1). Development of a simplified static-implicit FEM multi-steps inverse approach, to efficiently providing formability analysis of the pre-designed metal forming components. The approach adopts the classical isothermal elastoplastic model based on the simplified incremental flow theory to updating stress states. Several middle configurations are constructed to representing specific loading histories and simplifying the contact behavior; 2). Formulations of a complete set of advanced micromorphic constitutive equations under the framework of irreversible thermodynamics and generalized continuum mechanics, to capture the strongly interactive nonlocal effects in the material strain-softening induced localization regions.

The new extra micromorphic dofs lead to additional balance equations taking into account the nonlocal effects (e.g. the ductile damage, thermal effect and mixed hardening effects) and involving characteristic length scales as representative of the materials' microstructure; 3). A thorough discussion of existing extended heat equations is presented. Five types of the generalized heat equations: (i) the classical Fourier model, (ii) the Hyperbolic type with relaxation time, (iii) the Double temperature model, (iv) the Temperature (Entropy) gradient theory and (v) the Micro-temperature model, are classified according to the used different theoretical frameworks; 4). The micromorphic approach is applied to heat transfers and is shown to deliver new generalized heat equations as well as the nonlocal effects. The latter are compared to existing extended heat equations. A new pair of thermodynamically-consistent micromorphic heat equations are derived from appropriate Helmholtz free energy potentials depending on an additional micromorphic temperature and its first gradient. The introduction of the additional micromorphic temperature associated with the classical local temperature leads to a new thermal balance equation taking into account the nonlocal thermal effects and involving an internal length scale which represents the characteristic size of the system. Several existing extended generalized heat equations could be retrieved from constrained micromorphic heat equations with suitable selections of the Helmholtz free energy and heat flux expressions. As an example the propagation of plane thermal waves is investigated according to the various generalized heat equations. Possible applications to fast surface processes, nanostructured media and nanosystems are also discussed. The simplified inverse approaches and the advanced micromorphic constitutive equations have been implemented in the platforms of KMAS and ABAQUS finite element code respectively. Parametric study of the micromorphic constitutive models as well as various applications in uniaxial tensile test of DP1000 and in sheet metal forming processes, e.g. S-Rail, Box supporter, B-Pillar and Cross section deep drawing, have been performed and compared with experimental results when available.

RESUME V

Résumé

L'objectif de ce travail est de proposer de nouvelles equations constitutives non-locales avancées pour la modélisation et la simulation numérique des procédés de mise en forme de tôles minces sous haute température. Le cadre général de la théorie des milieux micromorphes est utilisé et les aspects suivant sont traités en détail : 1). Développement d'une approche numérique simplifiée inverse statique-implicite multi-pas, pour analyser rapidement et efficacement la formabilité de composants mécanique en tôles minces de formes finales connues. Les approches adoptent le modèle classique élastoplastique isotherme basée sur la théorie simplifiée de la déformation totale et des incréments intérmédiaires nécessaire à une meilleure mise à jour des états de contrainte. Plusieurs configurations intermédiares sont construites pour mieux représenter les histoires de chargement spécifiques et simplifier la modélisation du contact pièce/outils; 2). Formulations d'un ensemble complet d'équations constitutives micromor-phiques avancées dans le cadre de la thermodynamique des processus irréversibles avec variables d'état et de la mécanique des milieux continus généralisés, pour capturer les effets non locaux fortement couplés dans les zones de localisation. L'application du principe des puissances virtuelles en présence de nouvelles variables cinématiques (micromorphiques) conduit à des équations d'équilibre supplémentaires prenant en compte les effets non locaux (par exemple, l'endommagement ductile, les effets thermiques, les phenomènes d'ecrouissage) et aboutissant à des longueurs internes caractéristiques de la microstructure des matériaux; 3). Une discussion approfondie des équations étendues de la chaleur proposées dans la littérature est présentée. Cinq types d'équations thermiques généralisées : (i) le modèle classique de Fourier, (ii) le modèle hyperbolique avec temps de relaxation, (iii) le modèle Double température, (iv) le modèle en gradient d'entropy) et (v) -et le modèle de micro-température, sont classés selon les différents cadres théoriques utilisés; 4). L'approche micromorphe est appliquée aux transferts de chaleur et est présentée comme étant un cas général duquel sont déduits tous les autres modèles. Une nouvelle paire d'équations de chaleur micromorphes thermodynamiquement cohérentes est dérivée à partir de potentiels d'énergie libre de Helmholtz appropriés en fonction d'une température micromorphe supplémentaire et de son premier gradient. L'introduction de la température micromorphe supplémentaire associée à la température locale classique conduit à une nouvelle équation d'équilibre thermique prenant en compte les effets thermiques non locaux et impliquant une échelle de longueur interne qui représente la taille caractéristique du système. Plusieurs équations de chaleur généralisée étendues existantes pourraient être extraites d'équations de chaleur micromorphe contraintes avec des sélections appropriées des expressions d'énergie libre et de flux thermique de Helmholtz.

A titre d'exemple, la propagation des ondes thermiques planes est étudiée en fonction des différentes équations de la chaleur généralisée. Les applications possibles aux procédés de surface rapides, aux milieux nanostructurés et aux nanosystèmes sont également discutées.

GENERAL INTRODUCTION

1

General Introduction

According to the International Organization of Motor Vehicle Manufacturers, a total of 90.1 million vehicles were produced globally in 2015, a 1.1% increase compared to 2014. On average, 900kg of steel is used per vehicle, while a typical passenger vehicle emits about 4.7 metric tons of carbon dioxide per year. The international Energy Agency estimates that the transportation sector accounts for approximately 19% of global energy consumption and 23% of energy-related carbon dioxide (CO2) emissions (IEA, 2015), e.g. about 26% of the US's total greenhouse gas emissions, approximate one-fifth in the EU and around 10% of China's overall CO2 emissions in 2008.

Fig. 0-1 Body Structure of Volvo XC90 2016

In order to meet the new requirements of economy and environment protection, material selection for mass reduction will continue to play an important role. New grades the Advanced High-Strength Steels (AHSS) enable the vehicle manufacturers to reduce weight by 25-39% compared to conventional steel. When applied to a typical five passenger car, the overall weight of the vehicle is reduced by 170 to 270Kg, which corresponds to a lifetime saving of 3 to 4.5 tonnes of greenhouse gases over the vehicle's total life cycle. This saving in emissions represents more than the total amount of CO2 emitted during the production of all the steel in the vehicle, as shown by the body structure of Volvo XC90 in Fig. 01. However, increasing the strength of the as-received steel reduces the stretching capability of the steel because the work hardening exponent decrease with increasing strength for each type of steel [START_REF] Worldautosteel | Advanced High-Strength Steels Application Guidelines[END_REF]. The hot-forming process [START_REF] Karbasian | A review on hot stamping[END_REF]) is a proper way to improve the formability and avoid the large springback of AHSS . In the process, the blank material exhibiting a ferritic-pearlitic microstructure is heated to be austenitized in a furnace at least 5 min at 950°C, afterwards, the blank is formed and quenched simultaneously by the water-cooled die for 5-10s. During the forming process, the metallic material is subjected to large irreversible deformation leading to some macro-defects (local softening, cracking) supposed resulting from the ductile defects (micro-voids and micro-cracks) initiation, growth and propagation in some zones where the plastic strain is highly localized (Fig. 012). The fracture of metallic componnets during their manufacture or during their industrial use is a consequence of the strong localization of thermomechanical fields inside more or less narrow zones. The strong interactions GENERAL INTRODUCTION 2 (or coupling) between the intensive thermomechanical fields (stress, strain, hardening, heat, damage …) inside thses localization zones, resulting in some induced softening due to the damage effect and/or to the temperature increase. Fig. 0-2 Scheme of the ductile damage effects on the system response of a tension specimen [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF] Numerical simulation using the finite element method (FEM) is a considerable asset for the mechanical engineering industries. It takes an increasing and dominant place in certain fields of automotive industry. To simulate numerically a given forming process, a 3D model describing the main physical phenomena characterizing the thermomechanical behavior of the sheet is required. Because of the need for taking into account the interactions (or coupling) between the various thermo-mechanical phenomena exhibited inside the deformed metal, advanced (with high predictive capabilities) constitutive equations are crucial for the numerical simulation of forming processes. This can be done by using two kinds of modelling approach namely: the macroscopic phenomenological and monoscale approach and the micro-macro or multi-scale approach. The multi-scale approach in metal forming of metallic materials, based on the polycrystalline plasticity theory, is mainly used to describe the effects of the initial microstructure of the polycrystalline materials and its evolution during large plastic deformation (textural evolution) as can be found in works [START_REF] Abdul-Latif | Damaged anelastic behavior of FCC polycrystalline metals with micromechanical approach[END_REF][START_REF] Boudifa | A micromechanical model for inelastic ductile damage prediction in polycrystalline metals for metal forming[END_REF][START_REF] Franciosi | Latent hardening in copper and aluminium single crystals[END_REF] among many others. The macroscopic approach, which is the widely used one in metal forming, concerns the conventional plasticity with isotropic hardening based on a yield function using an anisotropic equivalent stress (quadratic or non-quadratic) together with a scalar hardening function (power function of the accumulated plastic strain). However, when the inelastic strains are very large they tend to localize inside narrow bands (shear bands) during the inelastic flow giving rise to the initiation, growth and coalescence of some micro-voids and micro-cracks. To describe this strong interactions between the inelastic (plastic or viscoplastic) flow and the ductile damage occurrence, several theories have been proposed. Firstly, the GENERAL INTRODUCTION 3 most widely used approach in metal forming is based on the Gurson's type ductile damage modelling [START_REF] Gurson | Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media[END_REF] in order to describe as accurately as possible the ductile damage occurrence [START_REF] Bontcheva | Numerical investigation of the damage process in metal forming[END_REF][START_REF] Pardoen | Mode I fracture of sheet metal[END_REF]. In these approaches, the damage is mainly described by the volume fraction of the spherical or elliptical voids. This scalar variable is introduced in the plastic potential affecting the plastic flow through the normality rule and gives a decrease on the stresses when the void volume fraction increases under the applied external loading. Secondly, another kind of approaches, based on the continuum damage mechanics (CDM), represents the ductile damage by a scalar or tensor variable [START_REF] Kachanov | Introduction to continuum damage mechanics[END_REF][START_REF] Lemaitre | A course on damage mechanics[END_REF][START_REF] Lemaitre | Mécanique des matériaux solides[END_REF][START_REF] Murakami | Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture[END_REF][START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF] and its effect on the material behavior is accounted for thanks to the hypothesis of the strain equivalence, stress equivalence or energy equivalence [START_REF] Boudifa | A micromechanical model for inelastic ductile damage prediction in polycrystalline metals for metal forming[END_REF][START_REF] Chaboche | A CDM approach of ductile damage with plastic compressibility[END_REF]Chaboche, 1988a, b;[START_REF] Saanouni | On the numerical prediction of the ductile fracture in metal forming[END_REF][START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF]. This kind of fully coupled CDM approach has been used for damage prediction in metal forming assuming various types of coupling in some published works [START_REF] Bezzina | Theorical and numerical modeling of sheet metal shear cutting[END_REF][START_REF] Khelifa | Effect of anisotropic plastic flow on the ductile damage evolution in sheet metal forming. Application to the circular bulging test[END_REF][START_REF] Lee | An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates[END_REF][START_REF] Mathur | Damage evolution modeling in bulk forming processes[END_REF].

However, the well-established initial and boundary value problems based on fully local formulations of continuum damage mechanics exhibiting strong damage-induced softening due to thermal, damage or any other microstructure-dependent phenomena, lead to the numerical solutions highly sensitive to the space and time discretization and giving a physically meaningless solution. In mathematically, this results from the strain softening induced loss of ellipticity of the governing equations. The nature way to avoid this drawback is to considering nonlocal effects contributed from an approximate neighborhood of each material point within some characteristic lengths. The mechanics of generalized continua, which enables the introduction of the characteristic lengths into the constitutive equations of material with microstructure, is an adequate way to regularize the associated initial and boundary value problem (IBVP). Various generalized continuum theories, proposed mainly in 1890 th (Cosserat andCosserat, 1896, 1909)and during the 1960 th (Eringen, 1966b;[START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF][START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF][START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF][START_REF] Suhubl | Nonlinear theory of micro-elastic solids-II[END_REF][START_REF] Toupin | Elastic materials with couple-stresses[END_REF], have been used during the last decades (mainly since the 1980s) in order to accounting for some effects of characteristic lengths related to the material's microstructure and leading to a wide range of models. As summarized by [START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF], all these generalized continuum theories, which are still based on the assumption of local action, can be classified into two classes: (i) the higher grade continua and (ii) the higher order continua. Higher grade continua are those based on higher order spatial derivatives of the displacement field as originally proposed in literatures [START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF]. On the other hand, higher order continua are based on the introduction of additional degrees of freedom as pioneered by the Cosserat brothers (Cosserat andCosserat, 1896, 1909) and extensively developed by Eringen and his co-workers in 1960s (Eringen, 1966a(Eringen, , c, 1999;;[START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF]. A third class of generalized continuum theories is the so-called strictly nonlocal continuum field theories, initially introduced by Kröner, Krumhansl and others [START_REF] Beran | Mean field variations in a statistical sample of heterogeneous linearly elastic solids[END_REF]Kröner, 1967[START_REF] Kröner | Interrelations between Various Branches of Continuum Mechanics[END_REF][START_REF] Krumhansl | Some Considerations of the Relation between Solid State Physics and Generalized Continuum Mechanics[END_REF][START_REF] Kunin | The Theory of Elastic Media with Microstructure and the Theory of Dislocations[END_REF][START_REF] Levin | The relation between mathematical expectations of stress and strain tensors in elastic microheterogeneous media[END_REF] as well as well-developed and summarized by Eringen et al. [START_REF] Eringen | Nonlocal continuum field theories[END_REF][START_REF] Eringen | On nonlocal elasticity[END_REF] where a unified foundation of the basic field equations is presented and various main contributing works in the field are referenced. This class of nonlocal theories, which are not based on the principle of the local action, is 'concerned with the physics of material bodies whose behavior at a material point is influenced by the state of all points of the body'. This work aims to develop an advanced generalized constitutive model of thermomechanical coupling in the framework of the generalized continuum mechanics (micromorphic theory) to introduce the concept of internal lengths that are representative of the material microstructures while accounting for the initial anisotropy under finite deformations. The structure of the thesis is organized as follows:

In Part I, the simplified static-implicit FEM Inverse approaches are initially developed to providing efficient formability analysis of the pre-designed forming component. 1). In Chapter I, the widely used one-step inverse approach is briefly revisited for the nonlinear kinematic formulations and total deformation based constitutive equations; 2). In Chapter II, the multi-step approach is developed by considering several intermediate deformable configurations, which are constructed through solving a quadratic optimal program and equilibrium iterations with generated initial solutions, to improve the history of the stress field. Accordingly, the measurement of finite logarithmic strain between successive middle configurations is reformulated; the local integration is performed using the elastoplastic model as well as the associated flow theory; 3). In Chapter III, numerical validations and applications are performed to various metal forming components. In Part II, we concentrate on the development of a complete set of thermodynamically consistent generalized nonlocal constitutive model to capture the strong coupling between the intensive thermomechanical fields inside the strain-softening regime which results in the macro crack. 1). In Chapter VI, a complete set of micromorphic constitutive equations, strongly coupled with elastovisco-plasticity, thermal effect, mixed hardening and ductile damage, as well as the associated micromorphic state variables characterizing size effects, is formulated under the framework of thermodynamics of irreversible processes. The introduction of the micromorphic degrees of freedom (dofs) related to the targeted micromorphic phenomena, leads to new additional balance equations involving some material internal lengths. Focusing on thermal aspects, a thorough discussion of existing extended and generalized heat equations derived from the micromorphic approach to heat transfer are well presented. Several existing extended heat equations could be retrieved from constrained micromorphic heat equations with appropriate selections of Helmholtz free energy and heat flux models; 2). Chapter VII presents the numerical aspects: the weak forms of the IBVP, the space discretization using shell and solid-shell finite element, the global resolution scheme as well as the fully implicit local integration scheme of the viscoplastic model; 3). In Chapter VIII, the parametric study of the local damage parameters, the viscoplastic moduli, the micromorphic moduli of damage and isotropic hardening, as well as the temperature dependent parameters in the micromorphic constitutive model and the impact on the solution of the associated IBVP are analyzed; 4). In Chapter IX, the material parameters of DP1000 are identified and applied to the uniaxial tension test with the micromorphic damage and isotropic hardening models respectively. The application of the micromorphic damage model to a cross section deep drawing process is performed and compared with the experimental results; Finally, the main conclusions and perspectives of the present work are presented. 

Part I Simplified inverse approaches for sheet metal forming

Introduction

The inverse approach, originally proposed by [START_REF] Guo | Finite element procedures for strain estimations of sheet metal forming parts[END_REF] to predict the deformation of forming parts with a geometrical knowledge of the designed workpiece, is widely used in the initial design stage of sheet metal forming due to its high efficiency. It costs much less computation than the incremental algorithm, mainly benefited from the simple constitutive equations of total stress and total strain derived from the Henchy deformation theory and the simplified tools' actions instead of the complex contact search processes. Numerous examinations shows that the inverse approach provides fairly well estimations in strain but poor accuracy of stress due to lacking in deformation histories.

The multi-step or multi-stage approach, initially proposed by Majlessi andLee (1987, 1988), assumed that the forming processes were able to be decomposed into several steps, which retained proportional loading assumption and the principle of minimum potential energy from one to the next configuration, with intermediate configurations constructed from the geometric proportional method. The membrane element was implemented to analyze the axisymmetric problems. [START_REF] Lee | Three dimensional multi-step inverse analysis for the optimum blank design in sheet metal forming processes[END_REF] followed this methodology and extended the inverse analysis to the general 3D multi-step analysis with developed three coordinates systems. The square cup drawing and oil-pan drawing were performed to optimize the initial blank shape with given geometrically generated sliding surfaces. [START_REF] Lee | Shell element formulation of multi-step inverse analysis for axisymmetric deep drawing process[END_REF] developed an axisymmetric shell element for the multi-step inverse analysis to improve the accuracy of the calculated initial blank shape and the strain distribution in deep drawing processes. [START_REF] Kim | Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis[END_REF] proposed the concept of constrained sliding surface which could be constructed directly by connecting the contact nodes obtained from the contact search processes. A direct mesh mapping method was developed to generate initial solutions of the section lines and was applied to the multi-stage rectangular cup and S-Rail forming processes. [START_REF] Guo | An efficient pseudo-inverse approach for damage modeling in the sheet forming process[END_REF] proposed the Pseudo-Inverse Approach (PIA) to improve stress estimation with elastoplastic isotropic damage model. The "True" intermediate configurations were generated by the method of minimization of the sheet profile's length in the view of geometrical calculation. The initial solution was generated by mapping blank's mesh onto the sliding surface retained same curvilinear length and angular position with respect to a reference center. The efficient scalarprediction return mapping method was developed to implement the local integrations. However, the strain increments were calculated from the subtraction of the total strains between two successive configurations. [START_REF] Huang | A new approach to solve key issues in multi-step inverse finiteelement method in sheet metal stamping[END_REF] proposed a modified arc-length search method to obtain the initial solutions on the intermediate three-dimensional configurations and introduced an sliding strategy forcing the nodes to retain on constrained sliding surface during Newton-Raphson iterations. [START_REF] Li | Two efficient algorithms of plastic integration for sheet forming modeling[END_REF] proposed an efficient algorithm (the direct scalar algorithm) for local integration. The direct scalar algorithm, introducing an elastic unloading-reloading factor, was taken as the initial solution of return mapping method to stable the iterative scheme. [START_REF] Tang | Developments of Multistep Inverse Finite Element Method and Its Application in Formability Prediction of Multistage Sheet Metal Forming[END_REF] followed the PIA approach and extended it to the general three dimensional case. An approach of minimization of area solved by the sequential quadratic programming, was developed to generate the constrained intermediate surfaces. And a walk-through strategy was proposed to control the sliding of material points on the sliding surfaces. [START_REF] Halouani | Simulation of axi-symmetrical cold forging process by efficient pseudo inverse approach and direct algorithm of plasticity[END_REF] applied the PIA to axisymmetric cold forging processes. The geometric proportional approach and the method of correctional free surface were proposed to generate the initial solutions of the intermediate configurations. For the incremental deformation theory, the deformation path was assumed to be the minimum plastic work path in homogeneous deformation. [START_REF] Chung | A deformation theory of plasticity based on minimum work paths[END_REF] presented this theory in which the increment of total strain is proportional to the fixed strain increment. A mathematical description of the constitutive law of deformation plasticity is developed based upon this path for rigid-plastic and for elastoplastic materials. [START_REF] Ramakrishnan | An algorithm based on total-elasticincremental-plastic strain for large deformation plasticity[END_REF] proposed a simple constitutive equation relating Cauchy stress tensor to a total-elastic-incremental-plastic strain (TEIP). A special form of the constitutive relation in the context of J2 plasticity is presented that ensures that the proposed constitutive equation naturally obeys the normality and associative flow rules. [START_REF] Robert | Comparison between incremental deformation theory and flow rule to simulate sheet-metal forming processes[END_REF] presented a comparison between this theory and the flow theory with the Nakazima test and cylindrical cup of incremental sheet forming processes.

In this part, concentrating on the isothermal elastoplasticity coupled with isotropic hardening, the simple inverse approach is briefly reviewed and the multi-step approach is formulated in detail.

I. The static implicit one-step inverse approach I.1 Introduction

The basic idea of the inverse approach is to perform a non-linear analysis to determine the positions of the material points in the initial flat blank and the strains in the final (known) drawn workpiece without considering the incremental processes of plasticity and contact. It takes the following assumptions: (i) planar stress state; (ii) finite elastoplastic strain with full incompressibility; (iii) deformation theory of plasticity; (iv) isotropic hardening law; (v) simplified tools' actions of pressure and friction forces;

In this section, the basic static implicit one-step inverse approach is reviewed. The purpose is not to go with details, but to represent the original work where the author's research starts from. Detailed formulations and discussions can be found in literatures [START_REF] Batoz | The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts[END_REF][START_REF] Guo | Finite element procedures for strain estimations of sheet metal forming parts[END_REF][START_REF] Guo | An efficient DKT rotation free shell element for springback simulation in sheet metal forming[END_REF][START_REF] Guo | Initial solution estimation to speed up inverse approach in stamping modeling[END_REF][START_REF] Guo | Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach[END_REF], among many others.

I.2 Kinematic formulations of total strain

In the inverse approach, only two configurations: the unknown initial flat blank (reference configuration) 0 C with given thickness distributions, and the final deformed workpiece (current configuration)

C , are considered with simplified contact and friction conditions. The deformation at a point can be described by three principal stretches  i : Considering the two material points q and 0 q along the thickness directions, as shown in where n and 0 n are the normal of the mid-surface at material points p and 0 p respectively. p u is the displacement vector of the point p with respect to its initial position 0 p .

                        2 1 0 1 2 2
Introducing two unit orthogonal tangent vectors 1 t and 2 t on C , leads to the following relations:

             1 00 q x q x dx F dx dx F dx (I.7)
where, r , s , t are the components of the curvature tensor of the deformed shell.

                      1 0 , 2 , 0 1 
By assuming that the sheet is thin enough, the deformation gradient tensor from 0 q to q can be approximately expressed as: where, If the incompressibility is assumed, the thickness stretch is given by:

                     
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                   2 0 1 , , 0 1 , 2 , , , 2 0 2 , 
   3 1 2 0 1 h h (I.15)
Finally, the logarithmic strain tensor expressed in the local coordinate is obtained: 
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I.3 Constitutive equations using the deformation theory

Considering the heterogeneity of rolling sheet, the Hill's anisotropic yield function is defined as: r are the anisotropic coefficients of degree 0, 45 and 90 with respect to the rolling direction, respectively.

                 1/2
The Henchy deformation theory declared that the stress tensor at every point is proportional to a tensor independent of time, is adopted. If we assume that the (small) elastic strains have the same anisotropic directions as the plastic ones, the following total constitutive equation is obtained:

           1 P (I.19)
where,  and  are the equivalent stress and equivalent strain respectively.

I.4 Simplified tools' actions

The contact conditions between the sheet and the tools are simply replaced by some external forces on the sheet. The unknown contact force of punch F is decomposed into normal pressure force where f n is the direction of punch force, n is the normal vector of the sheet tangent plane,  tt t u u is a unit vector given by the projection on the sheet tangent plane of the relative movement between the sheet and the punch,  is the friction coefficient, where n q is the known normal pressure.

II. The static implicit multi-step approach II.1 Introduction

Due to the nature defects of the inverse approach, several intermediate configurations reflecting the loading paths are introduced to improve the stress estimations. In this section, the multi-step approach introducing several constructed intermediate configurations is formulated. The constrained sliding surfaces are generated using the efficient geometric method and the mechanical initial solutions are obtained by the mapping technique. The finite forward strain increment is reformulated due to the successive deformed reference configurations. The local integration of the normal anisotropic elastoplastic model is performed by the classical return mapping algorithm and the scalar mapping method is examined to show its limitation. The main procedures in the multi-step approach can be summarized as follows:

1). Constructions of the intermediate configurations. Commonly, it needs two steps: constrained sliding surface and its initial solutions, to generate a proper intermediate configuration. The sliding surface of the blank sheet is supposed to be a deformed tensional membrane subjected to the Punch and Die at each interval, and can be constructed from the contact processes or geometric approaches. After that, the initial solutions, to position all the material points of the blank sheet on the sliding surface, are generated from the mapping approach. 2). Nonlinear kinematic formulations -the measurement of the strain increment between two successive configurations. The detailed kinematic formulations are derived in Section 2 for both flatten (case of one-step approach) and curved reference configurations. For the curved references, the upward formulations, instead of the subtraction of the total strains, of the measurement in strain increments are derived. 3). Constitutive local integrations. Due to the large finite strain increments, the classical Return Mapping method with an iterative scheme is considered to update the stress state.

II.2 Kinematic formulations of incremental strain

Now, concerning the curved reference configuration 1 C , the vectors of material points q and 1 q , shown in Fig. II-1, are expressed as:

       11 1 1 1 1 q p q p p p x x zn x x z n x u z n (I.23)
where n is the normal of the material point p positioned on the mid-surface, p u is the displacement vector of point p with respect to the reference configuration 1 C . Considering a material point q infinitely closed to the material point p along the normal direction, leads to:

        11 1 1 1 1 q p q p
dx dx zdn n dz dx dx z dn n dz Recall the Eq.(I.24), the second equation can be expressed as: 
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                1 1 , 1 1, 2 , 1 1 
                        11 11 11 T x x x F F F F I z b T (I.33)
The inverse of left Cauchy-Green deformation tensor   1 B is defined as: 

                   
(1 It's worth to note that, if the material points are placed on the mid-surface (  0 z

)(1 ) ( ) (1 ) ( ) 2 (1 ) 
                                0 0 1 1, 1 , 1 1, 0 0 1 2 , 1, 1 , 1, 1 1, 1, 0 0 1 1, 2 , 1 1 
), the Eq.(I.36) will descend to the Eq.(I.13). Consequently, the logarithmic strain increment obtained from Eq.(I.34) and the one given by Eq.(I.11) will be the same; for material points outside of the mid-surface, the strain increment estimated from the equation Eq.(I.35) provides apparently differences compared with the strain increment measured from Eq.(I.12), due to the curved reference configuration, which has severe effects on the left Cauchy-Green deformation tensor for material points along the thickness.

In summary, the measurement of strain increment from the inverse (one-step) approach (Eq.(I.11)) is only valid for the measurement on the mid-surface in the multi-step approach. In order to obtain the logarithmic strain increment and the accumulated strain, the left Cauchy-Green deformation tensor should be revised by Eq.(I.34), due to the bending effects from the deformed intermediate configurations. The differences of the accumulated strains are also examined from the numerical aspects in the following sections.

II.3 Local integrations based on flow theory

In this section, the classical anisotropic elastoplasticity coupled with isotropic hardening (Power-Law hardening) is chosen to perform the material responses in sheet metal forming processes. The associated normality rule as well as the quadratic plastic potential of Hill48 are restored to govern the evolution equations. In order to update the stress state for given strain increment, the classical Return Mapping algorithm [START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF][START_REF] Simo | Computational inelasticity[END_REF] with the Newton-Raphson iterative scheme is considered as an efficient method. On the other hand, the widely applied Scalar Return Mapping method [START_REF] Guo | An efficient pseudo-inverse approach for damage modeling in the sheet forming process[END_REF][START_REF] Halouani | Simulation of axi-symmetrical cold forging process by efficient pseudo inverse approach and direct algorithm of plasticity[END_REF][START_REF] Li | Two efficient algorithms of plastic integration for sheet forming modeling[END_REF][START_REF] Titeux | Un algorithme efficace d'intégration plastique pour un matériau obéissant au critère anisotrope de Hill[END_REF], which was initially proposed to overcome the convergence difficulties induced by the large strain increments, is also carefully examined to show its limitations.

II.3.1 Classical elastoplastic local integration

The quadratic plastic potential is defined as:

                            1/2 1/2 , p ss f q P q P (I.37)
where,  represents the Cauchy stress, q indicates the internal variables for isotropic hardening and usually takes to the equivalent plastic strain  p ,  s is the equivalent uniaxial yield stress,   P represents the anisotropic tensor (in plane stress state) as given in Eq.(I.18).

In this work, the classical multiplicative decomposition of the total gradient   F into elastic   e F and plastic   p F parts. In order to ensure fulfilment of the objectivity all the constitutive equations will be written with respect to the rotating frame defined by the rotation tensor   Q . The evolution of this rotation tensor is defined in kinematical way based on the corotational framework. It leads to

          eJ p
D which is the additive decomposition of the total strain rate tensor into elastic part    eJ (Jaumann rate) and plastic part   p D . According to the normality rule, the rate of the plastic strain is given by: The rate of stress can be expressed as:

                       
                   {} f C C (I.39)
where,   C represents the elastic modulus tensor.

The plastic multiplier  is obtained from the constraint of the plastic consistency condition    0 f :

                              f C f f f C q (I.40)
Substituting the above plastic multiplier into Eq.(I.39), leads to the elastoplastic module tensor ep C :

                                                        ep ff C f CC C C ff q (I.41)
The numerical implicit form of the updated stress is expressed as: 

                       

II.3.2 Examination of scalar return mapping method

The classical Simo's return mapping algorithm with Newton-Raphson iterative scheme is restored to update the stress. However, it meets convergence difficulties mainly caused by the large strain increment between the successive configurations. The scalar return mapping method, gives a direct resolution instead of the iteration algorithm, was developed to overcome the convergence difficulties. In this section, we'll examine and show the stable conditions of the scalar return mapping method in applications.

Concerning the implicit form of updated stress in Eq.(I.42), leads to the following iterative forms:

                                                   (1) 1 1 1 1 1 ( ) ( 1) ( 1) 1 1 1 ( 1) 1 1 1 trial trial n n n trial n i i i i n n n i n C C Pi Pi (I.43)
where, the superscript number indicates the i th iteration and the equivalent stress

                   12 11 ( 1) 1 1 1 ii i n n n P .
For cases of  2 i and  3 i

, the updated stresses are detailed expressed as: 
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Then, the updated stress can be rewritten as:

                        () 1 1 1 1 1 i j i trial trial n n j n j C A P i (I.46)
Clearly, the stress state depends on the scalar j A and matrix      j C P . Now, considering the widely adopted assumption in the works of sheet metal forming processes [START_REF] Batoz | The inverse approach with simple triangular shell elements for large strain predictions of sheet metal forming parts[END_REF][START_REF] Guo | Finite element procedures for strain estimations of sheet metal forming parts[END_REF][START_REF] Guo | An efficient DKT rotation free shell element for springback simulation in sheet metal forming[END_REF][START_REF] Guo | An efficient pseudo-inverse approach for damage modeling in the sheet forming process[END_REF][START_REF] Guo | Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach[END_REF][START_REF] Halouani | Simulation of axi-symmetrical cold forging process by efficient pseudo inverse approach and direct algorithm of plasticity[END_REF][START_REF] Kankarani Farahani | Development of an inverse finite element method with an initial guess of linear unfolding[END_REF][START_REF] Robert | Comparison between incremental deformation theory and flow rule to simulate sheet-metal forming processes[END_REF], it declares that: if we assume the same anisotropy (planar isotropy) for the elastic and plastic behavior and if we consider incompressibility for the elastic deformation, then the Poisson coefficient is related to the mean anisotropy coefficient r :

  1 r v r (I.47)
For the planar stress state, using the above relation, the multiplication of   

 

C P can be expressed as:
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The eigenvalue analysis of the matrix     

C P gives three different eigenvalues and eigenvectors respectively:

                                                     2 2 1 2 2 2 2 , , ,0 , 0,0,1 , , ,0 2 3 1 2 2 2 2 Er E Er E rr (I.49) which means the matrix      C P is diagonalizable:          1 C P Q Q (I.50)
where   

               1 jj Q C PQ (I.51) It means that the return-mapping directions           1 j trial n P C
are parallel to each other. And this yields radius mapping method without the need of iteration scheme.

In summary, the scalar return mapping method is an approximation of the classical return mapping method, under the assumption that the elastic and plastic behavior have the same anisotropic property and incompressibility. Consequently, the errors on updated stress may appear when the relation Eq.(I.47) broke down. As shown in the work [START_REF] Li | Two efficient algorithms of plastic integration for sheet forming modeling[END_REF], the scalar mapping method is very fast but may lead to certain errors. However, it could be regarded as a better initial solution for the classical return mapping algorithm to stable the convergence.

II.4 Construction of intermediate configurations

Let's recall the inverse approach, which only uses the pre-designed final formed part (final configuration) to evaluate the formability with completely ignoring the loading paths, and consequently results in the roughly evaluations of the stress state. In order to overcome these defects, several intermediate configurations are high efficiently constructed to introducing the deformation histories for general three dimensional part, with the following steps: 2). Position overall material points on the sliding surface with the assumption of the equivalent initial blank reference for the final and middle configurations. a. Compute the initial blank reference of the final part using the inverse approach. b. Compute the initial blank of the middle sliding surface using the inverse approach. c. Iteratively update the middle configuration by mapping the initial blank of final part to the middle sliding surface. 3). Go to the next iteration of step( 2) with the updated middle configuration.

II.4.1 Resolution of the sliding surface

The pseudo minimum area method In the general 3D case, the pseudo minimum area (PMA) method is proposed to efficiently generate the sliding surfaces, comparing with the work of minimization of area of the surface [START_REF] Guo | An efficient pseudo-inverse approach for damage modeling in the sheet forming process[END_REF][START_REF] Tang | Developments of Multistep Inverse Finite Element Method and Its Application in Formability Prediction of Multistage Sheet Metal Forming[END_REF] which is hard to be solved.

Fig. II-2 Blank sliding surface constrained by Punch and Die

The blank sheet is supposed to be a tensional membrane under the constraints of the tools, as shown in Fig. II-2. Then the shape of the deformed blank can be determined by minimizing the area of the surface.

However, this optimal model is solved inefficiently by the sequence quadratic program solver, due to the strongly nonlinear characteristics. In order to overcome this defect, the objective function in PMA is modified as the minimization of the sum of the elements' areas in square: Concerning a triangular element e , the square of the element's area is given by:

            2 
          2 2 1 A ( , , ) 4 
e i j k k i k i k i j i j i j i i j k
x x y y z z x x y y z z

(I.54) PART I CHAPTER II MULTI-STEP APPROACH 24 Supposing that        T e i j k
is the vector of the basic variables of element e , the square of the area can be rewritten in the matrix form:

     operations. Supposing that        T 12 m
is the vector of the basic variables of the structure,   H ,

 

C and D are the matrix, vector and scalar of the structure assembled like the structural stiffness matrix and external force vector in FEM, then the square area of the structure can be expressed as:

                       2 1 11 H 42 n e e f A C D (I.56)
Clearly, it's a quadratic programming model which can be solved (e.g. quadprog() subroutine from Matlab) very efficiently in polynomial time. In special cases to improve the quality of sliding surface, the PMA method could also be regarded as an efficient approach to search the contact nodes as shown in the work [START_REF] Liu | A modified PMA method to generate sliding constraint surface in multi-step inverse approach[END_REF]. tol are in contact with the tools. With this idea, the contact nodes are able to be efficiently obtained in time complexity   On . By directly connecting the contact nodes or using the Delaunay triangulation algorithm [START_REF] Shewchuk | Delaunay refinement algorithms for triangular mesh generation[END_REF], the wall part of the middle surface can be generated. This idea is useful for the part with sloping wall.

As shown in Fig. II-4, the green part indicates the contact nodes with the tools and the gray part is the generated wall mesh by directly connecting the contact nodes.

II.4.2 Initial solutions of the middle configuration

From the previous section, the middle sliding surface is obtained by using the PMA approach. It is nothing but a geometric surface which indicates the possible deformed shape of the initial blank material. In order to make it represents the realistic deformation paths, overall material points of the pre-designed final configuration need to be properly positioned on the middle surface, the so-called initial solutions of the middle configuration.

The basic idea works like this: the constructed middle configuration can be regarded a state of the possible deformations with a given time in the forming processes, then the blank meshes with respect to the middle configuration and the known final part should be equivalent. By keeping the two blank meshes equivalent, we are able to find a group of proper distributions of overall material points on the middle configuration. As shown in Fig. II-5, the following steps have been carried out: 

II.4.3 Equilibrium of the middle configurations

With the help of the above procedures, several intermediate configurations with initial solutions are able to be efficiently constructed. However, it is worth to note that the total constitutive law (deformation theory) is used to provide initial solutions for the middle configurations. In this section, the nonlinear balance equations governing the displacement fields are solved with Newton-Raphson method to update the middle configurations.

Considering the triangular element, the elemental stiffness matrix is expressed in its local coordinate: For the update of middle configuration, all the material points (nodes) are constrained to move on the middle surface. The elemental stiffness is enhanced by applying a penalty function to constrain the nodal movements:

         T ep
              TT ep e e e K B C B h A N N (I.60)
where,  is a penalty factor to be determined with the trial-error procedure and   N is the elemental matrix of the normal of all nodes.

The internal forces of this triangular element are given by:

        int T e ee f B h A (I.61)
in which,    is the updated stress state with evaluated finite logarithmic strain increment using the return-mapping algorithm.

With the help of the transformation matrix  

T relating the global dof to the local one, the elemental stiffness matrix and internal forces are transferred to the global coordinate:

              int int TT ee ee G G K T K T f T f (I.62)
Finally, the structural stiffness matrix, internal and external forces are assembled to obtain a nonlinear system which is solved with the Newton-Raphson iteration:

                  int 0 i i i ext R U F U F U K U (I.63)
and the displacement fields for the next iteration is updated by: 

            1 i i U U U (I.64)

III. Numerical applications

The numerical verifications and applications are presented in this section. In order to validate the derived kinematical formulations and improments in stress estimations, the multi-step approach (MSTPstatic implicit solver) is examined and is compared with the numerical results of the S-Rail, B-Pillar and box shaped holder forming components obtained from the commercial FE code LS-DYNA (INC -dynamic explicit solver).

III.1 S-Rail part of NUMISHEET 96

The CAD model and geometry of S-Rail are the same with Numisheet 96. In simulations with the INC, the triangular shell element without refining meshes is used to discrete the initial blank (20468 elements). Fig. III-1 shows the distributions of thickness on three different intermediate configurations(15mm , 25mm and 40mm ) which were estimated by LS-DYNA and multi-step approach respectively. Clearly, both contour distributions of thickness obtained from INC and MSTP on the three configurations are very close, the maximum differences of thickest and thinnest for INC and MSTP are 000 0. 63mm (..) and 0.0096mm ( 0.11% ) respectively. 

III.1.1 Verification and estimation of the derived kinematic formulations

In order to make clearer comparisons, two sections AB and CD , positioned on XZ plane with coordinates  153.34 Y mm and  178.94 Y mm , are chosen to show the differences of the physical variables. Fig. III-2 shows the thickness evolutions of section AB and section CD from depth 5.5mm to 40mm calculated by INC and MSTP respectively. In general tendency, both the two section curves obtained from MSTP are in consistent with these calculated by INC at each configuration. However, there is still some differences between the two curves of INC and MSTP. In section AB , the maximum difference occurred around 40mm is 0.0014mm which is 0.15% and negligible compared with its absolute value; in section CD , the maximum difference 0.002mm ( 0.22% ), is also negligible to its absolute value, appears around 130mm . However, the thickness isn't a direct physical variable that derived from the kinematic formulations. Let's recall the processes of multi-step approach: Firstly, the logarithmic strains with respect to displacements are derived from the kinematic formulation Eq.(I.34), which is a function of displacements and gives two planar strain through the two principle stretches    11 12 , . Secondly, the components of logarithmic strain tensor will be obtained from the principle strain tensor and their directions. The obtained components will be accumulated to the total strain during different configurations. And last, we'll use the constitutive equations to update stress, plastic strain, elastoplastic tensor etc.. From the processes of multi-step approach, we know that thickness strain equals to planar major strain adds minor strain. For section AB , the positions of positive minor strain in Fig. III-3(b), which indicates the biaxial tension status and reduction in thickness, range from arc length around 58mm to about 80mm corresponding to the range of significant reduction in thickness shown in Fig. . We can see that the maximum major strain (approximate 0.225) and minimum minor strain (approximate 0.150 ) locate around 35mm and indicate the state of a primary tension and a secondary compression consistent with the thickness thinning around 35mm in Fig. III-2(a). From arc length about 120mm to 140mm , the major strain keeping increasing slowly and the minor strain firstly increasing and decreasing from 130mm , predict the local maximum thickness at about 130mm shown in Fig. III-2(a). For section CD , the maximum positive minor strain (about 0.01 ) appears at around 70mm . Although it's biaxial tension state, however, the corresponding major strain remains very small, which produces the small thinning in thickness. The maximum thinning takes place at approximate 40mm in Fig. III-2(b), because we have the maximum major strain (around 0.175 in Fig. III-3(c)) at this point while the minor strain is relatively small (only about 0.05) shown in Fig. , even smaller than ( * v Major Strain ). The two values of principle strain give also the result of a state of biaxial tension at approximate 40mm . In Fig. III-3(d), the minor strain increasing slowly starts from about 40mm until around 70mm , then it keeps decreasing to arc length approximate 115mm . During these two periods, the major strain has the same general tendency but with two local extreme values which are also indicated at around 65mm and 110mm in Fig. III-2(b).

It can be concluded that the nonlinear geometric relations between strains and displacements, which provides the planar principle strains and their components, are well predicted from the kinematic formulations. And next, we can obtain the updated stresses according to the predicted incremental strains by using the return mapping method. 

III.1.2 Errors in accumulated total strain of different layers

In the above section, we validate the effectiveness and the accuracy of the kinematic formulations. In this part, we'll implement the formulations derived from Eq.(I.34) to calculate the physical values of top and bottom layer by the accumulated method.

Fig. III-5 Comparisons of accumulated principle strains of section AB on configuration of depth 40mm

obtained by LS-DYNA, Multi-step approach and Eq.8: (a) Top Layer. (b) Bottom Layer.

Fig. III

-5 shows the accumulated total planar principle (major and minor) strains of section AB at depth 40mm , estimated from INC, MSTP and Eq.(I.11), respectively. Clearly, both the two top layer's major strains of INC and MSTP are very close, shown in Fig. . However, the contour curve of predicted major strain from Eq.(I.11) up to 0.418 , significantly departs from the other two curves. The same situation appears at the minor strain and the planar principle strains of section CD (Fig. III-5(b)). The differences of the planar principle strain imply the effects of the bending normal.

From this verification, it's clear to conclude that the total logarithmic strain estimated from Eq.(I.11) can be only valid for flat reference configuration, otherwise, the total strain should be accumulated from Eq.(I.34) which considering the bending effects. Clearly, the middle configurations constructed by PMA method are in good agreements with the intermediate states computed from the incremental approach.

III.2 Application to B-Pillar component of NUMISHEET 08

To validate the improvement in stress estimations of the multi-step approach, by using intermediate configurations generated by the LS-DYNA (INC), is the main objective of this benchmark analysis. For simplicity, the material of high strength steel 22 5 MnB is limited to the isothermal elastoplastic model with the following properties (interpolated based on the material response at  800 C and strain rate 1 approaches provide very close distributions of stress components, while around arc length 250mm , MSTP 04IMs gives a better prediction of stress X ( 82.32MPa ) than the stress state obtained from OSTP ( 11.08MPa ), compared with the stress X given by INC ( 128.99MPa ). The same tendency and improvements on stress state of MSTP 04IMs with respect to the OSTP can be found in section 2 ranged from arc length 50mm to 100mm . In general, the multi-step method with 4 intermediate configurations gives equal or closer predictions compared with the OSTP approach. However, it's worth to note that both the MSTP 04IMs and OSTP predict incorrect stress state around arc length 200mm of section x MPa in section 2) respectively.

Concerning the multi-step method with 17 intermediate configurations, from the distributions of stress state of the two sections in Fig. it clearly shows a tendency that the MSTP 17IMs predicts more accurate stress state than the stresses obtained from OSTP and MSTP 04IMs approaches, since the red curves (MSTP 17IMs) are mainly positioned between the curve obtained from the INC and the others two curves of MSTP 04IMs and OSTP methods. More particularly, the MSTP 17IMs method provides more consistent evaluations on the stress state (   116.49 x MPa at the beginning of section 2) with the INC method, for the material points incorrectly estimated by MSTP 04IMs and OSTP.

From this application, it's clear to note that with the increasing intermediate configurations, the multistep approach shows more and more consistent distributions of stress state to the INC method. 

III.3 The box shaped holder part

The As is shown the PMA method works well for the S-Rail part, however, in practice, the PMA method may yield some errors for the special part which possesses sloping walls. The enhanced PMA method will be used to improve the shapes of the middle configurations. For the 25mm middle configuration, the distance provided by the PMA method is lower in the range -55~-30mm (20~45mm), and in consistent with the result of INC for other regions. This can be explained from Fig. , the gray color appears in the upper surface of the bottom sloping wall besides the top and bottom surfaces which results in the contact of the bottom sloping wall with the tools. Consequently, in the range -70~-50mm (45~60mm) which lies on the bottom sloping wall, it is consistent with the INC's result. On the other hand, using the enhanced PMA method provides a full consistent middle configuration with the one of INC.

Considering the generated middle configuration of 35mm, both the PMA and enhanced PMA give well agreement with the intermediate state obtained from INC. That is because, the further the punch travels, the more contact nodes observed in sloping walls, as shown in Fig. , both of the bottom and top sloping walls are in contact. In this case, it leads to no difference of the middle configurations between the PMA, the enhanced PMA and the INC method.

III.3.2 The updated stress state

The distributions of equivalent stress for two of the constructed middle configurations with depth 15mm and 25mm are shown in Fig. III-14.

Fig. III-14 Equivalent stress of the constructed middle configurations depth 15mm and 25mm

The comparisons of stress components of section AB are shown in Fig. Clearly, the multi-step approach provides a significant improvement of the stress state compared with one-step approach, by using 8 constructed middle configurations. Especially for x coordinate close to 50mm and 200mm, the x component of stress is corrected from tensional state to compression with the help of the introduced intermediate configurations. 

IV. Conclusions

In this part, the efficient one-step inverse approach to roughly predict the formability of the final workpiece is briefly reviewed. In order to improve the stress estimations, the multi-step approach is formulated with constructed several intermediate configurations:

1). The finite logarithmic strain increment measurement (the kinematic formulations), between the two successive intermediate configurations, is derived and validated in the numerical simulation. 2). The elastoplasticity coupled with isotropic hardening is performed and the local integration is updated by the classical return mapping method. On the other hand, the scalar mapping algorithm is reexamined to clear its limitation in applications, while it could be regarded as a better initial solution for the iterative local integration scheme due to the convergence difficulties induced by the finite strain increments. 3). The efficient geometric approach to generate the sliding surfaces, and the mechanical initial solution are proposed to construct the proper intermediate configurations. The sliding surface is obtained by solving a QP program which can be efficiently worked out in polynomial time, and the direct mapping method is applied to construct the initial solutions of the intermediate configuration. However, these simplified inverse approaches have some difficulties in using the sophisticated constitutive equations, such as considering the strain-softening phenomena induced by the damage or high temperature, the nonlocal effects, the viscos effects, etc. In the next part, we will concentrate on the more advanced numerical modeling combined with incremental approach for sheet metal forming processes.

V. Introduction

The mechanics of materially simple continua, explored in Part I, supposes that the mechanical state at any material point   Px , of coordinates x , from the actual deformed configuration is completely determined by the history of state variables in an arbitrarily small neighborhood surrounding this point (principle of determinism and principle of local action). In this framework, the knowledge of the first transformation gradient F (or first displacement gradient) suffices amply to determine the mechanical state (kinematic, behavior) of this material point.

In metal forming, the components are mainly performed using hot or cold forming processes under faily extreme conditions, such as complex multiaxial loading, high temperatures, high strain rates, etc. Under such conditions, the material strain is governed by complex physical mechanisms, which are largely influenced by the microstructures and their textures during large plastic deformation. These complex physical phenomena should be taken into account to precise the numerical simulations. The continuum damage mechanics (CDM) approach enables the inclusion of thermal, damage and many other physical effects into the well-known constitutive equations, which are widely used in metal forming simulations, based on the local action assumption. Through large elastoplastic deformation, the intense shear bands are often observed in metal forming processes, which are generally the consequence of the strainsoftening behavior of the material mainly induced by thermal or microscopic defects, and lead to formation of the macroscopic cracks. However, the CDM approach is limited in its applicability for strainsoftening behavior, and reveals a pathological dependence on the direction and the fineness of the finite element mesh, and converges to a physically meaningless solution. The problem is now well-known and is the consequence of the mathematically ill-posed initial and boundary problem (IBVP), which loses ellipticity in statics or heperbolicity in dynamics. The CDM approach is mathematically unstable when strain-softening behavior is introduced. In literature many enhanced physical or phenomenological models are proposed to overcome this dependency, which has led to various numerical simulation strategies, e.g. the nonlocal plastic models, the gradient-enhanced models, the viscoplastic models.

In this part, a complete set of constitutive equations, strongly coupled, anisothermal, anisotropic for elasto-visco-plasticity with isotropic ductile damage, isotropic and kinematic hardening, micromorphic ductile damage, micromorphic isotropic and kinematic hardening and micromorphic temperature, is derived from the state and dissipation potentials, under the framework of the extended irreversible thermodynamics, to overcome the mesh-dependency problem.

Throught this thesis the following notions are used: x , x ,

x , x , x , x and x indicate the zero (scalar), first (vector), second, third, fourth, fifth and sixth rank tensors respectively. The usual tensorial product is indicated by the symbol  , while the contracted (or innder) product is indicated by  , : ,  and :: for the simple, double, triple and quadruple contractions respectively.

V.1 The local continuum damage model

Fracture of engineering components is often preceded by flow localization inducing considerable changes in the microstructure of the material, like microcracking in concrete, fibre pull-out or delamination in composites and the formation of voids in ductile metals. Considerable effort has been expended by the scientific community in order to solve crack propagation problem in a manner that is computationally as light as possible and that gives the same results for the crack path and propagation rate whichever mesh is used.

The discrete and smeared crack approaches [START_REF] De Borst | Discrete vs smeared crack models for concrete fracture: bridging the gap[END_REF][START_REF] De Borst | FUNDAMENTAL ISSUES IN FINITE ELEMENT ANALYSES OF LOCALIZATION OF DEFORMATION[END_REF][START_REF] Ngo | Finite Element Analysis of Reinforced Concrete Beams[END_REF][START_REF] Rashid | Analysis of reinforced concrete pressure vessels[END_REF][START_REF] Saouma | Fracture mechanics analysis of discrete cracking[END_REF][START_REF] Suidan | Finite Element Analysis of Reinforced Concrete[END_REF], are appropriate for modeling one or more dominant cracks and the diffuse cracking patterns that arise due to the heterogeneity of concrete and the presence of reinforcement respectively, were initially proposed by introducing the crack as a geometric entity, which was implemented by triggering a crack grow when the nodal force exceeded a tensile strength criterion as well as splitting the node into two. This original form has the inherent disadvantages of pre-assumed mesh bias and the continuous change in topology, which are largely alleviated by using the meshless methods (e.g. element-free Galerkin method [START_REF] Belytschko | Element-free Galerkin methods[END_REF]) or the finite element method (X-FEM) using the partition-of-unity property of shame functions [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF][START_REF] Dolbow | A finite element method for crack growth without remeshing[END_REF]. The Cracks within the original structures can be modelled either through the insertion of special types elements whose boundaries lie along the faces of the advancing crack (e.g. cohesive zone element method [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF][START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF][START_REF] Hutchinson | Mechanics of materials: top-down approaches to fracture[END_REF][START_REF] Needleman | A continuum model for void nucleation by inclusion debonding[END_REF]) or by the introduction of elements with enriched nodal degree of freedom (e.g. extended finite element method X-FEM [START_REF] Dolbow | A finite element method for crack growth without remeshing[END_REF][START_REF] Sukumar | Extended finite element method for threedimensional crack modelling[END_REF]). The later method allows crack propagation without remeshing and the enrichment of the existing degrees of freedom accounts for the displacement jump along the crack and the singular stress field at the tip of the propagating crack.

On dealing with large plastic deformation, the plastic strains tend to localize inside narrow bands during the metal deformation giving rise to the initiation, growth and coalescence of some micro-voids and microcracks usually called ductile damage. In order to take this phenomenon into account, several theories have been proposed to describe this damage occurrence as well as its effect on the material behavior. The most widely used approach in metal forming is based on the Gurson's type ductile damage modelling [START_REF] Gurson | Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media[END_REF] in order to describe as accurately as possible the ductile damage occurrence [START_REF] Aravas | The analysis of void growth that leads to central bursts during extrusion[END_REF][START_REF] Bennani | Backward can extrusion of steels: Effects of punch design on flow mode and void volume fraction[END_REF][START_REF] Bontcheva | Numerical investigation of the damage process in metal forming[END_REF][START_REF] Boudeau | Prediction of the localized necking in 3D sheet metal forming processes fr om FE simulations[END_REF][START_REF] Brunet | The Prediction of Necking and Failure in 3 D. Sheet Forming Analysis Using Damage Variable[END_REF][START_REF] Gelin | Finite Element Analysis of Ductile Fracture and Defects Formation in Cold and Hot Forging[END_REF][START_REF] Gelin | An Improved Finite Element Method for the Analysis of Damage and Ductile Fracture in Cold Forming Processes[END_REF][START_REF] Oñate | Plastic and viscoplastic flow of void-containing metals. Applications to axisymmetric sheet forming problems[END_REF][START_REF] Pardoen | Mode I fracture of sheet metal[END_REF]. In these approaches, the damage is mainly described by the volume fraction of the spherical or elliptical voids. This scalar variable is introduced in the plastic potential affecting the plastic flow through the normality rule and gives a decrease on the stresses when the void volume fraction increases under the applied external loading. Another kind of approaches, based on the continuum damage mechanics (CDM) since the early works of [START_REF] Kachanov | Time of the rupture process under creep conditions[END_REF] and [START_REF] Rabotnov | Creep problems in structural members[END_REF], represents the ductile damage by a scalar or tensorial variable Suidan and Schnobrich, 1973Suidan and Schnobrich, 1973[START_REF] Kachanov | Introduction to continuum damage mechanics[END_REF][START_REF] Lemaitre | A course on damage mechanics[END_REF][START_REF] Lemaitre | Mécanique des matériaux solides -3ème édition[END_REF][START_REF] Murakami | Mechanical Modeling of Material Damage[END_REF]Voyiadjis and Kattan, 1992a, b;[START_REF] Voyiadjis | Advances in Damage Mechanics: Metals and Metal Matrix Composites[END_REF] and its effect on the material behavior is accounted for thanks to the hypothesis of the strain equivalence, stress equivalence or energy equivalence (Chaboche, 1988a, b;Saanouni and Chaboche, 2003a). A comparative study of different ductile damage models can be found in [START_REF] Pardoen | Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars[END_REF]. This kind of CDM approach has been used for damage prediction in metal forming assuming various types of coupling in some published works [START_REF] Badreddine | Ductile damage prediction in sheet and bulk metal forming[END_REF][START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF][START_REF] Badreddine | Damage anisotropy and its effect on the plastic anisotropy evolution under finite strains[END_REF][START_REF] Issa | Modélisation et simulation numérique des procédés de fabrication sous conditions extrêmes[END_REF][START_REF] Issa | Numerical prediction of thermomechanical field localization in orthogonal cutting[END_REF][START_REF] Labergere | Numerical simulation of continuous damage and fracture in metal-forming processes with 2D mesh adaptive methodology[END_REF][START_REF] Lestriez | Numerical Prediction of Ductile Damage in Metal Forming Processes Including Thermal Effects[END_REF][START_REF] Saanouni | Micromechanical modeling of low cycle fatigue under complex loadings-Part I. Theoretical formulation[END_REF][START_REF] Saanouni | On the numerical prediction of the ductile fracture in metal forming[END_REF][START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF][START_REF] Saanouni | Finite element simulation of 3D sheet metal guillotining using advanced fully coupled elastoplastic-damage constitutive equations[END_REF]Saanouni and Chaboche, 2003b;[START_REF] Yue | Ductile damage prediction in sheet metal forming processes[END_REF].

V.2 The generalized continuum damage model

As is now well accepted, the classical local continuum models do not incorporate an internal length scale and is inappropriate for progressive deformation of materials exhibiting strong localization or strain softening [START_REF] Bažant | Instability, ductility, and size effect in strain-softening concrete[END_REF][START_REF] Rice | The localization of plastic deformation[END_REF] after reaching a peak strength value. Theoretically, when the tangent stiffness matrix of the material ceases to be positive definite, the governing equations of motion lose ellipticity under quasi-static loading conditions, while under dynamic loading conditions wave speed becomes imaginary [START_REF] Hill | Acceleration waves in solids[END_REF][START_REF] Rice | The localization of plastic deformation[END_REF][START_REF] Thomas | Plastic Flow and Fracture in Solids[END_REF], which renders the boundary value problem illposed. From the numerical point of view, this situation manifests itself by spurious mesh-dependency of finite element computations: strain localizes into a narrow band whose width depends on the element size and tends to zero as the mesh is refined [START_REF] Belytschko | Strain-softening materials and finite-element solutions[END_REF][START_REF] Pietruszczak | Finite element analysis of deformation of strain-softening materials[END_REF][START_REF] Tvergaard | Influence of void nucleation on ductile shear fracture at a free surface[END_REF][START_REF] Tvergaard | Flow localization in the plane strain tensile test[END_REF]. The corresponding load-displacement curves of system responses always exhibit earlier drop for a sufficiently fine mesh, and the total energy dissipated by fracture goes to zero! The simplest but crude remedy, popular in engineering applications, is to adjust the post-peak slope of the stress-strain diagram as a function of the element size. When this is done properly, the energy dissipated in a band of cracking elements does not depend on the width of the band [START_REF] Bažant | Instability, ductility, and size effect in strain-softening concrete[END_REF][START_REF] Bažant | Finite Element Modeling of Crack Band Propagation[END_REF][START_REF] Bažant | Crack band theory for fracture of concrete[END_REF][START_REF] Pietruszczak | Finite element analysis of deformation of strain-softening materials[END_REF]. A more general and fundamental approach, to avoid strain localization to a zero volume and to overcome spurious mesh sensitivity, is the nonlocal continuum theory, which states that "the physics of material bodies whose behavior at a material point is influenced by the state of all points of the body". Following the classical notions, material points of a body are considered to be continuous and are assigned some physically independent objects (variables) (e.g., mass, charge, electric field, magnetic field) [START_REF] Eringen | Nonlocal continuum field theories[END_REF]. Numerous researches not suffering from loss of ellipticity of the field equations in localization zone, e.g. high grade continua [START_REF] Aifantis | On the Microstructural Origin of Certain Inelastic Models[END_REF][START_REF] Aifantis | On the role of gradients in the localization of deformation and fracture[END_REF][START_REF] Bennett | Damage regularisation with inertia gradients[END_REF][START_REF] De Borst | Gradient-dependent plasticity: Formulation and algorithmic aspects[END_REF][START_REF] Forest | Thermoelasticity of second-grade media[END_REF][START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF][START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF][START_REF] Nguyen | Variational principles in the theory of gradient plasticity[END_REF][START_REF] Rodríguez-Ferran | A general framework for softening regularisation based on gradient elasticity[END_REF]), Cosserat continua (Aslan et al., 2011;[START_REF] Cordero | Micromorphic modelling of grain size effects in metal polycrystals[END_REF][START_REF] Cosserat | Sur la Théorie de l'élasticité[END_REF], 1909, 2009;[START_REF] Diamantopoulou | Micromorphic constitutive equations with damage applied to metal forming[END_REF][START_REF] Dillard | Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams[END_REF]Eringen, 1966a, c;[START_REF] Eringen | Balance laws of micromorphic mechanics[END_REF][START_REF] Eringen | Microcontinuum field theories: I. Foundations and Solids[END_REF][START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF][START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF][START_REF] Forest | Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF][START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF][START_REF] Forest | Nonlinear microstrain theories[END_REF][START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF], strictly nonlocal continuum field theory [START_REF] Bažant | Imbricate Continuum and its Variational Derivation[END_REF][START_REF] Bažant | Continuum Theory for Strain-Softening[END_REF]Eringen, 1966d;[START_REF] Eringen | Nonlocal continuum field theories[END_REF][START_REF] Eringen | On nonlocal elasticity[END_REF][START_REF] Jirásek | Nonlocal models for damage and fracture: Comparison of approaches[END_REF]Kröner, 1967;[START_REF] Krumhansl | Some Considerations of the Relation between Solid State Physics and Generalized Continuum Mechanics[END_REF][START_REF] Kunin | The Theory of Elastic Media with Microstructure and the Theory of Dislocations[END_REF] or viscoplastic regularization [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] Needleman | The Effect of Rate Dependence on Localization of Deformation and Failure in Softening Solids[END_REF][START_REF] Pijaudier-Cabot | Comparison of various models for strain-softening[END_REF], are capable to provide the well-posed initial and boundary value problems.

1). The nonlocal continuum theory

The nonlocal continuum theory was introduced by Kröner, Krumhansl and others [START_REF] Beran | Mean field variations in a statistical sample of heterogeneous linearly elastic solids[END_REF]Kröner, 1967[START_REF] Kröner | Interrelations between Various Branches of Continuum Mechanics[END_REF][START_REF] Krumhansl | Some Considerations of the Relation between Solid State Physics and Generalized Continuum Mechanics[END_REF][START_REF] Kunin | The Theory of Elastic Media with Microstructure and the Theory of Dislocations[END_REF][START_REF] Levin | The relation between mathematical expectations of stress and strain tensors in elastic microheterogeneous media[END_REF] and developed in detail by [START_REF] Ari | Nonlocal Stress Field at Griffith Crack[END_REF][START_REF] Eringen | Nonlocal polar elastic continua[END_REF][START_REF] Eringen | On nonlocal elasticity[END_REF]. In this theory, the macroscopic strain and stress may be regarded as certain averages of the microscopic strains and stresses taken over volume. If the strain field is nearly macroscopic homogeneous, the constitutive equations may be formulated as a relation between strain and stress at same location. However, if high gradients of strain exist, the whole macroscopic stress distribution over the volume should be related to the whole macroscopic strain distribution over the volume. [START_REF] Bažant | Continuum Theory for Strain-Softening[END_REF] presented an imbricate continuum based on the hypothesis that the stress depends on the change of distance between two points lying a finite distance apart, and obtained stable strain-softening distributed over finite size region in one-dimensional analysis. The principle difference from the classical nonlocal continuum theory is that the equation of motion involves not only the averaging of strain but also the averaging of stress gradients. Later, [START_REF] Bažant | Imbricate Continuum and its Variational Derivation[END_REF] extended the imbricate continuum theory to two or three dimensions to model strain-softening within zones of finite size.

The proper variational method for the imbricate continuum is developed and the continuum equations of motion are derived from the principle of virtual power. The continuum equations involving both the average of stress and strain by displacement gradient ensures the symmetric finite element stiffness matrices. The original formulation of the nonlocal theory for strainsoftening regime is studied in detail by Pijaudier-Cabot and [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF] for elastic behavior.

Unlike the imbricate nonlocal continuum theory in which all the behavior is formulated as nonlocal including the elastic part of strain, the new nonlocal damage theory subjects nonlocal treatment only to those variables that control strain softening and remains the elastic strain as local. The spatial average of the local damage energy release rate, over the representative volume of the material whose size is a characteristic of the material, is adopted to replace the local one. Avoidance of spurious mesh sensitivity and proper convergence are demonstrated by numerical examples, including the static strain softening in a bar, longitudinal wave propagation in strain softening material and static layered finite element analysis of a beam. Later, [START_REF] Bažant | Nonlocal Continuum Damage, Localization Instability and Convergence[END_REF] extended the previous work to a more general form in which the strain remains local yielding the standard equilibrium equation as well as the boundary condition, while the local damage is replaced by its nonlocal damage defined by a spatial averaging of local damage for the elastic behavior. The previous work of using the nonlocal damage energy release rate can be regarded as a simplified approximation of the nonlocal damage formulation. The analysis of the strain localization instability in a bar shows that the size of the localization zone is found to be approximately proportional to the characteristic length of the nonlocal continuum in the ratio of 1.88. Pijaudier-Cabot et al. (1988) presented a comparison of various models for strain-softening due to damage such as cracking or void growth. It concludes that despite the rate-dependent model prevents the differential equation of motion from becoming elliptic and ensures the meshdependent problem is well posed, however, the results are not quite satisfactory. At localization the strains are finite but the localization zone tends to an infinitely small size, similar to the rateindependent continuum model. The use of high-order spatial derivatives implies high-order partial differential equations of the motion and additional boundary conditions, can be regarded as a special case of the nonlocal model with the help of the Taylor series. The nonlocal continuum with local strain applies the averaging only to those variables that control strain-softening, e.g. the local damage energy release rate. The significant size effect due to the strain-softening portion of the uniaxial response is adequately modelled by this model and in agreement with experimental evidence. [START_REF] Bažant | Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress[END_REF] presented a detailed review of the progress in nonlocal models of integral type which has emerged as an effective means for regularizing the boundary value problem with strain softening, capturing the size effects and avoiding spurious localization that gives rise to pathological mesh sensitivity in numerical computations, and discussed their physical justifications, advantages and numerical applications, during the last two decades. Many recent work in applications based on the nonlocal continuum can be found in literatures [START_REF] Abiri | Non-local damage models in manufacturing simulations[END_REF][START_REF] Alam | Crack propagation and size effect in concrete using a non-local damage model[END_REF][START_REF] Andrade | A Ductile Damage Nonlocal Model of Integral-type at Finite Strains: Formulation and Numerical Issues[END_REF][START_REF] Balieu | Non-associated viscoplasticity coupled with an integral-type nonlocal damage model for mineral filled semi-crystalline polymers[END_REF][START_REF] Belnoue | The use of coupled nonlocal damageplasticity to predict crack growth in ductile metal plates[END_REF][START_REF] Belnoue | A One-Dimensional Nonlocal Damage-Plasticity Model for Ductile Materials[END_REF][START_REF] Grassl | Plastic model with non-local damage applied to concrete[END_REF][START_REF] Havlásek | Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models[END_REF][START_REF] He | A thermodynamically consistent nonlocal damage model for concrete materials with unilateral effects[END_REF][START_REF] Jirásek | Comparison of integral-type nonlocal plasticity models for strain-softening materials[END_REF][START_REF] Nguyen | A nonlocal coupled damage-plasticity model for the analysis of ductile failure[END_REF][START_REF] Toti | Nonlocal damage propagation in the dynamics of masonry elements[END_REF][START_REF] Xenos | Modelling the failure of reinforced concrete with nonlocal and crack band approaches using the damage-plasticity model CDPM2[END_REF].

2). The gradient-dependent model By employing the methods developed in the theory of fluid interfaces (Aifantis and Serrin, 1983a, b) which introduces second density gradients in the dependence of interfacial stress, [START_REF] Triantafyllidis | A gradient approach to localization of deformation. I. Hyperelastic materials[END_REF] proposed a new framework for considering the strain induced localization and the loss of ellipticity in the governing equilibrium equations for hyperelastic material at finite strains.

In this theory, an additional second deformation gradient dependent term is introduced into the expression of the strain energy density, which leads to equilibrium equations remain elliptic. The analytical solutions of the Blatz-Ko material is obtained in the particular case. In the work of [START_REF] Lasry | Localization limiters in transient problems[END_REF], a simple approach based on introducing additional high order terms in the governing equations in the strain-softening portions of the domain was proposed. With the help of the Taylor expansion of the nonlocal strain model, the addition of a second order derivative term to the strain formulation leads to an efficient localization limiter (explicit gradient form), which ensures the energy dissipation remains finite at arbitrary mesh refinement, for strain-softening materials. [START_REF] De Borst | Gradient-dependent plasticity: Formulation and algorithmic aspects[END_REF][START_REF] Mühlhaus | A variational principle for gradient plasticity[END_REF] developed a generalized plasticity model, which belongs to the class of gradient models and is accomplished by introducing higher-order spatial gradients of the equivalent plastic strain into the yield function while the flow rule and the elasticity law remain unaltered. Additional boundary conditions and the smoothness C 1 continuity of the interpolation functions of the plastic multiplier are required for the equilibrium conditions, due to the presence of the strain gradients in the constitutive laws. De Borst et al. [START_REF] De Borst | Gradient-dependent plasticity: Formulation and algorithmic aspects[END_REF][START_REF] De Borst | FUNDAMENTAL ISSUES IN FINITE ELEMENT ANALYSES OF LOCALIZATION OF DEFORMATION[END_REF] provided an overview of three different approaches, the addition of higher-order deformation gradients, the use of micropolar continuum and the addition of rate dependence, in the finite element analysis of localization phenomena, and developed two families of finite elements for the implementation of gradientdependent plasticity. [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF] and the two gradient-enhanced damage formulations: explicit and implicit gradient approximations derived by [START_REF] Engelen | Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour[END_REF][START_REF] Peerlings | Computational modelling of gradientenhanced damage for fracture and fatigue problems[END_REF][START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF][START_REF] Peerlings | Enhanced damage modelling for fracture and fatigue[END_REF] and clarified some of the similarities and intrinsic differences. Gradient terms of order higher than two have been rigorously neglected in the explicit model, whereas these terms have indirectly been preserved in the implicit formulation. As a result, spatial interactions span the entire domain in the implicit model, similarly to the nonlocal model. The explicit model shows a response which is entirely different and which is even nonphysical in several aspects. In particular, the wave velocity is unbounded and the predicted crack growth may be instantaneous. In the implicit gradient formulation the wave velocity and crack growth rate remain finite, as in the nonlocal model. [START_REF] Peerlings | A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking[END_REF] presented a new gradient damage model derived from thermodynamics statements in elastic regime. Nonstandard terms of nonlocal strain are added to the free energy potential. The stress is enhanced by the differences of local and nonlocal strain.

The damage evolution is replaced by the nonlocal equivalent strain. Abu Al-Rub and [START_REF] Al-Rub | A physically based gradient plasticity theory[END_REF] presented a physically motived mathematical form for the gradient plasticity theory, which is based on the Taylor's dislocation hardening model that incorporates evolution equations of SSD and GND densities and assumes a simple addition of the densities from SSDs and GNDs, and bridges the gap between continuum and dislocation-based theories. A different expression for the material length scale parameter is obtained which indicates that the length scale is not fixed and varies with the course of plastic deformation and grain size. Mediavilla et al. (2006b) used a combined continuousdiscontinuous approach, in which the continuous damage mechanics describes the material degeneration (strain-softening response), and the discontinuous approach typically used in fracture mechanics captures the crack growth, to describe the complete failure process including the crack initiation and crack propagation in sheet metal forming, initially proposed by Mediavilla et al. (2006a). The damage evolution, governed by a nonlocal internal variable which is averaged from a second order partial differential equation associated to its local values to avoid the pathological localization and mesh dependence, and a remeshing strategy, devised to capture the localization zone and accommodate the crack propagation, are performed on the platform of MSC.Marc using linear quadrilateral element with assumed strain to prevent locking. The simulations of blanking, fine-blanking and score-forming processes are in agreement with experimental observations. Many recent researches can be found in literatures [START_REF] Al-Rub | A thermodynamic based higher-order gradient theory for size dependent plasticity[END_REF]Jirásek and Rolshoven, 2009a, b).

3). The viscoplastic regularization

The viscoplastic framework (strain rate hardening/softening) can be used for regularization of local damage models. The basic idea of viscoplastic regularization is that when the deformation rate starts to increase in the softer element, the increase in strain rate makes the element stiffer again. [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF] initially presented the role of material rate dependence in setting the character of governing equations, which ensures the ellipticity of incremental equilibrium equations for quasi-static problems and real wave speeds for dynamic problems, with a simple one-dimensional problem. The pathological mesh sensitivity associated with numerical solutions of localization problems is eliminated. It concludes that material rate dependence implicitly introduces a length scale into the governing equations. However, it experienced numerical instability problems when the rate-independent limit is approached. [START_REF] Sluys | Wave propagation and localization in a rate-dependent cracked mediummodel formulation and one-dimensional examples[END_REF] proposed a smeared-crack model in which the stress after cracking is not only a function of the crack strain, but also of the crack strain rate. The essential features of the rate-dependent model are the implicit presence of an internal length scale and the dispersive character of wave propagation. Inspired from the viscoplastic regularization, [START_REF] Dubé | Rate Dependent Damage Model for Concrete in Dynamics[END_REF] presented a rate dependent continuum damage model which is defined by modifying the evolution law for damage and more specifically the expression of the damage multiplier, and applied it to an isotropic damage model with crack closure. Upon softening, the rate-dependent damage model yields a second-order partial differential equation governing motion, which is unconditionally hyperbolic, instead of a third-order equation in viscoplasticity. [START_REF] Wang | Interaction between material length scale and imperfection size for localisation phenomena in viscoplastic media[END_REF] derived a closed-form solution for a strain-softening viscoplastic medium in combination with an imperfection which is used to trigger the localization zone. It shows that the two length scales are coupled, namely the size of the imperfection and the material length scale implicitly introduced by the viscoplasticity theory. The width of the shear band is dominated by the smallest value of these two length scales. The influence of the imperfection decreases when the shear band is some distance away from the imperfect zone. [START_REF] Niazi | Viscoplastic regularization of local damage models: revisited[END_REF] revisited the viscoplastic regularization for quasi-static problems with two different types of strain rate hardening models, and identified two length scales: a primary length scale relating to the diffuse neck length scale and a secondary length scale which relates to the localized neck length scale. It shows that the primary viscoplastic length scale is a function of the hardening and damage parameters and does not depend upon the prescribed strain rate whereas the secondary length scale is a function of the strain rate. As damage grows, the effective regularization length gradually decreases. When the effective regularization length gets shorter than the element length numerical results become mesh dependent again.

4). The high order continua

The high order continua are based on the introduction of additional degree of freedoms, such as Cosserat continua [START_REF] Cosserat | Sur la Théorie de l'élasticité[END_REF], 1909, 2009) and the micromorphic model. The micromorphic theory was proposed simultaneously by [START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF] and [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF]. It consists of introducing a general incompatible full field of micro-deformation as an extra degree of freedom, in addition to the classical displacement field. Several available approaches can be reconciled based on Eringen's general micromorphic framework and its extension to viscoplasticity [START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF][START_REF] Hirschberger | Classification of concepts in thermodynamically consistent generalized plasticity[END_REF][START_REF] Kirchner | A unifying treatise on variational principles for gradient and micromorphic continua[END_REF]. The micromorphic approach can be applied to single/poly-crystal damage plasticity [START_REF] Aslan | Micromorphic approach to single crystal plasticity and damage[END_REF][START_REF] Cordero | Micromorphic modelling of grain size effects in metal polycrystals[END_REF][START_REF] Forest | Micromorphic approach to crystal plasticity and phase transformation[END_REF] and any macroscopic quantity in order to introduce a characteristic length scale in the original classical continuum model in a systematic way, as presented in literatures [START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF][START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF]. Nedjar et al. (Frémond andNedjar, 1995, 1996;[START_REF] Nedjar | Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects[END_REF] derived a nonlocal damage theory within the framework of the principle of virtual power to avoid the mesh-dependence problem. The damage velocity and its gradient are introduced into the power of internal forces, which yields additional balance equations associated with the counterparts of damage rate and its gradient, to take the interactions of microscopic movements into account. From the comparison between nonlocal and micromorphic theories [START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF], it concludes that: when the microstrain remains as close as possible to the plastic strain, the micromorphic model reduces to the gradient plastic model [START_REF] Aifantis | On the Microstructural Origin of Certain Inelastic Models[END_REF][START_REF] Aifantis | The physics of plastic deformation[END_REF][START_REF] Forest | Strain gradient crystal plasticity: Thermomechanical formulations and applications[END_REF] which can be constructed from a gradient type of internal variable model [START_REF] Forest | Elastoviscoplastic constitutive frameworks for generalized continua[END_REF][START_REF] Forest | Strain gradient crystal plasticity: Thermomechanical formulations and applications[END_REF][START_REF] Gurtin | Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance[END_REF] and is used for strain localization simulations [START_REF] De Borst | Some novel developments in finite element procedures for gradientdependent plasticity[END_REF][START_REF] De Borst | On coupled gradient-dependent plasticity and damage theories with a view to localization analysis[END_REF][START_REF] De Borst | FUNDAMENTAL ISSUES IN FINITE ELEMENT ANALYSES OF LOCALIZATION OF DEFORMATION[END_REF]. Later, the micromorphic and strain/damage gradient models are extended to the nonlinear relations between generalized stresses and strains by [START_REF] Forest | Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage[END_REF]. Saanouni and Hamed (Hamed, 2012) proposed a thermodynamically consistent fully coupled micromorphic formulation using the appropriate micromorphic state variables and their first gradients within the framework of generalized nonlocal continua. Numerical implementation of the micromorphic damage model shows the capability to converge to a mesh-independent solution. [START_REF] Diamantopoulou | Micromorphic constitutive equations with damage applied to metal forming[END_REF] applied the micromorphic damage model to the uniaxial tensile test and air bending test which are both in agreement with the experimental results and reduce the dependence of the responses against the refinement of the mesh.

V.3 The generalized heat equations

In the analysis of conduction heat transfer, the Fourier model [START_REF] Fourier | Theorie analytique de la chaleur[END_REF][START_REF] Fourier | Theorie analytique de la chaleur[END_REF], indicating that the heat flux vector is proportional to the temperature gradient, is the most widely employed model in solving engineering problems. Such a heat conduction equation combined with the energy conservation law leads to a parabolic equation predicting an infinite propagation speed of thermal pulses [START_REF] Bai | On Hyperbolic Heat Conduction and the Second Law of Thermodynamics[END_REF][START_REF] Barletta | Hyperbolic heat conduction and local equilibrium: a second law analysis[END_REF][START_REF] Cattaneo | Sulla conduzione del calore[END_REF][START_REF] Cattaneo | Sur une forme de lequation de la chaleur eliminant le paradoxe dune propagation instantanee[END_REF][START_REF] Coleman | On the thermodynamics of second sound in dielectric crystals[END_REF][START_REF] Coleman | Thermodynamics and the constitutive relations for second sound in crystals[END_REF][START_REF] Jou | Extended irreversible thermodynamics[END_REF][START_REF] Müller | Extended thermodynamics[END_REF][START_REF] Swenson | Heat Conduction -Finite or Infinite Propagation[END_REF][START_REF] Vernotte | Les paradoxes de la théorie continue de léquation de la chaleur[END_REF][START_REF] Zanchini | Hyperbolic-heat-conduction theories and nondecreasing entropy[END_REF]. From the experimental standpoint, this result is inaccurate for thermal conduction problems at cryogenic temperature or in the presence of strong temperature gradients during material surface processing by laser treatment or fast machining. For instance, the propagation speed of thermal signals has been measured in liquid helium [START_REF] Peshkov | Second sound in helium II[END_REF][START_REF] Peshkov | Determination of the velocity of propagation of the second sound in helium II[END_REF], in NaF at about 10°K [START_REF] Jackson | Thermal Conductivity, Second Sound, and Phonon-Phonon Interactions in NaF[END_REF] and in Bi at 3.4°K [START_REF] Narayanamurti | Observation of Second Sound in Bismuth[END_REF]. A thermal Mach number has also been reported for heat conduction through solids [START_REF] Da Yu | Shock wave formation around a moving heat source in a solid with finite speed of heat propagation[END_REF]. On the other side, several experiments or simulations on heat transport of materials with structure at nanometer length scale (e.g. semiconductor quantum dots and superlattices, Carbon nanotubes, polymer nanocomposites, multilayer coatings, microelectronic and optoelectronic devices, and microelectromechanical sensors) [START_REF] Cahill | Nanoscale thermal transport. II. 2003-2012[END_REF][START_REF] Cahill | Nanoscale thermal transport[END_REF][START_REF] Jou | Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: an overview[END_REF][START_REF] Tzou | Macro-to Microscale Heat Transfer: The Lagging Behavior[END_REF][START_REF] Wang | Carbon nanotube thermal transport: Ballistic to diffusive[END_REF] which involves high frequencies and small length scales, show significantly different results from those of the classical Fourier model. For instance, the heat flux obtained by applying a temperature gradient in nanometer-scale silicon samples, is found to be significantly lower than that predicted by Fourier's model [START_REF] Larson | Nanosecond resolution time-resolved x-ray study of silicon during pulsed-laser irradiation[END_REF], which is suggested as the result of a reduction in the conductivity of the material. Considering the heat carriers' mean-free-path l and a relevant characteristic length L of the system expressed by the Knudsen number  Kn l L , the Fourier model is valid in the limit of very small Knudsen number (i.e.

lL

). When the Knudsen number becomes comparable to or higher than 1, due to an increase of mean-free-path (as in rarefied gases and in aerospace engineering or in miniaturization/nano technologies), the heat transport is no longer diffusive but ballistic. The nonlocal effects are especially important in the nanoscale structures [START_REF] Alvarez | Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes[END_REF][START_REF] Kaiser | Thermal transport at the nanoscale: A Fourier's law vs. phonon Boltzmann equation study[END_REF][START_REF] Sellitto | Mesoscopic Theories of Heat Transport in Nanosystems[END_REF]. A review of the current micro-, meso-and macroscopic methods in microand nanoscale heat transport has been presented in the literature [START_REF] Guo | Phonon hydrodynamics and its applications in nanoscale heat transport[END_REF].

To overcome the paradox of an infinite propagation speed of thermal signals, and to describe the heat transport behavior of nanoscale devices, many works have been done in the literature. They are briefly reviewed in what follows classified into four classes depending in the used theoretical framework:

1) Class I -modifications of the classical Fourier model

The original work was proposed by Cattaneo [START_REF] Cattaneo | Sulla conduzione del calore[END_REF][START_REF] Cattaneo | Sur une forme de lequation de la chaleur eliminant le paradoxe dune propagation instantanee[END_REF] and Vernotte [START_REF] Vernotte | Les paradoxes de la théorie continue de léquation de la chaleur[END_REF], which used an approximate version of kinetic theory of gases and suggested a modification of the constitutive equation of heat flux with a relaxation term. When combined with the first law of thermodynamics (energy conservation), this leads to a hyperbolic heat conduction equation, which removes the paradox of infinite temperature propagation speed and gives a solution more consistent with the experimental evidence. However, many works [START_REF] Bai | On Hyperbolic Heat Conduction and the Second Law of Thermodynamics[END_REF][START_REF] Barletta | Hyperbolic heat conduction and local equilibrium: a second law analysis[END_REF][START_REF] Coleman | On the thermodynamics of second sound in dielectric crystals[END_REF][START_REF] Coleman | Thermodynamics and the constitutive relations for second sound in crystals[END_REF][START_REF] Körner | The physical defects of the hyperbolic heat conduction equation[END_REF][START_REF] Zanchini | Hyperbolic-heat-conduction theories and nondecreasing entropy[END_REF] raise the question whether Cattaneo's hyperbolic heat equation is compatible with the second law of thermodynamics. They show that the modification of the Fourier model may yield a non-positive entropy production per unit volume, clearly in conflict with the second law of thermodynamics. Later, Müller [START_REF] Müeller | Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien[END_REF][START_REF] Muller | Zum Paradoxon der Warmeleitungstheorie[END_REF][START_REF] Müller | Extended thermodynamics[END_REF], motivated by the work of Cattaneo, has tried to derive the modifications of the Fourier model of heat flux and Navier-Stokes equations from the thermodynamics of irreversible processes (TIP). He noticed that the argument of TIP could be used to derive the Cattaneo's equation from the generalized Gibbs equation. He proposed a so called "extended thermodynamics of irreversible processes" based on the assumption that the generalized specific entropy is function of the heat flux. In this framework, he obtained a generalized heat equation predicting a finite speed while the second law of thermodynamics is fulfilled. Afterwards, a large number of papers have appeared, based on the Müller's methodology and mainly devoted to gases. A relatively complete review of this type of generalized irreversible thermodynamics can be found in Jou et al. [START_REF] Jou | Extended irreversible thermodynamics[END_REF][START_REF] Jou | Extended Irreversible Thermodynamics[END_REF][START_REF] Jou | Extended Irreversible Thermodynamics[END_REF]. In the framework of the rational thermodynamics, Coleman et al. [START_REF] Coleman | On the thermodynamics of second sound in dielectric crystals[END_REF][START_REF] Coleman | Thermodynamics and the constitutive relations for second sound in crystals[END_REF] extended the specific internal energy to a quadratic function of the heat flux. Consequently, the specific entropy and specific Helmholtz free energy were also extended by the heat flux, due to the relationship between internal energy and free energy. The evolution of temperature was governed by a pair of equations. Temizer et al. [START_REF] Temizer | A micromechanically motivated higher-order continuum formulation of linear thermal conduction[END_REF] derived a high order continuum formulations of linearized thermal conduction similar to the strain-gradient elasticity theory. In particular, a thermal dissipation potential that depends on the gradients of the temperature up to second-order was assumed. Accordingly, the constitutive equations associated with heat flux, derived from the dissipation potential, leads to extended Onsager-Casimir symmetry relationships. The Guyer-Krumhansl (GK) equation [START_REF] Both | Deviation from the Fourier law in room-temperature heat pulse experiments[END_REF][START_REF] Guyer | Solution of the Linearized Phonon Boltzmann Equation[END_REF], using the linearized Boltzmann equation of phonon kinetic theory in which heat transport is described by momentum and energy exchanges between colliding massless particles called phonons, emphasizes the role of nonlocal effects in heat transport. A new coefficient associated to nonlocality and higher spatial order of heat flux is introduced into the evolution equation of the heat flux. It has been successfully used to describe a heat pulse experiment at room temperature in a macroscopic, heterogeneous specimen, that cannot be modelled properly either by the Fourier model or the Cattaneo equation [START_REF] Both | Deviation from the Fourier law in room-temperature heat pulse experiments[END_REF]. In the references [START_REF] Jou | Extended Irreversible Thermodynamics[END_REF][START_REF] Lebon | Heat conduction at micro and nanoscales: A review through the prism of Extended Irreversible Thermodynamics[END_REF][START_REF] Ván | Universality in heat conduction theory: weakly nonlocal thermodynamics[END_REF], the GK equation applied to model heat conduction at micro and nanoscales, has also been rigorously derived within the framework of extended irreversible thermodynamics (EIT). The other two enhanced heat fluxes: the Jeffreys type (lagging heat equation) and the Green-Naghdi equation can be also derived under the framework of EIT [START_REF] Ván | Universality in heat conduction theory: weakly nonlocal thermodynamics[END_REF]. Similar to the Fourier model, the GK equation also predicts that thermal signals propagate at infinite velocity. In order to account for the nonlocal effects in metals irradiated by ultrashort laser pulses inducing large temperature gradient, Sobolev [START_REF] Sergei | Local non-equilibrium transport models[END_REF][START_REF] Sobolev | Two-temperature discrete model for nonlocal heat conduction[END_REF][START_REF] Sobolev | Two-temperature Stefan problem[END_REF][START_REF] Sobolev | Nonlocal diffusion models: Application to rapid solidification of binary mixtures[END_REF][START_REF] Sobolev | Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses[END_REF] proposed an extension of Cattaneo's equation with an additional contribution from the second-order space derivative of heat flux, which can be regarded as an special case of the GK equation, and applied it to the double temperature model. In order to be satisfactory for high-frequency processes, all the higher-order fluxes must be incorporated into the formalism. The kinetic theory points out the fact that the relaxation times of higher-order fluxes are not always shorter than the collision time. When the frequency becomes comparable to the inverse of the relaxation time of the first-order flux, they will behave like independent variables [START_REF] Sellitto | Mesoscopic Theories of Heat Transport in Nanosystems[END_REF]. This yields the Ballistic heat transport model, in which the effective thermal conductivity is expressed in terms of the classical bulk thermal conductivity, the relaxation time and the Knudsen number. The dual-phase-lag model [START_REF] Tzou | A Unified Field Approach for Heat Conduction From Macro-to Micro-Scales[END_REF][START_REF] Tzou | Macro-to Microscale Heat Transfer: The Lagging Behavior[END_REF] evolving from the Fourier model introduces two phase lags: the phase lag of the heat flux captures the small-scale response in time and the phase lag of the temperature gradient captures the smallscale response in space, into the constitutive equation of heat flux. Combining these constitutive models with the energy balance law leads to a fourth-order partial differential heat equation as well as third-order time derivative. The Boltzmann equation being hard to solve, Chen [START_REF] Chen | Ballistic-Diffusive Heat-Conduction Equations[END_REF] established the ballistic-diffusive heat-conduction equations, which are applicable to transient heat conduction and are derived from the Boltzmann equation under the relaxation approximation and from the splitting of the distribution function into a diffusive and a ballistic parts, as required in small structures. Computational results suggest that it is a much better alternative to the Fourier and the Cattaneo equations at scales where the mean free path is comparable to the system size and the time is comparable to the carrier relaxation time. In fact, to obtain a finite velocity for the propagation of thermal signals it is not necessary to assume relaxation terms in heat equation. This result can be also obtained if one assumes a non-linear diffusion equation with the thermal conductivity depending on the temperature in an appropriate way [START_REF] Luikov | On wave solutions of the heat-conduction equation[END_REF] , Bubnov [START_REF] Bubnov | Wave concepts in the theory of heat[END_REF] and Swenson [START_REF] Swenson | Heat Conduction -Finite or Infinite Propagation[END_REF]).

2) Class II -considering the temperature gradient as an argument of the Helmholtz free energy There are essentially three ways to comply with the second law of thermodynamics when introducing the gradient of temperature or gradient of entropy: a). by introducing an extra entropy flux: Ireman et al. [START_REF] Ireman | Using the gradients of temperature and internal parameters in Continuum Thermodynamics[END_REF], based on the idea of Maugin's [START_REF] Maugin | Internal Variables and Dissipative Structures[END_REF]Maugin and Muschik, 1994a;Maugin and Muschik, 1994b) work on gradients of internal variables, discuss several ways of introducing the gradient of temperature in continuum thermodynamics; the gradient theory assumes additional entropy production; b). modification with extra energy production: Forest et al. [START_REF] Forest | Thermoelasticity of second-grade media[END_REF] made an attempt to incorporate temperature and temperature gradient into the second grade theory, with extra energy production (extra power) by extending the method of virtual power and continuum thermodynamics. An extra entropy production from the divergence of the generalized thermodynamic forces associated with the temperature gradient was derived.

Later, Forest et al. [START_REF] Forest | Hypertemperature in thermoelastic solids[END_REF] developed the entropy gradient theory and derived an enhanced heat equation which has the structure of the Cahn-Hilliard equation in mass transport theory. He also showed that the entropy gradient theory and temperature gradient theory are not equivalent. The generalized heat equation derived from the temperature gradient theory can be regarded as an approximation of the reference gradient of entropy theory; c). modification with additional entropy production. Nguyen [START_REF] Nguyen | Gradient thermodynamics and heat equations[END_REF] proposed an additional entropy production and a new relationship between internal energy and free energy to introduce the gradient of temperature in the set of state variables. The deduced generalized heat equation predicts a finite propagation of thermal pulses. 3) Class III -double temperature model Aifantis (Aifantis, 1980a, b;[START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF] derived the double temperature model, from electron-phonon collisions during the ultra-short pulsed laser heating of metals, based on the mixture theory of Müller [START_REF] Müller | Thermodynamics of mixtures and phase field theory[END_REF]. Sobolev [START_REF] Sobolev | Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses[END_REF] showed that the two temperature model using Fourier's model is a parabolic heat equation. He also derived an extended hyperbolic two temperature model by using the Cattaneo's equation.

4) Class IV -the micro-temperature or micro-entropy theory

The micro-temperature, that depends on the micro-coordinates of the micro-elements, was initially considered by Wozniak [START_REF] Wozniak | Thermoelasticity of non-simple oriented materials[END_REF] assuming known functions of temperature and temperature gradients. Based on the work on kinematics and dynamics of a continuum with microstructure by Eringen and Suhubi [START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF][START_REF] Suhubl | Nonlinear theory of micro-elastic solids-II[END_REF], Grot [START_REF] Grot | Thermodynamics of a continuum with microstructure[END_REF] proposed a theory of thermodynamics for elastic materials with microstructure which possessed micro-deformations and micro-temperatures. The micro-temperatures were determined by a balance law. The second law of thermodynamics is modified to include microtemperature, and the first moment of the energy equation is added to the usual balance laws of a continuum with microstructure. From the linear approximation, the temperature and microtemperature are determined by a pair of equations. Later, Iesan [START_REF] Ieşan | On the theory of heat conduction in micromorphic continua[END_REF] also deduced the same pair of governing heat equations using homogeneous and isotropic micromorphic continua (Eringen, 1966b;[START_REF] Eringen | Balance laws of micromorphic mechanics[END_REF][START_REF] Eringen | Balance laws of micromorphic continua revisited[END_REF][START_REF] Eringen | Microcontinuum field theories: I. Foundations and Solids[END_REF][START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF][START_REF] Suhubl | Nonlinear theory of micro-elastic solids-II[END_REF]. The theory of micromorphic fluids with microstructures has been studied in various papers [START_REF] Koh | Theory of a second-order microfluid[END_REF][START_REF] Riha | Poiseuille flow of microthermopolar fluids[END_REF][START_REF] Říha | On the theory of heat-conducting micropolar fluids with microtemperatures[END_REF][START_REF] Verma | Hagen-Poiseuille flow of microthermopolar fluids in a circular pipe[END_REF]. A study of the problem of heat conduction in micromorphic continua was presented by Riha (Říha, 1976) and an agreement was obtained between theoretical results and experimental data for the silicone rubber containing spherical aluminum particles and for the human body blood. Green et al. [START_REF] Green | A Re-Examination of the Basic Postulates of Thermomechanics[END_REF] illustrated in details of the thermal propagation in a rigid solid at finite speed, based on the established thermomechanical theory with the introduction of a balance of entropy and the use of energy equation as an identity for all motions and all temperature fields after the elimination of external fields [START_REF] Green | On Thermodynamics and the Nature of the Second Law[END_REF]. Later, a thermoelasticity theory without energy dissipation for nonpolar bodies, based on the new thermomechanical theory, has been presented in [START_REF] Green | Thermoelasticity without energy dissipation[END_REF]. It permits the transmission of heat as thermal waves at finite speed. Iesan et al. [START_REF] Ieşan | On the theory of heat for micromorphic bodies[END_REF] used the procedure proposed by Green et al. [START_REF] Green | On Thermodynamics and the Nature of the Second Law[END_REF] and extended it to the micromorphic continua. In the linearized theory, it predicts the thermal propagation with finite speed. In the previous theories, the micro-temperature is a vector quantity akin to a temperature gradient. In contrast, Forest et al. [START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF] present theories involving scalar micro-temperature or micro-entropy, by applying the micromorphic approach [START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF][START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF] extending the local model to the micromorphic framework, to the temperature and entropy, respectively. They showed that the gradient entropy theory and gradient temperature theory can be regarded as a limit case of the micro-entropy and micro-temperature theories. 
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In the second part of thesis, we focus on the theoretical formulations and numerical implementations of the proposed micromorphic constitutive equations. The main work are summarized as following:

1). Theoretical formulations of the thermodynamically consistent nonlocal constitutive equations of elasto-visco-plasticity, coupling with isotropic ductile damage, temperature, mixed hardening as well as associated micromorphic state variables, in finite deformation. The new balance equations are obtained due to the introduction of the additional micromorphic state variables. The state relations and evolution equations are derived according to proper selections of the Helmholtz free energy and the dissipation potentials; 2). For the heat transfers, an intensive review of the current extended heat equations are studied, which could be classified into five types according to the used different theoretical frameworks.

The micromorphic heat equations are derived by introducing the new micromorphic temperature and its first gradient, which yields a new thermal balance equation coupling with the classical local heat conduction equation. A pair of generalized heat equations governs the evolution of temperature and allows the introduction of nonlocal thermal effects and an internal length scale. The propagation of thermal plane waves is investigated according to various generalized heat equations. Several extended heat equations could be retrieved from the constrained micromorphic heat equations; 3). Three types of first-order finite element: a planar quadrangular element of plane stress, a quadrangular shell element and a solid-shell element, are developed in Abaqus to adapt the new micromorphic state variables; 4). The local integration of the strongly coupled micromorphic constitutive equations is performed using the well-known return-mapping algorithm based on the elastic prediction and plastic correction method for general non-associative elasto-visco-plasticity model in the presence of nonlinear isotropic and kinematic hardenings; 5). Parametric study of the local damage parameters, the coefficients of viscoplastic effects, the micromorphic damage and isotropic hardening parameters as well as the anisothermal micromorphic damage model, are well performed. With the identified parameters of material PART II CHAPTER V INTRODUCTION 57 DP1000, the proposed nonlocal constitutive equations are applied to the uniaxial tensile test and cross section deep drawing processes respectively.

VI. Theoretical formulations VI.1 Introduction

In several situations as for continuum with scale effects, continuum with heterogeneous microstructure, continuum with strong micro discontinuities, etc., the displacement vector and its first gradient are not sufficient to define the mechanical state in a material point. It is then necessary to add other variables as well as their gradients of the first, second, or higher orders, in the principle of virtual power and as new arguments in state and dissipation potentials. This defines the so-called mechanics of generalized continua or of materially non-simple continua. All these theories seek to define the mechanical state at a material point in terms of a more or less vast domain surrounding the point, or even of the whole domain. Finally, this introduces a kind of length scale effect in terms of the morphology of the spatial distribution of the different phases inside the representative volume element (RVE) and of the size of the various constitutive elements, or the effects of the gradients of physical fields. Commonly, the theory of the generalized continuum mechanics is classified, as schematized in Fig. VI-1, in three distinct theories [START_REF] Diamantopoulou | Micromorphic constitutive equations with damage applied to metal forming[END_REF][START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF][START_REF] Labergère | Activites de Recherche[END_REF][START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF][START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF]):

1). High grade continua, which is based on the introduction of the high order spatial gradients of the displacement vector u in addition to the first displacement vector into the principle of virtual power, as initially proposed by [START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF][START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF][START_REF] Toupin | Theories of elasticity with couple-stress[END_REF][START_REF] Toupin | Elastic materials with couple-stresses[END_REF]; 2). High order continua, which was initially proposed by the Cosserat brothers (Cosserat andCosserat, 1896, 1909) and subsequently developed by Eringen and his co-workers in 1960s (Eringen, 1966a, c;[START_REF] Eringen | Balance laws of micromorphic mechanics[END_REF][START_REF] Eringen | Microcontinuum field theories: I. Foundations and Solids[END_REF][START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], supports the additional degree of freedoms (dof) which are generally new kinematic variables and their high order gradients in the principle of virtual power; 3). Strictly nonlocal continuum field theory well summarized in the recent work by Eringen [START_REF] Eringen | Nonlocal continuum field theories[END_REF].

As suggested by Forest [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF][START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF], all these generalized continuum theories are still based on the assumption of local action (Truesdell and Noll, 2004a). The class of nonlocal theories are "concerned with the physics of material bodies whose behavior at a material point is influenced by the state of all points of the body" as stated by Eringen in his introduction [START_REF] Eringen | Nonlocal continuum field theories[END_REF].

The constitutive equations presented in this part, is based on the macroscopic phenomenological approach in the context of the thermodynamics of irreversible processes with state variables [START_REF] Germain | Continuum Thermodynamics[END_REF][START_REF] Lemaitre | Mécanique des matériaux solides[END_REF][START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF][START_REF] Truesdell | The non-linear field theories of mechanics[END_REF]. Each selected physical phenomenon is associated with a state variable defined in the deformation space, whose relation with its dual variables in the stress space is conditioned by the construction of a state potential and its evolution is based on the choice of an adequate dissipation potential.

Continuum Mechanics

Hypothesis of local action

Hypothesis of nonlocal action

Generalized continua

Simple continua Cauchy continua 1832

High order continua

High grade continua

Cosserat continua 1896 Micromorphic [START_REF] Eringen | Mechanics of micromorphic materials[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] Second gradient [START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF] Gradient of internal variables [START_REF] Maugin | Internal Variables and Dissipative Structures[END_REF] Fully intergral formulation [START_REF] Eringen | Nonlocal polar elastic continua[END_REF])

Fig. VI-1 Scheme of different theories in continuum mechanics

VI.2 Generalized principle of virtual power (Balance equations) VI.2.1 New degree of freedoms (dofs)

In order to account for the material's softening phenomena, which results from the evolution of ductile damage or the thermal effects and yields the high sensitive mesh-dependency in the numerical simulations, four new pairs of micromorphic variables associated with their local state variables are introduced as additional internal degree of freedoms, i.e.   , dY for micromorphic damage,   , rR for micromorphic isotropic hardening,    , X for micromorphic kinematic hardening and   , Ts for micromorphic temperature, besides the classical degree of freedoms of displacement field, to represent the respective related nonlocal effects.

VI.2.2 Principle of virtual power for a micromorphic medium

The generalized virtual power of internal forces  int P is extended by the new micromorphic variables and their first gradients:

                              int :: P u Y d R r X s T Y d R r X s T dV (II.1)
where,  indicates the Cauchy stress tensor, Y , R , X and s are the generalized stress-like variables with respect to the first gradients of the new micromorphic dofs. The superimposed symbol (*) indicates the kinematically admissible virtual fields.

Similarly, the virtual power of external body and contact forces  ext P are enriched by:

                                                                           : : u d gd r gr ext g T gT u d r T f u f d f d f r f r P dV f f f T f T F u F d F r F F T dS (II.2)
where,

u f , d f , gd f , r f , gr f ,  f ,  g f , T
f and gT f are the simple and generalized body forces associated with the displacement, the micromorphic variables and their respective first gradient. Also u

F , d F , r F ,  F and T
F are the simple and generalized micromorphic contact forces acting on the appropriate parts of the boundary  .

Finally, the virtual power of inertia forces can be expressed as:

                           12 : ar TT d V P u u d d r r T T T T dV (II.3)
where, d , r ,  , T and T are the generalized acceleration terms associated with micromorphic damage, micromorphic isotropic hardening, micromorphic kinematic hardening and micromorphic temperature,

respectively.  d ,  r , 
 and  Ti are scale factors which map the local density of the material to the micromorphic level [START_REF] Nedjar | Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects[END_REF]. Two thermal contributions are introduced for the sake of generality. The first one mimics the mechanical acceleration and introduces the second time derivative of the micromorphic temperature. The second one involves only the first time derivative of the micromorphic temperature based on the idea of micro-kinetic energy in the spirit of the kinetic theory of gas.

It should be noticed that there are two kinds of inertia contributions (first and second time derivatives) from micromorphic temperature. The first inertia term (second time derivative) is similar to the inertia of displacement. The second inertia term (the first time derivative) is based on some justifications from kinetic theory of gas, where the kinetic energy is proportional to temperature. In (Mandl, 2008) it is recalled that Maxwell and Boltzmann have developed a kinetic theory that yields a fundamental understanding of temperature in gases. The kinetic theory assumes that pressure is caused by the force associated with individual atoms striking the walls, and that this energy is translational kinetic energy. Using a sophisticated symmetry argument, Boltzmann deduced what is now called the Maxwell-Boltzmann probability distribution function for the velocity of particles in an ideal gas [START_REF] Swendsen | Statistical mechanics of colloids and Boltzmann's definition of the entropy[END_REF]. From that probability distribution function, the average kinetic energy, k E (per particle), of a monatomic ideal gas is:

 2 13 22 k rms B E mv k T (II.4)
where B k is the Boltzmann constant, and rms v is the root-mean-square speed. It is reasonable to assume that the temperature is function of particles velocity. Then, the first time derivative of temperature will result in an acceleration term, which is a kind of generalized force. That is why we postulate that the generalized thermal inertia [START_REF] Holba | Heat inertia and its role in thermal analysis[END_REF][START_REF] Šesták | Heat inertia and temperature gradient in the treatment of DTA peaks[END_REF]) (inertia of temperature) is proportional to the first and second time derivatives of temperature.

The generalized principle of virtual power stipulates that the sum of the virtual powers of internal and external forces balances the power of acceleration forces for all admissible virtual velocity and micromorphic fields (K.A. stands for kinematically admissible fields in the usual sense):

           int , , , , .
. 

u u f u in n F on                  (II.6)  The micromorphic temperature balance equations:                                 21 T gT TT gT T s s f f T T in s f n F on (II.7)
 The micromorphic damage balance equations:

                           d gd d gd d Y Y f f d in Y f n F on (II.8)
 The micromorphic isotropic hardening equations:

      r gr r gr r R R f f r in R f n F on                 (II.9)
 The micromorphic kinematic hardening equations:

                               g g X X f f in X f n F on (II.10)
These balance equations with their associated Neumann-type boundary conditions will be used, with other equations, to solve the initial and boundary value problem (IBVP) in order to determine all the local and micromorphic unknown dofs.

VI.3 Thermodynamic formulations

The balance equations (II.6)~(II.10) extracted from the generalized principle of virtual power are not sufficient, by themselves, to solve the IBVP. Additional equations are then required to complete the number of equations necessary to solve the problems. These missing equations are nothing but the so called constitutive equations relating the local and micromorphic stress-like variables to their conjugated strain-like variables.

This paragraph is dedicated to the formulation of these constitutive equations for deformable solids under finite theromechanical transformation. This will be performed in the framework of the thermodynamics of irreversible processes with state variables (see for example [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF]). This consists in:

 Selecting the convenient pairs of local and micromorphic state variables (strain-like, stress-like) associated with the selected thermomechanical phenomena under concern  Defining the required effective state variables on the "undamaged" or "safe" deformed configuration in order to perform, systematically, the strong effect of the ductile damage on the other thermodynamical phenomena

 Constructing a convenient state potential, a scalar valued convex function of the strain-like variables, from which the stress-like variables (or the state relationships) will be extracted  Constructing the convenient yield functions as well as the dissipation potentials, a scalar-valued convex function of the stress-like variables, from which the evolution equations governing all the dissipative phenomena have to be extracted based on the generalized normality rules. This formulation methodology will be followed to formulate the required local and micromorphic constitutive equations.

VI.3.1 State variables

The local state method, in the context of the thermodynamics of irreversible processes with state variables, is adopted to formulate a wide class of thermo-elasto-inelastic constitutive equations accounting for many physical phenomena including ductile damage.

Choice of state variables

The pairs of state variables are presented in Table VI-1. Each pair is composed of a strain-like variable together with its dual force or stress-like variable [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF].

Phenomenon

Internal 

 e  Kinematic hardenings  X Isotropic hardening r R Isotropic ductile damage d Y Micromorphic kinematic hardening              X X Micromorphic isotropic hardening       r r      R R Micromorphic isotropic damage       d d      Y Y Micromorphic temperature       T T      s s
     1 T JF ; b)
The absolute temperature associated with the specific entropy   , Ts; c) Thermal exchanges are governed by the heat flux vector (normalized by the temperature) associated with the temperature gradient    , q g T ; d) Thermo-elastic strain  e is associated with the Cauchy stress if total incompressibility is accepted [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF]); e) Kinematic hardening is represented by a purely deviator tensor  , associated with its dual variable X , which measures the translation of the yield surface center in stress space.

PART II CHAPTER VI THEORETICAL FORMULATIONS 64 f) Isotropic hardening is characterized by the scalar variable r associated with its dual variable R , which measures the variation in stress space of the elastic domain radius. g) Damage is naturally fairly anisotropic on a microscopic level. There are various mathematical representations, fourth-order tensor, second-order tensor or scalar, of damage in literatures [START_REF] Krajcinovic | Damage Mechanics[END_REF][START_REF] Lemaitre | A course on damage mechanics[END_REF][START_REF] Lemaitre | Mécanique des matériaux solides[END_REF][START_REF] Lemaitre | Mécanique des matériaux solides -3ème édition[END_REF][START_REF] Lemaitre | Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures[END_REF][START_REF] Murakami | Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture[END_REF][START_REF] Voyiadjis | Advances in Damage Mechanics: Metals and Metal Matrix Composites[END_REF]. In this thesis, we use a scalar d associated with a thermodynamics force Y in order to represent isotropic ductile damage. h) Localized effects of kinematic and isotropic hardening are represented by the micromorphic kinematic or isotropic hardening strain-like variable  and r , which are supposed to carry the targeted gradient effects and have the same nature as the local kinematic or isotropic hardening state variable  and r , and their first gradients   and r associated with their dual stress-like variables X , R , X and R , respectively. 

Damaged effective state variables

In the local state method, in order to formulate the constitutive equations for materially simple continuous media, the assumption that the medium concerned is perfectly continuous and not containing any surface or volume discontinuities is adopted. However, the presence of the local damage, in the form of a fairly random distribution of microvoids and/or microcracks, rightly introduces micro-discontinuities in the representative volume element (RVE) which is unrealistic to search for the exact topology. An exhaustive discussion on the different ways of defining this equivalent fictive RVE can be found in literature [START_REF] Besson | Mécanique non linéaire des matériaux[END_REF][START_REF] Murakami | Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture[END_REF][START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF]. Here, the fictive configuration is defined by using the total energy equivalence hypothesis (a generalization of the elastic energy equivalence hypothesis), which states that at any time, an RVE in its real deformed and damaged (rotated) configuration, and where the thermomechanical state, at this time, is defined by the set of state variable pairs from Table VI-1; we associate a safe (i.e. undamaged) equivalent fictive configuration, the thermomechanical state of which is described by the effective state variables listed in Table VI-2, in such a manner that the total energy defined over the two real and fictive configurations is the same [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF].

The Helmholtz energy is assumed to be the sum of elastic energy ela W , energy dissipated in the kinematic hardening kin W , and energy dissipated in isotropic hardening iso W . By extending these definition to the micromorphic state variables, the application of this energy equivalence principle leads to: 

               
kin g kin W X X W X X               and 11 22 11 .. 22 iso g iso W R r R r W R r R r             (II.
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Table VI-2 Definition of the total energy equivalence hypothesis in strain space (Helmholtz energy)

A general solution that satisfies the equations Eq.(II.11) may take the following form in the case of the simple isotropic ductile damage:

                                     ee ela ela kin kin iso iso gd gd X X g d gd R R r g d r gd and                         , , , , iso iso g iso g iso kin kin g kin g kin R R r g d r gd R R r g d r gd X X g d gd X X g d gd                            (II.12)
where, the damage effect functions (

  ela gd ,   kin gd ,   iso gd ,   iso gd ,   g iso gd ,   kin gd ,   g kin gd ) are
scalar, positive, and decreasing functions of the scalar isotropic damage variable d . They take value of unity in the total absence of damage and tend toward zero when damage approaches unity, resulting in the final fracture of the RVE.

Here, for the sake of simplicity, the following choices have been made:

        ( ) ( ) 1 
( ) 1 g ela kin kin kin g iso iso iso g d g d g d g d d and g d g d g d d                  (II.13)
where,  is a scalar parameter characterizing the coupling between the ductile local damage and the isotropic local and micromorphic hardenings.

VI.3.2 Thermodynamic consistency and state potential (State relations)

The principles of the irreversible thermodynamics

VI.3.2.1.1 First law of thermodynamics: Energy conservation

The energy conservation principle postulates the existence of a state function called internal energy E homogeneous to an amount of work, so that at any time in the area t , the sum of the material time derivative of internal energy and the kinetic energy K is equal to the sum of the power of external forces applied to  t and the heat quantity Q received by

 t :      ext d E K P Q dt (II.14)
Moreover, using the kinetic energy theorem, which stipulates that the material time derivative of kinetic energy is the sum of the real power of external and internal forces:

 int ext dK PP dt (II.15)
Then, Eq.(II.14) becomes to:

 int dE PQ dt (II.16)
In the current deformed configuration t C , this is expressed by the following integral equations:

                                      :: t t t t D Yd Rr X sT d e dv dv dv q n ds dt Y d R r X s T (II.17)
where, e is the specific internal energy (per unit mass),  is the internal (or volume) heat source, and q is the heat flux vector received across the boundary surface  t having the vector n as an outward normal (i.e. the direction of the heat flow).

By using the material time derivative of a volume integral together with the divergence theorem in order to transform surface integrals into volume integrals, and by applying the spatial localization theorem (or local action theorem) for materially simple continua, we obtain the generalized localized (differential) form of the first principle of thermodynamics as:

                         :: D Yd Rr X sT e div q Y d R r X s T (II.18) VI.3.2.1.

Second law of thermodynamics: Inequality of entropy

The first law of thermodynamics can be regarded as an expression of the inter-convertibility of heat and work, maintaining an energy balance; as such it places no restriction on the direction of the process. The direction of physical processes can be expressed as a constraint on the way entropy can change during any process. This is what the second law of thermodynamics is about. It states that the rate of entropy production is always greater than or equal to the amount of heat received divided by the absolute temperature.

 dS Q dt T (II.19)
where,   Ss is the entropy and T is the absolute temperature and s being the specific entropy (per unit mass).

In the current deformed configuration t C , it can be expressed by the following integral equations:

                          0 t t t dq s dv dv n ds dt T T (II.20)
The use of the divergence theorem together with the principle of space localization for materially simple continua leads to the local (differential) form of the second principle of thermodynamics in the current configuration:

        0 q s div TT (II.21)
The extended localized forms of the first and second law of thermodynamics can be combined, via the elimination of the internal heat quantity  , in order to give a single inequality called the fundamental inequality of thermodynamics:

                          :: 0 D Yd Rr X sT q Ts e g T Y d R r X s T (II.22)
where, g is the first gradient of absolute temperature.

Considering the specific Helmholtz free energy  

  e Ts , gives us the generalized so-called Clausius-Duhem inequality:

                           :: 0 D Yd Rr X sT q sT g T Y d R r X s T (II.23)
We postulate that the state potential here taken as the Helmholtz free energy in the current deformed configuration, is a closed convex function of the all effective strain-like state variables, including the classical local state variables  re , d , r and  as well as the micromorphic variables d , r ,  and T , and also their respective first gradients d , r ,   and T , and a concave function of the temperature. Accordingly, the time derivative of the specific Helmholtz free energy ,,,,,,,,, , re T d r d r T d r T is then given by:

           , ,
                                                                : : : re re d r T d r T d r T d r T d r T dr T (II.24)
Substituting Eq.(II.24) into Eq.(II.23) and assuming the additive decomposition of total strain rate into small reversible and large irreversible parts re ir DD  , it gives the following expression of the inequality:
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Without loss of generality, we assume that the items

re          , s T        , Y d         , R r         , X          ,         s T , Y d         , R r         , X          and         s T
do not depend on their rates respectively, as well as the micromorphic variables do not dissipate, then following standard arguments (Truesdell and Noll (Truesdell and Noll, 2004b)), we may have the following state relations:

                                                   re s T Y R X dr Y R X dr Y R X dr ss T T (II.26)
and the classical local dissipation: including the intrinsic dissipation and thermal dissipation:

              : : 0 ir in th q D Yd Rr X g T (II.27) with, intrinsic dissipation        :: ir in D Yd Rr X
, and the thermal dissipation     th q g T . In the following the reversible strains will be noted as elastic  e and the irreversible (or inelastic) strains can be either viscoplastic noted  vp for time-dependent inelasticity or plastic noted  p for time-independent inelastic flow.

PART II CHAPTER VI THEORETICAL FORMULATIONS 70

Choice of strongly coupled state potential: Helmholtz free energy In this thesis, the micromorphic state variables and their first gradients are assumed to be not directly affected by the micromorphic damage. On the other hand, the micromorphic state variables are assumed to contribute to the Helmholtz free energy in terms of the relative difference with respect to the local variables of the same nature. The Helmholtz free energy is supposed to be divided into two terms by an Keeping in mind the definition of the effective local and micromorphic state variables defined by Eq.(II.13), these state potentials can be chosen as: 
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where,  is the positive definite and symmetric fourth-rank tensor of the elastic moduli, P is the positive definite and symmetric second-rank tensor of thermal expansion, P is the positive definite and symmetric second-tensor of micromorphic thermal expansion,  C is the (scalar) specific heat capacity at constant volume,  is the (scalar) coupling modulus with respect to temperature,  g is the (scalar) modulus of gradient of micromorphic temperature, C (fourth-rank symmetric tensor) and Q (scalar) are the kinematic and isotropic hardening macro moduli, C (fourth-rank symmetric tensor), Q and H (scalars) are the coupling moduli with respect to the kinematic hardening, isotropic hardening and damage respectively, g C (sixth-rank symmetric tensor), g Q and g H (scalars) are the micromorphic moduli relative to the first gradients of micromorphic kinematic hardening, isotropic hardening and damage respectively, the subscript  

T indicates that the material properties are function of the local temperature (no dependence with respect to the micromorphic temperature).

In this choice, we note that temperature only plays the simple role of parameter in inelastic potential through dependence of some physical properties versus temperature. For which temperature performs the role of simple parameter except in the case of thermoelastic coupling, is consistent with the hypothesis H7 stated by [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF]:

-H7: Except the case of a thermoelastic behavior, for which experimental data have completely defined the thermoelastic coupling, we assume the widely used assumption, which is to use temperature as a simple parameter in the state potential and yield functions. This is done by assuming that the material parameters are functions of temperature. These functions must be determined, a posteriori, by simply smoothing parameter values previously "measured" at different temperatures between the reference temperature and the maximum operating temperature of each material. So these functions are not explicitly known at the time of the choice of potentials and yield functions. Using the state relations in Eq.(II.26), the stress-like variables that are associated with all strain-like variables used in the state potential are obtained:

-Cauchy stress tensor:

                                              0 0 : 1 : 1 1 e e e T

T T P T T T P T d T d T T P T d T T P T

(II.31) -Specific entropy: 
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-Isotropic hardening stress:

                           1 R Q T r Q T r r r d Q T r Q T r r (II.35) -Kinematic hardening stress:                                    :: 1 : : X C T C T d C T C T (II.36)
-Stress-like variables of micromorphic damage and its first gradient:

                    g Y H T d d d Y H T d d (II.37)
-Stress-like variables with respect to micromorphic isotropic hardening and its first gradient:

                                      1 1 gg R Q T r r d Q T r r r R Q T r d Q T r r (II.38)
-Stress-like variables of micromorphic kinematic hardening and its first gradient:
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-Stress-like variables with respect to micromorphic temperature and its first gradient:

                                    : 1 : ee g s

P T T T T dP T T T T T s T T T (II.40)

It is worth nothing, that the state relations Eq.(II.31) -Eq.(II.36) can be decomposed into classical local contribution and the extended nonlocal partial with the help of the micromorphic state relations : 
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For the sake of simplicity of formulations, the subsequent subscript   T of material property is neglected in most cases.

Micro-cracks closure effects

Concerning a representative volume element (RVE) undergoing tension loading, the creation of open micro-defects results in lower moduli. However, during the unloading and progressive transformation into the compressive phase, the micro-cracks close progressively until complete closure if the compression force is sufficient. In this case, the moduli of elasticity and hardening must be able to restore to gradually return to their initial values before damage when all the created micro-cracks are fully closed. This change of the material physical properties depending on the sign of the imposed loading related to the progressive closure of the open micro-cracks and vice-versa, called the quasi-unilateral effect, is not an easy task since it is the origin of loss of continuity and even convexity of the state and dissipation potential, mainly when the damage is anisotropic [START_REF] Besson | Mécanique non linéaire des matériaux[END_REF][START_REF] Lemaitre | Mécanique des matériaux solides -3ème édition[END_REF][START_REF] Lemaitre | Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures[END_REF].

A simple way to account for this effect while avoiding any loss of continuity or convexity of the state functions, consists of decomposing the effective state variables into positive and negative parts with the help of the spectral decomposition of any symmetric second-rank tensors Z in the form: 
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These two positive and negative parts of the tensor verify the following orthogonality and differentiability properties:
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Then the following derivatives of the positive and negative parts of the tensor Z can easily be established:
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For the sake of simplification, the above decomposition is only applied to the thermo-elastic damageable potential      , , , , e tel d T T T . More complex formulation can be found in literature [START_REF] Issa | Modélisation et simulation numérique des procédés de fabrication sous conditions extrêmes[END_REF][START_REF] Issa | Numerical prediction of thermomechanical field localization in orthogonal cutting[END_REF][START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF][START_REF] Yue | Ductile damage prediction in sheet metal forming processes[END_REF]. The Eq.(II.29) is modified as: 
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T T T P T T T P T C T T T T T T T T T d T hd T T T P T d hd T T P T d hd C T T T T T T T T T

                                                                 (II.49)
where, the tensor   e and   e are the positive and negative parts of the elastic strain tensor. The parameter h (  01 h ) is related to the micro-cracks closure effect and allows reducing the damage growth under the negative parts of the applied loading, with two extreme cases: (a)  0 h makes no difference of the damage growth between positive and negative loads; (b)  1 h

for which the damage growth takes places only under the positive part of the applied loading path.

According to the state relation in Eq.(II.26), the stress-like variable of damage is replaced by: 

                                            0 0 2 1 2

T h T T T P T T T P T d h Y T T P T T T P T d hd

C T C T C T d Q T r d Q T r r d Q T r r H T d d                                                                                             (II.50)

VI.3.3 The generalized heat equation

Considering the nonlocal thermal effects, the new micromorphic temperature associated with the local temperature is introduced into this theory, and the generalized heat equations governing the evolution of temperature is well presented. There are also many other possibilities to consider the nonlocality of temperature, and will be discussed in Sec. VI.5.4.

Formulations of the heat equation

Just as the principle of virtual power leads to the momentum balance equations, the first law of thermodynamics can lead to the differential heat equation governing the evolution of temperature, with the help of the Helmholtz free energy and the above deduced state relations.

The local form of the generalized first law of thermodynamics is given by:

                             :: 0 D Yd Rr X sT e div q Y d R r X s T (II.51)
Let us introduce the classical relations between the internal energy and the Helmholtz free energy:

  e sT (II.52) Substituting Eq.(II.52) into Eq.(II.51) leads to the following equation:

                                  :: 0 D Yd Rr X sT sT sT div q Y d R r X s T (II.53)
By using the material time derivative of free energy Eq.(II.24) and the state relations in Eq.(II.26), it leads to the form of the heat equation:

               : : 0 ir D Yd Rr X q sT (II.54)
Considering the state relation of entropy in Eq.(II.26), the material time derivative of entropy is:

                                                                : : : 1 e s T s Y R X Y R X s T d r d r T T T T T T T T T T Y R X s d r T T T T T (II.55)
Substituting the above equation into the heat equation Eq.(II.54) gives the detailed expressions of the form of the heat equation:

                                                                     :: : : : 0 ir e s D T T Yd Rr X q T Y R X Y R X s d r d r T T T T T T T T T T Y R X s d r T T T T T (II.56)
If we pose:

                                                   : : : e pl Y R X Y R X s d r d r T T T T T T T T T R Y Y X s d r T T T T T (II.57)
PART II CHAPTER VI THEORETICAL FORMULATIONS 77 defining the isentropic comes from the variations of stress of temperature term of the heat equation. Finally, the heat equation takes the following simple form:

                 0 in pl s T T q R T T (II.58)
With the definition of the specific heat capacity for constant volume:

        V const s TC T (II.59)
The heat equation becomes to:

              0 in pl C T q R T (II.60)
Clearly, the generalized heat equation keeps its classical form, the only difference is on the pl R which obtains the contributions from the micromorphic variables. If all micromorphic variables vanish, the pl R will degenerate to the classical contribution, then the heat equations will be the classical local heat equations [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF].

Detailed expressions of the generalized heat equation

For the sake of simplicity, the explicit dependence of the material parameters on the temperature is omitted in this section. For deformable solids, it's clear that the evolution of the temperature depends on the partial derivatives of stress-like variables with respect to temperature and the material time derivatives of strain-like variables (i.e. the isentropic term pl R defined in Eq.(II.57)). By using the deduced state relations Eq.(II.31) -Eq.(II.40), the partial derivatives of stress-like variables with respect to temperature are given:

-Cauchy stress: 

      0 1 : 1 e PP d d P T T P T T T T T T                       (II.61) -Damage stress:                                                                                             0 2 1 2
P P T T T d d d d C CC Y T T T T Q QQ d r d r r d r r T T T H dd T       (II.62) -Isotropic hardening stress:                   11 R Q Q d r d r r T T T (II.63)
-Kinematic hardening stress:

                   1 : 1 : CC X dd T T T (II.64)
-Stress-like variables with respect to micromorphic damage:

           g YH dd TT H Y d TT (II.65) -Stress-like variables of micromorphic isotropic hardening:                     1 1 g RQ d r r TT Q R dr TT (II.66)
-Stress-like variables with respect to micromorphic kinematic hardening:

                     1: 1 g C X d TT C X d TT (II.67) -Stress-like variables of micromorphic temperature:                    1: e g sP d T T T T T s T TT (II.68)
Using the state relations Eq.(II.31) -Eq.(II.40), and the above partial derivatives Eq.(II.61) -Eq.(II.68), the final heat equation can be expressed as:

                                                                                                 0 0 1 1 : : 1 1 : : : 1 1 : : e ir ee g C T q d d T T P T T P D Yd d Qr Q r r r d C C PP d d T T P T T P T T T H YH d d d d d T T T T                                                                                                                1 1 : : : : : 1: g g g e d Q Q Q Q d rr r r r r r r r r T T T T C C C C d T T T T P d T T T T T T T                       0 T (II.69)

VI.3.4 Dissipation analysis (Evolution equations)

By assuming the hypothesis of thermal and intrinsic dissipations uncoupling, we are able to analyze thermal and intrinsic dissipations separately, in order to deduce the heat flux vector and the rate of strainlike variables in damageable inelastic solids. There are many possibilities to account for the micromorphic dissipations, coupling of thermal mechanics and plastic potentials. For simplification, we limit ourselves to the quadratic plastic potential, no dissipations from micromorphic variables and assume that the moduli are functions of temperature and indirectly affected by nonlocal temperature.

Thermal dissipation analysis

The diffusion of heat in a deformable continuous medium is a phenomenon which is naturally time dependent. Thus, in order to define the heat flux vector q , Fourier's dual potential of thermal dissipation is used in stress space in the form of a closed convex function of the temperature gradient:

         * 1 ;0 2 th g T g k T g (II.70)
where, k is the positive definite second-rank symmetric tensor of thermal conductivities. Due to the hypothesis of normal dissipation, the heat flux variable is obtained:

            * ; th gT q k T g Tg (II.71)
PART II CHAPTER VI THEORETICAL FORMULATIONS 80 If we assume the isotropy of the thermal conductivity      1 k T k T , and the (scalar) coefficient of thermal conductivity is inversely proportional to temperature, so that    Tk T k is a constant, then the well-known Fourier linear thermal conductivity relationship is obtained from Eq.(II.71):

 q kg (II.72)
Let us verify the positivity conditions for thermal dissipation in Eq.(II.27):

                   0 th q g k T g g k T g g T (II.73)

As

k is positive definite symmetric second-rank tensor in Eq.(II.70), this thermal inequality is identically verified, thus ensuring an unconditional thermodynamic admissibility for the Fourier linear model of heat flow.

The intrinsic dissipations analysis

VI.3.4.2.1 Time -independent plasticity

In time-independent inelastic flow, we have The stress-like variables have been derived from the Helmholtz free energy written in effective strain spapce through Section VI.3.2.2 above. In this section, we will analyze the different dissipative phenomena, in order to define their evolution equations with the appropriate yield functions and dissipation potentials following the local state method. For case of time-independent plasticity, the generalized normality rule and maximum volumetric dissipation will be used to deduce the evolution equations. Here we limit ourselves to the single yield surface for both plasticity and damage (choice of two yield surfaces is possible in literature [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF]).

VI.3.4.2.1.1 Plastic potential and evolution equations

In this section, we focus on the analysis of anisotropic plastic dissipations with isotropic damage, kinematical hardening and isotropic hardening. The plastic potential is defined, in the effective stress space, under the following form:

            2 1
, , ; : : ; 22

p p d a T b T R F X R T f X C T X F Y d QT       (II.74)
where, p f is the plastic yield criterion:

                      , , ; 1 1 p yp yp X R f X R T X R T T d d (II.75) with the norm       :: X X H T X       
defines the effective stress with the fourth-rank operator  

HT governing the anisotropic of the plasticity, 

                          1 0 , 1 ; 1 1 sT d T S T Y Y T d F Y d ST sT d (II.76)
where, the parameters S , s , 0 Y and  characterize the nonlinear evolution of ductile damage.

Considering the generalized normality rule, the evolution equations for strain-like variables are obtained in the below:

-Plastic strain rate

        : 1 11 pf p f H T X Fn Dn X dd                   (II.77)
with  is the so-called Lagrange plastic multiplier.

-Kinematic hardening strain rate

        1 : p f f f F n a T C T X n m X              (II.78) with                    11 1 : : : f m a T C T C T C T C T . -Isotropic hardening strain rate         11 11 p F R r b T o R Q T dd                                  (II.79) with           1 Q T Q T o b T r r Q T Q T                        . -Isotropic damage rate           0 , 1 1 sT p T F Y Y T d dY Y S T d            (II.80)
It's worth to note that if the scalar factors   aT and   bT vanish, the evolution equations of kinematic and isotropic hardening Eq.(II.78) and Eq.(II.79) will degenerate to their linear forms respectively.

VI.3.4.2.1.2 Formulations of plastic multiplier

The evolutions of dissipative phenomena under given applied loading conditions maximize the volumetric dissipation (Eq.(II.27)) under the condition  0 ), we obtain the above evolution equations, in which  is a Lagrange multiplier also called plastic multiplier, which is positive or null, and fulfill the Kuhn-Tucker (or loading/unloading) conditions as well as the consistency conditions:

           Kuhn-Tucker conditions 0, 0 0 Consistency conditions 00 pp pp f and f f if f (II.81)
If   0 , it will not produce new plastic strain; if   0 , in order to fulfill the consistency conditions,  0 p f must be satisfied:

                  : : 0 p p p p p p f f f f f f X R d T X R d T (II.82)
In this case, the plastic multiplier is given by (detailed formulations are listed in Appendix VI.7.1):

                            1 1 : : : : : 1 f T f f P Q d n D H T n P T n C r H d (II.83)
where,

                        0 11 1 1 : 
: 3.4.2.1.3 

1 : : 1 1 : : : 1 : : : 1 e Tf yp p f f f PP d d P P T T T T T T T Hn CC d TT QQ d r r r T T T H d n n C C n a C C a C C Q Q Q b r b QQ                                                                                                  0 1 1 33 : : : : : 21 1 1 21 21 f e f r Q Q TT n P P n C C d Y X dR d Qr Q r r d d d                                                                                  (II.84) VI.

Elastoplastic tangent operator

The numerical resolution of equilibrium problems in elastoplastic solids often requires the tangent elastoplastic operator which links stress rates to total strain rates. In the present case, this operator is obtained by deriving the Cauchy stress tensor with respect to time (detailed formulations are listed in Appendix VI.7.2):

       :: Tr T L D L T L T L L r (II.85)
where, 

                                                                                         0 0 0
                                                                  

VI.3.4.2.1.4 Thermodynamic admissibility

In order to satisfy the Clausius-Duhem inequality, the intrinsic volumic dissipation Eq.(II.27) must be either positive or null:

        : : 0 p in D X
Rr Yd (II.87)

By using the evolution equations Eq.(II.77) -Eq.(II.80) together with the state relations Eq.(II.31) to Eq.(II.40), the intrinsic dissipation can be expressed as:

                        1 2 0 :: 1 :: 1 :: 0 , 1 1 p in f f f yp sT yp T D X Rr Yd n X n m R o YY d X R T aX C T X Y Y T d R b T Y T Q T S T d                                              (II.88) Since   0 and     , , ; 0 p f X R T
for plastic flow with damage, this inequality becomes:

                    2 0 1 , 1 : : 0 1 sT yp T Y Y T d R a T X C T X b T Y T Q T S T d          (II.89) This inequality is fulfilled if   0 yp T   ,     0 bT QT  and     1 a T C T  is semi-positive definite tensor,
by virtue of positivity of all of the other quantities. VI. Further to the thermal dissipation and time-independent plastic dissipation, the analysis of timedependent plastic dissipation, commonly called viscoplasticity, is presented. Now we have it assumes, as in terms of time-independent plasticity, the existence in stress or strain space of a limit yield surface from which there is no inelastic flow. However, for time-dependent plasticity, the stress state is not forced to remain on the yield surface  

  , , ; 0 p f X R T
. This turns out to be a kind of generalization of the multi-surfaces plasticity theory so that the inelastic flow takes place even if  

  , , ; 0 p f X R T .
Indeed, this condition expresses the distance between the current stress state at a given point and the resulting surface defined by  

  , , ; 0 p f X R T
. This distance directly defines, in the stress space, the socalled viscous stress  vp .

VI.3.4.2.2.1 Viscoplastic potential and restoration

In this section, we focus on the single potential, fully anisotropic damageable thermo-elastoviscoplasticity with ductile damage. We postulate that the overall viscoplastic potential   , , , The Norton-Hoff potential for the viscoplastic part is defined as (many other choices are available in the literature [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF] 

R
):                  1 , , , , ,
                      2 12
, , , : C

: : C : 2 2 2 2
, , ,

pp p yp a T b T a T b T R F R X T f X T X T Q T r QT f R X T X R T                     (II.91)
For the restoration potential, we also assume an additive contribution from restoration over kinematic and isotropic hardenings: 

                    
X X H T X 
is the anisotropic equivalent stress from the kinematic stress tensor.

Finally, the ductile damage potential, into which we introduce the accumulated viscoplastic strain rate, is defined by:

                       1 0 , 11 sT d T S T Y Y T d p ST s T d (II.93)
with p is the accumulated viscoplastic strain rate and is supposed purely ductile without creep damage.

VI.3.4.2.2.2 Evolution equations

Using the generalized normality rule, the evolution equations deduced from theses potentials are:

-Viscoplastic strain rate

    : 1 1 vp m p vp vp f vp H T X f Dn KX d             (II.94)
where, the multiplier  vp , depending on the form of the potential, is defined as follows:

    vp mT p vp vp f KT   (II.95) -Kinematic hardening strain rate                                 1 1 : : : 1 : : : rx vp rx mT mT X pp vp rx mT X vp f rx X H T X ff a T C T X X K T X K T X X H T X n a T a T C T C T KT X                                (II.96) -Isotropic hardening strain rate                             11 1 vp rr rr m T m T pp vp rr mT vp rr ff bT R rR R K T R Q T K T Q T Q T R b T r b T r Q T Q T K T d                                   (II.97) PART II CHAPTER VI THEORETICAL FORMULATIONS 86 -Isotropic ductile damage rate           0 , 1 sT T Y Y T d p d pY Y S T d          (II.98)
The accumulated viscoplastic strain rate is expressed as:

  1 :: 1 vp vp vp p D H T D d      (II.99)
We can easily define the equation for the actual viscoplastic yield surface from Eq.(II.95):

           1 1 10 vp vp vp vp vp mT mT vp p vp p p f f K T f K T p d f          (II.100)
As expected, the viscous stress is very dependent on the form of the viscoplastic potential and is defined as: 

          
        : : 0 vp vp in D X Rr Yd (II.102)
By using the evolution equations Eq.(II.94) to Eq.(II.98), as well as Eq.(II.100) which define the actual viscoplastic yield surface, the intrinsic dissipation can be expressed in the form:

                    1 2 :: : C : 0 1 rx rr mT X vp rx vp mT vp yp rr X X H T X f a T X T X KT X R R YY b T R T Q T K T d                    (II.103) Since   0 and     , , ; 0 vp f X R T , this inequality is fulfilled if   0 yp T   ,     0 bT QT  ,   0 rx KT  ,   0 rr KT  and     1 a T C T 
is semi-positive definite tensor, according to the positivity of all the other quantities.

VI.4 Transformation of the micromorphic balance equations

Recall the generalized balance equations as well as their Neumann boundary conditions in Eqs.(II.6) ~(II.10), they can be transformed to the strain-like spaces, with the help of the state relations in Eq.(II.31) ~ Eq.(II.40), under the following forms (

 

Lap X being the Laplacian of X ): -The classical equilibrium equation

                                        00 0 1 1 : 11 11 1 : 1 1 ee u eu d T d T d T T P T d T T P T u in d T T P T d T T P T f d T d T T P T d T T P T n F on                                                             (II.104) -The balance equation of the micromorphic damage               g g d gd D g gd d H T Lap d H T d H T d d f f d in H T d f n F on                            (II.105)
-The balance equation of the micromorphic isotropic hardening

                  1 1 g g r gr r g gr r d Q T Lap r Q T r Q T r r f f r in d Q T r f n F on                                 (II.106)
-The balance equation of the micromorphic kinematic hardening (assuming the fully isotropy in kinematic hardening phenomena)

                  1 :: : 1 g g g gg d C T Lap C T C T f f in d C T f n F on                                        (II.107)
or for the special case of isotropy kinematic hardening [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF]:

                 1 1 g g g gg d C T Lap C T C T f f in d C T f n F on                                        (II.108) -The balance equation of the micromorphic temperature                   12 1: gg T gT TT e g gT T T Lap T T T f f T T in T T T dP T T T f n F on                                       (II.109)
For the sake of simplicity and without any experimental information, if the overall micromorphic body and contact forces are neglected: 

               00 
            2 0 d g d g d HT l Lap d d d d H T H T H T d n                       (II.111)                  2 1 10 g r r g QT r d l Lap r r r r Q T Q T d Q T r n                             (II.112)                 2 1 10 g g CT d l Lap C T C T d C T n                                  (II.113)                     2 12
1 : 

0 g e TT T g T d l Lap T T T T P T T T T T T T T T n                                         (II.
                2 2 2 2 d g g g g r T H T Q T C T T l l l l H T Q T C T T        (II.115)
It is worth noting that if the micromorphic moduli are independent of the local temperature, it leads to the same micromorphic balance equations given in literature [START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF]. If the micromorphic inertia terms vanish, it leads to the implicit form of the well-known Helmholtz equation proposed in the framework of the so-called gradient-enhanced models [START_REF] Engelen | Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour[END_REF][START_REF] Peerlings | Enhanced damage modelling for fracture and fatigue[END_REF][START_REF] Peerlings | A critical comparison of nonlocal and gradient-enhanced softening continua[END_REF][START_REF] Peerlings | A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking[END_REF].

VI.5 Discussions of special cases

The generalized micromorphic model strongly coupled thermo-elasto-visco-plasticity and ductile damage is presented in the previous chapters. Here we'll present that how this micromorphic model will degenerate to the classical local damage model, and the classical elasto-plastic model which is used in the first part of thesis. After, concerning that the generalized heat equation (Eq.(II.69)) is too complicated, the thermo-elastic micromorphic heat equation is presented for simplification. The work on the exist work on the nonlocal heat equations are also briefly reviewed.

VI.5.1 Classical local damage model

In this section, we'll perform the required formulations to obtain the degenerated classical local damage model from the above extended micromorphic (nonlocal) model.

The local balance equation

If we neglect the introduced additional micromorphic dofs: micromorphic damage, micromorphic isotropic and kinematic hardening, micromorphic temperature, the virtual power of internal forces will be reduced to the classical form:

        * int : P dV (II.116)
Accordingly, the virtual power of external forces will degenerate to the classical form, if the generalized body and contact forces associated with micromorphic fields:

           ** uu ext P f u dV F u dS (II.117)
and the virtual power of inertia forces also reduces to:

     * a V P u u dV (II.118)
With the help of principle of virtual power, we may obtain the classic equilibrium equation associated with the dofs of displacements:

                 u u f u in n F on (II.119)
The local state relations In the absence of micromorphic fields, the differential form first law of thermodynamics becomes to the traditional one:

               :0 e div q (II.120)
Consequently, the Helmholtz free energy      , , , , Using the second law of thermodynamics and the above equations, the following classical state relations are obtained:

                         e s T Y R X dr (II.121)
and the local dissipations:

PART II CHAPTER VI THEORETICAL FORMULATIONS 90               : : 0 ir in th q D X Rr Yd g T (II.122) Accordingly, if we let the micromorphic moduli equal to zero (         0 g g g Q H Q H ,  0 P ,  0 C ,  0 g C
), then the generalized Helmholtz free energy Eq.(II.28) will reduce to the local form: 

          int , , , , e tel el d T d r (II.123) with,                 2 

T P T T T T

                            (II.124) and,                     2 int 2 11 :: 22 11 1 : : 1 22 el C T Q T r d C T d Q T r           (II.125)
Using the state relations in Eq.(II.121), the classical local stress-like variables are obtained:

-Cauchy stress tensor:

              0 0 : 1 : 1 e e e T T T P T d T d T T P T                    (II.126) -Specific entropy:     0 0 1 : e C s P T T T TT               (II.127) -Damage stress:           12 0 1 1 1 1 : : : : : 2 2 2 21 e e e Y T T T P T C T d Q T r d d                      (II.128)
-Isotropic hardening stress:

      1 R Q T r d Q T r r          (II.129) -Kinematic hardening stress:       : 1 : X C T d C T            (II.130) PART II CHAPTER VI THEORETICAL FORMULATIONS 91
The local evolution equations As indicated in the extension of micromorphic fields, no dissipations from micromorphic variables are assumed, it leads to pure local dissipations (intrinsic and thermal dissipations). Therefore, the thermal dissipation analysis for heat flux vector and the plastic potential and yield function remain unchanged. However, the evolution equations will be modified to the followings, because of the degeneration on the state relations Eq.(II.126) to Eq.(II.130):

-Plastic strain rate

        : 1 11 pf p f H T X Fn Dn X dd                   (II.131) -Kinematic hardening strain rate            p ff F nm X (II.132) with   f m a T   . -Isotropic hardening strain rate                 1 1 p F ro R d (II.133) with   o b T r  . -Isotropic damage rate                      0 , 1 1 sT p T F Y Y T d dY Y S T d (II.134)
Clearly, the differences in evolution equations of isotropic and kinematic hardening strains can be given by:

              1 Q T Q T o b T r b T r micromorphic Q T Q T o b T r local                          (II.135)                   11 1 : : : f f m a T C T C T a T C T C T micromorphic m a T local             (II.136)
For the formulations on plastic multiplier and tangent operators, we just need to replace the micromorphic expressions of o and f m by the local formulas respectively. It's also the same case for viscoplastic evolution equations.

VI.5.2 Simplified classical elastoplastic model

In section VI.5.1, we demonstrate that with certain processes, ignoring the micromorphic dofs and vanishing the coupling moduli, the generalized micromorphic damaged model will reduce to the local damaged model. Here, we'll present the degenerations from the above local damage model to the classical elasto-plastic or elasto-visco-plastic model. With the help from the first and second laws of thermodynamics, the following classical state relations are obtained:  :

                      e s R X
X C T       (II.145)
With the condition  0 d

, the plastic potential and yield function are given by:

              2 1
, , ; : : 22 , , ;

pp py a T b T R F X R T f X C T X QT f X R T X R T                  (II.146)
Using the normality rule, the evolutions of elasto-plastic model are given by: -Plastic strain rate    

: p p f H T X F Dn X                (II.147) -Kinematic hardening strain rate     p f F n a T X           (II.148) -Isotropic hardening strain rate     1 p F r b T r R        (II.149)
Clearly, if the coefficient a and b vanish, the kinematic and isotropic hardening strains will become to linear. It's the same as the model we used in Part I.

VI.5.3 The existent generalized heat equations

Classical heat equation with internal variables

In the classical thermodynamics, for any material volume V , the global form of the first law (energy conservation) can be written as:

   dE dK WQ dt dt (II.150)
where E denotes the internal energy, K is the kinetic energy, W is the mechanical power input, and Q

is the heat quantity input to the system.

By using the material time derivatives of a volume integral together with the divergence theorem in order to transform surface integrals into volume integrals, and by applying the spatial localization lemma (or local action theorem) for materially simple continua, the localized (differential) form of the first principle of thermodynamics is obtained as:

         : e div q (II.151)
where  denotes the mass density of the body, e is the (specific) internal energy per unit mass,  is the Cauchy stress tensor,  is the strain rate tensor, q indicates the heat flux vector received across the boundaries of the body and  is the body heat source.

The integral form of the second law (inequality of entropy) of thermodynamics is given by:

                        0 VV dq s dV dV n dS dt T T (II.152)
where s is the specific entropy,

T is the absolute temperature and n is the outward normal to the boundary surface. The use of the divergence theorem together with the principle of space localization for materially simple continua, leads to the local (differential) form of the second principle of thermodynamics in the current configuration:

        0 q s div TT (II.153)
The relationship between internal energy and the Helmholtz free energy is assumed as: 

      ,,
           :0 q sT T T (II.155)
Here, the Helmholtz free energy is assumed to be a positive, close and convex function of the reversible strain  e and the overall strain-like internal state variables  n , and is a concave function of temperature T . By assuming the additive decomposition of the total strain rate into elastic part and irreversible part (     e ir ), the Clausius-Duhem inequality Eq.(II.155) can be expressed as: do not depend on the rates of the state variables respectively, then following standard arguments (Truesdell and Noll (Truesdell and Noll, 2004a)), we obtain the state relations:

                            
        e s T (II.157)
and the residual dissipation:

             : : 0 ir V in th n n q AT T (II.158)
where,     

    qT (II.161)
with   0 is the thermal conductivity coefficient for isotropic materials, then, the equation (Eq.(II.160))

leads to the following classical parabolic heat equation:

   C T T (II.162)
where,  stands for the Laplacian operator.

As shown in [START_REF] Cattaneo | Sulla conduzione del calore[END_REF][START_REF] Cattaneo | Sur une forme de lequation de la chaleur eliminant le paradoxe dune propagation instantanee[END_REF][START_REF] Jou | Extended Irreversible Thermodynamics[END_REF][START_REF] Vernotte | Les paradoxes de la théorie continue de léquation de la chaleur[END_REF], the parabolic heat equation results in a paradox of propagation of thermal signals with infinite speed. In the linear approximation, this implies that the influence of such a signal is felt immediately throughout the whole system [START_REF] Jou | Extended Irreversible Thermodynamics[END_REF]. However, from the experimental point of view, Peshkov [START_REF] Peshkov | Second sound in helium II[END_REF] found that in liquid Helium II, the thermal wave velocity is one order of magnitude smaller than the speed of sound and is called the speed of second sound. Recent measurements of the propagation speed of thermal signals at room temperature, in inhomogeneous materials, have been performed by Kaminski [START_REF] Kaminski | Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure[END_REF] showing clearly that the parabolic heat model is inaccurate to describe these phenomena. VI.5.3.2.1 The heat equation of Cattaneo I Cattaneo (Cattaneo, 1948) addressed the question of the paradox of heat conduction in 1948. He modified the (stationary) Fourier law based on the elementary kinetic theory of gases. He focused upon a small volume element of linear dimensions of the mean free path of the molecules in which a temperature gradient prevails, to review the Maxwell's molecular interpretation to heat conduction. After, he changed this argument slightly and argued that there is a time-lag between the start of the particles at their point of departure and the time of passing through the middle layer [START_REF] Müller | Extended thermodynamics[END_REF]. If the temperature changes in time, it is thus clear that the heat flux at a certain time depends on the temperature gradient at an earlier time. It therefore seemed reasonable to formulate the transient Fourier model as:

Hyperbolic heat equation with relaxation time

             i ii T d T q x dt x (II.163)
where  is a positive scalar called thermal relaxation time of the heat conducting medium (free electrons in the case of metals).

By substituting the above modified transient Fourier model into the heat equation Eq.(II.160), the following partial differential heat equation of rigid body is obtained:

        C T T T (II.164)
Clearly, the above deduced heat equation Eq.(II.164) is not a hyperbolic type, and therefore predicts infinite speed for the temperature propagation. 

VI.5.3.2.2 The heat equation of

                                                         : : : : ee nn in n in n AA C T T C T T T T T t T T (II.168)
Concerning the rigid body heat conduction (with neither intrinsic dissipation nor deformations), the heat equation will transform to the often called Cattaneo's hyperbolic heat equation:

       C T C T T (II.169) This is the telegraph equation. It is hyperbolic, if   0 holds.
Let us assume the plane thermal wave [START_REF] Jou | Extended Irreversible Thermodynamics[END_REF]:

        0 , exp T x t T i kx t (II.170)
where 0

T indicates the amplitude, k is the (complex) wave number, w is the (real) frequency. The dispersion relation obtained by substituting Eq.(II.170) into Eq.(II.169) is:

         22 0 ik C (II.171)
By solving the above equation with k a complex number, the nonlinear dispersion equation of the thermal waves and the attenuation distance  are obtained as:

            22 2 Re 1 p C v k (II.172)        1 2 Im p k C v (II.173)
For low frequencies (  1 ), the velocity

    2 p vC and       2 C
, which are the results predicted by the classical heat equation using Fourier's Law. In high frequency limit ( 1 ), the first-order term in Eq.(II.169) is small compared with the two other terms, and Eq.(II.169) becomes a wave equation whose solution is known in the literature as second sound. The quantities . However, the most critical argument on Cattaneo's hyperbolic heat equation is its inconsistency with the second law of thermodynamics [START_REF] Bai | On Hyperbolic Heat Conduction and the Second Law of Thermodynamics[END_REF][START_REF] Barletta | Hyperbolic heat conduction and local equilibrium: a second law analysis[END_REF][START_REF] Coleman | On the thermodynamics of second sound in dielectric crystals[END_REF][START_REF] Coleman | Thermodynamics and the constitutive relations for second sound in crystals[END_REF][START_REF] Körner | The physical defects of the hyperbolic heat conduction equation[END_REF][START_REF] Zanchini | Hyperbolic-heat-conduction theories and nondecreasing entropy[END_REF]). Cattaneo's hyperbolic heat equation may yields negative values of the entropy production rate per unit volume.

Combing the local forms of first and second principles (Eq.(II.151) and Eq.(II.153)), the relation  de Tds holds locally leading to the following expression of the entropy production rate [START_REF] Barletta | Hyperbolic heat conduction and local equilibrium: a second law analysis[END_REF]:

   2 p q sT T (II.174)
Substituting the generalized heat flux Eq.(II.166) into the above entropy production rate equation, leads to:

           2 1 p q s
q q q Tt (II.175) whenever the heat flux q has a constant direction and decreases at some point so deeply that     q t q , the right hand side of Eq.(II.175), becomes negative and the local equilibrium scheme cannot be applied.

VI.5.3.2.3 The model of Müller from extended TIP

Motivated by the work of Cattaneo, Müller [START_REF] Müeller | Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien[END_REF][START_REF] Muller | Zum Paradoxon der Warmeleitungstheorie[END_REF][START_REF] Müller | Extended thermodynamics[END_REF]) tried to derive the modifications of the Fourier law of heat flux from the principle of thermodynamics of irreversible processes (TIP). He noticed that the argument of TIP could be used to derive the Cattaneo equation. All what we need is to assume that the specific entropy depends not only on the classical variables but also on the heat flux. The generalized Gibbs equation is given by: pressure, and the negative coefficients a , b and c enable s to have a maximum in equilibrium, when q ,  dev and  all vanish.

             
By using the mass conservation law, momentum conservation and energy conservation, Eq.(II.176) becomes the following equation of entropy balance [START_REF] Müller | Extended thermodynamics[END_REF]:

                                                   1 1 1 2 : 2 2 dev dev dev q s q aq v b v c T T T T (II.177)
Müller interpreted qT as the entropy flux and the right side of Eq.(II.177) as the entropy production, which is a sum of products of the thermodynamic fluxes and modified thermodynamics forces. However, because the definition of the entropy flux is ambiguous, it is possible to add the term   dev K q L q with arbitrary coefficients K and L , to the usual entropy flux without upsetting the structure of the entropy production as a sum of products of forces and fluxes:

                                                       1 2 11 : 2 2 dev dev dev dev s q aq K L T v b K q v c L q TT (II.178)
where, the generalized entropy flux is 

         dev q K q L q T
. The entropy production must be nonnegative. For simplification, linear phenomenological relations between the fluxes and the forces are assumed: This theory is called extended TIP, because it has extended the list of state variables on which the specific entropy and the entropy flux can depend. After this modification of ordinary TIP, a large number of papers have appeared, using the Müller's methodology and devoted in particular to gases. An exhaustive review of this type of irreversible thermodynamics is given by Jou et al. [START_REF] Jou | Extended irreversible thermodynamics[END_REF][START_REF] Jou | Extended Irreversible Thermodynamics[END_REF].

                                         2 2 2 2 22 2 dev dev dev dev q T aT q KT LT v bT KT q v cT LT q (II.

VI.5.3.2.4 The model of Coleman from rational thermodynamics

Coleman et al. [START_REF] Coleman | On the thermodynamics of second sound in dielectric crystals[END_REF][START_REF] Coleman | Thermodynamics and the constitutive relations for second sound in crystals[END_REF] derived the restrictions that the second law of thermodynamics imposes on constitutive equations of the type proposed by Cattaneo. For generalization, Cattaneo's equation (Eq.(II.166)) is equivalent to:

          q T q T T (II.180)
with    T and    T non-singular second-order tensors that, as function of temperature, depend on the material under consideration. Clearly, in the isotropic case, it will be the same as Eq.(II.166).

The authors showed that the relation Eq.(II.180) with the tensors    T and  

 T non-singular is compatible with the thermodynamics only if    T is positive definite, the tensor          1 Z T T T is
symmetric, and the specific internal energy e , the specific entropy s and the specific Helmholtz free energy   e Ts are not functions of T only, but are instead given by functions e , s and  of the form:

PART II CHAPTER VI THEORETICAL FORMULATIONS 100                                           0 0 0 , , 1 ,
2 e e T q e T q A T q s s T q s T q B T q

T q T q Z T q T (II.181) with                         2 2 1 22 Z T Z T T d d A T B T dT T dT T (II.182)
here, 0 e , 0 s and  0 are the specific internal energy, specific entropy and specific Helmholtz free energy at equilibrium. In the absence of both deformation and a supply of heat by radiation, clearly, e is not given by the classical formula Eq.(II.167)

    e C T T (   
CT being the equilibrium heat capacity), but is instead given by:

                  2 d e
C T q A T q T q A T q dT (II.183) Thus, the evolution of the heat flux and temperature field is governed by a pair of nonlinear partial differential equations:

                                    0 20 q T q T T d div q
C T q A T q T q A T q dT (II.184)

It is worth noting that if the parameter  

ZT is isotropic and equals to    2 Z T DT (where D is constant) [START_REF] Bai | On Hyperbolic Heat Conduction and the Second Law of Thermodynamics[END_REF], the general result from Eq.(II.181) reduces to

      0 , e T q e T and         0 , 2 
D s T q s T q q , which is similar to the relationship given by Jou et al. (Jou et al., 1988).

By comparing the two non-equilibrium thermodynamics theories, it is clear that: (i) the extended TIP theory modifies the entropy (entropy flux and entropy production) from the generalized Gibbs equation; (ii) the rational thermodynamics theory starts from the extension of the specific internal energy, and consequently, (iii) the specific entropy and specific Helmholtz free energy are enhanced automatically due to the dual relation   e Ts . In summary, both theories contain Cattaneo's equation and make it compatible with the second law of thermodynamics.

Temperature or entropy gradient dependent free energy potential

VI.5.3.3.1 Temperature gradient model from Nguyen

Nguyen et al. [START_REF] Ireman | Using the gradients of temperature and internal parameters in Continuum Thermodynamics[END_REF][START_REF] Nguyen | Gradient thermodynamics and heat equations[END_REF][START_REF] Nguyen | The non-local generalized standard approach: a consistent gradient theory[END_REF]) assumed an extra entropy supply and modified the relationship between internal energy and Helmholtz free energy, to PART II CHAPTER VI THEORETICAL FORMULATIONS 101 account for the temperature gradient effects. The dual relationship is given under the following modified form:

            , , ,
, , , e s s u r T T u r sT s T (II.185)

with the introduction of a new specific entropy vector s .

The first principle (energy conservation) of thermodynamics remains unchanged, while an additional entropy source is assumed in the second law, the local forms being given by:

                                    : 0 e div q sq s T div T T T (II.186)
Combining the above equations (Eq.(II.185) and Eq.(II.186)), leads to the following local form of the Clausius-Duhem inequality:

                                               : : : 0 e ir n e n q s T s T T TT T (II.187)
For simplicity, we assume that the terms

         e ,        s T and        s T
do not depend on the rates of the state variables respectively, then following standard arguments (Truesdell and Noll (Truesdell and Noll, 2004a)), we obtain the following state relations:

               e ss T T (II.188)
and the classical residual dissipation:

             : : 0 ir V in th n n q AT T (II.189)
Substituting the new dual relations into the first principle of thermodynamics yields the following form of the heat equation:

            0 in Ts s T div q (II.190)
In the case of rigid body conduction (no intrinsic dissipation), the free energy can be defined as follows:

               0 , ln 1 2

TM T T C T T T T (II.191)

where,   0 C

and  0 M are two positive material coefficients [START_REF] Nguyen | Gradient thermodynamics and heat equations[END_REF]. Using the state relations Eq.(II.188), the generalized heat equation is given by:
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Taking into account the Fourier law of heat flux, the heat equation just becomes:

       C T M T T T (II.193)
Nguyen [START_REF] Nguyen | Gradient thermodynamics and heat equations[END_REF], considers the example of the small perturbation of a stationary temperature

   00 / T x T gx L , in a 1D rigid rod   0,L .
The associated linearized heat equation, using Fourier's law of heat flux, can be expressed as:

   , , , t xt xx Mg C T T T L (II.194)
An elementary solution given in the work [START_REF] Nguyen | Gradient thermodynamics and heat equations[END_REF], shows that the thermal pulses propagate at finite velocity given by

     2 2 2 2 2 2
Mg L C l L M g with damping coefficient defined by

       2 2 2 2 2 2 2
C L C l L M g .

VI.5.3.3.2 Hyper-temperature (entropy gradient) model

In 2008, Forest and Amestoy [START_REF] Forest | Hypertemperature in thermoelastic solids[END_REF] extended the classical thermodynamics of solids to incorporate a non-trivial dependence of the internal energy density function on the gradient of entropy. The generalized heat equation derived from this theory is shown to be different from existing models including gradient of temperature effects in the free energy. In this theory, the additional contributions to the power of internal and external forces are assumed, in the form: F , s F are the simple and generalized body forces and contact forces respectively associated with u and s , and no micro-inertia effects are attached to entropy.

                            
Applying the principle of virtual power results in the following balance equations and associated boundary conditions:

                                   0 0 ss u sa u ss s f f in f in n F on f n F on (II.196)
Consequently, using the kinetic energy theorem, the local form of the energy balance follows: 

              :
                                   
              
               2 0 2 0 1 ,
           22 0 2 s T s T s l s (II.204)
where,

   2 2 2 s s A l
is a characteristic length related to material parameters.

It is worth noting that this enhanced heat equation (Eq.(II.204)) has the structure of the Cahn-Hilliard equation in mass transport theory [START_REF] Cahn | Free Energy of a Nonuniform System. I. Interfacial Free Energy[END_REF][START_REF] Gurtin | Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance[END_REF]. The classical heat equation is retrieved for a vanishing intrinsic length scale  0 PART II CHAPTER VI THEORETICAL FORMULATIONS 104 By using the expressions of internal energy density function, the free energy density is given by:

                                              2 2 0 0 0 2 2 2 2 2 3 2 3 2 4 2 ,, 42 s s s s A T T s T T s T T T T A A A T s s s s (II.205)
The first line of the expression corresponds to the quadratic form in a linearized theory of rigid heat conduction including the temperature gradient as state variables:

                   2 0 0 0 0 11 , 22 TT C T T T T s T T A T T T (II.206) with    0 2 CT and   22 0 Ts A T A C .
The second line of the expression shows that the gradient of entropy and gradient of temperature theories are not equivalent. If the parameter s A is sufficiently small, the gradient of temperature model Eq.(II.206) can be regarded as an approximation of the gradient of entropy theory.

The generalized heat equation derived from the gradient entropy theory can be rewritten as: (Aifantis, 1980a, b;[START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF] based on a double temperature mixture type theory. For the sake of brevity, we limit ourselves to the rigid body assumption. In the case of a heat conducting two components system (indicated by 1 and 2), the following two energy balance equations must be fulfilled:

         
              1 1 1 1 2 2 2 2
e div q e div q (II.209)

In a mixture for which the particle densities are     12 2 , the macroscopic internal energy, heat flux and effective temperature are defined as:

      1 2 1 2 1 2 2 2
2 e e e q q q T T T (II.210)
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In the absence of chemical reactions, the source terms are assumed to compensate   12 0 . The entropy production due to each constituent is assumed to take the form:

                          12 1 1 2 2 1 2 12 20 qq s div s div TT (II.211)
Combining the balance equations of energy Eq.(II.209) and the entropy inequality Eq.(II.211), the reduced Clausius-Duhem inequality is derived:

                                     1 2 1 2 1 1 2 2 12 1 1 2 2 1 2 1 1 2 2 11 1 1 0 e e q T q T ss T s T s T T T T T T (II.212)
Then, the state relationships linking partial temperature and entropies are derived based on the Coleman-Noll arguments:

   12 12 12
ee TT ss

(II.213)
The residual dissipation:

                1 2 1 1 2 2 1 2 1 1 2 2 0 V th q T q T T T T T T T (II.214)
If the temperature variations remain sufficiently small, the generalized Fourier law are assumed to take the form: Within the assumption of linear framework, the coupling term may be taken as proportional to the temperature gap:

                     
       1 2 2 1 h T T (II.217)
where, h is a coupling parameter (microscopic heat transfer).

Substituting the above state constitutive equations into the corresponding balance equations, the following partial differential equations are obtained: 

                                
           2 T T T T T (II.219)
where, 

                                        
C C C C C C C C h C C C C h C C C C h C C C C C C C C (II.220)
It must be noted that Eq.(II.219) contains two more terms, the second time derivative and fourth space derivative of temperature, compared with the heat equation of Cattaneo I (Eq.(II.164)). The fourth order spatial derivative term can be neglected when the thermal conductivity of electron component  11 is much larger than the lattice component  22 , e.g. in pure metal [START_REF] Sobolev | Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses[END_REF]. This equation also similar to Barenblatt's infiltration theory for the pore pressure in double porosity media (Aifantis, 1980a).

VI.5.3.4.2 Hyperbolic two-temperature model

As summarized by Sobolev [START_REF] Sobolev | Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses[END_REF], the double temperature model is still a parabolic heat equation. In order to obtain hyperbolic heat equations of the two-temperature model, he adopts the Cattaneo equation Eq.(II.166) as the extension of the heat flux model. It yields the heat conduction equation for the electron and lattice temperatures in the form: 

                                                                   2 3 2 3 2 2 1 1
    2 1 2 l C C C is the characteristic (internal) length scale,    12 Q Q C C with Q is a heat source due to laser irradiation,   22 C
is a characteristic warm-up time of the lattice.

If the heat source is omitted, the heat conduction equation can be written as:

             2 12 12 i i i i i T T T l T T (II.222)
In the work [START_REF] Sobolev | Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses[END_REF] VC , which depends only on the physical parameters of electron gas and is of the order of Fermi velocity. In the intermediate frequency, the local equilibrium in the electron gas is reached and energy is transferred into the bulk metal by diffusive transport of thermalized electrons and from the electron gas to the initially cold lattice by electron-phonon coupling. In the low frequency, the thermal equilibrium between electron and the lattice is reached, i.e. the energy exchange between the electron gas and the lattice is negligible and energy transfer in the system is described by classical heat conduction equation of parabolic type.

VI.5.3.4.3 Generalized two-temperature model with nonlocal effects

To account for the spatial nonlocal effects (when the characteristic length scale of the process becomes comparable with the mean free path of heat carriers) due to large temperature gradients, Sobolevs [START_REF] Sobolev | Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses[END_REF]) extended Cattaneo's equation with additional second-order space derivatives:

       2 e q q
T l q

(II.224)
where e l is the space non-locality of the heat transfer process (correlation length), which for metal is of the order of the mean free path of electrons.

For the sake of simplicity, the material parameters are assumed to be constant and the extended heat equation takes the form:

                    2 2 2 12 12 12 
eff i i i e i e i i i T T T l l T l T T Q (II.225)
where, the index i refers to the two temperatures, eff i Q is the effective energy source, which is expressed as:

                   22 1 2 2 2 2 2 eff ee eff e Q Q Q l Q Q l Q Q Q Q l Q (II.226)
Comparing with the hyperbolic two-temperature model Eq.(II.221), the extended second-order space derivatives of heat flux result in an additional fourth order derivative of the temperature   

Heat equation of linear micro-stretch thermoelastic body using Grot's theory

Based on the theory, established by Grot [START_REF] Grot | Thermodynamics of a continuum with microstructure[END_REF] dealing with thermodynamics of elastic bodies with microstructure whose microelements possess a micro-temperature vector, Iesan et al. [START_REF] Ieşan | On the theory of heat conduction in micromorphic continua[END_REF][START_REF] Ieşan | Thermoelasticity of bodies with microstructure and microtemperatures[END_REF][START_REF] Ieşan | On the theory of heat for micromorphic bodies[END_REF][START_REF] Ieşan | On thermoelastic bodies with inner structure and microtemperatures[END_REF][START_REF] Ieşan | Plane deformation of elastic bodies with microtemperatures[END_REF]) derived a linear theory of micro-stretch thermo-elastic bodies with micro-temperatures. The second moment of the stress tensor and the average micro-stress moment are neglected in the balance laws since these functions appear only nonlinearly in the field equations. The local forms of balance of energy and the balance of first moment of energy can be expressed as:

                  :: m e v v v div q (II.227) and               : mm e v v div q q Q (II.228)
with, v is the velocity vector,  is the micro-stress tensor, v denotes the micro-gyration tensor,  m is the first stress moment third-rank tensor, m e represents the first moment of energy vector, q is the first heat flux moment second-rank tensor, Q is the micro-heat flux average, and  is the first heat supply moment tensor.

The local form of the second law of thermodynamics is modified to include the micro-temperature:

               1 0 q q s div T T T T T (II.229)
where,

T is the micro-temperature vector.

Concerning the linear micro-stretch elastic solid (see the work of Eringen [START_REF] Eringen | Microcontinuum field theories: I. Foundations and Solids[END_REF])), the above entropy inequality can be rewritten as:

                                      : : : :0 m c m q Ts e T e k h g I T T T T q T q T q Q T T (II.230) with,        u ,   k
and   indicate the generalized strain tensors in the linear theory of micro-stretch continua,  denotes the alternating symbol,  is the micro-rotation vector and  denotes the micro-dilatation function,  c is the coupled stress tensor, h indicates the micro-stretch vector, g is the internal body force, I denotes the identity tensor. Considering the following form of free energy: 

    
                                          : : : :0 m m c m q Ts T e T k h g I T T T T q T q T q Q T T (II.232)
In the linear theory of thermodynamic materials with micro-temperature, the following constitutive equations [START_REF] Ieşan | Thermoelasticity of bodies with microstructure and microtemperatures[END_REF] are obtained:

                                  c m h k g s e TT
(II.233) and residual thermal dissipation:

            00 :0 V th q T T q T T q Q T (II.234)
The linear approximations for the generalized heat fluxes are given by:

                   : q T H T q P T Q K T H T (II.235)
with, the constitutive coefficients  , H , P , K and  satisfy the inequality equation (Eq.(II.234)).

By using the equations (Eqs.(II.227), (II.228), (II.231) and (II.233)), and in the framework of the linear theory [START_REF] Ieşan | Thermoelasticity of bodies with microstructure and microtemperatures[END_REF], the following field equations of temperature and micro-temperature are obtained:

                                             1 0 0 1 0 6 4 5 1 2 2 3 
:

k T k div T T div v T cT k T k k div T bT k T k T (II.236)
where, i k ,  i , c and b are material constants.

Concerning the rigid body heat conduction (without body heat sources), the above generalized heat equations become:

                        1 6 4 5 2 3 cT k T k div T bT k T k k div T k T k T (II.237)
Combining the above two heat equations and considering the internal constraint that  TT , the generalized heat equation becomes:

              2 1 2 3 4 5 cT k k k k T b T k k T (II.238) If  2
T is small enough, the above heat equation (Eq.(II.238)) is equivalent to the one derived from the hyper-temperature model (Eq.(II.208)).

PART II CHAPTER VI THEORETICAL FORMULATIONS 110 VI.5. 3.5.1.2 Heat equation in micromorphic continua using Green's theory Ieşan and Nappa [START_REF] Ieşan | On the theory of heat for micromorphic bodies[END_REF]) also deduced the heat equation in micromorphic continua, while using the thermomechanical theory established by [START_REF] Green | On Thermodynamics and the Nature of the Second Law[END_REF]. In particular, he showed that in the linearized theory according to this approach, heat can be transferred as thermal waves with finite speed. The heat equations of linear theory for temperature and microtemperature are given by: Combining the above two heat equations and assuming that  TT , the generalized heat equation just becomes:

                      
            2 1 2 3 2 aT m T b T d d d T k T (II.240)
Compared with the heat equations (Eqs.(II.237)) from Grot's theory, Eq.(II.239) predicts a finite propagation. For a hypothetical medium in which  0 m , Eqs.(II.239) are uncoupled in the sense that the temperature is independent of micro-temperatures. In this case the temperature satisfies the classical wave equation. Moreover, it is interesting to note the similarity between the equations for microtemperatures and the Navier's equations of motion.

VI.5.3.5.2 Scalar micro-temperature and micro-entropy

Forest and Aifantis [START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF] proposed theories based on scalar micro-temperature and micro-entropy model, by applying the micromorphic approach [START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF] to the temperature and entropy. They showed that the gradient of entropy theory and gradient temperature theories can be regarded as a limit case of the micro-entropy and micro-temperature theories. The formulations of microentropy model is now briefly reviewed in the purely thermal case. It assumes that there exist additional independent power of internal and external generalized forces due to the introduced micro-entropy variable s and s . The virtual power of the generalized internal forces [START_REF] Germain | The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure[END_REF] is enhanced:

        ** int ab V P s s dV (II.241)
where  a and  b are generalized stresses or micro-forces according to Gurtin's [START_REF] Gurtin | Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance[END_REF]) terminology.

The virtual power of external generalized forces is expressed as:

     * s ext P F s dS (II.242)
where s F is the generalized contact forces.
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In the quasi-static case, applying the generalized principle of virtual power results in the following balance equation and the associated Neumann-type boundary condition:

               0 ba s b in n F on (II.243)
Accordingly, the first principle of thermodynamics is extended with the micro-entropy variable. The local forms of the principles of thermodynamics are given by:

                                 0 ab e s s div q q s div TT (II.244)
Using the classical relationship between internal energy and free energy (Eq.(II.154)), yields the following extended Clausius-Duhem inequality:

                                    0 ab e e e q T s s s T s s T s (II.245)
The following state relations are derived based on the Coleman-Noll arguments: (II.248) Within a linear context, the following quadratic energy potential [START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF] is defined: As a result, the gradient of entropy theory can be regarded as a limit case of the micro-entropy model.

          
                   2 2 0 2 0 11 ,, 4 
                   0 0 2 a b

VI.5.4 Discussions of the generalized heat equation

With the purpose to focus on the heat equations, thermo-elasticity is assumed in this section to simplify the complex detailed generalized heat equation (Eq.(II.69)). On the discussions of nonlocal thermal effects, the existent heat equations have been briefly reviewed in Section VI.5.3. Following the approach of extended irreversible thermodynamics, some possible extended entropies are formulated to result a nonlocal heat equation while is consistent with the second law of the thermodynamics. For the sake of simplicity, the explicit dependence of the material parameters on the temperature is omitted.

Simplified thermo-elastic micromorphic heat equation

In order to perform a clear analysis, the thermo-elasticity is adopted to avoid the intrinsic dissipations. Then, the generalized balance equations (Eq.(II.6) and Eq.(II.7)) reduce to:

                                            12 T gT u TT u gT T s s f f T T in f u in n F on s f n F on (II.253)
The local forms of the first principle (Eq.(II.18)) and the second principle (Eq.(II.21)) of thermodynamics are given by:

                               : 0 e sT s T div q q s div TT (II.254)
Considering the relationships between the internal energy and Helmholtz free energy   e sT , leads to the following Clausius-Duhem inequality:

                                                   :0 e e q s T s T s T T T T T T (II.255)
For the sake of simplicity, we assume that the micromorphic temperature doesn't dissipate and the terms

         e ,        s T ,         s T and         s T
do not depend on the rates of the state variables respectively, then following standard arguments (Truesdell and Noll (2004a)), the following state relations are obtained:

                      e s s s TT T (II.256)
and the classical thermal dissipations:

     0 q g T (II.257)
The differential form of the generalized heat equation (Eq.(II.54)) reduces to:

       0 sT div q (II.258)
For the sake of simplifications, in the next we focus on the rigid body heat transfer (). Using the state relations in Eq.(II.256), the above classical form of heat equation becomes:

                   0 s s s T T T T T div q T T T (II.259) or                            2 2 2 2 0 T T T T div q T T T TT (II.260)
After substituting the balance equation of micromorphic temperature and neglecting the external forces, the temperature and micromorphic temperature fields are found to be governed by a pair of equations:

                                             12 0 TT s s s T T T T T div q T T T TT T T (II.261)
Combining the two equations in Eq.(II.261), leads to the generalized partial differential micromorphic heat equation associated to the Helmholtz free energy:

                                                                   2 2 2 2 2 12 22 2 2 2 2 0 TT T T T T T T T T T T T T T T T T T Tdiv T T T div q T T T T T (II.262)
where the temperature and micro-temperature variables are both present.

Special cases of the micromorphic heat equation

In this section specific constitutive expressions of the free energy and dissipation potentials are chosen in order to derive explicit generalized heat equations within the micromorphic framework.

VI.5.4.2.1 Wave type heat equation

If the Helmholtz free energy is defined as: 

                               

C and

C are the coefficients for local and micromorphic temperature, respectively.  is the micromorphic temperature modulus coupling both the local and micromorphic temperature.  g denotes the micromorphic modulus related to the first gradient of the micromorphic temperature (for simplicity, the moduli are assumed to be independent of local temperature and the isotropic case only is considered).

According to the deduced state laws Eq.(II.256), the following stress-like variables are given by:

                               0 0 ln ln g T s C T T TT T s C T T TT sT T (II.264)
Substituting the above free energy Eq.(II.263) into the generalized heat equation Eq.(II.262), leads to:

                           12 20 g TT TT T T T T C C M T T T T div q TT (II.265)
The heat equation can also be directly obtained from Eq.(II.258) which provides an equivalent but shorter expression of the heat equation (Eq.(II.265)):

          0 CT TM T T div q (II.266)
This equation can also be obtained from Eq.(II.265) after noting that:

              12 0 ln g T M T C M T T T T T (II.267)
which follows from the combination of the micromorphic balance equation Eq.(II.253) and the state laws Eq.(II.264).

If the Fourier model of heat flux vector is chosen and neglecting the body heat source, the above generalized heat equation will become to: It is interesting to consider the internal constraint which consists in forcing the difference between temperature and micromorphic temperature to be close to 0. After enforcing this constraint, the following generalized heat equation is obtained: 

                       
               
            00 1 g T T T C C T T M T T (II.270)
which has the same form as the generalized heat equations derived from the double temperature model in Eq.(II.219), provided that the four-order term in Eq.(II.219) is small enough to be neglected (e.g. in pure metal, the thermal conductivity of electron component is much larger than that of lattice component), if

  C C C holds.
b) If the two generalized heat capacities are equivalent  CC , the heat equation becomes:

       00 1 g T T T T M T T (II.271)
It is similar to the heat equation (Eq.(II.240)) derived by [START_REF] Ieşan | On the theory of heat for micromorphic bodies[END_REF] in the absence of the fourth order derivatives, based on the balance laws of micromorphic continua established by [START_REF] Eringen | Balance laws of micromorphic mechanics[END_REF][START_REF] Eringen | Balance laws of micromorphic continua revisited[END_REF]. It involves   

VI.5.4.2.2 Double temperature type heat equation

Considering the following definition of the convex Helmholtz free energy:

                     2 0 11 , , ln 1 22 g T T

T T C T T T T T T (II.273)

Substituting the free energy Eq.(II.273) into the generalized heat equation Eq.(II.262), leads to:

                     12 20 g TT T T T C T TM T T TM T div q (II.274)
The Fourier law and the Cattaneo equation for the heat flux are used to derive the classical parabolic, hyperbolic and generalized two-temperature heat equations respectively.

VI.5.4.2.2.1 Using the Fourier model

Considering the Fourier model of heat flux and neglecting the body heat source, the previous generalized heat equation will become:

                  12 2 g TT

C T T T T TM T T TM T T (II.275)

We now enforce the constraint that the temperature and microtemperature variables coincide. The linearized generalized heat equation Eq.(II.275), becomes:

              00 12 g TT C T T T T T M T T (II.276)
The following special cases are derived:

a) If   2 0 T
, the linearized heat equation (Eq.(II.276)) just becomes:

          00 1 g T C T T T T M T T (II.277)
which is the same wcith the classical two temperature model in Eq.(II.219), if

   01 TC ,    0 g T M C ,   0 and      C hold. b) If   1 0
T (implying that the inertia is proportional to the second time derivative of temperature), the heat equation (Eq.(II.276)) is expressed as:

          00 2 g T C T T T T M T T (II.278)
which is a third-order partial differential equation.

VI.5.4.2.2.2 Using the Cattaneo model

If Cattaneo's model is adopted, the linearized Eq.(II.274) provides the following relationship:

                           0 0 0 12 2: g TT e T T T

C T T M T T T M T T T (II.279)

Substituting the Cattaneo equation (Eq.(II.166)) into Eq.(II.254), leads to:

                                     :: e e T T T T T tt (II.280)
Using the relation Eq.(II.279), the above equation becomes: 

                                   0 0 0 1 1 2 2 00 T T T T gg C T C T T T T T T T T M T T M T t (II.281) It is worth noting that, if   2 0 T holds, we get                             0 0 0 0 11 gg TT C T C T T T T T T M T T M
                          0 0 0 11 g TT C T C T T T T T T M T t (II.283)

VI.5.4.2.3 Hyper-temperature type heat equation

Considering the constrained micromorphic heat equation (Eq.(II.276)), if we postulate that the inertia of temperature is sufficiently small compared with other terms, the generalized heat equation becomes:

      0 g C T T M T T (II.284)
which is exactly the heat equation derived from the temperature gradient theory (Eq.(II.206)). It can also be regarded as an approximation of the heat equation derived from the entropy gradient theory (Eq.(II.207)), if  g T MA holds.

VI.5.4.2.4 Hyperbolic type heat equation

Let us now focus on the linearized heat equation (Eq.(II.277)), for cases where the term T is sufficiently small compared with other terms. The heat equation then is the same as the hyperbolic heat equation with relaxation time:

        0 1 T C T T T T (II.285) by taking    0 1 T CT holds.

Solution analysis of nonlocal heat equations

In this section, the simple plane thermal wave Eq.(II.170), which is a solution of the hyperbolic heat equation with relaxation time, is adopted to examine the generalized heat equations derived above. Since the heat equations from the Cattaneo I model (Eq.(II.164)), the hyper-temperature (entropy gradient) model (Eq.(II.207) and Eq.(II.208)), the microtemperature model using Grot's theory (Eq.(II.238)) and the micro-temperature or the micro-entropy model (Eq.(II.251)), can be regarded as special cases of the heat equations from the classical two-temperature model of Aifantis (Eq.(II.219)), as well as the hyperbolic and generalized two-temperature heat equations have been analyzed by [START_REF] Sobolev | Nonlocal two-temperature model: Application to heat transport in metals irradiated by ultrashort laser pulses[END_REF]; Only the following three types of generalized heat equations will be analyzed:

                        , , , ,t , , , , , , 0 0 0 
N t N xt N xx D D tt D xx D xxt W W tt W xx W xxt

F T T A T B T F T T A T B T C T F T A T B T C T (II.286)

where,   N FT is the generalized heat equation derived from Nguyen's gradient temperature model (Eq.(II.194)),   D FT is the heat equation from the constrained micromorphic theory (Eq.(II.277)) in double temperature type with omitted fourth order derivative,

 

W FT is the heat equation deduced from the PART II CHAPTER VI THEORETICAL FORMULATIONS 118 micromorphic theory which has the same structure as the micro-temperature model using Green's theory (Eq.(II.239)). These coefficients are given by:

   N Mg A CL and     0 N B C ,    0 1 T D T A C ,     0 D B C and    0 g D TM C C ,   0 1 W T AT ,   0 W B and  0 g W C T M .
Substituting the assumed plane thermal wave solution,         0 , exp T x t T i kx t (Eq.(II.170)) with k is the (complex) wave number indicating the attenuation of the amplitude of the propagating wave, w is the (real) frequency, into the above nonlocal heat equations, leads to the following dispersion relationships:

                      2 2 2 2 2 2 2 0 0 0 NN D D D W W W i A k B k i A B k iC k A B k iC k (II.287)

VI.5.4.3.1 Solutions of Nguyen's generalized heat equation

Let us write  k a ib and substitute it into the dispersion relation (Eq.(II.287) a), leading to:

                22 20 N N N N A b abB i A a B a b (II.288)
In order to satisfy the above equation, it requires: 

            
 :                   2 4 2 2 12 Re 2 2 16 N p N N N N A V kB A A B (II.290)         11 Im 2 N N p k A B V (II.291)
for lower frequencies  Clearly, the heat equation provides a finite propagation speed of thermal waves in high frequency, while requiring the coefficient g to be a negative number in order to obtain a positive velocity holds. It should be noticed that it predicts an infinite velocity of thermal propagation at low frequency, in the case of existence the attenuation of amplitude of thermal wave ( k is complex), which differs from the classical Fourier model and the hyperbolic heat equation with relaxation time. However, as shown in literature [START_REF] Nguyen | Gradient thermodynamics and heat equations[END_REF], the heat equation gives a finite speed propagation of thermal wave with the help of  k i l and  are both complex numbers.

VI.5.4.3.2 Solutions of the heat equation in the double temperature theory

Let us take  k a ib and substitute it into the dispersion relation (Eq.(II.287) b), leading to:

                      2 2 2 2 2 2 2 0 D D D D D abB C a b i A B a b abC (II.292)
In order to satisfy the above equation, it is required that: [START_REF] Ieşan | Thermoelasticity of bodies with microstructure and microtemperatures[END_REF] in the absence of the spatial fourth-order term. The velocity and attenuation distance are given by: 

                
                    2 2 2 2 2 2 Re DD p D D D D D D D D D BC V k B A B C A B C A C (II.294)            
             2 2 2 2 2 2 Re DD p D DD BC V k B CC (II.296)        

VI.5.4.3.3 Solutions of the heat equations in wave type

Taking  k a ib and substitute it into the dispersion relation (Eq.(II.286)c), gives:

                   2 2 2 2 2 2 2 0 W W W W W abB C a b i A B a b abC (II.300)
In order to satisfy the above equation, it is required that: 

                  
        2 2 2 2 2 2 2 Re WW p W W W W W BC V k A B A B C (II.302)
and the attenuation distance  : Clearly, the velocity given by Eq.(II.302) also predicts the infinite speed of thermal propagation, and this infinite propagation is caused by the term T in Eq.(II.270). If  0 W C for a hypothetical medium, or if the term T is sufficiently small compared with other two terms to be neglected, the velocity is finite:

        
     01 Re W p W B V k A T (II.304)
which is exactly the velocity of the wave equation Eq.(II.272). The attenuation distance is infinite.

Summary

The micromorphic approach, initially developed by Mindlin and Eringen in the mechanical context, has been applied to the problem of heat transfer by means of a generalized principle of virtual power. For that purpose, an independent microtemperature field is introduced and its gradient is assumed to contribute to the free energy density function. The proposed phenomenological method has been shown to lead to a pair of coupled generalized heat equations. The model identically satisfies the local condition of positive dissipation rate. The constrained case for which the microtemperature coincides with the temperature itself is of particular interest because it can be compared to the various extensions of the heat equation available in the literature. The proposed equation is enhanced by essentially three new contributions which were illustrated in the linearized case. The three terms affect the transient thermal behavior of the material only. The first new term is related to the Laplacian of the temperature rate, a contribution which was proposed first by Cattaneo in an early version of his theory. A second contribution is proportional to the second time derivative of the temperature which changes the usual heat equation into a hyperbolic equation with a positive characteristic time. The last term associated with the third time derivative of temperature remains rather unexplored even though it is present in some generalized theories found in the literature.

The proposed theory was shown to differ from existing thermomechanical extensions of Eringen's micromorphic model that rely on the introduction of a microtemperature vector akin to a relaxed temperature gradient. It has also been compared to the effective heat equation arising from the double temperature model involving two coupled heat equations and leading also to fourth order spatial derivatives:

 The hyperbolic heat equation of Cattaneo II with relaxation time, can be obtained from the thermodynamically consistent micromorphic heat equation by neglecting the nonlocal effects of the temperature.  The classical, hyperbolic and generalized two-temperature models can be also retrieved from the micromorphic heat equations.  Both the micro-temperature heat equation using Green's theory and the micromorphic heat equation provide a pair of governing equations for local and micro/micromorphic temperature. And the classical wave equation can be obtained from their constrained heat equations.

The proposed theory allows for a direct coupling with the mechanics of materials and is thought to be useful for the simulation of fast heat and mechanical treatments of materials including metal forming at high speeds, laser surface treatments of materials, etc. The nonlocality in the proposed theory resulting from the introduction of the gradient of micromorphic temperature could be an alternative to the analysis of heat transport based on enhanced heat fluxes.
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VI.6 Conclusions

In this chapter, the theoretical formulations of the thermomechanical micromorphic nonlocal model is systematically presented: 1). A complete set of generalized micromorphic constitutive equations is derived in the context of the thermodynamics of irreversible processes to capture the strongly nonlocal behavior of materials in the localization regions. It contains the formulations of the balance equations, the state relations and the evolution equations. The micromorphic model couples with elato-visco-plasticity, ductile damage, temperature and mixed hardening as well as the nonlocal effects; 2). An intensive review of the existent generalized heat equations is recalled in five classifications: (i) the Fourier model, (ii) the hyperbolic type with relaxation time, (iii) the double temperature model, (iv) the temperature/entropy gradient theory as well as (v) the micro-temperature model. A simple plane wave function is chosen to examine the predicted thermal propagations; 3). A pair of micromorphic heat equations is simplified and compared with the existing extended heat equations taking appropriate selections of Helmholtz free energy. The additional micromorphic temperature leads to a new thermal balance equation taking into account the thermal nonlocal effects. Several existing generalized heat equations could be retrieved from the constrained micromorphic heat equations.
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VI.7 Appendix

VI.7.1 Formulations of plastic multiplier

To lighten the notations in this appendix, the explicit dependence of the material parameters on the temperature is omitted.Due to the Kuhn-Tucker conditions (   0 ,  0 

                  : : 0 p f f f f f f X R d T X R d T (II.305)
Using the state relations Eq.(II.31), Eq.(II.35) and Eq.(II.36), the time derivatives of Cauchy stress, isotropic and kinematic hardening stresses, under the assumption of additive decompositions of total strain rate, are given by:

                                                                                                      :: : : : : 1 1 ef ee ff d T T D n Y T T d T T d T T X X X X X X X X X d T n m Y T d T d T R R R R R R r d T r o r d T r r d             RRR Y T r d T r (II.306)
with the derivatives of Cauchy stress, isotropic and kinematic hardening stresses are deduced as below respectively: 
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According to the evolution equations Eq.(II.77) -Eq.(II.80), the time rate of yield criterion can be expressed as: 

                                                                                                    ˆ: : : : : 11 1 1 f f f f f e X R X X X X f n D n Y T T n n m Y T d T T d T R R R R o Y T r r d T r d d X                                                                                          
: : y T d f f f f f f ee f f f f f dR YT T d d n D n T n n n Y n P T Td XX n T n n m n T                                                                                                                          1 33 : : : 1 1 1 1 1 1 1 1 1 21 21 f X R y T X Y n C d R R o R R T Y Q r T d r r d d d d d X dR T T d d      d Y (II.310)
The items explicitly independent on the plastic multiplier are reorganized:
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and the coefficient for the plastic multiplier is given by:
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Then, the Eq.(II.310) can be rewritten as:

    0 il P f f H (II.313)
Using the deduced derivatives in Eq.(II.307) -Eq.(II.309), we may have the following expressions: 
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Clearly, now we obtain the plastic multiplier: 
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VI.7.2 Formulations of elastoplastic tangent operator

Considering the state relation of Cauchy stress tensor Eq.(II.31), the rate of stress with respect to time is given by:
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Considering the evolution equations of plastic strain and damage Eq.(II.77) and Eq.(II.80), and the plastic multiplier Eq.(II.83), with the help of the assumption of additive decomposition of total strain rate, we obtain the following expressions: The derivatives of Cauchy stress with respect to elastic strain, damage and temperature are deduced in the below: 
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VII. Numerical aspects VII.1 Introduction

This chapter is dedicated to the numerical aspects including the weak forms of the overall IBVP, time and space discretization, global resolution scheme of the dynamic explicit solver in ABAQUS and the local constitutive integration scheme. The quadrangular membrane element, the quadrangular shell element and the brick solid element based on assumed strain method are performed by using the subroutine VUEL from ABAQUS.

VII.2 Weak forms of the IBVP

The weak forms associated with the various strong forms of balance equations can be obtained using the weighted residual methods. Let  t be the space occupied by the body at a typical time t , and  be its boundary relative to the actual deformed configuration. By applying the weighted residual method to the simplified strong forms of balance equations (Eqs.(II.111) ~(II.114)), and integration by part and the use of Neumann boundary conditions, the weak forms take the following form:
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where, K.A. stands for kinematically admissible velocity fields, and

  q t Tt q T n      
is the given heat flux across the boundary q t  .

In the present work, only four of the above overall weak forms of the IBVP, associated with the following six degree of freedoms (dofs) are studied and implemented: the three displacement field (Eq. (II.324a)), one micromorphic damage (Eq. (II.324b)), one micromorphic isotropic hardening (Eq. (II.324c)) and one local temperature (Eq. (II.324f)). They will be solved simultaneously by Abaqus/Explicit solver using the explicit central-difference or forward-difference integration scheme as well as user developed finite elements with new micromorphic dofs.

VII.3 Time and space discretization

This section is dedicated to the discretization in the time domain    0 , tf I t t and in the space domain  t , of all the coupled weak forms defining the IBVP discussed above. The time discretization is based on the finite difference method (FDM), while the space discretization is based on the finite element method (FEM). The assumed strain element formulation is used for the nonlinear displacement field and the standard shape function are chosen to interpolate the micromorphic fields.

VII.3.1 Time discretization

The total time interval t I is thus discretized into t N subintervals with empty intersections, so that the approximation

           01 0 ,, t N t f n n n n I t t t t t
t is valid with sufficient precision. For each of these subintervals of time, we are therefore solving a nonlinear problem to determine all the unknowns of the IBVP. In fact, since all of the unknowns of the IBVP are supposed to be known at time n t , the problem is to compute these unknowns at the end of the subinterval under concern i.e.     1 nn t t t , using the load increment prescribed over that time increment t .

VII.3.2 Space discretization

The standard displacement-based FEM is used to discretize the reference configuration  n t into a finite number e N of subdomains or finite elements (FE) with simple geometric form called  e , with empty intersections. The Hu-Washizu hybrid variational principle for nonlinear solid mechanics is given by [START_REF] Fish | Elements with embedded localization zones for large deformation problems[END_REF]:
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where,  denotes the standard variation operator, v the velocity field,  a is the assumed (interpolated) strain rate,  a the interpolated stress,  the stress evaluated by the constitutive law, d the nodal velocities, ext f the external nodal forces, and  s v the symmetric part of the gradient of the velocity.

The assumed strain elements here are based on a simplified form of the Hu-Washizu variational principle as described by [START_REF] Simo | On the Variational Foundations of Assumed Strain Methods[END_REF] in which the interpolated stress is assumed to be orthogonal to the difference between the symmetric part of the velocity gradient and the assumed strain rate. Consequently, the second term of Eq.(II.325) vanishes, yielding:

                :0 e T a a ext d d f (II.326)
Under this assumption, the variational principle (II.326) is independent of the interpolated stress and doesn't need the definition of an assumed-stress field  a .

The discrete equations then require only the interpolation of the velocity and the assumed strain rate within an element, for which we use standard finite element nomenclature:

               , , aa v x t N x d t x t B x d t (II.327)
and the standard shape function is used to interpolate the micromorphic fields: where, e
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x denotes the local temperature and the micromorphic fields: damage, isotropic hardening, kinematic hardening and temperature.

Substituting Eq.(II.327) -(II.328) into Eq.(II.324) and Eq.(II.326), the elementary discretized weak forms for a typical element take the form: where, the consistent mass matrices, the internal and external forces vectors for a typical reference element are given in the reference frame by: 1). Displacement field 
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  is the matrix of the shape functions of displacement field and   e u B its related derivatives matrix taking into account the assumed strain terms as given in Eq.(II.327), and

             det det ee v J J x
is the determinant of the Jacobian matrix if the volume mapping transformation between the real and the reference elements  e r while e s J is the Jacobian of the boundaries (or surface) transformation.
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with e d is the local damage of the element. 3). Micromorphic isotropic hardening 
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with e pl R (see Eq.(II.57)) is a part contributions from the time derivative of the entropy in the element, and  e in (see Eq.(II.87)) is the intrinsic dissipation of the element. These consistent mass matrices are often favorably replaced by diagonal matrices called the lumped mass matrices, obtained by concentrating the constant mass of each element in its selected nodes. Several methods are used to diagonalize the mass matrix, as can be found in literature [START_REF] Jurgen | Finite element procedures[END_REF][START_REF]The finite element method: linear static and dynamic finite element analysis[END_REF][START_REF] Zienkiewicz | The finite element method for solid and structural mechanics[END_REF].

Finite elements

In this work, overall three types of elements, containing the plane stress quadrangular element, the bilinear quadrangular shell element and the solid-shell element, are developed to implement the micromorphic model based on the assumed strain method (ASM). The planar quadrangular element [START_REF] Jinyan | A URI 4-Node quadrilateral element by assumed strain method for nonlinear problems[END_REF]) uses the reduced one-point integration and the assumed strain formulations based on the Hu-Washizu hybrid variational principle. Special care is given to avoiding hourglass modes and volumetric locking as well as shear locking. The assumed strain fields are constructed so that those portions of the fields which lead to volumetric and shear locking phenomena are eliminated by projection, while the implementation of the uniform reduced integration scheme is straightforward to suppress hourglass modes. Several numerical examples have been examined to validate the performance of this formulations, as can be found in literature [START_REF] Jinyan | A URI 4-Node quadrilateral element by assumed strain method for nonlinear problems[END_REF]. In the next sections, only the quadrangular shell element and the solid-shell element are presented.
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VII.3.2.1.1 Q4r24 shell element

The bilinear quadrangular shell element, using full integration for membrane and bending effects and selective integration for the assumed transverse shear strain, is developed with the help of the theory of Mindlin (thick shell). It is extended to the elasto-plastic material model based on the previous work of Bassa (2011). A short review and the standard formulations can be found in the Appendix I (Section VII.6.1).

VII.3.2.1.1.1 The assumed transverse shear strain

The assumed strain method for transverse shear is usually adopted to replace the methods of selective or reduced integrations. The special case of the Q4r24 element is that the shear strain is not directly expressed in terms of the interpolation of the shear strains at the four nodes, but evaluated from the shear strains at four nodes positioned in the middle of each one of the four edge of the element. where, the assumed B matrix is 
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VII.3.2.1.1.2 Formulations of the reduced integration

In order to save the computation time especially in explicit finite element solver, the reduced integration with hourglass control is usually applied. The hourglass control is made by introducing parameters for "artificial damping" and "damping stiffness". The anti-hourglass mode vector  derived by orthogonal conditions plays an important role in the construction of a stabilization stiffness matrix and additional correction force vectors to avoid hourglass phenomena. The stabilization vector  can be obtained simply by taking the partial derivatives of the generalized strain vector with respect to the natural coordinates:
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where, 

   1 1 1 1 h , the
      .
The assumed transverse shear strain can be also reorganized under the following form:
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where,   0 s B is the standard B matrix evaluated at the center, the stable matrix   Consequently, the stiffness matrix is enhanced with the stable matrix of membrane:

             0 m m m es K K K (II.346)
where,   0 m K is the standard stiffness matrix measured at the center of the element and the stable 

stiffness matrix                  T m m m m ss K B D
m ij D is the component of the membrane matrix   m D in Appendix VII.6.1.
The bending stiffness matrix is given by: The stiffness matrix for the transverse shear becomes:
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where,   0 s K is the standard stiffness matrix measured at the center,   
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Ah D is the integrated moduli of transverse shear.

VII.3.2.1.2 Solid-shell element

The standard formulations of the first order solid element is presented in Appendix VII.6.2. It is well known that if the displacement gradient is used to construct a stiffness matrix, the element can lock for incompressible materials and will exhibit excessive shear stiffness in bending. It is therefore advantageous to project the displacement gradient onto an assumed strain field  to eliminate these drawbacks [START_REF] Belytschko | Assumed strain stabilization of the eight node hexahedral element[END_REF]. The discrete gradient operator is projected onto an appropriate subspace in order to eliminate shear and membrane locking. This projection technique can derived from the formalism of the assumed strain method (Abed-Meraim and Combescure, 2009).

VII.3.2.1.2.1 The assumed strain field

The discrete equation only requires the interpolation of the velocity field and of the assumed strain field. The assumed strain rate  is expressed in terms of a B matrix, projected starting from the classical discrete gradient B defined by Eq.(II.411):

        Bu (II.352)
Here, the Hallquist form of the i b vectors in Eq.(II.413) in Appendix VII.6.2 is replaced with the mean form ˆi b from Flanagan and Belytschko (1981):

          , 1 ˆ, , 1,2,3 e i I i e b N d i V (II.353)
where, e V is the element volume. To define the projected B operator, only the nonconstant part of the strain field is projected. Therefore, it is convenient to separate B into its constant and nonconstant parts as follows: B is the assumed strain quintessential bending incompressible or ASQBI field, which is able to avoid the volumetric locking as the Poisson's ratio v approaches 0.5 and capture the transverse shear strains which occur in a beam or plate in bending, and



   1 v v v :                                    4 4 4 1234 , 1234 ,y 1234 ,z 1 1 1 24 2, 2 4, 4 2 2, 2 1 2 3 4 3 1 1 8 a x a a a a a a a a x x x T a a a j j j X h Y h Z h X h h X h h h h h h h x b (II.356)
The second form of the n B is the assumed deviatoric strain or ADS strain field as given by:

                  12 13 13 23 23 2 1 1 3 3 3 1 2 1 3 3 3 1 1 2 3 3 3 0 0 0 T T T T T T T T T n TT TT TT X Y Z X Y Z B X Y Z YX ZX ZY (II.357)
The nonconstant part of the strain field is equivalent to the deviatoric part of the nonconstant part of the symmetric displacement gradient. Because the deviatoric strain field is isochoric, the volumetric strain associated with plastic deformation vanishes [START_REF] Belytschko | Assumed strain stabilization of the eight node hexahedral element[END_REF]. For more details about the comparison of the two forms of n B can be found in literature [START_REF] Belytschko | Assumed strain stabilization of the eight node hexahedral element[END_REF].

VII.3.2.1.2.2 The constitutive model

For the standard 3D constitutive model, the elastic moduli is defined in Eq.(II.414) (Appendix VII.6.2) with Lamé constants. However, the solid-shell element, which has the ability to model thin, three-dimensional structures uses only a single layer of elements along the thickness, while accurately describing the various through-thickness phenomena (e.g. bending and elasto-plasticity). It modifies the threedimensional constitutive model to achieve a shell-like behavior and approach the plane-stress states [START_REF] Abed-Meraim | SHB8PS--a new adaptative, assumed-strain continuum mechanics shell element for impact analysis[END_REF]ABED-MERAIM andCombescure, 2007, 2009;[START_REF] Abed-Meraim | New quadratic solid-shell elements and their evaluation on linear benchmark problems[END_REF][START_REF] Bassa | Contribution à l'étude d'éléments finis de type coque sans degrés de liberté en rotation ou à formulation solide pour des simulations numériques de l'emboutissage et du retour élastique[END_REF]. The improved planar stress type constitutive model, which uncouples the response in terms of in-plane and transverse normal stresses versus normal strains, is adopted:

                        2 2 E D (II.358)
where, E is the Young's modulus,  and  are the classical Lamé constants.

VII.3.2.1.2.3 The stiffness matrix and internal forces

Normally, the reduced integration with stabilization control evaluated in a co-rotational coordinate system is used to integrate the stiffness matrix and internal forces. However, it is possible to use the ADS or ASQBI strain fields with multiple integration points, which can improve the solutions by improving the stress interpolation for the nonlinear material responses, without encountering locking since these strain fields maintain zero dilatation in the nonconstant part of the strain field [START_REF] Belytschko | Assumed strain stabilization of the eight node hexahedral element[END_REF]. The eight-point integration scheme is adopted with doing  222 Gauss integration to replace the classical stiffness matrix and internal forces in Eq.(II.415) (Appendix VII.6.2):

                                                                                                                   111 111 222 1 1 1 111 int 111 det , , , , det , , det , , , , det , 
TT e T q p t q p t q p t q p t q p t TT T q p t q p t q K B D B dv B D B J d d d B D B J f B dv B J d d d BJ             222 1 1 1 , p t q p t q p t
(II.359)

VII.4 Global resolution scheme VII.4.1 Dynamic explicit analysis

Considering the explicit dynamics analysis procedure in Abaqus/Explicit, the solutions of the IBVP with four weak forms presented above are obtained simultaneously by an explicit coupling, based upon the implementation of an explicit integration rule together with the use of diagonal or lumped mass matrices (see Abaqus Analysis User's Guide). The equations of motion for the body are integrated using the explicit central-difference integration scheme:

                              1 int 1 1 n nn T ext T T n nn n T M F F T T t T         (II.362) At each time increment   1 ,
n n n t t t t     , the overall state variables at n t and the increments of all displacement-like variables are provided to compute the state variables at 1 n t , and the accelerations of the displacement-like variables by solving the weak forms of the IBVP (Eq.(II.324)). The main steps of the dynamic explicit resolution scheme are summarized as following: The explicit dynamic procedure requires no iterations and no tangent stiffness matrix. However, the explicit procedure, integrates through time by using many time increments, is conditional stable. The stable time increment with damping is given by:

    2 max 2 1 u t w      (II.363)
in which, max w is the elementary highest eigenvalue and   1 is a damping parameter. A conservative estimate of the stable time increment is given by the minimum taken over all the elements. The above stability limit can be rewritten as: Since each IBVP has a critical stable time increment, the global stability limit is governed by the minimum value of all the critical stable conditions: 

           min , ,

VII.4.2 Contact problems

Contact and interactions with or without friction plays a fundamental role in the solution of metal forming processes. In order to impose the contact conditions that will be used to calculate contact forces, the penalty method, calculates the interpenetration distance between solids at a given contact interface point, and use this displacement and a penalty parameter to deduce the contact forces, is adopted as a standard way in Abaqus (see Abaqus Analysis User's Guide).

In this thesis, the contact pair algorithm for modeling contact and interaction problems in Abaqus/Explicit, which uses the penalty contact algorithm and the pure master-slave surface weighting formulations to ensure that proper contact conditions are enforced efficiently, is used. The contact forces are a function of the penetration distance are applied to the slave nodes to oppose the penetration, while equal and opposite forces act on the master surface distributed at the penetration point. The classical isotropic Coulomb friction model, representing the linear relationship between the transmit shear and the normal forces via the friction coefficient, is used to account for the friction between the contacting bodies.

VII.5 Local integration scheme

To solve the algebraic system given in Eq.(II.329), the computation of internal and external forces needs Recall that the evolution equations of our constitutive equation are first-order ordinary partial differential evolution equations of two types formally written under the following form: The solution of Eq.(II.366) obtained from the classical  -method is:

                1 , ,
                1 1 0 1 n n n n y y t y y for (II.368)
while the solution of Eq.(II.367) has the following form:

                                 exp 1 exp 0 1 n n n n n y y y t y t y for (II.369)
Applying the solutions Eq.(II.368) and Eq.(II.369) under the fully implicit assumption     1 , allows rewriting the state variables, at the end of the time step 1 n t for the time-independent plasticity, under the following form:

1). The Cauchy stress and the plastic strain tensors:

                  11 1 11 1 1 1 1 0 1 : 1 1 1 : 1 1 n n n vp vp n n vp nn n vp n n n n n n n n n n n H T X X d d T d T T P T d T T P T                                            (II.370)
2). The ductile damage:

                                       10 1 1 1 0 1 1 1 1 1 1 1 1 1 12 1 1 1 :: 2 1 : 21 1 1 1 :: 2 2 2 1 2 n n sT vp nn nn T n n vp vp n n n n vp n n n n n n n g n n n n n n n n n n n n n n n Y Y T dd ST d YT T T P T T T P T d C T C T C T d Q T r Q T r                                                                               2 1 1 1 1 1 1 g n n n n n n n r Q T r r H T d d                            (II.371)
3). The isotropic hardening:

                                   11 1 1 1 1 1 1 1 1 1 1 1 11 nn vp n vp n nn Q T Q T b T b T Q T Q T n n n n nn n n n n n n n n n n n n Q T b T Q T r r r e e b T d Q T Q T R d Q T r d Q T r r                                                          (II.372) 4
). The kinematic hardening:

                                   11 1 1 1 1 1 1 1 1 1 11 nn vp n vp n nn C T C T a T a T C T C T n f n n n nn n n n n n n n n n n n C T n a T C T ee a T C T C T X d C T d C T                                                            (II.373)
And the viscoplastic "yield criterion":

PART II CHAPTER VII NUMERICAL ASPECTS 145       1 1 1 1 1 0 vp n mT vp vp vp n n n n n yp n f X R K T T t                  (II.374)
Remark: Since the time-independent plasticity is a special case of the viscoplasticity by vanishing the viscostress  vp defined by Eq.(II.101) of Section VI.3.4.2.2, here the local integration is performed only for the time-dependent plasticity (or viscoplasticity).

VII.5.1 Local integration of time-dependent plasticity

Elastic prediction

Let us suppose that the total incremental strain (   ) over the current time step is completely elastic which does not induce any plastic flow, hardening or damage i.e. 0 vp   . In this case, the elastic trial strain at time 1 n t is given by:

, 1

e trial e vp n n n n               (II.375)
It results the trial stress by using the state relation of Eq.(II.31):

            , 1 1 0 1 : 1 1 trial e trial n n n n n n n n n n n d T d T T P T d T T P T            (II.376) Since 0 vp 
 is zero for this trial elastic loading increment, The viscoplastic yield criterion (Eq.(II.374))

corresponding to this trial stress is written as:

  1 , 1 1 1 trial nn vp trial n n yp n n n X R fT d d            (II.377) If , 1 0 vp trial n f 
 , then the solution is effectively elastic one meaning that the trial stress state  1 trial n is lying inside the yield surface (e.g. elastic unloading), and the states variables are updated with the following solution:

                         1 1 1 1 1 1 1 1 1 vp vp n n n n n n n n trial n n n n n n n n r r d d X X R R Y Y (II.378) If , 1 0 vp trial n f  
, it means that the trial stress state lies outside of the viscoplastic yield surface. The solution is viscoplastic and the trial solution should be corrected to determine the final values of the state variables which ensure that viscoplastic yield condition is fulfilled:
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Plastic correction To proceed with this viscoplastic correction, the discretized, nonlinear and fully coupled equations Eqs.(II.370) ~ (II.374) must be solved using the Newton-Raphson iterative scheme to determine the stresslike variables and the admissibility conditions at 1 n t , the so-called return mapping algorithm.

The stress-like variables at the end of the time increment are expressed as:

1). The Cauchy stress tensor:

                11 , 1 1 1 11 1 1 0 1 : 1 1: 1 11 n n n e trial vp n n n n nn n n n n n n n n H T X dT X d d T T P T d T T P T                               (II.380)
2). The stress-like variable of isotropic hardening:

                                  11 1 11 1 1 1 1 1 n n vp n vp n n n Q T Q T b T b T Q T Q T n n n n n n nn n n n n nn Q T bQ T r Q T Q T r e e Rd b T d Q T Q T Q T r                                                           (II.381)
3). The stress-like variable of kinematic hardening:

                                      1 1 1 1 1 1 1 1 n vp n n n vp n n CT aT CT n CT n n aT CT n n n n f n n n n n n nn e C T C T C T C T X d e n C T C T a T C T C T CT                                                                                      (II.382) 4). The viscous stress:     1 1 vp n mT vp vp vp nn KT t          (II.383) 5 
). The norm tensor:

     1 1 1 n n n ZX (II.384)
Considering the full anisotropic viscoplasticity, we obtain the following three high nonlinear equations with three independent variables   vp , d and
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Using the Newton-Raphson scheme to linearize and solve the nonlinear equations:

                                                              11 11 1 1 11 1 0 i vp vp vp f i vp n n vp vp f vp n n f n n f vp n n n f f f dn f g g g gd dn hn h h h dn (II.386)
and the update of the basic variables in the form:

                                  1 11 1 11 1 11 ii nn vp vp vp ii nn ii nn f f f d d d n n n
(II.387)

VII.5.1.2.1 Prime derivatives

The derivatives in Eq.(II.386) are given by:

                    11 11 11 1 11 1 1 11 1 1 33 1 1 1 11 11 1 1 1 1 1 1 : 1 21 1 1 21 21 : 11 21 1 n n n vp nn vp n n vp n vp nn vp vp n vp nn n n n n n n n n n n n n n n n n n H T X f X X d R d f X d R d d d H T X XR X d d d d                                                                               1 11 1 1 1 11 1 1 1 1 1 : 11 21 1 n n n vp n n n f n n n n n f f n n H T X f XR n X n n d d                           (II.388)                                                         1 1 0 1 0 1 11 1 1 0 1 0 1 1 1 1 1 1 1 1 11 1 1 1 1 nn nn n n n s T s T vp n n n n n n TT vp n n vp n n n sT vp n n n n n n n T n n n n n n n vp n n f T n nn sT Y Y T Y Y T g Y S T S T d S T d Y Y T T Y Y T s T g Y d S T d S T S T d d sT Y g n S T d                                                            1 10 1 n sT n n nf YT Y S T n      (II.389)                   1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1 ff n n n n n vp vp ff n n n n n nn ff n n n n n n ff nn h H T n n X h H T n n X dd h H T n n X Z nn                                        (II.390) VII.5.1.2.

Coefficients of state variables for the multiplier   vp

The partial derivatives of state variables with respect to the multiplier are given by: 

                                          1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1: 1 1
dT R d Q T Q T r X d C T C T KT m T t t T T T P T T T P T d Y                                                                                                                1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : : 21 e n e vp n n n n n n n n g n n n n n n n n n p p g n n n n n n n n n n p h h T T T P T T T P T hd C T C T C T C T d Q T Q T r Q T r r d Q T r                                                                                         1 n p r     (II.391) and                                         1 1 1 1 1 1 1 1 1 1 1 1 1 1 n vp n n n vp n n e f n n vp n QT bT QT n n n vp n nn nn nn n n n n CT aT CT n n n vp n n d QT r b T e QT Q T Q T rr Q T Q T b T d Q T Q T CT a T e CT                                                                             11 1 1 nn f n n n nn n n n n C T C T n C T C T a T d C T C T                   (II.392) VII.5.1.

Coefficients of state variables for the damage d

The partial derivatives of state variables with respect to the damage are given by:

                                          1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 11 1 11 1 : 1 : 1 21 1 1 ee n n n n n n n n n n n n n n n n n n n n n n n n n nn n n n n n n n T d T d d T T P T T T P T d R d Q T Q T r Q T r d Q T Q T r dd X C T C T C T d                                                                                                                11 1 1 1 10 1 1 1 11 10 1 1 1 1 1 0 1 : 21 : : 21 : n n n n n vp n n e n n n n n n n n e n n e nn n n n n n n n n n n n n n n n d C T C T d d T T T P T T T P T d Y h dd h T T T P T T T P T hd C T C T C T d                                                                                                           11 1 11 1 1 1 1 1 1 1 11 2 2 2 2 1 1 1 1 1 01 3 1 11 11 22 1 : 41 g n n n n g n n n n n n n n n n n nn n n n n n n n n e n n n n n n n CT d d Q T Q T r Q T r r d Q T r r dd H T d Q T r d Q T r

r T T P T T T P T d

                                                                   2 01 3 1 : 41 e n n n n n n n h T T P T T T P T hd             (II.393) and                                       1 1 3 1 1 1 1 1 1 3 1 1 1 1 1 3 1 1 21 1 21 1 21 n vp n n n vp n n e vp f n n n n QT bT QT nn n n n n n n CT aT CT n f n n n n n n n n d d d Q T r e d b T d Q T Q T CT en d a T d C T C T                                                       (II.394) PART II CHAPTER VII NUMERICAL ASPECTS 151 VII.5.1.

Coefficients of state variables for the normal direction f n

The partial derivatives of state variables with respect to the normal direction are given by: 

                                         
dT nn R d Q T Q T r nn X d C T C T nn n T T T P T T T P T d Y h n hT hd                                                                                                   1 0 1 1 1 1 1 11 1 1 1 1 1 1 1 : 
: Consequently, the Jacobian matrix is obtained:

e n f n n n n n g n n n n n n n n n ff g n n n n n n n n n n n ff n T T P T T T P T C T C T C T C T nn d Q T Q T r Q T r r d Q T r r nn                                                           (II.395) and               1 1 1 1 1 1 1 1 1 1 1 0 11 1 n vp n n e vp n f n n n f n CT aT CT n n f n n n n n d r n CT e n a d C T C T                                   (II.
                       , , , , , , i ee ii i x y N J x y x y N (II.398) with e i
x and e i y are the vectors of nodal coordinates in the real element respectively.

Membrane

The membrane strain at the nature coordinate    , of the element is given by: PART II CHAPTER VII NUMERICAL ASPECTS 153

                                                , 1 , 1 , 
Considering the tangent operator   D , and using the principle of virtual power, the elemental stiffness matrix of membrane part becomes:

                                                11 4 1 11 det , e TT m m m m m m m m e q q q V q K B D B dV B D B J d d H (II.400)
where,

      2 2 h m h D D dz and                                , det ; 1; 1 3; 1 3 T m m m m q q q H B D B J (II.401)

Bending

For the bending, the rotations 

x and  y are used to evaluate the curvatures of bending: The elemental stiffness matrix of the bending is obtained with the help of tangent operator   D as well as the principle of virtual power:

                                                           , 1 , , , y 1 , 
                                                11 4 1 11 det , e TT b b b b b b b b q q q V q K B D B dV B D B J d d H (II.403)
where,

      2 2 2 h b h D D z dz and                                , det ; 1; 1 3; 1 3 T b b b b q q q H B D B J (II.404)
Transverse shear The deformations of transverse shear are expressed by: w is the vector of the nodal displacement and rotations.

                                                          
The stiffness matrix of the transverse shear can be expressed as:
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where,
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It is worth noting that the full integrations are adopted for the membrane, bending and transverse shear, which usually causes incorrect results when the thickness of the plate becomes relative small compared with other two dimensions, the so-called shear locking problem. The selective integration with full integration for membrane and bending as well as reduced integration for transvers shear, or the fully reduced integration with hourglass control techniques are often chosen to avoid the shear locking problems.

VII.6.2 Appendix II -The standard hexahedral element

The standard 1 st order solid element is a hexahedral, eight-node and isoparametric element with linear interpolation. It is provided with eight (full) integration points in the local coordinate frame. 
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where, the interpolation functions can be expressed as

           1 1 1 1 8 I I I I N .

Strain-displacement relationships

The interpolation of the displacement field The displacement field interpolation allows the strain field to be related to the nodal displacements. The linear part of the strain tensor is given by:

         , , , , 11 
22 ij i j j i iI I j jI I i u u u N u N (II.410)
or in matrix form, the B matrix becomes:

       Inv d B C J N (II.411)
where, and , here we introduce the i b vectors from [START_REF] Hallquist | Theoretical manual for DYNA3D[END_REF], defined as:

                                          1 , 1 , 1 , 1 1 1 
     , 1,2,3 I i I i i N b N i x (II.413)
The elastic constitutive model For the linear isotropic elasticity, the elastic moduli tensor is given by: 
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Stiffness matrix and internal forces

Using the principle of virtual power and the discretization of strain field Eq.(II.410), the stiffness matrix and the internal forces are defined as:
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VIII. Parametric study of the model

As presented in Chapter VI, the micromorphic constitutive equations derived from the framework of the irreversible thermodynamics and the generalized principle of virtual power, are characterized by a group of specific material parameters which need to be determined from the experimental data. However, before doing the identifications, the parametric study of the micromorphic model should be performed and the results carefully analyzed to well understand the predictive possibilities of the proposed micromorphic fully coupled constitutive equations. The detailed study of the effect of the material parameters entering the fully coupled constitutive equations is well discussed in the literature [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF]. Furthermore, here we will only focus on the parametric study involving in the local damage parameters, the micromorphic moduli and the thermal effects. 

VIII.1 Effect of the local damage parameters

Fig. VIII-1 Influence of the parameter S on the evolution of damage and equivalent stress

In the following, only one damage parameter varies while keeping the other parameters fixed at each analysis. , on the damage evolution curves as well as the stress-plastic strain curves. As expected, the greater S the smaller damage rate is, the greater maximum equivalent stress is and later final fracture occurs:   12.7% S in a ratio of 2 causes a variation of the material ductility (plastic strain at fracture) substantially in the same ratio. The increase of the maximum stress results from the same effect of the damage on the other internal stresses. are presented to examine its effect on the damage evolution and stress-strain curves. It seems clearly that the parameter s governs the nonlinearity of the damage evolution: the higher value of s , the earlier final fracture time, the smaller plastic strain and the more brittle behavior of the material. Considering the formula of damage evolution in Eq.(II.98), when the parameter s approaches to zero, the damage rate will become approximately proportional to the plastic multiplier (effective plastic strain rate)

     1 
dd , if the effect of the parameter  representing the nonlinearity of damage is negligible. As we can see this from Fig. VIII-2, focusing on the plastic strain smaller than 20% , it is worth noting that the differences of the damage become smaller and smaller as the decrease of the parameter s in a ratio of 2. Let us imagine that there would be a limit damage curve, which is in theoretically when  0.0 s , however, for practical purpose, the damage evolution curves even for the parameter  0.3 s and  0.6 s are barely distinguishable. And in such case, this nonlinear relationship with the plastic strain is caused by the parameter  . The influence of the parameter  taking five different values on the response of the model is illustrated in Fig. VIII-3 regarding to the damage evolution and strain-stress curves. We can see that the bigger value of the parameter  yields the earlier final fracture time, the smaller plastic strain and the larger damage rate. Meanwhile, it should be noticed that this effect is similar to the effect of the parameter S which only delays or accelerate the damage growth without modifying the shape of the damage evolution curves. In Fig. VIII-4, the effect the parameter  indirectly affects the damage growth through the isotropic hardening is examined with four different values   1.0 ,   2.0 ,   4.0 and   8.0 . It is clear that the greater values of  results the latter final fracture time and the larger plastic strain, while without changing the shape of the damage evolution curves. Considering the formula of R Y in Eq.(II.34), we can see that the higher value of  provides a smaller value of R Y for damage 1 d

, and a larger R Y when damage approaches to the criterion. In Fig. VIII-5, it is clear that the contribution from the isotropic hardening to the damage energy release rate grows rapidly and becomes dominant one when   1.0 and   2.0 . On the other side, the damage energy release rate from isotropic hardening evolves slowly and behavior a sharply increase when the damage approaches its critical value for   4.0 and   8.0 . 

 3.5 S  1.2 s 2.0   4.0   0.

Table VIII-1 Summary of the plastic strain at final fracture for different damage parameters

In Table VIII-1, it summaries the plastic strain at the final fracture for different times of the initial values of the damage parameters. We may notice that the increase of the parameters S and s in the ratio of 2

approximately provides an increase of the final fracture plastic strain with roughly proportional coefficients 2.0 and 0.9 respectively.

In summary, if we expect latter final fracture time or larger plastic strain, we should increase the parameters S and  or decrease the parameters S and  , and vice versa. However, it is worth noting that it is only the parameter s which governs the more brittle or more ductile material behavior in the proposed model.

VIII.2 The viscoplastic effects

As described in Section VI.3.4.2.2, the Norton-Hoff viscoplastic flow is defined to govern the evolution equations and yields the Norton-Hoff type of viscous stress. Referencing the literature [START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF], the hyperbolic sine type of viscous stress resulting from the hyperbolic cosine viscous potential could be an alternative:

    1/ 12 argsinh / m vp vp vp K Norton hoff K K Hyperbolic Sine           (II.416) Considering the formula     2 argsinh ln 1 x x x   
, leads to the hyperbolic sine type viscous stress: range of the strain rate from 0.0s -1 to 10.0s -1 which approximately contains most of the forming processes.

     
As the increase of the parameter m , the Norton-Hoff viscous stress grows rapidly for strain rate over than 1.0s -1 ; on the other hand, the viscostress evolves sharply for strain rate smaller than 1.0s -1 and slowly for high strain rate over than 1.0s -1 , as the decrease of the parameter m . In It is clear that in the range of strain rate   0,10 s -1 , for high values of 2 K , the viscostress of the Hyperbolic sine becomes approximately linear to the strain rate; for small 2 K , the responses of the viscostress vary rapidly and smooth. It is worth noting the differences of the viscous stress for strain rate smaller than 1.0s -

1

, not like the Norton-Hoff type varying only on the top the hyperbolic curve of 2 1.0 K  .

VIII.3 Effect of the micromorphic moduli

The uniaxial tensile test using the micromorphic damage model is chosen to make parametric study with the geometric information given in Section IX. , the nonlocal effect to the smaller mesh size 0.4mm is too excessive yielding the final fracture around 12.7mm while the final fracture displacement of mesh size 0.8mm remains close to 9.0mm.

2). Effects of the internal length d l

In Fig. VIII-9, it presents the system responses of different values of the internal length: 0.1mm and 10mm for two mesh sizes respectively, while the micromorphic damage modulus H In such cases, the micromorphic damage effects induced by the small internal length or the slight micromorphic damage parameter from Eq.(II.111), are too small to negligible which yields the system responses close to the local damage model. For high value of the internal length 10mm , the final fracture displacement of mesh size 0.8mm approaches to 10.0mm, while the response of mesh size 0.4mm clearly shows that the micromorphic damage effect is excessively strong and yields no appearance of rupture although the displacement reaches up to 13.0mm. It is worth noting that the significant shrinkage of the density scalar yields very small influence on the system responses (about 8.0mm in displacement), while higher values of the micromorphic density result in latter final fracture displacements (around 9.2mm). That can be explained from the reason of that the higher values of micromorphic mass enhances the dynamic effect which results in the relative smaller acceleration of the micromorphic damage and consequently the slower evolution of the damage. For the sake of simplicity, in the next analysis, the micromorphic density scalar is taken as 1.0. More important is that the variation of the parameter s breaks the consistency property initially obtained with the specified group of local and micromorphic parameters: the smaller value of s provides insufficient micromorphic effect and the higher value of s yields excessive effect of the micromorphic damage for smaller mesh sizes respectively. in two mesh sizes respectively. As expected, the introduction of the micromorphic isotropic hardening postpones the evolution of the damage and yields latter final fracture displacement. Clearly the system responses in the necking region are improved for small mesh size 0.4mm to approach the force-displacement curve of mesh size 0.8mm due to the introduction of the nonlocal effect of isotropic hardening. It should be noticed that the values of the parameter Q is much larger than the micromorphic damage parameter. That is because the relative small difference between the local and micromorphic isotropic hardening strain (around 2.87E-03 in maximum) which requires high values of the parameter Q to reflect the nonlocal effect of the isotropic hardening. . The same tendency that larger internal length of the micromorphic isotropic hardening provides bigger differences between the local and nonlocal isotropic hardening and delays the final fracture displacement (around 8.7mm and 8.9mm respectively), with the micromorphic damage model. The system response varying according to the internal length is less sensitive than that of the variation of the micromorphic parameter Q .

Fig. VIII-16 Force-Displacement curves of different values of internal length of micromorphic isotropic hardening

VIII.3.3 Summary

In summary, the local damage parameters and the micromorphic damage moduli together govern the nonlinear evolution of the damage in a rather complex methodology. The parametric study provides the following conclusions:

1). The system response behaves more sensitive to the modulus H than the internal length d l (or the micromorphic gradient modulus g H ) for the ductile damage It can be noticed from the equation of the damage energy release rate Eq.(II.43), in which the nonlocal effect directly reduces the damage-stress variable Y by scaling the difference between damage and micromorphic damage with the modulus H . On the other side, the internal length (or the micromorphic damage modulus g H ) only affects the difference between the local and micromorphic damage, which is clearly much smaller than 1, in the balance equation of the micromorphic damage;

2). The local damage parameters also affect the consistency of the material response

The variation of the parameter S remains the consistency while speeding or slowing the final fracture displacement; The increase in parameters s and 0 Y loses the consistency and yields latter the final fracture displacement, and vice versa; The influence from the parameter  in the consistency is relative small and gradually enhanced according to its increase which yields earlier final fracture;

3). The system response is also more sensitive to the modulus Q than the internal length r l (or the micromorphic gradient modulus g Q ) for the isotropic hardening

VIII.4 Anisothermal micromorphic damage model

In this section, the parametric study of the anisothermal micromorphic damage model, which considering the elasto-visco-plasticity coupling with thermal, local and micromorphic damage and hardening, is performed. The material property under the reference temperature (20°C) is given in the below table. 
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and for other modules it equals to 1.03.

VIII.4.1 Anisothermal viscoplasticity with local damage for a material point

In this section, the parametrical studies of temperature, load velocity, micromorphic density and its moduli are performed in a material point to examine the response of the proposed anisothermal elastovisco-plastic model coupled with local and micromorphic isotropic damage, local isotropic hardening and kinematic hardening. and1000°C), and four velocities(2.0E-04mm/s, 2.0E-05mm/s, 2.0E-06mm/s and 2.0E-07mm/s) are performed on a single finite element in this example. The approximate strain rates are 1.0E-01s -1 , 1.0E-02s -1 , 1.0E-03s -1 and 1.0E-04s -1 respectively. and the final fracture plastic strain is also enlarged (0.591 in 20°C, 0.626 in 500°C and 0.653 in 1000°C with velocity 2.0E-07mm/s). However, both the initial yield stress (792.00MPa, 547.09MPa and 281.12MPa) and hardening effects are decreased. The opposite tendency of the fracture plastic strain is observed for the raise of loading velocity at each temperature, while the equivalent stress after yield point shows significant differences (31.24MPa for 500°C and 66.85MPa for 1000°C ). In ) for the stress-strain curves and the evolution of local damage. From the state relations of stress-like variable with respect to local damage Eq.(II.43), we know that the evolution of the local damage is affected by the micromorphic damage through the H modules. In this figure, it describes that the larger H modules the slower evolution of local damage. We can also find this character from Eq.(II.37), the term of coupled local and micromorphic damage has a negative sign, which induces the reduction of the stress-like variable Y of local damage.

Fig. VIII-19 Scheme of biaxial tension test

Fig. VIII-23 Stress-strain curves and evolution of damage for some values of micromorphic H modules

Compared with the curves for local damage, both of the figures imply that when the micromorphic density or the H modules approach to zero, the material response becomes closer and closer to the one from local damage.

VIII.4.4 Biaxial tension for micromorphic damage with FE

After the analysis of parameters, we have a conclusion that the smaller micromorphic density and H modules gives the more approximate result to the ones from the local damage formulas. In absence of any experimental indication, the micromorphic parameters: density 100 times, micromorphic modules 1000N, will be considered to perform the biaxial tension test in this section. Fig. shows the differences between the local and the micromorphic damage for differenct load velocity at 500°C . Clearly, it is observed that, for low velocities 2.0E-07mm/s and 2.0E-06mm/s, the differences remain close to 0 until the initiation of the damage criterion; however, for higher velocities 2.0E-05mm/s and 2.0E-04mm/s, the differences grow linearly up to around 0.04 and 0.15 respectively. The dynamic effect of the load velocity obviously enlarges the difference between the local and micromorphic damage, and yields latter final fracture accumulated plastic strain. 

VIII.4.5 Summary

In this section, the constitutive models of elasto-visco-plasticity coupled with local damage and micromorphic damage is applied to a biaxial tensile test. The classical viscoeffects, the higher temperature the lower stresses and more ductility, the larger load velocity the higher stresses and less ductility, are observed by using the local damage model.

On the other hand, the elasto-visco-plastic model coupled with micromorphic damage, shows similar material responses of the local damage case when the micromorphic moduli approach to zero which yields the negligible nonlocal effect. However, the effect of the micromorphic damage becomes more significant and results in quite different material responses, the higher load velocity the more ductility, as the increase of the load velocity. From the comparisons of the biaxial tension between local and micromorphic damage model, we can make a conclusion that the micromorphic damage significantly delays the evolution of the local damage especially under cases of high temperature or high strain rate (dynamic effects).

IX. Applications

IX.1 Uniaxial tensile test of DP1000

In this section, the experimental results of uniaxial tensile tests of the dual phase steel DP1000 referenced in the work of [START_REF] Yue | Ductile damage prediction in sheet metal forming processes[END_REF], is chosen to perform new simulations with our micromorphic model. The uniaxial tensile test is conducted on Zwick 250 machine with velocity of 0.1 mm/s (quasi-static loading) and the geometry of the specimen is given in Fig. IX-1. The best set of material's local elastoplastic and damage parameters, found by the inverse procedure and discussed in the literature of [START_REF] Yue | Ductile damage prediction in sheet metal forming processes[END_REF], is given in the Table IX-1. Note that the damage parameters are determined with constant mesh size of 1.6mm. All the simulations in this section are performed under isothermal conditions (i.e. at room temperature) using the time-independent plasticity model with only micromorphic damage and micromorphic isotropic hardening under the plane stress assumption. , it gives the force-displacement curves of the tensile test with different constant mesh size: 1.6mm, 0.8mm, 0.4mm and 0.2mm, obtained from the simulations provided by Abaqus using the local damage model with the above material parameters and the quadrangular planar element, and compared with the experimental data. The mesh-dependency phenomenon is clearly observed: the final fracture displacements become smaller as the decrease of the constant mesh size. 

Fig. IX-3 Scaled force-displacement curves of the tensile test using the local damage model

Meanwhile, it should be mentioned that the local damage model yields the zero energy dissipation in the crack tip due to the finite-size region of strain softening tends to be zero. As shown in Fig. IX-7, the distributions of damage along the section AB as shown in Fig. IX-1, are predicted by the local damage model for three mesh sizes: 1.6mm, 0.8mm and 0.4mm. Clearly, it is observed that the damage highly localizes in one element's width and the damage values inside the adjacent elements remain low and don't exceed 0.2. Also the orientation of the macroscopic crack is orthogonal to the loading direction for the coarse mesh, while for two lower mesh sizes the macroscopic crack an orientation of approximately ±45°. and the values of the local and micromorphic damage variables remain close to each other (the gap is strictly lower than 0.1) for the three mesh sizes when the local damage is relatively low (lower than 0.35). While, the gap between the local and micromorphic damage icreases (higher than 0.3) when the local damage is high (higher than 0.7) and close the final fracture condition. Clearly, it is observed that, similar to the damage, the isotropic hardening strain of local damage model is also localized in one element's width. However, the distributions of the isotropic hardening strain predicted by the micromorphic damage and isotropic hardening model is much more smooth than the results from local damage model. The differences between the local and micromorphic isotropic hardening strains predicted by the micromorphic model are getting larger as the refinement of the mesh size. mesh sizes and at both stages respectively. The same remarks as for the damage apply for the isotropic hardening: the micromorphic isotropic hardening is widely distributed of the specimen gauge length similar to the local hardening strains. However, the micromorphic isotropic hardening strains are closely equal to the the local isotropic hardening strains every where outside of the two shear bands. Consequently, we obtain a very small gap between both strains outside of the two shear bands, while the biggest gap is concentrated inside the two shear bands. 

IX.2 Cross section deep drawing process

The cross section deep drawing (CSDD) tests are conducted by [START_REF] Yue | Ductile damage prediction in sheet metal forming processes[END_REF] in order to capture the initial fracture points and investigate the damage initiation and propagation under complex loading paths. The punch velocity is 0.5mm/s. A 0.1mm thickness CHF oil layer is used as the lubricant. Blank holder force is 400KN for the high strength steel DP1000. The geometric scheme of the tools are given in The pressure vessel is discretized with 9210 solid elements with two elements throughout the thickness. The scheme of the whole procedure works in the way: stage I, the temperature of the pressure vessel is homogeneousely elevated up to around 600°C through the red external surface with an uniform heat flux; stage II, an uniform internal pressure of maximum 20MPa is linearly applied to the whole pressure vessel. Then, the red partition undergoes large deformation to final fracture mainly due to the material softening induced by the elevated temperature. Since the thermal diffusion process takes much longer in time than the process of mechanical deformation, here an artificial thermal conductivity ( 6000 / .

W m C  ) is used to shorten its computation time for the dynamic explicit solver, while ensuring the temperatures of ourter and innser surface of the pressure vessel be elevated up to around 600°C in 2.1s. Clearly, in the period of before 2.35s (12.5MPa), the evolutions of reaction forces for the two mesh sizes behavior exactly the same. This is mainly due to the relative small value of the damage (around maximum values 0.078 for 80mm and 0.135 for 40mm), as shown in Fig. IX-29, which yields negligible damage effects on the material elasto-viscop-plastic behavior, in this period. Beyond that time, the numerical responses of reaction forces plot differences for the two mesh sizes. The mesh-dependency is clearly observed.

In Fig. it illustrates the distributions of the accumulated plastic strain for different mesh sizes 40mm and 80mm under different inner pressures, with removed fully damaged elements. When the inner pressure is around 13.3MPa (time 2.366s), the first fracture of the element is observed for mesh size 80mm, while more fully damaged elements are removed for mesh size 40mm. The similar phenomenon is also captured for the sequential inner pressures 13.5MPa (time 2.370s) and 13.9MPa (time 2.378s). Clearly, this clear mesh-dependent phenomenon is similar to the behavior predicted by the local damage model with time-independent plasticity. As expected and shown in the literatures, the viscoplastic model may provide a cure of the pathological mesh-dependency problem, however, it is not able to fully remove the problems in strain-softening. Mainly due to the limitation of time, we didn't finish the simulations of this pressure vessel using the fully coupled micromorphic damage model, which is forseen to overcome the mesh-dependency. 

X. Conlcusions

In part II, a complete set of nonlocal constitutive equations for anisotropic elasto-visco-plasticity solids, strongly coupled with thermal effects, isotropic ductile damage, isotropic and kinematic hardening, micromorphic temperature, micromorphic ductile damage, micromorphic isotropic hardening and micromorphic kinematic hardening, are derived from the state and dissipation potentials, under the framework of the extended irreversible thermodynamics, to represent the material strain-softening behaviour and avoid the ill-posed IBVP induced by the classical local damage model: 1). A group of additional balance equations associated with the new micromorphic variables are obtained by using the generalized principle of virtual power. The state relations including the classical and generalized stresses as well as the evolutions of the dissipative state variables are derived from the state potentials and dissipation potentials, respectively, according to the thermodynamically consistent formulations; 2). The introduction of the new micromorphic temperature and its first gradient to the free energy density, yields a pair of generalized micromorphic heat equations governing the evolution of temperature, which allows the introduction of nonlocal thermal effects and an internal length scale. Several extended heat equations, which are reviewed in detail, could be retrieved from the constrained generalized micromorphic heat equations; 3). The weak forms of the IBVP are obtained by using the Galerkin weighted residual methods, and discretized in time and space according to the standard finite element method, with new developed finite element possessing additional micromorphic dofs in the subroutine Vuel() of Abaqus.

Parametric study of the damage parameters, the micromorphic moduli and viscoeffects is performed to well understand the predictive possibilities of the proposed micromorphic fully coupled constitutive equations; 4). Applications of the fully coupled micromorphic damage and isotropic hardening constitutive equations, are applied to the uniaxial tensile test and cross section deep drawing processes of the material of DP1000. The clear mesh-independency of the numerical responses and consistent final fracture propagations are obtained.

XI. Global conclusions and perspectives

In this work, we formulated a general micromorphic nonlocal elasto-visco-plastic constitutive model accounting for mixed nonlinear isotropic and kinematic hardenings strongly coupled with ductile damage in the context of thermodynamics of irreversible processes as well as generalized continuum mechanics, with applications to the numerical simulations of sheet metal forming processes.

Firstly, we developed a static-implicit multi-step FEM solver accounting for the classical elastoplasticity with isotropic hardening for efficient formability analysis (e.g. the prediction of defects, thickness variation, strain and stress fields) of the sheet metal forming component based on the inverse approach.

1). The multi-step solver improves the stress predictions by adopting several middle configurations representing deformation paths and simplified tools' actions (contact forces). The intermediate configurations of deformed sheet blank are efficiently constructed according to the procedures: solving an optimal quadratic program, generating initial solutions and balance equilibrium iterations; 2). Numerical applications validate the new derived finite strain measurement along thickness of the shell and examine the capability to improve the stress estimations during forming under complex loading paths. Secondly, a general thermodynamically-consistent thermomechanical micromorphic nonlocal constitutive model has been derived and implemented in Abaqus/Explicit to capture the strongly nonlocal effects within the material strain-softening localization zones induced by thermal or ductile damage. 1). A complete set of micromorphic constitutive equations is formulated in the context of thermodynamics of irreversible processes. i). The new additional balance equations associated with the new additional dofs carrying the micromorphic effects (e.g. the ductile damage, the isotropic hardening, the kinematic hardening and the temperature) are derived from the generalized principle of virtual power. Also, the state relations as well as the evolution equations related to the local and generalized (micromorphic) are derived in the framework of the thermodynamics of irreversible processes with state variables, derived from both the Helmholtz free energy, and the dissipation potentials. It is worth noting that all the constitutive equations (the state relationships as well as the evolution equations) are written under an additive form of classical local contribution and extra nonlocal contributions. The local constitutive equations are easily obtained as particular cases if the micromorphic material properties vanish; ii). Numerical implementations related to the model, limited to micromorphic damage and micromorphic isotropic hardening for the sake of simplicity, have been carried out in Abaqus' subroutine Vuel using three types (membrane, shell and solid-shell) of assumed strain finite elements. The efficient and robust unconditionally stable local integration is performed thanks to the asymptotic scheme and the return-mapping algorithm; iii). Parametric study concludes that: a. only the local damage parameter S governs the more brittle or more ductile evolutions of damage;

b. the micromorphic moduli H and Q are more sensitive to the system responses than their micromorphic gradient moduli g H and g Q (or their associated internal lengths d l and r l ) respectively; c. the local damage parameters also significantly affect the obtained consistency of material responses except the parameter S which maintains the convergence while speeding or slowing the final fracture; d. no differences are observed for case when the micromorphic density smaller than the local one; e. the micromorphic damage effect becomes significantly under cases of high temperature or high strain rate due to the complex coupling between viscous effects and nonlocal damage effects. iv). The applications of the proposed micromorphic model, to both the uniaxial tensile test of DP1000 and the cross section deep drawing processes, predict physically sound solutions independent from the mesh refinement. The macroscopic crack initialization and propagation are also observed in the cross section deep drawing processes. 2). Concerning the thermal aspects, the micromorphic formulation is applied to the problem of heat transfer by means of a generalized principle of virtual power. i). The new microtemperature field is introduced as well as its first gradient and leads to a pair of thermodynamically-consistent coupled generalized heat equations. The constrained case for which the microtemperature coincides with the temperature itself is of particular interest because it can be compared to the various extensions of the heat equation available in the literature. ii). The proposed heat equation is enhanced by essentially three new contributions which were illustrated in the linearized case. The three terms affect the transient thermal behavior of the material only. The first new term is related to the Laplacian of the temperature rate, a contribution which was proposed first by Cattaneo in an early version of his theory. A second contribution is proportional to the second time derivative of the temperature which changes the usual heat equation into a hyperbolic equation with a positive characteristic time. The last term associated with the third time derivative of temperature remains rather unexplored even though it is present in some generalized theories found in the literature. iii). The proposed theory was shown to differ from existing thermomechanical extensions of Eringen's micromorphic model that rely on the introduction of a microtemperature vector akin to a relaxed temperature gradient. It has also been compared to the effective heat equation arising from the double temperature model involving two coupled heat equations and leading also to fourth order spatial derivatives: a). The hyperbolic heat equation of Cattaneo II with relaxation time, can be obtained from the thermodynamically-consistent micromorphic heat equation by neglecting the nonlocal effects of the temperature; b). The classical, hyperbolic and generalized two-temperature models can be also retrieved from the micromorphic heat equations; c). Both the micro-temperature heat equation using Green's theory and the micromorphic heat equation provide a pair of governing equations for local and micro/micromorphic temperature. And the classical wave equation can be obtained from their constrained heat equations; iv). The proposed theory allows for a direct coupling with the mechanics of materials and is thought to be useful for the simulation of fast heat and mechanical treatments of materials including metal forming at high speeds, laser surface treatments of materials, etc. The nonlocality in the proposed theory resulting from the introduction of the gradient of micromorphic temperature could be an alternative to the analysis of heat transport based on enhanced heat fluxes.

Considering the conflict between the limitation in time and the complexity of coupling among the parameters in the sophisticated generalized micromorphic constitutive model, we have the following further developments to be continued in the future: 1). In general, all the variables that govern the strain-softening should be treated as nonlocal variables.

For that purpose, an extension of the micromorphic kinematic hardening based on the present micromorphic model is necessary to fully capture the strain softening of materials' behavior; 2). Some more complete and systemic experiments are required to facilitate the identification of the large amount of temperature-dependent/independent material parameters entering the advanced nonlocal constitutive equations; 3). Generally, the ductile damage can be strongly anisotropic. An extension of the present micromorphic model to include the anisotropy of the ductile damage could be considered, referencing the work of anisotropic ductile damage accomplished in LASMIS [START_REF] Badreddine | Elastoplasticité anisotrope endommageable en transformations finies: Aspects théoriques, numériques et applications[END_REF][START_REF] Saanouni | Damage mechanics in metal forming: advanced modeling and numerical simulation[END_REF] by representing the damage by a couple of second-rank tensors   , dY ;

4). Applications of the new generalized micromorphic heat equations are expected in Nano-structured media and Nanosystems, but also for fast material processing and surface treatments. The work performed by [START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF] for finite time-independent plasticity could be extended to the thermomechanical processes (finite viscoplasticity) using the generalized heat equation based on the present microtemperature model.

Résumé extensif en Français Introduction

Afin de répondre aux nouvelles exigences mondiales de l'économie et de la protection de l'environnement dans l'industrie automobile, la sélection des matériaux pour la réduction de masse est un enjeu crucial. De nouvelles nuances d'acier à haute résistance permettent aux constructeurs automobiles de réduire la masse de leurs véhicules de 25 à 39% par rapport à l'acier conventionnel, permettant ainsiune économie de 3 à 4,5 tonnes de gaz à effet de serre sur toute la durée de vie du véhicule. Cependant, cette augmentation de la résistance de ces nouveaux matériaux se traduit souvent par une réduction significative de leur capacité d'étirage communément appelée la ductilité. Par ailleurs, pendant le processus de formage, le matériau métallique est soumis à une déformation irréversible importante non homogène qui finit par localiser dans des bandes de cisaillement où se forment souvent des micro défauts (microfissures, microcavités) qui croissent et coalescent pour former une fissure macroscopique dangereuses pour l'intégrité de la pièce.

La simulation numérique utilisant la méthode des éléments finis (MEF) est aujourd'hui un outil d'utilisation courante et d'intérêt considérable pour les industries mécaniques. Elle prend une place croissante et dominante dans de nombreux secteurs industriels comme dans l'industrie automobile. Pour simuler numériquement les procédés de formage, un modèle 3D décrivant les principaux phénomènes physiques (thermiques et mécaniques) et leurs diverses interactions (couplages) qui caractérisent le comportement du matériau est nécessaire. Cela peut être fait en utilisant deux types d'approche de modélisation, à savoir : l'approche mono échelle macroscopique phénoménologique et l'approche multiéchelle ou micro-macro.

Cependant, l'utilisation de ces modèles locaux avec adoucissement induit par les effets thermiques, d'endommagement ou autres, conduit à un problème d'évolution (problème aux valeurs initiales et aux limites PVIL) mal posé (perte d'ellipticité en statique ou d'hyperbolicité en dynamique) fournissant des solutions numériques non acceptables fortement dépendantes de la discrétisation en espace et en temps. . La façon naturelle d'éviter cet inconvénient est de recourir à une formulation non locale induisant des longueurs internes caractéristiques de la microstructure des matériaux. Ceci se fait relativement aisément dans le cadre de la mécanique des milieux continus généralisés.

Le but de ce travail est de développer des modèles de couplage thermomécanique avancés dans le cadre de la mécanique des milieux continus généralisés (milieux micromorphes) pour introduire le concept de longueurs internes représentatives des microstructures des matériaux tout en tenant compte de l'anisotropie initiale de l'écoulement inélastique en grandes déformations. Tout d'abord, nous avons développé un solveur EF basé sur une approche inverse à étapes multiples, statique-implicite, qui tient compte de l'élastoplasticité classique avec écrouissage purement isotrope pour analyser la formabilité de tôles minces de sorte à éviter les défauts (fort amincissement, endommagement, plissement, …).

Dans un deuxième temps, nous avons formulé un modèle thermomécanique non-local dans le cadre des milieux continus généralisés (milieux micromorphes), capable de tenir compte d'un effet d'échelle associé à chacun des phénomènes physiques micromorphes retenus dans la modélisation (endommagement ductile, température, écrouissages). Ces effets d'échelles se présentent sous la forme de longueurs internes caractéristiques de la microstructure du matériau étudié. L'enrichissement de l'espace des variables cinématiques par l'ajout de degrés de liberté (ddl) micromorphique, conduit via l'application du principe des puissances virtuelles étendues, à l'obtention d'autant d'équations de bilan supplémentaires. De même, l'extension de l'espace des variables d'état conduit à la généralisation des équations de comportement (équations d'état et équations d'évolution) par l'ajout d'une contribution non locale à chacune des équations de comportement. Concernant les phénomènes thermiques, l'approche micromorphe conduit à une nouvelle paire d'équations de régulation de la température faisant intervenir non seulement la température locale mais également une microtempérature ainsi que leurs dérivées successives jusqu'à un ordre donné. Le cas contraint pour lequel la microtempérature coïncide avec la température locale présente un intérêt particulier car il peut être comparé aux différentes extensions de l'équation de la chaleur proposées dans les littératures (Table 0- Partie I Approches inverses simplifiées pour les procédés de formage de tôles L'approche inverse simplifiée a été initialement développée pour analyser rapidement et à moindre coût, la formabilité d'un composant mécanique de forme donné par les procédés de formage de tôles minces. L'idée de base est de résoudre un groupe d'équations non linéaires délibérément simplifiées pour trouver les positions initiales des points matériels de la tôle dans la configuration initiale (non déformée) en partant de la géométrie de la configuration finale (connue) sans tenir compte des processus incrémentaux de plasticité et de contact tôle/outils. Cette formulation repose sur les hypothèses simplificatrices suivantes: (i) état de contrainte plan dans la tôle; (Ii) écoulement élastoplastique en grandes déformations avec incompressibilité totale; (Iii) théorie de la déformation totale en plasticité; (Iv) écrouissage purement isotrope; (V) actions simplifiées des forces de pression et de frottement entre la tôle et les outils d'emboutissage. Afin de surmonter les mauvaises estimations de l'état de contrainte prédites par l'approche inverse en raison de l'absence de prise en compte de l'histoire de la déformation, l'approche en plusieurs pas est proposée en introduisant plusieurs configurations déformées moyennes intermédiaires pour mieux suivre le trajet de chargement. Les principales étapes de cette approche inverse multi-pas peuvent être résumées comme suit: 1). Construction des configurations intermédiaires de la tôle : elle nécessite deux étapes: la génération de la surface de glissement contraint et la résolution des équations initiales ;
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2). Formulations cinématiques non linéaires pour tenir compte des grandes déformations et estimation de l'incrément de contrainte entre deux configurations successives 3). Intégration locale des équations constitutives décrivant l'écoulement plastique avec écrouissage.

En utilisant la méthode classique du retour radial pour mettre à jour l'état de contrainte. C . L'inverse du tenseur des dilatations de Cauchy-Green gauche sur la configuration 1 C , est donné par : 

I. Approche statique implicite en plusieurs étapes I.1. Formulations cinématiques
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Il est intéressant de noter que, si les points matériels ont été placés sur la surface médiane (  0 z

), l'équation Eq.( 3) redonne les formules d'approche inverse, sinon la mesure de déformation du point matériel le long de l'épaisseur est sévère à cause des effets de flexion dus à la courbure de la configuration de référence.

I.2. Intégration locale élastoplastique

Avec la contrainte incrémentale obtenue, la méthode classique de prédiction élastique et correction plastique avec retour radial est adoptée pour mettre à jour l'état des contraintes en élastoplasticité anisotrope avec écrouissage purement isotrope basée sur la théorie associée avec un critère d'écoulement quadratique de type Hill:
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Le multiplicateur plastique de Lagrange est obtenu à partir de la condition de cohérence plastique pour obtenir:
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En conséquence, le taux des contraintes en fonction du taux des déformations totales s'exprime par :
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Ensuite, l'algorithme classique du retour radial basé sur la prédiction élastique et la correction plastique est effectué pour mettre à jour la contrainte. Nous avons remarqué que si la même anisotropie (isotropie planaire) pour le comportement élastique et plastique et qu'on considère l'incompressibilité pour la déformation élastique, alors le coefficient de Poisson est lié au coefficient d'anisotropie moyenne de Lanckford r par :

  1 r v r (7)
Cela aboutit à une méthode de retour radial à un seul incrément ne nécessitant pas d'itérations pour assurer la condition d'admissibilité plastique en fin de l'incrément de charge. Considérant un élément fini triangulaire, le carré de la surface de l'élément est donné par : Après assemblage de la matrice élémentaire, vectorielle et scalaire, on obtient la surface carrée de toute la structure :

I.3. Configurations moyennes
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qui est un modèle de programmation quadratique qui peut être résolu très efficacement en temps (par exemple le sous-programme quadprog de Matlab).

Solutions initiales de configuration

L'idée de base des solutions initiales de la configuration construite fonctionne de la manière suivante : la configuration centrale construite est un état de déformations globales possibles à un moment spécifique des processus de formage, alors les mailles vides par rapport à la configuration centrale et la configuration finale bien connue devraient être équivalentes. En gardant les deux mailles vierges équivalentes, nous sommes en mesure de trouver un groupe de distributions appropriées de points matériels globaux sur la configuration du milieu.

Avec les solutions initiales obtenues, un groupe d'équations d'équilibre non linéaires est résolu en utilisant la méthode itérative de Newton-Raphson ainsi que la fonction de pénalité pour équilibrer les configurations du milieu et pour contraindre le mouvement des points du matériau à rester sur les surfaces de glissement.
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II. Applications numériques

L'implémentation numérique est réalisée dans la plate-forme KMAS et comparée au logiciel d'éléments finis commercial LS-DYNA . Les nouvelles formulations cinématiques dérivées sont examinées en détail sur l'exemple du procédé de formage S-Rail. Les erreurs totales accumulées de différentes couches sont également présentées et analysées. L'exemple d'emboutissage profond en forme de boîte est sélectionné pour valider la construction des configurations intermédiaires de l'approche inverse multi-pas proposée. L'application de l'approche multi-pas à la composante B-Pillar montre clairement l'amélioration des estimations de l'état des contraintes en fonction de l'augmentation du nombre des configurations intermédiaires.

Fig. 0-3 Comparaisons des distributions d'épaisseur sur trois configurations intermédiaires simulées par LS-DYNA et Multi-pas

Partie II Modèle thermomécanique micromorphe avancé entièrement couplé à l'endommagement ductile

La rupture des composants techniques est souvent précédée de changements considérables dans la microstructure du matériau provoquant de fortes hétérogénéités locales à l'origine de divers types de défauts comme la microfissuration dans les bétons, la rupture des fibres ou le délaminage fibres/matrice dans les composites ou la formation de microcavités et microfissures dans les métaux ductiles. On sait par ailleurs, que les modèles de comportement locaux (théorie de Cauchy ou du premier gradient) avec adoucissement induit par des phénomènes physiques violents comme l'endommagement (microdiscontinuités) où les variations de température à fortes vitesses (Laser), conduisent à un problème aux valeurs initiales et aux limites (PVIL) mal posé, i.e. conduisant à des solutions fortement sensibles aux paramètre de discrétisation sans possibilité de convergence. Ceci n'est pas acceptable et des efforts considérables ont été déployés par la communauté scientifique pour résoudre les problèmes de prévision des endommagements, aboutissant à l'amorçage de fissures macroscopiques et à leur propagation, d'une manière indépendante des aspects de discrétisation du temps (incréments de temps) et de l'espace (taille des éléments finis).

Afin de contribuer à cet objectif général, nous nous mettons dans le cadre des milieux continus généralisés (milieux micromorphes) pour formuler les équations non locales gouvernant le problème d'évolution de structures soumises à des grandes déformations inélastiques (plastiques ou viscoplastiques) et petites déformations élastiques. L'objectif étant d'aboutir à un PVIL conduisant à des solutions indépendantes (à convergence) des aspects de discrétisation de l'espace et du temps. 

III. Formulations théoriques

III.1. Équations d'équilibre

           (12) 
On obtient aisément l'équation d'équilibre classique et quatre équations d'équilibre additionnelles associées aux variables micromorphes ainsi que leurs conditions aux limites de Neumann :
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III.2. Equations d'état

Considérant le premier principe de la thermodynamique postulant l'existence d'une fonction d'état appelée énergie interne E homogène à une quantité de travail, de sorte qu'en tout temps dans le domaine t  , la somme de la dérivée matérielle de l'énergie interne et de l'énergie cinétique K est égale à la somme de la puissance des forces externes appliquée à

t  et de la quantité de chaleur Q reçue par t  :      ext d E K P Q dt (14)
À l'aide du théorème de l'énergie cinétique, la forme différentielle généralisée du premier principe de la thermodynamique est exprimée comme :
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De toute évidence, l'énergie interne spécifique est renforcée par de nouvelles contributions provenant des variables d'état micromorphe supplémentaires.

Le deuxième principe de la thermodynamique reste inchangé:
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En utilisant l'énergie libre spécifique de Helmholtz, les première et deuxième lois de la thermodynamique, conduisent à l'inégalité de Clausius-Duhem, généralisée :

                                                                                                            : : re re sT T Y d R r X s T d r T Y d R r X s dr                              : : 0 ir T T q D d r T d r T (17)
Sans perte de généralité, nous postulons que les quantités entre parenthèses de (.17) ne dépendent pas de leurs taux respectivement, et que les variables micromorphes ne se dissipent pas. En suivant les arguments standard de Truesdell et Noll, les relations d'état suivantes peuvent être obtenues:

                                                   re s T Y R X dr Y R X dr Y R X dr ss T T (18) 
et la dissipation totale locale classique comprenant la dissipation intrinsèque (mécanique) et la dissipation thermique est donnée par :

              : : 0 ir in th q D Yd Rr X g T (19)
Avec une sélection appropriée de l'énergie libre de Helmholtz, les expressions finales des relations d'état ci-dessus peuvent être obtenues.

III.3. Evolution equations

Outre l'analyse de la dissipation de la plasticité indépendante du temps, la viscoplasticité (plasticité dépendante du temps) est présentée dans cette section. Pour la plasticité dépendante du temps, l'état de contrainte n'est pas contraint de rester sur la surface d'écoulement   Le potentiel viscoplastique global est postulé pour être décomposé de façon additive en trois contributions : l'écoulement viscoplastique de type Norton-Hoff, la restauration par l'écrouissage cinématique et isotrope et le potentiel d'endommagement. En utilisant la règle de normalité généralisée, on obtient les équations d'évolution ci-dessous :

          1 0 : 1 1 : 1 : : : 11 1 1 vp rx rr m p vp vp f vp m X vp f rx m vp rr s HX f Dn KX d X HX n a a C C XK X Q Q R r b T r br R Q Q K d YY p d pY YS d                                                           (20) 
L'analyse de l'admissibilité thermodynamique montre que l'inégalité est satisfaite si 0

yp   , 0 b Q  , 0 rx K  , 0 rr K  et 1
aC  est défini semi-positif, en fonction de la positivité de toutes les autres grandeurs.

III.4. Expressions des équations de bilan micromorphique dans l'espace des déformations

Rappelons les équations de bilan généralisées ainsi que leurs conditions aux limites de Neumann dans l'équation Eq.( 13), elles peuvent être transformées dans l'espace des déformations, à l'aide des relations d'état obtenues ci-dessous. Pour des raisons de simplicité, si les forces volumiques et de contact sont négligées, les équations d'équilibre généralisées prennent la forme :

            2 0 d g d g d HT l Lap d d d d H T H T H T d n                       (21)                  2 1 10 g r r g QT r d l Lap r r r r Q T Q T d Q T r n                             (22)                 2 1 10 g g CT d l Lap C T C T d C T n                                  (23)                     2 12 1 : 0 g e TT T g T d l Lap T T T T P T T T T T T T T T n                                         (24) où, d l , r l , 
l et T l sont les longueurs internes associées à chacun des phénomènes micromorphiques considérés.

III.5. Equations généralisées de la chaleur

Plusieurs équations étendues de la chaleur existantes sont revues et listées dans le Table 0-1 . Dans le but de se concentrer sur les équations de la chaleur, nous nous limitons à la thermo-élasticité dans cette section en négligeant l'écoulement inélastique avec écrouissage et endommagement afin de simplifier l'équation de la chaleur micromorphe généralisée complexe.

Considérant uniquement le champ de température micromorphe et son premier gradient comme variable non locale supplémentaire, à l'aide du principe des puissances virtuelles généralisées, des lois de la thermodynamique ainsi que de l'énergie libre de Helmholtz, une nouvelle paire d'équations de chaleur micromorphe généralisée est obtenue :

                               : 0 e sT s T div q q s div TT (25) 
Dans lequel, la température locale et micro sont couplées ensemble dans l'équation de chaleur locale et l'équation d'équilibre de température micro.

Supposons que l'énergie libre de Helmholtz soit définie comme :

                                2 00 11 , , ln 1 ln 1 22 g TT T T T CT CT T T T T TT (26)
Les équations de la chaleur micromorphe, considérant la contrainte interne qui consiste à forcer la différence entre température locale et température micromorphe à être voisine de 0, devient :

                12 g TT T T T C C T TM T T (27)
Il est intéressant de noter que : a) Si   2 0 T (ce qui implique que l'inertie n'est proportionnelle qu'à la première dérivée de la température), la linéarisation de l'équation de la chaleur conduit à:

            00 1 g T T T C C T T M T T ( 28 
)
qui a la même forme que les équations thermiques généralisées dérivées du modèle à double températures [START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF]), dans lequel si le terme d quatrième ordre était suffisamment petit il pourra être négligé (par exemple, dans le métal pur, la conductivité thermique de la composante électronique est beaucoup plus grande que celle du réseau composant).

b) Si les deux capacités calorifiques généralisées sont équivalentes  CC , l'équation de la chaleur devient: Avec des choix appropriés de l'énergie libre de Helmholtz et du flux thermique, l'équation de la chaleur hyperbolique avec temps de relaxation, l'équation de chaleur de type hyper-température, l'équation hyperbolique à double températures et le modèle à double températures généralisée peuvent être récupéré comme cas particuliers. 

      

IV. Aspects numériques

                                                                                           int int
J v u M u F F J d d M d F F J r r M r F F J M F F JT                                             

IV.2. Schéma de résolution globale

Les équations Eq. (.31) après assemblage sur l'ensemble des éléments de la structure, forment le PVIL qu'il convient de résoudre sur chaque incrément de charge (ou de temps). Elles sont résolues par un schéma de résolution dynamique explicite disponible dans ABAQUS/Explicit (voir ABAQUS Theory Manual). Les équations de mouvement sont intégrées explicitement par le schéma d'intégration aux différences centrales appliqué à chacune des six équations après assemblage. Si on se limite à la première équation exprimant l'équilibre de la structure pour calculer le champ des déplacements, cela donne :

                              1 1 2 1 2 1 1 2 1 2 nn n n n n n n n tt u u u u u t u            (32) 
Les autres équations sont résolues, en même temps que l'équation d'équilibre, par le même schéma dynamique explicite. Notons que la procédure dynamique explicite ne nécessite aucune itération et n'a pas besoin de matrice tangente, cependant, elle est conditionnellement stable. L'incrément de temps stable avec amortissement est donné par :

    2 max 2 1 u t w      (33) 

IV.3. Schéma d'intégration locale des équations de comportement

Le calcul des vecteurs forces internes présents dans les équations Eq.(.31) nécessite la connaissance des variables d'état à l'instant    . Cela se fait par intégration numérique des équations d'évolution de ces variables en supposant connues leurs valeurs à l'instant n t , début de l'incrément de charge.

En combinant le schéma asymptotique avec l'algorithme du retour radial, tous deux purement implicites, conduit à un schéma d'intégration efficace et robuste inconditionnellement stable en présence de l'endommagement ductile qui induit un comportement fortement adoucissant.

Prévision élastique

Supposons que l'incrément de déformation totale (   ) imposé pendant l'incrément de temps soit purement élastique et n'induise aucun phénomène dissipatif (écoulement inélastique, écrouissages, endommagement…). Dans ce cas, la contrainte essai (trial stress)à 1 n t  est donné par : 

            , 1 1 
  1 , 1 1 1 trial nn vp trial n n yp n n n X R fT d d            (35) Si , 1 0 vp trial n f   , cela signifie que l'état de contrainte d'essai
                         1 1 1 1 1 1 1 1 1 vp vp n n n n n n n n trial n n n n n n n n r r d d X X R R Y Y (36)

Correction plastique

Si , 1 0 vp trial n f   , cela signifie que l'état de contrainte d'essai se situe à l'extérieur de la surface d'écoulement. Le pas de chargement est donc plastique et la solution essai doit être corrigée pour assurer les conditions d'admissibilité plastique ou viscoplastique suivantes :

    1 1 1 1 1 1 1 1 1 1 , , ; 0 , 
, ; 0 p n n n n n vp p vp n n n n n n n f X R T plasticity f f X R T viscoplasticity                 (37) 
En considérant la viscoplasticité anisotrope, on obtient les trois équations non linéaires à trois variables

indépendantes suivantes   vp , d et f n :               1 1 11 1 1 10 11 1 1 1 1 1 0 1 1 0 1 :0 n n n vp vp n n n yp n n n sT vp nn n n n T n n f n n n n n Z R fT d d Y Y T g d d ST d h H T Z Z n                                           (38)
En utilisant le schéma de Newton-Raphson pour linéariser et résoudre les équations non linéaires Eq.(.38) le système suivant est obtenu : 

                                                             
              11 , 1 1 1 11 1 1 0 1 11 1 11 1 1 : 1 1: 1 11 1 1 1 vp vp nn e trial vp n n n nn n n n n n n QQ bb QQ n n nn n n HX d X d d T T P d T T P Q bQr Q Q r e e Rd b d Q Q Qr                                                                               1 1 11 1 1 1 1 1 1 vp vp vp C a C n C a C nn fn n m vp vp vp n e CC CC Xd en CC a C C C K t                                                                   (40) 
V. Étude paramétrique et applications 2). La réponse du modèle est plus sensible au module H qu'au module g H

3). La réponse du modèle est également plus sensible au module Q qu'au module g Q 4). L'endommagement micromorphe retardent significativement l'évolution de l'endommagement local surtout dans les cas des températures élevées ou des taux des déformations élevés.

V.2. Applications

Essai de traction uniaxial de DP1000

L'essai de traction uniaxial de l'acier biphasé DP1000 présenté dans le travail de Yue (2014) est simulé par le modèle micromorphe proposé. La géométrie de l'échantillon est donnée à la Fig. 0 

VI. Conclusions et perspectives

Dans ce travail, nous avons formulé un modèle constitutif élastoviscoplastique micromorphe, non local, qui tient compte de l'écrouissage mixte non linéaire isotropes et cinématiques fortement couplés aux endommagements ductiles dans le cadre de la thermodynamique des processus irréversibles étendue à la mécanique des milieux continus généralisés.

Dans un premier temps, nous avons développé un solveur EF basé sur la méthode inverse à plusieurs configurations intermédiaires, statique-implicite, qui tient compte de l'élastoplasticité classique avec écrouissage isotrope pour une analyse rapide et peu coûteuse de la formabilité des tôles minces : 1). Le solveur multi-pas améliore les estimations des contraintes en adoptant plusieurs configurations intermédiaires représentant les chemins de déformation et les actions simplifiés des outils (forces de contact). Les configurations intermédiaires d'ébauche de tôle déformée sont construites de manière efficace selon des procédures appropriées: résolution d'un programme quadratique optimal, génération de solutions initiales et équilibrage des itérations d'équilibre ;

2). Les applications numériques valident la nouvelle mesure des déformations finies dérivées le long de l'épaisseur de la coque et offrent la possibilité d'améliorer grandement les estimations des contraintes dans les chemins de déformation en comparaison avec l'approche inverse à un pas unique.

Deuxièmement, nous avons dérivé et mis en oeuvre dans Abaqus/Explicit un modèle thermomécanique non-local, capable de capturer les effets non locaux dans les zones de forte localisation de la déformation induite par l'endommagement ductile ou par des échanges thermiques violents. La théorie proposée diffère des extensions thermomécaniques existantes du modèle micromorphe d'Eringen qui reposent sur l'introduction d'un vecteur de micro-température apparenté à un gradient de température. Il a également été comparé à l'équation de la chaleur effective résultante du modèle à double température impliquant deux équations thermiques couplées et conduisant également à des dérivées spatiales du quatrième ordre : a). L'équation de la chaleur hyperbolique de Cattaneo II avec temps de relaxation peut être obtenue à partir de l'équation de la chaleur micromorphe thermodynamiquement cohérente en négligeant les effets non locaux de la température ; b). Les modèles à deux températures classiques hyperboliques peuvent être également extraits des équations de la chaleur micromorphe c). L'équation de la chaleur avec micro-température, à l'aide de la théorie de Green et l'équation de la chaleur micromorphe, fournissent une paire d'équations gouvernant la température locale et micromorphe. Et l'équation d'onde classique peut être obtenue à partir de leurs équations de la chaleur contrainte. iv). La théorie proposée permet un couplage direct avec la mécanique des matériaux et est considérée comme utile pour la simulation des variations rapides de la chaleur comme les traitements de surface de matériaux au laser, etc. La théorie résultant de l'introduction du gradient de température micromorphe pourrait être une alternative à l'analyse du transport de chaleur basé sur des flux de chaleur améliorés.

Plusieurs aspects restent ouverts et nécessitent de continuer les efforts pour améliorer la modélisation proposée :   2 dA C q q T q A q div q dT q q T   
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Fig. I- 1

 1 Fig. I-1 Kinematic relations of material pointConsidering the movement of a material point from 0C to C , leads to:   

  eigenvalues and eigenvectors of   1 B .   M defines the transformation between the local coordinates and the principal strain coordinates.

  Fig. I-1, which are placed on the reference and current configurations respectively, as shown in Fig., their position vectors can be expressed as:

  of left Cauchy-Green deformation tensor is given by:

  planar principle stretches  1 and  2 are obtained from the eigenvalues of 

  Fig. I-2 Friction forces of the punchConsidering the known constrained vertical displacement of each node, the punch force can be evaluated by:

Fig. I- 3

 3 Fig. I-3 Friction forces of the blankholder Under the blankholders, only the friction force is considered as the external force (Fig. I-3): 2 n f q t

Fig. II- 1

 1 Fig. II-1 Kinematical relations of material point in three configurations

t

  are the components of the curvature tensor of the configuration C .

  where,  indicates the Lagrange plastic multiplier.

  1). Resolution of the sliding surface. a. Compute the elemental matrix of the area using (I.55). b. Assemble the structural area matrix to form the Quadratic Programming (QP) optimization model using (I.56). c. Solve the QP problem (e.g. Matlab/quadprog() subroutine).

  of element in number e ,  i represents the proportional coefficient of coordinate on each node, n and m represent the number of element and node respectively.

Fig. II- 3

 3 Fig. II-3 The coordinates of a triangle element on Punch, Blank and Die meshes

Fig. II- 4

 4 Fig. II-4 Construction of middle sliding surface using enhanced PMA method

  a proper threshold tol , any nodes of the middle surface which satisfies the conditions 

Fig. II- 5

 5 Fig. II-5 Scheme of initial solutions of the intermediate configuration

Fig

  Fig. II-6 Scheme of node-element relations of the two initial blank configurations

  thickness and area of the element, ep C is the elastoplastic module tensor as derived in Eq.(I.41),   B is the strain operator of the triangular element: The subscripts ( , , ) i j m follow the order  ij ,  jm and  mi .

Fig. II- 8

 8 Fig. II-8 shows the flowchart of the procedure of balancing the middle configurations. In the common case, the update of the initial blank 0C is negligible thanks to the reliable inverse approach.

Fig. III- 1

 1 Fig. III-1 Comparisons of thickness distributions on three intermediate configurations simulated by LS-DYNA and Multi-step approach: (a) Depth 15mm of INC. (b) Depth 15mm of MSTP. (c) Depth 25mm of INC. (d) Depth 25mm of MSTP. (e) Depth 40mm of INC. (f) Depth 40mm of MSTP.

Fig. III- 2

 2 Fig. III-2 Comparisons of thickness distributions of two section curves on different depth obtained by LS-DYNA and Multi-step approach: (a) Section AB. (b) Section CD.

  It's clear that the consistency of thickness distribution (Fig. III-1 and Fig. III-2) certifies the correction of thickness strain which is calculated from the results of kinematic formulations with the assumption of plastic incompressibility. Here we still need more verifications of direct variables from kinematic formulations. The evolutions of planar principle strains of section AB and CD are shown in Fig. III-3 respectively.

Fig. III- 3

 3 Fig. III-3 Comparisons of principle strain distributions of two section curves on different depth obtained by LS-DYNA and Multi-step approach: (a) Major strain of section AB. (b) Minor strain of section AB. (c) Major strain of section CD. (d) Minor strain of section CD.

Fig. III- 4

 4 Fig. III-4 Estimations of equivalent values of section AB on different configurations obtained by multi-step approach: (a) Equivalent plastic strain. (b) Hill's equivalent Stress.

Fig. III- 4

 4 Fig. III-4 shows the evolutions of the equivalent plastic strain (

Fig

  Fig. III-6 The constructed middle configurations: (a) Depth 15mm (b) Depth 25mm III.1.3 The constructed intermediate configurations Several intermediate configurations of the S-Rail part are efficiently constructed with the help of the PMA method which solves the QP problem with only 16 iterations. As shown in Fig. III-6, two middle configurations are presented for punch travel 15mm and 25mm.

Fig

  Fig. III-7 Sections of the generated middle configurations using LS-DYNA and PMA method: (a) Section AB (b) Section CD In Fig. III-7, the sections AB and CD are extracted to show the agreement with the intermediate states computed from the incremental approach, for three middle configurations (depth 15mm, 25mm and 35mm). It's obvious that the section curves of PMA coincide with the curves of INC.

  hardening exponent  0.12 n and thickness  1.95 t mm. Two sections are defined in Fig. III-8 to analyze the simulation results: section 1 (

Fig

  Fig. III-8 The geometry of B-Pillar

x

  MPa and   46.76 y MPa around arc length 200mm of section 1 and   140.93

Fig

  Fig. III-10 Comparisons of stress distributions on three sections updated by INC, MSTP approach (with two different schemes of intermediate configurations) and One-step approach (OSTP): (a) Stress X of Section 1. (b) Stress Y of Section 1. (c) Stress X of Section 2. (d) Stress Y of Section 2.

  CAD model of the die of the box holder part is given in Fig. III-11. The blank material parameters and forming processes are: thickness  1blank holder force 15KN and friction coefficient 0.15.

Fig

  Fig. III-11 The CAD model of the Box shaped holder III.3.1 The middle configurations using enhanced PMA method The basic variables  i of three middle configurations, constructed by the PMA method in punch travel 15mm, 25mm and 35mm, are shown in Fig. III-12. The gray color indicates the nodes satisfying the conditions (  0.02 m

Fig

  Fig. III-12 Basic variables of the constructed middle configurations using the PMA method

  Fig. III-15 Stress components of section AB of the Box shaped holder part

  Substituting Eqs. (II.1)-(II.3) into Eq. (II.5), the consequences are the classical equilibrium equation as well as four additional balance equations associated with the micromorphic variables together with their Neumann-type boundary conditions:  The classical equilibrium equations:

  i) Due to the high sensitivity to the localization, the nonlocal damage effect is characterized by the micromorphic isotropic damage d and its first gradient d .Y and Y are their generalized dual forces. j) The thermal gradient effects are represented by the state variable of micromorphic temperature T and its first gradient T (their dual stress-like forces s and s ). The micromorphic temperature is associated with the local temperature T .

  the three eigenvalues and corresponding eigenvectors of the tensor Z and i Z is the positive part of i Z defined by:

  is the initial size of the plastic yield PART II CHAPTER VI THEORETICAL FORMULATIONS 81 surface, b and a are the nonlinear parameters of isotropic and kinematic hardening respectively. The isotropic ductile damage potential   ; d F Y d is defined as:

.

  Due to the Kuhn-Tucker conditions (   0 ,

  phenomena linked to the time-dependent inelastic flow are described with yield criterion:

  X T is additively decomposed into three contributions representing respectively: the viscoplastic flow    , , , vp R X T , restoration by the kinematic hardening and isotropic hardening

  equations (Eqs.(II.105) ~ (II.109)) can be rewrote as:

  internal length scale parameters relative to the micromorphic damage, isotropic hardening, kinematic hardening and temperature, and defined by the ratio of the micromorphic moduli:

  reduces to a closed convex function of the classical local state variables:  e , d , r and  , and a concave function of the temperature.

  If we ignore the internal variable -local damage, the Helmholtz free energy  of the classical local state variables:  e , r and  , and a concave function of the temperature.

-

  the local damage equal to zero (  0 d), which means no damage effects, we'll obtain the classical local state relations and elasto-plastic or elasto-visco-plastic evolution equations.The Helmholtz free energy Eq.(II.123) will reduce to: Specific entropy (neglecting the micromorphic terms compared with the generalized specific entropy in Eq.(II.42)):

  where  is the specific Helmholtz free energy,  e is the reversible part of the strain tensor and  n are the (n) internal state variables associated with intrinsic dissipative phenomena (i.e. kinematic hardening or isotropic hardening). The dual stress-like variables associated with these internal state variables are denoted by n A . Substituting Eq.(II.151) and Eq.(II.154) into Eq.(II.153) to eliminate the body heat source  and the specific internal energy, leads to the so-called Clausius-Duhem inequality under its local form:

  the deduced state relations Eq.(II.157), and substituting Eq.(II.154) into the first law of thermodynamics Eq.(II.151), lead to the classical local form of the heat equation: heat capacity at constant volume. In particular, if the Fourier law[START_REF] Fourier | Theorie analytique de la chaleur[END_REF] of heat flux is assumed:

p

  is the pressure,  dev is the deviatoric part of stress tensor,

  extended rate of specific internal energy Eq.(II.197) into the classical second law of thermodynamics (Eq.(II.153)), leads to the generalized Clausius-Duhem inequality:

  laws Eq.(II.200) into the local energy balance equation (Eq.(II.197)), leads to the classical form of the heat equation: internal energy density function, linearized around the reference entropy 0 s in rigid heat conduction:

  absence of prescribed external micro-forces. The additional contribution in Eq.(II.204) accounts for the size effects in heat conduction in micro-heterogeneous bodies.

  a sufficiently small value of s A , the last term in the left hand of Eq.(II.207) can be neglected, the heat equation becomes: the heat equation derived from the temperature gradient theory Eq.(II.206). Note that the heat equation (Eq.(II.208)), derived from the gradient temperature theory, has the same form as the heat equation of Cattaneo I (Eq.(II.164)) taking   0 T TA . Double temperature model VI.5.3.4.1 Aifantis' double temperature model A generalized heat equation has also been phenomenologically derived by Aifantis

  (II.225) reduces to Eq.(II.222), which implies a hyperbolic type with finite propagation of thermal waves. When  0 e l , it is a parabolic function and discontinuities are smoothed by diffusion associated with the effective thermal diffusivity. PART II CHAPTER VI THEORETICAL FORMULATIONS 108 Microtemperature models

  laws Eq.(II.246) into the local energy balance equation (Eq.(II.244)), leads to the classical form of the heat equation:

  the inertia is only proportional to the first time derivative of temperature), the linearization of the heat equation (Eq.(II.269)) leads to:

  medium or if T is relatively small compared with other two terms, it indicates that the temperature satisfies the classical wave equation:

  the attenuation distance is infinite.

pV

  , due to the thermal conductivity coefficient   0 , material parameter  0 M and the length  0 L of the rod, PART II CHAPTER VI THEORETICAL FORMULATIONS 119are all positive defined parameters in the literature[START_REF] Nguyen | Gradient thermodynamics and heat equations[END_REF]. Consequently,

  abB C a b A B a b abC

  predicted by the classical theory based on Fourier's model[START_REF] Jou | Extended Irreversible Thermodynamics[END_REF]the hyper-temperature heat equation (Eq.(II.284)), or the heat equation from Cattaneo I (Eq.(II.164)), or the heat equation (Eq.(II.238)) derived by Iesan

  hyperbolic heat equation with relaxation time (Eq.(II.285)). The velocity and attenuation distance are obtained: the solutions given by the hyperbolic heat equation of Cattaneo II in Eq.(II.169), corresponding to the finite propagation of thermal waves: in low frequencies (

  abB C a b

  derivatives into Eq.(II.319) leads to:

Figure VII- 1

 1 Figure VII-1 The reference element and real deformed element As shown in Figure VII-1, the shear strain in the element is interpolated from the four middle nodes:       0, 1 a ,     1, 0 b ,     0, 1 c

  strains in local coordinates can be easily obtained under the transformation: .(II.405), the assumed shear strain is expressed as:

D

  is the component of the integrated bending matrix   b D .

1 )F

 1 . Resolution of the equation of displacement field in the Eq.(II.329) a) Compute the lumped mass matrix e u M   for once, using the Eq.(II.330) at the beginning of the analysis step; b) Estimate the new stable time increment by the local integration scheme (Section VII.5); e) Compute the internal forces   of the equations of micromorphic fields (damage and isotropic hardening) in Eq.(II.329) a) Compute the lumped mass matrix of micromorphic fields   (II.332)) for once, at the beginning of the analysis step; b) Estimate the stable time increment  Resolution of the equation of local temperature in the Eq.(II.329) a) Compute the lumped capacitance matrix e T M   for once using the Eq.(II.335); b) Estimate the stable time increment  by Eq.(II.335); e) Solve the time rate of temperature  

  Go to the next time step.

L

  is the characteristic element dimension and d C is the current effective, dilatational wave speed of the material. The characteristic element dimension is derived from an analytic upper bound expression for the maximum element eigenvalue. And the dilatational wave speed of the material can (II.324)), leads to the stability limits associated with each micromorphic field to define the associated stable time increments

  the evaluations of the local stress tensor  1 n Eq.(II.330), the local damage 1 n d Eq.(II.331), the isotropic hardening 1 n r Eq.(II.332), the kinematic hardening  1 n Eq.(II.333) and the local temperature 1 n T Eq.(II.334) at each integration point at each element at time step  state relations Eqs.(II.31)~(II.40) and the evolution equations Eqs.(II.77) ~(II.98). The mechanical state variables are updated by the local integration scheme, while the micromorphic damage 1 n d  , micromorphic isotropic hardening 1 n r  remain constant taking their values at the end of the current time increment 1 n t  , which are obtained simultaneously by an explicit coupling in the Abaqus/Explicit dynamic analysis. When all the mechanical state variables as well as the micromorphic dofs (local as well as micromorphic ones) are known the local thermal problem is then solved to compute 1 n T  .

  element for thick shell In order to consider the plate theory and thick shell or the theory of Mindlin, the Q4r24 element is developed, which is a bilinear quadrangle and has six degrees of freedom each node including three translations and three rotations in the global coordinates. The planar translations u and v are used to define the membrane effects, the normal translation w and the rotations  x and  y serve the formation of shear effects, as well as the rotations  x and  y define the bending effects. The sixth dofs  z is used to avoid the singularity of the stiffness matrix. The formulations are briefly reviewed based on the previous work of Bassa (2011).

Figure VII- 2

 2 Figure VII-2 The reference element and real element

  matrix of the membrane and   e n u is the vector of the nodal displacements.

  of the nodal rotations.

  Figure VII-3 shows the reference geometry of the element, the nodal coordinates, as well as the geometry of the real element. The coordinates i x ,  1,2,3 i , of a point in the element are related to the nodal coordinates

Figure VII- 3

 3 Figure VII-3 The reference and real hexahedral element

  and  are Lame constant.

,

  Considering the material property of parametric study:  208.0 E GPa ,  0.3 v and  150.0 a , a single integration point is chosen to undergo the uniaxial tension state with initial damage parameters:  3

Fig

  Fig. VIII-1 shows the effect of the parameter S by taking four different values  1.75 S ,  3.5 S ,

Fig. VIII- 2

 2 Fig. VIII-2 Influence of the parameter s on the evolution of damage and equivalent stress

  Fig. VIII-3 Influence of the parameter 𝛽 on the evolution of damage and equivalent stress

  Fig. VIII-5 Influence of parameter 𝛾 on the evolution of damage energy release rate Y

Fig

  Fig. VIII-6 The viscous stress of the Norton-Hoff and Hyperbolic Sine

Fig

  

1 . 1

 11 Fig. VIII-7 Consistent Force-displacement curves

  mm   . For the case of small internal length 0.1mm , the force-displacement PART II CHAPTER VIII PARAMETRIC STUDY 164 curves of mesh sizes 0.4mm and 0.8mm are similar to the responses of the model which take the

Fig

  Fig. VIII-9 Force-Displacement curves of different values of internal length 𝑙 𝑑 ̆ 3). Different micromorphic density scalar

Fig

  Fig. VIII-10 Force-Displacement curves for different micromorphic damage density scalar

Fig

  Fig. VIII-12 Force-Displacement curves of variations of local damage parameter sIn Fig., four different force-displacement curves are presented for two mesh sizes (0.4mm and 0.8mm) and two choices of the local damage parameter  : 1.0 and 4.0. As expected, the higher value of  accelerates the evolution of damage and yields earlier final fracture (about 7.5mm), the smaller value of  delays the final fracture displacement (around 8.5mm). Meanwhile, the consistency property loses gradually according to the increase of the parameter  . It is worth noting that both the high values of the local damage parameter s and  result in smaller final fracture accumulated plastic strain for local damage model as shown in Fig. VIII-2 and Fig. VIII-3, however, in the analysis of the force-displacement curves for micromorphic damage model (in Fig. VIII-12 and Fig. VIII-13), the high value of s provides latter final fracture displacement. That is due to the high value of s suppresses the initial evolution of the damage, which needs more displacement to drive its initial evolution, although it accelerates the overall evolution of damage, as shown in Fig.VIII-2. For the damage parameter  , its high value yields both the faster initial and overall evolution of the damage, and consequently needs smaller displacement to final fracture.

FigVIII. 3 . 2

 32 Fig. VIII-14 Force-Displacement curves of different values of the initial damage energy release rate 𝑌 0VIII.3.2 Effect of the micromorphic isotropic hardening moduliIn this section, the micromorphic isotropic hardening is introduced into the above micromorphic damage model taking the parameters:

Fig

  Fig. VIII-16 shows different force-displacement curves varying with the internal length of micromorphic isotropic hardening while the Q modulus remains

Fig

  Fig. VIII-17 illustrates the thermal effects on the evolutions of equivalent stress based on the proposed constitutive equations coupled with local damage and local mixed hardening. The accumulated plastic strain (max: 0.652; min: 0.592) increases and the tensile stress (max: 1108.72MPa; min: 416.91MPa) decreases steadily as temperature increases.

Fig

  Fig. VIII-17 Stress-strain curves for different temperatures with the same strain rate 1.0E-04s -1 Fig. VIII-18 shows the four types of evolutions of local damage under different strain rates (velocity) (from 1.0E-04s-1 to 0.1s-1) under the initial temperature 1000°C. Clearly, the evolution of local damage is accelerated by the increasing strain rate. The fracture plastic strains are 0.652, 0.648, 0.636 and 0.605 respectively.

Fig

  Fig. VIII-18 Evolution of damage for different loading velocity with the same temperature 1000°C VIII.4.2 Biaxial tension for local damage with FE The geometric size and boundary conditions of the sample are shown in Fig. VIII-19. For simplifications, three different initial temperatures (20°C, 500°C and 1000°C), and four velocities(2.0E-04mm/s, 2.0E-05mm/s, 2.0E-06mm/s and 2.0E-07mm/s) are performed on a single finite element in this example. The approximate strain rates are 1.0E-01s -1 , 1.0E-02s -1 , 1.0E-03s -1 and 1.0E-04s -1 respectively.

Fig

  Fig. summarizes the material responses of the local damage model, in terms of equivalent stress -accumulated plastic strain curves, for 7 cases including three temperatures and three velocities. From this figure the viscoeffects are very clear: when the temperature increases the ductile plasticity is extended and the final fracture plastic strain is also enlarged (0.591 in 20°C, 0.626 in 500°C and 0.653 in 1000°C with velocity 2.0E-07mm/s). However, both the initial yield stress (792.00MPa, 547.09MPa and 281.12MPa) and hardening effects are decreased. The opposite tendency of the fracture plastic strain is observed for the raise of loading velocity at each temperature, while the equivalent stress after yield point shows significant differences (31.24MPa for 500°C and 66.85MPa for 1000°C ). In Fig. VIII-21, it illustrates the different evolutions of local damage for the same seven cases. It's clear that the evolution of damage is delayed by the raise of the temperature and the decelerated load velocity.

  Fig. summarizes the material responses of the local damage model, in terms of equivalent stress -accumulated plastic strain curves, for 7 cases including three temperatures and three velocities. From this figure the viscoeffects are very clear: when the temperature increases the ductile plasticity is extended and the final fracture plastic strain is also enlarged (0.591 in 20°C, 0.626 in 500°C and 0.653 in 1000°C with velocity 2.0E-07mm/s). However, both the initial yield stress (792.00MPa, 547.09MPa and 281.12MPa) and hardening effects are decreased. The opposite tendency of the fracture plastic strain is observed for the raise of loading velocity at each temperature, while the equivalent stress after yield point shows significant differences (31.24MPa for 500°C and 66.85MPa for 1000°C ). In Fig. VIII-21, it illustrates the different evolutions of local damage for the same seven cases. It's clear that the evolution of damage is delayed by the raise of the temperature and the decelerated load velocity.

Fig

  Fig. VIII-20 Stress-strain curves for different temperature and load velocity coupled with local damage

Fig

  Fig. VIII-22 Stress-strain curves and evolution of damage for some values of micromorphic densityIn Fig.VIII-22, it illustrates the stress-strain curves and the evolutions of damage for different micromorphic density (0.1~100 times of local density) with given H modules equal to 1000N. From the theoretical formula Eq.(II.111), we can see that the micromorphic density will be used to calculate the accelerate of micromorphic damage at each time step, which determines the incremental micromorphic damage and affects the local damage. In this figure, it clearly represents that the larger micromorphic density evidently slows the evolutions of local damage and enlarged the ductile plasticity of the material.

Fig

  Fig. VIII-23 represents the effects of different choices of 𝐻 ̆ modules (1.0~1000N) for the stress-strain curves and the evolution of local damage. From the state relations of stress-like variable with respect to local damage Eq.(II.43), we know that the evolution of the local damage is affected by the micromorphic damage through the H modules. In this figure, it describes that the larger H modules the slower evolution of local damage. We can also find this character from Eq.(II.37), the term of coupled local and micromorphic damage has a negative sign, which induces the reduction of the stress-like variable Y of local damage.

Fig

  Fig. VIII-24 Stress-strain curves for different temperature and load velocity with micromorphic damage

Fig

  Fig. VIII-26 Evolution of the differences (𝑑 -𝑑 ̌) between the local and the micromorphic damage for different velocity at 500°C

Fig 1 IX. 1 . 1

 111 Fig. IX-1 Geometry of the uniaxial tension specimen

Fig

  Fig. IX-2 Force-Displacement curves of the tensile test using the local damage model If we plot the differences of the final fracture displacement from the adjacent mesh size in the ratio of 2.0, as shown in Fig. IX-3 and Fig. IX-4, the differences: 0.554mm   1.6 0.8 ff uu 

Fig

  Fig. IX-4 Distributions of final fracture obtained from the local damage model for different mesh sizes IX.1.2 The micromorphic damage behavior In fact, for the model with micromorphic damage, there are three independent micromorphic damage parameters: the density scale d  , the micromorphic modulus H and g H which are related by the internal

Fig

  Fig. IX-7 Local and micromorphic damage distributions of line AB predicted by the local damage model (LD) and the micromorphic damage model (MD) for three mesh sizes: 1.6mm, 0.8mm and 0.4mm Fig. IX-6 shows the distributions of local damage predicted with the micromorphic damage model in the tensile sample after the final fracture. Fig. IX-7 presents the distributions of local and micromorphic

Fig

  Fig. IX-10 Local and micromorphic isotropic hardening strain distributions of line AB predicted by the local damage model (LD) and micromorphic damage and isotropic hardening model (MDH) for three mesh sizes: 1.6mm, 0.8mm and 0.4mm In Fig. IX-13, the distributions of the local isotropic hardening strains, predicted by both the local model and the micromorphic model for the three studied mesh sizes at both stage I and stage II, are plotted. Similar to the damage, the distributions of the isotropic hardening strains are wider for the micromorphic model than for the fully local model. Recall the Fig. IX-10, which plots the distributions of local and micromorphic isotropic hardening strains, predicted by the local damage model and the micromorphic damage and isotropic hardening model respectively, along the central line AB.Clearly, it is observed that, similar to the damage, the isotropic hardening strain of local damage model is also localized in one element's width. However, the distributions of the isotropic hardening strain predicted by the micromorphic damage and isotropic hardening model is much more smooth than the results from local damage model. The differences between the local and micromorphic isotropic hardening strains predicted by the micromorphic model are getting larger as the refinement of the mesh size.

Finally

  , the Fig. IX-14 shows the distributions of the micromorphic isotropic hardening strains and the difference between the local and the micromorphic isotropic hardening strains   rr  for three different PART II CHAPTER IX APPLICATIONS 184

  Fig. IX-15.

Fig

  Fig. IX-15 Scheme of the cross section deep drawing (CSDD) process referenced Yue (2014)The cross section deep drawing process is simulated using the subroutine VUEL of Abaqus/Explicit with the proposed strongly coupled local and micromorphic damage model assuming time-independent plasticity (no thermal effects). Only a quarter of the assembled geometry is given in Fig.IX-16 and the blank part is discretized with the unified mesh size 1.6mm, 2.0mm and 2.4mm respectively.

FigFigFig

  Fig. IX-16 Quarter part of the FEM model for the CSDD drawing process

Fig

  Fig. IX-23 Geometry and boundary conditions of the half of the pressure vessel The stress-strain curves predicted by uncoupled and fully coupled models with local damage at strain rate of 1.0E-04/s at different temperatures lying from 20°C to 600°C are presented in Fig. IX-24 and Fig. IX-25, respectively. For the sake of simplicity, the thermal properties of the studied material are assumed to be temperature independent. 𝜌 (𝑘𝑔 𝑚 3 ⁄ ) 𝐸 (𝐺𝑃𝑎) 𝜈 𝜎 𝑦 (𝑀𝑃𝑎) 𝑄 (𝑀𝑃𝑎) 𝑏 𝐶 (𝑀𝑃𝑎) 7800.0 206.0 0.3 158.0 500.0 1.5 3000.0 𝑎 𝑆 𝑠 𝛽 𝛾 𝑌 0 ℎ 26.0 3.0 1.2 2.0 4.0 0.0 1.0 κ (𝑊/𝑚. °𝐶) 𝐶 𝜀 (𝐽/𝑘𝑔. °𝐶) 𝛼 𝐾 𝑣𝑝 (𝑀𝑃𝑎) 𝑚 𝑣𝑝 60.0 450.0 1.2e-05 50.0 2.0Table IX-2 Material parameters of a type of common steel at room temperature

Fig

  Fig. IX-26 Distributions of the elevated temperature at the end of stage I (2.1s) The distributions of the temperature elevated by the uniform input heat flux at the end of stage I (2.1s) are illustrated in Fig. IX-26. The clear diffusion of the temperature is observed. The maximum values of the temperature of the outter and innser surfaces are about 605.2°C and 594.3°C , respectively.

Fig

  Fig. IX-28 The evolution of Forces along Z axis for different mesh sizes 40mm and 80mm

Fig. 0 - 1

 01 Fig. 0-1 Relations cinématiques de point matériel en trois configurations En considérant les trois configurations de la Fig. 0-1, 0 C indique la configuration initiale, C est la configuration finale connue et 1C est une configuration intermédiaire typique. Formulons la mesure de la déformation logarithmique du point matériel q sur les configurations 1 C et C .Puisque la relation cinématique non linéaire entre la configuration 0 C et 1 C est exactement la même que celle de l'approche inverse à un seul pas, nous nous concentrons sur le cas de la configuration de référence1 C . L'inverse du tenseur des dilatations de Cauchy-Green gauche sur la configuration 1 C , est donné par :

Fig. 0 - 2

 02 Fig. 0-2 Surface de glissement limitée par le poinçon et la matrice

  Classiquement (voir Saanouni, 2012) l'état thermomécanique local d'un milieu continu des décrit par des couples de variables d'état "commandables" à savoir : endommagement ductile isotrope   , dY . En plus de ces variables d'état locales, quatre nouvelles paires de variables micromorphes associées à leurs variables d'état local sont introduites :   , dY pour l'endommagement micromorphe,   , rR pour l'écrouissage isotrope micromorphe,    , X pour l'écrouissage cinématique micromorphe et   , Ts pour la température micromorphe.

  généralisation de la théorie de la plasticité multi-surfaces de sorte que l'écoulement inélastique se produit même si   effet, cette condition exprime la distance entre l 'état actuel de contrainte en un point donné et la surface résultante définie par   distance définit directement, dans l'espace des contraintes, la contrainte dite visqueuse vp  .

  à l'équation de la chaleur dérivée par[START_REF] Ieşan | On the theory of heat for micromorphic bodies[END_REF] en l'absence des dérivées du quatrième ordre, sur la base des milieux micromorphes. c) Dans l'équation Eq.(II.271), si  0 g M pour un milieu hypothétique ou si T est relativement petite par rapport aux deux autres termes, elle indique que la température satisfait à l'équation d'onde classique:

  matrices de masse et des vecteurs forces sont données dans le mémoire en anglais.

Fig. 0 - 4

 04 Fig. 0-4 Influence du paramètre s sur l'évolution de l'endommagement et de la contrainte équivalente De cette étude paramétrique complète les conclusions suivantes sont tirées : 1). Les paramètres de l'endommagement local affectent significativement la réponse du modèle. La variation du paramètre S affecte la déformation à rupture (ductilité) en accélérant ou en ralentissant le déplacement final à rupture; les paramètres S et 0 Y affectent également le déplacement final à rupture ; alors que le paramètre  influence la nonlinéarité d'évolution de l'endommagement;

  -5. Les paramètres élastoplastiques et d'endommagement matériels identifiés sont donnés dans leTable 0-2.

Fig. 0 2

 02 Fig. 0-5 Géométrie de l'éprouvette de tension uniaxiale

Fig. 0

 0 Fig. 0-6 Courbes force-déplacement de l'essai de traction en utilisant le modèle d'endommagement local La Fig. 0-7présente les réponses du modèle (courbes force-déplacement) du même essai de traction uniaxial, en prenant les paramètres: 3.3 S  、

Fig. 0 - 7

 07 Fig. 0-7 Courbes de force-déplacement du test de traction à l'aide du modèle de endommagement micromorphe et de durcissement isotrope Procédé d'emboutissage Le procédé d'emboutissage profond d'une pièce cruciforme en DP1000, réalisé par Yue(2014), est simulé à l'aide du sous-programme VUEL d'Abaqus/Explicit avec respectivement le modèle de endommagement local et micromorphe fortement couplé. Seul un quart de la géométrie de la pièce est modélisée ( Fig. 0-8) avec un maillage uniforme de 1,6 mm, 2,0 mm et 2,4 mm de taille.

Fig. 0

 0 Fig. 0-8 Quatrième partie du modèle FEM pour le processus de CSD La Fig. 0-9, montre les réponses numériques et expérimentale (force de poinçonnage en fonction du déplacement du poinçon) prédites par le modèle local en considérant les effets de fermeture de microfissures pour différentes tailles du maillage. On observe que les réponses du modèle local sont clairement dépendantes de la taille du maillage. Les courbes force-déplacement chutent plus rapidement pour les maillages de faible taille. En effet la force du poinçon amorce sa chute dès un déplacement de 23,34mm, 26,14mm et 27,89mm pour les maillage de taille de 1,6mm, 2,0mm et 2,4mm respectivement.

Fig. 0

 0 Fig. 0-9 Courbes de force-déplacement de perforation prédites par le modèle de endommagement local avec effets de fermeture pour différentes tailles de maille du processus de CSD Nous avons également refait les mêmes simulations mais en utilisant le modèle de endommagement micromorphe, prenant le facteur d'échelle de densité micromorphe

Fig. 0 -

 0 Fig. 0-10 Courbes de force-déplacement du poinçonnement prédites par le modèle de endommagement micromorphe avec effets de fermeture pour différentes tailles de maille du processus de CSD La Fig. 0-12, montre les distributions des endommagements locaux au moment où le premier élément est complètement endommagé (amorçage d'une fissure macroscopique) pour les trois tailles du maillage. Nous pouvons remarquer que pour le modèle local, l'amorçage des fissures se produit en deux zones pour trois déplacements différents du poinçon de 21.15mm, 24.12mm et 26.06mm, pour les tailles de maille de 1.6mm, 2.0mm et 2.4 Mm respectivement. Pour le modèle micromorphe, toutes les fissures initiales apparaissent approximativement à la même place pour un même déplacement du poinçon de 28,35 mm et ce pour les trois maillages. Ceci confirme la régularité du PVIL micromorphe.

Fig. 0 -Fig. 0 -Fig. 0 -

 000 Fig. 0-11 Exemples de défaillance expérimentale de l'échantillon CSD Comme le montre la Fig. 0-13, la propagation des fissures, simulée par le modèle micromorphe, indique que la fissure apparaît initialement dans la région du coin gauche pour un déplacement d' environ 28,35 mm du poinçon en accord avec le résultat expérimental tel qu'illustré à la Fig. 0-11 et Fig. 0-12, après que la fissure s'est propagée vers l'avant à partir des deux côtés de la ligne de front de la fissure initiale. Cependant, avec le modèle local, deux fissures s'amorcent et se propagent l'une vers l'autre mais pour différents déplacements du poinçon d'une manière dépendante de la tailles du maillage (Fig. 0-12). En conclusion, les résultats prédits par le modèle micromorphe sont indépendants du maillage et proches des résultats expérimentaux, ce qui n'est clairement pas le cas pour le modèle local. Tailles de maille (mm)

  Fig. 0-1 中间构型间的运动几何关系 注意到,当物质点位于中性层上时( 0 z  ),式子(3)退化为简单逆方法中的几何关系;当应变度 量的物质点位于中性层外沿厚度方向时,由于参考构型的强烈的弯曲效应,应采用式子(3)建立对 数应变增量的度量。 I.2. 经典弹塑性本构积分 采用了经典的各向异性弹塑性本构模型并耦合了幂指数形式的各向同性硬化,基于关联流动法 则和 Hill48 的二次塑性势函数建立了塑性应变率的演化方程,借助于 Simo 图形返回算法实现了该 本构积分过程。Hill48 屈服准则可表示为:

  Fig. 0-2 冲压成形板料状态示意图 构造三维滑移约束曲面 如图 Fig. 0-2 所示,板料构型近似假设为在已知凸模和凹模的位置约束下的张拉膜, 板料形状可 近似为使板料的面积最小的曲面考虑到有限元网格坐标与面积之间的非线性关系,该最小面积法 对应为 NP 困难的序列二次规划模型,求解困难且效率低。本文通过拟最小面积法建立了一个多项 式时间复杂度的二次规划模型,其目标函数和约束条件定义为:

  本文采用基于动力显式的有限元求解器 Abaqus/Explicit 进行求解式子(31)中的非线性方程组。显 式的中心差分格式的物体运动方程为:

  Fig. 0-4 材料参数 s 对损伤和等效应力演化的影响

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  The material properties of Draw Quality Mild Steel (IF) and forming parameters are shown in the below: Thickness  1.0 InTable III-1, Dir means the angle measured from the rolling direction, YS gives 0.2% offset engineering Yield stress, TS indicates the engineering tensile stress,

							t	mm ,
	Young's Modulus  206 E GPa , Poisson's Ratio  0.3 v	, Blank Holder Force 200KN , Friction Coefficient
	0.11 . n and	K are the parameters of stress-
	strain curve   n K and	r is the anisotropic coefficient.	
	Dir	YS (MPa)	TS (MPa)	n	K (MPa)	r
	0	152	294	0.239	526	1.85
	45	159	301	0.231	530	1.52
	90	163	292	0.231	516	2.37
	AVE	158	297	0.233	526	1.82

Table III -

 III 

1 Material's anisotropic parameters

Table VI -

 VI D is the Eulerian strain rate tensor,  is the Eulerian Cauchy stress tensor,  is the Eulerian Kirchhoff stress tensor,  

		E	Edt is the Lagrangian total strain
		t
	tensor,	     11 T S JF F

1 State variables associated with physical phenomena a) Any total strain tensor, associated with an adequate stress tensor according to the stress-strain conjugacy principle. These pairs can be:    , ,    , ,   , ES , or    , F , where    t Ddt is the Eulerian total strain tensor, is the Lagrangian Piola-Kirchhoff stress tensor,   t F Fdt is the total transformation gradient as well as the Boussinesq or Piola-Lagrange stress tensor

  

	ela kin iso W W W	11 :: 22 11 :: 22 11 22 ee X X Rr Rr	and	11 :: 22 11 :: 22

  Cattaneo IILater, Cattaneo proceeded to modify the equation (Eq.(II.163)) by assuming that the operator   Substituting Cattaneo's equation Eq.(II.166) into Eq.(II.151) and using the above relation Eq.(II.167), leads to the following generalized heat equation with internal variables:

	   e	 C T		     : in	T	          : : e n n A TT	(II.167)
								 d dt
	is small such that:						
			  1      dt  11 dd dt	(II.165)
	By using this approximation, the transient Fourier model Eq.(II.163) transforms into the so-called
	Cattaneo equation:						
				   ii  qq	 x  T	(II.166)
							i

Combining the above equations (Eqs.(II.151), (II.159)) and the state relations Eq.(II.157), we can easily obtain the following relationship:

  42

	e s s	sT	ss	A s s	(II.203)
				s	
	where,  and				

s

A are two positive material parameters. Using the derived state laws in Eq.(II.200) and the Fourier law Eq.(II.161), the heat equation is derived as:

  same form as the generalized two-temperature model with nonlocal effects Eq.(II.225).If the term T is relative small compared with other terms, Eq.(II.282) takes the same form as the heat equation derived from the hyperbolic two-temperature model (Eq.(II.221)):

	PART II CHAPTER VI THEORETICAL FORMULATIONS	
	which has the	
	T	(II.282)
	t	
	117	

  vector of nodal coordinates 

											PART II CHAPTER VII NUMERICAL ASPECTS
									               , xx bh e            ,, y x x y y b h b h    , x yy e bh	(II.343)
	where, the vectors e 		   	and e
								x		xi	xj	xk	xl	y	yi	yj	yk	yl
											C	e	x x x x and
											x	i	j	k	l
	C	e y		i y y y y , and the vectors j k l	 , i x bN x	and	yi  ,y bN	are evaluated at the
	integration point       , 0,0 .
		In the local coordinates, the membrane deformation is rewrited as:
									       , xx bh       e  U     y y x x ,, b h b h   e y U    yy , x m bh	(II.342)
	which can be regarded as a combination of standard B matrix and the anti-hourglass control part. The
	vectors	U	e		u u u u and	U	e		v v v v .
				x		i	j		k	l	y	i	j	k	l
		For the bending strains, the curvature is modified as:
											137

  1 ).

	Modèle	Auteurs	Equations de chaleur
	Equation classique de chaleur avec le modèle de Fourier	Fourier, 1878	C T    T
		Cattaneo I, 1948	
	Type hyperbolique avec temps		
	de relaxationa		

Table 0 -

 0 

1 Différentes équations de chaleur généralisée

IV.1. La discrétisation du temps et de l'espace

  , avec intersections vides. Trois éléments dits « en déformations supposées » basés sur le principe variationnel mixte de Hu-Washizu, sont développés dans le sous-programme Abaqus/Vuel.

	L'intervalle de temps total	I est discrétisé en	N sous-intervalles à intersections vides, de sorte que
					t	t
					N
					t
	l'approximation	t I		  01     n 0 f n n ,, t t t t	 t est valable avec une précision suffisante. Pour chacun    n t
	de ces sous-intervalles de temps, nous résolvons donc un problème non linéaire pour déterminer toutes
	les inconnues du problème de valeurs initiales et aux limites.
	La MEF standard basée sur le déplacement est utilisé pour discrétiser la configuration de référence 
	Les six formes faibles discrétisées élémentaires, pour un élément typique (e), prennent la forme:

n t en un nombre fini de e N sous-domaines ou d'éléments finis (EF) de forme géométrique simple appelée  e

  Avant d'effectuer les identifications, l'étude paramétrique du modèle micromorphe doit être soigneusement réalisée pour bien comprendre les équations constitutives proposées. Les effets des paramètres d'endommagement local  

		, , , Ss , les modules micromorphes 	r Q l , , , , dd H l 		et les
	effets thermiques 			

V.1. Étude paramétrique

  1). Un ensemble complet d'équations de bilan et d'équations constitutives micromorphes est formulé dans le contexte de la thermodynamique des processus irréversibles : i). Les nouvelles équations d'équilibre additionnelles associées aux ddls micromorphes (l'endommagement ductile, l'écrouissage isotrope, l'écrouissage cinématique et la température) sont obtenues à partir du principe des puissances virtuelles étendu. En utilisant la thermodynamique des processus irréversibles les relations d'état des variables locales et micromorphes sont déduites de l'énergie libre de Helmholtz. Les équations d'évolution des variables associées aux phénomènes dissipatifs sont obtenues à partir de critère d'écoulement et de potentiel des dissipations grâce à la règle de normalité. Il est remarquable de noter que les équations constitutives s'écrivent sous la forme additive d'une contribution locale (classique) et d'une contribution non locale (micromorphique). Le modèle de comportement local est retrouvé comme cas particulier quand on annule les paramètres micromorphes. ii). En se limitant, par manque de temps, à la version du modèle avec endommagement et écrouissage isotrope micromorphes, une implémentation a été réalisée dans les sousprogrammes VUEL et VUMAT d'Abaqus/Explicit en utilisant trois types d'éléments finis (membrane, coque et coque solide) avec déformation assumée pour mieux contrôler la variation de volume. L'intégration numérique locale inconditionnellement stable des équations constitutives est réalisée grâce au schéma asymptotique combiné avec un schéma d'Euler avant basé sur la méthode de prédiction élastique correction plastique avec retour radial. iii). Une étude paramétrique assez exhaustive a été menée et qui conclut que: les paramètres  influencent la réponse du matériau dans le stade postcritique (avec adoucissement induit). La réponse du modèle non local est plus sensibles aux modules micromorphes H et Q qu'aux modules de gradient micromorphe g H et g Q . Aucune différence n'est observée pour le cas de la densité micromorphe inférieure à la densité locale. L'effet régularisant de l'endommagement micromorphe est accentué dans les cas de température élevée ou de taux de déformation élevé en raison du couplage complexe entre effets de viscosité et effets de endommagements non locaux ; iv). Les applications du modèle micromorphe proposé, à un essai de traction uniaxiale et au procédé d'emboutissage profond d'une boite cruciforme prédisent des solutions acceptables, indépendantes de la taille du maillage. Le modèle est capable non seulement de prédire la déformation, l'endommagement , l'amorçage de fissures macroscopiques mais également leur propagation jusqu'à la rupture finale d'une pièce. 2). Le modèle thermomécanique micromorphe a été formulé dans le même cadre et appliqué au problème discriminant de transfert de chaleur : i). Le nouveau champ de micro-température est introduit ainsi que son premier gradient et conduit à une paire d'équations thermiques couplées thermodynamiquement cohérentes. Le cas contraint pour lequel la microtempérature coïncide avec la température locale classique présente un intérêt particulier car il peut être comparé aux différentes équations de la chaleur disponibles dans la littérature ; ii). L'équation proposée est renforcée par essentiellement trois nouvelles contributions qui ont été illustrées dans le cas linéarisé. Les trois termes affectent le comportement thermique transitoire du matériau. Le premier nouveau terme est lié au Laplacien du taux de température, une contribution qui a été proposée d'abord par Cattaneo dans une première version de sa théorie. Une seconde contribution est proportionnelle à la deuxième dérivée de la température qui modifie l'équation thermique habituelle en une équation hyperbolique avec un temps caractéristique positif. Le dernier terme associé à la troisième dérivée de la température demeure plutôt inexploré même s'il est présent dans certaines théories généralisées trouvées dans la littérature ; iii).

	d'endommagement local	0 S s Y , , ,

r Local damage model r Micromorphic damage and hardening model Stage I: mesh size 1.6mm Stage I: mesh size 0.8mm Stage I: mesh size 0.4mm

, mK sont soigneusement étudiés. Un exemple de l'effet du paramètre d'endommagement local est donné en Fig.04.

and the acceleration     n u at increment number n is evaluated from the discrete weak forms Eq.(II.329):

The solutions of the micromorphic damage and the micromorphic isotropic hardening are also integrated in time using the above explicit central-difference scheme presented by displacement fields. However, for coupled temperature-displacement fields problems, the temperature is integrated in time using the explicit forward-difference integration scheme: damage along the central line AB which are obtained from the simulations of using local and micromorphic damage models. Clearly the distributions of the micromorphic damage are more smooth in the whole region (maximum value around 0.3), lower in the localized zone and higher at the outside of localization than the value of local damage. Considering the value of the micromorphic damage is governed by the equation Eq.(II.111), its maximum value (approximate 0. It should be noticed that, in Fig. IX-5, the inconsistent force-displacement curves of different mesh sizes obtained from the micromorphic damage model present some deviations from each other in the range between 8.0mm to 9.15mm. These can be overcoming by introducing more micromorphic variables to fully represent the localization behavior of the material besides only the micromorphic damage as is shown here after.

IX.1.3 Solutions with micromorphic damage and micromorphic isotropic hardening

In order to enhance the micromorphic modeling of the material response, the micromorphic isotropic hardening associated with the nonlocal effect of the isotropic hardening is now taken into account together with the micromorphic damage. 

IX.2.1 CSDD processes using the local damage model

Considering the local damage model, the same elastoplastic material parameters of DP1000 steel are adopted as in Table IX-1, while the damage parameters S and coefficient h take the values of 8.5 and 0.25 respectively to take the microcracks closure effect into account.

In Fig. IX-18, the system responses in terms of punch force vs punch travel, as predicted by the local continuum damage model considering the micro-crack closure effects for different mesh sizes are presented. The clearly mesh-dependency is observed: the force-displacement curves drop from the approximate punch travel of 23.34mm, 26.14mm and 27.89mm for the analysis using mesh sizes 1.6mm, 2.0mm and 2.4mm respectively. In Fig. IX-21, the distributions of the accumulated plastic strains (PEEQ) and the equivalent stress for three mesh sizes at Stage I are illustrated. Clearly, the maximum values of PEEQ occur around the two corners and reach up to approximate 0.66 (or 66%) for all the three mesh sizes. Besides the two corners enduring large finite tensile deformation, the right side of the part appears seriously compressive deformations which may yield the wrinkle defects in the formability analysis. Considering the coefficient h takes 0.25 means that the evolution of damage under compression is much lower than its evolution in tension conditions. For that reason, we can image that if we let the coefficient h also takes 1.0, it seems probable that the initial crack would occur in this serious compression region, due to the same damage evolution similar under both tension and compression conditions. From the contour of equivalent stresses, the similar distributions and the consistent maximum values (around 1304.5MPa) are captured. The PART II CHAPTER IX APPLICATIONS 194 equivalent stresses, for the compression zone are highly concentrated, and for the tensile localized zones vanishes due to the appearance of maximum damage values (initiation of cracks).

IX.2.2 CSDD processes using the micromorphic damage model

In order to overcome the above spurious numerical mesh-dependency of finite element results due to the damage-induced softening, the micromorphic damage model, taking the micromorphic density scale