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Abstract

Species distributions observed in a heterogeneous environment result from multiple
deterministic and stochastic processes acting as filters to constrain species co-existence. As a
direct consequence, the successive actions of these processes spatially structure communities
composition and the variation of these compositions (i.e., beta-diversity). One of the major
objectives in community and metacommunity ecology is to identify and quantify the
respective effects of these different processes on communities beta-diversity to better
understand and predict the distribution of biodiversity. Experiments being hardly possible,
processes responsible for the spatial variation of communities composition are generally
inferred from spatial patterns of species distributions observed in nature. In this context, the
thesis aims at improving multivariate statistical tools conducted to identify and quantify the
effects of ecological processes shaping communities and metacommunities. In particular,
this thesis proposes to integrate ecological scales and constrained null models to study the

effect of environment.

Decomposing trait-environment relationships through spatial and phylogenetic scales
allows to further study environmental filtering. The association of spatial scales involved in
environmental filtering with the phylogenetic signals of traits allowed to capture the species
evolutive history related to environmental filtering. The interpretation in terms of evolutive
processes is however limited and phylogenetically-constrained null models should be
considered to improve the analysis. Following on from this work, spatially-constrained null
models were developed and integrated into two multivariate analyses widely used in
community ecology (i.e., variation partitioning and Mantel tests) to estimate and test the
effect of environmental filtering on species assemblages. Both approaches presented
overestimation of their computed statistic as well as high rates of false positive when species
distributions (via limited dispersal) and environmental conditions were independently
spatially structured. Integrating spatially-constrained null models allowed to adjust both their
tests and the values of their statistic, as such demonstrating the need of using ecologically-

constrained null models to correctly identify and quantify ecological processes.

For future works, the thesis suggests that adopting a scaling approach to study ecological
processes in addition to mechanistic null models could offer the possibility to distinguish

processes from one another.




Keywords: community ecology ; hypothesis-testing ; multivariate analyses; wvariation
partitioning ; Mantel test; fourth-corner ; environmental filtering ; mechanistic models ;

spatial scale ; phylogenetic scale.
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Résumé

Les distributions d'espeéces observées dans un environnement hétérogene résultent de
plusieurs processus déterministes et stochastiques agissant comme des filtres pour
contraindre la coexistence des especes. L’action successive de ces processus a pour
conséquence directe de structurer spatialement la composition des communautés et la
variation de ces compositions (i.e., diversité béta). Un des objectifs majeurs de 'écologie des
communautés et métacommunautés consiste a identifier et quantifier les effets respectifs de
ces différents processus sur la diversité béta des communautés afin de mieux comprendre et
prédire la distribution de la biodiversité. L'expérimentation étant difficilement possible, les
processus responsables de la variation spatiale de la composition des communautés sont
généralement inférés a partir des structures spatiales des distributions d’especes observées
dans la nature. La thése s’inscrit dans ce contexte et vise a améliorer les outils de statistique
multivariée permettant d’identifier et quantifier I'effet des processus écologiques structurant
les communautés et métacommunautés. En particulier, il est proposé d’intégrer les échelles

écologiques et les modeles nuls contraints pour étudier 1’effet de 1’environnement.

La décomposition des relations trait-environnement dans les échelles spatiales et
phylogénétiques permet une étude plus approfondie du filtrage environnemental en associant
son échelle spatiale d’action au signal phylogénétique des traits sélectionnés pour capturer
I’histoire évolutive des especes associée au filtrage environnemental. Les conclusions sur les
processus évolutifs sous-jacents sont néanmoins limitées et mériterait la considération de
modeles nuls phylogénétiquement contraints pour une analyse plus fine. Dans la continuité,
des modeles nuls spatialement contrains ont été développés et intégrés a deux analyses
multivariées tres largement utilisées en écologie des communautés (i.e., partitionnement de
variation et test de Mantel) pour estimer et tester 1’effet de 1’environnement sur les
assemblages d’especes. Ces deux analyses présentaient une surestimation de leur statistique
mesurée ainsi qu’un taux anormal de faux positifs lorsque les distributions d’especes (via
processus de dispersion limitée) et 1’environnement étaient indépendamment spatialement
structurés. L’intégration de modéles nuls spatialement contraints a permis d’ajuster a la fois
les estimations et les tests de ces deux analyses illustrant ainsi le besoin d’utiliser des
modeles nuls écologiquement contraints pour une identification et quantification correctes

des processus écologiques.
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En perspectives, cette thése suggére que la mise en place d’une démarche multi-échelle
lors de 1’étude des processus écologiques, couplée a des modéles nuls mécanistes, pourrait

offrir la possibilité de distinguer les processus écologiques les uns des autres.

Mots clés : écologie des communautés ; tests d’hypothéses; analyses multivariées ;
partitionnement de variation ; test de Mantel ; quatrieme coin; processus écologiques ;

modeles mécanistes ; échelle spatiale ; échelle phylogénétique ; modeles nuls.
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I. History and ecological challenges
A. What is a community?

1. History and definition
Taking a look at the past to understand how our current scientific context was slowly build
is not always the funniest part, I admit. The journey can however encounter some surprises
and is essential to realise that science is, before anything else, the result of a long and

intensive collaborative work.

The first stone was brought by Haeckel in 1866 who introduced ecology as the study of the
relationships between living organisms and their environment. This definition was then
enlarged to the study of living organisms and their interactions with both their environment
and each other (Dajoz 1983). Belonging to the large discipline of ecology, community
ecology is a relatively young field and emerges from numerous studies which exchanged
(often tensely) ideas over time about two oldest questions: Why are there so many living

species? How do they co-exist?

Although the basic concepts and ideas of community ecology can be considered as
emerging between 1950 and 1960, the term “community” is much older and historically
referred to an association of species plants (Gleason 1926) or animals (Elton 1927). One of
the most famous historical debates which funded our modern definition of a community took
place in the early 20" century between the botanists Frederic E. Clements and Henry A.
Gleason. Both struggled for the unity of community organisation and presented two different
points of view. In his different works, Clements (1905, 1916, 1936), perceived plant
associations (i.e., communities) as a whole entity, a “super-organism”, and suggested that this
entity evolved through successive patterns in response to temporal and spatial variations of
local environment toward a stable climax community. From Clements’ vision, communities
were thus discrete entities with delimited edges and a unique organisation. In contrast with
this “super-organism” concept of communities, Gleason (1926, 1939) suggested that
communities should be studied from an individualistic point of view. He asserted that
communities were the fortuitous results of species responding to global environmental

gradients through individual characteristics. Even if Gleason’s statement was ignored at first,



it led eventually to the rejection of Clements’ assertions (see Simberloff 1980 for further

historical details).

This debate was followed by many others and they all represent essential steps of scientific

understanding and reflection to create our modern definition of a community as a local

assemblage of species living together in space and time with or without direct or indirect

interactions between them (Magurran 2003; Emerson and Gillespie 2008).

2. A community: more than a species assembly

Studying communities requires to go beyond the simple definition stated above and to

characterise communities through measurable features. In the ecological literature, two major

characteristics are used: community composition and structure.

a. Community composition

Three different types of composition can be studied:

Species composition: defines the identity and the relative abundances (i.e.,
number of individual) of species present in the community. It can be
summarised and measured through diversity indices such as species
richness accounting for the number of species in a community (Magurran

2004).

Functional composition: determines the identity and values of functional
traits displaying by species present in the community. Note that a species
functional trait is defined as morphological, physiological or
phenomenological trait indirectly impacting the performance of selection
of an individual in a community through their effects on growth,
reproduction and survival (Violle et al. 2007). It is mostly characterised by
diversity indices such as functional diversity (Petchey and Gaston 2002)
that is a measure of the functional differences among species in a

community (Tilman 2001).

Phylogenetic composition characterises the phylogenetic lineages present
in the community. It is generally summarised through diversity indices

such as phylogenetic diversity which defines the magnitude of divergences
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General Introduction

among species that have evolved since a common ancestor and is
calculated as the sum of phylogenetic branch lengths separating species on
a phylogenetic tree following a minimum spanning path (Faith 1992). In
other words, phylogenetic diversity is essentially a measure of the level of

species kindship in a community (Fig. 1).

Community Community

I I

A. B.
Figure 1: Phylogenetic diversity. (A) and (B) are two respective communities presenting both 6 different
species belonging to two different phylogenetic trees. Phylogenetic diversity is higher in (A) that (B) as species

in (A) belong to two different phylogenetic clades (dark and light grey squares) whereas species in (B) belong to
the same phylogenetic clade (dark grey square). (A-B) Species are represented through different symbols.

b. Community structure
Similarly to community composition, the structure of a community can be

characterised in two ways:

* Spatial structure defines the spatial distributions of individual inside the
community (Fig. 2). Spatial structure of individuals inside a community
may vary from clustered (Fig. 2B) to randomly (Fig. 2A) and evenly
dispersed (Fig. 2C). Individuals are randomly dispersed if their respective
locations are independent from each other. On the contrary, individuals are

clustered when they tend to be closely located and evenly dispersed when
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they tend to avoid each other. These structures are notably analysed with
spatial-point pattern which represents individuals within the community

through their coordinates (see Velazquez et al. 2016 for a review).
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Figure 2: Community spatial structure. (A-C) Grey sqL.lares represent communities and black p.oints are
individuals. Inside the community, individuals are (A) randomly dispersed, (B) clustered and (C) evenly
dispersed.

* Phylogenetic structure defines the distribution of the species or functional
traits composing a community along the phylogeny relative to another
species or trait pool (Fig. 3). This allows to retrace both species and traits
evolutionary history to determine if (i) species of a community are closely
or distantly related (i.e., species convergence or divergence) and (ii)
functional traits of a community are conserved along the phylogeny (i.e.,
trait conservation or loss among closely related species). Similarly to
spatial structure of individuals in a community, species or functional traits
can be clustered (Fig. 3A), randomly (Fig. 3B) or evenly dispersed (Fig.
3C) along a phylogeny. Those structures are determined in comparison to
species or traits present in another species or trait pool. This latter pool can
either be a random species pool, a larger pool than the community (e.g.,
metacommunity) (Webb 2000), or a pool simulated under model of
evolution such as Browian motion (i.e., evolution under random walk;
Felsenstein 1985) or Ornstein-Uhlenbeck (i.e., evolution towards a
selective optimum; Hansen 1997). Note that comparing with a simulated
pool under evolutive model can indicate how species and traits have
evolved along the phylogeny. Generally, analyses performing such
comparisons are known as phylogenetic comparative methods (Felsenstein

1985).
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Figure 3: Phylogenetic patterns of a species functional trait. Trait values are (A) clustered, (B)

randomly and (C) evenly dispersed along the phylogeny. The different colors represent the values taken
by the species trait.

However, studying only at the scale of community is a bit reductive as it is a local species
assemblage. To enlarge the scope of studies, the metacommunity concept was formalised in
2004 by Leibold et al. who defined the metacommunity as a set of several communities inter-
connected by immigration and emigration flows of species individuals (i.e., dispersal; Fig.
4A). Just like communities, metacommunities can be characterised through structure and
composition. Concerning composition, I take advantage of the metacommunity larger scale to
replace gamma-, beta- and alpha-diversity defined by Whittaker (1960) in the metacommunity
concept (Fig. 4B). Metacommunity species, functional and phylogenetic compositions
correspond to gamma-diversity, that is compositions at regional spatial scale. In contrast,
alpha-diversity is associated with community compositions at local spatial scale. Finally, beta-
diversity is defined as the variation in compositions from one community to another, or from

individual communities compared to the regional pool.

In fact, the composition and diversity (i.e., alpha, beta and gamma) derived from them as
well as the structure of communities and metacommunities constitute what is called
biodiversity patterns. The very existence of these biodiversity patterns suggests that some
ecological rules might determine where and which species can or cannot co-exist. Hence, the
fundamental question in community ecology: What does shape the structure of communities

and their variation in composition?



Metacommunity Gamma-diversity

\ Community \ alpha-diversity
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Figure 4: The metacommunity (A) and diversities (B) concepts. (A) The metacommunity is composed of
three communities interconnected through immigration and emigration flows (i.e., dispersal; black arrows) of
species individuals. (B) Alpha-diversity corresponds here to species composition at the community scale.
Gamma-diversity encompasses species composition constituted by the three communities. Finally beta-diversity
is the differences in species composition among communities. (A-B) For simplicity, gamma-, alpha- and beta-
diversity were defined through species composition only. The three colored symbols represent individuals of
three different species.

B. What does shape communities structure and composition: role of
ecological processes

In 1975, Diamond suggested that the composition of fruit-eating bird communities living
in the New Guinea archipelago was driven by “assembly rules” defined as possible and
“impossible combinations of species” generated by species interactions (i.e., competition
among species). Let aside the discussions that followed (Connor and Simberloff 1979, Keddy
1992), the modern rationale following this observation is that ecological processes, also called
“ecological filters”, act on a global species pool (i.e., set of species at the globe scale able to
colonise and/or settle in a focal community) to shape community composition and structure
through assembly rules (Fig. 5). Without ecological processes determining assembly rules,
composition and structure of communities would be random as every species from the global

species pool would be able to settle in the community.

Numerous ecological processes are recognised and studied in community and

metacommunity ecology (Ricklefs 1987, Chesson 2000, Hubbell 2001, Leibold et al. 2004,
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Leibold and Chase 2017). In order to simplify the kit of all the possible processes underlying
community structure and composition, Vellend (2010) proposed to regroup them into 4
general classes namely: speciation which creates new species, drift characterising stochastic
changes in community species composition and structure, dispersal representing the
movement of organisms across different communities and selection which select organisms
based on their specific characteristics. Following the rationale of Vellend (2010), local
community composition and structure are nowadays mostly viewed as resulting from 4 major
hierarchical ecological filters (Lortie et al. 2004, Gotzenberger et al. 2012, Marteinsdottir and
Eriksson 2014, Cadotte and Tucker 2017; Fig. 5):

1. Speciation and Extinction

Speciation and extinction are both evolutionary processes. Together they form a historical
filter which determines phylogeographic assembly rules (Gotzenberger et al. 2012) by
selecting species to constitute the historical species pool (Fig. 5). Species extinction is offset
by speciation, which creates new species, insuring a constant high species diversity in the
historical species pool.

According to Vellend’s categorisation of processes, this filter would be akin to speciation
but also drift and selection as causes of extinction can be either stochastic (drift) or

deterministic (selection) (Vellend 2010).

2. Dispersal

Dispersal characterises the capacity of an organism to move from its original local
community to another. This filter hence determines the geographic species pool (Fig. 5)
defined as all species from the historical species pool able to disperse to a focal community
(Begon et al. 2006). The capacity of dispersal is species-dependent with strong dispersers able
to reach more distant communities than weak-dispersers. For instance, in plant species which
essentially disperse through their seeds, tall species or species with small seed mass were
shown to have a stronger dispersal distance (Muller-Landau et al. 2008, Thomson et al. 2011).
This distance is primordial, as it will allow species to reach communities with suitable
conditions (see the two other filters below) in which they can successfully settle.

Obviously, this filter is identical to the dispersal of Vellend (2010) and is considered as a
semi-stochastic and semi-deterministic process (Lowe and McPeek 2014). Dispersal

particularly implies stochasticity when species are passive dispersers (e.g., plant seeds
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dispersed by the wind) but also deterministic aspects as dispersal capacity varies among and

within species (Lowe and McPeek 2014).

3. Environmental filtering

As suggested by its name, environmental filtering selects species capable of survival and
persistence in the environmental conditions (i.e., abiotic factors) of a focal community. This
selection is based on species functional traits discarding all species with unsuitable functional
trait combinations given community environmental conditions. For example, Pavoine et al.
(2010) found that regularly flooded and rich-salted environments were dominated by
perennial and anemogamous (i.e., reproduction mode in which pollen is conveyed by wind)
species presenting salt-resistance. On the contrary, dryer and low-salted habitats were mostly
occupied by annual and biennial species with entomogamous (i.e., insect pollination) or
autogamous (i.e., self-reproduction) reproduction. As a function of species functional traits,
environmental filtering is thus considered as a deterministic process (Chase and Myers 2011).

Environmental filtering defines the habitat species pool (Fig. 5) corresponding to all
species from the geographic species pool able to persist under the abiotic conditions of a focal
community (Begon et al. 2006). According to Vellend’s categorisation, environmental filtering

will be part of selection.

4. Biotic interactions

This last ecological filter defines the local species pool (Fig. 5) characterising all species
from the habitat species pool able to settle under the pressure of biotic interactions present in
a focal community (Begon et al. 2006). This filter regroups all species interactions among
which is interspecific competition. This type of interaction is negative and occurs between
organisms of different species usually when resources (e.g., environment, space) are limited
or shared. Ultimately, interspecific competition results in two major aspects. Either the growth
rate of the weaker competitor decreases or becomes null leading to the species exclusion (i.e.,
competitive exclusion; outcome of Volterra 1926 and Lotka 1932). Or, on the contrary,
competitors can also co-exist if they present functional trait values sufficiently dissimilar to
present different functional responses to the same environment (i.e. limiting similarity;
Macarthur and Levins 1967).

Similarly to environmental filtering, biotic interactions are considered as deterministic

processes (Chase and Myers 2011) and are part of Vellend’s selection category.
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Figure 5: Hierarchical ecological filters select resident species of a
community (i.e., local species pool) from pools of potential residents. Species
are reported by different colored symbols. The dashed squares represent the
different species pools.
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Historically, only the effects of deterministic processes (e.g., biotic interactions and
environmental filtering) were considered, with less importance given to stochastic ones
(speciation, extinction, dispersal) (Grinnell 1917, Gause 1934, Andrewartha and Birch 1954,
Huntchison 1957). In 2001 however, Hubbell’s Unified Neutral Theory of Biodiversity
demonstrated that species distributions similar to the one observed in nature could be obtained
from a model considering solely equivalent species and stochastic events (i.e., death, birth,
speciation, extinction, migration and dispersal) meaning that ecological drift and historical
processes were also important and should not be ignored. This contributed to end in the four
ecological filters described above and eventually leading to consider community assembly as
taking place on a continuum of deterministic and stochastic processes (Gravel et al. 2006).
Note that, alike Vellend’s four categories of processes, the four filters presented above can be
viewed as “essential” processes forming the basis of community ecology as numerous
ecological theories and “secondary” processes can be expressed as combinations of them. For
example, the neutral theory of Hubbel (2001) would be a combination of the first two filters.
Then, the processes of invasion or mass-effect (i.e., patches where species compete for the
local environmental conditions and can be rescued from local competitive exclusion by
immigration flows; Leibold et al. 2004) would be a mixed of dispersal, environmental

filtering and biotic interactions.

A major challenge in community ecology is to identify and quantify ecological processes
shaping community structure and composition as well as their variations among communities
(Cottenie 2005, Jones et al. 2008, Sharma et al. 2011, Wan et al. 2015, Duan et al. 2016).
Despite the simplicity of the hierarchical representation of the four “essential” processes,

answering this problematic is not straightforward for three main reasons:

(i) The four “essential” processes influence each other. For example, Astorga et al. (2012)
highlighted that the effect of environmental filtering was dependent on dispersal with

strong dispersers more correlated to environmental conditions than weak-dispersers;
(ii) Processes act differently through ecological scales (e.g., spatial, phylogenetic,
temporal; see section III.B); as such, the hierarchy presented above and the

interactions between processes could change depending on the scale;
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(iii) Controlled experiments to study ecological processes in communities of multiple co-
existing species are rather scarce (Stoll and Prati 2001, Langenheder and Székely
2011) as difficult to proceed. As a consequence, the major available information to
study ecological processes rely in the biodiversity patterns created by ecological
processes when electing species which can co-exist. The major issue when inferring
ecological processes from biodiversity patterns is that several processes can result in a
similar pattern (Cale et al. 1989, Real and McElhany 1996). For example, it has been
shown that environmental filtering and competition could both lead to clusterings in
phylogenetic structure (Kraft et al. 2007; see section III.A for more details). As such,
signals of the four “essential” processes can be strongly similar creating difficulties to
identify them with certainty. Moreover, as previously stated, numerous “secondary”
processes can be derived from the combination of the four “essential” processes. Thus,
the different combinations and the strength of associations between these four
processes should define the uniqueness of the pattern of the “secondary” processes.
However, given the potential similarity of patterns between “essential” processes,
“secondary” processes will suffer of the same issue and could show a redundancy of

patterns between several processes.

To sum up, identifying and quantifying ecological processes shaping communities is not
easy and, due to the difficulty of conducting controlled experiments, relies on the inference of
ecological processes from biodiversity patterns. Such methodological reasoning based on the
test of patterns to conclude on processes is traditionally called pattern-based.

Given the three highlighted issues above, studying ecological processes underlying
communities is in fact an important methodological challenge leading to the development of

numerous statistical tools over the past decades.
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II. Methodologies to study communities

A. Empirical and theoretical approaches: two points of view

Historically, scientific inquiry at identifying and quantifying the ecological processes
shaping community structure and composition can be viewed as following two broad
methodological paths: empirical and theoretical approaches. This dichotomy was well-known
and a strong concern in the middle of the 1980s giving birth to the book “Trends in research in
ecology for the 1980s” (Cooley 1984). In this volume, authors explicitly admit this division.
In particular, in the Preface, F. Bourliere states that ecologists “have the feeling of no longer
belonging to a unified and mature scientific discipline. Many of them claim to be mere
empiricists, whereas others are proud to be considered theoreticians”. By acknowledging the
general dichotomy, this book calls for a better communication between these two worlds.
Here, we rapidly expose both empirical and theoretical points of view and their limits to
understand why the current methodological tools to analyse empirical datasets merge both of

them.

1. Empirical approach

Often reported as a “soft” science with no predictive goal, empirical ecology has a long
history and is fundamentally interested in the description of biodiversity patterns of various
taxa in ecological systems (Humboldt and Bonpland 1807, Candolle 1874, Merriam and
Stejneger 1890, Warming 1895, Merriam 1898, Jaccard 1912, Watt 1940). In his preface
(“Trends in research in ecology for the 1980s”, Cooley 1984), F. Bourliere defined empirical
ecologists as pure naturalists “ignorant of, if not allergic to, the use of any mathematical
representation of living phenomena”, therefore underlying the absence of any mathematical
design in the empirical approach of ecology. Nevertheless, for the purpose of this study, we
considered the use of phenomenological statistics to describe how biodiversity is structured

(without involving any statistical tests) as belonging to this category.

At the beginning, studies were mostly focused on species diversity in terms of species
identity, number and abundance (Jaccard 1912, Watt 1940). Phenomenological statistics such
as diversity indices were particularly suited in that case. For instance, species richness
allowed to qualify the number of species in a focal site, and Shannon (sensitive to rare

species; Shannon 1948) and Simpson (sensitive to abundant species; Simpson 1949) indices
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characterised the species diversity relatively to their own abundances. Nowadays however,
datasets on species distributions in terms of species occurrences or abundances are available
at very large spatial extents (GBIF-Global Biodiversity Information Facility, Edwards et al.
2000) extending the interest to the spatial variations of species composition (i.e., beta-
diversity). As such, phenomenological statistics such as correlograms and (semi-)variograms
(which represent respectively the correlation and (semi-)variance against classes of distances
among sites; Legendre and Legendre 2012) and ordination analyses (e.g., Principal
Component Analysis, Correspondence Analysis; Legendre and Legendre 2012; see section
IV.B for further details) are also very useful to identify particular features of species spatial
structures.

Lastly, over the past 50 years, functional and phylogenetic information have been collected
and are now available for numerous species (TRY-global database of plant traits, Kattge et al.
2011; BIEN-Botanical Information and Ecology Network, http://bien.nceas.ucsb.edu/bien/).
These new datasets can be characterised either by new diversity indices (e.g., phylogenetic
and functional diversity) or the same phenomenological statistics exposed above (i.e.,
correlograms, (semi-)variograms, ordination analyses). By bringing these additional
information on species, modern ecological questioning presents more challenging and

complex problematics to understand community composition and structure.

2. Theoretical approach

Although theoretical and empirical approaches were developed in parallel having both a
long history, they differ in their way of treating ecology. If empirical ecologists aimed at
describing observed biodiversity patterns, theoreticians focused on the development of
mathematical models to provide insights about how they are produced thus improving our
comprehension of species assemblages structure and functioning but without being directly
based on empirical data (i.e., theoretical models of Stenseth 1977). Therefore, models
implying curve fitting (i.e., empirical models of Stenseth 1977) are not considered in this
category because they require empirical data to estimate biological parameters.

At first, mathematical models were deterministic, non-mechanistic and purely analytical as
developed to reproduce population dynamics to understand how they were produced and
evolved. Their history begins with Verhulst (1838) who first introduced the logistic equation
to describe population growth. From there, logistic models were re-exploited by numerous

authors and in particular Lotka (1925) and Volterra (1926) who became eponyms for their
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famous equations describing predator-prey or parasite-host relationships. In fact, many of the
next mathematical developments were studying competition (Nicholson and Bailey 1935,
Wiliamson 1957, Rosenzweig and MacArthur 1963). All these theoretical works contributed
(with others) to invalidate Clement’s super-organism hypothesis for the benefit of Gleason’s
individualistic vision of communities marking what I would consider as a first decisive shift
towards the developments of theoretical models of species assemblages.

As a legacy of population ecology modelling, numerous studies developed community
models to study competition among (i.e., intra) or between (i.e., inter) species. Among others,
the works of R. H. MacArthur, R. M. May and R. Levins played important roles in
community modelling. MacArthur provided important insights on limiting similarity
(MacArthur and Pianka 1966, Macarthur and Levins 1967, May and MacArthur 1972) and
species ecological niche following the work of his mentor Huntchison (1957) (MacArthur
1970). May mostly worked on community stability and in particular its relation with
community complexity (May 1971, 1972, 1973). Finally, Levins brought the community
matrix (Levins 1968) which allowed to specify the strength of interactions between and
among species (notably competition). Levins’ community matrix was broadly applied
especially to study interspecific competition relatively to community stability (Clark and
Hallam 1982) and invasibility (Case 1990), and to the number of co-existing species in a
community (Vandermeer 1970, 1972). It is worth noting that the period of community model
developments also corresponds to the introduction of stochasticity in population deterministic
models (Leslie and Gower 1958, Bartlett 1960, Chiang 1968, Pielou 1977). This notion of
stochasticity also appeared in community models especially with the work of May (1973)
where he incorporated statistical noise in Levin’s community matrix to produce stochastic
neighbourhood of community dynamics.

At the end of the 1970s, after the reflections about the existence of assembly rules resulting
from ecological mechanisms (Diamond 1975; see 1.B), theoretical ecologists slowly changed
from pure descriptive models to mechanistic models (Schoener 1986). Descriptive models
purely aim at describing biodiversity patterns of community mostly relying on the best
mathematically expressions qualitatively embodied the focal pattern(s) (Schoener 1986). In
contrast, mechanistic models are defined by the use of organisms ecological characteristics
(e.g., behavior, physiology, morphology) as theoretical bases to model ecological processes to

understand how they shape communities (Schoener 1986, Persson and Diehl 1990, Leibold
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1995, Hubbell 2001, Chave et al. 2002). Mechanistic models then gave birth to mechanistic
simulations now widely used in community ecology for many purposes (IV.C; Zurell et al.

2010, see D’ Amen et al. 2017, Cabral et al. 2017 for a review on mechanistic simulations).

B. Bridging empirical and theoretical approaches: a gradient of
methods
1. Empirical and theoretical approaches: limits

Solely relying on either empirical or theoretical approaches to identify and quantify
ecological processes shaping communities is limited. Given that the empirical approach aims
at describing ecological systems via direct ecological characteristics (i.e., identity, number and
abundances of species) and phenomenological statistics calculated from these features (i.e.,
diversity indices, correlograms, ordination analyses), its incontestable advantage is to be
directly based on observed datasets as such giving realistic descriptions of the system.
However, this approach presents one major pitfall to identify and quantify ecological
processes underlying communities. Despite the possibility to quantify biodiversity patterns
through phenomenological statistics (see section II.A.1), those quantities cannot be reliably
associated with ecological processes. Although it would be possible to indicate the presence
of ecological processes based on the deviation of the phenomenological statistics from an
ecological (not statistical) a priori, the lack of predictive ability makes the definition of the
ecological a priori rather subjective. In addition, given that various processes may create the
same pattern (Cale et al. 1989, Real and McElhany 1996), being based solely on the deviation
of a phenomenological statistics describing biodiversity patterns would restrict ecological
conclusion to pure assumptions.

The major interest of the theoretical approach lies in the use of mathematical modelling to
bring deterministic and mechanistic comprehensions of how biodiversity patterns are
produced. This offers a predictive facet to the study of processes as it allows not only to
qualitatively reproduce an observed biodiversity pattern (deterministic models such as Lotka-
Volterra equations) but especially to produce one expected under a particular ecological
process (mechanistic models; Nathan and Muller-Landau 2000, Hubbell 2001, Chave et al.
2002, Nathan and Casagrandi 2004). However, the high topological diversity of theoretical
models (i.e., number, definition and order of parameters) is both a great advantage and an
important shortcoming. For example, Vellend (2010) counted at least 2304 possible Lotka-

Volterra models to define species interactions just by adding different level of complexities
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one by one (i.e., spatial and temporal heterogeneity, stochasticity, immigration, age, size and
number of species). This high diversity is important to define what is theoretically possible to
represent a focal system from what is not. But it is also a curse as “possible” does not imply
“ecologically realised” and the relevant ones have to be filtered out. This selection appears
however difficult without being linked to empirical data.

Overall, to identify and quantify ecological processes shaping communities, empirical and
theoretical approaches have to be combined so that the theoretical approach can offer
predictive power to the empirical one, and that the empirical approach can bring ecological
realism through empirical data as well as helping to select (and build) models that are
ecologically relevant. To take Maynard Smith’s words, “Mathematics without natural history

is sterile, but natural history without mathematics is muddled” (Maynard Smith 1982).

2. A gradient of methodological tools

Nowadays, methods available in ecological scientists’ toolbox to study ecological
processes result from the merging of both empirical and theoretical approaches and can be
considered as belonging to a gradient from purely empirical to purely theoretical (Fig. 6). In
fact, there are two ways of moving along this gradient and combining the two approaches
(Fig. 6): (i) Direction 1 in which modelling is implemented into phenomenological statistics
and whose philosophy is to infer ecological processes from biodiversity patterns. And (ii)
Direction 2 in which empirical data and phenomenological statistics are used to improve and
select mathematical models to explain biodiversity patterns through process-based modelling.
As the rationale of both directions is different, methodological tools belonging to each of
them will reflect this dissimilarity as the first contains methods based on descriptive statistics

and the second based on mathematical modelling.
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Figure 6: Gradient of methodologies from pure empirical to pure theoretical approaches. Direction
1 corresponds to methods developed by bringing the theoretical approach to the empirical one. In this
direction, along a gradient from empirical to theoretical approach, methods are increasingly model-based.
First phenomenological statistics (e.g., diversity indices, Principal Component Analysis), then hypothesis-
testing with random null hypothesis requiring smaller mathematical manipulations than constrained null
hypothesis. Finally, performance analyses where mechanistic simulations are usually used. Direction 2
represents methods developed by linking the theoreticalempirical approach to the theoretical one solely
through estimation of model parameters from empirical data. In this direction, along a gradient from
empirical to theoretical approach, basic curve fitting (e.g., regression-based models) are simpler models
than mechanistic models which are based on the modelling of ecological processes or individual
characteristics. Lastly, models with no parameter estimation from empirical data are considered as pure
theoretical approaches.

a. Direction 1: bringing theoretical approach to empirical
approach

Along the gradient, Direction 1 first displays the tests of hypothesis (Fig. 6) in which can

notably be found multivariate methods such as Mantel test (Mantel 1967; see Axis 2 Chapter
1) and variation partitioning (Borcard et al. 1992, Peres-Neto et al. 2006; see Axis 2 Chapter
2) widely used to study the effect of environmental filtering over spatial processes (e.g.,
dispersal) on communities (Moritz et al. 2013, Arellano et al. 2016). The hypothesis-testing
approach is entirely based on the rejection of a null hypothesis (hereafter HO) defining the

simplest negative answer to an ecological question. For instance, one can ask if species
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distributions of a community are structured in space. The HO corresponding to this question
is: “species distributions are not spatially structured in the community” meaning that species
are randomly distributed in space. Following this idea, the HO to identify and quantify
ecological processes shaping communities is defined as the biodiversity pattern(s) in absence
of the ecological processes under study. HO is defined through mathematical manipulations
going from simple permutations to express randomness to constrained permutations and
randomisations to conserve specific ecological features as such characterising more complex
ecological assumptions (Gotelli 2000, Wagner and Dray 2015; Fig. 6). Further details on the

characterisation of HO are provided in the next section (III.C).

Finally, closer to theoretical approach, Direction 1 presents performance analyses (Fig. 6).
Those analyses evaluate the statistical performances of phenomenological statistics and tests
of hypothesis in term of measured value (compared to an expected), type I error rate (i.e.,
detecting HO as true although false) and power (i.e., rejecting HO when false) under different
theoretical ecological contexts (Smith and Lundholm 2010, Miinkemiiller and Gallien 2015).
In short, performance analyses allow to identify ecological situations in which descriptive
statistics and hypothesis-testing fail to detect the biodiversity patterns resulting from
ecological processes of interest, as such defining the limitations of their use. Therefore,
performance analyses are mostly meant to serve as preliminary analyses to help choosing the
descriptive statistics and tests of hypothesis to perform. Most of the time those analyses
require mechanistic simulations to reproduce particular ecological processes under which the
focal descriptive statistic or hypothesis test are performed and the outputs (measured value
and HO rejection or not) are compared to the known input of the simulation (Smith and
Lundholm 2010, Miinkemiiller and Gallien 2015). For example, Miinkemiiller and Gallien
(2015) showed, via mechanistic simulations reproducing patterns of invasion under
environmental filtering and competition, that phylogenetic indices based on invaders were
better suited under environmental filtering to detect invasion. Inversely, community-based

phylogenetic indices performed better under competition scenario.

b. Direction 2: bringing empirical approach to theoretical
approach

For mathematical models to present a good explanatory power and fit of empirical datasets,
model parametrisation is crucial and would remain purely theoretical if not directly based on

those datasets. As such, models developed in Direction 2 all gravitate towards mathematical
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models with parameter estimations directly from the studied empirical data. Briefly, the

rationale behind the conception of a model parameterised with observed data is the following:

(1) Build potential models (mechanistic or not) to explain the empirical dataset;

(2) Estimate parameters of the models from empirical data. Methods available to perform
parameter estimations mostly belong to either likelihood functions (see Bolker et al. 2009 for
a review of them in the case of generalised linear mixed models) or Pattern-Oriented
Modelling and Approximate Bayesian Computation (see Hartig et al. 2011 for a review). This

will be more detailed in the General Discussion (section II);

(3) Evaluate the goodness-of-fit and explanatory power of models through summary statistics.
Goodness-of-fit allows to quantify how well the values predicted by the whole model are
close to the empirical values. It can notably be assessed by looking at the estimates values and
their confidence intervals but also checking the posterior distributions if a Bayesian

framework was performed (Etienne and Olff 2005, Jabot and Chave 2009). Other summary

statistics such as R2-type values but also hypothesis-testing such as x° to evaluate the
difference between the observed and modeled values distributions can also be used, notably in
the case of non-mechanistic models (Bolker et al. 2009 for a review on generalised linear
mixed models). If the model is not mechanistic, the explanatory power can be evaluated to
quantify how well each explanatory variable of the model explain the observed values. It can
be quantified by R2-type values and test of hypothesis such as Fisher- or Student-types
statistics (Bolker et al. 2009 for generalised linear mixed models). Note that we purposefully
remained general in exposing these steps and do not address the issue of model selection

which will be discussed in last section of the manuscript (General Discussion section II).

Along the gradient of methods (Fig. 6), models are ranked by increasing level of
sophistication from “basic curve fitting” to mechanistic models. In this manuscript, “basic
curve fitting” represent non-mechanistic models using a unique classical function family such
as logistic or linear functions to fit the empirical data. Regression-based models are the most

widely used with Generalised Linear Models and Generalised Linear Mixed Models (Zuur
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2009, Bolker et al. 2009) as well as canonical analyses such as Canonical Correspondence
Analysis (ter Braak 1986, 1987) and Redundancy Analysis (Rao 1964). Those analyses allow
to explain the response variable(s) with explanatory variables which can potentially be used as
proxies for ecological processes such as environmental conditions to study the effect of
environmental filtering. To go further, mechanistic models based on the direct modelling of
ecological processes and organisms individual characteristics can be used to explain empirical
data. For instance, Jabot and Chave (2011) showed that tropical tree communities were more
likely shaped by environmental filtering by designing a mechanistic model extended from

Hubbell’s neutral model.

In this manuscript, I do not aim at comparing Directions 1 and 2 and will focus only on
Direction 1 that is why Direction 2 was shortly detailed. Nevertheless it was important to
introduce both of them to understand that the merging of both theoretical and empirical
approaches, regardless of the direction of combination (theoretical into empirical and
inversely), is at the origin of the wide range of methodological tools available nowadays
therefore providing multiple possible ways to study ecological processes underlying
communities.

In the next section, I will further develop Direction 1 by presenting its major limit as well
as two potential solutions to overcome it. Note that Direction 2 will be addressed in the last

section of this manuscript (General Discussion).
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ITI. Bringing theoretical approach to empirical approach (Direction 1): a major
limit and two possible solutions
A. Direction 1 remains pattern-based

Implementing a theoretical approach in classical phenomenological statistics (i.e.,
empirical approach) brought two major insights: (I) possibility to identify and quantify a link
between ecological processes and community structure and composition through tests of null
hypotheses and (ii) guidance in the choice of phenomenological statistics and hypothesis-
testing through preliminary analyses of statistical performances. Despite those advantages,
Direction 1 is still based on biodiversity patterns with classical phenomenological statistics
describing patterns and tests of hypothesis testing patterns by defining the null hypothesis as
the biodiversity pattern without the effect of the ecological processes of interest. As such, the
major and well-known pitfall of the empirical approach remains: a single pattern may be the
result of multiple processes (Cale et al. 1989, Real and McElhany 1996). For instance, effects
of environmental filtering and interspecific competition are still not always distinguishable as
they can result in similar phylogenetic structures (Kraft et al. 2007). Based on the hypothesis
that closely related species have similar trait values (Harvey and Pagel 1991), competition can
result in communities composed of either (i) distantly related species (i.e., phylogenetic
evenness) under competitive exclusion as closely related species will strongly compete and
exclude one another (Webb et al. 2002) or (ii) closely related species (i.e., phylogenetic
clustering) under limiting similarity as competing species can co-exist if their trait values are
sufficiently dissimilar (Kraft et al. 2007). Likewise, communities under environmental
filtering can result in communities either (i) phylogenetically clustered as only species with
specific range of trait values will be selected (Kraft et al. 2007) or (ii) phylogenetic evenness
if the set of trait values filtered out is convergent (i.e., distant relative species independently
present the same range of trait values) along the phylogeny (Kraft et al. 2007). Among other
cases, this example clearly demonstrates that the use of biodiversity patterns per se cannot be
sufficient to precisely identify and quantify ecological processes shaping communities. Two
solutions are proposed and studied along this manuscript: implementing ecological scales
(e.g., spatial, phylogenetic, temporal, organismic) and ecologically-constrained (e.g. spatially-

constrained) null models into hypothesis-testing (see below).
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B. Ecological scales

1. Definition
As reported by Graham et al. (2018), the concept of ecological scales is based on the fact
that some ecological entities (e.g., spatial regions such as local community and
metacommunity) can be ordered relatively to one another (e.g., local community then
metacommunity). The position within this hierarchy defines the scale (e.g, local community is
at finer scale than metacommunity). In this manuscript, I considered two particular ecological

scales:

* Spatial scales determining the spatial area of action (e.g., global or local) of ecological

processes;

* Phylogenetic scales corresponding to the level of phylogenetic organisation of
organisms living in a community (e.g., species, clade; see Graham et al. 2018 for a
review). In particular, phylogenetic scales can indicate the degree of conservatism
(i.e., conserved, divergent, convergent) of functional traits influenced by a particular
ecological process (see Axis 1). In fact, the assumption is that traits level of
conservatism increases with the number of ancient lineages with which actual lineages
shared those traits. Note that taxonomic scales (e.g., species, genus, family, order,
class) are often used as a proxy for phylogenetic scales (Graham et al. 2018).
However, taxonomic scales differ from phylogenetic ones because they are mostly
based on morphological and ecological attributes, thus excluding the evolutionary
aspect of phylogeny due to temporal hierarchy (Graham et al. 2018). In the same way,
if phylogenetic scales are intimately linked with temporal scales, they are nevertheless

distinct type of scale as temporal scales ignore taxonomic hierarchy along the

phylogeny.
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2. Spatial scales

In ecological studies, spatial scales are usually described in term of extent (i.e., size of the
area of study) and grain (i.e., size of the local sites sampled in the area of study) (Fig. 7;
Siefert et al. 2012, Barton et al. 2013, Chalmandrier et al. 2017) but spatial eigenvectors (e.g.,
Moran’s Eigenvector Maps; Dray et al. 2006; Fig. 11; IV.A) are also widely used (Dray et al.
2012, Chang et al. 2013, da Silva Menezes et al. 2016).

Spatial dependency is relevant for both community composition and structure as species
distributions (Levin 1992) and richness (Gleason 1922) vary among spatial scales. Indeed,
species number is recognised to increase with the size of the spatial area considered (Gleason
1922) meaning that species richness will be more important at large than local spatial scale.
Therefore, species and functional compositions of local communities are expected to increase
with the size of the spatial grain as more different species will be included in the communities
(Fig. 7A). Similarly, at fixed size of grain, beta-diversity (i.e., differences in species
composition between communities) is expected to be higher at large spatial extent as it will
cover more communities with different species composition (Fig. 7B; Barton et al. 2013,
Ochoa-Ochoa et al. 2014). Concerning community structure, it has notably been shown for
phylogenetic structure that closely related species tend to co-occur (i.e., phylogenetic
clustering) at large but not at local spatial scale (Lovette and Hochachka 2006, Proches et al.
2008).

Overall, the multi-scale nature of community composition and structure in space suggests
that the underlying ecological processes are also multi-scale and have a spatial signature
varying with spatial scales (Levin 1992). In particular, environmental filtering has been shown
to act at both large and local spatial scales through environmental variables respectively
structured at large (e.g. climatic variables) and local (e.g., soil variables) spatial scales (see
Siefert et al. 2012 for a meta-analysis, da Silva Menezes et al. 2016). Likewise, as species
display various dispersal abilities (i.e., strong, intermediate, and weak dispersers; Wetzel et al.
2012, da Silva Menezes et al. 2016), dispersal might thus be expected to influence the spatial
distributions of species with strong dispersers structured at large spatial scale and weak
dispersers at fine spatial scale (da Silva Menezes et al. 2016). In fact, studies found that
spatial structure of community composition similarity decreased more rapidly when species

were weak than strong dispersers (Maloney and Munguia 2011, Wetzel et al. 2012).
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To conclude, given that ecological processes act at multiple spatial scales, thus inducing
multi-scale biodiversity patterns, spatial scales have to be taken into account to correctly
study ecological processes by helping to identify and quantify them (Chase 2014). Several
studies have notably showed that the effects of environmental filtering and spatial processes
(e.g., dispersal) in shaping communities and their spatial differences could be successfully
identified and differed in their relative importance through spatial scales (Legendre et al.

2009, Li et al. 2011, Kivlin et al. 2014, Arellano et al. 2016).

Extent

Changing grain Changing extent Changing grain and extent

B. C.

Figure 7: Spatial scales in term of grain and extent. (A-C) Grey squares represent the spatial extent
whereas blue squares correspond to spatial grain. The spatial extent is the sampling area and the spatial
grain is the sampling unit. Here, grains are considered as local communities and the extent as the size of a
metacommunity. Three situations of grain and extent variations can be considered. (A) Changing the
spatial grain while maintaining the spatial extent fixed. In the example, the size of the spatial grain
increases leading to increase the alpha-diversity of each community. (B) Changing spatial extent while
conserving the size of the grain. Here for instance, increasing the size of the metacommunity leads to
increase the difference in species compositions between local communities (i.e., beta-diversity). (C)
Grain and extent can be changed at the same time.

3. Phylogenetic scales
Contrary to spatial scales, defining phylogenetic scales appears to be a little more
challenging... If space can be commonly measured in distance units in all ecological studies,
this is not the case for phylogeny and several phylogenetic characteristics such as taxonomic

rank, node-to-root distance, tree depth, clade size and age can be used as unit for phylogenetic
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scales (Graham et al. 2018). As such, readers have to pay attention to their units when
comparing between different ecological studies. Despite this difference, phylogenetic scales
can be defined as spatial scales in term of grain (i.e., unit of phylogenetic scales defined
above) and extent (i.e., the entire phylogeny containing all the phylogenetic units) (Fig. 8), but
also with phylogenetic eigenvectors (e.g., PVR; Diniz-Filho et al. 1998; Fig. 12; IV.A).

As large phylogenetic scales (e.g., domain, kingdom) contain more species than small ones
(e.g., family, genus), community composition is expected to present a wider range of species
and functional trait values at large than fine phylogenetic scales (Fig. 8). Likewise,
community structure is known to be strongly influenced by phylogenetic scales which may
completely reversed ecological conclusions (Miinkemiiller et al. 2014). For instance,
phylogenetic structure has been shown to completely change over phylogenetic scales with
phylogenetic evenness at small scales and clustering at large scales (Cavender-Bares et al.
2006, Swenson et al. 2006).

Altogether, the variation of community composition and structure across phylogenetic
scales suggest that ecological processes might act differently through them. To our knowledge
however, no study explicitly tried to differentiate ecological processes across phylogenetic
scales solely, whereas it has been extensively done with spatial scales (Li et al. 2011, Kivlin et
al. 2014, Arellano et al. 2016). This could be explained by the relatively recent recognition of
phylogenetic scales (Graham et al. 2018). Nevertheless, although studying ecological
processes through different phylogenetic scales is still not widespread in community ecology,
it is gaining in interest (Cavender-Bares et al. 2006, Swenson et al. 2006, Pavoine et al. 2010,
Miinkemiiller et al. 2014, see Graham et al. 2018 for a quick review) and could bring
important insight on which ecological processes have a key role on structuring specific clades

of a community.

In conclusion, spatial and phylogenetic scales are promising empirical characteristics to
implement in current methodological tools to help correctly identify and quantify ecological
processes shaping communities. In particular, recent studies highlighted the importance of
considering both spatial and phylogenetic scales at the same time (Proches et al. 2008,
Thuiller et al. 2010, Miinkemidiller et al. 2014, Parmentier et al. 2014) to study the relative
importance of ecological processes. For instance, Parmentier et al. (2014) investigated the

phylogenetic structure of tree communities through both spatial and phylogenetic scales by
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changing the size of spatial and phylogenetic grain. They showed that phylogenetic clustering
was detected at all phylogenetic scales and all but very fine spatial scale where the signal
vanished. They concluded that environmental filtering shaped communities at all except very

fine spatial scales where competition appeared to predominate.

Changing extent

LJLT

Changing grain

A. B. C.
Figure 8: Phylogenetic scales in term of grain and extent. The first row represents the (A) change of

spatial grain and (C) change of spatial extent from an original state (B). As in Fig. 7, grey and blue
squares are the extent and grain respectively. The second row corresponds to phylogenetic scales with
changes in phylogenetic grain (A) and extent (C) from an initial state (B). Similarly to the first row, grey
and blue circles on phylogenetic trees correspond to phylogenetic extent and grain respectively. This
figure is inspired from Graham et al. (2018).

C. Ecologically-constrained null models

1. Hypothesis-testing and null models
If implementing ecological scales can be seen as an “empirical” solution relying on
empirical observations and new data, defining null models can be, on the contrary, viewed as
a theoretical solution based on mathematical manipulations. To understand why and how to
create a null model, we first have to go back to the definition of hypothesis-testing. The global

approach is the following (Gotelli 2000):

(1) Define the verbal null hypothesis HO in response to an ecological problematic. To
illustrate, we will answer the following question: “Is the variation of species
composition among communities (i.e., beta-diversity) spatially structured?”. The
corresponding HO is “Communities species composition (i.e., beta-diversity) is not

structured through space”.
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(2) Translate the verbal HO into a mathematical HO through the definition of a null model
algorithm MO characterising the spatial structure of the variation in beta-diversity
expected under HO that is: no spatial structure of the variation in community
composition across space. In our example, the MO should be defined as the same set of

communities but randomly distributed in space.

(3) Define a statistic k to compute. k is chosen to describe, with a single value, the

spatial structure of the variation in beta-diversity.

(4) Simulate a first null dataset with MO and compute the statistic k on the simulated

dataset to obtain a statistic k,,,_,, expected under HO.

obs—

(5) Repeat step 4 many times (usually 1000 times) to generate the distribution of the

statistic k., expected if HO was true (i.e., null distribution).

obs —

(6) Compute k_,, the observed statistic on the empirical dataset. In our case, k,, is

calculated from a species matrix with species in columns and communities in rows

(hereafter matrix L ).

(7) Interpret k,, in regards of the null distribution of k,, ,, , that is calculate the
probability of a |k,,, ,, to be superior or inferior to |k,| (for bilateral test). By

convention, if this probability is superior to the threshold a = 0.05, HO is rejected.

From there it is now possible to understand why a null model is needed and what it is. A

null model is essential as the observed statistics has to be compared to something to be

interpreted. In general, a null model can be defined, in concordance to the null hypothesis, as

an expected biodiversity pattern in the absence of a specific ecological process or empirical

feature. In our example, the null model was defined as the random spatial distribution of the

same set of communities. Until here however, a critical point was not addressed: How to

construct an adequate null model?
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2. Building a null model

In community ecology, the most widely used null models are developed through
permutation and randomisation procedures applied on the original empirical matrix of data
(Connor and Simberloff 1979, Graves and Gotelli 1996, Gotelli 2000, Ulrich and Gotelli
2010, Ulrich et al. 2012). But these permutation and randomisation algorithms have to be
carefully designed. In our example, we wanted to know if the variation in beta-diversity was
spatially structured. The corresponding null model has thus to keep species composition of
communities constant but randomly distributed them in space. The simplest and intuitive way
to build such a null model is to randomly permute the rows of the species matrix L (sites-
by-species) so that species compositions are kept intact but the order of communities are
changed (Fig. 9A).

Our example was made simple for the purpose of understanding, but the algorithm used to
construct a null model obviously depends on the ecological question, meaning that the same
random null model will not be adequate for all problematics. In particular, if we come back to
the general problematic of this study which was to identify and quantify the ecological
processes shaping community structure and composition, randomness would not be the best
null model to achieve such goal. Indeed, by comparing a biodiversity pattern to randomness
one can only conclude “biodiversity patterns are not different from randomness” or
“biodiversity patterns are different from randomness (i.e., structured)” but without any
relation to the ecological processes. In fact, comparing biodiversity patterns against
randomness is the oldest null model (Connor and Simberloff 1979, Jackson et al. 1992, see
Graves and Gotelli 1996 for a brief review of null models debates and history). The historical
idea behind such comparison was to highlight that one should not jump easily on conclusions
without testing biodiversity patterns, but also (ii) to recognise that biodiversity patterns that
are not different from randomness do not necessarily mean that no ecological processes
underline them and that biodiversity patterns result from processes that are not always easily
detectable (Connor and Simberloff 1979). Be that it may, comparison to randomness to study
ecological processes do not allow to precisely identify and quantify the relative effects of
ecological processes separately (Mclntire and Fajardo 2009). Doing so requires null models
presenting stronger ecological restrictions than simply preserving community composition as
presented above. The idea would be to develop new ecological constraints so that we can

study an ecological process A while the other processes are kept fixed, meaning that the
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null model should preserve all the features of the empirical data except those expected to be
influenced by process A . For example, one way to test environmental filtering effect over
dispersal, would be to randomise the species matrix L (sites-by-species) while preserving
the spatial features of species distributions due to dispersal (Fig. 9B). Those types of null
models ecologically restricted to reproduce non-random biodiversity patterns are hereafter
called ecologically-constrained null models.

For the last years, ecologically-constrained null models attracted a lot of interest and were
increasingly developed (Hardy 2008, Thuiller et al. 2010, Chalmandrier et al. 2013, Braga et
al. 2018). Note that ecologically-constrained null models can be defined through
randomisation procedures (Hardy 2008, Chalmandrier et al. 2013, Braga et al. 2018) but also
with mechanistic null models (Caswell 1976, Buschke et al. 2015). The first type is addressed
in Axis 2 and the second in the General Discussion. Despite the increasing developments of
ecologically-constrained null models, a lot of work still remains to be done. In particular, lots
of statistical tests widely used to identify and quantify ecological processes underlying
communities (e.g., Mantel test and variation partitioning are multivariate methods widely
used to separate the effect of environmental filtering from spatial processes) still use classic
random null models. This, however, leads to biased statistical results and misinterpretations
because the null model does not correctly match the null hypothesis by controlling for the
biodiversity patterns not induced by the ecological processes under study (Axis 2; Smith and
Lundholm 2010, Guillot and Rousset 2013). As such, implementing the current statistical tests
with ecologically-constrained null models seems essential to allow ecologists to keep using
them while obtaining unbiased results and drawing correct conclusions on ecological

processes (Axis 2).
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Is the variation in community Does environment spatially structured beta-diversity
composition spatially structured? knowing that species are structured by limited dispersal?|
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HO = variation in community HO = environment DOES NOT structure beta-diversity
composition IS NOT spatially structured given that species are structured by limited dispersal
Original data Null model Original data Null model
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Figure 9: Random and ecologically-constrained null models. (A) To test for spatial structure of beta-
diversity (i.e., difference in species composition among communities), the null model is built random. To do
so, rows of species matrix L are randomly permuted to produce null communities randomly distributed
through space while conserving their exact species composition. (B) Testing for an environmental effect on
community species composition knowing that they are already spatially structured requires to perform
constrained-permutation where rows of L are permuted while maintaining set of communities connected by
dispersal as they are likely to present a similar composition. The dashed and grey ellipses correspond to the
limited dispersal of the triangle and circle species respectively. (A-B) White triangles, black squares and grey
circles represent three different species. Colours of communities correspond to the colours of L rows.

o
)

In general conclusion, due to the availability of empirical datasets ever more complex and
massive, ecological questions relative to ecological processes shaping communities become
more complex and diverse. As fundamentally based on the test of biodiversity patterns,
current hypothesis-testing does not allow to correctly face this tidal wave of increasing data
and questioning calls. In this manuscript, I propose to improve hypothesis-testing methods by
implementing them with both ecological scales and ecologically-constrained null models to
enhance their ability to detect different biodiversity patterns to draw relevant conclusions on

ecological processes.
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IV. Methodological improvements proposed in this thesis

This thesis aims at enlarging the ecological toolbox by implementing ecological scales and
ecologically-constrained null models in hypothesis-testing methods to improve the
identification and quantification of the ecological processes shaping communities and
metacommunities. In particular, I adopted the scale of the metacommunity and focused on the
study of environmental filtering for which I studied both its selection of species functional
traits among communities, as well as its effect on beta-diversity (i.e., variation in species
composition among communities). To have better insights on those two aspects of
environmental filtering, I proposed to improve three widely used multivariate analyses:
fourth-corner approach, the Mantel test and variation partitioning. In this section, I explain
why those methods were chosen, with what and why they were improved and how those
improvements were evaluated. But let’s start by the beginning... Which data are required to

study environmental filtering?

A. Data collection
Five basic ecological tables can be used to study the effect of environmental filtering (Fig.

10). The first obvious one is a matrix L of species abundances (or presence-abscence) to

Species Environment Space

Sites L R w

Traits QT

ik
Phylogeny P

Figure 10: Studying environmental filtering
requires five major matrices. L represents
species abundance composition per sites, Q
records the values of functional traits for each
species, P defines the phylogenetic relationships
between species, R describes the environmental
conditions per sites and W characterises the
spatial structures of sites.
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characterise species composition with species in columns and sites (i.e., communities) in rows
(Fig. 10). As such, L is composed by either species number of individual or occurrences in
each sites of a metacommunity. The second mostly expected table is a matrix R of
environmental conditions with environmental variables in columns and sampled sites in rows
to characterise the environmental conditions present in each sites of a metacommunity (Fig.
10). The third one is a matrix Q of species functional traits with traits in columns and
species in rows. As such, Q represents the value of functional traits for each species (Fig.
10). The two others are less intuitive and pertain to both space and phylogeny.

Space is important as closely located communities tend to be dependent from one another
by presenting similarities (or dissimilarities) in terms of species compositions (matrix L ) as
well as environmental conditions (matrix R ). Such dependency is called spatial
autocorrelation and can be either positive, if nearby communities are similar, or negative , if
they tend to be dissimilar (Legendre 1993, Legendre and Legendre 2012), and affects both
table L andtable R . Similarly, species cannot be considered independent as they are part
of a hierarchically structured phylogeny, sharing a common evolutionary history (Felsenstein
1985). This leads to create phylogenetic signal both in traits (table Q , i.e., phylogenetic
autocorrelation; Blomberg and Garland 2003) with closely related species presented more
similar or dissimilar trait values but also in species composition (matrix L ) with
communities presenting more closely or distantly related species (Hardy 2008). Both types of
dependencies are thus important to take into account during the study of environmental
filtering. Hence the fourth table is a matrix W describing the spatial sampling of
communities inside a metacommunity and the fifth is a matrix P characterising
phylogenetic relationships between species.

W can be defined through three general ways. The first and most intuitive is to use
geographical coordinates of sites where longitude and latitude are in columns and sites in
rows. However this will only represent spatial patterns that are a function of linear
combinations of longitude and latitude providing poor descriptors of the complex spatial
patterns found in species data. That is why other representations based on polynomial
transformations of geographical coordinates were first used (Borcard et al. 1992, Legendre
and Legendre 2012). Unfortunately, those polynomials trends can only model patterns at
broad spatial scales. As such, a more complex representation based on spatial eigenvectors

(i.e., Moran’s Eigenvector Maps, Dray et al. 2006; MEM) has been developed. MEM define

-33-



orthogonal spatial predictors which are eigenvectors calculated from a neighbour matrix of

sites. They allow to represent space into all possible orthogonal scales, which, combined, are

capable of describing very complex spatial structures (Griffith and Peres-Neto 2006). In other

words, each eigenvector will represent a spatial pattern going from large scale (north-south or

east-west gradients) to very fine scale (chessboard patterns representing, for instance,

repulsion between species) (Fig. 11).
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Figure 11: Multi-scale spatial
patterns represented by Moran’s
Eigenvector = Maps. For a
metacommunity of 36 communities
arranged as a 6 X 6 grid, the spatial
matrix W containing  Moran’s
Eigenvector Maps in columns
describes the spatial structure of
communities at large, intermediate
and fine spatial scales. Blue color
represents positive values and white
color negative values. Only three
spatial schematic patterns are
presented for each category of
spatial scales as examples.



Finally, P can be obtained in two different ways, but either way originates from a
phylogenetic tree. The first is to represent P as a matrix of phylogenetic distances either
between sites (sites x sites table; e.g., Graham and Fine 2008) or between species (species x
species tables; e.g., Campbell et al. 2011, Ernst et al. 2012). Then, P can also be a matrix of
phylogenetic eigenvectors (PVR; Diniz-Filho et al. 1998), similar to MEM for W . PVR
define orthogonal phylogenetic predictors as eigenvectors obtained from a phylogenetic
distance matrix. They allow to model phylogenetic structures from large (e.g., clade niche

conservatism) to fine phylogenetic scales (e.g., late local divergence phenomenon) (Fig. 12).

Now that all matrices of data have been introduced, they can be related to three
multivariate methods widely used to study environmental filtering: the fourth-corner

approach, the Mantel test and variation partitioning.
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Figure 12: Multi-scale phylogenetic structures dispensed by phylogenetic eigenvectors.
From a phylogenetic tree of 20 species, three phylogenetic structures corresponding to large,
intermediate and fine phylogenetic scales are presented. Large phylogenetic scale separates
species according to the first clade separation indicating early clade divergence. Intermediate
scale identifies more recent species divergence. Finally, fine phylogenetic scale highlights
very late local (i.e., between two species) divergence letting the rest of the species aside.
Black rectangles represent positive values and grey squares positive ones. White dashed
rectangles equal to 0.
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B. Multivariate methods
In this manuscript I focused on two aspects of environmental filtering: (i) the selection of
functional traits and (ii) its effect on beta-diversity. To study those two aspects, I focused on

the use of multivariate analyses (Legendre and Legendre 2012).

The study of environmental selection of species’ functional traits pertains to the study of
trait-environment relationships. Among all the available frameworks, the fourth-corner
approach is widely used (Legendre et al. 1997, Dray and Legendre 2008, Peres-Neto et al.
2016). This method is based on three of the five tables introduced above: a matrix L of
species composition per community, a vector of environmental conditions per community (

R is reduced to one column) and a vector or trait values per species ( Q is reduced to one
column). Using these three types of information, the fourth-corner method calculates a
weighted correlation between the environmental variable and the species trait, both
standardised and weighted through species abundances. However, as previously stated,
environment and traits may respectively present spatial and phylogenetic dependencies which
ultimately lead to structure them across spatial and phylogenetic scales respectively.
Therefore, studying environmental filtering through trait-environment relationships in the
light of both spatial and phylogenetic scales could bring interesting insights. Indeed, in
addition to identifying the particular trait and environmental variable involved in
environmental filtering, implementing spatial and phylogenetic scales would allow to identify
the spatial scales at which trait-mediated environmental filtering is acting, as well as
identifying the degree of conservatism (through the phylogenetic scales profile) of traits
involved in the filtering. Overall, studying trait-environment relationships across both spatial
and phylogenetic scales would allow to associate the spatial scale(s) of environmental
filtering to species’ evolutionary history. As such, the classic fourth-corner approach was here
extended to include both spatial and phylogenetic scales leading to take into account all the
five information tables described in the previous section: species, environment, trait, space

and phylogeny (see Axis 1).

To study the variation in species composition among communities, two broadly used
multivariate methods were considered: Mantel test (Mantel 1967) and variation partitioning
(Borcard et al. 1992, Peres-Neto et al. 2006). Those two tests are especially used to study the

effect of environment over spatial processes such as dispersal (Moritz et al. 2013, Arellano et
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al. 2016). For this, matrices L. , R and W are necessary. Note however that unlike
variation partitioning, which is directly performed with L , R and W , Mantel test is
performed on distance matrices (which can be derived from the above matrices). If the spatial
dependency of L. and R was previously perceived as an interesting fact to study the
structure of trait-environment relationships across spatial scales, it is considered as a curse
when studying environmental over spatial effects as it violates the assumption of data
independence (Legendre 1993) required by the statistical testing procedure. This leads to
strong biases resulting in both overestimating the environmental effect and a high rate of false
positives meaning that environmental effect is detected even if there is none. Mantel test and
variation partitioning are both impacted by those biases (Smith and Lundholm 2010, Guillot
and Rousset 2013). As such, the correct identification and quantification of environmental
effect is compromised. In this manuscript, those biases were tackled by implementating
spatially-constrained null models able to take into account the spatial dependencies in the

testing procedure (see Axis 2).

Finally, note that variation partitioning belongs to the wide family of multivariate
ordination methods. Those approaches can be categorised in two sub-categories:
unconstrained and constrained ordination. Unconstrained ordination such as Principal
Component Analysis (PCA; Hotelling 1933) and Correspondence Analysis (CA; Hill 1974)
allow to study the structure of individuals and variables of a dataset by defining a new space
of reduced dimensions (i.e., principal component) maximising the differences between
projected points. For example, for the species matrix L , one can study the structure of
species across sites or sites across species (Fig. 13). The principal components in which
species are projected are a linear combination of sites, and inversely for sites projection. Each
projected species or sites are thus defined by new coordinates in their respective newly
reduced space (Fig. 13). However, unconstrained analyses do not allow to study the effect of
environmental filtering on species composition which requires to identify and test the link
between variables of different nature therefore taking into account both L and R
Constrained ordination methods such as Canonical Correspondence Analysis (CCA; ter Braak
1986, 1987) and Redundancy Analysis (RDA; Rao 1964), on which variation partitioning are
based, respond to this need by integrating a supplementary step of regression where the sites
coordinates obtained from an unconstrained ordination method (e.g., PCA, CA) are regressed

on the environmental variables. The predicted values of this regression are then coordinates of
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sites in a new space whose axes are a linear combination of the environmental variables.
Those types of analyses are thus able to identify the environmental variables explaining most

of the variation in species composition among sites.

species
12134 5 33&6 m

AW N~

sites I

PCA PCA

B. pa

PC3 PC3

pPC2 PC2

Figure 13: Principal Component Analysis on the species matrix L
Principal component analysis applied to project (A) species in a space of reduced
dimensions where the axes are linear combination of sites and (B) sites in a space
of reduced dimensions where the axes are linear combination of species.

Once the fourth-corner approach, the Mantel test and variation partitioning have been
modified by implementing ecological scales for the former and spatially-constrained null
models for the two latter, the enhanced methods need to be evaluated. Performance analyses
based on mechanistic simulations were thus conducted to assess the ability of the modified

method to identify and quantify the effects of environmental filtering when present.

C. Mechanistic simulations
Developing and improving statistical tools requires to study their performances to validate
their relevance and identify their limits. Mechanistic simulations are the perfect tools to

answer such need as they allow to simulate species assemblages with explicit assumptions
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about the underlying ecological processes (Zurell et al. 2010, Cabral et al. 2017). Since the
two last decades, an increasing amount of mechanistic simulation algorithms were developed
creating the need to review what has been and still needs to be done (D’Amen et al. 2017,
Cabral et al. 2017). Mechanistic simulations can be generally classified through three types of
ecological scales: (i) the organismic scale (e.g., individual, species, functional group,
phylogenetic clade), (ii) the temporal scale that is static (i.e., one generation) or dynamic (i.e.,
several generations) and (iii) the spatial scale that is explicit (i.e., displacements of organisms
are considered through space) or implicit (i.e., organisms do not move or their displacements
are not considered through space). Here I present and explain the choices of mechanistic
simulations made to simulate the species matrix L . Note that the scale of the
metacommunity was taken for all simulations and simulated species were considered as plant
species. Finally, note also that each simulation algorithm is further detailed in the following
chapters of the manuscript.

To evaluate the performance of the enhanced fourth-corner to detect the spatial and
phylogenetic structures of the trait-environment relationships, species assemblages were
simulated solely based on environmental filtering. The metacommunity was represented as a
grid where each cell is a community characterised by environmental conditions on which
species abundances were simulated with a temporally-static spatially-implicit model. This
model implies that (i) a single generation of species was simulated and (ii) species do not
move in space. The distribution of species in each community of the metacommunity grid
depended on the local environmental conditions with each species settling where the
conditions were suitable. As the studied spatial and phylogenetic structures were respectively
displayed by both environmental and functional trait vectors, the spatial and phylogenetic
structures of L reflected the structures simulated in those vectors. For example, if the
environmental vector is simulated at large spatial scale such as north-south temperature
gradient, the settling of the species in each community will mirror this gradient with cold-
tolerant species in the north and non-cold-tolerant species in the south. The structures of L
was not under study in this case, as such L did not need to present spatial dependencies in
itself through species movement between communities. That is why L was simulated with a
temporally-static spatially-implicit model (see Axis 1).

In the case of the study of environmental effect on beta-diversity, the enhanced variation

partitioning was evaluated based on a species assemblages simulated under environmental
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filtering and dispersal. Indeed, to assess the potential biases in the measure of environmental
effect of the enhanced variation partitioning due to strong spatial dependencies, species matrix
L had to present strong spatial dependencies not related to the one present in R . In this
case, a temporally-dynamic and spatially-explicit model was performed to allow species to
disperse among communities at each generation. Because of species dispersal, the
metacommunity were simulated as a torus where each cell represented a community
characterised by local environmental conditions (see Axis 2 Chapter 2).
Finally note that the case of Mantel test did not rely on mechanistic simulations because
this method was presented for treating the issue of spatial dependencies in a broader way
regardless of the ecological origin of those dependencies as such regardless of the ecological

nature of response and predictive variables (see Axis 2 Chapter 1).
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V. Organisation of this thesis

This thesis aims at integrating ecological scales and ecologically-constrained null models
into multivariate analyses to better identify and quantify the effect of ecological processes
underlying communities and metacommunities. This manuscript especially focused on the
study of environmental filtering and adopted the scale of the metacommunity. The
argumentation follows two major axes respectively corresponding to the implementations of

ecological scales and ecologically-constrained null models:

The first axis focuses on the study of environmental filtering through the relationships
between species functional traits and environmental variables. Among other frameworks, the
fourth-corner approach is widely used to study trait-environment relationships and calculates
a weighted correlation between a single species functional trait and a single environmental
variable both standardised and weighted through species abundances. However, environment
and species traits both respectively present spatial and phylogenetic dependencies leading to
structure environmental variables and species traits across spatial and phylogenetic scales
respectively. Those spatial and phylogenetic signals could bring interesting insights regarding:
(i) the spatial scale of the environmental variable involved in the environmental filtering and
(ii) the level of conservatism of the species trait selected by the environmental variable. This
axis thus proposes to extend the fourth-corner approach by including both spatial and
phylogenetic scales to study trait-environment relationships (Axis 1 — Chapter 1). Statistical
performances of this new approach were evaluated in terms of power and type I error rates

via mechanistic simulations.

The second axis is centred on the use spatially-constrained null models to overcome
statistical issues due to spatial autocorrelation when testing for environmental filtering.
Although spatial autocorrelation can be seen as a useful characteristic resulting from
ecological processes, it can also be a real nuisance for statistical testing and estimation
because it violates the assumption of data independence (Legendre 1993). In particular,
regression-based models are known to be affected by spatial autocorrelation leading to biased
estimations and inflation of type I error rates (F. Dormann et al. 2007). As such, identifying
and quantifying ecological processes in presence of spatial autocorrelation can lead to (i)

finding an ecological process although there is none (due to high type I error rate) and (ii)
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overestimation of the effect of a process. Axis 2 focuses on the identification and
quantification of environmental filtering in presence of limited dispersal inducing spatial
autocorrelation in species distribution. Spatially-constrained null models were implemented in
two regression-based multivariate analyses widely used to study environmental filtering over
spatial processes: Mantel test (Axis 2 — Chapter 1) and variation partitioning (Axis 2 —
Chapter 2). Statistical performances of the improved approaches were evaluated with

simulated data but were also illustrated with empirical datasets.

To finish, the relevance of implementing ecological scales and ecologically-constrained
null models in statistical tools was discussed in the light of the results obtained during the
thesis. The scope of the study was then enlarged to highlight some perspectives following the
works conducted. In particular, the role of mechanistic models (Direction 2) will be addressed
in addition to a more global reflexion on scientific reasoning when studying ecological

processes from empirical data and ecological theories.
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Abstract

It is now well acknowledged that species sorting is mechanistically driven by species
functional traits responding to major environmental filters. Studying trait-mediated
environmental filtering thus requires to investigate how trait-environment relationships drive
species spatial distributions. However, as environmental variables are usually spatially-
structured, trait-environmental relationships are likely to vary depending on spatial scales.
Similarly, as traits are intimately linked to phylogeny displaying various phylogenetic
signals, including phylogeny in the analysis of trait-environmental relationships could bring
interesting insights to study the evolutionary history of species niches defined by
environmental filtering. As such, a major issue is to understand how trait-mediated
environmental filtering and its associated evolutionary history are structured in space and at
which spatial scales they occur. Among different frameworks, the fourth-corner method is
widely used to analyse the link between traits and environment. However, it does not allow
to include phylogenetic and spatial information. Here we extend the fourth-corner approach
by integrating phylogenetic and spatial eigenvectors to (i) quantify the trait-environment
relationship, (ii) identify the spatial scales of the trait-mediated environmental filtering, (iii)
identify the phylogenetic signal and degree of conservatism of the trait involved in the
filtering and (iv) identify the associations between spatial and phylogenetic scales to
determine if the environmental variable (partially) structures the phylogenetic signal of the
trait at its spatial scale(s) of action. Statistical performances of our approach were evaluated
in terms of R2, power and type I error rate with traits simulated with increasing phylogenetic
signals and environment variables displaying no spatial structure and a structure at large and
fine spatial scales. The approach successfully detected every spatial and phylogenetic signals
and their associations with good statistical power and type I error rates, thereby promising

favourable insights for future studies on environmental filtering.

Keywords: trait-environment relationships; fourth-corner approach; phylogenetic signal;
spatial signal; Moran’s Eigenvectors Maps; phylogenetic eigenvectors; RLQ; community

ecology; ecological processes; scalogram.
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I. Introduction

Determining the nature of ecological processes and how ecological scales (e.g., spatial;
temporal; organismic such as individual, species, functional group or phylogenetic clade)
influence their strength in structuring composition of species assemblages is a major
challenge in community ecology (Cottenie 2005; Chase and Myers 2011; Er6s et al. 2012;
Chang et al. 2013; Fernandes et al. 2014). It is now well acknowledged that the structure and
composition of communities result from a complex combination of stochastic and
deterministic ecological processes acting hierarchically through ecological scales to constrain
species coexistence (Gotzenberger et al. 2012, Cadotte and Tucker 2017). Among other
processes structuring communities, environmental filtering stipulates that species distributions
result from differences and similarities in species response to local environment (Chase and
Leibold 2003; Leibold and Chase 2017). One of the most intuitive approaches to study
species-environment relationships is to explain taxonomic diversity of communities (i.e.,
abundances or presence-absence) with local environmental conditions. In particular, indirect
and direct gradient analyses (Whittaker 1978; Ter Braak and Prentice 2004) in addition to
species distributions models (Guisan and Zimmermann 2000; Guisan and Thuiller 2005; Elith
and Leathwick 2009 for a review) are widely used methods to study relationships between
local communities taxonomic composition and their environment. Yet, over the few past
decades, it has been well established that environmental filtering is mechanistically driven by
species functional traits discarding all species with unadapted traits combinations (i.e.,
hereafter trait-mediated environmental filtering; Keddy 1992; Weiher et al. 1998; Sommer et
al. 2014). Thereby, studying trait-mediated environmental filtering requires to investigate how
trait-environment relationships drive species distributions. Among others (Dolédec et al.
1996; Legendre et al. 1997; Dray and Legendre 2008; Webb et al. 2010; Jamil et al. 2013;
Brown et al. 2014; Dray et al. 2014), the fourth-corner approach (Legendre et al. 1997; Dray
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and Legendre 2008; Peres-Neto et al. 2016) is widely used to study trait-environment
relationships and calculates a weighted correlation between a single environmental variable
and a single trait both standardised and weighted in regards to species abundances. Taken
separately however, trait and environment present dependencies likely to affect trait-

environment relationships.

Because species are linked through phylogeny, functional traits are expected to present
phylogenetic dependencies with values of conserved traits being more similar for closely
related species than unrelated ones (Harvey and Pagel 1991). Hence, communities driven by
trait-mediated environmental filtering should be characterised by phylogenetic clustering if
traits are conserved along the phylogeny, but evenness if traits are convergent (Webb et al.
2002; Kraft et al. 2007). These phylogenetic structures have been however shown to vary
across phylogenetic scales (Cavender-Bares et al. 2004; Swenson et al. 2006). For example,
Cavender-Bares et al. (2006) showed that environmental filtering led to phylogenetic
clustering at large phylogenetic scale as traits tend to be conserved whereas small
phylogenetic scale displayed phylogenetic evenness due to trait convergence. Environmental
variables, on the other hand, display spatial dependencies, as environmental conditions of
nearby locations are likely to be more similar (positive spatial autocorrelation) or dissimilar
(negative spatial autocorrelation), contributing to structure them through multiple spatial
scales. Due to this multi-scale structure, the strength and relative importance of environmental
effect on community species and functional compositions are likely to vary with spatial scales
(Hortal et al. 2008; Chalmandrier et al. 2017). For instance, environmental filtering was
shown to mostly drive functional diversity of plant communities at large spatial scales
whereas its effect remained slight at small spatial scales where competition predominated
(Chalmandrier et al. 2017). In addition, spatial scales are also known to influence community
phylogenetic structure as, in particular, phylogenetic clustering was observed to increase with
the spatial scale considered (Swenson et al. 2006; Willis et al. 2009). Overall, both
phylogenetic and spatial scales respectively are expected to influence trait-environment

relationships.

Although trait-environment relationships have already been shown to vary through spatial
scales (Brind’Amour et al. 2011; Ernst et al. 2012), they were, to our knowledge, barely

studied through phylogenetic scales nor through the combination of both spatial and
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phylogenetic scales. However, adopting a scaling approach by combining several ecological
scales has been encouraged in the recent years (Swenson et al. 2006; Thuiller et al. 2010;
Miinkemiiller et al. 2014) and has been proven highly relevant especially to distinguish
between environmental filtering and competition (Chalmandrier et al. 2013; Parmentier et al.
2014). Taking into consideration both spatial and phylogenetic scales when studying trait-
mediated environmental filtering could offer important insights by decomposing trait-
environment relationships to (i) follow the evolution of environmental filtering through
spatial scales and identify the environmental variables successively involved, (ii) associate the
change of phylogenetic patterns with the variation of environmental filtering across spatial
scales and (iii) capture the evolutionary history surrounding trait-environment relationships to

replace the effect of the environmental filtering as an ancient or recent ecological process.

Studying trait-environment relationships in explicit spatial and phylogenetic contexts
implies to combine five different information: abundances, traits, environment, phylogeny and
space. Although, integrating these five information to study environmental filtering is not new
(Diniz-Filho et al. 2007; Freckleton and Jetz 2009; Kiihn et al. 2009; Pavoine et al. 2011),
none of them decomposed trait-environment relationships through both spatial and
phylogenetic scales. Among them, the approach of Pavoine et al. (2011) remains the closer to
this objective as they developed a framework notably able to identify both the phylogenetic
lineage and spatial areas of environmental variables involved in the trait-environment
relationships, in addition to the identification of the particular sets of environmental
conditions and species functional traits involved in environmental filtering. In contrast, the
methodologies developed in the rest of the studies were outside the scope of scale
decomposition as they aimed mainly at either studying trait-environment relationships freed
from spatial and phylogenetic effects by removing spatial autocorrelation in environmental
variables and spatially-structured phylogenetic autocorrelation or phylogenetic signal
associated with trait (Kiihn et al. 2009), or distinguish phylogenetic and environmental effects
on trait diversity (Diniz-Filho et al. 2007; Freckleton and Jetz 2009), or traits spatial variation

(Diniz-Filho et al. 2007).

In summary, the novelty of our approach relies on identifying spatial and phylogenetic
scales separately involved in trait-environment relationships, but especially on identifying the

strength of association between the two scales to quantify the influence of environmental
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variables in structuring phylogenetic signal of the trait-environment relationship at its

particular spatial scale(s). This study offers a new framework by extending the fourth-corner

method to integrate explicit spatial and phylogenetic context and decompose the trait-

environment relationship across both spatial and phylogenetic scales. The proposed approach

aims at:

i.

1ii.

iv.

Identifying traits and environmental variables involved in trait-

mediated environmental filtering and quantifying their relationship;

Identifying the spatial scales at which trait-mediated environmental

filtering is acting;

Identifying the phylogenetic signal and degree of conservatism
(through the phylogenetic scales profile) of trait involved in the

filtering;

Identifying the strength of relationship between spatial and
phylogenetic scales of trait-mediated environmental filtering to relate

the species evolutionary history to particular spatial scale(s).

- 49 -



I1. Methodological framework
Multi-scale fourth-corner approach

Decomposition of trait-environment relationship across spatial and phylogenetic scales

In community ecology, the fourth-corner approach (Legendre et al. 1997; Dray and
Legendre 2008; Peres-Neto et al. 2016) is used to identify and quantify trait-environment
relationships. The classical method calculates the correlation between an environmental
vector e (one environmental value per site) and a species trait vector t (one trait value per
species) through a species abundance matrix L (sites-by-species). The correlation is defined

as follows (Peres-Neto et al. 2016):
corp(t,e)=ey P-Ty =Ty P-€y (1)

where P is the matrix of species relative frequencies derived from L as

P=[p,]=[l,/ > I;] with [, the abundance of the j-th species at the i-th site contained

i=1 j=1
in the matrix L, n the total number of sites, and s the total number of species. W, and W,

are the diagonal matrices of sites (rows) and species (columns) weights derived from P as

W,=diag()_ p,,,...>., p,) and W =diag(}. p,,....0,p,) - €, and T, are the
=1 j=1 i=1

i=1
standardised (mean=0 and variance=1) vectors of, respectively, environmental values

weighted by W, and trait values weighted by W, (see Appendix S1 for details).

Integrating spatial and phylogenetic scales in the fourth-corner approach requires to
introduce a matrix of spatial predictors S (sites-by-predictors) and a matrix of phylogenetic
predictors U (species-by-predictors). In this study, Moran’s Eigenvector Maps (MEM; Dray et
al. 2006) were used to compose the spatial matrix S allowing to efficiently model spatial
patterns from large (e.g., north-south gradient) to fine spatial scales (e.g., chessboard
repulsion pattern). Similarly, the phylogenetic matrix U was composed of phylogenetic
Moran’s Eigenvectors (PME; Peres-Neto 2006) which correspond to phylogenetic predictors
allowing to model large (i.e., early divergence event) to fine phylogenetic structures (i.e., late
divergence phenomenon). Note that other constructions of phylogenetic eigenvectors can be

used (Diniz-Filho et al. 1998; Guénard et al. 2013).
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The multi-scale fourth-corner approach begins with the computation of environmental and
phylogenetic vectors expected at each spatial and phylogenetic scales respectively. A
multivariate linear regression of the unstandardised environmental vector e on MEM is thus
performed allowing to entirely decompose e into a sum of predicted environmental vectors

e, at each k spatial scales (Eq. 2; Fig. 1). The same rationale is applied to the
unstandardised trait vector t which is regressed on PME so that it can be decomposed into a
sum of predicted trait vectors t, for each I phylogenetic scales (Eq. 3; Fig. 1). As such, e

and t can be re-written as:

t=2. 1 3)

with e and t respresenting the unstandardised environmental and trait vectors, &, the
predicted environmental vector at the k-th spatial scale obtained from the regression of e on
MEM,, and t, the predicted trait vector at the I-th phylogenetic scale obtained from the

regression of t on PME,. Note that the total number of spatial (k) and phylogenetic () scales
are respectively n-1 and s-1 corresponding to the number of columns of S and U matrices due

to the removal of one eigenvector with a null eigenvalue (see Dray et al. 2006 for details).

The trait-environment correlation ( corp(t,e) ) can then be entirely and additively
decomposed through:

1. Spatial scales by replacing the standardised environmental vector €, with the

standardised predicted environmental vectors weighted by W, (' &, ; Appendix

S1) defined for every spatial scales (Eq. 2) in Eq. 1 (Fig. 1A):

—_
=
|
[u

n—

cory(t,e)= é&,nk«PTwS: Tas«PT-éw“k (4)

2. Phylogenetic scales by substituting the standardised trait vector Tws for the
standardised predicted trait vectors weighted by Wj ( fws ; Appendix S1) defined

for each phylogenetic scale (Eq.3) in Eq. 1 (Fig. 1B):
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cory(t,e)=) €, ‘Pt =) ty P¢, (5)

3. Spatial and phylogenetic scales by respectively replacing the standardised
environmental ( €,, ) and trait ( ?ws ) vectors with the spatially-
predicted environmental vectors ( €, , Eq. 2) and the phylogenetically-
predicted vectors ( fws , Eq. 3) in Eq. 1 (Fig. 1C):

1

AT AT T A
Corp(t:e)z ew“k'P'twslz twsl'P Cw, k (6)
k=1 1=1 I=1 k=1
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These three decompositions result in spectra akin to scalograms (Dray et al. 2012; Fig. 1A-
C) where each MEM and/or PME predictor explains a part of total fourth-corner correlation
statistic corp(t,e) . Note that MEM and PME were grouped to smooth the graphical
representation (Fig. 1A&B). Moreover, instead of directly representing cory(t,e) , results
were presented with a statistic related to R? and normalised to sum to 1 (Fig. 1A-C) to

facilitate the interpretation. For instance, R? for the spatial decomposition was obtained as

follows:
n—1
2 2
Rspatial: Z Rk: 1 (7)
k=1
with
~ A \2
t,
R2= Corp( ek) ®)

k™ n-1 )
Z corp(T,e,)
k=1

where corp(t,e,) is the fourth-corner correlation between the standardised trait vector

t and e, the environmental vector predicted at the scale k.

-52-



Testing the decomposition
The multi-scale fourth-corner approach is a two-steps procedure firstly testing for the
presence of a trait-environment relationship. In case of significant relationship, its spatial and

phylogenetic structures are then tested (Fig. 1).

1. Testing for the presence of a trait-environment relationship (Fig. 1 step 1). The
corresponding null hypothesis HO; states that “there is no trait-environment
relationship given the spatial and phylogenetic structures of the environmental
and trait variables”. Recently, Braga et al. (2018) showed that the spatial and
phylogenetic structures inflated type I error rates when testing for trait-
environment relationship leading to detect significant associations although there
were none. To correct this issue, they developed a fourth-corner approach based on
a spatially- and phylogenetically-constrained null model (i.e., null model
presenting similar spatial and phylogenetic structures than the testing trait and
environmental variables) using Moran Spectral Randomization (Wagner and Dray
2015; see Braga et al. 2018 for the detailed method). We used the framework
developed by Braga et al. (2018) to avoid inflated type I error rates when testing

for trait-environment relationship.

2. Testing spatial and phylogenetic structures of the trait-environment
relationship if significant (Fig. 1 step 2). The null hypothesis HO. states that “the
trait-environment relationship has no spatial and/or phylogenetic structure ”. The
corresponding null model was thus build randomly (i.e., no spatial and/or
phylogenetic structure) while conserving the initial trait-environment link.
Preserving the trait-environment relationship implied to keep the original matrix L
and vectors e and t to calculate the spatial and/or phylogenetic decomposition (Eq.
4, 5 and 6). To break the spatial and phylogenetic structures of e and t respectively
while conserving their link, rows of MEM and PME were randomly permuted
leading to randomly represent space and phylogeny and thus decomposing e and t
on unstructured bases. As such, predicted é and t were not structured and
allowed to conserve the initial trait-environment relationship as they originate

from the initial vectors e and t.
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In practice, the testing procedure for spatial structures alone implied to permute
rows of MEM, then predict e on this new basis ( & ), and finally calculate the
spatial decomposition of the trait-environment relationship (Eq. 4). Repeating
these three steps n times (e.g., n = 999) allowed to build the null distribution of the
spatial decomposition expected under HO,. The same approach was performed to
test for phylogenetic structures: permuting rows PMEs, predicting t on this new
basis ( t ) and phylogenetically decompose the trait-environment relationship
(Eg. 5). Finally, testing for both spatial and phylogenetic structures led to take the

maximum p-value between the tests for spatial and phylogenetic structures alone.

Interpretation of the decomposition

The spatial decomposition of the trait-environment relationship (Eq. 4; Fig. 1A) indicates
the spatial structure of the environmental vector and as such the spatial scale involved in trait-
mediated environmental filtering. The rationale is that MEM represent a gradient of spatial
scales with the first MEM corresponding to the large spatial scales and the last to fine spatial
scales. Similarly, the phylogenetic decomposition (Eq. 5; Fig. 1B) displays the phylogenetic
signal associated to the trait selected by environmental filtering with the first PME
representing large phylogenetic scales (e.g., early niche divergence resulting in clade niche
conservatism) and the last fine phylogenetic scales (e.g., late niche divergence resulting niche
lability). Finally, the decomposition of the fourth-corner correlation through spatial and
phylogenetic scales at the same time (Eq. 6) allows to characterise the strength of association
between the environmental spatial signal and the trait phylogenetic signal to determine if the

environmental variable is responsible for the niche divergence at its particular spatial scale.
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Scaling trait-environment relationship
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Figure 1: Schematic summary of the multi-scale fourth-corner approach. (1) The first step (light grey
square), calculates and test the fourth-corner correlation between the trait vector t and the environmental vector e
through a table of species abundances L to characterize trait-environment relationship. The relationship is tested
with a spatially- and phylogenetically-constrained null model. (2) If significant, the second step (dark grey area)
is to respectively predict t and e across phylogenetic ( t ) and spatial ( & ) scales using multivariate linear
regressions (redundancy analyses; RDA) with a table U of phylogenetic eigenvectors (PMEs) and a matrix S of
spatial eigenvectors (MEM). t and e are then used to decompose the fourth-corner correlation of the
significant trait-environment relationship into (A) spatial scales, (B) phylogenetic scales, (C) spatial and
phylogenetic scales. Each structure is tested under a random null model. (A-C) Results are presented in terms of
R? summing to 1 to facilitate interpretations. MEM and PEM are grouped to smooth the results. Phylogenetic
and spatial signals presented here were simulated with g = 0 and p = 0.8 respectively. (A-B) Phylogenetic and
spatial decomposition are represented by scalograms.
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Simulation study
A simulation study was conducted to assess the statistical performances of the multi-scale
fourth-corner approach through power (i.e., rejection of the null hypothesis when false) and

type I error rates (i.e., rejection of the null hypothesis when true).

Environment
To study the detection sensibility of the multi-scale fourth-corner approach to
environmental spatial structure, the environmental vector e was simulated with (i) no spatial

structure, structured at (ii) fine and (iii) large spatial scales (Fig. 2).

Following the protocol of Dray (2011), a single environmental variable for 225 sites was
generated on a 15 x 15 grid with an autoregressive model of parameter p used to define the
spatial structure and equalled to O for no spatial structure, and -0.8 and 0.8 for a structure at

fine and large spatial scales respectively.

Phylogeny and trait
Similarly to the simulation of the environmental vector e, a trait vector t for 50 species was
generated with four phylogenetic signals: (i) high, (ii) medium, (iii) low and (iv) no

phylogenetic signal (Fig. 3).

The 50 values of t evolved under a Brownian motion along a pure birth stochastic
phylogenetic tree of 50 species. To introduce increasing phylogenetic signal, the phylogenetic
tree was modified through ACDC transformation (Blomberg and Garland 2003) of parameter
g allowing to increase or decrease the evolutionary rate. As such, when g=0 the tree is not
modified and traits evolved under classic Brownian motion (case ii; Appendix S2 Fig.A2B,
Fig. 3B). However, for g<O the length of the branches close to the root are extended
leading to decrease the evolutionary rate through time and thus a phylogenetic signal stronger
than classic Brownian motion (case i; g=—2 ; Appendix S2 Fig. A2A, Fig. 3A). Inversely,
for g>0 the length of the branches close to the tips are extended leading to increase the
evolutionary rate through time resulting in a phylogenetic signal weaker than classic
Brownian motion (case iii; g=2 ; Appendix S2 Fig. A2C, Fig. 3C) or even no phylogenetic
signal (case iv; g=100 ; Appendix S2 Fig. A2D, Fig. 3D).
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Metacommunity
Following the protocol of Peres-Neto et al. (2016), the species abundances [; of the

matrix of communities L (225 sites x 50 species) were drawn from a Poisson distribution of

mean j; defined as the unimodal response for the j-th species in the i-th site:

2

_(ei_t j)
502

J

where e, is the environmental value at the i-th site, ¢; is the trait value of the j-th

. 2
species, S-0;

; the species niche breadth, and 30-h; the abundance of the j-th species at

its optimum ¢; . s was fixed to 1.5, valuesof o and h were randomly drawn from

a uniform distribution ranging from 0 to 1, and 0.3 to 1 respectively.

Statistical analysis

Spatial predictors of matrix S were generated using Moran’s Eigenvector Maps (MEM,;
Dray et al. 2006) of a spatial weighting matrix defined for the 4 closest neighbours (i.e.,
rook’s neighbourhood) and using row standardisation specification. Phylogenetic predictors of

U were produced using phylogenetic Moran’s Eigenvectors (PME; (Peres-Neto 2006) of a

d.
phylogenetic proximities matrix defined as 1——"- with d; the patristic distance (i.e., the

max
inverse sum of branch length) between the i-th and j-th species, and d,, the maximum
patristic distance between two species of the phylogenetic tree. This definition is tightly
linked to Brownian motion model under which proximities between species have been shown

to decrease linearly as a function of the time’s square root (Letten and Cornwell 2015).

Four scenarios were considered in this study to evaluate the performances of the multi-

scale fourth corner approach:

* Scenario A: e=Let : scenario with a trait-environment relationship where the
environmental vector e and the trait vector t were used to (i) generate the abundances

of the community matrix L; and (ii) calculate the multi-scale fourth corner approach

(Eqg. 4, 5 and 6).
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Scenario B: e#L#t : scenario with no trait-environment relationships but with
spatial and phylogenetic signals. Here, the environmental vector e and the trait vector t
were used to (i) generate the abundances of the community matrix L but not to
calculate of the multi-scale fourth corner approach (Eq. 4, 5 and 6) for which they
were replaced by e, and t, simulated with spatial and phylogenetic structures similar to

eand t.

Scenario C: e L<t : scenario with no trait-environment relationships but with
spatial and phylogenetic signals. In this case, the trait vector t was used to (i) generate
the abundances of the community matrix L; and (ii) to calculate of the multi-scale
fourth corner approach (Eq. 4, 5 and 6). But the environmental vector e was solely
used to generate the abundances of the community matrix L but replaced by e;
(simulated with a phylogenetic structure similar to e) to calculate of the multi-scale

fourth corner approach (Eq. 4, 5 and 6).

Scenario D: e= Lt : scenario with no trait-environment relationships but with
spatial and phylogenetic signals. Here, the environmental vector e was used to (i)
generate the abundances of the community matrix L; and (ii) to calculate of the multi-
scale fourth corner approach (Eq. 4, 5 and 6). Bu, the trait vector t was solely used to
generate the abundances of the community matrix L but replaced by t, (simulated with
a phylogenetic structure similar to t) to calculate of the multi-scale fourth corner

approach (Eq. 4, 5 and 6).

Each scenario was simulated 1000 times for each combination of spatial and phylogenetic

structures. The power of detection (i.e., rejecting the null hypothesis when false; Scenario A)

and the type I error rates (rejecting the null hypothesis when true; scenarios B, C and D) of the

multi-scale fourth corner approach were based on 999 randomisations and a significance level

alpha of 0.05 for all tests. Results are presented in a smoothed version where spatial and

phylogenetic scales are respectively represented by 15 groups of MEM and 7 groups of PME.

Finally, note that the first step of the testing procedure was performed bilaterally, as there was

no expectation on the position of the observed value of the trait-environment correlation

compared to the null distribution, but the second was unilateral, as the null hypothesis was

random but trait and environment were both structured.
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All statistical analyses were conducted under R 3.4.4 (R Core Team 2018), in particular
using the functions pbtree (package phytools; Revell 2012) and rescale.phylo (package
geiger; Harmon et al. 2008) to simulate and transform phylogenetic trees. The functions
me.phylo (package adephylo; Jombart et al. 2010) and scores.listw (package adespatial; Dray
et al. 2017) were used to generate PME and MEM respectively. The multi-scale fourth corner
approach (scalo.fourth.corner) is available on adespatial. R scripts to reproduce the

simulations of the present study are available in Appendix S3.

Table 1: Statistical power (Scenario A) and type I error rates (scenarios B, C and D) of the fourth corner
approach using a spatially- and phylogenetically-constrained null model when trait and environment are
simulated unrelated.

Simulation scenarios Trait phylogenetic signal (g) Environmental spatial structure (p)
Large (p = 0.8) Fine (p =-0.8) No structure (p = 0)
Stronger than BM' (g = -2) 1 1 1
Equal to BM' (g = 0) 1 1
Scenario A
Weaker than BM' (g = 2) 1 1 1
No signal (g = 100) 1 1 1
Stronger than BM' (g = -2) 0.006 0.001 0.005
Equal to BM' (g = 0) 0.004 0.009 0.009
Scenario B
Weaker than BM' (g = 2) 0.006 0.009 0.009
No signal (g = 100) 0.012 0.010 0.021
Stronger than BM' (g = -2) 0.048 0.045 0.050
Equal to BM' (g = 0) 0.051 0.049 0.047
Scenario C
Weaker than BM' (g = 2) 0.048 0.042 0.048
No signal (g = 100) 0.051 0.045 0.048
Stronger than BM' (g = -2) 0.044 0.056 0.045
Equal to BM' (g = 0) 0.051 0.055 0.058
Scenario D
Weaker than BM' (g = 2) 0.051 0.044 0.038
No signal (g = 100) 0.052 0.039 0.061

'Brownian Motion
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III. Results

Testing for trait-environment relationship

Regardless of the respective spatial and phylogenetic structures of environmental and
species functional trait vectors, the approach detected significant trait-environment
relationships with an excellent power when e and t were simulated linked (Scenario A; Table
1). Likewise, the approach presented correct type I error rates for scenarios B, C and D where
trait and environment were simulated unrelated (i.e., no trait-environment relationships; Table
1). These results were expected as partially supported by the previous study of Braga et al.
(2018) which developed the spatially- and phylogenetically-constrained null model for the
fourth-corner method. Note, however, that the type I error rate was slightly higher for scenario

D when e and t were not spatially and phylogenetically structured respectively (Table 1).
Testing for spatial and phylogenetic signals of trait-environment relationship

As previously highlighted, spatial and phylogenetic structures of trait-environment
relationship are tested solely if the relationship is significant (Scenario A). As spatial signals
were similar regardless of the strength of the species functional trait phylogenetic signal used
to perform the multi-scale fourth-corner, results on environmental spatial structures were
presented for g=—2 (see Appendix S4 for spatial profiles under other g wvalues).
Likewise, results on trait phylogenetic signals were presented for p=0.8 (see Appendix S5

for phylogenetic profiles under other p values).

The multi-scale fourth-corner approach detected with a high statistical power the spatial
structures of the environmental variable involved in the trait-environment relationship (Fig.
2A and B; Appendix S4 Fig. A4.1A and B, Fig. A4.2A and B, Fig. A4.3A and B). Indeed,
when the environmental vector was simulated at large spatial scale, the approach identified
the two first blocks of grouped MEM characterising the large spatial scales as highly
significant over the 1000 simulations (Fig. 2A; Appendix S4 Fig. A4.1A, Fig. A4.2A , Fig.
A4.3A). Inversely, the last block of MEM corresponding to fine spatial scales was detected as
highly significant when the environmental variable involved in the filtering was simulated at
fine spatial scales (Fig. 2B; Appendix S4 Fig. A4.1B, Fig. A4.2B , Fig. A4.3B). Finally, when

the environmental vector was not spatially structured, our framework did not detect
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significant spatial pattern with a correct type I error rate (Fig. 2C; Appendix S4Fig.A4.1C,
Fig.A4.2C, Fig.A4.3C).

2
R spatial

Figure 2: Spatial decomposition of
trait-environment relationship
(Scenario A). (A-B) R? estimations
and associated power of the spatial
signal of the environmental variable
involved in trait-environment
relationship when displaying spatial
structures at (A) large spatial (p = 0.8)
and (B) fine spatial scales (p = -0.8).
(C) R? estimations and associated type
I error rates of spatial signal when the
environmental variable involved in the
filtering is not spatially-structured (p =
0). (A-B) The grid of coloured squares
represents the mean spatial structure of
their corresponding MEM blocks. The
color of the squares is proportional to
the mean MEM values and is defined
by a gradient going from white (high
negative values) to black (high positive
06 values). (A-C) Spatial structures are all
presented for trait-environment
044 relationships whose trait has a
phylogenetic signal stronger than
Brownian motion (g = -2). Scalograms
represent the mean spatial signal over
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Similarly, the multi-scale fourth-corner approach successfully detected the decreasing
phylogenetic signal of trait-environment relationship with a good power and type I error rates
(Fig. 3; Appendix S5 Fig. 5A.1 and Fig. 5A.2). Note that this decrease resulted in both a
decrease in R? values of the first block of PME and its associated statistical power (Fig. 3A,
B, C; Appendix S5 Fig. 5A.1 and Fig. 5A.2). Also, it has however to be noticed that a slight
phylogenetic signal was detected when species functional trait evolved along a star-like
phylogenetic tree although it was supposed to result in no phylogenetic structure among trait
values (first block of PME with significant higher R?; Fig. 3D; Appendix S5 Fig. A5.1 and
Fig. A5.2).

Once both spatial and phylogenetic signals of, respectively, environmental and trait
variables are identified, it is interesting to investigate the relationships between these two
types of scales to assess if the phylogenetic structure related to the trait-mediated
environmental filtering corresponds to the spatial scale of filtering. When environment and
functional trait were respectively spatially and phylogenetically structured, our approach
succeeded in detecteing a significant association between every pair of spatial and
phylogenetic scales implied in the trait-environment relationship with a good power (Fig. 4;
Appendix S6 Fig. A6.1 and Fig. A6.2). Note that, as observed above, the R? between both
types of scales and the statistical power decreased with the strength the phylogenetic signal
(Fig. 4A and B; Appendix S6 Fig. A6.1A-C and A-G and Fig. A6.2A-C and E-G). If no spatial
and/or phylogenetic structure was present in the environmental and/or trait vector, the
approach presented smaller R? than if both were structured and did not detect them as
significant with correct type I error rates (Fig. 4C and D; Appendix S6 Fig. A6.3A-H). Note
however that, due to the remaining phylogenetic signal observed above when trait evolved
along a star-like phylogenetic tree, type I error rate can be slightly inflated when environment

is spatially structured (Appendix S6 Fig. A6.1H, Fig. A6.2H).
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Figure 3: Phylogenetic decomposi-
tion of trait-environment relation-
ship (Scemario A). (A-B) R?
estimations and associated power of
the trait phylogenetic signal when
evolving along a phylogenetic tree
modified by ACDC transformation to
characterize a phylogenetic structure
(A) stronger than Brownian motion
(BM; g = -2), (B) equal to BM (g = 0)
and (C) weaker than BM (g = 2). (D)
R? estimations and associated type I
error rates of phylogenetic signal when
the trait evolved along a phylogenetic
tree transformed by ACDC to define no
phylogenetic structure (g = 100). (A-
D) A phylogenetic tree corresponding
to each ACDC transformation is
represented next to its corresponding
phylogenetic  profile. ~The mean
phylogenetic structure of the trait
values corresponding to significant
phylogenetic scales is represented on
the tips of phylogenetic trees by
coloured rectangles. The colours are
proportional to the mean PME values
and are characterised by a gradient
going from white (high negative
values) to black (high positive values).
(A-D) Phylogenetic signals are all
presented for trait-environment
relationships whose environment has a
spatial structure at large spatial scale (p
= 0.8). Scalograms represent the mean
phylogenetic signal over the 1000
simulations. Vertical black bars are the
standard deviations. PME are grouped
in 7 blocks of eigenvectors to smooth
the phylogenetic signal.



IV. Discussion

The goal of this study was to extend the fourth-corner approach to investigate the spatial
and phylogenetic scales of the trait-mediated environmental filtering. Firstly, the multi-scale
fourth-corner approach tested for classical trait-environment relationship to quantify the
association and identify traits and environmental variables involved in environmental
filtering. The approach detected trait-environment relationships with a high statistical power
when present and showed correct type I error rates when there was no link between the
species functional trait and the environmental variable, hence supporting the results
previously found by Braga et al. (2018). Scenario D presented however a type I error rate
slightly higher when both the environmental variable and functional trait were not structured.
This result is still not fully apprehended especially as every other type I error rates are correct,

therefore further works are required to investigate this point.

If significant, the trait-environment relationship was then decomposed through spatial and
phylogenetic scales. The multi-scale fourth-corner method succeeded in detecting with a high
statistical power the spatial scales at which the environmental variable involved in the trait-
environment relationship was simulated. Likewise, when the environmental vector was not
spatially structured, the approach identified no spatial signal with correct type I error rates.
Phylogenetic scales of the trait involved in trait-environment relationship were successfully
detected by our framework. Both R? and the statistical power expectedly decreased with the
strength of the phylogenetic signal as it became more difficult to detect. Note however that a
slight significant phylogenetic signal was identified when functional trait was supposed to be
simulated with no phylogenetic structure (i.e., along a star-like phylogenetic tree). Worth
mentioning that our results showed a strong large-scaled phylogenetic signal of trait evolving
under pure Brownian motion model (BM; ¢g=0 ) confirming the conservative pattern of
BM commonly admitted (Diniz-Filho and Sant’ Ana 2000; Diniz-Filho et al. 2007; Letten and
Cornwell 2015) and supporting the fact that phylogenetic niche conservatism can be produced

by BM solely (Wiens 2008; Wiens et al. 2010).
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The main novelty of our approach is to relate the spatial and phylogenetic scales of trait-
environment relationship to associate phylogenetic structure to particular spatial scales. Our
framework succeeded in detecting the associations of phylogenetic and spatial scales involved
in trait-environment relationship with a good statistical power. Ultimately, if the functional

trait and environmental variable involved in the trait-environment relationship are
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Figure 4: Decomposition of trait-environment relationship trough both spatial and phylogenetic scales
(Scenario A). (A-B) R? estimations of trait-environment relationship when decomposed through both spatial and
phylogenetic scales for an environmental variable structured at large spatial scale (p = 0.8) and a trait displaying
(A) a phylogenetic signal stronger than Brownian motion (g = -2) and (B) no phylogenetic signal (g = 0). (C-D)
Power and type I error rates associated with the R? of the decomposition when environmental variable is
structured at large spatial scale (p = 0.8) and the trait presents (C) a phylogenetic signal stronger than Brownian
motion (g = -2) and (D) no phylogenetic signal (g = 0). (A-D) The color gradient is proportional to the values of
R2, statistical power and type I error rates going from white (values near 0) to black (values close to 1). Results
are averaged over the 1000 simulations, standard deviations are reported in Appendix S7 Table A7.1.
Scalograms represent the phylogenetic and spatial signals alone as reported in Fig. 2 and 3 to facilitate the
interpretation of the maps. The stars indicate the significant phylogenetic and spatial scales.
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respectively phylogenetically and spatially structured, the approach allows to establish if the
phylogenetic signal of the trait corresponds to the spatial scale of the environmental variable
meaning that this variable (partially) structures the phylogenetic signal of the trait at this
particular spatial scale. For instance, a trait structured at large phylogenetic scale related to a
large spatial scaled environmental variable (Fig. 4A and C) could support allopatric or
parapatric speciation of ancient lineages in response to a large-scaled environmental
constraint. At the opposite, a large-scaled trait phylogenetic structure associated with a fine-
scaled spatial structure of environment would support an ancient niche divergence related to
micro-habitat (e.g., edaphic variables) presenting few temporal variations. Then, if the trait
presents a phylogenetic signal but the environmental variable is not spatially structured, one
can conclude that the phylogenetic signal either (i) results from other processes than trait-
mediated environmental filtering or (ii) is structured by another unmeasured environmental
variable. Inversely, if the trait displays no phylogenetic signal and the environmental variable
spatially structured (Fig. 4B and D), the reasonable conclusion is that environmental filtering

does not phylogenetically structure the functional trait.

Interpreting phylogenetic signals of the trait involved in the trait-environmental
relationship in terms of evolutionary processes is however partially limited. Our approach is
more descriptive than explicative, allowing to identify the level of phylogenetic conservatism
presented by the species functional trait. The rationale is that the PME significantly detected
by our framework indicates from where the species functional trait has been conserved along
the phylogeny (i.e., qualitative information on trait conservatism level characterised as ancient
or recent by identifying the phylogenetic lineages). Then, the R? value of PME determines
how strong is trait conservation along the phylogeny. In other words, if the firsts PME are
significantly detected with high R? values, the species functional trait has been strongly
conserved (i.e., small evolutionary rate) from ancient lineages along the phylogeny. On the
contrary, firsts significant PME with weak R? values indicate that even if the trait has been
conserved from ancient lineages, the evolutionary rate increased along the phylogeny as
species tended to diverge with time. Detection of medium and last PME respectively suggest
that trait is conserved from lineages originated in the middle and at the end of the
phylogenetic tree. As such, medium and last PME could be interpreted as phylogenetic signal
for increasing divergence in species functional trait values along the phylogeny. To go further,

we believe that the integration of phylogenetically-constrained null models (Cavender-Bares
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et al. 2004; Kembel and Hubbell 2006; Helmus et al. 2007; Hardy 2008) in our framework
would bring important insights to identify the evolutionary processes of species functional
trait values along the phylogeny. In particular, if the trait phylogenetic signal is known to be
partially structured by other processes (e.g., historical biogeography; Leibold et al. 2010),
defining a null model conserving this structure could allow to establish if the phylogenetic
signal induced by environmental filtering is significantly stronger and, as such, is
predominantly responsible for the phylogenetic structure. Moreover, given that most of
phylogenetic comparative methods traditionally use BM as null model to study phylogenetic
signal (Joseph Felsenstein 1985; Diaz-Uriarte and Garland 1996; Pagel 1999; Blomberg and
Garland 2003), introducing a null model defined under particular trait evolution model such
as BM or Ornstein-Uhlenbeck could help to better characterise the trait phylogenetic signal
dispensed by trait-environment relationship. However, such developments require to
overcome one major methodological challenge. As previously exposed in the Methodological
framework, null models testing for spatial and phylogenetic structures must conserve trait-
environment relationship. Therefore, phylogenetically-constrained null models have to be

defined carefully and future works need to address this issue more specifically.

Our framework can also be used with other statistics than R? decomposition in spatial and
phylogenetic scales. One can indeed be interesting in the decomposition of environmental and
trait values variance across spatial and phylogenetic scales. Then, instead of decomposing
trait and environmental variable involved in the trait-environment relationship in phylogenetic
and spatial bases respectively, the environmental variable and species trait could be
respectively decomposed through PME to identify the phylogenetic scale(s) mostly influenced
by environmental conditions and MEM to characterise distribution of species traits in space.
Another way of studying environmental filtering is to investigate trait-environment
relationship after removing its spatial and phylogenetic structure (Kiihn et al. 2009). Our
framework allows to go further by characterising the link of trait that are not phylogenetically
structured with spatially-structured environment (and inversely). In such case, the multi-scale
fourth corner approach can notably be applied on (i) normalised residuals of a phylogenetic
generalised least square model (Duarte et al. 2018) or (ii) raw residuals of a phylogenetic
eigenvector regression performed on the species functional trait (Diniz-Filho et al. 2011).
Finally, our approach was solely developed in the univariate context. As such, in the case of

multiple traits and environmental variables available, two possibilities in particular can be
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considered: (i) performing a RLQ and applying our approach on RLQ axes, and (ii)
performing the multi-scale fourth corner for each combination of trait and environmental

variable and corrected for multiple tests.

In conclusion, this study offers a new methodological framework to decompose trait-
mediated environmental filtering through phylogenetic and spatial scales allowing to
characterise phylogenetic and spatial signal of the trait and environmental variable involved in
the trait-environment relationship. The major insight of this approach is the ability to
determine if the environmental variable influences the species trait phylogenetic signal by
establishing a link between phylogenetic and spatial scales. In conclusion, this new
framework is promising and offers multiple extension possibilities, notably including
constrained null models, to bring valuable insights in ecological and conservation studies

concerning the role of environmental filtering.
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Abstract

1. Mantel tests are widely used in ecology to assess the significance of the relationship
between two distance matrices computed between pairs of samples. However recent studies
demonstrated that the presence of spatial autocorrelation in both distance matrices induced
inflations of parameter estimates and type I error rates. These results also hold for partial

Mantel test which is supposed to control for the spatial structures.

2. To address the issue of spatial autocorrelation in testing the Mantel statistic, we developed
a new procedure based on spatially-constrained randomisations using Moran Spectral
Randomization. A simulation study was conducted to assess the performance of this new
procedure. Different scenarios were considered by manipulating the number of variables, the
number of samples, the regularity of the sampling design and the level of spatial

autocorrelation.

3. As identified by previous studies, we found that Mantel statistic and its associated type I
error rate are inflated in simple and partial Mantel tests when both distance matrices are
spatially structured. We showed that these biases increased with the number of variables,
decreased with the number of samples, and were slightly lower for regular than irregular
sampling. The new procedure succeeded in correcting the spurious inflations of the

parameter estimates and type I error rates in any of the presented scenarios.

4. Our results suggest that studies from several fields (e.g., genetic or community ecology)
could have been overestimating the relationship between two distance matrices when both
presented spatial autocorrelation. We proposed an alternative solution applicable in every

field to correctly compute Mantel statistic with a fair type I error rate.

Keywords: Mantel test, distance decay relationships, Moran Spectral Randomization, spatial
autocorrelation, type I error inflation, spatially-constrained null model, principal coordinates

analysis, community ecology, population genetics.
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I. Introduction

The Mantel test is a well-known statistical procedure pertaining to the distance decay
relationships framework (Nekola and White 1999) which assesses the correlation between two
distance matrices computed between pairs of samples and evaluates its significance using
random permutations (Mantel 1967). Although criticised in the literature concerning its
assumption of a linear relationship between the two distance matrices, the formulation of its
null hypothesis and the interpretation of its statistic which are not as trivial as with raw data
(Legendre et al. 2015), this test is still widely used by ecologists from different fields. For
instance, in community ecology, Mantel test is often used to disentangle the roles of habitat
selection and dispersal processes on community and metacommunity organisation (Jones et
al. 2006, Moritz et al. 2013, dos Santos et al. 2015). In molecular ecology, Mantel test is
routinely used to test the link between two matrices of phenotypic (resp. genetic) distances
measured on individuals or populations (Storfer et al. 2010, Shafer and Wolf 2013,
Richardson et al. 2016).

When distance matrices are computed on samples located in space, a major problem lies in
the possible presence of spatial autocorrelation (Legendre and Fortin 2010, Meirmans 2012).
Spatial autocorrelation is a well-known problem in statistical ecology (Sokal and Oden 1978)
as it violates the assumption of data independence required in many statistical methods
(Diniz-Filho et al. 2003, Legendre and Legendre 2012). As such, it induces an inflation of
type I error rate, i.e. rejecting the null hypothesis too often (Cliff and Ord 1981). Mantel tests
have been shown to be strongly affected by spatial autocorrelation when present in both

distance matrices (Oden and Sokal 1992, Guillot and Rousset 2013, Legendre et al. 2015). As
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such, the partial Mantel test was developed (Smouse et al. 1986) to control for spatial

structures when testing the link between the two distance matrices of interest.

However, through a deep investigation of simple and partial Mantel tests, Guillot and
Rousset (2013) showed that partial Mantel test was unable to correct for the effect of spatial
autocorrelation and that both tests presented inflated type I error rates. The problem lies in the
random permutation procedure which breaks the potential dependencies between distance
matrices (as expected by the null hypothesis) but also their inherent autocorrelation structures
(Guillot and Rousset 2013). To solve this issue, Guillot and Rousset (2013) mentioned
different alternatives including shift permutations (Upton and Fingleton 1985). This type of
permutation allows randomising the data to break the link between the two distance matrices,
while preserving their individual spatial structures so that they are taken into account in the
testing procedure. Nevertheless, shift permutations can only be applied when samples
originate from a regular grid, whereas many empirical studies implement irregular samplings
for practical reasons. Following this idea, we propose here another strategy using Moran
Spectral Randomization (MSR, Wagner and Dray 2015). This spatially-constrained
randomisation procedure initially developed in the simple case of bivariate correlation, allows
generating random replicates that preserve the original spatial structures of the data while
breaking their correlations. Contrary to shift permutations, this procedure can be applied to

regular or irregular samplings.

In this paper, we first performed a simulation study to illustrate how simple and partial
Mantel tests can be affected by spatial autocorrelation. Second, we proposed and evaluated a
new approach based on MSR to improve the testing and computing of the Mantel statistic in

the presence of spatial autocorrelation.
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I1I. Materials and Methods
Simple and partial Mantel tests

The Mantel test considers two n-by-n symmetric matrices Dx and Dy containing pairwise
distances among n samples. If original data consist in raw data stored in tables X and Y (i.e.,
samples by variables), they should be transformed in distance matrices Dx and Dy prior to the

computation of the Mantel statistic.

The observed Mantel statistic ( r,,_,,, ) is defined as the sum of cross products between

both distance matrices Dx and Dy:

n—1 n
erobs:Z Z Dy Dy, (1)

i=1 j=i+1

Partial Mantel test, introduced by Smouse et al. (1986), is widely used in ecology to
control for spatial autocorrelation present in the data. The test considers Dx, Dy, and an
additional distance matrix Dz which can be derived from a raw data table Z. To control for
spatial structure, Z generally contains geographical coordinates so that Dz represents the
geographical distances between samples. Partial Mantel test is based on the correlation

coefficient between Dx and Dy while controlling for the effect of the third matrix D.

The significance of simple and partial Mantel tests is assessed with a permutation
procedure. The two matrices (Dx and Dy, or equivalently X and Y if Dx and Dy are obtained
from raw data) are permuted independently (i.e., rows and columns are permuted in the same
manner for distance matrices; only rows for raw data) and the Mantel statistic is recomputed.
This permutation procedure is repeated ng,, times (e.g., Ngpp=999 ) to obtain the
distribution of the Mantel statistic under the null hypothesis. Note that permuting both
matrices is not required as this distribution can be obtained by permuting only one matrix (Dx
or Dy). The observed value of the statistic r,, ., is then compared to this distribution to
assess its significance. The null hypothesis Hy associated to this testing procedure states that
“the distances in Dx are not linearly related to the corresponding distances in Dy” (Legendre

et al. 2015).
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Overcoming the spatial autocorrelation problem with an alternative randomisation

procedure

As used in Mantel tests, classical permutation procedures assume implicitly that samples
are exchangeable. The presence of spatial autocorrelation induces a kind of pseudo-replication
(Hurlbert 1984) leading to a violation of the exchangeability assumption hence an inflation of
type I error rates and imprecise parameter estimates. To address the issue of spatial
autocorrelation in testing the Mantel statistic, we used the Moran Spectral Randomization
(Wagner and Dray 2015) instead of standard permutation procedure. The MSR aims at
producing random replicates which preserves the spatial structures of the original variables so

that spatial autocorrelation is taken into account in the testing procedure.

Moran Spectral Randomization starts by defining a n-by-n spatial weighting matrix W.
This matrix is a mathematical representation of the geographical layout of the region under
study. The spatial weights reflect a priori the absence (w; = 0), presence or intensity (w; > 0)
of the spatial relationships between the samples i and j. The doubly-centered matrix W is
diagonalised and we define A = diag(A;, ..., As.1) the diagonal matrix of eigenvalues and V the
n-by-(n-1) matrix with associated eigenvectors v;, ...v,; stored as columns. These
eigenvectors, named Moran’s Eigenvector Maps (MEM) by Dray et al. (2006), are orthogonal
and maximise spatial autocorrelation measured by the Moran’s index of spatial
autocorrelation. If we consider a centred variable x, the Moran’s index of autocorrelation is

equal to (Dray 2011):
n—1
I(x)=2 Acor’(v,x) (2)
i=1
with
n—1
> cor’(v,,x)=1 (3)
i=1
The variable x can thus be entirely decomposed on the orthogonal basis of MEM as follows:
n—1
x=Y_ v,cor(v,,x) (4)
i=1

This decomposition allows to define a scalogram (Dray et al. 2012), depicting the multi-scale

structure of x, where each MEM explains a proportion of the variance of x equal to
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cor’(v;,x) . In its strictest version, the MSR algorithm aims to find a set of coefficients

n—1

a,...,d,_; to define a new variable XMSR:Z a;v, with the following additional

constraints:

i=1

I(X):I(XMSR)EAI'G? ©))
a;=cor’(v;,x) (6)
S @=1 )

i=1

This ensures that the new variable Xx,,, (MSR replicate) has the same global level of spatial

autocorrelation and multi-scale structure than the original variable x. More details can be

found in Wagner and Dray (2015), especially concerning the case of multivariate data.

Applying the MSR procedure to test the Mantel statistic

We considered two cases: (i) if data from Dx originates from a raw data table X or (ii) if

data have been obtained directly as distances in Dx. The complete procedure consists in:

1. Compute the observed Mantel statistic r,,_.,, between Dx and Dy;

2. Build a MSR replicate Dx.usr 0f the original distance matrix Dx:

L.

il.

if data from Dx originate from a raw data table X, MSR is applied on X to
produce a random replicate Xwmsr. Then, Xwmsr is transformed in Dx.msr using

the same computation of distances applied to obtain Dx from X.

if data have been obtained directly as distances in Dx, a principal coordinates
analysis (PCO; Torgerson 1958, Gower 1966) is applied on Dx. MSR is then
performed on the complete set of principal coordinates to produce a random

replicate Xmsr. Euclidean distances are computed from Xwsr to obtain Dx-msr.

3. Compute the Mantel statistic r,,_,z between Dx.msr and Dy.
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4. Repeat n,,, times the steps 2 and 3 (e.g., n,,z=999 ). The p-value of the test is

then simply the number of r,, . thatare higher or equal to the observed value

( T'y_ops Plusone) divided by ( n,g+1 ) in the case of an upper-tailed test.

The value of the observed Mantel statistic can eventually be corrected, to take into account

the spurious correlation due to spatial autocorrelation, as follows:

rj\/I—MSR:rM—obs_E(rM—MSR) (8)

Where E(ry_us) is the average of the r,,_,.. values and corresponds to the expected
value of the Mantel statistic under the null hypothesis Hy.usr stating that “considering the
levels of spatial autocorrelation in original data, the distances in Dx are not linearly related
to the corresponding distances in Dy”. As such, the MSR procedure allows using a new null
hypothesis compared to the Mantel test to take into account spatial autocorrelation by
randomising the original data while preserving their spatial structures. The method is

schematically represented in Figure 1 and denoted MSR-Mantel in the rest of the paper.

Simulations

To assess the performance of the MSR-Mantel approach to correct for the spurious
correlation found in simple and partial Mantel tests, we conducted a simulation study. To
evaluate type I error rates and values of the statistics under the null hypothesis, two tables X
and Y with identical dimensions were independently generated by randomly drawing values
from a normal distribution. We considered the measurement of 5 variables for 225 randomly
located samples (i.e., irregular sampling design; geographic coordinates are drawn from two
independent uniform distributions). Following Dray (2011), variables in X and Y were
generated spatially autocorrelated using a univariate simultaneous autoregressive model with
increasing levels of autocorrelation (autoregressive parameter p varying from 0 to 0.8) and a

row-standardised spatial weighting matrix defined by a Gabriel graph (Wga).

We assessed the effect of (i) the level of spatial autocorrelation (p = {0, 0.2, 0.4, 0.6, 0.8})

for 5 variables and 225 samples, (ii) the number of variables by considering 1, 5 and 10

-77 -



variables for 225 samples in both X and Y with p = 0.8; (iii) the number of samples by
generating 100, 225 and 400 samples for 5 variables with p = 0.8; (iv) the sampling design

with 225 samples located on a square grid with rook specification (i.e., regular sampling).

To evaluate power, X was simulated with the same protocol as above with 5 variables, 225
irregular samples and p = 0.8. However, Y was generated as linearly correlated to X with the

following formula:
Y=aX+(1-a)N 9)

where a is a real number controlling for the strength of the link between X and Y, and N is a
table of non-spatially structured random noise obtained by permuting the rows of X (this
allows to ensure that both X and N have the same level of variance). We tested for the

strength of the relationship between X and Y by varying values of a from 0.1 to 0.5.

To describe space (table Z) in the partial Mantel tests, we used the geographic coordinates
of the sites. Distances matrices were obtained by computing Euclidean distances from tables
X, Y and Z. In these simulations, the MSR procedure was performed using W, i.e. the
spatial weighting matrix also used to generate the data. We performed 1000 simulations for

each scenario.

In the case of real data sets, an important step of the MSR procedure lies in the definition
of the spatial weighting matrix W. Hence, in a second simulation study, we evaluated the
procedure of Bauman et al. (2018) recently developed to select a spatial weighting matrix W
among a set of potential candidates. In the case of MSR, this procedure consists in three main

steps (see Bauman et al. 2018 for further details):

1. Perform two multivariate linear regressions of X on Moran’s Eigenvectors Maps
associated to positive and negative eigenvalues, respectively, for each W candidate.
Therefore, each W candidate is characterised by two adjusted R? with their

corresponding p-value (corrected for multiple tests).

2. Add the significant adjusted R* for each W candidate which is then characterised by a

sum of adjusted R?.

3. Select the W matrix with the highest sum of adjusted R*.
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In this study, we first reported the effects of a misspecification of W on MSR performance
over 1000 simulations. We generated X with the spatial weighting matrix Wg,, but performed
MSR-Mantel with a different spatial weighting matrix W defined as a distance-based graph.
In such representation, two samples are connected solely if their geographic distance is
inferior to a certain threshold, defined here as the maximum branch length of the minimum
spanning tree connecting all samples (i.e., the most parsimonious path connecting all samples,
see (Legendre and Legendre 2012) for details in neighbor graph definitions). Second, we
evaluated the ability of the selection procedure proposed by Bauman et al. (2018 in the
context of MSR-Mantel. For this, X was simulated 1000 times using five different spatial
weighting matrices (200 tables X generated for each definition, see Legendre and Legendre
2012): (i) Waab, (ii) Wais ,(iii) Wi obtained from a minimum spanning tree, (iv) Wae defined
with a Delaunay triangulation and (v) W, obtained from a relative neighbourhood graph. We
applied the selection procedure considering all the five spatial weighting matrices as
candidates and evaluate type I error rates of the MSR-Mantel conducted using the selected
spatial weighting matrix. The study on misspecification and selection procedure considered X
and Y generated as previously with an autoregressive model of parameter p = 0.8 and with 5

variables and 225 irregular samples.

Statistical analysis

For each pair of distance matrices, we applied simple and partial Mantel tests, and the
MSR-Mantel procedure. Using the 1000 simulations, we computed type I error rates
corresponding to the proportion of significant relationships identified when X and Y are not
linked (i.e., false positives). In the cases where X and Y are linearly correlated, the proportion
of significant relationships represents the power of the test. We used 999 permutations for the
simple and partial Mantel tests, and 99 replicates for the MSR procedure to reduce the
computation time. Statistical tests and simulations were computed with R software 3.3.2 (R
Core Team 2016). Simple and partial Mantel tests were respectively computed with ade4
(Dray and Dufour 2007) and vegan (Oksanen et al. 2017) packages. MSR procedure was
performed using adespatial package (Dray et al. 2017). Examples showing how to reproduce

the analysis and the selection procedure in R are provided in Appendix 5.
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Figure 1: Schematic representation of the MSR-Mantel procedure using Moran Spectral
Randomization as a spatially-constrained null model. (1) Distance matrices Dx and Dy are respectively
computed from matrices X and Y (case with raw data). The statistic r,,_,,, is computed between distance
matrices Dx and Dy. (2) If distance matrix Dx originates from raw data matrix X, n,, replicates Xwmsr
preserving spatial autocorrelation of table X are generated with MSR. (2”) If Dx does not originate from raw
data, a principal coordinates analysis (PCO) is conducted on Dx and the replicates Xwusr are generated by
applying MSR on the complete set of principal coordinates. (3) Distance matrices Dx.msr are then computed
from the n,; Xwsr replicates. (4) n, Mantel statistics are then computed between Dy and Dx-msr t0
produce r, ., - The expected value E(r, ,.) is an estimate of the bias due to spatial
autocorrelation (i.e., expected under Hy.usr). (5) The effect of spatial autocorrelation is removed from r M-
obs to obtain the unbiased statistic ;5
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ITI. Results
When Dx and Dy were not correlated (i.e., X and Y independently generated), r,, .

was expected to be 0. Simple Mantel test performed well when there was no spatial
autocorrelation (the r,,_ . are centred on 0 and type I error rate close to 0.05 for p = 0;
Figure 2a). On the contrary, type I error rates and r,,_,., Wwere increasingly inflated with
higher levels of spatial autocorrelation (Figure 2a) and this bias increased with the number of
variables (Figure 3a) but decreased with the number of samples (Appendix 1a). Note also that
the variance of r,_,, on 1000 simulations increased with the level of spatial
autocorrelation (Figure 2a). Likewise, type I error rates and r,_,. presented similar
inflations for a regular sampling design (Appendix 2a, 3a, 4a). Worth noting that in the case of
regular sampling grids r,,_,, Wwas not overestimated and type I error rate presented no

inflation for the lowest levels of spatial autocorrelation (Appendix 2a).

As observed in other studies, partial Mantel tests did not control for the spatial
autocorrelation effect: the r,, . statistic remained overestimated and, although improved,
type I error rates were still inflated (Figure 2b). As previously observed for the simple Mantel
tests, the number of variables increased r,, . and type I error rates (Figure 3b), and
inversely for the number of samples (Appendix 1b). However, worth noting that in the case of
regular sampling grids, even if r,,_,. was still overestimated, type I error rates presented

lower inflations (Appendix 2b, 3b, 4b).

The use of the MSR-Mantel fully controlled for inflations due to spatial autocorrelations so
that estimates and type I error rates behave as expected ( r, s and type I error rates

respectively centred on 0 and 0.05; Figure 2c). Similarly, the procedure succeeded for the
various situations considered: increasing number of variables (Figure 3c), increasing number
of samples (Appendix 1c) and for regular sampling (Appendix 2c). Moreover, even when
conducted on the principal coordinates of Dx and not on raw data, the use of MSR procedure
successfully controlled for spatial autocorrelation biases (Figure 2d). Note however that our
approach did not correct the increase of the variance for high level of spatial autocorrelation

(Figure 2c, Appendix 2c).
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Figure 2: Type I error rates and values of Mantel statistic for simple and partial Mantel
tests and MSR-Mantel for irregular sampling. (a-b) Observed Mantel statistic (7, _,,, )
and type I error rates for (a) simple, and (b) partial Mantel test. (c-d) Corrected Mantel
statistic ( r, ,,. ) and type I error rates of MSR-Mantel on (c) raw table X, or (d) the

principal coordinates obtained from a PCO on Dx. X and Y contain 5 variables and 225
samples. Both tables present spatial autocorrelation varying from p = 0top = 0.8. T _o,s

and r,_,. are reported with boxes representing the 25, 50 and 75 quartiles, the whiskers
are minimum and maximum values. Red lines corresponds to r,,=0

When Dx and Dy were linearly correlated, the performances of the Mantel tests (simple,
partial) and MSR-Mantel were very similar and their power increased with the strength of the
correlation between the two matrices (Figure 4). These similarities showed that MSR-Mantel
did not affect the ability to detect a link between Dx and Dy when present. However, as simple
and partial Mantel tests had inflated type I error rates (Figure 2a, b), they should not be used

and their power was only given for comparison purposes.
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Performing MSR-Mantel with a misspecified spatial weighting matrix (Wgs instead of
W) led to an inflated type I error rate (0.115 over 1000 simulations). When the selection
procedure developed by Bauman et al. (2018) is applied prior to MSR-Mantel, the type I error

rate drops down to 0.049.
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IV. Discussion
In this study, we developed a new procedure based on MSR (Wagner and Dray 2015) to
overcome the biases when testing the Mantel statistic when distance matrices Dx and Dy

present independent spatial autocorrelations.

As shown previously (Guillot and Rousset 2013), we found that simple Mantel tests
performed well in the absence of spatial autocorrelation but that the statistic and associated
type I error rates were spuriously inflated as soon as spatial autocorrelation was introduced.
Moreover, these inflations increased with the number of variables. This trend was expected as
a higher number of independent spatially structured variables in both distance matrices leads
to a higher diversity of spatial patterns and thus higher chances to obtain spurious correlations
between Dx and Dy. On the contrary, increasing the number of samples reduce the effects of
spatial autocorrelation, as such decreasing the detection of spurious correlations. Likewise,
partial Mantel tests presented similar inflations of type I error rates and estimations with the
same trends relative to the number of variables and samples. However, partial Mantel test
biases were lower than for simple Mantel test due to the used of the geographic distance
matrix Dz to consider space. Worth noting that for high spatial autocorrelation (p = 0.8), the
regular sampling offered a better Type I error even in the case of high number of variables and
low number of samples. To sum up, as reported by Guillot and Rousset (2013), we confirmed
that partial Mantel tests failed to adequately correct for the effect of spatial autocorrelation

observed in Mantel tests.

In contrast, our approach based on MSR procedure provided acceptable levels for type I
error rates when distance matrices were independently generated but both spatially
autocorrelated. On the other hand, when distance matrices were linearly correlated and
spatially structured, our procedure detected the relationship with a high statistical power. This
demonstrates the efficiency of our procedure to correct for the spurious correlation induced by
spatial autocorrelation, while conserving the ability to detect correlations when present. In
addition, our procedure can be applied on regular as well as irregular samplings, commonly
used in ecological surveys (e.g., Saito et al. 2015, Tuomisto et al. 2016). Besides, by
subtracting the expected value of the Mantel statistic under Hy.msr, our formula provided a
correction to the Mantel statistic but does not improve its precision as the variance of the

statistic is not transformed. Therefore, computing standardised effect size (SES, e.g., Gotelli
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and McCabe 2002) by dividing equation (8) by the standard deviation of MSR replicates
would probably be more adapted to compare the values of the corrected Mantel statistics

between studies.
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Figure 4: Power of simple and partial
Mantel tests and MSR-Mantel for
irregular sampling when X and Y are
linearly related. Comparison of the power of
simple (solid line) Mantel test, partial (dashed
line) Mantel test, and MSR-Mantel procedure
(dotted line). X and Y contain 225 samples
and 5 variables. Both tables present spatial
autocorrelation fixed to p = 0.8. The strength
of the linear relationship varied from a = 0.1
toa = 0.5.

While this new procedure is promising, it has some limitations. MSR-Mantel relies on
MSR whose first step is to define a spatial weighting matrix W. The specification of W plays
an important role in determining the appropriate form of spatial model (e.g., Stakhovych and
Bijmolt 2009 in the case of spatial autoregressive models). Hence, its misspecification can
greatly influence the performance of our procedure by defining incorrectly the potential
spatial dependence between observations. Indeed, we showed that, when W is misspecified,
MSR-Mantel failed to control for the inflation of type I error rates in the presence of spatial
autocorrelation. Our results indicate that the selection procedure proposed by Bauman et al.
(2018) offers a promising solution to optimise the choice of W among a set of candidates.
Furthermore, the MSR procedure is only able to deal with continuous variables in X,

excluding counts, binary and categorical variables. Moreover, in the case where data have
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been obtained directly as distances matrices, our procedure based on principal coordinates
analysis assumes that data can be represented in a Euclidean space. Hence, further work is
required to extend these promising results to other types of variables and non-Euclidean
distance matrices. When non-Gaussian response variables are expected, alternative methods
based on generalised linear mixed models may be considered. In genetics for instance, Guillot
et al. (2014) developed a spatially explicit model that directly consider autocorrelation and
Rousset and Ferdy (2014) presented fitting procedures for spatial GLMM providing correct
estimate of correlation parameters. However, spatial GLMM are only suitable when raw data
are available or when they can be reconstructed from available distance matrices and, as the
MSR-Mantel, they can be sensitive to the specification of the spatial model (Duncan et al.

2017).

Our approach aims to consider spatial autocorrelation when studying the link between two
distance matrices. From a theoretical viewpoint, this issue pertains to the necessity to account
for nuisance parameters during the analysis of parameters of interest. Raufaste and Rousset
(2001) designed a simple simulation model where the objective is to study the effect of an

environmental variable on the abundance of a species at location k ( x, ) in the presence of
migration flows from the two adjacent populations ( x,,;, and x,_; ). They showed that

“the partial Mantel test is inadequate in this model because the permutations will not hold
constant the (minimal) sufficient statistic for the nuisance parameter under the null
hypothesis”. In their model, these statistics are:

g Xy ; XZ:Z (Xk+1+Xk—1)Xk’Z (Xk+2+xk—2)xk

k k

(10)

The MSR procedure, by preserving the mean, variance and global level of autocorrelation
measured by Moran’s index (Wagner and Dray 2015), holds constant the first three elements,
but not the fourth. However, results showed that type I error rates were controlled in all cases
with our simulation design suggesting that the MSR-Mantel procedure seemed quite robust.
An alternative is to use the MSR-Mantel procedure in the context of maximised Monte-Carlo
(Dufour 2006) so that the distribution of the statistic under the null hypothesis is built for the

values of nuisance parameters that maximised the p-value. This ensures that the test is exact.
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In conclusion, our results confirmed Guillot and Rousset (2013)’s findings and suggest that
several studies ranging from genetic (e.g. Shafer and Wolf 2013) to community ecology (e.g.,
Astorga et al. 2012) could have wrongly identify an effect when standard or partial Mantel
tests were used in the presence of spatial autocorrelation. Spatial autocorrelation is a problem
regularly underlined when quantifying the spatial structure of genetic (Manel et al. 2010) and
community data (Smith and Lundholm 2010, Gilbert and Bennett 2010) and our procedure

could solve this issue by providing an alternative distance-based statistical approach.
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Chapter 2

Beyond neutrality:
disentangling the effects
of species sorting and
spurious correlations in
community analysis
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Abstract

The methods of direct gradient analysis and variation partitioning are the most widely used
frameworks to evaluate the contributions of species sorting to metacommunity structure. In
many cases, however, species are also driven by spatial processes that are independent of
environmental heterogeneity (e.g., neutral dynamics). As such, spatial autocorrelation can
occur independently in both species (due to limited dispersal) and the environmental data,
leading to spurious correlations between species distributions and the spatialised (i.e.,
spatially-autocorrelated) environment. In these cases, the method of variation partitioning
may present high Type I error rates (i.e., reject the null hypothesis more often than the pre-
established critical level) and inflated estimates regarding the environmental component that
is used to estimate the importance of species sorting. In this paper, we (1) demonstrate that
metacommunities driven by neutral dynamics (via limited dispersal) alone or in combination
with species sorting leads to inflated estimates and Type I error rates when testing for the
importance of species sorting; and (2) propose a general and flexible new variation
partitioning procedure to adjust for spurious contributions due to spatial autocorrelation from
the environmental fraction. We used simulated metacommunity data driven by pure neutral,
pure species sorting, and mixed (i.e. neutral + species sorting dynamics) processes to
evaluate the performances of our new methodological framework. We also demonstrate the
utility of the proposed framework with an empirical plant dataset in which we show that half
of the variation initially due to the environment by the standard variation partitioning

framework was due to spurious correlations.

Keywords: metacommunity ecology, neutral dynamics, Moran spectral randomization,
direct gradient analysis, variation partitioning, spatially-constrained null model, limited

dispersal, environmental effect, spatial autocorrelation
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I. Introduction

Determining which factors and processes underlie the variation in species compositions
across local communities within large landscapes is a focal question in ecology (Cottenie
2005, Jones et al. 2008, Sharma et al. 2011, Wan et al. 2015). Among different frameworks for
investigating the mechanisms governing species distributions in space, metacommunity
ecology focuses on how dispersal interacts with local community assembly processes (e.g.,
niche preferences and biotic interactions) in determining how and which species are selected
to compose local communities (Leibold et al. 2004). Species sorting via environmental
filtering has been long recognised as a key mechanism underlying metacommunity structure
in which variation in species compositions is driven by differential species responses to
environmental heterogeneity among patches (Chase and Leibold 2003, Leibold and Chase
2017). Notwithstanding, it is also widely accepted that the spatial structure of
metacommunities can be also influenced by other processes such as patch dynamics, mass-
effect dynamics, neutral dynamics (Leibold et al. 2004), among other processes (e.g.,
historical biogeography; Leibold et al. 2010). Notably, neutral dynamics caused by stochastic
events such as death, birth and limited dispersal can lead to spatial arrangements in the
distribution of species within a metacommunity that are as complex as the ones generated by
species sorting (Hubbell 2001, Bell 2001). Because both mechanisms are likely to be
important in many metacommunities, a major challenge in contemporary ecology has been to
understand the relevance of species sorting to metacommunity structure that are beyond those

expected under neutrality (Gravel et al. 2006, Paknia and Pfeiffer 2014).
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Among the quantitative tools currently available to study metacommunities, variation
partitioning (hereafter referred as to VP; Borcard et al. 1992, Peres-Neto et al. 2006) is the
only one often assumed (but see below) to be able to distinguish between species sorting and
neutral dynamics (Gilbert and Lechowicz 2004, Cottenie 2005, Chang et al. 2013, Paknia and
Pfeiffer 2014, Arellano et al. 2016). VP is a widely used quantitative framework in
community ecology (i.e., more than 3000 WoS citations for Borcard et al. 1992 and Peres-
Neto et al. 2006 that allows decomposing the variation in species composition (or abundance)
across local communities (i.e., beta-diversity) into the amount of variation explained by
environmental (fraction [ab]) and spatial components (fraction [bc]). Independent
contributions are also estimated and represent: non-spatially structured environmental
variation (fraction [a]), pure spatial variation (fraction [c]), spatialised (i.e., spatially-
autocorrelated) variation of the environment (fraction [b]), and non-explained and non-

spatialised residual variation (fraction [d]) (Fig. 1).

Pure spatial variation (fraction [c]) cannot be directly linked to a unique process as it may
be due to stochastic neutral dynamics via dispersal limitation, missing spatialised
environmental predictors influencing species sorting and/or other types of spatial dynamics
(e.g., biotic interactions). Additionally, spatialised-environmental variation (fraction [b]) may
not necessarily represent the contribution of spatialised environment to species sorting given
that fraction [b] can be inflated by spurious correlations between spatialised (measured)
environmental variables and spatial variation in species distributions due to spatial processes
such as neutral dynamics (Smith and Lundholm 2010 ; Fig. 1A, C). As such, VP can in
principle only estimate the importance of species sorting by analysing and testing its non-
spatialised environmental contribution (fraction [a]; Peres-Neto and Legendre 2010, Logue et
al. 2011). Ideally, however, one should estimate the contribution of the total environmental
variation (i.e., fraction [ab]) containing both its non-spatial (fraction [a]) and spatial (fraction
[b]) components (Fig. 1). This would allow to adjust the estimates of the environmental
contribution and, in many cases, increase the power of detection of species sorting given that
fraction [ab] is greater than fraction [a] alone. To do that, however, one needs to separate the
variation in fraction [b] that is due to the spatialised measured environment and the variation

due to neutral dynamics (Fig. 1A, C).
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Biased Corrected

Pure neutral
metacommunities

spurious
correlation

Mixed metacommunities
(species sorting + neutral dynamics)

spatialized environment
spurious correlation

spatialized environment

Figure 1: Objective of the study: adjusting for spurious correlation in variation partitioning due to neutral
dynamics. (A) The effects of spurious correlation on variation partitioning on metacommunities driven by
neutral dynamics, leading to inflated fraction [b] (and [ab] as a consequence) but not [a]; (B) The effects of our
procedure on variation partitioning on metacommunities driven by neutral dynamics in which only a spatial
effect (fraction [c]) should be expected; (C) The effects of spurious correlation on variation partitioning on
metacommunities driven by neutral dynamics and species sorting, leading to inflated fraction [b] (and [ab] as a
consequence) but not [a]; (D) The effects of our procedure on variation partitioning on metacommunities driven
by neutral dynamics and species sorting, leading to a reduced fraction [b] (and [ab] as a consequence). Note that
the spatial fraction [bc] does not change as a function of our procedure, but fraction [c] increases given that
fraction [b] decreases.

Although not often acknowledged, estimating the contribution of species sorting over
neutral dynamics parallels the issues of statistical estimation and testing for species-
environmental associations (Peres-Neto and Legendre 2010, Dray et al. 2012). Spatial
autocorrelation in species distributions and their environments is extremely common
(Houlahan et al. 2007) and poses a challenge in statistical testing and estimation because it
violates the assumption of data independence (Legendre 1993). VP and canonical analyses
such as Redundancy Analysis and Canonical Correspondence Analysis (see Legendre and
Legendre 2012 for a review) are regression-based models (Peres-Neto et al. 2006) whose
estimates and tests are known to be affected by spatial autocorrelation (F. Dormann et al.
2007). Direct gradient analyses are a commonly used quantitative framework in ecology that
are based on canonical analyses but do not consider spatialised variation. Statistical testing in

direct gradient analyses is based on testing fraction [ab] and, as such, they need appropriate
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solutions to separate the environmental from neutral contributions. This latter issue has
escaped the attention of ecologists who use direct gradient analysis to describe and test for the
importance of environmental variation on species distributions. Finally, performing VP with
both environmental and spatial predictors to estimate and test for species sorting (i.e.,
environmental contribution to species distributions, fraction [ab]) fails to control for biases
due to spatial autocorrelation (Peres-Neto and Legendre 2010, Smith and Lundholm 2010,
Gilbert and Bennett 2010). Given that VP have become the de facto framework to describe
and assess the importance of species sorting, robust solutions to the potential biases generated

by the spatial structure in species distributions and their environments need to be developed.

The goal of this paper is to provide a synthesis of the issues and implications of spatial
autocorrelation in community and metacommunity analyses as well as a solution to address
current challenges when distinguishing between neutral dynamics and species sorting. More
specifically we: 1) demonstrate via simulations the conditions in which spatial autocorrelation
biases direct gradient analyses (i.e., canonical analyses) and VP in estimating and testing for
the importance of species sorting in metacommunities; 2) derive new estimates and statistical
tests for assessing the role of species sorting in structuring species distributions and beta-
diversity patterns. Finally, we demonstrate the utility of the proposed framework in an
empirical plant data set in which we show that half of the variation initially due to the
environment using the standard variation partitioning framework was due to spurious

correlations.

In this study, we chose to use neutral dynamics as the source of spatial autocorrelation in
species distributions and bias in canonical analysis given that neutrality has been the focus of
much research regarding the mechanisms underlying the structure of metacommunities. Note,
however, that our framework is able to deal with any mechanism generating spatial
autocorrelation and thus tackle other sources of biases while testing and estimating the

importance of species sorting in ecological communities.
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II. Methodological framework

Variation partitioning

Variation partitioning (Borcard et al. 1992) is used in metacommunity studies to
decompose the total variation of a species distribution matrix Y (communities by species;
abundance or presence-absence data) into four fractions of variation: [a] unique variation in Y
explained by the environment, [c] unique variation due to space, [b] shared variation between
environment and space, and [d] non-explained (residual) variation. The approach is based on
three separate sets of multi-response multivariate linear regressions with the response matrix
Y (i.e., sites by species matrix) (Peres-Neto et al. 2006): 1) a regression of Y on a matrix X
containing environmental predictors to estimate [ab]; 2) a regression of Y on a matrix W of
spatial predictors to estimate [bc]; 3) a regression of Y on both X and W (all columns in X
and W are used together as predictors) to estimate the total amount of variation explained by
space and environment together (fraction [abc]). All fractions are then obtained via
subtractions ([a]=[abc]-[bc]; [c]=[abc]-[ab]; [b]=[abc]-[a]-[c]; [d]=1-[abc]). Further
computational details can be found in Peres-Neto et al. (2006). Note that decomposing a
species distribution matrix Y is equivalent to decomposing a beta-diversity matrix
(community by community) into its environmental and spatial components (Legendre et al.
2005) and, as such, the issues discussed here also apply to the analysis of beta-diversity. The
matrix W (sites by spatial predictors) can, in principle, contain the geographical coordinates
of sites, trend surface polynomials performed on these coordinates or spatial eigenvectors
(Dray et al. 2012). However, geographical coordinates (simple or their polynomials) are only
able to deal with simple large-scale spatial patterns whereas spatial eigenvectors are capable
to model complex spatial structures occurring at both large and very fine scales (Griffith and
Peres-Neto 2006). As such, in this study we use Moran’s Eigenvector Maps (MEM; Dray et
al. 2006) to compose the spatial matrix W which are routinely used in VP and known to be an

efficient set of predictors to model simple and complex spatial patterns at multiple scales.

Fractions of variation are coefficients of determination (i.e., R® ) and need to be adjusted
to account for the number of predictors as shown in Peres-Neto et al. (2006). Adjustments to
correct for inflated variation explained in Y due to irrelevant predictors is standard in multiple
regression analysis (e.g., Ezekiel 1929) and as such also apply to canonical analysis and VP

(see Peres-Neto et al. 2006) which are simple extensions of multiple regressions. For instance,
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~

in the case of fraction [ab], the adjusted canonical coefficient of determination Rfab- is

defined as:

n—1

R =1-———
lab] n—p—1

(1_Rl2abj

1

where n is the number of sites (i.e., communities), p is the number of environmental
predictors in X, and Rfab] is the coefficient of determination calculated on the basis of a

multi-response multiple regression of species table Y on the environmental matrix X only.
The same adjustments are performed on fractions [bc] (spatial) and [abc] (spatial and
environmental combined) using the appropriate degrees of freedom involved prior to

calculating unique and shared fractions via subtraction as detailed above.

The significance of fractions is estimated by a randomisation test where the rows (i.e.,
sites) of the predictors (X, W or XW) are permuted and appropriate F-statistics related to each
fraction are calculated (Legendre and Legendre 2012). Note that in the case of a simple
canonical analysis without a spatial matrix (i.e., direct gradient analysis), only fraction [ab] is
tested. In the case of the environmental fraction R[ZabJ the null hypothesis H, is “the
absence of species-environment relationships” (i.e., species sorting is not important). Under

this null hypothesis, the expected value of the unadjusted coefficient of determination is

E

2
Rl

H 0)2 - E 1 (Ezekiel 1929, Peres-Neto et al. 2006) so that, after some mathematical

manipulations, the adjusted value (Eq. 1) becomes (Peres-Neto et al. 2006):

VI 2
Ry=l-— [1-R}, @)
1__
n—1
and therefore:
Ry=1-—— (1R @)
1-E(R’,|H,|

As such, the expected value under the null hypothesis of no relationship between species

distributions and the (measured) environment E (T?zab ‘H 0):0 . However, when species and

environmental factors are independent but both spatially autocorrelated, Rfab- becomes
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inflated under the null hypotheses so that E (ﬁfab:‘H 0)>0 . This was shown by Smith and
Lundholm (2010) using neutral dynamics to impose spatial autocorrelation on species
distributions and estimating Efab: based on autocorrelated environments. Moreover, when X
and Y are autocorrelated but not associated, permutation tests used in canonical analysis (i.e.,
direct gradient analysis) to test for }Ne[zab] are also biased, having a rejection rate that is larger
than the pre-established nominal significance level alpha (i.e., inflated Type I error rates;
Peres-Neto and Legendre 2010). Here, we propose a new framework to estimate

E (R[zab} H 0) , leading to an adjusted estimator and a valid statistical test for assessing the

importance of species sorting on metacommunity dynamics that would be otherwise biased by

spatial autocorrelation.

A spatially-constrained null model to estimate and remove biases due to spurious

environmental effects

Similarly to Chase and Myers (2011), our approach is based on the development of a
constrained null model to study the environmental contribution (i.e., fraction [ab]) in the face
of the stochasticity induced by neutral dynamics (via limited dispersal). To do so, here we
adapt a method recently proposed by Wagner and Dray (2015), namely the Moran Spectral
Randomization (MSR) that allows generating random replicates of a data matrix while
keeping its original inter-correlations and spatial structures (i.e., spatially-constrained
randomisation) to produce unbiased model fit estimates and statistical tests in the context of
direct gradient analysis (i.e., canonical analysis) and VP. As such, MSR was used to produce a
spatially-constrained null model in which H,_,,, is best described as “the absence of
species-environment relationships given the spatial structure of the environmental variables”.
In addition to conserving the original spatial autocorrelation in the environmental predictors,
MSR also preserves the original correlation structure of the environment, a property important
to assure that randomisation tests with multiple predictors have correct Type I error rates even
when predictors are non-spatially autocorrelated (Peres-Neto et al. 2006). Note that, if
environmental predictors are not spatially structured, the resulting replicate is also random in

respect to space. The MSR was used to generate replicates of randomised environmental
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matrices X that were independent of the species distribution matrix Y (in this study we used

n,x=1000 replicates).

For every randomised environmental matrix (Xwusr replicate), a VP for Y on Xusg and W
(spatial predictors based on MEM) was produced and corresponding fractions calculated.

These computations were repeated for each Xwsr replicate so that the expected distribution of

ﬁﬁ]b] under H, ,. was produced. As such, our spatially-constrained randomisation

procedure allows estimating the statistical distribution of the R’, values expected under

pure spurious species-environment relationships for a given species data matrix Y. The

estimated expected value under the null hypothesis E R[Zab] HofMSR) is then simply the

average of the n,, random replicates of Rlzab] . Consequently, the estimated expected

value of the coefficient of determination adjusted for spurious correlations is simply:

1

R, =1 [1-R, (4)
|ab] MSR {ab]
1-E R[2c1b] HO—MSR)
Likewise, fractions [a] and [b] are adjusted as follows:
R? =1 1 1-R) ©)
1-E[ R} [Hy
R[Za]MSR = R_Zab]MSR - R_Zb]MSR (6)

where E (R:zb]|H07MSR) is the mean of the n,, random replicates of R[zb] . Detailed

calculations to obtain fractions [bc], [abc], [c] and [d] using the MSR-based new VP

procedure follow similar implementations and are shown in Appendix S1.

Fig. 1 represents a summary of the issues related to spurious autocorrelation and how our
framework adjusts for them. In metacommunities driven solely by neutral dynamics, the total
environmental contribution (fraction [ab]) is inflated because spurious correlations generated
by independent spatial autocorrelation in environmental factors and species distributions
inflate fraction [b] (Fig. 1A; see result section for simulations demonstrating this issue). In
these cases, our proposed MSR-based VP is expected to generate an unbiased estimation of
fraction [b] (and thus [ab]) as zero (Fig. 1B). In metacommunities driven by both species

sorting and neutral dynamics, fraction [b] and, as consequence, fraction [ab] are inflated due
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to the species dynamics driven by neutral dynamics (Fig. 1C). In these cases, our MSR-based
spatially-constrained null model adjusts for this spurious contribution in the total
environmental fraction [ab] by reducing fraction [b] to the contribution of the spatially-
structured environment to species distributions independent on spatial autocorrelation (Fig.

1D).

Simulation study

We designed a simulation study to (i) describe how spatial autocorrelation affects the
ability of direct gradient analysis (i.e., canonical analysis) and VP to disentangle the effects of
species sorting and neutrality; (ii) demonstrate the performance of our environmental
spatially-constrained approach (i.e., MSR-based VP) to generate an unbiased test for
assessing the importance of species sorting over neutral dynamics. Traditionally, spatial
predictors are selected via a forward model selection to compose the spatial matrix W in VP
(Blanchet et al. 2008, Smith and Lundholm 2010). Peres-Neto and Legendre (2010), however,
showed that selected MEM subsets do not successfully remove spatial autocorrelation from
model residuals, leading to inflated estimation and type I error rates of fraction [a] (i.e.,

species sorting). That is why, here, we used all positively spatially autocorrelated MEM.

Metacommunities simulation

We used a dynamic spatially explicit individual-based model originally developed by Bell
(2000, 2003, 2005) and implemented by Smith and Lundholm (2010). We modified the initial
model to simulate the spatial distributions of S=50 (number of species) on a M x M
torus ( M=15 ) where each cell (patch) represented a local community (n = 225 local
communities). We first simulated metacommunities solely composed of 50 generalist species
(i.e., a form of neutrality in which all individuals have the same fitness) where the survival
probabilities of all individuals were equal and independent of the environmental conditions in
a particular patch. We then simulated metacommunities composed of 50 specialist species
(i.e., here driven by species sorting dynamics) in which the survival probability of an
individual was a function of the difference between its species niche optima and the local
environmental conditions. A third type of metacommunity was composed by a mix of 25
species structured by neutral dynamics and 25 species structured by environmental sorting

(mixed metacommunity).
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Simulations to generate a single metacommunity were run for 5000 generations to meet
population equilibrium without incurring major species extinctions. For each type of
dynamics (i.e., neutral, species sorting, and mixed), 1000 metacommunities were generated.

Simulations details are provided in Appendix S2.

Environment

In all simulations, we used 5 spatialised (i.e., spatially-autocorrelated) environmental
variables that were generated following Dray (2011) in which an autoregressive model with
parameter p varying between 0 (no spatial structure) and 0.8 (strong positive
autocorrelation) was used to generate each variable independently. In the case of neutral
dynamics only, we also considered an environmental matrix X containing 10 and 20 variables

generated with a strong autocorrelation ( p=0.8 ).

Values of all environmental variables were kept constant through time within any given

local community (i.e., cell).

Statistical analysis

Spatial predictors in table W were generated using Moran’s Eigenvector Maps (MEM,;
Dray et al. 2006) of a spatial weighting defined by a “Queen’s neighborhood” (i.e., 8 closest
patches). Species matrices were Hellinger transformed prior to VP as it generates unbiased

estimates of fractions for abundance data (Peres-Neto et al. 2006).

As noted in the Introduction, VP can, in principle, only estimate the importance of species
sorting. As such, here we reported results only regarding the environmental fraction: 1)
estimations of fractions [ab] (environmental + spatial), [a] (environmental variation
independent of space) and [b] (spatialised environmental fraction); and 2) rejection rates for
significance tests of fractions [ab] and [a]; note that fraction [b] is not testable under current
statistical implementations. Type I error rates corresponded to the number of cases where the
null hypothesis (i.e. no association between species distributions and the environment) was
detected as false although true (i.e., under neutral dynamics only) divided by the total number
of tests (i.e., 1000 metacommunities). For the two other scenarios (species sorting
metacommunities and mixed metacommunities), rejection of the null hypothesis corresponded

to the estimation of statistical power as, in these cases, environment acted as a real driver of
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species distributions (i.e., species sorting was important). Significance tests were based on

999 randomisations and a significance level (alpha) of 0.05 was used in all tests.

All statistical analyses and simulations were performed with R 3.2.2 (R Core Team 2016).
R function for the application of the new VP procedure using MSR as a spatially-constrained
null model is available in packages ade4 (Dray and Dufour 2007) and adespatial (Dray et al.
2017). An example of the new variation partitioning procedure (and related R code) on an

empirical vegetation dataset is provided in Appendix S6.
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ITI. Results

The results based on metacommunities driven by neutral dynamics highlight the issue of
how spatial autocorrelation impacts the estimation of fractions and associated hypotheses
testing (Fig. 2 left panel). The total contribution of environment (fraction [ab]) becomes
greater than the expected (zero) and it increases with the number of autocorrelated
environmental variables used to assess the importance of species sorting (Fig. 2A). Type I
error rates for fraction [ab] are extremely high leading to non-valid tests, implying strong
species sorting for neutrally generated metacommunities. Notably, although the spatial
predictors generate appropriate estimates and Type I error rates for the pure environmental
contribution (fraction [a]; Fig. 2B), VP based on these predictors lead to inflated estimates of
the spatial component of the environment (fraction [b]; Fig. 2C), explaining why fraction [ab]
(but not [a]) is biased under neutral dynamics. Our spatially-constrained null model
framework completely removes the biases in estimation due to spatial autocorrelation in
fraction [b] and [ab] (and associated statistical testing of fraction [ab]), leaving fraction [a] as
expected, i.e., zero (Fig. 2D-F). The results presented so far were based on high levels of
spatial autocorrelation in the environment ( p=0.8 ). Using a lower level of autocorrelation
( p=0.4 ), estimates of fractions [ab] and [b] were also biased (Fig. 3A-C; Appendix S3
Tables S1, S2, and S3) though (as expected) relatively closer to zero in contrast to estimates
based on high levels of spatial autocorrelation ( p=0.8 ). Note, however, that Type I error
rates for fraction [ab] were equally high for both levels of spatial autocorrelation. As for high
levels of spatial autocorrelation (Fig. 2), our spatially-constrained null model also led to
adjusted estimates and Type I error rates for lower levels of autocorrelation for all fractions

(Fig. 3D-F; Appendix S3 Tables S1, S2, and S3).

The simulations and results based on metacommunities solely driven by species sorting
demonstrated that our spatial null model tends to only slightly reduce fraction estimates by
about less than 0.1% in most cases (Fig. 3J-L, Appendix S3) when compared to unadjusted
results (Fig. 3G-I; Appendix S3 Tables S1, S2, and S3). Note, however, that statistical power

is the same between unadjusted and adjusted versions.

For the case of mixed metacommunities, where some species are driven by neutral
dynamics and others by environmental sorting, our spatial null model produces estimates for

fractions [ab] and [b] that are smaller (Fig. 4D-F; Appendix S3 Tables S1, S2, and S3) in
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contrast to the non-adjusted (biased) estimates (Fig. 4A-C; Appendix S3 Tables S1, S2, and
S3), particular in the cases of high spatial autocorrelation ( p=0.8 ). This reduction is
obviously a result of the fact that the relationship between some species and their
environments are spurious. As such, our procedure is also relevant when metacommunities are

structured by mixes of processes (i.e., neutral and species sorting).

Biased Corrected
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2a o
5 S 3 % E
e o e il
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Applied to an empirical dataset, our new procedure allowed to substantially reduce
estimates of fractions [ab] and [b] as [b] was reduced from 0.12 to 0.060 (Appendix S6 Table
S1), thus adjusting for the effect of spatial autocorrelation on both species distributions and
environmental data. This result demonstrates the original total environmental fraction [ab],

which contains fraction [b], was heavily driven by spurious spatial autocorrelations in these

data.
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Figure 3: Results of variation partitioning fractions [ab], [a] and [b] for metacommunities structured by
neutral dynamics and species sorting. Left panel: results for neutral metacommunities. (A-C) estimation of
total environmental contribution (fraction [ab]; R[zab] ), non-spatialised (fraction [a]; R[ZG] ), spatialised
(fraction [b]; }Nz[zb] ), and their respective Type I error rates; (D-F) Estimates for adjusted fractions [ab] (

Eib] wse )s [al ( IN{Zub] wse ) and [b] ( INQle wsg ) their respective Type I error rates. Note that fraction [b]
cannot be tested and as a result Type I errors are not estimated. Dashed grey line (at zero) corresponds to the
expected variation explained for neutral metacommunities. Right panel: results for metacommunities structured
solely by species sorting; order of figures are the same as for the left panel. (A-L) Boxplot specifics are

explained in the legend of Figure 2. Ordinates are scaled from 0 to 0.3 to facilitate comparisons with Figures 3
(left panel), 2 and 4.
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IV. Discussion

The goal of this paper was twofold: (i) identify and summarise the issues regarding how
the importance of species sorting is artificially inflated by neutral dynamics if spatial
autocorrelation is not accounted for; and (ii) propose a general and flexible procedure based
on a spatially-constrained model to tackle these issues regarding parameter estimation
(fractions) and inference (hypothesis testing). We centred on direct gradient analysis and VP
because they are the most used quantitative frameworks to infer species sorting in community
ecology (Cottenie 2005, Soininen 2016, Leibold and Chase 2017), though our framework is
general and relatively simple enough to be imbedded in any type of analysis (e.g., null models
of species distributions, trait and phylogenetic community analysis, analyses of beta-diversity

patterns).

VP applied to neutral metacommunities showed increasing inflations of fraction [ab] (

B2 . . . . .
R/, ) and associated Type I error rates as environmental spatial autocorrelation increases.

In particular, Type I error rates became extremely high (equal to one) for a strong spatial
autocorrelation in environmental features, thus systematically detecting a significant species
sorting contribution when in fact there was none. Bias in estimation and inflation of Type I
error rates rapidly increased with the number of environmental variables and can be easily
explained by the fact that increasing the number of predictors provides greater chance to
obtain spurious correlations between environment and species distribution data. It is now well
recognised in ecology that when model residuals are spatially autocorrelated (F. Dormann et
al. 2007, Dray et al. 2012; i.e., when the model does not fully account for the spatial variation
in the response Y), model slope estimates have much greater uncertainty (large confidence
intervals) than expected under the assumption of residual independence. Although slopes are
not biased per se (i.e., their average across sampling values equals the true population value;

F. Dormann et al. 2007), their distribution is wider so that large slope values (positive and

negative) will contribute to increase R® (i.e., fraction) values (adjusted or not), leading to
inflated fraction [ab]. This is clearly the reason why under neutral dynamics, species sorting is
detected when using only fraction [ab]. Note that studies only carrying out direct gradient
analysis (i.e., canonical analysis) without considering VP need to be also aware of this issue
and adjust estimates and tests accordingly using an appropriate spatial model such as the one

developed here.
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Figure 2. Ordinates are scaled from 0 to 0.3 to
facilitate comparisons with Figures 3 (left panel) and
2.

The main contribution of the present study is that we determined a way to consider spatial

autocorrelation when testing for species sorting. As such, we propose new estimates of the

environmental contribution (species sorting) via an adjustment to fraction [ab] instead as

previous studies that only considered fraction [a] as a test of species sorting given that the

assumption was that the entire fraction [b] had to be foregone because one could not separate

the effects of spurious correlation from the spatial structure of the environment. Moreover, we

expect, in many cases, our procedure will increase the statistical power for detecting species

sorting given that fraction [ab] is greater than fraction [a] alone. Note that for communities

structured by neutral dynamics only, even though the expected value of fraction [ab] ( }NQ[Zab] )

was properly estimated (i.e., average value equal to zero), its variance increased slightly with

the level of environmental spatial autocorrelation. Given that this increase of variance was
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also present for the initial value of fraction [ab] ( ﬁfab] ) for communities generated solely by

neutral dynamics and was absent from the others scenarios considered in this study (i.e.,
species sorting and mixed), it indicates that this issue is not linked to our new procedure but
rather to the fact that increased spatial autocorrelation leads to great uncertainty (variance) in
parameter estimates (model slopes; F. Dormann et al. 2007). This issue deserves further

attention in future studies.

In this study, we developed a method and articulated a rationale in which fraction [ab] (and
not fraction [a] alone) should be interpreted as the total (spatial and non-spatial)
environmental contribution to species distributions (and related patterns such as beta-
diversity). This is because our method separates the spatialised (i.e., spatially-autocorrelated)
contribution of the environment (fraction [b]) that is due to spurious correlations from the
contributions of the environment to species sorting. We did not consider the issues of
estimating the spatial fraction ([bc] and [c]) given that spatial variation cannot be directly
linked to a unique process and may due to stochastic neutral dynamics via dispersal limitation,
missing spatialised environmental predictors influencing species sorting and/or other types of
spatial dynamics (e.g., biotic interactions). Note, however, that our framework needs to
consider a spatial component (matrix W containing MEM). Because most studies that use VP
apply a model selection (usually forward selection; e.g., Smith and Lundholm 2010, Gilbert
and Bennett 2010) to reduce the number of spatial predictors and increase the statistical power
of detecting a significant fraction [a] (i.e., non-spatialised environmental contribution) and
now fraction [ab] as per our study, we felt important to further discuss this issue here. In the
original VP procedure, although estimates of fraction [a] are not biased under neutral
dynamics (i.e., average values are zero; Fig. 2B and 3B) with (Appendix S4 Fig. S1B; Smith
and Lundholm 2010) or without selection of spatial predictors (our study; Fig. 2B and 3B;
Appendix S4 Fig.S1E), tests of fraction [a] have inflated Type I errors under neutral dynamics
when subsets (i.e., selected) of spatial predictors are used (Appendix S4 Fig. S1B ; Peres-Neto
and Legendre 2010). This is related to the fact that variance of fraction [a] (as for fraction
[ab]) is inflated under neutral dynamics leading to inflated Type I errors and, as such, a
number of fraction [a] estimates are higher (due to the high variance issue as discussed above)
than fraction [a] estimates from communities that are driven by species sorting, leading to
inflated Type I error rates. This issue, however, is corrected by our framework in which both

estimates and Type I error rates of fractions [a] and [b] (and [ab] as a consequence) are
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adjusted with and without forward selection for the spatial predictors (Appendix S4 Fig.
S1G,H,I).

A novel finding in the present study is that estimates of fraction [b] under neutral dynamics
are the ones inflated (Fig. 2C, Fig. 3C) even when all spatial predictors are used, leading to an
inflation of fraction [ab]. Note that our spatially-constrained null model fully accounts for this
bias (Fig. 2F, Fig. 3F). Given these results, we can now establish that fraction [b] has four

origins:
1. Spatial structure of the measured environment;

2. Spatial structure of unmeasured spatialised environmental variables that influence

species distributions and that are partially correlated with the measured environment;

3. Dispersal dynamics that track measured and/or unmeasured environmental variables
(i.e., non-neutral). In other words, species can track suitable environments through
dispersal (i.e., environmental tracking; Gronroos et al. 2013, Gianuca et al. 2017, Hill
et al. 2017) . As species are not considered equivalent in species sorting dynamics,
even if they can reach many different environments through dispersal, they will only
persist in those environments that are well suited. In our simulation model, this
corresponds to the birth and death rate (weighted by survival probability and
environmental selection) which determine if species establishment succeeds (i.e.,
species survive and reproduce in the community) or fails (i.e., species do not

reproduce and die just after arriving in the community);

4. Dispersal dynamics via neutral dynamics (i.e., independent of environmental

variation).

Therefore, our spatially-constrained null model allows separating the contributions of
spatially structured species sorting via environment (origins 1 to 3) in contrast to what is
expected under neutral dynamics (4" origin; i.e., fraction [b] due to spurious relationships
between autocorrelated species and environmental features, Appendix S3). Note, however,
that our model cannot separate between origins 1 and 3. As discussed above, this separation

allows to use fraction [ab] and not only [a] to estimate and test for species sorting.

As species-environment relationships were defined as constant in our simulations, the

increase of fraction [ab] ( ﬁfab] ) as a function of increased levels of environmental spatial
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autocorrelation (Fig. 3G&J) in the case of species-sorting metacommunities can appear
somewhat counter-intuitive. One could indeed expect fraction [ab] to be also constant across
different levels of spatial autocorrelation of the environment. This result can be easily
explained by the interaction between the spatial structure of the environment and dispersal (3"
origin of fraction [b]; i.e., dispersal dynamics tracking environmental features). Given that
dispersal limitation was kept fixed across all simulation scenarios, as the spatial
autocorrelation of the environment increases, the probability of finding suitable environments
increases as well, leading to greater variation explained by the environment (i.e., fraction
[ab]). Note that our spatially-constrained null model does not affect this pattern because this
increase is truly related to species sorting (i.e., not induced via spurious correlation due to

spatial autocorrelation).

The environmental fraction [ab] ( ﬁfab] ) for mixed metacommunities was reduced by our

framework (Appendix S3 Tables S2 and S3). This can be explained by species undergoing
neutral dynamics that inflates fraction [b] by adding the unwanted 4" origin (i.e., dispersal
without species sorting; Appendix S5 Fig. S1). Our spatially-constrained null model was able
to estimate the spurious contributions in fraction [b] (Appendix S3) and produce adjusted

estimates of the environmental contribution.

In this study, we demonstrated that the environmental contribution (fraction [ab]) in direct
gradient analysis and VP could be strongly inflated in the case of spatially autocorrelated
environment. As spatial autocorrelation is inherent to environmental predictors and given that
both latter frameworks are extremely used in ecology to estimate environmental effect
(Soininen 2014), it is most likely that the role of species sorting has been overemphasised in
recent ecological studies. Our MSR-based VP produces adjusted estimates of the VP fractions
that would be otherwise inflated by spatial autocorrelation. As such, it allows for a better
evaluation of the importance of species sorting shaping beta diversity. More importantly, our

new framework allows ecologist to revise their previous results without collecting new data.

Our study highlights the need for more sophisticated null models than those furnished by
standard permutation procedures. Constrained null models offer a nice framework to consider
the properties of the ecological data, allowing testing for more complex ecological hypotheses

than the usual full random hypothesis. Consequently, they are promising tools to disentangle

- 109 -



processes underlying metacommunity and community structure (Buschke et al. 2015, Mori et

al. 2015, Brown et al. 2016).
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I. Ecological scales and ecologically-constrained null models: what to think?

A. Objective of the thesis
Lawton (1999) famously characterised community ecology as a “mess” and attributed it to
the high contingency of ecological rules (i.e., processes) preventing any generalisations on
communities assembly. In this manuscript, I assumed that part of Lawton’s “mess” in fact
pertained to methodological issues and could be unravelled through: (i) taking into account
ecological scales and (ii) defining null models to depict more complex ecological null

hypotheses.

The aim of this thesis was thus to improve ecologists’ statistical toolbox by implementing
ecological scales and ecologically-constrained null models to better identify and quantify

ecological processes underlying community structure and composition.

B. Ecological scales
1. Phylogenetic and spatial scaling of trait-environment relationships:
conclusions
The first axis of the manuscript focused on the study of environmental filtering through
spatial and phylogenetic scales. The fourth-corner approach (Legendre et al. 1997, Dray and
Legendre 2008, Peres-Neto et al. 2016) was extended to decompose trait-environment
relationships across spatial and phylogenetic scales alone or at the same time. This approach
aimed at (i) identifying the spatial scales involved in environmental filtering; (ii) determining
the degree of conservatism of functional traits selected by environmental filtering; and (iii)
identifying and quantifying the relationships between both spatial and phylogenetic scales
involved in trait-mediated environmental filtering to associate species evolutionary history to

particular spatial scale(s).

The extended fourth-corner approach succeeded in identifying the spatial and phylogenetic
scales involved in trait-mediated environmental filtering with good type I error rates and
statistical power. The results brought important insights in the study of trait-mediated
environmental filtering by providing the spatial and phylogenetic signals of, respectively, the
environmental variable and functional trait involved in the filtering. But, more importantly,
the approach established an explicit relationship between those two scales allowing to study

how environmental filtering spatial scale(s) structure the trait phylogenetic signal by inducing
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ancient or recent divergences of species functional trait values. Overall, this axis showed that
taking ecological scales into account in methodological approaches is useful as it brings
complementary information to draw relevant conclusions on how ecological processes shape

communities.

2. An inherent problem remains...

It all begins with a trivial statement: integrating ecological scales requires to define them.
Nobody could disagree with this point, yet every study present their own definition of “large”,
“intermediate” and “fine” ecological scales (see below). Those terms are largely employed in
ecological studies but remains strongly study-dependent and, to my knowledge, no general
consensus has been made so far about what can exactly be qualified as “large”,
“intermediate”, and “fine” ecological scales and in particular: what are the limits between
those three categories? To illustrate this issue, I will take the case of spatial scales. Note
however that the issue is similar with other ecological scales (e.g., temporal and

phylogenetic).

As exposed in the General Introduction (section II1.B.2), two main ways are used to design
spatial scales: (i) spatial grain and extent and (ii) spatial eigenvectors (i.e., Moran’s
Eigenvector Maps; Dray et al. 2006). Both present the same issue of “large”, “intermediate”
and “fine” spatial scales definition. Note that other constructions of spatial scales can be used

such as wavelets (Keitt and Urban 2005) but are not addressed here.

a. Spatial grain and extent
Characterising spatial scales in term of spatial grain and extent is the most intuitive way as
spatial scales increase with the spatial area used to define the grain and extent. The limits of
spatial areas used to define “large”, “intermediate” and “fine” spatial scales are however
confusing and leads to contradictory results between studies. For example, in the study of the
differential importance of edaphic and climatic variables on community species composition
across increasing spatial extents, Arellano et al. (2016) showed that climatic conditions
remained a stronger determinant of community species composition compared to soil
variables at all spatial scales. On the contrary, in their meta-analysis, Siefert et al. (2012)
found that soil variables were stronger determinants than climatic conditions at fine spatial
scales and inversely at large spatial scales. In their study, Arellano et al. (2016) explicitly

suggested that this contradiction could emerge from a dissimilarity in areas considered to
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define the “fine” spatial extent which was ~250 km? in their study while Siefert et al. (2012)
included much smaller ones. As such, the absence of “universal” limits to define what is
considered as “large”, “intermediate” and “fine” spatial scales induces difficulties to compare
results from different studies often leading to contradictory results although they are probably

not.

b. Spatial eigenvectors

As exposed in the General Introduction (section III.B.2), spatial eigenvectors are obtained
from a neighbour matrix of sites. In the case of Moran’s Eigenvector Maps (MEM; General
Introduction Fig.11; Dray et al. 2006), the spatial eigenvectors maximise the spatial
autocorrelation between sites based on Moran’s I (i.e., index of spatial autocorrelation). As
such, they describe large to very fine patterns of spatial autocorrelation which, by extension,
define large to very fine spatial scales. The use of MEM to represent spatial scales is far less
intuitive than spatial grain and extent. Indeed, an explicit relationship between spatial
autocorrelation and spatial scales is still lacking in the literature. The general assumption is
that the spatial scale increases with the sites similarities and decreases with the increasing
dissimilarities between sites. In other words, MEM associated with positive spatial
autocorrelation (hereafter positive MEM) should correspond to large spatial scales and, on the
contrary, those associated with negative spatial autocorrelation (hereafter negative MEM)
should represent fine spatial scales (Peres-Neto 2006, Dray et al. 2012). However, to what
extent this statement is true and to what extent spatial autocorrelation can be used as proxy for
spatial scales remain important issues to be addressed especially because MEM are widely
used in ecological studies to model spatial scales (Legendre et al. 2012, Dray et al. 2012,
Chang et al. 2013, da Silva Menezes et al. 2016).

This lack of relationship between spatial autocorrelation and spatial scales entails
difficulties and confusions in defining which MEM is to be considered to define “large”,
“intermediate” and “fine” spatial scales. Even based on the general statement that the first
MEM represent large spatial scales, the latest correspond to fine spatial scales and those in the
middle are the intermediate spatial scales, ecological studies remain incomparable for two
reasons. First, the number of MEM depends on the number of sites considered and the way
they are connected through space (Dray et al. 2006). Second, studies can choose to represent

spatial scales with all MEM (i.e., positive and negative MEM; Chang et al. 2013) or just a
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subset selected by forward selection (see Blanchet et al. 2008 for the forward selection
method, da Silva Menezes et al. 2016). As such, two studies with the exact same ecological
question and area of study can present two different sets of MEM if their sampling designs are

different or if one selects a subset of MEM but not the other.

» €

Overall, the lack of “universal” rule to define “large”, “intermediate” and “fine” spatial
scales leads to contradictory even incomparable results between studies. Presently, I could not
offer the perfect solution concerning this rule and I even doubt one can be established. One
fact is though certain: further works are needed to clarify and homogenise the use of spatial
scales in ecological studies. Two possibilities could potentially be sensed. One first way could
be to establish clear and general limits in term of spatial distances to define different
categories of spatial scales. This however appears irrelevant and difficult as every species
have a different spatial area of interaction, making communities unequal in their perception of
spatial scales. For example, bacterial communities (Martiny et al. 2011) will perceive space in
terms of square centimeters, whereas perception of plants communities is measurable in
meters and kilometers (Arellano et al. 2016). As such, definitions of the spatial scales
categories will obviously have to depend on the type of organisms composing communities as
fine spatial scales for bacterial communities will be smaller than those for plant communities.
The second possibility would be to abandon the categorisation of spatial scales and consider
that ecological processes shape communities on a spatial continuum. Thinking in terms of
spatial continuum would allow to reduce the need of taking into account other ecological
scales, such as organismic scale, to define categorisations. Either exposed possibilities require
however to translate pattern of spatial autocorrelation dispensed by MEM in spatial distances

to make ecological studies comparable regardless of their definition of spatial scales.

3. Ecological scales: crutches or real assets?

The first axis showed that ecological scales are useful to identify and quantify specific
features of a particular ecological process. But what about using them to distinguish between
several ecological processes? For instance, Chase (2014) suggested that spatial scales should
allow to separate the respective roles of environmental filtering and limited dispersal in
community assemblage. Using one type of ecological scale begins however to be recognised

as insufficient and studies increasingly support the use of multiple ecological scales (Levin

- 115 -



1992, Thuiller et al. 2010, Miinkemiiller et al. 2014) to study the importance of ecological
processes underlying communities. The idea behind this is to consider ecological processes as
placed in a space of multiple ecological dimensions along which they shape communities
similarly and/or dissimilarly (Fig. 1). Consequently, the ecological signature of each
ecological process left on communities could be defined as a precise position in this multi-
dimensional space. Adding ecological dimensions to this space would thus increase the
possibility of different locations along ecological axes and therefore increasing the probability
of distinguishing ecological processes. For example, in Figure 1, solely considering the spatial
scale to separate three ecological processes (1, 2 and 3) is not enough (Fig. 1A). However
when the phylogenetic scale is added, signatures of the three processes begin to be
distinguishable from each other (Fig. 1B). After considering the temporal scale, the signature
of process 1 is completely different from the signatures of the two other processes.
Nevertheless, additional ecological scales would still be needed to distinguish between the
signatures of processes 2 and 3 (Fig. 1C). Note that considering ecological scales as

continuum encourages this point of view.

A temporal scale

. -
spatial scale spatial scale spatial scale

phylogenetic scale phylogenetic scale

@ Ecological process 1
B Ecological process 2
A Ecological process 3

Figure 1: Ecological processes in a space of multiple ecological dimensions. (A) The three ecological
processes (red square, blue circle and grey triangle) are not distinguishable based on spatial scale only. (B)
The signature of the three ecological processes begin to present small differences when phylogenetic scale is
considered. (C) When adding temporal scale, the signature of the ecological process 1 is completely
distinguishable from the two others, however other ecological scales would be needed to separate ecological
processes 2 and 3. (A-C) Ecological axes correspond to ecological scales and are drawn orthogonal to
simplify the graphical representation and interpretation.
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If ecological scales can be considered as real assets to identify and quantify particular
features of ecological processes (Axis 1) or community dynamics (e.g., change of
composition over time, Auber et al. 2017), more cautious is required about calling them real
assets to distinguish between ecological processes. Until now, using ecological scales for the
first goal has brought important insights to describe and understand how a focal ecological
process punctually acts on biodiversity and how variation in biodiversity evolves. For
example, Auber et al. (2017) used temporal scales to describe and quantify the variation of
fish communities composition over time. In particular, they identified species varying the
most and their trends of variation (e.g., increase or decrease). Also, the first axis brought
interested insights on trait-mediated environmental filtering by identifying its spatial scale(s)
of action as well as the degree of conservatism of the species functional trait selected, as such
giving information about the evolutionary period of the filtering. However, even if I am
intimately convinced that ecological scales could also be real assets to distinguish between
ecological processes, no solid proofs have yet been proposed to support it. Indeed, if the
assumption that ecological processes can be separated through spatial scales is commonly
found (Thuiller et al. 2010, Chase 2014), to my knowledge, studies are still not based on more
than two ecological scales (e.g., spatial and phylogenetic, Parmentier et al. 2014; spatial and
temporal, Bernhardt-R6mermann et al. 2015; spatial scale only, Arellano et al. 2016; temporal
scale only, Auber et al. 2017). This could be partially explained by two real challenges: (i) the
intensive periods of fieldworks required to collect large amounts of data, and (ii) the need of
developing methodological tools handling the analyses of massive datasets along multiple
ecological dimensions while maintaining clarity and concision of ecological results and
interpretations, as well as their comparability across different scales. Both challenges are
currently in progress as (i) studies sampling designs are increasingly based on long-term
(Fernandes et al. 2014) or numerous spatial extents data (see Siefert et al. 2012 for a meta-
analysis, Arellano et al. 2016), and (ii) data analysis toolkit has been constantly improving to
directly take into account ecological scales (e.g., see Axis 1 for spatial and phylogenetic
scales; see Auber et al. 2017 for temporal scales). Nevertheless, most of the time, if studies
identify shifts of biodiversity patterns through ecological scales, they remain rather evasive
concerning the identification of ecological processes underlying these patterns. For instance,
Parmentier et al. (2014) showed that tree communities were phylogenetically clustered at all

but very fine spatial scales. They suggested that competition could be a dominant process at
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this spatial scale. This type of evasiveness in conclusions could be due, in part, to (i) the need
of additional ecological scales to facilitate the identification of ecological processes, and
especially (ii) the need of theoretical expectations about biodiversity patterns across each
ecological scales to confirm that ecological processes can truly be distinguished through
ecological scales and facilitate the identification of ecological processes. In 2016, Brown et al.
investigated the performances of spatial statistics to separate spatial signals of biodiversity
patterns produced by several ecological processes through mechanistic simulations. In the
same way, further works could explore through mechanistic simulations and different
statistics the expected biodiversity patterns and draw general conclusions about their
distinction across ecological scales. Note however that such work would certainly be difficult
to perform and with no certainty of general conclusions as mechanistic simulations are based
on mathematical modeling, hence topological sensitivity pertaining to the numerous
possibilities of model structures and parameter estimations (Babtie et al. 2014) could prevent

drawing general conclusions.

To conclude, ecological scales seem to be a current cornerstone of ecological data analyses.
Adopted a scaling approach is indeed encouraged (Levin 1992, Swenson et al. 2006, Thuiller
et al. 2010, Miinkemiiller et al. 2014) and increasingly performed (Siefert et al. 2012,
Fernandes et al. 2014, Parmentier et al. 2014, Arellano et al. 2016, Auber et al. 2017), as such

it is now almost becoming and viewed as a standard methodology.

C. Ecologically-constrained null models
1. Spatially-constrained null model in Mantel test and Variation
Partitioning: conclusions

The second axis focused on the integration of a spatially-constrained null model to correct
for biases in estimations and type I error rates in Mantel test (Axis 2 Chapter 1) and variation
partitioning (Axis 2 Chapter 2) used to study the effect of environmental filtering over spatial
processes (Moritz et al. 2013, Arellano et al. 2016). Indeed, this axis showed that the presence
of independent spatial structures in both species distributions (e.g., via limited dispersal; table
L ) and environmental variables (table R ) led to overestimations and inflated type I
error rates of the environmental effect on the variation in community species composition, as
such even detecting an effect although there was none. Both chapters concluded that these

issues were due to the null hypothesis used to test environmental effect, which is classically
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defined with a random null model obtaining by randomly permuting rows of R . Such null
model did not take into account the spatial dependencies of sites in R induced by spatial
autocorrelation. To overcome this problem, a spatially-constrained null model was substituted

to the random null model used in Mantel test and variation partitioning.

The integration of spatially-constrained null models allowed to correct type I error rates
and adjust estimations of environmental effect for the spurious correlations induced by spatial
autocorrelation. Overall, this axis showed that the specification and choice of the null model
have important effects, and taking into consideration ecological features of ecological data in
the definition of the null hypothesis and null model of a statistical test is essential to correctly

identify and quantify ecological processes shaping communities.

2. Ecologically-constrained null models: a relevant solution?

As previously exposed in General Introduction (section III.C), the purpose of an
ecologically-constrained null model designed to study ecological processes shaping
communities is to produce species assemblages induced by all ecological processes but the
one of interest so that its effect can be isolated and tested. The data simulated by the
ecologically-constrained null model thus reproduced non-random biodiversity patterns
corresponding to the ecological processes still acting. For the purpose of the manuscript, I
distinguished them from constrained and unconstrained null models designed purely to
reproduce randomness. Note that this distinction is arbitrary as ecologically-constrained null

models can also be viewed as random distributions of fixed biodiversity patterns.

In the two past decades, ecologically-constrained null models have been increasingly used
(or encouraged to be) in hypothesis-testing to study the effect of a focal ecological process
while maintaining specific structures of species assemblages associated with other ecological
processes (Peres-Neto et al. 2001, Schurr et al. 2004, Hardy 2008, Lessard et al. 2012,
Chalmandrier et al. 2013, Braga et al. 2018). In fact, this recent interest results from an
important methodological need to have available tools to not only correctly identify and
quantify ecological processes shaping communities, but also to distinguish between them. In
2009, Mclntire and Fajardo suggested that the often criticised imperfect capacity of
identifying and distinguishing ecological processes based on their inference from biodiversity
patterns illustrated a limitation of the precision available in current data analyses methods to

match null hypothesis rather than a real biological pattern-process incompatibility. They
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illustrated their point with the study of Schurr et al. (2004) which used two ecologically-
constrained null models (one fixing conspecific competition and the other dispersal) to test
whether competition or dispersal drove desert shrub occurrences. They concluded in favor of
dispersal therefore bringing a temporal answer to this longstanding question. With this
example, McIntire and Fajardo (2009) called for more complex constrained null model to
enhance the precision of hypothesis-testing methods in identifying and distinguishing
processes. To reinforce this point of view, the General Introduction (section 1.B) presented
that “secondary” processes can be expressed as a combination of four “essential” processes
(i.e., speciation/extinction, dispersal, environmental filtering, biotic interactions). Intuitively,
the signal of “secondary” ecological processes would be expected to present only slight
differences between them, which could easily be rather perceived as redundancies by
methodologies with little degree of precision. By excluding the effect of a focal ecological
process, ecologically-constrained null models allow to display more complex biodiversity
patterns than complete randomness or simple aggregation and evenness making them highly

relevant to enhance statistical precision.

Improving the precision of current hypothesis-testing methods is directly linked to the
definition of the perfect match between the null hypothesis and the null model. Consequences
of a mis-match and the relevance of ecologically-constrained null models to solve them was
well illustrated by the mis-use of a row-constrained random null model to identify and
quantify the effect of environmental filtering over spatial processes (e.g., dispersal) in
variation partitioning (Axis 2 Chapter 2). Testing again randomness makes little sense in that
case as it ignores the biodiversity patterns induced by the spatial processes expected to
influence species distributions in communities. By using a random null model, the null
hypothesis is thus only partially treated and eventually leads to quantify an effect of
environmental filtering on species assemblages although there is none (Axis 2 Chapter 2).
Using a spatially-constrained null model allowed to correct this bias by fixing the observed
spatial structures of communities. However even if the problem of distinction and correct
identification and quantification of ecological processes shaping communities certainly lies in
this lack of analytical precision when defining the null hypothesis and its imperfect
correspondence with a null model, it seems unlikely that it is the only issue. As discussed
previously, ecological scales are also essential to take into consideration when studying

ecological processes. As such, studies now try to incorporate both ecologically-constrained
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null models and ecological scales to separate ecological processes. This combination is
particularly used to distinguish between environmental filtering and competition
(Chalmandrier et al. 2013, Scherrer et al. 2018), which are well recognised to present high

similarity of biodiversity patterns (see General Introduction section III.A; Kraft et al. 2007).

Despite their excellent relevance in defining complex null hypotheses to enhance analytical
precision to identify and quantify ecological processes, de Bello (2012) encourages to be
more cautious when using null models in general. Developing a null model (ecologically-
constrained or not) specifically corresponding to the null hypothesis answering a particular
ecological question has become practically standard in community ecology as most of recent
studies describe the null model they used in their Material and Methods (de Bello et al. 2009,
Chalmandrier et al. 2013, 2017, Fernandes et al. 2014, Arellano et al. 2016). In his study, de
Bello (2012) criticised the general impression given by the literature that choosing and
building a null model is straightforward comparing it to “waving some kind of magic wand”.
In particular, he highlighted the difficulties to identify the criteria of inclusion or exclusion of
ecological processes when defining a null model and called both for a better description of
null algorithms and systematic analyses of their performances (when previously unpublished)
before using them to study ecological processes shaping communities. Let aside (temporarily)
the choice of constraints underlined by de Bello’s (2012) argument, the choice of a null model
is still all but trivial. First, mirroring the high topological diversity of theoretical models, a
null model can be defined with different relevant constraints or through many different
algorithms for a same constrain. For instance, the spatially-constrained null model presented
in Axis 2 could have also been based on a wavelet decomposition instead of the Moran’s
Eigenvector Maps decomposition. Second, if several null models are possible to depict a null
hypothesis, the problem of the selection of the best null model arises. However, as topological
diversity of null models is still scarcely recognised, the issue of null model selection
represents a future area of research. Indeed, as quickly underlined by Gotelli and Ulrich
(2012), information criteria used to select theoretical models (e.g., Akaike or Bayesian
Information Criterion) would probably not be adequate to select null models as they notably
rely on the number of parameters to rank competing models (Anderson 2008), and it would
seem unlikely that the number of constrains could be equally used to the number of parameter
to compute information criteria. They concluded that the selection of the best null model

should be based on their simplicity, biological realism and evaluation with performances
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analyses against simulated data to evaluate type I and type II errors (Gotelli 2000, Ulrich and
Gotelli 2010, Braga et al. 2018, Axis 2). Be that it may, the question is still open to new ideas.

Even indirectly related to null models, selecting appropriate metrics to answer the null
hypothesis is another issue. To take de Bello’s (2012) words, “if indices do not discriminate
ecological processes well, running elegant null models will still show uncertain results”.
First, an appropriate metric quantifies biodiversity patterns resulting from the ecological
process(es) of interest without measuring patterns associated with other processes. Finding the
appropriate metric is difficult as biodiversity patterns are inherently multivariate and
summarising all these multivariate information in one single metric seems highly improbable.
To overcome this issue, one solution would be to adopt a multi-level testing implying multiple
metrics (McGill et al. 2006). Second, the definition of a null model (ecologically-constrained
or not) highly depends on the metric choice. Indeed, null model constraints have to be
independently established from the constraints already present in the ecological metric. For
example, Legendre et al. (1997) described four types of null models to test the fourth-corner
statistic. These four models were proposed on the basis of ecological a priori but their
efficiency to test the fourth-corner statistic was not evaluated. A decade later, Dray and
Legendre (2008) demonstrated through simulations that these models did not allow to
correctly test the fourth-corner statistic (i.e., inflation of type I error rates) due to the
complexity of links between the three tables (species matrix, environmental vector and trait
vector) which were not adequately taken into account, and rather proposed a two-step
procedure. Overall, the metric/null model couple is extremely important and a systematic
performance analysis should be perform before analysing community datasets to select the
best couple. Such idea is not new as already implemented with benchmark tests (Gotelli 2000,
Ulrich and Gotelli 2010, Gotelli and Ulrich 2012). Benchmark tests aim at testing the
performances of multiple metric/null model couples in terms of type I (i.e., reject the null
hypothesis although true) and type II (i.e., accept the null hypothesis although false) errors.
Those tests rely on simulated data containing defined levels of signal and noise to both
evaluate (i) if the couple metric/null model correctly detects the biodiversity pattern(s)
expected to result from focal ecological process(es) and not other unexpected patterns, and (ii)
at which level of noise the couple is still relevant to detect the signal. As they are supposed to
be preliminary tests when analysing datasets through hypothesis-testing, it is difficult to

evaluate how commonly they are used in community ecology through publications.
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Nevertheless, studying the performances of metric and null models represents an essential
step in the construction of a good test and should be more encouraged and visible in the

literature.

The last issue regarding the construction of ecologically-constrained null models is the
choice of the constraints to include. Insuring that the established constraints match the null
hypothesis by fixing the processes not under study and exclude the one(s) of interest
constitutes, by far, the major challenge of ecologically-constrained null models (Gotelli and
Ulrich 2012, de Bello 2012). As still fundamentally pattern-based, it can be difficult to
identify which ecological features have to be fixed due to the long-known remaining fact that
several ecological processes can influence the same biodiversity pattern (Cale et al. 1989,
Real and McElhany 1996). Consequently, if the constrained ecological feature results in part
from the processes of interest, the effect of this process is smuggled into the test, potentially
leading to inevitable biases. More generally, relying on permutations and randomisations to
fix biodiversity patterns induced by a focal ecological process(es) lacks a clear causal process-
pattern link, leading to the impression that hypothesis-testing is somehow imprecise and
speculative. A way over this would be to go further in the use of mathematical modelling and

define null hypotheses through mechanistic null models (see below).

In conclusion, despite the choice of the ecological constraints which still needs further
works to be thoroughly addressed (notably through mechanistic null models), and given that
benchmark tests offer an interesting solution to the choice of the best null model(s) and
metric(s), ecologically-constrained null models can be considered as relevant tools to identify
and quantify ecological processes. Using ecologically-constrained null models in hypothesis-
testing in fact allows for a better definition of the null hypothesis, which can be more complex
than pure randomness (Schurr et al. 2004, Chalmandrier et al. 2013, Scherrer et al. 2018), but

especially testing them with correct statistical performances (Axis 2, Braga et al. 2018).

3. Mechanistic null models: a real improvement?

Using the outputs of mechanistic models and simulations as null expectations started to
attract some interest after the publication of Hubbell’s neutral theory of biodiversity in 2001.
If, at first, the scientific community did not receive positively this new theory due to the
questioning it implied of long-term convictions about niche-based view of community

ecology, it nevertheless saw a promising opportunity to improve hypothesis-testing by using
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neutral theory as a null model (Leigh et al. 2004, Nee 2005, Gilbert et al. 2006, Leigh 2007,
Jabot and Chave 2011). This represented an important step toward a process-based point of
view of the null hypotheses and null models, and non-neutral mechanistic null models have
then been developed to model other ecological processes (Gotelli et al. 2009, Jabot and Chave
2011, Pigot and Etienne 2015). In fact, contrary to null models based on randomisations and
permutations, which are more perceived as pattern-based as they rely on the reproduction of
biodiversity patterns presumably resulting from the ecological processes of interest,
mechanistic null models are based on the modelling of processes supposedly shaping
communities to produce simulated communities directly driven by those processes. The slight
difference between the two types of null models relies on the need of ecological a priori on
both processes shaping communities and biodiversity patterns resulting from those processes.
They are both indispensable for permuted/randomised null models to exclude the patterns
influenced by the process(es) of interest and fix the others but, in the case of mechanistic null
models, only the knowledge of acting ecological processes is necessary. Two direct
advantages come out of it. First, the causal link between patterns and processes is explicit,
adding to the realism of the null model. Second, it is easier to fix the effect of a combination
of ecological processes by modelling them individually than to do so through permutation and
randomisation procedures given the difficulty to deduce a priori for the combined

biodiversity pattern.

Despite their interesting assets, mechanistic null models remain, to my knowledge, still
poorly used. This could be explained by the appearance of a new well-known and vexing
challenge in addition to model selection: model parameter estimation. Both points are further
treated in the next section (II.A). Briefly, as previously exposed for permuted/randomised null
models, model selection is related to topological sensitivity which is a well-known
challenging issue in modelling (Economo and Keitt 2007, Babtie et al. 2014, Singer et al.
2016) relative to the various ways processes can be modelled and the order in which they act.
However, contrary to permuted/randomised null models, mechanistic null models are defined
with parameters allowing to perform classical selection methods such as (among others
detailed in the next section) information criteria selecting best fitted models (Burnham and
Anderson 2002, Anderson 2008). The second issue about parameter estimation is mostly
related to the mathematical complexity and the need of large empirical datasets (Beeravolu et

al. 2009), both increasing with the number of parameter to estimate. For example,
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parametrisation of a neutral model, which can be considered as a relatively simple
mechanistic model, has been proven particularly delicate (Munoz et al. 2007, Beeravolu et al.
2009). Finally note that, although perceived as process-based, using mechanistic null model
does not avoid the classic pattern-based problem of one biodiversity pattern potentially
influenced by several processes. Hypothesis-testing relies on the test of a biological metric
measuring biodiversity patterns, as such if the simulated datasets produced by mechanistic
models display a pattern close to the ecological process(rd) of interest, the test could

potentially be biased.

Nevertheless, mechanistic null models represent a promising future to depict more
complex null hypotheses and more precise null models. Both permuted/randomised and
mechanistic null models come with (similar) limitations which are important to be aware of.
The choice of using one over the other is totally open to users and should not depend on the
mathematical complexity, which could encourage unaware wusers to choose
permuted/randomised null models over mechanistic ones, but on the level of complexity
needed in the null hypotheses and null models to answer particular ecological problematics.
This potential default choice according to mathematical difficulties will probably soon
disappear as, nowadays, many mechanistic simulations are increasingly developed and
available. Those tools could therefore easily be used as mechanistic null model (Nathan et al.
2001, Sokol et al. 2010, Smith and Lundholm 2010, Fournier et al. 2016, Munoz et al. 2017),
especially given that some directly integrate methods to estimate model parameters (Munoz et
al. 2017).

D. Preliminary conclusion

What has been concluded until here? Identifying and quantifying ecological processes
shaping communities with current hypothesis-testing methods is dangerously embraced with a
twofold problem: (i) the multi-scaled action of processes inducing a multi-scaled response of
communities and (ii) the imprecision of the null hypotheses and especially their mis-match
with null models. To solve these issues, ecological scales and ecologically-constrained null
models have been proven highly relevant in improving hypothesis-testing approach. First,
adopting a scaling approach when studying the effect of ecological processes has been shown
to offer the opportunity to identify particular features of a focal ecological process (e.g.,

spatial area, evolutive history) and quantify the evolution of its effect over different gradients
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(e.g., temporal, spatial, phylogenetic). Second, using ecologically-constrained null models has
been shown to be an essential help in fulfilling the lack of precision entailed to the definition

of both null hypotheses and null models, but also to their correct correspondence.

Until here, ecological scales and ecologically-constrained null models were presented as
two separate solutions, this makes however little sense. Both have to be considered as being
part of a larger solution which aims at including both of them in hypothesis-testing. This is
actually what has been done in the first axis as the fourth-corner approach was implemented
with both a spatially- and phylogenetically-constrained null model and spatial and
phylogenetic scales. Chalmandrier et al. 2013 illustrated well this need of combination but
integrated it in a different way compared to what was done in Axis 1. In their study, they
proposed a family of null models manipulating both spatial and phylogenetic scales through
different randomisations schemes to distinguish the effects of environmental filtering and
competition. Their results showed that the combined use of constraints on spatial and
phylogenetic scales was essential to uncover the effect of competition when masked by large-
scale (spatial and phylogenetic) environmental filtering. Based on their conclusions and what
has been evoked in this first section of General Discussion, I think that considering both
ecological scales and ecologically-constrained null models could be a major keystone for

future works to separate the role of different ecological processes.

Throughout this manuscript, I chose to focus on Direction 1, that is methods resulting from
theoretical approach brought to empirical approach, with hypothesis testing and performances
analyses to evaluate the different methodologies developed in the thesis (Fig. XX; Axes 1 and
2). In the General Introduction (section II.B.2) however, I introduced another category of data
analyses corresponding to methods resulting from empirical approach brought to theoretical
approach (i.e., Direction 2). Given that both two directions compose the wide range of
analytical tools used by ecologists nowadays, it seems unwarranted to not develop a little
further Direction 2. In particular, I extensively discussed about limits of hypothesis-testing
relative to the one-scale approach and the mis-definition and mis-match of null models. This
should not encourage ecologists to perceive Direction 1 as centralising all methodological
issues but also as all the potential improvements. As such, I propose in the next section to

briefly expose the limitations of Direction 2 and rapidly determine if ecologically-constrained
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null models (for “basic curve fitting” only) and ecological scales can still be relevant (but not
how they are including) in this kind of analyses. Note once again that I do not intend to

compare Direction 1 and Direction 2.
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II. What about model-based approaches?

A. Limits and solutions

As exposed in General Introduction, Direction 2 (i.e., methods resulting from bringing
empirical approach to theoretical approach) displays two major approaches: “basic curve
fitting” and mechanistic models. Based on modelling, they both embrace two major
challenges: parameter estimation and model selection. If these two issues were only briefly
introduced for permuted/randomised models, they however make complete sense in the case
of mechanistic (null) models. Note that I chose not to address the problem of model validation
here. Let’s dig a little further to understand why they are challenges, the existing ways to

overcome them and the remaining limits.

For both approaches of Direction 2, the first most intuitive way to estimate a focal model
parameter is obviously the likelihood functions whose maximum is taken as an estimation
(Burnham and Anderson 2002, Anderson 2008, Bolker et al. 2009). However, given the
inherent multivariate nature of ecological systems, likelihoods are not always tractable
leading to the development of other approaches to overcome this issue (Hartig et al. 2011) as
Approximate Bayesian Computation (ABC; Csilléry et al. 2010, Beaumont 2010, Sisson et al.
2018) or Pattern-Oriented Modeling (POM; Grimm et al. 2005, Grimm and Railsback 2012).
ABC and POM bypass the computation of likelihood functions through simulations. Relying
on bayesian inference, the rationale of ABC is to draw the values of parameters of interest
from a prior distribution (defined by the user) and generate data with the focal model
(mechanistic or basic curve fitting) and the parameter values extracted from the prior
distribution. Only parameters values resulting in simulated data close to empirical ones are
retained. Most of the time, empirical and simulated data are reduced to “summary statistics”
and the drawn parameters are rejected based on the distance between the observed and the
simulated summary statistics. The retained parameter values are then used to construct a
posterior distribution (see Beaumont 2010, Sisson et al. 2018 for more details). POM presents
strong similarities with ABC to estimate parameters but is based on the comparison between
empirical pre-selected patterns and simulated ones. Moreover, POM does not rely on prior to
draw parameter from. Note that if likelihood functions and ABC can be used for both “basic
curve fitting” and mechanistic models, to my knowledge, POM has been only performed for

the latter.
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Although not appearing difficult until here, parameter estimation does present some
limitations related to the availability of empirical data, as their scarcity could prevent correct
estimations, and with the evaluation of the estimations. Assessing the quality of a parameter
estimation pertains to determine the relevance of the parameter contribution to the global fit
of the model, but also to characterise the effect of variations in parameter values (i.e.,
parameter uncertainty) on the global fit. The latter can be assessed with sensitive analyses but
are rarely performed and, if so, on a single model thus ignoring the potential influence of
model structure (Babtie et al. 2014). The former pertains to model selection and arises from
the temptation of increasing the number of parameters to define the most realistic model to

better fit empirical datasets.

One of the most classical ways to select for model is information criteria such as AIC or
BIC, which rank models based on the relative loss of information when approximating
biological reality while taking into account their respective number of parameters (Burnham
and Anderson 2002, Anderson 2008). Information criteria are especially used for “basic curve
fitting” such as generalised linear mixed models (Bolker et al. 2009, Dumbrell et al. 2010,
Cote et al. 2017). For a bayesian framework, the Bayes factor is usually used to rank models
and is defined as the ratio of the marginal likelihoods of model i over model j (Robert et al.
2011, Kirk et al. 2013). When likelihoods are not tractable however, ABC can be used to
approximate Bayes factor with the approximate of the marginal posterior distribution of
models (Toni et al. 2009, Robert et al. 2011). Finally, POM can also be used for model
selection and, similarly to parameter estimation, selects the best model candidate based on its
capacity to reproduce empirical pre-selected particular biodiversity patterns (Grimm and
Railsback 2012). One of the major limitations with model selection is the validation of the
selected model. Note that if “basic curve fitting” model selection is only related to the number
of parameters, mechanistic models need to be selected both for parameter number but also for
the topology as different possibilities of order and mathematical modelling of ecological
processes through dynamic equations are possible, therefore increasing the number of

potential models (Babtie et al. 2014).

To sum up, parameter estimation and model selection are challenges because they often
call for mathematical computations which can be either very difficult, as in the case of

likelihood functions, or incomputable in a manageable time (Tavaré et al. 1997, Beaumont et
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al. 2002). To overcome this issue, approaches as ABC or POM were developed. However,
POM is only based on a qualitative comparison between simulated and observed biodiversity
patterns (Grimm and Railsback 2012) and ABC requires to choose priors and, usually,
summary statistics. If the choice of priors are usually based on ecological a priori, summary
statistics have the constraint to be as close as possible to sufficient statistics (i.e., statistics
containing all the information of the original data) to ensure both a correct inference (Hartig et
al. 2011) and model selection (Robert et al. 2011). This choice is not trivial and can add a
supplementary step by performing a sensitivity analysis on different summary statistic
candidates (Jabot and Chave 2009). Moreover, due to the potential influence of the variation
in parameter values and model topology, others additional steps of sensitivity analyses should
be performed to draw ecological conclusions associated with parameter and topological
uncertainties (Babtie et al. 2014, Singer et al. 2016). To conclude, as with Direction 1 , tools
of Direction 2 have to be used with caution to identify and quantify ecological processes as,
although considered as more “process-based”, they still rely on biodiversity patterns to
explain data and present the same limits of interpretations. In particular, in the case of the
study of ecological processes shaping communities, what to conclude of a mis-fit between a
model and observed datasets? There are three possibilities: (i) the modelled ecological
processes do not shape communities, (ii) ecological processes are wrongly modelled
(mechanistic models) or ecological proxies do not well represent processes (“basic curve
fitting” such as environmental variables as proxy for environmental filtering for GLMM), and
(iii) parameters are badly estimated. Associating ecological conclusions with parameter and

structural uncertainties is thus important to assess their robustness.

So far, this thesis has shown that implementing ecological scales and ecologically-
constrained null models in hypothesis-testing could improve the study of ecological processes

shaping communities. Could it also be the case with model-based methods of Direction 2?

B. Have scaling approach and constrained null models a place in
model-based methods?

As exposed in the General Introduction (section III.B), the variation of community
structure and composition across ecological scales indicates a multi-scale influence of

ecological processes in shaping communities. Adopting a scaling approach in Direction 2 (i.e.,
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methods resulting from bringing empirical approach in theoretical approach) is thus as
essential as in Direction 1 (i.e., methods resulting from bringing theoretical approach in
empirical approach) to correctly identify and quantify ecological processes underlying
communities. Beyond this ecological aspect, a scaling approach is also extremely relevant to
ensure a correct fit of empirical datasets. This is notably underlined by Grimm et al. (2005), in
the case of the POM approach, who clearly reported that a single summary statistics (pattern)
was not sufficient to reduce uncertainties on model estimations and structure, and therefore
encouraged to combine several summary statistics operating at different ecological scales. As
such, a scaling approach could help both in estimating parameters and choosing the model
during sensitivity analyses, and could potentially result in accepting different models to
capture different aspects of empirical datasets and explain them across multiple ecological
scales. Note that the same remark is also true for ABC approach based on summary statistics,

making this warning important for both “basic curve fitting” and mechanistic models.

What about ecologically-constrained null models? The relation with Direction 2 (i.e.,
model-based approaches) and null models is much more indirect than with ecological scales.
For “basic curve fitting”, they generally intervene when testing for the parameters. Most of

“basic curve fitting” methods rely on test of significance (e.g., confidence intervals, Student,

Fisher, x” ) where the observed value of the parameter is compared to 0 (i.e., random null
model corresponding to a null hypothesis with no effect of the predictor). For instance this is
the case for generalised linear (mixed) models (GLM and GLMM), which usually use Wald
Fischer or Student tests (Bolker et al. 2009). Everything works well when all predictors are
independent. However, when dependencies occur, such as spatial autocorrelation, parameter
values should not be compared to 0. In those cases, an approach taking into account these
dependencies in ecologically-constrained null models could potentially be relevant (direct
approach in Veech 2012). For example, spatially-constrained null models have proven
efficient in the case of multiple regressions (Axis2 Chapter 2). For mechanistic models
however, to my knowledge, hypothesis-testing is not performed unless to validate the model
by comparing observed values to predictive ones (Nathan et al. 2001). In those cases,

ecologically-constrained do not seem relevant.

To conclude, ecological scales are still highly relevant in Direction 2 for both depicting the

differential effects of ecological processes in shaping communities across multiple scales, but
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also improving parameter estimation and model selection. Ecologically-constrained null
models however appear to be of minor relevance for Direction 2 to identify and quantify
ecological processes as model selection is performed to determine the model that best
explains empirical datasets. Nevetheless, they could have a potential relevant use for testing

“basic curve fitting” model parameters.

Throughout this General Discussion, I presented many concepts and discussed about their
relevance concerning the general problematic of identifying and quantifying ecological
processes shaping communities: ecological scales, ecologically-constrained null models,
methodologies belonging to Direction 1 and Direction 2. If ecological scales and ecologically-
constrained null models relevance were exposed for Direction 1 and briefly for Direction 2,
both approaches seem however somehow disconnected. In the next section, I propose to
summarise by replacing all of these concepts and their connexions in the larger scope of

scientific reasoning when answering an ecological problematic.
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ITII. Methodological reasoning: is there still a dichotomy?

If the dichotomy between empirical and theoretical approaches (General Introduction
section II.A) is now outdated as both were combined to give birth to a wide range of
methodological tools, the general impression from the literature feels like, as a legacy, a
dichotomy still exists between ecologists using hypothesis-testing approaches (Direction 1)
and those rather performing model-based approaches (Direction 2) (Johnson and Omland
2004, Stephens et al. 2005). Figure 2 notably depicts this current dichotomy by defining
hypothesis-testing methods opposed to model-based approaches when answering an
ecological question. As Johnson and Omland (2004) and Stephens et al. (2005), I think that
both approaches present advantages and drawbacks leading them to be relevant depending on
the circumstances. The choice of one approach over the other is entirely up to users who
analyse those circumstances to, taking Johnson and Omland’s (2004) words, “decide when it
is most appropriate to use model selection, and when it is most appropriate to use designed
experiments and inferences based on significance tests”. For example, in the case of pioneer
researches, it seems unlikely that sufficient knowledge of the ecological system would be
available to construct and correctly estimate and select the best model fitting empirical
datasets. In that case, an approach based on hypothesis-testing would be better suited to
explore the ecological system (Stephens et al. 2005). Despite this apparent dichotomy, both

directions nevertheless present some bridges between each others but also a strong similarity
(Fig. 2).

Directions 1 and 2 rely on a shared foundation where the ecological problematic is first
translated into verbal hypothesis(es) which is(are) then translated into mathematical
hypothesis(es) influencing the choice of the methodological approach to conduct (can be
both!). After all these essential steps, data are collected with a sampling design presenting all
the constraints necessary to correctly match the pre-established ecological hypothesis(es) (Fig.
2). Note that data collection is here encouraged to be conducted after the choice of the data
analysis(es), to design sampling consistent with both the ecological hypothesis(es) and the
potential conditions required to perform the chosen method(s). From there, Directions 1 and 2
split but still present a strong similarity as they both need to adopt scaling as well as multi-
metric and multi-model approaches. Direction 1 should indeed start by performance analyses

to select the best couples of ecological metrics/null models for the ecological scales of interest
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Figure 2: Apparent distinction between hypothesis-testing and model-based approaches to study an
ecological problematic. Black boxes represent the shared foundation of hypothesis-testing and model-based
approaches. Dark grey boxes corresponds to hypothesis-testing approach and light grey boxes to model-based
approach. Blue and red squares respectively represents the scaling approach ad the selection step to chose the
most adequate models and couple metric/null model. “M0” corresponds to null model. Dashed arrows are the
major connexions established between hypothesis-testing and model-based approaches. From top to bottom, the
first dashed arrow corresponds to the use of hypothesis testing to test the significance of model parameter of
“basic curve fitting” models (e.g., GLM, GLMM, among others). The middle dashed arrow represents the need
to estimate parameter and structural uncertainties of (ecologically-) constrained and mechanistic null models
through performance analyses. Finally the last dashed arrow corresponds to the potential use of hypothesis-
testing approach to guide the construction of mechanistic and “basic curve fitting” models to reduce the starting
group of possible models.

but also for the ecological hypothesis (Fig. 2). These analyses can be performed by
benchmark tests (Gotelli 2000, Ulrich and Gotelli 2010) or using the same logic but with

mechanistic simulations (Kembel 2009). For a single metric, the null model will define the
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position of the couple metric/null model along a “process-based” gradient with random null
models integrating no ecological processes and (ecologically-) constrained null models and
mechanistic null models respectively integrating them indirectly (i.e., pattern reproduction)
and directly (i.e., process modelling) (Fig. 2). The type of ecological questions addressed will
therefore increasingly involve the ecological processes. Direction 2 also presents this gradient
with “basic curve fitting” integrating no processes and mechanistic models modelling them
directly. Both are, as for Direction 1, conducting at multiple ecological scales. In particular,
the multi-scale selection for mechanistic models is applied at three different levels: (i)
summary statistics (if used), (ii) model structure and (iii) parameter estimation (Fig. 2). Note
that only (iii) is relevant for “basic curve fitting”. As for the couples metric/null models,
several summary statistics and models should be selected to better catch the multi-scale
functioning of ecological systems. Then, uncertainties about parameter estimation and model
structure (for mechanistic models only) are assessed for the selected models before going to

the next step of model validation and tests of the parameter significance (Fig. 2).

From the above description, three major connexions can be established between Direction
1 and Direction 2 (Fig. 2). The first one is the use of hypothesis testing when testing for
parameter significance of “basic curve fitting”. The second concerns the use of (ecologically-)
constrained and mechanistic null models respectively needing performances analyses to
determine the structural and parameter (only for mechanistic null models) uncertainties. The
last one is less obvious and relies on the possibility of using hypothesis-testing to guide
modelling. The basic idea behind this guidance would be to analyse the empirical datasets
with an increasing strength of complexity. This would begin with preliminary analyses to
identify ecological scales and source of variation through untested statistics (e.g., biodiversity
indices, principal component analysis) and random and (ecologically) constrained null
models, and end with the fit of models (mechanistic or not). The major advantage of such an
approach would be to avoid performing a scaling approach for hundreds of possible models

by reducing the starting pool of possible models.

Now is the time to conclude about our journey retracing 3 years of scientific reflections.
But before doing it, I would like to go a little off the scope of the thesis by rapidly addressing

one particular point that I have encountered since the beginning of this work.
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IV. A small “out of scope” opinion: are ordination multivariate methods dead?
Well... What an astonishing question isn’t it? I faced it during my participation to the
British Ecological Society colloquium. It was actually quiet more surprising as it came that
way: “You know, if you want to do carrier, you should stop working on that stuff”. Finding
something intelligent to say was impossible at the time of the event. However, some elements

of response appeared since.

In fact the point was that multivariate ordination analyses present some limits. The major
reproach is that they assume a linear response of species along the explanatory variable. If this
is true for principal component (Hotelling 1933) and redundancy analyses (Rao 1964),
correspondence and canonical correspondence analyses allow for taking into account
Gaussian species responses by maximising the separation of the species optimums (Hill 1974,
ter Braak 1987). But the criticism remains and is notably related to the development of
generalised linear (mixed) models able to take into account other families of response such as
binomial or Poisson (Bolker et al. 2009). This calls for further developments of multivariate
ordination analyses. Another important aspect to consider in those future improvements of
ordination methods would be to allow the analysis of time series. This obviously pertains the
importance of integrating ecological scales supported throughout this manuscript. Some
methods are already available such as functional data analysis (Ramsay and Silverman 2005)
allowing to fit ecological curves (e.g., temporal curves for different sites) and compared them
through summary statistics such as functional principal component analysis. Recently,
principal response curve initially developed by van den Brink and ter Braak (1999) to analyse
temporal response of community composition to toxicants relative to a control treatment was
extended by Auber et al. (2017) to analyse spatio-temporal variation of community
composition relative to a control time period. Although both approaches can bring important
insights, ordination analyses still need further developments to include temporal aspect to
answer the growing need of ecologists notably with time series brought by remote sensing

(Pasquarella et al. 2016).

Despite those obvious needs of improvements, I do not think ecologists will give up easily
on ordination analyses. In particular, this new era of Big Data will prove full of challenges for
model-based approaches, which will probably have hard times to achieve convergence.

Moreover, ecologists will need tools able to reduce the dimensions of their data to explore
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them more easily and guide their future steps of analysis. Furthermore, without being
sarcastic, implementing and interpreting model-based approaches such as mechanistic models
may be difficult for ecologists with a light mathematical background. Multivariate ordination
methods can offer more simple implementations and interpretations in comparison. Finally,
they are still widely used to summarise datasets before integrating their outputs in a model-
based approach. For example, axes of principal component analyses performed on empirical

data can be integrated to generalised linear mixed models (Espirito-Santo et al. 2013).
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V. General Conclusion

This thesis aimed at extending the ecological toolbox to improve the identification and
quantification of the role of ecological processes underlying structure and composition of
communities and metacommunities. The study proposed to integrate ecological scales and
ecologically-constrained null models to enhance the precision and allow a multi-scale
approach of the current hypothesis-testing methods. The major conclusions of the manuscript

dre:

* Ecological scales and ecologically-constrained null models appear highly relevant to
offer a correct identification and quantification of processes’ effects for hypothesis-

testing methods.

* Adopting a scaling approach combined with ecologically-constrained (or mechanistic)
null models could be a cornerstone of future works to separate the roles of different

ecological processes.

* Adopting a scaling approach and conducting a selection procedure are essential for

both hypothesis-testing and model-based approaches.

* A dichotomy is slightly present between hypothesis-testing and model-based
approaches. Despite this division, they present some connexions and, given the rapid
statistical advance we have faced since the 1980s, bridges between these two
approaches are expected to multiply leading either a methodological globalisation or

the co-existence of multiple specific sub-approaches.

Ecological scales and ecologically-constrained null models are just another step further on
the road of methodological improvements to better identify, quantify and distinguish
ecological processes underlying communities and metacommunities. Although they do not
offer solutions to all the limits presented by methodologies, the progresses that will

nevertheless be achieved through them will allow to build new (even if incomplete and
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temporary) certitudes giving chances for new questions to appear, therefore contributing to

enhanced the global knowledge in ecology.

As a final conclusion, I could finally answer the sharp criticism raised by a professor I
encountered during my second year of Ph.D. It was a sunny lunchtime and I remember very
clearly how he ruined my day by fiercely assuring that it was stupid for a Ph.D student to
work on methodological developments because, first, the student does not learn anything
about ecology and, second, because it does not contribute to make any progress in ecology.
Given the work achieved for the three years allotted, I could now answer without wincing:
“Pr. X, you are mistaken. A Ph.D in statistical ecology is relevant and contributes to scientific

progress in ecology”.
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Notre voyage s’achéve,
Et j’espére que ce pas suplémentaire que nous avons fait,

S’inscrira dans la continuité d’une marche vers le savoir

Our journey is coming to an end,
And I hope that this additional step we did
Will be part of the perpetual progress towards knowledge
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toujours de la facon dont tu avais de régler mes grosses périodes de stress et chagrins :
un bon bain, un bon repas, un bon gateau et un bon film ! Merci pour ces moments

partagés, tu es un oncle formidable.

Mes parents, pour avoir accepté de relire les parties francaises de cette thése et
notamment le résumé vulgarisé. Mais votre investissement ne s’arréte pas la puisqu’il
a débuté bien avant, des le moment ou vous m’avez poussée a faire des études. Sans

vous rien n’aurez été pareil alors merci pour tout : pour vous étre toujours pliés en
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quatre pour moi, pour toute la tendresse et les attentions qui ont fait la personne que je
suis aujourd’hui, et pour m’avoir écoutée me plaindre a longueur de journée quand ma

these me frustrait trop.

Et enfin, a celui qui partage ma vie. Merci pour ton soutien constant, ca n’a pas été
facile pour toi de m’entendre raler et me plaindre plut6t que de réagir. Tu as toujours
été la pour me le rappeler d’ailleurs et c’est comme ¢a que tu as le plus contribué : tu
m’as constamment stoppé dans mes descentes noires en me bottant les fesses mais
aussi en m’apportant toute ta tendresse dans les moments ou j’étais au bout. Robin,
sans toi je n’aurai pas vécu ma these de la méme maniere et je te remercie d’avoir été

présent pendant ces trois années. Je n’ai que trois mots a ajouter : a ton tour !
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Résumé vulgarisé

RESUME FRANCAIS

Apporter une lumiére méthodologique sur les processus écologiques : les échelles
écologiques et modéles nuls contraints sont-ils des solutions pertinentes ?

Cher(e) Lecteur(rice),

Avant d’entamer cette lecture, prenez donc le temps de rassembler votre curiosité, votre
esprit critique et votre ame d’enfant. Vous étes préts ? Alors prenez une derniere respiration et
embarquez avec moi dans ce fabuleux voyage de trois ans de recherche (version résumée et

vulgarisée)...

Vous aurez certainement conclu du titre que cette thése se place dans la discipline de
I’écologie. Elle se concentre en fait sur une sous-discipline appelée écologie des
communautés. On définit une communauté comme un ensemble d’espéces qui coexistent dans
I’espace et le temps et pouvant (ou non) interagir directement ou indirectement entre elles
(Magurran 2004, Emerson et Gillespie 2008). Les communautés sont étudiées par le biais de
deux de leur caractéristiques principales : leur composition et leur structure. La composition

se décline en trois catégories : (i) la composition en especes reportant I’identité et 1’abondance

Communauté Communauté

A B.

Figure 1 : Concept de composition phylogénétique. (A) et (B) sont deux communautés
différentes toutes deux composées de 6 especes qui se répartissent sur deux arbres
phylogénétiques distincts. La composition phylogénétique de la communauté (A) est plus
diversifiée que la (B) car les especes de la communauté (A) appartiennent a deux clades ou
groupes phylogénétiques différents (carrés gris clair et foncé) tandis que celles de la
communauté (B) n’appartiennent qu’a un seul clade (carré gris foncé). (A-B) Les especes
sont représentées par des symboles.
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relative (i.e., le nombre d’individus) de chaque espece présente dans la communauté ; (ii) la
composition fonctionnelle décrivant I’identité et la valeur des traits fonctionnels (e.g., taille,
masse corporel, surface foliaire...) présentés par les espeéces; et (iii) la composition
phylogénétique détaillant les lignages phylogénétiques présents dans la communauté
permettant ainsi de définir le niveau de parenté existant entre les especes de la communauté
(Fig. 1). La structure se décompose, quant a elle, en deux catégories. En premier, la structure
spatiale décrivant la position spatiale des individus (ou des traits) dans la communauté (Fig.
2). Celle-ci est définie comme « aléatoire » si la position d’un individu est indépendante des

autres individus (Fig. 2A), « groupée » si les individus ont tendance a étre localisés les uns a

Communité Communité Communité
) ®
™ [ ® ®e ®
o ® %o &e d °
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I o ° o3
e © Py ° [ [ ]
A B C

Figure 2 : Structure spatiale d’une communauté. (A-C) Les carrés gris représentent des communautés et les
points noirs sont des individus. Dans les communautés, les individus sont soit (A) dispersés aléatoirement, soit
(B) groupés ou encore (C) dispersés uniformément.

coté des autres, et « dispersée » si les individus ont tendance a étre localisés séparément les
uns des autres. En second, la structure phylogénétique caractérisant la distribution des espéeces
ou des traits le long de 1’arbre phylogénétique par rapport a un autre ensemble d’espéeces ou
de traits (Fig. 3). L’ensemble utilisé pour la comparaison peut étre soit un ensemble d’especes
ou de traits plus large que celui dont on étudie la structure, soit simulé le long de 1’arbre

phylogénétique sous un processus évolutif particulier comme le mouvement Brownien (i.e.,

B e HII IS S FIRE Iig - F S Bl LR E

A. B. C.
Figure 3 : Structure phylogénétique des traits fonctionnels d’espéces. Les rectangles représentent un trait
d’espéce (e.g., la taille) et les différentes couleurs correspondent aux différentes valeurs possibles de ce trait. Sur

les arbres phylogénétiques, les valeurs du trait sont soit (A) groupées, soit (B) aléatoirement dispersées, ou
encore (C) dispersées uniformément.
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évolution par marche aléatoire le long de I’arbre phylogénétique). Cette comparaison permet
de définir la structure phylogénétique comme étant « groupée » (Fig. 3A), « aléatoirement
dispersée » (Fig. 3B) ou «uniformément dispersée » (Fig. 3C) par rapport a autre un

ensemble d’espéces ou de traits.

Cependant, rester a I’échelle de la communauté est un peu réducteur, n’ayons pas peur de
voir plus grand ! Mais plus grand comment ? En 2004, Leibold et collab. développent le
concept de méta-communauté définit comme un ensemble de communautés reliées entre elles
par la dispersion (i.e., déplacement d’un individu de sa communauté originelle a une autre)
(Fig.4). L’échelle de la méta-communauté est intéressante car elle permet d’étudier les
variations en compositions (i.e., especes, traits, phylogénie) entre les communautés, aussi
appelée diversité-béta.

Les structures spatiales et phylogénétiques des communautés ainsi que la variation en
composition (i.e., especes, trait ou phylogénie) d’une communauté a une autre représentent ce
que I’on appelle les patrons de biodiversité. L’ existence méme de ces patrons nous amene a
nous poser une question essentielle de 1’écologie des communautés : Quels sont les processus
écologiques responsables de la structuration et de la variation en composition des

communautés ?

Méta-communauté

\ Communauté

Dispersion

Figure 4 : Le concept de méta-communauté. Les
symboles colorés représentent des espéces
différentes. La métacommunauté (carré noir) est ici
composée de trois communautés (carrés gris) qui
sont connectées entre elles par la dispersion
(fleches noires).
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Il existe quatre grands processus écologiques qui agissent comme des filtres successifs sur
un groupe global d’espéces (i.e., pool d’espéeces a I’échelle du globe) pour contraindre la
coexistence des especes (Fig. 5; Zobel 1997, Gotzenberger et collab. 2012, Marteinsdottir et

Eriksson 2014). En premier, la spéciation (i.e., apparition de nouvelles especes) et 1’extinction

Pool global d'espéces ® n *
A = g * A
* v M.

Pool historique d'espéces

f
1
i
5
1
Pool géographique d'espéces |
1
1
1
1
1
i
\

1
1
|
Pool habitat d'espéces P |
i
1
1
1

Pool local d'espéces

Figure 5: Des filtres hiérarchiques sélectionnent les espéces
résidentes dans une communauté. Les espéces sont
rapportées par des symboles colorés. Les interactions biotiques
correspondent aux interactions entre especes telle que la
compétition. Le pool local d’espéces correspond au pool
d’espeéces final constituant la communauté.
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(i.e., disparition de certaines especes) sont tous deux des processus dit « évolutifs » et forment
un filtre historique qui permet de réduire le pool d’espéces global a un pool historique
d’especes. Ce pool d’especes est composé de toutes les especes pouvant potentiellement
s’établir dans une communauté donnée. Ensuite, la dispersion réduit le pool d’especes
historique au pool géographique d’especes constitué de toutes les especes pouvant atteindre
une communauté donnée. Puis, les especes sont sélectionnées par 1’environnement pour
former le pool habitat d’especes capables de survivre dans les conditions environnementales
d’une communauté donnée. Ce processus est communément appelé le filtrage
environnemental et sélectionne les especes selon leurs traits fonctionnels. Et enfin, les
interactions entre especes (i.e., interactions biotiques) telle que la compétition entre especes
réduit le pool habitat d’especes au pool local d’especes c’est a dire aux especes présentes dans
une communauté donnée (Fig. 5).

Un des objectifs majeurs en écologie des communautés est d’identifier et de quantifier les
processus écologiques responsables de la structuration et variation en composition des
communautés. La représentation schématique précédente peut présenter la réponse a cette
question comme tout a fait triviale. Mais il n’en est pourtant rien... Le seul moyen d’étudier
les processus repose sur les patrons de biodiversité qu’ils induisent. Cependant, chaque
processus n’induit pas un patron unique et plusieurs processus peuvent étre la cause d’un seul
patron (Cale et collab. 1989, Real et McElhany 1996). Par exemple, il a été montré que la
compétition et le filtrage environnemental pouvaient tous deux mener a une structure
phylogénétique groupée ou uniformément dispersée (Kraft et al. 2007). L’affaire devient donc
bien compliquée... Comment peut-on arriver a correctement identifier et quantifier les
processus sous-jacents aux communautés si les signatures des processus se ressemblent ?
Cette these propose d’explorer deux pistes.

La premiere est purement écologique. Il a été montré en effet que les processus
écologiques agissent en fait a de multiples échelles écologiques (e.g., temporelle, spatiale,
phylogénétique). Par exemple, I’environnement agit a large échelle spatiale au travers de
variables climatiques (e.g., température) mais aussi a fine échelle spatiale au travers de
variables du sol (e.g., pH) (Siefert et collab. 2012). De méme, la dispersion peut agir a large
échelle spatiale si la capacité de dispersion de I’individu atteint de longues distances, mais
aussi a fine échelle spatiale si cette capacité est réduite a une tres faible distance géographique

(da Silva Menezes et collab. 2016). Ainsi, aller dans les échelles écologiques pourrait apporter
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une meilleure identification du patron de biodiversité associé aux processus. Par ailleurs, cela
permettrait de savoir comment évolue le signal du processus le long des échelles écologiques
et donc comment leur role dans la formation des communautés varie en terme d’intensité et de
variables impliquées.

La seconde piste est purement statistique et concerne le degré de précision des méthodes
d’analyse. Parmi les nombreux outils disponibles pour identifier et quantifier les processus
écologiques a l’origine des communautés, la communauté scientifique utilise les tests
d’hypothéses. Leur principe est basé sur le test d’une hypothese qu’on appelle « hypothése
nulle » ou « HO » définie comme la réponse négative la plus simple a une question
écologique. Prenons par exemple la question suivante: « Le filtrage environnemental
structure-t-il la wvariation en composition en especes des communautés ? » La HO
correspondante est « Le filtrage environnemental NE structure PAS la variation en
composition en especes des communautés ». Les tests d’hypothéses sont basés sur le rejet ou
non de HO. Pour cela, il faut déja traduire cette HO verbale en HO mathématique. On va alors
définir un « modeéle nul » MO qui permettra de simuler des données sous HO. Dans notre cas,
il s’agira donc de définir un modéle permettant de simuler une variation en composition en
especes des communautés qui ne dépend pas de I’environnement. Nous verrons comment
définir MO dans la suite du paragraphe. Une fois M0 défini, on va choisir une statistique k a
calculer et qui permettra de quantifier ’effet du filtrage environnemental. Le principe est
maintenant de simuler un jeu de données sous MO ou la variation en composition en especes
des communautés ne dépend pas de I’environnement et de calculer k sur ce jeu de données.
On obtient alors k;, qui estla valeur de k sous HO, donc la valeur attendue de k quand

la variation en composition en especes des communautés ne dépend pas de 1’environnement.

A. B. C.

p>a p<a
Non rejet HO Rejet HO

Figure 6 : Principe des tests d’hypothéses. (A) La distribution nulle des valeurs de k o - (B-C) La valeur
observée k. est ensuite comparée a cette distribution nulle. Si la probabilité p pour k,;, d’étre supérieur
a k,,

. dépasse &, HO est maintenue (B). Au contraire HO est rejetée si cette probabilité dépasse o (C).
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L’étape de calcul de k,, estrépétée de trées nombreuses fois (e.g., 999 fois) permettant ainsi
de construire une distribution nulle c’est-a-dire une distribution des valeurs de k attendues
sous HO (Fig. 6A). Ensuite, la statistique k est calculée sur le jeu de données empiriques

(i.e. récolté dans la nature), on obtient alors k. qui est I’effet observé de 1’environnement

S

sur la composition d’espéces des communautés. Comme étape finale, k,,  est comparé a la

S

distribution nulle de k,, . Dans le cas d’un test unilatéral, on dit que si la probabilité pour

les k,, d’étre supérieurs a k,, dépasse un seuil alpha (i.e., 0,05), alors HO ne peut pas

s
étre rejetée (Fig. 6B). Autrement dit, il n’y a pas d’effet de I’environnement. Inversement, si
cette probabilité est inférieure a alpha, HO est rejetée et on conclue qu’il y a éventuellement
un effet de I’environnement (Fig. 6C). Mais comment définir MO ? La plupart du temps, MO
est défini par des permutations des matrices de jeux de données. Si on reprend notre cas, pour
étudier 1’effet de I’environnement, deux tableaux (i.e., matrices) de données sont requis : une
matrice de composition d’especes L avec les espéces en colonnes et les communautés en
lignes ce qui permet d’avoir la composition en especes de chaque communauté (Fig. 7), et
une matrice des conditions environnementales R présentes dans les communautés avec les
variables environnementales en colonnes et les communautés en lignes (Fig. 7). k permet

de calculer un lien entre ces deux matrices, k. calcule donc le lien empirique entre R et

obs

L . Comme MO a été défini comme un modeéle nul permettant de simuler un jeu de données
sous HO ou la variation en composition d’espéeces des communautés ne dépend pas de I’envir-
onnement, il faut donc briser le lien entre R et L . La maniére la plus simple de faire cela
est de permuter aléatoirement les lignes de L . Chaque lignes de L peut en fait étre
assimilée a la position de chaque communauté dans [’espace. Ainsi, effectuer des
permutations aléatoires des lignes de L revient a changer aléatoirement la position spatiale

des communautés (Fig. 8).

Variables
Espéces environnementales

Communautés I 1 Communautés

Figure 7: Tableaux de jeux de données espéces L et
environnementales R
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Cependant, définir MO sur la base de permutations et randomisations aléatoires n’est pas
suffisant pour répondre a une question écologique complexe. Dans notre cas par exemple,
I’environnement n’est en fait pas seul a structurer la variation spatiale de la composition en
especes des communautés. En effet, comme introduit précédemment, les especes peuvent
dispersées d’une communautés a une autre, provoquant une dépendance spatiale entre les
communautés puisque des communautés proches auront tendance a présenter une composition
en especes similaire. Si on ne prend pas en compte cette structure sous-jacente liée a la
dispersion, le test peut trouver un lien entre L et R alors qu’il n’y en a pas. Ainsi, dans
cette thése, on propose d’augmenter la précision des modeles nuls en les contraignant a
respecter des structures écologiques présentes dans les jeux de données initiaux. Pour

reprendre notre exemple, il faudrait contraindre les permutations pour reproduire les

L'environnement structure-t-il spatialement la variation
en composition en espéces des commuautés ?

¢

HO = La variation spatiale de la composition en especes des
communautés n'est pas spatialement structurée par I'environnement

¢

Données initiales Modéle nul

especes

Permutations

T
| aléatoires

communautés

|

)
G | — N
communauté

Méta-communauté
Figure 8 : Construction d’un modéle nul. Le modéle nul correspondant a

la question écologique est la permutation aléatoire des lignes de la matrice

L représentant la composition en espéces des communautés, permettant
de produire des communautés aléatoirement structurées dans 1’espace tout
en gardant leur composition intacte. Les triangles blancs, carrés noirs et
cercles gris représentent trois espéces différentes. Les couleurs des
communautés correspondent aux couleurs des lignes de L

2 &
&
B &
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structures spatiales de L qui ne dépendent pas de 1’environnement (donc de la dispersion)

(Fig. 9). Ces modeles nuls sont appelés « modeéles nuls écologiquement contraints ».

L'environnement structure-t-il spatialement la variation
en composition en espéces des commuautés ?

:

HO = La variation de la composition en espéces des communauteés
n'est pas structurée spatialement par I'environnement sachant que
les espéces sont déja structurées spatialement par la dispersion?

;

Données initiales Modéle nul

espéces

T Permuations
communautés| L _— ] contraintes

= ==
L -
- ..

Pl
S
\
"
E |
.;
g ¥
A
L
et

RIS

@ {
k
: 3
communauté @ \, /
‘i. o’
\ J R J

Méta-communauté
Figure 9 : Construction d’un modéle nul écologiquement contraint. Comme

les compositions des communautés ne sont pas indépendantes, dii a la dispersion
(ellipses en pointillés et grises), le modeéle nul correspondant a la question
écologique est une procédure de permutation de la matrice L respectant la
contrainte écologique de la structure spatiale donnée par la dispersion (ellipses en
tirets et grise). Les triangles blancs, carrés noirs et cercles gris représentent trois
especes différentes. Les couleurs des communautés correspondent aux couleurs

des lignes de L

En résumé, la these propose d’intégrer les échelles écologiques et des modéles nuls
écologiquement contraints dans les tests d’hypotheses. Le manuscrit prend le cas particulier
de I’étude du filtrage environnemental sur la variation en composition en especes des
communautés de plantes dans une méta-communauté. Trois analyses multivariées largement

utilisées pour étudier I’effet du filtrage environnemental ont été considérées dans ce
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manuscrit : le quatrieme coin, le test de Mantel et le partitionnement de variation. Notez
qu’une analyse multivariée est une analyse statistique capable de gérer des tableaux de
données c’est-a-dire présentant plusieurs variables (matrices L et R Fig. 7). Nous
parlerons d’abord de I’implémentation des échelles dans la méthode du quatriéme coin, puis
de l’intégration de modele nuls dans les tests d’hypotheses du test de Mantel et du
partitionnement de variation. Vous étes préts ? Non? Oh, vous savez c’est comme un
pansement qu’on doit enlever, il ne faut pas hésiter et y aller d’un coup sec. La c’est pareil,

laissez vos yeux glisser d’un mouvement rapide au paragraphe suivant.

Le filtrage environnemental est maintenant bien connu pour sélectionner les espéces sur la
base de leurs traits fonctionnels en écartant toutes les especes qui présentent des combinaisons
de traits non adaptées. Il est donc intéressant d’étudier les relations trait-environnement pour
identifier quels traits sont sélectionnés par quelles variables environnementales. Parmi
d’autres méthodes, le quatrieme coin est une analyse multivariée tres utilisée pour mesurer la
relation trait-environnement entre un unique trait et une unique variable environnementale
tout en prenant compte de ’abondance des especes (Legendre et collab. 1997, Dray et
Legendre 2008, Peres-Neto et collab. 2016). Cependant, il a été montré que I’environnement
et les traits présentent des dépendances susceptibles d’influencer la relation trait-
environnement.

L’environnement présente en effet de fortes dépendances spatiales puisqu’il a été souligné
plus haut que les variables environnementales n’agissaient pas toutes a la méme échelle
spatiale avec des variables plutot a large échelle (e.g., variables climatiques) ou a fine échelle
(e.g., variables du sol). Les traits souffrent, quant a eux, de fortes dépendances
phylogénétiques puisque les especes présentent des relations de parenté lié au partage d’une
histoire évolutive commune. Cette dépendance s’exprime par le fait que les especes
apparentées ont soit tendance a présenter des valeurs de traits similaires indiquant que la niche
écologique des especes n’a pas changé depuis leur divergence d’un ancétre commun ancien
(large échelle phylogénétique ; Fig. 10A), soit dissimilaires indiquant que leur niche
écologique est différente et que cette divergence de niche s’est produite récemment (fine
échelle phylogénétique ; Fig. 10B).Il est donc intéressant d’intégrer les échelles spatiales et
phylogénétiques dans le quatriéme coin pour capturer les informations suivantes : (i) identifier

I’échelle spatiale a laquelle une variable environnementale sélectionne un trait en particulier ;
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(ii) identifier 1’échelle phylogénétique du trait sélectionné par une variable environnementale
particuliere. L’échelle phylogénétique va indiquer le degré de conservatisme du trait filtré
pour savoir si la niche des especes est conservée (i.e., le trait est conservé le long de la
phylogénie = large échelle phylogénétique) ou divergente (i.e., le trait n’est pas conservé le
long de la phylogénie = fine échelle phylogénétique). En résumé, intégrer les deux types
d’échelles va permettre de capturer a la fois [I’histoire spatiale du filtrage
environnemental pour identifier les variables environnementales successivement impliquées
au cours des échelles spatiales, mais aussi I’histoire évolutive des espéce sélectionnées par ce

filtrage, a savoir : a-t-il induit une différence de niche ancienne ou récente ?

Large échelle phylogénétique Fine échelle phylogénétique

TTTITTTTTT T R T T I
s )

. B.

Figure 10 : Echelles phylogénétiques. (A-B) Les rectangles gris et noirs représentent
respectivement des valeurs de traits d’espéces négatives et positives. (A) Les traits sont
structurés a large échelle phylogénétique puisqu’un clade phylogénétique présente des
valeurs de traits négatives et un autre positives. Ceci indique que la niche écologique des
especes est conservée au sein d’un clade puisque toutes les espéces présentent des valeurs
similaires de traits. (B) A l’inverse, toutes les espéces présentent une valeur de traits
différente de 1’espéce qui lui est la plus proche. Ainsi, la niche écologique de ces espéces
est différente puisque les valeurs de traits ne sont pas conservées entre especes
apparentées.

La nouvelle méthode développée est appelée « quatriéeme coin multi-échelle » et présente
de tres bonnes performances. En effet, les résultats ont montré que les échelles spatiales et
phylogénétiques étaient correctement identifiées et détectées significatives pour chaque
scénario de simulations. Cette méthode sera disponible prochainement sous le logiciel R dans

le package adespatial. En conclusion, cette approche permet d’apporter des informations
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nouvelles dans 1’étude du filtrage environnemental permettant d’affiner la connaissance des
patrons de biodiversité fournis par ce processus.

La seconde partie de la thése se concentre sur 1’identification et la quantification de I’effet
du filtrage environnemental sur la variation en composition en especes des communautés. Le
partitionnement de variation et le test de Mantel sont deux analyses multivariées tres utilisées
pour répondre a cette question, et notamment pour séparer 1’effet de I’environnement par
rapport aux processus spatiaux tels que la dispersion. Comme présenté dans 1’exemple plus
tot, étudier I’influence de I’environnement sur la structure spatiale de la variation en
composition en espéces des communautés implique de faire un modele nul prenant en compte
la structure spatiale déja induite par la dispersion (Fig. 9). En effet, si le modele nul est
seulement construit sur la base de permutations aléatoires (Fig. 8), les deux méthodes
présentent d’importants biais puisqu’elles détectent un effet significatif de I’environnement
quand il n’y en a pas et surestiment 1’effet de I’environnement quand il est présent. La mise en
place d’un modele nul spatialement contraint prenant en compte les structures spatiales
induites par la dispersion a permis de corriger ces deux biais dans le partitionnement de
variation et le test de Mantel. Cette procédure de test basée sur un modeéle spatialement
contraint est maintenant disponible pour le partitionnement de variation et le test de Mantel
dans le package R adespatial (fonction msr). Cette partie a aussi nécessité le développement
d’un simulateur de données d’espéces qui sera certainement intégré au package R adespatial.
En conclusion, la modification du test d’hypothese du partitionnement de variation et du test
de Mantel est une avancée conséquente pour 1’identification et la quantification de 1’effet du
filtrage environnemental puisqu’elle permet une estimation exempte des biais di a la
dispersion et illustre bien I’importance de prendre en compte des contraintes écologiques dans

les modeles nuls associés aux tests d’hypotheses.

Cette thése avait pour objectif d’élargir la boite a outils méthodologique disponible en
écologie pour améliorer 1’identification et la quantification des processus écologiques
responsables de 1’assemblage des communautés et méta-communautés. Pour ce faire, I’étude
proposait d’intégrer les échelles écologiques et les modeéles nuls écologiquement contraints
dans les méthodes multivariées reposant sur les tests d’hypotheses pour étudier 1’effet de
I’environnement. Les résultats obtenus, ainsi que ceux présents dans la littérature scientifique,

montrent que les échelles écologiques et les modeles nuls écologiquement contraints sont des
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solutions tout a fait pertinentes pour améliorer I’identification et la quantification des
processus écologiques. Pour aller plus loin, le these soutient que ces deux approches ne
doivent pas rester isolées et que 1’adoption d’une approche multi-échelles combinée aux
modeles nuls écologiquement contraints représenterait certainement une approche « clé de

volite » pour arriver a séparer correctement les processus écologique les uns des autres.

J’espére que ce voyage de quelques pages au cceur de 1’écologie des communautés vous
aura satisfait et que vous repartirez, cher(e) Lecteur(rice), avec de nombreuses nouvelles
questions car, apres tout, la science avance grace a 1’ensemble des réflexions que ces

questions procurent.

- 185 -






g REC

Appendices

00:00:00 3..2..1.8..1..2..3







List of appendices

Axis 1 — Chapter 1: Phylogenetic and spatial scaling of trait-mediated
environmental filtering

Appendix S1: Standardisations applied in the multi-scale fourth-corner...........c..ccccccecueeneen. 188
Appendix S2: ACDC transformations of phylogenetic trees..........ccccceeeveereveeerceieeeriveeenneennn 190
Appendix S3: R scripts to reproduce the simulations of the manuscript.......c..ccccceeervuereennen. 191

Appendix S4: Spatial profiles of the environmental vector for values of
gequals to 0, 2 and 100........c.eeeeueeeiiieeiieeeiee et eeereeeereeeae e e aeeesbeeesaaeeeeenans 200

Appendix S5: Phylogenetic profiles of trait vector for values of p equals
£0 =0.8 AN 0.t 202

Appendix S6: Decomposition of trait-environment relationship across both
spatial and phylogenetic SCales..........ccvueeerieeriiieeriiieccieecsie e 203

Appendix S7: Standard deviation associated to the mean R? represented in
scalograms of Figure 4 of the main manuscript and Appendix S6................... 206

Axis 2 — Chapter 1: Testing the mantel statistic with a spatially-constrained
permutation procedure

Appendix 1: Type I error rates and values of Mantel statistic for simple
and partial Mantel tests and MSR-Mantel for irregular sampling
with increasing number of sSamMPIes.........cccoovueiviiiriiiiiiiie e 210

Appendix 2: Type I error rates and values of Mantel statistic for simple
and partial Mantel tests and MSR-Mantel for a regular sampling...................... 211

Appendix 3: Type I error rates and values of Mantel statistic for simple

and partial Mantel tests and MSR-Mantel for regular sampling

with increasing number of variables...........cccocveriiiriieiieniieiee e, 212
Appendix 4: Type I error rates and values of Mantel statistic for simple

and partial Mantel tests and MSR-Mantel for regular sampling

with increasing number of SAMPIES.........cccecieviiiriiiiiieieeeeee e 213

Appendix 5: Tllustration of the MSR approach applied on Mantel test............cccccververveennen. 214

- 186 -



Axis 2 — Chapter 2: Testing the mantel statistic with a spatially-constrained
permutation procedure

Appendix S1: Mathematical details of the spatially-constrained variation
Partitioning PrOCEAULIE........c.ueerrieeriieerieeerieeerteesteeesteeesreeessreeeessnsasneeessnsnnns 221

Appendix S2: Detailed simulation model used in the manuSCript........ccccceceeveerienneenieennnneen. 223

Appendix S3: Respective mean and standard deviation of [ab], [a]
and [b] fractions in the three simulation SCENATIOS.........evveevivvievvreeeeeeiiieeeeeennn. 225

Appendix S4: Effect of Moran’s Eigenvectors Maps selection on
estimation and Type I error of fraction [a] in pure
neutral MetaCOMMUIILIES. ....c..ccouervirierieriereriene ettt 229

Appendix S5: Environmental contribution (fraction [ab]) of mixed
metacommunities is a weighted mean of species sorting

and neutral environmental CONIIIDULIONS. ... .cceveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenaeeeeenns 231

Appendix S6: Empirical application of the spatially-constrained variation
PATIEIONINEG . c...eveeeeeiiieeeeeiteee ettt e e et e e e ettt e e s eeabteeeesarreeeeeesesssnnnsssnraeeees 233

Article in collaboration

Spatial frequency of global climatic conditions drives community functional
composition: a test with ANGIOSPeITIS. ......ouiiuiiiii e 238

- 187 -



Axis 1 — Chapter 1






Supplementary material ECOG-XXXX. Appendix S1. Sylvie Clappe, Pedro R. Peres-
Neto and Stéphane Dray. Phylogenetic and spatial scaling of trait-mediated

environmental filtering.

This document details the standardisations applied in the multi-scale fourth-corner.

The first step of the approach requires to calculate the classical fourth-corner correlation
cor(t,e)="¢y -P-Tyy =ty -P"-€, in which the environmental vector e and the trait
vector t are the respectively standardized by W, (i.e., diagonal matrices of sites (rows)

weights; see manuscript for details) and W (i.e., diagonal matrix of species (columns)

weights; see manuscript for details). ‘€,, and ?w, are standardized as follow:

e—z W, e
ey = : (Eq. Al.1)

\/i w,.-(e—ngwn-ef

Ty = . (Eq. A1.2)

Note that Zn: W, =1 and ZS: w,=1 .
1 1

If the trait-environment relationship is significant, the final step of our approach is the
decomposition of the relationship in phylogenetic and spatial scales in which each predicted

environmental vector at the k-th spatial scale ( &, ) and each predicted trait vector at the I-th

phylogenetic scale ( t, ) are standardized as follows:
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ey = = (Eq. A1.3)

ty,= L (Eq. Al.4)

where & and t are, respectively, the environmental matrix containing environmental
vectors predicted at all spatial scales and the trait matrix containing trait vectors predicted at

all phylogenetic scales. Each predicted environmental and trait vector are respectively divided

n—1 s—1
by the variance of & and i sothat &, =) &y, and t,=) &,
k=1 =1
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Supplementary material ECOG-XXXX. Appendix S2. Sylvie Clappe, Pedro R. Peres-
Neto and Stéphane Dray. Phylogenetic and spatial scaling of trait-mediated

environmental filtering.

This document details the ACDC transformations of phylogenetic trees.

Original tree

T

(52V) (B) © D)
—_—
_L‘_‘—% —_—

p—

Figure A2: ACDC transformations of phylogenetic tree for (A) g =-2, (B) g =0, (C) g =2, and (D) g = 100.
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Supplementary material ECOG-XXXX. Appendix S3. Sylvie Clappe, Pedro R. Peres-
Neto and Stéphane Dray. Phylogenetic and spatial scaling of trait-mediated

environmental filtering.

This document provides R scripts to reproduce the simulation presented in our manuscript.
We present scenarios A and B detailed in the study with an environmental variable structured
at large spatial scale (rho=0.8) and a trait simulated under Brownian motion along a

phylogenetic tree not modified by ACDC transformation (g=0).

Data

Performing the multi-scaled fourth corner approach requires five information: (i) a table of
species abundances (species x sites), (ii) a species functional trait (one trait x species), (iii) an
environmental variable (one variable x sites), (iv) a table of spatial predictors (sites x spatial
predictors; here Moran’s Eigenvector Maps; Dray et al. 2006), and (v) a table of phylogenetic
predictors (sites x predictors; phylogenetic Moran’s Eigenvector; Dray et al. 2006; Peres-Neto

2006).

###Required packages###
library(ade4)

library(spdep)
library(adespatial)
library(adegraphics)
library(ape)
library(adephylo)
library(phytools)
library(geiger)

###Simulation functions## #
##Generate species community (from Peres-Neta et al. 2016)##
generate_community <- function(tolerance,E, T,preset nspecies,preset ncommunities) {
repeat {

# one trait, one environmental variable

h <- runif(preset_nspecies,min=0.3,max=1)

sigma <- runif(preset _nspecies)*tolerance

L <- matrix(data=0,nrow=preset_ncommunities,ncol=preset_nspecies)

for(j in 1:preset nspecies){

L[,j1 <- rpois(preset_ncommunities,30*h[j1*exp(-(E-T[j])"~2/(2*sigmal[j]1~2)))

}

n_species c <- sum(colSums(L)!=0) # c for check

n_communities ¢ <- sum(rowSums(L)!=0)

if ((n_species_c == preset_nspecies) & (n_communities_c==preset hcommunities))
{break}
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}

return(L)

}

##Generate spatially structured environmental on a 15x15 grid##
generate_env<-function(x,autocor,M){
gridl <- cell2nb(M,M)
Iw2 <- nb2listw(gridl)
rhosl <- autocor
matinvl <- lapply(rhosl, function (y) invirW(lw2,y))
aleal <- matrix(rnorm(x*length(gridl)),nrow=Ilength(gridl))
envvec <- lapply(matinvl,function(z) scale(z%*%aleal))
envmatrix<-envvec[[1]]
colnames(envmatrix)<-paste("X ",seq(1,x,1)," ",autocor,sep="")
rownames(envmatrix)<-seq(1,M*M,1)
return(envmatrix)

}

###Data simulation###

set.seed(1)

##Generate an environmental vector with 225 sites structured at large spatial scale##
environment <- generate_env(1, 0.8, 15)

##Generate trait values along a phylogenetic tree# #
#Pure birth model to generate the phylogenetic tree#
tree <- pbtree(b =1,d =0, n =50, nsim = 1)

#ACDC transformation#
tree <- rescale(tree, "EB", 0)#no transformation

#Trait values#
trait <- rTraitCont(tree, model = "BM")

##Generate species distributions##
species<- generate_community(tolerance = 1.5, scale(environment), scale(trait), 50,
225)

##Generate the spatial vectors (MEM)# #

grid.env <- cell2nb(15, 15)

Iwl.env <- nb2listw(grid.env)

MEM <- scores.listw(listw = lwl.env, MEM.autocor = "all")

##Generate the phylogenetic vectors (PME)# #

PME <- me.phylo(tree, f = function(x) 1-(x/max(x)))
colnames(PME) <- paste("PME", seq(1,49,1), sep="")
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Multi-scale fourth-corner

The multi-scaled fourth-corner can now be performed to (i) identify if the species
functional trait is linked to the environment variable, (ii) identify the spatial scale at which
trait-mediated environmental filtering is acting, (iii) identify the phylogenetic signal of the
trait involved in the filtering, and (iv) identify the association (and its strength) of spatial and

phylogenetic scales of trait-mediated environmental filtering.

Function (soon in adespatial)

###Function# ##
fourth.spatial.phylo.test<- function(L, R, Q, MEM, PME, nblocks.MEM = ncol(MEM),
nblocks.PME = ncol(PME), nbperm = nbperm){

fourth.stat.simple <- function (L, R, Q){
# #First : Definig blocks and transform MEM and PME in matrices
MEM <- as.matrix(MEM)
PME <- as.matrix(PME)
fac.MEM <- cut(1 : ncol(MEM), nblocks.MEM)
col.start.m <- tapply(1 : ncol(MEM), fac.MEM, min)
col.stop.m <- tapply(1 : ncol(MEM), fac. MEM, max)

fac.PME <- cut(1 : ncol(PME), nblocks.PME)
col.start.p <- tapply(1 : ncol(PME), fac.PME, min)
col.stop.p <- tapply(1 : ncol(PME), fac.PME, max)

#+#Second : calculate the 4th corner statistic

Pn <- apply(L, 1, sum)#row total abundance

Ps <- apply(L, 2, sum)#column total abundance
Ptot <- sum(L)#total abundance

P <- as.matrix(L/Ptot)

Fn <- Pn/Ptot
Fs <- Ps/Ptot

Wn <- diag(Fn)#sites weights
Ws <- diag(Fs)#species weights

#Standardise R and Q by weights
Qst <- (Q-sum(Fs*Q))/sqgrt(sum(Fs*(Q-sum(Fs*Q))~2))#standardised trait
Rst <- (R-sum(Fn*R))/sqrt(sum(Fn*(R-sum(Fn*R)) "~ 2))#standardised env

#fourth corner statistic
CA.L <- dudi.coa(L, scannf = F, nf = 3)

fourth.corner <- t(Rst) %*% P %*% Qst
Chessel.fourth.corner <- fourth.corner/sqrt(CA.L$eig[1])
return(fourth.corner)

fourth.stat <- function (L, R, Q, MEM, PME, nblocks.MEM, nblocks.PME){
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##First : Definig blocks and transform MEM and PME in matrices
MEM <- as.matrix(MEM)

PME <- as.matrix(PME)

fac.MEM <- cut(1 : ncol(MEM), nblocks.MEM)

col.start.m <- tapply(1 : ncol(MEM), fac.MEM, min)

col.stop.m <- tapply(1 : ncol(MEM), fac.MEM, max)

fac.PME <- cut(1 : ncol(PME), nblocks.PME)
col.start.p <- tapply(1 : ncol(PME), fac.PME, min)
col.stop.p <- tapply(1 : ncol(PME), fac.PME, max)

##Second : calculate the 4th corner statistic

Pn <- apply(L, 1, sum)
Ps <- apply(L, 2, sum)
Ptot <- sum(L)

P <- as.matrix(L/Ptot)

Fn <- Pn/Ptot
Fs <- Ps/Ptot

Wn <- diag(Fn)
Ws <- diag(Fs)

#Standardise R and Q by weights
Qst <- (Q-sum(Fs*Q))/sqrt(sum(Fs*(Q-sum(Fs*Q)) " 2))
Rst <- (R-sum(Fn*R))/sqrt(sum(Fn*(R-sum(Fn*R))"~2))

#fourth corner statistic
CA.L <- dudi.coa(L, scannf = F, nf = 3)

fourth.corner <- t(Rst) %*% P %*% Qst
Chessel.fourth.corner <- fourth.corner/sqrt(CA.L$eig[1])

#+#Third: Spatial and Phylogenetic decomposition of the fourth corner statistic
#Prediction of R by all MEMs, prediction of Q by all PMEs

f2 <- function(Y, X) {Im(Y~X-1)$fitted}

R.predMEM.tot <- f2(R, MEM)

Q.predPME.tot <- f2(Q, PME)

#R predicted by MEMs

R.predMEM <- apply(MEM, 2, f2 ,Y=R)

colnames(R.predMEM) <- paste("Xpred-MEM", seq(1,dim(MEM)[2],1))

Rst.predMEM <- (R.predMEM-sum(Fn*R.predMEM))/sqrt(sum(Fn*(R.predMEM.tot-
sum(Fn*R.predMEM.tot)) "~ 2))

#Q predicted by PME

Q.predPME <- apply(PME, 2, f2 ,Y=Q)

colnames(Q.predPME) <- paste("Qpred-PME", seq(1,dim(PME)[2],1))

Qst.predPME <- (Q.predPME-sum(Fs*Q.predPME))/sqrt(sum(Fs*(Q.predPME.tot-
sum(Fs*Q.predPME.tot)) "~ 2))

#Function to calculte the fourth corner statistic
f3 <- function(Env, Weights, Traits) {t(Env) %*% Weights %*% Traits}
f4 <- function(Traits, Weights, Env) {t(Traits) %*% t(Weights) %*% Env}

#Perform the fourth corner statistic for all spatial and phylogenetic scale
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independently
spatial.decomp <- apply(Rst.predMEM, 2, f3, Weights = P, Traits = Qst)"2
names(spatial.decomp) <- seq(1, ncol(MEM), 1)
sum.spatial.decomp <- sum(spatial.decomp)
spatial.decomp <- spatial.decomp / sum.spatial.decomp

phylo.decomp <- apply(Qst.predPME, 2, f4, Weights = P, Env = Rst)"2
names(phylo.decomp) <- seq(1, ncol(PME), 1)

sum.phylo.decomp <- sum(phylo.decomp)

phylo.decomp <- phylo.decomp / sum.phylo.decomp

#Smooth if needed: if nblocks.MEM < ncol(MEM) and nblocks.PME < ncol(PME)
if(nblocks.MEM < ncol(MEM)){
spatial.decomp <- tapply(spatial.decomp, fac.MEM, sum)
names(spatial.decomp) <- paste(col.start.m, col.stop.m, sep = "-")
}else{spatial.decomp <- spatial.decomp}

if(nblocks.PME < ncol(PME)){
phylo.decomp <- tapply(phylo.decomp, fac.PME, sum)
names(phylo.decomp) <- paste(col.start.p, col.stop.p, sep = "-")
}else{phylo.decomp <- phylo.decomp}

##Fourth: Spatial and Phylogenetic decomposition at the same time

spatio.phylo.decomp <- matrix(NA, nrow = ncol(Rst.predMEM), ncol =
ncol(Qst.predPME))

colnames(spatio.phylo.decomp) <- colnames(PME)

rownames(spatio.phylo.decomp) <- colnames(MEM)

for (nbQpred in 1 : ncol(Qst.predPME)){

spatio.phylo.decomp[,nbQpred] <- apply(Rst.predMEM, 2, f3, Weights = P, Traits =

Qst.predPME[,nbQpred]) ™2

spatio.phylo.decomp <- spatio.phylo.decomp / sum(spatio.phylo.decomp)

if (nblocks.MEM == ncol(MEM) && nblocks.PME == ncol(PME)) {
spatio.phylo.decomp.final <- spatio.phylo.decomp

}else{
spatio.phylo.decomp.blocks <- matrix(NA, nrow = nblocks.MEM, ncol = nblocks.PME)
colnames(spatio.phylo.decomp.blocks) <- paste(col.start.p, col.stop.p, sep = "-")
rownames(spatio.phylo.decomp.blocks) <- paste(col.start.m, col.stop.m, sep = "-")

for (nblocksPME in 1 : nblocks.PME){
for (nblocksMEM in 1 : nblocks.MEM){
spatio.phylo.decomp.blocks [nblocksMEM, nblocksPME] <-
sum(spatio.phylo.decomp(col.start.m[nblocksMEM] : col.stop.m[nblocksMEM],
col.start.p[nblocksPME] : col.stop.p[nblocksPME]])
}

spatio.phylo.decomp.final <- spatio.phylo.decomp.blocks

return(list(fourth.corner = fourth.corner, Chessel.fourth.corner = Chessel.fourth.corner,
spatial.decomp = spatial.decomp, phylo.decomp = phylo.decomp,spatio.phylo.decomp =
spatio.phylo.decomp.final ))
}

##Fifth: test the significance of everything by permutation tests

#Do the test to have the observed values

obs <- fourth.stat(L =L, R =R, Q = Q, MEM = MEM, PME = PME, nblocks.MEM =
nblocks.MEM, nblocks.PME = nblocks.PME)
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spatial.decomp.sim <- matrix(NA, nrow = nbperm, ncol = nblocks.MEM)
phylo.decomp.sim <- matrix(NA, nrow = nbperm, ncol = nblocks.PME)
decomp.siml <- matrix(NA, nrow = nbperm, ncol = nblocks.MEM * nblocks.PME)
decomp.sim2 <- matrix(NA, nrow = nbperm, ncol = nblocks.MEM * nblocks.PME)
decomp.sim3 <- matrix(NA, nrow = nbperm, ncol = nblocks.MEM * nblocks.PME)

Rmsr <- msr(R, MEM, nrepet = nbperm, simplify = T)
Qmsr <- msr(Q, PME, nrepet = nbperm, simplify = T)

fourth.sim.Rmsr <- apply(Rmsr, 2, fourth.stat.simple, L

L. Q
fourth.sim.Qmsr <- apply(Qmsr, 2, fourth.stat.simple, L R

I

Q)
R)

fourth.Rmsr.pval <- as.krandtest(obs = obs$fourth.corner, sim
as.matrix(fourth.sim.Rmsr))

fourth.Qmsr.pval <- as.krandtest(obs
as.matrix(fourth.sim.Qmsr))

fourth.pval.max <- max( fourth.Rmsr.pval$pvalue, fourth.Qmsr.pval$pvalue)

obs$fourth.corner, sim =

if (fourth.pval.max <= 0.05){
if(is.matrix(R) == FALSE){R <- as.matrix(R)}
if(is.matrix(Q) == FALSE){Q <- as.matrix(Q)}
for (nperm in 1 : nbperm){

MEM.rnd <- MEM[sample(nrow(MEM)),]
PME.rnd <- PME[sample(nrow(PME)),]

sim.MEMperm <- fourth.stat(L, R, Q, MEM.rnd, PME, nblocks.MEM = nblocks.MEM,
nblocks.PME = nblocks.PME)

sim.PMEperm <- fourth.stat(L, R, Q, MEM, PME.rnd, nblocks.MEM = nblocks.MEM,
nblocks.PME = nblocks.PME)

spatial.decomp.sim[nperm,] <- sim.MEMperm$spatial.decomp
phylo.decomp.sim[nperm,] <- sim.PMEperm$phylo.decomp
decomp.siml[nperm,] <- fourth.stat(L, R, Q, MEM.rnd, PME.rnd, nblocks.MEM =
nblocks.MEM, nblocks.PME = nblocks.PME)$spatio.phylo.decomp
decomp.sim2[nperm,] <- sim.MEMperm$spatio.phylo.decomp
decomp.sim3[nperm,] <- sim.PMEperm$spatio.phylo.decomp
}
spatial.decomp.pval <- as.krandtest(obs = obs$spatial.decomp, sim =
spatial.decomp.sim, names = paste("MEM",names(obs$spatial.decomp)))
phylo.decomp.pval <- as.krandtest(obs = obs$phylo.decomp, sim =
phylo.decomp.sim, names = paste("PME",names(obs$phylo.decomp)))

PMEnames <- as.vector(t(matrix(rep( paste("PME",

colnames(obs$spatio.phylo.decomp)), nblocks.MEM), nrow = nblocks.PME, ncol =
nblocks.MEM)))

MEMnames <- rep(paste("MEM", rownames(obs$spatio.phylo.decomp)), nblocks.PME)
names.tot <- paste(PMEnames, MEMnames)

decomp.siml.pval <- as.krandtest(obs =

as.vector(as.vector(obs$spatio.phylo.decomp)), sim = decomp.siml, names = names.tot)
decomp.sim2.pval <- as.krandtest(obs =
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as.vector(as.vector(obs$spatio.phylo.decomp)), sim = decomp.sim2, names = names.tot)
decomp.sim3.pval <- as.krandtest(obs =
as.vector(as.vector(obs$spatio.phylo.decomp)), sim = decomp.sim3, names = names.tot)
decomp.sim4.pval <- apply(cbind(decomp.sim2.pval$pvalue,
decomp.sim3.pval$pvalue), 1, max)

res.frouth.corner <- rbind(obs$fourth.corner, obs$Chessel.fourth.corner,
fourth.Rmsr.pval$pvalue, fourth.Qmesr.pval$pvalue, fourth.pval.max)
rownames(res.frouth.corner) <- c("fourth. corner”, "Chessel.fourth.corner"”, "R_MSR-

randomization p-value", "Q_MSR-randomization p-value", "maximum p-value")

res.decomp.spatial <- cbind(as.matrix(obs$spatial.decomp),
as.matrix(spatial.decomp.pval$pvalue))

colnames(res.decomp.spatial) <- c("observed spatial decomposition"”, "p-value")

rownames(res.decomp.spatial) <- paste("MEM", names(obs$spatial.decomp))

res.decomp.phylo <- cbind(as.matrix(obs$phylo.decomp),
as.matrix(phylo.decomp.pval$pvalue))

colnames(res.decomp.phylo) <- c("observed phylo decomposition", "p-value")

rownames(res.decomp.phylo) <- paste("PME", names(obs$phylo.decomp))

res.decomp.spatio.phylo <- cbind(decomp.siml.pval$obs, decomp.siml.pval$pvalue,
decomp.sim2.pval$pvalue, decomp.sim3.pval$pvalue,decomp.sim4.pval)

rownames(res.decomp.spatio.phylo) <- decomp.siml.pval$names

colnames(res.decomp.spatio.phylo) <- c("Obs", "MEM&PME-perm p-value", "MEM-perm
p-value", "PME-perm p-value", "p-val max")

return(list(summary.fourth.corner = res.frouth.corner, spatial.decomposition =
res.decomp.spatial, phylo.decomposition = res.decomp.phylo, spatio.phylo.decomposition
= res.decomp.spatio.phylo))

}

else{
res.frouth.corner <- rbind(obs$fourth.corner, obs$Chessel.fourth.corner,
fourth.Rmsr.pval$pvalue, fourth.Qmsr.pval$pvalue, fourth.pval.max)
rownames(res.frouth.corner) <- c("fourth. corner", "Chessel.fourth.corner", "R_MSR-
randomization p-value", "Q_MSR-randomization p-value", "maximum p-value")

return(list(summary.fourth.corner = res.frouth.corner, spatial.decomposition = NULL,
phylo.decomposition = NULL, spatio.phylo.decomposition = NULL))

}
}
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Scenario A: trait and environmental vectors are linked

###Scenario A###

res.A <- fourth.spatial.phylo.test(L = species, R = environment , Q = trait, MEM = MEM,
PME = PME, nblocks.MEM = 15, nblocks.PME = 7, nbperm = 99)
res.A$summary.fourth.corner

## [,1]
#4# fourth. corner 0.5076006
#+# Chessel.fourth.corner 0.9290723

## R_MSR-randomization p-value 0.0100000
## Q_MSR-randomization p-value 0.0100000
## maximum p-value 0.0100000
The relationship between trait and environment is significant (maximum p-value<0.05), the

approach thus decomposes this relationship into spatial scales, phylogenetic scales and both of

them.

Trait-environment relationship through spatial scales Trait-environment relationship through phylogenetic scales
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Our approach successfully detects large spatial and phylogenetic scales as significant
(black bars). The environmental variable involved in the trait-environment filtering thus filters
the trait at large spatial scales. Similarly, the strong phylogenetic signal of the trait implies

that trait value are strongly conserved along the phylogeny.
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As expected, our framework detected significant associations with a higher R? solely
between large spatial scales and large phylogenetic scales meaning that the environmental
vatiable (partially) structured the phylogenetic signal at large spatial scale suggesting that the

trait-mediated environmental filtering at large spatial scale could be ancient.

Scenario B: trait and environmental vectors are unrelated

###Scenario B###

environment2 <- generate_env(1, 0.8, 15)
tree2 <- pbtree(b =1,d =0, n = 50, nsim = 1)
tree2 <- rescale(tree2, "EB", 0)

trait2 <- rTraitCont(tree2, model = "BM")

res.B <- fourth.spatial.phylo.test(L = species, R = environment2 , Q = trait2, MEM =
MEM, PME = PME, nblocks.MEM = 15, nblocks.PME = 7, nbperm = 99)
res.B

## $summary.fourth.corner

## [,1]

#4# fourth. corner -0.0003827166

## Chessel.fourth.corner -0.0007004944

## R_MSR-randomization p-value 0.4700000000

## Q_MSR-randomization p-value 0.5000000000

## maximum p-value 0.5000000000

##

## $spatial.decomposition

## NULL

#HH#

## $phylo.decomposition

## NULL

##

## $spatio.phylo.decomposition

## NULL

As expected, the approach does not detect significant relationship between trait2 and
environment2 (maximum p-value>0.05) as they were simulated unrelated. As such, the
approach stops at the first step (i.e., test of trait-environment relationship) and the
decomposition of the trait-environment relationship across spatial and phylogenetic scales is

not performed.
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Supplementary material ECOG-XXXX. Appendix S4. Sylvie Clappe, Pedro R. Peres-
Neto and Stéphane Dray. Phylogenetic and spatial scaling of trait-mediated

environmental filtering.

This document reports spatial profiles of the 1000 environmental vectors used in the
simulations of scenario A of the manuscript for every values of the ACDC phylogenetic tree

transformation parameter g equals: 0 (Fig. A4.1), 2 (Fig. A4.2), and 100 (Fig. A4.3).

L U & o
88888 5 83335 9 35
SSSESHE Typelerror $S££€83I$I88 I8¢
SSSssa<2 SSSSSSSSESSSSS

047
O4p
062
045
035
044

0.055

10 E E

= 05 E E

R,

02+ - m

oo | Ml e drirr T

T

T T T T T T

T TEERIE A

Grouped MEM Grﬂzped?\//lEl\f v Gruzpedi\;m\f
Figure A4.1: Spatial signal of the environmental variable involved in trait-environment
relationship for a trait evolving under a phylogenetic tree ACDC transformed with g = 0. (A-B) R?2
estimations and power of spatial scales for environment variable simulated at (A) large spatial scale (p
= 0.8) and (B) fine spatial scale (p = -0.8). (C) R? estimations and type I error rates of spatial scales for
environment variable simulated with no spatial structure (p = 0). (A-C) Scalograms represent the mean
spatial signal over the 1000 simulations. Vertical black bars are the standard deviations. MEM are

regrouped to meet 15 blocks of eigenvectors to smooth the spatial signal.
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Figure 4.2: Spatial signal of the environmental variable involved in trait-environment
relationship for a trait evolving under a phylogenetic tree ACDC transformed with g = 2. (A-B)
R? estimations and power of spatial scales for environment variable simulated at (A) large spatial scale
(p = 0.8) and (B) fine spatial scale (p = -0.8). (C) R? estimations and type I error rates of spatial scales
for environment variable simulated with no spatial structure (p = 0). (A-C) Scalograms represent the
mean spatial signal over the 1000 simulations. Vertical black bars are the standard deviations. MEM
are regrouped to meet 15 blocks of eigenvectors to smooth the spatial signal.
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Figure 4.3: Spatial signal of the environmental variable involved in trait-environment
relationship for a trait evolving under a phylogenetic tree ACDC transformed with g = 100. (A-B)
R? estimations and power of spatial scales for environment variable simulated at (A) large spatial scale
(p = 0.8) and (B) fine spatial scale (p = -0.8). (C) R? estimations and type I error rates of spatial scales
for environment variable simulated with no spatial structure (p = 0). (A-C) Scalograms represent the
mean spatial signal over the 1000 simulations. Vertical black bars are the standard deviations. MEM are
regrouped to meet 15 blocks of eigenvectors to smooth the spatial signal.
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Supplementary material ECOG-XXXX. Appendix S5. Sylvie Clappe, Pedro R. Peres-
Neto and Stéphane Dray. Phylogenetic and spatial scaling of trait-mediated

environmental filtering.

This document reports phylogenetic profiles of the 1000 trait vectors used in the
simulations of scenario A of the manuscript for every environmental structures defined by p =

-0.8 (Fig. A5.1) and p = 0 (Fig. A5.2).
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Figure A5.1: Phylogenetic signal of the trait variable involved in trait-environment relationship
for an environmental variable structured at fine spatial scale (p = -0.8 ). (A-C) R? estimations and
power of phylogenetic scales for trait vector simulated with phylogenetic signal (A) stronger than
Brownian motion (g = -2), (B) equal to Brownian motion (g = 0), and (C) weaker than Brownian
motion (g = 2). (D) R? estimations and type I error rates of phylogenetic scales for trait vector
simulated with no phylogenetic structure (g = 100). (A-D) Scalograms represent the mean spatial
signal over the 1000 simulations. Vertical black bars are the standard deviations. PME are regrouped to
meet 7 blocks of eigenvectors to smooth the spatial signal.
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Figure A5.2: Phylogenetic signal of the trait variable involved in trait-environment relationship
for an environmental variable not spatially structured (p = 0 ). (A-C) R? estimations and power of
phylogenetic scales for trait vector simulated with phylogenetic signal (A) stronger than Brownian
motion (g = -2), (B) equal to Brownian motion (g = 0), and (C) weaker than Brownian motion (g = 2).
(D) R? estimations and type I error rates of phylogenetic scales for trait vector simulated with no
phylogenetic structure (g = 100). (A-D) Scalograms represent the mean spatial signal over the 1000
simulations. Vertical black bars are the standard deviations. PME are regrouped to meet 7 blocks of
eigenvectors to smooth the spatial signal.
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Supplementary material ECOG-XXXX. Appendix S6. Sylvie Clappe, Pedro R. Peres-
Neto and Stéphane Dray. Phylogenetic and spatial scaling of trait-mediated

environmental filtering.

This document details the decomposition of trait-environment relationship through both
spatial and phylogenetic scales to associate phylogenetic structure to particular spatial scales.
As such, the strength of the association were characterized for all combination of spatial and
phylogenetic scales. Results are presented in term of R? associated with its statistical power or
type 1 error rate. Phylogenetic signal of trait are successively tested with environmental
variable structured at large spatial scale (p = 0.8 ;Fig. A6.1), fine spatial scale (p = -0.8 ;Fig.
A6.2) and not spatially structured (p = 0 ;Fig. A6.3).

4

Rigparial

W
W

ot T 2 2 & & N2 2 o= s
nnnnnnnnnn

VEZ-DTZ WIW
116 W;
19 W
T

= @ B &

H
5
E

= = ] g ¥ 5 &
b S A A. = = 5 5 25 [of
0.18 Lo
—|: PMES 1-7
- 015
PMES 8-14 — 0.14 o
P 06
o E g
I [ PMEs 2z-28 & 3
008 = =
L = 0.4
PMEs 20.35 006 &
‘I [~ PMEs 3642 — 0.04 - 02
0.02
[ PMES 43-49 -
0.00 00
: : ' ' L L 0.18 L) L 10
—|: FoPMELT 4
015 '
=
E L opmEs1a 014 B "
* -
_E L pueser - 012 =
. us
0.10 8 s
_E F PME22.28 B H
0.08 5
5 0
{ [ PMEZ9.35 006 &
_E L pwee 3602 004 | 0z
0.0z
-E [ PME 4349 — 8
000 00

Figure 6.1: Decomposition of trait-environment relationship through beth
spatial and phylogenetic scales when environmental vector structured at large
scale (p = 0.8) only. (A-B) R? estimations of the trait-environmental relationship
when environmental variable is structured at large scale and trait presenting
phylogenetic signal (A) equal to Brownian motion (g = 0) and (C) weaker than
Brownian motion (g = 2). Standard deviations are reported in Appendix S7 Table S2.
(C-D) Statistical power associated with the R? estimations of the trait-environment
relationship decomposition. (A-D) Scalograms represent the phylogenetic and spatial
signals alone as reported in figures 2 and 3 of the main manuscript to facilitate the
interpretation of the maps. The stars indicate the significant phylogenetic and spatial
scales.
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Figure 6.2 : Decomposition of trait-environment relationship through
both spatial and phylogenetic scales when environmental vector
structured at fine scale (p = -0.8) only. (A-D) R? estimations of the trait-
environmental relationship when environmental variable is structured at
large scale and trait presenting phylogenetic signal (A) stronger than
Brownian motion (g = -2), (B) equal to Brownian motion (g = 0), and (C)
weaker than Brownian motion (g = 2), and (D) no phylogenetic structure
(g = 100). Standard deviations are reported in Appendix S7 Table S3. (E-
H) Statistical power (E, F, G) and type I error rates (H) associated with
the R? estimations of the trait-environment relationship decomposition.
(A-D) Scalograms represent the phylogenetic and spatial signals alone as
reported in figures 2 and 3 of the main manuscript to facilitate the
interpretation of the maps. The stars indicate the significant phylogenetic
and spatial scales.

-204 -



E % F F 3
B2 E Qg F G i
2 BB & B o= -
R phvla s 2 5 S 7 g 8 o
£ = @ - = 5 & @ 4 g d & @
3 3 = 2 s = - - - S - S <A
N H I L E.
018 T T P
+ B . »
¥ 0.16
F pas 1521 | 012 79 B
06
010 3
PMES 2228 - z B H
008 5 =
£ 04
|- PMEs 2935 -{ o6 =
|- Praes 36-a2 - 004 02
002
|- pmes a3-49 - B
0.00 00

B.

PMES 814
[ PMEs 15-21 4
[ PMEs 22.28 4
[ PMEs 20-35 -
I PMEs 35-42

- PMES 43-48 |

g
1

S ALl s Ll Ll 10
| | H e

_E | eMesaa N o
" 2
|- PME 15-21 0.12 ’»Z
2 06
6
00 g
PME 2228 g H
0.08 5 -4
i 04
b pme 2635 00s T
_E Pue 3602 004 02
o
L puE 348 |
0 00
C. H.
L L L 018 L 008
bomesr J
. 016 007
_E PMERLL - J
014 -
012 = =
010g =
— B e : o
008 5 ]
35 o 2 003 €
- wmE
002
E b w3602 om i
0.02 .01
—] Fresss o .
000 ]

Figure 6.3 : Decomposition of trait-environment relationship through
both spatial and phylogenetic scales when environmental vector is not
spatially structured (p = 0 ). (A-D) R? estimations of the trait-
environmental relationship when environmental variable is structured at
large scale and trait presenting phylogenetic signal (A) stronger than
Brownian motion (g = -2), (B) equal to Brownian motion (g = 0), and (C)
weaker than Brownian motion (g = 2), and (D) no phylogenetic structure
(g = 100). Standard deviations are reported in Appendix S7 Table S4. (E-
H) Statistical power (E, F, G) and type I error rates (H) associated with
the R? estimations of the trait-environment relationship decomposition.
(A-D) Scalograms represent the phylogenetic and spatial signals alone as
reported in figures 2 and 3 of the main manuscript to facilitate the
interpretation of the maps. The stars indicate the significant phylogenetic
and spatial scales.
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Appendix 1: Type I error rates and values of Mantel statistic for simple and partial
Mantel tests and MSR-Mantel for irregular sampling with increasing number of

samples. (a-b) Observed Mantel statistic r,,_,,. and type I error rates for (a) simple and (b)
partial Mantel test. (c) Corrected Mantel statistic r,, ,,. and type I error rates of MSR-
Mantel on raw table X. X and Y contain 5 variables and increasing number of samples: 100,

225 and 400. Both tables present spatial autocorrelation fixed to p = 0.8. r,_,. and

Fuy_op are reported as in Figure 2. Red line corresponds to r,,=0
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Appendix 2: Type I error rates and values of Mantel statistic for simple and partial
Mantel tests and MSR-Mantel for a regular sampling. (a-b) Observed Mantel statistic

I'v_ops and type I error rates for (a) simple and (b) partial Mantel test. (c) Corrected Mantel
statistic r,,_,,, and type I error rates of MSR-Mantel on raw table X. X and Y contain 5
variables and 225 samples. Both tables present spatial autocorrelation varying from p = 0 to

p=08. r, ., and r,_,,. arereported asin Figure 2. Red line corresponds to r,,=0
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Appendix 3: Type I error rates and values of Mantel statistic for simple and partial
Mantel tests and MSR-Mantel for regular sampling with increasing number of variables.

(a-b) Observed Mantel statistic r,,_.,, and type I error rates for (a) simple and (b) partial
Mantel test. (c) Corrected Mantel statistic r,, ,,. and type I error rates of MSR-Mantel on
raw table X. X and Y contain 225 samples and increasing number of variables: 1, 5 and 10
variables. Both tables present spatial autocorrelation fixed to p = 0.8. r,, . and ry_.

are reported as in Figure 2. Red line corresponds to r,,=0
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Appendix 4: Type I error rates and values of Mantel statistic for simple and partial
Mantel tests and MSR-Mantel for regular sampling with increasing number of samples.

(a-b) Observed Mantel statistic r,, ., and type I error rates for (a) simple and (b) partial

Mantel test. (c) Corrected Mantel statistic r,, ,,, and type I error rates of MSR-Mantel on
raw table X. X and Y contain 5 variables and increasing number of s amples: 100, 225 and
400. Both tables present spatial autocorrelation fixed to p = 0.8. r, .. and r, . are

reported as in Figure 2. Red line corresponds to r,,=0
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Appendix 5: Illustration of the MSR approach applied on Mantel test.

This document presents an application of MSR-Mantel developed in Crabot et al. (2018) to

test the Mantel statistic using a spatiall-constrained randomization procedure.

First, we illustrate the biases of simple and partial Mantel tests when performed in
presence of spatial autocorrelation, then we present the MSR-Mantel developed in the paper.
We follow the structure of the study by first simulating two matrices (X and Y) independently
or linearly correlated. Then, Mantel tests (simple and partial) and MSR-Mantel were
performed in each case. Note that in the case of MSR-Mantel, MSR was performed on both
(i) the principal coordinates obtained from a principal coordinates analysis on the distance
matrix or (ii) raw data table X. We only illustrate the case of irregular sampling. We also
illustrate the reduces performance of MSR-Mantel induced by a misspecification of the spatial
weighting matrix W. Finally, we show how the selection procedure recently developed by
Bauman et al. (2018) can help in omptimizing the choice of the best W when several

candidates are considered.

Data simulation

We begin by simulating the data. First, we defined the number of samples (nbsamp), the
level of spatial autocorrelation parameter (autocor) fixed to 0.8, the number of variables
(nbvar) contained in tables X and Y fixed to 5, and the strength of the linear trend between X
and Y fixed to 0.5.

library(spdep)

## Loading required package: sp

#+# Loading required package: Matrix

## Loading required package: spData

## To access larger datasets in this package, install the spDatalLarge
## package with: “install.packages('spDatalLarge’,

## repos='https://nowosad.github.io/drat/', type='source'))’
library(ade4)

##

## Attaching package: 'ade4'

## The following object is masked from 'package:spdep':
##

##  mstree

library(adespatial)

##

## Attaching package: 'adespatial'

- 214 -



## The following object is masked from 'package:ade4":

##
##  multispati
library(vegan)

## Loading required package: permute
#4# Loading required package: lattice
## This is vegan 2.5-2

# Parameters setting
nbsamp <- 225
autocor <- 0.8

nbvar <-5
a<-0.5

Then, we generate X and Y independently (xind and yind), and linearly correlated (ycor)
following the equation (9) of the manuscript. We also simulate the spatial matrix Z containing

geographical coordinates of samples.

A funtion create.autocor is implemented to generate spatial patterns in the data using an

autoregressive model:

# Function to create spatial autocorrelation
create.autocor <- function(nb, rho = 0.8, nrep = 1000, nvar = 1) {
Iwl <- nb2listw(nb)
matinv <- invirW(lwl, rho)
aleal <- matrix(rnorm((nvar) * nrep * length(nb)), nrow = length(nb))
res <- data.frame(t(matinv %*% aleal))
res <- split(res, rep(1:nrep, each = nvar))
res <- lapply(res, t)
return(res)

Then simulated data are generated with an autoregrssive model and row-standardized
spatial weighting matrix defined by a Gabriel graph (Wgap) :

# Data simulation

set.seed(1)

xy <- cbind(runif(nbsamp), runif(nbsamp))
nbl <- graph2nb(gabrielneigh(xy), sym = T)
Iwl <- nb2listw(nbl)

w <- dist(xy)
# X and Y independent

xind <- create.autocor(nbl, rho
yind <- create.autocor(nbl, rho

autocor, nrep = 1, nvar = nbvar)
autocor, nrep = 1, nvar = nbvar)

xind <- xind[[1]]
yind <- yind[[1]]
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# Y linearly correlated to X
ycor <- a * xind + (1 - a) * xind[sample(nrow(xind))]

Simple and partial Mantel tests

We perform the simple and partial Mantel tests for X and Y independent and linearly

correlated.

Linearly correlated data

# X and Y linearly correlated
m.cor <- mantel.randtest(dist(xind), dist(ycor))
p.cor <- mantel.partial(dist(xind), dist(ycor), w)

m.cor

## Monte-Carlo test

## Call: mantel.randtest(m1 = dist(xind), m2 = dist(ycor))
#H#

## Observation: 0.4025879

#H#

## Based on 999 replicates

## Simulated p-value: 0.001

## Alternative hypothesis: greater

#H#

## Std.Obs Expectation Variance

## 11.010087334 -0.001636525 0.001347918

p.cor

#H#

## Partial Mantel statistic based on Pearson's product-moment correlation
#HH#

## Call:

## mantel.partial(xdis = dist(xind), ydis = dist(ycor), zdis = w)
#H#

## Mantel statistic r: 0.3981

## Significance: 0.001

#H#

## Upper quantiles of permutations (null model):

## 90% 95% 97.5% 99%

## 0.0496 0.0621 0.0762 0.0915

## Permutation: free

## Number of permutations: 999

Results demonstrate that both simple and partial Mantel tests identify the true relationships
in the data.

Independent data

# X and Y independent
m.ind <- mantel.randtest(dist(xind), dist(yind))
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p.ind <- mantel.partial(dist(xind), dist(yind), w)

m.ind

## Monte-Carlo test

## Call: mantel.randtest(m1 = dist(xind), m2 = dist(yind))
##

## Observation: 0.1324142

#H#

## Based on 999 replicates

## Simulated p-value: 0.001

## Alternative hypothesis: greater

#H#

#H# Std.Obs Expectation Variance

## 3.970607006 -0.003138546 0.001165474

p.ind

#H#

## Partial Mantel statistic based on Pearson's product-moment correlation
#H#

## Call:

## mantel.partial(xdis = dist(xind), ydis = dist(yind), zdis = w)
#H#

## Mantel statistic r: 0.1054

#H# Significance: 0.002

H#

## Upper quantiles of permutations (null model):

## 90% 95% 97.5% 99%

## 0.0470 0.0590 0.0702 0.0883

## Permutation: free

## Number of permutations: 999

Here, results show that both simple and partial Mantel tests wrongly identify a relationship

when both data sets are spatially autocorrelated.

MSR-Mantel

Algorithm on principal coordinates

The package adespatial provides a method msr that can be applied on the outputs
produced by the mantel.randtest function. In this case, the test is performed by applying

principal coordinates analysis on the distance matrix:

# X and Y independent

msr.ind <- msr(m.ind, w1, 999)

msr.ind

## Monte-Carlo test

## Call: msr.mantelrtest(x = m.ind, listwORorthobasis = Iwl, nrepet = 999)
##

## Observation: 0.1324142

##
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## Based on 999 replicates

## Simulated p-value: 0.18

## Alternative hypothesis: greater

#H#

##  Std.Obs Expectation Variance

## 0.871033278 0.087604475 0.002646516
# X and Y linearly correlated

msr.cor <- msr(m.cor, lwl, 999)

msr.cor

## Monte-Carlo test

## Call: msr.mantelrtest(x = m.cor, listwORorthobasis = lwl, nrepet = 999)
#H#

## Observation: 0.4025879

##

## Based on 999 replicates

## Simulated p-value: 0.001

#4# Alternative hypothesis: greater

#H#

##  Std.Obs Expectation Variance

## 8.992252428 0.036198654 0.001660154

The MSR procedure allows to correct for spatial autocorrelation so that the link between

both distance matrices is no longer significant for independently generated distance matrices.

The value of the statistic corrected for spatial autocorrelation is obtained by substracting

the expected value obtained by the MSR procedure:

r.msr <- msr.ind$obs - msr.ind$expvar["Expectation"]
names(r.msr) <- "rM.msr"
r.msr

##rM.msr
## 0.0448097

Algorithm based on raw data

The msr.default function allow to create, by hand, a test where MSR is applied on raw
data instead of principal coordinates. Outputs are then formatted using the as.randtest

function:

# X and Y independent

msr.x <- msr(xind, lwl, 999, simplify = FALSE)

m.ind.x <- sapply(1l:length(msr.x), function(j) mantel.randtest(dist(msr.x[[j]1]),
dist(yind), nrepet = 0)$obs)

m.ind.x <- as.randtest(obs = m.ind$obs, sim = m.ind.x)

m.ind.x
## Monte-Carlo test

#+# Call: as.randtest(sim = m.ind.x, obs = m.ind$obs)
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##

## Observation: 0.1324142

##

## Based on 999 replicates

## Simulated p-value: 0.217

#4# Alternative hypothesis: greater

##

##  Std.Obs Expectation Variance

## 0.810265849 0.090533820 0.002671564

MSR-Mantel and spatial weighting matrix W
Misspecification of W

MSR-Mantel is performed with a misspecified spatial weighting matrix: a spatial
weighting matrix Waise defined as a distance-based graph is used to perform MSR-Mantel
instead of W initially used to generate X. Wi, defines two samples connected solely if their
distance is inferior to a certain threshold which was here defined, as in the manuscript, by the
maximum branch length of the minimum spanning tree. We only illustrate the case with X and

Y independently simulated.

# X and Y independent

set.seed(1)

xy.dist <- dist(xy)

lim <- give.thresh(xy.dist)

Iw.wrong <- nb2listw(dnearneigh(x = xy, d1 = 0, d2 = (1 + sqrt(.Machine$double.eps)) *
lim), style = "W")

msr.x.wrong <- msr(xind, Iw.wrong, 999, simplify = FALSE)

m.ind.x.wrong <- sapply(1:length(msr.x.wrong), function(j)
mantel.randtest(dist(msr.x.wrongl[jl1),

dist(yind), nrepet = 0)$obs)
m.ind.x.wrong <- as.randtest(obs = m.ind$obs, sim = m.ind.x.wrong)

m.ind.x.wrong

## Monte-Carlo test

## Call: as.randtest(sim = m.ind.x.wrong, obs = m.ind$obs)
##

## Observation: 0.1324142

##

## Based on 999 replicates

## Simulated p-value: 0.05

#4# Alternative hypothesis: greater

##
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##  Std.Obs Expectation Variance
## 1.588711578 0.063170311 0.001899645

MSR-Mantel fails to correct the spurious detection of a significant relationship when the

spatial weighting matrix W in misspecified.

Selection procedure to optimize the choice of W

We apply the recently developed procedure to optimize the choice of W when unkown
(Bauman et al., 2018). To do so, we simulate 4 other W candidates: (i) Waist, (ii)) Wmst
obtained from a minimum spanning tree , (iii) Wqa defined with a Delaunay triangulation and
(iv) W.a obtained from a relative neighborhood graph. The selection procedure was
performed using those four wrong candidates and the true candidate Wgap.

# W selection procedure

set.seed(1)
Iw.cand <- listw.candidates(xy, weights = "binary", style = "W", nb = c("gab",

Ildnearll’ Ilmstll’ Ildelll’ Ilrelll))
Wsel <- listw.select(xind, candidates = lw.cand, method = "global", MEM.autocor
—_ IIaIIII)
Wsel$best.id
## Gabriel_Binary

#H# 2

The selection procedure succeeds in choosing the true spatial weighting matrix Wga,. We
encourage to use this procedure prior to MSR-Mantel to help avoiding misspecification of the

spatial weighting matrix W inducing inflation of type I error in MSR-Mantel.
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Appendix S1. Mathematical details of the spatially-constrained variation partitioning proce-

dure.

Consider Y the species matrix, X the environmental variables matrix, and W a matrix of

spatial predictors (here, Moran’s Eigenvector Maps (Dray et al. 2006)).
Let be R’

labc

fractions [abc], [ab], [bc], [a] (i.e., [abc]-[ab]), [b] (i.e., [ab]-[a]), [c] ([abc]-[bc]), and [d] (1-

2 2 2 2 2
| > Ra) » Re » Ry 5 Ry, R

a C

, and R[Zd] , the unadjusted estimates of

[abc]) obtained with a first variation partitioning based on the null hypothesis H, : “the ab-

sence of species-environment relationships” (i.e., species sorting is not important).

Moran Spectral Randomization (MSR; Wagner and Dray 2015) is applied on X so that
Nysx=1000 replicates Xwsk conserving the original spatial and correlation structure of X
are produced. A VP is then computed for each randomized environment using Y, Xwusr, and
W. The null hypothesis is now modified as H, sz : “the absence of species-environment
relationships given the spatial structure of the environmental variables”. Ny, unadjusted
estimates of all fractions are thus obtained. However, only the n,; unadjusted estimates of
fractions [ab], [a], and [b] will be kept for the new variation partitioning. Indeed, as solely X

is randomized with MSR to give Xysg, Y and W remain unchanged and thus the estimate of

Ho_MSR):ﬁ[ZbC] with }NQ[ZbC] adjusted with Eq. 2)

fraction [bc] will stay constant (i.e., E (szcl

as it is calculated from table Y and W, and [abc], [c] and [d] can be calculated from the oth-

ers. As such, the mean of unadjusted estimates of the fractions [ab], [a], and [b], hereafter

E(R,

HO—MSR) , E

2
R,

HO_MSR) ,and E (be] ‘H O_MSR) , will represent the expected val-
ues of the fractions under H, s and will be used to correct the initial unadjusted estimates

R[z R[Zab] , R[z 1 R[zbl , RfCJ , and R[Zd] as below ( R[Zbc} remains constant):

abc| > al
R[zab] is first corrected with Eq. 4 of the manuscript:
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~> i 1 2
R[ab]MSR_l 1_E(R[2abj HOMSR)(l R,abJ) 4)

Likewise, fractions [a] and [b] are corrected with Eq. 4 and 5 of the manuscript:

~ 1 >
B =1_ (1—R )
[b] MSR [b] 5
1-E|R}|Hy_ sz )
R[za‘MSR:R[Zab]MSR_R[Zb]MSR (6)

The other unbiased fractions are then obtained by the following operations:
Rfc‘MSR:RﬁJc]_R[Zb]MSR (S1)
Rﬁ]bc]MSR:R[zab]MSR"'R[Zc]MSR (S2)

R[zdeSRzl _Rlzabc]MSR (S3)
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Appendix S2. Detailed simulation model used in the manuscript

We used a dynamic spatially explicit individual-based model originally developed by Bell
(2000, 2003, 2005) and implemented by Smith and Lundholm (2010). We modified the initial
model to simulate a M xM torus ( M=15 ) where each cell (patch) represented a
community defined by a carrying capacity K=500 individuals and was initialized with

K/S individuals belonging to S=50 species. At each generation, individuals gave birth
to a unique descendant with a probability b , and then died with a probability d .
Offsprings dispersed randomly to the 8 adjacent cells with a probability u and settled
permanently with a probability 1—u ; if not, they continue to disperse with a probability

u . A single immigrant from each species arrived from the regional species pool with a
probability m , dispersed randomly to the 8 adjacent cells and settled permanently. At the
end, if the total number of individuals N in the cell exceeded K , N-—K individuals
were removed with a random draw according to their survival probability (i.e., less adapted
individuals have more chance to die).

Each species was characterized by a survival probability A , defined as a unimodal
response curve depending on community environmental factors, and characterized by the
optimum position and breadth of the species niche:

:

_:Ejk_uik

A=[]e 2% (S1) (Gravel et al, 2006)

b
)
k=1
where 4; is the survival probability of the i—th species for the environmental value of
j—th the community, p the total number of environmental values, E; the k—th

environmental value of the j—th community, p; and 0; the niche optimum and
breadth of the i—th species for k—th environmental value of the j—th community.
These survival probabilities were then used to weight individual death and birth rate
depending on their species identities as:

bry=b—bx[1-A; xsel  (S2)
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dri]:d —d % )\ij x sel (S3)
where br; and dr; are death rate and birth rate of the i—th species in the j—th
community respectively, d and b death and birth probability respectively which are fixed
for all species. Then, A; isthe survival probability of the i—th species in the j—th
community, and sel an environmental selection factor ranges from 0 to 1 which is fixed for
all communities. As such, when sel=0 , br; is maximum and dr; is minimum for

A=1 ,inversely for A=0 . Therefore, individual selection relies on both A and K .

Following parameters values used in previous studies (Bell 2000, 2003, 2005, Smith and

Lundholm 2010), we configured our model such as all species presented the same probability
of birth b=0.505 and death d=0.5 . The dispersal probability was fixed to u=0.005
and u=0.1 for generalist and specialist species respectively. Generalist species were defined
equivalent in their response to environment by fixing the survival probability to A=0.6 , as
such they were not influenced by environment as their survival probability did not change
with local environmental values. Specialist species optimums were randomly drawn from a
uniform distribution whose maximum and minimum values were those of the environmental
table X. The niche breadth of specialist species were randomly drawn from a uniform
distribution defined between 1 and 2. Specialist survival probability was then calculated from
niche characteristics values and local environmental values. We fixed the immigration

probability to m=0.01 and environmental selection to sel=0.3 .

- 224 -



Sylvie Clappe, Stéphane Dray, and Pedro R. Peres-Neto. Beyond neutrality:
disentangling the effects of species sorting and spurious correlations in metacommunity

analysis. Ecology. 2018.

Appendix S3. Respective mean and standard deviation of [ab], [a] and [b] fractions in the

three simulation scenarios.

We reported here means and standard deviations of adjusted (through new variation
partitioning procedure) estimations of fractions [ab], [a], and [b] for every simulated
scenarios (neutral, species sorting, and mixed) calculated over the 1000 simulations presented
in Figures 2 and 3. Results are presented in three different tables according to the spatial

autocorrelation of environment ( p=0 - Table S1; p=0.4 - Table S2; p=0.8 - Table
S3). Biased R* correspond to those adjusted with Eq. 2 ( INQ[Zab] , }NQ[ZGI , INQZb] ), and
corrected R® ( ﬁib]MSR , }NQ[ZGIMSR , INQ[Z,):MSR ) are adjusted with Eq. 4, 5, and 6 of the
manuscript (i.e., new variation partitioning procedure).

In Table S1, as no environmental spatial autocorrelation is present, estimations of fractions
[ab] ( }NElzab ), [a] ( INQ[za] ), and [b] ( }~2[2b ) are unbiased. However, when both species and

environmental data are spatially autocorrelated (Tables S2 and S3), ﬁfab] and }NQ[zb are

overestimated in neutral and mixed scenarios due to neutral dynamics. Our new spatially-

constrained procedure is able to remove the spurious correlation due to neutral dynamics and

thus obtain the real measure of environmental contribution ( Rfab wsg  and be] VSR )-
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Table S1. Mean and variance of fractions [ab], [a], and [b] for each simulated scenario

with an environmental spatial autocorrelation p=0

Mean Standard deviation
Scenario Fraction Biased' Corrected?® Biased Corrected
[ab] -1.51 x 10% -1.22x10% 1.33x10% 1.10 x 10
Neutral [a] -8.93 x 10 -9.62 x 10 8.51 x 10™ 8.48 x 10™
[b] -6.22 x 10°% -2.61 x 10 1.41 x 10 1.18 x 10
[ab] 1.20 x 10™ 1.28 x 10™ 1.53 x 10 1.53 x 10
Species sorting [a] 1.10 x 10™ 1.09x 10 ™ 1.44 x 10 1.44 x 10
[b] 1.92 x 10 1.93x 10 7.28 x 10 7.20 X 10
[ab] 1.28 x 10™ 1.28 x 10™ 2.79 x 10 2.79 x 10
Mixed [a] 1.07 x 10™ 1.07 x 10™ 2.52x10% 2.51x 10
[b] 2.08 x 10 2.09 x 10 8.87 x 10 8.78 x 10

! Observed estimations.

? Estimations corrected with the new variation partitioning procedure based on a spatially-

constrained null model.
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Table S2. Mean and variance of fractions [ab], [a], and [b] for each simulated scenario

with an environmental spatial autocorrelation p=0.4

Mean Standard deviation
Scenario Fraction Biased! Corrected? Biased Corrected
[ab] 6.76 x 10 9.63 x 10™® 2.38x 10% 1.73x 10
Neutral [a] 1.38 x 10™ 4.30 x 10 8.52 x 10°™ 8.47 x 10™
[b] 6.62 x 10 5.33 x 10°% 2.42 x 10 1.79 x 10
[ab] 1.44 x 10™ 1.42 x 10™ 1.61 x 10 1.61 x 10
Species sorting [a] 8.20 x 10 8.15x 10 1.11 x 10™ 1.11 x 10
[b] 6.18 x 10 6.01 x 10 1.04 x 10 1.02 x 10
[ab] 1.45x 10™ 1.41 x 10™ 2.89 x 10 2.90 x 10
Mixed [a] 7.91 x 10% 7.86 X 10 1.90 x 10 1.90 x 10
[b] 6.61 x 10 6.27 x 107 1.52 x 10 1.51 x 10

! Observed estimations.

? Estimations corrected with the new variation partitioning procedure based on a spatially-

constrained null model.
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Table S3. Mean and variance of fractions [ab], [a], and [b] for each simulated scenario

with an environmental spatial autocorrelation p=0.8

Mean Standard deviation
Scenario Fraction Biased' Corrected?® Biased Corrected
[ab] 2.96 x 10 2.05x 10% 5.86 x 10 3.55x 10
Neutral [a] 2.32 x 10°% 4.07 x 10% 8.69 x 10™ 8.68 x 10™
[b] 2.94 x 10 -2.01 x 10% 5.89 x 10 3.62x 10
[ab] 1.74 x 10™ 1.62 x 10™ 1.77 x 10 1.73 x 10
Species sorting [a] 3.85x 10 3.38 x 10 6.27 X 10 6.23 x 10®
[b] 1.35x 10™ 1.27 x 10™® 1.57 x 10 1.51 x 10
[ab] 1.86 x 10™ 1.66 x 10™ 2.90 x 10 2.91 x 10
Mixed [a] 3.61x10% 3.54x 10 2.90 x 10 9.16 x 10
[b] 1.50 x 10™ 1.31 x 10™ 2.42 x 10 2.38 x 10

! Observed estimations.

? Estimations corrected with the new variation partitioning procedure based on a spatially-

constrained null model.
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Appendix S4. Effect of Moran’s Eigenvectors Maps selection on estimation and Type I error

of fraction [a] in pure neutral metacommunities.

In this appendix, T?fa is adjusted with Eq. 5 of the manuscript.
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Figure S1: Impact of Moran’s Eigenvectors Maps forward selection on variation partitioning
estimations and Type I errors of fractions [ab], [a] and [b] for neutral metacommunities. (A-
C) Estimation of total environmental contribution (fraction [ab]; INQIZGb ), non-spatialized (fraction
[a]; INQ[ZQ] ), spatialized (fraction [b]; }N?[zb] ), and their respective Type I error rates using
variation partitioning with a subset of spatial predictors (i.e., Moran’s Eigenvectors Maps; MEM;
Dray et al. 2006) selected by forward selection (Blanchet et al. 2008); (D-F) Estimation and type I
error of fractions [ab], [a] and [b], respectively, using variation partitioning with all positive
MEMs (i.e., no selection procedure as in Figure 2 left panel); (G-I) Application of our MSR-based
variation partitioning to correct for spurious correlation and inflated Type I error rates of fractions
[ab], [a] and [b], respectively, with a subset of MEMs selected by forward selection. (A-I) Note
that fraction [b] cannot be tested and as a result Type I errors are not estimated. All  R® are
reported with boxes representing the 25, 50 and 75 quartiles, the lower whisker is the first quartile
minus 1.5 times the interquartile range, and the upper whisker is the third quartile plus 1.5 times
the interquartile range. Extreme values (i.e., exceeding the whiskers) are plotted. Environmental
spatial autocorrelation varies from p=0 to p=0.8 . Dashed grey line corresponds to the
expected R’ under neutral dynamics (zero). Boxplot were performed with 1000 simulated
neutral metacommunities.
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Appendix S5. Environmental contribution (fraction [ab]) of mixed metacommunities is a

weighted mean of species sorting and neutral environmental contributions.

In this appendix, all R* are adjusted R* using Eq. 4 of the manuscript.

Environmental contribution (fraction [ab]) of mixed metacommunities is smaller than
environmental contribution in pure niche metacommunities as it is a weighted mean of both
species sorting and neutral dynamics. Here, we chose to give an example of the calculation
process with a high spatialised environment (p=0.8) so that the environmental contribution

will be fully overestimated by neutral dynamics.

Environmental contribution (fraction [ab]; R[Zab],m,.xed ) is first calculated for the mixed

metacommunity (Step 1 Fig.S1). We want to get back to this value (0.2090) at the end of our

demonstration.

Species data table of mixed metacommunities were then divided into two tables

respectively containing the species with species sorting and neutral dynamics (Step 2 Fig.S1).

Environmental contribution ( Rfab]_ R[Zab:_nem, ) and variance ( SSV g ;

sorting

SSV eurat ) Were performed for these two tables separately (Step 3 Fig.S1).

We aim at demonstrating that R ib]_mixed is the weighted mean of ﬁﬁlb]_somng and
Eib]_neutm, , see below:
SSVsorting X R[Zab]— sorting+ SSVneutraI X R[Zab]—neutml (S 1)
SSV sorting+ SSVneutraI
0.4967 x 0.2376+0.1867 x 0.1331 2
=0.2090=R ,
0.4967+0.1867 (ab|-mixed
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5 Environmental

50 Species variables Step 1

400 Qo2 -
Sites o~ R[ab]'mixed = 0.2090
25 Species
o2 —
F‘[i:\l::]—sclrti ng — 0.2376
— SSVscrljng = 0.4%
Step 2 > Step 3
25 Species
D2 —
R[ab]—neul:ral = 01330

SSVheutra = 0.1866

Figure S1: Calculation of mixed ﬁ[za,,] ab]- sorting

ﬁlz ab|—neutral  * Step 1: Calculation of INQ[ZGb] for mixed metacommunities ( R[ab]_mixed ). The species matrix

contains 50 species (25 with species sorting dynamics, and 25 with neutral dynamics). Step 2: Separation of the
species with species sorting and neutral dynamics into two respective species data tables. Step 3: Calculation of
environmental contribution and variance of both tables: species sorting ( R[ﬂb] SSV oring ) and

SSV

from pure species sorting R[ and pure neutral

— mixed

—sorting

neutral dynamics ( R[ab]

—neutral neutral )‘
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Appendix S6. Empirical application of the spatially-constrained variation partitioning.

This document presents an application of the variation partitioning using Moran Spectral
Randomization (MSR) as a spatially-constrained null model. We illustrate the method on the
mafragh dataset available the package ade4. This dataset contains a table of abundances of
56 species sampled in 97 sites, a table of 11 environmental variables measured in the 97 sites,
and the neighborhood graph of the sites. These data were recorded from La Mafragh in

Algeria.

Data

First, load the data:

library(ade4)
data(mafragh)

To perform variation partitioning, three table are required: a table of species abundance
which is Hellinger-transformed (sites x species; species-hell); a table of environmental
variables (sites x environmental predictors; environment), and table representing “space”
(sites x spatial predictors; eigenfw). Here, we consider a table of spatial vectors designed by
Moran’s Eigenvector Maps (MEM; Dray et al., 2006) associated to positive spatial

autocorrelation. We conduct a forward selection to reduce the number of spatial predictors.

library(adespatial)
library(spdep)
library(vegan)

##Species matrix
species <- mafragh$flo
species.hell <- decostand(species, method = "hell")

##Environmental matrix
environment <- mafragh$env

##Spatial matrix
mafragh.lw <- nb2listw(mafragh$nb)
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MEM <- scores.listw(mafragh.lw, MEM.autocor = "positive")

#Forward selection of Moran's Eigenvector Maps:
pca.species <- dudi.pca(species.hell, scale = F, scannf = F)
rda <- pcaiv(pca.species, MEM, scannf = F)

R2 <- sum(rda$eig)/sum(pca.species$eiq)

fw <- forward.sel(mafragh$flo, MEM, adjR2thresh = RsquareAdj(R2, nrow(MEM),
ncol(MEM)))

## Testing variable 1

## Testing variable 2

## Testing variable 3

## Testing variable 4

## Testing variable 5

## Testing variable 6

## Testing variable 7

## Testing variable 8

## Testing variable 9

## Testing variable 10

## Testing variable 11

#4# Testing variable 12

## Testing variable 13

#4# Testing variable 14

## Testing variable 15

#4# Procedure stopped (alpha criteria): pvalue for variable 15 is 0.059000 (> 0.050000)

#Final spatial matrix
eigenfw <-MEM[,fw$order]

Variation partitoning

Now that we have the three tables, we can perform variation partition to identify the
variation in beta-diversity explained by pure environment [a], spatialised environment [b],
pure space [c], and the non explained variation [d].The function varipart implemented in
ade4 returns a list of different objects. varipart$R2 and varipart$R2.adj give the tests and

partitioning with unadjusted R? and adjusted R? respectively.

Classical procedure

vprda <- varipart(pca.species, environment, eigenfw, type = "parametric”)
vprda

## Variation Partitioning

#4# class: varipart list

#H#

## Test of fractions:

## class: krandtest lightkrandtest

## Monte-Carlo tests

## Call: varipart(Y = pca.species, X = environment, W = eigenfw, type = "parametric")
##

## Number of tests: 3

##

## Adjustment method for multiple comparisons: none
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## Permutation number: 999

## Test Obs Std.Obs Alter Pvalue

## 1 ab 0.2317274 9.458489 greater 0.001

## 2 bc 0.4041022 18.347309 greater 0.001
## 3 abc 0.4898897 12.630856 greater 0.001

#H#

##

## Individual fractions:

## a b C d

## 0.08578753 0.14593983 0.25816239 0.51011025
##

#4# Adjusted fractions:

## a b C d

## 0.007909892 0.124393953 0.177969618 0.689726536

Note that we put type = "parametric" to adjust with the classical formula of Ezequiel (Eq.

1 of the manuscript). Results are summurised in Table S1.

New procedure using MSR

To take into account the possible spatial structures of the species distributions and
environmental variables, tests and estimations can be corrected using spatially-constrained

null models using MSR.

vprdaMSR <- msr(vprda, mafragh.lw, nrepet = 999)
vprdaMSR

## Variation Partitioning

#4# class: varipart list

#HH#

## Test of fractions:

## Monte-Carlo test

#+# Call: msr.varipart(x = vprda, listwORorthobasis = mafragh.lw, nrepet = 999)
#H#

## Observation: 0.2317274

##

## Based on 999 replicates

## Simulated p-value: 0.006

#4# Alternative hypothesis: greater

#H#

## Std.Obs Expectation Variance

## 2.5869483451 0.1769392606 0.0004485357

##

#4# Individual fractions:

## a b C d

## 0.08578753 0.14593983 0.25816239 0.51011025
##

## Adjusted fractions:

## a b C d

#4# 0.00600713 0.06055916 0.24180441 0.69162930
All results can be summarized as follows:
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res <- rbind(vprda$R2.adj, vprdaMSR$R2.adj.msr)
rownames(res) <- c("Standard VP", "MSR VP")

[[ES
##

b

## Standard VP 0.007909892 0.12439395 0.1779696 0.6897265

## MSR VP

0.006007130 0.06055916 0.2418044 0.6916293

Fractions [a], [b], and [ab] were smaller after correction (i.e., new variation partitioning

procedure based on MSR, Table S1). This corrected amount of fractions [a], [b] and [ab]

correspond to the spurious correlations due to spatial autocorrelation in both species and

environmental data.

Table S1: Estimations of fractions for standard variation partitioning and after correction for

spurious correlations (based on MSR).

a b C d
Standard VP 0.0079099 0.1243940 0.1779696 0.6897265
MSR VP 0.0060138 0.0596478 0.2427158 0.6916226

Whereas the role of spatialised environment is estimated to 12.44 %, its estimation is equal

to 6.06% using the MSR procedure. On the other hand, the part of pure spatial patterns

increases from 17.8% to 24.18% when MSR is applied. The effect of non-spatialised

environmental predictors is negligible.
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Abstract

Global climatic conditions vary in spatial frequency. Spatially rare climatic conditions
provide fewer suitable environments than common ones. This spatial variation in climate
should thus impose constraints on ecological niches and community functional diversity.
However, these constraints have remained unexplored. Here, we use 467 North American
angiosperms to test, for the first time, the effect of the spatial frequency of climatic
conditions at the global scale on ecological niche specialization and functional diversity. Our
results show that the interaction of global climate rarity and regional climate heterogeneity
drives woody angiosperms niche specialization as well as community functional diversity.
Finally, the present study brings attention to the importance of considering climate frequency
and its interaction with heterogeneity when studying the effect of climate on ecological

communities.

Keywords: Angiosperms; climate frequency; climate heterogeneity; functional diversity;

functional trait; generalist; niche breadth; specialist; species assembly

I. Introduction

How environmental features drive community composition at biogeographical to global
scales is a central question in ecology. Previous research has demonstrated the effect of
climate-related variables such as temperature, precipitation, and evapotranspiration on
taxonomic diversity (Currie 1991; Currie et al. 2004; Field et al. 2009), species composition
(Buckley & Jetz 2008, Qian & Ricklefs 2007; Ulrich et al. 2014), and community
phylogenetic and functional structure (Cavender-Bares et al. 2006; Bryant et al. 2008;
Butterfield et al. 2013, Freschet et al. 2011; de Bello et al. 2013; Safi et al. 2011; Spasojevic
et al. 2014). In contrast to these studies that have focused on how the spatial variation of
climate influences the selection of species and traits, we focus here on the spatial frequency of
climatic conditions, hereafter referred to as climatic frequency. We argue that, in addition to
physiological constraints that can act as filters of the species that may inhabit local
communities, climatic frequency regardless of local climatic conditions themselves should
impose demographical constraints on population that will affect species niche specialization

as well as community functional composition.
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Climatic frequency represents a limit to the number of suitable conditions available for a
species at large spatial scales. However, the strength of this limitation is likely to vary among
species. For instance, species differ in their niche breadth with some species being strong
competitors in a restricted range of conditions (i.e. specialist species) and other being
relatively weak competitors but tolerating a broad range of conditions (i.e. generalist species)
(Levins 1968). Therefore, specialist species in rare climates should have access to fewer
suitable habitats than specialist species in common climates, lowering their population sizes
and increasing extinction risks. These demographical constraints should affect the success of
generalists and specialists. For instance, specialists should have lower extinction risks in
common climates than in rare climates, whereas generalists can limit these demographical
constraints by being able to thrive in various climatic conditions thus increasing population
sizes and decreasing extinction risks. Therefore, even without considering the direct
physiological effects of climate on the selection of species to assemble in local communities,
rare climates should select for generalists and common climates should select for specialists.

However, at the community level, coexistence of generalist and specialist species has been
well-documented (Wilson & Yoshimura 1994; Morris 1996; Abrams 2006). This raises the
question of where specialists and generalists coexist the most along the climatic frequency
gradient. Because there is a broad theoretical and empirical evidence that specialists are better
competitors than generalists (e.g. MacArthur & Connell 1966; Wilson & Yoshimura 1994), it
is likely that generalists will be restricted to the rarest climates where demographic effects
decrease specialist population size allowing the coexistence of generalists and specialists. In
terms of community functional composition, it is unclear whether the climatic frequencies that
allow the coexistence of generalists and specialists will correspond to a peak of functional
diversity. On the one side, a community dominated by few specialists or few generalists
should limit local functional diversity suggesting that the peak of functional diversity is likely
to correspond to the peak of specialist-generalist coexistence. On the other side, studies have
shown that niche packing as a results of increased species functional specialization can
explain the higher biodiversity observed in tropical ecosystems (Pigot, Trisos & Tobias 2016)
suggesting that functional diversity might peak in specialist-dominated communities. Finally,
heterogeneity in climatic conditions has been linked to higher species richness and trait
variation because species can exploit a greater diversity of resources thus allowing more

species to coexist locally (Kassen 2002; Stein, Gerstner & Kreft 2014; Stark et al. 2017).
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Therefore, climatic frequency is likely to interact with other aspects of the spatial distribution
of climatic conditions such as heterogeneity that can further influence species assembly into
local communities.

Studies relating climatic frequency to community composition are scarce. However, rare
climates have been associated to species with restricted spatial distributions and small
populations (i.e., rare species) (Cowling et al. 1996; Ohlemiiller 2008; Morueta-Holme et al.
2013). No study, however, has investigated the role of the frequency of climatic conditions for
species niche specialization and functional diversity which would provide a mechanistic
understanding of the role of climate for species assembly into communities. Furthermore, the
definition and measures of climatic frequency vary among studies. For example, Cowling et
al. (1996) considered the Mediterranean climate to be rare because it covers only
approximately 5% of the planet’s surface. This categorical measure ignores the potentially
important variation within the considered climate zone (i.e., Mediterranean climate). The
metrics of climatic frequency proposed either by Ohlemiiller et al. (2008) or by Morueta-
Holme et al. (2013) describe frequency as unusual conditions relative to the surrounding
regions, that is, within a given distance from a given focal geographic position. The choice of
a distance around the focal position depends on either the ecological properties of the target
organism such as its dispersal capacity, or the boundaries of the sampling region (e.g.
continental limits). However, using a constrained geographical definition of the region of
interest ignores important eco-evolutionary processes for community functional composition
such as long distance dispersal events (Nathan et al. 2008). These processes are likely to occur
beyond the scale of the region of interest (Ricklefs & Schluter 1993). Thus, understanding
community assembly requires knowledge of the conditions over which eco-evolutionary
dynamics take place. In the present study, we focus on woody angiosperms across the
continental US. We define the species pool as all angiosperm species worldwide that are
potentially able to tolerate US climates. Given the variation of US climatic conditions, we
considered the extent covered by this pool of species to be global except for extreme Northern
and Southern latitudes where no angiosperm occurs. We therefore characterized
quantitatively, for the first time, the frequency of climatic conditions across the whole
distribution of angiosperms (i.e. between 85° N and 60° S), hereafter global climatic

frequency, and its effect on ecological niches and community functional diversity.
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Here we set out to test whether species inhabiting rare climates, regardless of the type of
climate, have broader niches than species in common climates. If true, then, we should
observe (i) the communities with most generalist species in rare climates (i.e. negative
correlation between CFI and community mean niche breadth, NBnean). We further expect few
specialists to dominate communities in common climate leading to a relatively low functional
diversity while we expect the coexistence of generalists and specialists in rare climates to
result in higher functional diversity. This leads to two predictions: (ii) the community standard
deviation of niche breadth (NBy) should increase in rare climates (i.e. negative correlation
between CFI and NBy) and (iii) functional diversity (FD) should increase in rare climates (i.e.
negative correlation between CFI and FD). Furthermore, we test the effect of regional climate
heterogeneity on these relationships expecting stronger trends in rare and heterogeneous

climates as compared to rare and homogeneous climates.

II. Methods

Study area

The extent of the study area corresponds to the continental United States of America,
which covers 48 contiguous states, excluding Alaska and Hawaii. This area encompasses a
broad range of climatic conditions and the amount of available species occurrence data is
high. Species data were restricted to this area, but climate data were estimated globally. We
carried out the study at three different geographic resolutions using 3 equal-area projection

grids varying in geographic cell size (20 km % 20 km, 50 km % 50 km and 100 km x 100 km).

Species occurrence data

This study focuses on 500 species among the most common angiosperms occurring across
the continental United States of America (48 contiguous states, excluding Alaska and Hawaii)
(Hawkins et al. 2014). We downloaded all georeferenced records for these species from the
Global Biodiversity Information Facility (GBIF, http://www.gbif.org/, Edwards, Lane &
Nielsen 2000), using the R package “rgbif” (Chamberlain et al. 2013), and revised the dataset
for inconsistencies (i.e., removed duplicated occurrences, homonyms and location errors).
Specifically, location errors, occurrences clearly falling outside of the expected range, were
identified by comparing the distribution of species obtained from GBIF to that of the United
States Department of Agriculture plant database (USDA, https://plants.usda.gov/) and
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removed from the dataset. We then generated three matrices representing the presences-
absences of species in geographic cells by overlapping occurrences onto the equal-area
projection grids (geographic cell sizes = 20 km % 20 km, 50 km % 50 km and 100 km % 100

km, respectively). The final database included 467 angiosperm species.

Climatic variables

To estimate climate frequency and climate heterogeneity per geographic cell, we used
nineteen biologically relevant climatic variables (averaged for the period of 1960 to 1990)
derived from monthly temperature and precipitation data (WorldClim v2.0; Hijmans et al.
2005). All variables were originally downloaded at the 2.5 arc-minutes resolution,
approximately 5 km x 5 km after projected to equal area. We used the values at this resolution
to calculate the mean value of each climatic variable for each geographic cell in each of the

three equal-area grids.

Climate frequency index

In this study we introduce a new climatic frequency index (CFI) that describes the spatial
frequency of a given set of climatic conditions at the global scale. Our index is independent of
the climatic values per se. As such, it does not distinguish different sets of climatic conditions
with similar spatial frequencies. It follows that a warm and moist climate can have the same
frequency as a cold and dry one. Therefore, this index allows us to assess the impact of
climate spatial frequency regardless of direct physiological effects of climatic conditions on
organisms.

Here, we calculated the climate frequency of all geographic cells between around 85° N
and 60° S (i.e. the extend covered by the species pool potentially able to tolerate US
climates). In order to calculate CFI, first, a principal component analysis (PCA) on a
correlation matrix (i.e., variables standardized to mean = 0 and variance = 1) was performed
on the 19 climate variables. PCA axes were selected to represent 95% of the total variation.
Then, climatic frequency was estimated as the spatial probability density of geographic cells
in the ordination space defined by climatic variables. To do so, we applied a multivariate
kernel density estimation on the PCA sites scores. The bandwidth for optimal data smoothing
was selected using Asymptotic Mean Integrated Squared Error (AMISE) criterion, a
commonly-used measure of the quality of the kernel density estimator (see Wand and Jones

1994 for further details). Rare climatic conditions therefore have low CFI values, and
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common ones have high CFI values. We replicated this procedure and calculated CFI
independently for all three spatial resolutions. We used the R packages ade4 (Dray & Dufour
2007) and ks (Duong 2007) to compute PCAs and the kernel density function used to

calculate CFI, respectively.

Climate heterogeneity index

We calculated climate heterogeneity for each geographic cell in each of the three equal-
area grids. To do this, for a given cell, we took the raw data (i.e. the 5 km % 5 km values) of
each climatic variable and projected them to the same PCA that was used to determine the
climate frequency index. Then, we used the resulting 5 km X 5 km projected coordinates to
calculate their centroid as the mean coordinates along each PCA axis. Finally, climate
heterogeneity in the geographic cell was estimated as the mean Euclidean distance to the

centroid.

Niche breadth

Niche breadth for any given species was estimated using the tolerance index of Dolédec et
al. (2000) using the R package “ade4” (Dray & Dufour 2007). This index estimates niche
breadth in terms of species environmental (here climatic) tolerance (Hurlbert 1978; Thuiller et
al. 2004) using the dispersion of geographic cells that contain the target species in the climatic
multivariate space. Low values of the index correspond to specialists and high values to
generalists. Finally, we calculated the mean (NBnen) and standard deviation (NB.g) of this
index in each community to estimate the dominance of generalists or specialists and their

coexistence, respectively.

Functional traits and functional diversity

We selected four traits representing various aspects of species response to climatic
conditions. These traits were obtained from Hawkins et al. (2014) and were: (i) realized cold
tolerance, (ii) dispersal capacity, (iii) normal maximum tree height, and (iv) leaf persistence.
Realized cold tolerance reflects species measured physiological cold tolerance; specifically,
the minimum temperature in degree Celsius for the coldest month within the entire range of
each given species (Hawkins et al. 2014). Dispersal capacity relates to the type and average

distance of seed dispersal (Hawkins et al. 2014). Species were grouped in three categories of
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increasing dispersal capacity (1 = low, 2 = medium, and 3 = high). Normal maximum tree
height was estimated in meters using the method of Elias (1980) and it ranged from around
1.5 meter to more than 40 meters. Leaf persistence defines a given species as either evergreen
or deciduous (0 = evergreen, 1 = deciduous) and describes different strategies to cope with
temperature and humidity (Hawkins et al. 2014).

Functional diversity was measured over all traits using the corrected Rao entropy-based
functional diversity index (FD) (de Bello et al., 2010; Jost, 2007). We first performed a
principal component analysis (PCA) on a correlation matrix (i.e., variables standardized to
mean = 0 and variance = 1) using species trait data. PCA axes were selected to represent 95%
of the total variation. We then computed a Euclidean distance matrix based on PCA species
coordinates in trait space. This matrix was used to compute FD. The main advantage of this
index is that it is expressed in terms of effective number of functionally equally distinct
species (Chao, Chiu & Jost 2014), which allows a more unified an intuitive interpretation of
diversity (Jost 2006; Jost 2007). Another advantage is that it provides a common
mathematical framework to compute different components of biodiversity (taxonomic,
functional, and phylogenetic). See appendix S1 Figure S3, for a comparison with other

commonly used functional diversity indices.

Statistical analyses

We predicted (i) a negative correlation between CFI and NBnea, (ii) a positive correlation
between NBy and CFI and (iii) a positive correlation between FD and CFI. We evaluated
these predictions at the 0.1, 0.2, ..., 0.9 quantiles using linear quantile regression models of
community mean niche breadth, community standard deviation of niche breadth, or functional
diversity (response variables) and CFI as explanatory variables. Climate heterogeneity and its
interaction with CFI were also considered as covariates in the models. Linear quantile
regressions model linear relationships at quantiles of the response variable (Koenker &
Bassett Jr 1978). It does not assume equal variances across covariate values nor does it make
assumptions about the distribution of errors. It is, therefore, typically used when more than
one slope describes the relationship between a response variable and predictor variables (Cade
& Noon 2003). Here, quantile regression allows us to test for the effect of CFI on the targeted
response variables by controlling for the level of heterogeneity. We used the R package

“quantreg” (Koenker 2018) to fit the linear quantile regressions.
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Finally, we assessed whether the effect of climatic frequency is scale-independent. All
analyses were repeated for each spatial resolution (geographic cell size = 20 km x 20 km, 50
km x 50 km and 100 km x 100 km). The effects of climatic frequency on species and
community functional diversity were consistent across resolutions (see Appendix S1 Figures
S4-S5), but the percentage of explained variance decreased slightly at the smallest resolutions.
Varying the spatial resolution did not change the direction or shape of the relationships,
therefore, we present the results obtained with the 50 x 50km grid only. All statistical

analyses were performed in R version 3.5.0 (R Development Core Team 2016).

Results
Characteristics and distribution of rare and heterogeneous climates

At the global scale, the rarest climates are found along coasts, in mountain ranges such as
the Himalayas or Andes, and in large Islands such as the Japan or Madagascar (Figure 1A). In
contrast, the most common climates are found in continental areas along the Cancer and
Capricorn tropics as well as in the boreal region. Examples of common climates include the
Russian Taiga, the Saharan desert and the Australian outback. In the US, the rare climates are
found along the west coast, in Florida as well as in the Sierra Nevada and the Rocky

Mountains. Common climates occur mainly in continental grasslands and temperate forests.

The most heterogeneous climates are found in mountain ranges and, to a lesser extent
along coasts and along major climatic transitions (Figure 1B). The most homogeneous
climates are found predominantly in continental areas including the Amazon basin, the
Australian outback, and the boreal region. In the US, the cells with the highest heterogeneity

are found in the Rocky and Appalachian Mountains, as well as in the Sierra Nevada.

Finally, there is a strong negative relationship between the log of climate frequency at the
global scale and the log of heterogeneity within cells (R2 = 0.58; p < 0.001), where cells in
common climates are characterized by low heterogeneity and cells in rare climates vary in

heterogeneity (Figure 2A).

- 245 -



Minimum Maximum

Figure 1. Climate frequency (A) and heterogeneity (B) at the global scale. The bold black
line highlight the study area.

Do rare climates harbor species with broader niches?

As predicted, we observe a peak in mean niche breadth in rare climates (Figure 2A).
Quantile regressions show that CFI has a positive effect on mean niche breadth after
controlling for heterogeneity (Figure 3A). Similarly, heterogeneity has a positive effect on
mean niche breadth after controlling for CFI (Figure 3B). Quantile regressions reveal an
interaction between CFI and heterogeneity, which has a significant negative effect on NB nean

in all quantiles (Figure 3C).
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Figure 2. Relationship between climatic frequency (CFI) and three
community composition indices. (A) Variability in heterogeneity values per
quantile of CFI. (B) Community mean niche breadth. (C) Community
standard deviation of niche breadth. (D) Functional diversity. Colors indicate
climatic heterogeneity quartiles.

Do rare climates promote the coexistence of specialists and generalists?

As expected, the communities with the highest standard deviation of niche breadth (NBq)
are found in rare climates (Figure 2B). Quantile regressions reveal that CFI, after controlling
for heterogeneity, is negatively associated to NBy for quantiles 0.6 to 0.9 (Figure 3D). NBy
increased with increasing heterogeneity for all quantiles after controlling for CFI (Figure 3E).
Quantile regression also reveals an interaction between CFI and heterogeneity which has a

significant negative effect on NBy in all quantiles (Figure 3F).

Does functional diversity increase in rare climates?

The communities with the highest functional diversity (FD) are found in rare climates
(Figure 2C). Quantile regressions reveal that CFI, after controlling for heterogeneity, is

negatively associated to FD in all quantiles (Figure 3G). FD increased with increasing
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heterogeneity in quantiles 0.6 to 0.9 after controlling for CFI (Figure 3H). Quantile
regressions reveal an interaction between CFI and heterogeneity, which had a significant
negative effect on FD in quantiles 0.7 and 0.8 (Figure 3I). All other functional diversity
indices except for functional evenness show a similar trend as the Rao entropy-based index

(Supplementary material Figure S3).
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Figure 3. Estimated rates of change (i.e. regression slopes) of response
variables (Mean niche breadth = NB.., standard deviation of niche
breadth = NB,4, and functional diversity = FD) as a function of CFI and
climatic heterogeneity for each quantile of interest. The first column
(panels A, D, and G) shows the estimated rate of change in the different
response variables as a function of CFI while controlling for heterogeneity.
The second column (panels B, E, and H) shows the estimated rate of change
as a function of heterogeneity while controlling for CFI. The third column
(panels C, F, and I) shows the estimated rate of change in the coefficient for
CFI for every 0.1 increase in climatic heterogeneity. Larger dots show
significant coefficients. Grey areas show bootstrap-based standard deviation.
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Discussion

Studies aiming at explaining how climate drives species distributions and community
structure have mainly focused on metrics describing the mean (e.g. Currie, 1991, Wang et al.
2010) and in some cases the heterogeneity of climate (e.g. Stein, Gerstner & Kreft 2014).
However, despite evidence that the spatial frequency of climatic conditions relates to species
distributions (Brown 1984; Ohlemidiller et al. 2008; Morueta-Holme et al. 2013), no study has
linked the functional composition of communities to the spatial frequency of climatic
conditions. We advanced over existing research by assessing the effects of global climate
frequency and heterogeneity on niche breadth and functional diversity. Our results show that
global climate frequency and its interaction with regional climate heterogeneity drives woody
angiosperms species niche specialization as well as community functional structure and

composition across the continental US.

Do species have broader niche in rare climates?

We have explored whether species inhabiting rare climates have broader niches than
species in common climates. Our results confirm that the communities with most generalist
species are found in rare and heterogeneous climates, while specialist-dominated communities
are commonly found along the whole gradient of climatic frequency (Figure 2A). Quantile
regressions show that this pattern was mostly explained by the interaction of climatic
frequency and heterogeneity (Figure 3C). Indeed, the effect of frequency and heterogeneity
alone (i.e. while controlling for the other covariate) was positive (Figure 3A-B). These results
support the idea that the success of generalist species in common climates is limited by the
presence of superior competitors (specialists). These results further suggest that, in rare
climates, the level of heterogeneity within geographic cells will determine the success of both
specialists and generalists, with communities dominated by specialists occurring in relatively
homogeneous cells. In agreement, several population-level studies have shown that
environmental heterogeneity favor generalists (Futuyma & Moreno 1988; Kassen 2002). And,
there is evidence that specialists can be found in rare climates as small populations (Cowling

1996; Ohlemiiller 2008).
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Do rare climates promote the coexistence of specialists and generalists?

Our results show that the most variable communities in term of species niche breadth (i.e.
coexistence of specialist and generalist) are found in rare and heterogeneous climates.
Quantile regressions further show that this pattern is mostly driven by CFI and its interaction
with heterogeneity (Figure 3D, F), that is, the coexistence of generalists and specialists
increases in heterogeneous climates but tends to decrease under frequent climates. The
interaction between climate rarity and climate heterogeneity likely decreases the capacity of
specialists to exclude generalists in rare climates by limiting specialists’ population size
and/or by imposing dispersal limitations that prevent them from occupying all available
optimal habitats (Biichi & Vuilleumier 2014). Therefore, our results suggest that competitive
interactions limit the coexistence of specialists and generalists along the whole gradient of
climatic frequency, but climate heterogeneity prevents specialist species from dominating

communities in rare climates.

Does functional diversity increase in rare climates?

Our results confirmed that local communities (species found within any given geographic
cell) tend to be functionally more diverse in rare climates (Figure 2C) suggesting that climatic
frequency is an important driver of FD. Overall, these results show that the peak of functional
diversity corresponds with the peak of specialist-generalist coexistence, and suggest that
strong dominance by either specialists or generalists limits local angiosperm functional
diversity in the continental US. This contrasts with previous studies that suggest that
competition promotes diversification in heterogeneous environments (Jasmin & Kassen
2007). Indeed, previous studies have shown positive relationships between species diversity
and climate heterogeneity (Veech & Crist 2007), although evidence of negative relationships
also exists (Tamme et al. 2010). Our results extend this question to functional diversity and
suggest that the inconsistencies in the environmental heterogeneity-diversity relationship can
be explained by changes in spatial frequency of climate or environmental conditions at larger
scale. In agreement with the area-heterogeneity trade-off (Allouche et al. 2012), our results
suggest that functional diversity is driven by the interplay of habitat availability over the

extent of the species pool and within-habitat heterogeneity.
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Methodological consideration and perspectives

Although we focused on climate, our approach has a much broader scope and can be
readily applied to any environmental factor and scale relevant to particular taxonomic groups.
Application of our approach at higher resolution (e.g. 100 by 100 meters cells), however, will
require more proximal variables that captures ecologically relevant local variation in
environmental conditions. Similarly, while we focused on niche specialization and community
functional composition, our approach can be used to study other aspects of community
composition such as phylogenetic relatedness among species. And, it can be extended to study

population dynamics as well.

Our results proved to be consistent across different community indices and robust to
changes in spatial resolution. However, further studies are needed to assess whether our
results can be further generalized across a broader range of scales and taxonomic groups.
Future studies should thus test for biogeographical effects in the observed patterns by, for
example, applying our approach in different regions (i.e. changing location and extent) using
taxonomic groups that differ in their mobility and dispersal capacity, as both these traits are
likely to influence the effect of climatic frequency on communities. Finally, theoretical
approaches based on metacommunity simulation models are likely to provide finer hypotheses
about the mechanisms driving the pattern observed in the present study allowing to further

understand the joint effect of climate frequency and heterogeneity on ecological communities.

Conclusion

In a context of worldwide decline of specialist species (Clavel, Julliard & Devictor 2010),
our study provides valuable insights on the mechanisms driving ecological niche
specialization and community functional composition. Indeed, our results suggest that
competition limits the success of generalist species. But this effect weakens in rare and
heterogeneous habitats where demographic and dispersal constraints likely limit the success
of specialists allowing the coexistence of specialists and generalists. Our results further show
that rare and heterogeneous climates harbor the functionally most diverse communities
suggesting that functional diversity decreases in specialist-dominated communities. Taken
together, our results provide a mechanistic hypothesis about the dynamics of ecological niche

specialization and community functional composition under varying frequency distribution of
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climatic or environmental conditions. Finally, the present study brings attention to the
importance of considering the interaction of climate frequency and heterogeneity when

studying the effect of climate on ecological communities.
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Supplementary information

Appendix 1: Supplementary results
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Figures S2. Estimated rates of change of species regional frequency and species richness
as a function of CFI and climatic heterogeneity for each quantile of interest. The first
column (panels A and D) shows the estimated rate of change in the different response variables
as a function of CFI, at average value of heterogeneity. The second column (panels B and E)
shows the estimated rate of change as a function of heterogeneity, at average value of CFI. The
third column (panels C and F) shows the estimated rate of change in the coefficient for CFI for
every 0.1 increase in climatic heterogeneity. Larger dots sow significant coefficients. Grey
areas show bootstrap-based standard deviation.
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Figures S3. Correlation matrix of community indices. The upper panel shows correlation coefficient
(r) with red highlighting positive relationships and blue negative ones. The lower panel shows scatter
plots for each pair of variable. The diagonal show the name and the distribution of each community
index: species richness, Rao quadratic entropy functional diversity index (FDrao) the functional indices
of Villéger et al. (2008) (functional divergence FDiv, functional evenness FEve, and functional richness
FRic), the distance-based functional dispersion index (FDis) of Laliberté and Legendre (2010) that
assesses the mean distance in multidimensional trait space of individual species to the centroid of all
species, the mean pairwise functional distance among species (MPD) Webb et al. (2002), and finally,
the mean and standard deviation of niche breadth (NBues and NBy, respectively).

Figure S4. Effect of spatial resolution on the relationship between climate frequency (CFI),
climate heterogeneity, and community composition indices. Idem Figure 2 with all scales — in

preparation
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Figure S5. Effect of spatial resolution on the relationship between climate frequency (CFI),

climate heterogeneity, and community composition indices. Idem Figure 3 with all scales — in

preparation
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Figures S6. Correlation matrix of climate frequency, climate heterogeneity, and selected climate
variables. The upper panel shows correlation coefficient (r) with red highlighting positive relationships and
blue negative ones. The lower panel shows scatter plots for each pair of variable. The diagonal show the name
and the distribution of each variable.

- 263 -







<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


