW attenuation length, that is the product of its life-time and

the group velocity, is large enough for technological purposes [37]. For example, attenuation

length in pure Fe is about 10µm at 10 GHz.

A control “unit” for spin waves is a medium, in which the magnetic properties are modulated

periodically in space and time. Such a medium is referred to as “magnonic” crystal and is

a magnetic analog of a photonic crystal. In magnonic crystals SW propagation is affected

due to Bragg scattering and as a result, band gaps arise in the wave dispersion. An excellent

review on the magnonic crystals can be found in [38]. In static magnonic crystals modulation

of the parameters such as film thickness, saturation magnetization etc. are constant in time

as a result of geometric structuring or patterning. An example of a reconfigurable magnonic

crystal is an assembly of magnetic nanowires, magnetized parallel or anti-parallel with respect

to one another, the magnetization alignment can be externally controlled with a magnetic

field, yielding the reconfigurability [39]. In dynamic magnonic crystal periodic modulation
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of the magnetic properties occurs at a timescale shorter than the characteristic time of SWs

propagation through the crystal. A first realization of such crystal was done, using a metallic

meander structure, which allows to create spatially periodic magnetic field via current [40].

Once again acoustics, and in particular its intrinsic wave nature, could play an important

role. Dynamic Bragg grating can be naturally created via standing SAWs. In such a case, the

strain control can be implemented locally or globally in a continuous-wave or pulsed configu-

ration. The periodic SAW induced modulation of the magnetic properties can be then easily

tuned, by controlling the emission of SAWs. To realize this idea, we need to have a ferromag-

netic medium with a strong magneto-elastic coupling. A good candidate for such purposes is,

developed in 1999, iron gallium or galfenol alloys, that exhibits enhanced magnetostriction

and is ferromagnetic below 675◦C [41]. This material will be at the heart of this PhD thesis.

So far we discussed spintronics, magnonics and how acoustics enters this global context via

magneto-elasticity. Keeping the potential applications in mind, we first turn our attention to

the fundamental questions.

The goal of this thesis is, first to understand the phenomenology of the magneto-elastic inter-

actions in thin films. In particular, we focus on Fe and FeGa epitaxied on a technologically

relevant semiconductor, GaAs. To the best of our knowledge, studies performed so far are

either purely experimental or involve heavy theoretical approaches, that do not really give a

clear insight into the physics behind the interaction. We thus combined both a systematic ex-

perimental study of the magneto-elastic interactions and developing of two phenomenological

models, based on previous theoretical investigations, in order to interpret our results. It turns

out that we are able to extract the magneto-elastic and the magnetic anisotropies coefficients

of epitaxied thin films by acoustic means.

Secondly, based on our understanding of the interaction, we direct ourselves towards the

potential applications. Consequently, the “deuxième volet” of this thesis has a strong tech-

nological component, as in order to manipulate spin waves via acoustics waves, we need to

be able to excite and detect both. The challenge is to efficiently excite surface acoustic waves

in GHz frequency range (1-5 GHz) on GaAs piezoelectric substrate to match the spin wave

frequencies in Fe0.8Ga0.2 alloy, the latter is chosen as an investigation material due to its en-

hanced magnetostrictive properties, as mentioned above. This opens the possibility to study

resonant interaction, both with thermal SWs and SWs, excited by induction via RF antennas.

Preliminary measurements to study SWs-SAWs resonant interaction were performed towards

the end of this thesis by Brillouin light scattering (BLS) and micro BLS technique in collab-

oration with the GHOST laboratory in Perugia, Italy.



Thesis Outline

Here we give a brief description of the content in each chapter.

Chapter 1 introduces the theoretical background. We present the basic concepts of linear

acoustics and ferromagnetism. In particular, we consider the propagation of surface acoustic

waves in a semi-infinite elastic medium in order to compute the particle displacement and

strain components, present in the wave.

In the section on ferromagnetism we discuss the different contributions to the total energy of

a ferromagnet. These notions will be used later in the chapter 2 and chapter 6.

Chapter 2 presents an analytical and numerical treatment of SAW-induced magnetization

dynamics. We compute the SAW-induced torque on the magnetization, considering different

magneto-crystalline anisotropy systems: biaxial, uniaxial and biaxial-uniaxial. These results

give a simple description of the physical system and permit to partially interpret our experi-

mental findings and the physics behind the magneto-elastic interaction. Furthermore, we can

deduce how to optimize the effect of a propagating SAW on the magnetization.

Chapter 3 focuses on the presentation of the material, used for the study in this thesis. We

describe the sample growth, the structural and magnetic peculiarities, such as the enhanced

magnetostriction and presence of additional contributions to the MCA, namely uniaxial and

perpendicular MCA. The understanding of different contributions of MCA is crucial to ana-

lyze and fit the experimental data.

Chapter 4 is devoted to the experimental setup, used to perform the RF measurements,

and the sample fabrication process. The main technological advancements in this thesis are

the excitation of harmonic frequencies (up to 9th) and high frequencies (up to 5GHz) of

SAWs on the piezoelectric GaAs substrate via inter-digital transducers (IDTs). For this we

used different IDT designs, described in the literature. Preliminary trials to excite spin waves

(SWs) with RF antennas were successfully performed.
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Chapter 5 presents some of the experimental results. To avoid redundancy we focus only

on few samples with the in-plane MCA. We give a description of the experimental observa-

tions, that distinguishes several features. These features are analyzed in the chapter 6.

We conclude the chapter with the discussion of the preliminary measurements, performed to

check the resonant SAWs-SWs interaction in a 4 nm thick film of Fe0.8Ga0.2 by conventional

BLS in collaboration with the GHOST laboratory, Perugia, Italy.

Chapter 6 is the core chapter of this thesis. We present two analytical models, that permit

to interpret, altogether with the notions of SAW-induced torque (chapter 2), our experimental

findings and to extract the material constants, namely magneto-elastic coefficient, B2 and the

MCA constants, K1, Kip, biaxial and uniaxial, respectively. We thus propose a new method

to extract the material parameters, using surface acoustic waves.

Each chapter is in turn summarized with a conclusion to facilitate the reading.
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Chapter 1

Basic Concepts

This chapter focuses on the basic principles of linear acoustics and ferro-magnetism.

In the section 1.1 we give basic concepts of the theory of elasticity, that is the definition

of a deformation, strain and stress tensors, followed by a description of Rayleigh waves. A

detailed analytical treatment of a Rayleigh wave, propagating in a semi-infinite elastic solid,

along [100] direction, is given in the appendix B, while a summary for SAW propagation along

[100] and [110] is presented in the main text. As a result we obtain analytical expressions

for the strain tensor, εij and particle displacement components, ui. In the section 1.2 we

give a description of the energy density terms of a ferromagnet and the phenomenological

equation of motion for a precessing magnetization (Landau-Lifshitz-Gilbert equation). The

basic concepts, described in this chapter are then employed in the analytical treatment of

magnetization dynamics, triggered by surface acoustic waves (chapter 2), as well as in the

chapter 6, which is devoted to the modeling of the physical system, studied in this thesis.

1.1 Rayleigh Waves

“If you want to find the secrets of the universe, think in terms of energy, frequency

and vibration.”

N. Tesla

Acoustics studies time-varying vibrations in the material media, in other words, the prop-

agation of sound. The name acoustics derives from a Greek word akouein, meaning “to hear”.

People began to study sound already in the antiquity, as example, Pythagoras investigated

vibrating strings and musical sounds [42] (ch.2).

The first mathematical treatment of sound propagation was given by Isaac Newton in his

treatise “Principia Mathematica Philosophiae Naturalis” (1686), where he interpreted sound

as “pressure pulses” transmitted through a fluid medium [43] (ch.1). In 1787 a remarkable

experiment was performed by E.F.F. Chladni, in which he used sprinkled sand on vibrating

plates to show different vibration modes (fig. 1.1).
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Figure 1.1: Cladni patterns on vibrating circular plates, from [42].

Lord Rayleigh gave a mathematical treatment of vibrating membranes and plates in his

“Theory of sound” and in 1885 discovered surface elastic waves, that can propagate in a semi-

infinite isotropic solid [44]. He also explained the phenomenon of a “whispering gallery” in

St. Paul’s cathedral, in which a sound wave bounces from a concave surface, as it propagates

[45] (1910).

The characteristic features of the Rayleigh waves is that they are localized at the surface, as

the wave amplitude decays with depth quasi-exponentially at about one wavelength. In the

case of a wave propagating along high symmetry directions, its polarization is elliptical and

it is confined to the sagittal plane, that contains surface normal and propagation directions,

as represented on the figure below, fig. 1.2.

Figure 1.2: Graphical representation of the Rayleigh wave, adapted from [46]. Propagating wave along high
symmetry directions, is elliptically polarized in the saggital plane and decays quasi-exponentially with depth.

ksaw
x

z
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Rayleigh wave is one of the several discovered types of Surface Acoustic Waves (SAWs).

When a solid is considered to be infinite, three plane waves can propagate in a given direction

at different velocities, with quasi-longitudinal and quasi-transverse (shear) polarizations1.

For a finite solid a boundary imposes mechanical conditions (and electrical for piezoelectric

materials) and the wave is said to be guided [47] (ch.5). Other examples include Sezawa2 [48],

1Unless the propagation is along high symmetry direction [47], ch. 4.
2This is a type of high-order Rayleigh modes, that arise in the piezoelectric film-on-substrate structure, as

example ZnO/GaAs, due to smaller sound velocity in the film, than in the substrate. These modes are guided
in the over-layer.
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Love3, Bleustein-Gulyaev-Shimizu 4 [49], Lamb5, Stoneley6 [46], Scholte7 [46] waves etc. It

should be noted that the surface waves exist over a large range of frequencies [46], as sketched

in fig. 1.3. The surface waves, studied in this thesis are exited by the interdigital transducers

(IDTs) (chapter 4, section 4.1) and are thus in the ultrasonic region. We focus only on the

Rayleigh waves and from now on we simply refer to as SAWs.

In what follows we give general concepts of linear acoustics and treat the propagation of SAWs

in a semi-infinite elastic solid with a cubic symmetry.

Figure 1.3: Frequency range of Surface Acoustic Waves (taken from [46]).
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1.1.1 Concepts of linear acoustics

Before discussing the propagation of elastic waves in solids, we remind the notions of

strain and stress. The following description is based on the references [50] (ch.1,2), [51]

(p.1-6), [47] (ch.3-4). Note that, since the minimal wavelengths of the SAWs in the ultrasonic

region scale from µm - down to hundreds of nm, the elastic medium can be considered as

continuous. Thus, when we discuss a particle displacement in the SAW, we rather refer to

a collection of atoms, moving in unison.

Under the action of applied forces, a solid body undergoes a deformation. If the body returns

to its original form after the external forces were removed, the deformation is said to be elastic.

Ideal elastic behavior is characterized by an instantaneous response to an applied stress and

a unique equilibrium position, towards which the system returns [52] (p.2-4). Consider a

point in a solid body, for which equilibrium position is given by a position vector r before a

deformation and a position vector r′ after the deformation, as represented in the fig. 1.4a.

The displacement vector field is defined as

u(r, t) = r′(r, t)− r (1.1)

3Shear horizontal (SH) waves with only a transverse displacement, that exist in a film-on-substrate struc-
ture, when the velocity of the SH wave is smaller in the film, than in the substrate.

4Shear horizontal wave, existing in a piezoelectric semi-infinite solid.
5These waves propagate in a medium, bounded by two surfaces, i.e. a free plate.
6An “interface” wave between two semi-infinite solids, that decays into both solids.
7An “interface” wave, propagating between fluid and an elastic medium.
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or ui(r, t) = x′i(r, t)− xi in vector component notation (in the standard basis, i ∈ [1, 2, 3] ⇔
[x,y,z]). Both r′ and u are functions of the initial coordinates and are time-varying quantities.

Deformation implies that points within the solid body are displaced relative to each other,

therefore rigid translations and rotations (fig. 1.4b, fig. 1.4c), for which the distance between

two points before and after deformation remains unchanged, must be excluded from the

mathematical description, as we shall see.

To describe the deformation we use differential form of eq. (1.1) at some time t0:

du(r, t0) =
∂u

∂x1
dx1 +

∂u

∂x2
dx2 +

∂u

∂x3
dx3 =

∑
ij

∂ui
∂xj

dxj xi = dr′ − dr (1.2)

or in matrix notation, where ξ(r, t0) is defined as displacement gradient matrix :
du1

du2

du3

 =


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3


︸ ︷︷ ︸

ξ(r,t0)


dx1

dx2

dx3

 (1.3)

Given the above relation, one could compute the differential displacement of any two points

in a deformed solid. For rigid translations differential displacement du is zero (fig. 1.4b), as

it must, in the absence of a deformation. However, du 6= 0 for rigid rotations as can be seen

in the fig. 1.4c.

Figure 1.4: Two points in the solid before a deformation (blue color) and after the deformation (red color), dr
and dr′ represent the distance between two points before and after the deformation, respectively. Differential
displacement vector is defined as d~u = ~u2 − ~u1 = d~r ′ − d~r, adapted from [50].

O

(a) Displacement vectors ~u1, ~u2

x1

x2
x3

O
(b) Rigid translation:
d~u = d~r ′ − d~r = 0

OO
(c) Rigid rotation:
du = u2 − u1 = 2dr sin φ

2
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We thus need a quantity, that cancels out both for rigid translations and rotations. Such

quantity is a scalar dr′ − dr, that represents the difference in distance between two points

before and after the deformation. Mathematically it is more convenient to define:

∆ = dr′2 − dr2, (1.4)

eq. (1.4) thus represents a measure of deformation. Applying eq. (1.2) and making use of

dummy indices, we can express dr′2 in terms of dr2:

dr′2 =
∑
i

dx′2i =
∑
i

(dxi + dui)
2 =

∑
i

dx2
i +

∑
i

duidui + 2
∑
i

duidxi =

dr2 +
∑
ijk

∂ui
∂xj

∂ui
∂xk

dxjdxk + 2
∑
ij

∂ui
∂xj

dxjdxi =

dr2 +
∑
ijk

∂uk
∂xj

∂uk
∂xi

dxjdxi +
∑
ij

(
∂ui
∂xj

+
∂uj
∂xi

)dxidxj =

dr2 +
∑
ij

(∂ui
∂xj

+
∂uj
∂xi

+
∑
k

∂uk
∂xi

∂uk
∂xj

)
dxidxj

For small deformations, i.e. ∂uk
∂xi
� 1, quadratic terms above in the equation can be neglected.

Plugging the expression for dr′2 into the eq. (1.4), we obtain:

∆ =
∑
ij

2εijdxidxj ,

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (1.5)

with εij defined as components of the strain tensor for small deformations. It follows

immediately, that the strain tensor is symmetric and dimensionless. Physically the strain

components represent relative change in length: εii represent simple expansion or compression

in a given direction (fig. 1.5a), while εij represent a shear strain as depicted in the fig. 1.5b.

Figure 1.5: Graphical representation of strain components, longitudinal, ε11 and shear, ε13.

x
(a) Extension along x1 direction.

x
(b) Simple shear strain.
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There exists a relation between the displacement gradient matrix eq. (1.3), ξ(r, t0) and

strain matrix eq. (1.5), (εij), we can express:

ξ(r, t0) =
1

2

(
ξ(r, t0) + ξt(r, t0)

)
+

1

2

(
ξ(r, t0)− ξt(r, t0)

)
,

where ξt is a transpose of ξ. We thus have:

ξ(r, t0) =
1

2


2∂u1
∂x1

∂u1
∂x2

+ ∂u2
∂x1

∂u1
∂x3

+ ∂u3
∂x1

∂u2
∂x1

+ ∂u1
∂x2

2∂u2
∂x2

∂u2
∂x3

+ ∂u3
∂x2

∂u3
∂x1

+ ∂u1
∂x3

∂u3
∂x2

+ ∂u2
∂x3

2∂u3
∂x3

+
1

2


0 ∂u1

∂x2
− ∂u2

∂x1

∂u1
∂x3
− ∂u3

∂x1

∂u2
∂x1
− ∂u1

∂x2
0 ∂u2

∂x3
− ∂u3

∂x2

∂u3
∂x1
− ∂u1

∂x3

∂u3
∂x2
− ∂u2

∂x3
0

 = ε+Ω

It is thus can be seen that the displacement gradient matrix can be decomposed into two

parts, symmetric strain and antisymmetric part:

Ωij =
1

2
(
∂ui
∂xj
− ∂uj
∂xi

) (1.6)

It can be shown (appendix A), that the asymmetric strain physically represents an infinites-

imal local rotation, as depicted in the fig. 1.6. Local rotations, however, do not enter the

equations of motion for particle displacement (eq. (1.9)) due to their negligible moment of

inertia, as discussed in [50] (p. 46-47).

A deformation on a microscopic scale is the change in the atomic arrangement. Con-

sequently internal stresses (inter-atomic forces) arise to push the system to its mechanical

equilibrium. In a freely vibrating system only internal stresses are present.

Let us consider a volume element ∆V of a solid body. We are interested in the total internal

force, that is exerted by the surrounding volume elements on ∆V . The total force is thus the

sum of forces of all volume elements in the body, that act on ∆V . Hence, we can represent

the total force by a volume integral: ∫
F(r)dV

where F(r) is the force per unit volume or force density.

Since the inter-atomic forces are short range, the total force on ∆V acts on its surface.

We can then represent the above integral as the integral over the surface. By means of

divergence theorem, (
∫
∇ · A dV =

∮
A · ds), each component Fi of the force density F(r)

should be divergence of a vector, since we look for a function that depends on the coordinates

(x1, x2, x3). It must also reflect the direction of the force component, so Fi = Fi(xi, x1, x2, x3).

Necessarily, the component Fi of the force is divergence of a second rank tensor, defined as

Fi ≡
∑

j
∂σij
∂xj

. Thus, we have:
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∫
FidV =

∑
j

∫
∂σij
∂xj

dV =
∑
j

∮
σijdsj

where dsj are the components of the surface element vector ds directed outward and normal

to the surface element. The tensor σij is referred to as stress tensor and it is symmetric,

as can be shown [50] (p. 46-47). σijdsj represents the ith component of the force on the

surface element dsj , perpendicular to the xj axis, or vice versa, since the tensor is symmetric

(fig. 1.7). It is expressed in the units of force per unit area, i.e. in Pascal or in J/m3.

Figure 1.6: Local rotation: dashed lines (gray)
represent the undeformed solid, solid lines (red)
after the deformation, adapted from [50].

Figure 1.7: Graphic representation of the stress
tensor components.

x1

x2

x3

We next can express stress in terms of strain to reformulate the Hooke’s law in three

dimensions. For elastic solids, assuming small deformations, Taylor-expansion of the stress

around a zero strain yields: (here we use the Einstein’s summation convention, sum is over

j,k ∈ [1, 2, 3].)

σij(εkl) = σij(0) +
∂σij(εij)

∂εkl

∣∣∣
εkl=0

εkl +
1

2

∂2σij(εij)

∂εkl∂εmn

∣∣∣
εkl=0,εmn=0

εklεmn + ...

The first term vanishes, since there is no stress when strain is zero (absence of a deformation)

and neglecting the second order terms we obtain:

σij =
∑
kl

∂σij(εij)

∂εkl

∣∣∣
εkl=0

εkl =
∑
kl

cijkl εkl (1.7)

where the proportionality constants are the components of the elastic tensor, which de-

scribes material constants. As can be seen from eq. (1.7), [σij ] = [cijkl] = [Pa]. The elastic

tensor has 34 = 81 components, which are reduced to 21 due to symmetry of the strain and

stress tensors, that is cijkl = cjikl = cijlk. The components can be represented in a contracted

form, referred to as Voigt notation [53]: cαβ = cijkl, where α corresponds to (ij) and β to



8 1. Basic Concepts

(kl), respectively:

(11)↔ 1, (22)↔ 2, (33)↔ 3

(23) = (32)↔ 4, (13) = (31)↔ 5, (12) = (21)↔ 6

Using eq. (1.5) and the symmetry property, the above expression can be re-written in terms

of a displacement:

σij =
1

2

∑
kl

cijkl

(∂uk
∂xl

+
∂ul
∂xk

)
=
∑
kl

cijkl
∂uk
∂xl

(1.8)

It should be noted that, since stress a tensor field and its components assume spacial depen-

dence, one should consider the volume element ∆V to be infinitesimally small, i.e. the

limit as ∆V tends to zero, in order to properly define stress at a point r.

1.1.2 Propagation in a semi-infinite elastic solid

Consider a semi-infinite elastic solid of a cubic symmetry, as represented in the fig. 1.8.

Taking into account the Hooke’s law given by eq. (1.7), eq. (1.8), the second Newton’s law

for a free vibration is expressed as:

ρ
∂2ui
∂t2

=
∑
jkl

cijkl
∂2uk
∂xj∂xl

(1.9)

where ρ is the mass density of a considered medium. The eq. (1.9) represents the equation

of motion for a free vibration and is a starting point for the description of elastic wave

propagation in crystalline media.

Cubic symmetry of the lattice simplifies the elastic tensor by reducing the number of constants

to 3, [47] (p.141). It is expressed in the standard basis (four fold axis) by the eq. (1.10).

Given the equation of motion and the expression for the elastic tensor, we can now consider

the propagation of the elastic wave in the semi-infinite elastic solid.

Figure 1.8: Solid half-space.

x3

x1

x2Vacuum

Elastic
medium

[100]

[001]

[010] 

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 (1.10)
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Note that, in this approach several assumptions are made.

Assumption №1

Piezoelectricity is not taken into account

In general, for a piezoelectric solid, the equation of motion and the constitutive equations for

the stress and dielectric displacement, D are of the form [47] (p.216, p.154):

ρ
∂2ui
∂t2

= cijkl
∂2ul

∂xj∂xk
+ ekij

∂2φ

∂xj∂xk︸ ︷︷ ︸
piezoelectric term

 σ̄ = c̄ · ε̄− ē ·E

D = d̄ · Ē + ē · ε̄
where ē, d̄, E, φ are piezoelectric, dielectric tensors, electric field and electric potential,

respectively. A piezoelectric wave, would posses three components: two mechanical displace-

ments, u1, u3 and the associated electric potential due to piezoelectricity. Taking into account

the latter significantly increases the complexity of the problem, such that at some points no

analytical calculation is possible, and one has to resort to a numerical solution. Simplification

of the problem is justified in case of weak piezoelectric materials, such as GaAs, for which

the character of the Rayleigh wave is not affected by piezoelectricity to a significant extent

([47], p.290). Intuitively speaking, introducing the latter is equivalent to introducing effec-

tive elastic constants of the medium. The Rayleigh velocity, as we shall see, depends on the

elastic constants and thus, its absolute value will be affected. A posteriori, we can justify

our assumption by comparing numerical values of the computed Rayleigh velocity with the

experimental values, for the propagation along [110] (or [11̄0]) directions. Comparison yields

2853 m/s, theoretical value vs 2710 m/s, experimental value (within the measurement error

of ' 5%), which translates to ' 5.3% of error with respect to the experimental value. It is

thus a reasonable compromise between the simplification and the corresponding error.

Assumption №2

Attenuation is not taken into account

To simplify further, we do not take into account the attenuation, since we are interested in

the dependence of the displacement components, ui and strain components, εij on the depth,

z, while the attenuation results in a decrease of the wave amplitude with the propagation

distance, i.e. x-dependence.
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1.1.3 Propagation along [100] in the (100) plane

We consider a wave, propagating along x1 ‖ [100] direction of a cubic system, as repre-

sented in the fig. 1.8. Taking into account the expression for the elastic tensor in the standard

[100] basis and assuming no dependency8 on x2 in the Rayleigh wave, i.e. ∂
∂x2

= 0, summation

over non-zero elastic constants yields, eq. (1.9):
ρ
∂u2

1
∂t2

= c11
∂2u1

∂x2
1

+ c12
∂2u3
∂x1∂x3

+ c44

(
∂2u1

∂x2
3

+ ∂2u3
∂x1∂x3

)
ρ
∂u2

2
∂t2

= c44

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
3

)
ρ
∂u2

3
∂t2

= c12
∂2u1
∂x1∂x3

+ c11
∂2u3

∂x2
3

+ c44

(
∂2u1
∂x1∂x3

+ ∂2u3
∂2x1

) (1.11)

Analytical expression, describing a particle displacement in a surface wave would be of the

form of a plane wave, that decays exponentially with depth, as it propagates:

ui = Ui e
−αx3 e−γx1 ei(ωt−kx1) (1.12)

where Ui is the amplitude of the displacement or polarization, α penetration depth (m−1),

reflecting the fact that the wave amplitude is decreasing with depth, γ stands for attenuation

(m−1) and is a characteristic of a material. Following the assumption №2, we neglect the

attenuation. A detailed calculation can be found in the appendix B, here we present only the

main steps and conclusions.

1. We assume solutions of the form of eq. (1.12) and look for the unknown penetration

depth, α, wave vector, k and angular frequency, ω, the latter two are related by k = ω
Vr

,

where Vr is the Rayleigh velocity.

2. Plugging the solutions into the system of equations, eq. (1.11) we obtain a quadratic

equation in q2, where q is defined as q = α
k . It yields thus two solutions q2

1 and q2
2:

q4 + q2 (c12 + c44)2 − c2
11 − c2

44 + (c11 + c44)ρV 2
r

c11c44
+

(c11 − ρV 2
r )(c44 − ρV 2

r )

c11c44
= 0 (1.13)

3. Since the solid is finite, the obtained solutions should satisfy boundary conditions,

relating the mechanical variables at the interface between two media. In our case the

second medium is vacuum, this implies that normal stresses are zero at the surface,

σi3 = 0. We find that separately, the solutions do not satisfy the boundary conditions,

σi3 = 0 and thus, a linear combination of the solutions should be taken:

8Since the particle displacement in the Rayleigh wave is polarized in the x1x3 sagittal plane, thus a priory,
is independent of x2 coordinate.
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
u1 =

(
U1e

−α1x3 + U2e
−α2x3

)
ei(ωt−kx1)

u2 = 0

u3 =
(
W1e

−α1x3 +W2e
−α2x3

)
ei(ωt−kx1)

4. From the above equations it follows that the boundary conditions are satisfied if there

exists some Vr , satisfying

(c44 − ρV 2
r )(c2

11 − c2
12 − c11ρV

2
r )2 = c11c44(c11 − ρV 2

r )(ρV 2
r )2 (1.14)

which is the equation for the Rayleigh velocity, Vr .

5. Solving eq. (1.14) and then eq. (1.13) numerically, we can obtain the analytical expres-

sions for the normalized displacements, eq. (1.15) (real part) and strain components,

eq. (1.16) (complex notation). The computed Rayleigh velocity is Vr = 2711 m/s

along the [100] direction.


ux = 2 cos

(
φ
2 + ωt− kx1

)
cos
(
qIx
′
3 + φ

2

)
e−qrx

′
3

uy = 0

uz = 2r sin
(
φ
2 + ωt− kx1

)
sin
(
qIx
′
3 − ψ + φ

2

)
e−qrx

′
3

(1.15)



1
kU1

ε11 = 2 ei(
φ−π

2
) e−qRx

′
3 cos

(
qIx
′
3 + φ

2

)
ei(ωt−kx1)

1
kU1

ε13 = ei(π+φ
2

) e−qRx
′
3

{
qR cos

(
qIx
′
3 + φ

2

)
+ qI sin

(
qIx
′
3 + φ

2

)
+ r sin

(
qIx
′
3 − ψ + φ

2

)}
ei(ωt−kx1)

1
kU1

ε33 = 2r ei(
φ−π

2
) e−qRx

′
3

{
−qR sin

(
qIx
′
3 − ψ + φ

2

)
+ qI cos

(
qIx
′
3 − ψ + φ

2

)}
ei(ωt−kx1)

(1.16)

where x′3 = kx3 is the normalized depth, φ and ψ are phase constants, that appear in the

calculation due to the displacements amplitude ratios, U2
U1

and r = W1
U1

, respectively. The

obtained solution for penetration depth, α and wave vector, k, q = α
k is a complex number,

qR and qI being the real and imaginary parts, respectively.

As can be seen in the figures below, Rayleigh wave penetrates the solid at about its wavelength,

λsaw in depth, x3. We will need, in what follows, the complex expressions of the strain

components, ε11 and ε13, marked in blue for clarity. Furthermore, it is important to note that

the shear strain component ε13 is vanishingly small near the surface. We discuss this point

in the chapter 2 and chapter 6.
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Figure 1.9: Normalized displacements vs normal-
ized depth, eq. (1.15), evaluated at t = 0, x1 = 0.

Figure 1.10: Normalized strain components (real
part) vs normalized depth, eq. (1.16), evaluated
at t = 0, x1 = 0.

1.1.4 Propagation along [110] in the (100) plane

Since the propagation is along [110], we need to express the elastic constants in the new

basis: x′1 = [110], x′2 = [1̄10], x′3 = [001]. The coordinate transformation is represented in

the fig. 1.11. The elastic components in the new basis can be found using the transformation

rule: c′ijkl = γiα γjβ γkγ γlδ cαβγδ, where γ is the transformation matrix9:

γ =


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

 (1.17)

and results in eq. (1.18):

Figure 1.11: New coordinate system is obtained
by π/4 rotation around [001] direction.

x'1

x2 // [010]

x'2

[11
0]

x1 // [100]



c′11 = c11
2 + c12

2 + c44

c′12 = c11
2 + c12

2 − c44

c′13 = c12

c′33 = c11

c′44 = c44

c′66 = c11
2 − c12

2

(1.18)

9Each row represents the coordinates in the old basis.
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The calculation is carried out in the same way as in the previous section, yielding the

equation for the Rayleigh velocity, expressed in terms of the elastic constants in the new

basis:

(c′44 − ρV 2
r )
[
c′11c

′
33 − c′213 − c′33ρV

2
r

]2
= c′33c

′
44(c′11 − ρV 2

r )(ρV 2
r )2

The analytical expressions for the normalized displacements and strain components are the

same as given in the previous section. The only difference is in the calculated Rayleigh

velocity, reflecting the anisotropy of the media: Vr = 2853m/s along [110].
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1.2 Ferromagnetism

“Now sing my muse, for ’tis a weighty cause.

Explain the Magnet, why it strongly draws,

And brings rough Iron to its fond embrace.”

Lucretius Carus, 99-55 B.C.

The first mentioning of lodestone, or magnetite, appears in the Greek writings at about

800 B.C. [54]-[55]. The term lodestone dates back to 15th century and it originates from

the old English ”lode”, meaning ”to guide” or to ”lead”. First compasses were made from

lodestones, as commonly believed in China in around 2700 B.C., and used in navigation. It

is through them the ancient people discovered magnetism. The fig. 1.12 grasps very briefly

some important events in its history. On the course of time our understanding evolved from

the idea that the lodestone had a divine origin and possessed a soul, through united theory

of electricity, magnetism and light, to the formulation of quantum mechanical exchange in-

teraction, that is responsible for the magnetic ordering.

Figure 1.12: following references [54]-[55], some important events in the history of magnetism.

1269 A.D.
Petrus Peregrinus
observed and documented several prop-
erties of magnets: existence of mag-
netic poles, their attraction and repul-
sion, showed how magnetize an iron nee-
dle with a lodestone.

1581
Robert Norman
observed that a magnetized needle
would tilt with respect to horizon-
tal (magnetic inclination).

1644
René Descartes
proposed his theory of mag-
netism, described the iron-
filling method for magnetic
field mapping.

1600 treatise ”De Magnete”
William Gilbert
discovered that the earth is itself a gi-
ant magnet, realized a loadstone would
loose its magnetic properties if incan-
descent and beating wrought iron with
a hummer would induce magnetism.

1820
Hans Christian Oesterd
observed deflection of a compass
needle by current carrying wire
(driven by voltaic cell), showing for
the first time the existing connec-
tion between electricity and mag-
netism.

1820-1827
André Marie Ampère
founded the science of elec-
trodynamics. He showed
that magnetism is produced
by “electricity in motion”, in-
vented galvanometer to mea-
sure current.

1824-1831
Michael Faraday
introduced the concept of a field, discov-
ered magnetic induction, including a new pa-
rameter in the theory of electromagnetism -
time. In 1845 discovered magneto-optic ef-
fect, bearing his name, making link between
magnetism and light.

1864
James Clerk Maxwell
unified the theory of electricity,
magnetism and light, giving it
a mathematical frame.

1888
Heinrich Herz
Was the first to send and re-
ceive radio waves.
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Today we can distinguish between several types of magnetism, bared on the magnetic

order, response to the applied field, i.e. magnetic susceptibility, and dependence of the mag-

netic order on temperature (for example, the textbooks [56] (ch.5) or [57], p.13 gives magnetic

“family tree”). In this thesis we focus on ferromagnetism in metals.

Ferromagnets exhibit magnetic ordering, i.e. magnetic moments within the solid are

aligned even in the absence of an external magnetic field. This spontaneous magnetization10

occurs at temperatures below Curie temperature, above which thermal vibrations hinder the

alignment, the magnetic order is destroyed and the material becomes paramagnetic. The

magnetization orientation is not constant, but varies throughout the material, which mani-

fests itself in the existence of magnetic domains, separated by domain walls. The fingerprint

of a ferromagnet is its irreversible non-linear response to the applied field, i.e. ferromagnetic

hysteresis, as represented in the figure below (fig. 1.13).

The question why certain materials exhibit permanent magnetism was there for a long

time. A. M. Ampère thought that the magnetism of solid bodies originates from tiny cur-

rents, existing inside of matter. Pierre Weiss in 1907 proposed a theory of ferromagnetism,

suggesting that the alignment of magnetic moments occurs due to an internal “molecular

field”, proportional to magnetization, HW = λM, though of an unknown origin.

Figure 1.13: A sketch of a ferromagnetic hysteresis. The dashed curve represents the first magnetization
process, initially a ferromagnet is in a demagnetized state. Sample is saturated, when magnetization reaches
a constant value, Ms. At remanencea, i.e. zero field, ferromagnet retains some of its magnetization, Mr and
coercive field, Hc is necessary field to reverse it.

H (Am-1)

M (Am-1)

Hc

Mr Ms

Hs

aNote that magnetization orientation along a certain preferable direction is energetically equivalent for
both senses. Application of a magnetic field increases the probability to be directed in certain sense, resulting
in a remanent magnetization, as opposed to the initally demagnetized state.

10The term spontaneous magnetization was coined by James Ewing in 1881, who studied the phenomena
[57] (p.8).
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For example, an estimation of this field at the transition (Curie) temperature of 103 K, as

example, yields a field11 of around 1500T [56] (p.88), which indicates an enormous strength

of interaction. In 1928 Werner Heisenberg in his famous paper could explain the origin of

Weiss’ “molecular field” and thus, of ferromagnetism [59], using quantum mechanics to treat

a many-body problem. It originates from the quantum mechanical exchange interaction, as a

result of electron-electron interaction (the Coulomb repulsion) and Pauli exclusion principle.

Two descriptions of the exchange interaction (apart from the original paper) can be found

in the literature. First is very simplified, as it considers a pair of interacting electrons, for

example, described in [56] (ch.4), [60] (ch.6). A concrete many-body problem, much more

elaborated, is considered in [61] (ch. 17, pp. 330-334). In essence, the interaction between

spins of the ions can be described in terms of Heisenberg Hamiltonian:

HHeis = −
∑
i<j

Jij ~Si · ~Sj ,

where subscripts i,j represent spins on different atomic sites and the term Jij is defined as

the exchange integral. It is caused by the fermionic nature of electrons, in particular the Pauli

exclusion principle, and has no classical analogue. Exchange couplings (the coefficients Jij )

are called ferromagnetic (resp. antiferromagnetic), when they are positive (resp. negatives)

and favor preferential parallel (resp. anti-parallel) alignment of interacting spins.

What it is important for us to note is that, considering the exchange interaction implies a

discrete medium, that is every atomic site possesses a magnetic moment. In what follows, the

energy density terms of a ferromagnet are presented, considering a continuous medium: the

magnetization is a vector field, ~M(~r) defined at every point in space within the body, that

is, in a volume larger than the lattice unit cell. Furthermore, all corresponding calculations

are carried out under single domain approximation, which implies no exchange energy

penalty as all spins are aligned, in other words magnetization is uniform. Thus in what

follows, exchange energy term does not appear.

11The highest magnetic field ever reached in the laboratory for the moment is of 100T, while strongest
magnetic fields are produced by neutron stars (magnetars), of about 1010−11T [58] !
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1.2.1 Energy density of a ferromagnet

As discussed, the magnetic order of a ferromagnet comes from the pure quantum me-

chanical phenomena, exchange interaction. However, magnetization of a ferromagnet is not

uniform in the solid, the latter is divided into magnetic domains, that is regions with different

orientation of a net magnetic moment, as schematically represented in fig. 1.13. The origin

of domains formation was first pointed out by L. Landau and E. Lifshitz in 1935 [62]. They

made an assumption, that the magnetic moments in a ferromagnetic crystal orient so as to

minimize its total energy. Under this assumption they determined the orientation distribu-

tion of magnetic moments, as well as the domain and domain wall width and postulated the

origin of its formation. In 1959, Charles Kittel gave a review on this subject [63] and an

excellent source on magnetic domain theory can be found in [64]. In what follows we discuss

different contributions to the total energy density of a ferromagnet. The analytical expres-

sions, presented here, will be used to derive the expression for the “effective” magnetic field,

that plays a leading role in the magnetization dynamics.

1.2.2 Zeeman energy density

Zeeman energy is the energy of a magnetic moment in an external field. For a solid

ferromagnet its density is defined as:

fz = −µ0M ·Hext (1.19)

It is clear, that if magnetization is anti-parallel to the external field, it would cost an energy

penalty 2µ0MHext , thus a parallel alignment with the field is energetically favorable.

1.2.3 Shape anisotropy energy or magnetostatic self-energy

This energy is of Zeeman type, but originates from magnetic field, produced by a

magnetized object itself. A graphic representation is given in the fig. 1.14: field produced by

magnetization acts against it and is referred to as demagnetizing field, Hd inside the object

and stray field, Hstray outside.

The magnetostatic energy, also referred as stray field energy or demagnetizing energy, is given

by:

Ed = −1

2
µ0

∫
sample

M ·Hd dV

Calculation of demagnetizing field is, in general, complicated, as it is related to the shape of

a magnetized body (from which “shape anisotropy” stems) and to its magnetic homogeneity.

The demagnetizing field can be expressed by the formula:

Hd = −N̄M,
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where N̄ is a demagnetizing tensor. Analytical expressions can be found in literature for

uniformly magnetized ellipsoids [64] (ch.3): general, disc-shaped, nearly spherical, etc. For a

thin film it can be show [65], that the magnetostatic energy is expressed as:

Ed =
1

2
µ0M

2
s cos2 θ (1.20)

where θ is defined as the angle between the magnetization and the normal to the sample

surface. It is immediately clear, that in thin films the in-plane magnetization orientation,

θ = π
2 is favorable, since the energy vanishes.

1.2.4 Magneto-crystalline anisotropy energy (MCA)

In a crystal certain crystallographic directions are energetically favorable for the mag-

netization orientation at remanence. Such preference of the magnetization to lie in a specific

direction is called magneto-crystalline anisotropy.

The expression for the anisotropy energy density ( J
m3 ) can be obtained phenomenologically by

an expansion in power series of directional cosines [66] ch.7, since this energy term depends on

the magnetization orientation and hence should be the function of its components (fig. 1.15):

fmca = b0 +
∑
i

bi mi +
∑
ij

bij mimj +
∑
ijk

bijk mimjmk +
∑
ijkl

bijkl mimjmkml +O(m5)

Figure 1.14: Graphic representation of the demag-
netizing field, Hd inside of the ferromagnet and
Hstray outside.

Hd

M
Hstray

Figure 1.15: Directional cosines of magnetization.

x1 [100]

x2 [010]

x3 [001]

M
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Since there should be no difference in energy for opposite magnetization directions, the

above function is symmetric, i.e. fmca(mi) = fmca(−mi), and thus the odd terms are excluded

from the expression. The bij coefficient vanishes unless i = j as m2
i = (−mi)

2. Taking into

account the symmetries of different crystallographic systems, one can obtain the corresponding

expressions. For example:

. Cubic system posses 3-fold rotational symmetry12, i.e. rotation by 2π/3 about the

diagonal leaves the crystal unchanged and yields a cyclic permutation of the axes, hence

the indices i = 1, 2, 3 are indistinguishable. Thus, b11 = b22 = b33. Under the condition∑
im

2
i = 1,

∑
ij bij mimj is a constant and the following expression is obtained, as

described in details in [66]:

f cubicmca = K0 +K1 (m2
1m

2
2 +m2

2m
2
3 +m2

1m
2
3) +K2 m

2
1m

2
2m

2
3 + ... =

K0 +
K1

4

(
sin4 θ sin2(2ϕ) + sin2(2θ)

)
+
K2

4
sin2 θ sin2(2θ) sin2(2ϕ) + ...

(1.21)

where Ki the magneto-crystalline anisotropy constants are functions of b..-coefficients.

. Uniaxial anisotropy implies the presence of only one hard axis. The expression is

given by expansion in power series of the form [65] (p.184):

funimca =
∑
n

Kun sin2n θ ' Ku0 +Ku1 sin2 θ +Ku2 sin4 θ + ... (1.22)

Note that, the sign of the anisotropy constants affects “the choice” of the easy and hard axes.

This can be seen directly from the expression. For example, consider the eq. (1.21) for the

in-plane magnetization, i.e. θ = π
2 and so the expression reduces to K0 + K1

4 sin2(2ϕ). If

K1 < 0, then a way to minimize the energy is to maximize the sin(2ϕ) term, that is ϕ = π
4 .

Thus, for the negative MCA constant, the easy axes are the (110) directions family13.

In contrast, if K1 > 0, the way to minimize the energy is to set this term to zero, which

implies ϕ = π
2 and thus, the easy axes are the (100) family.

In the case of the uniaxial MCA only one easy axis is preferred. As it follows from eq. (1.22),

positive value of the MCA constant would result in the in-plane (IP) magnetization orienta-

tion, while negative, for out-of-plane (OP). For in-plane magnetization orientation, as in the

case of thin films14, the role of the uniaxial MCA is to promote one hard axis. The expression

12As can be seen from [47] p.90, all classes of cubic symmetry possess triad axis, A3.
13The ϕ angle is defined with respect to [100] axis (fig. 1.15).
14For thin films, another type of anisotropy can be present, referred to as perpendicular magnetic anisotropy,

that leads in some of our samples to the formation of stripe-like magnetic domains, as will be discussed in
chapter 3.
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for the energy density is given by [67]:

funimca = Ku sin2 θ cos2(ϕ− π

4
) (1.23)

As an order of magnitude, the anisotropy constants for bulk iron, Fe and nickel, Ni are listed

in the table below. Note that, at saturation magnetization, the anisotropy constants are

temperature dependent.

Table 1.1: Anisotropy constants for bulk systems at different temperatures from [65] (p.192).

Element K1 (J/m3) at

4.2K

K2 (J/m3) at

4.2K

K1 (J/m3) at

Troom

K1 (J/m3) at

Troom

Fe 5.2 · 104 −1.8 · 104 4.8 · 104 −1.0 · 104

Ni −12 · 104 3.0 · 104 −4.5 · 104 −2.3 · 104

1.2.5 Discussion on the origin of MCA

The physical origin of the MCA lies in the spin orbit coupling (SOC) and crystal field:

the spin of the electron interacts with its orbital motion, which in turn, is coupled to the crystal

lattice by means of electrostatic fields. In other words, if crystal field has low symmetry and

if valence electrons of an atom have non-zero orbital moment, meaning asymmetric charge

distribution, then the orbitals interact anisotropically with the crystal field. That is, certain

orientations for the molecular orbitals are energetically preferred.

The contribution of the SOC energy to the MCA energy is derived using time-independent

perturbation theory [68]. The perturbative analysis is applicable in the case of transition

metals (TM), since the SOC energy in the case of latter is very weak15, as compared to the

electron binding energies and the crystal field (about 10−6 eV/atom for highly symmetric

cubic crystals). The relativistic SOC perturbed Hamiltonian for a single electron is expressed

by:

H = H0 +Hsoc = H0 + ξ(r)~σ · ~L,

where ξ(r) = 1
4c2r

∂V
∂r .

The magnetism of TM, like iron, comes from the 3d electrons16. These are conduction

electrons, that are well described in the frame of Stoner model of itinerant ferromagnetism.

Considering such system, the correction to the total energy due to the SOC will come from

the second order term:

Esoc =
∑
o

∑
i

| 〈o|Hsoc|i〉 |2
εo − εi

=
∑
o

∑
i

ξ2(r)
| 〈o|~σ · ~L|i〉 |2

εo − εi
, (1.24)

15as can be seen from the expression above, ξ ∝ ∂V
∂r

. The Coulomb potential in turn is proportional to the
atomic number, hence the SOC has a stronger effect in heavy atoms like rare earth elements as Y, Gd etc.;

16since the 3d shell is not closed and 4s2 electrons participate in bonding;
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where first sum runs over all occupied states, i.e. over the total number of electrons, while i

is summed over all possible states17 and εo, εi single-state energies. When i = o, the matrix

element | 〈o|Hsoc|o〉 | vanishes, and hence the correction to the total energy comes from the

interaction between the occupied o and unoccupied states u:

Esoc =
∑
o,u

ξ2(r)
| 〈o|~σ · ~L|u〉 |2

εo − εu
(1.25)

The eq. (1.25) represents a quantum mechanical approach. This approach is important for

ab initio calculations, as will be seen in the chapter 3.

1.2.6 Elastic energy density

The elastic energy density is given by [53]:

fel =
1

2

∑
i,j,k,l

cijklεijεkl

For a cubic symmetry with only three independent elastic constants (eq. (1.10)), the above

expression reduces to:

f cubicel =
1

2
c11(ε2

11 + ε2
22 + ε2

33) + 2c44(ε2
12 + ε2

23 + ε2
31) + c12(ε22ε33 + ε11ε33 + ε11ε22)

1.2.7 Magneto-elastic energy (MEL): phenomenology

Magneto-elastic energy arises as a result of the coupling between magnetization direc-

tion and mechanical strain. At equilibrium a ferromagnetic crystal, possessing a spontaneous

magnetization, is strained, strain being dependent on the direction of the equilibrium mag-

netization with respect to the crystal axes.

In what follows, we describe the phenomenological approaches, used to derive the expression

for the magneto-elastic energy density. The reader might skip this part, if not interested, the

final expressions are given in the section 1.2.8.

To our knowledge, there exist several approaches to derive the expression for the magneto-

elastic energy density: (1) energy expansion in power series in directional cosines of magneti-

zation and strain components, (2) pair interaction model ([24], ch.2, section V) and (3) sym-

metry formalism ([24], ch.2, section III). Symmetry formalism is based on energy invariance

with bulk translations, rotations, time reversal and symmetry operations, i.e. corresponding

elements of a point group of the considered crystal. This approach is more rigorous, as it

17note, that |o〉 , |i〉 are not the eigenstates of the Hsoc, since spin and orbital character do not mix for the
unperturbed Hamiltonian eigenstates;
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includes higher order magneto-elastic coefficients in the energy terms. Although being math-

ematically rigorous, it leads to cumbersome expressions, we thus focus on simpler methods.

1. Expansion in power series

Following C. Kittel [63], E.W. Lee proposed the following expansion of the magneto-

elastic energy density [69]:

f cubicmel =
∑
ijk

Bijkmiεjk +
∑
ijkl

Bijklmimjεkl +O(m4, ε2)

where Bijk, Bijkl are magneto-elastic constants of the material, expressed in [J/m3].

As in the case of magneto-crystalline energy, the function should be symmetric with

respect to mi , i.e. opposite magnetization directions produce the same strain [24].

Thus, Bijk should vanish. Following symmetry arguments for a cubic system, one can

derive the final expression18:

fmel = B1

(
ε11m

2
1 + ε22m

2
2 + ε33m

2
3

)
+ 2B2

(
ε12m1m2 + ε23m2m3 + ε13m1m3

)
(1.26)

The energy of a physical system is defined at equilibrium. In a deformed ferromagnet,

the strain components are the functions of the equilibrium directional cosines. The

equilibrium values for strain components19 are found by minimizing the total energy

with respect to strain (appendix F), ε̄ij = − B2
4c44

m̄im̄j , where c44 is the elastic constant

of the material. It is thus clear, that at equilibrium the B2-term is quadratic in mi and

the above function is even.

2. Atomic pair model

Pair interaction model was originally proposed by Louis Néel [70] (1954) to explain the

microscopic origin of magneto-crystalline anisotropy and magneto-elasticity in terms of

interactions, both isotropic and anisotropic, between atomic pairs as opposed to already

existing ”classical theory” (referred to C. Kittel [63], 1949). We follow the derivation,

presented by Lacheisserie in [71] (pp. 351-357), [24] (pp. 3).

Consider a pair of atoms, separated by a distance r, ψ being the angle between the

atomic magnetic moment (parallel to the spontaneous magnetization) and the distance

vector r (fig. 1.16a). The interaction energy between two atoms, fij should be a function

of the distance and the angle ψ to reflect the coupling between the magnetization

orientation and inter-atomic position. It is expanded in Lengendre polynomial basis

18Note that in [63] the 2-factor of B2 is missing.
19The “¯” sign stands for equilibrium value.



1.2 Ferromagnetism 23

as:

fij(r, ψ) = A0(r) +A2(r)
(

cos2 ψ − 1

3

)
+A4(r)

(
cos4 ψ − 6

7
cos2 ψ +

3

35

)
+ ... (1.27)

where the Ai(r) coefficients depend only on the inter-atomic distance and thus indicate

the strength of interaction with the distance. The total magneto-elastic energy of a

ferromagnet can be obtained by summing up the interactions in a deformed crystal20.

However, the interactions can be both long and short-ranged. Long-range implies the

dipolar interactions and thus, summation should be carried out over all the atomic

pairs. The result in such a case depends on the actual shape of the ferromagnet, in

other words represents the shape anisotropy energy. If only the interaction between

nearest neighbors is considered, then the summation will lead to magneto-crystalline

and magneto-elastic energy terms.

To do so, first we re-write the cosψ in terms of directional cosines of the magnetization,

mi and distance vector components, wi. From fig. 1.16a it follows that cosψ = M·r
‖M·r‖ =∑

imiwi.

Secondly, it should be noted, that the first term, A0(r) in the above expression does not

depend on the angle between the magnetization and distance vector. Thus, this term

includes isotropic effects, such as the exchange energy21.

The magneto-elastic energy to the first order is obtained by summing the A2(r)-term

over nearest neighbors in a deformed crystal. Using expression for cosψ, the eq. (1.27)

can be re-written up to the first order:

fij = A0(r)︸ ︷︷ ︸
isotropic effects

+A2(r)
[
(m1w1 +m2w2 +m3w3)2 − 1

3

]
︸ ︷︷ ︸

MEL effects to 1st order

+ ...︸︷︷︸
higher orders

The next step is to consider an elongation, as represented in fig. 1.16b, with r = r0 +δr,

where r0, r is the distance between two atoms in undeformed and deformed crystal,

respectively. For small elongation we thus can Taylor expand the distance dependent

coefficient A2(r) to obtain:

fmelij =
[
A2(r0)+

dA2(r)

dr

∣∣∣∣
r0

δr+
1

2

d2A2(r)

dr2

∣∣∣∣
r0

δr2+O(δr3)
][

(m1w1+m2w2+m3w3)2−1

3

]

The δr, δr2 should be then expanded in terms of strain εij up to the second order. The

expansion is cumbersome and the exact expressions can be found in [24] (pp. 97-98).

20Since the magneto-elastic energy is the result of a deformation.
21The exchange energy does not lead to anisotropy, as it depends only on the angle between the adjacent

spins, but not on the angle between the magnetization and specific crystallographic axis.
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We accept and refer to the final result in the case of cubic symmetry:

f cubicmel = B1

(
ε11(α2

1−
1

3
)+ε22(α2

2−
1

3
)+ε33(α2

3−
1

3
)
)

+2B2

(
ε12α1α2+ε23α2α3+ε13α1α3

)
(1.28)

Figure 1.16: Graphic representation of atomic pair model.

i jr
(a) A pair of interacting atoms.

i j

(b) Elongation

1.2.8 Expressions for the magneto-elastic energy

From the two phenomenological approaches, discussed above, one arrives to the follow-

ing expressions for the magneto-elastic energy density:

 f cubicmel = B1

(
ε11m

2
1 + ε22m

2
2 + ε33m

2
3

)
+ 2B2

(
ε12m1m2 + ε23m2m3 + ε13m1m3

)
f cubicmel = B1

(
ε11(α2

1 − 1
3) + ε22(α2

2 − 1
3) + ε33(α2

3 − 1
3)
)

+ 2B2

(
ε12α1α2 + ε23α2α3 + ε13α1α3

)
the expressions differ by “−1

3” term. This point is rather confusing in the literature, for

both expressions are used, without specification. To discuss this, recall that there are two

types of magnetostriction, volume and Joule magnetostriction, as described in [71] (ch.

12). The first implies change in volume, while the latter is volume conservative. Mathemati-

cally, the volume conservation is expressed in terms of strain, that is a relative volume change,
dV ′−dV
dV is given by the trace of the strain matrix [51] (p.3). It can be shown (see appendix F),

that at equilibrium the strain values can be expressed as:

ε̄ii = − B1

2c′66

m̄2
i+β , β =


B1c12

c′66(c11 + 2c12)
from eq. (1.26)

B1

6c′66

from eq. (1.28)

From eq. (1.28) it follows immediately, that tr(ε̄) =
∑

i ε̄ii = 0. Thus, to account for the

volume conservation, the eq. (1.28) should be used.
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1.3 Magnetization dynamics

1.3.1 Equation of motion

Consider a free electron spin under time-dependent magnetic field B(t). Time evolution

of the mean value of spin operator, < S > can be derived from Schrödinger equation [72] (pp.

2-6):

d

dt
< S > (t) = −gµB

~
< S > (t)×B(t) (1.29)

where g is Landé factor and µB = |qe|~
2me

= 9.274 · 10−24 (Am2) is Bohr magneton, qe,me being

electron charge and mass, respectively. Magnetic moment, associated with electron spin,

comes from analogy with classical mechanics. Under the action of an external field torque on

the magnetic moment is expressed as:

τ = −µB
~

l×B = µl ×B

where l, µl [Am2] are orbital angular momentum and the associated magnetic moment,

respectively. The difference with the quantum mechanical orbital magnetic moment is the

well known Landé factor, g, i.e. µl = g µB~ . Thus, we associate a magnetic moment to orbital

angular momentum. By this analogy, a magnetic moment is associated to a spin angular

momentum and the quantum mechanical expression takes the form:

µs = −gµB
~
< S >= γ < S > (1.30)

with γ being the electron gyromagnetic ratio, γ = −gµB
~ = g qe

2me
< 0

(γ/2π = 28 GHz/T). Thus, multiplying eq. (1.29) by this ratio, we obtain:

dµs(t)

dt
= µ0γ µs(t)×H(t)

Volume magnetization of a magnetized object is defined as sum over spin magnetic moments

per unit volume (due to quenching of orbital magnetic moments),

i.e. M =
∑

µs/V [Am−1], hence:

dM(t)

dt
= γ0M(t)×H(t) (1.31)

with

γ0 = µ0γ < 0
( m

A · s
)

(1.32)

The eq. (1.31) is known as Landau-Lifshitz equation and it describes a precessional motion

of magnetization around the applied field. If we assume time-independent field, multiplying
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eq. (1.31) by M(t) and H successively, gives:
d|M(t)|2

dt
= 0

dM(t)

dt
·H = 0

(1.33)

This implies that the modulus of M(t) and the angle between the magnetization and the

applied field are conserved in time. Thus, according to eq. (1.31), once a static field is

applied, magnetization would precess forever. The damping term is introduced in eq. (1.31)

phenomenologically in terms of an effective field Heff = H + α
γ0Ms

dM(t)
dt , so that:

dM(t)

dt
= γ0M(t)×H(t) +

α

Ms
M(t)× dM(t)

dt

where α is Gilbert damping parameter and Ms is the saturation value of the magnetization.

This equation is referred to as Landau-Lifshitz-Gilbert equation. It is convenient to normalize

the above equation by Ms:

dm(t)

dt
= γ0m(t)×H(t) + α m(t)× dm(t)

dt
(1.34)

Study of different mechanisms, responsible for damping, is an intense research field. For a

review the reader is referred to [73] (ch.5), which focuses on intrinsic and extrinsic damp-

ing mechanisms in metallic ferromagnetic thin films and multi-layered structures, and [74]

(ch.11-14), which deals with different relaxation mechanisms in general, including higher or-

der scattering (three or four magnon scattering), providing theoretical treatment, a good

summary is given in the thesis [75] (pp. 30-37).

The damping mechanisms can be direct and indirect. Direct mechanisms imply spin-lattice

relaxation, i.e. the energy transfer from a uniform mode (ferromagnetic resonance, k = 0) to

the lattice motion (phonons). Energy transfer from uniform mode into a non-uniform mode

(spin waves, k 6= 0) is referred to as spin-spin relaxation and is an indirect process, as energy

of non-uniform modes would dissipate into lattice [76]. Furthermore, damping mechanisms

are classified as intrinsic and extrinsic. Intrinsic in the sense, that the mechanisms cannot be

avoided, as electron scattering with magnons and phonons. Extrinsic mechanisms are related

to the structural defects and geometrical peculiarities, as defined by B. Heinrich [73]. The

damping processes strongly depend on the nature of the material, i.e. whether it is a magnetic

insulator22 [77], semiconductor23 [78] (pp.74-87) or a metallic ferromagnet.

22A study of temperature dependence of the damping parameter of a yttrium iron garnet sphere in the
5-300 K temperature range.

23A review on spin dynamics in semiconductors. The most efficient spin relaxation mechanisms in semi-
conductors are summarized.
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In case of the latter following mechanisms were found to contribute to damping: eddy

currents24 [79], incoherent scattering of itinerant electrons by phonons and magnons [80],

two-magnon scattering.

The contributions to the damping of magnetic system have different fingerprints: one is linear

in frequency, the other, for example two-magnon scattering, assumes non-linear response. The

viscous damping of magnetization that appears in eq. (1.34), leads to the direct processes,

i.e. lattice relaxation [81].

1.4 Conclusion

This chapter introduced the basic concepts of acoustics and ferromagnetism, the notions

of which will be used throughout the thesis. We summarize with the following conclusions:

1. In the chapter 1 we considered the propagation of a Rayleigh wave in a semi-infinite

elastic solid along [100] and [110] directions. Rayleigh wave is a particular type of

Surface Acoustic Waves (SAWs), that is localized at the surface and decays with depth

quasi-exponentially at about one wavelength. It contains two (particle) displacement

components25, u1 and u3, yielding three non-zero strain components ε11 (longitudinal),

ε13 (shear) and ε33 (transverse). The computed displacement and strain components as

a function of the normalized depth, kx3 are represented in the figures below:

Figure 1.17: Normalized displacements vs normal-
ized depth, eq. (1.15), evaluated at t = 0, x1 = 0.

Figure 1.18: Normalized strain components vs
normalized depth, eq. (1.16) real part, evaluated
at t = 0, x1 = 0.

24The authors consider the influence of eddy currents on dipolar spin waves, that are dominated by dipolar
interaction, and hence, the neglect the exchange.

25In the standard [100] basis: x1 ‖ [100], x2 ‖ [010] and x3 ‖ [001].
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It is important to note that the shear component vanishes at the surface, i.e. for x3 = 0.

The obtained expressions for longitudinal and shear strain components will be used in

the next chapter: (x′3 = kx3 is the normalized depth, φ and ψ are phase constants, r

displacements amplitude ratio. The solution, q = α
k for penetration depth, α and wave

vector, k is a complex number with real, qR and imaginary, qI parts.)


1
kU1

ε11 = 2 ei(
φ−π

2
) e−qRx

′
3 cos

(
qIx
′
3 + φ

2

)
ei(ωt−kx1)

1
kU1

ε13 = ei(π+φ
2

) e−qRx
′
3

{
qR cos

(
qIx
′
3 + φ

2

)
+ qI sin

(
qIx
′
3 + φ

2

)
+ r sin

(
qIx
′
3 − ψ + φ

2

)}
ei(ωt−kx1)

2. In the section 1.2 we focused on the energy density of a ferromagnet and the Landau-

Lifshitz-Gilbert equation, describing magnetization dynamics: (γ0 = µ0γ < 0)

dm(t)

dt
= γ0m(t)×H(t) + α m(t)× dm(t)

dt

Free energy density of a ferromagnet is the sum of several contributions, namely: Zee-

man, demagnetizing, magneto-crystalline anisotropy (MCA), magneto-elastic and elas-

tic energy densities. Note that, the samples, studied in this thesis, exhibit both biaxial

(cubic) and uniaxial in-plane MCA. The final expression is given in appendix C. The

equation of motion and the expression for the total energy density will be used in the

chapter 2 and chapter 6.



Chapter 2

SAW-induced Magnetization

Dynamics

In the previous chapter we discussed surface acoustic waves and ferromagnetism sep-

arately. But the phonon system is coupled to the spin system via magneto-elastic coupling

and thus, affecting one would affect another and vice versa, as we can see from the examples

of direct or inverse magnetostriction. Although this thesis mostly focuses on the effects of

magnetization dynamics on SAW propagation, let us first consider how this dynamics is trig-

gered by a propagating SAW.

The mechanism of strain-induced magnetization precession was already discussed in the lit-

erature in the framework of a phenomenological approach, based on the LLG equation

[82] . In this work the magnetization dynamics is induced by a picosecond acoustic pulse (all

optical excitation) in a ferromagnetic semiconductor (Ga,Mn)As, the work is preceded by the

experimental investigations, reported in [83]. The interaction mechanism can be seen as fol-

lows. Imposing strain on a ferromagnetic film modifies its total energy density (section 1.2.1)

and thus, changes the internal effective field, Heff felt by magnetization. As a consequence,

magnetization experiences a torque, exerted by the effective field, and is set into a preces-

sional motion. In what follows, we employ the phenomenological approach, proposed in [82],

to compute the SAW-induced torque. This permits us to have a simple physical picture of the

interaction between SAW and magnetization and partially interpret our experimental results,

presented in the chapter 5.

The last point to mention before proceeding further is the dependence of magneto-elastic

coupling on the direction of the applied magnetic field, that is, and let us coin the term, its

directionality. Reports on the latter can be found in the literature. For example, experimen-

tally this was observed by several authors [84] (1975), [85] (1977), [86] (1988), [87] (2002),

[88] (2012). To be more precise, in [84] - [86] change in SAW velocity and attenuation were

measured as a function of few field directions, revealing different acoustic behaviour. In [87]

A. Clark et al. showed angular dependence of magnetostrictive constant in iron gallium (see
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chapter 3). M. Weiler et al. [88] attribute the angular dependence of measured SAW trans-

mission to the elastically driven ferromagnetic resonance. From a theoretical point of view

the directionality was discussed by L. Dreher et al. [17]. Authors have estimated the SAW-

induced effective field, that triggers magnetization dynamics (via torque) under the single

domain approximation. They assumed that the film experiences the same strain, that exists

in SAW, when the latter propagates in a semi-infinite elastic solid. Two types of SAWs are

considered: Rayleigh waves and Love waves, meaning different strain components, existing in

the wave, that is εxx, εxz (shear transverse), εzz for the first and εxy (shear horizontal) for

the latter. The expression for the SAW-induced effective field is given as a function of the

strain components and the in-plane saturation magnetization angle, φ0 with respect to the

SAW wave vector. By considering only one strain component, the authors can distinguish

which component contributes to the coupling, as represented in the figure below. As can

be seen, in case of the longitudinal component, εxx the effective field vanishes, if saturation

magnetization is parallel, ~Ms ‖ ~ksaw or perpendicular, ~Ms ⊥ ~ksaw to the SAW wave vector,

fig. 2.1a. The situation is inversed, if one compares the case with longitudinal, εxx (fig. 2.1a)

and shear horizontal strain, εxy (fig. 2.1b). Importantly, there is non-zero coupling for the

parallel configuration, ~Ms ‖ ~ksaw in case of the transverse shear, εxz (fig. 2.1c).

Figure 2.1: Polar plot of the SAW-induced effective field magnitude for different non-zero strain components
at saturation, adapted from [17].

(a) εxx 6= 0.

x

y

ksaw

(b) εxy 6= 0.

x

y

ksaw

(c) εxz 6= 0.

x

y

ksaw

In what follows we extend this computation and present the SAW-induced torque density

versus the applied field angle and intensity. Note that in the article [17], the final result was

to compute the absorbed radio-frequency power and to compare it with the measured results

versus field intensity and angle for a system, exhibiting in-plane uniaxial MCA.

We consider a ferromagnetic film, magnetized in-plane up to saturation and this justifies the

single domain approximation. The piezoelectric substrate imposes strain on the film and we

assume, that the film experiences strain identical to that, existing in a propagating SAW

in a semi-infinite elastic solid (see the section 1.1.2). Here we consider the [110] and [100]
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SAW propagation directions. The film posses cubic symmetry and exhibits both biaxial and

uniaxial magneto-crystalline anisotropies.

It is important to distinguish between static and dynamic variables of our system. That is,

at equilibrium magnetization has a certain orientation, (θ̄, ϕ̄) and the ferromagnet is sponta-

neously strained. We thus define the equilibrium of the system by (θ̄, ϕ̄, ε̄ij) and assume

small time-dependent excursions about this position, that is:
θ = θ̄ + δθ(t)

ϕ = ϕ̄+ δϕ(t)

εij = ε̄ij + δεij(t)

(2.1)

The dynamic quantities vary periodically with time (i.e. ∝ eiωt).

2.1 Expression of Torque Density

As described in the section 1.3, torque (Nm) on a spin magnetic moment due time-

dependent effective magnetic H-field can be expressed as:

τ (t) = µ0µs(t)×Heff (t)

Multiplying by electron gyromagnetic ratio, γ and summing over spin magnetic moments per

unit volume, we obtain:
γT =

dM(t)

dt
= µ0γM(t)×Heff (t) or

T =
Ms

γ

dm(t)

dt

( J

m3

) (2.2)

where T is defined as the net torque density, while time-variation of normalized magne-

tization is given by Landau-Lifshitz equation and if, damping is taken into account, by the

equation of Landau-Lifshitz-Gilbert, as was discussed in the previous chapter: γ0 = µ0γ < 0

dm(t)

dt
= γ0m(t)×Heff (t) + α m(t)× dm(t)

dt

The m is a unit vector expressed in the Cartesian, eq. (2.3) and spherical, eq. (2.4) basis. It

is convenient to work with spherical coordinates.

m =

m1

m2

m3

 =

sin θ cosϕ

sin θ sinϕ

cos θ

 (2.3) m =

mr

mθ

mϕ

 =

1

0

0

 (2.4)

We thus need to express the dm(t)
dt term in order to calculate the torque. We assume small
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excursions of magnetization about the equilibrium position and this implies the norm conser-

vation, that is mr ≈ 1 = er. Time-dependent variation of m-vector in spherical coordinates

is expressed as dm = dθ eθ + sin θ dϕ eϕ (taking into account the norm conservation), then

dm

dt
=
dθ

dt
eθ + sin θ

dϕ

dt
eϕ (2.5)

Plugging eq. (2.5) into eq. (2.2), we obtain:

T = iω
Ms

γ

(
δθ eθ + sin θ δϕ eϕ

)
(2.6)

which is the expression to evaluate the torque.

2.2 Calculation steps

The calculations are rather lengthy to be presented in the main text, we thus refer to

the appendix D-appendix G. The section 2.5 summarizes the calculation with a numerical

analysis. The reader is invited to the section 2.5, if prefers to skip the preceding parts. The

main steps of the search procedure are the following:

(i) First, we express time-dependent angular variations δθ(t), δϕ(t) by exploiting the LLG

equation, as explained in the appendix D. The effective field, Heff is obtained from the

gradient of the total energy density with respect to magnetization [89]:
Heff = − 1

µ0Ms
∇mF

F = FZ + Fd + Fbiax + Funi + Fmel + Fel

the energy, F is the sum of different contributions (see appendix C).

The obtained expressions for δθ(t), δϕ(t) are proportional to the κi, ζi, κij , ζij terms,

which are combinations of second order derivatives of the free energy density1, Fθθ, Fϕϕ, Fθϕ,

Fθεij , Fϕεij , evaluated at equilibrium, that is at (θ̄, ϕ̄, ε̄ij).

The expressions for the first and second order derivatives of energy density are given in

the appendix E, while the obtained angular variations are of the form:


δθ =

∑
i≤j

(κ2ζij − ζ2κij − iωζij)δεij
ζ2κ1 − ζ1κ2 + ω2 + iω(ζ1 + κ2)

δϕ =
∑
i≤j

(ζ1κij − κ1ζij − iωκij)δεij
ζ2κ1 − ζ1κ2 + ω2 + iω(ζ1 + κ2)

(2.7)

1Here we use a compact notation, ∂2h
∂x∂y

= hxy .
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with



ζ1 = −α|η| Fθθ
∣∣∣∣
eq

− |η|
sin θ̄

Fθϕ

∣∣∣∣
eq

ζ2 = −α|η| Fθϕ
∣∣∣∣
eq

− |η|
sin θ̄

Fϕϕ

∣∣∣∣
eq

ζij = −α|η| Fθεij
∣∣∣∣
eq

− |η|
sin θ̄

Fϕεij

∣∣∣∣
eq



κ1 =
|η|

sin θ̄
Fθθ

∣∣∣∣
eq

− α|η|
sin2 θ̄

Fθϕ

∣∣∣∣
eq

κ2 =
|η|

sin θ̄
Fθϕ

∣∣∣∣
eq

− α|η|
sin2 θ̄

Fϕϕ

∣∣∣∣
eq

κij =
|η|

sin θ̄
Fθεij

∣∣∣∣
eq

− α|η|
sin2 θ̄

Fϕεij

∣∣∣∣
eq

(2.8)

where, for the sake of compactness, we define a constant, η as:

η =
γ

1 + α2

1

Ms

rad

s

( J

m3

)−1
(2.9)

Note that, for a small damping parameter, as in our case α ' 0.01 (measured by FMR),

this constant reduces to ' γ
Ms

.

(ii) We need to evaluate the second order derivatives, that appear in the expressions for the

angular variations. Since we evaluate the derivatives at equilibrium, the equilibrium

orientation and strain components should be defined. This can be done by minimizing

the total energy density with respect to the angles and strain components, that is we

look for (θ̄, ϕ̄, ε̄ij), such that the first order derivative of the energy vanishes (and the

second order derivatives are positive):

∂F

∂θ

∣∣∣∣
eq

=
∂F

∂ϕ

∣∣∣∣
eq

=
∂F

∂εij

∣∣∣∣
eq

= 0

The results, obtained in the appendix F, yield the following expressions for the equilib-

rium strain components, represented here in terms of directional cosines, m̄i for short

notation (in the standard basis), note c′66 = (c11−c12)
2 :

ε̄ii = − B1

2c′66

m̄2
i +

B1

6c′66

, ε̄ij = − B2

4c44
m̄im̄j i 6= j

(2.10)

We also deduce that the magnetization is in-plane, i.e. θ̄ = π
2 , both at zero or in-plane

applied magnetic field. Given this and equilibrium strain values, we can finally express
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the second order derivatives only in terms of the in-plane angle, ϕ̄:

Fθθ

∣∣∣∣
eq

= µ0HMs cos(ϕ̄− ϕH) + µ0M
2
s +K1[2− sin2(2ϕ̄)]− 2Kip cos2(ϕ̄− π

4
)+

B2
1

c′66

(cos4 ϕ̄+ sin4 ϕ̄) +
B2

2

8c44
sin2(2ϕ̄)

Fϕϕ

∣∣∣∣
eq

= µ0HMs cos(ϕ̄− ϕH) + 2K1 cos(4ϕ̄)− 2Kip cos
(

2ϕ̄− π

2

)
+

B2
1

c′66

cos2(2ϕ̄) +
B2

2

4c44
sin2(2ϕ̄)

Fθϕ

∣∣∣∣
eq

= 0

(2.11)

The only non-zero Fθεij , Fϕεij terms are:

{
Fθε13

∣∣
eq

= −B2 cos ϕ̄

Fθε23

∣∣
eq

= −B2 sin ϕ̄


Fϕε11

∣∣
eq

= −B1 sin(2ϕ̄)

Fϕε22

∣∣
eq

= B1 sin(2ϕ̄)

Fϕε12

∣∣
eq

= B2 cos(2ϕ̄)

(2.12)

With this, we can simplify the κi, ζi, κij , ζij terms of the eq. (2.7) (angular variations),

as given in the appendix G.

(iii) The next step is to consider the SAW propagation direction. The convenience of the

eq. (2.7) is that it represents the generalized equations for time-varying δθ and δϕ.

Taking the corresponding form of the energy density, we can consider arbitrary sym-

metry of the system, for example cubic or tetragonal. Furthermore time-varying strain

components δεij are those of SAW, which can be chosen to propagate in any direction.
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2.3 SAW along [100]

SAW is taken to propagate along [100] direction, the strain components can be expressed

in the standard basis as: (δεij(t) = eij(t), change of notation)

(εij) =

ε̄11 ε̄12 ε̄13

ε̄12 ε̄22 ε̄23

ε̄13 ε̄23 ε̄33


︸ ︷︷ ︸

static strain

+

e11(t) 0 e13(t)

0 0 0

e13(t) 0 e33(t)


︸ ︷︷ ︸
SAW−imposed strain

In what follows we assume:

Assumption

A film experiences the SAW-imposed strain, identical to that, produced at the surface of the substrate.

For a film thickness of 50nm and a SAW wave length of 3.4µm (833 MHz), the normalized

depth is about 0.093. At this value, the shear component, e13 is very small, compared to the

longitudinal, e11, that is e11
e13
' 30 (fig. 2.2). Nevertheless, we will show that we can detect

shear component induced effects in the experimental measurements.

Also, following the appendix G, for the in-plane magnetization the terms ζ33, κ33, that appear

in the expressions for angular variations, vanish and thus, the transverse component, e33 does

not play a role in the calculation.

Let us first consider a simpler case, when the shear component is neglected, as described in

the next section.

Figure 2.2: Computed strain components. Red vertical solid line represents the normalized depth, kx3=0.093,
which corresponds to the wavelength of 3.4µm and the depth of 50nm.

kz=0.093
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2.3.1 Neglecting e13

In the considered case, we are sensitive only to the longitudinal strain component. The

corresponding expressions for angular variations (eq. (2.7)) reduce to:


δθ = −iω|η|B1 sin(2ϕ̄)

ω2 − ω2
0

e11(t)

δϕ = −η
2FθθB1 sin(2ϕ̄)

ω2 − ω2
0

e11(t)

(2.13)

where the ω0 is the eigenfrequency of the system for negligible damping, more precisely for

α2 � 1 [19]:

ω2
0 = η2FθθFϕϕ (2.14)

In section 1.1.3 we found an analytical expression for the longitudinal strain component, e11(t)

(eq. (1.16)). We can evaluate this expression at the surface, x3 = 0 and for x1 = 0, t = 0,

the latter thus reduces to: (φ is the phase constant, arising from the calculation)

e11 = A(0) cos(φ/2) ei(
φ−π

2
) (2.15)

where A(x3) [−] is the strain amplitude2. In general, SAW-induced strain is of the order of

10−6− 10−4 in magnitude, we choose to take the value of A(0) = 10−5. It does not affect the

torque dependence on the direction of the applied field, in what we are interested, but does

affect the torque amplitude (the amplitude is larger for larger strain). Finally, using eq. (2.6)

(torque expression), eq. (2.13) and eq. (2.15), we can express the torque density (θ̄ = π
2 ):

T =
B1 sin(2ϕ̄)

ω2 − ω2
0


0

ω2A(0) cos
(
φ
2

)
ei

(φ−π)
2

−ω|η|FθθA(0) cos
(
φ
2

)
ei
φ
2


Taking the real part yields:

Re(T) =
B1 sin(2ϕ̄)

ω2 − ω2
0


0

Aθ

Aϕ



2The strain amplitude depends on the excitation power of the inter-digital transducers, that are used to
generate SAW (see chapter 4).
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where we define {
Aθ = ω2A(0) sin(φ)

2

Aϕ = −ω|η|FθθA(0) cos2(φ/2) = Aϕ(H, ϕ̄)
(2.16)

and the norm is expressed as:

‖Re(T)‖[100] =
∣∣∣B1 sin(2ϕ̄)

ω2 − ω2
0

∣∣∣ √A2
θ +A2

ϕ (2.17)

The [100] subscript denotes the SAW propagation direction. In this case the expression indi-

cates the acoustic sensitivity towards B1 magneto-elastic constant.

Note that among Aθ and Aϕ terms, only the latter depends on the field intensity and the

magnetization equilibrium angle. This term is proportional to the second order derivative

of the free energy density, Fθθ, given by eq. (2.11). However, the expression is dominated

by the demagnetizing term, µ0M
2
s ∝ 106, while the Zeeman term, µ0HMs becomes compat-

ible to the latter for the field intensity above 100mT (i.e. beyond saturation). The angle-

dependent terms, containing anisotropy constants are of the order 104 J/m3 and magneto-

elastic (squared) / elastic constants ratio of the order 102−103 J/m3, and thus, are negligible.

It follows that, the dependence on the field direction comes from sin(2ϕ̄) and 1/(ω2 − ω2
0)

terms, as will be shown later. The term
√
A2
θ +A2

ϕ rather contributes to the amplitude and

does not reflect its directionality (Aθ is constant and Aϕ is proportional to Fθθ, dominated

by the constant demagnetizing term at low and Zeeman term at high fields).

Note also, that the eigenfrequency, ω2
0 = η2FθθFϕϕ contains the B2 magneto-elastic constant

via second order derivatives. However, as discussed above, Fθθ is dominated by the demag-

netizing term and Fϕϕ by the MCA terms, or Zeeman term at high fields. Thus, ω0 does not

contribute to the “B2-sensitivity”.

2.3.2 Taking e13 into account

From the eq. (2.7) we obtain the following expressions for angular variations in terms

of shear and longitudinal strain components:
δθ(t) =

−iω|η|B1 sin(2ϕ̄) e11(t)− |η|B2 cos ϕ̄[|η|Fϕϕ + iαω] e13(t)

ω2 − ω2
0 − iαω|η|(Fθθ + Fϕϕ)

δϕ(t) =
−|η|B1 sin(2ϕ̄)[|η|Fθθ + iαω] e11(t) + iω|η|B2 cos ϕ̄ e13(t)

ω2 − ω2
0 − iαω|η|(Fθθ + Fϕϕ)

(2.18)

It will be useful to note (also for later chapter 6, section 6.2), that the terms, containing

damping (marked in blue) can be neglected. This can be seen from the figures below, that

show the comparison between the terms of the eq. (2.18), plotted versus angle for two values

of the applied field (fig. 2.3 - fig. 2.4).
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Figure 2.3: Real part and imaginary parts of the
denominator in the eq. (2.18) vs applied field angle
at different field intensities.

Figure 2.4: |η|Fϕϕ and |η|Fθθ terms vs applied
field angle at different field intensities. Dashed
green line represents the αω term.

We can evaluate the expressions for e11 and e13, given by eq. (1.16), at x1 = 0, t = 0,

but now taking a variable depth: (x′3 = kx3 is the normalized depth, φ and ψ are phase

constants, r displacements amplitude ratio. The solution, q = α
k for penetration depth, α and

wave vector, k is a complex number with real, qR and imaginary, qI parts.)



e11 = A(x3) e−qRx
′
3 cos

(
qIx
′
3 + φ/2

)︸ ︷︷ ︸
A11(x3)

ei(
φ−π

2
) = A11(x3) ei(

φ−π
2

)

e13 = A(x3) e−qRx
′
3

{
qR cos

(
qIx
′
3 +

φ

2

)
+ qI sin

(
qIx
′
3 +

φ

2

)
+ r sin

(
qIx
′
3 − ψ +

φ

2

)}
︸ ︷︷ ︸

A13(x3)

ei(π+φ
2

)

= A13(x3) ei(π+φ
2

)

Plugging the above expressions into the eq. (2.18) (damping is neglected) and using the

eq. (2.6) (torque expression), the torque density norm is given by:

‖Re(T)‖ =
∣∣∣ 1

ω2 − ω2
0

∣∣∣ √A2
θ(x3) +A2

ϕ(x3)

with Aθ(x3) =
(
ω2 B1 sin(2ϕ̄) A11(x3)− ω|η|Fϕϕ B2 cos ϕ̄ A13(x3)

)
sin φ

2

Aϕ(x3) =
(
− ω|η|Fθθ B1 sin(2ϕ̄) A11(x3) + ω2 B2 cos ϕ̄ A13(x3)

)
cos φ2

(2.19)
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An important conclusion can be drawn directly from the expressions for Aθ(x3) and Aϕ(x3).

For ϕ̄ = ϕB (saturation), it follows immediately, that torque cancels out if the field is applied

perpendicularly to the SAW wave vector, ~ksaw ⊥ ~B, that is for ϕB = π
2 .

However, in contrast to the previous case (section 2.3.1), torque does not vanish,

when the field (or saturation magnetization) is parallel to the SAW wave vector,
~ksaw ‖ ~B, that is for ϕB = 0. Furthermore, only shear component, e13 triggers the

magnetization dynamics in this configuration.

Numerical solution of kx3 = 0 shows, that the maximal value of the torque norm due to the

shear component (~ksaw ‖ ~B configuration) is only about 2% of the maximal value of the norm,

when both components contribute (∠( ~B,~ksaw) = 45◦ configuration). Indeed the contribution

of the shear strain is negligible with respect to the longitudinal strain. However, as will be

shown in the chapter 6, it is the shear strain that results in small variations of the SAW

velocity, when the field and the SAW wave vector are parallel.

For simplicity, in what follows, we assume the shear strain to vanish at the surface and we

do not take it into account. As a result of this reasonable approximation, there will be two

field directions, in which torque vanishes. Furthermore, it permits to avoid “mixing” of the

magneto-elastic constants, B1 and B2 in the analytical expressions, eq. (2.19).

2.4 SAW along [110]

We now consider SAW, propagating along [110] direction. Note that, in our experiments

SAWs propagate both in [110] and [11̄0] directions, the two being equivalent for the expressions

of the torque density norm. In such a case we need to express the SAW components in the

same basis as the magnetization.

In the [110], [11̄0],[001] basis

(ε′ij) = (ε̄′ij) +


e′11(t) 0 e′13(t)

0 0 0

e′13(t) 0 e′33(t)



In the standard basis

(eij(t)) =


1
2e
′
11

1
2e
′
11

1√
2
e′13

1
2e
′
11

1
2e
′
11

1√
2
e′13

1√
2
e′13

1√
2
e′13 e′33


As previously seen, we can suppose the shear strain to vanish at the surface, e′13 ≈ 0, thus in

the standard basis we have:

(εij) = (ε̄ij) +
1

2

e
′
11(t) e′11(t) 0

e′11(t) e′11(t) 0

0 0 2e′33(t)


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Following the same procedure, described in the sections above, we obtain:

‖Re(T)‖[110] =
∣∣∣B2 cos(2ϕ̄)

2(ω2 − ω2
0)

∣∣∣ √A2
θ +A2

ϕ (2.20)

Note that, if SAW propagates along [110] direction, we are sensitive to the B2 magneto-

elastic coupling constant. Also, the [110] and [11̄0] directions are equivalent for SAW

propagation and we obtain the same analytical expressions for the norm of the torque density.

2.5 Numerical Analysis

This section is devoted to the analysis of the previously derived expressions for the

torque density norm. The latter is computed and represented to show its dependence both

on the field direction and intensity. The constants, used in computations, namely MCA

anisotropy, magneto-elastic coefficients etc., are listed in the table below. To distinguish

between the contributions of biaxial and uniaxial MCA, let us first consider a uniaxial

system that shows one hard (one easy) axis, then a biaxial MCA and to complete we include

both contributions.

Table 2.1: Parameters, typical for Fe0.8Ga0.2, used in computation, and their source.

Parameter Value Source

Saturation mangetization, Ms ( A
m

) 106 VSM measurements

Biaxial anisotropy constant, K1 ( J
m3 ) 2.4 ×104 FMR measurements (58nm film)

Uniaxial anisotropy constant, Kip ( J
m3 ) -0.6 ×104 FMR measurements (58nm film)

Magneto-elastic constant, B1 ( J
m3 ) −107 [90]

Magneto-elastic constant, B2 ( J
m3 ) −107 [90]

Elastic constants, cij (GPa)

c11 = 196.0

c12 = 156.0

c44 = 123.1

[91]

Acoustic frequency, ω (MHz) 833 experimental value

Strain amplitude, A (-) 10−5 arbitrary value
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2.5.1 Uniaxial MCA

We start with a polar plot of the uniaxial magneto-crystalline anisotropy energy density

to give a graphical representation of the easy and hard axes, as represented in the fig. 2.5b.

Note that the anisotropy constant, Kip is negative so we translate the curve (fig. 2.5a) to

be able to make a polar plot, which is defined only for positive real numbers. This implies

introducing a constant, which is legitimate, as the energy of a physical system is defined up to

a constant3. The effect of the uniaxial contribution can be clearly seen from the computation

of the proper frequency, as will be discussed further.

We consider both [100] and [110] SAW propagation directions in the (100) plane, the latter

being equivalent to the propagation along [11̄0] in the sense, that it yields the same analytical

expression for the norm of the torque density. The applied field angle, ϕB and the equilibrium

magnetization orientation, ϕ̄ are defined with respect to [100] direction.

The fig. 2.6 - fig. 2.7 represent computed norm of the torque density for SAW, propagating

along [100] and the easy, [110] directions, respectively. Note that the scale in the color plots

is different for better visibility.

Figure 2.5: Normalized uniaxial anisotropy energy density vs angle (a). The curve (dashed line) is first
translated such that the energy minima correspond to zero energy (solid gray line), followed by another
translation (and normalization) (line with markers). Polar plot (b). The color code represents the hard (red)
and easy (green) axes. SAW is considered to propagate both along the [100] and easy, [110] directions.

(a) Curve translation.

[100]

[110] easy 

[1-10] hard

ksaw

ksaw

(b) Polar plot of the normalized uniaxial MCA.

To discuss the obtained results, we first discuss the magnetization equilibrium orienta-

tion. As stated in the section 1.2, we work under single domain approximation, that is the

3Note that, this translation can have a misleading representation for a constant is arbitrary. As a result,
the polar plot represents a system strongly or weakly anisotropic, depending on the additive constant, as can
be seen from the fig. 2.5b. In what follows we use a polar graphical representation, that more realistically
represents the physical system.
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Figure 2.6: Norm,

‖Re(T)‖[100] =
∣∣∣B1 sin(2ϕ̄)

ω2−ω2
0

∣∣∣ √A2
θ +A2

ϕ

vs intensity and direction of the magnetic field.
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Figure 2.7: Norm,

‖Re(T)‖[110] =
∣∣∣B2 cos(2ϕ̄)

2(ω2−ω2
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vs intensity and direction of the magnetic field.
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magnetization is uniform. However, depending on the field direction, the equilibrium mag-

netization may or may not be aligned with the external field of fixed intensity. Within our

phenomenological model, we compute the magnetization equilibrium angle, ϕ̄ (as described

in details in the appendix F) and also the projection of the magnetization on the applied

field axis. The latter is equivalent to the experiment, performed with the vibrating sample

magnetometer (VSM) technique, in which projection of the magnetization on the applied field

is measured. The results are presented in the figures below for field, applied along the hard

axis, ϕB = 134.9◦ and at 60◦ with respect to the [100] direction. Note that the computed

curves reflect the experimental protocol, that we follow for the acoustical measurements, i.e.

we start with a high field and reduce it progressively to zero. In such a case magnetization

will rotate towards the closest easy axis. Since the field is applied at 134.9◦, the closest easy

axis is [110] direction, i.e. perpendicular to the direction of the applied field (see fig. 2.5b).

Thus at zero field, the projection assumes zero value.

It is important to note, that the saturation rates depend on the field direction. For example,

compare the field, applied along the hard axes and at 60◦ with respect to [100] (fig. 2.8).

However the projection of magnetization along the field is larger in the latter case (fig. 2.9).

Following this, we compute the norm of the torque density, while taking the equilibrium

magnetization orientation into account. That is, for every point in the colorplot, (B,ϕB) we

compute the corresponding ϕ̄. The starting field for the computation is set by the saturation

field along the hard axis, that is above the shaded region in the fig. 2.8 - fig. 2.9.
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Figure 2.8: Equilibrium angle vs field intensity,
applied along the hard axis and at 60◦ with re-
spect to [100] direction. Shaded region represents
the region below saturation, when the field is ap-
plied along the hard axis.

Figure 2.9: Projection of normalized magnetiza-
tion on the applied field vs field intensity. Field
applied along the hard axis and at 60◦ with re-
spect to [100] direction.

From the fig. 2.6 - fig. 2.7 the following conclusions can be made.

(i) First, it is clear from the obtained expressions (eq. (2.17), eq. (2.20)), that due to

the torque dependence on sin(2ϕ̄) and cos(2ϕ̄) (in the case of [100] and [110] SAW

propagation, respectively) it vanishes, if equilibrium magnetization is parallel

or perpendicular to the SAW wave vector, ksaw. However, as discussed in the

section 2.3.2, the zero norm for parallel configuration is a consequence of the neglected

shear strain component. In reality, we expect a contribution, although vanishingly small.

Consequently torque is larger (but not maximal), when magnetization is at
nπ
4 with respect to the SAW wave vector, where n is an odd integer. This

results from maximization of the sin(2ϕ̄) and cos(2ϕ̄) functions.

(ii) In the case of the propagation along [100], the torque norm assumes maximum

value if the field is applied along the hard axis, at −45◦ in contrast with the

easy axis, at 45◦. The norm is zero for certain angles, as partially represented in the

colorplot with a white dashed line.

To better resume these points we plot the equilibrium angle, ϕ̄ vs field intensity, applied

at −15◦, −45.1◦ and −75◦, fig. 2.10. As can be seen in the fig. 2.11, magnetization

rotates from its easy axes toward the applied field and passes 0◦, 90◦ orientation. This

results in parallel, m ‖ ksaw and perpendicular, m ⊥ ksaw configuration, for which

torque vanishes.
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Figure 2.10: Equilibrium angle vs field intensity
at different field directions. The dashed lines rep-
resent 0◦ and −90◦ angles.

Figure 2.11: Polar plot of the uniaxial MCA.
Applied field and SAW propagation directions
are schematically represented with arrows.

[100]

[110] easy 

ksaw

B

B

On the other hand, when field is applied along the hard axis, −45.1◦, torque is maximal.

This maximum value is a consequence of two contributions. First, as discussed above,

related to the maximal value of the sin(2ϕ̄) term. The second is related to the denom-

inator in the expression of the norm, containing the SAW and its eigen- frequencies,

1/(ω2 − ω2
0). We represent the computed torque norm and the eigenfrequency, ω0/2π

versus field intensity for different directions in the fig. 2.12 and fig. 2.13, respectively.

It is clear that, applying the field along the hard axis results in a drop of

eigenfrequency, as in contrast with the easy axis, the difference in frequencies is about

3.1 GHz. Reducing the eigenfrequency, will decrease the ω2 − ω2
0 term, resulting in a

larger norm, as follows from the eq. (2.17).

(iii) In the case of the propagation along [110] (fig. 2.5b), the situation is reversed,

that is torque vanishes, if the field is applied both along the hard and easy

axes, due to perpendicular and parallel configurations, respectively. Torque

assumes maximal values at around −45◦, i.e. the energy barrier, due to the drop in

frequency. However, if we compare the maximal numerical values of the norm for [100]

and [110] propagation directions, the latter is about 7 times smaller. This is related

to the product of cos(2ϕ̄) and 1/(ω2 − ω2
0) terms. For the [110] propagation it is not

“optimized”. When SAW is directed along [100], saturating the system along the hard

axis results both in the frequency drop and maximal value of sin(2ϕ̄) term. For the [110]

propagation, saturation along the hard axis results in the perpendicular configuration,

where the torque vanishes.
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Thus, if one wants to maximize the effect of SAW on the magnetization, the choice

of [100] as the propagation direction is more appropriate. Note that, the larger is the

anisotropy, the larger will be the decrease in frequency and hence, the SAW effect will

be more pronounced.

Figure 2.12: Torque norm vs field intensity for
different field directions.

Figure 2.13: Eigenfrequency, ω0/2π vs field, ap-
plied along the hard and easy axes.
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(iv) From the fig. 2.13 it follows, that the eigenfrequency increases with the field. As a

consequence the torque norm vanishes at high fields. This implies that, stronger

the field is, lesser is the effect of SAW on the magnetization.

2.5.2 Biaxial MCA

In the case of biaxial MCA the system possesses in the (001) plane two hard and two

easy axes, as represented in the polar plot4, fig. 2.14. The corresponding eigenfrequency is

represented in the fig. 2.15. In such case, a larger MCA will require larger saturation field and

a larger frequency drop, as compared to the uniaxial system. As can be seen, the difference

in eigenfrequency for the field, applied along the easy and hard axes can go up to 8.3 GHz.

The computed torque density norm is represented in fig. 2.16 - fig. 2.17 for both [100] and

[110] SAW propagation directions.We stress that the scale in the plots is different for better

visibility. In comparison with the uniaxial system, the [110] and [11̄0] directions are equivalent

due to the anisotropy of the system and thus the torque norm is symmetric with respect to

[100] direction.

4Note that, if we compare the anisotropy constant of iron gallium thin film, K1 = 2.6 · 104 (J/m3) with
that of a pure iron thin film, 4.5 · 104 - 6.3 · 104 (J/m3) [92], the latter is about twice larger. Thus, to give a
more realistic polar representation of the energy density we added an arbitrary constant, 0.5 · 104 (J/m3).
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Figure 2.14: Polar plot of normalized biaxial
anisotropy energy The red line with markers is
the result of addition of a constant. The color
code represents the hard (red) and easy (green)
axes.
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Figure 2.15: Eigenfrequency, ω0/2π vs field, ap-
plied at different directions.
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Figure 2.17: Norm,

‖Re(T)‖[110] =
∣∣∣B2 cos(2ϕ̄)
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Note that, in the case of [100] propagation, since the easy axes are along (100) family, sat-

urating the system along hard axes does not result in intermediate parallel or perpendicular

configurations, as it was in the case of the uniaxial system (fig. 2.6).

To maximize the SAW effect on magnetization in this case the optimal configu-

ration would be to propagate along the easy axes, (100) and apply the field along
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the hard one, (110), that is at 45◦ with respect to the SAW wave vector.

Note that the decrease in the torque norm, as compared to the uniaxial system, is related to

the computation starting field value, we will come back to this point in the following section.

2.5.3 Biaxial MCA with uniaxial contribution

We will now consider a physical system, that exhibits biaxial MCA added to a uni-

axial contribution. This can be observed in the hysteresis cycle for the sample of 55nm of

Fe0.8Ga0.2 and also for the film of pure iron (chapter 6, fig. 6.14). The fig. 2.18 and fig. 2.19

show the in-plane hysteresis and polar plot of the remanent magnetization from the measure-

ments, performed by VSM (Vibrating sample magnetometer). As discussed previously, this

technique allows to measure the projection of magnetization along the applied field, that is

Ms cos(ψ), where Ms is saturation magnetization and ψ is the angle between the applied field

and magnetization, ψ = ∠( ~B, ~M). As can be seen, the [11̄0] and [110] axes are not totally

equivalent as a result of the uniaxial MCA contribution. Furthermore, the hard axis, indicated

by the lowest value of the magnetization at remanence, is slightly shifted with respect to the

high symmetry direction, [11̄0]. The system is less anisotropic, as compared to the pure iron.

Measured anisotropy and magneto-elastic constants are given in the table 2.1, section 2.5.

The polar plot of the energy density is represented in the fig. 2.20b. From the computation,

the hard axis is along the high symmetry direction, namely [11̄0], medium is along [110] and

the easy axes are slightly shifted with respect to [100] and [010]. The torque density norm is

represented in the fig. 2.27 - fig. 2.28 for SAW along [100] and [110], respectively.

Figure 2.18: In-plane hysteresis cycle, measured
by VSM, for Fe0.8Ga0.2 of 55nm.
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Figure 2.19: Polar plot of normalized remanent
magnetization, experimental data. Field was ap-
plied with respect to [11̄0] direction.

[100]

[1-10]

[110]



48 2. SAW-induced Magnetization Dynamics

Figure 2.20: (a) Biaxial, uniaxial and total energy densities. The curve, representing the total energy, is translated as
a result of addition of a constant, 2 · 104 (J/m3). (b) Polar plot of the total energy density.
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(b) Polar plot of the total MCA energy density.

Figure 2.21: Norm,

‖Re(T)‖[100] =
∣∣∣B1 sin(2ϕ̄)

ω2−ω2
0

∣∣∣ √A2
θ +A2

ϕ

vs intensity and direction of the magnetic field.

ksaw

Biaxial-Uniaxial MCA, SAW along [100]

A
pp

lie
d 

fie
ld

 in
te

ns
it

y 
(m

T)

Applied field angle ( )

ha
rd

ea
sy

m
ed

iu
m

Figure 2.22: Norm,
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To analyze this result, let us first notice that the contribution of the uniaxial MCA is

to promote one hard axis and thus, the energy barrier is larger in the [11̄0] direction. The

computed eigenfrequencies vs field for different field directions are represented in fig. 2.23. As

in the case of the uniaxial MCA, the [11̄0] and [110] are not-equivalent, the latter represents a

medium axis. As a consequence, the torque norm will assume maximum values, if the system

is saturated along the hard axis, [11̄0] for [100] propagation.
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Figure 2.23: Computed eigenfrequencies for the real system vs field, for different field directions.
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As stated previously, the torque norm is larger in the case of the uniaxial MCA, if we

compare the three systems considered (uniaxial, biaxial, biaxial-uniaxial). This is related

to the eigenfrequency. In the fig. 2.24 we represent the 1/(ω2 − ω2
0) term vs applied field

angle for the MCA systems considered, at the corresponding saturating field values. The

eigenfrequency of the system, ω0 for different anisotropy systems is plotted vs field, applied

along [11̄0] direction, in the fig. 2.25. As can be seen, in the case of uniaxial anisotropy the

frequency drop is slightly larger, resulting in a larger torque norm.

Figure 2.24: Term 1/(ω2−ω2
0) vs applied field an-

gle for different anisotropy systems at correspond-
ing saturation fields.

-

Figure 2.25: Eigenfrequency, ω0/2π for field, ap-
plied at −45.1◦ for different anisotropies.

fsaw
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2.6 Conclusion

In this chapter we discussed SAW-induced torque density, that triggers magnetization

dynamics. To summarize, a propagating SAW modifies the total energy density of a ferro-

magnet, resulting in modification of the effective field and thus, magnetization experiences

a torque. The SAW induced torque strongly depends on the intensity and direction of the

applied field with respect to the SAW wave vector and on the SAW propagation direction,

[100] or [110].

To compute the norm of the torque density, we employed the LLG equation and expressed

angular variations of the precessing magnetization, δθ, δϕ in terms of the SAW strain com-

ponents, derived in the chapter 1.

For clarity of the analysis, we considered separately three magneto-crystalline anisotropy sys-

tems: uniaxial, biaxial and biaxial-uniaxial. The real physical system exhibits the latter one,

as depicted in the polar plot of the normalized MCA energy density below.

Figure 2.26: Polar plot of the MCA energy density: biaxial-uniaxial MCA.
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The computed torque is given in the colorplots below, for [100] and [110] SAW propagation

(the scale of the color plots is different for better visibility).

In the figures below we represent the norm of the torque density, computed for a system,

exhibiting biaxial-uniaxial MCA (real physical system), for [100] and [110] SAW propagation

directions. SAW induced torque presents higher values at low fields, but is still active at

higher fields, well beyond the technical saturation of our samples. There are two configura-

tions, where the resultant torque is zero or vanishingly small (if the shear SAW component

is taken into account), that is when saturation magnetization is perpendicular or parallel to

the SAW wave vector. There is a possibility to maximize the SAW effect on magnetization,

while choosing the appropriate field directions and SAW propagations directions, depending

on the magnetic anisotropy of the system. In this case, SAW propagating along the easy axis

and the field, applied along the hard axis, result in a maximal torque. Note that, this is the

consequence of the system’s sensitivity to the magneto-crystalline anisotropy at rather small
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Figure 2.27: Norm,

‖Re(T)‖[100] =
∣∣∣B1 sin(2ϕ̄)

ω2−ω2
0

∣∣∣ √A2
θ +A2

ϕ

vs intensity and direction of the magnetic field.
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Figure 2.28: Norm,

‖Re(T)‖[110] =
∣∣∣B2 cos(2ϕ̄)

2(ω2−ω2
0)

∣∣∣ √A2
θ +A2

ϕ

vs intensity and direction of the magnetic field.
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fields, right after the saturation. Another important observation is straightforward depen-

dence of SAW on the magneto-elastic coefficients, B1, B2. Note that the effects, described

in this chapter are the effects of SAW on magnetization. In our experiments, described in

chapter 5, we look at the effects of magnetization on the SAW propagation. But since both

systems are coupled via magneto-elastic coupling, there is a strong interplay between the two.

This rather simple and physical description permits us to partially explain our experimental

results in terms of SAW-induced magnetization dynamics above saturation.





Chapter 3

Galfenol Fe1−xGax Alloys

Even though magnetostriction was discovered by Joule in 1842, the practical usage

was not immediate. During the World War II magnetostrictive Ni-based alloys were used in

transducers for sonar1 applications [41], [93]. In the 1960s A.E. Clark et al at U.S. Naval

Ordnance Laboratory discovered large magnetostriction in rare earth metals terbium, Tb and

dysprosium, Dy at low temperatures. In order to obtain large magnetostriciton at room tem-

peratures, they created the rare earth/3d transition metal alloys, TbFe2 and DyFe2, but at a

price of high magneto-crystalline anisotropy, which thus required a high saturation field. The

necessity to reduce anisotropy led to the discovery of the alloy Tb0.27Dy0.73Fe1.95 or terfenol-

D2. This alloy shows a giant magnetostriction at room temperature and low saturation field,

however it is brittle. To achieve a good compromise among these properties, i.e. large mag-

netostriction, high Curie temperature, reasonable magneto-crystalline anisotropy and high

tensile strength, Fe1−xGax or Galfenol, alloys were developed in 1999 at Naval Surface War-

fare Center by A. E. Clark et al. The table 6.1 resumes the main properties of the different

bulk magnetostrictive materials.

Table 3.1: Magnetostrictive constants for different materials. As can be seen iron gallium
exhibits moderate magnetostriction, but higher tensile strength as compared to Terfenol-D,
from [65], [95], [96].

Single crystal (Troom) λ100 × 10−6 λ111 × 10−6 Tensile strength (MPa)

Fe 21 -21 ∼ 250

Ni -46 -24 ∼ 250

Fe0.8Ga0.2 ∼ 400 - ∼ 500

Tb0.3Dy0.7Fe2 - 1600 ∼ 28

1Sonar is derived from SOund Navigation And Ranging.
2“Ter” stands for Terbium, “Fe” for iron, “NOL” derived from Naval Ordnance Laboratory and “D” for

dysprosium [94].
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3.1 Structural and Magnetostrictive Properties of Bulk FeGa

The magnetic behavior of galfenol with the concentration x% is known for samples

of massive material. In 2003 Clark et al. [97] presented measurements of magnetostriction

and elastic constants for Fe1−xGax monocrystals. One of the objectives was to investigate

the effect of thermal history on these properties. They prepared two groups of samples with

different thermal treatments. The samples prepared at 1000◦ experienced either a slow cooling

at 10◦/min or a rapid cooling (quenching). The constants of magnetostriction 3
2λ100 and 3

2λ111

were measured using strain gauge techniques.

The results for the tetragonal magnetostriction, 3
2λ100 and 3

2λ111 are shown in the fig. 3.1.

Slowly cooled samples present two maxima at around x=17% and x=27% and a strong sup-

pression between them. Quenched samples present a stronger value of 3
2λ100 with the first

peak at a slightly higher concentration x=19%. It is important to notice, that 3
2λ111 exhibits

lower absolute values and that the sign changes for a concentration of x=18%.

Figure 3.1: Measured magnetostriction values in bulk Fe1−xGax samples as a function of the Ga concentration,
x%, adapted from [97].

The dependence on the thermal treatment motivated deep structural studies of the sam-

ples. Indeed, the atomic structure of Galfenol alloys is quite complicated and the reader is

referred to [98]. The fig. 3.2 shows possible crystallographic structures that may result when

the alloy is formed: chemically disordered bcc A2, ordered bcc B2, disordered bcc DO3 and

fcc Ll2. Several ferromagnetic phases can coexist for a given gallium concentration, as can be

seen in the equilibrium phase diagram (fig. 3.3).

In this thesis we will focus on samples with x=20%. The phases that appear for these concen-

trations are A2, B2 and DO3. The A2 is an iron bcc network - Fe with atoms of Ga randomly

distributed. Both phases B2 and DO3 are bcc networks of Fe in which we can find Ga pairs.

As shown in the fig. 3.2 in the B2 structure, Ga-pairs occupy second nearest neighbor sites

along the < 100 > directions, in the DO3 they occupy neighboring sites along the < 110 >

directions. At low concentrations (lower than 20%) bulk samples are characterized by the A2

structure.
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Figure 3.2: Different crystal structures of
Fe1−xGax, adapted from [98].
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Figure 3.3: Phase diagram from [98].
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Between 20% and 23% the A2 and DO3 structures are observed in the slowly cooled

samples. In quenched samples the B2 structure is also observed.

Concerning the magneto-elastic coefficients in bulk galfenol, the B1 and B2 constants quantify

the change in anisotropy due to an induced deformation in the sample. In the case of cubic

symmetry, they related to the magnetostriction according to the equations:

λ100 = −2

3

B1

(c11 − c12)
, λ111 = −1

3

B2

c44

This permitted Clarck to extract the B1 and B2 parameters from magnetostriction measure-

ments, once the elastic constants c11, c12 and c44 are known:

Table 3.2: Extracted magneto-elastic parameters by A. Clarck et al., from [97].

Ga content, x% (c11 − c12)/2 (GPa) 3
2
λ100 × 10−6 B1 (MJ/m3)

0 48 30 2.9

5.8 40 79 -6.3

13.2 28 210 -11.8

17 21 311 -13.1

18.7 19.7 395 -15.6

24.1 9.4 270 -5.1

27.2 6.8 350 -4.8

x% c44 (GPa) 3
2
λ111 × 10−6 B2 (MJ/m3)

0 116 -32 7.4

8.6 119 -27 6.4

13.2 ∼ 119 -24 5.7

20.88 ∼ 120 -42 -10.1

28.63 ∼ 120 -61 -14.6
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We notice that B1 and B2 depend on the Ga content and do not differ significantly in

amplitude for x=20% since a large part of the Ga - induced 3
2λ100 enhancement is related to

a softening of the c11 − c12 elastic constants term. We also notice the change of sign of the

B2 term for x close to 15%.

3.2 Origin of Magnetostriction in FeGa Alloys: extrinsic vs.

intrinsic

Different theories try to explain the influence of the addition of Ga in the increase of

the magnetostriction of galfenol compared to pure Fe. To solve this question, one of the first

attempts was to correlate the magnetostriction with the aforementioned structural phases.

Indeed, near the first maximum of magnetostriction, the phases that play the main role are

A2, DO3 and B2. Therefore, the first theoretical calculations were devoted to the under-

standing of the magnetostrictive contribution given by perfect crystals of each phase. These

initial studies, conducted with first-principles techniques, found that phase B2 is prone to a

tetragonal distortion that originates the highest λ [99]. This would be an intrinsic origin of

magnetostriction. Some years later, evidence began to appear about the existence of nano-

precipitates and a new theory that includes nanocrystals was presented. This model is based

on the idea that heat treatment produces a state chemically and structurally heterogeneous

consisting of nanometric precipitates of the DO3 phase into the A2 matrix [98], [100]. In this

framework, it was proposed that the observed magnetostriction and the reduction of the elas-

tic constants of these alloys can be caused either by a displacive transformation induced by a

magnetic field and/or by the reorientation, induced by tension, of tetragonal micro-domains

that are formed in the heterogeneous alloy. The origin would be extrinsic [101], [102]. In this

context, new studies of first principles were carried out for clusters of B2 or DO3, immersed

in a bcc Fe matrix. In this case the results showed very low and even negative λ100 for phase

B2, as opposed to the results obtained in pure B2 crystal [103]. This article clearly shows

how sensitive this magnetostriction is with respect to the atomic ordering. It’s worthwhile

to mention that X-ray diffraction measurements [104] could not show any evidence of an

alignment of the nanoprecipitates with an external magnetic field, imposing a limit to the

aforementioned extrinsic theory. Later, ab initio calculations performed on very large unit

cell permitted to compare the total energies of systems with the same Ga-concentrations but

with non-equivalent configurations. They succeeded in calculating the lowest energy Ga con-

figuration in the cubic cell and the magnetostrictive coefficients that go with. The conclusion

of the authors is that nanoclustering is not needed to explain enhanced magnetostriction. An

intrinsic (electronic structure related) mechanism would be at the origin of the phenomenon

[105]. This conclusion corroborates with the more recent large scale ab intio molecular dy-

namic calculations [106], which succeeded in reproducing the Ga-dependent magnetostriction

curve and gave a subtle vision of the magnetostriction phenomenon (section 3.2.1).
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3.2.1 Ab initio approach

On the other hand, recent ab initio calculations, performed by Wang et al. [106], show

Ga-induced changes of the electronic structure of the material3. This might be an exhaustive

argument for the enhanced MS. Following the eq. (1.24) in the section 1.2.1, the contribution

to the MCA energy is proportional to the spin orbit coupling. The maximum contribution

comes from the interaction between the occupied states close to the Fermi level with un-

occupied states, because their energy difference, i.e. denominator, is small. To determine

the tetragonal MS coefficient λ001 the following relation was used in [106], by considering a

deformed lattice cell εxx = εyy = −1
2εzz (i.e. ε11 and ε22 should be replaced in the equations

for the MCA, magneto-elastic and elastic energy densities, to yield the following relation):

λ001 =
2

3

dfa/dεzz
d2ftot/dε2

zz

= −B1

3c′
(3.1)

The fig. 3.4 represents the main results. As can be seen from the inset of the fig. 3.4 (a), the

MCA energy increases monotonically and the total energy has its minimum when the system

is unstrained. The curve of λ001, fig. 3.4 (a), obtained by ab initio calculations, is in a good

agreement with previous experimental results: λ001 increases quadratically till x ≈ 19% and

decreases abruptly after. The inset of the fig. 3.4 (c) represents the density of occupied and

unoccupied states for the first (Fe1) and second (Fe2) neighbors of Ga and the bulk iron.

According to the eq. (3.1), strong MS is expected for a system with large MCA energy under

small lattice distortion. As can be seen, the DOS of Fe1 shows high peaks in the minority

spin channel close to the Fermi level (at 0eV). This enhances the MCA energy, leading to

the increase of the magnetostrictive constant. Furthermore, the number of states of minority

spin channel N(EF,↓) (fig. 3.4, c) increases monotonically with Ga concentration.

Figure 3.4: The inset of the figure (a) represents the MCA and total energies as a function of strain εzz . Fig.(a) shows
the MS constant λ001 as a function of Ga concentration. The inset of the figure (c) represents the DOS of occupied (left)
and unoccupied (right) states for the first (Fe1), second (Fe2) neighbours of Ga and the bulk iron (shaded background).
The flashes (↑) and (↓) represent majority and minority spin channels respectively. Fig.(c) gives the number of states
within the minority spin channel N(EF,↓) vs Ga content (Ref. [106]).

3Fe81.25Ga18.75 is taken as an example for simulations.
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What is important for our sample is that the Ga concentration reaches 19.9%, which

corresponds to the first peak of the magnetostrictive constant λ100 as measured by Clark et

al. (fig. 3.1). It is important to note, that our sample is a thin film of FeGa on the GaAs

substrate and one should expect different properties compared to the bulk galfenol.

Systematic study of magnetic anisotropies and magneto-elastic properties of Fe1−xGax thin

films as a function of film thickness and gallium content was done by M. Barturen during her

PhD research [92]. The important consequence on the magneto-elastic properties is summa-

rized in two figures below, that present the measured magneto-elastic constants of thin films

vs gallium content [90]. It is thus clear, that the bulk and thin film magneto-elastic constants

B1 and B2, proportional to the MS constants, do not differ much in values for the 20% Ga

concentration. Furthermore, these values will be used in comparison with the computational

results, presented in the chapter 6, in order to validate the theoretical model.

Figure 3.5: Measured magnet-elastic coefficients of galfenol thin films vs gallium content in samples of 50 −
100nm thick.

(a) B1 coefficient from [90]. (b) B2 coefficient from [90].

3.3 Interplay of Anisotropies in Thin Films

We start this section with the observation of hysteresis loop4 for in-plane applied field

in Fe0.8Ga0.2 films of 4, 55 and 96nm and magnetic image5 of the latter sample. Following

conclusions are made:

(i) From fig. 3.6: the two in-plane directions [11̄0] and [110] are not equivalent, the remanent

magnetization is reduced by 78% if sample is magnetized along [11̄0] (hard axis), by

61% if along [100] (intermediate) and [110] is the easy axis.

4Measured by VSM on PPMS equipment (Quantum Design).
5Measured by magnetic force microscopy technique.
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(ii) From fig. 3.7: the non-equivalence of two directions is much less pronounced for 55nm

film, the role of [110] and [100] axes is reversed.

(iii) From fig. 3.8: sample is in-plane isotropic. The MFM (fig. 3.9) image shows the pres-

ence of stripe-like magnetic domains. This particular domain structure complicates the

understanding of the magneto-elastic coupling phenomenology but introduces interest-

ing new features in the acoustic measurements. In the following we will discuss samples

without this stripe pattern.

Figure 3.6: Hysteresis of 4nm film.
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Figure 3.7: Hysteresis of 55nm film.
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Figure 3.8: Hysteresis of 96nm film.
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Figure 3.9: Stripe like domains in 96nm film.
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The observed features show different magneto-crystalline anisotropy, when compared to

pure iron (see chapter 6, fig. 6.14). The magnetic anisotropies that arise in film-on-substrate,

ZnSe/GaAs heterostructure are referred to as in-plane uniaxial (UMA) and perpendicular

(PMA) 6 magnetic anisotropy, the latter leads to the formation of stripe-like magnetic domains

(fig. 3.9).

3.3.1 UMA & PMA

The growth of single-crystal Fe thin film on GaAs semiconductor by MBE were in-

tensively investigated in the 80s for its potential applications in spintronics. J.J. Krebs et

al. observed for the first time that, the expected biaxial magnetic anisotropy in a layered

structure Fe/GaAs(100) was altered by the induced in-plane UMA and PMA [107]. Presence

of in-plane UMA results in non-equivalence of in-plane directions, while PMA, depending on

the sign of the corresponding anisotropy constant, favors the out-of-plane or in-plane magne-

tization. The effect of UMA was also observed in Fe/ZnSe/GaAs heterostructure [108]. Ab

initio calculations attribute the microscopic origin of UMA to the interface effects, namely

anisotropic interface bonding [109]. From [92] it follows is that the induced UMA depends

on the sample thickness: the UMA constant reverses sign for small thicknesses (this implies

easy/hard axis reversal), is present in films of around 40nm thick, 20% of Ga and vanishes

for above 60nm (fig. 3.10, left).

The PMA contribution is discussed in [110] and it is shown to originate from the same inter-

face effects, the magnitude of both contributions decreases with the increasing film thickness

[111], [110]. However, there exists another source of PMA in thin Fe(1−x)Gax films. In the

work, presented in [112], the authors report on tetragonally distorted samples, distortion be-

ing attributed to “the short-range ordering of Ga-Ga pairs along the [001] growth direction”.

The fig. 3.10 (right) displays measured lattice parameters of single crystal galfenol films as

a function of different Ga content. As a result, pristine iron in-plane lattice parameter is

conserved, while the out-of-plane parameter increases with the Ga content. The tetragonal

structure was found to be metastable, as it is fully released under annealing (300◦C).

The PMA, observed in these films, was attributed to the tetragonal distortion of the lattice

[67]. A phenomenological model was proposed, showing that a preferential alignment of Ga

pairs along 〈100〉 results in an extra energy, that takes into account the parallel or perpen-

dicular alignment of spins of the neighboring Fe atoms with respect to Ga-Ga pairs.

From experimental view point to support the findings, the PMA anisotropy constants were

measured both in as-grown and annealed samples, the latter being cubic. A large constant

was measured in tetragonally distorted samples, KPMA ∼ 5 × 105 J/m3, while for the an-

nealed ones the PMA contribution was vanishingly small.

Peculiarity of the PMA is that its competition with the magneto-static self-energy leads to

6Both terms “perpendicular magnetic anisotropy” or “out-of-plane magnetic anisotropy” are equivalent in
literature.
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the formation of stripe domain structure, as was observed in fig. 3.9, [113], [114]. The whole

stripe pattern can be rotated and aligned parallel to the last saturating magnetic field. The

minimal field, at which the pattern begins to rotate, should be above 40mT, as reported in

[115].

Figure 3.10: (Left) Uniaxial magnetic anisotropy constant K
(IP )
u vs film thickness for different gallium content,

from [92]. (Right) Measured lattice parameters from [112]: out-of-plane (up triangles), in-plane (down trian-
gles), relaxed lattice parameters (full circles) vs the Ga content. Open squares represent lattice parameters
from R.A.Dunlap et al., J.Magn.Magn.Mater. 305,315 (2006), for comparison.

3.4 Sample Growth

The control of crystal structure in FeGa thin films is the necessary condition to mon-

itor the impact of magneto-elastic coupling parameters in SAW propagation and to tailor

magnonic devices, exploiting well defined SW and SAW modes. In order to obtain high qual-

ity and well oriented samples, FeGa thin films were grown by molecular beam epitaxy (MBE).

The growth was performed by Mahmoud Eddrief at INSP.

Epitaxial thin films present the required texture, [001] out-of-plane orientation, if they are

grown by MBE on GaAs(001) substrates. Fe1−xGax thin films were deposited on a c(2x2)

Zn-terminated ZnSe epilayer, grown on a GaAs substrate, a prototype of a low reactive

iron/semiconductor interface [116].

A very good quality thin films are obtained if the ZnSe thin film is grown on a MBE-deposited

GaAs buffer, covering the original GaAs substrate. The growth of the GaAs buffer layer was

performed by Paola Atkinson in a UHV-interconnected III-V growth chamber. Details of the

MBE growth of a pseudomorphic 20-nm-thick ZnSe epilayer have been previously reported

in [117]. The ZnSe epilayer constitutes an efficient chemical barrier to separate galfenol from

the substrate. We kept the growth temperature at 180◦C, following a well established recipe,

reported in [112].

At the end of the growth, the samples were covered by a protective 10-nm gold capping

layer. In the same aforementioned article, the INSP team performed a study of the Ga con-
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tent in thin films by XPS (X-Ray Spectroscopy), Rutherford backscattering (RBS), energy

dispersive x-ray spectrometry (EDX) accompanied by X-ray diffraction (XRD) experiments.

This permitted to establish a Ga content vs. lattice parameter calibration curve. The epi-

taxial conditions relationship were also established: FeGa(001)//ZnSe(001)//GaAs(001) and

FeGa[001]//ZnSe[001]//GaAs[001].

In this thesis, we focused on 20% Ga-content thin films in order to maximize the magneto-

elastic coupling. It is important to mention that 50 nm thick Fe1−xGax thin films are fully

relaxed in the bcc-like structure of pure iron. Of course, the larger Ga size increases the

lattice parameter of pristine Fe unit cell. Nevertheless, a tetragonal distorted unit cell can be

stabilized in FeGa thin films with a c/a ratio running from 1% up to 3% [112].This is proba-

bly due to Ga ordering in the growth direction leading to Perpendicular Magnetic anisotropy

(PMA) and weak magnetic stripe domains formation, as reported in M. Barturen’s thesis

[92]. Here, we focus on samples presenting a cubic structure in order to stabilize the in-plane

magnetization equilibrium orientation.

All the films were characterized by X-ray diffraction, using a Rigaku Smartlab equipment

and a Cu Kα radiation (Mahmoud Eddrief and Sarah Hidki). This permitted to evaluate the

lattice parameter and to evaluate the thin film thickness (X-Ray reflectivity oscillations). The

thickness of some samples was double checked by TEM analysis (Dominique Demaille). The

c/a ratio was evaluated by measuring the angles between the cubic (112) and (-1,-1,2) reflec-

tions. The magnetic characterization (hysteresis curves and magnetic moment measurements)

of all the samples was done by the author on a VSM (Vibrating Sample Magnetometer) on a

PPMS (Physical Properties Measurements System) equipment (table 3.4).

In the table below we summarize the main parameters of the samples studied in this thesis

(table 3.3). In the following, we will focus on the measurements performed on the sample

32m0206, that presents a bcc structure. All the other samples were also employed for acous-

tic measurements or BLS studies. However, the results are not shown explicitly for all the

samples for two reasons: redundant with respect to 32m0206 or poor acoustic signal.

The magnetization dynamics of samples was also characterized by FMR (Ferromagnetic Res-

onance) experiments by Julian Milano (Cetro Atomico Bariloche, Argentina), table 3.4. This

permitted to extract Gilbert damping parameter and magnetic anisotropy constants, that will

be employed in the modeling part of this thesis.



3.4 Sample Growth 63

Table 3.3: Samples growth characteristics. Concentration of Ga ' 20%, TGa=730◦C, substrate GaAs(001)-SI. For all the
samples the capping layer is Au, except 32m0179, ZnSe.

Sample d (nm)
COP (nm)

002

aIP (nm)

200

C/a

(112, 1-12)

32m0153
FeGa 92 ± 2 nm

Au 7-8 ± 0.3 nm

C = 0.2925 ± 0.0005 nm

(2Θ = 63.57 ± 0.1◦)
In-plane

C/a = 1.014 ± 0.002

a = 0.2884 ± 0.0007 nm

(112, 1-12) =71.3 ± 0.1◦

32m0179

A

FeGa 25 ± 3 nm Out-Of-Plane In-plane

32m0203

FeGa 26 ± 3 nm RX

26-29 nm TEM

Au 9-11 ± 0.3 nm

C = 0.2913 ± 0.0005 nm

(2Q = 63.86 ± 0.1◦)
In-plane

C/a = 1.007 ± 0.002

a = 0.2892 ± 0.0007 nm

(112, 1-12) = 70.9 ± 0.1◦

32m0205

FeGa 44± 3 nm RX

36-40 nm TEM

Au 9-10 ± 0.3 nm

C = 0.2919 ± 0.0005 nm

(2Q = 63.71◦ ± 0.1◦)

a200=0.2883

± 0.0005 nm

(2Θγ =

64.6 ±0.1◦ )

C/a = 1.016 ± 0.002

a = 0.2873 ± 0.0007 nm

(112, 1-12) = 71.4 ± 0.1◦

32m0206

FeGa 50 ± 3 nm RX

58 nm TEM

Au 8 ± 0.3 nm

C = 0.2903 ± 0.0005 nm

(2Q = 64.10 ± 0.1◦)

C/a = 1.0013 ± 0.002

a = 0.2873 ± 0.0007 nm

(112, 1-12) = 70.6 ± 0.1◦

32m0210
FeGa 88 ± 3 nm

Au 7-8 ± 0.3 nm

C = 0.2904 ± 0.0005 nm

(2Q = 64.078 ± 0.1◦)

C/a = 1.002 ± 0.002

a = 0.2899 ± 0.0007 nm

(112, 1-12) = 70.6 ± 0.1◦

32m0212
FeGa 88 ± 3nm

Au 7-8 ± 0.3 nm

C = 0.2906 ± 0.0005 nm

(2Q = 64.026 ± 0.1◦ )

a200 = 0.2895

± 0.0005 nm

(2Θγ =

64.3 ± 0.1◦)

C/a = 1.003 ± 0.002

a = 0.2899 ± 0.0007 nm

(112, 1-12) = 70.7 ± 0.1◦

32m0269
FeGa 4 ± 3 nm

Au 7-8 ± 0.3 nm

C/a = 1.0207 ± 0.002

(112, 1-12) =71.64 ± 0.1◦

Table 3.4: Measured magneto-crystalline anisotropy constants (FMR) and saturation magnetization
(VSM). Notations: d-film thickness, K1 biaxial MCA constant, Kip uniaxial MCA constant.

Name d (nm) (K1 ± 0.56) · 104 (J/m3) (Kip ± 0.10) · 104 (J/m3) Ms x 106 (A/m)

32m0203 26 ± 3 1.41 -0.43 1.04 ± 0.12

32m0205 44 ± 3 2.01 -0.75 1.01 ± 0.07

32m0206 58 ± 3 2.41 -0.60 1.02 ± 0.05

32m0210 88 ± 3 2.61 -1.30 1.00 ± 0.03
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3.5 Conclusion

This chapter summarizes the main structural and magnetic peculiarities of galfenol al-

loys, used to study the magneto-elastic interactions in this thesis. The choice of the material

is based on its enhanced magnetostriction, as compared to pure iron or nickel. Magnetoe-

lastic coupling is enhanced in our samples, as attested by cantilever measurements done in a

previous PhD thesis. We briefly discussed the origin of this enhancement, that is more likely

attributed to the Ga-induced changes in the electronic structure of the material.

The sample growth by molecular beam epitaxy is well optimized at INSP.

From the magnetic point of view, FeGa thin films exhibit several kinds of magneto-crystalline

anisotropy, namely biaxial (or cubic) and uniaxial (UMA). The microscopic origin of the latter

is attributed to the interface effects, related to anisotropic interface bonding. Another type

of MCA, present in some of our thin films, is perpendicular magnetic anisotropy (PMA). The

anisotropy constants were measured by FMR in Baroliche (Argentina).

In the thesis we focus on samples exhibiting in-plane magnetization to consider, from a the-

oretical point of view (chapter 2, chapter 6), a simpler magnetic structure as compared to

PMA.



Chapter 4

Sample Fabrication and

Experimental Setup

This chapter is devoted to the description the experimental setup (section 4.1), used

in the thesis for the RF measurements, and the sample fabrication procedure (section 4.2).

We show several designs, explored to achieve excitation of harmonic and high frequencies of

SAW. Also the RF antennas were fabricated to excite spin waves (SWs).

From our experimental point of view, several objectives were set during this thesis:

1. Excitation of surface acoustic waves at harmonic frequencies in order to perform a study

of magneto-elastic interactions as a function of frequency, with a single device.

2. Excitation of high frequency SAWs to resonantly couple with spin waves or to explore

other possible interactions. Starting from 0.5 GHz the goal was to extend the frequency

range up do 5 GHz, at least.

3. Excitation of SWs via RF antennas.

As a very first step of the fabrication process, the samples had to be chemically etched,

which was not always possible. Two solutions were considered: deposition of piezo-electric

ZnO film on top of the structure and dry etching in collaboration with A. Anane, CNRS/Thales.

To excite harmonics and high frequency surfaces acoustic waves we employed several designs

of inter-digital transducers (IDTs), which were used for all electrical SAW excitation and

detection. A lot of progress was done already in the 70s in fabrication of SAW devices, used

in filters, delay lines, resonators [118]. A very rich source on the SAW devices can be found in

[119]. Note that, this thesis does not have for a goal to develop an IDT. In stead we employ

different IDT types, previously developed by others, in particular [120], [121].
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4.1 Excitation and detection of SAWs. RF experimental setup

To our knowledge, there are two possible methods to excite surface acoustic waves. First

method is an optical excitation via thermoelastic effect [122]. The second method employs an

all electrical excitation with inter-digital transducers via piezoelectric effect [123] (ch.2). An

IDT consists of an array of electrodes, to which an alternating potential difference, U(t) is ap-

plied, as schematically represented in the fig. 4.1. The voltage across the electrodes produces

an alternating electric field, as depicted in the fig. 4.2, which by piezoelectric effect causes a

series of expansions and compressions near the surface of the material, that propagate in both

directions away from the IDT. More precisely, each pair of electrodes will emit a piezo-elastic

wave. For sinusoidal supply voltage, these waves will add constructively only if mechanical

period, dm is half of the SAW wave length, i.e. if the excitation frequency is f0 = vR
λsaw

= vR
2dm

.

This is a resonance condition and f0 is referred to as the resonant frequency of the IDTs.

From this it can be seen, that the SAW wavelength and frequency are fixed by the geometry

of the IDTs and the Rayleigh velocity, vR of the corresponding propagation medium.

To perform the RF measurements we employ a time domain technique, which has its own

advantages, as compared to the frequency domain technique (measurements with vector net-

work analyzer (VNA)). These advantages will be discussed later. Two experimental set-ups

were used, corresponding to two SAWs detection schemes, namely rapid sampling and

synchronous demodulation .

Figure 4.1: Schematic representation of a bi-
directional inter-digital transducer. Notations:
mechanical period, dm. Electrical period, del
fixes the SAW wavelength, λsaw. Overlap width
or aperture, w corresponds to the SAW emission
region.

w
ksawksaw

U(t)

Contact

Figure 4.2: A simplified picture of an electric field,
generated by alternating voltage, applied on the
electrodes (cross section) at different times. As
can be seen, the generated stresses add construc-
tively only if the mechanical period, dm is half
of the SAW wave length. Adapted from [123] (p.
59).

x1

t

dm



4.1 Excitation and detection of SAWs. RF experimental setup 67

Figure 4.3: Rapid sampling detection scheme. Synchronous triggering implies the simultaneous triggering by
the pulse generator and frequency synthesizer.
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zoom

Synchronous triggering

The figure above schematically represents the rapid sampling detection scheme. An input

sinusoidal pulse is generated by a frequency synthesizer and a pulse generator, amplified,

A0 cos(ωt) and applied to the emitting IDT, the latter launches a surface acoustic wave, as

described above, that propagates in the medium. Inversely, a propagating vibration induces a

voltage, A cos(ωt− ωτp) on the receiving IDT, that is detected and sent directly to the oscillo-

scope. We thus can observe a time real signal. The first burst, represented on the oscilloscope

picture is the direct electromagnetic radiation of the emitter to the receiver. The second burst

is the real acoustic signal. Note that it is thus possible to measure the SAW propagation time

between the IDTs, τp, as can be seen from the figure. Knowing the propagation time and the

distance between the IDTs, we can experimentally access the phase velocity of SAW within

5-10% error.

As discussed before, each pair of electrodes emits a wave. A zoom of the SAW emission region

in the fig. 4.3 shows such generation of waves, that add constructively. Consequently, these

waves propagate slightly different distances between the emitter and receiver. This can be

seen in the shape of the acoustic signal, that is the increase in amplitude during some time,
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defined as τrise, up to the steady state, when all the waves are detected by the second IDT.

The advantage of the time domain technique is that we can separate the main acoustic signal

from the direct electromagnetic radiation, as well as from the acoustic burst reflections or

some additional spurious signals. This permits us to experimentally access the phase, φ (rad)

and the amplitude, U (mV) of the acoustic signal. The disadvantage of the rapid sampling

detection scheme is that it requires a high-performance oscilloscope, especially if one wants to

explore high acoustic frequencies above 1GHz. From this point of view, the second detection

scheme requires rather a standard oscilloscope, though additional parts, as divider, mixer and

phase shifter are required, and it is necessary to calibrate the detection set-up. In this thesis

both methods were used (the high-performance oscilloscope was rather late improvement of

the experimental setup). The synchronous modulation detection scheme is represented in the

fig. 4.4. Note that, the sample is placed into a magnetic field, generated by current carrying

coils. For clarity the coils are represented only in the fig. 4.4.

In such a case the output signal from the sample is divided into two, that are in turn mixed

with a reference signal, A0 cos(ωt) from the synthesizer, resulting in P = AA0
4

(
cos(2ωt− ωτp)+

cos(ωτp)
)

and Q = AA0
4

(
cos(2ωt− ωτp) + sin(ωτp)

)
. These two signals, P and Q, are then

filtered by low pass within the oscilloscope to yield P ′ = AA0
4 cos(ωτp) and Q′ = AA0

4 sin(ωτp).

The amplitude and the phase of the acoustic signal are then deduced from:{
U =

√
P ′2 +Q′2

φ = ωτp = arctan P ′

Q′

Figure 4.4: Ideal synchronous demodulation detection scheme. Notations: � divider; ⊗ mixer; π
2

phase shifter.
Synchronous triggering by the pulse generator.
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From the measured amplitude and phase we can deduce the relative change in the SAW

phase velocity, ∆V
V and change in SAW attenuation, ∆Γ as a function of the applied magnetic

field, detailed in the appendix H.
∆φ
φ = −∆V

V = 1
V

(
V (B)− V (Bref )

)
∆Γ = − 20

dp
log10( U(B)

U(Bref ))
(4.1)

where Bref stands for some reference field, dp is the propagation length.

The two measurements schemes permit us to measure the velocity variations of the order of

10−6 and the variations in the attenuation of the order of 0.1 dB/cm.

It is also important to note, that such measurement would be impossible without the tem-

perature control of the sample. We are able to stabilize the sample temperature up to 0.001◦C.

At this point we should clarify the measurement procedure. The figure below shows the

SAW propagation directions, that is [110] and [11̄0] and the corresponding procedure. Note

that the IDTs can excite wave propagation along [110] or [11̄0], but not along [100]. Indeed,

in the latter case, due to the symmetry of the piezoelectric tensor, the electric field built in

the IDT do not couple to the wave strains. To propagate along [100], we need to deposit on

top a piezoelectric ZnO film.

During the measurements magnetic field is applied with respect to the SAW wave vector,
~ksaw. In order to compare measurements, performed at different field directions, one should

define a common magnetic reference point. For this purpose, before any measurement,

the sample is saturated in the ~B ↑↓ ~ksaw configuration, the magnetic coils are rotated at

zero field for some angle, ϕB. Thus, while computing the change in velocity and attenuation,

using the eq. (4.1), the reference field, Bref is zero, provided that the sample was saturated

in ~B ↑↓ ~ksaw configuration.

Figure 4.5: The main crystallographic directions of the
sample. SAW can propagate along [110] or [11̄0] direc-
tions, the field is swept at an angle with respect to the
SAW wave vector, ~ksaw (green shaded region).

[100]

[1-10]

ksaw
[110]

ksaw

Measurement procedure:

1. Saturation at ~B ↑↓ ~ksaw
2. B = 0, remanence

3. Rotation at ϕB with respect to the ~ksaw
at remanence

4. Measurement, field sweeping
0 → +450mT → -450 mT → +450 mT
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4.2 Fabrication procedure

The fig. 4.6 represents the final result of sample fabrication. Several structures were

considered. Most samples were etched (dry or wet). When the etching was an issue, or for wave

excitation along [100] (see above), we had to deposit a ZnO piezoelectric layer (200-400nm).

Opening a window between the IDTs in such a case results in an unstrained ferromagnetic

film. Some samples were dry etched in collaboration with A. Anane, CNRS/Thales.

The main steps in sample fabrication process are the following:

1. Optical lithography is used to protect the central region of the ferromagnetic film

2. The film is wet / dry etched up to the substrate, leaving a central region of the ferro-

magnetic film untouched

3. OR deposition of the ZnO piezoelectric layer on top of the ferromagnetic film

4. Optical / electron beam lithography are used to fabricate the IDTs. The choice of the

lithography technique depends on the IDTs working frequency, as will be explained later

Figure 4.6: Three structures were fabricated. (Left) structure obtained after wet/dry etching, the IDTs are
fabricated on top of the GaAs substrate. (Middle) a piezoelectric film of ZnO is deposited on top of the iron
gallium thin film, the IDTs are fabricated on top of ZnO. (Right) A window is chemically etched in between the
IDTs to have the unstrained ferromagnetic film. Note that, this is a simplified representation, for ZnSe chemical
barrier and gold capping layer were omitted. The real structure is: (ZnO/)Au/Fe0.8Ga0.2/ZnSe/GaAs.

GaAs

Fe0.8Ga0.2

GaAs

Fe0.8Ga0.2
ZnO

GaAs

Fe0.8Ga0.2
ZnO

4.2.1 Wet etching

At first, the sample is covered with the negative resist AZnLof2035 by spin coating tech-

nique. This technique allows the creation of a very thin (few µm), smooth and homogeneous

resist films1. The sample is then baked at 150◦C for 1 minute. By means of the ultra-violet

laser UV (405nm) the central region of the sample surface is illuminated (photo-lithography).

Subsequently, the resist around the illuminated region is removed and the sample is chemically

(wet) or dry etched, leaving a square of FeGa thin film on the GaAs substrate.

The solution for chemical etching was found in the literature[124]. However, the volume

ratio of solvents for a given concentration and etching time were determined experimentally.

The main problem arises from the non-uniformity of the etching process, the solution and

1The resist film thickness is proportional to the reciprocal square root of the spin speed.
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etching time is sample dependent. The disadvantages of this technique is that some residuals

of the etched material stick on the surface, close to the border of the protected film in the

middle of the structure and thus, the IDTs have to be deposited further from the ferromag-

netic film, which implies relatively weaker input signal due to the decay of the propagating

wave. Sometimes, these residuals could be mechanically removed with a special cotton swab,

moistened in acetone, as represented in fig. 4.7a - fig. 4.7b. Furthermore, the acid eventu-

ally attacks below the resist, leaving non-straight borders of the film, resulting in a diffused

acoustic wave. The determined solutions and development time for some samples are given

in the table below.

Figure 4.7: Result of the wet etching. Red dashed line encircles the residuals of the etched material.As can be
seen, the acid attacked under the resist, resulting in a non-straight border of the ferromagnetic film square.

Au/FeGa

GaAs
(a) Etching residuals.

Au/FeGa

GaAs

(b) The etching residuals are removed mechani-
cally with a cotton swab, moistened in acetone.

Table 4.1: Determined wet etching solution and development time for different samples. Notation: US ultra-sounds.

Name
Thickness

(nm)
Solution Volume ratio

Development

time
Comments

32m0100 Fe 55 HCl 25% + HNO3 65% 3:1 40s -

32m0206

Fe0.8Ga0.2

32m0210

Fe0.8Ga0.2

32m0212

Fe0.8Ga0.2

32m0215 Fe

59

70

90

88

HCl 25% + HNO3 65%

HCL 25%
3:1

5s

12s-25s

HCl 25% at 40◦C,

applying US
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4.2.2 Electron beam lithography

To fabricate the IDTs we employed optical and electron-beam lithography techniques,

depending on the size of the pattern. The UV lithography was performed by L. Becerra,

in charge of the clean room at INSP, while the e-beam lithography was performed by the

author in the clean room of ENS (Paris). As discussed, an IDT is composed from an array of

electrodes and it is the electrical period, which fixes the working frequency, as discussed in the

section 4.1. For most of the cases, we took the electrode width equal to the spacing between

the electrodes, that is λ/4 (µm). The minimal linewidth, that can be fabricated with optical

lithography is about 1.2 µm, which fixes the electrical period to be 4.8µm and subsequently

results in about 570 MHz acoustic frequency. Thus, to excite SAW at higher frequencies the

e-beam lithography is necessary.

During the lithography process, a material is covered with a layer of a resist. Basic principle

of this technique, either optical or e-beam, is to modify the solubility of the resist due to the

exposure to light or electrons [125]. Thus, after the process only the exposed resist is removed2

during development in a solvent and this permits to create the nano-patterns. Quality of the

process depends on several parameters, among which are the choice of the resist, electron

beam energy (acceleration voltage), dosage (µC/cm2) and development time. The resolution,

pattern quality and proximity (see below) crucially depend on these parameters.

During the exposure, electrons, penetrating the resist/substrate structure, undergo two kinds

of scattering processes: forward and backward [125], as depicted in fig. 4.8. The first process is

elastic scattering with the resist atoms. As a result the electron beam is broadened (fig. 4.9),

depending on the resist thickness, density and acceleration voltage (lower is the energy, more

pronounced is the effect). Backward scattering occurs, when most of the electrons pass

through the resist into the substrate, undergo collisions and re-emerge back into the resist at

some distance from the incident beam. This distance can reach several microns, depending

on the beam energy. Thus, writing a feature at one location will affect writing at a nearby

location. This can lead to overexposure and destruction of the whole pattern. This undesired

effect is referred to as proximity effect, which makes it difficult to fabricate dense patterns.

To reduce the proximity effects, one can reduce the dimensions in the design, as the actual

pattern will be larger. Furthermore, one should determine the correct dose of electrons to

obtain a good quality pattern.

2If the resist is positive. On the contrary , if the resist is negative, the exposure lowers its solubility.
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Figure 4.8: Forward and backward scattering of
electrons, from [126].

z

x

Figure 4.9: E-beam broadening, as electrons pen-
etrate into the resist, from [126].
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The main steps on IDT fabrication are illustrated in the fig. 4.10. The sample is covered

with a PMMA (poly-methyl methacrylate) resist, after which it is exposed to electrons ac-

cording to a desired design and developed so that the exposed resist is removed. Finally we

deposit by evaporation a thin film of 45nm Al (metalization) and the rest of the resist is

removed in acetone (lift-off).

Figure 4.10: Steps of IDTs fabrication.

Resist

Au
FeGa
ZnSe
GaAs

Al 45nm

The table below summarizes the experimental parameters, used to perform the e-beam

lithography. The acceleration voltage and the development time of the resist after the irra-

diation were respectively, 20keV and 70s in MIBK IPA 3:1 / 30s in IPA. Note that, for the

case of the insulating substrate, a thin film of 10nm of Al was deposited on top of the resist

to avoid charging effects.

Table 4.2: E-beam lithography parameters, used for sample fabrications. Two different microscope apertures
were used to draw patterns for the IDTs electrodes or antennas signal / ground lines (10µm) and contacts
(120 µm).

Material PMMA thickness (nm) Backing T◦C, time
Dose, µC/cm2

(aperture 10µm)

Dose, µC/cm2

(aperture 120µm)

GaAs 150 167◦C, 15min 240 280

ZnO 150 167◦C, 15min 240 280

LiNbO3 150 167◦C, 15min 190 250

SiO2 300 150◦C, 15min 228 280
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4.3 Excitation of harmonics

The table below summarizes different designs, used to excite the harmonic frequencies.

The IDTs dimensions were sufficiently large to use optical lithography. Since the “split-4”

design gives access to a larger frequency range, the final samples for RF measurements under

the applied magnetic field were fabricated, using this design.

Table 4.3: Different IDT designs, used to excite harmonic frequencies (nominal dimensions).

IDT type & Source Frequency Optical microscope photo

Measured signal,

proportional to the acoustic burst amplitude.

( P=25dBm=316mW )

Split-2 [123]

Odd harmonics

w=1500

= 18.4

250 156 MHz

467 MHz

//

Split-52 [120]

Even and odd harmonics

w=1500

= 18

250
159 MHz

318 MHz

477 MHz

636 MHz

//

//
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Table 4.4: Different IDT designs, used to excite harmonic frequencies (nominal dimensions).

IDT type & Source Frequency Optical microscope photo

Measured signal,

proportional to the acoustic burst amplitude.

( P=25dBm=316mW )

Split-4 [120]

Odd harmonics

250

w=1500

= 24

119 MHz

358 MHz

596 MHz

835 MHz

1.07 GHz

//

//

4.4 High frequency range, 4-5 GHz: synchronous IDTs

For excitation of high frequency SAWs, that is 4-5GHz we employed the design, initially

created to make a SAW resonator, as described in [121]. In this case a built-in reflector

IDT is used. This design is referred to as synchronous (SYNCH) IDT and has proved to

be the best to excite high frequency SAW. A standard IDT, as described in section 4.1,

is a bi-directional, which means that there is a 3dB loss due to SAW excitation in both

directions. Placing internal reflector would re-direct the wave, that propagates in another

direction and in principle, can double the SAW amplitude. A good source on technical

details, that one should take into consideration while designing an IDT is given in [127] (ch.2,

sec.2.4). Following this source, for efficient high-frequency SAW excitation we reduced the

overlap width (aperture) down to 60µm. Figures below show the measured acoustic signal,

using the rapid sampling scheme, with a schema of the IDT design and the real images,

taken with the e-beam microscope. The table below summarizes the obtained results: test

IDTs at 4.2 and 5.2 GHz on pure GaAs and at 4.2 GHz with the FeGa thin film on the

SAW propagation path. The acoustic signal was measured using rapid sampling detection

scheme, as well as with the vector network analyzer (VNA). The latter permits to measure a

transmitted signal in the frequency domain.
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Table 4.5: Synchronous IDT (SYNCH) design (nominal dimensions), used to excite high frequency SAW, 4-5GHz. IDTs
on pure GaAs (4.2 - 5.2 GHz) and with FeGa film on the SAW propagation path (4.2 GHz).

IDT type & Source
E-beam / Optical

microscope photo

Measured signal, proportional to the acoustic burst amplitude.

( P=19dBm=79mW )

SYNCH [121], [127]

4.2 GHz

Test

w=60

2

=0.68

=0.17

Reflector

Contact

IDT 
electrodes

IDT electrodes

Acoustic
signal

Acoustic signal

SYNCH [121], [127]

4.2 GHz

Final sample

w=60

2

=0.68

=0.17
FeGa

GaAs

Contact

Fe
G

a

GaAs

Contact
Acoustic signal

Acoustic signal

SYNCH [121], [127]

5.2 GHz

w=60

2

=0.544

=0.136

IDT electrodes

Acoustic signal

Acoustic signal
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Note that, introducing the ferromagnetic film in the SAW propagation path results in

signal amplitude (' 2mV, peak-peak) loss of about 30dB, as compared to pure GaAs ('
38mV, peak-peak).

4.5 Excitation of spin waves with RF antennas

To excite spin waves, radio frequency antennas, or as referred to coplanar waveguide

(CWG), are used. There exist several designs, that can be found in the literature, for example

symmetric CWG [128], asymmetric CWG [129], [130], broadband antenna (stripe antenna)

[131]. Further development in the antennas designs were made to improve the excitation

efficiency and reduce the excited wave vector spread, ∆k [132], [133]. This leads to a more

sophisticated antennas design, namely meander shaped pattern.

To see the excitation of spin waves, we used the micro Brillouin scattering technique3, µBLS.

This technique permits to see the excited SWs intensity (counts) as a function of the propa-

gation distance, away from the antenna. As can be seen from the µBLS spectrum, presented

in the table below, the SWs attenuation length is of the order of 13 µm, which is a good

result for us, as it opens the possibility to manipulate SWs with SAWs on a reasonable length

scale.

Table 4.6: Excitation of SWs with a RF antenna.

RF antenna E-beam microscope photo Measured µBLS signal

120

4.7

1.3

1

Signal
line

Ground
line

Signal line

Ground line

Contact

Contact
SiO2 (80nm) / Au (10nm)/ 
Fe0.8Ga0.2 (4nm)/...

Signal line

2    4    6    8    10  12

F
re

qu
en

cy
 (G

H
z) 10

5

0

-5

-10

Counts
0.000
5.833
11.67
17.50
23.33
29.17
35.00
40.83
46.67
52.50
58.33
64.17
70.00

SW signal

SW signal

3In collaboration with GHOST laboratory, Perugia, Italy.



78 4. Sample Fabrication and Experimental Setup

4.6 Sample connection

Once the samples were fabricated, the next step was to connect them manually, using

a silver paste, to integrate in the excitation-detection scheme. Two kind of sample supports

were used, depending on the SAW excitation frequencies. First type (fig. 4.11) consists of a

copper plate with an insulating plate on top. This type of the support was used for 0.1-1

GHz frequencies. The sample was placed in a chamber (fig. 4.13 - fig. 4.14) and kept at

constant temperature (control up to 0.001◦C) and in a vacuum (≈ 10−5− 10−6 mbar) during

the acoustic measurements.

Second type of the sample support (fig. 4.12) is an imprinted circuit with directly welded

connectors, that permits to have a better impedance match between the IDTs and excitation

source. These supports were employed for the BLS and µBLS measurements (chapter 5,

section 5.3).

Figure 4.11: First type of sample support, used
for 0.1-1 GHz frequencies. It employs two types
of wires to reach the coaxial cable.

Au/FeGa
GaAs

IDT

Figure 4.12: Example of a second type of sample
support, used for frequencies above 1 GHz. Short
wires (4-5mm) of 80 µm diameter are used to con-
nect the IDT terminals to the signal line and the
ground.

Test sample GaAs

IDT 

Figure 4.13: Chamber, used for the acoustic mea-
surements.

Pressure gauge
Coaxial
cable

Water operated
temperature control

Figure 4.14: Chamber, placed in between current
carrying coils.
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4.7 Conclusion

To conclude, following developments in the devices fabrication were done during this

thesis, based on the information, that could be found in the literature:

1. determining solutions for wet etching

2. design and fabrication of the IDTs in the 0.1-5GHz frequency range, using optical /

e-beam lithography

3. preliminary design (in collaboration with GHOST laboratory) and fabrication of the

RF antennas, using e-beam lithography.

It must be mentioned, that the efficient SAW excitation at high frequencies can be possible,

if one succeeds to achieve a good impedance matching between the IDTs and the excitation

source. Such attempts were undertaken, that is addition of variable capacitance and induc-

tance into the excitation circuit, but still require further development.

The results are summarized in the table below:

Table 4.7: Summary of the samples, fabricated during this thesis. Notations: HF high frequency.

Dry / Wet etching, GaAs Deposition of ZnO SiO2/Au/FeGa

1) Excitation of harmonics: 0.1-1GHz

2) Excitation of HF SAW: 4.2-5.2GHz
Excitation of SAW along [100] 830MHz Excitation of spin waves





Chapter 5

RF measurements: Experimental

Results

This chapter is devoted to the experimental results and observations. The table below

summarizes the samples, studied in this thesis, as well as orders of magnitude of measured

variations in the SAW velocity and attenuation1. The harmonic frequencies were not imme-

diately available, as well as the wet etching solution. Some samples were re-measured, when

several frequencies with a single device were available.

Table 5.1: Samples studied via RF measurements. Unless specified otherwise, the composition for all samples is
Fe0.8Ga0.2. Samples are single crystals, except A140. The latter was prepared by Rocio Ranchal (Madrid) by
sputtering. We give maximal values as the order of magnitude of ∆V/V , ∆Γ. Abbreviations: d - film thickness,
MS - magnetic structure, IP - in-plane magnetization, CIDT - conventional inter-digital transducer.

Name d(nm) MS Etched / ZnO IDT F (MHz) Direction ∆V
V

(%) ∆Γ (dB/cm)

32m0100 Fe 50±3 IP etched CIDT 554 [110] 0.004 noise

32m0203-E1 26±3 IP ZnO∼178nm CIDT 300 [11̄0] noise noise

32m0206-E1 58±3 IP ZnO CIDT 306 [11̄0] 0.015 noise

32m0206-E2 58±3 IP etched split-4
119, 357

595, 833
[11̄0], [110] 0.006 1.2

32m0210-E1 88±3 IP etched split-4 830 [11̄0], [110] 0.009 3

A 140

polycrystal
55 IP etched split-4

119, 357

595, 833
- 0.004 0.7

32m0215-E1

Fe

67±3 IP etched split-4 830 [11̄0], [110] 0.006 0.2

32m0153-H1 92±2 stripes ZnO ∼240nm CIDT 154 [110], [11̄0] 0.003 0.045

32m0153-H3 92±2 stripes ZnO ∼210nm CIDT 310 - 0.005 0.1

32m0153-S1 92±2 stripes etched split-4 835 - 0.014 0.7

1Note that these are maximal measured values.
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To be concise in what follows and to avoid cumbersome representation of the experimental

data, we focus only on the sample 32m0206 Fe0.8Ga0.2, as we studied it extensively. In the

next chapter we model our system and interpret the observations, which gives more insights

into the physics behind the experiment. The results for 32m0215 Fe will then be presented

and explained in the chapter 6.

5.1 General remarks

We start with an experimental observation, represented in the fig. 5.1. The plot shows

the measured relative change in SAW velocity, ∆V
V as a function of the external magnetic field,

swept from “positive” saturation (circled curve) to “negative” saturation. For the presented

measurement the field was applied parallel/anti-parallel to the SAW wave-vector. Firstly, a

change in the velocity shows the presence of coupling between SAW and magnetization. For

all measurements performed, there are some common features, that can be seen in the fig. 5.1:

• high field region exhibits a reversible acoustic behavior

• The low field region is defined according to the hysteresis cycle as a region, where both

magnetic domains exist and single domain rotation takes place [69] (p.190). This region

exhibits a magneto-elastic hysteresis.

To give the order of magnitude of the observed phenomena, we define amplitude of phe-

nomena as the difference between maximal and minimal change in the velocity or attenuation.

For the measurement presented, the variation in velocity is about 6 · 10−5. The fig. 5.2 rep-

resents the change in SAW attenuation vs magnetic field. As can be seen, SAW is mostly

attenuated in the low field region, that exhibits magneto-elastic hysteresis, with an ampli-

tude of the phenomena of 0.6 dB/cm. Let us compare these numerical values with relevant

experiments, performed on other materials, found in the literature. An in-exhaustive list

of the comparisons is represented in the table 5.2. As an order of magnitude, the value of

SAW attenuation can reach even 150dB/cm, as reported previously for MnAs due to giant

magneto-caloric effects [134]. It is thus clear that variations we measure are rather small.
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Figure 5.1: Relative change in SAW velocity vs the applied magnetic field and magnetic hysteresis for the film
of 58nm Fe0.8Ga0.2. The curve is separated into two main regions, according to the acoustic behavior. The ←
and→ indicate the field sweeping direction, that is from 200 to -200mT and vice versa, respectively. The inset
schematically represents the measurement configuration. Dotted line represents measured hysteresis cycle.
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Figure 5.2: Experimental result for change in SAW attenuation vs the applied magnetic field for the film of
58nm Fe0.8Ga0.2. Dotted line represents measured hysteresis cycle.
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Table 5.2: Order of magnitude of variations in SAW velocity and attenuation, from [135], [86], [136],
[18]. Abbreviations: MS - magnetic structure, UMA - uniaxial magneto-crystalline anisotropy, OP -
out-of-plane magnetization, IP -in-plane magnetization, HA - hard axis, EA - easy axis.

Material MS F(MHz) ∆V
V

(%) ∆Γ (dB/cm) SAW Field

Ni 850nm

[89] (1976)
UMA OP

210

70
0.02 - HA HA

Ni 20nm, 37nm

[86] (1988)
UMA IP 601 0.01-0.07 25-80 -

‖,⊥,

at 45◦

to ksaw

TbCo2/FeCo stack 200nm

[136] (2014)
UMA IP 232 0.02 - EA

HA

EA

(Ga,Mn)(As,P) 50nm

at 5K, resonance

[18] (2014)

UMA OP 549 0.01 8.5 HA HA

5.2 32m0206 Fe0.8Ga0.2 58nm

This section summarizes the main observations for the 58nm sample of Fe0.8Ga0.2,

concerning the ∆V
V measurements. A model of the system is presented in the chapter 6, here

we compare the observations with the computed SAW-induced torque, as discussed in the

chapter 2. The comparison is indirect, but possible due to the coupling between SAW and

magnetization, and it permits to obtain a qualitative explanation of the observed effects.

Note that, the models, presented in the chapter 6 cannot reproduce the variations in the

attenuation. We thus, focus only on the the ∆V
V measurements.

The magnetic structure for this sample is shown in the chapter 2, where we computed the

SAW-induced torque. We remind that, the sample is in-plane quasi-isotropic. Biaxial MCA

is modified by a uniaxial anisotropy contribution, as can be seen from non-equivalent [110]

and [11̄0] directions (section 2.5.3, fig. 2.18).

As mentioned in section 5.1, we can distinguish between two regions, concerning the acoustic

behavior, that is high and low field regions. We will start with the description of peculiarities

of the first one.

Note that, we measure ∆V
V , that is 1

V [V (B,ϕ)− V (B = 0)], meaning that the first point for

all measurement configurations is magnetically the same, since before every measurement the

sample was saturated in ~B ↑↓ ~k configuration to have a common reference point. This allows

us to compare the measurements, made for different directions of the applied field.
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5.2.1 High field region

The following experimental observations can be made:

(i) When the field is applied parallel or perpendicular to the SAW wave vector, the change

in velocity, ∆V
V is constant, as represented in the fig. 5.3.

(ii) If the field is applied at some other angle, the acoustic behavior is different. For example,

we compare the measurements for the field, applied at 10◦ and 45◦ with respect to the

SAW wave vector, fig. 5.4. In the first case, the change in velocity tends to a constant

value for high fields, approximately above 280 mT, while for the field, applied at 45◦, the

effect on the SAW velocity is still present at the same field. We refer to this phenomena

as different angle dependent acoustic saturation rates.

(iii) As the field intensity increases, the change in SAW velocity decreases.

(iv) Since the SAW propagation exhibits a strong angular dependence on the direction of the

applied field, we performed measurements at fixed field and frequency, but varied the

field angle. The result of these measurements, more proper for SAW propagation along

[110] and at 1.07 GHz, is represented in the fig. 5.5. We observe clearly the sinusoidal

variations in the SAW velocity with the applied field direction, the effect decreases with

the increasing field.

Figure 5.3: Relative change in SAW velocity, ∆V
V

vs magnetic field, applied parallel and perpendic-
ular to the SAW wave vector, ~ksaw.

high field region

Figure 5.4: Relative change in SAW velocity, ∆V
V

vs magnetic field, applied at 10◦ and 45◦ with
respect to the SAW wave vector, ~ksaw.

high field region
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Figure 5.5: Relative change in SAW velocity, ∆V
V

vs magnetic field angle at different intensities.

Let us compare these observations with the computation results, described in the chap-

ter 2. As mentioned earlier, injecting SAW into a ferromagnetic media will result in a torque

on the magnetization and in turn, the SAW-induced magnetization dynamics will affect the

wave propagation.

First, following the conclusion of the chapter 2, for magnetic field (or saturation magnetiza-

tion), applied perpendicular or parallel to the SAW wave-vector torque vanishes and thus,

there is no effect of SAW on magnetization and vice versa. This can explain, why we ob-

serve no change in the SAW velocity for parallel and perpendicular configuration in the high

field region, i.e. the observation (i). Note that the change in velocity is deduced according to
∆V
V =

(V (B,ϕB)−V (Bref )
V (B,ϕB) . The reference point is absolutely arbitrary, which results in the curve

translation. The constant change in velocity, observed in the fig. 5.3 is due to this reason.

Concerning the (ii)-(iii) observations, the figures below represent the indirect comparison

between the experimental measurements and the computed torque. As can be seen, torque is

non-zero and its amplitude decreases with the increasing field at different rates, that depend

on the field direction. Accordingly, in the region, where the torque is active, there is a change

in the SAW velocity, that becomes weaker as the field increases. We thus can see a fingerprint

of SAW-induced magnetization dynamics on the SAW propagation.

The last observation (iv) requires a proper model of the system (as will be done in the next

chapter) for it is difficult to compare the oscillatory torque behavior with the experiment. In

the fig. 5.8 we represent the computed torque vs the applied field angle, the latter is defined

with respect to [11̄0] axis, that coincides with the SAW propagation direction. For rel-

atively low fields the torque dependency on the angle is rather complicated, because we are

sensitive to the magneto-crystalline anisotropy. At high fields we reproduce the sinusoidal
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variations with the applied field angle, that are compatible with the experimental results.

There are several similarities to be noticed.

First, the relative change in velocity at a given field is deduced from the phase measurements

according to

∆V

V
=

1

V (ϕi)

(
V (ϕi)− V (ϕ = 0)

)
where ϕi 6= 0 is the applied field angle, the latter is defined with respect to [110]. According

to the calculation of the torque we should observe no change in SAW velocity for the parallel

and perpendicular configurations (for 0◦ and 90◦, respectively in the fig. 5.5). This is roughly

in agreement with the observation.

Both theoretical (torque) and experimental curves show the π/2 periodicity.

Secondly, when the torque is at its relative maximum, the change in velocity is maximal at

high fields. As mentioned previously, the variations in the torque norm with angle decrease

with the increasing field, which is (indirectly) in agreement with the experimental observation.

Figure 5.6: Experimental change in SAW veloc-
ity and computed norm of the torque density for
∠( ~B,~ksaw) = 10◦ vs applied field intensity.
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Figure 5.7: Experimental change in SAW veloc-
ity and computed norm of the torque density for
∠( ~B,~ksaw) = 45◦ vs applied field intensity.
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Figure 5.8: Computed norm of the torque density vs the applied field angle for different field intensities.

[100] [110][1-10]

field increase

5.2.2 Low field region

Low field region is more complicated from the analytical point of view, as one should

consider the presence of both magnetic domains and single domain rotation. Since in this re-

gion magnetic domains are present, we performed the acoustic measurements, combined with

the Kerr microscopy imaging in collaboration with L. Thevenard, to observe the domains and

the effect of SAW, if any, on the magnetization.

Note that, to explain the low field region, one has to perform the micro-magnetic simulations,

taking into account the presence of magnetic domains. Our analytical models within the

single domain approximation cannot reproduce these experimental features and the descrip-

tion is beyond the scope of this thesis. In what follows we just report on the experimental

observations.

Several features are characteristic for the low field region.

(i) Presence of magneto-elastic hysteresis, as we could already observe in the section 5.1

(fig. 5.1).

(ii) Dependence of magneto-elastic hysteresis on the applied field angle. This feature is a

way more striking than in the high field region, as can be seen from fig. 5.9 - fig. 5.15.
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Figure 5.9: Change in SAW velocity for low field
region, field is parallel to the SAW wave vector.
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Figure 5.10: Kerr microscopy image of magnetic
domains, image taken at 5.4 mT, increasing field.

Figure 5.11: Change in SAW velocity for low field
region, field is applied at 10◦ to ~ksaw.
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Figure 5.12: Kerr microscopy image of magnetic
domains, image taken at -3.9 mT, decreasing field.

Figure 5.13: Change in SAW velocity for low field
region, field is applied at 30◦ to ~ksaw.
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Figure 5.14: Kerr microscopy image of magnetic
domains, image taken at -3.9 mT, decreasing field.
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Figure 5.15: Change in SAW velocity for low field region, field is applied at 60◦ to ~ksaw.
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(iii) Non-equivalence of positive and negative applied field angles.

Figure 5.16: Change in SAW velocity, field applied
at ±5◦ to ~ksaw. Black arrow indicates the field
sweep direction.

B

Figure 5.17: Change in SAW attenuation, field
applied at ±5◦ to ~ksaw.

B

Figure 5.18: Kerr microscopy image taken at -4.6
mT, decreasing field, ∠( ~B,~ksaw) = 5◦

Figure 5.19: Kerr microscopy image taken at 4.2
mT, increasing field, ∠( ~B,~ksaw) = −5◦
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(iv) Non-equivalence of [110] and [11̄0] directions. This could be already seen from the in-

plane hysteresis and is attributed to the contribution of the uniaxial MCA to anisotropy

of the system.

Figure 5.20: Change in SAW velocity for different
propagation directions.

B

Figure 5.21: Change in SAW attenuation for dif-
ferent propagation directions.

B

(v) SAW non-reciprocity, defined as the difference between velocities in forward and back-

ward directions [137], [138]. According to [138] non-reciprocity of the velocity takes

its origin in the coupling between Rayleigh and spin waves. The elliptical motion of a

particle in the Rayleigh wave is in the same or opposite sense with the precession of

the magnetization about the magneto-static field. This might cause the phenomena of

non-reciprocity.

Figure 5.22: Change in SAW velocity for +~ksaw.
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Figure 5.23: Change in SAW velocity for −~ksaw.
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5.2.3 Effect of frequency

The effect of acoustic frequency can be clearly seen from the whole measurement in

terms of amplitude of the phenomena, the latter was defined in section 5.1 (fig. 5.1). The

higher is the acoustic frequency, the larger were the effects observed. As example, we represent

two measurements of velocity, performed at 357 MHz and 833 MHz (fig. 5.24). The fig. 5.25

represents the variations in the SAW velocity with the applied field angle at fixed intensity

for different frequencies. In both cases SAW was propagating along the [11̄0] direction. Note

that, the applied field applied is defined with respect to the SAW wave vector.

This can be argued in terms of SAW-induced torque as well, since its norm is inversely

proportional to the acoustic frequency:

‖Re(T)‖[110] =
∣∣∣B2 cos(2ϕ̄)

2(ω2 − ω2
0)

∣∣∣ √A2
θ +A2

ϕ

More precisely it depends on the difference between acoustic and eigenfrequency of the system,

that is 1
ω2−ω2

0
. Since ω0 is much larger than SAW frequency, it is clear that increasing the

SAW frequency will decrease the frequency difference and hence, the torque will be larger.

This indirect comparison implies larger effects on SAW propagation with increasing frequency.

Figure 5.24: Relative change in velocity for SAW,
propagation along [11̄0], at two different frequen-
cies.

Figure 5.25: Oscillations in the SAW velocity vs
applied field angle (◦) at different frequencies.
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5.3 Preliminary BLS measurements: 32m0279 Fe0.8Ga0.2 4nm

The preliminary conventional BLS measurements were performed in collaboration with

S. Tacchi, G. Carlotti and M. Madami (GHOST laboratory, Italy) at the end of this thesis.

Here we discuss the experimental results, after giving a brief description [139] of the physical

principle behind the BLS. The details of the experimental setup can found in [139].

Brillouin light scattering techinique relies upon the inelastic scattering of light by col-

lective excitations of the medium, magnons or phonons. In a BLS experiment, a beam of

monochromatic light (λ = 532nm) is focused on the surface of the magnetic film under inves-

tigation and the light scattered within a solid angle is frequency-analysed using a multi-pass

Fabry-Perot interferometer. The incident light of energy ~ωI and wave vector kI produces

a polarization in the matter, proportional to the susceptibility tensor of the medium. The

collective excitation modulates the susceptibility, inducing a change in polarization and thus,

resulting in a scattered light. From a quantum-mechanical point of view, the inelastic scat-

tering mechanism can be described as a photon–magnon (photon-phonon) collision in which

the total energy and momentum are conserved.

Note that, in the backscattered geometry, used in the conventional BLS setup, the in-plane

wave vector component is conserved, as schematically represented in the fig. 5.26.

Figure 5.26: In the backscattered geometry the same
lens is used to focus light and to collect the scattered
light, the collection angle is ' ±14◦.

sample

len
s

{
ωS = ωI ± ω
kS‖ = kI‖ ± q‖

{
q‖ = 2kI sin(θI) (5.1)

where ω and q‖ are the frequency and the in-plane wave vector component of the crystal

excitation. Two possible processes may occur: Stokes, where ωS < ωI and anti-Stokes process,

where ωS > ωI . The first one corresponds to a creation of the excitation, while the second to

its annihilation.
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In order to observe the resonant interaction between dipolar SWs2 and SAWs, it was in-

dispensable to have wave length and frequency matching [141]. To reduce the SWs frequency,

the film thickness of Fe0.8Ga0.2 was reduced down to 4nm. In such a case, the film exhibits

a strong in-plane uniaxial anisotropy (whose origin is the interface bonding between Fe and

ZnSe, as discussed in [110]), as can be seen from the hysteresis cycle (fig. 5.27). This permits

to get a softening of the SW modes and a resonance with the SAW frequency, when the field

is applied along the hard axis. On the other hand, from the eq. (5.1) it is clear, that one

can “select” a spin wave of a certain wave vector by varying the angle of the incident light.

This permitted us to fulfill the resonance condition. A depolarized BLS spectrum taken at

remanence, after saturation along the [100] direction, is represented in the fig. 5.28. The

incidence angle of light is 20◦. The SWs frequency is about 5 GHz, but the peak is rather

broad and so it should be possible to match the SAW (dashed blue line) and SWs frequencies.

Note, that the lowest SWs frequency is obtained at remanence.

To excite high frequency SAWs we employed synchronous IDT design, as was described in

the chapter 4, section 4.4.

Figure 5.27: Hysteresis of 4nm film. Figure 5.28: BLS spectrum of thermal SWs, cen-
tered at the incident light frequency. Dashed blue
line represents the SAW frequency.

Stokes Anti-Stokes

Elastically
scattered
light

fsaw

4.24

If we think in terms of a single domain, two configurations to maximize the SAW effect are

possible, according to the analysis, performed in the chapter 2. We remind that two angles

are important: angle between the equilibrium magnetization and the SAW wave vector and

between the equilibrium magnetization and magnetic axis of the film.

2That is spin waves modes, dominated by the dipolar interaction as opposed to the exchange SWs [140].
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With this in mind, we considered:

* SAW along [100], measurement at remanence, after saturation along the hard axis, [11̄0]

* SAW along [110], measurement at remanence, after saturation along the medium direc-

tion, [100]

However, the first solution has not been explored because of the ecessity to grow ZnO

epilayer on order to make SAW propagate alon [100] direction, as eplained in the section 4.1

Thus we chose to propagate SAWs along the easy axis, [110]. We fabricated the devices

to check the resonant interaction both with the thermal SWs and excited with microwave

antennas. The final devices are shown in the figures below (fig. 5.29 - fig. 5.30). A polarized

Figure 5.29: Fabricated device: IDTs to excite
SAWs at 4.24 GHz, deposited close to the ferro-
magnetic film, Fe0.8Ga0.2 4nm.

Region of SAW emission

Au/FeGa

GaAs

Figure 5.30: Fabricated device: IDTs to excite
SAWs and RF antennas to excite SWs, deposited
on top of SiO2/Au/Fe0.8Ga0.2 (4nm).

SiO2/
Au/FeGa

GaAs

BLS spectrum of continuosly emitted SAWs, taken in the FeGa film near the emitting IDT

is presented in fig. 5.31. As it can be seen, a large peak associated to propagating SAWs

is visible in the anti-Stokes side of the spectrum. The fig. 5.32 shows the depolarized BLS

spectrum taken in the same position.

At first, one could think that we do observe an enhancement in the thermal spin wave intensity

at the SAW frequency. A straightforward way to check this supposition is to apply a magnetic

field of 100mT in order to shift the SWs frequency out of the resonance condition. As it can

be seen in the fig. 5.33 the SAW peak did not disappear.

We attribute this to the fact that the anayzer, used to block the light scattered by phonons

(or SAWs), is not ideal, but has a certain extinction ratio. That is, some scattered light due

to SAWs-light interaction was detected.
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Thus, the “enhancement” in the SWs intensity in the fig. 5.32 is attributed to the excitation

of SAW rather than a resonant SAW-SW interaction.

This result is rather puzzling. A possible explanation can be attributed to the fact that,

reducing the film thickness, we are more sensitive to the interface effects. In principle, the

magneto-elastic constants of thin films differ from those of the bulk material due to the film

quality. What could happen in our case, is that the 4 nm thick film is of poor quality from a

“magneto-elastic” point of view.

Figure 5.31: BLS spectrum of continuously emit-
ted SAWs.

B=0mT

Figure 5.32: BLS spectrum of SWs with continu-
ously emitted SAWs, no applied magnetic field.

B=0mT

Figure 5.33: BLS spectrum of SWs with continuously emitted SAW at 100mT.

B=100mT
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Recall also, that the magneto-elastic energy is a product of strain and magneto-elastic

coefficient. To efficiently modify this energy, even with poor magneto-elastic coefficients of

the material, one should be able to apply large strain. Applying such high acoustics it is not an

easy task due to the impedance mismatch between the IDTs and the excitation source. Also,

as was shown in the chapter 4, section 4.4, introducing a thin film in the SAW propagation

path resulted in a 30 dB loss in the signal amplitude.

Since we could not observe the interaction with the thermal spin waves and also due to the

lack of time, we did not perform the measurements, using the RF antennas (device, shown

in the fig. 5.30). The preliminary measurements were not conclusive and require further

investigations.

5.4 Conclusion

Although many samples were studied in this thesis (table 5.1), not to be redundant

we focus only on 58nm thick 32m0206 Fe0.8Ga0.2 thin film, that was extensively studied (4

different SAW frequencies, both propagation directions). Several general features could be

observed, that are also present in other studied samples. That is, one can distinguish the

acoustic behavior at low and high fields.

At low fields both magnetic domains and single domain rotation are present. This regime

is characterized by the presence of magneto-elastic hysteresis and thus, an irreversible

acoustic behavior. Micro magnetic simulations are required to explain the physics and we do

not pursue it in this thesis.

Our interest lies in the reversible acoustic behavior at high fields, that shows clear dependence

on the direction and intensity of the applied field and could be indirectly compared to the

torque, discussed in the chapter 2. This is indeed very relevant for the extraction of the

material constants, both magneto-elastic and magneto-crystalline anisotropy coefficients, as

will be shown in the chapter 6. The results for a thin film of pure iron, 32m0215 Fe will also

be presented in the chapter 6 in the frame of comparison between theory and experiment.

We briefly discussed the preliminary measurements, performed with the BLS technique in

order to check the resonant interaction between the SWs and SAWs in the thin 32m0279

Fe0.8Ga0.2 film of 4nm. No such interaction was observed. This is attributed to the reduced

magneto-elastic coefficients of the material, probably due to the interface effects, and to the

small strain amplitude due to inefficient SAW excitation at high frequencies.





Chapter 6

Modeling the System

“Everything should be made as simple as possible, but not simpler”

A. Einstein

6.1 State of art of Theoretical Approaches

In the chapter 2 we considered the magnetization dynamics, triggered by surface acous-

tic waves, that is the effect of a propagating SAW on magnetization. We will now consider

the effect of magnetization dynamics on a propagating SAW.

It is important to note that, since both magnetic and elastic systems are coupled, in other

words magnons and phonons, a propagating wave in a ferromagnetic medium, possesses a

mixed character and should be considered as a hybrid, rather than a purely magnetic or

purely elastic wave. That is, in such a wave atomic displacements are accompanied with the

precessing spins. The investigation of the magneto-elastic waves dates back to 1950s [26],

[27]1. C. Kittel proposed a theoretical treatment [26], based on the classical formalism, and

derived the dispersion relation, as well as predicted the non-reciprocity, that is different phase

velocity for counter rotating circularly polarized magneto-elastic waves. This effect was later

observed experimentally by H. Matthews and R.C. LeCraw [142] and also seen in our experi-

ments, as discussed in the chapter 5, section 5.2.2. Following Kittel, A. Kamra et al. revisited

and extended further the calculations [141]. The authors derive the dispersion relation for a

bulk ferromagnetic material, in which elastic waves are injected by means of a non-magnetic

transducer. The obtained dispersion is represented in the figure below2.

1The source in english is available on http://www.jetp.ac.ru/cgi-bin/e/index/e/8/1/p157?a=list.The
authors propose a phenomenological treatment of coupled magneto-elastic waves in ferromagnets and ferrites.

2Note that, for the configurations considered in the article, the coupling occurs, even when the saturation
magnetization is perpendicular or parallel to the propagation wave vector. But this is true only in the case of
shear elastic waves, as discussed in the chapter 2 and noted by the authors.

http://www.jetp.ac.ru/cgi-bin/e/index/e/8/1/p157?a=list
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Figure 6.1: Calculated dispersion curve for magneto-elastic waves, from [141].

As can be seen from the figure, the coupling manifests itself strongly only at resonance,

that is when wavelengths and frequencies match, resulting in the anti-crossing of the disper-

sion curve. In this region the phononic and magnonic excitations hybridize. Far away from

the resonance, the branches correspond more to pure dispersions of phonons and magnons.

From a theoretical point of view this implies, that working below the resonance, we can con-

sider a propagating SAW as being purely Rayleigh wave, that possesses the corresponding

strain components, ε11, ε13, ε33, as described in the chapter 1, section 1.1. In principle, being

at resonance implies the existence of all strain components, some non-existing in the Rayleigh

wave. Such theoretical treatment for a magneto-elastic wave propagation was proposed by

A.K. Ganguly et al. [89], [135], as will be discussed later. In our calculations, we thus assume,

that a propagating SAW is modified by the magneto-elasticity of the medium, but keeps its

purely “elastic character”.

In what follows we discuss the existing theoretical approaches, that treat the propagation of

SAWs in a ferromagnetic medium. We do not intend to give an exhaustive state of the art of

the literature. The following description rather shows possible ways to treat the problem.

We start with a simpler approach, coined by Dreher at al. as a “backaction approach” [17],

used to study the elastically driven ferromagnetic resonance. Backaction in the sense, that a

propagating SAW triggers magnetization dynamics and as a consequence, its propagation is

modified. Thus, in this approach authors keep the “elastic character” of the wave, even at

resonance. To track the modification, one should consider a system of coupled equations, that

is displacement components, ui(t) and dynamic magnetization components, mi(t). The dis-

placement components are coupled to the magnetization through stress, that can be expressed

as a derivative of the total energy density, F with respect to strain:

ρ
∂2ui
∂t2

=
∂σij
∂xj

(6.1)
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with  σii = ∂F
∂εii

σij = 1
2
∂F
∂εij

i 6= j
(6.2)

Thus, magneto-elastic terms will enter the displacement expressions. Dynamic magnetiza-

tion components are, in turn, expressed in terms of SAW strain components (as was shown

in chapter 2, in our case in spherical coordinates, so for angular variations δθ(t), δϕ(t)).

Obtaining coupled equations, the subsequent procedure would be described in the chapter 1,

section 1.1.3 or in the appendix B, including the dynamic magnetization components. This

necessarily increases the complexity of the approach. For simplicity the authors of [17] treat

the acoustic modes, described by eq. (6.1), separately. Furthermore, the following assump-

tions are made:

(i) The elastic wave is assumed to be purely longitudinal. The obtained expression, that

permits to calculate the dispersion of the perturbed longitudinal wave, reads:

(
ω2 − v2

1k
2
[
1− F · b21

v2
1µ0ρ

· f(Bapp, θ0, φ0)︸ ︷︷ ︸
magneto−elastic contribution

])
ux = 0

where v2
1 = c11

ρ is the sound velocity in the absence of magneto-elastic coupling, b1

magneto-elastic constant, ρ material density, f(Bapp, θ0, φ0) a function of the applied

field intensity, direction and magnetization equilibrium orientation and F is described

below.

(ii) To take into account film-on-substrate structure, the authors introduced a dilution fac-

tor3, F = d
λsaw

, where d is the film thickness. The dilution factor reduces the magneto-

elastic contribution to correspond to the real physical picture, in which only a small

fraction of the total volume, penetrated by SAW, is ferromagnetic.

This approach was also employed by L. Thevenard et al. where a more rigorous calculation

was undertaken [18]. The authors follow the same procedure, as described in chapter 1,

section 1.1.3, taking into account the magneto-elasticity, which enters via eq. (6.2). They

determine solutions for the penetration depth and wave vector and from the mechanical

boundary conditions, they obtain:

(
c44 − ρ

ω2

k2

)(
c′11 c

′
33 − c′213 − c′33ρ

ω2

k2

)
= c′33c44

(
c′11 − ρ

ω2

k2

)(
ρ
ω2

k2

)2

where the primed elastic constants, c′ij are modified by the magneto-elastic contribution.

3The term in the original article is “filling” factor. We rephrase it to represent the physical meaning, from
our view point, in a more appropriate way.
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Solving this equation for the wave vector k numerically yields the solution, the real part

of which is used to compute the relative change in SAW velocity, ∆V
V and imaginary part to

compute the change in the attenuation, ∆Γ.

So the essence of the “backaction approach” is to consider an elastic wave, that is modified

by the magneto-elastic coupling, i.e. modification of the elastic constants of the medium. To

account for the real physical structure, that is film-on-substrate, a dilution factor is needed.

Note that the drawback of the dilution factor is that it depends on the SAW frequency.

A way more rigorous approach was proposed by A.K. Ganguly et al. [89], [135]. The

essence of this approach is represented in the fig. 6.2. The authors consider a layered stack in

vacuum, that includes both ferromagnetic film and a piezoelectric substrate. There are several

equations to be solved for each layer, i.e. Maxwell’s equations and the equations of motion,

subject to mechanical and electro-magnetic boundary conditions. The constitutive relations

give the expressions for electric E, magnetic h fields, dielectric displacement D, magnetic

induction b and stress σ̄. These quantities are coupled through magneto-elasticity in the fer-

romagnetic medium and piezoelectricity in the substrate, as can be seen from the expressions.

To compute the dispersion relation for a wave, propagating in such a layered medium, the

authors employ a transfer matrix method, proposed by Fahmy and Adler [143], [144]. This

method was developed for general multi-layered structures by A.H. Fahmy, during his PhD

[145] (1973). In this approach the system of equations together with the boundary conditions

is written as a first-order matrix differential equation. Numerically each layer is character-

ized by a transfer matrix, containing the material characteristics (i.e. elastic, magneto-elastic,

MCA constants etc.). The stack of layers is represented by one matrix, obtained my multiply-

ing the matrices of the successive layers [146]. As can be seen, this approach is very rigorous,

as it takes into account the real physical structure. Furthermore, both electromagnetic and

mechanical boundary conditions are satisfied.

This approach was further extended by O. Bou Matar et al. [147], where the authors con-

sidered N-stack layered structure and the goal was to improve the method against numerical

instabilities. A good review on the matrix techniques, used for modeling the ultrasonic waves

propagation in multi-layers can be found in [148].

Another method, was presented by P.G. Gowtham et al., which considers film-on-substrate

structure, where ferromagnetic thin film is considered as a perturbation, that modifies bound-

ary conditions on the SAW [149].
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Figure 6.2: A schematic representation of the approach, used in [89], [135]. Notations: hrf radio frequency
applied h-field, p̄ magneto-elastic tensor, ε̄ dielectric tensor, ē piezoelectric tensor, c̄ elastic constants tensor,
d film thickness.
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The table below summarizes some of the existing approaches and their pros and cons to

study the SAW propagation in a ferromagnetic media.

In this thesis three theoretical/phenomenological approaches were considered, based on [52]

(“anelastic approach”), [150] (“film-on-substrate” approach, simplified) and [135] (“film-on-

substrate” approach, rigorous). Due to the lack of time, we could conclude only the first two,

while we are still working on the third approach. It is very useful when one cannot ignore the

piezoelectricity, for example in the case of LiNbO3, which is a strongly piezoelectric material,

or a stack of layers is considered.

In what follows we present the approaches, used to model our system.
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Table 6.1: In-exhaustive list of different theoretical approaches, that study the problematics of the SAW propagation
in a ferromagnetic medium. Notations: electro-magnetic boundary conditions, EM bc.

Approach Source Cons Pros

“Backaction” [17], [18]
Frequency dependent

dilution factor
A simpler qualitative modeling

Perturbative [149] - Simplified, rigorous

Film-on-

substrate

[89], [135], [147] Heavy

Rigorous:

- Real physical structure

- Mechanical and EM bc are satisfied

- Piezoelectricity is taken into account

- All strain components are taken into account

6.2 Anelastic approach

We start with a very approximate approach that gives a simpler physical picture. It

comes from the fact, that in reality applied external stress might result in a non-instantaneous

strain (the effect being linear), that is the system takes time to respond. Such behavior is

referred to as anelastic. For illustration, we present different types of mechanical behavior,

classified according to stress-strain relation, as summarized in [52] (p.3):

Table 6.2: Classification of different mechanical behaviors according to stress-strain relation, from [52].

Behaviour
Unique equilibrium

(complete recoverability)
Instantaneous Linear

Ideal elasticity Yes Yes Yes

Non linear elasticity Yes Yes No

Instantaneous plasticity No Yes No

Anelasticity Yes No Yes

Linear viscoelasticity No No Yes

where unique equilibrium means that, for each level of an applied stress there exists a unique

equilibrium value of strain.

In this frame, consider4 a simple time-dependent deformation, for example a uniaxial stress,

σ = σ0 eiωt. The resulting strain would be of the form ε = ε0 ei(ωt−φ(ω)), where φ(ω) is

defined as the phase lag. Taking the stress-strain ratio yields:

σ

ε
=
σ0

ε0
eiφ(ω) = M∗(ω) = MRe + iMIm 'MRe(1 + iφ) (6.3)

where M∗(ω) is complex elastic modulus. The phase lag can be expressed as the ratio of

imaginary and real parts, φ ' Mim
MRe

, provided that φ � 1. Consider now an elastic wave,

4The following description is based on [52], ch.1, sections 1.3 and 1.6.
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propagating along the x direction , the one-dimensional wave equation is given by (see sec-

tion 1.1.2):

ρ
∂2u

∂t2
= M∗

∂2u

∂x2
(6.4)

where the real elastic modulus is replaced by a complex one to account for anelasticity, as

justified in [52] (p.25).

Solution of the above equation can be given in a form of a damped plane wave, that is

u = u0 e−Γx eiω(t−x
v

), where Γ stands for attenuation and has units of reciprocal length.

Plugging the solution into eq. (6.4) yields:

−ρω2 = M∗
(

Γ2 + 2i
ωΓ

v
− ω2

v2

)
'M∗

(
2i
ωΓ

v
− ω2

v2

)
Since we consider the attenuation to be small, the Γ2 term should be negligible with respect

to the ratio ω2

v2 . Using the relation, given by eq. (6.3), we re-arrange the above equation:

−ρω2 = −MRe

(ω2

v2
+

2φωΓ

v

)
+ iMRe

(2ωΓ

v
− φω2

v2

)
Equating the real and imaginary parts yields: (ω

2

v2 � 2φΓω
v )

v2 =
1

ρ
MRe

Γ =
φω

2v
=
πφ

λ
' π

λ

MIm

MRe

(6.5)

From this it is possible to relate the velocity and attenuation of a propagating plane wave

to the complex elastic modulus of the medium. We thus need to show, that in the case of a

propagating Rayleigh wave, the stress can be expressed in terms of complex elastic constants

and if it does, we can employ the above relations to compute the change in velocity and

attenuation of the SAW, as will be shown later.

Let us thus consider a ferromagnetic film on a semi-infinite elastic substrate, as represented

in the fig. 6.3. In our experiments, as described in chapter 5, SAW is propagation along [110]

or [11̄0] direction. To describe our system we define a new set of coordinates, (x′1‖ [110], x′2 ‖
[11̄0], x′3 ‖ [001]), obtained by rotating the old coordinate system around x3 by π

4 (fig. 6.4).

The “ ′ ” sign stands for the new basis.

We now assume, that the film experiences strain, imposed by SAW, identical to the one, when

SAW propagates in a pure elastic semi-infinite solid, that is

(e′ij)(t) =

e
′
11(t) 0 e′13(t)

0 0 0

e′13(t) 0 e′33(t)


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Figure 6.3: SAW propagation in film /substrate
structure.
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ksaw
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x'3 // [001]

Substrate

Figure 6.4: New coordinate system is obtained
by rotation of the old one by π

4
around the [001]

direction.
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x'2

[11
0]

x1 // [100]

Thus at the surface, as discussed in the section 1.1.2, shear strain component vanishes,

e′13(t) = 0 and from the boundary conditions on σ′i3, we have:

σ′33 = c′33kl e
′
kl(t) = c′31 e

′
11(t) + c33 e

′
33(t) = 0

where we use the c′ notation to represent the elastic constants of the substrate in

the new basis. Under this assumption, the transverse and shear strain components can be

related via elastic constants. As discussed in the section 2.3 of the chapter 2, shear component

vanishes at the surface in the case of a wave, propagating in a semi-infinite elastic solid. For

a thin film of a nanometer thickness our assumption, can thus be re-formulated as follows:

Assumption №1

Following holds for the film

e′33(t) = −c
′
13

c′33

e′11(t)

In order to express the elastic constants for a ferromagnetic film, we compute the stress

components, using the derivative of the total energy density (appendix C) with respect to

strain 5 [84]:

σii =
∂F

∂εii
, σij =

1

2

∂F

∂εij
i 6= j (6.6)

5Note that, in [84] a 1
2

factor is missing for σij . Stress components can be computed either from the
Hooke’s law (eq. (1.7)) or from the derivative of the elastic energy density with respect to strain. The 1

2
is

necessary to obtain the same expression in both cases.
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We obtain in the standard basis:

σ11 = B1(sin2 θ cos2 ϕ− 1
3) + ĉ11 ε11 + ĉ12 (ε22 + ε33)

σ22 = B1(sin2 θ sin2 ϕ− 1
3) + ĉ11 ε22 + ĉ12 (ε11 + ε33)

σ33 = B1(cos2 θ − 1
3) + ĉ11 ε33 + ĉ12 (ε11 + ε22)

σ12 = B2
4 sin2 θ sin(2ϕ) + 2ĉ44 ε12

σ13 = B2
4 sin(2θ) cos(ϕ) + 2ĉ44 ε13

σ23 = B2
4 sin(2θ) sin(ϕ) + 2ĉ44 ε23

The stress and strain components can be expressed in the new basis, following the transfor-

mation rules, where γ is the transformation matrix6 :

{
εij = γµiγνj ε

′
µν

σ′µν = γµiγνj σij
γ =


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

 (6.7)

We obtain after some algebra:



σ′11 = ĉ ′11ε
′
11 + ĉ ′12ε

′
12 + ĉ ′13ε

′
33 + B1

2 (sin2 θ − 2
3) + B2

4 sin2 θ sin(2ϕ)

σ′22 = ĉ ′12ε
′
11 + ĉ ′11ε

′
22 + ĉ ′13ε

′
33 + B1

2 (sin2 θ − 2
3)− B2

4 sin2 θ sin(2ϕ)

σ′33 = ĉ ′33ε
′
33 + ĉ ′13(ε′11 + ε′22) +B1(cos2 θ − 1

3)

σ′12 = 2ĉ ′66ε
′
12 − B1

2 sin2 θ cos(2ϕ)

σ′13 = B2
4 sin(2θ) sin

(
ϕ+ π

4

)
+ 2ĉ ′44ε

′
13

σ′23 = B2
4 sin(2θ) sin

(
ϕ− π

4

)
+ 2ĉ ′44ε

′
23

(6.8)

with ĉ ′ij elastic constants of the ferromagnetic film in the new basis:

ĉ ′11 = 1
2 ĉ11 + 1

2 ĉ12 + ĉ44

ĉ ′12 = 1
2 ĉ11 + 1

2 ĉ12 − ĉ44

ĉ ′13 = ĉ12

ĉ ′33 = ĉ11

ĉ ′44 = ĉ44

ĉ ′66 = 1
2 ĉ11 − 1

2 ĉ12

(6.9)

As discussed in the chapter 2, SAW triggers magnetization dynamics and the deviations

from the equilibrium position are assumed to be small. We thus can Taylor-expand the stress

components (eq. (6.8)) up to the first order around the equilibrium position, (θ̄, ϕ̄, ε̄ij). Taking

6Rows represent the coordinates in the old basis.
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θ̄ = π
2 , i.e. in-plane magnetization and noticing that, at equilibrium the static part of the

stress vanishes for it is the energy minimum ( ∂F
∂εij

∣∣∣
ε̄ij

= 0), we can express

σ′11(t) =
(
ĉ11
2 + ĉ12

2 + ĉ44 − ĉ12
c12
c11

)
e′11(t) + B2

2 cos(2ϕ̄)δϕ(t)

σ′22(t) =
(
ĉ11
2 + ĉ12

2 + ĉ44 − ĉ12
c12
c11

)
e′11(t)− B2

2 cos(2ϕ̄)δϕ(t)

σ′33(t) =
(
ĉ12 − ĉ11

c12
c11

)
e′11(t)

σ′12(t) = B1 sin(2ϕ̄)δϕ(t)

σ′13(t) = 2ĉ44 e
′
13(t)− B2

2 sin
(
ϕ̄+ π

4

)
δθ(t)

σ′23(t) = −B2
2 sin

(
ϕ̄− π

4

)
δθ(t)

(6.10)

where we used the assumption №1 to replace the transverse strain term, e′33(t). From the

equations above it is clear, that the stress components are modified by the magneto-elastic

coupling terms, proportional to angular variations of magnetization. The latter are expressed

in terms of the SAW strain components, e′ij(t) and are, a priori, complex numbers. Thus, one

can express the stress components in terms of complex elastic constants and this is what we

were looking for. To proceed further another assumption should be made.

Following the assumption №1, a ferromagnetic film experiences the same strain, that exists

in SAW, propagating in a semi-infinite elastic medium. In such a case, at the surface the

shear strain component vanishes, as already discussed in the section 2.3. Thus, in order to

correlate the SAW velocity and the complex elastic constant, it is sufficient to consider only

longitudinal strain. Therefore, the next assumption is the following

Assumption №2

Change in SAW velocity is related to the σ11 component

Justification of this assumptions is possible, however, a posteriori, using a more sophisticated

model, as will be seen from the next section (section 6.3).

From the above, we need to express the σ11 in terms of a complex elastic constant. The

in-plane angular variation, δϕ(t) is given by:

δϕ(t) =
1

2

(η2Fθθ + iαωη) B2 cos(2ϕ̄)(
ω2 − ω2

0

)
− iαω η

(
Fθθ + Fϕϕ

) e′11(t)

Re-arranging yields:

δϕ(t) =
[η2Fθθ(ω

2 − ω2
0)− (αωη)2(Fθθ + Fϕϕ)

(ω2 − ω2
0)2 + (αωη)2(Fθθ + Fϕϕ)2

B2

4
cos(2ϕ̄)+

i
αωη(ω2 + η2F 2

θθ)

(ω2 − ω2
0)2 + (αωη)2(Fθθ + Fϕϕ)2

B2

2
cos(2ϕ̄)

]
e′11(t)

(6.11)



6.2 Anelastic approach 109

In the section 2.3.2 of the chapter 2 we showed that αωη(Fθθ +Fϕϕ) term in the denominator

of the above expression is negligible with respect to (ω2 − ω2
0) (fig. 6.5a). Also the term,

containing (αωη)2, in the numerator of the real part of the expression is negligible with

respect to its counterpart, as can be seen from the fig. 6.5b.

Figure 6.5: Different terms of the eq. (6.11) vs the applied field angle, at different field intensity. Numerical
values of the damping parameter and SAW frequency are 0.01 and 0.833 MHz, respectively.

(a) Terms in the denominator of eq. (6.11). (b) Terms in the numerator of the real part of
eq. (6.11).

We thus can simplify:

δϕ(t) =
[ η2Fθθ

(ω2 − ω2
0)

B2

4
cos(2ϕ̄)︸ ︷︷ ︸

δϕRe

+i
αωη(ω2 + η2F 2

θθ)

(ω2 − ω2
0)

B2

2
cos(2ϕ̄)︸ ︷︷ ︸

δϕIm

]
e′11(t) (6.12)

Given eq. (6.12), the longitudinal stress component can be expressed as:

σ′11(t) =
[ ( ĉ11

2
+
ĉ22

2
+ ĉ44 − ĉ12

c12

c11
+
B2

2
cos(2ϕ̄) δϕRe

)
︸ ︷︷ ︸

Ĉ′Re

+i
B2

2
cos(2ϕ̄) δϕIm︸ ︷︷ ︸

Ĉ′Im

]
e′11(t) =

(
Ĉ ′Re + i Ĉ ′Im

)
e′11(t)

(6.13)

Therefore σ′11 is complex, as expected, and this is the case of retarded elasticity. Note that, if

damping is neglected, the stress components can no longer be expressed in terms of complex

elastic constants. It is thus the magnetic damping, that accounts for anelastic behavior.
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Using eq. (6.12) we can explicitly express the real, Ĉ ′Re and imaginary, Ĉ ′Im parts of the

elastic constant of the ferromagnetic medium:

Ĉ ′Re =
ĉ11

2
+
ĉ22

2
+ ĉ44 − ĉ12

c12

c11
+ B2

2 cos2(2ϕ̄)
η2Fθθ

4(ω2 − ω2
0)︸ ︷︷ ︸

magneto−elastic contribution

(6.14)

Ĉ ′Im = B2
2 cos2(2ϕ̄)

αωη(ω2 + η2F 2
θθ)

4(ω2 − ω2
0)

(6.15)

Furthermore, the obtained expression, eq. (6.14) shows, that the elastic constants of the fer-

romagnetic film are modified by the magneto-elastic coupling with a very clear dependency

on the field direction and intensity.

Note that, as in the case of the computation of the torque density (section 2.4) for SAW

propagating along [110], we also find the sensitivity to the B2 magneto-elastic coefficient.

This point is very important and will be discussed in the section 6.4.

After obtaining the expression for the longitudinal stress component in terms of complex

elastic constants of the film, the last assumption is to be made to account for the film-on-

substrate structure, that is to take the film thickness into account, since the change of the

SAW velocity originates within the film. We define effective elastic constants of the

structure as the sum of the elastic constants of the substrate and the film, taking into

account film thickness and SAW penetration depth:

* Substrate, GaAs: elastic constants

C ′ = C ′Re + i C ′Im = C ′Re (6.16)

* Ferromagnetic film, Fe0.8Ga0.2: complex elastic constants, given by eq. (6.13)

Ĉ ′ = Ĉ ′Re + i Ĉ ′Im (6.17)

* Film-on-substrate: effective elastic constants

Assumption №3

C′eff =
(λ− d)C′ + d Ĉ′

λ
' C′+ d

λ
Ĉ′ = (C′+

d

λ
Ĉ′Re)+i

d

λ
Ĉ′Im

where d, λ are the film thickness and SAW wave length, respectively. Under this assump-

tion the medium is transformed into an effective medium with effective elastic constants, as

illustrated in the figure below.
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Figure 6.6: Original and assumed structures.
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The ratio d
λ is referred to as a dilution factor, as discussed in the section 6.1, and takes

into account the film thickness with respect to the SAW penetration depth, which is of the

order of one wavelength.

6.2.1 Expressions for ∆V
V

Let us go back to the assumption №2. As discussed previously, since the shear strain

component vanishes, we only consider the velocity changes related to the longitudinal strain

component. From the assumption №3 we have for the real part of the effective elastic constant,

C ′effRe = C ′ + d
λ Ĉ

′
Re:

C ′effRe = C ′ +
d

λ
Ĉ ′Re

The velocity of a longitudinal wave in the effective medium is given by:

ρV 2
L = C ′effRe

where ρ is the effective medium density. Thus:

d(lnV 2
L ) = d(

lnC ′effRe

ρ
)

or

∆VL
VL

=
1

2

∆C ′effRe

C ′effRe

(6.18)

Note that the substrate elastic constant, C ′ is independent of the applied field, thus

∆C ′effRe = d
λ∆Ĉ ′Re. Since d

λ is small, we have C ′effRe ≈ C ′, so we obtain:

∆VL
VL

=
d

2λ

∆Ĉ ′Re

C ′
(6.19)
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Note that, these are velocity variations of a longitudinal wave, propagating in an effective

medium. A priori, we cannot identify them with the velocity variations of the Rayleigh

wave. However, a more sophisticated approach, presented in the section 6.3.3 shows, that the

variation of the Rayleigh velocity are dominated by the longitudinal velocity. Furthermore the

computed variations, using both approaches, are of the same order of magnitude, as will be

seen in the section 6.4.1.

Analytically it is possible to compute the SAW attenuation, using eq. (6.5). However, we could

not reproduce our experimental data with this analysis. As could be seen in the chapter 5,

fig. 5.2 SAW is mostly attenuated in the low field region, that is where the magnetic domains

are present.

6.3 Film-on-Substrate Approach

The approach, explored in this section is based on the previous work of G.W. Farnell

and E.L. Adler, that considered propagation of elastic waves in a film-on-substrate structure

[150]. As discussed in the section 1.1.2, to find the Rayleigh velocity, the general search

procedure is the following:

(i) We assume solutions of the equations of motion in terms of plane waves, exponentially

decaying with depth.

(ii) Plugging the assumed solutions into the equations of motion, we obtain a new equation,

solving which yields the solutions for the penetration depth and wave vector.

(iii) Linear combination of the obtained solutions should satisfy the boundary conditions for

a certain value of the Rayleigh velocity. It is thus possible to deduce the latter from

boundary conditions.

For a general case of a anisotropic film on a piezoelectric7 substrate, there exist a linear

combination of four solutions for the substrate and of eight for the film [150]. That is,

particle displacement, ui and electric potential8, φ are written as a linear combination of

partial waves with corresponding penetration depth and amplitude.

The calculations are greatly simplified, if one considers an isotropic film on an isotropic

substrate, thus both being non-piezoelectric. In this case, following the above procedure,

Farnell and Adler arrive to the system of linear equations, solvable iff determinant of the

matrix, M represented below, vanishes. The Rayleigh velocity is thus a solution of the

7Piezoelectric materials lack center of symmetry and are by nature anisotropic [47], ch.2, p.110.
8Note that piezoelectric wave is the wave with four components: three mechanical displacements, ui

and electric potential, φ, that originates from the electric field, accompanying the elastic wave due to the
piezoelectric effect.
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equation detM = 0.

M =



b5 −1 −b5 −1 −bc 1

−1 −b6 −1 b6 1 bd

1− b25 2b6 1− b25 −2b6 −r(1− b2c) −2rbd

2b5 −1 + b25 −2b5 −1 + b25 −2rbc r(1− b2c)
1− b25 eikb5h 2b6 e

ikb6h (1− b25) e−ikb5h −2b6e
−ikb6h 0 0

2b5e
ikb5h (−1 + b25) eikb6h −2b5 e

−ikb5h (−1 + b25) e−ikb6h 0 0


(6.20)

where h is the film thickness and bi∈[5,6,c,d] terms are defined as:

b5 = i
√

1− (v/v̂T )2

b6 = i
√

1− (v/v̂L)2

bc = −i
√

1− (v/vT )2

bd = −i
√

1− (v/vL)2

r = c44/ĉ44

(6.21)

where the “̂” notation is used to distinguish between parameters of the film and the substrate:

* v̂T velocity of a bulk transverse plane wave in the film material

* v̂L velocity of a bulk longitudinal plane wave in the film material

* ĉ44 elastic constant of the film

* vT velocity of a bulk transverse plane wave in the substrate material

* vL velocity of a bulk longitudinal plane wave in the substrate material

* c44 elastic constant of the substrate

F&A calculations assume isotropic elastic film and isotropic elastic substrate. In principal,

their approach could be extended to elastic cubic film and elastic cubic substrate. However,

not to render the calculations heavier, we will employ their expressions. The eq. (6.20) is thus

a starting point for us. We assume, that SAWs propagate in

Assumption №1

Isotropic film / Isotropic (non-piezoelectric) substrate

as represented in the fig. 6.7.
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Justifications of this assumption can be discussed on the physical grounds. Neglecting

piezo-electricity and considering isotropic media will definitely modify the absolute value of

the Rayleigh velocity. But what we are interested in, is the change in velocity as a function of

the magnetic field. We assume the field-induced change in velocity is the same for isotropic

and anisotropic systems.

We thus need to compute the transverse, v̂T , vT and longitudinal, v̂L, vL velocities in the bulk

film and bulk substrate materials, respectively. Since the film is ferromagnetic, we consider a

magneto-elastic wave, that is the elastic wave, accompanied by a time-varying magnetic field,

originating from the precessing magnetization. The transverse and longitudinal velocities of

the film material are modified by the magneto-elastic coupling, as was already discussed in

the previous section. Furthermore, we saw that, damping does not play a role in the variation

of the velocity. Thus, for simplicity of the calculation we assume it can be neglected.

Assumption №2

Damping is neglected, α = 0

Note that, the assumption that the medium is elastically isotropic, does not imply that it is

magnetically isotropic. As an example, a ferromagnetic crystal can possess a cubic symmetry

as a crystalline structure, but exhibits uniaxial magneto-crystalline anisotropy, that does not

exhibit the four fold symmetry. We thus simplify the problem from the elastic point of view,

while keeping the symmetry of the magnetic anisotropy intact.

We will now present the search procedure to obtain the transverse and longitudinal ve-

locities in the bulk film material.

Figure 6.7: “Isotropisation” of the structure.
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6.3.1 Ferromagnetic Film: Transverse Wave Velocity, v̂T

To compute the transverse wave velocity, v̂T in the film bulk material we employ the

results, already presented in the chapter 2 and section 6.2. We consider a magneto-elastic

wave, polarized along [001] and propagating along [110] (fig. 6.7), that has five components,

assumed to be of the form: 

u′1 = 0

u′2 = 0

u′3 = Ut e
i(ωt−kx′1)

δθ = Θ ei(ωt−kx
′
1)

δϕ = Φ ei(ωt−kx
′
1)

(6.22)

Since the components of such a wave exhibit the dependence on x1 only, the strain matrix

assumes the following values

in the new basis:

(e′ij) =

 0 0 e′13

0 0 0

e′13 0 0

 (6.23)

in the standard basis:

(eij) =


0 0 1√

2
e′13

0 0 1√
2
e′13

1√
2
e′13

1√
2
e′13 0

 (6.24)
and

the equations of motion give 
ρ̂
∂2u′1
∂t2

=
∂σ′11
∂x′1

ρ̂
∂2u′2
∂t2

=
∂σ′12
∂x′1

ρ̂
∂2u′3
∂t2

=
∂σ′13
∂x′1

(6.25)

First, we need to explicitly express the strain components. This is done by deriving the

total energy density of a ferromagnet with respect to strain (eq. (6.6)). Then we re-write

the obtained expression in the new basis (eq. (6.8)) and make a Taylor expansion around the

equilibrium position (eq. (6.10)). Using strain matrix, eq. (6.23) for this type of wave, we

finally obtain: 
ρ̂ ω2u′1 = ikB2

2 cos(2ϕ̄) δϕ

ρ̂ ω2u′2 = ikB1 sin(2ϕ̄) δϕ

ρ̂ ω2u′3 = k2c44u
′
3 − ik

2 B2 sin
(
ϕ̄+ π

4

)
δθ

(6.26)

It follows, that u′1 6= 0, u′2 6= 0, that is in contradiction with what we assumed in the beginning.

However, as will be seen further, u′3 � u′1, u
′
2 and thus, the assumption is self-consistent.
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The expressions for angular variations, δϕ, δθ were previously derived in appendix D and

using the eq. (6.23), (also eq. (6.24), so that the expressions for angular variations can be

employed) we finally obtain
δθ = ik

B2

2

η2Fϕϕ
ω2 − ω2

0

sin
(
ϕ̄+

π

4

)
u′3

δϕ = kω
B2

2

η

ω2 − ω2
0

sin
(
ϕ̄+

π

4

)
u′3

(6.27)

Plugging eq. (6.27) into eq. (6.26) we find:

ρ̂ω2 = k2c̃′44 (6.28)

where c̃′44 is the effective elastic constant, modified by the magneto-elastic contribution:

c̃′44 = c′44 +
B2

2

4

η2Fϕϕ
(ω2 − ω2

0)
sin2(ϕ̄+

π

4
)︸ ︷︷ ︸

magneto−elastic contribution

(6.29)

and finally the transverse velocity, v̂2
T = (ωk )2 can be expressed in terms of the modified elastic

constant:

v̂2
T =

c̃′44

ρ̂
(6.30)

Self-consistency of the assumption

Following the obtained expression for the modified elastic constant, c̃′44 and using the

eq. (6.27), we can explicitly express the displacement amplitude ratios:
u′1
u′3

=
i

c̃′44

ωη

4(ω2 − ω2
0)
B2

2 cos(2ϕ̄) sin
(
ϕ̄+

π

4

)
u′2
u′3

=
i

c̃′44

ωη

2(ω2 − ω2
0)
B1B2 sin(2ϕ̄) sin

(
ϕ̄+

π

4

)
In the figures below we plot the numerical values of the ratios modulus,

∣∣∣u′1u′3 ∣∣∣, ∣∣∣u′2u′3 ∣∣∣ vs applied

field angle for different values of the field intensity. As can be seen, the latter are of the order

10−5, that is u′3 � u′1, u
′
2 and thus, u′1 = u′2 ' 0. Therefore the assumption on the wave

components, i.e. eq. (6.22) is approximately verified.
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Figure 6.8: Modulus of the displacement ampli-

tude ratio
∣∣∣u′

1
u′
3

∣∣∣ vs applied field angle, for different

field intensities.

Figure 6.9: Modulus of the displacement ampli-

tude ratio
∣∣∣u′

2
u′
3

∣∣∣ vs applied field angle, for different

field intensities.

6.3.2 Ferromagnetic Film: Longitudinal Wave Velocity, v̂L

Following the same procedure, described above, we compute the velocity of the longi-

tudinal wave, v̂L, polarized along [110], propagating in the bulk ferromagnetic materials,

assuming the wave components: 

u′1 = Ul e
i(ωt−kx′1)

u′2 = 0

u′3 = 0

δθ = Θ ei(ωt−kx
′
1)

δϕ = Φ ei(ωt−kx
′
1)

We thus find:

v̂2
L =

c̃′11

ρ
(6.31)

with the effective elastic constant:

c̃′11 =
c11

2
+
c12

2
+ c44 +

B2
2

4

η2Fθθ
ω2 − ω2

0

cos2(2ϕ̄) (6.32)

The self-consistency of the assumption on the wave components can also be verified numeri-

cally, as it was in the previous case.
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6.3.3 Longitudinal velocity, v̂L vs transverse velocity, v̂T

Let us now compute the velocity variations of longitudinal and transverse waves in the

ferromagnetic bulk material with the applied magnetic field, at different field angles. The

result is shown in the figures below. Computations are carried out using the values, given

in the chapter 2, table 2.1. As can be seen, the variations of the transverse velocity are 100

times smaller than those of the longitudinal one. This means that the change in the Rayleigh

velocity is mostly due to the longitudinal strain component. This proves a posteriori, that

the assumption №2 we took in the “anelastic” approach (change in SAW velocity is related

to σ11 component) is reasonable.

Figure 6.10: Computed velocity of the transverse
wave, v̂T in the bulk ferromagnetic material. Field
applied at 15◦ with respect to [100] direction.

Figure 6.11: Computed velocity of the longitudi-
nal wave, v̂L in the bulk ferromagnetic material.
Field applied at 15◦ with respect to [100] direc-
tion.

Figure 6.12: Computed velocity of the transverse
wave, v̂T in the bulk ferromagnetic material. Field
applied at 65◦ with respect to [100] direction.

Figure 6.13: Computed velocity of the longitudi-
nal wave, v̂L in the bulk ferromagnetic material.
Field applied at 65◦ with respect to [100] direc-
tion.
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6.4 Interpretation and Fits of the Experimental Data

In the next sections we will employ the developed theoretical models to fit our ex-

perimental data in order to extract the material parameters, namely the magneto-elastic

coefficient B2 (SAW along [110]) and MCA constants, K1, Kip. As was described in the

chapter 5, we performed two kind of measurements, in which the variations in SAW velocity,
∆V
V were measured vs field at fixed angle and vs angle, at fixed field, for different acoustic

frequencies. From the following discussion, it will be clear that the best fitting procedure is

to fit the velocity versus the applied field angle, starting first from measurements, taken at

high fields.

Let us make an observation of the sample of pure iron, 32m0215 Fe 67nm. This sample

exhibits biaxial-uniaxial MCA, the latter due to the interface effects in case of a thin film on

a substrate, as was discussed in the chapter 3. A typical hysteresis for pure iron thin film is

represented in the figure below (fig. 6.14).

Figure 6.14: Typical hysteresis for pure Fe (32m0100).

The measured variations in the SAW velocity, ∆V
V vs applied field angle at fixed frequency,

834 MHz for different field intensities, 66mT and 357mT are represented in the fig. 6.15.

The following striking features can be observed:

(i) Asymmetry in the “peaks” amplitudes

(ii) The “peaks” width is different, the effect being much more pronounced at lower field,

66mT
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Figure 6.15: 32m0215 Fe 67nm. Relative change in velocity, ∆V
V

vs applied field angle at 834MHz, at 66mT
and 357mT.

Assymetry in amplitude

Peak width

At first, to discuss these results, we can reason in terms of the SAW-induced torque. The

fig. 6.16 summarizes previous computation results, derived in the chapter 2. Note that, the

computation was carried out for the material constants (K1, Kip, B2) of Fe0.8Ga0.2 58nm

sample.

Nevertheless, we can employ the results to discuss the physics. Let us note few important

points:

(i) In the section 6.2 we derived the expression for the real part of the elastic constant of

the film, modified by the magneto-elastic contribution. The latter is always negative,

for so is the difference in frequencies9 ω2 − ω2
0. It follows that, the modification of the

elastic constants of the material by magneto-elastic contribution results in the softening

of the elastic constants and thus, the SAW velocity is smaller, when coupled.

Ĉ ′Re =
ĉ11

2
+
ĉ22

2
+ ĉ44 − ĉ12

c12

c11
+ B2

2 cos2(2ϕ̄)
η2Fθθ

4(ω2 − ω2
0)︸ ︷︷ ︸

magneto−elastic contribution, <0

(ii) As discussed, the parallel, m ‖ ksaw or perpendicular configuration, m ⊥ ksaw results

in the zero torque or in other words, there is no coupling. However, zero torque for the

first configuration is a consequence of the neglected shear strain component, e13 (sec-

tion 2.3.1). In reality, there is a coupling in such configuration, though small.

9The proper frequency increases with the field, so for a fixed acoustic frequency either the difference is
zero, that is resonance, either it is negative.
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(iii) As can be seen from the torque norm variations with the applied field angle (fig. 6.16,

left), for a low field value, as 66mT (85mT) we are still sensitive to the magneto-

crystalline anisotropy (MCA) of the system10. This is a fingerprint of the eigenfrequency

of the system, ω0 as can be seen from fig. 6.17, where we compare biaxial and biaxial-

uniaxial MCA systems. When magnetization is along a hard axis, the eigenfrequency

drops down and thus, torque is larger. This is an important point and we can reformulate

it as: when we approach the resonance condition, ω0 = ω the magneto-elastic

coupling is stronger.

(iv) As the field increases, we are no longer sensitive to the MCA, but only to the oscillatory

term, |B2 cos(2ϕ̄)| in the torque expression (eq. (2.20), chapter 2), that is proportional

to the magneto-elastic coefficient.

Following these points, we can now interpret our results (fig. 6.15).

The asymmetry in “peaks” amplitude is clearly related to the small coupling at 0◦ (field

parallel to the SAW wave vector) and the absence of the latter at 90◦ (field is perpendicular

to the SAW wave vector). We are sensitive enough to measure it.

On the other hand, the SAW velocity is higher in the decoupled state and as a consequence,

the “peak” amplitude is higher11 at 90◦.

Figure 6.16: Polar plot of MCA energy density (left). Colorplot of the torque density norm (middle). Torque
density norm vs applied field angle at different field intensities (left).
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10Note that for this set of parameters, used in calculation, at 66mT the magnetization is not completely
aligned with the applied field at −45◦. This is why the torque is not zero, from the other hand 85mT is enough
to result in the perpendicular configuration, m ⊥ ksaw and thus, torque vanishes.

11Note that, when we treat experimental data, the change in the SAW velocity is deduced according to
∆V
V

=
V (ϕB)−V (ϕBref )

V (ϕB)
. The reference angle is absolutely arbitrary, so what counts is the peak hight at different

angle and not its zero value.
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Figure 6.17: Computed eigenfrequency, ω0/2π vs the applied field angle for different field intensities and
different MCA systems. Notation: B MCA biaxial MCA, BU MCA biaxial-uniaxial MCA.
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At low field we are sensitive to the MCA. For the field, applied along the hard axis, the

coupling is stronger. This results in large variations of the velocity, that results in a “narrow”

peak at 0◦. As the field is increased, we become less and less sensitive to the MCA on one

hand and the coupling decreases, on the other. This results in the “peak broadening”, as

velocity variations become smaller. Note that it is at high field we are sensitive to the

B2 coefficient. This discussion is summarized in the figure below (fig. 6.18). This one curve

can tell us so much about the physics behind the magneto-elastic interaction!

Figure 6.18: Summary of the interpretation.
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However, there are two features of this curve that must be discussed.

First, if we look at the polar plot of the biaxial-uniaxial energy density (fig. 6.16, left), it is

clear that the medium and hard axes are along [110] and [11̄0] directions, respectively. The

direction, however, depends on the sign of the MCA constant (section 1.2.4). When the field

is applied along hard axis, at 90◦ the coupling should be larger and we would expect a narrow

peak.

This is not what we observe. This implies, in the frame of this reasoning, that the medium

and hard axes are reversed. The latter is possible if the Kip constant is positive.

The negative value of the uniaxial MCA constant is related to the anisotropic interface bond-

ing and should be negative [109] [110]. Further investigation is needed to understand this

observation.

Secondly we observe, that the peaks are slightly shifted with respect to the main crystal-

lographic directions. Since the indicated angles are measured, we attribute this effect to a

measurement error.

Based on the discussion above, we propose the following fitting procedure. First, the high

field measurements are considered to extract B2 values then we can extract K1, Kip by fitting

the variations ∆V
V at low fields. Note that, it is possible to distinguish between the biaxial

and uniaxial MCA contributions due to the width of the “peaks”.

It is also clear, that the film-on-substrate approach is more appropriate, since it takes into ac-

count both longitudinal and shear strain components, and thus can reproduce the asymmetry

in the “peaks” height.

6.4.1 32m0215 Fe 67nm

We now proceed with fitting the data. Some of the experimental results for this sample

were discussed in the section above. SAW propagation direction is [110]. As discussed, the

fitting procedure is the following:

1. We set the MCA constants to zero, K1 = Kip = 0 and fit the amplitude of the variations,

choosing the appropriate value of the B2 constant. The corresponding fit is represented

with a red solid curve in the fig. 6.19.

2. Having determined the magneto-elastic coefficient, B2, we adjust K1 and then Kip. The

corresponding fit is represented with a dashed blue line.

Note that, in the previous section we gave an interpretation in terms of torque. In the figures

below, we compute the change in velocity at two different frequencies for low, 60mT and high,

400mT fields to see the effect of the MCA on the SAW velocity at low field.
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The fig. 6.19 represents the velocity variations, ∆V
V with the applied field angle for three

different frequencies, 358MHz, 596MHz and 834MHz at high field. The table 6.3 summarizes

the materials constants, used to obtain the best fits. Note, that Kip is taken to be positive.

Table 6.3: Film-on-substrate approach (section 6.3), fitting
parameters B2, K1, Kip.

MCA Best fit value

without MCA |B2| = 2.4 · 107, K1 = Kip = 0 (J/m3)

with MCA

|B2| = 2.4 · 107 (J/m3)

K1 = 6 · 103

Kip = 104

Figure 6.19: Fit of the experimental data for different frequencies.
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Low field features: close to the resonance?

The peculiar features for velocity variations at low field, as discussed at the beginning

of this section (fig. 6.15), require a special attention. We cannot fit them with our model.

However, we tried to change the parameters to see whether these features can be reproduced.

We found numerically that this is the case for a system, exhibiting only uniaxial anisotropy

MCA with an enhanced value 2.5 · 104 J/m3, since we could reproduce the shape of the

experimental curve (fig. 6.20): a narrow peak when the field is parallel to [110], surrounded

by well defined minima structures.

We also calculated the difference of the acoustic and eigenfrequencies, ω2
0 − ω2 (fig. 6.21) for

different acoustic frequencies and fields.

The striking observation is that for ω = 1GHz and 50mT, the ω2
0 − ω2 term is almost zero

(when a uniaxial anisotropy of 2.5 ·104 is artificially considered), which implies the resonance.

Increasing the field or frequency, we shift up the term, which is an expected behavior.

Since for this simulated system we could reproduce the shape of the experimental curve and

we are close to resonance, we speculate that experimentally this might be the case.

We recall that our approach is no longer valid when the value of SAW angular frequency,

ω is close to ω0, as it implies non-linear magnetization dynamics. Thus we cannot fit these

experimental values.

Figure 6.20: Computed ∆V
V

vs applied field. Figure 6.21: Computed ω2
0 − ω2 vs applied field.
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Film-on-substrate vs anelastic approach

The last point to address to in this discussion is the comparison between two theoretical

approaches, explored in this chapter. The figure below (fig. 6.22) represents the computed

velocity variations vs field angle, using two approaches. We took the same parameters for

the anisotropy constants, that we obtained from the fits with the film-on-substrate approach

(table 6.3). The magneto-elastic constant, B2 was adjusted to the fit the data at 834MHz with

the “anelastic” approach, |B2| = 2.85·107 (J/m3), which is not bad, given the approximations

we made. As discussed before, the anelastic model cannot reproduce the asymmetry in the

peaks height for it does not take into account the shear strain contribution. But also the

frequency dependent dilution factor comes into play: for the same value of the magneto-

elastic constant we cannot fit perfectly the data at two different frequencies. Nevertheless,

the advantage of the anelastic approach is in its simplicity, that does give the insights into

physics.

Figure 6.22: Computation of the velocity oscillations, using two models, for 834MHz and 596MHz.
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6.4.2 32m0206 Fe0.8Ga0.2 58nm

Many experimental results for this sample were presented in the chapter 5. The fig. 6.24

- fig. 6.23 represent the experimental data and fits for different fields and frequencies. The

following table summarizes the fitting parameters, obtained using the film-on-substrate model,

as well as the measured values. Note that as in the case with pure iron, the uniaxial MCA

constant is positive from the fit.

If we compare the fits at high field, 389mT, it is clear that the MCA does not play any role.

At relatively low field, 155mT we are much more sensitive to the MCA , as can be seen from

the peaks’ width. It is thus possible to distinguish between the two contributions to the MCA

of the system (biaxial and uniaxial) and to extract the constants.

Table 6.4: Film-on-substrate approach (section 6.3), fitting parameters B2, K1, Kip.

MCA Best fit value Measured value (table 2.1, table 3.4)

without

MCA

|B2| = 1.2 · 107, K1 = Kip = 0 (J/m3)

with

MCA

|B2| = 1.2 · 107 (J/m3)

K1 = 2 · 104

Kip = 0.7 · 104

B2 = −1.0 · 107 (J/m3)

K1 = 2.41 · 104

Kip = −0.6 · 104

Figure 6.23: Fit of the experimental data for different frequencies at a fixed field, 389mT.
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Figure 6.24: Fit of the experimental data for different frequencies at a fixed field, 155mT.

6.5 Conclusion

This chapter was devoted to the modeling of the system. After giving an in-exhaustive

state of the art of the theoretical approaches, existing in the literature, we considered two

approaches.

The first approach is based on the theory of anelasticity and is very approximate. Within

this approach we derive the expression for an effective elastic constant of the medium. The

real part of the expression is used to compute the change in the Rayleigh velocity. The main

drawbacks of this approach is the introduction of a “dilution factor” to account for the real

film-on-substrate structure, and the approximation that the change in the velocity is due to

the longitudinal strain component only.

In the second approach we adapt the calculation of Farnell and Adler, describing the prop-

agation of SAWs in a film-on-substrate structure, by including the magneto-elasticity. This

approach is more rigorous, as it take into account both longitudinal and shear strain com-

ponent of SAW, which is crucial for fitting the experimental data. Furthermore the film
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thickness parameter enters naturally in the calculation and so no dilution factor is needed.

Having established the theoretical framework, we pass to the numerical analysis and data in-

terpretation. The result of the interpretation is concluded in the figure below, that represents

the velocity variations with the applied field angle at low field (32m0215 Fe).

Figure 6.25: Summary of the interpretation.
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broad peak

Increasing coupling,
smaller velocity, 
larger variation

Low field, 66mT 
sensitivity to MCA

[110] 
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We then proceed with our data analysis. We propose a fitting procedure to extract the

material constants, namely magneto-elastic, B2 and MCA, K1,Kip parameters. This can be

done by fitting the velocity variations vs the applied field angle. Fitting the data first, taken

at high fields, permits to extract the B2, while at lower field we are sensitive to the MCA.

It is also possible to distinguish between K1 and Kip contribution. We thus propose a new

method to extract material parameters, employing SAWs.





Conclusion & Perspectives

In this PhD thesis, I carried out a study in order to obtain a better understanding

of physics behind the magneto-elastic interaction between magnetization and surface acous-

tic waves (SAWs), in epitaxied ferromagnetic thin films. This was done by a systematic

investigation of SAW propagation versus magnetic field, in devices working at different fre-

quencies, thanks to a time-consuming technological development of inter-digital transducers

(frequencies up to 5GHz were attained in GaAs substrates). This was accompanied by the

development of two phenomenological models that permitted the description of the SAW ve-

locity variations versus magnetic field, in terms of intrinsic parameters of the thin films, i.e.

the magnetic anisotropy and the magneto-elastic coefficients. Our aim was to write equations

as simple as we could, compatible with LLG equations and SAW propagation laws. This was

done in the single domain approximation and without taking into account the piezoelectric

properties of the substrate. In particular, we carried out a study of the directionality of the

magneto-elastic coupling as a function of the direction and the intensity of the magnetic field

and of the SAW frequency in Fe and FeGa thin films epitaxied on GaAs(001). Samples of

different magnetic structure, that is with in-plane, out-of-plane or in-plane isotropic and of

different thicknesses were studied, using a high sensitivity RF acoustic setup. Based on our

experimental findings and theoretical approach (for the moment only in-plane magnetized

samples were considered), we could propose a new method to extract the material parame-

ters, namely magneto-elastic coupling coefficients and magneto-crystalline anisotropy (MCA)

constants.

It turns out that the SAW induced torque on the thin film magnetization can be regarded

as the main player of the magneto-elastic coupling game. It was shown how the coupling

strongly depends on the direction of the applied field, more precisely on the equilibrium

orientation of magnetization with respect to the SAW wave vector. This permits us to put

forward two important points of our work:

- First, SAW propagation along the in-plane [100] or [110] family directions of a cubic

crystal, exhibits a sensitivity to different magneto-elastic coefficients, i.e. B1 and B2,

respectively. By a fitting procedure, exploiting the analytical models, we succeeded

to extract the B2 coefficient of Fe and FeGa thin films. Furthermore, by varying the
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field, we showed that the acoustic measurement are well sensitive to biaxial and uni-

axial anisotropies present in the epitaxied thin films. All these values were compared

with magnetic anisotropy and magneto-elastic coefficients measured by more traditional

means, like FMR and cantilever method. A good agreement was found, corroborating

our phenomenological models. If FMR is a widely used and reliable technique to ex-

tract magnetic anisotropy coefficients, the cantilever method remains incipient in actual

nanomagnetism research. We believe that obtaining a complete set of measurement of

both parameters (magneto-elastic and anisotropic), by a unique acoustic experiment is

a successful novelty.

- Secondly, it was seen that the coupling strongly depends on the direction of the applied

field, more precisely on the equilibrium orientation of magnetization with respect to the

SAW wave vector. In particular, two angles are important: the first one is between the

SAW wave vector and the equilibrium magnetization and the second one is between the

equilibrium magnetization and the magnetic axis of the film. From one hand, when

magnetization is perpendicular to the SAW wave vector, no coupling is possible; when

it is parallel, a slight coupling is possible only because of the shear strain component,

present in the SAW (precisely, Rayleigh wave). On the other hand, when magnetization

is pulled towards the hard axes, because of the energy barrier for the magnetization, the

proper frequency of the system drops down. This is a smart way to approach SAW-SW

resonance: spin waves and elastic waves hybridize, coupling is stronger and dynamic

magnonic applications can be envisaged. These considerations permit us to conclude

that the largest magneto-elastic coupling is found when the magnetic field is applied at

45◦ (hard axis) with respect to the SAW propagation direction, that coincides with an

easy axis of the system. This has a direct consequence on the choice of the material, in

which the Spin Wave - SAW interactions are considered. Ideally, such material should

have strong magneto-elastic coupling coefficient for the SAW propagation directions and

strong magneto-crystalline anisotropy.

The perspectives are the following:

In order to verify our concept of “torque maximization” experimentally, we should consider

the appropriate SAW excitation configuration for our samples, that is along [100] direction.

Uniaxial anisotropy favoring [110] direction is expected to maximize the coupling. Since uni-

axial anisotropy in these systems is due to interface effects and scales with the inverse of the

film thickness, very thin film shoud be prepared. The fabrication of such device is a more dif-

ficult process, since the symmetry of the GaAs piezo-electric tensor does not allow a coupling

between the wave strains and the IDT electric field. A possible solution is to cap the thin

film with a layer of piezoelectric ZnO. Such a device was recently fabricated, but was broken

at the end of the fabrication process.
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It would be interesting to consider other type of surface acoustic waves, for example Love

waves (shear horizontal) and different MCA systems to see, if further improvement in the

coupling optimization can be achieved.

From the point of view of possible applications in magnonics, new acoustic driven phe-

nomenas can be envisaged, once magneto-elastic coupling is well modeled and understood.

Typical examples are: remote controlled opening of gaps in dynamical magnonic crystal [38],

Doppler shift [151], acoustically driven spin pumping “acoustic spin pumping” [152], [153]. As

was mentioned in the introduction, the preliminary steps in this direction were made during

the thesis. Many efforts were devoted to the optimization of RF antenna, a new technique for

INSP, for efficient excitation of spin waves. Antennas were fabricated by myself at INSP and

tested by µBLS in collaboration with the GHOST group in Perugia, Italy. It was found that

the propagation distance for the spin waves in our samples of Fe1−xGax is about

13µm. It was important to verify that the SWs propagation distance is reasonable enough

to proceed any further. Furthermore, the preliminary measurements were done with conven-

tional BLS to check the resonant interaction in a 4nm thick film of Fe0.8Ga0.2. The thickness

was chosen in such a way as to reduce the SWs frequency down up to 4GHz, by applying the

field along the hard axis [1-10]. The interaction was checked, but unfortunately did not yield

a positive result, which is rather puzzling. This work is probably too recent and preliminary

to be presented in this manuscript. However, a possible explanation can be attributed to the

fact, that reducing the film thickness makes the interface effects due to the growth dominant.

A complication for ultra-thin films is the value of the magneto-elastic coefficients which could

be different from the bulk ones, maybe correlated to the crystalline quality. Recall also, that

the magneto-elastic energy is a product of strain and magneto-elastic coefficient. To modify

this energy, even with poor magneto-elastic coefficients of the material, one should be able to

apply a large strain amplitude. At such high acoustic frequencies it is difficult to achieve due

to the impedance mismatch between the IDTs and the excitation source. Several solutions

are possible. To improve the film quality, we would have to increase the film thickness. We

have to find the optimum balance between high uniaxial anisotropy values (low thickness and

low SAW frequencies) and good crystalline quality (higher thickness and consequent higher

SAW frequencies). The task is challenging, but is worth pursuing.





Appendix A

Local rotations

Consider only the asymmetric part of the displacement gradient:

ξ(r, t0) =
1

2


0 Ω12 Ω13

−Ω12 0 Ω23

−Ω13 −Ω23 0


Using eq. (1.3), the differential displacement can be expressed as follows:

du1 = Ω12dx2 + Ω13dx3

du2 = −Ω12dx1 + Ω23dx3

du3 = −Ω13dx1 − Ω23dx2

then the scalar product of du · dr yields zero:

du·dr =
∑
i

duidxi = (Ω12dx2+Ω13dx3)dx1−(Ω12dx1−Ω23dx3)dx2−(Ω13dx1+Ω23dx2)dx3 = 0

This implies that differential displacement vector du and dr are orthogonal. This result

holds for rotations (fig. 1.4c), provided that the rotation angle φ is infinitesimally small,

so that du · dr ≈ 0. Therefore the asymmetric part of the displacement gradient matrix

represents infinitesimal rotations, rigid or local (fig. 1.6). However local rotations do not

contribute to the propagation of the elastic waves [50].
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Propagation along [100] direction:

detailed calculation

The starting point of the calculation are the equations of motion, as expressed in the sec-

tion 1.1.3:


ρ
∂u2

1
∂t2

= c11
∂2u1

∂x2
1

+ c12
∂2u3
∂x1∂x3

+ c44(∂
2u1

∂x2
3

+ ∂2u3
∂x1∂x3

)

ρ
∂u2

2
∂t2

= c44(∂
2u2

∂x2
1

+ ∂2u2

∂x2
3

)

ρ
∂u2

3
∂t2

= c12
∂2u1
∂x1∂x3

+ c11
∂2u3

∂x2
3

+ c44( ∂2u1
∂x1∂x3

+ ∂2u3
∂2x1

)

The assumed solutions of are of the form:


u1 = U e−αx3 ei(ωt−kx1)

u2 = V e−αx3 ei(ωt−kx1)

u3 = W e−αx3 ei(ωt−kx1)

By plugging the above expressions into the equations of motion and regrouping terms, we

obtain: 
[−k2c11 + α2c44 + ρω2]U + ikα(c12 + c44)W = 0

([−α2 + k2]c44 + ρω2)V = 0

ikα(c12 + c44)U + [−k2c44 + α2c11 + ρω2]W = 0

(B.1)

which yields a system of equations solvable iff:∣∣∣∣∣∣
−k2c11 + α2c44 + ρω2 ikα(c12 + c44)

ikα(c12 + c44) −k2c44 + α2c11 + ρω2

∣∣∣∣∣∣ = 0
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Thus:

α4c11c44+α2
(
k2
[
(c12+c44)2−c2

11−c2
44

]
+(c11+c44)ρω2

)
+
[
k4c11c44−k2ρω2(c11+c44)+ρ2ω4

]
= 0

Dividing by k4 and using the relation k = ω
Vr

, where Vr being the Rayleigh velocity, we

introduce after some algebra a variable q = α
k and obtain a quadratic equation in q2:

q4 + q2 (c12 + c44)2 − c2
11 − c2

44 + (c11 + c44)ρV 2
r

c11c44
+

(c11 − ρV 2
r )(c44 − ρV 2

r )

c11c44
= 0 (B.2)

Consequently the quadratic equation has two roots q2
1 and q2

2, that satisfy: q2
1 + q2

2 =
c211+c244−(c12+c44)2−(c11+c44)ρV 2

r

c11c44

q2
1 · q2

2 = (c11−ρV 2
r )(c44−ρV 2

r )
c11c44

(B.3)

To reflect the decrease of wave amplitude with depth, α should be either real positive or

complex with real part positive, thus among four solutions, q obtained only two are retained,

q1 and q2, yielding two penetration depths:{
α1 = q1

k

α2 = q2
k

(B.4)

Since the solid is finite, boundary conditions should be satisfied, which relate mechanical

(and electrical in the case of piezoelectric solids) variables at the interface between the two

media, that is:

† material displacement is continuous at the interface between to rigidly bound solids;

† in the absence of an external force stress is continuous or vanishes, if the second medium

is vacuum;

Having found two solutions, we can show that choosing only one does not satisfy the

zero-stress condition, σi3 = 0 i∈[1,2,3] at the surface (x3 = 0) :


σ13 = c44(∂u1

∂x3
+ ∂u3

∂x1
) = 0

σ23 = c44
∂u2
∂x3

= 0

σ33 = c12
∂u1
∂x1

+ c11
∂u3
∂x3

= 0

⇔


α u1 + iku3 = 0

α u2 = 0

ikc12u1 + α c11u3 = 0

and α2c11 + k2c12 6= 0
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detailed calculation

Thus a linear combination of the two solutions should be considered, αi given by eq. (B.4):
u1 =

(
U1e

−α1x3 + U2e
−α2x3

)
ei(ωt−kx1)

u2 = 0

u3 =
(
W1e

−α1x3 +W2e
−α2x3

)
ei(ωt−kx1)

In such a case the boundary conditions are expressed as follows: (α1U1 + ikW1)e−α1x3 + (α2U2 + ikW2)e−α2x3 = 0

(α1c11W1 + ikc12U1)e−α1x3 + (α2c11W2 + ikc12U2)e−α2x3 = 0
(B.5)

From eq. (B.1), the polarizations are related by:
W1
U1

= ikα1(c12+c44)
k2c44−α2

1c11−ρω2 = iq1(c12+c44)
c44−q2

1c11−ρV 2
r

= r1

W2
U2

= ikα2(c12+c44)
k2c44−α2

2c11−ρω2 = iq2(c12+c44)
c44−q2

2c11−ρV 2
r

= r2

(B.6)

Thus the boundary conditions are satisfied iff:∣∣∣∣∣ α1 + ikr1 α2 + ikr2

α1r1c11 + ikc12 α2r2c11 + ikc12

∣∣∣∣∣ = 0

Plugging the expressions for amplitudes ratios r1, r2 from eq. (B.6) we obtain after some

simplification: ∣∣∣∣∣∣
q3

1c11 + q1(c12 + ρV 2
r ) q3

2c11 + q2(c12 + ρV 2
r )

q2
1c11c44 + c12(c44 − ρV 2

r ) q2
2c11c44 + c12(c44 − ρV 2

r )

∣∣∣∣∣∣ = 0

which yields:

(c44 − ρV 2
r )
(
q2

1q
2
2

c2
11c44

(c44 − ρV 2
r )

+ (q2
1 + q2

2)c11c12 + c12(c12 + ρV 2
r )
)

= q1q2c11(c12 + c44)ρV 2
r

Squaring the above expression and making use of eq. (B.3) we have:

(c44 − ρV 2
r )(c2

11 − c2
12 − c11ρV

2
r )2 = c11c44(c11 − ρV 2

r )(ρV 2
r )2

which can be put into the final dimensionless form:

(1− c11

c44
x)(1− c2

12

c2
11

− x)2 = (1− x)x2 (B.7)

with x = ρV 2
r

c11
.
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Thus, if there exist a real solution of eq. (B.7), i.e. if boundary conditions are satisfied, we

can calculate velocity of the Rayleigh wave. Furthermore, the particle displacement in such

a wave can be expressed as:

u =
[U1

0

W1

 e−q1x
′
3 +

U2

0

W2

 e−q2x
′
3

]
ei(ωt−kx1)

where x′3 = kx3 is the normalized coordinate. Using eq. (B.6) we can re-write the above

expression to obtain a normalized displacement:

u

U1
=
[ 1

0

r1

 e−q1x
′
3 + γ

 1

0

r2

 e−q2x
′
3

]
ei(ωt−kx1) (B.8)

where γ is defined as the amplitude ratio following the expression eq. (B.5):

U2

U1
= −α1 + ikr1

α2 + ikr2
= −q1 + ir1

q2 + ir2
= γ (B.9)

We now can use the analytical expressions eq. (B.2), eq. (B.7) and eq. (B.8) to determine

the Rayleigh velocity, strain and displacements components for a wave, propagating in an

anisotropic solid. We take the material constants of GaAs [154]:
c11 = 118.4 GPa

c12 = 53.7 GPa

c44 = 59.1 GPa

ρ = 5317 kg/m3

Solving eq. (B.7) numerically, we obtain the Rayleigh velocity along [100] direction equal

to 2711 m/s, as can be seen in the appendix B.

The eq. (B.2) does not yield real solutions, as can be visualized in (appendix B), but

complex with real part positive: q ' 0.402± i0.561. We thus express: q1 = qR + iqI

q2 = qR − iqI = q̄1
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B. Propagation along [100] direction:

detailed calculation

Figure B.1: Determining the Rayleigh velocity
from the eq. (B.7). The smallest solution is
Rayleigh velocity, the other two correspond to the
mode, we do not excite experimentally.
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Figure B.2: Colorplot of the function eq. (B.2),
function vanishes at q = 0.402± i0.561 (red dots).

It follows from eq. (B.6) that r2 = −r̄1. Furthermore, γ = − q1+ir1
q2+ir2

and γ̄ = − q2+ir2
q1+ir1

, so

that |γ| = 1. Ratios r1, r2 and γ are conveniently expressed as:


r1 = reiψ

r2 = rei(π−ψ)

γ = eiφ
(B.10)

Phases ψ and φ can be evaluated using the eq. (B.6) and eq. (B.9), respectively. Given

the eq. (B.10), we can express the normalized displacements:

u

U1
= e−qRx

′
3 ei(ωt−kx1)

 ei(qIx
′
3+φ) + e−iqIx

′
3

0

−r(ei(qIx′3−ψ+φ) − e−i(qIx′3−ψ))


or

u

U1
= 2 ei

φ
2 e−qRx

′
3 ei(ωt−kx1)


cos
(
qIx
′
3 + φ

2

)
0

−ir sin
(
qIx
′
3 − ψ + φ

2

)
 (B.11)
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and consequently taking the real part of the above expression yields:


ux = Re( u1

U1
) = 2 cos

(
φ
2 + ωt− kx

)
cos
(
qIx
′
3 + φ

2

)
e−qrx

′
3

uy = Re( u2
U1

) = 0

uz = Re( u3
U1

) = 2r sin
(
φ
2 + ωt− kx

)
sin
(
qIx
′
3 − ψ + φ

2

)
e−qrx

′
3

(B.12)

Strain components can be found from the obtained expressions for the normalized dis-

placement components:



εxx = Re( ε11kU1
) = 2 sin

(
φ
2 + ωt− kx1

)
cos
(
qIx
′
3 + φ

2

)
e−qRx

′
3

εxz = Re( ε13kU1
) = − cos

(
φ
2 + ωt− kx1

) {
qR cos

(
qIx
′
3 + φ

2

)
+ qI sin

(
qIx
′
3 + φ

2

)
+ r sin

(
qIx
′
3 − ψ + φ

2

)}
e−qRx

′
3

εzz = Re( ε33kU1
) = 2r sin

(
φ
2 + ωt− kx1

) {
−qr sin

(
qIx
′
3 − ψ + φ

2

)
+ qI cos

(
qIx
′
3 − ψ + φ

2

)}
e−qRx

′
3

(B.13)

To summarize, we find:

q1 = 0.402− i 0.561

q2 = 0.402 + i 0.561

r1 = 1.1224− i 0.3826 = 1.186 e−0.328 i

r2 = −1.1224− i 0.3826 = 1.186 e−2.81 i

γ = −0.3228− i 0.9465 = e−1.899 i

Figure B.3: Normalized displacement components
vs normalized depth, eq. (B.12)

Figure B.4: Normalized strain components vs nor-
malized depth, eq. (B.13)



Appendix C

Expression for free energy density

Free energy density for a cubic system is expressed in terms of θ, ϕ angles and

strain components. Note that, as explained in chapter 3, our samples exhibit both biaxial

and uniaxial in-plane anisotropy and thus, this uniaxial MCA term appears in the final

expression. H stands for the applied H-field, θH and ϕH are the applied field angles, Ms

saturation magnetization.

F = FZ + Fd + Fbiax + Funi + Fmel + Fel =

−µ0HMs

(
cos θ cos θH + sin θ sin θH cos(ϕ− ϕH)

)
︸ ︷︷ ︸

FZ

+
1

2
µ0M

2
s cos2 θ︸ ︷︷ ︸
Fd

+

K1

4

(
sin4 θ sin2(2ϕ) + sin2(2θ)

)
︸ ︷︷ ︸

Fbiax

+Kip sin2 θ cos2(ϕ− π

4
)︸ ︷︷ ︸

Funi

+

B1

(
ε11(sin2 θ cos2 ϕ− 1

3
) + ε22(sin2 θ sin2 ϕ− 1

3
) + ε33(cos2 θ − 1

3
)
)

+

+
B2

2

(
ε12 sin2 θ sin(2ϕ) + sin(2θ)

[
ε13 cosϕ+ ε23 sinϕ

])
︸ ︷︷ ︸

Fmel

+

c11

2

(
ε2

11 + ε2
22 + ε2

33

)
+ 2c44

(
ε2

12 + ε2
13 + ε2

23

)
+ c12 (ε11ε22 + ε11ε33 + ε22ε33)︸ ︷︷ ︸

Fel

(C.1)



Appendix D

Expressions for angular variations

δθ(t), δϕ(t)

In eq. (2.6), chapter 2 we defined the equation for torque density:

T = iω
Ms

γ

(
δθ eθ + sin θ̄ δϕ eϕ

)
To express δθ, δϕ we will make use of LLG equation:

dm(t)

dt
= γ0m(t)×Heff (t) + α m(t)× dm(t)

dt

We express effective field as the gradient of the total energy density, Heff = − 1
µ0
∇f in

spherical coordinates:

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂ϕ
eϕ

Since r = |m| = |er| = 1 is conserved, we have:

∇f =
∂f

∂θ
eθ +

1

sin θ

∂f

∂ϕ
eϕ (D.1)

The terms of LLG-equation can be expressed as:

(i)
dm

dt
=
dθ

dt
eθ + sin θ

dϕ

dt
eϕ

(ii)

γ0m(t)×Heff (t) = |γ|∂f
∂θ

eϕ −
|γ|

sin θ

∂f

∂ϕ
eθ

(iii)

α m(t)× dm(t)

dt
= α

dθ

dt
eϕ −

α

sin θ

dϕ

dt
eθ
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That can be split into two equations:


dθ

dt
= − |γ|

sin θ

∂f

∂ϕ
− α sin θ

dϕ

dt

dϕ

dt
=
|γ|

sin θ

∂f

∂θ
+

α

sin θ

dθ

dt

Regrouping yields two separate equations for δθ and δϕ:


dθ

dt
= − α|γ|

(1 + α2)

∂f

∂θ
− |γ|

(1 + α2)

1

sin θ

∂f

∂ϕ

dϕ

dt
=

|γ|
(1 + α2)

1

sin θ

∂f

∂θ
− α|γ|

(1 + α2)

1

sin2 θ

∂f

∂ϕ

(D.2)

The right hand side of the eq. (D.2) can be Taylor-expanded about the equilibrium position

(θ̄, ϕ̄, ε̄ij):



∂f

∂θ
' ∂f

∂θ |eq
+
∂2f

∂θ2 |eq
δθ +

∂2f

∂ϕ∂θ |eq
δϕ+

∂2f

∂εij∂θ |eq
δεij

1

sin θ

∂f

∂ϕ
' 1

sin θ̄

∂f

∂ϕ |eq
+
[ 1

sin θ̄

∂2f

∂θ∂ϕ |eq
− cos θ̄

sin2 θ̄

∂f

∂ϕ |eq

]
δθ +

1

sin θ̄

∂2f

∂ϕ2
|eq

δϕ+
1

sin θ̄

∂2f

∂εij∂ϕ |eq
δεij

1

sin θ

∂f

∂θ
' 1

sin θ̄

∂f

∂θ |eq
+
[ 1

sin θ̄

∂2f

∂θ2 |eq
− cos θ̄

sin2 θ̄

∂f

∂θ |eq

]
δθ +

1

sin θ̄

∂2f

∂ϕ∂θ |eq
δϕ+

1

sin θ̄

∂2f

∂εij∂θ |eq
δεij

1

sin2 θ

∂f

∂ϕ
' 1

sin2 θ̄

∂f

∂ϕ |eq
+
[ 1

sin2 θ̄

∂2f

∂θ∂ϕ |eq
− 2 cos θ̄

sin3 θ̄

∂f

∂ϕ |eq

]
δθ +

1

sin2 θ̄

∂2f

∂ϕ2
|eq

δϕ+
1

sin2 θ̄

∂2f

∂εij∂ϕ |eq
δεij

First derivatives in the expansion should vanish at equilibrium, thus only second order

terms are retained:



∂f

∂θ
' fθθ δθ + fθϕ δϕ+ fθεij δεij

1

sin θ

∂f

∂ϕ
' 1

sin θ̄
fθϕ δθ +

1

sin θ̄
fϕϕ δϕ+

1

sin θ̄
fϕεij δεij

1

sin θ

∂f

∂θ
' 1

sin θ̄
fθθ δθ +

1

sin θ̄
fθϕ δϕ+

1

sin θ̄
fθεij δεij

1

sin2 θ

∂f

∂ϕ
' 1

sin2 θ̄
fθϕ δθ +

1

sin2 θ̄
fϕϕ δϕ+

1

sin2 θ̄
fϕεij δεij

(D.3)
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where we adapted a compact notation ∂2h
∂x∂y = hxy. Plugging the eq. (D.3) into the

eq. (D.2) we obtain: 
dθ

dt
= ζ1δθ + ζ2δϕ+

∑
i≤j

ζij δεij

dϕ

dt
= κ1δθ + κ2δϕ+

∑
i≤j

κij δεij

(D.4)

where:

ζ1 = − α|γ|
1 + α2

fθθ −
|γ|

1 + α2

1

sin θ̄
fθϕ

ζ2 = − α|γ|
1 + α2

fθϕ −
|γ|

1 + α2

1

sin θ̄
fϕϕ

ζij = − α|γ|
1 + α2

fθεij −
|γ|

1 + α2

1

sin θ̄
fϕεij

(D.5)



κ1 =
|γ|

1 + α2

1

sin θ̄
fθθ −

α|γ|
1 + α2

1

sin2 θ̄
fθϕ

κ2 =
|γ|

1 + α2

1

sin θ̄
fθϕ −

α|γ|
1 + α2

1

sin2 θ̄
fϕϕ

κij =
|γ|

1 + α2

1

sin θ̄
fθεij −

α|γ|
1 + α2

1

sin2 θ̄
fϕεij

(D.6)

Assuming the exponential time-dependence of δθ, δϕ, the eq. (D.4) yields:
δθ =

∑
i≤j

(κ2ζij − ζ2κij − iωζij)δεij
ζ2κ1 − ζ1κ2 + ω2 + iω(ζ1 + κ2)

δϕ =
∑
i≤j

(ζ1κij − κ1ζij − iωκij)δεij
ζ2κ1 − ζ1κ2 + ω2 + iω(ζ1 + κ2)



Appendix E

First and second order derivatives

of free energy density

1. First order derivative with respect to θ, ∂F
∂θ

∂F

∂θ
= µ0HMs

(
sin θ cos θH − cos θ sin θH cos(ϕ− ϕH)

)
− 1

2
µ0M

2
s sin(2θ)+

K1

2
sin(2θ)

(
sin2 θ sin2(2ϕ) + 2 cos(2θ)

)
+Kip sin(2θ) cos2(ϕ− π

4
)+

B1 sin(2θ)
(
ε11 cos2 ϕ+ ε22 sin2 ϕ− ε33

)
+

B2

(1

2
ε12 sin(2θ) sin(2ϕ) + cos(2θ)(ε13 cosϕ+ ε23 sinϕ)

)
(E.1)

2. First order derivative with respect to ϕ, ∂F
∂ϕ

∂F

∂ϕ
= µ0HMs sin θ sin θH sin(ϕ− ϕH) +

K1

2
sin4 θ sin(4ϕ)−Kip sin2 θ sin

(
2ϕ− π

2

)
+

B1 sin(2ϕ) sin2 θ(ε22 − ε11) +B2

(
ε12 sin2 θ cos(2ϕ) +

sin(2θ)

2
(ε23 cosϕ− ε13 sinϕ)

)
(E.2)
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3. Second order derivative with respect to θ, Fθθ

∂2F

∂θ2
= µ0HMs

(
cos θ cos θH + sin θ sin θH cos(ϕ− ϕH)

)
− µ0M

2
s cos(2θ)+

K1

(
sin2(2ϕ)

[
cos(2θ) sin2 θ +

1

2
sin2(2θ)

]
+ 2 cos(4θ)

)
+ 2Kip cos(2θ) cos2(ϕ− π

4
)+

2B1 cos(2θ)
(
ε11 cos2 ϕ+ ε22 sin2 ϕ− ε33

)
+

B2

(
ε12 cos(2θ) sin(2ϕ)− 2 sin(2θ)

[
ε13 cosϕ+ ε23 sinϕ

])
4. Second order derivative with respect to ϕ, Fϕϕ

∂2F

∂ϕ2
= µ0HMs sin θ sin θH cos(ϕ− ϕH) + 2K1 sin4 θ cos(4ϕ)− 2Kip sin2 θ cos

(
2ϕ− π

2

)
+

2B1 cos(2ϕ) sin2 θ(ε22 − ε11)− 2B2

(
ε12 sin2 θ sin(2ϕ) +

sin(2θ)

4
(ε13 cosϕ+ ε23 sinϕ)

)
5. Second order derivative with respect to θ, ϕ, Fθϕ

∂2F

∂θ∂ϕ
= µ0HMs cos θ sin θH sin(ϕ− ϕH) +K1 sin2 θ sin(2θ) sin(4ϕ)−Kip sin(2θ) sin

(
2ϕ− π

2

)
+

B1 sin(2θ) sin(2ϕ)(ε22 − ε11) +B2

(
ε12 sin(2θ) cos(2ϕ) + cos(2θ)

[
ε23 cosϕ− ε13 sinϕ

])
6. Second order derivative with respect to θ, εij, Fθεij and ϕ, εij, Fϕεij



Fθε11 = B1 sin(2θ) cos2 ϕ

Fθε22 = B1 sin(2θ) sin2 ϕ

Fθε33 = −B1 sin(2θ)

Fθε12 = B2
2 sin(2θ) sin(2ϕ)

Fθε13 = B2 cos(2θ) cosϕ

Fθε23 = B2 cos(2θ) sinϕ



Fϕε11 = −B1 sin2 θ sin(2ϕ)

Fϕε22 = B1 sin2 θ sin(2ϕ)

Fϕε33 = 0

Fϕε12 = B2 sin2 θ cos(2ϕ)

Fϕε13 = −B2
2 sin(2θ) sinϕ

Fϕε23 = B2
2 sin(2θ) cosϕ



Appendix F

Strain and magnetization

orientation at equilibrium

To find the equilibrium strain and magnetization orientation, ε̄ij , θ̄, ϕ̄ we minimize the

energy density, eq. (C.1):

∂F

∂θ |eq
=
∂F

∂ϕ |eq
=

∂F

∂εij |eq
= 0

First, we search for the equilibrium strain values. We express the corresponding derivatives

in terms of the magnetization directional cosines (section 1.2.4, fig. 1.15) as:

∂F

∂ε12
= B2m1m2 + 4c44ε12

∂F

∂ε13
= B2m1m3 + 4c44ε13

∂F

∂ε23
= B2m2m3 + 4c44ε23

At equilibrium derivatives vanish for εij = − B2
4c44

mimj , i 6= j and thus we obtain:

ε̄ij = − B2

4c44
m̄im̄j i 6= j

On the other hand,

∂F

∂ε11

∣∣∣∣
eq

= B1(m2
1 −

1

3
) + c11ε11 + c12(ε22 + ε33) = 0

∂F

∂ε22

∣∣∣∣
eq

= B1(m2
2 −

1

3
) + c11ε22 + c12(ε11 + ε33) = 0

∂F

∂ε33

∣∣∣∣
eq

= B1(m2
3 −

1

3
) + c11ε33 + c12(ε11 + ε22) = 0
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or c11 c12 c12

c12 c11 c12

c12 c12 c11


︸ ︷︷ ︸

C

·

ε11

ε22

ε33


︸ ︷︷ ︸

E

= −B1

m
2
1 − 1

3

m2
2 − 1

3

m2
3 − 1

3


︸ ︷︷ ︸

M

which yields:

E = −B1C
−1M

with detC = (c12 − c11)
[
2c2

12 − c11(c11 + c12)
]

and

C−1 =
1

2c2
12 − c11(c11 + c12)

−(c11 + c12) c12 c12

c12 −(c11 + c12) c12

c12 c12 −(c11 + c12)


Using m2

1 + m2
2 + m2

3 = 1 (the magnetization norm is conserved), we after some algebra

obtain: 
ε11

ε22

ε33

 =
B1

2c2
12 − c11(c11 + c12)


(m2

1 − 1
3)(c11 + 2c12)

(m2
2 − 1

3)(c11 + 2c12)

(m2
3 − 1

3)(c11 + 2c12)


Proportionality constant can be simplified:

B1(c11 + 2c12)

2c2
12 − c11(c11 + c12)

=
B1(c11 + 2c12)

(c12 − c11)(2c12 + c11)
=

B1

(c12 − c11)
= − B1

2c′66

where c′66 is defined as c′66 = (c11−c12)
2 . Finally we obtain:

ε̄ii = − B1

2c′66

m̄2
i +

B1

6c′66

It follows immediately that the trace of the strain matrix vanishes

∑
i

ε̄ii = − B1

2c′66

+ 3 · B1

6c′66

= 0

This implies the volume conservation.



150 F. Strain and magnetization orientation at equilibrium

To deduce the equilibrium magnetization orientation we use the obtained expressions for

strain, ε̄ij . At zero field, from the eq. (E.1) we have:

∂Ftot
∂θ |eq

= −1

2
µ0M

2
0 sin(2θ) +

(K1

2
+

B2
2

16c44

)
sin(2θ)

[
sin2 θ sin2(2ϕ) + 2 cos(2θ)

]
+

Kip sin(2θ) cos2(ϕ− π

4
) +

B2
1

2c′66

[
cos2 θ − sin2 θ(cos4 ϕ+ sin4 ϕ)

]
sin(2θ)

(F.1)

It follows that for any value of ϕ̄ the derivative vanishes, if θ̄ = π
2 or θ̄ = 0. This results

in the in-plane and out-of-plane magnetization orientation, respectively. Since for θ̄ = 0 the

in-plane angle ϕ̄ is undefined, θ̄ should be necessary π
2 , setting the in-plane magnetization

orientation. We also notice that the first term, resulting from the demagnetizing energy, is

independent of the in-plane orientation, ϕ̄. Given the above argument, this term vanishes

when θ̄ = π
2 . Physically this means, that the demagnetizing field keeps the magnetization

in-plane.

The situation is different when a magnetic field is applied out-of-plane, but we do not con-

sider such cases here. We thus assume the in-plane magnetization orientation and search

numerically for the equilibrium angle, that is ∂F
∂ϕ |ϕ̄

= 0 and ∂2F
∂ϕ2 |ϕ̄

> 0, given:


∂F

∂ϕ |ϕ̄
= µ0HMs sin(ϕ̄− ϕH)−Kip sin

(
2ϕ̄− π

2

)
+
(K1

2
+

B2
1

4c′66

− B2
2

16c′44

)
sin(4ϕ̄)

∂2F

∂ϕ2
|ϕ̄

= µ0HMs cos(ϕ̄− ϕH) + 2K1 cos(4ϕ̄)− 2Kip cos
(

2ϕ̄− π

2

)
+
B2

1

c′66

cos2(2ϕ̄) +
B2

2

4c44
sin2(2ϕ̄)

(F.2)

Several solutions are possible, as represented in fig. F.1 - fig. F.2. At zero field there exist

four possible equilibrium orientations along the easy axes. Due to the uniaxial MCA, the easy

axes are slightly shifted with respect to main crystallographic directions. With the increasing

field, only one possible set of solutions remains. To compute the equilibrium angle, we follow

the experimental protocol, i.e. we start at high field and reduce it progressively to zero. In

such a case, the magnetization will rotate towards the closest easy axis. For example, close

to [100] or [010] for the field applied at 35◦ (fig. F.1) or 65◦ (fig. F.2), respectively.
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Figure F.1: Evolution of equilibrium angle, ϕ̄ with the intensity of the applied field (left). Polar plot of the
MCA energy density and the direction of the applied field, ϕH = 35◦ (right). At zero field four equilibrium
orientations are possible along the easy axes. The latter are slightly shifted from the main crystallographic
directions due to the uniaxial MCA.
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Figure F.2: Evolution of the equilibrium angle, ϕ̄ with the intensity of the applied field (left). Polar plot of
the MCA energy density and the direction of the applied field, ϕH = 65◦ (right).
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Appendix G

Kappa, κi, κij and zeta, ζi, ζij terms

For the in-plane equilirbrium orientaion of the magnetization, θ̄ = π
2 the eq. (D.5) and

the eq. (D.6) can be simplified (given the second order derivatives in the appendix E):
κ1 = |η| Fθθ

∣∣
eq

κ2 = −α|η| Fϕϕ
∣∣
eq

= αζ2

ζ1 = −α|η| Fθθ
∣∣
eq

= −ακ1

ζ2 = −|η| Fϕϕ
∣∣
eq



ζ11 = |η|B1 sin(2ϕ̄)

ζ22 = −|η|B1 sin(2ϕ̄) = −ζ11

ζ12 = −|η|B2 cos(2ϕ̄)

ζ13 = α|η|B2 cos ϕ̄ = −ακ13

ζ23 = α|η|B2 sin ϕ̄ = −ακ23

ζ33 = 0



κ11 = α|η|B1 sin(2ϕ̄) = αζ11

κ22 = −α|η|B1 sin(2ϕ̄) = −αζ11

κ12 = −α|η|B2 cos(2ϕ̄) = αζ12

κ13 = −|η|B2 cos ϕ̄

κ23 = −|η|B2 sin ϕ̄

κ33 = 0



Appendix H

Relative change in velocity ∆V
V and

change in attenuation ∆Γ

The SAW phase velocity is calculated from the obtained phase (rad) φ = kdp = ωτp, where

dp, τp are the propagation distance and time, respectively:

φ = ωτp =
ωdp
V

and thus, for fixed propagation distance and time, the change in phase as a function of

the applied magnetic field is expressed as

∆φ = ωdp∆(
1

V
) = − ωdp

V (Bref = 0)
· ∆V

V (B)
= −φ0

∆V

V (B)

or

∆V

V (B)
= −∆φ

φ0

In order calculate the attenuation of the wave, we measure the amplitude of the output

signal, U at different applied magnetic fields. This measured amplitude of the electric signal

can be related to the SAW attenuation via:

U(B) = U0 e
−α(B)dp

where α stands for the SAW attenuation, U0 is an amplitude factor, proportional to the

amplitude of the emitted wave. The amplitude ratio with respect to the reference magnetic

field, Bref yields:

U

Uref
= e−∆α dp
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or expressed in neper per cm (Np/cm):

∆α = − 1

dp
ln
( U

Uref

)
Then we convert to dB/cm:

∆Γ = − 1

dp
ln
( U

Uref

) Np

cm
= − 1

dp
log10

( U

Uref

)
ln(10)

Np

cm
= −20

dp
log10

( U

Uref

) dB

cm
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[5] J. V. Jäger and A. V. Scherbakov and B. A. Glavin and A. S. Salasyuk and R. P. Cam-

pion and A. W. Rushforth and D. R. Yakovlev and A. V. Akimov and M. Bayer. Reso-

nant driving of magnetization precession in a ferromagnetic layer by coherent monochro-

matic phonons. PRB, 92(2), 2015.

[6] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and

Th. Rasing. All-optical magnetic recording with circularly polarized light. PRL, 99(4),

2007.

[7] J. A. de Jong, I. Razdolski, A. M. Kalashnikova, R. V. Pisarev, A. M. Balbashov,

A. Kirilyuk, Th. Rasing, A. V. Kimel. Coherent control of the route of an ultrafast

magnetic phase transition via low-amplitude spin precession. PRL, 108(15), 2012.

[8] S. Alebrand, M. Gottwald, M. Hehn, D. Steil, M. Cinchetti, D. Lacour, E. E. Fuller-

ton, and S. Mangin M. Aeschlimann. Light-induced magnetization reversal of high-

anisotropy TbCo alloy films. APL, 101(16):162408, 2012.

[9] M. O. A. Ellis, E. E. Fullerton, and R. W. Chantrell. All-optical switching in granular

ferromagnets caused by magnetic circular dichroism. Scientific Reports, 6(1), 2016.

[10] J. Lindner. Current-driven magnetization switching and domain wall motion in nanos-

tructures: survey of recent experiments. Superlattices and Microstructures, 47(4):497–

521, 2010.



156 BIBLIOGRAPHY

[11] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and

E. Saitoh. Observation of the spin seebeck effect. Nature, 455(7214):778–781, 2008.

[12] H. Ohno. Bridging semiconductor and magnetism. Journal of Applied Physics,

113(13):136509, 2013.

[13] M. Cormier, V. Jeudy, T. Niazi, D. Lucot, M. Granada, J. Cibert, and A. Lemâıtre.
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