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Réduction dynamique de réseaux métaboliques par la
théorie des perturbations singulières : application aux

microalgues.

Résumé

Les lipides des microalgues et les glucides de cyanobactéries peuvent être transformés en biodiesel
et en bioéthanol, respectivement. L’amélioration de la production de ces molécules doit prendre
en compte les entrées périodiques (principalement la lumière) forçant le réseau métabolique de
ces organismes photosynthétiques. Il est donc nécessaire de tenir compte de la dynamique du
réseau métabolique en réduisant sa dimension pour assurer la maniabilité mathématique. Le but
de ce travail est de concevoir une approche originale pour réduire les réseaux métaboliques dy-
namiques tout en conservant la dynamique de base. Cette méthode est basée sur une séparation
en échelles de temps. Pour une classe de modèles de réseaux métaboliques décrits par des ODE, la
dynamique des systèmes réduits est calculée à l’aide du théorème de Tikhonov pour les systèmes
singulièrement perturbés. Cette approximation quasi-stationnaire cöıncide avec la dynamique du
réseau d’origine, avec une erreur bornée. L’approche est d’abord développée pour les systèmes de
réaction pouvant être linéarisés autour d’un point de travail et forcés par des entrées continues.
Ensuite, une généralisation de cette méthode est donnée pour les réseaux à réactions rapides de
cinétiques de Michaelis-Menten et tout type de cinétiques lentes, prenant également en compte
un nombre fini d’entrées continues externes. La méthode de réduction met en évidence une rela-
tion entre la grandeur de la concentration des métabolites et la gamme des vitesses de réaction :
les métabolites consommés par les réactions rapides ont une concentration inférieure d’un ordre
de grandeur à celle des métabolites consommés à faible vitesse. Cette propriété est satisfaite
pour les métabolites à dynamique rapide ne se trouvant pas dans un piège de flux, concept in-
troduit dans ce travail. Le système réduit peut être calibré avec des données expérimentales à
l’aide d’une procédure d’identification dédiée basée sur la minimisation. L’approche est illustrée
par un réseau métabolique de microalgues autotrophes, comprenant le métabolisme central et
représentant la dynamique des glucides et des lipides. Cette approche permet de bien ajuster les
données expérimentales de Lacour et al. (2012) avec la microalgue Tisochrysis lutea. Enfin, un
schéma visant à optimiser la production de molécules cibles est proposé en utilisant le système
réduit.

Mots clés : Modélisation métabolique, réduction des réseaux métaboliques, systèmes dynamiques,

théorie des perturbations singulières, microalgues.



Dynamical Reduction of Metabolic Networks by
Singular Perturbation Theory: Application to

Microalgae.

Abstract

Lipids from microalgae and carbohydrates from cyanobacteria can be transformed into biodiesel
and bioethanol, respectively. Enhancing the production of these molecules must account for the
periodic inputs (mainly light) forcing the metabolic network of these photosynthetic organisms.
It is therefore necessary to account for the dynamics of the metabolic network, while reducing
its dimension to ensure mathematical tractability. The aim of this work is to design an original
approach to reduce dynamic metabolic networks while keeping the core dynamics. This method
is based on time-scale separation. For a class of metabolic network models described by ODE,
the dynamics of the reduced systems are computed using the theorem of Tikhonov for singularly
perturbed systems. This Quasi Steady State Approximation accurately coincides with the original
network dynamics, with a bounded error. The approach is first developed for reaction systems
that can be linearized around a working point and that are forced by external continuous inputs.
Then, a generalization of this method is given for networks with fast reactions of Michaelis-Menten
kinetics and any type of slow kinetics, also considering a finite number of external continuous in-
puts. The reduction method highlights a relation between the concentration magnitude of the
metabolites and the range of the reaction rates: the metabolites that are consumed by fast reac-
tions have concentration one order of magnitude lower than metabolites consumed at slow rates.
This property is satisfied for metabolites with fast dynamics that are not in a flux trap, a concept
introduced in this work. The reduced system can be calibrated with experimental data using
a dedicated identification procedure based on minimization. The approach is illustrated with
an autotrophic microalgae metabolic network, including the core metabolism and representing
the carbohydrates and lipids dynamics. The approach efficiently fits the experimental data from
Lacour et al. (2012) with the microalgae Tisochrysis lutea. Finally, a scheme to optimize the
production of target molecules is proposed using the reduced system.

Keywords: Metabolic Modeling, Reduction of Metabolic Networks, Dynamical Systems, Singu-
lar Perturbation Theory, Microalgae.



Reducción dinámica de redes metabólicas por medio
de la teoŕıa de perturbaciones singulares: aplicación a

microalgas.

Resumen

Ĺıpidos de microalgas y carbohidratos de cianobacterias se pueden transformar en biodiesel y bioetanol, re-

spectivamente. La mejora de la producción de estas moléculas debe tener en cuenta las entradas periódicas

(principalmente lumı́nicas) que influencian el metabolismo de estos organismos fotosintéticos. Por lo tanto,
es necesario tener en cuenta la dinámica de su red metabólica, mientras se reduce su dimensión para poder

hacer un análisis matemáticamente. El objetivo de este trabajo es diseñar un enfoque original para re-

ducir redes metabólicas dinámicas mientras se mantiene su dinámica central. Este método se basa en la
separación de escalas de tiempo. Para una clase de modelos de redes metabólicas descritas por EDO, la

dinámica de los sistemas reducidos se calcula utilizando el teorema de Tikhonov para sistemas singular-

mente perturbados. Esta aproximación de estado quasi-estacionario coincide de manera precisa con la
dinámica de la red original, además de tener un error acotado. El enfoque se desarrolla primero para

sistemas de reacciones que pueden linealizarse alrededor de un punto de trabajo y que son forzados por
entradas externas que son continuas. Luego, se proporciona una generalización de este método para redes

con reacciones rápidas de cinética tipo Michaelis-Menten y cualquier tipo de cinética lenta, considerando

también un número finito de entradas externas y continuas. El método de reducción resalta una relación
entre la magnitud de la concentración de los metabolitos y el rango de las tasas de reacción: los metabolitos

que son consumidos por reacciones rápidas tienen una concentración de un orden de magnitud menor que

los metabolitos consumidos a tasas bajas. Esta propiedad se cumple para los metabolitos con dinámica
rápida que no están en una trampa para flujo, un concepto introducido en este trabajo. El sistema

reducido se puede calibrar con datos experimentales mediante un procedimiento de identificación, desar-

rollado para este caso particular, basado en la minimización. El enfoque se ilustra con una red metabólica
de microalgas autótrofas, que incluye el metabolismo central y representa la dinámica de los carbohidratos

y los ĺıpidos. El enfoque se ajusta de manera eficiente a los datos experimentales de Lacour et al. (2012)

con la microalga Tisochrysis lutea. Finalmente, se propone un esquema para optimizar la producción de
moléculas objetivo utilizando el sistema reducido.

Palabras clave: Modelización metabólica, reducción de redes metabólicas, sistemas dinámicos, teoŕıa de

perturbaciones singulares, microalgas.
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Et très spécialement, je voudrais remercier Côme d’être un vrai com-
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Introduction

Microalgae are unicellular algae, whose size ranges in the order of mi-
crometers (µm). They are photosynthetic organisms that grow mainly in
aqueous solutions. The major source of energy in microalgae is synthesized
from light. These microorganism are also capable of converting carbon diox-
ide (CO2) into biomass.

Microalgae are considered as a raw material with potential to produce
biofuels. Some species are capable to accumulate lipids that can be turned
into biodiesel [5]. In order to optimize the production of biofuels, the me-
tabolism of microalgae has been extensively studied.

In the last decades, the genomes of some microalgae have been sequenced.
The availability of genetic information has provided important bases for the
development of metabolic network models [53, 38, 48].

Most of the approaches for metabolic modeling using ODE consider intra-
cellular metabolites as constituents almost without dynamics. The common
assumption is that intracellular metabolites are not accumulative metabolites
and have a very rapid turnover compared to macromolecules [70], implying
that they are at constant concentration. Then, the Steady State Assumption
is generally applied to intracellular metabolites. However, steady state hy-
potheses are not suitable for all metabolisms, specially for those submitted
to fluctuating external conditions, e.g. microalgae metabolism affected by
the flux of light.

Several approaches have been proposed to model metabolic networks
including dynamics [4, 51], but in general, their mathematical bases are
not rigorously justified. In some cases, the Quasi Steady State Assump-
tion (QSSA) is used without mathematical justification to reduce metabolic
systems, which can lead to inaccurate reduced models [11, 22].

The theory of singularly perturbed systems has been used to justify the
Quasi Steady State Assumption on metabolic networks [21, 22, 61, 65, 76].
Singular perturbation methods have been applied under different approaches
and always assume that biological systems have several time-scales.

The objective of this work is to introduce a reduction method for meta-
bolic networks, whose mathematical validity can be justified using the theory
of singular perturbations. For this purpose, an ODE dynamical model of a

11



12 INTRODUCTION

metabolic network is considered, including different time-scales. Then, the
theorem of Tikhonov for singularly perturbed systems is used to obtained
a Quasi Steady State Reduction, i.e. a reduced system that relies on the
QSSA.

This method allows to establish a relation between reaction rate constants
and metabolite concentrations. Moreover, the reduced dynamical system
obtained offers a simple framework for the estimation of parameters using
experimental data. Finally, the reduced dynamical model has a tractable
mathematical complexity and can be used to derive optimization strategies.

In Chapter 1, the principal characteristics of microalgae and some basics
for metabolic modeling are explained. In Chapter 2, the most significant
mathematical definitions and results used in this work are established. In
Chapter 3, the reduction and calibration method for metabolic networks
is developed for linearized metabolic systems forced by continuous inputs.
Additionally, an application to microalgae metabolisms is included.

In Chapter 4, the method is extended for a class of nonlinear metabolic
systems with enzymatic reactions and continuous inputs. Finally, in Chap-
ter 5 the method for nonlinear metabolic system is applied to the autotrophic
microalgae metabolic network proposed by Yang et al. [79]. The reduced
model obtained is calibrated with the experimental data of Lacour et al.
[40]. Also, in Chapter 6, some optimization strategies to increase metabolite
production are proposed using the reduced system, particularly, to improve
lipids production in microalgae.



CHAPTER 1

Microalgae and Metabolic Modeling

1.1. The Microalgae

The existence of cyanobacteria and microalgae in the oceans dates back
to more than three billion years ago. They are considered to be the first
producers of oxygen (O2) on Earth. These unicellular microorganisms have
allowed the emergence of plant and animal life. They are at the basis of the
trophic network, directly eaten by zooplankton and indirectly contributing
to the biomass in the higher trophic levels [1].

Microalgae are photosynthetic organisms that use light energy to con-
vert carbon sources, as CO2, into biomass. Together with the terrestrial
plants, they are responsible in the constant transformation of the atmosphere,
through the carbon dioxide (CO2) fixation and the O2 emission.

Microalgae can be found from oceans, lakes and rivers, to more extreme
environments such as thermal waters, caves, ice, acid or hyper saline water,
walls, tree trunks, on immersed structures and even in human. They can live
in symbiosis with other organisms (e.g. bacteria or fungi). Their adaptation
and survival capacities are result of their morphology and ability to synthesize
different varieties of metabolites [71].

Figure 1.1. Culture of phytoplankton Tisochrysis lutea ( c©Ifremer/Raymond Kaas)

13



14 1. MICROALGAE AND METABOLIC MODELING

As an eukaryote cell, microalgae have a nucleus, a plasma membrane and
organelles such as chloroplast and mitochondria. They synthesize O2 and
primary organic metabolites as carbohydrates, lipids and proteins.

Microalgae are mainly photoautotrophic, i.e. they use light as a source
of energy and inorganic CO2 or bicarbonate as a source of carbon. But they
can also be heterotrophic or mixotrophic. In heterotrophic growth, they con-
sume organic carbon (e.g. acetate or glucose) and can grow in the absence
of light. This substitutes the CO2 fixation of the autotrophic metabolism in
microalgae, which is supported by the photosynthesis. Mixotrophic microal-
gae assimilate both types of carbon sources, CO2 and organic carbon at the
same time [58].

Microalgae are used in diverse areas such as the pharmaceutical industry,
agro-industry, environment and renewable energy. Some of their principal
applications are for [71]:

• Nutrition: source of nutrients for animal feed or as a human food
source. They are used in the manufacture of natural colorants,
gelling agents or sweetener.
• Pharmaceutical: microalgae synthesize vitamins and natural antiox-

idants. They can produce polysaccharides that allow to synthesize
antioxidants, antiviral, antitumor and anticoagulant agents. They
are a source of bioactive molecules and toxins used in the develop-
ment of medicines for the treatment of cancer.
• Cosmetics: microalgae have antioxidant properties used in the man-

ufacture of sun creams, pigments, hair care and anti-wrinkle prod-
ucts.
• Energy: production of biofuels and biohydrogen, only competitive

in cases with strong biomass productivity, simple mechanical har-
vesting and relative low production costs.
• Environment: wastewater treatment and CO2 sequestration for re-

ducing greenhouse emissions. They are use to ensure nitrogen fixa-
tion in agriculture, and for surface strengthening in arid regions.
• Life-support-systems: to regenerate a breathable atmosphere (O2

supply), water recycling, waste treatment and food provision, for
example, during space missions.

1.1.1. Cultures of microalgae. Environmental, physical and biologi-
cal factors affect the physiology and metabolism of microalgae. Some of the
most important factors are described below, however, the can differ depend-
ing on the specie [71]:
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Figure 1.2. Fitoplancton Marino, a Spanish company that produces about
two tons of dry microalgae matter each year (http://ec.europa.eu).

• Light: essential for the metabolism of photosynthetic microalgae, its
supply can be natural through solar energy or artificial using fluo-
rescent tubes, LED or fiber optics. Inadequate light distribution can
limit productivity and growth. Microalgae can present photoinhibi-
tion (loss of photosynthetic activity) as a consequence of an excessive
light exposure.
• Temperature: microalgae are strongly influenced by temperature,

with an optimal temperature related to their natural environment.
The rates of biomass growth, lipids and starch accumulation increase
with higher temperatures up to a certain value [74]. Augmentation
in temperature also affects the CO2 fixation.
• pH: essentially depends on the concentration of CO2 in the culture

medium. A high supply of CO2 or sulfur monoxide (SO) can produce
acidification of the environment, inhibiting the growth of microalgae.
In general, algae growth is optimal with a pH close to neutrality.
• Carbon dioxide: CO2 is the source of inorganic carbon for pho-

totrophic microalgae. Microalgae can assimilate CO2 to grow, while
producing oxygen and secondary metabolites. The concentration of
CO2 dissolved in the medium must be sufficient for optimal growth
[74].
• Nitrogen (N): it is an essential nutrient for algae growth and is in-

volved in the major metabolic pathways of microalgae. The nitrogen
source may be organic (urea) or inorganic (nitrate NO−3 , ammonium
NH+

4 ). An increase in the concentration of nitrogen in the culture,
to a certain extent, leads to more significant cellular, protein and
chlorophyll productivity. A deficiency of this element induces accu-
mulation of lipid reserves (polyunsaturated fatty acids, see Figure 1.3
and Figure 1.4) and a limitation of photosynthetic and cellular ac-
tivities.

http://ec.europa.eu


16 1. MICROALGAE AND METABOLIC MODELING

• Phosphorus (P): microalgae are able to use inorganic as well as or-
ganic forms of phosphorus. It is involved in several metabolic path-
ways and cellular regulations. Phosphorus deficiency influences the
photosynthetic activity, the accumulation of lipids reserves (see Fig-
ure 1.3) and the biomass productivity. Phosphorus may form pre-
cipitates with metal ions and, therefore, has to be supplied in excess
into the medium.
• Microelements: several organic and inorganic microelements are nec-

essary for the growth of microalgae and a deficiency in one of these
may lead to reduced algae growth. Lack of sulfur (S) induces an
inhibition of protein synthesis and photosynthetic activity. Sulfur
limitation induces starch and lipid synthesis [74] (see Figure 1.3).
Iron deficiency causes inhibition of protein and lipid synthesis. Iron
also acts as a catalyst in the synthesis of chlorophyll. Magnesium is
essential to nitrogenase activity and a deficiency can affect the pho-
tosynthetic mechanism of microalgae. Molybdenum may influence
nitrogen assimilation at cellular level.
• Medium salinity: increment of salinity in the medium may inhibit

photosynthetic activity, while changes of salinity induces osmotic
and ionic stresses, leading to the formation of precipitates, increase
in lipid content, higher concentration in carotenoids for some species
(e.g. Dunaliella) and inhibition of growth.
• Agitation: the homogeneity of the culture medium is crucial to en-

sure optimal biomass productivity and high CO2 fixation. Low agi-
tation leads to difficulties in accessing nutrients and light to cells, to
biomass settling and stagnant zones adverse for culture conditions,
since it can lead to toxic product accumulation and cell death. On
the other hand, excessive agitation causes physiological and meta-
bolic deficiencies as well as structural damage.
• Gas-liquid mass transfer: good quality of gas-liquid mass transfer

provides maximum amounts of CO2 for fixation and regulation of pH
through CO2 dissolution in the liquid. This transfer depends on the
diffusivity of CO2 in both phases, the flow of gas and hydrodynamics.
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Figure 1.3. Lipid accumulation during batch cultivation of microalgae
Parachlorella kessleri. Figure taken from [74]. Lipid bodies (yellow), chloro-
plast (red). Cultures were grown in complete mineral medium (1 medium), or
in absence of nitrogen (-N), phosphorus (-P) or sulfur (-S). Scale bar represents
10 µm.

1.1.2. Microalgae for the Production of Biofuels. The environ-
mental impact of human activities has turned attention to renewable ener-
gies. For example, to reduce fossil fuels usage and CO2 emissions to the
atmosphere, the generation of biofuels has been promoted in the last decades
[42]. But research in biofuels still needs to be carried out, to raise their yields
and reduce commercialization costs.

Microalgae is considered the most promising source of biofuel produc-
tion. Biodiesel from microalgae is classified as a third generation biofuel. It
presents several advantages over fossil fuels, first generation biofuels (derived
from food crops) and second generation biofuels (from waste and non-food
biomass).

Compared to first and second generation biofuels, microalgae biofuel rep-
resents an alternative to reduce the competition with food production, exces-
sive water consumption and soil deterioration. Microalgae are more effective
than terrestrial species for biodiesel synthesis. They present and important
biomass productivity, high photosynthetic activity and large lipid storage
potential up to 20-50% dry weight [71].

In conclusion, biofuels produced from microalgae are a source of energy
with potential. Remarkable advantages in the culture of these microorgan-
isms are [5, 42, 58]:
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• Reduced CO2 emissions compared to emissions from petroleum diesel
[13]. As autotrophic microorganisms, they can mitigate CO2 from
human activities and produce neutral lipids (mainly triacylglycerols
[TAG]) or carbohydrates, which can be transformed into biodiesel
and bioethanol, respectively.
• They have a fast growth rate, which implies that productivity of

microalgae biofuel is higher than those of vascular plants.
• They have the capacity to grow in salt water as well as wastewa-

ter, this means that the production of microalgae biofuels do not
necessarily compete with agricultural food for land or fresh water.
• The use of microalgae for environmental processes, such as wastew-

ater treatment, fertilization of soils, biofuels, and phytoremediation
of toxic wastes.

Nevertheless, microalgae based biofuels production is an emerging tech-
nology that must be optimized [13, 46, 63]. The study of microalgae meta-
bolic dynamics is crucial to improve microalgae biofuel production. For
example, exploiting the mechanisms which drive lipids accumulation, TAG
quota can be raised in a culture. Unfortunately, lipids metabolism of microal-
gae is rather unknown and it diverges from bacteria and plants [4]. However,
metabolic modeling is a tool that can give insights to deduce optimal condi-
tions for lipid accumulation in microalgae.

Figure 1.4. Lipid droplets in microalgae Chlamydomonas reinhardtii. Figure
taken from Fan et al. (2011) [17]. Electron micrographs of the mutant cells
grown in complete medium (A) or cells shift to medium lacking nitrogen for
two days (B). In (B) it is shown the presence of lipid droplets in the chloroplast
and the cytosol in a single cell. Scales bars represents 2 µm. Abbreviations:
E, eyespot; LD, lipid droplets; M, mitochondria; N, nucleus; P, pyranoid; Thy,
thylakoid membranes; V, vacuoles.
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1.2. Metabolic Network Modeling

Biological systems are hierarchical. One type of hierarchy is with respect
to time-scales. At the faster time-scales there are elementary metabolic re-
actions catalyzed by enzymes. Genetic regulations in evolution are on the
slower time-scales. On the other hand, there is a hierarchy of material struc-
tures, ranging from low-molecular compounds to organisms and populations.
Metabolic modeling only takes into account the cell and its substructures
[24].

A metabolic network is defined as a set of chemical reactions, where the
metabolites acting in reactions are represented by “nodes” and the reactions
by “arrows” between the nodes. In metabolic networks, chemical reactions
are processes where some metabolites are consumed and transformed into
others. We say that a metabolite is a substrate if it is depleted during a
reaction in order to produce others metabolites, which are called products
[2]. Given a metabolic network, the objective of metabolic modeling is to
define a mathematical model that describes the dynamics of its network of
chemical reactions.

Reactions can have more than one substrate and several products. First
order reactions are reactions where only one substrate and one product are
considered. For example, the reaction

A→ B (R1)

is a first order reaction where A is the substrate and B the product.
To establish a system of ordinary equations which describes the con-

centration of metabolites A and B during the reaction R1, the rate of the
reaction has to be taken into account. Rates of reactions can evolve during
the time, but in this work we consider them as constants. Then, we denote
the constant rate of reaction R1 by a positive number k1 and

A
k1→ B (R1).

Hence, an ODE representing how A is consumed to produce B at rate k1

(assuming a first order reaction) is

dA

dt
= −k1 · A

dB

dt
= k1 · A,

where the variablesA andB denote the molar concentrations of the respective
metabolites [2].
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Reactions with more than two substrates induce nonlinear systems of
equations. For example, the reaction

A+B
k2→ C +D (R2),

have two substrates and two products. Following the mass action law [75],
the system of equations describing the concentration dynamics of each metabo-
lite is

dA

dt
= −k2 · A ·B

dB

dt
= −k2 · A ·B

dC

dt
= k2 · A ·B

dD

dt
= k2 · A ·B.

Notice that when a metabolic network has exclusively first order reac-
tions, the definition of metabolic network coincides with the definition of
directed graph in Mathematics. Indeed, for a first order reaction we can
identify the substrate as the origin node, the product with the final node
and the reaction with a directed edge from the substrate to the product.
But when there is more than one substrate or more than one product, one
single “edge” might rely several origin nodes to several final nodes. For
instance, reaction R2 can be graphically represented as

Figure 1.5. Metabolic reaction with two substrates (A and B) and two prod-
ucts (C and D). Its constant rate of reaction is k2.

1.2.1. Stoichiometric Models. Mathematical modeling in biochem-
istry has for principal objective the construction of kinetics models. These
models are expected to predict the system dynamics on the basis of the
reaction network topology and the kinetic parameters.

So far, the methods to analyze kinetics models have been mainly alge-
braic. These methods, for example, allow to detect conservation relations
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and biochemical routes (elementary modes of fluxes) [26]. In this context, a
capital concept is the stoichiometric matrix, defined below:

Definition 1.1 (Stoichiometric Matrix). Consider a metabolic network
with m metabolites X1, X2,...,Xm, and r reactions R1, R2,...,Rr. Then, its
stoichiometric matrix is defined as the matrix N of size m× r, whose entry
nij is the stoichiometric factor of metabolite Xi in reaction Rj multiplied by
1 if the metabolite is produced after the reaction (i.e. if Xi is a product) or by
−1 if the metabolite is consumed during the reaction (i.e. if Xi a substrate).

Example 1.1. Suppose that we have a network with two reactions:

2X1 +X2 → X3 + 3X4 (R1)

X5 + 2X3 → 5X2 (R2)

Then, its stoichiometric matrix is

N =


R1 R2

X1 −2 0
X2 −1 5
X3 1 −2
X4 3 0
X5 0 −1

 ∈M5×2. (1.1)

To study the dynamics of metabolite concentrations, the constant rates
of reactions have to be also taken into account. These are used to define the
kinetics of the network. For example, if reactions R1 and R2 have rates k1

and k2, respectively, then we write

2X1 +X2
k1→ X3 + 3X4 (R1)

X5 + 2X3
k2→ 5X2 (R2)

and their vector of kinetics (given by a mass action law) is

V (X) =

(
ν1

ν2

)
=

(
k1 ·X1 ·X2

k2 ·X5 ·X3

)
.

For intracellular metabolic reactions, the most common representation of
metabolite dynamics is given by the ODE

dX

dt
= N · V (X)− µ ·X,

where N is the stoichiometric matrix of the reaction network, V (X) the
vector of kinetics and µ the rate of growth dilution [60].
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For the example, the ODE of the network with reactions R1 and R2 in
Example 1.1 is

dX1

dt
= −2 · k1 ·X1 ·X2 − µ ·X1

dX2

dt
= −k1 ·X1 ·X2 + 5 · k2 ·X5 ·X3 − µ ·X2

dX3

dt
= k1 ·X1 ·X2 − 2 · k2 ·X5 ·X3 − µ ·X3

dX4

dt
= 3 · k1 ·X1 ·X2 − µ ·X4

dX5

dt
= −k2 ·X5 ·X3 − µ ·X5.

Note 1.1. When there are reversible reactions, we have to consider the
rates of the reverse reactions in the kinetics. For example, if we suppose that
R1 is reversible

2X1 +X2

k1
�
k−1

X3 + 3X4 (R1)

X5 + 2X3
k2→ 5X2 (R2),

assuming a mass action law, the kinetics vector is

V (X) =

(
ν1

ν2

)
=

(
k1 ·X1 ·X2 − k−1 ·X3 ·X4

k2 ·X5 ·X3

)
,

and its stoichiometric matrix is the same defined in (1.1). Moreover, its ODE
is

dX1

dt
= −2 · k1 ·X1 ·X2 + 2 · k−1 ·X3 ·X4 − µ ·X1

dX2

dt
= −k1 ·X1 ·X2 + k−1 ·X3 ·X4 + 5 · k2 ·X5 ·X3 − µ ·X2

dX3

dt
= k1 ·X1 ·X2 − k−1 ·X3 ·X4 − 2 · k2 ·X5 ·X3 − µ ·X3

dX4

dt
= 3 · k1 ·X1 ·X2 − 3 · k−1 ·X3 ·X4 − µ ·X4

dX5

dt
= −k2 ·X5 ·X3 − µ ·X5.
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1.2.2. Michaelis-Menten Reaction. Since a single reaction can in-
volve several components, the systems of equations of some specific reactions
have been studied in order to reduce it. For illustration, the classical example
of an enzymatic reaction, proposed by Michaelis and Menten, is presented
here.

The Michaelis-Menten model considers a substrate Xi which reacts with
an enzyme eji to produce a complex Cji. Then, this complex is transformed
into a product Xj and the enzyme eji. This enzymatic reaction is abstracted
as follows:

Xi + eji
kji1
�
kji−1

Cji
kji→ Xj + eji (1.2)

dXi

dt
= −kji1 · ejiXi + kji−1 · Cji Xi(0) = x0

i

deji
dt

= −kji1 · ejiXi + (kji−1 + kji)Cji eji(0) = e0
ji

dCji
dt

= kji1 · ejiXi − (kji−1 + kji)Cji Cji(0) = 0

dXj

dt
= kji · Cji Xj(0) = x0

j .

The Michaelis-Menten model is usually represented as the result of a
Quasi Steady State Approximation [55, 67]:

dXi

dt
= −e0

jikji
Xi

Xi +Kji
(1.3)

dXj

dt
= e0

jikji
Xi

Xi +Kji

Cji =
e0
ji ·Xi

Xi +Kji

eji = e0
ji − Cji,

where

Kji :=
kji−1 + kji

kji1

is the Michaelis-Menten constant. Indeed, this QSSR is obtained assuming
that

deji
dt

+
dCji
dt

= 0

and that the complex Cji is at QSS, i.e.,

kji1 · (e0
ji − Cji)Xi − (kji−1 + kji)Cji = 0.

To see more details of the proof we refer to [55].
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Nevertheless, this approximation holds if the initial substrate concentra-
tion x0

i is sufficiently large compared with the initial enzyme concentration
e0
ji [55, 67].

1.2.3. Elementary Flux Modes. Metabolic flux analysis assumes that
metabolic reactions are organized into sequences called metabolic pathways
or fluxes. In a living cell, thousands of independent enzyme-catalyzed reac-
tions can occur [2], leading to a large number of fluxes. In order to identify a
relative small set of fluxes from which any flux can be composed, the concept
of elementary flux mode has been introduced.

Essentially, an elementary flux mode is a flux within a metabolic network
that cannot be decomposed into simpler flux modes. Here we include two
equivalent definitions of elementary flux mode, or elementary mode, proposed
by Heinrich et al. [25] and Klamt et al. [36].

Definition 1.2 (Elementary Flux Mode [25]). A flux mode M is defined
as the set

M = {ν ∈ Rr|ν = λν∗, λ > 0},
where ν∗ is a r-dimensional vector (different from the null vector) fulfilling
the following two conditions:

(C1) Steady-state condition. N · ν∗ = 0.
(C2) Sign restriction. If the system involves irreversible reactions, then

the corresponding entries, νirr of ν∗ fulfill inequality νirr ≥ 0.

A flux mode M with a representative ν∗ is called elementary flux mode
if, and only if, ν∗ fulfills condition:

(C3) Simplicity (non decomposability). For any couple of non-null vectors
ν ′ and ν ′′ with the following properties:

(i) ν ′ and ν ′′ satisfy restrictions (C1) and (C2),
(ii) ν ′ and ν ′′ contain zero elements whenever ν∗ does and they include

at least one additional zero component each, i.e. supp(ν ′) (supp(ν)
and supp(ν ′′) (supp(ν),

ν∗ is not a non-negative linear combination of ν ′ and ν ′′, i.e.,

ν∗ 6= λ1ν
′ + λ2ν

′′ λ1, λ2 > 0.

A slightly different definition of the Elementary Flux Mode concept can
be found in the work of Klamt et al. [36]. In this definition (given below),
an Elementary Mode is not considered as a set but as a single vector.

Definition 1.3 (Elementary modes [36]). Let N be the stoichiometric
matrix of a reaction network and Irrev the index set of irreversible reactions.
An elementary mode (EM) is a flux vector e fulfilling the following three
conditions:
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(i) Steady State N · e = 0.
(ii) Reaction reversibility ei ≥ 0 (∀i ∈ Irrev).
(iii) Support-minimality: there is no vector ẽ (different from the null

vector) that fulfills (i) and (ii) and supp(ẽ) (supp(e).

The following proposition states that Definition 1.2 and Definition 1.3
determine the same concepts.

Proposition 1.1. Suppose that ν is a representative of a elementary
flux mode M according to Definition 1.2. Then, ν is an elementary mode
according Definition 1.3. Reciprocally, if e is an elementary mode according
Definition 1.3, then the flux mode M represented by e is an elementary flux
mode by Definition 1.2.

Note 1.2. For simplicity, if ν is a representative of a elementary flux
mode M according to Definition 1.2, we only say that ν is and EFM according
to Definition 1.2.

Proof. If we suppose that ν is an EFM according to Definition 1.2 but that
it does not satisfy Definition 1.3, then there exists a non-null vector ẽ such
that supp(ẽ) ( supp(ν) and satisfies (i) and (ii) of Definition 1.3. Hence,
we can choose a number λ > 0 such that ν − λ · ẽ satisfies the reaction
reversibility condition (ii) of Definition 1.3 and that supp(ν−λ · ẽ) ( supp(ν)
[e.g. λ := min{νi/ẽi : i ∈ supp(ẽ)∩Irrev} or λ = νi/ẽi with any i ∈ supp(ẽ) if
supp(ẽ)∩ Irrev = ∅]. Moreover, N · (ν−λ · ẽ) = 0 since the kernel of a matrix
transformation is a vector subspace. But notice that ν = (ν − λ · ẽ) + λ · ẽ,
in contradiction with the simplicity condition (C3) of Definition 1.2.

Reciprocally, assume that e is a EM according to Definition 1.3 and sup-
pose that it is not a EFM according to Definition 1.2. Then, there exists a
couple of vectors ν ′ and ν ′′ that satisfy supp(ν ′) (supp(ν) and supp(ν ′′) (
supp(ν). This contradicts the condition (iii) of support-minimality in Defi-
nition 1.3. �

1.2.4. Current Approaches for Metabolic Modeling. Metabolic
modeling has been an efficient tool to grasp the metabolism of an organ-
ism. This approach has gained accuracy in the last decades, and turns out to
be particularly efficient to improve production of target molecules, by under-
standing biological processes that influence the metabolism of an organism.
These models are based on simplified metabolic networks, and generally in-
clude several hundreds of reactions associated to many metabolic compounds.
In order to manage the large dimension of these models, some simplifying
assumptions are generally necessary.

Since metabolic networks models are high dimensional complex systems,
their mathematical analysis and parameter identification is a complicated
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task. As a consequence, they are difficult to use for control purposes and
identifying conditions to maximize productivity by a rigorous mathematical
analysis is generally not possible.

Microalgae and cyanobacteria metabolic models can include thousands of
reactions and metabolites [5]. Thus, metabolic modeling techniques to sim-
plify these systems have been applied to describe microalgae and cyanobac-
teria metabolisms. These include techniques based on Steady State Assump-
tions [12, 38, 68, 79] or reduction techniques based on a Quasi Steady State
Assumption [4].

Furthermore, the metabolisms of microalgae and cyanobacteria are driven
by the solar flux, which supports fixation of CO2 through Calvin cycle. Pe-
riodic fluctuation of light induces oscillations in their metabolisms, with ac-
cumulation of metabolites (especially lipids and carbohydrates). Therefore,
such metabolisms are never at steady state.

However, most of the approaches dedicated to metabolism analysis as-
sume balanced growth, i.e. Steady State Assumption (SSA), which leads
to rough approximations of fluctuating systems. For instance, Flux Balance
Analysis (FBA) [34, 57] is based on linear algebra to solve the equation
N · V = 0, where N is the stoichiometric matrix and V is the vector of in-
tracellular reaction rates. Therefore, these approaches make two hypotheses.
First that the derivative of each intracellular compound (per biomass unit)
is zero, and second that the dilution rate is negligible.

1.2.5. Flux Balance Analysis. The principal hypothesis of FBA is
that metabolic systems attain an equilibrium under any external conditions
[34]. Moreover, the dilution due to growth is often omitted in the approaches
that use FBA. Under these assumptions, the ODE problem is simplified an
expressed as a linear algebraic equation:

N · V (X) = 0, (1.4)

where N is the stoichiometric matrix and V (X) the vector of kinetics. Thus,
FBA consists in finding elements in the kernel of the stoichiometric matrix,
to have an estimation of the kinetics vector (which in that case is a constant
vector).

In general, the number of reactions is larger than the number of metabo-
lites in a metabolic network. Then, Equation (1.4) is supposed to be un-
derdetermined. If Equation (1.4) has a non trivial solution, it has infinitely
many solutions [23, 54]. Moreover, the set of solutions intersected with the
set of irreversibility constrains

FC = {ν ∈ Rr : N · ν = 0 and νi ≥ 0 ∀i ∈ Irrev}

is a convex polyhedral cone called flux cone [37].
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In order to select a vector in the flux cone, some constraints and op-
timization criteria are imposed in FBA. Then, an objective function Z(V )
is set with the aim of finding a unique solution [34]. These constrains are
represented in a linear programming (LP) problem:

max
V

Z(V )

N · V = 0

νLj ≤ νj ≤ νUj ,

where Z is a linear function and νj the j-th entry of V [15, 57]. Linear
programming problems can be solved using tools as linprog in Matlab (http:
//www.mathworks.com), or karmarkar and linpro in Scilab (http://www.
scilab.org).

1.2.6. Dynamical Flux Balance Analysis. Dynamical Flux Balance
Analysis (DFBA) is an extension of FBA to account for dynamics [51]. This
approach assumes that cells optimize an objective criterion. Then, several
steady states are assumed and, for each transition from one steady state to
another, FBA solution indicates an instantaneous change of the metabolic
fluxes. DFBA can be formulated in a dynamic or a static approach.

1.2.6.1. Dynamic Optimization Approach (DOA). In order to obtain time
profiles of fluxes and metabolites levels, DOA considers the optimization
problem in a complete time interval of interest. This can be translated in
the following nonlinear programming (NLP) problem:

max
X(t),V (t),B(t)

wendΦ(X, V,B)|t=tf + wins

M∑
j=0

∫ tf

t0

L(X, V,B)δ(t− tj)dt

such that
dX

dt
= N · V ·B

dB

dt
= µ ·B

µ =
∑

wivi

tj = t0 + j
(tf − t0)

M
j = 0, . . . ,M

c(V,X) ≤ 0 |V̇ | ≤ V̇max ∀t ∈ [t0, tf ]

X ≥ 0 B ≥ 0 ∀t ∈ [t0, tf ]

X(t0) = X0 B(t0) = B0,

where X is the vector of metabolite concentrations, B is the biomass concen-
tration, V is the vector of metabolic fluxes per gram (DW) of the biomass,

http://www.mathworks.com
http://www.mathworks.com
http://www.scilab.org
http://www.scilab.org
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N is the stoichiometric matrix, µ is the growth rate set as the weighted sum
of reactions that synthesize the growth precursors, wi are the amounts of
the growth precursors required per gram (DW) of biomass, X0 and B0 are
the initial conditions for the metabolite concentrations and the biomass con-
centration, respectively, c is a vector function of nonlinear constrains due to
kinetic expressions for fluxes, t0 and tf are the initial and the final times, Φ is
the terminal objective function, L is the instantaneous objective function, δ
is the Dirac delta function, wins and wend are the weights of the instantaneous
and terminal objective function, respectively.

1.2.6.2. Static Optimization Approach (SOA). In SOA approach the time
is divided in N time intervals and the instantaneous optimization problem
is solved at the beginning of each time interval, followed by integration over
the interval. The optimization problem is solved using linear programming
(LP) repeatedly to obtain the flux distribution at a particular time instant.
In some cases, rate of change constraints are incorporated on the metabolic
fluxes [51]. The LP problem is formulated as:

max
V (t)

∑
wivi(t)

such that X(t+ ∆T ) ≥ 0 X(t) ≥ 0

c(X(t)) · V (t) ≤ 0 ∀t ∈ [t0, tf ]

|V (t)− V (t−∆T )| ≤ V̇max∆T ∀t ∈ [t0, tf ]

X(t+ ∆T ) = X(t) +N · V ·∆T
B(t+ ∆T ) = B(t) + µ ·B(t) ·∆T,

where ∆T is the length of the time interval in consideration. At each time in-
stant, the dynamic equations are numerically integrated assuming that fluxes
are constant over the time interval. For the class of systems involving only
bilinear terms with fluxes and biomass concentration, it is possible to ana-
lytically solve the dynamic equations [51].

Even though DFBA allows to obtain a dynamic model for the predic-
tion of source molecules and biomass time profiles, some drawbacks of this
approach have been observed. For instance, the SOA can lead to approxi-
mations not appropriate to solve optimization problems in a complete time
interval [76].

On the other hand, with DOA, defining an optimization function can
be a complex task, since the classical optimization function to maximize
the production of biomass is not suitable for some cases (e.g. to represent
accumulation of metabolites due to diel cycles). Moreover, DOA allows to
predict dynamically metabolic fluxes to the synthesis of biomass as a single
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component, but not to the storage of metabolites or to the distribution of
biomass for different metabolic task, which might be essential to study the
accumulation of macromolecules of interest [4] or metabolic adaptations in
the case of metabolic-genetic networks [76].

1.2.7. Dynamic Reduction of Unbalanced Metabolism. One ap-
proach to reduce metabolic systems with dynamics using the Quasi Steady
State Assumption is DRUM: Dynamic Reduction of Unbalanced Metabolisms
[4]. This method considers subnetworks in Quasi Steady State (QSS), which
are interconnected by metabolites that can accumulate and have dynamics.
Then, Elementary Flux Modes (EFM, see definition in Section 1.2.3) are
computed in each subnetwork to reduce them using the QSSA. As result, the
dynamics of accumulative metabolites form a reduced system of Ordinary
Differential Equations (ODE).

The objective with the DRUM approach is to reduce a system of the form

dξ

dt
= N · V (ξ) ·B −D · ξ +D · ξin,

where ξ represents the metabolites concentration vector composed of biomass
B, N is the stoichiometric matrix, V (ξ) the vector of kinetics, D the dilution
in the bioreactor and ξin is a vector function representing the input.

The approach proposes to reduce the kinetics within the subnetworks
using EFM. For these, the EFM of each subnetwork have to be computed.
To facilitate computations, DRUM approach also omits the dilution growth
(as FBA). Then, for each subnetwork SNi, a vector αi with new kinetics has
to be defined in order to satisfy

Ei · αi = Vi(ξ),

where Ei is the EFM matrix of subnetwork SNi and Vi(ξ) is the vector with
the kinetics of the reactions in subnetwork SNi. Then, the reduced system
obtained is

dξ

dt
= (S1 · E1 . . . Sk · Ek) ·

α1
...
αk

 ·B −D · ξ +D · ξin,

where Si is the matrix with the columns of N associated to the reactions of
subnetwork SNi.

However, the definition of αi is not a trivial task if we seek to obtain
reduced systems with mathematical validation. The choice is left to the
person who applies the approach. This can be deduced using techniques of
optimization (e.g. FBA and DFBA), and it can be validated comparing with
experimental data [4].



30 1. MICROALGAE AND METABOLIC MODELING

DRUM approach has provided sound results with efficient representa-
tion of accumulation of lipids and carbohydrates in microalgae submitted to
light/dark cycles. Nevertheless, it relies on a series of assumptions whose
mathematical bases are not rigorously established. Moreover, the QSSA is
used without delimiting the “fast”and “slow”parts of the metabolic system.

1.2.8. Theory of Singularly Perturbed Systems for QSSR. Sev-
eral works have already used the Theory of Singularly Perturbed Systems
to reduce metabolic systems. These approaches also take into account the
QSSA.

For example, Waldherr et al. [76] consider three types of molecular
species: (1) extracellular nutrients and waste products, (2) intracellular
metabolites and (3) macromolecules (gene products or large metabolites
forming building blocks). Also, they differentiate fluxes as exchange reac-
tions between cell and environment, metabolic reactions (conversions between
metabolites) and biomass reactions (converting metabolites into macromole-
cules and vice versa).

For obtaining a system with two time scales, Waldherr et al. [76] suppose
that the stoichiometry of metabolites in the formation of macromolecules are
large. Moreover, they also assume that macromolecules formation is propor-
tionally slower as these large stoichiometric coefficients increase. In other
words, that macromolecules have slow dynamics, while former metabolites
are consumed faster.

Finally, the slow part of the model in [76] correspond to the molar
amount variables of macromolecules, extracellular nutrients and waste prod-
ucts, while intracellular metabolites constitute the fast part. Then, a reduced
system of ODE accounting for the slow variables is deduced using Tikhonov’s
Theorem for singularly perturbed systems (see Section 2.2 for the formula-
tion of Tikhnov’s Theorem).

In the approach of Radulescu et al. [61], it is assumed that the pro-
duction of intermediate species is not weak (i.e. reactions producing these
metabolites have large kinetics). Then, they consider intermediates species
with low concentration that are consumed by some reactions of considerable
high rates, and that these reactions produce terminal species which have
larger concentrations.

Intermediate species constitute the fast part of the metabolic system in
[61], which then can be reduced using the results of Tikhonov and Fenichel for
singularly perturbed systems. Also, quasi-stationary equations can be used to
express intermediate species concentration as functions of the concentration
of terminal species.
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However, the authors of [61] admit that quasi-stationary species are gen-
erally difficult to detect. To tackle this problem, they use the quasi-stationary
equations (QSSA) and conservation conditions related to a basis of the left
kernel of the stoichiometric matrix.

Other approaches differentiate time scales based on parameters found
in the literature. For example, Gerdtzen et al. [21] take into account the
characteristic time constants associated to reactions. Then, in their model
the rate constant of each kinetic reaction is defined as the inverse of its
characteristic time constant.

Gerdtzen et al. [21] focus on metabolic networks where reactions can be
partitioned into fast and slow reactions based on their characteristic time
constants. Also, they consider a slow term, which involves dilution due to
cell growth and transport of species in and out of the cell. Using singular per-
turbation arguments, they derive a nonlinear ODE model of slow dynamics,
which do not contain large reaction rate constants.

Therefore, the approach described in [21] consists in first finding the
characteristic time constants of reactions from the literature or experimen-
tally. However, for complex reaction rates this identification is not simple.
Parameters such as activity and concentration of enzymes, and the average
concentration of species that have a regulatory effect on enzyme, must be
considered.

In the paper of Holzhutter et al. [27], characteristic constants are de-
scribed as dependence of system variables on parameters (rate constants) in
steady state. Beyond the complexity of defining characteristic time constants,
for large metabolic networks with hundreds of reactions, it is a difficult task
to obtain the parameters associated to each kinetic.





CHAPTER 2

Mathematical Tools

In this chapter are established the principal mathematical definitions
and properties used through this work. They are used in the Theorem of
Tikhonov for singularly perturbed systems and in some proofs concerning
the approach presented here.

2.1. The Big O or Landau symbol

In Tikhonov’s theorem, the Big O or Landau symbol is used to character-
ize the difference between the solution and the approximation of a singularly
perturbed system. In this work, it is also used to study the order of mag-
nitude of parameters in metabolic systems. By means of this, for a class of
metabolic networks described in the next chapters, we prove that the con-
centration of metabolites in the fast part of the system have concentrations
one order of magnitude lower than metabolites in the slow part.

The following definitions and properties of the big O or Landau symbol
were mainly taken from [56].

Definition 2.1. Let ε > 0. Two functions f and g have the same order
or Landau symbol, i.e.

f(ε) = O(g(ε)) as ε→ 0,

if and only if there is a positive real number A such that

lim
ε→0

f(ε)

g(ε)
= A.

Notice that in the limit ε→ 0, i.e. for ε ∈ (0, 1), the order of magnitude
can be arranged as follows:

· · · < ε3 < ε2 < ε < 1 < ε−1 < ε−2 < ε−3 < . . . .

Property 2.1 (Multiplication). If f1 = O(g1) and f2 = O(g2), then
f1f2 = O(g1g2). Moreover, if k is a nonzero constant (with respect to ε),

33
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then k · g = O(g).

Property 2.2 (Addition and subtraction). If f1 = O(g1), f2 = O(g2)
and

lim
ε→0

g2

g1

<∞,

then f1 + f2 = O(g1).

Property 2.3 (Division). If f1 = O(g1) and f2 = O(g2), then f2/f1 =
O(g2/g1).

For functions also depending on another variable, there is the following
definition of order magnitude.

Definition 2.2. If f(x, ε) and g(x, ε) are real or complex valued func-
tions, then

f(x, ε) = O[g(x, ε)] as ε→ 0

if there exists a positive constant A > 0 independent of x and ε∗ such that

|f(x, ε)| ≤ A · |g(x, ε)| for all ε ∈ [0, ε∗].

Note 2.1. In this work, we use a particular notation to indicate that two
functions have the same order of magnitude. Indeed, if f1(x, ε) = O(g(x, ε))
and f2(x, ε) = O(g(x, ε)) as ε→ 0, then we denote

f1(x, ε) = O(f2(x, ε)) as ε→ 0 or

O(f1(x, ε)) = O(f2(x, ε)) as ε→ 0.

Also, to compare the order of magnitude of two functions, we use a special
notation. Suppose there exists a positive ε∗ such that g1(x, ε) ≤ g2(x, ε) for
all ε ∈ [0, ε∗]. Then, if f1(x, ε) = O(g1(x, ε)) and f2(x, ε) = O(g2(x, ε)), we
write

f1(x, ε) ≤ O(f2(x, ε)) as ε→ 0 or

O(f1(x, ε)) ≤ O(f2(x, ε)) as ε→ 0.

2.2. The Theorem of Tikhonov

The reduction method proposed in this work is based on time-scale sep-
aration. We suppose a system which has slow and fast dynamics, a charac-
teristic widely recognized in biological systems. Slow-fast systems have been
used in metabolic modeling, allowing to apply QSSA [62].
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The QSSA represents the approximative solution of a singularly per-
turbed system depending on a very small parameter ε. The equation model
depends on the subdivision of the flux rates into the rates of fast reactions
(characterized by a factor 1/ε) and the rates of slow reactions [66].

Singular perturbations cause a multi time-scale behavior of dynamical
systems, characterized by the presence of slow and fast variations [35]. The
singular perturbation model of finite-dimensional dynamic systems was ex-
tensively studied in the mathematical literature by Tikhonov and Vasil’eva
[72], Levinson [43, 44], Hoppensteadt [31, 29, 30], Fenichel [19], etc.
The Theorem of Tikhonov was a first result concerning approximations to
the solution of a singularly perturbed system. For the following version of
Tikhonov’s Theorem, which is used through this work, we make reference to
[39].

Theorem 2.1 (Tikhonov’s Theorem). Let ε be a small positive scalar.
Consider the system of equations

dX

dt
= f(X, Y, ε, t) X(t0) = X0, X ∈ Rn, (2.1)

ε
dY

dt
= g(X, Y, ε, t) Y (t0) = Y0, Y ∈ Rm, (2.2)

where f and g are continuously differentiable functions of their arguments
X, Y , ε and t, in a domain of interest. The differential equation (2.2)
degenerates into the algebraic equation

0 = g(X,Y , 0, t). (2.3)

The model (2.1)-(2.2) is in standard form if and only if the following is
satisfied:

• In the domain of interest, Equation (2.3) has k ≥ 1 distinct (iso-
lated) real roots

Y = ϕi(X, t), i = 1, 2, . . . , k. (2.4)

To obtain the i-th reduced model, substitute (2.4) into (2.1):

dX

dt
= f(X,ϕi(X, t), 0, t), X(t0) = X0. (2.5)

Let τ = t/ε and Ŷ (τ) := Y (t)− Y (t). The boundary layer system is defined
as

dŶ

dτ
= g(X0, Ŷ (τ) + Y (t0), 0, t0) Ŷ (0) = Y0 − Y (t0), (2.6)
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with X0 and t0 fixed parameters in the domain of interest.

Consider the next two conditions:

C1. The equilibrium Ŷ (τ) = 0 of (2.6) is asymptotically stable uniformly
in X0 and t0, and Y0 − Y (t0) belongs to its domain of attraction.

C2. The eigenvalues of the Jacobian ∂g
∂Y

evaluated, for ε = 0, along X(t)

and Y (t), have real parts smaller than a fixed negative number. This
is denoted as

Reλ
{ ∂g
∂Y

}
≤ −c < 0.

If there exists a solution X of Equation (2.5) and conditions C1-C2 are
satisfied, then the approximation

X(t) = X(t) +O(ε)

Y (t) = Y (t) + Ŷ (τ) +O(ε)

is valid for all t ∈ [t0, T ], and there exists t1 ≥ t0 such that

Y (t) = Y (t) +O(ε)

is valid for all t ∈ [t1, T ].

The Theorem of Tikhonov provides an approximation to the solution of a
singularly perturbed system, under some stability conditions. This approxi-
mation is characterized by an error of order O(ε), where ε is a small positive
number. By definition of Big O or Landau symbols, this implies that the
error is bounded and decreases as ε→ 0.

2.3. Gershgorin Discs Theorem

In order the prove the stability conditions of Tikhonov’s theorem, we use
some properties of matrix theory for linear systems of equations. Particularly,
we use that an equilibrium point of a linear ODE is stable if, and only if, the
eigenvalues of the Jacobian matrix (evaluated in this point) have negative
real part.

A description of bounded regions of the complex plane containing the
eigenvalues λ1, λ2, . . . , λn of a matrix A ∈ Cn×n is given by the Gershgorin
Theorem.
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Theorem 2.2 (Gershgorin Discs Theorem). Let A = (aij) ∈ Cn×n, and
let

Ri(A) :=
n∑
j=1
j 6=i

|aij|, 1 ≤ i ≤ n

denote the deleted absolute row sums of A. Then, all the eigenvalues of A
are located in the union of n discs

n⋃
i=1

{z ∈ C : |z − aii| ≤ Ri(A)}.

Furthermore, if a union of k of these discs forms a connected region that is
disjoint from all the remaining n− k discs, then there are precisely k eigen-
values of A in this region.

The proof of the Gershgorin Discs Theorem can be found in [32, 41].
Now we prove a proposition, which is a direct consequence of this theorem.
For this, we introduce the following definitions.

Definition 2.3 (Row Diagonally Dominant Matrix). Let A = (aij) ∈
Rn×n. We say that A is a row diagonally dominant matrix if

Ri(A) :=
n∑
j=1
j 6=i

|aij| ≤ |aii| ∀i = 1, 2, . . . , n.

Definition 2.4 (Strictly Row Diagonally Dominant Matrix). Let A =
(aij) ∈ Rn×n. We say that A is a strictly row diagonally dominant matrix if

Ri(A) :=
n∑
j=1
j 6=i

|aij| < |aii| ∀i = 1, 2, . . . , n.

Proposition 2.1. Let A = (aij) ∈ Rn×n be a strictly row diagonally
dominant matrix. Suppose that aii < 0 for every i = 1, 2, . . . , n. Then, A is
a nonsingular matrix and all its eigenvalues have negative real part. In other
words, A is a stable matrix.
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Proof. Suppose that A is singular. Then, one of this eigenvalues is equal to
zero. By the Gershgorin Discs Theorem, this implies that

0 ∈
n⋃
i=1

{z ∈ C : |z − aii| ≤ Ri(A)}.

Hence, there exists i ∈ {1, 2, . . . , n} such that

|aii| ≤ Ri(A),

which contradicts that A is a strictly row diagonally dominant matrix. We
conclude that A is a nonsingular matrix.

On the other hand, by the Gershgorin Discs Theorem, any λ eigenvalue
of A satisfies

λ ∈
n⋃
i=1

{z ∈ C : |z − aii| ≤ Ri(A)}.

Then, there exists i ∈ {1, 2, . . . , n} such that

|λ− aii| < |aii|,
because A is strictly row diagonally dominant. But this is equivalent to

−2Re(λ)aii < −Re(λ)2 − Im(λ)2 < 0,

because λ 6= 0. Since aii < 0, it follows that Re(λ) < 0. Thus, every
eigenvalue of A has negative real part.

�

An analogous result to Proposition 2.1 for strictly column diagonally
dominant matrices is also valid, as proved in the following in Corollary 2.1.

Definition 2.5 (Column Diagonally Dominant). Let A = (aij) ∈ Rn×n.
We say that A is a column diagonally dominant matrix if

Ci(A) :=
n∑
j=1
j 6=i

|aji| ≤ |aii| ∀i = 1, 2, . . . , n.

Definition 2.6 (Strictly Column Diagonally Dominant). LetA = (aij) ∈
Rn×n. We say that A is a strictly column diagonally dominant matrix if

Ci(A) :=
n∑
j=1
j 6=i

|aji| < |aii| ∀i = 1, 2, . . . , n.
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Corollary 2.1. Let A = (aij) ∈ Rn×n be a strictly column diagonally
dominant matrix. Suppose that aii < 0 for every i = 1, 2, . . . , n. Then, A is
a nonsingular matrix and all its eigenvalues have negative real part. In other
words, A is a stable matrix.

Proof. Notice that AT is a strictly row diagonally dominant matrix and recall
that the determinant of a matrix is equal to the determinant of its transpose
[41]. By Proposition 2.1,

det(A) = det(AT ) 6= 0.

Moreover, since
det(A− λ · I) = det(AT − λ · I),

we conclude that all the eigenvalues of A have negative real part.
�

2.4. Nonsingular M-Matrices

We also study the order of magnitude of the parameters in the reduced
system obtained after Tikhonov’s theorem. For the class of metabolic net-
works studied in this work, these parameters are basically obtained from the
inverse of the Jacobian matrix of the fast subsystem. Therefore, we analyze
the determinant and minors of this Jacobian.

Let A be a finite matrix with nonpositive off-diagonal and nonnegative
diagonal entries, that is,

A =


a11 −a12 . . . −a1n

−a21 a22 . . . −a2n
...

...
...

−an1 −an2 . . . ann,


where aij ≥ 0 for every i, j ∈ {1, 2, . . . , n}. Then A can be expressed as

A = sI −B, s > 0, B ≥ 0. (2.7)

Definition 2.7 (Spectral Radius). Let B be a square matrix. The spec-
tral radius of B is defined as

ρ(B) = max
λ∈σ(B)

|λ|,

where σ(B) is the spectrum of B, i.e. the set of distinct eigenvalues of B
[54].

Definition 2.8 (M-matrix). A matrix A of the form (2.7) is called an
M-matrix if s ≥ ρ(B).
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Theorem 2.3. Let

Zn×n := {A = (aij) ∈ Rn×n : aij ≤ 0 if i 6= j}.

If A ∈ Zn×n, then the following conditions are equivalent:

• A is a nonsingular M-matrix.
• All of the principal minors of A are positive.
• A is positive stable, that is, the real part of each eigenvalue of A is

positive.
• A is inverse-positive, that is, A−1 exists and A−1 ≥ 0.

For the proof of Theorem 2.3 we make reference to [8].

Definition 2.9 (Metzler matrix). A matrix A ∈ Rn×n is a Metzler ma-
trix if its off-diagonal elements are nonnegative, i.e. aij ≥ 0 for all i 6= j [18].

Notice that if A is a M -matrix, particularly −A is a Metzler matrix.
From Corollary 2.1 and Theorem 2.3, we deduce a proposition similar to
Proposition 2.3, but for Metzler matrices with negative diagonal entries and
that are also strictly column diagonally dominant matrices. This proposition
is used through this work.

Proposition 2.2. Consider a strictly column diagonally dominant ma-
trix

A =


−a11 a12 . . . a1n

a21 −a22 . . . a2n
...

...
...

an1 an2 . . . −ann

 ,

where aij are nonnegative. Then

• A is a nonsingular matrix.
• All of the principal minors of A have sign equal to (−1)n−1.
• A is stable, that is, the real part of each eigenvalue of A is negative.
• A is inverse-negative, that is, A−1 exists and A−1 ≤ 0.

Proof. It follows from Corollary 2.1 that A is a nonsingular stable matrix.
Then, det(−A) = (−1)n det(A) 6= 0 and −A is positively stable. Indeed,

det(−A− λ · I) = (−1)n det[A− (−λ) · I]

= (−1)n · [λ1 − (−λ)] · [λ2 − (−λ)] · · · [λn − (−λ)],

= (−λ1 − λ) · (−λ2 − λ) · · · (−λn − λ),
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where λ1, λ2, . . . , λn are the eigenvalues of A. Then, the eigenvalues of −A
are −λ1,−λ2, . . . ,−λn and they have positive real part, since Re(λi) < 0 for
every i = 1, 2, . . . , n. Hence, −A is a positive stable matrix.

Moreover, −A ∈ Zn×n. Thus, according to Theorem 2.3, all of the prin-
cipal minors of −A are positive and (−A)−1 ≥ 0. Now observe that

A−1 = −(−A−1) ≤ 0.

In other words, A is inverse-negative. This implies that each principal mi-
nor of A has sign opposite to the determinant of A sign, i.e. sgn(Aii) =
−sgn[det(A)].

On the other hand −A is inverse-positive and all of its principal minors
are positive. This implies det(−A) > 0. Then, det(A) = (−1)n det(−A) is
positive if n is even and negative if n is odd. Therefore, the principal minors
satisfy

sgn(Aii) = (−1)n−1.

�

2.5. Left Kernel Stoichiometry Condition

The laws of Physics and Chemistry have to be taken into account when
modeling cells. Therefore, the law of mass conservation has to be satisfied.
For metabolic systems at steady state, the mass conservation law is usually
represented as

N · V = 0,

where N is the stoichiometric matrix and V a constant vector of kinetics
(e.g. in FBA [34]).

For a closed system with dynamics (not at steady state), we can assume
that the sum of all metabolite concentrations is constant at any time instant.
Then, if a closed metabolic system has as ODE

dX

dt
= K · f(X),

with K a square matrix, the mass conservation law is satisfied if the sum of
the entries of each column is equal to zero. For a matrix K with nonpositive
diagonal entries and nonnegative off-diagonal entries, this means that K is
column diagonally dominant (see Definition 2.5).

Moreover, adding the dilution factor in a linear metabolic system (which
is no longer closed but its kinetics still satisfy the mass conservation law)

dX

dt
= K ·X − µ ·X,
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leads to a Jacobian matrix (K − µ · Id) that is strictly column diagonally
dominant (see Definition 2.6).

In Section 2.4 we prove some properties about strictly diagonally domi-
nant square matrices. But in general, stoichiometric matrices are not square
nor diagonally dominant matrices. Here we show a matrix transformation
to associate a strictly diagonally dominant matrix to a stoichiometric ma-
trix. To make this transformation, the left kernel of the stoichiometric has
to contain a vector whose entries are all positive. In this case, the left kernel
provides a set of conservation laws.

Note 2.2. Several authors have already proposed the left kernel of the
stoichiometric matrix as a set of conservation relations [9, 14, 20, 61, 69].
But the idea of the stoichiometric matrix association to a strictly column
diagonally dominant matrix is original.

Suppose a system of equations for a reaction network

dX

dt
= N · V (X)− µ ·X, (2.8)

where N ∈ Matm×r is the stoichiometric matrix, V (X) the kinetics vector
and µ the growth rate.

Assumption 2.1. There exists a positive vector

β := (β1 β2 . . . βm), βi > 0 ∀i,
in the left kernel of N . In other words,

β ·N = 0.

If Equation (2.8) is a linear system, it is possible to define a matrix
K ∈Matr×m of constant reactions rates such that

N · K ·X = N · V (X).

In this case, the Jacobian of (2.8) is (N ·K−µ·Id), with Id the identity matrix.
Moreover, β is also in the left kernel of N · K and N · K is a square matrix
with nonpositive diagonally entries and nonnegative off-diagonal entries.

Proposition 2.3. Let A ∈Matm×m be a matrix such that

aii ≤ 0 ∀i = 1, . . . ,m and

aji ≥ 0 ∀i 6= j.

Suppose there exists a positive vector β

β := (β1 β2 . . . βm), βi > 0 ∀i,
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in the left kernel of A and consider the matrix

diag(β) :=


β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...
0 0 . . . βm

 ∈Matm×m.

Then,

diag(β) · A · diag(β)−1

is a column diagonally dominant matrix with nonpositive diagonal entries
and nonnegative off-diagonal entries.

Proof. We have

diag(β) · A · diag(β)−1 =


a11

β1
β2
a12 . . . β1

βm
a1m

β2
β1
a21 a22 . . . β2

βm
a2m

...
...

. . .
...

βm
β1
am1

βm
β2
am2 . . . amm

 .

Then, all the diagonal entries of A are nonpositive and all the off-diagonal
entries are nonnegative. Moreover,

m∑
i=1

βi
βj
aij = 0 ∀j = 1, 2, . . . ,m,

because β is in the left kernel of A. We conclude that

|ajj| =
m∑
i=1
i6=j

βi
βj
aij ∀j = 1, 2, . . . ,m, (2.9)

�

Finally, as a consequence of Proposition 2.3, for any positive number
µ > 0,

diag(β) ·N · K · diag(β)−1 − µ · Id
is a strictly column diagonally dominant matrix.

Let us define a system as

dX

dt
=
[
diag(β) ·N · K · diag(β)−1 − µ · Id

]
·X, (2.10)

whose Jacobian is a strictly column diagonally dominant matrix. Notice that

diag(β) ·N · K · diag(β)−1 − µ · Id = diag(β) · [N · K − µ · Id] · diag(β)−1.

Therefore, the Jacobian of system (2.8) (with linear kinetics) and the Jaco-
bian of (2.10) are similar matrices.
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Note 2.3. Hereafter, we consider stoichiometric matrices that have a
positive vector in the left kernel. But also notice that this condition can
be relaxed when the purpose is to use strictly diagonally dominant matrices
only for a part of the system, e.g. a part where kinetics are linearized. In this
case, the left kernel condition is restricted to a submatrix of the stoichiometric
matrix. Moreover, instead of imposing an equality as in (2.9), we can seek
to satisfy an inequality of the form

m∑
i=1
i6=j

βi
βj
aij ≤ |ajj| ∀j = 1, 2, . . . ,m.



CHAPTER 3

Linearized Dynamic Metabolic Networks

Abstract: Here we propose a mathematical approach to reduce high
dimensional linearized metabolic models, which relies on time scale separa-
tion and the Quasi Steady State Assumption. Contrary to the Flux Bal-
ance Analysis assumption that the whole system reaches an equilibrium, our
reduced model depends on a small system of differential equations which
represents the slow variables dynamics. Moreover, we prove that the concen-
tration of metabolites in Quasi Steady State is one order of magnitude lower
than the concentration of metabolites with slow dynamics (under some flux
conditions). Also, we propose a minimization strategy to estimate the re-
duced system parameters. The reduction of a toy network with the method
presented here is compared with other approaches. Finally, our reduction
technique is applied to an autotrophic microalgae metabolic network.

3.1. Reduction Through Quasi Steady State Approximation

The main objective of our work is to provide mathematical foundations for
the reduction of metabolic networks to dynamical models of low dimension.
To achieve this objective, in a first stage we simplify the approach assum-
ing linear kinetics for the whole metabolism. However, our method can be
applied to any metabolic network whose kinetics can be locally linearized.

In this chapter, we compute an exact reduced model for any network in
the class of systems addressed, whose metabolism is forced by a continuous
input. In addition, we propose an algorithm to estimate the parameters of
the reduced system.

In the method presented in this work we conserve the factor of dilution,
which improves the precision of the approximation and preservers qualitative
(stability) features of the original system.

This chapter is part of the accepted version of the following article: López Zazueta,
C., Bernard, O., & Gouzé, J. L. (2019). Dynamical Reduction of Linearized Metabolic
Networks Through Quasi Steady State Approximation. AIChE Journal [50], which has
been published in final form at https://doi.org/10.1002/aic.16406. This content may
be used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy
[http://www.wileyauthors.com/self-archiving].
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We discuss the accuracy of FBA and DRUM applied to the class of dy-
namic systems studied in this work. Both approaches rely on a series of
hypotheses, including SSA and QSSA, respectively, and omission of the di-
lution due to growth.

In Section 3.2, we present the class of metabolic systems under study,
which consists of metabolic networks with slow and fast first order reactions
forced by a continuous input. We also write the system of Ordinary Differen-
tial Equations corresponding to any metabolic network of this class, and we
formulate it as a slow-fast system. Then, we verify the conditions for apply-
ing the Theorem of Tikhonov for singularly perturbed systems [31, 39, 72]
to obtain a reduced system. Using this approximation, we demonstrate that
the concentration of each metabolite in Quasi Steady State (QSS) is one or-
der of magnitude lower than the concentration of any metabolite with slow
dynamics, subject to some flux constraints.

In Section 3.4, we introduce a method based on minimization for the
calibration of the reduced system. In addition, when data of a metabolite
involved in fast reactions is available, we can compute the corresponding
parameters for its estimation in QSS.

In Section 3.5 we apply the approach to a toy metabolic network. The
toy model includes a periodic input and reflects standard bricks in metabolic
networks: combination of reversible and non-reversible reactions, with chains
and cycles. We then compare the reduced model with FBA and the DRUM
method.

Finally, we apply our method to an autotrophic microalgae metabolic
network. We use the simplified network of Yang et al.[79] for this purpose.
The reduction is carried out considering the macromolecules as the elements
with the highest concentration. Using the data from Lacour et al.[40], we cal-
ibrated the reduced model. The simulations of the reduced model accurately
fits the experimental data.

To conclude, in Section 3.7 we draw some conclusions and provide per-
spective for a rigorous slow-fast analysis of a larger class of metabolic net-
works.

3.2. The Slow-Fast Linear Metabolic Model

3.2.1. Metabolic system hypotheses. The class of metabolic net-
works studied in this work consists of metabolic systems with fast and slow
first order reactions, which are forced by a continuous input. To describe the
elements of this class, we focus on a general network assuming that one inter-
nal component (Xm) is consumed at low rate (see Figure 3.1). We consider
then two subnetworks, before and after this component. The first subnetwork
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contains m − 2 metabolites, while the second contains n − m − 1 metabo-
lites. We also suppose that the entire network is a connected graph, meaning
that any pair of nodes (metabolites) are connected to each other by a non
directed path (a sequence of reactions without considering their direction).
The model is kept general in the sense that a priori all the fluxes are possible
within the two subnetworks.

Figure 3.1. System of first order reactions, n metabolites and slow input.
Subnetworks of fast reactions are connected by metabolites consumed at low
rates. The metabolites within the subnetworks of fast reactions are in Quasi
Steady State.

We suppose that there are fast and slow reactions in the system. The fast
reactions are depicted in Figure 3.1 by blue arrows and their reaction rates are
denoted by kij/ε, where ε is a very small positive number. Since we assume
first order reactions, a reaction with rate kij/ε consumes only the element Xj

and produces just Xi (single reactant-single product hypothesis). Similarly
for the slow reactions, which are represented by the black arrows, the reaction
with rate kij consumes Xj and produces Xi. Notice that reversible reactions
are allowed in the fast subnetworks (see Figure 3.2).

We assume that one dimensional metabolic flux enters in the metabolism
from X1 and finishes into variable Xn. The input I(t) is a positive continuous
function of time t in an interval [0, T ], feeding in the system at a slow rate.
Moreover, we consider a constant dilution affecting every metabolite. The
rate of dilution µ > 0 is a parameter smaller than any reaction rate (a
classical hypothesis [70]).

For a metabolic network in the class of systems addressed in this work
(see Figure 3.1), the hypothesis of single reactant - single product reactions
implies that the ODE of metabolite concentrations is a non-homogeneous
linear system with a continuous positive input. However, the approach de-
veloped in this work is suitable for any metabolic network whose kinetics
can be locally linearized. In Appendix A.5 of the Supporting Information
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we show a metabolic network example with nonlinear enzymatic reactions,
whose kinetics are linearized around a functional point.

Figure 3.2. Single reactant-single product hypothesis: fast reaction kji/ε just
consumes one metabolite (Xi) and produces another (Xj). This conditions
leads to a linear system of equations.

Henceforth, we focus on a metabolic network with linear kinetics and a
continuous positive input. In order to obtain some conclusions about the
accumulation of metabolites, we make some assumptions about the fluxes in
the network.

Assumption 3.1. We assume that a connector metabolite is not the
origin of any fast reaction, nor the origin of an output with large rate.

On the other hand, for detecting when the input flux leads to the ac-
cumulation of metabolites which have fast outflows, we introduce the next
definitions. For these, we consider that our metabolic network model (Fig-
ure 3.1) can be represented with a directed graph, where the metabolites are
the vertex and the reactions are the directed edges (arrows). Only inputs
and outputs are allowed to be edges with one vertex: final or initial vertex,
respectively (the dilution due to growth is not taken into account for the
graph).

In order to define a flux in a metabolic network, we recall the definition
of directed path in a directed graph. We make reference to Balakrishnan et
al. [3] and Benner et al. [7] for the following definition.

Definition 3.1 (Directed path). Consider a directed graph G with set
of vertices V and set of (directed) edges E. An edge (vi, vf ) ∈ E has initial
vertex vi and final vertex vf .

A directed path, (ν1, νk)-path, is a subgraph of G with a set of distinct
vertices {ν1, ν2, . . . , νk} ⊂ V and set of edges {(νi, νi+1) : 1 ≤ i < k} ⊂ E. We
say that (ν1, νk)-path has initial vertex ν1 and final vertex νk.
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Definition 3.2 (Flux). A flux from Xi to Xj is a directed path which
has as initial vertex Xi and as final vertex Xj.

The following definition of trap is equivalent to the definition for com-
partmental linear systems, considering the metabolites as compartments and
the arrows (reactions, inputs and outputs) as flows into and out of the com-
partment. A compartmental system can also be represented by a directed
graph. Then, a trap is defined as a compartment or a set of compartments
from which there are no transfers to the environment nor to compartments
that are not in the trap. Indeed, it has been proved that an autonomous
linear compartmental system has a trap if, and only if, its compartmental
matrix is singular [33].

Definition 3.3 (Trap). Consider a graph with set of vertices N and a
subset of this T = {Xk1 , . . . , Xkl} ⊂ N, n > l ≥ 1. We say that T is a trap if

• for every vertex Xki ∈ T there is no flux from Xki to any metabolite
of N \ T and
• no Xki ∈ T has an output to the exterior of the graph.

In this case, we also say that Xki ∈ T is in a trap.

Definition 3.4 (Flux trap). Consider a flux F with initial vertex X1 and
final vertex Xn in a graph with vertices N = {X1, . . . , Xn}. We say that the
graph has a trap for the flux F if there is a subset TF = {Xk1 , . . . , Xkl} ⊂
N \ {X1, Xn}, such that

• TF is a trap (as a consequence, there is no flux from any Xki ∈ TF

to Xn) and
• for every vertex Xki ∈ TF there is a flux from X1 to Xki .

We also say that Xki ∈ TF is in a flux trap. When it is clear which is the flux
F taken into account, we only say that the graph has a flux trap.

Remark 3.1. Notice that in a metabolic system with linear kinetics
where the dilution factor is omitted, if there is a trap, then the system is
undetermined, i.e. its (Jacobian) matrix is singular [33]. This case results in
additional complexity from a mathematical point of view and it will not be
discussed in this work, because the factor of dilution is not omitted in our
approach.

On the other hand, we include the concept of flux trap, to detect the
accumulation of metabolites with fast dynamics as a consequence of a input
flux. However, from a biological point of view, the presence of traps or flux
traps is very unlikely, unless organisms have been modified to indefinitely
accumulate a metabolite.
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In the system depicted in Figure 3.1 we assume the existence of a flux
from X1 to Xn. It then has a flux trap if there exists in one of the subnetworks
a metabolite, Xi for some i = 2, . . . , n − 1, i 6= m, such that there is a flux
from X1 to Xi, but there is no flux from Xi to Xn. A flux going from X1 to
Xn has to pass through Xm as well. Hence, there is a flux trap if and only if
there is a flux trap in one subnetwork with fast dynamics.

3.2.2. Dynamics of Metabolite Concentrations. We write the or-
dinary differential equations that describes the metabolite concentrations of
the model in Figure 3.1 as follows:

dX1

dt
= I(t)− (k21 + µ)X1 (3.1)

dX2

dt
= k21X1 +

(m−1∑
j=3

k2j

ε
Xj

)
−
(m−1∑
i=3

ki2
ε

+ µ
)
X2

...

dXm

dt
=
km,m−1

ε
Xm−1 −

(
km+1,m + µ

)
Xm

...

dXn−1

dt
=
( n−2∑
j=m+1

kn−1,j

ε
Xj

)
−
( n∑
i=m+1
i 6=n−1

ki,n−1

ε
+ µ

)
Xn−1

dXn

dt
=
kn,n−1

ε
Xn−1 − µ ·Xn,

with initial conditions Xi(0) = x0
i for every i = 1, . . . , n.

System (3.1) is a non-homogenous linear system, continuous in a domain
[0, T ]×Rn

+ if I(t) is continuous in the interval [0, T ]. Moreover, system (3.1) is
positive if and only if its (Jacobian) matrix is a Metzler matrix and I(t) ≥ 0
[18].

3.2.3. Parameter definition and order of magnitude. In order to
distinguish the two time-scales in system (3.1), we make the following hy-
pothesis about the order of the parameters. For this purpose, we use the Big
O or Landau order symbol (see Section 2.1). Although the Landau symbol
is defined for functions, we can also use it to indicate the order of our pa-
rameters. For this, we consider a parameter as the constant function which
takes its value.

Recall that fast reactions have rates kij/ε, while slow reactions kij. We
then suppose that ε is a small positive number such that

kij = O(1) as ε→ 0 ∀i, j.
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Thus, we consider the parameters kij as constant functions that implicitly
depend on ε.

Anagolously, I(t) is a slow input and µ is lower or equal to the magnitude
of any slow reaction (an usual hypothesis [70]). Hence, we suppose

I(t) = O(1) ∀t ∈ [0, T ], (3.2)

µ ≤ O(1).

For integrating the factor of dilution µ without affecting the order of the
parameters in the system (3.1), we define

kj
ε

:=
n∑
i=2
i 6=j

kij
ε

+ µ (3.3)

The definition given in (3.3) implies

n∑
i=2
i 6=j

kij < kj. (3.4)

Also, kj = O(1), as a consequence of condition (3.2) for µ.

3.2.4. Fast metabolites variable rescaling. Henceforth, we consider
ε fixed. In order to write the original system (3.1) as a singularly perturbed
system, we define new variables for the metabolites with fast dynamics and
their initial conditions as follow:

Yi : =
Xi

ε

Yi(0) = y0
i :=

x0
i

ε
.
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Hence, we represent system (3.1) as the following slow-fast system:

dY2

dt
=

1

η

[
k21X1 +

(m−1∑
j=3

k2jYj

)
− k2Y2

]
(3.5)

...

dYm−1

dt
=

1

η

[(m−2∑
j=2

km−1,jYj

)
− km−1Ym−1

]
dYm+1

dt
=

1

η

[
km+1,mXm +

( n−1∑
j=m+2

km+1,jYj

)
− km+1Ym+1

]
...

dYn−1

dt
=

1

η

[( n−2∑
j=m+1

kn−1,jYj

)
− kn−1Yn−1

]

dX1

dt
= I(t)− (k21 + µ)X1 X1(0) = x0

1 (3.6)

dXm

dt
= km,m−1Ym−1 − (km+1,m + µ)Xm Xm(0) = x0

m

dXn

dt
= kn,n−1Yn−1 − µ ·Xn Xn(0) = x0

n.

Notice that ε is a parameter that we previously fixed. On the other hand,
we consider η → 0 to apply Tikhonov’s Theorem.

In the linear system (3.5) we can consider the initial conditions as any
nonnegative values, since global and local asymptotic stability are equivalent.

Hereafter, we say that Equation (3.5) and Equation (3.6) are the fast
and the slow part of system (3.1), respectively. Furthermore, since the dy-
namics of Yi = Xi/ε are fast according to (3.5), we consider metabolites
X2, . . . , Xm−1, Xm+1, Xn−1 in Quasi Steady State.

3.2.5. Model properties. Let us rewrite the fast part (3.5) under a
matrix form. We define

K ′ :=

(
K ′1 0
0 K ′2

)
,
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where

K ′1 :=


−k2 k23 . . . k2,m−1

k32 −k3 . . . k3,m−1
...

...
...

km−1,2 km−1,3 . . . −km−1

 ,

K ′2 :=


−km+1 km+1,m+2 . . . km+1,n−1

km+2,m+1 −km+2 . . . km+2,n−1
...

...
...

kn−1,m+1 kn−1,m+2 . . . −kn−1

 .

Then system (3.5) can be written as

η
dY

dt
= I ′ +K ′ · Y, (3.7)

with Y = (Y2, . . . , Ym−1, Ym+1, . . . , Yn−1)T and

I ′ = (k21 ·X1, 0, . . . , 0,
(m−1)−th entry

km+1,m ·Xm, 0, . . . , 0)T .

Property 3.1. For every fixed scalars X1, Xm, Xn, system (3.7) has a
stable equilibrium point.

Proof. The matrices K ′1, K ′2 are strictly column diagonally dominant as a
consequence of inequality (3.4). Therefore, they are stable matrices (see
Corollary 2.1) �

Remark 3.2. For any constant values of X1, Xm, Xn, we obtain

Y := (Y 2, Y 3, . . . , Y m−1, Y m+1, . . . , Y n−1),

the equilibrium point of system (3.5) after computing the inverses of the
matrices K ′1, K ′2. Indeed, K ′1 and K ′2 are nonsingular matrices, because they
are strictly column diagonally dominant (see Corollary 2.1). Hence,

Y 1

Y 2
...

Y m−1

 = (K ′1)−1 ·


−k21X1

0
...
0

 , (3.8)


Y m+1

Y m+2
...

Y n−1

 = (K ′2)−1 ·


−km+1,mXm

0
...
0

 .

The equalities in (3.8) imply that the fast variables Y i in QSS are linear
combinations of X1 and Xm.
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3.2.6. Boundary Layer Correction. The boundary layer correction
is aiming at correcting at the initial transient of the fast variables, so that
the approximation is also accurate at the very first time of the simulation.
For this, we consider a time variable τ = t/η. The boundary layer correction

is defined as the function Ŷ (τ) = Y (t) − Y (t). Then, the boundary layer
problem of system (3.5)-(3.6) is written as

dŶ2

dτ
=k21x

0
1 +

m−1∑
j=3

k2j

(
Ŷj + Y j(0)

)
− k2

(
Ŷ2 + Y 2(0)

)
(3.9)

...

dŶm−1

dτ
=
m−2∑
j=2

km−1,j

(
Ŷj + Y j(0)

)
− km−1

(
Ŷm−1 + Y m−1(0)

)
dŶm+1

dτ
=km+1,mx

0
m +

n−1∑
j=m+2

km+1,j

(
Ŷj + Y j(0)

)
− km+1

(
Ŷm+1 + Y m+1(0)

)
...

dŶn−1

dτ
=

n−2∑
j=m+1

kn−1,j

(
Ŷj + Y j(0)

)
− kn−1

(
Ŷn−1 + Y n−1(0)

)
with initial conditions

Ŷi(0) = Yi(0)− Y i(0) =
x0
i

ε
− Y i(0).

For obtaining a QSSR using the Theorem of Tikhonov, the stability of
the origin for the boundary layer equation (3.9) is a necessary condition [39].
Notice that the (Jacobian) matrices of system (3.5) and system (3.9) are
equal. Then, as in Property 3.1, we have the following result.

Property 3.2. Consider the boundary layer system (3.9). Then its

equilibrium point Ŷ (τ) = 0 is stable.

3.2.7. Reduced system. From Equation (3.8) we obtain the expres-
sions of Y m−1 and Y n−1 in terms of X1 and Xm, respectively. We then
substitute in the slow part (3.6) and we obtain a reduced system with the
variables X1, Xm, Xn. Hence, we express the QSS approximation of the
original system (3.1), deduced from the Theorem of Tikhonov, as follows:

X i := ε · Y i = ε · ci ·X1 ∀i = 2, . . . ,m− 1, (3.10)

X i := ε · Y i = ε · ci ·Xm ∀i = m+ 1, . . . , n− 1,
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dX1

dt
= I(t)− (k21 − µ)X1 (3.11)

dXm

dt
= km,m−1cm−1 ·X1 − (km+1,m + µ)Xm

dXn

dt
= kn,n−1cn−1 ·Xm − µ ·Xn.

where ci are parameters that satisfy Y i = ci ·X1 or Y i = ci ·Xm, respectively,
deduced from Equation (3.8). The initial conditions for the reduced system
(3.11) are the same that for (3.6), i.e., X i(0) = x0

i for i = 1,m, n.

Property 3.3. Let (Xi) be the solution of the original system (3.1) and
(X i) the solution of system (3.10)-(3.11). Then

Xi(t) = X i(t) +O(ε) ∀t ∈ [0, T ],

i = 1,m, n,

and there exists 0 ≤ T0 < T such that

Xi(t) = X i(t) +O(ε2) ∀t ∈ [T0, T ],

i = 2, . . . , n− 1, i 6= m.

Additionally, if (Ŷi) is the solution of the boundary layer system (3.9) and

X̂i := εŶi for every i = 2, . . . , n− 1, i 6= m,

Xi(t) = X i(t) + X̂i

( t
ε

)
+O(ε2) ∀t ∈ [0, T ].

Proof. After Properties 3.1 and 3.2, we conclude that system (3.5)-(3.6) sat-
isfies the conditions of Tikhonov’s Theorem (see Theorem 2.1). Then, for
the fast variables, a simple multiplication Xi = ε · Yi leads to the desired
result. �

3.3. Magnitude of Concentration

Observe that the concentration of metabolites supposed to be in QSS is
expressed as a linear combination of X1 and Xm multiplied by ε. Since ε
is a very small positive number, this suggests that the concentration of the
metabolites in the slow part of the system is higher.

Assumption 3.2. System (3.1), represented in Figure 3.1, has no flux
trap for the assumed flux going from X1 to Xn. We refer to this conditions
saying that the system has no flux traps.

Assumption 3.2 implies that if Xi is any metabolite in one of the subnet-
works with fast dynamics and it is reached by the flux, then it has one fast
outflow at least.
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Theorem 3.1 (Magnitude of Concentration Theorem – Linear Version).
Suppose system (3.1) under Assumption 3.2. Hence, with the notation of
system (3.1) and Property 3.3, for every t ∈ [T0, T ],

Xi(t) = O
(
ε·X1(t)

)
i = 2, . . . ,m− 1, (3.12)

Xi(t) = O
(
ε·Xm(t)

)
i = m+ 1, . . . , n− 1.

Moreover, for every t ∈ [T0, T ] we have

Xi(t) ≤ O
(
ε·Xj(t)

)
, j ∈ {1,m, n}, (3.13)

i = 2, . . . , n− 1, i 6= m.

Magnitude of Concentration Theorem 3.1 states that, after the initial fast
transient, any metabolite in QSS has a concentration one order of magnitude
lower than any metabolite in the slow part. For the Big O or Landau symbol
notation used in this theorem, see Note 2.1 in Section 2.1.

Proof of Magnitude of Concentration Theorem 3.1. To demonstrate the first
affirmation we consider the equalities in (3.10) and we will show that ci =
O(1) if ci 6= 0, for i = 2, . . . ,m− 1. Since K ′1 is a nonsingular matrix,

(K ′1)−1 =
1

det(K ′1)
· C,

where C is the transpose matrix of cofactors of K ′1 [41]. We then have
according to Equation (3.8)

Y i =
1

det(K ′1)
C1,i−1 · (−k21X1),

then ci =
1

det(K ′1)
C1,i−1 · (−k21).

If K ′1 has no traps (i.e. the subnetwork with metabolites X2, . . . , Xm−1 has
no traps), then

det(K ′1) = (−1)m−2 · O(km−2
ij ),

as stated by Proposition A.1 of Appendix A.1. Moreover, Corollary A.2 of
Appendix A.1 implies that the cofactors C1,i−1 have order

C1,i−1 = (−1)m−1 · O(km−3
ij ).

On the other hand, if K ′1 has a trap T not reached by the flux, as a
consequence of Proposition A.2 and Corollary A.2 of Appendix A.1,

C1,i−1

det(K ′1)
= (−1) · O(k−1

ij ) Xi 6∈ T

C1,i−1

det(K ′1)
= 0 Xi ∈ T
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(see Section 2.1). We conclude that

−k21 · C1,i−1

det(K ′1)
= O(1)

if C1,i−1 6= 0, for every i = 2, . . . ,m − 1. The same reasoning applies for K ′2
and the variables which are linear combinations of Xm. Hence, in accordance
with (3.10),

X i = ε · ci ·X1 = O(ε·X1) ∀i = 2, . . . ,m− 1,

X i = ε · ci ·Xm = O(ε·Xm) ∀i = m+ 1, . . . , n− 1,

and we obtain the equalities in (3.12) from Property 3.3.
In order to verify the second affirmation, we consider the reduced system

(3.11). Then, the local maximum or minimum points of X1, Xm and Xn

satisfy

Xm =
km,m−1 · cm−1

km+1,m + µ
X1

Xn =
kn,n−1 · cn−1

µ
Xm.

But cm−1 = O(1), cn−1 = O(1), and O(µ) ≤ O(kji) for all i, j as a conse-
quence of (3.2). Thus,

O(X1) = O(Xm) ≤ O(Xn).

Finally, we obtain the equalities in (3.13) using Property 3.3. �

3.4. Reduced model calibration

3.4.1. Calibration of the slow system. We suppose that the slow
metabolite concentrations are measured at r different time instants 0 ≤ t1 <
t2 < · · · < tr ≤ T :

Zi(tj) = Xi(tj) +N (tj) i = 1,m, n

where N (tj) is the measurement noise. From these measurements, we first
calibrate the parameters for the reduced model (3.11). The objective is to
find the value for the parameter vector

θ = (θ1, θ2, θ3, θ4, θ5)
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such that the solution of the reduced system

dX1

dt
= I(t)− θ1 ·X1 X1(0) = x0

1 (3.14)

dXm

dt
= θ2 ·X1 − θ3 ·Xm Xm(0) = x0

m

dXn

dt
= θ4 ·Xm − θ5 ·Xn Xn(0) = x0

n.

best fits the data Z1, Zm and Zn. For this, we define a cost criterion that
characterizes the modeling error, e.g.:

F0(θ) =
∑

i=1,m,n

∑
j=1,...,r

(
Zi(tj)−X i(tj, θ)

)2

.

The approach consists in determining the best value

θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4, θ̂5)

such that
F0(θ̂) = min{F0(θ) : θ ∈ D},

with D ⊂ R5
+ a domain for the parameters. This can be carried out by using

a minimization algorithm such as the Nelder-Mead algorithm.

3.4.2. Calibration for a metabolite in QSS. After the calibration
of the slow system (3.14), we can estimate the concentration dynamics of a
metabolite in QSS if there are some data of this. For this purpose, we assume
that a fast metabolite is measured at different time instants 0 ≤ t′1 < t′2 <
· · · < t′r′ ≤ T :

Zi(t
′
j) = Xi(t

′
j) +N (t′j)

for some i ∈ {2, . . . , n− 1} \ {m}.
We first use the value of the slow metabolites(

X i(t, θ̂)
)
i=1,m,n

obtained from calibration of the reduced system (3.14), to estimate the pa-
rameter αi such that

Xi := αi ·X1 if i ∈ {2, . . . ,m− 1},
Xi := αi ·Xm if i ∈ {m+ 1, . . . , n− 1}.

Indeed we look for value of α̂i that minimize the differences

F1(αi) =
r′∑
j=1

(
αi ·X1(t′j , θ̂)− Zi(t′j)

)2
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if i ∈ {2, . . . ,m− 1} and

F2(αi) =

r′∑
j=1

(
αi ·Xm(t′j , θ̂)− Zi(t′j)

)2

if i ∈ {m + 1, . . . , n − 1}. Consequently, the least squares solution is the
following [54]:

α̂i =

∑r′

j=1 Zi(t
′
j) ·X1(t′j , θ̂)∑r′

j=1X1(t′j , θ̂)
2

if i ∈ {2, . . . ,m− 1}

α̂i =

∑r′

j=1 Zi(t
′
j) ·Xm(t′j , θ̂)∑r′

j=1Xm(t′j , θ̂)
2

if i ∈ {m+ 1, . . . , n− 1}.

In general, measurements of fast metabolites are difficult, and therefore
rarely done. It is worth noting that the reduction and calibration of the model
for the fast metabolites can be done for any subset of measured metabolites.

Remark 3.3. Let us emphasize that, even if no metabolite with fast
dynamics is measured, this approach provides a reduced model (3.14) which
can be calibrated. If not all the accumulative metabolites are measured, the
reduced model may also be calibrated. Furthermore, the dynamics of all
the measured metabolites are eventually predicted by means of the reduced
model of equations.

This is an important point, since the calibration of fast variables (which is
indeed experimentally much more tricky) can be done on a restricted number
of metabolites.

3.5. A Toy Linear Metabolic Network

We consider a toy system of enzymatic reactions mimicking the charac-
teristics of a real metabolic network but of lower dimension. In this model
we have included some recurrent features of the metabolic network of a pho-
toautotrophic microalga cell, such as a cycle and several reversible reactions.
For instance, in the chain that includes the citric acid cycle, lower glycolysis,
upper glycolysis and carbohydrate synthesis.

We thus construct our example with a chain that contains one reversible
reaction and a cycle. This toy Network N1 is depicted in Figure 3.3. Addi-
tionally, to represent the effect of a periodic factor on the metabolism (such as
sun light for microalgae), we introduce a periodic input I(t) = k[cos(t·ω)+1].

We suppose that slow reaction rates have order O(10−2), and fast reaction
rates O(101). Then, we choose ε := 10−2/101 = 10−3.

For instance, we suppose the slow reaction rate k21 = 0.01 · min−1 =
10−2 ·min−1. On the other hand, we assume that the fast reaction from X2
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to X3 has rate equal to 20 ·min−1 = 2× 101 ·min−1. Then, we establish

k32

ε
= 20 ·min−1,

which implies k32 = 20 · ε · min−1 = 0.02 · min−1. Recall that O(k32) =
O(k21) = 10−2. For the definition of the rest of parameters, see Table 3.1.

Following the method proposed in Section 3.2, we write a singularly per-
turbed system to apply Tikhonov’s Theorem (see Figure 3.4).

Figure 3.3. Metabolic Network N1. Metabolites X1, X4 and X9 have slow dy-
namics, while the others are in Quasi Steady State. Reactions from metabolites
in QSS are faster than those from metabolites with slow dynamics. The input
is I(t) = k[cos(t · ω) + 1].

Parameter Value Units Parameter Value Units
ε 0.1× 10−2 - k43/ε 20 min−1

ω 0.4× 10−2 - k32/ε 20 min−1

µ 0.2× 10−2 min−1 k68/ε 20 min−1

k 0.2× 10−1 min−1 k75/ε 10 min−1

k21 0.1× 10−1 min−1 k23/ε 10 min−1

k54 0.2× 10−1 min−1 k56/ε 10 min−1

x0
i 0.1× 10−1 µmol/m3 k87/ε 20 min−1

k98/ε 10 min−1

Table 3.1. Parameters considered for the simulation of dynamics in Network
N1 (Figure 3.3). The initial conditions x0i are all the same for i = 1, . . . , 9.
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Figure 3.4. Behavior of the slow-fast system in standard form (see Equa-
tion (3.5)-(3.6)) that is obtained after the variable rescaling of Network N1
(Figure 3.3). Notice that the all the metabolite concentrations have the same
order of magnitude, as a consequence of defining Yi = Xi/ε for the metabolites
in the fast part. The parameters considered are specified in Table 3.1.

Moreover, we obtain an algebraic system that let us rewrite every variable
of the fast part in terms of the variables of the slow part:

X2 = ε · k21 · k3

d1
X1, X3 = ε · k21 · k32

d1
X1, (3.15)

X5 = ε · k54 · k6 · k7 · k8

d2
X4, X6 = ε · k54 · k68 · k75 · k87

d2
X4,

X7 = ε · k54 · k75 · k6 · k8

d2
X4, X8 = ε · k54 · k75 · k87 · k6

d2
X4,

where d1 = k3 · k2 − k23 · k32 and d2 = k5 · k6 · k7 · k8 − k56 · k68 · k75 · k87.
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Subsequently, we achieve a reduced system by substituting the expres-
sions of (3.15) in the equations of the slow part:

dX1

dt
= k[cos(t · ω) + 1]− (k21 + µ)X1 X1(0) = x0

1 (3.16)

dX4

dt
=
k21 · k32

d1
k43X1 − (k54 + µ)X4 X4(0) = x0

4

dX9

dt
=
k54 · k75 · k87 · k6

d2
k98X4 − µX9 X9(0) = x0

9.

As expected, the concentration of metabolites belonging to the fast part is
one order of magnitude lower than the concentration of metabolites in the
slow part (see Magnitude of Concentration Theorem 3.1, Figure 3.5 and
Figure 3.6).

In Section 3.2.6, we described the boundary layer correction that can
be applied to the variables in QSS. To see the effect of the boundary layer
correction in this toy network, see Appendix A.3.
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Figure 3.5. Dynamics of Network N1 (Figure 3.3). Thick green line: numer-
ical solution of the original system (3.1); thin black line: reduced system ob-
tained using the method developed in this work (3.15)-(3.16). The parameters
considered for the simulation are specified in Table 3.1.
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Figure 3.6. Zoom on the dynamics of metabolites in QSS (see also Figure 3.5).

3.5.1. Calibration of the slow dynamics. For this example, we con-
sider that a few measurements of the metabolite concentrations are available.
We represent it as the solution of the original system (3.1) for Network N1
plus a white noise:

Zi(tj) := Xi(tj) + β(tj) j = 1, 2, . . . , r (3.17)

where β ∼ N (σi) and σi = m(Xi)×10−1 for every i = 1, . . . , n. For simplicity
we suppose that the data is obtained at the same time instants t1, . . . , tr for
the slow and the fast parts of the system.

Following the notation in Section 3.4.1, we find the vector parameter θ̂
that minimizes the cost function F0. We used the function fminsearch in
Scilab [6] to compute the minimum of the square differences function F0,
with the Nelder-Mead algorithm (see Table 3.2).
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i Theoretical Estimated Error

value θi value θ̂i percent
1 0.12× 10−1 0.114× 10−1 04.7
2 0.10× 10−1 0.085× 10−1 15.2
3 0.22× 10−1 0.186× 10−1 15.3
4 0.20× 10−1 0.174× 10−1 12.8
5 0.20× 10−2 0.179× 10−2 10.5

Table 3.2. Original parameter (θi) and numerical approximation (θ̂i) of the
parameters for Equation (3.16), written as Equation (3.14). The parameters
considered for simulation of the original dynamics in Network N1 are specified
in Table 3.1.

3.5.2. Calibration of coefficients for metabolites in QSS. After
estimating the parameters θ̂i as in Section 3.5.1, we consider the equalities
in (3.15) for finding αi such that

Xi = αi ·X1 i = 2, 3 (3.18)

Xi = αi ·X4 i = 5, 6, 7, 8.

We then obtain the parameters α̂i which resolve the linear least squares prob-
lem, as in Section 3.4.2 (see Table 3.3).

Lastly, we obtain a new approximation given by the following system:

dX1

dt
= k[cos(t · ω) + 1]− θ̂1X1 X1(0) = x0

1 (3.19)

dX4

dt
= θ̂2X1 − θ̂3X4 X4(0) = x0

4

dX9

dt
= θ̂4X4 − θ̂5X9 X9(0) = x0

9

Xi = α̂i ·X1 i = 2, 3,

Xi = α̂i ·X4 i = 5, 6, 7, 8.
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i Theoretical Estimated Error
value αi value α̂i percent

2 0.750× 10−3 0.727× 10−3 3.0
3 0.500× 10−3 0.498× 10−3 0.4
5 0.599× 10−2 0.568× 10−2 5.1
6 0.399× 10−2 0.384× 10−2 4.0
7 0.300× 10−2 0.288× 10−2 4.0
8 0.200× 10−2 0.194× 10−2 2.9

Table 3.3. Original parameters (αi) and numerical approximations (α̂i), so-
lutions of the least square linear problems for approximating the coefficients in
(3.18). The parameters considered for the simulation of the original dynamics
in Network N1 are specified in Table 3.1.
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Figure 3.7. Calibrated system of toy Network N1 (Figure 3.3). Thick light
line: original system (3.1); dots: supposed data with white noise (3.17); solid
thin line: calibrated system (3.19) with the parameters in Table 3.2 and Ta-
ble 3.3. The original parameters are specified in Table 3.1.
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Figure 3.8. Zoom on the dynamics of metabolites in QSS (see also Figure 3.7).

3.5.3. Comparison between DRUM and FBA. The reduced sys-
tem for the toy Network N1 (depicted in Figure 3.3) obtained after the
DRUM[4] approach is

dX1

dt
= k[cos(t · ω) + 1]− k21X1 X1(0) = x0

1 (3.20)

dX4

dt
= k21X1 − k54X4 X4(0) = x0

4

dX9

dt
= k54X4 X9(0) = x0

9,

(see Appendix A.4 for details). Remark that equations (3.16) and (3.20)
coincide when µ = 0. However, for nonzero growth rate, omitting µ can
imply differences between both systems even in their qualitative behaviors
(see Figure 3.9).

On the other hand, the principal hypothesis of Flux Balance Analysis is
that metabolic networks reach a steady state, under any external conditions
[34, 57]. From the numerical solutions depicted in Figure 3.5 and Figure 3.6,
we can observe that the dynamics of the metabolic Network N1 do not reach
an equilibrium in the delimited period of time. Indeed, the metabolic system
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Figure 3.9. Comparison of different approaches to approximate the dynamics
of Network N1 (Figure 3.3). Thick green line: graphical behavior of the original
system (3.1); thick dark line: system obtained using the method proposed in
this work (3.15)-(3.16); square dotted line: system obtained after DRUM (3.20);
thin line: Flux Balance Analysis solution (see Appendix A.4 for details). The
parameters considered are specified in Table 3.1. In this figure, for the metabo-
lites in QSS there is no approximation from the framework Drum. For X9 there
is no approximation solution with FBA. The reduction method developed in
this work gives the most accurate approximation to the original dynamics.

of N1 have no equilibrium point, because it is forced by a continuous (non
constant) periodic input.

This is typically a case where FBA is a rough approximation. To illustrate
this fact, we applied FBA to the toy metabolic Network N1 presented in
Section 3.5 and we compare with our approach. The purpose of FBA is to
resolve the algebraic equation

N · V (X) = 0

for the variables X1, . . . , X8, where X is the vector of metabolite concen-
trations, N is the stoichiometric matrix and V (X) is the vector of kinetics
reactions. We recall that FBA methods omit the dilution due to growth. As
a consequence, the concentration of X9 cannot be estimated from resolving
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the FBA algebraic equation mentioned above. The results are explained with
details in Appendix A.4.2.

3.6. Reduction for Autotrophic Microalgae Metabolism

The proposed method is applied to the metabolism of autotrophic mi-
croalgae. A metabolic network taken from Yang et al. [79] was used to
represent the metabolism of autotrophic microalgae. The network has 61 re-
actions and 59 metabolites. We assume that each enzymatic reaction can be
represented by a Michaelis-Menten kinetics. Then, the metabolic system can
be linearized around the working mode to end up to the structure proposed
in this work (see Appendix A.5 for details).

The inputs in the system are functions representing carbon dioxide (CO2)
and nitrate (NO3) uptake rates, and a function fueled by the photon flux
density (PFD), which regulates the light step in photosynthesis.

Macromolecules, such as lipids and carbohydrates, are stored during the
day and reach relatively high concentration in microalgae. According to our
approach, we suppose that macromolecules are in the slow part of the system
(see Magnitude of Concentration Theorem 3.1). The rest of the metabolites
are considered to have lower concentration, and then to be in QSS.

We assume there is no metabolite that accumulates as high as macro-
molecules between the inputs and the metabolites in the slow part, and that
this is because the intermediate metabolites are consumed by fast reactions.
A closer look at the considered metabolic network shows that the macro-
molecules (lipids, carbohydrates and chlorophyll particularly) are all pro-
duced directly from a metabolite in the fast part and they are not consumed
after. According to the generalized reduction presented in Appendix A.2,
metabolites in the fast part (put into QSS) are linear combinations of the
inputs.

Property 3.4. Consider a linear metabolic system of n metabolites with
several inputs I1(t), I2(t), . . . , Ik(t). Suppose that metabolitesX1, X2, . . . , Xm

are not consumed by any reaction, while Xm+1, Xm+2, . . . , Xn are consumed
by fast reactions. Then, applying our reduction strategy, the equations of
slow metabolites are equal to linear combinations of the inputs and the term
of growth dilution:

dX i

dt
=

k∑
j=1

βijIj(t)− µX i ∀i = 1, . . . ,m,

where βij = 0 if there is no flux from Ij(t) to Xi.

Proof. See Appendix A.2. �
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Derived from Property 3.4, we can deduce the reduced system composed
of the microalgae macromolecules equations:

dXi

dt
= bi · L(t) + ci · C0 + ni ·N0 − µ ·Xi − ei,

Xi(0) = x0
i , where Xi is the concentration of a macromolecule, L(t) is the

function representing the continuous evolution of light intensity, C0 and N0

are the controlled concentration constants of CO2 and NO3, respectively,
µ > 0 is the dilution due to growth, bi, ci and ni are nonnegative numbers
combining the parameters of the original system, as well as the real number
ei that also depends on functional equilibrium points of the linearized system
(see the Appendix A.5 for details). These constants will be calibrated by our
approach.

We consider experimental data described in Lacour et al. [40]. The
same light-day pattern has been considered as in the experiments. Photon
Flux Density (PFD) at noon was 1,500 µmol.m−2.s−1. The data available
only include the concentration of carbohydrate [CAR], neutral lipids [NL]
and chlorophyll [CHLO]. From the simplified autotrophic microalgae meta-
bolic network [79], we assume that Glucose-6-phosphate [G6P], Diacylglyc-
erol [DG] and Glutamate [GLU] are the direct precursors of [CAR], [NL] and
[CHLO], respectively. Also, we consider Acetyl-coenzyme A [AcCoA] as the
direct precursor of [DG].

Therefore, we calibrated a system of three equations representing the
concentrations of X1=CAR, X2=NL and X3=CHLO:

dX1

dt
= b1 · L(t) + c1 · C0 − µ ·X1 − e1, (3.21)

dX2

dt
= b2 · L(t) + c2 · C0 − µ ·X2 − e2,

dX3

dt
= b3 · L(t) + c3 · C0 + n3 ·N0 − µ ·X3 − e3.

Notice that in the first two equations of (3.21) n1 = 0 and n2 = 0, because
in the simplified network there is no flux from the NO3 input to CAR nor
DG (see Property 3.4).

We use the minimization method described in Section 3.4.1 and the fmin-
search tool in Scilab (http://www.scilab.org), to estimate the parameters
of system (3.21). The fminsearch tool in Scilab is based on the Nelder-
Mead algorithm [6]. The numerical solution of the reduced system (3.21)
is presented in Figure 3.10 and its calibrated parameters in Table 3.4. The
simulations demonstrate that the reduced system accurately approximates
the experimental data.

http://www.scilab.org
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pattern (PFD) is also represented.
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Parameter Value Units
b1 0.400× 10−4 (gC/gC).µmol−1.m2

b2 0.200× 10−4 (gC/gC).µmol−1.m2

b3 0.400× 10−6 (gC/gC).µmol−1.m2

e1 0.147× 10−1 (gC/gC).s−1

e2 0.100× 10−1 (gC/gC).s−1

e3 0.300× 10−3 (gC/gC).s−1

C0 0.172× 10−1 gC/gC
N0 0.287× 10−1 gC/gC
c1 0.100× 10−3 s−1

c2 0.100× 10−3 s−1

c3 0.100× 10−3 s−1

n3 0.100× 10−2 s−1

µ 0.100× 10−6 s−1

Table 3.4. Parameters obtained after the calibration of system (3.21) with
experimental data obtained from Lacour et al. [40]. The initial conditions of
the system are x01 = 0.35 gC/gC, x02 = 0.2 gC/gC and x03 = 0.0125 gC/gC.

3.7. Discussion and Conclusion

In this chapter we have reduced a metabolic network to a small number
of macroscopic reactions, eliminating internal metabolites under the QSSA.
We have shown that this computation is possible for a non-homogeneous
linear system of n equations, accounting a continuous input. Moreover, our
approach is suitable for any metabolic network whose kinetics can be locally
linearized.

The method proposed in Section 3.2 incorporates the dilution factor with
the coefficients of reaction rates, allowing to check the stability conditions for
obtaining an accurate approximation. On the other hand, when the dilution
factor is omitted for resolving a system in QSS, as most approaches do, the
reduced models obtained lose accuracy, as shown for the toy network N1.

We emphasize that, writing the dynamical system into the proper canon-
ical form of singularly perturbed systems is crucial to rigorously separate
the time scales. QSSA applied to non canonical forms can lead to erroneous
conclusions [11], as well as when the conditions of Tikhonov’s Theorem are
not fulfilled [72].

Additionally, for a system with no flux traps, we proved that the concen-
tration of metabolites in QSS is very low in comparison to the accumulative
metabolites (Magnitude of Concentration Theorem 3.1) as a consequence of
the two time-scales. Using the reverse reasoning, we can detect slow reac-
tions associated to accumulative metabolites and fast reactions related to
metabolites with low concentration.
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The Theory of Singularly Perturbed Systems is a tool which has already
been used to justify the Quasi Steady State Assumption in metabolic net-
works [21, 22, 61, 65, 76]. However, our approach combines this tool with
others and eventually it leads to an alternative approach with a different
reduction strategy. Note also that we use the concepts of trap [33] and flux
trap, which were, to the best of our knowledge, never considered previously
for Quasi Steady State Reductions of metabolic networks. As future work,
more generalized systems including nonlinear kinetics can be studied with
the framework developed in this work.



CHAPTER 4

Nonlinear Dynamic Metabolic Networks

Abstract: Here we propose a rigorous approach to reduce metabolic
nonlinear models. We assume that a metabolic network can be represented
with Michaelis-Menten enzymatic reactions, and that it contains at least two
different time-scales. We also consider a continuous (slowly) varying input in
the model, such as light for microalgae, so that the system is never at steady
state. Using a Quasi Steady State Reduction based on Tikhonov’s Theorem,
a reduced system with a characterized error is obtained. Furthermore, our
analysis proves that the metabolites with slow dynamics reach higher con-
centrations (by one order of magnitude) than the fast metabolites. A simple
example illustrates our approach and the resulting accuracy of the reduction
method, also showing that it is adequate for systems with more than two
time-scales.

4.1. Reduction with Dynamics in Enzymatic Reactions

Models of metabolic networks are non-linear and high dimensional sys-
tems, which makes difficult to determine their dynamical behavior and cal-
ibrate them. Here we propose a rigorous mathematical approach to reduce
the dimension of a dynamical metabolic system. The reduction that we pro-
pose allows to characterize the approximation error and it is appropriate to
derive model based control schemes. The idea is to keep some dynamical
components of the model, that are necessary specially when dealing with
microalgae and cyanobacteria.

We study a class of metabolic models of dimension n, where the enzymatic
reactions rates are represented by Michaelis-Menten kinetics. The objective
is to reduce this model accounting a permanently fluctuating input and in-
cluding dilution of the metabolic compounds due to the growth rate. The
system is not closed and never reaches a steady state. At the end, we can
express a slow dynamical system of small dimension and a fast system as a

This chapter is part of the accepted version of the following article: López Zazueta,
C., Bernard, O., and Gouzé, J.-L. (2018). Analytical Reduction of Nonlinear Metabolic
Networks Accounting for Dynamics in Enzymatic Reactions. Complexity Journal [49],
which has been published in final form at https://doi.org/10.1155/2018/2342650.
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function of the variables of the slow system. The error in this reduction is
small and bounded.

In Section 4.2, we introduce the class of models addressed, which contains
metabolic networks composed of two (general) subnetworks of fast reactions
connected by metabolites with slow dynamics. In Section 4.3, we develop a
mathematical model of ODE for these metabolic systems.

In Section 4.4, after a change of variables for the metabolites with fast
dynamics, the system is presented as a slow-fast system. The conditions for
applying Tikhonov’s Theorem for singularly perturbed systems are verified
and we end-up with a reduced dynamical model, which has a bounded error.

In Section 4.5, we prove that metabolites in QSS, under some flux con-
ditions, have concentration one order of magnitude lower than slow metabo-
lites. Additionally, in Section 4.6, we propose an identification algorithm to
estimate the parameters of the reduced system from available data.

Finally, we apply our method to a toy metabolic model in Section 4.7.
This simple model is forced by a periodic input, includes standard bricks in
metabolic networks and several time-scales.

4.2. Network of Enzymatic Reactions

Figure 4.1. System of enzymatic reactions. An arrow fromXi toXj represents
a Michaelis-Menten reaction catalyzed by an enzyme eji, with substrate Xi,

product Xj and product formation rate kji or
kji
ε

. Fast reactions are within
two subnetworks, which are interconnected by the metabolites X1, Xm and Xn.
The connector metabolites are consumed by reactions with low rates, while the
metabolites in the subnetworks are consumed by fast reactions and are at Quasi
Steady State.

In this section we present the class of metabolic networks studied all over
the work, which are illustrated in Figure 4.1. These networks are composed
of two subnetworks of fast reactions, which are interconnected by several
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metabolites with slow rates of consumption. The subnetworks have an arbi-
trary finite number of metabolites and reactions between them.

These subnetworks are not assumed to have a specific topology. There-
fore, they represent a generic case of metabolic networks. The only con-
dition on them is that their metabolites X2, . . . , Xm−1, Xm+1, . . . , Xn−1 are
consumed by fast reactions.

The class of systems addressed in this work can be considered as a sim-
plification or one part of a larger network. However, the results presented
through this work can be extended (see Appendix B.4), allowing the study
of more complex systems on the bases of this approach.

...
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..
.

..
.
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Figure 4.2. Enzymatic reactions between metabolites in QSS depicted in Fig-
ure 4.1. The metabolites inside the subnetworks are substrates or products of
fast reactions catalyzed by an enzyme.

4.2.1. Summary of the methodology for reducing Slow-Fast Dy-
namical Metabolic models. We consider a general class of metabolic
models allowing internal accumulation, represented with the network in Fig-
ure 4.1. In order to rigorously reduce this large dimensional model, our
objective is to take benefit of the two-time scales and finally rewrite it in
the canonical form of singularly perturbed systems. Then the Theorem of
Tikhonov can be applied and a reduced system is derived with an accurate
bound of the error [39].

The first challenge is to a find the appropriate change of variable for the
metabolites with fast dynamics, to end up with a slow-fast system

dX

dt
= F (t,X, Y, η) X(0) = x0 (4.1)

dY

dt
=

1

η
G(t,X, Y, η) Y (0) = y0,

where X is the vector of metabolites with slow dynamics, Y is the vector of
metabolites with fast dynamics and η is a very small parameter. Actually,



76 4. NONLINEAR DYNAMIC METABOLIC NETWORKS

Y results from a rescaling of fast dynamics metabolites Xfast in the model:
Y := Xfast/η.

When the system is under this general form, we prove some conditions
necessary to apply Tikhonov’s Theorem [39] and finally we obtain a Quasi
Steady State Reduction of system (4.1):

dX

dt
= F (t,X, Y , 0) X(0) = x0, (4.2)

where Y is a root of the equation

0 = G(t,X, Y , 0).

If X is a solution for (4.2), the Quasi Steady State Approximation (X,Y )
to the solution of (4.1) satisfies

X = X +O(η),

Y = Y +O(η),

after an initial fast transient. In other words, the error of the Quasi Steady
State Approximation has order of magnitude η, which is supposed to be a
small positive number. The reduced system differs from existing approaches,
mainly because we do not neglect the metabolite dilution due to cell growth.

The mathematical validity of the Quasi Steady State Reduction (QSSR)
for the class of systems considered in this work is showed from Section 4.3
to Section 4.4.

As a new striking result, this approach allows to prove that the concen-
tration of the metabolites in Quasi Steady State is one order of magnitude
lower than the metabolites with slow dynamics, i.e.,

η · Y = Xfast ≤ η · O(X).

The conditions under which this assertion holds are given in Section 4.5.

4.3. Considered Class of Networks

In this section, we describe the systems of the network class considered
in this work. Then, in Section 4.4 and Section 4.5, we deduce a QSSR and
prove some conclusions about the magnitude of metabolite concentrations
(see Magnitude of Concentration Theorem 4.1) for these systems.

The results obtained in the following sections can be extended to more
complex networks. For instance, considering additional slow reactions or
more subnetworks of fast reactions connected by metabolites with slow dy-
namics (see Appendix B.4).
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4.3.1. Notation. Consider the network of n enzymatic reactions de-
picted in Figure 4.1 and Figure 4.2, where an arrow from Xi to Xj represents
an enzymatic reaction catalyzed by eji, with substrate Xi, product Xj and
product formation rate kji or kji/ε. Then, every enzymatic reaction can be
described with the Michaelis-Menten model (see Section 1.2.2).

However, it is necessary justify the Quasi Steady State Approximation
for the Michaelis-Menten model. For this purpose, some solutions have been
presented. For example, this holds if the initial substrate concentration x0

i is
sufficiently large compared with the initial enzyme concentration e0

ji [55, 67].
We suppose that among the product formation rates there are two scales

of magnitude. Reactions with large rate are within two subnetworks, which
are interconnected by the metabolites X1, Xm and Xn. We suppose that the
metabolites connecting the subnetworks are consumed by reactions with low
rates.

In this context, we say that a reaction is fast if its rate is large, while
a reaction is slow if its rate is low. Moreover, we assume the rates of fast
reactions sufficiently larger than those of the slow reactions. Then, we denote
fast reactions rates by

kji
ε

and slow reactions rates by

kji,

where ε is a small positive number.
Additionally, a continuously varying nonnegative input I(t) (e.g. the

CO2 uptake in a microalgae submitted to light/dark cycles) and a growth
rate µ > 0, which acts as a dilution factor, are taken into account for the
models.

4.3.2. Dynamical Model. According to the standard Quasi Steady
State Reduction for Michaelis-Menten enzymatic reactions (described in Sec-
tion 1.2.2), we write the ODE system for the model in Figure 4.1 as

dXi

dt
= Fi(t,X1, . . . , Xn, ε, µ) Xi(0) = x0

i , (4.3)

where

F1 := I(t)− e21
0 k21

X1

X1 +K21
− µX1,

Fi :=
∑

j∈{1,m,n}

e0
ijkij

Xj

Xj +Kij
+

n−1∑
j=2
j 6=m

e0
ij

kij
ε

Xj

Xj +Kij
−

n∑
j=1

e0
jikji

Xi

Xi +Kji
− µXi,
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for i = m,n, and

Fi :=
∑

j∈{1,m,n}

e0
ijkij

Xj

Xj +Kij
+
n−1∑
j=2
j 6=m

e0
ij

kij
ε

Xj

Xj +Kij
−

n∑
j=1

e0
ji

kji
ε

Xi

Xi +Kji
− µXi,

for every i = 2, . . . , n− 1, i 6= m.
The variable Xi describes the i-th metabolite cell concentration, I(t) is

a nonnegative continuous function, ε is a small positive number, e0
ji, kji and

Kji are nonnegative parameters, and µ > 0 is the growth rate. When there
is no reaction with substrate Xi and product Xj, we define kji = 0, and also
kii = 0 for every i = 1, . . . , n.

Note 4.1. In our model we can include first order (linear) reactions. In
this case, instead of writing

e0
jikji ·

Xi

Xi +Kji
or e0

ji

kji
ε
· Xi

Xi +Kji

as for enzymatic reactions, we have to write

e0
jikjiXi or e0

ji

kji
ε
Xi,

respectively, in Equation (4.3). For the sake of simplicity, in this work we
only consider the more general case with Michaelis-Menten reactions.

In line with the QSSR of Michaelis-Menten system, we recall that e0
jikji

(or e0
jikji/ε for the fast reactions) and Kji are parameters related to the

enzyme reaction with substrate Xi and product Xj. Indeed, e0
ji is the initial

enzyme concentration, kji (or kji/ε) is the product formation rate and Kji >
0 is the specific Michaelis-Menten constant defined as

Kji :=
kji−1 + kji

kji1
(4.4)

(see Section 1.2.2).

An important preliminary property that the dynamical system (4.3) has
to obey is that, the concentration Xi(t) has to remain nonnegative over the
time if the initial conditions are nonnegative. In our model, this depends on
the input I(t). This is stated in the following Property:

Property 4.1. If the initial condition x0
i is nonnegative for every i =

1, . . . , n and I(t) ≥ 0 for every t ∈ [0, T1], then system (4.3) is positively
invariant in Rn

+.

Proof. To verify this, we show that system (4.3) is positively invariant in Rn
+

if I(t) is nonnegative over any interval [0, T1].



4.4. QUASI STEADY STATE REDUCTION 79

Recall that all Kji is supposed to be positive and every parameter, e0
ji, kji,

µ, is nonnegative. Then, we have for any i = 1, . . . , n,

Fi(X1, . . . , 0
i-th entry

, . . . , Xn, t, ε, µ) ≥ 0

if Xj ≥ 0 for every j = 1, . . . , n, j 6= i. Therefore, system (4.3) is positively

invariant in Rn
+. �

4.3.3. Parameter Order of magnitude. With our notation, to rep-
resent different time-scales in the reactions, we consider ε a small positive
number highlighting the difference between the parameter scale orders. We
suppose that the parameters e0

jikji are of standard range, i.e.

e0
jikji = O(1) as ε→ 0 ∀i, j ∈ {1, . . . , n}, (4.5)

where O denotes the Big O or Landau symbol. For the definition and some
properties of O, see Section 2.1.

Also, we suppose that the input I(t) has a magnitude not larger than the
slow reactions. In other words,

I(t) = O(1)

The rate of growth µ is considered as a parameter smaller than any reaction
rate (a standard hypothesis [70]). Here, we assume

εµ = O(ε). (4.6)

4.4. Quasi Steady State Reduction

In this section we propose a rigorous Quasi Steady State Reduction of
(4.3). Its mathematical validity is proved using the Theorem of Tikhonov
[39]. In other words, this theorem states that the error of this QSSR is a
function of the order O(ε), where ε is small parameter.

We formally define the QSSR after Tikhonov’s Theorem, of the metabolic
network with ODE system (4.3), as the following system of dimension three:

dX1

dt
= I(t)− e0

21k21

( X1

X1 +K21

)
− µX1 (4.7)

dXm

dt
= bm−1 · e0

21k21

e0
m,m−1km,m−1

Km,m−1
·
( X1

X1 +K21

)
− e0

m+1,mkm+1,m

( Xm

Xm +Km+1,m

)
− µXm

dXn

dt
= bn−1 · e0

m+1,mkm+1,m

e0
n,n−1kn,n−1

Kn,n−1
·
( Xm

Xm +Km+1,m

)
− µ ·Xn,



80 4. NONLINEAR DYNAMIC METABOLIC NETWORKS

with initial conditions X1(0) = x0
1, Xm(0) = x0

m and Xn(0) = x0
n, and for

the metabolites in QSS

Xi(t) = ε · bi · e0
21k21

( X1(t)

X1(t) +K21

)
i = 2, . . . ,m− 1, (4.8)

Xi(t) = ε · bi · e0
m+1,mkm+1,m

( Xm(t)

Xm(t) +Km+1,m

)
i = m+ 1, . . . , n− 1,

for every t ∈ [0, T1]. The definition of the parameters bi is given later in this
section (see Proposition 4.1 and its proof).

4.4.1. Slow-Fast System. In order to write system (4.3) in the canon-
ical form of singularly perturbed systems, we define a change of variable for
the fast metabolites by

Yi :=
Xi

ε
∀i = 2, 3, . . . , n− 1, i 6= m. (4.9)

Let us set the initial conditions for these new variables as

y0
i := x0

i /ε,

and growth rate as

µ̃ = εµ.

Therefore, after the change of variable (4.9), Equation (4.3) can be rewrit-
ten as follows:

dXi

dt
= Fi(t,X1, εY2, . . . , εYm−1, Xm, εYm+1, . . . , εYn−1, Xn, ε, µ) (4.10)

∀i = 1,m, n,

dYi
dt

=
1

ε
Fi(t,X1, εY2, . . . , εYm−1, Xm, εYm+1, . . . , εYn−1, Xn, ε, µ̃)

∀i = 2, . . . , n− 1, i 6= m.

Since ε is a very small positive number, the dynamics of Yi are faster than
those of Xi. Hence, the equations of Xi form the slow part of system (4.10),
while the equations of Yi constitute its fast part.

The previous Equation (4.10) is written with further details in the next
subsection. The goal is to expose how the Quasi Steady State Reduction is
obtained and validated using Tikhonov’s Theorem.

4.4.2. Canonical form of singularly perturbed systems. The slow-
fast system (4.10) is in the class of singularly perturbed systems of the exact
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form:

dX1

dt
= I(t)− (e0

21k21)X1

X1 +K21
− µX1 X1(0) = x0

1

(4.11)

dXm

dt
=

(e0
m,m−1km,m−1)Ym−1

ηYm−1 +Km,m−1
−

(e0
m+1,mkm+1,m)Xm

Xm +Km+1,m
− µXm Xm(0) = x0

m

dXn

dt
=

(e0
n,n−1kn,n−1)Yn−1

ηYn−1 +Kn,n−1
− µXn Xn(0) = x0

n,

dY2

dt
=

1

η

[
e0

21k21
X1

X1 +K21
+
(m−1∑
j=3

e0
2jk2j · Yj
ηYj +K2j

)
−
(m−1∑
i=3

e0
i2ki2 · Y2

ηY2 +Ki2

)
− µ̃Y2

]
(4.12)

...

dYm−1

dt
=

1

η

[(m−2∑
j=2

e0
m−1,jkm−1,j · Yj
ηYj +Km−1,j

)
−
( m∑

i=2
i 6=m−1

e0
i,m−1ki,m−1 · Ym−1

ηYm−1 +Ki,m−1

)
− µ̃Ym−1

]
dYm+1

dt
=

1

η

[e0
m+1,mkm+1,m ·Xm

Xm +Km+1,m
+
( n−1∑
j=m+2

e0
m+1,jkm+1,j · Yj
ηYj +Km+1,j

)

−
( n−1∑
i=m+2

e0
i,m+1ki,m+1 · Ym+1

ηYm+1 +Ki,m+1

)
− µ̃Ym+1

]
...

dYn−1

dt
=

1

η

[( n−2∑
j=m+1

e0
n−1,jkn−1,j · Yj
ηYj +Kn−1,j

)
−
( n∑
i=m+1
i6=n−1

e0
i,n−1ki,n−1 · Yn−1

ηYn−1 +Ki,n−1

)
− µ̃Yn−1

]
,

with initial conditions Yi(0) = y0
i for every i = 2, . . . , n− 1, i 6= m.

Note 4.2. The Equation (4.11)-(4.12) above is a more detailed expression
of (4.10). Indeed, we obtain system (4.10) when η is substituted for ε in the
equations Equation (4.11)-(4.12).

An approximation to the solution of system (4.11)-(4.12) can be obtained
considering the limit when η → 0. Then, dynamics in Equation (4.12) are
considered as fast and the QSSA is applied to the metabolites Yi for every
i = 2, . . . , n− 1, i 6= m.

Hereafter, we say that Equation (4.11) is the slow part and Equation (4.12)
the fast part of system (4.3).
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4.4.3. Hypotheses necessary for Quasi Steady State. In the fol-
lowing two subsections, we check the assumptions of Tikhonov’s Theorem
[39]. First we demonstrate that the fast system has a single steady state
(when slow variables are constants), which is not straightforward for non-
linear systems. Then we demonstrate that this steady state is asymptoti-
cally stable. Eventually, once all the conditions have been established, in
Section 4.4.5 we present the result of Tikhonov’s Theorem (see Section 2.2).

Consider the following algebraic system of equations, obtained from equat-
ing to 0 the terms in square brackets in (4.12) and substituting η = 0:

0 = e0
jik21

X1

X1 +K21
+
(m−1∑
j=3

e0
2jk2j

Yj
K2j

)
−
(m−1∑
i=3

e0
i2ki2

Y2

Ki2

)
− µ̃Y2 (4.13)

...

0 =
(m−2∑
j=2

e0
m−1,jkm−1,j

Yj
Km−1,j

)
−
( m∑

i=2
i 6=m−1

e0
i,m−1ki,m−1

Ym−1

Ki,m−1

)
− µ̃Ym−1

0 = e0
m+1,mkm+1,m

Xm

Xm +Km+1,m
+
( n−1∑
j=m+2

e0
m+1,jkm+1,j

Yj
Km+1,j

)

−
( n−1∑
i=m+2

e0
i,m+1ki,m+1

Ym+1

Ki,m+1

)
− µ̃Ym+1

...

0 =
( n−2∑
j=m+1

e0
n−1,jkn−1,j

Yj
Kn−1,j

)
−
( n∑
i=m+1
i6=n−1

e0
i,n−1ki,n−1

Yn−1

Ki,n−1

)
− µ̃Yn−1

In order to apply Tikhonov’s Theorem [39], we have to prove that Equa-
tion (4.13) has an isolated root for any nonnegative constant values X1 and
Xm, and that this root is asymptotically stable for the following system:
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dY2

dt
= e0

21k21
X1

X1 +K21
+
(m−1∑
j=3

e0
2jk2j

K2j
Yj

)
−
(m−1∑
i=3

e0
i2ki2
Ki2

+ µ̃
)
Y2 (4.14)

...

dYm−1

dt
=
(m−2∑
j=2

e0
m−1,jkm−1,j

Km−1,j
Yj

)
−
( m∑

i=2
i 6=m−1

e0
i,m−1ki,m−1

Ki,m−1
+ µ̃

)
Ym−1

dYm+1

dt
= e0

m+1,mkm+1,m
Xm

Xm +Km+1,m
+
( n−1∑
j=m+2

e0
m+1,jkm+1,j

Km+1,j
Yj

)

−
( n−1∑
i=m+2

e0
i,m+1ki,m+1

Ki,m+1
+ µ̃

)
Ym+1

...

dYn−1

dt
=
( n−2∑
j=m+1

e0
n−1,jkn−1,j

Kn−1,j
Yj

)
−
( n∑
i=m+1
i6=n−1

e0
i,n−1ki,n−1

Ki,n−1
+ µ̃

)
Yn−1,

where X1, Xm and Xn are considered as nonnegative constants.
The purpose of finding a root of Equation (4.13) is to write the fast

variables Yi in terms of the slow variables Xi. In this case it is possible
to find an analytic solution of this algebraic system, because it is a linear
equation for the variables Yi. Similarly, the asymptotical stability of this root
for system (4.14) can be verified with the theory of linear systems of ODE.

Proposition 4.1. Consider X1 and Xm as nonnegative constants values.
Then system (4.14) has a single equilibrium point

(Y i)i=2,...,n−1,i 6=m

which is globally asymptotically stable. Moreover,

Y i = bi · e0
21k21

( X1

X1 +K21

)
i = 2, . . . ,m− 1 (4.15)

Y i = bi · e0
m+1,mkm+1,m

( Xm

Xm +Km+1,m

)
i = m+ 1, . . . , n− 1,

where bi ∈ R+ are nonnegative coefficients.

Proof. First notice that system (4.14) is a linear system for Yi under the
hypotheses of Proposition 4.1. Then, we just have to show that its Jacobian
matrix is stable, i.e. that all its eigenvalues have negative real part [59].
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The Jacobian matrix of (4.14) is

J =

(
K1 0
0 K2

)
, (4.16)

where

K1 =


−
∑m−1

i=3
e0i2ki2
Ki2
− µ̃ . . .

e02,m−1k2,m−1

K2,m−1

e032k32
K32

. . .
e03,m−1k3,m−1

K3,m−1

...
...

e0m−1,2km−1,2

Km−1,2
. . . −

∑m
i=2

i 6=m−1

e0i,m−1ki,m−1

Ki,m−1
− µ̃

 , (4.17)

K2 =



−
∑n−1

i=m+2

e0i,m+1ki,m+1

Ki,m+1
− µ̃ . . .

e0m+1,n−1km+1,n−1

Km+1,n−1

e0m+2,m+1km+2,m+1

Km+2,m+1
. . .

e0m+2,n−1km+2,n−1

Km+2,n−1

...
...

e0n−1,m+1kn−1,m+1

Kn−1,m+1
. . . −

∑n
i=m+1
i 6=n−1

e0i,n−1ki,n−1

Ki,n−1
− µ̃


.

But J is a strictly column diagonally dominant matrix, because µ̃ > 0.
Hence, J is a stable matrix by Corollary 2.1.

The matrix form of Equation (4.13) is

(
K1 0
0 K2

)
·



Y2
...

Ym−1

Ym+1
...

Yn−1


= −



e0
21k21

(
X1

X1+K21

)
...
0

e0
m+1,mkm+1,m

(
Xm

Xm+Km+1,m

)
...
0


,

Then, the solution of the algebraic system (4.13) is Y 2
...

Y m−1

 = (−e0
21k21) ·

(
K1

)−1 ·


X1

X1+K21
...
0

 , (4.18)

Y m+1
...

Y n−1

 = (−e0
m+1,mkm+1,m) ·

(
K2

)−1 ·


Xm

Xm+Km+1,m

...
0

 .
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Therefore, the variables of the solution can be written as

Y i = bi · e0
21k21

( X1

X1 +K21

)
i = 2, . . . ,m− 1,

Y i = bi · e0
m+1,mkm+1,m

( Xm

Xm +Km+1,m

)
i = m+ 1, . . . , n− 1,

with bi ∈ R. Moreover, since Ki is strictly column diagonally dominant and
has negative diagonal entries, its inverse matrix is nonpositive, i.e. each entry
of (Ki)

−1 is nonpositive (see Proposition 2.2). Therefore, all entries in

(−e0
21k21) ·

(
K1

)−1
and

(−e0
m+1,mkm+1,m) ·

(
K2

)−1

are nonnegative. We conclude that coefficients bi in (4.15) are nonnegative.
�

Note 4.3. Although Proposition 4.1 is proved for nonnegative constant
values X1 and Xm, we consider Y i in (4.15) also as functions of t ∈ [0, T1],
according to Tikhonov’s Theorem. Then we have the functions in (4.8),
defined for the QSSR.

4.4.4. Study of the slow system. The dynamics of the slow system
(metabolites which reach high concentrations) are obtained by setting η = 0
in (4.11) and substituting the fast variables Yi for the expressions given by
(4.15):

dX1

dt
=I(t)− e0

21k21 ·X1

X1 +K21
− µX1,

dXm

dt
=e0

m,m−1km,m−1
Y m−1

Km,m−1
−
e0
m+1,mkm+1,m ·Xm

Xm +Km+1,m
− µXm,

dXn

dt
=e0

n,n−1kn,n−1
Y n−1

Kn,n−1
− µXn.

Then we obtain the remaining dynamical system (4.7), which provides the
dynamics to the overall network.

The other variables of the metabolic network, which are the fast variables
Yi can then be reconstructed after Equation (4.8). These fast variables rely
on system (4.7). Most of the variables are fast, which let us conclude that
the complexity of the problem has been considerably reduced.

Proposition 4.2. If system (4.7) has nonnegative initial conditions,
then it has a unique nonnegative solution (X1, Xm, Xn) defined on the inter-
val [0, T1].

For the proof of Proposition 4.2, see Appendix B.2.
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4.4.5. Tikhonov’s Theorem. Propositions 4.1 and 4.2 prove that the
class of systems with the form (4.11)-(4.12) satisfy the hypothesis of Tikhonov’s
Theorem [39]. Then, we can apply this theorem to system (4.10).

The following proposition is a consequence of Tikhonov’s Theorem. The
proposition states that the approximation given by the QSSR (4.7)-(4.8) has
an error with order O(ε), after a fast initial transient for the fast variables
(see Theorem 2.1).

Proposition 4.3. [Deduction of Tikhonov’s Theorem] If I(t) is a non-
negative continuous function over [0, T1], then

Xj(t) = Xj(t) +O(ε) j = 1,m, n, ∀t ∈ [0, T1].

Moreover, there exists T0 > 0 such that for every t ∈ [T0, T1],

Xi(t) = ε
[
Y i(t) +O(ε)

]
∀i = 2 . . . , n− 1, i 6= m.

where Xi is the solution of the original system (4.3), X i is the solution
of (4.7) and Y i is the function defined in (4.8) after the algebraic Equa-
tion (4.13).

Note 4.4. The solution of the boundary layer problem for system (4.11)-
(4.12) is similar to that of Equation (4.14). We include its demonstration in
Appendix B.1.

4.5. Magnitude of Concentrations

In this section we study the magnitude of metabolite concentrations, de-
pending on if they are associated to slow or fast reactions. They are deduced
from the reduced system after Tikhonov’s Theorem (4.7)-(4.8). We now show
that the concentration of metabolites in QSS (that do not trap the input flux)
is one order of magnitude ε lower than metabolites with slow dynamics.

In order to prove this assertion, we define the conditions under which

bi · e0
21k21 = O(1),

bi · e0
m+1,mkm+1,m = O(1),

to obtain

Xi(t) = O
(
ε · X1(t)

X1(t) +K21

)
if i ∈ {2, . . . ,m− 1},

Xi(t) = O
(
ε · Xm(t)

Xm(t) +Km+1,m

)
if i ∈ {m+ 1, . . . , n− 1},

for every t ∈ [T0, T1].
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4.5.1. Parameter Orders. Here we show that all off-diagonal entries of
the Jacobian matrix Ki have the same order of magnitude, for both matrices
defined in (4.17).

Lemma 4.1. Suppose that the parameters of each Michaelis-Menten en-
zymatic reaction (see Section 1.2.2) satisfy

O(kjiγ ) = O(kji) ∀i, j = 1, . . . , n, γ ∈ {−1, 1}. (4.19)

Then,

O
(e0

jikji

Kji

)
= O

(e0
j′i′kj′i′

Kj′i′

)
= O(e0

j′i′kj′i′) ∀i, j, i′, j′ ∈ {1, . . . , n}.

Proof. As a consequence of (4.5),

O(e0
jikji) = O(e0

j′i′kj′i′) ∀i, j, i′, j′ ∈ {1, . . . , n}. (4.20)

Moreover, by the definition of the Michaelis-Menten constant (4.4) and (4.19),
we have that O(Kji) = 1 and then

O
(e0

jikji

Kji

)
= O(e0

jikji) ∀i, j. (4.21)

Hence, combining (4.20) and (4.21), we have

O
(e0

jikji

Kji

)
= O

(e0
j′i′kj′i′

Kj′i′

)
= O(e0

j′i′kj′i′) ∀i, j, i′, j′ ∈ {1, . . . , n}.

�

Actually, all the entries of the matrix Ki have the same order of magni-
tude, as asserts the following corollary.

Proposition 4.4. Consider the matrices defined in (4.17). All the en-
tries of K1 and K2 have the same order.

Proof. According to Lemma 4.1, for the sums in the diagonal of the matrices
we have

n∑
i=2
i 6=j

e0
ijkij

Kij
= O(e0

jikji).

Moreover, µ̃ = O(ε). Then,
n∑
i=2
i6=j

e0
ijkij

Kij
+ µ̃ = O(e0

jikji).

For the off-diagonal entries consider (4.21). Therefore, all the entries of K1

and K2 have order O(e0
jikji). �
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4.5.2. A Theorem for Magnitude of Concentrations. In order to
prove that a metabolite in QSS does not reach high concentrations, we have
to suppose that it is not in a trap for the input flux. The definition of
trap was introduced in [33], and we formally adapt it to the class of models
considered in this work (see Appendix B.3.1). Then, we define a flux trap,
which is a trap reached by the flux.

Assumption 4.1. There exists F a flux from X1 to Xn in the system of
enzymatic reactions (4.3) (depicted in Figure 4.1). Moreover, we define ITF

as the set of indices such that Xi is in a flux trap if and only if i ∈ ITF
.

Notice that the presence of the flux F from X1 to Xn implies

{1,m, n} ∩ ITF
= ∅.

Then, flux traps are only possible within the subnetworks in QSS. Also,
ITF

= ∅ if there is no flux trap.

The following lemma sets down the order of magnitude of the parameters
in (4.8), for the metabolites which are not in a flux trap. These parameters
are used for writing the expression of fast metabolites in the QSSR.

Lemma 4.2. Suppose the system of enzymatic reactions (4.3) under As-
sumption 4.1. Consider the parameters bi of Equation (4.8), obtained in
Section 4.4. Then, if bi 6= 0, it holds

bi·e0
21k21 = O(1) if i ∈ {2, . . . ,m− 1} \ ITF

, (4.22)

bi·e0
m+1,mkm+1,m = O(1) if i ∈ {m+ 1, . . . , n− 1} \ ITF

.

Proof. From the results stated in Appendix B.3, particularly Theorem B.1,
we have for bi 6= 0,

bi·
e0

21k21

K21
= O(1) if i ∈ {2, . . . ,m− 1} \ ITF

,

bi·
e0
m+1,mkm+1,m

Km+1,m
= O(1) if i ∈ {m+ 1, . . . , n− 1} \ ITF

.

Using Equation (4.21) we conclude that, for bi 6= 0,

bi·e0
21k21 = O(1) if i ∈ {2, . . . ,m− 1} \ ITF

,

bi·e0
m+1,mkm+1,m = O(1) if i ∈ {m+ 1, . . . , n− 1} \ ITF

.

�

The next theorem is a powerful conclusion obtained after the QSSR (4.7)-
(4.8). The Magnitude of Concentration Theorem 4.1 states that the concen-
tration of a metabolite in QSS, which is not in a flux trap, is one order of
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magnitude ε lower than the concentration of a metabolite with slow dynam-
ics. This result holds even if there is a trap or a flux trap in the system.

Theorem 4.1 (Magnitude of Concentration Theorem). Consider the sys-
tem of enzymatic reactions (4.3). Under Assumption 4.1, the following in-
equalities hold:

Xi ≤ O
(
ε·X1

)
∀i ∈ {2, . . . ,m− 1} \ ITF

,

Xi ≤ O
(
ε·Xm

)
∀i ∈ {m+ 1, . . . , n− 1} \ ITF

.

Magnitude of Concentration Theorem 4.1 states that, after the initial fast
transient, any metabolite in QSS has a concentration one order of magnitude
lower than the concentration of a metabolite in the slow part. For the Big O
or Landau symbol notation used in this theorem, see Note 2.1 in Section 2.1.

Proof of Magnitude of Concentration Theorem 4.1. Since the reduction from
Tikhonov’s Theorem, we have Equation (4.8), i.e.,

Xi = ε · bi · e0
21k21

( X1

X1 +K21

)
i = 2, . . . ,m− 1,

Xi = ε · bi · e0
m+1,mkm+1,m

( Xm

Xm +Km+1,m

)
i = m+ 1, . . . , n− 1.

Then, as stated in Lemma 4.2, for i such that bi 6= 0,

Xi = O
(
ε

X1

X1 +K21

)
if i ∈ {2, . . . ,m− 1} \ ITF

,

Xi = O
(
ε

Xm

Xm +Km+1,m

)
if i ∈ {m+ 1, . . . , n− 1} \ ITF

.

But 1 ≤ O(X i + Ki+1,i), because system (4.7) is positively invariant and
Ki+1,i = O(1). Hence,

O
( X1

X1 +K21

)
≤ O(X1),

O
( Xm

Xm +Km+1,m

)
≤ O(Xm).

We conclude that

Xi ≤ O
(
ε ·X1

)
∀i ∈ {2, . . . ,m− 1} \ ITF

,

Xi ≤ O
(
ε ·Xm

)
∀i ∈ {m+ 1, . . . , n− 1} \ ITF

.

�
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Note 4.5. The approach presented in this work can be used to reduce
a metabolic network which has flux traps, obtaining an error characteriza-
tion (as established in Proposition 4.3) and the conclusion of Magnitude of
Concentration Theorem 4.1. But, in agreement with the Magnitude of Con-
centration Theorem 4.1, the magnitude of concentration of metabolites in
flux traps cannot be bounded by the concentration of metabolites in the slow
part of the system. This fact can be inferred from the proof of Magnitude of
Concentration Theorem 4.1 (see Appendix B.3.2.)

The presence of a flux trap leads to accumulation, without reuse, of com-
pounds in the metabolic network. However, accumulation of some com-
pounds to large concentrations often results to cell death. For example,
the accumulation of lactate has been recognized as one cause of cell death
[64, 52].

4.6. Reduced Model Calibration

Now that we have described the way to synthesize the initial model of the
metabolic network into a small dynamical system (for accumulating metabo-
lites) and a set of algebraic equations, we explain how to calibrate this re-
duced model from experimental data. Of course, we assume that the initial
stoichiometric coefficients are known, but the parameters associated to reac-
tion rates are unknown.

Here we propose a method to estimate the parameters of the reduced
system. In a first stage we identify the parameters of the reduced dynamical
system representing the metabolites with higher concentration (4.7). The
identification method is based on the minimization of a cost function, com-
puting the error model with respect to experimental data.

Furthermore, if data of any metabolite in QSS is available, we can also
estimate the respective parameters in (4.8), to write its concentration as a
linear combination of the slow metabolites.

4.6.1. Calibration of the slow dynamics. Let us consider some ex-
perimental data of the metabolites in the slow part of the system (4.11),
denoted by

Zi(tj) = Xi(tj) + βi(tj) i = 1,m, n, j = 1, . . . , r, (4.23)

where Xi is the solution of the original system (4.3) and βi represents an
error of measurements. In order to estimate the parameters of the reduced
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system (4.7), we rewrite it as

dX1

dt
= I(t)− θ1X1

X1 + θ2

− θ3 ·X1 X1(0) = Z1(t1) (4.24)

dXm

dt
=

θ4X1

X1 + θ2

− θ5Xm

Xm + θ6

− θ3Xm Xm(0) = Zm(t1)

dXn

dt
=

θ7Xm

Xm + θ6

− θ3 ·Xn Xn(0) = Zn(t1),

Let θ = (θ1, θ2, θ3, θ4, θ5) and define a cost function F(θ). This cost
function has to measure the error between the solution of (4.24) and the
data Z1, Zm, Zn, for every value θ in a domain D ⊂ R7. For example, we can
define F as

F(θ) =
∑

i∈{1,m,n}

r∑
j=1

∣∣∣Xi(θ, tj)− Zi(tj)
∣∣∣2. (4.25)

Then, we have to find θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4, θ̂5) such that

F(θ̂) = min{F (θ) : θ ∈ D}.

Note 4.6. For obtaining the vector of parameters θ̂ to calibrate (4.24),
it is not necessary to have data of any metabolite in QSS, Xi with i =
2, . . . , n− 1, i 6= m. Only the data (4.23) of the metabolites in the slow part,
X1, Xm, Xn, is used.

4.6.2. Fast dynamics parameters. In some (rare) cases, measure-
ments of some fast metabolites can be available. Generally, these data are
only obtained at quasi steady state after the initial transient and for a subset
of the metabolic compounds.

Supposing that we have experimental data of the metabolites in QSS after
the initial fast transient,

Zi(t
′
j) = Xi(t

′
j) +N (t′j) i = 2, . . . , n− 1, i 6= m, (4.26)

T0 ≤ t′1 < · · · < t′r′ ,

and that we have obtained θ̂ after calibrating (4.24), we can estimate the
parameters in (4.8). As a matter of fact, in line with the reduced system
(4.7)-(4.8) and the calibrated system (4.24), for the metabolites in QSS we
have

Xi = αi ·
X1

X1 + θ̂2

i = 2, . . . ,m− 1 (4.27)

Xi = αi ·
Xm

Xm + θ̂6

i = m+ 1, . . . , n− 1,

where αi are the parameters to be estimated.
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Here, we can explicitly resolve the linear least square problem. The least
squares solution that minimize the difference between the data Zi and the
expressions in (4.27) is the following [54]:

α̂i =

∑r′

j=1

Zi(t
′
j)X1(θ̂,t′j)

X1(θ̂,t′j)+θ̂2∑r′

j=1

(
X1(θ̂,t′j)

X1(θ̂,t′j)+θ̂2

)2
∀i = 2, . . . ,m− 1

α̂i =

∑r′

j=1

Zi(t
′
j)Xm(θ̂,t′j)

Xm(θ̂,t′j)+θ̂6∑r′

j=1

(
Xm(θ̂,t′j)

Xm(θ̂,t′j)+θ̂6

)2
∀i = m+ 1, . . . , n− 1.

Indeed, we look for values of α̂i that minimize the differences

Li(α) =

r′∑
j=1

(
α

X1(t′j , θ̂)

X1(t′j , θ̂) + θ̂2

− Zi(t′j)
)2

i = 2, . . . ,m− 1

Li(α) =

r′∑
j=1

(
α

Xm(t′j , θ̂)

Xm(t′j , θ̂) + θ̂6

− Zi(t′j)
)2

i = m+ 1, . . . , n− 1.

Note 4.7. To obtain the parameter α̂i, we only need the data Zi (of the
corresponding metabolites in QSS, Xi) and the calibrated system (4.24) with

θ̂.

4.7. A Toy Enzymatic Network

In this section we apply the method developed in this work to the toy
network represented in Figure 4.3. This toy network accounts for one re-
versible enzymatic reaction and a cycle of enzymatic reactions. Moreover,
the toy network contains two subnetworks in QSS (in blue in Figure 4.3),
which are interconnected by metabolites with slow rates of consumption (in
black in Figure 4.3).
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Figure 4.3. We consider that reactions represented by black arrows are slow,
while reactions represented by blue arrows are fast. Metabolites in black reach
high concentrations, whereas metabolites in blue have low concentration and
are supposed to be in Quasi Steady State. Every reaction is catalyzed by and
enzyme eji.

First we consider the ODE of the toy enzymatic network, as in Section 4.2.
Then, using the time-scale separation hypothesis, we reduce this ODE with
the method described in Section 4.4. Finally, we estimate the parameters of
the reduced system as it is suggested in Section 4.6

All the parameters in the toy network are supposed to satisfy the condi-
tions established in (4.5) and Section 4.5. The periodic and continuous input
considered is given by

I(t) = k[cos(t · ω + π) + 1],

where k is a parameter with the same order of magnitude as the slow reactions
rates.

4.7.1. Reduction. We apply to the toy network our reduction scheme,
as described in Section 4.4. First, to simplify the notation, we define the
following parameters:

aji :=
e0
jikji

Kji
∀i, j = 1, . . . , n,

d1 := a32(a43 + µ̃) + µ̃(a23 + a43 + µ̃),

d2 := (a65 + µ̃)(a86 + µ̃)(a57 + µ̃)(a78 + a98 + µ̃)− (a65)(a57)(a86)(a78).
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Then, we obtain the following reduced system for the toy network,

dX1

dt
= I(t)− e0

21k21 ·X1

X1 +K21
− µX1 (4.28)

dX4

dt
=

(a43)(a32)

d1
· e

0
21k21 ·X1

X1 +K21
− e0

54k54 ·X4

X4 +K54
− µX4

dX9

dt
=

(a98)(a65)(a86)(a57 + µ̃)

d2
· e

0
54k54 ·X4

X4 +K54
− µX9,

and the expressions for the metabolites in QSS,

X2 =
ε(a23 + a43 + µ̃)

d1
· e

0
21k21X1

X1 +K21
(4.29)

X3 =
ε(a32)

d1
· e

0
21k21X1

X1 +K21

X5 =
ε(a86 + µ̃)(a57 + µ̃)(a78 + a98 + µ̃)

d2
· e

0
54k54X4

X4 +K54

X6 =
ε(a65)(a57 + µ̃)(a78 + a98 + µ̃)

d2
· e

0
54k54X4

X4 +K54

X7 =
ε(a65)(a86)(a78)

d2
· e

0
54k54X4

X4 +K54

X8 =
ε(a65)(a86)(a57 + µ̃)

d2
· e

0
54k54X4

X4 +K54
.

4.7.2. Calibration of the Reduced Toy Network. We follow the
procedure in Section 4.6. For simplicity we suppose that the data are mea-
sured at the same time instants t1, . . . , tr (we assume that 48 measurement
instants are available) for the slow and the fast parts of the system.

The measurements are the variables (units g.L−1) of the original system
(4.3) (for the toy network in Figure 4.3) plus a white noise:

Zi(tj) := Xi(tj) + β(tj) j = 1, 2, . . . , r (4.30)

where β ∼ N (σi) and σi = 10−1 ·median(Xi) for every i = 1, . . . , n.
As in Section 4.6, to estimate the parameters of (4.28), we use the reduced

system (4.24), with m = 4 and n = 9. The cost function considered is F ,
defined in (4.25), with m = 4 and n = 9.

The function fminsearch in Scilab was used for minimizing F . This func-
tion is based on the Nelder-Maid algorithm to compute the unconstrained
minimum of a given function [6]. For the simulations in Figure 4.4, the

constant vector θ̂ obtained is described in Table 4.1 and F(θ̂) = 0.097.
Note that the parameters θ2 and θ6 are affinity constant in Michaelis-

Menten functions, whose sensitivity is low [77]. Here we have used 48 samples
for parameter identification.
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For illustration purpose, we suppose that the metabolites in QSS are also
measured, we calculate the parameters α̂ to estimate their concentrations as
explained in Section 4.6.2. Then, their concentrations are obtained according
to (4.27).

We computed the numerical solution of the systems describing the dy-
namics in the toy network of Figure 4.3. The results are represented in
Figure 4.4 and Figure 4.5. As expected, the concentrations of the metabo-
lites in QSS are one order of magnitude ε lower than the metabolites in the
slow part. Moreover, the reduced systems accurately represents all the scales
of the system (which are more than two).

It is worth noting that the identification process results in a satisfying
agreement between simulations of the calibrated system (4.24)-(4.27) and
recorded data, as represented in Figure 4.4 and Figure 4.5.

i Theoretical Initial Estimated Units Error

value θi guess value θ̂i percent
1 0.110 0.010 0.072 g(L.min)−1 34.54
2 2.000 1.000 1.298 gL−1 35.10
3 0.010 0.010 0.011 min−1 10.00
4 0.110 0.010 0.073 g(L.min)−1 33.63
5 0.013 0.010 0.006 g(L.min)−1 53.85
6 2.000 1.000 2.143 gL−1 7.15
7 0.013 0.010 0.016 g(L.min)−1 23.08

Table 4.1. Parameter estimation for system (4.28), rewritten as (4.24). The
estimation of this parameters only requires the slow dynamics of the toy network
in Figure 4.3.

i Theoretical Estimated Error
value αi value α̂i percent

2 0.00124 0.00092 25.81
3 0.00122 0.00089 27.05
5 0.00168 0.00185 10.12
6 0.00018 0.00019 5.56
7 0.00002 0.00002 0
8 0.00017 0.00019 11.76

Table 4.2. Estimation of the parameters in (4.29), corresponding to the equal-
ities in (4.27).
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Figure 4.4. Dynamics of the toy network represented in Figure 4.3. The func-
tions Xi represent the metabolite concentrations in units g.L−1. The numerical
solution of the original system (4.3) is depicted by the green line; the reduced
system obtained by the method exposed in this work (4.28), by the blue dashed
line; the supposed data with white noise (4.30), by green points; and the cal-
ibrated system (4.24)-(4.27) with the estimated parameters in Table 4.1 and
Table 4.2, by the red line. The parameters considered are in Table 4.3 and
Table 4.4. As expected, the concentrations of the metabolites in QSS are one
order of magnitude ε lower than the metabolites in the slow part.

Figure 4.5. Zoom on the concentration of metabolites in QSS. In this Figure,
as in Figure 4.4, it is possible to remark also different scales within each group
of fast or slow metabolites.
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Parameter Value Units
ε 0.001 –
k 0.01 g(L.min)−1

µ 0.01 min−1

ω 0.004 –
k21
γ , k21 1.10 min−1

k54
γ , k54 0.13 min−1

k32
γ , k32 1.90 min−1

k23
γ , k23 0.12 min−1

k43
γ , k43 1.80 min−1

k65
γ , k65 0.17 min−1

k57
γ , k57 1.40 min−1

k86
γ , k86 1.60 min−1

k78
γ , k78 0.15 min−1

k98
γ , k98 1.50 min−1

e0
ji 0.10 g.L−1

x0
i 0.001 g.L−1

Table 4.3. Parameters considered for the simulations in Figure 4.4. The sym-
bol γ ∈ {−1, 1} denotes a rate in a enzymatic reaction (see the Michaelis-Menten
Equation (1.2)). The initial conditions for all the enzymes are the same, as well
as the initial conditions of all the metabolites are identical, i.e. j, i ∈ {1, . . . , n}
in this table.

Slow rates Value
e0

21k21 1.1× 10−1

e0
54k54 1.3× 10−2

Fast rates Value
e0

32k32/ε 1.3× 102

e0
23k23/ε 1.2× 101

e0
43k43/ε 1.8× 102

e0
65k65/ε 1.7× 101

e0
57k57/ε 1.4× 102

e0
86k86/ε 1.6× 102

e0
78k78/ε 1.5× 101

e0
98k98/ε 1.5× 102

Table 4.4. Slow and fast reaction rates considered for the toy network in Fig-
ure 4.3 and the simulations in Figure 4.4. Fast reaction rates are characterized
by the factor 1/ε. All reactions rates are in units of g(L.min)−1. Within each
group of reaction rates (slow or fast) there are also different scales.
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4.8. Discussion and Conclusions

4.8.1. Time-Scales Hypotheses. Metabolic networks can involve much
more than two different time scales. Actually, our method considers the di-
vision of these in two groups of reaction rates: the kinetics slower than a
certain threshold and the kinetics faster than the same threshold. Our ap-
proach eventually preserve the dynamics of the slower kinetics (keeping the
different time scales). Moreover, the fastest dynamics can be approximated
using the reduced system of slow dynamics.

Also, to better illustrate this important aspect, we have considered several
reaction rate orders in the toy network. The reaction rates are divided into
slow and fast, and each group of reactions has different scales (see Table 4.4).
The simulation results illustrate the Magnitude of Concentration Theorem
4.1 (see Figure 4.4). Moreover, the reduced system accurately represents all
different time scales (see Figure 4.4 and Figure 4.5).

Finally, note that it would be possible to set up a finer approximation con-
sidering several time-scales for Tikhonov’s Theorem, but at the risk of higher
mathematical complexity. Indeed, extended versions of Tikhonov’s Theorem
exist for several time-scales, using powers of ε [39, 35, 73] or even different
epsilons [30]. But computations with this method highly complicates the
reduction.

4.8.2. Comparison with Experimental Data. To the best of our
knowledge, there are to date no example of metabolome measured at high
frequency, at least for a large number of metabolites to assess the kinetics.
In general, only a very limited number macromolecules (typically proteins,
carbohydrates, lipids, chlorophyll,...) are recorded, specially for microal-
gae. However, to show that our findings are in agreement with experimental
studies we considered the results of Baroukh et al. [4] for an autotrophic
microalgae metabolic network.

The authors in [4] fitted parameters of a metabolic model to the set of
available experimental data. We examined the reaction rates which ranged
from 102 to 10−1 (h−1.mM.B−1) and compared them with the level of concen-
trations in the cell. Indeed, the concentration of carbohydrates has magni-
tude 102 (mM) times higher than those of the intermediate metabolites GAP,
PEP and G6P (see Table 4.5 and Table 4.6). Moreover, GAP, PEP and G6P
are consumed by reactions with rate order 101 or 102 (h−1.mM.B−1), while
carbohydrates are consumed at rate of order 100 (h−1.mM.B−1). Addition-
ally, carbohydrates are produced by a single reaction with rate of order 101

(h−1.mM.B−1), as well as GAP, and G6P and PEP by reactions of order 102

(h−1.mM.B−1). This evidences that the concentration is related to the rate
of consumption, in the way predicted by the Magnitude of Concentration
Theorem 4.1 in our work.
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Nevertheless, we emphasize that, the reduction method proposed in this
work can be used even if only some metabolites with large concentration
have been measured. Indeed, such data will support the calibration of the
reduced model, i.e. describing the dynamics of the slow metabolites (see
Section 4.6.1).

Compound Value Mean
value

Carbohydrates M 8.436× 10−1mM
G6P E 5.208× 10−3mM
PEP E 4.167× 10−3mM
GAP E 1.389× 10−3mM

Table 4.5. Experimental measures (M) and estimated (E) values obtained
from Baroukh et al. [4], for an autotrophic microalga metabolic network. Car-
bon quotas of the different compounds are considered within a period of 24
hours. Light intensity values are on a interval from 0 to 1400 uE.m−2.s−1.
Two different magnitudes of concentration can be distinguished among these
compounds.

Compound Production rate Consumption rate

Carbohydrates 7.00× 101 6.50× 100

G6P 2.24× 102 1.03× 101

6.50× 100 7.00× 101

PEP 4.37× 102 5.00× 100

9.97× 100 1.04× 102

GAP 2.06× 101 4.47× 102

5.00× 100 4.37× 102

6.00× 10−1 1.88× 101

Table 4.6. Rates are in h−1.mM.B−1. Typical concentrations in Table 4.5
were used to estimate the consumption rates for GAP and PEP in the lipid
synthesis reaction.

4.8.3. Extensions of Results. In order to obtain reduced metabolic
systems by a rigorous procedure, many extensions of the results can be ob-
tained (see Appendix B.4). Particularly, considering more reactions between
the metabolites with slow dynamics is possible (as long as these reactions are
slow), without changing the equations of the fast part. Hence, modifications
in the reactions between slow metabolites do not alter the equations of the
metabolites in QSS, and the slow dynamics remain in the reduced system.
Moreover, results analogous to the Magnitude of Concentration Theorem
4.1 still hold if the equations of the fast part are not changed (see Appen-
dix B.4.2.2).
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Furthermore, effects such as inhibition can be considered in the slow
part of the system. For example, using the model of Haldane or feedback
inhibition in enzyme-catalyzed subnetworks.

In addition, models with more subnetworks of fast reactions, connected
by metabolites with slow dynamics, can be reduced and analyzed using the
present approach.

4.8.4. Conclusions. Quasi Steady State Assumption without verifying
mathematical conditions can lead to erroneous reduced systems [11, 22].
The aim of our work was to define the mathematical foundations of Quasi
Steady State Reduction for metabolic networks.

We proposed a reduction for a general class of dynamical metabolic sys-
tems using time scale separation and Tikhonov’s Theorem. The considered
models, include Michaelis-Menten reaction rates and the possibility for slow
compounds to have different kinetics. The reduction leads to a simpler model
given by a small system of differential equations: regardless the initial dimen-
sion of the network, we end up with a low dimensional dynamical system,
representing the dynamics of the slow variables. The dilution due to growth
plays an important role and must not be neglected. It is worth noting that
keeping the growth rate in the equations strongly improves approximation
precision and preserves qualitative (stability) features of the original system.

We show that a metabolite in QSS, that is not in a flux trap, has a
concentration one order of magnitude lower than a metabolite in the slow
part of the system. This is indirectly a way to validate the hypotheses on
the magnitude of the reaction kinetics.

Eventually, the calibration algorithm is very simple. It is remarkable
that the reduced model can predict all the fast compounds which have been
measured, regardless of the other compounds whose concentrations cannot
be recorded.

This approach covers a large class of metabolic enzymatic networks (see
Appendix B.4). But more work remains to be done to treat further meta-
bolic systems. For example, networks with fast reactions that have nonlinear
kinetics (different from Michaelis-Menten kinetics as presented here) can be
studied in detail. Moreover, to obtain models that rigorously describe several
hierarchies in metabolic networks, systems with more than two time-scales
can be analyzed on the basis of the present work.



CHAPTER 5

Nonlinear Dynamical Reduction for Microalgae

Autotroph organisms require only CO2 to supply their carbon needs,
contrary to heterotroph organisms, whose carbon comes from an organic
compound [2]. Microalgae are autotrophic microorganisms that can fix CO2

and transform it in biomass [71].
The ability of some microalgae or cyanobacteria to a accumulate large

amount of lipids or carbohydrates, has motivated researches to domesticate
this potential [78]. In particular, it became key to better understand the me-
tabolism of autotrophic microalgae. Different studies have then set up meta-
bolic networks for photoautotrophic microalgae [5, 38, 79], from simplified
considerations of the core network up to genome-scale metabolic networks
considering several compartments (e.g. chloroplast, cytosol, mitochondrion,
nucleus, etc.).

Models based on these metabolic networks supported qualitative analyses
of the microalgae metabolism, in particular, the autotrophic metabolism.
However, quantitative studies of these models are complex, because many
intracellular measurements are needed [38]. Therefore, there is a necessity
for simplifying the models so that they can be calibrated with experimental
data, while keeping the core dynamics. To tackle this problem, Kliphuis et
al. [38] consider a metabolic network less compartmentalized and Baroukh
et al. [4] propose the reduction of a compartmentalized system using the
QSSA.

The approach developed in this thesis consists in reducing metabolic net-
works based on the QSSA. For this reduction method, the principal charac-
teristic that defines the status of a metabolite (QSS or dynamic) is its con-
centration. In this framework, the Order of Magnitude Theorem presented in
Chapter 3 and Chapter 4 (see Magnitude of Concentration Theorem 3.1 and
Theorem 4.1), shows that the metabolites with the highest concentrations
have the slowest dynamics in the metabolic system, while the metabolites
with low concentration are consumed at fast rates.

Under this assumption, we first consider that macromolecules are metabo-
lites with high concentration and, consequently, that they are involved in the
slow part of the metabolic system. Also, metabolites whose concentrations

101
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Figure 5.1. Metabolism of autotrophic microalgae.

depend on an external – possibly controlled – input (e.g. light, CO2, nitrates,
glucose, etc.) are also considered as slow variables of the system.

This classification might not be sufficient to describe important features in
microalgae metabolism, as the lipids accumulation under nitrogen starvation
[40]. The reason is that only considering inputs and macromolecules, we
obtain that the equations of macromolecules are linear combinations of the
input functions (see Property 3.4).

To consider more metabolites (variables) in our model and eventually
more accurately represent complex dynamical phenomena, we consider metabo-
lites that are between the macromolecules and the metabolites with the lowest
concentration, in a scale of magnitudes of concentration. In Chapter 4, we
have shown reduced systems can accurately represent dynamics with more
than two time-scales using Tikhonov’s Theorem (see Proposition 4.3). An
example of this is presented with a toy network (see Figure 4.4 and Fig-
ure 4.5).

Unfortunately, almost nothing is known about the concentration of in-
tracellular metabolites and the classification of their concentration range is
tricky. However, metabolites at the crossroad of different metabolic pathways
might have a highly dynamic concentration which tends to be accumulative
(i.e. to reach high concentrations at some time periods). In some cases, these
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metabolites are present in different compartments [70]. Thus, we can assume
they link different subnetworks and that they have important dynamics [4].

5.1. Metabolic Network of Autotrophic Microalgae

Here we consider a simplified metabolic reaction network for autotrophic
microalgae, which is detailed in Table C.2. This simplified network has 108
reactions and 80 metabolites (see Appendix C). It is based on the network
proposed by Yang et al. [79]. In addition, the pathway for triacylglycerols
synthesis has been detailed on the basis of the work of Liu et al. [46].

We suppose that the enzymatic fast reactions in this network can be
represented by Michaelis-Menten kinetics. Then, for applying our reduction
method, we have to consider for fast enzymatic reactions one substrate and
one product. In some cases, we split fast reactions into several one substrate–
one product enzymatic reactions (e.g. for keeping a cycle). In other cases,
for a fast reaction with several metabolites, substrates and products being
in a previous reaction are not taken into account. Also, metabolites that are
assumed to be in abundance are not considered in some kinetics (e.g. H2O).

Nevertheless, slow reactions can have any type of kinetics. For instance, in
this model we have considered slow enzymatic reactions with two substrates
(see Appendix B.4.2.3).

In a second stage, a reduced model is calibrated with the data of Lacour
et al. [40] from experiments with autotrophic microalgae Tisochrysis lutea
(Isochrysis sp.).

5.1.1. Neutral Lipids accumulation. Neutral lipids are mostly tria-
cylglycerols [40], accumulated in lipid droplets [TAG-LD] [46]. We suppose
two possible ways for the formation of triacylgycerol lipid droplets. The
first one is the route in the chloroplast. There are evidences that lipid bod-
ies are formed in the chloroplast in Isochrysis sp. and Isochrysis galbana
[16, 45, 47]. A second route, over the endoplasmic reticulum (ER) mem-
branes in the cytosol of microalgae, has been proposed in different works
[46, 74].

5.1.2. Slow dynamics metabolites. In line with our approach, macro-
molecules belong to the group of slow metabolites. We consider chlorophyll
[CHLO], proteins [PROT], DNA, RNA, Carbohydrates [CAR], starch [STA]
and triacylglycerols in lipid droplets [TAGld] as terminal products.

Also, the metabolites derived from an external fluctuating or controlled
input are also consider to be in the slow part of the system. In the work
of Lacour et al. [40], the cultures of microalgae were submitted to nitrogen
starvation periods and the pH was controlled by injections of CO2. We
assume that nitrate [NO3] is the predominant form of nitrogen in the culture
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[79]. Thus, we consider the absorbed photon light flux (APF), the nitrate
supply (N) and carbon dioxide (CO2) as elements in the slow part of the
system.

We select the compounds whose dynamics are driven by different com-
partmental mechanisms and/or that are precursors in macromolecules for-
mation. The information about the location of reactions within different
organelles was taken from [79] and [46].

In the chloroplast, NADP is an electron carrier molecule [1] (energy
metabolite [4]) that reacts during the light step of photosynthesis to produce
ATP. Also, NADP is produced during the nitrate assimilation, when nitrite
is reduced to ammonia by the action of a chloroplast-located NADPH-linked
nitrite reductase [38, 58, 79]. Moreover, in the cytoplasm NADP reacts with
G6P (a precursor in the synthesis of carbohydrates) to produce Ru5P. G6P
connects two metabolic pathways with different metabolic functions: stock-
ing carbon (synthesis of carbohydrates) and reducing power when it reacts
with NADP within the pentose phosphate pathway [4]. For these reasons,
in line with [4], NADP, NADP-cyt (NADP in the cytoplasm) and G6P are
considered to be part of the slow part of the system.

Glycolysis and the tricarboxylic acid cycle (TCA cycle) provide the pre-
cursors to synthesize many important biological molecules (glutamine, amino
acids, nucleotides, lipids, sugars, etc.). The mitochondrion is the place in the
cell where most of the oxidation reactions occur and where most of its ATP
is generated. In the mitochondrion, AcCoA is produced from PYR, which
is a product of the glycolysis in the cytoplasm [1]. But the consumption of
AcCoA for TAG synthesis occurs in the chloroplast. Besides, at its source in
the mitochondrion, AcCoA reacts with OAA to produce ISOCIT during the
TCA. The process occurs as follows. AcCoA and OAA are the substrates
of a reaction which is catalyzed by the enzyme citrate synthase to produce
citrate (Cit):

AcCoA+OAA

citrate
synthase

� S-citryl-CoA
intermediate

H2O
↓−→ Cit +CoA+H+.

This reaction is strongly forward, due to the subsequent loss by hydrolysis
of CoA [1]. Then, the enzyme aconitase catalyze the reaction to produce
ISOCIT from Cit:

Cit

acotinase
H2O
↑

�
↑

H2O

cis-aconitate
intermediate

H2O
↓

�
↓

H2O

ISOCIT.
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OAA is consumed and produced during the TCA cycle and it is also
derived from a metabolite acting during the glycolysis: PEP. This is a sig-
nificant flux through PEP that plays an important role to maintain the op-
eration of TCA cycle [79]. Also, OAA has a potential flux from the nitrate
input, via the TCA. AcCoa and OAA are both considered as part of the slow
dynamics system.

Finally, glutamine (GLU) is identified as a precursor of CHLO formation.
It is also precursor of many amino acids, which synthesize proteins in the
cytoplasm, DNA and RNA in the nucleus. Moreover, it is also derived from
an element of the TCA cycle (AKG) and it has a flux from the nitrate input.
For these reasons, GLU is also considered in the slow part of the system.

NADH

FADH2

ATP

FAD

Figure 5.2. Carbohydrates, Lipid Droplets of triacylglycerol (neutral lipids)
and Chlorophyll formation in autotrophic microalgae. Slow reactions are de-
picted by black arrows, while fast reactions by blue arrows. Abbreviations: chl,
chloroplast; cyt, cytoplasm; ER, endoplasmic reticulum; LD, lipid droplets.
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Remark 5.1. We suppose that all reactions that consume the metabolites
in the slow part are slow and that the rest are fast. This agrees with our
approach, where metabolites in the slow part are only consumed by slow
reactions, while metabolites in the fast part are consumed by at least one
fast reaction.

5.2. Fluxes towards Macromolecules Synthesis

To reduce the considered metabolic network, we have to examine all fluxes
between the slow metabolites. In Appendix B.4, it is explained how these
fluxes determine the form of the reduced system of equations, for an enzy-
matic metabolic network which also accounts for any type of slow kinetics.

The objective is to find fluxes in the sense of Definition B.2 (for the
nonlinear enzymatic reactions case). We computed Elementary Flux Modes
(EFM) to verify the fluxes between the slow metabolites. EFM are obtained
using Copasi (copasi.org). The number of obtained modes is 59.

For simplicity, we only consider the reactions for Carbohydrates, Neutral
Lipids and Chlorophyll formation, since the available data of Lacour et al.
[40] only recorded these macromolecules. Thus, we take into account the 27
EFM constituted by these reactions (see Table C.3).

+

-cyt

Figure 5.3. Reduced network of fluxes between slow metabolites: inputs, pre-
cursors in macromolecules formation and macromolecules (Carbohydrates, Neu-
tral Lipids and Chlorophyll).

copasi.org
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5.3. Reduced Dynamical Model of Autotrophic Microalgae

In this section we present a reduced ODE system of the metabolic network
depicted in Figure 5.2, which accounts for Carbohydrates, Neutral Lipids and
Chlorophyll formation in autotrophic microalgae.

For applying our method, a vector in the left kernel of the stoichiometric
submatrix of fast reactions between metabolites in QSS (see Section 2.5 and
Remark B.1) was found using the kernel tool in Scilab (http://www.scilab.
org). The result is described in Appendix C.3.

We consider as inputs the light intensity [APF (t)], the nitrate supply
[N(t)] and the constant injection of CO2 [a7]. The slow variables are

X1=NO3,
X2=CO2,
X3=NADP,
X4=G6P,
X5=AcCoA,
X6=OAA,
X7=GLU,
X8=CAR,
X9=TAG-LD,
X10=CHLO,
X11=NADP-cyt.

Note 5.1. The objective of this model is to approximate the available
data from Lacour et al. [40] (Carbohydrates [CAR], Neutral Lipids [TAG-
LD-] and Chlorophyll [CHLO]). Thus, for simplicity, we do not consider the
starch [STA], DNA, RNA and proteins [PROT] variables in this system of
equations.

5.3.1. Computing the Reduced System. Our method leads to a re-
duced system of dynamical equations taking into account the fluxes between
the slow variables and inputs. For more details see Appendix B.4. Here we
apply it to the autotrophic metabolism of microalgae.

The fast variables in QSS are linear combinations of slow kinetics and
inputs (see Equation (B.13) in Appendix B.4.2). Then, the expressions of
fast variables in QSS have to be substituted in the equations of the slow part.
To be more precise, the equation of a slow metabolite Xi has a slow kinetic
ν(X) if

• Xi is a product of the slow reaction with kinetic ν(X) or

http://www.scilab.org
http://www.scilab.org
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• there exists Xj a fast metabolite, such that Xj is a product of the
slow reaction with kinetic ν(X) and there is a flux of fast reactions
from Xj to Xi.

Analogously for the inputs, but instead of a slow kinetic there is an input
function I(t) (see Equation (B.12) and Note B.4).

For example, consider the equation forX4=G6P in the original (complete)
system:

dX4

dt
=
e0

4,F6Pk4,F6PX[F6P ]

X[F6P ] +K4,F6P
−
e0
F6P,4kF6P,4X4

X4 +KF6P,4
− e0

84k84X4

X4 +K84

−
(α)e0

Ru5PkRu5PX4X11

X4X11 +KRu5P
− µ ·X4,

where α is a variable of mass conservation (see Appendix B.4.2.3). F6P is
considered as a metabolite consumed by fast reactions, then, after the change
of variable (Y [F6P ] = X[F6P ]/ε) and writing ε = 0, we obtain

dX4

dt
=
e0

4,F6Pk4,F6P

K4,F6P
Y [F6P ]−

e0
F6P,4kF6P,4X4

X4 +KF6P,4
− e0

84k84X4

X4 +K84

−
(α)e0

Ru5PkRu5PX4X11

X4X11 +KRu5P
− µ ·X4.

But the expression of Y [F6P ] in QSS is a linear combination of the slow
kinetics followed by a flux of fast reactions towards [F6P]:

Y [F6P ] = (2.6)b1 · kATP,3 ·APF (t) ·X3 + (2)b2 ·
e0
G3P,2kG3P,2X2

X2 +KG3P,2
.

Notice that (2.6) is the stoichiometric factor of ATP produced after the
light reaction in photosynthesis (R1), and (2) is the stoichiometric factor
of G3Pchl in the CO2 fixation reaction (R2) (see Table C.2). We recall that
parameters b1 and b2 are cofactors of the fast system Jacobian matrix, which
involves several constant reaction rates and Michaelis-Menten constants (see
the reduced model for the toy network in Section 4.7 as illustration, and
Appendix B.4.2 for rigorous details in a general case). Then, substituting in
the equation for X4, we have

dX4

dt
=
e0

4,F6Pk4,F6P

K4,F6P

[
(2.6)b1 · kATP,3 ·APF (t) ·X3 + (2)b2 ·

e0
G3P,2kG3P,2X2

X2 +KG3P,2

]
−
e0
F6P,4kF6P,4X4

X4 +KF6P,4
− e0

84k84X4

X4 +K84
−

(α)e0
Ru5PkRu5PX4X11

X4X11 +KRu5P
− µ ·X4.



5.3. REDUCED DYNAMICAL MODEL OF AUTOTROPHIC MICROALGAE 109

As a result of the model reduction stage, some parameters are lumped into
aggregated parameters. For example, we define

a12 :=
e0

4,F6Pk4,F6P

K4,F6P

· b1 · kATP,3.

Then, the term

(2.6)
e0

4,F6Pk4,F6P

K4,F6P

· b1 · kATP,3 · APF (t) ·X3

can be more clearly rewritten as

(2.6)a12 · APF (t) ·X3

and we only estimate a parameter a12 for this kinetic. The aggregated set of
parameters defined to simplify the notation are given in Appendix C.5.
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5.3.2. Reduced System of ODE. Using the fluxes between slow vari-
ables established in Section 5.2, we deduce the following reduced system
(5.1):

dX1

dt
=a1 ·N(t)− a2X1

X1 + a3
− a4X1

X1 + a5
− µX1 (5.1)

dX2

dt
=a6(a7 −X2)− a8X2

X2 + a9
− µX2

dX3

dt
=(2)a40 ·APF (t) ·X3 +

a2X1

X1 + a3
+

(2)a46X2

X2 + a9
− a41X3

X3 + a42
− µX3

dX4

dt
=(2.6)a12 ·APF (t) ·X3 +

(2)a13X2

X2 + a9
− a14X4

X4 + a15
− a37X11X4

X11X4 + a11

− a16X4

X4 + a17
− µX4

dX5

dt
=(2.6)a18 ·APF (t) ·X3 +

(2)a19X2

X2 + a9
+

a38X11X4

X11X4 + a11
− a20X5

X5 + a21

− a22X5X6

X5X6 + a23
− µX5

dX6

dt
=(2.6)a24 ·APF (t) ·X3 +

a25X1

X1 + a5
+

(2)a26X2

X2 + a9
+

a39X11X4

X11X4 + a11

+
a43X7

X7 + a44
− a27X5X6

X5X6 + a23
− a36X6

X6 + a28
− µX6

dX7

dt
=

a29X1

X1 + a5
+

a30X5X6

X5X6 + a23
− a45X7

X7 + a44
− (8)a31X7

X7 + a32

− a33X7

X7 + a34
− µX7

dX8

dt
=

a14X4

X4 + a15
− µX8

dX9

dt
=

a35X5

X5 + a21
− µX9

dX10

dt
=

a31X7

X7 + a32
− µX10

dX11

dt
=

a41X3

X3 + a42
− a10X11X4

X11X4 + a11
− µX11.

The complete metabolic network for autotrophic microalgae accounts for
80 metabolites (see Appendix C.1). Thus, the dimension (80 equations)
of the original ODE system is considerably reduced to the 11 equations of
model (5.1), for describing Carbohydrates, Neutral Lipids and Chlorophyll
formation in microalgae.
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5.4. Calibrated System for T. lutea metabolism

Once the reduced system has been obtained, the next step is to estimate
its parameters using some experimental data. We calibrated the reduced
system (5.1) with the data of Lacour et al. [40], from experiments with the
microalgae Tisochrysis lutea under nitrogen starvation.

The set of parameters, described in Table 5.1, was obtained using the
calibration method described in Section 4.6. For this, the fminsearch min-
imization function based on the Nelder-Mead algorithm was used in Scilab
[6]. The cost function considered was

F0(a, µ) =
∑

i=8,9,10

∑
j∈Ti

[Xi(tj, a, µ)− Zi(tj)]2, (5.2)

where variables Zi represent the experimental data.
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Figure 5.4. Carbohydrates, Neutral Lipids and Chlorophyll concentration.
Experimental data of Lacour et al. [40] is represented: Carbohydrates by black
circles, Neutral Lipids by red triangles and Chlorophyll by green points. The
curves depict the numerical solution of system (5.1), with the set of parameters
in Table 5.1.
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Table 5.1. Parameters estimated for system (5.1) (see Figure 5.4). The pa-
rameters were obtained minimizing the cost function (5.2) with the fminsearch
tool in Scilab [6].

Parameter Value Units Parameter Value Units

µ̂ 2.60× 100 gC.(gC.d)−1 â1 1.46× 10−1 gC.(gC.d)−1gN−1.m3

â2 6.33× 100 gC.(gC.d)−1 â3 8.31× 10−1 gC.gC−1

â4 1.54× 10−4 gC.(gC.d)−1 â5 7.47× 10−1 gC.gC−1

â6 1.03× 100 d−1 â7 7.60× 10−1 gC.gC−1

â8 7.34× 100 gC.(gC.d)−1 â9 7.44× 10−1 gC.gC−1

â10 7.45× 102 gC2.gC−2.d−1 â11 1.33× 100 gC2.gC−2

â12 2.22× 10−2 (d.µmol)−1.m2.s â13 1.14× 101 gC.(gC.d)−1

â14 1.00× 101 gC.(gC.d)−1 â15 1.39× 100 gC.gC−1

â16 5.14× 10−1 gC.(gC.d)−1 â17 2.40× 100 gC.gC−1

â18 5.34× 10−2 (d.µmol)−1.m2.s â19 1.66× 101 gC.(gC.d)−1

â20 2.53× 102 gC.(gC.d)−1 â21 8.46× 10−1 gC.gC−1

â22 1.78× 104 gC2.gC−2.d−1 â23 6.53× 10−1 gC2.gC−2

â24 2.52× 10−3 (d.µmol)−1.m2.s â25 1.13× 101 gC.(gC.d)−1

â26 2.07× 100 gC.(gC.d)−1 â27 3.80× 103 gC2.gC−2.d−1

â28 1.66× 100 gC.gC−1 â29 2.19× 100 gC.(gC.d)−1

â30 6.11× 103 gC2.gC−2.d−1 â31 4.43× 10−3 gC.(gC.d)−1

â32 2.85× 10−2 gC.gC−1 â33 6.65× 100 gC.(gC.d)−1

â34 2.73× 10−1 gC.gC−1 â35 9.45× 101 gC.(gC.d)−1

â36 1.91× 10−1 gC.(gC.d)−1 â37 4.47× 103 gC2.gC−2.d−1

â38 7.60× 10−4 gC2.gC−2.d−1 â39 3.85× 101 gC2.gC−2.d−1

â40 3.74× 10−4 (d.µmol)−1.m2.s â41 9.56× 100 gC.(gC.d)−1

â42 1.41× 100 gC.gC−1 â43 4.44× 10−1 gC.(gC.d)−1

â44 7.68× 10−1 gC.gC−1 â45 8.03× 10−1 gC.(gC.d)−1

â46 1.80× 10−1 gC.(gC.d)−1

5.5. Conclusions

In this chapter, a metabolic network for the autotrophic metabolism of
microalgae has been reduced. The metabolic network is based on the reaction
network presented by Yang et at. [79]. This simplified network has 108
reactions and 80 metabolites (see Appendix C.1 and Appendix C.2), meaning
that the complete ODE system has 80 equations.

A reduced system of 11 variables [Equation (5.1)] and 23 kinetics was
obtained (see Figure 5.3). It accounts for several inputs (light, nitrate, CO2

supplies), the dynamics of the metabolites with slow dynamics (metabolites
controlled by an input, precursors in the formation of macromolecules and
macromolecules) and a factor of growth dilution.

The reduced model was calibrated using the available experimental data:
light intensity and incoming nitrates (see Figure 5.5), concentration of Car-
bohydrates, Neutral Lipids and Chlorophyll (see Figure 5.4), obtained from
Lacour et al. [40]. The calibrated model accurately describes the data of
these macromolecules under nitrogen starvation (see Figure 5.4).



CHAPTER 6

Optimization of Production

This is an exploratory chapter to propose optimization strategies for the
reduced system (5.1), which was obtained in the previous Chapter 5. For
this purpose, we consider control parameters within kinetics and inputs of a
metabolic network.

For instance, consider the ODE system describing a metabolic network

dX

dt
= f(X, u, α, µ) X(0) = X0,

where f accounts for an input function u, the kinetics of the network, the
growth rate µ, and a vector of parameters α that can be controlled (e.g. con-
stants of enzyme concentrations or inputs). Thus, we look for the optimal
values for α such that an objective criterium is optimized, e.g. maximize the
concentration of a metabolite Xi.

The idea is that optimal values are at the boundary of a closed set of in-
terest. We first explain this for linear systems that have equilibrium points.
Then, control parameters are considered in the metabolic network of microal-
gae described in Chapter 5. Using the reduced system, we show that similar
results can be obtained.

6.1. Optimization at equilibrium points

Suppose the system

dX

dt
= u+ A(α) ·X − µX X(0) = X0, (6.1)

with u is a constant input, µ a positive real number and

A(α) =


−α11 · a11 α12 · a12 . . . α1n · a1n

α21 · a21 −α22 · a22 . . . α2n · a2n
...

...
. . .

...
αn1 · an1 αn2 · an2 . . . −αnn · ann

 ,

where parameters aij account for constants of reaction rates and stoichio-
metric factors, and parameters αij ∈ [0, 1] can be manipulated. We consider

113
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that some of these parameters can be the same, for example, it can occurs
that αij = αi′j′ for i 6= i′ and j 6= j′.

Assuming that [A(α) − µ · Id] is an invertible matrix, the equilibrium
point of system (6.1) satisfies

X∗ = [A(α)− µ · Id]−1 · (−u),

where Id is the identity matrix.

6.1.1. Homographic Function Approach. Suppose that the concen-
tration of a variable Xi has to be optimized with respect to a parameter αi′,j′ .
Let us assume that X∗i is an homographic function with respect to αi′j′ :

X∗i =
αi′j′B11 + B12

αi′j′B21 + B22

.

Since homographic functions are monotone (see Appendix D), the optimal
value for αi′j′ ∈ [0, 1] is 0 or 1.

6.1.2. Linear Programming Approach. Consider system (6.1). Sup-
pose again that the concentration of a variable Xi has to be optimized with
respect to a parameter αi′j′ ∈ [0, 1].

The optimization problem is nonlinear, because in the equation the factor

αi′j′ ·Xj′

has two terms, αi′j′ and Xj′ , that have to be optimized simultaneously. How-
ever, we reformulate the problem to solve it through linear programming. For
this we define

ν := αi′j′ ·Xj′ ,

and we compute the numerical solution of the following LP problem:

max cT ·
(
X
ν

)
, such that (6.2)

A′(α) ·
(
X
ν

)
= −u

X ≥ 0,

ν ≥ 0,

Xj′ − ν ≥ 0,

where A′ is a matrix such that

[A(α)− µ · I] ·X = A′(α) ·
(
X
ν

)
.
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If (
X∗

ν∗

)
is the numerical solution of the linear programming problem (6.2) and X∗j′ 6=
0, we can obtain the optimal value for αi′j′ computing

α∗i′j′ =
ν∗

X∗j′
.

In order to lower the complexity of optimization problems, we can ap-
ply these optimization techniques to reduced ODE systems, obtained after
applying the method developed in this thesis. The following example (Sec-
tion 6.2) illustrates a simple case where the input is constant and the system
reaches an equilibrium.

Note 6.1. The homographic function and the linear programming ap-
proaches can be implemented to optimize more than one control parameter,
as illustrated in the example below (Section 6.2).

6.2. Optimization Strategy wit a Toy Network

In Figure 6.1 we present a toy network to solve an optimization problem.
For this toy network, we suppose that two reactions can be controlled with
two positive parameters α and β in the interval [0, 1]. The objective is to
find the optimal values for α and β to increase the concentration of a final
product (X5).

Figure 6.1. α and β are control parameters to optimize the production of X5.
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Let us consider I as a constant input. Then, the system

dX1

dt
=I − (k21 + µ)X1 (6.3)

dX2

dt
=k21X1 − (k32 + k42 + µ)X2

dX3

dt
=k32X2 + βk34X4 − (α · k43 + k53 + µ)X3

dX4

dt
=k42X2 + α · k43X3 − (β · k34 + k54 + µ)X4

dX5

dt
=k53X3 + k54X4 − µX5,

has an equilibrium point X∗ = (X∗1 , X
∗
2 , X

∗
3 , X

∗
4 , X

∗
5 ) (see Figure 6.2).
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Figure 6.2. Numerical solution of system (6.3) with the parameters described
in Table 6.1, α = 1 and β = 0.

6.2.1. Homographic function. Computations show that X∗5 is an ho-
mographic function with respect to α and β:

X∗5 (α, β) =
[ k21 · I
µ(k21 + µ)(k32 + k42 + µ)

]
· α · a + β · b + c

α · d + β · e + f
,
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with

a =k32k43k54 + k42k43k54

b =k32k34k53 + k42k34k53

c =k53k32(k54 + µ) + k54k42(k53 + µ)

d =k43(k54 + µ)

e =k34(k53 + µ)

f =(k53 + µ)(k54 + µ).

Defining a matrix associated to the homographic function, as described

in Proposition D.1, we can deduce whether
∂X∗5
∂α

is positive or negative, as

well as for
∂X∗5
∂β

. Indeed, if

H1 :=

(
a β · b + c
d β · e + f

)
H2 :=

(
b α · a + c
e α · d + f

)
.

∂X∗5
∂α
≥ 0 ⇐⇒ det H1 ≥ 0,

∂X∗5
∂β
≥ 0 ⇐⇒ det H2 ≥ 0.

Parameter Value Units
I 0.1 µmol(L.s)−1

µ 0.1 s−1

k21 0.2 s−1

k32 0.3 s−1

k42 0.4 s−1

k34 0.5 s−1

k43 0.6 s−1

k53 0.7 s−1

k54 0.8 s−1

Table 6.1. Supposed parameters for the toy network in Figure 6.1.
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Figure 6.3. Numerical solution of X5 in system (6.3) with the parameters
described in Table 6.1 and different values for α and β. The combination α =
1, β = 0 is the optimal to increase X5 concentration.

Table 6.2. Equilibrium point of system (6.3), with α = 1 and β = 0.

Variable Value
X∗1 0.3333333
X∗2 0.0833333
X∗3 0.0178571
X∗4 0.0489418
X∗5 0.5165344

Finally, recall that the objective is to increase the concentration of X5.
For the parameter values described in Table 6.1, we obtain that the opti-
mal values for α and β are 1 and 0, respectively (see Figure 6.3). This is
in agreement Proposition D.1, which states that optimal values for homo-
graphic functions are in the boundary of a domain of interest.

6.2.2. Linear Programming. The same optimization problem can be
established as a linear programming (LP) problem. This new LP problem is
based on the definition of variables ν1 := α · X3 and ν2 := β · X4, with the
restrictions 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Then, it can be written as

max cT · (X1, X2, X3, X4, X5, ν1, ν2)T , (6.4)

cT = (0, 0, 0, 0, 1, 0, 0) such that
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−(k21 + µ) 0 0 0 0 0 0

k21 −(k32 + k42 + µ) 0 0 0 0 0
0 k32 −(k53 + µ) 0 0 −k43 k34
0 k42 0 −(k54 + µ) 0 k43 −k34
0 0 k53 k54 −µ 0 0

 ·


X1

X2

X3

X4

X5

ν1
ν2


=


−I
0
0

0

0



Xi ≥ 0 ∀i = 1, . . . , 5,

ν1 ≥ 0 ν2 ≥ 0,

X3 − ν1 ≥ 0,

X4 − ν2 ≥ 0.

We use the tool karmarkar in Scilab to solve the LP problem. Once the
solution Xopt is obtained, α and β are deduced as α = ν1/X3opt and β =
ν2/X4opt. The result is

α′ =0.998

β′ =0.001

which is close to the optimal solution deduced using an homographic function,
which was obtained analytically. However, the analytical solution gives a
better result:

X∗5 (1, 0) > X5opt,

with a slight difference (compare Table 6.2 and Table 6.3).

Table 6.3. Numerical solution of the linear programming problem (6.4). The
optimal values obtained are α′ = 0.998, β′ = 0.001.

Variable Value
X1opt 0.3333333
X2opt 0.0833333
X3opt 0.0178806
X4opt 0.048921
X5opt 0.5165318
ν1 0.0178532
ν2 0.0000328

6.3. Extensions and Discussion

A linear programming approach can avoid excessive work to compute (by
hand) equilibrium points as homographic functions.
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On the other hand, the linear programming approach can be extended to a
type of metabolic networks with Michaelis-Menten kinetics, as the networks
described in Chapter 4. For this purpose, new kinetics variables for the
optimization problem can be defined as

υi :=
Xi

Xi +Ki

0 ≤ υi < 1.

In order to set a linear problem, we have to assume that all the enzymatic
reactions consuming Xi have the same Michaelis-Menten constant Ki. Also,
that the dilution term is bounded and that its half-saturation coefficient is
equal to Ki for Xi, i.e. the dilution term is

µXi

Xi +Ki

.

Similarly, for a kinetic variable comprising a control parameter αj, we
define

νj :=
αjXj

Xj +Kj

.

After obtaining a solution (υ∗i , ν
∗
i ) of the LP problem, the optimal values

for the variables Xi can be computed as

X∗i :=
Ki · υ∗i
υ∗i − 1

.

where υ∗i is the numerical solution of the LP problem. Moreover, for a kinetic
variable comprising a control parameter αj, we have

ν∗j =
αjX

∗
j

X∗j +Kj

,

where ν∗j is the numerical solution of the LP problem. If the optimal value
X∗j is positive, we can compute

α∗j :=
ν∗j (X∗j +Kj)

X∗j
.

Although it is not rigorously proved that the solution of the LP is the
optimal solution, this method can be useful to improve the production of
some metabolites of interest.
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6.4. Lipids Production Optimization

A dynamical reduced system based on time scale separation is useful to
solve optimization problems. The dimension of the problem is reduced to the
number of variables with slow dynamics, which also allows to employ time
discretization grids [76].

In this section we illustrate how reduced systems, obtained by the method
described in this work, can be used to derive optimization strategies. For this,
we suppose that some parameters in the constant reaction rates or inputs can
be controlled.

For example, suppose that the initial concentration of enzymes can be
regulated in a certain range. Then, in order to trace where enzyme param-
eters are in the reduced system, we analyze the coefficients bij (see Appen-
dix B.4.2.1, particularly Equation (B.12)).

We have already shown that bij is different from zero when there is a flux,
of fast reactions, from Xj to Xi (Proposition B.4). Moreover, this coefficient
is proportional to the enzymes catalyzing the fast reactions in the path. The
reduced system (4.28)-(4.29), of the toy network in Section 4.7, illustrates
this property. Indeed, the minor to obtain bi is computed with the matrix
entries that represent non-null reaction rates related to a flux (see the proof
of Proposition A.3).

Here, two strategies are proposed to increase neutral lipids (TAG lipid
droplets) production in microalgae per biomass unit. The first one is con-
cerned with intracellular reactions, and the second one with the control of
nitrate and CO2 inputs.

We consider the reduced system (5.1) obtained in Chapter 5. The objec-
tive is to increase the concentration of TAG lipid droplets (X9) manipulating
some control parameters related to constant rates or inputs.
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6.4.1. Strategy 1: PEP consumption. Consider the parameter α ∈
[0, 1] regulating the consumption of PEP to produce PYR or OAA (reactions
R23 and R25, respectively, in Table C.2). See Figure 6.4.
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Figure 6.4. Strategy 1. Consumption of PEP distributed for PYR and OAA
formation.
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Consider the reduced ODE system for the network in Figure 6.4:

dX1

dt
=a1 ·N(t)− a2X1

X1 + a3
− a4X1

X1 + a5
− µX1 (6.5)

dX2

dt
=a6(a7 −X2)− a8X2

X2 + a9
− µX2

dX3

dt
=(2)a40 ·APF (t) ·X3 +

a2X1

X1 + a3
+

(2)a46X2

X2 + a9
− a41X3

X3 + a42
− µX3

dX4

dt
=(2.6)a12 ·APF (t) ·X3 +

(2)a13X2

X2 + a9
− a14X4

X4 + a15
− a37X11X4

X11X4 + a11

− a16X4

X4 + a17
− µX4

dX5

dt
=α
[
(2.6)ã18 ·APF (t) ·X3 +

(2)ã19X2

X2 + a9
+

ã38X11X4

X11X4 + a11

]
− a20X5

X5 + a21

− a22X5X6

X5X6 + a23
− µX5

dX6

dt
=

a25X1

X1 + a5
+ (1− α)

[
(2.6)ã24 ·APF (t) ·X3 +

(2)ã26X2

X2 + a9
+

ã39X11X4

X11X4 + a11

]
+

a43X7

X7 + a44
− a27X5X6

X5X6 + a23
− a36X6

X6 + a28
− µX6

dX7

dt
=

a29X1

X1 + a5
+

a30X5X6

X5X6 + a23
− a45X7

X7 + a44
− (8)a31X7

X7 + a32
− a33X7

X7 + a34
− µX7

dX8

dt
=

a14X4

X4 + a15
− µX8

dX9

dt
=

a35X5

X5 + a21
− µX9

dX10

dt
=

a31X7

X7 + a32
− µX10

dX11

dt
=

a41X3

X3 + a42
− a10X11X4

X11X4 + a11
− µX11,

where we define ãi := ai/0.5 in order to obtain the original reduced system
(5.1) when α = 0.5.

The strategy is to increase X5 [AcCoA], which implies an increment in X9

[TAG-ld] concentration. We use two facts to find when X5 attains maximal
concentration. First, we consider that, in a domain of interest (open and
convex set), a local maximum (thus, the global maximum include) of X5 is
reached at time t∗ such that

α
[
(2.6)ã18 ·APF (t∗) ·X3(t∗) +

(2)ã19X2(t∗)

X2(t∗) + a9
+

ã38X11(t∗)X4(t∗)

X11(t∗)X4(t∗) + a11

]
− a20X5(t∗)

X5(t∗) + a21
− a22X5(t∗)X6(t∗)

X5(t∗)X6(t∗) + a23
− µX5(t∗) = 0
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(see Equation (6.5)). We assume ã18, ã19, ã38 are positive values. Second,
since a monotone function has its maximum and minimum values at the
boundary of the domain, the optimal value for α ∈ [0, 1] is 0 or 1.

According to Figure 6.5, the optimal values to increase X5 is α = 1.
This means that the production of PYR from PEP has to be prioritized, in
contrast to the production of OAA.
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Figure 6.5. Neutral Lipids concentration (X9) for different values of α in
system (6.5). The highest concentration is reached when α = 1. The parameters
considered are in Table 5.1.
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6.4.2. Strategy 2: nitrate and carbon dioxide inputs. For this
strategy we suppose that α is a control parameter for the nitrate input, and
β a control parameter for CO2 supply. See Figure 6.6.
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Figure 6.6. Control parameters (α, β) of CO2 and nitrate supplies to optimize
Neutral Lipids (TAG-LD) production.
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Consider the following reduced system for the network depicted in Fig-
ure 6.6:

dX1

dt
=α · ã1 ·N(t)− a2X1

X1 + a3
− a4X1

X1 + a5
− µX1 (6.6)

dX2

dt
=a6(β · ã7 −X2)− a8X2

X2 + a9
− µX2

dX3

dt
=(2)a40 ·APF (t) ·X3 +

a2X1

X1 + a3
+

(2)a46X2

X2 + a9
− a41X3

X3 + a42
− µX3

dX4

dt
=(2.6)a12 ·APF (t) ·X3 +

(2)a13X2

X2 + a9
− a14X4

X4 + a15
− a37X11X4

X11X4 + a11

− a16X4

X4 + a17
− µX4

dX5

dt
=(2.6)a18 ·APF (t) ·X3 +

(2)a19X2

X2 + a9
+

a38X11X4

X11X4 + a11
− a20X5

X5 + a21

− a22X5X6

X5X6 + a23
− µX5

dX6

dt
=(2.6)a24 ·APF (t) ·X3 +

a25X1

X1 + a5
+

(2)a26X2

X2 + a9
+

a39X11X4

X11X4 + a11

+
a43X7

X7 + a44
− a27X5X6

X5X6 + a23
− a36X6

X6 + a28
− µX6

dX7

dt
=

a29X1

X1 + a5
+

a30X5X6

X5X6 + a23
− a45X7

X7 + a44
− (8)a31X7

X7 + a32

− a33X7

X7 + a34
− µX7

dX8

dt
=

a14X4

X4 + a15
− µX8

dX9

dt
=

a35X5

X5 + a21
− µX9

dX10

dt
=

a31X7

X7 + a32
− µX10

dX11

dt
=

a41X3

X3 + a42
− a10X11X4

X11X4 + a11
− µX11.

In system (6.6), the values considered are in Table 5.1 and ãi := ai/2, to
obtain as reference the calibrated system (5.1).

We first consider light [APF(t)] and nitrates [N(t)] inputs as constants.
Then, the system reaches an equilibrium. To optimize the production of Neu-
tral Lipids (X9), we conjecture that its equilibrium is a monotone function
with respect to α and β. Then in an interval [0, 1], the optimal values for
these parameters are on the boundary, i.e. the optimal values are 0 or 1.
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This fact is illustrated in Figure 6.7, where the numerical solution of
system (6.6) is depicted for different values of α and β. The optimal solution
is α = 0 and β = 1, meaning that the nitrate input should to be canceled
and the CO2 supply augmented.
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Figure 6.7. Neutral Lipids concentration (X9) for different control parameters
α and β. Constant light, CO2 and nitrate inputs were considered for system
(6.6). Light input: APF=350.33691µmol.m−2.s−1; CO2 input: β · ã7 = β ·3.8×
10−1; nitrate input: α·N=α· 4.004 gN.m−3. The set of parameters considered
are in Table 5.1.

A similar result might be extended to the case where light [APF(t)] and
nitrate [N(t)] supplies are not constants. For example, if we consider as a
criterium function the sum of neutral lipids concentration at each hour and
the maximum of neutral lipids concentration,∑

th

X9(th) + max
t
X9(t), (6.7)
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we also obtain that the optimal solution is α = 0 and β = 1, as in the linear
case (see Figure 6.8 and Table 6.4).
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Figure 6.8. Neutral Lipids concentration (X9), from the numerical solution
of system (6.6) with no constant light and nitrate inputs. Different values of
α and β in a interval [0, 1] were considered. The inputs values are depicted in
Figure 5.5.
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Table 6.4. The criterium value (6.7) is defined as the sum of Neutral Lipids
concentration at each hour and the maximum in the complete time interval.
It was computed for different solutions of system (6.6), varying the parameter
α and β (see Figure 6.8). The optimal values according to this criterium are
α = 0 and β = 1.

Parameters Criterium Value (gC/gC)
α = 0, β = 1 59.07
α = 0, β = 0.6 38.40
α = 0, β = 0.3 22.02
α = 0, β = 0 2.15
α = 0.3, β = 1 51.38
α = 0.3, β = 0.6 32.72
α = 0.3, β = 0.3 18.73
α = 0.3, β = 0 4.17
α = 0.6, β = 1 47.90
α = 0.6, β = 0.6 30.71
α = 0.6, β = 0.3 17.99
α = 0.6, β = 0 4.798
α = 1, β = 1 45.65
α = 1, β = 0.6 29.59
α = 1, β = 0.3 17.73
α = 1, β = 0 5.40

In conclusion, similarly to the case of homographic functions, in the pre-
vious examples it is shown that the optimal values are reached at boundary
points. However, mathematical proofs to generalize these results remain to
be done. For example, to prove that the equilibrium point of a molecule of
interest can be written as a monotone function with respect to some control
parameters.





Conclusions

In this work, we developed a method to reduce the dimension of a dy-
namical metabolic system described by ODE. Contrary to nearly all existing
works, the idea is to keep core dynamics of the model, that are necessary
to represent the high accumulation and reuse of lipids and carbohydrates in
microalgae and cyanobacteria.

To reduce a metabolic system accurately, we present a method that re-
lies on time scale separation and the QSSA. The reduction of a system is
obtained using the Theorem of Tikhonov for singularly perturbed systems,
which allows to characterize the approximation error. Moreover, we provide
an algorithm for a simple calibration of the reduced model.

With this approach, we can fix a threshold that divides constant reaction
rates into fast and slow. In this way, we can also take into account several
time-scales within the slow or the fast part, allowing to obtain reduced models
that describe more complex metabolic systems.

One of the contributions of this work is a result concerning the magnitude
of metabolite concentrations, deduced after the Quasi Steady State Reduc-
tion. We proved a theorem that associates time-scales with the magnitude
of metabolite concentrations. Moreover, we introduce the concepts of trap
and flux trap for metabolic networks, which were not before referred to for
metabolic modeling.

This approach can be the preamble of further studies about nonlinear
metabolic networks, leading to the characterization of more general reaction
rates and metabolites magnitude of concentration. For instance, for the class
of networks considered in this work, we proved that the slow variables reach
the highest concentrations. However, elements in QSS with fast dynamics
could also attain similar concentrations, but, as it is proven here, this only
happens when these elements are in a flux trap.

To test and illustrate our approach, we applied it to several toy networks.
As well, it was implemented in a metabolic network of autotrophic microal-
gae, based on the reaction network proposed by Yang et al. [79]. The reduced
model was calibrated using experimental data from Lacour et al. [40]. The
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data describe the microalgae Tisochrysis lutea submitted to light/dark con-
ditions and nitrogen starvation. The calibrated model provides an accurate
approximation of the data.

Our mathematical approach offers a significant reduction in the dimension
of a dynamical metabolic system. The mathematical analysis of this reduced
system becomes then tractable and it is appropriate to model based control
strategies.

A next stage is the optimization of target molecules production. Using the
monotonicity of homographic functions and a technique for Linear Program-
ming, two approaches were proposed for optimization in linear metabolic
systems with equilibrium points. Similar results with monotone functions
might be deduced for nonlinear metabolic systems. But mathematical re-
sults remain to be obtained, particularly for the dynamical case.



APPENDIX A

Complements for Chapter 3

A.1. Supplements for the proof of Theorem 3.1

Here we present some results used for the proof of Magnitude of Concen-
tration Theorem 3.1, the Magnitude of Concentration Theorem for the linear
case. For the following demonstrations recall that all the terms kij = O(1)
have the same order, µ ≤ O(1), and that ε is a very small positive number
(see Subsection Section 3.2.3).

Lemma A.1. Consider a constant matrix A = (aij) of dimension n× n,
such that O(aij) = 1 when ε→ 0 for every i, j. Suppose that A is nonsingular
and let εµ > 0. Then

det(A− εµ · I) = (−1)n · O(εµ).

Proof. If λ(1) = 0, λ(2), . . . , λ(n) are the eigenvalues of A, we have that

det(A− λ · I) = (−1)n · (λ− λ(1)) · · · (λ− λ(n))

= (−1)n · (λ)(λ− λ(2)) · · · (λ− λ(n)).

Substituting λ by εµ in the formula above, we obtain the desired result. �

Lemma A.2. Suppose that M is a column diagonal dominant matrix of
size n × n, such that det(M) 6= 0. If every off-diagonal entry of M is non-
negative, then all the cofactors of M have the same sign equal to (−1)n−1

and sgn(det(M)) = (−1)n.

Proof. Since −M is nonsingular and column diagonal dominant, by the The-
orem of Gershgorin, −M is a positive stable matrix (see Proposition 2.1).
Then, according to Theorem 2.3, its inverse matrix is nonnegative (i.e. each
entry of (−M)−1 is nonnegative). But

−((−M)−1) = (M)−1 =
1

det(M)
· C ≤ 0,

where

C =


C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
...

Cn1 Cn2 . . . Cnn


T

,
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is the transpose matrix of cofactors of M [41]. Then

Cij
det(M)

≤ 0 ∀i, j = 1, . . . , n,

which implies that all the cofactors Cij = (−1)i+jMij, with Mij the minor
of M obtained from removing the i-th row and the j-th column, have the
same sign. Moreover, since all the principal minors of −M are positive, then
det(−M) > 0 (see Theorem 2.3). We conclude that

sgn(Cij) = (−1)n−1

and that det(M) = (−1)n det(−M) is negative if n is odd and positive is n
is even (see Proposition 2.2). �

Proposition A.1. Let

Mn =

−
∑n

i=2 ki1 − k∗1 − εµ · · · k1n
...

. . .
...

kn1 · · · −
∑n−1

i=1 kin − kn+1,n − εµ

 . (A.1)

where k∗i ≥ 0. Consider the directed graph Γ(Mn) associated to Mn as a
graph with n nodes X1, . . . , Xn and an edge with origin Xi and final Xj if
kji > 0. Suppose that Γ(Mn) has no traps and that kn+1,n > 0. Then,

det(Mn) = (−1)n·O(knij).

Proof. The matrix of the system is written as in (A.1), where k∗i ≥ 0. Notice
that an output from the i-th metabolite is equivalent to k∗i > 0. Here,
without loss of generality, we begin supposing that the n-th has an output.
Then kn+1,n > 0.

We prove the proposition by induction over n. For n = 2, consider the
matrix

M2 =

(
−k21 − εµ k12

k21 −k12 − k32 − εµ

)
(A.2)

of a system with two metabolites and one output. The determinant of M2 is

det(M2) = k21(k32 + εµ) + εµ(k12 + k32 + εµ).

If k21 ·k32 6= 0, then det(M2) = O(k2
ij). We examine in which cases k21 ·k32 =

0.
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Figure A.1. Possible scenarios where k21 = 0 in a system with two metabolites
and one output from X2. Both cases represent that X1 is in a trap.

If k32 = 0, the system has no output, contrary to our hypothesis. On
the other hand, k21 = 0 implies that X1 is in a trap (see Figure A.1). We
conclude that det(M2) = O(k2

ij). The case in dimension n = 2 with more
than one output is verified immediately.

We make the following induction hypothesis : consider a linear system of
n − 1 metabolites with no traps and one output at least. If Mn−1 is the
matrix of this system, then det(Mn−1) = (−1)n−1 · O(kn−1

ij ).
Now we prove the case of a network with n metabolites. We take into

account that all the cofactors Cij of Mn have the same sign, as claimed by
Lemma A.2. It holds

det(Mn) =− kn+1,nCnn (A.3)

+
[ n−1∑
j=1

kjnCjn −
( n−1∑
i=1

kin + εµ
)
Cnn
]
,

where Cjn = (−1)j+n(Mn)jn are cofactors of Mn [41].
Suppose that kni = 0 and k∗i = 0 for every i ∈ {1, . . . , n− 1}. Then Xn

is isolated and the rest of metabolites {X1, . . . , Xn−1} form a trap. Hence,
kni > 0 or k∗i > 0 for some i ∈ {1, . . . , n−1} and we can apply the hypothesis
of induction to deduce that

Cnn = (−1)n−1 · O(kn−1).

On the other hand, the term in the squared brackets in (A.3) is the
determinant of the matrix (Mn + kn+1,n · δnn), where δnn is a matrix of size
n×n with zero at every entry, except for in the entry nn which is equal to 1

If k∗i = 0 for every i = 1, . . . , n− 1, then

det(Mn + kn+1,n · δnn) = (−1)n · O(εµ)

according to Lemma A.1 and the statement of Proposition A.2 is proved.
In other case, suppose k∗,n−1 > 0 without loss of generality. Hence, if we
develop the determinant of (Mn + kn+1,n · δnn) by the n − 1-th column and
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we substitute in (A.3), we have

det(Mn) =− kn+1,nCnn − k∗,n−1(Mn + kn+1,n · δnn)n−1,n−1 (A.4)

+
[ n∑

j=1
j 6=n−1

kj,n−1(Mn + kn+1,n · δnn)j,n−1

−
( n−2∑
i=1

ki,n−1 + εµ
)
(Mn + kn+1,n · δnn)n−1,n−1

]
,

where (Mn+kn+1,n ·δnn)j,n−1 are cofactors of (Mn+kn+1,n ·δnn). Moreover, the
matrix (Mn+kn+1,n ·δnn) satisfies the conditions of Lemma A.2. Then, all its
cofactors have the same sign. Particularly, sgn((Mn + kn+1,n · δnn)n−1,n−1) =
(−1)n−1, and then

sgn(−kn+1,nCnn) = sgn(−k∗,n−1(Mn + kn+1,n · δnn)).

Once again, the term in square brackets in (A.4) is equal to det(Mn +
kn+1,n · δnn + k∗,n−1 · δn−1,n−1). We proceed as for det(Mn + kn+1,n · δnn) to
extract the following term

−k∗,n−2(Mn + kn+1,n · δnn + k∗,n−1 · δn−1,n−1)n−2,n−2

which has the same sign as −kn+1,nCnn. In n steps, we arrive to an expression
of the determinant where all the terms have the same sign and one term is
the determinant of a matrix whose entries by column sum −εµ. That is to
say, if we define

M̃i := (Mn + kn+1,n · δnn +
n−i∑
j=1

k∗,n−jδn−j,n−j),

for every i = 2, . . . , n, where we define

0∑
j=1

k∗,n−jδn−j,n−j = 0.

Then

det(Mn) =− kn+1,nCnn −
n∑
i=2

k∗,i−1(M̃i)i−1,i−1

+
[
(−1)n · O(εµ)

]
,



A.1. SUPPLEMENTS FOR THE PROOF OF THEOREM 3.1 137

with (M̃i)i−1,i−1 is a principal minor of M̃i and the term in square brackets
represents

det


−
∑n

i=2 ki1 − εµ k12 . . . k1n

k21 −
∑n

i=1
i 6=2

ki2 − εµ . . . k2n

...
...

. . .
...

kn1 kn2 . . . −
∑n−1

i=1 kin − εµ

 ,

according to Lemma A.1. Moreover,

sgn(−kn+1,nCnn) = sgn(−k∗,i−1(M̃i)i−1,i−1) = (−1)n,

for every i = 2, . . . , n, as a consequence of Lemma A.2. Therefore, we con-
clude

det(Mn) = (−1)n · O(knij).

�

Recall that in our model (Figure 3.1) we only suppose that there is not flux
trap. For this reason, we analyze the determinant of the matrix associated
to a system with traps. For instance, with the matrix M2 defined in (A.2),
if the system has a trap, k21 = 0 and its determinant has order O(εµ). In
general, we can expect that a system with a trap has determinant with order
εµ. This happens because a trap implies a block of zeros in the matrix.
Indeed, remember that the j-th column of the matrix system represents the
reactions whose origin is the metabolite Xj. Then, if Xj is in a trap, kij = 0
for every i with Xi out of the trap.

In the presence of a trap, the matrix of the system is reducible [41].
That is to say, after the same number of interchanges of rows than columns,
the matrix of a system with a trap can be transformed in a square block
triangular matrix (keeping the dominant diagonal structure):

Mn =

(
M ′ 0
∗ T

)
, (A.5)

where M ′ and T are square matrices that correspond to the metabolites
which are not in a trap and the metabolites which are in a trap, respectively.
If Cij is a cofactor of Mn and det(T) has order εµ, then the coefficients

k21C1i

det(M ′) · det(T)

can be affected by a factor of order (εµ)−1 (see the proof of Magnitude of
Concentration Theorem 3.1).

However, it is possible to see that when there is a trap which is not
reached by the flux, then the determinant of the block corresponding to the
trap is also a factor of the cofactors C1i, where Xi is not in that trap. This is
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why we distinguish a flux trap of a simple trap (see Definitions 3.3 and 3.4),
by determining if the input of interest reaches them or not.

A matrix with a trap that is not a flux trap has the following form:

Mn =

M ′r×r [C1]r×s 0r×p
0s×r [C2]s×s 0s×p
0p×r [C3]p×s Tp×p

 , r + s+ p = n, (A.6)

where T represents the trap not reached by a specific flux, [Ci] represents
columns of metabolites that connect the trap with the rest of the system,
but which are not nourished by the flux not even by the trap. M ′ is again
the block corresponding to the rest of metabolites, including those with an
input or an output.

Since the matrix in (A.6) is square block triangular, its determinant is
the product of the determinants of the diagonal blocks [10]. Then, this
determinant has a factor det(T) = (−1)p·O(εµ), as claimed by Lemma A.1.

Furthermore, the cofactors C1j have the factor det(T) for every j =
1, . . . , r, because the sub matrix (Mn)1n is also square block triangular. Then,
when dividing by the determinant of Mn, this factor is neutralized. In this
way we rule out having a large coefficient of order (εµ)−1 for estimating the
concentration of Xi, 1 ≤ i ≤ r, for every metabolite that is not in a trap.
Whereas the minors M1j = 0 for j > r, as a consequence of the block of zeros
in the lower left corner. In fact, the metabolites not reached by the flux are
not related to this either in QSS. Therefore we have proved the following
proposition.

Proposition A.2. Consider the matrix Mn in its triangular form (A.5),
such that the square block T corresponds to metabolites in a trap and M ′ to
metabolites not in the trap. Then

det(Mn) = det(M ′) · det(T),

Moreover, if the trap is not reached by a specific flux, then Mn has the form
(A.6) and its minors satisfy

(Mn)1j = (M ′)1j · det(C2) · det(T ) ∀j = 1, . . . , r,

with (M ′)1j a minor of M ′, and

(Mn)1j = 0 ∀j = r + 1, . . . , n.

Corollary A.1. If Mn has a trap, then

det(Mn) = ±O(εµ).

Proof. The square block T is equal to a singular matrix minus εµ · I. Then,
by Lemma A.1, its determinant has order ±O(εµ). �
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Now we consider some minors of the matrix Mn and we study the order of
their determinants, as required for the proof of Magnitude of Concentration
Theorem 3.1.

Proposition A.3. Let us suppose that Mn represents a system with no
traps. Moreover, assume a flux from X1 to Xn. Consider the minor of Mn

resulting from removing the first line and the n-th column:

(Mn)1n = det



k21 −(
∑n

i=1
i 6=2

ki2 + εµ) . . . k2,n−1

k31 k32 . . . k3,n−1
...

...
. . .

...
kn−1,1 kn−1,2 . . . −(

∑n
i=1
i6=n−1

ki,n−1 + εµ)

kn1 kn2 . . . kn,n−1


(A.7)

Then
0 < (Mn)1n = O(kn−1

ij ).

Proof. The demonstration is by induction over the squared matrix size. For
the case of a minor with dimension two we have:

det

(
k21 −(

∑3
i=1
i6=2

ki2 + εµ)

k31 k32

)
= k21k32 + k31(

3∑
i=1
i 6=2

ki2 + εµ)

= O(k2
ij),

since there is a flux from X1 to X3 and no traps. We then suppose the validity
of this lemma for a minor of dimension up to n− 2 (induction hypothesis).

If we develop the determinant (Mn)1n by the first column, we verify that
the minor resulting from striking the first column and the x-th row of the
matrix in (A.7) satisfies the hypothesis of this lemma after x− 1 changes of
columns, for x = 1, 2, . . . , n − 2. Hence we apply the induction hypothesis
to these minors and we obtain that they are quantities (−1)x−1 · O(kn−2

ij ),
where x is the number of the struck row.

Since there is no traps by hypothesis, the minor obtained after omitting
the first column and the last row of the matrix in (A.7) has a column which is
strictly diagonal dominant. We can then apply Proposition A.1 and conclude
that it has order (−1)n−2 · O(kn−2

ij ).
Therefore, we conclude that the minor (Mn)1n is the sum of positive

quantities of order O(kn−1
ij ):

0 < (Mn)1n =k21 · O(kn−2
ij ) + · · ·

+ (−1)x+1(−1)x−1kx1 · O(kn−2
ij ) + . . .

+ (−1)n(−1)n−2kn1 · O(kn−2
ij )

=O(kn−1
ij ).
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�

For the other minors we obtain a similar result. Indeed, every minor
obtained from striking the first row and the x-th column can be transformed
in a matrix of the form (Mn)1n, by n − x changes of rows. Therefore, the
following assertion holds.

Corollary A.2. When Mn has no traps, the minor (Mn)1x has order
(−1)n−x · O(kn−1

ij ), for every x = 1, . . . , n.

A.2. Generalization of the QSSR: Linear Case

In this Appendix, we generalize the Quasi Steady State Reduction ob-
tained in Section 3.2 (see Property 3.3). The following reduction is valid for
any linear system of metabolic reactions, with any number of subnetworks
of fast reactions and all possible reactions between metabolites. Also, the
generic network can include a finite number of continuous inputs, entering
at any metabolite.

A.2.1. Generic Linear System with two time-scales. As the main
manuscript, we consider linear system with metabolites consumed by slow
or fast reactions. Without loss of generality, we suppose that metabolites
X1, X2, . . . , Xm are only consumed by slow reactions and that metabolites
Xm+1, Xm+2, . . . , Xn can be consumed by a fast reaction. Then, we consider
the following system of equations:

dXi

dt
= Fi(t,X1, . . . , Xn, ε) Xi(0) = x0

i , (A.8)

where

Fi := Ii(t) +

m∑
j=1
j 6=i

kij ·Xj +

n∑
j=m+1

kij
ε
Xj − ki ·Xi

for i = 1, . . . ,m, where

ki :=
n∑
j=1
j 6=i

kji + µ,

and

Fi := Ii(t) +

m∑
j=1

kij ·Xj +

n∑
j=m+1
j 6=i

kij
ε
Xj −

ki
ε
·Xi

for i = m+ 1, . . . , n, where

ki
ε

:=
n∑
j=1
j 6=i

kji
ε

+ µ.
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Without loss of generality, we suppose Ii(t) ≥ 0.

A.2.2. Canonical Form of Singularly Perturbed Systems. Equa-
tion (A.8) is a slow-fast system, where the variables X1, X2, . . . , Xm are in
the slow part and Xm+1, Xm+2, . . . , Xn are in the fast part. Indeed, making
the change of variable

Yi =
Xi

ε
for the fast variables, we obtain

dXi

dt
= Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, ε) Xi(0) = x0

i , (A.9)

ε
dYi
dt

= Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, ε) Yi(0) = y0
i , (A.10)

where y0
i := x0

i /ε,

Gi :=Ii(t) +

m∑
j=1
j 6=i

kij ·Xj +

n∑
j=m+1

kijYj − ki ·Xi

for i = 1, . . . ,m, and

Gi :=Ii(t) +
m∑
j=1

kij ·Xj +
n∑

j=m+1
j 6=i

kijYj − ki · Yi

for i = m+ 1, . . . , n.
Equation (A.10) evaluated in ε = 0 is equivalent to algebraic equation

0 = Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, 0) ∀i = m+ 1, . . . , n,

which can be rewritten in the matrix form
−km+1 km+1,m+2 . . . km+1,n

km+2,m+1 −km+2 . . . km+2,n
...

...
...

kn,m+1 kn,m+2 . . . −kn

 ·

Ym+1

Ym+2
...
Yn



= −


Im+1(t) +

∑m
j=1 km+1,jXj

Im+2(t) +
∑m

j=1 km+2,jXj

...
In(t) +

∑m
j=1 knjXj

 .

Notice that the matrix above is stable, since it is strictly column diagonally
dominant [32]. Define this matrix as

K :=


−km+1 km+1,m+2 . . . km+1,n

km+2,m+1 −km+2 . . . km+2,n
...

...
...

kn,m+1 kn,m+2 . . . −kn

 .
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Then the solution to the algebraic problem is
Ym+1

Ym+2
...
Yn

 = K−1 ·


−
(
Im+1(t) + km+1,j ·Xj

)
−
(
Im+2(t) + km+2,j ·Xj

)
...

−
(
In(t) + knj ·Xj

)

 .

The entries of K−1 are

bij =
Cji

detK
,

where Cji a cofactor of K. Thus, we write every Yi as a linear combination of
the kinetics in the slow-part and the inputs on the fast part (if they exist):

Xi

ε
= Yi =

n∑
j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑
j=1

kj′,j ·Xj

)
.

It follows

Xi = ε ·
[ n∑
j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑
j=1

kj′,j ·Xj

)]
,

for i = m+ 1, . . . , n.

A.2.3. Reduction of the Slow-Fast Linear System. To deduce the
reduced system after Tikhonov’s Theorem, define

Gi(t,X1, . . . , Xm, 0) := Gi(t,X1, . . . , Xm, Y m+1, . . . , Y n, 0) =

Ii(t) +

m∑
j=1
j 6=i

kij ·Xj +

n∑
j=m+1

kij

[ n∑
j′=m+1

|bjj′ | ·
(
Ij′(t) +

m∑
i′=1

kj′,i′ ·Xi′

)]
− ki ·Xi.

Thus, the QSSR is

dXi

dt
= Gi(t,X1, . . . , Xm, 0) Xi(0) = x0

i , (A.11)

for all i = 1, . . . ,m. For the variables in QSS,

Xi = ε ·
[ n∑
j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑
j=1

kj′,j ·Xj

)]
, (A.12)

for all i = m+ 1, . . . , n.
The following proposition is a consequence of Tikhonov’s Theorem [39].

Proposition A.4 (Tikhonov’s Theorem). Let (Xi) be the solution of
(A.8) and (X i) defined by (A.11)-(A.12). If there is a solution for (A.11),
then

Xi(t) = Xi(t) +O(ε) ∀i = 1, . . . ,m,t ∈ [0, T1],
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and there exists 0 ≤ T0 such that

Xi(t) = Xi(t) + ε · [O(ε)] ∀i = m+ 1, . . . , n,t ∈ [T0, T1].

Now we see that |bij′| = 0 if there is not a flux from Xj′ to Xi.

Proposition A.5. Let K be the Jacobian matrix of the fast eq. (A.10)and
consider metabolite Xj′. With out loss of generality suppose 1 ≤ j′ ≤ r and
rewrite this matrix as

K =

(
[K ′]r×r [C1]r×s

0s×r [C2]s×s

)
, r + s = n−m, (A.13)

where K ′ is the matrix representing the metabolites with a flux from Xj′

(including Xj′) and C2 is the square block corresponding to metabolites not
reached by any flux from Xj′. Then,

det(K) = det(K ′) · det(C2).

Furthermore, its minors satisfy

(K)j′i = (K ′)j′i · det(C2) ∀i = 1, . . . , r,

with (K ′)j′i a minor of K ′, and

(K)j′i = 0 ∀i = r + 1, . . . , r + s.

Proof. Since K defined in (A.13) is a square block triangular matrix, its
determinant is the product of the determinants of the diagonal blocks [10].
Then,

det(K) = det(K ′) · det(C2).

For i = 1, . . . , r, the submatrix obtained from deleting the j′-th row and
the i-th column of K is also a square block triangular matrix. Then, its
determinant is

(K)j′i =

∣∣∣∣(K ′)j′i [C ′1]
0 [C2]

∣∣∣∣ = (K ′)j′i · det(C2) ∀i = 1, . . . , r,

where (K ′)j′i is a minor of K ′ and [C ′1] is the matrix C1 without its first row.
On the other hand, for i = r + 1, . . . , (r + s), the minor (K)j′i is also the
determinant of a square block triangular matrix, i.e.

(K)j′i =

(
K ′ C1

0 C2

)
j′i

= 0 ∀i = r + 1, . . . , r + s,

as a consequence of the block of zeros below K ′. We conclude

(K)j′i = 0 ∀i = r + 1, . . . , (r + s).

�
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Proposition A.5 states that the only elements in the sum

n∑
j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑
j=1

kj′,j ·Xj

)

which are different from zero are those with index j′ such that there is a flux
from Xj′ to Xi (i.e. when |bij′| 6= 0). Furthermore, notice that in

m∑
j=1

kj′,j ·Xj

the parameter kj′,j 6= 0 if and only if there is a reaction consuming Xj and
producing X ′j, where Xj is in the slow part and Xj′ is in the fast part of the
system.

A.3. Boundary layer correction for the toy model

In this section we illustrate the effects of the boundary layer correction,
applied to the toy Network N1 of Section 3.5 as described in Section 3.2.6.

According to Tikhonov’s Theorem [39], the solution of the original system
(3.1) for the toy Network N1 (in Figure 3.5) can be approximated with an
error of order O(ε). Indeed, in this work we prove that this approximation
is valid in any time interval [0, T ], where the input I(t) is nonnegative and

continuous, if we consider the boundary layer correction X̂.
The details about the boundary layer system (3.9) are in Section 3.2.6,

and the approximation

Xi(t) = X i(t) + X̂i

( t
ε

)
+O(ε) ∀t ∈ [0, T ], (A.14)

for every i = 2, . . . , 8, i 6= 4, is stated in Property 3.3 at Section 3.2.7.
The boundary layer correction for the toy Network N1 of Section 3.5 is

illustrated in the following Figure A.2 and Figure A.3.
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Figure A.2. Boundary layer correction applied to the toy Network N1. The
boundary layer term is only added to the approximations of the metabolites in
QSS. Therefore, dynamics of the slow reduced system (3.16) are the same as
in Figure 3.5. Thick light line: original system (3.1); solid line: approximation
obtained after the approach proposed in this work (3.15); dashed line: approx-
imation with the boundary layer correction (A.14). The parameters considered
are in Table 3.1.
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Figure A.3. Zoom on the initial fast transient of the simulations in Figure A.2.
Notice that the approximation without boundary layer correction (solid line)
does not have the same initial condition as the original system (thick light
line), while the system with boundary layer correction (dashed line) accurately
approximates the original system in the first fast transient interval.

A.4. Classical approach for the stoichiometric modeling

A.4.1. The DRUM methodology: recall and application. In this
section we give the details for model reduction using DRUM, presented in
Section 3.5.3, is obtained. In the DRUM approach an additional reaction
for biomass synthesis is required. Here, to apply the Drum approach in a
simplified framework, we have assumed that we were studying a situation
where Biomass was at a constant concentration.

The formulation for the stoichiometric analysis of a metabolic system
with DRUM [4] considers the original system (3.1) for Network N1 as

dX

dt
= I(t) +K · V (X) X(0) = x0, (A.15)

where X is the column vector for intracellular metabolites with entries X1,...,
X9, the initial condition x0 = (x0

1, . . . , x
0
9)T , the input

I(t) = (k[cos(t · ω) + 1], 0, . . . , 0)T ,
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K is the stoichiometric matrix and V (X) the vector of kinetics reactions. To
be more precise,

K =



ν21 ν32 ν43 ν54 ν56 ν75 ν68 ν87 ν98

X1 −1 0 0 0 0 0 0 0 0

X2 1 −1 0 0 0 0 0 0 0
X3 0 1 −1 0 0 0 0 0 0

X4 0 0 1 −1 0 0 0 0 0

X5 0 0 0 1 1 −1 0 0 0
X6 0 0 0 0 −1 0 1 0 0

X7 0 0 0 0 0 1 0 −1 0

X8 0 0 0 0 0 0 −1 1 −1
X9 0 0 0 0 0 0 0 0 1


,

V (X) =



ν21
ν32
ν43
ν54
ν56
ν75
ν68
ν87
ν98


=



k21X1
k32
ε
X2 − k23

ε
X3

k43
ε
X3

k54X4
k56
ε
X6

k75
ε
X5

k68
ε
X8

k87
ε
X7

k98
ε
X8


.

Moreover, in this approach the factor µ is neglected. For the stoichiomet-
ric analysis it is then considered the following system

dX

dt
= K · V (X) X(0) = x0,

and the input vector I(t) is added later.
In line with the DRUM methodology [4], we consider that metabolites

X2, X3, X5, X6, X7 and X8 are in QSS, while metabolites X1, X4 and X9 can
accumulate and have dynamics. This leads to the division of the metabolism
in two subnetworks SN1 and SN2, as shown in Figure A.4.
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Figure A.4. Subnetworks SN1 (above) and SN2 (below) of N1. The internal
metabolitesX2, X3, X5, X6, X7 andX8 are assumed to be in Quasi Steady State.
Metabolites X1, X4 and X9 are supposed to be external to the subsystems in
QSS.

The next step in the DRUM methodology is to summarize each subnet-
work using its EFM. We compute the EFM of subnetworks SN1 and SN2 by
Gauss elimination and corroborate the result with Copasi [28].We have that
the only elementary flux mode of SN1 is

eT1 =
( k21

k32
ε

k43
ε

1 1 1
)
,

and its matrix of EFM is E1 := (e1). Analogously, the EFM of SN2 and its
matrix of EFM are, respectively

eT2 =
( k54

k56
ε

k75
ε

k68
ε

k87
ε

k98
ε

1 0 1 0 1 1
)
,

eT3 =
( k54

k56
ε

k75
ε

k68
ε

k87
ε

k98
ε

0 1 1 1 1 0
)
,

E2 := (e2).

Similar to e1, the mode e2 represents an elementary flux that begins and
finishes at the exterior of the system in QSS. In contrast, e3 is a cycle in
QSS, which can be omitted.

Under the QSSA, a simple algebraic computation from the EFM of the
two subnetworks leads to the dynamics of the main network:

K · V (X) =
(
K1 · E1 K2 · E2

)
· β, (A.16)

where Ki is the sub matrix that consists in the column vectors of K corre-
sponding to the reactions in SNi, for i = 1, 2, and β = (β1 β2)T is a vector
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with entries satisfying

E1 · (β1) =

(
ν21
ν32
ν43

)
, E2 · (β2) =


ν54
ν56
ν75
ν68
ν87
ν98

 ,

where νij is the entry of V (X) corresponding to the reaction with rate kij or
kij/ε, respectively. Then, we compute

K1 · (e1) =



ν21 ν32 ν43

X1 −1 0 0

X2 1 −1 0

X3 0 1 −1
X4 0 0 1

X5 0 0 0

X6 0 0 0
X7 0 0 0

X8 0 0 0

X9 0 0 0


·

1

1

1

 =



−1

0

0
1

0

0
0

0

0



K2 · (e2) =



ν54 ν56 ν75 ν68 ν87 ν98

X1 0 0 0 0 0 0

X2 0 0 0 0 0 0

X3 0 0 0 0 0 0
X4 −1 0 0 0 0 0

X5 1 1 −1 0 0 0

X6 0 −1 0 1 0 0
X7 0 0 1 0 −1 0

X8 0 0 0 −1 1 −1

X9 0 0 0 0 0 1


·



1

0

1
0

1

1

 =



0

0

0
−1

0

0
0

0
1


Hence, according to Equation (A.16),

K · V (X) =



−1 0
0 0

0 0

1 −1
0 0

0 0
0 0

0 0

0 1


·
(
β1
β2

)
=



−β1
0

0
β1 − β2

0

0
0

0
β2


Substituting in Equation (A.15), we obtain

dX

dt
= I(t) +



−β1
0
0

β1 − β2
0
0

0
0
β2

 X(0) = x0.

Then, the DRUM approach does not take into account the equations for
the metabolites in QSS and deduces the following reduced system for the
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accumulative metabolites

dX1

dt
= I(t)− β1 X1(0) = x0

1 (A.17)

dX4

dt
= β1 − β2 X4(0) = x0

4

dX9

dt
= β2 X9(0) = x0

9.

A crucial step in this method is to choose the entries β1 and β2. This
choice is arbitrary according to the DRUM method [4], but it determines the
accuracy of the reduced system. Indeed, we have that β1 has to satisfy

(
1

1
1

)
· (β1) =

(
β1
β1
β1

)
=

(
ν21
ν32
ν43

)
⇒

β1 = ν21 = k21X1

β1 = ν32 = k32
ε
X2 − k23

ε
X3

β1 = ν43 = k43
ε
X3.

Similarly, for β2 we have


1

0
1

0

1
1

 · (β2) =


β2
0
β2
0

β2
β2

 =


ν54
ν56
ν75
ν68
ν87
ν98

⇒
β2 = ν54 = k54X4

β2 = ν75 = k75
ε
X5

β2 = ν87 = k87
ε
X7

β2 = ν98 = k98
ε
X8

From the equations above, we have to choose only one definition for β1

and one for β2. The DRUM method [4] does not establish any technique for
selecting these elements and the choice is left to the person who applies the
method.

In this small example, it is straightforward to make the right choice for
β1 and β2. As matter of fact, looking at the reduced model (3.16) obtained
in Section 3.5 after Tikhonov’s Theorem, we can deduce that choosing

β1 := ν21 = k21X1, (A.18)

β2 := ν54 = k54X4,

leads to an accurate approximation. Besides, when the terms of the metabo-
lites in QSS appears in the reduced system after de DRUM approach, these
are considered (and calibrated) as constant parameters. Therefore, the other
options for β1 and β2 does not result in correct approximations.
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Finally, substituting (A.18) in Equation (A.17), we obtain the reduced
model after the DRUM approach:

dX1

dt
= I(t)− k21X1 X1(0) = x0

1

dX4

dt
= k21X1 − k54X4 X4(0) = x0

4

dX9

dt
= k54X4 X9(0) = x0

9.

A.4.2. Flux Balance Analysis. In this section, we applied Flux Bal-
ance Analysis to the toy model presented in Section 3.5. Because of the
periodic forcing and the strong accumulation, this approach turns out to be
very inaccurate.

The principal hypothesis of FBA is that all the internal metabolites of
a system reach a steady state, under any external conditions [34, 57]. For
our example, we consider all the metabolites X1, . . . , X9 as internal and we
suppose that there is an input from the exterior I(t).

For Flux Balance Analysis, the system of equations for the toy Network
N1 of Section 3.5 is

dX

dt
= N · V (X), (A.19)

where X is the vector of metabolite concentrations, N is the stoichiometric
matrix and V (X) is the vector of kinetics reactions.

We recall that FBA methods omit the dilution due to growth. Then, the
factor µ ·X does not appear on Equation (A.19) and we have

N =



I(t) ν21 ν32 ν43 ν54 ν56 ν75 ν68 ν87 ν98

X1 1 −1 0 0 0 0 0 0 0 0

X2 0 1 −1 0 0 0 0 0 0 0
X3 0 0 1 −1 0 0 0 0 0 0

X4 0 0 0 1 −1 0 0 0 0 0

X5 0 0 0 0 1 1 −1 0 0 0
X6 0 0 0 0 0 −1 0 1 0 0

X7 0 0 0 0 0 0 1 0 −1 0
X8 0 0 0 0 0 0 0 −1 1 −1
X9 0 0 0 0 0 0 0 0 0 1


,

V (X) =



I(t)

ν21
ν32
ν43
ν54
ν56
ν75
ν68
ν87
ν98


=



k[cos(t · ω) + 1]
k21X1

k32
ε
X2 − k23

ε
X3

k43
ε
X3

k54X4
k56
ε
X6

k75
ε
X5

k68
ε
X8

k87
ε
X7

k98
ε
X8


.
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The purpose of FBA is to resolve the algebraic system

N · V (X) = 0

for the variables X1, . . . , X8. In our example, the algebraic system is linear
and we can compute the solution as follows:

X1(t) =
k[cos(t · ω) + 1]

k21
(A.20)

X2(t) = ε · k21 · (k23 + k43)

d′1
X1(t)

X3(t) = ε · k21 · k32

d′1
X1(t)

X4(t) =
k43

εk54
X3(t)

X5(t) = ε · k54 · k56 · k87 · (k68 + k98)

d′2
X4(t)

X6(t) = ε · k54 · k68 · k75 · k87

d′2
X4(t),

X7(t) = ε · k54 · k75 · k56 · (k78 + k98)

d′2
X4(t),

X8(t) = ε · k54 · k75 · k87 · k56

d′2
X4(t),

where d′1 = (k23 + k43) · k32 − k23 · k32 = k43 · k32 and
d′2 = k75 · k56 · k87 · (k68 + k98)− k56 · k68 · k75 · k87 = k75 · k56 · k87 · k98.

A.5. Local Linearization for an Enzymatic System

In this section we take into consideration a network similar to N1 (Fig-
ure 3.3), but composed of nonlinear enzymatic reactions, whose substrates
and products are the metabolites X1, . . . , Xn. Then, we show how to locally
linearized its metabolic system around a functional point. The ODE sys-
tem of Michaelis-Menten enzymatic reactions for Network N2 (Figure A.5)
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is written as follows:
dX1

dt
= u(t)− e0

21k21X1

X1 +K21
− µX1 X1(0) = x0

1

(A.21)

dX2

dt
=
e0

21k21X1

X1 +K21
+
k23

ε

e23X3

X3 +K23
− k32

ε

e32X2

X2 +K32
− µX2 X2(0) = x0

2

dX3

dt
=
k32

ε

e32X2

X2 +K32
− k23

ε

e23X3

X3 +K23
− k43

ε

e43X3

X3 +K43
− µX3 X3(0) = x0

3

dX4

dt
=
k43

ε

e43X3

X3 +K43
− e54k54X4

X4 +K54
− µX4 X4(0) = x0

4

dX5

dt
=
e54k54X4

X4 +K54
+
k56

ε

e56X6

X6 +K56
− k75

ε

e75X5

X5 +K75
− µX5 X5(0) = x0

5

dX6

dt
=
k68

ε

e68X8

X8 +K68
− k56

ε

e56X6

X6 +K56
− µX6 X6(0) = x0

6

dX7

dt
=
k75

ε

e75X5

X5 +K75
− k87

ε

e87X7

X7 +K87
− µX7 X7(0) = x0

7

dX8

dt
=
k87

ε

e87X7

X7 +K87
− k68

ε

e68X8

X8 +K68
− k98

ε

e98X8

X8 +K98
− µX8 X8(0) = x0

8

dX9

dt
=
k98

ε

e98X8

X8 +K98
− µX9 X9(0) = x0

9,

where the input u(t) = I(t) := k[cos(t ·ω)+1], e0
ji is the initial concentration

for the enzyme catalyzing the reaction with substrate Xi and product Xj,
kji (or kji/ε for the fast reactions) is the product formation rate and Kji is
the Michaelis-Menten constant of the same enzymatic reaction.

Figure A.5. Metabolic Network N2. Arrows between metabolites represent
enzymatic reactions catalyzed by an enzyme eji, with substrate Xi, product
Xj and product formation rate kji or kji/ε, respectively. The input I(t) =
k[cos(t · ω) + 1] is a periodic continuous function.

To describe how we proceed to linearized the kinetics of N2, let us consider
a non linear system:

ẋ = f(x, u), (A.22)
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and a steady state x∗ associated to a constant input u∗. Therefore

f(x∗, u∗) = 0.

Now we define a linearized system associated to (A.22) around (x∗, u∗):

ẋ =
∂f

∂x

∣∣∣∣
x∗,u∗

(x− x∗) +
∂f

∂u

∣∣∣∣
x∗,u∗

(u− u∗) (A.23)

In our specific example, we take

u∗ := k ∼ mean(I(t)).

Then, we calculate the equilibrium point of Equation (A.21) when the input
is equal to this constant value. In other words, we obtain the equilibrium
points for the variables of Equation (A.21), when u(t) = u∗, as

X∗i := lim
t→∞

Xi(t) ∈ R+ ∀i = 1, . . . , 9.

Hence, according to Equation (A.23), we obtain the following linearized
system associated to Equation (A.21):

dX1

dt
= k[cos(t · ω)]− (a21 + µ)(X1 −X∗1 ) X1(0) = x0

1 (A.24)

dX2

dt
= a21(X1 −X∗1 ) +

a23

ε
(X3 −X∗3 )

−
(a32

ε
+ µ

)
(X2 −X∗2 ) X2(0) = x0

2

dX3

dt
=
a32

ε
(X2 −X∗2 )

−
(a23

ε
+
a43

ε
+ µ

)
(X3 −X∗3 ) X3(0) = x0

3

dX4

dt
=
a43

ε
(X3 −X∗3 )− (a54 + µ)(X4 −X∗4 ) X4(0) = x0

4

dX5

dt
= a54(X4 −X∗4 ) +

a56

ε
(X6 −X∗6 )

−
(a75

ε
+ µ

)
(X5 −X∗5 ) X5(0) = x0

5

dX6

dt
=
a68

ε
(X8 −X∗8 )−

(a56

ε
+ µ

)
(X6 −X∗6 ) X6(0) = x0

6

dX7

dt
=
a75

ε
(X5 −X∗5 )−

(a87

ε
+ µ

)
(X7 −X∗7 ) X7(0) = x0

7

dX8

dt
=
a87

ε
(X7 −X∗7 )

−
(a68

ε
+
a98

ε
+ µ

)
(X8 −X∗8 ) X8(0) = x0

8

dX9

dt
=
a98

ε
(X8 −X∗8 )− µ(X9 −X∗9 ) X9(0) = x0

9,
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where

aji :=
ejikjiKji

(X∗i +Kji)2
∈ [0,∞) ∀i, j ∈ {1, . . . , 9}.

Numerical simulations (Figure A.6 and Figure A.7) show that the linearized
system (A.24) is a feasible representation of the nonlinear system (A.21).
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Figure A.6. Dynamics of the network with enzymatic reactions N2 (Fig-
ure A.5). Thick light solid line: nonlinear system describing the Michaelis-
Menten reactions of N2 (A.21); thin dark solid line: linearized system (A.24);
dashed line: value of the functional equilibrium points (X∗i ). The parameters
considered for the simulation are stated in Table A.1.
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Figure A.7. Zoom on dynamics of the network with enzymatic reactions N2
(see also Figure A.6).
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Parameter Value Units Parameter Value Units
ε 0.1× 10−2 - e23k23/ε 10 min−1

ω 0.4× 10−2 - e32k32/ε 20 min−1

µ 0.2× 10−2 min−1 e43k43/ε 20 min−1

k 0.2× 10−1 min−1 e56k56/ε 10 min−1

e21k21 0.1× 10−1 min−1 e68k68/ε 20 min−1

e54k54 0.1× 10−1 min−1 e75k75/ε 20 min−1

x0
i 0.1× 10−1 µmol/m3 e98k98/ε 20 min−1

X∗2 0.1× 10−2 µmol/m3 e87k87/ε 10 min−1

X∗3 0.8× 10−3 µmol/m3 Kji 2 µmol/m3

X∗5 0.9× 10−3 µmol/m3 X∗1 7.24 µmol/m3

X∗6 0.9× 10−3 µmol/m3 X∗4 1.64 µmol/m3

X∗7 0.2× 10−2 µmol/m3 X∗9 2.15 µmol/m3

X∗8 0.5× 10−3 µmol/m3

Table A.1. Parameters considered for the numerical simulation of systems
(A.21) and (A.24), depicted in Figure A.6 and Figure A.7. The Michaelis-
Menten constants Kji are considered to be all the same, as well as the initial
conditions x0i for i = 1, . . . , 9.





APPENDIX B

Complements for Chapter 4

B.1. Boundary layer

A second condition related to the uniform convergence of approximations
when η → 0 has to be verified with the boundary layer of Equation (4.14)

[39]. For this we define the boundary layer correction Ŷ (τ) = Y (t) − Y (t),
τ = t/η, and the boundary layer problem:

dŶ2

dτ
= e0

21k21
x0

1

x0
1 +K21

+
[m−1∑
j=3

e0
2jk2j

K2j

(
Ŷj + Y j(0)

)]
(B.1)

−
[m−1∑
i=3

e0
i2ki2
Ki2

+ µ̃
](
Ŷ2 + Y 2(0)

)
...

dŶm−1

dτ
=
[m−2∑
j=2

e0
m−1,jkm−1,j

Km−1,j

(
Ŷj + Y j(0)

)]
−
[ m∑

i=2
i6=m−1

e0
i,m−1ki,m−1

Ki,m−1
+ µ̃

](
Ŷm−1 + Y m−1(0)

)
dŶm+1

dτ
= e0

m+1,mkm+1,m
x0
m

x0
m +Km+1,m

+
[ n−1∑
j=m+2

e0
m+1,jkm+1,j

Km+1,j

(
Ŷj + Y j(0)

)]

−
[ n−1∑
i=m+2

e0
i,m+1ki,m+1

Ki,m+1
+ µ̃

](
Ŷm+1 + Y m+1(0)

)
...

dŶn−1

dτ
=
[ n−2∑
j=m+1

e0
n−1,jkn−1,j

Kn−1,j

(
Ŷj + Y j(0)

)]
−
[ n∑
i=m+1
i 6=n−1

e0
i,n−1ki,n−1

Ki,n−1
+ µ̃

](
Ŷn−1 + Y n−1(0)

)
,

with initial conditions ŷ0
i (0) = y0

i − Y i(0) for every i = 2, . . . , n− 1, i 6= m.

159



160 B. COMPLEMENTS FOR CHAPTER 4

Proposition B.1. The equilibrium point Ŷ = 0 of system (B.1) is
asymptotically stable.

Proof. First notice that system (B.1) is linear, since (4.14) is linear. That

Ŷ = 0 is an equilibrium point of system (B.1) is a consequence of Equa-
tion (4.18). Moreover, the Jacobian matrix of system (B.1) is the same that
(4.14). Therefore, as in the proof of Proposition 4.1, we conclude that the
origin is asymptotically stable for system (B.1). �

On the other hand, the boundary layer correction Ŷ allows to correct the
error of the approximation (4.8) at the initial fast transition. Indeed, notice
that the initial condition y0

i in (4.12) can be different from Y i(0) in (4.8).
But

Y i(0) + Ŷi(0) = Y i(0) + Yi(0)− Y i(0) = y0
i

Moreover, the boundary layer correction Ŷ vanishes quickly [39] since

lim
τ→∞

Ŷ (τ) = lim
η→0

(Y (t)− Y (t)) = 0.

B.2. Solution of the Slow System

Proof of Proposition 4.2. As in the proof of Proposition 4.1, we use the
fact that I(t) is a nonnegative continuous function on [0, T1] and all the
parameters in (4.7) are nonnegative real numbers. Hence, system (4.7) is

positively invariant in R3
+.

Let us denote F (t,X) the right hand of Equation (4.7). Then, we have

that F and ∂F
∂X

are continuous on [0, T1] × R3
+. Moreover, ∂F

∂X
is uniformly

bounded on [0, T1]× R3
+.

As a consequence, we can deduce from the Global Existence and Unique-
ness Theorem [35] that (4.7) has a unique solution X(t) over [0, T1]. �

B.3. Supplements for the proof of Theorem 4.1

Here we prove some results used for the proof of Magnitude of Concen-
tration Theorem 4.1, for metabolic networks with enzymatic reactions.

B.3.1. Fluxes, Traps and Flux Traps. In order to see when the
metabolites in QSS do not accumulate, we have to introduce the following
definitions.

Definition B.1. We define a directed graph Γ related to the network in
Figure 4.1, equivalent to system (4.3), as follows: the substrates and products
Xi, i = 1, . . . , n, are the vertices of the Γ. Then, if e0

jikji 6= 0 (i.e. if there is
a reaction with substrate Xi and product Xj, an the initial concentration of
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the enzyme catalyzing this function is positive) there is an edge with initial
node Xi and final node Xj. In a similar way, we define the graph associated
to a subsystem of (4.3), with metabolites {Xi1 . . . , Xil} ⊂ {X1, . . . , Xn}.

The concept of directed graph allows the following definition (see also
Definition 3.1):

Definition B.2 (Flux). A flux from Xi to Xj is a directed path which
has as initial vertex Xi and as final vertex Xj.

Traps and flux traps are defined as for the linear case. See Definition 3.3
and Definition 3.4. If the graph associated to a network has a flux, trap or flux
trap, we also say that the network has a flux, trap or flux trap, respectively.

B.3.2. Matrix analysis. Consider the Jacobian matrix defined in (4.16).
For the sake of simplicity we denote

lj :=
n∑
i=2
i 6=j

e0
ijkij

Kij
+ µ̃

lij :=
e0
ijkij

Kij
,

where kij = 0 if there is no reaction from Xj to Xi. Then,

J = K ′ :=

(
K ′1 0
0 K ′2

)
,

where

K1 = K ′1 :=


−l2 l23 . . . l2,m−1

l32 −l3 . . . l3,m−1
...

...
...

lm−1,2 lm−1,3 . . . −lm−1

 ,

K2 = K ′2 :=


−lm+1 lm+1,m+2 . . . lm+1,n−1

lm+2,m+1 −lm+2 . . . lm+2,n−1
...

...
...

ln−1,m+1 ln−1,m+2 . . . −ln−1

 .

Theorem B.1. Suppose that the graph associated to (4.3) satisfies As-
sumption 4.1. Consider the expression of the metabolites in QSS (4.8) and
define

ci := bi · l21 i = 2, . . . ,m− 1

ci := bi · lm+1,m i = m+ 1, . . . ,m− 1.
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Then for every i ∈ {2, . . . ,m− 1,m+ 1, . . . , n− 1} \ IFT
,

ci = O(1) (if ci 6= 0).

We recall that i ∈ {2, . . . ,m−1,m+1, . . . , n−1}\IFT
means the metabo-

lite Xi is not in a flux trap.

Before proving Theorem B.1, we demonstrate several propositions. The
proof of Theorem B.1 is in Appendix B.3.3. For this, we have to analyze the
order of the parameters

ci =
1

det(K ′1)
C1,i−1 · (−l21) ∀i = 2, . . . ,m− 1,

ci =
1

det(K ′2)
C′1,i−m · (−lm+1,m) ∀i = m+ 1, . . . , n− 1,

where C1,i−1 and C ′1,i−m are the cofactors of K ′1 and K ′2, respectively.

The goal of the following proposition is to define the order of some M ′

minors, as required for the Proof of Theorem B.1.
Recall that in Assumption 4.1 we only take into consideration flux traps.

For this reason, we also analyze the determinant of the matrix associated to
a system with traps. For instance, with the matrix M2 defined in (A.2), if
Γ(M2) has a trap, l21 = 0 and its determinant has order O(εµ).

In general, we can expect that a graph Γ(Mn) with a trap has a deter-
minant with order εµ. As a consequence, the matrix Mn is ill-conditioned.
This happens because a trap implies a block of zeros in the matrix. Indeed,
the j-th column of the matrix system represents the edges whose origin is
the metabolite Xj. Then, if Xj is in a trap, lij = 0 for every i with Xi out of
the trap.

If Cij is a cofactor of Mn and det(T) has order εµ, then the coefficients

C1i

det(M ′) · det(T)
· (−l21)

can be affected by a factor of order (εµ)−1. However, in the following propo-
sition we prove that when there is a trap T, det(T) is also a factor of the
cofactor C1i if Xi is not in the trap.

Proposition B.2. Let Mn be a matrix defined as in (A.1) and F a flux
from X1 to Xn. If Mn has traps (not reached by F) or flux traps for F, then
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Mn has the form

Mn =


[M ′]r×r [C1]r×s 0r×p 0r×q

0s×r [C2]s×s 0s×p 0s×q
0p×r [C3]p×s [T]p×p 0p×q
[∗]q×r [C4]q×s 0q×p [TF]q×q

 , r + s+ p+ q = n, (B.2)

where M ′ is a matrix with no traps, T is the square block corresponding to
metabolites in traps not reached by F, TF to metabolites which are in flux
traps and C2 to metabolites that connect the traps to the rest of the network
but which not have a flux from the input. Then,

det(Mn) = det(M ′) · det(C2) · det(T) · det(TF).

Furthermore, its minors satisfy

(Mn)1j = (M ′)1j · det(C2) · det(T) · det(TF) ∀j = 1, . . . , r,

with (M ′)1j a minor of M ′, and

(Mn)1j = 0 ∀j = r + 1, . . . , r + s+ p.

Note B.1. Notice that the block [∗]q×r is different from zero if there is a
flux from X1 to the flux trap (TF).

Proof. Since Mn defined in (B.2) is a square block triangular matrix, its
determinant is the product of the determinants of the diagonal blocks [10].
Then,

det(Mn) =

∣∣∣∣M ′ C1

0 C2

∣∣∣∣ · det(T) · det(TF)

= det(M ′) · det(C2) · det(T) · det(TF).

For j = 1, . . . , r, the submatrix obtained from deleting the first row and
the j-th column of Mn is also a square block triangular matrix. Then, its
determinant is

(Mn)1j =

∣∣∣∣(M ′)1j [C ′1]
0 [C2]

∣∣∣∣ · det(T) · det(TF)

= (M ′)1j · det(C2) · det(T) · det(TF),

where (M ′)1j is a minor of M ′ and [C ′1] is the matrix C1 without its first row.
On the other hand, for j = r + 1, . . . , (r + s + p), the minor (Mn)1j is also
the determinant of a square block triangular matrix, i.e.

(Mn)1j =

M ′ C1 0
0 C2 0
0 C3 T


1j

· det(TF).
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On the other hand, we have that the minorM ′ C1 0
0 C2 0
0 C3 T


1j

= 0 ∀j = r + 1, . . . , (r + s+ p),

as a consequence of the block of zeros below M ′. We conclude

(Mn)ij = 0 ∀j = r + 1, . . . , (r + s+ p).

�

Finally, to analyze the minors of M ′, the block of Mn corresponding to
the subgraph with no traps, we refer to Proposition A.3 and Corollary A.2.

B.3.3. Proof of Theorem B.1.

Proof of Theorem B.1. Since K ′1 is a nonsingular matrix,

(K ′1)−1 =
1

det(K ′1)
· C,

where C is the transpose matrix of cofactors ofK ′1 [41] (i.e. Cji = (−1)j+i(K ′1)ji).
We then have according to Equation (4.18)

Y i =
1

det(K ′1)
C1,i−1 · (−e0

21k21
X1

X1 +K21

)

Then, by definition of ci,

ci =
1

det(K ′1)
C1,i−1 · (−l21).

If K ′1 has no traps (i.e. the subnetwork with metabolites X2, . . . , Xm−1 has
no traps), then

det(K ′1) = (−1)m−2 · O(lm−2
ij ),

as stated by Proposition A.1. Moreover, Corollary A.2 implies that the
cofactors C1,i−1 have order

C1,i−1 = (−1)m−1 · O(lm−3
ij ).

On the other hand, if K ′1 has a trap T not reached by the flux or a flux
trap TF, as a consequence of Corollary A.2, Propositions A.1 and B.2,

C1,i−1

det(K ′1)
= (−1) · O(l−1

ij ) if Xi 6∈ TF, C1,i−1 6= 0,

C1,i−1

det(K ′1)
= 0 if Xi ∈ T.



B.4. EXTENSION TO GENERAL METABOLIC NETWORKS 165

We conclude that

−l21 · C1,i−1

det(K ′1)
= O(1)

if C1,i−1 6= 0, for i ∈ {2, . . . ,m− 1} \ ITF
. The same reasoning applies for K ′2

and the variables of the second subnetwork Xm+1, . . . , Xn−1. �

B.4. Extension to General Metabolic Networks

In Appendix A.2, we have shown that our reduction method can be ex-
tended to metabolic networks with first order (linear) reactions and any
topology. On the other hand, in Chapter 4 we consider a class of networks
analogous to the linear network studied in Chapter 3, but accounting enzy-
matic nonlinear reactions. For this class of nonlinear networks we obtained
similar results to that presented for the linear case.

First, in Appendix B.4.1 we extend the results of Chapter 4 to general
Michaelis-Menten reactions networks, meaning that the topology of these
networks is generalized in the sense that, given any two metabolites, these
can be involved as substrate or product of an enzymatic reaction (Michaelis-
Menten) or a first order reaction. This can be seen as a simpler example of
the generalization in Appendix B.4.2.

In Appendix B.4.2, we prove that the nonlinear reduction method pro-
posed in Chapter 4 can be extended to networks accounting any type of
kinetics in the slow part and enzymatic of first order fast reactions. More-
over, we consider that this applied to a metabolic network with nontrivial
stoichiometry.

B.4.1. Michaelis-Menten Reactions Network. Consider a network
of enzymatic reactions with n metabolites. We do not suppose any restriction
for its topology, meaning that given any two metabolites Xi and Xj, it can
exists an enzymatic reaction which consumes Xi and produce Xj. In this
case, the reaction is catalyzed by the enzyme with initial concentration e0

ji.
Moreover, its Michaelis-Menten constant is denoted by Kji and the product
formation rate is kji if the reaction is slow and kji/ε if the reaction is fast.

For this his enzymatic network, we consider the following system of equa-
tions:

dXi

dt
= Fi(t,X1, . . . , Xn, ε, µ) Xi(0) = x0

i , (B.3)

where

Fi := Ii(t) +
m∑
j=1
j 6=i

e0
ijkij

Xj

Xj +Kij
+

n∑
j=m+1

e0
ij

kij
ε

Xj

Xj +Kij
−

n∑
j=1
j 6=i

e0
jikji

Xi

Xi +Kji
− µXi
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for i = 1, . . . ,m, and

Fi := Ii(t) +
m∑
j=1

e0
ijkij

Xj

Xj +Kij
+

n∑
j=m+1
j 6=i

e0
ij

kij
ε

Xj

Xj +Kij
−

n∑
j=1
j 6=i

e0
ji

kji
ε

Xi

Xi +Kji
− µXi

for i = m+ 1, . . . , n.
Equation (B.3) is a slow-fast system, where the variables X1, X2, . . . , Xm

are in the slow part and Xm+1, Xm+2, . . . , Xn are in the fast part. Indeed,
making the change of variable

Yi =
Xi

ε

for the fast variables, we obtain

dXi

dt
= Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, ε, µ) Xi(0) = x0

i , (B.4)

ε
dYi
dt

= Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, ε, µ̃) Yi(0) = y0
i , (B.5)

where y0
i := x0

i /ε and µ̃ := ε · µ are fixed values (do not change as ε→ 0),

Gi := Ii(t) +
m∑
j=1
j 6=i

e0
ijkij

Xj

Xj +Kij

+
n∑

j=m+1

e0
ijkij

Yj
εYj +Kij

−
n∑
j=1
j 6=i

e0
jikji

Xi

Xi +Kji

− µXi

for i = 1, . . . ,m, and

Gi := Ii(t) +
m∑
j=1

e0
ijkij

Xj

Xj +Kij

+
n∑

j=m+1
j 6=i

e0
ijkij

Yj
εYj +Kij

−
n∑
j=1
j 6=i

e0
jikji

Yi
εYi +Kji

− µ̃Yi

for i = m+ 1, . . . , n.
Evaluating the functions Gi in ε = 0, we have

Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, 0, µ) :=

Ii(t) +
m∑
j=1
j 6=i

e0
ijkij

Xj

Xj +Kij

+
n∑

j=m+1

e0
ijkij

Kij

Yj −
n∑
j=1
j 6=i

e0
jikji

Xi

Xi +Kji

− µXi

for i = 1, . . . ,m, and

Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, 0, µ̃) :=

Ii(t) +
m∑
j=1

e0
ijkij

Xj

Xj +Kij

+
n∑

j=m+1
j 6=i

e0
ijkij

Kij

Yj −
n∑
j=1
j 6=i

e0
jikji

Kji

Yi − µ̃Yi

for i = m+ 1, . . . , n.
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Moreover, Equation (B.5) evaluated in ε = 0 is equivalent to the algebraic
equation

0 = Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, 0, µ̃) ∀i = m+ 1, . . . , n,

which can be rewritten in the matrix form

K ·


Ym+1

Ym+2
...
Yn

 = −


Im+1(t) +

∑m
j=1 e

0
m+1,jkm+1,j

Xj
Xj+Km+1,j

Im+2(t) +
∑m

j=1 e
0
m+2,jkm+2,j

Xj
Xj+Km+2,j

...

In(t) +
∑m

j=1 e
0
njknj

Xj
Xj+Knj

 .

where

K :=



−
∑n

j=1
j 6=m+1

e0j,m+1kj,m+1

Kj,m+1
− µ̃ e0m+1,m+2km+1,m+2

Km+1,m+2
. . .

e0m+1,nkm+1,n

Km+1,n

e0m+2,m+1km+2,m+1

Km+2,m+1
−
∑n

j=1
j 6=m+2

e0j,m+2kj,m+2

Kj,m+2
− µ̃ . . .

e0m+2,nkm+2,n

Km+2,n

...
...

...
e0n,m+1kn,m+1

Kn,m+1

e0n,m+2kn,m+2

Kn,m+2
. . . −

∑n
j=1
j 6=n

e0j,nkj,n

Kj,n
− µ̃


.

Notice that K is stable matrix, since it is strictly column diagonally dominant
(see Corollary 2.1). Also remark that we only need the matrix K represent-
ing the fast equations to be strictly column diagonally dominant. Thus, a
transformation (as described in Section 2.5) of the complete stoichiometric
matrix has not to be imposed in this approach.

The solution to the algebraic problem is
Ym+1

Ym+2
...
Yn

 = K−1 ·


−
(
Im+1(t) +

∑m
j=1 e

0
m+1,jkm+1,j

Xj
Xj+Km+1,j

)
−
(
Im+2(t) +

∑m
j=1 e

0
m+2,jkm+2,j

Xj
Xj+Km+2,j

)
...

−
(
In(t) +

∑m
j=1 e

0
njknj

Xj
Xj+Knj

)

 .

B.4.1.1. Reduced System. To deduce the reduced system after Tikhonov’s
Theorem, define

Gi(t,X1, . . . , Xm, 0, µ) := Gi(t,X1, . . . , Xm, Y m+1, . . . , Y n, 0, µ) =

Ii(t) +
m∑
j=1
j 6=i

e0
ijkij

Xj

Xj +Kij

−
n∑
j=1
j 6=i

e0
jikji

X i

X i +Kji

− µX i

+
n∑

j=m+1

e0
ijkij

Kij

[ n∑
j′=m+1

|bjj′ | ·
(
Ij′(t) +

m∑
i′=1

e0
j′,i′kj′,i′

X
′
i

X
′
i +Kj′,i′

)]
,
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where

bij =
Cji

detK

is an entry of K−1 and Cji a cofactor of K (see Appendix B.3.3)
Thus, the QSSR is

dX i

dt
= Gi(t,X1, . . . , Xm, 0, µ) X i(0) = x0

i ,

for all i = 1, . . . ,m. For the variables in QSS,

X i = ε ·
[ n∑
j′=m+1

|bij′| ·
(
Ij′(t) +

m∑
j=1

e0
j′,jkj′,j

Xj

Xj +Kj′,j

)]
,

for all i = m+ 1, . . . , n.
B.4.1.2. Concentration Order of Magnitude. AssumingO(e0

ijkij) = O(e0
i′j′k

0
i′j′)

for every i, j, i′, j′, and O(Kij) = 1 for every i, j, we can prove

0 ≤ bij · (−e0
ijkij) = O(1) ∀j = 1, . . . ,m, ∀i = m+ 1, . . . , n,

if bij 6= 0 and Yi is not in a flux trap for a flux from Xj.
Thus, we write every Yi as a linear combination of the Michaelis-Menten

kinetics in the slow-part and the inputs on the fast part (if there exits):

X i

ε
= Y i :=

n∑
j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑
j=1

e0
j′,jkj′,j

Xj

Xj +Kj′,j

)
.

Recall that Kj′j = O(1). It follows

X i ≤ ε ·
[ n∑
j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑
j=1

e0
j′,jkj′,j ·Xj

)]
,

for i = m+ 1, . . . , n. Then,

X i ≤ ε · O
( n∑
j′=m+1

[
|bij′| · Ij′(t) +

m∑
j=1

Hj′,j ·Xj

])
, (B.6)

where

Hj′,j =

{
1 |bij′ | · (e0

j′,jkj′,j) 6= 0

0 |bij′ | · (e0
j′,jkj′,j) = 0.

Note B.2. The inequality (B.6) means that concentration of the fast
metabolite Xi is bounded by ε times de sum of some slow metabolites con-
centrations and some factors of inputs to the fast part.
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If we suppose that there are not inputs to the fast part of the system,
(B.6) is equivalent to

X i ≤ ε · O
( n∑
j′=m+1

[ m∑
j=1

Hj′,j ·Xj

])
∀i = m+ 1, . . . , n. (B.7)

Note B.3. The inequality (B.7) means that concentration of the fast
metabolite Xi is bounded by ε times de sum of some slow metabolites con-
centrations.

In Appendix B.4.2, we show under which flux conditions it is satisfied

|bij′ | · (e0
j′,jkj′,j) 6= 0,

for a more general class of networks which contains the present one (see
Proposition B.4).

B.4.2. General Slow Reactions Enzymatic Network. In this sec-
tion we also consider a network of n metabolites, where slow reactions have
any type of kinetics (particularly nonlinear) and fast reactions are enzymatic
(Michaelis-Menten) reactions. We consider a general topology, with any re-
striction, which is determined by the slow kinetics and the Michaelis-Menten
reactions.

Here we consider that the network has a nontrivial stoichiometry matrix.
We assume that the constant rates of fast reactions between the metabolites
in the fast part are already normalized, in order to have a strictly column
diagonally dominant matrix. For the reactions with slow dynamics, we con-
sider the stoichiometric coefficients denoted as s(j)ij or s(i)ij, for the sub-
strate and the product of a reaction with rate fij(X1, . . . , Xm), respectively.
To conserve the sense of slow reaction, we suppose that O(s(j)ij · e0

ijkij) =

O(s(i)ij · e0
ijkij) = 1 as ε→ 0.

Without loss of generality, for a fast reaction producing slow metabolite,

we denote kij and k̃ij the rate of production in the equation of the sub-
strate and the product, respectively. This let us assume that a nontrivial

stoichiometry for this reaction, i.e. kij 6= k̃ij. As well, O(e0
ij k̃ij) = 1 when

ε→ 0.
Then, consider the system of equations:

dXi

dt
= Fi(t,X1, . . . , Xn, ε, µ) Xi(0) = x0

i , (B.8)
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where

Fi :=Ii(t) +
m∑
j=1
j 6=i

s(i)ij · e0
ijkij · fij(X1, . . . , Xm) +

n∑
j=m+1

e0
ij

k̃ij
ε

Xj

Xj +Kij

−
n∑
j=1
j 6=i

s(i)ji · e0
jikji · fji(X1, . . . , Xm)− µXi

for i = 1, . . . ,m, and

Fi :=Ii(t) +
m∑
j=1

s(i)ij · e0
ijkij · fij(X1, . . . , Xm) +

n∑
j=m+1
j 6=i

e0
ij

kij
ε

Xj

Xj +Kij

−
n∑
j=1
j 6=i

e0
ji

kji
ε

Xi

Xi +Kji

− µXi

for i = m + 1, . . . , n. Without loss of generality, we suppose Ii(t), fij ≥ 0.
Moreover, in order to have a positively invariant system, we require

fji

∣∣∣
Xi=0

≥ 0 ∀i = 1, . . . ,m, 1 ≤ j ≤ n, j 6= i.

Equation (B.8) is a slow-fast system, where the variables X1, X2, . . . , Xm

are in the slow part and Xm+1, Xm+2, . . . , Xn are in the fast part. Indeed,
making the change of variable

Yi =
Xi

ε

for the fast variables, we obtain

dXi

dt
= Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, ε, µ) Xi(0) = x0

i , (B.9)

ε
dYi
dt

= Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, ε, µ̃) Yi(0) = y0
i , (B.10)

where y0
i := x0

i /ε and µ̃ := ε · µ are fixed values (do not change as ε→ 0),

Gi :=Ii(t) +
m∑
j=1
j 6=i

s(i)ij · e0
ijkij · fij(X1, . . . , Xm) +

n∑
j=m+1

e0
ij k̃ij

Yj
εYj +Kij

−
n∑
j=1
j 6=i

s(i)ji · e0
jikji · fji(X1, . . . , Xm)− µXi
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for i = 1, . . . ,m, and

Gi :=Ii(t) +
m∑
j=1

s(i)ij · e0
ijkij · fij(X1, . . . , Xm) +

n∑
j=m+1
j 6=i

e0
ijkij

Yj
εYj +Kij

−
n∑
j=1
j 6=i

e0
jikji

Yi
εYi +Kji

− µ̃Yi

for i = m+ 1, . . . , n.
Evaluating the functions Gi in ε = 0, we have

Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, 0, µ) :=

Ii(t) +

m∑
j=1
j 6=i

s(i)ij · e0
ijkij · fij(X1, . . . , Xm) +

n∑
j=m+1

e0
ij k̃ij

Kij
Yj

−
n∑
j=1
j 6=i

s(i)ji · e0
jikji · fji(X1, . . . , Xm)− µXi

for i = 1, . . . ,m, and

Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, 0, µ̃) :=

Ii(t) +
m∑
j=1

s(i)ij · e0
ijkij · fij(X1, . . . , Xm) +

n∑
j=m+1
j 6=i

e0
ijkij

Kij
Yj −

n∑
j=1
j 6=i

e0
jikji

Kji
Yi − µ̃Yi

for i = m+ 1, . . . , n.
Moreover, Equation (B.10) evaluated in ε = 0 is equivalent to the alge-

braic equation

0 = Gi(t,X1, . . . , Xm, Ym+1, . . . , Yn, 0, µ̃) ∀i = m+ 1, . . . , n,

which can be rewritten in the matrix form

K ·


Ym+1

Ym+2
...
Yn

 = −


Im+1(t) +

∑m
j=1 s(m+ 1)m+1,j · e0

m+1,jkm+1,j · fm+1,j(X1, . . . , Xm)

Im+2(t) +
∑m

j=1 s(m+ 2)m+2,j · e0
m+2,jkm+2,j · fm+2,j(X1, . . . , Xm)
...

In(t) +
∑m

j=1 s(n)nj · e0
njknj · fnj(X1, . . . , Xm)

 .
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where

K :=



−
∑n

j=1
j 6=m+1

e0j,m+1kj,m+1

Kj,m+1
− µ̃ e0m+1,m+2km+1,m+2

Km+1,m+2
. . .

e0m+1,nkm+1,n

Km+1,n

e0m+2,m+1km+2,m+1

Km+2,m+1
−
∑n

j=1
j 6=m+2

e0j,m+2kj,m+2

Kj,m+2
− µ̃ . . .

e0m+2,nkm+2,n

Km+2,n

...
...

...
e0n,m+1kn,m+1

Kn,m+1

e0n,m+2kn,m+2

Kn,m+2
. . . −

∑n
j=1
j 6=n

e0j,nkj,n
Kj,n

− µ̃


.

(B.11)

Remark B.1. Notice that K is stable matrix, since it is strictly column
diagonally dominant (see Corollary 2.1). Also remark that we only need the
matrix K representing the fast equations to be strictly column diagonally
dominant. Thus, a transformation (as described in Section 2.5) of the com-
plete stoichiometric matrix has not to be imposed in this approach and it
can be restricted to the fast reactions between the metabolites in QSS.

The solution to the algebraic problem is
Ym+1

Ym+2
...
Yn

 = K−1 ·


−
(
Im+1(t) +

∑m
j=1 s(m+ 1)m+1,j · e0

m+1,jkm+1,j · fm+1,j(X1, . . . , Xm)
)

−
(
Im+2(t) +

∑m
j=1 s(m+ 2)m+2,j · e0

m+2,jkm+2,j · fm+2,j(X1, . . . , Xm)
)

...

−
(
In(t) +

∑m
j=1 s(n)nj · e0

njknj · fnj(X1, . . . , Xm)
)

 .

B.4.2.1. Reduced System. To deduce the reduced system after Tikhonov’s
Theorem, define for i = 1, . . . ,m

Gi(t,X1, . . . , Xm, 0, µ) := Gi(t,X1, . . . , Xm, Y m+1, . . . , Y n, 0, µ) =

Ii(t) +
m∑
j=1
j 6=i

s(i)ij · e0
ijkij · fij(X1, . . . , Xm)−

n∑
j=1
j 6=i

s(i)ji · e0
jikji · fji(X1, . . . , Xm)− µXi

+

n∑
j=m+1

e0
ij k̃ij

Kij

[ n∑
j′=m+1

|bjj′ | ·
(
Ij′(t) +

m∑
i′=1

s(i′)j′i′ · e0
j′,i′kj′,i′ · fj′,i′(X1, . . . , Xm)

)]
,

where

bij =
Cji

detK
is an entry of K−1 and Cji a cofactor of K (see Appendix B.3.3). Thus, the
QSSR is

dX i

dt
= Gi(t,X1, . . . , Xm, 0, µ) X i(0) = x0

i , (B.12)



B.4. EXTENSION TO GENERAL METABOLIC NETWORKS 173

for all i = 1, . . . ,m. For the variables in QSS,

X i = ε ·
[ n∑
j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑
j=1

s(j′)j′,j · e0
j′,jkj′,j · fj′,j(X1, . . . , Xm)

)]
,

(B.13)

for all i = m+ 1, . . . , n.

The following proposition is a consequence of Tikhonov’s Theorem [39].

Proposition B.3 (Tikhonov’s Theorem). Let (Xi) be the solution of
(B.8) and (X i) defined by (B.12)-(B.13). If there is a solution for (B.12),
then

Xi(t) = X i(t) +O(ε) t ∈ [0, T1],∀i = 1, . . . ,m,

and there exists 0 ≤ T0 such that

Xi(t) = X i(t) + ε · [O(ε)] t ∈ [T0, T1],∀i = m+ 1, . . . , n.

Now we see that |bij′ | = 0 if there is not a flux of fast reactions from Xj′

to Xi.

Proposition B.4. Let K be the matrix defined in (B.11)and consider
metabolite Xj′. With out loss of generality suppose 1 ≤ j′ ≤ r and rewrite
this matrix as

K =

(
[K ′]r×r [C1]r×s

0s×r [C2]s×s

)
, r + s = n−m, (B.14)

where K ′ is the matrix representing the metabolites with a flux of fast reac-
tions from Xj′ (including Xj′) and C2 is the square block corresponding to
metabolites not reached by any flux of fast reactions from Xj′. Then,

det(K) = det(K ′) · det(C2).

Furthermore, its minors satisfy

(K)j′i = (K ′)j′i · det(C2) ∀i = 1, . . . , r,

with (K ′)j′i a minor of K ′, and

(K)j′i = 0 ∀i = r + 1, . . . , r + s.

Proof. Since K defined in (B.14) is a square block triangular matrix, its
determinant is the product of the determinants of the diagonal blocks [10].
Then,

det(K) = det(K ′) · det(C2).
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For i = 1, . . . , r, the submatrix obtained from deleting the j′-th row and
the i-th column of K is also a square block triangular matrix. Then, its
determinant is

(K)j′i =

∣∣∣∣(K ′)j′i [C ′1]
0 [C2]

∣∣∣∣ = (K ′)j′i · det(C2) ∀i = 1, . . . , r,

where (K ′)j′i is a minor of K ′ and [C ′1] is the matrix C1 without its first row.
On the other hand, for i = r + 1, . . . , (r + s), the minor (K)j′i is also the
determinant of a square block triangular matrix, i.e.

(K)j′i =

(
K ′ C1

0 C2

)
j′i

= 0 ∀i = r + 1, . . . , r + s,

as a consequence of the block of zeros below K ′. We conclude

(K)j′i = 0 ∀i = r + 1, . . . , (r + s).

�

Proposition B.4 states that the only elements in the sum

n∑
j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑
j=1

s(j′)j′,j · e0
j′,jkj′,j · fj′,j(X1, . . . , Xm)

)
which are different from zero are those with index j′ such that there is a flux
of fast reactions from Xj′ to Xi (i.e. when |bij′ | 6= 0). Furthermore, notice
that in

m∑
j=1

s(j′)j′,j · e0
j′,jkj′,j · fj′,j(X1, . . . , Xm)

the parameter e0
j′,jkj′,j 6= 0 if and only if there is a reaction consuming Xj

and producing X ′j, where Xj is in the slow part and Xj′ is in the fast part of
the system.

B.4.2.2. Magnitude of Concentration Order. Assuming

O(e0
ijkij) = O(e0

i′j′k
0
i′j′) = 1 as ε→ 0

for every i, i′ ∈ {1, . . . , n} and j, j′ ∈ {m + 1, . . . , n}, and O(Kij) = 1 for
every i, j, we can prove

0 ≤ bij · (−e0
ijkij) = O(1) ∀i = 1, . . . ,m, ∀i = m+ 1, . . . , n,

if bij 6= 0 and Yi is not in a flux trap for a flux from Xj. Indeed,

bij = O
(

(e0
ijkij)

−1
)
. (B.15)
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Thus, we write every Yi as a linear combination of the generic kinetics in the
slow-part and the inputs on the fast part (if there exits):

Xi

ε
= Yi =

n∑
j′=m+1

|bij′| ·
(
Ij′(t) +

m∑
j=1

s(j′)j′,j · e0
j′,jkj′,j · fj′,j(X1, . . . , Xm)

)
.

Suppose that fj′,j is bounded by 0 ≤ Bj′,j. It follows

Xi ≤ ε ·
[ n∑
j′=m+1

|bij′ | ·
(
Ij′(t) +

m∑
j=1

s(j′)j′,j · e0
j′,jkj′,j ·Bj′,j(X1, . . . , Xm)

)]
,

for i = m+ 1, . . . , n. Moreover, according to (B.15),

Xi ≤ ε · O
( n∑
j′=m+1

[
(e0
ij′kij′)

−1 · Ij′(t) +
m∑
j=1

Hj′,j ·Bj′,j(X1, . . . , Xm)
])
,

where

Hj′,j =

1 |bij′ | ·
(
s(j′)j′,j · e0

j′,jkj′,j

)
6= 0

0 |bij′ | ·
(
s(j′)j′,j · e0

j′,jkj′,j

)
= 0

.

Note B.4. According to Proposition B.4, the value

|bij′| ·
(
s(j′)j′,j · e0

j′,jkj′,j

)
6= 0

if and only if there is a flux of fast reactions from the fast metabolite Xj′ to
Xi, or i = j′, and a reaction from the slow metabolite Xj to Xj′ . On the
other hand,

(e0
ij′kij′)

−1 · Ij′ 6= 0

if and only if there is an external input to the fast metabolites Xj′ and a
reaction consuming Xj′ and producing Xi. Moreover, the order of this factor
depends on the input Ij′ . For example, if we suppose that the input is slow,
we have that

Ij′ = O(e0
ij′kij′)

and, as a consequence,

(e0
ij′kij′)

−1 · Ij′ = O(1).

Example B.1. In the particular case where slow reactions are of type
Michaelis-Menten, we have that the bounds are Bj′j(X1, . . . , Xm) = Xj for
every j = 1, . . . ,m (see B.4.1.2). If we also suppose that there is no input to
any fast metabolite, then

Xi ≤ ε · O
(∑
j′∈Fi

[ ∑
j∈Fj′

Xj

])
= ε · O

( ∑
j∈Fj′
j′∈Fi

Xj

)
,
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where j′ ∈ Fi denotes that there is a flux of fast reactions from Xj′ to Xi,
and j ∈ Fj′ that there is a reaction with substrate Xj (slow metabolite) and
product Xj′ .

Basically, the concentration of the fast metabolite Xi is bounded by the
product of ε and a function of order the sum of the concentrations of slow
metabolites which are directly preceding a flux of fast reactions to Xi or such
that there is a reaction from the slow metabolite to Xi.

B.4.2.3. Enzymatic reaction with two substrates. As we have mentioned
in Chapter 4, with our approach it is possible to consider any kind of non-
linear kinetics between the slow metabolites. One of this possibility is to
consider an enzymatic reaction with two substrates. Here we propose a QSS
for this kind of reaction, obtained with a technique similar to that of the clas-
sical Michaelis Menten model. Moreover, we consider α a mass conservation
constant for the substrates concentrations. Let

S1 + S2 + E
k1
�
k−1

C
k2→ P + E

be an enzymatic reaction with double substrate. The ODE associated to this
reaction is

dS1

dt
= α

(
− k1S1S2E + k−1 C

)
S1(0) = s0

1 (B.16)

dS2

dt
= (1− α)

(
− k1S1S2E + k−1 C

)
S2(0) = s0

2

dE

dt
= −k1S1S2E + (k−1 + k2)C E(0) = e0

dC

dt
= k1S1S2E − (k−1 + k2)C C(0) = 0

dP

dt
= k2C P (0) = 0.

with α ∈ [0, 1] a mass conservation constant and s0
1, s

0
2, e0 positive initial

conditions. Notice that the law of conservation of mass is satisfied by Equa-
tion (B.16) if, and only if, k1S1S2E − (k−1 + k2)C = 0. Moreover,

dE

dt
+
dC

dt
= 0.

Hence,

E = e0 − C and

C =
e0S1S2

S1S2 +K
with K =

k−1 + k2

k1

.
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Substituting in Equation (B.16), it follows

dS1

dt
= −(α)

e0k2S1S2

S1S2 +K
S1(0) = s0

1 (B.17)

dS2

dt
= −(1− α)

e0k2S1S2

S1S2 +K
S2(0) = s0

2

dP

dt
=

e0k2S1S2

S1S2 +K
P (0) = 0.

Now we prove that system (B.17) is the Tikhonov reduction of (B.16),
after writing (B.16) in the canonical form. The proof is similar to that of the
classical Michaelis-Menten model with one substrates [55].

Proposition B.5. Suppose that (S1, S2, P ) is the solution of Equation (B.17)
and

C =
e0S1 S2

S1 S2 +K

E = e0 − C.

Then, the solution of system (B.16) is approximated by these functions with
an error of order ε := e0/(s

0
1s

0
2). To be more precise,

S1(t) = S1(t) +O(ε) ∀t ∈ [0, T ]

S2(t) = S2(t) +O(ε) ∀t ∈ [0, T ]

P (t) = P (t) +O(ε) ∀t ∈ [0, T ],

for T > 0, and there exists T0 > 0 such that

C(t) = C(t) +O(ε) ∀t ∈ [T0, T ],

E(t) = E(t) +O(ε) ∀t ∈ [T0, T ].

Proof. Define

ε =
e0

s0
1s

0
2

τ = k1e0t

u1(τ) =
S1(t)

s0
1

u2(τ) =
S2(t)

s0
2

v(τ) =
C(t)

e0

.
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Then,

du1(τ)

dτ
=

α

k1e0s0
1

[
− k1(s0

1u1(τ))(s0
2u2(τ))(e0 − e0v(τ)) + k−1 e0v(τ)

]
(B.18)

du2(τ)

dτ
=

1− α
k1e0s0

2

[
− k1(s0

1u1(τ))(s0
2u2(τ))(e0 − e0v(τ)) + k−1 e0v(τ)

]
(B.19)

dv(τ)

dτ
=

1

k1e2
0

[
k1(s0

1u1(τ))(s0
2u2(τ))(e0 − e0v(τ))− (k−1 + k2)e0v(τ)

]
=
s0

1s
0
2

e0

[
(u1(τ))(u2(τ))(1− v(τ))− (k−1 + k2)

k1s0
1s

0
2

v(τ)
]

=
1

ε

[
u1(τ)u2(τ)(1− v(τ))− K

s0
1s

0
2

v(τ)
]

=
1

ε
· g(u1, u2, ν, τ) (B.20)

Thus, v is the variable in the slow part of the system and we have to solve
algebraically

0 = u1(τ)u2(τ)(1− v(τ))− K

s0
1s

0
2

v(τ),

whose solution is

v(τ) =
s0

1s
0
2u1(τ)u2(τ)

s0
1s

0
2u1(τ)u2(τ) +K

.

Substituting in the slow part, we obtain

du1(τ)

dτ
=

α

k1s0
1

[
− k1(s0

1s
0
2u1(τ)u2(τ))

(
1− s0

1s
0
2u1(τ)u2(τ)

s0
1s

0
2u1(τ)u2(τ) +K

)
+ k−1

s0
1s

0
2u1(τ)u2(τ)

s0
1s

0
2u1(τ)u2(τ) +K

]
=

α

k1s0
1

[
− k1

( s0
1s

0
2u1(τ)u2(τ)K

s0
1s

0
2u1(τ)u2(τ) +K

)
+ k−1

s0
1s

0
2u1(τ)u2(τ)

s0
1s

0
2u1(τ)u2(τ) +K

]
=

α

k1s0
1

[
−
(s0

1s
0
2u1(τ)u2(τ)(k−1 + k2)

s0
1s

0
2u1(τ)u2(τ) +K

)
+ k−1

s0
1s

0
2u1(τ)u2(τ)

s0
1s

0
2u1(τ)u2(τ) +K

]
=

α

k1s0
1e0

[
− e0k2

s0
1s

0
2u1(τ)u2(τ)

s0
1s

0
2u1(τ)u2(τ) +K

]
du2(τ)

dτ
=

1− α
k1s0

2e0

[
− e0k2

s0
1s

0
2u1(τ)u2(τ)

s0
1s

0
2u1(τ)u2(τ) +K

]



B.4. EXTENSION TO GENERAL METABOLIC NETWORKS 179

Reverting the change of variable, this is equivalent to

dS1(t)

dt
= −(α)

e0k2S1S2

S1S2 +K

dS2(t)

dt
= −(1− α)

e0k2S1S2

S1S2 +K
.

Applying Tikhonov’s Theorem [35], we obtain the conclusion of this Propo-
sition. Indeed, the Jacobian of the fast equation (B.20) satisfies

dg

dν
=− u1(τ)u2(τ)− K

s0
1s

0
2

< 0.

Analogously for the boundary layer equation

dν̂

dσ
= u1(0)u2(0)

[
1−

(
ν̂(σ) + ν(0)

)]
− K

s0
1s

0
2

(
ν̂(σ) + ν(0)

)
,

where σ := τ/ε and ν̂(0) = ν(0)− ν(0). �





APPENDIX C

Complements for Chapter 5

C.1. List of metabolites

Table C.1. List of metabolites for autotrophic microalgae metabolic network.

Abbreviation Metabolite
AcCoA Acetyl-coenzyme A

AcylACP-chl Acyl-acyl carrier protein
AcylCoa Acyl-coenzyme A

AKG α-Ketoglutarate
ALA Alanine
APF Absorbed light photon flux
ARG Arginine
ASN Asparagine
ASP Aspartate
ATP Adenosine-5’-triphosphate
CAR Carbohydrates
CYS Cysteine

CHLO Chlorophyll
DAG-chl Diacylglycerol, chloroplast
DAG-ER Diacylglycerol, endoplasmic reticulum

DNA Deoxyribonucleic acid
E4P Erythrose-4-phosphate

E4P-chl Erythrose-4-phosphate, chloroplast
F6P Fructose-6-phosphate

F6P-chl Fructose-6-phosphate, chloroplast
FA Fatty acid

FA-chl Fatty acid, chloroplast
FADH2 Flavin adenine dinucleotide, reduced
FUM Fumarate
G3P 3-Phosphoglycerate

G3P-chl 3-Phosphoglycerate, chloroplast
G6P Glucose-6-phosphate

G6P-chl Glucose-6-phosphate, chloroplast
GAP Glyceraldehyde-3-phosphate

GAP-chl Glyceraldehyde-3-phosphate, chloroplast
GLN Glutamine

181
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GLY Glycine
HIS Histidine
ILE Isoleucine

ISOCIT Isocitrate
LEU Leucine

LPthOH-chl Lyso-phosphatidic acid, chloroplast
LPthOH-ER Lyso-phosphatidic acid, endoplasmic reticulum

LYS Lysine
MalCoA-chl Malonyl-coenzyme A
MalACP-chl Malonyl-acyl carrier protein

MET Methionine
NADH Nicotinamide adenine dinucleotide, reduced

N Nitrate supply
NH3 Ammonium
NO3 Nitrate
OAA Oxaloacetate
PEP Phosphoenolpyruvate
PHE Phenylalanine
PRO Proline

PROT Protein
PtdOH-chl Phosphatidic acid, chlorophyll
PtdOH-ER Phosphatidic acid, endoplasmic reticulum

TAG Triacylglycerol
TAG-chl Triacylglycerol, chloroplast
TAG-ER Triacylglycerol, endoplasmic reticulum

R5P Ribose-5-phosphate
R5Pchl Ribose-5-phosphate, chloroplast
RNA Ribonucleic acid
Ru5P Ribulose-5-phosphate

Ru5Pchl Ribulose-5-phosphate, chloroplast
RuDP Ribulose-1,5-bisphosphate
SER Serine
S7P Sedoheptulose-7-phosphate

S7Pchl Sedoheptulose-7-phosphate, chloroplast
STA Starch

SUCCoA Succinyl-coenzyme A
THR Threonine
TRP Tryptophan
TYR Tyrosine
VAL Valine
X5P Xylulose-5-phosphate

X5Pchl Xylulose-5-phosphate, chloroplast
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C.2. List of reactions

Table C.2. Chemical reactions for an autotrophic microalgae metabolic net-
work. Reference for reactions (R1) - (R84) and (R102) - (R108): [79]. Reference
for reactions (R85) - (R101): [46].

Metabolic function (compartment) Reactions
Light Reaction (Chloroplast) 0.125APF + 2NADP ⇒ 2.6ATP (R1)
Calvin Cycle (Chloroplast) CO2 ⇒ 2G3Pchl (R2)

RuDP ⇒ 2G3Pchl (R3)
G3Pchl ⇒ GAPchl (R4)
ATP ⇒ GAPchl (R5)
G3Pchl ⇒ NADP (R6)
ATP ⇒ NADP (R7)

2GAPchl ⇒ F6Pchl (R8)
F6Pchl ⇐⇒ G6Pchl (R9)
F6Pchl ⇒ X5Pchl (R10)
F6Pchl ⇒ E4Pchl (R11)
E4Pchl ⇒ S7Pchl (R12)
S7Pchl ⇒ R5Pchl (R13)
S7Pchl ⇒ X5Pchl (R14)
R5Pchl ⇒ Ru5Pchl (R15)
X5Pchl ⇒ Ru5Pchl (R16)
Ru5Pchl ⇒ RuDP (R17)

Transport from Chloroplast GAPchl ⇒ GAP (R18)
to Cytoplasm

Glycolytic Pathway and 2GAP ⇒ F6P (R19)
Tricarboxylic Acid Cycle F6P ⇐⇒ G6P (R20)

(Cytoplasm and Mitochondrion) GAP ⇐⇒ G3P (R21)
G3P ⇐⇒ PEP (R22)
PEP ⇒ PY R (R23)
PY R⇒ AcCoA (R24)
PEP ⇒ OAA (R25)

OAA+AcCoA ⇐⇒ ISOCIT (R26)
ISOCIT ⇐⇒ AKG (R27)
AKG⇒ SUCCoA (R28)

SUCCoA ⇐⇒ FUM (R29)
FAD ⇐⇒ FADH2 (R30)
FUM ⇐⇒ OAA (R31)

Transport from Chloroplast NADP ⇒ NADPcyt (R32)
to Cytoplasm

Pentose Phosphate Pathway G6P + 2NADPcyt ⇒ Ru5P (R33)
(Cytoplasm) Ru5P ⇐⇒ R5P (R34)

Ru5P ⇐⇒ X5P (R35)
R5P ⇐⇒ S7P (R36)
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S7P ⇐⇒ E4P (R37)
E4P ⇐⇒ GAP (R38)

Nitrogen supply N ⇒ NO3 (R39)
Assimilation of nitrate NO3 ⇒ NH3 (R40)

(Chloroplast) NO3 ⇒ 3NADP (R41)
GLU ⇒ GLN (R42)
NH3 ⇒ GLN (R43)
AKG⇒ 2GLU (R44)
GLN ⇒ 2GLU (R45)

Amino acid synthesis GLU ⇒ PRO (R46)
(Cytoplasm) ASP ⇒ ARG (R47)

GLN ⇒ FUM (R48)
ASP ⇒ LY S (R49)
GLU ⇒ SER (R50)
SER⇒ GLY (R51)
SER⇒ CY S (R52)
GLU ⇒ ASP (R53)
ASP ⇒ ASN (R54)
ASP ⇒ THR (R55)
ASP ⇒MET (R56)
THR⇒ ILE (R57)
GLU ⇒ ALA (R58)
GLU ⇒ V AL (R59)
GLU ⇒ LEU (R60)
GLU ⇒ PHE (R61)
GLU ⇒ TY R (R62)
SER⇒ TRP (R63)
ASP ⇒ HIS (R64)

Oxidative Phosphorylation NADH ⇒ 2.5ATP (R65)
(Mitochondrion) FADH2 ⇒ 1.5ATP (R66)

Biosynthesis of Macromolecules G6Pchl ⇒ STA (R67)
(Chloroplast) 8GLU ⇒ CHLO (R68)

G6P ⇒ CAR (R69)
0.08406GLY ⇒ PROT (R70)
0.09959ALA⇒ PROT (R71)
0.0342ARG⇒ PROT (R72)
0.02058ASN ⇒ PROT (R73)
0.01046CY S ⇒ PROT (R74)
0.0274HIS ⇒ PROT (R75)
0.02988ILE ⇒ PROT (R76)
0.07003LEU ⇒ PROT (R77)
0.05309LY S ⇒ PROT (R78)
0.01555MET ⇒ PROT (R79)
0.03176PHE ⇒ PROT (R80)
0.04268PRO ⇒ PROT (R81)
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0.009932TRP ⇒ PROT (R82)
0.02583TY R⇒ PROT (R83)
0.05044V AL⇒ PROT (R84)

Transport from Mitochondrion AcCoA⇒ AcCoAchl (R85)
to Chloroplast

TAG synthesis (Chloroplast) AcCoAchl ⇒MalCoAchl (R86)
MalCoAchl ⇒MalACPchl (R87)
MalACPchl ⇒ AcylACPchl (R88)
AcylACPchl ⇒ FreeFAchl (R89)
AcylACPchl ⇒ LPtdOHchl (R90)
LPtdOHchl ⇒ PdtOHchl (R91)
PdtOHchl ⇒ DAGchl (R92)
DAGchl ⇒ TAGchl (R93)
TAGchl ⇒ TAGLD (R94)

Transport from Chloroplast FreeFAchl ⇒ FreeFA (R95)
to Cytoplasm
TAG synthesis FreeFA⇒ AcylCoa (R96)

(Endoplasmic Reticulum) AcylCoa⇒ LPtdOHER (R97)
LPtdOHER ⇒ PdtOHER (R98)
PdtOHER ⇒ DAGER (R99)
DAGER ⇒ TAGER (R100)
TAGER ⇒ TAGLD (R101)

Biosynthesis of Macromolecules 1.2ASP ⇒ RNA (R102)
(Nucleus) 0.54GLY ⇒ RNA (R103)

R5P ⇒ RNA (R104)
1.2ASP ⇒ DNA (R105)

0.25GLY ⇒ DNA (R106)
R5P ⇒ DNA (R107)

0.25SER⇒ DNA (R108)
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Figure C.1. Autotrophic Microalgae Metabolism Network, based on [79] and
[46]. Reactions are listed in Table C.2. Diagram generated automatically with
Copasi. The elements in red are inputs, precursors in the macromolecules for-
mation or macromolecules. They are considered to constitute the slow part of
the system.

C.3. Left Kernel Positive Vector

In order to obtain a reduced model to describe Carbohydrates, Neutral
Lipids and Chlorophyll synthesis in autotrophic microalgae, we consider the
network depicted Figure 5.2. To apply the approach described in this manu-
script, we suppose that the stoichiometric submatrix of fast reactions between
metabolites in QSS has a positive vector in the left kernel (see Section 2.5
and Remark B.1). Indeed, a positive vector in the left kernel was found using
the kernel tool in Scilab. This vector (β) is described below:
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β =



ATP 1

GAP 1
GAPchl 1

F6Pchl 2

S7Pchl 2
Ru5Pchl 2

AcylACPchl 3.68

X5Pchl 2
GLN 0.19

MalCoAchl 3.68

PdtOHchl 3.68
PEP 1

Ru5P 1

S7P 1
FreeFA 3.68

AKG 0.19
LPtdOHer 3.68

DAGer 3.68

G3Pchl 1
FADH2 1.5

DAGchl 3.68

SUCCoA 0.19
G3P 1

E4P 1

E4Pchl 2
MalACPchl 3.68

FreeFAchl 3.68

RuDP 2
PdtOHer 3.68

FUM 0.19
R5P 1

LPtdOHchl 3.68

R5Pchl 2
AcylCoa 3.68

FAD 1.5

PY R 1
G6Pchl 2

NH3 0.19
X5P 1

AcCoAchl 3.68
F6P 2

TAGer 3.68
NADH 2.5

ISOCIT 0.19
TAGchl 3.68



The stoichiometry was taken from Yang et al. [79], and Kliphuis et al.
[38] for reaction (R3). The fast reaction between metabolites in QSS are:
(R3) (R4) (R5) (R8) (R9) (R10) (R11) (R12) (R13) (R14) (R15) (R16) (R17) (R18) (R19) (R21) (R22)

(R23) (R27) (R28) (R29) (R30) (R34) (R35) (R36) (R37) (R38) (R43) (R48) (R65) (R66) (R86) (R87)

(R88) (R89) (R90) (R91) (R92) (R93) (R95) (R96) (R97) (R98) (R99) (R100)
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C.4. List of EFM

# Net Reaction Internal Species

1 NADP -> NADPcyt
2 GLU -> CHLO
3 G6P -> CAR

4 NO3 -> NADP
5 N -> NO3
6 AcCoA -> TAGld AcCoAchl, MalCoAchl, AcylACPchl, FreeFAchl, MalACPchl,

FreeFA, AcylCoa, LPtdOHer, PdtOHer, DAGer, TAGer
7 AcCoA -> TAGld AcCoAchl, MalCoAchl, AcylACPchl, LPtdOHchl,

PdtOHchl, DAGchl, TAGchl, MalACPchl

8 APF+NADP ->NADP ATP
9 AcCoA + OAA -> GLU ISOCIT, AKG
10 AcCoA+OAA ->OAA ISOCIT, AKG, SUCCoA, FUM
11 GLU->GLU GLN

12 NO3 -> GLU NH3, GLN
13 GLU -> OAA GLN, FUM
14 NO3 -> OAA NH3, GLN, FUM
15 CO2 -> NADP G3Pchl

16 APF+NADP ->NADP ATP, G3Pchl, GAPchl, RuDP, F6Pchl, X5Pchl, Ru5Pchl
17 APF+NADP ->NADP ATP, G3Pchl, GAPchl, RuDP, F6Pchl, E4Pchl, S7Pchl, R5Pchl, Ru5Pchl
18 APF+NADP ->NADP ATP, G3Pchl, GAPchl, RuDP, F6Pchl, X5Pchl, E4Pchl, S7Pchl, Ru5Pchl

19 APF + NADP -> G6P ATP, GAPchl, GAP, F6P
20 NADPcyt +G6P -> G6P GAP, F6P, Ru5P, R5P, S7P, E4P
21 CO2 -> G6P G3Pchl, GAPchl, GAP, F6P

22 APF + NADP -> OAA ATP, GAPchl, GAP, G3P, PEP
23 G6P + NADPcyt -> OAA GAP, G3P, R5P, PEP, Ru5P, S7P, E4P
24 CO2 -> OAA G3Pchl, GAPchl, GAP, G3P, PEP

25 APF + NADP -> AcCoA ATP, GAPchl, GAP, G3P, PEP, PYR
26 G6P + NADPcyt -> AcCoA GAP, G3P, R5P, PEP, PYR, Ru5P, S7P, E4P

27 CO2 -> AcCoA G3Pchl, GAPchl, GAP, G3P, PEP, PYR

Table C.3. Elementary flux modes for carbohydrates, neutral lipids and
chlorophyll synthesis in autotrophic microalgae. They were computed with
Copasi.

Table C.4. Composition of each EFM in Table C.3.

# Reactions Equations

1 1 * R32 NADP -> NADPcyt

2 1 * R68 GLU -> CHLO
3 1 * R69 G6P -> CAR

4 1 * R41 NO3 -> NADP

5 1 * R39 N -> NO3
6 1 * R101 TAGer -> TAGld

1 * R 100 DAGer -> TAGer

1 * R99 PdtOHer -> DAGer
1 * R98 LPtdOHer -> PdtOHer

1 * R97 AcylCoa -> LPtdOHer
1 * R96 FreeFA -> AcylCoa

1 * R95 FreeFAchl -> FreeFA

1 * R 89 AcylACPchl -> FreeFAchl
1 * R88 MalACPchl -> AcylACPchl
1 * R87 MalCoAchl -> MalACPchl
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1 * R86 AcCoAchl -> MalCoAchl
1 * R85 AcCoA -> AcCoAchl

7 1 * R94 TAGchl -> TAGld
1 * R93 DAGchl -> TAGchl
1 * R92 PdtOHchl -> DAGchl

1 * R91 LPtdOHchl -> PdtOHchl
1 * R90 AcylACPchl -> LPtdOHchl
1 * R88 MalACPchl -> AcylACPchl

1 * R87 MalCoAchl -> MalACPchl
1 * R86 AcCoAchl -> MalCoAchl
1 * R85 AcCoA -> AcCoAchl

8 1 * R7 ATP -> NADP

1 * R1 APF + NADP -> ATP
9 1 * R26 OAA + AcCoA -> ISOCIT

1 * R27 ISOCIT = AKG

1 * R44 AKG -> GLU
20 1 * R26 OAA + AcCoA -> ISOCIT

1 * R27 ISOCIT = AKG
1 * R29 SUCCoA = FUM

1 * R31 FUM = OAA
1 * R28 AKG -> SUCCoA

11 1 * R45 GLN -> GLU

1 * R42 GLU -> GLN
12 1 * R45 GLN -> GLU

1 * R43 NH3 -> GLN
1 * R40 NO3 -> NH3

13 1 * R31 FUM = OAA

1 * R48 GLN -> FUM
1 * R42 GLU -> GLN

14 1 * R31 FUM = OAA

1 * R48 GLN -> FUM
1 * R43 NH3 -> GLN
1 * R40 NO3 -> NH3

15 1 * R6 G3Pchl -> NADP
1 * R2 CO2 -> G3Pchl

16 1 * R6 G3Pchl -> NADP
1 * R17 Ru5Pchl -> RuDP

1 * R16 X5Pchl -> Ru5Pchl
1 * R10 F6Pchl -> X5Pchl
1 * R8 GAPchl -> F6Pchl

1 * R5 ATP -> GAPchl
1 * R3 RuDP -> G3Pchl
1 * R1 APF + NADP -> ATP

17 1 * R6 G3Pchl -> NADP

1 * R17 Ru5Pchl -> RuDP
1 * R15 R5Pchl -> Ru5Pchl

1 * R13 S7Pchl -> R5Pchl

1 * R12 E4Pchl -> S7Pchl
1 * R11 F6Pchl -> E4Pchl

1 * R8 GAPchl -> F6Pchl
1 * R5 ATP -> GAPchl

1 * R3 RuDP -> G3Pchl

1 * R1 APF + NADP -> ATP
18 1 * R6 G3Pchl -> NADP

1 * R17 Ru5Pchl -> RuDP

1 * R16 X5Pchl -> Ru5Pchl
1 * R14 S7Pchl -> X5Pchl

1 * R12 E4Pchl -> S7Pchl
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1 * R11 F6Pchl -> E4Pchl
1 * R8 GAPchl -> F6Pchl

1 * R5 ATP -> GAPchl
1 * R3 RuDP -> G3Pchl
1 * R1 APF + NADP -> ATP

19 1 * R20 F6P = G6P
1 * R19 GAP -> F6P
1 * R18 GAPchl -> GAP

1 * R5 ATP -> GAPchl
1 * R1 APF + NADP -> ATP

20 1 * R20 F6P = G6P
1 * R34 Ru5P = R5P

1 * R36 R5P = S7P
1 * R37 S7P = E4P
1 * R38 E4P = GAP

1 * R33 G6P + NADPcyt -> Ru5P
1 * R19 GAP -> F6P

21 1 * R20 F6P = G6P
1 * R19 GAP -> F6P

1 * R18 GAPchl -> GAP
1 * R4 G3Pchl -> GAPchl
1 * R2 CO2 -> G3Pchl

22 1 * R21 GAP = G3P
1 * R22 G3P = PEP
1 * R25 PEP -> OAA
1 * R18 GAPchl -> GAP
1 * R5 ATP -> GAPchl

1 * R1 APF + NADP -> ATP
23 1 * R21 GAP = G3P

1 * R22 G3P = PEP

1 * R34 Ru5P = R5P
1 * R36 R5P = S7P
1 * R37 S7P = E4P

1 * R38 E4P = GAP
1 * R33 G6P + NADPcyt -> Ru5P
1 * R25 PEP -> OAA

24 1 * R21 GAP = G3P

1 * R22 G3P = PEP
1 * R25 PEP -> OAA
1 * R18 GAPchl -> GAP

1 * R4 G3Pchl -> GAPchl
1 * R2 CO2 -> G3Pchl

25 1 * R21 GAP = G3P

1 * R22 G3P = PEP

1 * R24 PYR -> AcCoA
1 * R23 PEP -> PYR

1 * R18 GAPchl -> GAP

1 * R5 ATP -> GAPchl
1 * R1 APF + NADP -> ATP

26 1 * R21 GAP = G3P
1 * R22 G3P = PEP

1 * R34 Ru5P = R5P

1 * R36 R5P = S7P
1 * R37 S7P = E4P

1 * R38 E4P = GAP

1 * R33 G6P + NADPcyt -> Ru5P
1 * R24 PYR -> AcCoA

1 * R23 PEP -> PYR
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27 1 * R21 GAP = G3P
1 * R22 G3P = PEP

1 * R24 PYR -> AcCoA
1 * R23 PEP -> PYR
1 * R18 GAPchl -> GAP

1 * R4 G3Pchl -> GAPchl
1 * R2 CO2 -> G3Pchl

C.5. Lumped parameters

To simplify the notation of system (5.1), we lumped several parameters.
They description of them is presented here. All parameters ai are positive,
except for a16, a22, a27, a36, a37, a40, which can take any real values.

The parameters here denoted by κ represent linear combinations of mi-
nors of the stoichiometric matrix (restricted to the fast metabolites). Its
description is complex, then we do not give further details on them (see,
for example, the results for the toy networks in Chapter 3 and Chapter 4).
e0
ijkij and Kij is the notation used previously for Michaelis-Menten enzymatic

reactions.
The following symbols represent amino acids produced after GLU . They

are considered for parameter a33:

ac1 = GLN ; ac2 = PRO; ac3 = SER; ac4 = ASP ; ac5 = ALA;

ac6 = V AL; ac7 = LEU ; ac8 = PHE; ac9 = TY R.
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a1 = kN (nitrate input rate) a2 = e031k31 a3 = K31

a4 = e0NH3,1kNH3,1 a5 = KNH3,1 a6 = kC (carbon input rate)

a7 = c0 (absorbed carbon rate) a8 = e0G3P,2kG3P,2 a9 = KG3P,2

a10 = (α)e0Ru5P kRu5P a11 = KRu5P a12 = κ4

a13 = κ42 a14 = e084k84 a15 = K84

a16 = (e0F6P,4kF6P,4 − κ4,F6P ) ∈ R a17 = KF6P,4 a18 = κ5

a19 = κ52 a20 = e0chl,5kchl,5 a21 = Kchl,5

a22 = (β)e0ISO,5kISO,5 − κ5,ISO ∈ R a23 = KISO a24 = κ6

a25 = κ61 a26 = κ62

a27 = (1− β)e0ISO,6kISO,6 − κ6,ISO ∈ R a28 = KFUM,6 a29 = κ71

a30 = κ75 a31 = e010,7k10,7 a32 = K10,7

a33 =

9∑
γ=1

e0acγ ,7kacγ ,7 a34 = Kacγ ,7 a35 = κ95

a36 = (e0FUM,6kFUM,6 − κ6,FUM ) ∈ R

a37 = (1− α)e0Ru5P kRu5P − κ4,F6P ∈ R
a38 = κ53 a39 = κ63

a40 = (e0ATP,3kATP,3 − e03,ATP k3,ATP ) ∈ R a41 = e011,3k11,3

a42 = K11,3 a43 = κ67 a44 = KGLN,7

a45 = kGLN,7 a46 = κ32.



APPENDIX D

Optimal values for homographic functions

Definition D.1. A function f : I ⊂ R→ R is homographic with respect
to α if it has the form

f(α) =
α · a11 + a12

α · a21 + a22

,

where I is an interval such that α · a21 + a22 6= 0 for all α ∈ I, and aij is a
real number for any i, j ∈ {1, 2}.

Proposition D.1. Let f : [t0, t1]→ R be the homographic function

f(α) =
α · a11 + a12

α · a21 + a22

,

where α · a21 + a22 6= 0 for all α ∈ [t0, t1]. Define the matrix

H :=

(
a11 a12

a21 a22

)
.

Then, f is a monotone function and it is increasing if det H ≥ 0 and de-
creasing if det(H) ≤ 0. Moreover, f has its maximum and minimum at the
extremes of the interval.

Proof. The derivative with respect to α is

f ′(α) =
a11a22 − a12a21

(α · a21 + a22)2
,

and det(H) = a11a22 − a12a21. Thus, f ′(α) ≥ 0 for every α ∈ D if and only
if det(H) ≥ 0 and, in this case, f is increasing, its minimum is f(t0) and its
maximum f(t1).

Analogously, f ′(α) ≤ 0 for every α ∈ D if and only if det(H) ≤ 0. In
this case f is decreasing and has its maximum in f(t0) and its minimum in
f(t1). �
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chlamydomonas genome reveals the evolution of key animal and plant functions. Sci-
ence, 318(5848):245–250, 2007.

https://doi.org/10.1155/2018/2342650
https://doi.org/10.1002/aic.16406


204 BIBLIOGRAPHY

[54] C. D. Meyer. Matrix analysis and applied linear algebra. Society for Industrial and
Applied Mathematics, Philadelphia, 2000.

[55] J. Murray. Mathematical Biology, volume I. An Introduction. Springer, 2001.
[56] A. Narang-Siddarth and J. Valasek. Nonlinear Time Scale Systems in Standard and

Nonstandard Forms: Analysis and Control. Society for Industrial and Applied Math-
ematics, Philadelphia, 2014.

[57] J. D. Orth, I. Thiele, and B. O. Palsson. What is flux balance analysis? Nature
biotechnology, 28(3):245–248, 2010.

[58] O. Perez-Garcia, F. M. Escalante, L. E. de Bashan, and Y. Bashan. Heterotrophic
cultures of microalgae: metabolism and potential products. Water research, 45(1):11–
36, 2011.

[59] L. Perko. Differential equations and dynamical systems. Texts in Applied Mathematics
7. Springer-Verlag, 1991.

[60] A. Provost and G. Bastin. Dynamic metabolic modelling under the balanced growth
condition. Journal of Process Control, 14(7):717–728, 2004.

[61] O. Radulescu, A. Gorban, A. Zinovyev, and A. Lilienbaum. Robust simplifications of
multiscale biochemical networks. BMC systems biology, 2(1):86, 2008.

[62] T. Rapoport, R. Heinrich, and S. Rapoport. The regulatory principles of glycoly-
sis in erythrocytes in vivo and in vitro. a minimal comprehensive model describing
steady states, quasi-steady states and time-dependent processes. Biochemical Journal,
154(2):449–469, 1976.

[63] J. N. Rosenberg, G. A. Oyler, L. Wilkinson, and M. J. Betenbaugh. A green light for
engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current
opinion in biotechnology, 19(5):430–436, 2008.

[64] D. Rotin, B. Robinson, and I. F. Tannock. Influence of hypoxia and an acidic envi-
ronment on the metabolism and viability of cultured cells: potential implications for
cell death in tumors. Cancer research, 46(6):2821–2826, 1986.
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