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Chapter 1

Introduction

In geophysics and astrophysics, large scale �ows are mainly induced by radial gravitational

�elds. Coupled with temperature gradients, the gravity �eld, as well as the centrifugal acceleration

and magnetic �elds, can generate convective �ows in the core of the planets and stars. In this

framework, many author have investigated the �ow of a �uid con�ned in a spherical shell [1, 2, 3, 4,

5]. Aiming to have a purely central force �eld, experiments in weightlessness are of most interest.

The application of a radial electric �eld combined with a temperature gradient is a way to obtain a

centripetal e�ective gravity �eld. Using this method, experiments have been performed on-board

the international space station to obtain long time micro-gravity conditions [6, 7, 8, 9, 10].

The �ow of a �uid con�ned between two concentric cylinders is a model for geophysical �ows

in the equatorial region of planets and stars, where the direction of gravity and that of the

temperature gradient are nearly parallel. It is also a prototype in non-linear physics, since it

exhibits a large variety of bifurcation phenomena. In addition, many applications involve the �ow

induced by centrifugal force together with thermal buoyancy, such as micro�uidic systems and

heat exchangers [11, 12, 13]. For these reasons, the convective �ow induced by centrifugal forces

and various thermal buoyancies in a di�erentially rotating and heated cylindrical annulus has been

studied to reinforce existing knowledge.
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1.1 Previous work

1.1.1 Taylor-Couette instability

A �uid con�ned between two concentric cylinders rotating at di�erent rotation rates can un-

dergo instabilities because of the competition of the stabilising e�ect of the viscous dissipation

and the destabilising e�ect of the centrifugal force. This mechanism is called the Taylor-Couette

instability and was �rst successfully studied theoretically and experimentally by Taylor in 1923

[14] where he considered the small gap approximation. The larger gap problem was then studied

by Chandrasekahar in 1958 [15]. Andereck et al. [16] performed in 1986 an exhaustive experimen-

tal study, while investigating not only the primary instability, but also regimes of more complex

properties observed at higher instability level.

1.1.2 Thermo-hydrodynamic instability

Applying a temperature di�erence between the two cylinders provides a radial density strati-

�cation. The rotation of the cylinders gives rise to the centrifugal acceleration which acts on this

strati�cation and changes the stability conditions. Many authors theoretically investigated this

problem through a linear stability analysis while considering a weightless environment. Yih [17]

considered steady axisymmetric perturbations and showed in 1961 that if the circulation increases

with the radial distance, which is a Rayleigh stable condition, but the density decreases, the �ow

can be less stable or even unstable. In 1964, Walowit et al. [18] realised a similar analysis for a

wide range of gap size, but only for Rayleigh unstable conditions. They found that positive and

negative temperature gradients are destabilizing and stabilizing, respectively. Soundalgekar et al.

(1981) [19] and Takhar et al. (1985, 1990) [20, 22] con�rmed the results of Walowit et al. in the

case of a narrow gap with a heated outer cylinder at rest. In 1988, Takhar et al. [21] showed that

a constant heat �ux at the inner cylinder enhances the stability of the �ow and that decreasing the

gap-width has a destabilising e�ect. In 1994, Kong et al. [23] considered the stability of �ows in

counter-rotating regimes against non-axisymmetric perturbations for di�erent gap widths. They

found that oscillatory helical modes can occur in the isothermal case and that the temperature

gradient has an impact on the number of modes in the azimuthal direction. Auer et al. [24] added

a weakly non-linear study to their linear stability analysis when both cylinders rotate at the same

frequency. They found that heating the outer cylinder leads to a convective regime of columnar
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modes. Eagles et al. (1997) [25], and Panday et al. (2015) [26] considered a constant heat �ux

at the outer cylinder for several rotation regimes. They con�rmed the destabilising e�ect of the

centrifugal buoyancy and found that the wavenumber of the modes decreases with increasing the

temperature di�erence.

The e�ect of the Earth's gravity on a vertical di�erentially heated cylindrical annulus has also

been studied theoretically, numerically and experimentally. Choi and Korpela [27] performed in

1980 a linear stability analysis of this problem with positive temperature gradients and compared

their theoretical results with experimental ones. The critical modes are axisymmetric and drift

upward. The computed thresholds, wavelength and velocities of the modes agreed with those

measured experimentally. In 2000, Bahloul et al. [28] highlighted the existence of two di�erent

mechanisms for the occurrence of instabilities using a linear stability analysis. Depending on the

�uid di�usion properties and on the radius ratio between the two cylinders, the critical modes can

have either a hydrodynamic nature or a thermal nature.

In 1964, Snyder and Karlsson [29] performed an experimental study of a �uid con�ned between

an inner rotating cylinder and an outer stationary one. They noticed the occurrence of helical

modes when the temperature gradient was applied. Ball and Farouk studied the same problem

numerically with a �nite volume of �uid [30] and experimentally [31]. They characterised the

bifurcation from the quasi-isothermal Taylor-Couette instability to the �ow dominated by axial

buoyancy through the variation of the ratio between the Grashof number and the square of the

inner Reynolds number σ. They found that when 0.01 < σ < 10, the critical modes take the

form of helical modes. Ali and Weidman [32] investigated the problem by a linear stability theory

for in�nite length cylinders of di�erent radius ratios for �uids with di�erent values of the Prandtl

number. They found that increasing the Prandtl number destabilises the �ow. They compared

their results with previous experiments and found a good agreement. In 2013, Yoshikawa et al. [33]

also used a linear stability theory for both directions of the temperature gradient. They found that

the centrifugal buoyancy can induce an asymmetry between positive and negative temperature

gradients on the critical state.

1.1.3 Convection induced by centripetal gravity

In the framework of astrophysical and geophysical research, some authors investigated theo-

retically the stability of the �ow in a cylindrical annulus with an imposed centripetal acceleration
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�eld. In 1981, Economides and Moir [34] performed a linear stability analysis of a �uid con�ned

between a cold rotating inner cylinder and a warm stationary outer one with a narrow gap in an

arti�cial radial gravity �eld. The gravity �eld was assumed radially invariant. They found that

for su�ciently large values of the Prandtl number, critical modes can be helical. Alonso et al. in

1995 and in 1999 [35, 36] performed a linear stability analysis of a rotating cylindrical annulus

with a negative temperature gradient and a constant central gravity �eld. The annulus has a �nite

aspect ratio. The authors considered the e�ect of the boundary conditions imposed at both ends

of the annulus. They highlighted the transition from columnar modes to helical ones depending

on the radius ratio and the aspect ratio. The columns were found to be stationary in the rotating

frame when stress free conditions were used, and oscillatory when no-sleep conditions were used.

In the aboved-mentioned investigations [34, 35, 36], the e�ect of the centrifugal acceleration on

the density strati�cation, i.e. the centrifugal buoyancy, was not taken into account.

1.1.4 Thermo-electro-hydrodynamic instability

A cylindrical annulus of a dielectric �uid subjected to a temperature gradient and an high

alternating electric tension undergoes the dielectrophoretic (DEP) force which can be seen as a

thermal buoyancy in an e�ective gravity �eld of electric nature. In 1972, Chandra and Smylie

[38] carried out an experiment with a vertical stationary cylindrical annulus subjected to the

DEP force. They also performed a linear stability analysis and compared the experimental results

with the theoretical ones. They demonstrated the feasibility of inducing convective �ow using the

DEP force. The agreement between the stability analysis and the experimental results proved

the validity of the simpli�cations used in the stability analysis. In 1979, Takashima [39] analysed

the problem with a narrow gap using linear stability theory. He found that a positive (negative)

temperature gradient (de)stabilises the �ow as the radius ratio decreases. When the temperature

gradient is positive, there exists a value of the radius ratio bellow which no instability occurs. Stiles

and Kagan [40] also performed in 1993 a linear stability analysis of the problem with a narrow

gap and a rotating inner cylinder. They considered the stability of the �ow against stationary

axisymmetric modes. When the electric potential is not applied, they found the stabilisation of

the circular Couette �ow when they decreased the temperature gradient from positive to negative

values. With a large electric potential, the critical Taylor number decreases with decreasing the

temperature gradient. Malik et al. [41] studied in 2012 the stability of the �ow between two
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stationary cylinders under microgravity condition against non-axisymmetric oscillatory modes

with a negative temperature gradient. The critical mode and the critical Rayleigh number are

independent of the Prandtl number, while they depend on the curvature of the cylinders. Critical

modes take the form of stationary helical modes. Yoshikawa et al. [33] extended the analysis

of Malik et al. one year later with considering positive temperature gradients. The analysis

of the di�erent energy transfer mechanisms from the base state to perturbation �ows showed

that, for strong thermo-electric coupling, the �ow is stabilised by the perturbation component of

the electric gravity. They also showed that, for positive temperature gradients, instabilities are

found for narrow gaps, which is in agreement with the results of Takashima. Travnikov et al.

[42, 43] performed a numerical simulation of a cylindrical annulus under microgravity conditions

with a negative temperature gradient close to the onset of convective �ow. Their results are in

good agreement with the previous linear stability analyses [41, 33]. The bifurcation from the

conductive state to the convective state was found to be supercritical. The evolution of the heat

transfer with the electric Rayleigh number is sensitive to the Prandtl number for low radius ratio.

The thermoelectric coupling for small gaps has a stabilising e�ect and decreases the slope of the

Nusselt number as function of the electric Rayleigh number. In 2016, Futterer et al. [44] made

experiments consisting on a cylindrical annulus under microgravity conditions during a parabolic

�ight campaign. They found the increase of the Nusselt number when the electric Rayleigh number

is larger than the critical value.

1.2 Thesis organisation

This thesis consists on the study of the bifurcations from a base state to an unstable �ow using

linear stability analysis (LSA). Such bifurcations are accompanied with heat transfer enhancement

and increase of the torque at the cylindrical surfaces. The objective of this thesis is to evaluate

the e�ect of the centrifugal buoyancy and of the dielectrophoretic force on the stability of di�erent

�ow con�gurations in order to provide quantitative results on the critical thresholds and on the

spatial and temporal nature of the unstable state. The e�ects of di�erent parameters, such as

the geometry, the �uid di�usive properties or the temperature gradient are also investigated.

Chapter 2 is dedicated to the formulation of the problem and of the method used to performed

the LSA. Then the thesis is divided in two parts.
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Figure 1.1: Diagram of the di�erent chosen values of µ associated with the chapter where they
will be studied.

In the �rst part, the e�ect of the centrifugal buoyancy on the circular Couette �ow under

weightlessness is analysed. As an introduction, the method is applied to the isothermal case for

di�erent rotation regimes in Chapter 3. Then the e�ect of the centrifugal buoyancy is considered

on a Rayleigh unstable regime in Chapter 4. In this chapter, we investigated the case µ = 0,

where µ is the ratio between the rotation rates of the outer and of the inner cylinders. Chapter 5

is dedicated to the cases where µ = ∞ and µ = η3/2, which are two Rayleigh stable regimes. In

Chapter 6, the solid body rotation is investigated, i.e. µ = 1. This regime is also Rayleigh stable,

but is analysed in a di�erent chapter since solid rotation enable analogies with the Rayleigh-

Bénard convection. Figure 1.1 shows the di�erent chosen values of µ in correspondence to the

di�erent chapters.

In the second part, the e�ect of the DEP force on the stability of a �uid con�ned in a cylindrical

annulus is analysed. As an introduction, results based on previous works on the application of

the DEP force in a cylindrical annulus are presented in Chapter 7. Chapter 8 is dedicated to

the application of the thermoelectric buoyancy to a rigidly rotating annulus of �uid. Then we

considered the e�ect of the DEP force on a stationary annulus of �uid submitted to the Earth's

gravity in Chapter 9. General conclusions and outlooks are given in Chapter 10

An additional chapter dealing with experimental results is given in Appendix A. The results

obtained in this part come from a collaboration between the University of Le Havre and the

Brandenbourgische Technische Universität Cottbus-Senftenberg. This chapter contains experi-

mental results obtained in laboratory, as well as during parabolic �ight campaigns. In addition,

simulations of shadowgraph method have been performed.
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Chapter 2

Problem formulation

We consider a Newtonian dielectric �uid of density ρ, kinematic viscosity ν, thermal di�usivity

κ and permittivity ε con�ned between two coaxial vertical cylindrical electrodes of in�nite length

(Fig. 2.1). The inner cylinder, of radius R1, maintained at a temperature T1 rotates with an

Figure 2.1: Sketch of the �ow con�guration.

angular velocity Ω1 while the outer cylinder, of radius R2 = R1 + d, maintained at another

temperature T2 6= T1 rotates with an angular velocity Ω2. In addition, an alternating electric

potential is applied between the two electrodes, which gives rise to a radial electric �eld. The

temperature di�erence ∆T = T1−T2 induces a radial strati�cation in density and in permittivity,

which are, in most cases, both decreasing functions of the temperature. Under these conditions,

three thermal buoyancies are present.

• The Earth's gravity acts on the density strati�cation and gives rise to the Archimedean
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buoyancy.

• The centrifugal force also acts on the density strati�cation and brings about the centrifugal

buoyancy.

• The electric �eld acts on the permittivity gradient to produce the dielectrophoretic force.

These three buoyancies will be considered in various con�gurations, together or separately, and

can be sources of instabilities of di�erent natures.

2.1 The dielectrophoretic force

When an electric �eld is applied to a dielectric liquid with a permittivity gradient, it undergoes

the electrohydrodynamic (EHD) force given per unit volume by [45]:

F EHD = F EP + FDEP + F ES (2.1)

Figure 2.2 gives a simple representaion of the mechanism of the di�erent terms of Eq. (2.1).

The �rst term F EP is the electrophoretic force. It results from the action of the electric �eld on

free charges and is given by the relation:

F EP = ρeE (2.2)

whereE is the electric �eld and ρe is the density of free charges. If the applied tension is alternating

with a high frequency compared to the inverse of the charge relaxation time τe = ε/σe, where σe is

the electric conductivity, the electrophoretic force can be neglected. In fact, the charge relaxation

Figure 2.2: Skech of the physical mechanism of the di�erent terms of the electrohydrodynamic
force.
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time characterises the accumulation process of charges within a �uid. The high frequency of the

electric �eld prevents from this accumulation and makes the �uid electrically neutral [46].

The third term F ES of equation (2.1) is the electrostrictive force and is given by:

F ES = ∇
[

1

2
ρ

(
∂ε

∂ρ

)
T

E2

]
(2.3)

As long as the �uid is incompressible or monophasic without any mobile boundary, the elec-

trostrictive force will not play any dynamical role and will be include in the pressure gradient of

the momentum equations.

The second term FDEP of Eq. (2.1) is the dielectrophoretic (DEP) force. It arises from the

di�erential polarisation of �uit and is given by:

FDEP = −1

2
E2∇ε (2.4)

Within the previous assumption, the DEP force is the dominant one and can arise from a tem-

perature di�erence applied to the �uid. Indeed, the DEP force is proportional to the gradient of

the electric permittivity, which is, for most �uids, a decreasing function of the temperature. Its

variation will be modelled by the linear relationship ε(T ) = εref [1− e (T − Tref )], where εref is

the permittivity at the reference temperature Tref . The coe�cient e is the coe�cient of thermal

variation of permittivity and takes positive value of the order of 10−3 K−1 to 10−1 K−1. Taking

into account the linear variation of the permittivity, the DEP force (2.4) can be written:

FDEP = −e (T − Tref )∇εrefE
2

2
+ ∇

(
e (T − Tref )E2

2

)
(2.5)

The second term in (2.5) is a gradient which can be lumped with the pressure gradient term in

the momentum equation. The �st term correspond to the thermoelectric buoyancy and can be

written in the form −α (T − Tref ) ge. The choice of this notation highlights the analogy between

the thermal Archimedean buoyancy and the thermoelectric buoyancy where the Earth gravity is

replaced by an e�ective gravity ge of electric nature given by:

ge =
e

αρref
∇εrefE

2

2
(2.6)
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where α is the thermal expansion coe�cient and ρref is the density at the reference temperature.

The electric gravity corresponds to the gradient of the electric energy density in the �uid. The

analogy implies that thermal convection can be induced by the thermoelectric buoyancy.

2.2 Governing equations

The temperature di�erence ∆T being su�ciently small, the electrohydrodynamic Boussinesq

approximation can be adopted [47]. Thus �uid properties can be considered as constant, except

in the terms responsible for the change of stability condition. In these terms, the density is also

approximated by the linear functions ρ(θ) = ρref (1 − αθ), θ = T − Tref being the temperature

deviation from the reference temperature. This Boussinesq approximation remains valid as long

as the rotation rates of the two cylinders are low enough to neglect the density variation in the

other advection terms than the centrifugal acceleration term [48].

As the frequency of the electric tension is high compared to the inverse viscous time scale

τν = d2/ν and to the inverse thermal time scale τκ = d2/κ, we can assume that nothing happens

during an oscillation of the electric potential. So all the equations can be time-averaged over a

period of the electric �eld and the imposed electric potential
√

2V0 sin(2πft) can be replaced by

its e�ective value V0. Turnbull and Melcher found that this assumption predicted successfully

the onset of the DEP thermal convection [49]. The velocity �eld u = (u, v, w), the temperature

deviation θ, the generalized pressure π and the electric potential φ are determined by the continuity

equation, the Navier-Stokes equations, the energy equation and the Gauss' law of electricity in

the cylindrical polar coordinates (r, ϕ, z) in the laboratory frame of reference:

∇ · u = 0 (2.7a)

∂u

∂t
+ (u ·∇)u = −∇π + ν∆u− αθ (g + gc + ge) (2.7b)

∂θ

∂t
+ (u ·∇) θ = κ∆θ (2.7c)

∇ · (εE) = 0 with E = −∇φ (2.7d)

where the three accelerations g, gc and ge are given by:

g = −gez , gc =
v2

r
er , ge =

e

αρ
∇ε2E

2

2
(2.8)
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The generalized pressure π includes the conservative term of the DEP force (2.5), the ES force

(2.3) and the hydrostatic pressure:

π =
p

ρ2
+ gz − eθε2E

2

2ρ2
− 1

2

(
∂ε

∂ρ

)
θ

E2 (2.9)

The �ow and electric �elds satisfy Dirichlet conditions at the two cylinder surfaces:

 u = R1Ω1eϕ, θ = ∆T, φ = V0 at r = R1

u = R2Ω2eϕ, θ = 0, φ = 0 at r = R2

(2.10)

To make the equations dimensionless, we used the gap width d as the length scale, the char-

acteristic time of viscous dissipation d2/ν as the time scale, the temperature di�erence ∆T as

the temperature scale, the e�ective electric potential V0 as the potential scale and (ν/d)2 as the

pressure scale. From now, unless it is speci�ed, all quantities are dimensionless. The equations

(2.7) can then be written in the following forms:

∇ · u = 0 (2.11a)

∂u

∂t
+ (u ·∇)u = −∇π + ∆u + Grθez − γaθ

v2

r
er −

γeV
2
E

Pr
θge (2.11b)

∂θ

∂t
+ (u ·∇) θ =

1

Pr
∆θ (2.11c)

∇ · [(1− γeθ)∇φ] = 0 (2.11d)

where the dimensionless electric gravity ge is given by:

ge =
1

2
∇ (∇φ)2 (2.12)
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In the equations (2.11), dimensionless numbers have been introduced:

The Prandtl number: Pr =
ν

κ
(2.13a)

The radius ratio: η =
R1

R2

(2.13b)

The Grashov number: Gr =
α∆Tgd3

ν2
(2.13c)

The dimensionless electric potential: VE =
V0√

ρ2νκ/ε2
(2.13d)

The thermal expansion parameter: γa = α∆T (2.13e)

The thermoelectric parameter: γe = e∆T (2.13f)

The boundary conditions read:

 u = f1(Ta, η)eϕ, θ = 1, φ = 1 at r = η/(1− η)

u = f2(Ta, η)eϕ, θ = 0, φ = 0 at r = 1/(1− η)
(2.14)

Depending on the rotation regime, the condition for the velocity at the cylindrical surfaces will

change. We will adopt di�erent de�nitions of the Taylor number Ta which is the ratio between the

characteristic time of viscous dissipation and the characteristic time associated to the centrifugal

acceleration, in di�erent rotation regimes. The two functions f1 and f2 also depend on the ro-

tation regime. To characterize the buoyancies, we will de�ne the Rayleigh number which is the

ratio between the product of the dissipative characteristic times τν and τκ and the square of the

buoyancy characteristic time, whose de�nition depends on the considered buoyancy mechanism.

The centrifugal Rayleigh number Ra is de�ned to characterise the centrifugal buoyancy:

Ra =
α∆Tgcd

3

νκ
(2.15)

As gc depends on the radial position, one has to chose an appropriate position to de�ne the

centrifugal Rayleigh number. Another Rayleigh number, called the electric Rayleigh number L is

de�ned to characterise the thermoelectric buoyancy:

L =
α∆Tged

3

νκ
(2.16)

where ge is also computed at a chosen position.
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2.3 Base state

For an in�nite length annulus, the base state can be assumed to be a stationary, axisymmetric

and axially invariant state so that the �ow and electric �elds depend only on the radial coordinate.

The equations (2.11b-2.11d) are reduced for the base state to:

Radial momentum equation:
dΠ

dr
=
V 2

r
−
(
γa
V 2

r
− γeV

2
EGe

Pr

)
Θ, (2.17a)

Azimuthal momentum equation:
d

dr

(
r
dV

dr

)
− V

r
= 0, (2.17b)

Axial momentum equation:
1

r

d

dr

(
r
dW

dr

)
+ GrΘ = 0, (2.17c)

Energy equation:
d

dr

(
r
dΘ

dr

)
= 0, (2.17d)

Gauss' law
d

dr

(
rε
dΦ

dr

)
= 0 (2.17e)

where Π, V , W , Θ and Φ are the pressure, the azimuthal velocity, the axial velocity, the temper-

ature and the electric potential of the base �ows, respectively. Ge is the base electric gravity and

has been de�ne as a centripetal gravity so that Ge = −Geer. The temperature T2 of the outer

cylinder has been chosen as the reference temperature so that θ = (T − T2)/(T1 − T2). The base

azimuthal velocity, solution of the equation (2.17b), depends on the rotation regime and is given

by:

V (r) =
Re1

1− η2

[
(µ− η2) (1− η) r

η
+
η (1− µ)

r (1− η)

]
(2.18)

where Re1 = R1Ω1d/ν is the Reynold number based on the rotation of the inner cylinder and where

µ = Ω2/Ω1 is the ratio of the cylinder rotation rates. The particular rotation regimes, which are

considered in the present thesis, and the base azimuthal velocity of these regimes will be given in

section 2.4. Integrating the equations (2.17d - 2.17e), one can �nd the base temperature and the

base electric potential:

Θ =
ln [r (1− η)]

ln η
, Φ =

ln (1− γeΘ)

ln (1− γe)
(2.19)

The corresponding electric �eld is given by:

Ē =
γe

r ln(η) ln(1− γe)(1− γeθ)
(2.20)
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Figure 2.3: Direction of the base electric gravity in the (η, γe) plane. CP means centripetal and
CF means centrifugal.

Using the base electric potential in the expression of the electric gravity (2.12), one can �nd:

Ge =
1

(ln η)2 r3
· F (r, γe, η) with F (r, γe, η) =

γe
2 [1− γe (Θ + 1/ ln η)]

[ln (1− γe)]2 (1− γeΘ)3
(2.21)

The electric gravity is oriented toward the region with larger electric �eld. In the plane geometry,

the largest electric �eld is located at the hot surface [50], but in the cylindrical geometry, the

curvature plays an important role. Indeed, in Eq. (2.21), the parameter F can change its sign

depending on γe and η. Figure 2.3 shows the direction of the base electric gravity in the (η, γe)

plane. In outward heating (γe > 0), the electric gravity is always centripetal. In inward heating

(γe < 0), the electric gravity is centripetal, except in the case of large values of the radius ratio,

where the electric gravity can be centrifugal or change its direction inside the gap.

Using the boundary conditions, together with the condition of zero axial volume �ux:
∫ R2

R1
rWdr =

0, the base axial velocity, solution of Eq. (2.17c), is given by:

W = Gr

(
C
[
(1− η)2r2 − 1 + (1− η)2Θ

]
− r2(1− η)2 − η2

4(1− η)2
Θ

)
(2.22)

where the coe�cient C is:

C =
(1− η2) (1− 3η2)− 4η4 ln η

16(1− η)2
[
(1− η2)2 + (1− η4) ln η

]
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The equation (2.17a) describes the balance between the radial pressure gradient and the radial

forces which are the centrifugal force, the centrifugal buoyancy and the thermoelectric buoyancy.

The base pressure, solution of Eq. (2.17a), can be written:

Π(r) = ΠCCF (r) + ΠCB(r) + ΠTEB(r) (2.23)

where ΠCCF is the pressure pro�le given by the isothermal circular Couette �ow, ΠCB is the

contribution of the centrifugal buoyancy, and ΠTEB is the contribution of the thermoelectric

buoyancy. In the general case, these terms are given by:

ΠCCF (r) =
A2r2

2
+ AB ln(r)− B2

2r2
, (2.24a)

ΠCB(r) =
γa

ln η

[(
A2r2

4
+ AB − B2

4r2

)
ln [(1− η) r]2 −

(
A2r2

4
+
B2

4r2

)]
, (2.24b)

ΠTEB(r) =
γeV

2
E

Pr

∫
Ge(r)Θ(r)dr (2.24c)

where:

A =
Rei

1− η2
(µ− η2) (1− η)

η
; and B =

Rei
1− η2

η (1− µ)

1− η
(2.25)

The centrifugal buoyancy and the dielectrophoretic force modify the pressure distribution in the

radial direction.

The radial pro�les of the base state solutions are shown in �gure 2.4. When the radius ratio

tends to 1, the base state is similar to the one of a plan capacitor, with an anti-symmetric axial

velocity pro�le with respect to the mid-gap and with a linear pro�le of the temperature. The

electric �eld and electric gravity are sensitive to the curvature of the annulus. Indeed, the electric

gravity can be signi�cant in the neighbourhood of the inner cylinder.

2.4 The rotation regimes

Four di�erent rotation regimes have been investigated:

• the case of a steady outer cylinder (Ω2 = 0).

• the case of a steady inner cylinder (Ω1 = 0).

• the Keplerian regime (Ω1/Ω2 = (R1/R2)
−3/2).
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Figure 2.4: Radial pro�les of (a) the temperature, (b) the axial velocity, (c-d) the electric �eld and
(e-f) the electric gravity. X is given by X = (r − R1)/d. (c) and (e) are obtained for γe = 0.01.
(d) and (f) are obtained for η = 0.5.
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Table 2.1: Expressions of the Taylor number and of the base azimuthal velocity depending on the
rotation regime.

Ta base axial velocity

Ω2 = 0 Ta =
R1Ω1d

ν

√
d

R1

V (r) = Ta
η3/2

(1− η)5/2 (1 + η)

[
1

r
− (1− η)2 r

]
Ω1 = 0 Ta =

R2Ω2d

ν

√
d

R2

V (r) = Ta
1√

1− η (1 + η)

[
r − η2

(1− η)2 r

]
Ω1/Ω2 = η−3/2 Ta =

2ηΩ1d
2
(
1− η3/2

)
ν (1− η2)

V (r) =
Ta

2

(
r
(
η3/2 − η2

)
η (1− η3/2)

+
η

r (1− η)2

)

Ω1 = Ω2 = Ω Ta =
R̄Ω2d

ν

√
d

R̄
V (r) = Ta

√
2 (1− η)

1 + η
r

• the solid rotation regime (Ω1 = Ω2).

In these rotation regimes, only the case where the outer cylinder is stationary can produce insta-

bilities in the isothermal condition (Rayleigh unstable). In the other rotation regimes (Rayleigh

stable), a temperature di�erence has to be applied between the two cylinders in order to make

the system potentially unstable (see Sec. 3.3) .

We adopt di�erent de�nitions of the Taylor number in di�erent rotation regimes in order to

better capture the e�ect of the rotation of one or both cylinders on the �ow. The adopted de�ni-

tions and the base azimuthal velocity pro�le are given in Table 2.1. If one of the cylinders is steady,

the Taylor number is based on the azimuthal velocity of the other cylinder. For solid rotation,

the arithmetic mean radius is chosen to de�ne Ta. When the Keplerian regime is considered, the

Taylor number is de�ned through the average shear rate at the geometric mean radius [51]. The

base azimuthal velocity pro�les are shown on Fig. 2.5 except for the solid body rotation which

has a linear velocity pro�le in r.

2.5 Linearised equations

To perform the linear stability analysis, we add to the base state an in�nitesimal perturbation

(u′, v′, w′, π′, θ′, φ′), and linearise the governing equations (2.11) around the base state solution
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Figure 2.5: Radial pro�les of the base azimuthal velocity in the case of (a) the inner cylinder
rotation regime, (b) the outer cylinder rotation regime, and (c) the Keplerian regime. X is given
by X = (r −R1)/d.
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(2.18 - 2.22). We then obtain:

1

r

∂ (ru′)

∂r
+

1

r

∂v′

∂ϕ
+
∂w′

∂z
= 0 (2.26a)

∂u′

∂t
+

(
V

r

∂

∂ϕ
+W

∂

∂z

)
u′ = −∂π

′

∂r
+ ∆u′ − u′

r2
+ 2

V v′

r
− 2

r2
∂v′

∂ϕ
− γa

(
θ′Gc + Θg′c

)
−
γeV

2
E

Pr

(
−θ′Ge + Θg′e,r

)
(2.26b)

∂v′

∂t
+

(
V

r

∂

∂ϕ
+W

∂

∂z

)
v′ = −1

r

∂π′

∂ϕ
+ ∆v′ − v′

r2
− V u′

r
+

2

r2
∂u′

∂ϕ
− u′dV

dr
−
γeV

2
E

Pr
Θg′e,ϕ (2.26c)

∂w′

∂t
+

(
V

r

∂

∂ϕ
+W

∂

∂z

)
w′ = −∂π

′

∂z
+ ∆w′ − u′dW

dr
+ Grθ′ −

γeV
2
E

Pr
Θg′e,z (2.26d)

∂θ

∂t
+

(
V

r

∂

∂ϕ
+W

∂

∂z

)
θ′ = −u′dΘ

dr
+

1

Pr
∆θ′ (2.26e)

(1− γeΘ) ∆φ′ − γe
dΘ

dr

∂φ′

∂r
− γe

dΦ

dr

1

r

∂ (rθ′)

∂r
− γe

d2Φ

dr2
θ′ = 0 (2.26f)

where g′e,r, g
′
e,ϕ and g′e,z are the r, ϕ and z components of the perturbation electric gravity vector,

respectively:

g′e,r =
dΦ

dr

∂2φ′

∂r2
+
d2Φ

dr2
∂φ′

∂r
, g′e,ϕ =

dΦ

dr

∂2φ′

∂ϕ∂r
, g′e,z =

dΦ

dr

∂2φ′

∂z∂r
(2.27)

The centrifugal buoyancy has been separated into two components, the one associated with the

base centrifugal acceleration Gc = V 2/r and the other related to the perturbation centrifugal

acceleration g′c = 2V v′/r. The Laplacian operator ∆ is given by:

∆ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂ϕ2
+

∂2

∂z2
(2.28)

The boundary conditions for the perturbation �elds are homogeneous:

u′ = v′ = w′ = θ′ = φ′ = 0 at r =
η

1− η
,

1

1− η
(2.29)

The perturbation �elds are developed into normal modes:

χ′ = χ̂ exp [st+ inφ+ ikz] + c.c. (2.30)

where χ′ = (u′, v′, w′, π′, θ′, φ′) and χ̂ = (û, v̂, ŵ, π̂, θ̂, φ̂). A hat over a quantity indicates its

complex amplitude which depends only on the radial position, and where c.c. stands for the

complex conjugate. s = σ+iω is the complex growth rate, where ω is the frequency of perturbation.

Note that the sign + implies that a positive frequency corresponds to a perturbation propagating
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in direction of negative sign and inversely. k is the axial wavenumber which is real since the

cylinders are in�nite in the axial direction, and n is the azimuthal mode number which takes

only integer values. The total wavenumber q measures the wavenumber of perturbations at the

mid-gap in the direction normal to the vortice axes and is given by q = (k2 + k2ϕ)1/2, where

kϕ = 2n(1− η)/(1 + η). Applying this development to the equations (2.26a - 2.26f), one obtains:

0 =

(
D +

1

r

)
û+

in

r
v̂ + ikŵ (2.31a)

sû = −i
(
nV

r
+ kW

)
û−Dπ̂ + ∆û− û

r2
− 2V

r
v̂ − 2in

r2
v̂ − γa

(
Θĝc +Gcθ̂

)
−
γeV

2
E

Pr

(
Θĝe,r − θ̂Ge

)
(2.31b)

sv̂ = −i
(
nV

r
+ kW

)
v̂ − in

r
π̂ + ∆v̂ − v̂

r2
− V

r
û+

2in

r2
û− (DV ) û− in

r

γeV
2
E

Pr
Θĝe,ϕ (2.31c)

sŵ = −i
(
nV

r
+ kW

)
ŵ − ikπ̂ + ∆ŵ − (DW ) û+ Grθ̂ − ik

γeV
2
E

Pr
Θĝe,z (2.31d)

sθ̂ = −i
(
nV

r
+ kW

)
θ̂ − (DΘ) û+

1

Pr
∆θ̂ (2.31e)

0 = (1− γeΘ) ∆φ̂− γeDΘDφ̂− γeDΦ

(
D +

1

r

)
θ̂ − γe

(
D2Φ

)
θ̂ (2.31f)

where D = d/dr is the radial derivative operator and where ∆ = D2 + D/r − n2/r2 − k2 is the

Laplacian operator. The complex amplitudes satisfy homogeneous conditions at the cylindrical

surfaces:

û = v̂ = ŵ = θ̂ = 0, at r = η/(1− η), 1/(1− η). (2.32)

2.6 Chebyshev collocation method

The eigenvalue problem Eqs. (2.31) is solved by a collocation method. The Chebyshev variable

ξ is introduced by associating it with r by:

r =
ξ

2
+

1 + η

2 (1− η)
(2.33)

By this transformation, the interval [η/(1− η) ; 1/(1− η)] of r is mapped on [−1 ; 1] of ξ and

D = 2Dξ, where Dξ = d/dξ. The complex amplitudes û, v̂, ŵ, π̂, θ̂ and φ̂ are developed into

Chebyshev polynomials of order N and the equations (2.31a - 2.31f) are discretized by considering

them only at the radial positions r = rj (j = 0, 2, · · · , N) which correspond to the Chebyshev-

Gauss-Lobbato collocation points ξj = cos(jπ/N). The eigenvalue problem can be cast into the
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following matrix form:

(
2KDξ +

{
1

r

}
K

)
U +

{
in

r

}
KV + ikKW = 0 (2.34a)[

L−M −
{

1

r2

}
K

]
U + 2

{
V

r
− in

r2
− γa

ΘV

r

}
KV − 2KDξΠ +

{
−γa

V 2

r
+
γeV

2
E

Pr
Ge

}
KΘ

−
γeV

2
E

Pr

(
4 {ΘDΦ}KD2

ξ + 2
{

ΘD2Φ
}
KDξ

)
Φ = sKU

(2.34b)

−
{
V

r
− 2in

r2
+DV

}
KU +

[
L−M −

{
1

r2

}
K

]
V −

{
in

r

}
KΠ− 2in

γeV
2
E

Pr

{
ΘDΦ

r

}
KDξΦ

= sKW

(2.34c)

− {DW}KU + (L−M)W − ikKΠ + GrKΘ− 2ik
γeV

2
E

Pr
{ΘDΦ}KDξΦ = sKW (2.34d)

− {DΘ}KU +

(
1

Pr
L−M

)
Θ = sKΘ (2.34e)

− γe
[
2 {DΦ}KDξ +

{
DΦ

r
+D2Φ

}
K

]
Θ + [{1− γeΘ}L− 2γe {DΘ}KDξ]Φ = 0 (2.34f)

where K is the transformation matrix that relates Chebyshev spectra to the values of a function

at ξ0, ξ1, · · · , ξN :

K = (Klm) with Klm = cos

[
l (m− 1) π

N

]
(2.35)

where l = 1, 2, · · · , N + 1 and m = 1, 2, · · · , N + 1. The matrix Dξ is the derivation operator in

the Chebyshev space and has a size of (N + 1)× (N + 1):

Dξ =



0 1 0 3 0 5 0 · · ·

0 0 4 0 8 0 12 · · ·

0 0 0 6 0 10 0 · · ·

0 0 0 0 8 0 12 · · ·
...

...
...

...
...

...
...

. . .

0 0 0 0 0 0 0 · · · 2N

0 0 0 0 0 0 0 · · · 0



(2.36)
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The curly brackets means a diagonal matrix of size N + 1:

{f(r)} =



f(r0) 0 0 · · · 0

0 f(r1) 0 · · · 0

0 0 f(r3) · · · 0

...
...

...
. . .

...

0 0 0 · · · f(rN)


(2.37)

Note that r0 and rN correspond to the positions of the outer and inner cylinder surfaces, respec-

tively. The operator L and M are given by:

L = 4KD2
ξ + 2

{
1

r

}
KDξ −

{
n2

r2
+ k2

}
K (2.38)

M = i

{
nV

r
+ kW

}
K (2.39)

At the boundaries, we require the boundary conditions and the continuity equation:

KBCU = KBCW = KBCDξW = KBCΘ = 0 (2.40)

where the transformation matrix KBC , that gives the values of a function at ξ = ξ0 = 1 and

ξ = ξN = −1 has been introduced:

KBC =

 1 1 1 1 · · · 1

1 −1 1 −1 · · · (−1)N

 (2.41)

The equations (2.34) and the boundary conditions (2.40) is solved using the QZ decomposition.

To ensure the convergence of the solutions, the highest order of Chebyshev polynomials is varied

from 15 for large values of η to 30 for low values of η.

2.7 Equation for kinetic energy

The equation for the kinetic energy density of the perturbation is derived from the linearized

equations. Multiplying Eqs. (2.26b - 2.26d) by u′, v′, and w′, respectively, and summing the
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resulting equations, we have:

∂

∂t

(
u′2

2

)
+ u′ · [∇ · (u′U)] + ∇ ·

[
u′2

2
(U + u′)

]
= −∇ · (π′u′) + ∆u′2 −∇u′ : (∇u′)

T

+ Grθ′w′ − γa (Gcθ
′ + g′cΘ)u′ − γeV

2
E

Pr
θ′Ge · u′ −

γeV
2
E

Pr
Θg′e · u′ (2.42)

Integrating over the whole �uid volume and over a period of perturbations propagation with rigid

boundary conditions, we have:

dK

dt
= WSh +WBu +WHy +WTh +WBG +WPG −Dν (2.43)

where K is the kinetic energy, WSh is the power performed by the shear stress, WBu is the power

performed by the centrifugal buoyancy, WHy is the power performed by the axial shear �ow, WTh

is the power performed by the Archimedean buoyancy, WBG is the power performed by the base

electric gravity, WPG is the power performed by the perturbation electric gravity, and Dν is the

rate of viscous energy dissipation. These terms are given by:

K =

∫
u′

2
dV, WSh = −

∫
u′v′

(
dV

dr
− V

r

)
dV, (2.44a)

WHy = −
∫
u′w′

dW

dr
dV, WBu = −γa

∫
u′ (V 2θ′ + VΘv′)

r
dV, (2.44b)

WTh = Gr

∫
θ′w′dV, WBG =

γeV
2
E

Pr

∫
θ′Geu

′dV, (2.44c)

WPG = −γeV
2
E

Pr

∫
Θg′e · u′dV, Dν =

∫
ΦνdV (2.44d)

where the viscous dissipation function Φν is given by:

Φν = 2

[∣∣∣∣du′dr
∣∣∣∣2 +

∣∣∣∣imv′r +
u′

r

∣∣∣∣2 + k2|w′|2
]

+

∣∣∣∣r ddr
(
v′

r

)
+
imu′

r

∣∣∣∣2 +

∣∣∣∣imw′r
+ ikv′

∣∣∣∣2 +

∣∣∣∣iku′ + dw

dr

∣∣∣∣2

In one case, the power performed by the centrifugal buoyancy WBu will be splitted in two con-

tribution: one related to the base centrifugal acceleration WBBu and the other to the perturbation

centrifugal acceleration WPBu. These two energy sources are given by:

WBBu = −γa
∫
u′V 2θ′

r
dV : and WPBu = −γa

∫
u′VΘv′

r
dV (2.45)
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The considered case for studying there contribution is the e�ect of the centrifugal buoyancy in a

rigidly rotation cylindrical annulus (Chapter 6), where WBu and Dν are the only energy sources.

2.8 Complex Ginzburg-Landau equation

The linear stability analysis provides information about the nature of the transition from the

base state to the convective state. Moreover, the evolution of the coe�cients of the linear part of

the complex Ginzburg-Landau equation (GLE) can be computed and gives information about the

variation of the growth rate and frequency of perturbations with the control parameters.

In the following, the GLE is derived using the Taylor number Ta as the control parameter, but

it can be changed to the dimensionless electric potential VE when the DEP force is considered. In

the neighbourhood of the instability threshold, the complex linear growth rate s = σ + iω can be

expanded into power series of the axial wavenumber k:

s = σ0ε+ σ1Q
2 + i

[
ωc + ωTaε+ cgQ+ ω2Q

2
]

+O
(
Q3
)
, (2.46)

where Q = (k − kc), ε = 1 − Ta/Tac and the coe�cients are given by the following partial

derivatives evaluated at the critical condition:

σ0 = Tac

(
∂σ

∂Ta

)
c

, σ1 =
1

2

(
∂2σ

∂k2

)
c

, cg =

(
∂ω

∂k

)
c

,

ωTa = Tac

(
∂ω

∂Ta

)
c

, ω2 =
1

2

(
∂2ω

∂k2

)
c

(2.47)

The dispersion relation (2.46) is identical to the linear part of the complex Ginzburg-Landau

equation (GLE) describing the amplitude of a Fourier mode eikz. The GLE, which can describe

perturbation �ow in its weakly nonlinear regime, is given by:

τ0

(
∂A

∂t
− cg

∂A

∂z

)
= ε (1 + ic0)A+ ξ20 (1 + ic1)

∂2A

∂z2
− l (1 + ic3) |A|2A+ g (1 + ic5) |A|4A (2.48)

where

τ0 =
1

σ0
, ξ0 =

(
−σ1
σ0

)1/2

, c0 =
ωTa

σ0
, c1 =

ω2

σ1

The parameters τ0 and ξ0 represent the characteristic time and the coherence length of per-

turbation, respectively. For time-dependent perturbations, c0 and c1 are the linear dispersion
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coe�cients, and cg is the group velocity. The third and fourth terms at the right-hand-side of

Eq. (2.48) concern the nonlinear state of �ow. The constants c3 and c5 are nonlinear dispersion

coe�cients. The Landau constant l determines the nature of the bifurcation from the base �ow.

If l > 0, the bifurcation is supercritical. For stationary perturbation �ow, the amplitude saturates

at the equilibrium value Ae =
√
ε/l after a large enough time. If l < 0, the bifurcation is sub-

critical and no saturation is expected for the GLE truncated at the third order. Then, the �fth

order nonlinearity, i.e., the fourth term at the right-hand-side of Eq. (2.48), is at least needed for

saturation.
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Part I

E�ect of the centrifugal buoyancy on the

Couette �ow
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Chapter 3

Taylor-Couette instability and centrifugal

buoyancy

In this part, the e�ect of the centrifugal buoyancy on the Couette �ow is discussed. In order

to focus on the e�ect of the radial buoyancy, the system is assumed to be under microgravity

conditions. Two cases are considered: the rotation regime is Rayleigh unstable or it is Rayleigh

stable. If the regime is Rayleigh unstable, the centrifugal force destabilises the �ow, and the inward

and outward heating change the stability conditions of the system. If the regime is Rayleigh stable,

the centrifugal force stabilises the �ow, and the centrifugal buoyancy has to destabilise the �ow

in order to get thermal convections.

3.1 The Taylor-Couette instability

Before investigating the e�ect of the centrifugal buoyancy on the Couette �ow, we will �rst

focus on the Taylor-Couette instability in the isothermal case. This instability occurs through

the competition of the destabilising e�ect of the centrifugal force and the stabilising e�ect of

the viscous dissipation, when the former e�ect overcomes the latter one. The Rayleigh stable

and Rayleigh unstable regimes can be de�ned by deriving the Rayleigh criterion. Considering an

inviscid �uid, we can derive the Rayleigh criterion that determines whether the �ow is potentially

unstable. In the absence of viscous force, the displacement of a �uid particle from an equilibrium

position r to r + dr is not accompanied by any change in its angular momentum so that:

rV (r) = (r + dr)V ′(r + dr) (3.1)
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Table 3.1: Critical Taylor number and critical wave number for di�erent η. All the critical modes
are axisymmetric (nc = 0).

η 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 0.995
Tac 421.48 176.28 111.85 83.65 68.19 58.56 52.04 47.37 43.87 41.41 41.29
qc 3.339 3.263 3.215 3.183 3.162 3.148 3.139 3.133 3.129 3.127 3.127

The velocity V ′(r + dr) is that of the particle after being displaced to the position r + dr, and is

thus given by:

V ′(r + dr) = V (r)

(
1− dr

r

)
(3.2)

A particle at the equilibrium at the position r + dr has the velocity V (r + dr) given by:

V (r + dr) = V (r) +
dV

dr
dr (3.3)

The comparison between the centrifugal force sustained by the particle at the equilibrium F =

ρ[V (r + dr)]2/(r + dr) and that of the displaced particle F ′ = ρ[V ′(r + dr)]2/(r + dr) leads to:

dF = F − F ′ = ρφ̄(r)dr where φ̄(r) = 2
V

r

(
dV

dr
+
V

r

)
(3.4)

where φ̄ is the Rayleigh discriminant. If φ̄ is positive, the displaced particle will return to its initial

position, so that the �ow is stable. Otherwise, i.e if φ̄ < 0 at some radial positions, the �ow is

potentially unstable. Using the general expression of the base azimuthal velocity in Eq. (2.18), one

can �nd that the condition φ̄ < 0 is obtained if µ < η2. The regime de�ned by µ = η2 corresponds

to the boundary between the Rayleigh stable regime and the Rayleigh unstable regime. As a

consequence, in counter rotating regimes µ < 0, the �ow is always potentially unstable.

3.1.1 Inner rotating cylinder (µ = 0)

Let us apply the linear stability theory to the case where only the inner cylinder rotates.

Since we consider the isothermal case, only the continuity and momentum equations are solved.

Therefore the Prandtl number is irrelevant, and it is known that critical modes for this regime are

axisymmetric. Figure 3.1 shows the eigenvalue spectrum as a function of the axial wavenumber

for η = 0.5. Fig. 3.1 - (a) corresponds to the critical state since the maximum of the growth rate is

zero for a certain value k. Table 3.1 gives the critical values of Ta and q for di�erent radius ratio η.
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Figure 3.1: Eigenvalue spectrum as function of the axial wavenumber for η = 0.5 and for (a)
Ta = 68, (b) Ta = 100, (c) Ta = 200, (d) Ta = 300. Black and red curves correspond to
stationary and oscillatory modes respectively.
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Figure 3.2: Marginal curves for η = 0.5.

Increasing the Taylor number, the growth rates of all the modes increases so that the radial modes

other than the �rst one can also become unstable (σ > 0) beyond certain values of Ta (Fig. 3.1

- b-d). For a given k, the value of Ta for which the maximum of the growth rate σ changes its

sign indicates the marginal state. Marginal stability curves show the threshold between σ < 0

and σ > 0 in the (k,Ta) plane. The marginal curves of the three �rst modes with the largest

values of growth rate for η = 0.5 are shown in Fig. 3.2. The minimum of a marginal curve gives

the critical conditions for given radial modes. The azimuthal vorticity and the amplitudes of the

velocity components shown in Fig. 3.3 have been computed for the critical conditions of each radial

modes. One can see that the di�erent modes observed in the growth rate spectrum correspond

to di�erent number of rolls in the radial direction. The lowest critical Taylor number corresponds

to the case where there is only one mode in the radial direction; indeed viscous dissipation favors

modes with a small number of convection cells.

3.1.2 Counter-rotation regimes (µ < 0)

As mentioned earlier, the counter-rotation regime is always potentially unstable. Figure 3.4

shows the marginal curves obtained for η = 0.8 and µ = −4 and for di�erent n. The critical mode

is oscillatory non-axisymmetric with nc = 5. For this regime, the vortices have a small wavelength

and are concentrated near the inner cylinder (Fig. 3.5). The concentration of convective cells may

be explained by the fact that only the �ow within a �uid sublayer attached to the inner cylinder
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(a)

(b)

(c)

Figure 3.3: Azimuthal vorticity in the (r, z) plane and amplitudes of the velocity components for
the three �rst modes at their respective criticality for η = 0.5. For the �rst, second and third
modes, the values of (k,Ta) are (3.2, 68.19), (5.4, 228.75) and (7.5, 483.94), respectively.
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Figure 3.4: Marginal curves for η = 0.8, µ = −4 and for di�erent values of n.

Figure 3.5: Azimuthal vorticity in the (r, z) plane and amplitudes of the velocity components at
the criticality for η = 0.8, µ = −4, Ta = 364.4, k = 8.76 and n = 5.
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is potentially unstable according to the Rayleigh criterion. Fig. 3.6 shows the marginal stability

curves, as well as the corresponding frequency, for various counter rotating regimes. For µ = −0.25

and µ = −0.5, critical modes are stationary axisymmetric, and for µ = −0.8 the critical mode is

oscillatory non-axisymmetric.

3.2 The generalized Rayleigh criterion

In Sec. 3.1, the Rayleigh discriminant of the isothermal case (3.4) has been derived. Using

the same method, it is possible to derive the generalized Rayleigh discriminant. The di�er-

ence resides in the consideration of a linearly decreasing density with the temperature: ρ =

ρref [1− α (T − Tref )]. In the case where only the inner cylinder rotates (µ = 0), the generalized

Rayleigh discriminant can be written:

ψ(r) = Φ̄− γa
(

ΘΦ̄ +
dΘ

dr

V 2

r

)
where Φ̄ =

(
2η

1 + η

)2 [
1− 1

(1− η)2 r2

]
(3.5)

The Rayleigh discriminant is thus the sum of the isothermal Rayleigh discriminant Φ̄ and a

correction due to the centrifugal buoyancy. If ψ < 0, the �ow is potentially unstable. The �gure

(3.7) shows the pro�le of the Rayleigh discriminant in the gap. When the outer cylinder is at

rest, the discriminant is always negative, but compared to the isothermal case, we can see that

ψ is larger when γa is positive, and that it is lower when γa is negative. It is hence expected

that the circular Couette �ow is stabilized when the inner cylinder is hotter than the outer one,

and destabilized in the opposite case. The generalized Rayleigh discriminant (3.5) was derived

by Mutabazi and Bahloul [28] and by Kirillov and Mutabazi [52] using the short wavelength

approximation.

3.3 1-D model for the heated Taylor-Couette system

Another method to derive a criterion which can determine the stability of the system is a 1-

dimensional model. One advantage of this method, compared to the derivation of the generalized

Rayleigh criterion, is the inclusion of viscosity �ow. For the 1-D model of the Taylor-Couette

�ow with a radial temperature gradient, only the z-dependence of the velocity, the pressure and

the temperature perturbations are retained. To make the Reynolds number appear in the set of
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Figure 3.6: Variation of (a) the Taylor number and (b) the frequency at the marginal state for
η = 0.8, and for various µ. At the critical condition, (Tac, kc) is (48.75, 3.17) for µ = −0.25,
(57.37, 3.33) for µ = −0.5, and (76.25, 3.74) for µ = −0.8.
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Figure 3.7: Generalised Rayleigh discriminant pro�le when the outer cylinder is at rest as a
function of the dimensionless radial position for di�erent values of γa and for η = 0.5.

linearised equations for perturbations (2.26a - 2.26e), the velocity must be scaled by the velocity

of the inner cylinder R1Ω1 instead of d2/ν. This set of equations for perturbations become:

∂w′

∂z
= 0 (3.6a)

∂u′

∂t
=

1

Re

(
∂2u′

∂z2
− u′

r2

)
+

2V v′

r
− γa

2ΘV v′ + V 2θ′

r
(3.6b)

∂v′

∂t
=

1

Re

(
∂2v′

∂z2
− v′

r2

)
− V u′

r
− dV

dr
u′ (3.6c)

∂w′

∂t
= − 1

Re

∂π′

∂z
+
∂2v′

∂z2
(3.6d)

∂θ′

∂t
= −dΘ

dr
u′ +

1

PrRe

∂2θ′

∂z2
(3.6e)

Equations (3.6a) and (3.6d) yield w′ = 0. Considering axisymmetric rolls of the gap size, the

solution is sought in the form est cos qz. Substituting this type of solution into equation (3.6b),

(3.6c) and (3.6e), one can �nd:

su′ = −Re−1
(
q2u′ − u′

r2

)
+

2V v′

r
− γa

2ΘV v′ + V 2θ′

r
(3.7a)

sv′ = −Re−1
(
q2v′ − v′

r2

)
− V u′

r
− dV

dr
u′ (3.7b)

sθ′ = −dΘ

dr
u′ − q2

PrRe
θ′ (3.7c)
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Written in the matrix form, the equations (3.7) read:


s+ Re−1 (q2 + r−2) −2V (1− γaΘ)/r γaV

2/r

V/r +DV s+ Re−1 (q2 + r−2) 0

DΘ 0 s+ q2/(PrRe)




u′

v′

θ′

 =


0

0

0

 (3.8)

where D = d/dr. The solvability of this system requires that the determinant of the square matrix

is zero, which leads to:

(
s+

q2 + r−2

Re

)2(
s+

q2

PrRe

)
+

2V

r

(
V

r
+DV

)
(1− γaΘ)

(
s+

q2

PrRe

)
− γaDΘ

V 2

r

(
s+

q2 + r−2

Re

)
= 0 (3.9)

Introducing the Rossby number Ro = rDΩ/(2Ω), the thermal Rossby number Rt = rDΘ/(2Θ)

and using Ω = V/r, one can �nd:

(
s+

q2 + r−2

Re

)2(
s+

q2

PrRe

)
+ 4Ω2 (1 + Ro) (1− γaΘ)

(
s+

q2

PrRe

)
− 2γaΘRtΩ2

(
s+

q2 + r−2

Re

)
= 0 (3.10)

Considering stationary modes at the onset of convection, we have s = 0. Moreover, we have

1 + Ro = (µ − η2)/[(1 − η)(µ + η)], and at the mean geometric radius r̄ =
√
η/(1 − η), we have

Θ = 1/2 and Rt = 1/ ln η. The equation (3.10) can then be written:

Re2 =

q2

q2 +
(1− η)2

η


2

4q2

γa
2

 η2 − µ
(1− η)(η + µ)

+
γaPr

ln η

q2 +
(1− η)2

η


(3.11)

In the isothermal case (γa = 0) the positivity of the expression on the right side of the equality is

ensured if µ < η2 which correspond to the Rayleigh unstable �ow. In the general case, recalling

that ln η < 0, positivity is ensured if:

γaPr < γaPr∗ = 4q2
(

1− γa
2

) µ− η2

(1− η) (µ+ η)
×
(
q2 +

(1− η)2

η

)−1
ln η (3.12)
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Figure 3.8: Schematic representation of the stability of the �ow depending on the value of µ− η2.
The condition obtained by the one dimensional model tells that the value γaPr has to be below a
certain value γaPr∗, which mainly depends on µ− η2.

Let us consider that η, q and γa are �xed (γa can be positive or negative), then the function γaPr∗

is a linearly decreasing function of µ − η2. The condition obtained with the 1-dimensional can

thus be summarised as shown in Fig. 3.8. The quantity γaPr∗ is positive for Rayleigh unstable

�ows (µ < η2) and it is negative for Rayleigh stable �ows (µ > η2). In outward heating (γa > 0),

the condition γaPr < γaPr∗ cannot be satis�ed for Rayleigh stable �ow, while it can be satis�ed

for Rayleigh unstable �ows if γaPr is su�ciently low. In inward heating (γa < 0), the condition

γaPr < γaPr∗ is always satis�ed for Rayleigh unstable �ow, while it can be satis�ed for Rayleigh

stable �ows if −γaPr is su�ciently large.
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Chapter 4

Centrifugal buoyancy in Taylor-Couette

�ow with �xed outer cylinder

The e�ect of the centrifugal buoyancy is investigated in the case where only the inner cylinder

rotates with a radial temperature gradient and in weightless environment (Gr = 0). This regime is

Rayleigh unstable, which means that the centrifugal force has a destabilising e�ect. The centrifugal

buoyancy induced by the coupling between the centrifugal acceleration and the radial temperature

gradient will either stabilise or destabilise the �ow, depending on the heating direction.

4.1 Base pressure

The base pressure can provide information about the stability of the system. In this con-

�guration, the base pressure Π, which is the solution of equation (2.17a) with VE = 0, can be

written:

Π = ΠCCF + ΠBUO (4.1)

The base pressure is de�ned as that of the isothermal Couette �ow ΠCCF corrected with the e�ect

of the centrifugal buoyancy ΠBUO. These two terms are given by:

ΠCCF =
A2r2

2
+ 2AB log [(1− η) r]− B2

2r2
+ Π0 (4.2)

ΠBUO = − γa
log η

(
AB {log [(1− η) r]}2 + C(r) log [(1− η) r]2 −D(r)

)
(4.3)
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Figure 4.1: Base pressure pro�le (a) and its derivative (b) as function of the dimensionless position
for di�erent values of γa with η = 0.5 and Π0 = 0.

where Π0 is the pressure at the outer cylinder. The functions C(r) and D(r) are given by:

C(r) =
A2r2

4
− B2

4r2
; D(r) =

A2r2

4
+
B2

4r2

The pressure ΠBUO balances the excess or the lack of momentum given by the radial buoyancy,

depending on the direction of the heat �ux. This pressure couples the base velocity and the base

temperature. In view of the balance between the thermal buoyancy and the pressure gradient

formulated in (2.17a) with VE = 0, it is possible to identify the role that the temperature has on

the �ow stability. The �gure 4.1-a shows the base pressure pro�le as function of the dimensionless

radial position. The outward heating (γa > 0) diminishes the pressure while the inward heating

(γa < 0) increases it with respect to the isothermal case. The pro�le of the base pressure gradient

is shown on �gure 4.1-b. As this gradient corresponds to a force balanced by the radial buoyancy,

we can conclude that the higher the pressure gradient, the more unstable the �ow. Thus, the

�ow will be more unstable compared to the isothermal case when γa < 0 and will be more stable

when γa > 0, which is in agreement with the conclusion of the 1-dimensional model formulated

on Sec. 3.3.

4.2 Results

The eigenvalues s are computed for a set of parameters (η,Pr, γa,Ta, k, n). A marginal sta-

bility curve Ta = Ta (k) is determined by searching for the condition where the maximum value

of the growth rate σ changes its sign. The global minimum of the marginal stability curves
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Figure 4.2: Marginal stability curves obtained for Pr = 10, η = 0.5 and γa = 0.001 and for two
values of n. The critical state for this set of parameters is located at the marginal curve for n = 0.

(kn,Tan) obtained for di�erent azimuthal mode number n corresponds to the critical state with

the corresponding critical parameters (Tac, kc, nc, ωc) (Fig. 4.2).

4.2.1 In�uence of the tenperature di�erence

The �gure 4.3 shows the behaviour of the critical Taylor number normalised by its value for

the isothermal case (γa = 0), of the critical wavenumber and of the critical frequency as function

of γa for Pr = 50 and for di�erent radius ratio η. When the outer cylinder is hotter than the inner

one, i.e. inward heating (γa < 0), the threshold decreases with increasing temperature di�erence

between the two cylinders. This highlights the destabilising e�ect of the centrifugal buoyancy

under this condition. The critical modes are axisymmetric (nc = 0) with a critical wavenumber

that increases slightly with the temperature di�erence (Fig. 4.3 - b). These modes are stationary

(Fig. 4.3 - c), and therefore we refer to them as SA (stationary axisymmetric) modes.

The SA mode exists also when γa > 0 if γa is smaller than a certain value γ∗a. The critical Taylor

number increases with γa, highlighting the stabilising e�ect of the centrifugal buoyancy when the

inner cylinder is hotter than the outer one, i.e. outward heating. For a �xed Pr, γ∗a decreases

with increasing the radius ratio. Beyond this particular value of γa the critical modes become

oscillatory axisymmetric (OA) for small and moderate values of the radius ratio η, or oscillatory

non-axisymmetric (ONA) for large η. The critical Taylor number is almost independent of γa for
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Figure 4.3: Variation of the critical parameters with γa for di�erent η and and for Pr = 50:
(a) normalized Ta, (b) wavenumber and (c) frequency. SA: stationary axisymmetric mode; OA:
oscillatory axisymmetric mode; ONA: oscillatory non-axisymmetric mode.
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OA modes while for ONA, it increases with increasing γa, until a certain value of γa, that we

will denote γa
∗∗. Beyond this value of γa

∗∗, the ONA modes become OA with an almost constant

Tac. For OA modes, the critical wavenumber undergoes a discontinuity at (γ∗a, Ta
∗
c). Then, their

wavenumber becomes independent of γa and their frequency increase with γa. For ONA modes, the

critical wavenumber undergoes a discontinuity at (γ∗a, Ta
∗
c) and each times the azimuthal mode

number changes. Within a value of n, the critical wavenumber decreases and the frequency is

almost constant and is approximatively one order of magnitude higher than the frequency of OA

modes. The points (γa
∗,Ta∗c) and (γa

∗∗,Ta∗∗c ) are called codimension two points in the literature.

These points indicates parametric positions where two modes of di�erent nature are critical at the

same time. Their coordinates depend on Pr and η.

The e�ect of the centrifugal buoyancy on the instability threshold is most apparent for SA

modes, in particular for inward heating (γa < 0). The slope of the curve Tac (η = cst, γa), com-

puted at γa = 0 is shown on Table 4.1. This slope depends on η and on Pr: for each radius ratio,

it increases with the Prandtl number.

4.2.2 In�uence of Pr

In the linearised equations (2.31), the Prandtl number is involved in the energy equation,

therefore it plays no role for the isothermal Taylor-Couette instability. For γa 6= 0, Pr will modify

the stability of the �ow through the coupling of temperature and velocity �elds. Figure 4.4

shows the behaviour of the threshold, of the critical wavenumber and of the critical frequency

as a function of the Prandtl number. When the thermal expansion parameter γa is �xed to a

positive value, Tac increases with Pr until a certain value Pr∗. The critical modes are SA when

Table 4.1: Values of the threshold slope Tac(γa)/Tac(γa = 0) as function of γa computed at γa = 0
for di�erent η and Pr.

Pr
0.01 0.1 1 10 50 100 1000

η

0.1 0.20 0.24 0.58 3.97 19.03 37.77 359.45
0.3 0.24 0.26 0.48 2.62 12.11 23.95 230.27
0.5 0.26 0.28 0.44 2.14 9.68 19.09 184.02
0.8 0.27 0.29 0.42 1.81 7.94 15.59 150.35
0.9 0.28 0.29 0.42 1.74 7.57 14.84 143.16
0.99 0.28 0.29 0.42 1.68 7.29 14.28 137.68
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Figure 4.4: Variation of the critical parameters with Pr for di�erent η and γa: (a) normalized
Taylor number, (b) wavenuber and (c) frequency. For clarity, qc (b) was plotted only for γa = 0.01.
SA: stationary axisymmetric mode; OA: oscillatory axisymmetric mode; ONA: oscillatory non-
axisymmetric mode.
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Figure 4.5: Zones of critical states for (a) η = 0.5 and for (b) η = 0.99.

Pr < Pr∗. When the Prandtl number exceeds Pr∗, the critical modes are OA for low and moderate

values of η or ONA for large values of η and of γa. The ONA modes exists for Pr∗ < Pr < Pr∗∗

where the critical Taylor number increases with Pr. Above the value Pr∗∗, the OA modes become

again critical. The threshold Tac of the OA modes decreases with Pr toward its value for the

isothermal Taylor-Couette instability. The critical wavenumber of SA and ONA modes decreases

with the Prandtl number while for OA modes, it increases with Pr. The wavenumber undergoes

discontuinies at the codimension-2 points (Pr∗,Ta∗) and (Pr∗∗,Ta∗∗) and when the azimuthal

modes number changes. The critical frequency of OA modes increases with Pr until it becomes

Prandtl independent with a constant value which depends on η and γa. The frequency of ONA

modes remains constant, unless nc changes.

The values of Pr∗ and Pr∗∗ depend on both γa and η. At (Pr∗,Ta∗c) both SA and OA or ONA

modes are critical. At (Pr∗∗,Ta∗∗c ), the ONA modes as well as the OA modes are critical. The

zones of di�erent critical states can be visualized in the plane (Pr, γa) in Fig. 4.5 for a moderate

and a large value of η.

4.2.3 Eigenvalues behaviour

To have a better insight into the e�ect of the centrifugal buoyancy, the spectrum of the eigen-

values has been analysed, in particular, that of the axisymmetric modes. In this section, the

radius ratio is �xed at η = 0.8. The behaviour of the growth rate with the wavenumber is shown

on Fig. 4.6 - a in the cases of isothermal, inward heating and outward heating Couette �ow at a

given Pr and Ta (Ta = 47.4 is the critical Taylor number of the isothermal case). When γa = 0,

the only visible mode is the centrifugal mode which is critical at k = 3.132 for Ta = 47.4. When
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Figure 4.6: (a) Variation of the growth rate with the wavenumber for Ta = 47.4 and (b) marginal
stability curves for η = 0.8 and Pr = 10 for isothermal case (γa = 0), the inward heating (γa =
−0.01) and outward heating (γa = 0.01). Black and red curves correspond to stationary and
oscillatory modes respectively.

Figure 4.7: (a) Variation of the growth rate with the criticality ε = Ta/Tac − 1 and (b) marginal
stability curves for η = 0.8, Pr = 50 and γa = −0.01. Black and red curves correspond to
stationary and oscillatory modes respectively.

γa 6= 0, the centrifugal mode still exists and exhibits the largest growth rate. The growth rate of

these modes is modi�ed by the centrifugal buoyancy: the stabilizing or destabilizing e�ect of the

centrifugal buoyancy respectively decreases or increases the growth rate. This can be shown on

the marginal stability curves plotted on Fig. 4.6 - b through the decrease of the Taylor number for

inward heating and its increase for outward heating compared to the isothermal case. In addition

to the centrifugal modes, other modes which are caused by the thermal e�ects (thermal modes)

interact with the centrifugal mode. On �gure 4.6 - a, we can see that one of these modes merges

with the centrifugal mode for some values of k and gives rise to oscillatory modes. The variation of

the growth rate with the criticality parameter ε = Ta/Tac− 1 and corresponding marginal curves

show that no oscillatory modes are expected near the criticality (Fig. 4.7).
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Figure 4.8: Variation of the growth rate and of the frequency with the wave number k for η = 0.8
and Pr = 50 at Ta = Tac. The thermal expansion parameter γa = 0.001 < γa

∗ in (a) and (b)
and γa = 0.01 > γa

∗ in (c) and (d). Black and red curves correspond to stationary and oscillatory
modes respectively.

In outward heating (γa > 0) the centrifugal buoyancy plays a stabilizing e�ect. In this case,

oscillatory axisymmetric modes can become critical when γa is larger than γa
∗ which depends on η

and Pr. The dispersion curves σ = σ(k) and ω = ω(k) computed for Pr = 50 at critical conditions

(Ta = Tac) are shown on Fig. 4.8 for γa values smaller and larger than γa
∗. When γa < γa

∗,

the centrifugal mode merges with a thermal mode close to the onset of instability, producing

oscillatory modes, but these modes split again close to k = kc and let a stationary mode become

critical (Fig. 4.8 - a,b). When γa > γa
∗, the splitting of the centrifugal and thermal modes does

not occur, leading to a critical oscillatory axisymmetric mode (Fig. 4.8 - c,d).

Figure 4.9 shows the variation of the growth rate and the frequency with the criticalty param-

eter together with the marginal stability curves and the frequency dispersion curve when γa > γa
∗.

The critical condition is obtained for an oscillatory mode.
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Figure 4.9: Stability analysis for η = 0.8, Pr = 50, and γa = 0.01: Variation of the growth rate
(a) and the frequency (b) with the criticality ε = Ta/Tac − 1, marginal curves of the �rst two
unstable modes (c), variation of the frequency of the oscillatory modes with the wave number,
i.e., dispersion relation (d). Black and red curves correspond to stationary and oscillatory modes
respectively.
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Figure 4.10: Energy generation terms for η = 0.5 as functions of (a) the thermal expansion
parameter γa for Pr = 50 and (b) as function of the Prandtl number Pr for γa = 0.01.

4.3 Discussion

For inward heating, the imposed temperature gradient has a signi�cant destabilizing e�ect

with no change in the temporal and spatial nature of the critical modes. In contrast, outward

heating yields only a slight variation of the instability threshold with γa. The most prominent

e�ect of the centrifugal buoyancy is the change of the critical modes in their temporal nature at

large Prandtl number.

4.3.1 Energy analysis

In this problem, the equation for kinetic energy (2.43) is reduced to:

dK

dt
= WSh +WBu −Dν (4.4)

The three terms contributing to the variation rate of perturbation kinetic energy are plotted in

�gure 4.10 as function of γa and Pr for η = 0.5. These terms vary linearly with γa and become

constant when γa ≥ γa
∗ (Fig. 4.10 - a). For inward heating, the power performed by the centrifugal

buoyancy WBu is positive, highlighting the destabilizing e�ect of the centrifugal buoyancy. When

the sign of γa changes , WBu also changes its sign, meaning that the centrifugal buoyancy in

inward heating stabilises the �ow. When γa exceeds the value of γa
∗, WBu become constant. So

in outward heating, increasing γa reinforces the stability of the circular Couette �ow, but the

stabilizing e�ect saturates when OA modes occur.

The dependence of WBu on Pr in outward heating is subtle (Fig. 4.10 - b), but it can be
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Velocity and temperature Buoyancy �eld and its work

(a) Stationary critical mode
(Pr = 10, Tac = 69.7 and
qc = 3.160)

(b) Oscillatory critical mode
(Pr = 60, Tac = 69.4 and
qc = 3.154)

(c) Oscillatory critical mode
(Pr = 1000, Tac = 68.5 and
qc = 3.162)

Figure 4.11: Eigenfunctions at critical conditions with η = 0.5 and γa = 0.01.
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understood by analysing the density of the radial buoyancy power:

wBu = −γa
r

(
V 2θ′ + 2ΘV v′

)
u′ (4.5)

The �gure 4.11 shows some eigenfunctions at the critical condition in the (r, z) plane for η = 0.5

and for γa = 0.01 (outward heating). We can see from �gure 4.11 - a that for stationary modes,

the radial velocity perturbation u′ and the temperature perturbation θ′ are in phase with each

other. For �uids with Pr < Pr∗, the power density wBu is then negative everywhere inside the

gap, leading to a total negative power WBu. In this condition, if the amplitudes of perturbations

increase, the stabilizing e�ect of the centrifugal buoyancy is reinforced. For �uids with Pr > Pr∗,

the phase of θ′ relative to u′ increases with Pr (Figs. 4.11 - b,c) and will attains −π/2 at large

Pr. The increase of the phase delay increases the total power WBu (Fig.4.10 - b) because of the

appearance of a zone of positive wBu inside the gap. For large enough values of Pr, the zones of

positive wBu balance the zones of negative wBu so that WBu = 0. We then have no e�ect of the

centrifugal buoyancy and the threshold is thus the one for the isothermal case.

This mechanism can be observed from the equation of energy (2.31e). When OA modes are

critical, we have:

PrDΘû =

[
1

r

d

dr

(
r
d

dr

)
− k2c

]
θ̂ (4.6)

Because of the sign of DΘ, the radial velocity perturbation and the temperature perturbation are

in phase in inward and in antiphase in outward heating. In both cases, the �ow goes from the

hot wall to the cold one, passing through the zones of positive temperature disturbances. This

mechanism is similar to what observed in the Rayleigh-Bénard thermal convection. However, in

the limit of in�nite values of Pr, OA modes are critical and Eq. (2.31e) leads to the relation:

θ̂ → 1

ω
|DΘ| ûe−iπ/2 (4.7)

which exhibits a phase delay of π/2 between θ̂ and û and produces the zone of positive wBu.

4.3.2 Frequency analysis

The �ow system under consideration can be analysed by analogy with Rayleigh-Bénard con-

vection. In fact, for γa < 0, the gravity is oriented towards the hot wall and therefore, there is a
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Figure 4.12: Critical frequencies as a function of Brunt-Väisälä frequency.

thermal convection instability which reinforces the centrifugal instability and decreases the thresh-

old compared to the isothermal case. In opposite case of γa > 0, the radial density strati�cation

is associated with internal waves which have the Brunt-Väisälä frequency [−(1/ρ2)(dρ/dr)gc] due

to the stable strati�cation of the density regarding the centrifugal acceleration and given by its

dimensionless expression:

N̄2 =
γaTa2

ln η

ηV 2

(1− η) r
(4.8)

with the azimuthal velocity V (r) estimated at the position rη = −1/ ln η. At this particular

position, the heat �ux is equal to the one coresponding to the plane geometry, which has a

constant heat �ux between the two plates. Thus, the use of rη weakens the e�ect of curvature.

The Brunt-Väisälä frequency thus reads:

N̄ =
η3/2

[
(ln η)2 − (1− η)2

]
(1− η2) (1− η)3/2

√
−γaTa2

ln η
(4.9)

Figure 4.12 shows that the critical frequency of OA modes is proportional to N̄ for large |ωc|

where viscous damping during an oscillation period is not signi�cant (the time has been scaled

with the characteristic time of viscous dissipation). This upper bound of the critical frequency

suggests that the oscillations of critical modes originate from internal waves arising from the radial

buoyancy e�ect on stable density strati�cation.

The dispersion of the OA modes can be developed about the critical condition q = qc as follows

ω(q) ' c qc + vg (q − qc) + P (q − qc)2 , (4.10)
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Table 4.2: Variation of dispersion properties of the critical modes with Pr for η = 0.5, γa = 0.01.

Pr c vg P
50 0.297 0.256 0.045
100 0.321 0.281 0.048
1000 0.329 0.290 0.050

where

c =
ωc
qc
, vg =

dω

dq
, P =

1

2

d2ω

dq2
, (4.11)

represent the phase velocity, the group velocity and the dispersion coe�cient, respectively. Their

values (Table 4.2) depend weakly on Pr. The OA modes induced by the radial buoyancy in the

Taylor-Couette �ow exhibit a normal dispersion.

Using the short wavelength approximation, Kirillov and Mutabazi [52] were able to give analytic

expressions of the threshold of oscillatory modes and for the frequency of these modes:

Ta∗c
Ta0

=
Pr + 1

Pr

[
1− γa

2
+

γa
2 ln η

Pr + 1

Pr
(Ta0)

2

]−1/2
(4.12a)

ωc
Ω

=
β

Pr + 1

1

Ta0

√
−1 +

γa
2
− γaPr (Pr + 1)

2 ln η
(Ta0)

2 (4.12b)

where β = kz/|k| and Ta0 is the Taylor number of the isothermal case. They found that the

threshold and the critical frequency depend on both γa and Pr. Figure 4.13 shows the results of

Kirillov and Mutabazi concerning the critical frequency. There is a good agreement between our

results and those of Kirillov. Indeed, they reproduced the saturation of the frequency at large Pr

Figure 4.13: Critical frequencies in units of βΩ (a) as function of the Prandtl number for γa =
0.0004, (b) as function of γa and (c) as function of the Brunt-Väisälä frequency. All these results
have been obtained for η = 0.99. [52]
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Table 4.3: Critical parameters and coe�cients of the Ginzburg-Landau equation against Pr and
γa (η = 0.8).

Pr γa Tac Tac τ0 τ0 ξ0 c0 cg c1 l
(LSA) (DNS) (LSA) (DNS) (DNS)

10

−10−2 46.533 46.594 4.16 4.791 0.269

0 0 0

60.82
−10−3 47.281 47.231 3.66 3.559 0.270 29.31
10−3 47.452 47.380 3.54 3.475 0.270 25.69
10−2 48.246 48.209 2.98 3.288 0.270 17.84

50
−10−2 43.996 44.343 17.6 9.59 0.269 0 0 0 1157.24
10−2 48.292 49.020 7.19 3.294 0.271 −0.469 0.002 −0.469 −60.04

100

−10−2 41.337 41.509 51.0 36.326 0.268
0 0 0

2485.11
−10−3 46.643 47.160 10.5 3.801 0.269 1499.98
10−3 47.748 47.595 7.17 3.527 0.270 −0.951 0.001 −0.951 −53.62
10−2 47.932 48.905 7.21 3.097 0.270 −0.181 0.003 −0.218 −431.22

and the permanent increase of ωc with γa. They also recovered the proportionality between the

critical frequency and the Brunt-Väisälä frequency for large enough frequency (ω > 1).

4.3.3 Comparison with numerical simulations

For the present problem, direct numerical simulations (DNS) have been performed by C. Kang.

The linear coe�cients of the Ginzburg-Landau equation (Eq. (2.48)) were computed by LSA and

the nonlinear coe�cient l was extracted from DNS results. For validation of the numerical code,

the time constant τ0 has also been computed by DNS. The results of both LSA and DNS agree

quite well with each other. The computed values of the coe�cients are given in Table 4.3 for

some values of γa and Pr. We found that all the stationary modes appear through supercritical

bifurcation (i.e., with l > 0) while oscillatory modes appear through subcritical transition. Indeed,

for Pr = 50 and 100, the bifurcation to oscillatory axisymmetric modes is subcritical for γa = 0.001

and 0.01 while the transition to stationary axisymmetric modes is supercritical for all values of

Pr. The coherence length ξ0 is almost independent of Pr for inward and outward heating. The

characteristic time τ0 weakly varies with Pr for γa > 0 while it strongly increases with Pr for γa < 0.

For a given �uid, the perturbations grow faster in outward heating than in inward heating.

The friction coe�cient CM has been computed by numerical simulation and measures the

torque that the �uid exerts on the inner cylinder. Fig. 4.14 shows the variation of CM with the

Taylor number. When the Taylor number is below the critical value, CM is equal to its laminar

�ow value. When Ta > Tac, the friction coe�cient has higher values than for the base state. The
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Figure 4.14: Total friction coe�cient as function of Ta for di�erent values of Pr and γa. The solid
line corresponds to the isothermal laminar �ow.

centrifugal buoyancy plays no signi�cant role since Pr and γa do not bring di�erence compared

to the isothermal case. The measure of the heat transfer is done through the computation of

the Nusselt number Nui at the inner cylinder. In contrast to the friction coe�cient, Nui is very

sensitive to Pr: for a given Ta, increasing Pr increases the Nusselt number. For Pr = 10 (Fig. 4.15

- a) critical modes in inward and outward heating are SA, and γa plays no role on the variation

of Nui. For Pr = 100 (Fig. 4.15 - b,c), the sign of γa plays a role on the slope of the curves at

the onset of convective �ow. But for su�ciently large Ta, this di�erence vanishes. The decrease

of Nui observed for Pr = 100 is due to the occurrence of wavy vortex �ow.

4.4 Conclusion

The Taylor-Couette �ow with the inner cylinder rotating and a steady outer cylinder is Rayleigh

unstable: the angular momentum decreases with the radial coordinate. The application of a tem-

perature gradient produces the centrifugal buoyancy which changes the stability condition of the

Taylor-Couette �ow. In outward heating (γa < 0), the centrifugal buoyancy has a destabilising

e�ect, and the critical modes are stationary axisymmetric. In inward heating (γa > 0), it has a

stabilising e�ect. In this case, critical modes can be stationary axisymmetric, oscillatory axisym-

metric or oscillatory non-axisymmetric, depending on η, Pr and γa. The oscillatory nature of the

axisymmetric modes comes from the generation of internal waves due to the stable strati�cation

of the density regarding the centrifugal acceleration. The Prandtl number plays a unexpected role

in inward heating: it reinforces the stability of the �ow for SA modes and diminishes the sta-
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Figure 4.15: Variation of the heat transfer coe�cients at the inner cylinder with Ta for di�erent
values of Pr and γa. (a) Pr = 10 and di�erent values of |γa|, (b) Pr = 100 and |γa| = 0.001 and
(c) Pr = 100 and |γa| = 0.01.

76



bilisation for OA modes. This e�ect is related the phase shift between the perturbation velocity

and the perturbation temperature �elds. The numerical simulation of this problem validated the

results from the linear stability analysis, but showed that the OA modes are subcritical. In fact,

the oscillation of the vortices only occurs during the linear growth of the modes. The vortices

become stationary during the non-linear state, where the amplitude of the modes stop growing.

Increasing the Prandtl number enhances the heat transfer, but has not much in�uence on the

friction coe�cient.
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Chapter 5

Centrifugal buoyancy in Rayleigh stable

Taylor-Couette �ows

In the previous chapter, we investigated the e�ect of the centrifugal buoyancy on a Rayleigh

unstable rotation regime. We will now focus on two Rayleigh stable �ows. In the isothermal case,

when only the outer cylinder rotates or when both cylinders rotate in the Keplerian regime, i.e.

following the law Ω2/Ω1 = (R1/R2)
3/2, the �ow is always stable. The application of a temperature

di�erence between the two cylinders produces the centrifugal acceleration which is able to change

the stability conditions. To have a destabilising e�ect of the centrifugal acceleration, the outer

cylinder has to be hotter than the inner one, i.e. γa < 0. The two rotation regimes are investigated

under weightless environment (Gr = 0). The eigenvalues s are computed in the same way as in the

previous chapter. The determination of the global minimum of marginal curves gives the critical

state of the system, with the corresponding critical parameters (Tac, kc, nc, ωc).

5.1 Outer rotating cylinder

When the outer cylinder rotates and is heated, the centrifugal buoyancy has a destabilizing

e�ect on the �ow and convection rolls can appear. In fact, the gravity is oriented towards the hot

surface and there is a negative strati�cation of the density and therefore the centrifugal buoyancy

can induce thermo-convective instability. The critical modes are axisymmetric and stationary. The

�gure 5.1 shows marginal stability curves obtained for di�erent n. The marginal curve obtained

for n = 0 has the lowest value of Ta.

79



Figure 5.1: Marginal stability curves obtained for η = 0.5, Pr = 1000 and for γa = −0.008. The
critical modes are axisymmetric.

5.1.1 Critical parameters

The critical parameters depend both on γa and Pr, but we found that they depend on the

combination γaPr. In other words, for a �xed value of η, two systems with di�erent γa and Pr but

identical γaPr will have instabilities of the same nature and at the same threshold. Figure 5.2 shows

the behaviour of the critical Taylor number and the critical axial wavenumber as functions of−γaPr

for di�erent radius ratios. The critical Taylor number decreases with −γaPr and asymptotically

tents to zero. For a given γaPr, increasing the radius ratio destabilises the �ow. The lower the

value of −γaPr, the larger the slope of the threshold, so that decreasing further the parameter

−γaPr makes the critical Taylor number tend to the in�nite. The axial wavenumber decreases

with increasing −γaPr, except for low values of the radius ratio for which qc decreases with −γaPr.

Figure 5.3 shows the behaviour of the growth rate of critical modes in the (k,Ta) plane and

highlights how the critical wavenumber increases with −γaPr for low radius ratio and how it

decreases otherwise. For η = 0.2 and low −γaPr, the zone of positive growth rate is concentrated

at small wavenumbers. At larger −γaPr, a zone of positive growth rates becomes positive at larger

axial wavenumbers and increases the critical wavenumber. For larger radius ratios, the zone where

σ > 0 is located at larger wavenumbers for small −γaPr. This zone is shifted to lower values of k

when −γaPr increases.
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Figure 5.2: Variation of the critical parameters with −γaPr for di�erent η: (a) Taylor number and
(b) wavenumber.
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η = 0.2 η = 0.9

Figure 5.3: Isovalues of the growth rate σ in the (k,Ta) plane for di�erent radius ratio and di�erent
γaPr. Diagrams (a - c) are obtained for η = 0.2 and diagrams (d - f) are obtained for η = 0.9.
The values of −γaPr are: (a) 7.5, (b) 8, (c) 10, (d) 3.2, (e) 3.5 and (f) 5.

82



(a) η = 0.2, (b) η = 0.2,
γa = 0.007, γa = 0.01,
Ta = 89.63, Ta = 33.67,
k = 1.773 k = 2.854

(c) η = 0.5, (d) η = 0.5,
γa = 0.005, γa = 0.01,
Ta = 130.63, Ta = 28.43,
k = 3.860 k = 3.091

Figure 5.4: Eigenfunctions at critical conditions for Pr = 1000 and for di�erent values of η and
γa.

5.1.2 Eigenfunctions

The eigenfunctions for the perturbation velocity �eld and for the perturbation temperature at

critical states are illustrated in Fig. 5.4. The radial velocity perturbation and the temperature

perturbation are in antiphase, which means that a �uid particle will travel from the hot cylinder

to the cold one by passing through the high temperature. In Fig. 5.4(c), the axial wavenumber

is large and we can observe that the vortices are concentrated in the outer part of the cylindrical

annulus.

5.2 Keplerian regime

As in the case where the outer cylinder rotates, it is found that for the Keplerian regime the

critical parameters depend on the combination γaPr. Moreover, critical modes are also found to

be stationary axisymmetric.

83



Figure 5.5: Variation of the critical parameters with −γaPr for di�erent η: (a) Taylor number and
(b) wavenumber.

5.2.1 Critical parameter

Figure 5.5 shows the critical parameters behaviour as function of −γaPr. The critical Tay-

lor number decreases with increasing −γaPr and asymptotically tends to zero. The larger the

curvature, the more stable the �ow. The critical axial wavenumber decreases with −γaPr and

asymptotically tents to a constant value around qc = 3.15.

5.3 Discussion

5.3.1 Energy analysis

For these systems, the equation of kinetic energy is the same as for the previous chapter

(Eq. (4.4)). Three mechanisms intervene in the process of energy transfer from the base state to

the perturbation: the shear stress, the centrifugal buoyancy and the viscous dissipation. Fig. 5.6
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Figure 5.6: Power terms of the outer rotation regime (a) as function of −γaPr for η = 0.5, and
(b) as function of η for γaPr = −10.

represents the evolution of the power given by these three mechanisms with the parameter γaPr

and with η in the outer rotation regime. The power given by the centrifugal buoyancy and by

the shear rate are always positive, which means that in inward heating, these two mechanisms

contribute to the destabilisation of the system. In Fig. 5.6 - b, obtained for γaPr = −10, we can

see that there exists a certain value of η bellow which WBu > WSh, and above which WBu < WSh.

This latest case is counter intuitive because the instability is produced by thermal e�ects, and the

power given by the shear is only a consequence of the presence of vortices in the annulus. The

shear rate is given by:

r
d

dr

(
V

r

)
=

2η2

(1 + η) (1− η)5/2
Ta

r2
(5.1)

The critical Taylor number decreases with increasing the radius ratio, making the power given

by the centrifugal buoyancy decrease. But in counterpart, the shear rate (5.1) increases with η,

making the power given by the shear stress increase.

Fig. 5.7 shows the behaviour of the di�erent power source against the parameter γaPr and

against η in the Keplerian regime. The power given by the centrifugal buoyancy is positive as for

the outer rotation regime. But this time, the shear stress always contributes to stabilise the �ow,

since WSh is negative. For large enough values of −γaPr and large enough η, the shear stress does

not transfer energy to the perturbations, i.e. WSh = 0, and the power given by the centrifugal

buoyancy becomes constant.
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Figure 5.7: Power terms in the Keplerian regime (a) as function of −γaPr for η = 0.5, and (b) as
function of η for γaPr = −10.

5.3.2 Small gap approximation

Kirillov and Mutabazi [52] analysed the problem both in the case where the outer cylinder

rotates and in the Keplerian regime while considering the small gap approximation, in the limit

of short wavelength of vortices. There method allows them only to consider axisymmetric pertur-

bation, which is convenient since the linear stability theory predicted axisymmetric modes. They

found that OA modes can be critical at low Prandtl number, for both rotation regimes. When only

the outer cylinder rotates, the OA modes have not been captured by the LSA, because the values

of Ta larger than 1000 have not been admitted in the linear stability theory. But in the Keplerian

regime, for η = 0.99 and γa = −0.01, the OA modes have been found as critical modes. Fig. 5.8

shows the threshold, the critical wavenumber and the critical frequency for these conditions. The

transition from OA modes and SA modes is at about Pr = 1 which is pretty close to what Kirillov

and Mutabazi calculated (for them, the OA modes stop at Pr = 0.98 and the SA modes start at

Pr = 1.01). The critical wavenumber is constant for SA modes but varies with Pr for OA modes.

In fact, increasing the Prandtl number �rst decreases the wavenumber, and then increases it until

the SA modes become critical. The frequency of OA modes decreases with Pr and undergoes a

discontinuity when the temporal nature of the modes changes.

86



Figure 5.8: Variation of the critical parameters as functions of Pr for η = 0.99 and γa = −0.01 in
the Keplerian regime: (a) Taylor number, (b) wavenumber and (c) frequency.
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5.4 Conclusion

The regimes where the outer cylinder rotates and the Keplerian regime are Rayleigh stable.

To destabilise there �ow, a positive temperature gradient has to be applied.

The Keplerian regime and the regime where only the inner cylinder rotates in inward heating

show some similarities. For both regimes, the critical parameters depend on both the Prandtl

number and the thermal expansion parameter, through the combination γaPr. Indeed, the pa-

rameter γaPr makes the critical parameters only dependent on the radius ratio. This parameter

has been found in the 1-dimensional model derived in Sec. 3.3. In both cases, critical modes take

the form of axisymmetric modes. When only the outer cylinder rotates, the radial shear plays a

subtle role. It destabilises the �ow and, depending on the radius ratio, can transfer more energy

to the perturbation than the centrifugal buoyancy. This result is counter intuitive since the cen-

trifugal buoyancy is the motor for the onset of convections. In contrast, in the Keplerian regime,

for large values of γaPr and of η, the shear rate plays no role on the stability and the centrifugal

buoyancy becomes the only source of energy transfer from the base state to the perturbations.

For large radius ratios and small Prandtl number, oscillatory axisymmetric modes are found,

which con�rm the results obtained by Kirillov et all [52].
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Chapter 6

Centrifugal buoyancy in �uids with

solid-body rotation

A rigidly rotating cylindrical annulus is a model for geophysical and astrophysical �ows. Ac-

cording to the Rayleigh criterion derived in (3.4), the isothermal case is stable against centrifugally-

driven perturbations. The centrifugal force cannot brings instability, but in inward heating

(γa < 0), the centrifugal buoyancy has a destabilizing e�ect and can lead to thermal convec-

tion. In fact, the centrifugal gravity is oriented toward the hot surface and this con�guration

resembles the Rayleigh-Bénard convection of a �uid layer heated from below (Fig. 6.1).

6.1 Flow equation in the rotating frame of reference

The linear stability analysis has been performed using the set of equations (2.11) which de-

scribes the system in the laboratory frame. But for convenience, the rotating frame should be

Figure 6.1: Sketch showing the analogy between the rigidly rotating cylindrical annulus with
heated outer cylinder and the Rayleigh-Bénard problem.
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used instead of the static frame. In a frame rotating at the angular velocity Ω of the cylindrical

annulus, there is no base �ow and we have to consider the Coriolis force fC and the Coriolis

buoyancy which is the action of fC on the density strati�cation. The governing �ow equations in

the rotating frame read:

∇ · u = 0 (6.1a)

∂u

∂t
+ u ·∇u = −∇π + ∆u− 2τ (ez × u) + 2γaτθ (ez × u)− γaτ

2

2
θrer (6.1b)

∂θ

∂t
+ (u ·∇) θ = κ∆θ (6.1c)

where τ = Ωd2/ν is the Coriolis number. Using the de�nitions:

Ra = γaPrTa2, τ = Ta
√
f(η) where f(η) =

2(1− η)

1 + η
(6.2)

where Ta is the Taylor number de�ned at the arithmetic mean of the two cylinder radii, the

equation (6.1b) can be written:

∂u

∂t
+ u ·∇u = −∇π + ∆u− 2τ (ez × u) + 2

√
f(η)Ra

γa
Pr
θ (ez × u)− f(η)

Ra

Pr
θrer (6.3)

In the rotating frame of reference, there is no base �ow, therefore the no-slip conditions at the

boundaries leads to u = 0. The basic velocity and temperature are given by:

U = V = W = 0 ; Θ =
ln [r (1− η)]

ln η
(6.4)

Adding a small perturbation to the base state and developing these perturbations into normal

modes, the set of equations (6.1) becomes:

0 =

(
D +

1

r

)
û+

in

r
v̂ + ikŵ (6.5a)

sû = −Dπ̂ + ∆û− û

r2
− 2inv̂

r2
+ τ v̂ − 2

√
f(η)Ra

γa
Pr

Θv̂ − f(η)
Ra

Pr
θ̂r (6.5b)

sv̂ = −in
r
π̂ + ∆v̂ − v̂

r2
+

2inû

r2
− τ û+ 2

√
f(η)Ra

γa
Pr

Θû (6.5c)

sŵ = −ikπ̂ + ∆v̂ (6.5d)

sθ̂ = −DΘû+
1

Pr
∆θ̂ (6.5e)
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6.2 Critical parameters

In inward heating, when both cylinders rotate at the same angular velocity, for most sets of

parameters, the critical modes take the form of columnar vortices, i.e. kc = 0 and nc 6= 0. Due to

the analogy with the Rayleigh Bénard problem, the convenient parameter for this rotation regime

is the Rayleigh number. Indeed Rac depends only on the radius ratio (Fig. 6.2 - a). The azimuthal

mode number increases with η and corresponds to the maximum number of convection roll pairs

of the gap size: nc ' [π(1 + η)/2(1− η)]. Each time the value of nc changes, the slope of Rac with

respect to η also changes. For large values of the radius ratio, the critical Rayleigh number tends

to Ra = 1708 which is the threshold for onset of convection in the Rayleigh-Bénard problem. The

critical wavenumber depends only on η (Fig. 6.2 - b). It decreases with η and undergoes ascendant

discontinuities each time the value of nc changes, so that qc oscillates around q = 3.116, and tends

to this value when η tends to 1, which is the critical wavenumber in the Rayleigh Bénard problem.

The threshold Ra = 1708 together with the wavenumber q = 3.116 were also predicted by Auer et

al. [24] in the framework of the small gap approximation. In �gure 6.2 - c) the critical frequency

measured in the rotating frame is normalized with the Coriolis number τ , de�ned on Eq. (6.2).

The frequency undergoes discontinuities each time the azimuthal mode number changes. Unlike

the threshold and the wavenumber, the critical frequency depends on γa and Pr. Indeed, for a

�xed value of γa, the frequency decreases with increasing Prandtl number, and for a �xed value

of Pr, ωc/τ increases with increasing γa. The frequency is positive which indicates retrograde

propagation (remind that s = σ + iω) .

For low values of the radius ratio, the axial wavenumber can be di�erent from zero (helical

modes) when the parameter γaPr is su�ciently large (Fig. 6.3). Columnar modes have an angle

of 90◦ with respect to the azimuthal direction. When helical modes become critical, this angle

decreases to about 80◦ with increasing η until columnar modes become critical again(Fig. 6.3 -

c). The critical frequency of these helical modes quickly increases with η (Fig. 6.2 - c). Figure

6.4 shows the parameters for which helical modes are critical. The change of azimuthal modes

number occurs at a constant η. Just before this change, at small values of η and large values of

γaPr, helical modes can be critical.

The perturbation temperature and perturbation velocity �elds of an oscillatory columnar mode

are shown on �gure 6.5. The �ow goes from the hot wall to the cold one passing through hot cells.

The spatio-temporal pro�le of the perturbation temperature (Fig. 6.5 - c) shows how the columns
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Figure 6.2: Variation of the critical parameters as fonctions of the radius ratio for di�erent Pr and
di�erent γa: (a) Rayleigh number, (b) wavenumber and (c) normalized frequency.

92



Figure 6.3: Variation of (a) the critical axial wavenumber, (b) the critical azimuthal mode number
and (c) the angle of vortices with respect to the azimuthal direction as function of the radius ratio
for γaPr = −10.
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Figure 6.4: Zones of critical states. Columnar modes are critical below the solid line, otherwise
helical modes are critical.

Figure 6.5: Perturbation temperature pro�le and perturbation velocity �eld at the critical condi-
tion (a) in the (r, ϕ) plane (b) in the (ϕ, z) plane, and (c) in the (t, ϕ) plane for η = 0.5, Pr = 10
and γa = −0.01.
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Figure 6.6: Critical centrifugal Rayleigh number de�ned at the logarithmic radial position Rln,c

as a function of the radius ratio

drift in the retrograde direction.

6.3 Discussion

6.3.1 Centrifugal Rayleigh at the logarithmic radius

The centrifugal Rayleigh number is the convenient parameter to discuss the stability of the

rotating annulus in inward heating. As the Taylor number is de�ned at the arithmetic mean of

the two cylinder radii, the Rayleigh number Ra = γaPrTa2 has the same de�nition as the one

of Auer et al. [24]. An other way to de�ne the Rayleigh number is to chose the logarithmic

radius: Rln = −d/ ln η in its dimensional form, as Walowit et al. did [18]. At this particular radial

position, the heat �ux through the cylindrical surface is equivalent to the one through two plane

surfaces separated by d. The centrifugal Rayleigh number de�ned at Rln is given by:

Raln = γaPrTa2 2(1− η)

ln η(1 + η)
(6.6)

When the centrifugal Rayleigh number de�ned in Eq. (6.6) is used to plot the threshold as function

of the radius ratio, we see that the in�uence of the curvature on the threshold is very weakened

and remains sensitive to η for η < 0.7 (Fig. 6.6). The values of Raln,c oscillate around 1707.7 with

an amplitude which decreases with the radius ratio until η has no in�uence on the threshold.
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Figure 6.7: (a) Critical normalized frequency ωc/τ of columnar modes scaled with the parameter
−γa/Pr as a function of the radius ratio, and (b) azimuthal phase velocity as a function of τ for
γaPr = −10.

6.3.2 Nature of the frequency

The normalised critical frequency ωc/τ can be scaled using the parameter γa/Pr which involves

in the term of the Coriolis buoyancy of equation (6.3). By doing this, unless for the non axisym-

metric modes, the scaled critical frequency becomes independent from the Prandtl number and

the thermal expansion parameter (Fig. 6.7 - a). The success of this scaling indicates that the Cori-

olis buoyancy is the source of the propagation of vortices. The scaled frequency of the columnar

modes is almost constant with ωc

τ
Pr
γa
≈ −0.008. It indicates that the normalized frequency ωc/τ is

a linear function of the parameter γa/Pr with a slope of −0.008 which is nearly independent from

η.

The variation of the azimuthal phase velocity cϕ with the Coriolis parameter τ is shown in

Fig. 6.7 - b. For small values of τ , the phase velocity of columnar modes is almost proportional to

τ , which could indicate that the OC modes are advected by the rotation of the cylindrical walls.

However, the phase velocity of ONA modes show no particular links with the Coriolis parameter.

6.3.3 Energy analysis

In this problem, the centrifugal buoyancy is the only mechanism which gives energy to pertur-

bations. At the critical condition, the energy rate of viscous dissipation Dν balances WBu so that

there is no time variation of the averaged kinetic energy. In this case, the power performed by the

base centrifugal buoyancy WBBu and the one performed by the perturbation centrifugal buoyancy
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Figure 6.8: Variation of the power performed by the base centrifugal buoyancy WBBu and of
the power performed by the perturbation centrifugal buoyancy WPBu with η for Pr = 10 and
γa = −0.01.

WPBu are distinguished in order to have an insight on the e�ect of the latest power source.

Figure 6.8 shows the evolution of WBBu and WPBu with the radius ratio. Most of the energy

transfer from the base state to perturbations is done through the e�ect of the base centrifugal

buoyancy. The perturbation centrifugal buoyancy has a positive contribution which means that it

destabilises the �ow, however its contribution is negligible compared to that of the base centrifugal

buoyancy.

6.3.4 Comparison with numerical simulations

Numerical simulation of this problem has been performed by Changwoo Kang for two di�erent

values of η and di�erent Pr and γa. The Table 6.1 shows a good agreement between LSA and

Table 6.1: Critical parameters and coe�cients of the complex Ginzburg-Landau equation com-
puted by LSA and DNS.

η Pr γa
τc τ0 ξ0 l

LSA DNS LSA DNS LSA DNS

0.5
1 10−2 688.24 689.07 0.0364 0.0364 0.2679 28229
10 10−3 688.37 689.04 0.2476 0.2444 0.2703 411852
100 10−3 217.68 218.16 2.3600 2.2328 0.2703 451353

0.8
1 10−2 390.19 390.90 0.0385 0.0389 0.2736 8973
10 10−3 390.20 390.91 0.2676 0.2678 0.2726 128357
100 10−3 123.40 124.13 2.5589 2.2978 0.2722 143532
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Figure 6.9: Flow and temperature �elds in the (r, z) plane for η = 0.5, Ra = 1811, Pr = 1 and
γa = −0.01: (a) velocity �elds and pressure, (b) avial vorticity, and (c) temperature.

Figure 6.10: Variation of the Nusselt number with Ra for η = 0.5, Ra = 1811, Pr = 1 and
γa = −0.01.

DNS regarding the critical thresholds of τ and the characteristic times τ0. The characteristic time

depends on γa and Pr in contrast to the coherence length of perturbation ξ0 which only depends

on the geometry. The Landau constant l is always positive, indicating supercritical bifurcations

from the base �ow.

Figure 6.9 shows the �ow �elds close to the onset of convection. The counter rotating vortices

are columnar and are retrograde with a frequency close to that found with the LSA. The vortices

which rotate in the same sense than the cylindrical annulus (cyclonic vortices) create low pressure

regions while thus which rotate in the other sense (anticyclonic) create high pressure regions. The

number of modes in the azimuthal direction is in agreement with that found with LSA. Increasing

further the rotation rate of the annular cavity may make the number of modes varying, as well

as their size. The temporal behaviour of the vortices also changes with additional low frequency

oscillations of the modes. Finally, for large enough rotation rate, a chaotic behaviour of the �ow

occurs.

The time averaged Nusselt number is measured at the inner cylindrical surface and is ploted
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against the centrifugal Rayleigh number on Fig. 6.10. For Ra < Rac, Nu = 1 since the heat

transfer is only done through di�usion. For Ra > Rac, the columnar vortices enhance the heat

transfer and the Nusselt number growths. In the vicinity of Rac, the growth of the Nusselt can

be represented as a linear function of Ra with a slope which depends on η and on the parameter

γaPr. Indeed, the larger the parameter γaPr, the lower the value of the slope, which takes values

of about 1 to 1.3. For large values of Ra, the growth of Nu can be �tted with a power-law scaling,

and for η = 0.5 and Pr = 1, the scaling exponent is equal to 0.226. Such value of the scaling

exponent was found in many experiments on Rayleigh-Bénard convection [53, 54, 55].

6.4 Conclusion

As the regime where only the outer cylinder rotates or the Keplerian regime, the solid body

rotation regime is Rayleigh stable, and a positive temperature gradient has to be applied to get

instabilities. The stability can be characterised using the centrifugal Rayleigh number because

the centrifugal acceleration plays the role of the gravity, in analogy with the Rayleigh-Bénard

problem. The threshold only depends on the radius ratio. In most cases, the critical modes are

oscillatory columnar, with a propagation frequency slightly lower than the rotation rate of the

annulus. The oscillation of the columnar modes are due to the Coriolis buoyancy. For large values

of the parameter γaPr and low values of the radius ratio, critical modes can take the form of

oscillatory helical modes. The numerical simulation showed that the onset of convection occurs

through supercritical bifurcations.
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Part II

Thermoelectric convection in cylindrical

annular geometry
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Chapter 7

Thermoelectric convection in stationary

cylindrical annulus

As an introduction to this part dealing with the e�ect of the DEP force in di�erent �uid

systems, the results of previous works will �rst be introduced. Yoshikawa et al. [33] performed

the linear stability analysis of a stationary cylindrical annulus submitted to the DEP force under

microgravity condition. Then Travnikov et al. [42, 43] provided results of numerical simulation

for the same case.

7.1 Threshold of the thermoelectric convection

We saw in Sec. 2.1 that the electric gravity is centripetal, except in the case of small gap

where the electric gravity can be centrifugal or can change its sign inside the gap. When the elec-

tric gravity is centripetal (centrifugal), thermoelectric convection can occur in outward (inward)

heating, and the instability mechanism is analogue to the Rayleigh instability in horizontal plane.

This analogy is of main interest since in a cylindrical annulus of dielectric �uid under microgravity

condition, the dieletrophoretic force can be seen as a purely central gravity force �eld.

Figure 7.1 shows the critical parameters as functions of the radius ratio η. Critical modes are

Prandtl independent and are stationary. The electric Rayleigh number L used to plot the threshold

(Fig. 7.1 - a) has been de�ned at the logarithmic radius Rln = −1/ ln η as we did in Sec. 6.3.1. We

remind that at this position, the radial heat �ux in a cylindrical annulus is equivalent to the one

on the plate cavity. The threshold Lc slightly depends on η in outward heating, but its value stays

close to L = 1708, which is the critical value for the classical Rayleigh problem. For relatively
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Figure 7.1: Variation of the critical parameters with the radius ratio: (a) electric Rayleigh number
for di�erent γe and (b) wavenumber and angle of the vortices with respect to the azimuthal
direction for γe = 0.01. [33]

large values of η, Lc increases and tends to L = 2129 when η tends to one. This stabilisation starts

at lower radius ratio when the thermoelectric parameter γe is increased. Indeed, for large γe and

large η, there is a feedback e�ect of the perturbation electric gravity, which makes the threshold

higher than that for the classical Rayleigh problem. This was �rst found in the plate cavity of

dielectric �uid feeling the dielectrophoretic force [56]. In this case, there is always a non-negligible

energy dissipation done by the perturbation electric gravity. Note that, in the energy analysis of

Chapter 6, the perturbation centrifugal gravity has a di�erent e�ect than the perturbation electric

gravity since the perturbation centrifugal gravity destabilises the �ow.

In inward heating, for large values of the thermo-electric parameter γe and large values of η

the electric gravity is centrifugal. Thermal convection can thus occur and the threshold decreases

with the radius ratio and also tends to the value L = 2129 when η tends to one.

Critical modes obtained in inward heating are axisymmetric, but they are helical in outward

heating. The number of modes in the azimuthal direction nc increases with the radius ratio and the

wavenumber qc undergoes discontinuities each times nc changes (Fig. 7.1 - b). The feedback e�ect

of the perturbation electric gravity is at the origin of the slight increase of qc for low curvature
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Figure 7.2: Power given by the base and perturbation electric gravity (WBG andWPG respectively)
as function of the radius ratio for di�erent γe. [33]

compared the its value for the classical Rayleigh problem. The angle of the helical modes with

respect to the azimuthal direction ψ is sensitive to η and tends to ψ ≈ 60◦ for large values of η.

The conservation of kinetic energy involves three mechanisms of energy transfer from the

base state to perturbations: the power performed by the base electric gravity WBG, the power

performed by the perturbation electric gravity WPG, and the energy rate of viscous dissipation

Dν . The latest balances the other term since at the onset of convective �ow, there is no time

variation of the kinetic energy. Figure 7.2 shows the variations of WBG and WPG with η for

di�erent γe. The power performed by the base electric gravity is positive in inward heating and

in outward heating when the base electric gravity is centrifugal, i.e. for large values of η and

γe. In these cases, the base electric gravity is the source of thermal convection and the value

of WBG is large compared to that of WPG, meaning that the base gravity is the predominant

contribution for the energy transfer. In counterpart, the power performed by the perturbation

electric gravity is negative, and therefore stabilises the �ow in inward and outward heating when

the gravity is centrifugal. For low to moderate values of η, depending on γe, the contribution of

WPG is negligible such as in the classical Rayleigh-Bénard problem in an horizontal plate cavity

where there is no analogue contribution of a perturbation gravity. This explains why the the

thresholds of both cases are comparable. However for large radius radio, the feedback through the

perturbation electric gravity is no longer negligible, making the threshold increase compared to

its value for the Rayleigh-Bénard problem. The value of WPG decreases with η in outward heating

and increases with η in inward heating, but its value when η → 1 is a constant independently of
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Figure 7.3: Variation of the Nusselt number with the electric Rayleigh number: (a) for η = 0.1,
γe = 0.01 and for di�erent Pr, (b) for η = 0.5, γe = 0.01 and for di�erent Pr, (c) for η = 0.3,
Pr = 10 and for di�erent γe, and (d) for η = 0.7, Pr = 100 and for di�erent γe. [42, 43]

the value of γe, explaining the uniqueness of the threshold when there is no curvature.

7.2 Heat transfer

The numerical simulations performed by Travikov et al. were done with periodic boundary

conditions in the axial direction and close to the onset of convection. For L larger than the

critical value, stationary helical modes were also found with thresholds and number of modes

in the azimuthal direction in agreement with thus of the linear stability theory. The averaged

radial heat �ux was measured at the inner cylinder for an established �ow in order to provide

values of the Nusselt number. Figure 7.3 shows the evolution of the Nusselt number Nu with the

electric Rayleigh number. When L < Lc, Nu = 1 since the base state is conductive. For L > Lc,

the Nusselt number growths, highlighting the increase of the heat transfer by the thermoelectric
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buoyancy. At the onset of convection the slope of Nu(L) mainly depends on the radius ratio and

is equal to 0.925 for η = 0.1 and 1.42 for η = 0.5. We recall that, in the case of a cylindrical

annulus of �uid rigidly rotating around its axis and heated from the outside, the slope of Nu(Ra)

for η = 0.5 is about 1 to 1.3 depending on γaPr. This means that the heat transfer enhancement

induced by thermoelectric convection is more e�cient than that induced by centrifugal buoyancy

(at least close to the onset of convection). For weak values of the radius ratio, the Nusselt number

increases with increasing Prandtl number (Fig. 7.3 - a) while the thermoelectric parameter has

no signi�cant in�uence on the heat transfer (Fig. 7.3 - c). For larger values of η, the e�ect of

the Prandtl number on the Nusselt number is weak (Fig. 7.3 - b) while increasing γe enhance the

feedback e�ect of the perturbation electric gravity and decreases the Nusselt number.
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Chapter 8

Thermo-electric convection in a �uid

system in solid-body rotation

We consider now a dielectric �uid con�ned in a rigidly rotating cylindrical annulus with an

alternative electric potential between the two cylinders under microgravity conditions (Gr = 0).

The momentum equation (6.3) now includes the dielectrophoretic force and reads:

∂u

∂t
+u ·∇u = −∇π+ ∆u− 2τ (ez × u) + 4

√
f(η)Ra

γa
Pr
θ (ez × u)−

(
f(η)

Ra

Pr
+

L

Pr

)
θer (8.1)

In this chapter, we will only consider the case where the electric gravity is centripetal. Due to the

di�erent orientations of the centrifugal acceleration and of the electric gravity, we will separate

the cases of inward and outward heating. Indeed, the destabilisation mechanism will be di�erent

in both cases.

8.1 E�ect of the DEP force on the centrifugally-induced ther-

mal convection

When the outer cylinder is hotter than the inner one (inward heating), the electric gravity is

oriented toward the cold cylinder while the centrifugal gravity is oriented toward the hot cylinder

(Fig. 8.1). The centrifugal buoyancy will thus be the destabilising mechanism which can induce

thermo-convective instabilities even without electric �eld. The temperature strati�cation has a

stable pro�le regarding the electric gravity, implying a stabilizing e�ect of the thermoelectric
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Figure 8.1: Sketch of the directions of the gravity �elds with respect to the temperature gradient.

Figure 8.2: Marginal stability curves in the (k,Ra) plane for η = 0.5, Pr = 10, γa = γe = −0.01,
VE = 100 and for di�erent azimuthal mode number.

buoyancy. When the electric �eld is not active, we saw that the critical modes take the form

of oscillatory columns (OC). We would like to investigate the e�ect of the DEP force on this

instability.

8.1.1 In�uence of the Prandtl number

Since in inward heating (γa < 0), the centrifugal Rayleigh number Ra and the electric Rayleigh

number L are negative, the absolute values of these parameters will be considered. The global

minimum of the marginal curves obtained with an active electric �eld is associated with the

OC modes (Fig. 8.2). The critical centrifugal Rayleigh number is independent from the Prandtl

number. It increases with increasing VE (Fig. 8.3 - a), which underlines the stabilising e�ect of the

thermoelectric buoyancy under this con�guration. In fact, the electric gravity and the centrifugal

acceleration are oriented in opposite direction, so the resulting buoyancy force is weakened. There
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Figure 8.3: Variation of the critical values with VE for η = 0.5, γa = γe = −0.01, and for di�erent
Prandtl number. (a) centrifugal Rayleigh number, (b) wavenumber, and (c) frequency.
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Figure 8.4: Perturbation temperature and perturbation velocity �elds: (a) in the (r, ϕ) plane (b)
in the (ϕ, z) plane, and (c) in the (t, ϕ) plane for η = 0.5, Pr = 10 and γa = γe = −0.01 and
VE = 600 at the critical condition (Rac = −211.6).

is a need of a large rotation rate, i.e. large centrifugal gravity, to overcome the stabilizing e�ect

of the DEP force. The critical modes are columns with an azimuthal mode number nc that

is independent of the electric potential. For η = 0.5, the azimuthal mode number is nc = 5

and kc = 0 which gives a constant critical wavenumber qc = 3.333 (Fig. 8.3 -b). The critical

frequency is, as in the case without electric �eld, normalised with the Coriolis number (Fig. 8.3 -

c). The frequency of the OC modes is positive which indicates retrograde vortices. The temporal

behaviour of these convection rolls depends on the Prandtl number. For a �xed VE, �uids with

large values of Pr have a smaller critical frequency than those with small values of Pr. Figure 8.4

shows the perturbation temperature and the perturbation velocity �elds of a OC mode in di�erent

spatial and spatio-temporal planes. In the spatio temporal pro�le of the perturbation temperature

(Fig. 8.4 - c), one can see the retrograde propagation of the vortices.

8.1.2 In�uence of the thermal parameters

In inward heating, the temperature di�erence has no in�uence on the threshold of the columnar

modes (Fig. 8.5 - a). This a�rmation is true if we consider the e�ect of the DEP force through

the use of L, and not through the use of VE. The thermoelectric parameter γe plays no role on the

frequency of vortices propagation (Fig. 8.5 - b). Indeed, the feedback e�ect of the perturbation
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Figure 8.5: Critical values of (a) the electric Rayleigh number, and (b) the normalised frequency
for η = 0.5 and Pr = 10 in inward heating.
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electric gravity is negligible for the considered set of parameters. In contrast with the thermal

expansion parameter which plays an important role on the temporal behaviour of the critical

modes. For a �xed electric Rayleigh nummber, increasing the temperature di�erence between the

two cylinders increases the critical normalised frequency.

8.1.3 In�uence of the radius ratio

For a given value of the electric potential, �ows in annulus with large radius ratio (small

curvature) are more unstable than those with small radius ratio (large curvature) (Fig. 8.6 - a).

For some values of η, the number of columns can change when VE increases (Fig. 8.6 - b). For

η = 0.2, nc jumps from 2 to 3, and for η = 0.8, it jumps from 14 to 15. This discontinuity is also

observed for the frequency (Fig. 8.6 - c). So besides the delay of the onset of thermal convection,

the electric potential has an e�ect on the spatial and temporal properties for some radius ratios.

8.2 E�ect of the rotation on thermoelectric convection

When the inner cylinder is hotter than the outer one (outward heating), the thermoelectric

buoyancy is the destabilising mechanism, leading to thermoelectric convection while the centrifugal

buoyancy stabilises the �ow (Fig. 8.7). Indeed, as the direction of the electric gravity �eld is

dominated by the curvature of the system, it does not change with the direction of the temperature

gradient (within the chosen set of parameters). We investigate the e�ect of the rotation on the

critical parameters of the thermoelectric convection. We remind that when the cylinders are not

rotating, the critical modes are stationary helical vortices.

8.2.1 In�uence of the Prandtl number

For low values of Coriolis number τ (Fig. 8.8 - a), the global minimum corresponds to os-

cillatory non axisymmetric (ONA) modes, while for larger τ (Fig. 8.8 - b), the global minimum

corresponds to oscillatory columnar (OC) modes. Figure 8.9 shows the behaviour of the critical

electric Rayleigh number with τ . The threshold increases with increasing the rotation rate of

the cylindrical annulus, which highlight the stabilising e�ect of the centrifugal buoyancy in this

con�guration. The value of τ for which both ONA and OC modes are critical does not depend

on the Prandtl number. For a given τ , increasing the Prandtl number increases the threshold
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Figure 8.6: Variation of the critical parameters with VE for Pr = 10, γa = γe = −0.01 and for
di�erent η: (a) centrifugal Rayleigh number, (b) wavenumber, and (c) normalised frequency.
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Figure 8.7: Sketch of the directions of the gravity �elds with respect to the temperature gradient.

Figure 8.8: Marginal stability diagram in the (k, VE) plane for η = 0.5, Pr = 10, γa = γe = 0.01,
τ = 1.63 (a) and τ = 163.30 (b) and for di�erent azimuthal mode number.

Figure 8.9: Variation of the critical electric Rayleigh number with τ for η = 0.5, γa = γe = 0.01,
and for di�erent Prandtl number.
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Figure 8.10: Variation of the critical values with the centrifugal Rayleigh number for η = 0.5,
γa = γe = 0.01, and for di�erent Prandtl number: (a) electric Rayleigh number (b) wavenumber
and normalized frequency (c) of ONA modes and (d) of OC modes.

of OC modes with a certain scaling law. In fact, the threshold of columnar modes (with n = 5

when η = 0.5) against the centrifugal Rayleigh number is independent from the Prandtl number,

and its behaviour corresponds to the red dotted curve on Fig. 8.10 - a. At low rotation rates,

the threshold of ONA modes is lower than the one of OC modes. The threshold of ONA modes

increases with the Coriolis number until the codimension-2 point for which both ONA and OC

modes are critical. Beyond this value, the OC modes become critical. The Coriolis number at

this codimension-2 point does not depend on Pr, therefore the centrifugal Rayleigh number at this

codimension-2 point depends on Pr. For weak Pr, the domain of existence of ONA modes is short

while for large Pr the ONA modes exists within a wide range of Ra. The threshold of OC modes

also increases with the Rayleigh number. The critical wavenumber qc of ONA modes is constant

for small values of Ra and then decreases with Ra near the codimension two point. Beyond the

codimension two point, qc remains constant (Fig. 8.10 - b) since the number of columns does not

vary with Ra for η = 0.5. The critical normalized frequency of ONA modes as function of Ra is
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Figure 8.11: Critical normalised frequency of OC modes as a function of Ra for di�erent Prandtl
numbers close to ωc/τ = 0. The critical frequency changes its sign at a constant value of Ra.

shown on Fig. 8.10 - c, while the one of OC modes is shown on Fig. 8.10 - d. The critical frequency

of ONA modes is positive, i.e. the ONA modes propagate in the retrograde sense in the azimuthal

direction, and decreases with increasing the rotation rate. Fluids with large values of Pr have a

lower frequency of ONA modes. The critical normalized frequency of OC is negative, indicating

prograde columnar vortices. Increasing the Prandtl number increases the frequency of OC modes.

The critical frequency of OC modes increases with the centrifugal Rayleigh number and reaches

ω = 0 at a certain value Ras which does not depend on the Prandtl number (Fig. 8.11). When

Ra > Ras, the critical frequency become positive indicating retrograde columnar vortices. The

perturbation temperature and perturbation velocity �elds of an ONA mode and an OC mode

with Ra < Ras in outward heating and in di�erent spatial or spatio-temporal planes are shown on

Fig. 8.12. The spatio-temporal pro�le of perturbation temperature shows the retrograde propar-

tion of the ONA mode and the prograde propagation of the OC mode.

8.2.2 In�uence of the thermal parameters

The thermoelectric parameter has almost no in�uence on the threshold due to the negligi-

ble feedback e�ect, but the thermal expansion parameter has an impact on the position of the

codimension-2 point where both ONA and OC modes are critical (Fig. 8.13 - a). Indeed, the

larger γa, the larger the value of Ra at the codimension-2 point. The critical wavenumber of ONA
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(a) (d)

(b) (e)

(c) (f)

Figure 8.12: Perturbation temperature and perturbation velocity �elds of an ONA mode (Ra = 5)
in (a) the (r, ϕ) plane, (b) in the (ϕ, z) plane and (c) in the (t, ϕ) plane, and of an OC mode
(Ra = 4000) in (d) the (r, ϕ) plane, (e) in the (ϕ, z) plane and (f) in the (t, ϕ) plane at the critical
condition for η = 0.5, γa = γe = 0.01 and Pr = 10.
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Figure 8.13: Variation of the critical parameters with Ra for η = 0.5, Pr = 10 and for di�erent γa
and γe: (a) electric Rayleigh number, (b) wavenumber, (c) normalised frequency of ONA modes
and (d) normalised frequency of OC modes.

modes depends on γa in the sense that γa changes the codimension-2 point position (Fig. 8.13 -

b). For OC modes the critical wavenumber is constant since, for η = 0.5, nc = 5 and is constant.

The critical normalised frequency of ONA modes (Fig. 8.13 - c) and OC modes(Fig. 8.13 - d)

have been separated in two di�erent diagrams in order to have a better insight on there di�erent

behaviours. The thermo-electric parameter plays no role on the frequency of vortices propagation,

both for ONA and OC modes. In contrast, the thermal expansion parameter plays an important

role on the temporal behaviour of the critical modes. For ONA modes, the critical normalised

frequency is a�ected by γa through the change of Ra at the codimension-2 point. For OC modes,

increasing the absolute value of γa increases the absolute value of the critical frequency.
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Figure 8.14: Threshold �tted with a polynomial function of second order for η = 0.5, Pr = 10: (a)
Rac against VE in inward heating with γa = γe = −0.01 (P i

1 = 0.0067;P i
2 = 0.0638;P i

3 = 1774.4)
and (b) Lc against τ in outward heating with γa = γe = 0.01 (P o

1 = 0.0300;P o
2 = 0.3058;P o

3 =
1527.9).

8.3 Discussion

8.3.1 Parabolic behaviour of the threshold

The variation of the threshold with VE in inward heating and with τ in outward heating seems

to have the behaviour of a polynomial function of second order. Figure 8.14 shows the thresholds

�tted with the following functions:

Rac = P i
1V

2
E + P i

2VE + P i
3 and Lc = P o

1 τ
2 + P o

2 τ + P o
3 (8.2)

where i and o refer to inward heating and outward heating, respectively. In outward heating, the

�tting has been performed only for the threshold of columnar modes. There is a good agreement

between the parabolic functions (8.2) and the thresholds until VE ≈ 103 in inward heating and until

τ ≈ 400 in outward heating. We retrieve the same results as for the Rayleigh-Bénard convection

in the horizontal layer of �uid heated from below and rotating around its vertical axis [57].

8.3.2 Energy analysis

In this problem, the equation for kinetic energy is given by:

dK

dt
= WBu +WBG +WPG −Dν (8.3)
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Figure 8.15: Power given by the di�erent mechanisms for η = 0.5, Pr = 10 (a) in inward heating
against VE with γa = γe = −0.01 and (b) in outward heating against τ with γa = γe = 0.01.

The energy transfer from the base state to perturbations is done by the centrifugal buoyancy

WBu, the base thermoelectric buoyancy related to the base electric gravity WBG, the perturba-

tion thermoelectric buoyancy related to the perturbation electric gravity WPG, and the viscous

dissipation Dν . Even if the destabilising mechanisms in inward and outward heating are di�erent,

the variation of the di�erent power terms with either VE or τ shows very similar behaviours. In

inward heating (Fig. 8.15 - a), the power performed by the centrifugal buoyancy is always positive

and increases with increasing VE, while the power performed by the base electric gravity is always

negative and decreases with VE. In outward heating (Fig. 8.15 - b), it is now WBG which is always

positive and increases with increasing τ , andWBu is always negative and decreases with τ . In both

cases, the viscous dissipation slightly increases with VE in inward heating, or with τ in outward

heating, and the power performed by the perturbation electric gravity is negligible, considering

the chosen values of η and γe [33].

8.3.3 Frequency analysis

In the corotating regime in the absence of electric �eld (Chapter 6), we saw that scaling the

normalised frequency with the parameter γa/Pr, which involves in the Coriolis buoyancy terms,

uni�ed the results obtained for di�erent γa and Pr. The same scaling is tested on the frequency

of OC modes obtained in inward and outward heating.

In inward heating, the scaled critical normalised frequency is independent from the Prandtl

number when Pr is su�ciently large (Fig. 8.16 - a). Otherwise the larger the Prandtl number,
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Figure 8.16: Critical normalised frequency scaled with the parameter γa/Pr in outward heating
for (a) di�erent Pr with γa = γe = −0.01 and (b) for di�erent γa with γe = −0.01 and Pr = 10.

Figure 8.17: Critical normalised frequency of OC modes scaled with the parameter γa/Pr in
outward heating for (a) di�erent Pr with γa = γe = 0.01 and (b) for di�erent γa with γe = 0.01
and Pr = 10.

the larger the scaled frequency. In another hand, the scaling of the normalised frequency makes

it independent from γa (Fig. 8.16 - b).

In outward heating, for the OC modes, the same observation is made concerning the behaviour

of the scaled frequency. For �xed thermal parameters, increasing the Prandtl number increases

the scaled frequency, and for su�ciently large Pr, the scaled frequency become independent from

Pr (Fig. 8.17 - a). For a �xed Pr, the thermal expansion parameter has no in�uence on the scaled

frequency (Fig. 8.17 - b).

These results indicate that the oscillation of columns takes its origin in the e�ect of the Corilis

buoyancy since the parameter γa/Pr involves in this term in the momentum equation written in

the rotating frame of reference (Eq. (8.1))
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Figure 8.18: Critical wavenumber in outward heating for (a) di�erent Pr with γa = γe = 0.01 and
(b) for di�erent γa with γe = 0.01 and Pr = 10.

8.3.4 Columnar modes in outward heating

In outward heating, the critical Rayleigh number at the codimension-2 point between the

ONA modes and the OC modes depends on the Prandtl number and on the thermal expansion

parameter. But the critical Coriolis number at this codimension-2 point is independent from Pr

and γa (Fig. 8.18). This result could be related to the Taylor-Proudman theorem.

Lets consider a rotating inviscid and incompressible �uid in the inertial frame. A volume

conservative force F = ∇Φ is applied to this �uid, and the advection terms are neglected. For a

steady state, the Navier-Stokes equation reads:

2ρΩ× u = ∇Φ−∇p (8.4)

Applying the rotational operator to the equation, one can obtain the Taylor-Proudman theorem:

(Ω ·∇)u = 0 (8.5)

Developing the scalar product, we obtain a more convenient form of the theorem:

Ωx
∂u

∂x
+ Ωy

∂u

∂y
+ Ωz

∂u

∂z
= 0 (8.6)

Choosing the coordinates system where Ωx = Ωy = 0, Eq. (8.6) is reduced to ∂u/∂z = 0. It

implies that the three components of the velocity are axially invariant.
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Table 8.1: Critical Coriolis number at the codimension-2 point between ONA modes and OC
modes in inward heating for di�erent radius ratio.

η 0.2 0.5 0.8
τ∗ 17.3 8.2 1.9

Considering a viscous �uid, Eq. (8.6) reads:

Ωx
∂u

∂x
+ Ωy

∂u

∂y
+ Ωz

∂u

∂z
=
ν

2
∇×

(
∇2u

)
(8.7)

Written in its dimensionless form with Ω = Ωzez, we have:

∂u

∂z
=

1

τ
∇×

(
∇2u

)
(8.8)

The Taylor-Proudman theorem is recovered if the Coriolis number τ tends to the in�nite.

The linear stability analysis showed that for a given radius ratio, the Coriolis number at the

codimension-2 point has a �nite constant value which is at least larger than unity (Table 8.1).

8.4 Conclusion

In this problem, two radial thermal buoyancies are active: the centrifugal buoyancy and the

thermoelectric buoyancy. Since the electric gravity is centripetal, these two buoyancies have

opposite e�ects. It is thus crucial to consider separately the inward heating and the outward

heating cases.

In inward heating, the centrifugal buoyancy is the source of instabilities while the thermoelec-

tric buoyancy stabilises the �ow. The critical modes are then oscillatory columnar modes. The

Prandtl number and the thermal expansion parameter have an in�uence only on the temporal be-

haviour of the vortices, which can be scaled by the parameter γa/Pr, showing that the frequency

of these modes is related to the Coriolis buoyancy.

In outward heating, the thermoelectric buoyancy is the source of instabilities while the centrifu-

gal buoyancy stabilises the �ow. For low rotation rate of the annulus, critical modes are oscillatory

helical modes with a threshold, a wavenumber and a frequency that depends on Pr, and γa. At

a certain Coriolis number which only depends on the radius ratio, both ONA and OC modes
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are critical. For this value of the Coriolis number, the viscous dissipation e�ects are negligible

compared to the inertial e�ects, making the Taylor-Proudman theorem valid. The threshold and

the wavenumber of OC modes are independent from Pr and γa, when considered at a given value

of the centrifugal Rayleigh number, but there frequency depend on these two parameters, and

exhibit the same mechanism as for the OC modes in inward heating, i.e. the temporal behaviour

is related to the Coriolis buoyancy.

In both inward and outward heating, the thresholds variation with VE and τ respectively,

behave like a polynomial function of second order, until a certain value of VE or τ . Behind this

certain value, the threshold and the polynomial function diverge.
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Chapter 9

Thermo-electric convection in a vertical

�uid system on the Earth

The stability of a vertical stationary cylindrical annulus with a heated inner cylinder and with

the combined e�ect of the radial electric gravity and of the Earth gravity is investigated. This

study has been carried out in order to give information about the critical parameters and the

nature of the critical modes in the framework of laboratory experiments or of parabolic �ight

campaigns. Indeed, parabolic �ight experiments are performed to reach microgravity conditions

in order to investigate the e�ect of a purely radial gravity �eld. But the duration of the low-

gravity phase is small and the base �ow provided by the previous gravity phase has to be taken

into account.

9.1 Dimensionless control parameters

For this study, the Galileo number Ga =
√
gd3/ν has been introduced to �x the �ow system

in the axial gravity. The Grashof number can be written Gr = γaGa2 and only depends on

the temperature di�erence between the two cylinders when Ga is �xed. The parameter δ =

γa/γe, which is a �uid property, is also introduced and thermally links the Archimedean and

thermoelectric buoyancies. In this chapter, the dimensionless electric potential VE will be preferred

to the electric Rayleigh number L to keep independent parameters (both Gr and L depend on

∆T ). These parameters will facilitate the physical interpretation of the results and the comparison

to the experimental results obtained from laboratory and parabolic �ight experiments.
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9.2 Thermal convection in a stationary annulus due to the

Archimedean buoyancy

In the absence of electric �eld, the Prandtl number has an important in�uence on the �ow

stability. Indeed, for low Prandtl number, the critical parameters are independent of the value

of the Prandtl number. This mode is commonly called hydrodynamic mode (HM). But beyond a

certain value of Pr, the critical Grashof number decreases with Pr and tends to a constant which is

nearly independent of the radius ratio. This mode is commonly called thermal mode (TM). These

two modes are axisymmetric and oscillatory and di�er by there origins [28]. The wavenumber and

the frequency of vortices undergo a discontinuity at the codimension-2 point between HM and

TM and then increase with increasing the Prandtl number. The HM take their origin in the shear

produced by the base axial �ow while TM are related to the Archimedes' buoyancy mechanism.

For low values of the radius ratio and of the Prandtl number, the critical modes can also

be oscillatory non-axisymmetric. Figure 9.1 obtained for Pr = 0.72 shows that from η = 0 to

η = 0.44, critical modes are helical with the azimuthal mode number nc = 1. For small values

of η, the threshold increases with increasing η, but beyond the value η = 0.18, the threshold

decreases with increasing η. The frequency of non-axisymmetric modes decreases with η for small

values of η, and from η = 0.22, the frequency increases with η. For axisymmetric modes, the

frequency increases with η. The axial wavenumber of non-axisymmetric modes increases with the

radius ratio. At the codimension-2 point between non-axisymmetric and axisymmetric modes, the

frequency and the wavenumber undergo discontinuity.

9.3 Coupled e�ect of Archimedean and dielectrophoretic buoy-

ancies

We remind that, in weightless environment, the thermoelectric buoyancy produces stationary

helical modes called electric modes (EM). Hence, we are interested in the investigation of resulting

modes when both the Archimedean and the dielectrophoretic buoyancies are acting on the �uid.
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Figure 9.1: Variation of the critical parameters with η for Pr = 0.72 and VE = 0: (a) Grashof
number (b) frequency, (c) axial wavenumber and (d) azimuthal mode number.

9.3.1 In�uence of the radius ratio

Figure 9.2 shows the variation of the critical parameters with VE for Ga = 1370, Pr = 10,

δ = 0.1 and for di�erent η. In the absence of electric potential, we recover the critical values for

the classical thermal instability in a vertical cylindrical annulus. And when the Grashof number

tends to zero, we obtain the critical parameters of the problem in microgravity condition. For weak

electric potential, the stability threshold weakly decreases with increasing the electric potential

(Fig. 9.2 - a). These critical modes are oscillatory (Fig. 9.2 - e) and axisymmetric (Fig. 9.2-c) for

Pr = 10. In fact they correspond to TM. The axial and total wavenumber (Fig. 9.2 - b,d) are

nearly independent from VE. In this range of electric potential, for a �xed value of VE, increasing

the radius ratio will decrease the axial wavelength of vortices. The frequency of the critical modes

is independent from VE, but depends on η.

Over a certain value of VE called V ∗E , the threshold strongly decreases with the electric potential.

This regime is stationary and exhibits columnar vortices. Indeed, the azimuthal mode number is
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Figure 9.2: Variation of the critical parameters with VE for Pr = 10, Ga = 1370, δ = 0.1 and for
di�erent values of η: (a) Grashof number, (b) axial wavenumber, (c) azimuthal mode number, (d)
total wavenumber and (e) frequency.

di�erent from zero and depends on the radius ratio while the axial wavenumber is equal to zero.

For large values of VE, there is another transition from the columnar regime to a steady non-

axisymmetric mode at the codimension-2 point V ∗∗E , corresponding to the electric mode predicted

by Yoshikawa et al. [33] Above V ∗∗E , kc increases and tends to a constant. Depending on the

radius ratio, nc can gradually decrease from its value for the columnar regime to its value for the

microgravity case which is equivalent to a so large applied electric potential that the thermoelectric

buoyancy is the dominant mechanism for inducing instabilities. Note that for η = 0.2, there is no

change in nc at the codimension-2 point V ∗∗E . For all these regimes, the curvature of the annulus

has a destabilising e�ect.

9.3.2 In�uence of the Prandtl number

Figures 9.3 shows the behaviours of the critical parameters with the dimensionless electric

voltage for di�erent values of Pr and with η = 0.5. We can see from �gure (Fig. 9.3 - a) that,

as expected, the thresholds for hydrodynamic or thermal modes depend on the Prandtl number,

and the thresholds for electric modes are independent of Pr. However, the Prandtl number has
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Figure 9.3: Variation of the critical parameters with VE for η = 0.5, Ga = 1370, δ = 0.1 and for
di�erent values of Pr: (a) Grashof number, (b) axial wavenumber, (c) azimuthal mode number,
(d) total wavenumber and (e) frequency.

an in�uence on the position of the codimension-2 points (V ∗E ,Gr∗) and (V ∗∗E ,Gr∗∗). The larger the

Prandtl number, the lower the critical Grashof number at the codimension-2 points. The axial and

total wavenumber (Fig. 9.3 - b,c) depend on Pr for hydrodynamic or thermal modes. For column

vortices, the azimuthal wavenumber qc is a constant and we can see the shift of the codimension-2

points depending on the value of Pr. For electric modes, the wavenumber increases until its value

encountered in weightlessness which does not depend on Pr. The critical frequency depends on

Pr for thermal modes.

9.3.3 In�uence of the ratio of the two thermal expansion coe�cients

The ratio between the thermal expansion parameter and the thermoelectric parameter δ = α/e

is a �uid property and it in�uence on the critical parameter is investigated (Fig. 9.4). Using the

electric Rayleigh number instead of the dimensionless electric voltage makes the critical parameters

independent on δ. If the critical parameters were plotted against VE, we would have seen a shift

of all the parameters to larger values of VE for lower values of δ, and inversely. This �uid property

may have an impact on the time needed for convection cells to be established. It could also a�ect
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Figure 9.4: Variation of the critical parameters with the electric Rayleigh number for Ga = 1370,
η = 0.5, Pr = 10 and for di�erent δ: (a) Grashof number, (b) axial wavenumber, (c) azimuthal
mode number, (d) total wavenumber and (e) frequency.

the non-linear behaviour of the system, but it plays no role on its stability.

9.3.4 Eigenfunctions

Figure 9.5 shows the perturbation temperature and the perturbation velocity �elds of the four

di�erent �ow regimes found in this problem. The hydrodynamic mode (Fig. 9.5 - a) have a larger

axial wavenumber than the thermal mode (Fig. 9.5 - b). In both modes, the base axial �ow twists

the vortices by pushing them upward near the hot wall and downward near the cold one. These

vortices propagate upward. The columnar modes (Fig. 9.5 - c) are similar to those observed in

the cylindrical annulus in solid body rotation under microgravity conditions (Chapter 6, 8) except

that they are stationary. The helical modes (Fig. 9.5 - d) are the electric modes encountered in

convections only induced by the thermoelectric buoyancy (Chapter 7).
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(a)

(b)

(c)

(d)

Figure 9.5: Temperature and velocity �elds at the critical condition for Ga = 1370, δ = 0.1,
η = 0.5 and for (a) a hydrodynamic mode (Pr = 0.72, VE,c = 200, Grc = 8342, kc = 2.747 and
nc = 0), (b) a thermal mode (Pr = 10, VE,c = 113, Grc = 3150, kc = 1.604 and nc = 0), (c)
a stationary columnar mode (Pr = 10, VE,c = 512, Grc = 1760, kc = 0 and nc = 5) and (d) a
stationary helical mode (Pr = 10, VE,c = 4780, Grc = 20, kc = 1.674 and nc = 4).
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Figure 9.6: Variation of the energy generation terms with the dimensionless electric potential VE.
These curves has been obtain for Ga = 1370, δ = 0.1, Pr = 10 and η = 0.5.

9.4 Energy analysis

For this situation, the energy transfer from the base state to the perturbations is gouverned

by the equation:

dK

dt
= WHy +WTh +WBG +WPG −Dν = 0 (9.1)

The �gure 9.6 shows the behaviours of the di�erent power terms with the variation of VE. For low

values of VE, for the considered Prandtl number and radius ratio, the critical modes are thermal

modes, and the term WTh is the dominant one. For large values of VE, the power WBG is the main

contribution to the energy transfer from the base state to perturbations. In the intermediate case,

i.e. for columnar modes, both WTh and WBG are important. In an order of magnitude lower, WHy

also contributes to the energy transfer. In the hole diagram, the power input by the perturbation

electric gravity WPG is negligible compared to the other terms.

9.5 Conclusion

The e�ect of the natural convection on the thermoelectric buoyancy in a cylindrical annulus

has been studied. Indeed the prediction of the threshold and of the spatial and temporal behaviour

of the unstable state is important in the framework of laboratory experiments and experiments

in parabolic �ight campaigns, where the e�ect of the Earth gravity cannot be neglected. In the
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absence of electric potential, the critical modes are oscillatory axisymmetric, and can have two

di�erent origins: the shear produced by the base state (hydrodynamic mode), or the Archimedean

buoyancy (thermal mode). Under weightlessness, the critical modes are steady helical (electric

mode). When both axial and radial gravity are active, stationary columnar modes become criti-

cal. These modes have a threshold which is strongly dependant on the electric potential. There

columnar nature are not very well understand, but the energy analysis showed that the e�ect of

the thermoelectric buoyancy and of the Archimedean buoyancy are coupled for these modes.
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Chapter 10

General conclusions and outlook

The e�ect of the centrifugal buoyancy and of the thermoelectric buoyancy on a dielectric �uid

con�ned in a cylindrical annulus has been investigated by a linear stability theory and through

some numerical simulations. These two buoyancies are radially oriented and are of most interest

for astrophysical and geophysical applications, as well as for technical applications.

The e�ect of the centrifugal buoyancy has been studied for di�erent rotation regimes of the

cylinders under weightlessness. These regimes can be cast in two categories: Rayleigh unstable

regimes which can sustain instabilities in the isothermal case, and Rayleigh stable regimes which

cannot. For the Rayleigh unstable regime, the case where the outer cylinder is at rest has been

chosen for its simplicity and its large amount of possible applications. We found an antisymmetric

e�ect of the centrifugal buoyancy with respect to the direction of the temperature gradient. Indeed,

the centrifugal buoyancy destabilises the �ow in inward heating and stabilises it in outward heating.

Critical modes are axisymmetric and may be oscillatory in outward heating, due to the stable

strati�cation of the density regarding the centrifugal acceleration. For the Rayleigh stable �ow

systems, the regime where the inner cylinder is at rest and the Keplerian regime were investigated.

These regimes become unstable to axisymmetric perturbations in the case of inward heating. For

large values of Pr, the critical modes are stationary while for low values of Pr and in the case of

small gap systems, critical modes are oscillatory. The parameter γaPr is an important parameter

for studying the centrifugal buoyancy in Rayleigh stable �ows, in agreement with results from

short-wavelength approximation. The solid body rotation regime is also Rayleigh stable and is

particular in the sense that it brings no azimuthal shear stress in the laminar �ow. Therefore

this system is an analogue of the Rayleigh-Bénard system when the outer cylinder is heated. The
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centrifugal Rayleigh number is the important parameter for studying thermal convection since

the only mechanism is the centrifugal buoyancy. The critical convective �ow takes the form of

oscillatory columnar vortices, except for large values of γaPr and low radius ratios, where critical

modes can be oscillatory helical ones. The oscillation of the columnar modes may be related to

the e�ect of the Coriolis buoyancy.

The e�ect of the dielectrophoretic force has been investigated in two di�erent systems: the

rigidly rotating cylindrical annulus system, and the vertical stationary cylindrical annulus consid-

ering the Archimedean buoyancy in the axial direction. For the solid body rotation regime, the

centrifugal, and thermoelectric buoyancies plays antagonist roles. Therefore, it was important to

separate the case of inward and outward heating since the respective e�ects of the two buoyancies

are not symmetric. In inward heating, the thermoelectric buoyancy increases the threshold of the

occurrence of thermal convection induced by the centrifugal buoyancy. Critical modes are then

always oscillatory columns. In outward heating, the centrifugal buoyancy increases the threshold

of the occurrence of thermal convection induced by the thermoelectric buoyancy. For low rotation

rates, critical modes are electrical and appear in form of oscillatory helical modes. At a certain

value of the Coriolis number, the critical modes become oscillatory columnar ones. The Coriolis

number at the codimension-2 point does not depend on the di�usive properties of the �uid, neither

on the imposed temperature di�erence between the two cylinders.

In the case of a vertical cylindrical annulus with Earth gravity, four di�erent regimes can be

critical. For low applied electric tension, critical modes are oscillatory axisymmetric either thermal

or hydrodynamic, depending on the Prandtl number and on the radius ratio. For large applied

electric tension, critical modes are stationary helical, which indicate there electric nature. For

moderate applied electric tension, stationary columnar modes have been predicted to be critical.

This is due to the superposition of the vertical Earth gravity and of the radial electric gravity

which gives a certain angle of the resulting gravity in the (r, z) plane. Depending on the value of

this angle, critical modes may be either columnar or helical vortices.

Experiments on the e�ect of the thermoelectric convection on a stationary cylindrical annulus

have been performed in laboratory, as well as during parabolic �ight. Some of these results

are in Appendix A. This work has been done in collaboration with the Technical University of

Brandenbourg, and more details on these experiment will be provided in the thesis of Marcel

Joungmanns. More experiments with improved measurement techniques are necessary to make
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the comparison between theoretical, numerical and experimental results possible. In particular,

the shadowgraph measurement technique performed in the axial direction of containment seems

to be suitable for the determination of the convective �ow structure. In that sense, simulation of

this technique has been performed with a simple model (Appendix A). A more accurate model

could provide quantitative results and should be done in the future.
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Appendix A

Experiments and simulation of

shadowgraph method

The laboratory experiments have been carried in the Department of Aerodynamics and Fluid

Mechanics, in Cottbus (Germany), and the parabolic �ight experiments took place in the Bordeaux

Airport in the premises of Novespace which is a subsidiary company of the CNES (Centre National

d'Etudes Spatiales). Two parabolic �ight campaigns (PFC) have been performed in October

2015 and in October 2016. In 2015, the experiment consisted of two identical cells, in di�erent

orientations, and �lled with the same working �uid. One experiment cell was horizontal and the

other one was vertical oriented with respect to the direction of the Earth gravity. To visualise the

density variation inside the gap, a shadowgraph method was used in the axial direction. In 2016,

two di�erent working �uids were considered in two identical vertical cells. During this second

PFC, shorter cells were used in order to use the BOS (Background Oriented Schlieren) method to

visualise the density variations.

Usually, shadowgraph and Schlieren techniques are used to visualise the density pro�le within

a thin layer of liquid, which allows to consider that the density is invariant in the direction of

observation. In our cases, the observation is done in the axial direction, along the height of the

cylinders. It is therefore not possible to get information about the axial structure of the vortices.

Thus, the shadowgraph method is numerically simulated using simple pro�le of unstable �ows to

have a better understanding of the experimental shadowgraph picture.

In this work, we will focus on results obtained for the vertical cells with the density variations

captured by the shadowgraph method. And to make comparisons between the experimental results
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and the linear stability analysis possible, the largest cells have to be considered. Indeed, for small

cells, the end e�ect due to the �nite height of the cylinders will have too much impact on the �ow

stability.

A.1 Experimental setup

The experiment cell consists of two concentric cylinders. The radius of the inner cylinder is

R1 = 5.1 mm and that of the outer one is R2 = 10.2 mm which gives a gap size of d = 5.1 mm

and a radius ratio of η = 0.5. The length of the two cylinders is L = 100 mm which gives an

aspect ratio of Γ = L/d = 19.6. The properties of the working �uid (silicone oil Wacker AK5)

inside the cylindrical annulus are given in Table A.1. The viscous di�usion time is τν = 5.2 s and

the thermal di�usion time is τκ = Prτν = 336 s.

The inner cylinder is made of aluminium oxide (Al2O3) and coated with Titanium Nitride

(TiN) to create a conductive layer. The applied alternative peak voltage Vpeak =
√

2V0 has a

frequency of 200 Hz corresponding to a period of T = 5 × 10−3 s that is very small compared to

τν and τκ. This is in agreement with the assumption made in the linear stability analysis, which

states that the alternative electric tension can be replaced by its e�ective potential when the

electric �eld period is small enough compared to the characteristic times of the �uid �ow. To heat

the inner cylinder, two di�erent methods were used: for the PFC 2015, a heating cartridge with a

temperature sensor was located inside the inner cylinder, while the PFC 2016 and for laboratory

experiments, a heating �uid loop was used with AK5 used as cooling �uid. The outer cylinder,

made of Aluminum (AlMgSi0.5) is connected to ground potential and is cooled by a cooling �uid

loop, which also uses AK5. The thermal conductivity of silicone oil AK5 is lower than that of

water, but during the experiments, it happened that some �uid from the heating or cooling loop

came inside the cylindrical annulus, and we had to ensure that this would not compromise the

results or the non-electrical conductivity of the working �uid. Indeed we had to ensure that there

Table A.1: Properties of silicone oil AK5: εr = ε2/ε0 is the relative electric permittivity, where
ε0 is the permittivity of the vacuum. Properties data are given by the manufacturer and have
uncertainties e.g. 10% for the kinematic viscosity.

ν(10−6m2/s) ρ(kg/m3) α(10−3K−1) εr e(10−3K−1) Pr α/e
5.0 920 1.08 2.70 1.07 64.6 1.01
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would be no breakdowns, and silicone oil has very high breakdown values. The top and bottom

lids are made of polymethylmethacrylate (PMMA) to ensure thermal and electrical insulation.

Since the inner cylinder is thin (1.85 mm) and has a high thermal conductivity, we considered

that the temperature measured by the heating cartridge, or by the thermo-couples which measure

the temperature of the heating �uid loop, corresponds to the temperature of the inner cylinder.

With this heating and cooling system it is possible to generate a temperature di�erence between

the inner and outer cylinder of up to 12K.

A.2 Parabolic �ight campaign

Parabolic �ight is an easy way to obtain a microgravity condition. Moreover, it gives the

opportunity to investigate the �uid behaviour in three di�erent gravity conditions. Indeed, the

plane initially stays at a constant altitude and leads to a vertical gravity intensity of 1g which is

the natural gravity of the Earth .

After about a minute, the plane increases its speed upward to give a hyper-gravity phase

(Fig. A.1). During this 20 seconds phase, the vertical gravity intensity is 1.8g. At the end of this

phase, the plane nose is about 45o to the horizon and the engines are cut back. The plane follows

a parabolic trajectory to induce the microgravity phase which lasts about 22 seconds. A second

hyper-gravity phase is obtained when the downward velocity of the plane is decreased to recover

the �rst natural gravity phase. There exist several other ways to reach the microgravity condition

(i.e. drop tower or suborbital Rocket Flight), but the main advantage of the parabolic �ight is

the good balance between the duration of the microgravity phase, the quite large allowable size of

the experiment module, and the opportunity for investigators to be onboard the aircraft during

the �ight.

Figure A.1: Sketch showing the di�erent gravity phases encountered during one parabola. Cour-
tesy of Novespace.
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Figure A.2: Time variation of the di�erent components of the acceleration during a parabolic
�ight. The acceleration values are normalized by the earth gravity intensity.

Figure A.2 shows the intensity of the di�erent components of the acceleration during a parabola.

The quality of the microgravity phase is about 10−2g which is largely su�cient for the assumption

of a purely radial gravity in the experiment when the electric �eld is applied.

Figure A.3: Participants of the parabolic �ight campaign of October 2016 in front of the ZERO
G aircraft. From the left to the right: R. Stöbel, V. Ruo�, M. Jongmanns, M. Meier, A. Meyer,
I. Mutabazi, C. Egbers.
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Figure A.4: Schematic representation of the light beam trajectories inside the cells. The light
beams are refracted due to the inhomogeneity of the �uid optical index nf which is a function of
the temperature.

A.3 The shadowgraph method

The shadowgraph method is a common technique to visualise the density variation in a �uid.

In supersonic �uid �ows, the density �eld can be reconstructed using this method which can be

combined with other techniques such as BOS or interferometry [58]. The shadowgraph method

is also widely used in the process of solidi�cation to observe �ows due to buoyancies [59] or to

measure the solutal density during the growing process [60].

A.3.1 Principle

The cell is illuminated from the bottom by a LED with homogeneous light intensity pro�le

Ii(r, ϕ, zi) and telecentric lighting obtained using light control �lms. The light goes through the

liquid in the cell and is refracted because of density gradients which are produced by the base

temperature pro�le and the perturbation temperatures generated by the onset of instabilities. At

the outlet of the working �uid, the initially homogeneous light intensity exhibits a new pro�le

Io(r, ϕ, zo) which depends on the 3-dimensional pro�le of the �uid optical index nf (see Fig. A.4).

A camera focused on the top of the cell captures the light intensity pro�le.
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Figure A.5: Schematic representation of the di�erent instability modes that can appear in a
cylindrical gap.

A.3.2 Theoretical modeling

A �uid con�ned between two coaxial vertical cylinders is considered. The height of these

cylinders is L and the top and bottom horizontal lids are assumed to be thermally insulating.

In weightless environment, the base temperature only depends on the radial coordinate, while in

the Earth's gravity �eld, the top and bottom lids induce thermal boundary layers which make

the base temperature also depend on the axial position. In addition, the consideration of a radial

gravity �eld can a�ect the �ow stability, as in the Rayleigh-Bénard problem. If the temperature

di�erence between the two cylinders exceeds a critical value, counter-rotating vortices occur with

spacial periodicity, resulting in a temperature pro�le with the same periodicity. The shape of

these modes can di�er depending on the nature and the direction of the total gravity �eld. In

general, one can observe axisymmetric vortices [28], helical vortices [33] or columnar vortices [61]

(Fig. A.5).

The cylindrical gap is illuminated from the bottom plate with a telecentric light in the direction

parallel to the cylinders common axis. The refractive index of the �uid nf is proportional to the

temperature which can be a general function of all three spatial cylindrical coordinates (r, ϕ, z).

The light beams are refracted inside the gap while following Fermat's principal which states that

the length of the optical light path in the system has to be minimum. When parametrizing the
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light path by z, the Fermat's condition can be written:

∂

(∫ zo

zi

nf (r, ϕ, z)

√
r′2 + (rϕ′)2 + 1 dz

)
= 0 (A.1)

where r′ = dr/dz and ϕ′ = dϕ/dz. zi and zo are the axial position of the bottom and the top

lids, respectively. To verify Fermat's principle (A.1), the function f = nf (r
′2 + (rϕ′)2 + 1)1/2 must

satisfy the Euler-Lagrange equation for both the radial and azimuthal directions. Developing the

two Euler-Lagrange equations using the function f leads to:

r′′ =
1

nf

[(
r′2 + (rϕ′)

2
+ 1
) ∂nf
∂r

+ nfrϕ
′2 − r′∂nf

∂z

]
(A.2a)

ϕ′′ =
1

nf

[(
r′2 + (rϕ′)2 + 1

)
r2

∂nf
∂ϕ
− 2nfr

′ϕ′

r
− ϕ′∂nf

∂z

]
(A.2b)

To obtain this set of equations, the terms in third order of r′,r′′,ϕ′ and ϕ′′ have been neglected.

The problem is discretized by dividing the height into P steps of length Dz. Eqs. (A.2) read in

the discrete, explicit form:

r′k+1 = r′k +
Dz

nf,k

[(
1 + r′

2
k + (rkϕ

′
k)

2
) ∂nf
∂r

∣∣∣∣
k

+ rkϕ
′2
knf,k − r′k

∂nf
∂z

∣∣∣∣
k

]
(A.3a)

ϕ′k+1 = ϕ′k +
Dz

nf,k

[(
1 + r′2k + (rkφ

′
k)

2)
r2

∂nf
∂r

∣∣∣∣
k

+
2r′kϕ

′
knf,k

rk
− ϕ′k

∂nf
∂z

∣∣∣∣
k

]
(A.3b)

rk+1 = rk +Dzr′k+1 (A.3c)

ϕk+1 = ϕk +Dzϕ′k+1 (A.3d)

where k = (0, 1, 2, · · · , P ). A centred second-order approximation is used for the second deriva-

tives, with a �rst-order explicit approximation for the non linear terms [62]. For each light beam,

the initial position and angle with respect to the z axis has to be de�ned. At the height z = zi,

we have:

rk=0 = ri ; ϕk=0 = ϕi ; r′k=0 = ϕ′k=0 = 0 (A.4)

which corresponds to telecentric illumination parallel to the axial direction. The choice of rk=0

and ϕk=0 for all the light rays has to verify a homogeneous light intensity pro�le at z = zi. The

inlet positions of the light beams have thus been de�ned in the Cartesian coordinate system,

and then transformed into their corresponding polar coordinates. Due to refraction of the light
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when passing through the gap, the intensity distribution may change depending on the height. To

measure this quantity, the top surface at z = zo is divided into small square cells. The relative

intensity I is computed by dividing the number of light beams which hit each cells by the one for

the case of homogeneous refractive index. Thus we have I = 1 if there is no local change in light

intensity between the top and the bottom surfaces, and we have I > 0 (I < 0) if the local density

of light at z = zo is higher (lower) than the density of light at the same location at z = zi.

The refractive index of a �uid is proportional to the density of the �uid. For a small temperature

di�erence between the two cylinders, the dependency of the density with the temperature can be

considered as linear. The refractive index is then modelled by:

nf (r, ϕ, z) = nf,0

(
1 +

1

nf,0

dnf
dT

θ(r, ϕ, z)

)
(A.5)

where θ = T − T2 is the temperature deviation from the reference temperature T2 and where

nf,0 = nf (T2). The derivative dn/dT is negative and can be set as constant. For silicon oils, its

value is dn/dT = −3.8× 10−4K−1.

A.3.3 Weightless environment

In weightlessness, the gravity �eld is radially oriented, the base state is then purely conductive

and is only dependant on the radial position. It is thus possible to model the complete temperature

pro�le using a simple analytic function. Using the simplest model for the thermal instability

modes, the temperature can be de�ned by:

θ(r, ϕ, z) = Θ(r) + θ̃(r, ϕ, z) (A.6)

where Θ is the base temperature de�ned in Eq. (2.19), and where θ̃ is the temperature for the

instability mode and is given by:

θ̃(r, ϕ, z) = Tamp sin

(
π(r −R1)

d

)
cos

(
2πpz

L
+ nϕ

)
(A.7)

where Tamp is the amplitude of the perturbation temperature. p and n are the number of modes

in the axial and azimuthal direction respectively.

As a �rst step, we can pay attention to temperature pro�les which are axisymmetric, i.e. the
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∆T = 0K ∆T = 1K ∆T = 5K ∆T = 10K

Figure A.6: Temperature pro�le (color) and trajectories of a selection of light beams (black) in
the (r, z) plan for di�erent ∆T .

base temperature pro�le without instability modes or with axisymmetric modes (n = 0; p 6= 0).

For symmetry reason, the light beams trajectories for these regimes are con�ned in the (r; z) plan.

Therefore, the equation system (A.3) can be reduced to the system (A.3a , A.3c), with ϕ′ = 0 and

using the initial condition concerned by the radial position and angle with respect to z. Fig. A.6

shows in the (r, z) plane the temperature pro�le and the light beam trajectories for the stable

state for di�erent ∆T . In the isothermal case, the light rays stay parallel to the vertical axis. But

when a temperature di�erence is applied between the two cylinders, the light rays are deviated

in the direction of lower temperature, i.e. larger density. Moreover, the larger the temperature

di�erence, the larger the deviation.

To compute the relative intensity as function of the radial position, the top is divided into

one dimensional cells of size 0.2 mm and the number of light beams is 5000. Fig. A.7 shows the

relative intensity as function of the radial position for di�erent ∆T . The radial deviation of the

light rays brings about an area around the inner cylinder where I = 0. Indeed, a light beam

initially located at the inner cylinder reaches the top surface at the position r∗ > R1. The radial

position r∗ increases with ∆T . The intensity for r > r∗ is larger than unity and decreases with r.

The maximum value of the intensity increases with the temperature di�erence between the two

cylinders.

Axisymmetric modes are characterized by there amplitude and there wavelength. It is possible

to focus on the e�ect of these kind of modes by setting the temperature di�erence between the

two cylinder at ∆T = 0 K. But this case has no physical meaning since there can not be thermal
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Figure A.7: Relative intensity as function of the radial position for stable states.

instability in the isothermal case. Fig. A.8 - a shows the in�uence of the number of waves on

the relative intensity at the mid-gap I0 for the special case of ∆T = 0 K. When p = 0, the

model chosen for temperature perturbations leads to the presence of a hot temperature cell with

an in�nite wavelength. Therefore the resulting intensity is always minimum for this case. The

relative intensity at the mid-gap increases with p and reach I0 = 1 when p = 1. Then I0 undergoes

modulations so that it is equal to unity when p takes an integer value, and it is below unity in

between two integer values. Indeed, when p takes integer values, there is a complete balance

between the hot perturbation temperature cells, which make the light beams diverge, and the

cold ones, which make the light beams converge. Finally, a light beam returns to its initial radial

position when p is an integer. Otherwise, if p is not an integer, there is always a part of a hot

cell which is not balanced with a cold one, and thus brings about a divergence of the light beams

which decreases the intensity. Increasing the amplitude of the perturbation temperature increases

the amplitude of the modulations of intensity, but these modulations vanish for su�ciently large

wavenumbers so that p has no more in�uence on the intensity. Fig. A.8 - b shows the relative

intensity pro�le for di�erent ∆T and Tamp when p = 10 which corresponds to the closest integer

value of p that satis�es λz/2 = d. There is no di�erences between the shadowgraph image for the

base temperature pro�le and the one for the perturbed temperature pro�le.

To focus on the e�ect of non-axisymmetric modes, it is possible to consider a radially homoge-

neous temperature pro�le. By doing that, the equation system (A.3) can be reduced to the system
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(a) (b)

Figure A.8: (a): relative intensity as function of the radial position for di�erent ∆T and Tamp
with p = 10 and (b): relative intensity at the mid-gap as function of the axial modes number for
di�erent Tamp.

(A.3b , A.3d), with r′ = 0. The radial position is thus axially invariant and is chosen at the median

surface between the two cylinders, where the radial derivative of the perturbation temperature is

e�ectively equal to zero. To compute the relative light intensity pro�le in the azimuthal direction,

the azimuthal angle at the top plate is divided into 60 parts equally sized. At the mid-gap, this

corresponds to cells of length r0dϕ = 0.8 mm where r0 is the radial position of the mid-gap and

dϕ is the di�erence between two consecutive azimuthal angle.

The pairs of parameters (p, n) are now restricted to integer values in such a way that the total

wavelength of the modes is the closest to the double of the gap wide. For a given axial mode

number p, the azimuthal mode number n and the inclination angle of the modes with respect to

the azimuthal direction Ψ are given by:

n = round

r0π
d

√
1−

(
2p

Γ

)2
 ; Ψ = tan−1

(
nΓd

2πpr0

)
(A.8)

Fig. A.9 - a shows the relative light intensity with respect to the azimuthal angle for an axisym-

metric mode (n = 0; p = 10), a helical mode (m = 4; p = 5) and a columnar mode (m = 5; p = 0).

The spiral modes with n = 4 has been observed both theoretically and numerically by Yoshikawa

& al. [33] and by Travnikov & al. [43] in the case of a steady cylindrical annulus subjected to

a radial dielectrophoretic force under microgravity conditions. As seen before, the axisymmet-

ric modes has no in�uence on the resulting shadowgraph image. However for helical modes and
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(a) (b)

Figure A.9: (a): relative intensity as function of the azimuthal angle for di�erent shape of modes
with Tamp = 0.2K and (b): maximum of the relative intensity at as function of the deviation angle
of the modes with respect to the azimuthal direction with Tamp = 0.2K.

(a) (b) (c)

Figure A.10: Shadowgraph images for (a) axisymmetric mode (m = 0; p = 10), (b) spiral mode
(m = 4; p = 5) and (c) collumnar mode (m = 5; p = 0) both for DT = 1K and Tamp = 0.2K.

columnar modes, there is a modulation of the relative intensity with a number of modes equal to

the one of perturbation temperature in the azimuthal direction. The amplitude of these modula-

tions is small for spiral modes whereas it is much larger for columnar modes. Fig. A.9 - b shows

the maximum value of the relative intensity pro�le with respect to the inclination angle of the

modes for Tamp = 0.2 K. The modulation of the relative intensity become signi�cant when the

inclination angle of the modes approach the value Ψ = π/2.

Resolving the full set of equations (A.3) gives the simulated 2D shadowgraph image. Fig. A.10

shows these shadowgraph images for di�erent expected instability modes, that is to say the ax-

isymmetric mode (Fig. A.10 - a), the helical mode (Fig. A.10 - b) and the columnar mode (Fig.A.10

- c). The axisymmetric mode has no impact on the image. The shadowgraph images of the helical
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and the columnar modes are plotted using the same color map. Columnar modes have a much

larger impact on shadowgraph images than helical modes.

A.3.4 Earth gravity environment

On Earth, the gravity acts on the density gradient and leads to a large recirculation �ow

where the �uid �ows upward near the hot cylinder and downward near the cold one. The top and

bottom thermal boundary layers bring about an axial positive temperature gradient than can not

be considered using a simple analytic function. Therefore, a two-dimensional steady numerical

simulation is used to extract the base temperature pro�le in the (r, z) plane. The velocity �eld

~u = u~er +w~ez, the temperature deviation θ = T −T2 and the reduced pressure π are solved by the

continuity equation, the Navier-Stokes equations and the energy equation in the polar coordinates.

u

r
+
∂u

∂r
+
∂w

∂z
= 0 (A.9a)

u
∂u

∂r
+ w

∂u

∂z
+
∂π
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(
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∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2
− u

r2

)
= 0 (A.9b)
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u
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∂r
+ w

∂θ

∂z
+ κ

(
∂2θ

∂r2
+

1

r

∂θ
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+
∂2θ

∂z2

)
= 0 (A.9d)

The Boussinesq approximation has been adopted with taking the density as a linearly decreasing

function of the temperature, i.e. ρ = ρ0(1− αθ), which is valid if the temperature di�erences are

small. The boundary conditions are no slip condition for the velocity, �xed temperature at the

cylindrical surfaces and adiabatic condition at the top and bottom caps:



u = 0 w = 0 θ = ∆T at r = R1

u = 0 w = 0 θ = 0 at r = R2

u = 0 w = 0 ∂θ/∂z = 0 at z = 0

u = 0 w = 0 ∂θ/∂z = 0 at z = L

(A.10)

A �nite di�erence scheme is used to solve the problem, with a centred approximation for the �rst

and second derivatives. The non-linear terms are computed by iterations until the Nusselt number

measured at the outer cylinder tends to a constant. A non-homogeneous rectangular grid is used
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(a) (b)

Figure A.11: Results for the base �ow of (a) temperature distribution and trajectories of some
light beams shown by the black lines and (b) resulting 1D shadowgraph images. The temperature
di�erence is DT = 1K

with thinner steps at the surfaces of the problem. The rectangular grid consists of 12 steps for

the radial direction and 100 steps for the axial direction.

Fig. A.11 - a shows the temperature pro�le of the base state in the (r; z) plane for ∆T = 1

K and with an axial downward gravity �eld corresponding to the Earth gravity �eld. Thermal

boundary layers involve at the top and bottom plates, leading to a hotter zone near the top and

a cooler zone near the bottom with respect to the base state in microgravity condition. The

resulting intensity pro�le at the top plate for both the case of microgravity and the case of Earth

condition are shown in Fig. A.11 - b. The existence of the thermal boundary layers completely

changes the shadowgraph images through the appearance of two maximums and one minimum in

between. The �rst largest maximum is related to the bottom thermal boundary layer while the

second lower maximum is due to the top thermal boundary layer.

A.4 Experimental results

A.4.1 Laboratory experiments

The light homogeneity is characterised by using a shadowgraph image in the isothermal case

with no applied electric �eld. At this condition, the light intensity should be homogeneous because
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(a)

(b) (c)

Figure A.12: (a) Contour, (b) radial distribution and (c) azimuthal distribution of the shadow-
graph red level (RL) with ∆T = 0 K and Vpeak)0 kV.

of the absence of density gradient. As the LED panel produces a red light, the treatment of the

experimental shadowgraph images are done using only the red part of the RGB color vector. The

�gure A.12 shows that the light red level (RL) is nearly homogeous in the azimuthal direction.

However, a RL gradient exists in the radial direction, i.e. the red level decreases with the radius.

In the following, the light intensity pro�le is computed by normalising the RL pro�le of a given

image by the one of the isothermal case (Fig. A.12 - a).

Fig. A.13 shows the e�ect of the temperature di�erence between the two cylinders on the

radial light intensity pro�le. These pro�les have been obtained by averaging the intensity along

a hundred di�erent radii distributed over the entire circumference of the cylindrical ring. As the

isothermal case is used as the reference picture, ∆T = 0 K gives a constant intensity pro�le equal

to unity. Increasing ∆T has a large impact on the shadowgraph images. There is a minimum of
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Figure A.13: Radial pro�le of the light intensity for di�erent temperature di�erences between the
two cylinders.

intensity close to the inner cylinder and a maximum at the outer cylinder which could be related

to re�ections of the light at the cylindrical surfaces. Just after the �rst minimum, there is a

maximum of the intensity, followed by a decrease of the intensity with the radial position. After

reaching a minimum, the intensity increases until the maximum of intensity located at the outer

cylinder. Increasing the temperature di�erence decreases the overall light intensity pro�le.
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Figure A.15: Comparison between the linear stability diagram obtained for the silicone oil AK5
under earth gravity conditions (black curve) and the experimental results in the dimensional plan
(Vpeak,∆T ). The blue circles correspond to axisymmetric intensity pro�les while the red crosses
exhibit non-axisymmetric patterns.

As it is shown in the Chapter 9, the application of the electric �eld destabilises the convective

base �ow and produces non-axisymmetric vortices, i.e. columnar modes or helical modes. Fig-

ure A.14 summaries the laboratory experiments for a temperature di�erence of 1K to 4K and an

alternative peak tension of 0kV to 10kV. From 0kV to 4kV, the pattern observed on the shadow-

graph pictures are axisymmetric. Accordingly to the simulations of the shadowgraph method, this

pattern is the one for the base convective state, or the one involving axisymmetric vortices, which

have no impacts on the shadowgraph images. For su�ciently large values of the temperature

di�erence and of the electric tension, a non-axisymmetric pattern appears on the shadowgraph

images. This pattern is the signature of the presence of vortices with an azimuthal structure. For

most cases, the pattern is pentagonal, which corresponds to an azimuthal mode number of n = 5,

but for ∆T = 3K, the number of modes in the azimuthal direction is n = 6.

The presence or not of the non-axisymmetric pattern gives an information about the stability

of the �ow. The experimental results can thus be confronted to the results from the linear stability

analysis. In the �gure A.15, the stability diagram for AK5 under earth gravity conditions is plotted

in the dimensional plan (Vpeak,∆T ). The experimental results are added to this curve through

the indications of blue circles or red crosses, depending on the symmetry of the intensity pattern.

For ∆T up to 4K, there is a good agreement between the linear stability analysis and the results
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(a) 1g (b) 1.8g (c) 0g

Figure A.16: Shadowgraph images obtained at the end of the three di�erent gravity phases with
∆T ≈ 10K and without applied electric tension.

from shadowgraph measurements.

A.4.2 Parabolic �ight experiments

The reference picture we choose for the calculation of the light intensity is the �rst picture

we have after we were allowed to switch the experiment on. But one has to note that the global

temperature inside the experiment box increased during the �ight because of the heating and

electrical devices. Close to the experiment cell, the temperature started at about 18◦C and was

at about 25◦C at the end of the �ight. This temperature variation could a�ect the relevance

of the reference picture. An other di�erence between the laboratory experiments and the PFC

experiments is the way the inner cylinder is heated. The heating cartridge used during the PFC

is able to �x the temperature di�erence by switching it on and o� depending on the measurement

made by the cartridge temperature sensor. But during this PFC, a defection of temperature

measurement of the outer cylinder made this technique impossible to use. Thus the heating power

of the heating cartridge was �xed and provided a constant heat �ux at the inner cylinder. Anyway,

in the following, we will consider that the temperature di�erence between the two cylinders was

of about 10K.

Fig. A.16 shows the shadowgraph picture obtained at the end of the three di�erent gravity

phases which are the normal gravity (1g), the hypergravity (1.8g) and the microgravity (0g) phases

without applied electric tension. The thermal boundary layers responsible for the axisymmetric

pattern observed for the two gravity phases, is reinforced for the 1.8g phase compared to the 1g

phase, inducing a more marked pattern for the hypergravity phase. At the end of the microgravity
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Figure A.17: Shadowgraph images obtained at the end of the normal gravity phase and of the
microgravity phase with ∆T ≈ 10K and for di�erent applied electric tensions.

phase, the light intensity is close to zero.

Figure A.17 shows the shadowgraph pictures obtained at the end of the 1g and 0g phases for

di�erent applied electric tensions. For the normal gravity phase, an non-axisymmetric pattern

seems to appear at Vpeak ≈ 6kV while under microgravity conditions, a pattern is growing for

Vpeak ≈ 5kV. As seen in Table A.2, these values of the electric potential are much larger than

the ones predicted by the linear stability analysis. This di�erence can be due to the Boussinesq

approximation which is no more valid when the temperature di�erence is too large.

On �gure A.18, the azimuthal distribution of light intensity is measured at a given radius

close to the mid-gap all along a parabola to give the space-time diagram of the light intensity.

During the selected parabola, the electric potential was always active with V0 = 6.36kV. During

the 1g phase, a non-axisymmetric pattern was observed. The corresponding shadowgraph image

taken at the end of this phase is shown on Fig. A.19 - a. When the hypergravity phase starts,

Table A.2: Critical dimensionless electric potential for the di�erent states of gravity.
µg 1g

VEc
Theory 473 479

Experiment 732 < VEc < 916 916 < VEc < 1099
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Figure A.18: Time variation of the light intensity measured in the azimuthal direction at r = 5/7R2

during a parabola. The electric potential is always active with V0 = 6.36kV and ∆T ≈ 10K.

(a) 1g phase (b) 1.8g phase (c) 0g phase

Figure A.19: Patterns of the light intensity distribution. All images are captured at V0 = 6.36kV
and ∆T ≈ 10K. The images (a), (b) and (c) are taken at the end of the 1g, 1.8g and 0g phases
respectively.

the non-axisymmetric pattern vanishes because of the reinforcement of the base convective �ow.

Fig. A.19 - b shows the shadowgraph image taken at the end of this 1.8g phase. During the �rst

half of the microgravity phase, the brightness strongly decreases inside the gap. Then, a new

non-axisymmetric pattern growths until the end of the microgravity phase, which was too short

to get a steady state of this pattern. Fig. A.19 - c shows the shadowgraph image taken at the

end of the 0g phase. This pattern is the signature of a convective state only generated by the

thermoelectric buoyancy.
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A.5 Discussion

A.5.1 Comparison between the simulation of the shadowgraph method

and the experimental results

The shadowgraph technique can not give information about the structure of the vortices in the

axial direction because the resulting picture consists of an integration over the entire optical path.

Therefore, the columnar and helical modes can not be distinguished. An idea behind the simulation

of the shadowgraph technique was to search for a mode that can make the resulting simulated

shadowgraph image and an experimental one match. The success of the matching between the

two shadowgraph images would mean that the shape and the amplitude of the experimental

instability mode is similar to the simulated one. This comparison did not conclude because of

the many hypotheses and simpli�cations that have been made concerning the simulation. Besides

the fact that, in the experiments, the LED panel does not produce perfectly parallel illumination,

or the fact that the camera is not located directly at the top of the cylindrical gap, but a dozen

centimetres away from the top PMMA lid, one of the largest simpli�cation is that the camera

used to capture the shadowgraph images has optics to focus the image, where in the simulations,

the camera is in fact a CCD panel, which is more relevant to capture parallel lights.

A.5.2 Comparison between the linear stability analysis and the exper-

imental results

The aspect ratio used in the experiment is relatively small in order to neglect the boundary

layers from the end plates and to ensure the conduction regime of the base state which was assumed

in the linear stability analysis. In fact, according de Vahl Davis and Thomas [63], the conduction

regime is realized if Gr < 400Γ/Pr and the transition regime occurs when 400Γ/Pr < Gr <

3000Γ/Pr ; for Gr > 3000Γ/Pr, the �ow is in the boundary layer regime. For our experimental

conditions, the conduction regime exists for Gr < 121.4, the transition regime exists for 121.4 <

Gr < 910.2, and the boundary regime for Gr > 910.2. Therefore, the comparison with the linear

stability results is realistic only in the microgravity phase. Moreover, the temporal variation of

the axial gravity during the PFC experiments was neglected.

In other hand, the application of a temperature di�erence of 10K between the two cylinders
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invalidates the Boussinesq approximation and can lead to di�erences between the experimental

results and the predictions of the linear stability analysis.

A.6 Conclusion

The simulation of the shadowgraph method showed that the base state has already a large

in�uence on the light intensity distribution. Under microgravity conditions, the axially invari-

ant temperature pro�le has a weak e�ect on the images, while the axial gravity produces thermal

boundary layers which change the light intensity distribution of the images. Axisymmetric vortices

have no impact on the shadowgraph images, while non-axisymmetric modes produce an azimuthal

light intensity pattern with a maximum e�ciency for columnar modes, which were predicted by

the linear stability analysis. The experiments in the laboratory and during the PFC showed the

presence of non-axisymmetric patterns when the electric potential is applied. The laboratory

experiments showed a good agreement with LSA, at least for small temperature di�erences be-

tween the two cylinders. The PFC experiments showed that convection rolls appear during the

microgravity phases, which can only be caused by the thermoelectric buoyancy. But the 22 s of

microgravity remains too short to get a steady �ow, even though the growth rate is maximized

by choosing parameters far from the onset of convection.
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