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Cloud services provide users with highly reliable, scalable and flexible storage, computing and network resources in a pay-as-you-go model. Data storage services are gaining increasing popularity and many organization types such as industrial and scientific communities, are considering moving data to the cloud datacenters. Cloud computing is one factor which accelerated the evolution of big data that is emerged alongside with it. The multi geo-distributed oriented infrastructure of cloud which enables collocating computation and data, and ondemand scaling provides an interesting option for supporting big data system. The typical cloud big data systems are the workflow-based including MapReduce which has emerged as the paradigm of choice for developing large scale data intensive applications. These systems are carried out in collaboration with researchers around the geo-distributed sites to exploit existing cloud infrastructures and perform experiments at massive scale. Data generated by such experiments are huge, valuable and stored at multiple geographical locations for reuse. Indeed, workflow systems, composed of jobs using collaborative task-based models, present new dependency and intermediate data exchange needs. The task input needs to be shared across the workflow instances which requires their partial (or all) intermediate results among each other make them available to the users. This gives rise to new issues when selecting distributed data and storage resources so that the execution of tasks or job is on time, and resource usage-cost-efficient. Furthermore, the performance of the tasks processing is governed by the efficiency of the intermediate data management.

In this thesis we tackle the problem of intermediate data management in cloud multidatacenters by considering the requirements of the workflow applications generating them.

For this aim, we design and develop models and algorithms for big data placement problem while considering the characteristic and requirements of workflow and data-intensive applications running in the underlying geo-distributed cloud infrastructure so that the data management cost of these applications is minimized. More specifically, this thesis deals with the intermediate data placement problem as a first-class citizen by considering its multiple facets and levels to provide not only a specific solution, but also a generic and complete approach.

The first problem that we address in this thesis is the study of the intermediate data access behavior of tasks running in MapReduce-Hadoop cluster. MapReduce-Hadoop serves as a means of execution of micro benchmarks which is a reference system for big data processing.

Our approach develops and explores Markov model that uses spatial locality of intermediate data blocks and analyzes spill file sequentiality. We also propose a prediction algorithm i I would like to express my deepest gratitude to my supervisors, Dr. Eric Renault and Prof.
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considering not only their sources locations within the different datacenters hosting them but also their dependencies using a model based on a directed acyclic graph. The main goal is to minimize the total storage cost, including effort for transferring, storing, and moving them according to their needs. For this purpose, we first develop an exact algorithm named SPL_LP which takes the needs of intra-job dependencies and shows that the optimal fractional intermediate data placement problem is NP-hard. To solve the unsplittable intermediate data placement problem from inter-job dependencies, we propose a greedy heuristic algorithm named UNS_GREED_HEUR based on network flow optimization framework. The results of performance evaluation demonstrate the promise of our intermediate data placement algorithms compared to other strategies in term of total storage cost. Additionally, by showing that even with divergent conditions, the cost ratio of the UNS_GREED_HEUR algorithm is close to the optimal solution and it reduces convergence times by several orders of magnitude comparing with both the SPL_LP and Exact_Fed_BDWP algorithms. 
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Introduction

To date, the digital universe is facing the aftermath of data explosion, data deluge is becoming a reality accordingly. The data deluge, which is a phrase used to describe the excessively huge volume of data captured by organizations, such as the rise of social media, Internet of Things (IoT) and multimedia, at a regularly increasing basis in the world, have come into existence. In this landscape, [START_REF] Fan | Mining big data: current status, and forecast to the future[END_REF] considered that the world wide web alone was estimated to contain 512 exabytes of data in 2009. This amount of data is available from more than one trillion web pages currently accessible on the web. As reported by the International Data Corporation (IDC) [VON + 15], the amount of all digital data generated, created and consumed in a single year will rise from about 3,000 exabytes in 2012 to 40,000 exabytes in 2020. Currently, about 90% of the digital data available was created in the last 2 years [START_REF] Gobble | Big data: The next big thing in innovation[END_REF]. Acquiring, storing, curating and processing these exponentially growing the recently created digital data stands as a difficult challenge, and are often reffered to as big data. Indeed, big data describes the unprecedent growth of heterogeneous, structured or unstructured data generated and collected from all kinds of data sources mentioned above.

Managing big data with diverse data formats is the main basis for competition in business and management in itself. Therefore, big data poses a challenge to industrial organizations as well as scientific researchers presenting them with a complex range of valuable-use, storage and analysis issues.

Chapter 1. Introduction

Addressing the need of big data management highly requires fundamental changes in the architecture of data management systems. Among them, the highly distributed workflow processing systems that are at the core of the management of massive volumes of complex big data. These data can be an input to an application or an intermediate output which needs to be stored and managed. Some applications of this type include high-performance scientific data processing techniques, data-intensive science and real-time streaming applications [START_REF] Wang | Big data applications using workflows for data parallel computing[END_REF]. These applications are subject to a series of computation phases. Workflow frameworks integrate and coordinate multiple jobs which may contain several collaborative tasks [HPL13, KJH + 14, CBHTE10]. Some of these tasks are executed sequentially but others can be executed in parallel on a distributed platform. For instance, scientific organizations such as the Telescience research Project [LDU + ] execute a parallel scientific task across a distributed and heterogeneous pool of shared resources. Each task not only generates data about microscopes and bio-medical images but also needs intermediate output from its collaborative tasks of bio-medical image analysis for correlation studies. Another scientific organization concerns the Climate Corporation research that is based on data-task workflow system. They adopted a component sensor located on several locations in order to capture and generate a massive amount of data from including high-resolution agronomic, environmental and weather fields 1 .

Large amount of data are generated per day from those workflow processing systems which are extremely valuable with great diversity of types. However, it becomes difficult to process and store them. Equally, other applications deal with a massive data-task workflow using the MapReduce paradigm adopted and integrated by major companies like Google, Facebook, Amazon and LinkedIn. Such an application ecosystem requires a flexible composition of workflow tasks supporting different processing phases.

Meanwhile, the emergence of cloud services offers a new key knowledge for outsourcing organizations IT infrastructures which can be required and returned on demand with its flexible pricing model [HSS + 10]. Cloud primarily provides data storage and processing services, which are optimized for high availability and durability. Thus, by embracing the cloud storage and processing models through distributed datacenters, the moving of the workflow collaborative tasks to the cloud can directly perform massive-scale and complex big data storage and processing, at the expense of performance which is not the primary goal. Despite the fast transition towards cloud services use, some critical issues are raised and remain not fixed. A challenging problem, both for business and scientific researchers, is how to execute such an application in a cost-efficient manner to obtain the desired level of performance. Furthermore , some big data workflow features, such as data sharing or intermediate result reuse and geographical replications are the primary options, while many others are not supported [START_REF] Tudoran | High-performance big data management across cloud data centers[END_REF]: geographically distributed transfers, cost optimization, differentiated quality of service, cus-tomizable trade-offs between cost and performance. This all brings to mind that big data workflow applications are often costly (time-and money-wise) or hard to structure because of difficulties and inefficiencies in cloud data management. In view of this, providing diversified and efficient cloud data management services are key milestones for the performance of workflow-based applications.

Consequently, this thesis focuses on the problem of big data workflow management in cloud while ensuring their cost-efficient storing and processing. However, adopting big data workflow features in a distributed cloud datacenters, is a very challenging issue. For this aim, we propose new efficient big data placement strategies while considering the characteristics of workflow and data-intensive applications running in the underlying geo-distributed cloud infrastructure.

Research Context

Cloud Computing & Storage Basics

IT leaders in various organisations and consulting companies such as Gartner2 or IDC3 consider the cloud paradigm as a highly attractive proposition in this economic landscape, offering the promise of both immediate ROI and longer-term strategic benefits. Given the potential for innovation of the cloud, this thesis is in the context of this promising technology. Indeed, cloud technologies are next-generation data-storage and distributed computing systems that enable access to virtualized resources including computation power, storage capacity and network bandwidth. These resources are dynamically provisioned on demand as a personalized inventory to meet a specific service-level agreement [START_REF] Buyya | Market-oriented cloud computing: Vision, hype, and reality for delivering it services as computing utilities[END_REF]. Cloud computing solutions used for accessing geographical data first and allow users to focus on extracting value, renting and scaling different services and applications for an optimal resource utilization [169]. Furthermore, resources can be rapidly scaled up and down to meet the user's needs, thus creating the illusion of infinite resources available at any time.

As cloud computing evolved considerably over these years, many cloud service providers have an IT operation outsourcing service, as shown in Fig. 1.1 such as Amazon Web Services, Google Cloud Platform, Microsoft Azure, Rackspace and IBM Cloud. They provide many popular cloud services and applications which are very useful for our daily life. These services are deployed on multiple, large datacenters over the resources, which are geographicallydistributed around the globe [START_REF] Buyya | Market-oriented cloud computing: Vision, hype, and reality for delivering it services as computing utilities[END_REF]. In fact, a datacenter is a centralized repository for the storage, management, and dissemination of data and information [START_REF] Stryer | Understanding data centers and cloud computing[END_REF]. The concept of cloud computing involves a datacenter somewhere in the world, or even multiple datacenters in various countries. Furthermore, the National Institute of Technology (NIST) [START_REF] Hogan | Nist cloud computing standards roadmap[END_REF] listed the five essential characteristics for cloud datacenters involving on-demand self-service, broad network access, resource pooling, rapid elasticity or expansion, and measured service. Meanwhile, the increased focus on business agility and cost optimization has led to the rise and growth of cloud datacenters. With the growth of data analytic as a result of big data exponential growth, there is a need to run more efficient physical servers inside datacenters.

As an example of outsourcing of a company's CRM (user relationship management) software, Salesforce.com delivers their complex CRM solution to 97,000 users using 3,000 servers, a ratio of 0.031 servers per user [START_REF] Rath | Data center strategies. simplifying high-stakes, mission critical decisions in a complex industry[END_REF]. In the same context, the study conducted by CISCO exhibits that the increasing need for datacenter and cloud resources from both the business and user service perspective has led to the development of large-scale public cloud datacenters called hyperscale datacenters. Fig. 1.2 describes the general growth of the number of datacenters since 2015 and a forecast until 2020. As depicted by this latter, the growth of the hyperscale datacenters reaches 485 which is equivalent of 47% of sharing datacenter servers from 2015 to 2020.

Cloud Deployment Models

Organizations moving towards cloud technologies have to choose between public cloud services, such as: Amazon Web Services, Microsoft Cloud and Google Cloud services, or private self-built clouds. While the firsts are offered with affordable fees, the others provide more privacy and control. Thus, with respect to the providers and their accessibility, the cloud community4 has introduced four deployment models to define an access level for cloud deployment: private cloud, public cloud, community and hybrid clouds. -Private Cloud: the cloud infrastructure is deployed, maintained and operated for a specific organization. The operation may be in-house or with a third party on the premises.

-Community Cloud: the cloud infrastructure is shared among a number of organizations with similar interests and requirements. This may help limit the capital expenditure costs for its establishment as the costs are shared among the organizations. The operation may be in-house or with a third party on the premises.

-Public Cloud: the cloud infrastructure is available to the public on a commercial basis by a cloud service provider. This enables a user to develop and deploy a service in the cloud with very little financial outlay as compared to the capital expenditure requirements normally associated with other deployment options.

-Hybrid Cloud: the cloud infrastructure consists of a number of multi-cloud of any type. However they have the ability through their interfaces to allow data and/or applications to be moved from one cloud to another. This can be a combination of private and public clouds that support the requirement to retain some data in an organization, and also the need to offer services in the cloud. 

Cloud Service Models

Different types of cloud services target separate user groups, and are basically delivered under three well-discussed layers namely the Infrastructure as a Service (IaaS), the Platform as a Service (PaaS) and the Software as a Service (AaaS). IaaS and PaaS services are usually purchased by enterprise users, while SaaS services, likewise Web services, are aimed at both corporate and individual users [START_REF] Christina | Taxonomy of cloud computing services[END_REF]. Building upon hardware facilities, these service models are offered in various forms that we present below:

-Saas: users are able to access and use an application or service that is hosted in the infrastructure of the provider or platform through an interface. They are not responsible of managing or maintaining the used cloud resources.

-Paas: users are able to access the platforms, enabling them to deploy their own software and applications in the cloud. The operating systems and network accesses are not managed by the user, and there might be constraints as to which applications can be deployed.

-Iaas: users control and manage the system in terms of operating systems, virtual machines, applications, storage, and network connectivity, however they do not themselves control the cloud infrastructure.

Cloud Pricing Model

Unlike traditional Web services, each cloud service has his scheme for calculating the price for the cloud services offered to users, such as the fixed fee-paying and the dynamic pricing models. The goal of the provider is to have a greater benefit, while each user's goal is to have the maximum service for lower cost. When using dynamic or variable pricing, the price is established as a result of dynamic supply and demand, for example, as the means of auctions or negotiations [START_REF] Mazrekaj | Pricing schemes in cloud computing: An overview[END_REF] (see Fig. 1.4). A few cloud services are free of certain level of resource charge, such as Google Docs and the Google App Engine. As compared to fixed prices, users of Amazon EC2 are billed monthly for the resources used based on the pay-per-use model, or purchase a fixed amount based on subscription to benefit from a service for a long period at any convenient time. Currently, the pricing model of cloud storage products is generally related to the amount of stored data and additional parameters of cloud data storage, which are based on the basic billing services, different payment models mean different service modes and priorities. As for the users, they can buy the corresponding storage resources according to the demand. In Google storage cloud, the price is based on a flat rate for storage and a usage rate for network bandwidth, and resources storage and bandwidth usage are calculated in gigabytes (GB).

However, these mechanism does not make revenue maximization for cloud storage provider, and cannot be distinguish the pricing in relation to the requirement and need of the data user's. With the dynamic pricing model of cloud storage services, one can solve the needs of users, service requirements, and the resource allocation problem.

Besides, some dynamic pricing models are established by authors and are based on the federal cloud. Research study in [START_REF] Mihailescu | Dynamic resource pricing on federated clouds[END_REF] analyzed the impact of multiple types of resources and market conditions for pricing, and evaluate its performance by the use of simulation Chapter 1. Introduction methods, and enhance the utilization of the user. Other studies focus on the use of the federation by controlling the idle resource capacity and the problem of peaks in demand. As the average demand of the system is several times smaller than the peak demand [START_REF] Rebai | Improving profit through cloud federation[END_REF], providers are able to lease part of their resources to others, in order to avoid wasting their unused resources. Hence, the following section exposes the motivation and use of the concept of federation in a cloud storage architectures.

Cloud Storage Architectures

Cloud storage provider, as one of a typical cloud infrastructure technology (i.e. IaaS), provides enterprise with an economical, feasible, flexible and convenient storage mode. Cloud storage represents a model of networked online storage where data are hosted by third parties in a single or multiple datacenters. A key benefit of datacenters is that physical hard drive storage resources are aggregated into storage pools, from which a logical storage is created.

Big data is a key driver of the overall growth in stored data within datacenters.

Figure 1.5 -Actual data stored in cloud datacenters [START_REF]Cisco Visual Networking. Cisco global cloud index: Forecast and methodology[END_REF]. This significant driver of traffic prepares organizations for ongoing data growth by ensuring ample capacity for new data user's and application's. The Cisco Global Cloud Index study [START_REF]Cisco Visual Networking. Cisco global cloud index: Forecast and methodology[END_REF] has estimated the total amount of actual data stored within datacenters from cloud storage provider. As depicted by Fig. 1.5, the data stored in datacenters are continuously taking extent and will reach 915 EB by 2020, up 5.3-fold (a Compound Annual Growth Rate 'CAGR' of 40%) from 171 EB in 2015. This huge data revolutionizes both enterprise, which now capitalizes the value searched in large data collections, and the scientific research, which moves towards a new paradigm: Data Science. Consequently, the applications are distributing
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and scaling their processing over datacenters in order to handle overwhelming volumes, high acquisition velocities or great varieties of data. This obviously leads to a growth of big data as shown in the Fig. 1.6. Big data volumes will reach 247 EB by 2020, up to almost 10-fold from 25 EB in 2015. Big data alone will represent 27% of data stored in datacenters by 2020, up from 15% in 2015. In fact, storage servers and datacenters remain even more essential to managing and processing the massive amount of big data created by industrial or scientific applications around the world each day. In the federated cloud environment, a cloud provider acts as both infrastructure provider and user. The egocentric and rational behavior of federation members focuses on maximizing their revenue and resource utilization by serving as many users as possible. Data users thus benefit from the federation, as using more than one cloud allows to mitigate the risk of storage failures and prevents data lock-in [DJL + 13].

The Era of Big Data

Definition of Big Data

Accordingly, Gartner Inc. 5 defines the term "big data" as a high-volume, high-velocity and/or high-variety information asset that demands cost-effective, innovative forms of information processing that enable enhanced insight, decision making, and process automation. This definition reflects that big data could be defined as a fast growing amount of input data and/or intermediate results from various sources or from data-driven processing that increasingly poses a challenge to industrial organizations or research communities and also presents them with a complex range of valuable-use, storage and analysis issues.

5. http://jtc1bigdatasg.nist.gov/_uploadfiles/N0095_Final_SGBD_Report_to_JTC1.docx.

Data processing in Hadoop-MapReduce Framework

Data-intensive processing included applications that generate, manipulate, and analyze large amount of data in a distributed and parallel environment such as Hadoop-MapReduce platform. With the emergence of cloud storage services, data generated from these applications are typically stored in a single data server or geo-replicated data servers. Data is organized as files (data sets) which are created and accessed by users or application providers.

Definition: Hadoop

6 , an open-source project, is a framework which supports running data-intensive applications on a large cluster of commodity machines. Hadoop was adopted with hosted services and full stack distributions provided by companies such as Microsoft 7 , Google 8 , Greenplum 9 , and Amazon 10 . Data files in Hadoop-MapReduce are stored in Hadoop Distributed File Sytem (HDFS) in data blocks which can be processed immediately by MapReduce programs.

The MapReduce programming model was first described in [START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF] as a method employed at Google for processing large-scale data-intensive applications. MapReduce paradigm is originated from the Lisp functional language, its data-parallel programing model enabling efficient implementations on different platforms and architectures. The expressiveness and the extension of MapReduce programs enabled to support iterations and incremental computations as workflow phases [TLA + 16, HGC + 13], higher-level data management abstractions parallel database concepts, and relational operators. Typically, MapReduce programs represent workflows of MapReduce jobs. In the current Hadoop-MapReduce framework, the client sends a MapReduce job to the master server (NameNode) as Hadoop cluster administrator, which is also the master of the cluster. Before sending a job to the NameNode, data source files should be divided into block of 64 or 128 MB, and uploaded to HDFS. Data blocks are distributed among different DataNodes within the cluster.

Intermediate data management in Hadoop-MapReduce:

A data placement strategy during the execution workflow of MapReduce in Hadoop consists of two functions: map and reduce. Jobs are divided into map and reduce tasks to be executed by the mapper and the reducer respectively. First, the input block stored at DataNodes is handled by the mapper for data processing. As an intermediate output, < key, value > pairs are generated which are given to the reducer which merge them to generate a single output. 

Workflow Big Data Processing in Cloud Environment

Dataflow-style workflows provide a simple, high-level programming model for modeling and implementing data scientific applications due to their natural capability for problem decomposition and coordination of dataflow and produce iterative computations [START_REF] Zhang | Processing data-intensive workflows in the cloud[END_REF][START_REF] Jaradat | Workflow partitioning and deployment on the cloud using orchestra[END_REF].

A large number of workflow engines were developed due to their provided distinctiveness, such as Taverna 12 , or more generic workflow models like Pegasus 13 and Kepler 14 . They facilitate the expression of multi-phase task workloads in a manner which is easy to understand, debug, and maintain. By using scientific workflows, multiple researchers can collaborate on designing a single distributed application. Meanwhile, migrating workflow management systems over a cloud infrastructure may support data parallelism over big data sets by providing scalable, distributed deployment and execution of complex data analytic applications. By exploring workflow concepts one can support data processing pipelines, and MapReduce-based constructs. Indeed, many data scientific applications cannot fit into the initial MapReduce model. Nevertheless, the tendency is to mix the expressivity provided by workflows with the simplicity of MapReduce. The goal is not only to allow users to create more diversified dependencies between tasks, but also to simplify the description of the inter-dependencies and the specifications of the big data flow. Hence, providing efficient data management services capable of interacting with the processing of these engines and of enableing high-performance data exchanges between the compute nodes is a key milestone for big data processing on cloud environment.

Chapter 1. Introduction

Data workflow management:

The iterative computations between dataflow-tasks represent an important class of workflow applications. They are at the core of several data analysis applications [WKQ + 08] such as: k-means clustering, PageRank, Hyperlink-Induced Topic Search (HITS), and numerous other machine learning and graph mining algorithms. These applications process data iteratively for a pre-specified number of iterations/phases or until a termination condition is satisfied. The intermediate output of one phase from dataflow-tasks is used as an intermediate input to subsequent phases. Some of these phases are executed sequentially but others can be executed concurrently in a distributed and parallel environment. Given the massive sizes of intermediate data and the importance of iterative computations, there is a need for scalable management solutions to efficiently apply iterative computations on large scale data sets in a cloud environment. On one hand, the MapReduce framework scales to thousands of machines on a cluster or a cloud. On the other hand, it was not designed to run iterative data processing efficiently. However, the MapReduce framework coupled with a simple workflow phase allows a parallel iterative phase of the submitted data files and applications over distributed resource nodes in cloud. These applications represent a sequence of jobs and each job constitute one or multiple tasks. Hence, jobs before they are split, are labeled as tasks after the split. As depicted by Fig. 1.10, each job in step (A) corresponds to several phases of execution function in step (B), where each phase comprises multiple tasks. Specifically, job i has map tasks denoted m i,x and reduce tasks denoted r i,y , where in this case x and y represent unique identifiers for each task in a single map or reduce phase, respectively. 

Research Problems & Objectives

a set of tasks that share an amount of intermediate data that must be retrieved from their respective storage locations before their processing. Intermediate data are then forwarded to successor collaborative tasks for later reuse or reanalysis. This type of correlation is much more distinguished in batch-mode analytics with one typical application, i.e. TeraSort.

TeraSort includes multiple jobs to behave in a synchronous fashion: an initial step for intermediate data production, second step for their marginal sorting and then write back to validation in a later step. Another example is the airline reservation application capturing the data tendency traveller's to keep planes fully booked. During the analysis, it is found that the result of one query is required by other queries; here is a situation where there are multiple dependent queries [NPM + 10a]. In contrast, intra-job dependencies emerge in concurrent workers/reducers of MapReduce framework coupled with workflow-based processing [HGC + 13]. These data correlations exploit the parallelism of MapReduce job by fractionating it among multiple tasks from synchronous iterations between map and reduce tasks as well as from asynchronous iterations between map tasks.

Research Problems & Objectives

Currently, more and more workflow-based big data processing systems are relying on the distributed cloud resources for processing and storing very large input and intermediate data results [KL14, WC16, RB15, WLN + 13]. Indeed, organizations or scientific researchers who operate intensively on these systems, naturally share intermediate data gathered from one or multiple physical locations. Indeed, keeping the data storage locally and/or distributing them in multiple datacenters lead to additional costs that can be very important with the increase of the amount of stored data. This converges towards a massive growth of large amounts of intermediate data to be shared, processed and stored through cloud infrastructures. However, the geo-distributed nature of such system informally arises the intermediate data placement issue, which significantly impacts such generated data movement among the distributed datacenters and makes dependency requirements more complex for handling regarding the processing performance of these systems. Ensuring Characteristics & Requirements:Designing, tuning, and handling workflow -based data processing application all rely on a good understanding of these applications, and in particular on the characteristics and requirements of the generated data. Indeed, these applications have a set of computation and data intensive tasks that generate many intermediate data dependencies of considerable size that exist among them. The dependency depicts the derivation relationship among the generated intermediate data. The authors in [HGC + 13] describe three main types of data dependency namely, inter-query, intra-and inter-job dependencies. The first one occurs in the query operations, when the intermediate output of a query can be reused as intermediate input by another. A concrete example of this type is the most popular K items sold by a chain of stores, that can be collected from the output of a query that computes the most popular K items for each store. In the second one, dependencies among jobs are translated into workflows of jobs such that jobs cannot start before the intermediate output of their predecessors is materialized. A typical example of inter-job data dependency is given by the TeraSort application which was disclosed earlier in the Sec.

As depicted by

Regarding the last type, it was referenced in MapReduce workflow-based processing.

In these applications, intra-job dependencies occur in concurrent workers/reducers of MapReduce framework (see Sec. 2.2.2). Consequently, the amount of generated intermediate data from these types of correlation is non-uniform, i.e., some intermediate data dependencies are used more than others. Thus, their storage and prior location should be considered seriously to meet the needs of their dependency requirements.

Cost-effectiveness of Data Storage in Multiple datacenters:

The development of efficient solutions to the mentioned workflow big data placement problem requires a pre-allocation of the data-task computation that must be acquired beforehand to achieve a high degree of parallelism. Additionally, the performance of the data workflow processing is governed by the efficiency of the intermediate data placement. Hence, estimating the optimal amount of storage and bandwidth resources needed to run a specific complex distributed data workflow application given an input intermediate data result is a challenging problem. This influences both, scientific users who aim at minimizing their cost while meeting the application requirements, and cloud infrastructure providers who aim at controlling their resources allocation and account for resources usage saving. To achieve the best cost-effectiveness for intermediate data management, one need to investigate the following issues:

- essential, a further step towards finding the optimal placement of these data in the cloud datacenters is required. Moreover, scientific users may have some preferences concerning the storage of some valuable intermediate data (e.g. tolerance of intermediate data dependencies). In addition to this, the intermediate data generated at different locations must be fairly placed to the distributed datacenters as regarding to the burden of busy or unused resources. Hence, based on the new cost model, one need to design cost-effective data placement strategies to meet the requirements of these different situations in cloud datacenters.

Research Contributions

Based on the discussion so far, we believe that the problem of managing intermediate data generated during the processing of workflow-based applications, deserves deeper study as a first-class problem. Motivated by the observation that the main issues is dealing with data placement, we summarize for convenience the contributions of this thesis work with respect to originally identified challenges and defined research objectives.

A survey of the big data management approaches in cloud datacenters: First, we provide a brief overview of the I/O data characterization for MapReduce application and models prediction based on Markov models. This study is the preamble for I/O data placement behavior in MapReduce workflow-based processing context. Second, we provide a deep survey on big data management approaches. A taxonomy of this kind of data management can be based on the main following criteria: i) operational storage cost, ii) dynamic or fixed pricing model, iii) data dependency constraints, iv) data placement strategy, v) federation/multicloud-based or single cloud provider scenario. Thus, it is our position that we must design a new storage system which combines most of these characteristics. -The second part of the proposed algorithms concern an extension of a placement approach for generic workflow with a specification of dependency type. To this end, we design exact (SPL_LP) and heuristic (UNS_GREED_HEUR) algorithms for intermediate data placement while satisfying application's requirements and minimizing total storage cost. In fact, the proposed approach involves two variants of the placement problem: splittable and unsplittable intermediate data dependencies including fractional and atomic demands respectively. Moreover, the proposed algorithms place the intermediate data by considering not only their source location within the different datacenters but also their dependencies using a Directed Acyclic Graph (DAG). The main goal is to save the total cost, including effort for transferring, storing, and moving them according to their needs. We first develop the SPL_LP algorithm based on the Linear Programming (LP) model which takes the needs of intra-job dependencies and shows that the optimal fractional intermediate data placement problem is NPhard. To solve the unsplittable intermediate data placement problem from inter-job dependency, we elaborate the UNS_GREED_HEUR algorithm based on network flow optimization framework. The UNS_GREED_HEUR algorithm addresses the scalability of the model with increasing datacenters and intermediate data sizes (large graph) and focuses on the intermediate data placement resulting from intra-job dependencies.

Studying I/O intermediate data placement behavior in MapReduce

Considering a set of large clusters of data dependencies as input parameters leads to smaller structures and lower algorithmic complexity as compared to routing individual intermediate data files from a single datacenter source.

Thesis Outline

The remainder of this manuscript is organized as follows. Chapter 2 presents the most relevant big-data management strategies found in the literature. Chapter 3 outlines the design of the proposed I/O data placement and scheduling behavior that deals with a prediction 

Introduction

As mentioned earlier, the main objective of this thesis is the design and development of models and algorithms for data workflow placement in cloud datacenters while considering the different dimensions of the problem. These key dimensions are the variation and the dynamicity of the solution along with the storage cost and the cloud infrastructure model. To provide efficient solutions, the issue is addressed from different angles handling the constraints of the problem at different levels, thus existing state of the art methods and models need to be studied and discussed in order to effectively adjudicate the issues. This chapter reviews the current state of the art and works on the areas related to this thesis. These studies are classified into related topics which presents the work objectives that depend mainly on the thesis positioning in relation to the existing research. The first research objective is the study of short-lived data placement behavior in MapReduce processing across storage clusters as a case study for the intermediate data placement decision. The second one is related to the research works that used the cost model to provide some features for 24 Chapter 2. Big Data Management Approaches in Cloud Environment workflow data management from storage scenario that precisely presents the data placement problem in cloud datacenters. Therefore, the storage model for calculating the costs related with the deployment of application processing and data-intensive management in cloud infrastructure has received a lot of attention. Some previous works used the cost model to provide some features from cloud storage scenarios, but not necessarily for data placement or scheduling data type purposes.

I/O Data

Cloud cost model for data processing

The approach presented in [DSL + 08] also explores only one aspect of using cloud environment for processing astronomy system montage as a data-intensive application, examining the trade-offs between different workflow execution modes and provisioning plans for cloud resources supporting both computation and long-term data storage. Authors picked a cloud service provider as the basic model for computational and cost model construction using the Montage application and the Amazon EC2 fee structure as an online case study simulation.

The proposed cost models did not involve a data placement strategy.

The cloud federation concept is used in [VSPD + 13] and [START_REF] Bermbach | Cloud federation: Effects of federated compute resources on quality of service and cost[END_REF] amounts of data that are placed in one storage system and that cannot be migrated to another vendor due to considerable expenditure and time completion. They consider a set of modular mechanism implementing a federation architecture over the VISION Cloud infrastructure assuming security issues through access control protocols. However, the authors of these works exploit the advantages offered by a federation architecture without focusing on the data workload placement problem.

Data placement strategy meeting saved cost in cloud environment

By investigating a computation and storage cost model, several research works have used a cost model to evaluate their strategies for placing data in the cloud through exact and/or heuristic approaches.

In [START_REF] Agarwala | icostale: adaptive cost optimization for storage clouds[END_REF], authors identify an adaptive cost optimization heuristic for multi-cloud providers to decrease the storage service cost, and both a compression and placement algorithm are used to reduce data moving cost in the cloud storage. Another aspect is studied in [START_REF] Gao | Compact, popularity-aware and adaptive hybrid data placement schemes for heterogeneous cloud storage[END_REF] that considers the workload distribution and data popularity of devices which affects the system's performance. They define three algorithm schemes to facilitate the assignment of data popularity changes to the heterogeneous cloud storage by optimizing the data movement from those to be migrated and relocated efficiently.

However, they focus on hybrid data of different size and popularity, but they abstain from the complex data correlation as well as the induced cost from the data assignment.

The big data placement problem from a collaborative-aware environment that continuously generates data from different geographical locations has been disclosed in [START_REF] Xia | Collaboration-and fairness-aware big data management in distributed clouds[END_REF].

The authors developed a solution to save the high cost incurring when managing the dis- Recently, [START_REF] Xia | The operational cost minimization in distributed clouds via community-aware user data placements of social networks[END_REF] has proposed strategy placements for large-volume user data of a social network in a distributed cloud datacenter while minimizing their communication and energy consumption costs as operational costs of accommodating various social networks at datacenters. The authors identifies a community fitness metric that aims at grouping the users of a social network into different group having interactions with each other while their accumulative update rate is relatively low. The fitness metric is used in the data placement algorithms while ensuring that the placed user data can be not only easily accessed and updated. However, the authors considered only the relations between the user community concept and their dynamic maintenance of the placed user data in an evolving social network, but they did not explore the use of the data correlation aspects generated from the social network scenario. Works have been done on several types of optimization for these systems. This section focuses on one specific type of optimization, namely sharing intermediate data from computation produced between different workflow phases of MapReduce jobs. To that extent, the scheduling problem in batch data MapReduce processing systems is studied in [START_REF] Agrawal | Scheduling shared scans of large data files[END_REF].

Data placement approaches in MapReduce and
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The authors present a scheduling technique for data-jobs sharing opportunities involving the scan of the input file with the goal of maximizing the likelihood of sharing scans. A similar approach optimization purpose is presented in [NPM + 10b]. The authors use a cost model to save processing time and money for MapReduce in order to define an optimization problem finding optimal grouping of sets of queries and solve them using dynamic programming. Another MapReduce job scheduling approach is developed in [START_REF] Yoo | A locality enhanced scheduling method for multiple mapreduce jobs in a workflow application[END_REF]. The major factor that is studied is the locality constraints for reducing data sets transfer cost in limited bandwidth.

For this purpose, the author in [START_REF] Yoo | A locality enhanced scheduling method for multiple mapreduce jobs in a workflow application[END_REF] presents a data placement strategy for improving locality and concurrency of multiple map-reduce jobs in a workflow application and investigates a scheduling algorithm considering precedence constraints among multiple map-reduce tasks and locality constraints.

The above works present a data-job scheduling issue which is not exactly the same as the data placement problem which does not have the same requirements, and does not focus on the optimization of the intermediate data scheduling as well as the incurred storage cost. The default Hadoop implementation considers a random block placement strategy [START_REF] Da | Survey on frameworks for distributed computing: Hadoop, spark and storm[END_REF] within highly fault-tolerant through data redundancy. However, the default HDFS block placement policy assumes that all nodes in the cluster are homogeneous, and randomly place blocks without considering any resource characteristic of nodes or/and type of data files. This basically means that the storage requirement for a file is increased by the replication factor without worrying about the cost.

Research works on data placement problem from

Workflow and correlation-aware data placement

Running scientific workflow application in the cloud has to deal with data moving through multiple datacenters from a collaboration of scientists as part of different institutions. Complex correlations that are generated between scientific workflows data during their execution impose a heavy burden on computation intensive, massive storage, and communication in cloud, which hence incur considerable operational cost to cloud datacenter providers. The challenge here is to achieve such a workflow data dependency placement in a cloud environment so that the total storage cost is reduced. However, the workflow data placement problem in a cloud environment is NP-hard [ZXZ + 15, SRJ + 16, EMKL15]. In order to skirt its complexity, IT researchers sometimes consider theoretically unlimited cloud resources or relax some other conditions. Besides, they opt to heuristic approaches to solve the workflow data placement problem since the optimal solution is computationally intractable in large-scale cloud infrastructure. The following summarizes the most prominent workflow data placement strategies.

In cloud environment, a lot of related work has been done on workflow data management. Beyond these research works, the dynamic variations of inter-and intra-jobs dependency workflow from generated intermediate data have nevertheless not been addressed with the same focus. They focused more on the clustering of dependencies than on their placement strategy themselves and the involved storage costs.

The author of [SRJ

Summary

Table 2.1 summarizes the analysis and compares the relevant related work based on the criteria that characterizes our orientation, meeting the operational cost, pricing model, dependency constraint, placement strategy, federation/multi-cloud scenario. Unfortunately, all of them do not bring together all the relevant optimization aspects into a single approach to store, transfer and process workflow for big data while saving storage cost in a cloud environment.

Conclusion

Recent studies about data-intensive management in a cloud have shown a new way for the development of scientific workflow system. A large number of big data management approaches were developed due to their impact and efficiency in solving data workflow placement issues. Enumerating the most prominent solutions and discussing their general features regarding the purpose of this thesis has been the interest of this chapter. spill. Section 3.4 describes the evaluation and the validation methodology for the proposed approach. Section 3.5 offers a summary to conclude this contribution as well as some prior motivations and directions for the next chapters.

I/O Behavior of Intermediate Data in MapReduce-Hadoop Processing

Intermediate data in MapReduce are written and read by the same application in the form of < keyvalue > pairs. MapReduce uses a divide-and-conquer approach in which input data are divided into fixed size units processed independently by parallel tasks. The tasks are executed and distributed across servers in the cluster. with one segment being read from the output files of each map task spread over the entire cluster. While each segment is read sequentially, the set of segments for a particular reduce task is not stored sequentially and not guaranteed to be read in any particular order [Kho].

This situation occurs when writing concurrently intermediate data to the shared disk. As a result, there is a cost for doing a random I/O operation (disk latency and seek cost) involved for each segment of a reduce task input.

Furthermore, the tasks are not always executing the same phase and are not identical in duration. Moreover, even for tasks that are normally very similar in terms of execution time, 

this

Methodology

Based on the observations above, a novel approach is proposed to predict the I/O behavior of intermediate data access patterns from MapReduce-Hadoop processing applications.

Explicitly, this work concentrates on the characterization of the I/O behavior for spill file logs under I/O contention from the shared disk of a Hadoop cluster. However, we note that our prediction model is based on a Hadoop cluster but it can be easily adjusted to the original MapReduce on other processing platforms which are disk-based implementations. The different steps of the proposed approach are as follows (See Fig. 3.2):

Step 1-2: first, our methodology deploys Hadoop platform experimentation which is a reference system for processing big data. Since it is very complicated to trace existing MapReduce logs from real-world scenario such as Yahoo, Facebook, Google and Twitter clusters, performing a set of benchmarks as MapReduce application logs is necessary. Hence, on the Hadoop platform, a number of a map and reduce tasks are running to enforce good a prediction through three MapReduce benchmarks.

Step 3: using these benchmarks, statistics 

System model

P (x(t) = j 0 /x(t -1) = i 1 , x(t -2) = i 2 , ) = P (x(t) = j 0 /x(t -1) = i 1 ) = q i 1 ,j 0 (t) ∀j 0 , i 1 , i 2 , ... ∈ E (3.1)
Definition 5. Probabilities q i 1 ,j 0 (t) corresponding to the possible values of j 0 and i 1 are summarized by the Q 1 (t-1;t) matrix of (m x m) dimension, called the transition matrix from time t -1 to time t:

Q1 (t-1;1) = [q i 1 ,j 0 (t)] =     q 1,1 (t) ... q 1,m (t) ... ... ... q m,1 (t) ... q m,m (t)     (3.2)
Each of the matrix rows is a probability distribution, which implies that the sum of the elements of each row is equal to 1: Definition 6. Given a system parameter at the current time, the goal is to find out how I/O spill will be accessed on disk region from the current spill file. More precisely, we capture the state sequentiality of I/O spill from segments. Then, the estimation of one-step transition probability P i,j for i,j from 1 to N is defined by equation 3:

ι = Q 1 (t-1;t) • ι,
P i,j = count(x i,j ) count(x i,. ) = t-1 t=0 x i,j (t) N k=1 t-1 t=0 x i,k (t) (3.3)
Where:

x i,. (t) is the number of times the I/O spill is in state i at time t (t = 0, ..., t -1); x i,j (t) is the number of times the I/O spill is moving from state i at time t to state j at time t + 1.

Training Markov model

For each single disk I/O behavior, a Markov chain is built from blktrace-based I/O tracing [START_REF] Kang | Accurate blktrace: ablktrace[END_REF]. The Markov model is trained offline by running multiple applications simultaneously, and building the transition matrix for the map operations.

To build the Markov chain, a transition probability matrix must be identified through contingency tables of expected I/O write observations. Then, the probability vector distribution is computed for each state. 

Prediction Algorithm for interfered spill requests

Experimentation Assessment & Validation

To assess the efficiency of the Markov model for predicting I/O spill behavior of MapReduce applications, a trace driven simulation is conducted. I/O traces are generated from benchmark applications running in parallel on a Hadoop platform. Table 3.2 shows the configuration parameters on five physical Hadoop distributed file system (HDFS) servers: one master server and four data servers. 

Trace-driven assessment

MapReduce-Hadoop applications generating intermediate data sets

In This metric is defined in (3.4):

Proposed approach validation

M etric_P red_Acc = Correct Seq/interf IO T otal Current IO Spill (3.4)
The second metric is the Mean Absolute Percent Error (MAPE) that measures the prediction accuracy of the proposed Markov model by measuring the size of the error in percentage terms. MAPE is defined in (3.5).

M AP E = 1 n • n j=1 | A j -F j A j | (3.5)
Wherein, n is the number of predictions, A j is the current value, and F j is the predicted value. one can observe (eg. 11-case) the mean seems to be stabilizing at 3%. The present chapter provides for a less then 5 % margin of error in calculating the measures.
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Results

Several observed sequences (in term of request) utilization have been considered for our simulator to increase the prediction accuracy of the transition prediction model as depicted in Fig. 3.5. When the request sequences are more than 3000, the accuracy of our prediction This leads to generate a limit for the proposed algorithm which is precisely based on predicting the model size.

Conclusion

Due to the complexity of the intermediate data access pattern and the external conditions of the environment that influences their placement/scheduling, storing and processing, the 

Introduction

Big data workflows have become an important paradigm since the introduction of scientific workflows and the need to formalize complex data-intensive scientific processes. After the development and wide adoption of MapReduce served as a motivation to develop big data applications, several workflow applications have been built or extended to enable programmability of MapReduce applications. Furthermore, the use of a cloud infrastructure for big data workflow application 1 facilitates the composition of the individual tasks to provide essential support to data analytics, high performance computing and on-line data storage. In addition to the fact that the previous chapter motivated us to consider a novel placement approach for big data workflow, hence addressing these questions makes the following main contributions: by exploiting cloud storage federation characteristics and data workflow requirements, we formalize and model the input and output parameters of the system cost model. We propose then a cost optimization problem in which the optimal cost of transferring, storing and requesting intermediate data is calculated. The exact intermediate data file

One common characteristic of big data workflow applications is the existence of intermediate
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dependency is assumed to be known a priori in order to focus on the data workflow placement problem itself. In this approach, we propose an exact algorithm based on an integer linear programming model that takes into account the dependency requirements (valuable 

System Model

The target of this work is to build a federated cloud storage model to optimally allocate intermediate data workflow. To derive the model, some multiple assumptions are simplified as regard to the storage federation scenario which is focused on pricing negotiation between cloud storage service providers noted by P , which are supposed to be federated, and the storage monetary that is cheaper than local prices without federation. The federated datacenters receive large intermediate data access requests that are fairly scheduled to achieve competitive storage services, maximum storage resource utilization and prevent intermediate data lockin. Hence, we first describe the federated cloud storage system and we discuss the model of data workflow and matrix representation that consider the dependency needs of the generated intermediate results.

Scenario Assumptions

The scenario introduced in Fig. 4 cloud storage quota noted by QCmax k to every users, and the busy quota is reduced from the maximum capacity of storage and bandwidth resources. In addition, cloud storage providers must rise to the variation of the price in real-time as regard to various factors such as data access demands, cloud storage market rates, and datacenter localization. To unlock these constraints, we adapt a pricing strategy [START_REF] Nadjaran Toosi | Resource provisioning policies to increase iaas provider's profit in a federated cloud environment[END_REF] to determine the storage federation cost of the providers that varies according to their busy quotas in a way that when the busy quota is high the monetary cost goes up and when it is low the monetary cost goes down. This pricing mechanism allows to dynamically set their insourcing/outsourcing storage or transfer prices by establishing the monetary cost in exchange for offering data storage space or data bandwidth or selling storage resources. Below, the mathematical formula that determines the insourcing / outsourcing prices for the data placement demands is:

S = QCmax k -S busy QCmax k * (S price -M E price ) + M E price (4.1)
Basically, the equation (4.1) considers the minimum effective price (M E price ) that is a reference monetary cost to the amount of data storage or data transfer that providers do not fall below in order to address economic issues. The affected cost (S price ) for the end-users is 

Matrix model for intermediate data dependency

As In addition, various skewed of dependencies can be specified between the intermediate data during a freak execution of a workflow instance. Scientific users may encounter these errors2 in the execution that cause unnecessary dependencies that need to be adjusted or re-run. Hence, some intermediate data dependencies are not valuable. In order to consider this situation, parameter λ j i is defined in the data placement model to denote scientific users tolerance of dependency files i and j:

λ j i =    0
no tolerance to process i and j independently 1 otherwise.

(4.

3)

The generated intermediate data dependencies with λ j i = 1, operate over a set of I/O requests between each other in the selected datacenter federation. These operations can be involved in remote access requests: data input adjustment, re-processing or data re-utilization.

For each I/O access, there is a cost noted by IOP C i,j . The values of the dependency matrix DEP is dynamically maintained for each set of generated files. Accordingly, between each pair of files i and j, the value of the λ j i parameter is defined. The amount and the size of intermediate data dependencies feeds the expected storage cost when scheduling intermediate data IDi on the federated locations. These later collaborate by sharing their respective storage resources and dynamically adjust their hosting capacities according to their intermediate data placement requirements.

Exact Algorithm

The proposed algorithm is an exact approach called Exact Federation Big Data Workflow Placement algorithm (ExactFed_BDWP) which leads to a mathematical programming approach based on an Integer Linear Programming (ILP). The ExactFed_BDWP algorithm is addressed and solved by a branch-and-bound method describing a set of valid inequalities of the big data workflow placement problem cited above. The proposed objective function is optimized under linear constraints. Some of these constraints are obtained according to a practical system in cloud data placement considering service scenarios and storage ca- In the following, we introduce the use of the integer bivalent variables 0-1 x k id that tells which datacenter d hosts intermediate data file i to be placed in federated datacenter k. A glossary of all the used notations and their descriptions in the proposed exact model is shown in Table 4.1. Using these notations, the global objective function is given by equation (4.5):

M inCost = d =k idk x k id • size i • (OSC k + IT C k + OT C d ) + d=k idk x k id • size i • LSC k + d =k ijdd k y kk ijdd • Dep ij • λ j i • IOP C i,j (4.4)
The objective function for the optimal scheduling and the placement of intermediate data 

dk x k id = 1 ∀i ∈ ID i (4.6)
Strong dependency constraint: For each coupled of generated intermediate data files i and j with Dep i,j = 1 and with no dependency tolerance, ie. λ j i = 0, they are placed in the same federated datacenter k that has enough available volume:

x k id + x k jd = 2 ∀i, j ∈ ID i ; ∀k, d, d ∈ D (4.7)
Dependency splitting constraint: For each intermediate data dependency between i and j with a dependency tolerance λ j i = 1 that does not have available space from home datacenter d and d', they are placed in different federated datacenters:

x k id + x k jd ≤ 1 ∀i, j ∈ ID i ; ∀k, d, d ∈ D (4.8)
Linearization constraint: To define relations between the bivalent variables x k id * x k jd the following two constraints are defined: 

x k id + x k jd -y kk ijdd ≤ 1 ∀i, j ∈ ID i ; i = j; ∀k, k , d, d ∈ D (4.9) kk dd y kk ijdd ≤ k x k id ∀d ∈ D; ∀i, j ∈ ID i (4.
Dep ij = Dep ji ∀i, j ∈ ID i ; ∀Dep ij ∈ DEP (4.16)
The optimal big data workflow placement model in a storage federation environment and objective function (4.4) can be summarized for convenience with all the valid conditions as problem 1:
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Min Cost =

d =k idk x k id • size i • (OSC k + IT C k + OT C d ) + d=k idk x k id • size i • LSC k + d =k ijdd k y kk ijdd • Dep ij • λ j i • IOP C i,j
Subject to: 
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Simulation results

Te performance of ExactFed_BDWP algorithm is evaluated relatively to the above sce- though the number of dependencies increases, the insourcing/outsourcing cost of intermediate data dependencies is minimized in the federation and this influences the total storage cost saving. In addition, the I/O request cost is minimized when there is a dependency tolerance.

The very important point in the federation is the placement balancing and fairness between federation members D for the intermediate data distribution. To achieve this, we set the amount of dependency files to 2000 GB (1000*1000 matrix size of 2 GB per file) that to be placed in federated datacenters and by both comparisons scenarios by setting randomly the home datacenters from provider P . The results are summarized in Fig. 4.6, 4.7 and 4.8 for the number of datacenters respectively of 6, 10 and 18 selected for files placement decision.

We clearly see that the intermediate data placement by the federated datacenter is the best balanced one for heterogeneous capacities and prices (with the exception of the unlimited capacities for no-federation scenario). The ExactFed_BDWP algorithm involves 6/6, 9/10 and 15/18 federated datacenters to be selected to schedule dependency files compared to 4/6, 5/10 and 5/18 for the capacity-based scenario and 3/6, 3/10, 5/18 only for the scenario without federation respectively in Fig. 4.6, 4.7 and 4.8. In fact, the storage federation contributes greatly and maintains the data distribution balancing among the members whatever cloud storage provider which participated (AM, GO and MZ). Moreover, the negotiated attractive prices influence for the placement decision as each provider tries to offer a dynamic pricing that balances the placement decision based on their capacity (equation 4.1) maintaining those collaborations among federated datacenter by fairly placing the intermediate data dependency As the problem is NP-hard (limited by the branch-and-bound method), the execution time of the ExactFed_BDWP algorithm grows like the matrix size, especially when the number of datacenters is greater than 9 as reported in Fig. 4.9 (from 2 seconds to 4 minutes for all simulated instances). For small number of dependencies (2000), the ExactFed_BDWP algorithm exhibits close case of strong dependency constraint the placement problem becomes harder to solve because there is a huge inter-file dependency to be considered in the resolution space while satisfying all storage requirements.

Conclusion

The 

Introduction

This chapter addresses the big data workflow placement to support their sharing and processing more efficiently in multiple cloud datacneters according to varying application dependency types and scientific users resource requirements. More specifically, it deals with a new approach that consideres inter and intra-job dependencies. In fact, the dynamic nature of data workflow applications, new trend of data files inter and intra-application generated in the cloud environment at any time reflects new types of data dependencies during the execution of a set of workflow applications. These dependencies are in the form of a set of correlation (clusters) between several files generated from multiple sources. They have different sizes and requirements for each type of data workflow. The need for usage and sharing of these data dependencies should be retrieved effectively by scientific collaborators who run a specific processing from multiple geographic locations. The change and frequency of use of these data dependencies mean that scientific users' needs change over time thus the entire placement 74 Chapter 5. Scalable Cloud Big Data Workflow Placement Algorithms or appropriate amount of these clusters that will be placed in the different locations must include required changes. Therefore the cost inducing in their routing, storage and use also changes over time regarding to the amount of intermediate data including inter and intra-job dependencies .

The previous chapter treated, among other the problem differently that has introduced an ExactFed_BDWP approach to the intermediate data dependencies placement problem. This solution is optimal in minimizing the storage cost and performs well for small numbers of datacenters as well as for an amount of dependencies between file pairs, but exhibits long execution times for large-scale instances and does not handle no-symmetrical dependency (among group of files). To address larger scale problems and manage the plethora of requirements in data workflow applications and cloud environments, two algorithms are proposed to find optimal and near optimal solutions in polynomial time.

This chapter proposes a new approach that differents from previous works that do not take into account dependency types. Hence, the main contributions are summarized as follows. We first formulate the intermediate data placement dependency problem from multiple workflow applications1 in a distributed datacenter. Then we propose an optimization model for the problem that deals with dependency constraints. The proposed model is combined with a total storage cost minimization by applying an exact and greedy heuristic algorithm while reducing the problem to the minimum cost multiple-source multicommodity flow problem respectively for intra and inter-job dependencies. Since the intermediate data routing from the nature of intra-job dependencies can be split and placed to different datacenters, the problem is called minimum cost multiple-sources splittable multicommodity flow. This allows to reduce the potential intermediate data movement cost among multiple datacenters. This approach deals with the placement problem of dependencies between a set of files that can be split during their placement that differs completely from the ExactFed_BDWP approach. Another approach refers to the intermediate data placement problem from inter-job dependencies. We formulate this problem as an unsplittable demand. However, as most of these problems are NP-hard, it is difficult to actually obtain an optimal solution based on exact methods. Besides, greedy approaches appear to be the simplest but effective algorithms for unsplittable flow problems [Kol03, Kry05, BBA07, CCGK07, PRF11], they are easy to implement and scale linearly with the number of instances. Thus, the use of greedy concepts yields to a good approximate solution to our intermediate data placement problem. Experimental results prove that the proposed algorithms are very promising in terms of total storage cost minimization as well as by showing that even with divergent conditions, the cost ratio of the heuristic algorithm is close to the optimal fractional solution.

The remainder of this chapter is organized as follow: Sec. 5.2 introduces the system model and problem definition according to the environment and data models. The proposed algorithms for the optimal intermediate data dependency placement are presented in Sec. 5.3. Sec. 5.4 discusses the performance evaluation under the implementation design and analysis simulation results of the proposed algorithms.

System model

Cloud storage infrastructure and assumptions

For the intra and inter-job data workflow placement problem depicted in Fig. 5.1, the objective is to route and store a set of intermediate data considering their dependencies generated by a collaborative tasks2 from multiple physical sites while saving their transfer, movement and storage costs. Without any loss in generality, we assume that the collaborative tasks, that process and generate new intermediate data files, are previously assigned to the cloud infrastructure (model task assignment offered by a cloud infrastructure). Since the intermediate data dependency placement are our most significant concern, the task assignment model can be assumed to be existing and simplified. The problem of placing the intermediate data files is close to the well-known minimum-cost multiple-source-flow problem as an optimization problem described in [START_REF] Asano | Experimental evaluation of approximation algorithms for the minimum cost multiple-source unsplittable flow problem[END_REF] that involves simultaneously shipping multiple commodities through a single graph so the total flow obeys the arc capacity constraints by optimizing the cost.

With the stated objectives and requirements, the modeling starts by considering a set of geographically distributed datacenters3 as a directed graph-based model G = (DC ∪ A, E) which forms a cloud infrastructure, and constructs a shared computation and storage limited set of resources for processing and storing the data workflow. Scientific users, such as enterprises, institutions or researchers that own and share a cloud infrastructure issued from providers, have an access to the distributed datacenters (DC) to process multiple collaborative tasks into multiple processing phases. The distributed datacenters known as storage containers cohabit with collaborative task A through one or multiple jobs r running in parallel [START_REF] Warneke | Nephele: efficient parallel data processing in the cloud[END_REF]. A set of tasks are collocated on multiple source datacenters, and each task a r i ∈ A from job r is assigned to source datacenter dc i .

Let {e i,j , e j,j } ∈ E, be the intermediate data transfer and movement (initial and dynamic i (t) ∈ Φ m must be outsourced and placed through data transfer link e i,j ∈ E from datacenter dc i to dc j for persistent storing or future reuse [WL15, JLS + 11]. It is important to note that the set of dependency components M and the related type are a predetermined value given by scientific user that can be obtained through the data analysis clustering method [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF]. We assume that intermediate data dependencies clustering is given a priori and is beyond the scope of the present work.

Intermediate data dependencies graph-based model

Capacity and cost model

To come up with an intermediate data dependency placement from the collaborative task workflow execution in cloud datacenters, we take into consideration the fact that all datacenters and network resources are limited [START_REF] Rajasekar | An efficient resource allocation strategies in cloud computing[END_REF][START_REF] Vp Anuradha | A survey on resource allocation strategies in cloud computing[END_REF]. Thus, let S j be the storage capacity of datacenter destination dc j ∈ DC, and W i,j , W j,j be the bandwidth capacities of the data file transfer and movement links e i,j , e j,j ∈ E respectively. In order to manage and transfer these files, a data bandwidth denoted by w φ is assigned for one unit of intermediate data file. During a run-time phase, the available amount of storage capacity in datacenter dc j , when transferring an amount of intermediate data files φ m i (t), is denoted by s avail i,j (t). Let w avail i,j (t), w avail j,j (t) be the available capacities of a data transfer and movement of links e i,j , e j,j ∈ E.

In addition, transferring and storing the intermediate data dependencies from source datacenter dc i into destination datacenter dc j are facing in both storage resource cost and scale. However, they usually consume high costs in a cloud infrastructure due to inefficient utilization of its resources [ACC + 14]. In practice, these resource demands are leading to operational cost specifically for data transfers and storage costs (measured per one unit in GB) that embrace the usage-based pricing policy [HSS + 10]. Moreover, reused intermediate data dependencies that are not locally stored but remotely served on data demands are led to an additional cost, as movement cost, which is deducted from their migration among datacenter destinations [START_REF] Zhao | Heuristic data placement for data-intensive applications in heterogeneous cloud[END_REF].

In fact, these operational storage costs are related to the size of the intermediate data files that are transferred, stored and moved among distributed datacenters according to their correlation during each run-time phase. Moreover, each datacenter destination dc j ∈ DC is preserved to the geographical area where it is located [START_REF] Xu | Operational cost minimization of distributed data centers through the provision of fair request rate allocations while meeting different user slas[END_REF], thus holding a storage cost noted Therefore, the intermediate data dependency movement cost is defined as the amount of data moved among two or multiple destination datacenters. Hence, each link e i,j , e j,j ∈ E entry faces data bandwidth cost c w φ . For the sake of easier reading, Table 1 summarizes the notations used in the present work.

Placement algorithms

In this section, the intermediate data dependency placement problem in a distributed dataceneter is reduced to a minimum-cost multiple-source multicommodity flow problem (MCMF) in G. Since two dependency types are conspicuous in a collaborative task workflow processing, two variants are materialized for the intermediate data dependency placement problem. In fact, in the case of intra-job dependencies type, the routing of intermediate data dependencies can be performed using multiple links. When this assumption is omitted, i.e. The shortest path from s source to s sink in G p when splittable flow routing can be used, variable of the optimization problem becomes continuous and as a consequence the considered problem becomes easier to solve. In contrast, in the case of inter-job dependency type, the routing of intermediate data dependencies in G can by no means be fractionated. Thus, the MCMF problem seems to be hard to solve. For this aim, we formulate the intra-job splittable intermediate data dependency placement based on the LP approach, and we propose a heuristic approach as an approximation algorithm for the intra-job unsplittable intermediate data dependency placement.

Intermediate data placement in the case of intra-job dependencies

This section presents an exact analytical algorithm for splittable variant of the intermediate data dependency placement problem (SPL_LP). In this approach, we aim to provide an optimal routing that assists a placement of the intermediate data dependencies from collaborative workflow tasks from multiple datacenters in cloud infrastructures G. A number of decision variables and valid inequalities (as listed for convenience in Table 5.1) are thus defined for the intermediate data problem in the case of intra-job dependency cited above:

1) Decision variables: Let x m i,j (t) ∈ R be the intermediate data of one dependency component m standing for the amount of intermediate data dependency flows transferring from source datacenter dc i at time slot t to destination datacenter dc j at time slot t + 1 on link e i,j ∈ G. In order to take into account the amount of intermediate data dependencies that are moved among different destination datacenters dc j , dc j , we add variable x m j,j (t) ∈ R.

2) Flow conservation constraint: One typical constraint or requirement is to ensure that for all t, every flow through directed graph G is physically possible. First, we enforce flow continuity by making sure that the sum of intermediate data dependency flows leaving source datacenter dc i at time slot t -1 is equal to φ m i (t), which is the sum of flows arriving from the same datacenter dc i also, considering the same dependency component m at time slot t. Formally: 

j∈DC x m i,j (t) - j∈DC x m j,i (t -1) = φ m i (t)
w φ • |φ m i (t)| • x m i,j (t) ≤ w avail i,j (t) ∀i, j, t.
(5.3)

Since link e i,j is bounded by the data bandwidth capacity on all system execution time:

m∈M t∈T w φ • |φ m i (t)| • x m i,j (t) ≤ W i,j ∀i, j.
(5.4)

5) Capacity constraint of data movement link:

In G, each link e j,j may have a capacity constraint as data bandwidth routing constraint. Equation (5.5) ensures that moving intermediate data dependencies is limited by the available amount of data bandwidth allocated on link e j,j at time slot t:

m∈M a r i ∈A w φ • |φ m (t) -φ m a r i (t)| • x m j,j (t) ≤ w avail j,j (t) ∀j, j , t.
(5.5)

Since link e j,j is bounded by the data bandwidth capacity on all system execution time: 

m∈M a r i ∈A t∈T w φ • |φ m (t) -φ m a r i (t)| • x m j,j (t) ≤ W j,
C(w j,j ) = i∈DC j =j j,j ∈DC m∈M t∈T |φ m (t) -φ m a r i (t)| • x m j,j (t) • w φ • c w φ (5.13)

12) Objective function:

The objective of the intermediate data placement problem is to find, for a given set of dependency flows x m i,j (t), a set of destination datacenters that can place them to minimize the aggregate cost of transferring, storing and moving intermediate data dependencies. This can be expressed using following expression: M inimize (C(w i,j ) + C(s j ) + C(w j,j ))

(5. 14) The goal of solving data-task workflow placement as the minimum cost multicommodity flow problem is to minimize equation (5.14) under the constraints of equations (5.1) to (5.13) can be formulated as a Linear Program (See Problem 2), which is optimized with respect to flows x m i,j (t). Under this formulation, problem 2 is a LP model and is thus polynomial. However, the optimization is carried out with respect to flows x m i,j (t) that are bounded and constrained as a result of the amount of intermediate data dependencies φ 

Minimize

C(w i,j ) + C(s j ) + C(w j,j ))

Subject to: 

j∈DC x m i,j (t) - j∈DC x m j,i (t -1) = φ m i (t) ∀m, t, i 0 ≤ φ m a r i (t) ≤ x m i,j (t) ∀i, j, a r i , m, t m∈M w φ • |φ m i (t)| • x m i,j (t) ≤ w avail i,j (t) ∀i, j, t m∈M t∈T w φ • |φ m i (t)| • x m i,j (t) ≤ W i,j ∀i, j m∈M a r i ∈A w φ • |φ m (t) -φ m a r i (t)| • x m j,j (t) ≤ w avail j,j (t) ∀j, j , t m∈M a r i ∈A t∈T w φ • |φ m (t) -φ m a r i (t)| • x m j,j (t) ≤ W j,j ∀j, j i∈DC x m i,j (t) ≤ φ m i (t) ∀j, m, t m∈M |φ m i (t)| • x m i,j (t) ≤ s avail i,j (t) ∀i, j, t m∈M t∈T |φ m i (t)| • x m i,j (t) ≤ S j ∀i, j i∈DC x m ssource,i = j∈DC x m j,s sink ∀m ∈ M C(w i,j ) = i∈DC j∈DC m∈M t∈T |φ m i (t)| • x m i,j (t) • w φ • c w φ C(s j ) = i∈DC j∈DC m∈M t∈T |φ m i (t)| • x m i,j (t) • c s j C(w j,j ) = i∈DC j =j j,j ∈DC m∈M t∈T |φ m (t) -φ m a r i (t)| • x m j,j (t) • w φ • c w φ x m i,j (t)

Intermediate data placement in the case of inter-job dependencies

The intra-job intermediate data dependency placement is compared to the solution of the SPL_LP approach, and requires the placement of amount of intermediate data dependencies into a single destination datacenter. In order to deal with this case, a naive greedy solution considers an integer commodity of dependency component m from different sources as a single source flow unlike the SPL_LP approach that tolerates multiple source of dependency component m independently when solving the problem.

Under the unsplittable solution, a commodity is never split along multiple paths during the placement decision. Furthermore, the greedy approach applies a routine procedure in specific graph G p , and assume that the minimum demands are less than or equal to the maximum capacity of the nodes in graph G p [START_REF] Asano | Experimental evaluation of approximation algorithms for the minimum cost multiple-source unsplittable flow problem[END_REF]. The latter involving less connection, the local search of the optimum on a specific graph that reduces the search space accelerates the execution time of greedy solutions. As such, a greedy optimization framework is proposed in this section to represent the placement problem of inter-job intermediate data dependencies.

Then, we develop an efficient greedy algorithm based on the proposed optimization framework, and analyze the time complexity of the proposed algorithm.

The greedy optimization framework

The basic idea behind the proposed framework is to reduce the problem to a minimum 

) p ) = u(dc i (φ m a r i ) p , dc i (φ m ) p ) = |φ

Greedy heuristic "UNS_GREED_HEUR" algorithm

This section proposes a greedy heuristic algorithm named UNS_GREED_HEUR for the minimum cost inter-job intermediate data dependency placement problem through the re- Let S dc j ,min be the minimum storage capacity of destination datacenter dc jp on a network flow graph G p , and φ m max the largest dependency component generated from virtual source datacenter node dc(φ m ) p . As storage resources are scalable in a flow graph G p acting as cloud environment, it is realistic to assume assumption |φ m max | ≤ S dc j ,min from the construction of the flow graph G p . Since a splittable exact algorithm is a relaxation of the unsplittable heuristic algorithm, we assume that a feasible solution for the splittable exact algorithm is fractional feasible flow f 0 that satisfies all demands of dependency component φ m . Since all dependency components are known a priori, so is their generation order. Hence, the UNS_GREED_HEUR algorithm adopts an orderly greedy method and starts with the initial placement and works in steps. At the end of each step, it outputs a set of destination datacenters and transfers intermediate data dependencies to that destination datacenters, considering a minimum transfer and storage cost. As the greedy algorithm gives sequential placement solutions, there is no congestion problem on the different dependency components sharing links. Therefore, the greedy algorithm just takes care of the integer dependency component placement (bandwidth capacity is shared between the flows of a single dependency component at time slot t) to their destination.
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The UNS_GREED_HEUR algorithm execution on a network flow graph G p :

Step 1. Let f (φ m ) be the dependency component flows for all dependency intermediate data-task flows

a r i ∈A f (φ m a r i
) with the minimum total storage cost from s source to s sink . Flows f (φ m ) route dependency component commodities φ m a r i from different virtual source datacenter nodes connected from source node s source to their destination datacenter nodes dc j (φ m ) p , and the latter being connected with destination node s sink . A set of dependency component commodities m∈M φ m are routed to s sink in graph G p according to ascending order of their respecting size as dependency component demands:

|φ 1 |, |φ 2 |, ..., |φ k |, whith φ 1 ≥ φ 2 ≥ φ 3 ≥ ... ≥ φ k . Let L φ = (φ 1 , φ 2 , .
.., φ k ) be the dependency component list.

Step 2. Start with the first dependency component by selecting it from the list L φ .

The algorithm scans each dependency component value φ m a r i (t) in G p to find the possible path which routes the selected dependency component flow f (φ m ) along each link (dc(φ m ) p , dc jp ) in G p that satisfies the flow conservation in G p i.e from any nodes dc p , dc(0

) p ∈ DC p \ {s source , s sink }, these is dc(0)p∈DCp f (dc p , dc(0) p ) = dc(0)p∈DCp f (dc(0) p , dc p ).
Step 3. For each solution of dependency component flow f (φ m ), find the shortest path noted ShP φ from s source to s sink in G p according to the total minimum storage cost, Step 4. Repeat the sub-procedure of step 3 until L φ ←-∅ and carry the largest flow values iteratively. Then, restore these shortest paths including the optimal cost and denote for each ShP φ the pair < φ m , dc j > corresponding to graph G.

Time complexity

To build network flow graph G p for the greedy framework optimization, two steps are 

Performance evaluation

This section gives an overview of the simulation, evaluation conditions and settings of the proposed algorithms. A dedicated simulation program has been developed to conduct the performance assessments of the UNS_GREED_ HEUR algorithm for the dependency intermediate data placement problem and compare it with the SPL_LP algorithm, random and uniform strategies, named RANDOM_HEUR and UNIFORM_HEUR respectively. The RANDOM_HEUR uses the data placement strategy as in default Hadoop scheduler [START_REF] Da | Survey on frameworks for distributed computing: Hadoop, spark and storm[END_REF].

It is based on the idea that, upon the placement, the algorithm randomly selects a datacenter to host the intermediate data until its capacity is exhausted and then selects another one (random capacities and random costs). The UNIFORM_HEUR is based on the uniform storage capacity of the distributed datacenter upon intermediate data dependency placement decision (balanced capacities and variable costs). This data placement strategy excludes the storage requirements as in [AJB11, YYL + 12, RLZW16, ZXZ + 15]. Subsequently, the performance evaluation overall intends to present relevant comparisons between the solutions found by the UNS_GREED_ HEUR algorithm with the optimal ones found by the SPL_LP algorithm in terms of performance metrics as optimality, scalability and convergence time.

Additionally, a set of simulations have been reserved to compare the federation algorithm with the heuristic solution. Finally, the section concludes and comments the obtained simulation results.

Implementation details

The proposed UNS_GREED_HEUR solution is evaluated through a C++ language implementation using standard libraries with the g++ GNU compiler, version 2.30. The SPL_LP algorithm is implemented with IBM ILOG AMPL and solved optimally using We can see that the arrival rate of the intermediate data is lower then their dependencies to real-like driving big-data workflow situations. In addition, the simulation test are conducted for 48h in order to validate the need of the UNS_GREED_HEUR algorithm and to estimate the probability to have a good solution for the intermediate data dependency placement problem.

We also considered both capacity and cost of cloud infrastructures, and among other things, the storage space capacity of the datacenters which are randomly set from range 

Simulation results

In this section, we first present the performance evaluation result of the proposed algorithms (splittable and usplittable) regarding the effectiveness of the two solutions against comparison scenarios. Second, we expose the comparison results between the federation and heuristic algorithms (ExactFed_BDWP and UNS_GREED_HEUR). To this end, we study the optimality of the UNS_GREED_HEUR algorithm in terms of the total storage cost ratio. Finally, we explain the results of the scalability and the convergence time of the UNS_GREED_HEUR heuristic, and the limit beyond which the SPL_LP and Ex-actFed_BDWP algorithms become unfeasible for scaleable cloud infrastructure.

Impact of the amount of routed intermediate data on the performance of unsplittable and splittable placement algorithms

First we investigate the performance of UNS_GREED_HEUR and SPL_LP algorithms with the comparison scenarios, and weighed them with the total storage cost which they induce. For the specific needs of this simulation, we vary the amount of intermediate data that must be placed from 100 to 1000 GB with an increment of 100 while the number of datacenters DC is set to 50.

To continue to appropriately analyze these experiences, we reflect the concerns of dependency parameters on the behavior of the proposed algorithms. In this case, each solution found in the algorithms is a mean of the results obtained by varying dependency parameters rithm achieves a nearly optimal storage cost of $160, which is lower than the costs of the RANDOM_HEUR and UNIFORM_HEUR algorithms (43% and 12% respectively). Clearly, the gap between UNS_GREED_HEUR and UNIFORM_HEUR algorithms is very small since the UNIFORM_HEUR is independent of the capacity of cloud infrastructure, so the cost at time slot within the datacenters contrast within the placement decision.

Figure 5.6 depicts the curves of the total storage costs of the algorithms by increasing the simulation time. In this instance, the obtained result of the total storage cost is the aggregation of the previously calculated costs during the same simulation (continuous placement).

The lengthening of simulation at time slot 48 while the number of datacenters DC is set to 50 makes the total storage cost of algorithms UNS_GREED_HEUR, SPL_LP, RAN-DOM_HEUR and UNIFORM_HEUR to $4900, $3300, $7000 and $5400 respectively. Typically this means that the cost of algorithm UNS_GREED_HEUR is 10% and 42% less than those of UNIFORM_HEUR and RANDOM_HEUR algorithms, while the result of SPL_LP algorithm as expected remains the best total storage cost. These results show that the uni- routing is limited by data bandwidth w avail i,j (t) and w avail j,j (t) since the bandwidth capacity is shared by all dependency components in the SPL_LP algorithm. In contrast, with the data bandwidth capacity defined in the UNS_GREED_HEUR algorithm that is shared by a single dependency component. However, in the SPL_LP algorithm, the amount of placed intermediate data is less in comparison with the UNS_GREED_HEUR solution, because it expands the search space for the exact solution since it is based on the simplex method.

Thus, the UNS_GREED_HEUR algorithm handles large datacenter instances for which the SPL_LP algorithm has more difficulty to find solutions as an amount of intermediate data placement as regard to the lower total storage cost.

Impact of dependency parameters on the performance of unsplittable and splittable placement algorithms

In this section, we study the impact of dependency parameters α and β on the performance of unsplittable and splittable placement algorithms in terms of optimal cost. Since the types of intermediate data dependency that are processed by the two proposed algorithms are different, we need a variation of a quantitative value to compare the proposed algorithms for achieving a useful analysis and allowing optimal cost to the unsplittable placement solutions to be more efficiently identified. For this purpose, interval values are considered to linearize the two types of dependency. When dependency types diverge (in arguing the amount of intermediate data dependency represented by α in correlation with that represented by β ). Furthermore, assessment scenarios of the proposed algorithms correspond to varying dependency parameters (α, β) pair values. Simulation results according to the following pair ranges of (α, β)= (0.1, 18), (0.3, 14), (0.5, 10), (0.7, 6), (0.9, 2) are reported on figures below, keeping the value of α to 0 and with same dependency values β for the UNS_GREED_HEUR algorithm while the number of datacenters is set to 50.

Figure 5.8 depicts the best optimal cost achieved by the objective function for SPL_LP and UNS_GREED_HEUR solutions. The UNS_GREED_HEUR algorithm performs very well close to the optimal one and achieves a cost of $3000 at time slot 48 that is near to Therefore, this has a direct impact in the reduction of transfer, storage and movement costs for both algorithms. In the continuity of the comparison between unsplittable and splittable solutions, Fig. 5.11

shows the case when the amount of movements of intermediate data dependencies increases more than half (α = 0.7) with a growing volume of intermediate data dependencies (β = 6). This gives a total storage cost of $3800 and $5800 respectively for SPL_LP and UNS_GREED_HEUR algorithms. It can be seen that the total storage cost of the two algorithms dependents on the amount of intermediate data dependencies. This validates our analysis of the results discussed above (Figures 5.8, 5.9 and 5.10). Fig. 5.12 shows a real compromise in which the highest total storage cost is found for both algorithms. The total storage cost reaches $4200 and $7200 for SPL_LP and UNS_GREED_HEUR algorithms respectively at time slot 48, since the amount of intermediate data dependencies that transit between destination datacenters is significant (α = 0.9) for the SPL_LP algorithm (defined by variable x m j,j (t)). In contrast, the UNS_GREED_ HEUR algorithm processes more intermediate data dependencies grouped onto two clusters. In addition, the same capacity values were considered for each solution found with the different values of α and β. Therefore, it has less opportunity to find datacenters that have the capacity to allocate those large clusters and at the same time offer a better cost. This influences considerably the search for the optimal result which is a real compromise for both unsplittable and splittable algorithms.

Figure 5.12 -UNS_GREED_HEUR heuristic versus SPL_LP exact solution for the total storage cost when α = 0.9 and β = 2.

The performance of the UNS_GREED_HEUR algorithm as compared to the SPL_LP fractional optimal solutions in terms of total storage cost is represented as a cost ratio between the cost delivered by heuristic algorithm HEU R which is a greedy approximation approach for the unsplittable intermediate data dependency placement problem, and the fractional optimal solution F RAC_OP T provided by the simplex method to the problem of splittable variant of the placement. The cost ration of the heuristic HEU R is = HEU R F RAC_OP T . The cost ratio of the different curves above (Fig. 5.8 to 5.12 ) is reported in Table 5.2 when the number of datacenters varies from 5 to 50.

It can be seen that the cost ratio of the UNS_GREED_HEUR algorithm is no more than 1.85. Indeed, for simulated instances in the ranges from 5 to 50 datacenters when dependency parameter pairs (α, β) = {(0.1, 18); (0.3, 14), (0.5, 10)}, the cost ratio of the heuristic algorithm performs close to the optimal solution and does not exceed 1.25, 1.42 and 1.52 respectively for each pair in fairly adverse conditions. However, in the range from 5 to 50 datacenters when dependency parameter pairs (α, β) = (0.7, 6), the heuristic algorithm encounters some difficulties in finding an optimal solution. Thus, the cost ratio of UNS_GREED_HEUR algorithm reaches 1.81. Mind that, in the UNS_GREED_HEUR algorithm, we assumed the feasibility of the solution by scaling datacenter capacities, thus there is solution to the problem when β = 2. The cost ratio of the UNS_GREED_HEUR algorithm in this case reaches 1.85, which diverges considerably from the optimal solution, as a condition for finding any solutions that match optimal ones when: α ≤ 0.5 and β ≥ 10.

Even as well, if dependency types are well identified, it is more difficult in these cases to find the best cost ratio meeting the dependency restrictions. Indeed, each proposed algorithm responds differently to the dependency requirements as well.

We also considered special cases which are not reported on Table 5.2, when dependency parameter pairs are set from a range of (α, β) = (0.1, 1), (0.1, 2), (0.9, 19), (0.9, 18). These parameter values are the most extreme and contradictory cases, in the sense that for dependency pairs (0.1, 1) and (0.1, 2), the SPL_LP algorithm finds a solution with an adjustment of time (beyond the days) but could not find an optimal solution, and for the latter cases (0.9, 19) and (0.9, 18), this does not reflect the correlation-type of intra-job dependency.

We conclude that the cost ratio of the UNS_GREED_HEUR algorithm depends on the value of the dependency parameters and the amount of intermediate data that increase at each time slot. In the two cases, where the dependency parameters nearly correlate (α, β) = {(0.1, 18); (0.3, 14), (0.5, 10)}, the cost ratio is more profitable. This means that the two proposed algorithms reacted well to these dependency value requirements. However, the cost ratio of the UNS_GREED_HEUR algorithm that is reported in Table 5.2 increases as dependency parameters deviate (α, β) = {(0.7, 6); (0.9, 2)}.

Convergence time of unsplittable and splittable placement algorithms

To pursue the extensive experiments, we evaluate the effectiveness of our algorithms and compare them in terms of scalability and convergence time from input parameters. For this comparison, we extend the simulation by varying the number of datacenters from 10 to 100 and by setting the amount of routed intermediate data from 100GB to 1000GB. Obviously, the values of the dependency parameters must also varying in order to better understand the behavior of the execution time of the proposed algorithms regarding to these dependencies.

Thus, the value of dependency parameters is set as specified in Sec. 5.2.2. Algorithm running times are recorded as follows. Not surprisingly, UNS_GREED_HEUR algorithm is much easier to solve than the SPL_LP algorithm. Indeed, Fig. 5. 13 shows the best convergence time for each of the proposed algorithms. The time needed to find an optimal solution when the amount of intermediate data to be hosted is 100 GB, remains very satisfactory for datacenter sizes below 10, with less than 0.075 and 0.7 seconds for UNS_GREED_HEUR and SPL_LP algorithms respectively. For datacenter sizes which is below 50, the convergence time remains fairly reasonable too, with less than 0.15 and 1.05 seconds for UNS_GREED_HEUR and SPL_LP algorithms respectively. For the latter, it slightly increases when the number of datacenters is beyond 100 (about 5 seconds).

In fact, the SPL_LP algorithm performance gradually degrades with input network topology and exponentially grows for wide range (not shown in Fig. 5.8). The following figures ( 5.14 and 5.15) show these facts. with an improvement factor in favor of the UNS_GREED_HEUR algorithm. As expected for the SPL_LP algorithm that was buildt upon the simplex method (which is based on the number of intermediate data to be fractionated and this is done for each iteration as the scale of the datacenter and links between them, meaning that the separation procedure is generally not polynomial) and even with the use of a set of dependency constraint values to limit the convex hull problem to find the optimal solutions faster from than the NP-hard problem, for an intermediate data dependency placement that goes beyond 500GB for 100 datacenters, the convergence time remains widely slow at about 7 minutes.

In conclusion, the running time of the proposed algorithms depends mostly on the cloud infrastructure topology, and slightly less on the scale of the amount of intermediate data dependencies for the SPL_LP algorithm. Besides, the change in dependency parameter values influence largely the SPL_LP algorithm performance and much less the UNS_GREED_HEUR algorithm. This validate our motivation for the use of a heuristic approach to find solutions faster even if there are bound to be approximated as reported in Table 5.1.

Federation and heuristic algorithms comparison

We emphasized in the previous chapter the lack of the scalability of the ExactFed_BDWP algorithm in relation to the growth of the amount of file dependencies, especially in the number of datacenters in the federation. The low scaling property above a given size (beyond 18 as demonstrated simulation results in previous chapter), as well as the growth of the matrix-based inter-file dependencies from the federation model, motivates for more scalable algorithms. Even though SPL_LP and UNS_GREED_HEUR algorithms solve the problem differently through the dependency requirements (intra-job and inter-job for SPL_LP and UNS_GREED_HEUR respectively, regarding to inter-file for ExactFed_BDWP), we extend the analysis for the ExactFed_BDWP algorithm by comparing its performance with the two proposed algorithms. This evaluation aims at finding the conditions that are favorable for the execution of ExactFed_BDWP algorithm. To this end, we set the necessary simulation in terms of input parameters: number of datacenters and the amount of intermediate data.

Then, we conduct the extended simulation for β value (10, 14 and 18) for both algorithms while keeping the value of α to 0.1 for the SPL_LP algorithm. The amount of dependencies is ranging in [100GB,1000GB] for each value. We adopt the similar simulation conditions as previous chapter regarding capacity and price (no I/O request and movement costs). All figures below depict the results of 15 averaged runs.

a) Convergence time of ExactFed_BDWP

The first targeted simulations consist in comparing the ExactFed_BDWP and the proposed algorithms for an amount of intermediate data dependencies varying for 100 GB, 500 GB and 1000 GB while ,the number of datacenters are ranging in [20,80]. Figures 5. 16 As suspected for the ExactFed_BDWP algorithm, that relies on the branch-and-bound method, the execution time remained the least on scale regarding to the amount of dependencies, especially for large number of datacenters, i.e beyond 40. As the problem is NP-Hard, the convergence time of the ExactFed_BDWP algorithm grows exponentially when increasing the number of datacenters and dependency size by comparing each file pair involving inter-file dependencies which greatly increases the resolution space (more than one hour in the extreme case). Indeed, the ExactFed_BDWP algorithm is an offline solution that suffers from high-time complexity and is computationally prohibitive, against the SPL_LP approach that delivers semi-online solutions with real variables in each time slot (about 13 minutes in the extreme case) and deals with a large set of clusters in routing, thus greatly reducing the research space. Thus we confirm the scalability is mostly governed by the size of the federation and the amount of dependencies in the routing.

b) Impact of the amount of routed intermediate data dependencies on the performance of ExactFed_BDWP and UNS_GREED_HEUR algorithms

To pursue the performance evaluation of ExactFed_BDWP we only compare to heuristic solutions. Indeed, we estimate the total storage cost in routing the amount of dependencies by varying their size ranging in [100 GB, 1000 GB], while the number of datacenters is set to 20. We also highlight the results obtained for dependency value β = (10, 14 and 18) of the UNS_GREED_HEUR algorithm. The obtained results are not surprising and they reflect the expected results for the ExactFed_BDWP algorithm performance. The combined simulation results on a single graph allows to verify the fairness aspect of the ExactFed_BDWP algorithm. In fact, since storage and bandwidth resources are shared in the federation, the cloud storage providers hosting datacenters commit to cooper the insourcing and outsourcing prices. The results of the ExactFed_BDWP algorithm have to be balanced either in terms of number of datacenters (as reported and observed on previous chapter) as well as in the offered price to respond to the increasing amount of big data workflow placement. This situation is widely observed in the Fig. 5.19 that illustrates that each point for the ExactFed_BDWP algorithm is linear for the total storage cost with negligible margin between each (the three curves). However, we see a somewhat larger margin (about ten dollars) between UNS_GREED_HEUR algorithm curves that depend not only on the size of the dependencies, but also on the capacity and fixed prices for each datacenter.

Conclusion

This chapter presented and evaluated an exact (SPL_LP) and a greedy heuristic (UNS_ GREED_ HEUR) algorithm for intermediate data placement while saving the total storage
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cost for task workflow processing systems across distributed datacenters from cloud storage provider. The presented solutions solve the case of intra-and inter-job dependencies including fractional and atomic demands respectively. The SPL_LP algorithm based on LP model introduces new locality constraints on the optimal placement of intermediate data dependencies so the latter can be fractionated and routed in the same physical datacenter or assigned to different destinations. In addition, the exact model is generic enough to optimize the data placement for task workflow processing in cloud environment thanks to the use of a generic objective function that combines multiple criteria such as data bandwidth and datacenter storage capability as well as a movement optimization. Despite our simple and clean formulation, the large number of datacenters and the variation of intermediate data dependency parameters as well as their localization and constraints makes it only tractable for small or medium instances, this is even greater for an unsplittable demand as the ILP model that is still NP-hard. In order to ensure the placement of inter-job dependency-based intermediate data, we developed a novel greedy optimization framework based on a heuristic algorithm which solves the problem in fast time making an assumption of an optimal fractional solution. Extensive experiments by simulations show that the greedy heuristic algorithm performs closer to the exact formulation solutions (SPL_LP and ExactFed_BDWP), and boots higher performance as compare to other heuristic scenarios acting as benchmark. We evaluated also the convergence time of the proposed algorithms that it improves by several orders of magnitude for the greedy heuristic algorithm as compared to the exact algorithm and handles the cloud infrastructure of hundreds of datacenters in practical convergence times. 

Conclusion & Discussion

The present work discloses a great niche issue in intermediate data storage management and cloud models, i.e. the cloud data-workflow management. In fact, cloud infrastructure or provider is the default solution today for managing and deploying scientific and complex data applications. More specifically, this thesis deals with the problem of placing intermediate data as a first-class citizen resulting from big data workflow-based applications, run by considering its multiple facets and levels to provide not only a specific solution, but also a generic and complete approach. To cope with the problem of intractability, we proceed to its resolution in different stepping approaches and three data workflow placement strategies were proposed while making use of different theoretical approaches. The overall goal of these approaches is to design and develop models and algorithms for intermediate data placement while considering different dimensions of the problem. These key dimensions are application needs and requirements, the adaptability of the solution, the type of cloud infrastructure model and the cost optimization. Prior to, a primary approach was considered in this thesis to take a renewed look at the problem of managing intermediate data in a more focused way. This study discussed salient features of the intermediate data access behavior, and introduced and led to a placement problem in the broadest sense for big-data workflow in cloud environment.

Our manuscript is fivefold including contributions. Hereby, we summarize them.

Chapter 1 introduced big data workflow applications in the cloud, which is the background of this research. Chapter 1 also described the research problems and objectives of our work, the key issues to be addressed and the primary structure of the manuscript. The SPL_LP algorithm achieved the best cost and slightly less on scale of the amount of intermediate data sizes regarding to varying dependency parameters. This motivated the use of the UNS_GREED_HEUR algorithm to find faster solutions even if they are bound to be approximate. The UNS_GREED_HEUR algorithm operates on cloud datacenter infrastructure topologies as a greedy framework optimization graph to reduce convergence times by several orders of magnitude as compared to both SPL_LP and Exact_Fed_BDWP algorithms.

Future Research & Orientation

During our work, we faced different complex problems related to the data workflow management problem in cloud environments. We solved some of them and included others in our future work. The potential future directions of this research include:

-The Exact_Fed_BDWP algorithm could be extended to improve convergence times.

In order to ensure this, we plan to reduce the size of the matrices containing dependency matrix and home datacenters. For large instances, binary matrix become very dense and a reduction method is necessary to compute the objective function very quickly as this confines even more the convex hull problem.

-The Exact_Fed_BDWP algorithm can also be extended to enhance storage and network resource utilization by considering a novel pricing strategy. This also allows to integrate the profit for cloud storage providers that is excluded in our approach. The storage pricing strategy must capture the time processing constraints. It must include the constraints and requirements of workflow applications execution in a shared and collaborative environment in terms of reservation plan or subscription. For example, resource providers must therefore reduce the rejection of reservations and not impose restrictions such as minimal notice periods, which reduce the effectiveness of reservations as a mean of allocating the desired resources at a desired time.

-We have validated the proposed heuristic which is an approximate solution of the SPL_LP algorithm through practical simulations. However, the UNS_GREED_HEUR algorithm can also be extended in order to have a better theoretical approximation with a guaranteed approximation ratio based on the proposed optimization framework.

In fact, it is very difficult to approximate our unsplittable problem, which means that it must be built upstream.

-Our proposed approaches are offline (ExactFed_BDWP and UNS_GREED_ HEUR)

and semi-online (SPL_LP). Among the means of making them online is to add pre- Annexe A Soit x m i,j (t) ∈ R, une quantité réel de donnée intermédiaire d'une composante de dépendance m reflétant le flux de dépendance de données intermédiaires transféré à partir d'un centre de données source dc i à l'intervalle de temps t vers un centre de données de destination dc j à l'intervalle de temps t + 1 sur un lien de transmission nommé e i,j dans le graphe G.

Résume en Français

A.5.2 Méthodologie

Afin de tenir compte de la quantité de dépendances des données intermédiaires migrantes entre les centres de données de destinations dc j et dc j , nous injectons une autre variable réel nommée x m j,j (t) ∈ R. Le but de la résolution du problème de placement des données du Big Data Workflow comme un problème de la variante fractionnaire de MCMF est de minimiser la fonction objective (équation (A.4)) sous les contraintes peuvant être formulées comme un modèle LP optimisé par rapport aux flux x M i,j (t).

M inimize (C(w i,j ) + C(s j ) + C(w j,j )) (A.4)

Selon cette formulation, le problème 4 est un modèle LP et est donc polynomial. Cependant, l'optimisation est effectuée par rapport aux flux x m i,j (t) qui est borné et contraint en raison de la quantité de dépendances de données intermédiaires φ m a R i (t) générée par une seule tâche nommée a r i (quantité atomique), cela converge l'algorithme LP en un temps non polynomial par rapport à l'augmentation de la taille de cette quantité sur de grandes instances.

Le volume de ces quantités atomiques rend le problème 4 encore plus difficile à résoudre, puisque le fractionnement des flux x m i,j (t) devient marginal. Étant donné que les données d'une composante de dépendance ne peuvent pas être traitées séparément avant que d'autre données de cette même composante générée par des tâches voisines ne soient matérialisées, le problème de la version non fractionnelle (unsplittable) est encore plus difficile à résoudre qui est NP-Difficile [START_REF] Asano | Experimental evaluation of approximation algorithms for the minimum cost multiple-source unsplittable flow problem[END_REF]. En raison de tout cela, nous introduisons une heuristique pour traiter la variante non fractionnelle (unsplittable) pour des instances à très grande échelle aves un délai très raisonnable.

Minimize

C(w i,j ) + C(s j ) + C(w j,j )) 

A.8 Conclusion & perspectives

L'objectif des travaux de recherche présentés dans cette thèse est de divulguer et de résoudre un énorme problème de niche pour la gestion de stockage des données intermédiaires des applications de Workflow dans un environnement de Cloud. En effet, l'infrastructure ou 
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  based on a Markov model to predict future intermediate data request. The whole model and algorithm were evaluated and demonstrated high prediction accuracy. The second problem that we address in this thesis deals with storage cost minimization of intermediate data placement in federated cloud storage. Through a federation mechanism, we propose an exact algorithm named ExactFed_BDWP to assist multiple cloud datacenters hosting the generated intermediate data dependency. Under the constraints of the problem, the ExactFed_BDWP algorithm minimizes the intermediate data placement cost over the federated cloud datacenters, taking into account scientific user requirements, data dependency and data size. Experimental results show the cost-efficiency of the proposed cloud storage cost model for the intermediate data dependency placement. Finally, this thesis proposes two algorithms that involves two variants of the placement problem: splittable and unsplit-table intermediate data dependency. The proposed algorithms place intermediate data by
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  Fig. 1.3 depicts a taxonomy based on usage levels that can be determined, depending on what falls under the responsibility of the provider to administrate. The resulting deployment categories providing the cloud deployment model functionalities are as follow:
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 19 Figure 1.9 -An overview of the Wordcount MapReduce job.
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 110 Figure 1.10 -An example of workflow phases of MapReduce jobs.

  Figure 1.11 -Data workflow placement issues in cloud datacenter.

  Intermediate Data Cost Model: With data volume growing and cluster scaling, managing intermediate data from different geographical locations incurs operational cost for both users and cloud storage providers. Moreover, it is inefficient and costly to store the shared intermediate data anywhere within multiple datacenters. This costly data placement lies in several aspects. First, users or collaborative researchers need a new I/O cost model that can represent the amount of shared data to be managed and placed in the cloud infrastructure taking into account their requirements. Second, being oblivious to I/O intermediate data may result in substantial unnecessary data movement cost from multiple datacenters [LSWL16, ADJ + 10]. This large-scale distributed short-lived I/O data-intensives nature of intermediate data manifests bandwidth bottlenecks because it has to be transferred in-between workflow phases. Hence, the new I/O cost model should be able to represent the total storage cost of moving and placing intermediate data in cloud datacenters, which is the amount of intermediate data to store and their complex correlation to be managed. -Intermediate Data Placement Strategy: Since at different task execution phases the intermediate data management has different requirements for data movement, the placement strategy should be aware of these data requirements before allocating the intermediate data among distributed datacenters. Even though knowing the estimated overall storage cost of intermediate data for workflow-based processing application is

  -Hadoop: To tackle the problem of I/O scheduling performance of intermediate data described above, we first propose a Markov model prediction to characterize I/O behavior of data spill access. This approach deals with intermediate data resulting from MapReduce processing in Hadoop cluster. The Markov model allows us to apply a prediction algorithm that enable to distinguish I/O intermediate data access from multiple application runs. By considering a well-defined methodology, we derive a benchmark characterizations that can be extracted from running three applications in a Hadoop cluster and that captures the I/O behavior of intermediate data files. Then, the I/O-spill characterizations are injected onto the Markov model. The study of I/O intermediate data access behavior allows to enhance the intermediate data as much regarding to their size, sources and the nature of the applications, and to position and orient our reflection to investment intermediate data placement approaches for extensible MapReduce and generic workflow applications in cloud datacenters. Proposed models and algorithms for intermediate data placement: -The first proposed algorithm is a new generic and exact model for intermediate data file placement in distributed cloud datacenters. The algorithm addresses both multicloud storage model and data placement resulting from processing workflow-based application by considering a federated storage system model characteristics including a dynamic pricing-based model for data management in multiple cloud storage 1.5. Thesis Outline 21 providers. The optimal exact algorithm (Exact_Fed_BDWP) is based on an integer linear programming model (ILP) that receives an input matrix of binary values as a dependency model for each file pair. The Exact_Fed_BDWP algorithm optimizes data placement cost in the federated cloud storage architecture when the constraints in terms of data localization, data dependency, capacity and topology of datacenters specified in the federated cloud storage model are known. Performance, fairness and scalability of the model are reported for practical instances. Despite its originality, the exact model can serve as a reference and benchmark for heuristic algorithm that will typically scale better.

  tributed big data, and they propose an approximation algorithm by reducing the data placement problem to the minimum cost multicommodity flow problem. Their solution addresses a fairly data placement respecting a fair usage of cloud services as Quality of Service (QoS) requirement of cloud provider while saving a computation and bandwidth costs. The context of their solution is closely analogue in our case study but differs mainly on the conditions and characteristics of workflow data applications and by no means disclosing intermediate data dependencies. They focus more on maximizing the system throughput in terms of data volume to be placed while saving the operational costs in the distributed datacenters. Authors of [ZGG15] propose a cost minimization problem through the joint optimization of three factors, which are task assignment, data placement and data movement for big data applications in geo-distributed datacenters. The authors use two dimensional Markov 2.3. Big Data Workflow Management in Cloud 29 chains to study data transmission and computation in order to analyze the task completion time. Based on the two-dimensional Markov chain, they propose an optimization cost model based on a mixed integer linear programming to achieve the three objectives as data chunks placement, tasks distribution and datacenters resized to minimize operational cost. The same optimization parameters are developed in [BCA12]. The authors describe a resource allocation model considering time and cost sensitive execution tasks for data-intensive applications that are executed in a hybrid cloud environment. However, these research works have focused much more on factors related to task execution time and did not address the data type, I/O cost and correlation as such which are the focus of our research context.

  Workflow-based processing systemsMapReduce and workflow-based processing systems are migrating to the clouds in order to meet a maximum requirements of scientific applications by considering the expressivity of workflows with the modesty of the MapReduce paradigm. Jobs such as ad-hoc queries and periodic batch jobs are processed by the MapReduce framework in the form of workflow phases[START_REF] Elghandour | Restore: reusing results of mapreduce jobs[END_REF], and each job in a workflow of MapReduce jobs produces intermediate data results that are stored in the container (i.e., HDFS or local file system), and are used as intermediate data inputs by subsequent jobs in the workflow. At the same time, efficiently handling complex orchestrations of theses intermediate data flows on a cloud environment raises an important challenge for data management systems.

  MapReduce application processing without referring to any specific workflow-based phases, are presented in [LHHH14, GHKS13, CPL16, ZLWC14, SHW+ 16]. In[START_REF] Chen | Tology-aware optimal data placement algorithm for network traffic optimization[END_REF], authors propose an optimization-based data placement technique to improve the performance of MapReduce tasks processing in cloud datacenters by minimizing global data locality and data access costs. The authors use a topologyaware heuristic algorithm based on an optimal replica distribution tree of distributed datacenters to network traffic reduction by considering data movement costs, but not necessarily about the data-tasks characteristics and incurring storage costs. An online optimization heuristic algorithm for a data placement problem is also presented in[START_REF] Zhang | Online algorithms for uploading deferrable big data to the cloud[END_REF] to improve the performance of the MapReduce framework processing from Internet Service Provider (ISP). It mainly focuses on minimizing the bandwidth cost bases on MAX contract pricing rules for uploading deferral big data by considering tolerance delay. The authors refrain from data access delay involving precedence constraints and do not consider the cases of data-job dependency processing in their heuristic placement algorithm. In [SHW + 16], the energy saving dimension has been raised through a data placement approach in MapReduce processing systems. The authors focus on an equitable distribution of initial input data in order to improve the parallelism of data servers, thus reducing their idleness, and optimizing their energy consumption without really reflecting the operational storage cost and/or data correlation in the data placement decision.

+ 16 ]

 16 presents a heuristic data placement algorithm. It deals with improving the workflow's execution by clustering the interdependent data-sets and distributing them intelligently onto the same datacenters to reduce data transfers. The storage cost in this work is not considered and it focuses on the cost of data re-distribution through multiple datacenters only.The same focus is presented in[START_REF] Ebrahimi | Bdap: a big data placement strategy for cloud-based scientific workflows[END_REF] to improve workflow performance by minimizing data movement across multiple virtual machines. The authors develop a generic populationbased meta-heuristic optimization strategy for the data placement. Under this optimization problem, they highlight the intermediate data dependencies obtained during workflow execution and place them under the constraint of virtual machine storage capacity in order to minimize the data set movement between virtual machines. The authors of[START_REF] Vilaça | A correlation-aware data placement strategy for key-value stores[END_REF] propose a correlation-aware data placement strategy by exploiting arbitrary data dependencies easily expressed by the social read-intensive workloads. The proposed strategy places the data dependencies on the same node to reduce the communication overhead for multi-files read operations, thus fostering a multidimensional data localityChapter 2. Big Data Management Approaches in Cloud Environmentwhile at the same time ensuring that the storage and the query load on each server remain balanced.In[START_REF] Zhao | Heuristic data placement for data-intensive applications in heterogeneous cloud[END_REF], authors establish a data placement algorithm based on data dependency clustering and recursive partitioning. The aim of the algorithm is to reduce the amount of data transmission and the time consumption during data-intensive application executions. In addition, the authors also consider a fixed data storage requirement, because of the problem of different ownership, some of the data sets may have a fixed storage location. The pursued strategy is extended with a heuristic to make frequent data movements occur on high-bandwidth channels of the entire cloud system.The authors of [YYL+ 12] elaborate a cost-effective strategy for storing intermediate data workflow in a single cloud storage provider using the Amazon-based fixed pricing. The proposed model focuses on running a scientific workflow system in a cloud and automatically decide whether intermediate data-sets should be stored or deleted in the cloud storage provider by using an intermediate data dependency graph from the data provenance. The authors also consider the tolerance of computation delays for the relevant data processing. The works presented in [SMM + 16] propose a local optimization model to minimize the storage cost saving of data processing in cloud computing. The authors consider only some of all data that are stored in the cloud without considering their correlation. In addition, most of the allocation strategies for data workflow applications in clouds do not remove intermediate data sets before the end of workflow system processing. This considerably differs from the approaches presented in [SMM + 16] and in [YYL + 12]. The authors of [YYLC10] present a matrix-based k-means clustering strategy for data placement in a scientific cloud workflow. The authors stress the movement of large volumes of data that can be automatically allocated among datacenters based on the data dependencies. The optimization model proposed in this work is done at the data movement level only and the authors do not define a storage cost optimization during the intermediate data placement decision. While a data workflow execution strategy may be used to meet dependency constraints, the approach proposed in [YYLC10], does not take into account the type of dependency in order to further optimize the data movement and storage cost.A k-means heuristic algorithm to cluster a data dependency from a data-intensive scientific workflow execution is also presented in[START_REF] Wang | Data placement and task scheduling optimization for data intensive scientific workflow in multiple data centers environment[END_REF]. The authors deal with the data transfer problem which leads to low efficiency in actual workflow applications for scientists.The k-means algorithm consider data size and data dependency, and initially place them into the same datacenter at the workflow preparation stage, and then during the execution of the scientific workflow, they adopte a task replication strategy to reduce the volume of intermediate data movement.

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 I/O Behavior of Intermediate Data in MapReduce-Hadoop Processing 37 3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 Training Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Prediction Algorithm for interfered spill requests . . . . . . . . . . . . . . 42 3.4 Experimentation Assessment & Validation . . . . . . . . . . . . . . . . 44 3.4.1 Trace-driven assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4.2 MapReduce-Hadoop applications generating intermediate data sets . . . . 44 3.4.3 Proposed approach validation . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1 Introduction Parallel programming models [dSM15] such as MapReduce, Spark, Storm and Dryad are widely accepted for big data analytics in a distributed and parallel environment. MapReduce has received much attention and adoption since its introduction by Google. It generates numerous intermediate data which are produced as an output from one phase and used as an input for the next phase. These intermediate data are important for the completion and performance of parallel programs in cloud computing as a distributed and parallel environment. Intermediate data are stored in the local disks and fetched remotely by the tasks of the next phase. Since the total computation time for big data analytics depends on the amount of intermediate data on disk, its accurate and access behavior analyses are required and are obviously of the highest importance. 36 Chapter 3. Intermediate Data I/O Interference Prediction from Co-scheduled Tasks in MapReduce-Hadoop Processing Meanwhile, cloud storage systems use modern servers that contain multiple disk drives and memory buffers. These servers are typically powerful with many CPU cores. Therefore, there is a high potential of activity that can be executed in parallel in each of these servers. Hadoop cluster, an open-source implementation of MapReduce, is often dominated by I/O bounds, particularly when reading and writing operations conducted on disk storage that are limited by CPU resources. Disk storage is either shared by multiple processes or by a number of parallel tasks (or jobs) which usually alternate between computations and I/O phases. A MapReduce application consists in many map and reduce operations involving reading and writing data on distributed file systems and local disks. Each map operation has a memory buffer used to store its intermediate data. The buffer size can be tuned by changing the Hadoop configuration. Each time the memory buffer reaches a certain threshold, a new intermediate file is created. In order to use multi-core systems, Hadoop schedules multiple operations to run concurrently on each server. In this case, I/O resources of a server are divided among those co-scheduled tasks and are therefore exposed to I/O contention. As such, MapReduce application performance may degrade in unpredictable ways under I/O contention, even when the total utilization of the resources is low. This issue is particularly pronounced when multiple map processes are writing intermediate data files concurrently on the shared disks. This overlapped accesses pattern can increase I/O read cost at a later time during the same job processing. The need for effectively handling these intermediate data has become a major issue. Moreover, I/O intermediate data access has complex and irregular I/O patterns, mediated by multilevel I/O, notably file system policies and I/O scheduler optimized for simple sequential accesses. Therefore, foreknowledge of I/O intermediate data access behavior for the underlying layers in the I/O stack is hardly possible. Hence, the main goal of this contribution is to predict the access behavior of intermediate data in MapReduce applications using a statistical Markov model. The intermediate data I/O interference prediction can significantly impact on application performance improvement. This model is based on the spatial locality of intermediate data blocks and it analyses the spill file sequentiality. The present work also proposes a prediction algorithm based on a Markov model for choosing sequence from the transition probability and predict future intermediate data requests. To validate the prediction model, a large number of observations from Hadoop servers have been done to extract I/O traces. Since the Markov model can discover intermediate data behavior at a low level without requiring the semantic of the information available at a higher level, the proposed simulator uses trace-driven simulations to generate I/O intermediate data from the Markov chain. The solution provides the best decision for the I/O optimization in MapReduce processing based on the prediction of intermediate data 3.2. I/O Behavior of Intermediate Data in MapReduce-Hadoop Processing 37 interferences. The remainder of this chapter is organized as follows. Section 3.2 outlines the I/O issues for MapReduce intermediate data processing. Section 3.3 presents the proposed Markov prediction model and the algorithm for predicting intermediate data access behavior on disk

  Fig. 3.1 illustrates the MapReduce processing with the two phases: the map and the reduce.
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 31 Figure 3.1 -Map and Reduce functions.

  situation can occur because of the variance in the task execution time caused by the I/O contention. This hugely influences intermediate files that are written and read by the same application, so that any contention during the writing phase affects the performance of reading those files at a later time [GGY + 13]. However, when multiple spill files are writing concurrently, fragmentation can occur for those files in many file systems, and therefore can reduces performance during read phases. So, being able to predict when spill files interfere and how this influences the spill segment size is an important part to understand and predict I/O behavior of intermediate data patterns. Once the interfered spill segment is characterized, the I/O optimization can find an interest in this prediction by revising the sort and merge phases, together with a better control of the intermediate data placement and scheduling strategies.

Figure 3

 3 Figure 3.2 -Methodology overview depicting steps for characterizing interfered future spill segments on map tasks accessing the same disk concurrently.

  where ι is a vector of 1 of m size. In the context of I/O spill from MapReduce applications, this work attempts to learn the Markov chain transition probabilities which represent the probability of switching between I/O block of map operations. Each observation in R is considered as an independent sample from an unknown distribution. R takes into account the spatial locality of the I/O block traces predicting their future values in the future time epochs from their current values.

  The obtained traces are filtered to keep events of map operations and their I/O spill characteristics. Each map operation is represented by its parameters (I/O Tasks in MapReduce-Hadoop Processing spill trace). From these parameters, the expected transition is computed between each state as defined in Equation 3. Each transition captures the I/O spill behavior through the identification of the segment block size and the inter-distance between segment spill requests. Before launching the harvest of traces, values of the mapreduce.task.io.sof t.f actor parameter of Hadoop are set to 0, specifying the number of I/O spill segments on disk to be merged at the same time. Thereby, this configuration allows to detect I/O spill segments sequentiality for each map operation before the I/O spills are merged in the merge phase on the local intermediate disk. However, a sequential operation or a request arrival is defined as one whose starting address immediately follows the last address in the previous request defined by the sector physical address and the size of the spill segment. The same idea was used in [LSD+ 14] to identify the sequentiality of spill segments. For each metric values change, another Markov chain is assigned and incrementally updates its parameters to reflect the characteristics of the most recent spill segment block. For different system metric values, the Markov chain is independent at time t.Therefore, for the different parameters, a single Markov chain is generated. The update is done on another chain and this should not, under any circumstances, be influenced by environment parameters change (such as Hadoop-MapReduce platform version). However, learning from different successive observations on the same execution is done on the same Markov chain.
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 15 Return x Seqk , x Interf k ;The information from the transition probabilities cannot be used alone to detect these interfered I/O spills. There is a need for a prediction algorithm that predicts the next interfered I/O spill. The prediction algorithm requires indexing into an appropriate state row of the probability matrix and uses the state I/O spill size. Accordingly, our priority is to experience and know the I/O sequentiality inside the spill file and try to control the expected number of sequential I/O spill from the same map operation.Our prediction algorithm is based on a greedy prediction since it chooses a sequence of I/O spill by repeatedly finding the most likely transition from current state x (any transition probabilities that are different from 0). By selecting all combinations from the transition probabilities, the proposed algorithm expects to control the maximum number of errors generated during the learning sequence. To achieve this, the algorithm compares each of the future access from the current state of a map task and collect non-sequential I/O spill of parallel map tasks. The stop condition on training sequences for each state is achieved when the total estimation of the one-step transition probability decreases up to a probability of 0. Tasks in MapReduce-Hadoop Processing Therefore, prediction results provide an I/O spill sequence that can be interfered and used as a request vector in x Interf k . The prediction algorithm is presented in Algorithm 1. Table3.1 shows the input/output of Algorithm 1. From the current I/O spill, the algorithm positions itself on the right row in the transition probability matrix. It browses all the columns by finding a sequence with a transition probability differing from 0. The prediction algorithm tests whether future accesses of the current I/O spill are on the same task or not and checks the size of the current state.
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  /O traces are captured using blktrace tool. The simulation is performed by a C++ program implementing Markov chains. In our experiments, recovered I/O traces are partitioned into two data sets: training intermediate data and current intermediate data. The training of intermediate data is used to build the Markov model, and the current intermediate data sets are used to assess the prediction accuracy of the Markov model and the prediction algorithm. Each trace file correlates with one disk behavior which has an entry for each accessed I/O spill. Training traces consist of record pairs (I/O size, LBA) of I/O spill, the PID, the process name, the thread-id and arguments. The simulator reads the trace file line by line and the Markov program takes the training intermediate data as an input parameters that contains I/O block issued by parallel map operations from the asynchronous flush calls. The simulator then creates distinct state from the record pair and sends the state to the transition probability function to compute the state transition.

  paradigm and included as a sample of representative of many map text manipulation tasks and reduce aggregation tasks in Hadoop platform. Each map task takes a line as input and breaks it into word emitting a < key/value > pair for each founded word and 1 as a key, i.e., < word, 1 >. Then, each reduce task sums the counts for each word from map tasks and perform a global combine to generate the final result emitting a single < key/value > pair of the word aggregation as a single record. A random text writer pattern is used to generate Tasks in MapReduce-Hadoop Processing input data in Hadoop-MapReduce environment. K-means clustering is the most important online and iterative algorithm for data mining methods. We used it to partition n observations into k clusters with the MapReduce framework. In the first step, the map task read the sharing input data and compress the original data set into smaller clusters. Each map tasks then creates k initial clusters which are later sent to the reducer. A reduce task merges the clusters from each mapper and recomputes the centroids of all k clusters. Random data set are used to the clusterisation. Terasort samples the input data estimating their distribution and performs a data partitioning using MapReduce to sort data into a total order. A 35840 MB data output size was generated by TeraGen instead of the 1 TB of data for the entire TeraSort sorting charge, which is sufficient to observe significant intermediate data I/O access.

  This section evaluates the prediction quality of the Markov model and Algorithm 1. The assessment concerns the prediction accuracy of I/O spill size with respect to the model size of a single step, and the number of sequential/interfered I/O spill predicted by Algorithm 1.Therefore, the chapter introduces two performance evaluations. The prediction accuracy metric is the ratio of the number of correct state model predictions labeled "Correct Seq/interfI/O" and the current I/O spill request labeled "Current I/O Spill" or current intermediate data.

Fig. 3

 3 Fig. 3.3 depicts the fraction of the predicted state measured model size that exactly matches the current I/O spill during the processing of MapReduce applications. Map tasks generate hugely intermediate data of variable size while it is different for each application. The choice on the state size is the physical I/O size of spill file that has proved to matching well. High accuracy is showed for each model size of Terasort and Kmeans. This accuracy is near constant for the majority of I/O spill size ranging from 82% to 95%.

Figure 3

 3 Figure 3.3 -Prediction accuracy result of I/O spill size (in KB) for the model size.

Figure 3

 3 Figure 3.4 -Prediction accuracy result of Algorithm 1.

Fig. 3 .

 3 Fig. 3.4 describes the result of MAPE for the prediction Markov model. The obtained result randomly used 8 data sets to generate intermediate data. Hadoop uses random intermediate data placement on each disks having an available capacity. As expected, MAPE is linear with respect to the number of used disk traces. At a given level of number of disks,

Figure 3

 3 Figure 3.5 -Prediction accuracy result of Algorithm 1 based on the number of I/O request observations.

Figure 3

 3 Figure 3.6 -Prediction accuracy of Algorithm 1 for processing applications from sequential and in parallel.

  need has become apparent to process intermediate data access patterns as a first-class citizen for big data workloads. To achieve this, our efforts have been invested to build a prediction-based model on statistical Markov chain which can predict I/O behavior of intermediate data access in Hadoop-MapReduce processing system that has been adopted by several academic and industrial organizations. A methodology described in this work outlines the step to characterize I/O from three synthetic workload benchmarks across Hadoop platform and the construction of the Markov model. The proposed model uses knowledge about intermediate data files by tracing I/O accesses on lower-level shared disk. Using I/O block of spill files shows good construction of the model sizes. Our results have shown promise high-prediction accuracy of the proposed algorithm applied to generate predictions for interfered segment spills through the number of observations used that influences far the quality of the algorithm. In addition, by studying detailed behavior of various representative intermediate data I/O access behaviors of Hadoop-MapReduce applications, the ultimate goal of the proposed prediction model is to improve intermediate data placement and I/O scheduling from data-intensive processing applications. This model can help to achieve that by using the information it provides to guide intermediate data placement and improve I/O scheduling decisions. Based on the observation and the prediction results, one can observe that for all of the intermediate data I/O intensive applications in Sec. 3.4.2, there are clear differences from prediction results, consequently different behavior for each such data-intensive application. This vary depending slightly in a non-linear way for each experiment application: the circumstances of the execution environment such as hardware parameters that influence data access behavior, size of generated intermediate data, the type of application, data placement and scheduling as well as the number of parallel tasks. Besides, intermediate data I/O performance in MapReduce-Hadoop refers to the rate at which the data are read and written from buffer memory to disk. And in parallel, one can represent the inter-spill requests as a kind of strong relationship or placement behavior of these two files. In the context of workflow big data processing, one can generalize this situation as the intermediate data transfer rate between the nodes in a cluster or in a distributed cluster such as Cloud datacenters. These circumstances prompt us to invest in methods and techniques for workflow data placement that are more elaborate in such a heterogeneous and distributed environment. More specifically, inter-file dependencies placement algorithm for multiple workflow-based tasks are the subject of the following contributions.

  data during the execution of workflow instances. This leads to the generation of a massive amount of intermediate results as data dependencies need to be hosted and managed over the cloud infrastructure. Handling large intermediate data dependencies in a cloud infrastructure is important for such operations that need a long time for execution since those dependencies 1. Examples: OpenStack-NovaOrchestration (https://wiki.openstack.org/wiki/NovaOrchestration), Apache Oozie (http://oozie.apache.org), Azkaban (azkaban.github.io), Cascading (www.cascading.org).54 Chapter 4. Storage Federation Aware Big Data Workflow Placement need to process intermediate results from different storage locations. As some intermediate data are too large to be relocated efficiently. This operation must take into account the dependencies between intermediate data in selecting their locality. Furthermore, scientific users share important intermediate data dependencies for cooperation and reproduction of new intermediate results. This led researchers to collaboratively work with other professionals or scientific users around the world and to handle and share intermediate data workflow enormously larger in size than before. By offering storage services in several geographically distributed datacenters, cloud infrastructures have enabled big data workflow applications to offer low-latency access to scientific user data.However, the ever increasing volumes of scientific intermediate data address the need to interpret, move and store them more efficiently to the most appropriate datacenter. One fundamental issue in dealing with such scales of scientific user intermediate data results for a workflow application is how to efficiently place them in a distributed cloud datacenter while ensuring the dependency and scalability of the placed data such that the total storage cost of the cloud provider is minimized. On another note, cloud storage providers offer geographically distributed datacenters providing several storage classes with different prices. They can collaborate by sharing their respective resources and dynamically adjust their hosting capacities in response to their data applications. An important problem faced by cloud users is how to exploit these storage classes to serve an application with data requirements at minimum cost. A federation of existing cloud storage services supports the scientific users with a unified and combined view of storage and data services across several providers and applications. Recently, several studies have taken advantage of a variety of pricing plan of different resources in a cloud storage federation, where the cost can be optimized by trading through a negotiation storage vs. compute and network resources as well as cost optimization of data distribution across cloud providers [RHZ15, MVML12, VSPD + 13, BKT13] (here, the profit improvements is disregarded). None of these studies investigated the trade off between network and storage cost to optimize cost of data workflow placement across federated cloud storage provider. Our study is motivated by these pioneer issues as none of them can simultaneously answer the aforementioned questions (i.e., placement and cost saving of data workflow in cloud storage federation).

  and unnecessary correlation) of these intermediate data for making decisions, and reallocates intermediate data requests with dependencies in a single datacenter to reduce the total storage cost. This chapter is organized as follows: Sec. 4.2 describes the system model based on the cloud storage federation scenario with target assumptions. Based on this system model, Sec. 4.3 derives an exact optimization approach for allocating intermediate data on federated Cloud storage. Sec. 4.4 shows and discusses the simulation results obtained with a comparison scenario. Finally, Sec. 4.5 concludes the present chapter and presents some future work.

  .1 illustrates the assumed federated datacenters D from providers that are geographically distributed providing on-line mass storage to the scientific community collaborations for scheduling a set of intermediate data noted ID i ,. i being a single file with its respective size noted size i and d and d' indicate home datacenters where intermediate data are generated by a workflow instance and are temporarily stored. The set of federated datacenters D are aggregated and interconnected in the form of an inter-cloud. They use native peer-to-peer communication links to shift intermediate results from a busy disk entity to those with an available capacity, efficiently use storage resources

Figure 4

 4 Figure 4.1 -Federated cloud datacenters scenario.

  fixed and varies according to standard on-demand cloud storage pricing plan that is based on reservation contracts or prepaid schemes[START_REF] Mazrekaj | Pricing schemes in cloud computing: An overview[END_REF]. Moreover, the maximum capacity of the storage federation QCmax k is given by the totality of storage or transfer quota offered by each datacenter. A very important point to consider during the intermediate data placement on the storage federation is a data transfer in or from other federation members. It should be mentioned that in most cloud storage services, the monetary cost of data transfer is more expensive than the data storage itself. This is an important cost factor that must be considered in our placement problem. Therefore, the transfer cost of data insourcing and data outsourcing are noted respectively by IT C k and OT C k . The outsourcing and insourcing storage and transfer costs (OSC k , LSC d , IT C k and OT C k ) are updated using equation 4.1, and depend on their available outsourcing versus local capacity and the minimum effective storage price of each generated intermediate data file.

Figure 4

 4 Figure 4.2 -Intermediate data dependency matrix.

Figure 4 .

 4 Figure 4.2 illustrates an example of intermediate data dependencies and the corresponding matrix model. Each intermediate data file i has a dependency with itself and with some other file j. So if a set of intermediate data files ID i that has a correlation with file j, this one is also correlated with the same set ID i (symmetry). Therefore, the input parameters of the data placement model are the dependency values Dep i,j that are collected in matrix DEP .

  pacities. Finding the optimal placement requires the computation of storage cost for each possible instance solution from each intermediate data placement request (input parameters) on a federated and local datacenters. The federated datacenters use a cost model and Ex-actFed_BDWP algorithm according to the data dependency to schedule their intermediate data placement requests to the storage federation.

Figure 4

 4 Figure 4.3 -Overview of data storage cost federation approach: input/output parameters.

  nario comparisons. The total storage cost evaluation of all algorithms through simulations is presented in Fig. 4.4 and 4.5. The results that show the fairness utilization of the federation are summarized in Fig. 4.6, 4.7 and 4.8. Finally, Fig. 4.9 and 4.10 depict the execution time of the ExactFed_BDWP algorithm. The obtained results on the figures below are a mean values delivered after the simulation of 15 runs including random input parameters (capacity and cost) averaged for each reported point (the confidence interval shows exact solution results with the different input parameters).

Figure 4 .

 4 Figure 4.4 depicts the results of minimizing the total storage cost of the ExactFed_BDWP algorithm with no-federation and capacity-based scenarios while the number of datacenter is fixed to 9. Simulation results (100$, 137$ and 150$ respectively for the extreme case) correspond to the aggregation of those obtained for each federated datacenter that participates and receives outsourcing / insourcing storage demands of intermediate data placement with

Figure 4

 4 Figure 4.4 -Optimal total storage cost as regard to the dependency matrix size variation (DEP ).
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 4 Figure 4.6 -Intermediate data distribution results for 6 federated datacenters.

Figures 4 .

 4 Figures 4.9 and 4.10 pursue the analysis for the ExactFed_BDWP algorithm time execution by reporting performance as a function of matrix size (1000 GB of intermediate data files) regarding to the federation size that ranges from 3 to 18 datacenters, and dependency size (obtained from the aggregation of dependency file pairs Dep i,j ) of 2000, 20000 and 200000 of dependency values (the number of datacenters is fixed at 9 for the results of Fig. 4.10).

Figure 4 .

 4 10 illustrates the evaluation results of the influence of dependency constraints (expressed in equation (4.7) and equation (4.8)) on the performance of the ExactFed_BDWP algorithm. This corresponds to the cases of: random default constraint (one could not force on the dependency constraint), splitting constraint (dependency files must be scheduled to different datacenter destinations), and strong constraint (dependency files must be scheduled to the same datacenter destinations) while the number of datacenters in the federation is set to 9.

Figure 4

 4 Figure 4.7 -Intermediate data distribution results for 10 federated datacenters.
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 48 Figure 4.8 -Intermediate data distribution results for 18 federated datacenters.

Figure 4

 4 Figure 4.9 -Execution time of the ExactFed_BDWP algorithm with the different number of federated datacenters.

Figure 4. 10 -

 10 Figure 4.10 -Execution time of the ExactFed_BDWP algorithm with the different dependency parameter values λ j i while the number of datacenters is fixed to 9.

  present chapter introduced intermediate data placement cost saving solution through a collaborative cloud storage environment. An exact federation algorithm (ExactFed _BDWP) based on an integer linear programming (ILP) model and the branch-and-bound method have been proposed to solve the problem of the inter-file placement that takes into account the storage federation characteristics. The ExactFed_BDWP schedules and places fairly intermediate data files taking into account their dependency requirements, size and cost saving over a distributed datacenter. A binary symmetric matrix is defined to represent the dependency for each pair of generated file in the same matrix, and home datacenter hosting the matrix are used to outsource intermediate data storage to the federation. The ExactFed_BDWP algorithm was tested and evaluated by the way of simulations on a set of data files generated randomly with two different scenarios. An effective and optimal solution in terms of total storage cost saving was shown by the ExactFed_BDWP algorithm against the other scenarios. The execution time of the ExactFed_BDWP algorithm increases as the size of the dependency matrix, and the number of datacenters involved in the federation. However, for small numbers of federated datacenters, the ExactFed_BDWP algorithm remains fast and achieves optimal scheduling and placement of intermediate data dependency.The convergence time of the algorithm also matters in terms of swift response to additional data placement requests since some workflow applications require the placement of large data sets corresponding to a very complex dependency among a set of files, and can thus put very stringent requirements on extended data placement. Therefore, the next chapter proposes a new efficient and scalable heuristic algorithm based on network flow concepts to solve the data workflow placement problem faster.
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 5 Figure 5.1 -The system model.

  Placing intermediate data with the same correlation to a single destination datacenter can significantly decrease the amount of data dependency movement [LD11]. This leads to consider a vector of all intermediate data files denoted by Φ M and |Φ M | its size, representing a correlations among them that are generated during the workflow phases divided into equal period of time t. These correlations, which reflect the intra-and inter-job dependencies of a set of intermediate data files, are recovered into dependency component m ∈ M . M contains all the different components of dependency that are modeled by the Directed Acyclic Graph (DAG) which takes the advantage of a topology ordering, thus defining relations among nodes [WLN + 13, LNW + 11]. Figure 5.2 depicts the DAG representing a set of intermediate data files φ | be their respective sizes. These data files have unavoidable complex dependencies that are generated by single task a r i ∈ A from job r at source datacenter dc i . In DAG, set of files φ m a r i (t) from the inter-job dependency are atomic and must be synchronized for their processing. By contrast, for the intra-job dependency, these files are deduced from a partial correlation with an asynchronous processing [SRJ + 16].

Figure 5

 5 Figure 5.2 -DAG-based model for generated intermediate data files (intra and inter job dependency) from multiple source datacenters.

c

  s j . The proportion of intermediate data dependencies φ m of a single dependency component generated from multiple source datacenters and placed separately into different locations dc j and dc j , are led to a potential dependency movement cost. For clear differentiation from the transfer cost, we assume that the cost of intermediate data movement is proportional to the number of intermediate data dependency files transmitted between datacenter destinations.

The

  SPL_LP algorithm is a LP model through the inclusion of valid conditions expressed in the form of constraints or inequalities. Through the constraints of the problem, the intermediate data placement in a directed graph G = (DC ∪ A, E) at time slot t are to route and place intermediate data dependencies φ m (t) ∈ Φ M that is considered as continuous commodity flows of dependency component m from multiple source datacenters to one or multiple destination datacenters while saving their transfer, storage and movement costs.

  single task a r i . This converges the SPL_LP algorithm into a non-polynomial time regarding to size |φ m a r i (t)| on large instances. The larger these atomic amount, the more difficult solving problem 2, since the splitting of flows x m i,j (t) becomes marginal. Since a dependency component cannot start before the intermediate data dependencies of their predecessors is materialized, the unsplittable version of the intermediate data placement problem considering all flow for each dependency component from inter-job must be sent along a single link, making the problem NP-hard[START_REF] Asano | Experimental evaluation of approximation algorithms for the minimum cost multiple-source unsplittable flow problem[END_REF]. Due to the intractability of the placement problem from inter-job dependencies, we introduce a heuristic to address larger scale instances in a reasonable time.

  cost unsplittable multicommodity flow problem with multiple dependency component sources in specific directed flow network graph G p = (DC p ∪ A p ; E p ; u; c), and deals with graph parameter c represented by cost function E → R and capacity function u: E → R The first part of the construction of the network flow graph G p (see Fig. 5.3 ) concerns the assignment of the input flows from multiple sources.

Figure 5

 5 Figure 5.3 -The first part of the network flow graph construction G p (two types of virtual dependency component nodes corresponding to three virtual dependency source datacenter nodes where four tasks are collocated in graph G.

Figure 5 .

 5 Figure 5.4 shows the representation of the generated directed flow graph G p = (DC p ∪ A p ; E p ; u; c)

Figure 5

 5 Figure 5.4 -The generated directed flow graph G p = (DC p ∪ A p ; E p ; u; c)

  i.e., c(ShP φ ) = min (dc(φ m )p,dc jp )∈Ep c(dc(φ m ) p , dc jp ). Once the shortest path ShP φ is found, set f (ShP φ ) = φ m and delete iteratively its flow values f (φ m a r i ); Define a residual capacity u res (s source , s sink ) from s source to s sink in order to decrease the flows routed in graph G p , i.e., u res (s source , s sink ) = u(s source , s sink )f (ShP φ ). Delete the routed dependency component φ m from list L φ and repeat the sub-procedure of step 2 until all flow values f (φ m a r i ) are scanned.

  needed. The first one consists in assigning each source datacenter dc j ∈ DC hosting intermediate data to its dependency component node m ∈ M , and the latter to each destination datacenter dc j ∈ DC which is capable of accommodating. The construction of G p takes 90 Chapter 5. Scalable Cloud Big Data Workflow Placement Algorithms O(M + |DC|) for the first step and O(M 2 + |DC| 2 ) for the second one. Finally we analyze the time complexity of the greedy solution which considers mostly the shortest path computing step and the sorting of the list of dependency components. The worst complexity of the sorting computation have a fundamental requirement of O(M 2 ). The shortest path computation step is more complex and requires computing the distance between all intermediate data dependency component and datacenter destinations. This leads to O(M 2 × |DC| 2 ) time complexity to consider all combinations or couples. In summary, the average computational complexity of the proposed greedy heuristic algorithm for finding solutions to the intermediate data dependency placement problem from multiple sources for unsplittable demand is O(2M 2 + |DC| 2 × (M 2 + 1) + M + |DC|) in the worst case.

  CPLEX. The objective of a numerical evaluation is to quantify the amount of total storage cost saving (objective function) that can be expected when routing intermediate data dependencies through cloud storage infrastructures using the UNS_GREED_HEUR and SPL_LP algorithms. The evaluation also reflects particularly the influence of the number of datacenters, the amount of the routed intermediate data and the dependency parameters on the performance metrics. The assessment scenarios correspond to a cloud infrastructure consisting of 50 distributed datacenters that are represented in a directed graph including a list of adjacent nodes as source datacenters and destination datacenters which are connected to each other by a random movement links as different topology. This simulation program could be done through a set of tasks from collaborative processing jobs that process intermediate data and generate their dependencies beforehand. Moreover, we run the simulation program for 20 random tasks, each one including an amount of a random intermediate data generated per one hour time slot in random adjacency matrix-based DAG, each one having a size ranging from 10GB to 100GB [ZXZ + 15], including their dependencies that are generated randomly as correlation links in DAG from input to output intermediate data. The latter simply are assigned randomly to the set of source datacenters in charge of temporarily storing them. The type of intra-job dependency is described by probability parameter value α generated randomly from range [0, 1] and belonging to each intermediate data-task in the DAG. Value 1 corresponds to a splitting rate of an intermediate data file (a fraction of 1 GB splitting for each file from partial correlation), and the opposite case is represented by value 0. We give also dependency parameter value β generated randomly from range [1, 20] which represents the number of clusters randomly grouping intermediate data-task. For the inter-job dependency, we set probability parameter value α to 0 from full correlation coupled with dependency parameter value β (the case of inter-job dependency is intrinsically related to the intra-job dependency case when the α value of the latter converges to 0 and has the same dependency values β). On all the experiments carried out, we exclude the case when α = 1 and β = 20 which means that the intermediate data are completely independent. The same dependency parameter values β are assigned for both intra-and inter-job dependencies according to each experiment.

[

  10GB, 1000GB] [EMKL15], and the transfer link capacity of one unit of intermediate data transmission between distributed datacenters from the initial problem to the solution which are randomly drawn from range [1, 10] Gbps [XXLZ16] with a random transfer cost (in $) ranging from 0 to 0.09. Both storage and transaction costs (in $) of one unit of intermediate data dependencies are set within [0.02, 0.04] and [0, 0.09] respectively, in relation to the typical charges in Amazon S3 4 .
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 5 Figure 5.5 -The total storage cost of Algorithms UNS_GREED_HEUR, SPL_LP, RAN-DOM_HEUR and UNIFORM_HEUR by varying the intermediate data size while the number of datacenters is set to 50.

Figure 5 .

 5 Figure 5.5 depicts the curves of total storage cost delivered by the proposed algorithms and the two other heuristics. The figure shows that both UNS_GREED_HEUR and SPL_LP algorithms outperform algorithms RANDOM_HEUR and UNIFORM_HEUR in terms of cost. The optimal result obtained by the exact solution reaches a cost of $125 when the amount of placed intermediate data achieves 1000GB, and the UNS_GREED_HEUR algo-
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 5 Figure 5.6 -Total storage cost of Algorithm UNS_GREED_HEUR, SPL_LP, RAN-DOM_HEUR and UNIFORM_HEUR when the simulation time is extended to 48h, while the number of datacenters is set to 50.
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 57 Figure 5.7 -The amount of intermediate data accumulated per time slot for the unsplittable and spilttable algorithms, datacenter number ranging from 5 to 50.
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 5 Figure 5.8 -UNS_GREED_HEUR heuristic versus SPL_LP exact solution for the total storage cost when α = 0.1 and β = 18.
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 5 Figure 5.9 -UNS_GREED_HEUR heuristic versus SPL_LP exact solution for the total storage cost when α = 0.3 and β = 14.

Figure 5 .

 5 Figure 5.11 -UNS_GREED_HEUR heuristic versus SPL_LP exact solution for the total storage cost when α = 0.7 and β = 6.

Figure 5 . 13 -

 513 Figure 5.13 -Time execution comparison between UNS_GREED_HEUR and SPL_LP algorithms for different datacenter size when the amount of hosted intermediate data are 100GB.
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 514 Figure 5.14 -Time execution comparison between UNS_GREED_HEUR and SPL_LP algorithms for different datacenter sizes when the amount of hosted intermediate data are 500GB.

  Figure 5.18 -Time execution comparison of ExactFed_BDWP algorithm with both UNS_GREED_HEUR and SPL_LP solutions for various number of datacenter when the amount of hosted intermediate data is 1000 GB.

  Fig. 5.19 indicates that ExactFed_BDWP slightly exceeds the solutions found using the heuristic for total storage costs in 190, 180, 155 respectively for each dependency values (10, 14 and 18) and $115 for the exact algorithm. In this result, the cost ratio does not exceed 1.65 when intermediate data size reached 1000 GB.

Figure 5 .

 5 Figure 5.19 -The total storage cost of the Algorithms ExactFed_BDWP and the UNS_GREED_HEUR heuristic by varying the number of datacenter when the amount of hosted intermediate data are set to 1000 GB.
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110Chapter 6 .

 6 General Conclusion and Future WorksChapter 2 provided a detailed overview of the data-workflow management approaches in cloud datacenters. Our survey are classified into related topics which present the work objectives that depend mainly on the thesis positioning in relation to existing research. We mainly focused on a taxonomy of the different approaches of the relevant related work and compare them based on the criteria that characterizes our orientation meeting: i) operational storage cost, ii) dynamic or fixed pricing model, iii) data dependency constraint, iv) data placement strategy, v) federation/multi cloud-based or single-cloud provider scenario. Chapter 3 addressed the study and understanding of intermediate data access behavior of MapReduce tasks processing in Hadoop cluster. This latter has served as a mean of experimentation which is a reference system for processing big data. Three benchmarks based on MapReduce application logs are run on this platform to collect disk I/O traces. A statistical Markov model-based sequence learning is proposed to represents the behavior of disk I/O accesses (collected traces) of MapReduce applications by modeling a single I/O write request of spill phase during the processing of map operations. Chapter 3 also proposed a prediction algorithm that use Markov transitions to detect interfered I/O in the spill file from a map operation among successive I/O spill from concurrent map operations at block level of shared disk space. To assess the prediction model quality and the efficiency of the algorithm, a tracedriven simulation is carried out. The assessment concerns the prediction accuracy of I/O spill size with respect to the model size of a single step, and the number of sequential/interfered I/O spill predicted by the proposed algorithm. The approach provides the best decision for the I/O optimization in MapReduce processing based on the prediction of intermediate data interference. Moreover, in relation to our other contributions, the harmonization of the operations of the MapReduce tasks (co-scheduling tasks) on disks, reflects a particular case of a data workflow-based model. Chapter 4 presented an exact federation big data workflow placement algorithm (Ex-act_Fed _BDWP) in distributed cloud datacenters. The Exact_Fed_BDWP algorithm was formulated and solved using both ILP and branch and bound methods. The proposed algorithm takes into account dependency requirements (valuable and unnecessary correlation) of intermediate data file pairs that are shared and reused in a federation environment which avoids using the pay-as-you-go model. In fact, a federated datacenter that participates and cooperates for optimal intermediate data placement across multiple cloud storage providers identifies favorable conditions for joining a federation and helps both scientific users and service providers to bring the cost down drastically when deploying, and the big-data workflow storage. The Exact_Fed_BDWP algorithm receives input matrix parameters including dependency values between file pairs and their respective localization (home datacenters) to achieve optimal insourcing and outsourcing decisions as output parameters. The latter 6.2. Future Research & Orientation 111 concerned the minimization cost that includes transferring and storing a data workflow in federated datacenters, and reallocating intermediate data requests with dependencies in a single datacenter to reduce the total storage cost. The Exact_Fed_BDWP algorithm showed to be efficient in minimizing the storage cost and exhibited an acceptable execution time for practical storage federations and typical file dependency sizes by providing a better balance among datacenters. Chapter 5 described a new generic approach that was intended to overcome the absence of a dependency type and large instance problem with Exact_Fed_BDWP approach. A linear programming model based exact algorithm and a greedy heuristic algorithm (SPL_LP and UNS_GREED_HEUR) have been developed to address the splittable and unsplittable variant of intermediate data dependencies placement problem as minimum cost multiple-sources multicommodity flow problem respectively. The proposed algorithms combine multiple criteria such as data bandwidth and datacenter storage capability as well as a movement optimization in routing and placing intermediate data in the cases of intra-and inter job dependency.

  dictors for the ported algorithms. The correlation of the set of intermediate data can be clustered to provide a convenient way to generate correlated multivariante random variable distributions for each type of dependency and to present a solution for the difficulties of transformation of the density estimation of the intermediate data dependencies as input parameters. -The intermediate data dependency placement problem could be extended to handle collaborative tasks, and inject synchronization time constraints between the processes performed by these tasks. Adding the time constraint makes the execution of the problem in dynamic environment. -There are workflow implementations of the MapReduce programming model (e.g., Cloudgene, Zookeper, Oozie and Cascading), and a natural extension and improvement of the Markov model is to add these different implementations to have a generic prediction model to the problem optimization of data and task workflow scheduling and placement.-Another natural extension of the work is to efficiently and reliably handle intermediate data, including failure types inducted in execution error of tasks and their cost. Therefore, it aims at finding a trade-off between availability and storage cost of the intermediate data replica. For these purposes, we plan to improve intermediate data placement cost by applying data replication and multi datacenter distance cost as well as considering the scenario of task failure in the cost model to support substitution of collaborative tasks since we have introduced the processing of the non-valuable dependencies induced precisely by the errors of execution of the tasks in the Ex-act_Fed_BDWP approach.

  Afin d'élaborer le modèle de Markov, nous identifions une méthodologie qui déploie l'expérimentation de la plateforme Hadoop, un système de référence pour le traitement de données intensives. À partir d'un scénario réel, il est très compliqué de tracer des fichiers temporaires (logs) existants et d'y accéder, tels que dans les clusters de Yahoo, de Facebook ou de Google. D'où la nécessité d'exécuter et de déployer un ensemble de micro-benchmarks afin de récupérer des logs. Par conséquent, sur une plateforme Hadoop, un nombre d'exécution de tâches map et reduce sont effectuées pour enfoncer la qualité de la prédiction et de l'apprentissage à travers l'exécution de trois applications de type MapReduce : Wordcount, Kmeans et Terasort. À l'aide de ces applications, des statistiques nécessaires sont collectées sur les opérations des E/S aux disques concernant les accès des données intermédiaires. Les E/S des fichiers spill sont générées plus tard et utilisées pour la caractérisation de ces accès. Ainsi, un apprentissage offline basé sur des traces ainsi que des traitements spécifiques sur celles-ci sont utilisés pour converger vers un modèle de Markov. Selon ce modèle, les états correspondent aux blocs logiques des E/S des fichiers spill, et les transitions représentent les probabilités de A.6. Contribution 2 : Algorithme exacte pour le placement des données intermédiaires de type inter-fichier dans le Cloud fédéré 123 commutation entre chaque E/S des fichiers spill consécutifs. Ainsi, un modèle statistique de Markov est construit et combiné avec un algorithme pour prédire les futures E/S interférées. Enfin, une série d'expériences est conçue pour valider la qualité et la précision de l'algorithme et du modèle de Markov. A.6 Contribution 2 : Algorithme exacte pour le placement des données intermédiaires de type inter-fichier dans le Cloud fédéré Dans cette partie, nous abordons la deuxième contribution qui est un algorithme d'optimisation appelé "Exact Federation Big Data Workflow Placement" (ExactFed_BDWP) qui se base sur le modèle ILP (acronyme de Integer Linear Programming) et la méthode de résolution de branch-and-bound. Nous abordons l'algorithme de ExactFed_BDWP décrivant un ensemble de contraintes du problème de gestion et de placement des données intermédiare cité auparavant. Nous formalisons la fonction objective à optimiser ainsi que les contraintes linéaires sous forme d'un ensemble d'équations et d'inégalités valides d'écrivant le problème. Certaines de ces contraintes sont identifiées en se basant sur les systèmes réels de placement de données dans le Cloud en considérant les scénarios et les services de stockage proposés par les fournisseurs de Cloud. Trouver un placement optimal et économique des données générées par les applications de type workflow nécessite le calcul du coût de stockage pour chaque solution possible à partir de chaque requête de placement de données intermédiaire sur les centres de données fédérés et locaux. Les centres de données fédérés utilisent un modèle de coût dans l'algorithme de ExactFed_BDWP en fonction des dépendances inter-fichiers (entre paire de fichiers) pour acheminer et placer les requêtes de stockage de données intermédiaires dans le Cloud fédéré. La décision de la sélection du stockage doit conduire à un coût minimal pour le placement des données intermédiaire tout en respectant les contraintes de dépendances (un seul centre de données hébergeant les fichiers de dépendance) et une utilisation maximale de stockage pour les centres de données fédérés. Par conséquent, nous exposons le modèle de coût et la fonction objective à travers le problème 1 qui devrait être minimisée compte tenu des procédures suivantes pour le fonctionnement de l'algorithme de ExactFed_BDWP : 1. À partir d'un ensemble de paramètres d'entrées Dep i,j (équation (A.2)) concernant les instances d'un Workflow traitant des données intermédiaires sur des centres de données résidentiels et qui font une demande d'acheminement de données vers la fédération de stockage après chaque traitement, chaque centre de données des membres de la fédération expose le coût d'externalisation et d'internalisation du stockage en fonction de l'équation (A.1) : S = QCmax k -S busy QCmax k * (S price -M E price ) + M E price (Pour chaque valeur de Dep i,j , le coût de la solution de placement de données intermédiaires nouvellement calculé est comparé aux coûts de placement possible les moins élevés dans chaque centre de données fédéré. L'algorithme de ExactFed_BDWP se termine après que l'ensemble de toutes les solutions possibles ont été vérifié. L'algorithme de ExactFed_BDWP est exécuté sous les exigences des propriétés des données intermédiaires et les contraintes de capacités des centres de données sélectionnés DChome d hébergeant les données intermédiaires ainsi que ceux de la fédération. 'algorithme de ExactFed_BDWP conserve les paires de fichiers de dépendances dans un seul centre de données tout en économisant leurs coûts de transfert, de stockage et de transaction ou d'accès avec les contraintes de dépendances (équation (A.3)). Les données intermédiaires avec tolérance aux dépendances devraient être optimisées en fonction du coût des transactions des requêtes d'E/S émises entre les centres de données fédérés. 4. Le problème est résolu pour chaque instance du Workflow lorsqu'une nouvelle paire de fichiers de dépendance est générée à partir d'un centre de données de résidence. Un tel coût est supposé variable selon les caractéristiques de la fédération (les capacités disponibles et les prix dynamiques).La fonction objective pour l'acheminement et le placement optimal et économique des données intermédiaires peut être exprimée par la minimisation de leurs coûts de transfert et de stockage dans les centres de données fédérés, où la variable de décision x k id = 1 est utilisée pour indiquer que la donnée intermédiaire i (fichier) est placé dans un centre de données et x k id = 0 le cas contraire. L'algorithme de ExactFed_BDWP minimise également le coût de transaction des E/S lorsque les dépendances de données intermédiaires sont routées séparément dans différents centres de données, c'est-à-dire lorsque la deuxième variable de décision y kk ijdd = 1. La fonction objective (MinCost) est soumise à plusieurs inégalités et• size i • (OSC k + IT C k + OT C d ) Dep ij • λ j i • IOP C i,jSubject to :ik x k id = IDN d ∀d = 1, ..., D, d = k dk x k id = 1 ∀i = 1, ..., ID i x k id + x k jd = 2 ∀i, j = 1, ..., ID i , ∀k, d, d = 1, ..., D x k id + x k jd ≤ 1 ∀i, j = 1, ..., ID i , ∀k, d, d = 1, ..., D x k id + x k jd -y kk ijdd ≤ 1 ∀i, j = 1, ..., ID i , i = j, ∀k, k , d, d = 1, ..., D kk dd y kk ijdd ≤ k x k id ∀d = 1, ..., D k =d id x k id • size i ≤ SCF k ∀k = 1, ..., D k=d id x k id • size i ≤ SCL d ∀k = 1, ..., D k =d id x k id • size i • BCF k ≤ DBmax k ∀k = 1, ..., D. id x k id • size i ≤ SCmax k ∀k = 1, ..., D d IDN d = 1 ∀i = 1, ..., ID i Dep ij = Dep ji ∀i, j = 1, ..., ID i , ∀Dep ij ∈ DEPProblem 3 -Problème de placement de données du Big Data Workflow dans un stockage de Cloud fédéré.A.7 Contribution 3 : Algorithmes scalablesCette partie aborde la dernière contribution, dont une nouvelle approche différenciée des travaux citées auparavant qui ne tiennent pas en compte les types de dépendance (inter-et intra-job). Pour cela, nous formulons d'abord le problème de placement de données intermédiaires de dépendances générées à partir de plusieurs applications de type Workflow (une application se réfère à un job qui s'exécute en plusieurs tâches) dans des centres de données distribués dans le Cloud. Nous proposons ensuite un modèle d'optimisation pour le problème de placement qui inclut les contraintes du type de dépendance. Le modèle proposé est combiné avec la minimisation des coûts de stockage en appliquant un algorithme exacte et une heuristique (SPL_LP et UNS_GREED_HEUR ) tout en réduisant le problème de placement au problème de MCMF (acronyme de Minimum Cost Multiple-Sources Multicommodity Flow) respectivement pour les dépendances intra-et inter-job. Étant donné que l'acheminement des données intermédiaires à partir de la nature des dépendances intra-job peut être divisé et placé dans de différents centres de données, le problème est appelé MCMF avec variable fractionnelle (splittable) qui est traité par l'algorithme de SPL_LP. Cela permet de réduire le coût potentiel du mouvement des données intermédiaires entre plusieurs centres de données comme le cas dans l'algorithme de ExactFed_BDWP. L'algorithme de SPL_LP traite le problème de placement des dépendances entre un ensemble de fichiers non synchronisé pouvant être fractionnés durant leur acheminement et leur placement, cela diffère complètement de l'approche dans ExactFed_BDWP (paire de fichiers non divisible). Par ailleurs, l'algorithme de UNS_GREED_HEUR concerne le problème de placement de données intermédiaires à partir des dépendances inter-job. Nous formulons ce problème comme des demandes atomiques ne pouvant pas être fractionnées, cependant, comme la plupart de ces problèmes sont NP-Difficile, il est compliqué d'obtenir une solution optimale basée sur des méthodes exactes. Les approches de greedy semblent être simples et efficaces qui ont fait leur preuve pour le problème de flux non divisible (unsplittable flow) [Kol03, Kry05, BBA07, CCGK07, PRF11], et sont faciles à mettre en oeuvre et évoluent linéairement pour de très grandes instances. Ainsi, l'utilisation des concepts de greedy donne une bonne solution approximative à notre problème de placement de données intermédiaires. Les résultats expérimentaux prouvent que les algorithmes proposés sont très prometteurs en termes de minimisation de coûts de stockage, ainsi qu'en montrant que, même avec des conditions differentes, le rapport coût de l'algorithme de UNS_GREED_HEUR est proche de la solution fractionnaire optimale de SPL_LP. A.7.1 Algorithmes de SPL_LP L'algorithme de SPL_LP est un modèle exacte LP (acronyme de Linear Program) relaxé par des variables réelles et par l'inclusion de conditions valides exprimées sous forme de contraintes ou d'inégalités. À travers les contraintes du problème, le placement de données intermédiaire dans un graphe orienté G = (DC ∪ A, E) à l'intervalle de temps t concerne l'acheminement et le placement des quantités de données intermédiaires de dépendances nommées φ M (t) ∈ Φ M . Celles-ci sont considérée comme des flux de commodités continus d'une composante de dépendance nommée m générée dans plusieurs centres de données sources, qui seront stockées dans un ou plusieurs centres de données de destinations tout en économisant leurs coûts de transfert, de stockage et de mouvement (ou communication).

  Problème de placement des données intermédiaires fractionnelles du Big Data WorkflowA.7.2 Approche de greedyLe placement de dépendances de données intermédiaires du type intra-job est comparé aux solutions de SPL_LP et de ExactFed_BDWP afin de remédier aux temps d'exécution de ces deux algorithmes qui traitent cependant deux types de dépendances different. Cela nécessite le placement de la quantité de dépendances de données intermédiaires dans un seul centre de données de destination. Pour traiter ce cas, une solution naïve de greedy considère une commodité entière d'une composante de dépendance m générée à partir de différentes sources comme une source de flux unique, contrairement à l'algorithme de SPL_LP qui tolère de multiple flux fractionnés à partir d'une composante de dépendance m lors de la résolution du problème. Sous la solution non fractionnelle (unsplittable), une composante n'est jamais divisée, c'est-à-dire est fractionnée le long de plus d'un chemin pendant le routage et le placement de ces données intérmediaires. En outre, l'approche de greedy applique une procédure de routine dans un graphe spécifique G p (dérivé de G) et suppose que la demande A.7. Contribution 3 : Algorithmes scalables 129 minimale est inférieure ou égale à la capacité maximale des noeuds (centre de données de destination) dans G p[START_REF] Asano | Experimental evaluation of approximation algorithms for the minimum cost multiple-source unsplittable flow problem[END_REF]. Ainsi, ce dernier impliquant moins de connexion et la recherche locale de l'optimum sur un graphe spécifique qui réduit l'espace de recherche accélère l'exécution du temps de la solution de greedy. En tant que tel, un framework d'optimisation de greedy est proposé pour construire cette approche. Nous développons ensuite l'algorithme de UNS_GREED_HEUR basé sur le framework d'optimisation proposé. Dans ce qui suit, nous résumons l'enchainement de construction de l'approche de greedy. 1. Framework d'optimisation de greedy : L'idée fondamentale derrière le framework proposé est de réduire le problème de placement dans le cas de dependance inter-job à un problème de MCMF avec des valeurs de flux non fractionnelles dont plusieurs sources de composantes de dépendance dans un graphe de flux dirigé G p = (DC p ∪ A p ; E p ; u; c). Nous traitons ainsi les paramètres de G p : c avec une fonction de coût dans E → R, et u une fonction de capacité dans : E → R. La première partie de la construction du graphe de greedy G p concerne l'affectation des flux d'entrée des sources multiples. Dans cette phase, l'idée est de mapper toutes les données intermédiaires à leurs sources de résidences et aux tâches qui les a généré, puis mapper chacune à un noeud virtuel qui représente une composante réunissant les données de dépendance de plusieurs sources. Tous ces noeuds sont mappés à une super source. La deuxième partie de la construction du framework concerne l'identification des liens potentiels pour l'acheminement des dépendances de données intermédiaires sur les destinations des centres de données. Afin de mapper chaque noeud virtuel d'une composante de dépendance, nous avons considéré les capacités de chaque destination pouvant accueillir une ou plusieurs composantes de dépendance. Une hypothèse évidente de non-goulot d'étranglement qui a été faite dans cette variante, est qu'un noeud de destination d'un centre de données virtuel dc jp dans G p a suffisamment de capacité pour satisfaire individuellement au minimum une composante de dépendance φ m . Ainsi, dans le graphe d'origine G, les centres de données de destination qui n'ont pas la capacité de stockage disponible pour chaque composant de dépendance sont exclus pour la construction de G p . Nous avons ensuite mappé chaque noeud virtuel d'une composante de dépendance aux noeud virtuel de destination pouvant les accueillir. Ensuite pour chaque lien d'acheminement, nous avons assigné une fonction de capacité et une fonction de coût qui calculent les capacités résiduelles à chaque intervalle de temps t, ainsi que le coût correspondant pour l'acheminement et le stockage de chacune des composantes. Tous les noeuds virtuels de destination sont mappés au noeud puit final. 2. Algorithme de UNS_GREED_HEUR : Comme l'heuristique donne des solutions de placement séquentiel, il n'y a pas de problème de congestion sur les différents liens d'acheminement partagés par les composantes de dépendance, donc l'algorithme prend en charge le placement des composantes entièrement à leur destination. Les étapes de fonctionnement de UNS_GREED_HEUR est résumé ci-dessous : (a) La première étape de l'algorithme est le trie des composantes de dépendance selon leurs tailles respectives. Toutes les composantes sont injectées dans une liste de vecteur nommée L φ dans un ordre décroissant. (b) L'algorithme sélectionne la première composante dans la liste L φ , et trouve le chemin qui satisfait la contrainte de conservation des flux depuis le noeud source vers le noeud puit. (c) Pour chaque solution d'acheminement de flux d'une composante, l'algorithme calcule le chemin le plus court nommé ShP Φ à partir du noeud super source vers le noeud puit en fonction du coût de stockage minimal (fonction définie). Une fois le chemin trouvé, les flux de la composante sont supprimés itérativement dans la liste, et l'algorithme calcule les capacités résiduelles de chaque lien du graphe G p . Ainsi, la composante acheminée est supprimée dans la liste, et l'algorithme répète la sous-procédure de l'étape (b) jusqu'à ce que toutes les valeurs des flux soient balayées. (d) Enfin, l'algorithme répète la sous-procédure de l'étape (c) jusqu'à L phi ←-∅, et vérifie les valeurs des flux les plus importantes itérativement. Ensuite, il rétablit les chemins les plus courts trouvés avec les coûts optimaux et indique pour chaque chemin la paire de composante acheminé et sa destination correspondante dans le graphe d'origine G.

3.

  Complexité : En résumé, la complexité moyenne identifiée de l'heuristique proposée pour trouver des solutions au problème de placement des dépendances de données intermédiaires (cas de inter-job) à partir des sources multiples est de O(2M 2 + |DC| 2 × (M 2 + 1) + M + |DC|) dans le pire des cas.

A. 8 .

 8 Conclusion & perspectives 131 les fournisseurs de Cloud sont aujourd'hui les solutions par défaut pour gérer, déployer et traiter les applications ainsi que leurs données complexes dans un environnement distribué tel que le Cloud. Plus précisément, cette thèse traite le problème consistant à placer des données intermédiaires résultantes des traitements des applications basées sur un Workflow en considérant ses multiples facettes, niveaux et exigences afin de fournir non seulement une solution spécifique, mais aussi une approche générique et complète pour la gestion des données du Big Data Workflow. Pour faire face à cette problématique, nous avons proposé une étude de cas pour comprendre les accès des données intermédiaires des application de MapReduce. Puis, nous avons entamé la résolution du problème de placement des données intermédiaires à travers différentes approches en amont, et trois stratégies de placement de flux de données ont été proposées tout en utilisant des modèles théoriques pour des scénarios différents : 1. Modèle et algorithme de prédiction à base de Markov pour la caractérisation du comportement des accès des fichiers spill des applications de MapReduce-Hadoop. Cette approche prédit les E/S interférées des données intermédiaires par les accès concurrents de ces applications. Le modèle de prédiction ansi que l'algorithme ont été évalué à l'aide de micro-benchmarks de type MapReduce représentant sur un environnement de cluster Hadoop. En outre, l'approche proposée fait acte d'introduction à la problématique de gestion du gros volume de données intermédiaires. 2. Modèle et algorithme pour le problème de placement du Big Data Workflow en considérant un environnement de stockage fédéré et coopératif multi-Cloud ainsi que les besoins des applications de données de Workflow. Cette approche traite des dépendances entre des paires de fichiers générées dans des centres de données de résidence. L'approche proposée bénéficie des avantages qu'offre un environnement fédéré comme l'internalisation/l'externalisation des ressources de stockage et réseau pour la gestion efficace et économique des données intermédiaires partagées par une communauté scientifique et/ou industriels. La validation de l'algorithme montre son efficacité pour un nombre d'instances pratique. 3. Modèles et algorithmes qui permettent de traiter different aspects à travers une solution exacte relaxé permettant de résoudre une classe de données d'un Workflow spécifique (dépendance intra-job), et une heuristique qui résout une autre variante (dépendance inter-job). Celle ci améliore en plusieurs ordres de grandeur l'execution des deux algorithmes exactes dans une infrastructure de Cloud incluant des centaines de centres de données distribués en un temps de convergence très pratique. Dans ce manuscrit, nous avons présenté plusieurs variantes de notre problème de placement par des hypothèses restrictives sur les données d'un Workflow dans sa version générale. Néanmoins, nous pourrions nous intéresser à d'autre contraintes et exigences du problème.

  

  

  

  

  

  

  

Chapter 1. Introduction

  

	model for MapReduce-Hadoop processing framework. Chapter 4 presents a placement ap-Chapter 2
	proach in a federated cloud datacenter that deals with data dependency inter-file generated
	from workflow-based processing. Chapter 5 proposes a novel data workflow management
	framework to deal with the total storage cost saving of the placement of data dependency
	type. Finally, Chapter 6 concludes the thesis and presents our future work in this research
	area.
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Placement Behavior from Data-intensive Com- puting 2.2.1 I/O prediction in MapReduce processing

  

	2.2
	Since MapReduce has become an effective and popular programming framework for par-
	allel big-data workflow processing applications, accurate and comprehensive I/O storage has
	become a basic requirement for these applications. A significant effort in recent years has
	developed robust models and prediction approaches for I/O behavior representation of big
	data applications. Regarding the following approaches, authors focus on the coordination of
	MapReduce applications to mitigate I/O contention, and characterize the I/O behavior of
	HDFS and I/O request characteristics, and do not address the access behavior analysis of
	I/O intermediate files under I/O contention which has become one of the most important
	data-flow application performance bottlenecks.
	In [KKC15], I/O characteristics of virtualized MapReduce applications are explored. Au-
	thors proposed an online I/O scheduler that detects the I/O burstiness of a virtual machine.
	Observation of virtual machine shows that concurrent I/O accesses are performed in a bursty
	manner, and these concurrent and bursty I/Os cause interferences among virtual machines
	running MapReduce applications. [MTK + 15a] proposes a modeling technique to predict I/O
	performance for big-data applications running over the cloud. Big Data Application (or BDA)
	factors are identified and affect I/O performance through the measurements collected from a
	synthetic workload generator. [YWWL13] develops a prediction model for the resource provi-
	sioning problem for big-data systems. Systematic measurements are conducted from big-data
	application benchmarks, and an interference-aware solution is proposed that smartly allocates
	MapReduce jobs to different VMs. [Gro12] develops a model to estimate the I/O behavior of
	MapReduce applications when I/O interferences are included. The proposed model predicts
	the performance scalability of a job, which can help with making and analyzing scheduling
	decisions for a workload. [YLLQ12] proposes a statistical model to evaluate the effect of
	various configuration parameters of MapReduce jobs. In particular, statistic data analysis
	techniques are employed to identify the main components from workload and Hadoop con-
	figuration metrics that strongly impact the I/O workload performance. For I/O prediction,
	authors propose a metric related to the disk I/O intensity of a MapReduce workload which
	indicates the total amount of data read from and written to the local file system and HDFS.
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	from the other processes. In order to solve this, authors attempt to filter out noisy data with
	different estimated threshold values and show the trade-offs between them.
	While predicting I/O access patterns of data-intensive applications has long been an im-Despite these issues, one can observe that Markov models are not applied in the context of
	portant goal in parallel and distributed environments, researchers have investigated statistical I/O access patterns for MapReduce or/and workflow-based processing systems. Intermediate methods (e.g., markov predictors and hidden Markov models [Ree04, HBT + 13], linear regres-data access patterns are largely unexplored in actual statistical model prediction and in the sion [Noo]), or frequent-pattern detection [LCLZ14], I/O profiling [MTK + 15b] and online I/O characterization whereas key skew in intermediate data has become one of the important
	simulation [WKKB13] that are non-statistical methods. These approaches are predominantly big-data system performance bottlenecks.
	based on spatial or temporal I/O behaviors that require a large number of observations to
	accomplish an accurate prediction. The Markov prediction model finds diverse applications
	in computer science, specifically in data I/O modeling and scheduling behavior prediction. 2.3
	Markov models can be used to establish the accuracy of those data I/O access to be measured,
	and it strikes an effective balance between predictive power and implementation complexity
	that takes long execution time or equires to offline trace-based training in order to converge.
	Some researches [PSS10, OR02, MR97, DSVK11, Kho] have proposed Markov-based predic-
	tion models that use these aspects to predict data I/O application performance.
	[PSS10] implements a prefetching scheme based on a Markov model to predict memory
	references that cause a miss in the L1 cache. With the information captured from Markov
	miss history table and prefetch buffer, the proposed simulator maintains the next expected
	address, and thus improves the effectiveness of the prefetch strategy. [OR02] presents a
	Markov chain to predict I/O requests for scientific code applications. Authors constructed
	a Markov model's transition using a sparse matrix from I/O traces in Pablo-Self Defining
	Data Format (SDDF). All I/O traces were obtained using the Pablo I/O toolkit. More-
	over, authors propose greedy prediction strategies that choose a sequence of file blocks from
	an I/O access pattern Markov model. Their results have shown high-prediction accuracy
	with variable block sizes and look-ahead lengths parameters using the proposed prediction
	algorithm. The work presented in [MR97] examines an approach to classify I/O access pat-
	terns using Hidden Markov models. Authors have characterized the I/O access using data
	training among previous program executions from benchmark experiments and sequential-
	/parallel-based processing applications. The proposed model demonstrates a better control
	over caching and prefetching policies as compared to models that are based on neural network
	access pattern classifications. [DSVK11] proposes a Markov Chain representation to generate
	I/O loads of datacenter applications. A state diagram is used to build the storage model
	using I/O traces collected from production servers. To validate the proposed methodology,
	authors compare I/O characteristics and performance metrics among the original and syn-
	thetic storage workload, and check the consistency of their results. [Kho] builds a Markov
	chain transition probability matrix, where each file access is a state in the chain. Learning
	file access chains from running multiple applications for one process would include noisy data

Big Data Workflow Management in Cloud

  

	A series of recent work studies that attempt to optimize big-data management in general
	over the cloud environment including, the data workflow routing while meeting the appli-
	cation requirements and/or minimizing the operational cost of the cloud service provider.
	Calculating the minimum data cost model is a seemingly NP-hard problem [CPL16, ZXZ + 15,
	ZCLS16, RLZW16, GHKS13] aside of the complex dependencies among the intermediate
	data [EMKL15, ZXZ + 15, YYL + 12] generated in a distributed environment, data workflow
	application cost in the cloud is thus of a dynamic value. Saving the optimum data work-
	flow cost in a cloud environment is determined by minimizing the various cost parameters
	in the data management perspectives [DSL + 08, VSPD + 13, XLX17, TTC15]. There are var-
	ious cost factors which influence the moving data in cloud and most of research studies
	[XXLZ16, ZLWC14, LD11] did not deemed the correlation of huge generated data in their cost
	construction model, in addition to the type of intermediate data correlation, none has really
	raised the dependency type constraints that are disclosed in the previous chapter throughout
	the intermediate data placement decision.

2.3.1 Cost model for moving big data in cloud environment

  

	Massive computation and storage resource capacity of cloud infrastructures allow scien-
	tific users to deploy data-intensive processing applications without infrastructure investment,
	where the scale of application data sets can be stored in the cloud. Different I/O strate-
	gies [DSL + 08, VSPD + 13, BKT13, Rei11, LSWL16, STT09] lead to different consumption of
	bandwidth, storage and computation resources and finally lead to different operational costs.
	However, scientific data user's need a new cost model that can consider the expenditure of
	their data-intensive application storage type [AJB11, RAH12, NPC14] in the cloud environ-
	ment.
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  Through their cost model, the authors evaluate and compare different compression methods and placement strategies based on end-

	requirements, monetary models, data type and access frequency, but under no circumstances
	they address the data workflow type.
	Authors of [NPC14] propose an exact approach for a storage cost optimization based on
	linear programming model using multiple public cloud storage providers. They first investi-
	gate the computation of ownership cost of cloud storage providers while meeting their profit.
	Second, they calculate the minimum cost for storing data in the cloud. However, data type
	and required correlation are not considered in the optimization data cost model.
	Authors of [RAH12] propose an exact optimization model based on the integer linear
	programming problem of selecting the best storage services when taking into consideration
	application requirements and user priorities. The cost model is applied to different cloud
	providers, and the authors used BLAST and MODIS applications as data application workload
	to evaluate their strategy placement including application time-execution metrics and monthly
	budget restrictions. A total storage cost is solved while storage capacity and data workflow
	type requirements are not addressed in this work which is our study background.

Table 2 .

 2 1 -Comparison of related work regarding Data Placement approaches in MapReduce and Workflow-based processing system.

	Related work	Cost model pa-	Pricing	Dependency	Data place-	Cloud deploy-	Exact vs
		rameters		model	constraint	ment strat-	ment type	Heuristic/
							egy		Online
									simulation
	[YYL + 12]	Storage, compu-	Fixed	Yes	Yes	Single	Heuristic
		tation						
	[Rei11]	Storage, move-	Fixed	Yes	Yes	Single	Heuristic
		ment						
	[SRJ + 16,	Movement/		No	Yes	Yes	Single	Heuristic
	EMKL15,	communication				
	VOP11]							
	[SMM + 16]	Storage		Fixed	No	No	Single	Heuristic
	[ZGG15]	Storage, com-	No	No	Yes	Multi-cloud	Exact
		munication					
	[BCA12]	Running, trans-	Fixed	No	Yes	Hybrid cloud	Heuristic
		fer,	computa-				
		tion						
	[AJB11]	Storage,	re-	Fixed	No	Yes	Multi-cloud	Exact
		quest, transfer,				
		computation					
	[RAH12]	Storage,	re-	Dynamic	No	Yes	Multi-cloud	Heuristic
		quest, transfer,				
		computation					
	[NPC14]	Storage,	re-	Fixed	No	Yes	Multi-cloud	Exact
		quest, transfer				
	[DSL + 08]	Storage, trans-	Fixed	No	No	Single	Online
		fer,	computa-					simulation
		tion						
	[VSPD + 13]	storage, trans-	Fixed	No	No	Federation	Online
		fer,	computa-					simulation
		tion						
	[BKT13]	computation,		Fixed	No	No	Federation	Online
		network						simulation
	[GLJ17]	Storage, band-	No	No	Yes	Multi-cloud	Heuristic
		width						
	[XXLZ16]	Storage, band-	Fixed	No	Yes	Multi-cloud	Approxim-
		width							ation
	[SHW + 16]	Energy, commu-	Fixed	No	Yes	Multi-cloud	Heuristic
		nication					
	[EA12]	No			No	Yes	Yes	Single	Heuristic
	[NPM + 10b]	Running, I/O	No	Yes	Yes	Single	Exact
	[YS12]	Transfer		No	Yes	Yes	Single	Heuristic
	[LHHH14]	Communication,	No	No	Yes	Single	Heuristic
		computation					
	[GHKS13]	Bandwidth		Dynamic	No	Yes	Single	Heuristic
	[CPL16]	Energy		No	No	Yes	Single	Heuristic
	[ZXW16]	Transfer		No	Yes	Yes	Multi-cloud	Heuristic

Our focus was to identify the main characteristics and goals that such work research share and/or diverge, when dealing with intermediate data access prediction and placement in a cloud. It is worth pointing out that all the proposed approaches do not necessarily handle or predict the intermediate data placement of workflow models, but data moving broadly in a cloud environment. Meanwhile, based on the literature review, we demonstrated that the core research issues of this thesis, i.e. intermediate data placement problem, are significant yet barely touched in the cloud. Hence, the next chapter presents our first contribution for this research direction to tackle the intermediate data placement behavior in MapReduce-hadoop cluster as a case study to address intermediate data as a first-class citizen.

in MapReduce-Hadoop Processing operations

  This section describes a simple Markov model based on sequence learning[START_REF] Sun | Sequence learning: from recognition and prediction to sequential decision making[END_REF] which forms the core of our model. It is considered and evaluated in the rest of the chapter. This to the shared disk are limited to intermediate data accesses.The I/O spill behavior can be considered as a time dependent stochastic process which constitutes a Markov chain if the next probabilistic behavior or future access of the process depends on the present access of the process only, and is independent on its past state history. This is called the Markov property. Our model tries to solve the sequence prediction of timehomogenous Markov chain of first order (higher order Markov chains are not relevant to this paper). As a result, in this context, from a single step one can predict the future states. In this chapter, each I/O spill is followed by the same I/O spill on every write access. More specifically, the I/O spill is only determined by the current I/O spill that is accessed because observations are generated in the same homogeneous run with environmental requirements.

chain represents the behavior of disk I/O accesses of MapReduce applications by modeling a single I/O write request of spill phase during the processing of map operations. All I/O Tasks Definition 1. Markov chain C links successive observations R from the I/O block trace defined for the I/O accesses from concurrent map operations of one or multiple applications that share storage resources. These applications share the disk storage with fixed configuration parameters over a time period of MapReduce data processing. Definition 2. Given a sequence observation R = R 1 , R 2 , ...., R t of random variable x(t) on discrete state space E, each state x(t) represents an I/O spill of intermediate data file. The spill file size for the corresponding states manifests the size of the in-memory buffer of the node storage as defined by io.sort.mb parameter. |x| represents the I/O spill size. Execution window t represents the homogeneous discrete time which state has different value. t is defined within the spill phase time processing which is partitioned in multiple I/O spills that are generated by each map task slot. Definition 3. The number of states N represents the number of I/O spills which reflects the map output total size of P parallel map operations. The size of state space E is not more than N + 1.

Definition 4. State transition T i,j at time t of variable x(t) represents the probability that x(t) moves from state i to state j. Assuming all I/O spills are generated by a single Markov process of first order, the conditional distribution of any future state x(t + 1) only depends on present state x(t). Where:

Table 3

 3 

	Parameters	Description
	T C[k, f ]	Set of Map tasks
	T Ck	T Ck = {x1, x2, ..x f } ∈ T C[k, f ], set of requests from Map task
	Q1[i, j]	Transition matrix
	Pi,j	Pi,j ∈ Q1: transition probabilities
	ST Ck	Total sum of Map task requests
	Sx	Total current states of a Map task
	xj	Predicted value of I/O spill request
	xi	Current value of I/O spill
	|b|	I/O buffer size
	x seqk	Vector of sequential I/O spill requests for Map task k
	x Interf k	Vector of interfered I/O spill requests for Map task k

.1 -Input and Output of the Algorithm 1. Using Markov transitions aims at detecting interfered I/O in the spill file from a map operation among successive I/O spill from other map operations at block level of shared disk space. Hence, these non-sequential accesses represent interruptions of physical block addresses (non-sequential block) for an I/O spill that interfere with another I/O operation. Algorithm 1: Prediction of interfered I/O spill requests. Data: T Ck, Q1[i, j], P i,j , ST Ck, Sx, x j , x i , |x i |, |b| Result: x seqk , x Interf k 1 while not EoF Q1[i, j] do 2 for i = 1; i < N -1; i + + do 3 for j = 1; j < N ; j + + do 4 Sx ← Sx + x i ; 5 if P i,j <> 0 and |x i | < |b| and Sx < ST Ck then 6 if x j ∈ T Ck then 7 x Seqk ← x i ; 8 else 9 x Interf k ← x i ;

Table 3 .

 3 2 -Configuration of Hadoop server nodes for the experimentation.WordCount is a MapReduce program that counts the frequency of all the different words from an input file. It is a simple application often used to understand the MapReduce

	Parameters	Descriptions
	OS	Ubuntu Linux 14.04
	Platform	Hadoop 1.0.3 version
	Disk	4TB HDD (5400 tours / mn)
	Processor	16-cores (2.5 GHz)
	Memory	32 GB
	Buffer size	80 MB
	IOScheduler	CFQ
	FileSystem	Ext3 (4 KB block size)
	HDFS block size	512 MB

order to evaluate different scenarios for the Markov prediction model, a number of representative data intensive applications for MapReduce-hadoop are needed. Applications that deal with large amounts of intermediate data are favored, having sufficient variety in the amount of data I/O intensity for the write phases from Fig. 3.1. It is clear that not all selected applications cover all the types of data I/O behavior of MapReduce-Hadoop processing applications, but these cover the most important I/O types, useful for understanding adequately the intermediate data I/O access behavior. To this end, Table

3

.3 lists the intermediate data properties from three selected applications which are I/O bound and are coded in java and executed using jdk-1.6.0: Wordcount, Terasort and Kmeans. For each, a summary of parameters such as the data type, the size and the number of mappers and reducers per node are also provided. Each application generates 8 data sets randomly. Table 3.3 -Characteristics of the intermediate data used.
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  Table 4.1 -Table of notations. Are used to designate home datacenters d, d' and federated datacenters k, k'. Dep i,j Dependency coefficient value of intermediate data dependency as input to the model to designate affinity between files (i and j). DEP Dependency matrix including all dependency values of Dep i,j . DChome d A home datacenter matrix which brings home datacenter d that generates intermediate data files. LSC d Local storage cost (dollar per GB) of cloud storage provider hosting datacenter d. Scientific users's tolerance of intermediate data dependencies of i and j which is a binary value, λ j i = 0 indicates scientific users have no tolerance to process i and j independently, and 1 otherwise. Storage space quotas (GB per month) available at home datacenter d. BCF k Data bandwidth (per data unit) quota offered and shared between home datacenter and destination datacenter to insource and outsource intermediate data storage. be expressed as the minimization of the cost of transferring, storing data workflow in the federated datacenters, where x k id = 1 is used to indicate that intermediate data file i is placed and x k id = 0 otherwise. Ideally, the ExactFed_BDWP algorithm should minimize the I/O transaction cost also when intermediate data dependencies are scheduled separately in a different datacenter, i.e. when y kk ijdd = 1. The objective function (4.5) is subject to several linear and integrity constraints (cited earlier) expressed respectively by equation (4.5) to (4.16): For all intermediate data files ID i generated and stored temporarily in each datacenter d, there is one or more outsourcing storage datacenters k in the federation that can store the set of files ID i :

	Parameters Description
	P	Set of cloud storage providers.
	D	Set of federated datacenters.
	d, d , k, k	
	Scheduling and placement constraint:
	OSC k	Outsourcing storage cost (dollar per GB) of cloud storage provider hosting datacen-
		ter k.
	size i	Size of intermediate data file i.
	λ j i	
	i	Single intermediate data file.
	ID i	Set of intermediate data files.
	IDN d	Number of intermediate data generated and stored temporary in the datacenter d.
	IT C k	Insourcing transfer cost (dollar per GB) proposed by the provider to transfer data
		from home datacenter k.
	OT C k	Outsourcing transfer cost (dollar per GB) proposed by the provider to transfer data
		to another datacenter k'.
	IOP C i,j	Cost of I/O request (dollar per operation) of intermediate data files i and j on
		federated datacenters.
	SCF k	Storage space quotas offered and shared (GB per month) at datacenter k in the
		storage federation.
	SCmax k	Maximum storage space quotas (GB per month) offered and shared by all the fed-
		erated datacenters.
	SCL d	
	DBmax k	Maximum data bandwidth (GBs) quotas provided among federated datacenters.
	Decision	Definition
	Variable	
	x k id	A binary variable, x k id = 1 if intermediate data file i is scheduled from datacenter
		storage d to outsourced datacenter k, and 0 otherwise.
	y kk ijdd	A binary variable, y kk ijdd = x k id * x k jd .

can ik x k id = IDN d ∀d ∈ D; d = k (4.5)

Hosting constraint: For each intermediate data file i generated and stored temporarily in datacenter d, there is only one datacenter hosting i:

4 Performance Evaluation 4.4.1 Setting Parameters

  Amazon S3 (AM) 4 , 4 by Google Cloud Storage (GO) 5 and 6 by Microsoft Azure (MZ) 6 . Each OSC k , IT C k and OT C k are set according to the pricing plan for each provider, Table4.2 summarizes these different prices range. For an economic market purpose, the minimum effective price (M E price ) is set randomly and will be higher or close to the affected cost for the scientific community (M E price =S price *0,45). The binary value of λ j i is set randomly for each new generated intermediate data file. Table 4.2 -Storage prices of the three cloud storage providers.

	datacenter is restricted by storage and bandwidth capacities ranging from 10GB to 1000GB
	and from 1GB to 10GB respectively. Each outsourcing / insourcing demand is composed
	of a random inter-file dependency ranging from 50*50 to 1000*1000 organized in a matrix
	with 1 to 2 GB size per file. Intermediate data are affected to their home datacenter in a
	binary matrix (DChome d ). The insourcing/outsourcing storage and transfer monetary costs
	are given by equation (4.1). The I/O request cost and the affected monetary cost (S price )
	for the end-users including Prices --I/O	cost	Storage	Data transfer	Data transfer
	Cloud storage	($/10000		($/GB)	IN ($/GB)	OUT ($/GB)
	providers	operations)		
	Amazon S3	[0.005-0.01]	[0.004-0.04]	[0]	[0-0.25]
	Google Cloud	[0-0.005]		[0.007-0.023]	[0]	[0.08-0.23]
	Storage				
	Microsoft	[0.015-0.0345]	[0.08-0.125]	[0]	[0-0.181]
	Azure				
	4.4				
	In order to evaluate the proposed model and to show the influence of using federated cloud
	storage characteristics, we performed a set of simulations with different input parameters. The
	evaluation model is performed under AMPL tools with CPLEX solver 3 as an ILP optimization
	program to solve the objective function (4.4). The assessment concerns the optimization
	cost of intermediate data dependency placement. To create a dynamic environment and
	unpredictable situations, we select randomly a number of geographical distributed datacenters
	ranging in [3,18] from three cloud providers. Among these datacenters, 8 are owned by

DEP Problem 1 -Big Data Workflow Placement Problem in Federation Storage Environment

4.

3. http://ampl.com/products/solvers/solvers-we-sell/cplex/

.2 Compared scenarios & performance metrics description

  

	constraints (4.5), (4.7), (4.8), (4.11), (4.12) and (4.14). The intermediate data placement
	is scheduled entirely in each home datacenter thanks to the unlimited storage capacity (no
	loss). The outsourcing/ insourcing storage costs are obviously not integrated to solve the
	non-federation scenario considering just local dependencies. In a capacity-based scenario,
	the federated datacenters (nodes in the cluster Hadoop) randomly select the outsourcing
	storage to schedule the intermediate data files to the federation members only when their
	own resources are not available (nodes capabilities). Here, the selection is done arbitrarily to
	outsource intermediate data files without considering the dependencies (constraints 4.7 and
	4.8).
	We applied the following metrics to analyze the performance of the ExactFed_BDWP
	Since previous studies ([LHHH14, GHKS13, CPL16, ZLWC14, SHW + 16, EA12, AKO08,
	NPM + 10b, YS12, EMKL15, VOP11, ZXW16, YYL + 12]) on data placement and cost saving
	of intermediate data dependencies in cloud storage federation differ and are not sufficiently
	close to the placement problem (see Sec. 2.3) that our approach deals with (the involvement
	of intermediate data dependencies at the lowest cost in the federated placement), we resort
	to a comparison with two following strategies: no-federation strategy on the one hand and
	a capacity-based placement strategy used in default Hadoop implementation [dSM15] on
	the other hand. Datacenters in the non-federation scenario turn in an autonomous way
	and depend on their own storage space resources to place intermediate data dependency.
	To elaborate this scenario, a relaxation of the ILP was built and consists in eliminating

4. https://aws.amazon.com/fr/s3/pricing/ 5. https://cloud.google.com/storage/pricing 6. https://azure.microsoft.com/fr-fr/pricing/details/storage/ algorithm with the compared scenarios: (i) Total storage cost: this metric is defined by the objective function computed by equation 4.4 that measures the cost of transferring, storing and requesting intermediate data files to fulfill the evolving big data workflow requirements. This corresponds to the sum of all defined costs. (ii) Federation utilization: this metric shows the fairness of the intermediate data distribution on a selected datacenter in the federation. It is defined as the ratio between the amount of storage space used by intermediate data placement (both local and federation members) and the maximum amount of storage space for all intermediate data files placement. (iii) Convergence time: this metric measures the execution time of the ExactFed_BDWP algorithm in order to assess how fast the algorithm finds a solution to fulfill the intermediate data dependency placement.

4 Performance evaluation
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Table 5 .

 5 1 -Symbols for the model Indices used to designate distributed datacenters. i belongs to source datacenter dc i , while j and j belong to different destination datacenters (dc j and dc j ) e i,jData transfer link between source datacenter dc i and destination datacenter dc j

	Notation Description
	G			The cloud infrastructure (provider)
	DC		A set of distributed datacenters in cloud infrastructure G
	t			The run-time window which represents the homogeneous discrete time slot from generated
				collaborative data-tasks workflow processing
	A			The set of collaborative tasks in distributed datacenter DC
	E			The set of links among distributed datacenter DC
	i, j, j	
	r			Workflow job
	a r i			The collocated task in source datacenter dc i
	dc i			A source datacenter temporarily storing generated intermediate data from collocated task
				a r i of job r ∈ R
	dc j			A datacenter destination where to place the intermediate data files
	M			The set of dependency components in the system including correlation among generated
				intermediate data
	φ φ m a r i	(t)	The intermediate data files generated by task a i r of dependency component m at time slot t, and |φ m a r i (t)| its size
	Φ , k
	w φ			The data bandwidth assigned for one unit of intermediate data file φ m a r i	(t)
	W i,j		A data bandwidth capacity of movement link e i,j ∈ E
	w avail i,j (t)	The available amount of data transfer link e i,j ∈ E at time slot t
	W j,j		A data bandwidth capacity of movement link e j,j ∈ E
	w avail j,j (t)	The available amount of data transfer link e j,j ∈ E at time slot t
	s avail i,j (t)	The available amount of storage space when transferring an amount of intermediate data
				files from source datacenter dc i to destination datacenter dc j at time slot t.
	S j			The data storage capacity of destination datacenter dc j ∈ DC
	x m i,j (t)	A decision variable reflecting the amount of intermediate data flow moving from source
				datacenter dc i of dependency component m to destination datacenter dc j ∈ DC at time
				slot t.
	x m j,j (t)	A decision variable reflecting the amount of intermediate data dependency component m
				moving between destination datacenters dc j , dc j ∈ DC at time slot t
	c s j			The storage cost of one unit of intermediate data in datacenter destination dc j ∈ DC
	c w φ			The data bandwidth cost of one unit of intermediate data
	f (φ m a r i	)	A dependency component flows in graph G p
	f (φ	

m (t) The intermediate data files of a single dependency component m generated in multiple datacenters at time slot t, and |φ m (t)| its size φ m i (t) The intermediate data files generated in datacenter dc i from dependency component m ∈ M at time slot t, and |φ m i (t)| its size M All generated intermediate data files in the system, and |Φ M | its size L φ The vector list of intermediate data of all dependency components m ∈ M, m = 1, ...m ) All flows from a single dependency component in graph G p ShP φ

  Each destination datacenter has a limited amount of storage space available to share across all the intermediate data placement demands. This allows to host only a limited amount of intermediate data dependencies from source datacenter dc i to destination datacenter dc j . Formally: The proportion of intermediate data φ m from one dependency component that are stored separately into different locations dc j and dc j are led to potential intermediate data dependency movement cost. With no loss of generality, it is assumed here that the amount of intermediate data that moves from dc j to dc j is defined as the set of intermediate data of a single dependency component m that is fractionated from
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	corresponding component capacity. Formally: dc j which intermediate data dependency flows are routed. Formally:	
	x m i,j (t) ≤ φ m i (t) ∀j, m, t.	(5.7)
	i∈DC		
	C(s j ) =	|φ m i (t)| • x m i,j (t) • c s j	(5.12)
	i∈DC j∈DC m∈M t∈T 7) Storage capacity constraint: m∈M |φ m i (t)| • x m i,j (t) ≤ s avail i,j (t) ∀i, j, t. For any intermediate data placement demands, the data routing must not exceed the total (5.8) 11) Data movement cost: the set of atomic φ m a r i (t). Formally:
	storage capacity on all system execution time. Formally:	
	|φ m i (t)| • x m i,j (t) ≤ S j ∀i, j.	(5.9)
	m∈M t∈T		
	x m ssource,i =	x m j,s sink ∀m ∈ M	(5.10)
	i∈DC	j∈DC	
	(5.6) 9) Data transfer cost: Equation (5.11) denotes the data transfer cost on link e i,j which j ∀j, j . intermediate data dependency flows are routed.
	6) Capacity constraint of dependency component: A uniqueness constraint is used
	to ensure the routed intermediate data dependency flows do not exceed the dependency C(w i,j ) = |φ m i (t)| • x m i,j (t) • w φ • c w φ (5.11)
	i∈DC j∈DC m∈M t∈T	
	10) Storage cost: Equation (5.12) denotes the storage cost of destination datacenter

8) Balancing constraint:

Since the collaborative tasks in the workflow processing generate the intermediate data dependencies in multiple phases, these latter may vary over time in the distributed datacenter environment. In other words, the flow sequence of generated intermediate data dependencies changes as commodity changes. Thus, the flows among the distributed datacenters must be balanced. Hence, source and sink nodes s source and s sink are respectively introduced in graph G. Source node s source is connected to every source datacenter dc i , and sink node s sink is connected to every destination datacenter dc j as depicted in Fig.

5

.3 (on page 87). Source and sink nodes are also subject to a constraint that enforces all the intermediate data dependency flows starting on s source to ending s sink . Formally:

  ) p in DC p for each collocated task. For all generated intermediate data φ m (t) from multiple collocated tasks belonging to the same dependency component m ∈ M that are hosted temporarily in a single source datacenter dc i in G, there is a virtual dependency source datacenter node dc i (φ m ) p representing those intermediate data dependencies for different tasks. For all generated intermediate data dependency component φ m (t) hosting in a multiple source datacenter in G, there is a virtual dependency component node dc(φ m ) p which corresponds to a virtual location of distributed source datacenter dc i (φ m ) p hosting intermediate data of dependency component φ m (t). The dc i (φ m ) p , dc i (φ m ) p and dc(φ m ) p are added in graph G p .In network flow graph G p , a virtual source node s source is added and represents the source of all intermediate data dependencies ) p and from this latter to dc i (φ m ) p represented by link (dc i (φ m

					For each collocated tasks a r i ∈ A that
	generate intermediate data φ m a r i	(t) in the same source datacenter dc i , there is a virtual source
	datacenter node dc i (φ m a r i			
					a r i
	datacenter nodes dc i (φ m a r	m∈M a r i ∈A	φ m a r i	(t) hosted in the different virtual source a r i ) p ) in E p
	to each dc i (φ m a r i				a r i	)) p , dc i (φ m ) p ),
	involving cost c(s source , dc i (φ m a r i	) p ) = 0, as well as a link capacity demand that is assigned as
	the set of intermediate data dependencies φ m a r i	(t) generated from each collocated task in the
	source datacenter at time slot t, i.e:		
	u(s source , dc i (φ m a r i		

i

) p . Source node s source is connected with link (s source , dc i (φ m

  Thus, for each destination datacenter dc j in G there is a virtual destination datacenter node dc jp which hosts all intermediate data dependencies for one or multiple dependency components φ m . All virtual destination datacenter node dc jp are added to G p . The obvious no-bottleneck assumption which was made throughout an unsplittable version of the greedy optimization framework is that a virtual destination datacenter node dc jp in network flow graph G p has enough capacity to satisfy all dependency components φ m individually, but not necessarily all commodities. Thus, in graph G, destination datacenters that do not have available storage capacity to accommodate each dependency component are excluded from G p . Hence, from each virtual dependency component node dc(φ m ) p , there is a link (dc(φ m ) p , dc jp ) to each destination datacenter dc jp added to graph G p . All these links are connected to each virtual destination datacenter node dc jp that satisfies the placement of an integer dependency component φ m . We associate positive cost c(dc(φ m ) p , dc jp ) along link (dc(φ m ) p , dc jp ) from the virtual dependency component to the destination datacenter node. The corresponding total storage cost represents the sum of the data transfer cost c w φ (dc(φ m ) p , dc jp ) and the storage cost c s j (dc(φ m ) p , dc jp ) to host one unit of intermediate data dependencies φ m ) p , dc jp ) = c w φ (dc(φ m ) p , dc jp ) + c s j (dc(φ m ) p , dc jp ).(5.17)Inaddition to the cost of virtual link (dc(φ m ) p , dc jp ), we assign capacity u(dc(φ m ) p , dc jp ), bandwidth capacity upon routing integer dependency component φ m . The capacity of the bandwidth is shared between each routing unit of a dependency component at time slot t. Since, the storage capacity constraint is raised when link (dc(φ m ) p , dc jp ) is created in graph G p , routing of the intermediate data dependency component φ m (t) considers only the available amount of data bandwidth c t (dc(φ m )

			a r i	, i.e:
	c(dc(φ m which is the amount of intermediate data φ m a r i	(t) that can be routed along a virtual link,
	with an available w avail dc(φ m )p,j (t) w φ • |φ m a r i (t)|	.	(5.18)

p , dc jp ) on each corresponding link (dc(φ m ) p , dc jp ) to different virtual destination datacenters dc jp at time slot t , i.e: u(dc(φ m ) p , dc jp ) = A virtual destination node s sink is finally added to a flow graph G p from different virtual destination datacenter nodes dc jp . Virtual link (dc jp , s sink ) is added between them. Zero cost are assigned in each virtual movement link (dc jp , s sink ), and capacity u(dc jp , s sink ) of each link (dc jp , s sink ) in a flow graph G p is the available amount of storage space in each one upon storing an integer dependency component φ m at time slot t, i.e: u(dc jp , s sink ) = s avail dc jp (t) -|φ m (t)| (5.19)

Table 5 .

 5 2 -Gaps between UNS_GREED_HEUR heuristic and SPL_LP algorithms in term of cost ratio

	P DC P P P P P P P P (α; β) (0-0.1, 18) (0-0.3, 14) (0-0.5, 10) (0-0.7, 6) (0-0.9, 2)
	5	1.255	1.410	1.510	1.819	1.858
	10	1.253	1.422	1.509	1.820	1.859
	15	1.249	1.413	1.511	1.809	1.857
	20	1.248	1.401	1.512	1.809	1.856
	25	1.245	1.402	1.509	1.808	1.856
	30	1.239	1.402	1.513	1.810	1.851
	35	1.241	1.411	1.520	1.810	1.851
	40	1.241	1.411	1.520	1.819	1.850
	45	1.250	1.420	1.519	1.819	1.849
	50	1.249	1.419	1.519	1.819	1.850

Résume en Français d

  exige fortement des changements fondamentaux dans l'architecture des systèmes de gestion de données. Parmi eux, figurent les systèmes de traitement de workflow hautement distribués qui sont au coeur de la gestion du volume massif et complexe du Big Data. Les données de ces systèmes peuvent être des entrées pour des applications données ou des résultats intermédiaires qui doivent être stockés et gérés efficacement. Certaines applications de ce type incluent des techniques de traitement de données scientifiques à haute performance, des applications de traitement de données scientifiques intensives et le streaming en temps réel. 'autres peuvent être exécutées en parallèle sur une plateforme distribuée. Par exemple, une organisations scientifique telle que le Telescience Project Research [LDU + ] exécute des tâches scientifiques parallèles dans un pool de ressources partagées et hétérogènes. Chaque tâche génère non seulement des données sur les microscopes et l'image biomédicale, mais a également besoin des résultats intermédiaires de ses tâches collaboratives sur l'analyse d'image biomédicale pour des études de corrélation. Une autre organisation scientifique, qui est le Climate Corporation Research basée sur le système de tâches de type workflow. Ce projet a adopté des capteurs de composants situés sur plusieurs emplacements afin de capturer et de générer une quantité massive de données, y compris des champs agronomiques, environnementaux et météorologiques à haute résolution. Une grande quantité de données sont générées quotidiennement à partir de ces systèmes de workflow de traitement des données qui sont extrêmement importants avec une grande diversité de types, mais il devient difficile de les traiter et de les stocker efficacement. De même, d'autres applications traitent des données massives sous forme d'un workflow de plusieurs tâches en utilisant le paradigme de calcul MapReduce. Ce dernier est adopté et intégré par des entreprises valorisantes dans le monde comme Google, , tant pour les entreprises que pour les chercheurs scientifiques, est de savoir comment traiter, stocker et gérer cette masse de données générées par de telles applications (Big Data Workflow) de manière rentable et efficace pour obtenir le niveau de performance souhaité. son des difficultés et des inefficacités dans la gestion des données dans un environnement tel que le Cloud. Compte tenu de cela, la fourniture de services diversifiés et efficaces pour la gestion des données dans le Cloud sont des jalons clés pour la performance d'exécution de ces applications. Par conséquent, cette thèse se concentre sur le problème de la gestion du Big Data dans le Cloud pour les applications de workflow, tout en assurant un stockage et un traitement rentables de leur données générées et distribuées. Cependant, l'adoption de grandes fonctionnalités du Big Data Workflow dans un Cloud distribué est un défi de taille. Pour cela, nous proposons de nouvelles approches simples et efficaces pour la gestion des données de ces applications, tout en considérant leurs besoins et exigences fonctionnant dans une infrastructure de Cloud dont les centres de données géographiquement distribuées. Plus précisément, cette thèse traite le problème qui consiste à router et placer les données et les résultats intermédiaires résultantes des applications basées sur des traitements de type workflow. En considérant leurs caractéristiques, cela permet de fournir non seulement une solution spécifique, mais aussi une approche générique et complète pour la gestion des données de ces applications qui devraient bénéficier de toute l'attention des communautés scientifique et industriel. Ce modèle caractérise le comportement des E/S liées aux données de la phase spill à partir des tâches map concurrentes. Puis, un algorithme de prédiction est proposé qui exploite ce modèle de Markov. L'algorithme proposé permet de distinguer les différents accès interfé-ture des applications qui les génèrent. De plus, cela a permis de positionner et d'orienter notre réflexion vers des stratégies de placement des données intermédiaires pour des applications utilisant le modèle MapReduce extensible dont les workflows génériques déployés dans des centres de données de Cloud. La deuxième partie des contributions concerne une proposition d'une approche rentable pour le placement des données d'un workflow dans un environnement coopératif tel que le Cloud fédéré. Le but de l'approche est de faire fonctionner un algorithme basé sur un modèle analytique et exacte ILP (acronyme de Integer Linear Programming) pour le placement de données intermédiaires de dépendances dans de multiple centres de données de taille moyenne provenant de différents fournisseurs de stockage dans le Cloud. L'algorithme répond à la fois aux caractéristiques et contraintes du modèle de fédération de stockage dans le Cloud et aux exigences du placement des paires de fichiers (dépendances symétriques) de données résultantes du traitement d'un workflow tout en minimisant le coût de stockage induit pendant l'acheminement et le placement de ces données. La dernière partie des contributions présente une nouvelle approche afin d'aborder le problème de placement des données intermédiaires d'un workflow dans un sens plus large. En effet, l'approche proposée met en jeux deux algorithmes. Ces algorithmes traitent deux autres types de dépendances, Le présent document est organisé comme suit. Le chapitre 2 résume les principales stratégies de gestion du Big Data les plus pertinentes trouvées dans la littérature en relation avec les objectifs et les focalisations de cette thèse. Le chapitre 3 décrit la conception et l'étude du comportement de placement et de co-ordonnancement des E/S des données intermédiaires à travers un modèle et un algorithme de prédiction. Le chapitre 4 présente notre premier algorithme (Exact_Fed_BDWP) de placement des données intermédiaires de dépendance de type inter-fichier d'un workflow dans une environnement multi-Cloud et fédérés. Le chapitre 5 propose une nouvelle approche et un framework (SPL_LP et UNS_GREED_HEUR) d'optimisation et de gestion des données et des résultats intermédiaires d'un workflow pour gérer l'économie des coûts de stockage agrégés (ensemble des coûts liés au stockage) du placement de ces données de dépendance de type inter-et intra-job. Enfin, le chapitre 6 conclu nos contributions et expose nos travaux futurs dans ce domaine de recherche justifié.
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	Principalement, leur objectif est d'économiser les coûts, y compris les efforts de transfert,
	de stockage et de déplacement ou de migration de ces données de dépendance en fonction
	de leurs besoins et exigences. En considérant de grands ensembles de données de corrélation
	(cluster) comme paramètres d'entrée et des instances très larges conduisant à une complexité
	D'autre part, certaines fonctionnalités importantes du Big Data Workflow telles que le par-rés et prédire ainsi les futures opérations d'E/S aux disques. De ce fait, en considérant une algorithmique inférieure pour l'heuristique par rapport aux deux autres algorithmes exactes
	tage de données ou la réutilisation des résultats intermédiaires et la réplication géographique, méthodologie bien définie nous dérivons les caractéristiques qui peuvent être extraites à partir proposés.
	sont des principales options, bien que beaucoup d'autres ne soient pas supportés [Tud14] : de l'exécution de ces application (micro-benchmarks), et qui capture ainsi le comportement
	le transfert géographiquement distribués, l'optimisation des coûts, la gestion des tendances des E/S des fichiers de données intermédiaires. Ensuite, la caractérisation de ces accès est
	de données générées, la qualité de service différenciée, les compromis personnalisables entre injectée dans le modèle de Markov. L'étude du comportement des accès des E/S des fichiers

A.1 Introduction

À ce jour, l'univers numérique est confronté à la suite de l'explosion des données. Ce volume massif de données est capturé par des organisations, tel que l'augmentation des médias sociaux, l'Internet des objets (IOT) et les multimédia, à une base régulièrement croissante dans le monde. Cette quantité de données est disponible à partir de plus de 1 trillion de pages Web actuellement accessibles sur le Web. Comme l'indique International Data Corporation(acronyme de IDC) [VON + 15], la quantité de toutes les données numériques générées, créées et consommées en une seule année passera d'environ 3 000 EB en 2012 à 40 000 EB en 2020. Actuellement, environ 90% des données numériques disponibles ont été créées au cours des deux dernières années [Gob13]. Ainsi, acquérir, stocker, guider et traiter de manière exponentielle ces énormes quantités de données numériques récemment créées, constitue un défi complexe que n'on nomme souvent l'essence du Big Data. En effet, le Big Data décrit la croissance continue des données hétérogènes, structurées ou non structurées, qui sont générées et collectées à partir de toutes sortes de sources de données (citées auparavant). La gestion du Big Data avec les formats de données diversifiés est une base principale pour la concurrence dans les business et la gestion en soi. Par conséquent, le Big Data pose un défi aux organisations industrielles ainsi qu'aux chercheurs scientifiques qui leur présentent une gamme complexe de problèmes d'utilisation, de stockage et d'analyse. S'attaquer au besoin du Big Data Ces applications sont soumises à une série de phases de calcul. Les frameworks de workflow intègrent et coordonnent plusieurs jobs qui peuvent contenir plusieurs tâches collaboratives [HPL13, KJH + 14, CBHTE10]. Certaines de ces tâches sont exécutées séquentiellement, mais 116 Annexe A. Facebook, Amazon et LinkedIn. Un tel écosystème d'applications nécessite une composition flexible des tâches d'un workflow prenant en charge différentes phases de traitement. Entre-temps, l'émergence du Cloud Computing offre une nouvelle connaissance clé pour les entreprises de sous-traitance (externalisation) d'infrastructures informatiques (IT) qui peuvent être requises et retournées à la demande avec des modèles de tarifications flexibles [HSS + 10]. Le Cloud fournit principalement des services de stockage et de traitement de données, optimisés pour une haute disponibilité et une durabilité. Ainsi, en adoptant les modèles de stockage et de traitement dans un Cloud à travers les centres de données distribuées, le déplacement des tâches collaboratives d'un workflow vers le Cloud peut directement effectuer des opérations de stockage et de traitement de données à grande échelle et complexes, au détriment d'une performance. Malgré la transition rapide vers l'utilisation des services dans le Cloud, certains challenges critiques sont soulevés et restent maintenus. Un problème difficilecoût et performance. Tout cela nous intrigue dans le sens où les applications du Big Data Workflow sont souvent coûteuses (en temps et en argent) ou difficiles à structurer en rai-

A.2 Contributions

Dans ce contexte, la première contribution de cette thèse aborde le problème de performance de co-ordonnancement et d'accès des entrées/sorties (E/S) des données intermédiaires des applications de type Hadoop-MapReduce. Les performances de leurs systèmes d'E/S a motivé de nombreuses optimisations, notamment au niveau de la gestion et du placement de ces données. Afin de mener à bien ces optimisations, il est nécessaire de comprendre, de modéliser et de prédire les accès des E/S de ces applications. Ainsi, l'approche proposée côtoie les données intermédiaires résultantes du traitement de trois applications déployées dans un cluster Hadoop. L'approche proposée implique d'abord un modèle de prédiction à base de Markov.

spill, ou tout simplement le placement des données intermédiaires sur le disque permet de songer à une meilleure gestion de ces données là concernant leur taille, leurs sources et la na-inter-et intra-job (dépendances asymétriques), pour le placement des données intermédiaires générées par l'exécution d'un ensemble de jobs de workflow. D'où l'implication de deux variantes : un algorithme exacte relaxé et une heuristique satisfaisant les exigences de ces deux types de dépendances tout en minimisant le coût de stockage total des données intermédiaires routées et stockées dans le Cloud. L'algorithme exacte basé sur le modèle LP (acronyme de Linear Programming) aborde le placement des données pour le cas des dépendances intra-jobs.

Celles-ci, sont dites fractionnelles (splittable) car les caractéristiques et la particularité de ce type permettent de router et de placer les données et résultats intermédiaires séparément dans un environnement géographiquement distribué. Par contre, l'heuristique qui est basée sur une approche de type greedy traite le type de dépendance inter-job, dont les données intermédiaires sont atomiques (unsplittable) durant leur routage et leur placement dans le Cloud.

A.4 Travaux antérieurs

Cette partie fournit un aperçu sur la caractérisation des E/S des données des applications de type MapReduce, ainsi que les modèles de prédiction qui étudient le comportement des E/S et qui sont basés sur l'apprentissage séquentiel et les chaines de Markov. Cette étude est le préambule au contexte de recherches antérieures sur l'ordonnancement de données intermédiaires dans les applications basées sur un traitement de type workflow (MapReduce est considéré comme un modèle initial de type workflow). Ensuite, à travers un tableau récapitulatif, nous fournissons une étude résumée concernant les approches de gestion des données ainsi que leur different objectifs d'optimisation dans un environnement tel que le Cloud.

A.4.

1 De la gestion à la prédiction des accès des données de MapReduce

  d'une application), les données intermédiaires sont des données transitoires qui sont habituellement écrites une fois par une seule phase de traitement, et sont lues une fois par la phase suivante. L'exécution parallèle de ces applications ainsi que le partage de res-Les modèles de Markov peuvent être utilisés pour établir la précision et le comportement des accès des E/S concernant les données à gérer. Ils établissent un équilibre efficace entre la puissance prédictive et la complexité de la mise en oeuvre qui nécessite un long temps d'exécution.

	sources des E/S rend encore plus difficile la gestion de données intermédiaires, principalement
	lors des interferences qui surgissent entre ces applications pendant leur exécution. Un effort
	important a été fourni ces dernières années pour mettre au point des modèles robustes et des
	approches de prédiction pour la représentation du comportement des accès aux disques des
	applications des données complexes. Dans [KKC15, MTK + 15a, YWWL13, Gro12, YLLQ12],
	les auteurs se concentrent sur la coordination des applications MapReduce pour atténuer les
	interferences des E/S, et caractérisent ainsi le comportement des E/S de HDFS (acronyme
	de Hadoop Distributed File System) et les requêtes émises par ce dernier. Cependant, les
	auteurs n'ont pas abordé le traitement et l'analyse du comportement des accès des données
	et résultats intermédiaires sous les interferences des E/S des applications concurrentes, qui
	devient l'un des principaux goulets d'étranglement pour les performances des applications de
	type workflow.
	Depuis que MapReduce est devenu un framework de programmation parallèle efficace et
	extensible pour les modèles de traitement des données des applications workflow, la précision
	et la compréhension du stockage de base pour ces données deviennent une exigence fonda-Ces modèles aussi requièrent un apprentissage offline à base de trace afin de converger. Cer-
	mentale pour la bonne execution de ces applications. Par ailleurs, ces applications produisent tains travaux de recherches ([PSS10, OR02, MR97, DSVK11, Kho]) ont proposé des modèles
	énormément de données intermédiaires transférées entre chaque phase de traitement. Les de prédiction basés sur les chaines de Markov qui ont utilisé ces aspects d'apprentissage pour
	données intermédiaires possèdent des caractéristiques différentes de celles de données signi-prédire les accès aux mémoires de stockage des applications, à savoir, les données de simula-

ficatives (l'entrée et la sortie d'une application). Alors que les données d'entrée et de sortie devraient être persistantes et susceptibles d'être lues à plusieurs reprises (pendant et après l'exécution A.4.1.1 Prédiction des E/S des applications de données intensives La prédiction des modèles d'accès des E/S des applications de données intensives ont été longtemps un objectif important dans un environnement de stockage parallèle et distribué. Les chercheurs ont étudié des méthodes statistiques (e.g., les prédicteurs Markoviens, les modèles de Markov cachés [Ree04, HBT + 13] et la progression linéaire [Noo]) ou des méthodes non statistiques comme la détection des patterns fréquents [LCLZ14], le profilage des E/S [MTK + 15b] et la simulation online [WKKB13]. Ces approches sont principalement basées sur la caractérisation du comportement spatiaux ou temporels des E/S nécessitant un grand nombre d'observations pour réaliser une prédiction précise et de qualité. Le modèle de prédiction de Markov trouve diverses applications en informatique, en particulier dans la modélisation des E/S des données et la prédiction du comportement de leur ordonnancement. tion et de calcul ou les données personnelles. Cependant, on peut observer que les modèles de Markov ne sont pas exploités dans la modélisation et la caractérisation des E/S générées par A.5.
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  application de type MapReduce. Les profils d'accès aux données intermédiaires ainsi que la caractérisation de leur comportement sont en grande partie inexplorés dans les modèles statistiques prédictives.

A.4.

2 Gestion des données intensives dans un environnement de Cloud Une

  série d'études récentes ont été menées au sujet du problème de placement de données intensives dans un environnement de Cloud qui motivent ainsi les objectifs de cette thèse. Ces travaux adressent le problème de acheminement des données des applications workflows en respectant leurs exigences et leurs caractéristiques et/ou en minimisant le coût opérationnel induisant pendant le stockage de ces données dans une infrastructure de Cloud. Par ailleurs, le calcul du modèle de coût pour l'acheminement et le placement des données dans un Cloud est un problème NP-difficile [CPL16, ZXZ + 15, ZCLS16, RLZW16, GHKS13].

Cependant, il existe des travaux qui prennent en compte les caractéristiques des applications workflows. Ces caractéristiques montrent principalement des dépendances complexes entre les données intermédiaire générées et distribuées lors de l'exécution de ces applications [EMKL15, ZXZ + 15, YYL + 12], d'où la valeur dynamique du coût induit pendant le placement de ces données dans un environnement tel que le Cloud. L'économie du coût optimal pour la gestion des données d'un workflow dans un environnement de Cloud est déterminé en minimisant différents paramètres de stockage [DSL + 08, VSPD + 13, XLX17, TTC15]. En effet, il existe différents facteurs de coût qui influencent sur le déplacement et la migration des données entre les centres de données répartis dans le Cloud. La plupart des travaux de recherche [DSL + 08, VSPD + 13, BKT13, Rei11, LSWL16, STT09] n'ont pas jugé dans la construction de leur modèle de coûts, la contrainte de dependance des énormes ensembles de données générés, en plus du type de corrélation des données intermédiaires, aucune n'a vraiment soulevé les types de dépendances qui seront traitées dans cette thèse tout au long de la décision de leur acheminement et de leur placement dans le Cloud.

A.

5 Contribution 1 : Prédiction des interférences des E/S des données intermédiaires à partir des accès concurrents des taches MapReduce-Hadoop

  Ainsi, nous proposons de prédire le comportement d'accès des fichiers de données intermédiaires dans les traitements concurrents des applications de MapReduce en utilisant un modèle statistique de Markov. Ce modèle est basé sur la localité spatiale des blocs de fichiers de données intermédiaires et il analyse la séquentialité des fichiers générés par la phase spill durant l'exécution de ces applications (fichiers générés lors des écritures ou des appels flush () sur un disque). Aussi, nous proposons un algorithme de prédiction basé sur le modèle de Markov pour choisir les séquences de probabilités de transitions des E/S et prévoir les futures requêtes d'accès des données intermédiaires. Afin de valider le modèle de prédiction, un grand nombre d'observations provenant des serveurs de stockage d'Hadoop ont été effectués pour extraire des traces des E/S sur les fichiers spill. Par ailleurs, le modèle de Markov caractérise les accès des E/S à un niveau bas (niveau disque et ordonnanceur) sans nécessiter la sémantique de l'information disponible à un niveau supérieur (système d'exploitation). Ainsi, l'évaluation proposée utilise des expérimentations axées sur des traces qui génèrent les E/S des données intermédiaires qui construisent et valident le modèle de Markov. La solution pourra, entre autres, aider à améliorer les méthodes d'optimisation des E/S, et de fournir les bonnes décisions pour le placement des données intermédiaires (dans les traitement MapReduce ou de type workflow). Cependant, il est important de souligner que le modèle de prédiction proposé est basé sur des traces collectés sur des serveurs d'une plateforme Hadoop, mais il peut être facilement adapté aux traitements distribués MapReduce sur environnement basés sur les accès aux disques.

	A.5.1 Présentation

L'objectif principal de cette contribution est de comprendre le comportement des accès et de l'ordonnancement des E/S aux disques des données intermédiaires dans un environnement d'execution concurrent.

http://www.gartner.com/technology/home.jsp

https://www.idc.com/about/about.jsp

https://www.dialogic.com/ /media/products/docs/whitepapers/12023-cloud-computing-wp.pdf

It can be an information about a replacement task, integrating a new input data that improves the reliability of the workflow execution.

An application refers to a job in data workflow processing.

Tasks are launched and executed from an environment where scientific users collaborate and conduct their research together.

The security and communication management aspects in a collaborative processing are supposed to be covered by the SLA policy in a cloud environment.

https://aws.amazon.com/fr/s3/pricing/
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UNS_GREED_HEUR algorithm which is designed to reduce convergence times and scale for very large input parameters. The UNS_GREED_HEUR algorithm finds optimal solutions in less than 1 second for all simulations which is 2 to 6 times faster than the ExactFed_BDWP algorithm with an increasing number of intermediate data size and evolving cloud datacenters. However, the SPL_LP algorithm can be achieved in milliseconds to seconds time scales (Fig. 5.16 and 5.17), and in a few minutes time scales as shown in Fig. 5.17 .