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Introduction

In geophysics and astrophysics, large scale ows are mainly induced by radial gravitational elds. Coupled with temperature gradients, the gravity eld, as well as the centrifugal acceleration and magnetic elds, can generate convective ows in the core of the planets and stars. In this framework, many author have investigated the ow of a uid conned in a spherical shell [START_REF] Yavorskaya | A simulation of central-symmetry convection in microgravity conditions[END_REF][START_REF] Hollerbach | A spectral solution of the magneto-convection equations in spherical geometry[END_REF][START_REF] Travnikov | Stability of natural convection between spherical shells: energy theory[END_REF][START_REF] Travnikov | Inuence of an axial magnetic eld on the stability of convective ows between non-isothermal concentric spheres[END_REF][START_REF] Travnikov | Inuence of the Prandtl number on the stability of convective ows between non-isothermal concentric spheres[END_REF]. Aiming to have a purely central force eld, experiments in weightlessness are of most interest.

The application of a radial electric eld combined with a temperature gradient is a way to obtain a centripetal eective gravity eld. Using this method, experiments have been performed on-board the international space station to obtain long time micro-gravity conditions [START_REF] Hart | Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity[END_REF][START_REF] Futterer | Thermal convection in rotating spherical shells: an experimental and numerical approach within GeoFlow[END_REF][START_REF] Futterer | First identication of sub-and supercritical convection patterns from 'GeoFlow', the geophysical ow simulation experiment integrated in Fluid Science Laboratory[END_REF][START_REF] Futterer | From isoviscous convective experiment 'GeoFlow I' to temperature-dependent viscosity in 'GeoFlow II' -Fluid physics experiments on-board ISS for capture of convection phenomena in Earth's outer core and mantle[END_REF][START_REF] Futterer | Sheet-like and plume-like thermal ow in a spherical convection experiment performed under microgravity[END_REF].

The ow of a uid conned between two concentric cylinders is a model for geophysical ows in the equatorial region of planets and stars, where the direction of gravity and that of the temperature gradient are nearly parallel. It is also a prototype in non-linear physics, since it exhibits a large variety of bifurcation phenomena. In addition, many applications involve the ow induced by centrifugal force together with thermal buoyancy, such as microuidic systems and heat exchangers [START_REF] Wadsworth | Cooling of a multichip electronic module by means of conned two-dimensional jets of dielectric liquid[END_REF][START_REF] Joshi | Natural convection heat transfer from an array of rectangular protrusions in an enclosure lled with dielectric liquid[END_REF][START_REF] Barbic | Electromagnetic micromotor for microuidics applications[END_REF]. For these reasons, the convective ow induced by centrifugal forces and various thermal buoyancies in a dierentially rotating and heated cylindrical annulus has been studied to reinforce existing knowledge.

Previous work 1.Taylor-Couette instability

A uid conned between two concentric cylinders rotating at dierent rotation rates can undergo instabilities because of the competition of the stabilising eect of the viscous dissipation and the destabilising eect of the centrifugal force. This mechanism is called the Taylor-Couette instability and was rst successfully studied theoretically and experimentally by Taylor in 1923 [START_REF] Taylor | Stability of a viscous liquid contained between two rotating cylinders[END_REF] where he considered the small gap approximation. The larger gap problem was then studied by Chandrasekahar in 1958 [START_REF] Chandrasekhar | The stability of viscous ow between rotating cylinders[END_REF]. Andereck et al. [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF] performed in 1986 an exhaustive experimental study, while investigating not only the primary instability, but also regimes of more complex properties observed at higher instability level.

Thermo-hydrodynamic instability

Applying a temperature dierence between the two cylinders provides a radial density stratication. The rotation of the cylinders gives rise to the centrifugal acceleration which acts on this stratication and changes the stability conditions. Many authors theoretically investigated this problem through a linear stability analysis while considering a weightless environment. Yih [START_REF] Yih | Dual role of viscosity in the instability of revolving uids of variable density[END_REF] considered steady axisymmetric perturbations and showed in 1961 that if the circulation increases with the radial distance, which is a Rayleigh stable condition, but the density decreases, the ow can be less stable or even unstable. In 1964, Walowit et al. [START_REF] Walowit | Stability of ow between arbitrarily spaced concentric cylindrical surfaces including the eect of a radial temperature gradient[END_REF] realised a similar analysis for a wide range of gap size, but only for Rayleigh unstable conditions. They found that positive and negative temperature gradients are destabilizing and stabilizing, respectively. [START_REF] Soundalgekar | Eect of radial temperature gradient on the stability of viscous ow in an annulus with a rotating inner cylinder[END_REF] [START_REF] Soundalgekar | Eect of radial temperature gradient on the stability of viscous ow in an annulus with a rotating inner cylinder[END_REF] and [START_REF] Takhar | Eects of radial temperature gradient on the stability of ow of a viscous incompressible uid between two rotating cylinders[END_REF][START_REF] Takhar | Eects of radial temperature gradient on the stability of a narrow-gap annulus ow[END_REF] [START_REF] Takhar | Eects of radial temperature gradient on the stability of ow of a viscous incompressible uid between two rotating cylinders[END_REF][START_REF] Takhar | Eects of radial temperature gradient on the stability of a narrow-gap annulus ow[END_REF] conrmed the results of Walowit et al. in the case of a narrow gap with a heated outer cylinder at rest. In 1988, Takhar et al. [START_REF] Takhar | Eects of radial temperature gradient on the stability of ow in an annulus with constant heat ux at the inner cylinder: wide-gap problem[END_REF] showed that a constant heat ux at the inner cylinder enhances the stability of the ow and that decreasing the gap-width has a destabilising eect. In 1994, Kong et al. [START_REF] Kong | The stability of nonaxisymmetric circular Couette ow with a radial temperature gradient[END_REF] considered the stability of ows in counter-rotating regimes against non-axisymmetric perturbations for dierent gap widths. They found that oscillatory helical modes can occur in the isothermal case and that the temperature gradient has an impact on the number of modes in the azimuthal direction. Auer et al. [START_REF] Auer | Three-dimensional convection driven by centrifugal buoyancy[END_REF] added a weakly non-linear study to their linear stability analysis when both cylinders rotate at the same frequency. They found that heating the outer cylinder leads to a convective regime of columnar modes. [START_REF] Eagles | Stability of ow between two rotating cylinders in the presence of a constant heat ux at the outer cylinder and radial temperature gradient -wide gap problem[END_REF] [START_REF] Eagles | Stability of ow between two rotating cylinders in the presence of a constant heat ux at the outer cylinder and radial temperature gradient -wide gap problem[END_REF], and Panday et al. (2015) [START_REF] Pandey | Eect of a constant heat ux at outer cylinder on stability of viscous ow in a narrow-gap annulus with radial temperature gradient[END_REF] considered a constant heat ux at the outer cylinder for several rotation regimes. They conrmed the destabilising eect of the centrifugal buoyancy and found that the wavenumber of the modes decreases with increasing the temperature dierence.

The eect of the Earth's gravity on a vertical dierentially heated cylindrical annulus has also been studied theoretically, numerically and experimentally. Choi and Korpela [START_REF] Choi | Stability of the conduction regime of natural convection in a tall vertical annulus[END_REF] performed in 1980 a linear stability analysis of this problem with positive temperature gradients and compared their theoretical results with experimental ones. The critical modes are axisymmetric and drift upward. The computed thresholds, wavelength and velocities of the modes agreed with those measured experimentally. In 2000, Bahloul et al. [START_REF] Bahloul | Codimension 2 points in the ow inside a cylindrical annulus with a radial temperature gradient[END_REF] highlighted the existence of two dierent mechanisms for the occurrence of instabilities using a linear stability analysis. Depending on the uid diusion properties and on the radius ratio between the two cylinders, the critical modes can have either a hydrodynamic nature or a thermal nature.

In 1964, Snyder and Karlsson [START_REF] Snyder | Experiments on the stability of Couette motion with a radial thermal gradient[END_REF] performed an experimental study of a uid conned between an inner rotating cylinder and an outer stationary one. They noticed the occurrence of helical modes when the temperature gradient was applied. Ball and Farouk studied the same problem numerically with a nite volume of uid [START_REF] Ball | Bifurcation phenomena in Taylor-Couette ow with buoyancy eects[END_REF] and experimentally [START_REF] Ball | An experimental study of heat transfer in a vertical annulus with rotating inner cylinder[END_REF]. They characterised the bifurcation from the quasi-isothermal Taylor-Couette instability to the ow dominated by axial buoyancy through the variation of the ratio between the Grashof number and the square of the inner Reynolds number σ. They found that when 0.01 < σ < 10, the critical modes take the form of helical modes. Ali and Weidman [START_REF] Ali | On the stability of circular Couette ow with radial heating[END_REF] investigated the problem by a linear stability theory for innite length cylinders of dierent radius ratios for uids with dierent values of the Prandtl number. They found that increasing the Prandtl number destabilises the ow. They compared their results with previous experiments and found a good agreement. In 2013, Yoshikawa et al. [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF] also used a linear stability theory for both directions of the temperature gradient. They found that the centrifugal buoyancy can induce an asymmetry between positive and negative temperature gradients on the critical state.

Convection induced by centripetal gravity

In the framework of astrophysical and geophysical research, some authors investigated theoretically the stability of the ow in a cylindrical annulus with an imposed centripetal acceleration eld. In 1981, Economides and Moir [START_REF] Economides | Taylor vortices and the Goldreich-Schubert instability[END_REF] performed a linear stability analysis of a uid conned between a cold rotating inner cylinder and a warm stationary outer one with a narrow gap in an articial radial gravity eld. The gravity eld was assumed radially invariant. They found that for suciently large values of the Prandtl number, critical modes can be helical. [START_REF] Alonso | On the transition to columnar convection[END_REF]in 1999 [35, 36] performed a linear stability analysis of a rotating cylindrical annulus with a negative temperature gradient and a constant central gravity eld. The annulus has a nite aspect ratio. The authors considered the eect of the boundary conditions imposed at both ends of the annulus. They highlighted the transition from columnar modes to helical ones depending on the radius ratio and the aspect ratio. The columns were found to be stationary in the rotating frame when stress free conditions were used, and oscillatory when no-sleep conditions were used.

In the aboved-mentioned investigations [START_REF] Economides | Taylor vortices and the Goldreich-Schubert instability[END_REF][START_REF] Alonso | On the transition to columnar convection[END_REF][START_REF] Alonso | Onset of convection in a rotating annulus with radial gravity and heating[END_REF], the eect of the centrifugal acceleration on the density stratication, i.e. the centrifugal buoyancy, was not taken into account.

Thermo-electro-hydrodynamic instability

A cylindrical annulus of a dielectric uid subjected to a temperature gradient and an high alternating electric tension undergoes the dielectrophoretic (DEP) force which can be seen as a thermal buoyancy in an eective gravity eld of electric nature. In 1972, Chandra and Smylie [START_REF] Chandra | A laboratory model of thermal convection under a central force eld[END_REF] carried out an experiment with a vertical stationary cylindrical annulus subjected to the DEP force. They also performed a linear stability analysis and compared the experimental results with the theoretical ones. They demonstrated the feasibility of inducing convective ow using the DEP force. The agreement between the stability analysis and the experimental results proved the validity of the simplications used in the stability analysis. In 1979, Takashima [START_REF] Takashima | Electrohydrodynamic instability in a dielectric uid between two coaxial cylinders[END_REF] analysed the problem with a narrow gap using linear stability theory. He found that a positive (negative) temperature gradient (de)stabilises the ow as the radius ratio decreases. When the temperature gradient is positive, there exists a value of the radius ratio bellow which no instability occurs. Stiles and Kagan [START_REF] Stiles | Stability of cylindrical Couette ow of a radially polarised dielectric liquid in a radial temperature gradient[END_REF] also performed in 1993 a linear stability analysis of the problem with a narrow gap and a rotating inner cylinder. They considered the stability of the ow against stationary axisymmetric modes. When the electric potential is not applied, they found the stabilisation of the circular Couette ow when they decreased the temperature gradient from positive to negative values. With a large electric potential, the critical Taylor number decreases with decreasing the temperature gradient. Malik et al. [START_REF] Malik | Thermo-electro-hydrodynamic instabilities in a dielectric liquid under microgravity[END_REF] studied in 2012 the stability of the ow between two stationary cylinders under microgravity condition against non-axisymmetric oscillatory modes with a negative temperature gradient. The critical mode and the critical Rayleigh number are independent of the Prandtl number, while they depend on the curvature of the cylinders. Critical modes take the form of stationary helical modes. Yoshikawa et al. [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF] extended the analysis of Malik et al. one year later with considering positive temperature gradients. The analysis of the dierent energy transfer mechanisms from the base state to perturbation ows showed that, for strong thermo-electric coupling, the ow is stabilised by the perturbation component of the electric gravity. They also showed that, for positive temperature gradients, instabilities are found for narrow gaps, which is in agreement with the results of Takashima. Travnikov et al. [START_REF] Travnikov | Numerical investigation of the heat transfer in cylindrical annulus with a dielectric uid under microgravity[END_REF][START_REF] Travnikov | Inuence of the thermo-electric coupling on the heat transfer in cylindrical annulus with a dielectric uid under microgravity[END_REF] performed a numerical simulation of a cylindrical annulus under microgravity conditions with a negative temperature gradient close to the onset of convective ow. Their results are in good agreement with the previous linear stability analyses [START_REF] Malik | Thermo-electro-hydrodynamic instabilities in a dielectric liquid under microgravity[END_REF][START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF]. The bifurcation from the conductive state to the convective state was found to be supercritical. The evolution of the heat transfer with the electric Rayleigh number is sensitive to the Prandtl number for low radius ratio.

The thermoelectric coupling for small gaps has a stabilising eect and decreases the slope of the Nusselt number as function of the electric Rayleigh number. In 2016, Futterer et al. [START_REF] Futterer | Thermal electro-hydrodynamic heat transfer augmentation in vertical annuli by the use of dielectrophoretic forces through a.c. electric eld[END_REF] made experiments consisting on a cylindrical annulus under microgravity conditions during a parabolic ight campaign. They found the increase of the Nusselt number when the electric Rayleigh number is larger than the critical value.

Thesis organisation

This thesis consists on the study of the bifurcations from a base state to an unstable ow using linear stability analysis (LSA). Such bifurcations are accompanied with heat transfer enhancement and increase of the torque at the cylindrical surfaces. The objective of this thesis is to evaluate the eect of the centrifugal buoyancy and of the dielectrophoretic force on the stability of dierent ow congurations in order to provide quantitative results on the critical thresholds and on the spatial and temporal nature of the unstable state. The eects of dierent parameters, such as the geometry, the uid diusive properties or the temperature gradient are also investigated.

Chapter 2 is dedicated to the formulation of the problem and of the method used to performed the LSA. Then the thesis is divided in two parts. In the rst part, the eect of the centrifugal buoyancy on the circular Couette ow under weightlessness is analysed. As an introduction, the method is applied to the isothermal case for dierent rotation regimes in Chapter 3. Then the eect of the centrifugal buoyancy is considered on a Rayleigh unstable regime in Chapter 4. In this chapter, we investigated the case µ = 0, where µ is the ratio between the rotation rates of the outer and of the inner cylinders. Chapter 5 is dedicated to the cases where µ = ∞ and µ = η 3/2 , which are two Rayleigh stable regimes. In Chapter 6, the solid body rotation is investigated, i.e. µ = 1. This regime is also Rayleigh stable, but is analysed in a dierent chapter since solid rotation enable analogies with the Rayleigh-Bénard convection. Figure 1.1 shows the dierent chosen values of µ in correspondence to the dierent chapters.

In the second part, the eect of the DEP force on the stability of a uid conned in a cylindrical annulus is analysed. As an introduction, results based on previous works on the application of the DEP force in a cylindrical annulus are presented in Chapter 7. Chapter 8 is dedicated to the application of the thermoelectric buoyancy to a rigidly rotating annulus of uid. Then we considered the eect of the DEP force on a stationary annulus of uid submitted to the Earth's gravity in Chapter 9. General conclusions and outlooks are given in Chapter 10

An additional chapter dealing with experimental results is given in Appendix A. The results obtained in this part come from a collaboration between the University of Le Havre and the Brandenbourgische Technische Universität Cottbus-Senftenberg. This chapter contains experimental results obtained in laboratory, as well as during parabolic ight campaigns. In addition, simulations of shadowgraph method have been performed.

A part of obtained results during the thesis has been published in scientic journals and presented to conferences: Chapter 2

Publications • H.N.

Problem formulation

We consider a Newtonian dielectric uid of density ρ, kinematic viscosity ν, thermal diusivity κ and permittivity ε conned between two coaxial vertical cylindrical electrodes of innite length (Fig. 2.1). The inner cylinder, of radius R 1 , maintained at a temperature T 1 rotates with an angular velocity Ω 1 while the outer cylinder, of radius R 2 = R 1 + d, maintained at another temperature T 2 = T 1 rotates with an angular velocity Ω 2 . In addition, an alternating electric potential is applied between the two electrodes, which gives rise to a radial electric eld. The temperature dierence ∆T = T 1 -T 2 induces a radial stratication in density and in permittivity, which are, in most cases, both decreasing functions of the temperature. Under these conditions, three thermal buoyancies are present.

• The Earth's gravity acts on the density stratication and gives rise to the Archimedean buoyancy.

• The centrifugal force also acts on the density stratication and brings about the centrifugal buoyancy.

• The electric eld acts on the permittivity gradient to produce the dielectrophoretic force.

These three buoyancies will be considered in various congurations, together or separately, and can be sources of instabilities of dierent natures.

The dielectrophoretic force

When an electric eld is applied to a dielectric liquid with a permittivity gradient, it undergoes the electrohydrodynamic (EHD) force given per unit volume by [START_REF] Landau | Electrodynamics of Continuous media[END_REF]: The rst term F EP is the electrophoretic force. It results from the action of the electric eld on free charges and is given by the relation:

F EHD = F EP + F DEP + F ES (2.1) 
F EP = ρ e E (2.2)
where E is the electric eld and ρ e is the density of free charges. If the applied tension is alternating with a high frequency compared to the inverse of the charge relaxation time τ e = ε/σ e , where σ e is the electric conductivity, the electrophoretic force can be neglected. In fact, the charge relaxation time characterises the accumulation process of charges within a uid. The high frequency of the electric eld prevents from this accumulation and makes the uid electrically neutral [START_REF] Jones | Electrohydrodynamically enhanced heat transfer in liquids: A review[END_REF].

The third term F ES of equation (2.1) is the electrostrictive force and is given by:

F ES = ∇ 1 2 ρ ∂ε ∂ρ T E 2 (2.3)
As long as the uid is incompressible or monophasic without any mobile boundary, the electrostrictive force will not play any dynamical role and will be include in the pressure gradient of the momentum equations.

The second term F DEP of Eq. (2.1) is the dielectrophoretic (DEP) force. It arises from the dierential polarisation of uit and is given by:

F DEP = - 1 2 E 2 ∇ε (2.4)
Within the previous assumption, the DEP force is the dominant one and can arise from a temperature dierence applied to the uid. Indeed, the DEP force is proportional to the gradient of the electric permittivity, which is, for most uids, a decreasing function of the temperature. Its variation will be modelled by the linear relationship ε(T

) = ε ref [1 -e (T -T ref )],
where ε ref is the permittivity at the reference temperature T ref .

The coecient e is the coecient of thermal variation of permittivity and takes positive value of the order of 10 -3 K -1 to 10 -1 K -1 . Taking into account the linear variation of the permittivity, the DEP force (2.4) can be written:

F DEP = -e (T -T ref ) ∇ ε ref E 2 2 + ∇ e (T -T ref ) E 2 2
(2.5)

The second term in (2.5) is a gradient which can be lumped with the pressure gradient term in the momentum equation. The st term correspond to the thermoelectric buoyancy and can be written in the form -α (T -T ref ) g e . The choice of this notation highlights the analogy between the thermal Archimedean buoyancy and the thermoelectric buoyancy where the Earth gravity is replaced by an eective gravity g e of electric nature given by:

g e = e αρ ref ∇ ε ref E 2 2 (2.6)
where α is the thermal expansion coecient and ρ ref is the density at the reference temperature.

The electric gravity corresponds to the gradient of the electric energy density in the uid. The analogy implies that thermal convection can be induced by the thermoelectric buoyancy.

Governing equations

The temperature dierence ∆T being suciently small, the electrohydrodynamic Boussinesq approximation can be adopted [START_REF] Turnbull | Eect of dielectrophoretic forces on the Bénard instability[END_REF]. Thus uid properties can be considered as constant, except in the terms responsible for the change of stability condition. In these terms, the density is also approximated by the linear functions ρ(θ) = ρ ref (1 -αθ), θ = T -T ref being the temperature deviation from the reference temperature. This Boussinesq approximation remains valid as long as the rotation rates of the two cylinders are low enough to neglect the density variation in the other advection terms than the centrifugal acceleration term [START_REF] Lopez | The Boussinesq approximation in rapidly rotating ow[END_REF].

As the frequency of the electric tension is high compared to the inverse viscous time scale

τ ν = d 2 /
ν and to the inverse thermal time scale τ κ = d 2 /κ, we can assume that nothing happens during an oscillation of the electric potential. So all the equations can be time-averaged over a period of the electric eld and the imposed electric potential √ 2V 0 sin(2πf t) can be replaced by its eective value V 0 . Turnbull and Melcher found that this assumption predicted successfully the onset of the DEP thermal convection [START_REF] Turnbull | Electrohydrodynamic Rayleigh-Taylor bulk instability[END_REF]. The velocity eld u = (u, v, w), the temperature deviation θ, the generalized pressure π and the electric potential φ are determined by the continuity equation, the Navier-Stokes equations, the energy equation and the Gauss' law of electricity in the cylindrical polar coordinates (r, ϕ, z) in the laboratory frame of reference:

∇ • u = 0 (2.7a) ∂u ∂t + (u • ∇) u = -∇π + ν∆u -αθ (g + g c + g e )
(2.7b)

∂θ ∂t + (u • ∇) θ = κ∆θ (2.7c) ∇ • (εE) = 0 with E = -∇φ (2.7d)
where the three accelerations g, g c and g e are given by:

g = -ge z , g c = v 2 r e r , g e = e αρ ∇ ε 2 E 2 2
(2.8)

The generalized pressure π includes the conservative term of the DEP force (2.5), the ES force (2.3) and the hydrostatic pressure:

π = p ρ 2 + gz - eθε 2 E 2 2ρ 2 - 1 2 ∂ε ∂ρ θ E 2
(2.9)

The ow and electric elds satisfy Dirichlet conditions at the two cylinder surfaces:

     u = R 1 Ω 1 e ϕ , θ = ∆T, φ = V 0 at r = R 1 u = R 2 Ω 2 e ϕ , θ = 0, φ = 0 at r = R 2 (2.10)
To make the equations dimensionless, we used the gap width d as the length scale, the characteristic time of viscous dissipation d 2 /ν as the time scale, the temperature dierence ∆T as the temperature scale, the eective electric potential V 0 as the potential scale and (ν/d) 2 as the pressure scale. From now, unless it is specied, all quantities are dimensionless. The equations (2.7) can then be written in the following forms:

∇ • u = 0 (2.11a) ∂u ∂t + (u • ∇) u = -∇π + ∆u + Grθe z -γ a θ v 2 r e r - γ e V 2 E
Pr θg e

(2.11b)

∂θ ∂t + (u • ∇) θ = 1 Pr ∆θ (2.11c) ∇ • [(1 -γ e θ) ∇φ] = 0 (2.11d)
where the dimensionless electric gravity g e is given by:

g e = 1 2 ∇ (∇φ) 2
(2.12)

In the equations (2.11), dimensionless numbers have been introduced:

The Prandtl number:

Pr = ν κ (2.13a)
The radius ratio:

η = R 1 R 2 (2.13b)
The Grashov number:

Gr = α∆T gd 3 ν 2 (2.13c)
The dimensionless electric potential:

V E = V 0 ρ 2 νκ/ε 2 (2.13d)
The thermal expansion parameter:

γ a = α∆T (2.13e)
The thermoelectric parameter:

γ e = e∆T (2.13f)
The boundary conditions read:

     u = f 1 (Ta, η)e ϕ , θ = 1, φ = 1 at r = η/(1 -η) u = f 2 (Ta, η)e ϕ , θ = 0, φ = 0 at r = 1/(1 -η) (2.14)
Depending on the rotation regime, the condition for the velocity at the cylindrical surfaces will change. We will adopt dierent denitions of the Taylor number Ta which is the ratio between the characteristic time of viscous dissipation and the characteristic time associated to the centrifugal acceleration, in dierent rotation regimes. The two functions f 1 and f 2 also depend on the rotation regime. To characterize the buoyancies, we will dene the Rayleigh number which is the ratio between the product of the dissipative characteristic times τ ν and τ κ and the square of the buoyancy characteristic time, whose denition depends on the considered buoyancy mechanism.

The centrifugal Rayleigh number Ra is dened to characterise the centrifugal buoyancy:

Ra = α∆T g c d 3 νκ (2.15)
As g c depends on the radial position, one has to chose an appropriate position to dene the centrifugal Rayleigh number. Another Rayleigh number, called the electric Rayleigh number L is dened to characterise the thermoelectric buoyancy:

L = α∆T g e d 3 νκ (2.16)
where g e is also computed at a chosen position.

Base state

For an innite length annulus, the base state can be assumed to be a stationary, axisymmetric and axially invariant state so that the ow and electric elds depend only on the radial coordinate.

The equations (2.11b-2.11d) are reduced for the base state to:

Radial momentum equation:

dΠ dr = V 2 r -γ a V 2 r - γ e V 2 E G e Pr Θ, (2.17a) 
Azimuthal momentum equation:

d dr r dV dr - V r = 0, (2.17b) 
Axial momentum equation:

1 r d dr r dW dr + GrΘ = 0, (2.17c) 
Energy equation:

d dr r dΘ dr = 0, (2.17d) 
Gauss' law

d dr rε dΦ dr = 0 (2.17e)
where Π, V , W , Θ and Φ are the pressure, the azimuthal velocity, the axial velocity, the temperature and the electric potential of the base ows, respectively. G e is the base electric gravity and has been dene as a centripetal gravity so that G e = -G e e r . The temperature T 2 of the outer cylinder has been chosen as the reference temperature so that θ = (T -T 2 )/(T 1 -T 2 ). The base azimuthal velocity, solution of the equation (2.17b), depends on the rotation regime and is given by:

V (r) = Re 1 1 -η 2 (µ -η 2 ) (1 -η) r η + η (1 -µ) r (1 -η) (2.18) 
where

Re 1 = R 1 Ω 1 d/ν
is the Reynold number based on the rotation of the inner cylinder and where µ = Ω 2 /Ω 1 is the ratio of the cylinder rotation rates. The particular rotation regimes, which are considered in the present thesis, and the base azimuthal velocity of these regimes will be given in section 2.4. Integrating the equations (2.17d -2.17e), one can nd the base temperature and the base electric potential:

Θ = ln [r (1 -η)] ln η , Φ = ln (1 -γ e Θ) ln (1 -γ e ) (2.19)
The corresponding electric eld is given by:

Ē = γ e r ln(η) ln(1 -γ e )(1 -γ e θ)
(2.20) Using the base electric potential in the expression of the electric gravity (2.12), one can nd:

G e = 1 (ln η) 2 r 3 • F (r, γ e , η) with F (r, γ e , η) = γ e 2 [1 -γ e (Θ + 1/ ln η)] [ln (1 -γ e )] 2 (1 -γ e Θ) 3 (2.21) 
The electric gravity is oriented toward the region with larger electric eld. In the plane geometry, the largest electric eld is located at the hot surface [START_REF] Roberts | Electrohydrodynamic convection[END_REF], but in the cylindrical geometry, the curvature plays an important role. Indeed, in Eq. (2.21), the parameter F can change its sign depending on γ e and η. Figure 2.3 shows the direction of the base electric gravity in the (η, γ e ) plane. In outward heating (γ e > 0), the electric gravity is always centripetal. In inward heating (γ e < 0), the electric gravity is centripetal, except in the case of large values of the radius ratio, where the electric gravity can be centrifugal or change its direction inside the gap.

Using the boundary conditions, together with the condition of zero axial volume ux: R 2 R 1 rW dr = 0, the base axial velocity, solution of Eq. (2.17c), is given by:

W = Gr C (1 -η) 2 r 2 -1 + (1 -η) 2 Θ - r 2 (1 -η) 2 -η 2 4(1 -η) 2 Θ (2.22)
where the coecient C is:

C = (1 -η 2 ) (1 -3η 2 ) -4η 4 ln η 16(1 -η) 2 (1 -η 2 ) 2 + (1 -η 4 ) ln η
The equation (2.17a) describes the balance between the radial pressure gradient and the radial forces which are the centrifugal force, the centrifugal buoyancy and the thermoelectric buoyancy.

The base pressure, solution of Eq. (2.17a), can be written:

Π(r) = Π CCF (r) + Π CB (r) + Π T EB (r) (2.23)
where Π CCF is the pressure prole given by the isothermal circular Couette ow, Π CB is the contribution of the centrifugal buoyancy, and Π T EB is the contribution of the thermoelectric buoyancy. In the general case, these terms are given by:

Π CCF (r) = A 2 r 2 2 + AB ln(r) - B 2 2r 2 ,
(2.24a)

Π CB (r) = γ a ln η A 2 r 2 4 + AB - B 2 4r 2 ln [(1 -η) r] 2 - A 2 r 2 4 + B 2 4r 2 ,
(2.24b)

Π T EB (r) = γ e V 2 E Pr G e (r)Θ(r)dr (2.

24c)

where:

A = Re i 1 -η 2 (µ -η 2 ) (1 -η) η ; and B = Re i 1 -η 2 η (1 -µ) 1 -η (2.25) 
The centrifugal buoyancy and the dielectrophoretic force modify the pressure distribution in the radial direction.

The radial proles of the base state solutions are shown in gure 2.4. When the radius ratio tends to 1, the base state is similar to the one of a plan capacitor, with an anti-symmetric axial velocity prole with respect to the mid-gap and with a linear prole of the temperature. The electric eld and electric gravity are sensitive to the curvature of the annulus. Indeed, the electric gravity can be signicant in the neighbourhood of the inner cylinder.

The rotation regimes

Four dierent rotation regimes have been investigated:

• the case of a steady outer cylinder (Ω 2 = 0).

• the case of a steady inner cylinder (Ω 1 = 0). Table 2.1: Expressions of the Taylor number and of the base azimuthal velocity depending on the rotation regime.

• the Keplerian regime (Ω 1 /Ω 2 = (R 1 /R 2 ) -3/2 ).
Ta base axial velocity

Ω 2 = 0 Ta = R 1 Ω 1 d ν d R 1 V (r) = Ta η 3/2 (1 -η) 5/2 (1 + η) 1 r -(1 -η) 2 r Ω 1 = 0 Ta = R 2 Ω 2 d ν d R 2 V (r) = Ta 1 √ 1 -η (1 + η) r - η 2 (1 -η) 2 r Ω 1 /Ω 2 = η -3/2 Ta = 2ηΩ 1 d 2 1 -η 3/2 ν (1 -η 2 ) V (r) = Ta 2 r η 3/2 -η 2 η (1 -η 3/2 ) + η r (1 -η) 2 Ω 1 = Ω 2 = Ω Ta = RΩ 2 d ν d R V (r) = Ta 2 (1 -η) 1 + η r • the solid rotation regime (Ω 1 = Ω 2 ).
In these rotation regimes, only the case where the outer cylinder is stationary can produce instabilities in the isothermal condition (Rayleigh unstable). In the other rotation regimes (Rayleigh stable), a temperature dierence has to be applied between the two cylinders in order to make the system potentially unstable (see Sec. 3.3) .

We adopt dierent denitions of the Taylor number in dierent rotation regimes in order to better capture the eect of the rotation of one or both cylinders on the ow. The adopted denitions and the base azimuthal velocity prole are given in Table 2.1. If one of the cylinders is steady, the Taylor number is based on the azimuthal velocity of the other cylinder. For solid rotation, the arithmetic mean radius is chosen to dene Ta. When the Keplerian regime is considered, the Taylor number is dened through the average shear rate at the geometric mean radius [START_REF] Bai | Study of the viscoelastic instability in Taylor-Couette system as an analog of the magnetorotational instability[END_REF]. The base azimuthal velocity proles are shown on Fig. 2.5 except for the solid body rotation which has a linear velocity prole in r.

Linearised equations

To perform the linear stability analysis, we add to the base state an innitesimal perturbation (u , v , w , π , θ , φ ), and linearise the governing equations (2.11) around the base state solution (2.18 -2.22). We then obtain:

1 r ∂ (ru ) ∂r + 1 r ∂v ∂ϕ + ∂w ∂z = 0 (2.26a) ∂u ∂t + V r ∂ ∂ϕ + W ∂ ∂z u = - ∂π ∂r + ∆u - u r 2 + 2 V v r - 2 r 2 ∂v ∂ϕ -γ a θ G c + Θg c - γ e V 2 E Pr -θ G e + Θg e,r (2.26b 
)

∂v ∂t + V r ∂ ∂ϕ + W ∂ ∂z v = - 1 r ∂π ∂ϕ + ∆v - v r 2 - V u r + 2 r 2 ∂u ∂ϕ -u dV dr - γ e V 2 E Pr Θg e,ϕ (2.26c 
)

∂w ∂t + V r ∂ ∂ϕ + W ∂ ∂z w = - ∂π ∂z + ∆w -u dW dr + Grθ - γ e V 2 E Pr Θg e,z (2.26d 
)

∂θ ∂t + V r ∂ ∂ϕ + W ∂ ∂z θ = -u dΘ dr + 1 Pr ∆θ (2.26e) (1 -γ e Θ) ∆φ -γ e dΘ dr ∂φ ∂r -γ e dΦ dr 1 r ∂ (rθ ) ∂r -γ e d 2 Φ dr 2 θ = 0 (2.26f)
where g e,r , g e,ϕ and g e,z are the r, ϕ and z components of the perturbation electric gravity vector, respectively:

g e,r = dΦ dr ∂ 2 φ ∂r 2 + d 2 Φ dr 2 ∂φ ∂r , g e,ϕ = dΦ dr ∂ 2 φ ∂ϕ∂r , g e,z = dΦ dr ∂ 2 φ ∂z∂r (2.27) 
The centrifugal buoyancy has been separated into two components, the one associated with the base centrifugal acceleration G c = V 2 /r and the other related to the perturbation centrifugal acceleration g c = 2V v /r. The Laplacian operator ∆ is given by:

∆ = 1 r ∂ ∂r r ∂ ∂r + 1 r 2 ∂ 2 ∂ϕ 2 + ∂ 2 ∂z 2
(2.28)

The boundary conditions for the perturbation elds are homogeneous:

u = v = w = θ = φ = 0 at r = η 1 -η , 1 1 -η (2.29)
The perturbation elds are developed into normal modes:

χ = χ exp [st + inφ + ikz] + c.c. (2.30)
where χ = (u , v , w , π , θ , φ ) and χ = (û, v, ŵ, π, θ, φ). A hat over a quantity indicates its complex amplitude which depends only on the radial position, and where c.c. stands for the complex conjugate. s = σ+iω is the complex growth rate, where ω is the frequency of perturbation.

Note that the sign + implies that a positive frequency corresponds to a perturbation propagating in direction of negative sign and inversely. k is the axial wavenumber which is real since the cylinders are innite in the axial direction, and n is the azimuthal mode number which takes only integer values. The total wavenumber q measures the wavenumber of perturbations at the mid-gap in the direction normal to the vortice axes and is given by q = (k 2 + k 2 ϕ ) 1/2 , where k ϕ = 2n(1 -η)/(1 + η). Applying this development to the equations (2.26a -2.26f), one obtains:

0 = D + 1 r û + in r v + ik ŵ (2.31a) sû = -i nV r + kW û -Dπ + ∆û - û r 2 - 2V r v - 2in r 2 v -γ a Θĝ c + G c θ - γ e V 2 E Pr Θĝ e,r -θG e (2.31b) sv = -i nV r + kW v - in r π + ∆v - v r 2 - V r û + 2in r 2 û -(DV ) û - in r γ e V 2 E Pr Θĝ e,ϕ (2.31c) 
s ŵ = -i nV r + kW ŵ -ikπ + ∆ ŵ -(DW ) û + Gr θ -ik γ e V 2 E Pr Θĝ e,z (2.31d) 
s θ = -i nV r + kW θ -(DΘ) û + 1 Pr ∆ θ (2.31e) 0 = (1 -γ e Θ) ∆ φ -γ e DΘD φ -γ e DΦ D + 1 r θ -γ e D 2 Φ θ (2.31f)
where D = d/dr is the radial derivative operator and where

∆ = D 2 + D/r -n 2 /r 2 -k 2 is the
Laplacian operator. The complex amplitudes satisfy homogeneous conditions at the cylindrical surfaces:

û = v = ŵ = θ = 0, at r = η/(1 -η), 1/(1 -η).
(2.32)

Chebyshev collocation method

The eigenvalue problem Eqs. (2.31) is solved by a collocation method. The Chebyshev variable ξ is introduced by associating it with r by:

r = ξ 2 + 1 + η 2 (1 -η) (2.33) By this transformation, the interval [η/(1 -η) ; 1/(1 -η)] of r is mapped on [-1 ; 1] of ξ and D = 2D ξ , where D ξ = d/dξ.
The complex amplitudes û, v, ŵ, π, θ and φ are developed into Chebyshev polynomials of order N and the equations (2.31a -2.31f) are discretized by considering them only at the radial positions r = r j (j = 0, 2, • • • , N ) which correspond to the Chebyshev-Gauss-Lobbato collocation points ξ j = cos(jπ/N ). The eigenvalue problem can be cast into the following matrix form:

2KD ξ + 1 r K U + in r KV + ikKW = 0 (2.34a) L -M - 1 r 2 K U + 2 V r - in r 2 -γ a ΘV r KV -2KD ξ Π + -γ a V 2 r + γ e V 2 E Pr G e KΘ - γ e V 2 E Pr 4 {ΘDΦ} KD 2 ξ + 2 ΘD 2 Φ KD ξ Φ = sKU (2.34b) - V r - 2in r 2 + DV KU + L -M - 1 r 2 K V - in r KΠ -2in γ e V 2 E Pr ΘDΦ r KD ξ Φ = sKW (2.34c) -{DW } KU + (L -M ) W -ikKΠ + GrKΘ -2ik γ e V 2 E Pr {ΘDΦ} KD ξ Φ = sKW (2.34d) -{DΘ} KU + 1 Pr L -M Θ = sKΘ (2.34e) -γ e 2 {DΦ} KD ξ + DΦ r + D 2 Φ K Θ + [{1 -γ e Θ} L -2γ e {DΘ} KD ξ ] Φ = 0 (2.34f)
where K is the transformation matrix that relates Chebyshev spectra to the values of a function

at ξ 0 , ξ 1 , • • • , ξ N : K = (K lm ) with K lm = cos l (m -1) π N (2.35) where l = 1, 2, • • • , N + 1 and m = 1, 2, • • • , N + 1.
The matrix D ξ is the derivation operator in the Chebyshev space and has a size of (N + 1) × (N + 1):

D ξ =                    0 1 0 3 0 5 0 • • • 0 0 4 0 8 0 12 • • • 0 0 0 6 0 10 0 • • • 0 0 0 0 8 0 12 • • • . . . . . . . . . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 • • • 2N 0 0 0 0 0 0 0 • • • 0                    (2.36)
The curly brackets means a diagonal matrix of size N + 1:

{f (r)} =             f (r 0 ) 0 0 • • • 0 0 f (r 1 ) 0 • • • 0 0 0 f (r 3 ) • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • f (r N )             (2.37)
Note that r 0 and r N correspond to the positions of the outer and inner cylinder surfaces, respectively. The operator L and M are given by:

L = 4KD 2 ξ + 2 1 r KD ξ - n 2 r 2 + k 2 K
(2.38)

M = i nV r + kW K (2.39)
At the boundaries, we require the boundary conditions and the continuity equation:

K BC U = K BC W = K BC D ξ W = K BC Θ = 0 (2.40) 
where the transformation matrix K BC , that gives the values of a function at ξ = ξ 0 = 1 and ξ = ξ N = -1 has been introduced:

K BC =    1 1 1 1 • • • 1 1 -1 1 -1 • • • (-1) N    (2.41)
The equations (2.34) and the boundary conditions (2.40) is solved using the QZ decomposition.

To ensure the convergence of the solutions, the highest order of Chebyshev polynomials is varied from 15 for large values of η to 30 for low values of η.

Equation for kinetic energy

The equation for the kinetic energy density of the perturbation is derived from the linearized equations. Multiplying Eqs. (2.26b -2.26d) by u , v , and w , respectively, and summing the resulting equations, we have:

∂ ∂t u 2 2 + u • [∇ • (u U )] + ∇ • u 2 2 (U + u ) = -∇ • (π u ) + ∆u 2 -∇u : (∇u ) T + Grθ w -γ a (G c θ + g c Θ) u - γ e V 2 E Pr θ G e • u - γ e V 2 E Pr Θg e • u (2.42)
Integrating over the whole uid volume and over a period of perturbations propagation with rigid boundary conditions, we have:

dK dt = W Sh + W Bu + W Hy + W T h + W BG + W P G -D ν (2.43)
where K is the kinetic energy, W Sh is the power performed by the shear stress, W Bu is the power performed by the centrifugal buoyancy, W Hy is the power performed by the axial shear ow, W T h is the power performed by the Archimedean buoyancy, W BG is the power performed by the base electric gravity, W P G is the power performed by the perturbation electric gravity, and D ν is the rate of viscous energy dissipation. These terms are given by:

K = u 2 dV, W Sh = -u v dV dr - V r dV, (2.44a) 
W Hy = -u w dW dr dV, W Bu = -γ a u (V 2 θ + V Θv ) r dV, (2.44b) 
W T h = Gr θ w dV, W BG = γ e V 2 E Pr θ G e u dV, (2.44c 
)

W P G = - γ e V 2 E Pr Θg e • u dV, D ν = Φ ν dV (2.44d)
where the viscous dissipation function Φ ν is given by:

Φ ν = 2 du dr 2 + imv r + u r 2 + k 2 |w | 2 + r d dr v r + imu r 2 + imw r + ikv 2 + iku + dw dr 2
In one case, the power performed by the centrifugal buoyancy W Bu will be splitted in two contribution: one related to the base centrifugal acceleration W BBu and the other to the perturbation centrifugal acceleration W P Bu . These two energy sources are given by:

W BBu = -γ a u V 2 θ r dV : and W P Bu = -γ a u V Θv r dV
(2.45)

The considered case for studying there contribution is the eect of the centrifugal buoyancy in a rigidly rotation cylindrical annulus (Chapter 6), where W Bu and D ν are the only energy sources.

Complex Ginzburg-Landau equation

The linear stability analysis provides information about the nature of the transition from the base state to the convective state. Moreover, the evolution of the coecients of the linear part of the complex Ginzburg-Landau equation (GLE) can be computed and gives information about the variation of the growth rate and frequency of perturbations with the control parameters.

In the following, the GLE is derived using the Taylor number Ta as the control parameter, but it can be changed to the dimensionless electric potential V E when the DEP force is considered. In the neighbourhood of the instability threshold, the complex linear growth rate s = σ + iω can be expanded into power series of the axial wavenumber k:

s = σ 0 + σ 1 Q 2 + i ω c + ω Ta + c g Q + ω 2 Q 2 + O Q 3 , (2.46) 
where Q = (k -k c ), = 1 -Ta/Ta c and the coecients are given by the following partial derivatives evaluated at the critical condition:

σ 0 = Ta c ∂σ ∂Ta c , σ 1 = 1 2 ∂ 2 σ ∂k 2 c , c g = ∂ω ∂k c , ω Ta = Ta c ∂ω ∂Ta c , ω 2 = 1 2 ∂ 2 ω ∂k 2 c (2.47)
The dispersion relation (2.46) is identical to the linear part of the complex Ginzburg-Landau equation (GLE) describing the amplitude of a Fourier mode e ikz . The GLE, which can describe perturbation ow in its weakly nonlinear regime, is given by:

τ 0 ∂A ∂t -c g ∂A ∂z = (1 + ic 0 ) A + ξ 2 0 (1 + ic 1 ) ∂ 2 A ∂z 2 -l (1 + ic 3 ) |A| 2 A + g (1 + ic5) |A| 4 A (2.48)
where

τ 0 = 1 σ 0 , ξ 0 = - σ 1 σ 0 1/2 , c 0 = ω Ta σ 0 , c 1 = ω 2 σ 1
The parameters τ 0 and ξ 0 represent the characteristic time and the coherence length of perturbation, respectively. For time-dependent perturbations, c 0 and c 1 are the linear dispersion coecients, and c g is the group velocity. The third and fourth terms at the right-hand-side of Eq. (2.48) concern the nonlinear state of ow. The constants c 3 and c 5 are nonlinear dispersion coecients. The Landau constant l determines the nature of the bifurcation from the base ow.

If l > 0, the bifurcation is supercritical. For stationary perturbation ow, the amplitude saturates at the equilibrium value A e = /l after a large enough time. If l < 0, the bifurcation is subcritical and no saturation is expected for the GLE truncated at the third order. Then, the fth order nonlinearity, i.e., the fourth term at the right-hand-side of Eq. (2.48), is at least needed for saturation.

Part I

Eect of the centrifugal buoyancy on the

Couette ow

Chapter 3

Taylor-Couette instability and centrifugal buoyancy In this part, the eect of the centrifugal buoyancy on the Couette ow is discussed. In order to focus on the eect of the radial buoyancy, the system is assumed to be under microgravity conditions. Two cases are considered: the rotation regime is Rayleigh unstable or it is Rayleigh stable. If the regime is Rayleigh unstable, the centrifugal force destabilises the ow, and the inward and outward heating change the stability conditions of the system. If the regime is Rayleigh stable, the centrifugal force stabilises the ow, and the centrifugal buoyancy has to destabilise the ow in order to get thermal convections.

The Taylor-Couette instability

Before investigating the eect of the centrifugal buoyancy on the Couette ow, we will rst focus on the Taylor-Couette instability in the isothermal case. This instability occurs through the competition of the destabilising eect of the centrifugal force and the stabilising eect of the viscous dissipation, when the former eect overcomes the latter one. The Rayleigh stable and Rayleigh unstable regimes can be dened by deriving the Rayleigh criterion. Considering an inviscid uid, we can derive the Rayleigh criterion that determines whether the ow is potentially unstable. In the absence of viscous force, the displacement of a uid particle from an equilibrium position r to r + dr is not accompanied by any change in its angular momentum so that: The velocity V (r + dr) is that of the particle after being displaced to the position r + dr, and is thus given by:

rV (r) = (r + dr)V (r + dr) (3.1)
V (r + dr) = V (r) 1 - dr r (3.2)
A particle at the equilibrium at the position r + dr has the velocity V (r + dr) given by:

V (r + dr) = V (r) + dV dr dr (3.3)
The comparison between the centrifugal force sustained by the particle at the equilibrium F = ρ[V (r + dr)] 2 /(r + dr) and that of the displaced particle F = ρ[V (r + dr)] 2 /(r + dr) leads to:

dF = F -F = ρ φ(r)dr where φ(r) = 2 V r dV dr + V r (3.4) 
where φ is the Rayleigh discriminant. If φ is positive, the displaced particle will return to its initial position, so that the ow is stable. Otherwise, i.e if φ < 0 at some radial positions, the ow is potentially unstable. Using the general expression of the base azimuthal velocity in Eq. (2.18), one can nd that the condition φ < 0 is obtained if µ < η 2 . The regime dened by µ = η 2 corresponds to the boundary between the Rayleigh stable regime and the Rayleigh unstable regime. As a consequence, in counter rotating regimes µ < 0, the ow is always potentially unstable.

Inner rotating cylinder (µ = 0)

Let us apply the linear stability theory to the case where only the inner cylinder rotates.

Since we consider the isothermal case, only the continuity and momentum equations are solved.

Therefore the Prandtl number is irrelevant, and it is known that critical modes for this regime are axisymmetric. Figure 3.1 shows the eigenvalue spectrum as a function of the axial wavenumber for η = 0.5. Fig. 3.1 -(a) corresponds to the critical state since the maximum of the growth rate is zero for a certain value k. Table 3.1 gives the critical values of Ta and q for dierent radius ratio η. Increasing the Taylor number, the growth rates of all the modes increases so that the radial modes other than the rst one can also become unstable (σ > 0) beyond certain values of Ta (Fig. 

Counter-rotation regimes (µ < 0)

As mentioned earlier, the counter-rotation regime is always potentially unstable. is potentially unstable according to the Rayleigh criterion. Fig. 3.6 shows the marginal stability curves, as well as the corresponding frequency, for various counter rotating regimes. For µ = -0.25 and µ = -0.5, critical modes are stationary axisymmetric, and for µ = -0.8 the critical mode is oscillatory non-axisymmetric.

The generalized Rayleigh criterion

In Sec. 3.1, the Rayleigh discriminant of the isothermal case (3.4) has been derived. Using the same method, it is possible to derive the generalized Rayleigh discriminant. The dierence resides in the consideration of a linearly decreasing density with the temperature:

ρ = ρ ref [1 -α (T -T ref )].
In the case where only the inner cylinder rotates (µ = 0), the generalized Rayleigh discriminant can be written:

ψ(r) = Φ -γ a Θ Φ + dΘ dr V 2 r where Φ = 2η 1 + η 2 1 - 1 (1 -η) 2 r 2 (3.5)
The Rayleigh discriminant is thus the sum of the isothermal Rayleigh discriminant Φ and a correction due to the centrifugal buoyancy. If ψ < 0, the ow is potentially unstable. The gure (3.7) shows the prole of the Rayleigh discriminant in the gap. When the outer cylinder is at rest, the discriminant is always negative, but compared to the isothermal case, we can see that ψ is larger when γ a is positive, and that it is lower when γ a is negative. It is hence expected that the circular Couette ow is stabilized when the inner cylinder is hotter than the outer one, and destabilized in the opposite case. The generalized Rayleigh discriminant (3.5) was derived by Mutabazi and Bahloul [START_REF] Bahloul | Codimension 2 points in the ow inside a cylindrical annulus with a radial temperature gradient[END_REF] and by Kirillov and Mutabazi [START_REF] Kirillov | Short-wavelength local instabilities of a circular Couette ow with radial temperature gradient[END_REF] using the short wavelength approximation.

1-D model for the heated Taylor-Couette system

Another method to derive a criterion which can determine the stability of the system is a 1dimensional model. One advantage of this method, compared to the derivation of the generalized Rayleigh criterion, is the inclusion of viscosity ow. For the 1-D model of the Taylor-Couette ow with a radial temperature gradient, only the z-dependence of the velocity, the pressure and the temperature perturbations are retained. To make the Reynolds number appear in the set of linearised equations for perturbations (2.26a -2.26e), the velocity must be scaled by the velocity of the inner cylinder R 1 Ω 1 instead of d 2 /ν. This set of equations for perturbations become: 

∂w ∂z = 0 (3.6a) ∂u ∂t = 1 Re ∂ 2 u ∂z 2 - u r 2 + 2V v r -γ a 2ΘV v + V 2 θ r (3.6b) ∂v ∂t = 1 Re ∂ 2 v ∂z 2 - v r 2 - V u r - dV dr u (3.6c) ∂w ∂t = - 1 Re ∂π ∂z + ∂ 2 v ∂z 2 (3.6d) ∂θ ∂t = - dΘ dr u + 1 PrRe ∂ 2 θ ∂z 2
su = -Re -1 q 2 u - u r 2 + 2V v r -γ a 2ΘV v + V 2 θ r (3.7a) sv = -Re -1 q 2 v - v r 2 - V u r - dV dr u (3.7b) sθ = - dΘ dr u - q 2 PrRe θ (3.7c)
Written in the matrix form, the equations (3.7) read:

      s + Re -1 (q 2 + r -2 ) -2V (1 -γ a Θ)/r γ a V 2 /r V /r + DV s + Re -1 (q 2 + r -2 ) 0 DΘ 0 s + q 2 /(PrRe)             u v θ       =       0 0 0       (3.8)
where D = d/dr. The solvability of this system requires that the determinant of the square matrix is zero, which leads to:

s + q 2 + r -2 Re 2 s + q 2 PrRe + 2V r V r + DV (1 -γ a Θ) s + q 2 PrRe -γ a DΘ V 2 r s + q 2 + r -2 Re = 0 (3.9)
Introducing the Rossby number Ro = rDΩ/(2Ω), the thermal Rossby number Rt = rDΘ/(2Θ)

and using Ω = V /r, one can nd:

s + q 2 + r -2 Re 2 s + q 2 PrRe + 4Ω 2 (1 + Ro) (1 -γ a Θ) s + q 2 PrRe -2γ a ΘRtΩ 2 s + q 2 + r -2 Re = 0 (3.10)
Considering stationary modes at the onset of convection, we have s = 0. Moreover, we have

1 + Ro = (µ -η 2 )/[(1 -η)(µ + η)],
and at the mean geometric radius r = √ η/(1 -η), we have Θ = 1/2 and Rt = 1/ ln η. The equation (3.10) can then be written:

Re 2 = q 2    q 2 + (1 -η) 2 η    2 4q 2    γ a 2    η 2 -µ (1 -η)(η + µ) + γ a Pr ln η    q 2 + (1 -η) 2 η    (3.11)
In the isothermal case (γ a = 0) the positivity of the expression on the right side of the equality is ensured if µ < η 2 which correspond to the Rayleigh unstable ow. In the general case, recalling that ln η < 0, positivity is ensured if: Let us consider that η, q and γ a are xed (γ a can be positive or negative), then the function γ a Pr * is a linearly decreasing function of µ -η 2 . The condition obtained with the 1-dimensional can thus be summarised as shown in Fig. 3.8. The quantity γ a Pr * is positive for Rayleigh unstable ows (µ < η 2 ) and it is negative for Rayleigh stable ows (µ > η 2 ). In outward heating (γ a > 0), the condition γ a Pr < γ a Pr * cannot be satised for Rayleigh stable ow, while it can be satised for Rayleigh unstable ows if γ a Pr is suciently low. In inward heating (γ a < 0), the condition γ a Pr < γ a Pr * is always satised for Rayleigh unstable ow, while it can be satised for Rayleigh stable ows if -γ a Pr is suciently large.

γ a Pr < γ a Pr * = 4q 2 1 - γ a 2 µ -η 2 (1 -η) (µ + η) × q 2 + (1 -η) 2 η -1 ln η (3.12)

Chapter 4

Centrifugal buoyancy in Taylor-Couette ow with xed outer cylinder

The eect of the centrifugal buoyancy is investigated in the case where only the inner cylinder rotates with a radial temperature gradient and in weightless environment (Gr = 0). This regime is Rayleigh unstable, which means that the centrifugal force has a destabilising eect. The centrifugal buoyancy induced by the coupling between the centrifugal acceleration and the radial temperature gradient will either stabilise or destabilise the ow, depending on the heating direction.

Base pressure

The base pressure can provide information about the stability of the system. In this conguration, the base pressure Π, which is the solution of equation (2.17a) with V E = 0, can be written:

Π = Π CCF + Π BU O (4.1)
The base pressure is dened as that of the isothermal Couette ow Π CCF corrected with the eect of the centrifugal buoyancy Π BU O . These two terms are given by: where Π 0 is the pressure at the outer cylinder. The functions C(r) and D(r) are given by:

Π CCF = A 2 r 2 2 + 2AB log [(1 -η) r] - B 2 2r 2 + Π 0 (4.2) Π BU O = - γ a log η AB {log [(1 -η) r]} 2 + C(r) log [(1 -η) r] 2 -D(r) (4.3) 
C(r) = A 2 r 2 4 - B 2 4r 2 ; D(r) = A 2 r 2 4 + B 2 4r 2
The pressure Π BU O balances the excess or the lack of momentum given by the radial buoyancy, depending on the direction of the heat ux. This pressure couples the base velocity and the base temperature. In view of the balance between the thermal buoyancy and the pressure gradient formulated in (2.17a) with V E = 0, it is possible to identify the role that the temperature has on the ow stability. The gure 4.1-a shows the base pressure prole as function of the dimensionless radial position. The outward heating (γ a > 0) diminishes the pressure while the inward heating (γ a < 0) increases it with respect to the isothermal case. The prole of the base pressure gradient is shown on gure 4.1-b. As this gradient corresponds to a force balanced by the radial buoyancy, we can conclude that the higher the pressure gradient, the more unstable the ow. Thus, the ow will be more unstable compared to the isothermal case when γ a < 0 and will be more stable when γ a > 0, which is in agreement with the conclusion of the 1-dimensional model formulated on Sec. 3.3.

Results

The eigenvalues s are computed for a set of parameters (η, Pr, γ a , Ta, k, n). A marginal stability curve Ta = Ta (k) is determined by searching for the condition where the maximum value of the growth rate σ changes its sign. The global minimum of the marginal stability curves 

Inuence of the tenperature dierence

The gure 4.3 shows the behaviour of the critical Taylor number normalised by its value for the isothermal case (γ a = 0), of the critical wavenumber and of the critical frequency as function of γ a for Pr = 50 and for dierent radius ratio η. When the outer cylinder is hotter than the inner one, i.e. inward heating (γ a < 0), the threshold decreases with increasing temperature dierence between the two cylinders. This highlights the destabilising eect of the centrifugal buoyancy under this condition. The critical modes are axisymmetric (n c = 0) with a critical wavenumber that increases slightly with the temperature dierence (Fig. 4.3 -b). These modes are stationary (Fig. 4.3 -c), and therefore we refer to them as SA (stationary axisymmetric) modes.

The SA mode exists also when γ a > 0 if γ a is smaller than a certain value γ * a . The critical Taylor number increases with γ a , highlighting the stabilising eect of the centrifugal buoyancy when the inner cylinder is hotter than the outer one, i.e. outward heating. For a xed Pr, γ * a decreases with increasing the radius ratio. Beyond this particular value of γ a the critical modes become oscillatory axisymmetric (OA) for small and moderate values of the radius ratio η, or oscillatory non-axisymmetric (ONA) for large η. The critical Taylor number is almost independent of γ a for OA modes while for ONA, it increases with increasing γ a , until a certain value of γ a , that we will denote γ a * * . Beyond this value of γ a * * , the ONA modes become OA with an almost constant Ta c . For OA modes, the critical wavenumber undergoes a discontinuity at (γ * a , T a * c ). Then, their wavenumber becomes independent of γ a and their frequency increase with γ a . For ONA modes, the critical wavenumber undergoes a discontinuity at (γ * a , T a * c ) and each times the azimuthal mode number changes. Within a value of n, the critical wavenumber decreases and the frequency is almost constant and is approximatively one order of magnitude higher than the frequency of OA The eect of the centrifugal buoyancy on the instability threshold is most apparent for SA modes, in particular for inward heating (γ a < 0). The slope of the curve Ta c (η = cst, γ a ), computed at γ a = 0 is shown on Table 4.1. This slope depends on η and on Pr: for each radius ratio, it increases with the Prandtl number.

Inuence of Pr

In the linearised equations (2.31), the Prandtl number is involved in the energy equation, therefore it plays no role for the isothermal Taylor-Couette instability. For γ a = 0, Pr will modify the stability of the ow through the coupling of temperature and velocity elds. 

Discussion

For inward heating, the imposed temperature gradient has a signicant destabilizing eect with no change in the temporal and spatial nature of the critical modes. In contrast, outward heating yields only a slight variation of the instability threshold with γ a . The most prominent eect of the centrifugal buoyancy is the change of the critical modes in their temporal nature at large Prandtl number.

Energy analysis

In this problem, the equation for kinetic energy (2.43) is reduced to:

dK dt = W Sh + W Bu -D ν (4.4)
The three terms contributing to the variation rate of perturbation kinetic energy are plotted in gure 4.10 as function of γ a and Pr for η = 0.5. These terms vary linearly with γ a and become constant when γ a ≥ γ a * (Fig. 4.10 -a). For inward heating, the power performed by the centrifugal buoyancy W Bu is positive, highlighting the destabilizing eect of the centrifugal buoyancy. When the sign of γ a changes , W Bu also changes its sign, meaning that the centrifugal buoyancy in inward heating stabilises the ow. When understood by analysing the density of the radial buoyancy power:

w Bu = - γ a r V 2 θ + 2ΘV v u (4.5)
The gure 4.11 shows some eigenfunctions at the critical condition in the (r, z) plane for η = 0.5

and for γ a = 0.01 (outward heating). We can see from gure 4.11 -a that for stationary modes, the radial velocity perturbation u and the temperature perturbation θ are in phase with each other. For uids with Pr < Pr * , the power density w Bu is then negative everywhere inside the gap, leading to a total negative power W Bu . In this condition, if the amplitudes of perturbations increase, the stabilizing eect of the centrifugal buoyancy is reinforced. For uids with Pr > Pr * , the phase of θ relative to u increases with Pr (Figs. 4.11 -b,c) and will attains -π/2 at large

Pr. The increase of the phase delay increases the total power W Bu (Fig. 4.10 -b) because of the appearance of a zone of positive w Bu inside the gap. For large enough values of Pr, the zones of positive w Bu balance the zones of negative w Bu so that W Bu = 0. We then have no eect of the centrifugal buoyancy and the threshold is thus the one for the isothermal case.

This mechanism can be observed from the equation of energy (2.31e). When OA modes are critical, we have:

PrDΘû = 1 r d dr r d dr -k 2 c θ (4.6)
Because of the sign of DΘ, the radial velocity perturbation and the temperature perturbation are in phase in inward and in antiphase in outward heating. In both cases, the ow goes from the hot wall to the cold one, passing through the zones of positive temperature disturbances. This mechanism is similar to what observed in the Rayleigh-Bénard thermal convection. However, in the limit of innite values of Pr, OA modes are critical and Eq. (2.31e) leads to the relation:

θ → 1 ω |DΘ| ûe -iπ/2 (4.7)
which exhibits a phase delay of π/2 between θ and û and produces the zone of positive w Bu .

Frequency analysis

The ow system under consideration can be analysed by analogy with Rayleigh-Bénard convection. In fact, for γ a < 0, the gravity is oriented towards the hot wall and therefore, there is a to the stable stratication of the density regarding the centrifugal acceleration and given by its dimensionless expression:

N 2 = γ a Ta 2 ln η ηV 2 (1 -η) r (4.8)
with the azimuthal velocity V (r) estimated at the position r η = -1/ ln η. At this particular position, the heat ux is equal to the one coresponding to the plane geometry, which has a constant heat ux between the two plates. Thus, the use of r η weakens the eect of curvature.

The Brunt-Väisälä frequency thus reads:

N = η 3/2 (ln η) 2 -(1 -η) 2 (1 -η 2 ) (1 -η) 3/2
-γ a Ta 2 ln η (4.9)

Figure 4.12 shows that the critical frequency of OA modes is proportional to N for large |ω c | where viscous damping during an oscillation period is not signicant (the time has been scaled

with the characteristic time of viscous dissipation). This upper bound of the critical frequency suggests that the oscillations of critical modes originate from internal waves arising from the radial buoyancy eect on stable density stratication.

The dispersion of the OA modes can be developed about the critical condition q = q c as follows ω(q) c q c + v g (q -q c ) + P (q -q c ) 2 , (4.10) Using the short wavelength approximation, Kirillov and Mutabazi [START_REF] Kirillov | Short-wavelength local instabilities of a circular Couette ow with radial temperature gradient[END_REF] were able to give analytic expressions of the threshold of oscillatory modes and for the frequency of these modes:

Ta * c Ta 0 = Pr + 1 Pr 1 - γ a 2 + γ a 2 ln η Pr + 1 Pr (Ta 0 ) 2 -1/2 (4.12a) ω c Ω = β Pr + 1 1 Ta 0 -1 + γ a 2 - γ a Pr (Pr + 1) 2 ln η (Ta 0 ) 2 (4.12b) 
where β = k z /|k| and Ta 0 is the Taylor number of the isothermal case. They found that the threshold and the critical frequency depend on both γ a and Pr. and the permanent increase of ω c with γ a . They also recovered the proportionality between the critical frequency and the Brunt-Väisälä frequency for large enough frequency (ω > 1).

Comparison with numerical simulations

For the present problem, direct numerical simulations (DNS) have been performed by C. Kang.

The linear coecients of the Ginzburg-Landau equation (Eq. (2.48)) were computed by LSA and the nonlinear coecient l was extracted from DNS results. For validation of the numerical code, the time constant τ 0 has also been computed by DNS. The results of both LSA and DNS agree quite well with each other. The computed values of the coecients are given in Table 4.3 for some values of γ a and Pr. We found that all the stationary modes appear through supercritical bifurcation (i.e., with l > 0) while oscillatory modes appear through subcritical transition. Indeed, for Pr = 50 and 100, the bifurcation to oscillatory axisymmetric modes is subcritical for γ a = 0.001 and 0.01 while the transition to stationary axisymmetric modes is supercritical for all values of Pr. The coherence length ξ 0 is almost independent of Pr for inward and outward heating. The characteristic time τ 0 weakly varies with Pr for γ a > 0 while it strongly increases with Pr for γ a < 0.

For a given uid, the perturbations grow faster in outward heating than in inward heating.

The friction coecient C M has been computed by numerical simulation and measures the torque that the uid exerts on the inner cylinder. Fig. 4.14 shows the variation of C M with the Taylor number. When the Taylor number is below the critical value, C M is equal to its laminar ow value. When T a > T a c , the friction coecient has higher values than for the base state. The 

Conclusion

The Taylor-Couette ow with the inner cylinder rotating and a steady outer cylinder is Rayleigh unstable: the angular momentum decreases with the radial coordinate. The application of a temperature gradient produces the centrifugal buoyancy which changes the stability condition of the Taylor-Couette ow. In outward heating (γ a < 0), the centrifugal buoyancy has a destabilising eect, and the critical modes are stationary axisymmetric. In inward heating (γ a > 0), it has a stabilising eect. In this case, critical modes can be stationary axisymmetric, oscillatory axisymmetric or oscillatory non-axisymmetric, depending on η, Pr and γ a . The oscillatory nature of the axisymmetric modes comes from the generation of internal waves due to the stable stratication of the density regarding the centrifugal acceleration. The Prandtl number plays a unexpected role in inward heating: it reinforces the stability of the ow for SA modes and diminishes the sta- bilisation for OA modes. This eect is related the phase shift between the perturbation velocity and the perturbation temperature elds. The numerical simulation of this problem validated the results from the linear stability analysis, but showed that the OA modes are subcritical. In fact, the oscillation of the vortices only occurs during the linear growth of the modes. The vortices become stationary during the non-linear state, where the amplitude of the modes stop growing.

Increasing the Prandtl number enhances the heat transfer, but has not much inuence on the friction coecient. 

Critical parameters

The critical parameters depend both on γ a and Pr, but we found that they depend on the combination γ a Pr. In other words, for a xed value of η, two systems with dierent γ a and Pr but identical γ a Pr will have instabilities of the same nature and at the same threshold. Figure 5.2 shows the behaviour of the critical Taylor number and the critical axial wavenumber as functions of -γ a Pr

for dierent radius ratios. The critical Taylor number decreases with -γ a Pr and asymptotically tents to zero. For a given γ a Pr, increasing the radius ratio destabilises the ow. The lower the value of -γ a Pr, the larger the slope of the threshold, so that decreasing further the parameter -γ a Pr makes the critical Taylor number tend to the innite. The axial wavenumber decreases with increasing -γ a Pr, except for low values of the radius ratio for which q c decreases with -γ a Pr. highlights how the critical wavenumber increases with -γ a Pr for low radius ratio and how it decreases otherwise. For η = 0.2 and low -γ a Pr, the zone of positive growth rate is concentrated at small wavenumbers. At larger -γ a Pr, a zone of positive growth rates becomes positive at larger axial wavenumbers and increases the critical wavenumber. For larger radius ratios, the zone where σ > 0 is located at larger wavenumbers for small -γ a Pr. This zone is shifted to lower values of k when -γ a Pr increases. 

Eigenfunctions

The eigenfunctions for the perturbation velocity eld and for the perturbation temperature at critical states are illustrated in Fig. 5.4. The radial velocity perturbation and the temperature perturbation are in antiphase, which means that a uid particle will travel from the hot cylinder to the cold one by passing through the high temperature. In Fig. 5.4(c), the axial wavenumber is large and we can observe that the vortices are concentrated in the outer part of the cylindrical annulus.

Keplerian regime

As in the case where the outer cylinder rotates, it is found that for the Keplerian regime the critical parameters depend on the combination γ a Pr. Moreover, critical modes are also found to be stationary axisymmetric. 

Critical parameter

Figure 5.5 shows the critical parameters behaviour as function of -γ a Pr. The critical Taylor number decreases with increasing -γ a Pr and asymptotically tends to zero. The larger the curvature, the more stable the ow. The critical axial wavenumber decreases with -γ a Pr and asymptotically tents to a constant value around q c = 3.15.

Discussion

Energy analysis

For these systems, the equation of kinetic energy is the same as for the previous chapter (Eq. (4.4)). Three mechanisms intervene in the process of energy transfer from the base state to the perturbation: the shear stress, the centrifugal buoyancy and the viscous dissipation. Fig. 5.6 represents the evolution of the power given by these three mechanisms with the parameter γ a Pr and with η in the outer rotation regime. The power given by the centrifugal buoyancy and by the shear rate are always positive, which means that in inward heating, these two mechanisms contribute to the destabilisation of the system. In Fig. 5.6 -b, obtained for γ a Pr = -10, we can see that there exists a certain value of η bellow which W Bu > W Sh , and above which W Bu < W Sh .

This latest case is counter intuitive because the instability is produced by thermal eects, and the power given by the shear is only a consequence of the presence of vortices in the annulus. The shear rate is given by:

r d dr V r = 2η 2 (1 + η) (1 -η) 5/2
Ta r 2

(5.1)

The critical Taylor number decreases with increasing the radius ratio, making the power given by the centrifugal buoyancy decrease. But in counterpart, the shear rate (5.1) increases with η, making the power given by the shear stress increase. Fig. 5.7 shows the behaviour of the dierent power source against the parameter γ a Pr and against η in the Keplerian regime. The power given by the centrifugal buoyancy is positive as for the outer rotation regime. But this time, the shear stress always contributes to stabilise the ow, since W Sh is negative. For large enough values of -γ a Pr and large enough η, the shear stress does not transfer energy to the perturbations, i.e. W Sh = 0, and the power given by the centrifugal buoyancy becomes constant. 

Small gap approximation

Kirillov and Mutabazi [START_REF] Kirillov | Short-wavelength local instabilities of a circular Couette ow with radial temperature gradient[END_REF] analysed the problem both in the case where the outer cylinder rotates and in the Keplerian regime while considering the small gap approximation, in the limit of short wavelength of vortices. There method allows them only to consider axisymmetric perturbation, which is convenient since the linear stability theory predicted axisymmetric modes. They found that OA modes can be critical at low Prandtl number, for both rotation regimes. When only the outer cylinder rotates, the OA modes have not been captured by the LSA, because the values of Ta larger than 1000 have not been admitted in the linear stability theory. But in the Keplerian regime, for η = 0.99 and γ a = -0.01, the OA modes have been found as critical modes. Fig. 5.8

shows the threshold, the critical wavenumber and the critical frequency for these conditions. The transition from OA modes and SA modes is at about Pr = 1 which is pretty close to what Kirillov and Mutabazi calculated (for them, the OA modes stop at Pr = 0.98 and the SA modes start at Pr = 1.01). The critical wavenumber is constant for SA modes but varies with Pr for OA modes.

In fact, increasing the Prandtl number rst decreases the wavenumber, and then increases it until the SA modes become critical. The frequency of OA modes decreases with Pr and undergoes a discontinuity when the temporal nature of the modes changes. 

Conclusion

The regimes where the outer cylinder rotates and the Keplerian regime are Rayleigh stable.

To destabilise there ow, a positive temperature gradient has to be applied.

The Keplerian regime and the regime where only the inner cylinder rotates in inward heating show some similarities. For both regimes, the critical parameters depend on both the Prandtl number and the thermal expansion parameter, through the combination γ a Pr. Indeed, the parameter γ a Pr makes the critical parameters only dependent on the radius ratio. This parameter has been found in the 1-dimensional model derived in Sec. 3.3. In both cases, critical modes take the form of axisymmetric modes. When only the outer cylinder rotates, the radial shear plays a subtle role. It destabilises the ow and, depending on the radius ratio, can transfer more energy to the perturbation than the centrifugal buoyancy. This result is counter intuitive since the centrifugal buoyancy is the motor for the onset of convections. In contrast, in the Keplerian regime, for large values of γ a Pr and of η, the shear rate plays no role on the stability and the centrifugal buoyancy becomes the only source of energy transfer from the base state to the perturbations.

For large radius ratios and small Prandtl number, oscillatory axisymmetric modes are found, which conrm the results obtained by Kirillov et all [START_REF] Kirillov | Short-wavelength local instabilities of a circular Couette ow with radial temperature gradient[END_REF].

Chapter 6

Centrifugal buoyancy in uids with solid-body rotation A rigidly rotating cylindrical annulus is a model for geophysical and astrophysical ows. According to the Rayleigh criterion derived in (3.4), the isothermal case is stable against centrifugallydriven perturbations. The centrifugal force cannot brings instability, but in inward heating (γ a < 0), the centrifugal buoyancy has a destabilizing eect and can lead to thermal convection. In fact, the centrifugal gravity is oriented toward the hot surface and this conguration resembles the Rayleigh-Bénard convection of a uid layer heated from below (Fig. 6.1).

Flow equation in the rotating frame of reference

The linear stability analysis has been performed using the set of equations (2.11) which describes the system in the laboratory frame. But for convenience, the rotating frame should be used instead of the static frame. In a frame rotating at the angular velocity Ω of the cylindrical annulus, there is no base ow and we have to consider the Coriolis force f C and the Coriolis buoyancy which is the action of f C on the density stratication. The governing ow equations in the rotating frame read:

∇ • u = 0 (6.1a) ∂u ∂t + u • ∇u = -∇π + ∆u -2τ (e z × u) + 2γ a τ θ (e z × u) - γ a τ 2 2 θre r (6.1b) ∂θ ∂t + (u • ∇) θ = κ∆θ (6.1c)
where τ = Ωd 2 /ν is the Coriolis number. Using the denitions:

Ra = γ a PrTa 2 , τ = Ta f (η) where f (η) = 2(1 -η) 1 + η (6.2)
where Ta is the Taylor number dened at the arithmetic mean of the two cylinder radii, the equation (6.1b) can be written:

∂u ∂t + u • ∇u = -∇π + ∆u -2τ (e z × u) + 2 f (η)Ra γ a Pr θ (e z × u) -f (η) Ra Pr θre r (6.3)
In the rotating frame of reference, there is no base ow, therefore the no-slip conditions at the boundaries leads to u = 0. The basic velocity and temperature are given by:

U = V = W = 0 ; Θ = ln [r (1 -η)] ln η (6.4)
Adding a small perturbation to the base state and developing these perturbations into normal modes, the set of equations (6.1) becomes: discontinuities each time the value of n c changes, so that q c oscillates around q = 3.116, and tends to this value when η tends to 1, which is the critical wavenumber in the Rayleigh Bénard problem.

0 = D + 1 r û + in r v + ik ŵ (6.5a) sû = -Dπ + ∆û - û r 2 - 2inv r 2 + τ v -2 f (η)Ra γ a Pr Θv -f (η) Ra Pr θr (6.5b) sv = - in r π + ∆v - v r 2 + 2inû r 2 -τ û + 2 f (η)Ra
The threshold Ra = 1708 together with the wavenumber q = 3.116 were also predicted by Auer et al. [START_REF] Auer | Three-dimensional convection driven by centrifugal buoyancy[END_REF] in the framework of the small gap approximation. In gure 6.2 -c) the critical frequency measured in the rotating frame is normalized with the Coriolis number τ , dened on Eq. ( 6.2).

The frequency undergoes discontinuities each time the azimuthal mode number changes. Unlike the threshold and the wavenumber, the critical frequency depends on γ a and Pr. Indeed, for a xed value of γ a , the frequency decreases with increasing Prandtl number, and for a xed value of Pr, ω c /τ increases with increasing γ a . The frequency is positive which indicates retrograde propagation (remind that s = σ + iω) .

For low values of the radius ratio, the axial wavenumber can be dierent from zero (helical modes) when the parameter γ a Pr is suciently large (Fig. 6.3). Columnar modes have an angle of 90 • with respect to the azimuthal direction. When helical modes become critical, this angle decreases to about 80 • with increasing η until columnar modes become critical again(Fig. 6.3c). The critical frequency of these helical modes quickly increases with η (Fig. 6.2 -c). Figure 6.4 shows the parameters for which helical modes are critical. The change of azimuthal modes number occurs at a constant η. Just before this change, at small values of η and large values of γ a Pr, helical modes can be critical.

The perturbation temperature and perturbation velocity elds of an oscillatory columnar mode are shown on gure 6.5. The ow goes from the hot wall to the cold one passing through hot cells.

The spatio-temporal prole of the perturbation temperature (Fig. 6.5 -c) shows how the columns 6.3 Discussion

Centrifugal Rayleigh at the logarithmic radius

The centrifugal Rayleigh number is the convenient parameter to discuss the stability of the rotating annulus in inward heating. As the Taylor number is dened at the arithmetic mean of the two cylinder radii, the Rayleigh number Ra = γ a PrTa 2 has the same denition as the one of Auer et al. [START_REF] Auer | Three-dimensional convection driven by centrifugal buoyancy[END_REF]. An other way to dene the Rayleigh number is to chose the logarithmic radius: R ln = -d/ ln η in its dimensional form, as Walowit et al. did [START_REF] Walowit | Stability of ow between arbitrarily spaced concentric cylindrical surfaces including the eect of a radial temperature gradient[END_REF]. At this particular radial position, the heat ux through the cylindrical surface is equivalent to the one through two plane surfaces separated by d. The centrifugal Rayleigh number dened at R ln is given by:

Ra ln = γ a PrTa 2 2(1 -η) ln η(1 + η) (6.6)
When the centrifugal Rayleigh number dened in Eq. (6.6) is used to plot the threshold as function of the radius ratio, we see that the inuence of the curvature on the threshold is very weakened and remains sensitive to η for η < 0.7 (Fig. 6.6). The values of Ra ln,c oscillate around 1707.7 with an amplitude which decreases with the radius ratio until η has no inuence on the threshold. 

Nature of the frequency

The normalised critical frequency ω c /τ can be scaled using the parameter γ a /Pr which involves in the term of the Coriolis buoyancy of equation (6.3). By doing this, unless for the non axisymmetric modes, the scaled critical frequency becomes independent from the Prandtl number and the thermal expansion parameter (Fig. 6.7 -a). The success of this scaling indicates that the Coriolis buoyancy is the source of the propagation of vortices. The scaled frequency of the columnar modes is almost constant with ωc τ Pr γa ≈ -0.008. It indicates that the normalized frequency ω c /τ is a linear function of the parameter γ a /Pr with a slope of -0.008 which is nearly independent from η.

The variation of the azimuthal phase velocity c ϕ with the Coriolis parameter τ is shown in Fig. 6.7 -b. For small values of τ , the phase velocity of columnar modes is almost proportional to τ , which could indicate that the OC modes are advected by the rotation of the cylindrical walls.

However, the phase velocity of ONA modes show no particular links with the Coriolis parameter.

Energy analysis

In this problem, the centrifugal buoyancy is the only mechanism which gives energy to perturbations. At the critical condition, the energy rate of viscous dissipation D ν balances W Bu so that there is no time variation of the averaged kinetic energy. In this case, the power performed by the base centrifugal buoyancy W BBu and the one performed by the perturbation centrifugal buoyancy W P Bu are distinguished in order to have an insight on the eect of the latest power source. Figure 6.8 shows the evolution of W BBu and W P Bu with the radius ratio. Most of the energy transfer from the base state to perturbations is done through the eect of the base centrifugal buoyancy. The perturbation centrifugal buoyancy has a positive contribution which means that it destabilises the ow, however its contribution is negligible compared to that of the base centrifugal buoyancy.

Comparison with numerical simulations

Numerical simulation of this problem has been performed by Changwoo Kang for two dierent values of η and dierent Pr and γ a . The Table 6.1 shows a good agreement between LSA and DNS regarding the critical thresholds of τ and the characteristic times τ 0 . The characteristic time depends on γ a and Pr in contrast to the coherence length of perturbation ξ 0 which only depends on the geometry. The Landau constant l is always positive, indicating supercritical bifurcations from the base ow. Figure 6.9 shows the ow elds close to the onset of convection. The counter rotating vortices are columnar and are retrograde with a frequency close to that found with the LSA. The vortices which rotate in the same sense than the cylindrical annulus (cyclonic vortices) create low pressure regions while thus which rotate in the other sense (anticyclonic) create high pressure regions. The number of modes in the azimuthal direction is in agreement with that found with LSA. Increasing further the rotation rate of the annular cavity may make the number of modes varying, as well as their size. The temporal behaviour of the vortices also changes with additional low frequency oscillations of the modes. Finally, for large enough rotation rate, a chaotic behaviour of the ow occurs.

The time averaged Nusselt number is measured at the inner cylindrical surface and is ploted against the centrifugal Rayleigh number on Fig. 6.10. For Ra < Ra c , Nu = 1 since the heat transfer is only done through diusion. For Ra > Ra c , the columnar vortices enhance the heat transfer and the Nusselt number growths. In the vicinity of Ra c , the growth of the Nusselt can be represented as a linear function of Ra with a slope which depends on η and on the parameter γ a Pr. Indeed, the larger the parameter γ a Pr, the lower the value of the slope, which takes values of about 1 to 1.3. For large values of Ra, the growth of Nu can be tted with a power-law scaling, and for η = 0.5 and Pr = 1, the scaling exponent is equal to 0.226. Such value of the scaling exponent was found in many experiments on Rayleigh-Bénard convection [START_REF] Davis | Natural convection cooling in uids[END_REF][START_REF] Siggia | High Rayleigh number convection[END_REF][START_REF] Grossmann | Scaling in thermal convection: a unifying theory[END_REF].

Conclusion

As the regime where only the outer cylinder rotates or the Keplerian regime, the solid body rotation regime is Rayleigh stable, and a positive temperature gradient has to be applied to get instabilities. The stability can be characterised using the centrifugal Rayleigh number because the centrifugal acceleration plays the role of the gravity, in analogy with the Rayleigh-Bénard problem. The threshold only depends on the radius ratio. In most cases, the critical modes are oscillatory columnar, with a propagation frequency slightly lower than the rotation rate of the annulus. The oscillation of the columnar modes are due to the Coriolis buoyancy. For large values of the parameter γ a Pr and low values of the radius ratio, critical modes can take the form of oscillatory helical modes. The numerical simulation showed that the onset of convection occurs through supercritical bifurcations.

Part II Thermoelectric convection in cylindrical annular geometry Chapter 7

Thermoelectric convection in stationary cylindrical annulus

As an introduction to this part dealing with the eect of the DEP force in dierent uid systems, the results of previous works will rst be introduced. Yoshikawa et al. [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF] performed the linear stability analysis of a stationary cylindrical annulus submitted to the DEP force under microgravity condition. Then Travnikov et al. [START_REF] Travnikov | Numerical investigation of the heat transfer in cylindrical annulus with a dielectric uid under microgravity[END_REF][START_REF] Travnikov | Inuence of the thermo-electric coupling on the heat transfer in cylindrical annulus with a dielectric uid under microgravity[END_REF] provided results of numerical simulation for the same case.

Threshold of the thermoelectric convection

We saw in Sec. 2.1 that the electric gravity is centripetal, except in the case of small gap where the electric gravity can be centrifugal or can change its sign inside the gap. When the electric gravity is centripetal (centrifugal), thermoelectric convection can occur in outward (inward) heating, and the instability mechanism is analogue to the Rayleigh instability in horizontal plane. This analogy is of main interest since in a cylindrical annulus of dielectric uid under microgravity condition, the dieletrophoretic force can be seen as a purely central gravity force eld. Figure 7.1 shows the critical parameters as functions of the radius ratio η. Critical modes are Prandtl independent and are stationary. The electric Rayleigh number L used to plot the threshold (Fig. 7.1 -a) has been dened at the logarithmic radius R ln = -1/ ln η as we did in Sec. 6.3.1. We remind that at this position, the radial heat ux in a cylindrical annulus is equivalent to the one on the plate cavity. The threshold L c slightly depends on η in outward heating, but its value stays close to L = 1708, which is the critical value for the classical Rayleigh problem. For relatively Figure 7.1: Variation of the critical parameters with the radius ratio: (a) electric Rayleigh number for dierent γ e and (b) wavenumber and angle of the vortices with respect to the azimuthal direction for γ e = 0.01. [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF] large values of η, L c increases and tends to L = 2129 when η tends to one. This stabilisation starts at lower radius ratio when the thermoelectric parameter γ e is increased. Indeed, for large γ e and large η, there is a feedback eect of the perturbation electric gravity, which makes the threshold higher than that for the classical Rayleigh problem. This was rst found in the plate cavity of dielectric uid feeling the dielectrophoretic force [START_REF] Yoshikawa | Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions[END_REF]. In this case, there is always a non-negligible energy dissipation done by the perturbation electric gravity. Note that, in the energy analysis of Chapter 6, the perturbation centrifugal gravity has a dierent eect than the perturbation electric gravity since the perturbation centrifugal gravity destabilises the ow.

In inward heating, for large values of the thermo-electric parameter γ e and large values of η the electric gravity is centrifugal. Thermal convection can thus occur and the threshold decreases with the radius ratio and also tends to the value L = 2129 when η tends to one. Critical modes obtained in inward heating are axisymmetric, but they are helical in outward heating. The number of modes in the azimuthal direction n c increases with the radius ratio and the wavenumber q c undergoes discontinuities each times n c changes (Fig. 7.1 -b). The feedback eect of the perturbation electric gravity is at the origin of the slight increase of q c for low curvature Figure 7.2: Power given by the base and perturbation electric gravity (W BG and W P G respectively) as function of the radius ratio for dierent γ e . [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF] compared the its value for the classical Rayleigh problem. The angle of the helical modes with respect to the azimuthal direction ψ is sensitive to η and tends to ψ ≈ 60 • for large values of η.

The conservation of kinetic energy involves three mechanisms of energy transfer from the base state to perturbations: the power performed by the base electric gravity W BG , the power performed by the perturbation electric gravity W P G , and the energy rate of viscous dissipation D ν . The latest balances the other term since at the onset of convective ow, there is no time variation of the kinetic energy. Figure 7.2 shows the variations of W BG and W P G with η for dierent γ e . The power performed by the base electric gravity is positive in inward heating and in outward heating when the base electric gravity is centrifugal, i.e. for large values of η and γ e . In these cases, the base electric gravity is the source of thermal convection and the value of W BG is large compared to that of W P G , meaning that the base gravity is the predominant contribution for the energy transfer. In counterpart, the power performed by the perturbation electric gravity is negative, and therefore stabilises the ow in inward and outward heating when the gravity is centrifugal. For low to moderate values of η, depending on γ e , the contribution of W P G is negligible such as in the classical Rayleigh-Bénard problem in an horizontal plate cavity where there is no analogue contribution of a perturbation gravity. This explains why the the thresholds of both cases are comparable. However for large radius radio, the feedback through the perturbation electric gravity is no longer negligible, making the threshold increase compared to its value for the Rayleigh-Bénard problem. The value of W P G decreases with η in outward heating and increases with η in inward heating, but its value when η → 1 is a constant independently of [START_REF] Travnikov | Numerical investigation of the heat transfer in cylindrical annulus with a dielectric uid under microgravity[END_REF][START_REF] Travnikov | Inuence of the thermo-electric coupling on the heat transfer in cylindrical annulus with a dielectric uid under microgravity[END_REF] the value of γ e , explaining the uniqueness of the threshold when there is no curvature.

Heat transfer

The numerical simulations performed by Travikov et al. were done with periodic boundary conditions in the axial direction and close to the onset of convection. For L larger than the critical value, stationary helical modes were also found with thresholds and number of modes in the azimuthal direction in agreement with thus of the linear stability theory. The averaged radial heat ux was measured at the inner cylinder for an established ow in order to provide values of the Nusselt number. Figure 7.3 shows the evolution of the Nusselt number N u with the electric Rayleigh number. When L < L c , Nu = 1 since the base state is conductive. For L > L c , the Nusselt number growths, highlighting the increase of the heat transfer by the thermoelectric buoyancy. At the onset of convection the slope of Nu(L) mainly depends on the radius ratio and is equal to 0.925 for η = 0.1 and 1.42 for η = 0.5. We recall that, in the case of a cylindrical annulus of uid rigidly rotating around its axis and heated from the outside, the slope of Nu(Ra) for η = 0.5 is about 1 to 1.3 depending on γ a Pr. This means that the heat transfer enhancement induced by thermoelectric convection is more ecient than that induced by centrifugal buoyancy (at least close to the onset of convection). For weak values of the radius ratio, the Nusselt number increases with increasing Prandtl number (Fig. 7.3 -a) while the thermoelectric parameter has no signicant inuence on the heat transfer (Fig. 7.3 -c). For larger values of η, the eect of the Prandtl number on the Nusselt number is weak (Fig. 7.3 -b) while increasing γ e enhance the feedback eect of the perturbation electric gravity and decreases the Nusselt number.

Chapter 8

Thermo-electric convection in a uid system in solid-body rotation

We consider now a dielectric uid conned in a rigidly rotating cylindrical annulus with an alternative electric potential between the two cylinders under microgravity conditions (Gr = 0).

The momentum equation (6.3) now includes the dielectrophoretic force and reads:

∂u ∂t + u • ∇u = -∇π + ∆u -2τ (e z × u) + 4 f (η)Ra γ a Pr θ (e z × u) -f (η) Ra Pr + L Pr θe r (8.1)
In this chapter, we will only consider the case where the electric gravity is centripetal. Due to the dierent orientations of the centrifugal acceleration and of the electric gravity, we will separate the cases of inward and outward heating. Indeed, the destabilisation mechanism will be dierent in both cases.

Eect of the DEP force on the centrifugally-induced thermal convection

When the outer cylinder is hotter than the inner one (inward heating), the electric gravity is oriented toward the cold cylinder while the centrifugal gravity is oriented toward the hot cylinder (Fig. 8.1). The centrifugal buoyancy will thus be the destabilising mechanism which can induce thermo-convective instabilities even without electric eld. The temperature stratication has a stable prole regarding the electric gravity, implying a stabilizing eect of the thermoelectric buoyancy. When the electric eld is not active, we saw that the critical modes take the form of oscillatory columns (OC). We would like to investigate the eect of the DEP force on this instability.

Inuence of the Prandtl number

Since in inward heating (γ a < 0), the centrifugal Rayleigh number Ra and the electric Rayleigh number L are negative, the absolute values of these parameters will be considered. The global minimum of the marginal curves obtained with an active electric eld is associated with the OC modes (Fig. 8.2). The critical centrifugal Rayleigh number is independent from the Prandtl number. It increases with increasing V E (Fig. 8.3 -a), which underlines the stabilising eect of the thermoelectric buoyancy under this conguration. In fact, the electric gravity and the centrifugal acceleration are oriented in opposite direction, so the resulting buoyancy force is weakened. There is a need of a large rotation rate, i.e. large centrifugal gravity, to overcome the stabilizing eect of the DEP force. The critical modes are columns with an azimuthal mode number n c that is independent of the electric potential. For η = 0.5, the azimuthal mode number is n c = 5

and k c = 0 which gives a constant critical wavenumber q c = 3.333 (Fig. 

Inuence of the thermal parameters

In inward heating, the temperature dierence has no inuence on the threshold of the columnar modes (Fig. 8.5 -a). This armation is true if we consider the eect of the DEP force through the use of L, and not through the use of V E . The thermoelectric parameter γ e plays no role on the frequency of vortices propagation (Fig. 8.5 -b). Indeed, the feedback eect of the perturbation electric gravity is negligible for the considered set of parameters. In contrast with the thermal expansion parameter which plays an important role on the temporal behaviour of the critical modes. For a xed electric Rayleigh nummber, increasing the temperature dierence between the two cylinders increases the critical normalised frequency.

Inuence of the radius ratio

For a given value of the electric potential, ows in annulus with large radius ratio (small curvature) are more unstable than those with small radius ratio (large curvature) (Fig. 8.6 -a).

For some values of η, the number of columns can change when V E increases (Fig. 8.6 -b). For η = 0.2, n c jumps from 2 to 3, and for η = 0.8, it jumps from 14 to 15. This discontinuity is also observed for the frequency (Fig. 8.6 -c). So besides the delay of the onset of thermal convection, the electric potential has an eect on the spatial and temporal properties for some radius ratios.

Eect of the rotation on thermoelectric convection

When the inner cylinder is hotter than the outer one (outward heating), the thermoelectric buoyancy is the destabilising mechanism, leading to thermoelectric convection while the centrifugal buoyancy stabilises the ow (Fig. 8.7). Indeed, as the direction of the electric gravity eld is dominated by the curvature of the system, it does not change with the direction of the temperature gradient (within the chosen set of parameters). We investigate the eect of the rotation on the critical parameters of the thermoelectric convection. We remind that when the cylinders are not rotating, the critical modes are stationary helical vortices.

Inuence of the Prandtl number

For low values of Coriolis number τ (Fig. 8.8 -a), the global minimum corresponds to oscillatory non axisymmetric (ONA) modes, while for larger τ (Fig. 8.8 -b), the global minimum corresponds to oscillatory columnar (OC) modes. Figure 8.9 shows the behaviour of the critical electric Rayleigh number with τ . The threshold increases with increasing the rotation rate of the cylindrical annulus, which highlight the stabilising eect of the centrifugal buoyancy in this conguration. The value of τ for which both ONA and OC modes are critical does not depend on the Prandtl number. For a given τ , increasing the Prandtl number increases the threshold 

Inuence of the thermal parameters

The thermoelectric parameter has almost no inuence on the threshold due to the negligible feedback eect, but the thermal expansion parameter has an impact on the position of the codimension-2 point where both ONA and OC modes are critical (Fig. 8.13 -a). Indeed, the larger γ a , the larger the value of Ra at the codimension-2 point. The critical wavenumber of ONA (a) modes depends on γ a in the sense that γ a changes the codimension-2 point position (Fig. 8.13b). For OC modes the critical wavenumber is constant since, for η = 0.5, n c = 5 and is constant.

(d) (b) (e) (c) (f) 
The critical normalised frequency of ONA modes (Fig. 8.13 -c) and OC modes(Fig. 8. 13 -d) have been separated in two dierent diagrams in order to have a better insight on there dierent behaviours. The thermo-electric parameter plays no role on the frequency of vortices propagation, both for ONA and OC modes. In contrast, the thermal expansion parameter plays an important role on the temporal behaviour of the critical modes. For ONA modes, the critical normalised frequency is aected by γ a through the change of Ra at the codimension-2 point. For OC modes, increasing the absolute value of γ a increases the absolute value of the critical frequency. 

Discussion

Parabolic behaviour of the threshold

The variation of the threshold with V E in inward heating and with τ in outward heating seems to have the behaviour of a polynomial function of second order. Figure 8.14 shows the thresholds tted with the following functions:

Ra c = P i 1 V 2 E + P i 2 V E + P i 3 and L c = P o 1 τ 2 + P o 2 τ + P o 3 (8.2)
where i and o refer to inward heating and outward heating, respectively. In outward heating, the tting has been performed only for the threshold of columnar modes. There is a good agreement between the parabolic functions (8.2) and the thresholds until V E ≈ 10 3 in inward heating and until τ ≈ 400 in outward heating. We retrieve the same results as for the Rayleigh-Bénard convection in the horizontal layer of uid heated from below and rotating around its vertical axis [START_REF] Chandrasekhar | The instability of a layer of uid heated below and subject to Coriolis forces[END_REF].

Energy analysis

In this problem, the equation for kinetic energy is given by: The energy transfer from the base state to perturbations is done by the centrifugal buoyancy W Bu , the base thermoelectric buoyancy related to the base electric gravity W BG , the perturbation thermoelectric buoyancy related to the perturbation electric gravity W P G , and the viscous dissipation D ν . Even if the destabilising mechanisms in inward and outward heating are dierent, the variation of the dierent power terms with either V E or τ shows very similar behaviours. In inward heating (Fig. 8.15 -a), the power performed by the centrifugal buoyancy is always positive and increases with increasing V E , while the power performed by the base electric gravity is always negative and decreases with V E . In outward heating (Fig. 8.15 -b), it is now W BG which is always positive and increases with increasing τ , and W Bu is always negative and decreases with τ . In both cases, the viscous dissipation slightly increases with V E in inward heating, or with τ in outward heating, and the power performed by the perturbation electric gravity is negligible, considering the chosen values of η and γ e [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF].

dK dt = W Bu + W BG + W P G -D ν (8.3)

Frequency analysis

In the corotating regime in the absence of electric eld (Chapter 6), we saw that scaling the normalised frequency with the parameter γ a /Pr, which involves in the Coriolis buoyancy terms, unied the results obtained for dierent γ a and Pr. The same scaling is tested on the frequency of OC modes obtained in inward and outward heating.

In inward heating, the scaled critical normalised frequency is independent from the Prandtl number when Pr is suciently large (Fig. 8.16 -a). Otherwise the larger the Prandtl number, the larger the scaled frequency. In another hand, the scaling of the normalised frequency makes it independent from γ a (Fig. 8.16 -b).

In outward heating, for the OC modes, the same observation is made concerning the behaviour of the scaled frequency. For xed thermal parameters, increasing the Prandtl number increases the scaled frequency, and for suciently large Pr, the scaled frequency become independent from Pr (Fig. 8.17 -a). For a xed Pr, the thermal expansion parameter has no inuence on the scaled frequency (Fig. 8.17 -b).

These results indicate that the oscillation of columns takes its origin in the eect of the Corilis buoyancy since the parameter γ a /Pr involves in this term in the momentum equation written in the rotating frame of reference (Eq. (8.1)) 

Columnar modes in outward heating

In outward heating, the critical Rayleigh number at the codimension-2 point between the ONA modes and the OC modes depends on the Prandtl number and on the thermal expansion parameter. But the critical Coriolis number at this codimension-2 point is independent from Pr and γ a (Fig. 8.18). This result could be related to the Taylor-Proudman theorem.

Lets consider a rotating inviscid and incompressible uid in the inertial frame. A volume conservative force F = ∇Φ is applied to this uid, and the advection terms are neglected. For a steady state, the Navier-Stokes equation reads:

2ρΩ × u = ∇Φ -∇p (8.4) 
Applying the rotational operator to the equation, one can obtain the Taylor-Proudman theorem:

(Ω • ∇) u = 0 (8.5)
Developing the scalar product, we obtain a more convenient form of the theorem:

Ω x ∂u ∂x + Ω y ∂u ∂y + Ω z ∂u ∂z = 0 (8.6)
Choosing the coordinates system where Ω x = Ω y = 0, Eq. (8.6) is reduced to ∂u/∂z = 0. It implies that the three components of the velocity are axially invariant. 

Ω x ∂u ∂x + Ω y ∂u ∂y + Ω z ∂u ∂z = ν 2 ∇ × ∇ 2 u (8.7)
Written in its dimensionless form with Ω = Ω z e z , we have:

∂u ∂z = 1 τ ∇ × ∇ 2 u (8.8)
The Taylor-Proudman theorem is recovered if the Coriolis number τ tends to the innite.

The linear stability analysis showed that for a given radius ratio, the Coriolis number at the codimension-2 point has a nite constant value which is at least larger than unity (Table 8.1).

Conclusion

In this problem, two radial thermal buoyancies are active: the centrifugal buoyancy and the thermoelectric buoyancy. Since the electric gravity is centripetal, these two buoyancies have opposite eects. It is thus crucial to consider separately the inward heating and the outward heating cases.

In inward heating, the centrifugal buoyancy is the source of instabilities while the thermoelectric buoyancy stabilises the ow. The critical modes are then oscillatory columnar modes. The Prandtl number and the thermal expansion parameter have an inuence only on the temporal behaviour of the vortices, which can be scaled by the parameter γ a /Pr, showing that the frequency of these modes is related to the Coriolis buoyancy.

In outward heating, the thermoelectric buoyancy is the source of instabilities while the centrifugal buoyancy stabilises the ow. For low rotation rate of the annulus, critical modes are oscillatory helical modes with a threshold, a wavenumber and a frequency that depends on Pr, and γ a . At a certain Coriolis number which only depends on the radius ratio, both ONA and OC modes are critical. For this value of the Coriolis number, the viscous dissipation eects are negligible compared to the inertial eects, making the Taylor-Proudman theorem valid. The threshold and the wavenumber of OC modes are independent from Pr and γ a , when considered at a given value of the centrifugal Rayleigh number, but there frequency depend on these two parameters, and exhibit the same mechanism as for the OC modes in inward heating, i.e. the temporal behaviour is related to the Coriolis buoyancy.

In both inward and outward heating, the thresholds variation with V E and τ respectively, behave like a polynomial function of second order, until a certain value of V E or τ . Behind this certain value, the threshold and the polynomial function diverge.

Chapter 9

Thermo-electric convection in a vertical uid system on the Earth

The stability of a vertical stationary cylindrical annulus with a heated inner cylinder and with the combined eect of the radial electric gravity and of the Earth gravity is investigated. This study has been carried out in order to give information about the critical parameters and the nature of the critical modes in the framework of laboratory experiments or of parabolic ight campaigns. Indeed, parabolic ight experiments are performed to reach microgravity conditions in order to investigate the eect of a purely radial gravity eld. But the duration of the lowgravity phase is small and the base ow provided by the previous gravity phase has to be taken into account.

Dimensionless control parameters

For this study, the Galileo number Ga = gd 3 /ν has been introduced to x the ow system in the axial gravity. The Grashof number can be written Gr = γ a Ga 2 and only depends on the temperature dierence between the two cylinders when Ga is xed. The parameter δ = γ a /γ e , which is a uid property, is also introduced and thermally links the Archimedean and thermoelectric buoyancies. In this chapter, the dimensionless electric potential V E will be preferred to the electric Rayleigh number L to keep independent parameters (both Gr and L depend on ∆T ). These parameters will facilitate the physical interpretation of the results and the comparison to the experimental results obtained from laboratory and parabolic ight experiments.

9.2 Thermal convection in a stationary annulus due to the

Archimedean buoyancy

In the absence of electric eld, the Prandtl number has an important inuence on the ow stability. Indeed, for low Prandtl number, the critical parameters are independent of the value of the Prandtl number. This mode is commonly called hydrodynamic mode (HM). But beyond a certain value of Pr, the critical Grashof number decreases with Pr and tends to a constant which is nearly independent of the radius ratio. This mode is commonly called thermal mode (TM). These two modes are axisymmetric and oscillatory and dier by there origins [START_REF] Bahloul | Codimension 2 points in the ow inside a cylindrical annulus with a radial temperature gradient[END_REF]. The wavenumber and the frequency of vortices undergo a discontinuity at the codimension-2 point between HM and TM and then increase with increasing the Prandtl number. The HM take their origin in the shear produced by the base axial ow while TM are related to the Archimedes' buoyancy mechanism.

For low values of the radius ratio and of the Prandtl number, the critical modes can also be oscillatory non-axisymmetric. Figure 9.1 obtained for Pr = 0.72 shows that from η = 0 to η = 0.44, critical modes are helical with the azimuthal mode number n c = 1. For small values of η, the threshold increases with increasing η, but beyond the value η = 0.18, the threshold decreases with increasing η. The frequency of non-axisymmetric modes decreases with η for small values of η, and from η = 0.22, the frequency increases with η. For axisymmetric modes, the frequency increases with η. The axial wavenumber of non-axisymmetric modes increases with the radius ratio. At the codimension-2 point between non-axisymmetric and axisymmetric modes, the frequency and the wavenumber undergo discontinuity.

Coupled eect of Archimedean and dielectrophoretic buoyancies

We remind that, in weightless environment, the thermoelectric buoyancy produces stationary helical modes called electric modes (EM). Hence, we are interested in the investigation of resulting modes when both the Archimedean and the dielectrophoretic buoyancies are acting on the uid. nearly independent from V E . In this range of electric potential, for a xed value of V E , increasing the radius ratio will decrease the axial wavelength of vortices. The frequency of the critical modes is independent from V E , but depends on η.

Over a certain value of V E called V * E , the threshold strongly decreases with the electric potential. This regime is stationary and exhibits columnar vortices. Indeed, the azimuthal mode number is dierent from zero and depends on the radius ratio while the axial wavenumber is equal to zero.

For large values of V E , there is another transition from the columnar regime to a steady nonaxisymmetric mode at the codimension-2 point V * * E , corresponding to the electric mode predicted by Yoshikawa et al. [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF] Above V * * E , k c increases and tends to a constant. Depending on the radius ratio, n c can gradually decrease from its value for the columnar regime to its value for the microgravity case which is equivalent to a so large applied electric potential that the thermoelectric buoyancy is the dominant mechanism for inducing instabilities. Note that for η = 0.2, there is no change in n c at the codimension-2 point V * * E . For all these regimes, the curvature of the annulus has a destabilising eect. 9.3.2 Inuence of the Prandtl number Figures 9.3 shows the behaviours of the critical parameters with the dimensionless electric voltage for dierent values of P r and with η = 0.5. We can see from gure (Fig. 9.3 -a) that, as expected, the thresholds for hydrodynamic or thermal modes depend on the Prandtl number, and the thresholds for electric modes are independent of P r. However, the Prandtl number has an inuence on the position of the codimension-2 points (V * E , Gr * ) and (V * * E , Gr * * ). The larger the Prandtl number, the lower the critical Grashof number at the codimension-2 points. The axial and total wavenumber (Fig. 9.3 -b,c) depend on P r for hydrodynamic or thermal modes. For column vortices, the azimuthal wavenumber q c is a constant and we can see the shift of the codimension-2 points depending on the value of P r. For electric modes, the wavenumber increases until its value encountered in weightlessness which does not depend on P r. The critical frequency depends on P r for thermal modes.

Inuence of the ratio of the two thermal expansion coecients

The ratio between the thermal expansion parameter and the thermoelectric parameter δ = α/e is a uid property and it inuence on the critical parameter is investigated (Fig. 9.4). Using the electric Rayleigh number instead of the dimensionless electric voltage makes the critical parameters independent on δ. If the critical parameters were plotted against V E , we would have seen a shift of all the parameters to larger values of V E for lower values of δ, and inversely. This uid property may have an impact on the time needed for convection cells to be established. It could also aect the non-linear behaviour of the system, but it plays no role on its stability. 

Eigenfunctions

Energy analysis

For this situation, the energy transfer from the base state to the perturbations is gouverned by the equation:

dK dt = W Hy + W T h + W BG + W P G -D ν = 0 (9.1)
The gure 9.6 shows the behaviours of the dierent power terms with the variation of V E . For low values of V E , for the considered Prandtl number and radius ratio, the critical modes are thermal modes, and the term W T h is the dominant one. For large values of V E , the power W BG is the main contribution to the energy transfer from the base state to perturbations. In the intermediate case,

i.e. for columnar modes, both W T h and W BG are important. In an order of magnitude lower, W Hy also contributes to the energy transfer. In the hole diagram, the power input by the perturbation electric gravity W P G is negligible compared to the other terms.

Conclusion

The eect of the natural convection on the thermoelectric buoyancy in a cylindrical annulus has been studied. Indeed the prediction of the threshold and of the spatial and temporal behaviour of the unstable state is important in the framework of laboratory experiments and experiments in parabolic ight campaigns, where the eect of the Earth gravity cannot be neglected. In the absence of electric potential, the critical modes are oscillatory axisymmetric, and can have two dierent origins: the shear produced by the base state (hydrodynamic mode), or the Archimedean buoyancy (thermal mode). Under weightlessness, the critical modes are steady helical (electric mode). When both axial and radial gravity are active, stationary columnar modes become critical. These modes have a threshold which is strongly dependant on the electric potential. There columnar nature are not very well understand, but the energy analysis showed that the eect of the thermoelectric buoyancy and of the Archimedean buoyancy are coupled for these modes.

Chapter 10

General conclusions and outlook

The eect of the centrifugal buoyancy and of the thermoelectric buoyancy on a dielectric uid conned in a cylindrical annulus has been investigated by a linear stability theory and through some numerical simulations. These two buoyancies are radially oriented and are of most interest for astrophysical and geophysical applications, as well as for technical applications.

The eect of the centrifugal buoyancy has been studied for dierent rotation regimes of the cylinders under weightlessness. These regimes can be cast in two categories: Rayleigh unstable regimes which can sustain instabilities in the isothermal case, and Rayleigh stable regimes which cannot. For the Rayleigh unstable regime, the case where the outer cylinder is at rest has been chosen for its simplicity and its large amount of possible applications. We found an antisymmetric eect of the centrifugal buoyancy with respect to the direction of the temperature gradient. Indeed, the centrifugal buoyancy destabilises the ow in inward heating and stabilises it in outward heating.

Critical modes are axisymmetric and may be oscillatory in outward heating, due to the stable stratication of the density regarding the centrifugal acceleration. For the Rayleigh stable ow systems, the regime where the inner cylinder is at rest and the Keplerian regime were investigated.

These regimes become unstable to axisymmetric perturbations in the case of inward heating. For large values of Pr, the critical modes are stationary while for low values of Pr and in the case of small gap systems, critical modes are oscillatory. The parameter γ a Pr is an important parameter for studying the centrifugal buoyancy in Rayleigh stable ows, in agreement with results from short-wavelength approximation. The solid body rotation regime is also Rayleigh stable and is particular in the sense that it brings no azimuthal shear stress in the laminar ow. Therefore this system is an analogue of the Rayleigh-Bénard system when the outer cylinder is heated. The centrifugal Rayleigh number is the important parameter for studying thermal convection since the only mechanism is the centrifugal buoyancy. The critical convective ow takes the form of oscillatory columnar vortices, except for large values of γ a Pr and low radius ratios, where critical modes can be oscillatory helical ones. The oscillation of the columnar modes may be related to the eect of the Coriolis buoyancy.

The eect of the dielectrophoretic force has been investigated in two dierent systems: the rigidly rotating cylindrical annulus system, and the vertical stationary cylindrical annulus considering the Archimedean buoyancy in the axial direction. For the solid body rotation regime, the centrifugal, and thermoelectric buoyancies plays antagonist roles. Therefore, it was important to separate the case of inward and outward heating since the respective eects of the two buoyancies are not symmetric. In inward heating, the thermoelectric buoyancy increases the threshold of the occurrence of thermal convection induced by the centrifugal buoyancy. Critical modes are then always oscillatory columns. In outward heating, the centrifugal buoyancy increases the threshold of the occurrence of thermal convection induced by the thermoelectric buoyancy. For low rotation rates, critical modes are electrical and appear in form of oscillatory helical modes. At a certain value of the Coriolis number, the critical modes become oscillatory columnar ones. The Coriolis number at the codimension-2 point does not depend on the diusive properties of the uid, neither on the imposed temperature dierence between the two cylinders.

In the case of a vertical cylindrical annulus with Earth gravity, four dierent regimes can be critical. For low applied electric tension, critical modes are oscillatory axisymmetric either thermal or hydrodynamic, depending on the Prandtl number and on the radius ratio. For large applied electric tension, critical modes are stationary helical, which indicate there electric nature. For moderate applied electric tension, stationary columnar modes have been predicted to be critical. This is due to the superposition of the vertical Earth gravity and of the radial electric gravity which gives a certain angle of the resulting gravity in the (r, z) plane. Depending on the value of this angle, critical modes may be either columnar or helical vortices.

Experiments on the eect of the thermoelectric convection on a stationary cylindrical annulus have been performed in laboratory, as well as during parabolic ight. Some of these results are in Appendix A. This work has been done in collaboration with the Technical University of Brandenbourg, and more details on these experiment will be provided in the thesis of Marcel Joungmanns. More experiments with improved measurement techniques are necessary to make and the linear stability analysis possible, the largest cells have to be considered. Indeed, for small cells, the end eect due to the nite height of the cylinders will have too much impact on the ow stability.

A.1 Experimental setup

The experiment cell consists of two concentric cylinders. The radius of the inner cylinder is τ ν and τ κ . This is in agreement with the assumption made in the linear stability analysis, which states that the alternative electric tension can be replaced by its eective potential when the electric eld period is small enough compared to the characteristic times of the uid ow. To heat the inner cylinder, two dierent methods were used: for the PFC 2015, a heating cartridge with a temperature sensor was located inside the inner cylinder, while the PFC 2016 and for laboratory experiments, a heating uid loop was used with AK5 used as cooling uid. The outer cylinder, made of Aluminum (AlMgSi0.5) is connected to ground potential and is cooled by a cooling uid loop, which also uses AK5. The thermal conductivity of silicone oil AK5 is lower than that of water, but during the experiments, it happened that some uid from the heating or cooling loop came inside the cylindrical annulus, and we had to ensure that this would not compromise the results or the non-electrical conductivity of the working uid. Indeed we had to ensure that there Table A.1: Properties of silicone oil AK5: ε r = ε 2 /ε 0 is the relative electric permittivity, where ε 0 is the permittivity of the vacuum. Properties data are given by the manufacturer and have uncertainties e.g. 10% for the kinematic viscosity.

ν(10 -6 m 2 /s) ρ(kg/m 3 ) α(10 -3 K -1 ) r e(10 Since the inner cylinder is thin (1.85 mm) and has a high thermal conductivity, we considered that the temperature measured by the heating cartridge, or by the thermo-couples which measure the temperature of the heating uid loop, corresponds to the temperature of the inner cylinder.

With this heating and cooling system it is possible to generate a temperature dierence between the inner and outer cylinder of up to 12K.

A.2 Parabolic ight campaign

Parabolic ight is an easy way to obtain a microgravity condition. Moreover, it gives the opportunity to investigate the uid behaviour in three dierent gravity conditions. Indeed, the plane initially stays at a constant altitude and leads to a vertical gravity intensity of 1g which is the natural gravity of the Earth .

After about a minute, the plane increases its speed upward to give a hyper-gravity phase The quality of the microgravity phase is about 10 -2 g which is largely sucient for the assumption of a purely radial gravity in the experiment when the electric eld is applied. 

A.3 The shadowgraph method

The shadowgraph method is a common technique to visualise the density variation in a uid.

In supersonic uid ows, the density eld can be reconstructed using this method which can be combined with other techniques such as BOS or interferometry [START_REF] Kleine | Simultaneous shadow, Schlieren and interferometric visualisation of compressible ows[END_REF]. The shadowgraph method is also widely used in the process of solidication to observe ows due to buoyancies [START_REF] Robert | Laser shadowgraph and Schlieren studies of gravity-related ow during solidication[END_REF] or to measure the solutal density during the growing process [START_REF] Verma | Simulation and experimental verication of solutal convection in the initial stages of crystal growth from an aqueous solution[END_REF].

A.3.1 Principle

The cell is illuminated from the bottom by a LED with homogeneous light intensity prole A camera focused on the top of the cell captures the light intensity prole. 

A.3.2 Theoretical modeling

A uid conned between two coaxial vertical cylinders is considered. The height of these cylinders is L and the top and bottom horizontal lids are assumed to be thermally insulating.

In weightless environment, the base temperature only depends on the radial coordinate, while in the Earth's gravity eld, the top and bottom lids induce thermal boundary layers which make the base temperature also depend on the axial position. In addition, the consideration of a radial gravity eld can aect the ow stability, as in the Rayleigh-Bénard problem. If the temperature dierence between the two cylinders exceeds a critical value, counter-rotating vortices occur with spacial periodicity, resulting in a temperature prole with the same periodicity. The shape of these modes can dier depending on the nature and the direction of the total gravity eld. In general, one can observe axisymmetric vortices [START_REF] Bahloul | Codimension 2 points in the ow inside a cylindrical annulus with a radial temperature gradient[END_REF], helical vortices [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF] or columnar vortices [START_REF] Busse | Convection induced by centrifugal buoyancy[END_REF] (Fig. A.5).

The cylindrical gap is illuminated from the bottom plate with a telecentric light in the direction parallel to the cylinders common axis. The refractive index of the uid n f is proportional to the temperature which can be a general function of all three spatial cylindrical coordinates (r, ϕ, z).

The light beams are refracted inside the gap while following Fermat's principal which states that the length of the optical light path in the system has to be minimum. When parametrizing the For symmetry reason, the light beams trajectories for these regimes are conned in the (r; z) plan.

Therefore, the equation system (A.3) can be reduced to the system (A.3a , A.3c), with ϕ = 0 and using the initial condition concerned by the radial position and angle with respect to z. shows in the (r, z) plane the temperature prole and the light beam trajectories for the stable state for dierent ∆T . In the isothermal case, the light rays stay parallel to the vertical axis. But when a temperature dierence is applied between the two cylinders, the light rays are deviated in the direction of lower temperature, i.e. larger density. Moreover, the larger the temperature dierence, the larger the deviation.

To compute the relative intensity as function of the radial position, the top is divided into one dimensional cells of size 0.2 mm and the number of light beams is 5000. The maximum value of the intensity increases with the temperature dierence between the two cylinders.

Axisymmetric modes are characterized by there amplitude and there wavelength. It is possible to focus on the eect of these kind of modes by setting the temperature dierence between the two cylinder at ∆T = 0 K. But this case has no physical meaning since there can not be thermal the relative intensity at the mid-gap I 0 for the special case of ∆T = 0 K. When p = 0, the model chosen for temperature perturbations leads to the presence of a hot temperature cell with an innite wavelength. Therefore the resulting intensity is always minimum for this case. The relative intensity at the mid-gap increases with p and reach I 0 = 1 when p = 1. Then I 0 undergoes modulations so that it is equal to unity when p takes an integer value, and it is below unity in between two integer values. Indeed, when p takes integer values, there is a complete balance between the hot perturbation temperature cells, which make the light beams diverge, and the cold ones, which make the light beams converge. Finally, a light beam returns to its initial radial position when p is an integer. Otherwise, if p is not an integer, there is always a part of a hot cell which is not balanced with a cold one, and thus brings about a divergence of the light beams which decreases the intensity. Increasing the amplitude of the perturbation temperature increases the amplitude of the modulations of intensity, but these modulations vanish for suciently large wavenumbers so that p has no more inuence on the intensity. To focus on the eect of non-axisymmetric modes, it is possible to consider a radially homogeneous temperature prole. By doing that, the equation system (A.3) can be reduced to the system The spiral modes with n = 4 has been observed both theoretically and numerically by Yoshikawa & al. [START_REF] Yoshikawa | Dielectrophoretic force-driven thermal convection in annular geometry[END_REF] and by Travnikov & al. [43] in the case of a steady cylindrical annulus subjected to a radial dielectrophoretic force under microgravity conditions. As seen before, the axisymmetric modes has no inuence on the resulting shadowgraph image. However for helical modes and columnar modes, there is a modulation of the relative intensity with a number of modes equal to the one of perturbation temperature in the azimuthal direction. The amplitude of these modulations is small for spiral modes whereas it is much larger for columnar modes. with thinner steps at the surfaces of the problem. The rectangular grid consists of 12 steps for the radial direction and 100 steps for the axial direction. 

A.4 Experimental results

A.4.1 Laboratory experiments

The light homogeneity is characterised by using a shadowgraph image in the isothermal case with no applied electric eld. At this condition, the light intensity should be homogeneous because of the absence of density gradient. As the LED panel produces a red light, the treatment of the experimental shadowgraph images are done using only the red part of the RGB color vector. The gure A.12 shows that the light red level (RL) is nearly homogeous in the azimuthal direction.

However, a RL gradient exists in the radial direction, i.e. the red level decreases with the radius.

In the following, the light intensity prole is computed by normalising the RL prole of a given image by the one of the isothermal case (Fig. A.12 -a). intensity close to the inner cylinder and a maximum at the outer cylinder which could be related to reections of the light at the cylindrical surfaces. Just after the rst minimum, there is a maximum of the intensity, followed by a decrease of the intensity with the radial position. After reaching a minimum, the intensity increases until the maximum of intensity located at the outer cylinder. Increasing the temperature dierence decreases the overall light intensity prole. but for ∆T = 3K, the number of modes in the azimuthal direction is n = 6.

The presence or not of the non-axisymmetric pattern gives an information about the stability of the ow. The experimental results can thus be confronted to the results from the linear stability analysis. In the gure A.15, the stability diagram for AK5 under earth gravity conditions is plotted in the dimensional plan (V peak , ∆T ). The experimental results are added to this curve through the indications of blue circles or red crosses, depending on the symmetry of the intensity pattern.

For ∆T up to 4K, there is a good agreement between the linear stability analysis and the results invalidates the Boussinesq approximation and can lead to dierences between the experimental results and the predictions of the linear stability analysis.

A.6 Conclusion

The simulation of the shadowgraph method showed that the base state has already a large inuence on the light intensity distribution. Under microgravity conditions, the axially invariant temperature prole has a weak eect on the images, while the axial gravity produces thermal boundary layers which change the light intensity distribution of the images. Axisymmetric vortices have no impact on the shadowgraph images, while non-axisymmetric modes produce an azimuthal light intensity pattern with a maximum eciency for columnar modes, which were predicted by the linear stability analysis. The experiments in the laboratory and during the PFC showed the presence of non-axisymmetric patterns when the electric potential is applied. The laboratory experiments showed a good agreement with LSA, at least for small temperature dierences between the two cylinders. The PFC experiments showed that convection rolls appear during the microgravity phases, which can only be caused by the thermoelectric buoyancy. But the 22 s of microgravity remains too short to get a steady ow, even though the growth rate is maximized by choosing parameters far from the onset of convection.
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 11 Figure 1.1: Diagram of the dierent chosen values of µ associated with the chapter where they will be studied.
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 21 Figure 2.1: Sketch of the ow conguration.

Figure 2 .

 2 Figure 2.2 gives a simple representaion of the mechanism of the dierent terms of Eq. (2.1).
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 22 Figure 2.2: Skech of the physical mechanism of the dierent terms of the electrohydrodynamic force.
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 23 Figure 2.3: Direction of the base electric gravity in the (η, γ e ) plane. CP means centripetal and CF means centrifugal.

Figure 2 . 4 :

 24 Figure 2.4: Radial proles of (a) the temperature, (b) the axial velocity, (c-d) the electric eld and (e-f) the electric gravity. X is given by X = (r -R 1 )/d. (c) and (e) are obtained for γ e = 0.01. (d) and (f) are obtained for η = 0.5.
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 25 Figure 2.5: Radial proles of the base azimuthal velocity in the case of (a) the inner cylinder rotation regime, (b) the outer cylinder rotation regime, and (c) the Keplerian regime. X is given by X = (r -R 1 )/d.
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 31 Figure 3.1: Eigenvalue spectrum as function of the axial wavenumber for η = 0.5 and for (a) Ta = 68, (b) Ta = 100, (c) Ta = 200, (d) Ta = 300. Black and red curves correspond to stationary and oscillatory modes respectively.
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 32 Figure 3.2: Marginal curves for η = 0.5.
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 1 b-d). For a given k, the value of Ta for which the maximum of the growth rate σ changes its sign indicates the marginal state. Marginal stability curves show the threshold between σ < 0 and σ > 0 in the (k, Ta) plane. The marginal curves of the three rst modes with the largest values of growth rate for η = 0.5 are shown in Fig.3.2. The minimum of a marginal curve gives the critical conditions for given radial modes. The azimuthal vorticity and the amplitudes of the velocity components shown in Fig.3.3 have been computed for the critical conditions of each radial modes. One can see that the dierent modes observed in the growth rate spectrum correspond to dierent number of rolls in the radial direction. The lowest critical Taylor number corresponds to the case where there is only one mode in the radial direction; indeed viscous dissipation favors modes with a small number of convection cells.
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 3433 Figure 3.3: Azimuthal vorticity in the (r, z) plane and amplitudes of the velocity components for the three rst modes at their respective criticality for η = 0.5. For the rst, second and third modes, the values of (k, Ta) are (3.2, 68.19), (5.4, 228.75) and (7.5, 483.94), respectively.
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 34 Figure 3.4: Marginal curves for η = 0.8, µ = -4 and for dierent values of n.
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 35 Figure 3.5: Azimuthal vorticity in the (r, z) plane and amplitudes of the velocity components at the criticality for η = 0.8, µ = -4, Ta = 364.4, k = 8.76 and n = 5.
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 36 Figure 3.6: Variation of (a) the Taylor number and (b) the frequency at the marginal state for η = 0.8, and for various µ. At the critical condition, (Ta c , k c ) is (48.75, 3.17) for µ = -0.25, (57.37, 3.33) for µ = -0.5, and (76.25, 3.74) for µ = -0.8.
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 37 Figure 3.7: Generalised Rayleigh discriminant prole when the outer cylinder is at rest as a function of the dimensionless radial position for dierent values of γ a and for η = 0.5.
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 3 .6e) Equations (3.6a) and (3.6d) yield w = 0. Considering axisymmetric rolls of the gap size, the solution is sought in the form e st cos qz. Substituting this type of solution into equation (3.6b), (3.6c) and (3.6e), one can nd:
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 38 Figure 3.8: Schematic representation of the stability of the ow depending on the value of µ -η 2 . The condition obtained by the one dimensional model tells that the value γ a Pr has to be below a certain value γ a Pr * , which mainly depends on µ -η 2 .
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 41 Figure 4.1: Base pressure prole (a) and its derivative (b) as function of the dimensionless position for dierent values of γ a with η = 0.5 and Π 0 = 0.
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 42 Figure 4.2: Marginal stability curves obtained for Pr = 10, η = 0.5 and γ a = 0.001 and for two values of n. The critical state for this set of parameters is located at the marginal curve for n = 0.
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 43 Figure 4.3: Variation of the critical parameters with γ a for dierent η and and for Pr = 50: (a) normalized Ta, (b) wavenumber and (c) frequency. SA: stationary axisymmetric mode; OA: oscillatory axisymmetric mode; ONA: oscillatory non-axisymmetric mode.

  modes. The points (γ a * , Ta * c ) and (γ a * * , Ta * * c ) are called codimension two points in the literature. These points indicates parametric positions where two modes of dierent nature are critical at the same time. Their coordinates depend on Pr and η.

Figure 4 . 4 shows

 44 the behaviour of the threshold, of the critical wavenumber and of the critical frequency as a function of the Prandtl number. When the thermal expansion parameter γ a is xed to a positive value, Ta c increases with Pr until a certain value Pr * . The critical modes are SA when
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 44 Figure 4.4: Variation of the critical parameters with Pr for dierent η and γ a : (a) normalized Taylor number, (b) wavenuber and (c) frequency. For clarity, q c (b) was plotted only for γ a = 0.01. SA: stationary axisymmetric mode; OA: oscillatory axisymmetric mode; ONA: oscillatory nonaxisymmetric mode.
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 46 Figure 4.6: (a) Variation of the growth rate with the wavenumber for Ta = 47.4 and (b) marginal stability curves for η = 0.8 and Pr = 10 for isothermal case (γ a = 0), the inward heating (γ a = -0.01) and outward heating (γ a = 0.01). Black and red curves correspond to stationary and oscillatory modes respectively.
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 47 Figure 4.7: (a) Variation of the growth rate with the criticality = Ta/Ta c -1 and (b) marginal stability curves for η = 0.8, Pr = 50 and γ a = -0.01. Black and red curves correspond to stationary and oscillatory modes respectively.

γ a = 0 ,

 0 the centrifugal mode still exists and exhibits the largest growth rate. The growth rate of these modes is modied by the centrifugal buoyancy: the stabilizing or destabilizing eect of the centrifugal buoyancy respectively decreases or increases the growth rate. This can be shown on the marginal stability curves plotted on Fig.4.6 -b through the decrease of the Taylor number for inward heating and its increase for outward heating compared to the isothermal case. In addition to the centrifugal modes, other modes which are caused by the thermal eects (thermal modes) interact with the centrifugal mode. On gure 4.6 -a, we can see that one of these modes merges with the centrifugal mode for some values of k and gives rise to oscillatory modes. The variation of the growth rate with the criticality parameter = Ta/Ta c -1 and corresponding marginal curves show that no oscillatory modes are expected near the criticality (Fig.4.7).
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 48 Figure 4.8: Variation of the growth rate and of the frequency with the wave number k for η = 0.8 and Pr = 50 at Ta = Ta c . The thermal expansion parameter γ a = 0.001 < γ a * in (a) and (b) and γ a = 0.01 > γ a * in (c) and (d). Black and red curves correspond to stationary and oscillatory modes respectively.
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 4 Figure 4.9 shows the variation of the growth rate and the frequency with the criticalty parameter together with the marginal stability curves and the frequency dispersion curve when γ a > γ a * . The critical condition is obtained for an oscillatory mode.
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 49 Figure 4.9: Stability analysis for η = 0.8, Pr = 50, and γ a = 0.01: Variation of the growth rate (a) and the frequency (b) with the criticality = Ta/Ta c -1, marginal curves of the rst two unstable modes (c), variation of the frequency of the oscillatory modes with the wave number, i.e., dispersion relation (d). Black and red curves correspond to stationary and oscillatory modes respectively.
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 410 Figure 4.10: Energy generation terms for η = 0.5 as functions of (a) the thermal expansion parameter γ a for P r = 50 and (b) as function of the Prandtl number P r for γ a = 0.01.

  γ a exceeds the value of γ a * , W Bu become constant. So in outward heating, increasing γ a reinforces the stability of the circular Couette ow, but the stabilizing eect saturates when OA modes occur. The dependence of W Bu on Pr in outward heating is subtle (Fig. 4.10 -b), but it can be Velocity and temperature Buoyancy eld and its work (a) Stationary critical mode (Pr = 10, Ta c = 69.7 and q c = 3.160) (b) Oscillatory critical mode (P r = 60, T a c = 69.4 and q c = 3.154) (c) Oscillatory critical mode (P r = 1000, T a c = 68.5 and q c = 3.162)
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 411 Figure 4.11: Eigenfunctions at critical conditions with η = 0.5 and γ a = 0.01.
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 412 Figure 4.12: Critical frequencies as a function of Brunt-Väisälä frequency.

Figure 4 .

 4 [START_REF] Barbic | Electromagnetic micromotor for microuidics applications[END_REF] shows the results of Kirillov and Mutabazi concerning the critical frequency. There is a good agreement between our results and those of Kirillov. Indeed, they reproduced the saturation of the frequency at large Pr
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 413 Figure 4.13: Critical frequencies in units of βΩ (a) as function of the Prandtl number for γ a = 0.0004, (b) as function of γ a and (c) as function of the Brunt-Väisälä frequency. All these results have been obtained for η = 0.99.[START_REF] Kirillov | Short-wavelength local instabilities of a circular Couette ow with radial temperature gradient[END_REF] 
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 414 Figure 4.14: Total friction coecient as function of Ta for dierent values of Pr and γ a . The solid line corresponds to the isothermal laminar ow.
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 415 Figure 4.15: Variation of the heat transfer coecients at the inner cylinder with Ta for dierent values of Pr and γ a . (a) Pr = 10 and dierent values of |γ a |, (b) Pr = 100 and |γ a | = 0.001 and (c) Pr = 100 and |γ a | = 0.01.

Figure 5 . 1 :

 51 Figure 5.1: Marginal stability curves obtained for η = 0.5, Pr = 1000 and for γ a = -0.008. The critical modes are axisymmetric.

Figure 5 .

 5 Figure 5.3 shows the behaviour of the growth rate of critical modes in the (k, Ta) plane and
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 52295354 Figure 5.2: Variation of the critical parameters with -γ a Pr for dierent η: (a) Taylor number and (b) wavenumber.
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 55 Figure 5.5: Variation of the critical parameters with -γ a Pr for dierent η: (a) Taylor number and (b) wavenumber.
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 56 Figure 5.6: Power terms of the outer rotation regime (a) as function of -γ a Pr for η = 0.5, and (b) as function of η for γ a Pr = -10.
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 57 Figure 5.7: Power terms in the Keplerian regime (a) as function of -γ a Pr for η = 0.5, and (b) as function of η for γ a Pr = -10.
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 58 Figure 5.8: Variation of the critical parameters as functions of Pr for η = 0.99 and γ a = -0.01 in the Keplerian regime: (a) Taylor number, (b) wavenumber and (c) frequency.
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 61 Figure 6.1: Sketch showing the analogy between the rigidly rotating cylindrical annulus with heated outer cylinder and the Rayleigh-Bénard problem.
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 2 5c) s ŵ = -ikπ + ∆v (6.5d) s θ = -DΘû + 1 Critical parameters In inward heating, when both cylinders rotate at the same angular velocity, for most sets of parameters, the critical modes take the form of columnar vortices, i.e. k c = 0 and n c = 0. Due to the analogy with the Rayleigh Bénard problem, the convenient parameter for this rotation regime is the Rayleigh number. Indeed Ra c depends only on the radius ratio (Fig. 6.2 -a). The azimuthal mode number increases with η and corresponds to the maximum number of convection roll pairs of the gap size: n c [π(1 + η)/2(1 -η)]. Each time the value of n c changes, the slope of Ra c with respect to η also changes. For large values of the radius ratio, the critical Rayleigh number tends to Ra = 1708 which is the threshold for onset of convection in the Rayleigh-Bénard problem. The critical wavenumber depends only on η (Fig. 6.2 -b). It decreases with η and undergoes ascendant
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 62 Figure 6.2: Variation of the critical parameters as fonctions of the radius ratio for dierent Pr and dierent γ a : (a) Rayleigh number, (b) wavenumber and (c) normalized frequency.
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 63 Figure 6.3: Variation of (a) the critical axial wavenumber, (b) the critical azimuthal mode number and (c) the angle of vortices with respect to the azimuthal direction as function of the radius ratio for γ a Pr = -10.
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 64 Figure 6.4: Zones of critical states. Columnar modes are critical below the solid line, otherwise helical modes are critical.
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 65 Figure 6.5: Perturbation temperature prole and perturbation velocity eld at the critical condition (a) in the (r, ϕ) plane (b) in the (ϕ, z) plane, and (c) in the (t, ϕ) plane for η = 0.5, Pr = 10 and γ a = -0.01.
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 66 Figure 6.6: Critical centrifugal Rayleigh number dened at the logarithmic radial position R ln,c as a function of the radius ratio

Figure 6 . 7 :

 67 Figure 6.7: (a) Critical normalized frequency ω c /τ of columnar modes scaled with the parameter -γ a /Pr as a function of the radius ratio, and (b) azimuthal phase velocity as a function of τ for γ a Pr = -10.
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 68 Figure 6.8: Variation of the power performed by the base centrifugal buoyancy W BBu and of the power performed by the perturbation centrifugal buoyancy W P Bu with η for Pr = 10 and γ a = -0.01.
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 69 Figure 6.9: Flow and temperature elds in the (r, z) plane for η = 0.5, Ra = 1811, Pr = 1 and γ a = -0.01: (a) velocity elds and pressure, (b) avial vorticity, and (c) temperature.
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 610 Figure 6.10: Variation of the Nusselt number with Ra for η = 0.5, Ra = 1811, Pr = 1 and γ a = -0.01.
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 73 Figure 7.3: Variation of the Nusselt number with the electric Rayleigh number: (a) for η = 0.1, γ e = 0.01 and for dierent Pr, (b) for η = 0.5, γ e = 0.01 and for dierent Pr, (c) for η = 0.3, Pr = 10 and for dierent γ e , and (d) for η = 0.7, Pr = 100 and for dierent γ e .[START_REF] Travnikov | Numerical investigation of the heat transfer in cylindrical annulus with a dielectric uid under microgravity[END_REF][START_REF] Travnikov | Inuence of the thermo-electric coupling on the heat transfer in cylindrical annulus with a dielectric uid under microgravity[END_REF] 

Figure 8 . 1 :

 81 Figure 8.1: Sketch of the directions of the gravity elds with respect to the temperature gradient.
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 82 Figure 8.2: Marginal stability curves in the (k, Ra) plane for η = 0.5, Pr = 10, γ a = γ e = -0.01, V E = 100 and for dierent azimuthal mode number.
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 83 Figure 8.3: Variation of the critical values with V E for η = 0.5, γ a = γ e = -0.01, and for dierent Prandtl number. (a) centrifugal Rayleigh number, (b) wavenumber, and (c) frequency.
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 84 Figure 8.4: Perturbation temperature and perturbation velocity elds: (a) in the (r, ϕ) plane (b) in the (ϕ, z) plane, and (c) in the (t, ϕ) plane for η = 0.5, Pr = 10 and γ a = γ e = -0.01 and V E = 600 at the critical condition (Ra c = -211.6).

  8.3 -b). The critical frequency is, as in the case without electric eld, normalised with the Coriolis number (Fig. 8.3c). The frequency of the OC modes is positive which indicates retrograde vortices. The temporal behaviour of these convection rolls depends on the Prandtl number. For a xed V E , uids with large values of Pr have a smaller critical frequency than those with small values of Pr.Figure 8.4 shows the perturbation temperature and the perturbation velocity elds of a OC mode in dierent spatial and spatio-temporal planes. In the spatio temporal prole of the perturbation temperature (Fig. 8.4 -c), one can see the retrograde propagation of the vortices.
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 85 Figure 8.5: Critical values of (a) the electric Rayleigh number, and (b) the normalised frequency for η = 0.5 and Pr = 10 in inward heating.
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 86 Figure 8.6: Variation of the critical parameters with V E for Pr = 10, γ a = γ e = -0.01 and for dierent η: (a) centrifugal Rayleigh number, (b) wavenumber, and (c) normalised frequency.
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 87 Figure 8.7: Sketch of the directions of the gravity elds with respect to the temperature gradient.
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 88 Figure 8.8: Marginal stability diagram in the (k, V E ) plane for η = 0.5, Pr = 10, γ a = γ e = 0.01, τ = 1.63 (a) and τ = 163.30 (b) and for dierent azimuthal mode number.
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 89 Figure 8.9: Variation of the critical electric Rayleigh number with τ for η = 0.5, γ a = γ e = 0.01, and for dierent Prandtl number.

Figure 8 . 10 :Fig. 8 . 12 .

 810812 Figure 8.10: Variation of the critical values with the centrifugal Rayleigh number for η = 0.5, γ a = γ e = 0.01, and for dierent Prandtl number: (a) electric Rayleigh number (b) wavenumber and normalized frequency (c) of ONA modes and (d) of OC modes.

Figure 8 . 12 :

 812 Figure 8.12: Perturbation temperature and perturbation velocity elds of an ONA mode (Ra = 5) in (a) the (r, ϕ) plane, (b) in the (ϕ, z) plane and (c) in the (t, ϕ) plane, and of an OC mode (Ra = 4000) in (d) the (r, ϕ) plane, (e) in the (ϕ, z) plane and (f) in the (t, ϕ) plane at the critical condition for η = 0.5, γ a = γ e = 0.01 and Pr = 10.
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 813 Figure 8.13: Variation of the critical parameters with Ra for η = 0.5, Pr = 10 and for dierent γ a and γ e : (a) electric Rayleigh number, (b) wavenumber, (c) normalised frequency of ONA modes and (d) normalised frequency of OC modes.
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 814 Figure 8.14: Threshold tted with a polynomial function of second order for η = 0.5, Pr = 10: (a) Ra c against V E in inward heating with γ a = γ e = -0.01 (P i 1 = 0.0067; P i 2 = 0.0638; P i 3 = 1774.4) and (b) L c against τ in outward heating with γ a = γ e = 0.01 (P o 1 = 0.0300; P o 2 = 0.3058; P o 3 = 1527.9).
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 815 Figure 8.15: Power given by the dierent mechanisms for η = 0.5, Pr = 10 (a) in inward heating against V E with γ a = γ e = -0.01 and (b) in outward heating against τ with γ a = γ e = 0.01.
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 816 Figure 8.16: Critical normalised frequency scaled with the parameter γ a /Pr in outward heating for (a) dierent Pr with γ a = γ e = -0.01 and (b) for dierent γ a with γ e = -0.01 and Pr = 10.
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 817 Figure 8.17: Critical normalised frequency of OC modes scaled with the parameter γ a /Pr in outward heating for (a) dierent Pr with γ a = γ e = 0.01 and (b) for dierent γ a with γ e = 0.01 and Pr = 10.
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 818 Figure 8.18: Critical wavenumber in outward heating for (a) dierent Pr with γ a = γ e = 0.01 and (b) for dierent γ a with γ e = 0.01 and Pr = 10.
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 91 Figure 9.1: Variation of the critical parameters with η for Pr = 0.72 and V E = 0: (a) Grashof number (b) frequency, (c) axial wavenumber and (d) azimuthal mode number.
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 92 Figure 9.2: Variation of the critical parameters with V E for P r = 10, Ga = 1370, δ = 0.1 and for dierent values of η: (a) Grashof number, (b) axial wavenumber, (c) azimuthal mode number, (d) total wavenumber and (e) frequency.
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 93 Figure 9.3: Variation of the critical parameters with V E for η = 0.5, Ga = 1370, δ = 0.1 and for dierent values of P r: (a) Grashof number, (b) axial wavenumber, (c) azimuthal mode number, (d) total wavenumber and (e) frequency.
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 94 Figure 9.4: Variation of the critical parameters with the electric Rayleigh number for Ga = 1370, η = 0.5, Pr = 10 and for dierent δ: (a) Grashof number, (b) axial wavenumber, (c) azimuthal mode number, (d) total wavenumber and (e) frequency.
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 9 Figure 9.5 shows the perturbation temperature and the perturbation velocity elds of the four dierent ow regimes found in this problem. The hydrodynamic mode (Fig. 9.5 -a) have a larger axial wavenumber than the thermal mode (Fig. 9.5 -b). In both modes, the base axial ow twists the vortices by pushing them upward near the hot wall and downward near the cold one. These vortices propagate upward. The columnar modes (Fig. 9.5 -c) are similar to those observed in the cylindrical annulus in solid body rotation under microgravity conditions (Chapter 6, 8) except that they are stationary. The helical modes (Fig. 9.5 -d) are the electric modes encountered in convections only induced by the thermoelectric buoyancy (Chapter 7).

Figure 9 . 5 :

 95 Figure 9.5: Temperature and velocity elds at the critical condition for Ga = 1370, δ = 0.1, η = 0.5 and for (a) a hydrodynamic mode (Pr = 0.72, V E,c = 200, Gr c = 8342, k c = 2.747 and n c = 0), (b) a thermal mode (Pr = 10, V E,c = 113, Gr c = 3150, k c = 1.604 and n c = 0), (c) a stationary columnar mode (Pr = 10, V E,c = 512, Gr c = 1760, k c = 0 and n c = 5) and (d) a stationary helical mode (Pr = 10, V E,c = 4780, Gr c = 20, k c = 1.674 and n c = 4).

Figure 9 . 6 :

 96 Figure 9.6: Variation of the energy generation terms with the dimensionless electric potential V E . These curves has been obtain for Ga = 1370, δ = 0.1, P r = 10 and η = 0.5.

R 1 = 5 . 1

 151 mm and that of the outer one is R 2 = 10.2 mm which gives a gap size of d = 5.1 mm and a radius ratio of η = 0.5. The length of the two cylinders is L = 100 mm which gives an aspect ratio of Γ = L/d = 19.6. The properties of the working uid (silicone oil Wacker AK5) inside the cylindrical annulus are given in Table A.1. The viscous diusion time is τ ν = 5.2 s and the thermal diusion time is τ κ = Prτ ν = 336 s. The inner cylinder is made of aluminium oxide (Al 2 O 3 ) and coated with Titanium Nitride (TiN) to create a conductive layer. The applied alternative peak voltage V peak = √ 2V 0 has a frequency of 200 Hz corresponding to a period of T = 5 × 10 -3 s that is very small compared to

(

  Fig. A.1). During this 20 seconds phase, the vertical gravity intensity is 1.8g. At the end of this phase, the plane nose is about 45 o to the horizon and the engines are cut back. The plane follows a parabolic trajectory to induce the microgravity phase which lasts about 22 seconds. A second hyper-gravity phase is obtained when the downward velocity of the plane is decreased to recover the rst natural gravity phase. There exist several other ways to reach the microgravity condition (i.e. drop tower or suborbital Rocket Flight), but the main advantage of the parabolic ight is the good balance between the duration of the microgravity phase, the quite large allowable size of the experiment module, and the opportunity for investigators to be onboard the aircraft during the ight.

Figure A. 1 :

 1 Figure A.1: Sketch showing the dierent gravity phases encountered during one parabola. Courtesy of Novespace.

Figure A. 2 :

 2 Figure A.2: Time variation of the dierent components of the acceleration during a parabolic ight. The acceleration values are normalized by the earth gravity intensity.

Figure A. 2

 2 Figure A.2 shows the intensity of the dierent components of the acceleration during a parabola.

Figure A. 3 :

 3 Figure A.3: Participants of the parabolic ight campaign of October 2016 in front of the ZERO G aircraft. From the left to the right: R. Stöbel, V. Ruo, M. Jongmanns, M. Meier, A. Meyer, I. Mutabazi, C. Egbers.

Figure A. 4 :

 4 Figure A.4: Schematic representation of the light beam trajectories inside the cells. The light beams are refracted due to the inhomogeneity of the uid optical index n f which is a function of the temperature.

I

  i (r, ϕ, z i ) and telecentric lighting obtained using light control lms. The light goes through the liquid in the cell and is refracted because of density gradients which are produced by the base temperature prole and the perturbation temperatures generated by the onset of instabilities. At the outlet of the working uid, the initially homogeneous light intensity exhibits a new prole I o (r, ϕ, z o ) which depends on the 3-dimensional prole of the uid optical index n f (see Fig. A.4).

Figure A. 5 :

 5 Figure A.5: Schematic representation of the dierent instability modes that can appear in a cylindrical gap.

Figure A. 6 :

 6 Figure A.6: Temperature prole (color) and trajectories of a selection of light beams (black) in the (r, z) plan for dierent ∆T .

Fig. A. 6

 6 

  Fig. A.7 shows the relative intensity as function of the radial position for dierent ∆T . The radial deviation of the light rays brings about an area around the inner cylinder where I = 0. Indeed, a light beam initially located at the inner cylinder reaches the top surface at the position r * > R 1 . The radial position r * increases with ∆T . The intensity for r > r * is larger than unity and decreases with r.

Figure A. 7 :

 7 Figure A.7: Relative intensity as function of the radial position for stable states.

  Fig. A.8 -b shows the relative intensity prole for dierent ∆T and T amp when p = 10 which corresponds to the closest integer value of p that satises λ z /2 = d. There is no dierences between the shadowgraph image for the base temperature prole and the one for the perturbed temperature prole.

Figure A. 8 :Fig. A. 9 -

 89 Figure A.8: (a): relative intensity as function of the radial position for dierent ∆T and T amp with p = 10 and (b): relative intensity at the mid-gap as function of the axial modes number for dierent T amp .

Figure A. 9 :

 9 Figure A.9: (a): relative intensity as function of the azimuthal angle for dierent shape of modes with T amp = 0.2K and (b): maximum of the relative intensity at as function of the deviation angle of the modes with respect to the azimuthal direction with T amp = 0.2K.

Figure A. 10 :

 10 Figure A.10: Shadowgraph images for (a) axisymmetric mode (m = 0; p = 10), (b) spiral mode (m = 4; p = 5) and (c) collumnar mode (m = 5; p = 0) both for DT = 1K and T amp = 0.2K.

Figure A. 11 :

 11 Figure A.11: Results for the base ow of (a) temperature distribution and trajectories of some light beams shown by the black lines and (b) resulting 1D shadowgraph images. The temperature dierence is DT = 1K

Fig. A. 11 - 1 K

 111 Fig. A.11 -a shows the temperature prole of the base state in the (r; z) plane for ∆T = 1 K and with an axial downward gravity eld corresponding to the Earth gravity eld. Thermal boundary layers involve at the top and bottom plates, leading to a hotter zone near the top and a cooler zone near the bottom with respect to the base state in microgravity condition. The resulting intensity prole at the top plate for both the case of microgravity and the case of Earth condition are shown in Fig. A.11 -b. The existence of the thermal boundary layers completely changes the shadowgraph images through the appearance of two maximums and one minimum in between. The rst largest maximum is related to the bottom thermal boundary layer while the second lower maximum is due to the top thermal boundary layer.

Figure A. 12 :

 12 Figure A.12: (a) Contour, (b) radial distribution and (c) azimuthal distribution of the shadowgraph red level (RL) with ∆T = 0 K and V peak )0 kV.

Fig. A. 13

 13 Fig. A.[START_REF] Barbic | Electromagnetic micromotor for microuidics applications[END_REF] shows the eect of the temperature dierence between the two cylinders on the radial light intensity prole. These proles have been obtained by averaging the intensity along a hundred dierent radii distributed over the entire circumference of the cylindrical ring. As the isothermal case is used as the reference picture, ∆T = 0 K gives a constant intensity prole equal to unity. Increasing ∆T has a large impact on the shadowgraph images. There is a minimum of

Figure A. 15 :

 15 Figure A.15: Comparison between the linear stability diagram obtained for the silicone oil AK5 under earth gravity conditions (black curve) and the experimental results in the dimensional plan (V peak , ∆T ). The blue circles correspond to axisymmetric intensity proles while the red crosses exhibit non-axisymmetric patterns.

Figure A. 16 :

 16 Figure A.16: Shadowgraph images obtained at the end of the three dierent gravity phases with ∆T ≈ 10K and without applied electric tension.

Fig. A. 16

 16 Fig. A.[START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF] shows the shadowgraph picture obtained at the end of the three dierent gravity phases which are the normal gravity (1g), the hypergravity (1.8g) and the microgravity (0g) phases without applied electric tension. The thermal boundary layers responsible for the axisymmetric pattern observed for the two gravity phases, is reinforced for the 1.8g phase compared to the 1g phase, inducing a more marked pattern for the hypergravity phase. At the end of the microgravity

Fig. A. 19 -

 19 Fig. A.19 -b shows the shadowgraph image taken at the end of this 1.8g phase. During the rst half of the microgravity phase, the brightness strongly decreases inside the gap. Then, a new non-axisymmetric pattern growths until the end of the microgravity phase, which was too short to get a steady state of this pattern. Fig. A.19 -c shows the shadowgraph image taken at the end of the 0g phase. This pattern is the signature of a convective state only generated by the thermoelectric buoyancy.
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Table 3 .

 3 1: Critical Taylor number and critical wave number for dierent η. All the critical modes are axisymmetric (n c = 0). Ta c 421.48 176.28 111.85 83.65 68.19 58.56 52.04 47.37 43.87 41.41 41.29 q c 3.339 3.263 3.215 3.183 3.162 3.148 3.139 3.133 3.129 3.127 3.127

	η	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.99 0.995

Table 4 .

 4 1: Values of the threshold slope Ta c (γ a )/Ta c (γ a = 0) as function of γ a computed at γ a = 0 for dierent η and Pr.

	Pr

Table 4 .

 4 2: Variation of dispersion properties of the critical modes with Pr for η = 0.5, γ a = 0.01. velocity, the group velocity and the dispersion coecient, respectively. Their values (Table4.2) depend weakly on Pr. The OA modes induced by the radial buoyancy in the Taylor-Couette ow exhibit a normal dispersion.

		Pr	c		v g	P			
		50 0.297 0.256 0.045		
		100 0.321 0.281 0.048		
		1000 0.329 0.290 0.050		
	where									
	c =	ω c q c	,	v g =	dω dq	,	P =	1 2	d 2 ω dq 2 ,	(4.11)
	represent the phase									

Table 4 .

 4 3: Critical parameters and coecients of the Ginzburg-Landau equation against Pr and γ a (η = 0.8).

	Pr	γ a	Ta c	Ta c	τ 0	τ 0	ξ 0	c 0	c g	c 1	l
			(LSA) (DNS) (LSA) (DNS)					(DNS)
		-10 -2 46.533 46.594 4.16	4.791 0.269				60.82
	10	-10 -3 47.281 47.231 3.66 10 -3 47.452 47.380 3.54	3.559 0.270 3.475 0.270	0	0	0	29.31 25.69
		10 -2 48.246 48.209 2.98	3.288 0.270				17.84
	50	-10 -2 43.996 44.343 17.6 10 -2 48.292 49.020 7.19	9.59 3.294 0.271 -0.469 0.002 -0.469 -60.04 0.269 0 0 0 1157.24
	100	-10 -2 41.337 41.509 51.0 36.326 0.268 -10 -3 46.643 47.160 10.5 3.801 0.269 10 -3 47.748 47.595 7.17 3.527 0.270 -0.951 0.001 -0.951 -53.62 0 0 2485.11 0 1499.98
		10 -2 47.932 48.905 7.21	3.097 0.270 -0.181 0.003 -0.218 -431.22

Table 6 .

 6 1: Critical parameters and coecients of the complex Ginzburg-Landau equation computed by LSA and DNS.

	η	Pr	γ a	LSA	τ c	DNS	LSA	τ 0	DNS	ξ 0 LSA	l DNS
		1	10 -2 688.24 689.07 0.0364 0.0364 0.2679 28229
	0.5	10 10 -3 688.37 689.04 0.2476 0.2444 0.2703 411852
		100 10 -3 217.68 218.16 2.3600 2.2328 0.2703 451353
		1	10 -2 390.19 390.90 0.0385 0.0389 0.2736	8973
	0.8	10 10 -3 390.20 390.91 0.2676 0.2678 0.2726 128357
		100 10 -3 123.40 124.13 2.5589 2.2978 0.2722 143532

Table 8 .

 8 1: Critical Coriolis number at the codimension-2 point between ONA modes and OC modes in inward heating for dierent radius ratio.

	η	0.2 0.5 0.8
	τ * 17.3 8.2 1.9
	Considering a viscous uid, Eq. (8.6) reads:

  breakdowns, and silicone oil has very high breakdown values. The top and bottom lids are made of polymethylmethacrylate (PMMA) to ensure thermal and electrical insulation.

	would be no					
	5.0	920	1.08	2.70	1.07	64.6 1.01

-3 K -1 ) P r α/e

where the critical Taylor number increases with Pr. Above the value Pr * * , the OA modes become again critical. The threshold Ta c of the OA modes decreases with Pr toward its value for the isothermal Taylor-Couette instability. The critical wavenumber of SA and ONA modes decreases with the Prandtl number while for OA modes, it increases with Pr. The wavenumber undergoes discontuinies at the codimension-2 points (Pr * , Ta * ) and (Pr * * , Ta * * ) and when the azimuthal modes number changes. The critical frequency of OA modes increases with Pr until it becomes Prandtl independent with a constant value which depends on η and γ a . The frequency of ONA modes remains constant, unless n c changes.

The values of Pr * and Pr * * depend on both γ a and η. At (Pr * , Ta * c ) both SA and OA or ONA modes are critical. At (Pr * * , Ta * * c ), the ONA modes as well as the OA modes are critical. The zones of dierent critical states can be visualized in the plane (Pr, γ a ) in Fig. 4.5 for a moderate and a large value of η.

Eigenvalues behaviour

To have a better insight into the eect of the centrifugal buoyancy, the spectrum of the eigenvalues has been analysed, in particular, that of the axisymmetric modes. In this section, the radius ratio is xed at η = 0.8. The behaviour of the growth rate with the wavenumber is shown on Fig. 4.6 -a in the cases of isothermal, inward heating and outward heating Couette ow at a given Pr and Ta (Ta = 47.4 is the critical Taylor number of the isothermal case). When γ a = 0, the only visible mode is the centrifugal mode which is critical at k = 3.132 for Ta = 47.4. When Chapter 5

Centrifugal buoyancy in Rayleigh stable

Taylor-Couette ows

In the previous chapter, we investigated the eect of the centrifugal buoyancy on a Rayleigh unstable rotation regime. We will now focus on two Rayleigh stable ows. In the isothermal case, when only the outer cylinder rotates or when both cylinders rotate in the Keplerian regime, i.e.

the ow is always stable. The application of a temperature dierence between the two cylinders produces the centrifugal acceleration which is able to change the stability conditions. To have a destabilising eect of the centrifugal acceleration, the outer cylinder has to be hotter than the inner one, i.e. γ a < 0. The two rotation regimes are investigated under weightless environment (Gr = 0). The eigenvalues s are computed in the same way as in the previous chapter. The determination of the global minimum of marginal curves gives the critical state of the system, with the corresponding critical parameters (Ta c , k c , n c , ω c ).

Outer rotating cylinder

When the outer cylinder rotates and is heated, the centrifugal buoyancy has a destabilizing eect on the ow and convection rolls can appear. In fact, the gravity is oriented towards the hot surface and there is a negative stratication of the density and therefore the centrifugal buoyancy can induce thermo-convective instability. The critical modes are axisymmetric and stationary. The the comparison between theoretical, numerical and experimental results possible. In particular, the shadowgraph measurement technique performed in the axial direction of containment seems to be suitable for the determination of the convective ow structure. In that sense, simulation of this technique has been performed with a simple model (Appendix A). A more accurate model could provide quantitative results and should be done in the future.

Appendix A Experiments and simulation of shadowgraph method

The laboratory experiments have been carried in the Department of Aerodynamics and Fluid Mechanics, in Cottbus (Germany), and the parabolic ight experiments took place in the Bordeaux Airport in the premises of Novespace which is a subsidiary company of the CNES (Centre National d'Etudes Spatiales). Two parabolic ight campaigns (PFC) have been performed in October 2015 and in October 2016. In 2015, the experiment consisted of two identical cells, in dierent orientations, and lled with the same working uid. One experiment cell was horizontal and the other one was vertical oriented with respect to the direction of the Earth gravity. To visualise the density variation inside the gap, a shadowgraph method was used in the axial direction. In 2016, two dierent working uids were considered in two identical vertical cells. During this second PFC, shorter cells were used in order to use the BOS (Background Oriented Schlieren) method to visualise the density variations.

Usually, shadowgraph and Schlieren techniques are used to visualise the density prole within a thin layer of liquid, which allows to consider that the density is invariant in the direction of observation. In our cases, the observation is done in the axial direction, along the height of the cylinders. It is therefore not possible to get information about the axial structure of the vortices. Thus, the shadowgraph method is numerically simulated using simple prole of unstable ows to have a better understanding of the experimental shadowgraph picture.

In this work, we will focus on results obtained for the vertical cells with the density variations captured by the shadowgraph method. And to make comparisons between the experimental results light path by z, the Fermat's condition can be written:

where r = dr/dz and ϕ = dϕ/dz. z i and z o are the axial position of the bottom and the top lids, respectively. To verify Fermat's principle (A.1), the function f = n f (r 2 + (rϕ ) 2 + 1) 1/2 must satisfy the Euler-Lagrange equation for both the radial and azimuthal directions. Developing the two Euler-Lagrange equations using the function f leads to:

To obtain this set of equations, the terms in third order of r ,r ,ϕ and ϕ have been neglected.

The problem is discretized by dividing the height into P steps of length Dz. Eqs. (A.2) read in the discrete, explicit form:

where k = (0, 1, 2, • • • , P ). A centred second-order approximation is used for the second derivatives, with a rst-order explicit approximation for the non linear terms [START_REF] Schöpf | Evaluation of the shadowgraph method for the convective ow in a side-heated cavity[END_REF]. For each light beam, the initial position and angle with respect to the z axis has to be dened. At the height z = z i , we have: The refractive index of a uid is proportional to the density of the uid. For a small temperature dierence between the two cylinders, the dependency of the density with the temperature can be considered as linear. The refractive index is then modelled by:

where θ = T -T 2 is the temperature deviation from the reference temperature T 2 and where

. The derivative dn/dT is negative and can be set as constant. For silicon oils, its value is dn/dT = -3.8 × 10 -4 K -1 .

A.3.3 Weightless environment

In weightlessness, the gravity eld is radially oriented, the base state is then purely conductive and is only dependant on the radial position. It is thus possible to model the complete temperature prole using a simple analytic function. Using the simplest model for the thermal instability modes, the temperature can be dened by:

where Θ is the base temperature dened in Eq. (2.19), and where θ is the temperature for the instability mode and is given by:

where T amp is the amplitude of the perturbation temperature. p and n are the number of modes in the axial and azimuthal direction respectively.

As a rst step, we can pay attention to temperature proles which are axisymmetric, i.e. the and the columnar modes are plotted using the same color map. Columnar modes have a much larger impact on shadowgraph images than helical modes.

A.3.4 Earth gravity environment

On Earth, the gravity acts on the density gradient and leads to a large recirculation ow where the uid ows upward near the hot cylinder and downward near the cold one. The top and bottom thermal boundary layers bring about an axial positive temperature gradient than can not be considered using a simple analytic function. Therefore, a two-dimensional steady numerical simulation is used to extract the base temperature prole in the (r, z) plane. The velocity eld u = u e r + w e z , the temperature deviation θ = T -T 2 and the reduced pressure π are solved by the continuity equation, the Navier-Stokes equations and the energy equation in the polar coordinates.

The Boussinesq approximation has been adopted with taking the density as a linearly decreasing function of the temperature, i.e. ρ = ρ 0 (1 -αθ), which is valid if the temperature dierences are small. The boundary conditions are no slip condition for the velocity, xed temperature at the cylindrical surfaces and adiabatic condition at the top and bottom caps:

A nite dierence scheme is used to solve the problem, with a centred approximation for the rst and second derivatives. The non-linear terms are computed by iterations until the Nusselt number measured at the outer cylinder tends to a constant. A non-homogeneous rectangular grid is used phase, the light intensity is close to zero.

Figure A.17 shows the shadowgraph pictures obtained at the end of the 1g and 0g phases for dierent applied electric tensions. For the normal gravity phase, an non-axisymmetric pattern seems to appear at V peak ≈ 6kV while under microgravity conditions, a pattern is growing for

As seen in Table A.2, these values of the electric potential are much larger than the ones predicted by the linear stability analysis. This dierence can be due to the Boussinesq approximation which is no more valid when the temperature dierence is too large.

On gure A.18, the azimuthal distribution of light intensity is measured at a given radius close to the mid-gap all along a parabola to give the space-time diagram of the light intensity.

During the selected parabola, the electric potential was always active with V 0 = 6.36kV. During the 1g phase, a non-axisymmetric pattern was observed. The corresponding shadowgraph image taken at the end of this phase is shown on Fig. The shadowgraph technique can not give information about the structure of the vortices in the axial direction because the resulting picture consists of an integration over the entire optical path.

Therefore, the columnar and helical modes can not be distinguished. An idea behind the simulation of the shadowgraph technique was to search for a mode that can make the resulting simulated shadowgraph image and an experimental one match. The success of the matching between the two shadowgraph images would mean that the shape and the amplitude of the experimental instability mode is similar to the simulated one. This comparison did not conclude because of the many hypotheses and simplications that have been made concerning the simulation. Besides the fact that, in the experiments, the LED panel does not produce perfectly parallel illumination, or the fact that the camera is not located directly at the top of the cylindrical gap, but a dozen centimetres away from the top PMMA lid, one of the largest simplication is that the camera used to capture the shadowgraph images has optics to focus the image, where in the simulations, the camera is in fact a CCD panel, which is more relevant to capture parallel lights.

A.5.2 Comparison between the linear stability analysis and the experimental results

The aspect ratio used in the experiment is relatively small in order to neglect the boundary layers from the end plates and to ensure the conduction regime of the base state which was assumed in the linear stability analysis. In fact, according de Vahl Davis and Thomas [START_REF] De Vahl | Natural convection between concentric vertical cylinders[END_REF], the conduction regime is realized if Gr < 400Γ/Pr and the transition regime occurs when 400Γ/Pr < Gr < 3000Γ/Pr ; for Gr > 3000Γ/Pr, the ow is in the boundary layer regime. For our experimental conditions, the conduction regime exists for Gr < 121.4, the transition regime exists for 121.4 < Gr < 910.2, and the boundary regime for Gr > 910.2. Therefore, the comparison with the linear stability results is realistic only in the microgravity phase. Moreover, the temporal variation of the axial gravity during the PFC experiments was neglected.

In other hand, the application of a temperature dierence of 10K between the two cylinders